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Zusammenfassung

Die Methode der maximalen Entropie ist ein wichtiger Bestandteil der statistischen
Inferenz, die in immer stärkerem Maße für die Konstruktion von Modellen verwen-
det wird, die biologische Systeme, insbesondere komplexe Systeme, aus empirischen
Datensätzen beschreiben und vorhersagen können. In diesen ertragreichen Anwen-
dungen ist es von besonderem Interesse, exakte Verteilungsfunktionen mit minimaler
Information über die Eigenschaften der Daten und ohne Ausnutzung menschlicher Sub-
jektivität zu bestimmen. In dieser Arbeit wird durch eine Kombination der Maximum-
Entropie-Methode mit geeigneten Optimierungsverfahren ein automatisiertes Verfahren
verwendet, um dieses Ziel für univariate und bivariate Daten zu erreichen. Notwendige
Eigenschaften von Zufallsvariablen sind lediglich ihre Stetigkeit und ihre Approximier-
barkeit als unabhängige und identisch verteilte Variablen. In dieser Arbeit versuchen
wir, zwei numerische probabilistische Algorithmen präzise zu präsentieren und sie zur
Schätzung der univariaten und bivariaten Modelle der zur Verfügung stehenden Daten
anzuwenden.

Zunächst wird mit einer Kombination aus der Maximum-Entropie Methode, der
Newton-Methode und dem Bayes’schen Maximum-A-Posteriori-Ansatz die Schätzung
der kinetischen Parameter mit arteriellen Eingangsfunktionen (AIFs) in Fällen ohne
Messung der AIF ermöglicht. Die Ergebnisse zeigen, dass die AIF aus den Daten der
dynamischen kontrastverstärkten Magnetresonanztomographie (DCE-MRT) mit der
Maximum-Entropie-Methode zuverlässig bestimmt werden kann. Anschließend können
die kinetischen Parameter gewonnen werden. Durch die Anwendung der entwickel-
ten Methode wird eine gute Datenanpassung und damit eine genauere Vorhersage der
kinetischen Parameter erreicht, was wiederum zu einer zuverlässigeren Anwendung der
DCE-MRT führt.

Im bivariaten Fall betrachten wir die Kolokalisierung zur quantitativen Analyse
in der Fluoreszenzmikroskopie-Bildgebung. Die in diesem Fall vorgeschlagene Meth-
ode ergibt sich aus der Kombination der Maximum-Entropie-Methode (MEM) und
einer Gaußschen Copula, die wir Maximum-Entropie-Copula (MEC) nennen. Mit
dieser neuartigen Methode kann die räumliche und nichtlineare Korrelation von Sig-
nalen gemessen werden, um die Kolokalisierung von Markern in Bildern der Fluo-
reszenzmikroskopie zu erhalten. Das Ergebnis zeigt, dass MEC in der Lage ist, die Ko-
und Antikolokalisation auch in Situationen mit hohem Grundrauschen zu bestimmen.
Der wesentliche Punkt hierbei ist, dass die Bestimmung der gemeinsamen Verteilung
über ihre Marginale ein entscheidendes inverses Problem ist, das eine mögliche ein-
deutige Lösung im Falle der Wahl einer geeigneten Copula gemäß dem Satz von Sklar
hat. Diese neu entwickelte Kombination aus Gaußscher Kopula und der univariaten
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Maximum Entropie Randverteilung ermöglicht die Bestimmung einer eindeutigen bi-
variaten Verteilung. Daher kann ein Kolokalisationsparameter über Kendall’s t ermit-
telt werden, der üblicherweise in der Copula-Literatur verwendet wird.

Die Bedeutung der Anwendung dieser Algorithmen auf biologische Daten lässt sich
im Allgemeinen mit hoher Genauigkeit, schnellerer Rechengesch windigkeit und gerin-
geren Kosten im Vergleich zu anderen Lösungen begründen. Die umfassende Anwen-
dung und der Erfolg dieser Algorithmen in verschiedenen Kontexten hängen von ihrer
konzeptionellen Eindeutigkeit und mathematischen Gültigkeit ab.

Anschließend wird eine Wahrscheinlichkeitsdichte durch iterative Erweiterung von
kumulativen Verteilungsfunktionen geschätzt, wobei die geeignetsten Schätzungen mit
einer Scoring-Funktion quantifiziert werden, um unregelmäßige Schwankungen zu erken-
nen. Dieses Kriterium verhindert eine Unter- oder Überanpassung der Daten als Al-
ternative zur Verwendung des Bayes-Kriteriums. Die durch statistische Schwankun-
gen in Stichproben induzierte Unsicherheit wird durch mehrfache Schätzungen für die
Wahrscheinlichkeitsdichte berücksichtigt. Zusätzlich werden als nützliche Diagnostik
zur Visualisierung der Qualität der geschätzten Wahrscheinlichkeitsdichten skalierte
Quantil-Residuen-Diagramme eingeführt. Die Kullback-Leibler-Divergenz ist ein geeignetes
Maß, um die Konvergenz der Schätzungen für die Wahrscheinlichkeitsdichtefunktion
(PDF) zu der tatsächlichen PDF als Stichprobe anzuzeigen. Die Ergebnisse zeigen die
generelle Anwendbarkeit dieser Methode für statistische Inferenz mit hohem Ertrag.



Summary

The maximum entropy framework is a cornerstone of statistical inference, which is
employed at a growing rate for constructing models capable of describing and predict-
ing biological systems, particularly complex ones, from empirical datasets. In these
high-yield applications, determining exact probability distribution functions with only
minimal information about data characteristics and without utilizing human subjec-
tivity is of particular interest. In this thesis, an automated procedure of this kind for
univariate and bivariate data is employed to reach this objective through combining
the maximum entropy method with an appropriate optimization method. The only
necessary characteristics of random variables are their continuousness and ability to
be approximated as independent and identically distributed. In this work, we try to
concisely present two numerical probabilistic algorithms and apply them to estimate
the univariate and bivariate models of the available data.

In the first case, a combination of the maximum entropy method, Newton’s method,
and the Bayesian maximum a posteriori approach leads to the estimation of the kinetic
parameters with arterial input functions (AIFs) in cases without any measurement of
the AIF. The results shows that the AIF can reliably be determined from the data
of dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) by maximum
entropy method. Then, kinetic parameters can be obtained. By using the developed
method, a good data fitting and thus a more accurate prediction of the kinetic param-
eters are achieved, which, in turn, leads to a more reliable application of DCE-MRI.

In the bivariate case, we consider colocalization as a quantitative analysis in fluores-
cence microscopy imaging. The method proposed in this case is obtained by combining
the Maximum Entropy Method (MEM) and a Gaussian Copula, which we call the
Maximum Entropy Copula (MEC). This novel method is capable of measuring the
spatial and nonlinear correlation of signals to obtain the colocalization of markers in
fluorescence microscopy images. Based on the results, MEC is able to specify co- and
anti-colocalization even in high-background situations. The main point here is that
determining the joint distribution via its marginals is an important inverse problem
which has one possible unique solution in case of choosing an proper copula according
to Sklar’s theorem. This developed combination of Gaussian copula and the univariate
maximum entropy marginal distribution enables the determination of a unique bivari-
ate distribution. Therefore, a colocalization parameter can be obtained via Kendall’s
t, which is commonly employed in the copula literature.

In general, the importance of applying these algorithms to biological data is at-
tributed to the higher accuracy, faster computing rate, and lower cost of solutions in
comparison to those of others. The extensive application and success of these algorithms
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in various contexts depend on their conceptual plainness and mathematical validity.
Afterward, a probability density is estimated via enhancing trial cumulative distri-

bution functions iteratively, in which more appropriate estimations are quantified using
a scoring function that recognizes irregular fluctuations. This criterion resists under
and over fitting data as an alternative to employing the Bayesian criterion. Uncertainty
induced by statistical fluctuations in random samples is reflected by multiple estimates
for the probability density. In addition, as a useful diagnostic for visualizing the qual-
ity of the estimated probability densities, scaled quantile residual plots are introduced.
Kullback–Leibler divergence is an appropriate measure to indicate the convergence of
estimations for the probability density function (PDF) to the actual PDF as sample.
The findings indicate the general applicability of this method to high-yield statistical
inference.
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Chapter 1

Introduction

Determining the probability density of a random variable based on observations is a ma-
jor and old issue in statistics. In recent years, various parametric and non-parametric
methods have been introduced for determining the class of different statistical distri-
butions. A standard way to estimate an unknown density is to identify its associated
properties, such as symmetry, mode, and amplitude, so that choosing a distribution
that applies to these properties and estimating its parameters let us approach the main
goal. Deciding the best estimator is one challenge for estimating an unknown density.
Researchers have introduced various methods for determining the statistical distribu-
tion and probability density, including the least squares method of mean error (Tuchler
et al., 2002), Bayesian least squares method (Raphan and Simoncelli, 2007), and Best
Linear Unbiased Estimator (Chow and Lin, 1976).

In general, in the case of continuous random variables, a probability density function
(PDF) assigns a probability for the observation of a value falling within a specific
given range. Empirically determining a PDF corresponding to N samples of univariate
data has been investigated extensively in mathematics, with ubiquitous significance for
practical applications. Multiple estimation approaches have been used with success for
fitting a random data sample to parameters of a known functional form. Nevertheless,
the functional form describing the underlying random process is often unknown.

In such cases, a specific functional form is usually regarded for convenience, partic-
ularly when data are limited. A combined model developed by a linear superposition of
known functional forms is commonly employed in cases where the data have particular
characteristics. Proceeding in all these situations requires expert knowledge. In a more
general sense, for estimating a PDF in case of not knowing a parametric functional form
for the PDF, nonparametric techniques are also available. For instance,for high-yield
applications, including those in finance and bioinformatics, determining exact proba-
bility distribution functions with minimum data regarding data features and without
employing human subjectivity is of particular interest (Farmer and Jacobs, 2018).

For that, the maximum entropy method is used today as a major method for es-
timating and determining the probability density with high accuracy and efficiency
and, low bias. This method is employed to obtain the unknown density by solving
optimization problems and is regarded as one of the most efficient methods capable
of yielding maximum possible information for unknown density using the limited and
known available information (Ebrahimi et al., 2008; Pougaza and Djafari, 2011; Thomas
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and Cover, 2006). To reach this objective, such an automated technique for univariate
data is applied via combining the maximum entropy method with single order statis-
tics and maximum likelihood. Random variables just need to be continuous, to have
the ability to be approximated as independent and identically distributed Farmer and
Jacobs (2018).

The moment-constrained maximum entropy problem provides an estimation of a
probability density with the greatest uncertainty among all densities meeting the sup-
plied moment constraints. This issue appears in various fields including solid state
physics (Haydock and Nex, 1984, 1985), Economy (Ormoneit and White, 1999), geo-
physical applications especially weather forecasting (Abramov and Majda, 2004; Haven

et al., 2005; Kleeman, 2002), Renewable Energy Systems (Moreno and Garćıa-Álvarez,
2011; Wang and Zabaras, 2004), Electrical Engineering - Control and Power (Haddad
et al., 2007), Image Processing in Medical Sciences (Mohammad-Djafari, 1992), biology
(De Martino and De Martino, 2018) and in the other fields (Djafari and Demoment,
1990; Golan et al., 1997; Pougaza and Djafari, 2011; Soize, 2008).

The probability density itself is approximated via maximizing the Shannon entropy
under constraints that are provided by the measured moments (phase-space-averaged
monomials of the problem variables) (Mead and Papanicolaou, 1984). By using a
standard procedure, (Wu et al., 2001) the constrained maximum entropy problem is
transformed into the unconstrained minimization problem with the dual objective func-
tion. For further discussion about the theoretical basis of the maximum entropy mo-
ment problem, see (Borwein, 1991; Frontini and Tagliani, 1994; Fuglede, 1983; Tagliani,
1999). Recently, new algorithms for the multidimensional moment-constrained maxi-
mum entropy problem have been proposed in (Abramov, 2006, 2007, 2009; Abramov
et al., 2010). Although the approach presented in Abramov (2006) is relatively sim-
ple and only applies to two-dimensional maximum entropy problems with moments of
orders up to 4, the enhanced algorithm in Abramov (2007) employs an appropriate
orthonormal polynomial base in the space of Lagrange multipliers for improving the
convergence of its iterative optimization process.

It can practically solve 2D problems with up to 8th-order moments, 3D problems
with up to 6th-order moments, and 4D problems up to 4th-order moments, adding up to
44, 83 and 69 moment constraints, respectively, without considering the normalization
constraint for a probability density. Abramov (2009) introduced additional improve-
ments to the algorithm for the multidimensional moment-constrained maximum en-
tropy problem, including several Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterations
(Broyden, 1970; Byrd et al., 1995; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) to ad-
vance between polynomial reorthonormalization points in an adaptive manner, versus
single Newton steps proposed in (Abramov, 2007), and appropriate constraint rescaling
to lower the magnitude differential between high- and low-order moment constraints.

The maximum entropy framework is a cornerstone of statistical inference, which
is employed at a growing rate for constructing models capable of describing and pre-
dicting biological systems, particularly complex one, from empirical datasets. Entropy
maximization or related concepts have been frequently utilized in the past ten years to
analyze large biological datasets in various fields.

These fields range from determining macromolecular interactions and structures
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(Boomsma et al., 2014; Cavalli et al., 2013; Cesari et al., 2018; Cofré et al., 2019;
D’haeseleer et al., 2000; Ekeberg et al., 2013; Farré and Emberly, 2018; Hopf et al.,
2012; Jaynes, 2003; Jennings et al., 2020; Ozer, 2008; Pitera and Chodera, 2012; Roux
and Weare, 2013; Seno et al., 2008; Weigt et al., 2009; Zhang and Wolynes, 2015) to
inferring signaling (Dhadialla et al., 2009; Lezon et al., 2006; Locasale and Wolf-Yadlin,
2009; Remacle et al., 2010; Sanguinetti et al., 2019) and regulatory networks (Graeber
et al., 2010; Schneidman et al., 2006; Sharan and Karp, 2013; Shin et al., 2011) and
the coding organization in neural populations (Cocco et al., 2009; Ferrari et al., 2017;
Granot-Atedgi et al., 2013; Mora et al., 2010; Nghiem et al., 2018; Ohiorhenuan et al.,
2010; Quadeer et al., 2020; Rostami et al., 2017; Roudi et al., 2009; Schneidman et al.,
2006; Shlens et al., 2006; Tang et al., 2008; Tkačik et al., 2013, 2010; Yeh et al., 2010;
Yeo and Burge, 2004) based on DNA sequence analyses (the detection of specific binding
sites, for instance) (Fariselli et al., 2020; Fernandez-de Cossio-Diaz and Mulet, 2019;
Mora et al., 2010; Santolini et al., 2014; Yeo and Burge, 2004).

In addition, the more specialized features of the maximum entropy inference from
the standpoint of statistical physics, computational biology, or information theory have
been covered in multiple high-quality reviews, including the very recent ones (see e.g.
De Martino and De Martino (2018); Jaynes (1957a,b); Lesne (2014); Pressé et al. (2013);
Stein et al. (2015)).

Here, a concise and basic introduction to entropy maximization and its applicability
for deriving models from biological datasets, especially in medical sciences and image
processing is provided. We start from the basics (the concept of entropy and image
processing) and end with a recent application of this method (a maximum entropy study
of cellular metabolism functions). Our main goal is to specify its many applications and
ability to provide new biological knowledge with minimum mathematical descriptions.
However, to supplement the provided information, several fundamental mathematical
concepts are inevitably provided in the Supplementary Material. Although this field is
vast in scope and has been accompanied by many elegance since the 1940s, we, however,
focus on the aspects that are of greater immediate relevance to our purposes. What
follows is a short list of further components and new directions. For further information,
the reader can refer to the suggested literature.

In line with our goals for entropy maximization, this obvious idea must be considered
first: in deriving a statistical model from data, introducing biases other than those
already existing in the data must be avoided, since these biases would be discretionary
and unwarranted. As an example, when modeling a process with E possible outcomes
(e.g. throwing a dice) without prior knowledge of it, the best estimate for a probability
law governing this process would have to be the uniform distribution, in which each
outcome has a probability (De Martino and De Martino, 2018).

Essentially, the entropy maximization framework extends this idea to cases with
greater complexity and presents a guideline for constructing the optimal (least biased)
probability distribution consistent with a specified set of constraints derived from data.
Surely, the notion of entropy is central in this respect.

Hence, the main goal of this study is to investigate different applications of the
maximum entropy method in the medical sciences. Especially, we focused on the cell
biology and image processing. To approach the overall research objectives, five detailed
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applications were selected. A brief description of the general framework of thesis and
each application is as follows. The first and the second chapters includes introduction,
literature review, and basic definitions about entropy and image processing.

