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Abstract

As the digitalization of private, commercial, and public sectors advances rapidly, an
increasing amount of data is becoming available. In order to gain insights or knowledge
from these enormous amounts of raw data, a deep analysis is essential. The immense
volume requires highly automated processes with minimal manual interaction. In recent
years, machine learning methods have taken on a central role in this task. In addition to
the individual data points, their interrelationships often play a decisive role, e.g. whether
two patients are related to each other or whether they are treated by the same physician.
Hence, relational learning is an important branch of research, which studies how to harness
this explicitly available structural information between different data points. Recently,
graph neural networks have gained importance. These can be considered an extension of
convolutional neural networks from regular grids to general (irregular) graphs.

Knowledge graphs play an essential role in representing facts about entities in a machine-
readable way. While great efforts are made to store as many facts as possible in these
graphs, they often remain incomplete, i.e., true facts are missing. Manual veriőcation
and expansion of the graphs is becoming increasingly difficult due to the large volume
of data and must therefore be assisted or substituted by automated procedures which
predict missing facts. The őeld of knowledge graph completion can be roughly divided
into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine
learning models are trained to predict unknown facts between entities based on the known
facts. Entity Alignment aims at identifying shared entities between graphs in order to
link several such knowledge graphs based on some provided seed alignment pairs.

In this thesis, we present important advances in the őeld of knowledge graph completion.
For Entity Alignment, we show how to reduce the number of required seed alignments
while maintaining performance by novel active learning techniques. We also discuss
the power of textual features and show that graph-neural-network-based methods have
difficulties with noisy alignment data. For Link Prediction, we demonstrate how to
improve the prediction for unknown entities at training time by exploiting additional
metadata on individual statements, often available in modern graphs. Supported with
results from a large-scale experimental study, we present an analysis of the effect of
individual components of machine learning models, e.g., the interaction function or loss
criterion, on the task of link prediction. We also introduce a software library that simpliőes
the implementation and study of such components and makes them accessible to a wide
research community, ranging from relational learning researchers to applied őelds, such as
life sciences. Finally, we propose a novel metric for evaluating ranking results, as used
for both completion tasks. It allows for easier interpretation and comparison, especially
in cases with different numbers of ranking candidates, as encountered in the de-facto
standard evaluation protocols for both tasks.
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Zusammenfassung

Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öf-
fentlichen Sektors werden immer größere Datenmengen verfügbar. Um aus diesen enormen
Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse
unerlässlich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler
manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens
eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten
spielen oft auch deren Zusammenhänge eine entscheidende Rolle, z.B. ob zwei Patienten
miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist
das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit
verfügbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar
gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung
gewonnen. Diese können als eine Erweiterung von CNNs von regelmäßigen Gittern auf
allgemeine (unregelmäßige) Graphen betrachtet werden.

Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten über
Entitäten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden,
so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollständig,
d. h. es fehlen Fakten. Die manuelle Überprüfung und Erweiterung der Graphen wird
aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte
Verfahren unterstützt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet
der Wissensgraphenvervollständigung lässt sich grob in zwei Kategorien einteilen: Link
Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle
trainiert, um unbekannte Fakten zwischen Entitäten auf der Grundlage der bekannten
Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitäten zwischen
Graphen zu identiőzieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger
vorgegebener Paare zu verknüpfen.

In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollständigung
von Wissensgraphen vor. Für das Entity Alignment zeigen wir, wie die Anzahl der
benötigten Paare reduziert werden kann, während die Leistung durch neuartige aktive
Lerntechniken erhalten bleibt. Wir erörtern auch die Leistungsfähigkeit von Textmerk-
malen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten
mit verrauschten Paar-Daten haben. Für die Link Prediction demonstrieren wir, wie die
Vorhersage für unbekannte Entitäten zur Trainingszeit verbessert werden kann, indem
zusätzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen
verfügbar sind. Gestützt auf Ergebnisse einer groß angelegten experimentellen Studie
präsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des
maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die
Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die
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Zusammenfassung

Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten
Forschungsgemeinschaft zugänglich macht, die von Forschern im Bereich des relationalen
Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich
schlagen wir eine neuartige Metrik für die Bewertung von Ranking-Ergebnissen vor, wie
sie für beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und
einen leichteren Vergleich, insbesondere in Fällen mit einer unterschiedlichen Anzahl von
Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen für beide Aufgaben
vorkommen.
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1 Introduction

While the ever-growing volumes of available data are a valuable resource in themselves,
there is considerable added value in connecting them. As an example, consider the
prediction of side effects of drugs for a patient. A simple model here can utilize, for
instance, patient data and a textual description of the drug. The prediction can presumably
be improved by including additional relationships. For example, information about other
drugs used at the same time can be included, e.g., because certain effects are only produced
by the combination of several drugs. Connections to existing drug incompatibilities,
information on their ingredients and mechanisms of action, and their connections to the
drug currently under consideration are also likely to improve prediction. Further links of
the patient, such as to similar patients, e.g., from the family, represent other valuable
pieces of information.

As seen from the example, real-world connections can easily become complex and
irregular, and thus, there is a need for ŕexible yet expressive modeling schemes which
can capture these relationships in machine-readable format. A prominent example are
graphs, where connections are explicitly given as edges between the nodes of related
entities. Exemplary applications include social networks, road or communication net-
works, biomedical interaction graphs, or conőgurations of, e.g., production sites. Besides
information about single entities, there is often additional information attached to the
relationship between them. This information can describe, e.g., the provenance of the
relationship information, e.g., from which source this information stems, or detail the type
of relation, e.g., whether a drug inhibits or upregulates a biomolecular process. In general,
this information can be modeled via edge features or more complex, hyper-relational
modeling schemes.

In particular, when dealing with facts about entities, Knowledge Graphs (KGs) are an
intriguing variant of graphs. KGs are multi-relational graphs, where individual connections
between entities are of certain relation types. Hence, they can naturally model a statement
subject predicate object as a connection of the type predicate between the nodes subject
and object. Conversely, it is trivial to enumerate statements about a speciőc entity from
a given KG, which makes them a highly interpretable data format.

In the recent decades we have witnessed the emergence of several large-scale KGs [106].
There are general purpose ones, such as Cyc [151], YAGO [203], Freebase [34], DBpe-
dia [131], Wikidata [219], or NELL [154], as well as domain-speciőc open KGs, encom-
passing, e.g., the legal domain [156, 79, 120], healthcare [187, 61, 189], bio-medical [103,
41, 220, 261, 111], chemistry [157], material science [158], geo-science [50], academia [223,
74, 12], or fact checking [209, 147].

Since Google’s announcement about using KGs to enrich their search results [199], a
multitude of other companies also announced their usage of own KGs, e.g., Accenture [171],
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1 Introduction

AirBnB [48], Amazon [127], Apple [148], AstraZeneca [21], Bing [198], Bloomberg [152],
Bosch [100], eBay [178], IBM [66], LinkedIn [98], Maana [59], Pinterest [88], Siemens [110],
Thomson Reuters [211], or Uber [94].

Given their ubiquity and vast extent, KGs and machine learning thereupon have been
successfully utilized to improve several downstream tasks, such as semantic search [16,
68], question answering [257], or recommender systems [93, 139, 102]. Moreover, they are
applied to the őelds of, e.g., drug repurposing [146, 241, 254], manifacturing [185, 124,
262], őnance [55, 80], or culture [46].

A common problem across most KGs is their incompleteness [226]. While manually
curated rules and KG interlinks have been successfully applied for a longer time, machine
learning approaches offer an appealing alternative with the potential to overcome the
inherent scalability issues of handcrafted rules. Thus, they have become a decisive
technique in this active research area. Most approaches for KG completion or enrichment
fall into two broad categories. First, Link Prediction (LP) methods directly work on the
KGs, and aim at predicting missing links given the observed ones. For this setting, we
can distinguish the transductive setting, where all entities are known at training time,
from inductive settings, where novel entities can be encountered at inference time [95].
Second, Entity Alignment (EA) approaches address incompleteness by establishing links
between two KGs, thus enabling to harness the combined knowledge.

Since machine learning approaches for both tasks operate on the same underlying data
structure, there is considerable overlap in the employed approaches. Thus, we contribute in
both directions in this thesis. We are the őrst to show how we can minimize required labels
for the EA task by interleaving the labeling process with model training, commonly referred
to as active learning. Moreover, we propose to leverage hyper-relational information
present in modern KGs in practically highly relevant inductive LP settings, where we
may encounter unseen entities at inference time. We then elucidate the contribution of
individual components of LP and EA models and their training, supported by experimental
results from large-scale studies, as well as an open-source library, PyKEEN. We conclude
by presenting a novel rank-based evaluation metric, which is more interpretable than
existing metrics and allows direct comparison in practically relevant settings with variable
number of ranking candidates.
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2 Overview of Contributions

This chapter provides an overview of the thesis and positions the included publications
within the research area.

• Chapter 3 gives an overview of the broader research area. It reviews and orders
existing work and introduces concepts and formalisms commonly employed in the
subsequent chapters. It provides a detailed overview about the general process,
from formalizing the data structure and tasks thereupon, over ways of learning
individual representations, to structural enrichment thereof via neural message
passing mechanisms. While until then, the representation learning techniques have
been the same for both Knowledge Graph (KG) enrichment tasks; subsequently,
we discuss the different łdecoders” and training approaches for the two tasks, Link
Prediction and Entity Alignment. Finally, we revisit the rank-based evaluation
protocol applied for both tasks.

• Chapter 4 addresses the problem of obtaining labels for Entity Alignment (EA).
In practice, current approaches usually use 30% of all shared entities for training.
Obtaining this high number of labels can be costly for large KG pairs or domain-
speciőc KGs where skilled annotators are required. Thus, we are the őrst to propose
to use active learning techniques for EA. We formalize the labeling framework
and show that existing state-of-the-art heuristics from classiőcation tasks based
on uncertainty or embedding space coverage are insufficient to obtain satisfying
performance. We propose several solid passive learning strategies based on graph
centrality and a novel active learning heuristic. We show that we outperform several
baselines, particularly for few label regimes, which are more relevant in practice.

• Chapter 5 studies inductive Link Prediction (LP). While in transductive LP we
can assume that all entities encountered during inference have already been seen in
training, in the inductive setting, we have to deal with unseen entities. Our őrst
contribution is to categorize different inductive settings, depending on the availability
of additional inference facts and whether unseen entities have to be interconnected or
only linked to known entities. Moreover, modern KGs, such as Wikidata [219], often
contain hyper-relational facts, i.e., there is additional context given to individual
facts. We are the őrst to study their use in semi- and fully-inductive settings,
and to this end also propose a novel set of benchmark datasets. Our experiments
demonstrate performance improvements of up to 6% points absolute improvement
in the Hits@10 metric compared to triple-only baselines.
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2 Overview of Contributions

• Chapter 6 introduces the open-source library PyKEEN1 for KG embedding models.
This library was speciőcally developed to encode our understanding of important
components for LP on KG, e.g., the interaction function or training approach, as
outlined in Chapter 3. It enables studying the reproducibility of proposed approaches
and offers excellent ŕexibility in combining individual components reaching far
beyond the space explored in existing publications. Chapter 7 then presents an
analysis of the impact of the individual components of KG embedding models
enabled by our library. It is supported by the results of a large-scale experimental
study and thoroughly studies the reasons behind performance differences. To this
end, we compare and analyze the performance over multiple benchmark datasets and
numerous conőgurations, isolating individual components’ contributions, particularly
of the interaction model, the loss function, the training approach, and the explicit
use of inverse relations. Our results include several conőgurations competitive to
state-of-the-art and often improve upon published results for a particular interaction
function. Moreover, we analyze differences between relational patterns, make several
recommendations to practitioners, and conduct a large reproducibility study that
quantiőes the commonly denounced reproducibility crisis. Our library, PyKEEN,
serves as a step towards more reproducible research by providing a simple and
re-usable framework for implementing and studying new methods.

• Chapter 8 analyzes the impact of textual features on the performance of state-
of-the-art EA methods. In contrast to existing work, we ensure a consistent and
fair setting for all methods and reveal the surprisingly good performance of the
features in a zero-shot setting, for noisy datasets nearly fully explaining the observed
performance of several graph-neural-network-based methods. In other, less noisy
settings, we can conőrm that neighborhood aggregation indeed is beneőcial for the
alignment task.

• Chapter 9 introduces a novel rank-based metric based upon the mean rank. Existing
metrics automatically become better if the number of ranking candidates decreases.
Hence, an interpretation thereof requires consideration of the number of candidates.
In contrast, our proposed metric is adjusted for chance. Thereby, it is also implicitly
normalized by the number of candidates and thus allows comparison of results when
this number varies. Such normalization is helpful for the standard EA evaluation
protocol, where only entities participating in at least one test pair serve as candidates,
but also for the őltered evaluation setting, which is the de-facto standard in LP.

In summary, we believe that this work signiőcantly advances the őeld of machine
learning on KGs. As a result of this work, we are now able to apply EA approaches in an
economically viable way in settings where few labels are available, and utilize the valuable
context of qualiőer pairs present in modern KGs also in the practically more relevant
inductive LP setting with unseen entities. Moreover, we elucidated the effect of individual
components of LP models, as well as the strength of lingual features in EA, and showed

1https://github.com/pykeen/pykeen
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that current Graph Neural Network (GNN)-based EA approaches cannot always beneőt
from the additional structural signal given by the graph structure. Finally, we provide a
novel rank-based evaluation metric which is more intuitive and allows easy comparison of
LP and EA models in the practically highly relevant rank-based evaluation settings with
variable number of candidates.

Since reproducible science is of utmost importance to us, we provide openly accessible
implementations for all presented works and explicitly refer to them in this thesis in
addition to the respective publications. By this mean we hope to contribute towards
resolving the reproducibility crisis as well as providing usable research artifacts to the
community.
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3 Background

This chapter introduces the central concepts of the thesis in greater detail than a single
paper allows. It also reviews existing works to contextualize the thesis’ contributions
better. We begin by introducing general notation in Section 3.1. Since the deőnition of a
KG is not consistent across different works [106], Section 3.2 formalizes the concept used
within this thesis. Section 3.3 introduces the two tasks of LP and EA. Section 3.4 presents
machine learning techniques for learning (entity) representations in KGs applicable to
all enrichment methods. Section 3.5 then presents score functions (łdecoders”), training
approaches, and losses for LP. Section 3.6 introduces EA-speciőc components, particularly
similarity normalizations, matching techniques, losses and training methods. Section 3.7
őnally discusses rank-based evaluation commonly applied to both tasks.

3.1 Notation

In this section, we introduce the notation used throughout the remainder of this chapter,
which is also mostly consistent with the individual publications in the other chapters.
In general, we use lower-case Greek letters, e.g., α, to denote scalar values, lower-case
bold-font letters, e.g., x, to denote vectors, upper-case bold-font, e.g., X, to denote
matrices or higher-order tensors. By R and C we denote real and complex numbers,
respectively. If not noted otherwise, we assume each variable to be real. For a complex
number α, we use ℜ(α) to denote its real part, and α for its complex conjugate. With
log we refer to the natural logarithm (ln), if not stated otherwise. By ⟨x,y⟩ we denote
the inner product between x,y ∈ R

d. If not noted otherwise, we use the standard inner

product ⟨x,y⟩ = xTy. By ∥x∥ we denote the norm of x, and by ∥x∥p = (
∑︁d

i=1 |xi|p)
1/p

the p norm speciőcally. By ⊙ we denote the Hadamard product, i.e., the element-wise
multiplication, (x⊙ y)i := xi · yi. We use [x;y] ∈ R

d+d′ to denote the concatenation
of vectors x ∈ R

d,y ∈ R
d′ . For a matrix W ∈ R

d×d′ , we use vec(W) ∈ R
d·d′ to

denote the ŕattened matrix with (vec(W))i := (W)⌊i/d⌋,(i mod d). Moreover, we use

stack(x1, . . . ,xk) ∈ R
d×k to denote the combination of multiple vectors xi ∈ R

d to a
matrix, with (stack(x1, . . . ,xk))i,j := (xj)i.

We commonly use the following activation functions. When applied to vectors, matrices,
or tensors, we understand them as elementwise operations.

• The (logistic) sigmoid function

σ(α) =
1

1 + exp(−α)

7



3 Background

• The hyperbolic tangent

tanh(α) =
exp(α)− exp(−α)
exp(α) + exp(−α)

• The Rectiőed Linear Unit (ReLU)

ReLU(α) = max{0, α}

• The Leaky ReLU [144]

LeakyReLU(α) =

{︄

α if α > 0

β · α otherwise

where β = 10−2 if not speciőed differently.

• The softplus activation

softplus(α) = log(1 + exp(α))

• The softmax

(softmax(x))i =
exp(xi)

∑︁

j exp(xj)

With slight abuse of notation, we use the same function symbol with an additional
argument to denote the vectorized softmax operation applied to the rows/columns
of a matrix. The second argument denotes the axis along which the normalization
is applied, e.g., softmax(X, 1) denotes the row-wise softmax.

For some interaction functions, cf. Section 3.3.1, we further require basic notions of
hyperbolic geometry, in particular the Poincaré ball model, {x ∈ R

d | ∥x∥22 < γ−1} for
γ > 0, which is a hyperbolic geometry with curvature −γ. In [84], the vector addition ⊕γ ,
linear transformation ⊗γ , and distance dγ are deőned for this space using the exponential
and logarithmic map:

expγ
0
(x) =

tanh(
√
γ∥x∥)

√
γ∥x∥ x (3.1)

logγ
0
(x) =

arctanh(
√
γ∥x∥)

√
γ∥x∥ x (3.2)

x⊕γ y =
(1 + 2γxTy + γ∥y∥2)x+ (1− γ∥x∥2)y

1 + 2γxTy + γ2∥x∥2∥y∥2 (3.3)

W ⊗γ y = expγ
0
(W logγ

0
(x)) (3.4)

dγ(x,y) =
2√
γ
arctanh(

√
γ∥ − x⊕γ y∥) (3.5)

We also consider the following abbreviation for the Hadamard product: x ⊙γ y =
diag(x)⊗γ y.
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3.2 Knowledge Graphs

3.2 Knowledge Graphs

KGs are a ŕexible and versatile data structure to store knowledge as facts. In this work,
we focus on KGs in the following deőnition:

Deőnition 3.2.1 (Knowledge Graph). A Knowledge Graph (KG) is a 3-tuple K =
(E ,R, T ) with a set of entities E , a set of relations R, and a set of triples T ⊆ (E ×R×E).

We call (h, r, t) ∈ T a triple or fact, with the head entity h, the relation r, and the tail
entity t. For example, we can encode the fact that Alan Turing was educated at Prince-
ton University as a triple (Alan Turing, educated at, Princeton University) with
the head entity Alan Turing, the relation educated at, and the tail entity Princeton

University. An alternative view on KGs is as a directed multi-relational graph, where
the entities are nodes, and each triple describes a directed edge from the head to the
tail entity, with the corresponding relation type. Notice that this graph may contain
self-loops and multiple edges (of a different type) between two entities. As an example,
Fig. 3.1 shows an excerpt of Wikidata [219] including the aforementioned fact.

When describing approaches working on KG, we often make the simplifying assumption
that we use numeric entity and relations, i.e., E = {1, . . . , |E|}, or R = {1, . . . , |R|}, and
thus can use entities and relations to index vectors and matrices. In their implementations,
this is often done in a preprocessing step. After that, the actual training and evaluation
parts can work purely index-based, allowing vectorized operations directly supported by
utilized libraries and hardware.

For h, t ∈ E , r ∈ R, we use

T(h,r,·) = {(h′, r′, t′) ∈ T | h′ = h ∧ r′ = r}

to denote the set of triples where the head and relation match h and r, and · can be
arbitrary. For instance, in the example KG given in Fig. 3.1, we would have

T(Alan Turing,educated at,·) = {(Alan Turing, educated at, Princeton Unversity),

(Alan Turing, educated at, Cambridge Unversity),

(Alan Turing, educated at, King’s College)}

Analogously, we use T(h,·,t), T(·,r,t), and also T(·,r,·), where the latter denotes the set
of all triples with the given relation. Moreover, for a set of triples T , we use ET ⊆ E
and RT ⊆ R to denote the set of occurring entities or relations. If we further want to
restrict the position at which an entity occurs, we can use EhT and E tT to denote the set of
head and tail entities. By combination it is easy to denote, e.g., the set of head entities
co-occurring with a certain relation as r as EhT(·,r,·) .

A common practice in machine learning for KGs is to add inverse triples [65, 216,
239, 149]. For each triple (h, r, t) ∈ T , we add another triple (t, r−1, h), where r−1 is a
new relation denoting the inverse relation to r. By adding inverse triples, we double the
number of relations and triples. While this only adds redundant facts and may appear as
a pure data augmentation technique, it can have a beneőcial impact, e.g., by allowing
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3.3 Knowledge Graph Enrichment

to learn two separate representations for each original relation. Its impact is thoroughly
discussed in Chapter 7. For GNN-based methods, self-loops are sometimes introduced:
For each entity e ∈ E , the triple (e, r⟲, e) is added, where r⟲ is a new relation symbol.
We use dir(r) ∈ {→,←,⟲} to denote whether a relation is a normal relation (→), or an
inverse relation (←), or the self-loop relation (⟲).

An extension to KGs are hyper-relational KG. These allow to extend triples (h, r, t) to
statements (h, r, t,Q), where Q ⊆ R×E is a set of qualiőer pairs which provides additional
context to the main triple (h, r, t). For instance, we can provide additional context to the
statements about Alan Turing’s education by attaching the degree, e.g., (Alan Turing,
educated at, Cambridge, {(academic degree, Master of Arts)}). Notice that we can
have multiple different statements with the same base triple, but different qualiőer
pairs. For instance, we could also formulate another true statement about Alan Turing’s
education as (Alan Turing, educated at, Cambridge, {(academic degree, Bachelor

of Arts)}).

3.3 Knowledge Graph Enrichment

Real-world KGs tend to be reliable [170, 2, 85], i.e., the vast majority of contained facts is
true, but they are known to be incomplete [226], i.e., they do not contain all true facts but
only a (small) subset thereof. Therefore, machine learning on KGs usually operate under
the open-world assumption, i.e., they assume that present facts are valid; however, the
absence of a fact does imply falseness but rather only means that this fact is unknown.

To address the incompleteness of KGs, we distinguish two families of approaches: LP
and EA. In LP, also referred to as KG completion, the enrichment is done within a single
KG. In contrast, in EA, knowledge is enriched by taking several KGs into account and
identifying shared entities.

3.3.1 Link Prediction

In the task of Link Prediction (LP), we aim to materialize łlatent knowledge” by predicting
missing links based upon the observed ones. To this end, we are provided with a set of
triples Ttrain from the incomplete KG and are to infer missing ones.

In contrast to the related task of triple classiőcation, where each triple is assigned with
a probability score, the LP task is commonly framed as a ranking task: In tail prediction,
given a head entity h ∈ E and a relation r ∈ R, the task is to rank all possible entities t ∈ E
such that true triples receive a larger score than others. The head prediction is deőned
analogously, as scoring possible head entities h ∈ E for a given (r, t) pair. As an example,
we could consider the őnding notable works of Alan Turing, i.e., the task (Alan Turing,
notable work, ?), cf., Fig. 3.2. We would expect from a link prediction model to score
the entity Turing Machine higher than other entities such as, e.g., Lambda Calculus, or
Alonzo Church. Notice that a link prediction might have picked up correlations such as
if something is named after someone, it may be a notable work. Thus, we might also see
high scores for Church-Turing thesis, which is a plausible fact, yet not contained in
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Alonzo Church
wd:Q92741

Alan Turing

wd:Q7251

Church-Turing thesis
wd:Q309157

Lambda Calculus
wd:Q242028

Turing Machine
wd:Q163310

notable work
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notable work
wdt:P800

named after
wdt:P138

named after
wdt:P138

named after
wdt:P138

notable work

wdt:P800

notable work

wdt:P800

Figure 3.2: A subset of the triples from Fig. 3.1 showcasing the task of link prediction. As-
sume we are looking for notable works of Alan Turing, i.e., entities e ∈ E for
which the triple (Alan Turing, notable work, e) holds. Besides recovering
true entities such as Turing Machine, we may also want to have general-
ization capabilities, e.g., that the model picks up correlations between the
named after and notable work relations, and also yields a high score for
Church-Turing thesis.

Wikidata (as of the time of writing).
For LP, we can distinguish the transductive setting and different inductive settings [95, 6]:

In the transductive setting, all entities are known at training time, i.e., during inference, we
are only asked to predict links between known entities. In contrast, inductive settings allow
unknown entities. We can further distinguish different inductive settings, cf. Chapter 5:
In the fully inductive setting, we predict links between unknown entities, while the
semi-inductive setting requires connecting unknown entities to known ones. Furthermore,
we may be presented with additional inference triples Tinf, which can be utilized, e.g., by
GNN-based models, to improve their prediction.

3.3.2 Entity Alignment

In contrast to LP, in Entity Alignment (EA), the goal is to enrich the information
present in a single KG by linking between (some of) its entities and entities from another
KG. Thus, two KGs, KL = (EL,RL, T L) and KR = (ER,RR, T R), are given where
some entities are shared among the two graphs, or considered to be equivalent. We
denote by A ⊆ (EL × ER) a set of corresponding or matching entity pairs, also called
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Turing Machine
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Model
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Mathematical Model
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Wikidata
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n:03086983

Model#1
n:05898856

Simulation#2
n:05674544

Theory#2
n:05897536
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n:10344226
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direct hypernym

direct hypernym
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WordNet

?

?

Figure 3.3: Example for an EA between Wikidata [219] and WordNet [153]. The task
is to identify shared entities between the two KGs. Often, the task is posed
in a supervised setting, where some entity pairs are given, e.g., (Turing
Machine, Turing Machine#1), and the remainder is to be inferred, e.g.,
(Model, Model#1).

alignments, and formulate this task in a supervised manner, where a subset of alignments
Atrain ⊂ A is given, and the remainder is to be inferred. Similarly to LP, EA is also
often seen as a ranking task, where candidate entities from eR ∈ ER are to be ranked
for a given entity eL ∈ EL. In Fig. 3.3, we show a (toy) example for an EA between
Wikidata [219] and WordNet [153]. While some entities may be easily matched using, e.g.,
string similarity of entity names, e.g., Turing Machine, others, such as Model require
taking the neighborhood into account. In the absence of node or edge features, the
task becomes similar to subgraph matching. However, there are differences: The EA
community usually assumes a supervised setting where some alignment pairs are given,
and only the remainder has to be inferred. Moreover, both KGs are likely incomplete, or
may use different relations or modelling schemes.
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3 Background

Related Tasks

The task of EA is related to the broader tasks of Link Discovery (LD) and Ontology
Matching (OM). LD in its general form does not require any graph structure to be present,
and deőnes the task as identiőcation of all pairs of elements from two sets, whose distance
is smaller than a threshold [162]. OM on the other hand requires őnding a matching
between multiple ontologies on both the schema and instance level. EA typically does
not make use of any schema and thus is closer to instance matching, while requiring
the graph structure, i.e., being more speciőc than link discovery. OM approaches [57,
75, 179, 19] often operate in the unsupervised setting, using a pre-deőned similarity
based on attributes or features, e.g., making use of string similarities. As with LD, the
main objective is optimizing the matching process itself, e.g., by pruning the candidate
space [162, 113]. In this aspect, it is closely related to őlter-reőnement approaches from
kNN query processing [193, 18]. There are also approaches focussing on learning a
linear [163], or tree-based [164] combination of such atomic distance functions based on
user feedback. There are also recent approaches [101] which aim to apply supervised
machine learning techniques, as well as EA methods which start to add schema matching
as an additional supervised signal into EA approaches [230].

3.4 Knowledge Graph Representation Learning

Machine learning approaches for KG enrichment can be seen within a representation
learning framework: The approaches learn to produce entity and relation representations
and utilize a score function to score triples or alignment candidates based upon these
representations. In the following, we discuss how to obtain such representations, before
reviewing speciőc components for LP in Section 3.5, and EA in Section 3.6, respectively.

A representation of an entity or relation is a numeric representation, usually a real
vector, which is adapted during training such that it can be used to predict observed
behaviour with an appropriate score function. While frequently representations are real
vectors, e.g., [37, 78, 129, 225], some approaches also use complex vectors [214, 207],
vectors of quaternions [255], dual quaternions [45], real matrices [168, 38, 138], or higher-
order tensors [201]. There are also approaches utilizing representations in hyperbolic
spaces [13, 47], or Lie algebras [71].

Some approaches also use multiple representations for single entities or relations. For
instance, SimplE [121] uses two separate vectors for a single entity modeling its properties
as a head entity and as a tail entity separately. Moreover, it is a common practice to
train KG embedding models using inverse relations [121, 65, 129], where each relation
has two separate representations for predicting head entities and tail entities, respectively.
Other models use multiple representations for a single entity or relation, e.g., to model
mean and variance of a normal distribution [99], or transformation weights of a neural
network [201], or the normal vector of a hyperplane and a translation therein [224].

In the following, we discuss several ways of obtaining representations, starting from
embeddings or features, which are optionally enriched by GNN layers (cf. Section 3.4.4).
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3.4 Knowledge Graph Representation Learning

Since our primary focus lies in supervised tasks for KG enrichment, we leave out un-
supervised representation learning approaches, such as DeepWalk [176], node2vec [90],
metapath2vec [70], or RDF2Vec [186].

If not otherwise noted, we restrict the description to vectors in R
d, and denote with XE ∈

R
|E|×de the matrix of all entity representations, where XE [e] ∈ R

de is the representation
for entity e ∈ E1. Analogously, we use XR ∈ R

|R|×dr to denote the matrix of all relation
representations.

3.4.1 Embeddings

An embedding is a simple form of representation, where the representation itself is a
directly trainable parameter. While they are universally applicable since they do not
require any features, they are also inherently transductive [95], i.e., they can only yield
representations for entities that have been known while creating the embedding matrix.2

Note that this does not imply that embeddings cannot be applied in any inductive
approach when combined with other components, e.g., message passing [95].

3.4.2 Features

Since entities often refer to real-world entities, additional information about them may
be available, which can be utilized to obtain łricher” representations. They can serve as a
replacement or addition to transductive embeddings.

For instance, entity labels or textual descriptions in natural language are often available,
e.g., for Wikidata [219]. A popular method to integrate this information [227, 78, 29]
is to utilize pre-trained word or sentence embeddings, such as Glove vectors [175], or
aggregated contextualized word embeddings from BERT [67, 182], e.g., in HMAN [243].
These featurization approaches come with some preprocessing and hyperparameter choices,
such as, e.g., extracting entity labels from their URIs, tokenization methods, or choosing
pre-trained model weights. For BERT, other choices include the layer from which the
latent representations are chosen. Also pooling strategies are needed in case there are
varying number of tokens per label.

In other cases, such as for scene graphs, which are dynamic knowledge graphs describing
entities and their relations within an image, visual information is available, e.g., in the
form of images [249], or depth maps [195]. Feature vectors from these kinds of inputs can
be created by extracting feature maps from pre-trained CNN models, e.g., ResNet [97].

Even if there are no additional data sources, graph-based features can be extracted
from the relational information, such as Laplacian eigenvectors [20], subgraph counts [40],
or personalized page rank vectors [39].

1Here, and in the following, we assume that the entities have already been converted to integer IDs.
2Surprisingly, some benchmark datasets for (transductive) LP on KG do have entities in the valida-

tion/test split, which did not occur in the training set. Due to the dependency of commonly used
evaluation metrics on the number of candidates, cf. [25], this can lead to performance differences
between different implementations, cf. [64].
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3.4.3 Relation Representations from Entity Representations

Some approaches from the őeld of EA create relation representations from entity repre-
sentations.

• MRAEA [149] and RDGCN [227] create relation representations by concatenation
of the average head and tail entity representation of triples containing the relation:

XR[r] =

⎡

⎢

⎣

1
⃓

⃓

⃓
EhT(·,r,·)

⃓

⃓

⃓

∑︂

h∈Eh
T(·,r,·)

XE [h];
1

⃓

⃓

⃓
E tT(·,r,·)

⃓

⃓

⃓

∑︂

t∈Eh
T(·,r,·)

XE [t]

⎤

⎥

⎦

• AliNet [206] follows the idea of TransE [37] and obtains relation representations
as the average difference between head and tail entity representation for triples
containing the relation:

XR[r] =
1

|T(·,r,·)|
∑︂

(h,r,t)∈T(·,r,·)

XE [h]−XE [t]

3.4.4 Graph Neural Networks

In contrast to traditional neural networks, where often independent and identically
distributed (i.i.d.) samples are assumed and thus processed independently, Graph Neural
Networks (GNNs) can utilize relations between samples given as explicit links. Recent
years have witnessed a ŕurry of works of representation learning for graphs, with the
majority of works focussing on uni-relational graphs. A general framework for GNNs is the
message passing formulation [87, 17, 237].3 Here, we present a slight adaption explicitly
coined on KGs and the terminology we introduced before. We denote with XE ∈ R

|E|×de

and XR ∈ R
|R|×dr the input entity and relation representations, and consider a sequence

of message passing layer, each comprising three steps:

Mk+1[(h, r, t)] =message(Xk
E [h],X

k
R[r],X

k
E [t]) ∀(h, r, t) ∈ T (3.6)

Yk+1
E [e] = aggregate({Mk+1[(h, r, t)] | (h, r, t) ∈ T , t = e}) ∀e ∈ E (3.7)

Xk+1
E [e] = update(Xk

E [e],Y
k+1
E [e]) ∀e ∈ E (3.8)

In the őrst step, (3.6), the message function, message, uses the representations of the head
and tail entity, and the relation representation, and composes messages Mk+1[(h, r, t)] ∈
R
dm for each triple (h, r, t) ∈ T . In practice, this operation can be efficiently implemented

by an index-based lookup in the matrices XE and XR, and a vectorized application of
the message function. The result is a matrix of messages M ∈ R

|T |×dm , which is also
called the edge-parallel representation [77]. Next, in (3.7), for each entity e ∈ E , we
aggregate the messages with target e into a single vector representation, resulting in

3There are also other views on GNNs, e.g., as a generalization of convolutions from grids over manifolds
to graphs [42].
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3.4 Knowledge Graph Representation Learning

an proposed update Yk+1
E [e] ∈ R

du for each entity. An essential requirement for the
aggregation function is that it receives a set of vectors and aggregates it to a single,
őxed-size representation. Finally, in (3.8), an update method computes the updated entity
representation Xk

E [e] based on the old representation Xk
E [e], and the proposed update

Yk+1
E [e]. Some approaches [190, 136] apply the same weights in each message passing

round, resembling a recurrent neural network. Thereby, they also enable a different
number of iterations for each sample or batch. Most recent variants do not use this variant
of weight sharing though. In the following paragraphs, we review message, aggregation,
and update mechanisms used in the őeld of LP and EA for KGs.

Message

The message function

message : Rde × R
dr × R

de → R
dm , (xh,xr,xt) ↦→m(h,r,t)

composes a message vector m ∈ R
dm from the representations of the head entity xh ∈ R

de ,
the relation xr ∈ R

dr , and the tail entity xt ∈ R
de . While non-parametric message

functions are possible, in the context of representation learning for (knowledge) graphs,
the message function usually has internal trainable parameters updated during training.
One notable exception is GCNAlign [225], which discusses a transformation weight in the
paper, but does not employ this weight in their experiments, cf. [24].

The following message functions are encountered in the literature. Most of them are
linear transformations, where the variants differ in the transformation weight and the
participating representations.

