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Zusammenfassung

Robustheit ist die Fähigkeit eines Systems die Charakteristik seiner Dynamik gegen äußere
Einflüsse zu bewahren. Im Kontext biologischer Systeme kann das Verständnis der Ur-
sachen von Robustheit dazu beitragen ein System zu kontrollieren, seine Funktionalität zu
beeinflussen, und Einsichten in Entstehung und Evolution geben. Wie die Robustheit eines
Systems von dessen Interaktionsnetwerk beeinflusst wird ist ein vielfältiges Forschungsge-
biet.
In dieser Dissertation untersuche ich am Beispiel der antisymmetrischen Lotka Volterra
Gleichung wie die Robustheit eines dynamischen Systems von der Topologie seiner In-
teraktionen beeinflusst wird. In der antisymmetrischen Lotka Volterra Gleichung, der
Replikator-Gleichung für Nullsummenspiele im Bereich der evolutionären Spieltheorie, ist
die Intensität paarweiser Interaktionen von Strategien durch eine antisymmetrische Ma-
trix festgelegt. Typischerweise sterben einige Spezies aus, während bei den verbleiben-
den Spezies komplexe Schwingungen zu beobachten sind. Koexistenz von allen Spezies
tritt auf wenn die Interaktionsmatrix einen strikt positiven Kernvektor hat. Kernvek-
toren können mithilfe der pfaffschen Determinante berechnet werden, einer für antisym-
metrische Matrizen definierte Funktion ähnlich der Determinante. Die Repräsentation an-
tisymmetrischer Matrizen durch gewichtete Netzwerke ermöglicht eine graph-theoretische
Charakterisierung der pfaffschen Determinante und damit der Kernvektoren. Dadurch ist
es möglich, den Zusammenhang von Koexistenz aller Spezies und der Topologie des Inter-
aktionsnetzwerkes zu untersuchen.
In dieser Arbeit diskutiere ich Koexistenznetzwerke, Netzwerktopologien in denen Koexis-
tenz von allen Spezies robust ist gegen beliebige Störungen der Interaktionsstärke. Mithilfe
der pfaffschen Determinante werden einfache graph-theoretische Regeln hergeleitet die die
Identifikation und Konstruktion von Koexistenznetzwerken beliebiger Größe ermöglichen.
Für Koexistenznetwerke ist das qualitative Verhalten der Dynamik, robuste Koexistenz
aller Spezies, eine Konsequenz der Netzwerktopologie. Meine Arbeit zu Koexistenznet-
zwerken kann möglicherweise dazu beitragen robuste Netzwerkmotive in Ökosystemen zu
identifizieren.
Die einem Koexistenznetzerk entsprechende antisymmetrische Matrix hat einen strikt pos-
itiven Kernvektor der die mittlere Massenverteilung im System beschreibt, sodass auch
quantitative Eigenschaften der antisymmetrischen Lotka-Volterra Gleichung und ihre Ro-
bustheit untersucht werden können. In der Analyse eines großen Koexistenznetwerks,
bestehend aus zusammengefügten Netzwerkmotiven wie dem Schein-Schere-Papier-Zyklus,
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finde ich einen topologischen Phasenübergang der quantitativen Dynamik. Topologische
Zustände werden als Polarisation der Masse sichtbar, und es kann gezeigt werden dass
das System in der Symmetrieklasse D der Klassifizierung topologischer Supraleiter ist.
Diese Polarisierung ist robust gegen Störungen der Interaktionsstärke und bleibt sogar
bestehen wen die Netzwerktopologie verändert wird. Die Beschreibung von topologis-
chen Phasen in Lotka-Volterra Gleichungen weitet das Forschungsgebiet der topologischen
Phasenübergänge auf nichtlineare dynamische Systeme mit biologischen Anwendungen aus.
Die Ergebnisse dieser Dissertation zeigen, dass in der Dynamik der antisymmetrischen
Lotka-Volterra Gleichung robuste Koexistenz und robuste Polarisierung aufgrund von Net-
zwerktopologie möglich ist. Netzwerktopologie kann also sowohl das qualitative als auch
das quantitative Verhalten eines nichtlinearen dynamischen Systems mitbestimmen.



Abstract

Robustness is a systems ability to preserve the characteristics of its dynamics against ex-
ternal influences. In the context of biological systems, understanding sources of robustness
can help to either guide, manipulate or secure a systems function, or give insight into its
evolutionary origins. The interplay between robustness of a system and the interaction
network of its variables is a focus of ongoing research.
In this thesis, I investigate how robustness of a dynamical system is influenced by the
coupling topology of its interaction network using the example of the antisymmetric Lotka
Volterra equation, the replicator equation of zero-sum games in evolutionary game theory.
The antisymmetric Lotka Volterra equation is a nonlinear dynamical system, in which the
strengths of pairwise interactions between species are defined by an antisymmetric matrix.
In the mass-conserving dynamics typically some species go extinct over time, while the
other species survive and perform complex oscillations. However, when the antisymmetric
interaction matrix has a strictly positive kernel vector, all species coexist for all times.
Exploiting the equivalence of antisymmetric matrices and directed networks, the kernel
vector of an antisymmetric matrix can be characterized by network topological properties
through the Pfaffian, a determinant like function for antisymmetric matrices. This allows
for a discussion of coexistence of all species in terms of network topology.
I find coexistence networks, that is, interaction network topologies in which survival of all
species is robust against arbitrary perturbations of the interaction strengths and initial
conditions. With help of the connection between kernel vectors and the Pfaffian, simple
graph-theoretical rules are derived by which coexistence networks of arbitrary size can be
identified and constructed. For coexistence networks, the qualitative behavior, namely
robust coexistence of all species, is a consequence of the network topology. The work on
coexistence networks may help to identify robust network motifs arising, for example, in
ecology.
The antisymmetric matrices corresponding to coexistence networks have strictly positive
kernel vectors which characterize the average mass distribution in the system, such that
also the quantitative behavior of the antisymmetric Lotka Volterra equation dynamics and
its robustness can be discussed. In an analysis of large coexistence networks obtained by
concatenation of simple network motifs such as rock-paper-scissors cycles, I find a topologi-
cal phase transition of the quantitative dynamics. The topological states become manifest
as polarization of the average mass, and it can be shown that the system lies in the symme-
try class D within the ’ten-fold way’ classification of 1D superconductors. The polarization
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is robust against perturbations of the interaction strength and can even withstand changes
in the network topology. The analysis of topological phases in Lotka-Volterra systems ex-
tends the study of topological phases to nonlinear dynamical systems in biological context.
In total, the results of this thesis show that in the dynamics of the antisymmetric Lotka
Volterra equation, network topology can lead to robust coexistence of all species, and
can give rise to robust polarization as known from topological phase transitions. Hence,
topology of the interaction network can influence both the qualitative and the quantitative
behavior of a nonlinear dynamical system.



Structure of this thesis

In this thesis we present a comprehensive study of the role of network topology for the long-
time dynamics of the antisymmetric Lotka Volterra equation. After a general introduction
and mathematical background information, this thesis contains three chapters with the
main results. Although the chapters are successively based on each other, they can be read
independently. Therefore, each chapter contains an appendix with further details that are
specific to the chapter.

1 Introduction: Robustness of coexistence in the antisymmetric Lotka Volterra
equation

The first chapter introduces the main theme of this thesis, robustness and its con-
nection to network topology, and the dynamical system that we explore, the anti-
symmetric Lotka Volterra equation (ALVE). We provide a non-technical introduction
to the ALVE and motivate its derivation from the evolutionary game theory of zero
sum games such as the rock-paper-scissors game. Additionally, we present a survey
of other branches of physics where the ALVE has relevance.

2 Mathematical properties of the ALVE

Here we define the ALVE and derive its mathematical properties. We show that
condensates can be identified from properties of the antisymmetric interaction matrix.
When the interaction matrix has a strictly positive kernel vector, no states become
extinct (coexistence of all states). Furthermore, in case the strictly positive kernel
vector is unique, its entries contain key information about the non-equilibrium steady
state of the ALVE. The main results in this chapter are reproduced from the work
of Johannes Knebel, Markus F. Weber, Torben Krüger and Erwin Frey [1, 2], which
served as inspiration and starting point for the original work presented in the later
chapters.

3 Networks and real antisymmetric matrices

This chapter contains an overview of basic properties of antisymmetric matrices,
and how each antisymmetric matrix can be represented by a weighted network. We
introduce concepts from graph theory and show how they can be used to characterize
the kernel of antisymmetric matrices.
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4 Topologically robust coexistence and coexistence networks
with Johannes Knebel and Erwin Frey [49]

In this chapter we identify and characterize coexistence networks, that is, antisym-
metric matrices for which the position of positive and zero values secures a strictly
positive kernel vector. As such matrices can be represented by directed networks,
this property is a direct consequence of the network topology. We define coexistence
networks, present network characteristics to identify and construct coexistence net-
works of arbitrary size and discuss in length possible interpretations and applications.
For the ALVE, coexistence networks are relevant as for these networks no extinction
takes place: all states are part of the dynamics for all times. In addition, the strictly
positive kernel vector characterizes the complex dynamics in these coexistence net-
works. Apart from the ALVE, coexistence networks have interesting implications for
game theory as topologically robust zero sum games, and they are a generalization
of Pfaffian orientation.

5 Topological phase transition in coupled rock-paper-scissors cycles
with Johannes Knebel and Erwin Frey [50]

Here we analyze the dynamics and mass distribution of the ALVE on a specific
coexistence network that can be interpreted as a one-dimensional chain of rock-
paper-scissors cycles. Dependent on one control parameter, a ratio of two rates
which we call ’skewness’, robust polarization is observed that bears all characteristics
of a topological phase transition as known from condensed matter. We show that
the antisymmetric interaction matrix indeed undergoes a topological transition that
translates to the ALVE dynamics through the strictly positive kernel vector. This
chapter discusses topological phase transitions in the context of linear algebra, and
its effects for a system from population dynamics.

6 Topological phases beyond rock-paper-scissors

The results from the previous chapter are generalized to more complex one-dimensional
chains. We show that the topological phase transition of the rock-paper-scissors
chain is robust against changes of the network topology. The topological invariant
and with it the topological phase transition is easily identified using the methods
from the previous chapter. Polarization strength is determined as the asymptotics of
linear recursive sequences that arise from graph-theoretical properties of the chains.
As a new feature, extinction is observed in the topologically non trivial phase. Fi-
nally, for one dimensional chains at the point of the topological transition, we derive
differential difference equations which admit solitary waves.

7 Conclusion, discussion and outlook

The final chapter contains a discussion of the results of this thesis and their signif-
icance. We comment on the limitations of the model, possible augmentations and
potential paths for future research.
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Chapter 1

Introduction

In the natural sciences, networks are a common and convenient way to visualize and analyze
complex systems [3, 4, 5]. The nodes and edges of a complex network can have various
meanings: Ecosystems consist of different species (nodes) preying on or cooperating with
each other (edges) [6, 7], in the brain neurons (nodes) are interconnected (edges) [8]. The
complex workings in a cells can be represented as genes (nodes) that activate or inhibit
each other (edges) [9, 10], chemical reactants (nodes) can react and transform (edges) [11].
In all of these examples the complex system is be represented by its network topology:
a collection of nodes that are connected by edges. Network topology often is either a
byproduct of elaborate analysis or (relatively) simple obtainable, inviting the following
questions:
What is the role of the network topology for the properties or dynamics of the system?
Does the network topology constrain, support, secure its function?
These questions have inspired a wide array of fascinating research, studying drastically
simplified yet still functional models that strongly rely on network topology [12, 13, 14],
the influence of interaction network topology on attractors [15, 16] to elaborate graph
theoretical conditions for robustness of chemical networks [11, 17, 18].

In this thesis, we investigate the role of network topology for robustness of complex dy-
namics in the context of the antisymmetric Lotka Volterra equation, a dynamical system
that models the population dynamics of networks of competing species [19, 20]. Generally,
in this population dynamics some species die out, other species become isolated and some
groups of species survive and interact indefinitely [1]. The guiding question of this thesis
is if and to what extend the set of surviving species is robust against perturbations of the
interaction strength. Here, we show that for the antisymmetric Lotka Volterra equation
there are network topologies which predetermine robustness of coexisting species their dis-
tribution. We introduce network theoretical criteria that secure coexistence of all species,
and show how robust population structure can emerge on the basis of network topology.

We start this thesis by introducing the antisymmetric Lotka Volterra equation as the
replicator equation of zero sum games, illustrating its phenomenology and discussing its
relevance beyond population dynamics.



2 1. Introduction

1.1 The antisymmetric Lotka Volterra equation (ALVE):
Replicator equation for zero sum games

In game theory, a game is called zero sum if in each round the gain of the winner equals
the loss of the loser. Pictorially speaking, the loser gives some amount of money to the
winner, such that the total amount of money in the game is unchanged, hence the name
zero sum game.

1.1.1 The rock-paper-scissors (RPS) game

The most famous zero sum game is the rock-paper-scissors game (RPS), a game that is
widely known in various versions all around the world [21]. In this game there are three
strategies, rock (R), paper (P), and scissors (P). Each strategy wins against one of the
others and is beaten by the third strategy: rock blunts scissors (win) and is wrapped
by paper (loss), paper wraps rock (win) and is cut by scissors (loss), scissors cuts paper
(win) and is blunted by rock (loss). It is convenient to formalize this list of interactions in
the so-called payoff-matrix: The own strategy corresponds to the rows of the matrix, the
opponents strategy to the columns. For example, when A chooses rock and B plays paper,
player A looses, receiving a payoff of aRP = a12 = −1. Reversing the roles, in the same
encounter player B wins aPR = a21 = +1. In case of a draw both players receive a payoff
of 0, translating to aRR = a11 = 0, and so on. For this zero sum game, the win equals the
loss1, such that the payoff matrix is antisymmetric. The payoff matrix ARPS is

ARPS =

R P S 0 −1 1
1 0 −1
−1 1 0

 R
P
S

, (1.1)

which is visually presented as a directed cycle in Figure 1.1.
In this matrix notation, the above example yields the payoff of A playing rock (written as
the strategy vector sTA =

(
1 0 0

)
) against B’s paper (that is sTB =

(
0 1 0

)
)) as

sTAARPSsB =
(
1 0 0

)
ARPS

0
1
0

 = −1 = −sTBARPSsA .

A major goal of game theory is to find a strategy that maximizes one players outcome in
a series of repeated games. Assuming logical players, a predictable strategy (e.g., always
choose ’rock’) will always loose as the opponent can tailor his replies accordingly (e.g.,
always reply with ’paper’), making a random, stochastic strategy necessary. With the
probability pA,R of player A choosing strategy ’rock’, and so on, the stochastic strategy of
player A is expressed as pA = (pA,R, pA,P , pA,S)T . The average payoff for player A against

1Of course the payoff can deviate from 1.
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Figure 1.1: Examples for the evolutionary dynamics of the RPS cycle. The matrix
ARPS can be represented as a directed cycle topologically robust zero sum games (a). Both the
trajectory x(t) (green) and its temporal average 〈x〉t (grey) are shown for different choices of
the interaction rate aPR (b)-(d). The trajectory x(t) lies on a limit cycle (green) which is fixed
by the initial condition (black cross), while the temporal average 〈xα〉T (grey) approaches the
systems fixed point (red cross), the Nash equilibrium. Depending on the rates, the trajectory in
the system is skewed towards the boundaries of the simplex. Nonetheless, for all choices of weights
that preserve the network topology no species goes extinct.

the mixed strategy of player B, pB, is then pTAARPSpB. Each player can always force
the opponents payoff to zero simply by copying her strategy, pTARPSp = 0. The optimal
strategy for A, the Nash equilibrium, is the strategy that performs best against every choice
of the opponent, pB (or, equivalently, the strategy that minimizes the earnings of player
B [22]). Since an average gain is not possible, the Nash equilibrium is the kernel vector
of ARPS, the vector ARPSr = rTARPS = 0. When one player chooses this strategy, the
average gain is always rTARPSpB = 0 for every choice of the opponents strategy pB.

1.1.2 Evolutionary game theory of zero sum games

At the heart of evolutionary game theory stands the idea that interactions between different
phenotypes or behavioral programs are encoded in a game between species in a population.
Instead of single agents that choose (probabilistic) strategies, we assume that all individuals
of the population ’play’ a pure strategy that identifies them as a member of a species. If an
individual adopts another strategy, it also changes the species2. The game acts as a stand-
in for complex biological and ecological interactions, struggles and competitions. Examples
are outperformance by agility or fertility, advantage due to resistance against environmental
factors, or direct competition due to predation. All interactions are condensed into the
game matrix that describes the fitness advantages between different species [23, 24, 25, 20,
26].

For zero sum games, such as the rock-paper-scissors game, one assumes that the advan-
tage of one species is another species disadvantage, for example one species is consumed
by the other. This is captured by the antisymmetry of the payoff matrix ARPS = −ATRPS.
Of course it is highly unlikely that all interaction strengths are equal, such that the entries

2Note that this behavioral species must not coincide with the biological species



4 1. Introduction

1
1.5

2
0.5

y 3

1

23

4 5

y = 1 y = 0.1

5 4 5

y = 0.33

3 1

10-2

10-4

10-6

x
α
(t)

t0 50 100 t0 25 50 t0 250 500

10-2

10-4

10-6

x
α
(t)

10-2

10-4

10-6

x
α
(t)

(a) (b) (c) (d)

Figure 1.2: Survivors and extinct states depend on both the network topology and the
rates. The position of positive and zero entries define the network topology (a). Varying one rate,
4

y−→ 1 can change the outcome drastically. Depending on the value of y, either three interacting
(b), four interacting (c) oder three non-interacting species (d) survive. When the surviving species
interact and form a network of coexisting species, complex oscillations are observed (b)-(c).

of the game matrix differ from +1 and −1 as in equation (1.1).
Due to the differing fitnesses of the species, the composition of the population, x =

(xR, xP , xS), xR + xP + xS = 1 changes, creating a dynamics of the population. Each
species grows relative to its abundance, (∂txα)/xα, with a growth rate according to its
fitness advantage over the rest of the population. The fitness of species α is determined
by (ARPSx)α and thus depends on the rest of the population. A species that is less fit
than the rest of the population is outperformed and decreases, while a fitness advantage
results in growth. For the RPS game, the populations average fitness is x ·ARPSx = 0 (as
ARPS = −ATRPS), resulting in the following example of the antisymmetric Lotka Volterra
equation (ALVE) [25],

d
dt
xα(t) = xα(t)(ARPSx)α . (1.2)

The interaction matrix ARPS defines number S = 3 of dynamic variables xα and the topol-
ogy and rates of their interactions, see Figure 1.1.

The ALVE for the RPS game is a popular model for population dynamics with cyclic
dominance. There is not one strongest species, and success is only temporary, leading to
oscillations as shown in Figure 1.1. Starting from some initial configuration (black cross),
the composition of the population oscillates, leading to a majority of rock followed by paper
followed by scissors, followed by rock and so on in a circular fashion (green line). The shape
of this limit cycle depends on the values of the transition rates, but the qualitative dynamic
behavior, coexistence of all states despite competition, remains unchanged. For large times
T , the temporal average 〈xα〉T := 1/T

∫ T
0
dt xα approaches the fixed point of the dynamics

(grey line and red cross) that coincides with the Nash equilibrium of the game.

1.1.3 Characteristics of the ALVE dynamics

In this thesis, we are interested in the role of network topology for the ALVE dynam-
ics. For this purpose the interaction matrix ARPS in equation (1.1) is replaced with an



1.2 Overview of this thesis 5

arbitrary antisymmetric matrix A, resulting in a differential equation for S states. Each
antisymmetric matrix can be represented as a weighted network by interpreting a positive
entry aαβ = −aβα > 0 as an edge β → α with weight |aαβ|, as discussed in detail in Chap-
ter 3. We consider weighted networks of different size S, where in addition to links with
arbitrary weight also neutral interactions are possible, that is, a species is not necessarily
in competition with all other species.

Numerical analysis of the ALVE dynamics on general networks shows condensation [1,
2]: Starting from an initial condition where all states are present, the mass in the system
retracts into a subset of all states. Which strategies survive and which die out generally
depends on both on the network topology and the interaction rates, but is independent
from the initial conditions.
This behavior is exemplified in Figure 1.3: For a fixed network topology with S = 5 species
(a), by varying one interaction strength, 4

y−→ 1, we achieve drastically different outcomes
(b)-(d). While for (b) and (c), the surviving states interact with each other, yielding a
dynamical behavior for all times, in (d) the extinction of intermediary states leaves the
survivors disconnected. Notably, in (d) also the purely dominated state 5 survives since
its dominator goes extinct fast enough. The mathematical details of this example are
presented in Section 2.2.2.

In summary, in the ALVE dynamics, species either survive or die out. Which states
survive is independent from the initial condition and a consequence of both network topol-
ogy and transition rates. The surviving states can either be isolated or in contact with
other survivors. In this latter case, survivors form a network in which all coexisting states
interact dynamically despite their competition for all times. The goal of this thesis is to
work out the role of network topology for such networks of condensates.

1.2 Overview of this thesis

The above introduction of the basic concepts for the ALVE allows for an overview of the
results presented in this thesis:
Comparing the two examples of the ALVE dynamics on networks, we find that in Figure 1.3
different states die out dependent on the rates, while for the RPS cycle in Figure 1.1 all
three states survive for every choice of interaction strengths. This property of topological
robustness of the RPS cycle, that is survival of all states for every choice of interaction
strength, is discussed in Chapter 4. There, we identify simple graph-theoretical rules by
which networks that are topologically robust can be identified and constructed.
For the RPS system presented in Figure 1.1 the temporal average 〈xα〉T approaches the
kernel vector of ARPS for large times T . This is the case for all topologically robust
networks constructed with the methods that we introduce in Chapter 4. Hence, we can
study how the long-time behavior of the ALVE is influenced by variation of rates. In
Chapter 5, we show that a one dimensional chain constructed from RPS cycles undergoes a
topological phase transition: the temporal average mass shows robust polarization. Finally,
Chapter 6 discusses the robustness of the topological phase transition in the RPS chain
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against changes in the network topology. Changing the network topology can also break
topological robustness such that extinction occurs, as in Figure 1.3. Before introducing the
necessary mathematical concepts needed to make the results outlined above, we discuss
applications of the ALVE.

1.3 Relevance of the ALVE
This thesis focuses on mathematical properties of the ALVE, such as coexistence of all
states and stability of long-time behavior. In particular, we do not aim to describe or
model the behavior of a specific biological system. Nonetheless, we hope that the prop-
erties of ALVE dynamics discussed in this thesis are robust enough to carry over to less
restricted systems, or inspire and stimulate studies on robustness in different biophysical
contexts.
In the following, we give an overview of the areas in physics where the ALVE has interpre-
tations and applications. and discuss its relevance there.

1.3.1 Population dynamics

The ALVE can be viewed as a special case of two prominent and closely related models in
population dynamics. The generalized Lotka-Volterra equation (gLVE) is defined as [25]

dxα
dt

= xα(r +Mx)α . (1.3)

Each species α duplicates or dies as described by the growth rate rα, and interacts with the
other species through the interaction matrixM as

∑
β(M)αβxβ. The dynamics of the gLVE

can be varied from fixation to heteroclinic orbits [25]. The total mass in the system,
∑

α xα,
is not fixed. By a change of variables to xα/(

∑
α xα) one obtains a set of differential equa-

tions for the composition of the population, which has the form of a replicator equation [25].

In the replicator equation one assumes that every fraction of the population replicates
according to its fitness advantage over the rest of the population. It has the form [25]

dxα
dt

= xα
(
(Mx)α − xTMx

)
, (1.4)

where xα is the fraction of species α in the population. As for the rock-paper-scissors
dynamics above, the relative growth of species α, ∂txα/xα, is decided by its fitness advan-
tage over the rest of the population. The relative fitness in comparison to other species is
defined with the so-called community matrix M . As the replicator describes the dynamics
of the composition of a population the overall mass is conserved,

∑
α ∂txα = 0. Also, each

replicator equation can be mapped onto a gLVE 1.3 with the variables xα/xS [25].
The ALVE is a special case of both of this dynamics [27, 28, 2, 29, 30]: The ALVE is

the restriction of the gLVE to the case where species only interact by predation on each
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other: the win of one species is the other species loss (zero sum game, M = −MT ). There
is no additional dynamics such as birth or death (r = 0). Alternatively, the ALVE is the
most simple example of the replicator equation, as the interaction matrix alone ensures
that the average fitness is zero, xTAx = 0.

Although being a special case of already simplified models for ecosystems, the ALVE
is a suitable toy model to explore the population dynamics of competing species. It shows
a rich phenomenology resembling features known from ecosystems, such as extinction and
coexistence of competing species, and complex oscillations [28, 2]. Due to its simplicity, an
analysis of the ALVE over the limitations of linearization around fixed points is possible,
allowing an investigation of mechanisms of stability in competitive systems.

1.3.2 Chemical systems, stochastic population dynamics

In contrast to the heuristic models introduced above, the ALVE can also be derived from
microscopic reactions, either in the context of population dynamics, where interactions of
individual agents are phrased as reactions [2], or in the context of chemical reactions [31,
32, 33].
Consider reactions of the kind

α + β
rαβ−−→ β + β , (1.5)

where rαβ is the reaction rate. In the population dynamics context, such a reaction de-
scribes an encounter between two individuals of different species α and β (i.e., different
evolutionary strategies). The defeated agent is replaced by a copy of the winning agent [2].
In the context of chemistry, this is an autocatalytic reaction scheme [32].
In a well-mixed setting, this reaction scheme can be used to derive the ALVE. For this
process, the master equation [34] describing the dynamics of the probability distribution
of a configuration N , P (N , t), is

dxα
dt

P (N , t) =
S∑

α,β=1

(rαβ(Nα + 1)(Nβ − 1)P (N − eα + eβ, t)− rαβNαNβP (N , t)) . (1.6)

In the limit of a large population N � 1 the ALVE arises as the deterministic dynamics
for xα = Nα/N . Allowing also mutation-like reactions

α
sαβ−−→ β ,

the resulting deterministic equation reads [2]

d
dt
xα = xα

S∑
β=1

(rαβ − rβα)xβ +
1

N

(
S∑
β=1

sαβxβ − sβαxα

)
.

Note that the second term is suppressed by a factor of 1/N , such that it would play a
minor role in a large population. Therefore, the ALVE is the leading order dynamics for
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reactions of the kind (1.5) above.
In the context of evolutionary game theory, cyclically dominated reaction schemes built
from the motif (1.5) are often analyzed and simulated as spatially extended systems. For
example, one assumes that the system consists of well-mixed compartments in which ALVE
dynamics takes place. Additionally, agents can diffuse between neighboring compartments,
adding a spatial component to the system. In such a setting, cyclic dominance can lead to
pattern formation and traveling waves of species [20, 35, 36]. This spatially extended case
is not considered in this thesis.

1.3.3 Coarse grained dynamics of driven-dissipative bosons

Also in the context of quantum physics, the ALVE has relevance. When a gas of non-
interacting bosons is weakly coupled to a heat bath, applying a time-periodic driving
force leads to a behavior of the particles that can be described by a classical stochastic
process [37, 38]. The dynamical equation of this system can be achieved by eliminating
the heat bath’s degrees of freedom (Born-Markov approximation), and applying Floquet’s
theorem [39]. Off-diagonal matrix elements of the density operator decay to zero, such
that on a coarse grained time scale only incoherent, ’classical’, dynamics remains.
The transitions of particles can be described by a classical master equation with transition
rates Γα←β(Nα, Nβ) = rαβ(1 + Nα)Nβ. The factor (1 + Nα) arises from the commutation
relation for bosons that results effectively in an attractivity between particles. As the
transitions can be interpreted as reactions of the kind introduced above (sij = rij), the
deterministic behavior of the stochastic process of bosons is described by the ALVE.
In the context of quantum physics, the ALVE is interesting for two reasons: first, on a
coarse grained time scale, the quantum particles behave as classical particles, their quantum
property only enters in the transition rates; and second, the process shows condensation
into multiple states, opposed to a single ground state [38, 40].

1.3.4 Discrete nonlinear wave equations and integrable systems

The ALVE on specific lattices appears as a model system in the context of integrable
systems [41]. When the interaction topology is a directed cycle, the ALVE becomes the
so-called Volterra lattice (e.g. with periodic boundary conditions α = α + S),

d
dt
xα = xα(xα+1 − xα−1) . (1.7)

Despite its nonlinearity the Volterra lattice is an integrable system: when considered as an
infinite system it has an infinite number of conserved quantities. Analytical solutions in
the form of solitary waves can be found using the inverse scattering method [42, 43]. The
Volterra lattice is of main interest in mathematical physics for the algebraical properties
of its solutions [44, 41], and its interpretation as a discretization of the Korteweg-de Vries
equation (KdV) [45, 43], a famously exactly solvable nonlinear partial differential equa-
tion [46]. The relation between the Volterra lattice and the KdV equation is of interest
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Figure 1.3: Solitons in the Volterra lattice. (a) Two suitably initialized peaks of mass travel
with uniform velocity through the periodic Volterra lattice. Their shape is preserved after a
collision. The velocity increases with the mass in the peak, as can be seen from x(t) specific time
points (b). Each state goes through the same temporal evolution with a shift that depends on
the states’ index α (c).

when studying if and how exact solutions of nonlinear systems can be recovered in dis-
cretized systems. This so-called integrable discretization is a relevant theoretical question
as numerical simulations include discretization schemes [41]. Although the Volterra lattice
is mainly of interest for mathematical physics, it can be derived as an approximation of the
interaction of jets in Langmuir oscillations of plasma [47, 42], or as the dynamics of a chain
of exponentially coupled beads [45]. Next to the Volterra lattice there are other differential
difference equations that can be read as the ALVE on specific lattices, for example the
relativistic Toda lattice [48].
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Chapter 2

Mathematical properties of the ALVE

This chapter contains definitions and mathematical properties of the ALVE that serve as
background information for the main results presented in the second half of this thesis.
The methods used in the later work on coexistence networks in Chapter 4 and topological
phase transitions in one dimensional chains in Chapters 5 and 6 partially overlap, such
that we collected and organized the relevant information of our publications [49, 50] here.
In addition, we reproduce the relevant results from the publications [1, 2] and [49] which
were direct predecessors and inspiration for the original work of this thesis.

2.1 Definition of the ALVE

The antisymmetric Lotka-Volterra equation is defined for a system of S dynamical vari-
ables, which we refer to as states α (or strategies in the context of evolutionary game
theory). The concentration or mass in state α is denoted as xα and the vector of state con-
centrations is denoted as x(t) = (x1(t), . . . , xS(t)). These masses evolve through a system
of nonlinearly coupled ordinary differential equations of first order in time:

d
dt
xα(t) = xα(t)

S∑
β=1

aαβxβ(t) , (2.1)

for all α = 1, . . . , S. The matrix {A}α,β = {aαβ} ∈ RS×S is antisymmetric (or skew-
symmetric), that is aαβ = −aβα. The vector of initial masses is assumed to be strictly
positive and normalized, such that x(t = 0) =: x0 lies in the open (S − 1)-simplex ∆S−1

(x0,α > 0 for all α = 1, . . . , S and
∑S

α=1 x0,α = 1). A state with x0,α = 0 has zero occupation
for all times and thus does not take part in the dynamics. As this has the same effect as
deleting the state from the system, and thus changing the network topology, this case is
excluded when discussing a the ALVE dynamics on a network topology. For brevity, the
time variable t is omitted in most of the following derivations.

The entries aαβ of the antisymmetric matrix A define the set of control parameters of the
ALVE (and define the zero-sum game). They specify how mass is exchanged between the S
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states through pairwise interactions. Mass in state α changes through interaction with state
β as aαβxαxβ. A negative matrix entry aαβ < 0 means that mass is transported from state α
to β, mass in state xα is reduced. At the same time β gains this mass through −aαβxβxα =
aβαxβxα and aβα > 0. A vanishing off-diagonal entry aαβ = aβα = 0 implies that no mass
can be exchanged between states α and β. As mass moves directionally between states, it
is convenient to represent the antisymmetric matrix as a directed network. This is achieved
by interpreting every positive matrix entry aαβ > 0 as a directed link between the states
β → α. The direction of the edge is chosen to be aligned with mass flow in the ALVE
dynamics. Examples are shown in Figures 1.1 and 1.3. Details of the equivalence between
antisymmetric matrices and weighted networks are presented in Section 3.1. Since no
interaction besides directed mass transport is defined by the ALVE (2.1), the total mass is
conserved over time ( d

dt

∑S
α=1 xα = 0). Consequently, the ALVE defines a trajectory bound

to the open simplex, that is, x(t) ∈ ∆S−1 for all times [25]. If the dynamics are initialized
on the boundary of the simplex, x0 ∈ ∂∆S−1 = ∆S−1\∆S−1, they will remain restricted to
the boundary.

The natural question about the long-time behavior of a state concentration xα is
whether it remains bounded away from 0, whether it approaches 0, or whether it expresses
any other qualitatively different behavior (such as, for example, a heteroclinic orbit). Nu-
merical integrations of the ALVE show that, dependent on the weights of the interaction
network, a state concentration either vanishes for long times (xα(t) → 0 as t → ∞), in
which case α is referred to as a depleted state (“depletion” or “extinction”), or it remains
bounded away from zero for all times (xα(t) ≥ Const > 0 for all times t), in which case
α is called a condensate (“condensation” or “survival”) [2]. Examples for both cases are
presented in Figures 1.1 and 1.3. In the next Section we prove that the ALVE dynamics
shows condensation and extinction by means of a Lyapunov function and the so-called
condensate vector, an algebraical property of the antisymmetric matrix A [2].

2.2 The condensate vector and a Lyapunov function for
the ALVE

Given an antisymmetric matrix A with real entries, there exist specific vectors c, which we
refer to as condensate vectors, that fulfill the following properties for an unique index set
I ⊆ {1, . . . , S}:

cα > 0 and (Ac)α = 0 , for all α ∈ I (2.2)
cα = 0 and (Ac)α < 0 , for all α ∈ Ī = {1, ..., S}\I. (2.3)

A proof of this algebraic property of antisymmetric matrices can be found in the book on
linear programming theory by Kuhn and Tucker [51]. Most importantly, although for an
antisymmetric matrix A there may be several condensate vectors, the index set of positive
entries I is unique for each matrix A, as shown in Section 2.A.
Closely following [2], a connection between the condensate vectors with the long-time dy-
namics of the ALVE is possible through a Lyapunov function is defined. The Lyapunov has
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the form of the Kullback-Leibler divergence (or relative entropy [52]) D(c||x) of an arbi-
trarily chosen condensate vector c of A (fulfilling properties (2.2) and (2.3) and normalized
to the simplex,

∑
α cα = 1) to the state concentrations x(t):

D(c||x(t)) =
S∑
α=1

(cα 6=0)

cα log

(
cα
xα(t)

)
=
∑
α∈I

cα log

(
cα
xα(t)

)
. (2.4)

The value of D(c||x) decreases over time as one computes directly,

d
dt
D(c||x) =

∑
α∈Ī

(Ac)αxα < 0 , (2.5)

where it was used that (Ac)α < 0 for α ∈ Ī (2.3). As D(c||x) has the functional form of a
relative entropy, it is positive and bounded [52], such that we can write

0 ≤ D(c||x)(t) = D(c||x)(0) +

∫ t

0

ds
∑
α∈Ī

(Ac)αxα(s) ≤ D(c||x)(0) <∞ . (2.6)

One concludes that all states with index α ∈ I remain bounded away from 0 for all times,
that is, xα(t) ≥ Const > 0 for all α ∈ I and for all t (otherwise, D would diverge in
contradiction to the boundedness of D). These states are called condensates [2].
For the states that are not condensates, α ∈ Ī, equation 2.6 implies for all t

−
∫ t

0

ds(Ac)αxα(s) ≤ −
∫ t

0

ds
∑
α∈Ī

(Ac)αxα(s) ≤ D(c||x)(0) . (2.7)

Especially, this means that the integral over all times is bounded for non-condensate states
α ∈ Ī,

0 <

∫ ∞
0

ds xα(s) ≤ D(c||x)(0)

−(Ac)α
. (2.8)

As additionally the time derivative for all states is bounded (|∂txα| = |xα(Ax)α| <∑
αβ |aαβ| <∞), it follows that all states α ∈ Ī become depleted, xα → 0 for t→∞. We

call these states depleted states [2].
In total, condensation and depletion in the ALVE (2.1) are determined by an algebraic
property of the antisymmetric matrix. The set of condensates I is given by the antisym-
metric matrix alone through its condensate vectors. All states with index α ∈ I become
condensates, all states with index α ∈ Ī become depleted for t → ∞; no other cases can
occur for long times. Whether a state is a condensate or becomes depleted is independent
of the initial conditions x0 and depends only on the antisymmetric matrix A. However,
the Lyapunov function gives no details of the dynamics within the surviving condensate
states.
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2.2.1 Interpretation of the condensate vector

In the context of the ALVE and its Lyapunov function D(c||x) (2.4), the two defining
properties (2.2) and (2.3) of the condensate vector can be interpreted as follows: We
reorder the rows and columns of A such that I = {1, ..., k} and Ī = {k + 1, ..., S}. In this
form, the product of the condensate vector with the antisymmetric matrix A is(

AI AI←Ī
−AT

I←Ī AĪ

)(
cI
cĪ

)
=

(
AI AI←Ī
−AT

I←Ī AĪ

)(
cI
0

)
=

(
AIcI
−AT

I←ĪcI

)
=

(
0

−AT
I←ĪcI

)
. (2.9)

Here, AI (AĪ) is the submatrix of the index set I (Ī), respectively. The matrix AI←Ī defines
the interactions between condensates I and depleted states Ī. In this form, one sees that
condition (2.2) implies that the submatrix AI has a strictly positive kernel vector, cI > 0
with AIcI = 0. As this condition only influences the set of condensates, I, we call it the
condensate condition. Condition (2.3) appears in this notation as cĪ = 0 and −AT

I←ĪcI < 0.
This expression ensures that the Lyapunov function decreases over time (2.5), hence we call
this condition the attractivity condition. As a consequence of the attractivity condition,
mass flows from the subsystem of extinct states into the condensate states.
The condensate vector can be identified either by solving a linear programming prob-
lem [2], or by finding subsystems with a strictly positive kernel vectors, and check for the
attractivity condition. There may exist linearly independent condensate vectors for a given
antisymmetric matrix A if the kernel of AI is high-dimensional. A trivial example for this
case occurs when the submatrix AI is the zero matrix. In this case, all condensates are
unconnected and every strictly positive vector is a kernel vector of AI .

2.2.2 Example: Calculation of the condensate vector for different
rates

In order to show how network and rates work together to determine coexistence and ex-
tinction in the ALVE dynamics, we present here the mathematical details of the example
shown in Figure 1.3 in the Introduction 1.1.
The interaction matrix shown in Figure 1.3 (a) is

Aexample =


0 −1 2 y 3
1 0 −1.5 0 0
−2 1.5 0 −0.5 0
−y 0 0.5 0 0
−3 0 0 0 0

 (2.10)

The condensates of the systems in Figure 1.3 are identified by calculating the condensate
vector as follows: The numerical integrations predict three different sets of condensates I.
For each of these sets I, we can first search for strictly positive kernel vectors of AI to
determine if the condensate condition can be met. If this is the case, checking additionally
for the attractivity condition reveals if and for which value of y the condensate set I is
assumed by the ALVE dynamics (for simplicity, the condensate vectors are not normalized):
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• I = {1, 2, 3}: For this condensate set, the attractivity condition is fulfilled when
0 > 0.5− 1.5y:

Aexample · c(i) =

( 0 −1 2 y 3
1 0 −1.5 0 0
−2 1.5 0 −0.5 0
−y 0 0.5 0 0
−3 0 0 0 0

)(
1.5
2
1
0
0

)
=

(
0
0
0

0.5−1.5y
−1.5·3

)
. (2.11)

Note that as the subsystem {1, 2, 3} always has a unique strictly positive kernel
vector, the condensate condition is always fulfilled. However, the value y restricts
when the attractivity condition applies. The vector c(i) is only a condensate vector
for Aexample when 0 > 0.5− 1.5y.

• I = {1, 2, 3, 4}: The submatrix AI of this condensate set only fulfills the condensate
condition when 1.5y − 0.5 = 0:

Aexample · c(ii) =

( 0 −1 2 y 3
1 0 −1.5 0 0
−2 1.5 0 −0.5 0
−y 0 0.5 0 0
−3 0 0 0 0

)(
0.5

0.5a1
y

1.5a1−2
0

)
=

(
a1(1.5y−0.5)

0.5−1.5y
0
0
−1.5

)
. (2.12)

The attractivity condition is always fulfilled for c(ii). However, the condensate con-
dition requires that AI has a strictly positive kernel vector. In the above form, this
is the case when 1.5y−0.5 = 0 (AI has a kernel vector) and 1.5a1−2 > 0 (the kernel
vector is strictly positive). As a1 can be chose freely, this restriction can always be
met, and the condensate vector is not unique.

• I = {2, 4, 5}: For this set of condensates, the submatrix of condensates is the zero
matrix, AI = 0. As every strictly positive vector is a kernel vector of this matrix, the
condensate condition is always fulfilled. The selection of this condensate set thus only
depends on the attractivity condition, which can only be met when 0.5− 1.5y > 0:

Aexample · c(iii) =

( 0 −1 2 y 3
1 0 −1.5 0 0
−2 1.5 0 −0.5 0
−y 0 0.5 0 0
−3 0 0 0 0

)(
0
1
0
a1
a2

)
=

( −1+a1y+3a2
0

1.5−0.5a1
0
0

)
. (2.13)

The condensation condition is fulfilled for every a1, a2 > 0. To additionally fulfill the
attractivity condition, we need −1 + a1y + 3a2 < 0 and 1.5 − 0.5a1 < 0, putting a
constraint on the two variables a1, a2. Substituting 1.5/0.5 < a1 in the first inequality,
we find −(0.5− 1.5y) + 1.5a2 < 0, which is solvable when 0.5− 1.5y > 0. Thus, c(iii)

is a condensate vector when 1.5y − 0.5 > 0. As, apart from the two restrictions of
the inequalities, the values a1 and a2 can be chosen arbitrarily, the condensate vector
is not unique.

From the previous section 2.2 we know that the condensate vector defines the unique
set of condensates that survive in the ALVE dynamics. The above discussion of the three
condensate sets I shows that the observations from the numerical integrations in Figure 1.3
can be made rigorous: For each of the three outcomes I, a condensate vector exists for
suiting values of the rate y. Or, reversing the logic, the value of the expression (0.5−1.5·y) T
0 decides which set of condensates is chosen in the ALVE dynamics.
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2.3 Coexistence of all states
After the initial extinction process, every ALVE dynamics ends up in the subsystem made
up from the condensates. The interactions between the condensates and thus the dynamics
after depletion depends on AI . The condensation condition (2.2) requires that AI has one
or several strictly positive kernel vectors. In the following we show that this argument can
be reversed: When the interaction matrix A has a strictly positive kernel vector, all states
survive for all times and there is no extinction.

Let p be an element of the kernel of A. Then the Kullback-Leibler divergence (2.4) of
the kernel element p to the trajectory x,

D(p||x(t)) =
S∑
α=1

(pα 6=0)

pα log

(
|pα|
xα(t)

)
= const.−

S∑
α=1

(pα 6=0)

pα log (xα(t)) , (2.14)

is conserved under the dynamics of the ALVE (2.1) due to the antisymmetry of matrix A,

d
dt
D(p||x) =

∑
α

(Ap)αxα = 0 . (2.15)

Furthermore, when the kernel of A is degenerate, that is there exist several linear in-
dependent kernel vectors, each kernel element gives rise to a conserved quantity of the
form (2.14), and the dimension of the kernel, dim(Ker(A)), determines how many such
conserved quantities of form D exist; see [1] for details. If the kernel of A contains a
strictly positive kernel element, p > 0, the relative entropy (2.14) is conserved and positive
for all times: 0 < D(p||x(t)) = D(p||x(0)) < ∞. Thus, none of the state concentrations
vanishes (otherwise, D would diverge in contradiction to the boundedness of D). In other
words, if the kernel of A is strictly positive, all states coexist.

2.4 Characterization of the stationary state
If we are interested in the long-term dynamics of the ALVE, we must find a better under-
standing of how strictly positive kernel elements influence the dynamics. Here, progress is
possible when the strictly positive kernel vector is unique, that is the kernel of A is one-
dimensional. In the following we assume that A has a unique strictly positive kernel vector
c upon normalization (cα > 0 for all α and Ac = 0,

∑
α cα = 1, if not stated otherwise we

sum over all states).
This vector c characterizes the long-time behavior of the ALVE, as can be seen from

the following three statements proven below: (1) The masses in all sites of the RPS chain
remain bounded away from 0 in the stationary state (none of the sites becomes depleted),
(2) average masses in the stationary state are given by the strictly positive kernel vector c
of A, and (3) fluctuations of masses in the stationary state are determined by c as well.
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(1) The masses in all sites remain bounded away from 0. As shown in Section 2.3,
from the strictly positive kernel vector we can deduce that all states of the ALVE are
condensates and no state goes extinct. Additionally, the Kullback-Leibler divergence of
the kernel vector to the masses x, D(c||x) (2.4), is a conserved quantity of the ALVE.

(2) Average masses in the stationary state are given by the kernel vector c of
A. Let us define the temporal average of the masses, 〈xα〉T := 1/T

∫ T
0
dt xα, and consider

the quantity 〈∂t log(xα)〉T . On the one hand,

1/T

∫ T

0

dt ∂t log(xα) =
1

T
(log(xα)(T )− log(xα)(0))

T→∞−−−→ 0 , (2.16)

and the convergence to 0 follows because log(xα)(T ) is bounded, but 1/T converges to 0
as T →∞. On the other hand, employing Eq. (2.1) yields,

1/T

∫ T

0

dt ∂t log(xα) =
∑
β

aαβ〈xβ〉T , (2.17)

and, thus, 〈x〉T converges to the kernel of A as T → ∞. Because, c spans the kernel
of A, the average masses in the stationary state are given by this kernel vector, that is,
〈xα〉∞ = cα for all initial conditions xα(0) > 0 for all α.
Additionally, when strictly positive, the condensate vector c is the unique fixed point x∗ of
the dynamics. When initialized at the fixed point, no dynamics of the ALVE takes place,
∂tx

∗ = 0. Thus, the temporal average of the ALVE dynamics approaches the stationary
state, while the trajectory itself remains dynamic for all times, see also Figure 1.1.

(3) Fluctuations of masses in the stationary state are determined by the kernel
vector c of A. In a similar manner as for the average masses, let us consider the quantity
〈∂txα〉T . On the one hand,

1/T

∫ T

0

dt ∂txα =
1

T
(xα(T )− xα(0))

T→∞−−−→ 0 . (2.18)

On the other hand, upon employing the ALVE (2.1),

1/T

∫ T

0

dt ∂txα =
∑
β

aαβ〈xαxβ〉T , (2.19)

In other words, {〈xαxβ〉T}β as a function of β lies in the kernel of A as T → ∞. Thus,
〈xαxβ〉∞ = const(α) · cβ for β 6= α with c again denoting the strictly positive kernel vector
of A. With the same arguments one obtains 〈xαxβ〉T = const(β) · cα for α 6= β and, thus,
〈xαxβ〉T → const · cαcβ as T → ∞ for all α 6= β. To compute the second moment of the
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mass in the stationary state, 〈x2
α〉T → 〈x2

α〉∞ as T → ∞, we exploit the normalization∑
α xα = 1 as follows:

〈x2
α〉T = 〈xα(1−

∑
β 6=α

xβ)〉T = 〈xα〉T −
∑
β 6=α

〈xαxβ〉T (2.20)

and, hence, in the stationary state 〈x2
α〉∞ = cα− const · cα

∑
α 6=β cβ. By exploiting normal-

ization
∑

α 6=β cβ = (1− cα), the stationary second moment is written as

〈x2
α〉∞ = const · c2

α + (1− const)cα (2.21)

Consequently, the stationary state fluctuations (Var(xα)∞ = 〈x2
α〉∞ − 〈xα〉2∞) at site α are

quantified as,

Var(xα)∞ = σ2
α,∞ = (1− const)cα(1− cα) . (2.22)

For completeness, the stationary correlations, Corr(α, β)∞ = 〈xαxβ〉∞ − 〈xα〉∞〈xβ〉∞,
between sites α and β are obtained as,

Corr(α, β)∞ = −(1− const)cαcβ . (2.23)

Using the same method, also higher order correlations can be related to the unique strictly
positive kernel vector. Considering 〈∂txkα〉T with k ∈ N+ is a positive integer, we find

1/T

∫ T

0

dt ∂txkα =
∑
β

aαβ〈xkαxβ〉T
T→∞−−−→ 0 , (2.24)

⇒ 〈xkαxβ〉∞ = Kk
αcβ . (2.25)

Here, Kk
α is a constant.

Again, as the vector x lies in the simplex, performing the sum over β yields

〈xk+1
α 〉∞ = 〈xkα(1−

∑
β 6=α

xβ)〉∞ = 〈xkα〉∞ −Kk
α(1− cα) . (2.26)

This results in a hierarchy of the correlations,

〈xk+1
α 〉∞ = 〈xkα〉T +Kk

α(cα − 1) (2.27)

⇒ 〈xk+1
α 〉∞ = cα + (1− cα)

k∑
l=2

K l
α (2.28)

In the last line, the hierarchy was repeatedly applied down to the known value 〈xα〉∞ = cα.
So far it is unclear how to obtain the constants K l

α.
Note that all these derivations strongly depend on the uniqueness of the strictly positive

kernel vector. When there is a continuum of strictly positive kernel vectors, only statement
(1) remains.
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2.A The index set of positive entries of the condensate
vector is unique to an real, antisymmetric matrix

Here we show that although a real, antisymmetric matrix may have several condensate
vectors, the index set of positive entries is unique. This property follows from the defining
properties of the condensate vector, (2.2) and (2.3). We proof the assumption by contra-
diction:
Assume there is another condensate vector c̃, satisfying condition (2.3) for an index set J
that differs from I, such that J

⋂
Ī 6= ∅. Then for any α ∈ J

⋂
Ī we find

0 = cα(Ac̃)α ≥
∑
i

cα︸︷︷︸
≥0

(Ac̃)α︸ ︷︷ ︸
≤0

= −
∑
α

c̃α(Ac)α = −
∑

α∈J
⋂
Ī

c̃α︸︷︷︸
>0

(Ac)α︸ ︷︷ ︸
<0

> 0 , (2.29)

which contradicts the assumption. For the case J̄
⋂
I 6= ∅ the same argument leads to a

contradiction as well, therefore the index set is unique.
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Chapter 3

Networks and real antisymmetric
Matrices

So far we have shown that the antisymmetric matrix that defines the coupling of the ALVE
plays the central role in the ALVE dynamics. The condensate vector of an antisymmet-
ric matrix defines which states become condensates. When the interaction matrix has a
strictly positive kernel vector it is a condensate vector, and all states are condensates.
Furthermore, if the strictly positive kernel vector is unique, it contains information about
the long-time behavior of the system.
In this section we introduce basic properties of real antisymmetric matrices and their rep-
resentation as weighted networks. This allows us to connect the kernel of an antisymmetric
matrices to its network topological properties. As robustness of long-time behavior of the
ALVE is the main focus of this thesis, the characterization of strictly positive kernel vectors
through network topology plays a major role for the later results.

