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Zusammenfassung

Diese Dissertation befasst sich mit einigen der jüngeren theoretischen Entwicklungen
auf dem Gebiet der Streuamplituden. In den letzten Jahren wurde immer mehr der
traditionelle Ansatz der Extraktion von Streuamplituden aus Feynman-Diagrammen
zugunsten von Techniken, die als On-Shell-Methoden bekannt sind, aufgegeben.
Diese Methoden offenbaren eine interessante Beziehung zwischen Streuamplituden
und einer Geometrie, die als positive Grassmannsche Geometrie bekannt ist und zu
einer radikalen Neuformulierung von Streuamplituden durch so genannte positiven
Geometrien geführt hat. Positive Geometrien sind Geometrien mit Rändern aller
Kodimensionen und gewissen zugehörigen kanonischen Formen, aus denen
Streuamplitude extrahiert werden können. Der zentrale Akteur dieser Dissertation
ist das Impulsamplituhedron, welches durch die Positive Geometrie gegeben ist und
die on-shell Amplituden auf Baumniveau in der maximal supersymmetrischen
Yang-Mills-Theorie kodiert, die im Raum der Spinor-Helizitätsvariablen definiert ist.
Die canonical Form das Impulsamplituhedron verfügt über eine besondere
Singularitätsstruktur, die die physikalischen Singularitäten der Streuamplituden in
allen Helizitätssektoren auf Baumniveau kodiert, aus denen die Streuamplituden
extrahiert werden können. Dies ermöglicht es, Streuamplituden in maximal
supersymmetrischen Yang-Mills Theorie zu bestimmen ohne Bezug auf Felder,
Lagrangedichten, Raumzeit oder Feynman-Diagramme zu nehmen. In neueren
Arbeiten über das Impulsamplituhedron konnten wir sehen, das seine kanonische
Form mit der kanonischen Form – die mit einer Geometrie assoziiert ist, welche die
Streuamplituden für bi-adjungierte Skalare – dem kinematischen Associahedron
kodiert, in Verbindung gebracht werden kann.

Die Definition des Impusamplituhedron auf dem Raum der
Spinor-Helizitäts-Variablen ermöglicht einen direkten Vergleich von Geometrien, mit
unterschiedlich Farb-geordneten Streuamplituden im selben Raum verbunden sind.
Die wird genutzt, um die Kleiss-Kuijf-Relationen – eine Reihe von Beziehungen
zwischen Streuamplituden verschiedener Farbordnungen, wiederherzustellen, die sich
aus der Farbzerlegung von Streuamplituden ergeben. Die Kleiss-Kuijf-Relationen
manifestieren sich als orientierte Summen von Impulsamplituhedronen verschiedener
Farbordnungen ohne Vertices in ihren Rändern. Wir leiten einen homologischen
Algorithmus ab, der auf diesem Prinzip basiert, um Kleiss-Kuijf-Beziehungen für
Impulsamplituhedronen zu finden.
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Abstract

This dissertation focus on some of the modern theoretical developments in the field
of scattering amplitudes. Recent years have seen a departure from the traditional
approach of extracting scattering amplitudes in terms of Feynman diagrams in favor
of techniques known as on-shell methods. These methods reveal a striking
relationship between scattering amplitudes and a geometry known as the positive
Grassmannian, leading to a radical reformulation of scattering amplitudes in terms
of so-called positive geometries. Positive geometries are geometries with boundaries
of all codimensions and have a certain associated canonical form. In some special
cases, physical observables can be extracted from the canonical forms of positive
geometries.

The central player in this dissertation is the momentum amplituhedron which is
the positive geometry encoding on-shell tree-level amplitudes in maximally
supersymmetric Yang-Mills theory defined on the space of spinor helicity variables.
The momentum amplituhedron is equipped with a canonical form with a particular
singularity structure, encoding the physical singularities of scattering amplitudes in
all helicity sectors at tree-level, from which scattering amplitudes can be extracted.
This allows us to determine scattering amplitudes in maximally supersymmetric
Yang-Mills without reference to fields, Lagrangians, space-time, or Feynman
diagrams. We will in this dissertation report on the most recent results for the
momentum amplituhedron obtained in collaboration with other authors. In
particular, we will see that its canonical form can be related to the canonical form
associated with a geometry encoding scattering amplitudes for bi-adjoint scalars –
the kinematic associahedron. Furthermore, since we can define the momentum
amplituhedron on the space of spinor helicity variables, it allows for a direct
comparison of geometries associated with differently color-ordered scattering
amplitudes in the same space. This ability to compare momentum amplituhedra of
different color orderings will be employed to rederive the Kleiss-Kuijf relations, a set
of relations between scattering amplitudes of different color orderings stemming from
the color decomposition of scattering amplitudes. The Kleiss-Kuijf relations will
appear as oriented sums of momentum amplituhedra of different color orderings with
no vertices in their boundary stratifications. We will use this fact to derive a
homological algorithm based on this principle to find Kleiss-Kuijf relations for
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momentum amplituhedra.
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Chapter 1

Introduction

One of the most outstanding questions in theoretical physics concerns the discrepancy
between quantum mechanics and gravity. This discrepancy can be illustrated in the
following thought experiment by Arkani-Hamed in his 2013 paper cited in [1]

“Quantum mechanics forces us to divide the world in two pieces–an
infinite measuring apparatus and a finite system being observed. However,
for any observations made in a finite region of space-time, gravity makes it
impossible to make the apparatus [arbitrarily] large, since it also becomes
heavier, and collapses the observation region into a black hole” [1].

The problem is usually circumvented by considering the measuring apparatus on
some boundary of space-time, as is done when considering boundary correlators in
AdS space [2] and the S-matrix of flat space [3]. In these examples, bulk space-time
and quantum mechanics seem to emerge from some deeper new physics, which is still
unknown. In order to shed light on this potential new physics, we take a clue from
the transition from classical to quantum physics in early the 20th century, the
quantum revolution, where the well-understood predictions of classical physics
appear as emergent from the deeper principles of quantum mechanics.

Before the quantum revolution, the principle of determinism was crucial for the
predictive success of physics. The principle of determinism states that given sufficient
information about every particle configuration in the universe, including position and
momentum, one would in principle be able to predict how this configuration would
evolve in time, given infinite calculation power [4]. Any future configuration is
therefore completely determined by its past. This is beautifully illustrated by P.S.
Laplace in his 1814 treatise “A Philosophical Essay on Probabilities”:
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“We ought then to regard the present state of the universe as the effect
of its anterior state and as the cause of the one which is to follow. Given for
one instant an intelligence which could comprehend all the forces by which
nature is animated and the respective situation of the beings who compose
it – an intelligence sufficiently vast to submit these data to analysis [...]
for it, nothing would be uncertain and the future, as the past, would be
present to its eyes.” [5]

This aforementioned “intelligence” has later been dubbed Laplace’s Demon and the
forces referred to are that of (classical) mechanics which Laplace played an integral
part in developing (see e.g. Traité de Méchanique Céleste, his work from
1829-1839 [6]). Of course, Laplace stresses later in the book, that indeed no human
will ever have access to this intelligence and we have to content ourselves with
statistics, thus the title of the book from which the former quote is taken “A
Philosophical Essay on Probabilities” [5].

The concept of time plays a crucial role in the above quote. Here, we have an
understanding of the universe in one configuration at an initial time ti, and then at a
final time tf , in another configuration which is strictly dependent on the first and is
encapsulated by the dynamics of the laws of Nature acting in the time interval from
ti to tf . Time and space are completely separated aspects following the traditions of
classical mechanics. The notion of time and space as separated concepts has long
been discarded, along with the belief in a perfectly deterministic, “clock-work”
universe, as time and space have become linked in Einstein’s seminal work from the
first decade of the 20th century [7, 8]. This work paved the departure from the
classical understanding of gravity and muddled the concept of simultaneity [9].
Around the same time, in the early decades of the 20th century, the groundwork
which would develop into quantum mechanics (QM) was being laid by Einstein [10],
Planck [11] and Bohr [12], among others: the physics of the very small was concluded
to be probabilistic in nature [13]! The worldview of relativity, which pertains to1

very fast-moving objects [7] (Special Relativity, SR) and massive objects [8, 9]
(General Relativity, GR), and the worldview of QM [13], necessary for a proper
description of very small objects, are in tension2. There exists a reconciliation
between QM and SR, known as Quantum Field Theory (QFT) which as the name
suggests has quantized fields as its degrees of freedom [3, 14, 15]. Still, today, a
completely established theory of Nature unifying GR and QM is not available.

The concept of determinism has been discarded both due to the problem with

1In the sense that it is meaningfully distinct from the Newtonian or classical worldview.
2For instance, the passage of time is unambiguously uniform in QM, while in GR it is associated

with an index of a four-vector which is dependent on the curvature of space-time and thus on the
presence of massive objects.
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irreversibility of the arrow of time3 from the second law of thermodynamics and the
inherently probabilistic QM. However, despite its apparent failures in extreme (very
heavy, small, or fast moving) physical settings, the classical picture of the universe,
involving point particles, bulk continuous matter, and forces acting thereupon is still
highly relevant in many fields of study [18]: in many regimes, physical observables
are well described by classical predictions. In certain well behaved sectors, e.g.
objects with mass of order O(kg) and sizes O(m) moving at relative speeds O(m

s
),

classical physics emerges in the limit of relativity and/or QM.

The development of QFT has been derived from three important underpinnings
[3, 14,15]:

I Causality: The principle of causality states that an event in space-time has
an associated light-cone, and only events inside this light-cone can be influenced
by the original event and therefore implies that cause and effect are time-like
separated.

II Locality: The principle of locality states that an action on a point in space-time
can only influence another point if there is a particle or wave traveling the distance
between the points, mediating the action.

III Unitarity: The principle of unitarity states that the space of wave-functions
constitutes a complete set, or rather, the sum of all possible probabilities of
occurrences in any quantum mechanical event is equal to 1.

These notions should be interpreted as fundamental features of space-time, the
synthesis of spatial and temporal dimensions into one fabric which is dynamic and
plastic. While determinism is no longer a fundamental aspect of microscopic physics,
we accept that the world very much behaves as though it is deterministic on
macroscopic scales. We understand deterministic systems to be emergent from the
deeper laws of non-deterministic quantum mechanics. Inspired by this, an
immediate, albeit ambitious question would be if any notions exist giving rise to
causality, locality, and unitarity. To find potential notions or principles from scratch
is a daunting task, but we can guide ourselves with the following question in mind:
to what mathematical problems are the results of QFT the answer? Or equivalently,
can we reformulate the predictions of QFT as answers to mathematical questions
without any reference to space-time at all? This question is motivated by history:
different formulations of classical physics are not created equal from the point of view

3The irreversibility of the arrow of time is the statement that entropy in a closed system must
increase, breaking the symmetry between past and present. This implies that there is not enough
information in the past to uniquely determine the future even in classical settings. Here one may raise
the counterargument that entropy is itself a statistical notion stemming from the lack of information
about a given system [16,17].
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of QM: when approaching a classical limit of QM, the resulting formulation is much
closer to the principle of least action [18] than Newtonian Laws [19], since in the
former determinism is a derived notion while in the latter determinism is manifest in
the formulation [1]. As we shall see throughout this dissertation, one reformulation
of fundamental physics is geometric in nature and the underlying notion is that of
positivity, giving rise to QFT observables without any reference to space-time at all.

The observables we are interested in are derived from the so-called scattering
amplitudes, a group of functions encoding the quantum mechanical overlap of an
initial and final multi-particle state. The initial and final states are completely
separated from each other, with the initial particle state being prepared at the far
past, and the final state in the far future, equivalent to being prepared on the
“boundary” of flat space. We can think of scattering amplitudes as encoding the
(square root of the) probability of interaction between the states, usually organized
into the so-called S-matrix first introduced by Wheeler in [35]. The S-matrix is
assumed to be unitary and we assume it can be expressed as a power series in a
small parameter associated with the couplings in a given theory.

The standard method of extracting scattering amplitudes in terms of Feynman
diagrams [20] holds the three concepts of causality, locality, and unitarity manifest:
at every step in a given QFT calculation these principles hold. The Standard Model
(SM) of particle physics is an example of a QFT and has proven extremely successful
in describing and interpreting the results of some of the most advanced physics
experiments such as the Large Hadron Collider (LHC) and is considered one of the
most successful theories in physics [21]. While SM has had immense predictive
power, the actual calculations involving Feynman diagrams are often quite
cumbersome to the degree that some calculations are intractable, even on powerful
computers. This is due to the inherent gauge redundancies introduced in the theory
and are ubiquitous in the intermediate steps of a given calculation, but absent in the
final results comparable to experimental data from, for instance, the LHC. These
complications with performing computations lead us back to the challenge of finding
mathematical problems to which the predictions of SM are answers. The hope here is
that these problems are easier than their QFT counterparts and thus could provide
the practical benefit of pushing the theoretical limit on the precision of the QFT
results, which can be compared to data in addition to hinting at a deeper framework,
akin to what QM is to classical mechanics. It should be noted, that there has been
incredible progress in our ability to extract scattering amplitudes, including the work
of Parke and Taylor [22], Berends and Giele [23], Bern, Dixon and Kosover [24–27]
among many others [28–34]. Some of these techniques shall be reviewed in this
dissertation.

The standard approach of obtaining scattering amplitudes is ultimately derived
from the path integral over quantized fields: the dynamics of a given theory is
encoded in the Lagrangian density from which the path integral is defined. The



5

variational principle is employed to obtain time-ordered correlation functions for
different numbers of external fields and subsequently related to scattering amplitudes
through the Lehmann-Symanzik-Zimmerman reduction formula [36]. For details, we
refer to the standard textbooks of Weinberg [3], Peskin and Schröder [14] and
Srednicki [15]. In lieu of keeping track of the variational techniques and the several
integrations over internal degrees of freedom, one usually recasts the problem in
terms of Feynman diagrams. In this framework, scattering amplitudes are expressed
as a sum over graphs. The perturbative nature of scattering amplitudes is made
clear through the identification of loops, closed circuits in each graph. These loops
are associated with unfixed internal momenta, which require integration over their
full phase-space and in many cases yield infinities in the low-energy (IR) and/or
high-energy (UV) sectors. In the following, we will not make direct contact with this
framework and rather introduce the notion of scattering amplitudes through the
approach laid out in [34]. This framework employs powerful techniques based on
recursion, analyticity, and the highly restrictive Lorentz group to fix scattering
amplitudes.

In this dissertation, we will focus on scattering amplitudes in maximal
supersymmetric Yang-Mills theory (msYM). We will not speculate on whether
supersymmetry is a real actual symmetry of space-time, rather we will treat the
theory as a toy model in the tradition of the hydrogen atom and the harmonic
oscillator. The msYM is highly symmetric making it a useful laboratory to study the
universal dynamics of the scattering of particles. Due to its highly restrictive
symmetries of superconformal and dual superconformal symmetry in the planar
sector, (planar) msYM has been described as the simplest example of a QFT [37].
This theory acts as a simplified setting in which we can explore general important
features of scattering amplitudes. Following the question regarding reformulations of
QFT raised earlier in this introduction, in this dissertation, we shall see how
theoretical results from msYM can emerge from geometric considerations. In
particular, when imposing a notion of positivity on certain geometric spaces, the
consequences of unitarity and locality appear hand-in-hand, without having
introduced a notion of space-time! This idea was first put forth by Arkani-Hamed
and Trnka in their seminal paper from 2013 on the amplituhedron [1], a geometry
associated with planar scattering amplitudes in msYM defined in the kinematic
space of momentum twistor variables. Here, the physical manifestations of locality
and unitarity, the singularity structure of the scattering amplitudes, arise as
boundaries of the amplituhedron once the notion of positivity is invoked.

An important step in making contact between scattering amplitudes and
geometry is to rewrite scattering amplitudes as differential forms on the space of
kinematic variables used to express the amplitudes themselves. The differential forms
associated with scattering amplitudes are conjectured to be canonical forms of
certain positive geometries [38], a class of real, oriented geometries with boundaries
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of all co-dimensions which are themselves positive geometries. Positive geometries
admit a unique differential form on the spaces in which they are defined. The
differential form is dubbed the canonical form and has logarithmic singularities
on-and-only-on the co-dimension-1 boundaries of the positive geometry. The residues
on the logarithmic singularities are simply the canonical forms associated with
boundary components of the positive geometry [38].

The momentum amplituhedron is a positive geometry first described in [39],
encoding scattering amplitudes in msYM in terms of spinor helicity variables and is
the central player in this dissertation. We define the momentum amplituhedron on
bosonized spinor helicity variables subject to certain positivity conditions ensuring
its boundaries correspond to the physical singularities of the msYM. We will discuss
how scattering amplitudes can be extracted from the volume form of the momentum
amplituhedron. In this dissertation, we shall also discuss recent results related to the
momentum amplituhedron, including a map between the canonical forms of the
momentum amplituhedron and the kinematic associahedron, another positive
geometry associated with the scattering of bi-colored scalars with φ3 interactions.
The canonical forms of the momentum amplituhedron and the kinematic
associahedron is found to be equal when stripping off a universal differential form,
associated with the little group invariance of the Lorentz group [40], from the
canonical form of the momentum amplituhedron. We will also discuss how certain
amplitude relations appear as geometric statements when cast in the framework of
the momentum amplituhedron. This was explored in the paper [41], where we found
the relations between color-ordered amplitudes due to Kleiss-Kuijf [42], emerging as
beautiful geometric statements about unions of different momentum amplituhedra.
This is a surprising result, given the Kleiss-Kuijf relations stem from group-theoretic
considerations not encoded in the definition of the momentum amplituhedron. The
existence of the momentum amplituhedron provides an important clue towards a
geometric description of more physically realistic theories, such as SM, without
reference to space-time.

Plan of the Dissertation

The dissertation is structured as follows:

� In Chapter 2 we provide an introduction to the field of scattering amplitudes,
focusing on concepts and techniques that will be used later. We will introduce
the spinor helicity formalism and the modern approach of extracting scattering
amplitudes based on recursion techniques. Here we will encounter the main
theories which will be considered throughout this dissertation: the Yang-Mills
(YM) theory, the bi-adjoint φ3 theory, and msYM. We will also provide a
discussion of the highly restrictive symmetries of the latter. All three theories
admit a color decomposition, disentangling the color degrees of freedom from
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the kinematic degrees of freedom, leading to interesting relations between
partial amplitudes carrying the kinematic degrees of freedom, which will also
be discussed in this chapter. While the original work presented in this
dissertation is primarily concerned with tree-level scattering amplitudes, we
will end the chapter by making contact with loop level scattering amplitudes,
albeit briefly.

� In Chapter 3 we introduce the Grassmannian: a generalization of the projective
space naturally suited for studying scattering amplitudes in msYM. We will
begin the chapter with a discussion of projective spaces and subsequently
generalize to the Grassmannian, the space of k-vectors in n-dimensions. We
will discuss various methods of representing an element in the Grassmannian
by way of decorated permutations and plabic graphs. Then, we proceed to
discuss the positive part of the Grassmannian, which is interpreted as the
generalization of the projective polytope. Here, lower-dimensional
configurations of the positive Grassmannian represent boundaries of the
top-dimensional element. The chapter ends with a discussion of how scattering
amplitudes in their BCFW representation can be extracted from the positive
Grassmannian.

� In Chapter 4 we discuss a class of geometries, known as positive geometries,
which will play a crucial role in the definition of the momentum
amplituhedron, introduced later in the dissertation. Here we discuss standard
features of positive geometries and provide primitive examples of them.
Techniques such as triangulations, pull-backs, and push-forwards will be
discussed and illustrated. We will also review how the oriented sum of positive
geometries can give rise to geometries, which are no longer positive geometries.
In this chapter, we shall also introduce the prime example of positive
geometries, the amplituhedron and its generalization to the loop
amplituhedron, and discuss how the notions of locality and unitarity appear as
consequences of positivity conditions imposed on the amplituhedron geometry.

� In Chapter 5 we introduce the kinematic associahedron. The kinematic
associahedron is the positive geometry associated with scattering amplitudes in
bi-adjoint φ3 theory and its canonical form is the so-called planar scattering
form. Here we introduce the planar scattering form related to scattering
amplitudes in bi-adjoint φ3 theory and provide a definition of the kinematic
associahedron due to Arkani-Hamed, Bai, He, and Yan [43]. We provide a few
examples of kinematic associahedra and end the chapter by discussing their
factorization and boundary properties.
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� In Chapter 6 we introduce the momentum amplituhedron first defined in [39].
Here we review the main new object of research found during this Ph.D.
program. We discuss how to define scattering amplitudes as differential forms
on spinor helicity space and how to organize the external data into bosonized
spinor helicity variables. Then, after having discussed certain positivity
constraints on external data, we provide the original definition of the
momentum amplituhedron. We analyze the boundary structure of the
momentum amplituhedron and its factorization properties as well as discuss
how to obtain its canonical form. We then proceed to describe how to extract
scattering amplitudes from the canonical form of the momentum
amplituhedron and we close the chapter by providing examples of the
momentum amplituhedron in different helicity sectors.

� In Chapter 7 we elucidate on an interesting relationship between the canonical
forms of the momentum amplituhedron and the kinematic associahedron found
in [40]. Here we provide a detailed discussion of the kinematic spaces on which
the geometries are defined and the maps between them. Performing morphisms
using these maps, we relate the canonical forms of the kinematic associahedron
and the momentum amplituhedron. This feature is encapsulating the fact that
certain elements of the boundary structure of the two geometries are similar, as
both the momentum amplituhedron and the kinematic associahedron have
boundaries where planar Mandelstam variables vanish.

� In Chapter 8 we return to the amplitude relations discussed back in Chapter 2:
the Kleiss-Kuijf relations. We see how they can be naturally cast in the
framework of momentum amplituhedron geometry as oriented sums of
momentum amplituhedra of different color ordering, combining together to no
longer have any 0-dimensional boundaries in their boundary stratification. We
review the result of our paper [41] and show two different approaches to find
amplitude relations: one that is applicable for the MHV sector of momentum
amplituhedra and the kinematic associahedron and one that is suitable for the
momentum amplituhedron beyond the MHV sector.

� The dissertation concludes with Chapter 9, which provides a summary and
outlook for future research inspired by or continuing along the lines of the work
presented here.



Chapter 2

Scattering Amplitudes

Scattering amplitudes are usually derived from quantum field theory as path integrals
over field configurations controlled by a certain action [3,14]. We will instead consider
scattering amplitudes as naturally emergent objects stemming from the Wignerian
definition of particles with natural transformation properties [34,44]. In this chapter,
we start by reviewing scattering amplitudes from an on-shell perspective and introduce
relevant kinematic spaces on which they are defined. We then discuss modern methods
of calculation, including the color-kinematic decomposition [45–47]. We then provide
a discussion of the three specific theories of interest in this dissertation: Yang-Mills
theory, bi-adjoint scalar theory with cubic interactions [31,33] and N = 4 super Yang-
Mills theory. The chapter concludes with a brief discussion on loop amplitudes.

2.1 Scattering Amplitudes

Scattering amplitudes are, as laid out in the introduction, the mathematical
structures which encode the quantum mechanical information about a scattering
process of interacting particles [45]. We can understand the scattering amplitude An
of n interacting particles labeled by i = {1, 2, . . . , n}, as a complex scalar function of
external data, which takes the form of a list {Ei, pi; ai} encoding energy, Ei,
relativistic momentum, pi, and ai denotes the type of each particle participating in
the scattering process

An : {Ei, pi, ai} → An ({Ei, pi, ai}) ∈ C1. (2.1)

Generically, the external data here are subject to constraints. First momentum
conservation, related to overall translation invariance of flat space-time1, imposes the

1We take scattering amplitudes as living in the four dimensional Minkowski space in the mostly
negative signature, unless otherwise stated.
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Figure 2.1: A graphic representation of an arbitrary scattering amplitude with n
outgoing momenta labeled pµ1 , p

µ
2 , ..., p

µ
n.

following linear condition on the relativistic four-momenta∑
i

pµi = 0, (2.2)

where µ = 0, .., D − 12. A further constraint is the so-called on shell condition, which
can be understood as the generalization of Einstein’s famous dispersion relation

(p2
i −m2

i ) = 0, (2.3)

where p2
i = piµp

µ
i = ηµνp

µ
i p

ν
i with ηµν being the Minkowski metric in the mostly

minus convention and mi is the mass of particle i. Of course, any actual physical
observable will be a real number, however since scattering amplitudes as defined in
(2.1) are complex, any physical observable are proportional to the absolute square of
the scattering amplitude, e.g. the differential of the total cross section of a process, σ,
with respect to a solid angle element dΩ is

dσ

dΩ
∝ |〈An〉|2, (2.4)

proportional to the absolute value squared of the scattering amplitudes averaged over
indistinguishable states. In this dissertation, the scattering amplitudes themselves are
the primary focus.

Throughout this dissertation we will assume that the scattering amplitudes admit
a perturbation expansion, i.e. that there exists a small parameter g, such that the
amplitudes can be expressed as a power expansion

An =
∞∑
i=0

g(2(i+1))A(i)
n = g2A(0)

n + g4A(1)
n +O(g6), (2.5)

2Greek labels are in general over the D-dimensional spacetime indices.
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where the first term in (2.5), A(0)
n , is labeled tree since using the Feynman diagram

expansion, the diagrams contain no loops and have simple structure resembling tree
graphs. The higher order terms in this expansion are called loop amplitudes and
involve integrals over internal degrees of freedom [15]. In this dissertation, the primary
focus will be on the leading order contribution, however we briefly touch upon loop
corrections in the end of this chapter in section 2.9.

The S-Matrix

The scattering process can be interpreted from the point of view of quantum states,
where we consider the evolution in the bulk of space-time from some multiparticle
states defined on the boundary: |i〉 and |f〉, which are interpreted as the inital and
final states, respectively. The scattering probability is governed by the S-matrix,
mapping initial to final states

σ ∼ |〈f |S|i〉|2. (2.6)

We expect such a matrix to be constructed from two parts: one governing the case
where no transition between states occurs and one governing transitions between initial
and final states.

S = 1 + iT. (2.7)

In this framework, the scattering amplitudes are simply identified as

iδ(p1 + p2 + ...+ pn)Ai→f = 〈f |T |i〉, (2.8)

with the statement of momentum conservation explicitly factorized as a δ-function.
There are important lessons about the scattering amplitude to be learned from the
S-matrix. In particular, unitarity is simply encoded in this formulation, as it is just
the statement that

S†S = 1. (2.9)

Expanding the S-matrix in terms of the transition matrix (2.7), we obtain

−i
(
T − T †

)
= T †T, (2.10)

This statement is known as the optical theorem [3]. We can find an equivalent
statement on the level of scattering amplitudes by sandwiching (2.10) between the
two state brackets as follows

i 〈f | (T − T †) |i〉 = i(Ai→f −A∗f→i) = 2=Ai→f = 〈f |T †T |i〉 , (2.11)
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where =Ai→f is the imaginary part of the scattering amplitude. Inserting a complete
set of states

∑
k |k〉 〈k| = 1 on the right hand side, we get

〈f |T †T |i〉 =
∑
k

〈f |T † |k〉 〈k|T |i〉 =
∑
hk,ak

∫
ΠkAi→kA∗k→f , (2.12)

where the sum is over all discrete quantum number of the intermediate state,
∫
dΠk

amounts to integrating over the continuous quantum numbers, e.g. momentum, of the
intermediate state. Collecting both sides, we obtain the optical theorem for scattering
amplitudes

2=Ai→f =
∑
hk,ak

∫
ΠkAi→kA∗k→f . (2.13)

Treating A∗ as a scattering amplitude in its own right, we can expand the scattering
amplitude loop-by-loop order as in (2.5) and matching powers of the coupling constant

=A(1)
n =

∑
hk,ak

∫
dΠkA(0)

n (k)×A(0)
n (k), (2.14)

where the integration is over all internal on-shell momentum of the internal state k, and
we sum the possible helicity states, hk and particle types ak. This is a very important
result as it relates the complex structure of the scattering amplitude at loop-level with
a sum over factorized tree-level amplitudes [14]. We shall return to this point at the
end of this chapter in section 2.9.

2.2 Poincaré Group and Little Group Scaling

Before embarking on a further discussion of scattering amplitudes in specific theories,
we review how to construct particles, the objects participating in the scattering
process. Conventionally, particle information is encoded in quantum fields, which
allow for the treatment of quantum mechanical objects using techniques from
classical field theory ensuring that the given theory respects special relativity. The
conventional way of extracting scattering amplitudes using Feynman diagrams has
the consequence of keeping the notions of causality, locality, and unitarity strictly
manifest at the cost of introducing gauge redundancies complicating intermediate
steps, but never manifesting in the final result. In this work, we shall treat particles
as irreducible representations of the Poincaré group, governing four-dimensional
translations and Lorentz transformations [34].

In (2.1), we label the external data using four-momentum labels pµi . This is done
explicitly by starting from some reference momentum, kµi , and relate it to the specific
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momenta we are interested in by way of a Lorentz transformation pµ = Lµν (pi; k)kν .
We note, that Lµν (pi; k) is not unique and there are particular Lorentz transformations
that leave pµi invariant, for instance rotations around the axis in the direction of pµi .
This is the little group of Lorentz transformations and shall play an important role
throughout this dissertation, especially in chapter 7. Assuming there exists a unitary
representation of the Lorentz group, U(Λ): U(Λ1Λ2) = U(Λ1)U(Λ2), and choosing a
specific Lorentz transformation, L, allows us to define the one-particle states |p, a〉 as

|p, a〉 = U(L(p; k)) |k, a〉 . (2.15)

Applying an arbitrary Lorentz transformation to |p, a〉 we obtain

U(Λ) |p, a〉 = U(Λ)U(L(p; k)) |k, a〉 = U(ΛL(p; k)) |k, a〉 ,
= U(L(Λp; k)L−1(Λp; k))U(ΛL(p; k)) |k, a〉 ,
= U(L(Λp; k))U(L−1(Λp; k)ΛL(p; k)) |k, a〉 ,

= U(L(Λp; k))U(W (Λ, p; k)) |k, a〉 , (2.16)

where W (λ, p; k) is a subgroup of the Lorentz group leaving the momentum vector
invariant, thus the little group. A particle can then be labeled by its momentum and
transforms under a certain representation of the little group

U(W (Λ, p, k)) |k, a〉 = Da,b(W (Λ, p; k)) |k, b〉 . (2.17)

Scattering amplitudes, as they are assumed to obey Poincaré invariance, are then
assumed to be Lorentz scalars and obey conservation of external momenta, meaning
that they must transform nicely according to

AΛ
n ({pi, ai}) =

n∏
i=1

(Dai,bi(W ))An ({Λpi, bi}) , (2.18)

acting on each participating particle individually [34].
We can now discuss the label a, which we use to distinguish between different
particles states with the same momenta and energy. In four dimensions, we can label
massless particles by their helicity, h = ±s, where s is the spin of the particle. In this
dissertation, we will make contact with scalars of spin-0, fermions of spin-1/2 and
vector bosons (gluons) of spin-1. We label scattering amplitudes by their momentum
and helicity as follows

An({ph1
1 , Ai}, ...{phnn , An}), (2.19)

where Ai encodes the remaining distinguishing labels of particle states such as
color-charge.
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The four-momentum vectors pµi , might not be the best choice of variables however,
and in general we wish to linearize the on-shell conditions: p2

i = m2. We do this by
contracting the four-momentum vectors with the SU(2) Pauli matrices σaȧµ = {1, σi}
with i = 1, 2, 3, such that we obtain the matrix

paȧi = σaȧµ p
µ
i =

(
p0 − p3 p1 − ip2

p1 + ip2 p0 + p3

)
, (2.20)

associated with each particle. This matrix is not full rank and its determinant for
generic momenta just imposes the on-shell condition

det paȧi = p2
i = −m2. (2.21)

This allows for the definition of two spinor helicity variables given by

paȧi =

{
λai λ̃

ȧ
i m2 = 0

λaiI λ̃
ȧI else.

(2.22)

In the massless case, the matrix paȧi is of rank 1 and we can decompose it to a product
of two 2-vectors denoted λ and λ̃. They can be generically thought of as complex.
For real momenta, paȧi is a Hermitian matrix and λ and λ̃ are related by complex
conjugation. In the following, we shall keep them independent, which can either be
done by taking complex momenta, or keeping momenta real but working in the so-
called split-signature, ηµν = diag(−1,+1,−1,+1). The spinor helicity variables for
the massless case is usually collected into two 2× n matrices as follows

λai =

(
λ1

1 λ1
2 ... λ1

n

λ2
1 λ2

2 ... λ2
n

)
, λ̃ȧi =

(
λ̃1̇

1 λ̃1̇
2 ... λ̃1̇

n

λ̃2̇
1 λ̃2̇

2 ... λ̃2̇
n

)
. (2.23)

Since scattering amplitudes are Lorentz scalars, no free Lorentz indices are floating in
(2.1), we are interested in SL(2)× SL(2) invariants of these matrices

detλiλj = εabλ
a
i λ

b
j := 〈ij〉, (2.24)

det λ̃iλ̃j = εȧḃλ̃
ȧ
i λ̃

ḃ
j := [ij]. (2.25)

Importantly, the Mandelstam variables can be expressed using massless spinor helicity
variables

sij = (pi + pj)
2 = 2pi · pj = 〈ij〉[ij], (2.26)

which can be shown using ηµν = −1
2
trσµσ̄ν , with σ̄ν = (1,−σi). Momentum

conservation has to be imposed by hand and is found to be the constraint

0 = p1 + p2 + ...+ pn = 2p1 · (p1 + p2 + ...+ pn) =

= 2p2
1 + 2p1 · p2 + 2p1 · p3 + ...+ p1 · pn =

= s12 + s13 + ...+ s1n ⇒
n∑
i=1

〈qi〉[ir] = 0, (2.27)
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where in the last line we have contracted the spinor helicity variables by two reference
variables λaq and λ̃ȧr . Another constraint the variables have to fulfill is Cramer’s rule,
also known as the Plücker identity, which is a standard statement about vectors in Rd,
stating that we can expand any d-vector as a linear combination of d basis vectors.
Choosing λi and λj as the basis vectors, we can write λk as an expansion

λk = αλi + βλj, (2.28)

by contracting with λi and λj we can find α and β as follows

〈kj〉 = α〈ij〉, (2.29)

〈ki〉 = β〈ji〉, (2.30)

such that we get

〈ij〉λk = 〈kj〉λi − 〈ki〉λj, (2.31)

These rules are usually cast as identities on spinor brackets, by contracting with an
arbitrary reference spinor, λr, as follows

〈kr〉〈ij〉 − 〈kj〉〈ir〉+ 〈ki〉〈jr〉 = 0. (2.32)

Of course the construction follows identically for the square brackets, and we have

[kr][ij]− [kj][ir] + [ki][jr] = 0. (2.33)

We can easily encode the ten generators of the Poincaré group in the language of
spinor helicity as follows [45]:

paȧ = −
∑
i

λai λ̃
ȧ
i , mab =

∑
i

λi(a
∂

∂λ
b)
i

, m̃ȧḃ =
∑
i

λ̃i(ȧ
∂

∂λ̃
ḃ)
i

, (2.34)

taking (...) as meaning symmetrization of enclosed indices. Here paȧ is the generator
of translations and mab and m̄ȧḃ are the generators for the Lorentz group.

The spinor helicity variables provide an excellent parameterization of scattering
amplitudes, in particular in gauge theories. In the following sections, we will explore
the Parke-Taylor amplitude [22] of n color-ordered gluons with all but two helicities
positive. For now, we will just quote it to visualize the compactness of the
parameterization

An(1+, 2+, ..., i−, ..., j−, ..., n+) =
〈ij〉4

〈12〉〈23〉...〈n− 1n〉〈n1〉
, (2.35)

which of course, has the correct scaling under little group transformations. We will
review the explicit construction of An in section 2.4. In the following, we shall derive
this very simple formula by way of recursion of simple three-particle scattering
amplitudes.
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2.3 On-Shell Methods

Three Particle Kinematics

The choice of working in spinor helicity variables makes on-shell conditions (2.21)
manifest and in the massless case any three-point scattering amplitude, denoted three-
point functions in the following, can only be a function of either λ or λ̃ [48]. This can
be seen by expressing the Mandelstam variables using momentum conservation

〈12〉[12] = 2p1 · p2 = (p1 + p2)2 = (−p3)2 = 0 (2.36)

This requires either 〈12〉 or [12] (or both) must vanish. In the case where 〈12〉 is finite,

〈12〉[23] = 〈1|(p2)|3] = −〈1|(p1 + p3)|3] = 0, (2.37)

tells us that [23] = 0. By similar arguments, we can claim [13] = 0 and therefore

λ̃1 ∝ λ̃2 ∝ λ̃3. (2.38)

Another valid choice in (2.36) would be to take [12] finite. In that case, in complete
analogy we obtain

λ1 ∝ λ2 ∝ λ3, (2.39)

and thus all angle brackets vanish, telling us either that the three-point function is
either a function of angle or square brackets. Furthermore, if using real momenta in
mostly-minus signature, we have λ∗1 = λ̃1 and all real three massless particle scattering
amplitudes vanish! We keep momenta complex or work in the split signature [49], and
construct an ansatz for the structure of three-point function

A3(p1, p2, p3) =

{
〈12〉a12〈23〉a23〈13〉a13 or

[12]ã12 [23]ã23 [13]ã13 ,
(2.40)

up to a coupling constant.
The little group of Lorentz transformations, discussed above in section 2.2, acts as a
complex U(1) transformation on the spinor helicity variables.

λi ∼ tiλi, λ̃i ∼ t−1
i λ̃i. (2.41)

A massless scattering amplitude is fixed by Lorentz invariance to transform under the
little group transformation as [34],

An(tiλi, t
−1
i λ̃i) = t−2hi

i An(λi, λ̃), (2.42)
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where hi is the helicity of the particle labeled, i. This restriction completely fixes the
coefficients of (2.40). By scaling (2.40) with respect to each particle

ta12+a13
1 ta12+a23

2 ta23+a13
3 〈12〉a12〈23〉a23〈13〉a13 = t−2h1

1 t−2h2
2 t−2h3

3 〈12〉a12〈23〉a23〈13〉a13 .
(2.43)

We need to solve the equations

a12 + a13 = −2h1 (2.44)

a12 + a23 = −2h2 (2.45)

a23 + a13 = −2h3 (2.46)

which fixes the powers to be

An = 〈12〉h3−h1−h2〈23〉h1−h2−h3〈13〉h2−h1−h3 , (2.47)

independent of which particles exists in the theory of interest. If we have a theory of
only gluons, the helicities can be ±1 and the only scaleless three-point function is the
one where two legs have positive helicity and one leg has negative, e.g.

AMHV
3 ∼ ∝ 〈12〉3

〈13〉〈23〉
, (2.48)

where we have taken (h1, h2, h3) = (−1,−1, 1). We can also follow the same line of
argument in the second case, where λ1 ∝ λ2 ∝ λ3. The solution in that case is

AMHV
3 ∼ ∝ [12]3

[23][13]
, (2.49)

where the helicity state is (h1, h2, h3) = (1, 1,−1). We call these two solutions the
maximally helicity violating (MHV) and anti-maximally helicity violating (MHV)
amplitudes3. The three-point functions act as building blocks for higher n-point
scattering amplitudes, as we will show in the following.