• GCNAlign [225], RDGCN [227], KECG [132], HGCN [228], HMAN [243], AliNet [206],
and RE-GCN [244] directly apply the message function of the uni-relational
GCN [122], a learned linear transformation of the head representation, ignoring
the multi-relational nature of KGs (at least in this stage of the message passing
mechanism). The message function is given as

message(xh,xr,xt) = Wxh

where W ∈ R
dm×de is a trainable weight. RDGCN [227], and KECG [132] addition-

ally constrain W to be a diagonal matrix.

• GMN [239] and DGMC [78] use a direction-dependent linear head transformation,
e.g.,

message(xh,xr,xt) = Wdir(r)xh

The former message function can thus be seen as a special case of this function,
where the weights are shared for all directions.

• SACN [194] employs a relation-speciőc scalar scaling of a relation-independent
weight matrix,

message(xh,xr,xt) = αrWxh
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where αr ∈ R is a trainable, relation-speciőc scalar weight, and W ∈ R
dm×de is a

trainable relation-independent weight matrix.

• RGCN [191] uses a relation-speciőc linear transformation of the head representation,

message(xh,xr,xt) = Wrxh

with a trainable relation-speciőc weight matrix Wr ∈ R
dm×de . Since the weight is

relation-dependent, we can also regard it as a part of the relation representation, and
Wr = reshape(xr) with dr = de ·dm. RGCN [191] further proposes two factorization
variants, basis decomposition and block decomposition, to reduce the number of
trainable weights.

• A2N [15] uses a linear transformation of the concatenation of relation and head
representation:

message(xh,xr,xt) = W[xr;xh]

where W ∈ R
dm×(dr+de) is a trainable parameter, and [·; ·] denotes the concatenation

of vectors.

• Graph2Seq [134], or KBGAT [160]4 use a linear transformation of concatenation of
head, relation and tail representation, :

message(xh,xr,xt) = W[xh;xr;xt]

where [·; ·] denotes the concatenation of vectors, and W ∈ R
dm×(2·de+dr) is a trainable

parameter.

• VR-GCN [247], TransGCN [43], and RAGAT [143] use a linear transformation of
the composition of head and relation representation

message(xh,xr,xt) = W ϕ(xh,xr)

where W ∈ R
dm×dh is a trainable weight, and ϕ : Rde ×R

dr → R
dh is a composition

function. The composition functions are often inspired by interaction functions of KG
LP models, e.g., subtraction in VR-GCN [247], Hadamard product in REA [172],
addition or Hadamard product in TransGCN [43]. RAGAT [143] extends the
aforementioned composition functions by also considering concatenation, rotation,
and cross-correlation.

• CompGCN [216] uses composition functions, but also employs direction-speciőc
transformation weight Wdir(r) ∈ R

dm×dh

message(xh,xr,xt) = Wdir(r) ϕ(xh,xr)

4KBGAT [160] uses a different order in the concatenation: (h, t, r) instead of (h, r, t). Since the weight
matrix W is learned, this is an equivalent formulation.
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3.4 Knowledge Graph Representation Learning

• GMN [239] use an Multi-Layer Perceptron (MLP) to compute the messages based
solely on the head representation

message(xh,xr,xt) = f(xh)

where f denotes an MLP with trainable weights.

• RREA [150] uses a reŕection matrix constructed from xr to ensure an isometric
transformation with ∥xr∥ = 1

message(xh,xr,xt) = (I− xrx
T
r )xh = xh − xrx

T
r xh

Aggregation

The aggregation function aggregate is used to combine the variable number of incoming
messages for a single entity e ∈ E into a single őxed-size representation ye ∈ R

du . While
aggregation functions such as element-wise maximum, used, e.g, in GraphSAGE [95], or
more general approaches such as DeepSets [248], or GIN [237], are possible, the majority
of methods can be seen as weighted sum

aggregate(M) =
∑︂

m(h,r,t)∈M

α(h,r,t)m(h,r,t) (3.9)

where we can distinguish between static weights, which are solely based on, e.g., the graph
structure, and do not change during training, and dynamic weights, e.g., from attention
mechanisms, which depend on the entities’ or relations’ representations.

Static Weights Static message weights can be efficiently precomputed and often serve to
stabilize the message passing process, e.g., by limiting the inŕuence of high-degree nodes
or avoiding that the vector length of representations grows proportional to their degree.
For uni-relational graphs, they also have a close connection to matrix normalization and
the spectrum of a graph’s Laplacian, cf., e.g., [122].

• The simplest static weight method is to use uniform weights for all messages, i.e.,

α(h,r,t) = 1

While this aggregation does not solve the problems with high-degree nodes, it allows
the message passing scheme, e.g., to count [237], which is not possible with some of
the later aggregations.

• Mean aggregation (or target normalization) normalizes the message weights such
that the weights of all incoming messages for a single entity sum up to one.

α(h,r,t) = degin(t)
−1
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3 Background

where degin(e) denotes the in-degree of an entity e ∈ E , i.e., the number of triples
where the tail equals e:

degin(e) =
⃓

⃓T(·,·,e)
⃓

⃓ = |{(h, r, t) ∈ T | t = e}|

It is used, e.g., by DGMC [78], and GMN [239].

• For relation-speciőc mean aggregation as used by, e.g., RGCN [191], the in-degree
is computed for each relation independently

deginr (e) =
⃓

⃓T(·,r,e)
⃓

⃓ ,

and thus the weight becomes

α(h,r,t) = deginr (t)
−1

• GCN [122] employs a symmetric normalization scheme, where the message weight is
the inverse of the geometric mean of the head and tail entities’ undirected degree,

α(h,r,t) =
1

√︁

deg(h) · deg(t)
where deg(e) denotes the undirected degree5 of an entity e ∈ E , i.e.

deg(e) =
⃓

⃓T(e,·,·) ∪ T(·,·,e)
⃓

⃓

The same message weighting is also used by RDGCN [227] (in the second message
passing phase), and HMAN [243].

• GCN-Align [225] deőnes relation-speciőc message weights

α(h,r,t) = func(r) + ifunc(r)

where func and ifunc are used to denote the functionality and inverse functionality
of a relation, deőned as the number of different head / tail entities divided by the
number of triples in which this relation occurs, i.e.,

func(r) =

⃓

⃓

⃓EhT(·,r,·)
⃓

⃓

⃓

⃓

⃓T(·,r,·)
⃓

⃓

ifunc(r) =

⃓

⃓

⃓E tT(·,r,·)
⃓

⃓

⃓

⃓

⃓T(·,r,·)
⃓

⃓

Dynamic Weights Dynamic weights are computed based on learned representations.
Thus, they change during training and can amplify or attenuate messages based on the in-
volved entities and relations. Often, dynamic weights employ an attention-mechanism [217],
where the weights of messages with the same target entity are normalized using the
softmax operation. In the following, α(h,r,t) denotes scores which are not normalized
afterwards, while α′

(h,r,t) denotes pre-softmax scores, i.e., the őnal weight are given as
α(h,r,t) = softmaxT(h,r,·)(α

′
(h,r,t)) with the softmax being evaluated over the scores for all

triples sharing the same head and relation.
5Notice that GCN [122] also adds self-loops beforehand.
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3.4 Knowledge Graph Representation Learning

• A2N [15] computes message weights via a LP interaction function, DistMult, cf.,
Section 3.3.1, which combines head and relation representation by Hadamard
product, denoted as ⊙, before computing the inner product of the result with the
tail representation.

α(h,r,t) = DistMult(XE [h],XR[r]XE [t]) = (XE [h]⊙XR[r])
T (XE [t])

• SACN/WGCN [194] uses a relation-speciőc, directly trainable weight αr ∈ R:

α(h,r,t) = αr

• RDGCN [227] uses (in the őrst part of the architecture, the primal-dual attention)
relation-speciőc message weights, which are predicted from the relation representa-
tions XR by a trainable linear projection weight w ∈ R

dr :

α′
(h,r,t) = σ(wTXR[r])

• GAT [218], and KECG [132] compute attention-scores by őrst transforming head
and tail entity representations by a shared weight matrix W ∈ R

dh×de , then
concatenating them into a single vector, and computing the dot product with
another learned weight a ∈ R

2dh . Finally, a LeakyReLU [144] activation is applied.

α′
(h,r,t) = LeakyReLU(aT [WXE [h];WXE [t]])

• AliNet [206] employs a different variant, where two learned matrices Wh,Wt ∈
R
dh×de are used to linearly transform the head and tail entity representation, before

computing their dot product, and applying a LeakyReLU activation.

α′
(h,r,t) = LeakyReLU((WhXE [h])

T (WtXE [t]))

• G2SKGE [134] and RAGAT [143] obtain message weights from the respective
messages by inner product with a learned linear weight w ∈ R

dm and application of
a LeakyReLU activation:

α′
(h,r,t) = LeakyReLU(wTm(h,r,t))

RAGAT additionally makes use of multi-head attention, where multiple independent
copies of the attention mechanism are used, and their aggregation results are
combined via sum.

• MRAEA [149] uses multi-head relation-aware self-attention, where for a single head,
the unnormalized scores are given by

α′
(h,r,t) = LeakyReLU

⎛

⎜

⎝
wT

⎡

⎢

⎣
XE [h];XE [t];

1
⃓

⃓

⃓
RT(h,·,t)

⃓

⃓

⃓

∑︂

r′∈RT(h,·,t)

XR[r
′]

⎤

⎥

⎦

⎞

⎟

⎠

with RT(h,·,t) denoting the set of relations connecting the head and tail entity, and a

trainable weight w ∈ R
2de+dr .
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Update

The update function6 is used to combine the current entity representation x ∈ R
de with

the aggregated messages y ∈ R
du to a new entity representation in R

d′e , where, depending
on the update function, de = du = d′e is often required. Thus, its general form is given by

update : Rde × R
du → R

d′e , (x,y) ↦→ z (3.10)

The following choices are common in literature. Some of them, particularly those
resembling skip connections, have been discussed as a solution to the over-smoothing
problem [133, 141].

• Only keep the aggregated messages and ignore the previous representation. [225,
191, 132]7

update(x,y) = y

• Addition of the old state and the proposed update,

update(x,y) = x+ y

which is equivalent to residual connections [97], and used, e.g., in TransGCN [43].

• Weighted addition with őxed weights α, β ∈ R

update(x,y) = αx+ βy

RDGCN [227] sets α = 1 and β ∈ {0.3, 0.1} depending on the layer. Notably, it
also adds skip connections to the őrst layer, which contains entity features before
message passing.

• Highway Layer [202]: a convex combination of x and y, where the weight is obtained
from a (trainable) gate function g applied to x followed by a sigmoid activation σ:

update(x,y) = σ(g(x))x+ (1− σ(g(x)))y

A common choice for the gate is a single linear layer:

g(x) = Wx+ b.

Highway layers are, for instance, used by AliNet [206].

• KBAT [160] and SACN [194] both apply another learned transformation W ∈ R
du×de

to the old representation before combination by sum.

update(x,y) = Wx+ y

This allows different dimensions de ≠ du, and resembles what is used in residual
blocks of CNNs [97].

6Also called combine, cf. [237].
7The previous representation can still be considered, e.g., since self-loops have been introduced.
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3.5 Link Prediction

• A2N [15] uses a learned linear transformation W ∈ Rde×(de+du) of the concatenation
of the old entity representation and proposed update

update(x,y) = W[x;y]

• Gated Graph Neural Network (GGNN) [136] use an update mechanism resembling
an LSTM [105] layer:

z = σ (Wzy +Uzx)

r = σ (Wry +Urx)

ỹ = tanh (Wy +U (r⊙ x))

update(x,y) = (1− z)⊙ x+ z⊙ ỹ

with trainable weights U,Uz,Ur,W,Wz,Wr ∈ R
de×de .

• GMN [239] and GIN [237] also use a concatenation of the old representation and
the proposed update, but instead of only applying a linear transformation, they
utilize a MLP f :

update(x,y) = f([x;y])

Some methods, e.g., AliNet [206], also combine the outputs of several layers to obtain
multi-scale representations.

3.5 Link Prediction

Until now, the representation learning part has not depended on the KG enrichment
task. However, in order to train the representations and extract scores, both tasks require
task-speciőc decoders. In this section, we discuss speciőcs of LP approaches.

3.5.1 Interaction Functions

Decoder for LP, also called interaction functions [5], combine head entity, relation and
tail entity representations to a scalar score representing a measure of plausibility8 of a
triple. If not speciőed otherwise, all involved (bold-font) symbols are vectors from R

d.
We őrst present a multitude of interaction functions before discussing them subsequently.

• DistMA [197]
f(xh,xr,xt) = xT

hxr + xT
r xt + xT

hxt

• DistMult [242]
f(xh,xr,xt) = ⟨xh,xr,xt⟩

where ⟨·, ·, ·⟩ denotes the tri-linear dot product.

8not necessarily interpretable as probability
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3 Background

• ComplEx [214],
f(xh,xr,xt) = ℜ (⟨xh,xr,xt⟩)

where xh,xr,xt ∈ C
d, ℜ denotes the operation which retrieves the real part of a

complex number, and the complex conjugate.

• RESCAL [168], LFM [115], ANALOGY [140], and DihedralE [236] use the same
interaction function

f(xh,Xr,xt) = xT
hXrxt

with Xr ∈ R
d×d. ANALOGY additionally enforces normality and commutativity

constraints by restricting the relation matrices Xr to be almost diagonal, i.e., block-
diagonal where each block has at most two rows. DihedralE restricts the matrix to
be block diagonal, where the blocks comprise elements of the dihedral group. The
selection of individual group members is made differentiable via the Gumbel-softmax
trick [114].

• TATEC [86]

f((xh,yh), (Xr,yr, zr), (xt,yt)) = xT
hXrxt + yT

r yh + zTr yt + yT
hWyt

where Xr ∈ R
de×de , and yh,yr, zr,yt ∈ R

d′e .

• TuckER [14]
f(xh,xr,xt) = W ×1 xh ×2 xr ×3 xt

where the core tensor W ∈ R
de×dr×de is a global trainable weight, and ×i denotes

the tensor-vector product along the i-th mode. In their implementation, they also
introduce several dropout [104] and batch normalization [112] layers.

• SimplE [121]

f((xh,yh), (xr,yr), (xh,yt)) =
1

2
(⟨xh,xr,yh⟩+ ⟨xh,yr,yh⟩)

• TransA [231]

f(xh, (xr,Wr),xt) = (xh + xr − xt)
T
Wr(xh + xr − xt)

• TransF [76]
f(xh,xr,xt) = (xh + xr)

T
xt + xT

h (xt − xr)

• HolE [167]
f(xh,xr,xt) = σ((xh ⋆ xt)

T
xr)

where ⋆ denotes the circular correlation.
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• HolEx [240]

f(xh,xr,xt) =

K
∑︂

k=1

((ck ⊙ xh) ⋆ xr)
T
xt

where ck ∈ R
de are őxed vectors, either chosen as low-frequency Haar vectors, or

random 0/1 vectors, and ⋆ denotes the circular correlation.

• Unstructured Model (UM) / Semantic Matching Energy (SME) [36]

f(xh,xr,xt) = −∥xh − xt∥22

• Structured Embedding (SE) [38]

f(xh, (X
h
r ,X

t
r),xt) = −∥Xh

rxh −Xt
rxt∥

where Xh
r ,X

t
r ∈ R

d×d.

• TransD [116]

f((xh,ph), (xr,pr), (xt,pt)) = −∥(prp
T
h + Ĩ)xh + xr − (prp

T
t + Ĩ)xt∥22

where xr,pr ∈ R
dr and Ĩ ∈ R

dr×de is a rectangular łidentity matrix”, i.e., a
rectangular matrix őlled by zeros except on the diagonal where the entries are one.

• TransE [37]
f(xh,xr,xt) = −∥xh + xr − xt∥

• TransM [73]
f(xh,xr,xt) = −αr∥xh + xr − xt∥p

where αr = log (hptr + tphr)
−1 with hptr =

|{(h,r′,t)∈T |r′=r}|
|{t∈E|∃h∈E:(h,r,t)∈T }| and tphr =

|{(h,r′,t)∈T |r′=r}|
|{h∈E|∃t∈E:(h,r,t)∈T }| .

• TransH [224]

f(xh, (xr,pr),xt) = −∥(xh − pT
r xhpr) + xr − (xt − pT

r xtpr)∥22

where xr,pr ∈ R
dr .

• TransR [138] and TranSparse [117]

f(xh, (xr,Wr),xt) = −∥Wrxh + xr −Wrxt∥22

with xr ∈ R
dr and Wr ∈ R

dr×de . TranSparse additionally restricts the matrices
Wr,Wr to a őxed sparsity pattern. The sparsity pattern is either band-diagonal,
or random.
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• ITransF [234]

f(xh, (a
h
r ,a

t
r,xr),xt) = −∥(softmax(ahr )×1 W)xh + xr − (softmax(atr)×1 W)xt∥

where W ∈ Rdh×dr×de is a shared weight, ×1 denotes the multiplication along the
őrst mode of the tensor, and ahr ,a

t
r ∈ R

dh .

• TransAt [180]

f(xh, (xr,x
h
r ,x

t
r),xt) = −∥ahr ⊙ σ(xh

r )⊙ xh + xr − atr ⊙ σ(xt
r)⊙ xt∥

where σ is the (element-wise) sigmoid function, ahr ,a
t
r ∈ {0, 1}e is a non-trainable

weight, whether the variance in dimension i is at least half the maximum variance,
evaluated only on the set of head/tail candidates. These sets are given as the
union of k-means clusters in the embedding space, containing at least one training
head/tail entity of the given relation. a is updated every 100 epochs.

• TransMS [246]

f(xh,xr,xt) = ∥ − tanh(xt ⊙ xr)⊙ xh + xr + α · (xh ⊙ xt)− tanh(xh ⊙ xr)⊙ xt∥p

where p ∈ {1, 2} and α ∈ R is a trainable parameter.

• MuRE [13, 9]

f((xh, βh), (x
⊙
r ,x

+
r ), (xt, βt)) = −∥x⊙

r ⊙ xh + x+
r − xt∥22 + βh + βt

with additional trainable scalar head and tail offsets βh, βt ∈ R.

• RotatE [207] and ModE [258] use the same interaction function:

f(xh,xr,xt) = −∥xh ⊙ xr − xt∥2

For RotatE, xh,xr,xt ∈ C
d, the relation representation being element-wise normal-

ized to unit length |(xr)i| = 1. ModE uses real vectors instead.

• pRotatE [207]

f(xh,xr,xt) = −∥ sin((xh + xr − xt)/2)∥1

• PairRE [49]

f(xh, (x
h
r ,x

t
r),xt) = −∥xh ⊙ xh

r − xt ⊙ xt
r∥

• HAKE [258]

f((xm
h ,x

p
h), (x

m
r ,x

p
r), (x

m
t ,x

p
t )) = −∥xm

h ⊙ xm
r − xm

t ∥2 − λ∥ sin((xp
h + xp

r − x
p
t )/2)∥1
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• ManifoldE [232]

f(xh, (xr, γr),xt) = −∥g(xh,xr,xt)− γr∥2

where g is a manifold function (essentially equivalent to an interaction function).
The paper investigates spheres, where g is the TransE interaction function, and
hyperplanes, where

g(xh, (x
h
r ,x

t
r),xt) = K(xr + xh

r ,xt + xt
r)

for K being a (linear) kernel.

• TorusE [71]
f(xh,xr,xt) = −∥ψ(xh + xr − xt)∥pp

where ψ(x) = min{x− ⌊x⌋, ⌈x⌉ − x} is applied element-wise.

• QuatE [255], QctionE [255] and DualE [45] use the same interaction function

f(xh,xr,xt) = ⟨xh ⊙ x̃r,xt⟩
with ⊙ denoting the Hadamard product and ˜ the dimension-wise normalization
to unit length. They differ in the representation space: QuatE uses vectors of
(Hamilton) quaternations, OctionE vectors of octonions, and DualE vectors of dual
quaternions.

• 5⋆ [161]

f(xh, (ar,br, cr,dr),xt) = ℜ
(︃⟨︃

ar ⊙ xh + br

cr ⊙ xh + dr
,xt

⟩︃)︃

where xh, ar,br, cr,dr,xt ∈ C
d, ⊙ denoting the Hadamard product, the fraction is

to be understood element-wise, denoting the complex conjugate, and ℜ denoting
the operator which retrieves the real part of a complex number.

• MuRP [13]

f((xh, βh), (x
⊙
r ,x

+
r ), (xt, βt)) = −dγ(x⊙

r ⊙γ xh,xt ⊕γ x+
r )

2
+ βh + βt

with trainable scalar head and tail biases βh, βt ∈ R, ⊙γ denoting the Möbius
element-wise multiplication, ⊕γ Möbius addition, and dγ the hyperbolic distance.
In their experiments, they always set the curvature γ = 1.

• RefH [47]

f((xh, βh), (xr,Ψr, γr), (xt, βt)) = −dγr((Ref(Ψr)⊗γr xh ⊕γr xr),xt)
2 + βh + βt

where ⊕γ , dγ denotes the Möbius addition, and hyperbolic distance in hyperbolic
space of curvature γ < 0, and Ref is a relation-speciőc reŕection matrix, which is a
block-diagonal matrix with 2× 2 blocks given as

(︃

cosψi − sinψi

sinψi cosψi

)︃

from the vector of angles Ψr ∈ R
d/2. βh, βt ∈ R are again entity-speciőc biases.
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• RotH [47]

f((xh, βh), (xr,Φr, γr), (xt, βt)) = −dγr((Rot(Ψr)⊗γr xh ⊕γr xr),xt)
2 + βh + βt

where Rot is the rotation matrix, a block-diagonal matrix, whose 2× 2 blocks are
given as

(︃

cosϕi sinϕi
sinϕi − cosϕi

)︃

from a vector of angles Φ ∈ R
d/2. βh, βt ∈ R are again entity-speciőc biases.

• AttH [47] combines RefH and RotH

f((xh, βh), (xr,Φr,Ψr,ar, γr), (xt, βt)) = −dγr((ARR(xh,Φr,Ψr,ar, γr)⊕γr xr),xt)
2+βh+βt

where ARR(xh,Φr,Ψr,ar, γr) = Att(Rot(Φr) ⊗γr xh,Ref(Ψr) ⊗γr xh,ar) is the
attention selection from rotation and reŕection, with Att(x,y,a) computed as

x′,y′ = logγr0 (x), logγr0 (y)

αx, αy = softmax(aTx′,aTy′)

Att(x,y,a) = expγr0 (αxx
′ + αyy

′)

and Φ,Ψ ∈ R
d/2.

• TransG [233]

f((xh, σh),xr, (xt, σt)) =

Kr
∑︂

k

πr,k exp

(︃

−∥xh − xr,k − xt∥22
σ2h + σ2t

)︃

where the relation-speciőc number of components Kr is learned via the Chinese
Restaurant Process (CRP).

• KG2E [99]

f((µh,Σh), (µr,Σr), (µt,Σt)) = sim(N (µh − µt,Σh +Σt),N (µr,Σr))

with Σ being a diagonal d-dimensional covariance matrix. where sim is a similarity
between distributions. In the paper, they explore Kullback-Leibler divergence,
Jenson-Shannon divergence, or expected likelihood. Since the distributions are
Normal distributions with known parameters, the similarities can be computed in
closed form.

• NTN [201]

f(xh, (ur,Vr,W
[1:k]
r ,br),xt) = uT

r tanh(xT
hW

[1:k]
r xt +Vr[xh;xt] + br)

with a relation representation comprising four components: ur,ur ∈ R
dh , Vr ∈

Rdh×2de , and W
[1:k]
r ∈ R

de×de×dh .
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• ProjE [196]

f(xh,xr,xt) = σ(xT
t tanh(Dexh +Drxr + b) + β)

with trainable weights De,Dr ∈ R
d×d, b ∈ R

d, and β ∈ R.

• CrossE [256]

f(xh, (xr, cr),xt) = σ(tanh((cr ⊙ xh + cr ⊙ xh ⊙ xr + b)Txt))

• ConvE [65]

f(xh,xr,xt) = σ(flatten(ψ(xh,xr) ∗ Ω)W)Txt

• InteractE [215]

f(xh,xr,xt) = σ(flatten(ψ(xh,xr)⋆Ω)W)Txt

where ψ denotes a chequering function, which interleaves the vectors in a two-
dimensional matrix, and ⋆ denotes a depth-wise circular correlation operation.

• ConvKB [165]

f(xh,xr,xt) = ŕatten(stack(xh;xr;xt) ∗Ω)Tw

where stack combines vectors into a matrix with the vectors are columns, and ŕatten
converts a matrix to a long vector, and ∗ denotes the 2D convolution. Ω ∈ R

3×dh

denotes dh many 3× 1 convolution őlters, and w ∈ R
de·de a trainable weight.

• ConEx [63]

f(xh,xr,xt) = ReLU(ŕatten(ReLU([xh;xr] ∗ Ω)W + b))Tℜ (xh,xr,xt)

• ER-MLP [69]

f(xh,xr,xt) = MLP([xh;xr;xt])

where MLP is a trained 2-layer MLP.

• SHALLOM [62]

f(xh, (xr, βr),xt) = σ(xT
r ReLU(W[xh;xt] + b) + βr)

where W ∈ R
dr×2de and b ∈ R

dr are trainable global parameters, and βr ∈ R,xr ∈
R
dh .
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Discussion Interaction functions are often categorized into distance-based and semantic
matching, where the latter uses a similarity instead of distance function [222, 118].

Besides the aforementioned categorization, we can also distinguish between functional,
or stateless, interaction functions, which have a őxed form, and parametric, or stateful
interaction functions, which have internal, global parameters not associated with a
speciőc entity or relation, but also trained end-to-end. Examples for stateless interaction
functions are, e.g., ComplEx [214], or RESCAL [168], while parametric interaction
functions encompass, e.g., ConvE [65], or TuckER [14]. Stateful interaction functions can
also be seen as whole parametric families of interaction functions, from which a suitable
interaction is chosen end-to-end.

Approaches using GNN-based representations tend to use simple, stateless interaction
functions, e.g. R-GCN [191], or CompGCN [216] both using DistMult, instead of more
complex stateful decoders. One reason may be that the GNN part is expressive enough
to capture the complex interactions, and thus a simple, and fast, interaction function is
sufficient.

Interaction functions are often motivated and analyzed regarding their modeling ca-
pabilities of different relational patterns and cardinality types. The principal relational
patterns discussed in the literature are symmetry, anti-symmetry, inversion, and com-
position [212, 214, 207]. For a symmetric relation, (h, r, t) ∈ T =⇒ (t, r, h) ∈ T , while
for an anti-symmetric relation, (h, r, t) ∈ T =⇒ (t, r, h) /∈ T . A relation r follows
the inversion pattern, if there is another relation r′ ∈ R such that (h, r′, t) ∈ T =⇒
(t, r, h) ∈ T . Finally, a r is a composition, if there are two relations r1, r2 ∈ R such that
(h, r1, e), (e, r2, t) ∈ T =⇒ (h, r, t) ∈ T . The authors of [224] introduce¨ the cardinality
types9: one-to-one (1 : 1), one-to-many (1 : n), many-to-one (m : 1), and many-to-many
(m : n). These depend on the number of different tail/head entities a head/tail can have
for the relation of interest. Some of these relation types have motivated extensions to
existing interaction functions which lacked support thereof. Notice that independently
some of the problems could also have been mitigated by use of inverse relations: e.g.,
DistMult is symmetric due to the symmetry of the tri-linear product. However, when by
the virtue of explicit inverse relations a different relation representation is used to predict
the head for a given relation and tail, it can also model anti-symmetric relations.

For the plethora of different interaction functions proposed over time, the new interaction
function has often been the primary focus of a publication. However, as shown by recent
works [5, 188] this exclusive performance attribution to interaction functions is not always
correct, but other components such as training approaches, loss functions, or the use
of inverse relations can also play a decisive role. This is discussed in greater detail in
Chapter 7.

3.5.2 Training

KGs usually only contain positive information, i.e., triples corresponding to true facts,
but do not explicitly encode negative information in the form of false triples [166]. Thus,

9originally called mapping property of a relation
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3.5 Link Prediction

(a) OWA (b) CWA (c) LCWA

Figure 3.4: Visualization of different training assumptions for a toy example of a KG with
one relation, six entities, and three known triples {(0, 0, 0), (0, 0, 2), (2, 0, 1)}.
Blue color indicates triples that are assumed to be true; red is used for triples
assumed to be false; white corresponds to triples where neither of the two
assumptions is made.

instead of operating under the Closed World Assumption (CWA) where non-observed
triples are assumed to be false, it is more appropriate to make the Open World Assumption
(OWA), where non-observed triples are assumed to be unknown rather than false. However,
only having access to examples for positive triples aggravates a naïve application of machine
learning methods: the lack of examples for the negative class can lead a model collapse
where the model always predicts the positive class [166]. A compromise between the
two assumptions is the Local Closed World Assumption (LCWA), where an unknown
triple (h, r, t) is only assumed to be false, if (h′, r, t), or (h, r, t′) has been observed for
h′ ̸= h, t′ ̸= t, cf. Fig. 3.4.10

Applying the LCWA allows to efficiently generate negative examples from positive
triples by corruption, i.e., replacing a single component by a (randomly sampled) different
entity/relation. A common strategy is to generate a őxed number of negative examples for
each positive example in one mini-batch [201]. For suitable interaction functions which are
decomposable11 as f(xh,xr,xt) = g2(g1(xh,xr),xt) this permits efficiently computing the
scores for one positive example and many corrupted ones by computing g1(xh,xr) only
once. Similar optimizations are possible for head corruption if the interaction decomposes
as f(xh,xr,xt) = g2(xh, g1(xr,xt)). If only one of the directions decomposes efficiently,
inverse relations can be employed to predict (t, r−1, h) instead of (h, r, t), as done, e.g.,
for ConvE [65].

Random corruption can lead to too trivial negative examples. Hence, more advanced
corruption strategies have been proposed to generate more realistic negative examples,
e.g., Bernoulli negative sampling [224], typed negative sampling [125], or hard nega-
tive mining [125] where replacements are obtained by nearest neighbor search in the
representation space.

10In some works, e.g. [166], this assumptions is only made for the tail entity.
11[188] deőnes decomposable interactions as f(xh,xr,xt) = g4(

∑︁
z
g3([g1(xh,xr) ◦ g1(xr,xt)]z)) for

scalar functions g3, g4, and an element-wise combination operation ◦. In contrast to our deőnition,
this formulation does not permit the same optimized evaluation for 1 : k scoring per se.
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3.5.3 Losses

We can distinguish three general types of LP losses [155, 5]: pointwise, pairwise and
setwise.

Pointwise Losses

These consider the score for a single triple in isolation. Therefore, the scores are encouraged
to fulőll global properties, e.g., a global decision threshold. This interpretation is closer to
modeling link prediction as a classiőcation problem, i.e., triple classiőcation, rather than
a ranking task. With denoting the predicted score as ŷ, the label by y, and the triple loss
as l(ŷ, y), we can consider the following examples:

• For y ∈ {0, 1}, the squared error loss, e.g., [168], is given by:

l(ŷ, y) =
1

2
(ŷ − y)2.

• For y ∈ {−1, 1}, the pointwise hinge loss, e.g., [167], is given as

l(ŷ, y) = ReLU(λ− y · ŷ).

• For y ∈ {−1, 1}, the pointwise logistic loss, e.g., [214, 165, 121], is given as

l(ŷ, y) = softplus(−y · ŷ).

• For y ∈ {0, 1}, the binary cross entropy (BCE) loss, e.g., [65, 14], is given as

l(ŷ, y) = −y log σ(ŷ)− (1− y) · log(1− σ(ŷ))

The BCE loss is equivalent to the pointwise logistic loss, since

l(ŷ, y) = −y log σ(ŷ)− (1− y) · log(1− σ(ŷ))
= −y log σ(ŷ)− (1− y) · log σ(−ŷ)
= −y log((1 + exp(−ŷ))−1)− (1− y) · log((1 + exp(ŷ))−1)

= y log(1 + exp(−ŷ)) + (1− y) · log(1 + exp(ŷ))

= y softplus(−ŷ) + (1− y) softplus(ŷ)
= softplus(−y′ · ŷ)

where the last equality uses y′ = −1 if y = 0 else y′ = 1.

• The pointwise square loss [155] is given as

l(ŷ, y) =
1

2
(ReLU(λ− y · ŷ))2.
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3.5 Link Prediction

Pairwise Losses

These losses consider the difference between a pair of scores for a positive and a negative
triple, ŷ+ and ŷ+. They generally follow the form

l(ŷ+, ŷ−) = m(λ+ ŷ− − ŷ+),

wherem is either ReLU resulting in the pairwise hinge or margin ranking loss, e.g. [37, 242],
or softplus, resulting in the pairwise logistic loss [155], which is a soft-margin formulation.
In contrast to pointwise losses, for pairwise losses, only the difference in scores if relevant,
while the absolute numbers do not matter. The authors of [263] propose a combination of
margin ranking loss, with an additional limit-based loss, which encourages a minimum
score λ+ ∈ R for positive triples, with a balance hyperparameter 0 < µ ∈ R: ´

l(ŷ+, ŷ−) = ReLU(λ+ ŷ− − ŷ+) + µReLU(ŷ+ + λ+)

Setwise Losses

These losses consider a larger number of scores at once.

• The cross-entropy loss is given as

−
∑︂

t

p(t | h, r) log q(t | h, r)

where q(t | h, r) is the predicted probability distribution over all tail entities given
head and relation. This distribution is usually obtained via softmax normalization
and for numerical reasons fused with the subsequent application of the logarithm.
The true probability distribution p(t | h, r) is extracted from the training triples using
the relative frequencies [65]. As the training triples are grouped by (head, relation)
pairs, multiple triples {(h, r, t1), . . . , (h, r, tk)} are combined to a single training
instance (h, r, {t1, . . . , tk}). Hence, this conversion also represents an (implicit) form
of łclass” balancing. Although the single-label assumption is usually wrong, this
formulation has empirically shown strong performance [119, 145]. The reason is not
yet known [188].

• The negative sampling self-adversarial loss (NSSA) [207] has been proposed as a
computationally appealing variant to hard negative mining. It weights negative
samples according to their predicted scores, where higher scores lead to larger
weights. With ŷ+ denoting the score of a positive example, and {ŷ−i } a set of
corresponding negative examples, the loss is given as

− log σ(γ + ŷ+)− log
∑︂

p(ŷi) log σ(−γ − ŷ−i )

where p(ŷi) is obtained by softmax p(ŷi) = (softmax(αŷ1, . . . , αŷk))i, where α ∈ R

is a temperature parameter.
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3.6 Entity Alignment

For EA, we can generally distinguish two families of approaches based upon whether they
embed the entities of both graphs into a shared representation space, e.g., GCN-Align [225],
or RDGCN [227], or use different representation spaces with a learned transformation
between them, e.g., MTransE [53], SEA [173], or AKE [137]. When GNNs are employed,
Siamese architectures are used, which apply the same message passing mechanism and
weights independently on the two KGs.

3.6.1 Similarities

After the entity representations are mapped into a common representation space, a simple
vector similarity12 measure is used to compute matching scores, followed by optional
normalization steps. With denoting by sim(xi,xj) the similarity between representations
xi,xj ∈ R

d, the following similarity functions are often encountered:

• negative Lp distances, in particular for p = 1 [225, 243, 174, 229, 235, 150, 149, 267,
268, 51], and p = 2 [52, 137, 132, 44, 265, 54, 169, 245, 204, 51]:

sim(xi,xj) = ∥xi − xj∥p

• the dot product [78], and
sim(xi,xj) = xT

i xj

• the cosine similarity [205, 253, 213, 252, 250], equivalent to the dot product similarity
between unit-length normalized vectors,

sim(xi,xj) =
xT
i xj

∥xi∥2 · ∥xj∥2

While there is a body of work discussing the suitability of different distance/similarity
measures for high-dimensional spaces [3, 126], for EA, the similarity is usually just treated
as a hyperparameter without further discussing its implications.

