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Zusammenfassung 
Das Pankreaskarzinom gehört zu den tödlichsten Tumorerkrankungen der Welt. 

Bis heute gelingt die erfolgreiche Heilung nur durch die operative Entfernung 

des Tumors und dies nur für wenige Patienten, die sich in frühen Tumorstadien 

befinden. Obwohl viele Anstrengungen unternommen wurden das 

Pankreaskarzinom zu heilen, ist das Überleben auch nach durchgeführter 

Operation limitiert. Diverse Vorarbeiten haben gezeigt, dass das Immunsystem 

als Teil des Tumormikromilieus eine sehr wichtige Rolle sowohl in Bezug auf 

Tumorwachstum als auch den Effekt der neo- und adjuvanten Therapie beim 

Pankreaskarzinom. Der Glukosemetabolismus dient als wichtige Energiequelle 

für das Tumorwachstum und für die Metastasierung. Die Bedeutung von 

Tumor-infiltrierenden Leukozyten und des Metabolismus auf das Überleben 

beim Pankreaskarzinom sind bekannt. Wohingegen, der Stellenwert der 

Tumor-infiltrierenden Leukozyten und des Metabolismus beim metastasierten 

Pankreaskarzinom weiterhin unklar ist.  

 

In dieser Arbeit können wir uns glücklich schätzen insgesamt 26 Fälle eines 

metastasierten Pankreaskarzinoms zu präsentieren. Uns liegen 

Paraffinschnitte des Primarius und der korrespondierenden Metastasen (Leber, 

Lunge und Peritoneum) vor. Immunhistochemische Färbungen wurden 

durchgeführt. Der Algorithmus zur Quantifizierung des Tumorimmunostromas 

(QTiS) wurde angewandt, um die Infiltration mit CD3+, CD8+, CD20+ und 

CD66b+ Leukozyten sowie die Expression von metabolischen Checkpoint-

Molekülen (HIF-1α, GLUT1 und PDHK1) zu analysieren. In einem nächsten 

Schritt erfolgte der Vergleich der Infiltration von Leukozyten und die Expression 

von metabolischen Checkpoint-Molekülen im Tumormikromilieu des Primarius 

und der korrespondierenden Metastasen. Diese immunhistochemischen 

Ergebnisse wurden ebenfalls mit den demographischen und klinischen Daten 
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der Patienten, dem Gesamtüberleben und dem Erkrankungsfreien-Überleben 

verglichen. 
 
Die Infiltration of CD3+, CD8+, and CD20+ Leukozyten im Tumormikromilieu war 

im Pankreaskarzinomprimarius höher als in der korrespondierenden Metastase. 

Eine hohe Infiltration von CD20+ Leukozyten im Primarius korrelierte signifikant 

mit einem besseren Gesamtüberleben (p=0.013). Eine hohe Infiltration von 

CD8+ Leukozyten im Metastasengewebe des Pankreaskarzinoms korrelierte 

mit einem besseren Gesamtüberleben (p=0.023). Niedrige Werte von 

Thrombozyten im peripheren Blut waren mit einem besseren Gesamtüberleben 

assoziiert. Die Expression von HIF-1α und PDHK1 waren mehr intratumoral als 

im peritumoralen Tumormikromilieu vorhanden, sowohl beim Primarius als 

auch der Metastase. Eine niedrige Dichte von GLUT1 im Tumorstroma des 

Primarius korrelierte mit einem besseren Gesamtüberleben (p=0.009). Ein 

signifikant besseres Gesamtüberleben zeigte sich auch für GLUT1 im 

Metastasengeweben (p=0.01). Mittels der multivariaten Analyse konnte 

nachgewiesen werden, dass eine erhöhte Infiltration mit CD8+ Leukozyten im 

Tumorimmunstroma des Metastasengewebes ein unabhängiger 

Prognosefaktor ist (p=0.032). Eine sehr dichte Expression von GLUT1 sowohl 

im Tumorstroma des Primarius (p=0.049) als auch der Metastase (p=0.022) ist 

ebenfalls ein unabhängiger Prognosefaktor. 
 
Zusammengefasst zeigt diese Arbeit, dass der beim primären 

Pankreaskarzinom bereits etablierte QTiS Algorithmus zur Analyse des 

Tumormikromilieus beim Primarius inklusive der korrespondieren Metastasen 

angewendet werden kann und die gewonnen Daten konsistent sind. Diese 

Arbeit ist nach bestem Wissen die erste Veröffentlichung von einem Vergleich 

der Tumor-infiltrierenden Leukozyten und metabolischen Checkpoint-

Molekülen zwischen Primarius und korrespondierender Metastase des 

Pankreaskarzinoms. Unsere Arbeit ermöglicht ein besseres Verständnis der 
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Immunsubtypen und des Metabolismus beim metastasierten 

Pankreaskarzinom. Diese Daten sind in Bezug auf eine zukünftig bessere 

Diagnostik, Prognose und Therapie sehr hilfreich. 
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Abstract 
Pancreatic cancer (PC) remains one of the most lethal cancers in the world. 

Currently, surgical resection is still the most effective treatment for PC, yet it 

only works for a few early-stage patients. Although multiple efforts have been 

ongoing to treat metastatic pancreatic cancer, the outcome remains 

unsatisfactory. Previous studies have shown that immune imbalance within the 

tumor microenvironment (TME) promotes tumor progression. Furthermore, 

glucose metabolism is essential to providing energy for tumor growth, 

progression, and distant metastasis. There have been studies on tumor-

infiltrating leukocytes (TILs) and energy metabolism in the TME of pancreatic 

cancer, while research on metastatic PC is unavailable because of the surgical 

treatment of metastatic pancreatic cancer. 

 

We were fortunate to have this opportunity to study 26 cases of metastatic PC 

in our institution. Quantification of the tumor immune stroma (QTiS) algorithm 

was used to quantify seven markers after immunohistochemical staining, 

including four markers of leukocytes (CD3+, CD8+, CD20+, and CD66b+) and 

three markers of metabolic checkpoint molecules (HIF-1α, GLUT1, PDHK1). 

Afterward, differences in tumor-infiltrating leukocytes (TILs) and metabolic 

checkpoint molecules (MCMs) between primary and metastatic lesions of 

metastatic pancreatic cancer were analyzed. Furthermore, the correlation 

between seven staining markers and clinical data, including overall survival (OS) 

and disease-free survival (DFS), was also analyzed. 

 

The results showed that the infiltration of CD3+, CD8+, and CD20+ in PC primary 

tumors was higher than that in metastatic tumors. High infiltration of CD20+ TILs 

(p=0.013) in primary tumors of PC correlates with improved overall survival, 

and high infiltration of CD8+ (p=0.023) in metastatic tumors of PC correlates 

with improved overall survival. Low level of platelets in blood circulation system 
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associated with improved OS. The density of HIF-1α and PDHK1 in tumor cell 

area was higher than that in tumor stroma areas of primary and metastatic 

tumors. Low-density GLUT1 in tumor stroma areas of primary tumors (p=0.009) 

and metastatic tumors (p=0.01) of PC correlates with improved OS. Notably, in 

multivariate analysis, CD8+TILs (HR 0.196, 95% CI 0.044-0.872, p=0.032) in 

metastatic tumors of PC is an independent prognostic factor; and GLUT1 in 

tumor stromal areas of primary (HR 5.816, 95% CI 1.006-33.624, p=0.049) and 

metastatic (HR 5.056, 95% CI 1.258-20.324, p=0.022) tumors is independent 

prognostic factor to metastatic pancreatic cancer.  

 

Overall, the present study used the QTiS algorithm to quantify stroma tumor-

infiltrating leukocytes in metastatic PC. We extended this method to quantify 

metabolic checkpoint molecules in tumor cell and stromal areas, efficiently 

analyzing IHC staining images. Furthermore, we depicted the characters and 

differences of TILs and MCMs between primary and metastatic lesions of 

metastatic PC and the correlation between TILs and MCMs with OS and DFS. 

Our work can contribute to a better understanding of the immune subtypes and 

energy metabolism in metastatic PC, which could be vital in improving the 

diagnosis, prognosis, and treatment of advanced PC. 
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1. Introduction 

 
Pancreatic cancer (PC) remains one of the most lethal cancers in the world [1]. 

In recent years, research on tumor-infiltrating leukocytes (TILs) and metabolic 

checkpoint molecules (MCMs) of PC has become a hot issue[2, 3]. This 

dissertation aimed to elucidate the characters and differences in TILs and 

MCMs between primary and metastatic lesions of metastatic PC and the 

correlation of TILs and MCMs with overall survival (OS) and disease-free 

survival (DFS). This work was an experimental investigation of a retrospective 

cohort study of metastatic pancreatic cancer conducted at our institution. 

 
1.1 Epidemiological features of pancreatic cancer 
 
PC is a malignant tumor that develops from pancreatic tissues. Among them, 

pancreatic ductal adenocarcinoma (PDAC) is an important type of primary 

pancreatic cancer, accounting for about 85-90% of all pancreatic neoplasms[4]. 

Based on the report of the World Health Organization, the occurrence of 

pancreatic cancer has a precise geographical distribution; the incidence of 

pancreatic cancer in men and women is high in developed territories and 

countries (such as Central and Eastern- Europe, USA, and Japan). In contrast, 

it is lower in developing territories (such as Eastern Africa and South-Eastern 

Asia) [5]. In addition, the global incidence of pancreatic cancer is associated 

with age and is more prevalent in men than in women [5]. 

 

The Global Burden of Disease Study in 2017 showed that the number of new 

cases and deaths of pancreatic cancer rose by 2-3 times compared with 1990–

2017 in global 195 countries and territories, and the incidence of PC has 

increased three times in countries with a high socio-demographic index 

calculated by birth rate, level of education and income [6, 7]. During 2018, an 
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estimated 460,000 new PC cases and 433,000 deaths occurred worldwide, 

ranking 11th among the most common cancer in the world. Although progress 

has been made in understanding the risk factors that cause PC and new early 

detection approaches, its incidence was predicted to increase, and the world 

might have 355,317 new cases by 2040 [8]. In the European Union, mortality 

from the disease was predicted to increase by almost 50% by 2025, compared 

with 2010 levels [9]. 

 

1.2 Risk factors and tumor biology  

 

There are multiple and complex risk factors for PC. Many studies have indicated 

that age, gender, ethnicity, blood type, diabetes mellitus, family history, and 

genetic factors are the non-modifiable factors for pancreatic cancer, obesity, 

smoking, alcohol, dietary factors, and infection are considered as modifiable 

factors [8, 10, 11]. 

 

The progression model for pancreatic cancer, characterized by transforming 

from normal pancreatic ducts to preinvasive lesions called pancreatic 

intraepithelial neoplasia (PanIN), is critically essential and can eventually 

evolve into invasive PC [12, 13]. 

 

1.3 Stage and prognosis  

 

Pancreatic cancer is typically diagnosed late due to its silence, rapid growth, 

aggressive development, and tendency to distant metastases [14]. Distant 

metastases are present in approximately 50% of patients at the first diagnosis 

[6]. According to the 8th edition staging system, PC is classified as stages I-IV 

[15]. PC with a maximum diameter of ≤4 cm is considered stage I; cancer with 

metastases up to 3 regional lymph nodes is considered stage II; cancer invaded 
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major blood vessels or metastasized to 4 or more regional lymph nodes is 

defined as stage III; cancer with distant metastases is defined as stage IV (also 

known as metastatic pancreatic cancer). Usually, advanced-stage pancreatic 

cancer includes stages III and IV [16]. 

 

Regarding the prognosis of pancreatic cancer, the 5-year survival rate after 

diagnosis is about 10% [17]. To make matters worse, the 5-year survival rate 

for metastatic PC is only about 3% [18]. In 2018, PC mortality in men and 

women was higher in significantly developed territories and countries (Entire 

Europe, North America, and Japan) than that in some developing territories and 

countries (such as south and north Africa, South-Eastern Asia) [5]. 

 

1.4 Treatments of PC 

 

1.4.1 Surgery, chemotherapy, and radiotherapy 

 

The first purpose of treatment is to extract the cancerous tissue by procedure 

before it starts to spread. Unfortunately, only about 10-20% of patients have the 

opportunity to undergo surgical resection [19]. To date, the surgical procedure 

remains the only way to obtain a cure for fit patients at stage I and II [20, 21]. 

Different surgical procedures are available on the l tumor's location, such as 

pancreaticoduodenectomy (known as Whipple procedure), distal 

pancreatectomy, and total pancreatectomy. 

