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Abstract

Learning to form categories of objects and experiences is a fundamental skill for humans and many
animals. Grouping stimuli based on their appearance or on their behavioral relevance, and storing
these groups in our memory, helps us to react quickly to novel stimuli. Particularly by learning
rules for categorization, we can direct our attention to features that are informative for sorting
stimuli into categories. Such rule-based categorization allows us to flexibly adapt to a change
in contexts and, therefore, a change in rules. In humans and non-human primates, prefrontal
cortex has been identified as one of the key brain areas for learning rule-based categorization.
However, the neuronal mechanisms, within prefrontal cortex and larger networks of brain areas,
that underlie category learning remain largely unknown.

In this dissertation, I investigate rule-based category learning in mice and characterize a
representation of learned categories in prefrontal cortex. I conducted two studies to achieve this:
first, I established optimal training parameters for head-restrained operant conditioning in mice,
and second, I recorded neuronal activity in prefrontal cortex throughout learning in a mouse
model of rule-based category learning.

In the first study, I contrasted two nutritional restriction regimes in their effect on animal
welfare and learning performance in an operant conditioning task. Learning paradigms often
involve restricting mice in their ad libitum consumption of food or water, in order to motivate
them to participate in operant conditioning paradigms. Then, typically soy milk or water is given
as a reward upon upon correct behavioral choices. I compared how food- and water restriction
regimes affected the welfare of mice and their performance in a visual stimulus discrimination
task. I found that, overall, animal welfare was largely unaffected by either regime, while water-
restricted mice on average showed mildly higher discomfort levels. Food- and water-restricted
mice achieved similar plateau performances in the learning task, but water-restricted mice learned
significantly faster. In summary, in this study I determined optimal training parameters for
operant conditioning experiments, while keeping mouse discomfort to a minimum (Goltstein
et al., 2018a).

In the second study, I established a mouse model of rule-based category learning and
characterized the emergence of a category representation in prefrontal cortex. From humans and
non-human primate research, it is known that rule-based category learning relies on selective
attention to category-defining features. While there are indications that rodents are also able to
selectively attend to specific features or modalities, it was unclear whether mice could learn rule-
based categorization. I first showed that mice learned to categorize, generalized to novel stimuli
and successfully performed a rule-switch. Based on these behavioral results, I concluded that
mice had learned rules for categorization. By chronically recording neuronal activity in prefrontal
cortex, I was able to characterize the responsiveness of individual neurons throughout category
learning. I found that, after learning, neurons in prefrontal cortex showed category-selective
responses. This neuronal category representation emerged gradually, as mice were learning the
visual categories, and was specific to the learned rule. Lastly, I discovered that part of this
category representation generalized across different operant behaviors and reward contingencies.
This finding points toward a semantic component of the prefrontal cortical representation that
is independent of learned operant behavior. Thus, this study showed for the first time that
mice can learn rules for categorization and that single cell responses in mouse prefrontal cortex
reflect learned categories. Characterizing the emergence of such responses over the course of
learning expanded upon important findings from human and non-human primate category learning
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research (Reinert et al., 2021).
Taken together, the studies in this thesis establish the mouse as a model system for investi-

gating rule-based category learning and identify category-selective neurons in prefrontal cortex
as a key component of the underlying neuronal circuitry.



1 | Introduction

A young monkey in the Kenyan savanna is on guard duty today. He has to watch out for potential
threats through either leopards, eagles or pythons. For each of these predators he has learned a
different alarm call from his conspecifics. When his troop hears a ‘leopard call’, they will know
that they should hide up on a tree. In contrast, in response to an ‘eagle call’ the group will
hide on the ground in a bush or after a ‘python call’ rather frantically search the ground. This
monkey’s ability to identify these three kinds of predators, to distinguish them from animals that
do not pose a threat and to communicate so precisely, is fundamentally important to the survival
of his troop.

Because the vervet monkeys reliably detect those predator species in vastly different contexts,
but do not produce alarm calls to non-threatening animals like pigeons or geese, their behavior
is an example for categorization (Seyfarth et al., 1980). Further, young vervet monkeys do
not exactly know yet, when to produce a specific alarm call. Infants emit an ‘eagle call’, both
when they spot an eagle, or a pigeon. Likewise, when hearing a call from a conspecific, they
first watch the adults in the group for their reaction. In the first four years of their lives, they
learn to produce the alarm calls in response to the appropriate predators and to react with the
appropriate behavior to the alarm calls (Seyfarth and Cheney, 1986).

Such categorization and learning of categories are remarkable features of human and animal
behavior that influence almost every of our daily-live decisions. How we form categories and
what underlying changes happen in the brain, to date remains an unsolved question.

In this dissertation, I will first give an overview of category learning research from a behavioral,
neuronal and computational point and discuss what benefits a mouse model can bring to our
understanding of category learning processes in the brain. I will then address this question by
presenting two studies. In the first study, I optimized operant conditioning parameters for a
category learning paradigm in mice, and in the second study, I followed individual neurons in the
mouse prefrontal cortex throughout such category learning using chronic two-photon calcium
imaging.

1.1 Category learning

What is a category? A category is a set of objects, stimuli or experiences grouped together
based on similar perceptual features or a similar required reaction. The vervet monkeys have
learned three categories of predators, each eliciting a different alarm call and behavioral reaction
(Seyfarth et al., 1980). Categorization of sensory inputs or experiences is seen universally, from
arthropods to mammals. A cricket, for example, uses sound cues in its environment to determine
whether the sound source is a conspecific or rather a predator. Conspecifics call at a frequency of
4-5 kHz, whereas predators, mostly bats, produce ultrasound at 25-80 kHz. Somewhere along the
continuous spectrum of sound frequencies (between 13 and 16 kHz) crickets sharply transition
their decision from attraction to a conspecific to escape from a predator. Thus, there are two
categories of sound frequencies eliciting different behavior (Wyttenbach et al., 1996).

However, there likely is a difference between the categorization behavior of vervet monkeys
and crickets. The crickets did not have to learn these categories, they show a form of innate
categorization. The vervet monkeys, on the other hand, learn the predator categories from the
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members of their troop during development and shape their alarm calls and responses accordingly
(Seyfarth and Cheney, 1986).

Innate categories can be observed throughout the animal kingdom, indicating that categoriza-
tion provides advantages that are crucial for an animals survival: Categories allow to react fast
to novel stimuli without the need to memorize all individual items. However, innate categories
are likely genetically determined and hence restricted to one process or one modality. Hence,
that benefit does not extend to other situations or other decisions that need to be made. In order
to flexibly apply the advantage of categories to whatever might become relevant, one needs a
system that is able to learn novel categories.

Category learning has traditionally been studied in humans. Consequently, theories for
mechanisms of category learning, and also early models for their neural basis, have been largely
based on results from human behavioral investigations. Therefore, I will first discuss how category
learning is typically assessed and then describe key experiments and theories, before giving an
overview of categorization in non-mammalian and mammalian animals.

1.1.1 Human category learning

1.1.1.1 Category learning and memory

Category learning research is a part of memory research. Breaking down the formation of a
category into steps, the learning process likely starts with individual experiences (inputs) that
become linked to a certain behavioral reaction. These experiences will be remembered and can
be recalled for future decisions. As a second step, similar inputs (or inputs leading to a similar
reaction) will be associated with each other. Presumably through these two steps, forming
individual memories and associating them with each other, a category is learned. Thus, learning
and memorizing a new category relies on the ability of the brain to encode, store and retrieve
information. These processes are not unique to category learning, but integral to memory in
general. Therefore the research into memory systems has guided also the investigations and
theories of category learning.

At the end of the 19th and beginning of the 20th century several psychologists and neuro-
scientists transitioned from viewing memory as a single function to describing different ‘kinds’
of memory. Distinctions were made, for example, between ‘memory’ and ‘habit’ (James, 1913)
or implicit and explicit recall (McDougall, 1923; for review see Squire, 2004). In 1904, Richard
Semon coined the term ‘engram’ as the neural substrate of stored information, and this idea of a
memory trace in the brain pushed the search for the underlying structure of memory forward
(Lashley, 1950; for review see Rolls, 2000; Hübener and Bonhoeffer, 2010). But only from the
second half of the 20th century on, significant progress was made in unifying views on different
memory systems and understanding mechanisms of memory formation.

A prominent starting point of the search for the engram as a substrate of memory was
the case of patient H.M. In 1953, patient H.M. underwent surgery to relieve him from epileptic
seizures. In this surgery, large parts of both temporal lobes, including both hippocampi and
parahippocampal regions, were removed. Unfortunately, as a side effect of this surgery, patient
H.M. struggled with the formation and recall of memories. Specifically, while he could remember
childhood memories and could still learn motor skills, like complex mirror drawing tasks, he could
not form memories of any events that happened after the surgery (Penfield and Milner, 1958;
Corkin, 1968). From case studies of amnesiacs like patient H.M. (Milner et al., 1968; Warrington
and Weiskrantz, 1968) and increasing work in animal models (Hirsh, 1974; O’Keefe and Nadel,
1978; Squire and Zola-Morgan, 1991), the idea of multiple memory systems gained popularity,
with the dichotomy of declarative, or explicit, vs non-declarative, implicit, memory at its core.
Subsequently, different brain areas were identified as the key players for declarative and specific
types of non-declarative memory (Tulving, 1985; Squire, 1987, 2004). Declarative memory was
further divided into episodic and semantic memory, referring to events and facts, respectively.
Non-declarative memory was used as an umbrella term for memory types like procedural memory
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and classical conditioning.
The story of understanding category learning parallels this search for the engram. The

popular view of category learning has changed from theories proposing one system to multiple
systems theories, as we will see when exploring several models of human categorization.

1.1.1.2 Assessing human category learning

In this thesis, I will focus on research of learning of novel categories and disregard the work
on categorization performance of highly trained experts. Such expert categorization, like the
(in)famous chicken sexers (i.e. the profession of determining the sex of young chickens), is
acquired over years of training and very specific to the trained categories. Therefore it is not
readily comparable to studies of category learning that probe performance on newly acquired
categories within few trials or sessions (Ashby and Maddox, 2005). For the ease of explanation of
experiments and theories, I will refer to items that are categorized as stimuli. However, all the
discussed theories can, in principle, also be applied to objects and abstract concepts or constructs.

Categorization performance is typically assessed as the fraction of stimuli that are assigned
correctly to the category label, i.e. a percentage of correct trials, or the derived discriminability
(d’) of the two categories. These metrics can be calculated in an ongoing fashion during training
and give an indication of the progress in learning to categorize stimuli. However, aside from
categorizing stimuli that have been trained, a hallmark of category learning is to use the learned
category information and apply it to novel stimuli that have not yet been encountered. This
process is called generalization. Generalization can also be evaluated with performance and
discriminability metrics, by exclusively considering trials in which novel stimuli were tested.
Another measure is the accuracy of the learned category boundary (i.e. the separation between
two categories in the feature space) in comparison to the true category boundary. The learned
boundary is hereby typically estimated through modelling multiple possible boundaries and
determining which of those optimally predicts the subject’s category decisions (Maddox and
Ashby, 1993; Smith et al., 2010).

Human category learning has been tested both in basic and clinical research in a wide variety
of task designs. Categories contained few or many stimuli that varied across one or multiple
stimulus dimensions. Further, the stimuli in each category were either normally distributed
or followed a different distribution, and the category boundary could be linear or non-linear.
Category learning was also evaluated for a variety of sensory modalities, although by far the
largest proportion of experiments used visual stimuli.

Paradigms for human category learning have been sorted into three major groups of task
designs: prototype distortion tasks, rule-based and information-integration tasks. Prototype
distortion tasks are paradigms in which presented images are stochastically distorted around a
fixed prototype. Rule-based and information-integration tasks differ in the number of stimulus
dimensions that are relevant to the category boundary. In rule-based categorization, categories can
be formed using one informative stimulus dimension, whereas tasks that require integration of two
or more stimulus dimensions are called information-integration tasks. In a rule-based paradigm,
the category boundary can be described with a verbalizable rule, whereas the information-
integration task cannot be solved with an easily verbalizable rule (Ashby et al., 1998).

One of the most prominent examples for a rule-based task design is the Wisconsin Card
Sorting Test (WCST; Robinson et al., 1980; Heaton and Pendleton, 1981) first described by
Esta Berg (1948). The test requires a subject to sort playing cards according to rules that are
uninstructed and change between blocks of trials. The rule that a subject needs to apply is always
one-dimensional and easy to verbalize. This test is widely used as a diagnostic tool to probe for
working memory, attention and behavioral flexibility, but requires the rapid categorization of
stimuli based on a one-dimensional rule.

In summary, the metrics to assess category learning are applied in largely the same fashion,
but the task designs that test categorization vary in several parameters. In the following sections,
I will give an overview of the behavioral results in various categorization tasks, how they have
been interpreted to support theories of human category learning and how the task design affects
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observed categorization.

1.1.1.3 Theories proposing a single category learning system

Early on, psychologists tried to conceptualize how humans categorize stimuli. The dominant idea
was that there is one mechanism, i.e. one system, that is applied to every categorization problem.
Several theories were formulated, and behavioral experiments were designed to test predictions
of such theories (for review see Ashby and Maddox, 2005).

The classical view of category learning assumes that a category is a representation of a group
as a whole, defined by a set of features that are both necessary and sufficient for classification
(Hull, 1920; Medin and Smith, 1981). While the classical view of categories existed in more
or less the same form since Aristotle, more modern theories emerged in the second half of the
20th century and mostly built on the classical view. I will first consider the prototype theory.
According to the prototype theory of concepts, the formation of a category involves three elements.
The first element is a prototype representation, which can either be the average of all encountered
stimuli or one typical stimulus falling into that category. Second, the theory relies on a way to
calculate the similarity of any stimulus to the prototype stimulus and third, there needs to be
a criterion of similarity to pass in order to determine category membership (Hampton, 1995).
Thus, according to the prototype theory, a learned category consists of a memorized prototype
item and a threshold criterion for similarity. Every encountered stimulus will be compared to the
category prototype and, if the similarity exceeds the threshold, considered as part of the category.

The prototype theory predicts that the difficulty of categorization increases with the distance
to the stored prototype and that prototype stimuli hold a unique position within the categories
(Posner and Keele, 1968). Experimentally, these predictions were mostly tested using prototype
distortion tasks. First evidence in favor of this theory, published by Posner et al. (1967), showed
that the rate of learning of categorization decreased with the amount of distortion from the
prototype. Further, the prototype (average) of all trained images was more likely to be recognized
than other new patterns within a category, even if it was never presented. This result was in line
with the second prediction of the theory (Posner and Keele, 1968).

The later emerging exemplar theory (sometimes referred to as context theory) postulates
that during category learning individual exemplars (stimuli) are memorized rather than one
prototype. The stored exemplars define the characteristic feature space of the category. When a
novel stimulus is encountered, specific exemplars will be recalled, depending on their similarity
to the novel stimulus. The novel item will then be compared to the retrieved exemplars and
attributed to the category with largest sum of similarities (Medin and Schaffer, 1978; Nosofsky,
1986). In contrast to the prototype theory, no abstraction of a category prototype is needed to
sort an item into a category. Rather, the specific retrieval of exemplar information is sufficient.
The exemplar theory therefore solves categorization problems with non-linear boundaries and
dependencies in features better than the prototype theory. Medin and Schaffer (1978) created
categories where prototype and exemplar predictions would clash. Specifically, stimuli could
be sorted into categories based on similarity to the experienced exemplars or to the category
prototype. The performance of human subjects rather depended on similarity to experienced
stimuli rather than the distance to the category prototype. Therefore, the authors concluded
that the exemplar theory better explained categorization performance.

The most recent model for category learning that describes a single system is the decision
bound model (Ashby and Gott, 1988; Maddox and Ashby, 1993). It postulates that categories are
learned by dividing a perceptual space into regions that are associated with different responses.
The partition between the regions is referred to as the decision bound, i.e. the learned category
boundary. A critical difference between this theory and the prototype or exemplar theories is that
in the decision process no similarity metric (to the average or individual exemplars) is calculated.
Rather, a response label can be directly retrieved because the representation of the perceptual
space is separated into regions associated with a response. Maddox and Ashby (1993) found
that this decision bound model predicted subjects’ performances in categorization tasks with
non-linear boundaries better than the exemplar or the prototype theory, likely because it better
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co-varied with perceptual imperfections (noise) in the categorization decision.
In summary, these three proposed mechanisms of category learning step-by-step improved

in predicting human data, by addressing the shortcomings of older theories like differences in
category structure and suboptimal behavior by the subjects. Importantly, each of these models
was designed with a specific categorization task at hand and, with some exceptions, was mainly
tested on that type of task. The prototype theory was tested and provided a good explanation
for prototype distortion tasks (Reed, 1972), the exemplar model was typically tested with tasks
requiring the integration of two stimulus dimensions to categorize small sets of stimuli, and
the decision bound model was typically applied to tasks with two large, normally distributed
categories. However, a systematic comparison of theories across task designs could help to better
understand the underlying mechanisms. In the following sections, I will contrast the behavior
observed in the various tasks with specific attention to similarities and differences in the attempt
to form a coherent picture of human category learning.

1.1.1.4 Category learning is influenced by task type

Based on the observation that different human category learning studies supported different
theories of category learning, researchers tried to vary individual task parameters in order to
determine their effect on categorization performance. Hereby, evidence accumulated that the
performance depended on many aspects, such as learning stage (Smith and Minda, 1998), category
size (Homa et al., 1981; Minda and Smith, 2001; Katz et al., 2002), variance within categories
(Smith et al., 1997; Blair and Homa, 2003) or whether a rule is easy or difficult to verbalize
(Ashby and Maddox, 2005).

I want to specifically highlight one aspect: the number of stimulus features that determine
the category identity, i.e. the dimensionality of the category boundary. Shepard et al. (1961)
found that the more stimulus dimensions needed to be integrated, the more difficult the task
became and the less subjects were able to generalize to novel stimuli. The dimensionality of the
category boundary is also the major distinction between rule-based and information-integration
tasks. The two task designs are, by now, commonly contrasted using visual stimuli, typically
oriented gratings, that vary in two different visual features, like their orientation and spatial
frequency (Fig. 1.1; Ashby et al., 1999; Maddox et al., 2003; Smith et al., 2010; Smith et al.,
2012).

Human subjects categorize visual stimuli in rule-based tasks faster and to a better plateau
performance than identical stimuli in information-integration tasks (Smith et al., 2010). Smith et
al. created a rule-based (RB) model, that only took one stimulus dimension into account, and an
information-integration (II) model, that linearly combined the two dimensions, and fit both to
the decisions of every subject. In a rule-based task, the performance of the majority of subjects
was best captured by the RB model, whereas the II model best explained categorization of most
subjects in the information-integration task. However, for some subjects, the RB model best
predicted the performance even in information-integration tasks. This phenomenon is referred to
as rule-bias and highlights a tendency to prioritize one stimulus dimension. Hence, humans show
a preference for rule-based strategies, even though that impairs their performance in some tasks
(Smith et al., 2010; Vermaercke et al., 2014). The observed performance advantage in rule-based
tasks, but also the rule-bias, indicate that humans separately analyze stimulus dimensions and
direct selective attention towards informative dimensions (Smith et al., 2010).

Aside from selective attention, three further factors distinguished rule-based and information-
integration tasks because they specifically affected one of them: novel stimuli, feedback timing
and retinotopic location of stimulus presentation. First, when human subjects were trained
on a rule-based task, they could generalize the learned rule to novel stimuli. This ability was
impaired in information-integration tasks, especially if the tested stimuli were far from the trained
category space (Maddox et al., 2005; Casale et al., 2012). Second, delaying the timing of the
feedback that a subject is given during the category learning only impaired the performance in
information-integration task and not in rule-based tasks (Maddox et al., 2003). In the absence of
feedback, humans tended to apply rule-based strategies even if they were suboptimal to solve
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the task. Third, the performance of human subjects in a visual information-integration task was
impaired when the stimuli were presented in a spatial, retinotopic position that was different
from the trained location of the visual field, in contrast to performance in a rule-based category
learning task (Rosedahl et al., 2018).

In summary, human categorization performance strongly depended on the testing conditions.
This was particularly emphasized by the contrasting effect of selective attention, feedback and
stimulus position on performance and generalization in rule-based and information-integration
tasks. Together, these observations indicate that humans learn categories with more than one,
uniformly underlying mechanism.

Figure 1.1: Rule-based and information-integration categories. Visual stimuli with two features, orientation
and spatial frequency of bars, can be selected to create either a rule-based (left) or an information-integration
(right) category structure. Each panel depicts a stimulus space from which stimuli of category A (crosses) or B
(circles) are randomly drawn. The distribution of stimuli in each category and the distance between categories,
hence the difficulty, can be kept identical, so that the only difference between the two tasks is the dimensionality
of the category boundary. In the rule-based task, a one-dimensional boundary defines the categories, whereas
in the information-integration task the boundary is two-dimensional (Reprinted and adapted from Smith, J. D.,
Berg, M. E., Cook, R. G., Murphy, M. S., Crossley, M. J., Boomer, J., Spiering, B., Beran, M. J., Church, B. A.,
Ashby, F. G., & Grace, R. C. (2012). Implicit and explicit categorization: A tale of four species. Neuroscience &
Biobehavioral Reviews, 36 (10), 2355–2369, Copyright (2012), with permission from Elsevier).

1.1.1.5 Multiple category learning systems theory

Both, the influence of task design on human category learning and the fact that none of the single
system theories (see 1.1.1.3) were able to explain this effect, motivated the theory that category
learning is mediated by multiple systems. Since memory research most prominently distinguishes
between declarative/explicit memory and non-declarative/implicit memory, category research has
attempted to align theories of category learning with those memory systems (Allen and Brooks,
1991; Ashby and O’Brien, 2005; Smith et al., 2012).

Within the framework of implicit and explicit systems, implicit category learning is considered
a slow process of associating responses to individual stimuli. Because, in this case, subjects do
not have conscious access to the reasoning for their category decisions, this process is akin to
procedural memory formation. This contrasts with explicit category learning, a conscious process
of analyzing stimulus features, relying on selective attention and often resulting in a simple,
verbalizable rule for categorization. Explicit category learning therefore shows close resemblance
to a declarative, semantic memory formation process.

This distinction between an explicit and an implicit category learning system is able to
explain the observed differences between rule-based and information-integration tasks (see 1.1.1.4).
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Even though these two tasks test categorization of the same stimuli with the same perceptual
difficulty, they are likely solved using different strategies. The rule-based task engages an explicit
category learning process, supported by selective attention and the formation of a verbalizable
rule (Maddox et al., 2005; Casale et al., 2012). In contrast, the information-integration task
involves a more implicit, procedural process of categorization that relies on immediate feedback
and is dependent on the stimulus position (Ashby et al., 1999; Maddox et al., 2003; Rosedahl
et al., 2018). Taken together, these observed effects can be explained by the multiple systems
theory of category learning.

Aside from categorization in adults, also investigations into changes of category learning
strategies during development support the multiple systems theory. Nelson (Nelson, 1984) tested
the influence of the subjects’ age on the categorization performance in a rule-based and an
information-integration task. The study examined five year old children and compared their
performance to ten year old children. Strikingly, half of the 5 year old children failed to learn
the rule-based categorization, whereas the ten year old children learned both tasks equally well.
This difference points to a tendency of younger children to use implicit category learning. Older
children are able to identify and selectively attend to informative stimulus dimensions, like adults
do. Such a change during development suggests that the implicit category learning system is the
older, more fundamental category learning strategy.

In summary, the multiple systems theory of category learning can explain results from human
category learning studies better than single systems theories. Explicit tasks are learned faster
and to a higher performance than implicit categorization tasks. Both the tendency towards the
explicit category learning system in adults and the observation that this tendency arises during
development, encourage the detailed investigation into the brain structures that might form the
basis for the different category learning systems (see 1.2). Importantly, the discussed rule-based
and information-integration tasks can also be tested in several other species, which allows for a
comparison between human and animal categorization. Such a comparison can give us a better
understanding of conserved mechanisms as well as potentially uniquely human features.

1.1.2 Category learning in animals

„The proper study of mankind is man is a popular quote, but it was written by a poet, not a
scientist. The history of science offers opposing testimony [...] if you want to build a scientific
understanding of the evolution and meaning of intelligence then you must study animals[...]. The
eventual payoff will indeed be an understanding of people as well as beasts.”
quoted from Staddon (2016) by Zentall et al. (2008).

1.1.2.1 Categorization is universal in the animal kingdom

Category learning is a complex cognitive process in humans, and has traditionally been researched
in an anthropocentric fashion (Zentall et al., 2008). Theories like the prototype, exemplar or
decision bound theory were developed based on human categorization experiments and were
exclusively tested using human data. On the other hand, examples of categorization can be
found universally through the animal kingdom, from the categorical sound perception of crickets
(Wyttenbach et al., 1996) to the specific calls vervet monkeys use to communicate threat by
different types of predators (Seyfarth et al., 1980).

While advances in neuroimaging strongly contribute to human category research in healthy
subjects and patients, animal models like rodents and primates offer yet a different set of methods
to study category learning and underlying changes in the brain. By investigating categorization
and category learning in different animals, we can potentially identify conserved mechanisms and
discover what features of category learning are uniquely mammalian or even human. Key to
the benefits of category research in animals is developing appropriate tasks and model systems
that allow for a comparison to human data and theories (Zola-Morgan et al., 1983; Squire, 2004;
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Zentall et al., 2008; Smith et al., 2012). In the following sections, I will discuss category research
in non-mammalian (see 1.1.2.2) and mammalian (see 1.1.2.3) animal models, specifically focusing
on the comparability and generalizability of the results.

1.1.2.2 Non-mammalian categorization

When it comes to eating and being eaten, i.e. detection of prey or predators, researchers have
found evidence of categorization almost universally, whether studied in arthropods, fish or birds.
But is non-mammalian categorization exclusively innate or can we observe category learning?
If so, can we detect commonalities and differences in category learning systems compared to
humans?

In arthropods, crickets show the ability to categorize prey sounds from predator sounds
(Wyttenbach et al., 1996). Experiments on jumping spiders have shown that they can detect their
preferred prey, even if the experimenters just showed abstract versions, i.e. lines with conserved
dimensions and angles, to the spiders (Dolev and Nelson, 2014). However, most of the observed
categorization behaviors appear to be innate rather than learned, with a notable exception being
honey bees learning visual categorization (Benard et al., 2006).

In contrast to the mostly innate categorization in arthropods, birds show remarkable skills
in learning novel categories. Early on, Herrnstein and Loveland (Herrnstein and Loveland, 1964)
discovered that pigeons can learn to categorize pictures containing humans and contrast them to
pictures without humans. Category learning in pigeons was not specific to classifying humans
(Herrnstein and Loveland, 1964; Aust and Huber, 2001; Yamazaki et al., 2007) , but could also
be learned for categories like trees, bodies of water and individual persons (Herrnstein et al.,
1976) or even painter styles (Watanabe et al., 1995). Crucially, pigeons could apply the learned
response to novel images of the same category, i.e. generalize.

Smith et al. (2011) tested pigeons on the same information-integration categories and
rule-based categories as they used to test humans (Smith et al., 2010), allowing for a direct
comparison of categorization behavior. The study showed that pigeons were able to learn both
tasks. However, in contrast to the findings of the human experiments, pigeons did not show a
learning rate or performance advantage for the rule-based task. When modeling the performance
in the information-integration task, a diagonal decision bound best explained the behavior
of all pigeons, indicating that they efficiently learned the categories and were not biased to
one-dimensional, rule-biased categorization. Taken together, these results suggest that pigeons
solve rule-based categorization with a similar strategy as the information-integration task, rather
than showing evidence for different category learning systems. This interpretation has led to
the hypothesis that pigeons lack the explicit category learning system or at least show a strong
dominance of their implicit category learning system (Smith et al., 2012).

On the other hand, results from Yamazaki et al. (2007) contrast this hypothesis. The
researchers presented pigeons with stimuli either binocularly or monocularly to either eye. This
study found that stimuli presented to the left eye were learned faster initially, but the right
eye was more robust to scrambling of small features. Because in the pigeon each eye nearly
exclusively projects to the respective contralateral hemisphere, these results indicated that the
right hemisphere (left eye) rather categorized based on familiarity in an implicit learning fashion,
whereas the left hemisphere (right eye) categorized based on category-defining features, i.e. more
analytical. This observation of lateralization conflicts with the hypothesis that pigeons only have
an implicit category learning system.

It is important to keep in mind that the observed difference between human and pigeon
category learning (Smith et al., 2011; Smith et al., 2012) could also have been due to a anthro-
pocentric way of testing for explicit categorization, i.e. by using stimulus dimensions that are
perceptually separable for humans but perhaps not for pigeons.

So while categorization and the ability to form new categories, are clearly not uniquely
mammalian (or human) features, comparing the performance in explicit and implicit categorization
tasks has pointed to differences in strategies or potentially even category learning systems between
non-mammalian species and humans. More research is needed to characterize avian category
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learning strategies and systems to determine if birds also employ implicit and explicit category
learning despite very different brain structures (see 1.2.1) or where and when the explicit system
has evolved.

1.1.2.3 Mammalian categorization

Is explicit category learning a uniquely human feature, or where, and how often, has the explicit,
analytical system evolved? Studying mammalian animal models in category learning tasks can
help to address this question and potentially contribute to the understanding of prerequisites,
applications and advantages of an explicit category system.

The animals that are evolutionarily closest to the human are without a doubt non-human
primates. Hence, it was natural to investigate category learning in monkeys, most prominently
in rhesus macaques and capuchin monkeys. While the spectrum of tested tasks and category
structures resembles the variety used in human category learning research, the distinction between
an implicit and an explicit category learning system has also been addressed. Similar to humans,
both macaques and capuchin monkeys learned rule-based categorization faster and to a higher
end performance compared to the information-integration task (Smith et al., 2010; Smith et al.,
2012). These results show that explicit categorization is not a uniquely human ability and that,
contrary to early theories (Shepard et al., 1961; Ashby et al., 1998), it is not necessarily linked
to language. Non-human primates clearly possess a toolkit for dimensional analysis and rule
formation similar to humans, even if in a potentially rudimentary form.

The finding that an explicit category learning system is not uniquely human encouraged
the investigation of other mammals. In the history of cognition research, rodents remained
largely underexplored, likely in part because of the difficulty to train them on complex tasks
because rodents often showed suboptimal behavioral strategies or because of differences in sensory
processing compared to humans or primates (Churchland and Kiani, 2016; Nakajima and Schmitt,
2019). However, in the question of the evolution of an explicit categorization system, studying
rodents could provide important information, especially when comparing their results to pigeons
and primates. Rats have been trained in rule-based and information-integration tasks, similar to
the other species explored so far (Vermaercke et al., 2014; Broschard et al., 2019b; Broschard
et al., 2020), but the question whether rats have an explicit category learning system remains
unresolved. Similar to pigeons, rats did not show a learning rate or performance advantage of a
rule-based task compared to an information-integration task (Vermaercke et al., 2014; Broschard
et al., 2019b; Broschard et al., 2020). Modeling the categorization strategy of rats in both tasks,
however, revealed that in the rule-based task roughly half of the animals were best fit by a
unidimensional strategy and the other half by a two-dimensional strategy. Further, all animals
in the rule-based task differentially weighed the two stimulus dimensions, pointing to selective
attention towards one dimension even in the absence of a fully rule-based strategy (Broschard
et al., 2019b).

Category research in mice has shown that they are able to form arbitrary stimulus categories
(Runyan et al., 2017; Xin et al., 2019; Zhong et al., 2019), recognize the category of three-
dimensional objects (Creighton et al., 2019) and even categorize paintings according to different
painters (Watanabe, 2017). However, no experiments have specifically addressed explicit versus
implicit category learning in mice, even though mice have been increasingly tested in higher
cognitive abilities (Rikhye et al., 2018; Zempeltzi et al., 2020). Category learning has either been
demonstrated along a single stimulus dimension (Runyan et al., 2017; Xin et al., 2019; Zhong
et al., 2019), or on highly dimensional objects (Watanabe, 2017; Creighton et al., 2019) Neither
allows for a controlled assessment of selective attention, dimensionalization or categorization
strategy.

In summary, mammals like primates and rodents learn categories in a way that resembles
humans, showing features of explicit categorization like selective attention and rule formation,
even though they lack language. It is possible that the observed similarities and differences
in categorization behavior in pigeons, rodents, non-human primates and humans are due to
similarities and differences in the underlying brain structures and their learning mechanisms.
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Studying the brain mechanisms of category learning in both non-mammalian and mammalian
animals can help us understand human cognitive processes better.

1.2 Neuroscience of category learning

One of the central aims of neuroscience is to understand the human brain and with it the
mechanisms for human cognition. In the previous section, I have explored how universal
categorization is in the animal kingdom. However, since brain structures have changed with
evolution, likely also the brain mechanisms underlying categorization and category learning differ
between species depending on their evolutionary distance. One obvious example is the distinction
between an organism with an innate categorization mechanism and any organism that is able
to learn novel categories. Since the majority of arthropod studies describe innate rather than
learned categorization, I will not consider the arthropod brain for this overview. I will briefly
touch upon category learning in the avian brain and, in the later sections, focus on brains that
are structurally most similar to the human brain, mammalian brains.

1.2.1 Category learning in the avian brain

Category research in birds has largely used visual categories, hence I will focus on the avian
visual system and not consider other sensory modalities. In the avian brain, visual information is
processed by two parallel pathways, the thalamofugal pathway, corresponding to the mammalian
geniculocortical tract, and the tectofugal pathway, comparable to the mammalian extrageniculo-
cortical system. In contrast to the mammalian visual paths, the avian tectofugal pathway conveys
information about the frontal visual field and the thalamofugal pathway relays information from
the lateral visual field. In visual association areas like the nidopallium frontolaterale (NFL), the
mesopallium ventrolaterale (MVL) and the visual Wulst, inputs from both pathways converge.
These visual association areas are reciprocally connected with the nidopallium caudolaterale
(NCL), an area that resembles the mammalian prefrontal cortex in connectivity (Kröner and
Güntürkün, 1999) and functional properties (Güntürkün, 1997; Kirsch et al., 2009).

