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Summary 

Cellular function is closely tied to protein-protein interactions. Mapping these on a large scale, 

therefore, provides fundamental knowledge about the regulation and structure of biological 

systems. With the onset of proteomics, the use of affinity purification coupled to mass 

spectrometry (MS) has become the major tool to map protein interactions. Already twenty years 

ago, researchers endeavored to build interaction maps of model organisms such as yeast. 

However, previous large-scale interaction studies in Saccharomyces cerevisiae date back more 

than ten years, covered only about half of all genes, and made use of non-quantitative MS and 

tandem-affinity purification strategies. These approaches were limited by harsh purification 

protocols and required large amounts of cell lysate. Additionally large false positive and 

negative rates hampered their use as a fully reliable source for network studies. 

Building on recent improvements in sensitivity and speed of MS technology and the 

introduction of the concept of ‘affinity enrichment coupled to MS,’ I developed a fast, robust, 

and highly reproducible workflow for proteome-wide interaction studies. I applied and 

optimized the approach for a first full screen in S. cerevisiae. The workflow starts from only a 

few hundred µg of proteins per pull-down and is performed entirely in 96-well format, including 

cell growth, lysis, and affinity enrichment of GFP-tagged proteins. To increase sample 

throughput and minimize MS idle time between injections, I turned to the high throughput 

Evosep One liquid chromatography system. This allowed me to obtain data on 60 baits per day. 

The system is coupled online to a timsTOF Pro mass spectrometer capable of fragmenting over 

100 peptides per second using the parallel accumulation – serial fragmentation (PASEF) 

technology. This combination of miniaturization and standardization ensured high sample 

throughput, sensitivity, and robustness. 

Altogether, I successfully performed over 4150 pull-downs and completed more than 8300 

measurements for the yeast interactome using this next-generation workflow, all in less than 20 

weeks of mass spectrometer running time. The dataset has a very high success rate for pull-

downs. The near-complete coverage of expressed proteins in our study enabled a novel two-

dimensional analysis strategy that efficiently scores interactions. We examined well-known 

protein complexes, which confirmed very high data quality. Although the yeast interactome has 

been studied by large-scale methods for decades, the majority of interactions were novel 
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compared to known high-quality interaction databases. Among many striking novel discoveries 

- I found compelling evidence for interactions between the conserved chromatin remodeler 

SWI/SNF and SPX-domain-containing plasma-transporters. Using the common GFP-tag for 

quantification of protein abundance confirmed that our workflow covers a wide range of 

cellular protein abundances down to a few copies per cell. Redefining the yeast interactome 

with very high data quality and completeness enabled the study of its fundamental network 

properties that have been controversially discussed over many years. In total, our protein-

protein interaction network encompasses about 4,000 proteins connected via about 30,000 

interactions. A full browsable web application is accessible at yeast-interactome.org and allows 

(sub-) network exploration, interactor validation via volcano plots and correlation maps, and 

sample quality control. 

In a collaboration with the CZ Biohub, we set out to implement the mass spectrometry pipeline 

developed here to an interaction screen with CRISPR GFP-tagged human HEK293T cells. The 

reduced sample amount allowed us to screen cell cultures grown in 12-well plates for high 

throughput. The interaction and localization results of 1,311 processed interactomes in 

biological triplicates can be accessed at opencell.czbiohub.org. 

 

 

 

 

http://www.yeast-interactome.org/
https://opencell.czbiohub.org/
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1 Introduction 

1.1 Biological Interaction Networks 

“The concept of randomness and coincidence will be obsolete  

when people can finally define a formulation of patterned interaction 

between all things within the universe.”   
-Toba Beta

1.1.1 Interactions Determine Function, Efficiency, and Health 

Interactions are fundamental for a tremendous number of known systems. The entirety of all 

objects in a system and the links that exist between them is called a network. The character and 

efficiency of a network is defined by its structure and, therefore, by the way the connections 

are organized. From telecommunication wires around the globe, social networks that depict 

relationships, the links that connect webpages, to the dynamics underlying global epidemics, 

knowing their structure helps to understand them. In these cases, they transmit emails or phone 

calls most efficiently between sender and receiver, help to understand how information and 

rumors are transmitted, helps the Google search engine algorithm to identify webpages most 

suited to an inquiry, and are crucial for the identification of transmission routes of a virus in 

order to prevent further spread, respectively.  

Networks also exist on a physical micro scale. Besides technological, social, and informational 

networks, biochemical networks – an example from the biological world - are among the most 

important ones. Despite their microscopic nature, biochemical networks do not lack in 

complexity. The best-studied ones are metabolic, genetic, and protein-protein interaction 

networks. Metabolic networks describe the biochemical pathways in a cell, whereby chemical 

compounds are connected by chemical reactions that convert a substrate into a product. For 

instance, they provide the information of how cells break down nutrition, and how they rebuild 

and convert cellular building blocks. Genetic regulatory networks capture the dependencies of 

genes on the level of transcriptional regulation (1). Protein-protein interactions are binding 

events between two or more proteins that accrue in all cells or organisms in large numbers. 
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These interactions can last longer in stable formations known as protein complexes or can be 

of short duration which are termed transient interactions. Protein complexes can be seen as a 

higher order of protein organization. Different protein “building blocks” come together to form 

larger molecular machines or structural elements that are too complex to be formed by a single 

protein. Examples of transient interactions include proteins that biochemically modify each 

other in order to transmit a cellular signal in response to an external stimulus that requires 

cellular adaption. These types of modifications can alter their activity, cellular or tissue location, 

induce or inhibit its degradation, or ultimately change their own interaction pattern. Knowing 

on a global level how proteins interact within a cell is key for understanding how living 

organisms function. Building a systematic map of networks therefore helps to answer questions 

in the case of cellular malfunction as to their potential origin and it can help to assign functions 

to unknown parts. In the context of protein-protein interactions this translates into finding the 

cause for diseases and into describing functions for uncharacterized proteins by their association 

with characterized proteins - a phenomenon termed “guilt by association” (2). Furthermore, 

only if one knows the blueprint of a system, one can repair it or use it to build something new.  

The cell is regulated on several levels, all of them contributing to its phenotype to a different 

extent. The following chapter describes in more detail the roles and dependencies of these 

regulations and argues why the study of proteins and their interactions is one of the best 

available read-outs in systems biology. 

 

1.1.2 The Three Cellular Fundaments of Protein-Protein Interactions 

The central dogma of molecular biology depicts the flow of information in almost all cellular 

systems as two main steps: The first one is transcription and generates a transient copy of the 

DNA. The emerging molecule from this step, namely mRNA, serves as a template for the 

second process called translation, which uses the stored information for the assembly of amino 

acids into proteins. Although the term dogma and the concept of the directed flow of 

information have been put into perspective (3), it adequately illustrates three central fields in 

cell biology and medicine: The study of genomes, transcriptomes, and proteomes. With the 

common -omics suffix that indicates the study of the term’s entirety in a particular system like 

a cell, tissue, organ, or organism, they are called genomics, transcriptomics, and proteomics, 

respectively. In the last decades, these areas were in the focus of many researchers and kept 
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expanding as technology evolved. The milestone achievement of human genome sequencing 

(4, 5) laid the basis for analyzing transcripts and proteomes in a large-scale manner. Due to 

faster and much cheaper technology, many more organisms followed, providing the sequence 

information that is an essential precondition for proteomics. The static nature of the genome 

restricts the information that one can draw from it to make conclusions on the dynamic state of 

the system. The discrepancy between genotype and phenotype is due to the fact that only some 

of the genes are actively transcribed at any point in time. Regulation at the translational level is 

also precise in time and space and restricts the presence of transcripts to a particular phenotype.  

Proteomics is special in that it deals with the final product of gene expression, thereby 

overcoming some of the limitations of transcriptomics. It focuses directly on detecting and 

quantifying the presence of the main functional units in living organisms: proteins. These are 

the major actors in cellular processes and their direct study more provides the additional 

information on top of genomics and transcriptomics.  

Another level of information that goes even beyond the simple presence of proteins in a system 

in a certain condition is to study their interactions with another. Many proteins in a cell function 

in complexes or they fulfill their tasks by interacting with other proteins. This could be due to 

specific transportation, modification, or degradation of other proteins or for the purpose of 

building structural units within a cell (6). Often there is an architectural reason for proteins to 

interact with each other, namely complexity. With large and highly sophisticated molecular 

machines that undergo huge conformational changes - for example in order to catalyze a 

biochemical reaction – it is necessary to assemble distinct building blocks into a single unit. 

Gaining access on the powerful information of protein-protein interactions therefore allows the 

global study on a regulatory, functional, and structural level. The study of interactions, is known 

as interactomics (Figure 1), and it can be achieved by several techniques as described in the 

next section. One powerful technology involves the use of mass spectrometry. It is identical to 

the expression proteomics approach except that it uses an additional enrichment step 

beforehand. While each “-omics” era builds on the knowledge of the previous ones, the 

presence of proteins and the interactions between them most directly reflects the cellular 

phenotype.  
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Figure 1. Increasing complexity of the fundaments of protein-protein interactions. The interactome 
represents an additional layer on top of the proteome that shapes the cellular phenotype. 

1.1.3 Identification of Protein-Protein Interactions 

A multitude of techniques to study protein-protein interactions have been introduced over the 

last decades. Label-free techniques include surface plasmon resonance (SPR) spectroscopy, 

micro-scale thermophoresis (MST), isothermal titration calorimetry (ITC), circular dichroism 

(CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. These techniques

provide detailed information on the interaction itself, e.g. defining binding constants or the

exact site and mode of the interaction. However, they are unsuitable for unbiased and large-

scale interaction screens because they require a priori knowledge of all potential interacting

proteins.

Cell-based bimolecular interaction reporter assays include bioluminescence resonance energy 

transfer (BRET), the yeast two-hybrid (Y2H) screen, and related split-protein methods like the 

split-ubiquitin assay (7). The Y2H screen is restricted to the detection of mostly binary 

interactions: Two potentially interacting proteins are each fused to either the binding domain 

(BD) or the activation domain (AD) of the transcription factor Gal4. Expressed in yeast, the 

interaction of both candidate proteins activates Gal4 by bringing together AD and BD domain. 

Gal4 leads to the transcription of a reporter gene whose read-out corresponds to the interaction 

of the candidate proteins (Figure 2B). In unbiased Y2H interaction screens, large libraries of 

all potential protein pairs fused to AD and BD need to be generated. One of the limitations of 

Y2H screens is that interactions can only be detected for soluble proteins that bind each other 

within the nucleus. In order to detect membrane protein interaction a different assay/tagging of 
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strains - like the split-ubiquitin assay - needs to be deployed (8). Y2H is an approach that allows 

large screens and they have been performed for many organisms like Saccharomyces 

cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and humans (9). However, it is 

only limited to binary interaction studies and prone to false positives and negatives.  

There are other assays that are suited for large-scale screens as well, and in contrast to Y2H 

allow detection of more than one (indirect) interaction in a single experiment. All the following 

assays have in common that mass spectrometry is used as the final detection method for the 

identification of interacting proteins. Co-fractionation via gel-filtration - also known as size-

exclusion chromatography (SEC) (7) or ion-exchange chromatography (IEX) coupled to mass 

spectrometry - detect proteins that co-elute into different collected fractions based on the size 

(SEC) or charge (IEX) of the complexes (Figure 2D). Proteins in each fraction are identified 

and quantified via MS. Interactions can be scored based on similar elution behavior using 

correlation analysis of protein profiles. A main advantage is that there is no need for genetic 

engineering (10), but a current downside is its limited resolution due to the broad elution peak 

profile over a limited range of typically around 50 fractions (11). 

Cross-linking coupled to MS uses a chemical linker that covalently bridges proteins that are in 

close proximity. Cross-linked peptides are then identified via MS and protein-protein 

interactions inferred from that information (Figure 2E). Studies on full proteomes have been 

conducted in Escherichia coli and HeLa cell lysates (12). 

The labeling of proteins that are in close proximity to a protein of interest is a rather recent and 

promising development. Proximity labeling uses enzyme fusion proteins in which the protein 

of interest is linked to either a peroxidase named APEX (13), or a biotin-ligase known as BioID 

(14) and its enhanced version called TurboID (15). These enzymes catalyze the biotinylation

reaction of proteins in close proximity, that are not necessarily physically interacting (Figure

2C). Biotinylated proteins are purified using streptavidin beads and identified via MS (16).

The most widely used technology is affinity purification (AP) coupled to MS. AP comes in two 

main flavors: Immunoprecipitation (IP) and pull-downs (PDs). IP uses immobilized antibodies 

to capture a specific protein via its antigen-binding site from a cell lysate or any other amenable 

biological sample. After washing off the unspecific proteins, the purified protein remains. If the 

purified protein of interest - termed “bait” - is involved in protein-protein interactions, those 

interacting proteins – termed “preys” – can be detected in the downstream MS analysis as well 
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(Figure 2A). This co-enrichment of interactors is therefore called a co-IP. Since a large-scale 

screen would require for each IP to generate a corresponding antibody, one can generate tagged 

proteins (“baits”) that all have the same binding properties to the same antibody. This tag can 

be a specific sequence of amino acids that is genetically fused to the C- or N-terminus of a bait, 

or it can be an intact protein like the green fluorescent protein (GFP). In either case the peptides 

or proteins that are used as tags have a well-characterized stability and antigen properties for 

available antibodies. This strategy enables the use of the same, generic immobilized antibody 

for separately executed experiments. In comparison to IPs, pull-downs similarly use an 

immobilized affinity matrix to capture bait proteins with the only difference being that they do 

not use the immune-system-derived antibodies. Examples are Ni2+ embedded matrices that 

enrich His-tagged proteins or immobilized streptavidin that enriches biotinylated proteins (17, 

18).  