 

Furthermore, adjuvant therapy (mFOLFIRINOX = modified FOLFIRINOX: 5-

fluorouracil, leucovorin, irinotecan, and oxaliplatin) could improve OS in fit 

patients with PC after the surgical procedure [22-24]. The treatment of patients 

with locally advanced PC primarily involves systemic chemotherapy [25, 26], 

and this treatment may have the potential to convert locally advanced PC to 
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surgically resectable PC [27]. Systemic chemotherapy is still the primary 

approach for metastatic PC patients to relieve cancer-related symptoms and 

prolong life [28, 29]，and FOLFIRINOX may benefit younger and healthier 

patients even more [30, 31]. 

 

Radiotherapy may help in palliating the pain by shrinking the tumor [32]. 

Moreover, supportive care and palliative care are necessary for the treatment 

of metastatic pancreatic cancer [6, 28]. 

 

In view of the unfavorable clinical outcome of radiotherapy and chemotherapy 

on PC, especially advanced PC, many treatment methods have emerged. 

 

1.4.2 Targeted therapies 

 

According to previous research, the development of aberrant ducts in PC is 

accompanied by approximately 60 mutations in 12 different signaling pathways 

[33]. Targeting the Kirsten rat sarcoma viral oncogene homolog (KRAS) 

pathway [34] and the phosphatidylinositol-3-kinase (PI3K)/Akt and the 

mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway [35, 36] 

did not bring the expected results, so further studies are underway. In 

preliminary studies, both targeted growth factor receptors erlotinib and 

nimotuzumab combined with gemcitabine showed improved overall survival in 

metastatic PC with wild-type KRAS [37, 38]. Targeting vascular endothelial 

growth factor (VEGF) signaling did not present expected positive results and 

increased the incidence of side effects [39]. A preliminary study targeting the 

deoxyribonucleic acid (DNA) damage repair (DDR) pathway showed that 

Progression-free survival (PFS) has improved in patients with metastatic 

pancreatic cancer, but no data were available on overall survival (OS) [40]. The 

combination of targeting tumor metabolism devimistat and mFOLFIRINOX is 
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underway to evaluate the effectiveness against PC (NCT03504423). The first 

preliminary results from a small trial showed promising results [41]. The PC 

stroma is distinctive and plays a crucial role in tumor development, thus 

boosting remote metastases and increasing medication resistance [34]. 

Therefore, targeting tumor stroma and extracellular matrix may be a potential 

option for treating metastatic PC. Although a novel recombinant polyethylene 

human hyaluronidase enzyme (PEGPH20) in combination with mFOLFIRINOX 

for advanced pancreatic cancer cannot be continued due to the increased 

adverse effects [42], and the sonic hedgehog signaling pathway (SHH) inhibitor 

vismodegib did not show an expected activity in the treatment of metastatic PC 

[43]. 

 

Early studies described anti-cytotoxic T-lymphocyte-associated protein 4 

antibody (anti-CTLA-4 antibody) Ipilimumab, a targeted immune checkpoint 

inhibitor, alone or with gemcitabine, did not show a significant positive response 

to advanced PC [44]. A clinical trial of avelumab (anti-PDL1 antibody) combined 

with binimetinib for pancreatic cancer is ongoing [45]. Cytotoxic CD8+T cells 

(CTLs), the front-line defense cell type against cancer [46], become 

dysfunctional and exhausted as tumors develop due to tolerance and 

immunosuppression in the TME [47]. Therefore, to generate an effective anti-

tumor response, CD8+ T cells need to be initiated and activated as effector CTL 

in TME [48]. Several studies are being conducted to treat pancreatic cancer 

through rational immunotherapeutic strategies that either reinitiate and 

reactivate CD8+ T cells or slow its exhaustion [49-52]. The activation of CD40, 

a tumor necrosis factor of the family member, reverses immunosuppression 

and induces anti-tumor T cell responses [53, 54].  

 

At present, radiotherapy, chemotherapy, targeted therapy, and immunotherapy 

are not adequate for advanced or metastatic PC, and more combinations of 
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those treatment modalities are still being tried continuously [45, 55, 56]. With 

the advent of new technologies and a better understanding of PC, it is believed 

that there will be more effective ways to treat metastatic pancreatic cancer [6]. 

An enhanced understanding of the dense, hypoxic, and immunosuppressive 

stroma of the PC microenvironment, which inhibits penetration of immune cells 

and therapeutic agents, will help discover new targeted treatment strategies 

[57]. Although pancreatic cancer has been resistant to current therapeutic 

measures, immunotherapy will remain a promising treatment modality [58]. To 

sum up, there is still a long way to go for pancreatic cancer treatment. 

 

1.5 Immunology of PC 

 

The immune system, a complex biological system, is composed of innate and 

adaptive immunity that protects the host from foreign pathogens, including 

cancer cells [59]. Innate immunity is composed of various cells that are always 

present in the first line against pathogens or tumor cells [60]. The adaptive 

immune system is regulated and consists mainly of B and T cells, typically 

triggered by secreting cytokines and presenting antigens [61]. Therefore, the 

self-recognition of the immune system is beneficial for maintaining the immune 

balance of the body [62]. For example, regulatory T cells play an essential role 

in the regulation and prevention of immune responses [63]. Besides, the 

programmed death-1 (PD-1), an immunoinhibitory receptor, is also a  critical 

regulator of T-cells, collaborating with suppressor cells to dampen immune 

activities [64]. PD-1 was activated by engaging its programmed death ligands 

(PDL-1) or PDL-2 to inhibit the anti-tumor effects of T cells [64]. 

 

T cells commonly expressed as a marker of the cluster of differentiation 3 (CD3), 

are the primary type of adaptive immune cells. CD3 is a marker for detecting T 

cells because of the specificity of its antigen for T cells and its appearance at 
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various stages of T cell development [65]. CD3+ and CD8+ T cells are mainly 

involved in recognizing immune cells and killing cancer cells [48, 66]. Many 

studies have shown that high infiltration of CD3+ T-cells is associated with 

improved OS in PC [3, 67-70]. The CD8 molecule is a marker of the cytotoxic 

T cell population and was identified as an essential antitumor component in PC 

[71, 72]. Previous studies have shown that high-level infiltration of CD8+ 

lymphocytes is a characteristic of immunogenic tumors and responds well to 

immunotherapy [73, 74]. Furthermore, high infiltration of CD8+ lymphocytes is 

related to improved overall survival [3]. 

 

B lymphocytes (usually expressing the marker CD20) are antibody-producing 

lymphocytes responsible for the humoral immune component of adaptive 

immunity [75]. Under some circumstances, B lymphocytes may serve as 

antigen-presenting cells [76]. Several studies showed that high infiltration of 

CD20+ lymphocyte in PC is associated with improved OS and PFS [3, 77].  

 

Neutrophils (commonly expressing marker CD66b), a component of innate 

immunity, are present in the first line against invading pathogens [78]. Tumor-

infiltrating neutrophils (TINs) are one of the central invasive immune cell 

populations in tumors [79] and act as a prognostic marker in cancers [80-83]. 

In PC, TINs are a possible tool for classifying other immune subtypes [3, 84]. 

In peripheral blood, the relationship between systemic inflammation and 

immunity is reflected by the neutrophil-to-lymphocyte ratio (NLR). Moreover, 

NLR is used as a prognostic biomarker for many cancers, such as gastric 

cancer [85]，rectal cancer [86], breast cancer [87], oral cancer, and pancreatic 

cancer [88, 89]. Recently, the NLR in pathological tissues, such as pancreatic 

cancer [90] in esophageal squamous cell carcinomas [91, 92], has also proved 

its prognostic value. 
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The immune system is widely known for its role in the battle against cancer [93]. 

Therefore, understanding the immune components in PC can guide the use of 

immunotherapy and other immunomodulatory therapies. 

 

1.6 Glucose metabolism in tumor cells and immune cells 

 

Glucose is a vital energy substance necessary for the activation, proliferation, 

and function of the immune cells and the most absorbent and consumed of the 

tumor cells [94, 95]. In the tumor microenvironment (TME), tumor cells compete 

to consume more glucose, so as to reduce glucose uptake by T cells, leading 

to T cell dysfunction and immune escape [47]. Therefore, a promising strategy 

to eliminate the effects of metabolic competition between tumor and immune 

system could be targeted [96]. 

 

1.6.1 Glucose metabolism in tumor cells 

 

Regardless of the oxygen status, many cancer cells rely on high-rate glycolysis 

for energy instead of mitochondrial oxidative phosphorylation, and this 

phenomenon is called the Warburg effect [97]. Especially under hypoxia, tumor 

cells produce pyruvate by glycolysis, which is then converted into lactate to 

produce adenosine triphosphate (ATP) [98]. This process of lactate 

accumulation acidifies the TME, making the tumor cells equipped with 

environmental conditions for proliferation, invasion, and migration [99]. 

 

1.6.2 Glucose metabolism in immune cells 

 

Complex and diverse glucose metabolism is present in tumor cells and  

immune cells [59]. In the adaptive immune system, T cells are the most 

numerous lymphocyte group [100]. A study showed that naive T cells require 
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only a minimal rate of glycolysis to maintain nutrient uptake and biosynthesis 

[101]. Once becoming effector T cells (Teff), they exhibit an increased rate of 

glycolysis and an activated state of metabolism for protein synthesis, which 

ultimately allows T cells capable of growing and proliferating and producing 

posterity cells to perform killing function [101, 102]. For neutrophils, glycolysis 

not only produces most of the ATP required for neutrophil functions but also 

regulates many of its functions [102, 103]. For B cells, stimulation of B cell 

receptors promotes increased expression of glucose transporters on the 

surface of B cells and enhances glycolysis [104, 105]. 

 

1.7 Energy metabolism in PC cells 

 

Aerobic oxidation of glucose and glycolysis provides energy for the 

development and differentiation of tissues and cells. Glycolysis is a set of 

biochemical reactions that metabolize glucose to pyruvate and then to lactate, 

producing adenosine triphosphate (ATP) and other substrates [95, 106]. 

Lactate and glucose are also nutrients for cancer cells [107-109]. Although 

glycolysis is less energy efficient than the tricarboxylic acid (TCA) cycle, cancer 

cells prefer producing ATP by it [106, 110]; this is the so-called Warburg effect 

[111, 112]. Glycolysis contributes to the increased production of lactate, which 

alters the microenvironment and increases the invasiveness of PC [113]. 

The energy produced by glycolysis is the primary energy source to maintain the 

proliferation, invasion, migration, and metastasis of pancreatic cancer cells, 

even under normal aerobic conditions [114]. PC cells are rich in the dense 

stroma which consists of cellular and acellular components, including fibrin, 

collagen, fibronectin, hyaluronan, endothelial cells, cancer-associated 

fibroblasts, and pancreatic cells, stellate cells, and immune cells [115]. Hypoxia 

and nutritional deficiencies within PC result from its impermeable stroma and 

inadequate blood supply, forcing PC cells to fail to produce energy by aerobic 
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metabolism [114, 116]. Increased glycolysis in PC cells promotes the 

expression and migration of the glucose transporter 1 (GLUT1) to cancer cell 

membranes [116, 117].  

 

Hypoxia-inducible factor-1 is a transcription factor comprising alpha and beta 

subunits and plays a major role in regulating O2 homeostasis physiological 

responses to O2 deprivation [118, 119]. Of which HIF-1α is the only subunit 

regulated by O2 that determines the activity of HIF-1 [120, 121]. In the process 

of tumor cells adapting to hypoxia, HIF-1α is a vital transcription factor that 

mediates the hypoxia response of the cell，and correlates with the tumor 

proliferation, invasion, metastasis, and prognosis [122-124]. In PC, the 

expression of HIF-1α relates with energy consumption [125], tumor 

angiogenesis [126], cell proliferation [127, 128], tumor size [127], advanced 

TNM stage [127], anti-apoptotic capacity [125], and metastasis [129], and is a 

prognostic factor of PC [127]. 

 

Pyruvate dehydrogenase kinase 1 (PDHK1) is a crucial regulator of glycolysis 

by phosphorylating the E1α subunit of pyruvate dehydrogenase (PDH)，and 

promotes the conversion of pyruvate to lactate to meet the energy consumption 

of cells in an anoxic environment [130]. Under hypoxia conditions, HIF-1 

activates glycolysis and inhibits mitochondrial function and oxygen 

consumption by inducing PDHK1 [131, 132]. In PC, HIF-1α regulates the 

expressions of PDHK1, which then inhibits the aerobic oxidation of glucose 

[125].  