First evidence for categorical representations in the avian brain was found in the NCL (Kirsch
et al., 2009). In pigeons trained in a visual categorization paradigm, individual neurons displayed
activity patterns following the category identity, i.e. the functional meaning, of stimuli rather
than responding to individual stimuli based on their visual features. These category-selective
responses strengthened with learning and shifted temporally from being rather reward-related to
stimulus-related.

Investigating neurons in the visual association areas NFL and MVL revealed that neuronal
populations encoded basic visual stimulus categories, like pictorial stimuli versus gratings, even
in animals that had not undergone any conditioning (Koenen et al., 2016; Azizi et al., 2019). In
contrast to NCL, these areas hence formed perceptual categories based on visual statistics of
the environment rather than functional meaning. During category learning, such representations
could be combined with learned relevance in NCL populations (Güntürkün et al., 2018).

In summary, in the avian brain that lacks cortex (the mammalian structure most category
learning research focusses on) learned category representations can be detected in the nidopallium
caudolaterale. This observation and the excellent categorization performance (see 1.1.2.2) with
such different brain structures, encourage comparing category learning circuits across animal
classes. Such a comparison could help understand how different systems enable similar behaviors,
potentially by engaging similar circuit mechanisms of learning (Güntürkün et al., 2018).
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1.2.2 Category learning in the mammalian brain

When looking for neuronal underpinnings of category learning in the mammalian brain, I will
not consider sensory epithelia and stages of processing before the primary sensory cortices.
Even though each sensory input pathway involves several earlier stages and there is evidence of
experience dependent changes in subcortical sensory processing (Jaepel et al., 2017), it is likely
that early stages, such as retinae and sensory thalamus, provide rather stable information about
the environment (Gilbert and Wiesel, 1992). So far, changes in neuronal activation induced by
category learning have been investigated in cortical sensory processing areas and, cortical and
subcortical, association areas, but not earlier subcortical sensory processing areas, like thalamic
nuclei. Therefore I will focus the following sections on brain areas that are primary sensory
cortices and downstream areas.

1.2.2.1 Sensory cortices

Primary sensory cortices, for instance primary visual or auditory cortex, receive and represent
information about our environment in an organized fashion, for example based on retinotopy
(Dräger, 1975) or tonotopy (Romani et al., 1982). They are the first cortical processing stage
that encode sensory information about the stimuli that we categorize.

One can envisage two scenarios on how sensory cortices could be involved in category learning.
First, information could ‘just’ be relayed to association areas that would combine features and
extract relevant information for the categorization process. Thus, the role of sensory cortices
in category learning would be similar to the role of the retinae, conveying visual information
irrespective of any category learning or memory. However, sensory areas could also have a more
direct role in category learning by, for instance, improving the distinction of stimuli at the borders
of a category space and decreasing the distinction within a category space. Such adaptations
during learning could hence improve categorization performance.

Experimental results indicate that the involvement of sensory cortices depends on the task
design. On the one hand, human neuropsychological and neuroimaging data point towards an
involvement of visual cortex in prototype distortion tasks that are thought to rely on perceptual
learning (Reber et al., 1998). In line with this, higher sensory areas like the inferior temporal
cortex (ITC) in primates show improved selectivity towards a feature that is relevant to a learned
categorical distinction and some category-selective responses for the learned categories (Sigala
and Logothetis, 2002; Freedman et al., 2003; Kiani et al., 2007; Brincat et al., 2018). In mice
that have learned sound frequency categories, auditory cortex populations show higher responses
to stimuli near the category boundary (Xin et al., 2019). Activity patterns in gerbils trained
on such a frequency categorization become more invariant to the individual stimulus frequency,
hence more similarly represent stimuli of the same category (Ohl et al., 2001). On the other hand,
rule-based and information-integration tasks do not elicit specific activation in visual cortical
areas in humans (Nomura et al., 2007). Likewise, electrophysiological recordings in macaque lower
visual areas, V4 and middle temporal (MT), showed that neurons in these areas predominantly
represent the sensory information of a stimulus, irrespective of a learned categorical distinction
(Brincat et al., 2018).

Across species, in some tasks sensory areas show changes in sensory encoding with category
learning. These changes improve discrimination between different categories or weaken within
category discrimination, together resulting in better categorization. These results argue that
sensory areas are to some extent involved in the learning of categories and do not just relay
information to downstream areas. However, the magnitude of the detected effects is overall subtle
compared to higher association areas like parietal or prefrontal cortices (see 1.2.2.2,1.2.3.3).
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1.2.2.2 Parietal cortex

Parietal cortex, specifically posterior parietal cortex (PPC), has traditionally been seen as a
higher order sensory processing area that receives visual, auditory and somatosensory inputs (for
review see Lynch, 1980). This view was challenged, prominently by Mountcastle et al. (1975),
finding robust activation of monkey PPC through motor action. Over several decades of research,
human and monkey PPC (for a review on homology see Orban et al., 2006 ) has been shown
to be involved in sensorimotor integration (Duhamel et al., 1992; for review see Freedman and
Ibos, 2018), decision making and motor planning (Shadlen and Newsome, 2001) and selective
attention (Yantis et al., 2002; Yantis and Serences, 2003; Behrmann et al., 2004). Neuroimaging
studies have found transient increases in PPC activity whenever subjects shifted their attention
from one spatial location to another (Yantis et al., 2002; Yantis and Serences, 2003), from one
object-feature to another (Liu et al., 2003) or from one sensory modality to another (Shomstein
and Yantis, 2004). Recently, several studies have found similar coding in rodent PPC (Harvey
et al., 2012; Whitlock, 2014; Runyan et al., 2017), although drawing homologies of specific
subregions of PPC between species remains difficult (Whitlock, 2014).

Because of its implication in selective attention and decision making, posterior parietal
cortex is by now considered an association area (Fitzgerald et al., 2011; Whitlock, 2017) and
likely also plays a role in category learning. PPC could link perceptual information from sensory
areas to learned motor responses and hence hold a category representation (Seger and Miller,
2010). Indeed, human parietal areas showed specific activation during visual categorization tasks
(Aizenstein et al., 2000; Vogels et al., 2002). In line with the human results, in monkey lateral
intraparietal area (LIP), an area within primate PPC, category-selective neuronal responses were
identified after learning, indicating that PPC represents visual information based on behavioral
relevance (Freedman and Assad, 2006). Supporting these results, in vivo two-photon imaging
and optogenetic interventions in mouse PPC during an auditory category learning task found a
causal contribution of PPC neuronal activity to categorization of new stimuli and reassigning
stimuli according to a new category boundary (Zhong et al., 2019). However, although PPC
neurons stably represented the learned categories, its activity was not necessary for categorizing
well-learned stimuli (Zhong et al., 2019).

In summary, the posterior parietal cortex is likely causally involved in category learning and
holds a representation of learned categories. Whether the mechanism of causal contribution is
more direct, that is, through forming a category memory and comparing individual stimuli to that,
or more indirect, as in providing more basic functions that are necessary for the categorization
like selective attention or high level feature integration, needs to be investigated further. Similarly,
how the observed category representations are computed and learned, i.e. bottom-up or top-down,
remains unclear, although there are indications that category representations do not rely on
feedback projections from prefrontal areas (Swaminathan and Freedman, 2012).

1.2.2.3 Basal ganglia

The mammalian basal ganglia consist of the striatum, the globus pallidus, the ventral pallidum,
the substantia nigra, and the subthalamic nucleus. The striatum is further subdivided into
the dorsal striatum, containing the caudate nucleus and putamen, and the ventral striatum,
comprised of the nucleus accumbens and olfactory tubercle. Traditionally, basal ganglia were
implicated with voluntary motor control and action selection (Graybiel, 2005; Seger, 2008), based
on the most obvious symptoms in patients with a basal ganglia dysfunction like Parkinson’s
disease or Huntington’s disease (Jankovic and Tolosa, 2007). However, studies have also noted
a role of the basal ganglia in procedural learning (Knopman and Nissen, 1991; Pascual-Leone
et al., 1993; Knowlton et al., 1996) and set shifting, that is in tasks that involve a change in
task-rule (Hayes et al., 1998; Monchi et al., 2006). These findings have put the basal ganglia,
and specifically the (dorsal) striatum, at the center of mechanisms of stimulus-response learning
(Barnes et al., 2005), i.e. the formation of stimulus-outcome associations, and therefore basal
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ganglia might also be crucial for category learning.
Indeed, there is evidence for a role of basal ganglia in category learning. Patients with

Parkinson’s disease show an impairment in information-integration categorization (Cools et al.,
1984; Maddox and Filoteo, 2001), and to a lesser extent rule-based categorization (Price et al.,
2009), compared to healthy subjects. Further, several neuroimaging studies found the striatum
to be activated during category learning (Reber et al., 1998; Seger and Cincotta, 2002; Vogels
et al., 2002; Lim et al., 2019). Notably, different categorization tasks elicited activation in
different regions of striatum, indicating that the involvement of striatum in category learning
is heterogeneous. Subjects performing a task similar to the WCST showed activation in the
head of the caudate nucleus (Rao, Bobholz, et al., 1997). This area also shows severe damage
in Parkinson’s patients, congruent with their observed deficit in set shifting (Cools et al., 1984;
Hayes et al., 1998). In contrast, the tail of the caudate nucleus showed learning-related activity
changes in subjects performing an information-integration category learning task (Poldrack et al.,
1999).

Electrophysiological recordings in the caudate nucleus of macaques found neurons selective to
a learned rule for categorization (Merchant et al., 1997; Muhammad et al., 2006) or categories in a
prototype distortion task (Antzoulatos and Miller, 2011). In the latter study, the striatum formed
category-selective responses early in the training phase as the animal was learning a novel category,
faster than prefrontal cortex. These responses likely correspond to striatal stimulus-response
mapping or exemplar learning. As the category size increased, category selectivity in striatum
decreased, presumably because mapping individual stimuli grew inefficient, i.e. abstraction of
category knowledge became necessary.

In rodents, the striatum is involved in procedural learning (McDonald and White, 1994; Jog
et al., 1999; Costa et al., 2004), strategy selection (Whishaw et al., 1987; Packard and McGaugh,
1992) and set shifting (Ragozzino, 2007; Lindgren et al., 2013). Like in humans and non-human
primates the striatum is functionally heterogeneous (Devan et al., 1999; Pistell et al., 2009). A
potential involvement of rodent striatum in category learning has not yet been assessed. Although
it is likely that rodent striatum provides a similar toolkit as found in primates, precise homologies
between caudate nucleus in primates and dorsal striatal structures in rodents remain unclear
(Balsters et al., 2020).

Taken together, human and primate basal ganglia show an involvement in both explicit
and implicit category learning mechanisms. This is likely due to their role in fast learning of
stimulus-outcome mappings that underlies early learning in both systems. Further, the functional
heterogeneity of striatal substructures implicates that they are part of separate, larger networks
of brain areas that coordinate category learning within the two systems.

1.2.2.4 Hippocampus

As already discussed (see 1.1.1.1), the hippocampus is a brain area central to memory formation,
especially to spatial memory (Morris et al., 1982) and episodic memory (Penfield and Milner,
1958). A prominent theory on memory consolidation proposes that memories are formed in
hippocampus and sequentially, through cortical projections, are externalized to cortical networks
for long-term storage (McClelland et al., 1995; Squire and Alvarez, 1995). Both, the involvement
in declarative memory systems and promising mechanistic models of memory formation and
consolidation suggest a role of hippocampus also in category learning.

Early evidence was mainly gathered in patients suffering from medial temporal lobe amnesia.
Several studies have observed that patients show specific deficits in category learning in tasks
involving few stimuli, when there was no one-dimensional rule, i.e. information-integration
tasks or rule-based tasks with complex rules (Knowlton et al., 1994; Rickard and Grafman,
1998; Reed and Squire, 1999). This deficit manifested mainly later in training (Knowlton et al.,
1994). Interestingly, amnesiacs did not show any impairment compared to healthy subjects in
information-integration tasks involving large sets of stimuli (Filoteo et al., 2001). Possibly, when
encountering few exemplars of categories, hippocampus forms memories of these. As soon as the
number of exemplars exceeds the capacity of memorizing individual stimuli, procedural learning
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systems involving the basal ganglia dominate the category learning process (Gluck et al., 1996;
Reed and Squire, 1999).

Neuroimaging studies support this theory, finding involvement of hippocampus in both
information-integration and rule-based tasks (Little et al., 2006; Nomura et al., 2007; Seger et al.,
2011; Mack et al., 2016; Bowman and Zeithamova, 2018), specifically early in training (Little
et al., 2006). When subjects were asked how they solved the categorization, trials in which they
reported that they actively remembered a specific stimulus to make a decision, hippocampus
was activated (Seger et al., 2011). In a categorization task with a one- or two-dimensional rule,
hippocampal activation in response to an object changed when the category identity of the object
changed. This activation reflected the attentional weighing of (ir)relevant stimulus features (Mack
et al., 2016). A theoretical model, ‘EpCon’ (Mack et al., 2018), proposes that hippocampus forms
categories from encoding individual exemplars, i.e. episodes, and subsequent pattern completion
and pattern separation mechanisms.

A category representation in individual hippocampal neurons was described by Hampson
and colleagues (Hampson et al., 2004), who identified category-selective cells in the hippocampus
of primates categorizing clip-art images, i.e. multidimensional categories. The study further
demonstrated that those neurons generalized their responses to novel images according to features
that the images had in common with the learned category. Kim et al. (2018) confirmed in rats
that hippocampus plays a causal role in categorization by bilaterally inactivating the hippocampi
using the GABA agonist Muscimol. During the inactivation, animals that were trained in a
categorization task with few exemplars showed impaired performance on both trained and novel
stimuli.

In summary, findings across species show that the hippocampus plays a role in learning
categories. However, the potentially diverse effects of category structure and time in training on
the involvement of hippocampus (that have been observed in human neuropsychological data)
have not yet been explored in animal models. Since intact hippocampal function is not necessary
for every category learning process, it is unlikely to be the one categorization area, but rather part
of a network of brain areas. While there are theoretical models of how hippocampus can acquire
and update representations of categories, circuit models that aim to integrate hippocampal
function with other brain areas are lacking.

1.2.3 The role of prefrontal cortex in category learning

Prefrontal cortex is a higher association area that is implicated with diverse functions like working
memory, attention and behavioral inhibition. Both, structural and functional considerations
of prefrontal cortex have been refined over decades of research. Further, it is still debated to
what extent prefrontal cortex can be compared across mammalian species (Uylings et al., 2003;
Seamans et al., 2008; Carlén, 2017). Therefore, I will first provide an overview of structural
definitions and functional considerations separately, before discussing the role of prefrontal cortex
in category learning.

1.2.3.1 Structural considerations of prefrontal cortex

In its widest definition, prefrontal cortex is the cerebral cortex of the frontal part of the frontal
lobe (Brodmann, 1909). Beyond that, across-species definitions of prefrontal cortex are still
debated. Early definitions of prefrontal cortex were based on cytoarchitecture, specifically on the
presence of a granular Layer IV (Jacobsen, 1935). This definition was used to establish homology
between human and non-human primate brain areas. However, non-primates, e.g. rodents, do
not have a granular cortex in the frontal lobe, prompting a debate about the existence of any
homologue to prefrontal cortex in rodents (Uylings et al., 2003; Seamans et al., 2008; Carlén,
2017). Another definition considers prefrontal cortex as the projection zone of mediodorsal
(MD) thalamus (Rose and Woolsey, 1948), based on the idea that cortical differentiation may be
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regulated by thalamocortical connections (Rakic, 1988). Despite differences in cytoarchitecture,
this definition enabled drawing homologies between humans, non-human primates and also
non-primates. Later however, more refined experimental methods have shown that prefrontal
areas also receive projections from other thalamic nuclei and that MD thalamus also projects
to other cortical areas such as premotor or parietal cortex (Giguere and Goldman-Rakic, 1988;
Morán and Reinoso-Suárez, 1988). This lead to a more refined version of the projection-based
definition: all areas with preferential connectivity to MD thalamus over other thalamic nuclei
(Uylings and Eden, 1991) are considered prefrontal cortical areas.

Historically, prefrontal cortex attracted the attention of neuroscientists, as the area of largest
growth in humans (phylogenetically: Brodmann, 1909; for review see Fuster, 2002; but also see
Semendeferi et al., 2002 and ontogenetically: Jernigan and Tallal, 1990; Pfefferbaum et al., 1994;
Sowell et al., 1999). Further, prefrontal cortex is considered one of the most interconnected
cortical areas (Miller and Cohen, 2001; Ährlund-Richter et al., 2019) giving it the reputation
of a ‘hub’, managing other brain areas. With respect to subcortical areas, prefrontal cortex
shows connections to thalamus (Rose and Woolsey, 1948), the basal ganglia (Alexander et al.,
1986) and hippocampus (Hoesen, 1982; Goldman-Rakic et al., 1984). Its cortical connections
involve several sensory areas (Pandya and Yeterian, 1990), parietal cortex (Jones and Powell,
1970; Goldman-Rakic and Schwartz, 1982), contralateral prefrontal cortex (Goldman-Rakic and
Schwartz, 1982) and premotor areas (Lu et al., 1994). Notably, most of these connections are
reciprocal.

Because the phylogenetic and ontogenetic development of PFC parallels the development
of higher cognitive function (Gibson, 1991) and the interconnectivity of prefrontal areas with
sensory, association and motor areas, prefrontal cortex has always been linked to a role in higher
cognitive functions, before there was functional evidence. When discussing prefrontal cortex
function and its role in category learning, I will follow the definition of PFC based on preferential
connectivity with MD thalamus. With this definition I will try to form a coherent picture of
prefrontal cortex in category learning that is also supported by functional homologies (see 1.2.3.2).
Nevertheless, it is important to keep in mind that prefrontal cortex in every species encompasses
several subregions, showing structural and functional variation within and across species (Fig.
1.2; Fuster, 2002; Carlén, 2017; Merre et al., 2021).

1.2.3.2 Functional considerations of prefrontal cortex

Historically, there were only diffuse accounts of functions of the frontal lobes obtained through
lesion studies in humans and animal models (for review see Jacobsen, 1928). That was likely due
to the lack of specificity in the location of the lesion, very diverse tests of cognitive and motor
functions and, therefore, low reproducibility of results. The frontal lobes were suggested to play
a role in learned motor behaviors, behavioral inhibition and attention. Patients with specific
types of frontal lobe lesions showed an impairment in the Stroop task (developed by Stroop,
1935). In this test, subjects are presented with words that spell out a color, written in a coherent
or incoherent font color, and are required to name the font color. Difficulty in performing the
Stroop task indicate a deficit in assigning selective attention to a relevant feature in order to
resolve an interference (Perret, 1974; Vendrell et al., 1995).

A notable point in the study of prefrontal cortex was the discovery of ‘memory cells’.
Electrophysiological recordings in macaques trained in a delayed response task reported cells in
prefrontal cortex that showed activity spanning the delay period between a stimulus and the
behavioral response (Fuster and Alexander, 1971; Goldman-Rakic, 1995). These first recordings
were supported by neuroimaging studies (Jonides et al., 1993; Cohen et al., 1994), suggesting a
role for PFC in working memory. In addition to neurons with sustained activity during delay
periods, Quintana and Fuster (1999) discovered neurons whose activity ramped up in preparation
of a specific motor response. Together, these findings indicated a role for PFC in working memory,
action selection and planning and therefore confirmed its importance in attentional processes
and goal-directed behavior.

While memory cells and preparatory activity were specific examples of PFC encoding
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Figure 1.2: Human and mouse prefrontal cortex. (A) Schematic of Brodmann areas of human prefrontal
cortex, based on the architectonic data from the Brainnetome Atlas (Fan et al., 2016). (B) Schematic of
commonly used functional subdivisions of human prefrontal cortex. dmPFC: dorsomedial prefrontal cortex;
vmPFC: ventromedial prefrontal cortex; vlPFC: ventrolateral prefrontal cortex; OFC: oribital frontal cortex. (C)
Schematic of mouse prefrontal cortex subdivisions based on the Allen Brain Atlas (Lein et al., 2006). MOs:
secondary motor area; ACA: anterior cingulate area; PL: prelimbic area; ILA: infralimbic area, ORB: orbital area;
AI: agranular insular area. Dashed black line: sagittal midline. (From Carlén, M. (2017). What constitutes the
prefrontal cortex? Science, 358 (6362), 478–482. Reprinted with permission from AAAS.).

parameters that are crucial to a task, is was soon shown to represent task-rules and task-relevant
parameters in general. Rats with a lesioned prefrontal cortex showed an impaired ability to
adapt to a change in task-rules (Winocur and Eskes, 1998; Ragozzino et al., 1999). Further,
in cross-modal decision making tasks, a set of neurons in primate and rodent prefrontal cortex
fired in correlation with a learned combination of stimuli, a task-rule (Fuster et al., 2000; Rikhye
et al., 2018). Wallis et al. (2001) discovered that such a single cell rule-encoding also extends to
abstract rules like ‘same vs. different’. However, not only on the level of individual neurons, but
also on the population level, prefrontal cortex flexibly represents task-relevant parameters, such
as context, stimuli and reward (Rao, Rainer, et al., 1997; Rainer et al., 1998; Mante et al., 2013;
Lak et al., 2020).

Aside from PFCs involvement in goal-directed behavior in the form of working memory,
selective attention and action planning, it has also been implicated in forms of long-term memory
(for review see Simons and Spiers, 2003). Patients with frontal lobe lesions showed impaired
memory of the temporal order of encountered objects despite otherwise normal object recall
(Shimamura et al., 1990). Neuroimaging in humans (Tulving et al., 1996; Rugg et al., 2002) and
studies in primates and mice (Xiang and Brown, 2004; Ye et al., 2016; Kitamura et al., 2017),
further supported the role of PFC in the storage and recollection of episodic memory, potentially
through an interaction with hippocampus (Simons and Spiers, 2003).

In search for a unifying principle of PFC function with respect to its involvement in goal-
directed behavior, different and partially overlapping models have been developed (Duncan, 2001;
Fuster, 2003). Fuster (2003) hypothesized that the main function of prefrontal cortex was to
temporally organize behavior in order to reach a goal. This function would be served by temporal
integration of perception and action through its role in coordinating attention, working memory,
motor planning and monitoring of proprioceptive feedback. The author hereby proposed a double
role for PFC: on the one hand, it would serve in temporally organizing cognitive functions and,
on the other hand, it would represent relevant parameters as a rule or a concept and store them
as part of long-term memory. Duncan (2001) formed an adaptive coding model of PFC. The
key feature in this theory is the suggested adaptability of individual neurons in their coding.
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Prefrontal neurons that are highly flexible in what they represent get assigned to encode relevant
parameters whenever a subject is in a specific task context. As such, the prefrontal cortex
operates as a global workspace that determines relevant parameters and in turn shapes the
encoding of these in other brain regions, likely through attentional modulation. However, this
model leaves open questions about the stability of such PFC representations and therefore its
potential role in long-term memory.

1.2.3.3 Involvement of prefrontal cortex in category learning

The central role of prefrontal cortex in goal-directed behavior suggested that it also plays an
important role in category learning. Already Milner (1963), and later several others, showed that
patients with frontal lobe lesions were unable to perform in the WCST, hence had difficulties to
form categories based on rules. Even though patients learned the first rule, they were unable to
update their sorting behavior in response to rule changes (Milner, 1963; Robinson et al., 1980).
These results are supported by human neuroimaging during rule-based tasks (Volz et al., 1997;
Konishi et al., 1999) and lesion studies in monkeys (Dias et al., 1996; Rossi et al., 2007). In
contrast, learning implicit, information-integration categories was not impaired in frontal lobe
patients (Knowlton et al., 1996) and fMRI studies found less activation in frontal areas during
implicit categorization compared to explicit categorization conditions (Seger and Cincotta, 2002).

Broschard et al. (2021) specifically compared the categorization behavior in information-
integration tasks and rule-based tasks in rats with prefrontal cortex lesions. Hereby, they found
that lesioned rats were impaired in learning the rule-based categorization compared to unlesioned
control animals, but not impaired in the information-integration task. Together, the results
indicated that prefrontal cortex plays a specific role in explicit category learning, in line with the
earlier discussed importance in flexible rule-formation and attentional processes (see 1.2.3.2).

Electrophysiological recordings in monkeys added more detail to the contribution of prefrontal
cortex to category learning. Freedman et al. (2001) identified neurons in primate prefrontal
cortex showing category-specific activation, after the animals had been trained to categorize
images of cats and dogs. Further studies discovered that, when animals were trained on different
rules for categorization, the categories were represented by largely independent groups of such
category-selective neurons (Roy et al., 2010). With learning, this category representation in
prefrontal cortex developed slower than in striatum (Antzoulatos and Miller, 2011; Villagrasa
et al., 2018) and posterior parietal cortex (Swaminathan and Freedman, 2012), but faster than
in inferior temporal cortex (Freedman et al., 2003). In addition to the temporal sequence of
activation of these brain areas, differences in the level of categorical abstraction of the represented
stimuli were found, with the highest level of abstraction in prefrontal cortex (Brincat et al., 2018).
Although in human category research a large focus is on comparing implicit and explicit category
learning with respect to the involvement of different brain areas, in primates or rodents prefrontal
cortex activity has not yet been characterized in information-integration category learning tasks.
Hence, a specific role of prefrontal cortex in explicit category learning processes over implicit
ones is yet to be reproduced in animal models in order to better understand the contribution of
PFC neurons to the category learning systems in the brain.

A recent study in humans (Mack et al., 2020) indicated that PFC contributed to category
learning by compressing high-dimensional inputs to relevant features and using that to modulate
activity in other brain areas. The researchers found through fMRI recordings that the dimen-
sionality of neural activation patterns in prefrontal cortex correlated with the dimensionality
of the category learning task. The authors hypothesized that prefrontal cortex reduces the
dimensionality of information to the relevant parameters for categorization. With such neural
compression, PFC instructs selective attention by modulating neuronal coding in other brain
regions, like medial temporal lobe areas (Mack et al., 2016). However, how neural compression to
relevant features is achieved and how it would be reflected in the activity of individual neurons
in PFC remains unclear.

Across species, PFC has been identified as a major player in category learning. Specifically,
rule-based, explicit category learning relying on selective attention, abstraction and generalization
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processes strongly involves prefrontal areas. However, there is a disconnect in theoretical models
that are based on human data, focusing on comparing different category learning systems, and
the studies that are largely done in primate and rodent models, focusing on prefrontal cortex
activity during explicit categorization. The promising finding that rodents, like humans, require
PFC for rule-based category learning and not information-integration learning suggests that
across species there might be a common way for the brain to solve common problems, so that
this gap could be bridged.

1.2.4 Circuit models of category learning

1.2.4.1 Multiple systems for category learning in the brain

Similar to the theories of category learning behavior, there is a debate about how the brain
implements category learning. With the behavioral data, I described the division between single
systems theories and multiple systems theories. On an implementation level, this distinction
could be further sorted into three possible scenarios. One hypothesis is that one brain area is the
category learning area, irrespective of task or category aspects. A second possibility is that one
network of interconnected brain structures implements one algorithmic mechanism of category
learning. Both would fall in the group of single system theories. A third option is that the brain
does not have one uniform way of learning categories but rather involves different brain structures
depending on the underlying categorization problem. This multiple systems theory for the brain
suggests that the network of brain areas that is best suited for a specific categorization problem
will be recruited to solve the task.

At the core of single system theories for category learning is the assumption that one
mechanism (or algorithm) is used to learn categories. Most models of prototype and exemplar
theories (see 1.1.1.3) are agnostic to whether these algorithms are implemented by one brain
area or distributed across many (Reilly et al., 1982; Kruschke, 1992). Crucial for this distinction
is the answer to ‘What determines a category learning area?’. Depending on the definition, an
area that holds category-selective neurons, like PFC (see 1.2.3), could be seen as the category
learning area, whereas a region that improves sensory discrimination near a category boundary or
represents individual stimuli, such as sensory cortices and striatum, respectively (see 1.2.2), could
be classified as not being category learning areas. Thus, the distinction between the first and the
second scenario, one area or a network of areas, largely depends on the magnitude of effects of
category learning. I will rather consider brain areas that show changes in neuronal activity in
response to category learning as relevant regions, hence focus away from the possibility of the
one category learning area.

A more popular view is that a network of brain areas together implements one mechanism
for category learning. Reilly et al. (1982) break down the prototype and exemplar theory into
individual algorithmic steps – 1) memory of individual exemplars and 2) fine-tuning their weights,
i.e learning a threshold of similarity to each exemplar – and propose that cell assemblies in a
network of brain areas could serve stages of this algorithm. The ALCOVE (Kruschke, 1992)
and SUSTAIN (Love et al., 2004) models extend this algorithm with a weighting mechanism
for relevant exemplar dimensions, i.e. selective attention, and a clustering mechanism by which
exemplars are only memorized if they get falsely categorized at first. All three models are focused
on improving the fit to human behavioral data. They break down categorization as how a given
network of neurons could solve category learning problems, but do not include suggestions on
which brain areas could implement such computations; data from neuropsychological studies and
recordings are not considered.

The third group of theories for category learning propose that multiple systems coordinate
category learning that are implemented by separate networks of brain regions. Roughly at the
same time, two similar models were constructed: ATRIUM (Erickson and Kruschke, 1998) and
COVIS (Ashby et al., 1998). Both contain two independent systems that learn in parallel and
compete for the category decision. ATRIUM is an extension of the ALCOVE exemplar model
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(Kruschke, 1992) that adds a rule learning system to the exemplar learning. The ATRIUM model
could better explain rapid rule learning, which ALCOVE did not capture, and fit generalization
performance more accurately. In contrast to ATRIUM, COVIS was constructed with data
from neuropsychological and fMRI studies as a basis. Ashby et al. (1998) sorted findings of
several studies based on the aspects of the tasks, category structures and further context, in
order to determine general functional principles of individual brain areas. COVIS brings many
such findings to a common denominator by proposing a prefrontal-based explicit system and a
striatal-based procedural learning system.

Taken together, the debate whether a single or multiple systems implement category learning
in the brain is not resolved yet (Nosofsky and Kruschke, 2002). Single system models lack
concrete suggestions for brain areas that provide the proposed algorithms. COVIS on the other
hand considers results from neuropsychological and neuroimaging studies. I will discuss this
model in detail and present experimental support for its assumptions and predictions in the
following section.

1.2.4.2 COVIS

One specific formulation of a theory for multiple systems for human category learning was
developed by Ashby and colleagues (Ashby et al., 1998). The theory, COVIS (competition
between verbal and implicit systems), was formed based on the multiple systems theory for
memory (Tulving, 1985; see 1.1.1.1) and constrained by neuropsychological data. It proposes two
category learning systems in the brain that closely relate to semantic memory and procedural
memory systems. On the one side, a verbal, explicit, hypothesis testing system and on the
other side an implicit, procedural learning system. In a task, these systems work in parallel,
computing category decisions, but are competing for determining the behavioral output. The
authors propose that, initially, both systems learn to form categories. Early in learning, the
verbal system dominates the category decision, likely because it is consciously controlled. Often
though, especially later in learning, the verbal system does not provide the optimal strategy
to solve tasks that require the integration of information or cannot be described with a rule.
In those cases, the procedural system will eventually outperform the explicit system and hence
start to determine the categorical decisions. Initially, the explicit learning system was suggested
to be closely linked to language, but because primates were shown to closely resemble humans
in explicit learning behavior (see 1.1.2.3; Smith, 2010) this definition was adapted for work in
animal models.

The authors also provide a suggestion of the individual algorithmic steps that each system
employs. Hereby, the explicit system learns categories by identifying a number of possible rules,
iteratively learning to select the optimal rule and learning a criterion value along this rule. In
parallel to this explicit learning, the implicit system maps individual stimuli to category - and
therefore motor - responses. Through convergence of information and repetition, a perceptual
space slowly becomes associated with a category. Ashby et al. (1998) suggest that these two
systems compete for the decision output through lateral inhibition, by which the system that is
activated more strongly inhibits the other system.

Because COVIS was constructed based on neuropsychological and neuroimaging results,
Ashby et al. (1998) give concrete predictions on which system involves which brain areas. The
explicit system engages prefrontal and anterior cingulate cortices and part of the striatum, the
head of the caudate nucleus. According to the prediction, the prefrontal and cingulate areas
perform rule selection, consistent with findings that cingulate areas are involved in rule selection
and Stroop tasks (Posner and Petersen, 1990; Bench et al., 1993). The criterion value along
the selected rule is learned iteratively by the striatum. Initially, the COVIS model did not
propose an involvement of the hippocampus or medial temporal lobe areas. However, increasing
evidence from neuroimaging studies linked hippocampal activation to prefrontal learning of
explicit categorization (Nomura et al., 2007).

The implicit system strongly relies on the tail of the caudate nucleus and its projections
from sensory areas, such as ITC. Through repetition and dopamine-mediated reward learning
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(Beninger, 1983; Wise and Rompre, 1989), the caudate nucleus maps ITC input onto a motor
response. This process has been modeled by the decision bound theory (see 1.1.1.3; Maddox
and Ashby, 1993) and in later studies as a striatal pattern classifier (Ashby et al., 2007). In
both explicit and procedural systems, a part of the striatum will give the categorical decision
as an output. These striatal outputs compete in their strength, reflecting the confidence of
the respective categorical decision. Through lateral inhibition within the striatum, potentially
enhanced by dopamine (Wickens et al., 1991), the stronger system will inhibit the other one and
resolve the competition.

The COVIS model makes several behavioral predictions (for review see Maddox and Ashby,
2004). One prediction is that the absence or delay of feedback specifically impairs procedural
learning because the proposed learning processes in the striatum rely on dopamine signaling of
reward (Beninger, 1983; Ashby et al., 2007). This prediction was experimentally confirmed by
comparing performance in rule-based and information-integration tasks without feedback (Ashby
et al., 1999; Maddox et al., 2003).