Figure 2. Different methods for studying protein-protein interactions. (A) Affinity purification coupled 
to mass spectrometry. (B) Yeast two-hybrid screening. (C) Proximity labelling (APEX, BioID/TurboID). (D) 
Co-fractionation coupled to mass spectrometry (SEC/IEX-MS). (E) Cross-linking coupled to mass 
spectrometry. 

In the studies described in this thesis,  an endogenous GFP-tagged library in S. cerevisiae and 

human HEK293T cells were used. An additional advantage of GFP tagging is that it can be 

used for cellular localization screens. While a GFP-library for yeast has been generated and 

used for a global protein localization study already (19), it had not been used for global 

interaction screen yet. CRISPR-editing nowadays allows the generation of similar endogenous 
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tagged libraries in many systems. The length-limitation of CRISPR-tagging for GFP can be 

circumvented elegantly by using only β-strand 11 of GFP as the tag. By expressing the 

remaining part of GFP (β-strand 1-10) in cells the complete tag is reconstituted as a fully 

functional protein (20). This split-GFP strategy enables large-scale CRISPR-based screens that 

allow fluorescence microscopy localization as well as AP-MS interaction detection studies with 

the same cell line. 

 

1.1.4 Protein-Protein Interaction Networks 

Protein-protein interaction networks are the sum of all known interactions between proteins, or 

a detected subset of these. They resemble a map of all proteins and their interactions. In general, 

a network representation consists of nodes that are connected via edges that can be symbolized 

as circles and lines, respectively. In protein-protein interactions networks, proteins are 

represented as nodes and interactions as edges (Figure 3). The number of neighbors each node 

has is the “node-degree”. Interactions in a network can be – dependent on the underlying data 

- directed or un-directed. The former is usually depicted by an arrowhead that indicates the 

direction. Directed interactions can for instance be citation networks or dependency networks 

of programming packages that always point to the original source, thereby maintaining an 

important piece of information. When two proteins interact, both participate in an equal way. 

That is why from a graph theory point of view those networks should be treated as un-directed. 

Nevertheless, an edge can still be used to visualize further information, for instance for the 

direction in which an experiment was conducted. In the context of AP-MS, an arrow can 

indicate which of the protein is the bait and which the prey (pointing from bait to prey). 

An important finding in network science revealed that most known complex networks have a 

characteristic of higher-ordered structure that differentiates them from random networks: their 

node-degree distribution follows a power-law. In simpler terms, these networks have many 

nodes with a few connections and few nodes with a large number of neighbors. Such networks 

are called “scale-free” and differ from random networks in which the node-degree is Poisson 

distributed. “Scale-freeness” in networks is based on (i) the continuous expansion of the 

network by adding new edges and (ii) the preferential attachment of edges to nodes that are 

already highly connected (21). Due to gene duplication events during evolution, it is thought 

that protein interaction networks evolved in a similar preferential attachment mode and that 
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protein-protein interaction might follow a power-law. The attributes of scale-free networks 

explain some interesting features of complex networks, for instance, the “small-world” effect 

in which two nodes can be reached via only a few edges. These routes are called “shortest paths” 

and usually pass through highly connected nodes, called “hubs”. Additionally, such networks 

are robust against random removal of nodes, since the chances of removing a less important 

one is high. On the other hand, the targeted removal of central hubs, can have dramatic effects 

on the function of the network (22). While previous studies have suggested scale-free properties 

for protein-protein interaction networks, there seems to be doubt about the quality of the 

underlying data (23). 

Figure 3. Small network representation: Depicted are eight nodes and ten edges representing proteins 
connected via detected protein-protein interactions. The numbers indicate the “node-degree” which is equal 
to the number of its neighbors. The “shortest path” between both nodes with a node-degree of 1 is 4 steps 
(highlighted in red). Central nodes through which many shortest paths pass have a high “betweenness-
centrality” or are called hubs (green). 

1.1.5 From non-Quantitative to Quantitative Interaction Screens 

The final chapter of the ‘Nature Milestone’ series on mass spectrometry lists the field of 

interactomics as its latest achievement in the application category (24). Indeed, the 

breakthrough developments in protein ionization and peptide mass fingerprinting (25, 26) 

opened the opportunity for large-scale applications in the field of AP-MS. Here I give a short 

overview of previous large-scale interaction screens in S. cerevisiae. This will highlight their 

remarkable achievements as well as their limitations and will reason why quantitative 

proteomics can generate interaction data of superior quality compared to previous non-

quantitative approaches.  
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Due to the need of endogenous tagging to establish near-physiological conditions, yeast is an 

ideal candidate for systems-wide interaction studies. Its natural system of homologous 

recombination allows the rapid and efficient introduction of tags at specific loci. Almost two 

decades ago the first two initial AP-MS screens were conducted in yeast (27, 28) that were then 

followed by two larger-scale studies four years later (29, 30). The underlying assumption in 

non-quantitative AP-MS is that all co-purified proteins are specific interactors. Usually, AP 

samples were separated on gels and sliced bands used for MS identification. This assumption 

of all co-purified and detected proteins being specific was soon realized to be false. The 

presence of unspecific binding proteins or contaminants was reduced by the use of tandem 

affinity purification (TAP) tags, as these allowed more stringent washing in a dual purification 

step that includes partial tag cleavage (31). While those strategies reduced unspecific binding, 

more stringent washing also caused loss of weaker interactors and needed larger input materials. 

Generally, the mentioned interaction screens required around 4L of cell culture per pull-down. 

Altogether this required the processing of about 10 g of yeast pellets per pull-down, involving 

grinding with dry ice in a coffee grinder (29, 32). Even then it was necessary to manually 

remove proteins that commonly appeared in different purifications as unspecific background 

binders, potentially introducing biases. For example, Gavin et al. manually removed dozens of 

preys and almost all ribosomal subunits (33). A database named the “CRAPome” was generated 

to help exclude those false positives from AP-MS data (34). While these milestone studies 

enabled the understanding of many cellular functions, their limitations clearly reduced data 

quality (33). This is also reflected in the large discrepancies between the two yeast AP-MS 

interaction datasets that only overlap in 13% of their reported interactions, although they used 

similar approaches. To overcome this drawback, Collins et al. reanalyzed the raw data sets from 

these two main interaction studies to build a single consensus interactome (35). While the 

resulting data is of higher quality and shaped the interactome landscape it came with the trade-

off: size. The combined dataset encompasses about 1,600 proteins, only about one third of the 

expressed yeast proteome (36) and much less than the two original studies had reported, leaving 

the yeast interactome far from complete. Even ongoing studies of the human interactome use 

non-quantitative approaches, although their unspecific binder correction became more 

sophisticated (37–39). 

While the origin of quantitative proteomics dates back to the beginning of this century (40, 41), 

it is the recent developments of label-free quantification and normalization methods (42), novel 
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approaches of how to group bait samples into a single control group for efficient background 

identification and concepts of how to use correlation and abundance information that finally 

allowed scoring for interactions in quantitative acquired MS data (43–45). The basic principle 

is that the high sequencing speed and sensitivity of mass spectrometers are used to identify and 

precisely quantify not only a few co-purified proteins, but also “background binders” to a much 

larger degree (43). The number of detected background proteins can thereby exceed thousands 

of proteins in a single PD, while only a few specific proteins are present. This is enabled by the 

precise quantification that allows detection of subtle enrichments of specific proteins in 

comparison to control samples. The yeast interactome study presented in this thesis, likewise 

builds on the large number of quantified background binders across all samples’ constant 

background, by applying only very gently washing steps. Those steps do not use mixing, but 

rather dilute proteins that do not stick on the mobile phase, allowing precise normalization and 

quantitative interactomics. Together with the highly efficient mass spectrometric read out 

described next, this forms the basis of a very high-quality interactome.  
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1.2 Mass Spectrometry-Based Proteomics 

 

“The difficulties which would have to be overcome to make several of the preceding 

experiments conclusive are so great as to be almost insurmountable.” 
-J.J. Thomson 

 

1.2.1 A Century of Innovations in Mass Spectrometry 

Based on the discovery of Wilhelm Wien in 1898 that beams of charged particles could be 

deflected by a magnetic field (46), Joseph John Thomson constructed the first instrument 

capable of acquiring a mass spectrum in the early 20th century (47). Thomson, who became 

known as the father of mass spectrometry, built the parabola spectrograph that applied magnetic 

and electric fields to deflect gaseous ions based on their charge and mass. His observations on 

the properties of the electron were rewarded with the Nobel Prize of physics in 1906. 

Thomson’s work led to the discovery of atoms and isotopes, and his apparatus laid the basis for 

the field of mass spectrometry (48–51). In the following century, three more Nobel Prizes were 

awarded for groundbreaking work in the field of mass spectrometry. In 1922, Thomson’s 

former research assistant Francis William Aston who further improved the instrumental setup 

was recognized for his discovery of isotopes in a large number of non-radioactive elements 

(52–58). In 1989, Wolfgang Paul and Hans G. Dehmelt shared the Nobel Prize for the 

development of the ion trap technology (59). Paul’s quadrupole and Dehmelt’s magnetron are 

also known as the Paul and Penning traps, respectively, and evolved versions of either device 

made their way into most commercial mass spectrometers available today. Transferring an 

analyte into the mass spectrometer, controlling its movement within the device, and allowing 

its separation based on the mass-to-charge ratio by applying magnetic or electric fields, requires 

that the otherwise neutral molecules have to be ionized beforehand. The ‘gold standard’ 

ionization method in the first half of the last century that replaced the initial gas discharge 

experiments was electron ionization (EI) also known as electron impact or bombardment 

ionization. In EI, an electron stream is generated and focused with magnets onto the analyte for 

its ionization. Although variations of EI as the field ionization (FI), the field desorption (FD), 

or the chemical ionization (CI) provided a ‘softer’ alternative to ionize small organic molecules, 

they were still too harsh and destructive for large biomolecules (26). The breakthrough 



1  Introduction 

 19 

discovery for proteomics application was the development of ionization methods that are 

compatible to larger biomolecules like peptides or intact proteins. In 2002 John B. Fenn and 

Koichi Tanaka shared the Nobel Prize in chemistry for their contributions on the development 

of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), 

respectively (60). With MALDI, the analyte is embedded in a protective matrix that absorbs the 

energy of a pulsed laser beam that is used to transfer the analyte into the gas phase. With ESI 

the liquid analyte is guided through a needle to which a high voltage is applied. The 

development of nano-ESI with flow rates in the low nL/min range makes use of an efficient 

dispersion of the liquid and causes a dramatic increase in sensitivity (61–64). Both, MALDI 

and ESI are standard ionization technologies in mass spectrometry for the analysis of larger 

biomolecules today. The major advantage of ESI over MALDI however is the ‘online’ use of a 

liquid chromatography (LC) upfront of the ionization process, making it the preferred choice 

for reproducible analysis of complex samples in proteomics.  

The first century in the field of mass spectrometry was a fascinating one accompanied with 

great inventions that began to enable its application in medicine, quality control, forensics, food 

chemistry, biochemistry, and in many other areas of life science (50). Nevertheless, it is only 

in recent years that these promising developments have come to fruition. Nowadays, the 

increase in sensitivity of mass spectrometers allows unprecedented depth and analysis of 

samples of only a few cells and even of a single cell soon (65, 66). At the same time, many 

scientists, as well as established and newly founded companies, focus on developing solutions 

to improve up- and downstream processes in mass spectrometry. This includes efficient sample 

preparation (67), innovative columns and liquid chromatography systems (68, 69), novel data 

acquisition modes and analysis tools (70–73), as well as next-generation mass spectrometers 

that outdo one another in terms of sensitivity and resolution (65, 74).  

The following sections will give an overview on recent technological developments that were 

pivotal for this thesis and which are on the brink of becoming standards for high-throughput 

applications in science, medicine and industry. 
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1.2.2 Bottom-up Proteomics 

In “bottom-up” proteomics proteins are first extracted, denatured, and digested by sequence-

specific proteases into peptides. Following the enzymatic cleavage, peptides are separated via 

liquid chromatography and their masses are analyzed in the mass spectrometer. In order to 

obtain sufficient information on the peptide sequence, peptides are fragmented inside the mass 

spectrometer and the resulting fragment masses are obtained as well. Proteins are identified by 

comparing peptide sequences to an in-silico digested reference database. The “bottom-up” 

approach is frequently used since it is very powerful due to the ease of handling peptides and 

the superior analysis possibilities of peptides compared to intact proteins. Intact proteins are 

used in the counter-part approach named “top-down”, in which intact proteins are analyzed 

without a prior digestion step. As illustrated in Figure 4, a classical bottom-up MS-based 

proteomics workflow can be divided into sample preparation (A), LC-MS/MS analysis (B), and 

data analysis (C) (75). The steps are described in more detail in the next sections. 

Figure 4. Bottom-up proteomics workflow. Classical steps in proteomics for: (A) Sample preparation for 
the extraction of proteins from cells or any other amenable biological sample, followed by enzymatic 
digestion. (B) High performance liquid chromatography (HPLC)-based separation of peptides and ionization 
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via electrospray ionization (ESI) followed mass spectrometric analysis (here exemplary shown for an orbitrap 
analyzer). The mass-to-charge-ratio in data dependent acquisition modes is detected for intact co-eluting 
peptides (precursors, full-MS) followed by detection of the most abundant fragmented peptides (MS2). (C) 
The acquired mass spectra are used for database search containing the sequence of all potential proteins of 
the sample. Figure by Hein et al. (75). 