 

PC has abundant dense stroma, leading to low blood vessels in pancreatic 

cancer tissue [133], according to a prominent feature of PC in imaging 

diagnosis [134]. Furthermore, under hypoxia conditions, the presence of HIF-

1α promotes the expression of GLUT1 and PDHK1 to undergo anaerobic 
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glycolysis [116, 117, 132]. Glycolysis is the first step of the metabolic pathway 

that converts one glucose molecule into two pyruvate molecules, producing 

energy in ATP. In normal cells, pyruvate enters the TCA cycle to produce ATP. 

As for tumor cells and stromal cells, they prefer to obtain energy by glycolysis, 

converting pyruvate to lactate [111, 135]. Glucose transporter 1, a plasma 

membrane protein responsible for the uptake of glucose into cells [136], and 

the expression of the GLUT1 is associated with the survival of PC [137-139]. 

Pyruvate dehydrogenase kinase 1 (PDHK1) has shown to have increased 

activity in hypoxia due to the presence of HIF-1α, and PDHK1 prevents 

pyruvate from entering the TCA cycle by phosphorylating pyruvate 

dehydrogenase and promotes the conversion of pyruvate to lactate [131, 132, 

140] (Figure 1). Therefore, this project introduced HIF-1α, GLUT1, and PDHK1 

as the energy metabolism checkpoint molecules of PC, compared them in the 

primary and metastatic lesions, and analyzed their impact on survival.   

 
Figure 1. Hypoxia increases the expression of HIF-1α and GLUT1 and induces 
the activity of PDHK1 [125].  
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1.8 Aim of this study 

 

The aim of the present study is to investigate the differences in primary and 

metastatic lesions of TILs and MCMs in metastatic PC and the correlation of 

TILs and MCMs with clinical data, including OS and DFS. Understanding these 

differences in immune subtypes and metabolic checkpoint molecules could be 

vital to improving PC diagnosis, prognosis, and exploring a new therapy for 

advanced PC.  
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2. Material and Methods 

 

2.1. Materials 

 
2.1.1. Consumables 

 

Aqueous mounting agent 1.08562.0050, Merck Chemicals, Germany 

Coverslips Menzel, Thermo Fisher, USA 

Centrifuge tube TPP, Switzerland 

Gloves Eco SHIELD, USA 

Hydrophobic pen  S2002, Dako Pen, Agilent Technologies, USA 

Microscope slides Super frost Plus, Thermo Fisher, USA  

Parafilm Pechiney, USA 

Pipettes reload  Eppendorf, Germany 

Serological pipettes SIGMA-ALORICH, USA 

Safe-Lock tubes Eppendorf, Germany 

 
2.1.2. Immunohistochemistry equipment 

 

-20°C fridge                 Bosch, Germany 

Four °C fridge                   Liebherr, Germany 

37°C incubator             Binder, Germany 

54°C incubator Memmert, Germany 

Electronic pH meter         Knick, Germany 

Electronic balance          Chyo, Japan 

Micro-Centrifuge            NeoLab, Germany 

Microtome                Thermo Scientific, USA 
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Microscope                 Olympus, Japan 

Pipettes                    Eppendorf, Germany 

Shaker                      Edmund Bühler, Germany 

Magnetic mixer             GLW, Germany 

Ventana Benchmark Ultra 

autostainer 

Ventana Medical Systems, Oro Valley, AZ, USA 

Water bath                Julaba, Germany 

 
2.1.3. Chemicals  
 

Albumin fraction V, biotinfrei 0163.4, CARL ROTH, Germany 

Cell conditioning solution 1 CC1, pH 8.4, Ventana 

Citric acid X863.2, CARL ROTH, Germany 

99% Ethanol  603-002-00-5, SAV LIQUID PRODUTALION, 

Germany 

96% Ethanol 1000463926011, CLN GmbH Chemikalien 

Laborbedarf, Germany 

70% Ethanol 1004051526001, CLN GmbH Chemikalien 

Laborbedarf, Germany 

Ethylenediaminetetraacetic acid 

(EDTA) disodium salt dihydrate 

E5513, SIGMA-ALORICH, USA 

Epitope retrieval solution pH 8, Novocastra, Newcastle upon Tyne, UK 

Horse Serum  H1270, SIGMA-ALORICH, USA 

PBS buffer (10X Dulbecco’s) Power BC, PanReac AppliChem, Germany 

Sodium chloride 71380, SIGMA-ALORICH, USA 

Mayer’s hemalum solution 109249, Merck Chemicals, Germany 

Trisodium citrate dehydrate 3580.3 CARL ROTH, Germany 

Tris 1610716, BIO-RAD, USA 

Tween 20 37470.01, SERVA, Germany 
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Xylene 9713.2 CARL ROTH, Germany 

 
2.1.4. Buffers and Solutions 

 

5% BSA (bovine serum albumin) 

/PBS solution 

 

 2g Albumin fraction V, biotin-free  

 40ml 1x PBS buffer 

10x TBS buffer  

 24.2g Tris 

 80g Sodium chloride 

 1L Distilled water 

1x TBS buffer  

 100ml 10x TBS buffer  

 900ml Distilled water 

1x TBS-T buffer  

 1L 1x TBS buffer 

 1ml Tween 20 

Citrate Buffer  

 18ml Solution A  

 82ml Solution B 

 pH    6.0 

Citrate Buffer Solution A  

 10.5g Citric acid 

 500ml Distilled water 

Citrate Buffer Solution B  

 14.7g Trisodium citrate dehydrate 

 500ml Distilled water 

10x PBS buffer  
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 95.5g PBS buffer (10X Dulbecco’s) 

 1L Distilled water 

1x PBS buffer  

 100ml l 10x PBS buffer  

 900m Distilled water 

 pH 7.4 

EDTA solution  

 0.372g EDTA disodium salt dihydrate 

 1L Distilled water 

 pH 8.0 

 

2.1.5. Antibodies  

 

Anti-CD66b Ab197678, Abcam, UK 

Anti-CD20 Clone L26, Dako 

Anti-CD8 Clone C8/144B, Dako, Glostrup, Denmark 

Anti-CD3 Clone SP7, SpringBio, Pleasanton, CA, USA 

Anti- HIF-1α Clone 54, BD Biosciences, San Jose CA, USA 

Anti-GLUT1 Clone SPM498, Abcam, Cambridge, UK 

Anti-PDHK1 Ab110025, Abcam, UK 

Biotinylated Horse Anti-Mouse 

IgG 

BA-2000, VECTOR Laboratories, USA 

Biotinylated Horse Anti-Rabbit IgG BA-1100, VECTOR Laboratories, USA 

 
2.1.6. Staining, Blocking, and Substrate kits  

 

Alkaline phosphatase (AP) 

polymer detection system 

MACH 3 Biocare Medical, Pacheco, CA, USA 
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Avidin/Biotin Blocking Kit SP-2001, VECTOR Laboratories, USA 

Levamisole Solution SP-5000, VECTOR Laboratories, USA 

ImmPACT Red Substrate Kit, 

Alkaline Phosphatase  

SK-5105, VECTOR Laboratories, USA 

Permanent red AP kit Zytomed Systems, Bargteheide, Germany 

UltraView diaminobenzidine kit UltraView Universal DAB Detection Kit, Ventana, USA 

VECTASTAIN ABC-AP Staining 

Kit (Alkaline Phosphatase) 

AK-5000, VECTOR Laboratories, USA 

 
2.1.7. Computer and Software 

 

Ai Adobe Illustrator CC 22.1 USA 

Computer hardware  MacBook Pro, USA 

Excel Excel for Mac 16.43 

ImageJ software Version 2.0.0-RC-69/1.52p, National Institutes of 

Health, USA 

Prism Version 8.0.0(131), GraphPad Software, USA 

SPSS Statistics Health, USA Version 26.0, IBM, USA 

R programming language and 

packages 

R (version 3.6.3) (statistical analysis and visualization) 

 

R programming language and 

packages 

 

R (version 3.6.3) ggplot2 (for visualization) 

ZEN software  Version 2.0, Carl Zeiss, Germany 
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2.2. Methods  

 
2.2.1. Study objective and design 

 

The purpose of this study is to illuminate the difference and connection between 

tumor-infiltrating leukocytes (TILs) and metabolic checkpoint molecules (MCMs) 

and their impact on the survival of patients with metastatic PC via the 

application of immunohistochemistry (IHC) staining of PC and its paired 

metastatic specimens. The QTiS method was applied to analyze the TILs of PC 

and its corresponding metastatic lesion. In a second, metabolic molecules will 

be stained and analyzed. There will be a comparison of seven staining markers 

between primary and metastatic tumors, and additionally, a correlation of seven 

staining markers with clinical data will be analyzed. Seven markers were 

stained in 26 metastatic PC specimens, including four leukocyte markers and 

three metabolic molecule markers (Table 1), and then TILs and MCMs were 

analyzed in terms of OS and DFS. 

Table 1.  Markers for IHC staining 

IHC staining Marker Type of Leukocytes Type of Metabolic Molecules 

CD3 T cells  

CD8 Cytotoxic T cells  

CD20 B cells  

CD66b Neutrophils  

GLUT1  Glucose transporter 1 

HIF-1α  Hypoxia-inducible factor-1a 

PDHK1  Pyruvate dehydrogenase kinase 1 

 

2.2.2. Patients and Clinical Data  
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In the present study, all tissue specimens to be stained were taken from the 

pathology department of Klinikum Großhadern, Ludwig-Maximilians 

University (LMU). The tumor samples were coded anonymously, as required by 

the HTCR Foundation and the Declaration of Helsinki. Before starting this study, 

we passed the application and got approval from the institutional ethics 

committee of LMU in Munich (Project No.19-257).  

 

As noted above, tumor samples from 26 patients who underwent resection at 

our institution from November 2001 to October 2018 were included (Figure 2). 

In addition, clinical characteristics, including gender, age, type of metastasis 

(metachronous, synchronous), were compared with the initial pancreatic tumor. 

The location of the metastatic lesions was liver, lung, and peritoneum. As well, 

lab values were collected in our database (Table 2).  

 
Figure 2. Characteristics of 26 cases: 20 synchronous metastases cases (15 
cases in the liver and 5 cases in the peritoneum); 6 metachronous metastases 
cases (including 3 in the liver, 2 in the lungs, and 1 in the peritoneum). 

 

2.2.3. Immunohistochemistry Staining 
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For staining CD66b (anti-CD66b, ab197678), and PDHK1(anti-PDHK1, 

Ab110025), all sections at the thickness of 4 µm to be stained were dewaxed 

and rehydrated gradually with xylene (5 mins, two times), 100% ethanol (10 

mins, two times), 96% ethanol (10 mins, two times), 70% ethanol (10 mins, two 

times), and then washed with distilled water for 3 min. Antigen retrieval in citrate 

buffer was carried out in a 96°C water bath for 30 minutes (pH 6.0). The 

avidin/biotin block took place in humidified chambers for 20 minutes each, 

followed by protein block for more than 1 hour. For the dilution of both primary 

antibodies and the corresponding isotype controls, 5%BSA/PBS solution was 

used (working concentrations: anti-CD66b 1:250, anti-PDHK1 1:200). Gastric 

and breast cancer specimens were set as positive controls for CD66b and 

PDHK1, respectively. Incubation was carried out overnight at 4 °C. 

 

On the second day, PBS solution was used to dilute the appropriate secondary 

antibodies after washed with TBS solution, and then incubated at room 

temperature for 30 min and washed again with TBS-T solution. The staining 

activity was monitored under the microscope after the addition of the ABC-AP 

reagent. As soon as a sufficient staining intensity was found, the staining 

procedure would be terminated. Counterstaining was conducted for 1 second 

in fresh hematoxylin. In the final step, a coverslip was placed on the slide with 

the agent. 
 

The immunohistochemical staining of CD3+, CD8+, CD20+, GLUT1, and HIF-1α 

were carried out by staining sections at the thickness of 4 µm according to the 

manufacturer’s directions on an autostainer (Ventana Medical Systems, Oro 

Valley, AZ, USA). Heat mediated antigen retrieval was performed for CD3 

(clone SP7, SpringBio, Pleasanton, CA, USA, dilution 1:150), CD8 (clone 

C8/144B, Dako, Glostrup, Denmark, dilution 1:50), CD20 (clone L26, Dako, 

Glostrup, Denmark, dilution 1:400), and GLUT-1 (clone SPM498, Abcam, 
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Cambridge, UK, dilution 1:200) using cell conditioning solution 1 (CC1, pH 8.4, 

Ventana). The ultraView diaminobenzidine kit (Ventana) was used to detect the 

signal. The detection of HIF1-α expression was performed using a monoclonal 

antibody (clone 54, BD Biosciences, San Jose CA, USA) at 1:30 dilution after 

heat mediated antigen retrieval (epitope retrieval solution, pH 8, Novocastra, 

Newcastle upon Tyne, UK). The signal was detected by alkaline phosphatase 

(AP) polymer detection system (MACH 3 Biocare Medical, Pacheco, CA, USA) 

and permanent red AP dye (Zytomed Systems, Bargteheide, Germany). 