3.1 Antisymmetric matrices are equivalent to weighted
networks

For our analysis of topological robustness and coexistence networks, we interpret the real
antisymmetric matrix A as the antisymmetric adjacency matrix of a weighted network
(also referred to as the skew-adjacency matrix of a weighted directed graph) as shown in
Figures 1.3, 1.1 and Figure 3.1 (a). States in the ALVE correspond to nodes of the weighted
network, and entries of the antisymmetric matrix A characterize the links between nodes.
This mapping to a network enables us to separate the discussion of the network topology
(direction of links) from the weights of the network (weights of links).

In general, a network (or directed graph) N consists of a set of (labeled) nodes (or
vertices) V (N ) = {1, ..., S} and a set of links (or edges) E(N ) = {(1 → 2), . . . , (α →
β), . . . }, each of which connects two nodes [53]. In a weighted network, each directed edge
additionally has a (real positive) weight. Every antisymmetric matrix A ∈ RS×S can be
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interpreted as weighted network N (A) (also called a weighted directed graph) of size S and
with vertex-set V (N (A)) = {1, ..., S}. In the following, we drop the prefix (’weighted’) for
simplicity. The weighted edge set of N (A) is obtained from the positive matrix entries.
A nonzero entry of A indicates an edge, its sign the direction and its magnitude the
edge weight. The matrix entry aβα > 0 translates to the edge α → β with edge weight
w(α→ β) := aβα, see Figure 3.1 (a). As A is antisymmetric, changing the sign of a matrix
entry effectively reverses the direction of the corresponding edge while keeping the weight.
If aαβ = aβα = 0, nodes α and β are not connected. Naturally, two nodes are connected
by at most one link and self-loops do not appear, such that we deal with simple networks
here. The network topology of A is recovered by discarding the weights of the links, but
keeping their direction. In other words, the network topology is the oriented graph without
the weights.

Conversely, from a simple, weighted network N with S nodes, the antisymmetric ad-
jacency matrix A(N ) ∈ RS×S is obtained by defining for every edge α → β with weight
aβα > 0 the matrix entries A(N )βα = −A(N )αβ = aβα. Unconnected nodes are translated
to zero entries in the matrix. Thus, the sign of an entry in the adjacency matrix translates
to the direction of the edge (positive weight for incoming link, negative for outgoing link),
and the absolute value denotes the magnitude of the weight.

Due to this equivalence in representation of real, antisymmetric matrices and networks,
we use the terms interchangeably depending on the context.

3.2 Spectral properties of real antisymmetric matrices
For the analysis of the ALVE on a network, especially the kernel (or null space) is of great
importance. In this Section, we collect some basic properties of antisymmetric matrices
A = −AT ∈ RS×S for later reference.

The antisymmetry of A restricts its spectral properties: The non-zero eigenvalues of A
always occur as pairs of purely imaginary complex conjugate numbers, λ = −λ̄, as can be
seen from the scalar product of the eigenvector Av = λv:

〈v, (Av)〉 =
∑
α,β

v̄αaαβvβ = λ〈v,v〉 = λ ,

also, 〈v, (Av)〉 = (−Av)
T
v = −λ̄〈v,v〉 = −λ̄ .

Especially, this implies that for the real matrix A both eigenvalues and eigenvectors are
complex. The symmetry in the eigenvalues imposes a symmetry of the eigenvectors as well.
Considering eigenvector and -value {v, λ}, for its complex conjugate we find Av̄ = −λv̄,
and thus a new pair of eigenvector and eigenvalue, {v̄,−λ}.
The real and imaginary part of an eigenvector v = s + it, are orthogonal, and A maps
them onto each other, As = −Im(λ)t and At = Im(λ)s (for details see Section 3.A). The
vectors s and t can be understood as conjugated generalized purely real eigenvectors. In
other words, the antisymmetric matrix A divides the space of its image in two-dimensional
subspaces, and A maps the base vectors of these subspaces onto each other.
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Figure 3.1: Graph-theoretical definition of the Pfaffian. (a) The antisymmetric matrix A
and the corresponding, pretzel-like, weighted network N (A). (b) N (A) has two perfect matchings,
µ1 =

(
(1→ 2), (3→ 4)

)
and µ2 =

(
(3→ 1), (4→ 2)

)
. Each of the perfect matchings gives rise to

a summand in the Pfaffian of A. Note that the graph-theoretical definition of the Pfaffian only
includes negative matrix entries. Thus, the difference of the signs of the two summands arises
from the network topology (via the permutations of the respective perfect matchings). The sign
of a perfect matching depends on the number of transpositions needed to permute the indices of
the matching’s partition to the ordered partition (1, 2, 3, 4). (c) The Pfaffian of A is the sum over
the contributions stemming from all perfect matchings; see Equation (3.2). All signs in the final
sum of the graph-theoretical definition of the Pfaffian are determined by the network topology
alone.

From the conjugated eigenvectors, a unitary matrix T TT = 1 can be constructed, which
block diagonalizes A,

T TAT =


0 λ1 ... 0 0 0 ... 0
−λ1 0 .. 0 0 0 ... 0
...

...
...

...
...
...
...
...

0 0 ... 0 λk 0 ... 0
0 0 ... −λk 0 0 ... 0
0 0 ... 0 0 0 ... 0
...

...
...

...
...
...
...
...

0 0 ... 0 0 0 ... 0

,

see also Section 3.A.3.
The above analysis already shows that the image of a real antisymmetric matrix must

be even dimensional. Consequently, the kernel (or nullspace) of an odd-sized antisymmetric
matrix must be odd-dimensional. We refer to the kernel of an antisymmetric matrix as
degenerate if the kernel dimension is greater than the minimal value 1 (dim(Ker(A)) ≥ 2).
These spectral properties also reflect in the determinant. When S is odd, its determinant
is zero, Det(A) = Det(−AT ) = (−1)SDet(A) = 0. When A has no kernel vector, i.e., its
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kernel is trivial, the determinant is the product of pairs of complex conjugated numbers,
so Det(A) > 0. For antisymmetric matrices, there is a determinant-like function called the
Pfaffian, which we discuss in the next section.

3.3 The Pfaffian

The Pfaffian can be thought of as a determinant-like function tailored to antisymmetric
matrices. The square of the Pfaffian of A equals its determinant, Pf(A)2 = Det(A) [54, 55,
56], indicating that the Pfaffian of an antisymmetric matrix can carry a sign as opposed
to its determinant. As the determinant, the Pfaffian of odd sized matrices is always zero.

For even sized antisymmetric matrices, S = 2n, the Pfaffian is typically defined through
a combinatorial formula

Pf(A) :=
∑
γ∈Π

(
sign(σγ)

n∏
k=1

aγk

)
, (3.1)

where Π is the set of all partitions of {1, 2, . . . , S = 2n} into ordered pairs, for details see
Section 3.B.1.
An intuitive understanding of the Pfaffian that is better suited for our purposes is ob-
tained via the weighted network N (A) by considering all of its perfect matchings. This
graph-theoretical interpretation of the Pfaffian presented in Section 3.3.2 has already been
appreciated and applied in statistical physics to compute the entropy of systems in which
dimer molecules are placed on regular lattice graphs [57, 58, 59, 60, 61]. The graph theo-
retical interpretation of the Pfaffian of A is based on perfect matchings of N (A) which we
introduce next.

3.3.1 Perfect Matchings, near-perfect matchings, and factor-critical
networks.

A matching of a network is a subset of its edge set E ′ ⊆ E such that no two edges in E ′
share the same node. In other words, every node is covered by at most one edge of the
matching E ′. A matching that covers all nodes of a network is referred to as a perfect
matching µ of a network [53]; see Figure 3.1(b). Consequently, the number of nodes in
a network with a perfect matching is even. Because a perfect matching is a subset of
the network’s edges such that every node is covered exactly once, it can be interpreted
as a partition of the set {1, ..., S = 2n} into pairs. For networks with an odd number
of nodes, one introduces the notion of a near-perfect matching, which is a matching that
covers all but one node. Thus, a near-perfect matching of a network is a perfect matching
of a subnetwork that is obtained by deleting one node from the network. An odd-sized
network is called factor-critical if there exists a perfect matching for every subnetwork that
is created by deleting one node from the network [53]; the simplest example of a factor
critical network is a cycle of odd length, such as the RPS cycle in Figure 1.1. Adding edges
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can only increase the number of near-perfect matchings, such that all networks obtained by
adding edges to a cycle of odd length are also factor critical, for example see Figure 4.2(a).

3.3.2 Graph-theoretical definition of the Pfaffian.

The Pfaffian of an antisymmetric matrix A can be calculated via all perfect matchings
of the network N (A). Here we follow the convention that a network’s link α → β gives
rise to (a) the pair (α, β) in the partition corresponding to the perfect matching µ and to
(b) the negative matrix entry aαβ < 0. With these two conventions, the Pfaffian of the
antisymmetric matrix A is computed as:

Pf(A) =
∑

perf. match.
µ∈N (A)

sign(σµ)
∏

(α→β)∈µ

aαβ

 , (3.2)

in which the sum runs over all perfect matchings of the networkN (A); see Figure 3.1. Thus,
the Pfaffian is a sum over signed products of negative matrix entries, which are determined
by the edges of each perfect matching. The permutation σµ denotes the partition of the
node set {1, 2, . . . , S = 2n} obtained from the edges in the perfect matching µ:

σµ =

(
1 2 3 4 . . . 2n− 1 2n

(i1, j1) (i2, j2) . . . (in, jn)

)
,

≡
(
i1 j1 i2 j2 . . . in jn

)
.

sign(σµ) is determined by the number of transpositions needed to permute the partition
(i1, j1, i2, j2, . . . , in, jn) into the partition (1, 2, . . . , S = 2n): sign(σµ) = +1 if the number of
transpositions is even, and sign(σµ) = −1 if it is odd. For simplicity, we refer to sign(σµ) as
the sign of the perfect matching µ. In Section 3.B.2 we discuss why this graph-theoretical
definition agrees with the “standard” (combinatorial) definition of the Pfaffian (3.1).

In direct comparison, the graph theoretical definition (3.2) has two main advantages
over the combinatorial definition of the Pfaffian (3.1): By utilizing perfect matchings, the
graph theoretical definition of the Pfaffian excludes all summands that contain matrix
elements that are zero, thus reducing the number of terms in the Pfaffian to the relevant
ones. The inclusion of the orientation of the edges allows to separate the sign of a summand
from the matrix entries. As by definition (3.2) only negative entries enter each summand,
the overall sign of a summand is solely provided by the sign of the permutation.

Example of the Pfaffian for a pretzel-like network. To illustrate the graph-theoretical
definition of the Pfaffian, consider the pretzel-like interaction network sketched in Fig-
ure 3.1, whose antisymmetric adjacency matrix is:

Apretzel =


0 −a21 a13 0
a21 0 −a32 a24

−a13 a32 0 −a43

0 −a24 a43 0

 . (3.3)
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There exist two perfect matchings of this network: µ1 =
(
(1 → 2), (3 → 4)

)
and µ2 =(

(3→ 1), (4→ 2)
)
and the Pfaffian of Apretzel is obtained via definition (3.2) as:

Pf(Apretzel) = sign(1 2 3 4)a12a34 + sign(3 1 4 2)a31a42 ,

= (+1)(−a21)(−a43) + (−1)(−a13)(−a24) ,

= a21a43 − a13a24 . (3.4)

The kernel of Apretzel is only nontrivial if the matrix entries of Apretzel fulfill Pf(Apretzel) =
a21a43 − a13a24 = 0, that is, for a fine-tuned choice of weights.

3.3.3 Adjugate vector and adjugate matrix

By using the notion of the Pfaffian of an antisymmetric matrix A, an explicit analytical
expression for the kernel of A is obtained for odd-sized matrices with kernel dimension 1
and even-sized matrices with kernel dimension 2 via the adjugate vector or the adjugate
matrix of A, respectively [62].

The adjugate vector of A. If S is odd, the kernel of an antisymmetric matrix A ∈ RS×S

is characterized by the adjugate vector r ∈ RS [63], which is defined as:

rα = (−1)α+1Pf(Aα̂) , α = 1, . . . , S . (3.5)

Here, Aα̂ denotes the matrix obtained by deleting the αth row and column from A, or
equivalently the network obtained by deleting the node α from N (A). The computation of
the adjugate vector (3.5) via the Pfaffians of all submatrices Aî is reminiscent of Cramer’s
rule [63] adjusted to antisymmetric matrices. The adjugate vector is, thus, determined
by all near-perfect matchings of N (A). The adjugate vector is a kernel vector of A if
dim(Ker(A)) = 1 and the zero-vector r = 0 if dim(Ker(A)) = 3, 5, · · · , S [62]. In any case,
it is Ar = 0.

Example: The adjugate vector of an odd-sized cycle. With the graph-theoretical
definition of the Pfaffian (3.2) we can compute the adjugate vector of an odd cycle as
follows: The antisymmetric adjacency matrix of an odd cycle with S states, Aodd-cycle,
reads

Aodd-cycle =


0 −a21 0 . . . a1,S

a21 0 −a32 . . . 0
... . . . . . . . . . ...
0 0 . . . 0 −aS,S−1

−a1,S 0 . . . aS,S−1 0

 . (3.6)

Every subnetwork of the odd cycle created by deleting one node is a path of length S − 1
and thus has exactly one perfect matching. Consequently every component of the adjugate
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vector consists of one product of matrix elements. All edges of the odd cycle connect nodes
with different parity, apart from the edge S → 1. Only when this edge S → 1 is part of a
near-perfect matching, the elements in the permutation of the near-perfect matching are
not ordered in size, which is the case whenever an even node is deleted.

(i) α even. For example, the near-perfect matching upon deleting node 2 is µeven =
((S → 1), (3→ 4), . . . , (S − 2→ S − 1)). To order the corresponding permutation in size,
one may shift the index S from the first to the last position by applying S−2 transpositions.
Thus, sign(µeven) = −1. Therefore, for even α, the component of the adjugate vector, rα,
is obtained as (recall that S = 2n+ 1 here is odd):

rα = (−1)1+αsign(µeven)(−a1,S)(−a32) . . . (−aα−1,α−2)(−aα+2,α+1) . . . (−aS−1,S−2) ,

= (−1)(−1)(−1)nmod 2a1,Sa32 . . . aα−1,α−2aα+2,α+1 . . . aS−1,S−2 . (3.7)

(ii) α odd. If, on the other hand, an odd node is deleted, an equal number of even and
odd nodes remain in the network such that every edge of a perfect matching connects an
even and an odd node. The edge S → 1 is not part of the perfect matching µodd and, thus,
the elements of the corresponding permutation are ordered in size, yielding the sign +1 for
the permutation. Consequently, for odd i the adjugate vector is obtained as:

rα = (−1)α+1sign(µodd)(−a21)(−a43) . . . (−aα−1,α−2)(−aα+2,α+1) . . . (−aS,S−1) ,

= (+1)(+1)(−1)nmod 2a21a43 . . . aα−1,α−2aα+2,α+1 . . . aS,S−1 . (3.8)

Therefore, the kernel of an odd-sized cycle is given by
Ker(A) = {(a32a54 · · · aS,S−1, a43a65 · · · a1,S, . . . , a21a43 · · · aS−1,S−2)}.

The adjugate matrix of an even-sized antisymmetric matrix. The kernel of an
even-dimensional antisymmetric matrix is characterized in terms of Pfaffians of submatrices
as well. If S is even, the kernel of A is characterized by the adjugate matrix R ∈ RS×S [63],
whose entries are defined as follows:

Rαβ = sign(σαβ)Pf(Aα̂β̂) , α, β = 1, . . . , S . (3.9)

Here, Aα̂β̂ denotes the matrix obtained by deleting both the αth and βth row and column
from A. In case α = β, Aα̂β̂ := Aα̂ and, thus, Pf(Aα̂α̂) = 0. Furthermore, sign(σαβ) denotes
the signum of the permutation,

σαβ :=
(

1 2 3 4 ... α−1 α α+1 α+2 ... β−1 β β+1 ... 2n−1 2n
α β 1 2 ... α−3 α−2 α−1 α+1 ... β−2 β−1 β+1 ... 2n−1 2n

)
,

≡
(
α β1 2 . . . 2n− 1 2n

)
,

(3.10)

in which α and β are taken out of and put in front of the sequence (1, 2, . . . , 2n). The
adjugate matrix comprises two linearly independent column vectors as kernel vectors if
dim(Ker(A)) = 2; and it is the zero-matrix if dim(Ker(A)) = 4, 6, . . . , S [62]. In general,
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the adjugate matrix can be thought of as the generalized inverse of the antisymmetric ma-
trix A having the property AR = −Pf(A)1S×S with 1S×S denoting the unit matrix of size
S × S. If the kernel is trivial (dim(Ker(A)) = 0, that is, Det(A) > 0), the antisymmetric
matrix A is invertible and the adjugate matrix R is proportional to its inverse.

Example: The adjugate matrix of an even-sized cycle. For completeness, we also
denote the elements of the adjugate matrix of an even-sized cycle, which are obtained in a
similar manner as for the odd-sized cycle, but deleting two nodes from the network:

Rαβ =



0 for α = β

0 for β − α even
(−1)nmod 2a21 . . . aα−1,α−2aα+2,α+1 . . . aβ−1,β−2aβ+2,β+1 . . . aS,S−1 for β − α, α odd
(−1)(−1)nmod 2a1,S . . . aα−1,α−2aα+2,α+1 . . . aβ−1,β−2aβ+2,β+1 . . . aS−1,S−2 for β − α, α even
−Rβα for β < α .

(3.11)

3.3.4 Minimal kernel dimension of a network topology determined
by perfect matchings of subnetworks

Given a network topology, that is, a directed graph for which the magnitudes of the edge
weights can be arbitrarily chosen, one may ask the following question: what is the lower
bound for the kernel dimension of the antisymmetric adjacency matrices corresponding
to that network topology? The lower bound for the kernel dimension in the set of all
antisymmetric matrices that respect the specified network topology is referred to as the
minimal kernel dimension of this network topology. Note that upon tuning the weights of a
network topology, the Pfaffians of the antisymmetric adjacency matrix A or of submatrices
of A may vanish and, thus, the dimension of the kernel may increase. In other words,
tuning the weights on a given network topology can only increase the kernel dimension
compared with the minimal kernel dimension of that network topology.

Factor-critical networks have minimal kernel dimension 1. First, consider a factor-
critical network as depicted in Figure 4.3(a). Because the adjugate vector is not the zero-
vector for some choice of weights (Figure 4.3(d)), the minimal kernel dimension of this
network topology is 1. In general, the minimal kernel dimension of factor-critical networks
is always 1; see below.

Example of a network topology with minimal kernel dimension 3. Consider now
the exemplary network topology depicted in Figure 3.2(a), which is built from four 4-cycles
connected at one single center node. For a generic choice of weights, the kernel of A has
dimension 3, as validated by the three linearly independent kernel vectors:
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Figure 3.2: Example of a network topology with minimal kernel dimension 3. (a)
Example of a network topology of 13 nodes, for which the minimal kernel dimension is 3. The
network consists of four cycles of length four connected at one single center node (node 1). (b)
Two exemplary perfect matchings, which arise after deleting three nodes. No perfect matching
can be identified after removal of no, one, or two arbitrary node(s). As a consequence, the kernel
dimension of the network’s adjacency matrix for an arbitrary choice of weights is at least 3. No
choice of weights can yield a one-dimensional kernel. In total, the minimal kernel dimension of
this network topology is 3.

v1 =



0
a4,3(a11,1a13,12−a12,11a1,13)

0
a3,2(a11,1a13,12−a12,11a1,13)

0
0
0
0
0
0

−a13,12(a2,1a4,3−a3,2a1,4)
0

−a12,11(a2,1a4,3−a3,2a1,4)


, v2 =



0
−a4,3(a1,10a9,8−a8,1a10,9)

0
−a3,2(a1,10a9,8−a8,1a10,9)

0
0
0

−a10,9(a2,1a4,3−a3,2a1,4)
0

−a9,8(a2,1a4,3−a3,2a1,4)
0
0
0


, v3 =



0
a4,3(a5,1a7,6−a6,5a1,7)

0
a3,2(a5,1a7,6−a6,5a1,7)
−a7,6(a2,1a4,3−a3,2a1,4)

0
−a6,5(a2,1a4,3−a3,2a1,4)

0
0
0
0
0
0


.

Therefore, the minimal kernel dimension of the network topology in Figure 3.2(a) is 3.
However, all three kernel vectors v1, v2, and v3 have zero entries at index 1, 3, 6, 9 and 12.
No linear combination of these vectors is strictly positive for any choice of weights and,
thus, this network is not a coexistence network. In other words, no choice of weights on
this network topology can yield an antisymmetric adjacency matrix with kernel dimension
smaller than 3. In fact, when all weights are chosen to be equal, the three kernel vectors
vanish. In this case, the kernel dimension is 5.

Minimal kernel dimension is determined by occurrences of perfect matchings in
subnetworks. In the following, we show that the minimal kernel dimension of a network
topology equals the minimal number of nodes that need to be deleted such that a perfect
matching exists in the remaining subnetwork. In other words, the kernel of A on the
specified network topology is at least K-dimensional if it is necessary to delete at least K
nodes from the network N (A) to obtain a perfect matching in the remaining subnetwork.

For example, a factor-critical network has a perfect matching upon removing any single
node (the so-called near-perfect matchings). On the other hand, because factor-critical
network are of odd size, they do not have a perfect matching. Thus, the minimal kernel
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dimension of a factor-critical network is 1. The above example of four 4-cycles connected
at a center node (Figure 3.2(a)) neither has a perfect matching nor does it have a perfect
matching upon removing one arbitrary node or two arbitrary nodes. However, this network
topology has perfect matchings after removal of three nodes as shown in Figure 3.2(b).
Thus, the minimal kernel dimension of this network topology is 3.

To briefly rationalize the graph-theoretical characterization of the minimal kernel di-
mension, we express the characteristic polynomial of an arbitrary antisymmetric matrix A
that respects a given network topology in terms of its principal minors. The characteristic
polynomial of a matrix can be written as:

det(A− λ1S) =
S∑
α=0

cαλ
α , (3.12)

where the coefficients cα ∈ R in the expansion are given by [63]:

c0 = det(A) , (3.13)

cα =
∑

J⊆{1,...,S},
|J |=α

(−1)α det(AĴ) , α = 1, . . . , S − 1 , (3.14)

cS = 1 . (3.15)

Here, AĴ denotes the submatrix of A (a principal minor) that is created by deleting the
rows and columns with label j1, . . . , j|J | (such that J = {j1, . . . , j|J |}) from A. In a graph-
theoretical interpretation, AĴ is the antisymmetric adjacency matrix of the subnetwork that
is created by deleting the nodes J and their attached links from N (A). If it is necessary
to delete at least K nodes from the network N (A) to obtain a perfect matching in a
remaining subnetwork, the first K expansion coefficients c0, c1, . . . , cK−1 are zero (because
for antisymmetric matrices, the determinant is 0 if and only if the Pfaffian is 0). Upon
tuning the weights of the network, also further expansion coefficients cα with α ≥ K may
vanish and, thus, the kernel dimension can only be greater than K. Therefore, the kernel
of A on the specified network topology is at least K-dimensional if it is necessary to delete
at least K nodes from the network N (A) to obtain a perfect matching in a remaining
subnetwork.

3.4 Minimal network topological requirement for coex-
istence of all states: Strongly connected network

Coexistence of all states in the ALVE (2.1) occurs when the interaction matrix A has a
strictly positive kernel vector. In the example 2.2.2 we have seen that the kernel depends on
the network topology, the interaction rates, or both. Intuitively, coexistence of interacting
states can only occur when mass can flow from each states to every other, such that mass
is not trapped in subsystems or single states. This intuition can be made rigorous and
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gives a minimal requirement for the network topology of networks of condensates, as we
show in the following.

In graph theory, a network is strongly connected if for all pairs of nodes α and β there
is a directed path connecting α to β and, vice versa, a directed path connecting β to α [53].
Pictorially speaking, all states can coexist for all times (xα ≥ ε > 0 for all α for all times)
if each state can (i) gain mass through a directed path from all other states and (ii) re-
lease mass through a directed path to all other states. The simplest example of a strongly
connected network is a directed cycle.

To show that coexistence of all states requires a strongly connected network, we apply
an argument by contradiction: Assume that A is the antisymmetric adjacency matrix of
a network that is not strongly connected, but weakly connected (that is, there exists an
undirected path connection all pairs of nodes). Furthermore, we assume that A has a
positive kernel and, thus, coexistence of all states in the ALVE (2.1). Because the network
is not strongly connected, the set of nodes V can be divided into two disjoint sets of nodes
V1 and V2 (V = V1∪V2 and V1∩V2 = ∅), for which all edges between nodes of V1 and nodes
of V2 are directed from V2 to V1. In other words, the network’s antisymmetric adjacency
matrix in a suitable labeling takes the form:

A =

(
A1 A1←2

−AT1←2 A2

)
, (3.16)

with (A1←2)αβ ≥ 0 for all α, β denotes the weights of the edges that connect V2 to V1. Note
also that A1←2 6= 0 (if A1←2 ≡ 0, the network would be divided into two separated sub-
networks without any connecting edges between V1 and V2, contradicting our assumption
that the network is strongly connected). The antisymmetric matrices A1 and A2 charac-
terize the weights connecting nodes solely within V1 and V2, respectively. Accordingly, we
decompose the state vector into the chosen partitions V1 and V2 and write x = (x1,x2).

Let us now compute how the total mass in the states V2 evolves in time:

d

dt

∑
α∈V2

xα =
∑
α∈V2

xα(Ax)α =
(
0T xT2

)( A1 A1←2

−AT1←2 A2

)(
x1

x2

)
,

= −xT2AT1←2x1 + xT2A2x2 = −xT2AT1←2x1 . (3.17)

Since we assumed coexistence of all states (xα ≥ ε > 0 for all α for all times), we know

d

dt

∑
α∈V2

xα = −xT2AT1←2x1 ≤ −Const · ε < 0 , (3.18)

for some positive constant Const > 0, as A1←2 ≥ 0 and all concentrations are positive
xα ≥ 0. Together with equation (3.18) it follows that all states V2 go extinct over time.
This result is intuitively understood because all edges between V1 and V2 are directed from
V2 to V1, that is, mass can only flow from V2 to V1, but not in the opposite direction.
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However, extinction of V2 is in contradiction with our assumption that all states coex-
ist. If a network is not strongly connected, all states cannot coexist. Therefore, strongly
connected networks are necessary to obtain coexistence of all states in the ALVE (2.1).
The simplest examples of strongly connected network are directed cycles and Hamiltonian
networks (obtained by adding edges to a directed cycle). Hamiltonian networks are of
relevance in Section 4.3.1.

3.A Properties of real antisymmetric matrices

3.A.1 Nonzero eigenvalues occur in pairs, the corresponding eigen-
vectors are conjugated and orthogonal

By complex conjugating the eigenvalue equation, we find

Ax = λx = −λx = Ax .

If x is an eigenvector of A with eigenvalue λ, then its complex conjugate x is also an
eigenvector of A with eigenvalue −λ.

We decompose the eigenvector x into its real and imaginary part (i denotes the imagi-
nary unit):

x = u+ iv ; x̄ = u− iv
A(u+ iv) = i|λ|(u+ iv) = −|λ|v + i|λ|u

A(u− iv) = −i|λ|(u− iv) = −|λ|v − i|λ|u
⇒ Au = −|λ|v ; Av = |λ|u

This decomposition reveals that the complex eigenvectors consists of real conjugated pairs
of vectors u,v that map onto each other with a factor |λ| that corresponds to the eigenvalue.
The antisymmetry of A implies that these ’generalized eigenvectors’ are orthogonal to each
other,

uTAu = −uTAu = −|λ|uTv = 0 .

In the decomposition of the true eigenvalue x, both of the generalized eigenvectors have
the same norm,

i|λ|〈x,x〉 = 〈x, (Ax)〉 = (uT − ivT )A(u+ iv)

= uTAu+ vTAv + iuTAv − ivTAu = 2iuTAv

= 2i|λ|〈u,u〉 = 2i|λ|〈v,v〉
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3.A.2 The image dimension always even

From the previous calculations, we conclude that there is always an even number of eigen-
values. Summarizing, we have shown that the image Im (A) of a real antisymmetric matrix
is always even dimensional. By the rank-nullity theorem (dimKer (A) + dim Im (A) = S),
for even-sized (odd-sized) real antisymmetric matrices, the kernel dimension is always even
(odd), respectively.

Notably, for real, antisymmetric matrices of odd size, there is always a non-trivial kernel
vector. This fact is of special importance for this thesis.

3.A.3 Bock-diagonalization for real, antisymmetric matrices

With the information derived above, we can block-diagonalize each A. Let A = −AT ∈
RS×S be a real, antisymmetric matrix of size S. The matrix has k ≤ bS/2c distinct
eigenvalues. To every eigenvalue there is a pair of real conjugated eigenvectors Au(α) =
−λv(α), Av(α) = λu(α) (we assume that v,u are normalized). Additionally, the matrix has
the orthonormal kernel vectors rβ with β = {1, ..., S − k}.

The vectors form a unitary transformation matrix T =
(
u(1),v(1), ...,u(k),v(k), r(1), .., r(S−2k)

)
:

T TAT =
(
u(1),v(1), ...,v(k), r(1), .., r(S−k)

)T (−λ1v(1), λ1u(1), ..., λku(k), 0, .., 0
)

=



0 λ1 ... 0 0 0 ... 0
−λ1 0 .. 0 0 0 ... 0
...

...
...

...
...

...
...

...
0 0 ... 0 λk 0 ... 0
0 0 ... −λk 0 0 ... 0
0 0 ... 0 0 0 ... 0
...

...
...

...
...

...
...

...
0 0 ... 0 0 0 ... 0


3.B Properties of the Pfaffian
In the following, we provide background information for the Pfaffian. We elaborate on its
combinatorial definition, present examples and show that the combinatorial and the graph
theoretical definition of the Pfaffian agree. We close this chapter with the calculation of
the Pfaffians of exemplary matrices.

3.B.1 Combinatorial definition of the Pfaffian

Because the Pfaffian of an antisymmetric matrix is central to our analysis, we present
here its combinatorial definition for completeness. Let Π denote the set of all partitions
of the set {1, 2, . . . , S = 2n} into ordered pairs. In other words, every partition γ ∈ Π is
pair-wisely ordered in the form γ =

(
(i1, j1), (i2, j2), . . . , (in, jn)

)
with ik < jk for all k and
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ik < il for all k < l. Note that there are |Π| = (2n − 1) · (2n − 3) · · · · · 3 · 1 = (2n − 1)!!
different pair-wisely ordered partitions of the set {1, . . . , S}. We define the permutation
σγ of such a partition γ ∈ Π as:

σγ :=

(
1 2 3 4 . . . 2n− 1 2n

(i1 j1) (i2 j2) . . . (in jn)

)
, (3.19)

≡
(
i1 j1 i2 j2 . . . in jn

)
. (3.20)

With these notions, the Pfaffian of an antisymmetric matrix A ∈ RS×S of even size S = 2n
is defined as [54, 61]:

Pf(A) :=
∑
γ∈Π

(
sign(σγ)

n∏
k=1

aαk

)
. (3.21)

For an odd-sized antisymmetric matrix, the Pfaffian is 0. Because the elements of every
partition γ are ordered pairs (i < j for every pair (i, j) ∈ γ), every summand

∏n
k=1 aγ is

a product of above-diagonal matrix entries of A. With this definition (3.1), one can show
that Pf(A)2 = Det(A).

More generally, we define the permutation of a partition of an arbitrary, ordered set of
size 2n by identifying the indices of its ordered elements with the elements of the index set
{1, 2, . . . , 2n}. In other words, a permutation of a partition of an arbitrary, ordered set of
even size is understood as the permutation of the partition of the corresponding index set.
For example, when calculating the Pfaffian of a submatrix Aα̂ (necessary for the adjugate
vector), we consider permutations of the set {1, 2, . . . , α − 1, α + 1, . . . , S} with S odd.
In this case, the sign of the permutation is determined by the number of transpositions
necessary to order the elements in size.

For illustration, consider the pretzel-like interaction network sketched in Figure 3.1 with
adjacency matrix (3.3) given in the main text. Using the combinatorial definition (3.1) to
compute the Pfaffian of Apretzel yields:

Pf(Apretzel) =

 sign(1 2 3 4)(−a21)(−a43)

+ sign(1 3 2 4)a13a24

+ sign(1 4 2 3) · 0 · (−a32)

 , (3.22)

= (+1)(−a21)(−a43) + (−1)a13a24 ,

= a21a43 − a13a24 , (3.23)

which agrees with the graph-theoretical (3.2) computation in Equation (3.4) in the
main text.

Laplace-like formula of the Pfaffian. As can be seen from the above example, the
computation of the Pfaffian of an antisymmetric matrix proceeds in a similar manner as the
computation of the determinant of an arbitrary matrix, but is tailored to the antisymmetry
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of the matrix through the notion of the Pfaffian. In this line of thought, it is not surprising
that a recursive definition of the Pfaffian for an antisymmetric matrix of even size can be
obtained (in the spirit of Laplace’s formula for determinants) as [62, 56]:

Pf(A) =
S∑
α=2

(−1)αa1αPf(A1̂α̂) , (3.24)

which we mention here for completeness.

3.B.2 Graph-theoretical and combinatorial definition agree.

The graph-theoretical definition of the Pfaffian (3.2) agrees with its combinatorial defini-
tion (3.1) for the following reason. If the weighted network N (A) is built from the antisym-
metric adjacency matrix A, every perfect matching of the network N (A) corresponds to a
distinct non-zero summand in the Pfaffian of A in the graph-theoretical definition (3.2). In
the combinatorial definition (3.1) all matrix elements for the computation of the Pfaffian
are taken from above the diagonal of A, whereas in the graph-theoretical definition only
negative matrix elements are used (that is, from above or below the matrix diagonal).
If a positive entry aji > 0 appears in a summand of the combinatorial definition of the
Pfaffian (3.1), the negative matrix entry aij = −aji < 0 appears in the graph-theoretical
definition (3.2). Additionally, the permutation of the corresponding partition changes by
one transposition (i and j are swapped) such that the sign of the permutation in the com-
binatorial and graph-theoretical definition differs by a factor of −1. This compensates for
the minus sign originating from the different sign of the matrix entry. Taken together, the
graph-theoretical definition of the Pfaffian (3.2) and the combinatorial definition (3.1) are
equivalent.

The graph-theoretical definition is suitable for our work on coexistence net-
works. The graph-theoretical definition of the Pfaffian (3.2) has the advantage over the
combinatorial definition (3.1) in that it distinguishes between network topology and edge
weights. The combinatorial definition (3.1) includes only above-diagonal entries of the
antisymmetric matrix A. When A contains zero-entries, zero summands appear in the
expression for the Pfaffian, which do not contribute to its value. In contrast, the graph-
theoretical definition of the Pfaffian includes by construction only non-zero entries of A and,
thus, contains only non-zero summands in the definition of the Pfaffian. In addition, all
matrix elements of the summands occurring in the Pfaffian are negative such that the sign
of each summand is determined only by the sign of the perfect matching alone. For these
reasons, the graph-theoretical definition (3.2) distinguishes between edge-weights (negative
matrix elements) and network topology (signs of matchings) and, thus, is suitable for our
discussion of coexistence networks in the main text.
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3.B.3 The Pfaffian of exemplary antisymmetric matrices

A general 2 × 2 antisymmetric matrix. As an example, consider an arbitrary anti-
symmetric 2× 2 matrix (with a12 > 0),

A2 =

(
0 a12

−a12 0

)
. (3.25)

The set of all pair-wisely ordered partitions of {1, 2} is simply Π = {
(
(1, 2)

)
}. Therefore,

the Pfaffian of A2 is given by

Pf(A2) = a12 . (3.26)

A general 4× 4 antisymmetric matrix. For an arbitrary antisymmetric 4× 4 matrix
(all above-diagonal entries are assumed to be positive),

A4 =


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

 , (3.27)

the set of all pair-wisely ordered partitions of the set {1, 2, 3, 4} is given by
Π = {

(
(1, 2), (3, 4)

)
,
(
(1, 3), (2, 4)

)
,
(
(1, 4), (2, 3)

)
}.

The Pfaffian of A4 is obtained as:

Pf(A4) = (+1)a12a34 + (−1)a13a24 + (+1)a14a23 . (3.28)

The sign of the permutation was highlighted in front of the corresponding factor (for ex-
ample, sign(1 3 2 4) = −1).

A general 6× 6 antisymmetric matrix. For a general antisymmetric 6× 6 matrix A6

(again all above-diagonal entries are assumed to be positive),

A6 =


0 a12 a13 a14 a15 a16

−a12 0 a23 a24 a25 a26

−a13 −a23 0 a34 a35 a36

−a14 −a24 −a34 0 a45 a46

−a15 −a25 −a35 −a45 0 a56

−a16 −a26 −a36 −a46 −a56 0

 , (3.29)
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the Pfaffian is obtained as:

Pf(A6) =



(+1)a12a34a56 + (−1)a12a35a46

+ (+1)a12a36a45 + (−1)a13a24a56

+ (+1)a13a25a46 + (−1)a13a26a45

+ (+1)a14a23a56 + (−1)a14a25a36

+ (+1)a14a26a35 + (−1)a15a23a46

+ (+1)a15a24a36 + (−1)a15a26a34

+ (+1)a16a23a45 + (−1)a16a24a35

+ (+1)a16a25a34


. (3.30)

Directed cycle of even size. For further illustration of how the Pfaffian is computed and
to complete the statements from the previous Section, let us also consider a directed cycle
of even length: S → 1→ 2→ 3→ · · · → S − 1→ S (such that a1,S, a21, a32, . . . , aS,S−1 >
0 with S = 2n even for n = 2, 3, . . . ) with according antisymmetric adjacency matrix
Aeven-cycle:

Aeven-cycle =



0 −a21 0 . . . a1,S

a21 0 −a32 . . . 0
0 a32 0 . . . 0
... 0

. . . . . . ...
0 . . . aS−1,S−2 0 −aS,S−1

−a1,S 0 . . . aS,S−1 0


. (3.31)

The Pfaffian of the even-sized cycle is obtained as:

Pf(Aeven-cycle) = (−1)nmod 2a21a43 · · · aS,S−1 − (−1)nmod 2a32a54 · · · a1,S . (3.32)
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Chapter 4

Topologically robust coexistence and
coexistence networks

To explore how the topology of interaction networks determines the robustness of dynamical
systems, we study the antisymmetric Lotka-Volterra equation (ALVE) (2.1). In the ALVE,
the strengths of pairwise interactions between strategies are defined by an antisymmetric
matrix such that typically some strategies go extinct over time. Here we show that there
also exist topologically robust zero-sum games, such as the rock-paper-scissors game, for
which all strategies coexist for all choices of interaction strengths. We refer to such zero-
sum games as coexistence networks. By mapping the long-time dynamics of the ALVE
to the algebra of antisymmetric matrices, we identify simple graph-theoretical rules by
which coexistence networks are identified and constructed. Examples are triangulations of
cycles characterized by the golden ratio ϕ = 1.6180..., cycles with complete subnetworks,
and non-Hamiltonian networks. In graph-theoretical terms, we extend the concept of a
Pfaffian orientation from even-sized to odd-sized networks. Our results show that the
topology of interaction networks alone can determine the long-time behavior of nonlinear
dynamical systems, and may help to identify robust network motifs arising, for example,
in ecology.

The results in this chapter were worked out together with Johannes Knebel and Erwin
Frey. This chapter is adapted from the publication with the title "Topologically robust
zero-sum games and Pfaffian orientation: How network topology determines the long-time
dynamics of the antisymmetric Lotka-Volterra equation" [49] with minor changes to fit the
shape of this thesis.

4.1 Introduction

The temporal behavior of models arising in nonequilibrium statistical physics are often
adequately described in terms of nonlinear dynamical systems. How the qualitative long-
time behavior of a dynamical system depends on the initial conditions, on the interac-
tion of different degrees of freedom, and on the coupling parameters that determine the
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interaction strengths remain central questions in theoretical physics and applied math-
ematics [64, 65, 4, 66]. In this chapter, we focus on the robustness of the qualitative
long-time behavior of dynamical systems against arbitrary changes of the coupling pa-
rameters [67, 68, 69, 70, 16, 71, 72, 73, 74]. The antisymmetric Lotka-Volterra equation
(ALVE) (2.1) is a well-suited dynamical system to study robustness properties. In the
dynamics of the ALVE, typically some strategies go extinct over time (see Section 2.2).
We investigated the conditions on a zero-sum game under which all strategies coexist for
all choices of interaction strengths. For example, for the rock-paper-scissors zero sum
game, all strategies coexist in an interacting population irrespective of the chosen interac-
tion strengths (Section 1.1) . Since coexistence of all states depends only on the game’s
network topology, but not on the choice of interaction strengths, we refer to the rock-
paper-scissors game as a topologically robust zero-sum game or a coexistence network ; see
Figure 4.1(a).

The existence of coexistence networks as well as their characterization are non-trivial
because strategies typically go extinct for some choice of interaction strengths, see Sec-
tion 2.2 and [1]. On the one hand, complete networks such as the rock-paper-scissors-
lizard-spock game [1, 75, 76, 77, 78, 79] are not coexistence networks as coexistence of all
states depends on the choice of weights; see Figure 4.1(b). On the other hand, cycles with
an odd number of strategies, in which every strategy dominates exactly one strategy and
is dominated by another (1 → 2 → · · · → 2n− 1 → 1), are coexistence networks [80, 81].
Additionally, for the network topology of a directed cycle of five states supplemented with
the directed link in the inside of the cycle as depicted in Figure 4.1(a), coexistence of all
states is observed for all choices of weights. We refer to the latter network topology as
a topologically robust zero-sum game or a coexistence network because coexistence of all
states in the ALVE (2.1) is robust against arbitrary changes of the weights on that network
topology. In other words, coexistence of all states depends only on the network topology,
but not on the specific values of the weights. Such coexistence networks with an arbitrary
number of strategies beyond odd-sized cycles have not been characterized thus far.

4.2 Topologically robust coexistence and coexistence net-
works

Algebraic characterization of coexistence networks. A network is a coexistence
network if its antisymmetric adjacency matrix has a strictly positive kernel element for all
choices of weights that do not change the underlying network topology, that is, keeping the
direction of links and not adding links to or removing links from the network. In algebraic
terms, this question of a strictly positive kernel amounts to determining the conditions on
an antisymmetric matrix under which its kernel remains strictly positive for all choices of
the non-zero matrix entries (as long as their sign is kept). An antisymmetric matrix whose
kernel is one-dimensional is a coexistence network if, for all choices of weights, all entries of
the kernel vector have the same sign, such that the unique normalized kernel vector is always
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Figure 4.1: Coexistence networks in the antisymmetric Lotka-Volterra equation
(ALVE) (2.1). The long-time dynamics of the ALVE are independent of the initial conditions
and two scenarios are possible for a state i (equivalently strategy): Either the state concentra-
tion vanishes (xi → 0 as t → ∞; extinction and depletion) or it remains bounded away from 0
for all times (xi ≥ Const > 0 for all t; survival and condensation). Survival and extinction of
states depend only on the weighted network defined by the network topology and the weights.
(a) Trajectories of the ALVE for a directed cycle of 5 nodes with an interior edge from node 4
to 2 (see insets). All states coexist. This coexistence does not only occur for unit weights (i),
but for all choices of weights on that network topology (ii). Such network topologies are called
coexistence networks or topologically robust zero-sum games. (b) The vast majority of networks
are not coexistence networks; here shown for the rock-paper-scissors-lizard-spock game (network
topology of five states with two in-going and two out-going links for every node); see insets. (i)
For unit weights, all states coexist, but states 3 and 4 go extinct for differently chosen weights
(ii). Thus, coexistence in the rock-paper-scissors-lizard-spock game depends on the rates.

strictly positive. The mapping between the entries of a matrix and its kernel elements
is, in general, not straightforwardly answered for arbitrary matrices. For antisymmetric
matrices, nevertheless, analytical progress is possible as we show in Section 3.3.3. Before
proceeding, we illustrate these algebraic insights with directed cycles of odd and even length
as examples.

Example for coexistence networks: directed cycles. As an example for a coexis-
tence network, consider the rock-paper-scissors network topology (that is, mass can only
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flow in the directed cycle 1 → 2 → 3 → 1 such that a13, a21, a32 > 0, see also Section 1.1
and Figure 1.1). The antisymmetric adjacency matrix A3-cycle is given by:

A3-cycle =

 0 −a21 a13

a21 0 −a32

−a13 a32 0

 , (4.1)

with kernel Ker(A3-cycle) = {(a32, a13, a21)} 1. Consequently, the kernel of the rock-paper-
scissors network topology is strictly positive and all states coexist in the ALVE for all times
for all choices of weights as long as the rock-paper-scissors network topology is not altered.
The above observation can be generalized to cycles of odd size, that is, to network topologies
in which mass can only flow in the cycle 1→ 2→ 3→ · · · → S−1→ S → 1 for S odd (such
that a1,S, a21, a32, . . . , aS,S−1 > 0, see (3.6)). The kernel of a cycle of odd size is obtained
as Ker(A) = {(a32a54 · · · aS,S−1, a43a65 · · · a1,S, . . . , a21a43 · · · aS−1,S−2)} (see Section 3.3.3),
which is again strictly positive for all choices of weights on the cyclic network topology.
Thus, cycles of odd size are coexistence networks.

In contrast, directed cycles of even size have a non-trivial kernel only if the weights
aij are fine-tuned. The determinant (in suiting labeling) is given by Det(Aeven-cycle) =
(a21a43 . . . aS,S−1 − a32a54 . . . a1,S)2, which is zero only for specific choices of weights; see
Section 3.3 and Section 3.B.3. Thus, for cycles of even size, the occurrence of a strictly
positive kernel depends on the choice of matrix entries. Cycles of even size are not coexis-
tence networks. In the following, we further explore this possibly counter-intuitive behavior
between even and odd dimension. The discussion of odd-sized directed cycles as examples
of coexistence networks is extended in Section 4.3 to Hamiltonian networks, which have
a directed cycle through all nodes, and generalized to non-Hamiltonian networks (that is,
network topologies without a cycle).

Coexistence networks can be found using the adjugate vector. In our work, we
use the adjugate vector to characterize coexistence networks of odd size S. The adjugate
vector of an antisymmetric matrix A can be calculated from the Pfaffians of all submatrices
of size S−1, see Section 3.3.3. A network A whose kernel is one-dimensional for all choices
of weights is a coexistence network if its adjugate vector is always strictly positive, that is,
if all entries of the adjugate vector have the same sign independent of the weights (if r is a
kernel vector of A, so is −r). For further details on the influence of the network topology
on the kernel dimension of the network’s adjacency matrix see also Section 3.3.4.

Figure 4.2(a) illustrates the connection between coexistence networks and the graph-
theoretical interpretation of the adjugate vector for an exemplary cycle of five states with
two additional interior edges. The adjugate vector is computed by identifying the near-
perfect matchings of the network and their signs. A necessary condition to obtain a strictly
positive adjugate vector is that the network is factor-critical. Only if the network is factor-
critical can the adjugate vector have non-vanishing values in all of its components. The

1Note that we do not distinguish notationally between column and row vectors in this manuscript if
the meaning is clear from the context.
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sign of the αth component of the adjugate vector, rα, is determined by the signs of the
near-perfect matchings and by whether the index α is even or odd; see Equations (3.2)
and (3.5). Both contributions determine whether all summands occurring in the adjugate
vector have the same sign or not and, thus, whether the one-dimensional kernel is strictly
positive or not for all choices of weights.

Examples for the algebraic characterization. As was shown above, simple directed
cycles of odd length are coexistence networks (see Figure 4.2(b)(i)), while cycles of even
length are not. The directed cycle with one additional interior edge depicted in Fig-
ure 4.2(b)(ii) is a coexistence network as well; see also Figure 4.1(a). The interior edge
(4→ 2) creates one new near-perfect matching

(
(4→ 2), (5→ 1)

)
that gives rise to an en-

try in the third component of the adjugate vector. The corresponding permutation has the
same sign as the permutation of the near-perfect matching

(
(4→ 5), (1→ 2)

)
. Therefore,

the kernel of A remains strictly positive for all choices of weights, and this network is a
coexistence network. Note that if the direction of this edge is reversed to (2→ 4), the sign
of the near-perfect matching will be negative and the adjugate vector could have a negative
entry in the third component upon choosing suitable weights. Hence, the resulting network
is not a coexistence network. Figure 4.2(b)(iii) shows the complete network of five nodes
(see also Figure 4.1(b)). This network is factor-critical, but not a coexistence network.
As indicated above, factor-criticality is not sufficient to obtain a coexistence network; in
addition to factor-criticality, the signs of all summands in all entries of the adjugate vector
need to be the same to give rise to a coexistence network.

