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2. Introduction

21 Establishment and validation of prognostic gene signatures for
patients with urological malignancies including prostate cancer and
bladder cancer

2.1.1 Rationale of the study

Prostate cancer (PCa) is the most common malignancy diagnosed in men
worldwide [1]. More than 50% PCa patients underwent radical prostatectomy
(RP) as their primary treatment [2]. After RP, about 20% patients experienced a
biochemical recurrence (BCR) with an increasing prostate-specific antigen (PSA)
[3]. Several clinical trials have revealed that adjuvant radiotherapy brings tremen-
dous clinical benefits for high-risk subset including advanced stage (pT3/4) or
positive surgical margin [4-6]. However, about 50% patients without adjuvant ra-
diotherapy did not suffer BCR in a long follow-up of 5 years [5]. For these patients,
adjuvant radiotherapy would be an overtreatment with potential unnecessary ra-
diation-induced side effects. Therefore, an accurate personalized model to iden-
tify patients who have the potential of BCR after RP is an urgent issue for the
optimal management of PCa.

Bladder cancer (BCa) is another common malignancy of the urological system
worldwide. Among all the diagnosed cases per year, approximately 2/3 are non-
muscle-invasive bladder cancer (NMIBC), while the rest 1/3 are classified into
muscle-invasive bladder cancer (MIBC) [7]. In spite of improvements in BCa ther-
apies, clinical outcomes remain unfavorable. The standard treatment for localized
MIBC is radical cystectomy with bilateral pelvic lymph node dissection, but the 5-
year overall survival rate is less than 50% [8]. Though TNM staging and patho-
logical grading systems are widely applied for cancer management, prognosis
remains variable among BCa patients, even in a same pathological or grading
stage [9]. Therefore, establishment of a more precise prognostic model to identify
high-risk subset who may benefit from systemic therapies is urgently needed.

Advancements in high-throughput techniques have provided new insight into
transcriptome profiling and highlighted the utilization of molecules in disease di-

agnosis and prognosis [10]. Several studies have established gene signatures to



predict prognosis for patients with urological malignancies including prostate can-
cer and bladder cancer [11-13]. However, the clinical utility of these gene signa-
tures remains limited, and few of them were applied to clinical practice.

In this study, we aimed to establish robust gene-expression signatures to help
improve risk stratification and treatment decision making for patients with urolog-
ical malignancies using a series of bioinformatic and machine learning ap-

proaches.

2.1.2 Materials and methods

A total of 903 PCa patients with comprehensive clinical records including age,
Gleason score, pathological T stage, surgical margin status and follow-up BCR
information from six independent cohorts were included in our study. Three co-
horts come from Gene Expression Omnibus (GEO), one cohort from The Cancer
Genome Atlas (TCGA), one cohort from Memorial Sloan Kettering Cancer Center
(MSKCC), and a cohort from University Medical Center Hamburg-Eppendorf,
Germany. GSE70769 and GSE70768 come from a same study [14], and the mi-
croarray data was produced from a same chip platform (lllumina HumanHT-12
V4.0 Array). GSE54460 was produced from lllumina HiSeq 2000, which contains
94 patients with full-scale clinical annotations [15]. In addition, 388 patients with
RNA-seq data were accessed from TCGA, and microarray data of 138 patients
(produced from Affymetrix Human Exon 1.0 ST Array) were obtained from
MSKCC [16]. Finally, samples from 84 patients were consecutively collected at
Department of Urology and the Martini Clinics at the University Medical Center
Hamburg-Eppendorf from 2010 to 2016.

As regards to bladder cancer, four microarray datasets including 587 BCa pa-
tients with full-scale clinical annotations and cancer-specific survival information
were downloaded from GEO. The training set: GSE13507 (lllumina human-6 v2.0
expression beadchip); Three validation sets: 1) GSE31684 (Affymetrix Human
Genome U133 Plus 2.0 Array), 2) GSE32894 & 3) GSE32548 (lllumina Hu-
manHT-12 V3.0 expression beadchip). Normalized RNA-seq data, copy number
data and clinical phenotypes of MIBC samples were obtained from The Cancer
Genome Atlas (TCGA). Copy number data and TPM data of 22 bladder cell lines



were obtained from Cancer Cell Line Encyclopedia (CCLE) [17]. Normalized mi-
croarray data and IC50 values of different drugs were obtained from Genomics
of Drug Sensitivity in Cancer (GDSC) database [18].

Probe IDs were mapping to gene symbols according to annotation files, and
multiple probes towards a same gene were averaged to obtain a singular value.
In addition, expression measurements of multiple samples from a same patient
were averaged. All the microarray and RNA-seq data collected in this study were
normalized and log2 transformed.

The weighted gene co-expression network analysis (WGCNA) algorithm [19]
was used to construct a co-expression network based on transcriptome profiling
data of training samples. Univariate and LASSO Cox regression analyses were
combined to screen for robust candidate genes to develop prognostic signatures.
Risk score formula was established for individual patients as follows:
Risk score = )Y,;Coef (mRNA;) X Expr(mRNA;) , in which “Coef’ represents
LASSO Cox coefficients, and “Expr” represents normalized gene expression
value.

IBM SPSS Statistics 20 (IBM Corp., Armonk, N.Y., USA), GraphPad Prism 8.0
(GraphPad Software Inc, San Diego, CA), Stata 12 (StataCorp LLC, Texas, USA)
and R software (version 3.5.2, http://www.r-project.org) were used to analyze
data and plot graphs. Meta-analysis was performed to evaluate the prognostic
value of the established risk score in the pooled cohort. ssGSEA scores and risk
scores were scaled to Z-scores when necessary. GSEA [20] was performed to
confirm the role of the established gene signatures in specific biological pro-
cesses. Unsupervised hierarchical clustering method was performed to show
similarity among hallmarks and pathways, and a correlation network reflecting
their relationships and connectivity was generated by the Cytoscape [21]. Princi-
pal coordinates analysis (PCoA) was used to visualize the dissimilarity of two
groups based on the bray-curtis distance of their expression matrix. Circos was
used to visualize enrichment results of Gene Ontology analysis and overlapping
genes involved in different biological processes. The webtool cBioPortal [22] was
used to visualize the genomic alterations of the established gene signatures. The
Kaplan-Meier method was used to draw survival curves, and the log-rank test

was used to evaluate survival difference. Pearson’s correlation test is used to
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evaluate the correlation between two continuous variables with a normal distribu-
tion. K-means-based consensus clustering (R package ‘ConsensusClusterPlus’)
[23] or non-negative matrix factorization (NMF) consensus clustering [24] (R
package ‘NMF’) was performed to identify different clusters according to the gene
expression matrix. Nomogram was generated to quantify the survival risk using
R package ‘rms’. tROC analysis was used to measure the predictive capacity of
each parameter using the R package ‘survivalROC’, and calibration curve was
plotted to measure their predictive accuracy. Recursive partitioning analysis was
used to build a survival decision tree to improve risk stratification with R package
‘rpart’ [25]. Student’s t-test or one-way ANOVA was used to analyze the differ-
ences among different groups in variables with a normal distribution. p value less

than 0.05 was considered statistically significant.

2.1.3 Results and conclusions

The scoring formula of BCR risk for PCa patients is established as follows: Risk
score= (-0.22345 * ALDH1A2) + (0.364318 * ASNS) + (0.67184 * FAM171B) + (-
0.54351 * FREM2) + (-0.4304 * RSPO2) + (-0.17707 * SRD5A2) + (0.094559 *
SSTR1) + (0.040268 * TRIM14) + (-0.77555 * VPS4A); and the scoring formula
of cancer-specific survival for BCa patients is established as follows: Risk score=
(-0.38760 * HIGD2A) + (-0.08920 * TRIM2) + (0.03022 * CEP72) + (0.037675 *
CDKN2D) + (0.04360 * ZIC2) + (0.08159 * RCE1) + (0.08159 * GCHFR) +
(0.083565 * NMU) + (0.13716 * HOXCG6) + (0.15225 * ADM2) + (0.42630 *
SLC6A6) + (0.49191 * WDR62). The two proposed prognostic models function
well in patients with urological malignancies.

For prostate cancer patients, survival analysis revealed that significant differ-
ence of BCR (HR = 5.787, p < 0.0001) was observed between the low risk score
and high risk score groups in the training cohort. Multivariate Cox regression anal-
ysis indicated that the risk score was an independent risk factor for BCRFS (HR
= 5.084, p < 0.0001). The risk score was validated in five independent cohorts:
validation I: HR = 4.739, p = 0.0005; validation II: HR = 2.684, p = 0.0008; vali-
dation Ill: HR = 4.790, p = 0.0011; validation IV: HR = 5.708, p < 0.0001; valida-
tion V: HR = 5.193, p = 0.0004. Multivariate Cox regression analysis was per-

formed on the risk score and other clinicopathological features including age,
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Gleason score (GS), pathological T stage (pT) and surgical margin status. Nota-
bly, the risk score was still an independent risk factor for BCRFS in all five vali-
dation cohorts: validation I: HR = 3.979, p = 0.011; validation II: HR = 2.616, p =
0.007; validation Ill: HR = 3.120, p = 0.037; validation IV: HR = 2.913, p = 0.020;
validation V: HR = 3.241, p = 0.040. tROC analysis indicated that the risk score
exhibited the strongest predictive capacity in validation | and Il, while having sim-
ilar predictive power with some conventional clinicopathological parameters such
as Gleason score or pT in validation cohorts Ill, IV and V.

