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Summary

Summary

Cellular function is closely tied to protein-protein interactions. Mapping these on a large scale,
therefore, provides fundamental knowledge about the regulation and structure of biological
systems. With the onset of proteomics, the use of affinity purification coupled to mass
spectrometry (MS) has become the major tool to map protein interactions. Already twenty years
ago, researchers endeavored to build interaction maps of model organisms such as yeast.
However, previous large-scale interaction studies in Saccharomyces cerevisiae date back more
than ten years, covered only about half of all genes, and made use of non-quantitative MS and
tandem-affinity purification strategies. These approaches were limited by harsh purification
protocols and required large amounts of cell lysate. Additionally large false positive and

negative rates hampered their use as a fully reliable source for network studies.

Building on recent improvements in sensitivity and speed of MS technology and the
introduction of the concept of ‘affinity enrichment coupled to MS,’ I developed a fast, robust,
and highly reproducible workflow for proteome-wide interaction studies. I applied and
optimized the approach for a first full screen in S. cerevisiae. The workflow starts from only a
few hundred pg of proteins per pull-down and is performed entirely in 96-well format, including
cell growth, lysis, and affinity enrichment of GFP-tagged proteins. To increase sample
throughput and minimize MS idle time between injections, I turned to the high throughput
Evosep One liquid chromatography system. This allowed me to obtain data on 60 baits per day.
The system is coupled online to a timsTOF Pro mass spectrometer capable of fragmenting over
100 peptides per second using the parallel accumulation — serial fragmentation (PASEF)
technology. This combination of miniaturization and standardization ensured high sample

throughput, sensitivity, and robustness.

Altogether, I successfully performed over 4150 pull-downs and completed more than 8300
measurements for the yeast interactome using this next-generation workflow, all in less than 20
weeks of mass spectrometer running time. The dataset has a very high success rate for pull-
downs. The near-complete coverage of expressed proteins in our study enabled a novel two-
dimensional analysis strategy that efficiently scores interactions. We examined well-known
protein complexes, which confirmed very high data quality. Although the yeast interactome has

been studied by large-scale methods for decades, the majority of interactions were novel
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Summary

compared to known high-quality interaction databases. Among many striking novel discoveries
- I found compelling evidence for interactions between the conserved chromatin remodeler
SWI/SNF and SPX-domain-containing plasma-transporters. Using the common GFP-tag for
quantification of protein abundance confirmed that our workflow covers a wide range of
cellular protein abundances down to a few copies per cell. Redefining the yeast interactome
with very high data quality and completeness enabled the study of its fundamental network
properties that have been controversially discussed over many years. In total, our protein-
protein interaction network encompasses about 4,000 proteins connected via about 30,000
interactions. A full browsable web application is accessible at yeast-interactome.org and allows
(sub-) network exploration, interactor validation via volcano plots and correlation maps, and

sample quality control.

In a collaboration with the CZ Biohub, we set out to implement the mass spectrometry pipeline
developed here to an interaction screen with CRISPR GFP-tagged human HEK293T cells. The
reduced sample amount allowed us to screen cell cultures grown in 12-well plates for high
throughput. The interaction and localization results of 1,311 processed interactomes in

biological triplicates can be accessed at opencell.czbiohub.org.
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1 Introduction

1 Introduction

1.1 Biological Interaction Networks

“The concept of randomness and coincidence will be obsolete
when people can finally define a formulation of patterned interaction

between all things within the universe.”

-Toba Beta

1.1.1 Interactions Determine Function, Efficiency, and Health

Interactions are fundamental for a tremendous number of known systems. The entirety of all
objects in a system and the links that exist between them is called a network. The character and
efficiency of a network is defined by its structure and, therefore, by the way the connections
are organized. From telecommunication wires around the globe, social networks that depict
relationships, the links that connect webpages, to the dynamics underlying global epidemics,
knowing their structure helps to understand them. In these cases, they transmit emails or phone
calls most efficiently between sender and receiver, help to understand how information and
rumors are transmitted, helps the Google search engine algorithm to identify webpages most
suited to an inquiry, and are crucial for the identification of transmission routes of a virus in

order to prevent further spread, respectively.

Networks also exist on a physical micro scale. Besides technological, social, and informational
networks, biochemical networks — an example from the biological world - are among the most
important ones. Despite their microscopic nature, biochemical networks do not lack in
complexity. The best-studied ones are metabolic, genetic, and protein-protein interaction
networks. Metabolic networks describe the biochemical pathways in a cell, whereby chemical
compounds are connected by chemical reactions that convert a substrate into a product. For
instance, they provide the information of how cells break down nutrition, and how they rebuild
and convert cellular building blocks. Genetic regulatory networks capture the dependencies of
genes on the level of transcriptional regulation (1). Protein-protein interactions are binding

events between two or more proteins that accrue in all cells or organisms in large numbers.



1 Introduction

These interactions can last longer in stable formations known as protein complexes or can be
of short duration which are termed transient interactions. Protein complexes can be seen as a
higher order of protein organization. Different protein “building blocks” come together to form
larger molecular machines or structural elements that are too complex to be formed by a single
protein. Examples of transient interactions include proteins that biochemically modify each
other in order to transmit a cellular signal in response to an external stimulus that requires
cellular adaption. These types of modifications can alter their activity, cellular or tissue location,
induce or inhibit its degradation, or ultimately change their own interaction pattern. Knowing
on a global level how proteins interact within a cell is key for understanding how living
organisms function. Building a systematic map of networks therefore helps to answer questions
in the case of cellular malfunction as to their potential origin and it can help to assign functions
to unknown parts. In the context of protein-protein interactions this translates into finding the
cause for diseases and into describing functions for uncharacterized proteins by their association
with characterized proteins - a phenomenon termed “guilt by association” (2). Furthermore,

only if one knows the blueprint of a system, one can repair it or use it to build something new.

The cell is regulated on several levels, all of them contributing to its phenotype to a different
extent. The following chapter describes in more detail the roles and dependencies of these
regulations and argues why the study of proteins and their interactions is one of the best

available read-outs in systems biology.

1.1.2 The Three Cellular Fundaments of Protein-Protein Interactions

The central dogma of molecular biology depicts the flow of information in almost all cellular
systems as two main steps: The first one is transcription and generates a transient copy of the
DNA. The emerging molecule from this step, namely mRNA, serves as a template for the
second process called translation, which uses the stored information for the assembly of amino
acids into proteins. Although the term dogma and the concept of the directed flow of
information have been put into perspective (3), it adequately illustrates three central fields in
cell biology and medicine: The study of genomes, transcriptomes, and proteomes. With the
common -omics suffix that indicates the study of the term’s entirety in a particular system like
a cell, tissue, organ, or organism, they are called genomics, transcriptomics, and proteomics,

respectively. In the last decades, these areas were in the focus of many researchers and kept
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expanding as technology evolved. The milestone achievement of human genome sequencing
(4, 5) laid the basis for analyzing transcripts and proteomes in a large-scale manner. Due to
faster and much cheaper technology, many more organisms followed, providing the sequence
information that is an essential precondition for proteomics. The static nature of the genome
restricts the information that one can draw from it to make conclusions on the dynamic state of
the system. The discrepancy between genotype and phenotype is due to the fact that only some
of the genes are actively transcribed at any point in time. Regulation at the translational level is
also precise in time and space and restricts the presence of transcripts to a particular phenotype.
Proteomics is special in that it deals with the final product of gene expression, thereby
overcoming some of the limitations of transcriptomics. It focuses directly on detecting and
quantifying the presence of the main functional units in living organisms: proteins. These are
the major actors in cellular processes and their direct study more provides the additional

information on top of genomics and transcriptomics.

Another level of information that goes even beyond the simple presence of proteins in a system
in a certain condition is to study their interactions with another. Many proteins in a cell function
in complexes or they fulfill their tasks by interacting with other proteins. This could be due to
specific transportation, modification, or degradation of other proteins or for the purpose of
building structural units within a cell (6). Often there is an architectural reason for proteins to
interact with each other, namely complexity. With large and highly sophisticated molecular
machines that undergo huge conformational changes - for example in order to catalyze a
biochemical reaction — it is necessary to assemble distinct building blocks into a single unit.
Gaining access on the powerful information of protein-protein interactions therefore allows the
global study on a regulatory, functional, and structural level. The study of interactions, is known
as interactomics (Figure 1), and it can be achieved by several techniques as described in the
next section. One powerful technology involves the use of mass spectrometry. It is identical to
the expression proteomics approach except that it uses an additional enrichment step
beforehand. While each “-omics” era builds on the knowledge of the previous ones, the
presence of proteins and the interactions between them most directly reflects the cellular

phenotype.
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1 Introduction

Phenotype

Figure 1. Increasing complexity of the fundaments of protein-protein interactions. The interactome
represents an additional layer on top of the proteome that shapes the cellular phenotype.

1.1.3 Identification of Protein-Protein Interactions

A multitude of techniques to study protein-protein interactions have been introduced over the
last decades. Label-free techniques include surface plasmon resonance (SPR) spectroscopy,
micro-scale thermophoresis (MST), isothermal titration calorimetry (ITC), circular dichroism
(CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. These techniques
provide detailed information on the interaction itself, e.g. defining binding constants or the
exact site and mode of the interaction. However, they are unsuitable for unbiased and large-
scale interaction screens because they require a priori knowledge of all potential interacting

proteins.

Cell-based bimolecular interaction reporter assays include bioluminescence resonance energy
transfer (BRET), the yeast two-hybrid (Y2H) screen, and related split-protein methods like the
split-ubiquitin assay (7). The Y2H screen is restricted to the detection of mostly binary
interactions: Two potentially interacting proteins are each fused to either the binding domain
(BD) or the activation domain (AD) of the transcription factor Gal4. Expressed in yeast, the
interaction of both candidate proteins activates Gal4 by bringing together AD and BD domain.
Gal4 leads to the transcription of a reporter gene whose read-out corresponds to the interaction
of the candidate proteins (Figure 2B). In unbiased Y2H interaction screens, large libraries of
all potential protein pairs fused to AD and BD need to be generated. One of the limitations of
Y2H screens is that interactions can only be detected for soluble proteins that bind each other

within the nucleus. In order to detect membrane protein interaction a different assay/tagging of
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strains - like the split-ubiquitin assay - needs to be deployed (8). Y2H is an approach that allows
large screens and they have been performed for many organisms like Saccharomyces
cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and humans (9). However, it is

only limited to binary interaction studies and prone to false positives and negatives.

There are other assays that are suited for large-scale screens as well, and in contrast to Y2H
allow detection of more than one (indirect) interaction in a single experiment. All the following
assays have in common that mass spectrometry is used as the final detection method for the
identification of interacting proteins. Co-fractionation via gel-filtration - also known as size-
exclusion chromatography (SEC) (7) or ion-exchange chromatography (IEX) coupled to mass
spectrometry - detect proteins that co-elute into different collected fractions based on the size
(SEC) or charge (IEX) of the complexes (Figure 2D). Proteins in each fraction are identified
and quantified via MS. Interactions can be scored based on similar elution behavior using
correlation analysis of protein profiles. A main advantage is that there is no need for genetic
engineering (10), but a current downside is its limited resolution due to the broad elution peak

profile over a limited range of typically around 50 fractions (11).

Cross-linking coupled to MS uses a chemical linker that covalently bridges proteins that are in
close proximity. Cross-linked peptides are then identified via MS and protein-protein
interactions inferred from that information (Figure 2E). Studies on full proteomes have been

conducted in Escherichia coli and HeLa cell lysates (12).

The labeling of proteins that are in close proximity to a protein of interest is a rather recent and
promising development. Proximity labeling uses enzyme fusion proteins in which the protein
of interest is linked to either a peroxidase named APEX (13), or a biotin-ligase known as BiolD
(14) and its enhanced version called TurboID (15). These enzymes catalyze the biotinylation
reaction of proteins in close proximity, that are not necessarily physically interacting (Figure

2C). Biotinylated proteins are purified using streptavidin beads and identified via MS (16).

The most widely used technology is affinity purification (AP) coupled to MS. AP comes in two
main flavors: Immunoprecipitation (IP) and pull-downs (PDs). IP uses immobilized antibodies
to capture a specific protein via its antigen-binding site from a cell lysate or any other amenable
biological sample. After washing off the unspecific proteins, the purified protein remains. If the
purified protein of interest - termed “bait” - is involved in protein-protein interactions, those

interacting proteins — termed “preys” — can be detected in the downstream MS analysis as well

12
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(Figure 2A). This co-enrichment of interactors is therefore called a co-IP. Since a large-scale
screen would require for each IP to generate a corresponding antibody, one can generate tagged
proteins (“baits”) that all have the same binding properties to the same antibody. This tag can
be a specific sequence of amino acids that is genetically fused to the C- or N-terminus of a bait,
or it can be an intact protein like the green fluorescent protein (GFP). In either case the peptides
or proteins that are used as tags have a well-characterized stability and antigen properties for
available antibodies. This strategy enables the use of the same, generic immobilized antibody
for separately executed experiments. In comparison to IPs, pull-downs similarly use an
immobilized affinity matrix to capture bait proteins with the only difference being that they do
not use the immune-system-derived antibodies. Examples are Ni2+ embedded matrices that
enrich His-tagged proteins or immobilized streptavidin that enriches biotinylated proteins (17,

18).

Figure 2. Different methods for studying protein-protein interactions. (A) Affinity purification coupled
to mass spectrometry. (B) Yeast two-hybrid screening. (C) Proximity labelling (APEX, BiolD/TurbolD). (D)
Co-fractionation coupled to mass spectrometry (SEC/IEX-MS). (E) Cross-linking coupled to mass
spectrometry.

In the studies described in this thesis, an endogenous GFP-tagged library in S. cerevisiae and
human HEK293T cells were used. An additional advantage of GFP tagging is that it can be
used for cellular localization screens. While a GFP-library for yeast has been generated and
used for a global protein localization study already (19), it had not been used for global

interaction screen yet. CRISPR-editing nowadays allows the generation of similar endogenous
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tagged libraries in many systems. The length-limitation of CRISPR-tagging for GFP can be
circumvented elegantly by using only B-strand 11 of GFP as the tag. By expressing the
remaining part of GFP (B-strand 1-10) in cells the complete tag is reconstituted as a fully
functional protein (20). This split-GFP strategy enables large-scale CRISPR-based screens that
allow fluorescence microscopy localization as well as AP-MS interaction detection studies with

the same cell line.

1.1.4 Protein-Protein Interaction Networks

Protein-protein interaction networks are the sum of all known interactions between proteins, or
a detected subset of these. They resemble a map of all proteins and their interactions. In general,
a network representation consists of nodes that are connected via edges that can be symbolized
as circles and lines, respectively. In protein-protein interactions networks, proteins are
represented as nodes and interactions as edges (Figure 3). The number of neighbors each node
has is the “node-degree”. Interactions in a network can be — dependent on the underlying data
- directed or un-directed. The former is usually depicted by an arrowhead that indicates the
direction. Directed interactions can for instance be citation networks or dependency networks
of programming packages that always point to the original source, thereby maintaining an
important piece of information. When two proteins interact, both participate in an equal way.
That is why from a graph theory point of view those networks should be treated as un-directed.
Nevertheless, an edge can still be used to visualize further information, for instance for the
direction in which an experiment was conducted. In the context of AP-MS, an arrow can

indicate which of the protein is the bait and which the prey (pointing from bait to prey).

An important finding in network science revealed that most known complex networks have a
characteristic of higher-ordered structure that differentiates them from random networks: their
node-degree distribution follows a power-law. In simpler terms, these networks have many
nodes with a few connections and few nodes with a large number of neighbors. Such networks
are called “scale-free” and differ from random networks in which the node-degree is Poisson
distributed. “Scale-freeness” in networks is based on (i) the continuous expansion of the
network by adding new edges and (ii) the preferential attachment of edges to nodes that are
already highly connected (21). Due to gene duplication events during evolution, it is thought

that protein interaction networks evolved in a similar preferential attachment mode and that
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protein-protein interaction might follow a power-law. The attributes of scale-free networks
explain some interesting features of complex networks, for instance, the “small-world” effect
in which two nodes can be reached via only a few edges. These routes are called “shortest paths”
and usually pass through highly connected nodes, called “hubs”. Additionally, such networks
are robust against random removal of nodes, since the chances of removing a less important
one is high. On the other hand, the targeted removal of central hubs, can have dramatic effects
on the function of the network (22). While previous studies have suggested scale-free properties

for protein-protein interaction networks, there seems to be doubt about the quality of the

underlying data (23).
ZJSL QZD
(interaction) (protein)
3 4
2
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Figure 3. Small network representation: Depicted are eight nodes and ten edges representing proteins
connected via detected protein-protein interactions. The numbers indicate the “node-degree” which is equal
to the number of its neighbors. The “shortest path” between both nodes with a node-degree of 1 is 4 steps
(highlighted in red). Central nodes through which many shortest paths pass have a high “betweenness-
centrality” or are called hubs (green).

1.1.5 From non-Quantitative to Quantitative Interaction Screens

The final chapter of the ‘Nature Milestone’ series on mass spectrometry lists the field of
interactomics as its latest achievement in the application category (24). Indeed, the
breakthrough developments in protein ionization and peptide mass fingerprinting (25, 26)
opened the opportunity for large-scale applications in the field of AP-MS. Here I give a short
overview of previous large-scale interaction screens in S. cerevisiae. This will highlight their
remarkable achievements as well as their limitations and will reason why quantitative
proteomics can generate interaction data of superior quality compared to previous non-

quantitative approaches.
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Due to the need of endogenous tagging to establish near-physiological conditions, yeast is an
ideal candidate for systems-wide interaction studies. Its natural system of homologous
recombination allows the rapid and efficient introduction of tags at specific loci. Almost two
decades ago the first two initial AP-MS screens were conducted in yeast (27, 28) that were then
followed by two larger-scale studies four years later (29, 30). The underlying assumption in
non-quantitative AP-MS is that all co-purified proteins are specific interactors. Usually, AP
samples were separated on gels and sliced bands used for MS identification. This assumption
of all co-purified and detected proteins being specific was soon realized to be false. The
presence of unspecific binding proteins or contaminants was reduced by the use of tandem
affinity purification (TAP) tags, as these allowed more stringent washing in a dual purification
step that includes partial tag cleavage (31). While those strategies reduced unspecific binding,
more stringent washing also caused loss of weaker interactors and needed larger input materials.
Generally, the mentioned interaction screens required around 4L of cell culture per pull-down.
Altogether this required the processing of about 10 g of yeast pellets per pull-down, involving
grinding with dry ice in a coffee grinder (29, 32). Even then it was necessary to manually
remove proteins that commonly appeared in different purifications as unspecific background
binders, potentially introducing biases. For example, Gavin et al. manually removed dozens of
preys and almost all ribosomal subunits (33). A database named the “CRAPome” was generated
to help exclude those false positives from AP-MS data (34). While these milestone studies
enabled the understanding of many cellular functions, their limitations clearly reduced data
quality (33). This is also reflected in the large discrepancies between the two yeast AP-MS
interaction datasets that only overlap in 13% of their reported interactions, although they used
similar approaches. To overcome this drawback, Collins et al. reanalyzed the raw data sets from
these two main interaction studies to build a single consensus interactome (35). While the
resulting data is of higher quality and shaped the interactome landscape it came with the trade-
off: size. The combined dataset encompasses about 1,600 proteins, only about one third of the
expressed yeast proteome (36) and much less than the two original studies had reported, leaving
the yeast interactome far from complete. Even ongoing studies of the human interactome use
non-quantitative approaches, although their unspecific binder correction became more

sophisticated (37-39).

While the origin of quantitative proteomics dates back to the beginning of this century (40, 41),

it is the recent developments of label-free quantification and normalization methods (42), novel
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approaches of how to group bait samples into a single control group for efficient background
identification and concepts of how to use correlation and abundance information that finally
allowed scoring for interactions in quantitative acquired MS data (43—45). The basic principle
is that the high sequencing speed and sensitivity of mass spectrometers are used to identify and
precisely quantify not only a few co-purified proteins, but also “background binders” to a much
larger degree (43). The number of detected background proteins can thereby exceed thousands
of proteins in a single PD, while only a few specific proteins are present. This is enabled by the
precise quantification that allows detection of subtle enrichments of specific proteins in
comparison to control samples. The yeast interactome study presented in this thesis, likewise
builds on the large number of quantified background binders across all samples’ constant
background, by applying only very gently washing steps. Those steps do not use mixing, but
rather dilute proteins that do not stick on the mobile phase, allowing precise normalization and
quantitative interactomics. Together with the highly efficient mass spectrometric read out

described next, this forms the basis of a very high-quality interactome.
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1.2 Mass Spectrometry-Based Proteomics

“The difficulties which would have to be overcome to make several of the preceding

experiments conclusive are so great as to be almost insurmountable.”

-J.J. Thomson

1.2.1 A Century of Innovations in Mass Spectrometry

Based on the discovery of Wilhelm Wien in 1898 that beams of charged particles could be
deflected by a magnetic field (46), Joseph John Thomson constructed the first instrument
capable of acquiring a mass spectrum in the early 20% century (47). Thomson, who became
known as the father of mass spectrometry, built the parabola spectrograph that applied magnetic
and electric fields to deflect gaseous ions based on their charge and mass. His observations on
the properties of the electron were rewarded with the Nobel Prize of physics in 1906.
Thomson’s work led to the discovery of atoms and isotopes, and his apparatus laid the basis for
the field of mass spectrometry (48—51). In the following century, three more Nobel Prizes were
awarded for groundbreaking work in the field of mass spectrometry. In 1922, Thomson’s
former research assistant Francis William Aston who further improved the instrumental setup
was recognized for his discovery of isotopes in a large number of non-radioactive elements
(52-58). In 1989, Wolfgang Paul and Hans G. Dehmelt shared the Nobel Prize for the
development of the ion trap technology (59). Paul’s quadrupole and Dehmelt’s magnetron are
also known as the Paul and Penning traps, respectively, and evolved versions of either device
made their way into most commercial mass spectrometers available today. Transferring an
analyte into the mass spectrometer, controlling its movement within the device, and allowing
its separation based on the mass-to-charge ratio by applying magnetic or electric fields, requires
that the otherwise neutral molecules have to be ionized beforehand. The ‘gold standard’
ionization method in the first half of the last century that replaced the initial gas discharge
experiments was electron ionization (EI) also known as electron impact or bombardment
ionization. In EI, an electron stream is generated and focused with magnets onto the analyte for
its ionization. Although variations of EI as the field ionization (FI), the field desorption (FD),
or the chemical 1onization (CI) provided a ‘softer’ alternative to ionize small organic molecules,

they were still too harsh and destructive for large biomolecules (26). The breakthrough
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discovery for proteomics application was the development of ionization methods that are
compatible to larger biomolecules like peptides or intact proteins. In 2002 John B. Fenn and
Koichi Tanaka shared the Nobel Prize in chemistry for their contributions on the development
of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI),
respectively (60). With MALDI, the analyte is embedded in a protective matrix that absorbs the
energy of a pulsed laser beam that is used to transfer the analyte into the gas phase. With ESI
the liquid analyte is guided through a needle to which a high voltage is applied. The
development of nano-ESI with flow rates in the low nL/min range makes use of an efficient
dispersion of the liquid and causes a dramatic increase in sensitivity (61-64). Both, MALDI
and ESI are standard ionization technologies in mass spectrometry for the analysis of larger
biomolecules today. The major advantage of ESI over MALDI however is the ‘online’ use of a
liquid chromatography (LC) upfront of the ionization process, making it the preferred choice

for reproducible analysis of complex samples in proteomics.

The first century in the field of mass spectrometry was a fascinating one accompanied with
great inventions that began to enable its application in medicine, quality control, forensics, food
chemistry, biochemistry, and in many other areas of life science (50). Nevertheless, it is only
in recent years that these promising developments have come to fruition. Nowadays, the
increase in sensitivity of mass spectrometers allows unprecedented depth and analysis of
samples of only a few cells and even of a single cell soon (65, 66). At the same time, many
scientists, as well as established and newly founded companies, focus on developing solutions
to improve up- and downstream processes in mass spectrometry. This includes efficient sample
preparation (67), innovative columns and liquid chromatography systems (68, 69), novel data
acquisition modes and analysis tools (70-73), as well as next-generation mass spectrometers

that outdo one another in terms of sensitivity and resolution (65, 74).

The following sections will give an overview on recent technological developments that were
pivotal for this thesis and which are on the brink of becoming standards for high-throughput

applications in science, medicine and industry.
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1.2.2 Bottom-up Proteomics

In “bottom-up” proteomics proteins are first extracted, denatured, and digested by sequence-
specific proteases into peptides. Following the enzymatic cleavage, peptides are separated via
liquid chromatography and their masses are analyzed in the mass spectrometer. In order to
obtain sufficient information on the peptide sequence, peptides are fragmented inside the mass
spectrometer and the resulting fragment masses are obtained as well. Proteins are identified by
comparing peptide sequences to an in-silico digested reference database. The “bottom-up”
approach is frequently used since it is very powerful due to the ease of handling peptides and
the superior analysis possibilities of peptides compared to intact proteins. Intact proteins are
used in the counter-part approach named “top-down”, in which intact proteins are analyzed
without a prior digestion step. As illustrated in Figure 4, a classical bottom-up MS-based
proteomics workflow can be divided into sample preparation (A), LC-MS/MS analysis (B), and

data analysis (C) (75). The steps are described in more detail in the next sections.

— A: Sample preparation

extraction digestion
fractionation® fractionation® ~
—

enrichment* enrichment*

cells or tissue proteins peptides

— B: Liquid chromatography - mass spectrometry

— data dependent acquisiton

- top1 top2 .. top n
e e

— | cycles of full MS followed by
MS/MS of the most intense peaks

mass spectrometer

precursor MS/MS
selection,
isolation, bt_)tmm-up
fragmentation protein assembly
| | 1 | m/z A
peptide m/z, peptide intensities b- and y-ion series
stable isotope-pair ratios reporter ions, diagnostic peaks

Figure 4. Bottom-up proteomics workflow. Classical steps in proteomics for: (A) Sample preparation for
the extraction of proteins from cells or any other amenable biological sample, followed by enzymatic
digestion. (B) High performance liquid chromatography (HPLC)-based separation of peptides and ionization
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via electrospray ionization (ESI) followed mass spectrometric analysis (here exemplary shown for an orbitrap
analyzer). The mass-to-charge-ratio in data dependent acquisition modes is detected for intact co-eluting
peptides (precursors, full-MS) followed by detection of the most abundant fragmented peptides (MS?). (C)
The acquired mass spectra are used for database search containing the sequence of all potential proteins of
the sample. Figure by Hein et al. (75).

1.2.3 Sample preparation methods

The accurate and reliable identification of several thousands of proteins — which in “bottom-
up” proteomics is inferred from peptide information — requires a specific sample preparation
procedure. The preparation step is crucial in proteomics and the execution is dependent on the
sample type. The main goal is to efficiently extract and isolate proteins from a sample of interest
without inducing unspecific proteolysis. This sample can, in theory, be anything that contains
proteins. In proteomics, primarily biological samples are of interest. These can be tissues, body
fluids like plasma, cells from culture, parts of plants, yeast cells, bacteria, or other organisms.
The basic steps include sample homogenization, cell lysis and extraction of proteins, protein
denaturation, reduction of disulfide bonds, cysteine alkylation, proteolysis, and sample cleaning

for complete removal of contaminants like salts or detergents before LC-MS analysis.

For biological samples, homogenization and cell lysis can be achieved by mechanical disruption
such as cryogenic grinding or bead-beating. Alternatives are sonication, heating, or the use of
chemicals. Additionally, different agents are used to “deactivate” the sample by denaturing all
proteins and therefore inhibit all enzymatic activity that could potentially alter the proteome,
such as unwanted modifications or unspecific proteolysis. These include detergents like SDS
(sodium dodecyl sulfate) and SDC (sodium deoxycholate), organic solvents like ACN

(acetonitrile), or chaotropic agents like urea, thiourea, and guanidinium chloride (76, 77).

In the next step, stable disulfide bonds are disrupted by using reducing agents such as TCEP
(tris(2-carboxyethyl)phosphine) or DTT (dithiothreitol). The reformation of disulfide bridges
is prevented by the alkylation of cysteines, typically using agents such as IAA (iodoacetamide)
or CAA (chloroacetamide). Due to the identical masses of an alkylation side product with the

ubiquitin diglycine adduct when using IAA, CAA is preferable in some cases (78).

Different sequence-specific enzymes can be used for digestion. Most frequently used is the
combination of the enzymes trypsin and LysC. LysC cleaves specifically C-terminally to lysine,

while trypsin cleaves C-terminally to lysine and arginine. The sequence specificity is vital for
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generating peptides with a certain average length while restricting the database search in the
last step to peptides with an already known C-terminal amino acid. Other enzymes that can be

used include Asp-N, Lys-N, Arg-C, or GluC (79).

Before digested peptides are analyzed by mass spectrometry, they need to be purified. This
process includes removing all potential damaging agents for the LC, column, or mass
spectrometer from the sample. Removed are detergents, salts, chaotropic agents, or other
aggregates that might clog, contaminate, or interfere with the LC-MS pipeline. Improper clean-
up can also suppress analyte ionization and impurities can deposit on hardware components of
the mass spectrometer, thereby decreasing performance or damaging the instrument. The
cleaner the sample, the longer the high-performant instrument run time and the more
reproducible and reliable the data gets. A cornerstone in this area was the development of a
peptide-tip-based purification technique named Stop and Go Extraction tips, short “StageTips”.
It consists of small discs of retention material inserted into pipet tips that serve as a sample
clean-up reservoir. This procedure is easily applicable and has become a standard in proteomics

for sample purification and concentration (67, 80, 81).

Peptide sample complexity can be decreased before LC-MS analysis by using fractionation.
Fractionation is the separation of a single sample into several less complex peptide mixtures.
Measuring several fractions instead of a single sample allows one to analyze more input
material and spend more MS time on it. This procedure increases the depth and allows the
detection of less abundant peptides. A crucial thing to consider is that fractionation is not just
splitting the sample into different vessels but instead uses a chromatographic separation. The
separation method should differ from the one that is used later in the LC-MS setup. This
orthogonal separation can, for example, be an off-line high pH reverse-phase LC. The eluted
fractions are then used for the on-line LC-MS analysis, which usually uses a low pH reverse-
phase separation (82, 83). Our group has developed a ‘loss-less nano-spider’ fractionator, which
automatically concatenates the collected fractions via a rotating valve. This fractionator enables

the quantification of around 12,000 proteins from very low-pg starting peptide material (84).

1.2.4 High-Throughput Liquid Chromatography

Subsequent to the enrichment and purification steps in bottom-up proteomics, different peptide

species are separated from another on a liquid chromatography system which is coupled “on-
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line” to a mass spectrometer. In this LC-MS setup, the separation step takes place on the LC
column, which is filled with a solid, hydrophobic material (typically octadecylsilane, C18).
Peptides are separated based on physiochemical properties - mainly their hydrophobicity - and
the separation is caused by the differences in interactions with the moving liquid and stationary
solid phase. While the properties of the solid phase remain constant, the hydrophobicity of the
mobile phase increased during each run. This mobile phase linear gradient controls the elution
of the more hydrophobic peptides from the reversed-phase column. This causes peptides of the
same species to co-elute from the column in narrow packages within the range of seconds with
bell-shaped like intensities, called chromatographic peaks. This LC-MS setup allows to
decrease the sample complexity in a time dimension, by submitting co-eluting peptides of the
same species consecutively to the mass spectrometer. At the end of the column peptides are
transferred to the gas phase by electrospray ionization (ESI). This happens at the entrance of
the mass spectrometer where ionized peptides are then transferred into the vacuum (25, 85).
Ionization of peptides can be aided by the presence of protons from formic acid in the solution.
Two factors drastically influence ionization efficiency: the flow rate and the droplet size
forming at the site of ESI. Both can be reduced by using a slow stream of liquid and by using
(usually long) columns with a small diameter (63). While this setup causes an excellent peak
separation, it requires high-pressure pumps in order to provide a constant flow through the
column. These high pressures can cause pump-, valve and column failures. Another downside
is that the long columns work preferentially with long gradients, since sample loading, passing
of sample through the column, and washing off the column takes rather long and causes large

gap times between runs.

To overcome these expensive idle times of the mass spectrometer and to enable high-throughput
usage with short gradient runs, a novel concept for liquid chromatography has been developed:
The Evosep One. This LC uses mainly low-pressure pumps, runs with short columns, utilizes
very short gradients, and drastically reduces gap times to a minimum. This setup promises to
be a robust LC for high-throughput projects that need short gradients (69). The first difference
to conventional LC systems is the direct elution of peptides from the C18 material that is
embedded at the bottom of a pipette tip (“StageTip”, see 1.2.3). While upstream peptide
enrichment and washing steps remain similar, peptides are not manually eluted (67, 80), but the
loaded tips are placed inside a box and put onto the LC. The availability of a commercial and

standardized version known as “Evotips”, helps to reduce handling variability and increases
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reproducibility. Two low-pressure pumps (A, B, Figure 5) elute the peptide sample from the
C18 material. This has two major advantages: The partial elution keeps impurities on the
disposable Evotips and the gradual elution into the storage loop allows for the peptides to form
of pre-gradient. The low-pressure pumps C and D generate an off-set gradient, by diluting down
the organic component of the liquid phase. This off-set gradient reduces the interaction of the
peptides with mobile phase and down-stream allows a better interaction with the solid phase on

the column which contains C18 as well.