Analytical Structure and Recursion

Scattering amplitudes are functions obeying unitarity, locality, and causality, and
this is reflected in their analytic structure. In the following, we take four-momentum

3The notation was historically introduced from the point of view of 2→ (n− 2) scattering, where
notion of “helicity violation” refers to the difference between the in and out state and the “maximal”
refers to the fact that when all helicities are the same, the amplitude is identically 0:

A(1±, 2+, ..., n+) = An(1±, 2−, ..., n−) = 0. (2.50)
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complex and we have that scattering amplitudes are complex rational functions of
Lorentz invariants. In this section, we have seen that scattering amplitudes are
restricted to have the correct little group scaling and this restriction determines the
three-point functions in (2.48) and (2.49). Locality and unitarity specifically fix
n-point scattering amplitudes to either be governed by local n-point interactions or
built up from local m-point interactions with momentum transferred between them
by an internal off-shell particle. In theories where amplitudes can be build up solely
by three-point functions, (2.48) and (2.49), we call the theory constructable. Locality
implies that scattering amplitudes have simple poles exactly when the particle goes
on-shell and the residue around these poles are factorizations over scattering
amplitudes constructed by lower point functions. Schematically,

(2.51)

where ∂ is associated with the residue on the singularity of the amplitude related to
the internal particle going on-shell, and AL and AR are scattering amplitudes of
lower-point amplitudes, such that n = L + R − 2, as each part shares the on-shell
propagator as an external leg. Locality tells us, that the two subamplitudes AL and
AR in principle can be separated by an arbitrary distance. This implies that they are
independent functions and must therefore be multiplied together [72]. Unitarity, on
the other hand, tells us we have to integrate over the internal momentum transfer
and summing over quantum numbers such as helicity of the propagator,
corresponding to inserting a complete set of internal states. This is equivalent to
summing over each combination of AL and AR, since the on-shell condition and
momentum conservation completely fixes the transferred momenta. Thus the
tree-level scattering amplitude can only have singularities on special isolated points
in momentum space, associated with certain internal degrees of freedom going
on-shell. To find the exact locations, we specialize to the case when
AL = AL(p1, p2, ..., pk, PI) is a k + 1 point amplitude and PI is the momentum of the
internal particle. In that case, the pole occurs exactly when the internal state goes
on-shell, that is p2

I = (p1 + p2 + ...+ pk)
2 = s12...k = 0 for all massless particles.

A general scattering amplitude can be evaluated in terms of lower point
scattering amplitudes using the following recursion technique [29]. Consider the
n-point scattering amplitude in some theory. We perform a complex deformation:
An → An(z), by way of n complex 4-vectors, rµi , constrained by the properties

n∑
i=1

rµi = 0, (2.52)

ri · rj = 0, (2.53)

ri · pi = 0. (2.54)
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such that the external particle momenta deformed by

p̂µi ≡ pµi + zrµi . (2.55)

Due to the defining properties of rµi , all shifted momenta are on-shell p̂2
i = 0, obey

momentum conservation
∑n

i=1 p̂
µ
i , and each multiparticle Mandelstam variable in

shifted momenta

ŝij...k = (p̂i + p̂j + p̂k)
2 = sij..k + 2z

(
k∑
a=i

pa

)
·

(
k∑
b=i

rb

)
, (2.56)

is at most linear in z. We can thus express ŝij,..k as a zero on z

ŝij..k = −sij..k
z∗

(z − z∗), (2.57)

with z∗ being the solution

z∗ = − sij...k
2P ·R

, (2.58)

where we have defined P =
∑k

a=i pa and R =
∑k

b=i rb. Taking z → 0 in A(z) just

returns the unshifted scattering amplitude. This means the residue of the pole An(z)
z

at z = 0, is equal to the unshifted scattering amplitude, therefore Cauchy’s theorem
states

0 =

∮
C

An(z)

z
= An(z = 0) +

∑
z=z∗

Resz=z∗
An(z)

z
+ Bn, (2.59)

where C is a contour surrounding all poles in the complex plane. We explicitly include
the boundary term, Bn, a rational function encoding the residue of a potential pole
at z =→ ∞. In most cases4, we can choose the shift vectors in such a way that
the boundary term vanishes. The residues away from z = 0 are just where internal
propagators go on-shell and in the neighborhood of z∗ we simply obtain that An(z)
factorizes in the following manner

An(z)→ AL(z∗)
1

ŝij...k
AR(z∗) = − z∗

z − z∗
AL(z∗)

1

sij...k
AR(z∗), (2.60)

Meaning that the residue of A(z)
z

on the pole z = z∗ is simply

−Resz=z∗
An(z)

z
= AL(z∗)

1

sij...k
AR(z∗). (2.61)

4For more details about the shifts from the point of view of field theory we refer to [50]. We will
in the following assume that a choice of deformation vectors, leading to vanishing of the boundary
term, exists.
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Summing over all possible internal particles and integrating over their momentum PI ,
and taking all residues into account, we obtain

An =
n−2∑
I=2

∑
h=±

1

s1...I

AI+1(1, 2, ..., Ih)An−I+1(−I−h, I + 1, ..., n), (2.62)

which is only true when Bn = 0. This can be justified if, under a particular shift, we
have

An(z)→ 0, z →∞. (2.63)

In the next section, we shall review how using a particular choice of shift vectors, we
can prove the Parke-Taylor formula (2.35) in just a few lines of algebra.

2.4 Non-Abelian Gauge Theory

Scattering amplitudes in non-abelian gauge theories, called Yang-Mills theories, are of
primary interest in this dissertation. Here, particles carry color charge, transforming
under an SU(N) gauge group, where N denotes the number of independent colors
existing in the theory. The spectrum is N2 − 1 adjoint particles with spin 1 called
gluons, though one can add additional spin-1

2
particles to the spectrum to obtain a

theory similar to the quantum chromodynamics sector of the Standard Model. Each
external particle in the adjoint representation is equipped with a color matrix T a with
the following commutator relations

[T a, T b] = ifabcT c, (2.64)

with fabc being the structure constants of the given theory. The color information
carried by the generator of the gauge group T a can be disentangled from the kinematic
information of a scattering amplitude by color-kinematic decomposition [42,45,51]. For
instance, consider the scattering of n colored gluons at leading order in perturbation
theory:

Atree
n,k ({pi, hi, ai}) = gn−2

∑
σ∈On

Tr (T a1T aσ(2) · · ·T aσ(n))Atree
n,k [1h1 , σ(2h2), . . . , σ(nhn)] ,

(2.65)

where On ' Sn/Zn are (n − 1)! non-cyclic permutations of the tuple {1, 2, ..., n}, T a
are the color generators of the given theory, and An[1, ..., n] are color-ordered or partial
amplitudes5. The argument refers to a specific labeling of external particles according
to their position in a planar embedding. We distinguish between helicity amplitudes

5We will sometimes suppress the labels of the partial ordering when referring to the standard
ordering , i.e. An,k := An,k[1, 2, ..., n].
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by the label k, denoting the number of negative helicity gluons in the scattering, such
that k = 2 refers to amplitudes in the MHV configuration, or sector, and k = 3 refers
to the NMHV, et cetera. We write An,k referring to the n-point scattering amplitudes
in the Nk−2MHV sector and we have that “worse-than-MHV” scattering amplitudes
vanish as follows

An,0 = An,1 = 0, (2.66)

along with

An,n = An,n−1 = 0. (2.67)

We therefore have non-zero amplitudes for 2 ≤ k ≤ n − 2 and the k = n − 2 is
referred to as anti-MHV or MHV amplitude.

The partial amplitudes fulfill the following conditions:

I Cyclic identity

An,k[1, 2, ..., n] = An,k[2, 3, ..., n, 1]. (2.68)

II Reflection identity

An,k[1, 2, ..., n] = (−1n)An[n, ..., 2, 1]. (2.69)

III Photon- or U(1) decoupling identity

An,k[1, 2, . . . , n] + An,k[2, 1, 3, . . . , n] + . . .+ An,k[2, 3, . . . , 1, n] = 0. (2.70)

These equations can be seen as consequences of color group structures. The first
identity comes from the standard cyclic property of traces and allows us to fix the
first leg in (2.65) and thus the basis of scattering amplitudes consists only of (n− 1)!
distinct elements associated with all the ways we can permute the remaining
(2, ..., n) elements. The photon decoupling relation can be found from the
decomposition of the color group U(N) ' U(1)× SU(N) [45] and taking one of the
color matrices, T ai = 1, to be the identity matrix, thus making it commute with all
other color matrices. Since gluon amplitudes in U(N) theories must vanish [45], the
photon decoupling identity drops out as an immediate consequence.

There exists another color decomposition of scattering amplitudes, the Del Duca,
Dixon, Maltoni (DDM) decomposition [51] where the scattering amplitude can be
decomposed in terms of the structure constants, as follows

Atree
n,k ({pi, hi, ai}) = gn−2

∑
σ∈Sn

fa1σ1b1f b1aσ2b2 ...f bn−3aσn−2anAtree
n,k [1, σ(2...n− 1), n] ,

(2.71)
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where we have expanded in a basis of (n− 2)! partial amplitudes. Using the identity
[T a, T b] = −ifabcT c, we can relate the two decompositions through a set of relations

Atree
n,k [1, {α}, n, {β}] = (−1)nβ

∑
ω∈{α}�{βT }

Atree
n,k [1, {ω}, n], (2.72)

where � is the shuffle product instructing us to shuffle the set {βT}, the reverse of
the set {β}, into the set {α}, respecting their internal orderings. These are the Kleiss-
Kuijf (KK) relations [42] and reduce our basis of partial amplitudes down to (n− 2)!.
It is clear, that both the reflection and photon decoupling identity can be cast on a
form of (2.72), by taking β = 0 and β = 1, thus they are included in the Kleiss-Kuijf
relations.

It turns out we can reduce the basis even further [52, 53]: if we take as an ansatz
that the full scattering amplitude can be written as a sum over factorization channels

An,k =
∑
i

cini∏
a∈i sa

(2.73)

where we have factored the numerator as ci, consisting of the color factors, times ni
consisting of Lorentz contractions of momentum and spinors. We can relate certain
factorization channels by the Jacobi identity on the color numerators ci

ci + cj + ck = 0, (2.74)

which usually is visualized as a relation between Feynman diagrams, where the indices
refers to a labeling of the specific channels, e.g. for n = 4 particle scattering i = s12,
j = s23, and k = s13, with cs12 being the color factor associated with the factorization
channel where s12 → 0 etc. as visualized in the following:

. (2.75)

Since the choice of expansion is not unique, e.g. we can always transform ni →
ni + s12∆, where ∆ is an arbitrary function, we assume that there exists a choice of
numerator coefficients, ni, such that they too fulfill the Jacobi identities of (2.75) [52]

ni + nj + nk = 0. (2.76)

In that case, we have that the scattering amplitudes fulfill another set of relations,
namely the Bern-Carrasco-Johansson (BCJ) relations [52], which can be cast in the
following form [45] (known as the fundamental BCJ relations)

n∑
i=3

(
i∑

j=3

s2j

)
Atree
n,k [1, 3, ..., i, 2, i+ 1, ..., n] = 0. (2.77)
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These relations further reduce the basis down to (n−3)! and can be obtained from e.g.
string theory, where they appear as the infinite tension limit of the imaginary part
of the Kawai-Lewellen-Tye (KLT) relations found as certain monodromy relations
between sectors of open string integrals [54].

2.4.1 BCFW recursion relations

Armed with these relations, we now wish to evaluate the partial amplitudes described
above in (2.65) and (2.71). To that end, we exploit the recursion relations (2.62) as
presented in the previous section 2.3, making a choice of rµi , such that we do not obtain
any boundary term in (2.59). A standard choice due to Britto, Cachazo, Feng, and
Witten (BCFW) [28,29] is shifting the spinor helicity variables of two external legs

λi → λ̂i = λi + zλj, (2.78)

λ̃j → ˆ̃λj = λ̃j − zλ̃i. (2.79)

This is denoted as a [j, i〉-shift and is of course equivalent to an explicit shift on
momenta, as can be seen by projecting in

σaȧµ p̂
µ
i = λ̂ai

ˆ̃λȧi = λai λ̃
ȧ
i + zλaj λ̃

ȧ
i ⇒ σaȧµ r

µ
i = λaj λ̃

ȧ
i , (2.80)

σaȧµ p̂
µ
j = λ̂aj

ˆ̃λȧj = λaj λ̃
ȧ
j − zλaj λ̃ȧi ⇒ σaȧµ r

µ
j = −λaj λ̃ȧi . (2.81)

The shift vectors ri and rj fulfills the defining identities for shifted momenta as laid
out in the previous section ∑

l

rl = λaj λ̃
ȧ
i − λaj λ̃ȧi = 0 (2.82)

ri · rj = 〈jj〉[ii] = 0, (2.83)

pi · ri = 〈ij〉[ii] = 0, (2.84)

pj · rj = 〈jj〉[ji] = 0, (2.85)

and therefore are valid shift vectors for setting up the recursion of section 2.3. To get
the most out of a [j, i〉-shift, we need to ensure that there is no pole of the shifted
amplitude at infinity. For the time being, we are going to assume the Parke-Taylor
amplitude (2.35) and study how it scales under shifts.

An,2[1−, 2−, 3+, ..., n+] =
〈12〉4

〈12〉〈23〉...〈n− 1n〉〈n1〉
. (2.86)

If we shift [j, i〉 = [1, 2〉, we note that the numerator does not contribute with any
factors of z as the shifted term is proportional to 〈11〉 = 0. Therefore the only
contribution is from the denominator, where we have 〈2̂3〉 = 〈23〉 + z〈13〉. Thus the
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Parke Taylor factor (2.86) scales as 1
z

under z → ∞. Considering instead the [1, 3〉-
shift, the only factors of z arise from the denominators 〈23̂〉 and 〈3̂4〉 each scaling with
a factor of 1

z
. Therefore the Parke-Taylor amplitude (2.35) scales as 1

z2 as z → ∞
under the [1, 3〉-shift. Following a similar line of argument, we can obtain the scaling
properties for (2.86) under shifts of different adjacent helicity legs.

[+,+〉 [+,−〉 [−,+〉 [−,−〉
1
z

z3 1
z

1
z

If i and j are non-adjacent as in the [1, 3〉-shift, each shift scales further by an extra
factor of 1

z
. The scalings can be argued in generality from field theory [55]. Since [1, 2〉

is a valid shift, we will proceed with this shift. The recursion relations tells us

An,2[1−, 2−, 3+..., n+] =∑
h=±

n∑
m=4

1

s23...m−1

Ân−m+3,kL [1̂−, P̂ h
23...m−1,m

+, ..., n+]×

Âm−1,kR [−P̂−h23...m−1, 2̂
−, 3+, ..., (m− 1)+], (2.87)

where we sum over all amplitudes with the shifted legs belonging to different local
contributions connected by the propagator sI with I = (2, 3, ..., (k − 1)), and kL and
kR are defined such that kL + kR = k + 1 = 3. Only a few terms in this sum survive
in (2.87) due to the vanishing of “worse-than-MHV” amplitudes (2.66): in the first
term, h must be equal to −1 in order for the left amplitude not to vanish, unless
k = n− 2 in which case the left amplitude is the MHV three-point function discussed
in section 2.3. A similar analysis can be performed for the right amplitude leading to
only two surviving terms in the sum (2.87).

An,k[1
−, 2−, 3+, ..., n+] =

1

s23

Ân−1,2[1̂−(−P̂−23), 4+, ..., n+]Â3,1[(−P̂+
23), 2̂−, 3+]

+
1

s1n

Â3,1[1̂−, (−P1n)+, n+]Ân−1,2[P̂−1n, 2̂
−, 3+, ..., (n− 1)+]. (2.88)

Under the induction hypothesis that the (n− 1)-point MHV amplitudes are described
by (2.35) and using the three-point functions derived earlier (2.48) and (2.49), we
have all the tools to derive the n-point case. Inserting spinor helicity expressions and
analytically continuing the momenta6 λ−p = −λp and λ̃−p = λ̃p, we get

An,2[1−, 2−, ..., n+] =
1

s23

〈1̂P̂23〉3

〈P̂234〉〈45〉...〈n1̂〉
[P̂233]3

[2̂3][2̂P̂23]
. (2.89)

6the opposite choice is also completely valid.
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The second term of (2.88) vanish on support of P̂ 2
1n = 0, while the first term is non-

vanishing for generic momenta since [2̂∗] = [2∗]. We can write the numerator as

〈1̂P̂23〉3[P̂233]3 = 〈1(P̂23)3]3 = (〈1(2̂ + 3)3])3 = 〈12〉3[23]3, (2.90)

and the shifted term in the denominator is [2P̂23]〈P̂234〉 = 〈34〉[23]. Reinserting into
(2.89), yields

An,2[1−, 2−, ..., n+] =
1

s23

〈12〉3[23]3

[23]〈34〉[23]〈45〉...〈n1〉
=

〈12〉3

〈23〉〈34〉〈45〉...〈n1〉
. (2.91)

which is exactly the Parke-Taylor scattering amplitude (2.35)for n gluons in the
MHV sector.

The recursion relations are powerful tools for evaluating scattering amplitudes,
however, they are not always applicable. Indeed here n-point amplitudes are
assumed to be constructible from three-point functions (2.48) and (2.49), and thus
no information about higher point local interactions are taken into account. In the
case of Yang-Mills theories, all information of the S-matrix (at tree-level) can be
constructed from recursion over three-point functions, as argued in [45]!

Non-Adjacent Shifts and Bonus Relations

As mentioned earlier, there is an extra factor of 1
z

in the z-scaling of amplitudes
under non-adjacent BCFW shifts. This ensures an extra set of relations between
scattering amplitudes referred to “bonus relations”. In particular, they can be cast on
the form [45] ∮

C
Ân(z) = 0, (2.92)

where the integration contour is the same as for (2.59). This statement has played an
important role as consistency conditions of graviton scattering amplitudes [56]7. For
gluon scattering, the bonus relations have a curious implication, as they encode the
BCJ relations (2.77) [57]. Here we outline the general idea for 4-point scattering of
gluons. For simplicity we consider the [1−, 2−〉-shift. We then consider the integral∮

C

dz

z
ŝ2̂3(z)

(
Â4,2[1̂, 2̂, 3, 4] + Â4,2[1̂, 4, 2̂, 3] + Â4,2[1̂, 3, 4, 2̂]

)
, (2.93)

where for notational purposes, we have neglected to write the helicities of the
external particles [1, 2, 3, 4] := [1−, 2−, 3+, 4+]. The integrand consists of a kinematic

7Here the double 1
z2 scaling of graviton amplitudes can be verified by the double-copy construction

of graviton amplitudes from gluon amplitudes.
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function ŝ2̂3(z) multiplied by the shifted U(1) decoupling identity and can be set to
0. Breaking the integral up term-by-term, we realize that the middle term
Â(1̂, 3, 2̂, 4) ∼ 1

z2 , meaning that even when taking into account the extra scaling of z
from the coefficient ŝ2̂3, the integral vanish∮

C

dz

z
ŝ2̂3(z)Â4,2[1̂, 3, 2̂, 4] = 0, (2.94)

where again C covers every pole of A4,2(1, 3, 2, 4). For the first and third term, we have
to evaluate the residues on the poles in z. In the first term, the only residue appears
at z = 0 and therefore the integral just evaluates to∮

C

dz

z
ŝ2̂3(z)Â4,2[1̂, 2̂, 3, 4] = s23A4,2[1, 2, 3, 4], (2.95)

while in the third term we have a pole in z = 0 and a pole at z = z13 = [13]
[23]

, therefore
we obtain by Cauchy’s theorem∮
C

dz

z
ŝ2̂3(z)A4,2[1̂, 3, 4, 2̂] = (s23 − s23(z13))A4,2[1, 3, 4, 2] = −s13A4,2[1, 3, 4, 2]. (2.96)

Putting it all together we get

0 = s23A4,2[1, 2, 3, 4]− s13A4,2[1, 3, 4, 2], (2.97)

which is one representation of the BCJ relations (2.77). We could in general have
started from another U(1) relation and multiplied by a different propagator to obtain
different representations of the BCJ relations. We refer to the work cited in [57], where
the authors inductively prove the BCJ relations can be obtained from the bonus scaling
of non-adjacent legs for all n.

2.4.2 Singularities of Non-Abelian Gauge Theories: Collinear
and Soft Limits

The partial amplitudes have certain universal behavior associated with specific
momentum configurations. The two types of configurations are the collinear limits,
where two external particles become collinear and their momenta become
proportional, and soft limits, where a certain external momentum vanishes. We can
employ the BCFW recursion relations to study these limits [46].

Collinear Limit

The collinear behavior of a scattering amplitude can be explored by taking two
consecutive particles (in the color orderings) pi ∼ pi+1, which can be parameterized
as pi = zP and pi+1 = (1 − z)P , with the total collinear momentum P = pi + pi+1.
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Since this momentum is null, we can write spinor helicity variables for the total
collinear momentum P = λP λ̃P , and therefore

λi =
√
zλP , λ̃i =

√
zλ̃P , (2.98)

λi+1 =
√

1− zλP , λ̃i+1 =
√

1− zλ̃P . (2.99)

Considering the n-point MHV amplitudes An,2[1−, 2−, 3+, 4+, 5+, ..., n+] with p4 and
p5 collinear, we can extract the universal behavior

An,2[1−, 2−, 3+, 4+, 5+, ..., n+] =
〈12〉3

〈23〉〈34〉〈45〉〈56〉...〈n1〉
p4‖p5−−−→

1√
z(1− z)〈45〉

× 〈12〉3

〈23〉〈3P 〉〈P6〉...〈n1〉
= Split−(z, 4+, 5+)An−1,2[1−, 2−, 3+, P+, 6+, ..., n+]. (2.100)

The remaining splitting functions can be found by taking other legs collinear, we
get [58]

Split−(z; i+, (i+ 1)−) = − z2√
z(1− z)[ii+ 1]

, (2.101)

Split−(z; i−, (i+ 1)+) = − (1− z)2√
z(1− z)[ii+ 1]

, (2.102)

Split−(z; i−, (i+ 1)−) = 0, (2.103)

where Split+(z; ihi , (i+ 1)hi+1) is the parity conjugate of Split−(z; ihi , (i+ 1)hi+1).

Soft Limits

Another interesting class of limits of scattering amplitudes is the soft limits : here
we obtain the following factorization for the MHV amplitude with a positive helicity
gluon going soft

An,2[1−, 2−, 3+, ..., n+] =
〈12〉3

〈23〉〈34〉〈45〉〈56〉...〈n1〉
p+

4→0
−−−→ 〈35〉

〈34〉〈45〉
× 〈12〉3

〈23〉〈35〉〈56〉...〈n1〉
. (2.104)

Had we taken a negative gluon, say particle 2, as the soft particle, the amplitude would
simply vanish. This is because taking a negative helicity gluon soft reduces k by one
and we are left with a k = 1 scattering amplitude which vanish as per (2.66). Had we
instead used an NMHV or MHV scattering amplitude, we would simply have obtained
that the soft factors can be written as

Soft(i−) =
〈i− 1i+ 1〉
〈i− 1i〉〈ii+ 1〉

, (2.105)
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and

Soft(i+) =
[i− 1i+ 1]

[i− 1i][ii+ 1]
. (2.106)

2.5 Bi-Adjoint φ3 Theory

Arguably one of the simplest theories from the point of view of scattering amplitudes
is the bi-adjoint φ3 theory. It is a theory of scalars that transform under a product
of gauge groups, are exclusively in the adjoint representation, and are thus charged
under two color groups, SU(N) × SU(Ñ). Tree-level scattering amplitudes in this
theory admit a double color decomposition:

Mn =
∑

α∈Sn/Zn

Tr (T aα(1)T aα(2) · · ·T aα(n))Mn(α), (2.107)

Mn(α) =
∑

β∈Sn/Zn

Tr (T aβ(1)T aβ(2) . . . T aβ(n))mn(α|β), (2.108)

where the double partial amplitudes, mn(α|β) are understood to be planar with
respect to both orderings (α, β) and are naturally expressed on the kinematic space

of Mandelstam variables, which is the n(n−3)
2

dimensional space under momentum
conservation

Xij := sii+1...j−1, Xii+1 = X1n = 0. (2.109)

Partial amplitudes can be found by

mn(α|β) = (−1)n−3+nflip(α|β)
∑

planar{α|β}

n−3∏
a=1

1

Xia,ja

, (2.110)

where {α|β} refers to the mutually compatible planar graphs with respect to the
orderings α and β. Mutually compatible planar graphs are the Feynman diagrams
which are planar with respect to both orderings α and β. We will postpone the
definition of nflip to later in this section. There exists a beautiful formalism due to
Cachazo, He, and Yuan (CHY) [30–33] for obtaining the partial amplitudes. The
CHY formalism realizes n-point scattering amplitudes in different theories as
integrals over an n punctured Riemann sphere, localized on the solutions to the
so-called scattering equations. Denoting the position of n punctures in C as σa for
a = 1, ..., n, the set of n equations is then

0 = Sa =
∑
b 6=a

sab
σab

, (2.111)
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is invariant under SL(2,C) transformations, acting as

σa → σ′a =
Aσa +B

Cσa +D
, AD −BC = 1, (2.112)

fulfilling the following non-trivial equations∑
a

Sa =
∑
a

σaSa =
∑
a

σ2
aSa = 0, (2.113)

meaning that the space of non-trivial solutions to (2.111) is (n − 3)! dimensional.
The origin of these equations is the twistor string theory of Witten [59] and is
beyond the scope of this dissertation. The scattering equations have an interesting
manifestation in the Gross-Mende limit of open string theory amplitudes [60], where
they appear using the method of steepest decent as explored in section 6 of [30]8.
The partial amplitudes in bi-adjoint φ3 theory are found by integration over
punctures on a Riemann sphere

mn(α|β) =

∫ n∏
i=1

dσi
vol(SL(2,C))

n∏
a=1

δ′ (Sa)
1

σα1α2σα2α3 ...σαnα1

1

σβ1β2σβ2β3 ...σβnβ1

.

(2.114)

Here the vol(SL(2,C)) and δ′ instruct us to fix the SL(2;C) invariance by anchoring
3 of the n coordinates, conventionally σ1 = 0, σn−1 = 1, and σn =∞. The integrands
(σα1α2σα2α3 ...σαnα1)−1 are referred to as the Parke-Taylor factors, as their cyclic
structure is reminiscent of the denominator of (2.35)9.

The integral (2.114) can be evaluated using the following algorithm proposed in
[33] and described as follows. Since the partial amplitudes are both α and β color-
ordered, only the relative ordering of the two sets is relevant. Therefore, without loss
of generality, we take α = {1, 2, ..., n} in the following.

1. Draw a circle with n nodes on its boundary and label the nodes by the standard
ordering – we call this the external ordering – and link the nodes by a path inside
the circle according to the other ordering β – the internal ordering.

2. Locate a set {i, i + 1, ..., i + r} of at least two external labels, r > 1, that are
consecutive with respect to both the external and internal ordering in the circle.

3. Assuming this set is maximal, that it cannot be extended by further consecutive
labels and it is non-empty, we redraw the circle by moving all points along the
boundary until they are close together.

8It is curious that the scattering equations, relevant for scattering of particles, appear in the high-
energy limit of string theories, as usually the particle or “field-theory” limit is associated with the
low-energy of string theory.

9It is possible to find Yang-Mills and even gravity scattering amplitudes among many others by
similar integrals, where the Parke-Taylor factors are replaced by other integrands. We will not review
this construction here.
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Figure 2.2: The algorithm for evaluating the CHY integral (2.114), by finding the
polygon decomposition. We draw the ordering α = {1, 2, 3, 4, 5, 6, 7} on the boundary
of the disc and the ordering β = {1, 2, 3, 7, 4, 6, 5} in the interior. We then identify
the mutually consecutive labels {1, 2, 3} and redraw the circle with the vertices drawn
close together, with the intersection of the line starting at 1 and the line starting at
3 as the red vertex R. Lastly, we remove the polygon and move the point R to the
boundary of the disc. The procedure repeats until both orderings α and β agree.

4. Assuming the lines starting at i and i+ r intersect at the point R, we note that
{i, i + 1, ..., i + r, R} forms a convex polygon, which we can remove from the
graph, bringing R to the boundary of the disc, and repeat the procedure from
step 2 until both orderings agree completely.

The method is sketched in Figure 2.2 for a particular example.
Collecting all the polygons, we can calculate the sub-amplitudes according to

equally ordered amplitudes m(α|α), which can be found by the following: draw a
convex n-gon with vertices labeled by α. Then triangulate the n-gon using diagonals
and label each diagonal Xa,b as the diagonal connecting vertex a and b, such that
b > a+ 1. Then the partial amplitude is just

mn(α|α) =
∑
T ∈∆

1∏
e∈T Xe

, (2.115)

where we sum over all possible triangulations of the n-gon, ∆, and take the product
of the internal diagonals Xe in a given triangulation, T .

The problem of finding the overall sign for distinct double partial ordered
amplitudes is reduced to finding nflip(α|β). The procedure to find nflip(α|β) is
described in [33] and discussed presently: starting from from the polygon
decomposition described above under equation (2.114)

� Determine the overall orientation of the exterior disc according to the set α.

� Determine the orientation of each loop segment by the ordering β, inducing an
orientation of each convex polygon in the polygon decomposition.

� For each polygon with an odd number of vertices we associate a plus sign. If
the orientation for the polygon is the same as the orientation of the external disc
and a minus sign if it is oriented oppositely.
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� For each polygon with an even number of vertices we contribute a minus sign

� For each intersection point we contribute a minus sign.

The product of the signs obtained from this procedure generates the overall sign of
the double-partial amplitude.

The bi-adjoint φ3 amplitudes have an interesting manifestation in the so-called
KLT-kernal, giving the kinematic factors in the BCJ relation (2.77), or similarly for
kinematic factors in the double copy construction relating gravity and gluon
amplitudes. It was proposed in [61] that the BCJ relations can be found by
expanding a collection of |σ| color-ordered Yang-Mills amplitude in a basis of (n− 3)!
color ordered amplitudes labeled γ.

An,k(σ) = mn(σ|β)m−1
n (β|γ)An,k(γ), (2.116)

where the mn(σ|β) is an matrix of dimension |σ|× (n−3)! and the matrix m−1
n (β|γ) is

the matrix-inverse of the (n− 3)!× (n− 3)! matrix with entries taken from mn(γi|βj).
For instance, for the n = 4 case, we take the orderings σ = (1243), β = (1324) and
γ = (1234), then we obtain from (2.116)

A4,2(1, 2, 4, 3) = m4(1243|1324)m−1
4 (1324|1234)A4,2(1, 2, 3, 4) = − s23

s12 + s23

A4,2(1, 2, 3, 4)

⇒ s13A4,2(1, 2, 4, 3) = s23A4,2(1, 2, 3, 4). (2.117)

which is a standard BCJ relation.

2.6 On-shell Supersymmetry

In this section, we introduce the notion of maximal supersymmetry. It is a symmetry
of a physical setup under exchange of bosonic degrees of freedom with fermionic
degrees of freedom and vice versa [45]. While supersymmetry is lacking in direct
observational evidence [62] at least in its unbroken form10, supersymmetry highly
simplifies calculations of scattering amplitudes. Indeed scattering amplitudes in
maximally supersymmetric Yang-Mills theory (msYM) provide a laboratory where
we can study the mathematical structure of scattering amplitudes in general and the
planar sector of msYM has been dubbed “the simplest quantum field theory” [37]. In
the following, we shall review supersymmetry from the perspective of the on-shell
formulation of scattering amplitudes, introduced in the earlier parts of this chapter.

10It is clear that if we assume unbroken supersymmetry, each fermion in the standard model would
have a bosonic counterpart with exactly the same mass, color charge, etc., and vice versa. Such
degrees of freedom would have left clear experimental evidence in physics experiments throughout
the last century.
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Particle name label number of states

positive helicity gluon g+ 1
positive helicity gluinos ΓA 4

real scalars SAB 6
negative helicity gluinos ΓABC ∼ Γ̄D 4
negative helicity gluon g− 1

Table 2.1: The states in N = 4 super Yang-Mills. We note the presence of the 6
real scalars, which are not present in non-supersymmetric Yang-Mills theory. The six
real scalars can in general acquire a vacuum expectation value and thus break the
supersymmetry.

2.6.1 N = 4 Supersymmetry

We take as the starting point of our discussion of supersymmetry the supercharges
(q, q̄), which act in the following manner on maximal spin-s one-particle states with
momentum p,

qaI |p, s, a〉 = 0, (2.118)

q̄ȧI |p,−s, a〉 = 0, (2.119)

qaI |p,−s, a〉 = λa|p,−s+
1

2
, a〉I , (2.120)

q̄ȧI |p, s, a〉 = λ̃ȧp|p, s−
1

2
, a〉I , (2.121)

where a counts the remaining particle labels aside from spin and the index I labels
the so-called R symmetry which rotates the generators qI and q̄I into each other.
This tells us something interesting: if we have enough supercharges we can organize
all external on-shell states into a coherent multiplet. Letting N denote number of
supercharges, it is natural to introduce N = 4 supercharges for Yang-Mills theory by
counting helicity from −1→ 1 in steps of 1

2
. A careful analysis yields the spectrum as

in [45] is summarized in Table 2.1
The presence of the scalars in the spectrum of N = 4 implies the existence of a

moduli space of different supersymmetric vacua. In particular, at the origin of this
space, where the vacuum expectation value vanishes, the theory is conformal and
contains no dimensionful parameters. When the scalars obtain a vacuum expectation
value (vev) such that the supersymmetry is unbroken, we say the theory is on the
Coulomb branch and in the following, we consider scattering amplitudes in the zero-
vev limit of the Coulomb branch [45].

On-shell superspace

Remarkably, it is possible to organize the entire 16 state particle spectrum of N = 4
sYM into an on-shell chiral supermultiplet by introducing four Grassmann-odd
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variables, ηA transforming in the fundamental representation of the SU(4)
R-symmetry index A = 1...4,

Φ = g+ + ηAΓ+,A +
1

2!
ηAηBS

AB +
1

3!
ηAηBηCε

ABCDΓ̄D + η1η2η3η4g
−. (2.122)

We could just as well have started from the parity conjugate state g− and establishing
the supermultiplet by the η̄ Grassmann variables transforming in the antfundamental
representation of SU(4) R-symmetry as follows

Φ̄ = g− + η̄AΓ̄−,A +
1

2!
η̄Aη̄BS

AB +
1

3!
η̄Aη̄B η̄CΓ+,D + η̄1η̄2η̄3η̄4g

+. (2.123)

We will employ the former supermultiplet (2.122), however, we note that we can relate
the two supermultiplets by a Fourier transformation [63] as follows

Φ̄(η̄) =

∫
d4ηeη·η̄ Φ(η). (2.124)

The Grassmann variables are anti-commuting variables, ηAηB = −ηBηA and therefore
they have some interesting properties: first, the square of a Grassmann variable vanish
η2
A = 0, meaning that any series expansion of a function of a Grassmann variable

terminates after two terms f(η) = a + ηb. The integration over Grassmann variables
simply follows two rules ∫

dη η = 1, (2.125)∫
dη = 0, (2.126)

which tells us integration of any function with respect to Grassmann variables, by a
series expansion ∫

dηf(η) =

∫
dη(a+ ηb) = b, (2.127)

which is the same result as performing differentiation on the same function

∂

∂η
f(η) =

∂

∂η
(a+ ηb) = b. (2.128)

We can extract the specific external particle states from the supermultiplet by applying
sequences of either derivatives or integrations with respect to the Grassmann-odd
parameters ηA on Φ. Supercharges can be expressed in terms of the Grassmann-odd
parameters11 ηA as

qAȧ ≡ λ̃ȧ
∂

∂ηA
, q̃Aa ≡ λaηA, (2.129)

11Here we follow the convention of Elvang and Huang [45].
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whose anti-commutator is simply the translation operator {q̃aA, qȧB} = δABp
aȧ [58]. We

define the superamplitude as the scattering of n states each organized into a
supermultiplet A(1, 2, ..., n) := A(Φ1,Φ2, ...,Φn) which will be a function of the
spinor helicity variables (λi, λ̃i) and four Grassmann variables ηiA for each
supermultiplet. In general, a superamplitude can be expressed as a polynomial in ηs
as follows

An = AMHV
n +ANMHV

n +AN2MHV
n + ...+AMHV

n , (2.130)

where each Nk′MHV scattering amplitude is of Grassmann degree 4(k′ + 2) 12. The
actual scattering of particles states can be projected out so-called component
amplitudes from the superamplitude by applying sequences of derivatives or
integrations of the Grassmann-odd variables as follows. For instance for an MHV
gluon scattering amplitude is extracted from the superamplitude as follows

An(1+...i−...j−...n+) =

(
4∏

A=1

∂iA

)(
4∏

B=1

∂jB

)
An(Φ1, ...,Φn) |ηkC , (2.131)

where ∂iA ≡ ∂
∂ηiA

. Since the supermultiplet Φ transforms in the adjoint of SU(N) [45],
we can repeat the analysis of section 2.4 to decompose the color degrees of freedom
from the kinematic using the standard color decomposition at tree-level

ANk−2MHV
n ({pi, hi, ai}) = gn−2

∑
σ∈On

Tr (T a1T aσ(2) · · ·T aσ(n))An,k(1
h1 , σ(2h2), · · · , σ(nhn)),

(2.132)

and thus the amplitude relations (2.72) discussed in section 2.4 also holds for msYM.
Supersymmetry demands that the superamplitude must be annihilated by the
generators of supersymmetry

qAAn = q̃AAn = 0. (2.133)

Which we can naturally satisfy if the superamplitude appear on the form taking k′ =
k − 2 as follows

ANk
′
MHV

n = δ2×4(q̃)P(4k′)
n , (2.134)

where P 4k
n is a degree-4k polynomial of the Grassmann variables, η. We have defined

the fermionic δ-functions as follows

δ2×4(q̃) =
1

24

4∏
A=1

q̃Aaq̃
a
A =

1

24

4∏
A=1

n∑
i<j=2

〈ij〉ηiAηjA. (2.135)

12In this dissertation we shall encounter two helicity label conventions k and k′, where k = k′ + 2,
as k measures the actual helicity state of a scattering amplitude, while k′ measure how far it is from
the MHV state as in Nk′MHV
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Since δ2×4(q̃) is a degree-8 polynomial, all η dependence for the MHV amplitude is fixed
and P (0) is just a function of the external momenta. Since the component amplitude
associated with 4-gluon scattering should match the Yang-Mills partial amplitudes,
we can match the MHV partial superamplitude to be

An,2[1, ..., n] =
δ(2×4)(q̃)

〈12〉〈23〉...〈n1〉
, (2.136)

In particular, the MHV three-point function can be expressed as

A3,2[1, 2, 3] =
δ(2×4)(λ1η1 + λ2η2 + λ3η3)

〈12〉〈23〉〈31〉
. (2.137)

We can find the MHV three-point function by conjugation, exchanging λ with λ̃ and
η to η in the MHV function to reach the MHV amplitude in the anti-fundamental
on-shell superspace (2.123) and then performing a Fourier transform on the anti-
fundamental Grassmann variables η to obtain the superamplitude in the standard
on-shell superspace as follows

A3,1[1, 2, 3] =

∫ 3∏
i=1

d4η̄ ei
∑3
i=1 η

A
i η̄iA

δ(2×4)(λ̃1η̄1 + λ̃2η̄2 + λ̃3η̄3)

[12][23][31]

=
δ(1×4)([12]η3 + [23]η1 + [31]η2)

[12][23][31]
. (2.138)

Before moving on, we will briefly introduce the notion of non-chiral on-shell
variables, which will be employed when introducing the momentum amplituhedron
later. The idea of non-chiral on-shell supersymmetry is to bring the Grassmann-odd
parameters, ηiA, with A = 1, ..., 4, on the same footing as the spinor helicity variables
(λai , λ̃

ȧ
i ) where (a, ȧ) = 1, 2. This is done by a half-Fourier transform on half of the ηs

e.g. the variables ηi3 and ηi4 [64]. This leads to the following set of Grassmann
variables ηr=1,2 and η̃ṙ=1,2.

2.7 Super-BCFW Recursion for N = 4 sYM

The maximally supersymmetric Yang-Mills theory is highly constrained by its inherent
symmetries. Indeed, we shall provide a discussion on these exact symmetries in the
next section 2.8, however for now, we wish to arm ourselves with some scattering
amplitudes to make this discussion more concrete. In particular, we review how the
BCFW recursion discussed in section 2.4 is naturally adapted to msYM. The extra
condition of supermomentum conservation,

∑
i λiηi = 0, implores us to modify the

complex deformation in the BCFW shift (2.78), to account for the enhanced symmetry.
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This is achieved by an accompanying shift of the Grassmann variables [37]. Taking
for instance the [1, 2〉-shift, we have

ˆ̃λ1 = λ̃1 + zλ̃2, λ̂2 = λ2 − zλ1, η̂1A = η1A + zη2A. (2.139)

Using the same arguments as in section 2.3, we can express the recursion schematically
as

An,k =

∫
d4ηP̂ ÂnL,kL

1

P 2
ÂnR,kR , (2.140)

where the integral over the shifted Grassmann variables automatically encodes the sum
over all possible particles in our spectrum. These recursion relations can be solved
analytically as was done in [65]. We will review the construction for MHV and NMHV
amplitudes in the following.