Meta-analysis was used to evaluate the performance of the prognostic gene
signature in the pooled PCa cohort. We observed that higher risk score was sig-
nificantly correlated with worse prognosis in the pooled cohort (HR = 4.84, 95%
Cl = 2.94 - 6.74). Risk scores were scaled to Z-score for each cohort, and we
observed that Z-scores were significantly elevated in BCR patients compared to
BCR-free patients (p < 0.0001).

For bladder cancer patients, higher ssGSEA scores of cell cycle progression
predict worse cancer-specific survival (HR = 3.804, 95% Cl = 1.893 - 7.643, p =
0.0004) in the training cohort. Based on this finding, WGCNA algorithm and
LASSO Cox regression analysis were applied and identified a set of 12 genes
that not also represent cell cycle progression, but also serve as robust prognostic
genes for bladder cancer patients. Based on their relative expression values and
individual LASSO Cox coefficients, the cancer-specific survival risk score was
calculated for each bladder cancer patient and defined as cell cycle progression
risk score (CCPRS).

CCPRS was significantly correlated with more advanced clinicopathological
characteristics such as muscle-invasive (MI) status and higher grade. Survival
analysis showed that BCa patients with higher CCPRS exhibited worse cancer-
specific survival in each cohort: training cohort: HR = 10.20, 95% CI = 5.041 -
20.66, p < 0.0001; validation I: HR = 2.991, 95% CI = 1.175 - 7.614, p = 0.0008;
validation II: HR = 8.468, 95% Cl = 3.791 - 18.92, p < 0.0001; validation Ill: HR =
6.345, 95% CIl = 2.762 - 14.58, p < 0.0001. Meta-analysis revealed that higher
CCPRS predicted a worse cancer-specific survival in a pooled BCa cohort (over-
all HR = 6.93, 95% CI = 4.63 - 10.37). Furthermore, multivariate Cox regression
analysis was performed to evaluate the cancer-specific survival risk in a total of

284 patients with full-scale clinical annotations including gender, grade, age,
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CCPRS, lymph node metastasis (LNM) and MI status. As a result, CCPRS acts
as an independent risk factor for cancer-specific survival (HR = 2.038, 95% CI =
1.291 - 3.218, p = 0.002) in BCa patients, along with Ml and LNM. Among BCa
patients who received systemic chemotherapy, those with higher CCPRS exhib-
ited worse cancer-specific survival (HR = 3.415, 95% Cl = 1.064 - 10.96, p =
0.0208). Among TCGA MIBC patients who received adjuvant therapies including
chemo- or/and radiotherapy, those with higher CCPRS exhibited significantly
worse overall survival (HR = 2.150, 95% CI = 1.082 - 4.270, p = 0.0241).

To quantify cancer-specific survival risk for individual BCa patients, a scoring
nomogram was generated via the combination of CCPRS and clinicopathological
parameters. The predictive capacity of the scoring nomogram is evaluated using
time-dependent ROC analysis, with the time-dependent AUC value of 0.944 for
1-year cancer-specific survival and 0.932 for 3-year cancer-specific survival, re-
spectively. In the calibration curve, the prediction of 3-year cancer-specific sur-
vival is extremely close to the actual survival probability, which indicated that the
nomogram has a high accuracy of cancer-specific survival prediction.

Considering MIBC accounts for a large proportion and acts as a leading cause
of death in BCa patients, we sought to improve the risk stratification for MIBC
patients via construction of an integrated survival decision tree which combines
CCPRS with other clinicopathological features. In detail, six variables including
age, gender, LNM, grade, pT and CCPRS were submitted for recursive partition-
ing analysis, and finally, only CCPRS, LNM and pT remained. Three risk sub-
groups were defined in the survival decision tree, and we observed that patients
in the high-risk subgroup exhibited the worst cancer-specific survival among all
three subgroups (p < 0.0001). Furthermore, MIBC patients with detailed infor-
mation from independent cohorts were used to test the classification capacity of
the survival decision tree. As expected, significant difference in cancer-specific
survival was observed among different risk subgroups identified by decision tree
in MIBC patients from the GEO database (p = 0.0090).

We hope the proposed prognostic gene-expression signatures can serve as a
useful tool to distinguish high-risk PCa and BCa patients who may benefit from
systemic therapies, and help facilitate personalized management of patients with

urological malignancies in clinical practice.
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3. Summary

The current tumor-node-metastasis (TNM) classification system is insufficient
for precise treatment decision-making or accurate survival prediction for patients
with urological malignancies, such as prostate cancer and bladder cancer. There-
fore, novel reliable biomarkers are urgently needed to identify the high-risk subset
who can benefit from adjuvant therapy after tumor resection.

In recent years, advancements in high-throughput techniques such as micro-
array and RNA-Seq have provided new insight into transcriptome profiling, high-
lighting the role of molecule markers in cancer diagnosis and prognosis. How-
ever, the exact biological function of each gene in such a gene signature was
often unclear, nor the interaction of them. Till now, the clinical utility of these sig-
natures remains limited, and few of them were applied to clinical practice.

In our studies, we combined a series of bioinformatic and statistical analyses
to develop gene signatures to predict prognosis in patients with prostate cancer
and bladder cancer. In combination of gene signatures and clinicopathological
features, survival decision tree or nomogram was established to optimize risk
stratification and survival prediction for these patients. The prognostic and pre-
dictive capacities of these gene signature-based models were also validated and
compared with traditional clinicopathological features in different patient cohorts
from public databases.

Some limitations in our study should be acknowledged. First, this is a retro-
spective study, so the prognostic robustness and clinical utilization of the gene
signatures need further validation in prospectively designed clinical trials. Sec-
ond, further experimental studies are needed to reveal the regulatory role of the

gene signatures in urological malignancies.
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4. Zusammenfassung

Die derzeitige Klassifizierung der Tumor-Knoten-Metastasierung (TNM) reicht
nicht aus, um Patienten mit urologischen Malignitaten wie Prostatakrebs und Bla-
senkrebs prazise Uber die Behandlung zu entscheiden oder das Uberleben ge-
nau vorherzusagen. Daher werden dringend neuartige zuverlassige Biomarker
bendtigt, um die Hochrisiko-Untergruppe zu identifizieren, die nach einer Tumor-
resektion von einer adjuvanten Therapie profitieren kann.

In den letzten Jahren haben Fortschritte bei Hochdurchsatztechniken wie
Microarray und RNA-Sequenzierung (RNA-seq) neue Einblicke in die Transkrip-
tomprofilierung geliefert und die Rolle von Molekulmarkern bei der Krebsdiag-
nose und -prognose hervorgehoben. Die genaue biologische Funktion jedes
Gens in einer solchen Gensignatur war jedoch oft nicht klar, noch die Wechsel-
wirkung zwischen ihnen. Bis jetzt ist der klinische Nutzen dieser Signaturen be-
grenzt, und nur wenige davon wurden in der klinischen Praxis angewendet.

In unseren Studien haben wir eine Reihe von bioinformatischen und statisti-
schen Analysen kombiniert, um Gensignaturen zu entwickeln, um die Prognose
bei Patienten mit Prostatakrebs und Blasenkrebs vorherzusagen. In Kombination
von Gensignaturen und klinisch-pathologischen Merkmalen wurde ein Uberle-
bensentscheidungsbaum oder ein Nomogramm erstellt, um die Risikostratifizie-
rung und Uberlebensvorhersage fiir diese Patienten zu optimieren. Die prognos-
tischen und pradiktiven Fahigkeiten dieser auf Gensignaturen basierenden Mo-
delle wurden ebenfalls validiert und mit traditionellen klinisch-pathologischen
Merkmalen in verschiedenen Patientenkohorten aus o6ffentlichen Datenbanken
verglichen.

Einige Einschrankungen in unserer Studie sollten anerkannt werden. Erstens
handelt es sich um eine retrospektive Studie, sodass die prognostische Robust-
heit und der klinische Nutzen der Gensignaturen in prospektiv konzipierten Klini-
schen Studien weiter validiert werden mussen. Zweitens sind weitere experimen-
telle Studien erforderlich, um die regulatorische Rolle der Gensignaturen bei uro-

logischen Malignitaten aufzudecken.
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Abstract: Currently, decision-making regarding biochemical recurrence (BCR) following
prostatectomy relies solely on clinical parameters. We therefore attempted to develop an integrated
prediction model based on a molecular signature and clinicopathological features, in order to forecast
the risk for BCR and guide clinical decision-making for postoperative therapy. Using high-throughput
screening and least absolute shrinkage and selection operator (LASSO) in the training set, a novel
gene signature for biochemical recurrence-free survival (BCRFS) was established. Validation of the
prognostic value was performed in five other independent datasets, including our patient cohort.
Multivariate Cox regression analysis was performed to evaluate the importance of risk for BCR.
Time-dependent receiver operating characteristic (tROC) was used to evaluate the predictive power.
In combination with relevant clinicopathological features, a decision tree was built to improve the risk
stratification. The gene signature exhibited a strong capacity for identifying high-risk BCR patients,
and multivariate Cox regression analysis demonstrated that the gene signature consistently acted
as a risk factor for BCR. The decision tree was successfully able to identify the high-risk subgroup.
Overall, the gene signature established in the present study is a powerful predictor and risk factor for
BCR after radical prostatectomy.

