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Acute Myeloid Leukemia (AML)

1 Introductory summary

1.1 Acute Myeloid Leukemia (AML)

Acute Myeloid Leukemia (AML) is a malignancy of the hematological compartment characterized
by uncontrolled proliferation and impaired differentiation of myeloid progenitor cells.”? In AML,
malignant cells make up at least 20 % of total bone marrow nuclear cells and can be the predom-
inant cell population.® The expansion of AML cells leads to the suppression of healthy hemato-
poietic cells. Subsequent lack of healthy immunocompetent cells is the origin of significant immu-
nodeficiency in these patients. Hence, AML patients often suffer from potentially fatal infections.*
AML is the most common form of acute leukemia in adults, with a prevalence of 4.3 newly diag-
nosed cases/100,000 people per year.® The prevalence is increasing with age leading to a median
age of 68 years at diagnosis.® AML can be classified by several systems. The historic French
American British (FAB)-classification is based on morphological and cytochemical characteristics
of the malignant cells. The recently updated World Health Organization classification incorporates
morphologic, cytogenetic and genetic properties.>”® The European LeukemiaNet (ELN) risk strat-
ification system provides prognostic information for patients undergoing chemotherapy or hema-
topoietic stem cell transplantation and subdivides the patients in three risk groups predicting re-
lapse free and overall survival. %1°

With the analysis of genetics, negative prognostic markers have been identified and can now

serve as targets for novel therapeutic approaches.

Standard of care therapy remained unchanged for 40 years until 2017. It comprised of intensive
induction chemotherapy followed by post-remission therapy, at least for patients deemed fit for
such intensive treatment options."™~"® Induction chemotherapy, often called the “7+3” regimen,
consists of 3 days of an anthracycline and 7 days of cytarabine and leads to complete remission
(CR) in 40-65 % of patients > 60 years old and in 60-80 % of younger adults.®'3'4 In the last four
years several targeted therapies have been approved, leading to better standard of care therapy
options at least for subgroups of AML patients. These options will be explained in detail in chapter
1.3.

Nevertheless, the risk of relapse is high due to chemo-refractory leukemic cells. The goal of post-
remission therapy is to eliminate these cells.'® After induction therapy, patients with a favorable
genetic risk profile (according to ELN risk stratification) receive additional cycles of chemotherapy
called consolidation therapy. Patients with a non-favorable genetic risk profile are assessed for
eligibility of allogeneic stem cell transplantation (allo-SCT).516



Stem cell transplantation

1.2 Stem cell transplantation

Allo-SCT is the most effective anti-leukemic strategy in treatment of AML and the only curative
treatment option in relapsed/refractory (r/r) AML patients.’>'” As conditioning therapy, patients
receive high doses of chemotherapy with or without total body irradiation.'®'°® This treatment also
aims to reduce the leukemic burden and stops the recipients own hematopoiesis to allow engraft-
ment of the donor hematopoietic cells. The transplanted hematopoietic stem and progenitor cells
(HSPCs) reconstitute normal hematopoiesis.' The most important mechanism of the curative
effect of allo-SCT is the graft-versus-leukemia (GvL) effect mediated by the donors allo-reactive
T cells.’®20-22 These T cells can also attack normal recipient tissues, resulting in the so-called
graft-versus host disease (GvHD). The GvL effect has to be balanced against the GvHD risk.2324
Strategies to reduce GvHD are T-cell depletion of the transplant as well as treating the patient
with immunosuppressive drugs after transplantation.?32526 Unfortunately, by this, also the GvL

response can be dampened, leading to treatment failures and increased relapse rates.'%?’

Two options to reduce relapse rates are the infusion of donor T cells after the patient recovered
from conditioning toxicity or the administration of targeted therapies.?’~2° Both concepts will be

explained in more detail in the next chapters.



Targeted therapies in AML

1.3 Targeted therapies in AML

After almost no changes in standard of care therapy for AML patients for 40 years, the treatment
options started to change in 2017. Since then, several targeted drugs for the treatment of de-novo
and r/r AML have been approved by the Food and Drug Administration (FDA) and European
Medicines Agency (EMA). Drugs, indications, clinical effects, and date of approval can be found
in Table 1.

Fsm like tyrosine kinase 3 (FLT3), a transmembrane ligand-activated tyrosine kinase is frequently
mutated in AML. FLT3 mutations can be found in approximately 30 % of AML patients and occur
as either internal tandem duplication (ITD, ~25 %) or as point mutations in the tyrosine kinase
domain (TKD, 7-10 %).3-3* FLT3-ITD is a common driver mutation associated with poor progno-
sis and both mutations constitutively activate FLT3 kinase leading to proliferation and survival of
AML cells.33-3¢ By binding of FLT3 inhibitors like midostaurin or gilteritinib to the kinase, the re-

ceptor is dephosphorylated and thereby the oncogenic signalling is disrupted.3®

Further mutations that typically occur in AML patients are gain of function mutations in the iso-
citrate dehydrogenase (IDH) genes. Mutations in the two isoforms IDH 1 and IDH 2 occur in 20-
30 % of AML patients and result in accumulation of the oncometabolite R-2-hydroxyglutarate (2-
HG) and thereby inhibition of Deoxyribonucleic acid methylation and histone modification.3"4°
This contributes to AML pathogenesis and results in blocked hematopoietic cell differentiation.3”
R-2-hydroxyglutarate levels in patients can be used to assess the effectiveness of IDH-targeted

therapies.*'#?

Venetoclax, a selective B-cell ymphoma 2 (BCL-2) inhibitor in combination with chemotherapy is
the new standard for elderly or unfit patients with newly diagnosed AML.** BCL-2 which is known
to be upregulated in AML is an antiapoptotic protein that regulates outer membrane permeabili-
zation and thereby intrinsic mitochondrial apoptosis.** Binding of venetoclax to the BCL-2 protein
leads to the release of proapoptotic factors from the BCL-2 protein and restores the mitochondrial

apoptotic pathway.*°

The hedgehog (Hh) signalling pathway plays an important role in embryogenesis and fetal devel-
opment. Abnormal signalling leads to proliferation of leukemic stem cells (LSCs). Glasdegib in-

teracts with a transmembrane protein that regulates Hh signalling and inhibits the Hh pathway.

Gemtuzumab ozogamicin (GO) is an antibody drug conjugate consisting of a monoclonal antibody
directed against CD33, a commonly expressed AML target, and a cytotoxic derivative of cali-

cheamicin.4%46
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Table 1: Targeted therapies approved for the treatment of AML

FLT3 mutation Median OS: 74.7 mo (Mido) vs .
e de novo 25.6 mo (Pbo) 04/17 09/17

. . 0, i
e FLT3 mutation ¢ CRrate: 21.1 % (Gilt) vs 07/18 11/19 48

o 1/r 10.5 % (Cont)
e 0S:9.3 mo (Gilt) vs
5.6 mo (Cont)
e IDH2 mutation e CRrrate: 19.§ % 08/17 ) 49
o Ir e Overall survival: 8.8 mo
e ORR:38.8%
e IDH1 mutation e ORR:39.1% 07/18 38
o Ir e CR/CRhrate: 30.2 %
e IDH1 mutation e ORR:54.5% 05/19 ) 39
e de novo e CR/CRhrate:42.4 %
e >75 years old or e Median OS: 14.7 mo 1118 ) m
ineligible for inten- (Aza+Ven) vs 9.6 mo
sive chemotherapy (Aza+Pbo)
e de novo e Composite response rate:

66.4 % (Aza+Ven) vs
28.3 % (Aza+Pbo)
e Median duration of Composite
CR: 17.5 mo (Aza+Ven) vs
13.3 mo (Aza+Pbo)
e >75 years old or e CRrrate: 17.0 (LDAC+Glas) vs
ineligible for inten- 2.3 (LDAC)
sive chemotherapy e Median OS: 8.8 mo (LDAC+

11/18 06/20 50

e de novo Glas) vs 4.9 mo (LDAC)
e CD33" e ORR:27.5 mo (D+A+GO) vs
e De novo 21.8 mo (D+A) 09/17 | 0418 | 46
e intheUSalsor/r ¢ CRrate:70.4 (D+A+GO) vs
69.9 (D+A)
e EFS:17.3 mo (D+A+GO) vs
9,5 mo (D+A)

A: cytarabine; D: daunorubicin; Cont: control; CR: complete remission; CRh: complete remission with partial
hematologic recovery; CRi: complete remission with incomplete hematologic recovery; EFS: Event free sur-
vival; EMA: European Medicines Agency, FDA: Food and Drug Administration; LDAC: low dose cytarabine,
mo: months; ORR: overall response rate; OS: overall survival; Pbo: placebo; Ref: reference
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1.4 Donor lymphocyte infusion

Another way to increase or prolong the GvL effect is the aforementioned donor lymphocyte infu-
sion (DLI). In 1990 Kolb et al were the first to present DLI as a treatment for relapsed chronic
myeloid leukemia (CML) after allo-SCT.5' All three patients achieved (partly long-lasting) remis-
sion.®! With these results, DLI represented the first highly effective cellular immunotherapy.

In AML, however, DLI as individual therapy has only limited benefit. This is most likely based on
the lower impact of GvHD-independent GvL in AML as compared to CML.52

Although the overall response rate is 34 % of patients with relapsed AML after allo-SCT, 2-year
overall survival is less than 20 %.5 Due to the fast regrowth of leukemic cells at relapse, a DLI
must on the one hand be delivered early but on the other hand increases treatment related mor-
bidity and mortality.?” DLI cannot only be used as a therapeutic strategy, also prophylactic or

preemptive studies have been performed.?®%*

One of the biggest downsides of DLI therapy is the high incidence of GvHD (up to 50 % of patients
develop or show relapse of a pre-existing GvHD).5%%¢ Several ways to overcome this are currently
being tested in preclinical or clinical studies. Options include the transplantation of natural killer
(NK) cells instead of T cells or the depletion of CD8* T cells from the T cell product.5”-5°

Other studies try to genetically manipulate the T cells to be able to turn off T-cell proliferation in
case of severe GvHD or to direct them against tumor antigens.®0-63

There are also efforts to separate host-reactive from leukemia-reactive T cells to be able to solely

transplant antileukemic T cells.84-6¢

Another method utilizing the anti-leukemic potential of T cells currently being investigated in clin-
ical studies is the use of T-cell recruiting antibodies to direct the patients’ own T cells or donor T
cells against the leukemic cells. These cannot only be administered in the context of DLI but also

as an independent therapy.
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1.5 Bispecific T-cell engaging antibodies

Bispecific T-cell engaging antibodies (BiTEs) comprise 2 binding sites, one to bind a tumor anti-
gen and the other to bind T cells.®”-%° There are several different formats of bispecific T-cell en-

gaging antibodies, depicted in Figure 1.7°

Figure 1: Different T-cell engaging; (A) Bispecific tandem fragment variable format (BiTE,), (B) Dual Affinity Re-targeting
Antibody (C) Bispecific single-chain Fvimmunofusion, (D) Bispecific tandem diabodies (TandAb); (E) Duobody; (F) Chem-
ically conjugated Fab (fragment antigen binding).”

With the help of bispecific antibodies, T cells can be recruited to target antigen expressing cells
irrespective of their TCR specificity.”" In principle, by binding to the tumor antigen and the T cell
simultaneously, a cytolytic synapse is formed, and the T cell secretes granzyme B, perforin and

cytokines. This induces the lysis of the tumor cell, and the activated T cells start to proliferate.”>"3

Proof of efficacy of BiTE antibodies (Figure1A) was shown in 2014. Blinatumomab, a bispecific
tandem fragment variable format antibody (BiTE) which is engineered by combining the VL and
VH domains of a monoclonal antibody into a single chain fragment variable (scFv) specific to CD3
linked to a second scFv specific to the target antigen CD19, was the first bispecific antibody con-
struct to be approved by the FDA. It is indicated for the treatment of r/r B-cell acute lymphoblastic
leukemia (ALL))"*"®. Later, approval by the EMA (2015) for r/r disease as well as FDA and EMA
(2018 and 2019 respective) approval for minimal residual disease (MRD) followed. In a phase |l
trial, CR was achieved in 44 % of r/r patients after two cycles of Blinatumomab (CR + CR with

incomplete hematologic recovery (CRi) + CR with partial hematologic recovery (CRh)’®. Even



Bispecific T-cell engaging antibodies

better response rates were achieved in MRD patients (78 % achieved complete MRD re-

sponse)’’.

The molecule was translated into the setting of AML by exchanging the target-antigen specific
CD19 binding site with a CD33 binding site. AMG330, the CD33xCD3 bispecific antibody manu-
factured by AMGEN, is under clinical investigation since 2015 (NCT02520427), and the clinical
trial currently is still in the phase of dose escalation. In the latest available reports on the ongoing
trial, three of 42 evaluable patients achieved a CR, four patients achieved CRi and in one patient,

a morphologic leukemia free state was the best response to therapy.’80

Due to the small size of approximately 55 kilodalton (kDa), AMG330 has a short half-life of about
1 -4 hours and is renally excreted®'-83, By adding a fragment-crystallizable (fc) domain to the
antibody construct the size is doubled, leading to a slower renal excretion of about 7 days®'. The
larger size might also allow for a once weekly intravenous (iv) infusion instead of a continuous iv

infusion.8

The half-life extended CD33xCD3 bispecific antibody AMG673 is under clinical investigation since
2017 (NCT03224819) and preliminary results show 1/27 evaluable patients achieved a CRi and
6 showed a 250 % blast reduction compared to baseline. In total 44 % (12/27) show a decrease
in bone marrow (BM) blasts.?5# Dose escalation is also ongoing for this molecule. So far, treat-
ment with CD33 directed bispecific antibodies falls short of expectations. Therefore, there are
several strategies to enhance the efficacy of bispecific antibodies. Other antibody formats as well

as other target antigens are under evaluation.
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1.6 Target antigens for the treatment of AML

The identification of the most suitable tumor-associated target antigen to be used with bispecific
antibodies is the greatest challenge in establishing novel immunotherapeutic treatment options in
AML. To minimize immune related adverse events (irAE), preventing on-target off-leukemia tox-
icity is of utmost importance. Therefore, the optimal target antigen should be expressed to a high
degree on AML bulk cells and LSCs but not on healthy cells, particularly not on hematopoietic
stem cells (HSCs).?"

CD33 is the most prominent target antigen that has been evaluated as an AML target using sev-
eral different antibody formats over the past decade. Currently, there are six different clinical trials
for CD33 targeting bispecific antibodies ongoing (NCT03915379, NCT03224819, NCT03647800,
NCT02520427, NCT03144245, NCT03516760).