Normalization

Sometimes, the similarity matrices are further normalized, e.g., to reduce the problem of
hubness [181], or overcome the issue of different scales of similarity values.

• RAGA [267] modiőes the similarity matrix by using the sum of the row- and
column-wise softmax of similarity scores. Therefore, the absolute similarity values
are irrelevant, but only the row- and column-wise relative similarities.

S′ = softmax(S, 1) + softmax(S, 2)
12Some approaches use a distance measure instead. For all studied works, we can rewrite them into a

similarity formulation by using the negative distance. Different distance-to-similarity transformations
are also possible [72].
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(a) raw (b) softmax (c) CSLS, k=10 (d) rank (e) Sinkhorn

Figure 3.5: Visualization of different similarity matrix normalization methods. The color
scale is only consistent inside a single image, but not across them due to the
different value ranges and the otherwise resulting loss of intra-image contrast.
(a) shows the original similarity matrix, which has been obtained as the cosine
similarity between the initialization from GMN [239] for the őrst 100 entities
(with the matching ones on the diagonal), (b) the sum of row- and column-wise
softmax, (c) the CSLS normalization for k = 10, (d) the sum of row- and
column-wise ranks, and (e) the Sinkhorn normalization.

• RREA [150] and KEnS [54] use Cross-domain Similarity Local Scaling (CSLS) [130],
an approach which is used to overcome the problem of hubs and has been applied in
learning multi-lingual word embeddings. It adjusts the similarity by subtracting the
average similarity to the k nearest neighbors of the source and target. Therefore,
the similarity from and to elements with high similarity to many other elements is
reduced,

S′
ij = 2Sij − avg(top(Si,:, k))− avg(top(S:,j , k))

where top denotes the operation which selects the largest k entries. CSLS closely
resembles local centering [96], although being more generally applicable to non-
Euclidean distances.

• [197] use the sum of the row- and column-wise rank matrices. Similar to RAGA’s
approach, this ignores absolute similarity value scales and only considers the relative
order per row/column. Since the operation is non-differentiable, this technique is
only applied at inference time and not during training:

S′ = rank(S, 1) + rank(S, 2)

where rank is used to denote the operation of computing the rank of the entries in
the sorted order along the speciőed dimension.

• DGMC [78] uses the Sinkhorn-Knopp algorithm [200, 123, 58] to make the matching
matrix approximately doubly-stochastic. The Sinkhorn-Knopp algorithm alternating
ensures that each row/column sums up to 1. Therefore, they can interpret each
row/column corresponding to a (candidate) entity in one graph as a probability
distribution over all (candidate) entities in the other graph. By unrolling the
iterative procedure, the method is differentiable. Furthermore, during training, only
a moderate number of iterations are applied.
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3.6.2 Matching

Although some frequently used benchmark datasets do not exhibit solely 1:1 matches [29],
some approaches employ different kinds of matching algorithms. These encompass:

• JEA [238] applies the Hungarian method / Kuhn-Munkres algorithm [128, 159] to
solve the resulting linear assignment problem. Values below a certain similarity
threshold are masked by setting inőnite costs for the matching algorithm to improve
run-time.

• CEA and RAGA [251, 267] take the high worst-case runtime of the Hungarian
method as a reason to solve the stable matching problem instead. To this end, the
deferred acceptance algorithm (DAA)/Gale-Shapley algorithm [82] is applied.

• DGMC [78] proposes a trainable correspondence reőnement mechanism. The
normalized (and sparsiőed) similarity matrix is used as a bijection to transfer a
node coloring given by random vectors between the two graphs. The transferred
coloring is subsequently dispersed by a GNN layer. An MLP then uses the updated
node colorings to predict updates for the similarity matrix. The process is repeated
multiple times.

3.6.3 Training

Just like in the task of LP, EA usually does not require explicit negative labels but instead
generates negative examples by random corruption of aligned entity pairs. There are
some additional, EA-speciőc techniques:

Bootstrapping

Since most EA methods’ performance strongly depends on the number of available training
alignments, some approaches adopt a bootstrapping scheme, where the model is used to
obtain additional (pseudo-) labels. There are several different methods to obtain such
additional alignment pairs:

• MRAEA [149], KEnS [54], and UEA [250] use mutual nearest neighbors to gener-
ate high quality candidates. UEA further employs a threshold, which is linearly
decreased over iterations.

• BootEA [205] and COTSAE [245] őrst use a similarity threshold and then create
candidate pairs based on kNN. These matching candidate pairs form a bipartite
graph, for which the maximum weighted matching problem is solved via the igraph

library, which in turn uses the push-relabel algorithm [56]. BootEA further men-
tions [1] as a faster matching method, although not making use of it in their public
code.
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• RMN [268] only search uni-directional neighbors, i.e., for each entity in the left
graph, the nearest neighbor in the right graph is determined. Conŕicts are resolved
greedily. This approach also applies the same mechanism to generate relation
alignments.

• EHD [238] uses an absolute similarity threshold for generating candidate pairs. The
threshold is changed throughout the training.

• DAT [252] uses the difference between the largest and second-largest similarity in
conjunction with a threshold to generate candidates.

Additional Tricks

In [44], the rule miner AMIE [81] is used to complete the KG. Moreover, some approaches
do not only use the (training) alignments for supervision through the loss function, but
also other tricks such as:

• sharing the parameters between aligned entities [174, 197, 264],

• randomly swapping representations of aligned entities [266, 253, 205], or

• transferring triples between aligned entities [206, 252, 91, 92].

3.6.4 Losses

Losses used for EA are quite similar to those encountered for LP. Let s+ ∈ R denote the
similarity between the representations of a positive pair, i.e., a pair of aligned entities,
and s− ∈ R the score for a negative pair. The following losses are being used:

• The margin loss
ReLU(λ+ s− − s+)

with a margin parameter λ ∈ R.

• The contrastive loss [206]

−s+ + µReLU(λ+ s−)

with a balance parameter 0 < µ ∈ R, and a margin λ ∈ R.

• The double margin loss [205] is given as

ReLU(s+ − λ+) + µ · ReLU(s− − λ−)
with two separate margin parameters λ+, λ− ∈ R, and a balance parameter µ ∈ R.

Moreover, group-wise losses do not only consider the similarity between a pair of
representations but additionally require that the distribution of these representations
become alike. To this end, a GAN-like approach is used, where an adversarial discriminator
is trained to distinguish between the entity representation spaces of the left and right
KG. AKE [137] uses vanilla GAN [89], while OTEA [173] utilizes Wasserstein GAN [11]
instead.
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head relation tail candidate score

Alan Turing educated at King’s College 5
Cambridge University 4
Princeton University 4
Alonzo Church 1
Alan Turing 0

Figure 3.6: Example for rank-based evaluation for the tail entity ranking task (Alan
Turing, educated at, ?) on a subset of the KG from Fig. 3.1. Assume (Alan
Turing, educated at, Cambridge University) to be a training triple, (Alan
Turing, educated at, Princeton University) to be the currently considered
evaluation triple, and (Alan Turing, educated at, King’s College) to be
true yet neither known in training nor evaluation set. The score column shows
the predicted score, where larger score means greater plausibility.

3.7 Rank-Based Evaluation

Both tasks, EA and LP, are commonly evaluated using rank-based metrics. The general
concept is as follows: For each individual ranking task, e.g., predicting a tail entity t
for a given head-relation pair (h, r), the scores for all candidates are computed, and
subsequently used to order to candidates in descending order. Then, the position of
the łtrue” answer, i.e., the ground truth candidate, is taken as the rank of the answer.
Consider the example shown in Fig. 3.6, where we want to evaluate the tail prediction
for an evaluation triple (Alan Turing, educated at, Princeton University). To this
end, we used a LP model to score all tail entity candidates13, where larger scores indicate
higher plausibility. In this example, Princeton University would be at rank 3.

Notice that the intuitive deőnition of a rank as the position within a sorted list does not
specify what happens if there are multiple candidates with exactly scores, as shown for
the entities Princeton University and Cambridge University. However, such cases
do occur in real-world applications [208] on a scale which can strongly distort results
depending on the exact implementation. In [27], we provide an extensive overview and
categorization of the used variants of numerous LP and EA codebases.

For LP, the unőltered and őltered evaluation setting are distinguished [37], where
the latter is the default for recent publications. In the unőltered setting, all entities
are candidates. Since there may be more than one tail entity for a given head-relation
combination, the candidates may contain other known true triples. In the unőltered setting,
a model is penalized with a larger rank if other true triples are ranked higher. The őltered
setting mitigates this by excluding other known true triples from the candidates, i.e., in
the example in Fig. 3.6 Cambridge University would be excluded from the candidates
for the evaluation triple (Alan Turing, educated at, Princeton University). Notice,

13For readability, we assume in this example that there are only őve entities.
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however, that the remaining triples may still contain unknown true triples, and hence the
evaluation results may be pessimistic, e.g., King’s College in the example of Fig. 3.6.

Let I denote the ranks obtained for each individual ranking task. To obtain single-őgure
measures, several different aggregation metrics are used, such as the Mean Rank (MR),
the Mean Reciprocal Rank (MRR), or Hits@k (H@k). They are given as

MR(I) =
1

|I|
∑︂

i∈|I|

i

MRR(I) =
1

|I|
∑︂

i∈|I|

1

i

H@k(I) =
1

|I|
∑︂

i∈|I|

I[i ≤ k]

where I denotes the indicator function, which is one for a true condition and zero otherwise.
Since the rank is the absolute position within the sorted candidates, its value range

depends on the number of considered candidates: a lower number of candidates reduces the
worst possible rank and thus also improves the performance of a random ranking model.
This ostensible improvement may be undesirable since it complicates the performance
comparison, e.g., for different őltering settings. In Chapter 9, we discuss an extension of
the MR which adjusts it for chance, and thus implicitly also normalizes by the number
of candidates. There have been further extensions [210] of this work applying a similar
normalization.
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4 Active Learning for Entity Alignment

This chapter comprises the publication

Max Berrendorf*, Evgeniy Faerman*, and Volker Tresp. źActive Learning for
Entity Alignment.ł In: Advances in Information Retrieval. Ed. by Djoerd Hiemstra,
Marie-Francine Moens, Josiane Mothe, Raffaele Perego, Martin Potthast, and
Fabrizio Sebastiani. * equal contribution. Cham: Springer International Publishing,
2021, pp. 48ś62. isbn: 978-3-030-72113-8. doi: 10.1007/978-3-030-72113-8_4

In addition, an extended abstract has been published as

Max Berrendorf*, Evgeniy Faerman*, and Volker Tresp. źActive Learning for
Entity Alignment.ł In: The 5th International Workshop on Deep Learning for
Graphs (DL4G@WWW2020) (2020). * equal contribution. arXiv: 2001.08943

and the code is available at

Max Berrendorf and Evgeniy Faerman. mberr/ea-active-learning: Zenodo. Ver-
sion 1.0.1. Dec. 2020. doi: 10.5281/zenodo.4588896
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Max Berrendorf did the main part of the implementation, with smaller contributions by
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their results. The őndings were discussed with Evgeniy Faerman. Max Berrendorf and
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Abstract. In this work, we propose a novel framework for labeling
entity alignments in knowledge graph datasets. Different strategies to
select informative instances for the human labeler build the core of
our framework. We illustrate how the labeling of entity alignments is
different from assigning class labels to single instances and how these
differences affect the labeling efficiency. Based on these considerations,
we propose and evaluate different active and passive learning strate-
gies. One of our main findings is that passive learning approaches, which
can be efficiently precomputed, and deployed more easily, achieve per-
formance comparable to the active learning strategies. In the spirit of
reproducible research, we make our code available at https://github.
com/mberr/ea active learning.

Keywords: Entity alignment · Active learning · Knowledge graphs

1 Introduction

A knowledge graph (KG) is a way to store information (semi-)structurally to
enable automatic data processing and data interpretation. KGs are utilized in
various Information Retrieval related applications requiring semantic search of
information [1,11]. While there exist various large open-source KGs, such as
YAGO-3 [25], Wikidata [38], or ConceptNet [33], they often contain orthogonal
information, and have their respective strength and weaknesses. Hence, being
able to combine information from different knowledge graphs is required in many
applications. An important subtask is identifying matching entities across sev-
eral graphs, called entity alignment (EA). Recent years witnessed substantial
advances regarding the methodology, in particular involving graph neural net-
works (GNNs) [6,7,19,28,34–37,40,42,44,46]. Common among these approaches
is that they use a set of given seed alignments and infer the remaining ones. While
several benchmark datasets are equipped with alignments, acquiring them in
practice is cumbersome and expensive, often requiring human annotators. To
address this problem, we propose to use active learning for entity alignment. In
summary, our contributions are as follows:

M. Berrendorf and E. Faerman—equal contribution.
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– To the best of our knowledge, we are the first to propose using active learning
for entity alignment in knowledge graphs. We investigate and formalize the
problem, identify critical aspects, and highlight differences to the classical
active learning setting for classification.

– A specialty of entity alignment is that learning is focused on information
about aligned nodes. We show how to additionally utilize information about
exclusive nodes in an active learning setting, which leads to significant
improvements.

– We propose several different heuristics, based upon node centrality, graph and
embedding coverage, Bayesian model uncertainty, and certainty matching.

– We thoroughly evaluate and discuss the heuristics’ empirical performance
on a well-established benchmark dataset using a recent GNN-based model.
Thereby, we show that state-of-the-art heuristics for classification tasks
perform poorly compared to surprisingly simple node centrality based
approaches.

2 Problem Setting

We study the problem of entity alignment for knowledge graphs (EA). A knowl-
edge graph can be represented by the triple G = (E ,R, T ), where E is a set of
entities, R a set of relations, and T ⊆ E × R × E a set of triples. The alignment
problem now considers two such graphs GL,GR and seeks to identify entities
common to both, together with their mapping. The mapping can be defined by
the set of matching entity pairs A = {(e, e′) | e ∈ EL, e′ ∈ ER, e ≡ e′}, where ≡
denotes the matching relation. While some works are using additional informa-
tion such as attributes or entity labels, we solely consider the graph structure’s
relational information. Thus, a subset of alignments Atrain ⊆ A is provided,
and the task is to infer the remaining alignments Atest := A \ Atrain. With
AL := {e ∈ EL | ∃e′ ∈ ER : (e, e′) ∈ A} we denote the set of entities from
GL which do have a match in A, and AR analogously. With X L = EL \ AL we
denote the set of exclusive entities in the graph GL which occur neither in train
nor test alignment, and X R analogously.

In practice, obtaining high-quality training alignments means employing a
human annotator. As knowledge graphs can become large, annotating a sufficient
number of alignment pairs may require significant labeling efforts and might be
costly. Thus, we study strategies to select the most informative alignment labels
to achieve higher performance with fewer labels, commonly referred to as active
learning. The following section surveys existing literature about active learning
with a particular focus on graphs and reveals differences in our setting.

3 Related Work

Classical active learning approaches [31] often do not perform well in batch
settings with neural network architectures. Therefore, developing active learning
heuristics for neural networks is an active research area. New approaches were
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proposed for image [2,16,18,30,39,43], text [32,45] and relational [5,17,23,27,41]
data. Active learning algorithms aim to select the most informative training
instances. For instance, the intuition behind uncertainty sampling [22] is that
instances about which the model is unconfident comprise new or not yet explored
information. However, the estimation of neural networks’ uncertainty is not a
trivial task since neural networks are often overconfident about their predictions
[15]. One approach to tackle this problem is to use Monte-Carlo dropout to
estimate the uncertainty for active learning heuristics [16,27,32]. Alternatively,
[2] demonstrated that ensembles of different models lead to better uncertainty
estimation and consequently better instance selection. The method described in
[23] adopts a different approach and queries labels for instances for which it is the
most certain that they are unlabeled. For this assessment, the authors propose
an adversarial framework, where the discriminator differentiates between labeled
and unlabeled data.

Geometric or density-based approaches [5,17,18,30,41,43], on the other
hand, aim to select the most representative instances. Therefore, unlabeled
instances are selected for labeling, such that labeled instances cover unlabeled
data in the embedding space. Other approaches to estimate the informativeness
of unlabeled samples use, e.g., the expected length of gradient [45].

Active learning approaches with neural networks on relational data were so
far applied to the classification of nodes in homogeneous graphs [5,17,23,41] and
link prediction in knowledge graphs [27]. In [8,9,26] authors propose active learn-
ing approaches for the graph matching problem, where the matching costs are
known in advance, and the goal is to minimize assignment costs. Note that this
is different from our task, where the goal is to learn meaningful representations
of the entities.

4 Methodology

In this section, we introduce our proposed labeling setting and describe data
post-processing to leverage exclusive nodes. Moreover, we propose numerous
new labeling strategies: Some strategies take inspiration from existing state-of-
the-art heuristics for classification. Others are developed entirely new based on
our intuitions. Finally, we present our evaluation framework for the evaluation
of different heuristics.

4.1 Labeling Setting

Since we are dealing with matching KGs, where entities have meaningful labels,
we assume that human annotators use these entity names for matching. There-
fore, we see two different possibilities to formulate the labeling task:

1. The system presents annotators with possible matching pairs, and they label
it as True or False

2. The system presents annotators a node from one of the two KGs, and the
task is to find all matching nodes in the other KG.
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It is easier to label a single instance in the first scenario, as it is a yes/no question.
However, since each node can have more than one matching node in the other
KG, |EL| × |ER| queries are necessary to label the whole dataset. In contrast, in
the second scenario, human annotators need a similar qualification but the time
spent per labeled instance increases because they have to search for possible
matchings. However, there are the following advantages of the second scenario:

First, there are only |EL| + |ER| possible queries. Second, in both scenarios,
the learning algorithm needs positive matchings to start training. Assuming
|AL| ≈ |AR| ≈ |A| and |ER| ≈ |EL| ≈ |E|, the probability to select a match with
a random query is in the first scenario |A|/|E|2, whereas for the second scenario
it is |A|/|E|. Additionally, in the second scenario, it is possible to start with some
simple graph-based heuristics, e.g., based on a graph centrality score like degree
or betweenness. For many KGs, it is a valid assumption that the probability of
having a match is higher for more central nodes. Cold-start labeling performance
is especially relevant when the labeling budget is restricted. Third, in the classical
active learning scenario, there is the assumption that each query returns a valid
label. However, for EA, the information that two nodes do not match is limited
since negative examples can also be obtained by negative sampling. In contrast,
in the second scenario, we can use information about missing matchings to adapt
the dataset, see Sect. 4.2.

In this paper, we focus on the second scenario. However, heuristics relying on
information from the matching model described in Sect. 4.3 can also be applied
in the first scenario.

4.2 Dataset Adjustment

The EA task’s main motivation is either the fusion of knowledge into a sin-
gle database or exchanging information between different databases. In both
cases, the primary assumption is that there is information in one KG, which is
not available in the other. This information comes in relations between aligned
entities, relations with exclusive entities, or relations between exclusive entities.
While larger differences between the KGs increase their fusion value, they also
increase the difficulty of matching processes. One possibility to partially miti-
gate this problem is to enrich both KGs independently using link prediction and
transfer links between aligned entities in the training set [6,23]. As this method-
ology does only deal with missing relations between shared entities, in this work,
we go a step further: Since we control the labeling process, we naturally learn
about exclusive nodes from the annotators. Therefore, we propose to remove
the exclusive nodes from the KGs for the matching step. After the matching is
finished, the exclusive nodes can be re-introduced. In the classical EA setting,
where the KGs and partial alignments are already given, and there is no control
over dataset creation, the analogous removal of exclusive nodes is not possible:
To determine whether a node is exclusive or just not contained in the training
alignment requires access to the test alignments, hence representing a form of
test leakage.
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4.3 Active Learning Heuristics

The main goal of active learning approaches is to select the most informative
set of examples. In our setting, each query either results in matches or verified
exclusiveness, both providing new information. Nodes with an aligned node in
the other KG contribute to the signal for the supervised training. State-of-the-art
GNN models for EA learn by aggregating the k-hop neighborhood of a node. Two
matching nodes in training become similar when their aggregated neighborhood
is similar. Therefore, the centrality of identified alignments or their coverage is
vital for the performance. On the other hand, exclusive nodes improve training
by making both KGs more similar. Since it is not clear from the outset, what
affects the final performance most, we analyze heuristics with different inductive
biases.

Node Centrality – Selecting nodes with high centrality in the graph has the
following effects: (a) a higher probability of a match in the opposite graph, and
(b) updates for a larger number of neighbors if a match or significant graph
changes when being exclusive. Although there is a large variety of different cen-
trality measures in graphs [10], we observed in initial experiments that they
perform similarly. Therefore, in this work, we evaluate two heuristics based on
the nodes’ role in the graph. The first, degree heuristic (denoted as deg), orders
nodes by their degree, and the nodes with a higher degree are selected first. The
second, betweenness heuristic (betw), works similarly and relies on the between-
ness centrality measure.

Graph Coverage – Real-World graphs tend to have densely connected com-
ponents [12]. In this case, if nodes for labeling are selected according to some
centrality measure, there may be a significant overlap of neighborhoods. At the
same time, large portions of the graph do receive no or infrequent updates.
Therefore, we propose a heuristic, seeking to distribute labels across the graph.
We adopt an approximate vertex cover algorithm [29] to define an active learn-
ing heuristic for entity alignment. Each node is initialized with a weight equal to
its degree. Subsequently, we select the node from both graphs with the largest
weight, remove it from the candidate list, and decrease all its neighbors’ weight
by one. We denote this heuristic as avc.

Embedding Space Coverage – The goal of embedding space coverage
approaches is to cover the parts of the embedding space containing data as well
as possible. Here we adapt the state-of-the art method coreset [30] (denoted as
cs) for the EA task. Thereby, we aim to represent each graph’s embedding space
by nodes with positive matchings. We adopt a greedy approach from [30], which
in each step selects the object with the largest distance to the nearest neighbor
among already chosen items. Its performance was similar to the mixed-integer
program algorithm while being significantly faster. In the process of node selec-
tion, it is not known whether nodes in the same batch have matchings or are
exclusive. Thereby, in each step, each candidate node is associated with a score
according to its distance to the nearest positive matching or the nodes already
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selected as potential positives in the same batch. The node with the largest
distance to the closest positive point is added to the batch.

Embedding Space Coverage by Central Nodes – The possible disadvan-
tage of coreset heuristic in the context of entity alignment is that selected nodes
may have low centrality and therefore affect only a small portion of the graph.
Intuitively, it is possible because each next candidate is maximally distant from
all nodes with positive matchings, which are expected to be more or less cen-
tral. In this heuristic, we try to remedy this effect and sample nodes with high
centrality in different parts of embedding space. Therefore, in each step, we per-
form clustering of node representations from both graphs in the joint space, c.f.
Fig. 1. We count already labeled nodes in each cluster and determine the num-
ber of candidates selected from this specific cluster. This number is inversely
proportional to the number of already labeled nodes in the cluster. We then use
a node centrality based heuristic to select the chosen number of candidates per
cluster. We denote this heuristic by esccn.

Fig. 1. Schematic visualization of the esccn heuristic. The labeled nodes per cluster
are counted and used to derive how many samples to draw from this cluster. Another
heuristic is then used to select the specific number from the given clusters, e.g., a
graph-based degree heuristic.

Uncertainty Matching – Uncertainty-based approaches are motivated by the
idea that the most informative nodes are those for which the model is most
uncertain about the final prediction. We reformulate EA as a classification prob-
lem: The number of classes corresponds to the number of matching candidates,
and we normalize the vector of similarities to the matching candidates with the
softmax operation. A typical uncertainty metric for classification is Shannon
entropy computed over the class probability distribution, where large entropy
corresponds to high uncertainty. We can employ Monte-Carlo Dropout to com-
pute a Bayesian approximation of the softmax for the entropy similarly to [17].
However, the repeatable high entropy across multiple dropout masks indicates
the prediction uncertainty, where the model is certain that a right prediction is
impossible. In the context of entity alignment, we expect high prediction uncer-
tainty for the exclusive nodes since a model may be certain about lacking good
matchings. Therefore we opt for model uncertainty for the entity alignment.
The model uncertainty is high if the model makes different (certain) decisions
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for the same instances in multiple runs [14]. We employ BALD [21] with Monte-
Carlo Dropout [17]. The heuristic computes the expected difference between the
entropy of single model prediction and expected entropy. Note that numerous
classes may lead to similar entropy and BALD values for the whole dataset. To
mitigate this effect, we employ softmax temperature [20].

Fig. 2. Visualization of scoring method of the prexp heuristic. We fit two normal dis-
tributions for matching and exclusive nodes. Each distribution models the maximum
similarity these nodes have to any node in the other graph (smax(q)). To assess the
quality of a query q, we get its maximum similarity, and evaluate Pmatch(smax(e) ≤
smax(q)) − Pexcl(smax(e) ≥ smax(q)), i.e. the black area minus the red one. (Color
figure online)

Certainty Matching – A distinctive property of EA is that the supervised
learning signal is provided only by the part of the labeled nodes that have a
matching partner in the other graph. Therefore, we propose a heuristic that
prefers nodes having matches in the opposite graph, named previous-experience-
based (prexp). As the model is trained to have high similarities between matching
nodes, the node with maximum similarity is the most likely matching partner
for a given node. Moreover, we expect that higher similarity values indicate a
better match, such that we can utilise this maximum similarity as a matching
score: smax(e) = maxe′∈ER similarity(e, e′) for e ∈ EL. Thus, we hypothesize
that the distribution of maximum similarity values between exclusive nodes and
those having a matching partner differ and can be used to distinguish those
categories. However, we note that the similarity distribution for already labeled
nodes may differ from those that are not labeled, as the labeled nodes directly
receive updates by a supervised loss signal. Hence, we use historical similarity
values acquired when we selected unlabeled nodes for labeling, and the ground
truth information about them having a match received after the labeling. Based
on these, we fit two normal distributions for maximum similarities: The first
distribution with the probability function Pmatch describes the distribution of
maximal similarity score of nodes with matchings. Similarly, the function Pexcl

computes the probability that the maximal similarity score belongs to an exclu-
sive node. For each entity in question e, we take its maximal similarity score to
the candidate in other graph and compute a difference between two probabili-
ties Pmatch(smax(e) ≤ x)−Pexcl(smax(e) ≥ x) as heuristic score, c.f. Fig. 2. This
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score is large if the maximal similarity of exclusive nodes is smaller than that of
nodes with matchings. We keep only entities with the score greater than thresh-
old t, where t is a hyperparameter. This way, we make sure that the score is used
only if matching and exclusive nodes are distinguishable. If there are not enough
entities that fulfill this requirement, we use some simple fallback heuristic, e.g.,
degree, for the remaining nodes.

5 Evaluation Framework

A

B

C

D

E

F

Fig. 3. Visualization of node categorisation for EL = {A, B, C}, and ER = {D, E, F}.
Solid lines represent training alignments, whereas dashed ones denote test alignments.
Node B is the only exclusive node. All blue nodes are in the initial pool P0. The red
dashed nodes D and F may not be requested for labeling as they neither are exclusive
nor participate in a training alignment. When node A is requested, only the alignment
(A, E) is returned, and A, as well as E, become unavailable. The second training
alignment (C, E) can still be obtained by requesting C. (Color figure online)

To evaluate active learning heuristics in-vitro, an alignment dataset compris-
ing two graphs and labeled alignments is used. These alignments are split into
training alignments Atrain and test alignments Atest. We employ an incremental
batch-wise pool-based framework. At step i, there is a pool of potential queries
Pi ⊆

(

EL ∪ ER
)

, from which a heuristic selects a fixed number of elements
Qi ⊆ Pi, where b = |Qi| is often called the budget. These queries are then
passed to an alignment oracle O simulating the labeling process and return-
ing O(Qi) = (Ai,X

L
i ,X R

i ), where the first component comprises the discovered
alignments Ai = {(a, a′) ∈ Atrain | {a, a′} ∩ Qi �= ∅}, and the last components
the exclusive nodes X L

i = X L ∩Qi, and X R
i analogously. Afterward, the labeled

nodes are removed from the pool, i.e. Pi+1 = Pi \
(

AL
i ∪ AR

i ∪ X L
i ∪ X R

i

)

. Note
that when dealing with 1:n matchings, we remove all matches from the set of
available nodes, despite some of them having additional alignment partners. As
each alignment edge can be retrieved using any of its endpoints, this does not
pose a problem. Now, the model is trained with all already found alignments,
denoted by A≤i, and without all exclusive nodes discovered so far, denoted by
X L

≤i,X
R
≤i, given as

A≤i =
⋃

j≤i

Aj , X L
≤i =

⋃

j≤i

X L
j , X R

≤i =
⋃

j≤i

X R
j .
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Following [27,32], we do not reset the parameters but warm-start the model
with the previous iteration’s parameters. The pool is initialized with P0 :=
AL

train∪AR
train∪X L∪X R. We exclude nodes that are not contained in the training

alignment, but in the test alignments, as in this case, either a test alignment
has to be revealed, or a node has to be unfaithfully classified as exclusive. An
illustration of the pool construction and an example query of size one is given
in Fig. 3.

6 Experiments

6.1 Setup

For evaluation, we use both subsets of the WK3l-15k dataset [7]1. Similarly to
[28] we extract additional entity alignments from the triple alignments. Besides
using the official train-test split, we perform an additional 80-20 train-validation
split shared across all runs. We additionally evaluate the transferability of the
hyperparameter settings. One of the challenges in active learning is that hyper-
parameter search for a new dataset is not possible because of the lack of labeled
data at the beginning. Therefore, for the evaluation of the second subset en-fr,
we use the best hyperparameter settings which we obtained using en-de and
compare how consistent are results for both subsets.

We employ a GNN-based model, GCN-Align [40]. We use the best settings
as found in [3]. To allow for Monte-Carlo Dropout estimation for the Bayesian
heuristics, we additionally add a dropout layer between the embeddings and
the GCN and vary the dropout rate. We employ a margin-based matching loss,
and we exclude so far identified exclusive nodes from the pool of negative sam-
ples. Following [2], we use 25 runs with different dropout masks for Bayesian
approaches. As evaluation protocol, we always retrieve 200 queries from the
heuristic, update the exclusives and alignments using the oracle, and train the
model for up to 4k epochs with early stopping on validation mean reciprocal
rank (MRR) evaluated every 20 epochs, with a patience value of 200 epochs.
There are different scores for the evaluation of entity alignment, which evalu-
ate different performance aspects [4]. In this work, we report Hits@1 (H@1) on
the test alignments since this metric is most relevant for the applications. We
selected the heuristics’ hyperparameters according to the AUC of the step vs.
validation H@1 score. Using the best hyperparameter configuration, we re-ran
the experiments five times and report the mean and the standard deviation of
the results on the test set.

6.2 Results

Removal of Exclusives – Figure 4 shows the test performance of the ran-
dom selection baseline heuristic compared to the number of queries, with the

1 Note that the frequently used DBP15k dataset is not suitable for our experiments
due to its construction. Exclusive nodes in DBP15K are exactly those having a
degree of one and are therefore trivial to identify.
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Fig. 4. Performance vs number of queries for random baseline with different levels of
dropout, and when removing exclusive nodes from message passing. Removing exclu-
sives significantly improves the final performance.

standard deviation across five runs shown as shaded areas. As can be seen by
comparing the two solid lines, removing exclusives is advantageous, in particular,
when many queries are performed, i.e., many exclusives are removed. Therefore,
we focus the subsequent analysis only on the case, when found exclusives are
removed from the graph. Moreover, we can see that using a high dropout value
of 0.5 is disadvantageous on both datasets. While a dropout value of 0.2 also
hurts performance for the en-de subset, it does not have a negative influence on
en-fr.

Fig. 5. Performance on test alignments vs. number of queries for different heuristics.

Comparison of Different Heuristics – Figure 5 compares the performance
of different heuristics through all steps. Since there is a large overlap across dif-
ferent heuristics, we additionally compute AUC for each heuristic and report it
in Table 1. From the results, we observe that our expectations about the per-
formance of different heuristics are mostly confirmed. Most of the heuristics
perform significantly better than random sampling. Our intuitions about pos-
sible problems with coreset in the context of entity alignment are also verified:
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Table 1. Mean and standard deviation of AUC number of queries vs. test hits @ 1
aggregated from five different runs for each heuristic and subset. The * symbol indicates
significant results compared to the rnd baseline according to unequal variances t-test
(Welch’s t-test) with p < 0.01.

Subset en-de en-fr

avc 0.2020 ± 0.0005* 0.1748 ± 0.0005*

bald 0.1222 ± 0.0039* 0.1514 ± 0.0013

betw 0.2134 ± 0.0005* 0.1773 ± 0.0004*

cs 0.1117 ± 0.0011* 0.1185 ± 0.0016*

deg 0.2105 ± 0.0005* 0.1741 ± 0.0005*

esccn 0.2114 ± 0.0006* 0.1828 ± 0.0021*

prexp 0.2103 ± 0.0009* 0.1733 ± 0.0009*

rnd 0.1605 ± 0.0040 0.1510 ± 0.0019

The heuristic performs consistently worse than the random sampling baseline.
On the other hand, our new esccn heuristic, which also tries to cover embedding
space, but uses most central nodes instead, is one of the best performing heuris-
tics. We also observe an inferior performance of the uncertainty-based heuristic,
which performance is comparable with the random heuristic. Note, that we also
evaluated softmax entropy and maximal variation ratio heuristics from [17] and
their performance was similar. Overall, we see similar patterns for both sub-
sets: There is a set of good performing heuristics and their performance is very
similar.

Performance in Earlier Stages – In many real-life applications, the labeling
budget is limited; therefore, the model performance in the first steps is of higher
relevance. Therefore, in Fig. 6, we analyze the model performance in the first

Fig. 6. Performance on test alignments vs. number of queries for different heuristics.
This figure shows only queries up to 2,000, i.e., the region where not many alignments
have been found so far.
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2,000 iterations. We observe that the escnn and betw heuristics compete for first
prize and that towards the end, they are superseded by other heuristics.

Fig. 7. Number of found training alignments vs. number of queries for different heuris-
tics. This figure shows only queries up to 2,000, i.e., the region where not many align-
ments have been found so far.

Influence of Positive Matchings – In Fig. 7, we show the number of alignment
pairs identified by each heuristic in the first 2,000 steps. For most heuristics, the
plots look very similar to the plots in Fig. 6 above with the performance on the
y axis. In Fig. 4, we also saw that the removal of exclusive nodes affects the
performance only at later iterations. Therefore, we can conclude that finding
nodes with matches is especially important in the early training stages.

On the whole, we can conclude that node centrality based heuristics like betw
are the right choice for active learning for entity alignment. It achieves perfor-
mance comparable with model-based approaches and does not require access
to model predictions during the labeling process. The labeling ordering can be
precomputed and does not change, also facilitating to parallelize the labeling
process for a fixed budget to multiple annotators, e.g., using systems such as
Amazon Mechanical Turk.

7 Conclusion

In this paper, we introduced the novel task of active learning for entity alignment
and discussed its differences to the classical active learning setting. Moreover,
we proposed several different heuristics, both, adaptions of existing heuristics
used for classification, as well as heuristics specifically designed for this partic-
ular task. In a thorough empirical analysis, we showed strong performance of
simple centrality and graph cover heuristics, while adaptations of state-of-the-
art heuristics for classification showed inferior performance. For future work, we
envision transferring our approaches to other graph matching problems, such as
matching road networks [13] or approximating graph edit distance [24]. More-
over, we aim to study the generalization of our findings to other datasets and
models.