COVIS further predicts that a change in motor requirement or visual-field position affects
information-integration categorization performance more than rule-based performance, because
procedural learning in the striatum closely links the input from visual cortical neurons to a motor
output. Both suggested manipulations, changing the motor response (Ashby et al., 2003) and
the retinotopic location of stimulus presentation (Rosedahl et al., 2018) did indeed specifically
impair learning of implicit categorization.

On the other hand, since explicit category learning relies on prefrontal areas and attentional
processes, interference with attention through another task should specifically affect rule-based
category learning. Waldron and Ashby (2001), and later others (Zeithamova and Maddox, 2006;
Filoteo et al., 2010) performed such dual task interference experiments and confirmed the effect.
Participants were trained in rule-based or information-integration tasks, either as a single task or
while the participants were performing another working memory intensive task, like the Stroop
test, in parallel. Rule-based category learning under this condition was slowed significantly
compared to the single task learning.

In summary, the COVIS theory of category learning describes an algorithmic and neuropsy-
chological account of two parallel learning systems that compete in driving categorical decisions.
It recapitulates behavioral and neuroimaging findings and gives specific testable predictions,
like dopamine levels in striatum and the time course of the involvement of certain brain areas.
However, it only provides limited suggestions on how neurons in these brain areas contribute to
category learning. Several models have since been put forward, specifically focusing on predicting
individual neuron activity and the interaction of neurons that could underlie the learning and
computation of categories. I will consider examples of such models in the following section,
specifically highlighting a recent model based on findings from electrophysiological recordings in
primates.

1.2.4.3 Neuronal circuit models of category learning

One of the first neurocomputational models attempting to create an account of category learning
on the level of individual neurons was proposed by Knoblich et al. (2002). This model was an
extension to an object recognition model, called HMAX (Riesenhuber and Poggio, 1999), based
on electrophysiological data from inferior temporal cortex (Logothetis et al., 1995). This model
implemented a layer of neurons in the visual processing pathway, that performed a linear sum of
input features and a following layer that performed a ‘MAX’ operation, i.e. each neuron being
driven only by its strongest input. Subsequently another linear and another non-linear, ‘MAX’
layer were added. By combining the linear and nonlinear layers, the model created neurons
that were tuned to visual objects invariant to position in visual field or scale, reproducing the
observed tuning in ITC. Inputs from such object-tuned neurons were linearly combined and used
to train ‘categorization units’ in a supervised fashion. These categorization units matched the
recorded neuronal responses in prefrontal cortex of trained monkeys (Freedman et al., 2001).
The authors conclude that the neuronal responses to category stimuli that can be observed in
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area ITC reflect the unsupervised learning of object representations based on the statistics of its
inputs. In contrast, the category selectivity in PFC arises from supervised learning of a linear
combination of object-tuned inputs and task-specific category information based on behavioral
relevance. Pannunzi et al. (2012) extended this model by including an influence of behavioral
relevance on learning in ITC by adding a top-down connection from PFC to ITC that modulated
the responses in ITC based on the learned features for categorization (data from Sigala and
Logothetis, 2002). Such a modulation was implemented with synaptic plasticity based on the
correlation structure of pre- and postsynaptic activity, i.e. Hebbian and anti-Hebbian, upon
correct and incorrect category decisions, respectively, and resulted in faster and more robust
learning. However, whether such computations are indeed implemented by the connectivity
between ITC and PFC has to date not been tested.

Neurocomputational implementations of COVIS (see 1.2.4.2) focused on modeling how two
category learning systems, explicit and implicit, could learn potentially different categories and
compete for the category decision. A model by Paul and Ashby (2013) assumes, based on
experimental data from Ashby and Crossley (2010), that the control over the category decision
does not switch between explicit and implicit categorization systems on a trial-by-trial basis.
Rather, if the implicit category system performs better than the explicit one, the control over
behavior switches only once towards the implicit system. As a consequence, the procedural
learning system has to learn in parallel to the explicit system, although both systems likely
receive the same feedback. In order for the procedural system to learn, even though the explicit
system determines the behavior, the explicit system must inform or ‘teach’ the procedural system
of the decisions and their outcome trial-by-trial. One prediction of the model is that neurons of
the procedural learning system in the striatum receive an efference copy of the decision of the
explicit system, either from prefrontal areas or another part of the striatum. This efference copy
would drive the activity of striatal neurons within the procedural learning system whose response
aligned with the decision of the explicit system. Hereby, their activity could be associated with a
following dopamine signal, i.e. reward. Although Paul and Ashby (2013) hypothesize that the
efference copy could reach striatum via premotor or motor areas, evidence for such a functional
connection is yet to be found, and it is currently unclear how those inputs would target the
relevant striatal units.

Another, more recent neurocomputational model focuses on interactions between prefrontal
cortex and striatum during category learning. Building on the observed involvement of striatum
in almost all categorization tasks and the finding of category-selective neurons in prefrontal cortex,
Villagrasa et al. (2018) aimed to better understand the circuit mechanism of the interaction
between these two areas (Fig. 1.3). Their model was informed by data from electrophysiological
recordings in both areas (Antzoulatos and Miller, 2011) showing early category information in
striatum that decreased as more stimuli were learned and category selectivity in prefrontal cortex
that increased with training. The hypothesis is that striatum builds up first stimulus associations
from its connections with ITC, and therefore forms a rudimentary category representation. Then,
due to its connectivity with thalamus, the striatum ‘teaches’ prefrontal neurons by disinhibiting
thalamus and thereby biasing prefrontal activity in order to facilitate Hebbian plasticity between
ITC and PFC neurons. Indeed, early in training many modelled striatal neurons developed
stimulus selectivity and fewer neurons showed category selectivity. With learning of more novel
stimuli, the striatal variability in responses to a category increased, leading to a decrease in
overall category selectivity. In PFC on the other hand, stimulus selectivity stayed low throughout
learning, but category selectivity increased without the increased variability in response to novel
stimuli. The resulting category representation in prefrontal cortex hence developed slower, but
was generalized better to novel stimuli.

In summary, several neurocomputational models have been developed to fit a data set or
experimental finding from human or non-human animal category learning research and to create
testable predictions. However, often the models focus on neurons within a specific brain area
or on the interaction between only two areas. So far, there has been no account of a unified
picture of how the brain could implement category learning. One possible reason could be that
the existing models are mainly based on human neuroimaging or primate electrophysiology data
that offer limited insight into the underlying circuitry. Information about specific cell types, the
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functional connectivity between areas or the changes throughout the learning process is harder
to obtain in these model systems. To date, there have been only few efforts to study category
learning in mice and to connect results to human or primate models. However, mice offer better
access to genetic and optical interrogation tools to test circuit predictions of category learning
models and to thereby build a coherent picture of category learning in the brain.

Figure 1.3: Network components of striatal teaching model. Through dopamine-mediated (orange)
plasticity at the IT-striatum connections (green), the striatum will form a representation of learned stimuli early
on. Fixed connectivity (grey) of the basal ganglia with the ventral anterior nucleus (VA) of the thalamus and of
VA with PFC enables the basal ganglia to bias activity in PFC. In mice, the thalamic nucleus is termed ventral
medial (VM) nucleus, but shows the same connectivity with the substantia nigra and prefrontal cortex (Kase
et al., 2015; Collins et al., 2018). The resulting biased activity in PFC drives Hebbian (unsupervised) learning
at the IT-PFC synapses and hence a later development of a category representation in PFC (Reprinted from
Villagrasa et al., 2018).

1.3 A mouse model of category learning

1.3.1 Why use the mouse model?

As described in the previous sections, a substantial body of research has built up behavioral,
algorithmic and also neurocomputational models of category learning. Many model predictions
have been tested in humans with behavioral studies of healthy subjects and patients, and
neuroimaging experiments. Further, single-unit recordings in primates provided the resolution to
observe individual neurons, that human neuroscience investigation tools typically lacked. However,
neuroscience research in primates is short of the versatility of observation and interrogation tools
developed in rodent, especially mouse, neuroscience research.

The large-scale tool development in the mouse model was kickstarted with the discovery of
techniques for the manipulation of genetic material and hence the creation of transgenic mice
(Thomas and Capecchi, 1987). Due to their fast reproductive cycle and cheap maintenance, a
high number of animals could be bred, screened and characterized. Such a method to generate
knock-in or knock-out mouse lines of any desired gene brought control over specific molecular
pathways, cell types and neuronal activity through chemical (Armbruster et al., 2007; Roth, 2016)
or optical means (Boyden et al., 2005; Deisseroth, 2015). In addition, the fairly small brain of
mice, compared to larger rodents, cats and primates, enabled the fast, large-scale observation and
manipulation of neuronal activity in vivo with high resolution through techniques like two-photon
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microscopy (Denk et al., 1990, see 1.3.3). All those advantages have put the mouse into the
center of biomedical and circuit neuroscience research. However, for the most part mice have
not played a significant role in cognitive neuroscience. Only in the recent years, researchers have
aimed to develop mouse models for more cognitive behaviors.

In category learning, a mouse model that can replicate the key findings from human
and primate research could give three key benefits. First, it allows researchers to identify
and chronically record specific neuronal projections through category learning, hence directly
observe the interaction between several brain areas. Second, inputs to a brain structure can be
anatomically traced in order to come up with better predictions of category learning networks.
Third, the activity of neuronal populations or specific projections can be opto- or chemogenetically
manipulated to test predictions of neurocomputational models. Thus in the neuroscience of
category learning, the mouse model could be at a bridging point between behavior that is
comparable to humans and a battery of neuroscience tools that can advance our understanding
of category learning in the brain.

1.3.2 Designing a behavior paradigm for mice

1.3.2.1 Complex cognitive behaviors in mice?

Does it make sense to probe cognitive behaviors in mice? In order to answer this question one
can consider the following two things: whether mice can learn behaviors comparable to humans,
and whether there are any indications that the mechanisms underlying such behaviors can be
compared. There are three hypothesized scenarios.

The first hypothesis is that mice cannot perform complex cognitive behaviors that can be
compared to humans. From that, it follows that mouse behavior can be studied for its own
merit, but not for learning about human behaviors and their underlying brain mechanisms. This
view is supported by the observation that mice often require very long training times to learn
tasks (Colacicco et al., 2002) or use of different strategies (Lipp and Wolfer, 1998) compared to
rats. This lead to the majority of cognitive neuroscience studies being conducted in rats and
non-human primates. Only in the recent years, more and more complex behaviors have been
tested in mice, challenging the idea that mice do not show cognitive behaviors.

The second hypothesis is that mice can perform cognitive behaviors that are comparable
to humans, but solve them with a different mechanism. Possibly, this hypothesis applies to
categorization behavior in pigeons. Pigeons can categorize visual stimuli to very high accuracies,
even natural images and human faces (Herrnstein and Loveland, 1964). However, when comparing
humans and pigeons in implicit versus explicit categorization tasks, pigeons show different
behaviors to humans, indicating that the two species use different mechanisms for category
learning (see 1.1.2.2, Smith et al., 2012). This finding makes the pigeon model of category
learning less comparable to humans. While studies across a wide variety of behaviors and brain
structures are important for understanding specific model systems and learning how similar
problems can be solved in different ways, it is debatable how much we can learn about mechanisms
in the human brain.

The third hypothesis is that mice can perform cognitive behaviors that can be compared to
humans and that the same brain circuits and mechanisms are involved. Behavioral and neuronal
results that are comparable to findings from primate studies support this hypothesis, such as
the observation of category representations in mouse PPC (Zhong et al., 2019) or the finding
that mice can learn complex rule-switching tasks (Rikhye et al., 2018). However so far, category
learning studies in mice have not aimed at using similar category structures, nor tried to compare
neuronal findings to primate or human literature and models.

In conclusion, the question of whether mice show complex cognitive behaviors is not com-
pletely answered. However, prior studies of category- and rule-learning highlight the use of a
mouse model for category learning that provides the comparison of key behavioral and neuronal
results to primates and humans.
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1.3.2.2 Optimizing behavioral studies in mice

What makes experiments in mice comparable to human experiments? And what makes a
mouse experiment useful for gaining insights beyond results from human studies? A number of
considerations about experimental design will influence the behavioral and neuronal results and
therefore have a large impact on these questions (see also Discussion).

The first consideration is the motivational incentive in a learning task. Studying category
learning involves engaging experimental subjects in an operant conditioning task (Skinner,
1935). The most frequent design of an operant learning paradigm across species is appetitive
reinforcement learning. Hereby, a correctly displayed behavior will be reinforced with a reward,
like a snack or money. In primate or rodent research, food, soymilk or water rewards are commonly
used to reinforce the operant behavior of the animals (Guo et al., 2014). However, often the
food or water reinforcer alone is not strong enough to motivate the animals to participate in
the experiment (Dickinson and Balleine, 1994). Therefore, animals can be put on a restriction
regime, limiting their food or fluid consumption, in order to make the food or water rewards a
stronger motivational incentive (Tucci et al., 2006). Since both, the restriction regime as well as
the choice of a reinforcer for the experiment, can affect the motivation of the animals (Berridge,
2004; Tucci et al., 2006) and may engage different brain circuits (Jourjine et al., 2016; Jourjine,
2017), they can influence behavioral and neuronal findings of a learning experiment and therefore
potentially confound the results.

Another important aspect is the tested sensory modality. Most category learning studies
in humans and primates are using visual stimuli. Our understanding of how we decompose
visual scenes into individual features and how these features are separated and represented in
the brain is better than for other sensory modalities. Hence, by testing category learning with
visual stimuli, we have better control over individual stimulus features and thereby the type
and difficulty of the categorization. However, when translating these experiments to rodents, it
is important to keep in mind that mice have a far lower visual acuity (Sinex et al., 1979) and
therefore might have difficulties perceiving stimuli that are used in human or primate category
learning tasks.

Finally, the choice of operant task design will likely influence both the behavior (Guo et al.,
2014) and the brain (David et al., 2012; Kuchibhotla et al., 2017). Operant behaviors that
are closer to the natural repertoire of an animal will likely be easier to reinforce and therefore
faster to learn, like in mice foraging behavior in freely-moving task conditions. An alternative to
freely-moving paradigms is a task design that involves head fixation of the animal. Such tasks are
frequently employed in primate and mouse neuroscience, because they give experimenters better
control over the sensory stimulation and decrease the complexity of displayed behaviors. Hence,
head fixation can reduce potential confounders to neural recordings and also enable calcium
imaging with two-photon microscopes during the behavioral experiments. Operant behaviors in
head-fixed tasks for mice can involve licking on a water spout (Guo et al., 2014), operating a
choice ball (Sanders and Kepecs, 2012) or running on a treadmill (Hölscher et al., 2005). Even
though there are efforts to develop more naturalistic head-fixed tasks (Havenith et al., 2018),
most of these operant behaviors are not as natural and cause more stress to mice (Juczewski
et al., 2020) than what is typically required of humans performing a task, e.g. pressing keys on a
keyboard. This could affect the learning speed or even the learning strategy in a task and impact
comparability.

In summary, developing a category learning task in the mouse requires choosing a motivational
incentive, a sensory modality to test and an operant behavior. All of these decisions likely impact
the behavioral and neuronal findings of the experiments and therefore also the comparability
between results from humans, primates and mice. The first study I present in this thesis
characterizes the effect of two training regimes with different motivational incentives on animal
welfare and learning performance, establishing the optimal training parameters for category
learning in mice.
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1.3.3 Imaging neuronal populations in the mouse brain during behav-
ior

Recording neural activity during behavioral testing was traditionally done in both primates and
rodents using electrophysiology of single or multiple units at a time. While electrophysiological
recordings still provide the highest temporal resolution, three major advances have made imaging
of neuronal activity an indispensable recording technique, especially in mice.

First, fluorescent calcium indicators enable the optical detection of neuronal activity (Yuste
and Denk, 1995; Stosiek et al., 2003). Calcium indicators either change their fluorescence intensity
or absorption and emission spectra upon binding calcium ions and thereby signal calcium influx
into the neuron, a proxy for action potentials. Further, GFP-derived calcium indicators, e.g.
GCaMP, can be genetically encoded for long term expression in selected neuronal populations
(Miyawaki et al., 1997). Such genetically encoded calcium indicators (GECIs) can be combined
with structural markers, i.e. fluorescent molecules that do not vary with calcium concentration.
Structural markers enable long-term observation and identification of neuronal populations even
for individual neurons that do not show calcium activity at a given time (Mank et al., 2008; Tian
et al., 2009; Chen et al., 2013; Rose et al., 2014).

Second, two-photon microscopy enabled the chronic recording of activity with subcellular
resolution. Because it relies on the two-photon effect (Göppert-Mayer, 1931), light absorption
and fluorescence are restricted to a narrow plane in the tissue. Therefore, two-photon microscopy
causes less photobleaching and photodamage than one-photon microscopy with comparable
resolution, and enables imaging deeper in brain tissue (Denk et al., 1990; Helmchen and Denk,
2005; Svoboda and Yasuda, 2006).

Third, a chronic glass implant can replace a certain area of skull above a brain region, or the
entire dorsal surface of skull (Kim et al., 2016), allowing for recordings through that glass window
for weeks to months (Holtmaat et al., 2009). However, the depth limit of two-photon microscopy
restricts recordings with cranial window implants to the dorsal (~500µm) surface of the brain.
Thus, any brain area that is not on the surface, including areas of the medial prefrontal cortex,
cannot easily be reached and imaged.

One common technique to overcome this limitation is the implantation of a cannula or a
gradient refractive index (GRIN) lens above the area of interest. With such an implant, areas like
the hippocampus or the striatum and also medial prefrontal cortex have been made accessible for
two-photon microscopy (Barretto et al., 2009; Pinto and Dan, 2015). However, such an implant
either displaces the tissue above the area of interest, which partially lesions surrounding tissue, or
requires aspiration of the tissue, creating a major lesion to any tissue above the area of interest.
Another, less common technique is the implantation of a mirror-coated microprism that can
be fit into fissures of the brain, e.g. between cerebrum and cerebellum to observe entorhinal
cortical areas or between the hemispheres of the frontal lobes to observe medial prefrontal cortex
(Low et al., 2014). With this technique, tissue surrounding the area of interest is not lesioned by
the glass prism, but rather displaced, with no worse effect on the brain than a cranial window
implant.

In summary, while electrophysiological recordings provide superior temporal resolution,
two-photon microscopy in combination with GECIs and chronic window or microprism implants
enables the observation of activity of individual neurons over months in awake, behaving animals.
Therefore, chronic two-photon calcium imaging in mice allows for investigating changes in neuronal
activity in medial prefrontal cortex throughout a behavioral learning period, like category learning.

1.3.4 Investigating the mouse brain during category learning

The two previous sections consider more technical aspects of operant conditioning (see 1.3.2.2)
and simultaneous recording of neuronal activity (see 1.3.3), aiming to utilize the toolkit of mouse
neuroscience research while maintaining comparability to studies in humans and non-human
primates.



26 1. Introduction

In this last section, I want to put these considerations into the context of category learning
research in the mouse and, thereby, highlight the aims of the studies presented in this thesis.

1.3.4.1 The role of sensory and parietal areas in mouse categorization

So far, studies that make use of the mouse model by combining category learning with neuronal
recordings and manipulations exclusively involve auditory categorization tasks. In these studies,
mice were tasked to discriminate high frequency tones from low frequency tones. The boundary
between the two categories could either lie in the middle between the presented frequencies,
or shift closer to higher or lower tones, enabling testing of flexible categorization. Neuronal
recordings were performed in auditory cortex (Xin et al., 2019) and posterior parietal cortex
(Zhong et al., 2019). Auditory categorization modulated the responses to the stimuli in auditory
cortex and PPC and activity in PPC was crucial during, but not after, category learning. These
auditory categorization tasks presented only one dimensional stimuli (frequency of tones), so
these tasks would be considered rule-based category learning tasks, but could not be used to
investigate selective attention, a key component of explicit categorization (see 1.1.2.2). Such a
design also made it difficult to integrate the obtained neural results into the existing models of
category learning from humans and primates.

Visual categorization in mice has so far only been tested in behavioral studies without
neuronal recording. Watanabe (2013, 2017) has found that mice are able to learn categorizing
images of paintings based on the painter, i.e. identifying Kandinsky’s paintings from Mondrian’s.
In another study, Creighton et al. (2019) trained mice in an object category recognition task, and
found that mice could distinguish between novel objects that were part of a formerly experienced
object category, e.g. ‘car’, and objects that were of an unfamiliar category. Both of these
experiments studied visual category learning in mice, but were restricted to high dimensional
stimuli (paintings and 3D objects) and thereby tests for implicit categorization. Explicit visual
categorization, with precise control over the stimulus dimensionality, is yet to be tested in mice
and will provide an important piece of the puzzle to compare category learning in mice to the
existing body of research in rats, pigeons, primates and humans.

1.3.4.2 Investigating mouse prefrontal cortex in category learning

In the mouse, the prefrontal cortex has not been explored with respect to category learning.
However, it is known to encode task-relevant cues, like stimuli or reward presence (Pinto and
Dan, 2015) and learned rules (Rikhye et al., 2018). Considering those findings and the specific
involvement of PFC in rule-based category learning in rats (Broschard et al., 2021), it is likely
that also in mice prefrontal cortex plays an important role in explicit category learning. Possibly,
in trained animals prefrontal cortex holds a representation of the learned categories. A neural
representation of categories or learned rules for categorization could, on the one hand, involve
individual neurons showing category-selective activity, similar to the findings in non-human
primates (Freedman et al., 2001) or the type of coding observed in mice after learning a task rule
(Rikhye et al., 2018). On the other hand, categories could be rather represented with a type of
distributed code across a neuronal population, as supported by the observed mixed selectivity for
task-relevant parameters (Rigotti et al., 2013).

Although there is still an ongoing debate about the anatomical relations between human,
primate and rodent prefrontal cortical areas, the many functional analogies between primate and
mouse prefrontal cortex (for review see Carlén, 2017; Merre et al., 2021) suggest that findings
from mouse category learning could be generalized to the human. Since there are promising
theories and models built from human and primate category learning research, and the mouse
model offers a much broader variety of investigation tools, investigating mouse prefrontal cortex
during category learning could help us improve the understanding of human category learning
and underlying brain mechanisms.
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Therefore, the focus of the second study presented in this thesis is to establish a category
learning paradigm in the mouse that enables comparability to existing findings from primates
and involves simultaneous neuronal recording of PFC populations. In order to go beyond the
current understanding of the role of PFC in category learning, I follow individual neurons in
mouse PFC throughout the entire learning paradigm of the animals using chronic two-photon
calcium imaging during the task. From these data, I aim to identify neuronal representations
of categories and other task-relevant parameters as well as characterize their emergence with
learning.
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Abstract

Head-fixed behavioral tasks can provide important insights into cognitive processes in

rodents. Despite the widespread use of this experimental approach, there is only limited

knowledge of how differences in task parameters, such as motivational incentives, affect

overall task performance. Here, we provide a detailed methodological description of the

setup and procedures for training mice efficiently on a two-choice lick left/lick right visual dis-

crimination task. We characterize the effects of two distinct restriction regimens, i.e. food

and water restriction, on animal wellbeing, activity patterns, task acquisition, and perfor-

mance. While we observed reduced behavioral activity during the period of food and water

restriction, the average animal discomfort scores remained in the ‘sub-threshold’ and ‘mild’

categories throughout the experiment, irrespective of the restriction regimen. We found that

the type of restriction significantly influenced specific aspects of task acquisition and

engagement, i.e. the number of sessions until the learning criterion was reached and the

number of trials performed per session, but it did not affect maximum learning curve perfor-

mance. These results indicate that the choice of restriction paradigm does not strongly affect

animal wellbeing, but it can have a significant effect on how mice perform in a task.

Introduction

Rodents, in particular rats and mice, have long been used in behavioral studies exploring the

mechanisms underlying learning and memory [1,2]. Such experiments are particularly valu-

able when combined with simultaneous recordings from neurons involved in the task. Tradi-

tionally, this is done with extracellular recordings of single- or multi-unit activity, a technique

that can easily be adopted to freely moving animals [3]. In some instances, however, it is desir-

able to carry out behavioral experiments in movement-restricted animals. Head-fixation in

particular is indispensable under certain conditions, e.g. when precise control over sensory

inputs is needed, or when the employed recording technique is sensitive to brain motion, like

patch clamp recordings [4] and two-photon microscopy [5].
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Head-fixed operant conditioning is now commonly used to train mice in diverse sensory

detection- and discrimination tasks, as well as in virtual navigation experiments. Such tasks

can be performed using various operant-stimulus modalities, e.g. visual [6], auditory [7], olfac-

tory [8] or tactile [9]. The most widely used paradigm is the Go/No-Go task, in which the ani-

mal makes a choice by either performing or withholding from a certain behavior, such as a lick

on a lick spout [9], a lever press [6] or running [10]. An important factor in behavioral train-

ing, especially with parallel neuronal recordings, is the ability to differentiate between the

actual choice of a mouse and the mere level of motivation to participate in a task. Go/No-Go

task designs lack the ability to precisely differentiate between an active No-Go (active with-

holding) and a passive No-Go, reflecting loss of motivation. Two-choice designs are therefore

often more appropriate as they better allow discriminating between active choices of a mouse,

e.g. licks left or right [9] or steering wheel movements to the left or right [11], and its task

engagement (finished versus missed trials). Head-fixed paradigms also vary in the dimension-

ality of body movement that is permitted and measured. While some virtual reality approaches

allow more degrees of freedom [12–14], it is common to restrict running to one dimension

[10,15] or restrict body movement entirely by placing the animal in a narrow tube [9,16].

Beyond these, many more detailed parameters, e.g. setup design, training protocol, trial

sequence and stimulus presentation can be adjusted to suit the specific experimental need.

The effect of such parameter choices on the outcome of a behavioral experiment is often

not systematically explored and only occasionally reported in the literature. One such parame-

ter is the choice of (naturalistic) motivational incentive. This can be appetitive (e.g. reward) or

aversive (e.g. fear) and is commonly administered by delivery of food or water [9] or by deliv-

ery of mild shocks, respectively [17]. Animal behavior can also be motivated using targeted,

optogenetic activation of dopaminergic circuits [11] or by circuits driving hunger or thirst

[18]. Still, head-fixed learning paradigms mostly use food and water restriction, in part because

it does not require additional optical equipment. While food and water restriction regimens

are sometimes perceived as interchangeable, these two methods engage the animal’s physiol-

ogy differently [19,20], and hunger and thirst recruit different neuronal circuits [18,21,22].

Therefore, similar levels of food and water restriction, as usually measured by the animal’s rela-

tive reduction in body weight, might affect task performance, task motivation and also animal

welfare in a different manner [23].

This study provides a detailed description of the setup design and procedures to efficiently

train mice using either food or water restriction on an appetitive operant visual discrimination

task. We explicitly monitor animal welfare using measurements of body weight and a stan-

dardized scoring routine, as well as continuously recorded physical activity patterns from the

home cage [24]. We demonstrate the sensitivity and reliability of our conditioning method by

addressing how the choice for food or water restriction affects performance in head-fixed

operant conditioning.

Methods

Animals

All procedures were performed in accordance with the institutional guidelines of the Max

Planck Society and the local government (protocol number 55.2-1-54-2531-213-2015,

approved by the Beratende Ethikkommission nach § 15 Tierschutzgesetz, Regierung von

Oberbayern). Twelve male C57BL/6J mice (postnatal day 34) were individually housed in stan-

dard individually ventilated cages (IVC; Tecniplast GM500) and placed in a Digital Ventilated

Rack (DVC, Tecniplast). Each cage was equipped with a dedicated electronic board (DVC

board) composed of 12 electromagnetic field generating electrodes evenly positioned in a 4 by

Procedures for head-fixed two-choice visual learning in mice
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3 grid underneath the entire cage floor area. Sensors measured activity at each electrode sepa-

rately (4 Hz sampling frequency) and stored the data on a computer. Disturbances in the

strength of the local electromagnetic field were used as proxy for a mouse’s behavioral activity

in the home cage (see Data analysis). All mice were kept on an inverted 12-h light, 12-h dark

cycle with lights on at 22:00. Ambient temperature (21.0 ± 0.7 oC) and humidity (63 ± 2%)

were kept constant. Water and standard chow (Altromin Spezialfutter GmbH, #1310) were

provided to the mice ad libitum prior to behavioral experiments. Starting seven days before

surgery, mice were handled and weighed daily by the same experimenters (two female, two

male) that later also carried out behavioral training. After completion of behavioral proce-

dures, mice were euthanized using CO2 asphyxiation.

Surgical procedures

Mice were anesthetized with a mixture of fentanyl, midazolam and meditomidine in saline

(0.05mg/kg, 5 mg/kg and 0.5 mg/kg respectively, injected i.p.) and sufficient depth of anesthe-

sia was confirmed by absence of the pedal reflex. Eyes were covered with a thin layer of oph-

thalmic ointment (IsoptoMax). Lidocaine (0.2mg/ml) was applied onto the scalp for topical

anesthesia and carprofen in saline (5mg/kg, injected s.c.) was administered for analgesia. The

skull was exposed, dried and scraped with a scalpel to facilitate attachment of the head plate.

The custom-designed head plate (Fig 1D; S1 File) was fixed in position, over the left parietal

bone, using cyanoacrylate glue and subsequently secured with dental acrylic (Paladur). After

surgery, mice were injected with a mixture of the antagonists naloxone, flumazenil and atipa-

mezole in saline (1.2 mg/kg, 0.5 mg/kg and 2.5mg/kg respectively, injected s.c.) and left to

recover under a heat lamp. For post-operative analgesia, mice received carprofen (5mg/kg,

injected s.c.) for three subsequent days.

Fig 1. Behavioral apparatus and training protocol. A. Setup used for head-fixed visual conditioning. Arrow ‘m’ points to a head-fixed mouse, resting on

a Styrofoam ball, in front of a centrally positioned monitor and the two lick spouts (arrow ‘s’). Arrow ‘v’ indicates the pinch valves for reward delivery. B.

Schematic of the behavioral setup as seen from behind. C. Lick detection. Top left: Position of dual lick spouts in front of the mouse. Bottom left: Photo of

fully assembled 3D printed lick spout holder. Right: Electrical circuit for contact/lick detection on a single lick spout. D. 3D renderings of head-bar and

head-bar holder. E. Temporal sequence of within-trial phases. Reward is delivered immediately upon the first (correct) lick in the response window. F.

Overall experimental timeline depicting main experimental and training stages.

https://doi.org/10.1371/journal.pone.0204066.g001

Procedures for head-fixed two-choice visual learning in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0204066 September 13, 2018 3 / 19



Food and water restriction

Mice were randomly assigned to either the food-restricted or the water-restricted group. The

period of restricted access to food or water was started 18–19 days after surgery. Animals were

transferred to novel cages immediately before food or water restriction started.

At the start of water access restriction, mice were initially provided with 50% of the average

ad libitum water intake per day (50% was on average 1.57 ml in our facility). The water ration

was provided in the home cage using the nozzle of a standard water bottle that was closed off

at the back using red tape. From the fourth day onwards, the water ration was first offered in a

hand-held syringe during handling, with any remaining volume supplied in the home cage. In

parallel, when a mouse reached the target weight of 85% of the initially measured ad libitum
weight (reference weight), the daily volume of water supplement was individually adjusted in

order to maintain the target weight. As precaution, a minimum daily ration was set to 25% of

the ad libitum intake. However, the daily supplemented amount was only rarely as low as 25%

of ad libitum intake. Water-restricted animals had ad libitum access to food throughout the

experiment.

Food access was restricted according to the following procedure. On the first day, mice

received the minimum ration size of 2.0 g standard chow (3.279 kcal/g) in their home cage. Sub-

sequently, the daily ration was adjusted per mouse in order to keep its weight at 85% of the ref-

erence weight, while staying above the minimum ration weight of 2.0 g. From day four untill

day seven, mice were fed unflavored soymilk (Alpro) from a handheld syringe during handling.

However, we noted that mice were not particularly motivated to drink regular soymilk (average

consumed volume per mouse; day 5: 0.58 ml; day 6: 0.63 ml; day 7: 0.51 ml). Thus, on days

eight and nine we offered sweetened soymilk (Alpro), which did not increase the consumed vol-

ume (average consumed volume per mouse; day 8: 0.51 ml; day 9: 0.38 ml). Finally, from the

tenth day until the end of the experiment we used infant formula soymilk (SMA Wysoy)[10].

The infant formula soymilk was prepared by adding lukewarm water to a falcon tube containing

10–12 ml of soymilk powder until the total volume of the suspension reached 30–34 ml. We

immediately noticed a difference in consumption behavior when providing mice with infant

formula soymilk (average consumed volume per mouse; day 7: 0.73 ml; day 8: 1.29 ml; day 9:

0.99 ml; day 10: 1.73 ml; day 11: 1.71 ml). The daily food ration of each mouse was reduced by

an amount that matched the caloric content of the consumed volume of soymilk (0.67 kcal/ml).

Food-restricted animals had ad libitum access to water during the entire experiment.

Animal welfare assessment

Daily welfare assessment involved scoring mice on five different aspects of wellbeing using

individual scoresheets [9]. Scores on ‘Activity and behavior’ ranked an animal’s behavior in

the home cage from normal, active (0), via reduced activity (1), only moves when touched (2)

to lethargy (3). ‘Look/posture’ indicated the condition of the fur and the posture of the mouse,

ranging from normal (0) to arched back and very shaggy fur (3). ‘Urine/feces’ was scored as

indication of eating, drinking and associated physiological processes, ranging from normal

(0), via reduced amounts (1) to none (2). ‘Body condition’ indicated the shape and outline of

the mouse’s body and spine according to Ullman-Culleré & Foltz [25], ranging from normal

(0), via underweight (1) to emaciated (2). ‘Signs of dehydration’ were assessed using skin tur-

gor, ranging from none (0), via light (1), moderate (2), to strong (3). Finally, the cumulative

score across all aspects was used to judge the overall wellbeing of the animal into four discom-

fort categories named according to the European Union based legislation. A discomfort score

of zero was interpreted as ‘sub-threshold discomfort’, one as ‘mild discomfort’, between two

and four as ‘moderate discomfort’ and higher than four as ‘severe discomfort’.