Once the sample is on the loop, it is pushed quickly onto the column with a single high-pressure
pump (H, Figure S5). The moment the sample has left the loop, the pressure and flowrate are
reduced and data acquisition starts. Meanwhile the loop is washed and loaded with the next
sample. Due to this, on a 21 min gradient the overhead time is only 3 min allowing to process
60 samples a day with this setting. Other gradients reach from 3 to 44 min allowing 300 to 30
samples per day (69). The above stated principles of pre-gradient and off-gradient formation,
compensate for the above-mentioned disadvantages of this high-flow system for proteomics.
At the same time, its robustness and high-throughput capabilities make it a perfect use-case for
the here presented interaction studies that need the reliable processing of many thousands of

samples.

~—H

T T

Figure 5. Evosep liquid chromatography system. (Left) Evosep LC system device. (Right) Schematic
representation depicts the use of 4 low-maintenance low-pressure pumps (A-D) that allow direct sample
elution from the C18-material packed pipette tip (“Evotip”) via a gradient formed by pump A+B. An off-set
gradient is formed by the pumps C+D that allows sharper peptide peaks/separation on LC column with the
same C18 material. A single high pressure pump H pushes the pre-formed gradient from the storage loop
(lower central circle) onto the column. This allows mass spectrometric data acquisition to proceed while the
loop is washed and filled with the next sample. This strongly reduces gap times between runs in which the
mass spectrometer would be idle. Figure by Bache et al. (69).
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1.2.5 The Mass Spectrometer

Central to the proteomics workflow is the mass spectrometer, a device that detects and
quantifies the masses — more precisely the mass-to-charge-ratio (m/z) - of the analyte. The mass
spectrometer is composed of three main parts: the ion source, the mass analyzer, and a detector.
To avoid collisions of the analyte with gas molecules and to avoid interferences, the mass
spectrometer operates under an ultra-high vacuum (down to about 10" mbar) (50). The most
frequently used high-performance instruments in proteomics in the last two decades were
Orbitrap platform mass spectrometers, that replaced the much slower and impracticable Fourier
transform ion cyclotron resonance (FT ICR) analyzer, the time-of-flight (TOF) instruments that
had ion transmission deficiencies or ion traps with low mass accuracy. Based on a commonly
used proteomics data submission website, 80 % of used machines are now Orbitraps and 8 %
TOF based mass spectrometers (accessed on 2021/10/26, excluding other instruments:
proteomecentral.proteomexchange.org). Since its first presentation over 20 years ago and the
first launch of the LTQ Orbitrap in 2005, Orbitraps quickly became the prevalent instrument
type (50, 86). Alexander Markov, the chief instrumentalist working on the Orbitrap, soon
developed a combined ion trap and analyzer which is based on the Kingdon and Knight ion
traps, that have their origins in 1923 and 1981, respectively. The problem of capturing stable
ions in the Orbitrap analyzer was solved by a principle termed “electrodynamic squeezing”, in
which the central electrode potential is increased the moment ions are injected axial to the
Orbitrap. As an external pulsed ion source, Makarov designed a bend quadrupole — known as

“C-trap”.

An Orbitrap, as the name suggests, measures the mass-to-charge ratio of the analyte by

detecting the induced current of the axial oscillating ions along the spindle pole (87).

TOF instruments measure the time an analyte needs to pass a defined drift path distance in the
vacuum until it hits the detector. This time-of-flight is dependent on its mass-to-charge ratio,
causing ions with a smaller m/z to arrive earlier at the detector. A prerequisite for the time-of
flight measurement is that the acceleration of each ion set takes place in a precisely defined
short time frame. This controlled acceleration was enabled by pulsed ionization methods in the
late 1980s that made the combination of MALDI with TOF instruments a perfect match for
larger biomolecules. In this setting a continuous acceleration of ions is prevented by controlling

the ionization and gas phase transfer with a pulsed laser beam instead (86).
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One of the major advantages of Orbitrap over MALDI-TOF instruments for proteomics was
their capability of operating downstream of HPLC (high performance liquid chromatography)
devices. This on-line setup as described in 1.2.4 allows to perform analysis of complex
proteomic samples therefore increasing signal to noise ratio. Despite the much higher speed of
TOF instruments, in which single spectra can be acquired in less than a ms (50), the discussed

reasons made Orbitraps the preferred choice.

Recently, two major developments helped to shift momentum back to TOF mass spectrometer:
The improvement of orthogonal accelerators and the implementation of ion-mobility
spectrometry (IMS). Orthogonal accelerators allow the use of non-natively pulsed ionization
methods like ESI with TOF, rendering them LC- compatible. IMS on the other hand can be
added to TOF instruments as an additional dimension of separation uncovering new
possibilities of speed and sensitivity. This type of instrument and the modes of operation that

enable its efficient use is described in the next section.

1.2.6 Trapped-lon-Mobility Coupled Time-of-Flight Mass Spectrometry

A trapped ion mobility spectrometer (TIMS) separates ions in the gas phase based on their ion
mobility. The ion mobility itself is dependent on the ion-neutral collisional cross section (CCS)
and the charge of the molecule. In a TIMS device ions are dragged along a constant flow of a
gas (e.g. nitrogen from ambient air) and are pushed back by an opposing constant electrical
field until both forces reach an equilibrium that keeps the analyte in a fixed position. The
dragging force is caused by the impact of colliding gas molecules onto the analyte and is
dependent on the molecule’s average accessible cross section: the CCS. The counteracting force
is dependent on the charge of the molecule. The TIMS device is a development from Melvin
Park and colleagues from Bruker Daltonics and is inspired by a conventional drift tube in which
the analyte is moving and colliding with a resting gas. By using a gas stream instead, the TIMS
device shrinks in size down to centimeters compared to meters in length for a drift tube (88).
The TIMS device traps ions — separated by their ion mobility — and by decreasing the electric
field releases them in packages into the mass spectrometer. An updated version — the dual TIMS
analyzer (Figure 6B) - separates the funnel in three parts: A trapping unit in which arriving
ions from the source are accumulated, a transfer region and a second unit that separates and

gradually releases the ions by ramping down the electric field. Ions from unit one are transferred
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to the second unit and the cycle begins anew. This parallel accumulation enables an up to 100%

duty cycle of the ions (89).
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Figure 6. A timsTOF Pro mass spectrometer utilizing the Parallel Accumulation — Serial
Fragmentation (PASEF) mode. Shown are the main elements: Trapped ion mobility spectrometry (TIMS)
analyzer, quadrupole mass filter, quadrupole collision cell and bottom part of time of flight (TOF) analyzer.
The displays depict the timely interplay between the single elements. See text for details. Figure from Florian
Meier et al. (74).

Another important innovation was made in our lab and is named Parallel Accumulation — Serial
Fragmentation. PASEF is a scan mode that utilizes more ions in the same amount of time
thereby increasing sequencing capacity about tenfold (74, 90). Normally the quadrupole mass
filter (Figure 6E) is switched in the MS/MS mode to the m/z value for a single in MS1 selected
ion, thereby discarding all other ions eluting from the TIMS device. In PASEF mode, the
quadrupole is sequentially switched in synchrony to the m/z of several select ions that elute
from the TIMS device. This implementation allows about ten PASEF scans per second with a
selection of up to 10 or 12 precursors each, resulting in sequencing speeds of > 100 Hz (74).
Importantly, the TIMS device operates in the millisecond time range and thus fits perfectly in
between the peptide elution time from the column (seconds, Figure 6A) and the spectra
acquisition time in the range of 100 microseconds (Figure 6F). Combining the TIMS with a
mass spectrometer therefore offers a unique advantage for TOF instruments. The ion mobility

dimension adds an additional precursor separation dimension and increases the signal-to-noise
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ratio by accumulation dense ion packages while drastically multiplying sequencing speed
without sample loss. The additional dimension also allows an improvement in the data analysis
pipeline: The matching between runs feature, in which identified features can be transferred

between runs can benefit from the CCS as an extra dimension (91).

I used the timsTOF Pro mass spectrometer, the PASEF scan mode and MBR feature in the
interactome studies described in this thesis in order to achieve highly sensitive measurement

for low input material and to generate as complete as possible data matrices.
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1.3 Aims of the Thesis

The aim of this thesis was to elucidate the entire interactome of the model organism S.
cerevisiae to understand its network structure and to discover novel biological findings. The
project builds on previous work of Eva Keilhauer (43), Fabian Hosp (45) and Marco Hein (44)
who initiated the quest for quantitative interactomics studies in our lab, by establishing new

concepts for analysis and testing the limits for input materials.

A major aim of the thesis was to optimize and establish a workflow for affinity-purifications
coupled to mass spectrometry in a high throughput and scalable manner for all known to be
expressed 4,200 proteins in S. cerevisiae. This included the identification of optimal conditions
that allow exponential growth — the preferred condition for yeast biologist — as well as to
miniaturize and standardize the workflow. One of my major goals was to achieve a workflow
in which all steps are in a high-throughput compatible 96-well format. Therefore, the best
condition/ protocols for yeast cell lysis within deep-well plates had to be established that would
allow proper cooling, avoids cross contamination, and would extract lysate most efficiently.
For the enrichment step, a custom-made solution for anti-GFP nanobody coated plates was
initiated. In this context, I tested the most optimal plate material and coating with the aim of
achieving best pull-down results and highest mass spectrometry compatibility. For the mass
spectrometry sample preparation, several protocols were established to find a solution to keep
the digestion and alkylation within the microtiter plate and in order to preserve Evotip
compatibility. Initially, I explored different options in terms of LC or mass spectrometer and

tried data independent acquisition modes before deciding on the use of the timsTOF Pro.

A major hurdle was the processing of the very large number of raw files, that initially took
much more storage space than the Orbitrap output files. Particularly in early stages, limitations
of the available software (initially only MaxQuant) was a major reason for delay and required

many workarounds and tweaks.

These efforts have successfully enabled me to present in this doctoral thesis the most
comprehensive and highly structured network of the yeast. Similar to human networks (on
social media), the yeast interactome as described in the next chapter is highly connected with
an average of 15 interactors, many of which are not reported. The rigorous workflow established

here should allow similar interactome studies in other organisms (as demonstrated in Chapter
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2.2). In addition, this work also provides a free web-portal to explore our datasets and thus

serves as an important resource for other scientists.
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2 Results

2.1 Article 1: The social architecture of an in-depth cellular protein interactome

André C. Michaelis, Andreas-David Brunner, Maximilian Zwiebel, Florian Meier, Maximilian
T. Strauss, Isabell Bludau, Matthias Mann (2021). The social architecture of a near-complete
cellular protein interactome. Biorxiv, doi:10.1101/2021.10.24.465633.

This publication contains the results of a near-complete protein-protein interactome in
S. cerevisiae. Using affinity-purification coupled to mass spectrometry (AP-MS), I provide a
map with high-quality interaction data, that triples and doubles the number of interactions and
proteins, respectively, compared to the latest state-of-the-art reference data set (35). Using AP-
MS, this is the single-study derived interactome with the highest protein coverage in any
organism yet. The majority of the reported interactions are new, based on a comparison with
the broadly used BioGRID interaction database (92). Building on previous studies from our
group (43-45), 1 developed a cell sample preparation and a mass spectrometry pipeline that
would allow handling all of the about 4,200 GFP-tagged strains known to be expressed in yeast
under standard growth conditions (19). Using quantitative proteomics for the first time in a very
large interaction screen, it was crucial to have very consistent handling in order to generate
reproducible enrichment and background binders across all samples. The combination of an
efficient lysis protocol and the latest generation of mass spectrometer allowed me to use 96-

well plates throughout all steps. This “reduced” the sample number to 44 of these well plates.

The cell wall of yeast is tough and requires a special lysis protocol compared to other eukaryotic
cells. While several options like cryogenic grinding as used previously (29, 32), or proteolytic
lysis (93) are available, they needed to be compatible with the high-throughput plate format and
not interfere with the mass spectrometric workflow (as proteases would). I found that
mechanical disruption fulfills those requirements best. It turned out to be important to use the
correct low-protein binding equipment, a specific ratio of the right lysis buffer and glass beads,
proper sealing of the plates while still allowing access to the samples, all while using optimized
bead-beating conditions. Only a few devices allow parallel, high-frequency deep-well plate

bead-beating. The cycles described in the methods part of the paper bring maximum lysis
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efficiency while keeping the temperature increase (which is crucial for maintaining protein

interactions) with each cycle to a minimum.

For the pull-down, anti-GFP coated nanobody 96-well microtiter plates were available, but they
turned out to have a coating that had unacceptably high contaminations for MS analysis. This
made them incompatible with a single step protocol that would allow pull-down, washing,
reduction, alkylation, and digestion within the same plate without transferring them. In
cooperation with the company Chromotek, I tested several new production settings with a
variety of plate materials to find the optimal setting for a MS compatible single step “in-well”
digest. Those plates are now commercially available allowing other scientist to reproduce. For
the denaturation and digestion protocol, some methods did not result in the efficient unfolding
of stable proteins (as reflected in the absence of the GFP-tag) and some were not compatible
with large-scale screens, nor the use of C18-material based purifications as it is required for the
Evosep One. This included the commonly used SDC (sodium dodecyl sulfate) protocol (67)
which requires heating to high temperature, which is impractical for large-scale analysis and an
SDP-RPS (styrenedivinylbenzene- reverse phase sulfonate) based purification. Instead, I
decided to use a classical high molar urea LysC digest followed by a low molar urea- one. This
allowed the identification of e.g. GFP which I used in a tag-based abundance calculation later
on. The LysC only digest improved results, likely due to in general better performance of TOF
devices with slightly higher m/z peptides and the reduced missed-cleavage rate which I
observed to be worse in a urea based LysC and trypsin digest. This is likely caused by the

efficient digestion of LysC by trypsin in those denaturation conditions.

All optimized steps allowed the samples to be processed in a streamlined manner with only two
major transfers: from the deep-well plate to the microtiter plate and then to the Evotips, resulting

in high reproducibility.

The above detailed description should aid others to appreciate the steps and the underlying
effort of the developed protocol that are only briefly described in the results-oriented paper.
The motivation to optimize the workflow and to reduce and simplify all possible steps, was not
only to generate the best feasible data in this study, but also to provide an easy protocol that
will allow other groups to do similar experiments. Our dataset allows to select those baits that
efficiently cover a part of the network of special interest. By doing this and by using the
provided workflow, one can easily conduct new studies that for example investigate effects of

specific perturbations. I also see this platform as a starting point for many global interaction
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screens to come, that will map differences between conditions and help to unravel new

mechanists of the cell.

With this large coverage of expressed proteins, my results show that correlation analysis
becomes a very powerful tool. This is because almost all yeast proteins are present in this
dataset, and therefore correlations can be established for almost all of them. This is why we
have very significant interactions that are only based on correlations. Examples include proteins
that are not taggable such as the chaperonin containing t-complex. Overall, I find many very

promising new interactions that are covered by several high confidence interactions.

Because large-scale data are sometimes hard to understand or even to access, I have put much
effort in generating an easily accessible and visually appealing web application Maximillian
Zwiebel was invaluable in this endeavor as he manifested most of our analysis pipeline into a
corresponding code and transformed all my visions of how to browse the final data into an

aesthetic, concise and easy to handle webpage (www.yeast-interactome.org).

The results described below belong to the manuscript which is published on BioRxiv.
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The social architecture of an in-depth
cellular protein interactome

André C. Michaelis', Andreas-David Brunner', Maximilian Zwiebel', Florian Meier'?,
Maximilian T. Strauss?, Isabell Bludau'!, Matthias Mann'*#

'Max-Planck Institute of Biochemistry, Martinsried, Germany; >Functional Proteomics, Jena University Hospital,

Jena, Germany; NNF Center for Protein Research, University of Copenhagen, Denmark

#Correspondence: mmann@biochem.mpg.de

Nearly all cellular functions are mediated by protein-protein interactions and mapping
the interactome provides fundamental insights into the regulation and structure of
biological systems. In principle, affinity purification coupled to mass spectrometry (AP-
MS) is an ideal and scalable tool, however, it has been difficult to identify low copy number
complexes, membrane complexes and those disturbed by protein-tagging. As a result, our
current knowledge of the interactome is far from complete, and assessing the reliability
of reported interactions is challenging. Here we develop a sensitive, high-throughput, and
highly reproducible AP-MS technology combined with a quantitative two-dimensional
analysis strategy for comprehensive interactome mapping of Saccharomyces cerevisiae.
We reduced required cell culture volumes thousand-fold and employed 96-well formats
throughout, allowing replicate analysis of the endogenous green fluorescent protein (GFP)
tagged library covering the entire expressed yeast proteome. The 4159 pull-downs
generated a highly structured network of 3,909 proteins connected by 29,710 interactions.
Compared to previous large-scale studies, we double the number of proteins (nodes in the
network) and triple the number of reliable interactions (edges), including very low
abundant epigenetic complexes, organellar membrane complexes and non-taggable
complexes interfered by abundance correlation. This nearly saturated interactome
reveals that the vast majority of yeast proteins are highly connected, with an average of
15 interactors, the majority of them unreported so far. Similar to social networks between
humans, the average shortest distance is 4.2 interactions. A web portal (www.yeast-
interactome.org) enables exploration of our dataset by the network and biological
communities and variations of our AP-MS technology can be employed in any organism

or dynamic conditions.
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The large-scale study of cellular interactomes by MS-based proteomics dates back almost 20
years (1, 2), culminating in two studies in which nearly half the expressed yeast proteome was
successfully purified with identified interactors (3, 4). These datasets have been mined
extensively, leading to a network-based view of the cellular proteome. Given the importance of
the interactome for functional understanding and the dramatic improvements in MS-technology
during the last decade (5, 6), we set out to generate a substantially complete interactome of all
proteins present in an organism in a given state. We made use of an endogenously GFP-tagged
yeast library containing the 4159 proteins that were detectable by fluorescence under standard
growth conditions (7). Miniaturization and standardization of the workflow in combination with
an ultra-robust liquid chromatography system with minimal overhead time coupled to a
sensitive trapped ion mobility mass spectrometer employing the PASEF scan mode (8, 9),
resulted in very high data completeness across pull-downs. This workflow required only 1.5 mL
instead of liters of yeast culture, provided a constant throughput of 60 pull-downs per day and
allowed using the same conditions for soluble or membrane proteins of vastly different

abundances (Fig. 1A).

Measurement of the yeast interactome

To test the quantitative reproducibility of our workflow, we performed 24 biological replicates
of pull-downs of three nuclear complexes, which resulted in complete retrieval of these
complexes from a single bait each, with 9% average coefficients of variation (CVs) of enriched
complex members (Fig. 1B). This compares to a 69% repeatability of assigned interactions in
the previous large-scale screens (10).

Three layers of evidence help to establish an interaction between two proteins. The first two are
statistically significant enrichment of the proteins in the forward and in the reverse pull-downs
(where the prey pull-down significantly enriches the bait). Instead of employing only a t-test of
bait pull-down against a pull-down of a strain only expressing GFP, we made use of our vast
number of diverse GFP-tagged strains, to combine them into a single control group, thereby
efficiently removing false positives not specifically binding to the bait (Methods: Enrichment
analysis). Using this affinity enrichment (rather than affinity purification) concept (11), we
quantitatively compared all proteins across more than 8,000 pull-down measurements, making
use of the profile similarities of interacting proteins in correlation analysis. This third evidence
type turned out to be very informative due to the large quantitative accuracy combined with

close to a complete set of “virtual controls” (Methods: Protein correlation, Fig. 1C).
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We combined all three layers of each interaction into a single interaction score and retained
those with a minimum score of 2, corresponding to (a) a single pull-down at 1% FDR or (b) a
correlation z-score of at least five or (c) forward and reverse pull-downs at 5% FDR each, or
(d) one at 5% FDR combined with a correlation z-score greater than four. To retrieve clusters
and complexes from our interactome data, we used Markov clustering with the above-derived
score as the edge weights, without any training or a priori knowledge (Methods: Network
generation, Fig. 1C).

The replicate GFP pull-down measurement in the 4,147 yeast strains resulted in the enrichment
of 82% of the baits (Suppl. Fig. 1). Our MS-data provided statistically significant evidence for
a total of nearly 30,000 physical interactions, corresponding to an average of 15.2 interactions
per protein. Most were supported by forward pull-down (38%), followed by forward pull-down
and significant prey correlation (29%), whereas nearly all interactions with both forward and
reverse evidence also had significant correlations (> 99%) (Suppl. Fig. 2).

Due to the limited overlap of the interactions reported by two previous large-scale studies (13%
shared interactions), Collins et al. merged and reanalyzed these datasets to create a consensus
network with 1,622 nodes (12). Our data encompasses 95% of these, but places nearly the entire
expressed yeast proteome in a network (3,909 nodes). Our dataset of 30,000 significant protein-
protein interactions confirms 62% of the much smaller Collins et al. dataset (Fig. 1E). Based
on a comparison with the BioGRID database (13), over two-thirds of the interactions reported

here are novel.
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Figure 1. A comprehensive and scalable interactomics technology.

A) Sample preparation in 96-well format and mass spectrometric measurement: Each strain of the GFP-
tagged library is lysed by mechanical disruption and transferred into anti-GFP nanobody coated microtiter
plates, where weak interactions are preserved by gentle washing. After enzymatic “in-well” digestion,
resulting peptides are transferred on standardized C;s-StageTips from which they are directly eluted into a
standardized 60 samples/day gradient. Data is acquired in the PASEF scan-mode on a trapped ion mobility
— Time of Flight mass spectrometer. B) Streamlined workflow and reduced transfer steps reduce the risk of
manual errors and sample variation: Demonstration of workflow reproducibility and sensitivity on three
nuclear complexes in biological replicates. Tagged members of each complex (baits) pull down the known
preys in very similar amounts. Lower panel: bar plot of mean coefficient of variation with standard
deviations. C) Two-dimensional interaction scoring: Columns represent pull-down experiments in replicates
(light color). Squares depict intensities of detected proteins across the pull down-experiments. Three levels
of evidence support each interaction: t-test of forward pull-down against complement experiments, t-test of
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reverse pull-down, and protein profile correlation — the correlated abundance profile against all other proteins
across all experiments (z-scored, Methods: Protein correlation). D) Proportion of interactions backed by
multiple layers of evidence. E) Overlap of proteins with at least one interactor and interactions detected in
this study with the previous state-of-the-art network (12).

Organization of protein-protein interactions in clusters

Markov clustering analysis - with our interaction scores as edge weights, condensed the network
into 623 clusters, with about 20,000 interactions within them, most supported by at least two
statistically significant levels of evidence (Fig. 1D). When we inspected known protein
complexes from different cellular compartments, especially membrane complexes, we found
them to recapitulate the literature to a large degree. Furthermore, we here retrieved 3628
interactions between membrane annotated proteins, compared to 853 in a dedicated membrane
proteome (14). This is shown exemplarily for the full retrieval of the endosomal retromer
complex, the conserved oligomeric Golgi complex, and the plasma membrane exocyst complex
(Fig. 2A). At the same time, our unbiased and high coverage analysis identified novel subunits
with tight association to known complexes. For instance, three subunits of the essential
endoplasmic reticulum (ER) membrane oligosaccharyl transferase (OST) complex - an integral
component of the translocon - associated with a-1,2-mannosidase (Mnsl; human homolog:
MAN1BI), an enzyme that catalyzes the ER glycoprotein trimming reaction which is required
for ER-associated protein degradation (ERAD). This indicates that the enzymatic activity of N-
linked oligosaccharide chain addition is physically connected to the removal of a terminal sugar,
at least in one isoform of the OST complex. The slow enzymatic activity of Mnsl acts as a
timer (15, 16) and we speculate that it co-translationally primes stalled or erroneous proteins
directly at its site of translocation for ERAD degradation. We also discovered a novel complex
defined by three unreported interactions (all with the maximum interaction score of 10) between
Tcdl, Tcd2 - mitochondrial proteins that are involved in tRNA base modification - and
YGRO12W, a protein of unknown function. A homolog of Tcdl and Tcd2 in E. coli termed
TcdA functions in a complex of three in the cyclization of an essential tRNA modification found
in all three domains of life (17).

Many biological complexes share members and these can be difficult to disentangle by
clustering algorithms. We speculated that our highly quantitative data could nevertheless
resolve these cases. Applying a network layout algorithm (Methods: Network generation) to
members of the transcription factor TFIID and the SAGA complex, separately reconstructed

these complexes, while correctly assigning shared members (Fig. 2A). At the global scale, we
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found that about two-thirds of all interactions connected members within clusters, whereas the
remainder connected clusters to each other. For example, the cytoplasmatic signal recognition
particle (SRP) is connected to another cluster containing the SRP-receptor (SRP101/102). The
largest connected clusters were the small and large subunits of the ribosome, with 362 inter-
complex connections.

Leveraging the common, endogenous GFP-tag on more than 3379 detected baits, we next
investigated if the MS-signal of the GFP peptides could be used to quantify each bait. Indeed,
these intensities correlated well (r = 0.77), with a recent compilation of yeast protein
abundances (18) (Fig. 2B). This validates our interaction workflow and allows tag-based
estimation of the relative abundances of proteins in a cluster, which is useful to determine their
functional role (19).

For some proteins, for example the members of the chaperonin containing t-complex (CCT),
tagging is not possible because it interferes with protein stability or function (20). Based on
highly significant correlations between profiles of the subunits, CCT was nevertheless fully
recovered (Fig. 2C). Besides the eight conserved, ring-forming members, we also detected a
distinct set of 21 interacting proteins, about half of which had not been reported yet. Two of
these were catalytic subunits of protein phosphatase 2A, suggesting regulatory functions, and
others, such as tubulin and actin-related proteins (Tubl, Tub3, Arpl) major known folding
substrates. CCT may have a restricted or broad set of folding substrates (21), and our results
quantitatively support the former possibility.

The above examples only scratch the surface of the interesting biological leads contained in the
data. To allow ready exploration of interactions of interest, we created a web portal (www.yeast-
interactome.org), which supplies statistical evidence for protein-protein associations, and

summarizes the resulting clusters (Fig. 2D).
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Figure 2. High-quality dataset for the exploration of the interactome.

A) Clusters derived from our interactome for a range of challenging complexes such as chromatin-associated,
soluble and membrane-bound complex of various organelles. In each case, all known subunits were retrieved.
B) Tag-based quantification allows retrieving abundance information for the baits in a generic manner (left
panel). Correlation of tag peptide-based signals with a literature compilation of yeast protein abundances (18)
(right panel). C) For the non-taggable chaperonin containing t-complex (CCT), profile correlation analysis
nevertheless reveals its subunits and interactors. Interactions based on correlation only are shown in red
(dashed) and unreported interactions with CCT in green. D) Web application that allows exploration of
interaction data for interactions of interest. For all proteins, pull-downs are depicted as volcano plots together
with a violin plot that shows the MS intensity of user-selected outliers. Subnetwork from pull-downs of the
selected bait and reverse pull-downs or significant interactors.

Network architecture of the cellular interactome

The availability of data for large networks in systems ranging from power-grids, genetic
networks to human social networks, has enabled the study of their underlying architecture,
commonalities and differences (22). This topic also has a long history in protein interaction
networks. However, these analyses have been limited by the incompleteness of the data,
especially in multicellular species (23). With an in-depth protein-protein interaction map in
hand, we compared its characteristics to networks in different domains. Yeast proteins are
highly connected with an average of 15 and a median of 6 interactions per protein, significantly
more than the human BioPlex interactome (average interactions: 8) (24) (Fig. 3A). Influential
nodes — those with the highest number of normalized interactors (or degree centrality) — were
more common than in the GitHub package dependency network, but less common than in a

similarly-sized Facebook subnetwork (Suppl. Fig. 4). This high connectivity is reflected in a
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mean shortest path between yeast proteins of only 4.2, ranging from highly connected proteins
with only three steps to less connected ones with an average of more than 7. (Fig. 3B). This is
very similar to the 4.7 path-length for world-scale Facebook relationships (25).

One of the key features for most real-life networks with complex topology in contrast to random
networks is the scale-free power-law distribution of interactors (26, 27). Scale-free network
properties are thought to arise by preferential attachment over evolutionary time to already well-
connected nodes and can be identified by a linear relation of the node degree or number of
interactors with its frequency (number nodes with that degree) plotted in log-log space. While
this has been hard to prove for biological networks, they rather appear to be exponential or have
a truncated power-law degree distribution (28), our yeast interactome clearly displays scale-
free properties (Fig. 3C). In accordance with previous protein-protein interaction networks (3,
29), the exponent was below two, at the lower end of the two to four range of other scale-free
networks.

The high connectivity of most proteins organizes almost all of them (3,827) into a single giant
connected component, accompanied by 38 small components (82 proteins) (Fig. 3D). A total
of 478 proteins were outside of the network because MS-analysis of their pull-downs only
identified the bait itself. There was an significant enrichment for 87% of these baits
(FDR<0.01%), indicating that there were no identifiable interactors under our standard
conditions despite a successful pull-down (Suppl. Fig. 3, see volcano plots accessible via web-
application).

We next investigated the large-scale organization of the yeast interactome using the Louvain
community detection algorithm (Methods: Network comparisons). This revealed that yeast is
organized in smaller communities than GitHub, ego-Facebook and also Bioplex (Fig. 3E).
Important “bottleneck™ proteins that are part of many shortest paths have a high “betweenness-
centrality”. The yeast interactome has comparably more of those central nodes and
bioinformatic enrichment analysis highlighted proteins involved in “RNA polymerase 117,
“mitochondrial nucleoid”, “gluconeogenesis’ and “misfolded protein binding” (Fig. 3F; Suppl.
Table 1).

Altogether, based on the total of 4,387 identified yeast proteins, only 10.9% had no discernable
interaction partner, whereas 74.2% had at least two. Given that some of our baits will have
context dependent interactions not captured here, our estimates are conservative and we

conclude that almost all yeast proteins are “social”.
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Figure 3. Properties of the protein interaction network.

A) Distribution of the number of interactors (grey). Sorted cumulative number of interactions reaches
saturation at 30,000 interaction (blue) B) The distribution of average shortest path length between all possible
pairs of nodes within the giant component shows a mean of 4.2 steps corresponding to 3.2 intermediaries
(“degrees of separation”) C) Power-law fit (green; equals a linear fit on a log-log scale) of the frequency of
proteins with a given number of interactions highlights the scale-free properties of the network. Exponential
fit depicted in orange D) Nearly all nodes of the network are connected with each other in the giant
component. E) Cumulative distribution function of the community sizes (Louvain algorithm) detects more
smaller communities for S. cerevisiae. F) Cumulative distribution function of betweenness centrality: The S.
cerevisiae interactome has more nodes with a high betweenness-centrality than the comparison data sets.
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Global organization in clusters highlights novel interactions

Intensive research over the last decades has made S. cerevisiae arguably the best understood
single-cell eukaryotic organism, leading to the discovery of crucial conserved cellular
functions, such as metabolic pathways, mechanisms of DNA replication and transcription,
protein quality control and modifications that were later confirmed in human and other
organisms. Nevertheless, our interactome still contained uncharacterized proteins or
interactions not reported in the BioGRID database and thus providing novel biological insights
(extended selection Suppl. Fig. 6). Furthermore, BioGRID has accumulated binding events
from very disparate experiments without a common confidence score (133,900 physical
interactions from about 10,000 publications). We reasoned that our homogeneous, high-quality
data set would help biologists to highlight true positive interactors with biological relevance,

several of whom we discuss below.
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A total of eleven evidences connect the uncharacterized protein YDL176W with the conserved
glucose-induced-degradation (GID) complex, only a few of which had been indicated by
previous pull-down or genetic interaction data (3, 30) (Fig. 4B). These types of high-confidence
associations assist in prioritizing interactions and form the basis for a detailed mechanism and
structure discovery of a novel GID modulator. Similarly, our data ties the uncharacterized
protein YJRO11C to the conserved transcription and translation regulatory CCR4-Not complex
(31, 32) via high-significant interactions to a majority of its subunits (Fig. 4G). Finally,
YHR131C is linked to three and YLR407W to the fourth subunit of the kinase CK2 (Fig. 4N).
We discovered an interaction of Cue4 — a protein of unknown function containing a ubiquitin-
binding domain — with the ER membrane complex EMC, potential membrane protein
chaperone (Fig. 4L). As Cue4 is a paralogue of Cuel (coupling of ubiquitin conjugation to ER
degradation), a component of ERAD (33), this physical link and the known aggravating genetic
interactions of Acuel with EMC knock-outs (34) suggests an ERAD related quality control
mechanism for EMC.