Coexistence networks must be strongly connected. In Section 3.4 we have shown
that coexistence of all states is only possible if the underlying network is strongly con-
nected. Intuitively speaking, this means that mass can flow from each state to every other
state. The simplest example of a strongly connected network is a directed cycle, such
as the rock-paper-scissors network. The fact that coexistence networks are strongly con-
nected has further implications for the underlying topology of coexistence networks. An
undirected graph admits a strong orientation (that is, a choice of the direction of all edges
such that the resulting directed network is strongly connected) if and only if it has an
ear-decomposition [82]. Pictorially speaking, a graph has an ear-decomposition if it can be
decomposed to a cycle by successively detaching paths, which are connected to the graph
with both ends as ’ears’ without crossing any other paths. Notably, Lovasz [83] showed
that all factor-critical graphs can always be oriented to be strongly connected. As intro-
duced in Section 3.3.1 a network is factor critical if every subnetwork with of size S − 1
(all subnetworks obtained by deleting one node from the original network) has a perfect
matching. We employed this fact for our numerical search of coexistence networks starting
from undirected graphs; see Section 4.A.2.
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Figure 4.2: Algebraic characterization of coexistence networks via the adjugate vector
of A. (a) Algebraic determination of coexistence networks; here illustrated for a cycle of five nodes
(orange edges) with the two additional interior edges (4, 2) and (3, 1) (cyan edges). The network is
factor-critical. The entries of the adjugate vector are calculated via the near-perfect matchings of
the network and their signs (here, eight near-perfect matchings in total); see Figure 3.1 for details
of the computation. The near-perfect matching

(
(3→ 1), (4→ 2)

)
creates the negative summand

(−a13a24). Thus, the weights can be chosen such that the kernel of A is not strictly positive.
Therefore, this network is not a coexistence network. Note that by setting one of the two or
both cyan matrix entries to zero, the resulting network topology is a coexistence network. (b)(i)
Cycles of odd length are coexistence networks because their adjugate vector is always strictly
positive, whereas cycles of even length are not. (ii) The cycle with five nodes and the additional
interior edge (4, 2) is a coexistence network as is inferred from the adjugate vector in (a) by
setting a13 = 0. (iii) The complete network of five nodes is not a coexistence network; see also
Figure 4.1(b). Additional near-perfect matchings arise through the interior edges (5, 3), (1, 4), and
(2, 5).

4.3 Coexistence networks

Overview of this section. In this section, we present graph-theoretical rules for how
to construct coexistence networks. Recall that for coexistence networks, coexistence of all
states in the ALVE (2.1) is robust against arbitrary changes of the weights (the defining
interaction strengths) on the given network topology; see Section 4.2. We begin our analysis
with coexistence networks that have a one-dimensional kernel for all choices of weights.
For such networks, the vector of steady state concentrations of the ALVE (2.1) is given by
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the unique normalized kernel vector as described in Section 2.4.
First, we introduce Hamiltonian coexistence networks, which are coexistence networks

with a directed cycle through all nodes and, thus, generalize directed cycles of odd size. In
Section 4.3.1 we present the two coexistence conditions on the network topology (cycle con-
dition (4.2) and crossing condition (4.3)) with which all Hamiltonian coexistence networks
are identified. The proof of these conditions exploits the connection between the adjugate
vector (3.5) of an antisymmetric matrix and near-perfect matchings of its network topol-
ogy; details are deferred to Section 4.C. In Section 4.3.2, we show how network topologies
without a Hamiltonian cycle can be obtained from Hamiltonian coexistence networks by
deleting suitable links from the cycle. For networks with up to 9 nodes, we numerically
verify that all coexistence networks are obtained from Hamiltonian coexistence networks
this way; see Section 4.3.3. At present, our numerical enumerations are limited to net-
works of 9 nodes because of the vastly growing number of network topologies with more
nodes. We also briefly discuss the possibility of coexistence networks with a degenerate
kernel (dim(Ker(A)) = 2, 3, . . . ), even though we did not find any for S ≤ 9. We present
examples for the construction of coexistence networks in Section 4.4, applications of our
results are discussed in Section 4.5.

4.3.1 Hamiltonian coexistence networks

Conditions for Hamiltonian coexistence networks. We now present a scheme to
identify Hamiltonian coexistence networks of odd size S = 2n − 1 (n = 2, 3, . . . ). A
Hamiltonian network N (A) contains at least one directed cycle, that is, a directed closed
path passing exactly once through all nodes. Thus, its edge-set E(N ) can be split into
the edges that constitute one such Hamiltonian cycle, Ecycle, and all other interior edges in
the cycle, Ein, such that E(N ) = Ecycle ∪Ein with Ecycle ∩Ein = ∅. An ascending labeling
of the network can be chosen such that Ecycle = {(1, 2), (2, 3), ..., (α, α + 1), ..., (S, 1)}; see
Figure 4.3.

With this assignment of the edges of the Hamiltonian network into cycle edges and inte-
rior edges, we identified the following necessary and sufficient conditions for a Hamiltonian
network to be a coexistence network. The coexistence conditions are stated first, before
we illustrate, discuss, and prove them. A Hamiltonian network with the chosen ascending
labeling of the cycle Ecycle = {(1, 2), (2, 3), ..., (α, α+ 1), ..., (S, 1)} is a coexistence network
if and only if its interior edges fulfill the following two coexistence conditions :

1. Cycle condition: For every interior edge (α, β) ∈ Ein it holds that:

(α, β) is ascending and β − α is odd,
(α, β) is descending and α− β is even.

(4.2)

An edge (α, β) ∈ Ein is called ascending (with respect to the labeling of the Hamil-
tonian cycle) if α < β, and descending if α > β; see Figure 4.3.
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2. Crossing condition: For every pair of crossing interior edges {(α, β), (µ, ν)} ⊆ Ein it
holds that:

(α, β) and (µ, ν) cross each other,
and min(|α− µ|, |β − ν|) is even.

(4.3)

Two interior edges (α, β), (µ, ν) ∈ Ein are called crossing if min(µ, ν) < α < max(µ, ν)
or min(µ, ν) < β < max(µ, ν). If the Hamiltonian network is drawn in the two-
dimensional plane, crossing edges cross in the interior of the cycle; see Figure 4.3.
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Figure 4.3: Graph-theoretical conditions for Hamiltonian coexistence networks. (a)
Hamiltonian network N (9) of 9 nodes consisting of edges from the Hamiltonian cycle (orange)
and interior edges (2, 7), (4, 7), and (9, 3) (cyan). (b) We identified the cycle condition (4.2) and
the crossing condition (4.3) to check whether a network topology is a coexistence network. These
conditions are both necessary and sufficient. The cycle condition ensures that only cycles of odd
length are created within the Hamiltonian cycle through any interior edge. The crossing condition
ensures that two crossing cycles share only an odd number of nodes connected by an even number
of edges. It follows that N (9) is a coexistence network. (c) Near-perfect matchings contributing
to the first, second, and eighth component of the adjugate vector (3.5). Crossing edges do not
contribute to the same near-perfect matching. (d) The component-wise calculation of the adjugate
vector r confirms that the network topology N (9) in (a) is a coexistence network because all vector
components are strictly positive for all choices of weights.

Illustration of the conditions. The cycle condition (4.2) governs the relation of interior
edges with the Hamiltonian cycle, while the crossing condition (4.3) governs the relation
of interior edges to each other. Fulfillment of the cycle condition (4.2) ensures that interior
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edges only create directed subcycles of odd length (due to S being odd). If the difference
between start and end node of an interior edge is odd, the direction of the interior edge needs
to be ascending with respect to the Hamiltonian cycle to ensure a strictly positive kernel.
In contrast, if the difference is even, the edge needs to be descending. Taken together,
Hamiltonian coexistence networks do not have even cycles. The crossing condition (4.3)
ensures that no two crossing edges occur in the same near-perfect matching. This is the
case if and only if the minimal difference between end and start nodes of crossing edges is
even. In other words, the two directed cycles of odd length created by every pair of interior
edges share an odd number of nodes that are connected by an even number of edges. In
Section 4.C, we prove that the coexistence conditions (4.2) and (4.3) are both sufficient
and necessary for Hamiltonian coexistence networks.

Example of a coexistence network. To illustrate both the above conditions and the
ideas of the proof, we consider an exemplary Hamiltonian network N (9) = E

(9)
cycle ∪ E

(9)
in of

9 nodes, constituted by the Hamiltonian cycle E(9)
cycle = {(1, 2), (2, 3), . . . (9, 1)} and three

interior edges E(9)
in = {(2, 7), (4, 7), (9, 3)}; see Figure 4.3(a) for a sketch.

First, the coexistence conditions (4.2) and (4.3) for a Hamiltonian coexistence network
are fulfilled (Figure 4.3(b)). The cycle condition (4.2) is fulfilled for all interior edges:
(i) the interior edge (2, 7) is ascending because 2 < 7 and their difference is odd, (ii)
the interior edge (4, 7) is ascending because 4 < 7 and the difference is odd, (iii) the
interior edge (9, 3) is descending because 9 > 3 and the difference is even. The crossing
condition (4.3) is fulfilled for the two crossing edges (9, 3) and (2, 7) (no other interior edges
cross each other) because min(|9− 2|, |3− 7|) = 4, which is even. Thus, we conclude from
the coexistence conditions that the Hamiltonian network N (9) is a coexistence network.

Component-wise calculation of the adjugate vector confirms coexistence net-
work. To verify that the kernel of the antisymmetric matrix of N (9) is indeed strictly
positive as claimed above, we now explicitly calculate the adjugate vector (3.5) and check
the sign of all entries. This algebraic check illustrates the main ideas underlying the proof
presented in Section 4.C. For illustration, we write out the near-perfect matchings for the
first, second, and eighth component of the adjugate vector (3.5) and discuss their sign; see
Figure 4.3(c).

The first component r1 is calculated as the Pfaffian of the submatrix A1̂. The summands
contributing to Pf(A1̂) originate from the near-perfect matchings of N (9) for which the first
node is removed, that is, the perfect matchings of the subnetwork N (A1̂). Three such near-
perfect matchings exist (see Figure 4.3(c)(i)):

µ1̂,1 =
(
(2→ 3), (4→ 5), (6→ 7), (8→ 9)

)
,

µ1̂,2 =
(
(2→ 7), (3→ 4), (5→ 6), (8→ 9)

)
,

µ1̂,3 =
(
(2→ 3), (4→ 7), (5→ 6), (8→ 9)

)
.

The first of the above near-perfect matchings, µ1̂,1, comprises only edges from the Hamil-
tonian cycle. The two other near-perfect matchings, µ1̂,2 and µ1̂,3, include contributions
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from the Hamiltonian cycle and, in addition, one interior edge. Thus, r1 is computed as:

r1 = (−1)1+1Pf(A1̂),

=

 sign (2 3 4 5 6 7 8 9) a23a45a67a89

+sign (2 7 3 4 5 6 8 9) a27a34a56a89

+sign (2 3 4 7 5 6 8 9) a23a47a56a89

 ,
= (+1)a32a54a76a98 + (+1)a72a43a65a98

+ (+1)a32a74a65a98 .

The sign of the near-perfect matchings is calculated via the number of transpositions to
order its elements in size.

The permutation µ1̂,1 is already ordered in size and, thus, equals the identity permuta-
tion µ1̂,1 = (2 3 . . . 8 9) = σ1. For odd components of the adjugate vector, the permutation
containing only edges from Ecycle always equals the identity permutation and, thus, has the
sign +1. The first component of the adjugate vector is strictly positive because the per-
mutations corresponding to µ1̂,2 and µ1̂,3 are ordered by an even number of transpositions,
such that r1 contains three positive summands.

For the second component, r2, there exists only one perfect matching of N (A2̂), which
contains only edges from the Hamiltonian cycle; see Figure 4.3(c)(ii):

µ2̂,1 =
(
(3→ 4), (5→ 6), (7→ 8), (9→ 1)

)
.

Interior edges do not contribute to any near-perfect matching of N (9) for which node 2
is removed. In general, it is both the placement of the interior edges relative to each
other and their placement relative to the deleted node that determines whether additional
near-perfect matching arise or not. For r2, it follows:

r2 = (−1)1+2Pf(A2̂) ,

= (−1) sign (3 4 5 6 7 8 9 1) a34a56a78a91 ,

= a43a65a87a19 .

(4.4)

For other even components of the adjugate vector, the permutation of the near-perfect
matching containing only edges from Ecycle is also not ordered in size in the same way as
for r2. The identity permutation σ1 = (1 2 . . . α − 1 α + 1 . . . S) is achieved with an
odd number of transpositions, resulting in the sign −1. This minus sign is balanced by
the prefactor (−1)1+α in the adjugate vector. Therefore, all summands in all components,
which arise from near-perfect matching with only edges from the Hamiltonian cycle, have
the same sign.

Similarly, all other components of the adjugate vector are calculated from which r8 as
an instructive component is further discussed in the following. There exist five near-perfect
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matchings of N (9) upon omitting node 8; see Figure 4.3(c)(iii):

µ8̂,1 =
(
(2→ 3), (4→ 5), (6→ 7), (9→ 1)

)
,

µ8̂,2 =
(
(2→ 7), (3→ 4), (5→ 6), (9→ 1)

)
,

µ8̂,3 =
(
(2→ 3), (4→ 7), (5→ 6), (9→ 1)

)
,

µ8̂,4 =
(
(1→ 2), (4→ 5), (6→ 7), (9→ 3)

)
,

µ8̂,5 =
(
(1→ 2), (4→ 7), (5→ 6), (9→ 3)

)
.

(4.5)

Again, the first near-perfect matching µ8̂,1 comprises only edges stemming from the Hamil-
tonian cycle, while µ8̂,2, µ8̂,3 and µ8̂,4 involve contributions from the Hamiltonian cycle and
exactly one interior edge. The corresponding permutations have the same sign because an
even number of transpositions maps the partitions to the partition stemming from µ8̂,1;
similarly as for the discussion of r1. The near-perfect matching µ8̂,5, however, contains
the two non-crossing interior edges (4, 7) and (9, 3). The sign of the permutation equals
the sign of the identity permutation (which corresponds to the ordered set) because each
interior edge fulfills the cycle condition (4.2) and, thus, can be transferred to the partition
stemming from µ8̂,1 by an even number of transpositions. This reasoning can be generalized
to any number of interior, non-crossing edges occurring in the same near-perfect matching.
The eighth component of the adjugate vector is, thus, obtained as:

r8 = (−1)1+8Pf(A8̂) ,

= (−1) ·


sign (2 3 4 5 6 7 9 1) a23a45a67a91

+sign (2 7 3 4 5 6 9 1) a27a34a56a91

+sign (2 3 4 7 5 6 9 1) a23a47a56a91

+sign (1 2 4 5 6 7 9 3) a12a45a67a93

+sign (1 2 4 7 5 6 9 3) a12a47a56a93

 ,

= a32a54a76a19 + a72a43a65a19 + a32a74a65a19

+ a21a54a76a39 + a21a74a65a39 . (4.6)

In total, the adjugate vector for the Hamiltonian network N (9) is written out for all
components in Figure 4.3(d). The adjugate vector of N (9) is not the zero-vector for any
choice of non-vanishing weights, such that the kernel of A(N (9)) is one-dimensional for all
choices of weights; see Section 3.3.3. The network topology of N (9) determines the signs of
all summands in all entries and components of the adjugate vector (4.7). Because all these
summands have the same sign, the kernel is strictly positive for all choices of weights and,
thus, the network topology N (9) is a coexistence network.

In summary, the decomposition of the edge-set into edges from the cycle and interior
edges, N (9) = E

(9)
cycle ∪ E

(9)
in , leads to a separation of all near-perfect matchings into two

sets. The first set consists of all near-perfect matchings containing only edges of the
Hamiltonian cycle Ecycle. These near-perfect matchings are identical to the near-perfect
matchings of a directed cycle of size S. Analogous to the adjugate vector of odd cycles, the
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signs of these near-perfect matchings alternate such that the corresponding contributions
to the adjugate vector (3.5) have the same sign (sign(Pf(Aα̂)) = (−1)α−βsign(Pf(Aβ̂))), see
Section 4.2. The second set consists of all near-perfect matchings containing one or several
interior edges Ein. The cycle condition (4.2) and the crossing condition (4.3) together
ensure that the signs of all near-perfect matchings excluding the same node are identical.
Thus, N (9) is a coexistence network.

Edge-wise decomposition of the adjugate vector. To establish the coexistence con-
ditions (4.2) and (4.3) for coexistence networks, it is also insightful to partition the adjugate
vector into contributions arising from the presence of interior edges. For example, the ad-
jugate vector of the network N (9) in Figure 4.3(a) can be written as:

r = rcycle + rin ,

= rcycle + r2→7 + r4→7 + r9→3 + r4→7,9→3 ,

=


a32a54a76a98
a43a65a87a19
a21a54a76a98
a32a65a87a19
a21a43a76a98
a32a54a87a19
a21a43a65a98
a32a54a76a19
a21a43a65a87

+


a72a43a65a98

0
0
0
0
0
0

a72a43a65a19
0

+


a32a74a65a98

0
a21a74a65a98

0
0
0
0

a32a74a65a19
0

+


0
0
0

a21a65a87a39
0

a21a54a87a39
0

a21a54a76a39
0

+


0
0
0
0
0
0
0

a21a74a65a39
0

 .

(4.7)

The contribution of the Hamiltonian cycle to the adjugate vector is denoted as rcycle,
which is the adjugate vector of a directed cycle of 9 nodes in the ascending labeling. The
contributions from near-perfect matchings of one interior edge and edges from the cycle are
denoted as r2→7, r4→7 and r9→3. The remaining contribution r4→7,9→3 arises because these
two non-crossing interior edges occur together in a near-perfect matching. rin summarizes
all contributions to the adjugate vector that stem from near-perfect matchings and include
one or several interior edges. In this edge-wise notation, the contribution of a single interior
edge to the adjugate vector can be suitably discussed: whether it creates one or several
near-perfect matchings, whether these matchings arise through combinations with edges
of the Hamiltonian cycle only or in combination with further interior edges, and whether
their signs agree with the near-perfect matching stemming from the cycle.

Necessity of the conditions. As demonstrated by the previous example, every Hamil-
tonian network in which all internal edges fulfill the coexistence conditions (4.2) and (4.3)
is a coexistence network. Furthermore, the coexistence conditions are not only sufficient,
but also necessary to obtain a coexistence network. By reversing the direction of an edge,
the signs of the respective summands occurring in the adjugate vector change because
of an additional transposition in the permutation. Thus, every Hamiltonian network not
fulfilling conditions (4.2) and (4.3) is not a coexistence network; see Section 4.C.
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(a) (*), (**) (b) (*), (**)

(c)

(**)(*)

(d)

(**)

(*)

... and 1454
generated networks

Figure 4.4: All coexistence networks with up to 9 nodes. We determined all coexistence
networks for up to S ≤ 9 by establishing all Hamiltonian coexistence networks via the graph-
theoretical coexistence conditions (4.2) and (4.3) and deleting suitable edges; see Section 4.3.3.
(a)-(c) All coexistence networks for S = 3, 5, and 7 nodes. Coexistence networks are, for example,
cycles, concatenations of smaller coexistence networks, and so-called generating coexistence net-
works (green color). Generating coexistence networks have a saturated number of edges: Upon
adding any further edge to their network topology, they are no longer coexistence networks. (*)
denotes specific triangulations of cycles that are discussed in Section 4.4.1. These are dilute net-
works, but the total number of near-perfect matchings grows exponentially fast with the number
of nodes S at a rate characterized by the golden ratio ϕ = 1.6180...; see Equation (4.10). (**)
denotes cycles with complete subnetworks; see Section 4.4.2. These networks are dense, but the
total number of near-perfect matchings grows only polynomially as ∼ S3. (d) Generating coex-
istence networks with 9 nodes. Upon deleting suitable edges from these generating coexistence
networks, all other 1454 coexistence networks for S ≤ 9 are generated.
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4.3.2 Non-Hamiltonian coexistence networks

Non-Hamiltonian coexistence networks can be generated by deleting suitable links from
Hamiltonian coexistence networks. To illustrate this approach, consider the network topol-
ogy that is obtained by deleting the cycle edge (2, 3) from the above-studied Hamilto-
nian network N (9) (equivalently, by setting a32 = 0 in A(N (9))). The resulting network
N (9)\{(2, 3)} is not Hamiltonian because no directed cycle passes through all of the net-
work’s nodes. The adjugate vector of this non-Hamiltonian network is obtained from the
adjugate vector (4.7) by setting all entries a32 = 0.

Even though six previously existing near-perfect matchings vanish upon deleting the
edge (2, 3) (four near-perfect matchings from the cycle, and two involving the interior
edge (4, 7)), all components of the resulting adjugate vector are different from 0 and all
summands in all components have the same sign. In other words, the kernel of the cor-
responding antisymmetric matrix is still strictly positive for all choices of weights due to
the contributions from the previously interior edges. Thus, the non-Hamiltonian network
topology N (9)\{(2, 3)} is a coexistence network.

In general, deleting edges from a Hamiltonian coexistence network can only decrease
the number of its near-perfect matchings. Note that the resulting network does not have
to be factor-critical or strongly connected (for example, upon deleting the edge (5, 6) from
N (9), A4̂ does not have a perfect matching). However, as long as the network remains
factor-critical upon removing edges, it remains a coexistence network. This can be seen as
follows: Removing edges from the network leads to removing summands in the adjugate
vector. On the other hand, factor-criticality of the remaining network ensures that for ev-
ery component at least one perfect matching and, thus, one summand in every component
of the adjugate vector, remains. Potentially non-Hamiltonian coexistence networks arise
if edges are deleted from the defining Hamiltonian cycle of a Hamiltonian coexistence net-
work as illustrated for the network topology N (9)\{(2, 3)}. The smallest non-Hamiltonian
coexistence network has five nodes; see Figure 4.4(b). It is constituted of two 3-cycles that
are trivially concatenated at one node. The smallest nontrivial non-Hamiltonian coexis-
tence networks, which are not obtained by concatenating smaller coexistence networks at
single nodes, have seven nodes; see Figure 4.4(c).

4.3.3 All coexistence networks with up to 9 nodes

Numerical methods. In order to support our theoretical findings from above, we nu-
merically determined all coexistence networks for up to 9 nodes with two different meth-
ods. In our first method, we used the coexistence conditions (4.2) and (4.3) to successively
build Hamiltonian coexistence networks, and deleted suitable edges to generate both all
Hamiltonian and also non-Hamiltonian coexistence networks; see Section 4.A.1 for details.
Through a second method, we determined all coexistence networks in an algebraic manner.
This approach explicitly exploits the notion of the adjugate vector (3.5) of an antisymmet-
ric matrix; see Section 4.A.2. Only networks with up to 9 nodes were considered in our
study. Investigation of networks with a larger number of nodes was limited by the com-
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putational effort to identify isomorphic networks (see Section 4.A.1 for details). Crucially,
our numerical results confirm that both methods yield the same coexistence networks for
up to 9 states, which also numerically confirms the validity of the coexistence conditions
for Hamiltonian coexistence networks.

All coexistence networks for S ≤ 9. The obtained list of coexistence networks for
three, five, and seven nodes are shown in Figure 4.4(a)-(c). Coexistence networks depicted
in green indicate so-called generating coexistence networks. A generating coexistence net-
work is Hamiltonian and has a saturated number of edges: Upon adding any further edge
to this network topology, it is not a coexistence network any longer. In general, every
Hamiltonian coexistence network can be generated from a generating coexistence network
by deleting suitable interior edges. Our numerical enumerations show that for S ≤ 9 also
all non-Hamiltonian coexistence networks can be created from generating coexistence net-
works by deleting suitable interior and cycle edges. For S = 7 nodes, for example, four
generating coexistence networks exist; see Figure 4.4(c). All other Hamiltonian coexistence
networks as well as all non-Hamiltonian are obtained from the four generating coexistence
networks by deleting suitable edges. The specific form of two of these generating coexis-
tence networks is further discussed in the next Section 4.4. Because of the large number of
coexistence networks for S = 9 (in total 1473 coexistence networks), only the generating
coexistence networks are depicted in Figure 4.4(d), from which again all coexistence net-
works are obtained. Whether also for S ≥ 10 all non-Hamiltonian coexistence networks can
be created from generating coexistence networks remains open at present. Furthermore,
it is an interesting question to us, whether all coexistence networks can be obtained by
concatenating and fusing Hamiltonian coexistence networks of smaller size.

Do coexistence networks with a degenerate kernel exist? Our numerical simula-
tions of coexistence networks with S ≤ 9 nodes did not yield any coexistence network with
a kernel dimension other than dim(Ker(A)) = 1. In other words, all coexistence networks,
which we identified thus far, are odd-sized and have a strictly positive adjugate vector (3.5).
In Section 4.B.1, we show that coexistence networks with a two-dimensional kernel do not
exist. Whether coexistence networks with a degenerate kernel (dim(Ker(A)) > 2) exist,
remains an open question to us at present.

4.4 Specific generating coexistence networks
In the following, we discuss two examples of classes of generating coexistence networks.
These two exemplary classes are chosen because of their simple topological structure that
can be constructed for arbitrary odd size. Furthermore, they illustrate the importance of
topology for both the complexity and diversity of coexistence networks. Applications of
these insights are further discussed in Section 4.5. The first class of coexistence networks
comprises specific triangulations of odd cycles; see Figure 4.5(a). As an application of
the correspondence between the adjugate vector and the steady state concentrations of
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the ALVE (2.1), we propose a protocol to dynamically measure the golden ratio and the
Fibonacci numbers by using these triangulations. The second class comprises coexistence
networks, which are fully connected on the subnetwork of all odd nodes; see Figure 4.5(b).
Applications of these and other coexistence networks are discussed in Section 4.5.

1
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11

1

2 3 4 5 6 7

8910111213

(a)

(b)

Figure 4.5: Specific generating coexistence networks. (a) Triangulation of a cycle of size
S = 13. The orientation of the interior edges is chosen such that the network is a generating co-
existence network. The adjugate vector is obtained as r(13) = (13, 8, 5, 6, 6, 5, 8, 13, 8, 10, 9, 10, 8)
if unit weights are chosen. Each entry equals the number of near-perfect matchings if the cor-
responding node is deleted from the network. The ratio of its first two entries converges to the
golden ratio ϕ = 1.6180... as S = 2n − 1 → ∞. The total number of near-perfect matchings in
the network is obtained from the sum over all entries of this adjugate vector and grows expo-
nentially fast at a rate characterized by ϕ; see Equation (4.10). (b) Cycle of size S = 11 with
a complete subnetwork on the odd nodes. The adjugate vector for unit weights is obtained as
r(11) = (1, 5, 1, 8, 1, 9, 1, 8, 1, 5, 1). Such networks are dense (1/4 of all possible edges are realized
as S � 1, as opposed to the triangulations for which only ∼ 4/S of all possible edges are real-
ized). Even though these networks are dense, the number of near-perfect matchings grows only
polynomially with the system size S.

4.4.1 Triangulations of cycles

Triangulations of cycles are dilute networks. A triangulation of a cycle is created
by adding the maximal amount of internal edges such that no crossing edges occur. That
is, the cycle is divided into triangles. Every triangulation of an odd-sized cycle can be
oriented to be a Hamiltonian coexistence network because interior edges in a triangulation
do not cross each other and, thus, can always be oriented to fulfill the cycle condition (4.2).
Here, we consider a specific class of triangulations of odd-sized cycles, which give rise to
generating coexistence networks; see Figure 4.5(a) and the networks indicated with (*) in
Figure 4.4. These triangulations are created by adding to a cycle of odd size S the ascending
edges (2, S), (3, S − 1), (4, S − 2), . . . , ((S − 1)/2, (S − 1)/2 + 3) and the descending edges
(S, 3), (S − 1, 4), . . . , ((S − 1)/2 + 3, (S − 1)/2 + 1). In other words, this triangulation is
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obtained from merging the two directed paths S → 1→ 2→ 3 · · · → S − 1→ S (in total,
S edges that form the cycle) and 2→ S → 3→ S−1→ . . . ...(S−1)/2→ (S−1)/2+3→
(S− 1)/2 + 1 (in total, S− 3 interior edges that triangulate the cycle). Note that the total
number of edges in a triangulation grows as ∼ 2S for S � 1. Compared to a complete
network of S nodes (with

(
S
2

)
∼ S2/2 edges), only ∼ 4/S of the possible edges are realized

in a triangulation for S � 1. Heuristically speaking, triangulations are dilute (or sparse)
network topologies.

These triangulations are generating coexistence networks. Triangulations that
are built in the above manner are coexistence networks because they are Hamiltonian
networks, and all of their interior edges fulfill the coexistence conditions. The cycle condi-
tion (4.2) is fulfilled because every interior edge does not create any even-sized cycle, and
the crossing condition (4.3) is trivially fulfilled because no two interior edges cross each
other. A network topology, in which an arbitrary interior edge is added to this triangula-
tion, will not be a coexistence network any longer, which can be seen as follows. For every
node α of the network, there is a neighboring node (α + 1 or α − 1) that is both starting
and end point of two different interior edges. Because of the way in which these triangu-
lations are created, every additional interior edge starting or ending in α crosses at least
one neighboring interior edge such that the distance between starting and end points is 1.
Therefore, the crossing condition is violated in triangulations with an additional interior
edge. Taken together, the presented triangulations of odd cycles are generating coexistence
networks.

Counting the total number of near-perfect matchings by choosing unit rates. It
is worth calculating the adjugate vector for these triangulations explicitly for unit weights.
Upon setting all weights to 1 in a coexistence network, the αth component of the adjugate
vector rα counts the number of near-perfect matchings for node α, that is, the number of
perfect matchings when node α is removed from the coexistence network; see also Figure 4.6
for an illustration. Because the constructed triangulations are coexistence networks, the
adjugate vector is strictly positive for all choices of weights. With unit rates, the sum
over all entries of the adjugate vector, |

∑
α rα|, counts the total number of near-perfect

matchings in the coexistence network. Note that this procedure to count the number of
near-perfect matchings can be applied to any undirected graph for which an orientation as a
coexistence network can be found. We refer to such an orientation as a Pfaffian orientation
of an odd-sized graph; see Section 4.5.3 for a detailed discussion of this application in the
context of the dimer problem in statistical physics.

Number of near-perfect matchings for triangulations is characterized by the
golden ratio. We found that the adjugate vector of the triangulation of a cycle of odd
size S = 2n − 1 (n = 2, 3, . . . ) with chosen unit weights is analytically computed as (see



56 4. Topologically robust coexistence and coexistence networks

Section 4.D.1 for details):

rα =


F (n) , for α = 1 ,

F (n+ 1− α)F (α− 1) , for α = 2, . . . , n ,

F (2n+ 1− α)F (α− n) , for α = n+ 1, . . . , 2n− 1 ,

(4.8)

where F (k) denotes the kth Fibonacci number with F (0) = 0, F (1) = 1, and F (k + 1) =
F (k) + F (k− 1), a linear recursive sequence as discussed in Section 6.E. For example, the
adjugate vector of the triangulation of the cycle of size S = 13 (n = 7) is obtained as r(13) =
(13, 8, 5, 6, 6, 5, 8, 13, 8, 10, 9, 10, 8). The Fibonacci numbers arise in this context because of
the iterative decomposition of the triangulations into the so-called ladder graphs [84]; see
Section 4.D.1. The total number of near-perfect matchings #(npm) for the triangulation
of an odd-sized cycle is calculated (by applying the convolution expansion for Fibonacci
numbers [84, 85]) as:

#(npm) = nF (n)
1

5

(
3
F (n+ 1)

F (n)
+ 1 +

1

n

)
, (4.9)

which grows asymptotically as:

#(npm) ∼ 3ϕ+ 1

5
√

5
nelnϕ·n , for n� 1. (4.10)

Here, ϕ = 1/2
(
1 +
√

5
)
denotes the golden ratio. Note that the ratio of two consecutive

Fibonacci numbers converges to the golden ratio (F (n+ 1)/F (n)→ ϕ and F (n) ∼ ϕn/
√

5
as n→∞). In other words, the total number of near-perfect matchings grows exponentially
fast with the system size S = 2n − 1 at a rate determined by the golden ratio ϕ; see
Section 4.5.3 for discussion.

Dynamical measurement of the Fibonacci numbers and the golden ratio. In-
terestingly, these results on the triangulations of cycles of odd size S = 2n − 1 suggest a
recipe to dynamically measure the Fibonacci numbers and the golden ratio that we present
in the following. Recall from Section 2.4 that, if the kernel of A is one-dimensional, the
adjugate vector determines the kernel element and, after normalization, equals the steady
state concentrations 〈x〉T = 1

T

∫ T
0

ds x(s) in the ALVE (2.1) as t → ∞. Therefore, after
normalization, the entries of the adjugate vector (4.8) denote the steady state concentra-
tions of the evolutionary zero-sum game that is defined by the triangulation of an odd-sized
cycle as 〈xi〉∞ := limt→∞〈xi〉t = ri/#(npm). Note also that, because all entries ri of the
adjugate vector (4.8) scale as ri ∼ O(ϕn) or ∼ O(ϕn+1) as n � 1 for all i, the trajectory
defined by the ALVE (2.1) remains in the center of the (S − 1)-simplex ∆S−1.

As an application of the correspondence between the adjugate vector and the steady
state concentrations, one may carry out the following protocol to dynamically measure the
golden ratio and the Fibonacci numbers:
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1. Pick a number n = 2, 3, . . . .

2. Construct the triangulation of the cycle Ntriang of (odd) size S = 2n− 1 by merging
the two directed paths S → 1→ 2→ 3 · · · → S− 1→ S and 2→ S → 3→ S− 1→
. . . ...(S − 1)/2→ (S − 1)/2 + 3→ (S − 1)/2 + 1 as illustrated in Figure 4.5. Choose
unit weights for every edge. A(Ntriang) denotes the antisymmetric adjacency matrix
of the constructed weighted network.

3. Simulate the evolutionary zero-sum game defined by A(Ntriang), that is, numerically
integrate the ALVE (2.1) specified by A(Ntriang).

4. Measure the long-time average of all state concentrations 〈x〉t = 1
t

∫ t
0

ds x(s) for
t� 1.

5. Compute approximate values of:

• the golden ratio ϕ by computing the ratio 〈x1〉t/〈x2〉t, which converges to
F (n)/F (n− 1) as t→∞ (and F (n)/F (n− 1)→ ϕ as n→∞);

• the Fibonacci number F (k) by computing the ratio
∏k

l=1〈xn+l〉t/〈xl〉t for k =
1, 2, . . . , n − 1, which converges to F (k) as t → ∞. F (n) is obtained by com-
puting the ratio 〈xn+1〉t/〈xn〉t

∏k
l=1〈xn+l〉t/〈xl〉t as t→∞.

The Fibonacci numbers can also be computed more efficiently by successively
computing the ratios 〈xn+1〉t/〈x1〉t (converging to F (1) as t→∞), F (1)〈xn+2〉t/〈x2〉t
(converging to F (2) as t → ∞), continuing with F (k − 1)〈xn+k〉t/〈xk〉t (con-
verging to F (k) as t → ∞) for k = 1, 2, . . . , n − 1, and finally computing
F (n− 1)〈xn+1〉t/〈xn〉t (converging to F (n) as t→∞).

Even though we are not aware of any real-world application of the above protocol and the
procedure is not numerically efficient, this measurement of the Fibonacci numbers and the
golden ratio with a dynamical system is an interesting number-theoretical observation.

Topological phase transitions in triangulations of cycles. Triangulations of cycles
can be constructed in such a way that the network is translationally invariant, apart
from the boundary, see Figure 4.5(a). Exploiting (i) that the triangulation of a cycle
is a coexistence network and (ii) that the network has a regular structure makes this
a good example to analyze topological phase transitions in the ALVE. Here, due to (i)
the condensate vector provides insight into the dynamics as it is the asymptotic limit
of the temporal average occupation of the nodes. As the triangulation is a coexistence
network. we can choose the weights arbitrarily together with (ii), the network is a finite
one dimensional lattice. In this setting, we find that the change of a control parameter
leads to polarization in the condensate vector, a phenomenon which can be understood in
the framework of topological phase transitions as known from condensed matter physics.
The details of this analysis are presented in Chapter 5 and Chapter 6.
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4.4.2 Cycles with complete subnetworks

Cycles with complete subnetworks are dense networks. Odd-sized cycles with complete
subnetworks on the odd nodes are generating coexistence networks as well; see Figure 4.5(b)
and the networks indicated with (**) in Figure 4.4. These network topologies are built by
starting from an odd-sized cycle of size S = 2n−1 in ascending labeling S = 2n−1→ 1→
2→ · · · → 2n− 2→ 2n− 1 and adding descending edges between all pairs of odd nodes,
that is, Ein = {(2n− 1, 2n− 3), (2n− 1, 2n− 5), . . . (2n− 1, 1), (2n− 3, 2n− 5), . . . , (2n−
3, 1), . . . , (3, 1)}. Thus, the number of interior edges is given by

(
n
2

)
− 1 (the complete

network on the odd nodes with
(
n
2

)
edges minus the cycle edge (S, 1)). The total number

of edges in this network topology grows as (S−1)(S+9)/8 such that a ratio of (1+9/S)/4
of the possible edges are realized compared with a complete network in which all possible
edges are realized. This ratio scales as ∼ 1/4 for S � 1. Thus, these network topologies
are dense network topologies (that is, with a macroscopic number of edges).

Cycles with complete subnetworks are generating coexistence networks. These cycles
with complete subnetworks on the odd nodes are coexistence networks because they are
Hamiltonian networks, and the coexistence conditions are fulfilled by construction: Every
interior edge is descending and the difference between start and end node is even (the
cycle condition (4.2) is fulfilled), and the minimal distance between the starting nodes and
end nodes of two crossing edges is always even (the crossing condition (4.3) is fulfilled).
Upon adding another arbitrary edge, the network topology is not a coexistence network
any longer, which can be seen as follows. Any further edge (k, l) needs to either start or
end in an even node (or both). Therefore, the added edge would cross the interior edge
connecting the two neighboring odd nodes (connecting either nodes k − 1 and k + 1, or
l− 1 and l+ 1). Thus, the minimal distance between the start and end nodes of the added
edge and the crossing edge is always 1, which is not even. In other words, every additional
interior edge creates a network in which the crossing condition is violated. In total, the
cycle with a complete subnetwork on the odd nodes is a generating coexistence network.

Number of near-perfect matchings for cycles with complete subnetworks grows polyno-
mially slowly. To further characterize cycles with complete subnetworks of size S = 2n− 1
(n = 2, 3, . . . ), we computed the total number of near-perfect matchings by setting all
weights equal to 1 and calculating the adjugate vector (3.5) as described before. We found
that the adjugate vector is obtained as (see Section 4.D.2 for details):

ri =

{
1 , for i odd ,
i(n−i/2)

2
, for i even .

(4.11)

For example, the adjugate vector of the network topology of size S = 11 (n = 6) is
obtained as r(11) = (1, 5, 1, 8, 1, 9, 1, 8, 1, 5, 1); see Figure 4.5. The total number of near-
perfect matchings is computed as:

#(npm) = n+
1

6
(n− 1)n(n+ 1) , (4.12)

which grows polynomially as ∼ n3/6 for n� 1.
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Summary. In this section we have investigated specific triangulations of odd-sized
cycles that are dilute networks (with ∼ 4/S edges realized of all possible edges), but their
number of near-perfect matchings grows exponentially fast with S at a rate characterized
by the golden ratio. Additionally, we have shown that, even though odd-sized cycles with
complete subnetworks on the odd nodes are dense network topologies (1/4 of all possible
edges are realized as S � 1), the number of their near-perfect matchings grows only
polynomially ∼ S3 with the system size. This different scaling behavior between the two
classes of network topologies underlines the importance of the topology of a network. The
number of near-perfect matchings of a network, and thus the structure of the adjugate
vector, mainly depends on the arrangement of internal edges, but only secondary on their
number. Topology matters.

4.5 Applications of coexistence networks
In the following, we present applications of our results on coexistence networks in different
contexts. We outline applications of coexistence networks for the ALVE, which was our
initial motivation of this work. These applications include topologically robust zero-sum
games in evolutionary game theory and topologically robust quantum networks for non-
interacting bosons in driven-dissipative systems. Furthermore, our results on coexistence
networks find also applications for symmetric zero-sum games in the field of game theory
and for the dimer problem for odd-sized graphs in statistical physics.

4.5.1 The ALVE and coexistence networks: Topologically robust
coexistence in evolutionary game theory and driven-dissipative
bosonic systems

The ALVE has applications in physics and biology. The ALVE was originally studied in
the context of population biology by Volterra [19, 86], and has recently gained attention
(i) as the replicator equation for zero-sum games (in the field of evolutionary game theory)
and (ii) as the equation of motion for non-interacting bosons in driven-dissipative systems
(in the field of open quantum systems) [27, 25, 2, 37, 38, 87, 19, 88, 86, 89, 90, 91, 20, 92,
93]. Furthermore, the ALVE occurs in the fields of plasma physics and chemical kinetics
as summarized in reference [2]. In the following, we outline applications of coexistence
networks to evolutionary game theory and open quantum systems.

Replicator dynamics for symmetric zero-sum games. In the context of evolutionary
game theory, the ALVE is derived as the replicator equation of zero-sum games [27, 25,
2, 92]. States correspond to pure strategies (labeled by α = 1, . . . , S) that are played by
agents in a well-mixed population. Agents interact pair-wisely with each other through a
prescribed symmetric zero-sum game (antisymmetric payoff matrix A such that the value
of the game is zero) or, equivalently, by a weighted network. The payoff gained or lost in
each interaction translates to fitness and determines the rate at which agents of a certain
strategy reproduce. The ALVE describes the temporal evolution of the fraction of agents
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xα playing strategy α in an infinitely large population. Depending on the entries of the
payoff matrix, one typically observes the survival of certain strategies in the population
and the extinction of others at long times [28, 1, 89, 90, 91]. In other words, some of the
strategies will not be played by the agents of the population at long times while other
strategies survive and constitute the so-called evolutionary stable set of strategies [25].

Topologically robust evolutionary zero-sum games. Our work was originally motivated
by the observation of zero-sum games in evolutionary game theory for which all strategies
coexist for all choices of interaction strengths. The rock-paper-scissors zero-sum game [25,
94, 95, 87] and cycles with an odd number of strategies are coexistence networks [80,
81], and we asked whether other coexistence networks with a more complex interaction
structure exist. Our results on how to determine these coexistence networks as described
in Section 4.3 are not trivial because strategies typically go extinct for some choice of
interaction strengths [1]. Coexistence networks as determined in this work may give rise
to topologically robust zero-sum games in evolutionary game theory. Irrespective of the
chosen interaction strengths, all strategies will be played in the population. No extinction
can ever occur on these network topologies.

Condensation dynamics in driven-dissipative, bosonic systems. In the context of open
quantum systems, the ALVE describes the condensation dynamics of non-interacting bosons
in driven-dissipative systems [37, 2, 38]. In a theoretical model that was proposed only
recently [37], a system of non-interacting bosons is weakly coupled to a heat bath and
driven by an external, time-periodic potential (a so-called Floquet system [96, 97, 98]). On
a coarse-grained time scale, the dynamics of this open quantum system becomes incoher-
ent [37, 38]. In other words, in this effective description the temporal evolution of such
a driven-dissipative quantum system is captured by a classical stochastic process. Each
state α = 1, . . . , S corresponds to a quantum Floquet state and the fraction of bosons in
this state is given by the concentration xα. Even though the bosons transition incoher-
ently between the different quantum states, the transition rates still reflect the quantum
statistics of the bosons: The more bosons occupy a quantum Floquet state, the higher is
the rate for other bosons to jump into this state, reflecting the fact that bosons tend to
congregate due to their indistinguishability. Furthermore, the differences of forward and
backward jump rates between any two states are characterized by an antisymmetric matrix
A, whose entries depend on microscopic properties of the system, the heat bath, and the
coupling between the two. Due to these dynamics, certain quantum Floquet states become
condensates over time, that is, bosons congregate in a subset of the possible states, while
other states become depleted. It was shown [2] that the ALVE captures this condensation
on the leading-order time scale. Whether a state becomes a condensate or a depleted state
depends on the antisymmetric matrix A alone. This theoretical observation can be under-
stood as a generalization of the Bose-Einstein condensation in thermodynamic equilibrium
to a condensation of bosons in nonequilibrium [37], which has stimulated further research
recently [99, 100, 101, 40, 102].

Topologically robust bosonic quantum networks. Coexistence networks as determined
in this work give rise to topologically robust quantum networks, in which all states are
condensates and no state becomes depleted, irrespective of how the individual jump rates



4.5 Applications of coexistence networks 61

are tuned. However, coexistence networks cannot be complete networks (see the list of
coexistence networks in Figure 4.4 and the networks in Figure 4.5 for illustration). It
is straightforward to show that some transitions between states need to be forbidden (or
forward and backward jump rate need to be equal) in order to create a coexistence network.
Once it is possible to engineer the topology of such transition networks for non-interacting
bosons in driven-dissipative systems, topologically robust quantum networks, in which none
of the states becomes depleted, might be observable.

4.5.2 Game theory and coexistence networks: Stability of optimal,
totally mixed strategies in symmetric zero-sum games

Our results on coexistence networks may also gain significance in the field of game theory
for symmetric zero-sum games and so-called tournaments [103, 104, 105, 106] that we
outline in the following.

Symmetric zero-sum games in game theory. Tournaments are typically introduced as
symmetric two-player zero-sum games on fully connected networks of size S with unit
payoff. In other words, all pairs of different nodes of the game’s network (representing the
S actions that the two players pick from) are connected by a directed edge with weight
+1 (representing the dominance relation between the actions; that is, the payoff matrix
is antisymmetric, A = −AT , and all off-diagonal entries are ±1) [103, 104, 105, 106].
Tournament games were introduced as a generalization of the rock-paper-scissors game
with unit weights [103]. More generally, weighted tournaments are symmetric zero-sum
games on a fully connected network with arbitrary payoff (that is, the payoff matrix is
antisymmetric and all off-diagonal entries are non-zero) [107], while weak tournaments
are characterized by unit payoff on an arbitrary network topology (that is, the payoff
matrix is antisymmetric, off-diagonal entries may be zero and non-zero entries are ±1)
[108]. If neither the game’s underlying network topology nor the weights of the payoff are
restricted, one simply refers to the game as a symmetric zero-sum game characterized by
the antisymmetric payoff matrix A = −AT ∈ RS×S. The results of our work apply to such
symmetric zero-sum games.

Optimal strategies in symmetric zero-sum games. For symmetric zero-sum games, one
is typically interested in so-called optimal sets of actions (or briefly an optimal strategy),
in which “optimal” may have different meanings depending on the context [105, 109]. For
example, an optimal set of actions may denote a probability vector (p∗ ∈ ∆S−1, that is,
p∗ ∈ RS, p∗ ≥ 0, and

∑S
i=1 pi = 1), whose ith entry denotes the probability to play the ith

action, and that maximizes the player’s minimum expected payoff against all other sets
of actions (a so-called mixed Nash equilibrium of the symmetric game [110, 111]). For a
symmetric zero-sum game, it is straightforward to show that a normalized positive kernel
vector p∗ ≥ 0 of the payoff matrix (Ap∗ = 0) is an optimal strategy. A single action of this
optimal strategy is referred to as essential if it is chosen with non-vanishing probability
(p∗i > 0). In other words, in an infinitely repeated game, it is reasonable to choose an
essential action. If all actions of the optimal strategy are essential (p∗ > 0), the optimal
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strategy is called totally mixed [104]; that is, all actions are played. One central result
obtained for odd-sized tournaments is that an optimal, totally mixed strategy always exists
and is unique. In other words, there exists a unique way to optimize the player’s payoff
in odd-sized tournament games and all possible actions must be played [103, 112]. Recent
research results further characterized optimal, totally mixed strategies and extended this
concept to other types of games [113, 107, 114, 105, 108, 104, 115, 116].

Stability of optimal, totally mixed strategies in coexistence networks. Our results on
coexistence networks contribute to this line of research by identifying the symmetric zero-
sum games whose optimal, totally mixed strategies are stable. An optimal, totally mixed
strategy of a game is referred to as stable if all actions remain essential for any change
of the payoff on the game’s network topology [117]. In other words, arbitrary changes
of the payoff values do not change the fact that all actions are essential (even though
their specific probability to be played may change). In our work, we determined and
characterized those antisymmetric matrices (defining the game’s network topology) whose
kernel remains one-dimensional and strictly positive for all choices of off-diagonal entries.
Therefore, coexistence networks define symmetric zero-sum games for which the optimal
strategy is totally mixed for any choice of payoff values; see Section 4.3. The list of
coexistence networks in Figure 4.4 depicts the network topologies of such games for S ≤ 9.

Note that, apart from the rock-paper-scissors game, none of the coexistence networks
are complete graphs as already mentioned above. Instead, our discussion of coexistence
networks in Section 4.4 exemplifies how symmetric zero-sum games with an arbitrary num-
ber of nodes can be constructed to have a unique optimal, totally mixed strategy for all
choices of payoff values. These games include, for example, cycles with S edges, triangula-
tions of cycles with ∼ 2S edges, and cycles with complete subnetworks and ∼ 1

4
S2 edges;

see Sections 4.2 and 4.4. The stability of optimal strategies against arbitrary changes of
payoff values in symmetric zero-sum games is, in general, an interesting topic for further
research, for example, when the optimal strategy is not totally mixed or not unique.

4.5.3 Graph theory and coexistence networks: Pfaffian orientation
and the dimer problem of odd-sized graphs

One interesting application of our results on coexistence networks relates to the so-called
dimer problem in statistical physics: How many configurations do exist that completely
cover the edges of a lattice graph of even size with non-overlapping dimer molecules? In
graph theory and combinatorial mathematics, the dimer problem is connected to counting
the number of perfect matchings for a given even-sized graph, and motivated the intro-
duction of the so-called Pfaffian orientation of even-sized graphs [57, 118, 58, 59]. As we
explain in the following, our results obtained in this manuscript suggest a possibility to
extend the concept of the Pfaffian orientation from even-sized to odd-sized graphs; see
also Figure 4.6 for an illustration. This way, our results facilitate the study of closed-
packed dimer configurations on odd-sized graphs and may stimulate further research in
this direction.
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Figure 4.6: The dimer problem for graphs of odd size. (a) What is the number of closest-
packing configurations with dimers (so-called dimer coverings) for the triangulation of a cycle
of size S = 7? A closest-packing configuration is a covering of the graph that leaves only one
node of the graph uncovered. Our results obtained in Section 4.3 show that this question can
be answered for all factor-critical coexistence networks. (b) All possible dimer coverings of the
triangulation in (a) are depicted. Each closest-packing configuration with one uncovered node
corresponds to one near-perfect matching of the triangulation. In total, 15 near-perfect matchings
exist. The number of near-perfect matchings excluding node i equals the ith component of the
adjugate vector of the chosen directed graph (the Pfaffian orientation of the network topology)
upon setting all weights to one. Here, the adjugate vector is obtained as r(7) = (3, 2, 1, 2, 3, 2, 2)
for unit weights; see Equation (4.8). The total number of dimer coverings for the triangulation of
a cycle grows exponentially fast with the number of nodes S at a rate characterized by the golden
ratio ϕ = 1.6180...; see Section 4.4.1 for details.