In the first application, the problem was as follows. When deriving physiological
kinetic parameters from Dynamic Contrast-Enhanced Magnetic Resonance Imaging
(DCE-MRI) data, determining the arterial input function (AIF) is of particular in-
terest. In this study, a Bayesian approach is proposed to capture the physiological
parameters of DCE-MRI together with the AIF in cases with no measurement of the
AIF. The proposed algorithm is obtained by combining the maximum entropy method
(MEM) with the maximum a posteriori (MAP) method and is considered as an alter-
native for assessing the input function from the available data. By using the developed
method, a good data fitting and thus a more accurate prediction of the kinetic param-
eters are achieved, which, in turn, leads to a more reliable application of DCE-MRI
(chapter 3, Farsani and Schmid, 2017).

In the second application, the issue involved determining the joint probability distri-
bution from its marginals considering the correlation between them. Since determining
a joint probability distribution from its marginals, is regarded as an important problem
in statistics, we linked this problem to an important problem in cell biology, which is
to find the relation and location of the dye proteins in the cell and to reconstruct an
image from its projections. A widely used technique to quantitatively analyze fluores-
cence microscopy images is the co-localization analysis. By localizing marked proteins
in the nucleus of cells, a deep knowledge about biological processes in the nucleus is
obtained. Many criteria have been proposed for measuring the co-localization of two
markers; however, these criteria rely upon threshold the background subjectively and
the assuming linearity. A robust method was proposed for capturing the bivariate dis-
tribution function of two color channels so that their co- or anti-colocalization can be
quantified. The maximum entropy method (MEM) and a Gaussian copula were com-
bined to develop this method, which is termed the maximum entropy copula (MEC).
This novel method is capable of measuring the non-linear and spatial association of sig-
nals to specify the colocalization of markers in fluorescence microscopy images (chapter
4, Farsani and Schmid, 2021).

In the third application, we modified the previous algorithm in (Farsani and Schmid,
2017) the kinetic models used in contrast-based medical imaging, in which determin-
ing the arterial input function (AIF) is essential for the estimation of physiological
parameters of the tissue via solving a nonlinear inverse problem named. Therefore,
we estimate the AIF based on the modified maximum entropy method. The modified
algorithm is obtained by combining the maximum entropy method and an optimization
method, which was termed the modified maximum entropy method (MMEM). Then,
we applied this algorithm in a Bayesian framework to estimate the kinetic parameters
via the unique form of the arterial input function (chapter 5, submitted to Entropy).

In the fourth application, we considered the colocalization analysis. In this analy-
sis, it was determined whether sub-cellular structures are located at the same physical
position in which they can interact with each other. For an image pair, a green chan-
nel is typically analyzed with a red channel to specify their colocalization pixel. We
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connected this problem to an ill-posed inverse problem in statistics to obtain the joint
probability distribution from its marginals considering the concept of copula. Here, dif-
ferent classes of copula are considered to reconstruct the joint probability distribution
with the marginals and evaluate which of them measures correlation more accurately.
The proposed models are categorized into three groups based on the class of copula,
the univariate maximum entropy model of both channels and their model structures.
The generalized exponential distribution has been proposed as an appropriate model
to describe the data. The focus of the current study is on what we can learn from the
parameters of the distribution about the signals. We sell point for the article compared
to the previous paper and look into the parameters to gain further insight into structure
of the signal. Then, a numerical example is presented to illustrate the formulation and
implementation of each type of the entropy copula model. In addition, the potential
application of the maximum entropy copula in the fluorescence microscopy images data
are discussed (chapter 6).

The thesis concludes with a short summary and an outlook to potential aspects of
future research in chapter 7.

Software

All computations were carried out using the mathematical software MATLAB.
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Chapter 2

Basic Concepts and Definitions of
Entropy and Image Processing
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2.1 Introduction

Information theory is based on statistics and probability with Shannon pioneering re-
search that was founded as a mathematical theory of communication. A key indicator
in information theory is Shannon’s entropy, which is the core of information theory.
Entropy is a measure of the uncertainty of a system, meaning that the system is more
uncertain systems with less uncertainty, has been less reliable. Uncertainty is sometimes
called a state of limited knowledge or “doubt.” Something is uncertain if it is possible
but not known. On the other hand, a proposition is uncertain if it is consistent with
knowledge but not implied by knowledge. Connecting this notion of uncertainty with
that one of information means that uncertainty is the amount of expected information
that observations or experiments could reveal.

Therefore, it is important to note that the views of information and its relationship
with uncertainty expressed above are common to all researchers analyzing random
processes or random data. But, for information that is absolutely certain, what is the
link between information and probability (or a degree of rational belief) or uncertainty?

In 1871, Boltzmann extends the subject of thermodynamics, by introducing prob-
abilities (Boltzmann, 1871). Many authors have tried to sort out what Boltzmann
thought and when he thought it (Bryan, 1894). With this in mind, we attempt to
summarize Boltzmann’s contribution to entropy with modern notation (Thomas and
Cover, 2006).

2.2 Concept of Entropy

Entropy is expected information. It reflects what we expect to learn from observations,
on average, and it depends on how we measure information. Entropy can be viewed
as a measure of uniformity. Similarly, but within a different context, entropy is also
a measure of disorder of a system. The second law of thermodynamics states that
the entropy of a (closed) system (like the universe) increases with time. It represents
the progression of the system toward equilibrium that is reached at the highest level of
entropy. In more technical words, entropy is a measure of uncertainty of a single random
variable (in statistics). The entropy of a random variable is a measure of the uncertainty
of the random variable; It is a measure of the amount of information required on average
to describe the random variable. In 1948, (Shannon, 1948b) introduced the entropy for
both discrete and continuous random variables, based on Boltzmann’s theory (Thomas
and Cover, 2006).

We first introduce the concept of entropy, which is a measure of the uncertainty of a
random variable. Let X be a discrete random variable with alphabet X and probability
mass function p(x) = Pr{X = x}, x ∈ χ. We denote the probability mass function by
p(x)rather than pX(x), for convenience. Thus, p(x) and p(y) refer to two different
random variables and are in fact different probability mass functions, pX(x) and pY (y),
respectively (Thomas and Cover, 2006).
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2.2.1 Shannon’s Entropy

Let X be a discrete random variable with alphabet χ and probability mass function
p(x) = pr(X = x), entropy H(X) is defined as follows:

H(X) = −
∑
x∈χ

p(x)logp(x), (2.1)

The entropy of X can also be interpreted as the expected value of the random variable
log 1

p(X)
, where X is drawn according to probability mass function p(x). Thus,

H(X) = Ep(log
1

p(x)
) (2.2)

Lemma1– H(X) ≥ 0.
Proof– 0 ≤ p(x) ≤ 1 implies that log 1

p(x)
≥ 0

Lemma2– Hb(X) = (logba)Ha(X).
Proof– logbp = logba logap.⊡

The second property of entropy enables us to change the base of the logarithm in
the definition. Entropy can be changed from one base to another by multiplying by the
appropriate factor.

And let X be a random variable with cumulative distribution function F (x) =
Pr(X ≤ x). If F (x) is continuous, the random variable is said to be continuous.
Let f(x) = F ′(x) when the derivative is defined. If

∫∞
−∞ f(x) = 1, f(x) is called the

probability density function for X. The set where f(x) > 0 is called the support set of
X. For a continuous random variable X with a probability density function f(x) on S,
its entropy is defined as

h(X) = −
∫
S

f(x)logf(x)dx, (2.3)

where S is the support set of the random variable. As in the discrete case, the dif-
ferential entropy depends only on the probability density of the random variable, and
therefore the differential entropy is sometimes written as h(f) rather than h(X).

Other information measures

In this section we introduce three related concepts: relative entropy, mutual informa-
tion, and joint differential entropy. We now extend the definition of these two familiar
quantities, D(f ||g) and I(X;Y ), to probability densities.

2.2.2 Relative entropy

The relative entropy is a measure of the distance between two distributions. In statis-
tics, it arises as an expected logarithm of the likelihood ratio. The relative entropy
D(f ||g) is a measure of the inefficiency of assuming that the distribution is g when
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the true distribution is f . The relative entropy (or Kullback–Leibler distance) D(f ||g)
between two densities f and g is defined by

D(f ||g) = −
∫
S

f(x)log
f(x)

g(x)
dx, (2.4)

Note that D(f ||g) is finite only if the support set of f is contained in the support set
of g. [Motivated by continuity, we set 0log 0

0
= 0.] In the above definition, we use the

convention that 0log 0
0
= 0 and the convention (based on continuity arguments) that

0log 0
g
= 0 and flog f

0
= ∞. Thus, if there is any symbol x on S such that f(x) > 0

and g(x) = 0, then D(f ||g) = ∞. The relative entropy is always non-negative and is
zero if and only if f = g.

2.2.3 Mutual information

The mutual information I(X;Y ) between two random variables with joint density
f(x, y) is defined as

I(X;Y ) =

∫
f(x, y)log

f(x, y)

f(x)f(y)
dxdy. (2.5)

From the definition it is clear that

I(X;Y ) = h(X)− h(X|Y ) (2.6)

= h(Y )− h(Y |X)

= h(X) + h(Y )− h(X, Y )

and
I(X;Y ) = D(f(x, y)||f(x)f(y)). (2.7)

The properties of D(f ||g) and I(X;Y ) are the same as in the discrete case.

2.2.4 Joint Differential Entropy

The differential entropy of a setX1, X2, ..., Xn of random variables with density f(x1, x2, ..., xn)
is defined as

h(X1, X2, ..., Xn) = −
∫
S

f(xn)logf(xn)dxn, (2.8)

2.3 Principle of the Maximum Entropy

The principle of maximum entropy, as a method of statistical inference, is due to
Jaynes (Jaynes, 1957a). His idea is that this principle leads to the selection of a
probability density function that is consistent with our knowledge and introduces no
unwarranted information. Any probability density function satisfying the constraints
that has smaller entropy will contain more information (less uncertainty), and thus
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says something stronger than what we are assuming. In fact, to the contrary, the
principle of maximum entropy guides us to the best probability distribution that reflects
our current knowledge and it tells us what to do if experimental data does not agree
with predictions coming from our chosen distribution (Conrad, 2004). The Principle
of Maximum Entropy is based on the premise that when estimating the probability
distribution, you should select that distribution which leaves you the largest remaining
uncertainty (i.e., the maximum entropy) consistent with your constraints. That way
you have not introduced any additional assumptions or biases into your calculations
(Thomas and Cover, 2006).

Finally, the maximum entropy principle states that, for a given amount of informa-
tion, the probability distribution which best describes our knowledge is the one that
maximizes the Shannon’s entropy subjected to the given evidence as constraints.

2.3.1 Maximum Entropy Method

The entropy has its maximum value when all probabilities are equal (we assume the
number of possible states is finite), and the resulting value for entropy is the logarithm
of the number of states, with a possible scale factor ((Thomas and Cover, 2006)). If we
have no additional information about the system, then such a result seems reasonable.
However, if we have additional information then we ought to be able to find a probability
distribution that is better in the sense that it has less uncertainty.

The maximum entropy method (MEM) is determination of a distribution that max-
imizes the information entropy. The MEM is a great tool for reconstructing a probabil-
ity distribution given a finite number of moment constraints. This method is typically
known as the moments problem. The concept of maximum entropy method was first
proposed by Jaynes (Jaynes, 1957a). It is a graceful means of reconstructing a density
distribution given a finite number of moment constraints from incomplete data sets.

A general approach for the maximum entropy problem is to maximize Shannon’s
entropy (Shannon, 1948b) subject to the moment constraints

E(ϕk(X)) =

∫
ϕk(x)f(x)dx = µk, (2.9)

or  f(x) ≥ 0,∫
S
f(x)dx = 1,∫

S
f(x)ϕk(x)dx = µk, 1 ≤ k ≤ m.

(2.10)

where µ0 = 1, ϕ0(x) = 1, ϕk(x), k = 0, ..., N are N + 1 known functions, and µk, k =
0, ..., N are the given expectation data. ϕk(x), k = 0, ..., N can be in any functional
form such as xn,log(x), x log(x), or trigonometric or geometric functions. The main
vehicle to determine the required known function is the relationship of the maximum
entropy distribution with the Exponential family (Casella and Berger, 2002; Ebrahimi
et al., 2008; Pougaza and Djafari, 2011) using the moment constraints µ1, ..., µm, which
typically can be obtained numerically from data using Taylor’s theorem (Casella and
Berger, 2002).
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Using the method of Lagrange multipliers method, where the objective function is
Shannon’s entropy Eq.(2.3), J(f) is as follows:

J(f) = −
∫

f(x)logf(x)dx+ λ0

∫
f(x)dx+

N∑
k=1

λk

∫
f(x)ϕk(x)dx. (2.11)

For obtaining f(x), we differentiate J subject to f(x):

∂J(f)

∂f(x)
= −logf(x)− 1 + λ0 +

N∑
k=1

λkϕk(x). (2.12)

Setting Eq.(2.12) equal to zero, the general form of the maximizing density is obtained
as follows:

f(x) = e−
∑N

k=0 λkϕk(x), x ∈ S, (2.13)

where λk should be chosen such that f(x) in Eq.(2.13) satisfies the known moment
constraints in Eq.(2.10). In general, there are infinitely many continuous distributions
whose constraints match these known constraints. Additional constraints are then
required to guide the process of finding a continuous distribution that fits the known
constraints. The maximum entropy approach suggests only the form of the density
that maximizes the entropy. Thomas and Cover (2006) proved that the distribution in
Eq.(2.13) has the maximum entropy.

Definition–(Information inequality) If g satisfies Eq.(2.9) and if f ⋆ is of the form
Eq.(2.13), then 0 ≤ D(g||f ⋆) = −h(g) + h(f ⋆). Thus h(g) ≤ h(f ⋆) for all g satisfying
the constraints. We prove this in the following theorem.

Theorem–(Maximum entropy distribution)
Let f ⋆(x) = fλ(x) = eλ0+

∑m
i=1 λiri(x), x ∈ S, where λ0, ..., λm are chosen so that f ⋆

satisfies Eq.(2.9). Then f ⋆ uniquely maximizes h(f) over all probability densities f
satisfying constraints Eq.(2.9).

Definition–If a function g(x) has derivatives of order r, that is g(r)(x) = dr

dxr g(x)exists,
then for any constant a, the Taylor’s polynomial of order r about a is

T r(x) =
r∑

i=0

gi(a)

i!
(x− a)i. (2.14)

Theorem–(Taylor’s Theorem) If g(r)(a) = dr

dxr g(x)|x=a exists, then

lim
x→a

g(x)− Tr(x)

(x− a)r
= 0. (2.15)

Taylor’s major theorem is that the reminder form the approximation, g(x)− Tr(x),
always tends to 0 faster than the highest order explicit term Casella and Berger (2002).
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To solve the current problem in Eq.(2.13), a more general procedure is clearly
needed, and this is provided by the use of Lagrange Multipliers. The technique of
Lagrange Multipliers is named after the French mathematician, Joseph-Louis Lagrange
(1736 - 1813). Instead of using the constraint equations to reduce the number of un-
knowns, we increase the number of unknowns. The Lagrange multipliers λ = [λ0, ..., λN ]
should be calculated to find the class of maximum entropy distributions. To obtain the
N + 1 Lagrange multipliers, the following set of N + 1 nonlinear equations should be
solved (1 ≤ k ≤ m):

Here, we use the standard Newton’s method, in which the Lagrange multipliers λ are
obtained by solving the nonlinear equations. Newton’s method relies on a first-order
Taylor approximation around trial values of lambda and solving the resulting linear
system iteratively (Pougaza and Djafari, 2011; Yari and Farsani, 2015).

Gk(λ) =

∫
ϕk(x)e

−
∑

k λkϕk(x)dx = µk. (2.16)

Eq.(2.16) can be written in the following matrix form
µ0 −G0

µ1 −G1
...

µN −GN

 =


λ0 − λ0

λ1 − λ1

...

λN − λN




∂G0

∂λ0

∂G0

∂λ1
. . . ∂G0

∂λN
∂G1

∂λ0

∂G1

∂λ1
. . . ∂G1

∂λN
...

...
. . .

...

∂GN

∂λ0

∂GN

∂λ1
. . . ∂GN

∂λN

 (2.17)

Since an indisputable analytical solution does not exist for the nonlinear system of
Eq.(2.16) in case N ≥ 2, one must use a nonlinear optimization technique to deter-
mine the Lagrange multipliers. One way to solve the maximum entropy problem is
to transform the constrained optimization problem into an unconstrained optimization
problem via the dual approach (Golan et al., 1997). However, we suggest the standard
Newton’s method.