The transcriptional regulator SWI/SNF unexpectedly interacts with the phosphate transporters
Pho87 and Pho90 (Fig. 4D). Out of four plasma membrane phosphate transporters only Pho87
and Pho90 comprise a cytoplasmatic accessible SPX domain. While an SPX dependent
phosphate sensing mechanism has been discovered in plants (35), it remains elusive in S.
cerevisiae. In Arabidopsis inositol pyrophosphate InsPs concentration increases under
phosphate rich conditions and promotes the interaction between SPX domains and a four-
stranded coiled-coil motif of phosphate starvation response transcription factors (36). Strikingly
the recently solved structure of SWI/SNF reveals such a coiled-coil four-helix-bundle at its
spine region (37) providing a potential SPX interaction site. This raises the possibility of a novel
cytoplasmatic sensing and retention mechanisms of this key transcriptional regulator which is
known to be necessary for a phosphate starvation response (38, 39). Interestingly, not only the
SWI/SNF complex but also an SPX domain-containing phosphate transporter named XPR1 -
which has recently been shown to be controlled by InsPs (40) - is present in humans.
Ilustrating translational relevance, we expand the known interaction of the GTPase-activating
protein Iral/Ira2 (NF1/neurofibromin in humans) and Gpb1/Gpb2 (ETEA in humans) (41) by
Trx2 a thioredoxin isoenzyme (human homolog: TXN) and Gpx1 (human homologs: GPX3-
6), an antioxidant enzyme whose glutathione peroxidase activity is neuroprotective in models

of Huntington’s disease (42) (Fig. 4C).
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Additionally, we find a new physical interaction between the two uncharacterized proteins
YPRO0O63C and YNRO21W (Suppl. Fig. 6) whose dimerization and structure has just been
predicted in a deep-learning approach (43).

Apart from known and novel protein complexes, the yeast interactome depicted in Fig. 4,
clearly shows evidence of high order connections. These often map to different compartments
of the cell, such as the prominent connections between ribosomes in the cytoplasm and the
nucleolus, its site of maturation or connect large and small ribosomal subunits that despite its

“stickiness” are organized in individual clusters.
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novel interactions (based on BioGRID) or those that have not been described further as potential high
significant interactor and interactions involving uncharacterized proteins. A full browsable and interactive
version of this network can be found at our web application (www.yeast-interactome.org).

Outlook

Here we have developed and applied a novel and highly scalable interactome technology,
enabling replicate measurement of the yeast network in a fraction of the measurement time and
starting materials needed previously. Our screen reached near saturation and contained nearly
all complexes expected under our experimental conditions (Fig. 3A, Fig. 4). Given its
streamlined nature, our workflow can now readily be used in other endogenously tagged model
organisms (44) or to study remodeling of the interactome in the presence of dynamic biological
processes or perturbations. Similarly, we envision its use with other interaction technologies
like BioID or APEX using tagged libraries that nowadays can be easily generated using the
SWAp-Tag platform (45). The comprehensive yeast interactome data can further be used as
prior knowledge for hypothesis-driven analysis of protein complexes, for example for native
protein complex co-fractionation coupled to MS (46, 47). Additionally, we imagine that such
interactome data could also be combined with MS-crosslinking studies and recent advances in
computational prediction of protein structures from their sequences (48, 49) to yield complete

structural models in many cases.
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Experimental Methods

Cell growth. To achieve samples with similar cell numbers, pre-cultures of the S. cerevisiae
GFP-tagged library were grown in YPD media (1% yeast extract, 2% bacto™ peptone, 2%
glucose) for two days in 2 mL, u-bottom shaped 96-deep-well plates. This allowed cell
concentration convergence of different strains during the slow growing post-exponential phase.
Cells were resuspended and 50 pl of each pre-culture was used to inoculate 1.5 mL of fresh
YPD media (corresponding to an optical density of 0.5 at 600 nm) in 96-deep-well plates
(LoBind®, 2 mL, cat no. 0030504305, Eppendorf AG, Hamburg, Germany). Plates were
covered with an air permeable membrane and incubated while shaking at 300 rpm and 30 °C
for 6 hours. This allowed the progression through the lag phase and three cell cycles followed
by harvesting under standard growth conditions. Cells were pelleted in the 96-deep-well plates
by centrifugation at 3500 rpm (= 2451 g) for 5 min. The supernatant was discarded by fast
decanting and quick dabbing on paper towels. Plates with pellets were sealed with plastic covers

and stored at -80 °C until cell lysis.

Cell lysis. Dee-well plates with cell pellets were thawed on ice for 5 min. 100 pl of glass beads
(0.5 mm, acid-washed, cat no. G8772, Merck KGaA, Darmstadt, Germany) were added to each
well using a 96-well bead dispenser (LabTIE International, Veenendaal, Netherlands). After
5 min 250 pl of 4 °C cold lysis buffer (50 mM Tris HCI pH 7.5, 150 mM NaCl, 5% glycerol,
0.05% IGEPAL CA-630, protease inhibitor EDTA-free (cOmplete™, 1 tablet per 50 mL, cat
no. 11873580001, Merck KGaA, Darmstadt, Germany), 1 mM MgClz, 0.75 U/uL in-house
Serratia marcescens endonuclease/SmDNase) were added. Plates were sealed using a heat
sealer (S200, cat no. 5392000005, Eppendorf AG, Hamburg, Germany), the low profile plate
adapter (cat no. 5392070020, Eppendorf AG, Hamburg, Germany) and transparent heat sealing
films (cat no. 0030127838, Eppendorf AG, Hamburg, Germany) for 2 sec at 180 °C and
immediately put back on ice. Cell lysis was performed within the 96-deep-well plates at 4 °C
via bead-beating (2010 Geno/Grinder®, SPEX SamplePrep, Metuchen, NJ) for 4 cycles of
1.5 min each at 1750 rpm. Plates were cooled in ice water and covered with ice for 7 min in-
between cycles and for 10 min after the last cycle. 4 plates were processed in parallel during

bead-beating and top and bottom positions were switched at each cycle. Cell debris was spun
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down at max speed (4300 rpm = 4347 g) for 10 min at 4 °C. Plates were carefully put back on
ice and immediately used for the pull-down protocol (Fig. 1A).

Interactor enrichment: Pull-downs and all sample handling steps were performed at 4 °C.
Anti-GFP nanobody coated 96-well microtiter plates were custom made and optimized for this
protocol allowing efficient and high reproducible “in-well” digestion, and mass spectrometry
compatibility (plates are now commercially available as: GFP-Trap® Multiwell Plate, cat no.
gtp-96, Chromotek GmbH, Martinsried, Germany). Plates were prepared with 200 uL wash
buffer 1 (50 mM Tris HCI pH 7.5, 150 mM NaCl, 5% glycerol, 0.05% IGEPAL CA-630) per
well on a shaker for 1 min at 800 rpm followed by removal of the buffer. The cell lysates were
carefully transferred from the 96-deep-well plates by slow uptake of 175 puL. supernatant
without dislodging glass beads nor the cell debris pellet to the GFP-Trap plate. The GFP-Trap
plate was incubated for 1 h at 800 rpm on a small stroke (3 mm) shaker (TiMix 5 control,
Edmund Biihler GmbH, Tiibingen, Germany) to enrich for GFP-tagged proteins and their
interactors. Cell lysates were discarded and plate wells were washed twice with 200 uL. wash
buffer 1 and twice with wash buffer 2 (50 mM Tris HCI pH 7.5, 150 mM NaCl, 5% glycerol).
To allow stable binding of unspecific background proteins — an important factor for label-free
quantification — wash buffer was added slowly, and plates were not shaken during wash steps.
Emptied, protein-enriched plates were covered and stored at -80 °C until mass spectrometry

sample preparation (Fig. 1A).

Sample preparation for mass spectrometry. Protein-enriched GFP-Trap plates were brought
to room temperature and 50 uL. of digestion mix 1 (4.5 M urea, 1.5 M thiourea, 10 mM Tris
HCI pH 8.5, 3 mM dithiothreitol, 2 ng/uL LysC) were added per well. Plates were incubated at
30 °C and 1000 rpm on a small stroke (3 mm) shaker. After 3 h, 100 uL of digestion mix 2
(10 mM Tris HCI1 pH 8.5, 7.5 mM chloroacetamide, 2 ng/uL. LysC) were added and microtiter
plates and lids were sealed with parafilm®. The plates were incubated overnight at
30 °C/800 rpm. The reaction was stopped and the sample was acidified with 15 pL of 10% TFA
per well. Plates with peptides were stored at -80 °C till sample loading on EvoTips (Evosep,
Odense, Denmark) (Fig. 1A).

Loading of peptide samples on Evotips. Evotips (Evosep, Odense, Denmark) were activated
for 5 min in a 1-propanol Evotips-box reservoir at room temperature (RT), followed by a wash

step with 50 pl buffer B (acetonitrile (ACN) with 0.1 % formic acid (FA)) and centrifugation
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at 500 g for 1 min at RT. The flow-through was discarded and Evotips were placed back into
1-Propanol. Evotips were conditioned with 50 uL. of buffer A (ddH20 with 0.1 % FA) and
centrifugation at 500 g for 1.5 min at RT and were placed in a container with buffer A. 40 puL
of thawed peptide sample were loaded and Evotips were centrifuged at 500 g for 1.5 min at RT
and placed back in a container with buffer A. 200 pL of buffer A were added and partially
washed through the Evotips by centrifugation at 500 g for 50 s. Evotips boxes with buffer A at
the container bottom were placed on the Evosep One liquid chromatography (LC) platform
(Evosep, Odense, Denmark) for LC-MS analysis. Pull-downs were acquired in technical

duplicates and the injection order was reversed after the first measurement (Fig. 1A).

Liquid-chromatography. For separating peptides by hydrophobicity and eluting them into the
mass spectrometer, we used the EvoSep One LC system and analyzed the yeast interactome
pull-down proteomes with the standardized 21 min (60 samples per day) gradient. We employed
a 15 cm x 150 pm inner diameter column with 1.9 um C18 beads (PepSep, Marslev, Denmark)
coupled to a 20 um ID electrospray emitter (Bruker Daltonik GmbH, Bremen, Germany). The
column was replaced between replicate measurements. Mobile phases A and B were 0.1 % FA
in water and 0.1 % FA in ACN, respectively. The EvoSep system was coupled online to a
trapped ion mobility spectrometry quadrupole time-of-flight mass spectrometer (50) (timsTOF
Pro, Bruker Daltonik GmbH, Bremen, Germany) via a nano-electrospray ion source (Captive
spray, Bruker Daltonik GmbH, Bremen, Germany). A 24-fraction library of wild-type S.
cerevisiae was generated using the high-pH reversed-phase “spider-fractionator” (51) and data

were acquired using the same sample set-up.

Mass spectrometry. Mass spectrometric analysis was performed in a data-dependent (dda)
PASEF mode. For ddaPASEF, 1 MS1 survey TIMS-MS and 4 PASEF MS/MS scans were
acquired per acquisition cycle. The cycle overlap for precursor scheduling was set to 2. lon
accumulation and ramp time in the dual TIMS analyzer was set to 50 ms each and we analyzed
the ion mobility range from 1/Ko = 1.3 Vs cm™ to 0.8 Vs cm™. Precursor ions for MS/MS
analysis were isolated with a 2 Th window for m/z < 700 and 3 Th for m/z >700 in a total m/z
range of 100-1,700 by synchronizing quadrupole switching events with the precursor elution
profile from the TIMS device. The collision energy was lowered linearly as a function of
increasing mobility starting from 59 eV at 1/Ko = 1.6 VS cm™ to 20 eV at 1/Ko = 0.6 Vs cm™.

Singly charged precursor ions were excluded with a polygon filter (otof control, Bruker
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Daltonik GmbH, Bremen, Germany). Precursors for MS/MS were picked at an intensity
threshold of 2,000 arbitrary units (a.u.) and re-sequenced until reaching a “target value” of
24,000 a.u. considering a dynamic exclusion of 40 s elution. The capillary voltage was set to
1,750 V and dry gas temperature to 180 °C.

Raw data processing. MS raw files were processed using MaxQuant (v1.6.17.0) (52, 53),
which extracts features from four-dimensional isotope patterns and associated MS/MS spectra,
on a computing cluster (SUSE Linux Enterprise Server 15 SP2) utilizing UltraQuant
(github.com/kentsisresearchgroup/UltraQuant). To allow processing in an acceptable time
frame, RAW files were handled in 5 parallel batches of approximately 1700 files each
containing plates equally distributed across the measurement period. Files were searched
against the S. cerevisiae Uniprot databases (UP000002311 559292; canonical and isoform,
reviewed-sp and unreviewed-tr from 02/2020). For high significance identification the false-
discovery rates were reduced and controlled at 0.1% both on peptide spectral match (PSM) and
protein levels. Peptides with a minimum length of seven amino acids were considered for the
search including N-terminal acetylation and methionine oxidation as variable modifications and
cysteine carbamidomethylation as fixed modification, while limiting the maximum peptide
mass to 4,800 Da. Enzyme specificity was set to LysC cleaving C-terminal to lysine. A
maximum of two missed cleavages were allowed. The parameter “type” was set to “TIMS-
DDA” with “TIMS half width” at 4. The instrument was set to “Bruker TIMS” and main search
peptide tolerance reduced to 8 ppm, the max. charge set to 5 and min. peak length to 3. Peptide
identifications by MS/MS were transferred by matching four-dimensional isotope patterns
between the runs (4D-MBR) using a narrow elution match time window of 12 s and a reduced
ion mobility window of 0.01 1/Ko. Protein quantification was performed by label-free
quantification using a minimum ratio count of 2. The 24-fraction library was added as an
additional parameter group with the same group-specific settings, but LFQ disabled and
“separate LFQ in parameter groups” under global parameters enabled. The writing of additional

tables was disabled for performance reasons.
Raw data availability. All mass spectrometry raw data and MaxQuant output tables have been

deposited to the ProteomeXchange Consortium (54) via the PRIDEpartner repository with the

dataset identifier available upon publication.
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Data processing and normalization. Twelve outdated samples of the GFP library were
eliminated. These included wrongly annotated ORFs that were merged with others: YAR044W,
YPRO9OW, YDR474C, YFR024C, YJLO21C, YJLO17W, YGL046W, YFL0O0O6W, YGR272C,
YBR100W, YJLO18W, YJLO12C-A. After the removal of potential contaminants, reverse and
“only identified by site” hits, MaxQuant proteinGroups.txt output files from the 5 batches were
merged using the majority protein IDs column. Values were filtered for two valid values within
at least one replicate group. To adjust for potential differences between the 5 MaxQuant batches
caused by the parallel applied label free normalization algorithm and for potential handling
batch effects between 96-well plates, values were median normalized if there were more than

5% of valid values in each of the corresponding groups.

Missing value imputation. Missing values were imputed in a two-tiered approach. For proteins
with measured values in more than 5% of all samples (or minimally 400 samples), a protein-
specific missing value imputation approach was used. Here, a random value was sampled from
anormal distribution with following properties: mean = median of all measured intensity values
for the given protein, standard deviation = standard deviation of all measured intensity values
for the given protein. Lower and upper bounds for the normal distribution were set to three
standard deviations from the mean and minimally to zero. The function “rtruncnorm” from the
R library “truncnorm” was employed. For proteins with less than 5% valid values (or in less
than 400 samples), global metrics were employed for missing value imputation. Here, missing
values were sampled from a normal distribution with the following parameters: mean = mean
of all quantified values across all proteins and samples minus 1.8 times the standard deviation,
standard deviation = the standard deviation of all quantified values across all proteins and

samples multiplied by 0.3.

Protein correlation. Due to the large sample number that would negatively influence
correlation, we chose a subsampling approach: For each protein pair across the sample profile,
the top 2% of samples with the highest intensities for both proteins were selected (resulting in
2-4% depending on their overlap) and complemented by twice the number of randomly selected
samples as background. The selected subset of samples was used to calculate the Pearson
correlation coefficients of the protein pair (Fig. 1C). The effect of weighted correlation can be
visualized by enabling “subsample values” under protein correlation in our web application

(veast-interactome.org). Since the distributions of correlation coefficients varies between
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proteins and in order to define a universal cut-off for significant correlations, correlation
coefficients were normalized via row wise z-scoring. A z-scored Pearson correlation coefficient
above 4 and 5 therefore corresponds to a chance probability of below 3.2*107 and 2.9*107,

respectively.

Enrichment analysis. A two-tailed Welch’s t-test was performed on each replicate-grouped
pull-down sample using all corresponding complement samples as a combined control (11).
Within the combined control group, samples with the highest bait correlation (top 5%) were
excluded in order to provide a bait-unrelated control. FDR cutoff-lines were calculated using

an analytical approach using an SO-parameter of 0.5 (55).

Network generation. Interactions for the first two layers of evidence (forward and reverse pull-
down) were defined between bait proteins and significantly enriched prey proteins from the t-
tests. They were scored based on their FDR of 5%, 1%, 0.1% and 0.01% at 1, 2, 3 and 4,
respectively (“score FDR™). For the third layer of evidence, an interaction for z-scored Pearson
correlation coefficients above 4 and 5 was scored at 1 and 2, respectively (“score cor”). All
three layers of evidence were combined into a single interaction score ranging from 1-10
“score FDR+cor”), thereby weighting interactions based on their experimental significance
(Fig. 1C). Networks were created and exported into Cytoscape (56) for further analysis and
visualization strategies. The network was filtered for interactions with a combined score equal
to or above 2, thereby excluding interactions based only on a single t-test with an FDR of above
1% or a z-scored Pearson correlation coefficient of below 5. The Markov clustering algorithm
was applied using the interaction score as edge weight and a granularity parameter of 2.5 while
retaining inter-cluster edges. The “CompoundSpringEmbedder” (CoSE) layout algorithm was
applied to single clusters. The network including edges (interactions) and nodes (proteins),
annotations, and layouts can be downloaded as Cytoscape session at (www.yeast-

interactome.org) or at the NDEX network database (57) via the UID available upon publication.

Organelle based mapping of clusters. Within the Cytoscape group preferences the attribute
aggregation was enabled and “visualization for group” were set to “none”. The WordCloud
“minimum word occurrence” and the “max. words per label” was set to 1, and normalization to
0. To generate outcome with location specific words only, the excluded words list was extended

by following terms: apparatus, matrix, membrane, intermembrane, chromosome, ii, protein,
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anchor, coated, cytoplasmic, iv, lipid, pass, peripheral, secreted, pit, side, single, centromere,
type, endomembrane, tip, reticulum, body, localizes, kinetochore, gpi, note, neck, prospore,
granule, replication. The “AutoAnnotate” plugin (58) was used to generate localization-based
name for each markov cluster utilizing WordCloud (59) (most abundant word within
“Subcellular localization [CC]”). Collapsed localization (collapse singleton clusters enabled)
based labeled groups were organized using the “Boundary Layout” using self-defined areas.
Node repulsion was increased to 1,000,000. For cluster annotation the standard complex name
from EMBL Complexportal was used. For each cluster the two most frequent names were used,
(minimum word occurrence: 2). The image of the background cell in Figure 4, the Cytoscape
session and the web application is an adopted version from SwissBioPics by the Swiss-Prot
group of the SIB Swiss Institute of Bioinformatics. Cell image in Figure 2A was created with

BioRender.com.

Network comparisons. Network comparison analysis was performed in Python 3.8.1. Tabular
data was loaded via the pandas package (1.3.1) and converted to a network via NetworkX
(2.6.2). To calculate “Betweeness” and “Degree Centrality”, the respective NetworkX functions
were used. To perform community analysis, a Python implementation of the Louvain algorithm
was used (https://github.com/taynaud/python-louvain, version 0.15). Cumulative distribution
functions were plotted using the matplotlib-library (3.4.2) and NumPy (1.20.3). Reference
datasets were downloaded from the Stanford Large Network Dataset Collection
(http://snap.stanford.edu/data/) and the BioPlex Interactome homepage
(https://bioplex.hms.harvard.edu/interactions.php). The accompanying notebook is available as
Supplementary File “Yeast Network comparisons.ipynb”. Gene annotation enrichment was
performed using the 1D tool in Perseus (v.1.6.7.0). Annotation terms were filtered for 5% FDR

(Benjamini—-Hochberg correction) and a score above 0.
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Supplementary Figure 1. Schematic of the GFP-tagged library. 4,147 different endogenous c-terminally

tagged yeast strains (7) were used for 4,147 independent pull-down experiments. Each strain therefore allows

the purification of the individually tagged protein (bait) and its specific interactors. The original library of

4159 strains was reduced by twelve strains to 4147, due to updates in ORF annotations (see methods: Data

processing and normalization).
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Supplementary Figure 4. Cumulative distribution function of the degree centrality. Comparison of different
complex networks: S. cerevisiae has more influential (high degree centrality) nodes than BioPlex and GitHub,
and less than Facebook.
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Supplementary Figure 6 (part 1/5). Extended selection of clusters involving proteins with novel
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Supplementary Tables

Table 1. Gene ontology term enrichment

Gene ontology Name Score |Benj. Hoch. FDR|-log10(p-value)| Size Mean | Median
RNA polymerase Il, core complex [GO:0005665] 0,69 3,33E-02 1,64 11 2,49E-03 | 1,53E-03
mitochondrial nucleoid [GO:0042645] 0,67 3,71E-05 1,42 23 2,93E-03 | 1,30E-03
gluconeogenesis [GO:0006094] 0,64 3,77E-02 1,43 12 3,17E-03 | 1,47E-03
misfolded protein binding [G0:0051787] 0,58 2,99E-02 4,90 16 3,36E-03 | 1,33E-03
polysome [GO:0005844] 0,49 6,58E-03 1,44 28 2,48E-03 | 1,29E-03
glycolytic process [GO:0006096] 0,47 3,63E-02 1,46 22 3,42E-03 | 9,82E-04
protein refolding [GO:0042026] 0,45 4,25E-02 1,45 23 2,83E-03 | 7,32E-04
proteasome storage granule [GO:0034515] 0,44 3,89E-02 2,49 25 1,20E-03 | 8,86E-04
ribosomal large subunit biogenesis [G0:0042273] 0,39 3,47E-02 4,66 34 1,23E-03 | 8,15E-04
cytoplasmic stress granule [G0O:0010494] 0,38 1,25E-05 1,48 82 2,11E-03 | 7,48E-04
mitochondrial large ribosomal subunit [GO:0005762] 0,35 2,31E-02 1,46 46 1,11E-03 | 6,90E-04
preribosome, large subunit precursor [GO:0030687] 0,30 2,20E-02 1,41 62 1,06E-03 | 3,53E-04
mRNA binding [GO:0003729] 0,26 2,17E-05 4,43 177 1,07E-03 | 5,23E-04
ATPase activity [GO:0016887] 0,25 2,16E-02 1,37 94 1,99E-03 | 4,71E-04
mitochondrial translation [GO:0032543] 0,23 3,45E-02 1,66 95 9,27E-04 | 4,33E-04
RNA binding [GO:0003723] 0,19 3,48E-04 1,52 273 1,15E-03 | 3,00E-04
identical protein binding [G0:0042802] 0,18 3,71E-02 3,46 156 9,40E-04 | 4,21E-04
structural constituent of ribosome [GO:0003735] 0,18 3,27E-03 2,18 242 8,29E-04 | 2,65E-04
nucleolus [GO:0005730] 0,16 3,57E-02 1,67 204 8,62E-04 | 2,74E-04

Gene ontology term enrichment on betweenness-centrality of nodes (proteins) in the network (1-dimensional
annotation enrichment, FDR < 5%, score > 0).
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2.2 Article 2: OpenCell: proteome-scale endogenous tagging enables the cartography of

human cellular organization

N. H. Cho"t, K. C. Cheveralls", A.-D. Brunner’t, K. Kim"f, A. C. Michaelis™¥,
p. Raghavanl’T, H. Kobayashil, L. Savyl, I Y. Lil, H. Canajl, J.Y.S.Kiml, E. Stewartl,
C. Gnann]’3, F. McCarthyl, J. P Cabrera], R. M. Brunetti4, B. B. Chhun], G. Dingles, M. Y.
Heinl, B. Huang1’4’5, S. B. Mehtal, J. S. Weissman6’7, R. G(')mez-SjiSbergl, D. N. Itzhakl, L.

A. Royerl, M. Mannz’g, M. D. Leonettil’*, (2021). OpenCell: proteome-scale endogenous
tagging enables the cartography of human cellular organization. Biorxiv
doi:10.1101/2021.03.29.437450.

T equal contribution; * correspondence: manuel.leonetti@czbiohub.org

The work in this paper — in relation to the one presented before - expands the interactome from
yeast to human cells. This large and fruitful collaboration between the Chan Zuckerberg Biohub
in San Francisco and the Max-Planck Institute of Biochemistry in Munich under the lead of
Manuel Leonetti und Matthias Mann, combined their expertise in fluorescence microscopy with
ours in proteomics to generate an unprecedented protein localization and interaction map. By
introducing a GFP-tag into 1,300 human HEK293T cells using CRISPR technology, we were
able to use the florescent tag for confocal microscopy 3D-image rendering and at the same time
for affinity-purification coupled to mass spectrometry for protein interaction detection. Key for

this large-scale compatibility is the use of a split-GFP system described by the Weissmann lab
(20).

The split-GFP only uses a small part of GFP for endogenous tagging namely the last B-strand,
strand 11. This is done in cells co-expressing the complement part of GFP (B-strand 1-10)
forming a full functional version. Using only this small tag makes it possible to employ a small

synthetic ssDNA oligos for CRIPR editing.

This project was performed by Andreas Brunner and myself on the side of the Mann lab for
several years throughout almost all of our PhD times. We were responsible for all mass
spectrometry-related tasks on the project running many hundreds of test samples and the final
dataset of almost 4,000 runs. Due to the large overlap with the yeast interactome project many
of my experience and developments gained there could be used to advance the human

interactome as well.
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The paper is published on Biorxiv and an updated version which has currently been resubmitted

to Science after revision is included in this thesis.
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OpenCell: endogenous tagging for the cartography of human cellular
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Abstract: Elucidating the wiring diagram of the human cell is a central goal of
the post-genomic era. We combined genome engineering, confocal live-cell
imaging, mass spectrometry and data science to systematically map the
localization and interactions of human proteins. Our approach provides a data-
driven description of the molecular and spatial networks that organize the
proteome. Unsupervised clustering of these networks delineates functional
communities that facilitate biological discovery, and uncovers that RNA-
binding proteins form a specific sub-group defined by unique interaction and
localization properties. Furthermore, we discover that remarkably precise
functional information can be derived from protein localization patterns, which
often contain enough information to identify molecular interactions. Paired
with a fully interactive website (opencell.czbiohub.org), we provide a resource

for the quantitative cartography of human cellular organization.

One Sentence Summary: CRISPR-based fluorescent tagging enables a systematic map of
localization and interactions for human proteins.
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Main Text:

Sequencing the human genome has transformed cell biology by defining the protein parts list
that forms the canvas of cellular operation (7, 2). This paves the way for elucidating how the ~20,000
proteins encoded in the genome organize in space and time to define the cell’s functional architecture
(3, 4). Where does each protein localize within the cell? Can we comprehensively map how proteins
assemble into larger functional communities? A main challenge to answering these fundamental
questions 1s that cellular architecture is organized along multiple scales. Therefore, several approaches
need to be combined for its elucidation (5). In a series of pioneering studies, human protein-protein
interactions have been mapped using ectopic expression strategies with yeast two-hybrid (Y2H) (6) or
epitope tagging coupled to immunoprecipitation-mass spectrometry (IP-MS) (7, 8), while protein
localization has been charted using immuno-fluorescence in fixed samples (9). A complementary
approach 1s to directly modity genes in a genome by appending sequences that illuminate specitic
aspects of the corresponding proteins’ function (commonly referred to as “endogenous tagging” (70)).
For example, endogenously tagging a gene with a fluorescent reporter enables to image protein sub-
cellular localization in live cells, and supports functional characterization in a native cellular
environment (70, 77). The use of endogenous tagging to study the organization of a eukaryotic cell is
llustrated by seminal work in the budding yeast S. cerevisiae. 'There, libraries of tagged strains have
enabled the comprehensive mapping of protein localization and molecular interactions across the yeast
proteome (72—74). These libraries were made possible by the relative simplicity of homologous
recombination and genome engineering in yeast (75). In human cells, earlier work has leveraged
alternative strategies including expression from bacterial artificial chromosomes (76) or central-dogma
tagging (77) because of the difficulty of site-specific gene editing. CRISPR-mediated genome
engineering now allows for homologous recombination-based endogenous tagging to be applied for
the interrogation of the human cell (70, 77, 78).

Here, we combine experimental and analytical strategies to create OpenCell, a proteomic map
of human cellular architecture. We generated a library of 1,310 CRISPR-edited HEK293T cell lines
harboring fluorescent tags on individual proteins, which we characterized by pairing confocal
microscopy and mass spectrometry. Our dataset constitutes the most comprehensive live-cell image
collection of human protein localization to date. In addition, integration of IP-MS using the
fluorescent tags for affinity capture enables measurement of localization and interactions from the
same samples. For a quantitative description of cellular architecture, we introduce a data-driven

tramework to represent protein interactions and localization teatures, supported by a new machine
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learning algorithm for image encoding. This approach allows us to delineate communities of
functionally related proteins by unsupervised clustering and facilitates the generation of mechanistic
hypotheses, including for proteins that had so far remained uncharacterized. We further demonstrate
that the localization pattern of each protein is defined by unique and specific features that can be used
for functional interpretation, to the point that spatial relationships often contain enough information
to predict interactions at the molecular scale. Finally, our analysis enables an unsupervised description
of the human proteome’s organization, and highlights in particular that RNA-binding proteins exhibit

unique functional signatures that shape the proteome’s network.

Engineered cell library

Fluorescent protein (FP) tusions are versatile tools that can measure both protein localization
by microscopy and protein-protein interactions by acting as affinity handles for IP-MS (78, 79) (Fig.
S1A). Here, we constructed a library of fluorescently tagged HEK293T cell lines by targeting human
genes with the split-mNeonGreen2 system (20) (Fig. 1A). Split-FPs greatly simplify CRISPR-based
genome engineering by circumventing the need for molecular cloning (78), and allowed us to generate
endogenous genomic fusions (Fig. 1B) that preserve native expression regulation. A full description
of our pipeline is available in the Methods section ((27) ; summarized in Fig. 1C through E). In brief,
FP insertion sites (N- or C-terminus) were chosen on the basis of information from the literature or
structural analysis (Fig. S1B; Table S1). For each tagged target we isolated a polyclonal pool of
CRISPR-edited cells, which was then characterized by live-cell 3D confocal microscopy, IP-MS, and
genotyping of tagged alleles by next-generation sequencing. Open-source software development and
advances in instrumentation supported scalability (Fig. 1C). In particular, we developed crispyerunch, a

CRISPR design software that enables guide RNA selection and homology donor sequence design

(github.com/czbiohub /crispycrunch). We also fully automated the acquisition of data microscopy
data in Python for on-the-fly computer vision and selection of desirable fields of view imaged in 96-

well plates (github.com/czbiohub/2021-opencell-microscopy-automation). Our mass-spectrometry

protocols use the high sensitivity of timsTOF instruments (22) which allowed miniaturization of IP-
MS down to 0.8x10° cells of starting material (Fig. S1C; about a tenth of the material required in
previous approaches (7, 8)).

In total, we targeted 1757 genes, of which 1310 (75%) could be detected by fluorescence

imaging and form our current dataset (full library details in Table S1). From these, we obtained paired

3
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106 IP-MS measurements for 1260 targets (96%, Fig. 1D). The 1310-protein collection includes a balanced
107 representation of the pathways, compartments and functions of the human proteome (Fig. S1D), with
108 the exception of processes specific to mitochondria, organellar lumen or extracellular matrix. Indeed,
109 the split-FP system tags a gene of interest with a short sequence (mNG11) while a larger FP fragment
110 (mNG21-10) 1s expressed separately (Fig. 1A). In the version used here, the mNG:1-10 fragment is
111 expressed in the nucleo-cytoplasm and prevents access to proteins inside organellar compartments.
112 Membrane proteins can be tagged as long as one terminus extends in the nucleo-cytoplasm. In future
113 iterations, other split systems that contain compartment-specific signal sequences could be used to
114 target organellar lumen (23).