Cancers 2020, 12, 1; doi:10.3390/cancers12010001 www.mdpi.com/journal/cancers
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1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide [1].
Over half of PCa patients will undergo radical prostatectomy as their primary treatment choice [2].
After radical prostatectomy, approximately 20% of patients experience a biochemical recurrence (BCR)
with a rising prostate-specific antigen (PSA) level [3]. Several randomized phase 1II trials have shown
that adjuvant radiotherapy is beneficial for patients with high-risk factors such as pathological T3/4
(pT3/4) or R1 resection status [4-6]. However, about 50% of these patients did not suffer a biochemical
recurrence without adjuvant radiotherapy, even after a long follow-up of 5 years [7]. For these patients,
adjuvant radiotherapy would be an overtreatment, with some risk of unnecessary radiation-induced
side effects. Hence, a more precise method to identify patients suffering BCR after radical prostatectomy
is a critical issue for the optimal management of PCa.

Nowadays, advancements in high-throughput techniques such as microarray and RNA-sequencing
(RNA-seq) have provided new insights into transcriptome profiling, which facilitate the utilization of
molecules as diagnostic and prognostic biomarkers [8,9]. Some studies have established gene signatures
to help distinguish aggressive PCa tumors or improve survival prediction in PCa patients [10-12].
However, most of these signatures exhibit a prognostic value without having a direct impact on
treatment decision-making.

In this study, we established a gene expression-based signature to improve the prediction of BCR
after radical prostatectomy, using a univariate and least absolute shrinkage and selection operator
(LASSQO) Cox model. Then, the prognostic value of the gene signature was further validated in five
independent datasets across multiple platforms and our patient cohort. As regards clinical application,
the gene signature was combined with clinicopathological features to build a decision tree to improve
risk stratification for BCR. In addition, bioinformatic analyses were performed to reveal the biological
processes and potential pathways underlying the gene signature.

2. Methods

2.1. Dataset Preparation and Sample Collection

In total, 903 PCa samples with full-scale clinical annotations (age, Gleason score, pathological T
stage, surgical margin status, and follow-up BCR information) from six independent cohorts were
included in our study. Three cohorts were from Gene Expression Omnibus (GEQO), one cohort
from The Cancer Genome Atlas (TCGA), one cohort from Memorial Sloan Kettering Cancer Center
(MSKCC, Manhattan, NY, US), and our patient cohort was collected from University Medical Center
Hamburg-Eppendorf, Germany (Hamburg, Germany). GSE70769 and GSE70768 were involved in the
same research [13], and the microarray data were produced with the same chip platform (Illumina
HumanHT-12 V4.0 Array). The RNA-seq data of GSE54460 were produced with Illumina HiSeq 2000,
for 94 patients with full-scale clinical records [14]. Additionally, RNA-seq data of 388 patients were
accessed from TCGA, and microarray data of 138 patients (preduced with Affymetrix Human Exon 1.0
ST Array) were obtained from MSKCC [15]. Probe IDs were mapped to gene symbols according to the
corresponding annotation file, and expression measurements of all probes linking to the same gene were
averaged to obtain a single value. Finally, samples from 84 patients were consecutively collected at the
Department of Urology and the Martini Clinics at the University Medical Center Hamburg-Eppendorf
(UKE) from 2010 to 2016. Informed consent and an ethical vote in Ethics Commission University
Hamburg (ethic codes WF-049/09 and PV3652) were obtained according to the current International
Cancer Genome Consortium (ICGC) guidelines (see http://www.icgc.org). Written informed consent
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was obtained from each patient as described in our previous study [16]. GSE70769 was used as a
training set, while the other five cohorts were used to validate. All microarray and RNA-seq data in
our study were normalized and log? transformed, and expression measurements of multiple samples
taken from the same patient were averaged to a single value.

2.2. Candidate Selection and Signature Establishment

The weighted gene co-expression network analysis (WGCNA) R package [17] was used to
construct a scale-free co-expression network based on the microarray data of the training cohort. The
weighted network adjacency was defined by the formula a;; = sﬁ e Sij = |cor(x1-, r,)‘ - (%3, x;: each pair
of genes; cor: Pearson’s correlation; 8: soft-power threshold). The topological overlap matrix (TOM)
was constructed based on the adjacency, and the corresponding dissimilarity (1-TOM) was used as
the distance measure, with deepSplit of 2 and minModuleSize of 30, to assign whole-genome genes
into different modules via hierarchical clustering analysis. Unassigned genes were categorized into
the gray module. Gene significance quantifies the association of individual genes with biochemical
recurrence-free survival (BCRFS) status, and module membership represents the correlation between
the module eigengene and the gene expression profile. Among non-gray modules, the modules which
had the highest absolute correlations with BCRFS status were selected as candidate modules for further
selection. Genes from these modules were submitted for high-throughput univariate Cox regression
analysis to screen for prognostic candidates. Subsequently, the LASSO Cox regression model was
used to further screen for the most robust prognostic markers [18]. Finally, a risk score (RS} formula
was established with individual normalized gene expression values weighted by their LASSO Cox
coefficients as follows: Y, Coef ficient(mRNA;) x Expression(mRNA;).

i

2.3. Bioinformatic Analyses

WGCNA was used to construct a scale-free co-expression network and to identify the most
significant modules, with a risk score based on TCGA RN A-seq data. Hub genes with gene significance
>0.3 in the black module were extracted and submitted for Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis, and a Circos diagram was used to visualize outputs [19]. Moreover,
gene set enrichment analysis (GSEA) [20] was performed to analyze the potential signaling pathways
underlying the gene signature, using gene set “hallmark.all.v6.1.symbols.gmt”, based on TCGA
RNA-seq data.

2.4. Statistical Analyses

IBM SPSS Statistics version 20 (IBM Corp., Armonk, NY, USA), GraphPad Prism 8.0 (GraphPad
Software Inc., San Diego, CA, USA), Stata 12 (StataCorp LLC, College Station, TX, USA) and R software
(version 3.5.2, http://www.r-project.org) were used to analyze data and plot graphs. The Kaplan—-Meier
method was applied to draw survival curves, and the log-rank test was used to evaluate survival
difference. The Cox proportional-hazards regression model was used to evaluate the significance of
each parameter for biochemical recurrence-free survival (BCRFS). Time-dependent receiver operating
characteristic (tROC) analysis was performed to measure the predictive power, using the “survivalROC”
package [21], and areas under the curve (AUC) of each variable at different time nodes were compared.
Meta-analysis (I> < 30%, fixed-effect model) was performed to evaluate the prognostic value in the
pooled cohort. The Z-score method was used to normalize risk scores in each cohort. Recursive
partitioning analysis (RPA) was performed to construct decision trees using the "rpart” package [22].
Student’s t-test or one-way analysis of variance was used to analyze differences between groups in
variables with a normal distribution.
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3. Results

3.1. Establishment of a Prognostic Gene Signature for BCRFS

First, WGCNA was performed with microarray data and BCRFS status on the training cohort.
Sample clustering showed that no outlier was detected (Figure S1). With a power of § = 2 set as the
optimal soft threshold to construct a scale-free network, a total of 31 non-grey modules were identified
(Figure 1A). Among these non-grey modules, two modules (darkorange and tan) with the highest
absolute correlation values with BCRFS were picked out (Figure 1B). Then, 455 genes from these two
modules were submitted for high-throughput univariate Cox regression analysis. With a threshold of
p < 0.01, 73 promising candidate genes (32 protective and 41 risk markers) were identified (Figure 1C).
Next, the LASSO Cox regression model was used to identify robust markers among the 73 candidates.
Cross-validation was applied to prevent overfitting, and the optimal A value of 0.1614 with log(A) =
—1.8239 was selected (Figure 1D). Nine genes (ALDH1A2, ASNS, 55TR1, FAM171B, FREM2, RSPO2,
SRD5A2, TRIM14, and VP54A) remained with their individual nonzero LASSO coefficients (Figure 1E).
The distribution of LASSO coefficients of the gene signature is demonstrated in Figure 1E Finally, the
risk score (RS) of the gene signature was established as follows:

A Cluster Dendrogram B Wodule Dendrogram C ® Procive (n=32)
1

890 085

Height

08y 085

8

Optimal —+

Figure 1. Selection of robust biomarkers to establish a prognostic gene signature. (A) Weighted gene
co-expression network analysis (WGCNA) was performed to construct a scale-free network, and
whole-genome genes from the training cohort were assigned to different modules. (B) Two modules
(darkorange and tan) were mostly correlated with biochemical recurrence (BCR), and 455 candidates
were extracted for further study. (C) Univariate Cox regression analysis was performed to screen for
significant candidates. (D) Cross-validation was applied to prevent overfitting, and an optimal A value
of 0.1614 with log(A) = —1.8239 was selected. (E) Nine genes finally remained with their nonzero LASSO
coefficients. (F) Distribution of least absolute shrinkage and selection operator (LASSO) coefficients of
the gene signature.