Procedures for head-fixed two-choice visual learning in mice
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Apparatus for visual discrimination learning

Visual discrimination learning was carried out in custom-built setups that were placed in 75 x

75 x 75 cm boxes, providing a semi-enclosed environment (Fig 1A and 1B). The apparatus con-

sisted of a head-plate holder, a spherical treadmill, a computer monitor, two lick spouts (16

Gauge, 3mm tip-diameter reusable feeding needles, Fine Science Tools) with lick detectors,

tubes and valves to supply liquid reward. The treadmill was made of an airflow-supported Styro-

foam ball [26] and restricted to forward and backward motion by a pin pushed into the side of

the ball. An optical sensor, extracted from a computer mouse (G502, Logitech), tracked rotation

of the ball using a custom-written LabVIEW (National Instruments) program. The mouse was

head-fixed on the ball using a surgically implanted aluminum head plate, clamped into a cus-

tom-designed holder (S1 File). The head plate holder employed a (simplified) system of kine-

matic mounts to ensure reproducible positioning of the animal’s head within the apparatus (Fig

1D; S1 File; [27]). Visual stimuli were presented on a gamma corrected computer monitor (Dell

P2414H; resolution: 1920 by 1080 pixels; width: 52.8 cm; height 29.6 cm; maximum luminance:

182.3 Cd/m2). The monitor was positioned in front of the mouse at a distance of 18 cm and cen-

tered at 0 degrees azimuth and elevation. The box was illuminated by red LEDs (630 nm), and a

webcam (Logitech F100) was used to observe the mouse and setup within the enclosed space.

The two steel lick spouts were mounted on a custom 3D-printed holder that allowed fine

adjustment of the space between the lick spout nozzles (S2 File). The lick spouts were posi-

tioned in front of the animals’ mouth using a movable arm (Fig 1C, left panels). Care was

taken to place the lick spout well within the reach of the tongue, which is especially important

in the first pre-training sessions. Precise central positioning of the lick spouts with respect to

the animal’s mouth was critical; asymmetrical placement sometimes biased mice to make

more licks on the closer spout. Each lick spout was connected to a custom-made lick detection

circuit based on Weijnen [28] and Slotnick [29]. The circuit registered a voltage drop on the

non-inverting high impedance input of an operational amplifier (LT1079CN; Linear Technol-

ogies) when the mouse short-circuited the input by licking on the spout (Fig 1C, right panel).

The inverting input was connected to a voltage divider such that an individual lick triggered a

strong discrete voltage drop in the amplifier output. The non-inverting and inverting inputs of

the circuit could be switched in order for the circuit to report licks by voltage peaks. However,

the described arrangement allows detecting whether the circuit is switched on from the base-

line circuit output voltage.

Liquid reward was supplied through the lick spout by gravitational flow, operated using full

opening pinch valves (NResearch Inc.). Valves were individually calibrated to supply drops of

approximately 8 μl, which required valve-open durations of roughly 50 ms for water and

approximately 75 ms for soymilk. Tubing was pressure-flushed with distilled water after each

behavioral training session to prevent clogging. Signals from the lick detectors, the optical

speed sensor and other triggers were recorded with two USB multifunction input/output

devices (USB6001, National Instruments). The first device was used for closed loop control of

the setup using a custom-written behavioral-training program (Matlab, Mathworks). The sec-

ond device passively recorded all sensor signals at 500 Hz using a custom-written data-acquisi-

tion program (LabVIEW, National Instruments), which allowed for more precise offline

analysis of behavioral parameters (see Data analysis).

Habituation and pre-training for head-fixed two-choice operant

conditioning

Behavioral procedures were carried out six times per week between 14:00 and 18:00. In a

two-week period prior to head-fixed operant training, mice were habituated to the

Procedures for head-fixed two-choice visual learning in mice
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experimental procedures. Each habituation session lasted 10 to 15 minutes during which

the mouse was (1) held in the experimenter’s gloved hands, (2) placed on the surface of a

Styrofoam ball, (3) fed water or soymilk through a syringe and (4) accustomed to brief head

fixation by holding the head plate manually for a few seconds. In this specific experiment

animals were habituated for a period of two weeks because we tested different variants of

soymilk (see above). However, mice typically accustom to these procedures in three to four

days.

In order to shape animals for the head-fixed visual two-alternative choice task, we imple-

mented two stages of head-fixed pre-training. The first stage familiarized animals with the

association between timed licks and liquid reward from a single lick spout. To this end, ani-

mals were exposed to the trial sequence (Fig 1E), but in absence of visual stimulus presenta-

tion. Each trial started with an inter-trial interval of 2.0 s, after which the mouse was

required to withhold licking and cease running (velocity below 1 cm/s) for a duration of at

least 0.6 s to 0.8 s (varied per trial in order to prevent mice from learning a fixed timing

sequence). When this requirement was met, the trial proceeded with the visual stimulus

period. In pre-training stage 1 and 2 no actual visual stimulus was presented in this period,

the screen remained blank. After 1.0 s from the onset of the visual stimulus period, the

mouse could make a lick on the fluid spout in order to receive a single drop (approximately

8 μl) of water or soymilk. This period, during which a lick on the spout initiated reward

delivery (named ‘response window’), lasted initially 15.0 s and was gradually reduced to 5.0

s in subsequent pre-training sessions. At the start of the training sessions, a few drops were

given by manual activation of the valves in order to motivate the mouse to lick for reward

and to adjust the lick spout’s positioning relative to the mouth and tongue. Mice proceeded

to the second pre-training stage when they performed about 50 rewarded trials per training

session on two consecutive days.

In pre-training stage 2 the trial sequence remained the same, except that now two lick

spouts were positioned in front of the animal. On each trial, only a single lick spout was

selected as active, and only a lick on this spout, during the response window, triggered

reward delivery. Licks on the non-active spout were recorded but did not abort the

remaining period of the trial/response window. The distance between the left and right

lick spout was initially set to 1.0 to 1.5 mm. Later-on in pre-training stage 2, the inter-

spout distance was increased to approximately 3.0–4.0 mm, the inter-trial interval was

increased to 4.0 s and the response window duration was reduced to 4.0 s. Mice proceeded

to the visual discrimination task when, in pre-training stage 2, animals performed a mini-

mum of 50 trials per session and consumed drops without a strong preference for one of

the two lick spouts.

Side bias correction strategy

Mice tend to develop a strategy of responding with a majority of the licks on only one of the

two lick spouts (i.e. they showed a ‘side-bias’), which we aimed to prevent using the following

strategy. On each trial, we drew a random number r between -1 and +1. If this number was

above an adjustable threshold tb (bias-threshold), the next trial would give reward on the left

spout, otherwise it would give reward on the right lick spout (Eq 1).

Next trial; side ¼ ðr > tb ! LeftÞ ^ ðr � tb ! RightÞ Eq 1

The value of the threshold tb was calculated using the outcome of the last 20 non-missed tri-

als where ncorrect left and ncorrect right were the total number of trials in which the first lick in the

response window was on the correct spout, and ntotal left and ntotal right were the total number of
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presented ‘left trials’ and ‘right trials’ within the 20-trial period (Eq 2).

tb ¼ min m;max � m;
ncorrect left

ntotal left

 !

�
ccorrect right

ntotal right

 ! !( )( )

Eq 2

The value of m instated a minimum probability for either stimulus to be selected by bound-

ing the value of tb to the range -m to +m. Thus, when a mouse would only lick on the left lick

spout, the value of tb would approximate m, reducing the chance that the next trial would be a

‘left trial’ to minimally 0:5 � m=2
and increasing the chance that the next trial would be a ‘right

trial’ to maximally 0:5þ m=
2
. As a result, mice were presented with more trials on the non-pre-

ferred lick spout (i.e. right), gradually and eventually altering the mouse’s preference until it

was balanced between spouts. The side-bias correction algorithm was active in pre-training

stage 2 and during the first 5 to 7 training sessions of the visual discrimination stage.

Head-fixed visual two-choice operant conditioning

Two choice (lick left/lick right) operant conditioning featured visual stimuli consisting of sinu-

soidal gratings, drifting at 1.5 cycles/s. For each mouse, one stimulus was assigned to indicate

‘lick left’ and another to indicate ‘lick right’. These two stimuli were chosen such that each had

one of two orientations that differed by 90 degrees, and each had either a low or a high spatial

frequency (0.04 or 0.1221 cycles/degree). Selection of stimulus orientation and spatial fre-

quency was counterbalanced across animals. Full contrast stimuli were presented in a 37

degree diameter circular area, centered at 10 degrees elevation and 0 degrees azimuth and

blended within an annulus of 4 degrees width into an equiluminant grey background (total

stimulus diameter including blended surround was 45 degrees).

Visual discrimination training followed the same basic trial structure as described above

(Fig 1E), with the main addition that now a visual stimulus was presented for 2.25 s. The

response window (3.0 s duration) started 1.0 s after stimulus onset. During the response win-

dow, a lick on the correct spout triggered reward delivery, while a lick on the incorrect spout

caused a time-out. On rewarded/correct trials, stimulus presentation was continued for the full

2.25 s. On incorrect trials, the stimulus was replaced by a narrow horizontal black bar spanning

the width of the display, presented for the duration of the time-out (2.5 s). Stimulus presenta-

tion or time-out was followed by an inter-trial interval of 5.0 s. Licks during the inter-trial

interval and in the 1.0 s period between stimulus onset and response window onset (called

‘grace period’) [9] did not change the trial flow. In order to facilitate exploration and motiva-

tion, time-outs were not implemented in the first three training sessions. Therefore, in these

initial sessions, an incorrect lick did not abort the response window and the mouse could still

obtain a reward by subsequently licking on the correct spout.

Data analysis

Experimental and behavioral parameters such as the timing of licks, timing of drops, running

speed, stimulus onset and other triggers were extracted from the passive data-recorder at 2 ms

temporal resolution (LabVIEW, National Instruments) and analyzed using custom-written

Matlab (Mathworks) and Python routines.

Continuous home cage activity patterns were calculated from the 12 sensors of the DVC

system using a custom analysis program (written in Python). Each sensor provided a constant

signal (4 Hz), which dropped when a mouse moved near/over it. The variance of the sensor

signal was calculated within time bins of 1 minute and subsequently averaged across sensors,

resulting in a minute-by-minute indication of average home cage activity per single housed
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animal. Per mouse/cage, outlying values (>95 percentile) were clipped to the value of the 95th

percentile; these outliers often coincided with cage removal from or insertion into the rack.

Next, all data points were normalized per mouse/cage (by division) to the 85th percentile of all

values recorded during baseline periods (the 7 day period before surgery and the 14 day period

before food/water restriction).

Learning performance was calculated as fraction of correct trials per session and evaluated

across training sessions. The resulting learning curve was fit with a sigmoidal curve (Eq 3)

where x was the average fraction correct trials per session, and parameters y0 (minimum of

curve), c (maximum of curve relative to y0), k (steepness) and x0 (time point of maximum

steepness) were estimated using least squares fitting.

Fitted curve ¼ y0 þ
c

1þ e� kðx� x0Þ
Eq 3

Latency to learning was determined as the number of sessions until an animal exceeded the

criterion of 66% correct trials. The behavioral threshold of 66% correct trials was determined

based on prior experience. The probability of detecting a single false-positive behavioral

threshold crossing across the 23 sessions of the learning curve was 0.001 (assuming 100 trials

per session). Maximum learning curve performance was estimated per mouse from the maxi-

mum of the individually fitted learning curve. This measure approximates the average level of

performance that mice reached after 23 training sessions, independent of the latency to crite-

rion. The total amount of water or soymilk that a mouse consumed during the task was com-

puted from the number of drops that the mouse received. Data are presented as mean ±SD

unless mentioned otherwise. Between-group statistical comparisons were carried out using a

Mann-Whitney U test.

Results

Adaptation to reversed day/night cycle, surgery and recovery

Four weeks before starting food or water restriction, C57Bl/6j mice were transferred from a

local animal breeding facility into individual 24hr/day activity monitoring cages (DVC, see

Methods) that were kept in an animal holding room with a reversed day/night cycle. After an

adaptation period of 9 to 10 days, the 12 animals with the highest bodyweight were randomly

assigned to two experimental groups (food or water restriction, n = 6 each), implanted with a

head-bar and subsequently allowed to recover until the start of the experiment. The four

remaining mice (having the lowest body weight on the two surgery days) were not implanted

and were left kept in their home cage throughout the experiment. While all implanted animals

showed a reduction in body weight on the days immediately following surgery, both experi-

mental groups recovered within seven days to a body weight that was comparable to the non-

implanted group (Fig 2A).

Animal wellbeing during food or water restriction

The ad libitum reference weight of all mice was taken at 14:00 on day zero, after which food or

water restriction was started (see Methods). The body weight of each mouse was maintained at

around 85% of the individual ad libitum reference in all mice throughout the period of

restricted food or water access (Fig 2A and 2B). All animals received a daily individually cali-

brated supplement of solid food (chow) or water (see Methods; Fig 2C) in addition to any soy-

milk or water they obtained during handling or training (Fig 2D).

Daily discomfort scores were assessed from the day of the surgery until 10 days after the

end of food/water restriction (Fig 2E, solid lines). In addition, the institutes animal welfare
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officer assessed scores weekly, each Monday at 09:00, during the period of food/water restric-

tion (Fig 2E, circles). The daily assessment of discomfort during the course of the experiment

ranged mostly from ‘sub-threshold’ to ‘mild’, but individual scores very occasionally exceeded

into the ‘moderate’ range. Signs of discomfort were most often observed in the post-surgery

period and from the third week of food/water restriction onwards (Fig 2E).

The average score during the period of food/water restriction remained well below the cut-

off for ‘moderate’ discomfort (Fig 2F). However, the food-restricted group had significantly

lower total scores compared to the water-restricted group (total: food-restricted, score = 0.04

±0.02; water-restricted, score = 0.31±0.13; MWU test, p = 0.002; n = 12 mice). This difference

was mostly caused by observations of mild skin turgor (signs of dehydration: food-restricted,

score = 0.04±0.01; water-restricted, score = 0.23±0.09; MWU test, p = 0.002; n = 12 mice) and

Fig 2. Animal weights and discomfort scores. A. Mean (±SD) daily weight of each experimental group across the entire experiment (gray: non-

implanted, n = 4; red: food-restricted, n = 6; blue: water-restricted, n = 6). B. Average weight, in percentage of reference weight, throughout the period

of food or water restriction. C. Amount of supplemented food (red) or water (blue) given (average of entire training period). D. Amount of soymilk

(red) or water (blue) earned during training (average of entire training period). E. Mean (±SD) daily score of food (red) and water (blue) restricted mice

over the entire experiment. Circles indicate scores as judged by the animal welfare officer. F. Daily score averaged across the period of food/water

restriction. Total score is the sum across all five individual scores (look/posture, urine/feces, body condition, dehydration signs, activity; MWU test,
�p = 0.018, �� p = 0.002). G. Distribution of daily measured weight as a function of the daily determined discomfort score for food- and water-restricted

mice (MWU test, �p = 0.016, �� p = 0.002). Numbers in distribution plots indicate n in individual daily measurements. H. Example photo of food-

restricted mouse (discomfort score 0, ‘sub-threshold’). I. Example photo of water-restricted mouse (discomfort score, total = 2, ‘moderate’; look/

posture = 1; dehydration signs = 1). All panels: grey crosses (non-implanted), red triangles (food-restricted) and blue squares (water-restricted) indicate

averages for individual animals.

https://doi.org/10.1371/journal.pone.0204066.g002
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slightly erected, shaggy fur (look/posture: food-restricted, score = 0.01±0.01; water-restricted,

score = 0.09±0.06; MWU test, p = 0.018; n = 12 mice). Scores on the other aspects did not

exceed zero, except for a single occurrence of a score for the body condition of a water-

restricted mouse.

The body weight of water-restricted mice with a total score above zero was on average sig-

nificantly lower than that of mice with a zero score (score 0: 85.9±1.9%; score 1: 85.2±2.0%;

score 2: 82.9±2.8%; MWU test; 0 vs. 1, p = 0.002; 1 vs. 2, p = 0.012; n = 360 scores; Fig 2G).

This relation did not hold for food-restricted animals, probably because of the overall very low

occurrence of>0 scores in this group (score 0: 85.5±1.6%; score 1: 84.9±1.7%; MWU test; 0 vs.

1, p = 0.30; n = 360 scores). In general, it is important to note that the differences between

scores can be quite subtle, as is illustrated in Fig 2H and 2I, depicting a mouse with a score of 0

next to another one that had a total score of 2 (look/posture = 1; signs of dehydration = 1).

Continuous monitoring of physical activity in the home cage

While the discomfort score featured an instantaneous assessment of physical activity of the

mice (activity and behavior), this could not be assessed without disturbing the mice in the first

place. In order to measure activity of mice during the entire 24-hour cycle, we recorded the

activity of each mouse in its home cage. Individual measurements were normalized to baseline

activity as observed before the start of food/water restriction (see Methods; Fig 3A). These con-

tinuous readings were sensitive enough to measure the gradual adaptation to the reversed day/

night cycle during the first seven days of the experiment (Fig 3B) and alterations to the day/

night rhythm during the first two days after head-bar implantation surgery (Fig 3C).

Continuous home-cage activity recordings allowed us to monitor both the acute and long-

term effects of restricted access to food or water. During the first few hours after restriction

commenced, both experimental groups showed increased activity as compared to the non-

implanted (non-restricted) group, which might be explained by the change into a novel cage

(Fig 3D). On the following days, water-restricted animals showed a gradual decline in their

daily activity, while food-restricted mice initially increased their home cage activity (Fig 3D).

This initial increase in activity could indicate food-seeking/digging behaviors, before the ani-

mal learns that such efforts go unrewarded.

Across the entire duration of restriction, both food- and water-restricted mice showed reduced

activity in the (active) daily light-off period (10:00–22:00, excluding the period during which train-

ing was typically done), as compared to their respective baseline levels before restriction had

started (food-restricted: baseline = 0.62±0.16; training = 0.42±0.12; MWU test, p = 0.015; n = 6

mice; water-restricted: baseline = 0.47±0.04; training = 0.25±0.04; MWU test, p = 0.003; n = 6

mice; Fig 3E and 3F). This reduction in activity, relative to baseline activity, was not significantly

different between food- and water-restricted mice (food-restricted: activity percentage of base-

line = 68.0%±14.6%; water-restricted: activity percentage of baseline = 53.6%±5.9%; MWU test,

p = 0.0641; n = 12 mice). Finally, in the post-restriction period, during which food and water was

available ad libitum again, the average daily activity returned to levels that were comparable to the

pre-training baseline (food-restricted: post-restriction = 0.73±0.19; water-restricted: post-restric-

tion = 0.45±0.07; Fig 3F). Thus, by using continuous home-cage recordings we observed that food

and water restriction induced a reversible reduction of overall activity levels that went undetected

using the instantaneous scoring method.

Operant behavior and task-motivation

To compare how well the method of food and water restriction motivated mice to work for

reward in a behavioral paradigm, we compared the total number of completed trials that mice

Procedures for head-fixed two-choice visual learning in mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0204066 September 13, 2018 10 / 19



did in the pre-training stages (where every finished trial resulted in delivery of 8 μl soymilk or

water). In pre-training stage 1, and (to a lesser extent) in pre-training stage 2, food-restricted

mice executed significantly more trials compared to water-restricted animals (pre-training 1, #

trials, food-restricted: 226±57; water-restricted: 45±21; MWU test, p = 0.003; pre-training 2, #

trials, food-restricted: 237±84; water-restricted: 119±38; MWU test, p = 0.023; n = 12 mice; Fig

4F). As a direct consequence of this difference in total trial number, water-restricted mice

required more pre-training stage 1 and pre-training stage 2 sessions to reach criterion com-

pared to food-restricted animals. While we have no clear explanation for this, we noted that in

subsequent experiments in our laboratory using water-restriction mice needed fewer pre-

Fig 3. Continuous monitoring of physical activity in the home cage. A. Heat maps depicting baseline-normalized physical activity per hour (x-axis)

throughout the days of the experiment (y-axis) as measured in the home cage, averaged across the non-implanted and experimental groups separately.

Arrows: ‘S’ indicates the two days on which surgeries were performed; ‘R’ the day on which food or water restriction started; ‘P’ start of the post-

training period (note that the food-restricted group received ad libitum access to food from two days before this post-training period). Cage changes

can be identified as single bright data points, weekly reoccurring at 08:00. B. Hourly averaged (±SEM) home cage activity for the first seven days of

adaptation to the reversed day/night cycle. C. Hourly averaged (±SEM) activity centered on the day of head bar implantation (blue, experimental

group) or a matched day for animals that did not receive a head bar (gray, non-implanted group). D. Six days of average hourly home cage activity

(mean±SEM), starting one day before onset of food or water restriction. E. Average (±SEM) 24hr home cage activity pattern throughout the entire

period of training. Data of the experimental groups during the period of training (14:00–18:00) were left out. F. Mean (±SEM) home cage activity in the

(active) light-off period (training period excluded). ‘B’: Baseline period, day -14 to 0. ‘T’: Training period, day 1 to 66. ‘P’: Post-restriction period, day

67 to 85. Crosses, triangle and squares indicate data points from individual mice (� MWU test, p<0.02; �� MWU test, p = 0.003).

https://doi.org/10.1371/journal.pone.0204066.g003
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training sessions (three to five pre-training stage 1 and two to four pre-training stage 2 ses-

sions). This indicates that potentially subtle changes in procedures, e.g. the experimenters

becoming more experienced with the sub-millimeter positioning of the lick spouts, or only a

single experimenter carrying out mouse handling and training, can reduce the number of pre-

training sessions that water-restricted mice need.

In the final training stage (visual discrimination) the difference between the two groups was

less pronounced, even-though food-restricted mice still performed a significantly larger num-

ber of trials compared to water-restricted mice (total # trials, food-restricted: 239±38; water-

restricted: 185±33; MWU test, p = 0.023; Fig 4F). However, when only considering the trials in

which mice made a correct choice, and thus received the soymilk or water reward, food- and

water-restricted animals performed approximately equal numbers (Rewarded/correct # trials,

Food-restricted: 132±26; Water-restricted: 114±28; MWU test, p = 0.149; n = 12 mice; Fig 4F).

The fact that water-restricted mice performed a lower number of trials throughout all train-

ing stages could indicate an overall lower motivation to work for water reward. Alternatively,

Fig 4. Visual discrimination in a head-fixed two-choice task. A, B. Learning curves of food (A) and water (B) restricted mice. Red and blue lines show

the day-to-day performance for each animal, starting at the first day of visual discrimination learning. Black curve is a sigmoidal fit to data from animals

that reached criterion (>66% correct). Gray arrows indicate the day on which mice reached criterion. C. Mean (±SEM) learning curve of all food- (red)

and water- (blue) restricted mice in the overall experimental timeline. ‘F’ and ‘W’ indicate start days of training food- and water-restricted mice. Gray bars

denote days without training. D. Maximum learning curve performance, determined by the sigmoidal fit in the time period during which mice were

trained (as shown in A and B). E. Average number of days until criterion (>66% correct) was reached (MWU test, �p = 0.038). F. Average number of trials

that mice performed per day in each of the training stages (‘Pre-tr 1’: pre-training stage 1, 1 lick spout; ‘Pre-tr 2’: pre-training stage 2, 2 lick spouts; ‘Vis.

Discr.’: visual discrimination task (training stage 3); MWU test, ns: not significant, �p = 0.023, ��p = 0.003). The red/blue shaded area in bars of the visual

discrimination stage indicates the fraction of rewarded (correct) trials.

https://doi.org/10.1371/journal.pone.0204066.g004
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water-restricted mice might satiate faster from water compared to how fast food-restricted

mice satiate from soymilk, and therefore completed fewer trials. Anticipatory licking is a

reward-oriented behavior that is related to task-motivation and that can be computed for indi-

vidual trials [30]. By counting anticipatory licks in a 1 s period from stimulus onset until the

response window started (Fig 1E) and averaging over only trials in which animals produced an

operant response, we approximated task-motivation independent of satiation. This measure

showed that during the final training sessions of the experiment, both food- and water-

restricted mice made roughly 3 anticipatory licks per single trial (anticipatory # licks, last 10

sessions, food-restricted: 2.79±1.21; water-restricted: 2.93±0.42; MWU test, p = 0.189; n = 12

mice). However, during the first training sessions of the visual discrimination stage (stage 3),

food-restricted mice systematically made fewer anticipatory licks compared to water-restricted

mice (anticipatory # licks, first 10 sessions, food-restricted: 1.73±0.90; water-restricted: 3.30

±0.91; MWU test, p = 0.015; n = 12 mice). This argues that the lower number of trials that

water-restricted mice performed in each training stage did not reflect reduced motivation to

lick for reward. Quite the opposite: the results rather suggest that water-restricted mice were

even more motivated, but probably satiated faster compared to food-restricted animals.

To confirm that satiation is an important factor in task-motivation, we tested whether there

was a correlation between the relative weight of a mouse and its behavioral drive. We found

that the daily measurement of relative body weight significantly predicted the number of trials

that a mouse would perform in the training session of the same day (Correlation of percentage

body weight and total number of trials, z-scored per mouse; food-restricted: r = -0.22,

p = 0.005; water-restricted: r = -0.47, p = 3.2�10−10). In summary, food and water restriction

can both be used to motivate animals in an operant task, but the total number of trials that

mice perform depends on the restriction paradigm.

Operant learning and performance

To test for differences in operant learning, mice were trained to discriminate visual patterns in

the two-choice head-fixed lick left/lick right task. Out of twelve mice, four food-restricted and

five water-restricted mice reached the performance criterion of 66% correct trials on a given

day (Fig 4A and 4B). For all mice, maximum learning curve performance was estimated from

the fitted learning curve on the last day of training and did not differ between groups (Maxi-

mum of fitted learning curve, food-restricted: 0.67±0.13; water-restricted: 0.71±0.10; MWU

test, p = 0.189; n = 12 mice; Fig 4C and 4D). However, water-restricted mice reached the crite-

rion of 66% correct trials significantly faster compared to food-restricted mice (food-restricted,

Δdays = 18.5±2.3; water-restricted, Δdays = 10.4±3.2; MWU test, p = 0.038; n = 9 mice; Fig 4C

and 4E). This difference did not depend on the exact value of the threshold. A similar differ-

ence was observed with a higher threshold (70%, as in Guo et al., 2014; food-restricted,

Δdays = 21.0±2.9; water-restricted, Δdays = 11.0±3.0; MWU test, p = 0.033; n = 9 mice) as well

as with a lower threshold (60%; food-restricted, Δdays = 17.3±1.9; water-restricted, Δdays = 5.8

±2.4; MWU test, p = 0.003; n = 10 mice). Also, using an altogether different method of quanti-

fying whether the learning criterion was reached, the number of training sessions to reach the

point of maximum steepness of the sigmoid fitted learning curve, we observed that water-

restricted mice learned faster (food-restricted, Δdays = 18.0±2.8; water-restricted, Δdays = 7.8

±4.8; MWU test, p = 0.046; n = 9 mice).

To investigate whether motivational state or satiation could explain the difference in speed

of learning, we tested whether either the average relative weight-loss of a mouse, or the average

number of anticipatory licks in 10 pre-learning sessions, predicted the number of sessions

needed to reach learning criterion. However, neither variable correlated significantly with
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learning speed (correlation of percentage body weight and time to reach criterion, z-scored

per condition: r = 0.11, p = 0.77; correlation of # of anticipatory licks and time to reach crite-

rion, z-scored per condition: r = -0.54, p = 0.14; n = 9 mice). Additionally, we tested whether

day-to-day fluctuations in relative body weight predicted task performance on the correspond-

ing day (in mice that performed above criterion), which also did not correlate significantly in

either the food- or water-restricted group (correlation of session-wise percentage body weight

and performance, z-scored per mouse; food-restricted: r = -0.19, p = 0.28, n = 34 sessions;

water-restricted: r = 0.11, p = 0.43, n = 58 sessions).

Another factor that may influence learning is general locomotor activity such as wheel-run-

ning in the home cage [31]. However, while food and water restriction both led to an overall

reduction of home cage activity (Fig 3F), we observed that the most active mice actually took

the longest to reach criterion (correlation of mean DVC activity and time to reach criterion, z-

scored per condition: r = 0.82, p = 0.0069; n = 9 mice). In contrast to home-cage activity, we

noted a large difference in the amount of running that the two groups of mice did during the

visual discrimination task. Here, the water-restricted group ran about double the distance of

the food-restricted group (distance ran per training session, food-restricted: 33±11 m; water-

restricted: 66±24 m; MWU test, p = 0.023; n = 12 mice). Still, day-to-day differences in the

amount of in-task running did not predict the performance on the visual discrimination task

in either group (correlation of distance ran and performance, z-scored per mouse; food-

restricted: r = 0.19, p = 0.28, n = 34 training sessions; water-restricted: r = 0.05, p = 0.72, n = 54

training sessions), and neither did the overall amount of in-task running predict the speed of

learning (correlation in-task distance ran and time to reach criterion, z-scored per condition:

r = -0.16, p = 0.67; n = 9 mice). Thus, parameters associated with motivational-state and physi-

cal activity provided a poor prediction of learning speed or task performance and do not likely

explain the difference in time to reach learning criterion of food- and water-restricted mice.

Discussion

This study provides a detailed behavioral protocol for training mice in a fast and reliable way on a

head-fixed two-alternative choice visual discrimination task. Our results show that most of the

animals that were trained on the protocol learned discriminating visual stimuli within two or

three weeks from the start of visual conditioning. An important aim of this study was to utilize the

welfare- and behavioral read-outs of our training protocol to contrast two commonly used meth-

ods for motivating animals in head-fixed behavioral paradigms, i.e. food restriction with soymilk

reward and water restriction with water reward. Using either method, the animals could be moti-

vated to perform the task at or above criterion, without exceeding the ‘mild’ discomfort category,

even for prolonged periods. However, we did observe specific differences in welfare assessment

and in task performance, such as time to reach criterion and number of performed trials, which

should be considered when selecting the restriction method.

Operant behavior

Throughout the training stages, there was a systematic difference in the number of trials that

water- and food-restricted mice performed per session. In pre-training stage 1 and 2, food-

restricted mice consumed larger volumes of soymilk than water-restricted mice consumed

water. Furthermore, food-restricted animals proceeded faster through the pre-training stages

than water-restricted mice. These differences might be explained by water-restricted mice sati-

ating faster than food-restricted mice, since the 8-microliter water reward equaled on average

0.43% of the daily water intake in our experiment (1.93 ml), and the 8-microliter soymilk

reward provided only 0.05% of the daily caloric food intake in this study (11.15 kcal). However,
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in pre-training 1 sessions water-restricted mice performed on average only 50 trials, which is

approximately only 25% of their daily water ration. Possibly, water-restricted mice already

satiate after 40–50 drops and only through experiencing multiple pre-training sessions learn to

obtain more water than they acutely need. On the other hand, Guo et al. [9] observed that

water-restricted mice performed more trials when sucrose was added to the water reward.

Similarly, in our experiment we noted that water-restricted mice after reaching criterion per-

formed more trials when provided with soymilk reward compared to the usual water reward

(data not shown). Therefore, soymilk reward may have had additional motivating or appetitive

aspects compared to plain water reward. Possibly, this is related to the nutrients and flavor that

soymilk contains. Alternatively, it is conceivable that the smell of reward (soymilk) coming

directly from the lick spouts made it easier for food-restricted (soymilk rewarded) mice to

learn the initial behavior of licking for reward.

Despite water-restricted mice performing fewer trials per session, they were on average

faster in reaching the learning criterion (independent of which exact criterion we used).

Throughout the experiment, we aimed for keeping the motivational state of individual animals

comparable by maintaining the relative weight of each animal at 85% of the ad libitum mea-

sured reference value. In addition, we excluded that the difference in learning speed correlated

with parameters reflecting task-motivation in this study. One remaining explanation could be

that, as described above, the 8-microliter water drop might have been subjectively perceived as

a larger reward compared to a soymilk drop of the same volume, thus providing a greater

learning incentive for water-restricted mice. Moreover, there are fundamental differences in

the neural circuits that mediate hunger and thirst [22], asserting different effects on motivation

and learning that could provide a stronger incentive for learning in one group compared to

the other. Importantly, the speed of learning, maximum learning curve performance and suc-

cess rate achieved using either restriction method in this study was similar to previously

reported head-fixed operant conditioning paradigms, e.g. [6,9].

A final in-task difference between food- and water-restricted animals was the distance they

ran on the Styrofoam ball during the period of behavioral training, with food-restricted mice

running significantly less than water-restricted mice. While speculative, one possible explana-

tion is that water-restricted mice are in a higher anticipation state during the task, as they

receive relatively more of their daily water amount within-task compared to the relative caloric

amount that food-restricted mice receive during the task, leading to hyperactive behavior [32].

Another explanation is that water-restricted mice spend more time running because they per-

formed fewer trials in each training session and therefore had more time in which they were

not task-engaged.