 

1.2.3 Sample preparation methods 

The accurate and reliable identification of several thousands of proteins – which in “bottom-

up” proteomics is inferred from peptide information – requires a specific sample preparation 

procedure. The preparation step is crucial in proteomics and the execution is dependent on the 

sample type. The main goal is to efficiently extract and isolate proteins from a sample of interest 

without inducing unspecific proteolysis. This sample can, in theory, be anything that contains 

proteins. In proteomics, primarily biological samples are of interest. These can be tissues, body 

fluids like plasma, cells from culture, parts of plants, yeast cells, bacteria, or other organisms. 

The basic steps include sample homogenization, cell lysis and extraction of proteins, protein 

denaturation, reduction of disulfide bonds, cysteine alkylation, proteolysis, and sample cleaning 

for complete removal of contaminants like salts or detergents before LC-MS analysis. 

For biological samples, homogenization and cell lysis can be achieved by mechanical disruption 

such as cryogenic grinding or bead-beating. Alternatives are sonication, heating, or the use of 

chemicals. Additionally, different agents are used to “deactivate” the sample by denaturing all 

proteins and therefore inhibit all enzymatic activity that could potentially alter the proteome, 

such as unwanted modifications or unspecific proteolysis. These include detergents like SDS 

(sodium dodecyl sulfate) and SDC (sodium deoxycholate), organic solvents like ACN 

(acetonitrile), or chaotropic agents like urea, thiourea, and guanidinium chloride (76, 77). 

In the next step, stable disulfide bonds are disrupted by using reducing agents such as TCEP 

(tris(2-carboxyethyl)phosphine) or DTT (dithiothreitol). The reformation of disulfide bridges 

is prevented by the alkylation of cysteines, typically using agents such as IAA (iodoacetamide) 

or CAA (chloroacetamide). Due to the identical masses of an alkylation side product with the 

ubiquitin diglycine adduct when using IAA, CAA is preferable in some cases (78). 

Different sequence-specific enzymes can be used for digestion. Most frequently used is the 

combination of the enzymes trypsin and LysC. LysC cleaves specifically C-terminally to lysine, 

while trypsin cleaves C-terminally to lysine and arginine. The sequence specificity is vital for 
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generating peptides with a certain average length while restricting the database search in the 

last step to peptides with an already known C-terminal amino acid. Other enzymes that can be 

used include Asp-N, Lys-N, Arg-C, or GluC (79). 

Before digested peptides are analyzed by mass spectrometry, they need to be purified. This 

process includes removing all potential damaging agents for the LC, column, or mass 

spectrometer from the sample. Removed are detergents, salts, chaotropic agents, or other 

aggregates that might clog, contaminate, or interfere with the LC-MS pipeline. Improper clean-

up can also suppress analyte ionization and impurities can deposit on hardware components of 

the mass spectrometer, thereby decreasing performance or damaging the instrument. The 

cleaner the sample, the longer the high-performant instrument run time and the more 

reproducible and reliable the data gets. A cornerstone in this area was the development of a 

peptide-tip-based purification technique named Stop and Go Extraction tips, short “StageTips”. 

It consists of small discs of retention material inserted into pipet tips that serve as a sample 

clean-up reservoir. This procedure is easily applicable and has become a standard in proteomics 

for sample purification and concentration (67, 80, 81). 

Peptide sample complexity can be decreased before LC-MS analysis by using fractionation. 

Fractionation is the separation of a single sample into several less complex peptide mixtures. 

Measuring several fractions instead of a single sample allows one to analyze more input 

material and spend more MS time on it. This procedure increases the depth and allows the 

detection of less abundant peptides. A crucial thing to consider is that fractionation is not just 

splitting the sample into different vessels but instead uses a chromatographic separation. The 

separation method should differ from the one that is used later in the LC-MS setup. This 

orthogonal separation can, for example, be an off-line high pH reverse-phase LC. The eluted 

fractions are then used for the on-line LC-MS analysis, which usually uses a low pH reverse-

phase separation (82, 83). Our group has developed a ‘loss-less nano-spider’ fractionator, which 

automatically concatenates the collected fractions via a rotating valve. This fractionator enables 

the quantification of around 12,000 proteins from very low-μg starting peptide material (84). 

 

1.2.4 High-Throughput Liquid Chromatography 

Subsequent to the enrichment and purification steps in bottom-up proteomics, different peptide 

species are separated from another on a liquid chromatography system which is coupled “on-
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line” to a mass spectrometer. In this LC-MS setup, the separation step takes place on the LC 

column, which is filled with a solid, hydrophobic material (typically octadecylsilane, C18). 

Peptides are separated based on physiochemical properties - mainly their hydrophobicity - and 

the separation is caused by the differences in interactions with the moving liquid and stationary 

solid phase. While the properties of the solid phase remain constant, the hydrophobicity of the 

mobile phase increased during each run. This mobile phase linear gradient controls the elution 

of the more hydrophobic peptides from the reversed-phase column. This causes peptides of the 

same species to co-elute from the column in narrow packages within the range of seconds with 

bell-shaped like intensities, called chromatographic peaks. This LC-MS setup allows to 

decrease the sample complexity in a time dimension, by submitting co-eluting peptides of the 

same species consecutively to the mass spectrometer. At the end of the column peptides are 

transferred to the gas phase by electrospray ionization (ESI). This happens at the entrance of 

the mass spectrometer where ionized peptides are then transferred into the vacuum (25, 85). 

Ionization of peptides can be aided by the presence of protons from formic acid in the solution. 

Two factors drastically influence ionization efficiency: the flow rate and the droplet size 

forming at the site of ESI. Both can be reduced by using a slow stream of liquid and by using 

(usually long) columns with a small diameter (63). While this setup causes an excellent peak 

separation, it requires high-pressure pumps in order to provide a constant flow through the 

column. These high pressures can cause pump-, valve and column failures. Another downside 

is that the long columns work preferentially with long gradients, since sample loading, passing 

of sample through the column, and washing off the column takes rather long and causes large 

gap times between runs.  

To overcome these expensive idle times of the mass spectrometer and to enable high-throughput 

usage with short gradient runs, a novel concept for liquid chromatography has been developed: 

The Evosep One. This LC uses mainly low-pressure pumps, runs with short columns, utilizes 

very short gradients, and drastically reduces gap times to a minimum. This setup promises to 

be a robust LC for high-throughput projects that need short gradients (69). The first difference 

to conventional LC systems is the direct elution of peptides from the C18 material that is 

embedded at the bottom of a pipette tip (“StageTip”, see 1.2.3). While upstream peptide 

enrichment and washing steps remain similar, peptides are not manually eluted (67, 80), but the 

loaded tips are placed inside a box and put onto the LC. The availability of a commercial and 

standardized version known as “Evotips”, helps to reduce handling variability and increases 
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reproducibility. Two low-pressure pumps (A, B, Figure 5) elute the peptide sample from the 

C18 material. This has two major advantages: The partial elution keeps impurities on the 

disposable Evotips and the gradual elution into the storage loop allows for the peptides to form 

of pre-gradient. The low-pressure pumps C and D generate an off-set gradient, by diluting down 

the organic component of the liquid phase. This off-set gradient reduces the interaction of the 

peptides with mobile phase and down-stream allows a better interaction with the solid phase on 

the column which contains C18 as well. 

Once the sample is on the loop, it is pushed quickly onto the column with a single high-pressure 

pump (H, Figure 5). The moment the sample has left the loop, the pressure and flowrate are 

reduced and data acquisition starts. Meanwhile the loop is washed and loaded with the next 

sample. Due to this, on a 21 min gradient the overhead time is only 3 min allowing to process 

60 samples a day with this setting. Other gradients reach from 3 to 44 min allowing 300 to 30 

samples per day (69). The above stated principles of pre-gradient and off-gradient formation, 

compensate for the above-mentioned disadvantages of this high-flow system for proteomics. 

At the same time, its robustness and high-throughput capabilities make it a perfect use-case for 

the here presented interaction studies that need the reliable processing of many thousands of 

samples. 

 
 
Figure 5. Evosep liquid chromatography system. (Left) Evosep LC system device. (Right) Schematic 
representation depicts the use of 4 low-maintenance low-pressure pumps (A-D) that allow direct sample 
elution from the C18-material packed pipette tip (“Evotip”) via a gradient formed by pump A+B. An off-set 
gradient is formed by the pumps C+D that allows sharper peptide peaks/separation on LC column with the 
same C18 material. A single high pressure pump H pushes the pre-formed gradient from the storage loop 
(lower central circle) onto the column. This allows mass spectrometric data acquisition to proceed while the 
loop is washed and filled with the next sample. This strongly reduces gap times between runs in which the 
mass spectrometer would be idle. Figure by Bache et al. (69). 
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1.2.5 The Mass Spectrometer 

Central to the proteomics workflow is the mass spectrometer, a device that detects and 

quantifies the masses – more precisely the mass-to-charge-ratio (m/z) - of the analyte. The mass 

spectrometer is composed of three main parts: the ion source, the mass analyzer, and a detector. 

To avoid collisions of the analyte with gas molecules and to avoid interferences, the mass 

spectrometer operates under an ultra-high vacuum (down to about 10-9 mbar) (50). The most 

frequently used high-performance instruments in proteomics in the last two decades were 

Orbitrap platform mass spectrometers, that replaced the much slower and impracticable Fourier 

transform ion cyclotron resonance (FT ICR) analyzer, the time-of-flight (TOF) instruments that 

had ion transmission deficiencies or ion traps with low mass accuracy. Based on a commonly 

used proteomics data submission website, 80 % of used machines are now Orbitraps and 8 % 

TOF based mass spectrometers (accessed on 2021/10/26, excluding other instruments: 

proteomecentral.proteomexchange.org). Since its first presentation over 20 years ago and the 

first launch of the LTQ Orbitrap in 2005, Orbitraps quickly became the prevalent instrument 

type (50, 86). Alexander Markov, the chief instrumentalist working on the Orbitrap, soon 

developed a combined ion trap and analyzer which is based on the Kingdon and Knight ion 

traps, that have their origins in 1923 and 1981, respectively. The problem of capturing stable 

ions in the Orbitrap analyzer was solved by a principle termed “electrodynamic squeezing”, in 

which the central electrode potential is increased the moment ions are injected axial to the 

Orbitrap. As an external pulsed ion source, Makarov designed a bend quadrupole – known as 

“C-trap”.  

An Orbitrap, as the name suggests, measures the mass-to-charge ratio of the analyte by 

detecting the induced current of the axial oscillating ions along the spindle pole (87).  

TOF instruments measure the time an analyte needs to pass a defined drift path distance in the 

vacuum until it hits the detector. This time-of-flight is dependent on its mass-to-charge ratio, 

causing ions with a smaller m/z to arrive earlier at the detector. A prerequisite for the time-of 

flight measurement is that the acceleration of each ion set takes place in a precisely defined 

short time frame. This controlled acceleration was enabled by pulsed ionization methods in the 

late 1980s that made the combination of MALDI with TOF instruments a perfect match for 

larger biomolecules. In this setting a continuous acceleration of ions is prevented by controlling 

the ionization and gas phase transfer with a pulsed laser beam instead (86). 
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One of the major advantages of Orbitrap over MALDI-TOF instruments for proteomics was 

their capability of operating downstream of HPLC (high performance liquid chromatography) 

devices. This on-line setup as described in 1.2.4 allows to perform analysis of complex 

proteomic samples therefore increasing signal to noise ratio. Despite the much higher speed of 

TOF instruments, in which single spectra can be acquired in less than a ms (50), the discussed 

reasons made Orbitraps the preferred choice. 

Recently, two major developments helped to shift momentum back to TOF mass spectrometer: 

The improvement of orthogonal accelerators and the implementation of ion-mobility 

spectrometry (IMS). Orthogonal accelerators allow the use of non-natively pulsed ionization 

methods like ESI with TOF, rendering them LC- compatible. IMS on the other hand can be 

added to TOF instruments as an additional dimension of separation uncovering new 

possibilities of speed and sensitivity. This type of instrument and the modes of operation that 

enable its efficient use is described in the next section. 

 

1.2.6 Trapped-Ion-Mobility Coupled Time-of-Flight Mass Spectrometry 

A trapped ion mobility spectrometer (TIMS) separates ions in the gas phase based on their ion 

mobility. The ion mobility itself is dependent on the ion-neutral collisional cross section (CCS) 

and the charge of the molecule. In a TIMS device ions are dragged along a constant flow of a 

gas (e.g. nitrogen from ambient air) and are pushed back by an opposing constant electrical 

field until both forces reach an equilibrium that keeps the analyte in a fixed position. The 

dragging force is caused by the impact of colliding gas molecules onto the analyte and is 

dependent on the molecule’s average accessible cross section: the CCS. The counteracting force 

is dependent on the charge of the molecule. The TIMS device is a development from Melvin 

Park and colleagues from Bruker Daltonics and is inspired by a conventional drift tube in which 

the analyte is moving and colliding with a resting gas. By using a gas stream instead, the TIMS 

device shrinks in size down to centimeters compared to meters in length for a drift tube (88). 