Normal human tonsils served as a positive control for CD3, CD8, CD20 and 

ubiquitously present erythrocytes served as an internal positive control for 

GLUT-1 in each staining.   

 
2.2.4. Digital Imaging 
 
The hot spots were captured with the use of ZEN software after all staining 

slides were visualized with a microscope at 200x magnification. If possible, take 

three hot spots with the highest density of target marker on each slide (hotspots: 

high densities of IHC staining markers) [3]. Avoid the tumor cells when taking 

the stained marker in the stromal areas, and similarly, avoid the stromal cells 

when taking the stained marker in the tumor cell areas. 

 
2.2.5. Counting Methods 
 
Our department has developed a new reliable, accurate, and practical algorithm 

called QTiS to quantify the infiltration in malignant tumors[3, 141, 142] (figure 

3). This study extended this algorithm to quantify MCMs (HIF-1α, GLUT1, 

PDHK1).  

 

Firstly, the location with the maximum infiltration of the IHC staining cell (CD3+, 

CD8+, CD20+, or CD66b+) was characterized as the hotspot, representing the 
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aggregation of specific immune cells in the TME [3, 143]. In this study, we also 

extended this definition of the hot spot to MCMs. It is recommended to quantify 

the mean value of three hot spots; however, one hot spot is also desirable in 

the case of low infiltration density. A study from Miksch, R.C., et al. 

demonstrated that one observer is reasonable and reliable for the subjective 

selection of hotspots[141]. This selected approach was also used in quantifying 

Ki67 [144]. In this study, we processed the quantitation of tumor stroma (QTS) 

for leukocyte markers (CD3+, CD8+, CD20+, and CD66b+) and MCMs (HIF-1α, 

GLUT1, PDHK1). The correlation between seven staining markers and survival 

of metastatic pancreatic cancer was investigated by utilizing the quantitation of 

tumor immune stroma (QTiS). 

 
Figure 3. Schematic diagram of the QTiS algorithm: from staining paraffin 
sections to quantification of tumor stroma[3, 141]. 
 
The counting method was carried out in three steps with the use of ImageJ 

software. Firstly, the original images (jpeg format) were converted into 32-bit and 

the ImageJ Standard was used to set the subjective staining threshold to clearly 

and accurately visualize the target marker's contour. Then the large particles 

can be separated by the watershed function of ImageJ software. Finally, the 
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function of "analyze particles" was employed to automatically count these 

particles, so as to complete the quantification of the target marker (Figure 4).  

 
Figure 4. Representative the process of quantifies IHC staining marker.  
The original images (A, E, I M); images after the threshold (B, F, J, N); images 
after watershed (C, G, K, O); Quantitative images (D, H, L, P). HIF-1α represents 
the quantitative process of molecules in tumor cell areas. GLUT1 represents 
the quantitative process of molecules in tumor stroma areas. 
 

2.2.6. Statistical analysis 

 

Statistical analysis was conducted with the use of R packages (version 3.6.3), 

and SPSS (Version 26.0, IBM, USA). P-values <0.050 in univariate analysis 

were included in multivariate for analysis, and statistical significance was 

considered as a P-value of less than 0.050. Continuous variables were 

expressed as mean ± SD. Independent t-tests was performed to analyze data 

with a normal distribution, while the Wilcoxon rank-sum tests were employed to 



LMU Doctoral Thesis  Tao Zhang 
 

 

 

37 

analyze data with a non-normal distribution. Spearman correlations were used 

to calculate the correlation between IHC staining markers and clinical data in 

this study. 

 

Statistical analysis was performed on the immunohistochemical results of 

seven markers (CD3, CD8, CD20, CD66b, GLUT1, HIF-1α, PDHK1). First, the 

mean value of each antibody and each patient (primary lesion and metastatic 

lesion were obtained separately) were calculated as a continuous variable for 

comparison between groups, and the ROC curve was drawn. Then the median 

value of 26 different mean values (obtained separately for the primary and 

metastatic lesion) was determined, the two groups with the median (High 

filtration group >medians or Low infiltration group ≤medians) were analyzed. 

The combining of two high markers (greater than the median) was defined as 

a high infiltration group. It would be considered as a high infiltration group to 

combine three markers if at least two of them were high infiltration, a high 

infiltration group for the combination of four markers if at least three of them 

were high infiltration. High and low categorical variables were used to perform 

univariate survival analysis (Log-rank) and correlation analysis (Binary logistic 

regression). Time-dependent ROC curves (1 year) were drawn to predict OS 

and DFS. DFS is the period when the primary tumors or/and the metastatic 

tumors of PC have no evidence of recurrence after resection. After resection of 

the primary tumor or/and metastatic tumors of PC to death is referred to as OS. 
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3. Results 

 
3.1 Characteristics of the pancreatic cancer study cohort 
 
Twenty-six (26) PC patients were recruited in this study, 20 of whom had 

concomitant metastases to other organs, and 6 developed distant organ 

metastases at different times after PC resection. The patients aged from 44 to 

78 years, with a median age of 63.8 years, and 57.7% of them were female. 

Sixteen patients underwent preoperative neoadjuvant chemotherapy, and 21 

patients underwent postoperative chemotherapy. Seven pylorus resections 

pancreaticoduodenectomies (PrPD), six pylorus-preserving 

pancreaticoduodenectomies (PPPD), twelve left pancreatectomies, and one 

total pancreatectomy were performed (Table 2 and 3). One patient developed 

two pulmonary metastases after resection the primary pancreatic lesion and 

had both pulmonary metastases removed. In addition, three patients underwent 

resection of the colon and ovarian appendages and resection of the primary 

and metastatic pancreatic cancer tumors. 
 

The mean DFS was 17.0 months (SD ± 25.262), while the mean OS was 27.5 

months (SD ± 45.343). Twenty (20) patients underwent simultaneous resection 

of primary and metastatic tumors of metastatic pancreatic cancer. Six (6) 

patients developed distant tumor metastases during follow-up, including one 

case with two times pulmonary metastases, and all six (6) cases underwent 

resection of metastatic tumors after confirmation of metastases. Eighteen 

patients (69.2%) finished the adjuvant chemotherapy with gemcitabine, while 

the remaining eight patients (30.8%) did not due to intolerance or death. Two 

patients underwent gemcitabine chemotherapy combined with 45 and 60 GY 

doses of radiation therapy separately. No patient survived the follow-up period 

(median 11.0 months). 
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The laboratory values before PC resection and quantitative IHC staining 

markers are shown in Tables 4 and 5. 

 

Table 2: Patient characteristics. 
(Abbreviations: Perit: peritoneum; Metachron: metachronous; Synchron: 
synchronous; PrPD: pylorus resections pancreaticoduodenectomy; PPPD: 
pylorus-preserving pancreaticoduodenectomy; LP:  left pancreatectomy 
PDAC: pancreatic ductal adenocarcinoma) 

N Gender Age 

Location 

of the 

primary 

tumor 

Metasta

sis sites 

Kind of 

metastasis 

First 

surgery 

Second 

surgery 

Pathological 

type 

Adjuvant 

therapy 

1 w 60 Head Liver Metachron PrPD liver V PDAC Yes 

2 m 59 Head Liver Synchron 
PPPD+ 

liver II 
 PDAC Yes 

3 w 66 Tail Liver Synchron 
LP + 

liver VII 
 PDAC Yes 

4 w 57 Corpus Liver Synchron TP  PDAC Yes 

5 m 78 Corpus Liver Synchron LP  PDAC No 

6 w 63 Head Liver Synchron 
PrPD+ 

liver III 
 PDAC Yes 

7 w 44 Head Liver Synchron 

PPPD + 

Liver Ivb 

-VI 

 PDAC No 

8 m 60 Head Lung Metachron LP 
Left lung 

segment  
PDAC Yes 

9 m 69 Head Lung Metachron PPPD 
Left lung 

segment  
PDAC Yes 

10 m 75 Tail Liver Metachron LP liver VII PDAC Yes 

11 w 74 Tail Perit Synchron LP+Perit  PDAC No 

12 w 73 Head Liver Synchron 
PrPD 

+liver II 
 PDAC Yes 

13 w 66 Corpus Liver Synchron 
LP +liver 

III / IVb 
 PDAC Yes 

14 w 73 Tail Liver Synchron 
LP + 

liver VII 
 PDAC No 

15 m 52 Head Liver Metachron PPPD liver VII PDAC Yes 
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16 m 77 Head Liver Synchron 
PrPD 

+liver II 
 PDAC No 

17 m 57 Corpus Perit Metachron LP Perit PDAC Yes 

18 w 44 Corpus Liver Synchron 
LP + 

liver Iv 
OP2 PDAC Yes 

19 w 69 Head Perit Synchron 
PrPD+ 

Perit 
liver V PDAC Yes 

20 m 59 Head Liver Synchron 
PrPD 

+liver II 
 PDAC No 

21 m 67 Head Perit Synchron 
PrPD+ 

Perit 
 PDAC Yes 

22 w 63 Head Liver Synchron 
PPPD+ 

liver III 
 PDAC Yes 

23 w 54 Tail Perit Synchron 
LP+ 

Perit 
 PDAC No 

24 w 64 Tail Liver Synchron 
LP + 

liver II III 
 PDAC Yes 

25 m 62 Tail Perit Synchron 
LP+ 

Perit 
 PDAC Yes 

26 w 74 Head Liver Synchron 
PPPD+ 

liver II 

Left lung 

segment  

Mucinous 

AdenoCa. 
No 

Note：The second lung metastasectomy of case 8 was performed six months 
after the first left lung metastasectomy. 
 
Table 3. Demographics of Study Population. 

Variables Results 

Age (Year, Mean ± SD) 63.808 ± 9.261 

Gender (Female/Male) 15 (57.7%)/11 (42.3%) 
 7 PrPD (26.9%) 

Operation 6 PPPD (23.1%)  
12 Distal pancreatic resections (46.2%) 

  1 Total pancreatectomy (3.8%) 
 13 Head (50%) 

Location 5 Corpus (19.2%) 

  8 Tail (30.8%) 
 7 G2 (26.9%) 

TNM Classification Grading 17 G3 (65.4%) 

  2 G4 (7.7%) 

TNM Classification Tumor 

2 T2 (7.7%) 

23 T3 (88.5%) 

1 T4 (3.8%) 

 11 N0 (42.3%) 
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TNM Classification Lymph Nodes 14 N1(53.8%) 

  1 N2 (3.8%) 

TNM Classification Metastasis 
6 M0 (23.1%) 

20 M1 (76.9%) 
 12 R0 (46.2%) 

TNM Classification Resection 12 R1 (46.2%) 

  2 R2 (7.7%) 

 
Table 4. Laboratory values before PC resection. 
(Abbreviations: SD: standard deviation; AFP: serum alpha-fetoprotein; CA19-9: 
Carbohydrate antigen 19-9; Hb: Hemoglobin; CRP: C-reactive protein; INR: 
international normalized ratio; ALP: alkaline phosphatase; GGT: Gamma-
glutamyl transpeptidase.) 