2.3.2 Newton’s Method

The solution of the standard ME problem is given by Eq.(2.16) in which the Lagrange
multipliers, λs, are obtained by solving the nonlinear system of Eq.(2.16). These equa-
tions are solved by the standard Newton’s method which is consisted of expanding
Gk(λ) in Taylor’s series around trial values of λks, dropping the quadratic and higher-
order terms, and solving the resulting linear system, iteratively. We give the details of
our numerical method that we implemented. After expanding Gk(λ) in Eq.(2.16) by
Taylor’s series around the trial λ0, the resulting linear equations are given by;

Gk(λ) ∼= Gk(λ
0) + (λ− λ0)t[gradGk(λ)](λ=λ0) = µk, k = 0, ... , N. (2.18)

Consider the vectors δ = λ−λ0 and ν = [µ0−G0(λ
0), ..., µN−GN(λ

0)]t and the matrix
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G by

G = (gnk) = (
∂Gk(λ)

∂λn

)(λ=λ0), n, k = 0, ..., N. (2.19)

Therefore, Eq.(2.18) becomes
ν = δG (2.20)

The linear algebraic system in Eq.(2.20) is solved for δ from which we deriveλ =
λ0 + δ, which becomes our initial vector λ0and the iteration continues until δbecomes
appropriately small. Note that the matrix G is the symmetric one and we have

gnk = gkn = −
∫

ϕk(x)ϕn(x) exp[−
N∑
k=0

λkϕk(x)]dx, n, k = 0, ..., N. (2.21)

Now, the unknown Lagrange multipliers λk, k = 0, ..., N, are determined by solving
Eq.(2.21). A computational procedure is introduced in the next subsection for deter-
mining λk.

2.4 Joint Maximum Entropy Distribution

Entropy maximization of a joint distribution subject to given marginals has been stud-
ied in statistical and probabilistic literature since the 1930s (Cramér and Wold, 1936).
The condition for existence of the solution has also been known (Strassen et al., 1965).
This problem was also considered in (Kullback, 1968) and (Csiszár, 1997). Two years
before Sklar’s theorem was published, Edwin Jaynes proposed, in two seminal papers
(Jaynes, 1957a,b), the Principle of Maximum Entropy which defines probability distri-
butions given only partial information. Principle of Maximum Entropy has been used
in many areas and originally when the partial information is in the form of knowledge
of some geometric or harmonic moments (e.g.(DJAFARI, 1994; Mohammad-Djafari,
1991)). The case where the entropy considered is the Shannon’s entropy on a mea-
surable space was discussed more rigorously in (Borwein et al., 1994), and this idea
was later used in Meeuwissen and Bedford (1997), where the authors derive the joint
distribution with given uniform marginals on I = [0, 1] and given correlation. Here the
partial information is the knowledge of the marginal distributions. The main result
is that we can determine a multivariate distribution with given marginals and which
maximizes an entropy (Pougaza and Djafari, 2011).

2.4.1 Inverse Ill-posed Problem

The terms “inverse problems” and “ill-posed problems” have been steadily and surely
gaining popularity in modern science since the middle of the 20th century. A little more
than fifty years of studying problems of this kind have shown that a great number of
problems from various branches of classical mathematics (computational algebra, dif-
ferential and integral equations, partial differential equations, functional analysis) can
be classified as inverse or ill-posed, and they are among the most complicated ones
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(since they are unstable and usually nonlinear). At the same time, inverse and ill-
posed problems began to be studied and applied systematically in physics, geophysics,
medicine, astronomy, and all other areas of knowledge where mathematical methods are
used. The reason is that solutions to inverse problems describe important properties of
media under study, such as density and velocity of wave propagation, elasticity param-
eters, conductivity, dielectric permittivity and magnetic permeability, and properties
and location of inhomogeneity in inaccessible areas, etc (Kabanikhin, 2008).

What are inverse and ill-posed problems? While there is no universal formal def-
inition for inverse problems, an “ill-posed problem” is a problem that either has no
solutions in the desired class, or has many (two or more) solutions, or the solution pro-
cedure is unstable (i.e., arbitrarily small errors in the measurement data may lead to
indefinitely large errors in the solutions). Most difficulties in solving ill-posed problems
are caused by the solution instability. Therefore, the term “ill-posed problems” is often
used for unstable problems (Kabanikhin, 2008).

In 2D case, interpreting the joint probability density function f(x, y) as an image
and its marginal probability densities f1(x) and f2(y) as horizontal and vertical line
integrals:

f1(x) =

∫
f(x, y)dy and f2(y) =

∫
f(x, y)dx (2.22)

we see that the problem of determining f(x, y) from f1(x) and f2(y) is an ill-posed
(inverse) problem (Hadamard, 1902; Tarantola, 2005). It is a well known fact that
while a distribution has a unique set of marginals, the converse is not necessarily true.
That is, many distributions may share a common subset of marginals. In general, it is
not possible to uniquely reconstruct a distribution from its marginals.

Determining f(x, y) from f1(x) and f2(y) is an ill-posed undetermined inverse prob-
lem and in statistics, the notion of copula is exactly introduced to characterize all the
possible solutions to the problem of reconstructing a bivariate density from its marginals
(Pougaza and Djafari, 2011).

2.4.2 Copula

Copulas are receiving much interest from various research fields such as risk manage-
ment (Spaces, 1983), networked systems (Marshall and Olkin, 1967), fuzzy systems
(Genest and MacKay, 1986), (Joe, 1993), signal processing (Jaynes, 1957b) and mod-
eling of time series (Jaynes, 1957a), (Mohammad-Djafari, 1991). Copulas provide an
easy way to construct joint distribution functions splitting the task in two ways: 1) esti-
mating the margins of each random variable separately, for which there are well known
methods and plenty of software aids, and 2) estimating the dependence structure, pay-
ing no attention to the margins. This separation allows testing different copulas until
the best fit is found. On the other hand, when the dependence structure is non-linear,
as often is the case in real situations, using the linear correlation as a measure of de-
pendence is an erroneous assumption. The Archimedean family of copulas has the
nice property of being directly linked with non-linear degrees of association, such as
Kendall’s τ or Spearman’s ρ.
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Copulas have proven useful for modeling the dependence structure between vari-
ables in the presence of partial information: the knowledge of marginal distributions.
In other word, a copula is a multivariate probability distribution which describes the
dependence between random variables. Here, we are interested in finding the bivariate
distribution, knowing only its marginal distributions. This is an ill-posed inverse prob-
lem (Tarantola, 2005) as it does not have a unique solution.One possible way to select
a unique solution to this problem is to choose an appropriate copula and use Sklar’s
theorem (Rüschendorf, 2013) according to which there exists a copula which relates the
marginal distributions yielding to the joint distribution. The problem then becomes
the choice of a copula.

Theorem–(Sklar’s Theorem) Let F be a joint distribution function with marginal
distribution F1 and F2. There exists a copula C such that, for all x, y ∈ (−∞,∞),

F (x, y) = C(F1(x), F2(y)), (2.23)

If F1 and F2 are continuous, the copula C is unique; otherwise, C is uniquely determined
on (Range of F1) × (Range of F2). On the other hand, if C is a copula and F1 and F2

are univariate distribution functions, F is a joint distribution function with marginal
distributions F1 and F2, (Balakrishnan and Lai, 2009). ⊡

According to Sklar’s theorem, there exists a copula which relates the marginal dis-
tributions yielding the joint distribution. The remaining problem is choice of a copula.
Note that there are many other ways to derive families of continuous multivariate distri-
butions with given univariate marginals (Genest and MacKay, 1986; Genest and Rivest,
1993; Pougaza and Djafari, 2011).

By F (x, y) we denote a continuous bivariate cumulative distribution function (CDF),
and f(x, y) its bivariate probability density function (PDF). Let F1(x), F2(y) be the
marginal CDFs and f1(x), f2(y) their respective PDFs. A bivariate copula C is a
function from [0, 1]2 to [0, 1] with the following properties:

• ∀u, v ∈ [0, 1], C(u, 0) = 0 = C(0, v),

• ∀u, v ∈ [0, 1], C(u, 1) = u and C(1, v) = v,

• C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for all u1, u2, v1, v2 ∈ [0, 1] such
that u1 ≤ u2, v1 ≤ v2.

One can construct copulas C from joint distribution functions by

C(u, v) = F (F−1
1 (u), F−1

2 (v)), (2.24)

where the quantile function is F−1
i (t) = inf{u : Fi(u) ≥ t} (Pougaza and Djafari, 2011;

Romeo et al., 2006). For any multivariate absolutely continuous distribution, with CDF
F and marginal CDFs Fi : R 7→ [0, 1], the copula C is such a distribution function on
[0; 1]p with uniform one-dimensional marginal distributions such that

F (x1, ..., xp) = C(F1(x1), ..., Fp(xp)), (2.25)
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which is a joint probability distribution for the vector-valued random variables X =
(X1, ...Xm) with the joint copula density c : [0, 1]p 7→ [0,∞) defined by

c(F1(x1), ..., Fp(xp)) =
∂pC(F1(x1), ..., Fp(xp))

∂F1...∂Fp

. (2.26)

The joint density f : Rp 7→ [0, 1] is defined almost everywhere and it can be expressed
as (Balakrishnan and Lai, 2009)

f(x) = c(F1(x1), ..., Fp(xp))

p∏
i=1

fi(xi). (2.27)

Fitting a copula to a given independent identically distributed (i.i.d.) data set of
n observations (xi, yi) is a field of intense research (Burg, 1975; Havrda and Charvát,
1967; Rényi et al., 1961). The general approach takes advantage of the separation of
margins and copula provided by Sklar’s theorem. Thus, in a first step the margin
functions are estimated either with parametric or non parametric methods. The result
are parametric or empirical CDF margins respectively. Then in a second step, the
estimation of the copula’s parameter a is carried out via Maximum Likelihood (ML)
(Strassen et al., 1965).

Archimedean copulas have the advantage of being characterized by the single-valued
generator ϕ, regardless of how many random variables are coupled, and one can then
skip the estimation of the margins. Thus, Genest and Rivest (Rényi et al., 1961) pro-
pose a parametric approach: assuming that the dependence structure is captured by
an Archimedean copula, the goal is to choose the generator and compute its parameter.

Property– Any copula C(u, v), satisfies the inequality

W (u, v) ≤ C(u, v) ≤ M(u, v), (2.28)

where the Fréchet–Hoeffding upper bound copula M(u, v) (or comonotonicity
copula) is:

M(u, v) = min(u, v), (2.29)

and the Fréchet–Hoeffding lower bound W (u, v) (or countermonotonicity copula)
is:

W (u, v) = max{u+ v − 1, 0} (u, v) ∈ [0, 1]2. (2.30)

Generating copulas by the inversion method: A straightforward method is based di-
rectly on Sklar’s theorem. Given F (x, y) the joint cdf of two random variables X, Y and
F1(x) and F2(y) their marginal cdf’s, all assumed to be continuous. The correspond-
ing copula can be constructed by using the unique inverse transformations (Quantile
transform) x = F−1

1 (u), y = F−1
2 (v), and the Eq. (2.24) where u, v are uniform on [0, 1].

2.4.3 Archimedean Copula Model

The Archimedean copulas (Nelsen, 2007) form an important class of copulas which
generalize the usual copulas.
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Theorem– Let ϕ be a continuous, strictly decreasing function from [0, 1] to [0,∞]
such that ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse1 of ϕ.

ϕ[−1](t) =

{
ϕ[−1](t), 0 ≤ t ≤ ϕ(0)
0, ϕ(0) ≤ t ≤ ∞ (2.31)

Let C be the function from [0, 1]2 to [0, 1] given by

W (u, v) = max{u+ v − 1, 0} (u, v) ∈ [0, 1]2. (2.32)

Then C is a copula if and only if ϕ is convex.
Archimedean copulas are in the form Eq.(2.32) and the function ϕ is called the

generator of the copula. ϕ is a strict generator if ϕ(0) = ∞, then ϕ[−1] = ϕ−1 and

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)). (2.33)

Property– Any Archimedean copula C satisfies the following algebraic properties:

• C(u, v) = C(v, u) meaning that C is symmetric;

• C(C(u, v), w) = C(u,C(v, w));

• If a > 0, then aϕ is again a generator of C.

There are many families of Archimedean copulas constructed from different gener-
ators ϕα with a suitable parameter α. For example ϕα(t) = 1

α
(t−α − 1) and ϕα(t) =

ln(1−αln(t)) yield successively to Clayton copula Cα(u, v) = [max(u−α+v−α−1, 0)]
1
α

and Gumbel-Hougaard copula Cα(u, v) = uv × exp(−αlnu× lnv).

2.4.4 Gaussian Copula Model

In our proposed method, we use a Gaussian copula. A Gaussian copula is a distribu-
tion over the unit cube [0, 1]d constructed from a multivariate Gaussian distribution
over R by using the probability integral transform. For a given correlation matrix
R ∈ [−1, 1]d×d, the Gaussian copula with parameter matrix R can be written as

CGauss
R (u) = ΦR

(
Φ−1(u1), . . . ,Φ

−1(ud)
)
, (2.34)

where Φ−1 is the inverse CDF of a standard Gaussian and ΦR is the joint CDF of a
multivariate Gaussian distribution with mean vector zero and covariance matrix equal
to the correlation matrix R. While there is no simple analytical formula for the copula
function, CGauss

R (u), it can be upper or lower bounded, and approximated using nu-
merical integration (Botev, 2017). The density of the proposed copula can be written
as:

cGauss
R (u) =

1√
detR

exp

−1

2

Φ−1(u1)
...

Φ−1(ud)

T

·
(
R−1 − I

)
·

Φ−1(u1)
...

Φ−1(ud)


 , (2.35)

where I is the identity matrix (Arbenz, 2013).
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2.4.5 Maximum Entropy Copula

In order to find the bivariate maximum entropy PDF f(x, y), the marginal distributions
become the constraints: ϕ0(x, y) :

∫ ∫
f(x, y)dxdy = 1,

ϕ1(x, y) :
∫
f(x, y)dy = f1(x), ∀x,

ϕ2(x, y) :
∫
f(x, y)dx = f2(y), ∀y.

(2.36)

Hence, the goal is to find the bivariate density f(x, y) compatible with available in-
formation in the sense of the maximum entropy principle. Among all possible f(x, y)
satisfying the constraints Eq.(2.36), we select the one which optimizes the entropy
h(X, Y ):

h(X, Y ) = −
∫ ∫

f(x, y) log f(x, y)dxdy (2.37)

via
f̂ := maximize h(X, Y ) subject to ϕks in Eq.(2.36) (2.38)

Because the constraints are linear, the choice of a concave objective function h(X, Y )
guarantees the existence of a unique solution to the problem. Many entropy func-
tions can serve as concave objective functions, but we focus on the Shannon’s entropy
(Shannon, 1948b)

f(x, y) = exp(−λ1ϕ1(x, y)− λ2ϕ2(x, y)− λ0ϕ0(x, y)) (2.39)

where λ1, λ2 and λ0 are obtained by replacing these expressions in the constraints
Eq.(2.36) and solving the resulting system of equations. For Shannon’s entropy, the
constraints can be solved analytically and the joint distribution becomes

f(x, y) = f1(x)f2(y). (2.40)

With the bivariate density obtained from the maximum entropy principle, we can im-
mediately find the corresponding bivariate copula. For the case of Shannon’s entropy
we have:

F (x, y) =

∫ x

0

∫ y

0

f(s, t)dsdt (2.41)

=

∫ x

0

∫ y

0

f1(s)f2(t)dsdt

=

∫ x

0

f1(s)ds

∫ y

0

f2(t)dt

The CDF becomes
F (x, y) = F1(x)F2(y), (2.42)

and the copula is
C(u, v) = F (F−1

1 (u), F−1
2 (v)) = uv. (2.43)

In this case, the maximum entropy copula obtained from the Shannon’ entropy is the
well-known independent copula, which describes independence between two random
variables (Pougaza and Djafari, 2011).
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In general, the properties of Pearson’s product moment correlation coefficient in
bivariate Normal samples (bi–normal model) is well known thanks to the creative work
of Fisher (1922). However, sometimes it might not be applicable when the following
scenarios happen:

• The data are incomplete, that is, only ordinal information is available. This
situation is not uncommon in the area of social sciences, such as psychology and
education (Kendall, 1948);

• The underlying data are complete (cardinal) and follow a bivariate Normal dis-
tribution, but is attenuated more or less by some monotone non-linearity in the
transfer characteristics of sensors (Tumanski, 2006);

• The data are complete and the majority follow a bivariate Normal distribution,
but there exists a tiny fraction of outliers (impulsive noise) (Stein, 1995; Xu et al.,
2010).

Under these circumstances, it would be more suitable to employ the most popular
non-parametric coefficient, Kendall’s τ , which is 1) dependent only on ranks, 2) invari-
ant under increasing monotone transformations (Kendall, 1948), and 3) robust against
impulsive noise (Shevlyakov and Vilchevski, 2002).