The TIMS device traps ions – separated by their ion mobility – and by decreasing the electric 

field releases them in packages into the mass spectrometer. An updated version – the dual TIMS 

analyzer (Figure 6B) - separates the funnel in three parts: A trapping unit in which arriving 

ions from the source are accumulated, a transfer region and a  second unit that separates and 

gradually releases the ions by ramping down the electric field. Ions from unit one are transferred 
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to the second unit and the cycle begins anew. This parallel accumulation enables an up to 100% 

duty cycle of the ions (89).  

 

Figure 6. A timsTOF Pro mass spectrometer utilizing the Parallel Accumulation – Serial 
Fragmentation (PASEF) mode. Shown are the main elements: Trapped ion mobility spectrometry (TIMS) 
analyzer, quadrupole mass filter, quadrupole collision cell and bottom part of time of flight (TOF) analyzer. 
The displays depict the timely interplay between the single elements. See text for details. Figure from Florian 
Meier et al. (74). 

 

Another important innovation was made in our lab and is named Parallel Accumulation – Serial 

Fragmentation. PASEF is a scan mode that utilizes more ions in the same amount of time 

thereby increasing sequencing capacity about tenfold (74, 90). Normally the quadrupole mass 

filter (Figure 6E) is switched in the MS/MS mode to the m/z value for a single in MS1 selected 

ion, thereby discarding all other ions eluting from the TIMS device. In PASEF mode, the 

quadrupole is sequentially switched in synchrony to the m/z of several select ions that elute 

from the TIMS device. This implementation allows about ten PASEF scans per second with a 

selection of up to 10 or 12 precursors each, resulting in sequencing speeds of  > 100 Hz (74). 

Importantly, the TIMS device operates in the millisecond time range and thus fits perfectly in 

between the peptide elution time from the column (seconds, Figure 6A) and the spectra 

acquisition time in the range of 100 microseconds (Figure 6F). Combining the TIMS with a 

mass spectrometer therefore offers a unique advantage for TOF instruments. The ion mobility 

dimension adds an additional precursor separation dimension and increases the signal-to-noise 
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ratio by accumulation dense ion packages while drastically multiplying sequencing speed 

without sample loss. The additional dimension also allows an improvement in the data analysis 

pipeline: The matching between runs feature, in which identified features can be transferred 

between runs can benefit from the CCS as an extra dimension (91). 

I used the timsTOF Pro mass spectrometer, the PASEF scan mode and MBR feature in the 

interactome studies described in this thesis in order to achieve highly sensitive measurement 

for low input material and to generate as complete as possible data matrices. 
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1.3 Aims of the Thesis 

The aim of this thesis was to elucidate the entire interactome of the model organism S. 

cerevisiae to understand its network structure and to discover novel biological findings. The 

project builds on previous work of Eva Keilhauer (43), Fabian Hosp (45) and Marco Hein (44) 

who initiated the quest for quantitative interactomics studies in our lab, by establishing new 

concepts for analysis and testing the limits for input materials.  

A major aim of the thesis was to optimize and establish a workflow for affinity-purifications 

coupled to mass spectrometry in a high throughput and scalable manner for all known to be 

expressed 4,200 proteins in S. cerevisiae. This included the identification of optimal conditions 

that allow exponential growth – the preferred condition for yeast biologist – as well as to 

miniaturize and standardize the workflow. One of my major goals was to achieve a workflow 

in which all steps are in a high-throughput compatible 96-well format. Therefore, the best 

condition/ protocols for yeast cell lysis within deep-well plates had to be established that would 

allow proper cooling, avoids cross contamination, and would extract lysate most efficiently. 

For the enrichment step, a custom-made solution for anti-GFP nanobody coated plates was 

initiated. In this context, I tested the most optimal plate material and coating with the aim of 

achieving best pull-down results and highest mass spectrometry compatibility. For the mass 

spectrometry sample preparation, several protocols were established to find a solution to keep 

the digestion and alkylation within the microtiter plate and in order to preserve Evotip 

compatibility. Initially, I explored different options in terms of LC or mass spectrometer and 

tried data independent acquisition modes before deciding on the use of the timsTOF Pro. 

A major hurdle was the processing of the very large number of raw files, that initially took 

much more storage space than the Orbitrap output files. Particularly in early stages, limitations 

of the available software (initially only MaxQuant) was a major reason for delay and required 

many workarounds and tweaks.  

These efforts have successfully enabled me to present in this doctoral thesis the most 

comprehensive and highly structured network of the yeast. Similar to human networks (on 

social media), the yeast interactome as described in the next chapter is highly connected with 

an average of 15 interactors, many of which are not reported. The rigorous workflow established 

here should allow similar interactome studies in other organisms (as demonstrated in Chapter 
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2.2). In addition, this work also provides a free web-portal to explore our datasets and thus 

serves as an important resource for other scientists. 
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2 Results 

2.1 Article 1: The social architecture of an in-depth cellular protein interactome 

André C. Michaelis, Andreas-David Brunner, Maximilian Zwiebel, Florian Meier, Maximilian 
T. Strauss, Isabell Bludau, Matthias Mann (2021). The social architecture of a near-complete 
cellular protein interactome. Biorxiv, doi:10.1101/2021.10.24.465633.  
 

 

This publication contains the results of a near-complete protein-protein interactome in 

S. cerevisiae. Using affinity-purification coupled to mass spectrometry (AP-MS), I provide a 

map with high-quality interaction data, that triples and doubles the number of interactions and 

proteins, respectively, compared to the latest state-of-the-art reference data set (35). Using AP-

MS, this is the single-study derived interactome with the highest protein coverage in any 

organism yet. The majority of the reported interactions are new, based on a comparison with 

the broadly used BioGRID interaction database (92). Building on previous studies from our 

group (43–45), I developed a cell sample preparation and a mass spectrometry pipeline that 

would allow handling all of the about 4,200 GFP-tagged strains known to be expressed in yeast 

under standard growth conditions (19). Using quantitative proteomics for the first time in a very 

large interaction screen, it was crucial to have very consistent handling in order to generate 

reproducible enrichment and background binders across all samples. The combination of an 

efficient lysis protocol and the latest generation of mass spectrometer allowed me to use 96-

well plates throughout all steps. This “reduced” the sample number to 44 of these well plates. 

The cell wall of yeast is tough and requires a special lysis protocol compared to other eukaryotic 

cells. While several options like cryogenic grinding as used previously (29, 32), or proteolytic 

lysis (93) are available, they needed to be compatible with the high-throughput plate format and 

not interfere with the mass spectrometric workflow (as proteases would). I found that 

mechanical disruption fulfills those requirements best. It turned out to be important to use the 

correct low-protein binding equipment, a specific ratio of the right lysis buffer and glass beads, 

proper sealing of the plates while still allowing access to the samples, all while using optimized 

bead-beating conditions. Only a few devices allow parallel, high-frequency deep-well plate 

bead-beating. The cycles described in the methods part of the paper bring maximum lysis 

https://doi.org/10.1101/2021.10.24.465633
https://doi.org/10.1101/2021.10.24.465633
https://doi.org/10.1101/2021.10.24.465633
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efficiency while keeping the temperature increase (which is crucial for maintaining protein 

interactions) with each cycle to a minimum.  

For the pull-down, anti-GFP coated nanobody 96-well microtiter plates were available, but they 

turned out to have a coating that had unacceptably high contaminations for MS analysis. This 

made them incompatible with a single step protocol that would allow pull-down, washing, 

reduction, alkylation, and digestion within the same plate without transferring them. In 

cooperation with the company Chromotek, I tested several new production settings with a 

variety of plate materials to find the optimal setting for a MS compatible single step “in-well” 

digest. Those plates are now commercially available allowing other scientist to reproduce. For 

the denaturation and digestion protocol, some methods did not result in the efficient unfolding 

of stable proteins (as reflected in the absence of the GFP-tag) and some were not compatible 

with large-scale screens, nor the use of C18-material based purifications as it is required for the 

Evosep One. This included the commonly used SDC (sodium dodecyl sulfate) protocol (67) 

which requires heating to high temperature, which is impractical for large-scale analysis and an 

SDP-RPS (styrenedivinylbenzene- reverse phase sulfonate) based purification. Instead, I 

decided to use a classical high molar urea LysC digest followed by a low molar urea- one. This 

allowed the identification of e.g. GFP which I used in a tag-based abundance calculation later 

on. The LysC only digest improved results, likely due to in general better performance of TOF 

devices with slightly higher m/z peptides and the reduced missed-cleavage rate which I 

observed to be worse in a urea based LysC and trypsin digest. This is likely caused by the 

efficient digestion of LysC by trypsin in those denaturation conditions. 

All optimized steps allowed the samples to be processed in a streamlined manner with only two 

major transfers: from the deep-well plate to the microtiter plate and then to the Evotips, resulting 

in high reproducibility.  

The above detailed description should aid others to appreciate the steps and the underlying 

effort of the developed protocol that are only briefly described in the results-oriented paper. 

The motivation to optimize the workflow and to reduce and simplify all possible steps, was not 

only to generate the best feasible data in this study, but also to provide an easy protocol that 

will allow other groups to do similar experiments. Our dataset allows to select those baits that 

efficiently cover a part of the network of special interest. By doing this and by using the 

provided workflow, one can easily conduct new studies that for example investigate effects of 

specific perturbations. I also see this platform as a starting point for many global interaction 
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screens to come, that will map differences between conditions and help to unravel new 

mechanists of the cell. 

With this large coverage of expressed proteins, my results show that correlation analysis 

becomes a very powerful tool. This is because almost all yeast proteins are present in this 

dataset, and therefore correlations can be established for almost all of them. This is why we 

have very significant interactions that are only based on correlations. Examples include proteins 

that are not taggable such as the chaperonin containing t-complex. Overall, I find many very 

promising new interactions that are covered by several high confidence interactions. 

Because large-scale data are sometimes hard to understand or even to access, I have put much 

effort in generating an easily accessible and visually appealing web application Maximillian 

Zwiebel was invaluable in this endeavor as he manifested most of our analysis pipeline into a 

corresponding code and transformed all my visions of how to browse the final data into an 

aesthetic, concise and easy to handle webpage (www.yeast-interactome.org). 

The results described below belong to the manuscript which is published on BioRxiv. 

 
 
 
 
 
  

http://www.yeast-interactome.org/
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The social architecture of an in-depth 
cellular protein interactome 

André C. Michaelis1, Andreas-David Brunner1, Maximilian Zwiebel1, Florian Meier1,2, 

Maximilian T. Strauss3, Isabell Bludau1, Matthias Mann1,3,# 

1Max-Planck Institute of Biochemistry, Martinsried, Germany; 2Functional Proteomics, Jena University Hospital, 

Jena, Germany; 3NNF Center for Protein Research, University of Copenhagen, Denmark 

#Correspondence: mmann@biochem.mpg.de 

Nearly all cellular functions are mediated by protein-protein interactions and mapping 

the interactome provides fundamental insights into the regulation and structure of 

biological systems. In principle, affinity purification coupled to mass spectrometry (AP-

MS) is an ideal and scalable tool, however, it has been difficult to identify low copy number 

complexes, membrane complexes and those disturbed by protein-tagging. As a result, our 

current knowledge of the interactome is far from complete, and assessing the reliability 

of reported interactions is challenging. Here we develop a sensitive, high-throughput, and 

highly reproducible AP-MS technology combined with a quantitative two-dimensional 

analysis strategy for comprehensive interactome mapping of Saccharomyces cerevisiae. 

We reduced required cell culture volumes thousand-fold and employed 96-well formats 

throughout, allowing replicate analysis of the endogenous green fluorescent protein (GFP) 

tagged library covering the entire expressed yeast proteome. The 4159 pull-downs 

generated a highly structured network of 3,909 proteins connected by 29,710 interactions. 

Compared to previous large-scale studies, we double the number of proteins (nodes in the 

network) and triple the number of reliable interactions (edges), including very low 

abundant epigenetic complexes, organellar membrane complexes and non-taggable 

complexes interfered by abundance correlation. This nearly saturated interactome 

reveals that the vast majority of yeast proteins are highly connected, with an average of 

15 interactors, the majority of them unreported so far. Similar to social networks between 

humans, the average shortest distance is 4.2 interactions. A web portal (www.yeast-

interactome.org) enables exploration of our dataset by the network and biological 

communities and variations of our AP-MS technology can be employed in any organism 

or dynamic conditions. 

mailto:mmann@biochem.mpg.de
http://www.yeast-interactome.org/
http://www.yeast-interactome.org/
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The large-scale study of cellular interactomes by MS-based proteomics dates back almost 20 

years (1, 2), culminating in two studies in which nearly half the expressed yeast proteome was 

successfully purified with identified interactors (3, 4). These datasets have been mined 

extensively, leading to a network-based view of the cellular proteome. Given the importance of 

the interactome for functional understanding and the dramatic improvements in MS-technology 

during the last decade (5, 6), we set out to generate a substantially complete interactome of all 

proteins present in an organism in a given state. We made use of an endogenously GFP-tagged 

yeast library containing the 4159 proteins that were detectable by fluorescence under standard 

growth conditions (7). Miniaturization and standardization of the workflow in combination with 

an ultra-robust liquid chromatography system with minimal overhead time coupled to a 

sensitive trapped ion mobility mass spectrometer employing the PASEF scan mode (8, 9), 

resulted in very high data completeness across pull-downs. This workflow required only 1.5 mL 

instead of liters of yeast culture, provided a constant throughput of 60 pull-downs per day and 

allowed using the same conditions for soluble or membrane proteins of vastly different 

abundances (Fig. 1A). 
 