Variables Results 

CEA 6.052±11.459 

CA19-9 1258.553±2178.596 

Bilirubin (mg/dl) (Mean ± SD) 1.851±3.592 

Albumin (g/L) (Mean ± SD) 42.785±5.766 

Lipase (U/L) (Mean ± SD) 80.456±84.852 

Amylase (U/L) (Mean ± SD) 72.861±38.791 

INR (Mean ± SD) 11.45±25.198 

Creatinine (mg/dl) (Mean ± SD) 0.872±0.154 

CRP (mg/L) (Mean ± SD) 1.737±4.457 

ALP (U/L) (Mean ± SD) 162.916±218.021 

GGT (U/L) (Mean ± SD) 280.76±744.902 

Leukocytes (/mm3) (Mean ± SD) 7384.231±2793.957 

Platelets (/mm3）(Mean ± SD) 240.923±59.574 

Hb (g/dl) (Mean ± SD) 12.684±2.757 

Quick (Mean ± SD) 94.895±24.516 
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Table 5. The density of IHC staining markers in PC. 
Variables Results 

Primary tumors of PC  

CD3 P (concentration) 157-698.667(median 442.667)/0.145 mm2 

CD8 P (concentration) 79.667-552.667 (median 362.833)/0.145 mm2 

CD20 P (concentration) 19-1227 (median 676.5)/0.145 mm2 

CD66 P (concentration) 0-238 (median 45.167)/0.145 mm2 

T GLUT1 P (concentration) 26-320.667(median 217.167)/0.145 mm2 

T HIF-1α P (concentration) 0-388(median 188)/0.145 mm2 

T PDHK1 P (concentration) 0-326(median 118.833)/0.145 mm2 

S GLUT1 P (concentration) 

S HIF-1α P (concentration) 

60.667-450(median 141.333)/0.145 mm2 

10-205.333(median 93.167)/0.145 mm2 

S PDHK1 P (concentration) 0-170.333(median 46.333)/0.145 mm2 

Metastatic tumors of PC    
CD3 M (concentration) 71–780.667 (median 362.833)/0.145 mm2 

CD8 M (concentration) 0–298 (median 101.833)/0.145 mm2 

CD20 M (concentration) 0–629.333 (median 155.665)/0.145 mm2 

CD66 M (concentration) 0–233.333 (median 71.665)/0.145 mm2 

T GLUT1 M (concentration) 13.667–466.333 (median 223.5)/0.145 mm2 

T HIF-1α M (concentration) 0–306.667 (median 199)/0.145 mm2 

T PDHK1 M (concentration) 0–251 (median 129)/0.145 mm2 

S GLUT1 M (concentration)  16.333-529.333(median 175.167)/0.145 mm2 

S HIF-1α M (concentration) 0-221(median 103.417)/0.145 mm2 

S PDHK1 M (concentration) 0-104.667(median 38.667)/0.145 mm2 

Note: P stands for Primary lesion of PC, M stands for metastatic tumors of PC, 
S stands for tumor stroma areas, T stands for tumor cell areas. 
 
3.2 TILs infiltration in primary and metastatic tumor of PC 

 

Immunohistochemistry revealed positive staining for CD3+, CD8+, CD20+, and 

CD66b+ in the stromal area of PC's primary and metastatic lesions (Figure 5 

and 6).  
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Figure 5. Representative pictures of high and low infiltration for CD3+, CD8+, 
CD20+, CD66b+ in PC primary lesions under 200x magnification(High and low 
infiltration were defined by median). 



LMU Doctoral Thesis  Tao Zhang 
 

 

 

44 

 
Figure 6. Representative pictures of high and low infiltration for CD3+, CD8+, 
CD20+, CD66b+ in PC metastatic lesions under 200x magnification(High and 
low infiltration were defined by median). 
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3.3 MCMs staining in primary and metastatic lesion of PC 
 
Immunohistochemistry revealed the staining for GLUT1, HIF-1α, and PDHK1 in 

PC's primary and metastatic lesions (Figure 7 and 8).  
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Figure 7. Representative pictures of high and low density for GLUT1, HIF-1α, 
and PDHK1 in PC primary lesions under 200x magnification. A, B, C show 
staining in tumor stromal areas; D, E, F show staining in tumor cell areas (High 
and low density were defined by median). 
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Figure 8. Representative pictures of high and low density for GLUT1, HIF-1α, 
and PDHK1 in PC metastatic lesions under 200x magnification. A, B, C show 
staining in tumor stromal areas; D, E, F show staining in tumor cell areas (High 
and low density were defined by median). 
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3.4 Differential analysis of leukocyte infiltration  

 

The infiltration of CD3+ T lymphocytes (P<0.05), CD8+ T lymphocytes (P<0.001), 

CD20+ B lymphocytes (P<0.001) in PC primary tumors was higher than in 

metastatic tumors. However, the difference infiltration of CD66b+ (p=0.65) was 

not statistically significant. Furthermore, there was no statistically significant 

difference in TILs infiltration between liver and non-liver group (CD3+ TILs p=0.5, 

CD8+ TILs p=0.58, CD20+ TILs p=0.79, CD66b+ TINs p=0.58), synchronous 

and metachronous group (CD3+ TILs p=0.21, CD8+ TILs p=0.15, CD20+ TILs 

p=0.09, CD66b+ TINs p=0.74) (Figure 9). 
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Figure 9. Differential analysis of leukocyte infiltration in primary and metastasis 
group (A, B, C, D), liver and non-liver group (E, F, G, H), synchronous and 
metachronous group (I, J, K, L). CD3+, CD8+, and CD20+ are highly expressed 
in primary tumors than in metastatic tumors in metastatic pancreatic cancer. 
Note: Syn stands for synchronous metastasis, Meta stands for metachronous 
metastasis. 

 

3.5 Prognostic value of TILs in pancreatic cancer on patient's survival  
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3.5.1 Prognostic value of TILs in primary tumor of PC on OS  

 

Kaplan-Meier plots revealed high infiltration of CD20+ (Log-rank P=0.013) 

correlated with improved OS in PC primary tumors. We analyzed all the 

leukocytes in different combinations and found that high group of CD3++CD20+ 

(p=0.018), CD8++CD20+ (p=0.03), CD3++CD8++CD20+ (p=0.025), and 

CD3++CD20++CD66b+ (p=0.02) correlated with better OS in PC primary tumors 

(Figure 10). 
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Figure 10. Kaplan-Meier plots of CD3+, CD8+, CD20+, CD66b+ and leukocytes 
combinations on OS. 
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3.5.2 Prognostic value of TILs in primary tumor of PC on DFS  

 

Kaplan-Meier plots revealed high or low infiltration of CD3+ (p=0.931), CD8+ 

(p=0.528), CD20+ (p=0.458), CD66b+ (p=0. 312) didn’t correlate with DFS, and 

all the leukocytes in different combinations showed the same results 

(CD3++CD8+ P=0.842, CD3++CD20+ P=0.548, CD3++CD66b+ P=0.223, 

CD8++CD20+ P=0.859, CD8++CD66b+ P=0.061, CD20++CD66b+ P=0.722, 

CD3++CD8++CD20+ P=0.979, CD3++CD8++CD66b+ P=0.866, 

CD3++CD20++CD66b+ P=0.948, CD8++CD20++CD66b+ P=0.22, 

CD3++CD8++CD20++CD66b+ P=0.729) (Figure 11). 
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Figure 11. Kaplan-Meier plots of CD3+, CD8+, CD20+, CD66b+ and leukocytes 
combinations on DFS. 
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3.5.3 Time-dependent ROC curve of immune leukocytes infiltrating in 

primary tumor of PC on OS (1 year) and DFS (1 year) 
 
Analysis of Time-dependent ROC curves (1 year) of immune leukocytes 

infiltrating in PC primary tumors was performed. None of leukocytes showed 

significant ability to predict the improved OS (CD3+ AUC=0.339, CD8+ 

AUC=0.405, CD20+ AUC=0.274, CD66b+ AUC=0.607) and DFS (CD3+ 

AUC=0.466, CD8+ AUC=0.369, CD20+ AUC=0.422, CD66b+ AUC=0.341) 

(Figure 12). 

Figure 12. Time-dependent ROC curves were drawn to predict the OS (A, B, 

C, D) and DFS (E, F, G, H) in PC primary tumors. 
 
 



LMU Doctoral Thesis  Tao Zhang 
 

 

 

55 

3.5.4 Prognostic value of TILs in metastatic tumor of PC on OS 

 

Kaplan-Meier plots revealed high infiltration of CD8+ (Log-rank P=0.023) 

correlated with improved OS in PC metastatic tumors. However, none of the 

leukocytes in different combinations showed statistical significance 

(CD3++CD8+ P=0.388, CD3++CD20+ P=0.624, CD3++CD66b+. P=0.639, 

CD8++CD20+ P=0.429, CD8++CD66b+ P=0.072, CD20++CD66b+ P=0.243, 

CD3++CD8++CD20+ P=0.451, CD3++CD8++CD66b+ P=0.831, 

CD3++CD20++CD66b+ P=0.699, CD8++CD20++CD66b+ P=0.447, 

CD3++CD8++CD20++CD66b+ P=0.734) (Figure 13). 



LMU Doctoral Thesis  Tao Zhang 
 

 

 

56 

 
Figure 13. Kaplan-Meier plots of CD3+, CD8+, CD20+, CD66b+ and leukocytes 
combinations on OS. 
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3.5.5 Prognostic value of TILs in metastatic tumor of PC on DFS 

 

Kaplan-Meier plots revealed high or low infiltration of CD3+ (p=0.357), CD8+ 

(p=0.531), CD20+ (p=0.076), CD66b+ (p=0. 562) didn’t correlate with DFS, and 

all the leukocytes in different combinations showed the same results 

(CD3++CD8+ P=0.906, CD3++CD20+ P=0.139, CD3++CD66b+ P=0.387, 

CD8++CD20+ P=0.214, CD8++CD66b+ P=0.884, CD20++CD66b+ P=0.327, 

CD3++CD8++CD20+ P=0.645, CD3++CD8++CD66b+ P=0.713, 

CD3++CD20++CD66b+ P=0.581, CD8++CD20++CD66b+ P=0.743, 

CD3++CD8++CD20++CD66b+ P=0.944) (Figure 14). 
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Figure 14. Kaplan-Meier plots of CD3+, CD8+, CD20+, CD66b+ and leukocytes 
combinations on DFS. 
 



LMU Doctoral Thesis  Tao Zhang 
 

 

 

59 

3.5.6 Time-dependent ROC curve of immune leukocytes infiltrating in 

metastatic tumor of PC on OS (1 year) and DFS (1 year) 

 

Analysis of Time-dependent ROC curves (1 year) analysis of immune 

leukocytes infiltrating in PC primary tumors was performed. None of leukocytes 

showed significant ability to predict the improved OS (CD3+ AUC=0.492, CD8+ 

AUC=0.41, CD20+ AUC=0.456, CD66b+ AUC=0.533) and DFS (CD3+ 

AUC=0.854, CD8+ AUC=0.504, CD20+ AUC=0.678, CD66b+ AUC=0.625) 

(Figure 15). 

Figure 15. Time-dependent ROC curves were drawn to predict the OS (A, B, 
C, D) and DFS (E, F, G, H) in PC metastatic tumors. 
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3.6 The Neutrophil-to-lymphocyte ratio (NLR) in primary and metastatic 

tumor of PC  

3.6.1 Prognostic value of NLR in the primary tumors of PC on OS and DFS 

 

Neutrophil-to-lymphocyte ratio in PC primary tumors showed no correlation with 

OS (CD66b+/CD3+ p=0.597, CD66b+/CD8+ p=0.489) and DFS (CD66b+/CD3+ 

p=0.066, CD66b+/CD8+ p=0.524, CD66b+/CD20+ p=0.813), except for low 

CD66b+/CD20+ (p=0.009) ratio correlated with improved OS (Figure 16). 

 
Figure 16. The prognostic value of the NLR in PC primary tumors on OS (A, 
B, C) and DFS (D, E, F). 
 
3.6.2 Time-dependent ROC curve of NLR in primary tumors of PC on OS 

(1 year) and DFS (1 year) 

 

None of NLR showed significant ability to predict the OS (CD66b+/CD3+ 

AUC=0.646, CD66b+/CD8+ AUC=0.646 CD66b+/CD20+ AUC=0.695) and DFS 

(CD66b+/CD3+ AUC=0.381, CD66b+/CD8+ AUC=0.566 CD66b+/CD20+ 

AUC=0.495) (Figure 17). 
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Figure 17. Time-dependent ROC curves of NLR were drawn to predict the OS 
(A, B, C) and DFS (D, E, F) in pancreatic cancer primary tumors. 
 

3.6.3 Prognostic value of NLR in metastatic tumor of PC on OS and DFS 

 

Neutrophil-to-lymphocyte ratio in PC primary tumors showed no correlation with 

OS (CD66b+/CD3+ p=0.852, CD66b+/CD8+ p=0.638, CD66b+/CD20+ p=0.595) 

and DFS (CD66b+/CD3+ p=0.403, CD66b+/CD8+ p=0.164, CD66b+/CD20+ 

p=0.12) (Figure 18). 
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Figure 18. The prognostic value of NLR in PC metastatic tumors on OS (A, B, 
C) and DFS (D, E, F). 
 

3.6.4 Time-dependent ROC curve of NLR in metastatic tumor of PC on OS 

(1 year) and DFS (1 year) 

 

None of NLR showed significant ability to predict the OS (CD66b+/CD3+ 

AUC=0.556, CD66b+/CD8+ AUC=0.52, CD66b+/CD20+ AUC=0.492) and DFS 

(CD66b+/CD3+ AUC=0.496, CD66b+/CD8+ AUC=0.649 CD66b+/CD20+ 

AUC=0.389) (Figure 19). 