The first bispecific antibody for the treatment of AML which reached clinical phase | was the al-
ready mentioned AMG330. AMG330 and the half-life extended AMG673 both target CD33, which
is expressed on more than 90 % of AML bulk cells and LSCs®8385 However, CD33 is also highly
expressed on healthy HSPCs, granulocytes, monocytes and resident macrophages in the liver,
lung and kidney®®. In a phase | clinical trial with AMG330 (NCT02520427), the most commonly
observed treatment related adverse event was cytokine release syndrome (CRS) with a preva-
lence of 67 %.7>% CRS can be mitigated by a low lead-in dose followed by several dose steps
and the administration of corticosteroids or an interleukin 6 receptor agonist.®*-*2 As a potential
correlation of myelotoxicity mediated by activity against healthy hematopoietic cells, 20 % (8/40)
of patients treated with AMG330 experienced febrile neutropenia grade 3 or 4.7 To overcome
potential on-target off-leukemia effects, like myelotoxicity, other target antigen are currently under

clinical investigation.

CD123

The Interleukin 3 receptor CD123 is expressed homogeneously at high levels in bulk AML cells
and in 75 % of CD34*/CD38" leukemic stem/progenitor cells, whilst healthy CD34*/CD38  HSCs
lack CD123 expression.**® Compared to CD33, CD123 expression is higher at relapse.® Trans-
planting CD34*/CD38/CD123" cells into immunodeficient mice induces outgrowth of AML which
makes CD123 a marker for LSCs and a possible target to prevent relapse®.

CD123 as a target for T-cell recruiting antibodies is currently being evaluated in several clinical
trials either alone (NCT02152956, NCT02730312, NCT03594955 and NCT02715011) or in com-
bination with cytarabine (NCT04158739) or anti Programmed cell death protein 1 (PD-1) check-
point blockade.®”

19 % (5/27) patients treated with 500 ng/kg/day of the dual-affinity re-targeting antibody Flo-
tetuzumab (NCT02152956) achieved a CR/CRIi. Four CR/CRi were among patients with primary
chemotherapy refractory AML (n=13) while no relapsed patient achieved CR/CRi.%%° During ther-
apy 49/66 (77 %) of treated patients showed CRS grade 3 and 4.%° Another antibody construct

8
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directed against CD123, XmAb14045 (NCT02730312) is under clinical evaluation since 2016 and
preliminary results showed a CR/CRi rate of 14 % (7/51) treated at 0.75 pg/kg. 62 of all 106
treated patients (58 %) encountered CRS with 15 % grade 3 or 4.7

CLEC12A/CLL-1

C-type lectin domain family 12 member A (CLEC12A) is expressed on almost all immune cells of
the myeloid lineage (except erythrocytes) and their precursor/progenitor cells.’®" 61.8 % granulo-
cyte and monocyte precursor cells as well as 41.6 % progenitors show high to medium CLEC12A
expression, whereas only 2.5 % of healthy CD34*/CD38- HSCs express CLEC12A.7%2 CLEC12A
is highly expressed on primary AML (77.5 — 92 %) and CD34*/CD38/CLEC12A* AML cells have
the potential to induce leukemia in non-obese diabetic/severe combined immune deficiency
(NOD/SCID) mice."02-104

CLEC12A is currently being investigated as an AML target in one clinical trial using a bispecific
antibody (NCT03038230). Preliminary results show a blast reduction of > 50 % in four of 26 eval-

uable patients while one of these patients achieved a morphological leukemia free state.’®

CD135

CD135 is a class Il receptor kinase, which is also called FLT3. CD135 is important in hematopoi-
esis as it is a key factor for proliferation and differentiation of HSPCs and HSCs into monocytes,
dendritic cells (DCs), B and T cells.'%-1%8 As already mentioned, it is also involved in leukemic
cell survival and proliferation.’®®

In our study “Characterization of a novel FLT3 BiTE molecule for the treatment of acute myeloid
leukemia”, we found that FLT3 expression is negligible on HSPCs and completely absent in
HSCs.%° 78 % AML bulk cells as well as LSCs express CD135 with no difference between initial
diagnosis and relapse.®® That makes FLT3 a promising target antigen for the treatment of AML.
CD135 as target for bispecific antibodies is currently being investigated in a clinical trial
(NCT03541369), utilizing the half-life extended AMG427 presented in our work.%°

A summary of our validation of FLT3 as a target antigen and evaluation of the FLT3xCD3 BiTE
antibody for the treatment of AML is given in chapter 1.8.1.
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1.7 Novel T-cell engaging antibodies

Bispecific T-cell engaging antibodies, as explained in chapter 1.5, show several limitations which
can impair their anti-tumor activity.

As already mentioned, these antibodies have a short in-vivo half-life, resulting in poor retention
times in the target tissue. Additionally, the specificity of the monovalent binding might not be
strong enough to target cancer cells, as healthy cells also express the targeted antigens.”>81-83
Furthermore, monospecific targeting can result in downregulation of the antigen due to escape

mutations.'"°

To overcome these limitations, several concepts to improve bispecific antibodies have been
designed:

One concept is to fuse a fc domain to the antibody construct to increase its size to about
100 kDa.®* This results in a slower renal excretion of the antibody.

We used such an half-life extended bispecific antibody construct together with a conventional
bispecific antibody construct in our first study “Characterization of a Novel FLT3 BiTE Molecule

for the Treatment of Acute Myeloid Leukemia®“, which will be presented in chapter 1.8.1.

A second concept are tandem diabodies (TandAb, Figure 1D) with bivalent binding for both anti-
gens, with a molecular weight of about 114 kDa.'"" With the increased size and bivalent binding,
TandAbs show improved half-life and binding affinity compared to conventional single chain anti-

body fragments.''?

Another concept are dual-specific single chain triplebodies as developed by Roskopf et al. in
2014. 73 Triplebodies consist of three scFvs connected via a flexible (GlysSer)s linker. Due to a
size of about 85 - 95 kDa triplebodies show an increased plasma half-life of about 4 hours in mice,
which can be translated to approximately 1 day in humans.” With these constructs, monospecific
bivalent targeting or bispecific bivalent targeting is possible.''® The bispecific bivalent antibody
constructs mediate preferential lysis of double positive over single positive target cells.'®

We used this antibody concept in our second study “Bifunctional PD-1 x aCD3 x aCD33 fusion
protein reverses adaptive immune escape in acute myeloid leukemia”, where we generated a
dual function checkpoint inhibitory T cell-engaging (CiTE) antibody construct. This construct com-
bines targeting of AML cells via CD33 with locally restricted PD-1 immune checkpoint blockade
to overcome the reported upregulation of PD-1 on T cells and programmed cell death 1 ligand 1
(PD-L1) on primary AML cells after ex-vivo coculture with bispecific antibodies ''4'"® This study

will be presented in detail in chapter 1.8.2.
The progress in the field of bispecific antibody development lets me face the future optimistically.

Hopefully, there will soon be a transition in treatment options for AML patients from chemotherapy

and allo-SCT to bispecific antibodies with increased response rates and decreases relapse rates.

10
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1.8 Summary of publications

1.8.1 Publication I:
Characterization of a Novel FLT3 BiTE Molecule for the Treatment of
Acute Myeloid Leukemia®®

In this first publication, we evaluated FLT3 as a target for the treatment of AML. We characterized
two bispecific antibodies, a canonical version and one version with half-life extended properties
(AMGA427), in-vitro, in-vivo and ex-vivo for the treatment of AML. Expression analyses of FLT3 on
318 AML patient samples at initial diagnosis or relapse and 36 Healthy donors (HDs) were per-
formed. 78 % AML bulk cells and 79 % AML LSCs showed expression of FLT3, with significantly
lower expression on HD HSPCs and HD HSCs. FLT3 expression was comparable regardless of
disease status (initial diagnosis or relapse) and mutational status (FLT3-ITD mutated or FLT3-
ITD wildtype). LSCs of patients with a high allelic frequency (>0.5) for FLT3-ITD showed signifi-
cantly higher expression of FLT3 than LSCs from patients with a low allelic frequency. Further
characterization of healthy human blood cell populations showed absence of FLT3 expression on
T, B and NK cells, plasmacytoid DCs, conventional DCs and neutrophils. FLT3 ribonucleic acid
(RNA) expression analysis from three publicly available databases (GTEx, Amgen-constructed
and XpressWay) revealed low RNA expression of FLT3 in brain, nerve/ganglia, small intestine,
kidney, lung, pancreas, spleen, spinal cord, and testis. Immunohistochemistry staining of all tis-

sues (but spinal cord) revealed cytoplasmic expression of FLT3 without surface expression.
After confirming the suitability of FLT3 as a target antigen for the treatment of AML with low risk

of on-target off-leukemia toxicities, two different FLT3-BiTE antibody constructs (Figure 2) were

tested for their ability to induce T-cell-dependent cellular cytotoxicity (TDCC).

Experimental FLT3 BiTE® AMG 427 (FLT3 HLE BIiTE®)

A 0

Figure 2: Schematic figure of the canonical FLT3-BiTE (left) and the half-life extended (HLE) FLT3-BiTE (right)®°

Half life extension Anti-FLT3 scFv

(HLE) moiety

Both antibodies bound human CD3 and CD135 with concentrations in a nanomolar range and
induced high cytotoxicity against FLT3 expressing cell lines in coculture with HD T cells. Cytotox-

icity was accompanied by upregulation of CD69 and CD25 and secretion of interferon gamma
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(IFNy) and tumor necrosis factor alpha by the T cells. No such effect was observed in cocultures
of HD T cells with FLT3 negative cell lines. FLT3 positive cell lines were lysed irrespective of their
FLT3-ITD mutational status. The presence of clinically relevant concentrations of soluble FLT3 or
soluble FLT3 ligand (FLT3L) reduced the potency of both molecules but not the maximum killing
capacity. With these results we conclude that both antibody constructs target FLT3 positive cells
specifically and can exert maximum cytotoxicity even in presence of physiological concentrations
of soluble FLT3 and soluble FLT3L.

After in-vitro evaluation of both antibody constructs, in-vivo studies were performed. Both anti-
bodies were tested in mouse models. In an admix model with human T cells and MOLM-13 AML
cells, the canonical BiTE molecule inhibited 90 % of tumor growth compared to a control mole-
cule.

AMG427 was evaluated in an orthotopic mouse model with either MOLM-13 or EOL-1 AML cells
and human T cells. AMG427 prolonged the survival of the treated mice significantly in both setups.

Next, pharmacokinetic (PK) and pharmacodynamic (PD) studies in cynomolgus monkeys were
performed. A 16-day cynomolgus monkey study with the canonical BiTE molecule showed an
85 - 92 % reduction of FLT3 transcript levels in comparison to non-treated animals.

A 8 day PK/PD study with AMG427 revealed a terminal half-life of 33 - 50 hours and showed
upregulation of CD69 on T cells and cytokine secretion. In BM, FLT3 transcript levels were re-
duced by 85 - 97 %. At the end of the study, numbers of peripheral blood (PB) monocytes were
reduced. The FLT3 transcript level reduction in BM can be explained by the direct killing of FLT3
expressing progenitor cells in the BM. Reduction of monocytes and FLT3 transcript levels in PB

are most likely due to lack of replenishment after elimination of progenitor cells in the BM.

In our ex-vivo experiments, 14 AML patient samples were analyzed in an autologous cytotoxicity
assay over the time of 9 days with residual patient T cells in presence of the canonical BiTE
molecule. The effector to target ratio ranged between 1:2.5 - 1:74. After 9 days, the patients could
be classified into 3 groups according to their response. Group one (5 patients) showed continu-
ously increasing cytotoxicity, the second group (4 patients) showed initial cytotoxicity followed by
sustained or decreased killing and the remaining 5 patients showed transient or no cytotoxicity.
Most patients achieving a response (group 1 and 2) had higher E:T ratios (>1:38) and/or high
levels of FLT3 surface expression (MFI ratio >2) compared to non-responders.

As studies with AMG427 in cell lines showed upregulation of PD-1 on T cells leading to a decrease
in cytotoxicity, combinatorial studies with AMG427 and PD-1 blockade were performed. The com-
bination of both molecules increased the maximum killing by 12 %. All our findings together war-
rant the clinical investigation of the FLT3 BiTE molecule which is currently being carried out in a
phase | clinical trial with the half-live extended AMG427 (NCT03541369).
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| performed, analyzed, and evaluated the target antigen expression analysis of the 218 patient
samples as well as the in vitro and ex vivo functional assays with cell lines and patient samples.
Rebecca Goldstein, the other co-senior author of this study, performed, analyzed, and evaluated
the healthy non-hematopoietic tissue analysis, mouse studies and cynomolgus monkey studies.

We both contributed to conceptualization, draft-writing, revision, and editing.
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1.8.2 Publication lI:
Bifunctional PD-1 x aCD3 x aCD33 fusion protein reverses adaptive
immune escape in acute myeloid leukemia’’®

In the study entitled “Bifunctional PD-1 x aCD3 x aCD33 fusion protein reverses adaptive immune
escape in acute myeloid leukemia” published by Herrmann et al in Blood in 2018 we developed
and validated a novel bifunctional CiTE antibody for the treatment of AML. Previous studies
showed upregulation of the inhibitory checkpoint molecules PD-1 on T cells and PD-L1 on AML
cells upon coculture with AMG330.""411® Monotherapy with checkpoint inhibitors in hematological
malignancies show only limited benefit.'""” We hypothesize that by the generation of a CiTE anti-
body combining CD33 targeting with PD-1 checkpoint blockade we can combine the benefits of
both treatment strategies. Figure 3 shows schematic drawings of the CiTE molecule and the two

control antibodies: single-chain triplebody (sctb) and BiTE-like.

CiTE BiTE-like

GqS)
O o | s ] (He)lERDE ) Sk ey WSl priviey (He[oCD3: —{uCD33]

Figure 3: Schematic drawing of CiTE, sctb and BiTE-like molecules

The CIiTE molecule consists of a PD-1 extracellular domain with low affinity to PD-1 fused to an
aCD3xaCD33 BiTE-like molecule. In the sctb antibody, the extracellular domain of PD-1 was
exchanged with a high affinity aPD-L1 scFv.

In a first step, we performed binding studies which show similar binding of the CiTE and sctb
molecule to CD33*PD-L1* AML cell lines and HD T cells. As expected, the aPD-L1 scFv showed
a higher binding to PD-L1 compared to the PD-1ex domain.

In a next step, we performed T-cell activation assays. HD T cells upregulate the activation markers
CD69 and CD25 in presence of PD-L1*-MOLM-13 cells and CiTE, sctb or BiTE-like antibody
constructs. In addition, T-cells in coculture with PD-L1*-MOLM-13 cells and CiTE or sctb showed
significantly increased secretion of the proinflammatory cytokine IFNy, and granzyme B compared
to T cells in coculture with PD-L1*-MOLM-13 cells and the BiTE-like molecule. In all conditions,
T-cell activation was accompanied by PD-1 upregulation.