115 Fluorescent tagging was readily successtul for essential genes, suggesting that FP fusions are
116 well tolerated (Fig. S2A). To evaluate other factors contributing to successful fluorescent detection,
117 we measured RNA and protein concentration in HEK293T cells (Fig. S2B; using a 24-fraction scheme
118  for deep proteome quantification; see fully annotated proteome in Table S2). This revealed that
119 protein abundance is the main limitation to detection (Fig. 1D, S2C; see details for unsuccesstul targets
120 1n Table 83); most successful targets are among the top 50% most abundant (Fig. S2D). Gene-editing
121 efficiency was another important factor: among well-expressed targets, failure was correlated with
122 significantly lower rates of homologous recombination (Fig. S2E), which would impair the selection
123 of edited cells by fluorescence-activated cell sorting (FACS). Training a regression model revealed that
124 the combination of protein abundance and editing efficiency could predict successful detection with
125 82% accuracy.

126 To maximize throughput, we used a polyclonal strategy to select genome-edited cells by FACS.
127 Polyclonal pools contain cells with distinct genotypes. HEK293T are pseudo-triploid (24) and a single
128 edited allele is sufficient to confer fluorescence. Moreover, various DNA repair mechanisms compete
129 with homologous recombination for the resolution of CRISPR-induced genomic breaks (25) so that
130 alleles containing non-functional mutations can be present in addition to the desired fusion alleles.
131 However, such alleles do not support fluorescence and are therefore unlikely to impact other
132 measurements, especially in the context of a polyclonal pool. We developed a stringent selection
133 scheme to significantly enrich for fluorescent tusion alleles (Fig. S3A). Our final cell library has a
134 median 61% of mNeonGreen-integrated alleles, 5% wild-type and 26% other non-functional alleles
135 (Fig. S3B, tull genotype information in Table S1).

136 Finally, we verified that our engineering approach maintained the endogenous abundance of
137 the tagged target proteins. For this, we quantified protein expression by Western blotting using

138 antibodies specific to proteins targeted in 12 ditferent cell pools (Fig. S3C), and by single-shot mass
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spectrometry in 63 tagged lines (Fig. S3D). Both approaches revealed a median abundance of tagged
targets in engineered lines at about 80% of untagged HEK293T control, with 5 outliers (8% of total)
identified by proteomics (Fig. S3D, all within 3.5-fold of control). Importantly, the overall proteome
composition was unchanged in all tagged lines (Fig. S3E-F). Overall, our gene-editing strategy
preserves near-endogenous abundances and circumvents the limitations of ectopic overexpression
(11, 26, 27), which include aberrant localization, changes in organellar morphology, and masking
effects (see the examples of SPTLC1, TOMM20 and MAP1LC3B in Fig. S3G). Therefore, OpenCell

supports the functional profiling of tagged proteins in their native cellular context.

Interactome analysis and stoichiometry-driven clustering

Aftinity enrichment coupled to mass spectrometry is an efficient and sensitive method for the
systematic mapping of protein interaction networks (25). We isolated tagged proteins (“baits”) from
cell lysates solubilized in digitonin, a mild non-ionic detergent that preserves the native structure and
properties of membrane proteins (29). Specific protein interactors (“preys”) were identified by
proteomics from biological triplicate experiments (see Figure S4A-B and (27) for a detailed description
of our statistical analysis, which builds upon established methods (7)). In total, the full interactome
trom our 1260 OpenCell baits includes 29,922 interactions between 5292 proteins (baits and preys,
Fig. 2A, full interactome data in Table S4).

To assess the quality of our interactome, we estimated its precision (the fraction of true
positive interactions over all interactions) and recall (the fraction of interactions identified compared
to a ground truth set) using reference data (Fig. S4B). For recall analysis, we quantified the coverage
in our data of interactions included in CORUM (30), a compendium of protein interactions manually
curated from the literature. To estimate precision, we quantified how many of our interactions
involved protein pairs expected to localize to the same broad cellular compartment (37) (Fig. S4B).
To benchmark OpenCell against other large-scale interactomes, we compared its precision and recall
to Bioplex (overexpression of HA-tagged baits (8, 32)), the yeast-two-hybrid human reference
interactome (HuRI (6)) and our own previous data (GFP fusions expressed from bacterial artificial
chromosomes (7)) (Fig. S4C-E). We also calculated compression rates for each dataset as a measure
of the overall richness in network patterns and motifs distinguishable from noise, which correlates
with overall network quality: real-world networks contain redundant information which can be

compressed, while pure noise is not compressible (see (33)) (Fig. S4F). Across all metrics, OpenCell
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outperformed previous approaches. OpenCell also includes many interactions not reported in
previous datasets (Fig. S4E,G). Our interactome may better reflect biological interactions because it
preserves near-endogenous protein expression.

A powerful way to interpret interactomes 1s to identify communities of interactors (8, 73). To
this end, we applied unsupervised Markov clustering (MCL) (34) to the graph of interactions defined
by our data (5292 baits and preys). We first measured the stoichiometry of each interaction, using a
quantitative approach we previously established (7). Interaction stoichiometry measures the
abundance of a protein interactor relative to the abundance of the bait in a given immuno-precipitation
sample. We have shown that stoichiometry can be interpreted as a proxy for interaction strength, and
that interactions can be classified between core (.e. high) and low stoichiometries (7). In our current
data, both high- and low-stoichiometry interactions were significantly enriched for proteins pairs
sharing gene ontology annotations (Fig. S4H). Using stoichiometry to assign weights to the edges in
the interaction graph (Fig. 2B), a first round of MCL delineated inter-connected protein communities
and led to better clustering performance than clustering based on connectivity alone (Fig. S4I). To
better delineate stable complexes, we further refined each individual MCL community by additional
clustering while removing low-stoichiometry interactions. The resulting sub-clusters outline core
interactions within existing communities (Fig. 2B). Figure 2C illustrates how this unsupervised
approach enables to delineate functionally related proteins: all subunits of the machinery responsible
for the translocation of newly translated proteins at the ER membrane (SEC61/62/63) and of the
EMC (ER Membrane Complex) are grouped within respective core interaction clusters, but both are
part of the same larger MCL. community. This mirrors the recently appreciated co-translational role
of EMC for insertion of transmembrane domains at the ER (35). Additional proteins that have only
recently been shown to act co-translationally are found clustering with translocon or EMC subunits,
including ERN1 (IRE1) (36) and CCDC47 (37, 38). Thus, clustering can facilitate mechanistic
exploration by grouping proteins involved in related pathways. Overall, we identified 300 communities
including a total of 2096 baits and preys (full details in Table S4). Ontology analysis revealed that these
communities are significantly enriched for specific cellular functions, supporting their biological
relevance (82% of all communities are significantly enriched for specific biological process or
molecular function GO ontology terms; see Table S5 for complete analysis). A graph of interactions
between communities reveals a richly inter-connected network (Fig. 2D), the structure of which
outlines the global architecture of the human interactome (discussed further below).

A direct application of interactome clustering is to help elucidate the cellular roles of the many

human proteins that remain poorly characterized (39). We identified pootly characterized proteins by
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quantifying their occurrence in article titles and abstracts from PubMed (Fig. 2E). Empirically, we
determined that proteins in the bottom 10" percentile of publication count (corresponding to less
than 10 publications) are very poorly annotated (Fig. 2E). This set encompasses a total of 251 proteins
found in interaction communities for which our dataset offers potential mechanistic insights. For
example, the proteins NHSL1, NHSL2 and KIAA1522 are all found as part of a community centered
around SCAR/WAVE, a large multi-subunit complex nucleating actin polymerization (Fig. 2F). All
three proteins share sequence homology and are homologous to NHS (Fig. S5A), a protein mutated
in patients with Nance-Horan syndrome. NHS interacts with SCAR/WAVE components to
coordinate actin remodeling (40). Thus, NHSL1, NHSL2 and KIAA1522 also act to regulate actin
assembly. A recent mechanistic study supports this hypothesis: NHSL1 localizes at the cell’s leading
edge and directly binds SCAR/WAVE to negatively regulate its activity, reducing F-actin content in
lamellipodia and inhibiting cell migration (47). The authors identified NHSL1’s SCAR/WAVE
binding sites, and we find these sequences to be conserved in NSHL2 and KIA1522 (Fig. 2F).
Therefore, our data suggests that both NHSL2 and KIAA1522 are also direct SCAR/WAVE binders
and possible modulators of the actin cytoskeleton.

Our data also sheds light on the function of ROGDI, whose variants cause Kohlschuetter-
Toenz syndrome (a recessive developmental disease characterized by epilepsy and psychomotor
regression (42)). ROGDI appears in the literature because of its association with disease, but no study,
to our knowledge, specifically determines its molecular function. We first observed that ROGDTI’s
interaction pattern closely matched that of three other proteins in our dataset: DMXL1, DMXL2 and
WDR?7 (Fig. 2G). This set exhibited a specific interaction signature with the v-ATPase lysosomal
proton pump. All four proteins interact with soluble v-ATPase subunits (ATP6-V1), but not its intra-
membrane machinery (ATP6-V0). DMXL1 and WDR7 interact with V1 v-ATPase, and their
depletion in cells compromises lysosomal re-acidification (43). Sequence analysis showed that DMXIL.1
or 2, WDR7 and ROGDI are homologous to proteins from yeast and Drosophila involved in the
regulation of assembly of the soluble V1 subunits onto the VO transmembrane ATPase core (44, 45)
(Fig. S5B). In yeast, Ravl and Rav2 (homologous to DMXL1/2 and ROGDI, respectively) form the
stoichiometric RAVE complex, a soluble chaperone that regulates v-ATPase assembly (45). To assess
the existence of a human RAVE-like complex, we generated new tagged cell lines for DMXIL1 and 2,
WDR?7, and ROGDI. Because of the low abundance of these proteins, the localization of DMXIL.2
and ROGDI were not detectable but pull-downs of DMXIL1 and WIDR?7 confirmed a stoichiometric
interaction between DMXIL1 and 2, WDR7 and ROGDI (Fig. 2G, right panels). No direct interaction
between DXML1 and DMXI.2 was detected, suggesting that they might nucleate two separate sub-
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complexes. Therefore, our data reveals a human RAVE-like complex comprising DMXL1 or 2,
WDR7 and ROGDI, which we propose acts as a chaperone for v-ATPase assembly based on its yeast
homolog. Altogether, these results illustrate how our data can facilitate the generation of new

mechanistic hypotheses by combining quantitative analysis and literature curation.

Image dataset: localization annotation and self-supervised machine learning

A key advantage of our cell engineering approach is to enable the characterization of each
tagged protein in live, unperturbed cells. To profile localization, we pertormed spinning-disk confocal
fluorescence microscopy (63x 1.47NA objective) under environmental control (37°C, 5% CO3), and
imaged the 3D distribution of proteins in consecutive z-slices. Microscopy acquisition was fully
automated in Python to enable scalability (Fig. S6A-B). In particular, we trained a computer vision
model to identify fields of view (FOVs) with homogeneous cell density on-the-fly, which reduced
experimental variation between images. Our dataset contains a collection of 6375 3D stacks (5
different FOVs for each target) and includes paired imaging of nuclei with live-cell Hoechst 33342
staining,.

We manually annotated localization patterns by assigning each protein to one or more of 15
separate cellular compartments such as the nucleolus, centrosome or Golgt apparatus (Fig. 3A).
Because proteins often populate multiple compartments at steady-state (9), we graded annotations
using a three-tier system: grade 3 identifies prominent localization compartment(s), grade 2 represents
less pronounced localizations, and grade 1 annotates weak localization patterns nearing our limit of
detection (see Fig. STA for two representative examples, full annotations in Table S6). Ignoring grade
1 annotations which are inherently less precise, 55% of proteins in our library were detected in multiple
locations consistent with known functional relationships. for example, clear connections were
observed between secretory compartments (ER, Golgi, vesicles, plasma membrane), or between
cytoskeleton and plasma membrane (Fig. S7B, Table S6)). Many proteins are tound in both nucleus
and cytoplasm (21% of our library), highlighting the importance of the nucleo-cytoplasmic import and
export machinery in shaping global cellular function (46, 47). Importantly, because our split-FP system
does not enable the detection of proteins in the lumen of organelles, multi-localization involving
translocation across an organellar membrane (which is rare but does happen for mitochondrial or

peroxisomal proteins) cannot be detected in our data.
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To benchmark our dataset, we compared our localization annotations against the Human
Protein Atlas (HPA), the reference antibody-based compendium of human protein localization (9).
This revealed significant agreement between datasets: 75% of proteins share at least one localization
annotation in common (Fig. 3B; this includes 25% of all proteins that share the exact same set of
annotations, see full description in Table S7A). Because HPA mostly reports on cell lines other than
HEK293T, a perfect overlap 1s not expected as proteins might differentially localize between related
compartments in different cell types. However, the annotations for 147 proteins (11% of our data)
were fully inconsistent between the two datasets (Fig. S7C). An extensive curation of the literature on
the localization of those proteins allowed us to resolve discrepancies for 115 proteins (i.e., 78% of that
set; full curation in Table S8). Of these, existing literature evidence supported the OpenCell results for
113 (98.3%) of the 115 cases (Fig. S7D). This validates that endogenous tagging can help refine the
curation of localization in the human proteome. Finally, our dataset includes 350 targets that have
orthologs in . cerevisize. Comparison between OpenCell and yeast localization annotations (48)
revealed a high degree of concordance (Fig. S7E; Table S7B; 81% of proteins share at least one
annotation in common, including 36% perfect matches).

While expert annotation remains the best performing strategy to curate protein localization
(49, 50), the low-dimensional description it allows is not well suited for quantitative comparisons.
Recent developments in image analysis and machine learning offer new opportunities to extract high-
dimensional features from microscopy images (50, 57). Therefore, we developed a deep learning
model to quantitatively represent the localization pattern of each protein in our dataset (52). Briefly,
our model is a variant of an autoencoder (Fig. 3C): a form of neural network that learns to vectorize
an image through paired tasks of encoding (from an input image to a vector in a latent space) and
decoding (from the latent space vector to a new output image). After training, a consensus
representation for a given protein can be obtained from the average of the encodings from all its
assoctated tmages. This generates a high-dimensional “localization encoding” (Fig. 3C) that captures
the complex set of features that define the spatial distribution of a protein at steady state and across
many individual cells. One of the main advantages of this approach is that it is self-supervised.
Theretore, as opposed to supervised machine learning strategies that are trained to recognize pre-
annotated patterns (for example, manual annotations of protein localization (50)), our method extracts
localization signatures from raw images without any « priori assumptions or manually assigned labels.
To visualize the relationships between these high-dimensional encodings, we embedded the encodings
for all 1,310 OpenCell targets in two dimensions using UMAP, an algorithm that reduces high-

dimensional datasets to two dimensions (UMAP 1 and UMAP 2) while attempting to preserve the
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global and local structures of the original data (53). The resulting map is organized in distinct territories
that closely match manual annotations (Fig. 3D, highlighting mono-localizing proteins). This validates
that the encoding approach yields a quantitative representation of the biologically relevant information
in our microscopy data. The separation of different protein clusters in the UMAP embedding (further
discussed below) mirrors the fascinating diversity of localization patterns across the full proteome.
Images from nuclear proteins offer compelling illustrative examples of this diversity and reveal how

fine-scale details can define the localization of proteins within the same organelle (Fig. 3E).

Functional specificity of protein localization in the human cell

Extracting functional insights directly from cellular images is a major goal of modern cell
biology and data science (54). In this context, our image library and associated machine learning
encodings enable us to explore what degree of functional relationship can be inferred between proteins
solely based on their localization. For this, we first employed an unsupervised Leiden clustering
strategy commonly used to identify cell types in single-cell RNA sequencing datasets (55). Clusters
group proteins that share similar localization properties (every protein in the dataset is included in a
cluster); these groups can then be analyzed for how well they match different sets of ground-truth
annotations (Fig. 4A). The average size of clusters is controlled by varying a hyper-parameter called
resolution (Fig. S8A). Systematically varying clustering resolution in our dataset revealed that not only
did low-resolution clusters delineate proteins belonging to the same organelles (Fig. 4A-B), clustering
at higher resolution also enabled to delineate functional pathways and even molecular complexes of
interacting proteins (Fig. 4A-C). This demonstrates that the spatial distribution of each protein in the
cell 1s highly specific, to the point that proteins sharing closely related functions can be identified on
the sole basis of the similarity between their spatial distributions. This is further illustrated by how
finely high-resolution clusters encapsulate proteins specialized in defined cellular functions (Fig. 4C).
For example, our analysis not only separated P-body proteins (cluster #83) from other forms of
punctated cytoplasmic structures, but also unambiguously differentiated vesicular trafficking pathways
despite their very similar localization patterns: the endosomal machinery (#40), plasma membrane
endocytic pits (#117) or COP-II vesicles (#143) were all delineated with high precision (Fig. 4C).
Among ER proteins, the translocon clusters with the SRP receptor, EMC subunits and the OST
glycosylation complex, all responsible for co-translational operations (#9). This performance extends

to cytoplasmic (Fig. S8A) and nuclear clusters (Fig. S8B), revealing that spatial patterning is not limited
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to membrane-bound organelles and that sub-compartments exist also in the nucleo-cytoplasm. An
illustrative example is a cytoplasmic cluster (#17) formed by a group of RNA-binding proteins
(including ATXN2L, NUFIP2 or FXR1, Fig. 4C) that separate into granules upon stress conditions
(56-59). Stress granules are not formed under the standard growth conditions used in our experiments,
but the ability of our analysis to cluster these proteins together reveals an underlying specificity to their
cytoplasmic localization (i.e., “texture”) even in the absence of stress.

A direct comparison between imaging and interactome data allows us to further examine the
extent to which molecular-level relationships (that is, protein interactions) can be derived from a
comparison of localization patterns. For OpenCell targets that directly interact, we compared the
correlation between their localization encodings derived from machine learning (defining a
“localization similarity”) and the stoichiometry of their interaction. This “localization similarity”
measures the similarity between the global steady-state distributions of two proteins, as opposed to a
direct measure of co-localization. We find that most proteins interact with low stoichiometry (as we
previously described (7)) and without strong similarities in their spatial distribution (Fig 4D, solid
oval). This means that while low-stoichiometry interactors co-localize at least partially to interact, their
global distribution within the cell is different at steady state. On the other hand, high stoichiometry
interactors share very similar localization signatures (Fig 4D, dashed oval). Indeed, proteins interacting
within stable complexes annotated in CORUM fall into this category (Fig 4F), and the localization
signatures of different subunits from large complexes are positioned very closely in UMAP embedding
(Fig. 4F). In an important correlate, we found that a high similarity of spatial distribution is a strong
predictor of molecular interaction. Across the entire set of target pairs (predicted to interact or not),
proteins that share high localization similarities are also very likely to interact (Fig. 4G). For example,
target pairs with a localization similarity greater than 0.85 have a 58% chance of being direct
interactors, and a 68% chance of being second-neighbors (i.e., sharing a direct interactor in common).
This suggests that protein-protein interactions could be identified from a quantitative comparison of
spatial distribution alone. To test this, we focused on FAM241A (C4orf32), a protein of unknown
function that was not part of our original library and asked whether we could predict its interactions
using imaging data alone, compared to the classical de-orphaning approach that uses interaction
proteomics. We thus generated a FAM241A endogenous fusion that was analyzed with live imaging
and IP-MS separately. Encoding its localization pattern using a “naive” machine learning model that
was never trained with images of this new target revealed a very high localization similarity with two
subunits of the ER oligo-saccharyl transferase OST (>0.85 similarity to ST'T3B and OSTC), and high-

resolution Leiden clustering placed FAM241A in an image cluster containing only OST subunits (Fig
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4H, top). This analysis suggested that FAM241A is a high-stoichiometry interactor of OST. IP-MS
identified that FAM241A was indeed a stoichiometric subunit of the OST complex (Fig. 4H, bottom).
While the specific function of FAM241A in protein glycosylation remains to be fully elucidated, this
proot-of-concept example establishes that live-cell imaging can be used as a specific readout to predict
molecular interactions.

Collectively, our analyses establish that the spatial distribution of a given protein contains
highly specific information from which precise functional attributes can be extracted by modern
machine learning algorithms. In addition, we show that while high-stoichiometry interactors share
very similar localization patterns, most proteins interact with low stoichiometry and share different
localization signatures. This reinforces the importance of low-stoichiometry interactions for defining
the overall structure of the cellular network, not only providing the “glue” that holds the interactome

network together (7) but also connecting different cellular compartments.

RNA-binding proteins form a unique group in both interactome and spatial networks

To gain insight into global signatures that organize the proteome, we further examined the
structures of our imaging and interactome datasets. First, we reduced the dimensionality of each
dataset by grouping proteins into their respective spatial clusters (as defined by the high-resolution
localization-based clusters in Figs. 4A, 4C) or interaction communities (as defined in Fig. 2B). We then
separately clustered these spatial groups (Fig. S9A) and interaction communities (Fig. SIB) to
formalize paired hierarchical descriptions of the human proteome organization. These hierarchies are
highly structured and delineate clear groups of proteins (see comparison to hierarchies expected by
chance, Fig. S9C). In both hierarchies, groups isolated at an intermediate hierarchical layer outline
“modules” which are enriched for specific cellular functions or compartments (Fig. SOA-B; full
ontology analysis in Suppl. Tables 5 & 9). At a higher layer, each dataset is partitioned into three
“branches”, which represent core signatures that shape the proteome’s architecture from a molecular
or spatial perspective (Fig. S9A-B). The structure of the localization-based hierarchy (Fig. S9A)
recapitulates the human cell’s architecture across its three key compartments (nucleus, cytoplasm,
membrane-bound organelles, Fig. S10A-B), which validates the relevance of our unsupervised
hierarchical analysis. This motivated a deeper examination of the hierarchical architecture of the
interactome (Fig. S9B, ontology analysis in Table S5). We found that intermediate-layer modules of

the interactome delineate specific cellular functions such as transcription or vesicular transport (Fig.
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S9B), reflecting as expected that functional pathways are formed by groups of proteins that physically
interact (60, 67). More strikingly, the highest-layer structure showed that two of the three interactome
branches were defined by clear functional signatures (Fig. S10C-E): branch B is significantly enriched
in proteins that reside in or interact with lipid membranes, while branch C is significantly enriched in
RNA-binding proteins (RNA-BPs) (Fig. 5B). This indicates that both membrane-related proteins and
RNA-BPs interact more preferentially with each other than with other kinds of proteins in the cell.

That membrane-related proteins form a specific interaction group is perhaps not surprising as
the membrane surfaces that sequester them within the three-dimensional cell will be partially
maintained upon detergent solubilization. On the other hand, the fact that RNA-BPs also form a
specific interaction group 1s unexpected, since our protein interactions were measured in nuclease-
treated samples (27) in which most RNAs are degraded. This suggests that protein features beyond
binding to RN As themselves might drive the preferential interactions of RNA-BPs with each other.
Theretore, we reasoned that the biophysical properties of proteins within each interactome branch
might underly their segregation. Indeed, an analysis of protein sequence features revealed a separation
of different biophysical properties in each branch (Fig. S10F-G). Branch B was enriched for
hydrophobic sequences (Fig. 5C), consistent with its enrichment for membrane-related proteins, while
branch C was enriched for intrinsic disorder (Fig. 5C). This is consistent with the fact that RNA-BPs
are significantly more disordered than other proteins in the proteome (Fig. S11A, (62)). RNA-BPs are
also among the most abundant in the cell (Fig. S11B), and form a higher number of interactions than
other proteins (Fig. S11C-D).

IP-MS measures protein interactions 7z zitro after lysis and therefore does not directly address
the spatial relationship between interacting proteins. Thus, we sought to further examine how RNA-
BPs distribute in our live-cell imaging data. If RNA-BPs segregate into interacting groups 2z vivo, this
should also manifest at the level of their intracellular localization: they should enrich in the same spatial
clusters derived from our unsupervised machine learning analysis. Indeed, the distribution of RNA-
BP content within spatial clusters revealed a significant over-representation of clusters that are either
strongly enriched or depleted for RNA-BPs (Fig. 5D). Since spatial clusters can be interpreted as
defining “micro-compartments” within the cell, both enrichment and depletion have functional
implications: not only are RNA-BPs enriched within the same micro-compartments, they tend to also
be excluded from others. 16 out of the 26 spatial clusters (62%) that are highly enriched in RNA-BPs
include at least one protein involved in biomolecular condensation (as curated in PhaSepDB (63)),
which might reflect a prevalent role for biomolecular condensation in shaping the RNA-BP proteome.

Collectively, both interactome and imaging data underscore that RNA-BPs (a prevalent group of
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proteins that represents 13% of proteins expressed in HEK293T cells, see Table S2) form a distinct
sub-group within the proteome characterized by unique properties.

These results motivated a broader analysis of the contribution of intrinsic disorder to the
spatial organization of the proteome in our dataset. Plotting the distribution of mean intrinsic disorder
within spatial clusters revealed a significant over-representation of clusters both enriched and depleted
in disordered proteins (Fig. 5E). 26 out of 182 total spatial clusters were enriched for disordered
proteins, covering 13% of the proteins in our imaging dataset. Overall, the extent to which disordered
proteins segregate spatially is similar to the degree of segregation found for hydrophobic proteins: an
analogous analysis revealed that 10% of proteins in our dataset are found within clusters significantly
enriched tor high hydrophobicity (Fig. S12E), which map to membrane-bound organelles (Fig. S12F).
This supports the hypothesis that intrinsic disorder is as important a feature as hydrophobicity in
organizing the spatial distribution of the human proteome. Consistent with our previous analyss,
high-disorder clusters were enriched tor RNA-BPs (Fig. 5F), with 15 out of these 26 clusters
containing over 50% of RNA-BPs. High-disorder clusters were also enriched for proteins annotated
to participate in biomolecular condensation (Fig. 5G), and were predominantly found in the nucleus
(19 clusters, 73% of total, Fig. 5H). 5 out of 7 high-disorders clusters found in the cytosol delineate
compartments for which biomolecular condensation has been proposed to play an important role
(Fig. 5G), namely P-bodies (64), stress granules (59), centrosome (65), cell junctions (66) and the

interface between cell surface and actin cytoskeleton (67).

Interactive data sharing at opencell.czbiohub.org

To enable widespread access to the OpenCell datasets, we built an interactive web application
that provides side-by-side visualizations of the 3D confocal images and of the interaction network for
each tagged protein, together with RN A and protein abundances for the whole proteome (Fig. 6). Our

web interface is fully described in Suppl. Fig S12.

Discussion

OpenCell combines three strategies to augment the description of human cellular architecture.

First, we present an integrated experimental pipeline for high-throughput cell biology, fueled by

scalable methods for genome engineering, live-cell microscopy and IP-MS. Second, we provide an
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open-source resource of well-curated localization and interactome measurements, easily accessible
through an interactive web interface at opencell.czbiohub.org. And third, we developed an analytical
framework for the representation and comparison of interaction or localization signatures (including
a self-supervised machine learning approach for image encoding). Finally, we demonstrate how our
dataset can be used both for fine-grained mechanistic exploration (to explore the function of multiple
proteins that were previously uncharacterized), as well as for investigating the core organizational
principles of the proteome.

Our current strategy that combines split-FPs and HEK293T — a cell line that is heavily
transtormed but easily manipulatable — 1s mostly constrained by scalability considerations. Excitingly,
technological advances are quickly broadening the set of cellular systems that can be engineered and
profiled at scale. Advances in stem cell technologies enable the generation of libraries that can be
differentiated in multiple cell types (77), while innovations in genome engineering (for example, by
modulating DNA repair (65)) pave the way for the scalable insertion of gene-sized payload, for the
combination of multiple edits in the same cell, or for increased homozygosity in polyclonal pools. In
addition, recent developments in high-throughput light-sheet microscopy (6¢9) might soon enable the
systematic description of 4D intracellular dynamics (70).

A central feature of our approach is to use endogenous fluorescent tags to study protein
function. Genome-edited cells enable to examine protein function at near-native expression levels
(which can circumvent some limitations of over-expression (77)), and to measure protein localization
in live cells (which can avoid artefacts caused by fixation or antibody labeling (72)). Comparing our
data to the current reference datasets of protein-proteins interactions (Fig. S4C-F) or localization (Fig.
S7C-D) highlights the performance of our strategy. In addition, our high success rate tagging essential
genes (Fig. S2A; see also (79) in yeast) and the successful tagging of the near-complete yeast proteome
(14, 73) support that fluorescent tagging generally preserves normal protein physiology. However,
limitations exist for specific protein targets. FPs are as big as an average human protein and their
insertion can impair function or localization, for example by occluding important interaction interfaces
or impairing sub-cellular targeting sequences. In other cases, tags can affect expression or degradation
rates, which might explain why we find tagged proteins being expressed at 80% of their endogenous
abundance, and 8% of targets in our dataset having outlier abundances at steady-state (Fig. S3D).
Further, tagging often cannot discriminate between different isoforms of a protein (such as splicing
or post-translationally modified variants). Finally, relying on endogenous expression can be an obstacle
given the low concentration of most proteins in the human cell: even using a very bright FP like

mNeonGreen (74), detecting proteins in the bottom 50% percentile of abundance is difficult (Fig.
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S2D). Solutions to this obstacle include using FP repeats to increase signal (78, 23) or using tags that
bind chemical fluorophores (e.g., HaloTag (7%)), which can be brighter than FPs or operate at
wavelengths where cellular auto-fluorescence is decreased (76). Overall, the full description of human
cellular architecture remains a formidable challenge which will require complementary methods being
applied in parallel. The diversity of large-scale cell biology approaches is a solution to this problem (6,
8, 9,11, 31, 70, 77-80). Mirroring the advances in genomics following the human genome sequence
(2), open-source systematic datasets will likely play an important role in how the growth of cell biology
measurements can be transformed into fundamental discoveries by an entire community (87).

In addition to presenting a resource of measurements and protocols, we also demonstrate how
our data can be used to study the global signatures that pattern the proteome. Our analysis reveals
that RNA-binding proteins, which form one of the biggest functional family in the cell, are
characterized by a unique set of properties and segregate from other proteins in term of both
interactions and spatial distribution. It would be fascinating to explore to which extent RINA itself
might act as a structural organizer of the cellular proteome (62, 82). This 1s for example the case for
some non-coding RNAs whose main function is to template protein interactions to form nuclear
bodies (83). High intrinsic disorder is one of the distinguishing features of RNA-BPs, which likely
contributes to their unique properties. Beyond RNA-BPs, our data supports a general role for intrinsic
disorder in shaping the spatial distribution of human proteins. For example, 13% of proteins in our
dataset are found in spatial clusters that are significantly enriched for disordered proteins. This adds
to the growing appreciation that intrinsic disorder, which is much more prevalent in eukaryotic vs.
prokaryotic proteomes (84, 85), plays a key role in the functional sub-compartmentalization of the
eukaryotic nucleo- and cytoplasm in the context of biomolecular condensation (§6).