Super-BCFW Recursion for the MHV Sector

For the MHV sector we perform the [1, 2〉-shift according to (2.139). In the case of
proper z scaling, Cauchy’s theorem (2.59) implores us to write

An,2[1, 2, ..., n] =

=

∫
d4ηP̂

1

P 2
Ân−1,2[1̂, P̂ , 4, ..., n]Â3,1[−P̂ , 2̂, 3]

=

∫
dηP̂

1

s23

δ(2×4)(
∑

i∈L λ̂iη̂i)

〈1P̂ 〉〈P̂4〉...〈n1〉
δ(1×4)([P̂2]η3 + [23]ηP̂ + [3P̂ ]η2)

[P̂2][23][3P̂ ]
, (2.141)

where we have analytically continued λ̃−P̂ = λ̃P̂ . We have inductively inserted the
MHV super-amplitude An−1,2. We can evaluate the integral by localizing the last
δ-function, we have

δ(1×4)([P̂2]η3 + [23]ηP̂ + [3P̂ ]η2̂) = [23]4δ(1×4)

(
ηP̂ +

[P̂2]η3 + [3P̂ ]η2̂

[23]

)
. (2.142)
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Inserting this solution into the remaining δ-function, we obtain

δ(2×4)(
∑
i∈L

λ̂iη̂i) = δ(2×4)

(
λ1η̃1̂ + λP̂ηP̂ +

n∑
i=4

λiηi

)

= δ(2×4)

(
λ1η̃1̂ −

(
[P̂2]η3 + [3P̂ ]η2̂

[23]

)
λP̂ +

n∑
i=4

λiηi

)

= δ(2×4)

(
λ1η̃1̂ + λ3η3 + λ2̂η2̂ +

n∑
i=4

λiηi

)

= δ(2×4)

(
λ1η1 + λ3η3 + λ2η2 +

n∑
i=4

λiηi

)
, (2.143)

which is exactly the statement of supermomentum conservation for n supermomenta.
The full integration just yields

An,2[1, 2, ..., n] =

∫
d4ηP̂ Ân−1,2[1̂, P̂ , 4, ..., n]

1

s23

Â3,1[−P̂ , 2, 3]

= [23]2
δ(1×4) (

∑n
i=1 λiηi)

〈23〉〈45〉...〈n1〉
1〈

1(2̂ + 3)2
] [

3(2̂ + 3)4
〉

=
δ(1×4) (

∑n
i=1 λiηi)

〈23〉〈45〉...〈n1〉
1

〈13〉 (〈24〉 − z〈14〉)
. (2.144)

After evaluating z = 〈23〉
〈13〉 and applying the Schouten identity (2.32), we obtain the

super Parke-Taylor formula

An,2[1, 2, ..., n] =
δ(2×4)(q̃)

〈12〉〈23〉...〈n1〉
. (2.145)

Super-BCFW Recursion for the NMHV Sector

When moving beyond the MHV sector, more diagrams appear in the recursion. We
can collect the diagrams into two types as follows

An,3[1, 2, ..., n] =
n∑

m=5 ︸ ︷︷ ︸
typeA

+

︸ ︷︷ ︸
typeB

. (2.146)

The first diagrams we assign to be of type A and involves two MHV functions, while
the second type of diagrams, of type B, is only appearing for n ≥ 6 since the left
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subamplitudes is NMHV and therefore requires at least 5 external legs. The first type
of diagrams can be expressed as

typeA =

∫
d4ηP̂

δ(2×4)(L)

〈1̂P̂ 〉〈P̂m〉〈mm+ 1〉...〈n1̂〉
1

P 2

δ(2×4)(R)

〈P̂ 2̂〉〈2̂3〉...〈m− 1P̂ 〉
, (2.147)

where we write P = p2 + p3 + ...+ pm−1. The δ-functions are simply the statement of
supermomentum conservation for each subdiagram, as follows

δ(2×4)(L) = δ(2×4)(−λP̂ηP̂ + λ1̂η1̂ +
n∑

r=m

λrηr), (2.148)

and

δ(2×4)(R) = δ(2×4)(λP̂ηP̂ + λ2̂η2̂ +
k−1∑
r=3

λrηr). (2.149)

We localize the integral by first combining these two δ-functions to obtain

δ(2×4)(L)δ(2×4)(R) = δ(2×4)(L+R)δ(2×4)(R) = δ(2×4)

(
n∑
i=1

λiηi

)
δ(2×4)(R), (2.150)

which is exactly the statement of supermomentum conservation times a remaining
δ-function, which we can write as

δ(2×4)(R) =
1

〈1P̂ 〉4
δ(1×4)(〈1P̂ 〉ηP̂ + 〈12̂〉η2 +

m−1∑
r=3

〈1r〉ηr)δ(1×4)(〈P̂ 2̂〉η2 +
m−1∑
r=3

〈P̂ r〉ηr).

(2.151)

The only remaining dependence on ηP is thus in the first of these two δ-functions,
the integration over which simply yields a factor of 〈1P̂ 〉4, canceling the Jacobian in
(2.151). Since (2.147) only contains ηP dependence in the numerator, the denominator
factorizes, and performing the integral therefore simply yields the following for the δ-
functions∫

d4ηP̂ δ
(2×4) (L) δ(2×4) (R) = δ(2×4)(q̃)δ(1×4)(〈P̂ 2̂〉η2 +

m−1∑
r=3

〈P̂ r〉ηr). (2.152)

We can use the δ(2×4) (q̃) to pull out a factor of An,2 (2.145) to obtain

Diagram A = An,2
〈12〉〈23〉〈m− 1m〉δ(1×4)(〈P̂ 2̂〉η2 +

∑m−1
r=1 〈P̂ r〉ηr)

〈mP̂ 〉〈m− 1P̂ 〉〈2̂P̂ 〉〈2̂3〉〈1P̂ 〉P 2
. (2.153)
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We write this using the dual momenta variables, which we will return to in section 2.8,
but for now only consider shorthand

xaȧij =

j−1∑
r=i

λar λ̃
ȧ
r , (2.154)

and

θaij,A =

j−1∑
r=i

λarηrA. (2.155)

Then after several algebraic manipulations, we find the following expression for type
A diagrams (2.153) after integration

Diagram A = An,2
〈23〉〈m− 1 ·m〉δ(1×4)(〈1|x1m · xm3|θ31〉+ 〈1|x13 · x3m|θm1〉)

x2
3m〈1|x13 · x3m|m〉〈1|x13 · x3m|m− 1〉〈1|x1m · xm3|3〉〈1|x1m · xm3|2〉

.

(2.156)

The factor multiplied by the MHV amplitude is called the R-invariant and is labeled
by three indices, R13m, and is defined as follows

Rijk =
〈j − 1j〉〈k − 1k〉δ(1×4) (Ξijk)

x2
jk〈i|xij · xjk|k〉〈i|xij · xjk|k − 1〉〈i|xik · xkj|j〉〈i|xik · xkj|j − 1〉

, (2.157)

using the shorthand

Ξijk,A = 〈i|xik · xkj|θji,A〉+ 〈i|xikxkj|θki,A〉, (2.158)

where we have suppressed the A index in the δ-function of (2.157). The choice of
BCFW shift fixes the indices labeling the relevant R-invariants. For n = 5, only
type-A diagrams with R135 contribute to the NMHV amplitude and we can write

A5,3 = A5,2R135, (2.159)

while for n > 5, the type B diagrams simply recurses this formula and the result is
remarkably simple [65]

An,3 = An,2 × P (4)
n = An,2

n−2∑
j=3

n∑
k=j+2

R1jk, (2.160)

where P
(4)
n is the color-stripped Grassmannian polynomial of degree 4 defined in

(2.134). We notice, that each R-invariant share the first index 1. This is a
consequence of the choice of BCFW-shift, and we refer to this choice to have
anchored leg 1. We could in general have anchored any external leg, m, by choosing
the [m,m+ 1〉-supershift.
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2.8 Symmetries of N = 4 sYM

The N = 4 sYM is a remarkably simple theory [37]. With that, we mean that the
theory is highly constrained by a list of symmetries beyond Poincaré symmetry,
introduced in the beginning of this chapter in section 2.2. These symmetries are
listed below and are the superconformal symmetry, which together with the dual
superconformal symmetry generates the infinite-dimensional symmetry algebra
Yangian [66].

2.8.1 Superconformal symmetry

We split the symmetries of msYM into the bosonic and the supersymmetric sectors,
starting with the bosonic. First, we have the generators of translations

paȧ =
n∑
i=1

λai λ̃
ȧ
i , (2.161)

which, together with Lorentz transformations constitutes the Poincaré group. The six
generators of the Lorentz group read

mab =
∑
i

λi(a
∂

∂λ
b)
i

, m̃ȧḃ =
∑
i

λ̃i(ȧ
∂

∂λ̃
ḃ)
i

(2.162)

as briefly discussed in (2.34). Furthermore in N = 4 sYM, we have supersymmetry
generators for qA and q̃A explored in (2.133), enlarging the Poincaré group to the
super-Poincaré group. The theory also respects a conformal symmetry, consisting of
conformal boosts, dilatation, the SU(4) R-symmetries, and the fermionic conformal
supersymmetry generators [45]. Using the collective index α = (a, ȧ, A), we denote
the generators of the group as Gα

β , which is in the graded Lie algebra su(2, 2|4) [2].
The remaining generators can be written as

d =
∑
i

(
1

2
λai ∂λai +

1

2
λ̃ȧi ∂λ̃ȧi

+ 1

)
, (2.163)

rBA =
∑
i

(
ηiA∂ηiB −

1

4
δBAηiC∂ηiC

)
, (2.164)

sAa =
∑
i

∂λai ∂ηiA , s̄ȧA =
∑
i

∂λ̃ȧi
ηiA, kaȧ = −∂λai ∂λ̃ȧi . (2.165)

Supertwistors

Clearly, the generators above appear with a certain number of derivatives from 0 in
the case of the generator of translations, paȧ, to 2 in the case of conformal boost
kaȧ. This hints that another choice of variables might be available to make all the
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generators act linearly. Indeed the twistor variables, first proposed by Penrose in [67],
and the supertwistor variables later studied by Hodges [68] and Mason and Skinner [69],
are precisely such a set of variables, linearising the generators of the conformal and
superconformal group. The twistors can easily be constructed from the conventional
spinor helicity variables, by way of a Fourier transform, as follows

λai → i∂µ̃ia , ∂λai → −iµ̃ia, (2.166)

assuming split-Minkowski signature (+,+,−,−). We notice, that the little group
action on these new variables is simply µi → t−1

i µi and therefore we simply collect the
supertwistor W , such that

Wα
i = (µ̃a, λ̃ȧ, ηA) ∼ t−1

i (µ̃a, λ̃ȧ, ηA), (2.167)

with the collective index α = (a, ȧ, A). The external data is now completely described
by a projective vector, the supertwistor in CP3|4 and in this formulation the generators
of the superconformal groups simply become

Gα
β =

∑
i

(Gi)
α
β =

∑
i

(
Wα

i ∂Wβ
i
− 1

4
δαβW

γ
i ∂Wγ

i

)
. (2.168)

Here the term 1
4
δαβW

γ
i ∂Wγ

i
ensures that the bosonic subgroups SU(2) and SU(4) are

traceless [45], and counts the degree of WA
i of whatever expression the generator is

applied to. While we can write scattering amplitudes in twistor space, we are mainly
interested in twistors as an illustration of how we can linearize the generators of
superconformal symmetry. In the following, we will introduce the emergent dual
superconformal symmetry and their associated dual-twistor formulation, the
momentum twistors, which are particularly suited to discuss planar scattering
amplitudes.

2.8.2 Dual Superconformal symmetry

As we saw in section 2.2, the choice of spinor helicity variables is very useful in the
calculation of scattering amplitudes as they make the on-shell condition manifest.
Momentum conservation has to be plugged in by hand, however, leading to a
proliferation of δ-functions in our calculations. In the end of the previous section, we
encountered the supertwistors, linearising the superconformal symmetry group, and
therefore placing all symmetries on the same footing. In this section, we shall see the
emergence of the dual conformal invariance and proceed to generate a set of dual
supertwistor variables.
In section 2.7, we introduced new shorthand variables xaȧij and θaij,A in (2.154) and in
(2.155), we will now provide a few more details on their construction. The statement
of momentum conservation p1 + p2 + ...+ pn = 0, for an n-point scattering amplitude
can be understood geometrically as a set of four-vectors forming a loop as sketched
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Figure 2.3: A two dimensional projection of the four momentum vectors in a scattering
process. Momentum conservation restricts the shape to be a closed loop. We can
either describe the loop using the variables associated with its edges (momenta) or the
vertices (dual space coordinates)

on Figure 2.3. We can choose to describe this loop in terms of its edges (momenta)
or its nodes. Choosing the latter define for us the dual momentum variables, subject
to the following condition

xȧai − xȧai+1 = pȧai = λ̃ȧi λ
a
i , (2.169)

and similarly for the case of supermomentum conservation, we get

θai,A − θai+1,A = λai ηi,A, (2.170)

making momentum conservation and supermomentum conservation manifest by
simply identifying xn+1 = x1 and θn+1 = θi. Of course, this is only valid for a
scattering amplitude with a distinct ordering of external momentum. This means
that we are restricting our discussion to a single partial superamplitude, or we can
consider only the planar sector of msYM, where we can unambiguously define an
ordering of consecutive external momenta.
We can easily express the tree-level MHV superamplitudes for msYM in dual
coordinates as

An,2 =
δ4(x1 − xn+1)δ8(θi − θn+1)

〈12〉〈23〉 · · · 〈n1〉
, (2.171)

and the NMHV superamplitude as

An,3 = An,2 × P (4)
n = An,2

n−3∑
j=2

n−1∑
k=i+2

Rnjk, (2.172)



2.8 Symmetries of N = 4 sYM 43

where the R-invariants are exactly the same as defined in (2.157)

Rnjk =
〈j − 1j〉〈k − 1k〉δ(1×4) (Ξnjk)

y2
jk〈n|xnj · xjk|k〉〈n|xnj · xjk|k − 1〉〈n|xnk · xkj|j〉〈n|xnk · xkj|j − 1〉

, (2.173)

Ξnjk,A = 〈n|xnk · xkj|θjn,A〉+ 〈n|xnk · xjk|θkn,A〉, (2.174)

where we have anchored the R-invariant with respect to leg n instead of 1 as in
(2.157). The appearance of the superamplitudes in dual space as similar to their
momentum-space counterparts, hints at a hidden symmetry – a superconformal
symmetry for the dual coordinates, the dual superconformal symmetry [66]. We will
discuss the bosonic sector of this symmetry presently. First and foremost, the x
variables are naturally translation invariant, as can be seen from their definition in
(2.169). Therefore, the scattering amplitude must be invariant under translations in
the dual space [45]. Denoting the dual translation operator as P µ, we can express
the generator of dual conformal boosts in terms of the dual translations and dual
inversions [45]

Kµ = I P µ I. (2.175)

Therefore we should study of the scattering amplitudes act under dual inversion, I, in
order to describe the dual conformal generators. The dual inversion acts as follows

I xµi =
xµi
x2
i

, I (θi)
A
a =

xȧbi
x2
i

(θi)
A
b , I (λ̃i)ḃ = (λ̃i)ȧ

xȧbi
x2
i

, I (λi)a =
xḃai+1

x2
i+1

(λi)a. (2.176)

Applying the dual inversion operator to the MHV superamplitude for msYM, we obtain
the following uniform scaling

I An,2 =

(
n∏
i=1

x2
i

)
An,2 (2.177)

Applying dual inversion to the R-invariants, however, we obtain that they are
completely invariant under such transformations

I Rnjk = Rnjk, (2.178)

and therefore the only contribution to the scaling of NMHV superamplitude under
dual inversion is from the MHV superamplitude [45], as follows

I An,3 =

(
n∏
i=1

x2
i

)
An,3. (2.179)

Since the superamplitude is not invariant under dual inversions, the dual conformal
boost generator generates an “anomaly” term, as follows

Kµ = I P µI An,k =

(
−

n∑
i=1

xµi

)
An,k. (2.180)
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We can define the “shifted” dual conformal boost generator, which precisely annihilates
the superamplitude as follows

K̂µAn,k =

(
Kµ +

∑
i

xµi

)
An,k = 0. (2.181)

Following a similar line of argument as above, we can list the generators of dual
superconformal symmetry in its entirety [66]

Pµ =
∑
i

∂xµi , QAa =
∑
i

∂θAai , Q̄A
ȧ =

∑
i

θai ∂θȧai ,

K ȧa =
∑
i

(
xȧbi x

ḃa
i ∂xḃbi

+ xȧbi θ
aB
i ∂θβBi

+ xȧbi λ
a
i ∂λbi

)
,

D =
∑
i

(
xȧai ∂xȧai +

1

2

[
θaAi ∂θαAi + λai ∂λai

])
, RA

B =
∑
i

(
θaAi ∂θaBi −

1

4
δABθ

aC
i ∂θaCi

)
,

Mab =
∑
i

(
xȧi(a∂xb)ȧi

+ θAi(a∂θb)Ai
+ λi(a∂λb)i

)
, M̄ȧḃ =

∑
i

xai(ȧ∂xḃ)ai
,

SaA =
∑
i

(
θaBi θbAi ∂θβBi

+ xḃai θ
bA
i ∂xḃbi

+ λai θ
bA
i ∂λbi

)
, S̄ ȧA =

∑
i

xȧai ∂θaAi . (2.182)

Organizing these generators into ja = {Paa, QAa, Q̂
A
ȧ , K

ȧa, D,RA
B,Mab, M̄ȧḃ, S

aA, S̄ ȧA},,
then we have

jaRnjk = 0. (2.183)

The dual superconformal generators are similar to the superconformal generators
discussed in the beginning of this section 2.8, and thus constitutes another SU(2, 2|4)
group. Together with the ordinary SU(2, 2|4) superconformal symmetry group, the
two sets of generators spans an infinite dimensional algebra known as the Yangian.
The generators of the Yangian are organized into levels. Taking A = (ȧ, a, A), the
level-0 generators are as follows

level 0 :
n∑
i=1

Gi
A
B, (2.184)

where Gi
A
B is the set of superconformal generators defined in (2.168). We can construct

the higher level generators

level 1 :
n∑
i<j

(−1)|C|[Gi
A
CGj

C
B
− (i↔ j)], (2.185)

where |C| is 0 when C ∈ ȧ, a and 1 when C ∈ A. A non-trivial observation [45] is that
the shifted dual conformal boost generator belong to level 1. We can generate the
higher level generators by repeated commutations and anti-commutations of level-0
and level-1 generators. For more details on the Yangian, we refer to the paper by
Drummond, Henn, and Plefka [66].
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Supermomentum Twistors

We define a new set of variables using the so-called incidence relations

µȧi ≡ xȧai λia = xȧai λi+1a, (2.186)

and

χAi = θaAi λia = θaAi+1λia, (2.187)

and collect them into the supermomentum twistors as follows

Zαi =
(
λai , µ

ȧ, χAi
)
, (2.188)

with α = (a, ȧ, A) = (1..., 8), scaling uniformly under little group transformations
Zαi ∼ tZαi . This means that the momentum twistors are purely projective vectors
in P3|4 [1]. The momentum twistors are completely unconstrained and any choice of
data is physically viable, which is a benefit when comparing numeric results. We can
relate the momentum twistors to the spinor helicity variables through the incidence
relations:

λ̃ȧi =
〈i+ 1i〉µȧi−1 + 〈ii− 1〉µȧi+1 + 〈i− 1i+ 1〉µȧi

〈i− 1i〉〈ii+ 1〉
, (2.189)

and

ηAi =
〈i+ 1i〉χAi−1 + 〈ii− 1〉χAi+1 + 〈i− 1i+ 1〉χAi

〈i− 1i〉〈ii+ 1〉
. (2.190)

Since the λi variables can just be read off from the first two entries of the
supermomentum twistor, Zai = λai , for a = 1, 2, we can always translate back to the
chiral on-shell spinor helicity variables. The bosonic part of the super-momentum
twistors za carrying a dual conformal SU(2, 2) index a. We can construct 4-brackets
of za

〈ijkl〉 = εabcdz
a
i z

b
j z

c
kz

d
l = 〈ij〉[̂kl] + 〈ik〉[̂lj] + 〈il〉[̂jk]+

+ 〈kl〉[̂ij] + 〈lj〉[̂ik] + 〈jk〉[̂il], (2.191)

where we have expanded the momentum twistors in terms of 〈ij〉 = εabλ
a
i λ

b
j and

[̂ij] = εabµ
a
i µ

b
j. We can express the planar Mandelstam variables

〈j − 1jk − 1k〉 = 〈j − 1j〉〈k − 1|xk−1jxjk|k〉 = 〈j − 1j〉〈k − 1k〉x2
jk

⇒ x2
jk =

〈j − 1jk − 1k〉
〈j − 1j〉〈k − 1k〉

, (2.192)
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where xjk = xj − xk. In particular, we can express the R-invariants (2.157) of the
previous section 2.6 in terms of supermomentum twistors as follows

Rnjk =
〈j − 1j〉4〈k − 1k〉4δ(4) (Ξnjk)

〈nj − 1jk − 1〉〈j − 1jk − 1k〉〈jk − 1kn〉〈k − 1knj〉〈knj − 1j〉
(2.193)

while the argument of the delta function is

Ξnjk,A = − [〈j − 1kk − 1k〉χn,A] + cyclic

〈j − 1j〉〈k − 1k〉
, (2.194)

again suppressing the index A in the δ-function. Plugging this into the former
expression we encode the R-invariants as so-called five-bracket

[nj − 1jk − 1k] := Rnjk =

δ1×4 (〈j − 1jk − 1k〉χn + cyclic)

〈nj − 1jk − 1〉〈j − 1jk − 1k〉〈jk − 1kn〉〈k − 1knj − 1〉〈knj − 1j〉
. (2.195)

We can then write the NMHV amplitude as

An,3 = An,2

n−3∑
k=2

n−1∑
k=j+2

[n, j − 1, j, k − 1, k]. (2.196)

In general, it can be shown that Nk−2MHV superamplitude can be cast as a polynomial
of five brackets times the MHV superamplitude [45].

2.9 Loops

In this section, we briefly touch upon loop corrections to scattering amplitudes. Here
the notion of unitarity, in particular generalized unitarity, allows us to evaluate certain
cuts on the amplitudes, basically probing the complex structure of the function. From
standard quantum field theory [14], we have that each term in (2.5) can be put on the
form

A(L)
n =

∑
j

L∏
l=1

∫
dD`l

(2π)D
nj∏

i∈nint(j)
(Di)2

, (2.197)

where j counts the number of Feynman diagrams, nj is the numerator for the Feynman
diagrams nint(j) are the number of internal lines and Di is the propagator associated
with each internal line. Before discussing how to actually evaluate loop contributions
to scattering amplitudes, let us remind ourselves of the color-decomposition of the
one-loop scattering amplitudes: we discussed the color decompositions of tree-level
scattering amplitudes in (2.65), where the scattering amplitude was decomposed a sum
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over partial amplitudes multiplied by a trace over color matrices. Here, the partial
amplitudes are planar with respect to the external ordering of particles. For one-loop
contributions we have a similar decomposition, however we now obtain sub-leading
terms with non-planar contributions [70]

A(1)
n,k = gnN

∑
σ∈Sn/Zn

Tr (T a1T aσ(2) · · ·T aσ(n))A
(1)
n,k[σ(1h1 , 2h2 , . . . , nhn)]

+ gn
bn

2
c+1∑
c=3

∑
σ∈Sn/Sn;c

Tr (T aσ(1) · · ·T aσ(c)) Tr (T aσ(c+1) · · ·T aσ(n)) (A
(1)
n,k)c, (2.198)

where Sn,c is some set of permutations leaving the product

Tr (T aσ(1)T aσ(2) · · ·T aσ(c)) Tr (T aσ(c+1)T aσ(2) · · ·T aσ(n)) , (2.199)

invariant. The non-planar contributions are sub-leading in the number of colors N ,
therefore it is common to take the planar limit of scattering amplitudes by considering
1
N
→ 0, keeping λ = g2N constant. This is known as the ’t Hooft limit [71] and in

this limit only planar diagrams contribute. This construction is generalized for all `,
and planar N = 4 sYM refers to this specific limit of N = 4 sYM theory.

2.9.1 The Scalar Box Integral

In order to discuss the standard techniques for evaluating loop scattering amplitudes,
we take as an example the scalar box integral relevant for the 1-loop corrections the
scattering amplitudes in bi-adjoint φ3 theory, discussed at tree level in section 2.5.
The integral also has a non-obvious relevance to one-loop corrections to N = 4 sYM.
We will return to this point in the end of this section. For now, we define the integral
as

=

∫
dD`

(2π)D
1

`2(`− p1)2(`− p1 − p2)2(`+ p4)2
.

(2.200)
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This can be expressed in the Feynman representation where we rewrite denominators
appearing inside the integral as another integral

1

`2(`− p1)2(`− p1 − p2)2(`+ p4)2

=

∫
dF4

1

(x1`2 + x2(`2 − p1)2 + x3(`− p1 − p2)2 + x4(`+ p4)2)4

=

∫
dF4

1

(`2 − 2` · (p1(x2 + x3) + x3p2 − x4p4) + x3s12)4 , (2.201)

where
∫
dF4 = (n− 1)!

∫ 1

0
dx1

∫ 1−x1

0
dx2...

∫ 1−x1−x2−x3

0
dx4δ(1− x1− x2− x3− x4). We

can complete the square appearing in the denominator such that the integral becomes∫
dF4

1

(q2 + ∆)4
(2.202)

where we have changed variables from ` to q, by way of

q = `− p1(x2 + x3)− p2x3 + p4x4, (2.203)

∆ = (s23x2x4 − s12x1x3), (2.204)

found from completing the square in (2.201) and using s12 + s23 + s13 = 0. We can
now perform the space-time integration

Box4 =

∫
dDq

(2π)D

∫
dF4

1

(q2 + (tx2x4 − sx1x3))4
. (2.205)

The space-time integral over d4q can be performed using a Wick rotation, such that we
go from a Minkowskian integral to an Euclidian integral. The Wick rotation rotates
the contour integration of the q0 complex plane, which is justified if the new contour
does not contain additional singularities [15]. Writing the propagators in (2.197) as
Di → Di + iε and keeping track of the iε factors in the integration, we note there
are two poles in the complex q0 plane, but none in the (+,+) quadrant or the (−,−)
quadrant, allowing us to rotate the contour counterclockwise by 90◦, equivalent to
substituting

q0 = iq0
E, qi=1...3 = ~qE, (2.206)

into the expression

Box4 =

∫
dDqE
(2π)D

dF4
1

(q2
E + ∆)4

. (2.207)

The Euclidian integral over qE is only dependent on the magnitude of qE; we can
therefore perform the integration over the D-sphere first

Box4 =

∫
dΩD

(2π)D

∫ ∞
0

dqE

∫
dF4

qD−1
E

(q2
E + ∆)4

. (2.208)
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The volume integral of the D dimensional sphere is simply∫
dΩD =

2πD/2

Γ(D/2)
, (2.209)

which we substitute into the expression (2.208) to find

Box4 =
1

2

2πD/2

Γ(D/2)

∫
dF4

∫ ∞
0

d(q2
E)

(q2
E)D/2−1

(q2
E + ∆)4

. (2.210)

Performing the remaining integration, we obtain

Box4 =

∫
dF4

Γ(5−D/2)Γ(D − 1)

(4π)D/2Γ(4)Γ(D/2)
∆−(5−D/2). (2.211)

Now, we just need to evaluate the remaining integral over
∫
dF4. The integral

is divergent in D = 4 dimensions, so we are required to regularize it. We make the
standard choice of dimensional regularization [15] by choosing to evaluate the integral
in D = 4+2ε dimensions. Expanding in ε, we obtain the following result for the scalar
box integral

Box4 =

∫
dF4

Γ(1− ε)Γ(3− 2ε)

(4π)2+εΓ(4)Γ(2 + ε)
(−s23x2x4 − s12x1x3)−1+ε

=

(
2

ε2
[(−s12)−ε + (−s23)−ε]− log

s12

s23

− π2

)
+O(ε). (2.212)

2.9.2 Generalized Unitarity

The scalar box integral is just one Feynman diagram out of many required to determine
the full one loop scattering amplitude for the bi-adjoint φ3 theory described earlier in
this chapter. So even after the efforts of the previous section, we still have a long ways
ahead before we have the full contribution to the scattering amplitude, let alone the
scattering amplitude in N = 4 sYM. We therefore discuss the method of generalized
unitarity, where the integral we just performed plays a large part. The method was
first developed by Bern et al [27] in the 1990’s. The general idea is to harness the
power of unitarity to recycle information about tree-level scattering amplitudes into
loop level calculations as in (2.14). The way we are going to apply this principle is by
considering the R3,1 loop integrals on subspaces defined by certain propagators going
on-shell, e.g. we could study the integral (2.200) on the subspace defined by

`2 = (`− p1 − p2)2 = 0. (2.213)

We refer to taking m loop momenta on-shell as an m-cut, for instance the above cut is
a 2-cut. On this subspace, the box-integrand becomes singular and the sum of residues
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from all integrands is equal to the products of two on-shell amplitudes with some of the
legs being the external legs of the one-loop amplitudes while others are internal and
therefore integrated over and all possible helicity configurations are summed. This
has two powerful uses: first, if one hands us a function and claims it is a one-loop
integrand, we can verify it by taking residues on the loop variables and observing
the factorization into products of tree-level amplitudes, second, if we already know a
complete basis of integrals that can appear in the one-loop scattering amplitudes, we
can use this fact to bootstrap the full amplitude. For instance, we expand a one-loop
amplitude in a basis of scalar integrals like the one evaluated earlier, as follows

A(1)
n =

∑
i

C
(i)
D I

(i)
D +

∑
j

C
(j)
D−1I

(j)
D−1 + ...+

∑
k

C
(k)
2 I

(k)
2 . (2.214)

Here we have expanded the amplitude in terms of m-gon integrals, where
2 ≤ m ≤ D, with D denoting the space-time dimension, as there are only D
independent vectors in D dimensions. The universal scalar integrands are much
easier to evaluate than Feynman integrals in specific theories and the problem of
evaluating the one-loop amplitude becomes a matter of determining the coefficients
Cm of the m-gon integrals. Let us consider a simple example, making use of the
box-integral evaluated in the previous section 2.9.

Consider the 4-point 1-loop superamplitude in D = 4 [45]. We consider the two-
cut, associated with putting two internal propagators on-shell as illustrated in the
following

cuts

(
A

(1)
4,2

)
= =

∫
dµ4A4,2[−`1, 1, 2, `2]× A4,2[−`2, 3, 4, `1],

(2.215)

with dµ4 := d4`1d
4η`1d

4`2d
4η`2δ

+(`2
1)δ+(`2

2)δ4(`1 +`2 +p1 +p2). We can simply evaluate
these expressions using (2.145) to

A4[−`1, 1, 2, `2] =
δ(2×4) (qL)

〈`11〉〈12〉〈2`2〉〈`2`1〉
, (2.216)

A4[−`23, 4, `1] =
δ(2×4) (qR)

〈`23〉〈34〉〈4`1〉〈`1`2〉
, (2.217)

with qL = −λ`1η`1 +λ1η1 +λ2η2 +λ`2η`2 and qR = −λ`2η`2 +λ3η3 +λ4η4 +λ`1η`1 . The
remaining integration in (2.215) is over Grassmann variables and is evaluated to

cuts

(
A

(1)
4,2

)
=

1

〈12〉〈34〉

∫
d4η`1d

4η`2
δ(2×4)(qL)δ(2×4)(qR)

〈`11〉〈2`2〉〈`23〉〈4`1〉〈`1`2〉

= −δ
(2×4)(q)

〈12〉〈34〉
〈`1`2〉2

〈`11〉〈2`2〉〈`23〉〈4`1〉
, (2.218)
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where we have used

δ(2×4)(qL)δ(2×4)(qR) = δ(2×4)(qL + qR)δ(2×4)(qR) = δ(2×4)(q)δ(2×4)(qR), (2.219)

where qaA =
∑

i λ
a
i η

A
i is the standard statement of supermomentum conservation, and

the Grassmann integral is just localized by the remaining δ-function. We can factor
out a copy of the tree level amplitude A4(1, 2, 3, 4)

cuts

(
A

(1)
4,2

)
= A4,2[1, 2, 3, 4]

〈23〉 〈14〉 〈`1`2〉2

〈`11〉 〈2`2〉 〈`23〉 〈4`1〉
. (2.220)

We can compare this to the cut on the double box discussed in the last section (2.200),
as evaluated in the example in the last section

cuts (Box4) =

∫
dµ4

1

(`1 + p4)2(`2 + p2)2
=

∫
dµ

1

〈`14〉 [`14]

1

〈`22〉 [`22]
. (2.221)

Comparing to (2.220), we can see that

〈23〉 〈14〉 〈`1`2〉2

〈`11〉 〈2`2〉 〈`23〉 〈4`1〉
=

1

(`1 + p4)2(`2 + p2)2

〈`1`2〉2〈23〉〈14〉[`14][`22]

〈`14〉 〈`22〉
=

s23s34

(`1 + p4)2(`2 + p2)2
, (2.222)

after making repeated use of the Schouten identity (2.32). This means the s-channel
singularity structure of the one-loop scattering amplitude is totally encapsulated in
the box integral and we have evaluated

cuts

(
A

(1)
4,2

)
= s23s34A4,2 cuts (Box4) . (2.223)

An important result, that we will not review here (see [58] or [45]), is that this is the
only contribution to the one-loop amplitude, and the full one-loop amplitude in N = 4
sYM for n = 4, k = 2 is simply

A
(1)
4,2 = s23s34A4,2[1, 2, 3, 4] Box4(p1, p2, p3, p4)

=
δ(2×4)(q)

〈12〉〈23〉〈34〉〈14〉
×
(

2

ε2
[(−s)−ε + (−t)−ε]− log

s

t
− π2

)
+O(ε). (2.224)

Interestingly, this also contributes to the n = 4 point scattering amplitude at one-loop
in standard Yang-Mills theory; however, in this case we also get contributions from
triangles, bubbles and rational parts, as per (2.214).
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Chapter 3

The Grassmannian

In this chapter, we will review the Grassmannian and in particular the positive
Grassmannian. Both spaces have deep connections to scattering amplitudes and the
geometric constructions to be introduced in the following chapters. We will start
from a treatment of projective spaces, in order to build up a basic intuition about
these kinds of spaces. We will then proceed to discuss the Grassmannian, including
its different representations as on-shell diagrams and permutations. We then
introduce the positive Grassmannian. As we shall see, by invoking the seemingly
innocuous criteria of positivity of the Plücker variables of the Grassmannian, we
obtain a rich geometric structure, interpreted as a generalization of the projective
simplex. Afterwards, we will discuss the boundary structure of the positive
Grassmannian in terms of positroid cells, and review the invariant differential form
associated with the top-dimensional element of the positive Grassmannian. We then
return to scattering amplitudes in msYM, introduced in the previous chapter, and
review their connection to the positive Grassmannian. In particular, we review their
representation as on-shell diagrams, as well as how we can construct the on-shell
diagrams for all scattering amplitudes by the BCFW construction. We will also
discuss how to represent tree-level scattering amplitudes and all `-loop integrands as
Grassmannian integrals. For further reading on the Grassmannian, and in particular,
its relation to scattering amplitudes, we refer to the book “Grassmannian Geometry
of Scattering Amplitudes” by Arkani-Hamed, Bourjaily, Cachazo, Goncharov,
Postnikov, and Trnka [72].

The Grassmannian, denoted G(k, n), is defined as the space of k planes in n
dimensions. This can be seen as a generalization of the projective space, the space of
lines in n dimensions. We have already encountered an example of projectivity in
section 2.8, where supertwistors and the supermomentum twistors are defined up to
linear rescaling, and thus can be seen as points in projective space. Let us initiate
our discussion by reviewing projective spaces, in general.
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3.1 Projective Space

The complex projective n-dimensional space, CPn, is defined as the space of lines in n
complex dimensions through the origin. This can be phrased as the space of non-zero
n-dimensional complex vectors defined up to an equivalence relation, as follows

u ∼ v iff v = λu, (3.1)

where u, v ∈ Cn
6=0 are non-zero complex (n+ 1)-vectors, and λ ∈ C6=0 is some non-zero

complex number. We refer to all vectors up to this equivalence class as points. The
coordinates of u are referred to as homogeneous coordinates. We can relate a point
in CPn to a point in Cn, the standard non-projective affine space, as follows. For a

given vector uA ≡
(
u0, u2, ..., un

)T ∈ CPn, we have


u0

u1
...
un

 ∼ u−1
0


u0

u1
...
un

 ≡


1
z1

z2
...
zn

 . (3.2)

Here we have defined

zi ≡
ui
u0

. (3.3)

This new vector za ≡
(
z1, ..., zn−1

)
∈ Cn is just a point in the affine complex space.

Going from a point in CPn to a point in Cn amounts to choosing a coordinate patch in
CP

n, equivalent to intersecting the space of lines with a (n−1)-dimensional hyperplane
localizing the coordinates. We note that a given patch will not cover all points of CPn,
specifically the points with u0 = 0 do not have a representation in the affine space and
are referred to as “points at infinity” in CPn.
The most general coordinate transformations in this space are SL(n)-transformations,
generic transformations by an n × n matrix with unit determinant, since a generic
transformation

u′ = L · u, (3.4)

scales the homogeneous coordinates of the point u′ by detL, which is the same point
according to (3.1). This ensures that CP1 is diffeomorphic to a Riemann sphere, as
can be seen by applying arbitrary SL(2) transformations on a point in CP1 as follows.

Take uI =
(
u0 u1

)T
and take

u′
J

= MJ
I u

I =

(
a b
c d

)(
u0

u1

)
=

(
au0 + bu1

cu0 + du1

)
, (3.5)
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then choosing the coordinate patch where u0 = 1, we obtain(
1
z

)
→
(
a+ bz
c+ dz

)
∼ (a+ bz)

(
1

c+dz
a+bz

)
. (3.6)

If detM = 1, this amounts to a Möbius transformation characteristic of the Riemann
sphere briefly discussed in section 2.5. Since we can always rescale each point by a
complex constant, we cannot meaningfully define distance on CPn. Therefore the only
meaningful SL(n + 1) tensor we can define, is the Levi-Civita tensor, εI0I1...In . Full
contraction of n + 1 points using the Levi-Civita tensor is interpreted as a statement
of collinearity, that is, for n points XI

0 , ..., X
I
n, we interpret the quantity

εI0I1...InX
I0
0 X

I1
1 ....X

In
n = 0, (3.7)

to mean that the points X0, ..., Xn inhabit the same hyperplane. As a consequence of
this, in projective spaces all lines intersect!, with lines that we would label as parallel
in the euclidean space intersecting at the point at infinity.

3.2 The Grassmannian

The Grassmannian, G(k, n), is the space of k-hyperplanes in n complex dimensions
through the origin [72]. We represent a point in the Grassmannian C ∈ G(k, n) as a
(k × n)-matrix

G(k, n) 3 C ∈M(k, n)/ ∼, (3.8)

where the equivalence class is

C ∼ C ′ iff C ′ = Λ · C, (3.9)

where Λ ∈ M(k, k), is a (k × k)-matrix, representing a complex general linear
transformation, GL(k). The Grassmannian can be seen as a generalization of the
(complex) projective space by the following identification G(1, n) = CP

n−1. A
generic point in the Grassmannian can be seen to have dimensionality

dimG(k, n) = n× k − k2 = (n− k)k, (3.10)

as the dimensionality of a n × k matrix minus the redundancy of GL(k), the set of
generic k× k matrices. We can fix the GL(k) redundancy by fixing a k× k submatrix
of C to the identity matrix. A standard choice is

C =


1 0 ... 0 c1 k+1 c1 k+2 ... c1n

0 1 ... 0 c2 k+1 c2 k+2 ... c2n
...