2.4.6 Kendall’s τ

Let (xi, yi) and (xj, yj) be two observations from (X, Y ), a pair of continuous random
variables. The two pairs (xi, yi) and (xj, yj) are said to be concordant if (xi − xj)(yi −
yj) ≥ 0 and discordant if (xi−xj)(yi−yj) ≤ 0. Kendall’s τ is defined as the probability
of concordance minus the probability of discordance,

τ = P [(X −X ′)(Y − Y ′) ≥ 0]− P [(X −X ′)(Y − Y ′) ≤ 0] (2.44)

The definition above is equivalent to

τ = cov[sgn(X ′ −X), sgn(Y ′ − Y )]. (2.45)

τ may also be defined as

τ = 4

∫ ∫
C(x, y)c(x, y)dxdy − 1. (2.46)

The sample version of Kendall’s τ is defined as

t =
c− d

c+ d
=

c− d

n
(2.47)

where c denotes the number of concordant pairs and d the number of discordant pairs
from a sample of n observations from (X, Y ). τ̂ is an unbiased estimator of τ . Just as
H can be expressed as a function of copula C, Kendall’s τ can be expressed in terms
of the copula [see, for example, Nelsen (2007)] as

τ = 4

∫ 1

0

∫ 1

0

C(u, v)c(u, v)dudv − 1 = 4E(C(U, V ))− 1. (2.48)
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2.4.7 Copula for Non-Gaussian Model

Radon’s Transformation

Copula is useful for constructing joint distributions, particularly with non-Gaussian
random variables (Joe, 1997). In 2D case, interpreting the joint probability density
function f(x, y) as an image and its marginal probability densities f1(x) and f2(y) as
horizontal and vertical line integrals:

f1(x) =

∫
f(x, y)dy and f2(y) =

∫
f(x, y)dx

we see that the problem of determining f(x, y) from f1(x) and f2(y) is an ill-posed
(inverse) problem (Hadamard, 1902; Idier, 2013; Tarantola, 2005). It is a well known
fact that while a distribution has a unique set of marginals, the converse is not neces-
sarily true. That is, many distributions may share a common subset of marginals. In
general, it is not possible to uniquely reconstruct a distribution from its marginals.

The case of maximum entropy method in image processing has been studied by
Pougaza et al. (2010). He first proposes a brief description of the maximum en-
tropy method priors to solve the linear system of equations which is obtained after
the discretization of the integral equations, which arises in various tomographic image
restoration and reconstruction problems. Then he discusses the main problem which is
to choose an a priori probability law for the image and to determine their parameters
from the data and he suggests then a method to estimate simultaneously the parame-
ters of the maximum a priori probability density function (pdf) and the pixel’ values
of the image and give some simulated results which compare this method with some
classical ones. In the second case, he has been noted that an important problem in
statistics is construction of a joint probability distribution from its marginal. He linked
this issue to an important problem in Computed tomography (CT) as a reconstruction
an image from its projections. For determining f(x, y) from f1(x) and f2(y), he pro-
posed the using copula by maximum entropy method as the solution to the problem
of reconstructing a bivariate density from its marginals (Pougaza and Djafari, 2011).
In 1917 Johann Radon (Radon, 1917) introduced the radon transform (RT) which was
later used in CT. Indeed if we denote by f(x, y), the spatial distribution of the material
density in a section of the body, a very simple model that relates a line of radiography
image q(r, θ) at direction θ to f(x, y) is given by Radon transform:

q(r, θ) =

∫
Lr,θ

p(x, y)dl =

∫ ∫
R2

p(x, y)δ(r − xcosθ − ysinθ)dxdy. (2.49)

where Lr,θ = (x, y) : r = xcosθ + ysinθ and δ is the Dirac’s delta function. In 2D, the
mathematical problem of tomography is to determine the bivariate function f(x, y)
from its line integrals q(r, θ). Radon has shown that this problem has a unique solution
if we know q(r, θ) for all θ ∈ [0, π] and all r ∈ R, then f(x, y) can be computed by the
inverse radon transform:

f(x, y) = (− 1

2π
)

∫ π

0

∫ +∞

−∞
[

∂q(r,θ)
∂r

r − xcosθ − ysinθ
]dr.dθ (2.50)
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2.5 Image Processing

Image analysis is playing a very essential role in numerous research areas in the fields
of science and technology, ranging from medical imaging to the computer science of
automatic vision (Petrovici et al., 2018; Sparavigna, 2019). Being involved in several
applications, which are mainly based on a constant innovation of technologies, image
analysis always requires different approaches and new algorithms, including continual
upgrades and improvements of existing methods. Accordingly, the range of the analyses
in which it is engaged can be considered as wide as the prospective future technologies.
A challenge of image analysis is obtaining meaningful information by extracting specific
features from images contained in large databases or during real-time acquisition. These
tasks demand highly sophisticated numerical and analytical methods.

In the other word, many imaging systems are faced with the problem of estimating
a true image from a degraded data set. In such systems, the image degradation is
translated into a convolution with a Point Spread Function (PSF) and addition of
noise. Often, the image recovery by inverse filtering is not possible because the PSF
matrix is ill-conditioned (Denisova, 2019; Sparavigna, 2019). There is a huge amount
of literature describing methods, which concerns quality improvement of the image
information content through restoration techniques Jia et al. (2019); Liu et al. (2019);
Petrovici et al. (2018); Sparavigna (2019). In most of the contributions, entropy plays
a pivotal role (Denisova, 2019; Sparavigna, 2019).

Image reconstruction belongs to the class of ill-posed inverse problems of mathemat-
ical physics (Hadamard, 1932). The method of solution for this class of problems was
developed in 1963 by A.Tikhonov and called regularization (Tihonov, 1963). Regular-
ization introduces a priori information regarding the problem to obtain well-behaved
inverse. The introduction of a priori information entails the necessity of choosing an
unknown parameter, which is called the regularization parameter. In Tikhonov’s ap-
proach, this parameter plays a role of a weight factor, which controls the competition be-
tween a priori information and the measured data. Initially, the method was developed
in the form of ‘global regularization’, in which a single parameter controls the solution.
However, it was found that global regularization often provides too smoothed solutions,
even in the early practical applications (Arsenin and Timonov, 1983; Tikhonov et al.,
1984).

In 1967, the physicist V. Turchin suggested using the Bayesian method of Maximum
a Posteriori (MAP) for solving inverse ill-posed problems with stochastic data, naming
this approach ‘statistical regularization’ (Turchin et al., 1971; Turchin, 1967). The
statistical regularization method introduces a priori information in the probabilistic
form. Later, in the 70–80s the Bayesian method for solving image restoration and
image reconstruction problems had become popular. The main difficulty of the Bayesian
approach is the determination of a priori probability density function. Two forms of
prior probability are used for solving the problems of restoring and reconstruction of
images: entropy concept and Gibbs probability distribution. Jaynes (Jaynes, 1957a,b,
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1968) suggested prior information, based on the entropy concept, for solving problems
with limited, but noise-free data. This approach was called the maximum entropy
method.

In 1972, the ME approach was applied by Frieden to solving the image restoration
problem (Frieden, 1972). After a few years, the ME approach was successfully applied
in the restoration of radio astronomy images in the paper by Gull and Daniell (Gull
and Daniell, 1978). In (Frieden, 1972; Gull and Daniell, 1978), the image restoration
problem was solved as a constrained optimization problem. J. Skilling developed the
approach based on the Bayesian method Maximum a Posteriori with entropy-based
prior probability (Skilling, 1988). In 1979, Minerbo used the ME approach for the to-
mography problems (Minerbo, 1979). The tomographic task was solved as constrained
optimization problem. The probabilistic approach entropy-based prior probability for
solving tomographic problems was developed and applied to plasma tomography by
W. von der Linden (von der Linden, 1995). In (Denisova, 2004b), the relation be-
tween entropy-based prior probability and ME was studied. An improvement in recon-
structed image quality by the MAP-ENT algorithm over the ME was demonstrated.
In (Denisova, 2004a), the entropy-based prior probability approach was developed and
applied for nuclear medicine.

Besag (Besag, 1974) and D. Geman and S. Geman (Geman and Geman, 1984)
theoretically justified another form of a priori probability known as ‘the Gibbs prior’.
The approach that was based on the Bayesian method Maximum a Posteriori with
Gibbs a priori probability (MAP-GIBBS) is widely studied for applications in nuclear
medicine. Geman and McClare first applied this approach to nuclear medicine in 1985
(Ganan and McClure, 1985). Denisova (2019) provided a solution for this problem by
combination of the maximum a posteriori (MAP) Bayesian approach with maximum
entropy method.

2.5.1 Bayesian approach Maximum a Posteriori (MAP) & Maximum En-
tropy Method

The Bayesian approach Maximum a Posteriori (MAP) provides a common basis for de-
veloping statistical methods for solving ill-posed image reconstruction problems. MAP
solutions are dependent on a priori model. Approaches developed in literature are
based on prior models that describe the properties of the expected image rather than
the properties of the studied object. In this paper, such models have been analyzed and
it is shown that they lead to global regularization of the solution. Prior models that
are based on the properties of the object under study are developed and conditions for
local and global regularization are obtained (Mohammad-Djafari, 1996).

A class of discrete image-reconstruction and restoration problems is addressed. A
brief description is given of the maximum a posteriori (MAP) Bayesian approach with
maximum entropy priors to solve the linear system of equations which is obtained after
the discretization of the integral equations which arises in various tomographic image
restoration and reconstruction problems (Djafari and Demoment, 1990).

The main difficulty of the Bayesian approach is the determination of the a priori
probability law for the image and determining its parameters from the data. There
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are two different classes of imaging problems: restoration of distorted images and to-
mographic reconstruction of objects. When solving the image restoration problems,
it is usually impossible to include a priori information about real objects. A priori
information refers to the expected image to be restored. In contrast, when recon-
structing tomographic images, one can often propose the physical model of the object
to be reconstructed and determine a priori information by using this model. Cur-
rently, in tomographic problems, one uses a priori information, which was initially
developed to solve the image restoration problems. In this paper, we discuss these ap-
proaches to specifying a priori probability in both the image restoration problem and
the image reconstruction problem. We consider the three most widely used forms of
a priori information: no prior, Gibbs prior, and entropy-based prior (Denisova, 2019;
Mohammad-Djafari, 1996; Skilling, 1988; Sparavigna, 2019).

A method simultaneously estimating the parameters of the ME a priori probability
density function and the pixel values of the image is proposed, and some simulations
which compare this method with some classical ones are given.

2.5.2 Maximum A Posterior Probability Approach

The Bayesian approach Maximum a Posteriori (MAP) prepared a common basis in
statistical methods to solve an ill-posed image reconstruction problems. The main
thing is that, solutions of MAP are highly dependent on a priori model. The proposed
methods developed in literature are based on prior models that describe the properties
of the expected image rather than the properties of the studied object. The main
difficulty of the Bayesian approach is the determination of the a priori probability
law for the image and determining its parameters from the data. In this situation,
there are two different classes of imaging problems: restoration of distorted images and
tomographic reconstruction of objects. When solving the image restoration problems,
it is usually impossible to include a priori information about real objects (Denisova,
2019; Sparavigna, 2019).

In this paper, we discuss these approaches to specifying a priori probability in both
the image restoration problem and the image reconstruction problem. We consider the
most widely used forms of a priori information which named entropy-based prior, based
on the entropy principle, was successfully applied in the fields of X-ray-, radio- and
gamma-astronomy, plasma tomography (Denisova, 2019; Mohammad-Djafari, 1996;
Skilling, 1988; Sparavigna, 2019).

To estimate the kinetic parameters, considering the general form of Eq.(5.8) as
follows (Djafari and Demoment, 1990; Mohammad-Djafari, 1996; Mohammad-Djafari
and Demoment, 1990). Estimate the positive vector x (representing the pixel intensities
in an object) given a vector of measurement y (representing either a degraded image
or the projections of the object) and a linear transformation A relating them by

y = Ax+ b, (2.51)

where b presents the noise measurement, which is supposed to be an uncorrelated
normal distribution with zero-mean and additive. We assume we have only approximate
information about the noise variance and some global information about the object.
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To determine the unknown vector x⃗, we apply the Bayesian rule. We would like
to find the peak of the conditional distribution for x given y, f(y|x), and take the
corresponding x -vector as a solution of the reconstruction problem. This is a well-
known method in parameter estimation named maximum a posteriori (MAP). This
method requires the specification of f(x) and f(y|x). The estimator x̂ maximizes the
posterior distribution obtained by Bayesian formula (Elfving, 1989):

f(x|y) = f(y|x)f(x)/f(y), (2.52)

In Eq.(5.14), f(y) is independent of x, f(y|x) is in fact related to the noise probability
law and f(x) is a prior law on x. With a linear relation between x and y, and assum-
ing uncorrelated normally distributed errors in the linear relation by knowing the only
variance σ2 of the noise. We are not able to directly determine f(x) and f(y|x). So, we
apply maximum entropy method. The idea is if we have not enough information about
the random process to determine it a probability law, we choose the maximum entropy
principle which satisfies our a priori information. The maximum entropy principle can
be used if this knowledge can be stated as some constraints on f(x). In general these
only constraints are not sufficient to determine uniquely fx). Then between all prob-
abilities law which satisfied these constraints, we choose the one which has maximum
entropy (Djafari and Demoment, 1990; Mohammad-Djafari, 1996; Mohammad-Djafari
and Demoment, 1990), see section (5.2.2). It is easy to obtain f(y|x) as a correlated
normally distribution via MEM as follows:

f(y|x) ≈ exp[−T (x)],

T (x) = [y − Ax]t[y − Ax]/σ2.

A possibility to choose a priori distribution f(x) is again the MEM with the general
model belongs to the Exponential family. The idea of favorite in using this concept is
most objective or maximally uncommitted with respect to missing information Elfving
(1989). Then the solution of our problem is the mode of the posterior probability
distribution as follows:

x̂ = Argmax
x>0

f(x|y) (2.53)

= Argmax
x>0

{f(y|x)f(x)}
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Modified Maximum Entropy Method for Estimating the AIF and
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BACKGROUND For kinetic models used in contrast-based medical imaging, the
determination of the arterial input function (AIF) is essential for the estimation of
physiological parameters of the tissue via solving a nonlinear inverse problem named.
OBJECTIVE In this paper, we estimate the AIF based on the modified maximum
entropy method. The effectiveness of several numerical methods to determine kinetic
parameters and the AIF is evaluated– in situations where enough information about
the AIF is not available. The purpose of this study is to identify one of the most
appropriate methods for estimating this function.
MATERIALS AND METHODS The modified algorithm is a combination of the
maximum entropy method and an optimization method, which was named the modified
maximum entropy method (MMEM). Then, we applied this algorithm in a Bayesian
framework to estimate the kinetic parameters via the unique form of the arterial input
function. We assessed the efficiency of our algorithm to estimate the kinetic parameters
of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) and AIF
with some other parameter-estimation methods and a standard fixed AIF method. A
previously analyzed dataset consisting of contrast agent concentrations in tissue and
plasma was used.
RESULTS AND CONCLUSIONS To evaluate accuracy, we compared the results
obtained from the MMEM with those of the Empirical Method, Maximum Likelihood,
the Modified Maximum Likelihood Method, moment matching (”method of moments”),
and the least square method. The numerical results indicated the Weibull distribution
as an appropriate and robust AIF and also illustrated the power and effectiveness of
the proposed method to estimate its parameters.

keywords: Kinetic Model; Modified Maximum entropy method; Arterial input
function; Optimization Method;

5.1 Introduction

Determining probability density of a random variable based on observations is a major
and old issue in statistics. In recent years, various parametric and non-parametric meth-
ods have been introduced for determining the class of different statistical distributions.
In general, in the case of continuous random variables, a probability density function
(PDF) assigns a probability for the observation of a value falling within a specific
given range. Empirically determining a PDF corresponding to N samples of univariate
data has been investigated extensively in mathematics, with ubiquitous significance for
practical applications. Multiple estimation approaches have been used with success for
fitting a random data sample to parameters of a known functional form. Nevertheless,
the functional form describing the underlying random process is often unknown. The
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maximum entropy method is used today as a major method for estimating and deter-
mining the probability density with high accuracy and efficiency and low bias. This
method is employed to obtain the unknown density by solving optimization problems
and regarded as one of the most efficient methods capable of yielding maximum possi-
ble information for unknown density using the limited and known available information
(Ebrahimi et al., 2008; Pougaza and Djafari, 2011; Thomas and Cover, 2006).