Risk score = (—0.22345 * expression level of ALDH1A2) + (0.364318 * expression level of ASNS)
+ (0.67184 * expression level of FAM171B) + (—0.54351 * expression level of FREM2) + (-0.4304 *
expression level of RSPO2) + (—0.17707 * expression level of SRD5A2) + (0.094559 * expression level of
SSTRI) + (0.040268 * expression level of TRIM14) + (—0.77555 * expression level of VP54A).

The expression levels of each gene were log2 normalized. Additionally, the expression profiles of
the gene signature were mainly dysregulated across 497 tumors and 52 adjacent normal tissues from
the TCGA data (Figure 52).
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3.2. Gene Signature Serves as a Risk Factor and Promising Predictor for BCRES

We ranked the risk scores of all patients in the training cohort, and the risk scores of BCR patients
were significantly elevated compared with those of BCR-free (BCR-F) ones. Kaplan—-Meier survival
analysis demonstrated that the two groups exhibited significantly different outcomes (Hazard Ratio
(HR) = 5.787, p < 0.0001). Multivariate Cox regression analysis showed that the risk score was an
independent risk factor for BCRFS (HR = 5.084, p < 0.0001). tROC analysis indicated that the risk
score also functioned as a powerful predictor for BCR, with an average AUC(t) of 0.836 at 36 months
follow-up (Figure 2A).
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Figure 2. Gene signature serves as a risk factor and promising predictor for biochemical recurrence-free
survival (BCRFS) in each cohort. (A-F) In each cohort, the risk score was significantly elevated in BCR
patients compared with BCR-free (BCR-F) ones. Kaplan—-Meier analysis showed patients with higher
scores exhibited a worse prognosis. The multivariate Cox regression model indicated that the risk score
was an independent risk factor for BCRFS in each cchort. Time-dependent receiver operating characteristic
(ROC) analysis showed the risk score was a powerful and stable predictor for BCR in each cohort.
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To confirm the prognostic robustness of the gene signature, it was further validated in five other
independent cohorts (Figure 2B-F). Consistently, patients with higher risk scores exhibited significantly
worse BCRFS than patients with lower risk scores in Kaplan-Meier analysis in all five cohorts (validation
I: HR = 4.739, p = 0.0005; validation II: HR = 2.684, p = 0.0008; validation III: HR = 4.790, p = 0.0011;
validation IV: HR = 5.708, p < 0.0001; validation V: HR = 5.193, p = 0.0004). Furthermore, multivariate
Cox regression analysis was performed on the risk score and clinicopathological features including age,
Gleason score (G5), pathological T stage (pT) and surgical margin (SM), to evaluate the significance of
each for BCR risk. Notably, the risk score was always an independent risk factor for BCRFS in all five
validation series (validation I: HR = 3.979, p = 0.011; validation II: HR = 2.616, p = 0.007; validation
II: HR = 3.120, p = 0.037; validation IV: HR = 2.913, p = 0.020; validation V: HR = 3.241, p = 0.040).
tROC analysis demonstrated that the risk score exhibited the most powerful prediction in validations I
and II, while having similar predictive power to some clinicopathological parameters such as Gleason
score or pT in validations III, IV, and V. Interestingly, among all the clinical variables, age was neither a
risk factor nor a promising predictor for BCR in all five validation cohorts.

Next, meta-analysis was used to analyze the prognostic value of the gene sighature in the pooled
cohort. Our result indicated that a higher risk score was correlated with a significantly worse prognosis
in the pooled cohort (HR = 4.84, 95% CI = 2.94-6.74; Figure 3A). Additionally, we normalized risk
scores to Z-scores for each cohort and found that Z-scores were significantly elevated in BCR patients
compared to BCR-free (BCR-F) patients. Further, Z-score was more sensitive for the prediction of an
early biochemical recurrence, as demonstrated in Figure 3B (p < 0.0001).
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: o l
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R L
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HR=1 484 BCR time (years)

Figure 3. Gene signature-derived risk score could identify high-risk patients in the pooled cohort. (A)
Meta-analysis indicated that patients with higher risk scores exhibited worse prognosis compared
to those with lower ones (HR = 4.84, 95% CI = 2.94-6.74) in the pooled cohort. Additionally, risk
scores were normalized to Z-scores in each cohort, and we observed that (B) Z-scores of risk scores
were significantly elevated in BCR patients compared with BCR-free (BCR-F) patients, especially in
shorter-term BCR patients.

3.3. Combination with Clinical Variables to Improve Risk Stratification

Recursive partitioning analysis (RPA) was performed to construct a decision tree to further
improve risk stratification for BCR. Based on the pooled cohort, four parameters, namely, GS, pT,
SM, and RS, were used as inputs for decision tree construction. Clusters 1-4 (C1-4) with different
labels were identified as the outputs of the decision tree. C1 was considered as the low-risk subgroup,
C2-3 as intermediate, and C4 as high-risk. The Sankey diagram shows the outcomes of different risk
subgroups (Figure 4A). Risk score acted as the dominant factor in the decision tree. Moreover, the
low-risk subgroup was labeled with low risk score and negative SM, while the high-risk subgroup was
labeled with high risk score and positive SM, further suggesting our signature-derived risk score is the
most important factor for risk stratification. Among decision tree-defined subgroups, the high-risk
group exhibited the highest BCR rate (Figure 4B) and the worst prognosis (Figure 4C).
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Figure 4. Combination of risk score and clinicopathological features to improve risk stratification and
survival prediction. (A) A decision tree was generated to optimize risk stratification in the pooled
cohort, and risk score served as the dominant component. (B,C) The high-risk subgroup exhibited the
highest BCR rate and worst prognosis.

3.4. Bioinformatic Analyses to Explore Biological Processes Underlying the Gene Signature

First, sample clustering was performed to exclude outliers (Figure 53). Then, the remaining TCGA
samples with RNA-seq data and corresponding risk scores were submitted for WGCNA to construct a
scale-free co-expression network. Whole-genome cluster dendrogram trees were generated, and a total
of 15 non-grey modules were identified (Figure 5A). A heatmap, as shown in Figure 5B, showed the
correlations between the risk score and different modules, and the black module presented the highest
correlation with the risk score (r = 0.52, p = 8 x 10728), With a threshold of gene significance >0.3, hub
genes extracted from the black module were submitted for KEGG enrichment analysis. The Circos
diagram showed that hub genes were mainly enriched in terms of “Cell cycle”, “Oocyte meiosis”, and
“Oocyte maturation” (Figure 5C). In addition, GSEA was performed to explore potential pathways
using low- and high-risk score samples. As shown in Figure 5D, with the “hallmark” gene set, GSEA
showed that the significant predicted signaling pathways are: “E2F targets”, “G2M checkpoint”, “MYC
targets”, and “Mitotic spindle”.
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Figure 5. Bioinformatic analyses indicated that the gene signature was correlated with cell cycle-related
processes in prostate cancer (PCa). (A) WGCNA was performed, and 15 non-grey modules were
identified. (B) The black module presented the highest correlation with the risk score. (C) The Circos
diagram showed that hub genes were mainly enriched in cell cycle-related processes. (D) GSEA showed
that significant predicted signaling pathways were labeled with cell cycle-related hallmarks.

4. Discussion

In recent years, high-throughput transcriptome profiling techniques have been widely applied to
identify promising biomarkers for disease diagnosis and prognosis [8,9]. Though some gene signatures
have been established to predict the prognosis of PCa patients, few of them have direct relevance to
treatment decision-making. In the postoperative setting, the use of adjuvant vs. salvage radiotherapy
is until now an unsolved issue permanently under debate. Although three randomized phase I1I
trials demonstrated the benefit of adjuvant radiotherapy in patients with high-risk factors, such as
pT3a/b or R1 resection status [4-6], about half of these patients will not suffer BCR, for whom adjuvant
radiotherapy would be an overtreatment, with an unnecessary risk of radiation-induced side effects.
On the other side, salvage radiotherapy is associated with worse prognosis, particularly in patients
with high-risk factors, or in patients with high PSA values at initiation of salvage radiotherapy [23,24].
There is a growing body of evidence that the effectivity of salvage radiotherapy is inversely correlated
with increases in the salvage treatment PSA [23,25]. Another issue related to the salvage approach is
the unclear definition of BCR which should trigger initiation of salvage radiotherapy. Its PSA-value
threshold varied from 0.05 to 0.5 in different clinical trials and guidelines [26]. Taken together, optimally,
postoperative radiotherapy should be performed in patients who suffer, albeit with possible low PSA
values, or in those who are developing BCR with an unmeasurable PSA value at the initiation of
radiotherapy. Until now, the prediction of BCR has been based upon clinical parameters, all of them
displaying a low predictive accuracy. Thus, any novel biomarkers for a more accurate prediction of
BCR would be of high clinical value.