60 M. Berrendorf et al.

Acknowledgement. This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this
work take full responsibilities for its content.

References

1. Bast, H., Björn, B., Haussmann, E.: Semantic search on text and knowledge bases.
Found. Trends Inf. Retrieval 10(2–3), 119–271 (2016)

2. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensem-
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Abstract. For many years, link prediction on knowledge graphs (KGs)
has been a purely transductive task, not allowing for reasoning on unseen
entities. Recently, increasing efforts are put into exploring semi- and fully
inductive scenarios, enabling inference over unseen and emerging entities.
Still, all these approaches only consider triple-based KGs, whereas their
richer counterparts, hyper-relational KGs (e.g., Wikidata), have not yet
been properly studied. In this work, we classify different inductive set-
tings and study the benefits of employing hyper-relational KGs on a
wide range of semi- and fully inductive link prediction tasks powered
by recent advancements in graph neural networks. Our experiments on a
novel set of benchmarks show that qualifiers over typed edges can lead to
performance improvements of 6% of absolute gains (for the Hits@10 met-
ric) compared to triple-only baselines. Our code is available at https://
github.com/mali-git/hyper relational ilp.

1 Introduction

Knowledge graphs are notorious for their sparsity and incompleteness [16], so
that predicting missing links has been one of the first applications of machine
learning and embedding-based methods over KGs [9,22]. A flurry [2,20] of such
algorithms has been developed over the years, and most of them share cer-
tain commonalities, i.e., they operate over triple-based KGs in the transductive

setup, where all entities are known at training time. Such approaches can neither
operate on unseen entities, which might emerge after updating the graph, nor
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Fig. 1. Different types of inductive LP. Semi-inductive: the link between The Martian

and Best Actor from the seen graph. Fully-inductive: the genre link between unseen
entities given a new unseen subgraph at inference time. The qualifier (nominee: Matt

Damon) over the original relation nominated for allows to better predict the semi-
inductive link.

on new (sub-)graphs comprised of completely new entities. Those scenarios are
often unified under the inductive link prediction (LP) setup. A variety of NLP
tasks building upon KGs have inductive nature, for instance, entity linking or
information extraction. Hence, being able to work in inductive settings becomes
crucial for KG representation learning algorithms. For instance (cf. Fig. 1), the
director-genre pattern from the seen graph allows to predict a missing genre

link for The Martian in the unseen subgraph.
Several recent approaches [13,24] tackle an inductive LP task, but they usu-

ally focus on a specific inductive setting. Furthermore, their underlying KG
structure is still based on triples. On the other hand, new, more expressive KGs
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like Wikidata [26] exhibit a hyper-relational nature where each triple (a typed
edge in a graph) can be further instantiated with a set of explicit relation-entity
pairs, known as qualifiers in the Wikidata model. Recently, it was shown [17]
that employing hyper-relational KGs yields significant gains in the transductive
LP task compared to their triple-only counterparts. But the effect of such KGs on
inductive LP is unclear. Intuitively (Fig. 1), the (nominee: Matt Damon) qual-
ifier provides a helpful signal to predict Best Actor as an object of nominated
for of The Martian given that Good Will Hunting received such an award with
the same nominee.

In this work, we systematically study hyper-relational KGs in different induc-
tive settings:

– We propose a classification of inductive LP scenarios that describes the set-
tings formally and, to the best of our knowledge, integrates all relevant exist-
ing works. Specifically, we distinguish fully-inductive scenarios, where target
links are to be predicted in a new subgraph of unseen entities, and semi-

inductive ones where unseen nodes have to be connected to a known graph.
– We then adapt two existing baseline models for the two inductive LP tasks

probing them in the hyper-relational settings.
– Our experiments suggest that models supporting hyper-relational facts indeed

improve link prediction in both inductive settings compared to strong triple-
only baselines by more than 6% Hits@10.

2 Background

We assume the reader to be familiar with the standard link prediction setting
(e.g. from [22]) and introduce the specifics of the setting with qualifiers.

2.1 Statements: Triples Plus Qualifiers

Let G = (E ,R,S) be a hyper-relational KG where E is a set of entities, R is a
set of relations, and S a set of statements. Each statement can be formalized as
a 4-tuple (h, r, t, q) of a head and tail entity1 h, t ∈ E , a relation r ∈ R, and a
set of qualifiers, which are relation-entity pairs q ⊆ P(R × E) where P denotes
the power set. For example, Fig. 1 contains a statement (Good Will Hunting,

nominated for, Best Actor, {(nominee, Matt Damon)}) where (nominee,

Matt Damon) is a qualifier pair for the main triple. We define the set of all
possible statements as set

S(EH ,R, ET , EQ) = EH × R × ET × P(R × EQ)

with a set of relations R, a set of head, tail and qualifier entities EH , ET , EQ ⊆
E . Further, Strain is the set of training statements and Seval are evaluation
statements. We assume that we have a feature vector xe ∈ R

d associated with

1 We use entity and node interchangeably.
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each entity e ∈ E . Such feature vectors can, for instance, be obtained from
entity descriptions available in some KGs or represent topological features such
as Laplacian eigenvectors [6] or regular graph substructures [10]. In this work,
we focus on the setting with one fixed set of known relations. That is, we do
not require xr ∈ R

d features for relations and rather learn relation embeddings
during training.

2.2 Expressiveness

Models making use of qualifiers are strictly more expressive than those which
do not: Consider the following example with two statements, s1 = (h, r, t, q1)
and s2 = (h, r, t, q2), sharing the same triple components, but differing in their
qualifiers, such that s1|q1 = False and s2|q2 = True. For a model fNQ not
using qualifiers, i.e., only using the triple component (h, r, t), we have fNQ(s1) =
fNQ(s2). In contrast, a model fQ using qualifiers can predict fQ(s1) �= fQ(s2),
thus being strictly more expressive.

Table 1. Inductive LP in the literature, a discrepancy in terminology. The approaches
differ in the kind of auxiliary statements Sinf used at inference time: in whether they
contain entities seen during training Etr and whether new entities Einf are connected
to seen ones (k-shot scenario), or (only) amongst each other, in a new graph. Note that
the evaluation settings also vary.

Named scenario Sinf Unseen ↔ Unseen Unseen ↔ Seen Scoring against In our framework

Out-of-sample [1] k-shot – � Etr SI

Unseen entities [12] k-shot – � Etr SI

Inductive [8] k-shot – � Etr SI

Inductive [24] New graph � – Einf FI

Transfer [13] New graph � – Einf FI

Dynamic [13] k-shot + new graph � � Etr ∪ Einf FI/SI

Out-of-graph [4] k-shot + new graph � � Etr ∪ Einf FI/SI

Inductive [27] k-shot + new graph � � Etr ∪ Einf FI/SI

3 Inductive Link Prediction

Recent works (cf. Table 1) have pointed out the practical relevance of different
inductive LP scenarios. However, there exists a terminology gap as different
authors employ different names for describing conceptually the same task or,
conversely, use the same inductive LP term for practically different setups. We
propose a unified framework that provides an overview of the area and describes
the settings formally.

Let E• denote the set of entities occurring in the training statements Strain

at any position (head, tail, or qualifier), and E◦ ⊆ E \ E• denote a set of unseen
entities. In the transductive setting, all entities in the evaluation statements
are seen during training, i.e., Seval ⊆ S(E•,R, E•, E•). In contrast, in inductive

settings, Seval, used in validation and testing, may contain unseen entities. In
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order to be able to learn representations for these entities at inference time,
inductive approaches may consider an additional set Sinf of inference statements

about (un)seen entities; of course Sinf ∩ Seval = ∅.
The fully-inductive setting (FI) is akin to transfer learning where link

prediction is performed over a set of entities not seen before, i.e., Seval ⊆
S(E◦,R, E◦, E◦). This is made possible by providing an auxiliary inference graph
Sinf ⊆ S(E◦,R, E◦, E◦) containing statements about the unseen entities in Seval.
For instance, in Fig. 1, the training graph is comprised of entities Matt Damon,

Good Will Hunting, Best Actor, Gus Van Sant, Milk, Drama. The infer-
ence graph contains new entities The Martian, Alien, Ridley Scott, Blade

Runner, Sci-fi with one missing link to be predicted. The fully-inductive set-
ting is considered in [13,24].

In the semi-inductive setting (SI), new, unseen entities are to be connected
to seen entities, i.e., Seval ⊆ S(E•,R, E◦, E•) ∪ S(E◦,R, E•, E•). Illustrating with
Fig. 1, The Martian as the only unseen entity connecting to the seen graph,
the semi-inductive statement connects The Martian to the seen Best Actor.
Note that there are other practically relevant examples beyond KGs, such as
predicting interaction links between a new drug and a graph containing existing
proteins/drugs [5,18]. We hypothesize that, in most scenarios, we are not given
any additional information about the new entity, and thus have Sinf = ∅; we will
focus on this case in this paper. However, the variation where Sinf may contain
k statements connecting the unseen entity to seen ones has been considered too
[1,8,12] and is known as k-shot learning scenario.

A mix of the fully- and semi-inductive settings where evaluation statements
may contain two instead of just one unseen entity is studied in [4,13,27]. That
is, unseen entities might be connected to the seen graph, i.e., Seval may contain
seen entities, and, at the same time, the unseen entities might be connected to
each other; i.e., Sinf �= ∅.

Our framework is general enough to allow Seval to contain new, unseen rela-
tions r having their features xr at hand. Still, to the best of our knowledge,
research so far has focused on the setting where all relations are seen in training;
we will do so, too.

We hypothesize that qualifiers, being explicit attributes over typed edges,
provide a strong inductive bias for LP tasks. In this work, for simplicity, we
require both qualifier relations and entities to be seen in the training graph, i.e.,
EQ ⊆ E• and RQ ⊆ R, although the framework accommodates a more general
case of unseen qualifiers given their respective features.

4 Approach

Both semi- and fully-inductive tasks assume node features to be given. Recall
that relation embeddings are learned and, often, to reduce the computational
complexity, their dimensionality is smaller than that of node features.
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4.1 Encoders

In the semi-inductive setting, an unseen entity arrives without any graph struc-
ture pointing to existing entities, i.e., Sinf = ∅. This fact renders message
passing approaches [19] less applicable, so we resort to a simple linear layer to
project all entity features (including those of qualifiers) into the relation space:
φ : R

df → R
dr

In the fully inductive setting, we are given a non-empty inference graph
Sinf �= ∅, and we probe two encoders: (i) the same linear projection of features
as in the semi-inductive scenario which does not consider the graph structure;
(ii) GNNs which can naturally work in the inductive settings [11]. However, the
majority of existing GNN encoders for multi-relational KGs like CompGCN [25]
are limited to only triple KG representation. To the best of our knowledge, only
the recently proposed StarE [17] encoder supports hyper-relational KGs which
we take as a basis for our inductive model. Its aggregation formula is:

x′
v = f

⎛

⎝

∑

(u,r)∈N (v)

Wλ(r)φr(xu, γ(xr,xq)vu)

⎞

⎠ (1)

where γ is a function that infuses the vector of aggregated qualifiers xq into the
vector of the main relation xr. The output of the GNN contains updated node
and relation features based on the adjacency matrix A and qualifiers Q:

X′,R′ = StarE(A,X,R, Q)

Finally, in both inductive settings, we linearize an input statement in a
sequence using a padding index where necessary: [x′

h,x′
r,x

′
qr
1

,x′
qe
1

, [PAD], . . .].
Note that statements can greatly vary in length depending on the amount of
qualifier pairs, and padding mitigates this issue.

Table 2. Semi-inductive (SI) and fully-inductive (FI) datasets. Sds(Q%) denotes the
number of statements with the qualifiers ratio in train (ds = tr), validation (ds = vl),
test (ds = ts), and inductive inference (ds = inf ) splits. Eds is the number of distinct
entities. Rds is the number of distinct relations. Sinf is a basic graph for vl and ts in
the FI scenario.

Type Name Train Validation Test Inference

Str (Q%) Etr Rtr Svl (Q%) Evl Rvl Sts (Q%) Ets Rts Sinf (Q%) Einf Rinf

SI WD20K (25) 39,819 (30%) 17,014 362 4,252 (25%) 3544 194 3,453 (22%) 3028 198 – – –

SI WD20K (33) 25,862 (37%) 9251 230 2,423 (31%) 1951 88 2,164 (28%) 1653 87 – – –

FI WD20K (66) V1 9,020 (85%) 6522 179 910 (45%) 1516 111 1,113 (50%) 1796 110 6,949 (49%) 8313 152

FI WD20K (66) V2 4,553 (65%) 4269 148 1,480 (66%) 2322 79 1,840 (65%) 2700 89 8,922 (58%) 9895 120

FI WD20K (100) V1 7,785 (100%) 5783 92 295 (100%) 643 43 364 (100%) 775 43 2,667 (100%) 4218 75

FI WD20K (100) V2 4,146 (100%) 3227 57 538 (100%) 973 43 678 (100%) 1212 42 4,274 (100%) 5573 54
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4.2 Decoder

Given an encoded sequence, we use the same Transformer-based decoder for all
settings:

f(h, r, t, q) = g(x′
h,x′

r,x
′
qr
1

,x′
qe
1

, . . .)T x′
t with

g(x′
1, . . . ,xk) = Agg(Transformer([x′

1, . . . ,x
′
k]))

In this work, we evaluated several aggregation strategies and found a simple
mean pooling over all non-padded sequence elements to be preferable. Interaction
functions of the form f(h, r, t, q) = f1(h, r, q)T f2(t) are particularly well-suited
for fast 1-N scoring for tail entities, since the first part only needs to be computed
only once.

Here and below, we denote the linear encoder + Transformer decoder model
as QBLP (that is, Qualifier-aware BLP, an extension of BLP [13]), and the
StarE encoder + Transformer decoder, as StarE.

4.3 Training

In order to compare results with triple-only approaches, we train the models, as
usual, on the subject and object prediction tasks. We use stochastic local closed
world assumption (sLCWA) and the local closed world assumption (LCWA)
commonly used in the KG embedding literature [2]. Particular details on sLCWA
and LCWA are presented in Appendix A. Importantly, in the semi-inductive
setting, the models score against all entities in the training graph Etr in both
training and inference stages. In the fully-inductive scenario, as we are predicting
links over an unseen graph, the models score against all entities in Etr during
training and against unseen entities in the inference graph Einf during inference.

5 Datasets

We take the original transductive splits of the WD50K [17] family of hyper-
relational datasets as a leakage-free basis for sampling our semi- and fully-
inductive datasets which we denote by WD20K.

5.1 Fully-Inductive Setting

We start with extracting statement entities E ′, and sample n entities and their
k-hop neighbourhood to form the statements (h, r, t, q) of the transductive train
graph Strain. From the remaining E ′ \ Etrain and S \ Strain sets we sample m
entities with their l-hop neighbourhood to form the statements Sind of the induc-
tive graph. The entities of Sind are disjoint with those of the transductive train
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graph. Further, we filter out all statements in Sind whose relations (main or
qualifier) were not seen in Strain. Then, we randomly split Sind with the ratio
about 55%/20%/25% into inductive inference, validation, and test statements,
respectively. The evaluated models are trained on the transductive train graph
Strain. During inference, the models receive an unseen inductive inference graph
from which they have to predict validation and test statements. Varying k and
l, we sample two different splits: V1 has a larger training graph with more seen
entities whereas V2 has a bigger inductive inference graph.

5.2 Semi-inductive Setting

Starting from all statements, we extract all entities occurring as head or tail
entity in any statement, denoted by E ′ and named statement entities. Next,
we split the set of statement entities into a train, validation and test set:
Etrain, Evalidation, Etest. We then proceed to extract statements (h, r, t, q) ∈ S
with one entity (h/t) in Etrain and the other entity in the corresponding state-
ment entity split. We furthermore filter the qualifiers to contain only pairs where
the entity is in a set of allowed entities, formed by Asplit = Etrain ∪ Esplit, with
split being train/validation/test. Finally, since we do not assume relations to
have any features, we do not allow unseen relations. We thus filter out relations
which do not occur in the training statements.

5.3 Overview

To measure the effect of hyper-relational facts on both inductive LP tasks,
we sample several datasets varying the ratio of statements with and with-
out qualifiers. In order to obtain the initial node features we mine their
English surface forms and descriptions available in Wikidata as rdfs:label

and schema:description values. The surface forms and descriptions are con-
catenated into one string and passed through the Sentence BERT [23] encoder
based on RoBERTa [21] to get 1024-dimensional vectors. The overall datasets
statistics is presented in Table 2.

6 Experiments

We design our experiments to investigate whether the incorporation of quali-
fiers improves inductive link prediction. In particular, we investigate the fully-
inductive setting (Sect. 6.2) and the semi-inductive setting (Sect. 6.3). We ana-
lyze the impact of the qualifier ratio (i.e., the number of statements with quali-
fiers) and the dataset’s size on a model’s performance.
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Table 3. Results on FI WD20K (100) V1 & V2. #QP denotes the number of qualifier
pairs used in each statement (including padded pairs). Best results in bold, second
best underlined.

Model #QP
WD20K (100) V1 WD20K (100) V2

AMR(%) MRR(%) H@1(%) H@5(%) H@10(%) AMR(%) MRR(%) H@1(%) H@5(%) H@10(%)

BLP 0 22.78 5.73 1.92 8.22 12.33 36.71 3.99 1.47 4.87 9.22
CompGCN 0 37.02 10.42 5.75 15.07 18.36 74.00 2.55 0.74 3.39 5.31
QBLP 0 28.91 5.52 1.51 8.08 12.60 35.38 4.94 2.58 5.46 9.66

StarE 2 41.89 9.68 3.73 16.57 20.99 40.60 2.43 0.45 3.86 6.17
StarE 4 35.33 10.41 4.82 15.84 21.76 37.16 5.12 1.41 7.93 12.89
StarE 6 34.86 11.27 6.18 15.93 21.29 47.35 4.99 1.92 6.71 11.06
QBLP 2 18.91 10.45 3.73 16.02 22.65 28.03 6.69 3.49 8.47 12.04
QBLP 4 20.19 10.70 3.99 16.12 24.52 31.30 5.87 2.37 7.85 13.93

QBLP 6 23.65 7.87 2.75 10.44 17.86 34.35 6.53 2.95 9.29 13.13

Table 4. Results on the FI WD20K (66) V1 & V2. #QP denotes the number of
qualifier pairs used in each statement (including padded pairs). Best results in bold,
second best underlined.

Model #QP
WD20K (66) V1 WD20K (66) V2

AMR(%) MRR(%) H@1(%) H@5(%) H@10(%) AMR(%) MRR(%) H@1(%) H@5(%) H@10(%)

BLP 0 34.96 2.10 0.45 2.29 4.44 45.29 1.56 0.27 1.88 3.35
CompGCN 0 35.99 5.80 2.38 8.93 12.79 47.24 2.56 1.17 3.07 4.46
QBLP 0 35.30 3.69 1.30 4.85 7.14 42.48 0.94 0.08 0.79 1.82

StarE 2 37.72 6.84 3.24 9.71 13.44 52.78 2.62 0.74 3.55 5.78
StarE 4 38.91 6.40 2.83 8.94 13.39 51.93 5.06 2.09 7.34 9.82

StarE 6 38.20 6.87 3.46 8.98 13.57 47.01 4.42 2.04 5.73 8.97
QBLP 2 30.37 3.70 1.26 4.90 8.14 53.67 1.39 0.41 1.66 2.59
QBLP 4 30.84 3.20 0.90 4.00 7.14 37.10 2.08 0.38 2.20 4.92
QBLP 6 26.34 4.34 1.66 5.53 9.25 39.12 1.95 0.41 2.15 4.10

6.1 Experimental Setup

We implemented all approaches in Python building upon the open-source library
pykeen [3] and make the code publicly available.2 For each setting (i.e., dataset
+ number of qualifier pairs per triple), we performed a hyperparameter search
using early stopping on the validation set and evaluated the final model on the
test set. We used AMR, MRR, and Hits@k as evaluation metrics, where the
Adjusted Mean Rank (AMR) [7] is a recently proposed metric which sets the
mean rank into relation with the expected mean rank of a random scoring model.
Its value ranges from 0%–200%, and a lower value corresponds to better model
performance. Each model was trained at most 1000 epochs in the fully inductive
setting, at most 600 epochs in the semi-inductive setting, and evaluated based
on the early-stopping criterion with a frequency of 1, a patience of 200 epochs
(in the semi-inductive setting, we performed all HPOs with a patience of 100
and 200 epochs), and a minimal improvement δ > 0.3% optimizing the hits@10
metric. For both inductive settings, we evaluated the effect of incorporating 0,
2, 4, and 6 qualifier pairs per triple.

2 https://github.com/mali-git/hyper relational ilp.

https://github.com/mali-git/hyper_relational_ilp
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6.2 Fully-Inductive Setting

In the full inductive setting, we analyzed the effect of qualifiers for four different
datasets (i.e., WD20K (100) V1 & V2 and WD20K (66) V1 & V2, which have
different ratios of qualifying statements and are of different sizes (see Sect. 5). As
triple-only baselines, we evaluated CompGCN [25] and BLP [13]. To evaluate the
effect of qualifiers on the fully-inductive LP task, we evaluated StarE [17] and
QBLP. It should be noted that StarE without the use of qualifiers is equivalent
to CompGCN.

General Overview. Tables 3 and 4 show the results obtained for the four
datasets. The main findings are that (i) for all datasets, the use of qualifiers
leads to increased performance, and (ii) the ratio of statements with qualifiers
and the size of the dataset has a major impact on the performance. CompGCN
and StarE apply message-passing to obtain enriched entity representations while
BLP and QBLP only apply a linear transformation. Consequently, CompGCN
and StarE require Sinf to contain useful information in order to obtain the entity
representations while BLP and QBLP are independent of Sinf. In the following,
we discuss the results for each dataset in detail.

Results on WD20K (100) FI V1 & V2. It can be observed that the per-
formance gap between BLP/QBLP (0) and QBLP (2,4,6) is considerably larger
than the gap between CompGCN and StarE. This might be explained by the
fact that QBLP does not take into account the graph structure provided by
Sinf, therefore is heavily dependent on additional information, i.e. the qualifiers
compensate for the missing graph information. The overall performance decrease
observable between V1 and V2 could be explained by the datasets’ composition
(Table 2), in particular, in the composition of the training and inference graphs:
Sinf of V2 comprises more entities than V1, so that each test triple is ranked
against more entities, i.e., the ranking becomes more difficult. At the same time,
the training graph of V1 is larger than that of V2, i.e., during training more enti-
ties (along their textual features) are seen which may improve generalization.

Results on WD20K (66) FI V1 & V2. Comparing StarE (2,4) to CompGCN
(0), there is only a small improvement on this dataset. Also, the improvement of
QBLP (2,4,6) compared to BLP and QBLP (0) is smaller than on the previous
datasets. This can be connected to the decreased ratio of statements with quali-
fiers. Besides, the training graph also has fewer qualifier pairs, Sinf which is used
by CompGCN and StarE for message passing consists of only 49% of statements
with at least one qualifier pair, and only 50% of test statements have at least one
qualifier pair which has an influence on all models. This observation supports
why StarE outperforms QBLP as the amount of provided qualifier statements
cannot compensate for the graph structure in Sinf.
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6.3 Semi-inductive Setting

In the semi-inductive setting, we evaluated BLP as a triple-only baseline and
QBLP as a statement baseline (i.e., involving qualifiers) on the WD20K SI
datasets. We did not evaluate CompGCN and StarE since message-passing-based
approaches are not directly applicable in the absence of Sinf. The results highlight
that aggregating qualifier information improves the prediction of semi-inductive
links despite the fact that the ratio of statements with qualifiers is not very large
(37% for SI WD20K (33), and 30% for SI WD20K (25)). In the case of SI WD20K
(33), the baselines are outperformed even by a large margin. Overall, the results
might indicate that in semi-inductive settings, performance improvements can
already be obtained with a decent amount of statements with qualifiers.

Table 5. Results on the WD20K SI datasets. #QP denotes the number of qualifier
pairs used in each statement (including padded pairs).Best results in bold, second
best underlined.

Model #QP
WD20K (33) SI WD20K (25) SI

AMR(%) MRR(%) H@1(%) H@5(%) H@10(%) AMR(%) MRR(%) H@1(%) H@5(%) H@10(%)

BLP 0 4.76 13.95 7.37 17.28 24.65 6.01 12.45 5.98 17.29 23.43
QBLP 0 7.04 28.35 14.44 28.58 36.32 6.75 17.02 8.82 22.10 29.50

QBLP 2 11.51 35.95 20.70 34.98 41.82 5.99 20.36 11.77 24.86 32.26

QBLP 4 11.38 34.35 19.41 33.90 40.20 12.18 21.05 12.32 24.07 30.09
QBLP 6 4.98 25.94 15.20 30.06 38.70 5.73 19.50 11.14 24.73 31.60

Fig. 2. Distribution of individual ranks for head/tail prediction with StarE on WD20K
(66) V2. The statements are grouped by the number of qualifier pairs.
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6.4 Qualitative Analysis

We obtain deeper insights on the impact of qualifiers by analyzing the StarE
model on the fully-inductive WD20K (66) V2 dataset. In particular, we study
individual ranks for head/tail prediction of statements with and without quali-
fiers (cf. Fig. 2) varying the model from zero to four pairs. First, we group the
test statements by the number of available qualifier pairs. We observe gener-
ally smaller ranks which, in turn, correspond to better predictions when more
qualifier pairs are available. In particular, just one qualifier pair is enough to
significantly reduce the individual ranks. Note that we have less statements with
many qualifiers, cf. Appendix D.

We then study how particular qualifiers affect ranking and predictions. For
that, we measure ranks of predictions for distinct statements in the test set with
and without masking the qualifier relation from the inference graph Sinf . We then
compute ΔMR and group them by used qualifier relations (Fig. 3). Interestingly,
certain qualifiers, e.g., convicted of or including, deteriorate the performance
which we attribute to the usage of rare, qualifier-only entities. Conversely, having
qualifiers like replaces reduces the rank by about 4000 which greatly improves
prediction accuracy. We hypothesize it is an effect of qualifier entities: helpful
qualifiers employ well-connected nodes in the graph which benefit from message
passing.

Qualifying relation

2

0

2

4

M
R

×103

replaces

statement disputed by

including

convicted of

Fig. 3. Rank deviation when masking qualifier pairs containing a certain relation.
Transparency is proportional to the occurrence frequency, bar height/color indicates
difference in MR for evaluation statements using this qualifying relation if the pair is
masked. More negative deltas correspond to better predictions.
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Table 6. Top 3 worst and best qualifier relations affecting the overall mean rank
(the last column). Negative ∆MR with larger absolute value correspond to better
predictions.

WD20K (100) V1 FI

Wikidata ID relation name ∆MR

P2868 subject has role 0.12
P463 member of -0.04
P1552 has quality -0.34

P2241 reason for deprecation -26.44
P47 shares border with -28.91
P750 distributed by -29.12

WD20K (66) V2 FI

P805 statement is subject of 13.11
P1012 including 5.95
P812 academic major 5.07

P17 country -19.96
P1310 statement disputed by -20.92
P1686 for work -56.87

Finally, we study the average impact of qualifiers on the whole graph, i.e., we
take the whole inference graph and mask out all qualifier pairs containing one
relation and compare the overall evaluation result on the test set (in contrast
to Fig. 3, we count ranks of all test statements, not only those which have that
particular qualifier) against the non-masked version of the same graph. We then
sort relations by ΔMR and find top 3 most confusing and most helpful relations
across two datasets (cf. Table 6). On the smaller WD20K (100) V1 where all
statements have at least one qualifier pair, most relations tend to improve MR.
For instance, qualifiers with the distributed by relations reduce MR by about
29 points. On the larger WD20K (66) V2 some qualifier relations, e.g., statement
is subject of, tend to introduce more noise and worsen MR which we attribute
to the increased sparsity of the graph given an already rare qualifier entity. That
is, such rare entities might not benefit enough from message passing.

7 Related Work

We focus on semi- and fully inductive link prediction approaches and disregard
classical approaches that are fully transductive, which have been extensively
studied in the literature [2,20].

In the domain of triple-only KGs, both settings have recently received a
certain traction. One of the main challenges for realistic KG embedding is the
impossibility of learning representations of unseen entities since they are not
present in the train set.
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In the semi-inductive setting, several methods alleviating the issue were pro-
posed. When a new node arrives with a certain set of edges to known nodes,
[1] enhanced the training procedure such that an embedding of an unseen node
is a linear aggregation of neighbouring nodes. If there is no connection to the
seen nodes, [27] propose to densify the graph with additional edges obtained
from pairwise similarities of node features. Another approach applies a special
meta-learning framework [4] when during training a meta-model has to learn
representations decoupled from concrete training entities but transferable to
unseen entities. Finally, reinforcement learning methods [8] were employed to
learn relation paths between seen and unseen entities.

In the fully inductive setup, the evaluation graph is a separate subgraph dis-
joint with the training one, which makes trained entity embeddings even less
useful. In such cases, the majority of existing methods [12,13,28,29] resort to
pre-trained language models (LMs) (e.g., BERT [15]) as universal featurizers.
That is, textual entity descriptions (often available in KGs at least in English)
are passed through an LM to obtain initial semantic node features. Neverthe-
less, mining and employing structural graph features, e.g., shortest paths within
sampled subgraphs, has been shown [24] to be beneficial as well. This work
is independent from the origin of node features and is able to leverage both,
although the new datasets employ Sentence BERT [23] for featurizing.

All the described approaches operate on triple-based KGs whereas our work
studies inductive LP problems on enriched, hyper-relational KGs where we show
that incorporating such hyper-relational information indeed leads to better per-
formance.

8 Conclusion

In this work, we presented a study of the inductive link prediction problem
over hyper-relational KGs. In particular, we proposed a theoretical framework
to categorize various LP tasks to alleviate an existing terminology discrep-
ancy pivoting on two settings, namely, semi- and fully-inductive LP. Then, we
designed WD20K, a collection of hyper-relational benchmarks based on Wiki-
data for inductive LP with a diverse set of parameters and complexity. Prob-
ing statement-aware models against triple-only baselines, we demonstrated that
hyper-relational facts indeed improve LP performance in both inductive settings
by a considerable margin. Moreover, our qualitative analysis showed that the
achieved gains are consistent across different setups and still interpretable.

Our findings open up interesting prospects for employing inductive LP and
hyper-relational KGs along several axes, e.g., large-scale KGs of billions state-
ments, new application domains including life sciences, drug discovery, and KG-
based NLP applications like question answering or entity linking.

In the future, we plan to extend inductive LP to consider unseen relations
and qualifiers; tackle the problem of suggesting best qualifiers for a statement;
and provide more solid theoretical foundations of representation learning over
hyper-relational KGs.



88 M. Ali et al.

Acknowledgements. This work was funded by the German Federal Ministry of Edu-
cation and Research (BMBF) under Grant No. 01IS18036A and Grant No. 01IS18050D
(project “MLWin”). The authors of this work take full responsibilities for its content.

A Training

In the sLCWA, negative training examples are created for each true fact (h, r, t) ∈
KG by corrupting the head or tail entity resulting in the triples (h′, r, t)/(h, r, t′).
In the LCWA, for each triple (h, r, t) ∈ KG all triples (h, r, t′) /∈ KG are con-
sidered as non-existing, i.e., as negative examples.

Under the sLCWA, we trained the models using the margin ranking loss [9]:

L(f(t+i ), f(t−i )) = max(0, λ + f(t−i ) − f(t+i )) , (2)

where f(t+i ) denotes the model’s score for a positive training example and
f(t−i ) for a negative one.

For training under the LCWA, we used the binary cross entropy loss [14]:

L(f(ti), li) = − (li · log(σ(f(ti)))

+ (1 − li) · log(1 − σ(f(ti)))),
(3)

where li corresponds to the label of the triple ti.

B Hyperparameter Ranges

The following tables summarizes the hyper-parameter ranges explored during
hyper-parameter optimization. The best hyper-parameters for each of our 46
ablation studies will be available online upon publishing.

C Infrastructure and Parameters

We train each model on machines running Ubuntu 18.04 equipped with a
GeForce RTX 2080 Ti with 12 GB RAM. In total, we performed 46 individual
hyperparameter optimizations (one for each dataset/model/number-of-qualifier
combination). Depending on the exact configuration, the individual models have
between 500k and 5M parameters and take up to 2 h for training.

D Qualifier Ratio

Figure 4 shows the ratio of statements with a given number of available qualifier
pairs for all datasets and splits. We generally observe that there are only few
statements with a large number of qualifier pairs, while most of them have zero
to two qualifier pairs.
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Table 7. Hyperparameter ranges explored during hyper-parameter optimization. FI
denotes the fully-inductive setting and SI the semi-inductive setting. For the sLCWA
training approach, we trained the models with the margin ranking loss (MRL), and
with the LCWA we used the BCEL (Binary Cross Entropy loss)

Hyper-parameter Value

GCN layers {2,3}

Embedding dim. {32, 64, ... , 256 }

Transformer hid. dim. {512, 576, ... , 1024 }

Num. attention heads {2, 4}

Num. transformer heads {2, 4}

Num. transformer layers {2, 3, 4}

Qualifier aggr. {sum, attention}

Qualifier weight 0.8

Dropout {0.1, 0.2, ... , 0.5 }

Attention slope {0.1, 0.2, 0.3, 0.4 }

Training approaches {sLCWA, LCWA}

Loss fcts. {MRL, BCEL}

Learning rate (log scale) [0.0001, 1.0)

Label smoothing {0.1, 0.15}

Batch size {128, 192, ... , 1024}

Max Epochs FI setting 1000

Max Epochs SI setting 600

Fig. 4. Percentage of statements with the given number of available qualifier pairs for
all datasets and splits.
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Abstract

Recently, knowledge graph embeddings (KGEs) have received significant attention,
and several software libraries have been developed for training and evaluation. While
each of them addresses specific needs, we report on a community effort to a re-design
and re-implementation of PyKEEN, one of the early KGE libraries. PyKEEN 1.0 enables
users to compose knowledge graph embedding models based on a wide range of interaction
models, training approaches, loss functions, and permits the explicit modeling of inverse
relations. It allows users to measure each component’s influence individually on the model’s
performance. Besides, an automatic memory optimization has been realized in order to
optimally exploit the provided hardware. Through the integration of Optuna, extensive
hyper-parameter optimization (HPO) functionalities are provided.

Keywords: Knowledge Graphs, Knowledge Graph Embeddings, Relational Learning

1. Introduction

Knowledge graphs (KGs) encode knowledge as a set of triples K ⊆ E×R×E where E denotes
the set of entities and R the set of relations. Knowledge graph embedding models (KGEMs)
learn representations for entities and relations of KGs in vector spaces while preserving the
graph structure. The learned embeddings can support machine learning tasks such as
entity clustering, link prediction, entity disambiguation, as well as downstream tasks such
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as question answering and item recommendation (Nickel et al., 2015; Wang et al., 2017;
Ruffinelli et al., 2020; Kazemi et al., 2020).