Welfare assessment

We aimed to facilitate the objective categorical distinction between methods of food and water

restriction by maintaining mice in both conditions close to a body weight of 85% of their baseline

reference. Still, there remained a limited amount of day-to-day and mouse-to-mouse variation of

relative body weight within the protocol. These fluctuations correlated with the number of trials

that mice performed in the behavioral task, showing that relative weight loss is a key factor in

task-motivation. In case of water-restricted mice, relative weight loss also corresponded to the

daily discomfort score (Fig 2G). One reason the absence of a correlation between relative weight

loss and discomfort scores in food-restricted mice could be that this group had mostly discomfort

scores of zero. Alternatively, it is conceivable that scores directly attributable to dehydration, such

as skin tenting and fur appearance, were more sensitive or better observable compared to scores

related to reduced food intake, such as the body condition score.
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Although we only once observed reduced activity using the instantaneous scoring method,

both food- and water-restricted mice showed less home-cage activity in the continuous home-

cage recordings compared to their own baseline measurement. In food-restricted mice, the

reduction in overall home-cage activity could reflect reduced food-seeking behavior. In water-

restricted mice, the reduced home-cage activity might (in part) reflect a decrease in grooming

behavior, which could be a factor contributing to their higher score on the parameter ‘look/

posture’ in the overall health assessment. Indeed, water loss in the form of saliva used for

grooming can account for up to one third of water loss in rodents that are not water-restricted

[33]. It is possible that water-restricted mice conserve water by reducing the amount of groom-

ing, leading to overall poorer fur appearance.

It should be noted that we did not assay the effect of food or water restriction on the

mouse’s physiology and neuronal circuitry, neither did we measure the effect of water restric-

tion on food-intake behavior. In addition, the five scoring parameters may have differed in

their sensitivity for detecting food- or water restriction associated discomfort. Therefore, we

do not aim to draw conclusions from the differences in scores between restriction regimens

observed in this study, but rather advise considering these results in the context of literature

on food and water restriction procedures, e.g. [20,23,34,35]. Furthermore, the choice for set-

ting a threshold at 85% of pre-restriction body weight is rather arbitrary. Other studies use dif-

ferent thresholds, either above or below 85%, and occasionally take into account the gradual

increase in weight that would be observed in non-restricted mice, e.g. [6,36–38]. Still, these

methods do not consider that there may be individual variation in how mice adapt to chronic

water restriction [35,39]. Therefore, in our opinion, the best method would be to set the

threshold for continuation of an experiment entailing food or water restriction using the mea-

sure of discomfort directly, as for instance described in Guo et al. [9], and monitor the relative

weight of the animals as an indication, but not as threshold.

Practical considerations

In the last two decades, the mouse has gained increasing attention in neuroscience as a versa-

tile research model that can be adopted for studying sensory processing, learning and memory,

decision making and motor behavior under both healthy and diseased conditions. Our behav-

ioral protocol and conditioning task for training head-fixed mice can be readily combined

with in vivo recording techniques such as intracellular patch clamp recordings [40], two-pho-

ton microscopy [13], but also with newly developed techniques for single cell control of neuro-

nal activity patterns [41]. The two-choice lick left / lick right task can be easily adapted to

include other sensory modalities, or expanded for the study of higher cognitive functions,

making it a useful tool for studying mouse behavior in general. In addition, the in-task differ-

ences we observed between food- and water-restricted animals can be exploited in order to

suit the specific behavioral requirements. Finally, we showed that the use of a continuous

home-cage monitoring system allows expanding the quantification of animal wellbeing to

include an objective measure of overall activity, which allows observing light-cycle adaptation,

post-surgery recovery and effects of food and water restriction without disturbing the animals.

Behavioral paradigms will likely always require precise fine-tuning of a large, mostly un-docu-

mented parameter space. The methods and procedures described in this study are intended to

guide this process to smoother convergence while improving animal wellbeing.

Supporting information

S1 File. Head bar holder design. These files contain the designs of the head bar and of the

components necessary for building the head bar holder. The files were produced in
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SolidWorks (Dassault Systèmes) and can also be viewed using the free program eDrawings

(http://www.edrawingsviewer.com).

(ZIP)

S2 File. Lick spout holder design. This file contains the design of the 3D printable lick spout

holder. It was produced and can be opened using the online service TinkerCat (https://www.

tinkercad.com). The file can also be opened with the free program eDrawings (http://www.

edrawingsviewer.com) as well as with most software delivered with 3D printers.

(STL)

Author Contributions

Conceptualization: Pieter M. Goltstein, Sandra Reinert, Annet Glas, Tobias Bonhoeffer, Mark
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Mouse prefrontal cortex represents learned 
rules for categorization

Sandra Reinert1,2, Mark Hübener1, Tobias Bonhoeffer1 & Pieter M. Goltstein1 ✉

The ability to categorize sensory stimuli is crucial for an animal’s survival in a complex 
environment. Memorizing categories instead of individual exemplars enables greater 
behavioural flexibility and is computationally advantageous. Neurons that show 
category selectivity have been found in several areas of the mammalian neocortex1–4, 
but the prefrontal cortex seems to have a prominent role4,5 in this context. Specifically, 
in primates that are extensively trained on a categorization task, neurons in the 
prefrontal cortex rapidly and flexibly represent learned categories6,7. However, how 
these representations first emerge in naive animals remains unexplored, leaving it 
unclear whether flexible representations are gradually built up as part of semantic 
memory or assigned more or less instantly during task execution8,9. Here we 
investigate the formation of a neuronal category representation throughout the 
entire learning process by repeatedly imaging individual cells in the mouse medial 
prefrontal cortex. We show that mice readily learn rule-based categorization and 
generalize to novel stimuli. Over the course of learning, neurons in the prefrontal 
cortex display distinct dynamics in acquiring category selectivity and are 
differentially engaged during a later switch in rules. A subset of neurons selectively 
and uniquely respond to categories and reflect generalization behaviour. Thus, a 
category representation in the mouse prefrontal cortex is gradually acquired during 
learning rather than recruited ad hoc. This gradual process suggests that neurons in 
the medial prefrontal cortex are part of a specific semantic memory for visual 
categories.

We trained head-fixed mice (n = 11) in a ‘Go’/‘NoGo’ rule-based catego-
rization task (Fig. 1a, b) to sort visual stimuli into two groups. Stimuli 
were 36 sinusoidal gratings, each with a specific combination of two 
stimulus features: orientation and spatial frequency. At any time, one 
rule determined the relevant feature for categorization (that is, the 
active rule; for example, assigning category identity of a stimulus based 
on orientation)10,11 (Extended Data Fig. 1). First, mice learned to discrimi-
nate two exemplar stimuli according to the active rule. All mice achieved 
more than 66% correct Go choices within 10 to 40 sessions, showing 
considerable variability in the rate of learning. We then introduced 
categories by stepwise addition of stimuli to the task, up to a set of 18 
different gratings that varied along both feature dimensions, orienta-
tion and spatial frequency (Extended Data Fig. 1b, c). Mice integrated 
the newly introduced stimuli within 1 to 2 sessions and they maintained 
a sensitivity index d′ of >1 (Fig. 1c, d, Extended Data Figs. 1d, 2).

Mice learn to categorize visual stimuli
To determine whether mice had indeed learned categorization, we 
tested a characteristic feature of category learning, rapid generaliza-
tion to novel stimuli10–13. Mice were presented with 18 novel grating 
stimuli in addition to the 18 experienced ones. All mice were able to 

generalize the learned rule to novel stimuli upon their first presentation 
(time point 5, T5) (Fig. 1d, Extended Data Fig. 3a), performing equally 
well on novel and experienced stimuli (Fig. 1e, Extended Data Fig. 3b).

Because rule-switching is key to rule-based categorization11,14,15, our 
stimulus set was designed to allow for testing this aspect. Thus, after 
learning the first rule, mice were required to group the same stimuli 
into new categories according to a new rule, by making the previously 
irrelevant stimulus feature (for example, spatial frequency) relevant and 
the relevant one (for example, orientation) irrelevant. All mice learned 
to discriminate two exemplar stimuli for rule 2 considerably faster than 
during initial learning (Fig. 1f, Extended Data Fig. 1e–h). After the mice 
had learned to categorize a set of 18 stimuli according to rule 2, they 
were able to generalize to the 18 stimuli they had so far experienced 
only with rule 1 (Fig. 1g, h, Extended Data Fig. 3c–f). We tested whether 
there were any residual effects of the former rule on the categorization 
behaviour of the mice by comparing the influence of each stimulus 
feature (Fig. 1i) on the choices of the mice before learning (time point 
T1) and after learning each rule (T5 and T8). Untrained mice showed no 
effect of either stimulus feature on categorization (Fig. 1j, left). Trained 
mice only based categorization on the stimulus feature relevant to the 
active rule; the irrelevant feature showed no effect (Fig. 1j, middle, right; 
for a detailed analysis of categorization near the boundary see Extended 
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Data Fig. 3g–l). In summary, all mice learned discriminating categories 
on the basis of two different rules, and they generalized these rules to 
novel stimuli, probably by selectively attending16 to the relevant stimulus 
feature. Having established this training paradigm, we began tracking 
neuronal correlates of rule-based categories throughout learning.

mPFC contains category-selective neurons
The prefrontal cortex (PFC) in primates and rodents is important for 
cognitive functions such as categorization6,7,16,17, rule learning1,18,19 and 
cognitive flexibility20–22, even though the functional and anatomical 
analogy of this region across species is still debated23–28. Earlier studies 
in primates have described individual PFC neurons coding for visual 
categories3,6,7. Encouraged by this finding, we tested whether the mouse 
medial PFC (mPFC) contained neurons that reflected the ability of the 
mouse to categorize visual stimuli as described above. To this end, 

we chronically monitored neuronal activity in cortical layer 2/3 using 
two-photon calcium imaging through a microprism implant inserted 
between the two hemispheres, which enabled optical access to mPFC29 
(Fig. 2a–c, Extended Data Fig. 4). We measured neuronal activity of 
individual cells while the mice performed the task (d′ ranging from 0.7 
to 3.6; for imaging time points and precise trial structure, see Fig. 1b, c, 
Extended Data Fig. 1a). In naive mice (time point T1), mPFC neurons did 
not respond to visual stimuli (Fig. 2b, d, Extended Data Fig. 5), but some 
of these initially non-selective cells clearly showed category selectivity 
after learning (T5, rule 1) (Fig. 2c, e, Extended Data Fig. 5; neural cor-
relates of other task-related aspects are described below).

We quantified the category selectivity of individual cells using the 
category-tuning index (CTI)30, with values close to 1 indicating strong 
differences in activity between, but not within, categories, and a value of 
0 indicating no difference in the firing rate between and within catego-
ries. We defined neurons with a CTI value above 0.1 as category-selective 
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(Methods), and verified that these cells reliably encoded categories 
using cross-validated Bayesian decoding (Fig. 2f, i). In naive mice, hardly 
any cells exceeded this threshold, whereas after learning, a substantial 
fraction of neurons in the mPFC showed category selectivity (before: 
0.03% ± 0.03%, after: 9.8% ± 2.2% (mean ± s.e.m.)) (Fig. 2g, Extended 
Data Fig. 6a).

After having learned the rule-switch, a similar fraction of cells showed 
selectivity for the new categories, whereas selectivity for the old, now 
irrelevant categories ceased (rule 1: 0.07% ± 0.05%, rule 2: 8.6% ± 2.8%) 
(Fig. 2h, Extended Data Fig. 6a).

To convert an internal category representation into a motor decision, 
it would be sufficient for cells in the mPFC to show selectivity for only one 
category31. However, we observed two types of neuron—one that repre-
sented rewarded stimuli (Go preferring: 73% of all category-selective cells 
at T5 and 65% at T8) and the other non-rewarded stimuli (NoGo prefer-
ring: 27% at T5 and 35% at T8). Thus, cells in the mouse mPFC develop flex-
ible representations of rule-based categories over the course of learning.

Category selectivity emerges over time
Our chronic recording approach allowed us to ask whether the cells 
that coded for learned categories in rule 2 were the same ones that 

had represented categories in rule 1. Although many cells that were 
category-selective for rule 1 were less selective for rule 2, a subset of 
neurons remained category-selective throughout (Fig. 3a, Extended 
Data Fig. 7a, b). We found that, on average, the Go category-selective 
neurons remapped their responses to the new Go category—that 
is, after the rule-switch, they responded to a different set of visual 
stimuli. By contrast, the NoGo category-selective cells did not remap 
(Fig. 3a, Extended Data Fig. 7c, d). They lost their selectivity after the 
rule-switch, and a new set of cells became NoGo category-selective 
for the newly defined categories. Similarly, the Go category-selective 
cells observed after the rule-switch showed previous selectivity to the 
first rule, whereas rule 2 NoGo category-selective neurons did not 
show any selectivity before the rule-switch on average (Fig. 3b). In 
line with this, we observed that the Go category-selective populations 
for each rule overlapped more than expected by chance (Methods), 
in contrast to NoGo category-selective populations (Extended Data 
Fig. 6b–d). Notably, neurons were less likely than chance to switch 
their preference from Go to NoGo and vice versa (Extended Data  
Fig. 6b).

It is currently debated whether such flexible representations in the 
PFC are gradually built up during learning—that is, are part of the mem-
ory of the learned categories—or whether they are instantaneously 
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assigned during the task to represent anything that becomes relevant 
to the animal7–9. This question can be answered only by monitoring 
neurons throughout the learning process, starting from a naive 
animal. We took advantage of the fact that our mice had never been 
trained on a categorization task and we followed the development of 
category-selective responses of individual neurons over the entire time 
course of rule-based category learning (Fig. 3c). Focusing on the period 
over which selectivity emerged, we observed a marked difference 
between the time courses that the Go and NoGo category-selective 
neurons followed. On average, the Go category-selective cells showed 
large, stable responses for the Go category, early on after presentation 
of the initial category stimuli in an ad hoc fashion (T2–T5) (Fig. 3c, 
Extended Data Fig. 7e). By contrast, the NoGo category-selective cells 
only gradually developed selectivity with increasing categorization 
demand of the task (T4, T5) (Fig. 3c, Extended Data Fig. 7f). After the 
rule-switch, the Go category-selective cells on average switched their 
stimulus selectivity, thereby retaining category selectivity. Former 
NoGo category-selective cells gradually lost selectivity, whereas 
a new, independent population of NoGo category-selective neu-
rons gained selectivity (Fig. 3c, d). Notably, after the rule-switch, 
Go category-selective neurons showed increased Go responsive-
ness beyond a stable level of Go selectivity during earlier training  
(Fig. 3d).

A possible explanation for the different time courses could be that 
various task-relevant components differentially contribute to the 
average selectivity. It is well established that—beyond the category 

selectivity we observed—the mPFC contains representations of choice 
and reward32–35. In our paradigm, choice and reward associations 
are learned earlier than categories, and stay constant through the 
rule-switch. Therefore, neurons selective for choice and reward are 
expected to show a different time course than neurons selective for 
stimulus category (Extended Data Fig. 7g). We identified individual 
neurons that acquire selectivity early-on during task learning as well 
as neurons that develop selectivity more gradually, with increasing 
categorization demand (Extended Data Fig. 7h–k). In line with their 
average (Fig. 3c, d), most NoGo-preferring neurons followed the gradual 
time course, reflecting acquisition of the respective category rule, 
whereas Go-preferring neurons followed either of the time courses 
(Extended Data Fig. 7h–k). Thus, neurons that prefer the Go category 
were modulated by category, as well as by the earlier learned reward 
and choice associations (Extended Data Fig. 8).

To disentangle how stimulus category, choice and reward affected 
the trial-by-trial responses of category-selective neurons, we used lin-
ear regression to determine their individual contributions (Extended 
Data Fig. 9a). Although choice selectivity did not directly explain CTI 
(Extended Data Fig. 9b, c), the activity pattern of Go category-selective 
cells showed significant modulation by multiple factors, stimulus cat-
egory, choice and reward (Extended Data Fig. 9d). By contrast, the 
responses of NoGo category-selective cells were only significantly 
influenced by category identity (Extended Data Fig. 9d). We performed 
hierarchical clustering to explore the entire task-responsive neuronal 
population in the mPFC including category-selective cells and found 
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clusters of mPFC neurons that were predominantly modulated by a 
single parameter—that is, category, choice (lick) and reward (Extended 
Data Fig. 9e–i, cluster number 1, 2 and 3, respectively). In addition, there 
were also clusters of neurons modulated by specific combinations of 
task parameters (Extended Data Fig. 9i, clusters number 4, 5 and 9).  

These results are in line with recent studies in primates and mice, 
reporting mixed selectivity of neurons in the PFC after animals learned 
cognitive tasks21,36–38. In summary, the mouse mPFC contains neurons 
modulated by a single parameter (such as category) and neurons that 
show mixed-selective responses.
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Category tuning generalizes across tasks
Because the activity of many mPFC neurons, including 
category-selective neurons, correlated with combinations of stimulus 
category, choice and reward, we aimed to experimentally determine the 
unique category-selective component. Exclusively category-modulated 
neurons can be revealed by experimental decoupling of the presented 
category and the associated motor response39. Within the framework 
of our rule-based categorization paradigm, we achieved this by initially 
training mice to categorize in the Go/NoGo task (as before), and then 
changing the task to a left/right choice design (Fig. 4a). As a conse-
quence, the previous Go (lick) category changed into a ‘GoRight’ (lick 
right) category, and the previous NoGo (no lick) category was now 
also rewarded if the mouse made a ‘GoLeft’ (lick left) response. In this 
experiment, neurons that were category-selective in the Go/NoGo task 
could either retain their category selectivity in the left/right choice 
task (indicating that they are genuinely category-selective), or change 
their response pattern, reflecting selectivity rather for motor planning, 
choice or associated reward (Fig. 4b).

We first trained nine mice to categorize visual stimuli according to 
either the spatial frequency or the orientation rule (the task was identi-
cal to that in Fig. 1 and Extended Data Fig. 1, up to the generalization 
test T5; Fig. 4c). After session T5, we changed the behavioural setup by 
replacing the single centred lick spout with two laterally placed lick 
spouts (left/right choice paradigm). The mice quickly adapted to the 
change and within the first four trials also responded with licks to the 
previous NoGo category (now GoLeft; note that the ratio between the 
left and right licks varied throughout the session). Although the mice 
did not specifically target their first licks to the correct spout, they 
performed a similar number of licks on both lick spouts and obtained 
a similar amount of rewards for both categories.

We found a significant proportion of category-selective neu-
rons before (T5) and after the task change (left/right; threshold 
of CTI > 0.1 according to the relevant rule) (Fig. 4d, e). On average, 
category-selective cells identified at T5 discriminated the stimulus 
categories also after the task change (Fig. 4d, f, g, Extended Data 
Fig. 10a–g), although their selectivity decreased. The left/right choice 
task allowed us to compare trials with different stimulus categories in 
the absence of choice and reward (missed trials). Neurons that were 
initially selective for the Go category remained selective for the same 
stimulus category. Likewise, initial NoGo category-selective neurons, 
remained only responsive to stimuli of the previous NoGo category 
(Extended Data Fig. 10h, i).

However, the overall decrease in selectivity after the task change 
indicated that also choice-and reward-selective neurons were identi-
fied as ‘category-selective’ in the Go/NoGo task (Fig. 4b). Because the 
left/right choice task changed how reward and motor contingencies 
mapped onto the stimulus space, but did not change the mapping of 
category identity, we were able to use a regression model to disambigu-
ate these contributions. Only neurons that remained category-selective 
across the task change will be significantly fitted by the Category 
predictor. Apparent category-selective neurons—that is, choice- and 
reward-modulated neurons, will be better predicted by the Go and 
Reward predictors. This analysis showed that mouse mPFC neurons 
represent categories in conjunction with reward and choice. Most 
importantly, it also revealed a set of uniquely category-modulated 
neurons in the mPFC (4.3%) (Fig. 4h, Extended Data Fig. 10j).

Recent work has shown the influence of uninstructed behaviours, 
such as whisking and eye movements, on neuronal response variabil-
ity in operant tasks40. If such behaviours correlated with the category 
identity of the presented stimuli, they could lead to apparent cat-
egory selectivity. To control for this, we tracked key postural mark-
ers using DeepLabCut41,42 and combined them with in-task recorded 
instructed behaviours and task parameters to predict neural activity. 
We found that there was a significant and unique contribution for all 

instructed and uninstructed behavioural variables. Notably, however, 
there was also a unique contribution of the category component that 
could not be accounted for by any of the instructed or uninstructed 
behavioural parameters (Extended Data Fig. 10k–o, Supplementary 
Video 1). We therefore conclude that the mPFC contains a sparse but 
distinct set of neurons that represent learned categories irrespective 
of associated motor behaviours and reward.

Discussion
Using a paradigm to study learning of rule-based categories in mice, 
we could follow neuronal populations in the mPFC throughout the 
entire learning process, from naive to expert mice. We found two dis-
tinct groups of cells developing a representation of learned categories 
with different learning-related dynamics. The NoGo category repre-
sentation emerged gradually, was rule-specific and was not strongly 
modulated by additional task parameters, in contrast to the Go rep-
resentation. In addition, we observed that selectivity for the Go cat-
egory increased further in the fast rule-switch phase compared to the 
slow, initial learning phase. This difference could be a consequence 
of Go category-selective neurons belonging to intrinsically different 
representations of choice, reward and categories. By experimentally 
decoupling these, we confirmed that many category-selective neurons 
were actually mixed-selective, which could benefit the representa-
tion of task-relevant information38. However, the experiment also 
revealed uniquely category-selective mPFC neurons, for both learned 
categories. In line with previous studies3,19,32,43, we found that the mPFC 
initially contains a conjunctive stimulus and choice representation. 
This representation flexibly followed the novel Go category when a 
mouse learned the second rule. In parallel, a slowly learning group of 
Go category-selective cells emerged for each rule, following a time 
course similar to the NoGo category representation.

This mouse model of rule-based category learning opens up pos-
sibilities to causally investigate neuronal interactions across several 
cortical and subcortical circuits. Many brain areas, such as posterior 
parietal cortex4,44, sensory areas (P.M.G., S.R., T.B. and M.H., manuscript 
submitted)44,45 and striatum3, contribute to multiple aspects of category 
learning and categorization behaviour. Several circuit models on areal 
interactions have been put forward43,46. One model of particular interest 
proposed that slow-learning PFC circuits acquire category selectiv-
ity using rapidly learned stimulus-specific activity originating in the 
striatum as a teaching signal3,46. Within this framework, the mPFC could 
compute the rule-dependent NoGo category representation from the 
fast-arising activity of conjunctive Go/choice-selective neurons medi-
ated by local inhibitory circuits. Rule-based category learning in mice 
allows for testing of specific predictions of such circuit models for 
prefrontal cortex function by observing initially naive mice throughout 
the learning process. In particular, the possibility to investigate and 
observe neuronal responses in the mPFC during category learning 
in mice opens a window to study the neural circuitry that underlies 
categorization and storage of semantic memories47 also in this species.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. Mice 
were randomly assigned to the categorization rule ‘spatial frequency’ 
or ‘orientation’. The investigators were not blinded to allocation during 
experiments and outcome assessment.

Animals
All procedures were performed in accordance with the institutional 
guidelines of the Max Planck Society and the local government 
(Regierung von Oberbayern). Twenty female C57BL/6 mice (postnatal 
day (P) 63–P82 at the day of surgery) were housed in groups of four to 
six littermates in standard individually ventilated cages (IVC, Tecniplast 
GR900). Mice had access to a running wheel and other enrichment 
material such as a tunnel and a house. All mice were kept on an inverted 
12 h light/12 h dark cycle with lights on at 22:00. Before and during the 
experiment, the mice had ad libitum access to standard chow (1310, 
Altromin Spezialfutter). Before the start of behavioural experiments, 
mice had ad libitum access to water. At the end of the experiments, 
mice were perfused with 4% paraformaldehyde (PFA) in PBS and their 
brains were post-fixed in 4% PFA in PBS at 4 °C.

Surgical procedures
Before surgery, a prism implant was prepared by attaching a 1.5 mm 
× 1.5 mm prism (aluminium coating on the long side, MPCH-1.5, IMM 
photonics) to a 0.13 mm thick, 3 mm diameter glass coverslip (41001103, 
Glaswarenfabrik Karl Hecht) using UV-curing optical glue (Norland 
optical adhesive 71, Norland Products) and was left to fully cure at room 
temperature for a minimum of 24 h. Mice were anaesthetized with a 
mixture of fentanyl, midazolam and medetomidine in saline (0.05 mg 
kg−1, 5 mg kg−1 and 0.5 mg kg−1 respectively, injected intraperitoneally). 
As soon as sufficient depth of anaesthesia was confirmed by absence of 
the pedal reflex, carprofen in saline (5 mg kg−1, injected subcutaneously) 
was administered for general analgesia. The eyes were covered with 
ophthalmic ointment (IsoptoMax/Bepanthen) and lidocaine (Aspen 
Pharma) was applied on and underneath the scalp for topical analgesia. 
The scull was exposed, dried and subsequently scraped with a scalpel 
to improve adherence of the head plate. The scalp surrounding the 
exposed area was adhered to the skull using Histoacryl (B. Braun Surgi-
cal). A custom-designed head plate was centred at ML 0 mm, approxi-
mately 3 mm posterior to bregma, attached with cyanoacrylate glue 
(Ultra Gel Matic, Pattex) and secured with dental acrylic (Paladur). A 3 
mm diameter craniotomy, centred at anterior–posterior (AP) 1.9 mm,  
medial–lateral (ML) 0 mm, was performed using a dental drill. The hemi-
sphere for prism insertion was selected based on the pattern of bridging 
veins. Before inserting the prism, two injections (50 nl min−1) of 200–
250 nl of virus solution (AAV2/1.hSyn.mRuby2.GSG.P2A.GCaMP6m.
WPRE.SV40, titre: 1.02 × 1013 genome copies (GC) ml−1, Plasmid cata-
logue 51473, Addgene) were targeted at the medial prefrontal cortex 
opposite to the prism implant, coordinates: AP 1.4 mm to AP 2.8 mm,  
ML 0.25 mm, dorsal–ventral (DV) 2.3 mm (Nanoject, Neurostar). The 
left hemisphere was injected in 11 mice, and the right hemisphere in  
9 mice. Subsequently, a durotomy was performed using microscissors 
(15070-08, Fine Science Tools) over the contralateral hemisphere, next 
to the medial sinus. The prism implant was inserted, gently pushing 
the medial sinus aside until the target cortical region became visible 
through the prism (for a detailed description, see ref. 29). The coverslip 
was attached to the surrounding skull using cyanoacrylate glue and 
dental acrylic. After surgery, the anaesthesia was antagonized with a 
mixture of naloxone, flumazenil and atipamezole in saline (1.2 mg kg, 
0.5 mg kg−1 and 2.5 mg kg−1 respectively, injected subcutaneously) and 
the mice were placed under a heat lamp for recovery. Post-operative 
analgesia was provided for two subsequent days with carprofen  
(5 mg kg−1, injected subcutaneously).

Visual stimuli
Stimuli for behavioural training were presented in the centre of a gamma 
corrected LCD monitor (Dell P2414H; resolution: 1,920 by 1,080 pixels; 
width: 52.8 cm; height: 29.6 cm; maximum luminance: 182.3 Cd m−2). 
The centre of the monitor was positioned at about 0° azimuth and 0° 
elevation at a distance of 18 cm, facing the mouse straight on. The stimuli 
were 36 different sinusoidal gratings, each with a specific orientation 
and spatial frequency combination, shown in full contrast on a grey 
background (see Extended Data Fig. 1 for schematic of stimuli and task 
stages). Orientations ranged from 0° to 90°, the spatial frequencies from 
0.023 cycles per degrees (cyc/°) to 0.25 cyc/° (orientations: [0, 15, 30, 
60, 75, 90] °, spatial frequencies: [0.023, 0.027, 0.033, 0.06, 0.1, 0.25] 
cyc/°). The stimulus size was 45 retinal degrees in diameter, including an 
annulus of 4 degrees blending into the equiluminant grey background. 
The gratings drifted with a temporal frequency of 1.5 cycles per s.

In a subset of experiments (n = 3 mice), a dense stimulus space was 
presented, consisting of 49 stimuli ranging from 15° to 75° in orienta-
tion and from 0.027 cyc/° to 0.1 cyc/° in spatial frequency (orientations: 
[15, 30, 37.5, 45, 52.5, 60, 75]°, spatial frequencies: [0.027, 0.033, 0.036, 
0.043, 0.052, 0.06, 0.1] cyc/°). Stimuli on the category boundary (either 
having an orientation of 45° or a spatial frequency of 0.043 cyc/°) were 
assigned to both categories, hence rewarded in 50% of trials.

All stimuli were created and presented using the Psychophysics 
Toolbox extensions of MATLAB48–50.

Behaviour
Behavioural experiments started seven days after surgery. The water 
restriction regime and the behavioural apparatus were previously 
described51. In short, mice were restricted to 85% of their initial weight 
on the starting date by individually adjusting the daily water ration. 
First, mice were accustomed to the experimenter and head fixation in 
the setup by daily handling sessions lasting 10 min. During these ses-
sions, the water ration was offered in a handheld syringe. The remain-
der was supplemented in an individual drinking cage after a delay of 
approximately 30 min. After four to seven days of handling, mice were 
pre-trained to lick for reward, while being head-fixed on the spherical 
treadmill52–54 in absence of visual stimulation. Whenever a mouse ceased 
to run (velocity below 1 cm s−1) and made a lick on the spout, a water 
reward (drop size 8 μl) was delivered via the spout. A baseline imaging 
time point (T1) was acquired once the mice consumed more than 50 
drops per session (35 to 45 min) on two consecutive days (requiring 
about three days of pre-training).

Subsequently, daily sessions of visual discrimination training for 
two initial stimuli started. Each mouse was randomly assigned to one 
of two groups. One group was first trained on the orientation rule, 
then on the spatial frequency rule. For the other group, the sequence 
of the rules was reversed (Extended Data Fig. 1). Each rule defined a 
Go category and a NoGo category, separated by a boundary at either 
45° (orientation rule) or at 0.043 cyc/° (spatial frequency rule). Trials 
started with an inter-trial interval of 5 s. After that, the mouse could 
initiate stimulus presentation by halting and refraining from licking 
for a minimum of 0.5 s. A single stimulus was subsequently shown for 
1.3 ± 0.2 s. At any time during stimulus presentation, the mouse could 
make a lick to indicate a Go choice. Trials with a Go choice in response 
to a Go category stimulus triggered a water reward and were classi-
fied as hits; trials in which the mice failed to lick during Go category 
stimulus presentation were considered misses. Correct withholding 
of a lick to a NoGo category stimulus was classified as a correct rejec-
tion, and did not result in a water reward. A lick during a NoGo category 
stimulus counted as a false alarm. Initially, false alarms only led to the 
termination of the current trial; later during training, false alarms were 
followed by a time-out of 5–7 s showing a time-out stimulus (a narrow, 
horizontal, black bar). Time-outs were included to reduce a Go bias that 
mice typically showed. The second imaging session (T2) was carried 



out after a mouse performed at more than 66% correct Go choices in 
a given session (requiring 11 to 40 sessions).

For the next training stage (leading up to imaging session T3) fur-
ther stimuli were added (Extended Data Fig. 1a), such that both the Go 
category and the NoGo category consisted of three stimuli differing 
in the feature either irrelevant to the category rule (T3a, n = 6 mice), 
or relevant to the category rule (T3b, n = 5 mice). Whenever a mouse’s 
performance exceeded 66% correct Go choices in one session, we pro-
ceeded to the next training (and imaging) stage; 6 stimuli per category, 
9 stimuli per category (imaging session T4), and finally 18 stimuli per 
category (imaging session T5), the latter serving as a crucial test for 
generalization behaviour.

Rule-switch: After successful learning of rule 1, mice (n = 11) were 
retrained using the previously irrelevant dimension. This stage, known 
as rule-switch training, started with two exemplar stimuli for the new 
rule, and then proceeded with the same steps as for rule 1 and ended 
with another generalization test of rule 2 (18 stimuli per category, imag-
ing session T8).

Task change: After successful learning of rule 1 (T5), the categorization 
performance of mice (n = 9) was tested with a different operant response, 
in a left/right choice task. For this session, the behavioural setup was 
slightly modified to create a left/right choice task. Instead of one lick 
spout centred in front of the mouse, the mouse was now presented with 
two lick-spouts, one offset to the left and one offset to the right. Stim-
uli of the previous Go category were assigned a new GoRight response 
(rewarded after a lick on the right lick spout). Stimuli of the previous 
NoGo category were assigned a new GoLeft response (rewarded after a 
lick on the left lick spout). The original stimulus to category assignment—
that is, the categorization rule—remained the same throughout the task 
change. Before the first stimulus presentation, ten drops were manually 
given on each lick spout to motivate the mice to lick on both sides.

Throughout training, stimuli from the Go category and the NoGo 
category were presented in a pseudorandomized fashion, showing not 
more than three stimuli of the same category in a row. The behavioural 
training program was a custom written MATLAB routine (Mathworks).

Imaging
Two-photon imaging55 through the implanted prism was performed at 
5–8 time points in each mouse throughout the training paradigm (T3 
was omitted in two mice; for detailed timing of the imaging sessions 
see Extended Data Fig. 1a). In some mice (n = 5) we followed two regions 
in the same mouse; in these cases, two imaging sessions were acquired 
on consecutive days during the same training stage. Imaging was done 
using a custom-built two-photon laser-scanning microscope (resonant 
scanning system) and a Mai Tai eHP Ti:Sapphire laser (Spectra-Physics) 
tuned to a wavelength of 940 nm. Images were acquired with a sampling 
frequency of 10 Hz and 750 × 800 pixels per frame. The mice in the task 
change experiment were imaged using a customized commercially 
available two-photon laser-scanning microscope (Thorlabs; same laser 
specifications as described above), operated with Scanimage 456. In 
these experiments, images were acquired at 30 Hz and 512 × 512 pixels 
per frame. The average laser power under the objective ranged from 
50 to 80 mW. Note that the laser power was higher than for imaging 
through a conventional cranial window due to a substantial power loss 
over the prism29. We used a 16×, 0.8 NA, water immersion objective 
(Nikon) and diluted ultrasound gel (Dahlhausen) on top of the implant 
as immersion medium. Two photomultiplier tubes detected the red 
fluorescence signal of the structural protein mRuby2 (570–690 nm) 
and the green fluorescence signal of GCaMP6m (500–550 nm)57. During 
imaging, the monitor used for stimulus presentation was shuttered to 
minimize light contamination58. The imaging data were acquired using 
custom LABVIEW software (National Instruments; software modified 
from the colibri package by C. Seebacher) and the synchronization of 
imaging data with behavioural readout and stimulus presentation was 
done using DAQ cards (National Instruments).