The dimer problem in statistical physics. Starting with the work of Kasteleyn, Fisher,
and Temperley [57, 118, 58, 59], the graph-theoretical interpretation of the Pfaffian (3.2)
has been appreciated and applied in statistical physics to compute the entropy of dimer
molecules adsorbed on lattices. Such systems are typically defined by regular lattice graphs
of even size on which dimer molecules cover the graph’s vacancies. Every dimer molecule
covers two connected nodes of the graph and dimers do not overlap. Of specific interest
are closed-packing configurations (so-called dimer coverings), for which every node of the
graph is covered exactly once by a dimer and the graph is completely filled. The partition
function counts the total number of such dimer coverings and its computation is often



64 4. Topologically robust coexistence and coexistence networks

referred to as the dimer problem. The contribution of a dimer covering to the partition
function may be weighted by introducing edge weights to the graph.

Counting the number of dimer coverings of regular lattice graphs was first motivated
in statistical physics by the adsorption of dimer molecules on two-dimensional surfaces.
Kasteleyn, Fisher, and co-workers [57, 118, 119] also established a connection of the two-
dimensional dimer problem to the two-dimensional Ising model. Notably, the dimer prob-
lem gained fresh attention through the work of Rokhsar and Kivelson [120] to describe the
so-called short-range resonating valence bond ground state in the field of superconductivity;
see, for example, reference [121] for a concise description of the physical background and
on how the quantum dimer problem relates to the classical dimer problem described above.
All of these physical applications continue to stimulate the research of dimer statistics on
lattices and networks in the fields of statistical physics and graph theory; see below.

Pfaffian orientation of even-sized graphs. From a mathematical point of view, count-
ing the number of dimer configurations that cover the whole graph amounts to counting
the number of perfect matchings of that graph. As it was motivated in Section 3.3.2, the
Pfaffian (3.2) can be thought of as the sum of the signed perfect matchings of a graph.
Therefore, to count the number of perfect matchings, it suffices to find an orientation of
that graph (that is, assigning every edge a direction) such that every perfect matching
has the same sign. Such an orientation of an even-sized graph is referred to as a Pfaffian
orientation [83]. Thus, upon assigning every directed edge the weight +1 on a Pfaffian
orientation of the graph, the value of the Pfaffian of its antisymmetric adjacency matrix
equals the number of perfect matchings. In other words, the Pfaffian of a graph’s antisym-
metric adjacency matrix in a chosen Pfaffian orientation equals the partition function for
the dimer problem on that graph.

Two questions are of specific interest for the dimer problem: (i) Which graphs admit
a Pfaffian orientation? (ii) If a Pfaffian orientation of a graph exists, how many perfect
matchings exist on that graph?

Question (i). Kasteleyn showed that every planar graph has a Pfaffian orientation [118].
A planar graph can be drawn in the two-dimensional plane such that no two edges intersect.
To find a Pfaffian orientation of a planar graph, one can orient the graph’s edges such that
each face (regions bounded by the graph’s edges) has an odd number of lines oriented
clockwise. Such an orientation can be found in polynomial time [55]. Ever since this result
for planar graphs was established, progress has also been made for Pfaffian orientations of
more general graphs [122, 123, 124, 125, 61]. For example, it was shown that a graph of
even size has a Pfaffian orientation if and only if it can be drawn in the two-dimensional
plane (possibly with crossings) such that every perfect matching intersects itself an even
number of times [125, 61].

Question (ii). If a graph has a Pfaffian orientation, the number of perfect matchings can
be efficiently calculated; see reference [61] for a review and details on the computational
complexity of this task. Analytical expressions for the partition function were first obtained
for the square lattice by Kasteleyn, Temperley, and Fisher [57, 58, 59], have been computed
for other regular lattices [126, 60, 121, 127, 128, 129, 130, 131, 132, 133, 134], such as the
honeycomb, triangular, and kagome lattice since then (see [60] for a review), and for other
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geometries [124, 135, 136] and scale-free networks [137, 138].
Pfaffian orientation and dimer problem of odd-sized, factor-critical graphs. Our results

on coexistence networks suggest that the above concept of a Pfaffian orientation can be
generalized to odd-sized, factor-critical graphs. For a given factor-critical graph of odd size
one may consider closest-packing configurations with dimers (that is, a dimer covering),
which leave only one node of the graph uncovered; see Figure 4.6. The total number of
near-perfect matchings of that graph relates, as above, to the partition function of the
dimer problem.

A natural generalization of the concept of a Pfaffian orientation from even-sized to
odd-sized graphs is obtained in the following sense. In Section 4.3, we constructed those
networks N (A) for which (i) every subnetwork N (Aα̂) has a Pfaffian orientation for all
α and, moreover, (ii) the signs of the corresponding orientations fulfill the sign-condition
sign(Pf(Aα̂)) = (−1)α−βsign(Pf(Aβ̂)) for all α and β. These two conditions originate from
the notion of the adjugate vector r (3.5) of an odd-sized antisymmetric matrix A. We
emphasize that the sign-condition (ii) imposes a strong condition on the network topology:
The signs of all summands in all near-perfect matchings of a network need to be aligned,
and not just the sign of the summands of a single perfect matching as for the Pfaffian
orientation of an even-sized graph. Thus, networks that fulfill conditions (i) and (ii) can
be understood as odd-sized graphs with a Pfaffian orientation.

Factor-critical coexistence networks (see Section 4.3) are networks with a Pfaffian ori-
entation in the above sense because perfect matchings (that is, closest-packing dimer con-
figurations) exist for every node removed from the graph and all of their signs are aligned
in the sense of the above conditions (i) and (ii). We note that all coexistence networks
that we have found thus far are factor-critical; see Section 4.3.3. The total number of near-
perfect matchings can be computed by assigning unit weights to all edges of a factor-critical
coexistence network and by computing the adjugate vector of the antisymmetric adjacency
matrix. As was demonstrated in Section 4.4, the αth component of the adjugate vector,
rα, then counts the number of perfect matchings when node α is removed. The sum over
all components of the adjugate vector,

∑
α |rα|, counts the total number of near-perfect

matchings in the factor-critical coexistence network.
As an example for a planar graph, we computed the number of near-perfect matchings

for specific triangulations of an odd-sized cycle; see Section 4.4.1 and Figure 4.5(a). We
showed that the number of near-perfect matchings #(npm) grows as ∼ nelnϕ·n for n� 1.
Consequently, the entropy of adsorption per dimer molecule on that triangulation of the
cycle is given by:

s = lim
D→∞

1

D
ln(#(npm)) , (4.13)

= lnϕ ≈ 0.4812... . (4.14)

Here, D denotes the maximal number of dimers on the graph and is equal to D = n− 1 =
(S − 1)/2 in the notation of Section 4.4.1; ϕ = 1/2

(
1 +
√

5
)
denotes the value of the

golden ratio. Notably, the value of the entropy per dimer s = lnϕ ≈ 0.4812... for the
triangulation of the cycle, which is an effectively one-dimensional lattice, lies above the
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value of the two-dimensional honeycomb lattice (s ≈ 0.3230) [126], but below the two-
dimensional triangular lattice of even size (s ≈ 0.8571) [121]; see, for example, Table 1 in
reference [60] for further comparison.

Outlook. It will be interesting to extend our results on the Pfaffian orientation and
the dimer problem of odd-sized graphs to two-dimensional lattices and non-planar graphs
of odd size (see example in Section 4.4.2), and to explore possible phase transitions that
might occur upon choosing anisotropic dimer weights.

4.6 Summary and conclusion

After having discussed applications of both coexistence networks and related concepts in
Section 4.5, we provide a brief summary of our results and conclude.

Summary of coexistence networks. In this chapter, we introduced the notion of coexis-
tence networks, that is, networks which show coexistence of all states in the antisymmetric
Lotka-Volterra equation (ALVE) (2.1) as a consequence of the network topology alone. We
determined coexistence networks by mapping the question about the dynamical system of
the ALVE to an algebraic question of the antisymmetric matrix A, which defines the inter-
actions between the states. By exploiting tools from graph theory related to antisymmetric
matrices, we identified coexistence networks.

In detail, we showed that coexistence of all states in the ALVE is independent of the
initial conditions and only depends on the antisymmetric matrix A, which defines the inter-
actions between the states. We identified coexistence networks as networks whose weighted
adjacency matrix has a strictly positive kernel element for all choices of weights. For ma-
trices A with a one-dimensional kernel, a non-trivial kernel element is computed as the
adjugate vector via the Pfaffians of submatrices. Exploiting the graph-theoretical inter-
pretation of the Pfaffian, we characterized the kernel of A in terms of network topological
properties, namely by all near-perfect matchings of the network defined byA. This interpre-
tation enabled us to formulate conditions with which to identify Hamiltonian coexistence
networks. With these results we, first, constructed Hamiltonian coexistence networks as
generalizations of odd-sized, directed cycles. Second, by deleting edges from Hamiltonian
coexistence networks, we also constructed non-Hamiltonian coexistence networks. A nu-
merical survey of coexistence networks with up to 9 nodes verifies our results; see Figure 4.4
for an overview. Our results strongly depend on the antisymmetry of the matrix A, which
is justified in the context of the applications discussed above. The validity of our results
and extensions to more general replicator equations, as occurring in theoretical ecology,
are the focus of future research.

Summary of applications of coexistence networks. With respect to the ALVE, we out-
lined applications in the fields of evolutionary game theory as topologically robust zero-sum
games. In the context of driven-dissipative systems of non-interacting bosons, topologi-
cally robust quantum networks might be an interesting application. The algebraic results
of our work include the characterization of antisymmetric matrices whose kernel remains
strictly positive for all choices of weights that respect the sign structure of the matrix. We
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discussed the applications of our findings in the field of game theory for the stability of
optimal, totally mixed strategies in symmetric zero-sum games. Furthermore, coexistence
networks suggest the introduction of a Pfaffian orientation for odd-sized graphs to study
the dimer problem on such graphs.

Methodological approach and outlook. Besides these specific applications of coexistence
networks, we emphasize the methodological approach with which we studied the long-time
behavior of the ALVE. With a suitable mapping from the dynamical system to an algebraic
problem (via a Lyapunov function or a conserved quantity) and by solving the algebraic
problem with a graph-theoretical approach, we characterized topologically robust coexis-
tence in the ALVE. It might be possible to generalize this approach to study topologically
stable attractors of general Lotka-Volterra systems on arbitrary networks [6, 7, 139] or in
other population-dynamical models [140, 141, 142].

Overall, we believe that the results of this work will stimulate further research to
investigate the interplay between interaction topologies and nonlinear dynamical systems.
Ultimately, such studies will help to characterize the long-time behavior of nonequilibrium
systems.
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4.A Numerical methods for the determination of coex-
istence networks

We numerically determined all coexistence networks for S ≤ 9 nodes with two different
methods. In our first approach, we used conditions (4.2) and (4.3) to constructively gener-
ate all coexistence networks. The second approach consisted of algebraically determining
all coexistence networks to verify the results of the first approach.

4.A.1 Method 1: Construction of coexistence networks via condi-
tions (4.2) and (4.3)

To generate coexistence networks, we implemented conditions (4.2) and (4.3) as a con-
structive algorithm. By successively adding edges fulfilling both conditions to a cycle of
odd size (S → 1→ 2→ · · · → S), we constructed an exhaustive list of Hamiltonian coexis-
tence networks. From that list, we deleted network duplicates, that is, isomorphic network
topologies. Only networks with up to 9 nodes were considered because of the limiting
computing time needed to identify the vast number of both possible network duplicates
(naively there are S! ways to label S nodes) and network isomorphisms.

Note that in our understanding two networks are isomorphic if one network is equal
to the other after reversing all of its edges and/or suitably relabeling its nodes. In other
words, a graph isomorphism is expressed in terms of multiplication with −1 and/or simul-
taneous reordering of row and column vectors of the antisymmetric adjacency matrix. This
notion of isomorphism of network topologies is justified by the algebraic properties of the
antisymmetric adjacency matrix. A relabeling of all nodes is achieved by multiplying the
antisymmetric matrix with permutation matrices, whose eigenvalues are ±1 only; see [143].
Therefore, algebraic characteristics such as positivity of the kernel and spectrum do not
change under such operations for an antisymmetric matrix.

4.A.2 Method 2: Algebraic determination of coexistence networks
via the adjugate vector (3.5)

Additionally, we determined all coexistence networks for up to networks of 9 nodes through
a second, algebraic approach. For all possible orientations of all connected, undirected
graphs, we examined whether a strictly positive kernel of the antisymmetric adjacency
matrix is obtained for all choices of weights. Starting from databases containing all undi-
rected graphs, we exploited, first, necessary conditions for coexistence networks with an
one-dimensional kernel and, second, the notion of the adjugate vector (3.5) to find all
orientations of undirected graphs that form coexistence networks.

We started with a list of all connected, undirected graphs with S ≤ 9 nodes. In
reference [144], complete lists are available for up to S = 10 nodes; the number of undirected
graphs grows super-exponentially for larger S. For every undirected graph in that list, we



4.B Topological constraints for coexistence networks 69

examined whether it admits an orientation yielding a coexistence network through a sieve
of necessary conditions that is outlined in the following.

(i) First, we checked whether the graph can be oriented such that it is strongly con-
nected (in the graph-theoretical literature referred to as 2-edge-connected [83, 82]).
Every network that is not strongly connected cannot admit an orientation yielding a
coexistence network and, thus, does not have to be considered further; see Section 3.4.

(ii) If the (undirected) graph can be oriented to be strongly connected, we checked
whether it admits at least one near-perfect matching. For graphs having at least one
near-perfect matching, the kernel of the antisymmetric adjacency matrix is struc-
turally one-dimensional and is given by the adjugate vector (see Section 3.3.4). Thus
far, we have not found any coexistence network whose kernel is not one-dimensional;
see Section 4.3.3.

(iii) Next, we checked whether the (undirected) graph is factor-critical. An undirected
graph having a near-perfect matching, but not being factor-critical has at least one
zero-entry in its adjugate vector (3.5) irrespective of the orientation of that graph.
Thus, such a graph cannot be oriented to be a coexistence network. For factor-
critical graphs, however, every component of the adjugate vector (3.5) has at least
one non-vanishing summand irrespective of the orientation; see Section 3.3.2.

(iv) Only for factor-critical graphs did we search for an orientation such that all summands
occurring in the adjugate vector (3.5) have the same sign; see Section 3.4. To this end,
we computed all near-perfect matchings from the above-diagonal matrix elements.
By choosing +1,−1 as matrix entries, the signs of all summands for all orientations
were tested, and all coexistence networks were determined.

Carrying out the described procedure for all connected, undirected graphs with S ≤ 9
nodes yields all coexistence networks (up to graph isomorphisms; see above). The list
obtained through our algebraic approach agrees with the list of coexistence networks that
was constructed as described in Section 4.A.1 (see also Figure 4.4. of the main text).

4.B Topological constraints for coexistence networks
In the following we introduce some constraints that the network topology puts on the
kernel vectors of its corresponding matrix. As for coexistence networks the kernel is vital,
these constraints give exclusion conditions for networks to be topologically robust.

4.B.1 No coexistence networks with a two-dimensional kernel

Overview. If the dimension of the kernel of a network’s antisymmetric adjacency matrix
is zero, the network does not have non-trivial kernel elements and, thus, no strictly positive
kernel vectors. Consequently, this network topology cannot be a coexistence network. In
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case of a one-dimensional kernel, we identified coexistence networks through the adjugate
vector (3.5). Sufficient and necessary conditions for Hamiltonian coexistence networks of
odd size were determined and all coexistence networks with up to 9 nodes were identified;
see Sections 4.3.1-4.3.3 of the main text. Here we supplement the statements from the
main text (see Section 4.3.3) by showing that there are no coexistence networks with a
two-dimensional kernel dim(Ker(A)) = 2. We employ the adjugate matrix (3.9) to show
this result. Whether coexistence networks with a high-dimensional kernel dim(Ker(A)) ≥ 3
exist, remains open at present.

Proof: No coexistence networks with a two-dimensional kernel. We use an argument
by contradiction to show that coexistence networks cannot have a two-dimensional kernel.
Assume that N (A) is a coexistence network with a two-dimensional kernel (its minimal
kernel dimension is 2). Thus, A has a strictly positive kernel vector for every choice of
weights. We choose the rates such that indeed dim(Ker(A)) = 2 and it is possible to choose
two strictly positive kernel vectors u and v that are linear independent and form a basis of
the kernel of A.

For antisymmetric matrices with a two-dimensional kernel, the kernel vectors can be
calculated with help of the adjugate matrix (3.9). If the kernel of A is two-dimensional,
the antisymmetric adjugate matrix has nonzero entries, its rank is 2, and two linearly
independent column vectors form a basis of the kernel space. We denote the column
vectors of the adjugate matrix R as r(β) (β = 1, . . . , S) with elements r(β)

α = Rαβ for
α, β = 1, . . . , S.

Because the column vector of the adjugate matrix are kernel vectors of A (see Sec-
tion 3.3.3), they can be expressed as linear combinations of u and v: rβi = µ(β)u

(β)
α +ν(β)v

(β)
α .

From the antisymmetry of the adjugate matrix (rββ = 0), it follows that:

ν(β) = −µ(β) vβ
uβ

, for all β = 1, . . . , S . (4.15)

By assumption, the network has a two-dimensional kernel (or higher dimension) for all
choices of weights. Thus, the Pfaffian of A is always zero and the network has no perfect
matching; see Section 3.3.2.

Because the network is a coexistence network, it is strongly connected; see Section 3.4.
In particular, for every node γ, one finds another node δ that is connected to γ. In the
following we show that Rγδ = Rδγ = 0 follows. Because nodes γ and δ are connected,
the network created by deleting these nodes, Aδ̂γ̂, has no perfect matching. If Aδ̂γ̂ had
a perfect matching, A would have a perfect matching as well (by combining the perfect
matching of Aδ̂γ̂ together with the edge connecting δ and γ); which is in contradiction
to the assumption that the minimal kernel dimension is 2. Therefore, Pf(Aδ̂γ̂) = 0 and
Rδγ = Rγδ = 0 as claimed. Furthermore, it follows that Rδγ = r

(γ)
δ = µ(γ)uα + ν(γ)vα = 0,

and with Equation (4.15) for index k: 0 = µ(γ)uα−µ(γ) vγ
uγ
vα = 0. If µ(γ) = 0, it also follows

that r(γ) = 0, which is in contradiction to dim(Ker(A)) = 2 because γ is arbitrary. As a
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consequence, if node γ and δ are connected, it follows that:

uγuδ − vδvγ = 0 . (4.16)

This argument can be carried out iteratively for all pairs of connected nodes. This way, it
follows that for any two nodes γ and δ, which are connected via a path of arbitrary length,
it holds uγuδ − vδvγ = 0.

Because the network is strongly connected, one finds indeed for every pair of nodes γ
and δ a path in the network that connects the two nodes, that is, uγuδ − vδvγ = 0 for
all γ, δ. Therefore, the two vectors u and v are not linearly independent, which is in
contradiction to the assumption at the beginning. In other words, the network A cannot
be a coexistence network and have a two-dimensional kernel. This proves that coexistence
networks with a two-dimensional kernel do not exist.

Outlook: Do coexistence networks with minimal kernel dimension ≥ 3 exist? Our
numerical simulations of coexistence networks with up to 9 nodes (see Section 4.3.3) show
that network topologies that give rise to high-dimensional kernels (dim(Ker(A)) ≥ 3) are
not coexistence networks. In other words, we have not found any coexistence network with
minimal kernel dimension different from 1 thus far. At present, it remains to us an open
question for future research, whether this numerical observation generalizes to networks
with S ≥ 10: Do coexistence networks exist whose minimal kernel dimension is ≥ 3?

4.C Proof of the conditions for Hamiltonian coexistence
networks

In the following, we provide the proof for the main results stated in Section 4.3: A Hamil-
tonian network is a coexistence network if and only if in an ascending labeling all interior
edges fulfill the coexistence conditions, that is the cycle condition (4.2) and the crossing
condition (4.3).

4.C.1 Set-up of the proof

Notation: adjugate vector r = rcycle +rin. Recall that we label the nodes of a Hamil-
tonian network E(N ) = Ecycle∪Ein with Ecycle∩Ein = ∅ in an ascending manner such that
the Hamiltonian cycle is given by the edge-set Ecycle = {(1, 2), (2, 3), . . . , (S−1, S), (S, 1)}.
Similar to the example in Section 4.3.1, we separate the adjugate vector of this network
into two components, such that r = rcycle + rin. In this notation, rcycle contains only con-
tributions from the edges that form the Hamiltonian cycle Ecycle. The vector rin contains
all contributions stemming from the interior edges Ein. This separation is always possible
because the presence of (near-)perfect matchings containing only cycle edges is not altered
by interior edges. Adding interior edges only leads to additional near-perfect matchings.
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rcycle as the reference for the comparison of signs. Since an odd cycle is a coexis-
tence network (see also Section (4.2)), all components of rcycle have the same sign. As a
consequence, a Hamiltonian network is a coexistence network if for every deleted node i all
permutations of all near-perfect matchings have the same sign as the permutation of the
near-perfect matching containing only edges of the cycle. This way, we compare all sum-
mands in rin,i with the one summand in rcycle,i. If these signs agree for every component,
the signs of all summands agree because they do so for rcycle. Effectively, the adjugate
vector of the cycle rcycle serves as a reference for the signs that are induced by the interior
edges through near-perfect matchings.

Notation: relabel nodes such that α̂→ Ŝ. Note that the property of being a coexis-
tence network is independent of the order in which the nodes of the network are labeled. In
algebraic terms, a relabeling of the nodes is achieved by multiplying the adjacency matrix
with permutation matrices, which does not change the spectral properties of the network
and the structural properties of the kernel. Therefore, if all signs in the adjugate vector are
equal in one selected labeling, the signs are equal in every labeling. For convenience, we
relabel the nodes of the system such that the node, which is not part of the near-perfect
matching, has the index S by shifting the node labels as α → S, α + 1 → 1, . . . . This
shift facilitates an easier comparison of signs because the permutation corresponding to
the perfect matching of the cycle after relabeling is the identity (that is, (1 2 . . . S − 1))
and, thus, has the sign (+1).

Directed paths contribute to near-perfect matchings if they are even-sized.
Furthermore, we denote the set of edges of the network, from which the αth node was
deleted, as Ecycle,α̂ and after relabeling as Ecycle,Ŝ. After relabeling, the remaining edges
of Ecycle,Ŝ form a directed path from 1 to S − 1. In the following, we also denote such a
directed path as P [1, S−1] = {(1, 2), (2, 3), . . . , (S−2, S−1)}. In general, a directed path
P [α, β] = {(α, α + 1), (α + 1, α + 2), . . . , (β − 1, β)} has a perfect matching if the number
of nodes in the path |P | = β − α + 1 is even and, thus, β − α is odd. Thus, only directed
paths of even length contribute to perfect matchings.

Structure of the proof. First, we prove that a Hamiltonian coexistence network is a
coexistence network if the coexistence conditions (4.2) and (4.3) are fulfilled. We show
that the permutations all near-perfect matchings which contain (one or several) interior
edges have the same sign as the near-perfect matching of the cycle. This step proves that
the coexistence conditions are sufficient; see Section 4.C.2. Second, we consider all cases
in which interior edges do not fulfill the coexistence conditions. We show that, under this
assumption, near-perfect matchings arise that have a different sign than the near-perfect
matching of the cycle. This step proves that the coexistence conditions are necessary; see
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Section 4.C.3.

4.C.2 Sufficiency of the conditions (9) and (10) for coexistence
networks

First, we show that a Hamiltonian network is a coexistence network if all of its interior
edges Ein fulfill the coexistence conditions (4.2) and (4.3). To show sufficiency of the con-
ditions, we assume a Hamiltonian network in which all interior edges fulfill the coexistence
conditions. We investigate all near-perfect matchings that can arise through the presence
of interior edges and discuss their sign as follows. For the subnetwork created by deleting
node i (denoted by Aî) we (i) relabel the nodes in the manner mentioned above, such that
î → Ŝ, (ii) analyze for every subset U ⊆ Ein whether it can be completed to a perfect
matching of AŜ using only edges from Ecycle,Ŝ (that is, the edges of the cycle that remain
after deleting node i and after relabeling î → Ŝ), (iii) then determine the sign of the re-
sulting perfect matching, (iv) and compare the sign with the sign of the perfect matching
of Aî that includes only edges from Ecycle,̂i (that is, the near-perfect matching of the cycle;
its sign is referred to as sign(σ1)). We discuss all cases for possible subsets of interior edges
U ⊆ Ein in the following.

Trivial cases: U = ∅, Ŝ ∈ U , and interior edges starting or ending in the same
node. For the case U = ∅, there are no contributions from interior edges to any near-
perfect matching of the network. When the deleted vertex Ŝ is part of an edge in U , a
near-perfect matching including all edges in U and excluding S does not exist. Further-
more, when two or more edges in U share the same node, they cannot be part of the same
perfect matching. In the following, these trivial cases are disregarded.

U contains a single edge (|U | = 1). The simplest case, for which interior edges can
contribute to the network’s near-perfect matchings is |U | = 1. In this case, only the cycle
condition (4.2) applies to the edge in U , but not the crossing condition (4.3). For this case,
we denote U = {e} with e = (estart, eend) after relabeling of the cycle (α̂→ Ŝ) and discuss
the contribution of edge e to a perfect matching of AŜ.

If the nodes of the interior edge e contribute to the perfect matching of AŜ, the un-
matched nodes are {1, 2, . . . , S − 1}\{estart, eend}. After deleting e, the remaining edges of
Ecycle form three paths:
X = P [1,min(estart, eend)− 1],
Y = P [min(estart, eend) + 1,max(estart, eend)− 1], and
Z = P [max(estart, eend) + 1, S − 1]; see Figure 4.7(b).
A perfect matching of AŜ including e is possible if and only if all three created paths have
a perfect matching on their own, that is, the difference between highest and lowest node is
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Figure 4.7: Illustration of important steps of the proof for Hamiltonian coexistence
networks. (a) Hamiltonian network with internal edges e1, ..., e5. This network is a coexistence
network if for every subset U ⊆ Ein and relative to every deleted vertex α̂ → Ŝ all near-perfect
matchings have a positive sign. (b) Case of a single edge, |U | = 1: The edge e4 is either ascending
or descending, depending on its position relative to the deleted vertex. (c) Case of covering edges:
Both vertices of the edge e4 lie between start- and end-vertex of e1, such that edge e1 covers the
edge e4. Since both edges are ascending, a perfect matching exists with sign +1. (d) Case of
crossing edges: The edges e2, e3, and e4 form a crossing set. Thus, a perfect matching does not
exist. The lowest descending edge is e3 because it does not cover any other descending edges. (e)
Case of two crossing sets: The crossing set consisting of e1 and e2 covers the crossing set of e4

and e5.
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odd for each of the three paths (the number of vertices in the paths, |X|, |Y |, and |Z|, are
even; that is, the paths X, Y , and Z are of even length). We distinguish two cases in the
following: the edge e is ascending or descending (again, meant after relabeling α̂→ Ŝ).

• Case (i): the edge e is ascending: all near-perfect matchings have the same sign as
the near-perfect matching stemming from the cycle. In this case, estart < eend and
eend − estart is odd (by the cycle condition (4.2)). Therefore, (eend − 1)− (estart + 1)
is odd and Y has a perfect matching. The perfect matching of AŜ including the edge
e does indeed exist if, in addition, |X| and |Z| are even.

If this perfect matching exists, its corresponding permutation has the same sign as
the perfect matching stemming from the cycle. If the paths X, Y and Z are of even
length, estart is odd and eend is even. The permutation corresponding to a perfect
matching induced by e is given by:

σαe = (estart eend 1 2 . . . estart − 1 estart + 1 . . . eend − 1 eend + 1 . . . S − 1) .

The sign of this perfect matching of AŜ is determined by the number of transpositions
necessary to transform the permutation into the identity permutation (σ1), and is
computed as:

sign(σαe) = sign(estart eend 1 . . . estart − 1 estart + 1 . . . eend − 1 eend + 1 . . . S − 1) ,

= (−1)(2·((estart−1)+1)) sign(1 . . . estart − 1 estart eend estart + 1 . . .

. . . eend − 1 eend + 1 . . . S − 1) ,

= (−1)((eend−1)−(estart+1)+1)sign(1 . . . estart − 1 estart estart + 1 . . .

. . . eend − 1 eend eend + 1 . . . S − 1) ,

= (+1)sign(σ1) = +1 .

In other words, all near-perfect matchings arising from a single ascending interior
edge have the same sign as the near-perfect matching that is constituted by edges
from Ecycle only.

• Case (ii): the edge e is descending: no contribution to a near-perfect matching. In
this case, eend < estart and estart−eend is even (according to the cycle condition (4.2)).
Thus, Y is of odd length, and e cannot contribute to a perfect matching of AŜ as a
single interior edge. For later purposes, note that for a descending edge, start node,
estart, and end node, eend, have the same parity.

U contains several edges (|U | > 1). Next, we consider the case that the set U ⊆ Ein

contains several edges fulfilling the coexistence conditions (4.2) and (4.3). First, we study
the possibility that all interior edges in U do not cross each other. In this case the cycle
condition (4.2) ensures that all near-perfect matchings that can possibly arise have the
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same sign as the near-perfect matching stemming from the edges of the cycle. Second, we
study the cases in which interior edges cross each other and the crossing condition (4.3).
becomes relevant. In particular, we introduce the notion of a crossing set E× ⊆ Ein. We
show that no near-perfect matchings are created if U contains exactly two crossing edges.
This result is generalized to any U ⊆ Ein that contains a crossing set.

• None of the edges in U cross each other. In generalization of the reasoning for |U | = 1,
a near-perfect matching can only arise from all non-crossing edges in U and edges of
the cycle if all created paths are of even length. Two different cases can occur.

– Case (i): All non-crossing edges in U are ascending: all near-perfect matchings
have the same sign as the near-perfect matching stemming from the cycle. If all
edges in U are ascending, for all of its edges, the path between start and end
node is of even length (following the cycle condition (4.2), as above). When U
contains k ascending edges, after deleting all edges of U , the remaining edges of
Ecycle form 2k + 1 paths (possibly of zero length), see Figure 4.7(c). Since the
edges do not cross, the length of every path is either determined by the vertices
of an ascending edge (similar to Y in the case |U | = 1) or by the relative
placement of two ascending edges (similar to X and Z in the case |U | = 1). As
argued before, ascending edges lead to a path of even length, such that only the
relative placement of edges determines whether a perfect matching of AŜ exists.
The sign of the permutation corresponding to such a perfect matching is equal to
the sign of the perfect matching stemming from Ecycle because an even number
of transpositions is needed to order its elements in size (all paths are of even
length). In particular, all nodes of interior ascending edges can be ordered in
size by pair-wisely ordering them with an even number of transpositions. For
example, if e1 = (e1,start e1,end) and e2 = (e2,start e2,end) with e2,end < e1,start, four
transpositions are needed to order these indices in size:

sign(e2,start e2,end e1,start e1,end 1 . . . S − 1) =

= (−1)(2·2)sign(e1,start e1,end e2,start e2,end 1 . . . S − 1) .

If, on the other hand, e2,start < e1,start and e1,end < e2,end (the vertices of e1 lie
between the vertices of e2, e2 covers e1), two transpositions are necessary to
order these nodes in size (see Figure 4.7(c)):

sign(e2,start e1,start e1,end e2,end 1 . . . S − 1) =

= (−1)(2·1)sign(e1,start e1,end e2,start e2,end 1 . . . S − 1) .

This way, all nodes of the interior ascending edges can be ordered in size by
pairwisely ordering them with an even number of transpositions. Because all
paths stemming from cycle edges are of even length, further ordering the or-
dered nodes from interior edges within the nodes of the cycle edges involves an
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even number of transpositions. Thus, an overall even number of transpositions
is needed to order the elements of the partition corresponding to the perfect
matching in size.

– Case (ii): U contains at least one non-crossing descending edge: no contribu-
tion to near-perfect matchings. If at least one non-crossing descending edge
is contained in U , one path of odd length is created for every arrangement of
non-crossing edges. This path of odd length cannot contribute to a near-perfect
matching of the network.

• Definition of a crossing set E×. All edges in U that are related by condition (4.3)
form a so-called crossing set E×. Pictorially speaking, in a crossing set all edges are
related by the crossing condition. More precisely, all pairs of edges in a crossing set
f, g ∈ E× either cross each other (their relative placement is explicitly constrained
by the crossing condition (4.3), or there exists a series of edges f, e1, ..., el, g ∈ E×
that consecutively cross each other (the relative placement of f and g is implicitly
constrained by the intermediate edges e1, ..., el). For example, in Figure 4.7(d) the
edges e2 and e4 are contained in one crossing set because both edges cross the edge
e3. Thus, E× = {e2, e3, e4} is a crossing set. In Figure 4.7(e), the set U consists of
two disjoint crossing sets U = E

(1)
× ∪ E

(2)
× with E(1)

× = {e1, e2} and E(2)
× = {e4, e5}.

Note also that the edges e2 and e4 belong to one crossing set for the choice of U as
depicted in Figure 4.7(d), but not for the choice of U in Figure 4.7(e). Hence, both
the occurrence and the elements of crossing sets do not only depend on the interior
edges of a network, but also on the choice of U from which near-perfect matchings
of the network are constructed.

Consequences of the crossing condition (4.3) for the relative placement of two crossing
edges. We briefly discuss the consequences of the crossing condition for the relative
placement of two crossing edges. One pair of crossing edges divides a cycle into
four paths P1, . . . , P4, as illustrated in Figure 4.8. Because the crossing condition
is fulfilled in the chosen ascending labeling of the cycle, either |P2| or |P4| is the
shortest path length either between the start points or between the end points. Thus,
either |P2| or |P4| is odd, or both are odd. Furthermore, because every interior edge
also fulfills the cycle condition (4.2), only directed cycles of odd length are created
when combining every single interior edge with the Hamiltonian cycle. Thus, both
|P4|+|P1|+3 (the cycle consists of the start and end node of e1, the nodes constituting
P4, the end node of e2 and the nodes constituting P1) and |P1|+ |P2|+ 3 are odd; see
Figure 4.8(a). Consequently, the numbers of nodes in each of the three paths P1, P2,
and P4 are odd. It follows that |P3| is even because the overall number of nodes in
the system |P1| + |P2| + |P3| + |P4| + 4 is odd. In total, two crossing interior edges
create two cycles of odd length that share an odd number of nodes.

The same consequences for the placement of crossing edges are, of course, obtained
if one considers an explicit labeling of the cycle with reference to the deleted index
α̂→ Ŝ as depicted in Figure 4.8(b)(i)-(iv). Depending on the position of the deleted
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Figure 4.8: (a) Schematic illustration of Hamiltonian coexistence network with two crossing edges
e1 and e2. P1, . . . , P4 are the paths constituted by the edges of Ecycle that do not include any
vertices of e1 and e2. (b) Because the network is a coexistence network, the crossing condition (4.3)
is fulfilled for every ascending labeling. Thus, for the deletion of every vertex i that is not part of
e1 and e2, after relabeling α → S, fulfillment of the crossing condition constraints the length of
the paths P1, . . . , P4. Hence, |P1|, |P2| and |P4| are odd and P3 is even. (c) The lowest descending
edge dlow does not cover other descending edges. The edges e×,1 and e×,4 cross both dlow and
easc, such that all edges form one crossing set. On the left, (i), the edges e×,1 and e×,2 both
end between the vertices of a covered ascending edge and fulfill the crossing condition pair-wisely,
indicated by # and ∗ as placeholders for the vertices’ parity (odd and even). On the right, (ii),
the edge e×,1 starts and the edge e×,2 ends between the vertices of a covered ascending edge. In
this arrangement, the crossing condition cannot be pair-wisely fulfilled.

node Ŝ, the two crossing edges e1 and e2 are arranged differently with respect to each
other. In line with the above arguments, it follows that the node of edge e2 that lies
between the nodes of e1 has the same parity as its counterpart of e1 irrespective of
the labeling.

U contains only two crossing edges (U = E× and |E×| = 2): no contribution to near-
perfect matchings. Now, we discuss whether near-perfect matchings arise in case U
contains exactly two crossing edges; see Figure 4.8(a). Because the crossing edges
fulfill the coexistence conditions (4.2) and (4.3), either P2 or P4 build up the minimal
distance between the two edges. After deleting the nodes of the edges e1 and e2 (as
contributions to the near-perfect matching of the network N (AŜ)), either path P2

remains or path P4 remains, or both paths remain to be matched, Figure 4.8(b).
Because both P2 and P4 have an odd number of nodes (see above), they do not have
a perfect matching. Therefore, there does not exist any near-perfect matching that
contains a single pair of crossing edges.
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U contains only one crossing set of several ascending edges (U = E× and |U | ≥ 3
and ei,start < ei,end for all i = 1, . . . |U |): no contribution to near-perfect matchings.
When all edges in U are ascending (again, ascending is meant after relabeling as
above) and form a single crossing set, the above reasoning can be readily generalized.
In particular, all start nodes have the same parity (for example, even) and all end
nodes have the opposite parity (in this example, odd). The two lowest nodes of these
ascending edges are start nodes and, thus, have the same parity. Therefore, these
two start nodes enclose a path with an odd number of nodes, which does not have a
perfect matching. Thus, a near-perfect matching containing a crossing set with only
ascending edges does not exist.

U contains only one crossing set with at least one descending edge (U = E× and |U | ≥
3 and ei,start > ei,end for at least one i ∈ {1, . . . |E×|}): no contribution to near-perfect
matchings. First, we discuss some implications of the coexistence conditions (4.2)
and (4.3) for relative placement of an arbitrary edge crossing a descending edge. For
a descending edge d the cycle condition (4.2) implies that both of its nodes have
the same parity; see above. From the crossing condition (4.3) it follows that, if an
arbitrary edge e crosses a descending edge d, the node of e that is placed between
end and start node of d has the same parity as the nodes of d. For example, in
Figure 4.8(b)(ii), the end node of e2 has the same parity as both nodes of e1. For
the configuration of crossing descending edges (as depicted in Figure 4.8(b)(iii)), the
coexistence conditions imply that all nodes of the two edges have the same parity
because the start-node of e1 lies between end and start node of e2, and because e1 is
descending.

We now use these arguments to show that a crossing set with at least one descending
edge is not part of a near-perfect matching. In any crossing set E× with descending
edges we find (at least) one descending edge, to which we refer as dlow, that does not
cover any other descending edges. In other words, there is no other descending edge
in E× for which both nodes lie between dlow,end and dlow,start. Two cases can occur for
this descending edge dlow.

– Case (i): The descending edge dlow does not cover any ascending edges: no
contribution to near-perfect matchings. In this case dlow does not cover any
descending or ascending edges (see Figure 4.7). Thus, any node that is covered
by the edge dlow and that is part of an edge of E× belongs to an edge that
crosses dlow. As a consequence of the crossing condition (4.3), all of these nodes
have the same parity and, thus, enclose paths of odd length. Therefore, this
arrangement of crossing edges cannot be completed to form a perfect matching.

– Case (ii): The descending edge dlow covers ascending edges: no contribution to
near-perfect matchings. In the following we show that every crossing set U in
which a descending edge covers ascending edges leads to at least one odd path
and thus cannot be part of a near-perfect matching.
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First, we consider the case that dlow covers only non-crossing ascending edges,
see Figure 4.8. Recall that U contains only one crossing set, such that there are
edges e×,i that cross both dlow and the covered ascending edge easc. A pairwise
fulfillment of the crossing condition (4.3) enforces that either all start or all end
vertices of the edges e×,i lie between the vertices of easc, see Figure 4.8 (c)(i).
When the start vertex of e×,1 and the end vertex of e×,2 lie between the vertices
of easc an arrangement consistent with the crossing condition cannot exist, see
Figure 4.8 (c)(ii). Thus, either the two highest vertices of U that lie between
the vertices of dlow (in case all e×,i end between the vertices of easc) or the two
lowest vertices (in case all e×,i start between the vertices of easc) have the same
parity. The arrangement leads to paths of odd length and cannot give rise to a
perfect matching.
The same argument holds when dlow covers a crossing set of ascending edges
E×,asc. As stated above, in a crossing set consisting only of ascending edges all
start vertices have the same parity, while all end-vertices have the other parity.
As above, in an arrangement consistent with the crossing condition the edges
e×,i that cross both dlow and E×,asc either all start or all end between the vertices
of E×,asc. Hence, either the two highest vertices of E×,asc∪e×,i, or the two lowest
vertices of E×,asc ∪ e×,i (or both) have the same parity.
These arguments show that every crossing set containing at least one descending
edge enclose at least one path of odd length. Therefore, this arrangement of
edges cannot be completed to form a perfect matching.

Thus, for all cases of a single crossing set E× ⊆ U for which all interior edges
fulfill the coexistence conditions (4.2) and (4.3), no contributions to near-perfect
matchings occur. Therefore, no contributions to the adjugate vector arise through a
single crossing set.

• U contains several crossing sets and single edges: no contribution to near-perfect
matchings. The above result for one crossing set readily generalizes to a set U that
consists of several crossing sets and further non-crossing edges. Note that every U
can be decomposed into pair-wisely disjoint sets of crossing sets and sets of single
edges. If a crossing set is contained in U , there exists a path of odd length between
two nodes of edges contained in the crossing set. Thus, this path does not have a
perfect matching, neither when its nodes are ordered (that is, if the path consists of
edges from the cycle), nor when it its nodes are permuted (that is, if edges from the
crossing set cover other edges). We conclude that a near-perfect matching cannot
contain arbitrary combinations crossing edges.

If the coexistence conditions (4.2) and (4.3) are fulfilled, the network is a coex-
istence network. In total, we have shown that for a network in which all interior edges
satisfy the coexistence conditions, the adjugate vector consists of summands all of which
have the same sign. Thus, the network topology is a coexistence network. In particular, it
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was shown that through the cycle condition (4.2) only ascending single edges contribute to
near-perfect matchings, but not descending edges. The resulting near-perfect matchings
have the same sign as the near-perfect matching stemming from the Hamiltonian cycle.
The crossing condition (4.3) implies that crossing edges do not occur in a near-perfect
matching.

4.C.3 Necessity of the conditions (4.2) and (4.3) for coexistence
networks

In the second part of this proof, we show that the conditions (4.2) and (4.3) are also
necessary for coexistence networks. To this end, we show that a Hamiltonian network N
with edge-set E(N ) = Ecycle ∪Ein is not a coexistence network if either condition (4.2) or
condition (4.3) is not fulfilled.

Condition (4.2) is not fulfilled for one interior edge: at least one induced near-
perfect matching has a different sign than the near-perfect matching stemming
from the cycle. Assume that there is an edge e ∈ Ein that violates condition (4.2). We
choose the component of the adjugate vector such that after relabeling î→ Ŝ the edge has
the form e = (estart, eend) = (estart, 1) with 2 < estart < S−1, and consider perfect matchings
of AŜ. In this labeling, e is descending. Thus, violating the cycle condition (4.2) implies
that estart is even. Deleting the nodes estart and eend = 1 from Ecycle,Ŝ creates the two
separated paths P [2, estart − 1] and P [estart + 1, S − 1]. Both paths are of even length and,
thus, have perfect matchings. Therefore, a summand that includes the edge e contributes
to the Sth component of the adjugate vector (3.5).

However, this summand has the opposite sign than the summand stemming from the
Hamiltonian cycle alone, as we show in the following. To determine the sign of the perfect
matching arising from the interior edge e for the Sth node deleted, we compute the number
of transpositions needed to obtain the identity permutation:

sign[σαe ] = sign(estart 1 2 . . . S − 1) = −sign(1 estart 2 . . . S − 1) ,

= −(−1)((estart−1)−1+1)sign(1 2 . . . estart − 1 estart estart − 1 . . . S − 1) ,

= −sign(σ1) = −1 .

Thus, the interior edge e contributes with a summand to the adjugate vector that has
a different sign than the identity permutation. Therefore, if a network contains at least
one interior edge violating the cycle condition, at least one summand in one component of
the adjugate vector has the opposite sign compared to the contribution stemming from the
cycle in that component of the adjugate vector (3.5). Such a network is not a coexistence
network.
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The crossing condition (4.3) is not fulfilled for two crossing edges: at least
one induced near-perfect matching has a different sign than the near-perfect
matching stemming from the cycle. Next, we consider a network with interior edges
Ein that fulfill the cycle condition, but violate the crossing condition. In other words,
there exist two edges e1, e2 ∈ Ein that do not fulfill the crossing condition. We choose
the component of the adjugate vector such that after relabeling î → Ŝ the edges take
the form e1,end = 1 < e2,end < e1,start < e2,start < S. fulfilling the cycle condition and
violating the crossing condition implies that e1,end is odd, whereas e2,start and e2,end are
even. In this labeling, we consider now the edges of Ecycle,Ŝ, that is, perfect matchings
of AŜ. By deleting all edges that contain the nodes of e1 and e2 from Ecycle,Ŝ, the paths
P [2, e2,end − 1], P [e2,end + 1, e1,start − 1], P [e1,start + 1, e2,start − 1], and P [e2,start + 1, S − 1]
remain. Because for every path start node and end node have different parity, all paths
contain an even number of nodes. In other words, a near-perfect matching of AŜ is possible.

The sign of the permutation of that near-perfect matching is obtained as follows:

sign(σαe1,e2 ) = sign(e1,start 1 e2,start e2,end 2 . . . S − 1) = sign(1, e1,start e2,end, e2,start 2 . . . S − 1) ,

= (−1)3 sign(1 e2,end e1,start e2,start 2 . . . S − 1) ,

= −(−1)((e2,start−1)−3) sign(1 e2,end e1,start 2 . . . e2,end − 1 e2,end + 1 . . .

. . . e1,start − 1 e1,start + 1 . . . e2,start . . . S − 1) ,

= −(−1)((e1,start−1)−2) sign(1 e2,end 2 . . . e2,end − 1 e2,end + 1 . . . e1,start . . . S − 1) ,

= −(−1)((e2,end−1)−1) sign(1 2 . . . e2,end . . . S − 1) ,

= −sign(σ1) = −1 .

Thus, if two interior edges of a given network do not fulfill the crossing condition, at
least one near-perfect matching exists that has a different sign than the corresponding
near-perfect matching of the cycle. Thus, such a network is not a coexistence network.

If the coexistence conditions (4.2) or (4.3) are not fulfilled, the network is not a
coexistence network. In total, we have shown that the existence of (i) one interior edge
that does not fulfill the cycle condition (4.2) or (ii) two interior edges that fulfill the cycle
condition, but not the crossing condition (4.3) implies that the network is not a coexistence
network. Thus, the coexistence conditions are necessary for a Hamiltonian network to be
a coexistence network.

4.D Calculation of the number of near-perfect match-
ings for selected coexistence networks

Here we supplement the derivation of the adjugate vectors for the generating coexistence
networks with unit rates given in (4.8) and (4.11), respectively, as stated in Section 4.4
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of the main text. More explicitly, for both networks we derive the number of near-perfect
matchings. Exploiting that both examples suffice the coexistence conditions (4.2) and (4.3),
the number of near-perfect matchings excluding vertex i equals the ith entry of the adjugate
vector for unit rates.
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Figure 4.9: Exemplary sketches for the calculation of the number of near-perfect
matchings for (a) the triangulation of the cycle, and (b) the cycles with complete
subnetwork. (a) The triangulation of the cycle with S = 11 nodes is shown in (a)(i). De-
pending on the position of the deleted node, the whole network is separated either such that
two ladder-graphs (highlighted in blue) and one additional edge (orange) contribute to perfect
matchings ((a)(ii), for the nodes {2, 3, 4, 5, 6, 7}), or such that only two ladder graphs (blue) con-
tribute ((a)(iii), for the nodes {8, 9, 10, 11, 1}). (b)(i) The cycle of S = 11 nodes with a complete
subnetwork on the odd nodes is shown. When deleting odd nodes, only one near-perfect matching
exists consisting only of edges of the cycle (ii). When deleting an even node, every near-perfect
matching contains one edge between odd nodes (iii). The deleted node effectively divides the
subnetwork into two partitions; in the depicted example {1, 2, 3} and {5, 6, 7, 8, 9, 10, 11}. Every
pair of one odd node from each partition gives rise to one near-perfect matching. Thus, in the
depicted example, there are 2 · 4 = 8 near-perfect matchings.

4.D.1 Near-perfect matchings for the triangulation of the cycle

In the following we derive the number of near-perfect matchings of the triangulation of an
odd cycle as specified in Equation (4.8) in Section 4.4.1.

For this calculation, it is helpful to introduce so-called ladder graphs and their number
of perfect matchings. The ladder graphs with 2, 4, and 6 vertices are a single edge, a
rectangle, and a domino tile, respectively, see Section 6.B.1. In general, a ladder graph
with 2T vertices consists of T rungs and 2(T−1) rails. The number of perfect matchings of
a A ladder graph with 2T vertices has F (T + 1) perfect matchings, where F (n) is the nth
Fibonacci number. This can be shown inductively by considering the additional perfect
matchings arising when augmenting the graph by one rung and two rails [84].

Note that the triangulation of an odd cycle presented in Section 4.4.1 can be thought
of as a superposition of two ladder graphs, see Figure 4.9(a)(i). One of the two ladder
graphs consists of the vertices 2, . . . , S and the ascending edges on these vertices (that is,
2→ S, 3→ S − 1, . . . ), the other ladder graph is diagonally placed over the first one and



84 4. Topologically robust coexistence and coexistence networks

contains the vertices 1, . . . , (S+1)
2
, (S+1)

2
+2, . . . , S and all edges of the cycle together with all

descending edges on these vertices. Additionally, note that for a ladder graph with diagonal
edges (for example, the subnetwork formed by the vertices 2, . . . , 13 in Figure 4.9(a)(i)),
the diagonal edges do not contribute to any perfect matchings. In other words, the number
of perfect matchings of a ladder graph with diagonal edges with 2T vertices is F (T + 1) as
well.