In the present study, we established a nine-gene expression-based signature for BCRFS prediction
in PCa patients after prostatectomy and validated it in five other independent datasets, including our
own patient cohort. With the transcriptome profiling data and BCRFS status in the training cohort,
WGCNA was performed to identify gene modules mostly correlated with BCR, and subsequently,
univariate Cox analysis and a LASSO algorithm were applied to overcome overfitting and thus to screen
for the most robust biomarkers. Then, the risk score of each patient was calculated with individual
normalized expression level and LASSO coefficient according to the established formula. Overall,
Kaplan—Meier analysis indicated that patients with higher risk scores exhibited worse BCRFS in each
cohort. Moreover, the risk score always serves as an independent risk factor for BCRFS among all the
clinicopathological variables in the multivariate Cox regression model. In addition, time-dependent
ROC was performed to evaluate the predictive power at different time nodes during follow-up. We
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observed that the risk score was the most powerful predictor in the GSE70769, GSE70768, and GSE54460
datasets, and was an important predictor beside two clinicopathological features (Gleason score and pT
stage) in TCGA, MSKCC, and our cohort. Notably, the risk score was the only significant predictor in
all six cohorts, with an extremely stable AUC(t) value of at least 0.75 for each cohort. Furthermore, the
prognostic value of the risk score was also validated in the pooled cohort with Z-score normalization.

A decision tree was generated to further optimize risk stratification by combining the risk score
with traditional clinicopathological factors. In the poocled cohort-derived decision tree, the risk score
functioned as the dominant factor for risk stratification. When stratified by the decision tree, BCRFS
varied dramatically in different risk subgroups.

Some biomarkers involved in our gene signature have been investigated in cancer, even in
prostate cancer. For instance, ASNS, one risk biomarker in our study, was reported to function
as a therapeutic target in castration-resistant prostate cancer [27]. SS5TR1 was widely related to
the progression of various cancers [28-30], and also functions as a prognostic marker in prostate
cancer [31,32]. TRIMI4 has been reported to promote invasion in glioblastoma [33] and colorectal
cancer [34]. SRD5A2, one protective biomarker in our study, inhibits the invasion of prostate cancer cells
via regulating the ERK/MAPK pathway [35], and polymorphism in SRD5A2 contributes to resistance to
androgen-deprivation therapy [36]. Regarding ALDHIAZ, another protective biomarker in our study, it
has been reported that the promoter region was significantly hypermethylated in prostate cancer, and
overexpression of ALDH1A?2 resulted in decreased colony growth, suggesting that ALDH1A2 serves
as a tumor suppressor in prostate cancer [37]. In addition, VP54A repressed growth and invasion in
hepatocellular carcinoma, acting as a tumor suppressor [38]. In a word, the biological roles and clinical
significance of the nine genes still need further investigation in PCa.

As our gene signature showed considerable power in risk stratification, the potential biological
process and signaling pathways need to be investigated. Using WGCNA co-expression network
construction and KEGG enrichment analysis, we observed that the gene signature-related hub genes
were mainly enriched in terms of cell cycle. In addition, GSEA indicated that the predicted results that
correlated with high risk score were shown as “E2F targets”, “G2M checkpoint”, “MYC targets”, and
“Mitotic spindle”, which are also mainly involved in cell cycle-related processes. We suppose that the
gene signature-derived cell cycle alteration might contribute to cancer progression and poor prognosis
in PCa patients.

Some limitations of our study should be acknowledged. First, this is a retrospective study, so the
robustness of the predictive value of the gene signature should be further validated in large prospective
clinical trials. Second, experimental studies are required to further elucidate the biological functions
underlying the gene signature in PCa.

5. Conclusions

In conclusion, we established a gene-expression signature to predict BCRFES in PCa after radical
prostatectomy. Integrated with clinicopathological features, a decision tree was generated to further
improve the risk stratification for BCR after radical prostatectomy. Our model could be a useful tool
for personalized management of PCa patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/1/1/s1, Figure
S1: Sample clustering showed no outlier was detected. Figure 52: Expression profiles of the gene signature in
primary tumor tissues and adjacent normal tissues from TCGA. Figure 53: Sample clustering was performed to
exclude outliers.
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Abstract: More accurate models are essential to identify high-risk bladder cancer (BCa) patients who
will benefit from adjuvant therapies and thus helpful to facilitate personalized management of BCa.
Among various cancer-related hallmarks and pathways, cell cycle process (CCP) was identified as a
dominant risk factor for cancer-specific survival (CSS) in BCa. Using a series of bioinformatic and
statistical approaches, a CCP-related gene signature was established, and the prognostic value was
validated in other independent BCa cohorts. In addition, the risk score derived from the gene signature
serves as a promising marker for therapeutic resistance. In combination with clinicopathological
features, a nomogram was constructed to provide more accurate prediction for CSS, and a decision
tree was built to identify high-risk subgroup of muscle invasive BCa patients. Overall, the gene
signature could be a useful tool to predict CSS and help to identify high-risk subgroup of BCa patients,
which may benefit from intensified adjuvant therapy.

Keywords: bladder cancer; cell cycle process; gene signature; cancer-specific survival;
therapeutic resistance

1. Introduction

Bladder cancer (BCa) is a common malignancy in the urological system worldwide, with
an estimated 430,000 newly diagnosed cases per year. Among these cases, about two-thirds are
non-muscle-invasive bladder cancer (NMIBC), while the rest are classified as muscle-invasive bladder
cancer (MIBC) [1]. Despite improved understanding of BCa biology and advances in treatments,
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outcomes of BCa patients remain suboptimal. For example, the standard treatment for localized MIBC
is radical cystectomy with bilateral pelvic lymph node dissection, which provides a 5-year overall
survival rate less than 50% [2]. Although Tumor-Node-Metastasis (TNM) staging and pathological
grading systems are widely used for cancer management and survival prediction, clinical outcomes
remain variable in BCa patients, even with similar characteristics [3]. Hence, establishment of a more
precise model is essential for individual patients to identify high-risk subgroup who may benefit from
systemic adjuvant therapies.

In recent years, advancements in high-throughput techniques such as microarray and
RNA-sequencing (RNA-seq) have provided new insight into transcriptome profiling, highlighting
the role of molecule markers in cancer diagnosis and prognosis [4,5]. Several groups have developed
gene signatures to predict progression or survival in BCa patients [6-8]. However, the exact biological
function of each gene in such a gene signature was often not clear, nor the interaction of them. Till now,
the clinical utility of these signatures remains limited, and few of them were applied to clinical practice.

In this study, we mined public databases and developed a cell cycle process-related risk score
(CCPRS) to predict cancer-specific survival (CSS) in BCa patients, which was further validated in other
independent cohorts from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA).
In combination with clinicopathological features, we aimed at constructing an integrated model to
improve predictive power and risk stratification for CSS of individual BCa patients.

2. Materials and Methods

2.1. Dataset Preparation and Data Processing

Four microarray datasets including 587 BCa patients with clinical annotations and CSS information
were downloaded from Gene Expression Omnibus (GEO). GSE13507 was produced by Illumina
human-6 v2.0 expression beadchip and was used as the training set in our study. GSE31684 (Affymetrix
Human Genome U133 Plus 2.0 Array) and GSE32894 and GSE32548 (Illumina HumanHT-12 V3.0
expression beadchip) were used as independent validation cohorts. Probe IDs were mapped to gene
symbols according to the corresponding annotation file, and expression measurements of all probes
linking to a same gene were averaged to obtain a single value. RSEM-normalized RNA-seq data, copy
number data, and clinical phenotypes of MIBC samples were obtained from The Cancer Genome Atlas
(TCGA). Copy number data and TPM data of 22 bladder cell lines were obtained from Cancer Cell Line
Encyclopedia (CCLE) [9]. RMA normalized microarray expression data and IC50 values of different
drugs for 1018 cell lines were accessed from Genomics of Drug Sensitivity in Cancer (GDSC) [10].
All microarrays and RNA-seq data included in this study were normalized and log?2 transformed.

2.2. Candidate Selection and Signature Establishment

In brief, the levels of cancer-related hallmarks and pathways in each sample from the training set
were quantified by a single-sample gene set enrichment analysis (ssGSEA) [11] algorithm based on
the transcriptome profiling data and corresponding gene sets retrieved from Molecular Signatures
Database (MSigDB) [12]. Cox proportional-hazards regression model was used to evaluate the risk of
each hallmark and pathway for CSS in BCa patients using R package ‘survival’. Weighted correlation
network analysis (WGCINA) was used to construct a scale-free co-expression network using R package
‘wgcena’ [13] and identify the module which is mostly correlated with CCP based on transcriptome
profiling data and CCP ssGSEA score. Gene significance (GS) represents the association of individual
genes with CCP ssGSEA score, and module membership (MM} depicts the correlation between module
eigengenes and gene expression profiles. With a threshold of p value of G5 < 0.0001 and p value of
univariate Cox regression < 0.0001, 64 candidates from CCP module remained. Subsequently, a least
absolute shrinkage and selection operator (LASSO) Cox regression model was used to further screen
out the most robust prognostic genes [14]. A detailed screening diagram is shown in Figure S1. A cell
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cycle process-related risk score (CCPRS) was calculated by including normalized gene expression
value weighed by LASSO Cox coefficient as follows:

CCPRS = E Coef ficient{(mRNA;) x Expression(mRNA;)
i

2.3. Additional Bioinformatic and Statistical Analyses

IBM SPSS Statistics 20 (IBM Corp., Armonk, NY, USA), GraphPad Prism 8.0 (GraphPad Software
Inc, San Diego, CA, USA), Stata 12 ((StataCorp LLC, College Station, TX, USA), and R software
(version 3.5.2, http://www.r-project.org) were used to analyze data and plot graphs. Z-score method
was used to normalize ssGSEA scores and CCPRS when necessary. GSEA [15] was performed to
confirm the positive regulation role in CCP. Unsupervised hierarchical clustering was performed to
show distance between hallmarks and pathways, and a network depicting their relationships and
connectivity was generated by the Cytoscape software [16]. Principal coordinates analysis (PCoA)
was used to visualize dissimilarity of two groups based on Bray—Curtis distance matrix. Circos
plot was used to visualize enrichment results of Gene Ontology analysis and overlapping genes
involved in different biological processes. The webtool cBioPortal for Cancer Genomics [17] was used
to visualize the genomic alterations of the established gene signature in BCa samples from TCGA.
The Kaplan-Meier method was used to draw survival curves, and the log-rank test was performed
to evaluate survival difference. Cox proportional-hazards regression model was used to evaluate
the significance of each parameter for the risk of CSS. Meta-analysis was performed to evaluate the
prognostic value of CCPRS in the pooled cohort. Pearson correlation coefficient is used to evaluate the
relationship between two continuous variables with a normal distribution. K-means-based consensus
clustering using R package ‘ConsensusClusterPlus’ [18] or non-negative matrix factorization (NMF)
consensus clustering [19] using R package ‘nmf” was performed to obtain subgroups based on a
gene expression matrix. Nomogram and calibration analysis were generated using ‘rms’ package.
Time-dependent receiver operating characteristic (fROC) analysis was performed to measure the
predictive power of the nomogram using ‘survivalROC’ package, and a calibration curve was plotted
to visualize the predictive accuracy of the nomogram. Recursive partitioning analysis was performed
to construct a decision tree of risk stratification for CSS with R package ‘rpart’ [20]. Student’s t-test or
one-way analysis of variance (ANOVA) was used to analyze differences between groups in variables
with a normal distribution. A p value less than 0.05 was considered statistically significant.

3. Results

3.1. Schematic Diagram of the Study Design

First, cell cycle process (CCP) was identified as the dominant risk factor for CSS in BCa patients
among various cancer-related hallmarks and pathways (Figure 1A). Then, WGCNA was performed
to identify a CCP module. A series of screening methods including LASSO algorithm were used to
screen out most promising candidates and to develop a robust CCP-related gene signature for CSS
prediction (Figure 1B). Subsequently, a CCPRS formula was established to quantify risk assessment
for BCa patients, and the prognostic value was evaluated in the training and independent validation
cohorts. Meta-analysis was performed to evaluate CCPRS in the pooled cohort (Figure 1C). In addition,
response to anti-cancer therapies was evaluated to investigate whether the gene signature is a valuable
marker for therapeutic resistance. Regarding clinical application, based on the combination of CCPRS
and traditional prognostic variables, a nomogram was generated to quantify the risk assessment for
individuals and a decision tree was constructed to improve risk stratification for CSS in BCa patients
(Figure 1D).
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Figure 1. Schematic diagram of the study design. (A) Among various cancer-related hallmarks
and pathways, cell cycle process (CCP) was identified as the dominant risk factor for cancer-specific
survival (CSS) in bladder cancer (BCa) patients. (B) Combined methods were used to establish a
robust CCP-related gene signature for CSS. (C) The prognostic value of the gene signature was further
validated in different cohorts. (D) Clinical application.

3.2. Cell Cycle Process was Identified as the Primary Risk Factor for CSS

The levels of each cancer-related hallmark and pathway were quantified by ssGSEA. A hierarchical
clustering dendrogram was generated to show the distance between different hallmarks and pathways,
and WNT/{3-catenin signaling appeared to be the most distinct (Figure 2A). Moreover, a network
depicting their relationships is shown in Figure 2B. The network was constructed based on the soft
threshold of connectivity derived from Pearson correlation between any two nodes (coefficient < 0.5
was ignored). In the network, bigger size represented a more significant role, and solid lines represented
higher correlation. Subsequently, Cox proportional-hazards regression analysis was performed based
on ssGSEA scores of cancer-related hallmarks and pathways and CSS information in the training set,
and bubble heatmap indicated that CCP serves as the most powerful risk factor for CSS (Figure 2C).
Kaplan—Meier curve demonstrated that patients with higher CCP ssGSEA scores exhibited worse
CSS compared to those with lower scores when the median value was the cut-off value (HR = 3.804,
95% CI = 1.893-7.643, p = 0.0004; Figure 2D).
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Figure 2. CCP was identified as the primary risk factor for CSS. (A) Hierarchical clustering dendrogram
was generated to show the distance between different hallmarks and pathways. (B) A network was
constructed to depict relationships between different hallmarks and pathways. (C) Bubble heatmap of
Cox results indicated that CCP serves as the most powerful risk factor for CSS. (D) Kaplan—Meier curve
demonstrated that patients with higher CCP single-sample gene set enrichment analysis (ssGSEA)
scores exhibited worse CSS compared to those with lower scores.

3.3. Identification of a Cell Cycle Process-Related Gene Module

Firstly, WGCNA was performed with transcriptome profiling data and CCP ssGSEA Z-scores in
the training set (Figure 3A). Sample clustering showed that one outlier was detected and excluded
(Figure 52). A total of 25 non-grey modules were generated with a power of 3 = 9 as the optimal
soft threshold to ensure a scale-free co-expression network (Figure 53). Among these modules, the
brown module depicting the highest correlation with CCP ssGSEA scores was considered as “CCP
module” (r = 0.87, p = 7 x 107°; Figure 3B). The scatter diagram showed a highly positive correlation
between GS and MM in the brown module (r = 0.87, p < 1 x 1072%; Figure $4), indicating this module
is highly correlated with CCP. Based on the Bray—Curtis distance matrix derived from the expression
pattern of the brown module genes of BCa samples, PCoA was performed to visualize the dissimilarity.
We observed that samples of low CCP and high CCP were clearly separated into two discrete groups
(Figure 3C). Then, all the 1126 genes involved in the brown module were submitted to Gene Ontology for
enrichment analysis. Circos plot demonstrated that five most significant processes were labelled with
cell cycle-related features such as cell division, DNA replication, G1/S transition, mitotic nuclear division,
and sister chromatid cohesion, with a high proportion of overlapping genes involved (Figure 3D).
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To further confirm whether the brown module could represent CCP, a K-means-based consensus
clustering was performed to classify the training group into different subgroups according to the
expression patterns of the 1126 genes involved in the brown module. Cumulative distribution function
(CDF) plot showed the cumulative distribution functions of the consensus matrix for each k (from 2 to §,
indicated by colors), which is a quantification of how entries of the consensus matrix are distributed
within the range from 0 to 1 (Figure 3E). The difference between two CDF curves (k and k - 1) is
illustrated by measuring the area under the CDF curves from k = 2 to 8 in the delta area plot (Figure 3F).
Then, we chose k = 2 and 3 as optimal parameters to divide the training cohort into different subgroups
(Figure 3G,]). The violin plot showed that CCP ssGSEA scores were significantly elevated in cluster
2 (C2) compared to cluster 1 (C1) (p < 0.0001; Figure 3H), and patients in C2 exhibited worse CS5
(p = 0.0002; Figure 3I). Similar CCP ssGSEA distribution (p < 0.0001; Figure 3K) and CSS difference
(p = 0.0011; Figure 3L) were observed in three different subgroups derived from consensus clustering
when k = 3. These results demonstrated that genes involved in the brown module could represent the
feature of CCP.
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Figure 3. Identification of a CCP-related gene module. (A) Weighted correlation network analysis
(WGCNA) was performed with transcriptome profiling data and CCP ssGSEA Z-scores in the training
set. (B) The brown module depicting the highest correlation (r = 0.87, p = 7e-52) with CCP ssGSEA
scores was considered as “CCP module”. (C) Principal coordinates analysis (PCoA) was performed
to visualize the dissimilarity of CCP-low and CCP-high samples based on the Bray—Curtis distance
matrix. (D) Circos plot demonstrated that all of five most significant processes were labelled with
cell cycle-related features. (E) Based on expression pattern of genes involved in the brown module,
K-means-based consensus clustering was performed to classify the training group into different
subgroups. Cumulative distribution function (CDF) plot showed the cumulative distribution functions
of the consensus matrix for each k (from 2 to 8, indicated by colors). (F) The difference between two
CDF curves (k and k-1) is illustrated by measuring the area under the CDF curves from k = 2 to 8 in the
delta area plot. (G,]) k =2 and 3 were chosen as optimal parameters to divide the training cohort into
different subgroups. (H,K) Violin plots showed that CCP ssGSEA scores were differentially distributed
in identified subgroups. (I,L) Patients exhibited different CSS in identified subgroups.
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3.4. Establishment of a CCP-Related Gene Signature for CSS