Tracking of postural markers
In two-photon imaging sessions of a subset of experiments, the mouse 
was video-tracked using infrared cameras (The Imaging Source Europe). 
Two cameras were aimed at the eyes, and a third camera was positioned 
at a slight angle behind the mouse, in order to record body movements 
in-task. The eyes of the mouse were back-lit by the infrared two-photon 
imaging laser and the body was illuminated using an infrared light 
source (740 nm; Thorlabs). Key eye and body features (see Extended 
Data Fig. 10) were manually defined and automatically annotated using 
DeepLabCut41,42. From the x and y coordinates of these features, we 
calculated three eye parameters and four postural parameters (pupil 
diameter, eye position, eyelid opening, front paw angle, hind paw angle 
of the left hind paw, body elongation/rotation, tail angle; see Extended 
Data Fig. 10). Supplementary Video 1 shows both eye and body cameras 
of an example mouse.

Data analysis
The analysis of behaviour and imaging data was performed using cus-
tom written MATLAB routines.

Behavioural data
Behavioural performance is shown as the sensitivity index, d′. For 
every training session, d′ was calculated as the difference between 
the z-scored hit rate and the z-scored false alarm rate. The hit rate was 
defined as the number of correct category 2 trials divided by the total 
number of category 2 trials per session. Similarly, the false alarm rate 
was calculated as the number of incorrect category 1 trials divided by 
the total number of category 1 trials. In case a mouse performed two 
training sessions at time points T1, T3, T4, T5, T7 and T8, because two 
regions were imaged, the displayed value in the learning curve is the 
average across the two imaging sessions.

The fraction of correct Go choices was calculated as the number 
of hit trials divided by the number of all trials in which the mouse 
made a Go choice (the sum of ‘hits’ and ‘false alarms’). The number of 
days until a mouse reached performance criterion was the amount of 
daily sessions until the fraction of correct Go choices exceeded 0.66. 
Pre-training sessions without visual stimulation were not included in 
this quantification.

To investigate categorization behaviour across the entire stimulus 
space, we calculated the ‘fraction chosen’: The number of Go choices in 
response to a specific stimulus divided by the total number of presenta-
tions for that stimulus (see example in Fig. 1d; for all mice see Extended 
Data Fig. 2). Finally, we constructed psychometric curves showing the 
effect of each feature (that is, rule-relevant versus rule-irrelevant) on 
the behaviour of the mice (Fig. 1j). For that, the stimulus-specific ‘frac-
tion chosen’ values were averaged along the irrelevant or the relevant 
feature dimension, respectively (see Fig. 1i).

To estimate learning rates, each individual learning curve was fitted 
with a sigmoid function:

y x p
p

( ) = 1 +
2

1 + e p x p3( − 4)

in which p1 determines the minimum of the sigmoid curve (for curve 
fitting fixed to 0), p2 the maximum, p3 the slope and p4 the inflection 
point. The parameter defining the minimum was fixed at a d′ of 0. Learn-
ing curves for rule 1 and rule 2 were fitted independently. Goodness of 
fit was determined as the root-mean-square error between the learning 
curve and the fitted curve.

Imaging data processing
The imaging data were first preprocessed by performing dark-current 
subtraction (using the average signal intensity during a laser-off period) 
and line shift correction. Rigid xy image displacement was first calculated 
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on the structural red fluorescence channel using the cross correlation of 
the 2D Fourier transform of the images59, and subsequently corrected 
on both channels. For each imaging session, cells were manually seg-
mented using the average image of the red fluorescence channel across 
the entire session. The cell identity was then manually matched across 
all imaging time points and only cells that could be identified in every 
session from T1 to T8 or T5 to left/right were included in the analysis. This 
criterion excluded one mouse (M06) from all further analyses, because 
of lost optical access at T8. The average green fluorescence signal was 
extracted for each cell and then corrected for neuropil contamination 
by subtracting the signal of 30 μm surrounding each cell multiplied by 
0.7 and adding the median multiplied by 0.7 (refs. 57,60). From this fluo-
rescence trace, we calculated ΔF/F as (F − F0)/F0 per frame. F0 was defined 
as the 25th percentile of the fluorescence trace in a sliding window of 
60 s. From this trace, we inferred the spiking activity of each cell using 
the constrained foopsi algorithm61–63. The inferred spike rate during the 
stimulus presentation period was used for all further calculations and in 
all figure panels, except for the HLS maps and the left panels of Fig. 2d, 
e, where we display the ΔF/F trace for comparison.

To display lick-triggered neuronal activity (Extended Data Fig. 8), we 
averaged the inferred spike rate centred on the onset of the mouse’s 
lick-bouts. A lick-bout was defined as a sequence of licks, in which the 
interval between every two consecutive licks did not exceed 500 ms. 
Thus, a lick was part of a lick-bout if it happened within 500 ms after 
the previous lick. The onset of each lick-bout was the time of the first 
lick in the lick-bout.

Category-tuning index
For every cell, we calculated the CTI as previously described30. In short, 
we quantified the mean inferred spike rate during stimulus presentation 
for every stimulus. Next, we calculated the mean difference in inferred 
rate between stimuli of the same category (within), subtracted it from 
the mean difference between stimuli belonging to the two different cat-
egories (across) and normalized by the sum (across + within). This calcu-
lation results in an index ranging from −1 to 1, with category-unselective 
cells showing CTIs close to and below 0 and an ideal category-selective 
cell having an index of 1. Category-selective cells were defined as cells 
with a CTI value larger than 0.1. This threshold was chosen based on the 
distribution of CTIs in the naive population (T1), where individual cells 
rarely crossed this value. As a control, we used other thresholds (0.07, 
0.15 and 0.20) and found no qualitative difference in the results other 
than that the fraction of category-selective cells scaled.

The fraction of category-selective cells was calculated as the 
number of neurons above threshold per imaging region, divided 
by the total number of chronically recorded neurons in that imag-
ing region. Category-selective cells, determined by their CTI at time 
points T5 and T8, were divided in a Go category-selective and a NoGo 
category-selective group; neurons with higher average activity in 
Go category trials than in NoGo category trials were grouped as Go 
category-selective cells and conversely, cells with a higher average activ-
ity in NoGo category trials were labelled as NoGo category-selective. 
The overlap between the Go and NoGo category-selective groups was 
calculated between T5 and T8. The expected range of overlap assuming 
random independent sampling was calculated from the data, but with 
shuffled neuron identities (using the 95% percentile of the shuffled dis-
tribution). For time points at which not all stimuli were presented (T2, 
T3, T4, T6 and T7), we approximated category-tuning from the average 
responses to Go category trials and NoGo category trials.

Bayesian decoding
We decoded category identity from trial-by-trial activity patterns of a 
single neuron up to groups of ten neurons using Bayes theorem:

p c r
p r c p c

p r
( | ) =

( | ) ( )
( )

in which p(r|c) is the probability of a single trial response r when observed 
in either category 1 or 2 trials (calculated from an exponential distribu-
tion), p(c) as the prior probability of observing each category, and p(r) 
as the probability of observing the response. To cross-validate decoding 
performance, trials were first split into a training and test set (70% and 
30%, respectively). The trial-averaged inferred spike rates followed an 
exponential distribution, which we estimated for each category indi-
vidually (using the training set). Then, for each trial in the test set, we 
calculated the probability that the neuronal response came from those 
distributions. The distribution that gave the higher probability was deter-
mined as the decoder’s prediction. Decoder performance was calculated 
as the fraction of correctly predicted trials. As a control, decoding perfor-
mance was also calculated after shuffling category identities across trials.

Selectivity time course
Average selectivity of individual neurons was calculated as the mean 
difference between responses to all Go category stimuli and all NoGo 
category stimuli, at every imaging time point (T1–T8). For linear regres-
sion, we defined three characteristic selectivity time courses (shown 
in Extended Data Fig. 7), resembling acquired selectivity for reward/
choice, categorization rule 1 and categorization rule 2. Within each 
of these time courses, maximum selectivity was assigned the value 
1 and no selectivity the value 0. The characteristic time courses were 
used as predictors in a model fitting the development of selectivity of 
individual neurons over time.

Generalized linear models to assess the influence of individual 
task parameters
We performed multilinear regression on neurons that were identified 
in all imaging time points of the rule-switch experiment. The regression 
model predicted the trial-wise mean spike rate of each cell during the 
stimulus presentation periods at imaging time point T5. Categorical 
predictors were: Category identity of the presented stimulus (0: cat-
egory 1, 1: category 2), choice of the mouse (0: NoGo, 1: Go), and reward 
(0: no reward, 1: reward). The average running speed during the trial 
was modelled as a continuous predictor. A positive predictor weight 
indicated that the activity of a neuron was increased in trials where the 
value of the predictor was higher. A negative predictor weight reflected 
an inverse relation between the predictor’s value and the neuron’s firing 
rate. We normalized the predictor weights for overall differences in 
response amplitudes, by dividing each weight by the sum of all absolute 
predictor weights (including the intercept).

Hierarchical clustering was performed on relative predictor weights 
of neurons, including only cells with an R2 value larger than 0.05. The 
optimal number of clusters was calculated using gap statistic values, 
determined as the smallest cluster number k that fulfilled the criterion 
(here nine clusters):

kGap( ) ≥ Gapmax − s.e. (Gapmax)

in which Gap(k) is the gap statistic for k clusters, Gapmax is the largest 
gap value, and s.e.(Gapmax) is the standard error corresponding to 
the largest gap value.

We obtained linkage and relative predictor weights of the clusters 
from the MATLAB clusterdata algorithm.

To probe the influence of operant motor behaviour in the task change 
experiment, we concatenated all trials of sessions T5 (generalization 
session, Go/NoGo task) and L/R (left/right choice task). A stepwise linear 
regression model predicted the trial-averaged inferred spike rate of 
all recorded neurons individually. The predictors were the following 
categorical variables: category identity of the stimulus (0: category 1; 
1: category 2), Go response of the mouse (0: NoGo, 1: all forms of Go, 
that is, Go/GoRight/GoLeft), reward (0: no reward, 1: reward) and two 
predictors that were specific to a motor response in the left/right ses-
sion: GoRight and GoLeft. We only considered significant predictor 



weights, determined from an F-statistic comparing a model with and 
without a predictor. Predictor weights were normalized by dividing 
each weight by the maximum of all predictor weights.

Linear regression assessing the influence of instructed and 
uninstructed behaviours
The trial-averaged inferred spike rate of all recorded neurons in session 
T5 of a subset of experiments was fitted using a linear model. Body and 
eye parameters describing uninstructed behaviours were included in the 
model as continuous predictors. In addition, we included three categori-
cal task-relevant predictors: category identity of the presented stimulus, 
choice of the mouse, and reward. For each predictor, we determined its 
maximum predictive power (cvR2) and its unique contribution (ΔR2), similar 
to the approach previously described40. Maximum predictive power (cvR2) 
was calculated as the predictive performance (R2) of a model with all param-
eters shuffled, except for the parameter of interest. A parameter’s unique 
contribution (ΔR2) was quantified as the difference between the full model’s 
R2 and the R2 of a model in which the parameter of interest was shuffled.

Stereotaxic coordinates of imaging regions
We determined the stereotaxic coordinates of the centres of all imaging 
regions (included in Fig. 2g, h) to place the imaged regions within a com-
mon reference frame (Mouse Brain Atlas)64. First, we cut 60-μm thick 
sagittal sections of both hemispheres using a freezing microtome. The 
AP coordinates outlining the full extent of the prism were identified from 
a section of the hemisphere into which the prism had been implanted 
(Extended Data Fig. 4). On the basis of this information, we calculated 
the exact AP coordinate of the centre of each imaging field of view. We 
calculated the dorso-ventral coordinate relative to the brain surface, 
which was aligned with the dorsal border of the prism. Finally, we deter-
mined the medio-lateral coordinate of the imaged field of view from 
the imaging depth of the field of view relative to the medial pia mater.

Statistical procedures
All data are presented as mean ± s.e.m. unless stated otherwise. Tests for 
normal distribution were carried out using the Kolmogorov–Smirnov test. 
Normally distributed data were tested using the two-tailed paired-samples 
t-test. Non-normally distributed data were tested using the two-tailed 
WMPSR test for paired samples, and the Kruskal–Wallis test for multiple, 
independent groups. A Bonferroni alpha correction was applied when 
multiple tests were done on the same data. Correlations were assessed 
using Pearson’s correlation coefficient, if the data were normally distrib-
uted along both axes; otherwise, Spearman’s correlation was applied.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data supporting the findings of this study are available on 
publication at https://gin.g-node.org/sreinert/Category-learning_
mPFC. Source data are provided with this paper.

Code availability
The custom written MATLAB routines used for data collection and 
analysis are available upon reasonable request.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Timeline of behavioural training, presented stimuli 
and learning performance of individual mice for both categorization rules. 
a, Timeline showing behavioural training stages, the number of training 
sessions that mice spent in each stage (min–max) and the imaging sessions (T1–
T8). b, Stimuli used for category training, aligned to the stages shown in a. The 
scheme shows stimuli for mice that were trained on the spatial frequency rule 
first, and the orientation rule second. c, As in b, but for mice trained on the 
orientation rule first. d, Per mouse, the learning curve for training on rule 1. 
Blue curve denotes single session d′. Orange curve denotes sigmoid fit of d′. 
Arrows indicate imaging time points T2, T3 and T4. e, As in d, but for rule 2. 

Arrows indicate imaging time points T6 and T7. f, Parameters describing the 
fitted sigmoidal curves, comparing rules 1 and 2. Left, maximum. P = 0.71, two-
tailed paired-samples t-test (n = 11). Middle, slope. P = 1.9 × 10−5, two-tailed 
paired-samples t-test (n = 11). Right, inflection point. P = 9.3 × 10−6, two-tailed 
paired-samples t-test (n = 11). g, Root-mean-square error (RMSE) of sigmoid fit. 
P = 0.013, two-tailed paired-samples t-test (n = 11). h, d′ of all mice comparing 
naive and learned discrimination of the initial two stimuli for the first rule (left) 
and the second rule (right). Black line indicates the mean across all mice, grey 
lines represent data of individual mice.
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Extended Data Fig. 2 | Categorization, generalization and rule-switch 
performance for individual mice. Performance as the fraction of Go choices 
per stimulus, averaged over the imaging time points for each mouse 
individually. The time point ‘Learned 2 stim RS’ shows performance after the 
rule-switch was successfully learned. This time point was not an imaging 
session. Three mice learned the rule-switch during session T6 (‘single session’). 

a, Mice first trained on the spatial frequency rule and then on the orientation 
rule (data of M03 is also shown in Fig. 1d, g). b, As in a for all mice trained initially 
on the orientation rule and then on the spatial frequency rule. Mouse M06: 
imaging sessions T7 and T8 were ‘not included’ owing to poor imaging quality; 
Mice M01 and M02: imaging session T3 was not recorded.



Extended Data Fig. 3 | Generalization of stimuli at their first presentation 
and categorization of stimuli close to, and at the category boundary.  
a, Left, schematic of stimulus space during the generalization session (T5). 
Middle, category choice for every stimulus on its first presentation for an 
example mouse, green: Go choice, red: NoGo choice. Right, category choice at 
the first stimulus presentation, averaged across mice (n = 10 mice). b, d′ for 
experienced stimuli and novel stimuli separately, calculated using only the first 
presentation of each stimulus at the generalization session T5. P = 0.19, 
two-tailed paired-samples t-test (n = 10). Grey lines denote individual mice. 
Data are mean ± s.e.m. (across mice). c, Mice use the second rule to categorize 
stimuli that were only experienced during training on the first rule. Left, 
schematic showing category identity of stimuli at T5 (Go or NoGo) and whether 
they were experienced throughout category training on rule 1 (Exp) or novel 
(Nov). Middle, the highlighted quadrant (green) was part of the Go category; 
stimuli from this quadrant had been incrementally used throughout category 
learning up to T5. After T5, mice were trained on the second rule, using only 
stimuli in the bottom half of the category space (which corresponded to the 
NoGo category at T5). Right, in the second generalization session (T8, 
rule-switch generalization), mice were once more exposed to the full category 
space. Now, the same highlighted quadrant (red) required a NoGo response. 
However, so far these stimuli were extensively (and only) experienced as 

requiring a Go response. If mice showed a different fraction of Go choices in T5 
and T8, it would reflect category generalization of rule 2, because the absence 
of experience with the stimuli in the highlighted quadrant prevented learning 
of a stimulus-response mapping. d, Fraction of Go category choices for the first 
presentation of stimuli highlighted in c, comparing T5 and T8. Data are mean 
± s.e.m. (fraction chosen across all mice). Grey lines indicate data of individual 
mice, of which some overlap. P = 0.002, two-tailed paired-samples t-test 
(n = 10). e, Schematic as in c, indicating the stimuli and the rule for which d′ was 
calculated in f. f, d′ for the first presentation of stimuli highlighted in c, 
comparing T5 and T8. Grey lines denote individual mice. P = 2.2 × 10−5, 
two-tailed paired-samples t-test (n = 10). Data are mean ± s.e.m. (across mice).  
g, Schematic indicating the relevant and irrelevant stimulus dimension for the 
spatial frequency rule (left) and the orientation rule (right) at T5. h, As in g, for 
training with a dense stimulus space (n = 3 mice) to determine categorization 
behaviour closer to the category boundary. i–k, Psychometric curves for the 
three individual mice. The fraction chosen (fraction of Go choices) is shown 
along the relevant dimension (left) and the irrelevant dimension (right). Grey 
lines denote data from the T5 generalization session. Black lines denote data 
from the session with the dense stimulus space. l, As in i, showing the mean 
(± s.e.m.) across the three mice (shown in i, j and k) that were tested using the 
dense stimulus space.



Article

Extended Data Fig. 4 | Reconstruction of the location of imaging regions.  
a, Top down view onto the craniotomy of M07 with prism implant (white square 
denotes the prism outline). A, anterior; P, posterior; Le, left; Ri, right. Scale bar, 
0.5 mm. b, View through the prism with the position of an imaging field (white 
box), D, dorsal; V, ventral. Scale bar, 0.3 mm c, The imaging field in b, visualized 
with a two-photon microscope (red: structural marker mRuby2; green: 
functional marker GCaMP6m; image is the average of all frames of session T1). 
Scale bar, 30 μm. d, Cropped images showing 12 example neurons across all 
imaging time points (T1–T8). e, The top triangle shows the correlation between 
cropped images of any two time points (average across all neurons). The 
bottom triangle shows the correlation after shuffling cell identities (control).  
f, Example sagittal brain section showing the position of the prism implant 

along the anterior-posterior axis. Scale bar, 1 mm. g, Schematic of cortical 
midline regions near the prism implant (ML 0.12), modified from Franklin & 
Paxinos64, figure 102, with permission from Academic Press (Copyright 2007). 
3V, third ventricle; ACC, anterior cingulate cortex; CC, corpus callosum; D3V, 
dorsal third ventricle; MO, medial orbital cortex; OB, olfactory bulb; PL, 
prelimbic cortex; RSC, retrosplenial cortex; SC, superior colliculus. The 
centres of all imaging regions included in Fig. 2g, h are indicated by black dots. 
h, Fraction of category-selective cells for each imaged field of view (included in 
Fig. 2g, h). The black, hollow circles are imaging regions without 
category-selective cells. There was no clear relationship between the location 
of the imaging regions within mPFC and the fraction of category-selective cells.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Examples of single cells that became category-
selective over the course of learning. a, Example Go category-selective cell 
(from the mouse shown in Fig. 2). Top left, position of the cell in the two-photon 
image. Scale bar, 30 μm. Bottom left, HLS map of the example region (hue: 
category identity of the presented stimuli; cyan, category 1; pink, category 2; 
lightness: response amplitude; saturation: selectivity for the stimulus 
category). Top middle, before learning (T1), ΔF/F traces aligned to stimulus 
onset. Scale bar, 100% ΔF/F. Grey bar denotes stimulus presentation, 1.3 s. 
Bottom middle, mean inferred spike rate per stimulus. Right, after learning 

(T5). b, As in a for an example NoGo category-selective cell. c, Mean inferred 
spike rate per stimulus for six further category-selective cells from different 
mice. d, Response amplitude during the first presentation of each stimulus, 
averaged across all category-selective cells at T5. Left, green: Go-preferring 
neurons; right, red: NoGo-preferring neurons. e, Top row, 40 by 40 pixel 
cropped images showing a Go category-selective cell in the averaged two-
photon imaged field of views (pseudo-coloured). Bottom row, mean inferred 
spike rate of the response of the example cell to the presented stimuli at each 
imaging time point. f, g, As in e, but for different, NoGo category-selective cells.



Extended Data Fig. 6 | Category-tuning index distributions of all recorded 
field of views at T1, T5 and T8 and the overlap of populations of 
category-selective cells. a, Category-tuning index before learning (T1, 
according to rule 1), after the mouse had learned rule 1 (T5, according to rule 1) 
and after it had learned to categorize stimuli according to rule 2 (T8, according 
to rule 2). Each imaging region is displayed individually. Individual cells are 
represented as dots. Only cells recorded at all imaging time points were 
included. Grey line indicates the threshold CTI value of 0.1 that was applied to 
classify cells as category-selective. b, Black, the fraction of overlap between 
category-selective groups found at T5 and T8 (Go stay/NoGo stay: Go/NoGo 

category-selective at both T5 and T8; Go switch: Go category-selective at T5 
and NoGo category-selective at T8; NoGo switch: NoGo category-selective at 
T5 and Go category-selective at T8). Grey denotes 95% confidence intervals of 
chance population overlap (Methods). c, Go category-selective cells. Top row, 
Venn diagrams of the fraction of cells that were category-tuned only for rule 1 
(R1), only for rule 2 (R2) or for both rules (area between R1 and R2). The 
highlighted part of the Venn diagram indicates which data are shown in the 
bottom row. Bottom row, mean stimulus response amplitude (inferred spike 
rate) after rule 1 (left) or rule 2 (right) was learned. d, As in c, for NoGo 
category-selective cells.
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Extended Data Fig. 7 | Individual neurons follow characteristic time 
courses of acquiring selectivity. a, Left, scatter plot showing the difference in 
mean inferred spike rate between stimuli of the two categories, after learning 
the first rule (T5, x axis) and the rule-switch (T8, y axis) for individual Go 
category-selective cells at session T5 (blue) and T8 (orange). Right, histogram 
of the differences from unity of the distributions shown on the left. 
PT5 = 1.5 × 10−8, PT8 = 3.5 × 10−15, two-tailed WMPSR (nT8 = 122, nT5 = 156). b, As in a, 
but showing the relative spike rate difference (normalized by the sum of 
inferred spike rate to category 1 and 2 stimuli) for individual Go 
category-selective neurons at T5 and T8. PT5 = 4.9 × 10−21, PT8 = 1.5 × 10−18, 
two-tailed paired-samples t-test (nT5 = 156, nT8 = 122). c, As in a, but for NoGo 
category-selective cells at T5 and T8. PT5 = 9.1 × 10−5, PT8 = 1.0 × 10−12, two-tailed 
WMPSR (nT5 = 57, nT8 = 70). d, As in b, but for NoGo category-selective cells. 
PT5 = 9.6 × 10−8, PT8 = 1.7 × 10−21, two-tailed paired-samples t-test (nT5 = 57, nT8 = 70). 
e, Development of the spike rate difference up to T5, for individual Go 
category-selective neurons at T5. Before learning, baseline: T1. After learning 
the initial stimuli: T2. After learning categorization: T5. Grey lines denote 
individual neurons. Black line denotes the mean across cells. f, As in e, but for 
NoGo category-selective neurons. g, Schematic showing predicted time 

courses for the acquisition of reward/choice (RC) selectivity, and 
category selectivity according to each rule (R1, R2). These predictors were fit 
to the time courses of individual neurons using linear regression in h–k. h, Left, 
mean (± s.e.m.) predictor weight of T5 Go category-selective neurons. 
PRC = 3.2 × 10−9, PR1 = 2.0 × 10−7, PR2 = 0.12, two-tailed WMPSR tests, 
Bonferroni-corrected for three comparisons (n = 156). Right, the predictor 
weights of individual neurons. Selectivity of Go-preferring neurons was best 
predicted by reward/choice, and also showed a category component. i, As in h, 
for T5 NoGo category-selective cells. PRC = 0.03, PR1 = 0.001, PR2 = 0.03, 
two-tailed WMPSR tests, Bonferroni-corrected for three comparisons (n = 57). 
Selectivity of NoGo-preferring neurons corresponded best to the time course 
of acquiring category rule 1. j, As in h, for Go category-selective cells defined at 
T8 PRC = 0.03, PR1 = 0.003, PR2 = 7.8 × 10−15, two-tailed WMPSR tests, 
Bonferroni-corrected for three comparisons (n = 122). k, As in h, for NoGo 
category-selective cells defined at T8 PRC = 0.09, PR1 = 0.52, PR2 = 8.0 × 10−7, 
two-tailed WMPSR tests, Bonferroni-corrected for three comparisons (n = 70). 
The best predictor for both Go and NoGo preferring category-selective 
neurons after the rule-switch was the gradual acquisition of category rule 2.



Extended Data Fig. 8 | Relation between motor behaviour and neuronal 
responses of category-selective cells. a, Line histograms showing the count 
probability of behavioural (left) and neural (right) reaction times of individual 
mice. Behavioural reaction time (bRT) was measured as the time of the first lick 
after stimulus onset, neural reaction time (nRT) as the time of the neuronal 
response onset after stimulus onset. b, Left, scatter plot of bRT and nRT for 
every trial of every mouse in session T5. P = 2.3 × 10−13, rho = 0.08, Spearman’s 
correlation (n = 9,348 measured reaction times). Right, grey circles: scatter 
plot showing the average nRT (that is, the nRT averaged across all Go 
category-selective neurons, but separated per mouse and trial) versus the bRT 
per mouse and trial. P = 6.2 × 10−6, Pearson’s r = 0.13 (n = 1,156 trials). The density 
of grey circles is indicated by the colour intensity (alpha value). Coloured 
circles: the overall mean nRT and bRT of each mouse. P = 0.51, Pearson’s r = 0.26 
(n = 9 mice). Dashed line denotes the unity line. c, CTI of Go (left) and NoGo 
(right) category-selective neurons, calculated for every imaging frame 
individually. Data show the period from 1 s before stimulus onset to 3 s after 
stimulus offset. Grey dashed line denotes the average time of first lick. Black 
line denotes the average period of stimulus presentation. d, Mean lick 

frequency in session T5, grouped by trial outcome (hits, misses, correct 
rejections and false alarms). Insets show the same data with inflated y axis. 
Black line denotes the average period of stimulus presentation. e, As in d, but 
showing the average running speed. f, Inferred spike rate of Go (left) and NoGo 
(right) category-selective neurons aligned to the onset of lick-bouts. Top row, 
lick-bouts detected within a trial. Bottom row, lick-bouts detected in the 
inter-trial-interval. Data are mean ± s.e.m. g, Inferred spike rate of Go 
category-selective neurons in session T5, grouped by trial outcome (hits, 
misses, correct rejections and false alarms). Black line denotes stimulus 
presentation. Data are mean ± s.e.m. h, As in g, for NoGo category-selective 
neurons. i, Scatter plot showing the mean inferred spike rate in correct trials 
versus incorrect trials, for individual Go (green) and NoGo (red) 
category-selective neurons. PGo = 1.0 × 10−26, Pearson’s rGo = 0.72, 
PNoGo = 4.1 × 10−5, Pearson’s rNoGo = 0.52 (nNo = 156, nNoGo = 57). Black line denotes 
the unity line. Line histogram shows the distribution of difference from unity 
separately for Go and NoGo-preferring neurons. PGo = 6.6 × 10−22, 
PNoGo = 1.9 × 10−5, two-tailed WMPSR (nGo = 156, nNoGo = 57).
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Extended Data Fig. 9 | mPFC contains neural correlates of multiple task 
components. a, Linear regression model, fitting the trial-averaged inferred 
spike rates of individual neurons at T5 (‘wi ’ denotes the predictor weight; 
category predictor 0: category 1; 1: category 2; Methods). b, Distribution of 
absolute choice predictor weight of all observed neurons, divided into low, 
middle and high weight groups with equal numbers of cells. c, Box plots of CTI 
distributions for the choice weight groups in b. Boxes show the first to third 
quartile of the distributions, and black line denotes the median. There was no 
significant difference between the distributions, showing that category 
selectivity is not observed exclusively in highly choice-correlated cells. 
P = 0.92, Kruskal–Wallis test comparing all groups, chi-squared = 0.158, d.f. = 2. 
d, Relative weights of linear regression predictors (category identity, choice, 
reward and running speed) of Go and NoGo category-selective cells at T5. Left, 
category, choice and reward predictors show a significant deviation  
from 0. Right, only the category predictor shows a significant difference  
from 0. PGo-w1 = 6.8 × 10−5, PGo-w2 = 2.3 × 10−7, PGo-w3 = 2.0 × 10−14, PGo-w4 = 0.17, 
PNoGo-w1 = 3.9 × 10−5, PNoGo-w2 = 0.03, PNoGo-w3 = 0.68, PNoGo-w4 = 0.11, two-tailed 
WMPSR tests, Bonferroni corrected for four comparisons (nGo = 156,  

nNoGo = 57 cells). Grey boxes span the first to third quartile, black lines show the 
median. e, Distribution of R2 values, black line at 0.05 denotes the cut-off for 
cells included in hierarchical clustering (resulting in 536 out of 2,306 neurons, 
largely excluding unresponsive neurons). f, Correlation of the R2 value of 
individual cells and their maximum average response to correct or incorrect 
trials of either category. P = 4.8 × 10−121, rho = 0.46, Spearman’s correlation 
(n = 2,306 cells). Grey line denotes the R2 cut-off shown in e, which eliminated 
mostly unresponsive neurons. g, Gap statistic of hierarchical clustering for 
varying cluster numbers. Arrow denotes the optimal number of clusters (nine 
clusters; Methods). Error bars denote the standard error of the gap statistic 
value. h, Principal component analysis of model weights shows cluster 
separation along the major axes of variance. Line histograms show 
distributions per cluster along PC1 and PC2 separately. Individual neurons 
(dots) are colour-coded by cluster identity. i, Top, dendrogram showing cluster 
linkage. Second row, for each neuron, relative weights of model predictors in 
each of the nine clusters. Third row, for each neuron, normalized responses in 
the four different trial outcomes. Fourth row, per cluster, mean normalized 
response to every stimulus.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Category selectivity throughout the task change 
and contributions of task-relevant parameters and uninstructed 
movements to explained response variance. a, Scatter plot showing the CTI 
of Go-preferring neurons having a CTI > 0.1 in session T5 (blue) or session L/R 
(orange). Grey lines denote the CTI threshold used to determine 
category selectivity. b, As in a, for NoGo preferring cells. c, HLS maps of 
the example imaging region before (T5) and after (L/R) the task change (also 
shown in Fig. 4). Scale bar, 30 μm. White circles indicate example cells in d and 
e. Hue: preferred category; lightness: response amplitude; saturation: 
category selectivity. d, Example Go-preferring neuron. Top, inferred spike rate 
for stimuli ordered along the relevant dimension (black), or the irrelevant 
dimension (blue). Inset, section from the HLS map in c showing the example 
cell. Bottom, average inferred spike rate per stimulus. Data are mean ± s.e.m.  
e, As in d, but for a NoGo preferring example cell. f, Inferred spike rate of Go 
category-selective neurons (selected at T5), separated by stimulus/trial 
outcome combination in the left/right choice task. Top row, category 1 (GoLeft 
is correct). Bottom row, category 2 (GoRight is correct). Grey, missed trials, no 
reward. Green, rewarded trials. Red, unrewarded trials. Black line, stimulus 
presentation. In each panel, ‘n’ indicates the total number of included trials 
(from nine mice). Data are mean ± s.e.m. g, As in f, for NoGo category-selective 
neurons (determined at T5). h, Category-selective neuronal responses, in 
absence of behavioural responses (missed trials in the left/right choice task). 
Inferred spike rate for each category presented in the left/right choice task, of 

Go category-selective neurons selected at T5. P = 3.3 × 10−8, two-tailed WMPSR 
(n = 407). Data are mean ± s.e.m. i, As in h, but for NoGo category-selective 
neurons (determined at T5). P = 0.002, two-tailed WMPSR (n = 48). j, Left and 
middle, schematic of the linear regression model, fitted to all trials of sessions 
T5 and 2AC combined. The average trial spike rate of each neuron was 
predicted by a weighted sum of the predictors: Category, Go, Reward, GoRight 
and GoLeft. Response vector and design matrix of example session. Right, 
significant normalized weights of all category-selective cells. PGo-w1 = 4.6 × 10−19, 
PGo-w2 = 6.1 × 10−37, PGo-w3 = 5.4 × 10−43, PGo-w4 = 1.1 × 10−23, PGo-w5 = 0.58, 
PNoGo-w1 = 2.2 × 10−6, PNoGo-w2 = 0.003, PNoGo-w3 = 0.002, PNoGo-w4 = 0.40, 
PNoGo-w5 = 0.006, two-tailed WMPSR tests (nGo = 407, nNoGo = 48). k, Left, example 
cropped image of the body-imaging camera and the eye-imaging cameras, with 
overlaid marker positions (tracked using DeepLabCut41,42). Middle and right, 
schematics defining body and eye parameters derived from the tracked 
markers. l, Schematic showing predictors and the linear regression model used 
to fit the cells’ mean inferred spike rates per trial. m, Top, box plots showing the 
maximum predictive power (cvR2) of each model predictor (n = 9 mice). Boxes 
show the first to third quartile; black line denotes the median. Bottom, box 
plots showing the unique contribution (∆R2) of each model predictor.  
n, Maximum predictive power (cvR2, top) and the unique contribution (∆R2, 
bottom) across Go category-selective neurons (n = 407 neurons). Data are 
mean ± s.e.m. o, As in n, but for NoGo category-selective neurons (n = 48 
neurons).
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Forming and recalling categories is fundamental to our lives as they help us make quick decisions
in unfamiliar environments. We share this ability with a wide range of vertebrate species, e.g.
pigeons (Herrnstein and Loveland, 1964), rats (Vermaercke et al., 2014) and nonhuman primates
(Freedman et al., 2001; Smith et al., 2010), and also invertebrate species, like crickets (Wyttenbach
et al., 1996), jumping spiders (Dolev and Nelson, 2014) and honey bees (Benard et al., 2006).
Depending on the structure of the categories and the underlying task, different networks of brain
areas will engage to varying degrees in order to support the formation of a category (for review
see Ashby and Ell, 2001).