Using these observations, the components of the adjugate vector for the triangulation
of the cycle with unit rates are calculated as the number of perfect matchings of the
subnetworks created by deleting each node. Upon deleting node 1 from the network, a
network with S − 1 = 2n− 2 vertices remains. This graph is a ladder graph with 2(n− 1)
vertices and additional diagonal edges. Thus, it has F (n) perfect matchings. Because the
network is a coexistence network, the number of perfect matchings equals the entry of the
first component of the adjugate vector with unit rates, that is, r1 = F (n).
In case one of the vertices α = 2, . . . , n is deleted, the network is divided into two parts
that can be viewed as two ladder graphs with 2(α − 2) and 2(n − α) vertices (ignoring
diagonal edges that cannot contribute to perfect matchings). The two ladder graphs are
connected by three edges, see Figure 4.9(a)(ii). Every combination of perfect matchings
of the two separated ladder graphs is a perfect matching of the full graph, such that
rα = F (α− 1)F (n− α + 1).
The remaining matrix entries α = n+1, . . . , 2n−1 are calculated in a similar way. Deleting
one of these vertices divides the remaining network into two ladder graphs with 2(2n− α)
and 2(α− n− 1) vertices (see Figure 4.9(a)(iii)), such that the corresponding components
of the adjugate vector are rα = F (2n − α + 1)F (α − n). Taken together, the adjugate
vector for the triangulation of a cycle with unit rates is given by Equation (4.8).

Using the convolution formula for Fibonacci numbers [85],

n∑
k=0

F (k)F (n− k) =
1

5
(n(F (n− 1) + F (n+ 1))− F (n)),

the total number of near-perfect matchings is

n∑
α=2

F (α− 1)F (n− (α− 1)) +

(
2n−1∑
α=n+1

F (n− (α− n) + 1)F (α− n) + F (n)

)
=

=
n∑

α=0

F (α)F (n− α) +
n+1∑
α=1

F (n+ 1− α)F (α) ,

=
1

5
(n(F (n− 1) + F (n+ 1))− F (n)) +

1

5
((n+ 1)(F (n) + F (n+ 2))− F (n+ 1)) ,

=
1

5
(n(3F (n+ 1) + F (n)) + F (n)) =

1

5
nF (n)

(
3
F (n+ 1)

F (n)
+ 1 +

1

n

)
,

as stated in Equation (4.9) the main text.
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4.D.2 Number of near-perfect matchings in a cycle with complete
subnetwork on odd nodes

Here we supplement the calculation of the form of the adjugate vector given in Equa-
tion (4.11) in Section 4.4.2. The form of the adjugate vector of an odd cycle with a
complete subnetwork on the odd nodes can be understood as follows; see Figure 4.9(b)(i)
for illustration.

Upon deleting an odd node 2k − 1 (k = 1, . . . , n) from the network, the only perfect
matching that covers all remaining nodes consists of edges from the Hamiltonian cycle. In
detail, the perfect matching is µ

2̂k−1
=
(
(2k → 2k + 1), (2k + 2 → 2k + 3), . . . , (S − 1 →

S), (1 → 2), (3 → 4), . . . (2k − 3 → 2k − 2)
)
, see Figure 4.9(b)(ii). Thus, with unit rates,

for odd i the components of the adjugate vector are ri = 1.

When deleting an even node α = 2k (k = 1, . . . , n− 1) from the network topology, the
remaining network contains the edges of the cycle 1→ · · · → α− 1, α+ 1→ · · · → S, and
edges connecting all pairs of odd vertices. In total, the remaining subnetwork has n − 1
odd nodes and n−3 even nodes. Each perfect matching thus contains one edge connecting
two odd vertices. There are α−1+1

2
· S−α+1

2
= α(n−α/2)

2
possibilities for choosing odd edges

such that the remaining paths consisting of edges from the cycle have a perfect matching;
two such possibilities are shown in Figure 4.9(b)(iii). Thus, for unit weights, for even α

the component of the adjugate vector are rα = α(n−α/2)
2

.
Taken together, the adjugate vector for the cycle with complete subnetwork on the odd
nodes with unit rates is given by Equation (18).
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Chapter 5

Topological phase transition in coupled
rock-paper-scissors cycles

A hallmark of topological phases is the occurrence of topologically protected modes at the
system’s boundary. Here we find topological phases in the antisymmetric Lotka-Volterra
equation (ALVE). The ALVE is a nonlinear dynamical system and describes, e.g., the
evolutionary dynamics of a rock-paper-scissors cycle. On a one-dimensional chain of rock-
paper-scissor cycles, topological phases become manifest as robust polarization states. At
the transition point between left and right polarization, solitary waves are observed. This
topological phase transition lies in symmetry classD within the “ten-fold way” classification
as also realized by 1D topological superconductors.
This chapter has been published together with Johannes Knebel and Erwin Frey under
the title of the "Topological phase transition in coupled rock-paper-scissors cycles" [50].
Minor changes have been made to fit the form of this thesis.

Overview and organization of this chapter In Chapter 4, we showed that there are
topologically robust zero sum games, that is networks for which all states coexist for all
time for every choice of rates. Apart from the focus on hamiltonian coexistence networks,
we mentioned that large coexistence networks can be constructed by concatenating smaller
coexistence networks such that they share one node 4.3.2.

Here, we construct a one-dimensional lattice by concatenating several copies of the same
rock-paper-scissors cycle to create a chain. The phenomenology of the ALVE dynamics on
this network shows characteristics of a topological phase transition.

In Section 5.1, we introduce the basic phenomenological traits of a topological phase
transition in 1 dimension, as well as a short repetition of the ALVE. Next, we define
the RPS chain in Section 5.2. In Section 5.3, we show that the phenomenology of the
ALVE dynamics on the RPS chain resembles a topological phase transition. The connec-
tion between the phenomenology and a topological phase transition is made rigorous in
Section 5.4, where we two different interpretations of the transition. The derivations and
detailed calculations are collected in the Appendix 5.A
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Figure 5.1: One-dimensional chain of rock-paper-scissors cycles. The interactions on the
S sites of the RPS chain (one single RPS cycle highlighted) are captured by the antisymmetric
matrix A in Eq. (5.1). An arrow from one site to another indicates that mass is transported in
this direction at rate r1, r2, r3 > 0 following the ALVE (2.1); the skewness r = r2/r3 defines the
control parameter. The auxiliary site S+1 facilitates periodic boundary conditions (dashed lines)
within the framework of topological band theory.

5.1 Introduction
Topological phases were discovered in condensed matter physics [145, 146, 147, 148, 149]
and recently extended to classical physics, for example, as topological mechanical metama-
terials [150, 151, 152, 153, 154]. From a phenomenological point of view, topological phases
are paramount for the following characteristics [148, 149]: (i) Localization–dynamical exci-
tations become localized at the system’s boundary; (ii) Robustness–these boundary modes
are robust against perturbations of the system’s parameters and noise; (iii) Phase transi-
tion–at the transition point between the topological phases, the dynamical mode expands
throughout the whole system. From a theoretical point of view, topological phases are
determined by nontrivial topological properties of the system’s bulk, which are classified
in terms of the system’s symmetries. These properties give rise to gapless boundary modes
and explain the observations (i)-(iii) [148, 149, 153].

Thus far, the study of topological phases and their realization in soft-matter [155,
156, 157, 158] and biological systems [159, 160] has only started to develop, with recent
focus on active matter and fluid dynamics [161, 162, 163, 164] and stochastic model sys-
tems [165, 166, 167, 168]. As to what extent topological phases may determine the behavior
of dynamical systems that arise, for example, in population dynamics was, however, not
addressed. Ultimately, it would be interesting to design biological set-ups with nontrivial
topological properties so that one obtains robust dynamical modes with the above charac-
teristics (i)-(iii).

In this chapter, we make a step in this direction by showing that topological phases
can be realized with the antisymmetric Lotka-Volterra equation (ALVE). The ALVE is a
conceptually important model for studying coexistence in population dynamics [19, 88] and
also describes the condensation of non-interacting bosons in driven-dissipative set-ups [37,
2]. In population dynamics, the ALVE governs, for example, the evolutionary dynamics of
the rock-paper-scissors game, in which each of the three strategies dominates one strategy
and is dominated by another one, such that all strategies coexist [25, 87, 169, 36].

As introduced in Section 2.1 the ALVE is defined as (2.1)
d
dtxα = xα

∑S
β=1 aαβxβ , α = 1 . . . , S .

The real-valued S × S matrix A = {aαβ} is antisymmetric (aαβ = −aβα) and defines how
mass is transported between two sites in a nonlinear interaction ∼ xαxβ.
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Figure 5.2: Polarization of mass to the boundary. (a-c)(i) Temporal mass averages 〈xα〉T
from single realizations of the ALVE (2.1) are depicted on the RPS chain (disk size encodes
magnitude) and on lin-log scale for T = 5000. Mass becomes polarized to the right for r < 1 and
to the left for r > 1. For r = 1, mass is uniformly distributed on the whole chain. Polarization is no
state of rest (non-vanishing fluctuations σα,T around the averages; insets). (a-c)(ii) Polarization is
robust against perturbations (εαβ uniformly sampled in [−0.30, 0.20]) with the same characteristics
as without perturbations.

Here we study the ALVE on a one-dimensional chain of coupled rock-paper-scissors
cycles (“RPS chain”, see Figure 5.1). We observe behaviors resembling key features of a
topological phase transition: (i) mass polarizes to the right or left boundary of the RPS
chain independent of the initial conditions; (ii) polarization is robust against perturbations
of the model parameters; (iii) at the transition between left and right polarization, the
overall mass expands on the whole chain and, moreover, solitary waves are observed. To
explain these dynamics, we relate polarization of the ALVE (2.1) to properties of the
antisymmetric matrix A. We show that the RPS chain encompasses a gap in the spectrum
of A and an intrinsic “particle-hole symmetry” and, thus, falls into the symmetry class
D within the “ten-fold way” classification scheme of gapped free-fermion systems [149].
Hence, left and right polarization are distinguished by a Z2 invariant characterizing the
topological phase transition. Intriguingly, the topological polarization states are entirely
nonlinear that cannot be rationalized within the framework of linear wave theory. We
envision that the described mechanism might guide one path to design topological phases
in nonlinear dynamical systems accessible to biological experiments.
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5.2 Model

The RPS chain is composed of RPS cycles coupled in one dimension (Figure 5.1) and
represented by the antisymmetric matrix of size S = 2n− 1,

A =


0 r3 −r1 0 0 ... 0 0 0
−r3 0 r2 0 0 ... 0 0 0
r1 −r2 0 r3 −r1 ... 0 0 0
0 0 −r3 0 r2 ... 0 0 0
0 0 r1 −r2 0 ... 0 0 0
...

...
...

...
... ... ...

...
...

0 0 0 0 0 ... 0 r3 −r1
0 0 0 0 0 ... −r3 0 r2
0 0 0 0 0 ... r1 −r2 0

 , (5.1)

with rate constants r1, r2, r3 > 0. The resulting network can be understood as a concatena-
tion of RPS cycles which are coexistence networks, such that the RPS chain is a coexistence
network as well 4.3.2. In our numerical simulations of the ALVE (2.1), time is rescaled
such that r1 = 1. The ratio r := r2/r3 serves as the control parameter for the dynamics
and is referred to as skewness, see also Figure 1.1. The RPS chain can be thought of as a
one-dimensional chain of nonlinear oscillators because each isolated RPS cycle represents
a local oscillator in which mass oscillates between the different sites. For r 6= 1, mass is
skewed towards certain sites within a single oscillating RPS cycle.

The initial masses in the ALVE (2.1) are normalized (
∑

α x0,α = 1) and strictly positive
(x0,α > 0 for all α such that the chain does not become disconnected or shortened). Due
to the antisymmetry of A, the total mass is conserved for all times t ≥ 0, see Section 2.1
Furthermore, all masses remain bounded away from 0 (xα ≥ const > 0, for all α) for all
times for any choice of rates r1, r2, r3 > 0 [2, 49].

5.3 Phenomenology

In the numerical simulations of the RPS chain, we observed a surprisingly rich dynamics
for how the mass is distributed depending on the skewness r.

(i) Localization. For skewness r < 1, the overall mass on the RPS chain becomes polar-
ized to the right boundary over time irrespective of the initial conditions (Figure 5.2(a)(i)),
whereas for r > 1, mass polarizes to the left (Figure 5.2(c)(i)). Polarization becomes man-
ifest as an exponential decay of the average mass per site from the boundary into the bulk.
We quantify this polarization by averaging the mass at every site over a time window
T � 1, 〈xα〉T = 1/T

∫ T
0
dt xα(t) as introduced in Section 2.4. We observed that, for r 6= 1,

average masses decay from the boundary into the bulk as 〈xα〉T ∼ exp(−α/lp) for α ≥ 1,
numerically consistent with lp = 2/ ln r as the penetration depth. Such polarization arises
for any initial mass distribution and is already visible for a small system size of S = 13
(Figure 5.2). Remarkably, the skewness r = r2/r3 alone determines whether the total mass
polarizes to the left or right boundary of the chain. The values of all other parameters
affect only the quantitative, but not the qualitative long-time behavior; see Figure 5.5
and 5.6.
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Figure 5.3: Solitary waves at the transition point r = 1. The suitably prepared wave
package (t = 0) remains localized and travels along the (here periodic) RPS chain (S = 80)
without changing its shape. In an interaction with another solitary wave (t = 120), the shapes
of both wave packages remain unchanged afterwards (t = 240). The initial wave packages were
numerically obtained from the dispersion of a single mass peak.

The ALVE (2.1) is a deterministic dynamical system that approaches a stationary state
at large times. This stationary state can be characterized by the average masses per site,
〈xα〉T (see above) and the fluctuations around the averages within a framework of thermo-
dynamic equilibrium [88]. To quantify the fluctuations at site α, we measured the standard
deviation σα,T =

√
〈x2

α〉T − 〈xα〉2T (Figure 5.2(a,c)(i)) which also decay exponentially into
the bulk from the boundary, where the mass is localized, see Section 2.4.

(ii) Robustness. Polarization is robust against perturbations of the model parameters.
For example, Figure 5.2(a,c)(ii) illustrates the polarization of mass to the boundary when
the positive matrix entries are perturbed as a′αβ = aαβ(1 + εαβ); for aαβ < 0, the entry
a′αβ is obtained as a′αβ = −a′βα such that the perturbed matrix A′ is antisymmetric. Here,
all εαβ are independently drawn from the same uniform distribution (all realizations need
to be greater than −1 to preserve the network topology of a RPS chain), see details in
Section 5.A.2. As another example, we found that mass also becomes localized when
additional couplings are introduced. Such extensions of the RPS-chain are discussed in
Chapter 6

(iii) Phase transition. For r = 1, the average masses expand throughout the whole
chain, marking the transition point between the two polarization states. In the stationary
state, the overall mass is on average uniformly distributed on the chain with 〈xα〉T = 1/S
for all α. More generally, from our numerical simulations it turns out that it is not possible
to tune any set of rate constants on the RPS chain such that one passes from polarization
at one boundary to polarization at the other boundary without crossing a transition point
at which the average masses expand throughout the whole chain.
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Furthermore, we observed solitary mass waves at the transition point r = 1. Mass
packages that are suitably initialized at a few neighboring sites show soliton-like properties
(Figure 5.3): They are spatially confined; their shape does not change; and after an inter-
action with other solitary waves, their shape and speed remains unchanged [170, 171]. It
will be interesting to further characterize these solitary waves and connect them to already
known solitons in similar set-ups [47, 42, 41, 172, 173, 174], see also Section 6.6

5.4 Analysis.

Taken together, the combination of the observations of (i) localization, (ii) robustness,
and (iii) phase transition share characteristic features of a topological phase transition
underlying the behavior of the ALVE (2.1) on the RPS chain. In the following, we make
this hypothesis rigorous. First, we outline how fixed points x∗ of the ALVE (∂tx|x∗ = 0)
are determined by strictly positive kernel vectors of A. Second, we derive the qualitative
changes in the dynamics from the bulk properties of A within the framework of topological
band theory. Third, we explicitly compute the kernel vector of A and thereby confirm the
results obtained from the topological band theory approach.

5.4.1 Fixed points.

By construction the RPS chain is a coexistence network as introduced in Chapter 4, such
that the adjugate vector is the unique strictly positive kernel vector of A 4.4.1, Ac = 0
with cα > 0 for all α and

∑
α cα = 1. This vector gives rise to the fixed point x∗ = c of

the ALVE (2.1), and no further fixed points with x∗α > 0 for all α exist 2.3. The existence
of a unique vector c derives from the cyclic structure of the concatenated RPS cycles; the
explicit form of c is given below in Eq. (5.3). Recall that the strictly positive kernel vector
ensures that the quantity E = xc11 . . . xcSS = exp(

∑
α cα log xα) is conserved, see Section 2.3.

For such cases, we have shown in Section 2.4 that the average masses are given by the
value of the fixed point 〈xα〉∞ = cα for all initial conditions, see also [25, 2]. This way, the
long-time dynamics on the RPS chain (average masses 〈x〉∞) are determined by algebraic
properties of A (kernel vector c).

5.4.2 Topological band theory.

To further characterize the algebraic properties of A, the RPS chain is extended by the
auxiliary site S + 1 and periodic boundary conditions (PBC) are employed (Figure 5.1).
The corresponding antisymmetric matrix, APBC, is of size 2n and block-circulant (that is,
translationally invariant) [175, 176]. To relate our approach to condensed matter physics,
we define the “RPS Hamiltonian” H := iAPBC (i denotes the imaginary unit), which is
a Hermitian matrix (H† = H) with only real eigenvalues. Below, we analyze H in the
framework of topological band theory [177].
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Figure 5.4: Topological phase transition on the RPS chain. Point-symmetric band struc-
ture of the RPS Hamiltonian (white dots denote eigenvalues of H for S = 14) with a spectral gap
for r 6= 1 (gray shade). The band structures for r < 1 and r > 1 are topologically distinct in how
the eigenvectors change within the Brillouin zone, which is quantified by the topological invariant
M and visualized by whether h(k) winds around 0. As h(k) lies in a plane, a two dimensional
projection is shown here, see Section 5.B.

The spectrum of H is characterized by its band structure. Starting from the eigen-
value equation for H and exploiting translational invariance, the eigenvectors of H can be
decomposed into a plane wave part and a within-cell alignment part ũ(k), which fulfills
the much simpler eigenvalue equation λ(k)ũ(k) = H̃(k)ũ(k) for the Fourier-transformed
Hamiltonian H̃; k denotes the wave number in the Brillouin zone (k = 2π

n
l and l =

bn
2
c, . . . , 0, 1, . . . , bn

2
c − 1). For the RPS chain, one finds,

H̃ =
(

2r1 sin k −r2 sin k+i(r3−r2 cos k)
−r2 sin k−i(r3−r2 cos k) 0

)
, (5.2)

which can be written as H̃(k) = h(k) · σ, with h(k) = (h0(k), h1(k), h2(k), h3(k)) =
(r1 sin k,−r2 sin k,−r3 + r2 cos k, r1 sin k); σ = (σ0, σ1, σ2, σ3) denotes the Pauli matrices
with σ0 as the 2× 2 identity matrix [178], see Section 5.B.1.

How the spectral and topological properties of H depend on the control parameter
r can be derived from Eq. (5.2); see Figure 5.4. First, the spectrum of H exhibits two
bands of eigenvalues, λ+ and λ−, on the Brillouin zone k ∈ [−π, π) since the unit cell is
constituted of two sites connected by one edge (2m+ 1→ 2m). For r 6= 1, the two bands
are separated by a spectral gap that closes only for r = 1 at k = 0.

Second, the spectrum of H is point-symmetric with respect to the origin, λ+(k) =
−λ−(−k). This property follows from the intrinsic “particle-hole symmetry” of H because
it is defined by a real-valued antisymmetric matrix. In formal terms, H fulfills the operator
identity CH̃(k)C−1 = −H̃(−k), with C := σ0◦κ and κ as the complex conjugation operator.
However, H does not have time-reversal or chiral symmetry. Thus, the RPS HamiltonianH
falls into symmetry class D in one dimension within the “ten-fold way” classification scheme
of gapped free-fermion systems [149]. In fact, H can be interpreted as a Bogoliubov-de
Gennes mean-field description of superconductivity in the Majorana representation [179,
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180, 181, 149].
Gapped Hamiltonians in the symmetry class D in 1D admit topological phases that

are characterized by a Z2 invariant [179, 181, 149]. This invariant, M, is the sign of
the Pfaffian of APBC and can be computed from H̃ as M = sign(1 − r2) [181]. Thus, a
topological phase transition occurs at r = 1: for r < 1, the RPS Hamiltonian H is in the
“topologically trivial phase” (M = +1); for r > 1, the “topologically non-trivial phase”
is attained (M = −1); see insets of Figure 5.4 for an illustration. In other words, the
two phases (r < 1 and r > 1) are topologically distinct in that they cannot be smoothly
deformed into one another without closing the spectral gap.

Through the so-called bulk-boundary correspondence [150, 149], topological properties
of the bulk (periodic RPS chain with S + 1 sites) become manifest at the boundary of the
open system (open RPS chain with S sites). More precisely, upon removing the auxiliary
site S + 1 and returning to the open RPS chain, the spectral gap for r 6= 1 is populated
by a zero eigenvalue with a corresponding, topologically protected, strictly positive kernel
vector, whose entries are localized at the boundary of the RPS chain, see Section 5.B.2.
This bulk-boundary correspondence is made rigorous by introducing a Toeplitz matrix as
an intermediary between the two matrices A and APBC and applying the Szegő-Widom
theorem [182, 183, 184]. We conclude that the polarization states of the ALVE (2.1) corre-
spond to gapless boundary modes. Thus, left and right polarization constitute topologically
distinct stationary states, which cannot be transformed into each other without passing
through the phase transition at r = 1.

5.4.3 Kernel vectors.

Finally, we briefly present the exact form of the kernel vector c of A. To determine c, we
employed the graph-theoretical interpretation of the Pfaffian, such that the kernel of A is
related to the network representation of A in Figure 5.1; see [49] and Section 3.3.2. As a
result, the kernel vector c = (c1, . . . , c2n−1) can be written as:(

c2m−1

c2m

)
=

1

C

(
r2

r1

)
r−(m−1) , m = 1, . . . , n− 1 , (5.3)

and c2n−1 = r2r
−(n−1)/C; C denotes the normalization constant and ensures

∑
α cα = 1.

Thus, average masses 〈x〉∞ = c decay as cα ∼ exp (−α/lp) with penetration depth lp =
2/ ln r from the boundary (analogously for r < 1); see Figure 5.2. This explicit construction
of the kernel vector agrees with the result obtained within the approach of topological band
theory and, thus, confirms the topological nature of the transition at r = 1.

5.5 Discussion
In this Chapter, we report a topological phase transition in the stationary state of the
ALVE (2.1) on the RPS chain. Stationary states are linked to strictly positive kernel vectors
of the defining antisymmetric matrix. These kernel vectors are topologically protected and
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give rise to robust polarization of mass. Notably, these topological phases are entirely
nonlinear in that they cannot be understood as the superposition of linear waves.

We envision that the results of this work could be extended to specific higher dimen-
sions. In 2D, the symmetry class D of the “ten-fold way” classification admits topological
phases characterized by the Chern number, whereas in 3D no topological phase transition
occurs [149]. In 2D, such a topological phase should be observable as a unidirectional flow of
mass at the system’s boundary. Possible lattices might be constructed as two-dimensional
carpets of RPS cycles as extensions of the chain.

Beyond the observation of topological phases in the ALVE, one might generalize this
approach to other dynamical systems in biological physics, whose attractors are nonlinear
oscillators or limit cycles [185], and ecology [186]. Here we employed the ALVE on RPS
cycles as the constituting building blocks, but other local oscillators may serve equally well.
By suitably coupling these oscillators in the spirit of this work, we believe that topological
phases as robust dynamical modes in biological systems could be designed.
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5.A Appendix to RPS-chain

Figures 5.5 and 5.6 provide additional numerical simulation data that accompany Figure 5.2
from the main text.
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Figure 5.5: Polarization of mass to the boundary does not depend on the parameter
r1. Same organization of the plots as in Figure 5.2 with (a) r = 0.5, (b) r = 1, and (c) r = 2.
Temporal averages 〈xα〉T are obtained from single realizations of the ALVE (equation 2.1) for
T = 5000; plotted on lin-log scale. Mass becomes polarized to the right for r < 1 and to the left
for r > 1, irrespective of the precise values of r1. The parameter r1 determines how the mass
balance shifts within a single cell of the RPS chain: mass shifts to the odd states for r1 < r2 (i),
to an equal distribution between even and odd states for r1 = r2 (ii), and to the even states for
r1 > r2 (iii).

5.A.1 Computation of the strictly positive kernel vector of A

Here we calculate the adjugate vector of the RPS chain. The RPS chain consists of RPS
cycles that share one node. As such it is a coexistence network, see Section 4.3.2, and
the entries of the unique kernel vector which can be calculated as the adjugate vector are
strictly positive for all choices of rates.

The αth component of the adjugate vector is calculated using all perfect matchings of
the subnetwork Aα̂ that is obtained from A by deleting the αth node, see Section 3.3.3. All
signs of the adjugate vector share the same sign due to the RPS chain being a coexistence
network. Thus the calculation of the adjugate vector simplifies to the determination of all
perfect matchings. Figure 5.7 shows that every component of the adjugate vector only has
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Figure 5.6: Polarization of mass to the boundary does not depend on the precise
values of r2 or r3, but only on their ratio r = r2/r3. Same organization of the plots as in
Figure 5.2 of the main text with (a) r = 0.5, (b) r = 1, and (c) r = 2. Temporal mass averages
〈xα〉T are obtained from single realizations of the ALVE (Eq. (1) of the main text) for T = 5000;
plotted on lin-log scale. Mass becomes polarized to the right for r < 1 and to the left for r > 1,
irrespective of the precise values of r2 and r3.

one summand corresponding to the single near-perfect matching. The adjugate vector is

v = (rn−1
2 , r1r

n−2
2 , rn−2

2 r3, r1r
n−3
2 r3, . . . , r

n−m
2 rm−1

3 , r1r
n−m−1
2 rm−1

3 , . . . , r2r
n−2
3 , r1r

n−2
3 , rn−1

3 )T .
(5.4)

Because the adjugate vector is not the zero-vector, the kernel of A is one-dimensional and
the adjugate vector spans the kernel. Therefore, upon normalizing with the sum over all
entries C ′,

C ′ =
∑

α vα =
∑n−1

j=0 r
n−1−j
2 rj3 +

∑n−2
j=0 r1r

n−2−j
2 rj3 (5.5)

= rn−1
2

1− r−n

1− 1/r
+ rn−2

3 r1
1− rn−1

1− r
= rn−2

2

r2(1− r−n) + r1(1− r1−n)

1− 1/r
, (5.6)

the kernel vector cα = vα/C
′ is unique and strictly positive in all components α, and can

be written as (see Eq. (5.3) of the main text):(
c2m−1

c2m

)
=
rn−m−1

2 rm−1
3

C ′

(
r2

r1

)
=
rn−2

2

C ′

(
r2

r1

)
r−(m−1) =

rn−1
3

C ′r2

(
r2

r1

)
rn−m , (5.7)

for m = 1, . . . , n − 1 and c2n−1 = rn−1
3 /C ′ = 1

C′
rn−1

2 r−(n−1), and recall r = r2/r3. The
normalization constant C as provided in the main text is obtained as C = C ′/rn−2

2 .
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Figure 5.7: Calculation of the adjugate vector of A for the RPS chain. (i) The (2m−1)th
component of the adjugate vector, v2m−1, is calculated as the Pfaffian of the subnetwork obtained
by deleting node (2m−1) and determining all perfect matchings of the resulting network. For the
RPS chain, only one perfect matching contributes as indicated by the green and purple arrows.
(ii) Analogously, for the 2m-th component, only one perfect matching contributes as indicated by
the green, red, and purple arrows.

5.A.2 Robustness against perturbation of the model parameters

Polarization is robust against perturbations of the model parameters. This characteristics
follows from the result that polarization on the RPS chain is a topological phase. Here
we supplement the statements from the main text to provide a qualitative feeling for
the order of magnitude against which polarization on the RPS chain is robust. To this
end, we employ a perturbation of the positive matrix entries (5.1) as a′αβ = aαβ(1 +
εαβ); for aαβ < 0, the perturbed entry a′αβ is obtained as a′αβ = −a′βα such that the
perturbed matrix A′ is antisymmetric. Furthermore, we assume that the perturbations εαβ
are independently sampled from an identical probability distribution whose probability
mass is centered sufficiently enough around the mean (relatively small variance in relation
to the system size n and the distance of the skewness r to the critical value r = 1).
Furthermore, we assume that all realizations of the perturbations fulfill εαβ > −1, the
mean of the distribution, 〈ε〉, fulfills 〈ε〉 ≤ 1/n, and the system size n is large.

For one realization of the perturbed rates, one may compute the adjugate vector of the
perturbed system, vε, along the lines leading to Eq. (5.4) and obtains, for example, for the
first component vε1 = v1(1 + ε32)(1 + ε54) . . . (1 + εS,S−1). If all realizations of the perturba-
tions εαβ > −1, then the perturbed component vε1 has the same sign as the unperturbed
component v1. Consequently, the RPS topology is not changed by the perturbations and
the kernel vector of the perturbed system A′ is strictly positive.

If, in addition, the perturbations are sampled from a probability distribution such that
the mean fulfills |〈ε〉| ≤ 1/n, the same polarization pattern emerges as for the unperturbed
system for n � 1. This can be seen from the expansion of the adjugate vector; for
example, the first component scales as vε1 ∼ v1

(
1 + (n− 1)ε̄(n−1)

)
+O(v1n

2εα1β1εα2β2) and
ε̄(n−1) = (ε32 + ε54 + · · · + εS,S−1)/(n − 1) denoting the partial sample average, that is,
the sample average of the perturbations contributing to v1. For large enough systems,
n� 1, this partial sample average approaches the mean 〈ε〉 of the probability distribution.
Hence, the corrections to v1 are of the same order of magnitude as v1 because we assumed
|〈ε〉| . 1/n.

If the distribution is sufficiently centered around the mean (its variance is small enough),
the corrections to most components of the adjugate vector of the perturbed system A′ are
of the same order of magnitude as the unperturbed component. Thus, the exponential
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decay of mass on the chain is observable. In other words, the magnitude of the admissible
variance of the perturbation distribution is constrained by the system size n and the value
of r: the smaller the system size n and the closer the value of r is to the critical point
r = 1, the more likely it is that a realization from a fixed perturbation distribution yields
a loss of polarization.

In total, the same polarization pattern emerges for the perturbed system as for the
unperturbed system with a high probability.

Estimate for robustness against perturbations. Here we give a back-of-the-envelope
calculation for the robustness of the topological phase against perturbations of the rates,
a′αβ = −a′βα = aαβ(1 + εαβ), in the topologically phase, r < 1.

Assume that we choose perturbations εαβ from the discrete probability distribution
p(x) = 0.5(δ(x− k) + δ(x+ k)). In words, the perturbation takes one of the two values ±k
with equal probability. This distribution has mean zero and variance k2.

From the adjugate vector (5.4), we can read off a ’local polarization’ rα,loc, which
describes the mass shift between two neighboring cells, as

rα,loc =
a2α,2α+1

a2α−1,2α

. (5.8)

In this setting, the overall control parameter r can be interpreted as the average of the
local phase: For the unperturbed system r = rα,loc for all α. However, when adding the
perturbation as defined above, we find

rα,loc =
r2(1 + ε2α,2α+1)

r3(1 + ε2α−1,2α)
= r

(1 + ε2α,2α+1)

(1 + ε2α−1,2α)
. (5.9)

In a large system (the fluctuation around the mean is neglected), the average control
parameter is

〈rloc〉 =
∑
α

r
(1 + ε2α,2α+1)

(1 + ε2α−1,2α)
= r

1

4

(
1 + k

1 + k
+

1− k
1 + k

+
1 + k

1− k
+

1− k
1− k

)
=

r

1− k2
(5.10)

On average the perturbation increases the average control parameter. The variance of the
distribution is

var(rloc)

r2
=

4k2(2 + k2)

3(k2 − 1)2
(5.11)

From the law of large numbers, we assume that the sum over discrete random variables
approaches a Gaussian distribution. For a Gaussian, a deviation of more than two standard
deviations is unlikely (less than 5%). We search for a the magnitude of noise k that is
admissible for the perturbed RPS chain to stay in the initial phase r < 1, i.e. the largest
k with

〈rloc,i〉+ 2
√

var(rloc) = r

(
1 + 4k

√
k2 + 2/

√
3

(1− k2)

)
< 1
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Lowering the bound for r, we find

(1− k2)

1 + 4k
√
k2 + 2/

√
3
>

(1− k2)

1 + 4k
>

1− k
1 + 3k

> r (5.12)

⇒ k <
1− r
1 + 3r

. (5.13)

The farther the system is from the point of the topological transition r = 1, the more
robust it is against perturbations of the rates. For example, for the system in Figure 5.2,
we find for r = 0.5 that a perturbation with discrete noise with the magnitude k = 0.2 is
admissible.

Although this calculation gives a rough estimate about the robustness against pertur-
bations, it is vastly simplified and can give no closed answer to the question how robust a
system of finite size is.

5.B Topological band theory of the RPS Hamiltonian

5.B.1 Spectral properties of the RPS Hamiltonian

(1) RPS chain of S+1 sites with periodic boundary conditions. To make analytical progress
within the framework of topological band theory, we extend the RPS chain by one addi-
tional site S + 1 = 2n with periodic boundary conditions as described in the main text.
This way, the corresponding antisymmetric interaction matrix APBC ∈ R2n×2n extends the
antisymmetric matrix A by one row and column. Because of the periodic boundary con-
ditions, APBC is an antisymmetric block-circulant matrix (compare with A in Eq. (5.1)
):

APBC =



A0 A1 0 0 . . . 0 A−1

A−1 A0 A1 0 . . . 0 0
0 A−1 A0 A1 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . A0 A1

A1 0 0 0 . . . A−1 A0


= Circ(A0, A1, 0, . . . , 0, A−1) , (5.14)

with the 2× 2 block-matrices:

A0 =

(
0 r3

−r3 0

)
= −AT0 , A1 =

(
−r1 0
r2 0

)
= −AT−1 . (5.15)

In this notion, the unit cell of the RPS chain may be interpreted as follows: the tran-
sition between sites xα → 2α − 1 for α = 1, . . . , n (with transition rate r3) define the
inter-cellular coupling, encoded by A0; see Figure 5.1 . These unit cells are coupled by the
transition rates r1 and r2 with each other and define the intra-cellular couplings, encoded
by A1 = −AT−1. To connect our analysis to results from condensed matter physics, we
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defined in the main text the RPS Hamiltonian H := iAPBC, which is a Hermitian matrix
(H† = H) with only real eigenvalues. Accordingly, H0 := iA0, H1 := iA1, and H−1 := iA−1

are defined.

(2) Fourier transform of the RPS Hamiltonian. Because H is a translationally invariant
matrix, its spectrum can be computed explicitly. To determine the spectrum of H, we start
from the eigenvalue equation as follows:

λ(κ)u(κ)
α =

2n∑
β=1

Hαβu
(κ)
β , κ = 1, . . . , 2n , (5.16)

in which u ∈ R2n is an eigenvector to the eigenvalue λ, and κ labels the different eigen-
vectors. Please note that the eigenvalues come in pairs of ±λ because H is Hermitian.
To exploit translational invariance of H in the spirit of band theory in condensed matter
physics, we compute its Fourier transform through the following steps. First, the ansatz
for the eigenvector u,

u(κ)
α = u

(κ)
2α′+α′′+1 = ũ(α′′)(k) · eikα′ , (5.17)

is employed with α = 2α′ + α′′ + 1. This ansatz decomposes the eigenvector into a plane
wave part, eikα′ , and a within-cell alignment part, ũ(α′′)(k). Here α′ = 0, . . . , n − 1 labels
the unit cell and α′′ = 0, 1 the within-cell position of the lattice site. The momentum
k = 2π

n
l is a rescaled version of the index κ with l = −bn

2
c, . . . ,−1, 0, 1, . . . , bn

2
c − 1.

Because H is a block-circulant matrix (and, thus, H is translationally invariant), its
entries are given as Hαβ = H2α′+α′′+1,2β′+β′′+1 =

(
Hα′−β′

)
α′′,β′′

with α′′, β′′ = 0, 1 and
α′, β′ = 0, . . . , n − 1. Note that only H−1, H0, H1 are non-zero, see Eq. (5.14), and that
the blocks Hl are cyclic in the index l, that is, Hl = Hn+l. With these definitions and
properties, the eigenvalue equation (5.16) reduces to:

λ(k)ũ(α′′)(k) =
∑
β′′=0,1

H̃(k)α′′,β′′ · ũ(β′′)(k) , (5.18)

with H̃(k) :=
∑n−1

l=0 Hle
ikl as the Fourier transform of the Hamiltonian H.

In summary, the eigenvectors of H as defined in Equation (5.16) can be decomposed
into a plane wave part eikα′ and a polarization part ũ(α′′)(k) (see Equation (5.17)). The
polarization part fulfills the much simpler eigenvalue equation (5.18) for the Fourier trans-
form of the Hamiltonian, which is a 2 × 2 matrix in this case. The eigenvalues can be
directly inferred from Equation (5.18) through λ(κ) = λ(k). The Fourier transform of the
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Hamiltonian for the RPS chain is obtained as follows (see Eq. (5.2) in the main text):

H̃(k) = e−ik(−HT
1 ) +H0 + eikH1 , (5.19)

=

(
ir1(e−ik − eik) ir3 − ir2e

−ik

−ir3 + ir2e
ik 0

)
, (5.20)

=

(
2r1 sin k −r2 sin k + ir3 − ir2 cos k

−r2 sin k − ir3 + ir2 cos k 0

)
, (5.21)

=

(
h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

)
=


r1 sin k
−r2 sin k

−r3 + r2 cos k
r1 sin k

 · σ =


h0(k)
h1(k)
h2(k)
h3(k)

 · σ = h · σ , (5.22)

where, in the last line, we used the compact notation σ = (σ0, σ1, σ2, σ3)T of the Pauli
matrices:

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (5.23)

(3) Symmetries of the RPS Hamiltonian. H̃ has an inherent “particle hole symmetry”
as mentioned in the main text. With the unitary operator C = σ0 ◦ κ, where σ0 is the
identity matrix and κ is the complex conjugation, this symmetry is understood in the
sense that σ0 ◦ κH̃(k) + H̃(−k)σ0 ◦ κ = κH̃(k) + H̃(−k) = 0 (as an operator equality) if
applied to some matrix. This particle-hole symmetry of H̃ originates from the definition
of the RPS Hamiltonian H = iAPBC via the real-valued antisymmetric matrix A and the
definition of the Fourier transform. As a consequence, the spectrum of H̃, and thus H, is
point-symmetric to the origin, λ(k) = −λ(−k); see Figure 5.4 .

(4) Spectrum of the RPS Hamiltonian. For completeness, we briefly mention explicitly
the spectral properties of the RPS Hamiltonian and its Fourier transform. The determinant
of H̃ is given by:

det H̃(k) = h0(k)2 − h1(k)2 − h2(k)2 − h3(k)2 = −
(
r2

2 sin2 k + (r3 − r2 cos k)2
)
≤ 0 .

(5.24)

Therefore, the determinant is 0 only if r2 = r3 (that is, r = 1) and at k = 0. In other
words, H̃ has a non-trivial kernel only if r = 1. The trace of H̃ is given by tr(H̃) = 2h0.
Thus, the eigenvalues of H̃ are obtained in two bands λ+ and λ− as follows:

λ±(k) = tr(H̃)/2±
√

(tr(H̃))2/4− det H̃ = h0(k)±
√
h1(k)2 + h2(k)2 + h3(k)2 , (5.25)

= r1 sin k ±
√

(r2
1 + r2

2) sin2 k + (r3 − r2 cos k)2 . (5.26)
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The value of r1 only affects the eigenvalues of H̃ as a global shift and this shift vanishes
for k = 0. As already seen from the determinant, the eigenvalues are only 0 for r = 1 at
k = 0.

(5) Eigenvectors of the RPS Hamiltonian. The eigenvectors, ũ±(k), of H̃ corresponding
to λ±(k), k real-valued, can be written as follows (not normalized):

ũ±(k) =

(
λ±(k)− h0(k) + h3(k)

h1(k) + ih2(k)

)
=

(
h3(k)±

√
h1(k)2 + h2(k)2 + h3(k)2

h1(k) + ih2(k)

)
, (5.27)

=

(
r1 sin k ±

√
(r2

1 + r2
2) sin2 k + (r3 − r2 cos k)2

−r2 sin k + i(r3 − r2 cos k)

)
. (5.28)

(6) Heuristic bulk-boundary correspondence. The RPS Hamiltonian H̃ has eigenvalues
λ±(k) for only real k values; see above. However, for the imaginary values k± = ±i ln r,
that is eik+ = 1/r and eik− = r, one checks that det H̃(k±) = 0 (equivalently, λ−(k±) = 0)
as k± would give rise to additional zero eigenvalues of H̃ (and, thus, H). Indeed, it
turns out that the value of k+ = i ln r gives rise to the kernel vector of the RPS chain
defined by the antisymmetric matrix A in Eq. (5.1). The correspondence between the
“suppressed” zero eigenvalue of H defined by the imaginary momentum k+ and the realized
zero eigenvalue and corresponding eigenvector of A is governed by the so-called bulk-
boundary correspondence. Below, we supplement the main text with a heuristic picture
of how the kernel vector of A emerges from the “suppressed” eigenvector corresponding
to λ−(k+). The mathematical details of this connection between the periodic RPS chain,
defined by APBC and H, and the finite RPS chain, defined by A, are outlined in the main
text and described further below.

The corresponding vectors w̃± fulfilling the eigenvalue equation of H̃ for the values of
k± are obtained as a solution to the equation H̃(k±)w̃± = 0 as follows:

w̃+(k+ = i ln r) =

(
r2

r1

)
, and w̃−(k− = −i ln r) =

(
0
1

)
. (5.29)

Only the vector w̃+ is strictly positive and may give rise to a strictly positive kernel vector
of A; see further below. If w̃+ is treated as an eigenvector of H̃, one can anticipate the
polarization behavior of the RPS chain from the form of the corresponding eigenvector w+

of H that was introduced in Eq. (5.17):(
w+

2α′

w+
2α′+1

)
=

(
r2

r1

)
· eik+α′ =

(
r2

r1

)
· r−α′ , for α′ = 0, . . . , n− 1 , (5.30)

in which the same functional form as the algebraically calculated kernel vector in Eq. (4)
of the main text is apparent. In other words, the plane wave part eikα′ with k+ becomes
the polarization part e− ln r·α′ ∼ e− ln r·α/2 = e−α/lp with the penetration depth pl = 2/ ln r
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as observed in the simulations, see main text and Figure 5.2 . It also follows that for
r > 1 mass will get polarized to the left, whereas for r < 1 polarization occurs to the right
boundary of the RPS chain.

(7) Projection of the vector h(k) in Figure 5.4 . In Figure 5.4 , we plotted the pro-
jection of the vector h(k), which characterizes the Fourier-transformed Hamiltonian H̃,
to analyze the manifold that is mapped out by its eigenvectors as a function of k. Be-
cause h0 does not contribute to the form of the eigenvectors, only the three components
h1(k), h2(k), h3(k) need to be considered for this discussion. The curve traced out by the
vector (h1(k), h2(k), h3(k)) = (−r2 sin k,−r3 + r2 cos k, r1 sin k) for k ∈ [−π, π) lies in the
plane with normal vector n = (r1, 0, r2) as one checks that n · (h1(k), h2(k), h3(k)) = 0 for
all k. Thus, instead of plotting (h1(k), h2(k), h3(k)), we plotted the first two components
of the vector (h‖(k), h2(k), 0) in that plane defined by n. This projection is obtained via
the rotation matrix T ∈ R3×3 (T TT = TT T = 1):

T =

−
r1√
r21+r22

0 r2√
r21+r22

0 1 0
r1√
r21+r22

0 r2√
r21+r22

 , (5.31)

applied to the vector (h1(k), h2(k), h3(k)):h‖(k)
h2(k)

0

 := T ·

h1(k)
h2(k)
h3(k)

 =

−
r1√
r21+r22

0 r2√
r21+r22

0 1 0
r1√
r21+r22

0 r2√
r21+r22

 ·
 −r2 sin k
−r3 + r2 cos k

r1 sin k

 =


2r1r2√
r21+r22

sin k

−r3 + r2 cos k
0

 .

(5.32)

5.B.2 Explicit bulk-boundary correspondence

Above, we heuristically explained that a “suppressed” zero eigenvalue of the RPS Hamilto-
nian H, or equivalently APBC, becomes a zero eigenvalue of A with a corresponding strictly
positive kernel vector. Here we make this heuristic explanation rigorous by introducing
an intermediary matrix between the block-circulant matrix APBC and A, and apply the
so-called Szegő-Widom theorem [184, 182]. The three different systems that we discuss
here are visualized in Figure 5.8 and are summarized as follows (we use the subscript n in
the matrices from now on to highlight the system size):

• The RPS chain on S = 2n− 1 sites, see Figure 5.8(a); defined by the antisymmetric
matrix An in equation (5.1) .

• The left-boundary RPS chain on S + 1 = 2n sites, but both sites S and S + 1 are
not connected to site 1, that is, this system has the same left boundary as the RPS
chain (thus, “LB” as subscript), but a different right boundary, see Figure 5.8(b);
defined by the antisymmetric matrix ALB,n, which is a block-Toeplitz matrix [176].
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This block-Toeplitz matrix represents the bridge to analyze the boundary properties
of the RPS chain starting from the properties of the periodic RPS chain.

• The periodic RPS chain on S + 1 = 2n sites with periodic boundary conditions
(sites S and S + 1 are also connected to site 1 in a rock-paper-scissors cycle), see
Figure 5.8 (c); defined by the antisymmetric matrix APBC,n in Eq. (5.14), which is a
block-circulant matrix, and represents the bulk properties of the RPS chain.

(b)

1 3 5 7 9 11

2 4 6 8 10 12

r1r1

r3r3 r2r2

1 3 5 7 9 11

2 4 6 8 10

r1r1

r3r3 r2r2

(a)

(c)

1 3 5 7 9 11

2 4 6 8 10 12

r1r1

r3r3 r2r2

111

12

Figure 5.8: Visualization of the three different set-ups of the RPS chain, exemplified
for n = 6. (a) RPS chain on S = 2n− 1 sites defined by the antisymmetric matrix An. (b) Left-
boundary RPS chain on S + 1 = 2n sites defined by the antisymmetric matrix ALB,n, which is a
block-Toeplitz matrix [176]. (c) Periodic RPS chain on S + 1 = 2n sites with periodic boundary
conditions defined by the antisymmetric matrix APBC,n, which is a block-circulant matrix.

The goal is to explain the emergence of a strictly positive kernel vector of An with
polarization to the boundary, which follows from the bulk properties of the RPS chain
APBC,n. To this end, we proceed in four steps:

(1) We introduce the left-boundary RPS chain, defined by ALB,n. We show that, by
virtue of the Szegő-Widom theorem, two eigenvalues approach 0 as n→∞ if r > 1.
In other words, the left-boundary RPS chain has two “asymptotic” zero eigenvalues
for r > 1, which represents the essence of the bulk-boundary correspondence.

(2) We show that the vector u+ as obtained in Eq. (5.30), which fulfills the eigenvalue
equation of H to the “suppressed” zero eigenvalue at value k = i ln r, is indeed such
an asymptotic kernel vector of ALB,n.
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Figure 5.9: Bulk-boundary correspondence becomes apparent for the left-boundary
RPS chain in that two asymptotic zero eigenvalues emerge as the system size n →
∞ if r > 1. (a) Imaginary part of the eigenvalues of ALB,n (for r = 0.5 < 1) indicated by
blue dots depending on the system size S = 2n. Largest and smallest eigenvalues above and
below 0 are depicted as solid lines; red line indicates largest and smallest eigenvalues of APBC,n.
The spectral gap of the Toeplitz matrix remains the same as for periodic RPS chain such that
det(ALB,n)/ det(APBC,n) → 1 as n → ∞; see inset. (b) Same plot as for (a) but with parameter
r = 2 > 1. Two eigenvalues appear in the spectral gap and approach 0 as the system size increases
such that det(ALB,n)/ det(APBC,n) → 0 as n → ∞. Thus, the behavior of the det(ALB,n) is
qualitatively different from the circulant matrix APBC,n in that two asymptotic kernel vectors
arise for the left-boundary RPS chain. One of these kernel vectors gives rise to the polarization
state of the RPS chain. (c) Spectrum of the Toeplitz matrix for system size n = 14 (indicated as
black vertical lines in (a) and (b)) for different values of the control parameter r (r1 = r3 = 1, r2

is varied; r = 0.5 and r = 2 are depicted in (a) and (b), indicated by black vertical lines in (c)).
For r < 1, all eigenvalues of the Toeplitz matrix (blue lines) lie between the largest and smallest
eigenvalues of the circulant matrix (red lines) above and below 0. For r > 1, the circulant matrix
again has a spectral gap, whereas the Toeplitz matrix has a pair of eigenvalues that approach zero
as n→∞.

(3) This strictly positive vector u+ gives rise to the strictly positive kernel vector of An,
which is unique upon normalization and reflects polarization to the left.

(4) The same arguments can be carried out for a right-boundary RPS chain, defined
by ARB,n, showing that the same vector u+ gives rise to the strictly positive kernel
vector of An. This time, however, polarization to the right for r < 1 follows.

(1) Asymptotic zero eigenvalues for the left-boundary Toeplitz matrix for r > 1. In the
spectrum of the Toeplitz matrix ALB, a pair of zero eigenvalues emerges as n increases for
r > 1 as opposed to the gapped spectrum of the circulant matrix APBC, whereas for r < 1
the spectra between ALB and APBC develop similarly; see Figure 5.9.