With a threshold of p value for GS less than 0.0001, hub genes from the brown module were
submitted to univariate Cox proportional-hazards model. The volcano plot showed that with a
threshold of p value for Cox regression analysis less than 0.0001, 64 promising candidates were filtered
out (Figure 4A). Subsequently, the LASSO algorithm was used to identify the most robust prognostic
genes for CS5. Cross-validation was applied to overcome over-fitting effect (Figure 4B}, and the optimal
A value of 0.0585 was selected (Figure 4C). An ensemble of 12 genes remained with their individual
LASSO coefficients, and the distribution of LASSO coefficients of the gene signature is shown in
Figure 4D. NMF consensus clustering was used to divide the training cohort into two subgroups
based on the expression matrix of the established gene signature when k = 2 (Figure 4E). According
to the expression pattern of the two subgroups, cluster 1 was labeled with CCP-high and cluster
2 as CCP-low. GSEA analysis confirmed the positive regulation role of the gene signature in cell
cycle process in BCa samples by comparing cluster 1 and cluster 2 (Nominal p < 0.0001; Figure 4F).
Considering cell cycle process is tightly correlated with cancer cell proliferation, we investigated the
correlation between CCPRS and MKI67 expression. Pearson correlation test indicated that CCPRS was
significantly positively correlated with MKI67 in 165 BCa samples (r = 0.8033, p < 0.0001; Figure 4G).
In addition, CCPRS was significantly elevated in MIBC samples, especially in more advanced stages
(p < 0.0001; Figure 4H). These results suggested that the gene signature enhanced proliferative ability
via positive regulation of CCP in BCa.
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Figure 4. Establishment of a CCP-related gene signature for CSS. (A) Volcano plot showed that
64 promising candidates were filtered out. (B) Least absolute shrinkage and selection operator (LASSO)
algorithm was used to identify the most robust prognostic genes for CSS. Cross-validation was applied
to overcome over-fitting effect. (C) An optimal A value of 0.0585 was selected. (D) Distribution of LASSO
coefficients of the established gene signature. (E) Non-negative matrix factorization (NMF) consensus
clustering was used to divide the training cohort into two subgroups based on the expression matrix
of the established gene signature when k = 2. (F) GSEA analysis confirmed the positive regulation
role of the gene signature in cell cycle process in BCa samples. (G) Cell cycle process-related risk score
(CCPRS) was significantly positively correlated with MKI67 in 165 BCa samples (r = 0.8033, p < 0.0001).
(H) CCPRS was significantly elevated in muscle-invasive bladder cancer (MIBC) samples, especially in
more advanced stages (p < 0.0001).

37



Cancers 2020, 12, 1146 8of 16

3.5. Copy Number Alteration is Closely Correlated with Dysregulated Expression of the Gene Signature

We investigated the expression profiles of the gene signature in 19 paired BCa and adjacent normal
tissues from TCGA. As shown in Figure 5A, paired f-test indicated most genes [11-13] involved in
the gene signature were dysregulated in BCa samples compared to normal. The webtool cBioPortal
for Cancer Genomics was used to generate Oncoprint to visualize the genomic alterations including
mutation and copy number alteration of the gene signature in 413 TCGA BCa samples. Mutation
was rarely detected but copy number alterations of the gene signature frequently occurred in BCa
tissues (Figure 5B). We integrated copy number and RNA-seq data from TCGA, and an overview
of relationships between copy number and mRNA expression is plotted in Figure 5C. Bubble size
represents Pearson correlation coefficient, and color presents the significance. Two representative
genes RCE1 and CEP72 with r > 0.5 are shown in detail: mRNA expression values of both genes were
progressively and significantly elevated in copy number amplification groups (p < 0.0001 for both
genes). In addition, copy numbers of RCE1 and CEP72 were frequently amplified in most BCa cell
lines, and highly positive correlation between copy number and mRNA expression of RCE1 (r = 0.7196,
p = 0.0002) and CEP72 (r = 0.6728, p = 0.0006) was observed in 22 BCa cell lines (Figure 5D).

3.6. Higher CCPRS Predicts Worse CSS in BCa

CCPRS for each sample was calculated and normalized to Z-scores in each cohort. Heatmaps of
the associations between CCPRS Z-scores and different clinicopathological features in each cohort were
plotted (Figure 6A,C,E,G). In general, an overview of these heatmaps indicated that CCPRS correlates
with more advanced clinicopathological features such as muscle-invasive (MI) status and higher grade,
while no significant correlation was observed between CCPRS and non-risk factors such as gender.
Kaplan—-Meier analysis demonstrated that BCa patients with higher CCPRS exhibited worse CSS in
each cohort (Training cohort: HR = 10.20, 95% CI = 5.04-20.66, p < 0.0001; Validation I: HR = 2.991,
95% Cl =1.175-7.614, p = 0.0008; Validation II: HR = 8.468, 95% CI = 3.791-18.92, p < 0.0001; Validation
II: HR = 6.345, 95% CI = 2.762-14.58, p < 0.0001; Figure 6B,D,FH, respectively). Meta-analysis using
fixed-effect model (I = 34.0%, p = 0.209) of the four cohorts showed that higher CCPRS was correlated
with a significant worse CSS (pooled HR = 6.93, 95% CI = 4.63-10.37; Figure ¢l). Kaplan—-Meier analysis
also showed that BCa patients with positive CCPRS Z-scores exhibited significant worse CSS compared
to negative Z-scores (HR = 3.083, 95% CI = 2.144-4.433, p < 0.0001; Figure 6]) in the pooled cohort of
587 patients. In addition, CCPRS Z-scores were significantly elevated in those patients who deceased
during follow-up, with progressively increasing Z-scores as survival time decreased (p < 0.0001;
Figure 6K). Furthermore, as shown in Figure 6L, multivariate Cox regression analysis was performed
on a total of 284 patients with full-scale information including gender, grade, age, CCPRS, lymph node
metastasis (LNM), and MI status. Results indicated that CCPRS was an independent risk factor for
CSS (HR = 2.038, 95% CI = 1.291-3.218, p = 0.002) along with MI and LNM.

3.7. The Gene Signature Serves as A Promising Marker for Therapeutic Resistance

NMEF consensus clustering was performed to divide 1018 cell lines into two clusters based on
the gene signature expression matrix when k = 2, and cluster 1 was identified as CCP-high cluster
according to the distribution of expression pattern (Figure 7A). We observed that IC50 values of different
routine chemotherapeutic drugs (including cisplatin, vinblastine, 5-fluorouracil, and gemcitabine) were
significantly elevated in cluster 1 compared to cluster 2. In addition, cell lines in cluster 1 exhibited
a significant increased resistance to cell cycle-targeting drugs including palbociclib (CDK4, 6) and
AZD7762 (CHEK]1, 2) (Figure 7B). Among BCa patients who received systemic chemotherapy in the
training cohort, those with higher CCPRS exhibited worse CSS (HR = 3.415, 95% CI = 1.064-10.96,
p = 0.0208; Figure 7C). Among TCGA MIBC patients who received adjuvant therapies including chemo-
or/and radiotherapy, those with higher CCPRS exhibited worse overall survival (HR = 2.150, 95% CI =
1.082-4.270, p = 0.0241; Figure 7D). Then we investigated the association between CCPRS and Response
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Evaluation Criteria in Solid Tumors (RECIST) among TCGA patients. After initial treatment, CCPRS
was progressively and significantly elevated in groups with worse outcomes (p = 0.0050; CR: complete
remission, PR: partial remission, SD: stable disease, PD: progressive disease; Figure 7E).
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Figure 5. Copy number alteration is closely correlated with dysregulated expression of the gene
signature. (A) Most genes (10/12) involved in the gene signature were dysregulated in 19 paired BCa
and adjacent normal tissues from The Cancer Genome Atlas (TCGA). (B) An Oncoprint was plotted to
visualize the genomic alterations including mutation and copy number alteration of the gene signature
in 413 TCGA BCa samples. (C) Overview of relationships between copy number and mRNA expression
is plotted. Bubble size represents Pearson correlation coefficient, and color presents the significance.
Two representative genes RCE1 and CEP72 with r > 0.5 are shown in detail. (D) Copy numbers of
RCE1 and CEP72 were frequently amplified in most BCa cell lines, and highly positive correlation
between copy number and mRNA expression of RCE1 (r = 0.7196, p = 0.0002) and CEP72 (r = 0.6728,
p = 0.0006) was observed in 22 BCa cell lines. * p < 0.01; N.S., no significance.
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Figure 6. CCPRS correlates with more advanced clinicopathological features and predicts worse CSS.
(A,C,E,G) Overview of heatmaps depicted associations between CCPRS and different clinicopathological
features in each cohort. (B,D,F,H) Patients with higher CCPRS exhibited worse CS5 in each cohort.
(I) Meta-analysis on four cohorts included. (J) Kaplan—Meier analysis showed that BCa patients with
higher CCPRS Z-scores exhibited significantly worse CSS compared to lower scores in the pooled
cohort of 587 patients. (K) CCPRS Z-scores were significantly elevated in those patients who died
during follow-up, with progressively increasing Z-scores as survival time decreased (p < 0.0001).
(L) Multivariate Cox regression analysis on a total of 284 patients with full-scale information including
CCPRS, gender, grade, age, lymph node metastasis (LNM) and muscle-invasive (MI) status, and results
indicated CCPRS was an independent risk factor for CSS along with MI and LNM.