Cytotoxicity experiments with MOLM-13 or OCI-AMLS3 cells revealed strong lysis mediated by HD
T cells in presence of CiTE and sctb, which could be significantly increased by genetically modi-

fying the target cells to express PD-L1.
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Cytotoxicity experiments with PD-L1*-MOLM-13 and CD33*/PD-L1*-BaF3-cells confirmed the re-
sults. Increased target cell lysis was accompanied by increased T-cell proliferation. Mixed target
cell assays with CD33*/PD-L1* and CD33/PD-L1* cells showed dose dependent elimination of
both cell lines for the sctb and preferential lysis of CD33*/PD-L1" cells for the CiTE molecule. This
demonstrates that the low affinity PD-L1ex domain is not able to redirect T cells to CD33/PD-L1*

cells.

In the next step, the molecules were evaluated in ex-vivo cytotoxicity assays with HD T cells and
primary AML cells. The CIiTE antibody was able to increase lysis of primary AML cells in 7 of 8
patients compared to the BiTE-like molecule. The sctb showed similar or higher lysis compared
to the BiTE-like molecule in all 8 patients. Both molecules led to PD-L1 upregulation on primary
AML cells and increased IFNy secretion compared to the BiTE-like molecule. This effect was

stronger with the sctb molecule.

To validate the ex-vivo findings in-vivo we performed mouse studies. PD-L1*-MOLM-13 cells were
injected into NOD/SCID mice. After engraftment, in-vitro activated HD T cells and antibody con-
structs were transferred. After 9 days complete eradication of AML cells was seen with the CiTE,
sctb and BiTE-like molecules. As human and mouse PD-L1 are cross-reactive, we were able to
analyze the potential targeting of non-AML cells. Mice treated with the sctb lost body weight com-
pared to the other groups. This was accompanied by an upregulation of PD-1 on the human CD4*
and CD4 T cells in BM and spleen. This effect is most likely due to the redirection of T cells to
PD-L1" murine cells by the sctb and is accompanied by irAEs causing weight loss. We conclude
that the CiTE antibody effectively targets CD33"* cells without systemic PD-L1 targeting and

thereby reducing irAEs and counteracting immune escape based on PD-L1 upregulation.

| performed and analyzed the ex-vivo experiments with primary AML cells.
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26 and Tara Arvedson®

Despite advances in the treatment of acute myeloid leukemia
(AML), novel therapies are needed to induce deeper and more
durable clinical response. Bispecific T-cell Engager (BiTE) mole-
cules, which redirect patient T cells to lyse tumor cells, are a
clinically validated modality for hematologic malignancies. Due
to broad AML expression and limited normal tissue expression,
fms-related tyrosine kinase 3 (FLT3) is proposed to be an optimal
BiTE molecule target. Expression profiling of FLT3 was performed
in primary AML patient samples and normal hematopoietic cells
and nonhematopoietic tissues. Two novel FLT3 BiTE molecules,
one with a half-life extending (HLE) Fc moiety and one without,
were assessed for T-cell-dependent cellular cytotoxicity (TDCC) of

FLT3-positive cell lines in vitro, in vivo, and ex vivo. FLT3 protein

Introduction

Newly approved targeted therapies and cytotoxic agents (1) provide
opportunities to improve treatment of acute myeloid leukemia (AML),
a disease characterized by low survival rates (2). However, these
therapeutics are approved for only certain patient subsets, and treat-
ments to benefit broad patient populations are still needed. To date,
the most efficacious treatment consists of intensive chemotherapy
followed by allogeneic hematopoietic stem cell transplantation (HSCT;
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was detected on the surface of most primary AML bulk and
leukemic stem cells but only a fraction of normal hematopoietic
stem and progenitor cells. FLT3 protein detected in nonhemato-
poietic cells was cytoplasmic. FLT3 BiTE molecules induced TDCC
of FLT3-positive cells in vitro, reduced tumor growth and increased
survival in AML mouse models in vivo. Both molecules exhibited
reproducible pharmacokinetic and pharmacodynamic profiles
in cynomolgus monkeys in vivo, including elimination of FLT3-
positive cells in blood and bone marrow. In ex vivo cultures of
primary AML samples, patient T cells induced TDCC of FLT3-
positive target cells. Combination with PD-1 blockade increased
BiTE activity. These data support the clinical development of an
FLT3 targeting BiTE molecule for the treatment of AML.

refs. 3, 4). The potent antileukemic effect of HSCT is driven by
recognition and elimination of allogeneic antigens on chemoresistant
leukemic cells by donor T cells. HSCT, as well as donor lymphocyte
infusions, which frequently result in durable complete remissions (3),
demonstrate the potential for therapies driven by T-cell cytotoxicity (4).
However, this regimen may not be an option for all patients due to
comorbidities and the high morbidity and mortality rates associated
with graft-versus-host disease, highlighting the urgent need for novel
therapies (4).

A promising T-cell-based therapeutic approach is to redirect a
patient's own T cells to eliminate leukemic cells. This strategy can be
accomplished with bispecific T-cell engaging (BiTE) molecules.
BiTE molecules consist of a single chain variable fragment (scFv)
against a cell surface-expressed tumor-associated antigen (TAA)
linked to an scFv against the T-cell coreceptor CD3. Clinical proof
of concept for this modality was demonstrated by the CDI19-
directed BiTE molecule blinatumomab, which is approved for B-
cell precursor acute lymphoblastic leukemia. CD19 is an ideal target
for a BiTE molecule because it is broadly expressed on B-cell
malignancies, its off-tumor expression is limited to normal B cells,
and patients can tolerate prolonged B-cell depletion. The successful
translation of BiTE molecules to AML therapy requires identifica-
tion of a suitable cell surface antigen, one that is broadly and
selectively expressed by leukemic cells with limited expression on
normal tissues.

fms-Related tyrosine kinase 3 (FLT3, CD135) is a lineage-associated
growth factor that was previously reported to be expressed on AML
blasts and LSCs (5, 6). Expression of FLT3 on normal hematopoietic
cells has been reported to be restricted to a subset of hematopoietic
stem and progenitor cells (HSPC) in the bone marrow (BM; ref. 7).
These data suggest a favorable expression profile for targeting FLT3

American Association
for Cancer Research

AAC

AACRJournals.org | 1875

16



Publication |

Published OnlineFirst June 9, 2020; DOI: 10.1158/1535-7163.MCT-19-1093

Brauchle et al.

with a BiTE molecule. Mutations in the intracellular portion of
FLT3, resulting in constitutive activation, occurring as either
internal tandem duplication or point mutations in the tyrosine
kinase domain have been identified in approximately 25% or 7% to
10% of patients with AML, respectively. (8-10). Tyrosine kinase
inhibitors (TKIs) that target the FLT3 kinase domain were recently
approved for patients with mutant FLT3 and others are undergoing
clinical evaluation (11-13). FLT3 TKIs are active primarily in the
setting of mutant FLT3, whereas BiTE molecules recognize an
extracellular protein epitope and bind FLT3 regardless of muta-
tional status.

Here, FLT3 was evaluated as a target for BiTE molecule therapy
for the treatment of AML, including expression analysis on disease
and normal cells, and two novel FLT3 BiTE molecules were
characterized in vitro, ex vivo, and in vivo. Cell surface FLT3
protein expression was observed on most primary AML (pAML)
patient bulk and LSC samples, irrespective of FLT3 mutational
status. Importantly, comparable FLT3 protein expression was
observed on patient samples collected at the time of both initial
diagnosis and relapse, suggesting a FLT3 BiTE molecule could
provide benefit to patients across multiple lines of therapy. FLT3
transcript and protein expression was rigorously evaluated in a
panel of normal human tissues, and cell surface FLT3 protein was
detected only on a portion of HSPCs and on rare, scattered cells in
the tonsil. FLT3 protein was also detected in some non-hemato-
poietic tissues, including cerebellum and pancreas; however, exten-
sive characterization revealed that the protein was cytoplasmic.
Because FLT3 BiTE molecules selectively bind to cells expressing
cell surface FLT3, cells expressing cytoplasmic FLT3 protein would
not be expected to be depleted.

Two FLT3 BiTE molecules were generated and evaluated: an
experimental FLT3 BiTE molecule comprised an anti-CD3 scFv and
an anti-FLT3 scFv, and a FLT3 half-life extended (HLE) BiTE molecule
(AMG 427) comprised an anti-CD3 scFv fused to an Fc moiety and a
unique anti-FLT3 scFv. Because of the size of the experimental FLT3
BiTE molecule, rapid clearance by glomerular filtration is expected to
result in a short serum half-life, requiring continuous intravenous
(cIV) infusion to maintain an active concentration in vivo. The larger
AMG 427 was designed to have an extended serum half-life relative to
the experimental FLT3 BiTE molecule. Both BiTE molecules induced
potent and target-specific T-cell-dependent cellular cytotoxicity
(TDCC) against AML cell lines in vitro, inhibited tumor growth and
provided a survival advantage in vivo in xenograft models and
exhibited reproducible pharmacokinetic (PK) and pharmacodynamic
(PD) profiles in cynomolgus monkeys. The experimental FLT3 BiTE
molecule induced TDCC of pAML samples ex vivo. Increased in vitro
TDCC was observed by combining AMG 427 with an anti-PD-1
antibody. These data demonstrate that FLT3 BiTE molecules are
capable of inducing TDCC of FLT3-expressing cells in vitro,
in vivo, and ex vivo; moreover, although each FLT3 BiTE molecule
was efficacious as a single agent against AML cell lines and pAML
samples, combination therapy may provide additional benefit for some
patients. AMG 427 is being evaluated patients with relapsed or
refractory AML.

Materials and Methods

Patient and healthy donor samples

AML and healthy donor (HD) samples were obtained with written
informed consent in accordance with the Declaration of Helsinki and
approval by the Institutional Review Board of the Ludwig-Maximilian
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University (Supplementary Tables S1 and S2). Human tissue speci-
mens for expression analyses were collected under Institutional Review
Board approval with appropriate informed consent. In all cases,
materials obtained were surplus to standard clinical practice. Patient
identity and protected health information/identifying information
were redacted from tissue data and clinical data.

Key resources
Sources of biological samples, all antibodies and other key reagents
are listed in Supplementary Table S1.

FLT3 protein expression on pAML and HD hematopoietic cells

Cell surface FLT3 protein expression on pAML and HD peripheral
blood (PB) or BM samples was assessed by flow cytometry (Navios;
Beckman Coulter) using an anti-FLT3 antibody (Supplementary
Table S1). Mean fluorescence intensity (MFI) was determined (FlowJo
version 10.3) and the MFI ratio (MFI sample/MFI isotype control) was
calculated.

FLT3 transcript expression in AML patient cells and HD
nonhematopoietic tissues

FLT3 transcript expression data were retrieved from The Cancer
Genome Atlas [TCGA (14), AML patient samples] in February 2018.

FLT3 transcript expression data in normal human tissues were
retrieved from the Genotype-Tissue Expression project [GTEx (15),
HD samples] in April 2018.

5" rapid amplification of cDNA ends (RACE), digital droplet
polymerase chain reaction (ddPCR), reverse transcription PCR,
immunohistochemistry (IHC), Western analysis, immunoprecipi-
tation, and RNA-seq were conducted using standard techniques.
Details in Supplementary Table S1 and Supplementary Materials
and Methods.

AML cell lines: cytotoxicity, T-cell activation, cytokine
secretion

Cell lines were initially sourced from DSMZ (MOLM-13, EOL-1,
PL-21), ATCC (HL-60, MV4-11 K562, HEL92.1), and ECACC
(A2780), and cultured using standard techniques and reagents. In the
absence of phenotypic or growth changes, cells were not authenticated
or tested for mycoplasma. Cells were used within 2 months of thawing.

Human PBMCs or pan T cells were cultured for 48 hours in the
presence or absence of FLT3 expression-positive or FLT3 expression—
negative target cells with an effector-to-target (E:T) cell ratio of 10:1
(pan T) or 5:1 (PBMC) and a dose range of FLT3 BiTE molecules.
Target cell lysis was measured by loss of luciferase signal (Steady-Glo,
Promega; labeled target cell lines express luciferase); or propidium
iodide uptake by flow cytometry. T-cell activation markers were
assessed by flow cytometry using antibodies against CD4, CD8, CD69,
and CD25 labeled with a fluorochrome conjugate (Supplementary
Table S1). BiTE-induced cytokine secretion was measured in super-
natants using the BD Cytometric Bead Array Human Th1/Th2
Cytokine Kit. Luciferase-based TDCC (pan T, E:T ratio 10:1) was
performed with or without 10 ng/mL soluble FLT3 ligand (16) for
48 hours.

Mouse xenograft models

Animal experimental procedures were conducted in accordance
with the German Animal Welfare Law with permission from the
responsible local authorities and within the guidelines of the Associ-
ation for Assessment and Accreditation of Laboratory Animal Care
(AAALAC) international standards.
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Female nonobese diabetic/severe combined immunodeficient
(NOD/SCID) mice at age 7 weeks were sublethally irradiated prior
to tumor cell injection. Mice were injected intravenously via lateral tail
vein with (107) MOLM-13_Lucor (5 x 10°) EOL-1 cells on day 1. After
48 or 72 hours, respectively, mice were injected intraperitoneally with
human in vitro-expanded CD3" T cells (2 or 1.2 x 107, respectively)
and allocated to treatment groups (n = 10/group). Five mice allocated
to the vehicle group did not receive human T cells. Mice were treated
with vehicle or AMG 427 (3, 0.6, or 0.12 mg/kg) every 5 days by
intravenous bolus injection into the lateral tail vein starting on day 7,
then on days 12,17,22,27,and 34 (MOLM-13_Luc). Mice were treated
with vehicle or AMG 427 (1, 0.1, or 0.001 mg/kg) every 7 days by
intravenous bolus injection into the lateral tail vein starting on day 9
for a total of six administrations (EOL-1). To block binding of AMG
427 to Fc receptors, a mixture of anti-muFcRII (2.4G2) antibody
(8 mg/kg) and human normal immunoglobulin (400 mg/kg of
Kiovig) was administered once weekly intraperitoneally throughout
the treatment period, starting 1 day prior to the first AMG 427 dose.
Mice were monitored daily. PK serum concentrations of AMG
427 were determined by electrochemiluminescence immunoassay
(Supplementary Materials and Methods).

Cynomolgus monkey studies

Cynomolgus monkeys were cared for in accordance to the Guide for
the Care and Use of Laboratory Animals, Eighth Edition (17). Animal
care is detailed in Supplementary Materials and Methods.

Cell surface FLT3 protein expression on hematopoietic cells from
cynomolgus monkeys was assessed as described in the Supplementary
Materials and Methods.