More precisely, one may apply the so-called Szegő-Widom theorem for block-Toeplitz
matrices, as detailed in reference [182], to the matrix ALB,n. From this theorem it follows
that the ratio between the determinants of the left-boundary RPS chain and the periodic
RPS chain, det(ALB,n)/ det(APBC,n), approaches a constant E(H̃), which only depends on
the Fourier transform H̃, as n→∞. If E is non-zero, both the spectra of APBC,n and ALB,n

behave similarly and ALB,n is well approximated by APBC,n, loosely speaking. However,
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when E = 0, the spectra of APBC,n and ALB,n differ qualitatively, and this case is linked
with topologically non-trivial behavior [182, 183].

For the RPS chain, the ratio of the two determinants can be explicitly computed. For
example by applying the graph-theoretical formulation of the Pfaffian, the Pfaffian of both
the block-Toeplitz and the block-circulant matrix, ALB,n and APBC,n, are calculated as
follows:

Pf(ALB,n) = sign
( (

1 2 3 4 ... S S + 1
))
rn3 = (+1)rn3 , (5.33)

Pf(APBC,n) = sign
( (

1 2 3 4 ... S S + 1
) )
rn3 + sign

( (
S + 1 1 2 3 4 ... S

) )
rn2

= rn3 − rn2 .
(5.34)

Thus, one obtains for the fraction of the determinants:

detALB,n

detAPBC,n
=

r2n
3

(rn3 − rn2 )2
=

1

(1− rn)2

n→∞−−−→

{
0 for r > 1

1 for r < 1 .
(5.35)

In the topologically trivial phase (M = +1, r < 1), one finds that the determinants
behave asymptotically qualitatively similar, whereas in the topologically non-trivial case
(M = −1, r > 1), one encounters the case E = 0 and the determinants differ in their
qualitative behavior as n → ∞. Notably, while the determinant of the Toeplitz matrix,
detALB,n = r2n

3 , is always nonzero, with increasing size n, a pair of eigenvalues approaches
zero. Thus, the corresponding eigenvectors become asymptotic kernel vectors of detALB,n

as n→∞; see Figure 5.9.

(2) Asymptotic kernel vector of the left-boundary Toeplitz matrix for r > 1. To deter-
mine the asymptotic kernel vectors, one may check the vector u+ of the RPS Hamiltonian
in Eq. (5.30). This vector is a promising candidate for an asymptotic kernel vector because
it fulfills the eigenvalue equation for H at an imaginary value of k+ = i ln r for which
λ(k+) = 0 and is a strictly positive vector. To this end, one computes:

ALB,nu
+ =


0 r3 −r1 0 ... 0 0
−r3 0 r2 0 ... 0 0
r1 −r2 0 r3 ... 0 0
0 0 −r3 0 ... 0 0
...

...
...

... ... ...
...

0 0 0 0 ... 0 0
0 0 0 0 ... 0 r3
0 0 0 0 ... −r3 0

 ·


r3
r1r3/r2
r23/r2
r1r23/r

2
2

...
r1r

n−1
3 /rn−1

2

rn3 /r
n−1
2

r1rn3 /r
n
2

 =


0
0
0
0
...
0

r3r1/rn

−r23/rn−1

 . (5.36)

Indeed, if r > 1, the “suppressed” kernel vector u+ of H is an “asymptotic” kernel vector of
the Toeplitz matrix, that is ALB,nu

+ → 0 as n→∞. In particular, u+ is strictly positive.
Note that the second asymptotic kernel vector of ALB,n is not provided by the vector u−
because ALB,nu

− = (r3, 0, 0, . . . , 0) does not approach 0 as n→∞.
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Figure 5.10: Toeplitz matrices of the left-boundary and the right-boundary RPS chain.
(a) Left-boundary RPS chain, defined by ALB,n through the block matrices A0,LB and A1,LB; see
Eq. (5.15). (b) Right-boundary RPS chain. (c) Right-boundary RPS chain with relabeled lattices
sites such that the same analysis as for the left-boundary RPS chain can be applied. This system
is defined by defined by ARB,n through the block matrices A0,RB and A1,RB such that the roles
between r2 and r3 are swapped and an overall minus sign is obtained.

(3) The asymptotic kernel vector gives rise to the left-polarization kernel vector of the
RPS chain for r > 1. Importantly, u+ gives rise to the single kernel vector of A, if site
S + 1 is removed from the left-boundary RPS chain to obtain back the original RPS chain
of S sites. This way, one obtains the matrix An from ALB,n by removing the last column
and row. Similarly, the vector that is obtained from u+ by removing the last entry is the
unique kernel vector of An upon normalization. This kernel vector reflects polarization of
mass to the left boundary for the case r > 1.

(4) The vector u+ gives rise to the right-polarization kernel vector of the RPS chain for
r < 1 if the right-boundary RPS chain is considered. The same arguments (1)-(3) can be
made for a right-boundary system as depicted in Figure 5.10(b). Instead of implementing
the correct boundary on the left side of the RPS chain (left-boundary RPS chain, defined
ALB,n; see Figure 5.10(a)), one may equally well implement the correct boundary at the
right side of the RPS chain (see Figure 5.10(b)). After relabeling of the lattice sites α 7→
2n − α, one obtains the right-boundary RPS chain, defined by ARB,n; see Figure 5.10(c).
This relabeling has the advantage that the analysis above for the left-boundary RPS chain
can be applied directly to the right-boundary RPS chain. The difference between ARB,n

and ALB,n is that the roles between the rates r3 and r2 are swapped and that ARB,n carries
an overall minus sign as compared with ALB,n.

With these preparatory steps one can apply all steps of the above analysis for the
left-boundary system to the right-boundary system. It follows that the same vector u+

gives rise to the strictly positive kernel vector of An, this time, however for the case
r3/r2 = 1/r > 1, that is r < 1. Since the labeling starts with site 1 from the right, one
also obtains polarization to the right instead of polarization to the left. In summary, the
bulk-boundary correspondence yields polarization to the left boundary of the RPS chain
if r > 1 and to the right boundary if r < 1.



Chapter 6

Topological phases beyond
rock-paper-scissors chains

In this chapter we show that the topological phase transition of the RPS chain introduced in
Chapter 5 is robust against changes in the network topology. We study two augmentations
of the RPS chain:
The diamond chain is a coexistence network obtained as a triangulation of a directed cycle
(see Section 4.4.1), and can be interpreted as a RPS chain with one additional coupling
between neighboring unit cells. For the diamond chain, we find a similar phenomenology
as for the RPS chain: Depending on one control parameter, the average overall mass
polarizes to the boundaries of the system. This polarization is robust against perturbations
of the rates. At the transition point, solitary waves are observed. However, in contrast to
the previous chapter, the mathematical details of the diamond chain are more involved:
Although the framework for topological phases predicts the correct qualitative behavior,
quantitative characteristics like the penetration depth of the polarization cannot be read
off from the Fourier transform, but require a graph-theoretical analysis of the network.
Polarization in the diamond chain is an asymptotic behavior in the bulk: The exponential
decay causing the polarization emerges at some distance from the boundaries.
We also present the K4 chain, an augmentation of the diamond chain that includes all
possible interactions between the vertices of neighboring unit cells. The topological phase
transition observed in the diamond chain can also be found in the K4 chain. Additionally,
the K4 chain can exhibit extinction, which results in a decay of the chain into smaller
subsystems whose size depends sensitively on the chosen rates. Notably, extinction only
occurs in the topologically non-trivial phase.
Finally, we derive that the ALVE on a one-dimensional chain at the critical point can be
reformulated as a differential difference equation. The resulting equations have a similar
structure as prominent model systems in the study of solitary waves in integrable systems.
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Figure 6.1: The one-dimensional diamond chain The network can be understood as a one di-
mensional lattice with a two-element unit cell that contains rock paper scissors cycles (highlighted
in grey). We call this network a diamond chain for the diamond graph (as known from graph
theory [53]) (light red). An arrow from one site to another indicates that mass is transported in
this direction at rate r1, ..., r4 > 0 following the ALVE 2.1. The auxiliary site S + 1 facilitates
periodic boundary conditions (dashed lines) within the framework of topological band theory.

6.1 The diamond chain

The diamond chain is a finite one dimensional lattice created from a unit cell containing
two interacting states and coupling between neighboring unit cells. The coupling is chosen
in such a way that mass flow in both directions of the chain is possible, see Figure 6.1.
The name has its origin in graph theory where a square with one diagonal is called a
’diamond graph’. This motif is formed here by two neighboring unit cells (marked in light
red in Figure 6.1). The diamond chain is represented by the antisymmetric matrix of size
S = 2n− 1,

A =



0 r3 −r1 0 0 ... 0 0 0 0 0
−r3 0 r2 r4 0 ... 0 0 0 0 0
r1 −r2 0 r3 −r1 ... 0 0 0 0 0
0 −r4 −r3 0 r2 ... 0 0 0 0 0
0 0 r1 −r2 0 ... 0 0 0 0 0
...

...
...

...
... ... ... ...

...
...

0 0 0 0 0 ... 0 r3 −r1 0 0
0 0 0 0 0 ... −r3 0 r2 r4 0
0 0 0 0 0 ... r1 −r2 0 r3 −r1
0 0 0 0 0 ... 0 −r4 −r3 0 r2
0 0 0 0 0 ... 0 0 r1 −r2 0


, (6.1)

with rate constants r1, r2, r3, r4 > 0. The qualitative phenomenology of the ALVE on this
chain is controlled by the skewness r := r2

r3
. The remaining values r1, r4, have only minor

impact for the global phenomenology, that is polarization, but influence the strength of
polarization.

Relation to the previous chapters In Chapter 4.4.1 we introduced the network topol-
ogy of the diamond chain as a triangulation of a directed cycle that is oriented to be a
coexistence network. As such, the diamond chain has a strictly positive kernel vector for
all rates. Exploiting the regular structure (in its interior the network is translationally
invariant) we can study topological phase transitions in the ALVE dynamics.
The diamond chain can also be understood as an extension of the RPS chain, where one
additional coupling between neighboring unit cells is included. By setting r4 = 0, we
recover the RPS chain discussed in Chapter 5.
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6.2 Phenomenology
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Figure 6.2: Polarization of mass to the boundary (a-c)(i) The temporal mass averages 〈xα〉
of single numerical integrations of the ALVE (2.1) are shown on the diamond chain (S = 21) as the
disk size. The polarization becomes visible as exponential decay to the right for r < 1 and to the
left for r > 1 (shown here on a lin-log scale). For r = 1, the average mass is uniformly distributed
on the whole chain. While the penetration depth only depends indirectly on r, its sign and thus
polarization is decided by r ≷ 1. Polarization is no state of rest (non-vanishing fluctuations
σα,T around the averages; insets). (a-c) (ii) Polarization is robust against perturbations of the
individual rates (εα,β uniformly sampled in [−0.25, 0.25]) with the same characteristics as without
perturbations.

Numerical integrations of the ALVE dynamics on the diamond chain reveal a rich
phenomenology, comparable to that of the RPS chain. Dependent on a single control
parameter we observe robust polarization of mass as shown in Figure 6.2. At the transition,
mass is uniformly distributed over the system and solitary waves are observed. Recall that
in the ALVE dynamics the total mass is conserved. As the diamond chain is a coexistence
network, all states coexist for all times (xα > Const. > 0 for all α) when x0,α > 0 for all α.

Localization Depending on the skewness r = r2
r3
, the average mass in the system polar-

izes to the edge of the chain, see Figure 6.2 (a-c) (i). The ALVE dynamics itself does not
fixate, but polarization becomes visible as the temporal average occupation 〈xα〉T over a
long period T � 1.

Mass penetrates the system from the boundary, asymptotically reaching exponential
decay 〈xα〉T ∼ e−α/lp in the bulk. The penetration depth lp = 2/ ln r′ depends on the

skewness only indirectly as r′ =
r2+
√
r22+4r1r4

r3+
√
r23+4r1r4

. Note that, while the magnitude of the

penetration depth, that is, the polarization strength, is also influenced by the values r1

and r4, the sign of lp, and thus the polarization, only depends on wether r ≷ 1, as shown
in Figure 6.10.
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Figure 6.3: Solitary waves in the diamond chain at the topological transition At r = 1,
a suitably initialized peak of mass remains localized and travels along the diamond chain. In a
finite system a peak is imperfectly reflected at the boundary (a). Peaks can either travel from
left to right (c)-(d) or from right to left (e)-(f). After a collision with a peak traveling in the
same direction, shape and speed remain unchanged, (c)-(f). Compared to the average occupation
in the system, the right-moving peak consists of positive and negative deflections (d), while the
left-moving peak consists of positive deflections only (f). Through reflection at the boundaries,
the right-moving peak is transformed into a left-moving peak and vice versa (a)-(b).

Robustness The polarization is robust against perturbations of the systems rates. In
Figure 6.2 (a-c) (ii) we show that the polarization remains when the interaction strengths
are perturbed as a′αβ = −a′βα = aαβ(1 + εαβ). The perturbations εαβ are independently
drawn from the same uniform distribution centered around 0 such that the network topol-
ogy remains unchanged (all εαβ > −1)1. Additionally, the polarization is observed when
adding an additional coupling between neighboring unit cells r5, as shown Section 6.5.

Solitary waves At the transition point, r = 1, we observe solitary waves in the system.
A suitably initialized peak of mass travels through the system without changing its shape;
two such peaks traveling at different speeds pass through each other seemingly without
changing shape. Both of these observations are characteristic for solitary waves and by no
means trivial for nonlinear dynamical systems [170]. Numerically, we found two different
kinds of solitary waves:
Forward moving waves consist of positive deflections on the odd and negative deflections

1A nonzero center ε0 6= 0 for the distribution can be absorbed in redefined rates and noise as aαβ(1 +
εαβ) = aαβ(1 + ε0)(1 + εαβ/(1 + ε0)) = ãαβ(1 + ε̃αβ)
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Figure 6.4: The spectra of the Fourier transform of the diamond Hamiltonian H̃ are shown with
r1 = r4 = 1. Although the spectra for r2 < 1 (a) and r2 > 1 (c) both have a bandgap (grey), only
for r2 > 1 the system is topologically nontrivial as indicated by the winding of the origin by the
contour of h(k) (insets). At the transition point r = 1 (b), the bandgap closes, coinciding with
the contour h(k) passing through the origin.

on the even sites compared to the system’s mean as shown in Figure 6.3 (a). Backward
moving solitons are built from positive deflections both on odd and even sites compared
to the systems mean, see Figure 6.3 (b).

With the rates r1, ..., r4 = 1, the ALVE 2.1 can be reformulated as a differential differ-
ence equation closely related to the relativistic Toda lattice, as shown in Section 6.6.

6.3 Analysis
Analogous for the RPS chain in Chapter 5, polarization in the ALVE on the diamond
chain can be understood in the framework of topological phase transitions as known from
condensed matter physics. To this end, we again consider a closed system, where to the
original system A an additional state is added and periodic boundary conditions apply as
indicated in grey in Figure 6.1. The resulting block-circulant matrix APBC is of size 2n
(n > 2) and translationally invariant.

6.3.1 Topological condensed matter approach

We define the diamond-Hamiltonian H = iAPBC , which is hermitian H† = H with real
eigenvalues that occur in pairs, ±λ, see also Section 3.2. In the following, we analyze
this Hamiltonian in the framework of topological band theory. Spectrum and eigenvec-
tors of H can be obtained from spectrum and eigenvectors of the Fourier transformed
Hamiltonian H̃(k), where k denotes the wave number of the Brillouin zone (k = 2π

n
l and

l = −bn
2
c, ..., 0, 1, ..., bn

2
c). The Fourier transformed Hamiltonian reads

H̃(k) =
(

2r1 sin k ir3−r2 sin k−ir2 cos k
−ir3−r2 sin k+ir2 cos k −2r4 sin k

)
. (6.2)
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Projecting the Hamiltonian on the Pauli matrices σ = (σ0, σ1, σ2, σ3) (as done in Sec-
tion 5.B.1), we find H̃ = h(k) ·σ with h(k) = ((r1− r4) sin k,−r2 sin k,−r3 + r2 cos k, (r1 +
r4) sin k).
The spectrum of H and its dependence on the control parameter r as shown in Figure 6.4
can be derived from Eq. (6.2) as shown in Section 6.A. As the unit cell is constituted of two
sites, the spectrum has two bands of eigenvalues λ±. For r 6= 1, the bands are separated
by a bandgap that closes only for r = 1 at k = 0.

Topological invariant In order identify and classify the topological phases of the di-
amond chain, we must first identify its topological class according to the "ten-fold way"
classification scheme [148]. This classification is based on three unitary symmetries ("chi-
ral", "particle hole" and "time reversal" [153, 149]) and predicts the topological invariant
of a system. From the three canonical symmetries, the diamond chain only has a "particle
hole symmetry", which is revealed by the operator C = σ0◦κ (κ is the complex conjugation
operator) with C−1C = +1. Applied to the Hamiltonian, we find CH̃(k)C̃−1 = −H̃(−k),
proving the "particle hole symmetry". For r1 = r4, the spectrum is additionally mirror
symmetric along the x- and y-axis, i.e., λ±(k) = λ±(−k) = −λ∓(−k). However, as there
is no accompanying unitary operator to go with this symmetry, this does not influence the
topological class.

Summarizing, the periodic diamond chain is in the symmetry class D. The topological
invariant for 1D systems in this class can be calculated as the Pfaffian invariant[179] that
is closely related to the Berry phase [181]. Simply speaking, the Pfaffian invariant equals
the sign of the Pfaffian of HPBC . The topological invariant is calculated as

M = sign
(
Pf(H̃(0))Pf(H̃(π))

)
(6.3)

= sign

(
1−

(
r2

r3

)2
)

=

{
+1 for r < 1

−1 for r > 1
. (6.4)

Here, M = −1 denotes the topologically nontrivial phase. The topological invariant can
also be read of from the contour traced by h(k) for k ∈ [0, 2π]. In the topologically
nontrivial phase the curve h(k) winds around the origin, see Figure 6.4, insets.

Topological condensed matter theory predicts that a semi-infinite system with a sharp
boundary in the topologically nontrivial phase has an edge mode, that is a kernel vector
that is localized at the boundary. For the ALVE, this means that the mass of the system
polarizes to the left boundary whenM = −1.

In the numerical integrations we observe that whenM = +1, mass polarizes to the right
boundary. This switch of polarization from the left to the right boundary when leaving the
topologically nontrivial phase is a consequence of the symmetry between intra-size coupling
(r3) and inter-size coupling (r2). By switching the roles of unit cell (r3 : 2m → 2m − 1)
and coupling (r2 : 2m+1→ 2m) we also exchange the topological invariant: As A consists
of S = 2n− 1, i.e., n− 1 and a half unit cell, a non-trivial left boundary implies a trivial
right-boundary and vice versa.
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6.3.2 Algebraical approach: The Szegő-Widom theorem

As we are ultimately interested in the properties of a real antisymmetric matrix, we can
alternatively find an algebraic interpretation for the topological phase transition that occurs
when r = 1. Polarization can be understood by introducing a Toeplitz matrix ALB of size
2n as an intermediary between the diamond chain A (S = 2n − 1) and the periodic
system APBC (S = 2n). The Szegő-Widom theorem gives insight into the relation of the
determinant of a circulant matrix (periodic system) and the corresponding open system
(Toeplitz matrix). The situation when the fraction of determinants of the circulant and
Toeplitz matrix is zero in the limit of infinite systems (n → ∞) is associated with a
topological phase transition [182, 183]. In the topologically nontrivial case, ALB has a
pair of eigenvectors that approach zero for n→∞, such that (in contrast to the circulant
matrix), the Toeplitz matrix, has a zero mode.

For the diamond chain, looking at the fraction of determinants, we find

detTn
detCn

S→∞−−−→

{
1 for r < 1

0 for r > 1
(6.5)

Details of the calculation are presented in Section 6.B. Simply speaking, when the fraction
of determinants approaches a nonzero constant, the two systems have similar spectral
properties: The open system ALB does not ’feel’ the boundary. In contrast, when the
fraction of determinants approaches zero, one pair of eigenvalues of ALB approaches zero,
indicating the appearance of an asymptotic zero mode. This zero mode is localized at the
boundary, and can be extrapolated from the adjugate vector of A.

6.4 Condensate vector
The kernel vector of the coupling matrix A gives key informations about the long-time
dynamics of the ALVE: The condensate vector is not only the stationary state of the
ALVE (x∗ = c implies ∂tx∗α = 0), but its entries equal the temporal average occupation of
each site, cα = 〈xα〉∞ and its fluctuations 2.4.

The kernel vector of A can be calculated as the adjugate vector that makes use of
Pfaffians of subnetworks, see the detailed calculations in Section 6.4. The Pfaffians of
subnetworks can be expressed as linear recursive polynomials in their size m,

fm(a, b) = afm−1(a, b) + bfm−2(a, b) . (6.6)

For the diamond chain, the variables a and b are functions of the transition rates r1, r2, r3, r4.
The kernel vector c = (c1, . . . , c2n−1) of the diamond chain reads(

c2m−1

c2m

)
=

1

C

(
fm(r3, r1r4)fn−m+1(r2, r1r4)
fm(r3, r1r4)r1fn−m(r2, r1r4)

)
, m = 1, ..., n− 1 . (6.7)

and c2n−1 = 1
C
fn+1(r3, r1r4)f1(r2, r1r4). Here, C denotes the normalization constant that

ensures
∑

α cα = 1. Details of the calculation are presented in Section 6.B.1.
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Asymptotic behavior: exponential decay. The condensate vector is constructed as
a combination of two sequences. The first sequence, fm(r3, r1r4), increases with the index
in such a way that both states of a unit cell (e.g., 2m − 1 and 2m) receive the same
contribution. The recursive series is initialized at the boundary, where it ensures the
boundary condition.
On the other hand, the sequence fn−m+1(r2, r1r4) starts at the final state and increases
with decreasing index. Here, the two states of neighboring unit cells, 2m + 1 and 2m,
receive the same factor. This sequence proceeds from right to left, ensuring the boundary
condition at the final state.

For large m, the linear recursive sequences fm(a, b) approach the asymptotically ex-
ponential behavior fm(a, b) ∼ (φ+(a, b))m = (a/2 +

√
a2/4 + b)m, see Section 6.E. In the

bulk of a large enough system, for both sequences the distance from their initial value at
the boundary are large enough such that they are well approximated by their asymptotic
behavior. Inserting the asymptotics in the condensate vector (6.7), in the bulk we find an
exponential decay of cα ∼ exp(−α/lp). The penetration depth, lp = 2/ ln r′, is calculated

as r′ =
r2+
√
r22+4r1r4

r3+
√
r23+4r1r4

. This is precisely the decay observed in the numerical integrations in

Figure 6.2

Asymptotic zero mode of a semi-infinite system. From the condensate vector, we
can also extrapolate the asymptotic zero mode of a semi-infinite system whose existence is
predicted by the topological analysis 6.3.

We assume that the semi-infinite system has a left boundary and is infinitely large, that
is the right boundary is shifted to infinity. It can thus be understood as the infinite size
limit of the original system A. The asymptotic kernel vector for this semi-infinite system,
c∞, has the form (

c∞,2m−1

c∞,2m

)
=

fm(r3, r1r4)

φ+(r2, r1r4)m

(
φ+(r2, r1r4)

r1

)
. (6.8)

Here, the linear recursive polynomial fm(r3, r1r4) secures that the boundary condition at
he left boundary is fulfilled, while the contribution 1/φ+(r2, r1r4)m is the asymptotic of the
sequence securing the right-boundary condition in the finite system. Taken together, this
vector is no kernel vector of a finite system of any size as the right boundary condition is
not fulfilled. Thus, it is an asymptotic kernel vector that fulfills left boundary condition
and extends infinitely to the right as a decaying sequence.

Discussion. The sign of the penetration depth and thus the polarization is decided by
the sign of ln r′. When r′ < 1 overall mass in the system polarizes to the right, when
r′ > 1, mass polarizes to the left. Although the sign of lp does not directly depends on
r, the phases r ≷ 1 directly correspond to r′ ≷ 1. The topological phases identified using
the framework of topological band theory translate directly to the polarizations that arise
from r′. Although the rates r1, r4 do not influence the orientation of polarization (left or



6.5 The K4 chain 117

right), they can drastically influence its strength. When r1, r4 � r2, r3, r′ is driven close to
the transition point (r′ → 1) and polarization may be barely noticeable in a finite system,
see Figure 6.10.

6.5 The K4 chain
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Figure 6.5: The K4 chain. The network is obtained from the diamond chain by adding an
additional interaction 2m + 2 → 2m with rate r5. The name derives from the graph theoretical
motif of the complete graph with four vertices K4 [53] (highlighted in light red). The K4 chain
can be though of as two RPS chains layered on top of each other. The RPS cycles are highlighted
in grey.

As already mentioned in Section 6.2, the observations found for the diamond chain
persists when including an additional interaction 2m

r5−→ 2(m − 1), see Figure 6.5. The
resulting network can be thought of as two RPS chains layered on top of each other. As
all connections between all vertices of neighboring unit cells are realized, this network is
the most general one dimensional chain with a two element unit cell. Note that the K4

chain is not a coexistence network as it contains crossing edges (with rates r2 and r5) that
disagree with the crossing condition (4.3), for details see Section 6.C.1. Thus, depending
on the transition rates r1, . . . , r5, we observe both coexistence of all states, or extinction
and thus decomposition into disconnected subsystems, see Section 6.C.

6.5.1 Topological invariant and phenomenology

As for the diamond chain, we can define a Hamiltonian H and perform a Fourier transform,
see Section 6.A. For the topological invariant we find

M = sign

(
1−

(
r2 + r5

r3

)2
)
, (6.9)

indicating that the value of the control parameter r̃ = r2+r5
r3

sets the topological phase,
with topologically nontrivial behavior for r̃ > 1.

Indeed, we observe the same qualitative behavior as for the diamond chain and the
RPS chain:
Dependent on r̃, we find robust polarization of the average mass 〈xα〉∞, with asymp-
totic exponential decay 〈xα〉∞ ∼ e−α/lp from the boundary into the bulk, with a tran-
sition without polarization at r̃ = 1. As penetration depth we find lp = 2/r′ with
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Figure 6.6: Polarization of mass in the K4 chain The K4 chain shows the same phenomenol-
ogy as the diamond and the RPS chain. The temporal mass averages 〈xα〉 of single numerical
integrations of the ALVE (2.1) are polarized to the right for r < 1 and to the left for r > 1 on
a lin-log scale. For r = 1, the average mass is uniformly distributed on the whole chain. The

slope in the lin-log plot is −0.5 log (r2+r5)+
√

(r2+r5)2+4(r1r4−r2r5)

r3+
√
r23+4(r1r4−r2r5)

. Polarization is no state of rest

(non-vanishing fluctuations σα,T around the averages; insets). (a-c) (ii) Polarization is robust
against perturbations of the individual rates (εα,β uniformly sampled in [−0.25, 0.25]) with the
same characteristics as without perturbations.

r′ =
(r2+r5)+

√
(r2+r5)2+4(r1r4−r2r5)

r3+
√
r23+4(r1r4−r2r5)

, see Figure 6.6. These numerical findings are backed by

the adjugate vector, for details see Section 6.B.1.

6.5.2 Extinction in the K4 chain

As a new feature, in the dynamics of the K4 chain extinction can occur. Dependent on
the rates, states go extinct such that the chain dissects into disconnected subnetworks.
The size of the remaining disconnected subnetworks depends on the rates alone and is
independent of the system size. Simply speaking, the rates define a maximum sustainable
size for which a subnetworks kernel vector is strictly positive.

If all states survive or not is decided by sign and magnitude of the expression r2
3/2 +

r1r4 − r2r5, as shown in Figure 6.7:

• For r2
3/2 + r1r4 − r2r5 > 0, all states survive, see Figure 6.7(a),

• when r2
3/4 + r1r4 < r2r5 < r2

3, the chain decomposes into disconnected chunks whose
size depends sensitively on the magnitude of r2r5, see Figure 6.7(b-c).

• Finally, when r2
3 < r2r5, the K4 chain separates into disconnected RPS cycles, see

Figure 6.7(d).

The subsystems are unconnected, separated by the extinction of one RPS cycle. Inter-
estingly, extinction occurs only in the topologically nontrivial phase r < 1, when mass
polarizes to the left.
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Figure 6.7: Extinction in the K4 chain In the topologically nontrivial phase (r > 1), in the K4

chain, extinction and condensation is possible. When increasing r2r5 (here, r5 is kept constant),
the system transitions from coexistence of all states (a) to separation into disconnected chunks
whose size depends sensitively on the rates (b-c). Below the critical value, r2r5 > r1r4 + r2

3, the
chain separates into disconnected RPS cycles (d).

Extinction in the K4 chain can be understood on the basis of the condensate vector.
As for the diamond chain, also for its augmented version the adjugate vector consists of
a product of linear recursive polynomials, see Section 6.B.1. Simply speaking, extinction
in the K4 chain occurs when the adjugate vector contains zero or negative entries. In
this case, the system divides into the largest subsystems for which the adjugate vector has
only positive entries. The size of these subsystems depends on the first appearance of a
nonpositive value in the linear recursive sequences that make up the adjugate vector, for
details see Section 6.C. Summarizing, for specific choices of parameters, in the K4 chain
extinction occurs. For every choice of parameters r1, ..., r5 there is a largest size (between
three and infinity) for which the condensate vector has no negative entries. This size
determines the size of subsystems that survive.

Variants of 1D chains. Combining the topological invariant calculated above with
the adjugate vector (calculated analogous to the adjugate vector of the diamond chain in
Section 6.B.2) allows us to generalize the predictions of topological phases to arbitrary
one dimensional lattices with two element unit cells. First, we discuss the topological

phase, which, for the K4 chain, is decided by sign
(

1−
(
r2+r5
r3

)2
)
. As long as we preserve
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Figure 6.8: Properties of different 1D lattices Changing the direction of arrows, i.e., the
network topology, can affect coexistence and topological phase. Three variants in the network
topology are presented in comparison to the K4 chain (top). In the network on the left, the
arrows which direction is changed compared to the K4 chain are highlighted in green. When the
expression in the center column is fulfilled, the system is topologically nontrivial (M = −1). The
expressions in the right column indicates wether all states coexist.

the network topology, that is, all variables r1, ..., r5 can only be positive, the topological
phase is decided thus decided by r2 + r5 ≷ r3. However, here we extrapolate the results
discussed so far to changed network topologies. For example, inverting the direction of
the interactions between vertices 2m and 2m+ 2, or, equivalently changing the sign of r4,
does not influence the topological phase. When the interaction identified by r5 is flipped,
the topological phase is decided by |r2+r5|

r3
≷ 1, as a result of the square in the topological

invariant. The topological non-trivial phases for more network topologies derived from the
K4 chain by inverting interactions are shown in Figure 6.8 in the center column. The same
argument can be applied to the condensate vector, which is calculated in analogy to the
diamond chain in Section 6.B.2. For the K4 chain, the adjugate vector consists of the linear
recursive sequences fm(r3, r1r4 − r2r5) and fm(r2 + r5, r1r4 − r2r5). For arbitrarily large
systems, coexistence of all states occurs when both sequences are strictly positive for all
indices m. As shown in Section 6.E, for a linear recursive sequence fm(a, b) this is the case
when a2/4+b > 0. For the K4 chain network topology, only the sequence fm(r3, r1r4−r2r5)
can obtain negative values, deciding over coexistence and extinction. However, when the
network topology is manipulated, both sequences can inhibit coexistence of all states. For
example, inverting both interactions r4 and r5, the restrictions for coexistence amount to
r2

3/4− (r1r4− r2r5) > 0 and (r2 + r5)2/4− r1r4. In this case, also the initial value of a must
be positive, adding (r2− r5) > 0 to the restrictions. In total, the conditions for coexistence
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in arbitrarily large chains derived from the K4 chain by inverting interactions are shown in
Figure 6.8 in the right column. Note that the conditions presented in Figure 6.8 also apply
when either reversing all edges (an overall minus sign does not change the properties of the
matrix) or exchanging labels of odd and even states (simultaneously reordering matrix rows
and columns does not change matrix properties). For networks where only unidirectional
mass flow is possible, e.g., mass always flows to the lower row of vertices which is oriented
to the right, coexistence of all states is never possible as the network is no longer strongly
connected, see Section 3.4.

6.6 Differential difference equations and solitonic waves
In this section we will shortly derive the differential difference equations that arise from
diamond chain and K4 chain at the respective critical points. The study of differential
difference equations and their solutions has a long tradition in soliton physics and the
study of integrable systems [187, 171, 170, 41]. We numerically found solitonic waves for
both the diamond chain and its augmented version at the critical point r = 1. Reformulated
as a differential difference equation, these equations resemble prominent examples such as
the relativistic Toda lattice and the Volterra lattice. We hope that the results presented
here inspire further studies.

In order to derive a differential equation for traveling waves, we assume that the tem-
poral evolution of all odd states and of all even states is identical, but shifted in time.
For an infinite one dimensional chain, all states with odd index (even index) have the
same interaction topology, thus for the odd (even) states we introduce a universal function
x2m−1 = u(ζm) (x2m = v(ζm)), respectively. Here, ζm = c1m + c2t + δ, where c1 is the
spatial shift between states, c2 is the speed of the wave and δ is an arbitrary offset.

In this condensed form, the one dimensional chains reduce to the differential difference
equation(

x2m−1(t)
x2m(t)

)
=

(
u(ζ(m, t))
v(ζ(m, t))

)
=

(
um
vm

)
, (6.10)

d
dt

(
um
vm

)
=

(
um(r2(vm − vm−1) + r5(vm − vm+1) + r1(um−1 − um+1))
vm(r2(um+1 − um) + r5(um−1 − um) + r4(vm+1 − vm−1))

)
. (6.11)

Here, the constants r1, r2, r4, r5 are included to highlight which contributions arises from
which edge. Note that the rate r3 = r2 + r5, such that the system is at the transition point
between the topological phases.

Setting r1 = r2 = 1 and r4 = r5 = 0 one recovers the differential difference equation
of the RPS chain. Reversing the interaction r1 = −1, yields the DDE for the relativistic
Toda lattice, a famous example in the study of solitons in integrable lattices [48, 188].

With the rates r1 = r2 = r4 = 1 and r5 = 0 (corresponding to the diamond lattice) we
achieve a DDE which has the surprising phenomenology of two classes of positive solitonic
waves traveling in opposite directions.
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Finally, choosing r1 = r2 = r4 = r5 = 1 yields the DDE for the K4 chain. This equation
has interesting properties by itself which will be discussed in the following.

The DDE for the K4 chain at the critical point corresponds to the rates r1, r2, r4, r5 = 1
and r3 = 2. For this case we find

d
dt

(
um
vm

)
=

(
um(vm − vm−1 + (vm − vm+1) + um−1 − um+1)
vm(um+1 − um + (um−1 − um) + (vm+1 − vm−1))

)
(6.12)

A transformation of variables yields

d
dt

(
xm
ym

)
=

(
um + vm
um − vm

)
=

(
ym−1xm − xm+1ym

ym(ym−1 − ym)− xm(xm+1 − xm)

)
(6.13)

Assuming xm = 0, the system simplifies to ∂tym = ym(ym−1 − ym). Note that this as-
sumption is unphysical for the context in which the ALVE is usually applied as negative
occupation of states is not possible.
However, we mention this setting here as a traveling wave solution can be found using the
hyperbolic tangent ansatz [172, 188]:

ym = c2

(
1

tanh(c1)
− tanh(c1m+ c2t+ δ)

)
. (6.14)

The results stated here are meant to give an idea on how to approach an analysis of
solitonic waves in the ALVE and hopefully inspire future studies.

6.7 Summary of the results
In this chapter we extended the observations and the analysis of the RPS chain to general
one dimensional chains with a two element unit cell. We focused on two examples, the
diamond chain and the K4 chain, that can be viewed as successive augmentations of the
RPS chain. The ALVE dynamics on these chains shows the same qualitative behavior as
for the RPS chain: We observe robust polarization of the average mass that depends on a
control parameter, and solitary waves at the transition point.

A full analytic treatment is possible on the basis of the adjugate vector that consists
of linear recursive sequences. The exponential polarization emerges as the asymptotic
behavior of the linear recursive sequences away from the boundaries in the bulk. Thus, in
contrast to the RPS chain, the full dynamics cannot be understood solely on the basis of
the Fourier transform of the periodic network.

As a new feature, we find extinction in the K4 chain. Beyond a threshold value, the
K4 chain dissects through extinction into subsystems whose size sensitively depends on
the rates. Interestingly, extinction only occurs in the topologically nontrivial phase. We
use the results for the K4 chain to predict the control parameter and critical point of
topological phase transitions for other network topologies of one dimensional chains.

Finally, we derived differential difference equations for the diamond and the K4 chain
at the critical point and give an (unphysical) example for a traveling wave solution.
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Figure 6.9: With fixed values r1 = 1, r2 = 0.5, r3 = 1, the shape of the spectrum changes when
varying r4. However, the topology does not change. Although for r4 = 1 the spectrum becomes
point symmetric (as one would expect in a system with chiral symmetry), there is no accompanying
symmetry operator of the Hamiltonian such that the symmetry class of the Hamiltonian remains
unchanged.
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Figure 6.10: The relative magnitude of r1, r4 in relation to r2, r3 does not change the topological
phase, however, it influences the distance to the critical point and thus the strength of polarization.

6.A Calculation of the topological invariant of the dia-
mond chain and the K4 chain

Here we derive the Fourier transformed Hamiltonian of the K4 chain and calculate its
topological invariant. When setting r5 = 0 the results simplify to the case of the diamond
chain.
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Figure 6.11: The influence of r1, r4 on the penetration depth lp = 2/ ln r′ comes only from
the product r1r4. When keeping the product constant and varying the values, the polarization
strength is not changed, while the distribution of mass in one unit cell is shifted. Increasing r4 in
relation to r2 shifts mass from the even sites (a) to the odd sites (c).

The periodic chain corresponds to a block circulant matrix. We introduce a
block circulant matrix APBC which corresponds to the 1D K4 chain with periodic bound-
ary conditions as indicated with the grey arrows in Figure 6.5. Generally, a circulant
matrix is defined by a generating vector c =

(
c0 c1 ... cS−1

)
such that (C)kl = cl−k

where we assume periodicity, c−k = cS−k. In the given case, as we are studying a block
circulant matrix, each of the generating elements ak is a 2 × 2 block matrix. As APBC is
an antisymmetric matrix, we require ak = −aT−k.

For the K4 chain, there are only interactions between neighboring unit cells, such that
the only nonzero entries in the generating vector are a0 (which defines the coupling in
one unit cell) and a1 = −aT−1 = −aTS−1 (containing the coupling between neighboring unit
cells). A matrix of this form, where only a diagonal band consisting of the main diagonal
and possibly some off-diagonals are nonzero, is also called a block banded matrix [189].

Taken together, we find (cf. also matrix A (6.1))

a0 =

(
0 r3

−r3 0

)
= −aT0 (6.15)

a1 =

(
−r1 −r5

r2 r4

)
= −aT−1 . (6.16)

As A is an antisymmetric matrix, its eigenvalues are purely imaginary, see Section 3.2. To
facilitate the analysis of the Fourier transform, the Hamiltonian H = iAPBS is introduced.
The Hamiltonian is also block circulant with the blocks Hm = iAm, and hermitian, such
that its eigenvalues are real.

Calculation of the Fourier transform of the periodic system and its properties.
From the blocks of the circulant matrix it is straightforward to calculate the Fourier trans-
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form of H,

H̃(k) = e−ik(−HT
1 ) +H0 + eikH1 (6.17)

=

(
ir1(e−ik − eik) ir3 − ir5e

ik − ir2e
−ik

−ir3 + ir5e
−ik + ir2e

ik ir4(eik − e−ik)

)
(6.18)

=

(
2r1 sin k ir3 + sin k(r5 − r2)− i cos k(r5 + r2)

−ir3 + sin k(r5 − r2) + i cos k(r5 + r2) −2r4 sin k

)
,

(6.19)

=


(r1 − r4) sin k
(r5 − r2) sin k

−r3 + (r2 + r5) cos k
(r1 + r4) sin k

 · σ = h · σ (6.20)

The Fourier transform is periodic in k → k + 2π, the values of k depend on the size of the
system S = 2n as k = 2π

n
l and l = −bn

2
c, ..., 0, 1, ..., bn

2
c.

The last line contains the projection of H̃(k) onto the Pauli matrices σ0, ..., σ3. From
h the determinant and the eigenvectors can be directly read off [149]:

det H̃(k) = h2
0 − h2

1 − h2
2 − h2

3 = −4r1r4 sin k2 − (r5 − r2)2 sin k2 − ((r2 + r5) cos k − r3)2 ,

(6.21)

λ± = h0 ±
√
h2

1 + h2
2 + h2

3 (6.22)

= (r1 − r4) sin k ±
√

(r2 − r5)3 sin k2 + ((r2 + r5) cos k − r3)2 + (r1 + r4)2 sin k2

r±(k) =
1√

2|h|2 ± 2h3

√
|h|2

(
±
√
|h|2 + h3

h1 + ih2

)
. (6.23)

The two bands of the spectrum are shown in Figure 6.4 for the two topological phases
and the transition point. The determinant is either zero at the topological transition
(r2 + r3) = r3 when k = 0, or for specific complex values, see Section 6.A.1.

Note that h0 is neglectable: It contributes to the eigenvectors only as a shift, and not
at all to the eigenvectors and thus the topological invariant. The insets in Figure 6.4 are
plots of the second and third component of the rotation

T · h =


r1+r4√

(r1+r4)2+(r2−r5)2
0 (r5−r2)√

(r1+r4)2+(r2−r5)2

0 1 0

− r1+r4√
(r1+r4)2+(r2−r5)2

0 (r5−r2)√
(r1+r4)2+(r2−r5)2

 ·
h1

h2

h3

 =


2(r5−r2)(r1+r4) sin k√

(r1+r4)2+(r2−r5)2

−r3 + (r2 + r5) cos k
0

 .

(6.24)

where r5 = 0 to fit the diamond chain.
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Finding the symmetry class. The classification of a topological hamiltonian is carried
out by analysis of its unitary symmetries. The K4 chain (and with it the diamond chain)
only has a "particle hole symmetry", which puts it in symmetry class D.

The "particle hole symmetry" is an intrinsic property of all antisymmetric matrices and
revealed by the unitary operator C = σ0 · κ, C−1C = 1:

H̃(k) = H0 +
d∑
j=1

(
eijkHj − e−ijkHT

j

)
(6.25)

κH̃(k) = −H0 −
d∑
j=1

(
e−ijkHj − eijkHT

j

)
= −H̃(−k) (6.26)

⇒ C · H̃(k) + H̃(−k) · C = 0, (6.27)

where the last line reads as an operator identity.
For 2 × 2 Hamiltonians in class D, the topological invariant is calculated as the so-called
Pfaffian invariance [181, 179]:

M = −sign
(
Pf(H̃(0))Pf(H̃(π))

)
(6.28)

= sign ((r3 − (r5 + r2))(r3 + (r5 + r2)))) (6.29)
= sign

(
r2

3 − (r2 + r5)2
)

(6.30)

= sign

(
1−

(
r2 + r5

r3

)2
)
. (6.31)

This equation both identifies the control parameter of our system and, for given rates,
predicts the topological phase.

6.A.1 Complex zeros of the Fourier transformed Hamiltonian

In this section we calculate the (complex) values for k for which the Hamiltonian has a
zero mode. These values are determined from det H̃(k)

!
= 0. From the solutions k′ of this

equation we can read off the decay rate of the polarization.

det(H̃) =r1r4(eik − e−ik)2 − (r3 − r2e
−ik − r5e

ik)(r3 − r2e
ik − r5e

−ik)

=
[
(r1r4 − r2r5)r′2 + r3(r2 + r5)r′

]
+
[
(r1r4 − r2r5)r′−2 + r3(r2 + r5)r′−1

]
− r2

3 − r2
2 − r2

5 − 2r1r4
!

= 0 ,

(6.32)

where we used the shorthand r′ = eik. In case r′±,± = φ±(r2+r5,r1r4−r2r5)
φ±(r3,r1r4−r2r5)

, where φ2
±(a, b) −

aφ− b = 0, the following identity applies:

b
φ2(a, b)

φ2(c, b)
+ bc

φ(a, b)

φ(c, b)
= aφ(a, b)− cφ(c, b) + b+ c2 (6.33)
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Using this identity in equation (6.32), we find that for each of the four values k = −i ln r′±,±,
the Hamiltonian has a kernel vector.

Interestingly, the correct decay observed in the ALVE, r′+,+ = φ±(r2+r5,r1r4−r2r5)
φ±(r3,r1r4−r2r5)

, is
a complex zero of the determinant of H̃. However, in contrast to the RPS chain, Sec-
tion 5.B.1, there is no way of finding the correct of the four solutions without further
analysis of the matrix, as the exponential decay is an asymptotic property.

6.B Calculation of the kernel vectors

6.B.1 Kernel vector of the diamond chain

 ( ) = ) * + ) * (  (

(a)

(b)

(c)

 ( ) =  ( ) = 1
Figure 6.12: Calculation of the adjugate vector of the diamond chain. Odd components
of the adjugate vector v2m−1 are determined by the Pfaffians of two unconnected subnetworks
(green and orange) (a). For even components v2m, in addition to the two subnetworks there is
a contribution r1 (purple) (b). The Pfaffians of the green and orange subnetworks both follow a
linear recursion relation in their size, allowing for an analytic calculation of the Pfaffians using
the results in Section 6.E.

Using the graph-theoretical definition of the Pfaffian introduced in Section 3.3.2, the
adjugate vector of the diamond chain can be directly computed from its network topology.

When calculating the α-th component of the adjugate vector, vα, we must find all perfect
matchings of the subnetwork Aα̂, that is the subnetwork obtained by deleting vertex α.

Conveniently, when removing a vertex from the diamond chain, the remaining sub-
network separates into two networks of similar shape, so called ladder graphs, see also
Figure 6.12 (a-b). As the two subnetworks are unconnected, we obtain the Pfaffian of the
full subnetwork by multiplying the Pfaffians of the two ladder graphs for odd components,
see Figure 6.12 (a). For even components, an additional factor of r1 is added as one edge
remains that is not part of the ladder graphs, see Figure 6.12 (b).
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Since the diamond chain is a condensate vector, the ladder graphs are oriented in a
Pfaffian orientation [57, 118, 55], such that all perfect matchings contribute additively:
The sign in equation (3.2) is always positive.

As shown in Figure 6.12 (c), the Pfaffian of a subnetwork of size n + 1 follows a
recursion relation of second order. Applying also the boundary condition, we find that
Pfaffian of the green network of size 2n follows the recursion relation fn+1(r3, r1r4), while
the orange network of size 2n has the Pfaffian fn+1(r2, r1r4) (colors refer to the networks
in Figure 6.12(a-b)). Here, fn(a, b) follows the definition in Section 6.E.

Taken together, the adjugate vector c of the diamond chain of size S = 2n− 1 reads

v =



f1(r3,r1r4)fn(r2,r1r4)
r1f1(r3,r1r4)fn−1(r2,r1r4)
f2(r3,r1r4)fn−1(r2,r1r4)
r1f2(r3,r1r4)fn−2(r2,r1r4)

...
fm(r3,r1r4)fn−m+1(r2,r1r4)
r1fm(r3,r1r4)fn−m(r2,r1r4)

...
fn−1(r3,r1r4)f2(r2,r1r4)
r1fn−1(r3,r1r4)f1(r2,r1r4)
fn(r3,r1r4)f1(r2,r1r4)


(6.34)

With a suitable normalization constant C, we recover the result presented in equation (6.7).
Note that the adjugate vector consists of one increasing and one decreasing sequence.

The linear recursive sequences asymptotically approach fn(a, b) ∼ φ+(a, b)n is derived
in Section 6.E. Using this result for the bulk of the condensate vector, that is far away
from both boundaries, yields(
c2m−1

c2m

)
∼
(
φ+(r3, r1r4)mφ+(r2, r1r4)n−m+1

r1φ+(r3, r1r4)mφ+(r2, r1r4)n−m

)
=

(
φ+(r2, r1r4)

φ+(r3, r1r4)

)−m(
φ+(r2, r1r4)n+1

r1φ+(r2, r1r4)n

)
.

(6.35)

From this form, we can read off the exponential decay cα ∼ e−α/lp = e−2α/ ln r′ with r′ =
φ+(r2,r1r4)
φ+(r3,r1r4)

, as given in the main text.

6.B.2 Kernel vector of the K4 chain

The adjugate vector of the K4 can be decomposed into three classes of subnetworks for
which we must find all perfect matchings, as indicated in Figure 6.13. Again, the polyno-
mials arising from the subnetworks can be expressed as linear recursive sequences in the
subnetworks size 2n. The sequence in Figure 6.13 (c) is

X(n) = fn+1(r3, r1r4 − r2r5) ,

which is simply an extension of the sequence used for the original diamond chain. The
sequence shown in Figure 6.13 (e), Y (n), relies in the sequence defined in Figure 6.13 (e),
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Figure 6.13: Calculation of the adjugate vector of the K4 chain. For odd (a) and even (b)
components of the adjugate vector, the Pfaffian of the corresponding subnetworks is calculated as
the product of two sequences. The recursion relations and initial conditions necessary to identify
the sequences are shown in (c) for the green, (d) for the orange and (e) for the purple network.

which is

Z(n) = r1fn+1(r2 + r5, r1r4 − r2r5) .

As shown in Figure 6.13 (d), the final sequence, Y (n), can be related to the sequence Z(n)
as Y (n) = r3Y (n − 1) + r4Z(n − 1), consequently following the same recursion rules as
Z(n). Together with the initial conditions and the identities derived in Section 6.E, the
full sequence reads

Y (n) = r2gn(r2 + r5, r1r4 − r2r5; 1/r2)

= r2fn(r2 + r5, r1r4 − r2r5) + (r1r4 − r2r5)fn−1(r2 + r5, r1r4 − r2r5)

= fn+1(r2 + r5, r1r4 − r2r5)− r5fn(r2 + r5, r1r4 − r2r5) .