Most publications of KGEMs are accompanied by reference implementations, but they
are seldomly written for reusability or maintained. Existing software packages that provide
implementations for different KGEMs usually lack composability: model architectures (or
interaction models), training approaches, loss functions, and the usage of explicit inverse
relations cannot arbitrarily be combined. The full composability of KGEMs is fundamental
for assessing their performance because it allows the assessment of individual components
and not solely the sum of differences in published approaches (Ruffinelli et al., 2020). In
most previous libraries, only limited functionalities are provided, e.g., a small number of
KGEMs are supported, or functionalities such as hyper-parameter optimization (HPO) are
missing. For instance, in PyKEEN (Ali et al., 2019a,b), one of the early software packages
for KGEMs, models can only be trained under the stochastic local closed-world approach,
the evaluation procedure was too slow for larger KGs, and it was designed to be mainly
used through a command-line interface rather than programmatically, in order to facilitate
its usage for non-experts. This motivated the development of a reusable software package
comprising several KGEMs and related methodologies that is entirely configurable.

Here, we present PyKEEN (Python KnowlEdge EmbeddiNgs) 1.0, a community effort
in which PyKEEN has been re-designed and re-implemented from scratch to overcome the
mentioned limitations, to make models entirely configurable, and to extend it with more
interaction models and other components.

2. System Description

In PyKEEN 1.0, a KGEM is considered as a composition of four components that can flex-
ibly be combined: an interaction model (or model architecture), a loss function, a training
approach, and the usage of inverse relations. PyKEEN 1.0 currently supports 23 interaction
models, seven loss functions, four regularizers, two training approaches, HPO, six evaluation
metrics, and 21 built-in benchmarking datasets. It can readily import additional datasets
that have been pre-stratified into train/test/evaluation and generate appropriate splits for
unstratified datasets. Additionally, we implemented an automatic memory optimization
that ensures that the available memory is best utilized.

Composable KGEMs To ensure the composability of KGEMs, the interaction mod-
els, loss functions, and training approaches are separated from each other and imple-
mented as independent submodules, whereas the modeling of inverse relations is han-
dled by the interaction models. Our modules can be arbitrarily replaced because we
ensured through inheritance that all interaction models, loss functions, and training ap-
proaches follow unified APIs, which are defined by pykeen.model.Model, pykeen.loss.Loss,
and pykeen.training.TrainingLoop. Currently, we provide implementations of 23 interac-
tion models, the most common loss functions used for training KGEMs including the
binary-cross entropy, cross entropy, mean square error, negative-sampling self-adversarial
loss, and the softplus loss, as well as the local closed-world assumption (also referred as
KvsAll) and the stochastic local closed-world assumption training approach (also refereed
as NegSamp) (Ruffinelli et al., 2020). In PyKEEN, each interaction model can be trained
based on both approaches. To enable users to investigate the effect of explicitly modeling

2



PyKEEN 1.0

inverse relations (Lacroix et al., 2018; Kazemi and Poole, 2018) on the model’s performance,
each model can be trained with explicit inverse relations in PyKEEN 1.0, i.e., for each rela-
tion r ∈ R an inverse relation rinv is introduced, and the task of predicting the head entity
of a (r, t)-pair becomes the task of predicting the tail entity of the corresponding inverse
pair (t, rinv).

To facilitate the composition of KGEmodels for non-experts, we provide the pykeen.pipe-
line.pipeline() functions, which provides a high-level entry point into the functionalities of
PyKEEN. Users define the components to be used, and the pipeline ensures the correct com-
position of the KGEM and the correct composition of the training and evaluation workflow.

Evaluation KGEMs are usually evaluated on the task of link prediction. Given (h, r) (or
(r, t)), all possible entities E are considered as tail (or head) and ranked according to the
KGEMs interaction model. The individual ranks are commonly aggregated to mean rank,
mean reciprocal rank, and hits@k. However, these metrics have been realized differently
throughout the literature based on different definitions of the rank, leading to difficulties
in reproducibility and comparability (Sun et al., 2019). The three most common rank
definitions are the average rank, optimistic rank, and pessimistic rank. In PyKEEN 1.0,
we explicitly compute the aggregation metrics for all common rank definitions, average,
optimistic, and pessimistic, allowing inspection of differences between them. This can help
to reveal cases where the model predicts exactly equal scores for many different triples,
which is usually an undesired behavior. In addition, we support the recently proposed
adjusted mean rank (Berrendorf et al., 2020), which allows the comparison of results across
differently sized datasets, as well as offering an interface to use all metrics implemented in
scikit-learn (Pedregosa et al., 2011), including AUC-PR and AUC-ROC.

Automatic Memory Optimization Allowing high computational throughput, while
ensuring that the available hardware memory is not exceeded during training and evaluation,
requires the knowledge of the maximum possible training and evaluation batch size for the
current model configuration. However, determining the training and evaluation batch sizes
is a tedious process, and not feasible when a large set of heterogeneous experiments are run.
Therefore, we implemented an automatic memory optimization step that computes the
maximum possible training and evaluation batch sizes for the current model configuration
and available hardware before the actual experiment starts. If the user-provided batch
size is too large for the used hardware, the automatic memory optimization determines the
maximum sub-batch size for the training.

Extensibility Because we defined a uniform API for each interaction model, any new
model can be integrated by following the API of the existing models (pykeen.models). Sim-
ilarly, the remaining components, e.g., regularizers, and negative samplers follow a unified
API, so that new modules can be smoothly integrated.

Community Standards PyKEEN 1.0 relies on several community-oriented tools to en-
sure it is accessible, reusable, reproducible, and maintainable. It is implemented for Python
3.7+ using the PyTorch package. It comes with a suite of thorough unit tests that are au-
tomated with PyTest, Tox, run in a continuous integration setting on GitHub Actions, and
are tracked over time using codecov.io. Code quality is ensured with flake8 and careful

3

https://docs.pytest.org/en/latest/
https://tox.readthedocs.io/en/latest/
codecov.io


Ali, Berrendorf, Hoyt, Vermue, Sharifzadeh, Tresp, and Lehmann

Library AMO Models HPO ES
Evaluation
Metrics

Set
TA

Set
Inv.
Rels.

Set
Loss
Fct.

MGS DTR

AmpliGraph
(Costabello et al., 2019)

- 6 X X 3 - X X - -

DGL-KE
(Zheng et al., 2020)

- 6 - - 3 - - X X X

GraphVite
(Zhu et al., 2019)

- 6 - - 4 - - - X -

LibKGE
(Broscheit et al., 2020)

- 10 X X 3* X X X - -

OpenKE
(Han et al., 2018)

- 11 - - 3 - - X - -

PyTorch-BigGraph
(Lerer et al., 2019)

- 4 - - 4 - - X X X

Pykg2vec
(Yu et al., 2019)

- 18 X X 2 - - - - -

PyKEEN
(Ali et al., 2019b)

- 10 X - 2 - - - - -

PyKEEN 1.0 X 23 X X 6* X X X - -

Table 1: An overview of the functionalities (determined July 2020) of PyKEEN 1.0 and
similar libraries. AMO refers to automatic memory optimization, ES to early
stopping, * indicates that ranking metrics are computed for different definitions of
the rank, Set TA refers to interchanging the training approach, Set Inv. Rels.

to the explicit modeling of inverse relations, MGS to multi-GPU support, i.e.,
training a single model across several GPUs, and DTR to distributed training.

application of the GitHub Flow development workflow. Documentation is quality checked
by doc8, built with Sphinx, and hosted on ReadTheDocs.org.

3. Comparison to Related Software

Table 1 depicts the most popular KGE frameworks and their features. It shows that Py-
KEEN 1.0, in comparison with related software packages, emphasizes on both, full compos-
ability of KGEMs and extensive functionalities, i.e., a large number of supported interaction
models, and extensive evaluation (several metrics are supported) and HPO functionalities.
Concerning the evaluation metrics, PyKEEN and LibKGE are the only libraries that com-
pute the ranking metrics (i.e., mean rank and hits@k) for different definitions of the rank,
which ensures that undesired cases are detected in which the model predicts equal scores for
many triples. Finally, PyKEEN 1.0 is the only library that performs an automatic memory
optimization that ensures that the memory is not exceeded during training and evaluation.
GraphVite, DGL-KE, and PyTorch-BibGraph focus on scalability, i.e., they provide support
for multi-GPU/CPU or/and distributed training, but focus less on compositionality and ex-
tensibility. For instance, PyTorch-BigGraph supports only a small number of interaction
models that follow specific computation blocks.

4. Availability and Maintenance

PyKEEN 1.0 is publicly available under the MIT License at https://github.com/pykeen/
pykeen, and is distributed through the Python Package Index. It will be maintained by
the core developer team that is supported by the Smart Data Analytics research group
(University of Bonn), Fraunhofer IAIS, Munich Center for Machine Learning (MCML),
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Siemens, and the Technical University of Denmark (section for Cognitive Systems and
section for Statistics and Data Analysis). The project is funded by the German Federal
Ministry of Education and Research (BMBF) under Grant No. 01IS18036A and Grant No.
01IS18050D (project MLWin) as well as the Innovation Fund Denmark with the Danish
Center for Big Data Analytics driven Innovation (DABAI) which ensures the maintenance
of the project in the next years.
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F

Abstract—The heterogeneity in recently published knowledge graph

embedding models’ implementations, training, and evaluation has made

fair and thorough comparisons difficult. To assess the reproducibility

of previously published results, we re-implemented and evaluated 21

models in the PyKEEN software package. In this paper, we outline which

results could be reproduced with their reported hyper-parameters, which

could only be reproduced with alternate hyper-parameters, and which

could not be reproduced at all, as well as provide insight as to why this

might be the case.

We then performed a large-scale benchmarking on four datasets

with several thousands of experiments and 24,804 GPU hours of com-

putation time. We present insights gained as to best practices, best

configurations for each model, and where improvements could be made

over previously published best configurations. Our results highlight that

the combination of model architecture, training approach, loss function,

and the explicit modeling of inverse relations is crucial for a model’s

performance and is not only determined by its architecture. We provide

evidence that several architectures can obtain results competitive to the

state of the art when configured carefully. We have made all code, exper-

imental configurations, results, and analyses available at https://github.

com/pykeen/pykeen and https://github.com/pykeen/benchmarking.

Index Terms—Knowledge Graph Embeddings, Link Prediction, Repro-

ducibility, Benchmarking

1 INTRODUCTION

A S the usage of knowledge graphs (KGs) becomes more
widespread, their inherent incompleteness can pose

a liability for typical downstream tasks that they support,

†Equal contribution.
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Jens Lehmann is affiliated with Smart Data Analytics (University of Bonn),
Bonn, Germany, & Fraunhofer IAIS, Sankt Augustin and Dresden Germany.

e.g., question answering, dialogue systems, and recommen-
dation systems [1]. Knowledge graph embedding models
(KGEMs) present an avenue for predicting missing links.
However, the following two major challenges remain in
their application.

First, the reproduction of previously reported results
turned out to be a major challenge — there are even exam-
ples of different results reported for the same combinations
of KGEMs and datasets [2]. In some cases, the lack of
availability of source code for KGEMs or the usage of dif-
ferent frameworks and programming languages inevitably
introduces variability. In other cases, the lack of a precise
specification of hyper-parameters introduces variability.

Second, the verification of the novelty of previously
reported results remains difficult. It is often difficult to
attribute the incremental improvements in performance re-
ported with each new state of the art model to the model’s
architecture itself or instead to the training approach, hyper-
parameter values, or specific prepossessing steps, e.g., the
explicit modeling of inverse relations. It has been shown that
baseline models can achieve competitive performance to
more sophisticated ones when optimized appropriately [3],
[2]. Additionally, the variety of implementations and inter-
pretations of common evaluation metrics for link prediction
makes a fair comparison to previous results difficult [4].

This paper makes two major contributions towards ad-
dressing these challenges:

1) We performed a reproducibility study in which we
tried to replicate reported experimental results in
the original papers (when sufficient information
was provided).

2) We performed an extensive benchmark study on
21 KGEMs over four benchmark datasets in which
we evaluated the models based on different hyper-
parameter values, training approaches (i.e. training
under the local closed world assumption and stochastic
local closed world assumption), loss functions, optimiz-
ers, and the explicit modeling of inverse relations.

Previous studies have already investigated important
aspects for a subset of models: Kadlec et al. [3] showed
that a fine-tuned baseline (DistMult [5]) can outperform
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more sophisticated models on FB15K. Akrami et al. [2], [6]
examined the effect of removing faulty triples from KGs
on the model’s performance. Mohamed et al. [7] studied
the influence of loss functions on the models’ performances
for a set of KGEMs. Concurrent to the work on this paper,
Rufinelli et al. [8] performed a benchmarking study in which
they investigated five knowledge graph embedding models.
After describing their benchmarking [8], they called for a
larger study that extends the search space and incorporates
more sophisticated models. Our study answers this call and
realizes a fair benchmarking by completely re-implementing
KGEMs, training pipelines, loss functions, and evaluation
metrics in a unified, open-source framework. Inspired by
their findings, we have also included the cross entropy
loss (CEL) function, which has been previously used by
Kadlec et al. [3]. Our benchmarking can be considered as a
superset of many previous benchmarkings — to the best of
our knowledge, there exists no study of comparable breadth
or depth. A further interesting study with a different focus
is the work of Rossi et al. [9] in which they investigated
the effect of the structural properties of KGs on models’
performances, instead of focusing on the combinations of
different model architectures, training approaches, and loss
functions.

This article is structured as follows: in Section 2, we in-
troduce our notation of KG and the link prediction task and
introduce an exemplary KG to which we refer in examples
throughout this paper. In Section 3, we present our defini-
tion of a KGEM and review the KGEMs that we investigated
in our studies. In Section 4, we describe and discuss es-
tablished evaluation metrics as well as a recently proposed
one [10]. In Section 5, we introduce the benchmark datasets
on which we conducted our experiments. In Section 6 and
Section 7, we present our respective reproducibility and
benchmarking studies. In Section 8, we investigate how
well the investigated KGEMs can model symmetry, anti-
symmetry, and composition patterns. Finally, we provide a
discussion and an outlook for our future work in Section 9.

2 KNOWLEDGE GRAPHS

For a given set of entities E and set of relations R, we con-
sider a knowledge graph K ✓ K = E ⇥R⇥ E as a directed,
multi-relational graph that comprises triples (h, r, t) 2 K
in which h, t 2 E represent a triples’ respective head and
tail entities and r 2 R represents its relationship. Figure 1
depicts an exemplary KG. The direction of a relationship
indicates the roles of the entities, i.e., head or tail entity.
For instance, in the triple (Sarah, CEO Of, Deutsche Bank),
Sarah is the head and Deutsche Bank is the tail entity. KGs
usually contain only true triples corresponding to available
knowledge.

In contrast to triples in a KG, there are different philoso-
phies, or assumptions, for the consideration of triples not con-
tained in a KG [11], [12]. Under the closed world assumption
(CWA), all triples that are not part of a KG are considered
as false. Based on the example in Figure 1, the triple (Sarah,
lives in, Germany) is a false fact under the CWA since it is not
part of the KG. Under the open world assumption (OWA),
it is considered unknown as to whether triples that are not
part of the KG are true or false. The construction of KGs

Fig. 1. Exemplary KG: nodes represent entities and edges their respec-
tive relations.

under the principles of the semantic web (and RDF) rely
on the OWA as well as most of the relevant works to this
paper [13], [11].

Because KGs are usually incomplete and noisy, several
approaches have been developed to predict new links. In
particular, the task of link prediction is defined as predicting
the tail/head entities for (h, r)/(r, t) pairs. For instance,
given queries of the form (Sarah, studied at, ?) or (?, CEO of,
Deutsche Bank), the task is the correctly detect the entities
that answer the query, i.e. (Sarah, studied at, University of
Oxford) and (Sarah, CEO of, Deutsche Bank). While classical
approaches have relied on domain-specific rules to derive
missing links, they usually require a large number of user-
defined rules in order to generalize [11]. Alternatively, ma-
chine learning approaches learn to predict new links based
on the set of existing ones. It has been shown that espe-
cially relational-machine learning methods are successful in
predicting missing links and identifying incorrect ones, and
recently knowledge graph embedding models have gained
significant attention [11].

3 KNOWLEDGE GRAPH EMBEDDING MODELS

Knowledge graph embedding models (KGEMs) learn latent
vector representations of the entities e 2 E and relations
r 2 R in a KG that best preserve its structural properties [1],
[11], [14]. Besides for link prediction, they have been used
for tasks such as entity disambiguation, and clustering as
well as for downstream tasks such as question answering,
recommendation systems, and relation extraction [1]. Fig-
ure 2 shows an embedding of the entities and relations in
R
2 from the KG from Figure 1.

Here, we define a KGEM as four components: an in-
teraction model, a training approach, a loss function, and its
usage of explicit inverse relations. This abstraction enables
investigation of the effect of each component individually
and in combination on each KGEMs’ performance. Each
are described in detail in their following respective sub-
sections 3.1, 3.2, 3.3, and 3.4. We focus on shallow em-
bedding approaches [15] in this work, i.e., matrix lookups
represent the entity and relation encoders. Recently, several
graph neural network (GNN)-based approaches for learn-
ing representations of KGs have been developed. GNNs
encode entities and relations by neighbor aggregation. We
refer interested readers to [14], [15]. Furthermore, learning
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Fig. 2. An example embedding of the entities and relations from the
knowledge graph portrayed by Figure 2.

representation for temporal KGs has gained increased inter-
est. Because learning representation for temporal KGs is a
distinct line of research with its own benchmarking datasets,
we do not discuss temporal KGEMs in this work. Instead,
we refer interested readers to [16].

In this paper, we use a boldface lower-case letter x to
denote a vector, kxkp to represent its lp norm, a boldface
upper-case letter X to denote a matrix, and a fraktur-
font upper-case letter X to represent a three-mode tensor.
Furthermore, we use � to denote the Hadamard product
� : Rd ⇥ R

d ! R
d:

[a � b]i = ai · bi (1)

Finally, we use x to denote the conjugate of a complex
number x 2 C.

3.1 Interaction Models

An interaction model f : E ⇥ R ⇥ E ! R computes a
real-valued score representing the plausibility of a triple
(h, r, t) 2 K given the embeddings for the entities and
relations. In general, a larger score indicates a higher plau-
sibility. The interpretation of the score value is model-
dependent, and usually, it cannot be directly interpreted as
a probability. We follow [1], [14] and categorize interaction
models into translational distance based and semantic match-
ing based interaction models. Translational distance inter-
action models compute the plausibility of triples based on
a distance function, e.g., Euclidean distance between (pro-
jected) entities, and semantic similarity matching models
exploit the similarity of the latent features usually induced
by inner a product formulation.

3.1.1 Translational Distance Interaction Models

Unstructured Model The Unstructured Model (UM) [17]
scores a triple by computing the distance between the head
and tail entity

f(h, t) = �kh � tk22 , (2)

where h, t 2 R
d are the embeddings of head and tail entity,

respectively. A small distance between these embeddings
indicates a plausible triple. In the UM, relations are not
considered, and therefore, it cannot distinguish between
different relationship types. However, the model can be
beneficial for learning embeddings for KGs that contain only
a single relationship type or only equivalent relationship

types, e.g. GrandmotherOf and GrandmaOf. Moreover, it may
serve as a baseline to interpret the performance of relation-
aware models.

Structured Embedding Structured Embedding (SE) [18]
models each relation by two matrices Mh

r ,Mt
r 2 R

d⇥d that
perform relation-specific projections of the head and tail
embeddings:

f(h, r, t) = �kMh
r h � Mt

rtk1 . (3)

As before, h, t 2 R
d are the embeddings of head and tail

entity, respectively. By employing different projections for
the embeddings of the head and tail entities, SE explicitly
distinguishes between the subject- and object-role of an
entity.

TransE TransE [19] models relations as a translation of
head to tail embeddings, i.e. h + r ⇡ t. Thus, the interaction
model is defined as:

f(h, r, t) = �kh + r � tkp , (4)

with p 2 {1, 2} is a hyper-parameter. A major advantage of
TransE is its computational efficiency which enables its us-
age for large scale KGs. However, it inherently cannot model
1-N, N-1, and N-M relations: assume (h, r, t1), (h, r, t2) 2 K,
then the model adapts the embeddings in order to ensure
h + r ⇡ t1 and h + r ⇡ t2 which results in t1 ⇡ t2.

TransH TransH [20] is an extension of TransE that specif-
ically addresses the limitations of TransE in modeling 1-
N, N-1, and N-M relations. In TransH, each relation is
represented by a hyperplane, or more specifically a normal
vector of this hyperplane wr 2 R

d, and a vector dr 2 R
d

that lies in the hyperplane. To compute the plausibility of
a triple (h, r, t) 2 K, the head embedding h 2 R

d and the
tail embedding t 2 R

d are first projected onto the relation-
specific hyperplane: hr = h�w>

r hwr and tr = t � w>
r twr .

Then, the projected embeddings are used to compute the
score for the triple (h, r, t):

f(h, r, t) = �khr + dr � trk
2
2 . (5)

TransR TransR [21] is an extension of TransH that ex-
plicitly considers entities and relations as different objects
and therefore represents them in different vector spaces. For
a triple (h, r, t) 2 K, the entity embeddings, h, t 2 R

d,
are first projected into the relation space by means of a
relation-specific projection matrix Mr 2 R

k⇥d: hr = Mrh
and tr = Mrt. Finally, the score of the triple (h, r, t) is
computed:

f(h, r, t) = �khr + r � trk
2
2 (6)

where r 2 R
k.

TransD TransD [22] is an extension of TransR that,
like TransR, considers entities and relations as objects liv-
ing in different vector spaces. However, instead of per-
forming the same relation-specific projection for all en-
tity embeddings, entity-relation-specific projection matrices
Mr,h,Mt,h 2 R

k⇥d are constructed. To do so, all head
entities, tail entities, and relations are represented by two
vectors, h,hp, t, tp 2 R

d and r, rp 2 R
k, respectively. The

first set of embeddings is used for calculating the entity-
relation-specific projection matrices: Mr,h = rphT

p + Ĩ and

Mr,t = rptTp + Ĩ, where Ĩ 2 R
k⇥d is a k ⇥ d matrix with
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ones on the diagonal and zeros elsewhere. Next, h and t are
projected into the relation space by means of the constructed
projection matrices: hr = Mr,hh and tr = Mr,tt. Finally, the
plausibility score for (h, r, t) 2 K is given by:

f(h, r, t) = �khr + r � trk
2
2 . (7)

RotatE RotatE [23] models relations as rotations from
head to tail entities in the complex space: t = h � r, where
h, r, t 2 C

d and |ri| = 1, that is the complex elements of
r are restricted to have a modulus of one. Because of the
latter, ri can be represented as eiθr,i , which corresponds to
a counterclockwise rotation by ✓r,i radians. The interaction
model is then defined as:

f(h, r, t) = �kh � r � tk , (8)

which allows to model symmetry, antisymmetry, inversion,
and composition [23].

MuRE MuRE [24] is the Euclidean counterpart of MuRP,
a hyperbolic interaction model that is capable of effectively
modeling hierarchies in KG. Its interaction model involves
a distance function:

f(h, r, t) = �kRh� t+ rk22 + bh + bt (9)

where the head entity is transformed by the diagonal
matrix R 2 Rd⇥d and the tail entity by the relation r. bh

and bt represent scalar offsets.
KG2E KG2E [25] aims to explicitly model (un)certainties

in entities and relations (e.g. influenced by the number
of triples observed for these entities and relations). There-
fore, entities and relations are represented by probability
distributions, in particular by multi-variate Gaussian dis-
tributions N i(µi,⌃i) where the mean µi 2 R

d denotes
the position in the vector space and the diagonal variance
⌃i 2 R

d⇥d models the uncertainty. Inspired by the TransE
model, relations are modeled as transformations from head
to tail entities: H � T ⇡ R where H ⇠ N h(µh,⌃h),
H ⇠ N t(µt,⌃t), R ⇠ Pr = N r(µr,⌃r) and H � T ⇠
Pe = Nh−t(µh − µt,⌃h + ⌃t) (since head and tail
entities are considered to be independent with regards to
the relations). The interaction model measures the similarity
between Pe and Pr by means of the Kullback-Leibler (KL)
divergence:

f(h, r, t) = DKL(Pe,Pr)

=
1

2

n

tr(⌃�1
r ⌃e) + (µr � µe)

T
⌃

�1
r (µr � µe)

�log(
det(⌃e)

det(⌃r)
)� d

o

.

(10)

Besides the asymmetric KL divergence, the authors propose
a symmetric variant which uses the expected likelihood.

3.1.2 Semantic Matching Interaction Models

RESCAL RESCAL [26] is a bilinear model that models
entities as vectors and relations as matrices. The relation
matrices Wr 2 R

d⇥d contain weights wi,j that capture
the amount of interaction between the i-th latent factor of
h 2 R

d and the j-th latent factor of t 2 R
d [11], [26]. Thus,

the plausibility score of (h, r, t) 2 K is given by:

f(h, r, t) = hT Wrt =
d

X

i=1

d
X

j=1

w
(r)
ij hitj (11)

DistMult DistMult [5] is a simplification of RESCAL
where the relation matrices Wr 2 R

d⇥d are restricted to
diagonal matrices:

f(h, r, t) = hT Wrt =
d

X

i=1

hi · diag(Wr)i · ti . (12)

Because of its restriction to diagonal matrices DistMult is
computational more efficient than RESCAL, but at the same
time less expressive. For instance, it is not able to model
anti-symmetric relations, since f(h, r, t) = f(t, r, h).

ComplEx ComplEx [27] is an extension of DistMult that
uses complex valued representations for the entities and
relations. Entities and relations are represented as vectors
h, r, t 2 C

d, and the plausibility score is computed using the
Hadamard product:

f(h, r, t) =Re(h� r� t) (13)

where Re(x) denotes the real component of the complex
valued vector x. Because the Hadamard product is not
commutative in the complex space, ComplEx can model
anti-symmetric relations in contrast to DistMult.

QuatE QuatE [28] learns hypercomplex valued represen-
tations (quaternion embeddings) for entities and relations,
i.e., ei, rj 2 H

d. Hypercomplex representations extend com-
plex representations by representing each number with one
real and three imaginary components. In QuatE, relations
are modelled as rotations in the hypercomplex space. More
precisely, the relation is used to rotate the head entity:
hr = h⌦r, where in this context ⌦ represents the Hamilton
product. The final score is obtained by computing the inner
product between the rotated head and the the tail entity:

f(h, r, t) = hr · t (14)

In contrast to ComplEx, QuatE is capable of modeling
composition patterns.

SimplE SimplE [29] is an extension of canonical
polyadic (CP) [29], one of the early tensor factorization
approaches. In CP, each entity e 2 E is represented by
two vectors he, te 2 R

d and each relation by a single vector
r 2 R

d. Depending whether an entity participates in a triple
as the head or tail entity, either he or te is used. Both entity
representations are learned independently, i.e. observing a
triple (e1, r, e2), the method only updates he1 and te2 . In
contrast to CP, SimplE introduces for each relation r the
inverse relation r0, and formulates the interaction model
based on both:

f(h, r, t) =
1

2

�⌦

hei , r, tej
↵

+
⌦

hej , r0, tei
↵�

. (15)

Therefore, for each triple (e1, r, e2) 2 K, both he1 and te2 as
well as he2 and te1 are updated [29].

TuckER TuckER [30] is a linear model that is based
on the tensor factorization method Tucker [31] in which
a three-mode tensor X 2 R

I⇥J⇥K is decomposed into
a set of factor matrices A 2 R

I⇥P , B 2 R
J⇥Q, and

C 2 R
K⇥R and a core tensor Z 2 R

P⇥Q⇥R (of lower rank):
X ⇡ Z ⇥1 A ⇥2 B ⇥3 C, where ⇥n is the tensor product,
with n denoting along which mode the tensor product is
computed. In TuckER, a KG is considered as a binary tensor
which is factorized using the Tucker factorization where
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E = A = C 2 R
ne⇥de denotes the entity embedding matrix,

R = B 2 R
nr⇥dr represents the relation embedding matrix,

and W = Z 2 R
de⇥dr⇥de is the core tensor that indicates

the extent of interaction between the different factors. The
interaction model is defined as:

f(h, r, t) = W⇥1 h ⇥2 r ⇥3 t , (16)

where h, t correspond to rows of E and r to a row of R.
ProjE ProjE [32] is a neural network-based approach

with a combination and a projection layer. The interaction
model first combines h and r by a combination operator [32]:
h⌦ r = Deh+Drr+bc, where De,Dr 2 R

k⇥k are diagonal
matrices which are used as shared parameters among all
entities and relations, and bc 2 R

k represents the candidate
bias vector shared across all entities. Next, the score for the
triple (h, r, t) 2 K is computed:

f(h, r, t) = g(t z(h ⌦ r) + bp) , (17)

where g and z are activation functions, and bp represents
the shared projection bias vector.

HolE Holographic embeddings (HolE) [33] make use
of the circular correlation operator to compute interactions
between latent features of entities and relations:

f(h, r, t) = �(rT (h ? t)) . (18)

where the circular correlation ? : Rd ⇥ R
d ! R

d is defined
as [a ?b]i =

Pd�1
k=0 ak ⇤b(i+k) mod d. By using the correlation

operator each component [h ? t]i represents a sum over a
fixed partition over pairwise interactions. This enables the
model to put semantic similar interactions into the same
partition and share weights through r. Similarly irrelevant
interactions of features could also be placed into the same
partition which could be assigned a small weight in r.

ERMLP ERMLP [34] is a multi-layer perceptron based
approach that uses a single hidden layer and represents
entities and relations as vectors. In the input-layer, for each
triple the embeddings of head, relation, and tail are con-
catenated and passed to the hidden layer. The output-layer
consists of a single neuron that computes the plausibility
score of the triple:

f(h, r, t) = wT g(W[h; r; t]), (19)

where W 2 R
k⇥3d represents the weight matrix of the

hidden layer, w 2 R
k, the weights of the output layer,

and g denotes an activation function such as the hyperbolic
tangent.

Neural Tensor Network The Neural Tensor Network
(NTN) [35] uses a bilinear tensor layer instead of a standard
linear neural network layer:

f(h, r, t) = uT
r · tanh(hWrt + Vr[h; t] + br) , (20)

where Wr 2 R
d⇥d⇥k is the relation specific tensor, and the

weight matrix Vr 2 R
k⇥2d, the bias vector br, and the

weight vector ur 2 R
k are the standard parameters of a

neural network, which are also relation specific. The result
of the tensor product hWrt is a vector x 2 R

k where each
entry xi is computed based on the slice i of the tensor Wr :
xi = hWi

rt [35]. As indicated by the interaction model, NTN
defines for each relation a separate neural network which

makes the model very expressive, but at the same time
computationally expensive.

ConvKB ConvKB [36] uses a convolutional neural net-
work (CNN) whose feature maps capture global interactions
of the input. Each triple (h, r, t) 2 K is represented as a
input matrix A = [h; r; t] 2 R

d⇥3 in which the columns
represent the embeddings for h, r and t. In the convolution
layer, a set of convolutional filters ωi 2 R

1⇥3, i = 1, . . . , ⌧,
are applied on the input in order to compute for each
dimension global interactions of the embedded triple. Each
ωi is applied on every row of A creating a feature map
vi = [vi,1, ..., vi,d] 2 R

d:

vi = g(ωjA + b) , (21)

where b 2 R denotes a bias term and g an activation
function which is employed element-wise. Based on the
resulting feature maps v1, . . . , vτ , the plausibility score of
a triple is given by:

f(h, r, t) = [vi; . . . ; vτ ] · w , (22)

where [vi; . . . ; vτ ] 2 R
τd⇥1 and w 2 R

τd⇥1 is a shared
weight vector. ConvKB may be seen as a restriction of ER-
MLP with a certain weight sharing pattern in the first layer.

ConvE ConvE [37] is a CNN-based approach. For each
triple (h, r, t), the input to ConvE is a matrix A 2 R

2⇥d

where the first row of A represents h 2 R
d and the second

row represents r 2 R
d. A is reshaped to a matrix B 2 R

m⇥n

where the first m/2 half rows represent h and the remaining
m/2 half rows represent r. In the convolution layer, a set of
2-dimensional convolutional filters Ω = {ωi | ωi 2 R

r⇥c}
are applied on B that capture interactions between h and r.
The resulting feature maps are reshaped and concatenated
in order to create a feature vector v 2 R

|Ω|rc. In the next
step, v is mapped into the entity space using a linear
transformation W 2 R

|Ω|rc⇥d, that is eh,r = vT W. The
score for the triple (h, r, t) 2 K is then given by:

f(h, r, t) = eh,rt . (23)

Since the interaction model can be decomposed into
f(h, r, t) = hf 0(h, r), ti, the model is particularly designed
to 1-N scoring, i.e. efficient computation of scores for (h, r, t)
for fixed h, r and many different t.

3.2 Training Approaches

Because most KGs contain only positive examples, we
require training approaches involving techniques such as
negative sampling to avoid over-generalization to true facts.
Here, we describe two common training approaches found
in the literature: the local closed world assumption (LCWA)
and the stochastic local closed world assumption (sLCWA).
It should be noted that the LCWA and the sLCWA do not
affect the evaluation.

3.2.1 Local closed world assumption

The LCWA was introduced by [34] and used in subsequent
works as an approach to generate negative examples during
training [37], [30]. In this setting, for any triple (h, r, t) 2 K
that has been observed, a set T �(h, r) of negative exam-
ples is created by considering all triples (h, r, ti) /2 K as
false. Therefore, for our exemplary KG (Figure 1) for the
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Fig. 3. Visualization of different training approaches for the relation
works_at in the KG in Figure 1. Red color indicates positive examples,
i.e. true triples present in the KG. Dark blue color denotes triples used
as negative examples in LCWA. Light blue color sampling candidates for
negative examples in sLCWA. Yellow color indicates triples that are not
considered.

pair (Peter, works at), the triple (Peter, works at, DHL) is a
false fact since for this pair only the triple (Peter, works at,
Deutsche Bank) is part of the KG. Similarly, we can construct
H�(r, t) based on all triples (hi, r, t) /2 K, or R�(h, t) based
on the triples (h, ri, t) /2 K. Constructing R�(h, t) is a
popular choice in visual relation detection domain [38], [39].
However, most of the works in knowledge graph modeling
construct only T �(h, r) as the set of negative examples, and
in the context of this work refer to T �(h, r) as the set of
negatives examples when speaking about LCWA.

3.2.2 Stochastic local closed world assumption

Under the stochastic local closed world assumption
(sLCWA), instead of considering all possible triples
(h, r, ti) /2 K, (hi, r, t) /2 K or (h, ri, t) /2 K as false, we
randomly take samples of these sets.

Two common approaches for generating negative sam-
ples are uniform negative sampling (UNS) [19] and
Bernoulli negative sampling (BNS) [20] in which negative
triples are created by corrupting a positive triple (h, r, t) 2
K by replacing either h or t. We denote with N the set of all
potential negative triples:

T (h, r) = {(h, r, t0) | t0 2 E ^ t0 6= t} (24)

H(r, t) = {(h0, r, t) | h0 2 E ^ h0 6= h} (25)

N =
[

(h,r,t)2K

T (h, r) [H(r, t) . (26)

Theoretically, we would need to exclude all positive
triples from this set of candidates for negative triples, i.e.,
N� = N \K. In practice, however, since usually |N | � |K|,
the likelihood of generating a false negative is rather low.
Therefore, the additional filter step is often omitted to lower
computational cost. It should be taken into account that a
corrupted triple that is not part of the KG can represent a
true fact.

UNS and BNS differ in the way they define sample
weights for (h0, r, t) or (h, r, t0):

Uniform negative sampling With uniform negative
sampling (UNS) [19], the first step is to randomly (uni-
formly) determine whether h or t shall be corrupted for a
positive triple (h, r, t) 2 K. Afterwards, an entity e 2 E is
uniformly sampled and selected as the corrupted head/tail
entity.