...
. . .

...
...

...
...

0 0 . . . 1 ck k+1 ck k+2 ... ck n

 , (3.11)
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where we have fixed the first k× k-submatrix to the identity matrix. We realize, that
we cannot cover the complete Grassmannian manifold in this coordinate chart,
however the collection of

(
n
k

)
coordinates charts, represented by fixing different k × k

submatrices to the identity, suffices to cover the entire Grassmannian [72]. The
invariant information of G(k, n) is stored in the Plücker coordinates. Denoting the
columns of ca ∈ C, we identify a k-element subset I ∈ [n] = {1, 2, ..., n} and we
define the Plücker coordinates as

(I) ≡ detCI = det cI1cI2 · · · cIk . (3.12)

Applying an arbitrary GL(k) transformation to C, represented by multiplying with a
k × k matrix Λ, rescales each Plücker coordinate with the homogeneous weight as

C → Λ · C ⇒ (I)→ det(Λ)(I) ∀ I ∈ [n]. (3.13)

Therefore the GL(k) invariant data appear as ratios of Plücker coordinates and a set of
relations between Plücker coordinates must exist [72], giving rise to this redundancy.
The set of relations is called Cramer’s rule and is simply the statement that any
k-vector can be expanded in a basis of k independent k-vectors, as follows

ca1(a2 · · · ak+1)− ca2(a1a3 · · · ak+1) + ...+ (−1)kcak+1
(a1 · · · ak). (3.14)

We have already seen (3.14) in section 2.3 in equation (2.32) for k = 2 where we
referred to it as the Schouten Identity, where we implicitly took λ ∈ G(2, n). We will
return to this choice in section 3.4.

Throughout this dissertation, we will make use of the orthogonal complement of
the matrix C ∈ G(k, n), the existence of which exploits the natural isomorphism
between G(k, n) and G(n − k, n), reflected in their dimensionality (3.10). We define
the orthogonal complement as the matrix C⊥, such that

C⊥ · C = 0, (3.15)

up to a GL(n − k) transformation. For further details on the orthogonal
complement, we refer to the Appendix A, where we specify how to extract Plücker
coordinates of C⊥ from the Plücker coordinates on C.
A generic point in the Grassmannian, C ∈ G(k, n), is represented by a matrix C with
none of its Plücker coordinates vanishing, having precisely k(n − k) degrees of
freedom, as discussed above. If a single Plücker coordinate vanishes, we have certain
linear relations between the columns, ca ∈ C, due to Cramer’s rule (3.14). We
consider a stratification of G(k, n) in terms of consecutive Plücker coordinates, called
the positroid stratification of the Grassmannian, G(k, n). We refer to the stratifying
subvarieties of G(k, n) as cells represented by matrices of ranks k to k(n − k), the
generic element of the Grassmannian. We organize the positroid cells by rank into a
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partial ordered set – a poset.

In this dissertation, we are going to be interested in defining differential forms on
Grassmannian spaces. A generic top-form on G(k, n) can be written as follows

Ω =
dk×nC

vol(GL(k))

1

f(C)
. (3.16)

Since we require the differential top-form to scale homogeneously under GL(k)
transformations, we have that f(C) must be a function scaling as

f(Λ · C) = Λk×nf(C). (3.17)

We can write (3.16) on a GL(k) invariant form by the rows of C, Cα

Ω = 〈C1 · · ·Ckd(n−k)C1〉 · · · 〈C1 · · ·Ckd(n−k)Ck〉
1

f(C)
, (3.18)

where we define

〈C1 · · ·Ckd(n−k)Cα〉 = εa1a2···anc1 a1 · · · ck akdc1 ak+1
∧ · · · ∧ c1 an , (3.19)

with α = 1, ..., k.

3.2.1 Grassmannians as permutations

We can associate a permutation to each element of G(k, n) defined as follows [72]: for
each a ∈ [n], the permutation σ(a) ≥ a labels the first column cσ(a) ∈ C , for which

ca ∈ span {ca+1, ..., cσ(a)}. (3.20)

In particular we notice that if the column is empty, ca = ~0, then the permutation
σ(a) = 0, since the vector ~0 is spanned by the empty consecutive chains of columns
“{ca+1, ..., ca}”. We will in the following make use of decorated permutations where we
add n to each σ if σ(i) < i. For instance, we can label a generic point C ∈ G(2, 4) with
no vanishing Plücker coordinates as the permutation σ = {3, 4, 5, 6}, meaning that the
columns c1 ∈ span{c2, c3}, c2 ∈ span{c3, c4}, c3 ∈ span{c4, c1}, and c4 ∈ span{c1, c2}.
It is natural that this decorated permutation is associated with the generic element in
G(2, 4), since Cramer’s rule dictates that any two-vector can be expressed linearly in
terms of any two independent two-vectors. Taking the Plücker coordinate (12) = 0 in
G(2, 4), we have by Cramer’s rule

(13)(24) = (23)(14) + (34)(12) =⇒
(12)=0

(13)(24) = (23)(14). (3.21)

Therefore we must have the decorated permutation σ′ = {2, 4, 5, 7} when (12) = 0,
since the column c1 is now collinear with c2, while the column c4 ∈ span{c1, c2, c3}. The
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number of degrees of freedom of the configuration associated with this permutation is
simply given by k(n − k) − 1 = 3. For a generic permutation, one can read off the
dimension of the given positroid cell by

dimCσ =

(
n∑
a=1

r[a;σ(a)]

)
− k2, (3.22)

where we denote by r[a; b] ≡ rank{ca, ca+1, ..., cb}, and we subtract k2 representing the
GL(k) redundancy. There exists a method of extracting r[a; b] from so-called “hook
diagrams”. We will not review this construction here, but refer to [72] for more details.
We can easily read off k from a given permutation as the number of elements, a, in
the permutation σ for which σ(a) > n. We classify the points of G(k, n) according to
decorated permutation σ as the disjoint union

G(k, n) =
⊔
σ

Π̊σ, (3.23)

where Π̊σ is the set of matrices C whose columns fulfill (3.20) for all a, which are just
the positroid cells discussed earlier and naturally represented by decorated
permutations. Taking G(1, n) = CP

n−1, the positroid stratification just amounts to
decomposing the projective space into coordinate patches as was done in section 3.1.

3.2.2 Grassmannians as plabic graphs

An element of the Grassmannian can also be represented by a plabic-(planar, bi-
colored) graph with n external legs and some number of internal legs connected by
vertices, each with one of two colors, empty or shaded. We draw the plabic graphs in
the interior of a disc with n marked points on its boundary. We assume that the graph
is simple, meaning it does not contain multiple edges or self-loops. A generic plabic
graph associated with a cell in G(3, 7) is sketched in Figure 3.1. We can identify
a decorated permutation associated with each plabic graph. In order to do so, we
define the Left-Right (LR)-path between all external edges a → σ(a), where we turn
left at each empty vertex and turn right at each shaded vertex. This gives us the
decorated permutation, i → σ(i) defined above, if we appropriately add n such that
σ(a) ≥ a. For instance, following the LR-path on the plabic graph Figure 3.1, as seen
in Figure 3.2, we obtain the permutation σ = {5, 6, 4, 7, 9, 10, 8}.

Not only can we obtain the decorated permutation of a point in the Grassmannian
from the plabic graph, but we can also obtain a direct representation of the point
C ∈ G(3, 7) by the so-called “boundary measurements”. We first label each face
of the plabic graph with a variable fi, e.g. for the Figure 3.1, we label its 9 faces
according to Figure 3.3 and choose a common orientation for the faces. Second, we
assign a perfect orientation to the graph, meaning that we assign arrows to edges, such
that for each empty vertex there are exactly two outgoing and one incoming arrow,
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Figure 3.1: A generic plabic graph associated with a configuration of planes C ∈
G(3, 7), with dimC = 8. The figure is generated using the positroid MathematicaTM

package [73].
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Figure 3.2: The LR-path defined for the plabic graph in 3.1 for an element in G(3, 7).
Starting from each external leg, a, we take a left at a empty vertex and a right at a
shaded vertex until encountering another external leg, which is just the permutation
of the first σ(i), up to addition of n. The decorated permutation of this particular
plabic graph is given by σ = {5, 6, 4, 7, 9, 10, 8}. The figure is generated using the
positroid MathematicaTM package [73]



60 3. The Grassmannian

1
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Figure 3.3: The assignment of face labels and perfect orientation on the plabic graph
of Figure 3.1. The perfect orientation is given by any assignment of arrows, such that
there is one incoming and two outgoing edges to each empty vertex, and two incoming
and one outgoing for each shaded vertex. The figure is generated using the positroid

MathematicaTM package [73].

while for each shaded vertex there are exactly two incoming and one outgoing arrow.
Summing over all paths A a, we assign minus the product of all faces fi to the left
of the paths to cAa ∈ C, as follows

cAa = −
∑

Γ∈{A a}

∏
f∈Γ̂

(−f), (3.24)

where Γ̂ is the clockwise closures of Γ. If any path contains a closed, directed loop
we take a geometric series of faces in the loop [72]. A few examples of boundary
measurements are sketched on Figure 3.4. Note that the face labels overcount the
degrees of freedom in C ∈ G(k, n) by 1, reflected in the condition

∏
i(−fi) = 1.

Moves on Plabic Graphs

The invariant information of the Grassmannian is stored in the decorated permutation,
as discussed earlier. We identify certain moves on a plabic graph that leave a given
permutation unchanged. There are two types of these moves: flip moves and square
moves.

I The flip move allows us to collapse any two adjacent vertices of the same color
and expand it in any way we want as depicted on Figure 3.5
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Figure 3.4: A few boundary measurements for the configuration of G(3, 7) labeled by
the affine permutation {5, 6, 4, 7, 9, 10, 8}, based on the face labeling. Note that the
degrees of freedom in the configuration labeled by {5, 6, 4, 7, 9, 10, 8} is 8 by (3.22),
while there are 9 face labels. This can be remedied by setting f0f1...f8 = −1.

Figure 3.5: The flip move amounts to collapse any two adjacent vertices of the same
color to a single vertex, which is no longer trivalent, and vice versa. These graphs are
understood to be subgraphs of any larger plabic graph. The figure is generated using
the positroid MathematicaTM package [73]

II The square move amounts to identifying a square subgraph with vertices of
alternating colors. Then exchanging the empty and shaded vertices leaves the
decorated permutation invariant, as shown in Figure 3.6. .

Performing these moves on a given subgraph leaves the LRs unchanged and thus the
two plabic graphs, before and after the move, refer to the same permutation and
therefore the same element in G(n, k).

Amalgamation of Plabic Graphs

In three dimensions, we can have one-planes and two-planes. We represent the generic
(top dimensional) one-plane in G(1, 3) and the two-plane in G(2, 3), as the following
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Figure 3.6: The square move consists of exchanges the colors of the vertices in any
square subgraph of a larger plabic graph. Following the LR paths on both graphs
reveals that the square move leaves the overall permutation invariant and therefore
they reflect the same configuration in G(k, n). The figure is generated using the
positroid MathematicaTM package [73]

graphs

1

2

3

⇔ C ≡
(
1 α1 α2

)
⊂ G(1, 3), (3.25)

1

2

3

⇔ C ≡
(

1 0 α1

0 1 α2

)
⊂ G(2, 3), (3.26)

where both matrices are defined up to a GL(1) and GL(2) equivalence, respectively.
These plabic graphs are also called on-shell diagrams due to their relationship with
physics, as we will discuss in section 3.4. We can construct elements of the generic
Grassmannian, G(k, n) by repeated amalgamation of (3.25) and (3.26). The
amalgamation procedure is defined in the following two steps:

I Direct product. We take the direct products of two Grassmannians. Consider
two planes CL ∈ G(kL, nR) and CR ∈ G(kR, nR). We construct an element
C ∈ G(kL + kR, nL + nR), by the operation on Figure 3.7 with representation in
terms plabic graphs on Figure 3.8.

The non-zero Plücker coordinates on C can be obtained from CL and CR by the
following

(a1 · · · akLb1 · · · bkR)C = (a1 · · · akL)CL × (b1 · · · bkR)CR . (3.27)
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Figure 3.7: The direct product at the level of Grassmannians. Here we take
CL ∈ G(kL, nL) and CR ∈ G(kR, nR) giving rise to the matrix on the right.

Figure 3.8: The direct product of two plabic graphs L and R giving rise to the on-sell
diagram on the right.

II Projection. The projection operation amounts to reducing a point in the
Grassmannian C ∈ G(k + 1, n+ 2) to a point of the Grassmannian Ĉ ∈ G(k, n),
by identifying two columns, cA and cB and projecting the remaining columns of
C onto the quotient space of C modulo the difference (cA − cB). This can be
readily understood as connecting two external edges of a plabic graph into a an
internal edge, reducing the number of external edges by two and increasing the
number of internal edges by one as seen on Figure 3.9. Taking the columns of
the original matrix ordered according to (A,B, 1, ..., n), we identify the columns
A and B, the Plücker coordinates of the resulting point Ĉ ∈ G(k, n) in terms of
the Plücker coordinates of the original C ∈ G(k + 1, n+ 2) are given by

(a1 · · · ak)Ĉ = (Aa1 · · · ak)C + (Ba1 · · · ak)C . (3.28)

3.3 The Positive Grassmannian

The totally non-negative Grassmannian, G+(n, k) ⊂ G(n, k) is a subspace of the
Grassmannian, G(n, k), with the constraint that the k × n matrix representing k-
planes in G(k, n), up to GL(k) transformations, has consecutive Plücker coordinates
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Figure 3.9: The projection operation on an on-shell diagram. We identify two legs,
reducing the number of external legs of the on-shell diagram.

greater than or equal to 0. Due to convention, we will refer to the totally non-negative
Grassmannian as the positive Grassmannian by slight abuse of notation [72]1. The
positive Grassmannian is intrinsically linked to the plabic graphs described earlier
in this chapter and has a natural geometric interpretation as a generalization of the
projective simplex. An element of the positive Grassmannian is defined as a matrix
with entries restricted such that the Plücker coordinates are non-negative, as follows

C ∈ G+(k, n)⇒ det (ci1ci2 ...cik) ≥ 0 for (i1 < i2 < ... < ik), (3.29)

where C is defined up to GL(k) transformations, which just scale each Plücker
coordinate by a constant.
Let us consider a simple example: the simplest real Grassmannian is
GR(1, n) ' RP

n−1, which is the real slice of CPn. Consider a generic, top
dimensional point C ⊂ GR(1, 3), represented by the (1 × 3) matrix C = (c1, c2, c3),
where ci are real numbers up to rescaling, the positive Grassmannian G+(1, 3) is just
the part of the coordinate space of G(1, 3), where all the homogeneous coordinates
are positive or zero. Positivity carves up the 1-plane into a closed region, bounded by
inequalities. Choosing the coordinate patch c1 = 1, the boundaries are at c2 = 0,
c3 = 0, and at the point at infinity. This is the projective simplex, or equivalently a
cone in R2. Since we can rescale each coordinate with an arbitrary sign ca ∼ taca, we
can select different equivalent closed regions as sketched in Figure 3.10 .

For k > 1, positivity of the Plücker coordinates implies a fixed ordering of the
columns of C, since the minors are antisymmetric with respect to their internal
ordering, e.g. if (cicjck) > 0, then C can be said to be an element of the positive
Grassmannian with the ordering i < j < k [72]. One would assume, that we need to
describe distinct positivity conditions for each n! ordering of columns. This is
however not required, as we have twisted cyclic symmetry, that is, under shifting of

1The positive Grassmannian would be the Grassmannian where all consecutive Plücker coordinates
are strictly positive. We will not make use of this space in this dissertation and no ambiguities should
occur.
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Figure 3.10: The real Grassmannian G(1, 3) ' RP
2. The 1-plane is represented

by a matrix C = (c1, c2, c3). The positive space I, is simply the space where all
the homogeneous coordinates are positive. Rescaling each homogeneous coordinate
ci → tici will select a different “positive part” e.g. region II, III, or IV , where
we have identified sign configurations that are the same up to the overall sign to
the same region, e.g. region II can be denoted by {c1 > 0, c2 < 0, c3 > 0} or by
{c1 < 0, c2 > 0, c3 < 0}.
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the columns in G+(k, n) according to

c1 → c2, c2 → c3, ..., cn → (−1)k+1c1, (3.30)

ensuring positivity is retained in the shifted ordering [72].
There exists a particularly natural set of coordinates to describe an element of the
positive Grassmannian, the canonical coordinates. They can be constructed for any
given permutation, starting from the trivial k × n matrix and subsequently shifting
columns multiplying positive parameters. We will review the construction for the top
dimensional element of G+(3, 6), by first finding a plabic graph representation2 and
subsequently construct the matrix representation of C ⊂ G+(3, 6), starting from a
trivial element denoted by the permutation σ0 = {7, 8, 9, 4, 5, 6}. The permutation for
the top-dimensional element of G+(3, 6) is just the permutation σ = {4, 5, 6, 7, 8, 9},
which is exactly the case the Plücker coordinates are only restricted by Cramer’s rule.
We can exchange elements in the permutation by (ij) as follows

(ij) ◦ {σ(1), σ(2), ..., σ(i), ..., σ(j), ..., σ(n)} = {σ(1), σ(2), ..., σ(j), ..., σ(i), ..., σ(n)}.
(3.31)

We then exchange consecutive elements (a, b) in the permutation, such that a and b are
consecutive or only separated by elements which are in the correct position {a, σ(z), b},
if σ(z) = z mod n. This operation is repeated until we reach the trivial element with
all σ(a) = a mod n, keeping track of which elements in the decorated permutation we
have permuted. For instance, we take the lexicographic decomposition scheme, where
we perform the exchanges in the lexicographic order [73]

(12) ◦ {4, 5, 6, 7, 8, 9} = {5, 4, 6, 7, 8, 9}
(23) ◦ {5, 4, 6, 7, 8, 9} = {5, 6, 4, 7, 8, 9}
(12) ◦ {5, 6, 4, 7, 8, 9} = {6, 5, 4, 7, 8, 9}
(34) ◦ {6, 5, 4, 7, 8, 9} = {6, 5, 7,4, 8, 9}
(23) ◦ {6, 5, 7,4, 8, 9} = {6, 7, 5,4, 8, 9}
(12) ◦ {6, 7, 5,4, 8, 9} = {7, 6, 5,4, 8, 9}
(35) ◦ {7, 6, 5,4, 8, 9} = {7, 6, 8,4,5, 9}
(23) ◦ {7, 6, 8,4,5, 9} = {7,8, 6,4,5, 9}
(36) ◦ {7,8, 6,4,5, 9} = {7,8,9,4,5,6} (3.32)

where boldface refer to elements where σ(a) mod a is in the correct position. The
prescription dictates that, starting from the trivial element represented by

C0 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 . (3.33)

2Not unique since the flip and square moves can relate different graphs to the same orientation.
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For each element exchange in (the reverse ordering of) (3.3), (ab), we shift the columns
of C0 according to cb 7→ cb + (−1)qαi ca, where αi is called a canonical coordinate and
q counts the number of columns between ca and cb. Since it took 9 exchanges to reach
the trivial element σ0, we label α1, ...α9 according to the reverse ordering of (3.3), e.g.
(35) : c5 7→ c5 − α1c3. We build up the matrix

C0 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (36)
−→

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 α1

 (23)
−→

1 0 0 0 0 0
0 1 α2 0 0 0
0 0 1 0 0 α1


(35)
−→

1 0 0 0 0 0
0 1 α2 0 −α2α3 0
0 0 1 0 −α3 α1

 (12)
−→ ...

(12)
−→

1 α4 + α7 + α9 α4(α5 + α8) + α7α8 α4α5α6 0 0
0 1 α2 + α5 + α8 α6(α2 + α5) −α2α3 0
0 0 1 α6 −α3 α1

 ,
(3.34)

which is a representation of the generic point in G(3, 6).
It can be shown that the amalgamation procedure discussed in the final section,
preserves positivity. If two on-shell diagrams, representing planes in positive
Grassmannians, their amalgamation will also be an element of the positive
Grassmannian [72].

3.3.1 Boundary Stratification

The positroid stratification of the Grassmannian G(k, n) partitions the space by
matrices whose columns fulfill certain linear relations dictated by Cramer’s rule
(3.14). Earlier in this section, in the G+(1, n) example, we discussed how the
vanishing of certain Plücker coordinates of the positive Grassmannian are understood
as the boundaries of the projective simplex. We interpret the positroid stratification
of the positive Grassmannian as representing boundaries of the positive
Grassmannian, which are themselves bounded regions in the Grassmannian called
positroid cells. Let us consider an example for G+(3, 6). The top-dimensional cell
C ∈ G+(3, 6) with all positive Plücker coordinates can be represented by a (3 × 6)

matrix with columns ca. We can scale each columns to be on the form ca ∼
(
ĉa 1

)T
,

where ĉa ∈ R2. In this case, the statement of consecutive positivity is simply the
statement that the points ĉa must span a convex polygon sketched on Figure 3.11.
The codimension-1 boundaries of G+(3, 6) simply occur when the consecutive minors
become collinear. We can only let non-consecutive points become collinear by 1)
breaking the convexity of the hexagon or 2) letting additional consecutive points
become collinear, distinguishing boundaries of different dimensions. We can therefore
infer that there must be n codimension-1 boundaries associated with consecutive
Plücker coordinates vanishing; or equivalently, on the certain zero locus of a
polynomial in canonical coordinates, α.

An algorithm for finding the boundary stratification of the positive
Grassmannian for all n and k was presented in [73] in the MathematicaTM package
positroids, which we make use of extensively throughout this work.
Returning to the naturally defined top-form for the Grassmannian discussed in
section 3.2 in (3.16), we define a natural top-form of the positive Grassmannian in
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Figure 3.11: The geometry of G(3, 6) sketched in the chart where ca ∼
(
ĉa 1

)T
.

Therefore the geometry is embedded in two dimensions. In order to reach the cell
where (124) = 0 while still preserving convexity, we first go to the configuration
(123) = 0 and subsequently take (234) = 0. We take the configuration on the right as a
codimension-1 boundary of the middle configuration, which is, in turn, a codimension-
1 boundary of the configuration on the left.

the same manner

Ω =
dk×nC

vol(GL(k)

1

f(C)
. (3.35)

As before, f(C) must be a function of the Plücker coordinates and must scale
uniformly under GL(k). This scaling is naturally carried by the n consecutive
Plückers representing the codimension-1 boundaries as follows

f(C) = (1 · · · k)(2 · · · k + 1) · · · (n · · · k − 1)f ′(C), (3.36)

where f ′(C) is now a scaleless function of the Plücker coordinates. The differential form
with f(C) is a logarithmic differential form, with only single poles, and its singularities
are exactly on the boundaries of the positive Grassmannian. Since f ′(C) must be a
scaleless function it will be a rational function of Plücker coordinates. In order to
ensure that f ′(C) does not introduce additional poles, it is natural to take f ′(C) = 1.
We will discuss these types of forms in details in chapter 4. Writing Ω in terms of
canonical coordinates by choosing a particular coordinate chart for C [72], we obtain

Ω =
dα1

α1

∧ ... ∧
dαk(n−k)

αk(n−k)

. (3.37)

3.4 Scattering Amplitudes from the Grassmannian

The Grassmannian and its positive part are deeply connected to scattering amplitudes.
Recall that the three-particle amplitudes in mSYM can be written as

A3,1 =
δ1×4 ([23]η1 + [31]η2 + [12]η3)

[12][23][31]
δ2×2(λi · λ̃i), (3.38)

A3,2 =
δ2×4

(∑3
i=1 λiηi

)
〈12〉〈23〉〈31〉

δ2×2(λi · λ̃i). (3.39)
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We encode these amplitudes as integrals over Grassmannian differential forms: taking
W ∈ G(1, 3) and B ∈ G(2, 3), we can cast these as

A3,1 =

∫
d1×3W

vol(GL(1))

δ1×4(W · η)δ1×2
(
W · λ̃

)
δ2×2

(
λ ·W⊥)

(1)(2)(3)
∼

1

2

3

, (3.40)

and

A3,2 =

∫
d2×3B

vol(GL(2))

δ2×4(B · η)δ2×2
(
B · λ̃

)
δ2×1

(
λ ·B⊥

)
(12)(23)(31)

∼

1

2

3

, (3.41)

where we have associated a plabic graph to each three particle amplitude. We can
glue these graphs together to generate a class of graph called on-shell diagrams (which
are no longer necessarily planar) as follows

. (3.42)

To each on-shell diagram Γ, we associate an on-shell function, fΓ, found from gluing
together three point plabic graphs according to (3.40) and (3.41), and integrating over
the internal leg

fΓ =
∏
i=IΓ

∑
hi

∫
d2λid

2λ̃i
vol (GL(1))

∏
v∈VΓ

Av, (3.43)

where IΓ counts the internal lines and VΓ counts the vertices in the on-shell diagram
Γ. Each vertex is either associated with A3,1 or A3,2 scattering amplitude and we
can construct a large class of functions relevant to physics by gluing different 3 point
on-shell diagrams together. Let us discuss these functions in their generality. For
any on-shell diagram Γ, we can count the number of integrations and δ-functions by
counting internal lines, and shaded and empty vertices [72]. The number of unfixed
bosonic δ-functions is found as

nδ ≡ 4nV − 3nI − 4, (3.44)

where nV is the number of vertices, each contributing four bosonic a δ-functions, nI
counts the internal integration, each localizing three δ-functions. We subtract 4 δ-
functions to account for overall momentum conservation. This means, we have three
classes of on-shell diagrams:
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I nδ > 0. When there are unfixed δ-functions, the on-shell function imposes
additional constraints on the external kinematics beyond overall momentum
conservation. Some on-shell functions of this type can be associated with cuts
on scattering amplitudes, to be discussed in section 2.9.

II nδ = 0. In this case, the integrations are completely localized by δ-functions.
This means that the on-shell function is simply a rational function of the external
kinematics. Scattering amplitudes at tree-level are examples of these types of
on-shell functions.

III nδ < 0. The last class of on-shell diagrams is the one where there are additional
integrations to perform after localizing all possible integrals using δ-functions.
The remaining integration has to be specified by an integration contour, and
under an appropriate choice, can produce loop-level scattering amplitudes.

We can identify exactly which on-shell diagrams are related to scattering amplitudes
by the BCFW construction, which we will review presently.

3.4.1 BCFW Bridge Construction

The BCFW recursion discussed in section 2.4 can be employed to find the specific
on-shell diagrams associated with scattering amplitudes. We can attach a certain
“BCFW” bridge to an on-shell diagram as depicted in Figure 3.12. Here we can

Figure 3.12: We can build more complex on-shell functions by recursively adding
“BCFW” bridges to on-shell diagrams.

glue the three-point amplitudes together using the prescription described above. The
on-shell function of the resulting diagram is simply
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f =

∫ ∏
i∈{â,b̂,I}

d2λid
2λ̃i

vol(GL(1))
d4ηiA3,1(a, I, â)A3,2(b, b̂, I)f0(..., â, b̂, ...). (3.45)

Following the analysis of integrations and δ-functions around (3.44), we see that this
prescription introduces exactly one additional integration, once all δ-functions have
been localized. This remaining degree of freedom can be found by solving the δ
functions in (3.45) as follows

λâ = λa, λ̃â = λ̃a − αλ̃b, ηã = ηa − αηb, (3.46)

λI = αλa, λ̃I = λ̃b, ηI = ηb (3.47)

λb̃ = λb + αλa, λ̃b̂ = λ̃b, ηb̂ = ηb. (3.48)

Resolving the δ functions in (3.45) yields a Jacobian and evaluating the three point
contributions A1

3 and A2
3 simply yields [72]

f(..., λa, λ̃a, ηa, λb, λ̃b, ηb, ...)⇒
dα

α
f0(..., λâ, λ̃â, ηâ, λb̂, λ̃b̂, ηb̂). (3.49)

The BCFW bridge thus attaches a simple pole to the on-shell function f0, the
residue on which just returns f0.

The specific on-shell diagrams related to scattering amplitudes were found in [72].
We present the resulting recursion relation and refer to chapter 17 of the book for its
proof. The tree-level n-point scattering amplitude for msYM can be represented by
attaching a BCFW bridge to the on-shell diagrams associated with n′ < n external
legs, in all possible ways. For loop-level amplitudes, we associate the on-shell diagram
for the `-loop n-point amplitudes with an on-shell diagram associated with the `− 1-
loop n + 2-point scattering amplitude with an internal loop associated with the 4
unfixed integrations. We sketch the recursion as follows in Figure 3.13. Let us make
this explicit by way of a few examples.

n = 4 Tree-Level BCFW Construction

First, taking the three-particle functions (3.26) and (3.25) as given, the next relevant
tree-scattering amplitude is the n = 4 MHV amplitude. In that case, the L and R
functions defined using Figure 3.13 are just given by (3.26) and (3.25), and there is
only one contributing on-shell diagram, namely Figure 3.14 . We obtain the decorated
permutation for this diagram using the LR paths defined earlier in this chapter. The
decorated permutation is found to be {3, 4, 5, 6} associated with a top-dimensional
element of the positive Grassmannian G+(2, 4). The on-shell function associated with
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Figure 3.13: The on-shell function relevant to scattering amplitudes can be recursively
constructed from the primitives according to the diagrammatic rules. Here the sum
over L and R are chosen such that the sum of legs nL+nR = n+2 and kL+kR = k+1,
and the red line connecting the two subamplitudes on the left term is related to an
internal unfixed momenta λI λ̃I which is integrated over. In the right term, the internal
loop, marked in blue, introduces exactly four unfixed momenta associated to the loop
momenta, to be integrated over.

Figure 3.14: The on-shell graph whose associated on-shell function is associated to the
n = 4, k = 2 scattering amplitudes in sYM as constructed from gluing the three point
primitives in (3.26) and (3.25).

this diagram is completely localized and therefore a rational function of the external
kinematics:

A4,2 =

∫ ∏
i∈{A,B,C,D}

d2λid
2λ̃i

vol(GL(1))
dηiA3,1(1, A,−D)A3,2(−A, 2, B)

A3,1(−B, 3, C)A3,2(−C, 4, D), (3.50)

which we can evaluate using (3.40) and (3.41), to the function

A4,2 =
δ2×4(

∑
i λiηi)

〈12〉 〈23〉 〈34〉 〈41〉
, (3.51)

which is exactly the four-point MHV scattering amplitude.
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n = 5 Tree-Level BCFW Construction

For n = 5, we can obtain the MHV scattering amplitude from the BCFW construction.
In this case, we can start from the four point on-shell diagram and glue to it a three
point according to Figure 3.13. There is only one way of combining A4,2 and A1,3 to
form the on-shell diagram associated with A5,2, namely the one sketched on (3.52).

A5,2 = A4,2 ⊗ A3,1 = . (3.52)

Similarly for the n = 5, k = 3 there is also just a single contribution in the BCFW
recursion, namely the one sketched on (3.53).

A5,3 = A3,2 ⊗ A4,2 = . (3.53)

Both scattering amplitudes can be obtained by gluing three point functions together
according to (3.42).

n = 6 tree-level BCFW Construction

For n = 6, we have three distinct helicity sectors contributing to the scattering
amplitude, k = 2, k = 3, and k = 4. The k = 2 and k = 4 on-shell diagrams are easy
to obtain, by attaching a A1,3 diagram to the A5,2 diagram on (3.52), or attaching a
A2,3 diagram to the A5,3 diagram on (3.53) according to the BCFW prescription.
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The resulting diagrams are recorded below

A6,2 = A5,2 ⊗ A3,1 = , (3.54)

A6,4 = A5,3 ⊗ A3,2 = , (3.55)

both of which are related to the respective top-dimensional elements of the positive
Grassmannian C ∈ G+(2, 6) and C ∈ G+(4, 6). The k = 3 sector is the first case where
we have more than one on-shell diagram contributing to the scattering amplitudes. The
BCFW prescription requires the following three diagrams

A6,3 = A5,3 ⊗ A3,1 + A4,2 ⊕ A4,2 + A3,2 ⊗ A5,2 =

. (3.56)

We have written the decorated permutation found from each on-shell diagram using
the LR path. We notice that these are three particular codimension-1 boundaries of
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G+(3, 6), which can be related under cyclic rotation of the external legs

.

(3.57)

Having obtained a prescription to obtain the specific decorated permutations
associated with a given scattering amplitude through the BCFW construction, we
briefly review how to extract the scattering amplitude from the given permutations.

3.5 Scattering Amplitudes from Grassmannian

Integrals

An arbitrary on-shell diagram associated with a cell, Γσ ∈ G(k, n) can be labeled
by a given decorated permutation using the LR path as discussed in section 3.2.
The corresponding cell in the Grassmannian can then be labeled by its canonical
coordinates and we can construct a differential form on these variables. We obtain a
differential form by solving

n∑
i=1

Ciαη
A
i = 0,

n∑
i=1

Ciαλ̃
ȧ
i = 0,

n∑
i=1

λaiC
⊥
iα′ = 0, (3.58)

where α = 1, ..., k and α′ = 1, ..., n−k. Given a d dimensional cell of the Grassmannian,
labeled by its canonical coordinates α1, ..., αd, the resulting on-shell function [72] is
simply given by

f (k)
σ =

∫
dα1

α1

∧ ... ∧ dαd
αd

δk×4(C · η)δk×2(C · λ̃)δ2×(n−k)(λ · C⊥), (3.59)

where C = C(α1, ..., αd) ⊂ Γσ ∈ G+(k, n). This differential form can also be written
as the residue of the following top-dimensional form on G+(k, n),

f (k)
σ =

∮
C⊂Γσ

dk×nC

vol(GL(k))
δk×2(C · η)

δk×2(C · λ̃)δ2×(n−k)(λ · C⊥)

(1 · · · k)....(n · · · k − 1)
, (3.60)

where we have made the GL(k) redundancy explicit. Due to the δ-functions
δk×2(C · λ̃)δ2×(n−k)(λ · C⊥), we have the interpretation that the plane C contains λ



76 3. The Grassmannian

and is orthogonal to λ̃. Therefore an overall δ-function δ2×2(λ · λ̃), associated with
overall momentum conservation, can be extracted from the bosonic δ-functions. The
cells where the remaining (2n− 4) degrees of freedom can be fixed are precisely those
associated with the scattering amplitudes of msYM. For instance, the 8 dimensional
cell in the Grassmannian G(3, 6) labeled by {3, 5, 6, 7, 8, 10} discussed near equation
(3.57) can be represented by a matrix (up to GL(3) transformations), C∗, subject to
the following kinematic constraints

C∗ =

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [56] [64] [45]

 , (3.61)

ensuring that the Plücker (123) = 0. Evaluating (3.60) on this point, we simply obtain
the following on-shell function

f
(3)
{3,5,6,7,8,10} =

δ3×4(C∗ · η)δ2×2(λ · λ̃)

〈23〉[56]〈3|4 + 5|6]s456〈1|5 + 6|4] 〈12〉 [45]
, (3.62)

by evaluating the minors of C∗. Note that we can easily write the on-shell functions
in terms of the twistors defined in section 2.8. Recall the supertwistors defined on
(2.167). We describe the on-shell function f(λ) in terms of µȧi by the following Fourier
transform

f(µ) =

∫
d2×nλ eiλ·µf(λ), (3.63)

and collect the supertwistor variables

Wα
i =

(
λa µȧ ηA

)
. (3.64)

We can easily write the Fourier transform of (3.60), which only acts on the following
δ-function ∫

d2×nλ eiλ·µδ2×(n−k)(λ · C⊥). (3.65)

The δ-function can be expressed as the integration over an auxiliary matrix, ρ

(λ · C⊥) =

∫
d2×kρ δ2×n(ρ · C − λ), (3.66)

which, when applied to (3.65), just evaluates to∫
d2×nλ eiλ·µ

∫
d2×kρ δ2×n(ρ · C − λ) =

∫
d2×k ρei(ρ·C)·µ = δk×2(C · µ). (3.67)
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The Fourier transform allows us to write a given on-shell function on a very succinct
form in terms of supertwistors [74], as follows

f (k)
σ =

∮
C⊂Γσ

dk×nC

vol(GL(k))

δ4k×4k(C · W)

(1 · · · k) · · · (n · · · k − 1)
, (3.68)

known as the ACCK integral due to Arkani-Hamed, Cachazo, Cheung, and
Kaplan [74]. It is clear, that only (2n− 4) of the 4k bosonic δ-functions are required
to fix the cells Γσ ∈ G(k, n) in (3.68). The remaining δ-functions serve to constrain
the supertwistors, since the Fourier transformation (3.65), does not yield
non-vanishing functions for generic external twistors.

There exists a similar representation of the scattering amplitudes from a
Grassmannian integral due to Mason and Skinner [69], defined on the
supermomentum twistors. Taking k′ = k − 2, we have the integral

f̂k
′

σ̂ =

∮
Ĉ∈Γσ̂

dk
′×nĈ

vol(Gl(k′))

δ4k′×4k′(Ĉ · Z)

(1 · · · k′) · · · (n · · · k′ − 1)
, (3.69)

for any generic set of momentum twistors Z, defined in (2.188). These two integrals
(3.68) and (3.69) are related through the following Jacobian

f (k)
σ (W) =

δ2×2(λ · λ̃)δ2×4(λ · η)

〈12〉 〈23〉 · · · 〈n1〉
f̂

(k−2)
σ̂ , (3.70)

which is exactly the Parke-Taylor amplitude, hinting that the integral f̂ k̂σ̂ is related to
the R-invariants of the 2 < k < n− 2 helicity scattering amplitudes.
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Chapter 4

Positive Geometries

In this section we shall review the positive geometries [38], a class of geometries with
a notion of orientation and a unique differential form associated with them. For
certain positive geometries, these forms are physically relevant, e.g. they are related
to scattering amplitude. We call such positive geometries physically relevant.
Positive geometries are defined recursively, such that their boundaries are themselves
positive geometries, and their unique differential form, labeled canonical form, has
logarithmic singularities on and only on its boundaries. We review morphisms and
triangulations of these geometries and we introduce the notion of oriented sums of
positive geometries. We then proceed to introduce and review the prime example of
positive geometries, the amplituhedron. The amplituhedron was first introduced
in [1] and encodes the scattering amplitudes in the planar sector of msYM in
momentum twistor space, discussed in section 2.8.

4.1 Positive Geometries and Canonical Forms

Positive geometries are a specific class of geometries defined as follows: let X be a
complex projective algebraic variety of complex dimension D and let X≥0 ⊂ X(R) be
an oriented set of real dimension D. A D-dimensional positive geometry [38] is then
the pair (X,X≥0) equipped with a unique non-zero D-dimensional form Ω(X,X≥0),
which we refer to as the canonical form of the positive geometry (X,X≥0). The
positive geometry is defined such that its differential form fulfills the following recursive
definitions

� For D = 0: X = X≥0 and is a single real point. Its canonical form is simply
Ω(X,X≥0) = ±1 depending on the orientation of X≥0.

� For D > 0: every boundary component (C,C≥0) of (X,X≥0) is a positive
geometry of dimension D − 1 and the form Ω(X,X≥0) has logarithmic
singularities along every boundary component C. The residues upon C is just
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the canonical form on the boundary component, as follows

ResCΩ(X,X≥0) = Ω(C,C≥0), (4.1)

and no other singularities.

The residue operation in (4.1) is defined in the following manner: for a subvariety
C of X, parameterized by the zero set of the holomorphic coordinate z on X with
remaining coordinates u, we denote the singularity of a given form ω on X in the
neighborhood of C as the simple pole

ω(u, z) = ω′(u) ∧ d log z + ... (4.2)

where (...) denotes smooth terms in the limit z → 0 and ω′(u) is a non-zero differential
form on the boundary component. We define the residue operation

ResCω ≡ ω′. (4.3)

In the following, we will list some fundamental properties and aspects of positive
geometries. The list is by no means exhaustive and we refer to [38] for more details.