Taken together, the adjugate vector of the K4 chain of size S = 2n− 1 has the form



130 6. Topological phases beyond rock-paper-scissors chains

v =



X(0)Y (n−1)
X(0)Z(n−1)
X(1)Y (n−2)

...
X(m−1)Y (n−m)
X(m−1)Z(n−m)

...
X(n−2)Y (1)
X(n−2)Z(1)
X(n−1)Y (0)


=



f1(r3,r1r4−r2r5)[fn(r2+r5,r1r4−r2r5)−r5fn−1(r2+r5,r1r4−r2r5)]
f1(r3,r1r4−r2r5)r1fn−1(r2+r5,r1r4−r2r5)

f2(r3,r1r4−r2r5)[fn−1(r2+r5,r1r4−r2r5)−r5fn−2(r2+r5,r1r4−r2r5)]

...
fm(r3,r1r4−r2r5)[fn−m+1(r2+r5,r1r4−r2r5)−r5fn−m(r2+r5,r1r4−r2r5)]

fm(r3,r1r4−r2r5)r1fn−m(r2+r5,r1r4−r2r5)

...
fn−1(r3,r1r4−r2r5)[f2(r2+r5,r1r4−r2r5)−r5f1(r2+r5,r1r4−r2r5)]

fn−1(r3,r1r4−r2r5)r1f1(r2+r5,r1r4−r2r5)
fn(r3,r1r4−r2r5)[f1(r2+r5,r1r4−r2r5)−r5f0(r2+r5,r1r4−r2r5)]


(6.36)

Again, using the asymptotic behavior of fn(a, b) for values far away from both boundaries,
we find the exponential decay e−α/lp , with elp/2 = r′ = φ+(r2+r5,r1r4−r2r5)

φ+(r3,r1r4−r2r5)
. Thus the topo-

logical transition depends on the control parameter r = r2+r5
r3

. Note that with r5 = 0, the
adjugate vector of the diamond chain is recovered.

6.C Extinction in the K4 chain

In this section we show that when the adjugate vector (6.36) has negative entries, in the
ALVE dynamics the augmented RPS chain dissects into disconnected chunks. First, we
show that the K4 chain is no coexistence network, such that coexistence of all states is
dependent on the transition rates.

6.C.1 The K4 chain is not a coexistence network

Here we show why theK4 chain is not a coexistence network due to violation of the crossing
condition (4.3).

The conditions which a hamiltonian network must fulfill in order to be a coexistence
network are formulated in a labeling that is ascending along the hamiltonian cycle. Here,
already the fragment formed by the first four vertices suffices to show that the K4 chain
is no coexistence network. An ascending labeling is achieved as follows (old vertex index
comes first): 1 → 3, 2 → 2, 3 → 4, 4 → 1. In this new labeling, this fragment has the
following edges:

1
r4−→ 2

r3−→ 3
r1−→ 4

3
r5−→ 1

r3−→ 4
r2−→ 2

The two edges 4 → 2 and 3 → 1 cross, the difference between start-vertices (and be-
tween end-vertices) is one. Thus, the crossing condition is violated, the K5 chain is not a
coexistence network, and dependent on the rates, extinction can occur.
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6.C.2 Conditions for extinction and the structure of the conden-
sate vector

The adjugate vector is constructed from linear recursive sequences. In Section 6.E.2, we
present conditions for when negative elements occur in a linear recursive sequence and
at which positions these occurrences are. Ultimately, the presence of negative or zero
elements in the adjugate vector, and with it extinction in the ALVE dynamics, is decided
by the expression a2/4 + b, where a and b are the coefficients of the recursion relation, see
Section 6.E.

As introduced above, the adjugate vector of the K4 chain consists of three sequences,
X, Y and Z, all of which linear recursive of second order. For the sequence X(m) =
fm+1(r3, r1r4 − r2r5), depending on r2r5 negative values are possible. In contrast, the
sequences Y and Z are based on fm(r2 + r5, r1r4 − r2r5). For this sequences, we find
a2/4 + b = (r2 + r5)2/4 + r1r4 − r2r5 = (r2 − r5)2 + r1r4 > 0. Thus, the sequences Y and
Z never assume negative values in the network topology of the K4 chain.

Coexistence of all states in the K4 chain is thus decided by X(m) = fm(r3, r1r4− r2r5)
or, more specifically, by K = r2

3/4 + r1r4 − r2r5. As presented in Section 6.E.2, for 0 > K
the position m of the first non-positive value, X(m) ≤ 0, decreases with decreasing K.
The first non-positive value decides the size of the surviving subnetworks:
When 0 > K, so r2r5 − r1r4 > r2

3/4, there is a finite value of X(m) that is non-positive,
there is extinction in the K4 chain. When additionally r2r5− r1r4 > r2

3, only disconnected
RPS cycles remain.

The dissection of the system can be easiest understood in the case that the surviving
block size contains three states. As a subnetwork of three states is a RPS cycle, a coexis-
tence network, this unit is sustainable for every choice of rates. This case is elaborated in
the following, the logic translates to larger subsystems.

The smallest sustainable system has three states, and the kernel vector v1 =
(
r4 r5 r3

)
(e.g. for the states 1, 2 and 4) or v2 =

(
r2 r1 r3

)
(for the states S − 2, S − 1 and S).

From these vectors, we can construct a condensate vector of the K4 chain:


0 r3 −r1 −r5 0 0 0 0 0
−r3 0 r2 r4 0 0 0 0 0
r1 −r2 0 r3 −r1 −r5 0 0 0
r5 −r4 −r3 0 r2 r4 0 0 0
0 0 r1 −r2 0 r3 −r1 0 0
0 0 r5 −r4 −r3 0 r2 r4 0
0 0 0 0 r1 −r2 0 r3 −r1
0 0 0 0 r5 −r4 −r3 0 r2
0 0 0 0 0 0 r1 −r2 0




r4
r5
0
r3
0
0

Kr2
Kr1
Kr3

 =


0
0

r1r4−r2r5+r23+Kr4r2
0

−r2r3−Kr1r2
−r3r4+K(r22+r1r4)

0
0
0

 (6.37)

As we assumed that 0 > r2
3 + r1r4 − r2r5, a fitting constant K can be found such that

the vector fulfills the properties of the condensate vector, (2.2) and (2.3). Note that the
condensate vector is not unique, indicating that, although the system will decay into RPS
cycles, there is no way of knowing how the total mass is distributed among the disconnected
subsystems.
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Extinction in the diamond chain is only possible in the topologically non-trivial
phase As shown above, extinction occurs only when 0 > r2

3/4+r1r4−r2r5. This requires
that the K4 chain is in the topologically nontrivial phase, as we will show in the following:
The system is in the topologically trivial phase when r′ = r2+r5

r3
< 1, or r2 + r5 < r3. For

K, this inequality implies

K =
r2

3

4
+ r1r4 − r2r5 >

(r2 + r5)2

4
+ r1r4 − r2r5 =

(r2 − r5)2

4
+ r1r4 > 0 . (6.38)

With r′ < 1 the value ofK cannot be negative, so extinction only occurs in the topologically
nontrivial phase.

6.D Calculation of the determinants and the Szegő-Widom
theorem

r = 0.5  (r1 = 1, r2 = 0.5, r3 = 1, r4 = 1) r = 2  (r1 = 1, r2 = 2, r3 = 1, r4 = 1)Im(λ) S = 2n = 14(a) (b) (c)Im(λ) Im(λ)
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Figure 6.14: In the topologically nontrivial phase, ALB becomes an asymptotic kernel
vector. The largest and smallest eigenvalues by magnitude are shown for the closed (red) and the
intermediate system (blue). In the topologically trivial phase (a), the spectra of both matrices
behave similar, which is captured by the fraction of determinants of APBC and ALB, which
approaches one with increasing size (inset). In contrast, in the topologically nontrivial phase (b),
ALB has one pair of eigenvalues that approaches zero, such that the fraction of determinants
converges to zero (inset). For fixed size, one observes that the spectrum of ALB deviates from
APBC above the transition point (c).

For the classification of the topological phase using the Szegő-Widom theorem, the
exact form of the determinant of the closed system APBC and the intermediate system
ALB is necessary. As for the adjugate vectors, analytic expressions can be obtained from
the Pfaffians of the networks, which are given by linear recursive polynomials.

6.D.1 Determinant of the closed diamond chain

For the diamond chain as defined in equation (6.1) and shown in Figure 6.1, we find the
following expressions for the determinants of the open and closed system:
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The case of the intermediate system, ALB, the Pfaffian is obtained as the polynomial
in Figure 6.12 (c):

det(APBC,n) = [fn+1(r3, r1r4) + r1r4fn−1(r3, r1r4)]2 (6.39)

In order to enumerate all perfect matchings of the closed system, APBC , we separate the
set perfect matchings by which edge incident to the vertex 1 they contain. For example,
the perfect matchings containing the edge 2→ 1 are obtained by removing this edge from
the periodic system, finding for the resulting subnetwork all perfect matchings and adding
the edge 2→ 1. This approach is convenient because by removing one edge, the system is
dissected into a finite chain, for which the Pfaffian is easily calculated as a linear recursive
polynomial, see Section 6.B.

Removing one edge breaks the periodicity of the system, and for the remaining network
the Pfaffian is a linear recursive sequence.
We find

Pf(ALB,n) = r3sign(id)fn(r3, r1r4) + r2sign(2n, 1, id1̂,2̂n)fn(r2, r1r4)+

r1r4 (sign(2n− 1, 1, 2, 2n, id2̂n−1,1̂,2̂,2̂n) + sign(3, 1, 2, 4, id3̂,1̂,4̂,2̂))︸ ︷︷ ︸
+2

fn−1(r3, r1r4)+

r1r4 (sign(2n− 1, 1, 2n, 2n− 2, id2̂n−1,1̂,2̂n,2̂n−2) + sign(3, 1, 2, 2n, id3̂,1̂,2̂,2̂n))︸ ︷︷ ︸
−2

fn−1(r2, r1r4)

= (r3fn(r3, r1r4) + 2r1r4fn−1(r3, r1r4))− (r2fn+1(r2, r1r4) + 2r1r4fn−1(r2, r1r4))

(6.40)

det(ALB,n) = [(fn+1(r3, r1r4) + r1r4fn−1(r3, r1r4))− (fn+1(r2, r1r4) + r1r4fn−1(r2, r1r4))]2

(6.41)

6.D.2 Determinant of the closed K4 chain

The determinants of the open and closed K4 chain are obtained in the same way as the
ones discussed above.

The Pfaffian of the open system, ALB, is given by the sequence X(n) in Section 6.B.2,
as can be seen from Figure 6.13 (c). The determinant of ALB is

det(ALB,n) = [fn+1(r3, r1r4 − r2r5) + (r1r4 − r2r5)fn−1(r3, r1r4)]2 . (6.42)

For the periodic system, the Pfaffian is calculated in the same way as for the diamond
chain, resulting in the following expression for the determinant:

det(APBC,n) =

[
(fn+1(r3, r1r4 − r2r5) + (r1r4 − r2r5)fn−1(r3, r1r4 − r2r5))

− (fn+1(r2 + r5, r1r4 − r2r5) + (r1r4 − r2r5)fn−1(r2 + r5, r1r4 − r2r5))

]2

(6.43)
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6.E Linear recursive polynomials of second order
The results in this Section are used for the analytic expressions for Pfaffians which appear
when calculating determinants and adjugate vectors of one-dimensional chains.

A linear recursive polynomial of second order is defined by a recursion relation and an
initial condition as follows:

fn+2(a, b) = afn+1(a, b) + bfn(a, b) ,

f0(a, b) = 0 ,

f1(a, b) = 1 .

(6.44)

Here, f1(a, b) = 1 can always be achieved by dividing the full sequence as fn = f̃n/f̃1. Note
that we assume a, b 6= 0.

Analytic expression for fn Analytic progress is possible using the characteristic func-
tion of fn. which is given by φ2 = aφ+ b. The characteristic function has two solutions,

φ± =
a

2
±
√
a2

4
+ b . (6.45)

Every element of the sequence can be calculated (assuming φ+ − φ− = 2
√

a2

4
+ b 6= 0) as

fn(a, b) =
φn+ − φn−
φ+ − φ−

, (6.46)

f0(a, b) =
1− 1

φ+ − φ−
= 0 , (6.47)

f1(a, b) =
φ+ − φ−
φ+ − φ−

= 1 = bfn−1(a, b) , (6.48)

fn+1(a, b) =
φ2

+φ
n−1
+ − φ2

−φ
n−1
−

φ+ − φ−
,

= a
φn+ − φn−
φ+ − φ−

+ b
φn−1

+ − φn−1
−

φ+ − φ−
= afn(a, b) + bfn−1(a, b) .

(6.49)

We can generalize this result to linear recursive sequences with differing initial condi-
tions.

The elements of the sequence gn(a, b, g0), which has the identical recursion relation as
fn(a, b) but the initial condition g0(a, b, g0) = g0, g1(a, bg0) = 1, can be calculated from
fn(a, b) as

gn(a, b, g0) = fn(a, b) + g0bfn−1(a, b) (6.50)

g0(a, b, g0) = f0(a, b) + g0bf−1(a, b) = g0
b

b
= g0

g1(a, b, g0) = f1(a, b) + g0bf0(a, b) = f1(a, b) = 1 .
(6.51)
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6.E.1 Asymptotic behavior of fn
When |φ+| > |φ−|, or equivalently

√
a2/4 + b > 0, the linear recursive sequence approaches

exponential behavior for large values. The sequence is then approximated by

gn(a, b) = φn−1
+

1− (φ−/φ+)n

1− (φ−/φ+)
+ bg0φ

(n−2)
+

1− (φ−/φ−)n−1

1− (φ−/φ+)
≈ φn−2

+

1− (φ−/φ+)
(φ+ + bg0)

(6.52)

6.E.2 Negative values of fn
In the K4 chain, extinction occurs when the linear recursive sequences that make up the
adjugate vector 6.B have non-positive entries. The size of the blocks of surviving strategies
is then fixed by the first non-positive position of the linear recursive sequence.

As long as φ± are real (a2/4 + b > 0), the asymptotic law derived above applies and

gn is increasing, there are no negative entries. When
√

a2

4
+ b becomes imaginary, the

polynomial begins to oscillate, such there will be negative values for gm. With decreasing
b, the position m for the first non-positive value decreases from m = ∞ to the smallest
possible value, m = 3.

Summarizing, we find three regions for the linear recursive polynomial:

• When a2/4 > −b: fn behaves asymptotically exponential as gn ∼ φn+

• For a2/4 > −b > a2: fn fluctuates, for some m > 3 there is a negative entry with
fm < 0. The value of m decreases with b and can thus far not be determined

• Finally, for−a2 ≥ b: The third element of the linear recursive sequence is nonpositive,
f3 ≤ 0

6.E.3 Traveling wave solution

Here we verify that the solution (6.14) the differential equation (6.13).

As stated in Section 6.6, with xm = 0, the differential equation for ym = um − vm is

∂tym = ym(ym−1 − ym) . (6.53)

Here we show that this equation is solved by

ym = c2

(
1

tanh(c1)
− tanh(c1m+ c2t+ δ)

)
. (6.54)

Substituting ζm = c1m+ c2t+ δ, the time derivative of ym is

∂tym = ∂tc2

(
1

tanh(c1)
− tanh(ζm)

)
= −c2

2(1− tanh(ζm)2) . (6.55)
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On the other hand, with the identity for the hyperbolic tangent tanh(a+ b) = tanh a+tanh b
1+tanh a tanh b

,
we find

ym(y)m− 1− ym) = c2
2

1− tanh(c1) tanh(ζm)

tanh(c1)

(
tanh(ζm)− tanh(c1)

1− tanh(ζm) tanh(c1)
− tanh(ζm)

)
(6.56)

=
c2

2

tanh(c1)

(
− tanh(c1) + tanh(ζm)2 tanh(c1)

)
(6.57)

= −c2
2(1− tanh(ζm)2) . (6.58)

Thus, ym solves the differential difference equation (6.13).



Chapter 7

Conclusion, discussion and outlook

7.1 Summary

In this thesis we studied the role of network topology for the dynamics of the antisymmetric
Lotka Volterra equation (2.1) (ALVE),

d
dt
xα(t) = xα(t)

S∑
β=1

aαβxβ(t) .

The interaction between states α is defined through the antisymmetric interaction matrix
A = −AT . As the ALVE is mass conserving and antisymmetric matrices can be repre-
sented as directed networks, the ALVE dynamics can be interpreted as a mass flow on a
network. This makes the ALVE a suitable model system for the study of the interplay
between network topology and dynamics. Among other applications, this system of non-
linear differential equations is the replicator equation for zero sum games in the context
of evolutionary game theory (see Section 1.3). For generic networks, one observes survival
of some states and extinction of the remaining states. Interestingly, it can be shown that
the set of surviving states depends only on the antisymmetric transition matrix and is
independent of the initial conditions. More precisely, the set of survivors is defined by the
so-called condensate vector of the matrix (see Section 2.2). In the special case that the
condensate vector is a strictly positive kernel vector of the interaction matrix, all states
survive, forming a network of interacting and competing species for all times. When ad-
ditionally the kernel vector is unique, its entries characterize the long-time limit of the
temporal average occupation, 〈xα〉T = 1/T

∫ T
0
dt xα. Kernel vectors of antisymmetric

matrices A can be calculated analytically using the Pfaffian, a determinant-like function
for antisymmetric matrices that is closely related to graph-theoretical properties of the
network corresponding to A. This connection between the kernel vectors of antisymmetric
matrices and survival, extinction and average mass distribution in the ALVE allows us to
discuss the ALVE dynamics in terms of the network topology of the underlying network.
The main findings of this thesis are:
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Topologically robust coexistence and coexistence networks

In the first project, presented in Chapter 4, we introduced the notion of coexistence net-
works, that is, networks which show coexistence of all states in the ALVE as a consequence
of the network topology alone. Exploiting the graph-theoretical interpretation of the Pfaf-
fian, we characterized the kernel of A in terms of network topological properties, namely by
all near-perfect matchings of the network defined by A. This interpretation enabled us to
formulate conditions with which to identify coexistence networks. Algebraically speaking,
coexistence networks correspond to antisymmetric matrices whose positions of positive,
negative, and zero entries ensures a strictly positive kernel vector for each choice of en-
tries magnitude. This project shows that in the ALVE, the qualitative dynamics, that is,
survival of all states, can be a consequence of the network topology alone. Coexistence
networks have relevance for population dynamics, as they are extraordinary robust network
motifs. In the context of game theory, coexistence networks are of interest as they are zero
sum games for which every strategy is necessary for every choice of payoff. Additional
applications are discussed in Section 4.5.

Topological phase transition in coupled rock-paper-scissors cycles

In the second project, presented in Chapter 5, we analyzed the long-time behavior of a spe-
cific coexistence network, the RPS chain. The RPS chain is constructed by concatenation
of identical RPS cycles. Numerical simulations of the ALVE on the RPS chain show that,
depending on the skewness, a ratio of two rates in the RPS cycles, the temporal average
mass polarizes to the boundaries. The system undergoes a transition from left to right po-
larization as the skewness parameter passes through a critical value, at the critical point,
solitary waves are observed. Remarkably, this phase transition falls into symmetry class
D within the “ten-fold way” classification scheme of gapped free-fermion systems, which
also applies, for example, to 1D topological superconductors: The polarization can be un-
derstood from the unique strictly positive kernel vector of the system which arises from a
topological phase transition of the chains interaction matrix through the bulk-boundary
correspondence. Thus, we found that the polarization states are topological phases of the
nonlinear ALVE dynamics. The discovery and characterization of topological phases in
the ALVE are of interest as this is the first report of topological phases in the context of
population dynamics. Additionally, for the ALVE the topological phases can discussed in
full through the adjugate vector, and not only in a linearized region around the fixed point.
As we present an algebraic characterization of the topological transition and discuss it in
terms of properties of lattices with different boundary conditions, we hope that our work
provides a relatively non-technical perspective on topological phases.

Topological phase transition beyond rock-paper-scissors

In the third project, presented in Chapter 6, we generalized the results on the RPS chain
to other one dimensional chains. We found that the topological phase transition of the
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temporal average mass found for the RPS chain is robust against augmentations of the
network topology with additional edges. The topological phases can be understood on the
basis of the strictly positive kernel vectors, which are obtained as combinations of linear
recursive sequences. This knowledge allowed us to extend the discussion of topological
phases beyond coexistence networks, where we showed that extinction occurs only in the
topologically nontrivial phase. We close with a derivation of the differential difference
equations for one dimensional chains at the transition point between the topological phases.
As these equations have numerical solutions that resemble solitary waves, this may be a
starting point for future research.

7.2 Outlook

The research presented in this thesis could be continued in different directions.

Population dynamics

As mentioned in the Introduction 1.3.1, the ALVE is a special case of both the replicator
equation and the generalized Lotka Volterra equation. The results presented here are con-
cerned with the exceptional stability of coexistence networks. If and how far this stability
ranges when adding either a slight symmetric perturbance to the interaction matrix, or
adding sources and sinks to the system is unknown so far. Mappings between the ALVE
and other dynamical systems (for example interpret the ALVE as a replicator equation
and map it onto a generalized Lotka Volterra equation or vice versa [25, 190]) one may
transport our results to different contexts.

Evolution of interaction networks

In the context of the evolution and development of ecosystems and foodwebs, the role of
coexistence networks is unknown. Assuming an evolutionary process in which network
topologies evolve, for example by invasion of additional species (similar to [7]), appearance
of new predation relations, and other mechanisms, the network topology would be con-
tinuously augmented and changed. In such a dynamics, a network could be extended by
mutation, followed by a reduction through extinction due to new interactions. As extinc-
tion reduces the dynamics to subnetworks in which all states survive, coexistence networks,
the most robust networks of survivors, could take the role of attractors of this evolutionary
process.

Topological phase transitions beyond one dimensional chains

The investigation of topological phase transitions in the context of population dynamics
could be continued in various ways:
As a continuation of our work, recently topological phase transition and chiral edge states in
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Kagome lattices constructed from RPS cycles were reported [191]. So far the analysis only
covers a linearization if the ALVE. For the Kagome lattice, the kernel is high-dimensional
such that a detailed connection between the condensate vector and the long-time behavior
of the system as for the RPS chain is not possible. The fact that the consequences of the
topological phases, namely chiral edge states, are nonetheless strikingly visible may give
new insights into the non-linear dynamics of the ALVE.

Interplay of topological phase transitions depending on density

In the context of microscopic reactions as introduced in Section 1.3.2, naturally a sub-
leading term in the population size can be included by allowing mutations. Through the
polarization of mass, the population density is reduced in parts of the system (due to
exponential decay from the boundary), such that an interplay between the leading order
dynamics and sub-leading effects may arise. Recently it was shown that diffusive dynamics
on one dimensional lattices can lead to topological phase transitions [167]. Coupling these
effects with the ALVE dynamics might lead to interesting interplay of two topological
phases in distinct density regions of the system.

Constructing topological systems by combination of directed multi-
state oscillators

The topological phase transitions on one-dimensional chains can be interpreted as a conse-
quence of the coupling topology. Potentially, using coupling topologies that are known to
give rise to topological phase transitions with local oscillators such as [30, 26, 192] instead
of the RPS cycle may lead to the discovery of robust dynamical modes.

Integrability of one dimensional chains at the topological transition
point

Finally, exact solutions for the ALVE dynamics at the topological transition point remain
unknown so far. As the structure of the differential difference equations derived in Sec-
tion 6.6 is closely related to several integrable systems that show solitary waves [41], the
existence of a closed solution seems reasonable. Additionally, as in the presented models
solitary waves can move into both directions, and are transformed into each other at the
edges of finite systems, new phenomena such as reflection of solitary waves at the systems
boundary may be investigated.



Bibliography

[1] J. Knebel, T. Krüger, M. F. Weber, and E. Frey. Coexistence and survival in con-
servative Lotka-Volterra networks. Phys. Rev. Lett., 110(16):168106, 2013. URL:
10.1103/PhysRevLett.110.168106, doi:10.1103/PhysRevLett.110.168106.

[2] J. Knebel, M. F. Weber, T. Krüger, and E. Frey. Evolutionary games of condensates
in coupled birth-death processes. Nature Communications, 6:6977, Apr 2015. URL:
10.1038/ncomms7977, doi:10.1038/ncomms7977.

[3] Ernesto Estrada and Philip A. Knight. A First Course in Network Theory. Oxford
University Press, Oxford, UNITED KINGDOM, 2015. URL: http://ebookcentral.
proquest.com/lib/ub-lmu/detail.action?docID=1992297.

[4] S. H. Strogatz. Nonlinear dynamics and chaos : with applications to physics, biology,
chemistry, and engineering. Westview Press, 2015.

[5] Eli Ben-Naim, Hans Frauenfelder, and Zoltan Toroczkai. Complex networks, volume
650 of Lecture notes in physics. Springer Science & Business Media, 2004.

[6] J. O. Haerter, N. Mitarai, and K. Sneppen. Food web assembly rules for generalized
lotka-volterra equations. PLOS Computational Biology, 12(2):1–17, 02 2016. URL:
10.1371/journal.pcbi.1004727, doi:10.1371/journal.pcbi.1004727.

[7] J. O. Haerter, N. Mitarai, and K. Sneppen. Theory of invasion extinction dynamics
in minimal food webs. Phys. Rev. E, 97:022404, Feb 2018. URL: 10.1103/PhysRevE.
97.022404, doi:10.1103/PhysRevE.97.022404.

[8] Brad K. Hulse, Hannah Haberkern, Romain Franconville, Daniel B. Turner-
Evans, Shinya Takemura, Tanya Wolff, Marcella Noorman, Marisa Dreher,
Chuntao Dan, Ruchi Parekh, Ann M. Hermundstad, Gerald M. Rubin, and
Vivek Jayaraman. A connectome of the drosophila central complex reveals net-
work motifs suitable for flexible navigation and context-dependent action selec-
tion. bioRxiv, 2020. URL: https://www.biorxiv.org/content/early/2020/
12/22/2020.12.08.413955, arXiv:https://www.biorxiv.org/content/early/
2020/12/22/2020.12.08.413955.full.pdf, doi:10.1101/2020.12.08.413955.

10.1103/PhysRevLett.110.168106
http://dx.doi.org/10.1103/PhysRevLett.110.168106
10.1038/ncomms7977
http://dx.doi.org/10.1038/ncomms7977
http://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=1992297
http://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=1992297
10.1371/journal.pcbi.1004727
http://dx.doi.org/10.1371/journal.pcbi.1004727
10.1103/PhysRevE.97.022404
10.1103/PhysRevE.97.022404
http://dx.doi.org/10.1103/PhysRevE.97.022404
https://www.biorxiv.org/content/early/2020/12/22/2020.12.08.413955
https://www.biorxiv.org/content/early/2020/12/22/2020.12.08.413955
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2020/12/22/2020.12.08.413955.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2020/12/22/2020.12.08.413955.full.pdf
http://dx.doi.org/10.1101/2020.12.08.413955


142 BIBLIOGRAPHY

[9] Rekin’s Janky, Annelien Verfaillie, Hana Imrichová, Bram Van de Sande, Laura Stan-
daert, Valerie Christiaens, Gert Hulselmans, Koen Herten, Marina Naval Sanchez,
Delphine Potier, Dmitry Svetlichnyy, Zeynep Kalender Atak, Mark Fiers, Jean-
Christophe Marine, and Stein Aerts. iregulon: From a gene list to a gene regula-
tory network using large motif and track collections. PLOS Computational Biology,
10(7):1–19, 07 2014. URL: https://doi.org/10.1371/journal.pcbi.1003731,
doi:10.1371/journal.pcbi.1003731.

[10] Daniele Mercatelli, Laura Scalambra, Luca Triboli, Forest Ray, and Fed-
erico M. Giorgi. Gene regulatory network inference resources: A prac-
tical overview. Biochimica et Biophysica Acta (BBA) - Gene Regulatory
Mechanisms, 1863(6):194430, 2020. Transcriptional Profiles and Regulatory
Gene Networks. URL: http://www.sciencedirect.com/science/article/pii/
S1874939919300410, doi:https://doi.org/10.1016/j.bbagrm.2019.194430.

[11] Daniel J. Knight, G. Shinar, and M. Feinberg. Sharper graph-theoretical conditions
for the stabilization of complex reaction networks. Mathematical biosciences, 262:10–
27, 2015.

[12] Peter Krawitz and Ilya Shmulevich. Boolean Modeling of Biological Networks, pages
599–608. Springer New York, New York, NY, 2009. URL: https://doi.org/10.
1007/978-0-387-30440-3_40, doi:10.1007/978-0-387-30440-3_40.

[13] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002. URL: 10.1126/science.298.5594.824, doi:10.1126/science.298.5594.
824.

[14] Uri Alon. Network motifs: theory and experimental approaches. Nature Reviews
Genetics, 8(6):450–461, 2007. URL: https://doi.org/10.1038/nrg2102, doi:10.
1038/nrg2102.

[15] Erik van Nimwegen, James P. Crutchfield, and Martijn Huynen. Neutral evolution of
mutational robustness. Proceedings of the National Academy of Sciences, 96(17):9716,
08 1999. URL: http://www.pnas.org/content/96/17/9716.abstract, doi:10.
1073/pnas.96.17.9716.

[16] J. Gao, B. Barzel, and A.-L. Barabási. Universal resilience patterns in complex
networks. Nature, 530:307 EP –, 02 2016. URL: 10.1038/nature16948, doi:10.
1038/nature16948.

[17] Jeremy Gunawardena. Chemical reaction network theory for in-silico biologists. Notes
available for download at http://vcp. med. harvard. edu/papers/crnt. pdf, 2003.

https://doi.org/10.1371/journal.pcbi.1003731
http://dx.doi.org/10.1371/journal.pcbi.1003731
http://www.sciencedirect.com/science/article/pii/S1874939919300410
http://www.sciencedirect.com/science/article/pii/S1874939919300410
http://dx.doi.org/https://doi.org/10.1016/j.bbagrm.2019.194430
https://doi.org/10.1007/978-0-387-30440-3_40
https://doi.org/10.1007/978-0-387-30440-3_40
http://dx.doi.org/10.1007/978-0-387-30440-3_40
10.1126/science.298.5594.824
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1126/science.298.5594.824
https://doi.org/10.1038/nrg2102
http://dx.doi.org/10.1038/nrg2102
http://dx.doi.org/10.1038/nrg2102
http://www.pnas.org/content/96/17/9716.abstract
http://dx.doi.org/10.1073/pnas.96.17.9716
http://dx.doi.org/10.1073/pnas.96.17.9716
10.1038/nature16948
http://dx.doi.org/10.1038/nature16948
http://dx.doi.org/10.1038/nature16948


BIBLIOGRAPHY 143

[18] Amir Bashan, Ronny P. Bartsch, Jan. W. Kantelhardt, Shlomo Havlin, and Pla-
men Ch. Ivanov. Network physiology reveals relations between network topol-
ogy and physiological function. Nature Communications, 3(1):702, 2012. URL:
https://doi.org/10.1038/ncomms1705, doi:10.1038/ncomms1705.

[19] V. Volterra. Leçons sur la Théorie Mathématique de la Lutte pour la Vie. Gauthier-
Villars, Paris, 1931.

[20] E. Frey. Evolutionary game theory: Theoretical concepts and applications to micro-
bial communities. Physica A, 389(20):4265–4298, 2010. URL: 10.1016/j.physa.
2010.02.047, doi:10.1016/j.physa.2010.02.047.

[21] [online]URL: https://en.wikipedia.org/wiki/Rock_paper_scissors [cited
03.01.2021].

[22] J. v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen,
100(1):295–320, 1928. URL: https://doi.org/10.1007/BF01448847, doi:10.
1007/BF01448847.

[23] M. F. Weber, G. Poxleitner, E. Hebisch, E. Frey, and M. Opitz. Chemical war-
fare and survival strategies in bacterial range expansions. J. R. Soc. Interface,
11(96):20140172, 2014. URL: 10.1098/rsif.2014.0172, doi:10.1098/rsif.2014.
0172.

[24] B. Sinervo and C. M. Lively. The rock-paper-scissors game and the evolution of alter-
native male strategies. Nature, 380(6571):240–243, 1996. URL: 10.1038/380240a0,
doi:10.1038/380240a0.

[25] J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cam-
bridge University Press, Cambridge, 1998.

[26] M. A. Nowak and R. M. May. Evolutionary games and spatial chaos. Nature,
359:826–829, 1992. URL: 10.1038/359826a0, doi:10.1038/359826a0.

[27] E. Akin and V. Losert. Evolutionary dynamics of zero-sum games. J. Math. Biol.,
20(3):231–258, 1984. URL: 10.1007/BF00275987, doi:10.1007/BF00275987.

[28] T. Chawanya and K. Tokita. Large-dimensional replicator equations with anti-
symmetric random interactions. J. Phys. Soc. Jpn., 71(2):429–431, 2002. URL:
10.1143/JPSJ.71.429, doi:10.1143/JPSJ.71.429.

[29] Junpyo Park. Nonlinear dynamics with hopf bifurcations by targeted mutation in
the system of rock-paper-scissors metaphor. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 29(3):033102, 2021/01/04 2019. URL: https://doi.org/10.
1063/1.5081966, doi:10.1063/1.5081966.

https://doi.org/10.1038/ncomms1705
http://dx.doi.org/10.1038/ncomms1705
10.1016/j.physa.2010.02.047
10.1016/j.physa.2010.02.047
http://dx.doi.org/10.1016/j.physa.2010.02.047
https://en.wikipedia.org/wiki/Rock_paper_scissors
https://doi.org/10.1007/BF01448847
http://dx.doi.org/10.1007/BF01448847
http://dx.doi.org/10.1007/BF01448847
10.1098/rsif.2014.0172
http://dx.doi.org/10.1098/rsif.2014.0172
http://dx.doi.org/10.1098/rsif.2014.0172
10.1038/380240a0
http://dx.doi.org/10.1038/380240a0
10.1038/359826a0
http://dx.doi.org/10.1038/359826a0
10.1007/BF00275987
http://dx.doi.org/10.1007/BF00275987
10.1143/JPSJ.71.429
http://dx.doi.org/10.1143/JPSJ.71.429
https://doi.org/10.1063/1.5081966
https://doi.org/10.1063/1.5081966
http://dx.doi.org/10.1063/1.5081966


144 BIBLIOGRAPHY

[30] R. M. May. Stability and Complexity in Model Ecosystems. Princeton University
Press, Princeton, NJ, 1973.

[31] Y. Itoh. Boltzmann equation on some algebraic structure concerning struggle for
existence. Proc. Japan Acad., 47:854–858, 1971. URL: 10.3792/pja/1195526389,
doi:10.3792/pja/1195526389.

[32] E. Di Cera, P. E. Phillipson, and J. Wyman. Chemical oscillations in closed macro-
molecular systems. Proc. Natl. Acad. Sci. USA, 85(16):5923–5926, 1988. URL:
10.1073/pnas.85.16.5923, doi:10.1073/pnas.85.16.5923.

[33] E. Di Cera, P. E. Phillipson, and J. Wyman. Limit-cycle oscillations and chaos in reac-
tion networks subject to conservation of mass. Proc. Natl. Acad. Sci. USA, 86(1):142–
146, 1989. URL: 10.1073/pnas.86.1.142, doi:10.1073/pnas.86.1.142.

[34] C. Gardiner. Stochastic Methods: A Handbook for the Natural and Social Sciences.
Springer, Berlin, 2009.

[35] T. Reichenbach, M. Mobilia, and E. Frey. Mobility promotes and jeopardizes bio-
diversity in rock-paper-scissors games. Nature, 448(7157):1046–1049, 2007. URL:
10.1038/nature06095, doi:10.1038/nature06095.

[36] A. Szolnoki, M. Mobilia, L.-L. Jiang, B. Szczesny, A. M. Rucklidge, and M. Perc.
Cyclic dominance in evolutionary games: a review. J. R. Soc. Interface,
11(100):20140735, 2014. URL: 10.1098/rsif.2014.0735, doi:10.1098/rsif.
2014.0735.

[37] D. Vorberg, W. Wustmann, R. Ketzmerick, and A. Eckardt. Generalized Bose-
Einstein condensation into multiple states in driven-dissipative systems. Phys. Rev.
Lett., 111(24):240405, Dec 2013. URL: 10.1103/PhysRevLett.111.240405, doi:
10.1103/PhysRevLett.111.240405.

[38] D. Vorberg, W. Wustmann, H. Schomerus, R. Ketzmerick, and A. Eckardt. Nonequi-
librium steady states of ideal bosonic and fermionic quantum gases. Phys. Rev.
E, 92:062119, Dec 2015. URL: 10.1103/PhysRevE.92.062119, doi:10.1103/
PhysRevE.92.062119.

[39] C. W. Gardiner and P. Zoller. Quantum Noise. Springer, Berlin Heidelberg, 2004.

[40] A. Schnell, R. Ketzmerick, and A. Eckardt. On the number of bose-selected modes
in driven-dissipative ideal bose gases. Phys. Rev. E, 97:032136, Mar 2018. URL:
10.1103/PhysRevE.97.032136, doi:10.1103/PhysRevE.97.032136.

[41] Y. B. Suris. The Problem of Integrable Discretization: Hamiltonian Approach.
Progress in Mathematics. Birkhäuser, 2003.

10.3792/pja/1195526389
http://dx.doi.org/10.3792/pja/1195526389
10.1073/pnas.85.16.5923
http://dx.doi.org/10.1073/pnas.85.16.5923
10.1073/pnas.86.1.142
http://dx.doi.org/10.1073/pnas.86.1.142
10.1038/nature06095
http://dx.doi.org/10.1038/nature06095
10.1098/rsif.2014.0735
http://dx.doi.org/10.1098/rsif.2014.0735
http://dx.doi.org/10.1098/rsif.2014.0735
10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevLett.111.240405
10.1103/PhysRevE.92.062119
http://dx.doi.org/10.1103/PhysRevE.92.062119
http://dx.doi.org/10.1103/PhysRevE.92.062119
10.1103/PhysRevE.97.032136
http://dx.doi.org/10.1103/PhysRevE.97.032136


BIBLIOGRAPHY 145

[42] S. V. Manakov. Complete integrability and stochastization of discrete dynamical sys-
tems. Sov. Phys.-JETP, 40(2):269–274, 1975. URL: http://jetp.ac.ru/cgi-bin/
dn/e_040_02_0269.pdf.

[43] M Kac and Pierre van Moerbeke. On an explicitly soluble system of nonlinear
differential equations related to certain toda lattices. Advances in Mathematics,
16(2):160–169, 1975. URL: http://www.sciencedirect.com/science/article/
pii/0001870875901486, doi:https://doi.org/10.1016/0001-8708(75)90148-6.

[44] Joana M. Nunes da Costa and Pantelis A. Damianou. The negative relativistic toda
hierarchy and rational poisson brackets. Qualitative Theory of Dynamical Systems,
5(1):121–134, 2004. URL: https://doi.org/10.1007/BF02968133, doi:10.1007/
BF02968133.

[45] J Moser. Three integrable hamiltonian systems connected with isospectral de-
formations. Advances in Mathematics, 16(2):197–220, 1975. URL: http://
www.sciencedirect.com/science/article/pii/0001870875901516, doi:https:
//doi.org/10.1016/0001-8708(75)90151-6.

[46] Robert M. Miura. Korteweg-de vries equation and generalizations. i. a remarkable
explicit nonlinear transformation. Journal of Mathematical Physics, 9(8):1202–1204,
1968. URL: https://doi.org/10.1063/1.1664700, arXiv:https://doi.org/10.
1063/1.1664700, doi:10.1063/1.1664700.

[47] V. E. Zakharov, S. L. Musher, and A. M. Rubenchik. Nonlinear stage of parametric
wave excitation in a plasma. Sov. Phys.-JETP, 19:151, March 1974. URL: http:
//adsabs.harvard.edu/abs/1974JETPL..19..151Z.

[48] S. N. M. Ruijsenaars. Relativistic toda systems. Comm. Math. Phys., 133(2):217–247,
1990. URL: https://projecteuclid.org:443/euclid.cmp/1104201396.

[49] Philipp M. Geiger, Johannes Knebel, and Erwin Frey. Topologically robust zero-
sum games and pfaffian orientation: How network topology determines the long-
time dynamics of the antisymmetric lotka-volterra equation. Physical Review E,
98(6):062316–, 12 2018. URL: https://link.aps.org/doi/10.1103/PhysRevE.98.
062316, doi:10.1103/PhysRevE.98.062316.

[50] Johannes Knebel, Philipp M. Geiger, and Erwin Frey. Topological phase transi-
tion in coupled rock-paper-scissors cycles. Phys. Rev. Lett., 125:258301, Dec 2020.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.125.258301, doi:10.
1103/PhysRevLett.125.258301.

[51] H.W. Kuhn and A.W. Tucker. Linear Inequalities and Related Systems. Princeton
University Press, Princeton, NJ, 1956.

http://jetp.ac.ru/cgi-bin/dn/e_040_02_0269.pdf
http://jetp.ac.ru/cgi-bin/dn/e_040_02_0269.pdf
http://www.sciencedirect.com/science/article/pii/0001870875901486
http://www.sciencedirect.com/science/article/pii/0001870875901486
http://dx.doi.org/https://doi.org/10.1016/0001-8708(75)90148-6
https://doi.org/10.1007/BF02968133
http://dx.doi.org/10.1007/BF02968133
http://dx.doi.org/10.1007/BF02968133
http://www.sciencedirect.com/science/article/pii/0001870875901516
http://www.sciencedirect.com/science/article/pii/0001870875901516
http://dx.doi.org/https://doi.org/10.1016/0001-8708(75)90151-6
http://dx.doi.org/https://doi.org/10.1016/0001-8708(75)90151-6
https://doi.org/10.1063/1.1664700
http://arxiv.org/abs/https://doi.org/10.1063/1.1664700
http://arxiv.org/abs/https://doi.org/10.1063/1.1664700
http://dx.doi.org/10.1063/1.1664700
http://adsabs.harvard.edu/abs/1974JETPL..19..151Z
http://adsabs.harvard.edu/abs/1974JETPL..19..151Z
https://projecteuclid.org:443/euclid.cmp/1104201396
https://link.aps.org/doi/10.1103/PhysRevE.98.062316
https://link.aps.org/doi/10.1103/PhysRevE.98.062316
http://dx.doi.org/10.1103/PhysRevE.98.062316
https://link.aps.org/doi/10.1103/PhysRevLett.125.258301
http://dx.doi.org/10.1103/PhysRevLett.125.258301
http://dx.doi.org/10.1103/PhysRevLett.125.258301


146 BIBLIOGRAPHY

[52] Edwin T Jaynes. Probability theory: The logic of science. Cambridge university
press, 2003.

[53] D. B. West. Introduction to Graph Theory, volume 2 of Math Classics. Prentice Hall,
2001.

[54] T. Muir and W. H. Metzler. A treatise on the theory of determinants. Dover Publi-
cations, 1960.

[55] P. W. Kasteleyn. Graph Theory and Theoretical Physics, chapter Graph theory and
Crystal physics, pages 43–110. Academic Press, 1967.

[56] M. Wimmer. Efficient numerical computation of the pfaffian for dense and banded
skew-symmetric matrices. 2011. arXiv:arXiv:1102.3440, doi:10.1145/2331130.
2331138.

[57] P. W. Kasteleyn. The statistics of dimers on a lattice: I. the number of dimer
arrangements on a quadratic lattice. Physica, 27(12):1209 – 1225, 1961. URL: 10.
1016/0031-8914(61)90063-5, doi:10.1016/0031-8914(61)90063-5.

[58] H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics-an
exact result. The Philosophical Magazine: A Journal of Theoretical Experimental
and Applied Physics, 6(68):1061–1063, 1961. URL: 10.1080/14786436108243366,
doi:10.1080/14786436108243366.

[59] M. E. Fisher. Statistical mechanics of dimers on a plane lattice. Phys. Rev., 124:1664–
1672, Dec 1961. URL: 10.1103/PhysRev.124.1664, doi:10.1103/PhysRev.124.
1664.

[60] F. Y. Wu. Dimers on two-dimensional lattices. International Journal of Modern
Physics B, 20(32):5357–5371, 2006. URL: 10.1142/S0217979206036478, doi:10.
1142/S0217979206036478.

[61] R. Thomas. A survey of pfaffian orientations of graphs. Proceedings of the
International Congress of Mathematicians Madrid, pages 963–984, 2006. URL:
10.4171/022-3/47, doi:10.4171/022-3/47.

[62] C. E. Cullis. Matrices and Determinoids, volume I and II. Cambridge University
Press, Cambridge, 1913.

[63] L. Mirsky. An Introduction to Linear Algebra. Dover Books on Mathematics. Dover,
1990.

[64] P. G. Drazin. Nonlinear Systems. Cambridge Texts in Applied Mathematics. Cam-
bridge University Press, 1992. URL: 10.1017/CBO9781139172455, doi:10.1017/
CBO9781139172455.

http://arxiv.org/abs/arXiv:1102.3440
http://dx.doi.org/10.1145/2331130.2331138
http://dx.doi.org/10.1145/2331130.2331138
10.1016/0031-8914(61)90063-5
10.1016/0031-8914(61)90063-5
http://dx.doi.org/10.1016/0031-8914(61)90063-5
10.1080/14786436108243366
http://dx.doi.org/10.1080/14786436108243366
10.1103/PhysRev.124.1664
http://dx.doi.org/10.1103/PhysRev.124.1664
http://dx.doi.org/10.1103/PhysRev.124.1664
10.1142/S0217979206036478
http://dx.doi.org/10.1142/S0217979206036478
http://dx.doi.org/10.1142/S0217979206036478
10.4171/022-3/47
http://dx.doi.org/10.4171/022-3/47
10.1017/CBO9781139172455
http://dx.doi.org/10.1017/CBO9781139172455
http://dx.doi.org/10.1017/CBO9781139172455


BIBLIOGRAPHY 147

[65] M. W. Hirsch, S. Smale, and R. L. Devaney. Differential Equations, Dynamical
Systems, and an Introduction to Chaos. Academic Press. Academic Press, 2013.
URL: https://books.google.de/books?id=csYhsrOEh_MC.

[66] A. Mellor, M. Mobilia, and R. K. P. Zia. Characterization of the nonequilib-
rium steady state of a heterogeneous nonlinear q-voter model with zealotry. EPL
(Europhysics Letters), 113(4):48001, 2016. URL: 10.1209/0295-5075/113/48001,
doi:10.1209/0295-5075/113/48001.

[67] L. Dai, D. Vorselen, K. S. Korolev, and J. Gore. Generic indicators for loss of resilience
before a tipping point leading to population collapse. Science, 336(6085):1175–1177,
2012. URL: 10.1126/science.1219805, doi:10.1126/science.1219805.

[68] L. Dai, K. S. Korolev, and J. Gore. Relation between stability and resilience de-
termines the performance of early warning signals under different environmental
drivers. Proc. Natl. Acad. Sci. USA, 112(32):10056–10061, 2015. URL: 10.1073/
pnas.1418415112, doi:10.1073/pnas.1418415112.

[69] R. P. Rohr, S. Saavedra, and J. Bascompte. On the structural stability of mutualistic
systems. Science, 345(6195), 2014. URL: 10.1126/science.1253497, doi:10.1126/
science.1253497.

[70] S. Allesina and S. Tang. Stability criteria for complex ecosystems. Nature, 483:205
EP –, 02 2012. URL: 10.1038/nature10832, doi:10.1038/nature10832.

[71] A. Szolnoki, M. Perc, and G. Szabó. Topology-independent impact of noise on co-
operation in spatial public goods games. Phys. Rev. E, 80:056109, Nov 2009. URL:
10.1103/PhysRevE.80.056109, doi:10.1103/PhysRevE.80.056109.

[72] B. Intoy and M. Pleimling. Synchronization and extinction in cyclic games with
mixed strategies. Phys. Rev. E, 91:052135, May 2015. URL: 10.1103/PhysRevE.
91.052135, doi:10.1103/PhysRevE.91.052135.

[73] C. Tu, J. Grilli, F. Schuessler, and S. Suweis. Collapse of resilience patterns in
generalized lotka-volterra dynamics and beyond. Phys. Rev. E, 95:062307, Jun 2017.
URL: 10.1103/PhysRevE.95.062307, doi:10.1103/PhysRevE.95.062307.

[74] S. Allesina and M. Pascual. Network structure, predator–prey modules, and stability
in large food webs. Theoretical Ecology, 1(1):55–64, Mar 2008. URL: 10.1007/
s12080-007-0007-8, doi:10.1007/s12080-007-0007-8.

[75] J. Vukov, A. Szolnoki, and G. Szabó. Diverging fluctuations in a spatial five-
species cyclic dominance game. Phys. Rev. E, 88:022123, Aug 2013. URL:
10.1103/PhysRevE.88.022123, doi:10.1103/PhysRevE.88.022123.

https://books.google.de/books?id=csYhsrOEh_MC
10.1209/0295-5075/113/48001
http://dx.doi.org/10.1209/0295-5075/113/48001
10.1126/science.1219805
http://dx.doi.org/10.1126/science.1219805
10.1073/pnas.1418415112
10.1073/pnas.1418415112
http://dx.doi.org/10.1073/pnas.1418415112
10.1126/science.1253497
http://dx.doi.org/10.1126/science.1253497
http://dx.doi.org/10.1126/science.1253497
10.1038/nature10832
http://dx.doi.org/10.1038/nature10832
10.1103/PhysRevE.80.056109
http://dx.doi.org/10.1103/PhysRevE.80.056109
10.1103/PhysRevE.91.052135
10.1103/PhysRevE.91.052135
http://dx.doi.org/10.1103/PhysRevE.91.052135
10.1103/PhysRevE.95.062307
http://dx.doi.org/10.1103/PhysRevE.95.062307
10.1007/s12080-007-0007-8
10.1007/s12080-007-0007-8
http://dx.doi.org/10.1007/s12080-007-0007-8
10.1103/PhysRevE.88.022123
http://dx.doi.org/10.1103/PhysRevE.88.022123


148 BIBLIOGRAPHY

[76] K. A. Hawick. Cycles, diversity and competition in rock-paper-scissors-lizard-spock
spatial game agent simulations. Technical report, Massey University, 2011. URL:
http://www.massey.ac.nz/~kahawick/cstn/129/cstn-129.pdf.

[77] Y. Kang, Q. Pan, X. Wang, and M. He. A golden point rule in rock–paper–
scissors–lizard–spock game. Physica A: Statistical Mechanics and its Applications,
392(11):2652 – 2659, 2013. URL: 10.1016/j.physa.2012.10.011, doi:10.1016/j.
physa.2012.10.011.

[78] H. Cheng, N. Yao, ZG. Huang, J. Park, Y. Do, and YG. Lai. Mesoscopic interactions
and species coexistence in evolutionary game dynamics of cyclic competitions. Scien-
tific Reports, 4:7486, 12 2014. URL: 10.1038/srep07486, doi:10.1038/srep07486.