The experimental FLT3 BiTE molecule was evaluated in a 16-day
cIV study (n = 3) and was administered at step doses increasing every
3 days, intended to achieve Cy; 0f 0.05, 0.2, 0.5, and 2 nmol/L for 3 days
each. Methods for PK and PD assessment are detailed in Supplemen-
tary Materials and Methods. AMG 427 was evaluated in an 8-day,
repeated-dose study with three dose levels (n = 3/group). AMG 427
was administered intravenously on days 1, 2, and 5.

Cytotoxicity against pAML cells

AML patient samples were cultured (Supplementary Materials and
Methods) with experimental FLT3 BiTE molecule or control BiTE
molecule at 5 ng/mL (92 pmol/L) and replenished at 3-day intervals.
Viable CD33"/CD2 ™ cells (Supplementary Table S1) were determined
by flow cytometry, and total cell count was used to determine AML cell
count.

Combination with PD-1-blocking antibody

Human pan T cells were stimulated 1:1 with CD3/CD28 Dynabeads
(Thermo Fisher Scientific) for 48 hours, then cocultured 1:1
with PD-L1-transfected MOLM-13 cells (MOLM-13_PD-L1) and
dose range of AMG 427 in the absence or presence of 10 ug of a
PD-1-blocking antibody (Supplementary Table S1). After 24 hours,
MOLM-13_PD-L1 cell viability was determined by TO-PRO-3 uptake
by flow cytometry.

Results

AML patient sample cell surface FLT3 protein expression
Leukemic bulk cells from BM or PB from 318 newly diagnosed or
relapsed AML patients were evaluated for cell surface FLT3 protein
expression. Of the analyzed samples, 78% (248/318) were positive for
FLT3 protein expression (MFI ratio >1.5; Fig. 1A, gating strategy,
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Supplementary Fig. S1A, top; MFI ratio calculation, Supplementary
Fig. SIB). Interpatient heterogeneity in FLT3 protein expression was
observed (MFI ratio range 0.1-32.7; Fig. 1A), similar to what has been
reported for other AML-associated antigens (18). The FLT3 protein
expression profile was similar, regardless of FLT3-ITD mutational
status (Fig. 1B), time of sample collection (initial diagnosis versus
relapse, Fig. 1C), or FLT3-ITD allelic ratio (Fig. 1D). Cell surface FLT3
protein expression was detected on leukemic stem cells (LSC; CD34™/
CD387) in 79% (122/155) of AML patient samples (Fig. 1E). As
observed for bulk cells, FLT3 protein expression on LSCs was similar,
regardless of FLT3-ITD mutational status (Fig. 1F) or initial diagnosis
versus relapse (Fig. 1G). Higher FLT3 expression was detected on
samples with high FLT3-ITD allelic ratio (Fig. 1H, P < 0.0098).

No clear correlation was observed in an analysis of FLT3 protein
expression intensity on AML patient bulk cells at initial diagnosis with
different disease characteristics, including French American British
group, core binding factor abnormalities [i.e., translocation t(8;21) and
inversion inv(16)], nucleophosmin 1 (NPM1) and FLT3-ITD muta-
tions, Medical Research Council cytogenetic-based risk classifica-
tion (19), and 2010 European Leukemia Net classification (Supple-
mentary Fig. S1C-S1F; Supplementary Table S2; ref. 20).

FLT3 transcript and protein expression in normal human
hematopoietic cells

In hematopoietic cell samples derived from HDs, the FLT3 protein
MEFI ratio was consistently low and less than that of pAML samples.
The MFI ratio on HD CD34"CD38™ cells (n = 18), comprising
hematopoietic stem cells and multipotent progenitors, was 0.58 =+
0.26 and the MFI ratio on CD34"CD38 ™ cells (n = 36), comprising the
oligopotent progenitors, was 1.6 £ 0.5 (Fig. 1I; gating strategy
Supplementary Fig. S1A, bottom; MFI ratio calculation, Supplemen-
tary Fig. S1B). In comparison, the MFI ratio for pAML samples was
significantly higher than either of the HD samples (P < 0.0001
comparison to either HD CD347CD38 ™ cells or HD CD34"CD38"
cells) at 3.6 + 3.6 for the bulk samples (n = 318) and 2.9 & 2.3 for the
LSC samples (n = 155). Paired analysis of CD34"CD38~ and
CD34"CD38" cells from 13 HDs showed that FLT3 protein expres-
sion was statistically lower on CD34*CD38 ™ than CD34"CD38" cells
(Fig. 1]).

FLT3 protein expression was subsequently evaluated on individual
stem cell and oligopotent progenitor subsets from two HD. Expression
was variable, and no subset was uniformly positive or negative
(Fig. 1K, gating strategy; Supplementary Fig. S2A). The rank order
of FLT3 protein expression was: granulocyte/macrophage progenitor >
common lymphoid progenitor > common myeloid progenitor > HSC
and MPP > megakaryocyte/erythrocyte progenitor (MEP), most of the
latter population falling below detection.

On mature hematopoietic cells isolated from blood from two HD,
there was no detectable cell surface FLT3 protein on T or B lympho-
cytes, natural killer cells, plasmacytoid or conventional dendritic cells,
monocytes, or neutrophils (Supplementary Fig. S2B). Collectively,
these data demonstrate that there are differences in expression between
disease and normal cells, and within hematopoietic stem and progen-
itor populations, which may translate to differences in susceptibility to
FLT3 BiTE-mediated killing.

FLT3 transcript and protein expression in normal human
nonhematopoietic tissues

The presence of FLT3 transcript in nonhematopoietic tissues was
assessed in three different datasets including GTEx RNA-seq data-
base (15), an Amgen-constructed RNA-seq database, and XpressWay
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Figure 1.

Cell surface FLT3 protein expression on AML patient bulk cells (A=-D), AML LSCs (E-H), and HD cells (1-K). Red line indicates FLT3 positivity (MFl ratio > 1.5). A, FLT3
protein expression on pAML bulk cells (CD45°™/SSC°W) at initial diagnosis or relapse (n = 318). Comparison of FLT3 protein expression on (B) AML bulk cells
expressing wild-type FLT3 (n = 233) vs. mutant FLT3 (ITD mutation; n = 68; P = 0.22), (C) AML bulk cells expressing high (= 0.5) FLT3-/TD allelic ratio (n = 20) vs. low
(<0.5) FLT3-ITD allelic ratio (n = 14; P = 0.655), or samples collected at (D) initial diagnosis (n = 275) vs. relapse (n = 43; P = 0.99). E, FLT3 protein expression on
pPAML CD34"/CD38~ LSCs at initial diagnosis or relapse (n = 155). Comparison of FLT3 expression on AML LSCs of patients with (F) wild-type FLT3 (n = 114) vs.
mutant FLT3 (ITD mutation; n = 33; P=0.43), (G) LSCs expressing high (=0.5) FLT3 allelic ratio (n =13) vs. low (<0.5) FLT3 allelic ratio (n = 5; P= 0.0098), or samples
collected at the time of (H) initial diagnosis (n = 132) vs. relapse (n = 23; P = 0.37).1, Surface FLT3 expression on HD CD34"CD38" (n = 36) vs. patient leukemic bulk
cells (n = 318; P< 0.0001) and HD CD34"CD38 ™ (n =18) vs. patient LSCs (n = 155; P < 0.0001). A=l, Mann-Whitney U test (mean + SEM); ns, not significant. J, Paired
analysis of FLT3 expression on HD samples (n = 13; P = 0.0002; Wilcoxon matched-pairs signed rank test). K, Analysis of FLT3 protein expression on progenitor

subsets. Black vertical line represents the FLT3 protein expression cutoff determined from an unstained negative control.
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Figure 2.

FLT3 transcript expression in normal human solid tissues. FLT3 transcript expression in AML and normal solid tissue (A) and nervous system regions (B) shown as
fragments per kilobase of transcript per million mapped reads (FPKM). Data are represented as mean =+ SD for the indicated tissues. IHC of FLT3 protein in human
tonsil (C), cerebellum, and pancreas (D). Low (left) and high (middle) magnification cerebellum and low magnification pancreas (right) images demonstrate punctate
cytoplasmic immunostaining and lack of membranous staining. E, Immunoblot of FLT3 protein immunoprecipitated from EOL-1 and human cerebellum protein
lysates. Bands between 130 and 180 kDa for EOL-1 and numbered bands shown in the gel for cerebellum were isolated and analyzed by mass spectrometry (see

Supplementary Fig. S3D; Supplementary Table S11).
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Profile Report (Asterand UK Acquisition Limited). Low levels of FLT3
transcript were detected in brain, nerve/ganglia, small intestine, kidney,
lung, pancreas, spleen, spinal cord, and testis (Fig. 2A; Supplementary
Table S3). Within the brain, FLT3 transcripts localized to the cerebellum
(Fig. 2B). Although FLT3 transcript was not consistently detected in all
tissues listed above, all tissue types identified as transcript-positive in any
dataset were subsequently evaluated for FLT3 protein expression by IHC
(spinal cord being the only exception). Of these tissues, the only example
of cell surface-localized FLT3 protein was on rare, scattered cells in the
tonsil (Fig. 2C). In all other tissues evaluated, including brain stem,
cerebrum, cerebellum, kidney, pancreas, pituitary, prostate, skeletal
muscle, stomach, testis, and thyroid, FLT3 protein staining was cyto-
plasmic (Fig. 2D). Within the cerebrum and cerebellum, FLT3 protein
staining consisted of cytoplasmic staining of multifocal neurons, and this
staining pattern was consistent in multiple sections of brain, with no
membranous staining observed in neurons. Diffuse cytoplasmic staining
was observed in alveolar macrophages, indicating the likely source of the
transcript signal in lung (Supplementary Table S3). Taken together,
these data suggest that although FLT3 transcript and protein are present
in peripheral tissues, including the brain, FLT3 protein is cytoplasmic
and therefore not anticipated to be targeted by an anti-FLT3 BiTE
molecule.

Additional analysis of FLT3 transcript and FLT3 protein expression
in the cerebellum revealed that the majority of FLT3 transcripts
isolated from the cerebellum were shorter than those isolated from
a control AML cell line. Transcript sequencing revealed these trunca-
tions were due to frequent intron insertion/retention or exon skipping.
Quantification of alternatively-spliced FLT3 transcripts using digital
droplet PCR (ddPCR) indicated that in this study at least 70% to 85% of
cerebellum FLT3 transcripts lacked exonic regions or retained intronic
sequences, suggesting that only a small portion of FLT3 transcripts in
cerebellum samples analyzed would be intact (Supplementary Fig. S3).
Assessment of FLT3 protein from human cerebellum lysate by immu-
noprecipitation-western analysis identified only FLT3 protein bands
that were lower in molecular weight than full-length FLT3 protein
from a positive control AML cell line lysate (Fig. 2E). FLT3 protein
bands from a cerebellum sample were characterized by mass spec-
trometry, revealing only peptides from the extracellular domain of
FLT3; by contrast, bands from the control AML cell line lysate
contained multiple peptides from both the intracellular and extracel-
lular regions of FLT3 (Supplementary Fig. S3D; Supplementary
Table S11). In sum, the transcript and peptide data suggest that most
transcripts from the cerebellum encode FLT3 peptides that are not full-
length and may explain why FLT3 is not detectable on the cell surface
of cells in the cerebellum.

FLT3 BiTE molecules induced TDCC of FLT3-expressing AML cell
lines

Two different FLT3 BiTE molecules (Supplementary Fig. S4A) were
evaluated. Each BiTE molecule comprised a distinct anti-FLT3 scFv
that bound FLT3 within a 51 amino acid region, associated with an
anti-CD3 scFv. The compact size of BiTE molecules (MW ~55 kDa)
has been reported to be important for the generation of a productive
immunologic synapse (21); however, proteins this size are generally
rapidly eliminated by the kidneys. To increase the serum half-life, an Fc
moiety was added to produce AMG 427. To ensure that the presence of
the Fc would not impact in vitro or in vivo activity, the two BiTE
molecules were evaluated in similar assay panels. Both molecules
bound human FLT3 and CD3 protein with sub- or single-digit
nanomolar affinities (Supplementary Table S5). A panel of cell lines
exhibiting a range of FLT3 protein expression (MFI ratio: 2.6-23.8;

1880 Mol Cancer Ther; 19(9) September 2020

Supplementary Fig. S4B) similar to that observed on pAML samples
(Fig. 1A) was selected to evaluate FLT3 BiTE molecule in vitro
potency. Both molecules similarly induced TDCC against five FLT3
protein-expressing cell lines with single digit picomolar potency
(Fig. 3A; Supplementary Table S6). A relationship between FLT3
expression level and potency was not apparent, likely due to the high E:
T ratio. TDCC was similar for both BiTE molecules in cell lines
homozygous or heterozygous for wild type (wt) or ITD mutant (mut)
FLT3, and selectivity was demonstrated as cell lines lacking FLT3
protein expression were not lysed (Fig. 3A; Supplementary Table S6).
TDCC was accompanied by upregulation of the T-cell activation
markers CD69 and CD25 and secretion of T-cell-derived effector
cytokines IFNy and TNFo in the presence of FLT3 protein-expressing
cells, but not in the presence of FLT3 protein-negative cells (Fig. 3B-E;
Supplementary Table S6).

Soluble FLT3 (sFLT3) can be detected in AML patient serum at
concentrations up to 141 ng/mL (22). In TDCC assays, clinically
relevant concentrations of sFLT3 reduced AMG 427 potency 6-44-
fold, but maximum killing was still achieved (Fig. 3F). Soluble FLT3
ligand (sFLT3L) can be detected in AML patient serum at concentra-
tions up to 9 ng/mL (23). Although neither the experimental FLT3
BiTE molecule nor AMG 427 binds the ligand-binding domain of
FLT3, sFLT3L binding to FLT3 induces internalization of FLT3 (24),
and could alter BiTE-mediated TDCC. In the presence of 10 ng/mL
sFLT3L, the potency of AMG 427-mediated TDCC was reduced two-
to six-fold (Fig. 3F); however, maximum killing was still achieved in all
three cell lines tested. These data demonstrate that FLT3 BiTE
molecules induce target-specific TDCC equivalently, and that com-
plete killing occurs in the presence of disease-relevant concentrations
of sSFLT3 and sFLT3L.

Experimental FLT3 BiTE molecule and AMG 427 inhibited tumor
growth and increased survival in mouse xenograft models

Both the experimental FLT3 BiTE molecule and AMG 427 were
evaluated in mouse tumor models. As neither BiTE molecule bound
mouse Flt3, immunocompromised mice administered with human
tumor cells and T cells were used. The experimental FLT3 BiTE
molecule was evaluated in an admix model in which athymic nude
mice were injected with MOLM-13 AML cells and in vitro-expand-
ed human CD3" T cells in Matrigel. Animals were dosed intra-
peritoneally with experimental FLT3 BiTE molecule or control BiTE
molecule daily for 10 days. Tumor growth was inhibited by 90% in
mice treated with the experimental FLT3 BiTE molecule relative to
the control BiTE molecule (n = 10, P < 0.0001; Supplementary
Fig. S5).