3.8. Combination of CCPRS and Clinical Variables Improves Risk Assessment and Stratification

To quantify risk assessment and predict CSS probability for individual BCa patients, a nomogram
was constructed in combination of CCPRS and clinicopathological features (Figure 8A). The predictive
power of nomogram was evaluated using time-dependent ROC analysis, with AUC of 0.944 for 1-year
CSS and 0.932 for 3-year CSS, respectively (Figure 8B). In the calibration analysis, the prediction of
3-year CSS closely matched the observed situation, suggesting the nomogram has a high accuracy of
CSS prediction (Figure 8C).
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Figure 7. The gene signature serves as a promising marker for therapeutic resistance. (A) NMF

consensus clustering was performed to divide 1018 cell lines into two clusters. (B) IC50 values of

different routine chemotherapeutic drugs and cell cycle-targeting drugs were significantly elevated in
the NMF-identified CCP-high cluster. (C) Among BCa patients who received systemic chemotherapy
in the training cohort, those with higher CCPRS exhibited worse CSS. (D) Among TCGA MIBC patients
who received adjuvant therapies including chemo- or/and radiotherapy, those with higher CCPRS

exhibited worse overall survival. (E) After initial treatment, CCPRS was progressively and significantly

elevated in groups with worse outcomes (p = 0.0050).

Considering MIBC accounts for a considerable part and contributes to the major mortality in BCa,
we sought to optimize the risk stratification for MIBC patients by integrating CCPRS with traditional
prognostic parameters. Various parameters including age, gender, LNM, grade, pT, and CCPRS were
submitted for recursive partitioning analysis. Finally, CCPRS along with LNM and pT remained in
the decision tree for CSS, and three different risk subgroups were defined (Figure 8D). Patients in the
high-risk group exhibited worst CSS compared to other groups (p < 0.0001; Figure 8E). Furthermore,
other MIBC patients with full-scale information of CCPRS, LNM, and pT were used to validate the
classifying capacity of the decision tree. Significant differences of C5S from GEO (p = 0.0090; Figure 8F)
and overall survival from TCGA (p = 0.0002; Figure 55) were observed among different risk subgroups.
These results demonstrated the excellent classifying capacity of the decision tree.
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Figure 8. Combination of CCPRS and clinical variables to improve risk assessment and stratification.
(A) A nomogram was constructed to quantify risk assessment and predict CSS probability for individual
patients. (B) Time-dependent ROC analysis was performed to evaluate the predictive power of the
nomogram for 1-year and 3-year CSS. (C) Calibration analysis indicated the nomogram has a high
accuracy of CSS prediction. (D) An integrated decision tree was generated to optimize the risk
stratification for MIBC patients. (E) In the training cohort, MIBC patients in the high-risk group
exhibited worst CSS compared to other groups (p < 0.0001). (F) Significant difference of CSS was
observed among different risk subgroups in the validation cohort.

4. Discussion

Alteration of cell cycle process (CCP) acts as a critical hallmark of cancer [21,22]. Dysregulation
of CCP usually results from a series of changes in the activity of cell cycle regulators, which induces
uncontrolled cell division and contributes to cancer development and progression. Abnormalities
in expression and amplification of some important CCP-related genes or regulators such as cyclin
D1, E1, and E2F1 were frequently observed in various cancer types. Furthermore, it was widely
reported that these genomic changes usually promote malignant phenotypes and predict unfavorable
outcomes [23-25]. In bladder cancer, cell cycle alteration was reported to have prognostic value and
some genes involved in CCP have become attractive therapeutic targets [26].

Since Cuzick et al. reported an established cell cycle progression score in prostate cancer in
2011 [27], many studies have followed this approach and validated its prognostic value in different
prostate cancer cohorts [28]. In brief, Cruzick’s score is calculated upon the relative expression levels of
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31 selected CCP genes normalized to 15 housekeeper genes using quantitative RT-PCR. However, some
shortcomings are inevitable in this method. First, these 31 genes, selected from a set of documented
CCP genes using Pearson’s correlation coefficient, seem to hardly represent the hallmark of CCP
comprehensively. Second, the results of quantitative RT-PCR are quite susceptible to several subjective
factors such as different RNA extraction methods, inconsistent human operations, and heterogeneous
samples quality in repeated experiments. In this study, ssGSEA algorithm was used to quantify
CCP and other cancer-related hallmarks and pathways in BCa samples. ssGSEA calculates separate
enrichment scores for each pairing of a sample and gene set, and ssGSEA score represents the degree
to which the genes in a particular gene set are coordinately up- or downregulated within a sample.
Obviously, this algorithm could overcome shortcomings mentioned above.

Among various cancer-related hallmarks and pathways, CCP was identified as the dominant risk
factor for cancer-specific survival (CSS) in BCa. Subsequently, WGCNA was performed to identify
CCP-related gene module based on transcriptome profiling data and CCP ssGSEA score. Consensus
clustering was used to evaluate whether the identified “CCP module” could represent CCP. Univariate
and LASSO Cox regression analyses were successively used to filter out most robust prognostic
biomarkers to establish a CCP-related gene signature. The risk score derived from CCP-related gene
signature is named as CCP-related risk score (CCPRS) in our study. The prognostic value of CCPRS
was evaluated in the training and other independent validation cohorts across different platforms.
Moreover, patients with higher CCPRS exhibited worse outcomes in the adjuvant therapy groups,
suggesting CCPRS could serve as a useful marker for resistance to anti-cancer treatments. Regarding
clinical application, a nomogram was constructed in combination of CCPRS and clinicopathological
features to quantify risk assessment and predict CSS probability for individual patients. Considering
the significant proportion and high mortality of MIBC in bladder cancer, we combined CCPRS with
traditional prognostic parameters to build a decision tree to optimize risk stratification for CSS of
MIBC patients.

Most biomarkers involved in the gene signature are dysregulated in BCa compared to normal
tissues, and some of them have also been studied in other cancer types. For example, ADM?2, one risk
biomarker in the gene signature, was reported to predict poor survival in patients with pancreatic
adenocarcinoma [29]. Moreover, Wang et al. reported that ADM2 could enlarge the vascular lumen
by inducing the quiescent endothelial cell proliferation [30]. Deletion of RCE1 reduced the growth of
fibroblasts and skin carcinoma cells [31], and overexpression of RCE1 was reported to correlate with
prostate cancer progression and predict poor prognosis [32]. ZIC2, a zinc finger transcription factor, was
required for the self-renewal maintenance of liver cancer stem cells, and its depletion reduced sphere
formation and xenograft tumer growth in mice [33]. Recessive WDR62 mutations were identified in
severe brain malformations [34], and the interaction between WDR62 and mitotic kinase AURKA is
essential for drosophila brain growth [35]. What is more, overexpression of WDR62 is associated with
poor prognosis in lung adenocarcinoma and gastric cancer [36,37]. In summary, evidence from current
literature suggested that some biomarkers involved in the gene signature are closely related to cell
proliferation or tumor growth, but the putative role in CCP still needs further investigation.

Some limitations in our study should be acknowledged. First, this is a retrospective study,
so the prognostic robustness and clinical usefulness of the gene signature need further validation in
prospectively designed clinical trials. Second, further experimental studies are needed to reveal the
regulatory role of the gene signature in BCa progression.

5. Conclusions

In summary, a novel CCP-related gene signature was established to predict CSS in BCa patients.
The prognostic value of CCPRS was further validated in independent cohorts. In combination of
the gene signature and clinicopathological features, a nomogram was constructed to quantify risk
assessment for individual patients, and a decision tree was built to optimize risk stratification for CSS of
MIBC patients. We hope the novel CCP-related gene signature could be a useful tool to select high-risk
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BCa patients who may benefit from adjuvant therapies and contribute to personalized management
of BCa.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1146/s1,
Figure S1. A detailed screening diagram to establish a robust gene signature for CS5; Figure S2. Sample clustering
showed one outlier was detected and excluded in WGCNA; Figure 53. A power of = 9 was chosen as the optimal
soft threshold to ensure a scale-free co-expression network; Figure S4. Scatter diagram showed a highly positive
correlation between GS and MM in the brown module (r = 0.87, p <1 x 10-200); Figure S5. Significant difference
of overall survival in TCGA MIBC patients (p = 0.0002) was observed among different risk subgroups defined by
the decision tree.
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Abbreviations

BCa Bladder cancer

ccr Cell cycle process

CSS Cancer-specific survival

MI Muscle invasive

TNM Tumor-Node-Metastasis

GEO Gene Expression Omnibus

TCGA The Cancer Genome Atlas

CCLE Cancer Cell Line Encyclopedia

GDSC Genomics of Drug Sensitivity in Cancer

ssGSEA single-sample gene set enrichment analysis
LASSO least absolute shrinkage and selection operator
WGCNA  Weighted correlation network analysis

GS Gene significance

MM Module membership

CCPRS Cell cycle process-related risk score

LNM Lymph node metastasis

RECIST Response Evaluation Criteria in Solid Tumors
CR Complete remission

PR Partial remission

SD Stable disease

PD Progressive disease

NMF Non-negative matrix factorization

tROC Time-dependent receiver operating characteristic
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