LMU Doctoral Thesis  Tao Zhang 
 

 

 

63 

Figure 19. Time-dependent ROC curves of NLR were drawn to predict the OS 
(A, B, C) and DFS (D, E, F) in PC metastatic tumors. 
 

3.7 Differential analysis of MCMs in tumor cell areas of PC 

 

The density of each molecule was used as a continuous variable for analysis, 

and no significant difference was discovered between primary and metastasis 

group (HIF-1α p=0.88, GLUT1 p=0.76, PDHK1 p=0.6), liver and non-liver group 

(HIF-1α p=0.38, GLUT1 p=0.58, PDHK1 p=0.81), synchronous and 

metachronous group (HIF-1α p=0.33, GLUT1 p=0.61, PDHK1 p=0.08) (Figure 

20). 
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Figure 20. Differential analysis of MCMs in the tumor cell areas of primary and 
metastatic lesions of PC (A, B, C,), liver and non-liver group (D, E, F), 
synchronous and metachronous group (G, H, I). Note: Syn for synchronous 
metastasis, Meta for metachronous metastasis. 
 

3.8 Prognostic value of MCMs in tumor cell areas of PC on patient's 

survival 

 

3.8.1 Prognostic value of MCMs in tumor cell area of PC primary tumors 

on OS and DFS 

 

There was no statistical significance for each metabolic molecule and their 

combinations in tumor cell area of PC primary tumor on OS (HIF-1α p=0.189, 

GLUT1 p=0.794, PDHK1 p=0.209, HIF-1α+GLUT1 p=0.674, GLUT1+PDHK1 
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p=0.594, HIF-1α+PDHK1 p=0.937, GLUT1+HIF-1α+PDHK1 p=0.545), and 

DFS (HIF-1α p=0.218, GLUT1 p=0.768, PDHK1 p=0.39, HIF-1α+GLUT1 

p=0.617, GLUT1+PDHK1 p=0.415, HIF-1α+PDHK1 p=0.688, GLUT1+ HIF-

1α+PDHK1 p=0.192) (Figure 21). 
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Figure 21. The prognostic value of MCMs in the tumor cell areas of PC primary 
tumors on OS (A, B, C, D, E, F, G) and DFS (H, I, J, K, L, M, N). 
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3.8.2 Time-dependent ROC curve of MCMs in tumor cell area of PC primary 

tumors on OS (1 year) and DFS (1 year) 

 

None of the metabolic molecules in tumor cell area of PC primary tumors 

showed significant ability to predict the OS (GLUT1 AUC=0.453, HIF-1α 

AUC=0.707, PDHK1 AUC=0.317) and DFS (GLUT1 AUC=0.68, HIF-1α 

AUC=0.586, PDHK1 AUC=0.386) (Figure 22). 

 
Figure 22. Time-dependent ROC curves were drawn to predict the OS (A, B, 
C) and DFS (D, E, F) in the tumor cell areas of PC primary tumors. 
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3.8.3 Prognostic value of MCMs in tumor cell area of metastatic tumor of 

PC on OS and DFS 

 

There was no statistical significance for each metabolic molecule and their 

combinations in the tumor cell areas of PC metastatic tumor on OS (HIF-1α 

p=0.139, GLUT1 p=0.721, PDHK1 p=0.697, HIF-1α+GLUT1 p=0.066, 

GLUT1+PDHK1 p=0.424, HIF-1α+PDHK1 p=0.555, GLUT1+HIF-1α+PDHK1 

p=0.783), and DFS (HIF-1α p=0.922, GLUT1 p=0.571, PDHK1 p=0.806, HIF-

1α+GLUT1 p=0.699, GLUT1+PDHK1 p=0.735, HIF-1α+PDHK1 p=0.523, 

GLUT1+HIF-1α+PDHK1 p=0.605) (Figure 23). 
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Figure 23. The prognostic value of MCMs in the tumor cell areas of PC 
metastatic tumors on OS (A, B, C, D, E, F, G) and DFS (H, I, J, K, L, M, N). 
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3.8.4 Time-dependent ROC curve of MCMs in tumor cell areas of 

metastatic tumor of PC on OS (1 year) and DFS (1 year) 

 

None of the metabolic molecules in the tumor cell areas of PC metastatic 

tumors showed significant ability to predict the OS (HIF-1α AUC=0.672, GLUT1 

AUC=0.469, PDHK1 AUC=0.471), and DFS (HIF-1α AUC=0.477, GLUT1 

AUC=0.666, PDHK1 AUC=0.553) (Figure 24). 

 
Figure 24. Time-dependent ROC curves were drawn to predict the OS (A, B, 
C) and DFS (D, E, F) in the tumor cell areas of PC metastatic tumors. 
 

3.9 Differential analysis of MCMs in tumor stromal areas of PC  

 

The density of each molecule was used as a continuous variable for analysis, 

and no significant was discovered among primary and metastasis group (HIF-

1α p=0.72, GLUT1 p=0.44, PDHK1 p=0.46), liver and non-liver group (HIF-1α 

p=0.24, GLUT1 p=0.34, PDHK1 p=0.46), synchronous and metachronous 

group (HIF-1α p=0.46, GLUT1 p=0.11, PDHK1 p=0.17) (Figure 25). 
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Figure 25. Differential analysis of MCMs in the tumor stromal areas of tumors 
in primary and metastatic lesions of PC (A, B, C), in the liver and non-liver group 
(D, E, F), and the synchronous and metachronous group (G, H, I).  
Note: Syn for synchronous metastasis, Meta for metachronous metastasis. 
 

3.10 Prognostic value of MCMs in tumor stromal areas of PC on patient's 

survival      

              

3.10.1 Prognostic value of MCMs in tumor stromal area of PC primary 

tumors on OS and DFS 

 

I found low-density of GLUT1 (p=0.009) was associated with improved OS in 

tumor stromal area of PC primary tumor; however, the combination of 

molecules didn’t correlate with OS (GLUT1+HIF-1α p=0.111, HIF-1α+PDHK1 
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p=0.445, GLUT1+PDHK1 p=0.098, GLUT1+HIF-1α+PDHK1 p=0.274). 

Moreover, there was no statistical significance in each metabolic molecule and 

their combinations in tumor stromal area of PC primary tumor on DFS (GLUT1 

p=0.085, HIF-1α p=0.148, PDHK1 p=0.069, GLUT1+HIF-1α p=0.981, HIF-

1α+PDHK1 p=0.205, GLUT1+PDHK1 p=0.311, GLUT1+HIF-1α+PDHK1 

p=0.502) (Figure 26). 
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Figure 26. The prognostic value of MCMs in the tumor stromal areas of PC 
primary tumors on OS (A, B, C, D, E, F, G) and DFS (H, I, J, K, L, M, N). 
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3.10.2 Time-dependent ROC curve of MCMs in tumor stromal area of PC 

primary tumors on OS (1 year) and DFS (1 year) 

 

GLUT1 (AUC=0.823) in tumor stromal area of PC primary tumor showed 

significant ability to predict the OS, while HIF-1α (AUC=0.613) and PDHK1 

(AUC=0.377) did not. Furthermore, GLUT1 (AUC=0.813) and HIF-1α 

(AUC=0.854) in the tumor stromal areas of PC primary tumors showed 

significant ability to predict the DFS, while PDHK1 (AUC=0.139) did not.  

(Figure 27). 

 
Figure 27. Time-dependent ROC curves were drawn to predict the OS (A, B, 
C) and DFS (D, E, F) in the tumor stromal areas of PC primary tumors. 
 

3.10.3 Prognostic value of MCMs in tumor stromal area of metastatic 

tumor of PC on OS and DFS 

 

I found low-density of GLUT1 (p=0.01) and GLUT1+PDHK1 (p=0.034) in tumor 

stromal area of PC metastatic tumors correlated with improved OS, however, 

the rest of molecules didn’t correlate with OS (HIF-1α p=0.529, PDHK1 p=0.804, 
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GLUT1+HIF-1α p=0.466, HIF-1α+PDHK1 p=0.438, GLUT1+PDHK1 p=0.098, 

GLUT1+ HIF-1α+PDHK1 p=0.932). Moreover, there was no statistical 

significance for each metabolic molecule and their combinations in tumor 

stromal area of PC primary tumor on DFS (GLUT1 p=0.537, HIF-1α p=0.244, 

PDHK1 p=0.788, GLUT1+HIF-1α p=0.648, HIF-1α+PDHK1 p=0.436, 

GLUT1+PDHK1 p=0.163, GLUT1+HIF-1α+PDHK1 p=0.943) (Figure 28). 
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Figure 28. The prognostic value of MCMs in the tumor stromal areas of PC 
metastatic tumors on OS (A, B, C, D, E, F, G) and DFS (H, I, J, K, L, M, N). 
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3.10.4 Time-dependent ROC curve of MCMs in tumor stromal area of 

metastatic tumor of PC on OS (1 year) and DFS (1 year) 

 

GLUT1 (AUC=0.865) in tumor stromal area of PC metastatic tumors showed 

significant ability to predict the OS, while PDHK1 (AUC=0.479) and HIF-1α 

(AUC=0.558) did not. Furthermore, GLUT1 (AUC=0.736), HIF-1α (AUC=0.448), 

and PDHK1 (AUC=0.588) in tumor stromal area of PC metastatic tumor showed 

no significant ability to predict the DFS (Figure 29). 

Figure 29. Time-dependent ROC curves were drawn to predict the OS (A, B, 

C) and DFS (D, E, F) in the tumor stromal areas of PC metastatic tumors. 

 

3.11 Differences in density of MCMs between tumor cell areas and tumor 

stromal areas 

 

A comparison on metabolic molecules between tumor cell area and tumor 

stromal area was made and the result showed that the density of HIF-1α 

(p<0.001) and PDHK1 (p<0.001) in tumor cell area were higher than in the 
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tumor stroma area in both PC primary and metastatic tumors, while GLUT1 did 

not (Figure 30). 

 
Figure 30. Differential analysis of MCMs between the tumor cell areas and the 
tumor stromal areas in primary (A, B, C,) and metastasis group (D, E, F). 

 

3.12 Prognostic value of preoperational laboratory values on patient's 

survival  

 

3.12.1 Prognostic value of preoperational laboratory values on OS and 

DFS 

 

Low level of platelets (p=0.014) showed significant ability to predict the OS. 

However, the rest of the laboratory values did not correlate with OS (CEA 

p=0.74, CA 19-9 p=0.944, Leukocytes p=0.391, INR p=0.903, Bilirubin 

p=0.999). Moreover, there was no prognostic value of preoperational laboratory 

values on DFS (CEA p=0.157, CA 19-9 p=0.605, Leukocytes p=0.35, platelets 

p=0.853, INR p=0.147, Bilirubin p=0.92) (Figure 31). 
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Figure 31. The prognostic value of preoperational laboratory values on OS 
(A, B, C, D, E, F) and DFS (G, H, I, J, K, L). 
 

3.12.2 Time-dependent ROC curve of preoperational laboratory values on 

OS (1 year) and DFS (1 year) 

 

The Time-dependent ROC curves for preoperational laboratory values on 

survival prognosis were analyzed and platelets (AUC=0.836) were found to 
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show significant ability to predict OS, while the rest of laboratory values did not 

(CEA AUC=0.57, CA 19-9 AUC=0.596, Leukocytes AUC=0.703, INR 

AUC=0.535, Bilirubin AUC=0.408). Furthermore, Leukocytes (AUC=0.782) 

showed significant ability to predict DFS, while the rest of the laboratory values 

did not (CEA AUC=0.427, CA 19-9 AUC=0.516, platelets AUC=0.714, INR 

AUC=0.604, Bilirubin AUC=0.528) (Figure 32). 

 
Figure 32. The predictive values of Time-dependent ROC curves for 
preoperational laboratory values on OS (A, B, C, D, E, F) and DFS (G, H, I, J, 
K, L). 
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3.13 Correlation between IHC staining markers and laboratory values 

 

All IHC staining markers and laboratory values were examined as a continuous 

variable by Spearman correlation. The correlation coefficients ranged from -1 

to 1, as shown in Figure 27, with Positive relationships in red, whereas negative 

correlations are presented in blue. For example, positive correlation between 

CD3+ P and CD20P+, and T GLUT1 M, and Amylase, were positively correlated, 

while CD3+ P and S PDHK1 M were negatively correlated (Figure 33). 