AMG 427 was evaluated in two orthotopic mouse xenograft models
in which either EOL-1 or MOLM-13 AML cells were injected on day 1
and after 72 or 48 hours (EOL-1 and MOLM-13, respectively), mice
were injected with in vitro-expanded human CD3™" T cells. Mice were
treated with vehicle or AMG 427 every 7 days starting on day 9
(EOL-1) or every 5 days starting on day 7 (MOLM-13). In the EOL-1
model, all animals from the control groups developed leukemic disease
and were euthanized between days 27 and 52 following AML cell
injection with median survival of 36 and 37 days (Fig. 4A). Weekly
treatment with AMG 427 prolonged survival at all doses tested, with
17 of 30 animals surviving until study end on day 108. As =50% of
animals were alive at study end, the median survival could not be
calculated; however, compared with vehicle, AMG 427 significantly
extended survival (n = 10, P < 0.001; Fig. 4A). In the more aggressive
MOLM-13 model, all mice in the control groups died within 20 days
after injection of AML cells, with median survival of 18 days.

MOLECULAR CANCER THERAPEUTICS

21



Publication |

Published OnlineFirst June 9, 2020; DOI: 10.1158/1535-7163.MCT-19-1093

A
100 1
°\3 80 1
2
S 604
L
o
% 401
i
‘S 201
o
Qo
@ ol
0-14 -13 -12 -11 -10 -9 -8
Log [Experimental FLT3 BiTE®] (mol/L)
B C
2 2
8 8
- [
& io
© N
Q a
[$) [$)

0-14 -13 -12 -11 -10 -9 -8
Log [AMG 427] (mollL)

D E
= oy
£ £
g &
> 3
£ £

=
0-14 -13 -12 -1 -10 -9 -8
Log [AMG 427] (mol/L)
G
- HL-60 (wt/wt)
& 1204 - HL-60 + sFLT3L S
> 100 >
2 80 g
L2 60 o
2 40 2
g X °
5 o kS
2 -20 3
%) —_— (%)
0-14 -13 -12 -11 =10 -9 -8
Log [AMG 427] (mol/L)
Figure 3.

o o
o o
o o

400

- N W
o O o
o © © o

0-14 -13 =12 =11 =10 -9
Log [AMG 427] (mol/L)

Novel FLT3 BiTE Molecule for AML Treatment

100 4 -~ MOLM-13
g 4. - HL-60
2z -+~ EOL-1 FLT3*
% 601 - MV4-11
s - PL-21
S 401
& -»- Namalwa
S 204
2 = K562 FLT3-
2 o4 ... =+~ HEL 92.1
0-14 -13 -12 -11 -10 -9 -8
Log [AMG 427] (mol/L)
0-14 -13 -12 -11 -10 -9 -8
Log [AMG 427] (mol/L)
F
100 MOLM-13
* 6h .. [SFLT3]
-0 24h N = 804 (ng/mL)
-+ 48h & -0 /
- 72h Z60q gg AR
2 - z
é 404 -+ 150 § i ;
3 206 ~—vo¥z¥ /
D aad
T T T T T 1 —_—
0-14 -13 -12 -11 -10 -9 -8 0 10" 10° 10" 10% 10° 10¢
Log [AMG 427] (mol/L) [AMG 427] (pmol/L)
- MOLM-13 (wt/mut) - MV4-11 (mut/mut)
- MOLM-13 + sFLT3L S 120+ © MV4-11 + sFLT3L
2 100
% 80
5 60
3 40
g 20
S 04
& 20

-8 0-14 -13 -12 -11 -10 -9

Log [AMG 427] (mol/L)

-8

FLT3 BIiTE molecules have potent cytotoxic activity against FLT3-expressing AML cell lines. A, Specific cytotoxicity of FLT3 BiTE molecules (experimental
FLT3 BIiTE molecule, left; AMG 427, right) in TDCC assay with FLT3-positive and FLT3-negative cell lines cultured at a 1:10 ratio with human pan T cells for
48 hours (mean =+ SD, n = 6 technical replicates, representative curves for 1 of >3 T-cell donors). Expression of CD69 (B) and CD25 (C) on T cells from TDCC
assays of FLT3-positive cell lines MOLM-13 and EOL-1 or FLT3-negative cell line A2780 co-cultured with human PBMCs at a 1:5 ratio with AMG 427 for 48 hours
(mean =+ SD, n = 2 technical replicates; each curve represents a different PBMC donor). Concentration of IFNy (D) and TNFa. (E) in supernatants of TDCC assay
of human PBMCs and EOL-1 cells (5:1 ratio) at time points indicated (mean + SD, n = 3 technical replicates of one representative donor). F, TDCC of AMG 427
in the presence of sFLT3 (mean =+ SD, n = 2 technical replicates, one representative donor of 2). G, Specific cytotoxicity of AMG 427 in the presence or absence
of 10 ng/mL sFLT3L (mean + SD, n = 3 technical replicates).
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Figure 4.

AMG 427 extends survival in mouse xenograft models. Survival analysis of EOL-1(A) and MOLM-13 (B) orthotopic mouse models treated with AMG 427 or vehicle.
Arrows indicate days of treatment (n = 5, vehicle group; n = 10, all other groups). Statistical significance was determined using Kaplan-Meier estimator with
Mantel-Cox log rank to compare treated groups with the vehicle + T cells control group. C, PK profile of AMG 427 in mouse serum at times indicated after last
administered dose in B.
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Compared with vehicle, treatment with AMG 427 significantly extend-
ed survival at all doses tested (n = 10, P < 0.0015, Fig. 4B). No
significant difference in overall survival was observed between differ-
ent dose levels. Comparable PK profiles were observed within each
cohort for all dose levels, and serum concentrations remained above
the TDCC assay-determined ECsj, for at least 9 days following the final
administration (days 34-43, Fig. 4C). Serum half-life of AMG 427
ranged from 33 to 47 hours. These data demonstrate that both FLT3
BiTE molecules were active in vivo in mouse tumor models.

PK and PD profile of FLT3 BiTE molecules in cynomolgus
monkeys

The experimental FLT3 BiTE molecule and AMG 427 bound
human and cynomolgus monkey FLT3 and CD3 protein with com-
parable affinity (Supplementary Table S5). BiTE-induced TDCC was
similar for both constructs using either cynomolgus monkey or human
effector cells (Fig. 3; Supplementary Fig. $6). To assess the PK/PD
relationship, both FLT3 BiTE molecules were evaluated in vivo in
cynomolgus monkeys. Both molecules were well tolerated. PD end-
points included FLT3 transcript levels (primer and probes in Supple-
mentary Table S9) in BM and blood and circulating sFLT3L levels.
Reduction of FLT3 transcript levels in BM was likely due to direct
killing of FLT3 transcript-expressing hematopoietic progenitor cells,
and reduction in the blood was likely due to lack of replenishment of
FLT3 transcript-expressing cells from the BM. This hypothesis is
supported by data showing that there are cells in the BM that express
both FLT3 transcript (Fig. 5B and F) and surface-localized FLT3
protein (Supplementary Fig. S7B), making them recognizable by FLT3
BiTE molecules, whereas none of the FLT3 transcript-expressing cells
in blood express detectable surface-localized FLT3 protein (Supple-
mentary Fig. S7A), and are therefore not recognizable by FLT3 BiTE
molecules.

The experimental FLT3 BiTE molecule was evaluated in a 16-day
study (Fig. 5A-D) in cynomolgus monkeys, with intra-animal (n = 3)
dose escalations every 3 days intended to achieve steady-state con-
centrations (C) of 0.05, 0.2, 0.5, and 2 nmol/L (Fig. 5A; Supplemen-
tary Table S8). FLT3 transcript levels were reduced in BM at day 17 (the
only time point evaluated) relative to non-treated animals (Fig. 5B)
and in blood on days 4, 7, 10, and 17, by an average of 85% to 92%,
relative to levels measured before treatment (Fig. 5C). Soluble FLT3L
levels increased dose-dependently over the course of the study, reach-
ing maximum levels of 13,000 to 15,500 pg/mL at the end of the study
(Fig. 5D). Ligand accumulation is likely due to depletion of FLT3
protein-expressing cells. The fold-over-ECs, (in vitro TDCC data;
Supplementary Fig. $6) for each of the four dose levels (C¢ ~0.05, 0.2,
0.5, and 2 nmol/L) was 25-, 64-, 165-, and 780-fold. The percent
reduction in FLT3 transcript level in blood did not deepen once drug
concentration was above Cg, 0.2 nmol/L (64-fold-over-ECsy), suggest-
ing that the concentration required to achieve maximal target cell
elimination from blood was somewhere between C, 0.05 and
0.2 nmol/L (25- and 64-fold-over-ECso, TDCC data; Supplementary
Fig. S6; Supplementary Table S7).

AMG 427 was evaluated in an 8-day multiple dose study
(Fig. 5E-H) in cynomolgus monkeys. All animals were treated on
days 1, 2, and 5 with doses intended to achieve a maximal serum
concentration (Cp,y) of 1 nmol/L (Group 1), 5 nmol/L (Group 2), and
10 nmol/L (Group 3; n = 3/group). The study duration was limited to
8 days to minimize loss of exposure due to antidrug antibody forma-
tion, and multiple doses were administered to ensure target coverage
for the entire study. Exposures of AMG 427 over 7 days were
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reproducible within each of three dose groups (Fig. 5E), and exposure,
Cinax> and Cpyip all increased in an approximately dose-proportional
manner (Supplementary Table S8). The terminal half-life ranged
from 33 to 50 hours (Supplementary Table S9). Hallmarks of BiTE
molecule activity including upregulation of CD69 on T cells and
cytokine secretion were observed (Fig. 8A and B). Because FLT3 is
not expressed on the surface of cells in the blood (Supplementary
Fig. S7), AMG 427-mediated upregulation of CD69 on T cells likely
resulted from cells expressing FLT3 surface protein in the BM.
Increases in serum concentrations of IFNY, IL6, MCP-1, and TNFo
were observed in response to the first dose but were attenuated in
response to subsequent doses (Supplementary Fig. S8B). The fold-
over-ECs, levels at C,, (in vitro TDCC data; Supplementary
Fig. S6; Supplementary Table S9) for the respective groups was
45-, 158-, and 396-fold. Within the BM, FLT3 transcript levels were
reduced by 85% to 95% on day 4 and by 93% to 97% on day 8
(Fig. 5F). Within the blood, the FLT3 transcript levels were reduced
to a nearly undetectable level (=97%) at the lowest dose level and
earliest time point, and a similar level of depletion was maintained
across all higher exposures and time points (Fig. 5G). Monocytes were
reduced at the end of the study (Supplementary Fig. S8C), which may
reflect lack of replenishment due to direct killing of BM progenitors.
Minor decreases in plasmacytoid dendritic cells (pDC; Supplementary
Fig. S8C) are challenging to interpret as the number of circulating
dendritic cells was low and enumeration of rare cells is prone to error.
Soluble FLT3L levels increased dose-dependently over the course of the
study, reaching maximum levels of 12,000 to 23,000 pg/mL in each of
the three groups (Fig. 5H). Time-dependent improvements in PD were
observed for those endpoints which had not already reached maximal
levels when first analyzed, as demonstrated by the increase in FLT3
transcript reduction in BM from group 1 on day 4 (85%) to day 8
(93%, Fig. 5F) and changes in sFLT3L (Fig. 5H; Supplementary
Table $9). This demonstrates that greater efficacy at a given dose level
may be observed with longer duration of exposure.

The in vivo activity of the experimental FLT3 BiTE molecule and
AMG 427 was most directly comparable using the PD endpoint of
FLT3 transcript in blood. For the experimental FLT3 BiTE molecule,
the greatest activity occurred between days 4 and 7 at a Cs; 0f 0.05 to 0.2
(25- to 64-fold-over-ECso; Supplementary Table S8). For AMG 427,
the greatest activity was observed on day 3 at a Cy;, 0f 0.24 nmol/L in
Group 1 (<45-fold-over-ECs; Supplementary Table S9). Although the
time points of data collection differed, these results suggest that both
FLT3 BiTE molecules are active at similar fold-over-ECs, values
in vivo.

Experimental FLT3 BiTE molecule-induced TDCC of patient
samples ex vivo

A long-term culture system (25) was used to evaluate experimental
FLT3 BiTE molecule-mediated cytotoxicity in 14 pAML samples
(Supplementary Table S10) over 9 days. The autologous E:T ratio
was calculated from the number of T cells and pAML cells in each
sample at the beginning of the experiment and ranged from 1:2.5 to
1:74. Three patterns of cytotoxicity were observed: (1) continuously-
increasing cytotoxicity (Fig. 6A, left, representative sample Supple-
mentary Fig. S9A); (2) initial cytotoxicity followed by sustained or
decreased killing (Fig. 6A, middle); (3) transient or no cytotoxicity
over the 9 days (Fig. 6A, right). Analysis of FLT3 surface protein
expression of the pAML cells and E:T ratio revealed that most of
the samples in groups 1 and 2 contained FLT3 protein-positive
PAML cells (MFI Ratio > 1.5) and a higher E:T ratio (>1:38, 75th
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Anti-PD-1 antibody

FLT3 BiTE molecule cytotoxicity in AML patient samples ex vivo as a single agent and in combination with a PD-1-blocking antibody. A, Specific cytotoxicity relative to
control BiTE molecule for 14 pAML patient samples cultured with experimental FLT3 BiTE molecule for 9 days. Patients were grouped according to their responses:
continued responders (green symbols, left), partial responders (green symbols, center), and nonresponders (red symbols, right). B, Initial MFI ratio vs. autologous E:
T cell ratio of 14 patients with pAML evaluated in A. Vertical dotted line represents FLT3 positivity (MFI > 1.5). Horizontal dotted line represents high E:T
(75th percentile, 1:38). Green shading represents E:T ratio and MFI with higher probability of showing response. C, Specific cytotoxicity of parental (black circles) or
PD-L1-transfected (red circles) MOLM-13 cells cultured for 24 hours 1:1 with CD3/CD28-activated human pan T cells and a dose range of AMG 427. Data are shown as
mean =+ SD (n = 2 technical replicates, one of two representative T-cell donors. D, Specific cytotoxicity of PD-L1-transfected MOLM-13 cells cultured for 24 hours 1:1
with CD3/CD28-activated human pan T cells and AMG 427 with (orange squares) or without (black circles) 10 pg of an anti-PD-1blocking antibody (mean & SD, n = 2
technical replicates, one of three representative T-cell donors). E, AMG 427 ECs, + anti-PD-1blocking antibody as in D, n = 3 T-cell donors, P = 0.02, paired ¢ test.

percentile; Fig. 6B), whereas most of the samples in group 3 expressed
low levels of FLT3 protein (MFI ratio <2) and/or had a low E:T ratio

(<1:38). These data demonstrate that both target expression and T-

cell abundance are important factors for FLT3 BiTE-mediated

target cell killing.
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AMG 427 potency was increased in combination with a
PD-1-blocking antibody

T-cell activation induces PD-1 expression, and reports show that
PD-1 engagement by ligands PD-L1 or PD-L2 decreases T-cell activ-

ity (26). Co-culture of pAML specimens with a CD33-targeting BiTE
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molecule induces PD-1 expression on T cells and PD-L1 expression
on AML blasts (27). Similarly, AMG 427-mediated T-cell activa-
tion induced a dose-dependent increase in PD-1 expression (Sup-
plementary Fig. S9B), and potency in TDCC assays was reduced
five-fold if the target cells expressed PD-L1 (relative to target
cells lacking PD-L1; Fig. 6C). Combination of a PD-1-blocking
antibody with AMG 427 restored TDCC potency, decreasing the
ECsp by an average of 2.5-fold (n = 3 T-cell donors, P = 0.02) and
increasing maximum killing by 12% (Fig. 6D and E). These data
demonstrate that AMG 427-mediated target cell killing may be
enhanced by combination with PD-1 blockade, as has been dem-
onstrated for other BiTE molecules (27, 28).