Measurement of the yeast interactome  

To test the quantitative reproducibility of our workflow, we performed 24 biological replicates 

of pull-downs of three nuclear complexes, which resulted in complete retrieval of these 

complexes from a single bait each, with 9% average coefficients of variation (CVs) of enriched 

complex members (Fig. 1B). This compares to a 69% repeatability of assigned interactions in 

the previous large-scale screens (10). 

Three layers of evidence help to establish an interaction between two proteins. The first two are 

statistically significant enrichment of the proteins in the forward and in the reverse pull-downs 

(where the prey pull-down significantly enriches the bait). Instead of employing only a t-test of 

bait pull-down against a pull-down of a strain only expressing GFP, we made use of our vast 

number of diverse GFP-tagged strains, to combine them into a single control group, thereby 

efficiently removing false positives not specifically binding to the bait (Methods: Enrichment 

analysis). Using this affinity enrichment (rather than affinity purification) concept (11), we 

quantitatively compared all proteins across more than 8,000 pull-down measurements, making 

use of the profile similarities of interacting proteins in correlation analysis. This third evidence 

type turned out to be very informative due to the large quantitative accuracy combined with 

close to a complete set of “virtual controls” (Methods: Protein correlation, Fig. 1C).  
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We combined all three layers of each interaction into a single interaction score and retained 

those with a minimum score of 2, corresponding to (a) a single pull-down at 1% FDR or (b) a 

correlation z-score of at least five or (c) forward and reverse pull-downs at 5% FDR each, or 

(d) one at 5% FDR combined with a correlation z-score greater than four. To retrieve clusters 

and complexes from our interactome data, we used Markov clustering with the above-derived 

score as the edge weights, without any training or a priori knowledge (Methods: Network 

generation, Fig. 1C).  

The replicate GFP pull-down measurement in the 4,147 yeast strains resulted in the enrichment 

of 82% of the baits (Suppl. Fig. 1). Our MS-data provided statistically significant evidence for 

a total of nearly 30,000 physical interactions, corresponding to an average of 15.2 interactions 

per protein. Most were supported by forward pull-down (38%), followed by forward pull-down 

and significant prey correlation (29%), whereas nearly all interactions with both forward and 

reverse evidence also had significant correlations (> 99%) (Suppl. Fig. 2).  

Due to the limited overlap of the interactions reported by two previous large-scale studies (13% 

shared interactions), Collins et al. merged and reanalyzed these datasets to create a consensus 

network with 1,622 nodes (12). Our data encompasses 95% of these, but places nearly the entire 

expressed yeast proteome in a network (3,909 nodes). Our dataset of 30,000 significant protein-

protein interactions confirms 62% of the much smaller Collins et al. dataset (Fig. 1E). Based 

on a comparison with the BioGRID database (13), over two-thirds of the interactions reported 

here are novel. 
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Figure 1. A comprehensive and scalable interactomics technology. 
A) Sample preparation in 96-well format and mass spectrometric measurement: Each strain of the GFP-
tagged library is lysed by mechanical disruption and transferred into anti-GFP nanobody coated microtiter 
plates, where weak interactions are preserved by gentle washing. After enzymatic “in-well” digestion, 
resulting peptides are transferred on standardized C18-StageTips from which they are directly eluted into a 
standardized 60 samples/day gradient. Data is acquired in the PASEF scan-mode on a trapped ion mobility 
– Time of Flight mass spectrometer. B) Streamlined workflow and reduced transfer steps reduce the risk of 
manual errors and sample variation: Demonstration of workflow reproducibility and sensitivity on three 
nuclear complexes in biological replicates. Tagged members of each complex (baits) pull down the known 
preys in very similar amounts. Lower panel: bar plot of mean coefficient of variation with standard 
deviations. C) Two-dimensional interaction scoring: Columns represent pull-down experiments in replicates 
(light color). Squares depict intensities of detected proteins across the pull down-experiments. Three levels 
of evidence support each interaction: t-test of forward pull-down against complement experiments, t-test of 
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reverse pull-down, and protein profile correlation – the correlated abundance profile against all other proteins 
across all experiments (z-scored, Methods: Protein correlation). D) Proportion of interactions backed by 
multiple layers of evidence. E) Overlap of proteins with at least one interactor and interactions detected in 
this study with the previous state-of-the-art network (12). 
 
 
Organization of protein-protein interactions in clusters 

Markov clustering analysis - with our interaction scores as edge weights, condensed the network 

into 623 clusters, with about 20,000 interactions within them, most supported by at least two 

statistically significant levels of evidence (Fig. 1D). When we inspected known protein 

complexes from different cellular compartments, especially membrane complexes, we found 

them to recapitulate the literature to a large degree. Furthermore, we here retrieved 3628 

interactions between membrane annotated proteins, compared to 853 in a dedicated membrane 

proteome (14). This is shown exemplarily for the full retrieval of the endosomal retromer 

complex, the conserved oligomeric Golgi complex, and the plasma membrane exocyst complex 

(Fig. 2A). At the same time, our unbiased and high coverage analysis identified novel subunits 

with tight association to known complexes. For instance, three subunits of the essential 

endoplasmic reticulum (ER) membrane oligosaccharyl transferase (OST) complex - an integral 

component of the translocon - associated with α-1,2-mannosidase (Mns1; human homolog: 

MAN1B1), an enzyme that catalyzes the ER glycoprotein trimming reaction which is required 

for ER-associated protein degradation (ERAD). This indicates that the enzymatic activity of N-

linked oligosaccharide chain addition is physically connected to the removal of a terminal sugar, 

at least in one isoform of the OST complex. The slow enzymatic activity of Mns1 acts as a 

timer (15, 16) and we speculate that it co-translationally primes stalled or erroneous proteins 

directly at its site of translocation for ERAD degradation. We also discovered a novel complex 

defined by three unreported interactions (all with the maximum interaction score of 10) between 

Tcd1, Tcd2 - mitochondrial proteins that are involved in tRNA base modification - and 

YGR012W, a protein of unknown function. A homolog of Tcd1 and Tcd2 in E. coli termed 

TcdA functions in a complex of three in the cyclization of an essential tRNA modification found 

in all three domains of life (17). 

Many biological complexes share members and these can be difficult to disentangle by 

clustering algorithms. We speculated that our highly quantitative data could nevertheless 

resolve these cases. Applying a network layout algorithm (Methods: Network generation) to 

members of the transcription factor TFIID and the SAGA complex, separately reconstructed 

these complexes, while correctly assigning shared members (Fig. 2A). At the global scale, we 
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found that about two-thirds of all interactions connected members within clusters, whereas the 

remainder connected clusters to each other. For example, the cytoplasmatic signal recognition 

particle (SRP) is connected to another cluster containing the SRP-receptor (SRP101/102). The 

largest connected clusters were the small and large subunits of the ribosome, with 362 inter-

complex connections.  

Leveraging the common, endogenous GFP-tag on more than 3379 detected baits, we next 

investigated if the MS-signal of the GFP peptides could be used to quantify each bait. Indeed, 

these intensities correlated well (r = 0.77), with a recent compilation of yeast protein 

abundances (18) (Fig. 2B). This validates our interaction workflow and allows tag-based 

estimation of the relative abundances of proteins in a cluster, which is useful to determine their 

functional role (19). 

For some proteins, for example the members of the chaperonin containing t-complex (CCT), 

tagging is not possible because it interferes with protein stability or function (20). Based on 

highly significant correlations between profiles of the subunits, CCT was nevertheless fully 

recovered (Fig. 2C). Besides the eight conserved, ring-forming members, we also detected a 

distinct set of 21 interacting proteins, about half of which had not been reported yet. Two of 

these were catalytic subunits of protein phosphatase 2A, suggesting regulatory functions, and 

others, such as tubulin and actin-related proteins (Tub1, Tub3, Arp1) major known folding 

substrates. CCT may have a restricted or broad set of folding substrates (21), and our results 

quantitatively support the former possibility. 

The above examples only scratch the surface of the interesting biological leads contained in the 

data. To allow ready exploration of interactions of interest, we created a web portal (www.yeast-

interactome.org), which supplies statistical evidence for protein-protein associations, and 

summarizes the resulting clusters (Fig. 2D).  

 

http://www.yeast-interactome.org/
http://www.yeast-interactome.org/
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Figure 2. High-quality dataset for the exploration of the interactome. 
A) Clusters derived from our interactome for a range of challenging complexes such as chromatin-associated,
soluble and membrane-bound complex of various organelles. In each case, all known subunits were retrieved.
B) Tag-based quantification allows retrieving abundance information for the baits in a generic manner (left
panel). Correlation of tag peptide-based signals with a literature compilation of yeast protein abundances (18)
(right panel). C) For the non-taggable chaperonin containing t-complex (CCT), profile correlation analysis
nevertheless reveals its subunits and interactors. Interactions based on correlation only are shown in red
(dashed) and unreported interactions with CCT in green. D) Web application that allows exploration of
interaction data for interactions of interest. For all proteins, pull-downs are depicted as volcano plots together
with a violin plot that shows the MS intensity of user-selected outliers. Subnetwork from pull-downs of the
selected bait and reverse pull-downs or significant interactors.
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Network architecture of the cellular interactome 

The availability of data for large networks in systems ranging from power-grids, genetic 

networks to human social networks, has enabled the study of their underlying architecture, 

commonalities and differences (22). This topic also has a long history in protein interaction 

networks. However, these analyses have been limited by the incompleteness of the data, 

especially in multicellular species (23). With an in-depth protein-protein interaction map in 

hand, we compared its characteristics to networks in different domains. Yeast proteins are 

highly connected with an average of 15 and a median of 6 interactions per protein, significantly 

more than the human BioPlex interactome (average interactions: 8) (24) (Fig. 3A). Influential 

nodes – those with the highest number of normalized interactors (or degree centrality) – were 

more common than in the GitHub package dependency network, but less common than in a 

similarly-sized Facebook subnetwork (Suppl. Fig. 4). This high connectivity is reflected in a 
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mean shortest path between yeast proteins of only 4.2, ranging from highly connected proteins 

with only three steps to less connected ones with an average of more than 7. (Fig. 3B). This is 

very similar to the 4.7 path-length for world-scale Facebook relationships (25). 

One of the key features for most real-life networks with complex topology in contrast to random 

networks is the scale-free power-law distribution of interactors (26, 27). Scale-free network 

properties are thought to arise by preferential attachment over evolutionary time to already well-

connected nodes and can be identified by a linear relation of the node degree or number of 

interactors with its frequency (number nodes with that degree) plotted in log-log space. While 

this has been hard to prove for biological networks, they rather appear to be exponential or have 

a truncated power-law degree distribution (28), our yeast interactome clearly displays scale-

free properties (Fig. 3C). In accordance with previous protein-protein interaction networks (3, 

29), the exponent was below two, at the lower end of the two to four range of other scale-free 

networks. 

The high connectivity of most proteins organizes almost all of them (3,827) into a single giant 

connected component, accompanied by 38 small components (82 proteins) (Fig. 3D). A total 

of 478 proteins were outside of the network because MS-analysis of their pull-downs only 

identified the bait itself. There was an significant enrichment for 87% of these baits 

(FDR<0.01%), indicating that there were no identifiable interactors under our standard 

conditions despite a successful pull-down (Suppl. Fig. 3, see volcano plots accessible via web-

application). 

We next investigated the large-scale organization of the yeast interactome using the Louvain 

community detection algorithm (Methods: Network comparisons). This revealed that yeast is 

organized in smaller communities than GitHub, ego-Facebook and also Bioplex (Fig. 3E). 

Important “bottleneck” proteins that are part of many shortest paths have a high “betweenness-

centrality”. The yeast interactome has comparably more of those central nodes and 

bioinformatic enrichment analysis highlighted proteins involved in “RNA polymerase II”, 

“mitochondrial nucleoid”, “gluconeogenesis” and “misfolded protein binding” (Fig. 3F; Suppl. 

Table 1). 

Altogether, based on the total of 4,387 identified yeast proteins, only 10.9% had no discernable 

interaction partner, whereas 74.2% had at least two. Given that some of our baits will have 

context dependent interactions not captured here, our estimates are conservative and we 

conclude that almost all yeast proteins are “social”.  
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Figure 3. Properties of the protein interaction network. 
A) Distribution of the number of interactors (grey). Sorted cumulative number of interactions reaches 
saturation at 30,000 interaction (blue) B) The distribution of average shortest path length between all possible 
pairs of nodes within the giant component shows a mean of 4.2 steps corresponding to 3.2 intermediaries 
(“degrees of separation”) C) Power-law fit (green; equals a linear fit on a log-log scale) of the frequency of 
proteins with a given number of interactions highlights the scale-free properties of the network. Exponential 
fit depicted in orange D) Nearly all nodes of the network are connected with each other in the giant 
component. E) Cumulative distribution function of the community sizes (Louvain algorithm) detects more 
smaller communities for S. cerevisiae. F) Cumulative distribution function of betweenness centrality: The S. 
cerevisiae interactome has more nodes with a high betweenness-centrality than the comparison data sets. 
 