Lastly, we show that the spatial distribution of each human protein is very specific, to the point
that remarkably detailed functional relationships can be inferred on the sole basis of similarities
between localization patterns — including the prediction of molecular interactions (which
complements other studies (87)). This highlights that intracellular organization is defined by fine-
grained features that go beyond membership to a given organelle. Our demonstration that self-
supervised deep learning models can identify complex but deterministic signatures from light
microscopy images opens exciting avenues for the use of imaging as an information-rich method for
deep phenotyping and functional genomics (57). Because light microscopy is easily scalable, can be
performed live and enables measurements at the single-cell level, this should offer rich opportunities

for the full quantitative description of cellular diversity in normal physiology and disease.
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Material and Methods

A complete description of our Material and Methods is found in the Supplementary Material online
(27). This include methods for cell culture and CRISPR engineering, immuno-precipitation and mass

spectrometry, live-cell imaging, and data analysis of both interactome and imaging datasets.
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Figure 1: the OpenCell library. (A) Functional tagging with split-mNeonGreen,. In this system, mNeonGreen, is sepa-
rated into two fragments: a short mNG11 fragment, which is fused to a protein of interest, and a large mNG,1-10
fragment, which is expressed separately in trans (that is, tagging is done in cells that have been engineered to constitu-
tively express mNG,1-10). (B) Endogenous tagging strategy: mNG11 fusion sequences are inserted directly within
genomic open reading frames (ORFs) using CRISPR-Cas9 gene editing and homologous recombination with
single-stranded oligonucleotides donors (ssODN). (C) The OpenCell experimental pipeline. See text for details. (D)
Successful detection of fluorescence in the OpenCell library. Out of 1757 genes that were originally targeted, fluores-
cent signal was successfully detected for 1310 (top panel). Low protein abundance is the main obstacle to successful
detection. Bottom left panel shows the full distribution of abundance for all proteins expressed in HEK293T vs. success-
fully or unsuccessfully detected OpenCell targets; boxes represent 25th, 50th, and 75th percentiles, and whiskers
represent 1.5x interquartile range. Median is indicated by a white line. P-value: Student’s t-test. (E) The OpenCell data
analysis pipeline, described in subsequent sections.
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Figure 2: Protein interactome. (A) Overall description of the interactome. (B) Unsupervised Markov clustering of the
interactome graph. (C) Example of community and core cluster definition for the translocon/EMC community. (D) The
complete graph of connections between interactome communities. The density of protein-protein interactions between
communities is represented by increased edge width. The numbers of targets included in each community is represent-
ed by circles of increasing diameters. (E) Distribution of occurrence in PubMed articles vs. RNA expression for all
proteins found within interactome communities. The bottom 10th percentile of publication count (poorly characterized
proteins) is highlighted. (F) NHSL1/NSHL2/KIAA1522 are part of the SCAR/WAVE community and share amino-acid
sequence homology (right panel). (G) DMXL1/2, WDR7 and ROGDI form the human RAVE complex. Heatmaps repre-
sent the interaction stoichiometry of preys (lines) in the pull-downs of specific OpenCell targets (columns). See text for

details.
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The localization of a representative protein belonging to each group is shown (greyscale, gene names in top left corners;
scalebar: 10 ym). Nuclear stain (Hoechst) is shown in blue. “Nuclear domains” designate proteins with pronounced
non-uniform nucleoplasmic localization, for example chromatin binding proteins. (B) Comparison of annotated localization
for proteins included in both OpenCell and Human Protein Atlas datasets. In this flow diagram, colored bands represent
groups of proteins that shared the same localization annotation in OpenCell, and the width of the band represents the
number of proteins in each group. For readability, only the 12 most common localization groups are shown. Some multi-lo-
calization groups are included (e.g. “cytoplasm & nucleoplasm”). (C) Principle of localization encoding by self-supervised
machine learning. See text for details. (D) UMAP representation of the OpenCell localization dataset, highlighting targets
found to localize to a unique cellular compartment. (E) Representative images for 10 nuclear targets that exemplify the
nuanced diversity of localization patterns across the proteome. Scale bars: 10 ym.
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Figure 4: protein functional features derived from unsupervised image analysis. (A) Comparison of image-based
Leiden clusters with ground-truth annotations. The Adjusted Rand Index (ARI, (86)) of clusters relative to three
ground-truth datasets is plotted as a function of the Leiden clustering resolution. ARI (a metric between 0 and 1, see
Materials and Methods) measures how well the groups from a given partition (in our case, the groups of proteins delin-
eated at different clustering resolutions) match groups defined in a reference set. The amplitude of the ARI curves is
approximately equal to the number of pairs of elements that partition similarly between sets; the resolution at which
each curve reaches its maximum corresponds to the resolution that best captures the information in each ground-truth
dataset. At a low resolution, Leiden clustering delineates groups that recapitulate about half of the organellar localiza-
tion annotations, while at increasing resolutions, clustering recapitulates about a third of pathways annotated in KEGG,
or molecular protein complexes annotated in CORUM. Shaded regions show standard deviations calculated from 9
separate repeat rounds of clustering, and average values are shown as a solid line. (B) High correspondence between
low-resolution image clusters and cellular organelles. (C) Examples of functional groups delineated by high-resolution
image clusters, highlighted on the localization UMAP. (D) Heatmap distribution of localization similarity (defined as the
Pearson correlation between two deep learning-derived encoding vectors) vs. interaction stoichiometry between all
interacting pairs of OpenCell targets. Two discrete sub-groups are outlined: low stoichiometry/low localization similarity
pairs (solid line) and high stoichiometry/high localization similarity pairs (dashed line). (E) Probability density distribution
of CORUM interactions mapped on the graph from (D). Contours correspond to iso-proportions of density thresholds
for each 10th percentile. (F) Localization patterns of different subunits from example stable protein complexes, repre-
sented on the localization UMAP. (G) Frequency of direct (1st-neighbor) or once-removed (2nd neighbor, having a
direct interactor in common) protein-protein interactions between any two pairs of OpenCell targets sharing localization
similarities above a given threshold (x-axis). (H) Parallel identification of FAM241A as a new OST subunit by imaging
or mass-spectrometry. See text for details.

Figure 4 (legend)
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Figure 5: segregation of RNA-BPs in both interactome and imaging datasets. (A) Hierarchical structure of the interac-
tome dataset, see full description in Figure S9B. (B) Distribution of membrane-related (transmembrane or membrane-binding)
and RNA-BPs within the three interactome branches. (C) Distribution of intrinsic disorder in the RNA-BP branch of the interac-
tome hierarchy (related to Figure S10). Two separate scores are shown for completeness: IUPRED2 (87), and metapredict
(88), a new aggregative disorder scoring algorithm. Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent
1.5x inter-quartile range. Median is represented by a white line. ** p < 10-4 (Student’s t-test), exact p-values are shown. (D)
Distribution of RNA-BP percentage across spatial clusters, comparing our data to a control in which the membership of
proteins across clusters was randomized 1,000 times. Lines indicate parts of the distribution over-represented in our data vs
control (**: p < 2x107%, Fisher’s exact t-test). (E) Distribution of disorder score (IUPRED2) across spatial clusters, comparing
our data to a control in which the membership of proteins across clusters was randomized 1,000 times. Lines indicate parts of
the distribution over-represented in our data vs control (**: p < 2x107, Fisher’s exact t-test). (F) Ontology enrichment analysis
of proteins contained in high-disorder spatial clusters (average disorder score > 0.45). Enrichment compares to the whole set
of OpenCell targets (p-value: Fisher’s exact test). (G) Prevalence of proteins annotated to be involved in biomolecular conden-
sation in high-disorder vs. other spatial clusters. Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x
inter-quartile range. Median is represented by a white line. Note that for both distributions, the median is zero. (H) Distribution
of high-disorder spatial clusters in the UMAP embedding from Fig. 3D. Individual nuclear clusters are not outlined for readabili-
ty. Multiple high-disorder spatial clusters include compartments or proteins known to be characterized by biomolecular conden-
sation behaviors, which are marked by an asterisk.

Figure 5
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Materials and Methods

Cell culture and CRISPR engineering

Cell culture. HEK-293T cells (ATCC CRL-3216) were cultured in DMEM high-glucose
medium (Gibco, cat. #11965118) with 10% fetal bovine serum (Omega Scientific, cat. #FB-11),
supplemented with 2mM glutamine (Gibco, cat. #25030081), penicillin and streptomycin (Gibco,
cat. #15140163). All cell lines were maintained at 37°C and 5% CO2 and routinely tested for the
absence of mycoplasma.

Fluorescent library design. mNeonGreen is monomeric green fluorescent protein ~2x
brighter than GFP. We used the split-mNeonGreen; system for functional tagging, which separates
last mNeonGreen; beta-strand (mNG11) from the rest of the fluorescent protein (mNG1-10)(20).
Upon co-expression in the same cell, mNGI1-10 and mNG11 stably assemble and reconstitute a
functional FP. A parental cell line constitutively expressing mNG1-10 was first generated by
lentiviral transduction (from pSFFV_mNG21-10, Addgene #82610). All successive cell lines were
generated from this parental HEK293T™NG1-19 cel] line by incorporation of the mNG11 fragment
at either N- or C- terminus of the genomic sequence of a target protein via CRISPR/Cas9 based
genome editing. Our mNG11 fusion constructs include a HRV 3C cleavable linker(97) that can be
used optionally for elution from an affinity capture matrix (16 a.a. tag + 14 a.a. linker, full
sequences in Table S1). To minimize the risk of functional perturbation, we stringently selected
integration sites (N- or C-terminus) by systematically curating the literature for data supporting
the functional integrity of fusion proteins (or by requesting advice from cell biology experts for
specific proteins). We also used 3D PDB structures whenever available to identify sites that avoid
protein-protein interaction interfaces. See Table S1 for details. Because our split-FP system does
not enable detection in the lumen of organelles (this requires split constructs harboring appropriate
signal sequences(23)), fusions with membrane proteins were restricted to cytoplasmic termini,
ensuring first that no annotated regulatory sequences (e.g., signal sequences) were compromised.
In total, we used available supporting data to inform 62 % of insertion sites, and 3 % were
constrained by membrane protein topology. In the absence of prior information, insertion choice
was based on avoiding annotated regulatory sites. In the case of splice variants involving the
terminus of choice, the main transcript expressed in HEK293T was used.

Overall genome engineering pipeline. To enable the expression of fluorescent fusion from
endogenous genomic loci, we used an established high-throughput CRISPR/Cas9 method for gene
editing by homologous recombination (/8). In brief, S. pyogenes Cas9/guide RNA complexes were
pre-assembled in vitro, mixed with short single-stranded oligo-nucleotide homology donors and
delivered into HEK293T™NCI10 cells by electroporation in 96-well plates (see below). For each
genomic insertion, the choice of guide RNA and associated homology donor sequence (which
contains the mNG11 payload flanked by short sequences of genomic homology to the targeted
insertion site) was automated using crispycrunch(92), an open-source CRISPR design software
available at github.com/czbiohub/crispycrunch and as a web-app at crispycrunch.czbiohub. org/.
crispycrunch selects a guide RNA closest to a desired genomic insertion site while also minimizing
any off-target guide RNA activity, and if needed introduces silent mutations to inactivate guide
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RNA biding and re-cutting after successful homologous recombination (92). gRNA and homology
donor sequences for all targets are found in Table S1.

Cell engineering and selection S. pyogenes Cas9 protein (pMJ915 construct, containing two
nuclear localization sequences) was expressed in E. coli and purified by the UC Berkeley Macrolab
following protocols described by Jinek et al(93). Cells were synchronized by nocodazole treatment
(200ng/mL for 15-18h_ to enhance homologous recombination(25). RNP complexes were freshly
assembled with 50 pmol Cas9 protein and 65 pmol gRNA prior to electroporation, and combined
with HDR template in a final volume of 10 uL. First, 0.5 uLL gRNA (130 uM stock) was added to
2.35 pL high-salt RNP buffer {580 mM KCI, 40 mM Tris-HCI pH 7.5, 20% v/v glycerol, 2 mM
TCEP-HCI pH 7.5, 2 mM MgCI2, RNAse-free} and incubated at 70°C for 5 min. 1.25 puL of Cas9
protein (40 pM stock in Cas9 buffer, ie. 50 pmol) was then added and RNP assembly carried out
at 37°C for 10 min. Finally, HDR templates and sterile RNAse-free H20 were added to 10 puL
final volume. Electroporation was carried out in Amaxa 96-well shuttle Nucleofector device
(Lonza) using SF solution (Lonza) following the manufacturer’s instructions. Cells were washed
with PBS and resuspended to 10,000 cells/uL in SF solution (+ supplement) immediately prior to
electroporation. For each sample, 20 pL of cells (ie. 200,000 cells) were added to the 10 pL
RNP/template mixture. Cells were immediately electroporated using the CM 130 program, after
which 100pL of pre-warmed media was added to each well of the electroporation plate to facilitate
the transfer of 25,000 cells to a new 96-well culture plate containing 150uL of pre-warmed media.
Electroporated cells were cultured for >5 days and transferred to 12-well plates prior to selection
by fluorescence-activated cell sorting (FACS). For each target, 1,200 cells from the top 1%
fluorescent cell pool were isolated on a SH800 instrument (Sony biotechnology) and collected in
96-well plates.

Genotype analysis. For each polyclonal pool of engineered cells, the genotype of CRISPR-
edited alleles was characterized by amplicon sequencing. Gene-specific primers were designed
using Primer3, with a target amplicon length of 270bp and a maximum at S00bp. gDNA was first
extracted by cell lysis using QuickExtract DNA Extraction Solution (Lucigen). From a confluent
culture in 96-well plate, media was removed, cells were washed 1x in DPBS and resuspended in
50 uL. QuickExtract. The cell layer was detached by repeated pipetting and transferred to a PCR
plate for incubation. The lysate was incubated as follows {65°C for 20 min, 98°C for Smin, 4°C
final}. gDNA was used directly from this preparation. Amplicon Libraries were created using a
two-step PCR protocol: the first PCR amplifies the target genomic locus and adds universal
amplification handle sequences, while the second PCR introduces index barcodes using the
universal handles. PCR1: this PCR uses a “reverse touchdown” method designed to accommodate
a number of different annealing temperatures for a number of different targets. S0-uL PCR
reactions were set using 2x KAPA HiFi Hotstart reagents (Roche) with 2ul. extracted gDNA,
80pmol each primer and betaine to 0.8M final concentration. PCR conditions: 95°C 3min; 3 cycles
of {98°C for 20s, 63°C for 15s, 72°C for 20s}, 3 cycles of {98°C for 20s, 65°C for 15s, 72°C for
20s}, 3 cycles of {98°C for 20s, 67°C for 15s, 72°C for 20s}; 17 cycles {98°C for 20 s, 69°C for
15's, 72°C for 20s} then 72°C for 1min; 4°C final. PCR2: amplicons were diluted 1:100 and 1 puL.
was used into a 40-uL barcoding reaction using 20 uLL 2x KAPA HiFi Hotstart reagents (Roche)
and 80pmol each barcoded primer. PCR conditions: 95°C 3min and 12 cycles of {98°C for 20s,
68°C for 15s, 72°C for 12s} then 72°C for 1min; 4°C final. Barcoded amplicons were analyzed
using capillary electrophoresis (Fragment Analyzer, Agilent), pooled and purified using magnetic
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beads. Sequencing was performed on an Illumina Miseq V3 platform (paired-end 2x300bp) using
standard P5/P7 primers. Genotype analysis was performed using CRISPRESSO2, which allowed
to quantify three classes of alleles for each targeted locus: un-modified (wild-type), alleles
integrated with mNGI11 by homologous recombination, and alleles containing non-functional
mutations as a result of competing DNA repair mechanisms. Primer sequences and genotype
analysis for all targets are found in Table S1. Despite multiple attempts, genotyping PCR could
not be successfully performed for 70 targets (5% of the total set), most often involving genes with
extreme GC content or highly repetitive sequences.

Immunoe-precipitation / mass-spectrometry

Overall strategy. mNGI1-tagged proteins were isolated from digitonin-solubilized
lysates using anti-mNeonGreen nanobody capture. Biological triplicate protein samples were
digested “on-bead” for bottom-up proteomics analysis(28), and peptides were quantified
using label-free mass spectrometry on a timsTOF Pro instrument (Bruker Daltonics).

Sample preparation. Confluent 12-well cultures (0.8x10° cells/sample) were washed twice
with 1 ml of D-PBS (no divalent). 200 pl ice-cold lysis buffer A {50 mM HEPES pH 7.5, 150 mM
KOAc, 5 mM NaCl, 2 mM MgOAc, 1 mM CaCl,, 15% Glycerol, 1.5 % Digitonin (high purity,
Calbiochem), Protease- and Phosphatase inhibitor (Halt, Pierce), 0.1% benzonase (Millipore
Sigma)} were added to each well, cells were lysed by strong pipetting and the solution was
transferred into a pre-chilled 96-well PCR plate. Per 96-well plate, 330 ul magnetic mNG-Trap
slurry (magnetic agarose, Chromotek) was washed three times with buffer B {50 mM HEPES pH
7.5, 150 mM KOAc, 5 mM NaCl, 2 mM MgOAc, 1 mM CaCla, 15% Glycerol, 0.1 % Digitonin}
and resuspended in 2,150 ul Buffer A. The cell lysate was incubated for 1h at 4°C, rotating. The
insoluble cell fraction was pelleted for 30 min at 1800xg in a table-top centrifuge at 4°C, followed
by supernatant transfer into a new plate pre-loaded with 20 ul of the washed bead slurry per well.
Tagged proteins were captured by incubation for 2h at 4°C, rotating. Following capture and using
a 96-well magnet, beads were washed (per well) with 200 ul buffer B (incubation for 5 min at 4°C,
rotating), 2x 200 ul buffer B (no incubation) and a final 1x 200 ul buffer C to remove digitonin
{50 mM HEPES pH 7.5, 150 mM KOAc, 5 mM NaCl, 15% Glycerol, 0.01% glyco-diosgenin
(Avanti)}. Supernatant was removed and 50 ul of digestion buffer 1 {6 M Uea, S0 mM Tris-HCI,
pH 8.5, 1 mM DTT, 2 ng/ul LysC protease (Wako Chemicals)} was added to each well, followed
by overnight digestion at 30°C on a thermomixer, gently shaking. The next day, 100 ul digestion
buffer 2 {50 mM Tris-HCI, pH 8.5, 8.25 mM iodoacetamide, 2 ng/ul LysC} was added to each
well and incubated for ~6 hours at 30°C on a thermomixer in the dark, gently shaking. The
digestion was finally quenched with 15 pul of 10 % TFA. Quenched samples were vortexed, flash-
frozen and stored at -80 °C until further use for LC-MS analysis preparation.

EvoSep chromatography. We used the EvoSep liquid chromatography system for sample
processing(94). EvoTips (EvoSep Gmbh) were activated for 5 min with 1-Propanol at RT,
followed by a wash step with 50 ul Buffer A (99.9 % ddH20, 0.1 % Formic Acid) and
centrifugation at 600 xg for 1 min at RT. The flow-through was discarded and activated EvoTips
were placed in an EvoTip-box reservoir filled with Buffer A. After on-bead digestion, captured
protein samples were thawed for 5 min at 600 rpm and 25°C on a thermal shaker and placed on a
96-well magnet holder to remove magnetic beads. The whole sample (~150 pl) was transferred to
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activated EvoTips, followed by two consecutive centrifugation steps at 600xg for 1 min and RT,
discarding flow-through after the first spin. Peptide-loaded EvoTips were washed once with 50 pl
Buffer A and centrifuged at 600xg for 1 min at RT. The flow-through was discarded and 150 pl of
Buffer A was added to each EvoTip followed by a centrifugation step for 20 sec at 600xg RT.
Loaded EvoTips were then transferred into the 96-well EvoTip-box reservoir filled with Buffer A
and transferred onto the EvoSep autosampler for LC-MS analysis. Pulldowns were acquired in
triplicates and injected to the mass spectrometer while spacing replicates to prevent any bias.

Liquid-chromatography. For separating peptides by hydrophobicity and eluting them into
the mass spectrometer, we used an EvoSep Onel liquid chromatography system (EvoSep, Gmbh)
and analyzed purified petides with a standard 21 min method (60 samples per day). We used a 15
cm x 150 um ID column with 1.9 um C18 beads (PepSep) coupled to a 20 um ID electrospray
emitter (Bruker Daltonics). Mobile phases A and B were 0.1 % FA in water and 0.1 % FA in ACN,
respectively. The EvoSep system was coupled online to a trapped ion mobility spectrometry
quadrupole time-of-flight mass spectrometer(95) (timsTOF Pro, Bruker Daltonics) equipped with
via a Captive nano-electrospray ion source.

Mass spectrometry. Mass spectrometric analysis was performed in a data-dependent (dda)
PASEF mode. For ddaPASEF, 1 MS1 survey TIMS-MS and 4 PASEF MS/MS scans were
acquired per acquisition cycle. The cycle overlap for precursor scheduling was set to 2. Ion
accumulation and ramp time in the dual TIMS analyzer was set to 50 ms each and we analyzed the
ion mobility range from 1/K0 = 1.3 Vs cm-2 to 0.8 Vs cm-2. Precursor ions for MS/MS analysis
were isolated with a 2 Th window for m/z < 700 and 3 Th for m/z >700 in a total m/z range of
100-1,700 by synchronizing quadrupole switching events with the precursor elution profile from
the TIMS device. The collision energy was lowered linearly as a function of increasing mobility
starting from 59 eV at 1/KO = 1.6 VS cm-2 to 20 eV at 1/KO = 0.6 Vs cm-2. Singly charged
precursor ions were excluded with a polygon filter (otof control, Bruker Daltonics). Precursors for
MS/MS were picked at an intensity threshold of 2,000 arbitrary units (a.u.) and re-sequenced until
reaching a ‘target value’ of 24,000 a.u. considering a dynamic exclusion of 40 s elution. Capillary
voltage was set to 1,750 V and dry gas temperature to 180°C.

Raw Data Processing. MS raw files were processed using MaxQuant (v1.6.10.43)(96, 97),
which extracts features from four-dimensional isotope patterns and associated MS/MS spectra, on
a computing cluster (SUSE Linux Enterprise Server 15 SP2) utilizing UltraQuant. Files were
processed in several batches of appriximately 1000 files each and searched against the human
Uniprot databases (UP000005640 9606.fa, UP000005640 9606 additional fa). False-discovery
rates were controlled at 1% both on peptide spectral match (PSM) and protein levels. Peptides with
a minimum length of seven amino acids were considered for the search including N-terminal
acetylation and methionine oxidation as variable modifications and cysteine carbamido-
methylation as fixed modification, while limiting the maximum peptide mass to 4,600 Da. Enzyme
specificity was set to LysC cleaving c-terminal to lysine. A maximum of two missed cleavages
were allowed. Maximum precursor and fragment ion mass tolerance were searched as default for
TIMS-DDA data and the main search tolerance was reduced to 20 ppm. Peptide identifications by
MS/MS were transferred by matching four-dimensional isotope patterns between the runs (MBR)
with a 0.7-min retention-time match window and a 0.05 1/KO ion mobility window. Protein
quantification was performed by label-free quantification using a minimum ratio count of 1.

107



2 Results: Article 2

Data availability. All mass spectrometry raw data and MaxQuant output tables are deposited
to the ProteomeXchange Consortium(98) via the PRIDEpartner repository and will be publicly
available upon final publication (accession PXD024909).

Whole-cell abundance measurement by mass-spectrometry

Peptide preparation. HEK293T cells were grown in biological triplicate 15cm-plates,
washed 2x in ice-cold PBS and lysed in { 2.5% SDS sodium dodecyl-sulfate; 50 mM Tris pH
8.1 }. Lysis was performed at 95°C for 5 min, followed by probe sonication. Lysates were
cleared by centrifugation, protein amount was measured by BCA assay, and lysates were
precipitated with 5 volumes of acetone. Pellets were resuspended in 50 mM Tris pH 8.1
containing 8 M urea, reduced with 1 mM DTT and alkylated with 5 mM IAA before initiation
of digestion overnight with LysC at an enzyme-to-protein ratio of 1:100. The digest mixture
was diluted four-fold, and trypsin was added at an enzyme-to-protein ratio of 1:100 for 6 h,
followed by an additional aliquot of trypsin overnight. The digestion reaction was stopped by
acidifying the sample adding TFA to 1%, placed on ice for 10min and centrifuged at 4
degree C, 21000g for 20min. The resulting peptide supernatant was then desalted using
mixed mode Strata-XC SPE cartridge. Briefly, the cartridge was prepared by activating with
methanol, conditioning with 80% acetonitrile/0.1% TFA and equilibrated with 0.2% TFA.
The acidified peptides were then added, washed with 99% isopropanol/0.1% TFA, 2 x
0.2% TFA washes, 1x 0.1% formic acid and eluted with 60% acetonitrile/0.5% ammonium
hydroxide. The eluted peptides were flash frozen and then dried down.

Fractionation. To obtain achieve measurement depth, peptides from the triplicate experiment
were further separated in 24 fractions using C18 chromatography. Peptides were resuspended in
buffer A (10 mM ammonium bicarbonate) and injected onto a 4.6 x 250-mm 3.5-um Zorbax 300
Extend-C18 column. Peptides were separated on a non-linear gradient as described in (99), using
the following composition of buffer B (10 mM ammonium bicarbonate, 90% acetonitrile). Peptide
fractions were frozen at —80 °C before centrifugal evaporation.

Mass spectrometry. Peptides were resuspended in 2% ACN with 0.1% TFA before loading
onto a 25 cm x 75 um ID, 1.6 um C18 column (IonOpticks) maintained at 40°C. Peptides were
separated with an EASY-nLL.C 1200 system (Thermo Fisher Scientific, San Jose, CA) at a flow rate
of 300 nl min-1 using a binary buffer system of 0.1% FA (buffer A) and 80% acetonitrile with
0.1% FA (buffer B) in a two-step gradient, from 3% to 27% B in 105 min and from 27% to 40%
B in 15min. All fractions were analyzed on a Fusion Lumos mass spectrometer (Thermo Fisher
Scientific, San Jose, CA) equipped with a nanoFlex ESI source operated at 1550 volts, RF lens set
to 30%, operated in data dependent acquisition mode with a duty cycle time of 1 sec. Full MS
scans were acquired with a m/z scan range of 375-1500 m/z in the Orbitrap mass analyzer (FTMS)
with a resolution of 240k. Selected precursor ions were subjected to fragmentation using higher-
energy collisional dissociation (HCD) with a quadrupole isolation window of 0.7 m/z, and
normalized collision energy of 31%. HCD fragments were analyzed in the lon Trap mass analyzer
(ITMS) set to Turbo scan rate. Fragmented ions were dynamically excluded from further selection
for a period of 45 sec. The AGC target was set to 1,000,000 and 10,000 for full FTMS and ITMS
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scans, respectively. The maximum injection time was set to Auto for both full FTMS and ITMS
scans.

Live-cell imaging

Sample preparation. Live-cell imaging was performed on 96-well glass-bottom plates
(Greiner Bio One, cat. #655891) coated with 50pg/ml fibronectin (Corning, cat. #356008). Cells
were seeded on an imaging plate 28-32 hours before imaging at 15,000 cells per. Before imaging,
cells were counter-stained with the live-cell DNA dye Hoechst 33342 (Invitrogen, cat. #H3570)
by incubation for 30 minutes at 37°C in 150 pul of Hoechst diluted to 1pug/mL in culture media.
Media was then replaced with phenol-free DMEM (Gibco, cat. #21063029) supplemented with
10% FBS. Hoechst staining was performed three to four hours prior to imaging to provide the cells
time to recover from any mechanical stress due to medium changes.

Live-cell fluorescence microscopy. Cells were imaged on a DMI-8 inverted microscope
(Leica) equipped with a Dragonfly spinning-disk confocal system (Andor), a 63x 1.47NA oil
objective (Leica), and a 16-bit iXon Ultra 888 EMCCD camera (Andor, pixel size: 13x13 um?). A
pinhole size of 40um was used with an EM gain of 400. Cells were maintained at 37°C and 5%
CO2 during image acquisition by a stage-top incubator (Okolab, H101-K-Frame). The microscope
was controlled using the open-source microscope-control software MicroManager (version
1.4.22).

Automated confocal acquisition. We automated the imaging of 96-well plates using a
custom acquisition script, written in Python, combined with a custom MicroManager plugin
(mm2python; github.com/czbiohub/mm2python) to expose the MicroManager APIs in a Python
environment. This script selected optimal fields of view (FOVs) at which to acquire confocal z-
stacks by using a pre-trained machine-learning model to assign a quality score to the FOVs at a set
of different positions in each well. Briefly, at each position, the script acquired a single 2D
snapshot of the Hoechst staining, segmented the nuclei in the snapshot, and calculated an array of
features associated with the distribution of nuclei within the FOV. The script then used a pre-
trained random-forest regression model (see below) to predict a quality score for the FOV from
this set of features. This process was repeated at each of 25 different positions in each well, and
then the script selected the positions with the highest-scoring FOVs to revisit for confocal z-stack
acquisition. At each of these selected positions, the focal plane was centered on the cell layer using
a laser-based Adaptive Focus Control system (Leica) and confocal z-stacks, consisting of 110 z-
slices at a spacing of 0.2um, were acquired. The exposure settings for the mNeonGreen channel
were determined dynamically for each target using a custom auto-exposure algorithm that
iteratively adjusted the exposure time and laser power until the maximum pixel intensity was just
below or just above an intensity of 2'° (half of the full dynamic range of the camera). For dim
targets for which this condition could not be met, the script fell back to a hard-coded absolute
maximum exposure time and laser power to minimize both acquisition time and photobleaching.
The exposure settings for the Hoechst stain were manually selected and held constant for all
targets. The random-forest regression model used by the script to predict the FOV quality scores
was trained prior to acquisition using a set of 3800 FOV snapshots that were manually assigned to
one of three grades: “poor,” “mediocre,” or “good.” These grades were mapped to a continuous
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response variable by assigning the values of -1, 0, and 1, respectively, and a random forest
regression model (scikit-learn) was trained to predict this value. The out-of-bag estimated R? was
0.86 and scores predicted for a withheld set of test snapshots were also evaluated by manual
inspection. The trained model was cached and imported at acquisition time by the acquisition
script. The acquisition script, trained FOV-scoring model, autoexposure algorithm, and other
associated microscope-control methods are available online at github.com/czbiohub/2021-
opencell-microscopy-automation.

Data analysis — proteomics

Statistical detection of protein interactions. Statistical analysis was performed according
to methods described in Hein et al. (7), with modifications. Protein identifications were filtered,
removing common contaminants, hits to the reverse decoy database as well as proteins only
identified by modified peptides. We required that each protein be quantified in all replicates from
the IP-MS samples of at least one cell line and used log2 MaxQuant LFQ intensities for all
analyses. Rather than imputing missing values, robust null control sets were generated for
statistical enrichment analysis of each protein group by pooling triplicate data from an average of
349 unrelated samples. In this approach, rather than using a single control we measure enrichment
in a specific sample against an entire cohort of ~349 unrelated tagged cell lines. We have
previously described (7, 28) how this enables a better estimation of the null distribution and leads
to more robust identification of interactions. The null control sets might contain triplicate samples
that are outliers and would be considered significant interactions. The presence of these samples
lead to underestimation of enrichment and could mask some significant interactions. We
systematically removed these outliers from the negative control sets using a Student’s t-test and
excluding any sample of triplicates that had a p-value < 0.001. From the filtered pool, we
approximated the true mean and the true standard deviation of the null set by bootstrapping via
sampling with replacement. The approximated mean and standard deviation of the null set was
then used for the final Student’s t-test to calculate the statistical significance of the triplicate means.
Any missing values in the triplicate sample set were then replaced with the mean of the null set.
Enrichment was calculated by subtracting the mean of the triplicates from the mean of the null set,
and was normalized to account for variability within each protein through division by the standard
deviation of the null control set. Our statistical strategy to define significant interactors is described
in Figure S4A-B and supported by a quantitative estimation of precision and recall.

Precision / recall analysis of the interactome. For a quantitative evaluation of our statistical
approach, and to compare the quality of OpenCell against reference interactome datasets, we
created a framework the precision and recall in interaction data. In the absence of established
ground truth for human protein interactions, we indirectly derived measurements of precision and
recall. For recall, we calculated the coverage in a given dataset of interactions curated in the human
CORUM database(30), as a percentage of all possible CORUM interactions given the set of baits
in that dataset. For calculating precision, we used the assumption that two interactors should have
localization patterns that at least partially overlap. As an independent ground truth set for protein
localization, we used the quantitative analysis of the HeLa proteome from Itzhak et al. (37). Using
these annotations, we categorized localization into four broad classes: exclusively nuclear,
exclusively cytoplasmic, exclusively organellar, and multi-localizing (i.e., any non-exclusive
localization). To calculate precision, we consider any two interactors that overlap in exclusive
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localization to be true positives, and those that do not overlap localization annotations at all to be
false positives, with multi-localizing proteins allowed to interact agnostically (Fig. S4B).

Protein stoichiometry measurements. Calculation of interaction stoichiometries was
performed as in Hein et al by dividing LFQ intensities by the number of theoretically observable
peptides for each protein. We defined the “interaction stoichiometry” as the stoichiometry of the
abundance of a given interactor, relative to the abundance of the corresponding bait, in a given
pull-down. We also defined a “cellular abundance stoichiometry” as the stoichiometry of the
abundance of a given interactor, relative to the abundance of the corresponding bait, in a whole
cell lysate. For proteins that were not detected in whole cell lysates (due to lack of measurable
peptides, for example in the absence of lysine residues), protein abundances were imputed from
RNA-Seq data by interpolating from a linear regression of RNA-Seq tpm vs. protein abundance
measured by mass spectrometry in our dataset.

Network Analysis. For graph-based clustering of the entire interactome network, we
weighted edges using the interaction stoichiometry between each pair of interacting proteins. We
utilized Markov clustering(34) at various inflation parameters and evaluated clustering
performance using the k-clique method described in Drew et al(/00) using CORUM complexes as
the ground truth. To eliminate complexes with many shared proteins, the Jaccard distance was
calculated between all pairs of complexes, and pairs of complexes were merged if the distance was
below 0.6. Our final clustering analysis used an inflation parameter of 3.0 (Fig. S41). The clusters
were pruned to remove any node included in a cluster on the basis of a single edge. The resulting
clusters correspond to the protein “communities” described in the text. We then utilized another
round of MCL clustering to identify core-clusters within each community by considering only
highly stoichiometric interactions (interaction stoichiometries between 0.05 and 10, and cellular
abundance stoichiometry between 0.1 and 10). The resulting core-clusters represented highly
stable core clusters within the original communities.

Measurement of biophysical properties of proteins. Biophysical properties were calculated
using the ProteinAnalysis package from BioPython(/0/7). Hydrophobicity scores were calculated
using the gravy method of that module to compute the Gravy index. Calculation of disorder in
protein regions was performed using the IUPred2A algorithm(89) or metapredict, a recent
agglomerative algorithm (90). Scores were averaged across the sequences of each protein. Scores
computed across the whole proteome are included in Table S2.