Reversing Orientation and Direct Products

Positive geometries admit a natural orientation. If a certain geometry (X,X≥0) is a
positive geometry, then so is the geometry (X,X−≥0), where X−≥0 is the same positive
region with opposite, or flipped orientation. The canonical form changes sign under
reversing orientation such that

Ω(X,X≥0) = −Ω(X,X−≥0). (4.4)

Furthermore, we can take unions of positive geometries. We will encounter a more
expanded version of unions of positive geometries in section 4.3. Here, we present the
notion of union for disjoint positive geometries, such that for two positive geometries
on the same complex variety, (X,X≥0) and (X, Y≥0) with

X≥0 ∩ Y≥0 = ∅, (4.5)

we have that the union (X,X≥0 ∪ Y≥0) is also a positive geometry with orientation
inherited from the two geometries (X,X≥0) and (X, Y≥0). The boundary components
of (X,X≥0∪Y≥0) are either boundary components of one of its constituting geometries
or a disjoint union of such boundaries. The canonical form of the resulting geometry
(X,X≥0 ∪ Y≥0) is simply identified as

Ω(X,X≥0 ∪ Y≥0) = Ω(X,X≥0) + Ω(X, Y≥0). (4.6)
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In the next section, we shall extend this notion to the oriented sum, also valid for
overlapping geometries, however, it is not guaranteed that the resulting geometry is
itself a positive geometry.

Positive geometries also incorporate a natural notion of direct product. Here, two
positive geometries (X,X≥0) and (Y, Y≥0), can be multiplied in the following manner:
since the direct product of X × Y naturally describes another affine variety, with

X≥0 × Y≥0 ⊂ X × Y, (4.7)

then it is natural to define

(Z,Z≥0) := (X × Y,X≥0 × Y≥0), (4.8)

with canonical form

Ω(Z,Z≥0) = Ω(X,X≥0) ∧ Ω(Y, Y≥0). (4.9)

The boundary components of the product geometry Ω(Z,Z≥0) can be found from
the boundary components (C,C≥0) of (X,X≥0) and (D,D≥0) of (Y, Y≥0) as simply
(C × Y,C≥0 × Y≥0) and (X ×D,X≥0 ×D≥0).

Triangulations

An important feature of positive geometries is the notion of triangulation. For a
given positive geometry (X,X≥0) it is possible to find a set of positive geometries

T = {(X,Xi,≥0)}|T |i=1 that tiles (X,X≥0), if the following properties hold

� Each Xi,≥0 ⊂ X≥0 and their orientations agree.

� The interiors Xi,≥0 are mutually disjoint.

� If
⋃|T |
i=1(X,Xi,≥0) = (X,X≥0).

If these properties are fulfilled, we say that T triangulates (X,X≥0). We note, that this
nomenclature has nothing to do with triangles and the tiling geometries (X,Xi,≥0) can
be various types of positive geometries and not just simplices. If a positive geometry
(X,X≥0) is triangulated by (X,Xi,≥0), then the canonical form Ω(X,X≥0) is simply

Ω(X,X≥0) =

|T |∑
i=1

Ω(X,Xi,≥0). (4.10)

A given triangulation often introduces spurious boundaries, i.e. boundaries of
(X,Xi,≥0) that do not appear as boundaries of (X,X≥0) and thus Ω(X,Xi≥0) may
have singularities that are not singularities of the sum of canonical forms in the
triangulation. The spurious boundaries are therefore required to cancel in the sum.
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Figure 4.1: The positive geometry that is the line element between two point x = a
and x = b. Its associated canonical form is given in (4.11) and it is oriented in the
positive x direction.

Types of Positive Geometries

Here we classify some important classes of positive geometries along with some simple
examples.

Example 1: The Line Element

The line element between a and b is a 1-dimensional object defined as the set of points
{(1, x)|x ∈ [a, b]} ⊂ RP1, with a < b. The canonical form is

Ω(1) =
dx

x− a
− dx

x− b
=

(b− a)

(b− x)(x− a)
dx, (4.11)

with the orientation is along increasing x. We have sketched the line element in
Figure 4.1

Example 2: The Standard Simplex

We generalize the construction above to the standard projective m-simplex (RPm,∆),
with ∆m := RP

m
≥0 which is cut out by exactly m+1 linear inequalities. These are very

simple geometries represented by a certain set of positive coordinates, with canonical
form

Ω(∆m) =
m∏
i=1

dαi
αi

=
m∏
i=1

d logαi, (4.12)

for (α0, α1, ..., αm) ∈ Pm where we can use projectivity to set α0 = 1, then the interior
∆m
>0 is simply Rm

>0. Here the choice α0 = 1 implies the boundary represented by
α0 → 0 is no longer manifestly visible as a singularity of the canonical form. We can
make this boundary manifest again by changing the choice of chart α0 = 0 into another
chart, say represented by α1 = 1. This is a common feature of positive geometries and
we refer to the choice of chart as a gauge choice1. Consider the top-form on RP2,

ω =
dx ∧ dy

(x+ 1)(y + 1)
. (4.13)

1Gauge choice is not understood here in the context of quantum field theory e.g. as in SU(N),
U(N), SO(N) etc., rather it is in the context of having to choose a specific chart to study the features
of a system, here represented by the canonical form.
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Here ω is represented in the chart {(1, x, y)} ⊂ RP2. This form can be seen to have
three poles along x = −1, y = −1 and the line at infinity. This can be seen by changing
the chart into {(1, x, y)} → {α, 1, β} = {x−1, 1, yx−1}, then the form becomes

ω =
dα ∧ dβ

α(α + 1)(α + β)
, (4.14)

where we now find a boundary at α = x−1 = 0, which in the previous chart was
represented by x→∞.

Integration of Canonical Forms

A natural thing to do with differential forms is to integrate them over some space. For
two positive geometries (X,X≥0) and (Y, Y≥0) we introduce the notion of integration
of canonical forms of (X,X≥0) with respect to (Y, Y≥0) [38]

ωY,X :=

∫
(Y,Y≥0)

Ω(X,X≥0). (4.15)

Unless the intersection of (Y, Y≥0) and (X,X≥0) only consists of disjoint points, the
integrals diverges, due to the logarithmic nature of Ω(X,X≥0). As an example, let us
consider the integration of the canonical form associated with the line element
{(x ⊂ R1) : 0 ≤ x ≤ 1}, with respect to another line element
{z ⊂ R1 : 1− x ≤ z ≤ 1}∫ 1

1−z

dx

x
= − log(1− z) = Li1(z). (4.16)

It is possible to recursively construct di-logarithms of higher degree by integrating over
higher-dimensional simplices against each other.

4.2 Morphisms of Positive Geometries

An important feature of positive geometries and their canonical forms is the notion of
push-forwards and pull-backs. We will review their construction for differential forms
of arbitrary degree [40].

Pull-back

Consider a map φ between two positive geometries, X of dimension n, and Y of
dimension m;

φ : X → Y. (4.17)
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Given a k-form η on Y , there is a notion of pulling back to a form ω on X using the
map φ. Assuming the coordinate basis for X is (x1, ..., xn) and the coordinate basis
for Y is (y1, ..., ym), we write the map as φ = (φ1, ..., φm). Consider the k-form (not
necessarily top-dimensional) η written in the coordinate basis of Y

η =
∑

i≤i1≤...≤ik≤m

βi1,...,ik(y1, ..., ym) dyi1 ∧ ... ∧ dyik . (4.18)

The pull-back of η through the map φ is simply

ω = φ∗(β) :=
∑

i≤i1≤...≤ik≤m

βi1,...,ik(φ(x1, ..., xn)) dφ1 ∧ ... ∧ dφik . (4.19)

This is tantamount to substituting the explicit expressions yi = φi(x) in the form β.
The differential form (4.19) is now a differential k-form on X.

Push-forward

The push-forward is the operation that, in some sense, is the reverse of the pull-back:
starting from a differential form on X and the map φ, we can find the corresponding
differential form on Y . For each point b ∈ Y , we can find its pre-image under φ, the
collection of points ai ∈ X, for which φ(ai) = b. In the neighborhood Ui of each point
ai, and in the neighborhood V of b, we can define the inverse map as follows

ψi = φ−1|Ui : V 7→ Ui. (4.20)

The push forward of a differential form ω on X through the map φ is a differential
form η on Y given as the sum over the pull-backs of η through the inverse maps ψi

η = φ∗ω =
∑
i

ψ∗i ω. (4.21)

This amounts to solving the equation y = φ(x) and for each solution set x = ψi(y)
performing the pull-back of ω and adding the resulting differential forms. We note,
that canonical forms are preserved under a push-forward: if ω has only unit residues,
then η has also only unit residues, as long as they are top-forms on their respective
spaces. Let us review these two constructions, pull-back and push-forward in some
minimal examples to familiarize ourselves with such operations.

Example 1: Pull-Back

Consider the following differential form on R3 given by

ω = d log(a1) ∧ d log(a2)− d log a1 ∧ d log(a3 + a1) + d log a2 ∧ d log a3. (4.22)
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Consider also a map

φ : R2 7→ R
3, (4.23)

with

(a1, a2, a3) = φ(x1, x2) = (e−(x1+x2),
1

x2
1

, 2x1x2). (4.24)

We pull the form ω back through the map φ as follows

φ∗ω = (x1 − 3x2 − 2)d log x1 ∧ d log x2, (4.25)

found from inserting replacing the map ai = φ(xj), and evaluating the resulting form.

Example 2: Push-Forward

On the other hand, consider the one-form on R1 given by

η = d log x, (4.26)

and this time consider the map χ : R1 7→ R
1 with a = χ(x) = x2. In order to find the

push-forward, we first note that the map χ is not invertible and has two local solutions
x = ξ1(a) =

√
a and x = ξ2(a) = −

√
a. We pull the form back through these inverse

maps

ω = χ∗η = ξ∗1η + ξ∗2η =
d
√
a√
a

+
d(−
√
a)

−
√
a

=
d log a

2
+
d log a

2
= d log a. (4.27)

We see that both η and ω are logarithmic top forms on R1 as expected.

4.3 Adding Positive Geometries

As discussed in section 4.1, disjoint positive geometries (X,Xi,≥0), (X,Xj,≥0) can be
readily added together

(X,Xi,≥0) ∪ (X,Xj,≥0) = (X,Xi,≥0 ∪Xj,≥0), (4.28)

Ω((X,Xi,≥0) ∪ (X,Xj,≥0)) = Ω((X,Xi,≥0)) + Ω((X,Xj,≥0)), (4.29)

with orientation inherited from the two geometries (X,Xi,≥0), (X,Xj,≥0). We take the
first steps in generalizing this to positive geometries that do intersect in [41]. Here the
notion of oriented sum of positive geometries is introduced to account for the relative
orientations of the intersecting geometries. We assign the symbol ⊕ to this operation.

We are interested in positive geometries that intersect in two ways: when two or
more geometries intersect only on their boundaries, as in the familiar case of
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Figure 4.2: The decomposition of the two dimensional planes into 7 regions {Xi}7
i=1.

Along with X8 and X9, denoting the left and right part of the upper half planes, they
are the regions considered in illustrating the notion of oriented sums in the text. The
figure is from [41].

triangulations of positive geometries, and when one geometry is a subset of another.
We visualize both examples by considering the two-plane split into 9 regions denoted
by {Xi}9

i=1, where the regions X1...X7 are indicated in Figure 4.2, and X8 and X9

describe the upper quadrants such that X8 = {(x, y) : x ≥ 0, y ≥ 0}, and
X9 = {(x, y) : x ≤ 0, y ≥ 0}. Each region {Xi}9

i=1 in Figure 4.2 is endowed with an
orientation, either clockwise or counter-clockwise, denoted by X−i and X+

i ,
respectively. Each region is a candidate for being a positive geometry, having
boundaries of dimension 1 and 0 in all cases, and we can associate a canonical form
to each of them, Ω±i . Changing orientation with respect to the plane in which they
are embedded, returns the same canonical form up to a sign Ω+

i = −Ω−i [38]. We
consider two scenarios one can encounter when taking oriented sums of the different
regions Xi. The first scenario (I) contains the cases where, under the oriented sum of
two or more geometries, the resulting geometry is itself a positive geometry. The
second scenario (II) contains the cases for which the oriented sum of two or more
positive geometries violates the definition of positive geometries. We sketch a few
examples
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I Oriented sum of two positive geometries giving rise to a positive
geometry

� X+
1 ⊕ X+

2 = X+
8 . This geometry is nothing but the positive quadrant. We

obtain the canonical form for this region as

Ω = Ω+
1 + Ω+

2 =
dx ∧ dy
xy

+ d log
x

y
∧ d log(1− x− y)︸ ︷︷ ︸

Ω+
1

+ d log
x

y
∧ d log(1− x− y)︸ ︷︷ ︸

Ω+
2

= d log x ∧ d log y. (4.30)

While the two geometries share a common boundary, it is oppositely oriented
in the two geometries. This results in a cancellation of that boundary in the
final geometry similarly to triangulations, where shared boundaries cancel.

� X+
1 ⊕X−5 . We sketch this geometry in Figure 4.3 and note its canonical form

Ω = Ω+
1 + Ω−5 =

dx ∧ dy
xy(1− x− y)

− d log x ∧ d log y =

=
x+ y

(1− x− y)xy
dx ∧ dy. (4.31)

This canonical form does not have a singularity on the point (x, y) = (0, 0),
since the singularities at this point of its constituent geometries have opposite
sign. Direct inspection reveals

Resy=0Resx=0Ω−5 = −1, Resy=0Resx=0Ω+
1 = +1, (4.32)

and thus Resy=0Resx=0(Ω−5 + Ω+
1 ) = 0. The remaining vertices at (1, 0) and

(0, 1) have residues ±1. We stress that the point (0, 0) is an element in the
geometry X+

1 ⊕X−5 , but is not a boundary of the resulting geometry.

� X+
1 ⊕ X−8 = X+

2 the geometry X+
1 is a subset of X−8 and share common

boundaries. The boundaries are oriented in opposite directions, resulting
in a geometry, where the shared boundaries are no longer boundaries. The
remaining geometry can be identified as X+

2 , which is the intersection of the
two geometries.

II Oriented sum of two positive geometries giving rise to a geometry that
is not a positive geometry

� X+
1 ⊕ X+

5 . The geometries X+
1 and X+

5 intersect only on the vertex (0, 0).
The canonical form is found as the sum the two participating canonical form
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Figure 4.3: The oriented sum of X+
1 and X−5 giving rise to a positive geometry. Note

that point at the origin is a part of the resulting geometry, however it is not a boundary
of said geometry as can be seen from taking residues on the sum of canonical forms.
The figure is from [41].

as follows

Ω = Ω+
1 + Ω+

5 =
dx ∧ dy

xy(1− x− y)
+ d log x ∧ d log y =

2 + x+ y

(1− x− y)xy
dx ∧ dy.

(4.33)

We can evaluate the residue on both canonical forms

Resy=0Resx=0Ω+
5 = +1, Resy=0Resx=0Ω+

1 = +1, (4.34)

and we see the resulting canonical form has residue +2 on the (0, 0) boundary
and since the canonical form has residues of ±1 on its remaining vertices
(those in particular belonging to X+

1 ), the resulting geometry cannot be said
to be a positive geometry, since we can no longer associate a logarithmic
canonical form to the geometry.

� X+
8 ⊕ X−5 : This geometry is sketched in Figure 4.4 and is the union of

two quadrants (x > 0, y > 0) and (x < 0, y < 0). Their canonical forms
are therefore indistinguishable due to the negative orientation of X5. The
canonical form is therefore simply 0.

� X+
8 ⊕X+

9 : This geometry is sketched in Figure 4.5 and is the union of the
two quadrants (x > 0, y > 0) and (x < 0, y > 0). This union is nothing but
the upper half plane, which does not have the point (0, 0) as a 0-dimensional
boundary.
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Figure 4.4: The oriented sum of X+
8 and X−5 giving rise to a geometry that is not

a positive geometry. This is due to the fact that the resulting geometry has no 0
dimensional boundaries (vertices) in its boundary stratification.

In the examples described above, the orientation of geometries is inherited from their
embedding in an orientable plane and therefore defined with respect to this plane.
While we leave a full definition of the oriented sum as an open problem, we expect
the orientability of the embedded space X to be crucial in the construction of such a
definition.

4.4 The Amplituhedron

The amplituhedron was the first example of a positive geometry and is physically
relevant. In particular, the canonical form of the amplituhedron is related to R-
invariants (2.157), and thus to the Nk′MHV scattering amplitudes in planar msYM
in momentum twistor space as discussed in section 2.8. Remarkably the standard
notions of locality and unitarity of scattering amplitudes are replaced with the
positivity condition and become emergent properties. We review the construction of
the amplituhedron in two frameworks: the original construction introduced in [1],
where the amplituhedron is defined on an auxiliary Grassmann space, and another
more recent construction where the amplituhedron is defined directly in the
kinematic space of bosonized momentum twistors [75]. We then proceed to discuss
how to extract scattering amplitudes or R-invariants from canonical forms on
amplituhedra. Finally, we provide a brief discussion on how locality and causality
appear as derived notions from the statement of positivity for the amplituhedron.
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Figure 4.5: The oriented sum of X+
8 and X+

9 giving rise to a geometry which is lacking
any zero-dimensional boundary and therefore not a positive geometry.

4.4.1 Tree Amplituhedron

The amplituhedron [1] is a positive geometry belonging to the class of Grassmannian
polytopes [38]. The starting point for the definition of the amplituhedron is the set of
n momentum twistor variables defined in (2.188). These contain both bosonic (λ, µ)
and fermionic data χ. In the following, we will bosonize [1] the supermomentum-
twistors by introducing k′ auxiliary Grassmann variables φA, A = 1, ..., k′, and define
the bosonized supermomentum-twistors as

ZA
i =


λai
µȧi

φ1 · χi
...

φk′ · χi

 . (4.35)

In the following, we shall assume that this matrix is a positive matrix2. We refer to
the matrix (4.35) as “positive external data”, Z ∈ M+(m + k′, n), interpreted as a
map. The amplituhedron is the image of the positive Grassmannian, as defined in
section 3.3, through positive external data Z as follows

ΦZ : G+(k′, n)→ G(k′, k′ +m), (4.36)

2This seemingly innocuous restriction to positive data turns out to be of utmost consequence. In
particular, the fact that the amplituhedron encodes unitarity and locality is a direct consequence of
insisting on positive external data [1].
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where to each element in the positive Grassmannian C ∈ G+(k′, n) we have associated
a matrix Y ∈ G(k′, k′ +m) by

Y A
α =

∑
i

Ciα · ZA
i . (4.37)

The notion of “positivity” completely encodes the co-dimension 1 boundaries [1], by
identifying the k′ +m- invariants〈

Y 1...Y k′Zi1 ...Zim

〉
= (Ca1 ...Cak′ ) 〈Za1 ...ZakZi1 ...Zim〉 (4.38)

which are strictly positive for a given element of the positive Grassmannian C and
under assumption of positivity of Z for the first few cases of m, we have the boundaries

m = 1 : 〈Y i〉 = 0, (4.39)

m = 2 : 〈Y ii+ 1〉 = 0, (4.40)

m = 4 : 〈Y ii+ 1jj + 1〉 = 0. (4.41)

In the last case, m = 4, the boundaries appearing are similar to the poles of the R
invariants associated with (dual) propagators going on-shell in (2.154). It is exactly
this case we call physically relevant and is related to scattering amplitudes3, since
the bosonic part of the momentum twistors has m = 4 entries. The scattering
amplitude can be extracted from the canonical form of the amplituhedron, dubbed
the “volume form”, with logarithmic singularities on its boundaries. The volume
form of the amplituhedron is a top-form on G(k′,m + k′) and therefore of degree

(m × k′). We find the volume function, Ω
(m)
n,k (Y, Z) by stripping off the canonical top

form of Ω
(m)
n,k′(Y, Z) as follows

Ω
(m)
n,k′(Y, Z) =

k′∏
α=1

〈Y1...Yk′d
mYα〉Ω(m)

n,k (Y, Z). (4.42)

We find the scattering amplitude (up to a AMHV
n ) from the volume function by

integrating out the bosonized auxiliary variables. It is conjectured that for all
(n, k′,m), the amplituhedron is a positive geometry [38].

The amplituhedron can conveniently be found from the Grassmannian by
considering positroid cells C ∈ G+(k′, n) of dimension (m × k′). Then the image of
the map Y = C · Z carves out a region in G(k′,m + k′) and we can completely
determine the amplituhedron by triangulation in terms of a collection of positroid
cells, which are non-overlapping and dense in G(k′,m + k′). The amplituhedron
volume form is then found as the push-forward on these cells:

Ω
(m)
n,k′ =

∑
σ∈T

(ΦZ)∗ωσ, (4.43)

3Rather, the amplituhedron is related to the polygonal Wilson loop dual to the scattering
amplitude [76].
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where ωσ refers to the canonical form on the m× k′ dimensional positroid cell in the
triangulation of G+(k, n) labeled by the decorated permutation σ. Parameterizing the
correct (m×k′) dimensional cell in G+(k′,m+k′) by the canonical positive coordinates
αi, we simply obtain

Ω
(m)
n,k′ =

∑
σ

d logασ1 (Y, Z) ∧ d logασ2 (Y, Z) ∧ ... ∧ d logασmk′(Y, Z). (4.44)

Sign Flip Conditions

In [75] it was shown that the amplituhedron admits topological conditions, the sign-flip
conditions. It was found by studying the sign patterns of certain brackets evaluated on
points inside the amplituhedron. Here Y is taken to be a point in momentum twistor
space for m = 4, then Y is inside the amplituhedron iff

[Y ii+ 1jj + 1] > 0,

and the sequence {[Y 1234], ..., [Y 123n]} has exactly k′ sign-flips (4.45)

while for m = 2, the sign flip conditions states that the point Y is inside the
amplituhedron iff

[Y ii + 1] > 0, and the sequence {[Y 12], ..., [Y 1n]} has exactly k′ sign-flips (4.46)

This observation led to a definition of the amplituhedron based on intersections of
certain subspaces [75]. First, we note that each element Y ∈ G(k′, k′ + m) defines an
m-dimensional surface in n dimensions, in the following manner

zai = (Y ⊥)aAZ
A
i , (4.47)

where Y ⊥ is the orthogonal complement of Y and Z is the bosonized momentum
twistor defined in (4.35). This provides a map Ξ : G(k′, k′ + m) → Zn from the
auxiliary Grassmannian space G(k′, k′ + m) of the amplituhedron to the kinematic
space of the bosonic parts of n momentum twistors, Zn ∈ (z) (4.47). We can compose
this map with ΦZ and obtain a definition of the amplituhedron directly in the space
of momentum twistors, as the image of the positive Grassmannian

A(m),z
n,k′ := Ξ (ΦZ (G+(k′, n))) . (4.48)

The canonical form on the space Z(n) can be obtained from the push-forward Ξ∗ on

the standard volume form Ω
(m)
n,k′ defined in (4.42)

Ω
(m),z
n,k′ = Ξ∗Ω

(m)
n,k′ , (4.49)
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which is an m × k′ form that is on differentials dzai . This allows us to circumvent
the space of auxiliary variables Y . We write Y in the following coordinate patch of
G(k′, k′ +m)

Y A
α =

(
−yaα

1k′×k′

)
, (4.50)

then decompose the positive matrix Z as follows

ZAi =

(
z∗ai
∆α
i

)
. (4.51)

We denote by (z∗), a fixed m-plane in n dimensions and ∆ as a fixed k′-plane in n
dimension. We can then write (4.47) as

zai = z∗ai + yaα∆α
i , (4.52)

allowing us to define the space

V(m)
n,k′ := {zai : zai = z∗ai + yaα∆α

i }. (4.53)

This is referred to as the affine subspace. We also define the winding space W(m)
n,k′ using

the conditions in (4.45) projected down to zai as follows

W(4)
n,k′ := {(z) : 〈ii+ 1jj + 1〉 > 0,

and the sequence {〈1234〉, ..., 〈123n〉} has exactly k′ sign-flips }, (4.54)

where 〈ijkl〉 = εabcdz
a
i z

b
jz
c
kz

d
l . The amplituhedron can then be expressed in the

kinematic space of bosonic momentum twistor space as the intersection

A(m),z
n,k′ := V(m)

n,k′ ∩W
(m)
n,k′ . (4.55)

4.4.2 Extracting scattering amplitudes

As discussed in this section on (4.41), the boundaries of the amplituhedron, 〈Y ii +
1jj + 1〉 → 0, are similar to the singularities of the tree level scattering R-invariants
in msYM (2.195), which appear when the minor 〈ii + 1jj + 1〉 → 0 vanish. However
〈Y ii + jj + 1〉 and 〈ii + 1jj + 1〉 are not completely equivalent. First and foremost,
〈Y ii+ jj + 1〉 is a (k′ + 4)-bracket, including the k′-plane, Y , defined in (4.37), while
the singularity 〈ii+ 1jj + 1〉 is a four bracket. Second, the matrix ZA

i consists of the
bosonized supermomentum twistors depending on the auxiliary Grassmann variables
φ. We relate the two brackets in two steps. First, we localize Y on a reference plane [1]
Y ∗ as follows

Y ∗ =

(
0m×k′

1k′×k′

)
. (4.56)
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Second, we integrate the remaining auxiliary Grassmann variables as follows

An,k′ =

∫
dN=4φ1...d

N=4φk′Ωn,k′(Y
∗, Z), (4.57)

where Ωn,k′(Y
∗, Z) is the volume function of the amplituhedron with Y evaluated on

the reference plane Y ∗. Let us consider a simple example.

We consider the amplituhedron for A
(4)
5,1 related to the tree level scattering

amplitude for the NMHV sector of planar N = 4 sYM. We bosonize the external
momentum twistor data by taking ZA

i = (λai , µ
ȧ
i , φαχ

α
i ) – in this case a square matrix

– to be positive. An element of the positive Grassmannian, G+(1, 5), in this case is
just C = (1, α2, ..., α5), with all αi > 0 and its dimension coincides with that of
Y ∈ G(1,m + 1) defined in (4.37). This means there is no need to triangulate the
amplituhedron and we can write (4.37) as follows

Y = Z1 + α2Z2 + ...+ α5Z5. (4.58)

Performing the push-forward as in (4.43) amounts to solving (4.58) with respect to
the canonical coordinates αi and plugging in to

ω5,1 =
5∧
i=2

d logαi. (4.59)

We handily obtain

α2 =
〈Y 1345〉
〈12345〉

, α3 =
〈Y 1245〉
〈12345〉

, α4 =
〈Y 1235〉
〈12345〉

, α5 =
〈Y 1234〉
〈12345〉

, (4.60)

and the push-forward of (4.59) through this map is simply

Ω5,1 = Φ∗

(
5∧
i=2

αi

)
= 〈12345〉4 〈Y d4Y 〉

〈Y 1345〉 〈Y 1245〉 〈Y 1235〉 〈Y 1234〉
. (4.61)

The volume function can easily be extracted from this form. Two key differences
between the volume function and the R-invariant from (2.195) of section 2.8, are the
k′-planes, Y , and the auxiliary variables, φA. We can take care of these in two steps:
first, the k′-planes, Y , should be set to a fixed plane, Y → Y ∗

Y ∗ =

(
0m×k′

1k′×k′

)
. (4.62)

In that case, the brackets in the denominator of (4.61) just become 〈Y ijkl〉 → 〈ijkl〉.
Further, the Grassmann integral should be performed over the remaining auxiliary
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variables, φ: in this case, we obtain e.g. that the 5-bracket in (4.61) can be expanded
as

〈12345〉 = 〈1234〉Z5
5 − 〈1235〉Z5

4 + 〈1245〉Z5
3 − 〈1345〉Z5

2 + 〈2345〉Z5
1

= φA
(
〈1234〉χA5 − 〈1235〉χA4 + 〈1245〉χA3 − 〈1345〉χA2 + 〈2345〉χA1

)
, (4.63)

and we are left with

A5,1 =

∫
dN=4φΩ5,1(Y ∗, Z) =

δ1×4
(
〈1234〉χA4 + cyclic

)
〈1234〉〈2345〉〈3451〉〈4512〉〈5123〉

, (4.64)

which is exactly the R-invariant found in (2.195) for n = 5.
We can also extract scattering amplitudes directly from the canonical form on the
kinematic space of bosonic momentum twistors, Ω

(4),z
n,k′ defined in (4.49) [77]. We relate

the canonical form with scattering amplitudes by replacing the differentials dzai → ηai
with the Grassmann variables parameterizing the on-shell chiral superspace.

4.4.3 The Loop Amplituhedron

We can extend the definition of the amplituhedron to also encode loop-integrands, by
the notion of hiding particles. The general approach for constructing `-loop
amplituhedra involves stacking two-planes in the (n − k) dimensional complement of
C, C⊥ on top of C. This space can be considered as a generalization of the
Grassmannian, G(k′, n, `), with G(k′, n) = G(k′, n, 0). A point in G(k′, n, `) can be
represented as a (k′ + 2`)× n matrix

C =


D(l1)

...
D(l`)

C

 . (4.65)

We can define a positive version of G(k′, n, `), G+(k′, n, `) by enforcing positivity
conditions on C as well as any number of copies of D(`i) stacked on top of C. Then,
we can obtain the image of the map

A`−loopn,k′ = {Y ∈ G(k′, 4 + k′, `); Y = C · Z, C ∈ G+(k′, n, `), Z ∈M+(4 + k′, n)},
(4.66)

where Y is a k′-plane in (4 +k′) dimensions, with ` two-planes Ll=1,...,` stacked on top.
The two-planes L(l) live in the orthogonal complement of Y . We define the map

Y = C · Z =


Y = C · Z
L(1) = D(l1) · Z
...

L(`) = Dln · Z

. (4.67)
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This definition implies the following positivity conditions in addition to the tree-level
conditions (4.45):

[Y L(l)ii+ 1] > 0, (4.68)

{[Y L(l)12], ..., [Y L(l)1n]} has k′ + 2 sign flips, (4.69)

[Y L(li)L(lj)] > 0, (4.70)

the last statement implies mutual positivity between any two pairs of loops. We observe
that the one-loop MHV m = 4 amplituhedron and the k = 2, m = 2 tree-level
amplituhedron are formally identical [1].

4.4.4 Emergent Unitarity and Locality

Scattering amplitudes in planar N = 4 in momentum twistor space should have
singularities on and only on the following configurations of momentum twistors [1]

〈ii+ 1jj + 1〉 → 0, (4.71)

〈ABii+ 1〉 → 0, (4.72)

〈(AB)li(AB)lj〉 → 0. (4.73)

This dictates locality, as it implies that particle i can only be affected by particle
i+ 1 and particle i− 1, its immediate neighbors. Unitarity on the other hand reflects
what happens when taking residues on these singularities [1, 78]. On the residues of
these singularities, the n-point `-loop scattering amplitude factorizes into a product
of scattering amplitudes with fewer external legs or amounts to the scattering
amplitude with one fewer loop and two extra external legs, known as the forward
limit as explored in terms of on-shell diagrams on Figure 3.12.

The tree amplituhedron naturally encodes the singularity structure of scattering
amplitudes in its co-dimension-1 boundaries, which are precisely characterized when
〈Y ii+1jj+1〉 → 0, meaning that Y completely lies in the plane containing the points
Zi, Zi+1, Zj, and Zj+1. This is a consequence of positivity coming from (4.37) and is
precisely the statement of locality: that the amplitude has singularities when a certain
internal momentum transfer goes on-shell.

Since we are interested how unitarity is encoded in the amplituhedron, let us
review what occurs on the boundary of the amplituhedron associated with
〈Y ii+ 1jj + 1〉 → 0. On this boundary we can parameterize Y1 as a linear
combination of Zi, Zi+1, Zj, and Zj+1, implying the element of the positive
Grassmannian C ∈ G+(k′, n), can be parameterized by having only non-zero
elements in the first row in the columns (ci, ci+1, cj, cj+1). Invoking positivity of the
Grassmannian G+(k′, n) then forces the matrix C to factorize into two parts,
denoted L and R, as can be seen on Figure 4.6 . The two submatrices of Figure 4.6
can be seen as elements of the positive Grassmannian G+(k′L, nL) and the positive
Grassmannian G+(k′R, nR), where k′L + k′R = k′ − 1 and nL + nR = n− 2 [1].
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Figure 4.6: When taking the limit 〈Y ii + 1jj + 1〉 → 0 the matrix C ∈ G+(k′, n)
factorizes into two matrices L and R which are relevant for lower dimensional
amplituhedra. This implies, that the co-dimension one boundary of an amplituhedron
is a product of two lower dimensional amplituhedra.
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Chapter 5

Kinematic Associahedron

In this chapter, we discuss the “amplituhedron” relevant for bi-adjoint scalar theory
discussed in section 2.5, known as the kinematic associahedron. This geometry was
first studied in [43], where Arkani-Hamed, Bai, He, and Yan (ABHY) argued that
the positive geometry naturally associated with kinematic space of planar
Mandelstam variables, and whose canonical form naturally encodes the scattering
amplitudes in bi-adjoint φ3 theory, is nothing but the associahedron [79, 80]. The
associahedron is also known as the Stasheff-polytope and is a well-described object in
mathematics with particular relevance in combinatorics. We refer to the construction
of the associahedron due to ABHY as the kinematic associahedron. In this chapter,
we review the ABHY construction and provide a few examples of kinematic
associahedra. We also show how the factorization properties are beautifully encoded
in associahedron geometry. Finally, we will discuss how to construct the kinematic
associahedron for different color orderings.

5.1 Kinematic Space

Consider the very simple theory of (massless) bi-adjoint scalars with cubic interactions
discussed in section 2.5. Such a theory admits a color decomposition in which partial
amplitudes can be found by a Feynman diagram expansion or various other methods,
such as the CHY formalism also discussed in section 2.5. These partial amplitudes are
rational functions of Mandelstam variables (2.26). To ensure that the construction of
section 2.5 holds in arbitrary dimension, we can define the kinematic space, Kn, for n
massless momenta in D dimensions pi ∈ RD with i = 1, ..., n, as the space spanned by
linearly independent Mandelstam variables in D ≥ n− 1, given by

sij = (pi + pj)
2 = 2pi · pj. (5.1)

If D < n− 1 we have further constraints on the space, the so-called Gram conditions.
We will return to a discussion of Gram conditions in chapter 7 and for now assume



100 5. Kinematic Associahedron

that D ≥ n − 1. Momentum conservation of external momenta enforces n linearly
independent constraints on the form

n∑
j=1,j 6=i

sij = 0. (5.2)

The linear independent space of Mandelstam variables can then be understood as the
space of

dimKn =

(
n
2

)
− n = n(n− 3)/2, (5.3)

independent variables. We can also define the set of multiparticle Mandelstam
variables labeled by a subset I ⊂ {1, ..., n} as follows

sI =
∑

i,j∈I:i<j

sij. (5.4)

It turns out that there exists a more natural basis of this space, namely the set of planar
Mandelstam variables. These can be realized by considering a graph consisting of
edges and vertices where each edge is labeled by the momenta of the external particles
{1, ..., n}. On support of momentum conservation, each consecutive momentum vector
begins at the end of the previous momentum vector. This carves out an n-gon in two
dimensions. By definition, this object has as many edges as vertices and thus we label
each vertex to be the one having to the ith momentum edge incoming. In that case,
we can realize the Euclidean distance between two vertices

Xij = x2
ij =

(
j−1∑
a=i

pa

)2

= si,i+1,...,j−1, (5.5)

where the lower case x’s are the dual momentum variables defined in (2.169). Naturally
these variables have manifest cyclic symmetry and the number of X variables is exactly
equal to the dimensionality of the kinematic space. Returning to the n-gon, it is easy to
see that when the object is completely triangulated by non-overlapping triangles with
internal edges Xij. The triangulation is dual to a Feynman diagram contributing to the
scattering amplitude mn(12...n|12...n), with the triangulating edges X as propagators,
as illustrated on Figure 5.1.

5.2 The Planar Scattering Form

In the following, we define the planar scattering form naturally associated with the
kinematic space of Mandelstam variables. Consider a complete triangulation of the
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Figure 5.1: Planar Feynman diagrams, as the ones relevant to bi-adjoint φ3 scattering
amplitudes, are dual to triangulations of an n-gon. Here we have illustrated a
particular triangulation of an octagon, dual to a planar Feynman diagram (in red)
relevant for the n = 8 scattering amplitude m8(12345678|12345678) in bi-adjoint
φ3 theory. The contribution to the scattering amplitude can be readily read off as
A = 1

X13X14X17X47X57
as the products of the Mandelstam variables associated to the

diagonals of the 8-gon.

n-gon described earlier by a collection of X variables. We can then assign the following
differential form to this triangulation

±
n−3∧
a=1

d logXia,ja , (5.6)

where the sign refers to the ordering in which the propagators appear in the wedge
product. The planar scattering form for the n-point scattering amplitude is then the
sum over each possible triangulation

ωn =

Cn−2∑
t=1

sign(vt)

(
±

n−3∧
a=1

d logXia,ja

)
, (5.7)

where Cn−2 is the (n − 2)nd Catalan number counting the number of non-crossing
partitions of the n-gon [81] . We can fix the signs in each term sign(vt) (such that the
form is defined up to an overall sign) by demanding that the planar scattering form
is projectively well-defined, i.e. invariant under local GL(1) transformations. Let us
consider a few examples. For n = 4, we have an (n − 3) = 1-form. We draw the
quadrilateral and notice that indeed there are two ways to triangulate this object,
consistent with the two kinematic variables available to us X13 and X24 as illustrated
on Figure 5.2.
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Figure 5.2: The two possible triangulations of the quadrilateral associated with the
planar Mandelstam variables X13 on the left, and X24 on the right.

Figure 5.3: The five different ways to triangulate a pentagon fully in terms of simplices.
The associated planar Mandelstam variables associated with a given triangulation are
given in order {X13X35, X13X14, X14X24, X24X25, X25X35}.

The only projectively meaningful one-form we can obtain from these two variables
is the following [43]

ω4 = d logX13 − d logX24 = d log
X13

X24

. (5.8)

Similarly, we can define the protectively meaningful two-form associated with
triangulations of the pentagon. We draw the pentagon and realize that there are 5
ways of triangulating it with simplices, as sketched in Figure 5.3. The planar
scattering form for n = 5 is therefore

ω5 = d logX13 ∧ d logX14 − d logX14 ∧ d logX24+

+ d logX24 ∧ d logX25 − d logX25 ∧ d logX35 + d logX35 ∧ d logX13 =

= d log
X13

X24

∧ d log
X13

X14

∧ d log
X13

X25

∧ d log
X35

X24

. (5.9)

5.3 The Kinematic Associahedron

We define the kinematic associahedron as the positive geometry associated with the
planar scattering form, by first restricting to positive kinematic variables. We call this
the positive region, given by

∆n : Xij > 0, (5.10)
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for all 1 ≤ i < i + 1 < j ≤ n, since Xii+1 = 0. This is a simplex with a facet at
infinity when taking Xij ∈ RP|Kn|, where |Kn| is n(n − 3)/2, the number of linearly
independent Mandelstam variables. We then consider the subspace of the kinematic
space defined by the following set of constraints

Hn : cij = Xij +Xi+1j+1 −Xij+1 −Xi+1,j > 0. (5.11)

Where cij are positive constants for every non-adjacent pair of indices and j 6= n. The
kinematic associahedron can be written as the intersection between the positive region
and the space of constraints (5.11), namely

An = ∆n ∩Hn. (5.12)

The kinematic associahedron is closely related to the n-gon. Each full triangulation
of an n-gon corresponds to a vertex of the kinematic associahedron and each edge in
the kinematic associahedron corresponds to a partial triangulation of the n-gon with 1
diagonal removed and each face corresponds to a partial triangulation with 2 diagonals
removed. This pattern continues and can be summed up by the following

The codimension-d facet of the associahedron corresponds to the partial triangulation
of the n-gon with d diagonals removed.