Bernoulli negative sampling With Bernoulli negative
sampling (BNS) [20], the probability of corrupting h or t in
(h, r, t) 2 K is determined by the property of the relation r:
if the relation is a one-to-many relation (e.g. motherOf ), BNS
assigns a higher probability to replace h, and if it is a many-
to-one relation (e.g. bornIn) it assigns a higher probability
to replace t. More precisely, for each relation r 2 R the
average number of tails per head (tph) and heads per tail
(hpt) are first computed. These statistics are then used to
define a Bernoulli distribution with parameter tph

tph+hpt
. For

a triple (h, r, t) 2 K the head is corrupted with probability
tph

tph+hpt
and the tail with probability hpt

tph+hpt
. The described

approach reduces the chance of creating corrupted triples
that represent true facts [20].

3.3 Loss Functions

The loss function can have a significant influence on the
performance of KGEMs [7]. In the following, we describe
pointwise, pairwise, and setwise loss functions that have been
frequently be used within KGEMs. For additional discussion
and a slightly different categorization we refer to the work
of Mohamed et al. [7].

3.3.1 Pointwise Loss Functions

Let f denote the interaction model of a KGEM. With ti,
we denote a triple (i.e. ti 2 K), and with li 2 {0, 1} or

l̂i 2 {�1, 1} its corresponding label, where 1 corresponds
to the label of the positive triples, and 0 / -1 to the label
of the negative triples. Pointwise loss functions compute an
independent loss term for each triple-label pair, i.e. for a

batch B = {(ti, li)}
|B|
i=1, the loss is given as

L =
1

|B|

X

(ti,li)2B

L(ti, li) (27)

In the following, we describe four different pointwise losses:
The square error loss, binary cross entropy loss (BCEL), pointwise
hinge loss, and logistic loss.

Square Error Loss The square error loss function com-
putes the squared difference between the predicted scores
and the labels li 2 {0, 1} [7]:

L(ti, li) =
1

2
(f(ti)� li)

2 (28)

The squared error loss strongly penalizes predictions that
deviate considerably from the labels, and is usually used
for regression problems. For simple models it often permits
more efficient optimization algorithms involving analyti-
cal solutions of sub-problems, e.g. the Alternating Least
Squares algorithm used by [26].

Binary cross entropy loss The binary cross entropy loss
is defined as [37]:

L(ti, li) =� (li · log(�(f(ti)))

+ (1� li) · log(1� �(f(ti)))),
(29)
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where li 2 {0, 1} and � represents the logistic sigmoid func-
tion. Thus, the problem is framed as a binary classification
problem of triples, where the model’s outputs are regarded
as logits. The loss is not well-suited for translational distance
models because these models produce a negative distance
as score and cannot produce positive model outputs. ConvE
and TuckER were originally trained in a multi-class setting
using the binary cross entropy loss where each (h, r)-pair
has been classified against e 2 E simultaneously, i.e., if
|E| = n, the label vector for each (h, r)-pair has n entries
indicating whether the triple (h, r, ei) is (not) part of the
KG, and along each dimension of the label vector a binary
classification is performed. It should be noted that there
exist different implementation variants of the binary cross
entropy loss that address numerical stability. ConvE and
TuckER employed a numerically unstable variant, and in the
context of this work, we refer to this variant when referring
to the binary cross entropy loss.

Pointwise Logistic Loss/Softplus loss An alternative,
but equivalent formulation of the binary cross entropy loss
is the pointwise logistic loss (or Softplus loss (SPL)):

L(ti, li) = log(1 + exp(�l̂i · f(ti)) (30)

where l̂i 2 {�1, 1} [7]. It has been used to train ComplEx,
ConvKB, and SimplE. We consider both variants separately
because both have been used in different model imple-
mentations, and their implementation details might yield
different results (e.g., to numerical stability).

Pointwise Hinge Loss The pointwise hinge loss sets the
score of positive examples larger than a margin parameter
� while reducing the scores of negative examples to values
below ��:

L(ti, li) = max(0,�� l̂i · f(ti)) (31)

where l̂i 2 {�1, 1}. The loss penalizes scores of positive
examples which are smaller than �, but does not impose any
restriction on values > �. Similarly, negative scores larger
than �� contribute to the loss, whereas all values smaller
than �� do not have any loss contribution [7]. Thereby, the
model is not encouraged to further optimize triples which
are already predicted well enough (according to the margin
parameter �).

3.3.2 Pairwise Loss Functions

Next, we describe widely applied pairwise loss functions
that are used within KGEMs, namely the pairwise hinge loss
and the pairwise logistic loss. They both compare the scores
of a positive triple t+ and a negative triple t�. The negative
triple in a pair is usually obtained by corrupting the positive
one. Thus, the pairs often share common head or tail entities

and relations. For a batch of pairs B = {(t+i , t
�

i )}
|B|
i=1, the

loss is given as

L =
1

|B|

X

(t+
i
,t

�

i
)2B

L(f(t�i )� f(t+i )) . (32)

Hence, the loss function evaluates the difference in scores
∆ = f(t�i )�f(t+i ) between a positive and a negative triple,
rather than their absolute scores. This is in accordance to
the OWA assumption, where we do not assume to have
negative labels, but just ”less positive” ones.

Pairwise Hinge Loss/Margin ranking loss The pairwise
hinge loss or margin ranking loss (MRL) is given by

L(∆) = max(0,�+∆) . (33)

Pairwise Logistic Loss The pairwise logistic loss is de-
fined as [7]:

L(∆) = log(1 + exp(∆)) . (34)

Thus, it can be seen as a soft-margin formulation of the
pairwise hinge loss with a margin of zero.

3.3.3 Setwise Loss Functions

Setwise loss functions neither compare individual scores,
or pairs of them, but rather more than two triples’ scores.
Here, we describe the self-adversarial negative sampling
loss (NSSAL) and the cross entropy loss (CEL) as exam-
ples of such loss functions that have been applied within
KGEMs [23], [7].

Self-adversarial negative sampling loss The Self-
adversarial negative sampling loss (NSSAL) addresses the
limitation that many negative examples are trivial and
do not provide helpful information. The authors of [23]
propose to overcome this limitation by sampling negative
samples according to the scores predicted by the interaction
model [23]:

p((h0
i, r, t

0
i)|(hi, ri, ti)) =

exp(↵f(h0
i, r, t

0
i))

Pn
j=1 exp(↵f(h

0
j , r, t

0
j))

, (35)

where (hi, ri, ti) 2 K denotes a true triple,
{(h0

i, r, t
0
i)}

K
i=1 it’s set of negative samples generated, and

↵ 2 R a temperature parameter. Because sampling from
this distribution may be computationally expensive, the
probabilities obtained by Equation 35 are used to weight
the generated negative examples in the loss function [23].

L =� log(�(� + f(h, r, t)))

�
K
X

i=1

p((h0, r, t0)) · log(�(�(� + f(h0
i, r, t

0
i)))) .

(36)

Thus, negative samples for which the model predicts a high
score relative to other samples are weighted stronger.

Cross entropy loss The cross entropy loss (CEL) has
been successfully applied together with 1-N scoring, i.e.,
predicting for each (h, r)-pair simultaneously a score for
each possible tail entity, and framing the problem as a
multi-class classification problem [3], [8]. To apply the CEL,
first, the labels are normalized in order to form a proper
probability distribution. Second, the predicted scores for the
tail entities of (h, r)-pair are normalized by a softmax:

p(t | h, r) =
exp(f(h, r, t))

P

t02E
exp(f(h, r, t0))

. (37)

Finally, the cross entropy between the distribution of the
normalized scores and the normalized label distribution is
computed:

L = �
X

t02E

I[(h, r, t0) 2 K] · log(p(t | h, r)) , (38)
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where I denotes the indicator function. Note that this loss
differs from the multi-class binary cross entropy as it applies
a softmax normalization implying that this is a single-label
multi-class problem.

3.4 Explicitly Modeling Inverse Relations

Inverse relations introduced by [29] and [40] are explicitly
modeled by extending the set of relations R by a set of
inverse relations rinv 2 Rinv with Rinv \ R = ;. This
is achieved by training an inverse triple (t, rinv, h) for
each triple (h, r, t) 2 K. Equipping a KGEM with inverse
relations implicitly doubles the relation embedding space of
any model that has relation embeddings. The goal is to alter
the scoring function, such that the task of predicting the
head entities for (r, t) pairs becomes the task of predicting
tail entities for (t, rinv) pairs. The explicit training of the
implicitly known inverse relations can lead to better model
performance [40] and can for some models increase the
computational efficiency [37].

4 EVALUATION METRICS FOR KGEMS

KGEMs are usually evaluated based on link prediction,
which is on KG defined as predicting the tail/head entities
for (h, r)/(r, t) pairs. For instance, given queries of the
form (Sarah, studied at, ?) or (?, CEO of, Deutsche Bank) the
capability of a link predictor to predict the correct entities
that answer the query, i.e. (Sarah, studied at, University of
Oxford) and (Sarah, CEO of, Deutsche Bank) is measured.

However, given the fact that usually true negative ex-
amples are not available, both the training and the test
set contain only true facts. For this reason, the evaluation
procedure is defined as a ranking task in which the capa-
bility of the model to differentiate corrupted triples from
known true triples is assessed [19]. For each test triple
t+ = (h, r, t) 2 Ktest two sets of corrupted triples are
constructed:

1) H(r, t) = {(h0, r, t) | h0 2 E�{h} which contains all
the triples where the head entity has been corrupted,
and

2) T (h, r) = {(h, r, t0) | t0 2 E � {t}} that contains all
the triples with corrupted tail entity.

For each t+ and its corresponding corrupted triples, the
scores are computed and the entities sorted accordingly.
Next, the rank of every t+ among its corrupted triples is
determined, i.e. the position in the score-sorted list.

Among the corrupted triples in H(r, t) / T (h, r), there
might be true triples that are part of the KG. If these false
negatives are ranked higher than the current test triple
t+, the results might get distorted. Therefore, the filtered
evaluation setting has been proposed [19], in which the
corrupted triples are filtered to exclude known true facts
from the train and test set. Thus, the rank does not decrease
when ranking another true entity higher.

Moreover, we want to draw attention to the fact that
the metrics can be further be distorted by unknown false
negatives, i.e., true triples that are contained in the set of
corrupted triples but are not part of the KG (and therefore
cannot be filtered out). Therefore, it is essential to investigate

the predicted scores of a KGEM and not solely rely on the
computed metrics.

Based upon these individual ranks, the following mea-
sures are frequently used to summarize the overall perfor-
mance:

Mean rank The mean rank (MR) represents the average
rank of the test triples, i.e.

MR =
1

|Ktest|

X

t2Ktest

rank(t) (39)

Smaller values indicate better performance.

Adjusted mean rank Because the interpretation of the
MR depends on the number of available candidate triples,
comparing MRs across different datasets (or inclusion of
inverse triples) is difficult. This is sometimes further ex-
acerbated in the filtered setting because the number of
candidates varies. Therefore, with fewer candidates avail-
able, it becomes easier to achieve low ranks. The adjusted
mean rank (AMR) [10] compensates for this problem by
comparing the mean rank against the expected mean rank
under a model with random scores:

AMR =
MR

1
2

P

t2Ktest

(⇠(t) + 1)
(40)

where ⇠(t) denotes the number of candidate triples against
which the true triple t 2 Ktest is ranked. In the unfiltered
setting we have ⇠(t) = |E| � 1 for all t 2 Ktest. Thereby,
the measure also adjusts for chance, as a random scoring
achieves an expected adjusted mean rank of 1. The AMR
has a fixed value range from 0 to 1, where smaller values
(AMR ⌧ 1) indicate better performance.

Mean reciprocal rank The mean reciprocal rank (MRR)
is defined as:

MRR =
1

|Ktest|

X

t2Ktest

1

rank(t)
(41)

where Ktest is a set of test triples, i.e. the MRR is the
mean over reciprocal individual ranks. However, the MRR
is flawed since the reciprocal rank is an ordinal scale and
not an interval scale, i.e. computing the arithmetic mean is
statistically incorrect [41], [42]. Still, it is often used for early
stopping since it is a smooth measure with stronger weight
on small ranks, and less affected by outlier individual ranks
than the mean rank. The MRR has a fixed value range from
0 to 1, where larger values indicate better performance.

Hits@K Hits@K denotes the ratio of the test triples that
have been ranked among the top k triples, i.e.,

Hits@k =
|{t 2 Ktest | rank(t)  k}|

|Ktest|
(42)

Larger values indicate better performance.

Additional Metrics Further metrics that might be rele-
vant are the area under the Receiver Operating Characteris-
tic curve (AUC-ROC) and the area under the precision-recall
curve (AUC-PR) [11]. However, these metrics require the
number of true positives, false positives, true negatives, and
false negatives, which in most cases cannot be computed
since the KGs are usually incomplete.
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5 EXISTING BENCHMARK DATASETS

In this section, we describe the benchmark datasets that
have been established to evaluate KGEMs. A summary is
also given in Table 1.

FB15K Freebase is a large cross-domain KG consisting of
around 1.2 billion triples and more than 80 million entities.
Bordes et al. [19] extracted a subset of Freebase, which
is used as a benchmark dataset and named it FB15K. It
contains 14,951 entities, 1,345 relations, as well as more than
half a million triples describing facts about movies, actors,
awards, sports, and sports teams [37].

FB15K-237 FB15K has a test-leakage, i.e. a major part of
the test triples (⇠81%) are inverses of triples contained in the
training set: for most of the test triples of the form (h, r, t),
there exists a triple (h, r0, t) or (t, r0, h) in the training set.
Therefore, Toutanova and Chen [43] constructed FB15K-237
in which inverse relations were removed [43]. FB15K-237
contains 14,541 entities and 237 relations.

WN18 WordNet1 is a lexical knowledge base in which
entities represent terms and are called synsets. Relations
in WordNet represent conceptual-semantic and lexical rela-
tionships (e.g. hyponym). Bordes et al. [17] extracted a subset
of WordNet named WN18 that is frequently used to evaluate
KGEMs. It contains 40,943 synsets and 18 relations.

WN18RR Similarly to FB15K, WN18 also has a test-
leakage (of approximately 94%) [43]. For instance, for most
of the test triples of the form (h, hyponym, t), there exists a
triple (t, hypernym, o) in the training set. Dettmers et al. [37]
have shown that a simple rule-based system can obtain
results competitive to the state of the art results on WN18.
For this reason, they constructed WN18RR by removing in-
verse relations similarly to the procedure applied to FB15K.
WN18RR contains 40,943 entities and 11 relations.

Kinships The Kinships [44] dataset describes relation-
ships between members of the Australian tribe Alyawarra
and consists of 10,686 triples. It contains 104 entities repre-
senting members of the tribe and 26 relationship types that
represent kinship terms such as Adiadya or Umbaidya [17].

Nations The Nations [45] dataset contains data about
countries and their relationships with other countries. Ex-
emplary relations are economic aid and accusation [17].

Unified Medical Language System The Unified Medical
Language System (UMLS) [46] is an ontology that describes
relationships between high-level concepts in the biomedical
domain. Examples of contained concepts are Cell, Tissue, and
Disease, and exemplary relations are part of and exhibits [17],
[46].

YAGO3-10 Yet Another Great Ontology (YAGO) [47]
is a KG containing facts that have been extracted from
Wikipedia and aligned with WordNet in order to exploit
the large amount of information contained in Wikipedia and
the taxonomic information included in WordNet. It contains
general facts about public figures, geographical entities,
movies, and further entities, and it has a taxonomy for
those concepts. YAGO3-10 is a subset of YAGO3 [48] (which
is an extension of YAGO) that contains entities associated
with at least ten different relations. In total, YAGO3-10 has
123,182 entities and 37 relations, and most of the triples

1. https://wordnet.princeton.edu/

TABLE 1
Existing Benchmark Datasets.

Dataset Triples Entities Relations

FB15K 592,213 14.951 1,345
FB15K-237 272,115 14,541 237
WN18 151,442 40,943 18
WN18RR 93,003 40,943 11
Kinships 10,686 104 26
Nations 11,191 14 56
UMLS 893,025 135 49
YAGO3-10 1,079,40 132,182 37

describe attributes of persons such as citizenship, gender,
and profession [37].

6 REPRODUCIBILITY STUDIES

The goal of the reproducibility studies was to investigate
whether it is possible to replicate experiments based on the
information provided in each model’s accompanying paper.
If specific information was missing, such as the number
of training epochs, we tried to find this information in
the accompanying source code if it was accessible. For our
study, we focused on the two most frequently used bench-
mark datasets, FB15K and WN18, as well as their respective
subsets FB15K-237 and WN18RR. Table 5 (Appendix A1)
illustrates for which models results were reported (in the
accompanying publications) for the considered datasets. A
checkmark denotes that results were reported, and green
background indicates that the entire experimental setup for
the corresponding dataset was described. Results have not
been reported for every model for every dataset because
some of the benchmark datasets were created after the
models were published. Therefore, these models have been
excluded from our reproducibility study.

Experimental Setup For each KGEM, we applied iden-
tical training and evaluation settings as described in their
concomitant papers. We ran each experiment four times
with random seeds to measure the variance in the obtained
results. We evaluated the models based on the ranking
metrics MR, AMR, MRR, and Hits@K. As discussed in [4],
[10], the exact computation of ranks differs across different
codebases, and can lead to significant differences [4]. We
follow the nomenclature of Berrendorf et al. [10], and report
scores based on the optimistic, pessimistic, and realistic rank
definitions.

Tables 8-11 (Appendix A3-A4) represent the results for
FB15K, FB15K-237, WN18, and WN18RR where experi-
ments highlighted in black were reproducible, in blue soft-
reproducible experiments (i.e., could be reproduced by a
margin  5%), and experiments highlighted in orange
could not be reproduced. In the following, we discuss the
observations that we made during our experiments.

6.1 Reproductions Requiring Alternate Hyper-

Parameters

One of the observations we made is that for some exper-
iments, results could only be reproduced with a different
set of hyper-parameter values. For instance, the results for
TransE could only be reproduced by adapting the batch
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size and the number of training epochs. We trained TransE
on WN18 for 4000 epochs compared to a reported num-
ber of 1000 epochs in order to obtain comparable results.
Furthermore, for RotatE on FB15K and WN18, we received
better results when adapting the learning rate. The reason
for these differences might be explained by the implemen-
tation details of the underlying frameworks which have
been used to train the models. Authors of early KGEMs
often implemented their training algorithms themselves or
used frameworks that were popular at the respective time
but are not used anymore. Therefore, differences between
the former and current frameworks may require an adap-
tion of the hyper-parameter values. Even within the same
framework, bug fixes or optimizations of the framework
can lead to different results based on the used version. Our
benchmarking study highlights that with adapted settings,
results can be reproduced and even improved.

6.2 Unreported Hyper-parameters Impedes Reproduc-

tion

Some experiments did not report the full experimental setup
impeding the reproduction of results. For example, the em-
beddings in the ConvKB experiments have been pre-trained
based on TransE. However, the batch size for training TransE
has not been reported, which can significantly affect the
results, as previously discussed. Furthermore, we obtained
a high deviation for the reported results for HolE on FB15K.
The apparent reason is that we could not find the hyper-
parameter setting for FB15K, such that we used the same
setting as for WN18, which we found in the accompanying
implementation.

6.3 Two Perspectives: Publication versus Implementa-

tion

While preparing our experiments, we observed that for
some experiments, essential aspects, which are part of the
released source code, have not been discussed in the paper.
For instance, in the publication describing ConvE, it is not
mentioned that inverse triples have been added to the KGs
in a pre-processing step. This step seems to be essential
to reproduce the results. A second example is SimplE, for
which the predicted scores have been clamped to the range
of [�20, 20]. This step was not mentioned in the publication,
but it can have a significant effect when the model is
evaluated based on an optimistic ranking approach, which
is the case for SimplE.

6.4 Lack of Official Implementations Impedes Repro-

duction

During our experiments, we observed that for DistMult and
TransD, we were able to reproduce the results on WN18,
but not on FB15K. A reason might be differences in the
implementation details of the frameworks used to train
and evaluate the models. For example, the initialization
of the embeddings or the normalization of the loss values
could have an impact on the performance. Since there exists
no official implementation (see Table 5 in Appendix A1)
for DistMult and TransD, it is not possible to check the
above-mentioned aspects. Furthermore, we were not able to

reproduce the results for TransH for which also no official
implementation is available. There exist reference imple-
mentations2, which slightly differ from the model initially
proposed.

6.5 Reproducibility is Dependent on The Ranking Ap-

proach

As discussed in [4], [10], the ranking metrics have been
implemented differently by various authors. In our experi-
ments, we report results based on three common implemen-
tations of the ranking metrics: i.) realistic, ii.) optimistic and
iii.) pessimistic ranking (Section 4). If a model predicts the
same score for many triples, there will be a large discrepancy
between the three ranking approaches. We could observe
such a discrepancy for SimplE for which the results on
FB15K (Table 8 in Appendix A3) and WN18 (Table 10 in
Appendix A4) were almost 0% based on the realistic ranking
approach, but were much higher based on the optimistic
ranking approach. Similar observations for other KGEM
have been made in [4].

7 BENCHMARKING

In our benchmarking studies, we evaluated a large set
of different combinations of interaction models, training
approaches, loss functions, and the effect of explicitly mod-
eling inverse relations. Additionally, we evaluated how well
the interaction models can model symmetry, anti-symmetry
and composition patterns (Appendix 8.1). In particular, we
investigated 21 interaction models, two training approaches,
and five loss functions on four datasets. We refer to a spe-
cific combination of interaction model, training approach,
loss function, and whether inverse relations are explicitly
modeled as a configuration, e.g., RotatE + LCWA + SPL + in-
verse relations. We do not refer to different hyper-parameter
values such as batch size or learning rate when we use the
term configuration. For each configuration, we used ran-
dom search to perform the hyper-parameter optimizations
over all other hyper-parameters and applied early stopping
on the validation set. Each hyper-parameter optimization
experiment lasted for a maximum of 24 hours or 100 itera-
tions, in which new hyper-parameters have been sampled
in each iteration. Overall, we performed individual hyper-
parameter optimizations for more than 1,000 configurations.
We retrain the model with the best hyper-parameter setting
and report evaluation results on the test set.

Before presenting our results, we provide an overview of
the experimental setup, comprising the investigated inter-
action models, training approaches, loss functions, negative
samplers, and datasets. We used the sLCWA and LCWA
as training approaches. For the sLCWA we applied a 1:k-
Scoring as usually done throughout the literature [19], [27],
where k denotes the number of negative examples for each
positive. For the LCWA, we applied a 1:N-Scoring, i.e.,
we sample each batch against all negatives examples as
typically done for training with the LCWA [37]. Table 6
(Appendix A1) shows the hyper-parameter ranges for the
sLCWA and the LCWA assumptions.

2. https://github.com/thunlp/OpenKE
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Datasets We performed experiments on the following
four datasets: WN18RR, FB15K-237, Kinships and YAGO3-
10. We selected WN18RR and FB15K-237 since they are
widely applied benchmarking datasets. We chose Kinships
and YAGO3-10 to investigate the performance of KGEMs on
a small and a larger dataset.

Interaction Models We investigated all interaction mod-
els described in Section 3.1. Because of our vast experi-
mental setup and the size of YAGO3-10, we restricted the
number of interaction models on YAGO3-10 as otherwise,
the computational effort would be prohibitive. Based on
their variety of model types as described in Section 3.1,
we selected the following interaction models: ComplEx,
ConvKB, DistMult, ERMLP, HolE, MuRE, QuatE, RESCAL,
RotatE, SE, TransD, and TransE.

Training Approaches We trained the interaction models
based on the sLCWA (Section 3.2.2) and the LCWA (Sec-
tion 3.2.1) training approaches. Due of the extent of our
benchmarking study and the fact that YAGO3-10 contains
more than 132,000 entities, which makes the training based
on the LCWA with 1-n scoring expensive, we restricted the
training approach to the sLCWA for YAGO3-10.

Loss Functions We investigated MRL, BCEL, SPL,
NSSAL, and CEL since they represent the variety of types
described in Section 3.3 and because they have been pre-
viously shown to yield good results. MRL has not been
historically used in the 1-N scoring setting likely due to the
fact that in 1-N scoring, the number of positive and negative
scores in each batch is not known in advance and dynamic.
Thus, the number of possible pairs varies as well ranging
from N � 1 to (N/2)2 for each (h, r) combination. The
accompanying variance in memory requirements for each
batch thus poses practical challenges. Therefore, we did not
use the MRL in combination with the 1-N scoring setting.

Negative Sampler When using the sLCWA, we gener-
ated negative samples with UNS. When training with the
LCWA and 1-N scoring, no explicit negative sampling was
required.

Early Stopping We evaluated each model every 50
epochs and performed early stopping with a patience of
100 epochs on all datasets except for YAGO3-10. There,
considering the larger number of triples seen in each epoch
we evaluated each model every 10 epochs and performed
early stopping with a patience of 50 epochs.

Below, we describe the results of our benchmarking
study. In the four following subsections, we summarize the
results for each dataset (i.e., Kinships, WN18RR, FB15K-
237, YAGO3-10) along with a discussion of the effect of the
models’ individual components (i.e., training approaches,
loss functions, the explicit modeling of inverse relations)
and optimizers on the performance. Finally, we compare the
model complexity versus performance. In the appendix, we
provide further results. In particular, we provide for each
model the results of all tested combinations of interaction
model, training approach, and loss function.

7.1 Results on the Kinships Dataset

Investigating the model performances on Kinhsips is in-
teresting because it is a comparatively small KG and thus
permits for each configuration a large number of HPO

iterations for all interaction models. Figure 4 provides a
general overview of the results, i.e., performance of the
interaction models, loss functions, training approach, the
effect of modeling inverse relations, and the effect of the
optimizers. Overall, it can be observed that for most inter-
action models, several well-performing configurations can
be determined. However, some interaction models heav-
ily depend on specific configurations such as KG2E and
QuatE. Although link prediction on Kinships seems to be
relatively easy, there are several translational distance-based
interaction models that perform relatively poor (i.e., TransD,
TransE, TransH, TransR, and UM). The poor performance of
UM is not surprising considering that it omits the multi-
relational information of the data. Finally, the results illus-
trate that Adam outperforms Adadelta (in many cases with
high margin). Therefore, we decided to progress only with
Adam as optimizer for the remaining datasets in order to
reduce the computational costs.

Impact of the Training approach Figure 5 depicts the
effect of the training approaches. We focus only on the BCEL
and the SPL (which is equivalent to BCEL, but numerical
more stable, see Section 3.3.1) since they have been trained
with both training approaches. It can be observed that some
interaction models such as MuRE perform equally well on
both training approaches on Kinships whereas others such
as RESCAL benefit from one of the training approaches (in
this case from the sLCWA).

Impact of the Loss Function
Figure 4 highlights that selecting the appropriate loss

function is crucial also for relatively small dataset such
as Kinships. Although all five loss functions achieve high
performance, all except the MRL exhibit high variance.
Comparing an interaction model that has been trained with
the MRL with an interaction model that has been trained
with a different loss function can lead to misleading con-
clusions since finding a suitable configuration for the loss
functions except for the MRL is more difficult.

Impact of Explicitly Modeling Inverse Relations
Figures 4 and 6 present the effect of explicitly model-

ing inverse relations. Overall, explicitly modeling inverse
relations results in less variance across the investigated
configurations (Figure 4). Further investigating the effect of
modeling of inverse relations on the different loss functions
and training approaches (Figure 6), it can be observed that in
general, the LCWA benefits from explicit usage of inverse re-
lations in terms of robustness. This is to be expected since, in
the LCWA, the model only learns to perform tail predictions,
and without explicitly modeling inverse relations, the model
might have difficulties in correctly predicting head entities.
However, when explicitly modeling inverse relations, the
head predictions are obtained by predicting the tail entities
of the corresponding inverse triples (see Section 3.4)

Interestingly, MRL and NSSAL-based configurations,
which are both only trained with the sLCWA (i.e., the model
already learns to perform head and tail predictions) are
more robust when trained with inverse relations. Therefore,
depending on the dataset, it might be helpful to employ
inverse relation for these loss functions even though they
might be trained with sLCWA.

Model Complexity versus Performance Figure 17 (Ap-
pendix A9) plots the model size against the obtained per-
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Fig. 4. Overall hits@10 results for Kinships where box-plots summarize the best results across different configurations, i.e., combinations of
interaction models, training approaches, loss functions, and the explicit usage of inverse relations.

Fig. 5. Impact of training approach on the performance for a fixed
interaction model and loss function for the Kinships dataset based on
Adam.

Fig. 6. Impact of explicitly modeling inverse relations on the performance
for a fixed loss function for the Kinships dataset.

formance. The results highlight that there is no strong cor-
relation between model size and performance, i.e., models
with a small number of parameters can perform equally
well as large models on the Kinships data set. The skyline
comprises small UM models, some intermediate HolE and
ProjE models, and larger RotatE and TuckER models. A full
list is provided in Table 14 in Appendix A6.

7.2 Results on the WN18RR Dataset

Figure 7 depicts the overall results over WN18RR. A de-
tailed overview of all configurations can be found in Fig-
ure 20 in Appendix A12. The results highlight that there
are several combinations of interaction models, loss func-
tions, and training approaches that obtain hits@10 results
that are competitive with state-of-the-art results3. In par-
ticular, ComplEx (53.74%), ConvE (56.33% compared to
52.00% in the original paper [37] ), DistMult (52.62%), MuRE
(57.90% compared to 55.50% in the original paper [24]),
KG2E (52.30%), ProjE (51,73%), TransE (56.98%), RESCAL
(53.92%), RotatE (60.09% compared to 56.61% in the original
paper [23]), SimplE (50.89%), and TuckER (56.09% compared
to 52.6% in the original paper [30]) obtained high perfor-
mance. Especially the result obtained by TransE is impres-
sive since with a suitable configuration, it beats most of
the published state-of-the-art results. The results highlight
that determining an appropriate combination of interaction
model, loss function, training approach, and the decision
to explicitly modeling inverse relation is fundamental since
many interaction models such as ConvE and KG2E reveal
a high variance across different configurations. The results
for ComplEx and RESCAL further underpin this observa-
tion. They reveal competitive results with very specialized
configurations that represent outliers. Another interesting
observation is the performance of UM, which does not
model relations, but can still compete with some of the other
interaction models on WN18RR. This observation might
indicate that the relational patterns in WN18RR are not too
diverse across relations.

Impact of the Training Approach Figures 7 and 8 depict
the impact of the training approach. Again, we focus only
on BCEL and SPL since they have been trained under both
the sLCWA and LCWA. The figures highlight that for both
realizations of the binary cross entropy loss, the LCWA
achieves higher maximum performance, but at the same
time, it reveals a larger variance on both loss functions.
Consequently, it may be more difficult to find configurations
that obtain high performance. The overall lower variance of
SPL can be explained by the fact that it is numerically more
stable than the BCEL.

Figure 8 shows the impact of the training approaches
for fixed interaction models and used loss functions. The

3. https://paperswithcode.com/sota/link-prediction-on-wn18rr
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Fig. 7. Overall hits@10 results for WN18RR where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations.

results indicate that for some combinations of interaction
models and loss functions, the training approach’s choice
has a significant impact on the results. For instance, ConvE,
RotatE, TransE and TuckER reveal stronger performance
when trained with the LCWA whereas TransH suffer under
the LCWA.

Fig. 8. Impact of training approach on the performance for a fixed
interaction model and loss function for the WN18RR dataset.

Impact of the Loss Function Figure 7 depicts the perfor-
mance of the different loss functions. State-of-the-art results
for WN18RR are currently between 50% and 60%, and for
each loss function, at least 50% could be achieved (Figure
20 in Appendix A12). However, the MRL is comparably less
competitive than the other loss functions. This observation
is especially important considering that early KGEMs have
often been trained with the MRL. The results highlight
that there is a trade-off between highest performance and
robustness, i.e., SPL and BCEL achieve the highest perfor-
mance (when trained under the LCWA), but also have high
variance across different configurations (especially BCEL +
LCWA).

Figure 24 (Appendix A16) reveals that some interaction
models can obtain a further performance boost when con-
figured with specific loss functions. For instance, the perfor-
mance of ComplEx, ProjE and RESCAL can be increased by
a significant margin when composed together with the CEL.

Impact of Explicitly Modeling Inverse Relations Fig-
ure 9 illustrates that it is easier to find a strong performing
sLCWA-configurations when trained without inverse rela-
tions. Surprising is that for LCWA based configurations,
the interaction models are still competitive when trained

without inverse relations. This observation is surprising
because KGEMs that are configured with the LCWA and
without inverse relations are not explicitly trained to predict
the head entities of triples.

Fig. 9. Impact of explicitly modeling inverse relations on the performance
for a fixed loss function for the WN18RR dataset.

Model Complexity vs. Performance Figure 17 (Ap-
pendix A9) highlights that there is no significant corre-
lation between model size and performance. Instead, the
results show that with an appropriate configuration, the
model complexity can be significantly reduced (Table 15
in Appendix A6). For instance, for RotatE, several high-
performing configurations have been found (Figure 20 in the
Appendix A12), and the second-best configuration achieved
a hits@10 value of 58.33% while trained with an embedding
dimension of 64 (in the complex space). This is especially
interesting considering that RotatE originally obtained a
performance of 57.1% hits@10 [23] with an embedding
dimension of 500 (in the complex space) using the sLCWA
as training approach and the NSSAL as loss function 4. By
changing the training approach and the loss function, the
embedding dimension could be reduced significantly while
getting at the same time an improvement in the hits@10
score.

4. https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding
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7.3 Results on the FB15K-237 Dataset

Figure 10 provides an overall overview of the results ob-
tained on FB15K-237. For the results for each individual
configuration, we refer to Figure 21 in Appendix A13. We
can observe that TuckER outperforms the other interaction
models followed by RotatE. DistMult again obtains surpris-
ingly good results (Table 21 in Appendix A13) considering
that the interaction model enforces symmetric relations. The
results illustrate again that choosing a suitable composition
is essential for the performance of an interaction model.
For instance, TuckER and QuatE perform well only with
dedicated compositions. A further example is DistMult,
which again obtains surprisingly good results (Table 21
in Appendix A13) considering that the interaction model
enforces symmetric relations. DistMult, however, achieves a
strong performance only when composed with the LCWA
and the CEL (Table 17 in Appendix A7), highlighting that
a simple interaction model can obtain strong performance
when composed beneficially.

Impact of the Training Approach Figure 10 shows that
for both, BCEL and SPL, the LCWA obtains significantly
higher results, but they express a high variance at the same
time. Figures 11 and 25 (Appendix A17) illustrate that some
interaction models are extremely sensitive to the choice of
the training approaches. For instance, it can be observed that
RotatE, TransE, and TuckER suffer when trained together
with the sLCWA for both loss functions. Table 17 (Appendix
A7) shows that most of the interaction models obtain their
best performance on FB15K-237 when trained together with
the LCWA.

Impact of the Loss Function Figure 10 illustrates that
the BCEL and SPL outperform the other loss functions, but
they also exhibit higher variance. Figure 25 (Appendix A17)
expresses that some interaction models seem to be more
sensitive to the usage of different loss function. For instance,
ConvE and TuckER suffer from the MRL and the NSSAL,
DistMult together with the CEL outperforms the other loss
functions. However, TransE performs similarly for all loss
functions except the NSSAL.

Impact of Explicitly Modeling Inverse Relations Fig-
ure 12 reveals, as for the previous datasets, that in general,
the usage of inverse relations is crucial for the training based
on the LCWA approach. Different from the results obtained
for WN18RR, the LCWA is not competitive when trained
without inverse relations.