Data analysis — imaging

Consensus localization encodings. Protein localization patterns were encoded from the raw
confocal images using a customized variant of the vector-quantized autoencoder architecture VQ-
VAE-2(/02). The image preprocessing, autoencoder architecture, and model training are described
in detail in an accompanying manuscript(52). Briefly, confocal z-stacks were reduced to two
dimensions by a maximum-intensity z-projection and normalized to control for variation in
intensity. Regions of interest 200x200 pixels in size were centered on individual nuclei and
cropped from each z-projection to generate a set of 50-200 cropped images for each tagged protein.
These images were randomly partitioned into a training set and a test set. After training the model
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on the images in the training set, the images in the test set were encoded, and the resulting latent-
space vectors from the VQ2 layer of the network were flattened to obtain a localization encoding
for each image in the test set as a 9216-dimensional vector. The encodings of all images for each
tagged protein were then averaged to obtain a single consensus encoding for each tagged protein.
The matrix of consensus encodings for all OpenCell targets are available on Figshare at:

https://figshare.com/articles/dataset/Consensus_protein_localization_encodings for_all Op
enCell targets/16754965

Comparison of OpenCell and Human Protein Atlas (HPA) localization annotations. The
v20 dataset of HPA localization annotations was first obtained from the HPA website
(https://v20.proteinatlas.org/download/subcellular location.tsv.zip). To compare OpenCell
localization annotations to HPA annotations, it was necessary to reconcile the OpenCell and HPA
localization categories as the ontologies used to annotate the two datasets vary slightly. To do so,
a set of ‘consensus’ annotation categories were defined for the most common localization
categories, as described in Table S7 (see sheet: “annotation-definitions”).

Because wide-spread multi-localization of proteins complicates direct comparisons, we
focused first on comparing the “main” localization annotations provided by each dataset. After
mapping to these consensus categories, grade-2 and grade-3 OpenCell annotations were compared
to their corresponding HPA ‘main location’ annotations and categorized as either exact matches,
partial matches, or entirely discrepant. Exact matches were targets whose sets of consensus
annotations were identical in the OpenCell and HPA datasets; partial matches were targets with at
least one of the same consensus annotations in the OpenCell and HPA datasets. The list of exact
and partial matches, and the sets of consensus OpenCell and HPA annotations, are provided in
Table S7.

To refine the list of proteins that did not share any matching annotation across the datasets,
minor localization annotations were considered (grade 1 in OpenCell, “additional” localization in
HPA), as well localization between closely related organelles (for example, ER and Golgi), which
could explain differences between the datasets as they probe localization in different cell lines. As
a result, a final list of 147 proteins for which the two dataset were fully discrepant was obtained.
The full analysis of proteins from that list using literature curation is presented in Table S8.

Analysis of image localization encodings. The matrix of consensus localization encodings
for all OpenCell targets was analyzed using the scanpy package(/03). Briefly, the dimensionality
of the consensus encodings was reduced using PCA and the first 200 PCs, which captured 96% of
the variance, were retained for downstream analysis. The UMAP algorithm (53) was used to
embed the encodings in two-dimensional space using 10 nearest neighbors, the Euclidean distance
metric, and a minimum embedding distance of zero. The encodings were clustered using the
Leiden graph-based clustering algorithm(55) with a resolution parameter of 30 and the weighted
adjacency matrix calculated by the UMAP algorithm (again with 10 nearest neighbors). Finally,
the Pearson correlation coefficient between the top 200 PCs of the localization encodings was used
to quantify the localization similarity between OpenCell targets.

Image-based clustering. OpenCell targets were clustered on the basis of their consensus
encodings using the Leiden graph-based clustering algorithm (335) and the weighted adjacency
matrix calculated by the UMAP algorithm with 10 nearest neighbors. The Leiden algorithm
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depends upon a single ‘resolution’ hyperparameter that determines the number of clusters. To
quantify clustering performance as a function of this hyperparameter, the Adjusted Rand Index
(88) was used to compare the Leiden clusters to ground-truth datasets. The ARI is near zero for
random clustering and is equal to one when clustering perfectly matches the ground-truth labels.
Three different ground-truth datasets were used that capture biological relationships at three
different scales: manual OpenCell localization annotations (organelle scale), KEGG pathways
(https://www.genome jp/kegg/ (104)), and CORUM complexes (http://mips.helmholtz-
muenchen.de/corum/ (30). OpenCell targets that were in more than one ground-truth cluster were
excluded from this analysis, as the ARI is defined only for hard clustering (that is, sample-cluster
assignments that are one-to-one). The ARI was calculated with respect to each of the ground-truth
datasets at a range of values of the Leiden resolution hyperparameter; the global maxima in the
resulting ARI curves correspond to the clustering resolutions that best capture the information in
each ground-truth dataset. To control for the stochasticity of the Leiden algorithm, the ARI curve
was calculated from the average of the curves for nine random seeds.

Hierachical analysis of interactions and localization patterns.

Hierarchical clustering of interactome and image-localization clusters. To explore the
relationships between the 182 localization clusters or the 300 interactome communities, we
employed the Paris algorithm, an agglomerative graph-based hierarchical clustering
algorithm(/05). The algorithm was initialized with a network of nodes representing the initial
clusters (either the localization clusters or the interactome communities) and edge weights between
the initial clusters were calculated according to the definition of the cluster pair sampling ratio
used in the Paris algorithm.

Gene Ontology enrichment analysis. To analyze enrichment of GO terms in a given
hierarchical protein group, we utilized the PANTHER gene list analysis API (/06) using Fisher
exact test for significance testing. Enrichment of GO terms was tested against a reference set of
either all OpenCell targets for the imaging dataset, or all proteins found in communities for the
interactome dataset.

OpenCell web portal development

The OpenCell web portal is a full-stack web application. The frontend (that is, the web
interface itself) is written with React, a modern JavaScript library for building modular user
interfaces. The backend is a PostgreSQL database paired with a REST API written in Python using
Flask and SQLAlchemy. Together, the database and API provide the metadata, protein interaction
data, and the confocal image data required to populate the frontend. For efficiency, the 3D confocal
stacks are transferred to the client as two-dimensional tiled arrays of confocal slices, saved as
compressed JPEG images to enable fast download times. To maximize responsiveness, the web
app makes API requests dynamically and asynchronously so that it loads, in parallel, only the data
required to update the state of the app in response to a given user input. Both the backend and
frontend are built using many open-source packages. In particular, the 3D rendering of confocal
stacks relies on Three s, the interactive scatterplots are built with d3js, and the interaction
networks are built with Cytoscape.js. The backend is built with SQLAlchemy and Flask and also
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leverages the Python data-science stack, including pandas, NumPy, SciPy, and scikit-image. All
source code for the application is available on GitHub at github.com/czbiohub/opencell-portal-pub

Figure generation

Data analysis was performed in Python. Figures were generated in Python using matplotlib
or seaborn, with the exception of the protein-protein interactions / network visualizations, which
were generated using Cytoscape. The code and data used to generate the figures can be found on
GitHub at github.com/czbiohub/2021-opencell-figures.

Supplementary references

91.C. L. Young, Z. T. Britton, A. S. Robinson, Recombinant protein expression and purification:
A comprehensive review of affinity tags and microbial applications. Biotechnol J. 7, 620-634
(2012).

92. G. Dingle, CrispyCrunch: High-throughput Design and Analysis of CRISPR+HDR
Experiments, (available at https://blog.addgene.org/crispycrunch-high-throughput-design-and-
analysis-of-crisprhdr-experiments).

93. M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, E. Charpentier, A programmable
dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.).
337, 816821 (2012).

94.N. Bache, P. E. Geyer, D. B. Bekker-Jensen, O. Hoerning, L. Falkenby, P. V. Treit, S. Doll, L.
Paron, J. B. Miller, F. Meier, J. V. Olsen, O. Vorm, M. Mann, A Novel LC System Embeds
Analytes in Pre-formed Gradients for Rapid, Ultra-robust Proteomics*. Mol Cell Proteomics. 17,
2284-2296 (2018).

95. F. Meier, A.-D. Brunner, S. Koch, H. Koch, M. Lubeck, M. Krause, N. Goedecke, J. Decker,
T. Kosinski, M. A. Park, N. Bache, O. Hoerning, J. Cox, O. Réther, M. Mann, Online Parallel
Accumulation—Serial Fragmentation (PASEF) with a Novel Trapped lon Mobility Mass
Spectrometer®. Mol Cell Proteomics. 17, 1—2545 (2018).

96. J. Cox, M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-
range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 26, 1367-1372
(2008).

97. N. Prianichnikov, H. Koch, S. Koch, M. Lubeck, R. Heilig, S. Brehmer, R. Fischer, J. Cox,

MaxQuant Software for lon Mobility Enhanced Shotgun Proteomics*. Mol Cell Proteomics. 19,
1058-1069 (2020).

12

114



2 Results: Article 2

98. J. A. Vizcaino, E. W. Deutsch, R. Wang, A. Csordas, F. Reisinger, D. Rios, J. A. Dianes, Z.
Sun, T. Farrah, N. Bandeira, P.-A. Binz, 1. Xenarios, M. Eisenacher, G. Mayer, L. Gatto, A.
Campos, R. J. Chalkley, H.-J. Kraus, J. P. Albar, S. Martinez-Bartolomé, R. Apweiler, G. S.
Omenn, L. Martens, A. R. Jones, H. Hermjakob, ProteomeXchange provides globally coordinated
proteomics data submission and dissemination. Nat Biotechnol. 32, 223-226 (2014).

99. P. Mertins, L. C. Tang, K. Krug, D. J. Clark, M. A. Gritsenko, L. Chen, K. R. Clauser, T. R.
Clauss, P. Shah, M. A. Gillette, V. A. Petyuk, S. N. Thomas, D. R. Mani, F. Mundt, R. J. Moore,
Y. Hu, R. Zhao, M. Schnaubelt, H. Keshishian, M. E. Monroe, Z. Zhang, N. D. Udeshi, D. Mani,
S. R. Davies, R. R. Townsend, D. W. Chan, R. D. Smith, H. Zhang, T. Liu, S. A. Carr,
Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of
tumor tissues by liquid chromatography—mass spectrometry. Nat Protoc. 13, 1632-1661 (2018).

100. K. Drew, C. Lee, R. L. Huizar, F. Tu, B. Borgeson, C. D. McWhite, Y. Ma, J. B. Wallingford,
E. M. Marcotte, Integration of over 9,000 mass spectrometry experiments builds a global map of
human protein complexes. Molecular Systems Biology. 13, 932 (2017).

101. P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, 1. Friedberg, T.
Hamelryck, F. Kauff, B. Wilczynski, M. J. L. de Hoon, Biopython: freely available Python tools
for computational molecular biology and bioinformatics. Bioinformatics. 25, 1422—-1423 (2009).

102. A. Razavi, A. van den Oord, O. Vinyals, Generating Diverse High-Fidelity Images with VQ-
VAE-2. Arxiv (2019).

103. F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: large-scale single-cell gene expression data
analysis. Genome Biol. 19, 15 (2018).

104. M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, M. Tanabe, KEGG as a reference
resource for gene and protein annotation. Nucleic Acids Res. 44, D457-D462 (2016).

105. T. Bonald, B. Charpentier, A. Galland, A. Hollocou, Hierarchical Graph Clustering using
Node Pair Sampling. Arxiv (2018).

106. H. Mi, D. Ebert, A. Muruganujan, C. Mills, L.-P. Albou, T. Mushayamaha, P. D. Thomas,
PANTHER version 16: a revised family classification, tree-based classification tool, enhancer
regions and extensive API. Nucleic Acids Res. 49, gkaal106- (2020).

13

115



2 Results: Article 2

W 2.2¢6 cells (6 wp)
B 0.8e6 cells (12 wp)

choice of terminus for tag insertion

]
9% n - ! ) o 30 )
6.0 ° SUpPO! ed_by 23% no prior information available 5] [ 0.4¢6 cells (24 wp)
tagged literature curation @
i ©
protein .) o
interaction | nanobody 4% constrained g
partners o~ 1% . by membrane topology S
/ magnetic ~ @
[ resin @~ 4% avoid insertion at %
HRV-3C important functional motif ;
cleavable linker
9% supported by
structural accessibility (PDB)
signal transduction  autophagy
cel division cell populstion proliferation cytosol Golgi apparatus. RNA binding protein-macromol. adaptor activity
cell differentiation  prot.-containing complex assembly _cell-cell signaling nucleus extracellular region chromosorme DNA binding fRNA binding
cell cycle aging DNA metabolic process nucleoplasm prot.-containing complex  intracell. anatomical struct. enzyme binding transmemb. transport. activity
wanslation chromosome segregation oell death cytoplasm extracellular space peroxisome transcription factor binding  peptidase activity
mRNA processing jepct. intracell. transport  Plasma membrane  cytoskeleton microtubule organiz. center  struct. constituent of ribosome  helicase activity
protein folding cellular protein mod. process cellular amino acid metabolic procsss  Mitochondrion lysosome fibosome MRNA binding cytoskelet prot. binding
cell adhesion lipid metabolic process chromosome organization nucleolus cytoplasmic vesicle nuclear chromosome: histone binding methyltransferase activity acyltransferase act.
endoplasm. reticu. ~cilium vacuole oxidoreductase activity translation factor activity nuclease activity

mitotic cell cycle

cell morphogenesis immune system process

N\ \ N\
. . ) . )
GO: biological process GO: cellular component GO: molecular function /
10 protein transport - \ 1004 1004 aF
7 transmembrane . &
ransport . \e Q?S"
membrane organization ° GTPase activity
= vesicle mediated — = ATPase
=) transport 2 10 = 104 .
2 ribosome biogenesis £ 1 endosome k=) unfolded protein binding
2 A b2} @ kinase activity
z 14 protein targeting—_ o] nuclear envelope , g T 4
=] nucleocytoplasmic . =) ” = structural molecule __
= transport oy ey = A . = activity
= e mitochondrion = " = -
= - ‘ = lipid croplet = lipid binding —
5 transport —o . organization 3 44 “eq = 14 e
(&) plasma membrane extracellular matrix Q o enzyme regulator -~
= organization — ization = < activity
4 2 2 DNA-bindin
= \_ carbohydrate metabolic =1 S transarintion factor
(o) 0.14 process [} o) acmny
o - . o o »
S #._ generation of precursor o~ o 0.14
. metabolites and energy 044 8" o~ phosphatase activity
\- pigmentation .
s anatomical structure | MISSing extracellular matrix » e i
small molecule " development in OpenCell 1.0 usiectidylransf ]m'“‘”g
metabolic process | nuclsoticyltransferase
PrOS8SS rotein maturation yase activity gyt in OpenCell 1.0
T T T T T T T T T T T
0.1 1 10 0.1 1 10 100 0.1 1 10 100

% whole proteome (log)

Figure S1

% whole proteome (log)

% whole proteome (log)

14

116



2 Results: Article 2

Fig. S1: Experimental pipeline (related to Fig. 1). (A) IP-MS using FP capture. All mNG11
tagging constructs also include an HRV-3C cleavable linker for optional release from the capture
resin. (B) Justifying the choice of tag insertion in engineered cell lines. To inform tag insertion
sites, we used a combination of existing data from the literature suggesting preservation of
properties, 3D structures of protein complexes from the PDB and sequence analysis to avoid
important functional motifs. 4% of insertion sites were constrained by the topology of
transmembrane protein targets (fusion to cytosolic termini), and for 23% of targets no prior data
was available. See details in Table S1. (C) Sensitivity of interaction proteomics detection on a
timsTOF instrument. The number of interactors detected in pull-downs from 6 different targets is
shown, varying the amount of input material. To balance sensitivity and scalability, 0.8e6 cells
were used for high-throughput assays (12 well-plate, wp). (D) Distribution of gene ontology
annotations in the OpenCell library (successful targets) compared the whole proteome. Over- and
under-represented terms are outlined. Because organellar organization and transport between
organelles are foundational to human cellular architecture, proteins in these groups are slightly
enriched in our library. Under-represented groups are mostly comprised of proteins in
compartments that are not accessible to our tagging strategy (mitochondrial functions, extracellular
matrix) or proteins that are typically present at low copy numbers and therefore difficult to detect

at endogenous levels (transcription factors).
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Fig. S2: Cell line generation (related to Fig. 1). (A) Success rate for the generation and detection
by imaging of fluorescently tagged cell lines are compared for the whole set of targets we
attempted, and the subset of these that are essential genes. (B) Correlation of protein and RNA
abundance in HEK293T cells (OpenCell). For comparison purposes, RNA and protein abundances
in our dataset are compared to two external references: HEK293 cell line RNASeq from the Human
Protein Atlas, and the HeLa proteome published in (7). In both cases, our data correlates well with
existing references. (C) Repeated from Fig. 1C. (D) Fluorescent detection success rates for
proteins at different percentiles of abundance in the proteome. (E) To evaluate the influence of
CRISPR editing efficiency on the ability to successfully select fluorescently tagged cells, we
genotyped 432 cell lines from our library before FACS sorting (these lines were randomly
selected). After FACS sorting (top 1% fluorescent cells, see Fig. S3A), all lines were imaged by
fluorescence microscopy. Within this set, no fluorescence could be detected in 99 lines (23% of
total). For well-expressed proteins (top 50" percentile of abundance in the whole proteome), un-
successful detection is correlated with low rates of CRISPR-mediated homologous recombination
before FACS selection. A low rate of homologous recombination likely prevents the successful

selection of a fluorescent pool by FACS.
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Fig. S3: Cell library characterization and quality control (related to Fig. 1). (A) Optimization
of sorting strategy. Polyclonal cell pools were sorted using gates of increasing fluorescence (left
panel) and genotyped to quantify the enrichment for mNG1 1-inserted alleles (right panel, showing
data for 6 different target genes). This informed our final sorting strategy in which the top 1% of
fluorescent cells (gate I) were selected. (B) Genotype analysis of the polyclonal OpenCell library.
A single allele is required for fluorescence, but our cell collection is enriched for homozygous
insertions. In total, mNGI11 insertions account for 61% (median) of alleles in a given cell pool
across the full library (Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent
1.5x interquartile range). The median values of mNG11 integrated alleles, wt alleles and other
alleles are shown on the right. (C) Measurement of target protein abundance in final selected cell
pools vs. parental cell line, by quantitative Western blotting. (D) Measurement of target protein
abundance in final selected cell pools vs. parental cell line, by single-shot mass spectrometry. In
these experiments, tagged lines are measured in a single replicate and compared to 6 replicates of
non-edited control cell lines. Outliers targets are defined by an abundance that deviates by more
than 2.5 standard deviations and by more than 2-fold of their abundance in the controls. The 5
outlier lines are outlined. (E) Distribution of Pearson correlation values measuring the overall
correlation of abundances for all cellular proteins in each tagged cell line vs. median control. (F)
For the outliers outlined in (D), correlation of abundances for all cellular proteins in the tagged
cell line vs. median control. The abundance correlations for two individual control repeats are
shown for reference. (G) Examples of overexpression artifacts. Single z-slice confocal images are
shown (scale bar: 10 um). Endogenously tagged lines and their equivalent overexpression
constructs were not imaged using the same laser power, so that signal intensities are not directly
comparable. Nuclei are shown as blue outlines (nuclei can be located in a different z-plane than
the one shown). “Masking effects” are defined as the loss of fine localization details upon

overexpression.
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Fig. S4: Interactome analysis (related to Fig. 2). (A) Strategy for defining enrichment threshold
to define interactions. Our strategy builds upon methods described by Hein et al (7). Here we use
a quantitative approach to define enrichment thresholds dynamically for each replicate set, globally
constrained by the parameter amreshold. (B) To optimize parameter choice, we measured how
precision (% co-localization) and recall (% CORUM coverage) of the corresponding interaction
network varied with agmreshold. This informed a final value of 0.12. (C) Comparing interaction recall
(% CORUM coverage) of OpenCell vs. other large-scale interactomes, including direct or 2"-
neighbor interactions (i.e., sharing a direct interactor in common). (D) Comparing interaction
precision (% co-localization) of OpenCell vs. other large-scale interactomes. CORUM interactions
are shown as a reference. (E) Direct comparison of OpenCell vs. Bioplex 3.0 on identical bait set.
Both datasets use the same HEK293T cell line and share a large number (683) of baits in common.
Precision and recall analysis by varying threshold for interaction detection (ashreshold in OpenCell
and plInt in Bioplex) is shown for the intersection set of 683 baits (dots represent values using
thresholds used for final publication sets in both studies). For these set of overlapping baits,
OpenCell also includes many new measured interactions for that intersection set of baits (right
panel, top). The interactions unique to OpenCell have high precision values (right panel, bottom).
(F) Compressibility analysis (32) of OpenCell vs. other large-scale interactomes. (G) Number of
interactions measured in OpenCell (in the full dataset) that were also measured in Hein et al. (7)
or BioPlex 3.0. (H) Distribution of GO annotation overlap between protein pairs identified in low-
stoichiometry and high-stoichiometry interactions. (I) MCL clustering performance (F1 score)
using stoichiometry-weighted or unweighted interaction graphs, derived from CORUM

interactions as described in Drew et al (90).

21

123



2 Results: Article 2

A NESLL 1
NESLZ 1
KIRAIS522 1

NHS 1
NESLL 1
NESL2 20

KIRAIS522 1

NESLL 20
NHSL2 22
KIZAI522 1
N 1

107

NHSLL
NHSL2
KIPAL522
NHS

NHSLL
NESLZ 22
KIPA1522
NHS 341

NESLL
NESLZ
KIRA1522
NHS

NESLL
NESL2 32
KIRA1522
NHS 461

HESLL
NESL2
KIRA1522

wESLL 3
NHSL2 3
KIAR1522 2
W 5

NHSLL
NHSL2
KIRA1522
NHS

NHSLL
NESLZ
KIPAL522
NHS

NHSLL
NHSL2
KIRA1522
NHS 502

B Rav1

Rav2

S. cerevisiae D. melanogaster

Figure S5

MPEYRRTVVEQRLC

MPEAKRIVE EQWLCRQRR PAPGEAVDASGGSAER PPPLOPPGRRD LDEVEAPGPEE EARA

~MKKEGS SGSFRLOPNTGEL- —

VPAPSGLEPPPEPLPAPADQTQREHGEASVAGEE STAGI PEARPAAGEAS SARARARVLL

SRAVSWINFSSLSRQT- -KRLER-SDGELSVCGOQVEVDDENWIYR
LAELRDVSHLAALSLLRQLADLCGHSLALLEDLEGHLLALG

MLDLCAVENAALARVLROLS DVARHAC SLEQELESDIQLTH- CREVWALOGRLGGY

PWHQQENVELPTT BBCVEDEH
ELSSGREESVEELL
JD]\-ILaVG PGQGPGaAvaQDN BrPSGREEHLERLH
PC EEL:

TOROEGLRS LOHOEKOKLNKG 'Uﬂ DTOST TGP
RERRQSHOALRREHRSRS -—--DRR] Egm/mms - —IN\PPLPMPPAHSQRF REFKDR

ETDQKCSL SEEERFISIRRPKTEASSDESDLNTQTNWT
PEASLELSTT.

D
EFTLMPTER. QLSEDETTTOG DEOTAWN
INISFCS TTEY

HE LTENS TR S PSPTECCHMT PWE RKSHPPEDE DTDVMLGOR PKNP TENTPSTLDKQTNWS

K5 LPLETEEEKMROGAQTVORDYVEEN I TASGTGODDADGHS VYT PDHYS -
SLFPLPILEEKRWPOLCSTOSDI VRN TS GOOFDKHAS LRHSL ENTETAVNPKS TLRRRR
B SSTAEDALS TRGEM -~ IORKGSTFR PHDE FP-— SRRRRERRS
KALPLETEEEKMKQDAQVISS! FDREASIR(‘SLVHSQSVLQFKFKLKFJU’

8]

- TLGRFNSCRSAGORSETRDESCOTEDVKVVPES
TIIGFSNESQRDQGHSNS TT-SDIRPSHSY

TVLGLPQEVOKELGLRNEREAPGTR ---RAPGARDA-—
TISGIPRRVOOETDSDES PVARERNVIVHTNPDPSNTYNRTSGTRDSECQTEDI LIAAPS

MRRIF_AQKGOGIAADMGHFS S:G\IM:\/L”DSAGIVFPSRLDﬁDAGF HSLPRSGARANT

GRPRGTSGMGARVS A AGF Lg 2
RRRIRAQRGQS TARSLSHSAGNIS- --ALADKGDTMETPAVSSRTRSR-SLPRE--GNRG

QSLEPRLGALGEAGDMNGTELYQR- -~

YRDDTEVGRSTGTRAPEL- - -TREMS- **LAVPGLI‘ G-
uDAEPE\XGAE\PSAYEEGESFVGDHER’T‘P\IDFSEAPSaPaAQDHOPTLGLACS QHLHSEQ

80~

ELF_HFESENIMSPACVVSPHAT”S’T" TENATLS SSSEVIATPTAQSAGORESK
ESTFSTSNE
AemewAn g(zm‘m <L PHAVLPPTVDVVALGRCS LRTL
HKLSERGRSRLSRMAADSGECDISS TF

35GSSHART KSRDH-LISRHAVKGD PQ SEGRHWNEGHATILSQDLDEHSPGE ~P-~ALLS
GDAFTYMTESATSQSHIG CGNSWVSLNKS
CSLHSASPASVRSLGRFSSVESE
GEPTHCT STAGVLLSSHMDOKDDHOSS SGNWS G SSTCPSQTSET IPPARSPPLTGES

~GGGE
PAGC

——--oo {SRIE
~~EQYNDHLDKVRGHRANSFTSTVADLLDDENNS

LCDSAVPLNAPANRENGSQRME YNCRNNLAF PAHPODVDGKSESSYS -~
ATLL D

HCDSELSLNTAFHANEDASVEVT -

HSSSEPWEYKS 5GNGR-----AS -~ -HLATPGYSTPTSNUSSCSLDOTSNKEDAGS
§---GBAGTEE -~~~ -RLIQORIMPERPSKIGLLTS- -~ GTSRLETGPGGASFFF_EF.
S58EDTWEHS0SSDT-- IVEDGE TLESKGGSEG T-

NTSDSEWN‘(LHHH‘HDV\SCRQDF:PERPK’\D)L\;CPSFT)NATYDSFLEKSPSD]«AD res

LYSEDHDGYCASVHT LN,
SLEVPTDSGTTDVDYDEEQRANEAC
SVVPPEOCG

DSEGNPRHS- VINVEVGRAGKNOGDRSNYODK
VDE‘LST ~Q0ER

Asuu" IRSSGY

HFSVDTECY YTSMHFDOG LKGNKSY VOHY ARLGPENCQGVGAS PG LEDCAW- QDY LDHKE

SLSRNIELKEARKPHELBESETOEERRT PKKSSO
QRSKb I8 LRKAKJ«KPSETESVFVKDEPGLL—

RELER ypyg@x HEEHORGH

QGRESTH FRKPKA]\PT KRSS|

CNGQVLNES LIATLOHSLO
pEGGsAmeQ— —-RPKSLC

\LSLPGKch SPSQSPCSDLEEPWLERS-RSQSTVSAGS SUTSATTENVYSLCGATRSOSD
DAQCHPATPNH

LPPBPEF KO
i vrmmmwm.mmpsmgn EQUTKE.

—-QLDASDIEPF-KD

Rben-3A° DMXL1 DMXL2
ROGDI

Rbcn-3B

H. sapiens

3
~VRIPTV

REPSLTSPVLRTPSSEPDEFHOARS

- —GHPQADENLGHLGGRSGTGTLLRPK

PELVEK-
3

62
15
16
174

106
133
63

H 227

B 154
183
103
280

196
224

J46
284
161
400

57_1

443

661

550
451
350
116

772
626
191
937

TSSVKSEYTD PfiGYY I~ ----DYTGUQ- -~ EDPGNPAGGCSTSSGYPTGNGRVRHVOEGS
KDPEST’,)FSHHWYLTDW(SGDTYQSLSSSSTATG’V‘T\/ TECTQVOG- -~ -SSESLASPSTS

EVAESTHYAD LWLLN]L(TNDPYRSLSNSSTY\TGTTV 1ECIKSPE----9SESQTSQSES

RATMPOVPGGSVK-PXIMSBEKSHRVIEPESGEVEE08 NTPTALTEVEVFLKSJSPANG(G
RATTPSQLSIEVEAR RPEGLMEPSSGYESOSETBE LTV SHS PEPSSSY

PG RRPERSPERTLEPSSGYES0SGIBTLED: GEPASPG
RATTESLESVDNE- F\LAaPEKLAGLASPssGYSSQsETPTsCFPTAicPL P G--5
KPKBrvBER<SBH1S 5VSI5S5-STSLSSSTS - —TEGSGTMKKLDPA -V
RVRPWE SLPPTS PMEK]

KBERYTSERS PGATVISSLTSLCISISDRARSDRSE CILTPLCDRFVIPPHP(V
KRKPKV 1

B <SSLQQPS LEDGT-I5

GSBPAPPPPPVPSPPFPCPADRS PFLPPPD-PVTDCSQGEP LPHE PVEPPRBPEALIPEC
LELTS-SENLDLSGMS-ISIRS- KTKVSRHESETNEGVKLAQKTNENQP TMPMY

FSPPE! SENPARPALARPAVVEGEVSTTDA- 5 OTTLTPLY
LETIP PTHLDLSALH NvLNyarmm[PLmT”wmKQN”VC LRSNPEESLA I

SPPDWCLS
TQSDLE S E;
E :-P\/ISYDQSPPPSPPPS THPEPEPTKKPEVVVEAPSASETALLELO) ‘DPNWPPPPPPAPE

PAL TLEDS PV LPLPPPLLP

TPTILE INKSEEVEQKEENNTDLPYLE
SSEPPE T-\PPLDPKFM(DTRPPFTN SGQPE--S8- RGSLRPPETKE- -
LPRAEE KEPVAE-KPPVA--RR- LVEKPPSVEE

:QDLSMAJFPPPLAEFS EE PLL IQEPGSEDPREA
ESTLTT--A-ALSP- erIRPH‘TAN SVER---—

E--TSRPPMPLITTEALQUVQLR- PVRENSG
YALTSPTLAMPPRSSIQHAR - -~ PL-PQDS
PEAEAEADSAPM-WMLPQKEPVGcskGGGPPF_EDchELWEsLLQMVRLRWUAP—‘G

YSTEDTI LS FLDSSAVENGPDKLHLEX

EARQLSERTAQEQRTPVAPQYHLKPSAFLE: FMtnEyEtEtQms\/——

YTV---VRI
APTPAL PQKPL LSG RASPVPAD" LHARVRLK
FDV---KNRCDPET ITSA‘SSLLngV’T‘KDQ\/R"‘ TEETEE NT2TK
TSZLPTPAKSSS 0GL --GSRAE- SAGER

SEboonbross TApCeL OGSVE

ACHLAAS- - EGLSSAQPNGPPEALPRPPOS PASTASE TFSKGSRKLOLER - PVSBETO-A
NCAKPTEGFQRVSARRPNDLD— --GKI1QY--GPGPDE-TLEQVOKABSAGLE

EARPSPSTTE- ----LPDSSPSRKPPPISKKPKLFLVV-PPBOKDFAVEPAENVSE
DEGPKVRVLPERISLOSQEEAEKKKGKI PPPVPKKPSVLYLPLTSETA- “U-E
DLQR.NL\/AhLRS1SEQRPPQAPKKSPK}\PPP\/ARKPE\IC—\/EPPI\EESY PRA- B

—-—-VITSQSDSPTRATDYV--SNQFKH
ALRAVPSPTTGEEGS VHSREAKESSARQAGSHATHRGTSVL
AY - -AEPR-LPLEPIITLEE
PLT PTN---GLPHTQDRTKREL N

SRHHDKVEGTISYESE ITSVNSFPEK
NVPMVQPDVE DAPK, “EPAENSADTGGD GESCLCQQDCAA(;VPETN}\AG:SSEA(_DFLK

QF
DLOSLGQRVTSTPQADS -~ EREASPLGS
VLQLVGPE
1————A>PISA<>AssN——sKAEETQGN&DEACLKE—

SLISDKTAEWIA

*PSDDSIZSPLSED’SQ

EDGNDEVMTESRPRTTEDLEARTHRSKRKYVLGRRDSDDDHE RNHEPS -~ PPY-— -
EDDDDVEV---ASRTTEDLETVIHRSKRKLLGWKE PGEAFVGGRTS SHSPTKNTAE

ADAEGVFVSPNKPRTTEDLEAVIHRSKRKVLGRKDSGIMSVRSKSRE:

~-~TPTGAAPSLASPKQVGS IQRSTRKSSTSSDNFRANLLKKGSRSDTSARMSAAENLKNT
-SPISESTATA---GS -- -G SSANLDAGRNDD FRALLOKKGSKAT PRSRPSAAELLKTT

ITEPSSN

TTPNSQRSPGLIYRNAKKSNT

NEEERLLLLKKGSREDSS VR

DPRFQRSR
NPLARRIIAQFSYDY ETTDNEST

SPSKNRRA

IL--

KPPGELTAZS POSTDDAHOGSOGAE.