In the following, we make this discussion explicit by considering a few examples of
kinematic associahedra.

5.4 Examples

In the following, we review some examples of kinematic associahedra in order to
illustrate the discussion of section 5.3.

n = 4 Kinematic Associahedron

The kinematic space for the n = 4 kinematic associahedron is 2-dimensional and can
be parameterized by the kinematic variables {X13, X24} = {s, t}. The positive region
is simply taking these two variables positive

∆4 : {s > 0} ∩ {t > 0} (5.13)

If we take s and t independent, the space of constraints H4 is then the inequality

H4 : c13 = s+ t > 0 ⇒ 0 < s < c13. (5.14)

The kinematic associahedron for n = 4 is then simply

A4 = ∆4 ∩H4, (5.15)
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Figure 5.4: The n = 4 kinematic association, A4 (green line), as the intersection of a
positive regions given by ∆, the positive quadrant, and the H4 space of constraints. In
this graph we take s = X13 and t = X24 and we take the orientation along increasing
s.

which is the line element with end points s = 0 and s = c13 sketched in Figure 5.4.
The canonical form for the line element was described in the last chapter in (4.11) and
is given by

Ω(A4) =

(
1

s
− 1

s− c13

)
ds =

(
1

s
+

1

t

)
ds, (5.16)

which is exactly the planar scattering form for n = 4 (5.8) pulled back to H4 using

dc13 = ds+ dt = 0⇒ ds = −dt, (5.17)

inserting in the planar scattering form just yields

Ω(A4) = ω4 |H4 =

(
ds

s
− dt

t

) ∣∣
H4

=

(
1

s
+

1

t

)
ds. (5.18)

which is exactly the four-point scattering amplitude, m4(1234|1234), times the
differential ds.

n = 5 Kinematic Associahedron

For n = 5, the kinematic space Kn is 5-dimensional and can be parameterized by the
following set of variables {X13, X14, X24, X25, X35} and we define the positive region
as the following intersection

∆5 : {X13 > 0} ∩ {X14 > 0} ∩ {X24 > 0} ∩ {X25 > 0} ∩ {X35 > 0}, (5.19)
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which is a simplex in RP5 with one facet at infinity. The H5 space of constrains (5.11)
can be obtained as

H5 : X13 +X24 −X14 = c13 ≥ 0, (5.20)

X24 +X35 −X25 = c24 ≥ 0, (5.21)

X14 +X25 −X24 = c14 ≥ 0. (5.22)

Taking the kinematic associahedron for n = 5 as the intersection

A5 = ∆5 ∩H5. (5.23)

We can visualize the kinematic associahedron for n = 5 by solving the equations
defining H5 (5.20) choosing, e.g. {X13, X14} as our basis coordinates as follows

X13 ≥ 0,

X14 ≥ 0,

X24 = c13 −X13 +X14 ≥ 0,

X35 = c24 + c14 −X14 ≥ 0,

X25 = c14 + c13 − x13 ≥ 0. (5.24)

We have sketched this region in Figure 5.5 . The inequalities of (5.24) just cut out a
pentagon. We could also realize the associahedron by considering the triangulations
of the pentagon, whose associated geometry is itself a pentagon. This realization is
visualized in Figure 5.6 . The canonical form on this space is just the canonical form
on the kinematic space K5:

Ω(K5) = d logX14 ∧ d logX13 + d logX13 ∧ d logX35 + d logX35 ∧ d logX25+

+ d logX25 ∧ d logX24 + d logX24 ∧ d logX14. (5.25)

pulled back to the subspace H5 (5.20). The pull-back to H5 just amounts to equating
the numerators in (5.25) as follows

dX14 ∧ dX13 = dX13 ∧ dX35 = ... = dX24 ∧ dX14 := d2X. (5.26)

The pull-back to H5 is just

Ω(K5)|H5 =

(
1

X13X14

+
1

X14X24

+ ...
1

X24X14

)
d2X, (5.27)

where the function multiplied by the differential d2X is identified as

Ω(K5)|H5 = m(12345|12345)d2X, (5.28)

namely, the scattering amplitude for bi-adjoint φ3 theory for n = 5 in the standard
double color-ordering.
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Figure 5.5: The kinematic associahedron for n = 5. The positive region is given by
X13 > 0 ∪X14 > 0. The H5 space is encoded in, e.g. X25 = X14 + c, the line X25 = 0
is parallel to the line X14 = 0 with separation c.

Figure 5.6: The associahedron, as realized by the triangulation of the pentagon, is
itself a pentagon. This is unique for the n = 5 associahedron.
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n = 6 Kinematic Associahedron

For n = 6 the kinematic space of Mandelstam variables is 9 dimensional. We
parameterize the kinematic space using the following variables
{X13, X14, X15, X24, X25, X26, X35, X36, X46}, taking the positive region as follows

∆6 : {X13 > 0} ∩ {X14 > 0} ∩ ... ∩ {X46} > 0, (5.29)

which is a simplex in RP
9 with one facet at infinity. We write the H6 space of

constraints according to (5.11) as follows

X13 +X24 −X14 = c13 > 0,

X14 +X25 −X15 −X24 = c14 > 0,

X15 +X26 −X25 = c15 > 0,

X24 +X35 −X25 = c24 > 0,

X25 +X36 −X26 −X35 = c25 > 0,

X35 +X46 −X36 = c35 > 0. (5.30)

The kinematic associahedron for n = 6 is the intersection

A6 = ∆6 ∩H6. (5.31)

Solving the constraints in (5.4) in the basis of (X13, X14, X46) yields a three dimensional
subspace sketched on Figure 5.7. We do not quote the canonical form of the kinematic
associahedron here, but refer to the paper [43].

5.5 Kinematic Associahedron for Arbitrary Color

Orderings

As reviewed in section 2.5, the bi-adjoint φ3 theory amplitudes admit a color
decomposition with respect to two external orderings. The partial amplitudes
mn(α|β) are rational functions of the planar Mandelstam variables, and in particular
the planar Mandelstam variables that are planar with respect to the two color
orderings α and β. This means, that we can fix one color ordering α = {1, 2, ..., n} to
the standard ordering and discuss partial amplitudes on the form
mn(β) = mn(1, 2, ..., n|β). For non-standard orderings β, the partial amplitudes are
rational functions of a subset of the planar Mandelstam variables that are planar
with respect to β. On the level of the kinematic associahedron, this is obtained by
pushing certain boundaries associated with the planar Mandelstam variables not
compatible with β to infinity. This can be done in two ways: 1) modifying the affine
subspace, Hn → Hn(β) in (5.11) as was done in [43], or 2) modifying our definition
of the positive region (5.10) as was done in [41]. We will in this section explore the
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Figure 5.7: The kinematic associahedron for n = 6 is three dimensional. We sketch
it here and verify that the codimension-1 boundaries of the n = 6 associahedron
are pentagons (n = 5 associahedra) and quadrilaterals (direct products of n = 4
associahedra)

latter choice and we define the kinematic associahedron for a given color ordering β
as follows

An(β) = ∆n(β) ∩Hn. (5.32)

We define the positive region ∆n(β) in a way similar to the construction of double-
partial amplitudes in mn(α|β) in section 2.5. In particular it reuses the polygon
decomposition algorithm discussed in that section. The construction of ∆n(β) proceeds
as follows: draw the circle of section 2.5 with external ordering {1, 2, ..., n}, and connect
the nodes on the boundary according to the ordering β in the interior. Then locate
a set {i, i + 1, ..., i + r} of at least two consecutive external labels, r > 1, which are
consecutive in both the standard- and the β-ordering. Thereafter, move all nodes in
the set close together on the boundary and denote the intersection point of the two lines
emanating from the nodes i and i+r by a new node, R. The nodes {i, i+1, ...i+r, R}
then form a convex polygon. We remove this polygon from the circle by moving the
node R to the boundary and repeat the procedure, with the nodes {i, i + 1, ..., i + r}
replaced by the single node R. This procedure is sketched in Figure 2.2. In the
case where there one fails to find a consecutive set with r > 1 at any point in the
algorithm, we set ∆n(β) = ∅. Each time we remove a polygon we denote the pair of
labels (ij, ij + rj + 1) following the decomposition to its conclusion, we are left with
a set of labels corresponding to a partial triangulation of a regular n-gon with the
following diagonals

D(β) = {(i1, i1 + r1 + 1), (i2, i2 + r2 + 1), ..., (iq, iq + rq + 1)}, (5.33)
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where q denotes the number of iterations of the algorithm before it concludes. The
positive region, ∆n(β), is then defined as follows: for each diagonal (i, j) ∈ D(β) we
take Xij ≥ 0 and furthermore for each diagonal (a, b) not crossing any diagonal in
D(β), we take Xab ≥ 0. The definition of D(β) is symmetric under reflection of β and
therefore we have ∆n(β) = ∆n(β−1), and similarly for the kinematic associahedron
An(β) = An(β−1). The kinematic associahedron of different orderings are overlapping
geometries as can be seen already for the n = 4 example, where the positive regions
are

∆4(1234) = X13 ≥ 0 ∩X24 ≥ 0, (5.34)

∆4(1243) = X13 ≥ 0, (5.35)

∆4(1423) = X24 ≥ 0. (5.36)

The canonical form of An(β) can be extracted from the canonical form of the standard
ordered kinematic associahedron as follows

Ω(An(β)) = (−1)nflip(β)Ω(An(1, 2, ..., n))
∣∣
d logXij→0 if Xij=0 is not a boundary of ∆n(β)

.

(5.37)

Here nflip(β) = nflip(1, 2, ..., n|β) and was introduced in section 2.5 and the prefactor
(−1)nflip(β) determines the orientation of the kinematic associahedron An(β) relative
to the standard ordered kinematic associahedron. This orientation is chosen such that
the double-partial amplitudes mn(β) can be consistently extracted from the canonical
forms Ω(An(β)) by pulling back to the affine subspace Hn as follows

Ωn(An(β))
∣∣∣
Hn

= mn(β)
n−1∧
j=3

dX1j . (5.38)

Interestingly, since the definition of positive regions ∆n(β) allows for empty regions,
not all orderings β ∈ On = Sn/Zn have a corresponding non-zero amplitude. We call
such orderings incompatible orderings. By direct enumeration, we find the number of
non-empty regions, pn, for n ≤ 8 particles in the following Table 5.1. The sequence pn

n 4 5 6 7 8
pn 6 22 90 394 1806

Table 5.1: The number of non-zero positive regions pn for n = 4, ..., 8 particles. The
sequence is known as the Large Schröder numbers.

is called the Large Schröder Numbers [82]. The Large Schröder Numbers have been
studied in the context of positive geometries in [83], where they appear in the context

of generalized triangles for the m = 2 amplituhedron A(2)
n,k. In particular, the partial

triangulations corresponding to the positive regions ∆n(β) correspond to graphical

labels for the generalized triangles of A(2)
n,k [41, 83].



110 5. Kinematic Associahedron

Figure 5.8: The factorization of the n = 8 associahedron into the product geometry of
the n = 6 associahedron and the n = 4 associahedron visualized as partitions of the
octagon into a hexagon and a quadrilateral. The internal line is highlighted in red.
The resulting 4-dimensional geometry is the direct product of the n = 6 kinematic
associahedron sketched in Figure 5.7 and the line element associated with the n = 4
kinematic associahedron sketched on 5.4.

5.6 Factorization and Boundaries of the Kinematic

Associahedron

The associahedron factorizes geometrically. Taking the associahedron for n = 3,
A3 := 1 as the unit element, we see that each facet is the direct product:

An|Xij=0 ' Am ×An−m+2, (5.39)

as can be seen from the dissection of the n-gon displayed in Figure 5.8. This can be seen
already in the n = 5 kinematic associahedron example. Here each boundary, associated
with Xij → 0, is the product of a line-element associated with the n = 4 associahedron
and a single point, or the unit element, associated with the n = 3 associahedron,
which, of course, is trivial. The factorization is even clearer for the 3-dimensional
n = 6 kinematic associahedron on Figure 5.7, where each codimension-1 boundary is
either the direct product of the pentagon, that is the n = 5 kinematic associahedron,
and the unit element, or the direct product of two line elements, the n = 4 kinematic
associahedra, reflecting the factorization channels of scattering amplitudes as indicated
in (2.51).



Chapter 6

The Momentum Amplituhedron

The momentum amplituhedron was first described in 2019 by the author, Ferro,
 Lukowski, and Parisi in [39]. Like its cousin the amplituhedron, reviewed in
section 4.4, it is a positive geometry associated with scattering amplitudes in N = 4
sYM, however, the momentum amplituhedron makes use of spinor helicity variables
instead of momentum twistors. While the momentum amplituhedron is, at first
glance, a more complicated geometry compared to the ordinary amplituhedron, its
definition opens an avenue of investigation of geometries associated with scattering
amplitudes for which momentum twistors are not suitable variables. In particular,
this is the case beyond the planar sector of msYM and in theories with
less-than-maximal supersymmetry.
In the first case, the momentum amplituhedron is easily extendable to partial
amplitudes planar with respect to arbitrary orderings of external legs, which is the
closest to non-planar we can come for tree-level amplitudes. We postpone this
discussion until chapter 8. As for the second case, we leave a generalization of the
momentum amplituhedron for theories with N < 4 as an open problem. For now, we
will introduce the momentum amplituhedron following its original proposal in [39]
after having reviewed how scattering amplitudes in msYM can be expressed as
differential forms. The original definition of the momentum amplituhedron can be
seen as parallel to the original definition of the amplituhedron [1], where we bosonize
the spinor helicity variables similarly to the momentum twistors of section 4.4. We
then construct an auxiliary Grassmannian space from these variables and check that
it fulfills certain conjectures for a candidate geometry put forward in [84].
Furthermore, we proceed to discuss how to extract the canonical form from the
momentum amplituhedron and in turn, scattering amplitudes. Lastly, we review the
factorization properties of the momentum amplituhedron and provide basic examples
of momentum amplituhedra.
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6.1 Scattering Amplitudes as Differential Forms

Scattering amplitudes in msYM have a natural interpretation as differential forms
on the kinematic space of spinor-helicity variables. Before introducing the momentum
amplituhedron in details, we discuss how to interpret scattering amplitudes in (ms)YM
as differential forms, as explored by He and Zhang in [84]. We are interested in the
differential forms on the kinematic space of spinor-helicity variables, which as we have
seen extensively in section 3.2, can be represented as two (2 × n) matrices, λ and λ̃
subject to an orthogonality constraint:

(λ, λ̃) := {λai ∈M(2, n), λ̃ȧi ∈M(2, n) |
n∑
i=1

λai λ̃
ȧ
i = 0}. (6.1)

Since all particle states in msYM transform under a particular little group scaling (see
the discussion in section 2.2), we wish to dress each external state of helicity h with a
differential on (λ, λ̃) such that the little group scaling of the state is canceled. This is
possible for all theories with |h| ≤ 1, as each helicity state scales

|(λ, λ̃)h〉 → |(tλ, t−1λ̃)h〉 = t−2h|(λ, λ̃)h〉. (6.2)

For h = ±1 we can have at most (dλ)2 = dλ1 ∧ dλ2 or (d̃λ)2 = dλ̃1̇ ∧ dλ̃2̇. Since we are
interested in dressing external states such that they have trivial little group scaling,
we associate these differentials to massless gluon states h = +1 and h = −1, as follows

h = +1 : g+ → (dλ)2g+, (6.3)

h = −1 : g− → (dλ̃)2g−. (6.4)

We can similarly dress fermionic states, Γa and Γ̄ȧ of (2.122) with h = ±1
2
. For each

fermionic helicity state we have two choices

h = +
1

2
: Γ̄a → dλaΓ̄a or Γ̄ȧ → (dλ)2dλ̃ȧΓ̄ȧ, (6.5)

h = −1

2
: Γȧ → dλ̃ȧΓȧ or Γa → (dλ̃)2dλaΓa. (6.6)

In general, we ensure that when we have pairs of fermions of different helicities in a
scattering process (f̄−i , f

+
j ), we obtain either of the following four-forms

εȧḃdλ̃
ȧ
i ∧ dλ̃ḃj(dλj)2, or (dλ̃i)

2εabdλ
a
i ∧ dλbj, (6.7)

where we have associated the spinor indices of the differentials with the flavour indices
of the fermions [84].
This construction is universal for any theory with helicity states. However as we are
interested in msYM, let us review the construction for this theory. As discussed in
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section 2.6, the chiral superamplitude lives in the on-shell superspace (λa, λ̃ȧ|ηA) with
a, ȧ = 1, 2 and A = 1, .., 4. However, as mentioned in the end of section 2.6, there
also exists a non-chiral on-shell superspace related to the chiral on-shell superspace by
Fourier transforms on half of the Grassmann variables. This leads to a representation
where the R-symmetry is SU(2|2) and we can naturally associate the spinor indices of
the R-symmetry indices [85] to (a, ȧ). We dress the states in the supermultiplet with
differentials as follows [84]

Φ(λ, λ̃, dλ, dλ̃) = (dλ)2g+ + (dλ̃)2g− + φ+ dλa ∧ dλ̃ȧφ′aȧ + (dλ)2(dλ̃)2φ′′

+ dλaΓa + (dλ)2dλ̃ȧΓ̄ȧ + dλ̃aΓ̄′ȧ + (dλ̃)2dλaΓ′a, (6.8)

where we distinguish between the 6 = 1 + 4 + 1 scalars {φ, φ′aȧ φ′′} dressed with the
forms {1, dλa ∧ dλ̃ȧ, (dλ)2(dλ̃)2}, and the 2 + 2 h = −1

2
gluinos {ψȧ, ψ′a} dressed with

the forms {λ̃ȧ, (dλ̃)2λa}, and similarly with the positive gluino states ψ̄a and ψ̄′ȧ which
we dress with {dλa, (dλ)2dλ̃ȧ}. This representation of the supermultiplet realizes an
n-point superamplitude as a differential form of degree 2n, which can be obtained
directly from the scattering amplitude by the replacement

ηa → dλa, η̃ȧ → dλ̃ȧ. (6.9)

These replacements transform all superamplitudes into differential forms of degree
2n = 2(n − k) + 2k on dλ and dλ̃. We can easily express the supercharges1 as forms
as follows

dq̃ȧa =
∑
i

λ̃ȧi dλ
a
i , dqaȧ =

∑
i

λai dλ̃
ȧ
i , (6.10)

Since any superamplitude must respect overall supermomentum conservation, the 2n-
form for n > 3 superamplitudes must contain overall factor (dq)4 ∧ (dq̃)4. However
this differential form vanish on support of supermomentum conservation, since for all
superamplitudes, we have

0 = paȧ =
n∑
i=1

λai λ̃
ȧ
i ⇒ (dp)4 = (dq)4 + (dq̃)4 ⇒ (dq)4 ∧ (dq̃)4 = 0. (6.11)

We can resolve this by stripping off a copy of either (dq̃ȧa)4 or (dqaȧ)4 from the canonical
form [84], such that we obtain a form of degree (2n − 4). Defining the vanishing 2n-
form for msYM, denoted by Fn, we obtain a 2n − 4 form Ωn,k, by stripping off an
overall factor of (dq)4, or equivalently (up to a potential sign) (dq̃)4, as follows

Fn := (dq)4 ∧ Ωn, (6.12)

1These are not the same supercharges of section 2.6. We will not encounter the chiral superspace
anymore in this dissertation, so we should be free to redefine them here without cause for
misunderstanding.
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or equivalently, we can strip off both a factor of (dq)4 and (dq̃)4 for n > 3, to obtain
a form Ω̂ of degree 2n− 8 as follows

Fn := (dq)4 ∧ (dq̃)4 ∧ Ω̂n. (6.13)

We define the differential two-forms for the n = 3 scattering amplitudes (2.137) and
(2.138) as follows

F3,2 = (dq)4 ∧ Ω3,2 = (dq)4 ∧ (dλ1〈23〉+ dλ2〈31〉+ dλ3〈12〉)2

〈12〉〈23〉〈31〉
, (6.14)

F3,1 = (dq̃)4 ∧ Ω3,1 = (dq̃)4 ∧

(
dλ̃1[23] + dλ̃2[31] + dλ̃3[12]

)2

[12][23][31]
. (6.15)

The two-forms, Ω3,k, can be readily extracted using

dλi〈jk〉+ dλj〈ki〉+ dλk〈ij〉 = −(λid〈jk〉+ λjd〈ki〉+ λkd〈ij〉), (6.16)

and similarly for λ̃, we are left with the following two-forms for n = 3:

Ω3,2 = d log
〈12〉
〈31〉

∧ d log
〈23〉
〈31〉

, Ω3,1 = d log
[12]

[31]
∧ d log

[23]

[31]
. (6.17)

We have found a logarithmic differential form for n = 3 scattering amplitudes in
msYM. It is not initially clear that such a form exists for all n > 3, however as it
was argued in [84], all scattering amplitude forms Ω

(γ)
n,k on the space of spinor-helicity

variables (λ, λ̃) can be found as the push-forward of the canonical form of a cell in the

positive Grassmannian (3.35), ω
(γ)
n,k. This can be done by identifying the first elements

of the matrix Cαi ∈ G+(k, n) with λai , leading to the form

Ω
(γ)
n,k =

∫
ω

(γ)
n,k

∏
α′

δ2(Cα′ · λ̃)δ2(C⊥α′) ∧α′ (Cα′ · dλ̃)2 ∧α′ (C⊥α′ · dλ)2, (6.18)

where α′ = 3, · · · , k counts the remaining unfixed columns, when fixing
Ca=1,2 i → C∗a=1,2 i = λai .
We review a few examples: for n = 4 the associated positive Grassmannian is
G+(2, 4) and we represent an element C ∈ G+(2, 4) as a 2 × 4 matrix up to GL(2)
transformations. The canonical top-form on G+(2, 4) can then be written following
the discussion in section 3.3 as

ω4,2 =
d2×4C

vol(GL(2))(12)(23)(34)(41)
. (6.19)
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Taking Cia = C∗ia = λai , we can GL(2) transform using a particular 2 × 2 matrix, to
obtain a representation of C∗ on the form

C∗ =
1

〈12〉

(
λ2

2 −λ1
2

−λ2
1 λ1

1

)(
λ1

1 λ1
2 · · · λ1

n

λ2
1 λ2

2 · · · λ2
n

)
=

=
1

〈12〉

(
〈12〉 0 〈32〉 〈42〉

0 〈12〉 〈13〉 〈14〉

)
. (6.20)

Pushing the form ω4,2 forward using this map C∗, we obtain

Ω4,2 = d log
〈12〉
〈13〉

∧ d log
〈23〉
〈13〉

∧ d log
〈34〉
〈13〉

∧ d log
〈41〉
〈13〉

, (6.21)

which is a logarithmic four-form. We could just as well have localized the map
C → C∗ = λ̃, leading to the form

Ω4,2 = d log
[12]

[13]
∧ d log

[23]

[13]
∧ d log

[34]

[13]
∧ d log

[41]

[13]
(6.22)

which is exactly equal to the above form on (6.21) due to momentum conservation
δ2×2(λ · λ̃). We can write this differential form as the scattering amplitude for msYM
with a factor of (dq̃)4 or (dq)4 stripped off, either

Ω4,2 =
(dq̃)4

〈12〉[12]〈23〉[23]
, (6.23)

giving rise to (6.21), or

Ω4,2 =
(dq)4

〈12〉[12]〈23〉[23]
(6.24)

giving rise to the form (6.22). The map C∗ can be generalized to all n in the MHV
sector, leading to the following logarithmic differential form for all MHV amplitudes
at tree level [84]

Ωn,2 =
n−1∏
i=2

d log
〈ii+ 1〉
〈1i+ 1〉

∧ d log
〈1i+ 1〉
〈12〉

. (6.25)

The NMHV example is slightly more involved, but also more interesting, since the
Grassmannian cell corresponding to the scattering amplitude is no longer the top-
cell for n ≥ 6 and instead the scattering amplitude is related to a sum of (2n − 4)
dimensional cells found from BCFW recursion discussed in section 3.4. The first
example of this is the n = 6, k = 3 scattering amplitude, which can be found as the sum
over three 8-dimensional cells of G+(3, 6). We label the cells by γi, representing points
in G+(3, 6) where the Plücker coordinate (ii + 1i + 2) vanish. Following the analysis
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of section 3.4, we find two sums of cells relevant to the n = 6, k = 3 superamplitude,
related by parity symmetry. We obtain a logarithmic form for the n = 6, k = 3
superamplitude as follows

Ω6,3 = Ωγ1

6,3 + Ωγ3

6,3 + Ωγ5

6,3 = Ωγ2

6,3 + Ωγ4

6,3 + Ωγ6

6,3, (6.26)

where the form Ωγ1

6,3 on the cell γ1 is obtained by choosing the solution for C∗ as follows

C∗ =

(
λa1 λa2 λa3 λa4 λa5 λa6
0 0 0 [56] [64] [45]

)
, (6.27)

and pushing the Grassmannian form forward using this matrix C∗ leading to the
following form

Ωγ1

6,3 =
(dq̃)4(dλ1〈23〉+ cyclic)2(dλ̃4[56] + cyclic)

s123〈12〉〈23〉[45][56]〈1|5 + 6|4]〈3|4 + 5|6]
, (6.28)

where cyclic refer to summing over all cyclic permutations of the labels {1, 2, 3} in
the first term and {4, 5, 6} in the second term. The denominator of this form appears
exactly as the five non-zero Plücker coordinates of the matrix C∗, and the numerators
stem from (C∗ · dλ̃)2 and (C∗ · dλ)2. This differential form can equivalently be cast on
a manifestly logarithmic form on 8 canonical coordinates defined as follows

Ωγi
6,3 = d log

〈12〉
〈31〉

∧ d log
〈23〉
〈31〉

∧ d log
[3̂4]

[3̂1̂]
∧ d log

[46]

[3̂1̂]
∧

∧ d log
[61̂]

[3̂1̂]
∧ d log

[1̂4]

[3̂1̂]
∧ d log

[54]

[64]
∧ d log

[65]

[64]
, (6.29)

with the shifted spinor helicity variables defined by the following

ˆ̃λ1 = λ̃1 +
〈12〉
〈13〉

λ̃2,
ˆ̃λ3 = λ̃3 +

〈23〉
〈13〉

λ̃2. (6.30)

In the following, we will review the underlying positive geometry to which these
logarithmic forms are canonical forms, the momentum amplituhedron.

6.2 The Momentum Amplituhedron

Having found a (2n−4)-form on (λ, λ̃) associated with each superamplitude in msYM,
a natural question arises about whether there exists a positive geometry to which the
(2n − 4)-form is the canonical form. The answer is yes and the positive geometry
is the momentum amplituhedron [39]. The momentum amplituhedron An,k encodes



6.2 The Momentum Amplituhedron 117

superamplitudes, An,k, for n particles with helicity2 k = (2, .., n−2) in msYM directly
in terms of spinor helicity variables. The momentum amplituhedron is defined on the
space of bosonized spinor helicity variables which we define by introducing 2(n − k)
auxiliary Grassmann variables φαa and 2k auxiliary Grassmann variables φ̃α̇ȧ where
α = 1, .., n− k, α̇ = 1, .., k, and a, ȧ = 1, 2. The bosonized spinor helicity variables are
then defined as follows

ΛA
i =

(
λai
φαaη

a
i

)
, A = (a, α) = 1, ..., n− k + 2

Λ̃Ȧ
i =

(
λȧi
φ̃α̇ȧ η̃

ȧ
i

)
Ȧ = (ȧ, α̇) = 1, ..., k + 2. (6.31)

The bosonized spinor helicity variables are organized into matrices:

Λ =
(
ΛA

1 ,Λ
A
2 , ...,Λ

A
n

)
∈M(n− k + 2, n), Λ̃ =

(
Λ̃Ȧ

1 , Λ̃
Ȧ
2 , ..., Λ̃

Ȧ
n

)
∈M(k + 2, n)

(6.32)

Interpreting these matrices as linear subspaces of dimension (n− k+ 2) and (k+ 2) in
n-dimensional space, we can define their orthogonal complements as Λ⊥ ∈M(k−2, n)
and Λ̃⊥ ∈ M(n − k − 2, n) as the orthogonal subspaces in n dimensions, defined
up to GL-transformations. We generalize the spinor products (〈ij〉 , [ij]), defined in
section 2.1, to (n− k + 2)-brackets

〈i1i2...in−k+2〉 = det
(
ΛA
i1

ΛA
i2
...ΛA

in

)
, (6.33)

denoting the GL(n− k + 2) invariant information of Λ, and (k + 2)-brackets

[i1i2...ik+2] = det
(

Λ̃Ȧ
i1

Λ̃Ȧ
i2
...Λ̃Ȧ

in

)
, (6.34)

denoting the GL(k + 2) invariant information of Λ̃.

Breaking the symmetry between Λ and Λ̃, we impose our notion of positivity on Λ̃
and twisted positivity on Λ. The condition of twisted positivity is equivalent to stating
that the orthogonal complement Λ⊥ is a positive matrix. The result of imposing
positivity restricts (Λ, Λ̃) to Λ̃ ∈M+(k + 2, n) and Λ ∈Mt,+(n− k + 2, n). Note that
this choice of taking Λ⊥ positive does not imply that Λ is positive3.

Having organized the external data in (Λ, Λ̃), we define the momentum
amplituhedron, Mn,k, as the image of the positive Grassmannian, defined in
section 3.3, through the map [39]:

Φ(Λ,Λ̃) : G+(k, n)→ G(k, k + 2)×G(n− k, n− k + 2), (6.35)

2Here and in the following we take k = k′ + 2 in comparison to the ordinary amplituhedron,
since the momentum amplituhedron geometry is related to the full superamplitude and not just the
R-invariants.

3We could just as well have chosen Λ to be positive and Λ̃ to be twisted positive. This would
provide an alternative, but equivalent, definition for the momentum amplituhedron.
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We associate an element of the positive Grassmannian C = {cα̇i} ∈ G+(k, n) to a pair
of Grassmannian elements (Y, Ỹ ) ∈ G(k, k + 2)×G(n− k, n− k + 2) as follows

Ỹ Ȧ
α̇ =

n∑
i=1

cα̇iΛ̃
Ȧ
i , Y A

α =
n∑
i=1

c⊥αiΛ
A
i , (6.36)

where we have defined c⊥α,i as an element of the orthogonal complement of the positive
Grassmannian, such that C⊥ · C = 0. This map is well defined, since Y has rank
(n − k) and is an element of G(n − k, n − k + 2). We claim that the momentum
amplituhedron is a positive geometry and its canonical form encodes the n-particle
Nk−2MHV tree-level scattering amplitude. We notice that the dimension of this map
is

dimG(k, k + 2) + dimG(n− k, n− k + 2) = 2k + 2(n− k) = 2n. (6.37)

This means that a given top-form on this space will have degree (2n): the image of
the positive Grassmannian is lower-dimensional. The momentum amplituhedron is
restricted to the following codimension-4 subspace

P aȧ =
n∑
i=1

(
Y ⊥ · Λ

)a
i

(
Ỹ ⊥ · Λ̃

)ȧ
i

= 0. (6.38)

with orthogonal complements Y ⊥ ∈ G(2, n− k + 2) and Ỹ ⊥ ∈ G(2, k + 2).
In the paper [84], the authors conjecture two criteria that must be imposed if a

certain geometry is to be considered a positive geometry for sYM in spinor helicity
space. The criteria reads:

1. Positive planar Mandelstam variables: si,i+1,...,i+p > 0 for i = 1, ..., n and
p = 1, ..., n− 3.

2. Correct sign flips: let N count the sign flips of the list {〈12〉 , 〈13〉 , ..., 〈1n〉}
and let Ñ count the sign flips of the list {[12], [13], ..., [1n]} then either
(N, Ñ) = (k − 2, k) or (N, Ñ) = (n− k − 2, n− k).

As we will see, momentum amplituhedron fulfills these conditions when projecting
through fixed Y and Ỹ , such that(

Y ⊥ · Λ
)a
i
→ λai ,

(
Ỹ ⊥ · Λ̃

)ȧ
i
→ λ̃ȧi , (6.39)

then the condition (6.38) reduces to the familiar statement of momentum conservation

0 =
n∑
i=1

(
Y ⊥ · Λ

)a
i

(
Ỹ ⊥ · Λ̃

)ȧ
i
→

n∑
i=1

λai λ̃
ȧ
i . (6.40)
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The first criterion concerning positive planar multiparticle Mandelstam variables
appears to be fulfilled by our geometry “out of the box” for the MHV and MHV
cases for all n, but is not guaranteed beyond k = 2. Therefore, we impose an
additional set of constraints on Λ and Λ̃ ensuring Mandelstam positivity. These
relations are simple, but currently fail to reveal a physical interpretation [39]. We
will investigate the case specifically for n = 6, k = 3 in the examples of section 6.3.

The second check is automatically fulfilled by our geometry. We prove this by
making identifications of Y and Ỹ as elements in ordinary amplituhedra with different
m and k′, whose sign flip conditions are known. We can check that our geometry
fulfills the sign flip condition by performing a similar projection through fixed (Y, Ỹ )
yielding only the bosonic part of kinematic space

〈Y ij〉 → 〈ij〉 , [Ỹ ij]→ [ij]. (6.41)

Taking the sequences

{〈Y 12〉 , 〈Y 13〉 , ..., 〈Y 1n〉}, (6.42)

{[Ỹ 12], [Ỹ 13], ..., [Ỹ 1n]}, (6.43)

it is easy to see that the sequence in (6.42) has k−2 sign flips and the sequence (6.43)
has k sign flips. For the latter case, we identify the ordinary amplituhedron [1] for
m = 2 and k′ = k and simply quote its number of sign flips obtained in [75], as k.
The former case relies on a similar observation, but the proof is slightly more involved.
Here we first consider a different object. Let us define X ∈ G(k − 2, k) as follows

XĀ
α̇ = (Λ⊥)Āi cα̇. (6.44)

Here the roles of Λ and c has been reversed. Since both Λ⊥ and c are positive matrices,
this construction is similar to the ordinary amplituhedron with m = 2 and k′ = k − 2
and the sign-flip conditions of this object is simply that

{(X12), (X13), ..., (X1n)}, (6.45)

has (k − 2) sign flips using (Xab) = εα̇1...α̇kX
1
α̇1
...Xk

α̇k
cα̇k−1,acα̇k,b. We further identify

(Xab) =
∑

i1<...<ik−2

(i1...ik−2ab) 〈i1...k − 2〉⊥ , (6.46)

using the results of Appendix A, we can rewrite this in two steps

(Xab) =
∑

i1<...<ik−2

(i1 . . . ik−2ab)〈i1 . . . ik−2〉⊥ =

=
∑

j1<...<jn−k

εi1...ik−2abj1...jn−k(j1 . . . jn−k)
⊥εi1...ik−2j1...jn−kab〈j1 . . . jn−kab〉 =

=
∑

j1<...<jn−k

(j1 . . . jn−k)
⊥〈j1 . . . jn−kab〉 = 〈Y ab〉, (6.47)
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thus proving the sequence{〈Y 1i〉} has exactly (k − 2) sign flips.

Before moving on we stress that the momentum amplituhedron admits a natural
generalization [86] away from the setting strictly relevant to scattering amplitudes. In
particular, we can define the momentum amplituhedron through any pair of matrices
subject to positivity and twisted positivity constraints. We define the momentum
amplituhedron, M(m)

n,k for all even m as follows. Let Λ̃ ∈ M+(k + m
2
, n) be a positive

matrix, and let Λ ∈ Mt,+(n − k + m
2
, n) be a twisted positive matrix, where m is a

positive, even integer and k+m < n. This pair (Λ̃,Λ) induces a map from the positive
Grassmannian

Φ
(m)

(Λ̃,Λ)
: G+(k, n)→ G(k, k +

m

2
)×G(n− k, n− k +

m

2
), (6.48)

by associating the pair (Ỹ , Y ) to each element in the positive Grassmannian
C ∈ G+(k, n), as follows

Ỹ Ȧ
α̇ =

n∑
i=1

cα̇iΛ
Ȧ
i , Y A

α =
n∑
i=1

c⊥αiΛ̃
A
i . (6.49)

We identify M(4)
n,k = Mn,k as the physical momentum amplituhedron. We notice the

dimensionality of G(k, k + m
2

)×G(n− k, n− k + m
2

) is

dimG(k, k +
m

2
)×G(n− k, n− k +

m

2
) =

m

2
k +

m

2
(n− m

2
) =

m

2
n. (6.50)

As was shown in the paper [86], the momentum amplituhedron M(m)
n,k lives inside the

co-dimension m2

4
surface, constrained by

P aȧ =
(
Y ⊥ · Λ

)a
i

(
Ỹ ⊥ · Λ̃

)ȧ
i

= 0. (6.51)

The simplest momentum amplituhedronM(2)
n,k can provide a setting in which to study

the mathematical properties of the geometry in general, and in the papers [86, 87]
it was observed that the m = 2 momentum amplituhedron is closely related to the
so-called hypersimplex, which we will not review here.

6.3 The Momentum Amplituhedron Boundaries

and Volume Form

There are several ways to obtain the canonical form for the momentum
amplituhedron for the physical case, M(4)

n,k. Before discussing these methods, let us
review the boundary structure of momentum amplituhedron, as this will provide
important checks that the candidate forms are indeed canonical forms with the
correct recursive singularity structure as discussed in section 4.1.
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6.3.1 Boundaries of the Momentum Amplituhedron

We consider the three types of codimension-1 boundaries of the momentum
amplituhedron,

〈Y ii+ 1〉 → 0, [Ỹ ii+ 1]→ 0, Sii+1...i+j → 0. (6.52)

The planar Mandelstam variables, Sij...k, are the uplift of the usual planar Mandelstam
variables we have encountered throughout this dissertation:

Sii+1...j =

j−1∑
a=i

j∑
b=a+1

〈Y ab〉 [Ỹ ab]. (6.53)

The first two boundaries in (6.52) correspond to collinear limits of scattering
amplitudes, while the vanishing of the Mandelstams (6.53) correspond to the
factorization channels as discussed in section 2.4, that is, the boundaries of the
momentum amplituhedron correspond to all singularities of tree-level amplitudes in
msYM. It is possible to obtain the full boundary stratification of the momentum
amplituhedron as done in the papers [88, 89] through careful study of images of the
relevant positroid cells. An important result of these papers was that the Euler
characteristic for all momentum amplituhedra n < 10 for all k is equal to

χ =
2n−4∑
i=0

(−1)i|∆iM(4)
n,k| = 1, (6.54)

where |∆iM(4)
n,k| represents the number of codimension-i boundaries of the

momentum amplituhedron. This statement suggests that the momentum
amplituhedron has a boundary structure similar to a ball [89]. The study of the
boundary structure of the momentum amplituhedron, along with other relevant
geometries is facilitated through the Mathematica package
amplituhedronBoundaries developed by  Lukowski and Moerman [88].

6.3.2 The Momentum Amplituhedron Canonical Form

The canonical form for the momentum amplituhedron is a differential form of degree
(2n − 4) which is finite inside the momentum amplituhedron and has logarithmic
singularities on all of its boundaries. We shall restrict ourselves to the physical
momentum amplituhedron for m = 4 in the following.

First and foremost, the momentum amplituhedron M(4)
n,k is a geometry of

dimension (2n − 4) and therefore we need to study its triangulation through images
of the dimension (2n − 4) cells of the positive Grassmannian through the map ΦΛ,Λ̃.
The correct choice of positroid cells, T , can be found using the Mathematica package
positroid [73] via the function treeContour[n,k]. Having chosen a correct set of
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positroid cells, which are non-overlapping and dense inside the momentum
amplituhedron, the volume form can be found as the sum over push-forwards of the
canonical forms of these cells

Ω
(m)
n,k =

∑
σ∈T

(Φ(Λ,Λ̃))∗ω
σ
n,k. (6.55)

This approach, based on the push-forward of Grassmannian cells will in general
introduce spurious boundaries canceling in the sum. We obtain the canonical form
of degree (2n − 4) whose explicit representation is not invariant under momentum
conservation and we obtain an invariant top-form by wedging with 1 = δ4(P )d4P ,
with P defined in (6.38), as follows

Ω
(m)
n,k ∧ d

4Pδ4(P ) = δ4(P )
n−k∏
α=1

〈Y1...Yn−kd
2Yα〉

k∏
α̇=1

[Ỹ1...Ỹkd
2Ỹα̇]Ωn,k, (6.56)

where Ω
(m)
n,k ∧d4P is a top-form and independent of the particular representation of the

canonical form of the momentum amplituhedron due to momentum conservation and
independent of triangulation choice [39]. We extract the volume function by stripping
off the overall gauge invariant differential forms 〈Y1...Yn−kd

2Yα〉 and [Ỹ1...Ỹnd
2Yα̇] and

momentum conservation. This volume function is exactly what encodes the scattering
amplitude.