 
Figure 33. Correlation between IHC staining markers and laboratory values. 
(Abbreviations: CEA: Carcinoma Embryonic Antigen; CA19-9: Carbohydrate 
antigen 19-9; Hb: Hemoglobin; CRP: C-reactive protein; Crea: Creatinine; ALP: 
alkaline phosphatase; GGT: Gamma-glutamyl transpeptidase; INR: 
international normalized ratio. T stands for Tumor cell areas, S stands for Tumor 
stromal areas; P stands for Primary tumor, M stands for metastasis tumor) 
 

3.14 Cox regression for IHC staining markers and clinical parameters 
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Cox regression was performed for IHC staining markers and clinical 

Parameters. Univariate cox regression analysis was performed on seven 

staining markers and clinical parameters with OS and DFS as dependent 

variables (Due to the potential statistical consequences of double-use, 

combination groups of different immune cell types and metabolic checkpoint 

molecules was excluded). As shown in Table 6, in the case of univariate cox 

regression analysis, high infiltration of CD20+ (p=0.021) in PC primary tumors 

and high infiltration of CD8+ (P=0.033) in metastatic tumors correlated with 

improved OS; low density of GLUT1 (P=0.015, P=0.018) in tumor stromal areas 

of PC correlated with improved OS; low level of platelets (P=0.022) correlated 

with improved OS in PC. However, no variables were associated with DFS. P-

values <0.050 in univariate analysis were included in multivariate for analysis, 

and statistical significance was considered as a P-value of less than 0.050. In 

the case of multivariate cox regression analysis (table 7), CD8+ was found in 

metastatic tumors, and GLUT1 in tumor stromal areas of primary and metastatic 

tumors was independent variables to predict survival prognosis. 
 
Table 6. Univariate Cox regression analysis of all independent variables with 
OS and DFS as dependent variables. 

Variables 
Overall survival Disease-free Survival 

HR  95% CI P-value HR  95% CI P-value 

Gender: Male vs. Female 0.490  0.160  1.470  0.201  0.900  0.190  4.200  0.894  

Age:  >65 vs <=65 years  0.870  0.300  2.520  0.795  0.830  0.180  3.780  0.805  

T3+T4 vs T2 0.373  0.081  1.720  0.206  0.436  0.049  3.884  0.457  

N+(N1+N2) vs N0 1.260  0.430  3.710  0.669  2.350  0.450  12.170  0.308  

R0 vs R+(R1+R2)  0.850  0.290  2.480  0.764  1.300  0.290  5.810  0.733  

Chemotherapy: No vs Yes  2.070  0.680  6.290  0.201  3.020  0.630  14.500  0.167  

Metastasis sites: liver vs non-liver  0.610  0.170  2.180  0.447  1.870  0.370  9.420  0.449  

Synchronous vs Metachronous 4.020  0.850  19.040  0.079  2.100  0.390  11.360  0.389  

CD3 P   0.420  0.140  1.270  0.126  0.930  0.200  4.330  0.931  

CD8 P  0.880  0.310  2.520  0.809  0.620  0.140  2.780  0.532  

CD20 P  0.250  0.080  0.810  0.021  1.850  0.360  9.610  0.464  

CD66b P  1.320  0.450  3.830  0.610  0.440  0.090  2.270  0.326  

CD3 M   0.750  0.250  2.250  0.611  2.200  0.390  12.230  0.369  

CD8 M  0.270  0.080  0.900  0.033  0.600  0.120  3.000  0.535  
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CD20 M  0.810  0.280  2.360  0.706  5.680  0.660  49.090  0.115  

CD66b M  1.100  0.380  3.170  0.863  1.560  0.350  7.030  0.564  

S GLUT1 P   4.687  1.347  16.306  0.015  4.684  0.704  31.151  0.110  

S HIF-1α P   1.927  0.623  5.967  0.255  3.453  0.591  19.986  0.170  

S PDHK1 P  0.767  0.268  2.194  0.621  0.233  0.043  1.263  0.091  

S GLUT1 M 4.137  1.281  13.357  0.018  1.621  0.345  7.619  0.541  

S HIF-1α M  0.710  0.244  2.067  0.530  0.389  0.075  2.018  0.261  

S PDHK1 M  1.149  0.385  3.422  0.804  1.246  0.249  6.235  0.789  

T GLUT1 P   0.870  0.300  2.500  0.794  1.250  0.280  5.610  0.768  

T HIF-1α P   2.020  0.690  5.880  0.197  2.540  0.550  11.770  0.233  

T PDHK1 P  0.490  0.160  1.520  0.218  0.460  0.070  2.830  0.401  

T GLUT1 M 1.210  0.420  3.480  0.721  1.590  0.320  7.920  0.574  

T HIF-1α M  2.250  0.750  6.770  0.149  1.080  0.240  4.900  0.922  

T PDHK1 M  0.810  0.280  2.330  0.698  1.210  0.270  5.410  0.807  

CEA 0.834 0.285 2.438 0.74 3.124  0.595  16.391  0.178  

CA 19-9 1.039 0.362 2.981 0.944 1.482  0.331  6.643  0.607  

Leukocytes 1.632 0.528 5.052 0.395 2.223  0.399  12.391  0.362  

Hb 1.574 0.525 4.717 0.418 0.313  0.060  1.637  0.169  

Platelets 4.038 1.225 13.313 0.022 0.850  0.152  4.749  0.853  

Lipase 0.917 0.32 2.628 0.872 1.029  0.207  5.107  0.972  

Amylase 0.647 0.233 1.873 0.422 0.725  0.138  3.807  0.704  

Albumin 0.817 0.284 2.353 0.708 0.130  0.016  1.089  0.060  

CRP 0.901 0.311 2.609 0.848 0.582  0.106  3.184  0.533  

Creatinine 0.579 0.192 1.741 0.33 0.365  0.061  2.171  0.268  

ALP 0.422 0.135 1.316 0.137 0.236  0.040  1.397  0.111  

GGT 0.707 0.243 2.02 0.51 0.820  0.175  3.841  0.801  

INR 1.069 0.366 3.117 0,903 0.313  0.060  1.637  0.169  

Quick 0.574 0.191 1.721 0.322 2.976  0.571  15.507  0.195  

Bilirubin 1.001 0.348 2.878 0.999 1.083  0.230  5.090  0.920  

p-values under 0.050 appear in bold (n = 26). Median values described Tumor-
infiltrating leukocytes and metabolic checkpoint molecules for the high 
infiltration group (high-density group) or low infiltration group (low-density 
group). P stands for Primary lesion of PC, M stands for metastatic tumors of 
PC, S stands for tumor stroma areas, T stands for tumor cell areas. Significant 
p-values were bolded. 
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Table 7. P-values <0.050 in univariate analysis were included in multivariate 
analysis. Significant p-value was bolded (n = 26). 

Variables 
Overall survival 

HR  95% CI P-value 

 CD20 P 0.272 0.066 1.124 0.072 

 CD8 M 0.196 0.044 0.872 0.032 

S GLUT1 P 5.816 1.006 33.624 0.049 

S GLUT1 M 5.056 1.258 20.324 0.022 

Platelets 3.706 0.769 17.851 0.102 

P stands for Primary lesion of PC, M stands for metastatic tumors of PC, S 
stands for tumor stroma areas, T stands for tumor cell areas. Significant p-
values were bolded. 
 

3.15 Binary logistic regression for IHC staining markers and clinical 

Parameters 

 

Regarding the relationship between IHC staining markers and clinical 

parameters with metastatic patterns (synchronous vs. metachronous 

metastasis), and metastasis sites (liver vs. non-liver metastasis), Binary logistic 

regression was conducted with metastatic patterns and metastasis sites as 

dependent variables. P-values <0.050 in univariate analysis were included in 

multivariate analysis. It was found that males are more likely to develop 

synchronous metastasis than females, and N+(N1+N2) is more likely to 

develop metachronous metastasis than N0 in univariate and multivariable 

logistic regression. However, there is no connection between HC staining 

markers, clinical parameters, and metastasis sites (liver vs. non-liver 

metastasis) (table 8 and 9) 
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Table 8. Binary logistic regression analysis was conducted with synchronous 
vs. metachronous metastasis as dependent variables. P-values <0.050 in 
univariate analysis were included in multivariate analysis. 

Variables 
Univariate Logistic regression  Multivariate Logistic regression 

OR 95% CI P value OR 95% CI P value 

Gender: Male vs Female 0.086  0.008  0.899  0.040  0.042  0.002  0.783  0.034  

Age: >65 vs <=65years  0.500  0.074  3.378  0.477          

T3+T4 vs T2 0.436  0.049  3.884  0.457          

N+(N1+N2) vs N0 11.667  1.112  122.381  0.040  23.793  1.276  443.546  0.034  

R0 vs R+(R1+R2)  3.000  0.440  20.436  0.262          

CD3 P 2.444  0.361  16.547  0.360          

CD8 P 0.409  0.060  2.769  0.360          

CD20 P 0.133  0.013  1.365  0.090          

CD66b P 1.000  0.161  6.200  1.000          

S GLUT1 P 1.000  0.161  6.200  1.000          

S HIF-1α P 7.500  0.733  76.773  0.090          

S PDHK1 P 0.133  0.013  1.365  0.090          

T GLUT1 P 7.500  0.733  76.773  0.090          

T HIF-1α P 2.444  0.361  16.547  0.360          

T PDHK1 P 0.409  0.060  2.769  0.360          

CEA 2.444  0.361  16.547  0.360          

CA 19-9 1.000  0.161  6.200  1.000          

Leukocytes 2.444  0.361  16.547  0.360          

Hb 1.000  0.161  6.200  1.000          

Platelets 7.500  0.733  76.773  0.090          

Lipase 1.000  0.161  6.200  1.000          

Amylase 1.000  0.161  6.200  1.000          

Albumin 0.409  0.060  2.769  0.360          

CRP 0.818  0.132  5.084  0.830          

Creatinine 0.333  0.049  2.271  0.262          

ALP 0.409  0.060  2.769  0.360          

GGT 0.133  0.013  1.365  0.090          

INR 0.133  0.013  1.365  0.090          

Quick 2.444  0.361  16.547  0.360          

Bilirubin 0.333  0.049  2.271  0.262          

P stands for Primary lesion of PC. S for tumor stroma areas, T for tumor cell 
areas. Significant p-values were bolded. 
(Abbreviations: HR: Hazard ratio; CI: confidence interval) 
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Table 9. Binary logistic regression analysis was conducted with liver vs. non-
liver metastasis as dependent variables. Only univariate logistic analyses were 
conducted due to no variable had a p-value under 0.05. 

Variables  
Univariate Logistic regression 

OR  95% CI P-value 

Gender: Male vs Female 3.333  0.588  18.891  0.174  

Age: >65 vs <=65years  0.800  0.151  4.245  0.793  

Chemotherapy: No vs Yes  1.500  0.230  9.796  0.672  

T3+T4 vs T2 0.875  0.068  11.313  0.919  

N+(N1+N2) vs N0 1.333  0.242  7.348  0.741  

Synchronous vs Metachronous 3.000  0.452  19.928  0.255  

R0 vs R+(R1+R2)  3.750  0.589  23.867  0.162  

CD3 P 1.000  0.189  5.289  1.000  

CD8 P 2.083  0.378  11.482  0.399  

CD20 P 2.083  0.378  11.482  0.399  

CD66b P 1.000  0.189  5.289  1.000  

S GLUT1 P 0.480  0.087  2.645  0.399  

S HIF-1α P 1.000  0.189  5.289  1.000  

S PDHK1 P 2.083  0.378  11.482  0.399  

S GLUT1 P 2.083  0.378  11.482  0.399  

S HIF-1α P 0.480  0.087  2.645  0.399  

S PDHK1 P 1.000  0.189  5289  1.000  

CEA 4.714  0.734  30.278  0.102  

CA 19-9 4.714  0.734  30.278  0.102  

Leukocytes 1.000  0.189  5.289  1.000  

Hb 0.212  0.033  1.362  0.102  

Platelets 2.083  0.378  11.482  0.399  

Lipase 0.212  0.033  1.362  0.102  

Amylase 0.480  0.087  2.645  0.399  

Albumin 1.000  0.189  5.289  1.000  

CRP 2.619  0.471  14.577  0.272  

Creatinine 1.250  0.236  6.633  0.793  

ALP 0.212  0.033  1.362  0.102  

GGT 1.000  0.189  5.289  1.000  

INR 2.083  0.378  11.482  0.399  

Quick 1.000  0.189  5.289  1.000  

Bilirubin 0.600  0.109  3.296  0.557  

P stands for Primary lesion of PC. S for tumor stroma areas, T for tumor cell 
areas. Significant p-values were bolded. 
(Abbreviations: HR: Hazard ratio; CI: confidence interval) 

 



LMU Doctoral Thesis  Tao Zhang 
 

 

 

87 

4. Discussion 

 
Up to now, PC remains a fatal disease with a poor prognosis, and the incidence 

and health burden of PC is increasing every year [5, 145]. Clinically, only about 

10% of patients with PC could achieve 5-year survival through curative 

resection due to advanced-stage disease at the time of diagnosis [16, 17]. 