Discussion

Blinatumomab demonstrates that a BiTE molecule can engage patient
T cells to eliminate CD19-expressing disease cells, and this activity can
provide clinical benefit for patients with acute lymphoblastic leukemia
and non-Hodgkin lymphoma (29-31). Here FLT3 BiTE molecules for
the treatment of patients with AML are characterized. FLT3 meets the
requirements of a BiTE molecule target as cell surface protein is broadly
expressed on disease samples, with limited expression on normal tissues.
In disease samples, cell surface FLT3 protein was detected on the
majority of 318 pAML samples. The level of expression was comparable
between bulk samples and LSCs, suggesting that both subsets could be
targeted at similar therapeutic exposures. In addition, mean FLT3
protein expression on pAML samples was comparable, regardless of
FLT3 mutational status, FLT3-ITD allelic ratio, or initial diagnosis versus
relapse, suggesting that a FLT3 BiTE molecule would benefit a broad
patient population. In normal hematopoietic cells, cell surface FLT3
protein was detected on subsets of BM stem and progenitor cells
(excluding MEPs). Within each subpopulation, a portion of cells were
cell surface FLT3-positive (MFI ratio > 1.5), so as to suggest their
elimination by a FLT3-targeting BiTE molecule. However, a portion of
these cells were FLT3 protein-negative, consistent with literature reports
of FLT3 protein- and transcript-negative cells within HD hematopoietic
progenitor populations and HSCs (GEO accession code GSE75478;
refs. 7, 32).These results suggest that although some HSPCs would be
eliminated by a FLT3 BiTE molecule, there is a FLT3-negative popu-
lation that could potentially repopulate the BM following cessation of
treatment. FLT3 transcript and protein expression were also evaluated in
normal non-hematopoietic tissues. To ensure a thorough assessment,
FLT3 transcript expression was evaluated in several databases and
further characterized by qPCR-based analysis of a panel of tissues.
Protein expression was subsequently evaluated in tissues shown to
contain FLT3 transcript in any dataset. Although FLT3 transcript and
protein were detected in some solid tissues, no membranous protein
staining was observed, indicating that these cells would not be targeted
by a FLT3 BiTE molecule. Additional analysis of FLT3 transcript and
protein in the cerebellum demonstrated that most transcripts were not
full-length due to alternative splicing, and similarly, the FLT3 protein
was also not full-length. By evaluating both FLT3 transcript and protein
expression using multiple sources and orthogonal methods, it was
possible to build a detailed understanding of the normal tissue expres-
sion and based on these results, FLT3 BiTE treatment is not anticipated
to target normal non-hematopoietic tissues.

Given the favorable expression profile of FLT3 as an AML target,
two potent and specific BiTE molecules were generated: one exper-
imental FLT3 BiTE molecule that has a short serum half-life and the
other, AMG 427, which contains an Fc-moiety to extend serum half-
life. In vitro, these molecules demonstrated TDCC against human
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FLT3-positive cancer cell lines with similar picomolar potency (ECs)
and this TDCC was associated with T-cell activation and cytokine
secretion and was not affected by the presence of sSFLT3 or sFLT3L at
concentrations found in patients with AML. These data demonstrate it
is possible to generate a BiTE molecule capable of eliminating FLT3-
expressing cells, and that despite incorporation of the Fc moiety,
the larger size does not impact the ability of AMG 427 to effectively
form an immunologic synapse and induce T-cell-mediated target
cell killing.

In cynomolgus monkeys, both FLT3 BiTE molecules mediated
depletion of cell surface FLT3-expressing target cells as demon-
strated by decreases in FLT3 transcript in the blood and BM.
Although cell surface FLT3 protein expression was not detected
on human or cynomolgus monkey peripheral immune cells, FLT3
transcript can be detected in pDCs and monocytes. These cell types
have short half-lives in vivo (33, 34), and administration of a FLT3
BiTE molecule is expected to eliminate a portion of the precursor
cells that give rise to them, which may explain the decreases in FLT3
transcript observed in the blood of cynomolgus monkeys treated
with a FLT3 BiTE molecule. Within the BM, FLT3 transcript was
reduced by >85% at all doses by the first timepoint tested (day 4),
demonstrating that BiTE-mediated target cell killing can occur
rapidly. At this same time point, the degree of depletion increased
as the dose increased [85% (low dose) vs. 95% (medium dose), and
93% (high dose), respectively], suggesting that increased exposure
can lead to deeper responses. Within the low-dose group, the
reduction in FLT3 transcript levels increased from 85% to 93%
between days 4 and 8, suggesting that deeper responses may also be
achieved by maintaining the same exposure for longer. This hypoth-
esis is supported by the sFLT3L endpoint, which improved with
either higher exposure or increased time of exposure.

BiTE molecule-mediated lysis of AML blasts within patient samples
was evaluated in long-term culture assays using autologous T cells. The
degree of anti-AML activity was associated with FLT3 expression on
the target cells and the E:T ratio, with improved activity seen in AML
samples with a higher FLT3 protein expression and an E:T ratio >1:38.
The impact of the E:T ratio highlights the importance of T-cell fitness
to enable successful responsiveness to BiTE molecule therapy. One
well-established mechanism of reducing T-cell activity is induction of
PD-1 expression. BiTE molecule-mediated T-cell activation is accom-
panied by expression of PD-1 on corresponding T cells and this
expression has been associated with resistance to blinatumomab
treatment (28, 35). PD-1 is expressed on 20% to 30% of AML patient
T cells (36, 37) and has been shown to increase to 50% to 60% at
relapse (38). PD-L1 mRNA expression is upregulated in patients with
AML (39) and correlates with cell surface protein expression (40).
Although not usually detected at diagnosis (41), PD-L1 protein is
upregulated on AML blasts during therapy, after HSCT, and at
relapse (39, 42). Upregulation of PD-L1 on AML blasts is reported
to be induced by cytokines such as IFNy (43, 44), which may be the
mechanism of PD-L1 upregulation on pAML blasts treated ex vivo
with a CD33-targeting BiTE molecule (27). In a mouse model
engineered to express human CD3, combination studies of BiTE
molecules with checkpoint inhibitors exhibit additive effect (45).
Herein, AMG 427-mediated activation of T cells was associated
with rapid induction of PD-1 expression and subsequent reduced
killing of PD-L1-expressing target cells, suggesting that combina-
tion with PD-1 blockade may improve BiTE-mediated activity.
Indeed, the combination of BiTE molecule and a PD-1-blocking
antibody in a TDCC assay resulted in decreased ECs; and increased
maximum killing in all donors tested. As expression of checkpoint
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molecules, including PD-1, has been observed in patients with
AML (39), and may be increased following chemotherapy (43),
this combination therapy warrants clinical evaluation.
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MYELOID NEOPLASIA

Bifunctional PD-1 X aCD3 X aCD33 fusion protein
reverses adaptive immune escape in acute
myeloid leukemia

Monika Herrmann," Christina Krupka,?* Katrin Deiser,2* Bettina Brauchle,?* Anetta Marcinek,?* Ana Ogrinc Wagner,?® Felicitas Rataj,**
Ralph Mocikat,’ Klaus H. Metzeler,? Karsten Spiekermann,?®? Sebastian Kobold,** Nadja C. Fenn," Karl-Peter Hopfner,"*
and Marion Subklewe?387

"Gene Center and Department of Biochemistry, 2Department of Medicine Ill, University Hospital, and *Gene Center Munich, Laboratory of Translational Cancer
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The CD33-targeting bispecific T-cell engager (BiTE) AMG 330 proved to be highly efficient

o Characterization of an in mediating cytolysis of acute myeloid leukemia (AML) cells in vitro and in mouse models.

aPD-L1 x aCD3 x
«CD33 antibody
construct with
bifunctional activity
against AML cells.

@ Strong cytotoxicity
against primary AML
cells in vitro and high
selectivity in
a xenograft
mouse model.

Yet, T-cell activation is correlated with upregulation of programmed cell death-ligand 1
(PD-L1) and other inhibitory checkpoints on AML cells that confer adaptive immune re-
sistance. PD-1 and PD-L1 blocking agents may counteract T-cell dysfunction, however, at
the expense of broadly distributed immune-related adverse events (irAEs). We developed
a bifunctional checkpoint inhibitory T cell-engaging (CiTE) antibody that combines T-cell
redirection to CD33 on AML cells with locally restricted i heckpoint blockade. This
is accomplished by fusing the extracellular domain of PD-1 (PD-1,,), which naturally holds
a low affinity to PD-L1, to an «CD3.cCD33 BiTE-like scaffold. By a synergistic effect of
checkpoint blockade and avidity-dependent binding, the PD-1,, attachment increases T-cell
activation (3.3-fold elevation of interferon-y) and leads to efficient and highly selective
cytotoxicity against CD33+PD-L1* cell lines (50% effective concentration = 2.3-26.9 pM) as

well as patient-derived AML cells (n = 8). In a murine xenograft model, the CiTE induces complete AML eradication
without initial signs of irAEs as ed by body weight loss. We conclude that our molecule preferentially targets AML
cells, whereas high-affinity blockers, such as clinically approved anticancer agents, also address PD-L1* non-AML cells. By
combining the high efficacy of T-cell engagers with immune checkpoint blockade in a single molecule, we expect to

irAEs iated with the systemic application of immune checkpoint inhibitors and suggest high therapeutic
potential, particularly for patients with relapsed/ refractory AML. (Blood. 2018;132(23):2484-2494)

Introduction

The treatment of acute myeloid leukemia (AML) remains chal-
lenging in 2018. Only one-half of the patients are eligible for
curative intensive induction chemotherapy, and the majority will
relapse because of the persistence of chemoresistant leukemic
stem cells. Allogeneic hematopoietic stem cell transplantation as
postremission therapy is able to lower this risk, yet it is correlated
with a significant incidence of transplant-related morbidity and
mortality.”* Particularly patients with relapsed or refractory (r/r)
disease as well as patients that are medically not fit for intensive
treatment regiments urgently require new therapeutic approaches.

In acute lymphoblastic leukemia (ALL), several targeted immu-
notherapies have already reached clinical implementation as

2484 € blood” 6 DECEMBER 2018 | VOLUME 132, NUMBER 23

standard treatment. With the approval of the bispecific T-cell
engager (BIiTE) blinatumomab in 2014, the utilization of T cells as
immune effectors also entered clinical mainstream.® This bis-
pecific molecule addresses CD19 on B cells and thus redirects
antigen-experienced T cells to leukemic cells.®” In AML, the
myeloid lineage antigen CD33 has been the focus of immu-
notherapeutic strategies for decades. Targeting CD33 by the
antibody-drug conjugate gemtuzumab ozogamicin (Mylotarg)
has proven to be safe and led to reapproval for the treatment of
adults at primary diagnosis as well as adults and children with r/r
disease.® Also, the preclinical evaluation of the BiTE antibody
AMG 330 indicated efficient cytotoxic lysis of primary AML
patient samples in allogeneic and autologous settings and en-
tered clinical trials in August 2015 (NCT02520427).712
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However, T-cell-recruiting immunotherapy is accompanied by
the induction of adaptive immune escape mechanisms such as
programmed cell death-ligand 1 (PD-L1) upregulation in re-
sponse to proinflammatory cytokines.'®'* Recent studies were
able to directly correlate PD-L1 expression on cell lines with
a decrease in AMG 330-mediated cytotoxicity and demon-
strated that this effect could be abrogated by PD-L1 blockade.'®
We could underpin these findings ex vivo on primary AML
patient cells, in which the efficacy of AMG 330 was enhanced by
complementation with PD-1/PD-L1 blocking monoclonal anti-
bodies (mABs)."?

PD-1 and PD-L1 inhibitors are approved for the treatment of
solid cancers, and clinical trials are currently exploring these
agents in hematologic malignancies.’®'® So far, monotherapy
has shown limited clinical benefit and current strategies explore
combinatorial approaches with hypomethylating agents. First
data of a clinical phase 1B/2 study with the aPD-1 mAB nivo-
lumab in combination with azacytidine in patients with r/r AML
demonstrated encouraging median overall survival rates of
5.7 months (NCT02397720)."°

Yet, the clinical application of PD-1 and PD-L1 blocking mABs is
hampered by the frequent occurrence of immune-related ad-
verse events (irAEs). These include skin disorders, colitis, hep-
atitis, endocrinopathies, pneumonitis, and myocarditis and
range from weak to severe or fatal toxicity.?°?° Medical in-
tervention can require treatment interruption or discontinua-
tion and immune suppression with corticosteroids.?

To combine the benefits of bispecific T cell-engaging molecules
with PD-1/PD-L1 checkpoint blockade and prevent on-target
off-leukemia events, we have developed a novel immunother-
apeutic format. Bifunctional checkpoint inhibitory T cell-engaging
(CITE) antibodies consist of a high-affinity «CD33 single-chain vari-
able fragment (scFv) fused to an «CD3e scFv in 1 polypeptide chain.
Additionally, we attached the extracellular domain (amino acid
33-149) of PD-1 (PD-1.,), which intrinsically holds a low-affinity
to PD-L1. We hypothesized that the PD-1, domain is not suf-
ficient to directly target PD-L1-expressing cells and does not
block PD-1/PD-L1 interactions unspecifically. Instead, we aimed
that PD-L1 blockade is thus dependent on aCD33 scFv-
mediated targeting, which would consequently restrict check-
point blockade to the surface of leukemic cells. A single-chain
triplebody (sctb),?” in which the PD-1., module is replaced by an
aPD-L1 scFv, served as high-affinity control.