The maximum entropy framework is a cornerstone of statistical inference, which
is employed at a growing rate for constructing models capable of describing and pre-
dicting biological systems, particularly complex one, from empirical datasets. Entropy
maximization or related concepts have been frequently utilized in the past ten years to
analyze large biological datasets in various fields. These fields range from determining
macromolecular interactions and structures (Boomsma et al., 2014; Cavalli et al., 2013;
Cesari et al., 2018; Cofré et al., 2019; D’haeseleer et al., 2000; Ekeberg et al., 2013;
Farré and Emberly, 2018; Hopf et al., 2012; Jaynes, 2003; Jennings et al., 2020; Ozer,
2008; Pitera and Chodera, 2012; Roux and Weare, 2013; Seno et al., 2008; Weigt et al.,
2009; Zhang and Wolynes, 2015) to inferring signaling (Dhadialla et al., 2009; Lezon
et al., 2006; Locasale and Wolf-Yadlin, 2009; Remacle et al., 2010; Sanguinetti et al.,
2019) and regulatory networks (Graeber et al., 2010; Schneidman et al., 2006; Sharan
and Karp, 2013) and the coding organization in neural populations (Cocco et al., 2009;
Ferrari et al., 2017; Granot-Atedgi et al., 2013; Mora et al., 2010; Nghiem et al., 2018;
Ohiorhenuan et al., 2010; Quadeer et al., 2020; Rostami et al., 2017; Roudi et al., 2009;
Schneidman et al., 2006; Shlens et al., 2006; Tang et al., 2008; Tkačik et al., 2013, 2010;
Yeh et al., 2010; Yeo and Burge, 2004) based on DNA sequence analyses (the detection
of specific binding sites, for instance) (Fariselli et al., 2020; Fernandez-de Cossio-Diaz
and Mulet, 2019; Mora et al., 2010; Santolini et al., 2014; Yeo and Burge, 2004). Here,
a concise and basic introduction to entropy maximization and its applicability for de-
riving models from biological datasets especially in kinetic model and image processing
via Dynamic Contrast-Enhanced Magnetic Resonance Imaging data is provided.

Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is a fast
and noninvasive method for the quantitative analysis of contrast agent (CA) transient
in soft tissues. This has made this method an important and well-developed tool to
manifest microvasculature and perfusion of blood in a variety of clinical applications.
In the last three decades, a host of nonparametric and parametric models and methods
have been developed to quantify the CA’s perfusion into tissues and estimate perfusion-
related parameters (indices) from signal- or concentration-time curves. These indices
are widely used in various clinical applications for detecting, characterizing, and thera-
peutic monitoring of different diseases (Fennessy et al., 2014; Huang et al., 2014; Khalifa
et al., 2014; Sobhani et al., 2016; Stoyanova et al., 2012; Usuda et al., 2019).

Quantification of perfusion in DCE-MRI involves the measurement of the time
course of gadolinium concentration in the left ventricular blood pool, commonly known
as the arterial input function (AIF). In DCE-MRI, a tracer which is made up of the
magnetic contrast agent is utilized in situations where the concentration in tissue is
imaged over time. The kinetic processes of this contrast agent display the perfusion of
blood in this tissue. An important part of the kinetic models used in contrast-based
medical imaging is to determine the arterial input function (AIF) which is essential
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for the estimation of physiological parameters. Actually, the main difficulty in perfu-
sion acquisition is to accurately measure the AIF, which has been considered in many
studies (Larsson and Tofts, 1992).

As we mentioned before, the non-linear kinetic models depend highly on the so-called
arterial input function (AIF), that is, the concentration of contrast agent arriving in
blood plasma over time. In addition, the CA is injected as bolus, due to the distance
between injection area and the region of interest, and thus the AIF will not be Dirac
delta function. The AIF may be measured from the DCE-MR image if a major vessel is
in the field of view (Cheng, 2008). However, in many cases, the AIF cannot be measured
from the image; for example, when imaging breast cancer patients. For that, in some
cases, an assumed AIF from literature is applied as a bi-exponential with parameters
derived following Weinmann et al. (1984) or Fritz-Hansen et al. (1996) or a mixture of
the two Gaussians plus an exponential proposed by Parker et al. (2006).

The kinetic model in tissue is expressed as an ordinary differential equation, which
can be solved analytically – resulting in a non-linear model for the contrast agent con-
centration. There are three proposed models in literature, originally proposed by Tofts
and Kermode (1991), Larsson and Tofts (1992), and Brix et al. (2004). By using these
models, the two kinetic parameters can be estimated from the observed contrast con-
centration time curve (Bender and Heinemann, 1995; Berg et al., 2014; Dikaios et al.,
2014; Orton et al., 2007). In addition, a number of different techniques have been devel-
oped to quantify the estimations of two kinetic parameters. These techniques address
the relationship between the estimations and the population parameters (Cheng, 2007;
Gauthier, 2012). We have previously developed a method for estimating the AIF and
the kinetic parameters in DCE-MRI (Farsani and Schmid, 2017). This method was
developed in response to a need in the medical imaging community for the objective
comparison of estimations made using different statistical methods, for example, the
Bayesian Method and MLE. The main problem of our previous algorithm was the de-
pendence of the Newton’s method on the starting point, which was uniform random
number.

In this paper, we have improved the previous algorithm. Our new proposal is a
combination of the maximum entropy method and the optimization method using the
step of λ’s estimation –Teaching learning based optimization– for assessing observer
performance in the classification tasks using available information when there is no
concern about the random start point in the previous algorithm. This method builds
on previous work on “blind” estimation of the AIF directly from tissue concentration
curves (Farsani and Schmid, 2017). The maximum entropy method has proven to be an
enormously powerful tool for reconstructing images from many types of data. It has a
unique position as the only consistent method for combining different data into a single
image. It is used most significantly in radio astronomical interferometry, where it deals
routinely with images of up to a million pixels, and high dynamic range (De Martino
and De Martino, 2018; Jackson et al., 2007).

The aim of this paper is to propose a novel algorithm to help more accurately
estimate the parameters for the model fitting to data and, therefore, to determine more
appropriate AIF with the least difference with the kinetic parameters . We performed
extensive studies using empirical data to better understand the performance of our
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method. In addition, a comparison was conducted among four other different estimation
methods in DCE-MRI dataset, and the results of the new proposed algorithm was
compared to those of the previous one (Farsani and Schmid (2017)).

A previously analyzed breast cancer data set (Farsani and Schmid, 2017; Schmid
et al., 2006), provided by the Paul Strickland Scanner Centre at Mount Vernon Hos-
pital, Northwood, UK was employed. In each scan, 46 images were acquired after
administration of the contrast agent Gadolinium-DTPA every 11.9 seconds. In order
to validate our method, we have designed an experiment to estimate parameters.

The rest of this paper is organized as follows: Section 2 presents the statistical
formulation of the methods. Section 3 describes the data and provides the results of
the mentioned methods and parameter estimation. Section 4 presents the discussion
and drawn conclusions.

5.2 Methods

This study evaluates different models of arterial input functions for DCE-MRI to es-
timate the kinetic parameters, and compares them with previously proposed models
(Farsani and Schmid, 2017). In the previous study (Farsani and Schmid, 2017), we
have examined the Gamma and Exponential distributions in different situations using
a maximum entropy method and a maximum a posterior Bayesian approach which was
appropriate to describe the AIF. Here, we modify the previous algorithm to improve the
model fit, and then, we propose several parameter estimation methods. For that, we
introduce the Pharmacokinetic model for the estimation of the kinetic parameters. In
the following, we explain the maximum entropy method and the proposed algorithm to
find the best fitted model and, finally, the suggested model fit of AIF with its different
estimation parameter techniques.

5.2.1 Pharmacokinetic Model

When the kinetic behavior of the contrast agent (CA) in the tissue (Ctis) of interest is
considered, we use the following differential equation system:

dCtis(t)

dt
= K1Cp(t)−K2Ctis(t), (5.1)

where the both functions Ctis(t) and Cp(t) are the concentrations of the CA at time
t in the tissue of interest that is, in the extravascular-extracellular space (EES) using
T1-weighted dynamic contrast-enhanced MRI (DCE-MRI), and plasma, respectively.
K1 and K2 are the rate constants for the exchanges of CA between plasma and EES
in which t depends on relaxation time values. Under Cp(0) = 0, Eq.(5.1) can be solved
and it leads to

Ctis(t) = K1

∫ t

0

Cp(u)e
−K2(t−u)du. (5.2)

A different solution on Eq.(5.1) was presented by Murase (2004) as follows

Ctis(t) = K1

∫ t

0

Cp(u)du.−K2

∫ t

0

Ctis(u)du, (5.3)
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This can be written in matrix form as follows:

C⃗ = A⃗× K⃗, (5.4)

in which A⃗ = {A(1), . . . , A(n)} for i = 1, 2, ..., n :

A(i)′ = (
∫ ti
0
Cp(u)du,−

∫ ti
0
Ctis(u)du), (5.5)

K⃗ =

(
K1

K2

)
(5.6)

and

C⃗ =


Ctis(t1)
Ctis(t2)
...
Ctis(tn)

 . (5.7)

when two functions of time Ctis(ti) and Cp(ti), are measured for i=1,2,...,n, then

Eq.(5.4) can be easily solved for the elements of K⃗. For that, we can rewrite Eq.(5.4)
in the following form:

ytis(ti) = A(i)K⃗ + εi, εi∼N(0, σ2) (5.8)

where ytis(ti) is the observed tissue concentration at time ti. In the previous work
(Farsani and Schmid, 2017), we applied the MEM to estimate the probability density

function for C⃗tis and C⃗p which we named them fCtis(t) and fCp(t), respectively. Then,
we solved Eq.(5.5) and estimate the kinetic parameters K1 and K2 via MAP (Elfving,
1989) using Eq.(5.8). It is assumed that Ctis and Cp are functions of time (Farsani and
Schmid, 2017) and we estimated the initial entropy probability density model for Cp

for a priori model in the Bayesian framework, see Djafari and Demoment (1990).
In the present work, we have modified our previous algorithm by applying an op-

timization method in the parameter estimation part instead of standard Newton’s
method, which was effected by random starting point. The result show the estimated
model is a much more better fit to data compared to the previously proposed model.

5.2.2 Maximum Entropy Method

The general form of the maximum entropy problem is to maximize the Shannon’s
entropy (Thomas and Cover, 2006):

h(X) = −
∫

f(x)logf(x)dx, (5.9)

Subject to the moment constraints

E(ϕk(x)) =

∫
ϕk(x)f(x)dx = µk, (5.10)
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where µ0 = 1, ϕ0(x) = 1, ϕk(x), k = 0, ..., N are N + 1 known functions, and
µk, k = 0, ..., N are the given expectation data. ϕk(x), k = 0, ..., N can be in any
functional form such as xn,log(x), x log(x) or trigonometric and geometric functions
and the main vehicles to determine the required known function is the relationship of
the maximum entropy distribution with the Exponential family (Casella and Berger,
2002; Ebrahimi et al., 2008; Pougaza and Djafari, 2011). The moment constraints
µ1, ..., µm, are normally obtained numerically from data set using the Taylor’s theo-
rem (Casella and Berger, 2002). Using an appropriate optimization method, where the
objective function is Shannon’s entropy, the general form of the maximized density is
obtained as follows (Thomas and Cover, 2006):

f(x) = e−
∑N

k=0 λkϕk(x), x ∈ S, (5.11)

where λk should be chosen such that f(x) in Eq.(6.25) satisfies the known moment
constraints in Eq.(6.24). The parameters λ = [λ0, ..., λN ] are calculated to find the
class of the maximum entropy distributions. To obtain the N+1 unknown parameters,
the following set of N + 1 nonlinear equations is solved (1 ≤ k ≤ m):

Gk(λ) =

∫
ϕk(x)e

−
∑

k λkϕk(x)dx = µk. (5.12)

To solve Eq.(5.12) using the proposed modified algorithm, we suggest the Teaching
learning based optimization (TLBO) which resolves the problem of random starting
points. Instead, it can measure the mean of all possible parameter estimations to fit a
better model to data.

Maximum A Posterior Probability Approach

The Bayesian approach Maximum a Posteriori (MAP) prepared a common basis in
statistical methods to solve ill-posed image reconstruction problems. The main thing is
that, solutions of MAP are highly dependent on a priori model. The proposed methods
developed in literature are based on prior models that describe the properties of the
expected image rather than the properties of the studied object. The main difficulty
of the Bayesian approach is the determination of the a priori probability law for the
image and determining its parameters from the data. In this situation, there are two
different classes of imaging problems: restoration of distorted images and tomographic
reconstruction of objects. When solving the image restoration problems, it is usually
impossible to include a priori information about real objects. A priori information refers
to the expected image to be restored. In contrast, when reconstructing tomographic
images, one can often propose the physical model of the object to be reconstructed
and determine a priori information by using this model. Currently, in tomographic
problems, one uses a priori information, which was initially developed to solve the
image restoration problems (Denisova, 2019; Sparavigna, 2019).

In this paper, we discuss these approaches to specifying a priori probability in both
the image restoration problem and the image reconstruction problem. We consider the
most widely used forms of a priori information which named entropy-based prior, based
on the entropy principle, was successfully applied in the fields of X-ray-, radio- and
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gamma-astronomy, plasma tomography (Denisova, 2019; Mohammad-Djafari, 1996;
Skilling, 1988; Sparavigna, 2019).

To estimate the kinetic parameters, considering the general form of Eq.(5.8) as
follows (Djafari and Demoment, 1990):

y = Ax+ b, (5.13)

where x⃗ is an unknown positive vector, y⃗ is a vector of measurement with a linear trans-
formation A and b presents the noise measurement, which is supposed to be uncorrelated
normal distribution with zero-mean and additive. To determine the unknown vector x⃗,
we apply the Bayes rule. We would like to find the peak of the conditional distribution
for x given y, f(y|x), and take the corresponding x -vector as a solution of reconstruc-
tion problem. This is a well-known method in parameter estimation named maximum
a posteriori (MAP). This method requires the specification of f(x) and f(y|x). The es-
timator x̂ maximizes the posterior distribution obtained by Bayesian formula (Elfving,
1989):

f(x|y) = f(y|x)f(x)/f(y), (5.14)

In Eq.(5.14), f(y) is independent of x, f(y|x) is in fact related to the noise probability
law and f(x) is a prior law on x. With a linear relation between x and y, and assuming
uncorrelated normally distributed errors in the linear relation by knowing the only
variance σ2 of the noise, it is easy to obtain f(y|x) as a correlated normally distribution
via MEM as follows:

f(y|x) ≈ exp[−T (x)],

T (x) = [y − Ax]t[y − Ax]/σ2.

A possibility to choose a priori distribution f(x) is again the MEM where the general
model belongs to the Exponential family. The advantage in using this concept is to be
most objective or maximally uncommitted with respect to missing information Elfving
(1989). Then the solution of our problem is the mode of the posterior probability
distribution as follows:

x̂ = Argmax
x>0

f(x|y) (5.15)

= Argmax
x>0

{f(y|x)f(x)}

Weibul Distribution

In the literature, several probability distributions have been proposed as AIF, such
as Gamma, mixture of Gaussian and Exponential distribution, and bi-Exponential
distributions (Fritz-Hansen et al., 1996; Parker et al., 2006; Weinmann et al., 1984).
Using the proposed algorithm, we propose the Weibull distribution to investigate how
well it can fit to the data.

The Weibull distribution (named after the Swedish physicist Weibull, who applied
it when studying material in tension and fatigue in the 1930s) provides a close approx-
imation to the probability laws of many natural phenomena. The Weibull probability
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density function, a two parameter function, is expressed mathematically as

f(x) =
k

ck
xk−1e−(x

c
)k , (5.16)

and the cumulative distribution function is

F (x) = 1− e−(x
c
)k , (5.17)

where k is the shape parameter and c is the scale parameter in Bain and Antle (1967);
Stevens and Smulders (1979).

Determination of Parameters

The parameters of Weibull distribution (k and c) can be found by a number of ways.
Some of them are mentioned here.

Methods of Moments

The method of moments is considered as an alternative to maximum likelihood method.
The first two moments of the Weibull density function are utilized to calculate the
parameters k and c. The calculations are based on standard deviation, average and
gamma function for parameter (1 + 1/k). This method is suggested by Justus et al.
(1978). The two moments of the distribution are given in Eq.(5.18) which help in
calculating shape and scale parameters. The sample mean and standard error are{

x̄ = cΓ(1 + 1/k)

σ = c(Γ(1 + 1/k)− Γ2(1 + 1/k))
1/2

,
(5.18)

where Γ(x) =
∫∞
0

tx−1e−tdt is the Gamma function.

Empirical Measurement Method

The Empirical method is the special case of the moment method (Akdağ and Dinler,
2009; Justus et al., 1978; Morgan et al., 2011):{

k = (σ
x̄
)−1.086,

c = x̄
Γ(1+ 1

k
)
, (5.19)

where σ is the sample standard deviation.

Maximum Likelihood Method

In statistics, maximum likelihood estimation (MLE) is a method of estimating the pa-
rameters of a statistical model; given observations. The method obtains the parameter
estimates by finding the parameter values that maximize the likelihood function. In
frequentest inference, MLE is one of several methods to get estimates of parameters
without using prior distributions. The Weibull distribution can be fitted to time-series
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data using the maximum likelihood method as suggested by Stevens and Smulders
(1979).

In here, xi is the data in step i and n is the number of non-zero data points, the
shape parameter k and the scale parameter c are estimated using the following two
equations: {

k =
(∑n

i=1 x
k
i ln(xi)∑n

i=1 x
k
i

−
∑n

i=1 ln(xi)

n

)−1

,

c = ( 1
n

∑n
i=1 x

k
i )

1/k,
(5.20)

k can be solved iteratively in the first part of Eq.(5.20), after which the second part of
Eq.(5.20) can be solved analytically to get c.