 
Global organization in clusters highlights novel interactions 

Intensive research over the last decades has made S. cerevisiae arguably the best understood 

single-cell eukaryotic organism, leading to the discovery of crucial conserved cellular 

functions, such as metabolic pathways, mechanisms of DNA replication and transcription, 

protein quality control and modifications that were later confirmed in human and other 

organisms. Nevertheless, our interactome still contained uncharacterized proteins or 

interactions not reported in the BioGRID database and thus providing novel biological insights 

(extended selection Suppl. Fig. 6). Furthermore, BioGRID has accumulated binding events 

from very disparate experiments without a common confidence score (133,900 physical 

interactions from about 10,000 publications). We reasoned that our homogeneous, high-quality 

data set would help biologists to highlight true positive interactors with biological relevance, 

several of whom we discuss below. 
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A total of eleven evidences connect the uncharacterized protein YDL176W with the conserved 

glucose-induced-degradation (GID) complex, only a few of which had been indicated by 

previous pull-down or genetic interaction data (3, 30) (Fig. 4B). These types of high-confidence 

associations assist in prioritizing interactions and form the basis for a detailed mechanism and 

structure discovery of a novel GID modulator. Similarly, our data ties the uncharacterized 

protein YJR011C to the conserved transcription and translation regulatory CCR4-Not complex 

(31, 32) via high-significant interactions to a majority of its subunits (Fig. 4G). Finally, 

YHR131C is linked to three and YLR407W to the fourth subunit of the kinase CK2 (Fig. 4N). 

We discovered an interaction of Cue4 – a protein of unknown function containing a ubiquitin-

binding domain – with the ER membrane complex EMC, potential membrane protein 

chaperone (Fig. 4L). As Cue4 is a paralogue of Cue1 (coupling of ubiquitin conjugation to ER 

degradation), a component of ERAD (33), this physical link and the known aggravating genetic 

interactions of ∆cue1 with EMC knock-outs (34) suggests an ERAD related quality control 

mechanism for EMC.  

The transcriptional regulator SWI/SNF unexpectedly interacts with the phosphate transporters 

Pho87 and Pho90 (Fig. 4D). Out of four plasma membrane phosphate transporters only Pho87 

and Pho90 comprise a cytoplasmatic accessible SPX domain. While an SPX dependent 

phosphate sensing mechanism has been discovered in plants (35), it remains elusive in S. 

cerevisiae. In Arabidopsis inositol pyrophosphate InsP8 concentration increases under 

phosphate rich conditions and promotes the interaction between SPX domains and a four-

stranded coiled-coil motif of phosphate starvation response transcription factors (36). Strikingly 

the recently solved structure of SWI/SNF reveals such a coiled-coil four-helix-bundle at its 

spine region (37) providing a potential SPX interaction site. This raises the possibility of a novel 

cytoplasmatic sensing and retention mechanisms of this key transcriptional regulator which is 

known to be necessary for a phosphate starvation response (38, 39). Interestingly, not only the 

SWI/SNF complex but also an SPX domain-containing phosphate transporter named XPR1 - 

which has recently been shown to be controlled by InsP8 (40) - is present in humans.  

Illustrating translational relevance, we expand the known interaction of the GTPase-activating 

protein Ira1/Ira2 (NF1/neurofibromin in humans) and Gpb1/Gpb2 (ETEA in humans) (41) by 

Trx2 a thioredoxin isoenzyme (human homolog: TXN) and Gpx1 (human homologs: GPX3-

6), an antioxidant enzyme whose glutathione peroxidase activity is neuroprotective in models 

of Huntington’s disease (42) (Fig. 4C).  
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Additionally, we find a new physical interaction between the two uncharacterized proteins 

YPR063C and YNR021W (Suppl. Fig. 6) whose dimerization and structure has just been 

predicted in a deep-learning approach (43). 

Apart from known and novel protein complexes, the yeast interactome depicted in Fig. 4, 

clearly shows evidence of high order connections. These often map to different compartments 

of the cell, such as the prominent connections between ribosomes in the cytoplasm and the 

nucleolus, its site of maturation or connect large and small ribosomal subunits that despite its 

“stickiness” are organized in individual clusters. 
 
 

 
Figure 4. Network of an in-depth interactome highlighting novel interactions. 
Cellular interaction map of all significant interactions. Clusters are highlighted by circles and cellular 
localization is indicated by most frequent GO term within a cluster. Enlargements show examples of either 
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novel interactions (based on BioGRID) or those that have not been described further as potential high 
significant interactor and interactions involving uncharacterized proteins. A full browsable and interactive 
version of this network can be found at our web application (www.yeast-interactome.org). 
 
 
Outlook 

Here we have developed and applied a novel and highly scalable interactome technology, 

enabling replicate measurement of the yeast network in a fraction of the measurement time and 

starting materials needed previously. Our screen reached near saturation and contained nearly 

all complexes expected under our experimental conditions (Fig. 3A, Fig. 4). Given its 

streamlined nature, our workflow can now readily be used in other endogenously tagged model 

organisms (44) or to study remodeling of the interactome in the presence of dynamic biological 

processes or perturbations. Similarly, we envision its use with other interaction technologies 

like BioID or APEX using tagged libraries that nowadays can be easily generated using the 

SWAp-Tag platform (45). The comprehensive yeast interactome data can further be used as 

prior knowledge for hypothesis-driven analysis of protein complexes, for example for native 

protein complex co-fractionation coupled to MS (46, 47). Additionally, we imagine that such 

interactome data could also be combined with MS-crosslinking studies and recent advances in 

computational prediction of protein structures from their sequences (48, 49) to yield complete 

structural models in many cases.  
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Experimental Methods 
 

Cell growth. To achieve samples with similar cell numbers, pre-cultures of the S. cerevisiae 

GFP-tagged library were grown in YPD media (1% yeast extract, 2% bactoTM peptone, 2% 

glucose) for two days in 2 mL, u-bottom shaped 96-deep-well plates. This allowed cell 

concentration convergence of different strains during the slow growing post-exponential phase. 

Cells were resuspended and 50 µl of each pre-culture was used to inoculate 1.5 mL of fresh 

YPD media (corresponding to an optical density of 0.5 at 600 nm) in 96-deep-well plates 

(LoBind®, 2 mL, cat no. 0030504305, Eppendorf AG, Hamburg, Germany). Plates were 

covered with an air permeable membrane and incubated while shaking at 300 rpm and 30 °C 

for 6 hours. This allowed the progression through the lag phase and three cell cycles followed 

by harvesting under standard growth conditions. Cells were pelleted in the 96-deep-well plates 

by centrifugation at 3500 rpm (= 2451 g) for 5 min. The supernatant was discarded by fast 

decanting and quick dabbing on paper towels. Plates with pellets were sealed with plastic covers 

and stored at -80 °C until cell lysis. 

 

Cell lysis. Dee-well plates with cell pellets were thawed on ice for 5 min. 100 µl of glass beads 

(0.5 mm, acid-washed, cat no. G8772, Merck KGaA, Darmstadt, Germany) were added to each 

well using a 96-well bead dispenser (LabTIE International, Veenendaal, Netherlands). After 

5 min 250 µl of 4 °C cold lysis buffer (50 mM Tris HCl pH 7.5, 150 mM NaCl, 5% glycerol, 

0.05% IGEPAL CA-630, protease inhibitor EDTA-free (cOmpleteTM, 1 tablet per 50 mL, cat 

no. 11873580001, Merck KGaA, Darmstadt, Germany), 1 mM MgCl2, 0.75 U/µL in-house 

Serratia marcescens endonuclease/SmDNase) were added. Plates were sealed using a heat 

sealer (S200, cat no. 5392000005, Eppendorf AG, Hamburg, Germany), the low profile plate 

adapter (cat no. 5392070020, Eppendorf AG, Hamburg, Germany) and transparent heat sealing 

films (cat no. 0030127838, Eppendorf AG, Hamburg, Germany) for 2 sec at 180 °C and 

immediately put back on ice. Cell lysis was performed within the 96-deep-well plates at 4 °C 

via bead-beating (2010 Geno/Grinder®, SPEX SamplePrep, Metuchen, NJ) for 4 cycles of 

1.5 min each at 1750 rpm. Plates were cooled in ice water and covered with ice for 7 min in-

between cycles and for 10 min after the last cycle. 4 plates were processed in parallel during 

bead-beating and top and bottom positions were switched at each cycle. Cell debris was spun 
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down at max speed (4300 rpm = 4347 g) for 10 min at 4 °C. Plates were carefully put back on 

ice and immediately used for the pull-down protocol (Fig. 1A). 

Interactor enrichment: Pull-downs and all sample handling steps were performed at 4 °C. 

Anti-GFP nanobody coated 96-well microtiter plates were custom made and optimized for this 

protocol allowing efficient and high reproducible “in-well” digestion, and mass spectrometry 

compatibility (plates are now commercially available as: GFP-Trap® Multiwell Plate, cat no. 

gtp-96, Chromotek GmbH, Martinsried, Germany). Plates were prepared with 200 µL wash 

buffer 1 (50 mM Tris HCl pH 7.5, 150 mM NaCl, 5% glycerol, 0.05% IGEPAL CA-630) per 

well on a shaker for 1 min at 800 rpm followed by removal of the buffer. The cell lysates were 

carefully transferred from the 96-deep-well plates by slow uptake of 175 µL supernatant 

without dislodging glass beads nor the cell debris pellet to the GFP-Trap plate. The GFP-Trap 

plate was incubated for 1 h at 800 rpm on a small stroke (3 mm) shaker (TiMix 5 control, 

Edmund Bühler GmbH, Tübingen, Germany) to enrich for GFP-tagged proteins and their 

interactors. Cell lysates were discarded and plate wells were washed twice with 200 µL wash 

buffer 1 and twice with wash buffer 2 (50 mM Tris HCl pH 7.5, 150 mM NaCl, 5% glycerol). 

To allow stable binding of unspecific background proteins – an important factor for label-free 

quantification – wash buffer was added slowly, and plates were not shaken during wash steps. 

Emptied, protein-enriched plates were covered and stored at -80 °C until mass spectrometry 

sample preparation (Fig. 1A). 

 

Sample preparation for mass spectrometry. Protein-enriched GFP-Trap plates were brought 

to room temperature and 50 µL of digestion mix 1 (4.5 M urea, 1.5 M thiourea, 10 mM Tris 

HCl pH 8.5, 3 mM dithiothreitol, 2 ng/µL LysC) were added per well. Plates were incubated at 

30 °C and 1000 rpm on a small stroke (3 mm) shaker. After 3 h, 100 µL of digestion mix 2 

(10 mM Tris HCl pH 8.5, 7.5 mM chloroacetamide, 2 ng/µL LysC) were added and microtiter 

plates and lids were sealed with parafilm®. The plates were incubated overnight at 

30 °C/800 rpm. The reaction was stopped and the sample was acidified with 15 µL of 10% TFA 

per well. Plates with peptides were stored at -80 °C till sample loading on EvoTips (Evosep, 

Odense, Denmark) (Fig. 1A). 

 

Loading of peptide samples on Evotips. Evotips (Evosep, Odense, Denmark) were activated 

for 5 min in a 1-propanol Evotips-box reservoir at room temperature (RT), followed by a wash 

step with 50 µl buffer B (acetonitrile (ACN) with 0.1 % formic acid (FA)) and centrifugation 
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at 500 g for 1 min at RT. The flow-through was discarded and Evotips were placed back into 

1-Propanol. Evotips were conditioned with 50 µL of buffer A (ddH2O with 0.1 % FA) and 

centrifugation at 500 g for 1.5 min at RT and were placed in a container with buffer A. 40 µL 

of thawed peptide sample were loaded and Evotips were centrifuged at 500 g for 1.5 min at RT 

and placed back in a container with buffer A. 200 µL of buffer A were added and partially 

washed through the Evotips by centrifugation at 500 g for 50 s. Evotips boxes with buffer A at 

the container bottom were placed on the Evosep One liquid chromatography (LC) platform 

(Evosep, Odense, Denmark) for LC-MS analysis. Pull-downs were acquired in technical 

duplicates and the injection order was reversed after the first measurement (Fig. 1A). 

 

Liquid-chromatography. For separating peptides by hydrophobicity and eluting them into the 

mass spectrometer, we used the EvoSep One LC system and analyzed the yeast interactome 

pull-down proteomes with the standardized 21 min (60 samples per day) gradient. We employed 

a 15 cm × 150 μm inner diameter column with 1.9 μm C18 beads (PepSep, Marslev, Denmark) 

coupled to a 20 µm ID electrospray emitter (Bruker Daltonik GmbH, Bremen, Germany). The 

column was replaced between replicate measurements. Mobile phases A and B were 0.1 % FA 

in water and 0.1 % FA in ACN, respectively. The EvoSep system was coupled online to a 

trapped ion mobility spectrometry quadrupole time-of-flight mass spectrometer (50) (timsTOF 

Pro, Bruker Daltonik GmbH, Bremen, Germany) via a nano-electrospray ion source (Captive 

spray, Bruker Daltonik GmbH, Bremen, Germany). A 24-fraction library of wild-type S. 

cerevisiae was generated using the high-pH reversed-phase “spider-fractionator” (51) and data 

were acquired using the same sample set-up. 

 

Mass spectrometry. Mass spectrometric analysis was performed in a data-dependent (dda) 

PASEF mode. For ddaPASEF, 1 MS1 survey TIMS-MS and 4 PASEF MS/MS scans were 

acquired per acquisition cycle. The cycle overlap for precursor scheduling was set to 2. Ion 

accumulation and ramp time in the dual TIMS analyzer was set to 50 ms each and we analyzed 

the ion mobility range from 1/K0 = 1.3 Vs cm-2 to 0.8 Vs cm-2. Precursor ions for MS/MS 

analysis were isolated with a 2 Th window for m/z < 700 and 3 Th for m/z >700 in a total m/z 

range of 100-1,700 by synchronizing quadrupole switching events with the precursor elution 

profile from the TIMS device. The collision energy was lowered linearly as a function of 

increasing mobility starting from 59 eV at 1/K0 = 1.6 VS cm-2 to 20 eV at 1/K0 = 0.6 Vs cm-2. 