Our data reveal that the CiTE antibody binds to AML and T cells,
increases T-cell effector functions compared with a BiTE-like
molecule, and induces efficient cancer cell eradication. Notably,
in vitro the CiTE demonstrates a high selectivity for CD33*PD-
L1+ cells, whereas PD-L1* cells are not affected. This is further
supported in a murine model system, where no indication for the
development of irAEs because of on-target off-leukemia binding
of the cross-reactive PD-1, could be detected. Contrarily, the
sctb also leads to the depletion of PD-L1+ cells in vitro as well as
body weight loss and leukemia-unrelated PD-1 upregulation
in vivo. Therefore, we consider the new CiTE format a promising
therapeutic approach to treat patients with AML with high ef-
ficacy and minimize the risk to induce irAEs that are associated
with systemic immune checkpoint blockade.

BIFUNCTIONAL PD-1 FUSION PROTEIN FOR AML TREATMENT

Methods

Expression and purification

PD-1cx was amplified from human muscle complementary DNA
(cDNA; PDCD1 gene). The aPD-L1 scFv was published before
(YW243.55.570, atezolizumab-derived) with variable light and
variable heavy chains connected by a (G4S4)s linker.?® The OKT3-
based «CD3 scFv and hP67.6-derived aCD33 scFv were obtained
from published sequences.?”*° Coding sequences for CITE, sctb,
and controls were cloned into the expression vector pSecTag2/
HygroC (Thermo Fisher Scientific, Waltham, MA) containing a Hise-
tag. As control, PD-1¢, was fused to a C-terminal human IgG1-Fc.
These molecules and the specificity control?” were expressed in
FreeStyle 293-F or Expi293F cells (Thermo Fisher Scientific). The
aPD-L1 scFv was cloned into the pAK400*' vector and expressed
in Escherichia coli BL21 cells (NEB, Ipswich, MA). Proteins were
purified by nickel affinity and size exclusion chromatography (SEC)
using Superdex 200 increase 10/300 or Superdex 75 10/300
columns (GE Healthcare, Little Chalfont, UK) in 20 mM histidine
and 300 mM NaCl (pH 6.5). Proteins were analyzed by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and analytical
SEC (Superdex 200 increase 5/150, GE Healthcare). For mouse
studies, proteins were prepared in 1X DPBS (Thermo Fisher
Scientific) and endotoxin levels were confirmed to be <5 EU/kg
per day.*? Stability was measured by fluorescence-based thermal
shift (ThermoFluor) assay using the CFX96 Touch Real-Time PCR
Detection System (Bio-Rad, Hercules, CA).3*

Cell lines

Al cell lines were cultivated at standard conditions. Flp-In T-REx
293 cells (Thermo Fisher Scientific) were modified for expression of
human PD-L1 and CD33 (HEK:PD-L1 and HEK:CD33:PD-L1), which
could be enhanced by tetracycline induction (HEK:PD-L1_ind.).
MOLM-13, OCI-AML3, BA/F3, and Jurkat cells were purchased
from the Deutsche Sammlung von Mikroorganismen und Zell-
kulturen (Leibniz-Institut DSMZ, Braunschweig, Germany). Stable
PD-L1-expressing cells were generated by retroviral transduction
with cDNA of human PD-L1 (MOLM-13:PD-L1 and OCI-AML3:PD-
L1) or murine PD-L1 (Panc02-OVA:mPD-L1), BA/F3:CD33:PD-L1
cells by further transduction with cDNA of human CD33.3*

Patient and healthy donor material

After written informed consent in accordance with the Decla-
ration of Helsinki and approval by the Institutional Review Board
of the Ludwig-Maximilians-Universitat (Munich, Germany), pe-
ripheral blood or bone marrow (BM) samples were collected
from healthy donors (HDs) and AML patients. At initial diagnosis
or relapse, samples were analyzed at the Laboratory for Leu-
kemia Diagnostics of the Klinikum der Universitat Miinchen as
described previously.?*37 Patient characteristics are summarized
in supplemental Table 2, available on the Blood Web site.

Flow cytometry

Flow cytometry measurements were performed on a Guava
easyCyte 6HT instrument (Merck Millipore, Burlington, MA) and
analyzed using GuavaSoft, version 3.1.1 (Merck Millipore) or on an
LSR I flow cytometer (BD Biosciences, Franklin Lakes, NJ) and data
were evaluated using FlowJo, version 9.6 (Tree Star Inc., Ashland,
OR). Commercial antibodies are listed in the supplemental
Methods. Surface antigen density of cell lines was evaluated with
QIFIKIT (Agilent Dako, Santa Clara, CA). Apparent dissociation
constants were determined by calibrated flow cytometry as
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Figure 1. Schematic drawing and binding characteristics of CiTE, sctb, and control molecules. (A) Modular composition of CiTE, sctb, and BiTE-like molecule. (B) Binding
analysis of CiTE and sctb to MOLM-13:PD-L1 cells and HD T cells at 15 ng/uL concentration by flow cytometry. (C) Binding analysis of PD-1., (in PD-1.,.0CD3) and aPD-L1 scFv
(in «PD-L1.«CD3) to HEK:PD-L1, MOLM-13:PD-L1, and HEK:PD-L1_ind. cells at 1.5 ng/pL concentration. Gray line indicates unspecific staining by the secondary antibody.
Histograms show 1 of 3 experiments with similar results. (D) Binding of aPD-L1 mAB (clone MIH1) to MOLM-13:PD-L1 cells in the presence or absence of CiTE, sctb, or controls at
150 nM concentration as measured by flow cytometry. Mean values show n = 3 independent experiments with standard error of the mean (SEM) as error bars. For statistical
analysis, unpaired Student t test with Welch correction was applied. *P < .05, **P < .01, ***P < .001. MFI, mean fluorescence intensity.

described.? Atotal of 3.0 to 3.4 pm Rainbow Calibration particles
(BioLegend, San Diego, CA) served as calibration control. Data
points were normalized to the maximum mean fluorescence in-
tensity and fitted to a 1-site specific binding model.

T-cell activation and cytotoxicity assays

HD T cells were incubated with target cell lines at an effector to
target cell (E:T) ratio of 2:1, 1:3, or without targets in the
presence of CiTE, sctb, and control molecules. Assays were
performed in RPMI1640 + GlutaMAX supplemented with 10%
fetal calf serum and penicillin/streptomycin (100 U/mL) (Thermo
Fisher Scientific). BA/F3 medium included 10% WEHI-3B su-
pernatant and 2.5 wg/mL aCD28 mAB (BD Pharmingen). Bead-
immobilized «CD3/aCD28 antibodies (Thermo Fisher Scientific)
served as positive control. After 96 hours, T-cell activation was
assessed by flow cytometry quantifying the CD2*CD69*, CD2*
CD25%, or CD2*PD-1* population. For cytotoxicity readout,
MOLM-13- and BA/F3-derived cells were directly applied, OCI-
AML3:PD-L1 and OCI-AML3 were labeled with PKH67 (Sigma-
Aldrich, St. Louis, MO). After 72 hours, total target cell numbers
were assessed by flow cytometry as live CD2-CD33* or CD2
PKHé67* population, respectively, and normalized to negative
control. Data were transformed with a 4-parameter nonlinear fit

2486 € blood® 6 DECEMBER 2018 | VOLUME 132, NUMBER 23

model. Interferon-y (IFN-y) and Granzyme B release were
determined after 72 hours by Cytometric Bead Array (Human
IFN-y/Granzyme B Flex Set, BD Biosciences).

HEK:PD-L1 and HEK:CD33:PD-L1 cells were labeled with 15 uM
Calcein AM (Thermo Fisher Scientific). Preactivated T cells de-
rived from an 18-day ex vivo peripheral blood mononuclear cell
expansion were incubated with a 1:1 mixture of unlabeled HEK:
PD-L1 and labeled HEK:CD33:PD-L1 cells and vice versa at
a total E:T ratio of 2:1 and increasing concentrations of mole-
cules.®? The 2.5% Triton X-100 served as maximum lysis. Fluo-
rescence intensity was measured using an Infinite M100 plate
reader (TECAN, Mannedorf, Switzerland) and specific lysis was
calculated and analyzed with a 4-parameter nonlinear fit model.

Specific lysis [%] = (fluorescenceample) - fluorescencegpontancous iysis)
(fluorescence(maximum lysis) — fluorescencepacikgrouna) X 100

Ex vivo redirected lysis assay of cocultured AML
patient cells

Redirected lysis assays of AML patient samples were performed
in a-MEM (Thermo Fisher Scientific) supplemented with 12.5%

HERRMANN et al
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Figure 2. CiTE-mediated T-cell activation d

ds on crosslink to target cells and is enhanced compared with BiTE-like molecule. (A) CiTE- and sctb-induced upregulation

of CD69 and CD25 on HD T cells in comparison with controls as analyzed by flow cytometry in the absence or presence of MOLM-13:PD-L1 cells after 96 hours and E:T ratio of
2:1. Bar charts show mean values of n = 3independent experiments at 5 nM concentration with SEM as error bars. (B) Fold change of IFN-y release in the presence of MOLM-13:
PD-L1 compared with MOLM-13 cells at 5 and 0.5 nM protein concentrations. (C) Granzyme B release in the presence of MOLM-13:PD-L1 cells at 0.5 nM protein concentration.
(D) IFN-y release in the presence of MOLM-13:PD-L1 cells upon addition of CiTE, sctb, or BiTE-like molecule at 5 nM protein concentration and combination of BiTE-like
molecule with PD-1/PD-L1 blocking agents at equimolar concentration. Cytokine and Granzyme B release were measured after 72 hours at an E:T ratio of 2:1 using nonstimulated
HD T cells. Bar charts represent mean values of (B,D) n = 4-5 or (C) n = 4-6 independent experiments with SEM as error bars. For statistical analysis, unpaired Student t test with

Welch correction was applied. *P < .05, **P < .01, ***P < 001.

fetal calf serum, 12.5% horse serum, 1% penicillin/streptomycin/
glutamine (Invitrogen, Carlsbad, CA), and a distinct cytokine
cocktail on irradiated MS-5 cells as described elsewhere.'0.13.:40-42
HD T and AML cells were incubated at an E:T ratio of 1:4 and
addition of 10 nM of molecules or 10 pg/mL aPD-L1 mAB
(eBioscience Thermo Fisher Scientific). Cell populations were
assessed by flow cytometry. Cytotoxicity and T-cell proliferation
were evaluated as described previously.'*'3

Murine AML xenograft studies

Female non-obese diabetic severe combined immunodeficiency -y
(NSG) mice 170 to 265 days of age were housed under pathogen-
free conditions at the research animal facility of the Helmholtz
Zentrum Munchen, Munich, Germany. Animal experiments were
approved by regional regulating authorities (Regierung von
Oberbayern) and conducted as described in a published pro-
tocol.*®* At day 0, 2 X 10* MOLM-13:PD-L1 cells were injected IV.
At day 3, 107 in vitro preactivated T cells were transferred in-
traperitoneally and mice were randomized into 5 groups: 3 treat-
ment groups containing é mice each, a specificity control group

BIFUNCTIONAL PD-1 FUSION PROTEIN FOR AML TREATMENT

of 4 mice, and a 1x DPBS control group of 5 mice. At day 4,
1.7 pmol of molecules/g body weight or 1x DPBS were daily
IV injected until day 12. At day 13, mice were euthanized, spleens
were removed, and BM was obtained from femora of hind legs.

Plotting and statistical analysis

Statistical evaluation was performed using GraphPad Prism version
6.07 (GraphPad Software Inc., San Diego, CA) applying unpaired
Student t test with Welch correction for cell line-based assays with
the same T-cell donors, Wilcoxon test for different HDs and patient
samples, and Mann-Whitney U test for mouse xenograft experi-
ments. If P < .05, results were considered statistically significant.

Results

Generation and characterization of the

CiTE antibody

To combine specific T-cell redirection to AML cells with a target
cell-restricted PD-1/PD-L1 blockade, we generated a CiTE
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Figure 3. CiTE and sctb enhance lysis of CD33* PD-L1*
target cells. (A) Dose-dependent lysis of MOLM-13 vs
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antibody by fusing PD-1., to an «CD3.aCD33 BiTE-like molecule.
The CiTE was compared with a sctb,?” in which PD-1., was
replaced by a high-affinity aPD-L1 scFv. The BiTE-like molecule
«CD3.«CD33, PD-1,,.CD3 and aPD-L1.«CD3, as well as a non-
targeting molecule served as controls (Figure 1A; supplemental
Figure 1A). Purified proteins were analyzed by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and analytical SEC
(supplemental Figure 1B-C) and protein stability was assessed
by fluorescence-based thermal shift assay (supplemental Figure 1D).

The binding properties and apparent dissociation constants of
CiTE and sctb to antigen-presenting cells were analyzed by flow
cytometry (supplemental Figure 2). When investigating CiTE and
sctb as whole molecules, both bound similarly to CD33*PD-L1*
AML cell lines and HD T cells (Figure 1B). Because the unique
feature of the CiTE format is the weak PD-1,, affinity to PD-L1,
we evaluated the binding abilities of PD-1¢, and the aPD-L1 scFv
independently. To this end, MOLM-13 and tetracycline-
inducible HEK293 cells both stably expressing PD-L1 (MOLM-
13:PD-L1 and HEK:PD-L1) were quantified for their PD-L1
surface antigen density (supplemental Table 1A). As expected,

2488 @ blood” 6 DECEMBER 2018 | VOLUME 132, NUMBER 23

our results showed weak physiological binding of PD-1., (de-
scribed in the low micromolar range)*“* and comparably strong
binding of the aPD-L1 scFv (Figure 1C).

Consequently, CiTE-mediated checkpoint inhibition on AML cells
depends on avidity contribution of the CD33 targeting module.
We performed a blocking assay with a labeled aPD-L1 mAB that
interferes with the binding of the checkpoint modules. Despite the
weak interaction of PD-1e, in comparison with the «PD-L1 scFv,
the CiTE was able to block subsequent binding of the aPD-L1
mAB on CD33*PD-L1* AML cells (Figure 1D). However, it was not
as efficient as the sctb and the high-affinity «PD-L1.CD3 control,
which were able to completely occupy accessible PD-L1 surface
molecules. In line with the binding studies, the low-affinity
PD-1,.0CD3 control was displaced by the «PD-L1 mAB. Thus,
PD-1,, only interacts with its ligand on AML cells when it is
covalently linked to a high-affinity leukemia-targeting arm.

CiTE-mediated activation of resting T cells
In vitro, BiTE-mediated T-cell activation strictly depends on the
crosslink to target cells.* To assess T-cell activation caused by
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sole CD3 engagement, we incubated HD T cells with CiTE and
sctb in the absence or presence of MOLM-13:PD-L1 cells
(Figure 2A). As expected, none of the molecules induced ex-
pression of CD25 and CD69 without target cells, whereas T cells
significantly upregulated both markers in the presence of
MOLM-13:PD-L1 cells. As a further hallmark of T-cell activation,
we quantified the IFN-y and Granzyme B release (Figure 2B-D).
On CD33"PD-L1* cells, both CiTE and sctb led to a significant
increase in IFN-y and Granzyme B levels compared with the
BiTE-like molecule. We also observed an upregulation of PD-1
upon T-cell activation (supplemental Figure 3).