[79] J. Park, Y. Do, B. Jang, and Y.-C. Lai. Emergence of unusual coexistence states
in cyclic game systems. Scientific Reports, 7(1):7465, 2017. URL: 10.1038/
s41598-017-07911-4, doi:10.1038/s41598-017-07911-4.

[80] R. K. P. Zia. General properties of a system of S species competing pairwise. pre-print
arXiv:1101.0018, 2010. URL: arxiv.org/abs/1101.0018.

[81] C. H. Durney, S. O. Case, M. Pleimling, and R. K. P. Zia. Saddles, arrows, and
spirals: deterministic trajectories in cyclic competition of four species. Phys. Rev. E,
83(5):051108, 2011. URL: 10.1103/PhysRevE.83.051108, doi:10.1103/PhysRevE.
83.051108.

[82] H.E. Robbins. A theorem on graphs, with an application to a problem of traffic
control. The American Mathematical Monthly, 46(5):281–283, 1939. URL: 10.2307/
2303897, doi:10.2307/2303897.

[83] L. Lovász and M.D. Plummer. Matching Theory. Number Nr. 121 in Annals of dis-
crete mathematics. North-Holland, 1986. URL: https://books.google.de/books?
id=SGz6lAEACAAJ.

[84] R.P. Grimaldi. Fibonacci and Catalan Numbers: An Introduction. John Wiley and
Sons, Inc., 2012. URL: 10.1002/9781118159743, doi:10.1002/9781118159743.

[85] P. Chandra and E. W. Weisstein. Fibonacci number – from wolfram mathworld, 2003.
URL: http://mathworld.wolfram.com/FibonacciNumber.html [cited 06.02.2018].

[86] R. M. May. Will a large complex system be stable? Nature, 238(5364):413–414,
1972. URL: 10.1038/238413a0, doi:10.1038/238413a0.

[87] T. Reichenbach, M. Mobilia, and E. Frey. Coexistence versus extinction in the
stochastic cyclic Lotka-Volterra model. Phys. Rev. E, 74(5):51907, 2006. URL:
10.1103/PhysRevE.74.051907, doi:10.1103/PhysRevE.74.051907.

http://www.massey.ac.nz/~kahawick/cstn/129/cstn-129.pdf
10.1016/j.physa.2012.10.011
http://dx.doi.org/10.1016/j.physa.2012.10.011
http://dx.doi.org/10.1016/j.physa.2012.10.011
10.1038/srep07486
http://dx.doi.org/10.1038/srep07486
10.1038/s41598-017-07911-4
10.1038/s41598-017-07911-4
http://dx.doi.org/10.1038/s41598-017-07911-4
arxiv.org/abs/1101.0018
10.1103/PhysRevE.83.051108
http://dx.doi.org/10.1103/PhysRevE.83.051108
http://dx.doi.org/10.1103/PhysRevE.83.051108
10.2307/2303897
10.2307/2303897
http://dx.doi.org/10.2307/2303897
https://books.google.de/books?id=SGz6lAEACAAJ
https://books.google.de/books?id=SGz6lAEACAAJ
10.1002/9781118159743
http://dx.doi.org/10.1002/9781118159743
http://mathworld.wolfram.com/FibonacciNumber.html
10.1038/238413a0
http://dx.doi.org/10.1038/238413a0
10.1103/PhysRevE.74.051907
http://dx.doi.org/10.1103/PhysRevE.74.051907


BIBLIOGRAPHY 149

[88] N. S. Goel, S. C. Maitra, and E. W. Montroll. On the Volterra and other nonlinear
models of interacting populations. Rev. Mod. Phys., 43(2):231–276, 1971. URL:
10.1103/RevModPhys.43.231, doi:10.1103/RevModPhys.43.231.

[89] S. Sadeghi and A. Engel. Random matrices and condensation into multiple states.
Phys. Rev. E, 97:032133, Mar 2018. URL: 10.1103/PhysRevE.97.032133, doi:
10.1103/PhysRevE.97.032133.

[90] B. Intoy and M. Pleimling. Extinction in four species cyclic competition. Journal
of Statistical Mechanics: Theory and Experiment, 2013(08):P08011, 2013. URL:
10.1088/1742-5468/2013/08/P08011, doi:10.1088/1742-5468/2013/08/P08011.

[91] Cilie W. Feldager, Namiko Mitarai, and Hiroki Ohta. Deterministic extinction by
mixing in cyclically competing species. Phys. Rev. E, 95:032318, Mar 2017. URL:
10.1103/PhysRevE.95.032318, doi:10.1103/PhysRevE.95.032318.

[92] A. Dobrinevski and E. Frey. Extinction in neutrally stable stochastic Lotka-Volterra
models. Phys. Rev. E, 85(5):051903, 2012. URL: 10.1103/PhysRevE.85.051903,
doi:10.1103/PhysRevE.85.051903.

[93] M. Berr, T. Reichenbach, M. Schottenloher, and E. Frey. Zero-one survival behavior
of cyclically competing species. Phys. Rev. Lett., 102:048102, Jan 2009. URL: 10.
1103/PhysRevLett.102.048102, doi:10.1103/PhysRevLett.102.048102.

[94] G. Szabó and F. Gábor. Evolutionary games on graphs. Physics Reports, 446(4):97
– 216, 2007. URL: 10.1016/j.physrep.2007.04.004, doi:10.1016/j.physrep.
2007.04.004.

[95] L. Frachebourg, P. L. Krapivsky, and E. Ben-Naim. Segregation in a one-dimensional
model of interacting species. Phys. Rev. Lett., 77:2125–2128, Sep 1996. URL: 10.
1103/PhysRevLett.77.2125, doi:10.1103/PhysRevLett.77.2125.

[96] R. Blümel, A. Buchleitner, R. Graham, L. Sirko, U. Smilansky, and H. Walther.
Dynamical localization in the microwave interaction of Rydberg atoms: the influence
of noise. Phys. Rev. A, 44:4521–4540, Oct 1991. URL: 10.1103/PhysRevA.44.4521,
doi:10.1103/PhysRevA.44.4521.

[97] S. Kohler, T. Dittrich, and P. Hänggi. Floquet-Markovian description of the paramet-
rically driven, dissipative harmonic quantum oscillator. Phys. Rev. E, 55:300–313,
Jan 1997. URL: 10.1103/PhysRevE.55.300, doi:10.1103/PhysRevE.55.300.

[98] HP. Breuer, W. Huber, and F. Petruccione. Quasistationary distributions of dis-
sipative nonlinear quantum oscillators in strong periodic driving fields. Phys. Rev.
E, 61(5):4883–4889, May 2000. URL: 10.1103/PhysRevE.61.4883, doi:10.1103/
PhysRevE.61.4883.

10.1103/RevModPhys.43.231
http://dx.doi.org/10.1103/RevModPhys.43.231
10.1103/PhysRevE.97.032133
http://dx.doi.org/10.1103/PhysRevE.97.032133
http://dx.doi.org/10.1103/PhysRevE.97.032133
10.1088/1742-5468/2013/08/P08011
http://dx.doi.org/10.1088/1742-5468/2013/08/P08011
10.1103/PhysRevE.95.032318
http://dx.doi.org/10.1103/PhysRevE.95.032318
10.1103/PhysRevE.85.051903
http://dx.doi.org/10.1103/PhysRevE.85.051903
10.1103/PhysRevLett.102.048102
10.1103/PhysRevLett.102.048102
http://dx.doi.org/10.1103/PhysRevLett.102.048102
10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.physrep.2007.04.004
10.1103/PhysRevLett.77.2125
10.1103/PhysRevLett.77.2125
http://dx.doi.org/10.1103/PhysRevLett.77.2125
10.1103/PhysRevA.44.4521
http://dx.doi.org/10.1103/PhysRevA.44.4521
10.1103/PhysRevE.55.300
http://dx.doi.org/10.1103/PhysRevE.55.300
10.1103/PhysRevE.61.4883
http://dx.doi.org/10.1103/PhysRevE.61.4883
http://dx.doi.org/10.1103/PhysRevE.61.4883


150 BIBLIOGRAPHY

[99] S. Choudhury and E. J. Mueller. Stability of a bose-einstein condensate in a driven
optical lattice: Crossover between weak and tight transverse confinement. Phys.
Rev. A, 92:063639, Dec 2015. URL: 10.1103/PhysRevA.92.063639, doi:10.1103/
PhysRevA.92.063639.

[100] H. A. M. Leymann, D. Vorberg, T. Lettau, C. Hopfmann, C. Schneider, M. Kamp,
S. Höfling, R. Ketzmerick, J. Wiersig, S. Reitzenstein, and A. Eckardt. Pump-power-
driven mode switching in a microcavity device and its relation to bose-einstein con-
densation. Phys. Rev. X, 7:021045, Jun 2017. URL: 10.1103/PhysRevX.7.021045,
doi:10.1103/PhysRevX.7.021045.

[101] S. Klembt, P. Stepanov, T. Klein, A. Minguzzi, and M. Richard. Thermal decoherence
of a nonequilibrium polariton fluid. Phys. Rev. Lett., 120:035301, Jan 2018. URL:
10.1103/PhysRevLett.120.035301, doi:10.1103/PhysRevLett.120.035301.

[102] L. Vidmar, J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer,
F. Heidrich-Meisner, I. Bloch, and U. Schneider. Dynamical quasicondensation of
hard-core bosons at finite momenta. Phys. Rev. Lett., 115:175301, Oct 2015. URL:
10.1103/PhysRevLett.115.175301, doi:10.1103/PhysRevLett.115.175301.

[103] D. C. Fisher and J. Ryan. Optimal strategies for a generalized "scissors, paper, and
stone" game. The American Mathematical Monthly, 99(10):935–942, 1992. URL:
10.2307/2324486, doi:10.2307/2324486.

[104] F. Brandl. The distribution of optimal strategies in symmetric zero-sum games.
Games and Economic Behavior, 104:674 – 680, 2017. URL: http://www.
sciencedirect.com/science/article/pii/S089982561730115X, doi:https://
doi.org/10.1016/j.geb.2017.06.017.

[105] F. Brandt. Tournament solutions: Extensions of maximality and their applications
to decision-making, 2009. URL: http://dss.in.tum.de/files/brandt-research/
habil.pdf.

[106] R. B. Bapat. Matrix Games Based on Graphs, pages 165–177. Springer
London, London, 2014. URL: 10.1007/978-1-4471-6569-9_13, doi:10.1007/
978-1-4471-6569-9_13.

[107] P. De Donder, M. Le Breton, and M. Truchon. Choosing from a weighted tournament.
Mathematical Social Sciences, 40(1):85 – 109, 2000. URL: 10.1016/S0165-4896(99)
00042-6, doi:10.1016/S0165-4896(99)00042-6.

[108] M. Brill, R> Freeman, and V. Conitzer. Aaai conference on artificial intelligence,
2016. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/
12480 [cited 2016-02-21].

10.1103/PhysRevA.92.063639
http://dx.doi.org/10.1103/PhysRevA.92.063639
http://dx.doi.org/10.1103/PhysRevA.92.063639
10.1103/PhysRevX.7.021045
http://dx.doi.org/10.1103/PhysRevX.7.021045
10.1103/PhysRevLett.120.035301
http://dx.doi.org/10.1103/PhysRevLett.120.035301
10.1103/PhysRevLett.115.175301
http://dx.doi.org/10.1103/PhysRevLett.115.175301
10.2307/2324486
http://dx.doi.org/10.2307/2324486
http://www.sciencedirect.com/science/article/pii/S089982561730115X
http://www.sciencedirect.com/science/article/pii/S089982561730115X
http://dx.doi.org/https://doi.org/10.1016/j.geb.2017.06.017
http://dx.doi.org/https://doi.org/10.1016/j.geb.2017.06.017
http://dss.in.tum.de/files/brandt-research/habil.pdf
http://dss.in.tum.de/files/brandt-research/habil.pdf
10.1007/978-1-4471-6569-9_13
http://dx.doi.org/10.1007/978-1-4471-6569-9_13
http://dx.doi.org/10.1007/978-1-4471-6569-9_13
10.1016/S0165-4896(99)00042-6
10.1016/S0165-4896(99)00042-6
http://dx.doi.org/10.1016/S0165-4896(99)00042-6
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12480
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12480


BIBLIOGRAPHY 151

[109] H. Aziz, M. Brill, F. Fischer, P. Harrenstein, J. Lang, and H. G. Seedig. Possible and
necessary winners of partial tournaments. Journal of Artificial Intelligence Research,
54:493–534, 2015. URL: 10.1613/jair.4856, doi:10.1613/jair.4856.

[110] E. N. Barron. Game theory: an introduction, volume 2. John Wiley and Sons, Inc.,
2013.

[111] J. González-Díaz, I. García-Jurado, and M.G. Fiestras-Janeiro. An introductory
course on mathematical game theory, volume 115. American Mathematical Society
Providence, 2010.

[112] G. Laffond, J.-F. Laslier, and M. Le Breton. The bipartisan set of a tournament
game. Games and Economic Behavior, 5(1):182 – 201, 1993. URL: http://www.
sciencedirect.com/science/article/pii/S0899825683710109, doi:https://
doi.org/10.1006/game.1993.1010.

[113] T. S. Michael and T. Quint. Optimal strategies for node selection games on oriented
graphs: Skew matrices and symmetric games. Linear Algebra and its Applications,
412(2):77 – 92, 2006. URL: http://www.sciencedirect.com/science/article/
pii/S002437950500234X, doi:https://doi.org/10.1016/j.laa.2005.04.009.

[114] I. Kaplansky. A contribution to von neumann’s theory of games. ii. Linear Alge-
bra and its Applications, 226-228:371 – 373, 1995. URL: 10.1016/0024-3795(95)
00167-P, doi:10.1016/0024-3795(95)00167-P.

[115] M. Le Breton. On the uniqueness of equilibrium in symmetric two-player zero-sum
games with integer payoffs. Économie publique/Public economics, (17), 2007. URL:
economiepublique.revues.org/pdf/2655.

[116] D. P. Roberts. Nash equilibria of cauchy-random zero-sum and coordination matrix
games. International Journal of Game Theory, 34(2):167–184, Aug 2006. URL:
10.1007/s00182-006-0016-7, doi:10.1007/s00182-006-0016-7.

[117] H. Arsham. Stability of essential strategy in two-person zero-sum games. 110:167–
180, 07 1995.

[118] P. W. Kasteleyn. Dimer statistics and phase transitions. Journal of Mathematical
Physics, 4(2):287–293, 1963. URL: 10.1063/1.1703953, doi:10.1063/1.1703953.

[119] M. E. Fisher. On the dimer solution of planar ising models. Journal of Mathemat-
ical Physics, 7(10):1776–1781, 1966. URL: 10.1063/1.1704825, doi:10.1063/1.
1704825.

[120] D. S. Rokhsar and S. A. Kivelson. Superconductivity and the quantum hard-core
dimer gas. Phys. Rev. Lett., 61:2376–2379, Nov 1988. URL: 10.1103/PhysRevLett.
61.2376, doi:10.1103/PhysRevLett.61.2376.

10.1613/jair.4856
http://dx.doi.org/10.1613/jair.4856
http://www.sciencedirect.com/science/article/pii/S0899825683710109
http://www.sciencedirect.com/science/article/pii/S0899825683710109
http://dx.doi.org/https://doi.org/10.1006/game.1993.1010
http://dx.doi.org/https://doi.org/10.1006/game.1993.1010
http://www.sciencedirect.com/science/article/pii/S002437950500234X
http://www.sciencedirect.com/science/article/pii/S002437950500234X
http://dx.doi.org/https://doi.org/10.1016/j.laa.2005.04.009
10.1016/0024-3795(95)00167-P
10.1016/0024-3795(95)00167-P
http://dx.doi.org/10.1016/0024-3795(95)00167-P
economiepublique.revues.org/pdf/2655
10.1007/s00182-006-0016-7
http://dx.doi.org/10.1007/s00182-006-0016-7
10.1063/1.1703953
http://dx.doi.org/10.1063/1.1703953
10.1063/1.1704825
http://dx.doi.org/10.1063/1.1704825
http://dx.doi.org/10.1063/1.1704825
10.1103/PhysRevLett.61.2376
10.1103/PhysRevLett.61.2376
http://dx.doi.org/10.1103/PhysRevLett.61.2376


152 BIBLIOGRAPHY

[121] P. Fendley, R. Moessner, and S. L. Sondhi. Classical dimers on the triangular lattice.
Phys. Rev. B, 66:214513, Dec 2002. URL: 10.1103/PhysRevB.66.214513, doi:
10.1103/PhysRevB.66.214513.

[122] C. H. C. Little. An extension of kasteleyn’s method of enumerating the 1-factors of
planar graphs. In D. A. Holton, editor, Combinatorial Mathematics, pages 63–72,
Berlin, Heidelberg, 1974. Springer Berlin Heidelberg.

[123] V. V. Vazirani and M. Yannakakis. Pfaffian orientations, 0–1 permanents, and even
cycles in directed graphs. Discrete Applied Mathematics, 25(1):179 – 190, 1989. URL:
10.1016/0166-218X(89)90053-X, doi:10.1016/0166-218X(89)90053-X.

[124] G. Tesler. Matchings in graphs on non-orientable surfaces. Journal of Combinatorial
Theory, Series B, 78(2):198 – 231, 2000. URL: 10.1006/jctb.1999.1941, doi:
10.1006/jctb.1999.1941.

[125] S. Norine. Pfaffian graphs, t-joins and crossing numbers. Combinatorica, 28(1):89–98,
Jan 2008. URL: 10.1007/s00493-008-2150-2, doi:10.1007/s00493-008-2150-2.

[126] F. Y. Wu. Remarks on the modified potassium dihydrogen phosphate model of a
ferroelectric. Phys. Rev., 168:539–543, Apr 1968. URL: 10.1103/PhysRev.168.539,
doi:10.1103/PhysRev.168.539.

[127] F. Lu, L. Zhang, and F. Lin. Enumeration of perfect matchings of a type of quadratic
lattice on the torus. The Electronic Journal of Combinatorics, 17(1):Research Paper
R36, 14 p.–Research Paper R36, 14 p., 2010. URL: http://eudml.org/doc/222565.

[128] Y. L. Loh, Dao-Xin Yao, and E. W. Carlson. Dimers on the triangular kagome
lattice. Phys. Rev. B, 78:224410, Dec 2008. URL: 10.1103/PhysRevB.78.224410,
doi:10.1103/PhysRevB.78.224410.

[129] F. Y. Wu and F. Wang. Dimers on the kagome lattice i: Finite lattices. Physica
A: Statistical Mechanics and its Applications, 387(16):4148 – 4156, 2008. URL:
10.1016/j.physa.2008.02.054, doi:10.1016/j.physa.2008.02.054.

[130] F. Wang and F. Y. Wu. Exact solution of close-packed dimers on the kagomé lattice.
Phys. Rev. E, 75:040105, Apr 2007. URL: 10.1103/PhysRevE.75.040105, doi:
10.1103/PhysRevE.75.040105.

[131] R. Kenyon. The planar dimer model with boundary: a survey. In CRM Proceedings
and Lecture Notes, 13, pages 307–328, 2000. URL: http://www.math.brown.edu/
~rkenyon/papers/dimers.pdf.

[132] S. Li and W. Yan. Dimers on the 33.42 lattice. Physica A: Statistical Mechanics
and its Applications, 452:251 – 257, 2016. URL: 10.1016/j.physa.2016.02.033,
doi:10.1016/j.physa.2016.02.033.

10.1103/PhysRevB.66.214513
http://dx.doi.org/10.1103/PhysRevB.66.214513
http://dx.doi.org/10.1103/PhysRevB.66.214513
10.1016/0166-218X(89)90053-X
http://dx.doi.org/10.1016/0166-218X(89)90053-X
10.1006/jctb.1999.1941
http://dx.doi.org/10.1006/jctb.1999.1941
http://dx.doi.org/10.1006/jctb.1999.1941
10.1007/s00493-008-2150-2
http://dx.doi.org/10.1007/s00493-008-2150-2
10.1103/PhysRev.168.539
http://dx.doi.org/10.1103/PhysRev.168.539
http://eudml.org/doc/222565
10.1103/PhysRevB.78.224410
http://dx.doi.org/10.1103/PhysRevB.78.224410
10.1016/j.physa.2008.02.054
http://dx.doi.org/10.1016/j.physa.2008.02.054
10.1103/PhysRevE.75.040105
http://dx.doi.org/10.1103/PhysRevE.75.040105
http://dx.doi.org/10.1103/PhysRevE.75.040105
http://www.math.brown.edu/~rkenyon/papers/dimers.pdf
http://www.math.brown.edu/~rkenyon/papers/dimers.pdf
10.1016/j.physa.2016.02.033
http://dx.doi.org/10.1016/j.physa.2016.02.033


BIBLIOGRAPHY 153

[133] S. Li, W. Yan, and T. Tian. Some physical and chemical indices of the union jack lat-
tice. Journal of Statistical Mechanics: Theory and Experiment, 2015(2):P02014, 2015.
URL: 10.1088/1742-5468/2015/02/P02014, doi:10.1088/1742-5468/2015/02/
P02014.

[134] F. Dong, W. Yan, and F. Zhang. On the number of perfect matchings of line graphs.
Discrete Applied Mathematics, 161(6):794 – 801, 2013. URL: 10.1016/j.dam.2012.
10.032, doi:10.1016/j.dam.2012.10.032.

[135] W. Yan, Y.-N. Yeh, and F. Zhang. Dimer problem on the cylinder and torus. Physica
A: Statistical Mechanics and its Applications, 387(24):6069 – 6078, 2008. URL:
10.1016/j.physa.2008.06.042, doi:10.1016/j.physa.2008.06.042.

[136] F. Lu, L. Zhang, and F. Lin. Dimer statistics on the klein bottle. Physica A:
Statistical Mechanics and its Applications, 390(12):2315 – 2324, 2011. URL: 10.
1016/j.physa.2011.02.038, doi:10.1016/j.physa.2011.02.038.

[137] Z. Zhang and B. Wu. Pfaffian orientations and perfect matchings of scale-free net-
works. Theoretical Computer Science, 570:55 – 69, 2015. URL: 10.1016/j.tcs.
2014.12.024, doi:10.1016/j.tcs.2014.12.024.

[138] H. Li and Z. Zhang. Maximum matchings in scale-free networks with identical degree
distribution. Theoretical Computer Science, 675:64 – 81, 2017. URL: 10.1016/j.
tcs.2017.02.027, doi:10.1016/j.tcs.2017.02.027.

[139] C. Tu, S. Suweis, J. Grillib, M. Formentin, and A. Maritan. Reconciling cooperation,
biodiversity and stability in complex ecological communities, 2018. URL: https:
//arxiv.org/abs/1805.03527v2, arXiv:arXiv:1805.03527.

[140] F. Botta and N. Mitarai. Disturbance accelerates the transition from low- to high-
diversity state in a model ecosystem. Phys. Rev. E, 89:022704, Feb 2014. URL:
10.1103/PhysRevE.89.022704, doi:10.1103/PhysRevE.89.022704.

[141] R. West, M. Mobilia, and A. M. Rucklidge. Survival behavior in the cyclic lotka-
volterra model with a randomly switching reaction rate. Phys. Rev. E, 97:022406, Feb
2018. URL: 10.1103/PhysRevE.97.022406, doi:10.1103/PhysRevE.97.022406.

[142] D. M. Busiello, S. Suweis, J. Hidalgo, and A. Maritan. Explorability and the origin
of network sparsity in living systems. Scientific Reports, 7(1):12323, 2017. URL:
10.1038/s41598-017-12521-1, doi:10.1038/s41598-017-12521-1.

[143] R. A. Brualdi and H. J. Ryser. Combinatorial Matrix Theory. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1991. URL: 10.
1017/CBO9781107325708, doi:10.1017/CBO9781107325708.

[144] B. McKay. Graphs, 2017. URL: http://users.cecs.anu.edu.au/~bdm/data/
graphs.html [cited 27.11.2017].

10.1088/1742-5468/2015/02/P02014
http://dx.doi.org/10.1088/1742-5468/2015/02/P02014
http://dx.doi.org/10.1088/1742-5468/2015/02/P02014
10.1016/j.dam.2012.10.032
10.1016/j.dam.2012.10.032
http://dx.doi.org/10.1016/j.dam.2012.10.032
10.1016/j.physa.2008.06.042
http://dx.doi.org/10.1016/j.physa.2008.06.042
10.1016/j.physa.2011.02.038
10.1016/j.physa.2011.02.038
http://dx.doi.org/10.1016/j.physa.2011.02.038
10.1016/j.tcs.2014.12.024
10.1016/j.tcs.2014.12.024
http://dx.doi.org/10.1016/j.tcs.2014.12.024
10.1016/j.tcs.2017.02.027
10.1016/j.tcs.2017.02.027
http://dx.doi.org/10.1016/j.tcs.2017.02.027
https://arxiv.org/abs/1805.03527v2
https://arxiv.org/abs/1805.03527v2
http://arxiv.org/abs/arXiv:1805.03527
10.1103/PhysRevE.89.022704
http://dx.doi.org/10.1103/PhysRevE.89.022704
10.1103/PhysRevE.97.022406
http://dx.doi.org/10.1103/PhysRevE.97.022406
10.1038/s41598-017-12521-1
http://dx.doi.org/10.1038/s41598-017-12521-1
10.1017/CBO9781107325708
10.1017/CBO9781107325708
http://dx.doi.org/10.1017/CBO9781107325708
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://users.cecs.anu.edu.au/~bdm/data/graphs.html


154 BIBLIOGRAPHY

[145] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determina-
tion of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett.,
45:494–497, Aug 1980. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
45.494, doi:10.1103/PhysRevLett.45.494.

[146] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall
conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405–408,
Aug 1982. URL: https://link.aps.org/doi/10.1103/PhysRevLett.49.405, doi:
10.1103/PhysRevLett.49.405.

[147] F. D. M. Haldane. Model for a quantum hall effect without landau levels: Condensed-
matter realization of the "parity anomaly". Phys. Rev. Lett., 61:2015–2018, Oct
1988. URL: https://link.aps.org/doi/10.1103/PhysRevLett.61.2015, doi:
10.1103/PhysRevLett.61.2015.

[148] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys.,
82:3045–3067, Nov 2010. URL: https://link.aps.org/doi/10.1103/RevModPhys.
82.3045, doi:10.1103/RevModPhys.82.3045.

[149] Ching-Kai Chiu, Jeffrey C. Y. Teo, Andreas P. Schnyder, and Shinsei Ryu. Classifi-
cation of topological quantum matter with symmetries. Reviews of Modern Physics,
88(3):035005–, 08 2016. URL: https://link.aps.org/doi/10.1103/RevModPhys.
88.035005, doi:10.1103/RevModPhys.88.035005.

[150] C. L. Kane and T. C. Lubensky. Topological boundary modes in isostatic lattices.
Nature Physics, 10(1):39–45, 2014. URL: https://doi.org/10.1038/nphys2835,
doi:10.1038/nphys2835.

[151] J. Paulose, B. G. Chen, and V. Vitelli. Topological modes bound to dislocations
in mechanical metamaterials. Nature Physics, 11(2):153–156, 2015. URL: https:
//doi.org/10.1038/nphys3185, doi:10.1038/nphys3185.

[152] Lisa M. Nash, Dustin Kleckner, Alismari Read, Vincenzo Vitelli, Ari M. Turner,
and William T. M. Irvine. Topological mechanics of gyroscopic metamaterials. Pro-
ceedings of the National Academy of Sciences, 112(47):14495–14500, 2015. URL:
https://www.pnas.org/content/112/47/14495, doi:10.1073/pnas.1507413112.

[153] Roman Süsstrunk and Sebastian D. Huber. Classification of topological phonons
in linear mechanical metamaterials. Proceedings of the National Academy of Sci-
ences, 113(33):E4767, 08 2016. URL: http://www.pnas.org/content/113/33/
E4767.abstract, doi:10.1073/pnas.1605462113.

[154] H. Kedia, A. Souslov, and D. Z. Rocklin. Soft topological modes protected by sym-
metry in rigid mechanical metamaterials. pre-print arXiv:2008.01914v3, 2020. URL:
https://arxiv.org/pdf/2008.01914.pdf.

https://link.aps.org/doi/10.1103/PhysRevLett.45.494
https://link.aps.org/doi/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.45.494
https://link.aps.org/doi/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
https://link.aps.org/doi/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
http://dx.doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1038/nphys2835
http://dx.doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys3185
https://doi.org/10.1038/nphys3185
http://dx.doi.org/10.1038/nphys3185
https://www.pnas.org/content/112/47/14495
http://dx.doi.org/10.1073/pnas.1507413112
http://www.pnas.org/content/113/33/E4767.abstract
http://www.pnas.org/content/113/33/E4767.abstract
http://dx.doi.org/10.1073/pnas.1605462113
https://arxiv.org/pdf/2008.01914.pdf


BIBLIOGRAPHY 155

[155] Pierre Delplace, J. B. Marston, and Antoine Venaille. Topological ori-
gin of equatorial waves. Science, 358(6366):1075–1077, 2017. URL:
https://science.sciencemag.org/content/358/6366/1075, arXiv:
https://science.sciencemag.org/content/358/6366/1075.full.pdf,
doi:10.1126/science.aan8819.

[156] Di Zhou, Leyou Zhang, and Xiaoming Mao. Topological edge floppy modes
in disordered fiber networks. Phys. Rev. Lett., 120:068003, Feb 2018.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.120.068003, doi:10.
1103/PhysRevLett.120.068003.

[157] Ricardo Pablo Pedro, Jayson Paulose, Anton Souslov, Mildred Dresselhaus, and Vin-
cenzo Vitelli. Topological protection can arise from thermal fluctuations and interac-
tions. Phys. Rev. Lett., 122:118001, Mar 2019. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.122.118001, doi:10.1103/PhysRevLett.122.118001.

[158] Colin Scheibner, William T. M. Irvine, and Vincenzo Vitelli. Non-hermitian band
topology and skin modes in active elastic media. Phys. Rev. Lett., 125:118001,
Sep 2020. URL: https://link.aps.org/doi/10.1103/PhysRevLett.125.118001,
doi:10.1103/PhysRevLett.125.118001.

[159] Emil Prodan and Camelia Prodan. Topological phonon modes and their role
in dynamic instability of microtubules. Phys. Rev. Lett., 103:248101, Dec 2009.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.103.248101, doi:10.
1103/PhysRevLett.103.248101.

[160] Lisa Yamauchi, Tomoya Hayata, Masahito Uwamichi, Tomoki Ozawa, and Kyogo
Kawaguchi. Chirality-driven edge flow and non-hermitian topology in active nematic
cells, 2020. arXiv:2008.10852.

[161] A. Souslov, B. C. van Zuiden, D. Bartolo, and V. Vitelli. Topological sound in active-
liquid metamaterials. Nature Physics, 13:1091–1094, 2017. URL: https://doi.org/
10.1038/nphys4193, doi:10.1038/nphys4193.

[162] Suraj Shankar, Mark J. Bowick, and M. Cristina Marchetti. Topological sound and
flocking on curved surfaces. Phys. Rev. X, 7:031039, Sep 2017. URL: https://link.
aps.org/doi/10.1103/PhysRevX.7.031039, doi:10.1103/PhysRevX.7.031039.

[163] Anton Souslov, Kinjal Dasbiswas, Michel Fruchart, Suriyanarayanan Vaikun-
tanathan, and Vincenzo Vitelli. Topological waves in fluids with odd viscosity.
Phys. Rev. Lett., 122:128001, Mar 2019. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.122.128001, doi:10.1103/PhysRevLett.122.128001.

[164] Kazuki Sone and Yuto Ashida. Anomalous topological active matter. Phys.
Rev. Lett., 123:205502, Nov 2019. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.123.205502, doi:10.1103/PhysRevLett.123.205502.

https://science.sciencemag.org/content/358/6366/1075
http://arxiv.org/abs/https://science.sciencemag.org/content/358/6366/1075.full.pdf
http://arxiv.org/abs/https://science.sciencemag.org/content/358/6366/1075.full.pdf
http://dx.doi.org/10.1126/science.aan8819
https://link.aps.org/doi/10.1103/PhysRevLett.120.068003
http://dx.doi.org/10.1103/PhysRevLett.120.068003
http://dx.doi.org/10.1103/PhysRevLett.120.068003
https://link.aps.org/doi/10.1103/PhysRevLett.122.118001
https://link.aps.org/doi/10.1103/PhysRevLett.122.118001
http://dx.doi.org/10.1103/PhysRevLett.122.118001
https://link.aps.org/doi/10.1103/PhysRevLett.125.118001
http://dx.doi.org/10.1103/PhysRevLett.125.118001
https://link.aps.org/doi/10.1103/PhysRevLett.103.248101
http://dx.doi.org/10.1103/PhysRevLett.103.248101
http://dx.doi.org/10.1103/PhysRevLett.103.248101
http://arxiv.org/abs/2008.10852
https://doi.org/10.1038/nphys4193
https://doi.org/10.1038/nphys4193
http://dx.doi.org/10.1038/nphys4193
https://link.aps.org/doi/10.1103/PhysRevX.7.031039
https://link.aps.org/doi/10.1103/PhysRevX.7.031039
http://dx.doi.org/10.1103/PhysRevX.7.031039
https://link.aps.org/doi/10.1103/PhysRevLett.122.128001
https://link.aps.org/doi/10.1103/PhysRevLett.122.128001
http://dx.doi.org/10.1103/PhysRevLett.122.128001
https://link.aps.org/doi/10.1103/PhysRevLett.123.205502
https://link.aps.org/doi/10.1103/PhysRevLett.123.205502
http://dx.doi.org/10.1103/PhysRevLett.123.205502


156 BIBLIOGRAPHY

[165] Arvind Murugan and Suriyanarayanan Vaikuntanathan. Topologically protected
modes in non-equilibrium stochastic systems. Nature Communications, 8(1):13881,
2017. URL: https://doi.org/10.1038/ncomms13881, doi:10.1038/ncomms13881.

[166] Kinjal Dasbiswas, Kranthi K. Mandadapu, and Suriyanarayanan Vaikuntanathan.
Topological localization in out-of-equilibrium dissipative systems. Proceedings of the
National Academy of Sciences, 115(39):E9031–E9040, 2018. URL: https://www.
pnas.org/content/115/39/E9031, doi:10.1073/pnas.1721096115.

[167] Tsuneya Yoshida and Yasuhiro Hatsugai. Bulk-edge correspondence of classical dif-
fusion phenomena, 2020. arXiv:2007.08730.

[168] Evelyn Tang, Jaime Agudo-Canalejo, and Ramin Golestanian. Topology protects
chiral edge currents in stochastic systems, 2020. arXiv:2010.02845.

[169] J. C. Claussen and A. Traulsen. Cyclic dominance and biodiversity in well-mixed
populations. Phys. Rev. Lett., 100:058104, Feb 2008. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.100.058104, doi:10.1103/PhysRevLett.100.058104.

[170] M. Remoissenet. Waves Called Solitons, volume 3. Springer, 1999.

[171] M. A. Ablowitz and P. A. Clarkson. Solitons, Nonlinear Evolution Equations and
Inverse Scattering. London Mathematical Society Lecture Note Series. Cambridge
University Press, 1991. doi:10.1017/CBO9780511623998.

[172] Zhenya Yan. Discrete exact solutions of modified volterra and volterra lattice equa-
tions via the new discrete sine-gordon expansion algorithm. Nonlinear Analysis:
Theory, Methods & Applications, 64(8):1798 – 1811, 2006. URL: http://www.
sciencedirect.com/science/article/pii/S0362546X05007194, doi:https://
doi.org/10.1016/j.na.2005.07.018.

[173] B. G. Chen, N. Upadhyaya, and V. Vitelli. Nonlinear conduction via solitons in a
topological mechanical insulator. Proceedings of the National Academy of Sciences,
111(36):13004–13009, 2014. URL: https://www.pnas.org/content/111/36/13004,
doi:10.1073/pnas.1405969111.

[174] R. Chaunsali and G. Theocharis. Self-induced topological transition in
phononic crystals by nonlinearity management. Phys. Rev. B, 100:014302, Jul
2019. URL: https://link.aps.org/doi/10.1103/PhysRevB.100.014302, doi:
10.1103/PhysRevB.100.014302.

[175] P. J. Davis. Circulant Matrices. Chelsea Publishing Series. Chelsea, 1994.

[176] R. M. Gray. Toeplitz and circulant matrices: A review. Foundations and Trends
in Communications and Information Theory, 2(3):155–239, 2006. URL: http://dx.
doi.org/10.1561/0100000006, doi:10.1561/0100000006.

https://doi.org/10.1038/ncomms13881
http://dx.doi.org/10.1038/ncomms13881
https://www.pnas.org/content/115/39/E9031
https://www.pnas.org/content/115/39/E9031
http://dx.doi.org/10.1073/pnas.1721096115
http://arxiv.org/abs/2007.08730
http://arxiv.org/abs/2010.02845
https://link.aps.org/doi/10.1103/PhysRevLett.100.058104
https://link.aps.org/doi/10.1103/PhysRevLett.100.058104
http://dx.doi.org/10.1103/PhysRevLett.100.058104
http://dx.doi.org/10.1017/CBO9780511623998
http://www.sciencedirect.com/science/article/pii/S0362546X05007194
http://www.sciencedirect.com/science/article/pii/S0362546X05007194
http://dx.doi.org/https://doi.org/10.1016/j.na.2005.07.018
http://dx.doi.org/https://doi.org/10.1016/j.na.2005.07.018
https://www.pnas.org/content/111/36/13004
http://dx.doi.org/10.1073/pnas.1405969111
https://link.aps.org/doi/10.1103/PhysRevB.100.014302
http://dx.doi.org/10.1103/PhysRevB.100.014302
http://dx.doi.org/10.1103/PhysRevB.100.014302
http://dx.doi.org/10.1561/0100000006
http://dx.doi.org/10.1561/0100000006
http://dx.doi.org/10.1561/0100000006


BIBLIOGRAPHY 157

[177] C. L. Kane. Topological Insulators, chapter 1 - Topological Band Theory and the Z2

Invariant, pages 3–34. Elsevier, 2013.

[178] G. Arfken. Mathematical Methods for Physicists, volume 3. Academic Press, 1985.

[179] A Yu Kitaev. Unpaired majorana fermions in quantum wires. 44(10S):131–136,
2001. URL: http://dx.doi.org/10.1070/1063-7869/44/10S/S29, doi:10.1070/
1063-7869/44/10s/s29.

[180] S. Ryu and Y. Hatsugai. Topological origin of zero-energy edge states in particle-hole
symmetric systems. Phys. Rev. Lett., 89:077002, Jul 2002. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.89.077002, doi:10.1103/PhysRevLett.89.
077002.

[181] Jan Carl Budich and Eddy Ardonne. Equivalent topological invariants for one-
dimensional majorana wires in symmetry class $d$. Physical Review B, 88(7):075419–
, 08 2013. URL: https://link.aps.org/doi/10.1103/PhysRevB.88.075419, doi:
10.1103/PhysRevB.88.075419.

[182] E. Basor, J. Dubail, T. Emig, and R. Santachiara. Modified szegö–widom asymptotics
for block toeplitz matrices with zero modes. Journal of Statistical Physics, 174(1):28–
39, 2019. URL: https://doi.org/10.1007/s10955-018-2177-8, doi:10.1007/
s10955-018-2177-8.

[183] J Dubail, R Santachiara, and T Emig. Conformal field theory of critical casimir forces
between surfaces with alternating boundary conditions in two dimensions. Journal of
Statistical Mechanics: Theory and Experiment, 2017(3):033201, 2017. URL: http:
//dx.doi.org/10.1088/1742-5468/aa5a68, doi:10.1088/1742-5468/aa5a68.

[184] Percy Deift, Alexander Its, and Igor Krasovsky. Toeplitz matrices and toeplitz
determinants under the impetus of the ising model: Some history and some re-
cent results. Communications on Pure and Applied Mathematics, 66(9):1360–1438,
2013. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21467,
doi:10.1002/cpa.21467.

[185] B. Novák and J. J. Tyson. Design principles of biochemical oscillators. Nature
Reviews Molecular Cell Biology, 9:981–991, 2008. URL: https://doi.org/10.1038/
nrm2530, doi:10.1038/nrm2530.

[186] S. P. Hubbell. The Unified Neutral Theory of Biodiversity and Biogeography. Prince-
ton University Press, 2001.

[187] V. E. Zakharov, S. L. Musher, and A. M. Rubenchik. Weak langmuir turbulence of
an isothermal plasma. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 69:155–168,
07 1975. URL: https://ui.adsabs.harvard.edu/abs/1975ZhETF..69..155Z.

http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10s/s29
http://dx.doi.org/10.1070/1063-7869/44/10s/s29
https://link.aps.org/doi/10.1103/PhysRevLett.89.077002
https://link.aps.org/doi/10.1103/PhysRevLett.89.077002
http://dx.doi.org/10.1103/PhysRevLett.89.077002
http://dx.doi.org/10.1103/PhysRevLett.89.077002
https://link.aps.org/doi/10.1103/PhysRevB.88.075419
http://dx.doi.org/10.1103/PhysRevB.88.075419
http://dx.doi.org/10.1103/PhysRevB.88.075419
https://doi.org/10.1007/s10955-018-2177-8
http://dx.doi.org/10.1007/s10955-018-2177-8
http://dx.doi.org/10.1007/s10955-018-2177-8
http://dx.doi.org/10.1088/1742-5468/aa5a68
http://dx.doi.org/10.1088/1742-5468/aa5a68
http://dx.doi.org/10.1088/1742-5468/aa5a68
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21467
http://dx.doi.org/10.1002/cpa.21467
https://doi.org/10.1038/nrm2530
https://doi.org/10.1038/nrm2530
http://dx.doi.org/10.1038/nrm2530
https://ui.adsabs.harvard.edu/abs/1975ZhETF..69..155Z


158

[188] Zheng-Yi Ma, Jia-Min Zhu, and Chun-Long Zheng. Solitary Wave and Periodic Wave
Solutions for the Relativistic Toda Lattices. Communications in Theoretical Physics,
43(1):27–30, January 2005. doi:10.1088/0253-6102/43/1/006.

[189] William F. Trench. On the eigenvalue problem for toeplitz band matrices. Linear Al-
gebra and its Applications, 64:199 – 214, 1985. URL: http://www.sciencedirect.
com/science/article/pii/0024379585902770, doi:https://doi.org/10.1016/
0024-3795(85)90277-0.

[190] Nobuya Watanabe, Yoshio Togawa, and Ken Sawada. Hamiltonians which are
induced from anti-symmetric replicator equations. Nonlinear Analysis: The-
ory, Methods & Applications, 36(5):655 – 660, 1999. URL: http://www.
sciencedirect.com/science/article/pii/S0362546X98001643, doi:https://
doi.org/10.1016/S0362-546X(98)00164-3.

[191] Tsuneya Yoshida, Tomonari Mizoguchi, and Yasuhiro Hatsugai. Chiral edge modes
in game theory: a kagome network of rock-paper-scissors, 2020. arXiv:2012.05562.

[192] Sundarapandian Vaidyanathan. Dynamics and control of brusselator chemical reac-
tion. Int J ChemTech Res, 8(6):740–749, 2015.

http://dx.doi.org/10.1088/0253-6102/43/1/006
http://www.sciencedirect.com/science/article/pii/0024379585902770
http://www.sciencedirect.com/science/article/pii/0024379585902770
http://dx.doi.org/https://doi.org/10.1016/0024-3795(85)90277-0
http://dx.doi.org/https://doi.org/10.1016/0024-3795(85)90277-0
http://www.sciencedirect.com/science/article/pii/S0362546X98001643
http://www.sciencedirect.com/science/article/pii/S0362546X98001643
http://dx.doi.org/https://doi.org/10.1016/S0362-546X(98)00164-3
http://dx.doi.org/https://doi.org/10.1016/S0362-546X(98)00164-3
http://arxiv.org/abs/2012.05562


Danksagung

Zuerst einmal danke ich dem aufmerksamen Leser dieser Dissertation für bemerkenswertes
Durchhaltevermögen.

Vielen Dank an Erwin für die letzten sechs Jahre am Lehrstuhl, für wissenschaftliche
Diskussionen, unterhaltsame Abende in Antholz und bei Konferenzen. Die verschiede-
nen Reisen, Konferenzen, Diskussionsrunden und Begegnungen die du mir ermöglicht hast
waren und sind eine große Bereicherung für mich.

Vielen Dank an Hannes für die gute Zusammenarbeit, ich habe viel von dir gelernt.
Vielen Dank an den ganzen Lehrstuhl, ob an der Kaffee-Maschine, in Antholz oder bei

Weihnachtsfeiern, es gab immer wieder schöne, alberne, interessante und absurde Situa-
tionen. Insbesondere bedanke ich mich bei den Self-Assemblers für großartige Zusamme-
narbeit und Unterhaltung trotz diverser Absagen von Magazinen, bei Felix, einen besseren
Büromitbewohner hab ich nicht verdient, bei Moritz, Emanuel und dem ganzen Rest.

Vielen Dank an Isarstan, Fortschritt durch Elektrifizierung!
Vielen Dank an meine Eltern und meine Geschwister für ihre Unterstützung und inter-

essierte Nachfragen trotz meiner Unfähigkeit meine Forschung verständlich zu erklären.
Danke an Mechtild und Uli für das Allgäu-Asyl während des aufschreibens.
Und schlussendlich vielen Dank an Hannah, danke dass du mich während diverser

Krisen aushältst, immer wieder versuchst mich vom Arbeiten abzulenken und zu wichtigeren
und lustigeren Dingen überredest.


	Zusammenfassung
	Structure of this thesis
	Introduction
	The antisymmetric Lotka Volterra equation (ALVE): Replicator equation for zero sum games
	The rock-paper-scissors (RPS) game
	Evolutionary game theory of zero sum games
	Characteristics of the ALVE dynamics

	Overview of this thesis
	Relevance of the ALVE
	Population dynamics
	Chemical systems, stochastic population dynamics
	Coarse grained dynamics of driven-dissipative bosons
	Discrete nonlinear wave equations and integrable systems


	Mathematical properties of the ALVE
	Definition of the ALVE
	The condensate vector and a Lyapunov function for the ALVE
	Interpretation of the condensate vector
	Example: Calculation of the condensate vector for different rates

	Coexistence of all states
	Characterization of the stationary state
	Appendix The index set of positive entries of the condensate vector is unique to an real, antisymmetric matrix

	Networks and real antisymmetric Matrices
	Antisymmetric matrices are equivalent to weighted networks
	Spectral properties of real antisymmetric matrices
	The Pfaffian
	Perfect Matchings, near-perfect matchings, and factor-critical networks.
	Graph-theoretical definition of the Pfaffian.
	Adjugate vector and adjugate matrix
	Minimal kernel dimension of a network topology determined by perfect matchings of subnetworks

	Minimal network topological requirement for coexistence of all states: Strongly connected network
	Appendix Properties of real antisymmetric matrices
	Nonzero eigenvalues occur in pairs, the corresponding eigenvectors are conjugated and orthogonal
	The image dimension always even
	Bock-diagonalization for real, antisymmetric matrices

	Appendix Properties of the Pfaffian
	Combinatorial definition of the Pfaffian
	Graph-theoretical and combinatorial definition agree.
	The Pfaffian of exemplary antisymmetric matrices


	Topologically robust coexistence and coexistence networks
	Introduction
	Topologically robust coexistence and coexistence networks
	Coexistence networks
	Hamiltonian coexistence networks
	Non-Hamiltonian coexistence networks
	All coexistence networks with up to 9 nodes

	Specific generating coexistence networks 
	Triangulations of cycles
	Cycles with complete subnetworks

	Applications of coexistence networks
	The ALVE and coexistence networks: Topologically robust coexistence in evolutionary game theory and driven-dissipative bosonic systems
	Game theory and coexistence networks: Stability of optimal, totally mixed strategies in symmetric zero-sum games
	Graph theory and coexistence networks: Pfaffian orientation and the dimer problem of odd-sized graphs

	Summary and conclusion
	Appendix Numerical methods for the determination of coexistence networks
	Method 1: Construction of coexistence networks via conditions (4.2) and (4.3)
	Method 2: Algebraic determination of coexistence networks via the adjugate vector (3.5)

	Appendix Topological constraints for coexistence networks
	No coexistence networks with a two-dimensional kernel

	Appendix Proof of the conditions for Hamiltonian coexistence networks
	Set-up of the proof
	Sufficiency of the conditions (9) and (10) for coexistence networks
	Necessity of the conditions (4.2) and (4.3) for coexistence networks

	Appendix Calculation of the number of near-perfect matchings for selected coexistence networks
	Near-perfect matchings for the triangulation of the cycle
	Number of near-perfect matchings in a cycle with complete subnetwork on odd nodes


	Topological phase transition in coupled rock-paper-scissors cycles
	Introduction
	Model
	Phenomenology
	Analysis.
	Fixed points.
	Topological band theory.
	Kernel vectors.

	Discussion
	Appendix Appendix to RPS-chain
	Computation of the strictly positive kernel vector of A
	Robustness against perturbation of the model parameters

	Appendix Topological band theory of the RPS Hamiltonian
	Spectral properties of the RPS Hamiltonian
	Explicit bulk-boundary correspondence


	Topological phases beyond rock-paper-scissors chains
	The diamond chain 
	Phenomenology
	Analysis
	Topological condensed matter approach
	Algebraical approach: The Szego-Widom theorem

	Condensate vector
	The K4 chain
	Topological invariant and phenomenology
	Extinction in the K4 chain

	Differential difference equations and solitonic waves
	Summary of the results
	Appendix Calculation of the topological invariant of the diamond chain and the K4 chain
	Complex zeros of the Fourier transformed Hamiltonian

	Appendix Calculation of the kernel vectors
	Kernel vector of the diamond chain
	Kernel vector of the K4 chain

	Appendix Extinction in the K4 chain
	The K4 chain is not a coexistence network
	Conditions for extinction and the structure of the condensate vector

	Appendix Calculation of the determinants and the Szego-Widom theorem
	Determinant of the closed diamond chain
	Determinant of the closed K4 chain

	Appendix Linear recursive polynomials of second order
	Asymptotic behavior of fn
	Negative values of fn
	Traveling wave solution


	Conclusion, discussion and outlook
	Summary
	Outlook

	Danksagung