Alternatively, we can obtain the invariant volume function as the Grassmannian
integral

δ4(P ) Ωn,k =

∫
d(n−k)·(n−k)g

(detg)n−k

∫
γ

ωn,k

n−k∏
α=1

δ(n−k+2)(Y A
α − gβα (c⊥)βi Λ

A
i )

×
k∏

α̇=1

δ(k+2)(Ỹ Ȧ
α̇ − cα̇i Λ̃

Ȧ
i ) , (6.57)

where we integrate over the matrix g encoding the GL(n−k) redundancy when defining
the orthogonal complement of C ∈ G+(k, n). The specific integration contour γ can be
obtained from the BCFW construction for the Grassmannian discussed in section 3.4.
The measure ωn,k is the standard Grassmannian integration measure discussed in
section 3.3:

ωn,k =
dn×kcα̇i

(12...k)(23..k + 1)...(n1...k − 1)
. (6.58)

Both methods of extracting Ωn,k defines a volume function from which scattering
amplitudes can be obtained.
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6.3.3 Scattering Amplitudes from the Volume Function

Once the invariant volume function has been obtained, we can extract the scattering
amplitude. We fix the Y and Ỹ matrices by

Y ∗ =

(
02×(n−k)

1(n−k)×(n−k)

)
, Ỹ ∗ =

(
02×k
1k×k

)
. (6.59)

Evaluating the volume function on these reference planes and integrating out the
auxiliary Grassmann variables, the scattering amplitude is extracted from Ωn,k as
follows

An,k[1, 2, ..., n] = δ4(p)

∫
dφ1

a . . . dφ
n−k
a

∫
dφ̃1

ȧ . . . dφ̃
k
ȧ Ωn,k(Y

∗, Ỹ ∗,Λ, Λ̃) , (6.60)

which is precisely the partial amplitude in msYM for all n and k in spinor-helicity
variables in the standard color ordering, with δ4(p) coming from the localization of
δ4(P ) on Y ∗ and Ỹ ∗. We will postpone a discussion of how to extract partial amplitudes
for non-standard orderings from the momentum amplituhedron to chapter 8.

6.4 Factorization Properties

As we have seen throughout this work, the factorization properties are fundamental
features of scattering amplitudes and we will in the following discuss how these features
emerge from the momentum amplituhedron geometry.

When planar multi-particle Mandelstam variables vanish, amplitudes generally
factor into products of lower point amplitudes, as we have discussed extensively in
chapter 2 and chapter 3. As discussed in section 4.4, the amplituhedron too
factorizes into direct products of lower-dimensional geometries and thus features the
factorization properties of scattering amplitudes directly. This is also true for the
momentum amplituhedron, however, the factorization properties here are slightly
more involved than for the amplituhedron. This is because the factorization
properties of the momentum amplituhedron are related to amalgamations of on-shell
diagrams inside the positive Grassmannian as discussed in section 3.2 and in [72].
Consider two planes CL ∈ G+(kL, nL) and CR ∈ G+(kR, nR), where nL and nR are
the number of particles on a left and right diagram, respectively, and kL and kR
denote their helicity. We take their direct product, bringing us to
Ĉ ∈ G(kL + kR, nL + nR), and subsequently project the matrix down to
C ∈ G(kL + kR − 1, nL + nR − 2). Thus, the matrix C, parameterizing the cell of the
Grassmannian where the factorization takes place, can be described as two
overlapping matrices describing the left and right planes.
To see how this works for the momentum amplituhedron, we focus on the n = 6,
k = 3 case. Here, we encounter three distinct types of amalgamations, depending on
which boundary we are in the vicinity of. First, we consider the momentum
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amplituhedron near the boundary S123 → 0. This boundary is parametrized by a
seven-dimensional positroid cell for which (123) = (456) = 0. This cell can be written
in terms of positive coordinates as

C6,3|S123=0 =

 1 α5 + α7 α5α6 0 0 0
0 1 α6 α2 + α4 α2α3 0
0 0 0 1 α3 α1

 . (6.61)

This matrix can be regarded as coming from the amalgamation of the two positive
matrices corresponding to four-point MHV amplitudes as follows

C4,2 ⊗ C ′4,2 =


1 α2 + α4 α2α3 0 0 0 0 0
0 1 α3 α1 0 0 0 0
0 0 0 0 1 β2 + β4 β2β3 0
0 0 0 0 0 1 β3 β1

 . (6.62)

Projecting this matrix by the 4th and 5th column, yields the matrix

C6,3 =

1 α2 + α4 α2 0 0 0
0 1 α3

α1
(β2 + β4)α1 α1β2β3 0

0 0 0 1 β3 β1

 , (6.63)

which can be brought to the form of C6,3|S123=0 by fixing α1 = 1 and relabeling the
remaining variables.
The second type of boundaries we consider is [Ỹ ii + 1]→ 0. We specifically focus on
[Ỹ 56] → 0. On the level of scattering amplitudes, [56] → 0 describes the limit where
particles 5 and 6 become collinear, and the scattering amplitude A6,3[1, 2, 3, 4, 5, 6]
reduces to A5,2[1, 2, 3, 4, 5]. We expect this to also be the case for the momentum
amplituhedron. Studying the seven-dimensional cell parameterizing the boundary
[Ỹ 56]→ 0:

C6,3|[Ỹ 56]=0 =

 1 α3 + α5 + α7 (α3 + α5)α6 α3α4 0 0
0 1 α6 α4 α2 0
0 0 0 0 1 α1

 . (6.64)

We identify this as the projection of the matrix constructed from C5,2 ⊗ C3,2 up to
a GL(1) transformation. We note that the value of k reduces by one in this limit.
Finally, we consider the limit 〈Y ii + 1〉 → 0 which should correspond to a collinear
limit with k preserved. Indeed, the boundary with 〈Y 56〉 = 0, corresponds to the
following seven-dimensional cell in the positive Grassmannian:

C6,3|〈Y 56〉=0 =

 1 α5 + α7 α5α6 0 0 0
0 1 α3 + α6 α3α4 0 0
0 0 1 α4 α2 α1

 , (6.65)

which again can be considered as a projection operation on the matrix constructed
from C5,3 ⊗ C1,3.
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6.5 Extra positivity conditions

While the sign-flip conditions are automatically fulfilled under the map (6.35), the
positivity of generalized Mandelstam variables (6.53) is not automatically guaranteed
in all cases. Indeed if we consider the generalized Mandelstam variable S123 for n = 6,
k = 3, we have

S123 = 〈Y 12〉[Ỹ 12] + 〈Y 23〉[Ỹ 23] + 〈Y 13〉[Ỹ 13] ≥ 0. (6.66)

The first two terms are always positive, but the last term can be either positive or
negative. Expanding using (6.36), we get

S123 = (123)

[
〈1〉⊥

[
(145)[12345] + (146)[12346] + (156)[12356] + (456)[23456]

]
+ 〈2〉⊥

[
(245)[12345] + (246)[12346] + (256)[12356]− (456)[13456]

]
+ 〈3〉⊥

[
(345)[12345] + (346)[12346] + (356)[12356] + (456)[12456]

]]
+(456)

[
〈4〉⊥

[
(124)[12456] + (234)[23456] + (134)[13456] + (123)[12356]

]
+ 〈5〉⊥

[
(125)[12456] + (235)[23456] + (135)[13456]− (123)[12346]

]
+ 〈6〉⊥

[
(126)[12456] + (236)[23456] + (136)[13456] + (123)[12345]

]]
,

(6.67)

where 〈i〉⊥ is defined in (A.11) of Appendix A. We note the two negative terms,
which in principle could dominate over the remaining terms in certain kinematic
configurations, given by

(123)(456)[13456] and (456)(123)[12346]. (6.68)

We can ensure total positivity of S123 by introducing extra positivity conditions on
the condensed form

〈1〉⊥[1̌]− 〈2〉⊥[2̌] + 〈3〉⊥[3̌] + 〈4〉⊥[4̌]− 〈5〉⊥[5̌] + 〈6〉⊥[6̌] > 0, (6.69)

where the brackets [̌i] is shorthand for [12...̂i...6], the five-bracket with the index i
omitted. Together with the three remaining independent Mandelstam variables S234

and S345, whose positivity conditions can be cast on the same form but with the signs
shifted one or two places, respectively, we obtain a set of mutually inclusive positivity
conditions on the external data [39]. It is conjectured, that for all external data
respecting these conditions the geometry M6,3 is a positive geometry. This structure
appears to generalize to higher n. For all k = 3 cases we can introduce the collection
of brackets

Pi1i2i3;j1j2j3 = 〈i1〉⊥[i2i3j1j2j3]− 〈i2〉⊥[i1i3j1j2j3] + 〈i3〉⊥[i1i2j1j2j3]. (6.70)
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For any n we can obtain the necessary positivity conditions on the external data from
a three-particle Mandelstam variable, Sii+1...ip ,

Pi1i2i3;j1j2j3 + Pj1j2j3;i1i2i3 > 0, i1i2i3 ∈ Ii,p, j1j2j3 ∈ Īi,p, (6.71)

having defined Ii,p := {i, i + 1, ..., i + p} and Īi,p = {1, ..., n}\Ii,p. Similar relations
have been found for higher k sectors. A geometric interpretation of these inequalities
between external data remains elusive. Through careful numerical analysis it has
been established that the kinematic region where the inequalities are not fulfilled
corresponds to a very small region of the full kinematic space [39] and thus only a
very small number of kinematic configurations leads to cases where the consecutive
generalized planar Mandelstam variables are not strictly positive.

6.6 Examples

In this section, we explore the momentum amplituhedron by considering a few
examples.

n = 4 MHV Momentum Amplituhedron

In the n = 4, k = 2 case the momentum amplituhedron, M(4)
4,2 is isomorphic to

the positive Grassmannian G+(2, 4) [39]. This can be seen from the fact that the
dimensionality of the momentum amplituhedron is (2n − 4) = 4 and coincides with
the dimension of the positive Grassmannian, k(n − k) = 4. Choosing a patch in the
positive Grassmannian

C =

(
1 α2 0 −α3

0 α1 1 α4

)
, (6.72)

and solving Y = C⊥ · Λ, we obtain

α1 =
〈Y 12〉
〈Y 13〉

, α2 =
〈Y 23〉
〈Y 13〉

, α3 =
〈Y 34〉
〈Y 13〉

, α4 =
〈Y 14〉
〈Y 13〉

. (6.73)

Pushing the Grassmannian top-form forward through this map yields the volume form:

Ω4,2 =
4∧
i=1

dαi
αi

=
〈1234〉2

〈Y 12〉〈Y 23〉〈Y 34〉〈Y 14〉
〈Y d2Y1〉〈Y d2Y2〉. (6.74)

We could just as well have resolved the map in terms of Λ̃. In that case, we would
have obtained

Ω4,2 =
[1234]2

[Ỹ 12][Ỹ 23][Ỹ 34][Ỹ 14]
[Ỹ d2Ỹ1][Ỹ d2Ỹ2], (6.75)
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which is related to (6.74) through momentum conservation. Evaluating the volume
function using (6.56), we obtain in both cases

Ω4,2 =
〈1234〉2 [1234]2

〈Y 12〉[Y 12]〈Y 23〉[Y 23]
, (6.76)

which is manifestly parity symmetric. Extracting the scattering amplitude using
(6.60), we are simply left with

A4,2[1, 2, 3, 4] =
δ4(p)δ4(q)δ4(q̃)

〈12〉[12]〈23〉[23]
, (6.77)

where 〈ij〉 and [ij] are now nothing but the usual spinor-helicity contractions and
agrees with [84]. This representation of A4,2[1, 2, 3, 4] might appear slightly different
from the equation (2.145), taking n = 4. However, we can easily see that

δ4(p)δ4(q)δ4(q̃)

〈12〉[12]〈23〉[23]
=
〈34〉〈41〉
[12][23]

× δ4(p)δ4(q)δ4(q̃)

〈12〉〈23〉〈34〉〈41〉
, (6.78)

where the factor 〈34〉〈41〉/[12][23] = 1 since momentum conservation δ4(p) = δ2×2(λ·λ̃)
restricts λ⊥ = λ̃ for n = 4, k = 2 and we can use the results of Appendix A to relate
〈〉 → 〈〉⊥ = [].

All n MHV Momentum Amplituhedra

The calculation from the previous section can be generalized to any n. A suitable
representation of the volume form is

Ωn,2 =
n−1∧
i=2

(
d log

(
〈Y ii+ 1〉
〈Y 1i+ 1〉

)
∧ d log

(
〈Y 1i+ 1〉
〈Y 12〉

))
=

〈12...n〉2

〈Y 12〉〈Y 23〉...〈Y 1n〉
〈Y d2Y1〉〈Y d2Y2〉...〈Y d2Yn−2〉 (6.79)

This is similar to the volume form for all n for the m = 2 amplituhedron A(2)
n,n−2

found in [38]. We get the MHV volume function when projecting through momentum
conservation (6.56), namely

Ωn,2 =
〈1...n〉2

(∑
i<j[12ij]〈Y ij〉

)2

[Ỹ 12]2 〈Y 12〉 〈Y 23〉 ... 〈Y 1n〉
. (6.80)

We could just as well have focused on the Λ̃ sector and found the MHV formula,
which would have been the parity conjugate of (6.80). In both cases, the momentum
amplituhedron is (2n − 4) dimensional and there is no need to triangulate Mn,2 or
Mn,n−2. The boundaries are easily found and take the form [Ỹ ii+ 1] = 0 and
〈Y ii+ 1〉 = 0, respectively.
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n = 6 NMHV Momentum Amplituhedron

In the MHV examples described above the momentum amplituhedron was
isomorphic to the positive Grassmannian G+(2, n). This behavior does not extend
beyond MHV and we see the first example of this at the NMHV sector of n = 6.
This can be seen from the fact that the dimensionality of the positive Grassmannian
is dimG+(3, 6) = (6− 3)3 = 9, while the momentum amplituhedron has
dimensionality dimM6,3 = (2× 6− 4) = 8. The discrepancy between the
dimensionality of the image and the pre-image indicates that the map Φ(Λ,Λ̃) is not
injective. This means that we are required to triangulate the momentum
amplituhedron in order to find the volume form. We choose a combination of
eight-dimensional cells in the positive Grassmannian that overlap only on
boundaries. Using the treeContour[n, k] function of the MathematicaTM package
positroid [73], we find two options for triangulation

T1 = {(123) = 0, (345) = 0, (561) = 0}, T2 = {(234) = 0, (456) = 0, (612) = 0},
(6.81)

whereby (ijk) = 0 we mean the cell in G+(3, 6) for which the minor (ijk) vanishes.
The volume form can be written as

Ω6,3 = Ω
(612)
6,3 + Ω

(234)
6,3 + Ω

(456)
6,3 = Ω

(123)
6,3 + Ω

(345)
6,3 + Ω

(561)
6,3 , (6.82)

where Ω
(ijk)
6,3 is the push-forward of the canonical form on the cell (ijk) = 0. We can

parameterize this cell using canonical coordinates for the positive Grassmannian, and
solve for them using (6.36), yielding

α1 =
〈Y 12〉
〈Y 13〉

, α2 =
〈Y 23〉
〈Y 13〉

, α3 =
[Ỹ 3̂4]

[Ỹ 1̂3̂]
, α4 =

[Ỹ 64]

[Ỹ 1̂3̂]
, (6.83)

α5 =
[Ỹ 61̂]

[Ỹ 1̂3̂]
, α6 =

[Ỹ 41̂]

[Ỹ 1̂3̂]
, α7 =

[Ỹ 45]

[Ỹ 64]
, α8 =

[Ỹ 56]

[Ỹ 64]
, (6.84)

where we have denoted the following shifted variables

ˆ̃Λ1 = Λ̃1 +
〈Y 23〉
〈Y 13〉

Λ̃2 ,
ˆ̃Λ3 = Λ̃3 +

〈Y 12〉
〈Y 13〉

Λ̃2 , (6.85)

which is the uplift of an analogous formula in (6.30) up to a sign discrepancy due to
a convention choice. The push-forward is simply

Ω
(123)
6,3 =

8∧
i=1

d logαi. (6.86)
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Extracting the volume function using (6.56) leads to the following volume function of
the “triangle” in the momentum amplituhedron triangulation

Ω
(123)
6,3 =

(
〈Y 12〉[3̌] + 〈Y 13〉[2̌] + 〈Y 23〉[1̌]

)2
([Ỹ 45]〈6̌〉+ [Ỹ 46]〈5̌〉+ [Ỹ 56]〈4̌〉)2

S123〈Y 12〉〈Y 23〉[Ỹ 45][Ỹ 56]〈Y 1|5 + 6|4Ỹ ]〈Y 3|4 + 5|6Ỹ ]
,

(6.87)

where as before 〈5̌〉 = 〈12346〉, [3̌] = [12456], etc.. This expression is completely
equivalent to the expression (6.28). We identify the numerator proportional to “d6λ̃”,
namely(

〈Y 12〉[3̌] + 〈Y 13〉[2̌] + 〈Y 23〉[1̌]
)2 → δ4(q)(η̃4[56]λ̃ + η̃5[64]λ̃ + η̃6[45]λ̃)

2 , (6.88)

and the numerator proportional to “(d6λ)” to be(
[Ỹ 45]〈6̌〉+ [Ỹ 46]〈5̌〉+ [Ỹ 56]〈4̌〉

)2

→ δ4(q̃) (η1〈23〉λ + η2〈31〉λ + η3〈12〉λ)2 . (6.89)

Clearly (6.87) contains spurious poles on 〈Y 1|5 + 6|4Ỹ ] = 0 and 〈Y 3|4 + 5|6Ỹ ] = 0,
but when taken together with the other two terms in the triangulation, they cancel in
the sum

Ω6,3 = Ω
(123)
6,3 + Ω

(345)
6,3 + Ω

(561)
6,3 = Ω

(123)
6,3 + Ω

(123)
6,3

∣∣∣
i→i+2

+ Ω
(123)
6,3

∣∣∣
i→i+4

, (6.90)

where the remaining volume forms are found from Ω
(123)
6,3 by shifting the labels of Λ and

Λ̃ in (6.87). Here, explicitly taking residues on the sum (6.90) on the spurious poles,
we obtain 0, thus verifying that the poles are indeed spurious and the remaining
15 boundaries of the momentum amplituhedron are equivalent to the 15 physical
singularities of the 6-point NMHV scattering amplitude in msYM. The boundaries of
M6,3 are on the form

〈Y ii+1〉 = 0 , i = 1, . . . , 6 , [Ỹ ii+1] = 0 , i = 1, . . . , 6 , Si,i+1,i+2 = 0 , (6.91)

when imposing the additional positivity condition discussed in section 6.5.
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Chapter 7

Momentum Amplituhedron &
Kinematic Associahedron Map

In this chapter, we consider the interesting map between the canonical forms of the
momentum amplituhedron and the kinematic associahedron as presented in [40]. We
will open the chapter with an alternative definition of the momentum amplituhedron
through fixed planes in the kinematic space. We will follow with a discussion of the
different kinematic spaces related to the momentum amplituhedron and the
kinematic associahedron as well as how they map on to each other. We shall then
discuss how these maps between the kinematic spaces act on the canonical forms for
the two geometries. We close the chapter with a few examples of this construction
and a discussion of how to extract the “reduced volume forms” for the momentum
amplituhedron using the inverse-soft construction.

7.1 Momentum Amplituhedron in Kinematic

Space

An alternative definition of the momentum amplituhedron inspired by a similar
construction for the amplituhedron (proposed in [75] and reviewed in section 4.4),
was found and employed in [40]. This definition is very powerful, as we shall see,
since it naturally extends to external orderings other than the standard, though we
will postpone the discussion of different color-orderings to the next chapter. The
definition is based on the notion of projecting through fixed external data. We start
by defining the following (2n − 4) dimensional subspace of the kinematic space of
spinor helicity variables:

Vn := {(λai , λ̃ȧi ) : λai = λ∗ai + yaα∆α
i , λ̃

ȧ
i = λ̃∗ȧi + ỹȧα̇∆̃α̇

i ,
n∑
i=1

λai λ̃
ȧ
i = 0}. (7.1)
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Here, (λ∗, λ̃∗) are two fixed two-planes in n dimensions, while ∆ and ∆̃ are fixed planes
of dimension (n− k) and k in n dimensions, respectively. We also assume that when
we organize the planes into the matrices as follows

ΛA
i =

(
λ∗ai
∆α
i

)
, Λ̃Ȧ

i =

(
λ̃∗ȧi
∆̃α̇
i

)
, (7.2)

then Λ is a twisted positive matrix (see section 6.2) and Λ̃ is a positive matrix. We
also define the winding space fulfilling the conjectures of [84] described in section 6.2
as follows

Wn,k :={(λai , λ̃ȧi ) : sii+1...i+j > 0,

the sequence {〈12〉 , 〈13〉 , ..., 〈1n〉} has k − 2 sign flips

the sequence {[12], [13], ..., [1n]} has k sign flips}, (7.3)

where sii+1...i+j are the multiparticle Mandelstam variables, 〈ij〉 = λai λ
b
jεab, and

[ij] = λ̃ȧi λ̃
ḃ
jεȧḃ. The m = 4 momentum amplituhedron M(λ,λ̃)

n,k is then defined as the
intersection

M(λ,λ̃)
n,k := Vn ∩Wn,k. (7.4)

This definition is consistent with the one described in section 6.2 and we can obtain
the canonical form on this space by pulling back the volume form Ωn,k, found in
chapter 6, using (λ, λ̃) defined above. We note, that this definition of the momentum
amplituhedron can be seen as analogous to the kinematic associahedron definition
from chapter 5, where the geometry is defined as the intersection of two spaces (5.10)
and (5.11).

7.2 Kinematic Spaces and their Maps

The momentum amplituhedron lives in the space of bosonized spinor helicity variables,
while the kinematic associahedron lives in the kinematic space of planar Mandelstam
variables, as discussed at length in chapter 5. In this section, we discuss some various
kinematic spaces related to these two and show how they are connected through maps.

7.2.1 Kinematic spaces

The on-shell space On
The momentum amplituhedron is defined on the bosonic part of the on-shell superspace
parameterized by two (2×n) matrices denoted by λ and λ̃ as described in the previous
chapter 6. The canonical forms associated with momentum amplituhedra are written
in terms of SL(2) × SL(2) invariants on this space, each fixing 3 degrees of freedom
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while imposing momentum conservation fixes 4 degrees freedom. The dimensionality
of the space is simply

dimOn = 4n− 10. (7.5)

The little group invariant space Ln
As reviewed in section 2.2, scattering amplitudes in (super) Yang-Mills amplitudes
respect little group scaling invariance. Little group scaling, as seen from the point of
view of the non-chiral superspace are a subgroup of Poincare’ group transformations
of scattering amplitudes of the form

λi → tiλi, λ̃i → t−1
i λ̃i,

ηi → tiηi, η̃i → t−1
i η̃i. (7.6)

We parameterize (λ, λ̃) of On using an explicit set of n parameters denoted ti and
the remaining variables a. There are exactly (3n − 10) independent variables left
over once we have removed the ti variables and we write the little group invariant
space, Ln as the on-shell space modulo the little group torus, T , identified by T = R

n
+

(see for instance [90]), as follows Ln = On/T . The parameterization of the (3n− 10)
dimensional space Ln is by no means unique. We will make use of the parameterization
obtained by considering the λ matrix and introducing variables ti as per (7.6). The
remaining matrix is of dimension (2n− 3− n) = (n− 3), and spans the modulo space
of the n-punctured Riemann sphere, naturally parameterized by the Fock-Goncharov
parameterization [91]:

λ =

(
0 1 1 1 1 ... 1
−1 0 1 1 + a1 1 + a1(1 + a2) ... 1 + a1 + ...+ a1a2...an−3

)
. (7.7)

The λ̃ matrix is then fixed by imposing λ · λ̃ = 0 and fixing the remaining SL(2)
invariance. This parameterization of (λ, λ̃) is referred to as the extended
Fock-Goncharov parameterization. We might as well have chosen to parameterize λ̃
and then fix λ instead and therefore the parity symmetry between λ and λ̃ is broken.
A parameterization keeping the parity symmetry would be in terms of the following
cross-ratios

Rijkl =
〈ij〉〈kl〉
〈il〉〈jk〉

, Rijkl =
[ij][kl]

[il][jk]
. (7.8)

Note, we can write ai of (7.7) in terms of the cross-ratios by ai = Rii+1i+2i+3. Since
there are (n − 3) independent R cross-ratios and (n − 3) independent R cross-ratios,
we need to introduce (n− 4) additional parameters to cover the (3n− 10) dimensional
space Ln. The Mandelstam variables are an obvious choice ensuring all variables are
little group scaling invariant and the parity symmetry is conserved1.

1at the expense of cyclic symmetry, which is no longer manifest.
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The space of Mandelstam variables Kn and Gram determinant surface Gn

The kinematic space of Mandelstam variables, Kn was discussed previously in chapter 5
and is the natural space to describe scalar bi-adjoint φ3 scattering amplitudes discussed
in section 2.5. It is parameterized by Xij and is n(n−3)

2
dimensional. However, since

the Mandelstam variables are constructed from four-momentum, when the space-time
dimension D is smaller than the number of otherwise independent massless momenta
n−1, D < n−1, not all of the planar Mandelstam variables are independent: we need
to impose the so-called Gram determinant condition. At fixed space-time dimension,
D, the Gram matrices are (D+ 1)× (D+ 1) matrices depending on (D+ 1) momenta
as follows

G(pi1 , pi2 , ..., pid+1
) = (sij)i,j∈{i1,i2,...,id+1} , (7.9)

build from the two particle Mandelstam variables sij = 2pi · pj. For D < n − 1, we
must have

detG(pi1 , pi2 , ..., pid+1
) = 0, (7.10)

imposing further constraints between the Mandelstam variables. In four-dimensional
theories the Gram determinants are non-trivial for n > 5 and we must therefore impose
Gram determinant conditions for n ≥ 6. Not all the Gram determinant conditions are
independent, however, and after resolving them, we find the resulting dimensionality of
the Gram determinant surface, dimGn = (3n−10) is congruent with the dimensionality
of the little group invariant space. We denote the coordinates on the Gram determinant
surface by the collective label x.

7.2.2 Maps between kinematic spaces

We can relate the spaces defined in the previous subsection to each other using maps
which will be defined momentarily. We assemble the maps and their relations in
Figure 7.1. Later we shall provide these maps explicitly for the first few values of n.

As stated earlier, we can remove the little group scaling by parameterizing the
λ-matrix of the on-shell space On by ti and the Fock-Goncharov variables a according
to (7.6), we define the map

fn : Ln → On , (ti, a)
n+(3n−10)

7→ (λ, λ̃)
4n−10

. (7.11)

We note that if we take ti ∈ Rn
+ as positive, the map fn is invertible. Since the

Mandelstam variables can straight forwardly be written in terms of spinor-helicity
brackets

sij = 〈ij〉[ij], (7.12)
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Figure 7.1: Summary of the kinematic spaces and relations between them, together
with the differential forms defined on these spaces. We highlight the canonical forms
of the momentum amplituhedron Ωn,k and of the associahedron ω̃n in red.

there is a natural map between the little group invariant space Ln and the space of
Mandelstam variables, Kn, or the Gram determinant surface Gn. We label the latter
as gn, defined as

gn : Ln → Gn , a
3n−10

7→ x
3n−10

, (7.13)

and the former as pn, defined as

pn : Ln → Kn , a
3n−10

7→ X
n(n−3)

2

. (7.14)

Importantly, these maps are rational and for n ≥ 5, they are generally not invertible.
Instead, one can find that the number of local inverses increases with increasing n.
Finally, the Gram conditions provide a map between the space of all planar
Mandelstam variables and the (3n− 10)-dimensional Gram determinant surface. We
denote this map by hn

hn : Kn → Gn , X
n(n−3)

2

7→ x
3n−10

. (7.15)

This map is defined by imposing a certain number of Gram conditions and therefore
we are unable to write hn explicitly. That being said, the solutions to these
constraints define possible inverse functions, which we can use to perform
push-forwards of differential forms from Kn to Gn.

7.2.3 Comparing canonical forms

We can compare the canonical forms of momentum amplituhedra and kinematic
associahedra on these spaces. We start by comparing the forms on the little group
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invariant space, Ln, by pulling the canonical forms of our positive geometries back to
this space. Following this, we push the differential forms forward to the Gram
determinant surface, Gn, inside of Kn. Starting from the canonical form of the
momentum amplituhedron Ωn,k

2, defined on On, we pull it back through the map fn
defining a differential form on the little group invariant space Ln. We observe in the
examples we have studied, that the differential form has the common property that
the term with the highest degree in dti is independent of our parameterization of Ln.
In particular it takes the form

f∗nΩn,k = µn ∧ ωn,k + ..., (7.16)

where

µn = µ
(
P
n−1
)

=
n∑
i=1

(−1)n−id log t1 ∧ d log t2 ∧ ... ∧ d log ti ∧ ... ∧ d log tn, (7.17)

is the canonical form on projective space RPn−1. Here the overline means that the
term is absent and the ellipses in (7.16) denotes terms of lower form-degree in dti.
These terms depend on how we parameterize Ln and not projectively well defined.
We therefore disregard those terms in the following3. We note, that since the
deg Ωn,k = (2n− 4) (as discussed in details in chapter 6) and deg µn = (n− 1), the
degree of ωn,k is simply degωn,k = (n− 3). We refer to ωn,k as the reduced
momentum amplituhedron form and it is manifestly little group invariant. At the end
of this chapter in section 7.4, we discuss a recursive method for obtaining the reduced
momentum amplituhedron form, based on the inverse-soft construction of [84].
Bringing our attemption to the kinematic associahedron form (5.7), here denoted ω̃n,
we can pull ω̃n back to the little group invariant space Ln using the map pn, which
defines the following form:

ωn = p∗nω̃n. (7.18)

After performing this pull-back of the associahedron form we find that the resulting
form ωn on Ln is equal to the sum over all k-sectors of the reduced momentum
amplituhedron form, as follows

ωn =
n−2∑
k=2

ωn,k. (7.19)

Therefore we can write that on the little group invariant space Ln: the (pull-back of
the) differential form for the full msYM scattering amplitude Ωn and the (pull-back of

2Note, that since we will not make use of the volume function of the previous chapter, so we will
in the following denote the non-boldface Ωn,k as the volume form of the momentum amplituhedron.

3This choice represents a loss of information about the momentum amplituhedron form.
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Figure 7.2: Relations between the kinematic spaces and the various differential forms
on them defined in this section. We highlight the canonical forms of the momentum
amplituhedron Ωn,k and of the associahedron ω̃n.

the) differential form for the bi-adjoint φ3 scattering amplitude, ω̃n are related in the
following way

Ωn =
n−2∑
k=2

Ωn,k
f∗n−→ µn ∧

n−2∑
k=2

ωn,k = µn ∧ ωn
p∗n←− µn ∧ ω̃n . (7.20)

This relation is illustrated in a diagrammatic form on Figure 7.2, where we have
denoted the canonical form for the momentum amplituhedron and for the kinematic
associahedron in red. As will be illustrated in explicit examples in the following, the
relation (7.20) tells us how the singularity structure of the momentum amplituhedron
and the kinematic associahedron are related. In particular, the factorization channels
given by the vanishing of planar Mandelstam variables are the same, as can be seen
from the discussions of section 5.6 and section 6.3.

The reduced momentum amplituhedron form ωn,k defined in (7.19) can be pushed
forward to Gn using the map gn as follows

νn,k = (gn)∗ ωn,k. (7.21)
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The same is true for the kinematic associahedron form ω̃n, which is pushed forward
using the Gram determinant map hn to define

νn = (hn)∗ ω̃n, (7.22)

which is also illustrated in Figure 7.2. In all the examples we have checked, we observe
the following

n−2∑
k=2

νn,k =

{
νn forn = 4

2νn forn > 4.
(7.23)

The intriguing factor of 2 in (7.23) can be explained as follows: let #gn and #hn)
be the degree of the maps gn (7.13) and hn (7.15), respectively, i.e. the number of
solutions to the equations y = gn(x) and y = hn(x). Then the formula (7.23) can be
rewritten as

n−2∑
k=2

νn,k =
#gn
#hn

νn. (7.24)

We have explicitly checked for n = 4, 5, 6, 7, where we get4: (#g4,#h4) = (1, 1),
(#g5,#h5) = (2, 1), (#g6,#h6) = (4, 2) and (#g7,#h7) = (8, 4). We believe that
this pattern extends beyond n = 7. We postpone a more detailed discussion on (7.24)
until the next section when we consider explicit examples.

7.3 Examples

To illustrate the discussion of the previous section we work out some examples for low
n and provide explicit definitions of maps and forms where applicable.

7.3.1 Four-point amplitudes

As we have seen, the simplest kinematic associahedron and momentum amplituhedron
are the n = 4 cases. The momentum amplituhedron has only one k sector for n = 4,
and therefore there is only one momentum amplituhedron geometry to consider. The
canonical form of M(4)

4,2 found in (6.74), written explicitly on O4, is simply

Ω4,2 = d log
〈12〉
〈13〉

∧ d log
〈23〉
〈13〉

∧ d log
〈34〉
〈13〉

∧ d log
〈14〉
〈13〉

. (7.25)

4Depending on the choice of basis for G7 we also find (#g7,#h7) = (16, 8), but their ratio is still
2.
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The kinematic associahedron, discussed in section 5.3, has the following canonical form
defined on K4

ω̃4 = d log
X13

X24

= d log
s12

s23

. (7.26)

We have defined the map f4 : L4 7→ O4 by removing the little group scaling and
we parameterize the remaining λ and λ̃ matrices using the extended Fock-Goncharov
variables as follows

λ =

(
0 t2 t3 t4
−t1 0 t3 t4(1 + a1)

)
, λ̃ =

(
t−1
1 a2 −t−1

2 a2 t−1
3 a2 0

t−1
1 (1 + a1) −t−1

2 0 t−1
4

)
,

(7.27)
where we have fixed λ̃ by a particular choice of SL(2) in (7.27). We define the map
p : L4 7→ K4, taking the form

p4 : s12 = 〈12〉[12] = a1a2, s23 = 〈23〉[23] = a2. (7.28)

Finally, since there is no Gram matrix for n = 4, we have G4 = K4 and h4 = I4 is
trivial, implying that g4 = p4 and ν4 = ω̃4. We pull Ω4,2 back to L4 through the map
f4 as follows

f∗4 Ω4,2 = µ4 ∧ d log a1 ←→ ω4,2 = d log a1 = d logR1234, (7.29)

where µ4 is defined in (7.17) and the cross-ratio R1234 in (7.8). We compare the above
differential form to the pull-back of ω̃4 using the map p4 and observe that

ω4 = p∗4ω̃4 = d logR1234, (7.30)

on the little group invariant space L4. Here we verify the result (7.20) for n = 4

ω4 = ω4,2. (7.31)

We can also compare on the space G4 = K4. Since the map p4 is invertible, pushing the
form ω4,2 forward via p4, simply returns the kinematic associahedron form as follows

ν4,2 = (p4)∗ d logR1234 = d log
s12

s23

= ν4. (7.32)

7.3.2 Five-point amplitudes

There are two distinct momentum amplituhedron geometries for n = 5 labeled k = 2
and k = 3. Their canonical forms are

Ω5,2 = −d log
〈13〉
〈14〉

∧ d log
〈34〉
〈14〉

∧ d log
〈45〉
〈14〉

∧ d log
〈51〉
〈14〉

∧ d log
〈12〉
〈13〉

∧ d log
〈23〉
〈13〉

,

(7.33)
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and

Ω5,3 = −d log
[13]

[14]
∧ d log

[34]

[14]
∧ d log

[45]

[14]
∧ d log

[51]

[14]
∧ d log

[12]

[13]
∧ d log

[23]

[13]
. (7.34)

On the other hand, the canonical form for the kinematic associahedron is found in
(5.9) to be

ω̃5 = d log
X13

X24

∧ d log
X13

X14

+ d log
X13

X25

∧ d log
X35

X24

. (7.35)

We define the map f5 : L5 7→ O5 by removing the little group scaling and choosing
an extended Fock-Goncharov parameterization of L5 depending on (3 × 5 − 10) = 5
variables. We choose the manifestly parity symmetric parameterization of cross-ratios
and Mandelstam variables with the parameters {R1234, R1345, R̄1234, R̄1345, s12} allowing
us to write

λ =

(
0 t2 t3 t4 t5
−t1 0 t3 t4(1 +R1234) t5(1 +R1234 +R1234R1345)

)
, (7.36)

and the parameterization of λ̃ can be found in (B.1) in Appendix B.
The map p5 : L5 → K5 can be found by calculating the minors of the matrices

(7.36) and (B.1). The map p5 is rational and not invertible. Instead, we can find two
local inverses taking the form

p−1
5,± :

R1234 = s12 s23+s34 s23−s34 s45−s12 s51+s45 s51±
√

∆
2s23(s23−s45−s51)

,

R1345 = s12 s23−s34 s23+s34 s45−s12 s51+s45 s51∓
√

∆
2s34 s51

,

R̄1234 = s12 s23+s34 s23−s34 s45−s12 s51+s45 s51∓
√

∆
2s23(s23−s45−s51)

,

R̄1345 = s12 s23−s34 s23+s34 s45−s12 s51+s45 s51±
√

∆
2s34 s51

,

(7.37)

where the two solutions are distinguished by the sign in front of the square root of

∆ = (s23 s34 + s12(s23 − s51) + s45(s51 − s34))2 − 4s12 s23 s34(s23 − s45 − s51) . (7.38)

Interestingly the conjugation operation, interchanging R and R̄, exchanges the sign in
front of the

√
∆:

R̄ijkl = Rijkl|√∆→−
√

∆ . (7.39)

As in the n = 4 case, no Gram determinant conditions arise for n = 5 and we have
that G5 = K5, g5 = p5, and h5 = I5 is the identity map. This implies that ν5 = ω̃5.

Starting from the kinematic associahedron A5, we pull the canonical form ω̃ (7.35)
back to L5 using the map p5 to obtain

ω5 = p∗5ω̃5 = d logR1234 ∧ d logR1345 + d log R̄1234 ∧ d log R̄1345. (7.40)
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We pull the momentum amplituhedron canonical forms Ω5,2 (7.33) and Ω5,3 (found in
(7.34)) back to L5 as well using f5 to obtain

f∗5 Ω5,2 = µ5 ∧ d logR1234 ∧ d logR1345 → ω5,2 = d logR1234 ∧ d logR1345 ,
(7.41)

f∗5 Ω5,3 = µ5 ∧ d log R̄1234 ∧ d log R̄1345 +O(d3t) → ω5,3 = d log R̄1234 ∧ d log R̄1345 .
(7.42)

We note, that when pulling Ω5,3 (found in (7.34)) back to L5 the resulting form contains
several terms of lower form degree in dti, which we have neglected, while the pull-back
of Ω5,2 (7.33) contains only the top-degree form in dti.

When comparing the momentum amplituhedron forms to the kinematic
associahedron form on L5, we observe

ω5 = ω5,2 + ω5,3, (7.43)

which is exactly the structure we expect from (7.20).