Singly charged precursor ions were excluded with a polygon filter (otof control, Bruker 
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Daltonik GmbH, Bremen, Germany). Precursors for MS/MS were picked at an intensity 

threshold of 2,000 arbitrary units (a.u.) and re-sequenced until reaching a “target value” of 

24,000 a.u. considering a dynamic exclusion of 40 s elution. The capillary voltage was set to 

1,750 V and dry gas temperature to 180 °C. 

Raw data processing. MS raw files were processed using MaxQuant (v1.6.17.0) (52, 53), 

which extracts features from four-dimensional isotope patterns and associated MS/MS spectra, 

on a computing cluster (SUSE Linux Enterprise Server 15 SP2) utilizing UltraQuant 

(github.com/kentsisresearchgroup/UltraQuant). To allow processing in an acceptable time 

frame, RAW files were handled in 5 parallel batches of approximately 1700 files each 

containing plates equally distributed across the measurement period. Files were searched 

against the S. cerevisiae Uniprot databases (UP000002311_559292; canonical and isoform, 

reviewed-sp and unreviewed-tr from 02/2020). For high significance identification the false-

discovery rates were reduced and controlled at 0.1% both on peptide spectral match (PSM) and 

protein levels. Peptides with a minimum length of seven amino acids were considered for the 

search including N-terminal acetylation and methionine oxidation as variable modifications and 

cysteine carbamidomethylation as fixed modification, while limiting the maximum peptide 

mass to 4,800 Da. Enzyme specificity was set to LysC cleaving C-terminal to lysine. A 

maximum of two missed cleavages were allowed. The parameter “type” was set to “TIMS-

DDA” with “TIMS half width” at 4. The instrument was set to “Bruker TIMS” and main search 

peptide tolerance reduced to 8 ppm, the max. charge set to 5 and min. peak length to 3. Peptide 

identifications by MS/MS were transferred by matching four-dimensional isotope patterns 

between the runs (4D-MBR) using a narrow elution match time window of 12 s and a reduced 

ion mobility window of 0.01 1/K0. Protein quantification was performed by label-free 

quantification using a minimum ratio count of 2. The 24-fraction library was added as an 

additional parameter group with the same group-specific settings, but LFQ disabled and 

“separate LFQ in parameter groups” under global parameters enabled. The writing of additional 

tables was disabled for performance reasons. 

  

Raw data availability. All mass spectrometry raw data and MaxQuant output tables have been 

deposited to the ProteomeXchange Consortium (54) via the PRIDEpartner repository with the 

dataset identifier available upon publication.  
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Data processing and normalization. Twelve outdated samples of the GFP library were 

eliminated. These included wrongly annotated ORFs that were merged with others: YAR044W, 

YPR090W, YDR474C, YFR024C, YJL021C, YJL017W, YGL046W, YFL006W, YGR272C, 

YBR100W, YJL018W, YJL012C-A. After the removal of potential contaminants, reverse and 

“only identified by site” hits, MaxQuant proteinGroups.txt output files from the 5 batches were 

merged using the majority protein IDs column. Values were filtered for two valid values within 

at least one replicate group. To adjust for potential differences between the 5 MaxQuant batches 

caused by the parallel applied label free normalization algorithm and for potential handling 

batch effects between 96-well plates, values were median normalized if there were more than 

5% of valid values in each of the corresponding groups. 

 

Missing value imputation. Missing values were imputed in a two-tiered approach. For proteins 

with measured values in more than 5% of all samples (or minimally 400 samples), a protein-

specific missing value imputation approach was used. Here, a random value was sampled from 

a normal distribution with following properties: mean = median of all measured intensity values 

for the given protein, standard deviation = standard deviation of all measured intensity values 

for the given protein. Lower and upper bounds for the normal distribution were set to three 

standard deviations from the mean and minimally to zero. The function “rtruncnorm” from the 

R library “truncnorm” was employed. For proteins with less than 5% valid values (or in less 

than 400 samples), global metrics were employed for missing value imputation. Here, missing 

values were sampled from a normal distribution with the following parameters: mean = mean 

of all quantified values across all proteins and samples minus 1.8 times the standard deviation, 

standard deviation = the standard deviation of all quantified values across all proteins and 

samples multiplied by 0.3. 

 

Protein correlation. Due to the large sample number that would negatively influence 

correlation, we chose a subsampling approach: For each protein pair across the sample profile, 

the top 2% of samples with the highest intensities for both proteins were selected (resulting in 

2-4% depending on their overlap) and complemented by twice the number of randomly selected 

samples as background. The selected subset of samples was used to calculate the Pearson 

correlation coefficients of the protein pair (Fig. 1C). The effect of weighted correlation can be 

visualized by enabling “subsample values” under protein correlation in our web application 

(yeast-interactome.org). Since the distributions of correlation coefficients varies between 

http://www.yeast-interactome.org/
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proteins and in order to define a universal cut-off for significant correlations, correlation 

coefficients were normalized via row wise z-scoring. A z-scored Pearson correlation coefficient 

above 4 and 5 therefore corresponds to a chance probability of below 3.2*10-5 and 2.9*10-7, 

respectively. 

 

Enrichment analysis. A two-tailed Welch’s t-test was performed on each replicate-grouped 

pull-down sample using all corresponding complement samples as a combined control (11). 

Within the combined control group, samples with the highest bait correlation (top 5%) were 

excluded in order to provide a bait-unrelated control. FDR cutoff-lines were calculated using 

an analytical approach using an S0-parameter of 0.5 (55).  

 

Network generation. Interactions for the first two layers of evidence (forward and reverse pull-

down) were defined between bait proteins and significantly enriched prey proteins from the t-

tests. They were scored based on their FDR of 5%, 1%, 0.1% and 0.01% at 1, 2, 3 and 4, 

respectively (“score_FDR”). For the third layer of evidence, an interaction for z-scored Pearson 

correlation coefficients above 4 and 5 was scored at 1 and 2, respectively (“score_cor”). All 

three layers of evidence were combined into a single interaction score ranging from 1-10 

(“score_FDR+cor”), thereby weighting interactions based on their experimental significance 

(Fig. 1C). Networks were created and exported into Cytoscape (56) for further analysis and 

visualization strategies. The network was filtered for interactions with a combined score equal 

to or above 2, thereby excluding interactions based only on a single t-test with an FDR of above 

1% or a z-scored Pearson correlation coefficient of below 5. The Markov clustering algorithm 

was applied using the interaction score as edge weight and a granularity parameter of 2.5 while 

retaining inter-cluster edges. The “CompoundSpringEmbedder” (CoSE) layout algorithm was 

applied to single clusters. The network including edges (interactions) and nodes (proteins), 

annotations, and layouts can be downloaded as Cytoscape session at (www.yeast-

interactome.org) or at the NDEX network database (57) via the UID available upon publication. 

 

Organelle based mapping of clusters. Within the Cytoscape group preferences the attribute 

aggregation was enabled and “visualization for group” were set to “none”. The WordCloud 

“minimum word occurrence” and the “max. words per label” was set to 1, and normalization to 

0. To generate outcome with location specific words only, the excluded words list was extended 

by following terms: apparatus, matrix, membrane, intermembrane, chromosome, ii, protein, 

http://www.yeast-interactome.org/
http://www.yeast-interactome.org/
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anchor, coated, cytoplasmic, iv, lipid, pass, peripheral, secreted, pit, side, single, centromere, 

type, endomembrane, tip, reticulum, body, localizes, kinetochore, gpi, note, neck, prospore, 

granule, replication. The “AutoAnnotate” plugin (58) was used to generate localization-based 

name for each markov cluster utilizing WordCloud (59) (most abundant word within 

“Subcellular localization [CC]”). Collapsed localization (collapse singleton clusters enabled) 

based labeled groups were organized using the “Boundary Layout” using self-defined areas. 

Node repulsion was increased to 1,000,000. For cluster annotation the standard complex name 

from EMBL Complexportal was used. For each cluster the two most frequent names were used, 

(minimum word occurrence: 2). The image of the background cell in Figure 4, the Cytoscape 

session and the web application is an adopted version from SwissBioPics by the Swiss-Prot 

group of the SIB Swiss Institute of Bioinformatics. Cell image in Figure 2A was created with 

BioRender.com. 

 

Network comparisons. Network comparison analysis was performed in Python 3.8.1. Tabular 

data was loaded via the pandas package (1.3.1) and converted to a network via NetworkX 

(2.6.2). To calculate “Betweeness” and “Degree Centrality”, the respective NetworkX functions 

were used. To perform community analysis, a Python implementation of the Louvain algorithm 

was used (https://github.com/taynaud/python-louvain, version 0.15). Cumulative distribution 

functions were plotted using the matplotlib-library (3.4.2) and NumPy (1.20.3). Reference 

datasets were downloaded from the Stanford Large Network Dataset Collection 

(http://snap.stanford.edu/data/) and the BioPlex Interactome homepage 

(https://bioplex.hms.harvard.edu/interactions.php). The accompanying notebook is available as 

Supplementary File “Yeast_Network_comparisons.ipynb”. Gene annotation enrichment was 

performed using the 1D tool in Perseus (v.1.6.7.0). Annotation terms were filtered for 5% FDR 

(Benjamini–Hochberg correction) and a score above 0. 
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Supplementary Figures 

 
Supplementary Figure 1. Schematic of the GFP-tagged library. 4,147 different endogenous c-terminally 
tagged yeast strains (7) were used for 4,147 independent pull-down experiments. Each strain therefore allows 
the purification of the individually tagged protein (bait) and its specific interactors. The original library of 
4159 strains was reduced by twelve strains to 4147, due to updates in ORF annotations (see methods: Data 
processing and normalization).  

 

 
Supplementary Figure 2. Detailed proportion of interactions backed by multiple layers of evidence 
 

 
Supplementary Figure 3. “Asocial” proteins. Representation of 478 significantly enriched and detected bait 
proteins that lack any significant interactor under given conditions in this study. Green edges depict self-
edges. 
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Supplementary Figure 4. Cumulative distribution function of the degree centrality. Comparison of different 
complex networks: S. cerevisiae has more influential (high degree centrality) nodes than BioPlex and GitHub, 
and less than Facebook. 
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Supplementary Figure 6 (part 1/5). Extended selection of clusters involving proteins with novel 
interactions and/or uncharacterized proteins supported by multiple layers of evidence. 
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Supplementary Figure 6 (part 2/5). Continuation of Figure 6 part 2. 
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Supplementary Figure 6 (part 3/5). Continuation of Figure 6 part 3. 
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Supplementary Figure 6 (part 4/5). Continuation of Figure 6 part 4. 
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Supplementary Figure 6 (part 5/5). Continuation of Figure 6 part 5.  
 

  

GLK1

KEI1

YLL032C

YBR090C

GDA1

GPI11

EMI2

GPI13

GPD2

FBP26

YCR016W

AUR1

YLR345W

PCI8

RPS18A

TGL3

AEP1

RRI2

SPE3

YJL070C

OYE3

SPE4

YPL068C

AMD1

BUL1

ARO10

YML119W

SOK1

MUM2

SED4

GTT3

PGA2

PHO3

PGA3

OYE2

AEP2

SLN1

TGL4

DUS4

SLO1

BSC2

YPL108W

IBD2

RIB1

YKL075C

YPR172W

PHO5

YOR385W

HUL5

YKL162C

NST1

YLR456W

YPS7

IDS2

YGL036W

YIL108W

HAM1



2  Results: Article 1 
 

 66 

Supplementary Tables 
 

Table 1. Gene ontology term enrichment 

 
Gene ontology term enrichment on betweenness-centrality of nodes (proteins) in the network (1-dimensional 
annotation enrichment, FDR < 5%, score > 0). 
 