Modified Maximum Likelihood Method

When the data is available in the form of the frequency distribution, we apply the
modified maximum likelihood method.{

k = (
∑n

i=1 xi
k ln(xi)P (xi)∑n

i=1 xi
kP (xi)

−
∑n

i=1 ln(xi)

P (x≥0)
)−1,

c = ( 1
P (x≥0)

∑n
i=1 xi

kP (xi))
1/k,

(5.21)

where n represents the Weibull frequency, P (x ≥ 0) is the probability that the random
variable equals or exceeds zero. In Eq.(5.21), k must be solved iteratively, after which
c can be solved explicitly (Yang et al., 2004).

Non-linear Least Squares (Non-LS) Method

The Non-LS method has many similarities to the linear LS method. The observed
data are also sorted in an ascending fashion, and subsequently paired with the failure
probabilities, obtained by the estimators. It differs from the LLS method as a non-
linear regression, using a Gauss–Newton algorithm, is directly carried out to achieve
the best fitted curve of a Weibull function. This method was used to estimate Weibull
parameters in some other fields, but has not been applied in the Weibull estimation of
castings and brittle materials (Li et al., 2017).

5.2.3 Teaching-learning-based optimization (TLBO)

In the optimization of a design, the design objective could simply be to minimize the
cost of production or to maximize the efficiency of production. An optimization algo-
rithm is a procedure which is executed iteratively by comparing various solutions until
an optimum or a satisfactory solution is found. Teaching-learning-based optimization
(TLBO) is a population-based metaheuristic search algorithm inspired by the teaching
and learning process in a classroom proposed by Rao et al. (2011). It has been success-
fully applied to many scientific and engineering applications in the past few years. In
the basic TLBO and most of its variants, all the learners have the same probability of
getting knowledge from others. However, in the real world, learners are different, and
the learners’ learning enthusiasm are not the same, resulting in different probabilities of
acquiring knowledge. TLBO utilizes two productive operators, namely, teaching phase
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and learning phase to search for good solutions. Due to its attractive characteristics
such as a simple concept, lack of specific algorithm parameters, easy implementation,
and rapid convergence, TLBO has captured great attention and been extended to han-
dle constrained, multi objective, large-scale, and dynamic optimization problems. In
the present work, we apply an optimization method to modify the previous algorithm
to estimate the maximum entropy model. Furthermore, to determine the parameters of
the estimated model, we propose different parameter estimation methods (Rao et al.,
2011, 2012).

Implementation

We have implemented a MATLAB code for the proposed algorithm and all calculations
were done using MATLAB. To make our computations easier, we suggest to estimate
a probability distribution model via the MEM for C⃗tis and C⃗p. In this procedure, we
have the following steps:

(1) Determining ϕk(x) and computing their expectations numerically from the data
set based on Taylor’s theorem (Thomas and Cover, 2006).

(2) Using the appropriate optimization method in order to determine the unknown
function with the Shannon entropy as target function. The general form is in
Eq.(6.25), (fCtis

(t) and fCp(t)),

(3) Applying the proposed method to find λk such that f(x) (Eq.(6.25)) satisfies the

known moment constraints (Eq.(6.24)), (f̂Ctis(t) and f̂Cp(t)),

(4) Estimating the kinetic parameters K⃗, we replace f̂Ctis
(t) and f̂Cp(t) in Eq.(5.8)

and solve it,

(5) Applying the Kullback-Leibler divergence DK−L(f ||g) to check the accuracy of

the final AIF, f̂Cp(t) in comparison to the empirical distribution of data g(Cp),

DK−L(f̂ ||g) =
∫
s

f̂Cp(t)log
f̂Cp(t)

g(Cp)
dt. (5.22)

(6) With the predicted values x̂1, ..., x̂m and the observed values x1, ..., xm:

RMSE =
[ 1

m

m∑
i=1

(xi − x̂i)
2
]1/2

, (5.23)

χ2 =

∑m
i=1(xi − x̂i)

2

m− n
, (5.24)

R2 = 1−
∑N

i=1(xi − x̂i)
2∑N

i=1(xi − x̄)2
, (5.25)
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Figure 5.1: Plot of Contrast Agent (CA) in Plasma (Cp(t)) and Tissue (Ctis(t)) for both
Patients 1 & 2

5.3 Data Application

5.3.1 Data description

We use a previously analyzed breast cancer data set (Schmid et al., 2006) provided
by Paul Strickland Scanner Centre at Mount Vernon Hospital, Northwood, UK. Here,
we analyze pre-treatment DCE-MRI scans of two patients. For each scan, 46 images
were acquired after administration of the contrast agent Gadolinium-DTPA every 11.9
seconds. The imaging parameters of the T1-weighted FLASH images were TR=11 ms,
TE=4.7ms, α=35, the parameters of the proton density-weighted image were TR=350
ms, TE=4.7 ms, α=6. Field of view was the same for all scans, 260× 260× 8 mm per
slice, so voxel dimensions are 1.016 × 1.0168 mm. A scan consists of three sequential
slices of 256 × 256 voxels and one slice placed in the contralateral breast as control,
which we do not use for our analysis. A dose of D = 0.1 mmol per kg body weight
of Gd-DTPA was injected after the fourth scan using a power injector with 4 mL/sec
with a 20 mL saline flush also at 4 mL/sec.

In order to calculate contrast agent concentration Ct(t), the signal intensity is con-
verted to T1 relaxation time values using T1-weighted images, proton density weighted
images and data from calibration phantoms with known T1 relaxation times. The Gd-

DTPA concentration can then be computed via Ct(t) =
1
r1

[
1

T1(t)
− 1

T10

]
, where T10 is

the T1 value without contrast, computed as mean value of the first four images, and
r1 = 4.24l/s/mmol is the longitudinal relativity of protons in vivo due to Gd-DTPA. As

initial assumption for C⃗p = [Cp(t1), ..., Cp(t46)] is taken from Fritz-Hansen et al. (1996).
The scans were performed before treatment. After a total of 18 weeks of chemotherapy
(5-fluorouracil, epirubicin, and cyclophosphamide) pathological response to treatment
was assessed (Farsani and Schmid, 2017). Fig.5.1 shows the frequency model of data

for two patients C⃗tis−1, C⃗tis−2 and C⃗p subject to the time t. This is the primary model
for data Cp(t) changing the inverse problem to forward.
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5.3.2 Results for One Patient

In the previous study, we have evaluated the performance of the MEM combined with
the Newton’s method in a Bayesian framework to estimate the best fitted model to
CA data. Here, we have modified the previous algorithm. In the modified algorithm,
we have examined the optimization method with a different class of constraints to
get better results. Among them, the following constraints which can fit the Weibull
distribution, made the results more appropriate than the previous method (Fig.5.2,

Fig.5.3). For C⃗p(t) 
∫
t
fCp(t)dt = 1,∫

t
log(Cp)fCp(t)dt = −0.4465,∫

t
C3

pfCp(t)dt = 1.0930
(5.26)

the general form of the resulting priori probability model f̂Cp(t) is the Weibull distri-
bution as follows:

fCp(t) = e−λ0−λ1 log(Cp(t))−λ2C3
p(t), (5.27)

where the final ME multipliers λ′s and the Weibull parameters are estimated as follows

f̂Cp(t) = exp(−0.7466− 1.4944 log (t)− 0.1128t3) + 0.5. (5.28)

and based on the ME form of Eq.(5.16)

f(x) = elog(
k

ck
)+(k−1) log(x)−(x

c
)k . (5.29)

in which  λ0 = − log( k
ck
),

λ1 = −(k − 1),
λ2 = c−k.

(5.30)

Then, according to Eq.(5.28) and Eq.(5.30), the Weibull parameters will be c = 1.8498, k =
3 where the mean of absolute error, DK−L divergence and entropy are 0.0470, 0.0438
and 0.2021 respectively, (Fig.5.2).

Table 5.1 and Fig.5.4 show the results of different models (Section.5.2.2) using the
new algorithm. In each case, we have applied evaluation methods to check the accu-
racy of the estimated model. Furthermore, the high measure of entropy shows the more
superiority of the selected probability distribution to fit data. Based on the Jaynes’s
principle (Jaynes (1957a)), the concept of MEM is to find the distribution that max-

imizes the entropy. In addition, f̂Cp(t) is the modified ME probability distribution
for AIF. In comparison to the previous study, We have estimated a model which has
the maximum entropy (Fig.5.3, Fig.5.4).

Table 5.2 includes the Weibull parameters estimated via different estimation meth-
ods mentioned in (Section.5.2.2). All estimation methods are presented in Fig.5.5.
Then, we compared the accuracy of the results using: Empirical Method (EM), Max-
imum Likelihood (ML), and the Modified Maximum Likelihood Method (MMLM).

Table 5.2 includes the parameter estimation via different methods for C⃗p. The main
results are presented in Table 5.3. There are four evaluation measures to investigate
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Figure 5.2: Modified Maximum Entropy Estimated Input Function, k = 3 & Literature Input
Function
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Figure 5.3: Modified Maximum Entropy Estimated Input Function, k = 2 & Literature Input
Function
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Estimated Distribution MAE DK−L Entropy

Gamma 0.0775 0.0285 0.0303

Exponential 0.0375 0.0363 0.0872

Weibull (k = 3) 0.0470 0.0438 0.2026

Weibull (k = 2.6) 0.0403 0.0389 0.1755

Weibull (k = 2.5) 0.0409 0.0394 0.1812

Weibull (k = 2.4) 0.0414 0.0399 0.1871

Weibull (k = 2.3) 0.0420 0.0404 0.1929

Weibull (k = 2.2) 0.0427 0.0410 0.1989

Weibull (k = 2) 0.0471 0.0342 0.1471

Table 5.1: Comparison of the Modified Maximum Entropy Estimated Input Function and the
MEM

Methods K C

Empirical Measurement (EM) 1.6469 0.7787

Method of Moments (MOM) 1.9125 0.7850

Maximum Likelihood Method (MLE) 1.8005 0.7890

Modified Maximum Likelihood Method (MMLE) 2.0201 0.7758

Least squares method (LSM) 2.7767 0.7518

Modified Maximum Entropy Approach (MMEM) 2 1.3765

Modified Maximum Entropy Approach (MMEM) 2.2 1.8198

Modified Maximum Entropy Approach (MMEM) 2.3 1.7983

Modified Maximum Entropy Approach (MMEM) 2.4 1.7774

Modified Maximum Entropy Approach (MMEM) 2.5 1.7573

Modified Maximum Entropy Approach (MMEM) 2.6 1.7380

Modified Maximum Entropy Approach (MMEM) 3 1.8498

Table 5.2: Weibull Parameters Estimation Methods
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Methods RMSE Chi-Square R2 Adjust R2

EM 0.286 0.0755 0.631 0.622

MOM 0.255 0.0691 0.67 0.663

MLE 0.278 0.1191 0.57 0.58

MMLE 0.274 0.0771 0.636 0.628

LSM 0.194 0.2854 0.535 0.525

MMEM, k = 2 0.051 0.0109 0.984 0.984

MMEM, k = 2.2 0.0338 0.0029 0.995 0.994

MMEM, k = 2.3 0.0323 0.0020 0.995 0.995

MMEM, k = 2.4 0.0315 0.0013 0.995 0.995

MMEM, k = 2.5 0.0315 9.2214e-04 0.995 0.995

MMEM, k = 2.6 0.0320 7.5687e-04 0.995 0.995

MMEM, k = 3 0.048 0.0086 0.990 0.990

Table 5.3: Evaluating Methods & the Results

how the algorithm perform. For each method, four measurements are available, among
which, the modified maximum entropy method has the best fit to the data.

Based on the results of Table 5.1 to Table 5.3, in the cases of the Weibull model
with k = 2.2 and k = 2.3, we have achieved a much better fit model to the data.
Actually, in Table 5.2 we have examined the the parameter estimation of the Weibull
distribution via different methods in comparison to those via MMEM with different k
to see in which case the estimated model fits better to the data. Then, in the next table
(Table 5.3), we evaluated the results based on some evaluation measurements such as
root mean square error (RMSE), goodness of fit (χ2), determination coefficient (R2)
and adjust determination coefficient (R2) which show that using the MMEM leads to a
better fit. The proposed algorithm gives the estimation with the lowest absolute error
and DK−L divergence. The most important point of the results is that the proposed
algorithm gives the model with highest measure of entropy.

5.3.3 Results for the Whole Study

To further evaluate the proposed algorithm and the fit of the estimation model to
the data, we analyzed the data of 12 patients in total. MMEM/MAP was utilized
to estimate the kinetic parameters, and the results were compared to the results of
the previously proposed methods. Fig. 5.6 shows data and the literature AIF, respec-
tively. In addition, Fig. 5.8 shows the Logarithm of absolute error for each patient.
The difference between assumed AIF and estimated AIF using the modified Maximum
Entropy Method is obvious. In particular, the input function in the first two minutes
is typically estimated higher than the assumed AIF, whereas there is negligible differ-
ence after about two and a half minutes. However, the correct estimation of the AIF
at the onset is the most important for the correct estimation of the kinetic parame-
ters. Kullback-Leibler divergence values change from 0.001 to 0.0637 for all the twelve
patients.

For all the patients the results are presented in Table 5.4. The Weibull models for
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Figure 5.5: Fitting the Model on Cp-Data via Different Parametric Methods
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Figure 5.6: Plot of Contrast Agent (CA) in Plasma (Cp(t)) and Tissue (Ctis(t)) for 12 Patients

k = 2.2 to k = 2.4 have the best fit to the data based on all evaluated measurements.
In addition, Fig. 5.7 shows the estimated kinetic parameter k1 using MEM/MAP,
MEMM/MAP and assumed AIF/ML methods.

5.4 Discussion & Conclusions

Here, we proposed an algorithm to determine the final AIF and then estimate the
kinetic parameters in the DCE-MRI data in cases with no input function. For that, we
modified our previous algorithm by the optimization method. Several methods were
proposed for estimating the parameters of the Weibull distribution in the data analysis
of the kinetic models. Then the method of moments, the maximum likelihood method,
the empirical method, and others have been employed to calculate the parameters ‘k’
and ‘c’ of the estimated distribution function. The data from the previous study were
used to investigate the accuracy of these models for determining of Weibull parameters.
The application of each method was demonstrated using a sample data set, and to
determine the accuracy of each method, the measured data obtained from literature
were compared with our data (Table 5.2 and Table 5.4). Various tests were used to
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Patient 1 2 3 4 5 6

k1 0.1637 0.1016 0.7175 0.1650 0.5959 1.0477

k2 0.0210 0.3688 0.1073 0.2079 0.1233 0.0072

Patient 7 8 9 10 11 12

k1 0.6309 0.7980 0.1085 0.4327 0.544 1.0225

k2 0.0701 0.3861 0.2377 0.0839 0.235 0.0271

Table 5.4: Kinetic Parameters Estimation via the Modified Maximum Entropy Method for
12 patients
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tion

analyze the accuracy of the compared methods (Table 5.3).
According to the results, it can be concluded that the suitability of these methods

may vary with the sample data such as data size, sample data distribution, sample data
format and of fit tests. The MMEM is an efficient method to fit Weibull distribution
and determine the k and c parameters. This fact is also supported by means of the
Fig.5.8, and Table 5.2. It is also observed from the statistical analysis that the values
of the RMSE, χ2 tests have magnitudes close to each other for the MMEM.
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Chapter 6

Statictical Method for Quantitative
Measurement of Colocalization

Abstract

Accurately localizing molecules within the cell is one of main tasks of modern biology,
and colocalization analysis is one of its principal and most often used tools. Despite this
popularity, interpretation is often uncertain because colocalization between two or more
images is rarely analyzed to determine whether the observed values could have occurred
by chance. We link the concept of dependency in the structure of colocalization in two
or more channels to an important problem in statistics which is to estimate a joint
probability distribution from its marginals. We introduce a entropy-based statistical
method that quantifies, the amount of colocalization of two fluorescent-labeled proteins
in an image via different class of copula. The new optimization method have been
proposed to estimate the maximum entropy marginals of both red and green channels
and it can be combined with copula to measure colocalization even when pixels do not
show any statistical correlation. Using our methodology, we are able to determine not
only whether the labeled molecules colocalize with a probability greater than chance,
but also it can measure amount of anti-colocalization even in high background settings.
The proposed models are categorized into three groups based on the class of copula, the
univariate maximum entropy model of both channels and their model structures. Then,
a numerical example is presented to illustrate the formulation and implementation of
each type of the entropy copula model. In addition, the potential application of the
maximum entropy copula in the fluorescence microscopy images data are discussed.
Finally, the results of different classes of copula are compared to get the best fitted
model. More generally, this algorithm can be used to answer a variety of biological
questions involving protein-protein interactions or co-compartmentalization and can
be generalized to colocalization of more than two colors.

keywords: Medical Imaging; Gaussian Copula; Fluorescence microscopy Image;
Kendal’s τ ; Maximum Entropy Method; Colocalization
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6.1 Introduction

Data analysis is crucial in almost every field of research such as genomics, economics,
physics, medical, social, and political sciences. Identifying associations between/among
variables is often required in analysis of large datasets (Hastie et al., 2009). It is common
to have many variables in a dataset and it is difficult to manually examine the relation
between each pair of variables (Reshef et al., 2011). It is also difficult to identify
the important variables if the correlation among them is not discovered. There are
several different measures to quantify the association between variables in a dataset
including Pearson’s correlation, Spearman’s correlation, distance correlation, maximal
information coefficient (MIC), maximal correlation, and mutual information. Some of
these correlation measures can only detect linearly correlated data such as the well-
known Pearson’s correlation while some measures can also detect nonlinear correlation
such as maximal correlation and MIC. In addition, some correlation measures can
characterize the independence. This means if the correlation score yields a value of
zero, one can conclude that the two variables are independent Adler and Parmryd
(2010); Aggarwal and Gupta (2019); Almaraz-Damian et al. (2020); Benesty et al.
(2009); Deebani and Kachouie (2018); Mukaka (2012); Peng et al. (2020); Schober
et al. (2018); Thao et al. (2019); Zhao et al. (2019).