One area of specific interest to category learning research is prefrontal cortex, as it is
critical for explicit, rule-based categorization in humans (Milner, 1963) and a neuronal category
representation, in the form of category-selective neurons, has been found in primates (Freedman
et al., 2001). Prefrontal cortex is generally known to be involved in goal-directed behavior
(Jacobsen, 1928), attentional processes (Fuster and Alexander, 1971) and flexible decision making
(Winocur and Eskes, 1998). On the other hand it is also thought to play a role in long-term
declarative memory (Simons and Spiers, 2003).

The goal of this thesis is to contribute to the understanding of category learning in prefrontal
cortex from a systems neuroscience perspective. I investigated category learning in mice and
followed learning-related changes to neuronal activity in medial prefrontal cortex (mPFC). First, I
established that mice can learn rule-based categorization, generalize to novel stimuli and learn to
regroup stimuli after a switch in rules. Hereby, I found that individual neurons in mPFC showed
category-selective responses after learning. Further, this category selectivity was largely rule-
specific and emerged gradually with learning. Lastly, I showed that the category representation
in mPFC generalized across different motor requirements and reward contingencies.

4.1 Did mice learn rules for categorization?

Can mice learn a rule for categorization? The answer to this question needs to be ‘yes’ if we
want to use the mouse model to understand neuronal circuits for explicit, rule-based category
learning (see 1.3.2.2). Traditionally, explicit categorization was defined as forming a verbalizable
rule that best distinguishes the categories (Ashby et al., 1998). This link to language defined it
as an exclusively human ability. However, several key findings from human category learning
studies were soon reproduced in non-human primates. Both humans and non-human primates
showed a performance advantage in explicit over implicit categorization (Smith et al., 2010).
Likewise, modeling of the category boundary supported selective attention to relevant features
in explicit categorization (Smith et al., 2010). An independent study showed that non-human
primates are able to flexibly switch rules for categorization (Roy et al., 2010). Together, those
findings supported the hypothesis that monkeys can learn explicit categorization even though
they lack language. This led to a re-consideration of the definitions of explicit and implicit
category learning (Smith et al., 2010).

This updated definition, centered on selective attention to category-defining features, allowed
for investigating explicit category learning in other species, like pigeons and rats. In contrast to
humans and non-human primates, neither pigeons nor rats showed a difference in performance
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between explicit and implicit tasks (Smith et al., 2011; Vermaercke et al., 2014). This result has
been used to argue that those species lack the explicit category learning system, and therefore
solve every category learning problem with just one, implicit category learning strategy. However,
more detailed investigations of categorization strategy in rule-based and information-integration
categorization tasks in rats revealed that the animals did differentially weigh stimulus features in
the rule-based task, but not in the information-integration task. This indicated that rats show
a level of selective attention towards relevant stimulus features that is characteristic of explicit
categorization (Broschard et al., 2019b).

While the study in chapter 3 lacked the direct comparison between rule-based and information-
integration categorization in mice, I will discuss three measures - generalization, selective attention
to the relevant stimulus feature, and rule-switching - that can give an indication of whether mice
are able to learn a rule for categorization.

4.1.1 Generalization of novel stimuli

Generalization refers to the transfer of existing knowledge to a new problem (Estes, 1994). In
category research, this transfer involves applying a learned classification to novel stimuli through
retrieval and mapping (Shepard and Chang, 1963; Casale et al., 2012). Early on, Thorndike
(1913) hypothesized that stimulus generalization is based on perceptual similarity (Gentner et al.,
1993). Specifically, an exponential decay of generalization performance with increasing perceptual
distance was proposed (Shepard, 1958; Gluck, 1991), in line with predictions from the exemplar
theory of category learning (Medin and Schaffer, 1978).

This theory of generalization based on similarity suggests that there should not be an
inherent difference between explicit or implicit category learning, as long as the underlying
category structures and the similarity between trained and tested stimuli is identical (Thorndike,
1913; Gentner et al., 1993). However, human subjects showed a marked difference between
rule-based and information-integration categories even if they had identical underlying structures.
When the subjects were tested for generalization to perceptually very dissimilar stimuli, transfer
was nearly perfect in the rule-based condition, but no evidence for generalization could be
found in the information-integration condition, when carefully controlling for rapid learning
(Maddox et al., 2005; Casale et al., 2012). This finding was in contrast to the similarity-based
transfer hypothesis, but predicted by the COVIS theory of category learning ( see 1.2.4.2; Ashby
et al., 1998). According to COVIS, a rule-based category structure is learned by an explicit,
hypothesis-testing system that forms a context-independent rule. This would allow for good
generalization despite perceptual dissimilarity. Information-integration categories, on the other
hand, are learned through an implicit, procedural learning system that maps a confined region
of perceptual space onto a category identity. This region encloses the experienced stimuli and
perceptually similar stimuli, but as soon as a novel stimulus is outside of the mapped space,
generalization of the learned category distinction will not work. From this follows, that while
both explicit and implicit category learning systems allow stimulus generalization based on the
perceptual similarity (Maddox et al., 2005; Smith et al., 2015), only the explicit category learning
system offers the similarity-independent ability to extrapolate a learned rule to an unfamiliar
stimulus space (Casale et al., 2012; Smith et al., 2015).

After mice were trained on 18 stimuli (‘experienced stimuli’), I tested for generalization by
presenting 18 novel stimuli. These were, similar to the study by Casale et al. (Casale et al., 2012),
in an unfamiliar region of perceptual space with respect to the irrelevant stimulus dimension (see
Chapter 3, Fig. 1i for stimulus dimensions). Further, since the novel stimuli varied along both
stimulus dimensions, their similarity to the experienced stimulus set varied. In this generalization
test, all mice performed equally well on the novel stimuli as on the experienced stimuli (Chapter
3, Fig. 1e,h). In addition, no relationship between stimulus similarity to the experienced stimuli
and performance could be observed (see Chapter 3, Extended Data Fig. 2). Although, in mice,
one trial learning of a stimulus association is rarely achieved with operant conditioning of visual
stimuli (unlike classical conditioning of odorants or tastes; Welzl et al., 2001; Armstrong et al.,
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2006), a rapid incorporation of the novel stimuli into the learned classification could explain
an average high performance on novel stimuli. In order to rule out the possibility that mice
used the feedback they got to rapidly form an association with the novel stimuli, I separately
quantified the animals’ classification performance during the very first presentation of each
stimulus. Importantly, even without any chance to learn through feedback, the mice showed no
difference in their performance on experienced stimuli and on novel stimuli (Chapter 3, Extended
Data Fig. 3).

In summary, mice showed the ability to generalize the learned rule beyond their experienced
perceptual space. Further, no gradient of performance across the novel stimulus set could be
detected. This indicated, that such generalization was not dependent on the overall similarity of
the novel stimuli to the experienced set. Both results point to a level of generalization that is
only enabled by rule-based category learning.

4.1.2 Selective attention based on the active rule

The major advantages of rule-based category learning compared to implicit category learning
are the speed and flexibility of reacting to novel stimuli (see 4.1.1) and novel environments or
contexts. In a new environment, the rules that apply to grouping and reacting to stimuli are often
different. Upon a sudden change in environment, behavioral flexibility allows rapid remapping of
reactions to stimuli that is in stark contrast to the time that would be required to individually
re-learn each stimulus-response pairing (Roy et al., 2010). In the context of category learning, a
hallmark of the flexibility achieved through explicit, rule-based learning is selective attention to
the feature(s) relevant to the category distinction (Ashby et al., 1998).

As selective attention has long been characterized as a higher cognitive function of humans
and non-human primates, it was debated whether rodents were also capable of perceptually
separating and selectively attending to individual stimulus features (Seamans et al., 2008). Only
recently, Broschard et al. (2019b) compared rats in a rule-based and an information-integration
category learning task and modeled the influence of each stimulus feature on the decision boundary
of individual animals. Hereby, the study showed that when rats performed the rule-based category
learning task they differentially weighted the two stimulus features, with a higher weight for the
feature relevant to the category distinction. This result supports the hypothesis that rodents are
capable of selective attention (see also Carli et al., 1983; Robbins, 2002).

Similarly, the data on mice in my rule-based category learning paradigm did not show
any influence of the irrelevant stimulus feature (see Chapter 3, Fig. 1j). The mice based their
decisions only on the stimulus feature relevant to the active rule, indicating that the animals,
indeed, perceptually separated and selectively attended to the individual stimulus feature.

Behavioral flexibility also manifests in the ability to rapidly remap stimulus responses upon a
change in rules (Ashby and Spiering, 2004; Smith et al., 2012). Such rule-switches have typically
been tested in mice by switching the stimulus modality that is relevant to the behavioral choice
in a task (but see Biró et al., 2019 for rule-switches in the visual modality only). Mice were
able to flexibly switch between the modalities when determining their response in task (Rikhye
et al., 2018; Spellman et al., 2021). However, in the context of rule-based category learning
the categories span a two- or higher dimensional space and a rule-switch typically requires a
change in selective attention to the newly relevant stimulus feature (Heaton and Pendleton, 1981;
Mansouri, 2006; Roy et al., 2010). In mice, flexible categorization has so far only been tested
along a single dimension by shifting the threshold value determining the category identity of
stimuli along that dimension (Zhong et al., 2019; Runyan et al., 2017; Kudryavitskaya et al.,
2021). While mice successfully remapped the stimuli into the flexibly changing categories, these
paradigms could only be compared to the results from primates in a limited manner, as they did
not test for selective attention to individual stimulus features.

The stimulus space of the visual categories that I presented enabled a rule-switch from one
stimulus feature (e.g. spatial frequency) to the other (e.g. orientation). The mice were able
to learn the switch in rules and reassigned the stimuli to novel categories based on the newly
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relevant feature (see Chapter 3, Fig. 1c,g). Hereby, they learned the new category identities
much faster than learning stimuli during the initial learning phase (see Chapter 3, Fig. 1f).

This increased learning speed indicated that the mice used selective attention to the relevant
stimulus feature and shifted that attention to a new feature upon a switch in rules. Rule-switching
in mice was not nearly as fast as in human (Robinson et al., 1980) or primate studies (1 trial;
Roy et al., 2010). However, primates are typically trained on repeated rule-switches until such
fast remapping is achieved before neural recordings are obtained. The mice, on the other hand,
were only subjected to one rule-switch and hence had no opportunity to improve their remapping.
Therefore, our data support the hypothesis that mice learned to apply a rule to categorize the
visual stimuli and point towards a level of behavioral flexibility in line with rule learning findings
(Havenith et al., 2018; Biró et al., 2019).

In summary, mice only weigh the relevant stimulus feature in their decisions upon learning
to categorize visual stimuli. This is likely achieved by selectively attending to this stimulus
feature. The animals further show much faster learning of the second rule compared to the first
rule and rapidly remap stimulus-responses upon a rule-switch. Together, the results point to
the hypothesis that mice benefit from the characteristic advantage of explicit categorization:
behavioral flexibility through reassigning selective attention whenever contexts and, hence, the
rules for categorization change.

4.1.3 Generalization of a rule overcomes previous stimulus associa-
tions

In the previous sections, I have discussed how our data support the hypothesis that mice can
generalize a learned rule to stimuli they have not seen before. Further, I have highlighted that
flexible reassigning of selective attention enabled mice to rapidly re-learn categories upon a
rule-switch. However, it is the junction of those two characteristics that we apply in our daily
lives. When we learn a new rule to group something, that new rule often conflicts with our
previous knowledge. Nevertheless, we are able to disregard what we had learned before and, by
reassigning our attention, apply the new rule to group objects we have so far only encountered
with previous rules. In short, we can generalize a new rule, even if it is in conflict with prior
knowledge. In humans, this ability is commonly tested using the Wisconsin Card Sorting Test in
order to assess cognitive function(Heaton and Pendleton, 1981).

In my rule-based category learning paradigm, mice had shown both generalization of a
learned rule to novel stimuli and the ability to learn a rule-switch. I therefore tested whether
mice could apply the new rule even if it conflicted with associations from learning the first rule.
After the mice had learned the second rule for categorization on a subset of stimuli, I added
stimuli that the mice had only experienced using the first rule in a generalization test (see
Chapter 3, Extended Data Fig. 3e for schematic). In this generalization test, mice only based
their category decisions on the newly relevant stimulus feature and showed no influence of the
feature that was relevant for the first rule (Chapter 3, Fig. 1j). More specifically, even on stimuli
where the first rule predicted a different outcome than the second rule (i.e. conflicting stimuli),
mice showed different behavioral responses after learning the second rule compared to during
training with the first rule. These results indicate that, after the rule-switch, mice determined
the categories of stimuli based on the second rule. This was especially striking on stimuli they
had only experienced with the first rule and therefore could not use training to remap those
stimuli. In other words, the mice generalized the new rule despite conflicting knowledge (see
Chapter 3, Extended Data Fig. 3d,f).

Even though the study lacked the direct comparison between a rule-based and an information-
integration category learning task, I found that mice generalize a learned rule, show selective
attention towards a relevant stimulus feature that can flexibly change and can disregard prior
knowledge in favor of a newly acquired rule. These three findings are characteristic of explicit
category learning as it can be observed in humans and non-human primates. Therefore, I conclude
that mice can indeed learn rules for categorization.
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4.2 How does the experiment shape the result?

The goal of establishing rule-based category learning in mice was to study the function of prefrontal
cortex with respect to such behavior. Before discussing the results of that investigation, I will first
consider potential constraints of the chosen approach on behavioral and neuronal observations.
Investigating category learning in an experimental setting required choosing a motivational
incentive (water), a stimulus modality (visual stimuli) and a task structure (predominantly a
Go/NoGo task) for the training. In general, all these aspects affect the behavior that subjects
display in experiments (Guo et al., 2014), and likely different parameters will be optimal for
different animal species. Hence, designing a task requires finding a balance between optimizing
settings for the chosen animal model and retaining comparability across species. Beyond an
influence on behavioral results, experimenters’ choices on these task aspects can also differentially
affect the observed function of a brain area in that context (Jourjine, 2017; Musall et al., 2019;
Eiselt et al., 2021; Santiago et al., 2021). Below, I will discuss how my rule-based category
learning paradigm could have shaped the results on a behavioral and neuronal level.

4.2.1 Effects of the task design on behavioral results

The majority of category learning experiments use operant conditioning to achieve the desired
learning in subjects. Operant conditioning (Skinner, 1935) pairs a behavioral operation with
an unconditioned stimulus (US) that has either positive or negative valence (i.e. a reward or
punishment, respectively). Through repeated association with a reward or punishment, the
operant behavior will be reinforced or discouraged. Designing an operant conditioning paradigm
involves choosing the US, a stimulus modality and an operant behavior. Each of those choices
will affect the behavior that subjects display in the task and, hence, can impact the results of a
study.

The following behavioral parameters can be influenced by the task design: the welfare of the
subject, learning speed and maximum performance that is reached after learning. In the following
paragraphs, I will detail my choices on US, stimulus modality and operant behavior for the
rule-based category learning paradigm and discuss their potential effects on the aforementioned
behavioral parameters.

In both chapter 2 and 3, I chose appetitive reinforcement for operant behavior, that is
presenting an intrinsically rewarding stimulus as the US, in response to the correctly displayed
behavior (Dickinson and Balleine, 1994). Positive reinforcers given in human studies are usually
snacks or monetary rewards, real or virtual (Levy and Glimcher, 2011). Working with animals,
researchers typically administer food, e.g. grapes or juice for primates (Remington et al., 2012;
Watanabe and Funahashi, 2015) and seeds, soymilk or water for rodents (Toth and Gardiner,
2000; Guo et al., 2014). In such animal studies, the reinforcement through food or water alone is
often not strong enough to motivate participation. In order to make food or water a stronger
reinforcer, animals are typically put on a restriction regime, limiting their food or fluid uptake to
either a fixed amount (calories or volume) every day or to a certain level of weight reduction
(Toth and Gardiner, 2000; Tucci et al., 2006).

First, I aimed to characterize the effect of food or water as a positive reinforcer with respect
to animal welfare and task performance. Hereby, I found that food and water as motivational
incentives, and the corresponding restriction regimes, differentially influenced the welfare of the
mice and their learning speed in the task, but not their maximum performance. On average,
water restricted mice showed mildly higher discomfort scores, evaluating their dehydration level
and fur condition, than food restricted mice, even though all animals were kept on 85% of their
pre-restriction weight. This could mean that water restriction is impacting the animals physiology
more than food restriction (Hamilton and Flaherty, 1973) or that the discomfort evaluation was
more sensitive to detect discomfort from water restriction, like dehydration. Specifically, the
scoring of the fur condition might be affected by reduced grooming as a strategy of mice to save
water (Ritter and Epstein, 1974).



84 4. Discussion

Water restricted mice reached the learning criterion in a visual discrimination task significantly
faster than food restricted mice, even though they on average performed fewer trials per training
session. While the faster learning of water restricted mice could not be explained by parameters
assessing task motivation, like per day relative weight loss and anticipatory licks, each water
drop amounted to a larger proportion of the daily water consumption than a soy milk reward
amounted to with respect to daily caloric intake. Potentially, the water drop was perceived
as a larger reward than the soy milk drop and might have created a larger incentive for the
water restricted mice to learn the discrimination task. Plateau performance after learning was
not different between food- and water restricted mice. Based on these results, I chose to use
water rewards for operant conditioning in rule-based category learning, keeping in mind that the
motivational state could be a confounding factor for the observed learning speed.

As the second parameter, the stimulus modality for category learning, I chose vision. The
main reason for that was comparability of behavioral and neuronal results to human and
non-human primate category research. In principle, stimuli of all sensory modalities can be
categorized (olfactory (Howard et al., 2009), auditory (Wyttenbach et al., 1996; Ohl et al., 2001),
somatosensory (Rossi-Pool et al., 2016) and even abstract categories independent of a modality
(Sorscher et al., 2021)). However, the visual modality is most predominantly used in category
learning research in humans and non-human primates (Freedman et al., 2001; Smith et al., 2010).
Especially the comparison of visual rule-based and information-integration tasks (see Chapter 1,
Figure 1.1) has provided important insight into explicit and implicit category learning systems
and has been used successfully in several species (Smith et al., 2012).

The key factor in rule-based and information-integration categorization tasks is that the two
features (here orientation and spatial frequency) need to be separately attended to or integrated,
respectively. Humans are able to do both (Smith et al., 2010), but for pigeons, for example, it is
less clear whether they are able to separate the two visual features (Smith et al., 2011). Since
rats show similar behavioral results to pigeons (Vermaercke et al., 2014) and category learning
in mice has only been tested using one-dimensional auditory stimuli (Zhong et al., 2019), it is
possible that mice cannot separate these visual features.

Could this choice for visual stimuli have negatively impacted mice’s performance in the
category learning task? In other words, could the choice for visual stimuli lead to results indicating
mice do not have an explicit category learning system, purely because mice are not able to separate
orientation and spatial frequency? Likely, only the observed learning speed was affected by my
choice: mice needed many training sessions to learn the task (see Chapter 3, Fig. 1c). Learning
speed in my experiments was in line with other observations of head-restrained discrimination
training in the visual (Andermann et al., 2010; Histed et al., 2012), somatosensory (Guo et al.,
2014), or auditory (Sanders and Kepecs, 2012) modalities, but was slower than training in
olfactory discrimination tasks (Komiyama et al., 2010; Abraham et al., 2012). However, the high
generalization performance (see 4.1.1) and strong indications for selective attention to relevant
stimulus features (see 4.1.2) argue against a fundamental difference in category learning due to
the lack of feature separation, despite slower learning.

Lastly, in addition to the choice of reinforcer and the sensory modality of the stimuli, the
choice of operant behavior for a given task will be reflected in behavioral results (Guo et al.,
2014). In the studies presented in this thesis, I used licking on one or two lick spouts (Go/NoGo
design, Chapter 3; two-alternative choice design, 2AC, Chapter 2; respectively) as the operant
behavior. Mice were able to learn both tasks with stable performances of 66-95% correct trials
(see Chapter 2, Fig. 4a,b; Chapter 3, Fig. 1c). However, mice in the 2AC condition (Chapter
2) learned the visual stimulus discrimination task fast than mice in the Go/NoGo condition
(Chapter 3). The former required on average ten days of training while the latter took on average
23 days to reach criterion. In the Go/NoGo task, animals readily learned the ‘Go’ response, that
is, to lick in response to a rewarded stimulus. Therefore, the observed difference in learning
speed was likely due to learning the ‘NoGo’ response, i.e. to withhold from licking in response to
the non-rewarded stimulus. Rodents in Go/NoGo tasks are inherently biased towards licking
and, hence, need extensive training to learn the appropriate behavioral inhibition to overcome
impulsive licking (Schwarz et al., 2010; Guo et al., 2014), presumably due to the repeated positive
reinforcement of the ‘Go’ response.
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Aside from the specific difference in learning speed between the Go/NoGo and the 2AC task,
head-fixed operant conditioning is slower than operant conditioning in freely moving animals.
There are two possible explanations. First, the type of operant behavior during head-fixation
could be more difficult to learn. Since operant conditioning positively or negatively reinforces
a displayed behavior of a subject, it builds on the natural behavioral repertoire of the animal.
Specifically for positive reinforcement learning, the more frequently a behavior is naturally used,
the more often it can be reinforced. Hence, a more naturalistic operant behavior will be easier
and faster to train. Often, like in tasks that involve navigating a maze, the operant behavior is
akin to natural foraging behavior and will give plenty occasion for reinforcement (Heisler et al.,
2015).

Second, head fixation itself causes stress for the animals. A study found that blood cortisol
levels of head fixed mice were substantially elevated compared to control animals and only
significantly decreased after ten days of daily habituation (Juczewski et al., 2020). For both
reasons, head-fixed paradigms require extensive habituation and training that precedes learning of
a sensory detection or discrimination task (Guo et al., 2014; Juczewski et al., 2020) and learning
speed can still be slow. Importantly though, after learning, plateau performance and reaction
time tend to not be affected (Abraham et al., 2012).

In summary, the choice of the US, stimulus modality and operant behavior each had an
effect on the behavioral results of the studies in this thesis. Hereby, learning speed was affected
the most by the difficulty in acquiring the operant behavior. Crucially, the plateau performance
after learning was not influenced by any of the discussed parameters. It is important to keep in
mind that the task design can be a confounding factor when comparing the learning speed across
species. However, slower learning in mice did not per se impair comparability of the category
learning results to humans and non-human primates, especially since mice showed important
characteristics of explicit category learning while successfully learning the task (see 4.1).

4.2.2 Confounding effects of the task design on neuronal results

Similar to the considerations that task design impacts behavioral results (see 4.2.1), neuronal
observations can also be confounded by the experimenter’s choice of motivational incentive,
stimulus modality and operant behavior in a learning paradigm. Task design can influence which
brain areas are involved, the magnitude of the role of a brain area and the kind of variables that
are represented by a brain area. Below, I will discuss possible confounding effects of my paradigm
for rule-based category learning on neuronal recordings in prefrontal cortex and potential impacts
on the conclusions of the study.

The involvement of prefrontal cortex in category learning is likely unaffected by the choice of
stimulus modality, motivational incentive or operant behavior. In several species, PFC has been
shown to be involved in visual and auditory category learning (Freedman et al., 2001; Gifford III
et al., 2005) and even the learning of modality-independent scene categories (Jung et al., 2018).
Further, category learning studies in humans, non-human primates and rodents typically use
very different motivational incentives (see 4.2.1) and operant behaviors, like key or touch screen
presses or even verbalization. Specifically considering rule-based category learning, as used in this
thesis, PFC is necessary for the task performance (Dias et al., 1996; Rossi et al., 2007; Broschard
et al., 2021), regardless of the presented rewards or required motor behaviors.

On the other hand, the choice of task design has a profound effect on the kind of repre-
sentations that can be detected and how those representations can confound the results of a
study. Prominently, a wide variety of parameters are represented in prefrontal cortex during
goal-directed behavior (Miller and Cohen, 2001; Merre et al., 2021). In primate and rodents, PFC
neurons show selectivity for almost any task-relevant parameter in an abundance of tasks (Asaad
et al., 1998; Mansouri, 2006; Pinto and Dan, 2015). Therefore, if one task aspect is associated
with another, for example a stimulus with a motor behavior, it can be challenging to disentangle
individual influences on neuronal activation. Beyond representations of single parameters, mixed
selectivity, i.e. the responsiveness of neurons to linear or non-linear combinations of parameters,
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is a key feature of prefrontal cortex (Rigotti et al., 2013; see 4.4.1 for a detailed discussion).
Therefore, which task parameters are relevant in a paradigm, and how these parameters relate to
each other, can impact what can be concluded from neural data.

There are two approaches that can be employed to investigate the function of any brain area.
The first approach is to study one behavioral task (like here a Go/NoGo visual categorization
task) and to try to capture all neuronal representations of the task as holistically as possible.
It does not restrict the investigation to one representation of interest (for example category
selectivity). This approach can help to gain understanding of how a brain area can solve a specific
task and what computations might underlie that process (Nieh et al., 2021). The second approach
focuses on one neuronal representation (e.g. category selectivity) and tries to minimize the
confounding effect of other task-relevant parameters (like choice behavior or reward). In primate
studies, animals are typically trained in ‘Delayed-match-to-category’ (DMC) tasks and category
selectivity is quantified during a delay period between sample and test stimulus presentation
(Freedman et al., 2001). Such a task design can help to distinguish neuronal representations
of category from motor or reward-related activity (Freedman and Assad, 2016). However, in
pilot experiments in mice, I found that the training times that mice needed to perform the task
were unfeasible for chronic two-photon imaging. An alternative possibility is to test for category
selectivity across different tasks or contexts in order to understand whether it generalizes across
tasks.

I applied both approaches in order to characterize prefrontal cortex function during category
learning. First, because in the Go/NoGo task one stimulus category was associated with a
‘Go’ response, and also a reward, and the other category was not, category, choice and reward
were highly correlated task-parameters. However, in trials where a mouse made an error, this
coupling broke down. I made use of such partial decoupling by building a generalized linear
model (GLM) that aimed to predict trial-by-trial activity of individual neurons from task-relevant
parameters. Applying this GLM analysis to recordings of trained mice, I found neuronal selectivity
to stimulus category, choice, reward and mixtures of those (see Chapter 3, Extended Data Fig.
9). This approach reproduced the finding that PFC holds representations of several behaviorally
relevant parameters. In the future, this could be used to characterize the emergence of individual
representations through learning and identify potential interaction that could give insight about
computations within PFC.

However, the GLM analysis could not definitively disentangle the influence of stimulus
category and choice behavior on neuronal activity. Following the second approach, I asked how
category selectivity of individual neurons would generalize across different motor requirements
and reward contingencies. After training mice in the Go/NoGo task, I changed the design to
a 2AC (‘lick left’/’lick right’) task. Hereby, I found that a large proportion of neurons showed
selectivity for task parameters in a context-specific way, i.e., in only one of the tasks. Most
prominently, groups of neurons in PFC were significantly modulated by ‘Go’ choice in the
Go/NoGo task, whereas in the Left/Right task neurons also represented ‘lick left’ and ‘lick right’
specifically. Importantly though, PFC also contained a fraction of neurons, whose category
selectivity generalized across the different tasks without a confounding influence of behavioral
choice or reward (see 4.3.1).

In conclusion, the task design has a profound effect on the observed neuronal representations
in prefrontal cortex, in line with prominent proposed models of PFC function (Duncan, 2001;
Miller and Cohen, 2001). On the one hand, this can be a confounding factor when interpreting
neuronal recordings of PFC during category learning (that I will discuss in the following section
4.3) and therefore needs to be kept in mind. On the other hand, characterizing PFC activity
with such detail can reveal underlying computations and general mechanisms of PFC function
(see 4.4).
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4.3 Prefrontal cortex in rule-based category learning

I established a rule-based category learning paradigm for mice that allowed me to study underlying
neuronal mechanisms. In neuroimaging studies, neuropsychological data from humans and
electrophysiological data from non-human primates it has been established that a large variety of
brain areas are involved in different category learning tasks (Ashby and Maddox, 2005) and at
different stages within the category learning paradigm (Smith and Minda, 1998). That is, there
is no single ‘categorization’ area, but rather diverse networks of circuits depending on the task at
hand (for review, see Ashby and O’Brien, 2005).

For explicit, rule-based category learning, prefrontal cortical areas have been shown to play
a crucial role. They hold category representations that are more abstract than in other areas
(Freedman et al., 2001; Brincat et al., 2018) and without prefrontal cortex the explicit category
learning system, specifically, is impaired (Milner, 1963; Broschard et al., 2021). However, studies
from humans and non-human primates leave open questions of when and how prefrontal neurons
acquire category-selective responses, how these computations arise from the different types of
inputs that prefrontal cortex gets and whether category-selective activity in prefrontal cortex is
necessary to perform learned categorization, i.e. is part of the semantic memory of the categories.

In the study in chapter 3, I aimed to characterize category-selective neuronal activity in
prefrontal cortex of mice. Using chronic two-photon calcium imaging, I followed the activity of
individual prefrontal neurons through category learning to gain insight about when and how
category selectivity arises during learning.

4.3.1 Category selectivity after learning

To find out whether the mouse model can contribute to the understanding of category learning in
the brain, I needed to establish whether there are commonalities between the human/primate brain
and the mouse brain with respect to solving categorization tasks. In primates, electrophysiological
studies discovered that roughly a third of all recorded neurons in dorsolateral prefrontal cortex
(dlPFC) showed category-selective responses, after the animals were trained on a category learning
paradigm (Freedman et al., 2001; Roy et al., 2010). These early findings put prefrontal cortex at
the center of studies characterizing category representations and modeling circuit interactions
(Miller et al., 2002; Brincat et al., 2018; Villagrasa et al., 2018). So far, it had not been addressed
whether also mouse PFC has a role in category learning. No direct functional correspondence
could yet be drawn between specific areas of primate PFC and mouse PFC (Carlén, 2017), as
both are rather characterized by their heterogeneity (Merre et al., 2021).

In this thesis, I tested whether mouse medial prefrontal cortex (mPFC) is involved in rule-
based category learning. Specifically, I investigated whether neurons showed category-selective
activity in mice trained on a rule for categorization, as found in dlPFC of non-human primates.
Indeed, after mice learned rule-based categorization, I detected neurons that showed stimulus-
evoked activity to visual stimuli of one category over the other. On average, 10% of all recorded
neurons in mPFC displayed such category selectivity following the active rule (see Chapter 3,
Fig. 2g,h).

Due to the Go/NoGo task design, this observation of category selectivity could be confounded
with neuronal representations of operant behavior and reward ((see 4.2.2)). In non-human primates
this confounder is avoided by employing a DMC task design (Freedman and Assad, 2016). I used
a switch from a Go/Nogo task to a left/right choice task to, similarly, disentangle the influence of
motor and reward components on prefrontal neuronal activity. Hereby, stimulus category, operant
behavior and reward were decoupled through the change in task. A unique contribution of the
stimulus category on PFC activity was revealed through GLM analyses that included category
identity, operant behavior and reward of both tasks, and even uninstructed, task-irrelevant
behaviors (Musall et al., 2019) to predict neuronal activity. This unique contribution reflected
neuronal activation that could only be explained by the presented categories and not by any of the
potential confounders. More specifically, the GLM enabled identifying individual neurons whose
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selectivity generalized across both tasks. Strikingly, a fraction of the recorded PFC neurons was
uniquely category-responsive (4.3%; similar proportion to rule encoding in mouse PFC, Rikhye
et al., 2018). These neurons indicated the category of a presented stimulus in both the Go/Nogo
and the left/right choice task, irrespective of the task context.

In summary, my rule-based category learning paradigm enabled reproducing a crucial finding
from category learning research in non-human primates: category selectivity in prefrontal cortex.
After learning, mouse PFC neurons show category-selective activity to presented visual stimuli,
independent of displayed operant behavior and reward. The results are in line with findings
of other functional features that mouse mPFC and primate dlPFC have in common, like the
encoding of rules (Wallis et al., 2001; Rikhye et al., 2018), and point to an evolutionary conserved
function of PFC in goal-directed behavior.

4.3.2 Rule specificity of category representations

Individual neurons in prefrontal cortex form representations of learned categories. But since we
can learn, memorize and recall a huge number of categories, the question arises how the category
representations relate to each other. In general, there are two hypotheses how such neuronal
representations can be implemented: either, neurons could be part of multiple category represen-
tations, i.e. ‘categorization neurons’, or independent groups of neurons could represent different
categories. These hypotheses likely have different implications for the neuronal mechanisms
underlying category encoding and recall.

According to the first hypothesis, category-selective neurons are a set of neurons that get
recruited with learning, together with other representations of task-relevant parameters (see
Duncan, 2001; see 4.4.3). These neurons would be closely linked to the behavioral output, and
therefore likely signal any learned category as long as it is relevant to the current behavior of a
subject (Cromer et al., 2010). If prefrontal cortex indeed had such ‘categorization neurons’, they
would remap their response behavior every time a stimulus-to-category mapping changed and,
hence, different category identities became important after a switch in rules. This hypothesis
is similar to global remapping of place cells in hippocampus upon entering a new environment
(Muller and Kubie, 1987).