LSPLEPCSPRY

1-SFSGPRYGRSRTEPSARSSRYSURNRIQSSEMTVISEGEGEAVE FVDS IARGALGAAE

FATSASARVGRSRAPPARS SSRYSVRCRLYNTPMOAT SEGE TENSDGS PHDDRSSQSST—

GCSLDGL MDEGGLLCGEGPARSLQPQARGEVDGTASAEGREPSPOCGGSLSEES

824

22

124



2 Results: Article 2

Fig. S5: Sequence analysis of orphan proteins (related to Fig. 2). (A) Amino-acid sequence
alignment between human NHSL1, NSHL2, KIAA1522 and NHS. (B) Correspondence of RAVE
complex members in S. cerevisiae, D. melanogaster and H. sapiens. Note that in S. cerevisiae

RAVE also includes Skp1, not depicted here.
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Fig. S6: Computer vision for automated microscopy acquisition (related to Fig. 3). (A) To
automate microscopy acquisition on 96-well plates and to limit experimental variability between
imaging sessions (e.g., to limit variations in cell density) we paired an acquisition script, written
in Python, with a pre-trained machine learning model to select field of views (FOVs) on-the-fly
during the acquisition. A total of 25 FOVs are sampled per well in a single z-plane, and desirable
FOVs are selected for further 3D confocal acquisition on the basis of a score predicted by the pre-
trained model. (B) Microscopy automation workflow. Microscope hardware is controlled by a

Python-based acquisition script via an open-source MicroManager-Python bridge (mm2python;

https://github.com/czbiohub/mm2python). This approach enables us to combine custom
acquisition logic with the rich ecosystem of Python-based machine-learning packages. Here, we
use the scikit-image package to extract features from each FOV snapshot, then use a pre-trained
random-forest regression model (scikit-learn) to predict a quality score for the FOV. This process
is not computationally expensive and requires less than a second; the FOV score can therefore be
used immediately to determine whether the script should acquire a z-stack or else move on to the
next position. To maximize the quality of our confocal z-stacks, however, we chose to visit and

score all 25 FOVs in each well, then re-visit the top-scoring FOVs for confocal z-stack acquisition.
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Fig. S7: The OpenCell image dataset (related to Fig. 3). (A) Principle of graded localization
annotation (manual annotations). (B) Fraction of multi-localization between cellular
compartments. Complete localization annotations can be found in Table S6. (C) Comparison of
annotated localization for proteins in OpenCell and Human Protein Atlas (HPA, version v20)
datasets for which annotations are inconsistent. (D) Extensive literature curation allows to resolve
77% of OpenCell/HPA discrepancies (full details in Table S8). Here “direct evidence” refers to
proteins for which localization has been directly measured in published studies, while “functional
evidence” refers to proteins for which localization might not have been directly measured, but for
which literature establishes a function that is predictive of a specific localization. For example,
SCFDI1 is a protein whose main known function is to regulate transport between ER and Golgi.
This qualifies as “functional evidence”. It is annotated as localized in the ER and Golgi in
OpenCell, and in the nucleoplasm (main) and cytosol (additional) in HPA. (E) Comparison of
annotated localization for 350 orthologous proteins in OpenCell and S. cerevisiae yeast (from

LoQaTe (47)). Note that in yeast Golgi and vesicles are difficult to distinguish.
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Fig. S8: high-resolution image clusters (related to Fig. 4C). (A) Size of clusters C (number of
proteins in each cluster) as a function of clustering resolution. Shaded regions show standard
deviations calculated from 9 separate repeat rounds of clustering, and average values are shown as

a solid line. (B), (C) Examples of clusters of cytoplasmic (B) and nuclear (C) proteins.
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Fig. S9: Full hierarchical structure of interactome and localization datasets (related to Fig.
5). Dendrograms represent the hierarchical relationships connecting (A) the full set of protein
communities identified in the interactome (see Fig. 2) or (B) the full set of high-resolution clusters
identified in the image collection (see Fig. 4C). For each dataset, an intermediate layer of hierarchy
separates 18-19 modules, while an upper hierarchical layer delineates three separate branches.
Modules and branches are annotated on the basis of gene ontology enrichment analysis (see Suppl.
Tables 5 & 9). Right-hand panels present the topological arrangement of branches (top) and
modules (bottoms) in each dataset, highlighted from the full graph of connections between
interaction communities (“interactome”, see Fig. 2D) or from the localization UMAP
(“localization”, see Fig. 4C). The color codes between interactome and localization datasets are
not directly comparable (i.e. same colors are not meant to represent the same exact set of proteins).
(C) The hierarchical structures derived from interactome (left) and localization (right) datasets are
compared to the hierarchical structures derived from “scrambled” controls — that is, to the
hierarchical structure that is expected by chance given the proteins present in our dataset. Controls
are generated by randomly shuffling the membership of each protein between spatial clusters or
interaction communities. The number of proteins in each cluster or community was preserved from

the original data.
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Fig. S10: Biophysical & ontology analysis of the main branches from interactome and
localization hierarchies (related to Fig.s S and S9). (A) The three branches derived from the
image-based hierarchy (see Fig. S9A). (B) Enrichment analysis of GO annotations in the
hierarchical branches, testing GO term enrichment of proteins in each branch against all proteins
in the interactome (Fisher’s exact test, showing annotations enriched at p < 10-'° and excluding
near-synonymous annotations). (C) The three branches derived from the interactome hierarchy
(see Fig. S9B). (D), (E) Enrichment analysis of GO annotations in the hierarchical branches,
testing GO term enrichment of proteins in each branch against all proteins in the interactome
(Fisher’s exact test, showing annotations enriched at p < 10! and excluding near-synonymous
annotations). (F) Heat-map representing significance testing of biophysical properties of protein
sequences in the 3 branches. P-values were obtained using Student’s t-test comparing proteins
belonging to a specific hierarchical branch against all proteins in the three branches. (G) Box plots
representing the significance testing of biophysical properties described in (F). Boxes represent
25th, 50th, and 75th percentiles, and whiskers represent 1.5x inter-quartile ranges. Median is

represented by a white line. ** p < 10 (Student’s t-test), exact p-values are shown.
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Fig. S11: Unique properties of RNA-binding proteins (RNA-BPs, related to Fig. 5). (A)
Distribution of disorder score (IUPRED2) for RNA-BPs vs. non-RNA-BPs across the whole
proteome. (B) Distribution of protein abundance for RNA-BPs vs non-RNA-BPs across the whole
proteome (left) and across OpenCell targets only (right). (C) Distribution of number of interactors
for RNA-BPs vs non-RNA-BPs across OpenCell targets. (D) For each OpenCell target, the number
of interactors is plotted as a function of protein abundance. The subset of targets that are RNA-
BPs is highlighted on the right-hand panel. Note: for boxplots in (A), (B), (C) and (D), boxes
represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x interquartile range. Median
is represented by a white line. (E) Distribution of hydrophobicity score (gravy) across spatial
clusters, comparing our data to a control in which the membership of proteins across clusters was
randomized 1,000 times. Lines indicate parts of the distribution over-represented in our data vs
control (**: p < 2x1073, Fisher’s exact t-test). (F) Distribution of high-hydrophobicity spatial
clusters (average hydrophobicity score > -0.1) in the UMAP embedding from Fig. 3D (left), and
ontology enrichment analysis of proteins contained in these clusters (right). Enrichment compares

to the whole set of OpenCell targets (p-value: Fisher’s exact test).
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Fig. S12: Interactive data exploration at opencell.czbiohub.org. (A) The three principal pages
of the OpenCell web app. From left to right: the target page, interactor page, and gallery page. (B)
The target page consists of three columns. The leftmost column contains the functional annotation
for the target from UniProt, links to other databases, our manually-assigned localization
annotations, and measures of protein expression. The middle column contains the image viewer,
and the rightmost column the interaction network. (C) The image viewer allows the user to scroll
through the confocal z-slices using a slider or to visualize the z-stack in 3D as a volume rendering.
In either mode, the user can pan and zoom by clicking, dragging, and scrolling. (D) The interaction
network can be toggled with two alternative, complementary visualizations of the target’s protein
interactions: a volcano plot of relative enrichment vs. p-value and a scatterplot of interaction
stoichiometry vs. cellular abundance stoichiometry. In both the network view and the scatterplots,
the user can click on an interactor to open the target or the interactor page for the corresponding

protein.

37

139



2 Results: Article 2

List of Supplementary Tables

Note: each Supplementary Table contains a specific “read me” tab that describes its content in
detail.

Table S1.
The OpenCell library (includes target information, library design and genotype data). Related to
Fig. 1.

Table S2.

Annotated HEK293T proteome (includes RNA and protein abundance data, biophysical
properties and ontologies relevant to the analyses presented in this paper). Related to Fig. 1.

Table S3.
Properties of successful vs. unsuccessful edited targets. Related to Fig. 1 & S2.

Table S4.
The OpenCell interactome (quantitative description of interactions). Related to Fig. 2.

Table SS.
Clustering analysis of the interactome (analysis of MCL clustering and subsequent hierarchical
analyses). Related to Figs. 2 & S9.

Table S6.
The OpenCell localization dataset and annotations. Related to Fig. 3.

Table S7
Comparison of OpenCell to Human Protein Atlas (Table S7A) or yeast (Table S7B) localization
annotations. Related to Fig. 3B & S7.

Table S8.

Resolving discrepancies between OpenCell and Human Protein Atlas annotations by literature
curation. Related to Fig. S7C.

Table S9.

Clustering analysis of the imaging dataset (analysis of Leiden clustering and subsequent
hierarchical analyses from high-resolution clusters). Related to Figs. 4 & S9.
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2.3 Article 3: DIA-based systems biology approach unveils E3 ubiquitin ligase-

dependent responses to a metabolic shift

Karayel, O., Michaelis, A. C., Mann, M., Schulman, B. A. & Langlois, C. R. DIA-based
systems biology approach unveils E3 ubiquitin ligase-dependent responses to a metabolic
shift. Proc National Acad Sci 117, 32806-32815 (2020). doi: 10.1073/pnas.202019711

This study connects to the previous ones via its systems biology approach to use optimized 96-
well plate compatible sample preparation and shortest possible mass spectrometry measurement
times to screen for hundreds of near-complete proteomes under perturbation conditions in S.
cerevisiae. In order to allow proteome measurements in about 20 min we used a data-
independent acquisition approach and we were able to reduce gap times drastically by
optimizing HPLC settings. This allowed us to measure several hundreds of proteomes in a few

days.

In the screen we applied several perturbation conditions that included heat shock, osmotic
stress, growth on ethanol, and starvation conditions. While those distinct responses provide a
comprehensive resource, they also unveiled a carbon source dependent GID E3 ligase

dependent regulation, which is an important cellular regulator for metabolic switches.

This study shows that global approaches are necessary to observe and understand the complex
dependencies that shape the cell and its responses to environmental changes. Systems biology
approaches like this enable the fast screening of many samples to discover the most prominent
cause of a response efficiently and unbiasedly. Here, in comparison to the previous described
project, we offer a solution to use a nano-flow HPLC instead of a high-flow system for short

gradients with reduced gap times on an Orbitrap platform.

This study was a great collaboration between the Mann lab, represented by Ozge Karayel and

myself and the Schulman lab, represented by Christine Langlois and was published in PNAS.
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DIA-based systems biology approach unveils E3
ubiquitin ligase-dependent responses to a

metabolic shift

Ozge Karayel®'®, André C. Michaelis® ®, Matthias Mann®?

, Brenda A. Schulman®2®, and Christine R. Langlois™

3Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; and ®Department of Molecular
Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany

Contributed by Brenda A. Schulman, November 8, 2020 (sent for review September 28, 2020; reviewed by Angus |. Lamond and Alexander Varshavsky)

The yeast Saccharomyces cerevisiae is a powerful model system
for systems-wide biology screens and large-scale proteomics meth-
ods. Nearly complete proteomics coverage has been achieved owing
to advances in mass spectrometry. However, it remains challenging to
scale this technology for rapid and high-throughput analysis of the
yeast proteome to investigate biological pathways on a global scale.
Here we describe a systems biology workflow employing plate-based
sample preparation and rapid, single-run, data-independent mass
spectrometry analysis (DIA). Our approach is straightforward, easy
to implement, and enables quantitative profiling and comparisons
of hundreds of nearly complete yeast proteomes in only a few days.
We evaluate its capability by characterizing changes in the yeast pro-
teome in response to environmental perturbations, identifying dis-
tinct responses to each of them and providing a comprehensive
resource of these responses. Apart from rapidly recapitulating previ-
ously observed responses, we characterized carbon source-dependent
regulation of the GID E3 ligase, an important regulator of cellular
metabolism during the switch between gluconeogenic and glycolytic
growth conditions. This unveiled regulatory targets of the GID ligase
during a metabolic switch. Our comprehensive yeast system readout
pinpointed effects of a single deletion or point mutation in the GID
complex on the global proteome, allowing the identification and val-
idation of targets of the GID E3 ligase. Moreover, this approach
allowed the identification of targets from multiple cellular pathways
that display distinct patterns of regulation. Although developed in
yeast, rapid whole-proteome-based readouts can serve as compre-
hensive systems-level assays in all cellular systems.

yeast systems biology | mass spectrometry | proteomics | stress | GID E3
ligase

Proteome remodeling has repeatedly proven to be a vital
cellular mechanism in response to stress, changes in envi-
ronmental conditions, and toxins or pathogens. Cells must both
synthesize proteins which enable them to adapt to the new envi-
ronmental condition and inactivate or degrade proteins which are
detrimental or no longer needed. For each environmental
perturbation, the proteome must be precisely and distinctly
remodeled to ensure healthy and viable cells (1). Indeed, de-
creases in proteome integrity are hallmarks of many human
diseases, including cancer, Alzheimer’s disease, muscular dystro-
phies, and cystic fibrosis (2-4). Despite the importance of cellular
stress responses, our understanding of how cellular pathways in-
teract during adaptation remains incomplete. Therefore, knowing
precisely how the proteome changes at a global level in response to
environmental cues is crucial for identifying the underlying mo-
lecular mechanisms that facilitate cellular adaptation.

The yeast Saccharomyces cerevisiae is a powerful model system
that is widely used to probe biological pathways, due to its ease
of manipuylation and rapid growth compared to mammalian
models. In addition, the availability of extensive genetic re-
sources in yeast, including deletion libraries (5, 6), green fluo-
rescent protein—tagged libraries (7, 8), overexpression libraries
(9), and the recently developed SWAp-tag library (10-12), has

32806-32815 | PNAS | December 22,2020 | vol. 117 | no.51

made yeast a premier model system for conducting transcriptomics,
proteomics, interactomics, or metabolomics screens (13-19). In-
deed, systems-wide biology screens and large-scale proteomics were
both pioneered in the yeast model. Furthermore, the cellular in-
teraction networks and molecular mechanisms ascertained in yeast
can be readily applied to other systems (20-22).

Early genome-wide studies showed that over 4,000 proteins are
expressed during log-phase growth in yeast and this organism was
the first whose entire proteome was mapped by mass spectrometry
(MS)-based proteomics (23). Subsequently, yeast has served as a
model of choice for the development of ever-more-sensitive and
faster proteomics workflows (23-34). Remarkably, the optimized
sample preparation coupled with MS analysis performed on the
Orbitrap hybrid mass spectrometer allowed identification of
around 4,000 yeast proteins over a 70-min liquid chromatography
(LC)-MS/MS run (24, 30). However, the necessity of technological
expertise and lengthy analysis times for high-quality, in-depth
yeast proteome measurements has so far precluded the wide-
spread adoption of cutting-edge proteomics workflows in the yeast
research community. With further advances in technology and
new acquisition modes, such as data-independent acquisition
(DIA) (35, 36), we hypothesized that it would now be possible to
obtain accurate and high yeast proteome coverage by a straight-
forward and rapid single-run approach, enabling researchers to

Significance

We use a single-run, data-independent acquisition-based mass
spectrometry approach to generate and compare dozens of
yeast proteomes in less than a day, and provide a compre-
hensive resource detailing changes to the yeast proteome fol-
lowing commonly used stress treatments in yeast. Our systems
biology approach identifies and validates regulatory targets of
an E3 ubiquitin ligase during a metabolic switch, providing
insights into the interplay of metabolic pathways. The speed,
simplicity, and scalability of this workflow makes it particularly
well-suited for screens in any cellular system to investigate
specific effects of deletions or mutants or other perturbations
to obtain the response of biological system on a global level.
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easily study biological processes on a global scale. Such a system
could then serve as a template for more complex proteomes, in-
cluding the human proteome.

One mechanism of maintaining proteome integrity is the
marking and degradation of proteins that are damaged or no
longer needed with ubiquitin. The conjugation of ubiquitin to its
targets is catalyzed by E3 ubiquitin ligases, a diverse group of
enzymes that recognize and bind target proteins and facilitate
ubiquitin transfer together with an E2, ubiquitin-conjugating
enzyme. Ubiquitination relies on a variety of cellular signals to
direct E3 ligases to their target proteins, and tight regulation of
this process is crucial for cellular viability (37). For instance,
during carbon starvation, yeast cells induce expression of the
inactive GID (glucose-induced degradation) E3 ligase, which is
subsequently activated upon glucose replenishment. Following
its activation, the GID E3 ligase targets gluconeogenic enzymes,
leading to their degradation and sparing the yeast from ener-
getically costly metabolic pathways that are unnecessary in fer-
mentable carbon sources (38-40). In addition, ubiquitin ligases
also serve as crucial regulators in response to oxidative, heavy
metal, and protein folding stresses (41-43). Despite the impor-
tance of ubiquitination during cellular adaptation, our knowl-
edge of the E3-dependent responses to cellular perturbation
remains incomplete.

Here, we describe a systems biology approach employing
rapid, single-run, data-independent (DIA) mass spectrometric
analysis, which we use to comprehensively map changes to the
yeast proteome in response to a variety of yeast stresses. We
investigate growth conditions commonly used in yeast research,
including growth media, heat shock, osmotic shock, amino acid
starvation, and nitrogen starvation. Our DIA-based approach is
sufficiently sensitive and robust to detect quantitative proteome
remodeling in response to all these stresses. We then apply this
methodology to probe a specific biological question to identify
novel regulation by the GID E3 ligase during a metabolic switch.
We use a combination of a core subunit deletion and a structure-
based catalytic mutant to identify all of the known substrates of
the GID E3 ligase and discover two previously unknown targets
which display distinct patterns of regulation.

Results

Streamlined and Scalable Yeast Proteome Analysis Employing DIA. In
order to establish a fast and scalable single-run analysis approach
for yeast proteome profiling, we explored a DIA strategy on an
Orbitrap mass spectrometer. Unlike data-dependent acquisition
(DDA), a DIA method isolates coeluting peptide ions together
in predefined mass windows, fragmenting and analyzing all ions
simultaneously (36). This strategy overcomes the limited se-
quencing speed of sequential DDA, enabling fast and scalable
single-shot analysis workflows. On Orbitrap-based mass ana-
lyzers, it yields substantially higher number of identified proteins
with unprecedented quantitative accuracy (44). To generate a
yeast-specific and comprehensive spectral library that is generally
used for this approach, we cultured yeast under various growth
and stress conditions. After extraction and digestion of proteins,
we separated peptides obtained from each condition by basic
reversed-phase (RP) chromatography into eight fractions. The
resulting 64 fractions (8 fractions x 8 conditions) were measured
using a DDA method with a 23-min LC gradient and analyzed
with the Spectronaut software (Fig. 14). Together with LC
overhead time this took about half an hour, allowing for the
analysis of 45 samples per day—almost half a 96-well plate. Our
library comprised more than 74,103 precursors which mapped
into 4,712 unique proteins, covering 87% of the expressed yeast
proteome according to a previous report that computationally
aggregated 21 different large-scale datasets (45). The median
sequence coverage was 27% and on average 12 peptides were
detected per protein.

Karayel et al.

Combined with our own comprehensive spectral library, the
23-min DIA method on average identified 33,909 peptides and
3,413 distinct proteins in single measurements of six replicates
(Q-value less than 1% at protein and precursor levels; Fig. 1 B
and C). This implies that ~73% of proteins in the deep yeast
spectral library were matched into the single runs. Note that the
single runs represent only yeast grown in rich media (yeast extract
peptone dextrose [YPD]), whereas the library combines the pro-
teomes of yeast grown under several growth conditions and
therefore contains proteins which are not expressed during growth
in YPD. Therefore, the degree of proteome completeness is likely
much higher than 73%. Measurements were highly reproducible
with Pearson coefficients greater than 0.92 between replicates (S/
Appendix, Fig. S1A4) and coefficients of variation <20% for 68% of
all common proteins between the six replicates. In comparison, a
single-run, data-dependent acquisition strategy with the same LC
gradient quantified only 11,883 peptides and 2,289 distinct pro-
teins on average (Fig. 1 B and C). To more directly compare the
performance of the 23-min DIA method to the DDA method we
analyzed the same sample with increasing gradient lengths. We
could only reach the same depth using the DDA method with at
least 180-min-long LC gradients (33,425 peptides and 3,435 pro-
teins) (Fig. 1 B and C). Thus, the DIA method allows us to obtain
coverage comparable to DDA in a high-throughput and in-depth
fashion while taking considerably less MS time.

Large-Scale and Quantitative Analysis of Yeast Stress Response in
Half a Day. Using this DIA-based systems biology approach, we
next comprehensively and quantitatively analyzed proteome
changes in response to various stresses in yeast. Each condition
was processed in three biological replicates and—after tryptic
digestion—the peptides were analyzed in single runs using the
rapid DIA method. We quantified 3,506 distinct proteins in total
(Fig. 1D and Dataset S1). Reproducibility was high, with Pearson
correlations >0.93 between the three biological replicates (S/
Appendix, Tig. S1B). Strikingly, over 90% of all detected proteins
were consistently quantified at varying levels across all conditions
(Dataset S1). Principal component analysis (PCA) demonstrated
that the first component accounted for 13% of the variability and
segregated with the different conditions and growth media as the
major effectors (Fig. 1E).

We first looked more closely at the differences in protein
expression during growth in YPD (rich media) and SC (synthetic
complete media), the two most common growth media used in
yeast research. YPD and SC media differ in their nutrient
composition as well as their pH. During growth in YPD, the
three most significantly up-regulated proteins (Sitl, Ctrl, and
Enbl) are regulators of copper and iron transport (Fig. 1 F, Right
and G), consistent with the fact that copper and iron are limiting
factors for the growth of yeast at more alkaline pH (46). Con-
versely, during growth in SC, many mitochondrial proteins were
up-regulated compared to YPD (Fig. 1 F, Left and G), including
the cytochrome ¢ oxidase subunits Cox8, Cox2, and Cox5a, the
mitochondrial adenosine 5'-triphosphate (ATP) synthase Atp20,
and the mitochondrial aminopeptidase IcpS5. Yeast mitochon-
dria reproduce through fission and must be inherited by
daughter cells during cell division (47). The up-regulation of
many mitochondrial proteins is thus consistent with the faster
growth rate of our yeast strains in SC compared to YPD. Be-
cause the choice of media is often considered crucial in experi-
mental design, these data on differentially regulated proteins in
pathways of interest provide an important resource for yeast
biologists.

Next, we investigated proteome changes in yeast grown under
various stress conditions. Here, we focused on those commonly
utilized in yeast research: heat shock, osmotic shock, carbon
starvation, amino acid starvation, and nitrogen starvation. Each
produced a discrete stress response, resulting in synthesis or
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Fig. 1.

Fast and scalable yeast proteome analysis using DIA. (A) Experimental workflow for yeast spectral library construction (Top) and fast, single-run DIA-

based analysis of yeast proteomes (Bottom). (B) Number of identified proteins using DDA with varying LC gradient lengths compared to 23-min DIA. (C)
Cumulative number of identified unique yeast peptides over time using DDA with varying LC gradient lengths and the 23-min DIA method. (D) Number of
quantified proteins in growth and stress conditions. (E) PCA of conditions along with their biological replicates based on their proteomic expression profiles.
(F) Volcano plot of the (~log10) P values vs. the log2 protein abundance differences between yeast grown in YPD vs. SC. The proteins marked in red change
significantly (P < 0.05 and at least fourfold change in both directions). (G) GO-term enrichment in the YPD vs. SC fold change dimension (one-dimensional
annotation enrichment, FDR <5%). Terms with positive enrichment scores are enriched in YPD over SC and vice versa.

degradation of a distinct set of proteins (Fig. 24). For example,
yeast cells grown under heat shock induce expression of chap-
erones and stress-response proteins, a well-characterized re-
sponse that allows the cell to quickly recover from global heat-
induced protein misfolding (48-50). Importantly, our data also
revealed that the heat-shock response is dose-dependent, with
higher induction of the stress response at 42 °C compared to
37 °C (Fig. 2 A, green cluster and B). Yeast experiencing osmotic
shock, on the other hand, induced distinct proteome changes,
with the most enriched Gene Ontology (GO) term under this
condition being actin-cortical patch (S Appendix, Fig. S2 A and
B). This is consistent with the fact that yeast cells rapidly disas-
semble and remodel the actin cytoskeleton during osmotic stress
and favor the formation of actin patches over filaments, a
mechanism that lowers the turgor pressure and allows continued
growth of yeast under high osmolarity (51, 52). In addition, one
of the most up-regulated proteins during osmotic stress is Enal
(SI Appendix, Fig. S24), a sodium efflux pump that plays a cru-
cial role in allowing salt tolerance (53). Growth during amino
acid or nitrogen starvation primarily resulted in the induction of
amino acid biosynthetic pathways, with arginine and cysteine

32808 | www.pnas.org/cgi/doi/10.1073/pnas.2020197117

synthesis being particularly up-regulated (SI Appendix, Fig.
S2 C-F).

In :ii)dition to temperature and nutrient availability, carbon
source is a crucial determinant of yeast growth. We compared
the proteomes of yeast grown in the aerobic carbon source,
glucose, with the nonfermentable carbon source, ethanol. Yeast
will preferentially metabolize aerobic carbon sources, such as
glucose, when they are present in the media. When only non-
fermentable carbon sources, such as ethanol, are present, yeast
cells will instead metabolize them through several pathways, in-
cluding gluconeogenesis to generate glucose and conversion of
ethanol into pyruvate to allow for ATP generation in the mito-
chondria via the tricarboxylic acid cycle (54, 55). Consistent with
this, we observe a general up-regulation of mitochondrial pro-
teins and those involved in the tricarboxylic acid cycle during
growth in ethanol (Fig. 2 A, light blue cluster, C, and D). In
addition, many proteins involved in carbon metabolism are dif-
ferentially regulated in glucose and ethanol-containing media.
For example, we see a greater than 16-fold up-regulation of the
gluconeogenic enzymes Fbpl, Pckl, and Icll (Fig. 2C). In the
absence of glucose, both Hxt7, a glucose transporter, and Hxkl,
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Fig. 2. Large-scale and quantitative analysis of yeast proteomes under different stresses. (A) Heat map of z-scored protein abundances (log2 DIA intensities)
of the differentially expressed proteins (ANOVA, FDR <0.01) after hierarchical clustering of stress conditions performed in YPD and YPE. Fisher exact test was
performed to identify significantly enriched GO terms in the most prominent profiles (FDR <5%). (B) Correlation of log2 fold-changes of all the quantified
proteins during heat shock. The proteins that change significantly in either 37 °C or 42 °C compared to 30 °C YPD control are colored in red (t test, FDR <5%).
(C) Volcano plot of the (~log10) P values vs. the log2 protein abundance differences between glucose starvation (ethanol) vs. YPD. Red dots indicate sig-
nificantly different proteins, determined based on P < 0.05 and at least fourfold change in both directions. (D) GO-term enrichment in the ethanol vs. YPD
fold change dimension (one-dimensional annotation enrichment, FDR <5%). Terms with positive enrichment scores are enriched in stress condition over
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a hexokinase, are up-regulated (Fig. 2C), allowing the cell to
quickly import and metabolize any glucose in the environment.
These results are consistent with the idea that yeast have “an-
ticipatory” programming, which not only allows them to adapt to
the current stressor but also facilitates a rapid response to shifts
in environmental conditions (40, 56). Moreover, apart from
identifying proteins that have altered levels in response to a shift
in environmental conditions, we also accurately determined their
fold changes, giving valuable insight into the protein content
under different stress and growth conditions that is indispensable
for systems-level modeling.

Taken together, our results indicate that the fast and robust DIA-
based approach described here can reliably and quantitatively re-
trieve the known differences and even reveal new and biologically
meaningful regulation of protein expression, thereby providing a
near-comprehensive resource for yeast researchers and a valuable
platform to support future studies in quantitative biology.

Global Regulation of the Yeast Proteome during Glucose Starvation
and Recovery. To gain better insights into how yeast regulate
metabolism in response to a change in carbon source, we next
expanded our analysis to investigate glucose starvation and glu-
cose recovery. Yeast cultures were first grown to logarithmic
phase in glucose then switched to media containing ethanol as a
nonfermentable carbon source. Following 19 hours of growth in
ethanol, glucose was replenished and the yeast were allowed to
recover for 30 minutes or 2 hours (Fig. 34). In these growth
conditions, we quantified 3,602 distinct proteins in total (Dataset
S2). The first PCA component segregated the growth conditions,
with glucose being largely separated from the ethanol and re-
covery conditions (Fig. 3B and SI Appendix, Fig. S34). To further
investigate the regulation of metabolism in alternate carbon
sources, we compared the proteome changes with those of the
transcriptome. PCA analysis of the transcriptome also showed
that the first component separated the growth conditions.

Interestingly, in this case cells grown in ethanol were largely
separated from the glucose (never starved) and glucose recovery
conditions (Fig. 3C and SI Appendix, Fig. S3B), suggesting that
during this metabolic shift yeast cells remodel their gene ex-
pression first through rapid changes in transcription, which fa-
cilitates production of new proteins, and then remove proteins
that are no longer required.

Several regulatory mechanisms contribute to carbohydrate
metabolism, including allosteric regulation, reversible enzyme
inactivation through covalent modifications, and irreversible loss
of enzyme activity through proteolysis (reviewed in ref. 57).
Importantly, we observed that protein turnover during glucose
recovery occurs rapidly and in less than one cell division, sug-
gesting an active mechanism of protein degradation. One such
mechanism that has been well-characterized by our group and
others is the ubiquitination and degradation of gluconeogenic
enzymes by the GID E3 ubiquitin ligase. GID E3 ligase subunits
are present at low levels in all growth conditions. However, during
growth in ethanol, most of the GID subunits are induced, leading
to the formation of a yet-inactive anticipatory complex: GID*™,
Following glucose replenishment, the substrate receptor, Gid4, is
rapidly induced and joins the complex, allowing the recognition
and subsequent degradation of the gluconeogenic proteins Fbpl,
Mdh2, Icll, and Pckl via the Pro/N-degron pathway (Fig. 3D)
(3840, 58-61). Indeed, our analysis confirmed that most com-
ponents of the GID E3 ligase are up-regulated around fourfold
during growth in ethanol, with the exception of Gid4, which is
rapidly and transiently up-regulated within 30 min of glucose
replenishment (Fig. 3E).

Intriguingly, PCA analysis of individual proteins revealed that
the known substrates of the GID E3 ubiquitin ligase, Fbp1, Pckl,
Icll and, to a lesser extent, Mdh2 are the major contributors to
the segregation based on growth condition (Fig. 3F). While the
GID E3 ligase is known to be an important contributor to the
regulation of yeast metabolism during the switch from
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gluconeogenic to glycolytic conditions, and is thought to have
additional substrates, the lack of an obvious phenotype in GID
mutants has made the identification of further substrates chal-
lenging. Thus, we applied a DIA-based workflow to search for
novel regulatory targets of the GID E3 ligase.

Identifying GID Ligase-Dependent Regulation during Recovery from
Carbon Starvation. The structure and molecular mechanism of the
GID E3 ligase are known, but the pathways it regulates are only
beginning to be elucidated (38, 40, 61). While the role of the
GID ligase in the regulation of gluconeogenesis is well-
characterized, the conservation of this multiprotein complex
throughout eukaryotes suggests that it likely regulates additional
pathways. For example, the GID/CTLH complex has a role in
erythropoiesis and spermatogenesis in human cells and in em-
bryogenesis in Drosophila (62—65). Thus, we set out to uncover
additional pathways regulated by the GID E3 ligase in yeast by
utilizing a combination of mutants. First, we used a deletion of
the substrate receptor, Gid4, which targets proteins with either
an N-terminal proline or a proline at position 2 via the Pro/
N-degron pathway (38, 59, 60, 66). Deletion of Gid4 therefore
should prevent substrate binding to the GID complex and
thereby inhibit degradation. However, Gid4, while conserved in
human cells, is not conserved throughout all eukaryotes. For
example, the GID complex in Drosophila lacks an identifiable
Gid4 homolog (65), suggesting an alternate mode of recognition.
In addition, in yeast, the protein Gid10 has been identified as an
alternate substrate receptor of the GID complex (40, 67), al-
though no Gidl10-dependent cellular sybstrates have been iden-
tified to date. To identify pathways regulated by the GID
complex by an alternative recognition pathway, we used a
structure-based goint mutant in the RING-domain-containing
subunit, Gid2®****, which eliminates catalytic activity without
altering folding or complex assembly (40).