In more general view, considering the concept of connection between the multivariate
and univariate function, there is an increasing interest concerning copula. Copula
appears to be a powerful tool to model the structure of dependence (Huang and Emura,
2019; Ouyang et al., 2009; Zhang et al., 2008). The word copula originates from the
Latin meaning link, chain, union. In statistical literature, according to the seminal
result in the copula’s theory stated by Sklar (1959), a copula is a function that connects
a multivariate distribution function to its univariate marginal distributions. There is
an increasing interest concerning copulas, widely used in Financial Mathematics and
in modeling of Environmental Data (Genest and Favre, 2007; Joe, 1994). Recently,
in Computational Biology, copulas were used for DNA analysis (Kim et al., 2008).
Copulas are useful for constructing joint distributions, particularly with non-Gaussian
random variables (Joe, 1997).

In addition, the text by Nelsen (1999) is a comprehensive reference for the general
theory of copulas. Much of the work on copulas has been related to construction of
general families with desirable properties. Although copulas have been used in one form
or another for many years much of the theory has been developed relatively recently
(Borwein et al., 1994; Chen et al., 2006; Genest et al., 1995, 2009).

By considering an important problem in statistics which is to determine a joint prob-
ability distribution from its marginals and the concept of copula which is a function
that connects a multivariate distribution function to its univariate marginal distribu-
tions, a number of methods to construct a joint distribution have been proposed and
applied. These methods include the kernel density estimation, entropy method, and
copulas, to name a few (Dunn et al., 2011). The entropy–copula methods generally
retain the advantage of the commonly used parametric copula: the joint distribution
construction will be independent of the marginal distributions. These methods look to
be powerful techniques to apply them for, modeling biological variables (Aghakouchak,
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2014).

In the biological context, the accurate intracellular localization of proteins to their
specific compartments is a rich source of information for the study of biological processes
and it is one of main tasks of modern biology, and colocalization analysis is one of its
principal and most often used tools (Kalaidzidis et al., 2015). Colocalization happened
when two different molecules attach to the same – or nearby –structures within the cell
to fulfill a biological function. In contrast, anti-colocalization describes a system where
different proteins are not present at the same location at the same time (Betzig et al.,
2006; Garini et al., 2006; Helmuth et al., 2010; Hess et al., 2006; Kalaidzidis et al.,
2015; Kobayashi et al., 2009; Manders et al., 1993; Wang et al., 2017).

Despite this popularity, interpretation is often uncertain because colocalization be-
tween two or more images is rarely analyzed to determine whether the observed values
could have occurred by chance. In addition, colocalization between two fluorescent
labeled molecular species (typically between proteins) is a common question in optical
microscopy. However, existing colocalization techniques are generally visual-based and
therefore highly prone to random error and bias (). We link the concept of dependency
in the structure of colocalization problem from two or more channels to an impor-
tant problem in statistics which is to estimate a joint probability distribution from its
marginals ().

Fig. 6.1 shows a two-channel fluorescence microscopy image with markers for γ-
H2AX (red) and H3K9me2 (green) Seiler et al. (2011). The zoom up (Fig. 6.1 middle)
depicts a part of the cell, where both red and green signals overlap, producing yellow
spots. However, in other areas red and green signal are separated. Overall, γ-H2AX
and H3K9me2 are know to be independent, hence we expect no colocalization of the
markers.

Figure 6.1: Two-channel image of γ-H2AX/H3K9me2 image. Left: Central slice. Middle:
zoom on detail (yellow box in left figure). Left: scatter plot of red and green channels from
all slices.

Tab. 6.1 shows the correlation coefficients between the red and green signal with
different levels of threshold. For low thresholds, a significant positive correlation is
found. With larger thresholds, that is, with suppression of background, the positive
correlation disappears. However, if the threshold is to large, we get a negative corre-
lation which is significant at a 1% level. So we see, that the threshold has a very big
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threshold no 0 0.05 0.1

correlation 0.338 0.0856 0.0761 0.0405

p-value < 2.2 · 10−16 < 2.2 · 10−16 < 2.2 · 10−16 9.1 · 10−5

threshold 0.2 0.3 0.4 0.5

correlation −0.0822 −0.0137 −0.139 −0.412

p-value 6.3 · 10−5 0.755 0.116 0.0089

Table 6.1: Correlation Coefficient and Significance Test Results of ρ = 0 & significance level
α = 0.05 between two channels of H3K9me2.

impact on the results of a correlation analysis.

Of particular interest in fluorescence microscopy imaging is the so-called colocal-
ization analysis (Helmuth et al., 2010; Kobayashi et al., 2009; Ronneberger et al.,
2008). Several approaches have been proposed for measuring colocalization using cross-
correlation analysis (Barbaresco and Chevalier, 2008; Hussain, 2009; Manders et al.,
1993) or cluster analysis of the two-dimensional histogram (Demandolx and Davoust,
1997; Garini et al., 2006; Valeur and Berberan-Santos, 2012). However, most of those
approaches are either qualitative (only proving existence of colocalization, e.g., cross
correlation analysis) or subjective (due to manual identification of clusters in two-
dimensional histograms). The most commonly used quantitative measures for colocal-
ization are Pearson’s correlation coefficient and Manders’ split coefficients (Manders
et al., 1992). Pearson’s correlation coefficient was first introduced to the microscopy
community (Fletcher et al., 2010). It measures the linear relationship of the intensities
between the two channels, and a strong correlation indicates that a large intensity in
one channel is often associated with a large intensity in the other. Another popular
colocalization measure is the Manders’ split coefficients proposed by (Dunn et al., 2011;
Fletcher et al., 2010; Wang et al., 2017). These coefficients measure the fractions of
signal in one channel that overlap with the other. For both methods there are some
complexities within biological contexts when measuring colocalization. For that, there
is an attempt to consider a more robust method to quantify more general positive de-
pendencies between two probes. For instance, the idea of nonparametric correlation
coefficient in colocalization analysis.

In this study, the aim is to measure colocalization with considering an ill-posed in-
verse problem which is to estimate the joint probability distribution from it’s channels.
In the bivariate case, the marginal probability density functions f1(x) and f2(y) are
related to their joint distribution f(x, y) via horizontal and vertical line integrals. Inter-
estingly, this is also the case of a very limited angle X− ray CT problem where f(x, y)
is an image representing the distribution of the material density and f1(x), f2(y) are
the horizontal and vertical line integrals (Pougaza et al., 2010). The marginals are the
univariate maximum entropy distribution of the red and green signals. In addition, we
modified the previous algorithm by adding a new optimization method in the parameter
estimation step. Despite the previous study (Farsani and Schmid, 2020) in which we
have considered the Gaussian copula to determine the dependence structure of the red
and green channel based on simulated and empirical data, in here the proposed copula
models are categorized into different groups based on their model structures. Then,
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a simple numerical example is used to illustrate the formulation and implementation
of each type of the model. Finally, the empirical application in cell biology and the
fluorescence microscopy is provided to evaluate the proposed methods which followed
by an example application of the entropy–copula concept to colocalization analysis.

The remainder of this paper is outlined as follows. The entropy and copula and
maximum entropy copula are introduced in sections 2, respectively. Data application
via the recently developed entropy– copula methods are reviewed and categorized,
followed by a numerical example in section 4. The last section, summarizes the results
and conclusions.

6.2 Methods

6.2.1 Joint Probability Distribution with Copula

Copulas are used to describe the dependence between random variables. Fisher Fisher
(1997) gave two major reasons as to why copulas are of interest to statisticians: “Firstly,
as a way of studying scale-free measures of dependence; and secondly, as a starting
point for constructing families of bivariate distributions.” According to Sklar’s theo-
rem (Rüschendorf, 2013) there exists a copula which relates the marginal distributions
yielding to the joint distribution. The problem then becomes the choice of a cop-
ula. Note that there are many other ways to derive families of continuous multivariate
distributions with given univariate marginals (Genest and MacKay, 1986; Genest and
Rivest, 1993; Pougaza and Djafari, 2011; Rüschendorf, 2013). By F (x, y) we denote a
continuous bivariate cumulative distribution function (CDF), and f(x, y) its bivariate
probability density function (PDF). Let F1(x), F2(y) be the marginal CDF’s and f1(x),
f2(y) their respective PDF’s. A bivariate copula C is a function from I2 to I with the
following properties:

• ∀u, v ∈ I, C(u, 0) = 0 = C(0, v),

• ∀u, v ∈ I, C(u, 1) = u and C(1, v) = v,

• C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for all u1, u2, v1, v2 ∈ [0, 1] such
that u1 ≤ u2, v1 ≤ v2.

One can construct copulas C from joint distribution functions by

C(u, v) = F (F−1
1 (u), F−1

2 (v)), (6.1)

where the quantile function is F−1
i (t) = inf{u : Fi(u) ≥ t}, (Pougaza and Djafari,

2011; Romeo et al., 2006). For any multivariate absolutely continuous distribution,
with CDF F and marginal CDF’s Fi, the copula C is such distribution function on
(0; 1)p with uniform one-dimensional marginals that it holds

F (x1, ..., xp) = C(F1(x1), ..., Fp(xp)). (6.2)

With the copula density c defined by

c =
∂pC

∂F1...∂Fp

(6.3)
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the joint density can be expressed as

f(x) = c(F1(x1), ..., Fp(xp))

p∏
i=1

fi(xi). (6.4)

Sklar’s Theorem

Let F be a joint distribution function with marginals F1 and F2. Then, there exists a
copula C such that, for all x, y ∈ (−∞,∞)

F (x, y) = C(F1(x), F2(y))

. If F1 and F2 are continuous, then the copula C is unique; otherwise, C is uniquely
determined on (Range of F1 and F2). Conversely, if C is a copula and F and G are
univariate distribution functions, then F is a joint distribution function with marginals
F1 and F2, (Nelsen, 2007).

Farlie–Gumbel–Morgenstern (FGM) copula

Formula for distribution function

C(u, v) = uv[1 + α(1− u)(1− u)], −1 ≤ a ≤ 1. (6.5)

Formula for density function

c(u, v) = 1 + α(1− 2u)(1− 2v). (6.6)

The correlation coefficient is ρ = α
3
, which clearly ranges from –3 to 3. After the

marginals have been transformed to distributions other than uniform, Gumbel Gumbel
and Mustafi (1967) and Schucany Schucany et al. (1978) showed that (i) ρ cannot
exceed 1

3
and (ii) determined it for some well-known distributions, for example, α

π
for

Normal marginals and α
4
for exponential ones (Nelsen, 2007).

Archimedean Copula

In some situations, there exists a function φ such that

φ(C(u, v)) = φ(u) + φ(v). (6.7)

Copulas of the form above are called Archimedean copulas (Genest and MacKay, 1986).
Equivalently, we have

φ(F (x, y)) = φ(F1(x)) + φ(F2(y)); (6.8)

i.e., we can write F (x, y) as a sum of functions of marginals F1 and F2. Since we are
interested in expressions that we can use for the construction of copulas, we want to
solve the relation φ(C(u, v)) = φ(u) + φ(v). We thus need to find an appropriately
defined inverse φ[−1] so that

C(u, v) = φ[−1]φ(u) + φ(v) (6.9)
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Definition

Let φ be a continuous, strictly decreasing function from [0, 1] to [0,∞] such that φ(1) =
0. The pseudoinverse of φ is the function φ[−1], with domain [0,∞] and range [0, 1],
given by

φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) ≤ t ≤ ∞.

(6.10)

Note that if φ(0) = ∞, then φ[−1](t) = φ−1(t) and

C(u, v) = φ−1(φ(u) + φ(v)) (6.11)

C is a copula if and only if the pseudoinverse (or inverse if φ(0) = ∞) is a convex
decreasing function; see Nelsen (2006, p. 111) for a proof, (Nelsen, 2007).

The function φ is called a generator of the copula. If φ(0) = ∞, we then say
that φ is a strict generator and C(u, v) = φ−1(φ(u) + φ(v)) is said to be a strict
Archimedean copula. Nelsen (2007) and Kotz et al. (2004) have given several examples
of Archimedean copulas.

Gaussian Copula

There are several parametric families of copula functions, such as Student’s t copula
and Archimedean copulas. One of these families is the Gaussian copula function.

Definition

The copula associated to the joint standard Gaussian distribution is called Gaussian
copula. A Gaussian copula is a distribution over the unit cube [0, 1]d constructed from a
multivariate Gaussian distribution over R by using the probability integral transform.
For a given correlation matrix R ∈ [−1, 1]d×d, the Gaussian copula with parameter
matrix R can be written as

CGauss
R (u) = ΦR

(
Φ−1(u1), . . . ,Φ

−1(ud)
)
, (6.12)

where Φ−1 is the inverse CDF of a standard Gaussian and ΦR is the joint CDF of a
multivariate Gaussian distribution with mean vector zero and covariance matrix equal
to the correlation matrix R. While there is no simple analytical formula for the cop-
ula function, CGauss

R (u), it can be upper or lower bounded, and approximated using
numerical integration (Botev, 2017). The density can be written as:

cGauss
R (u) =

1√
detR

exp

−1

2

Φ−1(u1)
...

Φ−1(ud)

T

·
(
R−1 − I

)
·

Φ−1(u1)
...

Φ−1(ud)


 , (6.13)

where I is the identity matrix (Arbenz, 2013).
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6.2.2 Measures of Dependence Between Two Variables with a Given Cop-
ula

Kendall’s Tau

Let (xi, yi) and (xj, yj) be two observations from (X, Y ) of continuous random variables.
The two pairs (xi, yi) and (xj, yj) are said to be concordant if (xi − xj)(yi − yj) ≥ 0
and discordant if (xi − xj)(yi − yj) ≤ 0. Kendall’s tau is defined as the probability of
concordance minus the probability of discordance,

τ = P [(X −X ′)(Y − Y ′) ≥ 0]− P [(X −X ′)(Y − Y ′) ≤ 0] (6.14)

where (X, Y ) is independent of (X, Y ) and is distributed as (X, Y ). The sample version
of Kendall’s τ is defined as

t =
c− d

c+ d
=

c− d

n
(6.15)

where c denotes the number of concordant pairs and d the number of discordant pairs
from a sample of n observations from (X, Y ). Just as F can be-expressed as a function
of copula C, Kendall’s τ can be expressed in terms of the copula [see, for example,
Nelsen (2007)] as

τ = 4

∫ 1

0

∫ 1

0

C(u, v)c(u, vdudv − 1 = 4E(C(U, V ))− 1. (6.16)

Let C be an Archimedean copula generated by φ. Then, Genest and MacKay (1986)
have shown that

τ = 4E(C(U, V ))− 1 = 4

∫ 1

0

φ(t)

φ′(t)
dt. (6.17)

Spearman’s Rho

Like Kendall’s τ , the population version of the measure of association known as Spear-
man’s rho (denoted by ρS) is based on concordance and discordance. Let (X1, Y1),(X2, Y2),
and (X3, Y3) be three independent pairs of random variables with a common distribu-
tion function H. Then, ρS is defined to be proportional to the probability of concordance
minus the probability of discordance for the two pairs (X1, Y1) and (X2, Y3); i.e.,

ρS = 3(P [(X1 −X2)(Y1 − Y3) ≥ 0]− P [(X1 −X2)(Y1 − Y3) ≤ 0]) (6.18)

Eq.(6.18) is really the grade correlation and can be expressed in terms of the copula as

ρS = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3 = 12E(UV )− 3. (6.19)

Rewriting the equation above as

ρS =
E(UV )− 1

4
1
12

(6.20)

we simply observe that Spearman’s ρ between X and Y is simply Pearson’s product-
moment correlation coefficient between the uniform variates U and V , (Nelsen, 2007)
.
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Tests of Independence Against Positive Dependence

Let us consider the problem of testing the null hypothesis of independence,

H0 : F (x, y) = F1(x)F2(y), for all x, y, (6.21)

against the alternative of positive quadrant dependence,

HA : F (x, y) ≥ F1(x)F2(y), for all x, y, (6.22)

with strict inequality holding on a set of nonzero probability. This problem was first
considered by Lehmann (1966) who proposed the Kendall’s tau and Spearman’s corre-
lation tests. Since then, a large number of tests have been proposed in the literature for
this hypothesis testing problem; [see, for example, Joag-Dev et al. (1983) and Schriever
(1987)].