Model Complexity vs. Performance Figure 17 (Ap-
pendix A9) illustrates that for FB15K-237, there is no clear
correlation between model size and performance. Tiny mod-
els can already obtain similar performance as larger models.
The skyline comprises an intermediate UM, TransE and
DistMult models, and a larger TuckER model. A full list
is provided in Table 13 (Appendix A6).

7.4 Results on the YAGO3-10 Dataset

YAGO3-10 is the largest benchmark dataset in our study.
Therefore, it is of interest to investigate how the different
interaction models perform on a larger KG. As mentioned
in the introduction of this chapter, we reduced the experi-
mental setup for YAGO3-10 in order to reduce the computa-
tional complexity of our entire study. Figure 13 depicts the

overall results obtained for YAGO3-10. Detailed results for
all configurations are illustrated in Figure 22 in Appendix
A14.

The results highlight the previous observation that the
performance of many KGEMs heavily depends on the
choice of its components and is dataset-specific. For in-
stance, MuRE, the best-performing interaction model, and
especially RotatE, which is among the top-performing inter-
action models, exhibit high variance across their configura-
tions. TransE, which was among the top-performing inter-
action models on WN18RR, performed poorly on YAGO3-
10. One might conclude that TransE performs better on
smaller KGs, but the results obtained on Kinships do not
support this assumption. It should be taken into account
that some interaction models might benefit from being
trained with the LCWA on YAGO3-10 as observed for
TransE on WN18RR. Therefore, TransE might perform much
better when trained with the LCWA approach. Remarkably,
ComplEx and QuatE seem to be robust for all sLCWA
configurations. With regards to the loss functions, all loss
functions except MRL obtain comparable results. Though,
the MRL is more robust than other loss functions.

Impact of the Loss Function Figure 13 shows again that
the choice of the loss functions has an import impact on
the models’ performance: the margin ranking loss and the
self-adversarial negative sampling loss are less competitive
than the binary cross entropy loss/Softplus loss. Figure 22
(Appendix A 14) highlights that some interaction models are
susceptible to the choice of the loss function. For instance,
RotatE and TransE suffer when trained with BCEL and SPL
whereas ERMLP suffers when trained with the MRL.

Impact of Explicitly Modeling Inverse Relations Fig-
ure 14 shows the effect of explicitly modeling inverse rela-
tions for fixed loss functions (it should be noted that the
results are obtained based only on the sLCWA training
approach). In contrast to the results observed for WN18RR
and FB15K-237, the MRL benefits from explicitly modeling
inverse relations. Furthermore, also the SPL obtains its best
performance with inverse inverse relations.

Model Complexity vs. Performance Figure 17 (Ap-
pendix A9) expresses that there is a low correlation between
model size and performance for YAGO3-10. However, the
improvement is tiny compared to the differences in model
size. It should be taken into account that for KGEMs, the
model size is usually dependent on the number of entities
and relations. Therefore, dependent on the space complexity
of the interaction model (Table 4 in Appendix A1), the
size can grow fast for large KGs. The skyline comprises
an intermediate TransE, DistMult and ConvKB model, and
a larger MuRE model. A full list is provided in Table 16
(Appendix A6).

8 RELATIONAL PATTERN ANALYSIS

Knowledge graphs exhibit relational patterns such as sym-
metry (e.g., the relation marriedTo), and the performance of
KGEMs depend on how well these patterns can be modeled.
Four major relational patterns that have been investigated
in the literature are symmetry, anti-symmetry, inversion, and
composition [23], [27], [43]. Here, we provide a large-scale
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Fig. 10. Overall hits@10 results for FB15K-237 where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations.

Fig. 11. Impact of training approach on the performance for a fixed
interaction model and loss function for the FB15K-237 dataset.

Fig. 12. Impact of explicitly modeling inverse relations on the perfor-
mance for a fixed loss function for the FB15K-237 dataset.

performance analysis of our investigated KGEMs in mod-
eling symmetry, anti-symmetry, and composition patterns for
the datasets FB15k-237, WN18RR, and YAGO3-10. First, we
provide statistics about the support and confidence of the sym-
metry, anti-symmetry, inversion, and composition patterns
in the FB15k-237, WN18RR and YAGO3-10 datasets. Next,
we describe our experimental setup. Finally, we present the
results of our relational pattern analysis.

8.1 Relational Patterns and their Detection

Here, we formally define the relational patterns symmetry,
anti-symmetry, inversion, and composition patterns accord-
ing to [23], the measures support and confidence, and provide
an overview of the support and confidence of the these pat-
terns in the FB15k-237, WN18RR and YAGO3-10 datasets.

Definition 1 (Symmetric Relation). A relation r 2 R is
symmetric, if (h, r, t) 2 T =) (t, r, h) 2 T

Definition 2 (Anti-Symmetric Relation). A relation r 2 R is
anti-symmetric, if (h, r, t) 2 T =) (t, r, h) /2 T

Definition 3 (Inverse Relation). A relation r 2 R is inverse
to rinv 2 R, if (h, r, t) 2 T =) (t, rinv, h) 2 T . If there
exists a r0 2 R with r0 6= r and r0 is inverse to r, then we
call r an inverse relation.

Definition 4 (Composite Relation). A relation r 2 R is a
composition of two relations r1, r2 2 R, if (a, r1, b) 2
T ^ (b, r2, c) 2 T =) (a, r, c) 2 T . We call r a
composite relation, if such two relations exist.

Since KGs are known to be incomplete, a false an-
tecedent, i.e., right-hand side of a rule, may not only be
caused by the relation not being of the relation type of inter-
est, but also originate from the KG’s incompleteness. Thus,
we detect relation types using a support and confidence
threshold, defined akin to the concepts of association rule
mining.

The support of one of the aforementioned patterns p for
a relation r indicates the number of different assignments of
entities such that the precedent, i.e., the left-hand side of a
rule, holds. For most of the simple rules this is equivalent to
the relation frequency, but, e.g., for composite relations, we
need to consider all pairs of triples with matching the can-
didate relations r1, r2 and being linked by the intermediate
entity b.

The confidence of a relational pattern is the number of
times the right-hand side holds divided by the support.
Thus, it can be interpreted as an estimate of the the con-
ditional probability of the antecedent, given the precedent
holds.
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Fig. 13. Overall hits@10 results for YAGO3-10 where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations. In contrast, to the previous datasets, the models have only been trained
based on the stochastic local closed world assumption.

Fig. 14. Impact of explicitly modeling inverse relations on the perfor-
mance for a fixed loss function for the YAGO3-10 dataset.

TABLE 2
Frequency of detected relation patterns across the benchmark

datasets.

pattern anti-symmetry composition symmetry
dataset

fb15k237 205 147 3
wn18rr 7 1 3
yago310 30 3 2

8.2 Relation Patterns in Benchmark Datasets

Table 2 shows the frequency of the detected pattern types
for the three studied benchmark datasets. Similar to related
work we used a confidence threshold of 97% [43]. Note that
we did not detect a single inverse relation, since FB15k-237
and WN18RR have been explicitly preprocessed to remove
such.

8.3 Experimental Setup

To measure the performance of the investigated KGEMs
in modeling symmetry, anti-symmetry, and composition
patterns, we slightly adapted the standard link prediction
evaluation procedure (Section 4). Instead of computing the
metrics based on all test triples, we extracted for each

Fig. 15. Performance Distribution of all best models per configuration in
H@10.

relational pattern all test triples that contain the associated
relations, aggregated the single ranks obtained of each triple
in the subset, and computed the hits@10 metric for each
subset. Therefore, we can express how well a KGEM can
model a specific relational pattern.

8.4 Results

Figure 15 shows the overall performance on pattern types
per dataset. We show the distribution of best models’ per-
formance for each configuration in terms of H@10. We
generally observe a tendency that symmetric relations are
easier to model than anti-symmetric and composite rela-
tions, which seem to be equally challenging.

Figure 16 (Appendix A2) shows the performance of best
models’ for each configuration for each dataset and pattern
type, grouped by interaction function. For the most simple
pattern, symmetry, almost all interaction functions can ob-
tain strong results on WN18RR, with NTN, TransD and SE
slightly falling behind. For FB15k237, we observe similar
results, except that SimplE and KG2E fail to capture this
pattern (while performing still sufficiently good on other
patterns). On YAGO3-10, translation-based methods such as
TransE or TransD cannot match the performance of, Com-
plEx, RotatE and DistMult, with ER-MLP’s performance in
between.
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On the more difficult anti-symmetry and composition
patterns, the differences are more pronounced. Overall, Ro-
tatE and TransE obtain the best results, whereas UM and
NTN cannot obtain good results.

9 DISCUSSION & FUTURE WORK

Table 7 (Appendix A1) illustrates the extent of our studies
and Table 3 (Appendix 18) summarizes the main find-
ings our work. Although the re-implementation of all ma-
chine learning components into a unified, fully configurable
framework was a major effort, we believe it is essential to
analyze reproducibility and obtain fair results on bench-
marking. In particular, we were able to address the issue
of incompatible evaluation procedures and preprocessing
steps in previous publications that are not obvious. We
highlighted that the evaluation metrics, which usually are
utilized to evaluate the performance of knowledge graph
embedding models, are realized differently depending on
the definition of the rank. Specifically, three major rank
definitions are employed: optimistic, realistic, and pessimistic
ranking. Because the optimistic and pessimistic ranking
can lead to distorted conclusions in cases where a KGEM
predicts the same score for many triples, we recommend
evaluating knowledge graph embedding models based on
the realistic ranking approach.

During our reproducibility study, we found that the re-
production of experiments is a major challenge and, in many
cases, not possible with the available information in current
publications. In particular, we observed the following four
main aspects:

• For a set of experiments, the results can sometimes
only be reproduced with a different set of hyper-
parameter values.

• For some experiments, the entire experimental setup
was not provided, impeding the reproduction of
experiments.

• The lack of an official implementation hampers the
reproduction of results.

• Some results are dependent on the utilized rank-
ing approach (average, optimistic, and pessimistic
ranking approach). For example, the optimistic rank
may lead to incorrect conclusions about the model’s
performance.

Our benchmarking study shows that the term KGEM
should be used with caution and should be differentiated
from the actual interaction model since our results highlight
that the specific combination of the interaction model, train-
ing approach, loss function, and the usage of explicit inverse
relations is often fundamental for the performance.

No configuration performs best across all datasets. De-
pending on the dataset, several configurations can be found
that achieve comparable results (Tables 17-20 in Appendix
A7-A8, and Figures 19-22 in Appendix A11-A14). Moreover,
with an appropriate configuration, the model size can signif-
icantly be compressed (see Pareto-optimal configurations in
Tables 13-16 in Appendix A6) that has especially a practical
relevance when looking for a trade-off between required
memory and performance.

The results also highlight that even interaction models
such as TransE that have been considered as baselines can
outperform state-of-the-art interaction models when trained
with an appropriate training approach and loss function.
This raises the question of the necessity of the vast num-
ber of available interaction models. However, for some
interaction models such as RotatE, MuRE or TuckER, we
can observe a good performance across all datasets (note:
TuckER has not been evaluated on YAGO3-10). For RotatE,
we even obtained the state-of-the-art results on WN18RR
(similar results were obtained by Graph Attenuated Atten-
tion Networks [49]), and for ConvE, MuRE, and TuckER,
we obtained results superior to the originally published
ones. ComplEx proved to be a very robust interaction model
across different configurations. This can, in particular, be ob-
served from the results obtained on YAGO3-10 (Figure 13).

We discovered that no loss function consistently achieves
the best results. Instead it can be seen that with different loss
functions, such as the BCEL, NSSAL, and SPL, good results
can be obtained across all datasets. Remarkably, the MRL
is overall the worst-performing loss function. However, one
might argue that the MRL is the most compatible loss func-
tion with the sLCWA since it does not assume artificially
generated negative examples to be actually false in contrast
to the other loss functions used. The MRL only learns to
score positive examples higher than corresponding negative
examples, but it does not ensure that a negative example is
scored lower than every other positive example. Thus, the
absolute score values are not interpretable and cannot be
used to compare triples without common head/tail entities.
They can only be interpreted relatively, and only when
comparing scores for triples with the same (hr)/(rt). Al-
though loss functions such as BCEL or SPL treat generated
negative triples as true negatives that actually contain also
unknown positive examples, they obtain good performance.
This might be explained by the fact that usually the set of
unknown triples are dominated by false triples. Therefore, it
is likely that a major part of the generated triples are actually
negative. Consequently, the KGEM learns to distinguish
better positive from negative examples.

Considering the explicit usage of inverse relations, we
found out that the impact of inverse relations can be sig-
nificant, especially when the interaction model is trained
under the LCWA. This might be explained by the fact that
based on the LCWA-training, the KGEM only learns to
perform one-side predictions (i.e., it learns to either predict
head or tail entities), but during the evaluation, it is asked
to perform both-side predictions. Through the inclusion of
inverse relations, the model learns to perform both-side
predictions based on one side, i.e., (⇤, r, t) can be predicted
through (t, rinverse, ⇤). Overall, our results indicate that
further investigations on FB15K-237 and YAGO3-10 might
lead to results that are competitive to the state-of-the-art.

Looking forward, it would be of great interest to re-
investigate previously performed studies that analyze the
relationship between the performance of KGEMs and the
properties of the underlying KGs to verify that their findings
indeed can be attributed to the interaction model alone, rather
than the exact configuration including the loss function,
the training approach and the explicit modeling of inverse
relations. Further, the effect of explicitly modeling inverse
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TABLE 3
Summary of main insights over all datasets. Each component (i.e., interaction model, loss function, and training approach) is considered to be

among the top-ten performing configurations when they occur at least once in the top-ten performing configurations. Note that a single component
is part of several configurations, and therefore, can occur multiple times in the top-ten performing configurations.

Interaction Models

RotatE Among top-ten-performing interaction models across all datasets.
MuRE Among top-ten-performing interaction models on WN18RR, FB15K-237, and YAGO3-10.
ConvE Among top-ten-performing interaction models on Kinships and FB15K-237 (has not been evaluated on YAGO3-10).
ComplEx Among top-ten-performing interaction models on Kinships and YAGO3-10.
TuckER Among top-ten-performing interaction models for Kinships, and FB15K-237 (has not been evaluated on YAGO3-10).
DistMult Among top-ten-performing interaction models on FB15K-237.
QuatE Among top-ten-performing interaction models on YAGO3-10.
TransE Among top-ten-performing interaction models on WN18RR.
SE Among top-ten-performing interaction models on Kinships.

Loss Functions

BCEL Among top-ten-performing loss functions across all datasets.
NSSAL Among top-ten-performing loss functions across all datasets.
SPL Among top-ten-performing loss functions across all datasets.
CEL Among top-ten-performing loss functions on Kinships and FB15K-237 (has not been evaluated on YAGO3-10).
MRL Among top-ten-performing loss functions on Kinships.

Training Approaches

sLCWA Among top-ten-performing training approaches across all datasets.
LCWA Among top-ten-performing training approaches on Kinships, WN18RR and FB15K-237 (has not been evaluated on YAGO3-

10).

Explicit Modeling of Inverse Relations

Is usually beneficial in combination with the local closed world assumption.

Configurations

Performance Appropriate combination of interaction model, training assumption, loss function, choice of explicitly modeling inverse
relations is crucial for the performance, e.g., TransE can compete when with several state-of-the-art interaction models on
WN18RR when appropriate configuration is selected.
There is no single best configuration that works best for all dataset.

Variance Some interaction models exhibit a high variance across different configurations, e.g., RotatE on YAGO3-10 (Figure 13 on
page 16)

Pareto-Optimal
Configurations

Tables 13-16 in Appendix A6 describe Pareto-optimal configurations. It can be seen that there are configurations that require
fewer parameters while obtaining almost the same performance. In some cases, for the same interaction model, the model
can be significantly compressed.

Reproducibility

Results For FB15K, four out of 13, for WN18, five out of 13, for FB15K-237, two out of three, and for WN18RR, three out of five
experiments can be categorized as soft-reproducible.

Code For four out of 15 models, no official implementation was available.
Parameters For six out of 15 papers, source code was available and full experimental setup was precisely described.

General Insights

SOTA For WN18RR, we achieve based on a RotatE-configuration (together with Graph Attenuated Attention Networks [49]) state-
of-the-art results in terms of hits@10 through our study (60.09% Hits@10). Furthermore, we found a TransE configuration
that achieves high performance beating most of the published SOTA results (56.98% Hits@10). Based on our results, we
emphasize to further investigate the hyper-parameters space for the most promising configurations for the remaining
benchmarking datasets.

Improvements For ConvE (56.33% compared to 52.00% [37]), MuRE (57.90% compared to 55.50% [24]) and TuckER (56.09% compared
to 52.6% [30]), we are beating the reported results in the original papers due selecting appropriate configurations and
hyper-parameters on WN18RR.

relations has not been analyzed in depth, in particular how
the learned representations of a relation and its inverse
are related to each other. Ultimately, we believe our work
provides an empirical foundation for such studies and a
practical tool to execute them.
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[13] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek, “Amie:
association rule mining under incomplete evidence in ontological
knowledge bases,” in Proceedings of the 22nd international conference
on World Wide Web, 2013, pp. 413–422.

[14] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A
survey on knowledge graphs: Representation, acquisition, and
applications,” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[15] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” IEEE Data Eng. Bull.,
vol. 40, no. 3, pp. 52–74, 2017.

[16] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth,
and P. Poupart, “Representation learning for dynamic graphs: A
survey,” J. Mach. Learn. Res., vol. 21, pp. 70:1–70:73, 2020.

[17] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic
matching energy function for learning with multi-relational data -
application to word-sense disambiguation,” Mach. Learn., vol. 94,
no. 2, pp. 233–259, 2014.

[18] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning
structured embeddings of knowledge bases,” in AAAI. AAAI
Press, 2011.

[19] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-
relational data,” in NIPS, 2013, pp. 2787–2795.

[20] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes,” in AAAI. AAAI Press,
2014, pp. 1112–1119.

[21] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion,” in AAAI.
AAAI Press, 2015, pp. 2181–2187.

[22] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph
embedding via dynamic mapping matrix,” in ACL (1). The
Association for Computer Linguistics, 2015, pp. 687–696.

[23] Z. Sun, Z. Deng, J. Nie, and J. Tang, “Rotate: Knowledge graph
embedding by relational rotation in complex space,” in ICLR
(Poster). OpenReview.net, 2019.

[24] I. Balazevic, C. Allen, and T. M. Hospedales, “Multi-relational
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Abstract. In this work, we perform an extensive investigation of two
state-of-the-art (SotA) methods for the task of Entity Alignment in
Knowledge Graphs. Therefore, we first carefully examine the bench-
marking process and identify several shortcomings, making the results
reported in the original works not always comparable. Furthermore, we
suspect that it is a common practice in the community to make the
hyperparameter optimization directly on a test set, reducing the infor-
mative value of reported performance. Thus, we select a representative
sample of benchmarking datasets and describe their properties. We also
examine different initializations for entity representations since they are
a decisive factor for model performance. Furthermore, we use a shared
train/validation/test split for an appropriate evaluation setting to evalu-
ate all methods on all datasets. In our evaluation, we make several inter-
esting findings. While we observe that most of the time SotA approaches
perform better than baselines, they have difficulties when the dataset
contains noise, which is the case in most real-life applications. Moreover,
in our ablation study, we find out that often different features of SotA
method are crucial for good performance than previously assumed. The
code is available at https://github.com/mberr/ea-sota-comparison.

Keywords: Knowledge Graph · Entity Alignment · Word embeddings

1 Introduction

The quality of information retrieval crucially depends on the accessible storage
of information. Knowledge Graphs (KGs) often serve as such data structure [6].
Moreover, to satisfy diverse information needs, a combination of multiple data
sources is often inevitable. Entity Alignment (EA) [2] is the discipline of align-
ing entities from different KGs. Once aligned, these entities facilitate information
transfer between knowledge bases, or even fusing multiple KGs to a single knowl-
edge base.

In this work, our goal is to analyze a SotA approach for the task of EA and
identify which factors are essential for its performance. Although papers often use
the same dataset in the evaluation and report the same evaluation metrics, the
selection of SotA is not a trivial task: as we found out in our analysis, the usage
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of different types of external information for the initialization or train/test splits
of different sizes1 makes the results in different works incomparable. Therefore,
while still guided by the reported evaluation metrics, we identified these common
factors among strongly performing methods in multiple works:

– They are based on Graph Neural Networks (GNNs). GNNs build the basis of
the most recent works [4,7,9,10,12,14,16–23,25].

– They utilize entity names in the model. Supported by recent advances in word
embeddings, these attributes provide distinctive features.

– They consider different types of relations existing in KGs. Most GNNs ignore
different relationship types and aggregate them in the preprocessing step.

Given these criteria, we selected Relation-aware Dual-Graph Convolutional Net-
work (RDGCN) [17], as it also has demonstrated impressive performance in
recent benchmarking studies [15,24]. Additionally, we include the recently pub-
lished Deep Graph Matching Consensus (DGMC) [7] method in our analysis for
two reasons: the studies mentioned above did not include it, and the authors
reported surprisingly good performance, considering that this method does not
make use of relation type information.

We start our study by reviewing the used datasets and discussing the ini-
tializations based on entity names. Although both methods utilize entity names,
the actual usage differs. For comparison, we thus evaluate both methods on all
datasets with all available initializations. We also report the zero-shot perfor-
mance, i.e., when only using initial representations alone, as well as a simple GNN
model baseline. Furthermore, we address the problem of hyperparameter opti-
mization. Related works often do not discuss how they chose hyperparameters
and, e.g., rarely report validation splits. So far, this problem was not addressed
in the community. In the recent comprehensive survey [15], the authors use cross-
validation for the estimation of the test performance. The models are either eval-
uated with hyperparameters recommended for other datasets or selected by not
reported procedure. Also, in the published code of the investigated approaches,
we could not find any trace of train-validation splits, raising questions about
reproducibility and fairness of their comparisons. We thus create a shared split
with a test, train, and validation part and extensively tune the model’s hyperpa-
rameters for each of the dataset/initialization combinations to ensure that they
are sufficiently optimized. Finally, we provide an ablation study for many of the
parameters of a SotA approach (RDGCN), giving insight into the individual
components’ contributions to the final performance.

2 Datasets and Initialization

Table 1 provides a summary of a representative sample of datasets used for
benchmarking of EA approaches. In the following, we first discuss each dataset’s
properties and, in the second part, the initialization of entity name attributes.

1 Commonly used evaluation metrics in EA automatically become better with a
smaller size of test set [3].
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Table 1. Summary of the used EA datasets. We denote the entity set as E , the relation
set as R, the triple set as T , the aligned entities as A and the exclusive entities as X .

Dataset Subset Graph |E| |R| |T | |A| |X |

DBP15k zh-en zh 19,388 1,701 70,414 15,000 4,388

en 19,572 1,323 95,142 15,000 4,572

ja-en ja 19,814 1,299 77,214 15,000 4,814

en 19,780 1,153 93,484 15,000 4,780

fr-en fr 19,661 903 105,998 15,000 4,661

en 19,993 1,208 115,722 15,000 4,993

WK3l15k en-de en 15,126 1,841 209,041 9,783 5,343

de 14,603 596 144,244 10,021 4,582

en-fr en 15,169 2,228 203,356 7,375 7,794

fr 15,393 2,422 169,329 7,284 8,109

OpenEA en-de en 15,000 169 84,867 15,000 0

de 15,000 96 92,632 15,000 0

en-fr en 15,000 193 96,318 15,000 0

fr 15,000 166 80,112 15,000 0

d-y d 15,000 72 68,063 15,000 0

y 15,000 21 60,970 15,000 0

d-w d 15,000 167 73,983 15,000 0

w 15,000 121 83,365 15,000 0

2.1 Datasets

DBP15k. The DBP15k dataset is the most popular dataset for the evaluation
of EA approaches. It has three subsets, all of which base upon DBpedia. Each
subset comprises a pair of graphs from different languages. As noted by [2], there
exist multiple variations of the dataset, sharing the same entity alignment but
differing in the number of exclusive entities in each graph. The alignments in
the datasets are always 1:1 alignments, and due to the construction method for
the datasets, exclusive entities do not have relations between them, but only
to shared entities. Exclusive entities complicate the matching process, and in
real-life applications, they are not easy to identify. Therefore, we believe that
this dataset describes a realistic use-case only to a certain extent. We found
another different variant of DBP15k as part of the PyTorch Geometric reposi-
tory2, having a different set of aligned entities. This is likely due to extraction
of alignments from data provided by [20] via Google Drive3 as described in their

2 https://github.com/rusty1s/pytorch geometric/blob/d42a690fba68005f5738008a04f
375ffd39bbb76/torch geometric/datasets/dbp15k.py.

3 https://drive.google.com/open?id=1dYJtj1 J4nYJdrDY95ucGLCuZXDXI7PL.

https://github.com/rusty1s/pytorch_geometric/blob/d42a690fba68005f5738008a04f375ffd39bbb76/torch_geometric/datasets/dbp15k.py
https://github.com/rusty1s/pytorch_geometric/blob/d42a690fba68005f5738008a04f375ffd39bbb76/torch_geometric/datasets/dbp15k.py
https://drive.google.com/open?id=1dYJtj1_J4nYJdrDY95ucGLCuZXDXI7PL
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GitHub repository.4 As a result, the evaluation results published in [7] are not
directly comparable to other published results. In our experiments, we use the
(smaller) JAPE variant with approximately 19–20k entities in each graph since
it is the predominantly used variant.

OpenEA. The OpenEA datasets published by [15] comprise graph pairs from
DBPedia, YAGO, and Wikidata obtained by iterative degree-based sampling to
match the degree distribution between the source KG and the extracted subset.
The alignments are exclusively 1:1 matchings, and there are no exclusive enti-
ties, i.e., every entity occurs in both graphs. We believe that this is a relatively
unrealistic scenario. In our experiments, we use all graph pairs with 15k entities
(15K) in the dense variant (V2), i.e., en-de-15k-v2, en-fr-15k-v2, d-y-15k-v2,
d-w-15k-v2.

WK3l15k. The Wk3l datasets are multi-lingual KG pairs extracted from
Wikipedia. As in [2], we extract additional entity alignments from the triple
alignments. The graphs contain additional exclusive entities, and there are
m:n matchings. We only use the 15k variants, where each graph has approx-
imately 15k entities. There are two graph pairs, en-de and en-fr. Moreover,
the alignments in the dataset are relatively noisy: for example, en-de con-
tains besides valid alignments such as (“trieste”, “triest”), or (“frederick i, holy
roman emperor”, “friedrich i. (hrr)”), also ambiguous ones such as (“1”, “1. fc
saarbrücken”), (“1”, “1. fc schweinfurt 05”), and errors such as (“1”, “157”), and
(“101”, “100”). While the noise aggravates alignment, it also reflects a realistic
setting.

2.2 Label-Based Initializations

Prepared Translations (DBP15k). For DBP15k, we investigate label-based ini-
tializations based on prepared translations to English from [17] and [7] (which, in
turn, originate from [20]). Afterwards, they use Glove [11] embeddings to obtain
an entity representation. While [17] only provides the final entity representation
vectors without further describing the aggregation, [7] splits the label into words
(by white-space) and uses the sum over the words’ embeddings as entity repre-
sentation. [17] additionally normalizes the norm of the representations to unit
length.

Prepared RDGCN Embeddings (OpenEA). OpenEA [15] benchmarks a large
variety of contemporary entity alignment methods in a unified setting, also
including RDGCN [17]. Since the graphs DBPedia and YAGO collect data from
similar sources, the labels are usually equal. For those graph pairs, the authors
propose to delete the labels. However, RDGCN requires a label based initializa-
tion. Thus, the authors obtain labels via attribute triples of a pre-defined set of

4 https://github.com/syxu828/Crosslingula-KG-Matching/blob/56710f8131ae072f00
de97eb737315e4ac9510f2/README.md#how-to-run-the-codes.

https://github.com/syxu828/Crosslingula-KG-Matching/blob/56710f8131ae072f00de97eb737315e4ac9510f2/README.md#how-to-run-the-codes
https://github.com/syxu828/Crosslingula-KG-Matching/blob/56710f8131ae072f00de97eb737315e4ac9510f2/README.md#how-to-run-the-codes
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Table 2. The statistics about label-based initialization in the OpenEA codebase:
attribute denotes initialization via attribute values for a predefined set of “name
attributes”. id denotes initialization with the last part of the entity URI. For d-y this
basically leaks ground truth, whereas, for Wikidata, the URI contains only a numeric
identifier, thus rendering the initialization “label” useless.

Subset Side via attribute via id via id (%)

d-w d 0 15,000 100.00%

w 8,391 7,301 48.67%

d-y d 2,883 12,122 80.81%

y 15,000 0 0.00%

“name-attributes”5: skos:prefLabel, http://dbpedia.org/ontology/birthName
for DBPedia-YAGO, and http://www.wikidata.org/entity/P373, http://www.
wikidata.org/entity/P1476 for DBPedia-Wikidata.

However, when investigating the published code, we noticed that if the label
is not found via attribute, the last part of the entity URI is used instead. For
DBPedia/YAGO, this effectively leaks ground truth since they share the same
label. For DBPedia/Wikidata, this results in useless labels for the Wikidata side
since their labels are the Wikidata IDs, e.g., Q3391163. Table 2 summarizes the
frequency of both cases. For d-w, DPBedia entities always use the ground truth
label. For 49% of the Wikidata entities, useless labels are used for initialization.
For d-y, YAGO entity representations are always initialized via an attribute
triple. For DBPedia, in 81% of all cases, the ground truth label is used. We store
these initial entity representations produced by the OpenEA codebase into a file
and refer in the following to them as Sun initialization (since they are taken
from the implementation of [15]).

Multi-lingual BERT (WK3l15k). Since we did not find related work with entity
embedding initialization from labels on WK3l15k, we generated those using a
pre-trained multi-lingual BERT model [5], BERT-Base, Multilingual Cased6.
Following [5], we use the sum of the last four layers as token representation since
it has comparable performance to the concatenation at a quarter of its size. To
summarize the token representations of a single entity label, we explore sum,
mean, and max aggregation as hyperparameters.

5 https://github.com/nju-websoft/OpenEA/tree/2a6e0b03ec8cdcad4920704d1c38547
a3ad72abe.

6 https://github.com/google-research/bert/blob/cc7051dc592802f501e8a6f71f8fb3cf9
de95dc9/multilingual.md.

http://dbpedia.org/ontology/birthName
http://www.wikidata.org/entity/P373
http://www.wikidata.org/entity/P1476
http://www.wikidata.org/entity/P1476
https://github.com/nju-websoft/OpenEA/tree/2a6e0b03ec8cdcad4920704d1c38547a3ad72abe
https://github.com/nju-websoft/OpenEA/tree/2a6e0b03ec8cdcad4920704d1c38547a3ad72abe
https://github.com/google-research/bert/blob/cc7051dc592802f501e8a6f71f8fb3cf9de95dc9/multilingual.md
https://github.com/google-research/bert/blob/cc7051dc592802f501e8a6f71f8fb3cf9de95dc9/multilingual.md
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3 Methods

We evaluate two SotA EA methods, RDGCN [17] which we reimplemented and
DGMC [7] for which we used the original method implementation with adapted
evaluation. In the following, we revisit their architectures and highlight differ-
ences between the architecture described in the paper and what we found in the
published code.

Similarly to all GNN-based approaches, both models employ a Siamese archi-
tecture. Therefore, the same model with the same weights is applied to both
graphs yielding representations of entities from both KGs. Given these entity
representations, the EA approaches compute an affinity matrix that describes
the similarity of entity representations from both graphs. Since the main differ-
ence between methods is the GNN model in the Siamese architecture, for brevity
we only describe how it is applied on a single KG G = (E ,R, T ).

3.1 Relation-Aware Dual-Graph Convolutional Network (RDGCN)

Architecture. The RDGCN [17] model comprises two parts performing
message-passing processes applied sequentially. The message passing process per-
formed by the first part can be seen as relation-aware. The model tries to learn
the importance of relations and weights the messages from the entities connected
by these relations correspondingly. The message passing performed by the sec-
ond component utilizes a simple adjacency matrix indicating the existence of any
relations between entities, which we call standard message passing. Both com-
ponents employ a form of skip connections: (weighted) residual connections [8]
in the first part and highway layers [13] in the second part.

Relation-Aware Message Passing. The entity embeddings from the first compo-
nent are computed by several interaction rounds comprising four steps

Xc = RC(Xe),Xc ∈ R
|R|×2d (1)

Xr = DA(Xr,Xc),Xr ∈ R
|R|×2d (2)

Xe = PA(Xe,Xr) (3)

Xe = X0
e + βi · Xe (4)

The first step, in (1), obtains a relation context (RC) Xc from the entity repre-
sentations. For relation r ∈ R, we extract its relation context as a concatenation
of the mean entity representations for the head and the tail entities. By denot-
ing the set of head and tail entities for relation r with Hr and Tr, we can

thus express its computation as (Xc)i =
[

1/|Hi|
∑

j∈Hi
(Xe)j‖1/|Ti|

∑

j∈Ti
(Xe)j

]

where ‖ denotes the concatenation operation. An entity occurring multiple times
as the head is weighted equally to an entity occurring only once.

The second step, in (2), is the dual graph attention (DA). The attention
scores on the dual graph αD

ij are computed by dot product attention with leaky

ReLU activation: αD
ij = Jij · LeakyReLU(WL(Xc)i + WR(Xc)j). Notice that
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WL(Xc)i + WR(Xc)j = (WL‖WR)T ((Xc)i‖(Xc)j), where ‖ denotes the con-
catenation operation. In the published code, we further found a weight sharing
mechanism for WL and WR implemented, decomposing the projection weight
matrices as WL = W′

LWC and WR = W′
RWC with W′

L,W′
R ∈ R

1×h,WC ∈
R

h×2d being trainable parameters, and WC shared between both projections.
Jij denotes a fixed triple-based relation similarity score computed as the sum
of the Jaccard similarities of the head and tail entity set for relation ri and rj :
Jij := |Hi∩Hj |/|Hi∪Hj | + |Ti∩Tj |/|Ti∪Tj |. The softmax is then computed only over
those relations, where Jij > 0, i.e., pairs sharing at least one head or tail entity.
In the implementation, this is implemented as dense attention with masking, i.e.
setting αD

ij = −∞ (or a very small value) for Jij = 0. While this increases the

required memory consumption to O(|R|2), the number of relations is usually
small compared to the number of entities, cf. Table 1, and thus this poses no
serious computational problem. With α̃D

ij denoting the softmax output, the new

relation representation finally is (Xr)i = ReLU
(

∑

j α̃D
ij(Xr)j

)

.

In the third step, in (3), the entity representations are updated. To this end,
a relation-specific scalar score is computed as αr

i = LeakyReLU(WXr + b)
with trainable parameters W and b. Based upon the relation-specific scores, an
attention score between two entities ei, ej with at least one relation between
them is given as αP

ij =
∑

r∈Tij
αr

i . These scores are normalized with a sparse

softmax over all {j | ∃r ∈ R : (ei, r, ej) ∈ T }: α̃P
ij = softmaxj′(αP

ij′)j . The final
output of the primal attention is (Xe)j = ReLU(

∑

i α̃ij(Xe)j).
The fourth step, in (4), applies a skip connection from the initial representa-

tions to the current entity representation. The weight βi is pre-defined (β1 = 0.1,
β2 = 0.3) and not trained.