However, metastatic PC has a five-year survival rate of approximately 2.9% 

[18]. The TME of PC contains immune cells, cytokines, stromal fibroblasts, and 

extracellular matrix (ECM), forming a complex structure involved in pancreatic 

cancer proliferation, metastasis, and drug resistance [133, 146, 147], which 

may be responsible for the failure of multiple treatment modalities, including 

chemotherapy, radiotherapy, and immunotherapy. Therefore, understanding 

TME, such as TILs and MCMs, may help find an effective therapy for PC [146, 

148]. 

 

4.1 Tumor-infiltrating leukocytes (TILs and TINs) in PC 

 

Previous studies revealed that high infiltrated CD3+ T lymphocytes or CD8+ T 

lymphocytes in the TME had been used as a favorable prognostic indicator of 

PC [3, 77, 143, 149-151]. Compared to other solid tumors, CD3+ or CD8+ cells 

also have the prognostic value for hepatocellular cancer [142], colorectal 

cancer [152-154], breast cancer [155-157], and ovarian cancer [158, 159]. As 

described above, high infiltration of CD3+ T lymphocytes is associated with 

improved OS in PC. CD8+ cytotoxic T lymphocytes are essential antitumor 

immune cells that act by secreting perforin and granzyme and expressing Fas 

ligand [160]. As mentioned previously, many studies have demonstrated the 

prognostic value of high infiltrating of CD8+ for long-term survival of PC patients. 

So far as we know, this is the first study to elucidate the function of stromal 
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tumor-infiltrating leukocytes in metastatic PC. In this study, I found high 

infiltrated CD8+ T lymphocytes in metastatic lesions of PC correlated with 

improved overall survival; more importantly, high infiltration of CD8+ cells in 

metastatic lesions of PC was an independent factor of favorable overall survival. 

The reason for the above results may be that cytotoxic CD8+ T cells have the 

function of tumor-killing in the tumor microenvironment, as well as the presence 

of being immunosuppressed features [161]. Unfortunately, CD3+ T lymphocytes 

did not affect OS and DFS in metastatic PC, probably due to the individualized 

differential expression of CD3+ T lymphocytes, which are also a marker of T-

regulatory cell (Treg). In addition, the effect of pre-surgical neoadjuvant 

chemotherapy on the host's immune function, as well as the insufficient number 

of cases, may also contribute to this outcome. 

  

The B cell is an essential component of humoral immunity, identified as a critical 

player in the fight against tumors [162]. Tumor infiltrated B lymphocytes may 

directly kill tumor cells via an antibody-independent approach and promote cell-

mediated immunity [163]. On the other hand, regulatory T cells may inhibit B 

cell activation, proliferation, and antibody production [164]. There were some 

favorable effects of high infiltration of CD20+ B-lymphocyte on survival in PC [3, 

77, 165]. Furthermore, Patients only with highly infiltrated CD8+ T lymphocytes 

or CD20+ T lymphocytes had lower survival compared to patients with both 

highly infiltrated CD8+ T lymphocytes and CD20+T lymphocytes in ovarian 

cancer [166]. This may indicate a collaborative activity between T lymphocytes 

and B lymphocytes in cancer immunity. The present study showed that high 

infiltration of CD20+ B cells in primary lesions of metastatic PC in univariate 

analysis was associated with the improved OS but not with DFS. This is 

consistent with the finding of our institute finding in Upfront Resection of 

Pancreatic Cancer [3] and our assumptions in the designing of the project. One 
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possible reason for this is that CD20+ is also expressed on the regulatory B cell 

(B reg).  

 

One study suggests that innate immunity may play an important role in the 

progression of chronic pancreatitis to PC [167]. The CD66b+ neutrophils are 

considered the body's first line of defense against infection and respond to 

inflammatory conditions, including cancer [168]. Among all tumor types, tumor-

infiltrating neutrophils were significantly correlated with worse outcomes in 

renal cell carcinoma [169], testicular germ cell tumors [170], cervical cancer 

[171], and pancreatic cancer [172]. However, it did correlate significantly with 

better survival in gastric cancer [173]. Two studies of colorectal cancer also 

showed conflicting prognostic effects reported separately [174, 175]. Our 

findings revealed no significant prognostic value regarding the infiltration of 

CD66b+ cells. This could be explained by antibody heterogeneity or by the use 

of different methods of analysis. In peripheral blood, NLR reflects the link 

between innate (neutrophils) and adaptive immune responses (lymphocytes) in 

diseases and various pathological conditions, which are influenced by many 

factors such as age, medications, and disease state [176]. A low neutrophil-to-

lymphocyte ratio (NLR) reflects low-density neutrophils and/or high-density 

lymphocytes in pathological tissues. Takakura, K. et al. reported NLR 

(CD66b+/CD20+) both in peripheral blood and pathological and demonstrated 

the prognostic value of NLR in PC [90]. I found that lower NLR in the tissue of 

primary lesions was associated with more favorable outcomes in metastatic PC. 

This may also explain that the high infiltration of CD20+ B cells in the primary 

lesion correlates with improved OS.  

 

Our study demonstrated the differential distribution of TILs between PC primary 

and metastatic tumors, with a higher density of TILs in primary tumors than in 
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metastatic tumors. This data was consistent with prior research, indicating that 

immune escape plays a role in tumor progression [177-180]. 

 

In the present study, a single infiltrating white leukocyte inside the tumor was 

observed instead of a hot spot, which may be a result of the immune escape 

function of pancreatic cancer cells [181, 182]. Therefore, we choose to quantify 

the infiltrating leukocyte in the stroma. 
 
4.2 Glucose metabolism in PC  
 
Several studies have revealed that the tumor microenvironment (TME) is rich 

in components that influence tumor progression [146, 183, 184]. Hypoxia is a 

hallmark of the TME feature in solid tumors due to the imbalance between 

increased oxygen utilization and inadequate oxygen supply [185-187]. 

Furthermore, hypoxia is a complex factor in tumor invasion and metastasis in 

the tumor microenvironment [188, 189]. As described before, hypoxic condition 

contributes to the expression of HIF and then induces the expression of GLUT1 

and increases glucose uptake; HIF can also induce the expression of PDHK1 

[125]. Previous studies described the prognostic value of HIF-1α [127, 190-192] 

and GLUT1[138, 139, 193-195] in patients with PC and PDHK1 in non-small 

cell lung cancer [196]. This study quantified GLUT1, HIF-1α, and PDHK1 in 

tumor cell areas by the QTS algorithm and found that those molecules had no 

prognostic value for metastatic pancreatic cancer. Then I quantified those 

molecules in tumor stromal areas and found low-density of GLUT1 both in 

primary and metastatic lesions correlated with improved OS. Notably, GLUT1 

in the tumor stroma of primary and metastatic lesions, like CD8 in the metastatic 

lesion, is an independent factor for metastatic PC. This study has not observed 

the prognostic significance of HIF-1α and PDHK1, probably because of the 

heterogeneity of metastatic pancreatic cancer and the small sample size. In 

actual work, I found the QTS algorithm is suitable for counting GLUT1 in tumor 
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stromal areas because GLUT1 staining in stromal areas is visually clearer and 

easier to discriminate than staining on tumor cells. 

 

Glucose can not only provide energy for cell growth, but also more importantly, 

serve as an essential carbon source for cells to synthesize lipids and non-

essential amino acids [197]. In the TME, tumor cells and stromal cells appear 

to compete for glucose consumption [198]. Cancer cells preferentially undergo 

glycolysis to accumulate lactate in the TME through the Warburg effect [111, 

112]. In this way, high levels of lactate acidify the tumor microenvironment and 

promote tumor development, drug resistance, metastasis, and, more 

importantly, immune escape [102, 199]. For instance, lactate promotes the 

overexpression of IL-23, and the presence of IL-23 promotes the expression of 

IL17, and matrix metalloproteinase 9 (MMP-9), with the consequence of 

increased angiogenesis and reduced CD8 penetration in tumors, and promoted 

immunosuppression and tumor growth [200]. Therefore, an understanding of 

this will help find potential therapeutic approaches against tumors.  

 
4.3 Preoperative laboratory values for PC 

 

Preoperative laboratory values can help physicians assess the status of PC 

patients before surgery. CEA and CA19-9 are two tumor markers for pancreatic 

cancer. A meta-analysis suggested that CEA and CA19-9 may be poor 

prognostic predictors of PC [201]. However, their prognostic effect was not 

found in the present study. Lipase and amylase are two enzymes secreted by 

the pancreas and are associated with pancreatic inflammation. Albumin, 

bilirubin, INR, GGT, ALP, and Quick were used to assess liver function, which 

is necessary before surgery. Creatinine is a test to assess kidney function. 

Typically, leukocytes and CRP are markers of the body's inflammatory status. 
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Moreover, hemoglobin (Hb) is a marker of anemia and reflects the body's 

nutritional status. Regarding the blood platelet test, previous studies 

demonstrated that high platelet counts and decreased mean platelet volume 

(MPV) predict poor prognosis in patients with pancreatic cancer [202, 203]. 

MPV value is the total mass of platelets divided by the total number of platelets 

in the blood sample [204]. The same results were exhibited in colorectal cancer 

[205], head and neck squamous cell carcinoma [206]. In this study, low-level 

platelets (cut-off value 240.923/mm3) correlated with improved OS.  
 

4.4 Correlation between staining markers and laboratory data 

 
Spearman correlation was implied to reveal the correlation between staining 

markers and laboratory data. Several studies have revealed the positive 

correlation between CD20+ B lymphocytes and CD8+ T lymphocytes, such as 

colorectal cancer [207], breast cancer [208], ovarian cancer [209]. The 

correlation between CD20+ B cells and CD8+ T cells in metastatic PC was also 

found in this study. In non-small cell lung cancer, the relationship between 

inflammatory markers CRP and CD66b+ cells (neutrophils) has been 

demonstrated [210], and the same result was found in this study. As mentioned 

before, HIF induces the expression of GLUT1. A positive correlation between 

HIF-1α and GLUT1 was found and confirmed in gastric cancer [211], and renal 

cell carcinoma [212]. In esophageal squamous carcinoma, the expression of 

HIF-1α and TILs was positively correlated, but patients with high expression of 

them had a terrible prognosis [213]. The present study did not find a positive 

correlation between tumor-infiltrating leukocytes and metabolic molecules. 
 
Traditional clinicopathological prognostic factors for PC, including CA19-9, 

TNM classification system, have been proven ineffective in prognosis [214-216]. 

In the current study, these two variables were not significant for OS or DFS. 

This might be due to the heterogeneity in metastatic pancreatic cancer and the 
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limited sample size. The continuous improvement of techniques in and basic 

research, such as genotype-phenotype [217], DNA-based molecular 

techniques[218], and single-cell RNA sequencing[219], it has led to a deeper 

understanding of pancreatic cancer, providing potentially effective treatments 

for the treatment of pancreatic cancer[220]. 

 

4.5 Limitations of the study 
 
It was not easy to obtain cancer specimens from 26 cases of metastatic 

pancreatic cancer by surgical resection. We are so lucky to analyze those 

seven markers in metastatic pancreatic cancer by Immunohistochemistry. So 

far as we know, this is the first time to elucidate the differences in tumor-

infiltrating leukocytes and metabolic molecules between primary and metastatic 

lesions of metastatic pancreatic cancer and the correlation of seven staining 

markers with clinical data, including OS and DFS. However, this study has 

limitations: First, lung and peritoneal metastasis could not be analyzed 

separately due to the sample size, but rather as a non-liver metastasis group 

versus the liver metastasis group. Second, chemotherapy and radiotherapy 

may affect the immune status, which is not involved in this study.  
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5. Conclusions  

 
In this study, the QTS algorithm was used to quantify the density of four types 

of leukocytes (CD3+ TILs, CD8+ TILs, CD20+ TILs, and CD66b+ TINs) and three 

types of metabolic molecules (HIF-1α, GLUT1, PDHK1) both in tumor cell area 

and stroma area. High infiltrated CD8+ T lymphocytes in metastatic tumor of PC 

correlated with improved OS; high stromal infiltration of CD20+ in primary 

tumors correlated with improved OS; low density of GLUT1 in tumor stroma 

areas of primary PC and metastatic tumors correlated with improved OS; low 

level of platelets in blood circulation system associated with improved OS. 

Notably, it was found that CD8+ TILs in metastatic tumors, and GLUT1 in tumor 

stromal areas in both primary and metastatic tumors were independent factors 

for OS. 
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