To effectively counteract adaptive immune resistance caused
by PD-1/PD-L1 signaling, current clinical trials investigate
combination therapies of targeting agents with checkpoint
inhibitors.#”#8 Thus, INF-y levels were measured upon T-cell
activation by CiTE, BiTE-like molecule, or combinations of
BiTE-like and checkpoint inhibitors. Strikingly, the CiTE induced
similar cytokine levels compared with high-affinity blocking
agents plus BiTE-like molecule, whereas the equimolar addition
of PD-1c-Fc (low-affinity blocking module) triggered a weaker
IFN-y release (Figure 2D). We conclude that the fusion of PD-1,
to a BiTE-like scaffold leads to similar T-cell activation as com-
bination approaches, but with the advantage of local restriction
to CD33" cells. We hypothesize that this effect is due to
a synergy of avidity-dependent binding and PD-1/PD-L1
checkpoint blockade.

CiTE-mediated cytotoxicity is limited to CD33" cells
With the CiTE format, we provide a molecule that targets CD33*
leukemic cells with high affinity and locally blocks PD-L1 because
of the low affinity of PD-1,. Furthermore, we expect the CiTE to
address CD33*PD-L1* cells more efficiently than CD33*PD-L1~
cells because of avidity-dependent binding of the «CD33 scFv
and PD-1.,. To test this hypothesis, the molecules were in-
cubated with nonstimulated HD T cells and MOLM-13 or
MOLM-13:PD-L1 cells, expressing high levels of CD33 (Figure 3;
supplemental Figure 5; supplemental Table 1). Both CiTE and
sctb induced specific lysis of both cell lines, yet, PD-L1 ex-
pression on AML cells increased the efficacy of target cell de-
pletion (Figure 3A,C). Also, T-cell proliferation was triggered
more strongly on CD33*PD-L1* target cells (supplemental
Figure 4). Interestingly, both molecules revealed similar 50%
effective concentration (ECso) values despite their different af-
finities for PD-L1. Consistent with the previous characterization,
the low-affinity PD-1.,.CD3 control had a low impact on cy-
totoxicity, whereas the high-affinity «PD-L1.«CD3 control led to
target cell lysis when PD-L1 was expressed. Because CD33 levels
on AML cells exhibit a high inter- and intrapatient heteroge-
neity,'® the results were confirmed with OCI-AML3 and OCI-
AML3:PD-L1 cells, which express low CD33 levels (Figure 3B,D;
supplemental Table 1). The advantage of the bifunctional CiTE
and sctb in comparison with the standard BiTE-like molecule was
further investigated by T cell-induced cytotoxicity assays using
MOLM13:PD-L1 or BA/F3:CD33:PD-L1 target cells at an E:T
ratio of 1:3 (Figure 3E-F). In contrast to the BiTE-like molecule,
both CIiTE and sctb significantly enhanced target cell lysis.
Collectively, CiTE- and sctb-mediated cytolysis is strongest
against CD33*PD-L1* double-positive cells, independent of
the absolute affinity of the checkpoint blocking module, and
the fused PD-L1 blocking module increases lysis of double-
positive cells.
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Figure 4. GiTE induces preferential lysis of CD33*PD-L1* cells and has no ac-
tivity against CD33PD-L1* cells. Dose-dependent preferential lysis of (A) HEK:
CD33:PD-L1 over (B) HEK:PD-L1 cells induced by CiTE, sctb, or BiTE-like molecule
and vice versa. Preactivated HD T cells were incubated with target cells and CiTE,
sctb, or BiTE-like molecule for 4 hours at a total E:T ratio of 2:1. ECsg values for CiTE,
sctb, and BiTE-like molecule were 22.8, 10.4, and 13.5 pM for HEK:CD33:PD-L1 cells.
For HEK:PD-L1 cells, the ECs value for the sctb was 114.4 pM. Graphs represent
mean values of n = 4 independent experiments with SEM as error bars.

We next evaluated whether the CiTE molecule is able to induce
elimination of CD33*PD-L1* cells selectively in the presence of
PD-L1* cells. To this end, preferential lysis was analyzed in
amixed target cell population (Figure 4; supplemental Figure é).
Although the CiTE triggered preferential lysis of CD33*PD-L1*
cells, molecules with high affinity to PD-L1 revealed dose-
dependent elimination of both CD33*PD-L1* and PD-L1* cell
lines. This indicates that the low-affinity PD-1., module is not
sufficient to redirect T cells to PD-L1+ non-AML cells, which might
provide an important safety feature for the CiTE platform.

CiTE and sctb increase specific cytotoxicity against
patient-derived AML cells and enhance

T-cell proliferation

In ALL, relapse after blinatumomab treatment was suggested to
originate from PD-L1 expressing leukemic cells, which are re-
sistant to T cell-mediated cytotoxicity.’* A similar mechanism
was identified in AML, where AMG 330-induced T-cell activation
was accompanied by PD-L1 upregulation on patient-derived
AML cells as well as PD-1 expression on T cells ex vivo.?
Also, CiTE-mediated T-cell activation led to the upregulation
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Figure 5. CiTE and sctb enhance lysis of patient-derived primary AML cells and increase T-cell proliferation. (A) Cytotoxic lysis of primary AML cells from an exemplary patient
and PD-1 expression on T cells after 3to 4 days of cocultivation. (B) Mean cytotoxic lysis of primary AML cells induced by respective molecules after 3to 4 days. (C) PD-1 expression on T cells
after 3to 4 days. (D) T-cell proliferation after 6 to 7 days measured by flow cytometry. CITE, sctb, BiTE-like molecule, and specificity control were applied at 10 nM; aPD-L1 mAB at 10 jug/mL
concentration. Assays were performed at an initial E:T ratio of 1:4. Error bars display SEM. For statistical analysis, Wilcoxon test was applied. *P < .05, **P < 01, **P < 001

of PD-L1 on primary AML patient cells (supplemental Figure 7A).
In 7 of 8 patients, the CiTE was able to induce equal or en-
hanced redirected lysis of target cells compared with the
BiTE-like molecule (62 * 9% compared with 55 * 6%), and
the sctb triggered similar or higher lysis in all patients (76 *
6%) (Figure 5A-B; supplemental Figure 7B). An increase in
T-cell proliferation was induced by the CiTE and sctb in contrast to
the BiTE-like molecule through prolongation of coculture time to
6 to 7 days (Figure 5D). Furthermore, elevated T-cell activity was
demonstrated by virtue of PD-1 expression as well as IFN-y re-
lease (Figure 5C; supplemental Figure 7C). Interestingly, addition
of a PD-L1 blocking mAB to the BiTE-like molecule had a lower
impact on cytotoxicity and T-cell proliferation than the sctb.
Thus, we hypothesize that CiTE and sctb are able to efficiently
counteract PD-L1-mediated resistance mechanisms and to
induce specific lysis of AML cells by a synergy of avidity-
dependent binding and checkpoint blockade.

CiTE induces leukemia eradication in vivo without
on-target off-leukemia events

Because T cell-based immunotherapies such as BiTEs, chimeric
antigen receptor T cells and hematopoietic stem cell trans-
plantation rely on T-cell activation, the induced proinflammatory
response will consistently evoke PD-L1 upregulation on AML

2490 € blood” 6 DECEMBER 2018 | VOLUME 132, NUMBER 23

cells.’3452 To mimic this physiological situation in vivo, we
engrafted MOLM-13:PD-L1 cells into NSG mice followed by
transfer of in vitro activated human HD T cells (Figure 6A).
Evaluation of the residual hCD45*CD33* AML population in the
BM after 9 days of treatment revealed complete eradication of
leukemic cells in all 3 treatment groups (Figure 6B). In contrast, the
control cohort showed 1% to 3% AML cells in the BM, which
resembles minimal residual disease criteria of <5% myeloblasts in
humans (supplemental Figure 8A).5

Besides efficient eradication of AML cells, the main purpose of
the CiTE antibody is to avoid irAEs that originate from systemic
binding to PD-L1* tissue. To investigate potential targeting of
non-AML cells, we took advantage of the cross-reactivity of both
PD-L1 checkpoint blocking modules to murine PD-L1, which
bound murine PD-L1 with comparable affinities than human
PD-L1 (supplemental Figure 8B). Mice treated with the high-
affinity sctb lost body weight compared with the other treatment
groups (Figure 6D; supplemental Figure 8C). PD-1 was signifi-
cantly upregulated on CD4* and CD4~ T cells in the BM
(Figure 6C); a similar T-cell phenotype was noted when splenic
T cells were analyzed (data not shown). We hypothesize that
this observation is due to sctb-mediated T-cell redirection to PD-
L1* murine cells and represents on-target off-leukemia events.
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Figure 6. CiTE leads to eradication of AML cells in a murine NSG xenograft model without indication of ent d PD-1 upr lation or body weight loss. (A) Ex-

perimental design of mouse studies. (B) Remaining engrafted MOLM-13:PD-L1 (live hCD45*CD33*) cells in BM of exemplary mice per cohort (left) and as mean (right) after
13 days. (C) PD-1 upregulation on human CD45*CD3*CD4* and CD45*CD3*CD4" T cells. (D) Relative body weight of mice as scored during treatment with CiTE and sctb.
Cohorts contained 4 to 6 mice. Error bars in (B-C) indicate standard deviation, in (D) SEM. For statistical analysis, Mann-Whitney U test was applied. *P < .05, **P < .01,

***P < 001. IP, intraperitoneally.

Most importantly, no such effects were observed for the CiTE
antibody. These findings demonstrate that the CIiTE efficiently
induces specific AML eradication in vivo without affecting the
body weight as indication for systemic PD-L1 targeting. Thus,
we consider the new CiTE format as favorable postremission
approach in AML, which is particularly suited to counteract
PD-L1-mediated adaptive immune resistance.

Discussion

The BiTE technology is a successful immunotherapeutic ap-
proach in ALL, and with AMG 330, a first T-cell engager recently

BIFUNCTIONAL PD-1 FUSION PROTEIN FOR AML TREATMENT

entered the clinics for AML treatment. However, it has been
shown that BiTE-mediated T-cell activation and the associated
release of proinflammatory cytokines trigger the upregulation of
the inhibitory ligand PD-L1 on AML and ALL cells.'®'* As reflected
in ex vivo experiments using human patient samples, the com-
bination of AMG 330 and PD-1/PD-L1 inhibitors might abrogate
this axis and restore T-cell activity.'® Yet, PD-1 and PD-L1 blocking
mABs that have hitherto been approved by regulatory authorities
are limited by their risk to induce irAEs. Although adverse events
are often successfully managed, they can develop into a severe
state and require therapy interruption or discontinuation; thus,
new approaches are urgently needed.
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The presented CiTE format is able to combine T-cell redirection
with a restricted PD-1/PD-L1 blockade to the surface of AML
cells and thereby to sustain immune tolerance against healthy
tissue. This is achieved by fusing the extracellular domain of
human PD-1, which naturally holds a low affinity to PD-L1, to
a BiTE-like scaffold. PD-1., is not sufficient to bind PD-L1 alone,
but only linked to a high-affinity leukemia-targeting module. As
a consequence, the CiTE exclusively induces lysis of CD33*PD-
L1* cells in vitro, whereas PD-L1* non-AML cells are not af-
fected. In vivo, the CIiTE did not lead to on-target off-leukemia
events indicated by body weight loss and leukemia-unrelated
T-cell activation. Thus, the bifunctional format displays a prom-
ising therapeutic strategy to lower irAEs compared with high-
affinity PD-1 and PD-L1 blocking agents.

Because CD3-addressing approaches by T-cell-engaging mole-
cules are effective at very low protein concentrations (picomolar or
even subpicomolar),?*5* an obvious question is whether fusing
checkpoint ligands to CD3-binding modules in a single molecule
would be sufficient to block PD-1/PD-L1 interactions. However,
T-cell receptor and PD-1 are suggested to be closely associated in
the immunological synapse.* Consequently, a locally restricted
full or even partial inhibition of PD-1/PD-L1 interactions at the
T-cell receptor could lead to a more efficient T-cell activation
even at low antibody concentrations.

Stimulation of CD3e on T cells with monoclonal antibodies was
shown to induce T-cell activation.®**” Accordingly, patients
treated with muromonab (Orthoclone OKT3) frequently experi-
ence cytokine release syndrome 5857 In contrast, monovalent CD3
stimulation by the CiTE does not per se trigger upregulation of
T-cell activation markers such as CD69 or CD25 in vitro. In con-
cordance to preclinical studies of BiTE antibodies,* T cells are
exclusively activated by crosslinking to leukemic cells that express
the targeted CD33. Nevertheless, blinatumomab does induce
cytokine release syndrome in some patients.®® Intensive inves-
tigations in animal models are therefore indispensable.

Similar to BiTE molecules,?>*% the CiTE is able to induce redir-
ected lysis of cancer cells at very low concentrations with ECsqo
values in the low picomolar range. Because of avidity-dependent
binding, the targeting efficacy of CD33* AML cells that express
PD-L1 is increased. This might provide the possibility to prefer-
entially address double-positive cells, which is especially important
because CD33 is also expressed on CD34+CD38"~ hematopoietic
stem cells and healthy myeloid cells, and the general depletion of
CD33* cells by CD33 monotargeting agents such as gemtuzumab
ozogamicin consequentially results in neutropenia.'®¢'¢¢

Because the upregulation of immune checkpoints in response to
T-cell activation is a general mechanism of adaptive immune
resistance, combination therapies of targeting agents, chemo-
therapies, or kinase inhibitors with blocking mAB are under
intensive investigation.'®474847 \We were able to demonstrate
that the CiTE molecule, despite the low-affinity PD-1., domain,
induces similar IFN-y levels in comparison with the combination
of the BiTE-like molecule and PD-1 or PD-L1 inhibitors. However,
most importantly and in contrast to high-affinity PD-L1 binders
applied in combination therapies, the CiTE preferentially and
highly selectively eliminated CD33*PD-L1* double-positive tar-
get cells. This is expected to translate into a decreased incidence
of irAEs, as was observed in our xenograft mouse model.
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Collectively, we showed that the CiTE antibody reveals a high
potency to activate resting T cells and to induce efficient cy-
totoxicity against AML cells. It features a high specificity for
CD33*PD-L1* target cells in vitro and does not show adverse
events in vivo. Because of its beneficial performance compared
with the BiTE format, we consider the CiTE a promising can-
didate to reverse immune resistance in AML. Future studies will
have to examine efficacy and tolerance in more advanced in vivo
models before applying the CiTE format into a clinical setting.
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