We compared the transcriptomes and proteomes of wild-type
yeast to yeast containing either a Gid4 deletion or a Gid2 mutant
(Gid2™***y grown under the glucose starvation and recovery
conditions described previously. Each condition was measured in
triplicate using the rapid DIA method (Fig. 44). Importantly,

there were no GID-dependent differences in messenger RNA
(mRNA) levels following glucose replenishment (SI Appendix,
Fig. S44), demonstrating that the GID E3 ligase does not reg-
ulate protein synthesis but rather the fate of existing proteins. To
confirm that a DIA-based approach would be able to recognize
bona fide GID substrates, we first examined the expression
patterns of the well-characterized substrates Fbpl and Mdh?2.
Indeed, in wild-type cells, Fbpl and Mdh2 protein levels are
induced during growth in ethanol and then turned over within
2 hours of glucose recovery, with Fbpl and Mdh2 protein levels
reduced by around eightfold and 5.7-fold, respectively. As
expected, both proteins are also stabilized in the GID4-deleted
and gid2-mutant cells (Fig. 4 B and C), confirming that we can
robustly identity changes in expression of known substrates.

To identify novel targets, we searched for proteins with an
expression profile similar to the known substrates based on the
following criteria: 1) the protein should be expressed more highly
in ethanol than glucose, 2) its levels should decrease during
glucose replenishment, and 3) after 2 h of glucose replenishment
it should have a higher expression level in the GID4-deleted and/
or gid2-mutant cells, compared to wild type (SI Appendix, Fig.
S4B). This provided a list of 31 proteins, including all four known
GID substrates (Fbpl, Mdh2, Pckl, and Icll) (SI Appendix, Fig.
S4C). To further prioritize candidates, we limited our search to
proteins with an N-terminal proline or a proline in the second
position, a genetic and structural requirement of all known cel-
lular substrates (38, 40, 60). The resulting list of seven proteins
consisted of the four known substrates, the transcription factor
Azfl, and the metabolic enzymes Arol0 and Acsl (Fig. 4D).
Interestingly, Azfl has already been implicated in regulation of
GID4 transcription (68), suggesting its up-regulation in the GID-
deficient cells may be a cellular compensation mechanism.
However, because we did not observe any GID-dependent
mRNA expression changes (SI Appendix, Fig. S44), we elimi-
nated Azfl from further analysis. Acsl was significantly stabi-
lized in both the GID4-deleted and gid2-mutant cells, whereas
Aro10 was only significantly stabilized in the gid2 mutant.

In order to validate Aro10 and Acsl as GID targets in vivo, we
used the promoter reference technique (38, 69), a transcription-

A B 2 15 FBP1 (protein)
3800 8
B 3400 veo3ep 20110
S ® o oo BRR 2 E
c . ol
S 3000 ES
= NT 5
£ 8N
'S 2600 gy
I £
5 £
2200 o e e e e e
208 z08 08 20§
a0 0w 0&
e e e L B R N R afgl @ giiate e
g & z 2 B 9] g 9] g}
§§%§§%5§%5§%5
a9 a9 a9 a9 glucose 30min 2hr
(0] [C] O [C] recovery recovery
C 0 5 MDH2 (protein) D
8 30min 2hr
bg 4 glucose recovery recovery
T O I e
533 84 8& 284 84
se, £9¢6593859%956598 5
38 - [ | AZF1-MPPPTAQFMG
s 1 MDH2-MPHSVTPSIE
g 0 | | IARO10-MAPVTIEKFV-
E E i icaicaica ICL1-MPIPVGNTKN
545438 4%58 4 PCK1-MSPSKMNATV
23 33 a3z I3 ACS1-MSPSAVQSSK
9 O 2 Y FBP1-MPTLVNGPRR
glucose 30min 2hr -1.9 o 21

recovery recovery

2 score (Iog2) protein tersity

Fig. 4. Rapid and robust DIA-based approach identifies GID substrates during recovery after glucose starvation. (A) Number of quantified proteins in wild
type (WT), AGID4, and Gid2" 355 yeast cells during glucose starvation and recovery. (B and C) Bar graphs showing abundances (log2) of Fbp1 (B) and Mdh2 (C)
proteins that are normalized to WT glucose (never starved) condition in WT, AGID4, and Gid2'®®** yeast cells during glucose starvation and recovery. (D) Heat
map of z-scored protein abundances (log2) of the proteins which have the criteria of GID substrates.

Karayel et al. PNAS | December 22,2020 | vol. 117 | no.51 | 32811

147



2 Results: Article 3

independent method to examine protein turnover. In this
method, yeast cells are transformed with a plasmid expressing
the test substrate and the control protein DHFR from identical
promoters (Fig. 54). The transcribed products carry tetracycline-
binding RNA aptamers which inhibit protein expression at the level
of translation following the addition of tetracycline to the media,
allowing the fate of the existing protein to be monitored. Impor-
tantly, this method selectively terminates synthesis of our test pro-
teins, and thus the induction of Gid4 and activation of the GID
complex is not impaired. In agreement with our proteomic findings,
the Acsl protein is completely stabilized in both GID2-and GID4-
deleted cells (Fig. 5B), while the Arol0 protein is stabilized in
GID2-deleted but not GID4-deleted cells (Fig. 5C), indicating a
potential Gid4-independent regulation. Thus, Acsl and Arol0 are
confirmed to be regulatory targets of the GID E3 ligase during the
switch from gluconeogenic to glycolytic conditions.

Discussion

Here, we described a straightforward, streamlined, and repro-
ducible systems biology approach for yeast proteome profiling
using DIA to analyze biological pathways much faster and with
greater depth. The minimalistic workflow employs plate-based
preparation of digested yeast cell lysate and requires only a few
micrograms of yeast as input and no labeling or special equip-
ment, making it especially amenable for application in non-
specialized research groups. Despite its simplicity, it robustly and
quantitatively profiles hundreds of largely covered yeast pro-
teomes [80% of the expressed proteome at normal growth con-
ditions (7)] within an unprecedented throughput (100 samples in
~2.2 days).

The ability of cells to adapt to stress or changes in environ-
mental conditions relies on extensive proteome remodeling
(70-75). Understanding these changes provides broad insight
into the molecular mechanisms underlying many processes in-
cluding heat stress, adaptation to nutrient availability, and reg-
ulation of cell division. Applying the DIA-based approach to
profile protein levels during response to several stress and
growth conditions demonstrated its systems-wide robustness and
specificity. In addition, our work provides an in-depth resource
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Aro10 (C) degradation, based on at least four independent replicates. Bars
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on stress mediators regulated at the protein level, which will
complement the widely available yeast transcriptome data and
further allow yeast researchers to probe numerous biological
pathways of interest, including stress response pathways, auto-
phagy, and nutrient signaling pathways.

In addition to identifying proteome changes during stress, we
used the DIA-based systems biology approach to identify proteins
that are regulated by the GID E3 ubiquitin ligase, a key regulator
in the switch from gluconeogenic to glycolytic conditions (54, 61,
76). Despite the importance of the GID complex in metabolic
regulation, identification of additional substrates has been hin-
dered by the lack of an obvious phenotype, variable kinetics of
protein degradation, and the necessity for a sensitive readout. Our
generic and unbiased approach, however, robustly identified two
protein regulatory targets of the GID complex, Acsl and Arol0,
further highlighting the importance and need for quantitative
proteome datasets to provide a basis for functional studies.

Interestingly, both Acsl and Arol0, while not considered
gluconeogenic enzymes, are important regulators of metabolism
and cellylar respiration during anaerobic growth. Acsl encodes
one of two isoforms of yeast acetyl-CoA synthetase, which cat-
alyzes the formation of acetyl-CoA from acetate and CoA. Acsl
has a much higher affinity for acetate than its isoform Acs2,
making it more desirable for acetyl-CoA production when ace-
tate is limiting, as is the case during growth on nonfermentable
carbon sources (77). During glycolytic growth, however, the main
energy flux does not require Acsl/2 function, Acsl expression is
suppressed, and existing Acs1 protein must be degraded. Arol0
encodes a phenylpyruvate decarboxylase that catalyzes an irre-
versible step in the Ehrlich pathway, which provides a more
energetically favorable means of NADH (reduced nicotinamide-
adenine dinucleotide) regeneration during anaerobic growth.
Following glucose replenishment, NADH is regenerated through
glycolysis, and thus Aro10 function is no longer required (78, 79).

Here, we show that both Acsl and Arol0 turnover are depen-
dent on the catalytic activity of the GID complex, via its RING-
containing subunit, Gid2. Intriguingly, only Acsl turnover is
dependent on the well-characterized substrate receptor, Gid4,
suggesting an alternate mode of recognition for Aro10. Indeed, an
additional substrate receptor, Gid10, has recently been identified
(40, 67), raising the possibility that Arol0 may be the first sub-
strate identified in this recognition pathway. Alternatively, Aro10
recognition may be facilitated by a yet-to-be identified substrate
receptor or an alternative mechanism. In either case, the regula-
tion of Arol0 suggests that the GID E3 ligase may function with
separable catalytic and substrate recognition elements, a mecha-
nism previously described for SCF (Skp1-Cullin-Fbox) E3 ligases
(80, 81) that provides a flexible means for linking a single E3 to a
greater number of substrates. Intriguingly, expression of the GID
substrate receptors is induced during several other cellular
stresses, including osmotic shock, heat shock, and nitrogen star-
vation (40, 67, 71), suggesting that the GID complex may play an
important role in rewiring metabolic pathways during adaptation
to a wide variety of stress conditions.

Taken together, the GID-dependent regulation of Acsl and
Arol0, along with the previously known substrates, suggests that
the GID complex is a multifunctional metabolic regulator that
influences multiple cellular pathways simultaneously to allow for
an efficient switch from gluconeogenic to glycolytic conditions.
Moreover, our findings demonstrate that the DIA-based systems
biology approach is capable of simultaneously identifying changes
to multiple cellular pathways which are integrated to maintain
cellular homeostasis. While we here identified specific targets of
an E3 ligase, this workflow can be readily adopted by the com-
munity to probe numerous cellular pathways, including kinase
signaling pathways or cell-cycle-dependent changes. Furthermore,
its speed allows the analyzing of at least 15 conditions, in triplicate,
per day, making it particularly well-syited for screens. For
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example, the effect of each of the ~80 yeast E3 ligases on the global
proteome could be ascertained in just 5 days, or each of the ~117
yeast kinases in about 1 week. In addition, the DIA-based workflow
can be easily adapted to identify changes in posttranslational
modifications including phosphorylation, ubiquitination, and acety-
lation, when coupled with an enrichment step (44, 82-84).

Thus, the speed and reproducibility of the DIA-based ap-
proach presented here allows researchers to probe complex bi-
ological pathways and identify novel regulatory mechanisms. We
are currently integrating an HPLC system into our approach as it
eliminates the overhead time between sample pickup and start of
MS measurement by using preformed gradients (85). Simplified
workflows like the one described here could be extended to other
organisms, generating high-quality quantitative proteome data-
sets which are required to explain biological processes on a
system-wide level (86, 87). Furthermore, we believe that library-
free approaches using prediction tools will further increase the
speed of DIA-based proteome profiling workflows like the one
presented here. Given that the expressed human proteome
(around 15,479 proteins, https://www.proteomicsdb.org) is only
around three times larger than the expressed yeast proteome
[5,391 proteins, (45)], with only three fold increase in proteomic
depth, we anticipate fast single run DIA approaches will also be
suitable for rapid generation of human proteomes.

Materials and Methods

Yeast Strains and Growth Conditions. All yeast strains used in this study are
derivatives of BY4741 and are listed in Table 1. For rich conditions, yeast
cultures were grown in YPD (1% yeast extract, 2% peptone, and 2% glu-
cose) or SC (0.67% yeast nitrogen base without amino acids, 2% glucose,
containing 87.5 mg/L alanine, arginine, asparagine, aspartic acid, cysteine,
glutamine, glutamic acid, glycine, leucine, lysine, methionine, myo-inositol,
isoleucine, phenylalanine, proline, serine, threonine, tyrosine and valine,
43.7 mg/L histidine, tryptophan and uracil, 22.5 mg/L adenine, and 8.7 mg/L
para-aminobenzoic acid) media. Unless otherwise specified, yeast cultures
were grown at 30 °C. For heat-shock conditions, yeast cultures were grown
in YPD to an optical density at 600 nm (ODgq0) of 1.0 and then shifted to the
indicated temperature for 1 h. For osmotic shock conditions, yeast cells were
grown in YPD to and ODgqo of 1.0, pelleted at 3,000 rpm for 3 min, and
resuspended at an ODgqg of 1.0 in prewarmed YPD + 0.5 M NaCl. For glucose
starvation, yeast cells were grown in YPD to an ODgqq of 1.0 to 2.0, pelleted
at 3,000 rpm for 3 min, washed once with YPE (1% yeast extract, 2% pep-
tone, and 2% ethanol), resuspended in prewarmed YPE at an ODgg of 1.0,
and grown at 30 °C for 19 h. For glucose recovery, yeast cells were pelleted
after 19 h of growth in YPE, resuspended to an ODgg, of 1.0 in YPD, and
allowed to grow at 30 °C for 30 min or 2 h. For amino acid starvation, yeast
cells were grown in SC to an ODggo of 1.0 to 2.0, pelleted at 3,000 rpm for
3 min, washed once with SD-AA (0.67% yeast nitrogen base without amino
acids, 2% glucose, and 20 mg/L uracil), resuspended in SD-AA to an ODgq of
1.0, and allowed to grow for 1 h. For nitrogen depletion, yeast cells were
grown in SC to an ODggy of 1.0 to 2.0, pelleted at 3,000 rpm for 3 min,
washed once with SD-N (0.17% yeast nitrogen base without amino acids or
ammonium sulfate and 2% glucose), resuspended in SD-N to an ODgqo of 1.0,
and allowed to grow for 1 h. For proteomics analysis, 50 ODs of cells were
pelleted at 3,000 rpm for 3 min, flash-frozen in liquid nitrogen, and stored
at —80 °C until lysis. For transcriptomes analysis, 10 ODs of yeast were pel-
leted, flash-frozen in liquid nitrogen, and stored at —80 °C.

Protein Degradation Assays (Promoter Reference Technique). Protein degra-
dation assays using the promoter reference technique were done as previ-
ously described (69). Plasmids used are listed in Table 2. Cells were

Table 1. Yeast strains used in this study

Strain Genotype Source
BY4741 MATa his3A1 leu2A0 met15A0 ura3A0 Euroscarf
CRLY12 BY4741 GID4::KANMX This study
CRLY30 BY4741 GID2::KANMX This study
CRLY131 BY4741 gid2::3xFLAG-GID2K365A Ref. 40
Karayel et al.

transformed with plasmid expressing a test substrate and DHFR from iden-
tical promoters containing tetracycline-repressible RNA-binding elements.
Yeast cells were then grown in SC media lacking histidine, starved in SE (2%
ethanol) media lacking histidine for 19 h, and then allowed to recover for
the indicated times in SC media lacking histidine. At each time point, 1.0 ODs
of yeast cells were pelleted, flash-frozen in liquid nitrogen, and stored
at —80 °C until lysis.

For lysis, yeast cells were resuspended in 0.8 mL of 0.2 M NaOH, followed by
incubation on ice for 20 min, and then pelleted at 11,200 x g for 1 min. The
supernatant was removed and the pellet resuspended in 50 pL HU buffer
and incubated at 70 °C for 10 min. The lysate was precleared by centrifu-
gation at 11,200 x g for 5 min and then loaded onto a 12% sodium dodecyl
sulfate polyacrylamide gel. Protein samples were transferred to a nitrocel-
lulose membrane and then visualized by Western blot using «FLAG (F1804;
Sigma) and a-hemagglutinin (H6908; Sigma) primary antibodies and Dylight
633 goat anti-Mouse (35512; Invitrogen) and Dylight 488 goat anti-rabbit
(35552; Invitrogen) secondary antibodies. Membranes were imaged on a
typhoon scanner (Amersham). Bands were quantified with ImageStudio
software (LI-COR).

mRNA Sequencing. Harvested and frozen cells were sent to Novogene Co., Ltd.
(Hong Kong) for RNA extraction, library preparation, mapping, and bio-
informatics analysis. Briefly, 3 pg of RNA was used for library generation
using NEB Next Ultra RNA Library Prep Kit for Illumina (NEB). The library
preparations were sequences on an Illumina Hi-Seq platform and 125-base
pair (bp)/150-bp paired-end reads were generated. Reads were indexed us-
ing Bowtie v2.2.3 and paired-end clean reads were aligned to the reference
genome using TopHat v2.0.12. HTSeq v0.6.1 was used to count the read
numbers mapped to each gene, and then FPKM (expected number of
fragments per kilobase of transcript sequence per millions base pairs se-
quenced) of each gene was calculated based on the length of the gene and
read counts mapped to the gene. The transcriptome data analysis was per-
formed as explained in Data Processing and Bioinformatics Analysis.

Sample Preparation for MS Analysis. Sodium deoxycholate (SDC) lysis buffer
(1% SDC and 100 mM Tris, pH 8.4) were added to the frozen cell pellets to
achieve a protein concentration of ~2 to 3 mg per ml. Lysates were imme-
diately heat-treated for 5 min at 95 °C to facilitate lysis and to inactivate
endogenous proteases and transferred to a 96-well plate. Lysates were next
homogenized with sonication. Protein concentrations were estimated by
tryptophan assay (27) and then all samples were diluted to equal protein
concentrations in a 96-well plate. To reduce and alkylate proteins, samples
were incubated for 5 min at 45 °C with CAA and TCEP, final concentrations
of 40 mM and 10 mM, respectively. Samples were digested overnight at
37 °C using trypsin (1:100 wt/wt; Sigma-Aldrich) and LysC (1/100 wt/wt;
Wako). The following day, peptide material was desalted using SDB-RPS
StageTips (Empore) (27). Briefly, samples were diluted with 1% trifluoro-
acetic acid (TFA) in isopropanol to a final volume of 200 pL and loaded onto
StageTips and subsequently washed with 200 pL of 1% TFA in isopropanol
and 200 ulL 0.2% TFA/2% ACN (acetonitrile). Peptides were eluted with 80 pl
of 1.25% Ammonium hydroxide (NH40H)/80% ACN and dried using a
SpeedVac centrifuge (Concentrator Plus; Eppendorf). Samples were resus-
pended in buffer A* (0.2% TFA/2% ACN) prior to LC-MS/MS analysis. Peptide
concentrations were measured optically at 280 nm (Nanodrop 2000; Thermo
Scientific) and subsequently equalized using buffer A*. Three hundred
nanograms of peptide was subjected to LC-MS/MS analysis.

To generate the spectral library for DIA measurements cells were lysed in
SDC buffer, followed by sonication, protein quantification, reduction, and
alkylation and desalting using SDB-RPS StageTips (discussed above). Around
8 or 30 pg of peptides were fractionated into 8 or 24 fractions, respectively,
by high-pH reversed-phase chromatography as described earlier (88). Frac-
tions were concatenated automatically by shifting the collection tube during
the gradient and subsequently dried in a vacuum centrifuge, and resus-
pended in buffer A*.

LC-MS/MS Measurements. Samples were loaded onto a 20-cm reversed-phase
column (75-um inner diameter, packed in-house with ReproSil-Pur C18-AQ
1.9 pm resin [Dr. Maisch GmbH]). The column temperature was maintained
at 60 °C using a homemade column oven. A binary buffer system, consisting
of buffer A (0.1% formic acid [FA]) and buffer B (80% ACN plus 0.1% FA),
was used for peptide separation, at a flow rate of 450 nL/min. An EASY-nLC
1200 system (Thermo Fisher Scientific), directly coupled online with the mass
spectrometer (Q Exactive HF-X, Thermo Fisher Scientific) via a nano-
electrospray source, was employed for nano-flow liquid chromatography.
We used a gradient starting at 5% buffer B, increased to 35% in 18.5 min,

PNAS | December 22,2020 | vol. 117 | no.51 | 32813

149



2 Results: Article 3

Table 2. Plasmids used in this study

Plasmid Source

CRLP47 PRS313-Pypns(modified)-Aro10s,r1ag-CY C-prons(modified)-agDHFRp,- This study
CcycC

CRLP48 PRS313-Prpy3(modified)-Acs134r1aq-CY C-prpus(modified)-f . DHFRy - This study
CcYcC

95% in a minute, and stayed at 95% for 3.5 min. The mass spectrometer was
operated in Top10 data-dependent mode (DDA) with a full scan range of
300 to 1,650 m/z at 60,000 resolution with an automatic gain control (AGC)
target of 3e6 and a maximum fill time of 20 ms. Precursor ions were isolated
with a width of 1.4 m/z and fragmented by higher-energy collisional disso-
ciation (HCD) (normalized collision energy [NCE] 27%). Fragment scans were
performed at a resolution of 15,000, an AGC of 1e5, and a maximum in-
jection time of 60 ms. Dynamic exclusion was enabled and set to 30 s. For DIA
measurements full MS resolution was set to 120,000 with a full scan range of
300 to 1,650 m/z, a maximum fill time of 60 ms, and an AGC target of 3e6.
One full scan was followed by 12 windows with a resolution of 30,000 in
profile mode. Precursor ions were fragmented by stepped HCD (NCE 25.5,
27, and 30%).

Data Processing and Bioinformatics Analysis. Spectronaut version 13 (Bio-
gnosys) was used to generate the spectral libraries from DDA runs by com-
bining files of respective fractionations using the yeast FASTA file (UniProt,
2018). For the generation of the proteome library default settings were left
unchanged. DIA files were analyzed using the proteome library with default
settings and enabled cross-run normalization. The Perseus software package
versions 1.6.0.7 and 1.6.0.9 and GraphPad Prism version 7.03 were used for
the data analysis (89). Protein intensities and mRNA abundances were log2-
transformed for further analysis. The datasets were filtered to make sure
that identified proteins and mRNAs showed expression or intensity in all
biological triplicates of at least one condition and the missing values were
subsequently replaced by random numbers that were drawn from a normal
distribution (width = 0.3 and downshift = 1.8). PCA analysis of stress and
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growth conditions and biological replicates was performed as previously
described in ref. 90. Multisample test (ANOVA) for determining if any of the
means of stress and growth conditions were significantly different from
each other was applied to both mRNA and protein datasets. For truncation,
we used permutation-based false discovery rate (FDR) which was set to 0.05
in conjunction with an SO-parameter of 0.1. For hierarchical clustering of
significant genes and proteins, median protein or transcript abundances of
biological replicates were z-scored and clustered using Euclidean as a dis-
tance measure for row clustering. GO annotations were matched to the
proteome data based on UniProt identifiers. Annotation term enrichment
was performed with either Fisher exact test or the 1D tool in Perseus. An-
notation terms were filtered for 5% FDR after Benjamini-Hochberg
correction.

Data Availabhility. All MS proteomics data have been deposited on Proteo-
meXchange via the PRIDE database with the dataset identifier PXD021559.
All other data supporting findings of this study are available within this
paper, S/ Appendix, and Datasets S1 and S2.
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Supplementary Figure 1. Reproducibility of the DIA-based workflow

A. Correlation based clustering illustrating the reproducibility between workflow replicates. High
(0.98) and lower (0.9) Pearson correlations are denoted in red and grey, respectively. B. The
correlation plots illustrating the reproducibility between biological replicates in the yeast stress

experiment. Pearson correlation coefficients are shown in the upper left corer.
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Supplementary Figure 2. Mapping changes to the yeast proteome in response to osmotic
shock, and amino acid and nitrogen depletion
Volcano plot of the (-logl10) p-values vs. the log2 protein abundance differences between 0.5M
NaCl (osmotic shock) vs. YPD (A), SD-AA-Nt vs. SC (C), and SD-AA vs. SC (E). The significant
proteins (red dots) are determined based on p-value < 0.05 and at least 4-fold change on both sides.
GO-term enrichment in the 0.5M NaCl (osmotic shock) vs. YPD (B), SD-AA-Nt vs. SC (D), and
SD-AA vs. SC (F). fold change dimension (1D enrichment, FDR < 5%). Terms with positive
enrichment scores are enriched in stress condition over YPD or SC control and vice versa.
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starvation and recovery

A-B. Heat map of z-scored and differentially regulated proteins (A) and mRNAs (B) (log2) in
wildtype yeast during glucose starvation and recovery.
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Supplementary Figure 4. Identifying GID ligase targets during recovery from carbon

starvation

A. Volcano plot of the (-logl0) p-values vs. the log2 mRNA abundance differences between
wildtype vs. Gid4 (substrate receptor) deletion. GID4 (shown in red) was the only significant hit
based on p-value < 0.05 and at least 4-fold change on both sides. B. The criteria of the known GID
substrates based on their protein profiles: (1) the protein is expressed significantly higher in ethanol
compared to glucose and (2) 2hr recovery, (3) decreased abundance of the protein during recovery
is dependent on the GID complex, and (4) having Proline (N-degron) in position 2 or 3. C. Heat
map of z-scored potential GID targets which meet the first three conditions in panel B during
glucose starvation and recovery.
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3 Concluding Remarks and Outlook

3.1 Systems Biology: Unknot the Unknown

The thesis presented here provides systems biology approaches and applies them to the
discovery of global protein-protein interactions in yeast and human cells, as well a study to
quickly screen whole proteomes in yeast in response to different perturbation conditions. The
resulting interactome for yeast is a resource of high-quality interactions that will help scientists

around the world to gain novel functional insights of the cell.

We also provide a powerful way for scientists to validate every single interaction of interest.
Our web application is readily accessible and reports how and why an interaction is included.
In our bait-enrichment section one can validate the underlying p-values and t-test differences
while the correlation section shows which samples cause a correlation to which degree. A
separate quality control tab provides insights into the completeness of a sample in terms of

quantified proteins.

From a network perspective, we have investigated and highlighted the “social” character of the
interactome based on the observation that most proteins are involved in interactions and that
there is an average shortest path of 4.2 interactions between any two proteins. This comes very
close to the distance that separates people in the social network Facebook: 4.5 connections - the
modern version of the more famous six-degrees-of-separation (94, 95). While a scale-free
attribute for protein-protein interaction has been claimed in most studies, they sometimes rather
appear to be exponential or truncated (23). In this study I show a clear power-law distribution
that helps to clarify the higher order structure of protein interaction networks and secondly

serves as an indicator for high data completeness.

The resulting network map of yeast protein-protein interactions clustered nicely into structures
that represent known complexes and at the same time uncovered many novel associations and
assigned potential functions to yet uncharacterized proteins. I have highlighted only a few of
several new discoveries in the paper while many more are depicted in the supplementary
information. The Markov clustering algorithm employed here is based on a random walk
simulation in which I used the developed score as edge weights. The structured outcome and

the quite complete reflection of protein complexes in clusters without priori knowledge
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supports the quality of the experimental results and validates our scoring approach, since the

score is used as an edge weight and therefore directly influences the clustering.

While we have exhaustively explorated the yeast interactome under standard growth conditions,
our platform opens up possibilities for large-scale screens under stress conditions. The
complexity of human cells and their reduced susceptibility to genetic modifications are reason
for the still not completed interactome. The human OpenCell interactome presented here tackles
those difficulties by using a split protein system. This strategy allows large-scale endogenous
tagging of cells while the sensitivity or our mass spectrometry pipeline of cells allows us to
grow them in only 12-well plates - enabling efficient processing of samples. OpenCell provides
the largest confocal microscopy library to date and enables interaction exploration of about

1,300 endogenous tagged proteins both derived from the same cell population.

3.2 A Hairy Situation

If you were reading diligently through this work or have followed the link to the yeast
interactome webpage, you might remember the figure that depicts all the interactions detected
in this study within a yeast cell in a structured manner. Why do we not remember any similar
representations of protein-protein interaction maps from previous studies? Are they any
available? In my opinion, the simple explanation is that they do exist, but they are not very
memorable. Almost all large-scale interaction screens resulted in a network structure that is so
tightly interconnected and impenetrable that they are often referred to as “hairball”. A
representation of a network that is a “hairball” is not really useful. One possible reason why
this is not the case for the yeast interactome in this study appears to be the unique clustering,
that is in turn enabled by an excellent score and underlying data. Another thing that improves
the random walk of the Markov clustering is redundancy. Redundancy is the key to good
interactomes and builds on many different pull-downs that confirm the same interactions. A
complex of 4 members for instance can consist of up to 12 interactions (counting reverse
experiments separately) and when including correlations even up to 18 interactions. This
redundancy helps the random walk of the Markov clustering to find what truly belongs together.
If one weights those edges during the random walk this effect becomes even stronger, but only
if the weight corresponds to a proper increase in likelihood that an interaction is true. One can

assume for instance that a high FDR (false discovery rate) interaction is more likely to reflect
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an important interaction than one with a very low one. This differentiation must be made and if

the enrichment works well then this can be reflected in our score that is used as a weight.

It is possible that human interactomes by themselves have a “hairier” nature, due their increased
complexity. Hoverer, the number of protein coding genes is “only” about three times higher
and the human cell is organized into protein complexes as well. A potential reason for the lack
of organization in human interactomes might be that they are yet incomplete. The above-
mentioned redundancy can only be achieved when the coverage of all expressed proteins is
reached. In this case the use of correlation analysis becomes much more powerful. Still, I
believe that to some degree the limitations of existing interactomes are also caused by many

false positives and generally by suboptimal data quality.

3.3 From the Past to ...

At the beginning of this millennium the first AP-MS studies in yeast were conducted (27, 28).
Combined, a team of 84 scientists established the first larger dataset of protein-protein
interactions, a milestone in proteomics and cell biology. This was soon to be followed by two
greatly extended versions as a result of combined forces of a similarly large group of scientists
around the world (29, 30). This massive effort was certainly enough reason not to contemplate
a next-generation version of an interactome in yeast and the focus for good reasons shifted to
other organism. Still, it is surprising that a vision of redoing the yeast interactome on an
improved platform has not been put forward for so long. It is not only about redoing
interactomics in yeast to gain improved data, but also about doing it much more effortlessly, on
a much smaller scale, and in a higher throughput to smoothen the path for future screens. A cell
even as simple as the yeast is rarely growing in the perfect conditions that we call standard
growth condition, it is rather subjected to environmental challenges, like depletion of nutrients,
change of temperature, or damaging agents. Observing the changes on a global interaction level
that occur as a response to such events will help to understand the mechanism behind it. Some
of the reactions to the plans of this project that can be summarized in “but, hasn’t this been done
already?” reflect the mindset that might impede progress in some areas. From my own
experience I can tell that pull-downs are the daily bread and butter of a cell biologist. The
constant search for interaction partners of a protein of interest — being it under stress or standard

condition — in order to confirm a hypothesis or to explain a mechanism, is a daily routine for so
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many scientists. This work is tedious, redundant, error prone and very small-scale. Scientists
ask themselves why this has not already been done for everyone else. If we include every protein

and every condition, it might be a long way, but we have to start.

Luckily the Mann lab, in which all this began also started in recent years to explore new ways
of how to conduct, minimize and analyze interaction experiments by using non-quantitative

proteomics (43—45).

3.4 The Future of Interactomics

For the near future for yeast interactomics I see further miniaturization and reduction in
measurement time ahead. The material derived from my currently developed protocols is
already sufficient for 3-4 injections. Given the already drastically increased sensitivity of the
next generation of timsTOF Pro, this already implies a potential reduction of input material of
a factor of at least four. This alone would in theory allow a switch of the library format from
96-well to 384-well plates, reducing the handling load from the current 44 to 11 plates. In order
to accomplish this, one would need to address how growth, lysis and enrichment steps perform

in the smaller format.

I also see potential in reducing the library complexity by using a “smart-selection” of baits,
based on my interaction data. One can exchange some of the large redundancy in the data for a
reduced library and would still get a very similar network information. This could potentially
further halve the library resulting in about 6 plates. During the 21 min gradient runs we detected
on average about 1,500 proteins per run. This large number is helpful for label-free
normalization and quantification but is more than sufficient. Here it will be worth to explore
the quality of the data acquired under even shorter gradients. Assuming a 12 min or even a
6 min gradient corresponding to 100 and 200 samples per day for 6 x 384-well plates this would
allow the measurement of a complete interactome (excluding replicates) in 24 or 12 days

respectively.

A promising development was recently made by putting proteomics on a microfluidic platform
(96). This on-chip AP-MS is still on its way to provide large-scale application compatibility but
it requires very low input material and makes hope for drastic improvements in the field of

interactomics in the mid and long-term future.
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