The second hypothesis proposes that, with learning, largely independent groups of neurons
in prefrontal cortex gain category selectivity. This would enable learning many categories
without overwriting previous knowledge and therefore facilitate memory and recall of the different
categories (Roy et al., 2010). According to this hypothesis, likely, category-selective neurons are
more closely linked to the sensory, here visual, input conveying information about the relevant
stimulus features. In this case, different groups of neurons would become active whenever the
stimulus-to-category mapping changes upon a rule-switch.

The rule-switch in my category learning paradigm aimed to identify whether prefrontal
cortex rather held categorization neurons or independent representations. I trained mice on two
categorization problems according to two rules, consecutively, and recorded activity of the same
neurons through the learning period of both category rules. For each rule, a similar fraction
of neurons (8-10% of all observed neurons) showed selectivity for the relevant categories (see
4.3.1; Chapter 3, Fig. 2g,h; Extended Data Fig. 6a). In order to relate those groups of category-
selective neurons to each other, I calculated how many neurons were overlapping, i.e. were part
of both groups. This revealed a difference between neurons selective for the ‘Go’ category and
the ‘NoGo’ category. ‘Go’ category-selective neurons overlapped more than expected by chance,
whereas the overlap of ‘NoGo’ category-selective neurons was within that expected range (12.6%,
3.9%, respectively; Chapter 3, Extended Data Fig. 6b). This finding indicated that a subset of
category-selective neurons remapped their category responses in order to remain selective to the
relevant feature for categorization (Chapter 3, Extended Data Figs. 5e, 6c,d). This is in line with
the first hypothesis that neurons in PFC can encode multiple learned categories, hence that PFC
holds categorization neurons. A similar result was obtained from non-human primates trained on
two independent category sets, where a large fraction of neurons in PFC was found to represent
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both categorical distinctions (Cromer et al., 2010).
However, there are two important considerations to put my findings into context. First, the

fraction of truly remapping category-selective neurons was likely smaller than quantified above
due to confounding selectivity to the operant behavior or reward rather than stimulus category
(see 4.2.2). Here, the time course by which a neuron acquired selectivity gave an indication
what parameter influenced the neuron, since the operant behavior was learned earlier than the
categories (see Chapter 3, Extended Data Fig. 7g). PFC held both, neurons that reflected
learning of choice behavior, but, importantly, also remapping categorization neurons that acquired
selectivity following the time course of category learning of each rule (see Chapter 3, Extended
Data Fig. 7h,j).

Second, even though some category-selective neurons remapped to the novel categories, the
majority of neurons did not. The neurons that did not overlap between the category-selective
populations showed no stimulus responsiveness in the respective other condition, indicating that
those neurons exclusively represented one learned set of categories (Chapter 3, Extended Data
Fig. 6c,d). This finding is in line with results from non-human primates trained to switch between
two rules for categorization (Roy et al., 2010). In this study, independent groups of neurons
represented the categories that followed orthogonal rules on the same stimulus set.

What do the different observations imply for category representations in PFC? Likely, the
two hypotheses are not mutually exclusive, but rather reflect the ends of a spectrum. That is,
prefrontal cortex shows both categorization neurons and independent representations, while their
respective contribution depends on the context of the task. If a subject trains two independent
categorization problems simultaneously, like in Cromer et al. (2010), the categories do not conflict
each other and, hence, can be encoded by categorization neurons. On the other hand, if stimuli
change their category identity, as with the rule-switch (Roy et al., 2010), independent groups
of neurons resolve the conflict. In line with a more graded theory, in the rule-switch condition
also some neurons were selective for both categorical distinctions (see Extended Data Fig. 6b;
7.1% in Roy et al., 2010), and Cromer et al. (2010) also observed neurons that were exclusively
selective to one categorical distinction.

In summary, in prefrontal cortex one set of category-selective neurons flexibly remap their
selectivity to encode the behavioral relevance of the categories and another, larger set of neurons
show rule-specificity in their representation of learned categories. Taken together, neither
hypothesis – categorization neurons or independent representations – can be excluded. Rather, in
prefrontal cortex a mixture of both can be observed, with the balance between them depending on
the structure of the tested categories. Further work is needed to better characterize the relation
and stability of category representations in mouse prefrontal cortex. For example, chronically
recording neurons while mice perform another rule-switch, i.e. going back to the first learned
rule, could help to better understand the kind of encoding of such category-selective neurons,
their potential role in category memory and implications for the underlying circuitry.

4.3.3 Just broad visual tuning?

Could the observed category selectivity reflect the activity of visually driven neurons, independent
of any category learning? Neurons that are broadly tuned to the presented stimulus features,
orientation and spatial frequency, could appear category-selective. In order to answer this
question, it needs to be addressed whether prefrontal cortex, as a target of direct inputs from
visual areas (Pandya and Yeterian, 1990), per se displays tuning to visual features of the presented
stimuli. In primary sensory areas, tuning to sensory features like visual orientation (Hubel and
Wiesel, 1962) or auditory frequency (Phillips and Irvine, 1981) and multi-dimensional tuning
(Jimenez et al., 2018) is common. If such responsiveness can be found in PFC, neurons with broad
visual tuning to a combination of orientation and spatial frequency might be falsely classified as
category-selective, because their response pattern existed independently of the learned categories.

Unlike in sensory cortical areas, there are few studies of sensory feature tuning in the absence
of goal-directed behavior in the prefrontal cortex of any species. There is some evidence from



90 4. Discussion

object recognition tasks in primates that prefrontal cortex neurons respond to novel visual objects,
and that with increasing experience, and hence familiarity of the object, fewer neurons respond
with narrower tuning curves (Rainer and Miller, 2000). However, when comparing activity to
the same visual stimuli before and after learning a visual working memory task, Qi et al. (2011)
have observed more neurons being recruited after learning, but on average a decreased stimulus
selectivity. These contrasting findings could be due to different measurements of neuronal activity
and selectivity, but also potentially due to a task-dependency of the recruitment of PFC neurons.
In non-human primates learning stimulus discrimination (Cromer et al., 2011) or categories
(Antzoulatos and Miller, 2011), category-selective neuronal activity in PFC arose with learning
(and abstraction of the category). These finding argue against preexisting tuning to underlying
features and rather for a learned representation in PFC.

In the mouse, visual tuning to orientation and spatial frequency, as in visual cortical areas,
has not been characterized in prefrontal cortex. Two observations in my experiments indicate that
category selectivity in mouse PFC was not due to preexisting visual tuning. First, I compared
category selectivity before and after learning. For this analysis, I recorded activity from PFC
neurons in naïve mice to quantify ‘baseline’ visual tuning properties. Hereby, I presented all
stimuli that would later be part of the categorization task. In this baseline session, hardly any
neuron showed category selectivity (Chapter 3, Fig. 2g,h; Extended Data Fig. 6a). Likewise,
neurons I identified as category-selective after learning did not show selectivity for categories,
individual stimuli or visual features during the baseline session (Chapter 3, Fig. 2d; Extended
Data Fig. 5).

Second, as described in detail in section 4.3.2, a fraction of category-selective neurons
remapped their selectivity upon the rule-switch in order to signal the newly relevant categories
(Chapter 3, Extended Data Fig. 6b-d). Such remapping required a significant change in their
tuning to underlying visual features across a brief learning period. If the observed category
selectivity was due to preexisting visual tuning in PFC, this tuning would likely not be flexible
enough to support such a rapid change.

In summary, chronic two-photon imaging of calcium activity in individual prefrontal neurons
allowed for comparing response properties before and after learning. While neurons showed
category selectivity after learning, during baseline sessions no such responsiveness could be
observed. This finding suggests that the category representation was built up with learning and
not due to broad, preexisting tuning to the visual features in the task.

4.3.4 Category representation as a part of memory

Is the category representation in mouse PFC part of long-term memory for the learned categories?
While the role of prefrontal cortex in coordinating goal-directed behavior is undoubted, it is less
clear whether PFC is also involved in the storage of long-term memories (see also 4.4.3). One key
implication for PFC circuitry would be that, with learning, lasting representations are formed
that encode relevant parameters and that can be recalled when necessary. A possible mechanism
for such a formation could be changes in connectivity of PFC neurons to their inputs from other
brain areas, for example sensory inputs, or from within PFC. An alternative hypothesis is that
PFC is not part of long-term memory and does not form representations through connectivity
changes, but rather flexibly encodes task variables through sustained firing (Duncan, 2001; Miller
et al., 2002).

Following the time course of emerging category selectivity in prefrontal cortex can give
an indication how fast the representation is acquired and how stable it is across learning. In
non-human primates, category learning studies typically only record neurons in a single training
session (Antzoulatos and Miller, 2011). Such a time frame is not sufficient to determine stability
of the representation and hence to distinguish between the hypotheses above. In contrast, the
paradigm of chronic two-photon calcium imaging in mouse mPFC that I employed allowed for
investigating the dynamics of the acquisition and the stability of category selectivity.

I observed mice from the state of a naïve performer, that has never been trained on a
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categorization problem, to an expert performer. Hereby, identified category-selective neurons
could be investigated in all prior training stages. The two groups of category-selective neurons –
‘Go’ and ‘NoGo’ category-selective – on average showed different dynamics of acquiring category
selectivity (Chapter 3, Fig. 3c,d). The ‘Go’ category-selective neurons displayed selective
responses already after stimulus discrimination learning, i.e. before proper category learning
had started. Further, on average they remained selective through the entire behavioral training,
including the rule-switch. In contrast, ‘NoGo’ category-selective neurons gradually increased
in their selectivity with category learning. This result pointed to a difference between the two
groups of neurons.

However, for the two following reasons it was necessary to investigate the time course of
individual neurons rather than their average. First, as discussed in section 4.3.2, the average time
course was confounded by neurons selective to operant behavior and reward rather than stimulus
category. Second, an average time course that appears like a gradual increase of selectivity could
be composed of individual neurons that gain and lose selectivity in an instantaneous fashion,
rather than gradually. I found that in both ‘Go’ and ‘NoGo’ category-selective groups, there were
neurons whose time course of selectivity acquisition was best explained by the gradual acquisition
of selectivity for a learned rule (Chapter 3, Extended Data Fig. 7g-k).

This finding is in line with the gradual increase in category information characterized in
primate prefrontal cortex during the learning within one training session (Antzoulatos and Miller,
2011). While in primates the categories were learned - and thus also category selectivity was
acquired - within few trials, the increase in category selectivity in mouse prefrontal cortex was
observed over several days of training for each of the learned rules. This adds to the primate
finding that the acquired selectivity is not due to the recruitment of a new set of neurons within
each training session (Duncan, 2001), but rather a more stable component in the neuronal
representation.

In summary, neurons in mouse prefrontal cortex acquire category-selective responses gradually
over several days during the learning period. This observation of gradual emergence of category
selectivity lays the groundwork for further experiments to probe the stability of the representation
- i.e. probing the neuronal responses over a period of stable categorization behavior - and
future perturbation experiments to determine whether there is a causal implication of category
representations in PFC in categorization behavior. Such experiments will help to further
disentangle the role of PFC in the long-term memory of categories and rules from its role in
orchestrating goal-directed behavior (see 4.4.3).

4.3.5 PFC as part of a category learning network

I have so far discussed the category learning behavior in mice and the investigation of category
representations in the brain, focusing on prefrontal cortex. However, from prior category learning
research - in humans, primates and rodents - it is clear that PFC is by far not the only brain
area involved in category learning. Rather, varying networks of brain areas interact depending
on the category learning problem at hand. Therefore it is important to consider the function
of prefrontal cortex in the context of findings from other brain areas, possible connections and
proposed interactions.

Two neurocomputational models that I have described earlier (see 1.2.4.3; Knoblich et al.,
2002; Villagrasa et al., 2018) aim to devise a mechanism by which category selectivity arises in
prefrontal cortex. Both predict, based on electrophysiological observations in inferotemporal
cortex (ITC) and prefrontal cortex of primates, that neurons in PFC acquire category selectivity
through Hebbian plasticity at the connections between ITC and PFC. Input from object- or
shape-selective neurons in ITC is hereby combined with information about what is relevant to the
current task, for example through feedback about reward (a ‘teaching signal’). This combination
of inputs onto prefrontal neurons are suspected to drive plasticity. While Knoblich et al. (2002)
do not speculate on how the latter information arrives in prefrontal cortex, Villagrasa et al. (2018)
propose a connection from striatum via thalamus to prefrontal cortex to relay a teaching signal.
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The choice- and reward-related activity I observed in mouse PFC (see Chapter 3, Extended
Data Figs. 8,9; 4.2.2) could be a form of task-modulation that is necessary to drive plasticity
between visual processing areas and prefrontal cortex. Both choice- and reward responsiveness
were present in individual neurons of PFC as soon as the mice acquired basic task knowledge
(T2, stimulus discrimination task; see Chapter 3, Extended Data Fig. 7). Such responses could
be a teaching signal that, through changes in connectivity within PFC, gets combined with
sensory input and therefore leads to a gradual acquisition of category selectivity. According to
the model by Villagrasa et al. (2018), striatum learns stimulus-response associations through
synaptic changes between ITC and striatum. This learned information gets relayed via thalamus
to prefrontal cortex. The model circuitry is based on connectivity in the primate, but the key
connections have also been described in the mouse (Pan et al., 2010; Hintiryan et al., 2016;
Kuramoto et al., 2016). Even though ITC, as defined in primates, is not as clearly distinguished
in the mouse, the mouse visual system also follows the broad distinction of dorsal and ventral
stream (Wang et al., 2012). Areas associated with the ventral stream, like postrhinal cortex
(POR), show functional similarities to ITC with respect to object sensitivity (Furtak et al., 2012)
and also do connect to mouse prefrontal areas (Hwang et al., 2018). Further, context modulation
of PFC neurons through thalamus has been observed in mice that learned different task rules
(Rikhye et al., 2018). Such modulation could be due to the proposed connection between striatum
and prefrontal cortex and could also be involved in category learning tasks.

In summary, the gradual acquisition of category selectivity and the representation of other
task-relevant parameters are in line with predictions from network models of prefrontal cortex in
category learning. Even though these models were based on results from studies in non-human
primates, several proposed connections are conserved in the mouse.

The mouse model therefore provides several approaches to test predictions from elaborate
network models. First, the task design that I developed allows for the recording of activity
from a variety of brain areas throughout category learning. With chronic two-photon calcium
imaging, activity in ventral visual stream areas can be observed (Goltstein et al., 2021). Such
an investigation could potentially reproduce and expand upon results from primate area ITC.
Second, through a task design that temporally separates stimulus presentation and reward, the
precise timing of PFC neuronal activity can help elucidate what parameters modulate PFC
neurons at what point in the training. With such design, possibly a key feature of the striatum-
PFC interaction model could be reproduced – the shift in response timing from reward-related
activity to stimulus-related activity that happens in primate PFC with learning (Pasupathy
and Miller, 2005; Antzoulatos and Miller, 2011; Villagrasa et al., 2018). Further, connections
between brain areas like ventral visual stream area POR and striatum or PFC can be precisely
traced (Pan et al., 2010; Oh et al., 2014), forming a clearer picture of the possible underlying
network interactions. This connectivity information can also be used to target projection specific
investigations of activity, like imaging of synaptic inputs or outputs from downstream or upstream
areas, respectively. Such information can help determine how different kinds of task-relevant
information are conveyed across and integrated within brain areas and hence fill in the gaps in
the network models of category learning.
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4.4 A general theory of prefrontal cortex function?

Can the findings about prefrontal cortex activity in category learning help understand how this
brain region generally functions? In other words, are there motifs in the involvement of prefrontal
cortex in category learning that can be extrapolated to understand prefrontal computations in
general?

So far, I have discussed the implications of my results on category learning in the brain
and the role of prefrontal cortex during categorization. In the last section of this discussion,
I will consider aspects how the results from prefrontal cortex during category learning can be
integrated with prior research in order to understand if there is a general theory of prefrontal
cortex function.

4.4.1 Mixed selectivity

Already early on, researchers characterized the activity of prefrontal cortex neurons in different
tasks and contexts, and described neuronal selectivity to various task-relevant parameters (see
1.2.3.2). Historically, studies mainly looked for selectivity in a ‘classical’ sense, that is, preferential
responses to an individual parameter that can be isolated from other factors (Rigotti et al., 2013).
Neurons selective to various parameters were identified, such as neurons showing selectivity for
a stimulus during working memory (Fuster and Alexander, 1971), or rule- (Wallis et al., 2001;
Rikhye et al., 2018) and category selectivity (Freedman et al., 2001), but also reward- (Niki
and Watanabe, 1979; Lak et al., 2020) and choice-selective responses (Asaad et al., 1998; Pinto
and Dan, 2015; Lui et al., 2021). These findings showed the abundance and diversity of neural
encoding of task parameters in prefrontal cortex, but also highlighted the difficulty in identifying
a unified principle of PFC function.

However, it became clear that characterizing neurons by their selectivity to one parameter
did not capture the complexity of neuronal activation. The majority of neurons in prefrontal
cortex is driven by linear or non-linear combinations of two or more task parameters. This type
of encoding was termed ‘mixed’ selectivity (Rigotti et al., 2013). In several species, studies have
reported linear or non-linear mixed selectivity in prefrontal cortical neurons. Examples that have
been described are context- or rule modulation (Mansouri, 2006; Zheng et al., 2021), integration
of target location and task epoch (Parthasarathy et al., 2017) or higher dimensional interactions
of task parameters (Balaguer-Ballester et al., 2011; Kobak et al., 2016).

In chapter 3, I mainly characterize neurons that show selectivity to learned categories,
i.e. classically selective neurons. By focusing on disentangling stimulus category, choice and
reward contributions, I describe neurons in PFC that are uniquely modulated by the presented
category (see Chapter 3, Fig. 4h). The linear regression analysis that I used also revealed
neurons that showed classical selectivity for other parameters, like reward or motor activity.
Importantly, the majority of the neurons whose activity the regression model could capture
(Chapter 3, Extended Data Fig. 9e), were best predicted by a linear combination of two or
more task-relevant parameters. Most prominently, many category-selective neurons were also
influenced by behavioral choice (Chapter 3, Extended Data Fig. 9d) and a large number of
neurons were driven by combinations of category, choice and reward (Chapter 3, Extended Data
Fig. 9i), hence showed linear mixed selectivity. Both, the observed classical and mixed selectivity,
are in line with encoding of task-relevant parameters that has been previously characterized
(Pinto and Dan, 2015; Lak et al., 2020).

There were, however, also neurons that could not be predicted well with the linear regression
model (Chapter 3, Extended Data Fig. 9e). This could be due to several reasons. A straightfor-
ward explanation for a low prediction performance could be that those neurons were unresponsive
during the task or their responses did not exceed the level of noise. Indeed, model performance
correlated with a neurons detected response amplitude (Chapter 3, Extended Data Fig. 9f).
However, another reason for a low prediction for some neurons could be that the model did not
contain information that would be necessary to explain their activity. First, that could be precise
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temporal information about the task parameters and neuronal activity. Using event kernels to
predict the neuronal activity across each trial rather than trial averaged activity (Runyan et al.,
2017) could add necessary detail to a model to explain activity of prefrontal cortex neurons better.
Second, a parameter of modulation by the activity of other PFC neurons could be included to
capture neuronal coupling within prefrontal networks (Runyan et al., 2017).

Lastly, an important consideration is that the linear regression analysis was only able to
characterize linear mixed selectivity. Non-linear mixed selectivity could not be fitted, because I
did not include non-linear combinations of task parameters into the model. Primate prefrontal
cortical neurons have been shown to be modulated by non-linear combinations of task parameters
(Rigotti et al., 2013; Parthasarathy et al., 2017). In the mouse, non-linear encoding of learned
task-relevant parameters has been described in the hippocampus (Nieh et al., 2021), but whether
prefrontal cortex in this species employs such coding is yet unknown. Therefore, there is a
possibility that a fraction of neurons was not fit well by my GLM due to non-linear mixed
selectivity.

Mixed selectivity could be a general computational mechanism that the mammalian prefrontal
cortex employs to efficiently solve complex tasks and to remain flexible enough to react to rapid
changes in behavioral requirements. Representing combinations of parameters at the level of
individual neurons is efficient because it increases the information that can be encoded in neuronal
populations compared to classical selectivity (Fusi et al., 2016). At the same time, a simple
linear read-out downstream is sufficient to retrieve information about any of the task-relevant
parameters (Rigotti et al., 2013; Fusi et al., 2016). So far, it remains an open question how such
mixed selectivity is computed by PFC neurons and what that implies for the stability of the
acquired representations. It is possible that inputs to PFC from different brain areas convey
different task-related information, for example that sensory areas like ITC convey information
about the presented stimuli, striatal connections via the thalamus convey the task context and
inputs from the ventral tegmental area (VTA) information about reward (Schultz and Dickinson,
2000; Han et al., 2017). Mixed selectivity could then emerge from PFC neurons flexibly connecting
to inputs from multiple areas or from connections to classically selective neurons within PFC
(Pinto and Dan, 2015).

By now, evidence has accumulated that such mixed selectivity is not unique to prefrontal
cortex but also exist in other brain regions. Mixed selectivity has been described in posterior
parietal cortex (Raposo et al., 2014), subiculum (Ledergerber et al., 2021) and even primary
visual cortex (Keller et al., 2012; Saleem et al., 2013). This indicates that mixed selectivity is
likely a general aspect of neuronal function across the cortex rather than specific to prefrontal
cortex, further highlighting the importance of such a computational motif.

Taken together, the finding that prefrontal cortex forms classically and mixed-selective
representations of task-relevant parameters allows for further investigations to elucidate pre-
frontal computations. Specifically, neuronal responses in this category learning paradigm can
be characterized in more detail, by asking whether mouse PFC neurons also show non-linear
encoding of task parameters, similar to primate dlPFC. Combining single neuron analyses, like
described in this thesis, with analyzing population dynamics can reveal how mixed selectivity on
the level of individual neurons gets integrated into population level representations. Importantly,
in mice it is possible to manipulate specific inputs to prefrontal cortex to probe how PFC neurons
gain mixed selectivity. This can help to understand how individual neurons receive and integrate
various inputs about stimuli, choices and outcomes and hence contribute to higher dimensional
representations and dynamics that are relevant for goal-directed behaviors.

4.4.2 Specificity to behaviorally relevant parameters

A striking aspect of prefrontal cortex activity is its specificity to encoding behaviorally relevant
variables. Sensory cortical areas represent features, e.g. visual, auditory or somatosensory, of our
environment. By now it is established that sensory areas show modulation of their activation
based on attention (Corbetta et al., 1990; Maunsell and Cook, 2002) or the state of the animal
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(Goltstein et al., 2015), and that learning a behavioral relevance can change those representations
(Poort et al., 2015; Goltstein et al., 2018b). Nevertheless, representations of behaviorally irrelevant
features (Poort et al., 2015) and selectivity independent of any training context (Hubel and
Wiesel, 1962) can also be observed.

In contrast, prefrontal cortex seems to prominently represent what is relevant to an organism,
regardless of any sensory modality (Rikhye et al., 2018; Zheng et al., 2021). Results from early
studies describing persistent activity during working memory tasks already found single neurons
selectively activated by a relevant task variable (Fuster and Alexander, 1971). Similarly, in both
primate and rodent prefrontal cortex, neurons show selectivity to learned, relevant task rules
(Wallis et al., 2001; Rikhye et al., 2018). Rule-based categorization is a paradigm that especially
highlights this aspect of prefrontal cortex because the same input from the same modalities can
be presented in different contexts, where only the task relevance of individual stimulus features
changes. Neurons in primate PFC represent the categories that the monkey discriminates at any
given time. Independent groups of neurons were found to be category-selective for each active
rule (Freedman et al., 2001; Roy et al., 2010).

The results presented in chapter 3 support this finding (see 4.3.2). Since I recorded neuronal
activity in mice before they learned any task-relevance, baseline prefrontal cortex representations
of stimulus features could be assessed. In these baseline recording sessions, prefrontal neurons
did not represent the stimulus features (Chapter 3, Fig. 2b,d). None of the presented visual
features (grating orientation and spatial frequency) drove PFC activity of untrained mice before
relevance was assigned to them. Further, the switch in rules for categorization revealed that
hardly any PFC neuron showed category selectivity for the categories that followed the inactive
rule, i.e. category-selective neurons ceased their activity as soon as those categories lost relevance
or remapped to the newly relevant feature (Chapter 3, Fig. 3d,e).

The specificity to task relevance is in line with the adaptive coding model of prefrontal
cortex (Miller and Cohen, 2001; Duncan, 2001; (see 1.2.3.2)). According to this theory, PFC
neurons have the ability to encode whatever becomes relevant to an individual and to flexibly
change their code upon changes in behavioral requirements. A key implication of the model is
that each neuron gets diverse inputs about sensory, motor and reward features, but irrelevant
inputs get weakened while task-relevant inputs increase in strength. Through such selective
weakening and strengthening, tuning of PFC neurons for relevant features sharpens. With such
encoding, PFC could orchestrate attentional modulation of other brain areas in order to drive
goal-directed behavior, i.e. up- or downregulate activity in other brain areas depending on the
task (Miller et al., 2002). This proposed aspect is often referred to as cognitive control. Theories
of visual attention exemplify how PFC could enact such control over other brain areas: excitatory
top-down inputs from PFC onto visual cortex neurons bias the activity of neurons tuned to
relevant features and, through mutual inhibition, the activity of other neurons will be suppressed
(Desimone and Duncan, 1995; Miller et al., 2002). Miller et al. (2002) further suggest that
representations of task-relevant parameters in PFC connect with each other, forming a ‘model’
of the current task. PFC holding such a model would mean that partial information, such as
a sensory cue, can activate the entire PFC network for the task (Hebb, 1949), enabling it to,
in turn, activate other necessary components in different brain areas to elicit an appropriate
reaction. In category learning theories (especially Ashby et al., 1998), this specificity to task
relevance in prefrontal cortex is suggested to be a key component of active hypothesis testing
processes that serve to discover relevant rules in the explicit learning system.

So far, it is unclear how task specificity is computed in prefrontal circuitry during learning
and hence what underlies hypothesis testing on a cellular basis. One possibility is that the context
information that reaches PFC through inputs from thalamus (Rikhye et al., 2018) modulates
prefrontal representations based on their relevance. Prefrontal cortex could then internally
connect these representations and form a model of the current task. Another open question is,
whether irrelevant feature information - although not directly encoded in individual prefrontal
neuron representations - remains present in the population, and for example could still be decoded.
This could be a requirement in order to maintain the flexibility to rapidly react to changes in
task or context. Further work on investigating the activation of prefrontal cortex and its inputs
during goal-directed behavior and learning will be necessary to elucidate how prefrontal cortex
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implements one of its central features.

4.4.3 A dual role of PFC?

The final aspect that I want to discuss is, whether there is a role for PFC in long-term memory
(see 1.2.3.2). It is undebated that PFC is involved in organizing goal-directed behavior. Mixed
selectivity and the specificity to behavioral relevance, as described above, could be the core
mechanisms for such PFC function and form a complete picture (Duncan, 2001; Miller et al.,
2002). Alternatively, PFC additionally plays a role in long-term memory, as was hypothesized by
Fuster (2003). One key assumption for a role of PFC in storing long-term memories is that lasting
connectivity changes underlie the formation of representations of task-relevant parameters.

Duncan (2001) suggests that PFC neurons encode task parameters by regulating the activation
of neurons that receive specific inputs. However, they do not speculate on whether the inputs
to such PFC neurons are themselves strengthened or weakened in order modulate activity, and
whether that modulation is maintained in altered synaptic weights or not. Hence, their adaptive
coding model leaves open the role of PFC in long-term memory (see 1.2.3.2). On the other hand,
Miller et al. (2002) propose that prefrontal cortex function in cognitive control and extracting
task rules or contexts is implemented through specific patterns of sustained firing of individual
neurons rather than through lasting synaptic changes. The authors name two reasons for their
suggestion. First, cognitive control needs to span so many brain areas that top-down projections
from PFC have to reach, that changing synaptic weights in all of them would require a large scale
change. Second, changing the synaptic weights would likely be too slow for the level of behavioral
flexibility that might be needed. However, the authors also suggest that, within PFC circuitry, a
model of the task is built through repetition during learning, forming networks of associations.
These associations could be established through changes in synaptic weights and connections.

In contrast, Fuster (2003) proposed that PFC fulfils a dual role. On the one hand, PFC
temporally organizes goal-directed behavior, analogous to the previously discussed models
(Duncan, 2001; Miller and Cohen, 2001; Miller et al., 2002). On the other hand, Fuster’s theory
argues that prefrontal cortex learns the relevant task rules or contexts and stores them as part
of the long-term memory of a task. Network models of PFC function during category learning
(Knoblich et al., 2002; Villagrasa et al., 2018), hypothesize Hebbian synaptic plasticity between
areas ITC and PFC, i.e. direct connections from sensory areas, as the source for learned category
representations in PFC neurons. This implies a role of PFC in the long-term memory of the
learned task.

I observed that PFC neurons gradually acquire category selectivity reflecting the learning
of a task rule (see 4.3.4), in line with the results from primate category learning (Antzoulatos
and Miller, 2011; Villagrasa et al., 2018). A gradual acquisition of selectivity over multiple
days points to a level of stability that could support memory of the learned categories or task
rules. Studying semantic memory, it has not been tested whether such prefrontal representations
stably encode parameters long-term and if their activation, specifically, is necessary to the
learned behavior. After learning a task rule, broad optogenetic inactivation of PFC abolished
the behavioral performance (Rikhye et al., 2018), but the study did not test whether neurons
representing the task rule were crucial for the behavior rather than PFC as a whole. On the other
hand, mouse prefrontal cortex has been implicated in the recall of episodic memory, i.e. mainly
contextual fear memory (Frankland, 2004; Kitamura et al., 2017). These investigations have
identified prefrontal cortex neurons that got recruited to encode fear memory. The activation of
such ‘engram cells’ has been shown to have a causal role in the recall of remote, but not recent,
memory. Importantly, an involvement in memory recall does not necessarily mean that a brain
area also stores that memory (Simons and Spiers, 2003; Xiang and Brown, 2004).

In summary, studies so far have not been able to conclusively show whether, and how,
prefrontal cortex is involved in storing long-term memories, independently from orchestrating
goal-directed behavior. The gradual acquisition of category selectivity in mouse PFC indicates a
more stable encoding of task-relevant parameters than suggested by adaptive coding models of
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PFC (Duncan, 2001; Miller et al., 2002). This finding could point towards a role in long-term
semantic memory. Future manipulations that are targeted to specific neuronal representation will
be necessary to determine whether prefrontal cortex is part of the engram for semantic memory.

4.5 Outlook

The mouse model of category learning that I have established in this thesis opens up several
possibilities for future work. Here, I will outline potential experiments that can contribute to
elucidating neuronal underpinnings of category learning and computations in PFC that make it
so relevant to goal-directed behavior.

Optogenetic manipulation (Boyden et al., 2005; Deisseroth, 2015) of prefrontal cortex
activity in animals that are trained on a categorization task could be used to test the role
of PFC in the memory of learned categories and in generalization to novel stimuli. Further,
chronic optogenetic or chemogenetic (Armbruster et al., 2007; Roth, 2016) perturbation of
PFC activity during the learning process could help to understand whether prefrontal networks
take part in learning such a complex cognitive task. Potentially, neurons that are part of
a characterized category representation could even be specifically targeted by conditionally
expressing optogenetic tools under the control of an immediate early gene, like FosTRAP (Liu
et al., 2012; Guenthner et al., 2013). Such a level of specificity would help to understand whether
individual neuronal representations in PFC causally contribute to learned behavior or whether
remaining population activity is sufficient. If individual neurons encoding learned categories are
necessary for categorization behavior, that would support a role of PFC in long-term semantic
memory.

In vivo whole brain activity mapping techniques, like functional ultrasound imaging (fUS;
Macé et al., 2011), could be employed in mice that are performing the categorization task in
order to search for brain regions that play a role in learning or performing the task. As an
analogous to human fMRI, target areas for future investigations could be identified. We are
currently starting an investigation using fUS, aiming to identify all brain regions that are involved
in mouse category learning and at what learning stage they are involved. We hope to relate those
results to network models of category learning ((see 1.2.4.3), especially Villagrasa et al., 2018)
and, hereby, lay the groundwork to experimentally confirm the suggested interactions between
brain areas.

The extensive knowledge of connectivity of the mouse brain (Oh et al., 2014; Abbott et al.,
2020) and sophisticated tracing tools (Wickersham et al., 2007) can be used to test specific
hypotheses about the circuitry underlying category learning. Transsynaptic tracing based on
rabies virus allows for labeling of inputs to a brain area, for example inputs to prefrontal cortex.
By expressing calcium indicators in such input populations, neuronal activity can be recorded
from their axons in PFC. This enables investigating what type of information prefrontal cortex
receives at what stage of learning and whether plastic changes happen at the level of inputs
to PFC or rather within prefrontal cortex circuits. Understanding connections between brain
areas with such detail could confirm predictions of category learning models, for example by
identifying a striatal-based teaching signal (Villagrasa et al., 2018) or sensory input from visual
areas (Knoblich et al., 2002). Further, by characterizing the types of inputs that PFC receives,
one can potentially infer the computations that PFC neurons perform with those inputs, as has
been done for retinothalamic connectivity (Rosón et al., 2019), and, hence, how mixed selectivity
emerges in prefrontal cortex.

Here, I conclude that the mouse model of category learning has provided – and will continue
to provide – valuable insights into this process of forming groups that is integral to our lives and
by far not exclusive to us humans. The variety of tools that are available in mice will help to
expand our understanding of neuronal computations that underlie category learning and will
thereby complement the increasingly detailed investigations in humans.
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