 
 

Gene ontology Name Score Benj. Hoch. FDR -log10(p-value) Size Mean Median
RNA polymerase II, core complex [GO:0005665] 0,69 3,33E-02 1,64 11 2,49E-03 1,53E-03
mitochondrial nucleoid [GO:0042645] 0,67 3,71E-05 1,42 23 2,93E-03 1,30E-03
gluconeogenesis [GO:0006094] 0,64 3,77E-02 1,43 12 3,17E-03 1,47E-03
misfolded protein binding [GO:0051787] 0,58 2,99E-02 4,90 16 3,36E-03 1,33E-03
polysome [GO:0005844] 0,49 6,58E-03 1,44 28 2,48E-03 1,29E-03
glycoly�c process [GO:0006096] 0,47 3,63E-02 1,46 22 3,42E-03 9,82E-04
protein refolding [GO:0042026] 0,45 4,25E-02 1,45 23 2,83E-03 7,32E-04
proteasome storage granule [GO:0034515] 0,44 3,89E-02 2,49 25 1,20E-03 8,86E-04
ribosomal large subunit biogenesis [GO:0042273] 0,39 3,47E-02 4,66 34 1,23E-03 8,15E-04
cytoplasmic stress granule [GO:0010494] 0,38 1,25E-05 1,48 82 2,11E-03 7,48E-04
mitochondrial large ribosomal subunit [GO:0005762] 0,35 2,31E-02 1,46 46 1,11E-03 6,90E-04
preribosome, large subunit precursor [GO:0030687] 0,30 2,20E-02 1,41 62 1,06E-03 3,53E-04
mRNA binding [GO:0003729] 0,26 2,17E-05 4,43 177 1,07E-03 5,23E-04
ATPase ac�vity [GO:0016887] 0,25 2,16E-02 1,37 94 1,99E-03 4,71E-04
mitochondrial transla�on [GO:0032543] 0,23 3,45E-02 1,66 95 9,27E-04 4,33E-04
RNA binding [GO:0003723] 0,19 3,48E-04 1,52 273 1,15E-03 3,00E-04
iden�cal protein binding [GO:0042802] 0,18 3,71E-02 3,46 156 9,40E-04 4,21E-04
structural cons�tuent of ribosome [GO:0003735] 0,18 3,27E-03 2,18 242 8,29E-04 2,65E-04
nucleolus [GO:0005730] 0,16 3,57E-02 1,67 204 8,62E-04 2,74E-04
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2.2 Article 2: OpenCell: proteome-scale endogenous tagging enables the cartography of 

human cellular organization 

N. H. Cho1,†, K. C. Cheveralls1,†, A.-D. Brunner2,†, K. Kim1,†, A. C. Michaelis2,†, 
P. Raghavan1,†, H. Kobayashi1, L. Savy1, J. Y. Li1, H. Canaj1, J. Y. S. Kim1, E. Stewart1, 
C. Gnann1,3, F. McCarthy1, J. P. Cabrera1, R. M. Brunetti4, B. B. Chhun1, G. Dingle5, M.  Y. 
Hein1, B. Huang1,4,5, S. B. Mehta1, J. S. Weissman6,7, R. Gómez-Sjöberg1, D. N. Itzhak1, L. 
A. Royer1, M. Mann2,8, M. D. Leonetti1,*, (2021). OpenCell: proteome-scale endogenous 
tagging enables the cartography of human cellular organization. Biorxiv 
doi:10.1101/2021.03.29.437450. 
 
† equal contribution; * correspondence: manuel.leonetti@czbiohub.org 
 
The work in this paper – in relation to the one presented before - expands the interactome from 

yeast to human cells. This large and fruitful collaboration between the Chan Zuckerberg Biohub 

in San Francisco and the Max-Planck Institute of Biochemistry in Munich under the lead of 

Manuel Leonetti und Matthias Mann, combined their expertise in fluorescence microscopy with 

ours in proteomics to generate an unprecedented protein localization and interaction map. By 

introducing a GFP-tag into 1,300 human HEK293T cells using CRISPR technology, we were 

able to use the florescent tag for confocal microscopy 3D-image rendering and at the same time 

for affinity-purification coupled to mass spectrometry for protein interaction detection. Key for 

this large-scale compatibility is the use of a split-GFP system described by the Weissmann lab 

(20). 

The split-GFP only uses a small part of GFP for endogenous tagging namely the last β-strand, 

strand 11. This is done in cells co-expressing the complement part of GFP (β-strand 1-10) 

forming a full functional version. Using only this small tag makes it possible to employ a small 

synthetic ssDNA oligos for CRIPR editing. 

This project was performed by Andreas Brunner and myself on the side of the Mann lab for 

several years throughout almost all of our PhD times. We were responsible for all mass 

spectrometry-related tasks on the project running many hundreds of test samples and the final 

dataset of almost 4,000 runs. Due to the large overlap with the yeast interactome project many 

of my experience and developments gained there could be used to advance the human 

interactome as well.  

 

https://doi.org/10.1101/2021.03.29.437450
https://doi.org/10.1101/2021.03.29.437450
https://doi.org/10.1101/2021.03.29.437450
mailto:manuel.leonetti@czbiohub.org
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The paper is published on Biorxiv and an updated version which has currently been resubmitted 

to Science after revision is included in this thesis.  
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2.3 Article 3: DIA-based systems biology approach unveils E3 ubiquitin ligase-

dependent responses to a metabolic shift 

Karayel, O., Michaelis, A. C., Mann, M., Schulman, B. A. & Langlois, C. R. DIA-based 
systems biology approach unveils E3 ubiquitin ligase-dependent responses to a metabolic 
shift. Proc National Acad Sci 117, 32806–32815 (2020). doi: 10.1073/pnas.202019711 
 

 

This study connects to the previous ones via its systems biology approach to use optimized 96-

well plate compatible sample preparation and shortest possible mass spectrometry measurement 

times to screen for hundreds of near-complete proteomes under perturbation conditions in S. 

cerevisiae. In order to allow proteome measurements in about 20 min we used a data-

independent acquisition approach and we were able to reduce gap times drastically by 

optimizing HPLC settings. This allowed us to measure several hundreds of proteomes in a few 

days. 

In the screen we applied several perturbation conditions that included heat shock, osmotic 

stress, growth on ethanol, and starvation conditions. While those distinct responses provide a 

comprehensive resource, they also unveiled a carbon source dependent GID E3 ligase 

dependent regulation, which is an important cellular regulator for metabolic switches. 

This study shows that global approaches are necessary to observe and understand the complex 

dependencies that shape the cell and its responses to environmental changes. Systems biology 

approaches like this enable the fast screening of many samples to discover the most prominent 

cause of a response efficiently and unbiasedly. Here, in comparison to the previous described 

project, we offer a solution to use a nano-flow HPLC instead of a high-flow system for short 

gradients with reduced gap times on an Orbitrap platform. 

This study was a great collaboration between the Mann lab, represented by Ozge Karayel and 

myself and the Schulman lab, represented by Christine Langlois and was published in PNAS. 

 

  

https://doi.org/10.1073/pnas.2020197117
https://doi.org/10.1073/pnas.2020197117
https://doi.org/10.1073/pnas.2020197117
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3 Concluding Remarks and Outlook 

3.1 Systems Biology: Unknot the Unknown 

The thesis presented here provides systems biology approaches and applies them to the 

discovery of global protein-protein interactions in yeast and human cells, as well a study to 

quickly screen whole proteomes in yeast in response to different perturbation conditions. The 

resulting interactome for yeast is a resource of high-quality interactions that will help scientists 

around the world to gain novel functional insights of the cell.  

We also provide a powerful way for scientists to validate every single interaction of interest. 

Our web application is readily accessible and reports how and why an interaction is included. 

In our bait-enrichment section one can validate the underlying p-values and t-test differences 

while the correlation section shows which samples cause a correlation to which degree. A 

separate quality control tab provides insights into the completeness of a sample in terms of 

quantified proteins.  

From a network perspective, we have investigated and highlighted the “social” character of the 

interactome based on the observation that most proteins are involved in interactions and that 

there is an average shortest path of 4.2 interactions between any two proteins. This comes very 

close to the distance that separates people in the social network Facebook: 4.5 connections - the 

modern version of the more famous six-degrees-of-separation (94, 95). While a scale-free 

attribute for protein-protein interaction has been claimed in most studies, they sometimes rather 

appear to be exponential or truncated (23). In this study I show a clear power-law distribution 

that helps to clarify the higher order structure of protein interaction networks and secondly 

serves as an indicator for high data completeness.  

The resulting network map of yeast protein-protein interactions clustered nicely into structures 

that represent known complexes and at the same time uncovered many novel associations and 

assigned potential functions to yet uncharacterized proteins. I have highlighted only a few of 

several new discoveries in the paper while many more are depicted in the supplementary 

information. The Markov clustering algorithm employed here is based on a random walk 

simulation in which I used the developed score as edge weights. The structured outcome and 

the quite complete reflection of protein complexes in clusters without priori knowledge 
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supports the quality of the experimental results and validates our scoring approach, since the 

score is used as an edge weight and therefore directly influences the clustering. 

While we have exhaustively explorated the yeast interactome under standard growth conditions, 

our platform opens up possibilities for large-scale screens under stress conditions. The 

complexity of human cells and their reduced susceptibility to genetic modifications are reason 

for the still not completed interactome. The human OpenCell interactome presented here tackles 

those difficulties by using a split protein system. This strategy allows large-scale endogenous 

tagging of cells while the sensitivity or our mass spectrometry pipeline of cells allows us to 

grow them in only 12-well plates - enabling efficient processing of samples. OpenCell provides 

the largest confocal microscopy library to date and enables interaction exploration of about 

1,300 endogenous tagged proteins both derived from the same cell population. 

3.2 A Hairy Situation 

If you were reading diligently through this work or have followed the link to the yeast 

interactome webpage, you might remember the figure that depicts all the interactions detected 

in this study within a yeast cell in a structured manner. Why do we not remember any similar 

representations of protein-protein interaction maps from previous studies?  Are they any 

available? In my opinion, the simple explanation is that they do exist, but they are not very 

memorable. Almost all large-scale interaction screens resulted in a network structure that is so 

tightly interconnected and impenetrable that they are often referred to as “hairball”. A 

representation of a network that is a “hairball” is not really useful. One possible reason why 

this is not the case for the yeast interactome in this study appears to be the unique clustering, 

that is in turn enabled by an excellent score and underlying data. Another thing that improves 

the random walk of the Markov clustering is redundancy. Redundancy is the key to good 

interactomes and builds on many different pull-downs that confirm the same interactions. A 

complex of 4 members for instance can consist of up to 12 interactions (counting reverse 

experiments separately) and when including correlations even up to 18 interactions. This 

redundancy helps the random walk of the Markov clustering to find what truly belongs together. 

If one weights those edges during the random walk this effect becomes even stronger, but only 

if the weight corresponds to a proper increase in likelihood that an interaction is true. One can 

assume for instance that a high FDR (false discovery rate) interaction is more likely to reflect 
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an important interaction than one with a very low one. This differentiation must be made and if 

the enrichment works well then this can be reflected in our score that is used as a weight.  

It is possible that human interactomes by themselves have a “hairier” nature, due their increased 

complexity. Hoverer, the number of protein coding genes is “only” about three times higher 

and the human cell is organized into protein complexes as well. A potential reason for the lack 

of organization in human interactomes might be that they are yet incomplete. The above-

mentioned redundancy can only be achieved when the coverage of all expressed proteins is 

reached. In this case the use of correlation analysis becomes much more powerful. Still, I 

believe that to some degree the limitations of existing interactomes are also caused by many 

false positives and generally by suboptimal data quality. 

3.3 From the Past to … 

At the beginning of this millennium the first AP-MS studies in yeast were conducted (27, 28). 

Combined, a team of 84 scientists established the first larger dataset of protein-protein 

interactions, a milestone in proteomics and cell biology. This was soon to be followed by two 

greatly extended versions as a result of combined forces of a similarly large group of scientists 

around the world (29, 30). This massive effort was certainly enough reason not to contemplate 

a next-generation version of an interactome in yeast and the focus for good reasons shifted to 

other organism. Still, it is surprising that a vision of redoing the yeast interactome on an 

improved platform has not been put forward for so long. It is not only about redoing 

interactomics in yeast to gain improved data, but also about doing it much more effortlessly, on 

a much smaller scale, and in a higher throughput to smoothen the path for future screens. A cell 

even as simple as the yeast is rarely growing in the perfect conditions that we call standard 

growth condition, it is rather subjected to environmental challenges, like depletion of nutrients, 

change of temperature, or damaging agents. Observing the changes on a global interaction level 

that occur as a response to such events will help to understand the mechanism behind it. Some 

of the reactions to the plans of this project that can be summarized in “but, hasn’t this been done 

already?” reflect the mindset that might impede progress in some areas. From my own 

experience I can tell that pull-downs are the daily bread and butter of a cell biologist. The 

constant search for interaction partners of a protein of interest – being it under stress or standard 

condition – in order to confirm a hypothesis or to explain a mechanism, is a daily routine for so 
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many scientists. This work is tedious, redundant, error prone and very small-scale. Scientists 

ask themselves why this has not already been done for everyone else. If we include every protein 

and every condition, it might be a long way, but we have to start. 

Luckily the Mann lab, in which all this began also started in recent years to explore new ways 

of how to conduct, minimize and analyze interaction experiments by using non-quantitative 

proteomics (43–45). 

3.4 The Future of Interactomics 

For the near future for yeast interactomics I see further miniaturization and reduction in 

measurement time ahead. The material derived from my currently developed protocols is 

already sufficient for 3-4 injections. Given the already drastically increased sensitivity of the 

next generation of timsTOF Pro, this already implies a potential reduction of input material of 

a factor of at least four. This alone would in theory allow a switch of the library format from 

96-well to 384-well plates, reducing the handling load from the current 44 to 11 plates. In order 

to accomplish this, one would need to address how growth, lysis and enrichment steps perform 

in the smaller format. 

I also see potential in reducing the library complexity by using a “smart-selection” of baits, 

based on my interaction data. One can exchange some of the large redundancy in the data for a 

reduced library and would still get a very similar network information. This could potentially 

further halve the library resulting in about 6 plates. During the 21 min gradient runs we detected 

on average about 1,500 proteins per run. This large number is helpful for label-free 

normalization and quantification but is more than sufficient. Here it will be worth to explore 

the quality of the data acquired under even shorter gradients. Assuming a 12 min or even a 

6 min gradient corresponding to 100 and 200 samples per day for 6 x 384-well plates this would 

allow the measurement of a complete interactome (excluding replicates) in 24 or 12 days 

respectively.  

A promising development was recently made by putting proteomics on a microfluidic platform 

(96). This on-chip AP-MS is still on its way to provide large-scale application compatibility but 

it requires very low input material and makes hope for drastic improvements in the field of 

interactomics in the mid and long-term future. 
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