6.2.3 Maximum Entropy Method joined with Copula

The general form of the maximum entropy problem is to maximize the Shannon’s
entropy (Thomas and Cover, 2006):

h(X) = −
∫

f(x)logf(x)dx, (6.23)

Subject to the moment constraints

E(ϕk(x)) =

∫
ϕk(x)f(x)dx = µk, (6.24)

where µ0 = 1, ϕ0(x) = 1, ϕk(x), k = 0, ..., N are N + 1 known functions, and µk, k =
0, ..., N are the given expectation data. ϕk(x), k = 0, ..., N can be in any functional
form such as xn,log(x), x log(x) or trigonometric and geometric functions and the main
vehicles to determine the required known function is the relationship of the maximum
entropy distribution with the Exponential family (Casella and Berger, 2002; Ebrahimi
et al., 2008; Pougaza and Djafari, 2011). The moment constraints µ1, ..., µm, which are
normally obtained numerically from data set using the Taylor’s theorem (Casella and
Berger, 2002). Using an appropriate optimization method, where the objective function
is Shannon’s entropy, the general form of the maximized density is obtained as follows:

f(x) = e−
∑N

k=0 λkϕk(x), x ∈ S, (6.25)

where λk should be chosen such that f(x) in Eq.(6.25) satisfies the known moment
constraints in Eq.(6.24). Thomas and Cover (Thomas and Cover, 2006) proved that
the distribution in Eq.(6.25) has the maximum entropy. The parameters λ = [λ0, ..., λN ]
should be calculated to find the class of the maximum entropy distributions.

In order to find the bivariate maximum entropy PDF f(x, y), the marginal distri-
butions become the constraints:
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 ϕ0(x, y) :
∫ ∫

f(x, y)dxdy = 1,
ϕ1(x, y) :

∫
f(x, y)dy = f1(x), ∀x,

ϕ2(x, y) :
∫
f(x, y)dx = f2(y), ∀y.

(6.26)

Hence, the goal is to find the bivariate density f(x, y) compatible with available
information in the sense of the maximum entropy principle. Among all possible f(x, y)
satisfying the constraints Eq.(6.26), we select the one which optimizes the entropy
h(X, Y ):

h(X, Y ) = −
∫ ∫

f(x, y) log f(x, y)dxdy (6.27)

via

f̂ := maximize h(X, Y ) subject to ϕks in Eq.(6.26)

Because the constraints are linear, the choice of a concave objective function h(X, Y )
guarantees the existence of a unique solution to the problem. Many entropy functions
can serve as concave objective functions, but we focus on the Shannon’s entropy (Shan-
non, 1948a)

f(x, y) = exp(−λ1ϕ1(x, y)− λ2ϕ2(x, y)− λ0ϕ0(x, y)) (6.28)

where λ1, λ2 and λ0 are obtained by replacing these expressions in the constraints
Eq.(6.26) and solving the resulting system of equations. For Shannon’s entropy, the
constraints can be solved analytically and the joint distribution becomes

f(x, y) = f1(x)f2(y). (6.29)

With the bivariate density obtained from the maximum entropy principle, we can im-
mediately find the corresponding bivariate copula. For the case of Shannon’s entropy
we have:

F (x, y) =

∫ x

0

∫ y

0

f(s, t)dsdt (6.30)

=

∫ x

0

∫ y

0

f1(s)f2(t)dsdt

=

∫ x

0

f1(s)ds

∫ y

0

f2(t)dt

The CDF becomes

F (x, y) = F1(x)F2(y), (6.31)

and the copula is

C(u, v) = F (F−1
1 (u), F−1

2 (v)) = uv. (6.32)

In this case, the maximum entropy copula obtained from the Shannon’ entropy is the
well-known independent copula, which describes independence between two random
variables (Pougaza and Djafari, 2011).
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6.3 Data Application

6.3.1 Data Description

For further evaluation, we apply our methods to previously analyzed fluorescence mi-
croscopy images provided by the Department of Radiation Oncology, University Hos-
pital of Munich. These data have been previously analyzed in Seiler et al. (2011).
Here, DNA double strand breaks were marked using γ −H2AX (red channel). Using
these results of the previous analysis, we can assume co-localization with 53BP1, anti-
co-localization with H3K4me3 and independence with H3K9me2 as green channel, see
6.1.

The proposed univariate maximum entropy distribution for the red and green chan-
nels is considered as generalized Exponential distribution based on the following con-
straints  ϕ0(x) :

∫
f(x)dx = 1,

ϕ1(x) :
∫
xf(x)dx = µ1,

ϕ2(x) :
∫
ln(1− e−λx)f(x)dx = µ2

(6.33)

where µ1, µ2 are the known measures based on the data.

Bivariate Generalized Exponential Distribution based on FGM Copula

The univariate generalized exponential distribution has the distribution function

F (x;α, λ) = (1− e−λx)α; x > 0; α, λ > 0 (6.34)

and the density function;

f(x;α, λ) = αλe−λx(1− e−λx)α−1; x > 0; α, λ > 0 (6.35)

where α, λ are the shape and scale parameters respectively. Considering the Eq.(6.34)
and Eq.(6.35), the bivariate generalized exponential distribution based on FGM (
Eq.(6.5) and Eq.(6.6)) copula can be expressed as

F (x, y) = (1− e−λ1x)α1(1− e−λ2y)α2 (6.36)

× [1 + θ(1− (1− e−λ1x)α1)(1− (1− e−λ2y)α2)]

for all x, y > 0; α, λ > 0,

and the density function is

f(x, y) = α1α2λ1λ2e
−λ1xe−λ2y(1− e−λ1x)α1(1− e−λ2y)α2 (6.37)

× [1 + θ(1− 2(1− e−λ1x)α1)(1− 2(1− e−λ2y)α2)]

for all x, y > 0; α, λ > 0.
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Correlation Localization MEC(ρ)-Gaus. MEC(ρ)-FGM MEC(ρ)-Archmdn n

Kendal’s τ Co-localization 0.9112 0.2308 0.9007
Spearman (53BP1) 0.9017 0.2989 0.8921

Table 6.2: Estimated Correlation Coefficients and Significance Test Results of ρ = 0 &
significance level α = 0.01, 0.05 for all data.

Correlation Localization MEC(ρ)-Gaus. MEC(ρ)-FGM MEC(ρ)-Archmdn n

Kendal’s τ Anti-Co- 0.0227≈ 0 0.0021≈ 0 0.0201 ≈ 0
Localization

Spearman (H3K4me3) 0.0231≈ 0 0.0021≈ 0 0.0206≈ 0

Table 6.3: Estimated Correlation Coefficients and Significance Test Results of ρ = 0 &
significance level α = 0.01, 0.05 for all data.

6.3.2 Results

The correlation coefficients for all three methods show a strong positive dependence
between γ − H2AX and 53BP1, which fits the known co-localization. The negative
correlation between γ −H2AX and H3K4me3 shows the anti-colocalization. However,
as already seen in the simulation study, anti-colocalization results in an absolutely lower
value of negative correlation compared to colocalization. Finally, for γ − H2AX and
H3K9me2 there is no overlap and, hence, correlation is near zero, see Table ??.

6.4 Discussion & Conclusions

The entropy and copula concepts have been shown to be powerful tools in various
applications in hydrology, climatology, and other areas. In recent years, new meth-
ods have been proposed for developing copulas based on the maximum entropy theory
(entropy–copula). These copulas provide the opportunity to derive probability distri-
bution function of multiple dependent variables and their dependence structure. This
study reviews the recent developments in entropy–copula and broadly classifies them
into three main groups based on their model structures: 1) continuous maximum en-
tropy copula (CMEC), 2) mixed maximum entropy copula (MMEC), and 3) discrete
density maximum entropy copula (DDMEC). The three categories of the entropy– cop-
ula models differ in the type of constraints (i.e., uniformly distributed marginal and

Experiment Localization MEC(ρ)-Gaus. MEC(ρ)-FGM MEC(ρ)-Archmdn n

Kendal’s τ Independence -0.3232 -0.2073 -0.3304
Spearman (H3K9me2) -0.3116 -0.2741 0.3156

Table 6.4: Estimated Correlation Coefficients and Significance Test Results of ρ = 0 &
significance level α = 0.01, 0.05 for all data.
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dependence structure) used to derive the copula density within the maximum entropy
framework.
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.



Chapter 7

General Discussion, Conclusions
and Prospective Research
Directions

Determining probability density of a random variable based on observations is a ma-
jor and old issue in statistics. In recent years, various parametric and non-parametric
methods have been introduced for determining the class of different statistical distri-
butions. A standard way to estimate an unknown density is to identify its associated
properties, such as symmetry, mode, and amplitude, so that choosing a distribution
that applies to these properties and estimating its parameters let us approach the main
goal. Choosing the best estimator is one challenge for estimating an unknown density.
In general, in the case of continuous random variables, a probability density function
(PDF) assigns a probability for the observation of a value falling within a specific
given range. Empirically determining a PDF corresponding to N samples of univariate
data has been investigated extensively in mathematics, with ubiquitous significance for
practical applications. Multiple estimation approaches have been used with success for
fitting a random data sample to parameters of a known functional form. Nevertheless,
the functional form describing the underlying random process is often unknown.

As we have mentioned in the first part of this thesis, the maximum entropy method
is used today as a major method for estimating and determining the probability density
with high accuracy and efficiency and low bias. This method is employed to obtain
the unknown density by solving optimization problems and regarded as one of the
most efficient methods capable of yielding maximum possible information for unknown
density using the limited and known available information.

The idea is that the principle of the maximum entropy method leads to the selection
of a probability density function that is consistent with our knowledge and introduces no
unwarranted information. Any probability density function satisfying the constraints
that have smaller entropy will contain more information (less uncertainty), and thus
says something stronger than what we are assuming. In fact, to the contrary, the
principle of maximum entropy guides us to the best probability distribution that reflects
our current knowledge and it tells us what to do if experimental data does not agree
with predictions coming from our chosen distribution.
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We have presented a method allowing estimating the kinetic parameters in DCE-
MRI data along with a typically unknown input function. To this end, we use a
combination of both maximum entropy and maximum a posterior method. We estimate
Eq.(??) as a first lead and gain a final estimation of the input function, which allows
us to estimate the more reliable kinetic parameters, see Chapter3.

In Chapter4, we have presented the Maximum Entropy Copula (MEC) method for
the robust determination of colocalization in microscopy imaging. We proposed to
determine an appropriate bivariate distribution from its marginal distributions– which
are the separate channels – in order to get their nonlinear correlation using Kendall’s
τ . The bivariate maximum entropy itself is a powerful method to reconstruct the
bivariate distribution using some known constraints. However, with this method, the
information about the correlation between two signals will be considered as a constraint
to maximize the Shannon entropy. Although, the MEC does not need the correlation
of the marginal distributions during computational steps. Hence we prefer the MEC.
Interesting enough, the results of applying the MEC and then Kendall’s τ showed the
correct dependence or independence structure between two signals, though we did not
know a priori if there is any correlation.

The results of maximum entropy and maximum a posterior application in Chapter
3 & 5 indicate that the method yields the input function, and the more reliable kinetic
parameters that are meaningful from a medical point of view and can lead to new
insights into the data. Applications are of course not restricted to the medical area.

Maximum entropy copula is a statistical model class that aims at finding a relation-
ship between scalar and image covariates and a scalar response. We link the concept
of dependency in the structure of colocalization in two or more channels to an impor-
tant problem in statistics which is to estimate a joint probability distribution from its
marginals. From a statistical point of view, colocalization and anti-colocalization can
be seen as a type of correlation between the two measurements. However, in non-signal
areas, which is actually most of the voxels, the two measurements are just independent
noise. The actual colocalization or anti-colocalization is only apparent at some voxels,
where the signal is high. Hence, one cannot assume a linear relationship between the
measurements.

In the next application, we have modified the first algorithm in Chapter3 by adding
a new optimization method in the parameter estimation phase, to get more appropriate
model fit to data. The results of the simulation study show that the model assumptions
can indeed have a quite strong influence on the parameter estimation results and the
performance depends on how well the unknown probability function matches the model
assumptions, Chapter5.

In general, a concise introduction to entropy maximization and its applicability
for deriving models from biological datasets, especially in medical sciences and image
processing is provided.
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Farré, P. and Emberly, E. (2018). A maximum-entropy model for predicting chromatin
contacts. PLoS computational biology, 14(2):e1005956.

Farsani, Z. A. and Schmid, V. J. (2017). Maximum entropy approach in dynamic
contrast-enhanced magnetic resonance imaging. Methods of information in medicine,
56(06):461–468.

Farsani, Z. A. and Schmid, V. J. (2020). Co-localization analysis in fluorescence mi-
croscopy via maximum entropy copula. The International Journal of Biostatistics,
1(ahead-of-print).

Farsani, Z. A. and Schmid, V. J. (2021). Co-localization analysis in fluorescence mi-
croscopy via maximum entropy copula. The International Journal of Biostatistics,
17(1):165–175.

Fennessy, F. M., McKay, R. R., Beard, C. J., Taplin, M.-E., and Tempany, C. M. (2014).
Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer clinical
trials: potential roles and possible pitfalls. Translational oncology, 7(1):120–129.

Fernandez-de Cossio-Diaz, J. and Mulet, R. (2019). Maximum entropy and pop-
ulation heterogeneity in continuous cell cultures. PLoS computational biology,
15(2):e1006823.

Ferrari, U., Obuchi, T., and Mora, T. (2017). Random versus maximum entropy models
of neural population activity. Physical Review E, 95(4):042321.

Fisher, N. (1997). Encyclopedia of statistical sciences.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philo-
sophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 222(594-604):309–368.



74 BIBLIOGRAPHY

Fletcher, P. A., Scriven, D. R., Schulson, M. N., and Moore, E. D. (2010). Multi-image
colocalization and its statistical significance. Biophysical journal, 99(6):1996–2005.

Fletcher, R. (1970). A new approach to variable metric algorithms. The computer
journal, 13(3):317–322.

Frieden, B. R. (1972). Restoring with maximum likelihood and maximum entropy.
JOSA, 62(4):511–518.

Fritz-Hansen, T., Rostrup, E., Larsson, H. B. W., Sø ndergaard, L., Ring, P., and
Henriksen, O. (1996). Measurement of the Arterial Concentration of Gd-DTPA Us-
ing MRI: A step toward Quantitative Perfusion Imaging. Magnetic Resonance in
Medicine, 36(2):225–231.

Frontini, M. and Tagliani, A. (1994). Maximum entropy in the finite stieltjes and
hamburger moment problem. Journal of Mathematical Physics, 35(12):6748–6756.

Fuglede, B. (1983). The multidimensional moment problem. Expo. Math., 1:47–65.

Ganan, S. and McClure, D. (1985). Bayesian image analysis: An application to single
photon emission tomography. Amer. Statist. Assoc, pages 12–18.

Garini, Y., Young, I. T., and McNamara, G. (2006). Spectral imaging: principles and
applications. Cytometry Part A, 69(8):735–747.

Gauthier, M. (2012). Impact of the arterial input function on microvascularization
parameter measurements using dynamic contrast-enhanced ultrasonography. World
Journal of Radiology, 4(7):291.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and machine
intelligence, (6):721–741.

Genest, C. and Favre, A.-C. (2007). Everything you always wanted to know about
copula modeling but were afraid to ask. Journal of hydrologic engineering, 12(4):347–
368.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation proce-
dure of dependence parameters in multivariate families of distributions. Biometrika,
82(3):543–552.

Genest, C. and MacKay, J. (1986). The joy of copulas: Bivariate distributions with
uniform marginals. The American Statistician, 40(4):280–283.

Genest, C., Rémillard, B., and Beaudoin, D. (2009). Goodness-of-fit tests for copulas:
A review and a power study. Insurance: Mathematics and economics, 44(2):199–213.

Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate
archimedean copulas. Journal of the American statistical Association, 88(423):1034–
1043.



BIBLIOGRAPHY 75

Golan, A., Judge, G., and Miller, D. (1997). Maximum entropy econometrics: Robust
estimation with limited data.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational means.
Mathematics of computation, 24(109):23–26.

Graeber, T., Heath, J., Skaggs, B., Phelps, M., Remacle, F., and Levine, R. D. (2010).
Maximal entropy inference of oncogenicity from phosphorylation signaling. Proceed-
ings of the National Academy of Sciences, 107(13):6112–6117.
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