Standard Message Passing. The second part of the RDGCN consists of a
sequence of GCN layers with highway layers. Each layer computes

X′
e = ReLU(AXeW) (5)

β = σ(WgXe + bg) (6)

Xe = β · X′
e + (1 − β) · Xe (7)

A ∈ R
|EL|×|EL| denotes the adjacency matrix of the primal graph. It is con-

structed by first creating an undirected, unweighted adjacency matrix where
there is a connection between ei, ej ∈ EL if there exists at least one triple
(ei, r, ej) ∈ T L for some relation r ∈ RL. Next, self-loops (e, e) are added
for every entity e ∈ EL. Finally, the matrix is normalized by setting A =
D−1/2AD−1/2 with D denoting the diagonal matrix of node degrees. When
investigating the published code, we further found out that the weight matrix
W is constrained to be a diagonal matrix and initialized as an identity matrix.

Training. Let xL
i denote the final entity representation for eL

i ∈ EL and anolo-
gously xR

j for eR
j ∈ ER. RDGCN is trained with a margin-based loss formulation.
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It adopts a hard negative mining strategy, i.e., the set of negative examples for
one pair is the top k most similar entities of one of the entities according to the
similarity measure used for scoring. The negative l1 distance is used as similarity,
the margin is 1, k = 10, and the negative examples are updated every 10 epochs.

3.2 Deep Graph Matching Consensus (DGMC).

DGMC [7] also comprises two parts, which we name enrichment and corre-
spondence refinement. The enrichment part is a sequence of GNN layers enrich-
ing the entity representations with information from their neighborhood. Each
layer computes φ(X) = ReLU(norm(A)XW1 + norm(AT )XW2 + XW3),

where A ∈ R
|EL|×|EL| denotes the symmetrically normalized adjacency matrix

(as for second part of RDGCN), norm the row-wise normalization operation,

X ∈ R
EL×din the layer’s input, and W1,W2,W3 ∈ R

din×dout trainable param-
eters of the layer. An optional batch normalization and dropout follow this layer.
For the enrichment phase’s final output, all individual layers’ outputs are con-
catenated before a learned final linear projection layer reduces the dimension to
dout.

The second phase, the correspondence refinement, first calculates the k = 10
most likely matches in the other graph for each entity as a sparse correspon-

dence matrix S ∈ R
|EL|×|ER|, normalized using softmax. Next, it generates ran-

dom vectors for each entity R ∈ R
|EL|×drnd and sends these vectors to the

probable matches via the softmax normalized sparse correspondence matrix,

ST R ∈ R
|ER|×drnd . A GNN layer ψ as in phase one distributes these vectors in

the neighborhood of the nodes: YR = ψ(ST R). A two-layer MLP predicts an
update for the correspondence matrix, given the difference between the represen-
tations YL and YR. This procedure is repeated for a fixed number of refinement
steps L = 10.

4 Experiments

Experimental Setup. For the general evaluation setting and description of met-
rics, we refer to [3]. Here, we primarily use Hits@1 (H@1), which measures the
correct entity’s relative frequency of being ranked in the first position. When
investigating the published code of both, RDGCN [17]7 and DGMC [7]8, we did
not find any code for tuning the parameters, nor a train-validation split. Also,
the papers themselves do not mention a train-validation split. Thus, it is unclear
how they choose the hyperparameters without a test-leakage by directly opti-
mizing the test set’s performance. We thus decided to create a shared test-train-
validation split used by all our experiments to enable a fair comparison. Since
DGMC already uses PyTorch, we could use their published code and extend it
with HPO code. RDGCN was re-implemented in PyTorch in our codebase. We

7 https://github.com/StephanieWyt/RDGCN.
8 https://github.com/rusty1s/deep-graph-matching-consensus/.

https://github.com/StephanieWyt/RDGCN
https://github.com/rusty1s/deep-graph-matching-consensus/
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Table 3. Investigated hyperparameters for all methods. * denotes that these parame-
ters share the same value range but were tuned independently.

Common

Parameter Choices

Optimizer Adam

Similarity {cos, dot, l1 (bound inverse), l1 (negative), l2
(bound inverse), l2 (negative)}

RDGCN

Parameter Choices

(entity embedding) normalization {always-l2, initial-l2, never}

(number of) GCN layers {0, 1, 2, 3}

(number of) interaction layers {0, 1, 2, 3}

Interaction weights {0.1, 0.2, . . . , 0.6}

Trainable embeddings {False, True}

Hard negatives {no, yes}

Learning rate [10−4, 10−1]

DGMC

Parameter Choices

ψ1 / ψ2 dimension* [32, 64, . . . , 1024]

ψ1 / ψ2 (number of) GCN layers* {1, 2, 3, 4, 5}

ψ1 / ψ2 batch normalization* {False, True}

ψ1 / ψ2 layer concatenation* {False, True}

ψ1 dropout [0.00, 0.05, . . . , 1.0]

ψ2 dropout 0.0

Trainable embeddings False

(entity embedding) normalization {never, always-l1, always-l2}

Learning rate [10−3, 10−1]

GCN-Align*

Parameter Choices

Model output dimension [32, 64, . . . , (embeddingdimension)]

(number of) GCN layers {1, 2, 3}

Batch normalization {False, True}

Layer concatenation {False, True}

Final linear projection {False, True}

Dropout {0.0, 0.1, . . . , 0.5}

Trainable embeddings {False, True}

(entity embedding) normalization {never, always-l1, always-l2}

(weight) sharing horizontal {False, True}

Learning rate [10−3, 10−1]

use the official train-test split for all datasets, which reserves 70% of the align-
ments for testing. We split the remaining part into 80% train alignments and
20% validation alignments.
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We continued by tuning numerous model parameters (cf. Table 3) of all mod-
els on each of the datasets in Table 1 and each of the available initializations
described in Sect. 2.2 to obtain sufficiently well-tuned configurations. We used
random search due to its higher sample efficiency than grid search [1]. We addi-
tionally evaluate a baseline, which uses the GNN variant from DGMC without
the neighborhood consensus refinement, coined GCN-Align* due to its close cor-
respondence to [16], and also evaluate the zero-shot performance of the initial
node features.

For each tested configuration, we perform early stopping on validation H@1,
i.e., select the epoch according to the best validation H@1. Across all tested
configurations for a model-dataset-initialization combination, we then choose
the best configuration according to validation H@1 and report the test perfor-
mance in Table 4. We do not report performance for training on train+validation
with the final configuration due to space restrictions. We decided to report per-
formance when trained only on the train set to ensure that other works have
performance numbers for comparison when tuning their own models.

4.1 Results

Table 4 presents the overall results. We can observe several points.

Table 4. Results in terms of H@1 for all investigated combinations of datasets, models,
and initializations. Each cell represents the test performance of the best configuration
of hyperparameters chosen according to validation performance.

DBP15k (JAPE)

init Wu [18] Xu [20]

subset fr-en ja-en zh-en fr-en ja-en zh-en

Zero Shot 79.47 63.48 56.07 83.70 65.64 59.40

GCN-Align* 81.81 67.45 57.94 86.74 67.65 60.32

RDGCN 86.91 72.90 66.44 86.82 74.35 69.54

DGMC 89.35 72.17 69.98 90.12 76.60 68.76

OpenEA

init Sun [15]

subset d-w d-y en-de en-fr

Zero Shot 46.53 81.90 75.99 79.90

GCN-Align* 45.76 84.65 85.34 89.41

RDGCN 64.28 98.41 80.03 91.52

DGMC 51.29 88.60 88.10 89.40

WK3l15k

init BERT

subset en-de en-fr

Zero Shot 85.55 77.27

GCN-Align* 85.92 78.22

RDGCN 86.76 78.05

DGMC 84.08 73.92
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Zero-Shot Performance. Generally, there is an impressive Zero-Shot perfor-
mance, ranging from 39.15% for OpenEA d-w to 83.85% WK3l15k en-de. Thus,
even in the weakest setting, approximately 40% of the entities can be aligned
solely from their label, without any sophisticated method. Consequently, this
highlights that comparison against methods not using this information is unfair.
For DBP15k, we can compare the initialization from Wu et al. [17], used, e.g., by
RDGCN to the performance of the initialization by Xu et al. [7], used, e.g., by
DGMC. We observe that Wu’s initialization is 7–9% points stronger than Xu’s
initialization. For OpenEA d-w we obtain 39.15% zero-shot performance, despite
the original labels of the w side being meaningless identifiers. This is only due to
using attribute triples with a pre-defined set of “name” attributes, cf. Table 2.

Model Performance. When comparing the performance of both analyzed models,
we can observe that they have a clear advantage over both baselines in two
of three datasets. However, we cannot identify a single winner among them.
Although the performance of DGMC dropped compared to the results reported
originally9, it still leads by about 3–4 points on almost all DBP15k subsets.
Therefore, it confirms our observation that a smaller test set automatically leads
to better results. Furthermore, we can see that different initialization with entity
name also affects model performance, which especially applies to the ja-en subset
for DGMC or fr-en for GCN-Align*. RDGCN has a clear advantage on the
OpenEA subsets extracted from DBPedia with a margin of between 10 and 13
points on both subsets. Note that we significantly improved results of RDGCN
on the OpenEA dataset through our extensive hyperparameter search compared
to the original evaluation [15]. Interestingly, as can be seen in the next section,
the main reason is not the exploiting of information about different relations.
The WK3L15k dataset constitutes an interesting exception. The performance
of the DGMC method, which is supposed to be robust against noise due to
its correspondence refinement, is not better than the zero-shot results. While
DGMC and GCN-Align* can improve the results, the improvement by 1–2 points
does not look very convincing. From these results, we conclude that there exists
no silver bullet for the task of EA, and the method itself is still a hyperparameter.
At the same time, we see that the most realistic dataset poses a real challenge
for SotA methods.

4.2 Ablation: RDGCN

We additionally present the results of an ablation study for some model param-
eters of RDGCN on the OpenEA datasets in Table 5. For each presented param-
eter and each possible value, we fix this one parameter and select the best con-
figuration among all configurations with the chosen parameter setting according
to validation H@1. The cell then shows the validation and test performance of
this configuration. We highlight the best setting on the respective graph pair in

9 As a general rule, the results improve by 1–2 points when trained on train+
validation, and it is not going to change the picture.
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Table 5. Ablation results for RDGCN on OpenEA datasets. The setting used by
[17] is underlined. The first number is validation H@1, the second number test H@1.
Bold highlights the best configuration. Please notice that due to the specialties of EA
evaluation, the test and validation performance are not directly comparable [3].

Parameter Value Subset

d-w d-y en-de en-fr

Normalization Always 84.06/64.28 99.44/97.48 97.72/93.56 96.89/91.52

Initial 82.67/62.58 99.78/98.41 97.67/93.02 95.56/89.50

Never 78.39/61.77 99.72/98.53 98.11/80.03 95.44/90.14

GCN layers 0 57.33/50.79 92.33/83.83 98.11/80.03 92.22/86.94

1 73.33/56.66 99.33/98.15 96.00/91.63 94.50/90.49

2 78.39/61.77 99.56/98.16 97.72/93.56 96.89/91.52

3 84.06/64.28 99.78/98.41 97.00/92.18 95.44/90.14

Interaction layers 0 78.11/60.53 99.72/98.53 97.72/93.56 95.33/89.08

1 78.39/61.77 99.78/98.41 97.67/92.59 95.44/90.14

2 82.67/62.58 99.56/98.16 98.11/80.03 96.89/91.52

3 84.06/64.28 99.50/97.85 97.67/93.02 95.56/89.50

Trainable embeddings No 84.06/64.28 99.72/98.53 97.72/93.56 96.89/91.52

Yes 82.67/62.58 99.78/98.41 98.11/80.03 95.56/89.50

Similarity Cos 82.67/62.58 99.56/98.16 98.11/80.03 95.56/89.50

Dot 63.28/40.80 91.50/79.81 85.17/78.54 89.94/78.17

l1 (inv.) 77.89/60.78 99.50/97.85 93.78/88.96 94.06/88.69

l1 (neg.) 84.06/64.28 99.72/98.53 97.72/93.56 96.89/91.52

l2 (inv.) 75.28/60.20 96.72/92.06 95.06/90.13 94.44/89.60

l2 (neg.) 72.50/51.04 99.78/98.41 94.61/89.40 94.28/87.79

Hard negatives No 82.67/62.58 99.78/98.41 98.11/80.03 96.89/91.52

Yes 84.06/64.28 99.67/98.30 97.72/93.56 95.33/90.62

bold font. Note that the test performance numbers also coincide with the per-
formance reported in Table 4 for OpenEA. We make the following interesting
observations: for all but one graph pair, always normalizing the entity represen-
tations before passing them into the layers is beneficial. For d-y, where this is not
the case, the difference in performance is small. For the number of GCN layers,
we observe an increase in performance from 0 to 2 layers, and on some datasets
(d-w, d-y) even beyond. Thus, aggregating the entities’ neighborhood seems
beneficial, highlighting the importance of the graph structure. For the number
of interaction layers, which perform relation-aware message passing, we observe
that for two of the four subsets (d-y, en-de) the best configuration does not use
any interaction layer. However, the difference is small. None of the best config-
urations uses trainable node embeddings. The negative l1 similarity is superior
on all datasets, with most of the others being close to it. Using the dot prod-
uct seems to be sub-optimal, maybe due to its unbound value range. Regarding
hard negative mining, there is no clear tendency, but considering the hard neg-
atives’ expensive calculation (all-to-all kNN), its use might not be worthwhile.
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Another observation is that sometimes there is a huge gap between the test per-
formance for the best configuration according to validation performance and the
best configuration according to test performance. For instance, if we had selected
the hyperparameters according to test performance for en-de, we had obtained
93.53 H@1, while choosing them according to validation performance results in
only 80.03 H@1 – a difference of 13.5% points. This difference emphasizes the
need for a fair hyperparameter selection.

5 Conclusion

In this paper, we investigated state-of-the-art in Entity Alignment. Since we iden-
tified shortcomings in the commonly employed evaluation procedure, including
the lack of validation sets for hyperparameter tuning and different initializations,
we provided a fair and sound evaluation over a wide range of configurations. We
additionally gave insight into the importance of individual components. Our
results provide a strong, fair, and reproducible baseline for future works to com-
pare against and offer deep insights into the inner workings of a GNN-based
model.

We plan to investigate the identified weakness against noisy labelings in
future work and increase the robustness. Moreover, we aim to improve the usage
of relation type information in the message passing phase of models like RDGCN,
which only use them in an initial entity representation refinement stage. For some
datasets such as OpenEA d-y and en-de, optimal configurations did not consider
the relational information. However, intuitively, this information should help to
improve the structural description of entities. Potential improvements include
establishing a relation matching between the two graphs or modifying the mech-
anism used to integrate relational information.
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Abstract—In this work, we take a closer look at the evaluation
of two families of methods for enriching information from
knowledge graphs: Link Prediction and Entity Alignment. In
the current experimental setting, multiple different scores are
employed to assess different aspects of model performance. We
analyze the informativeness of these evaluation measures and
identify several shortcomings. In particular, we demonstrate that
all existing scores can hardly be used to compare results across
different datasets. Therefore, we propose adjustments to the
evaluation and demonstrate empirically how this supports a fair,
comparable, and interpretable assessment of model performance.

I. INTRODUCTION

Information retrieval systems often require information or-

ganized in an easily accessible and interpretable structure.

Frequently, Knowledge Graphs (KGs) are used as an infor-

mation source [9]. Consequently, the successful application

of new information retrieval algorithms often depends on

the completeness and quality of the information in KGs.

Link Prediction (LP) [18] and Entity Alignment (EA) [4]

are two disciplines with the goal to enrich information in

KGs. LP makes use of existing information in a single KG

by materializing latent links. The goal of EA is to align

entities in different KGs, which facilitates the transfer of

information between both or a fusion of multiple KGs to

a single knowledgebase. Both disciplines work by assigning

scores to potential candidates: LP methods compute scores for

the facts in question at inference time and EA methods assign

scores to candidate alignment pairs. Simple thresholding, or

also more advanced assignment methods [15] for EA, can

make use of these scores to predict new links or alignments.

During the evaluation, both, LP and EA, evaluate how the

”true” entity is ranked relative to other candidate entities.

Given a rank for each test instance, various metrics exist to

obtain a single number quantifying the overall performance of

an approach. In this paper, we analyze the whole evaluation

procedure and make the following contributions:

1) We describe the intuition behind current aggregation

scores and argue that they do not always provide a com-

plete picture of the model performance. We show that

this is an actual problem in the current evaluation setting,

which sometimes may lead to wrong conclusions.

Entities

a b c d

(b, r, a)

(a, s, b)

(a, s, c)

(a, s, d)

ground truth entity

candidate entity

filtered entity

Fig. 1: Visualization of candidate sets for the filtered evalua-

tion setting for link prediction (right side / tail prediction) on a

toy example with triples {(b, r, a), (a, s, b), (a, s, c), (a, s, d)}.

Depending on the presence of other triples with shared head-

relation pairs, the number of considered candidate entities

varies, and consequently the maximum possible rank. In this

example, there are three triples starting with (a, s). When, e.g.,

triple (a, s, b) is evaluated c and d are ignored. Since only two

entities remain, the rank cannot be larger than two.

2) We propose a new (adapted) evaluation score overcom-

ing the problems of existing metrics.

3) We empirically demonstrate its usefulness for comparing

Link Prediction results across datasets.

The remainder of the paper is structured as follows: In Sec-

tion II, we discuss the rank definition and aggregation metrics

summarizing individual ranks. In Section III, we point out the

problems of current evaluation and introduce an adapted aggre-

gation metric, which circumvents the shortcomings of existing

aggregations. Afterwards, in Section IV, we discuss related

work. Finally, in Section V, we demonstrate empirically the

effects of our adaptations and conclude in Section VI.

II. EVALUATION FRAMEWORK

A. Rank for Link Prediction and Entity Alignment

a) Link Prediction: Let a single knowledge graph be

represented as G = (E ,R, T ), where E is a set of entities,

R is a set of relations, and T ⊆ E ×R×E is a set of triples.

For the task of LP a set of given triples is usually divided in

Ttrain ⊆ T and Ttest = T \ Ttrain, where Ttest is used to

assess the model performance. A common evaluation protocol

is to use every triple (h, r, t) ∈ Ttest, and perform left-side

978-1-6654-1924-6/20/$31.00 ©2020 IEEE
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and right-side prediction. For the right-side prediction, the

score for every triple {(h, r, e) | e ∈ E} is computed and

the entities e are sorted in decreasing order by the predicted

scores. The rank of the ”true” entity t is computed as the

index in the resulting sorted list. The left-side prediction

follows analogously. The final rank of the triple is computed

as an average over both ranks, left-side and right-side. To

account for the possibility of multiple existing links for a

given head-relation / relation-tail pair, the filtered evaluation

setting was introduced [5]: When scoring tail entities for a

triple (h, r, t), all other entities t �= t′ ∈ E with triples

(h, r, t′) ∈ (Ttrain∪Ttest) are ignored, cf. Figure 1. Therefore,

the performance does not decrease when other entities are

scored higher than the currently considered one, as long as

they are also true. The filtered evaluation protocol is the

quasi-standard for link prediction on knowledge graphs, and

unfiltered scores are rarely reported.

b) Entity Alignment: For this task, there are two knowl-

edge graphs GL = (EL,RL, TL) and GR = (ER,RR, TR),
and a set of aligned entities A ⊆ EL × ER. Analogous to the

previous evaluation setting, the set of alignments is divided

into Atrain ⊆ A and Atest = A \ Atrain. The common

evaluation scheme [6], [7], [11], [21], [26]–[28], [30], [33],

[35], [37], [38] now computes scores for every candidate pair

{(aL, eR) | eR ∈ ER, ∃a
′
L

∈ EL : (a′
L
, eR) ∈ Atest}, and

determines the rank of the ”true” score of (aL, aR). The right-

side prediction is defined correspondingly. Notice, that only

those entities are considered for which there exists an aligned

entity from the other graph in the test part of the alignment.

B. Overall metrics

Given the set of individual rank scores I, the following

scores are commonly used as aggregation.

1) Hits @ k: The Hits @ k (H@k) score describes the

fraction of hits, or fraction of instances, for which the ”true”

entity appears under the first k entities in the sorted list:

H@k :=
|{r ∈ I | r ≤ k}|

|I|
. (1)

In the context of information retrieval, this metric is also

known as Precision@k. One of the advantages of this metric is

that it is easily interpretable. Since for many applications only

the first outputs are taken into account, it can help to directly

assess the method’s applicability to the use-case. However, this

metric does not distinguish the cases, where the rank is larger

than k. Thus, the ranks k + 1 and k + d, where d ≫ 1, have

the same effect on the final score. Therefore, it is less suitable

for the comparison of different models.

2) Mean Rank: The mean rank (MR) computes the mean

over all individual ranks:

MR :=
1

|I|

∑

r∈I

r. (2)

The advantage of the MR score is that it is sensitive to any

model performance changes. If the rank on the same evaluation

set becomes better on average, the improvement is always

reflected by the MR score. While the MR is still interpretable,

it is necessary to keep the size of the candidate set in mind to

assess the model performance and interpret its value: A MR of

10 might indicate strong performance for a candidate set size

of 1,000,000, but for a candidate set of only 20 candidates it

equal to the expected performance of a model with random

scorings.

3) MRR: The mean reciprocal rank is still often reported

along with other scores. It is defined as

MRR :=
1

|I|

∑

r∈I

1

r
. (3)

While the MRR is less sensitive to outliers and has the

property to be bounded in the range (0, 1], it was shown

that this metric has serious flaws and therefore should not

be relied upon [10]. However, especially in LP codebases,

the MRR is often used for early stopping. Presumably, the

main reason for that is the behavior of the reciprocal function:

While the Hits@k score ignores change among high rank

values completely, MR values changes uniformly among the

full value range. The MRR score, in contrast, is more affected

by changes of low rank values than high ones, but it does not

completely disregard them. Therefore, it can be considered as

soft a version of Hits@k.

III. OUR EVALUATION APPROACH

A. Adjusted Mean Rank

While the H@k score enables assessments of the model’s

suitability for a use-case, the MR allows a more fine-grained

comparison between different models. Both metrics are neces-

sary to get the entire picture of the model performance, e.g. the

evaluation in [31] demonstrates, that an excellent H@k score

does not necessarily coincide with a good MR. However, since

the MR score denotes the absolute position, it is not easily

interpretable. Therefore, the comparison between experiments

with different sizes of candidate sets is not easily possible with

implications for the evaluation of both tasks.

a) Link Prediction: The results on datasets with a dif-

ferent number of entities are not directly comparable. How-

ever, comparability of performance on different datasets is

important, for example, to assess the task complexity, choose

benchmarks, or investigate model generalization. For instance,

surprisingly good test scores can be an indication for test

leakage, see e.g. [29]. Intuitively, the number of candidates

is an important factor directly affecting the task complexity,

while it is not the only factor.

b) Entity Alignment: While the comparison of the per-

formance on different datasets is also difficult for EA, there is

the additional problem that only those entities are considered

as candidates, which occur in at least one test alignment.

Therefore, the number of candidates depends on the size of

the evaluation alignment set. Thus, results on the same dataset

are not comparable for different train/test splits or between

train and test sets. This can lead to various misinterpretations

of results. For instance, in [17], [33], the authors show an

experiment where they increase the training size step-wise



and evaluate the model on the rest of the data. Based on

the score improvement, they conclude that the model benefits

from additional training data. While this claim can still be

true, we argue that another evaluation is necessary to support

it. The necessary condition for such an evaluation is either

independence on candidate set size or the same candidate

set for all experiments. One possible solution would be to

use all entities in the KG as candidates analogous to LP.

However, this still would leave us with the unresolved problem

of performance comparison across datasets. Therefore, we

propose an adjustment to the MR score that assesses the model

performance independently of the candidate set size.

c) Adjusted Mean Rank Index: Since we are interested in

evaluating model performance, we start with the mean rank as

our starting point. To compute a rank in LP and EA evaluation,

we are given a list of scores S = [β1, . . . , βC ] for each test

instance with |C| = C, where C is a set of candidates. We

denote the score of the ”true” entity as α, and its position

in the decreasingly sorted list as rank(S, α). If α, β1, . . . , βC

are i.i.d and drawn at random, and therefore the element can

appear at any position with the same probability, the expected

rank is also the middle of the sorted array:

E[rank(S, α)] =
1

n

|S|
∑

i=1

i =
1

2
(|S|+ 1) (4)

Inspired by the Adjusted Rand Index (ARI) [22], we aim to

adjust it for chance. Therefore, we compute the expected mean

rank following the assumption that the individual ranks are

independent:

E [MR]
(2)
= E

[

1

n

n
∑

i=1

rank(Si, α)

]

=
1

n

n
∑

i=1

E [rank(Si, α)]

(4)
=

1

n

n
∑

i=1

|Si|+ 1

2
=

1

2n

n
∑

i=1

(|Si|+ 1)

Now, we define the adjusted mean rank as the MR divided by

its expected value:

AMR =
MR

E [MR]
=

2
∑n

i=1
ri

∑n

i=1
(|Si|+ 1)

Finally, to obtain a measure where 1 corresponds to optimal

performance, we transform the adjusted mean rank to adjusted

mean rank index (AMRI) as follows:

AMRI = 1−
MR− 1

E [MR− 1]
=

2
∑n

i=1
(ri − 1)

∑n

i=1
(|Si|)

(5)

Since ri − 1 ≤ |S| − 1 the AMR has a bounded value range

of [−1, 1]. A value of 1 corresponds to optimal performance

where each individual rank is 1. A value of 0 indicates model

performance similar to a model assigning random scores, or

equal score to every candidate. The value is negative if the

model performs worse than the constant-score model.

IV. RELATED WORK

A special property of the ranking evaluation is that the

candidate scores for each test instance are only required to

be comparable within a single candidate set. The scores of

candidates for another test instance may have a different value

range, but since they are not compared with the candidates of

other test instances, this does not affect the results. Therefore,

ranking evaluation is appropriate for a setting where a human

can evaluate model proposals. If, on the other hand, the

decision has to be made automatically, e.g. using a fixed

threshold, the classification setting is more appropriate. In the

following, we review related approaches and demonstrate that

classification and ranking evaluations are used interchange-

ably.

A. Triple Classification

In the LP task, we are given a pair of a head/tail entity

e ∈ E and relation r ∈ R, and rank a set of possible tail/head

entities e′ ∈ E according to the plausibility of the triple

(e, r, e′) / (e′, r, e). In contrast, for triple classification, we

aim at classifying whether a triple is true or false irrespective

of the plausibility of other triples [12], [16], [25], [32], [34].

Consequently, a global threshold for the score of triples is

required for the classification decision. If the threshold is

chosen manually, classification metrics such as accuracy or F1-

measure can be used. Otherwise, the area under the precision-

recall curve (PR-AUC), or receiver-operator curve (ROC-

AUC) are used to summarize the performance over all possible

decision thresholds. Link prediction and triple classification

are sometimes evaluated alongside to demonstrate the effec-

tiveness of novel knowledge graph embedding models across

different tasks [14], [19], [25].

B. Ontology Matching

Ontology matching or instance matching is closely related

to EA. Here we seek correspondences between instances

of different ontologies based on different data properties

of the instances. In contrast to EA, the vast majority of

ontology matching approaches are unsupervised, i.e. there

are no training alignments, but the instance features that are

used for matching [3], [13], [20], [24]. The similarity is

often fixed, e.g. to TF-IDF, and the methods optimize the

matching process by pruning the candidate match space and

selecting subsets of properties used for matching. Ontology

matching approaches are evaluated in a classification setting

with precision/recall/F1-measure as evaluation score [1].

V. EXPERIMENTS

In Table I, we compare the results of the LP evaluation in the

filtered setting on two datasets, for which we used evaluation

results from [31], and also computed results for MuRP [2]

using their published code1. Given the AMRI score we can

clearly conclude that all methods perform better than random.

We also can compare the performance of the methods across

1https://github.com/ibalazevic/multirelational-poincare



TABLE I: Link prediction results

dataset WN18RR FB15k-237
metric MR AMRI (%) MR AMRI (%)

DistMult [36] 7,000 65.8 500 93.0
ConvE [8] 4,412 78.4 241 96.6
TransE [5] 2,289 88.8 317 95.6
TransH [32] 2,126 89.6 219 97.0
R-GCN [23] 6,254 69.4 540 92.5
MuRP [2] 2,448 88.0 167 97.7

datasets and observe consistently worse performance on the

WN18RR dataset. This difference is not only due to the larger

number of entities in WN18RR (≈ 45k) compared to FB15k-

237 (≈ 15k), but has to be caused by a different mechanism,

e.g. the higher sparsity of WN18RR, or the richer relational

patterns in FB15k-237. We leave the detailed analysis of

dataset complexity for the future work.

VI. CONCLUSION

In this work, we address problems in the evaluation of

LP and EA models for knowledge graphs. We thoroughly

analyzed the current evaluation framework and identified sev-

eral vulnerabilities. We demonstrated their causes and effects

and showed how the problems can be mitigated by a simple

adjustment for chance.

REFERENCES

[1] Algergawy, A., Faria, D., Ferrara, A., Fundulaki, I., Harrow, I., Hertling,
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10 Conclusion

In this thesis, we presented advances in the area of KG enrichment, in particular, in
the tasks of LP and EA. In the following, we summarize our primary contributions and
outline promising future research directions.

• In Chapter 4, we proposed the novel task of active learning for EA. We formalized a
labeling framework and demonstrated that existing state-of-the-art heuristics from
classiőcation settings could not obtain satisfying performance. We further proposed
a novel active learning heuristic alongside several strong graph-centrality-based
passive learning techniques and empirically demonstrated superior performance, in
particular in the more relevant few label regime. Our methods thus allow to achieve
strong EA performance with fewer labels, and hence enable its application at scale,
or in settings where obtaining single matching entity pairs is expensive, e.g., since
it requires domain experts. As future research directions, we envision extension
to related graph matching tasks such as on road networks [72], or approximating
graph edit distance [135]. Moreover, additional advances in particular for methods
also making use of lingual features are of particular interest.

• In Chapter 5, we pioneered in the őeld of inductive LP with hyper-relational graphs
and proposed a novel set of benchmark datasets. We could demonstrate absolute
performance improvements of up to 6% Hits@10 compared to baselines without
the qualifying information. Our őndings thus enable LP with unseen entities to
make use of the valuable information comprised by qualifying information present
in modern rich KGs such as Wikidata, hence improving link prediction results in
downstream applications. Future research directions encompass extensions to allow
unseen relations and qualiőers, predicting qualiőer pairs for given base triples, or
extension from single-hop link prediction to the more complex query embedding.
For the latter, we already have proposed an approach in [8].

• In Chapter 6, we introduced the Python library PyKEEN. The library encodes our
understanding of individual components of KG embedding models, cf. Chapter 3,
and is beneőcial for users from different backgrounds ranging from a simple applica-
tion via a command-line interface to LP researchers developing their components,
as shown by e.g., [33, 35, 83]. The library is maintained and extended to this date,
with numerous additional components being added since its 1.0 release.

• In Chapter 7, we analyzed the effect of individual components of KG embedding
models, namely the interaction function, the loss function, the training assumption,
and the explicit use of inverse triples, on LP performance. Our results have a solid
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10 Conclusion

experimental foundation, and we provide several new state-of-the-art conőgurations.
We also analyzed differences between predicting different relational patterns and
conducted a large-scale reproducibility study. Our őndings allow practitioners to
select appropriate hyperparameters but also provide valuable insights for future
research on LP. We also envision learning to predict suitable conőgurations from
KG statistics and present relational patterns.

• In Chapter 8, we investigated the use of textual features in EA in a fair and
consistent setting. We showed that the features alone achieve surprisingly strong
zero-shot performance, fully explaining the observed alignment performance for some
noisy datasets. On other datasets, we demonstrated the beneőts of neighborhood
aggregation through GNN layers. Besides providing surprising insights into the
contribution of lingual features to the őnal EA performance, our őndings also
improve the intuition behind many of the relevant hyperparameters. In future
work, improving the robustness against noise is an important direction to use the
additional relational information better.

• In Chapter 9, we proposed a new rank-based metric that is adjusted for chance.
Due to its implicit normalization by the number of candidates, it is comparable for
settings with a varying number of candidates as encountered in őltered evaluation, or
EA evaluation with a varying test set size. Our method improves the interpretability
of rank-based evaluation and avoids pitfalls when dealing with different sizes of
candidate sets. Future work should focus on further robustness against outlier ranks,
e.g., caused by few false-positive triples. There have already been follow-up works
building upon our őndings [210].

Since machine learning for KGs is an extensive and active research őeld with numerous
applications, there is a great potential for future research. We envision research along the
following main axes for the future:

• In practice, KGs often do not remain static, but develop over time. This requires
models to be able to cope with unseen entities, i.e., to be inductive. We developed
approaches to this problem in the work presented in Chapter 5 for the task of LP.
For EA, we investigated the use of textual features in Chapter 8. While these
features in principle allow the models to be inductive, EA models have not been
evaluated in this setting yet. An interesting research question is whether the part
of the model processing the structural information, i.e., the GNN layers can be
trained to be transferable across graph pairs. Also self-supervised pre-training
of GNNs [109, 108] is a promising direction. Besides developing and improving
models capable of this task, uncertainty quantiőcation becomes a critical aspect. In
particular with unseen entities, questions may arise about the trustworthiness of
(link) predictions, crucial in safety-critical tasks where predicted links affect humans,
but also impactful if false links may only have economic impact.

• Another interesting research question is the relation between (large-scale) language
models and KG embedding models. Word embeddings from language models
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have shown to improve entity alignment (cf., e.g., Chapter 8) and link prediction
performance, e.g., [260]. Moreover, there are works on using KGs to improve
contextual word embeddings [142, 177, 259]. There are also indications that
language models can be used as KGs [221]. Also the automatic conversion from
text to KGs an vice-versa is a promising research direction [192].

• Besides single-hop LP, more complex and expressive query patterns are an interesting
direction. This task is often named query embedding, and in the recent year, we have
witnessed promising works in this direction [60, 183, 184, 10]. These complex queries
allow users to better describe their information needs directly. On the technical
side, directly answering complex queries within a model allows uncertainties of
individual steps to be implicitly taken into account in the latent representations, and
complex dependency patterns to be considered. In contrast to multi-step methods
that őrst perform link prediction to őnd (weighted) missing edges and then use a
query engine for exact query processing to retrieve the answer entities, such implicit
methods do not require calibrated scores and can also model latent knowledge for
which, for example, no explicit entity exists. For extending these queries to support
hyper-relational queries, we have already presented an approach in [8]. Further
research is needed to be able to handle larger query classes and to further increase
the efficiency and effectiveness of the methods.

• The comparable and fair evaluation of KG enrichment methods remains challenging.
While there are initiatives for standardized evaluation protocols [107], they do
not yet cover all use cases, e.g., for EA there are no large-scale datasets accepted
across the community. With our contributions towards a normalized ranking metric,
cf. Chapter 9, we have contributed to avoid false interpretation of results across
differently sized datasets. However, this is only one source of incomparability, and
other factors, such as different sources of side information in form of, e.g., labels
used for initialization, need to be marked more precisely. Proper ablation studies
are required to appropriately credit the individual components contribution towards
őnal performance. We presented such in Chapters 7 and 8 and hope to set a good
example.

In summary, we made contributions towards enabling EA at scale (Chapter 4), utilizing
hyper-relational information in inductive settings (Chapter 5), isolating effects of individual
LP components (Chapters 6 and 7) and label-based initializations EA (Chapter 8),
and evaluating more interpretable and comparable (Chapter 9). Our publications and
openly available codebases make us conődent that these research directions will be
successfully pursued in the future to enable further and improve applications with
relational information.
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