We can only construct one Gram matrix for n = 5 whose determinant is trivially
0 on support of momentum conservation. This means, that there are no non-trivial
Gram determinant conditions. We therefore push the forms ω5,k forward directly to the
space of Mandelstam variables, K5, the native space of the kinematic associahedron,
using the map p5. As per the definition of the push-forward in section 4.2, we need to
pull ω5,k back using the two solutions (7.37) and add the resulting forms. Here, the
square roots present in the inverse maps cancel in the sum and we get the answer

ν5,2 = (p5)∗ω5,2 = ω̃5ν5,3 = (p5)∗ω5,3 = ω̃5. (7.44)

verifying the statement of (7.23) since

ν5,2 + ν5,3 = 2ω̃5 = 2ν5. (7.45)

7.3.3 Six-point amplitudes

The momentum amplituhedron for n = 6 has three distinct k sectors, each contributing
the superamplitude, namely k = 2, k = 3, and k = 4. The two sectors k = 2 and
k = 4 are particularly simple and can be written on O6 as follows

Ω6,2 = −d log
〈14〉
〈15〉

∧ d log
〈45〉
〈15〉

∧ d log
〈56〉
〈15〉

∧ d log
〈61〉
〈15〉

∧ d log
〈13〉
〈14〉

∧ d log
〈34〉
〈14〉

∧ d log
〈12〉
〈13〉

∧ d log
〈23〉
〈13〉

, (7.46)
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and

Ω6,4 = −d log
[14]

[15]
∧ d log

[45]

[15]
∧ d log

[56]

[15]
∧ d log

[61]

[15]
∧ d log

[13]

[14]
∧ d log

[34]

[14]

∧ d log
[12]

[13]
∧ d log

[23]

[13]
. (7.47)

The momentum amplituhedron form in the k = 3 sector is significantly more involved,
consisting of the sum of three BCFW terms [92, 93]. The explicit expression can be
found in [84] and we provide a method to construct the BCFW differential forms using
the inverse-soft construction in the very end of this chapter in section 7.4. For now, it
will be sufficient to recall that Ω6,3 can be constructed as follows

Ω6,3 = Ωγ2

6,3 + Ωγ4

6,3 + Ωγ6

6,3 = Ωγ1

6,3 + Ωγ3

6,3 + Ωγ5

6,3, (7.48)

where Ωγi
6,3 is the BCFW term with vanishing minor γi := (i, i + 1, i + 2) as in (6.87)

of section 6.6, when projected through constant (Y, Ỹ ).
The canonical form of the kinematic associahedron A6 on K5 is found in [43] to be

ω̃6 = d log
X24

X13

∧ d log
X14

X46

∧ d log
X15

X46

+ d log
X26

X13

∧ d log
X36

X13

∧ d log
X46

X35

−

−d log
X26

X15

∧ d log
X25

X35

∧ d log
X24

X35

+ d log
X24

X13

∧ d log
X46

X35

∧ d log
X26

X15

. (7.49)

In order to define the map f6 : L6 7→ O6 we employ the extended Fock-Goncharov
parameterization for (λ, λ̃), choosing 3 × 6 − 10 = 8 parameters to be the cross-
ratios {R1234, R1345, R1456}, the cross-ratios {R̄1234, R̄1345, R̄1456}, together with the two
Mandelstam variables {s12, s23}. We obtain the following representation for λ as per
(7.7):

λ =

(
0 1 1 1 1 1
−1 0 1 1 +R1234 1 +R1234(1 +R1345) 1 +R1234(1 +R1345(1 +R1456))

)
.

(7.50)

The representation for λ̃ is too cumbersome to quote explicitly, but it is found by
imposing orthogonality on λ and fixing the SL(2) invariance similarly to the two
previous examples. With the extended Fock-Goncharov representation at hand, it is a
straight forward exercise to construct the maps g6 : L6 7→ G6 and p6 : L6 7→ K6 using
sij = 〈ij〉[ij] and substituting the explicit forms of λ and λ̃.
For n = 6 the Gram determinant surface is no longer trivial and we are required to
choose a set of Mandelstam variables to parameterize the surface G6. our choice is
{s12, s23, s34, s45, s56, s61, s123, s234}. To define the push-forward through the map g6,
we need to first invert it, leading to four local solutions, a single of which is quoted
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here and the rest can be reconstructed by changing signs in the expression

g−1
6,1 :

R
(1)
1234 = s12s23+s23s34−s23s56−s34s123−s12s234+s123s234−

√
∆1

2s23(s23+s56−s123−s234)

R
(1)
1345 = −s12s23+s23s34+s23s56−s34s123+s12s234−s123s234−

√
∆1

2s34(s56+s61−s234)
×

× s23s56+s45s56−s56s61+s61s123−s45s234−s123s234−
√

∆2

2(s23s56−s123s234)

R
(1)
1456 = −s23s56+s45s56+s56s61−s61s123−s45s234+s123s234−

√
∆2

2s45s61

, (7.51)

with
R̄

(1)
ijkl = R

(1)
ijkl|√∆1↔−

√
∆1,
√

∆2↔−
√

∆2
, (7.52)

where the arguments of the square roots, ∆1 and ∆2, are written explicitly in
Appendix C. The three remaining inverses of g6 can be obtained by exchanging the
signs in front of the square roots

R
(2)
ijkl = R

(1)
ijkl|√∆1↔−

√
∆1
, R

(3)
ijkl = R

(1)
ijkl|√∆2↔−

√
∆2
, (7.53)

R
(4)
ijkl = R

(1)
ijkl|√∆1↔−

√
∆1,
√

∆2↔−
√

∆2
. (7.54)

When solving the Gram conditions in order to define the map h6, we reduce the nine-
dimensional space K6 to the eight-dimensional surface G6. There is exactly one Gram
determinant condition in four dimensions and we choose to solve for the variables s345,
which would leave us with the set of variables defined above. The map has two local
inverses

h−1
6,± : s345 =

Γ±
√

∆1∆2

2s14Q
, (7.55)

where ∆1 and ∆2 are the same as before, s14 = s23 + s56 − s123 − s234 and
Q = s23s56 − s123s234. The explicit form for Γ can be found in Appendix C in (C.3).

We are now ready to compare forms on the little groups scaling invariant space L6:
for the k = 2 and k = 4 sectors the pull-backs of Ω6,2 and Ω6,4 on L6 takes the very
simple form

f∗6 Ω6,2 = µ6 ∧ ω6,2 −→ ω6,2 = dlogR1234 ∧ dlogR1345 ∧ dlogR1456 , (7.56)

f∗6 Ω6,4 = µ6 ∧ ω6,4 +O(d4t) −→ ω6,4 = dlogR̄1234 ∧ dlogR̄1345 ∧ dlogR̄1456 . (7.57)

For k = 3, we can use the inverse-soft construction, to be reviewed in the next section,
to find the following compact expression for ω6,3

f∗6 Ω6,3 = µ6 ∧ ω6,3 +O(d4t) −→ ω6,3 = d logR
(234)

5612̂
∧ d logR

(234)

152̂4̂
∧ d logR

(234)

12̂3̂4̂

+ d logR
(456)

1236̂
∧ d logR

(456)

314̂6̂
∧ d logR

(456)

14̂5̂6̂

+ d logR
(612)

3456̂
∧ d logR

(612)

546̂2̂
∧ d logR

(612)

56̂1̂2̂
,

(7.58)
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where Rγ
ijkl are the cross-ratios of angle brackets, defined in (7.8). The label γ refers

to the particular BCFW triangulation cell in the positive Grassmannian (see (7.48)
for details), and hatted particle labels î in Rγ are defined by λα

î
=
∑

j∈γ λ
α
j [ji]. When

pulling the kinematic associahedron form (7.49) back to the little group space, L6

using the map p6 we obtain

ω6 = p∗6 ω̃6 = ω6,2 + ω6,3 + ω6,4 . (7.59)

The space of Gram conditions, Gn, is in the case of n = 6 not equal to the full space
of Mandelstam variables, and therefore the map h6 is no longer trivial. There are two
solutions to the inverse of the map h6 as recorded in (7.55). We push the kinematic
associahedron form forward to surface G6

ν6 = (h6)∗ω̃6. (7.60)

While for the g6 map, we find four local inverses in (7.51). We push the reduced
momentum amplituhedron form ω6,k forward to the Gram determinant surface G6, as
follows

ν6,k = (g6)∗ω6,k, k = (2, 3, 4). (7.61)

Intriguingly, the differential forms ν6,k have non-canonical behavior, that is, they
have certain residues on zero-dimensional boundaries that no longer yield ±1. We
write the explicit form of ν6,2, as well as provide a more detailed discussion of its
non-logarithmic behavior in Appendix D. Summing the reduced momentum
amplituhedron forms for the three k sectors pushed forward to G6, we verify the full
reduced momentum amplituhedron form to be proportional to the push-forward of
the kinematic associahedron form to the same surface, as follows

ν6,2 + ν6,3 + ν6,4 = 2ν6 . (7.62)

The factor of 2 above stems from a property of the push-forwards and not of the
specific differential forms involved. To make this fact clear, we rewrite (7.62) as

(g6)∗p
∗
6 ω̃6 = 2(h6)∗ω̃6 . (7.63)

Since G6 is a subspace of K6 found by solving a particular Gram determinant condition
with respect to the Mandelstam variable s345, if we take β to be an arbitrary differential
form on K6 which does not depend on s345, we see that trivially

(h6)∗ β = #h6 β, (7.64)

and

(g6)∗p
∗
6 β = #g6 β, (7.65)
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where #g6 = 4 and #h6 = 2 counts the degree of g6 and h6, respectively. Combining
the equations (7.64) and (7.65) we obtain

(g6)∗p
∗
6 β =

#g6

#h6

(h6)∗ β = 2(h6)∗ β. (7.66)

The statement (7.66) hold in general for all differential forms, including those that
do depend on s345. We can verify this by first observing that the four solutions g−1

6,i

are related by a Z2 ×Z2 symmetry, where each discrete Z2 changes the sign of one of
the square roots, and the symmetry group double-covers the two solutions h−1

6,±. Since
the Gram determinant condition is automatically satisfied on L6, the double-covering
of h−1

6,± implies that one of the local inverses h−1
6,± corresponds to the composition

p6 ◦g−1
6,1 = p6 ◦g−1

6,4 and the other to p6 ◦g−1
6,2 = p6 ◦g−1

6,3. This then implies that (7.66)
must hold for all differential forms β on K6.

7.3.4 Beyond n = 6

We have verified that (7.20) and (7.23) is satisfied for n = 7. In particular, we obtain

ω7 = ω7,2 + ω7,3 + ω7,4 + ω7,5 , (7.67)

ν7,2 + ν7,3 + ν7,4 + ν7,5 = 2ν7 . (7.68)

Since the explicit forms of the differential forms present in these relations are very
involved, and not very illuminating on their own, we refrain from representing them
directly. We conjecture that (7.20) and (7.23) extends to all n.

We observe the following for the reduced momentum amplituhedron forms: for all
n, the k = 2 and k = n− 2 reduced momentum amplituhedron form have very simple
structure, namely

ωn,2 =
n−3∧
i=2

dlogR1 i i+1 i+2 , ωn,n−2 =
n−3∧
i=2

dlogR̄1 i i+1 i+2 . (7.69)

These formulae are easily proven using the inverse-soft construction which we will
review presently wherein both cases particle 2 is taken to be the inverse-soft particle.

7.4 The Inverse-Soft Construction for ωn,k

In [40], we propose that the inverse soft construction described in [84] can be applied
to obtain the reduced momentum amplituhedron form. Starting from the reduced
form ω4,2 defined in (7.16), we recursively add inverse-soft particles to obtain reduced
forms for higher n and k. We review the inverse-soft construction in the following.
The BCFW construction of scattering amplitudes discussed in chapter 2 indicates
that a scattering amplitude can be written as a sum of BCFW terms, each of which
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can be represented by an affine permutation corresponding to a cell in the positive
Grassmannian as reviewed in section 3.3; see also [72]. A BCFW term for n ≥ 4 is
labeled by an affine permutation σ and is said to be inverse-soft (IS) constructable if
there exists an i ∈ [n] = {1, 2, ..., n} such that

σ(i− 1) = i+ 1 mod n , or σ(i+ 1) = i− 1 mod n , (7.70)

In the first case, we say i label a helicity-preserving IS particle and in the second
a helicity-increasing IS particle, we will discuss the former case first. In [84] it was
argued that the canonical form can be decomposed as

Ωσ(1, ..., i, ..., n) = Ωσ̂(1, ..., î− 1, î+ 1, ..., n) ∧ Ω3,2(i− 1, i, i+ 1), (7.71)

where we shift the two particles adjacent to the IS particle by

λ̃
î−1

= λ̃i−1 +
〈i i+ 1〉
〈i− 1 i+ 1〉

λ̃i , λ̃
î+1

= λ̃i+1 +
〈i− 1 i〉
〈i− 1 i+ 1〉

λ̃i , (7.72)

leaving λ’s unshifted and taking

Ω3,2(i− 1, i, i+ 1) = d log
〈i− 1 i〉
〈i− 1 i+ 1〉

∧ d log
〈i i+ 1〉
〈i− 1 i+ 1〉

. (7.73)

Alternatively, if σ(i + 1) = i − 1 in (7.70), then i is said to be helicity-increasing IS
particle and the canonical form is decomposed as follows

Ωσ(1, ..., i, ..., n) = Ωσ̂(1, ..., î− 1, î+ 1, ..., n) ∧ Ω3,1(i− 1, i, i+ 1), (7.74)

where

λ
î−1

= λi−1 +
[i i+ 1]

[i− 1 i+ 1]
λi , λ

î+1
= λi+1 +

[i− 1 i]

[i− 1 i+ 1]
λi , (7.75)

where we leave λ̃ unshifted and take

Ω3,1(i− 1, i, i+ 1) = d log
[i− 1 i]

[i− 1 i+ 1]
∧ d log

[i i+ 1]

[i− 1 i+ 1]
. (7.76)

In both cases, σ̂ is an affine permutation on [n] not containing i, whose precise
definition depends on whether it is helicity preserving or increasing and quoted
in [72]. By construction, we can write an expression for Ωσ as a logarithmic
differential form on canonical coordinates of the positroid cell associated with the
particular permutation as follows

Ωσ(1, 2, ..., n) =
2n−4∧
j=1

d logαj. (7.77)
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The arguments of the d log’s, αj, are simply the canonical coordinates for the
particular positroid cell Γσ labeled by σ discussed in section 3.3. Let us study the
little group action on the canonical coordinates. Recall the representation of the
momentum amplituhedron for n = 4, k = 2 in (7.25). Here, we identify the canonical
coordinates as scaling according to

α1 =
〈12〉
〈13〉

∼ t2
t3
, α2 =

〈23〉
〈13〉

∼ t2
t1
, α3 =

〈34〉
〈13〉

∼ t4
t1
, α4 =

〈14〉
〈13〉

∼ t4
t3
. (7.78)

It is clear in the above that for all i ∈ [4], there is a canonical variable αj such
that either αj or 1/αj scales like ti/ti+1 (where t4+1 = t1). For instance, for i = 1,
the canonical coordinate scaling as t1/t2 is α−1

2 . This is a general property of IS-
constructable canonical forms, which extends beyond n = 4. In particular, for any
canonical form Ωσ with canonical variables {αj}2n−4

j there exists for all i ∈ [n] at least

one canonical variable α̃i ∈ {αj}2n−4
j=1 such that either α̃j or α̃−1

j scales as ti/ti+1. Using
this fact, we construct the reduced momentum amplituhedron forms by combining
(7.76), (7.74) and (7.71) into a single equation as follows

Ωσ(1, ..., i, ..., n) = Ωσ̂(1, ..., î− 1, î+ 1, ..., n) ∧ Ω3,k̂(1− i, i, i+ 1), (7.79)

where k̂ = 1 or k̂ = 2, and we define

Ω3,k̂ = d log xi ∧ d log yi, (7.80)

where we take xi and yi as follows{
xi = [i−1 i]

[i−1 i+1]
and yi = [i i+1]

[i−1 i+1]
, for k̂ = 1 ,

xi = 〈i−1 i〉
〈i−1 i+1〉 and yi = 〈i i+1〉

〈i−1 i+1〉 , for k̂ = 2 .
(7.81)

The form Ωσ̂ can be represented as a wedge product of canonical coordinates. We
denote the canonical coordinates for Ωσ̂ as {βj}2n−6

j=1 , and there exists a coordinate

β̃ ∈ {βj}2n−6
j=1 such that

ωσ(1, . . . , i, . . . , n) = (−1)n+i+k′d log

(
xi
yi
β̃s
)
∧ ωσ̂(1, . . . , î− 1, î+ 1, . . . , n) . (7.82)

We fix β̃ and s ∈ {±1} in (7.82) by the requirement that the argument of the first

logarithm,
(
xi
yi
β̃s
)

, is little group scaling invariant. In particular, due to the fact that
xi
yi
∼ ti+1

ti−1
for k′ = 1 and xi

yi
∼ ti−1

ti+1
for k′ = 2, we know from the discussion laid out

above that it is always possible to find such a β̃ that cancels the scaling of xi
yi

5.

5Note that Ωσ̂ does not depend on particle i meaning that at least one canonical variable will
scale as ti−1

ti+1
or ti+1

ti−1
.
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We can fix all reduced momentum amplituhedron forms in the MHV sector to have
+1 coefficient by choosing particle i = 2 to be the IS particle and redefining Ωn to
contain an additional factor of (−1)n. This is the origin of the signs in (7.33) and
(7.46) that distinguishes them from their counterparts in chapter 6. Fixing the sign
of the MHV reduced form in this way also provides a useful prescription for fixing the
sign ambiguity in the definition of the canonical form of the kinematic associahedron
due to the map between them.



Chapter 8

Momentum Amplituhedron &
Kleiss-Kuijf Relations

In this section we review how the Kleiss-Kuijf (KK) relations discussed in section 2.4
emerge geometrically from the momentum amplituhedron and the kinematic
associahedron, respectively. We shall see how the KK relations emerge from purely
geometrical statements about oriented sums of positive geometries, discussed in
section 4.3. In the case of the momentum amplituhedron, we exploit the fact that it
is defined on the space of spinor helicity variables and therefore is not restricted to a
particular external ordering. We shall review how the KK relations emerge by way of
homology, and in particular discuss two different approaches: one based on
identifying boundaries along rays pointing in opposite directions, suitable for
polytopal geometries such as the momentum amplituhedron in the MHV and MHV
sectors and kinematic associahedra, and another approach, based on poset intervals,
which is relevant beyond the MHV/MHV sectors.

8.1 Non-Standard Orderings of the Momentum

Amplituhedron

In the previous chapters, when discussing the momentum amplituhedron we have
restricted ourselves to standard ordering of external particle momenta. As we have
stressed, this is not a necessary restriction as spinor-helicity variables have no preferred
color ordering. At tree-level, the partial amplitudes in msYM for a given ordering,
denoted by σ ∈ On ' Sn/Zn, can be obtained from the standard ordering by relabeling
the external momenta, or as in our case, the spinor helicity variables

An,k[σ(1), σ(2), ..., σ(n)] = An,k[1, 2, ..., n] λi→λσ(i),λ̃i→λ̃σ(i)
. (8.1)
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This relabeling can be performed on the momentum amplituhedron by modifying the
winding space (7.3) according to

W(σ)
n,k = {(λi, λ̃i) : (λσ(i), λ̃σ(i)) ∈ Wn,k}, (8.2)

while keeping the subspace Vn,k fixed, leading to

M(σ)
n,k := Vn,k ∩W(σ)

n,k . (8.3)

Similarly, the canonical form of the momentum amplituhedron of a non-standard color
ordering is just the canonical form of the momentum amplituhedron of the standard
color ordering with spinor helicity variables relabeled according to the non-standard
color ordering as follows

Ω
(σ)
n,k = Ω

(12...n)
n,k

∣∣∣∣
λi→λσ(i),λ̃i→λ̃σ(i)

. (8.4)

Having relabeled the external data according to the ordering of interest, it is
straightforward to extract the partial color-ordered amplitude

An,k[σ(1), σ(2), ..., σ(n)] = δ(4)(p)d4p ∧ Ω
(σ)
n,k

∣∣∣∣
dλ→η,dλ̃→η̃

. (8.5)

An interesting fact about momentum amplituhedra of different orderings, stemming
from this definition, is that the boundary stratification of the momentum
amplituhedron of a given ordering M(σ)

n,k is combinatorically isomorphic to the

standard ordered momentum amplituhedron Mn,k. In particular, the
(
n
k

)
vertices

labeled by the positive Grassmannian are shared among all particle orderings. We
can therefore focus on momentum amplituhedra around a single vertex when
comparing different orderings.

8.2 Simplicial realization of KK relations for MHV

Amplitudes

Armed with a definition of the momentum amplituhedron for non-standard orderings,
we are equipped to interpret the KK relations as geometric identities. For MHV
amplitudes the proper dimensional subspace Vn,2 (7.1) is defined in terms of (2n−4) y
variables and 4 ỹ variables. On support of momentum conservation, we can fix the four
ỹ variables in terms of the remaining y variables. This means that the subspace Vn,2 is
only dependent on λ. We obtain the MHV momentum amplituhedra by intersecting
this subspace with winding spaces of all different particle orderings, Wσ

n,k. In the
following we make use of the cyclic identity to bring all external orderings to the form
where σ(1) = 1, ensuing that all winding spaces contain the condition that 〈1i〉 > 0,
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and we can parameterize λ as an element of G+(2, n) in the coordinate patch where
〈12〉 = 1. This provides a natural parameterization of λ, and therefore Vn,2, using the
canonical coordinates, αi of the positive Grassmannian G+(2, n) as follows

Vn,2 : λ =
(

1
∑n−2

i=1 α2i

(∑n−3
i=1 α2i

)
α2(n−2)−1

(∑n−4
i=1 α2i

)
α2(n−3)−1 . . . α2α3 0

0 1 α2(n−2)−1 α2(n−3)−1 . . . α3 α1

)
, (8.6)

which can be obtained from the MathematicaTM package positroids [73], as discussed
in section 3.3. This choice ensures that for the collection On = {1, σ(2), σ(3), ..., σ(n)}
for σ ∈ Sn−1, we have that 〈1i〉 ≥ 0 if the α2m−1 are all positive for all m ∈ N.
Since we are interested in how the geometries of the different orderings compare, we
can neglect the odd α’s since they are all positive for all orderings. This cuts the
dimensionality of the space we need to study in half and thus we can focus on Rn−2

of even α’s. The boundaries of the k = 2 momentum amplituhedron are given by the
equations 〈ij〉 = 0 for 1 < i < j ≤ n and define

(
n−1

2

)
co-dimension-one hyperplanes

in Rn−2 passing through the origin of the space. The hyperplanes are simply

〈ij〉 = 0 ⇔
n−i∑

l=n−j+1

α2l = 0 (for 1 < i < j ≤ n). (8.7)

We denote this set of co-dimension-one hyperplanes by Hn. The hyperplanes cut our
R

(n−2) space into (n − 1)! distinct regions called positive sectors. These positive
sectors can be interpreted as cones spanned by (n − 2) rays and they have (n − 2)
hyperplane facets as their boundaries. Each positive sector is denoted by c[σ] for
each σ ∈ On. The set of all cones is the complete fan of R(n−2). As a curious side
note, we observe that the set of all positive sectors in R

(n−2) are dual to the
permutahedron of order (n − 1) [94]: the (n − 2) polytope whose vertices encode all
the permutations of (n− 1) symbols, and each edge corresponds to a transposition of
two elements relating two permutations. Here each positive sector is dual to a
permutation, i.e a vertex of the permutahedron and each ray is dual to an edge of
the permutahedron. This means that constructing the positive sectors from the
α-parameterization of G+(2, n) yields a new explicit realization of the
permutahedron.

For n = 4 and n = 5, the cones are 2 and 3 dimensional, respectively, and we can
sketch them explicitly. This allows us to immediately identify the geometric
interpretation of the KK relations as different combinations of positive sectors as we
shall see in the following. We find that the KK relations appear as collections of
positive sectors such that their oriented sums do not have any vertices in their
boundary stratifications, and the resulting geometries are no longer positive
geometries.
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Four particle MHV Amplitudes

For the n = 4 momentum amplituhedron, only the MHV sector exists. We choose the
parameterization of Vn,k in terms of the canonical coordinates on G+(4, 2) as follows

λ =

(
1 α2 + α4 α2α3 0
0 1 α3 α1

)
. (8.8)

The intersection with winding spaces coming from different ordering yields the
positivity conditions sketched in Table 8.1.

(1234) (1243) (1324) (1342) (1423) (1432)

〈12〉 = 1 + + + + + +
〈13〉 = α3 + + + + + +
〈14〉 = α1 + + + + + +
〈23〉 = α3α4 + + - - + -
〈24〉 = α1(α2 + α4) + + + - - -
〈34〉 = α1α2α3 + - + + - -

Table 8.1: Positivity conditions coming from W(σ)
4,2 for each ordering σ ∈ O4.

As can be seen from Table 8.1, all odd α’s are positive for all orderings and are
thus irrelevant when comparing the different orderings in the same space. We
consider all momentum amplituhedra on the subspace parameterized by (α2, α4)
defined by taking α1 = α3 = 1. The remaining positivity conditions are sketched in
Table 8.2. The positivity conditions of Table 8.2 clearly subdivides the R2-plane into

(1234) (1243) (1324) (1342) (1423) (1432)

〈23〉 ∼ α4 + + - - + -
〈24〉 ∼ α2 + α4 + + + - - -
〈34〉 ∼ α2 + - + + - -

Table 8.2: Positivity conditions on even α’s coming from W(σ)
4,2 for each ordering

σ ∈ O4.

six positive sectors as cones spanning from the shared vertex (α2, α4) = (0, 0). We
draw the cones in Figure 8.1. Before we embark on a discussion of how the KK
relations are realized in this space, we note how the permutahedron appears in
Figure 8.1. We identify a polytope dual to the fan of positive sectors associated with
G+(2, 4). This dual polytope is isomorphic to the permutahedron of order 3 and is
sketched in Figure 8.2.
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Figure 8.1: Positive sectors corresponding to four-particle MHV amplitudes for each
ordering.

Figure 8.2: The permutahedron of order 3 is dual to the complete fan of positive
sectors for the n = 4, k = 2 momentum amplituhedron

From Figure 8.1, the KK relations appear in a clear manner. For instance, the
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reflection identities (2.69) for n = 4 can be written as follows

A4,2[1, 4, 3, 2] = A4,2[1, 2, 3, 4], (8.9)

A4,2[1, 4, 2, 3] = A4,2[1, 3, 2, 4], (8.10)

A4,2[1, 2, 4, 3] = A4,2[1, 3, 4, 2]. (8.11)

From Figure 8.1, these identities emerge from the notion that the positive sectors with
the same color-ordering define positive geometries with identical canonical differential
forms as follows

Ω(c[1432]) = Ω(c[1234]) = d log(α4) ∧ d log(α2), (8.12)

Ω(c[1423]) = Ω(c[1324]) = d log(α2) ∧ d log(α2 + α4), (8.13)

Ω(c[1243]) = Ω(c[1342]) = d log(α2 + α4) ∧ d log(α4). (8.14)

Following the discussion of section 4.3, we can identify the cone c−[σ] with orientation
opposite to the cone c[σ]. Then according to the standard operation of reversing the
orientation of positive geometries (4.4), we have

Ω(c−[σ]) = −Ω(c[σ]), (8.15)

and we identify the oriented sums

c[1432]⊕ c−[1234], (8.16)

c[1423]⊕ c−[1324], (8.17)

c[1243]⊕ c−[1342], (8.18)

all of which have no zero-dimensional boundaries in their boundary stratifications.
Therefore the sum of their canonical forms all vanishes as follows

0 = Ω(c[1432]) + Ω(c−[1234]) = Ω(c[1432])− Ω(c[1234]), (8.19)

0 = Ω(c[1432]) + Ω(c−[1324]) = Ω(c[1432])− Ω(c[1324]), (8.20)

0 = Ω(c[1243]) + Ω(c−[1342]) = Ω(c[1243])− Ω(c[1342]). (8.21)

Following the same line of argument about other oriented sums of positive sectors we
can generate the remaining KK relations, namely the U(1) relations. We combine the
following positive sectors

c[1234]⊕ c[1324]⊕ c[1342], (8.22)

with the corresponding geometry sketched in Figure 8.3. The oriented sum of positive
sectors sketched in Figure 8.3 has no zero-dimensional boundaries and thus the sums
of their canonical forms vanish. On the level of scattering amplitudes, we can translate
this to

0 = Ω(c[1234]) + Ω(c[1324]) + Ω(c[1342])⇒
A4,2[1, 2, 3, 4] + A4,2[1, 3, 2, 4] + A4,2[1, 3, 4, 2] = 0, (8.23)
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Figure 8.3: The three positive sectors c[1234], c[1324], c[1342] appearing in the U(1)
decoupling relation (8.23).

which is nothing but one of the U(1) relations discussed in section 2.4. There are other
choices of three sectors that together cancel the shared vertex that is not related to
(8.22) through the reflection identity. For instance the geometry

c[1324]⊕ c[1234]⊕ c[1243], (8.24)

which has been sketched in Figure 8.4, does not have the common vertex as a boundary
and thus give rise to the U(1) identity

A4,2[1, 3, 2, 4] + A4,2[1, 2, 3, 4] + A4,2[1, 2, 4, 3] = 0. (8.25)

Another choice of three sectors giving rise to a U(1) relation is sketched on Figure 8.4
and given by

c[1234]⊕ c[1324]⊕ c[1243]. (8.26)

Again, this geometry has no zero-dimensional boundary and therefore the sum of
canonical forms just give rise to the other U(1) relation of section 2.4, namely

0 = Ω(c[1234]) + Ω(c[1324]) + Ω(c[1243])⇒
A4,2[1, 2, 3, 4] + A4,2[1, 3, 2, 4] + A4,2[1, 2, 4, 3] = 0. (8.27)

As a last example for n = 4, we consider a combination of three positive sectors which
only intersect on the vertex, in such a way that it vanishes as a boundary of the full
geometry. In Figure 8.5, we see the geometric realization of the U(1) relation

A4,2[1, 2, 3, 4] + A4,2[1, 3, 4, 2] + A4,2[1, 4, 2, 3] = 0, (8.28)
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Figure 8.4: The three positive sectors c[1234], c[1324], c[1243] appearing in the U(1)
decoupling relation (8.27).

as a consequence of the lack of zero dimensional boundaries in the oriented sum

c[1234]⊕ c[1342]⊕ c[1423]. (8.29)

Five particle MHV Amplitudes

The construction carries over naturally to the n = 5 MHV sector. We parameterize
the affine subspace V5,2, by

λ =

(
1 α2 + α4 + α6 (α2 + α4)α5 α2α3 0
0 1 α5 α3 α1

)
. (8.30)

Having chosen the parameterization of λ to be the canonical coordinates of G+(5, 2)
along with the cyclic invariance to fix leg 1 in position 1, all winding spaces for all
relevant orderings in O5 have 〈1i〉 > 0, as can be seen in the table in Appendix E.
The remaining positivity conditions can be embedded in R3. As before, each positive
sector associated with an ordering σ ∈ O5 are cones. Here, it is of course slightly
harder to see the cancellation by inspection, since the space is three dimensional. On
Figure 8.6 we see how the reflection identity

A5,2[1, 2, 3, 4, 5]− A5,2[1, 5, 4, 3, 2] = 0, (8.31)

is encoded in the oriented sum of the two geometries

c[12345]⊕ c−[15432], (8.32)
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Figure 8.5: The three positive sectors c[1234], c[1342], c[1423] appearing in the U(1)
decoupling relation (8.27).

which is a geometry lacking a zero-dimensional boundary. The reflection identity can
be constructed from (2.72) by taking nβ = 4. Likewise on Figure 8.7 we see how the
KK relation

A5,2[1, 2, 5, 4, 3]− A5,2[1, 2, 3, 4, 5] + A5,2[1, 3, 2, 4, 5] + A5,2[1, 3, 4, 2, 5] = 0, (8.33)

found from (2.72) by setting nβ = 2, is obtained from the oriented sum

c−[12543]⊕ c[12345]⊕ c[13245]⊕ c[13425], (8.34)

which, again does not contain a zero-dimensional boundary. Analogously we can write
oriented sums for the cases displayed in the figures Figure 8.8 and Figure 8.9, which
encode U(1) decoupling relations found in (2.72) by setting nβ = 1.

As with the four particle case, we obtain a representation of the permutahedron of
order 4, as dual to the complete fan of positive sectors of the n = 5, k = 2 momentum
amplituhedra in Figure 8.10. By considering all combinations of sectors the remaining
KK relations can be obtained, but they are slightly harder to see by inspection as we
are attempting to sketch three dimensional regions in two dimensions. Due to this
fact, and the fact that we cannot extend this analysis to KK relations for the n = 6
momentum amplituhedra since we can not sketch four dimensional geometries, we
need consider the geometries and vertex cancellation more abstractly.

8.3 Ray-based Homological Algorithm

In this section we develop the machinery to find all KK relations in the MHV sector
of the momentum amplituhedron for all n. This method exploits the simplicial nature
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Figure 8.6: The momentum amplituhedron geometry associated with the reflection
identity for five particle amplitudes. Here we obtain the geometry associated with
the oriented sums of cones c[15432] ⊕ c−[12345]. Since this geometry do not have
the vertex at (0, 0, 0) as a boundary of the combined geometry, we find the reflection
identity A5[12345] = A5[15432].

of the MHV sector and thus requires further generalization to encompass all helicity
sectors. We shall return to this point later, but for now be content with the fact that
the KK relations are independent of helicity and if we find the KK relations for one
helicity sector, we have found all possible KK relations for the given particle number.
The method is based on a generalization of the notions discussed in the previous
section and relies on the same cone decomposition. However, the actual identification
of regions without vertex-boundaries is generalized im such a way that it does not
depend on being represented on two-dimensional paper.

So how did we identify regions that have no vertices as boundaries? In the
two-dimensional examples sketched above in Figure 8.3, Figure 8.4, and Figure 8.5, if
two or more regions conspire to no longer produce a vertex as a zero-dimensional
boundary, that must imply that the one-dimensional dimensional boundaries add
together to infinite lines. Since we know that the one-dimensional boundaries of the
positive sectors are straight lines, this allows us to identify pairs of rays pointing in
opposite directions. This will be the fundamental guide pole for deriving an
algorithm to find KK relations, in the following.
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Figure 8.7: The momentum amplituhedron geometry associated with KK relation
A[12534] = A[12345] + A[13245] + A[13245] + A[13425]. This is associated with the
oriented sum of cones c−[12543] ⊕ c[12345] ⊕ c[13245] ⊕ c[13425] which generates a
geometry which does not contain any zero-dimensional boundary.

Rays Pointing in Opposite Directions

As described earlier, the set of
(
n−1

2

)
co-dimension-one hyperplanes in Rn−2 denoted

by Hn divides the space into (n− 1)! positive sectors. We enumerate each hyperplane

Hn = {hi}|Hn|i=1 with |Hn| =
(
n−1

2

)
. The intersection of (n − 3) hyperplanes defines

lines (some at infinity) and some of these will intersect at the origin. On each of
such lines, we define two unit vectors pointing in opposite directions along the line,
starting from the origin and refer to these as rays. There are exactly (2n−1 − 2) of
these rays defined by one-dimensional intersections of (n−3) hyperplanes, which as we
have seen for four and five points, coincides with the number of facets for the (n− 1)

permutahedron. We label the set of rays by Rn = {rj}|Rn|j=1 with |Rn| = (2n−1 − 2).
We cast each positive sector associated with an color-ordering σ as the positive span
of (n− 2) rays {rjσ1 rjσ2 , ..., rjσ(n−2)

} as follows

c[σ] = span
R≥0{rjσ1 rjσ2 , ..., rjσ(n−2)

}. (8.35)

We are interested in defining a homological algorithm to find all KK relations,
meaning that we should define proper homological operators and define our object by
way of differential forms1. To this end, we associate a formal one-form to each ray,

1We stress that in the following, any differential forms associated to positive sectors are not the
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Figure 8.8: The momentum amplituhedron geometry associated with the U(1)
decoupling identity A[13452] = −A[13425] − A[13245] − A[12345]. This is associated
with the oriented sum of cones c[13425]⊕c[13425]⊕c[13245]⊕c[12345] which generates
a geometry which does not contain any zero-dimensional boundary

denoted ray 1-forms, r̃σi , and a formal (n− 2)-form to each positive sector as a wedge
product of ray 1-forms. In particular, to each cone c[σ] we associate a formal (n− 2)
form as follows

ω(c[σ]) =
det(rjσ1 rjσ2 ...rjσ(n−2)

)

| det(rjσ1 rjσ2 ...rjσ(n−2)
)|
r̃jσ1 ∧ r̃jσ2 ∧ ... ∧ r̃jσ(n−2)

, (8.36)

where det(rjσ1 rjσ2 ...rjσ(n−2)
) is the determinant of the (n − 2) × (n − 2) matrix

constructed from the rays rjσ1 rjσ2 ...rjσ(n−2)
. We refer to such forms, constructed from

wedge products of ray 1-forms collectively as ray p-forms. Since a ray p-form is
invariant under relabeling and rescaling of the rays in Rn, it is manifestly
well-defined. The next step requires the definition of a boundary operator with
respect to each hyperplane h ∈ Hn, which we will denote as ∂h, acting recursively on
ray p-forms as follows: for p = 1, we have

∂hr̃ = Θ̄h(r) ≡

{
0, if r ∈ h
1, else

, (8.37)

where by r ∈ h we mean that r is contained in the hyperplane h, while if p > 1, we

canonical forms of the momentum amplituhedra themselves.
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Figure 8.9: The momentum amplituhedron geometry associated with the U(1)
decoupling identity A[12345] = −A[13452] − A[14523] − A[15234]. This is associated
with the oriented sum of cones c[12345]⊕c[12345]⊕c[14523]⊕c[15234] which generates
a geometry which does not contain any zero-dimensional boundary

define the action of the boundary operator on a ray p-form as follows

∂h

(
r̃jσ1 ∧ r̃jσ2 ∧ ... ∧ r̃jσ(n−2)

)
= Θ̄h(rj1)Θh(rj2 , ..., rjp) r̃jσ2 ∧ ... ∧ r̃jσ(n−2)

−Θh(rj1) r̃j1 ∧ ∂h
(
r̃jσ2 ∧ ... ∧ r̃jσ(n−2)

)
, (8.38)

where

Θh(rj2 , ..., rjp) ≡ Θh (rj2) ...Θh

(
rjp
)

(8.39)

and

Θh(rj) ≡ 1− Θ̄h(rj). (8.40)

This boundary operator is manifestly nilpotent, that is ∂2
h = 0. This can be seen

be applying the operator to any hyperplane h ∈ Hn twice and notice the result is
proportional to Θ̄h(r)Θh(r) = 0, for all rays r ∈ Rn. Next we define a graded vector
space combining all ray-p-forms for positive sectors and their boundaries as follows

Vn ≡
n−2⊕
i=0

V (i)
n , (8.41)
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Figure 8.10: The permutahedron of order 4 is dual to the complete fan of positive
sectors for the n = 5, k = 2 momentum amplituhedron

where

V (0)
n ≡ span

Z
{ω(c[σ]) : σ ∈ On}, (8.42)

is the vector space containing integer linear combinations of the ray (n − 2)-forms
associated with each cone c[σ]. The remaining vector spaces are defined as follows

V (i)
n ≡ span

Z

{∧
j∈J

r̃j : J ∈
(

[|Rn]

n− 2− i

)}
, (8.43)

that is, the vector space, V
(i)
n denotes the space of integer linear combinations of all

possible ray forms of degree (n − 2 − i). Here by
(

[|Rn|]
n−2−i

)
we mean the collection of

(n−2−i) element subsets of [|Rn|] ≡ {1, 2, ..., |Rn|}. Of course, with this definition the

maximal vector space, that is V
(n−2)
n , is just the space of integers. For any hyperplane

h ∈ Hn, we can write the exact sequence:

V (0)
n

∂h−→ V (1)
n

∂h−→ · · · ∂h−→ V (n−3)
n

∂h−→ V (n−2)
n = Z

∂h−→ 0 . (8.44)

So what is all this machinery for? Clearly we can encode the formal ray p-forms
associated to all positive sectors and their boundaries in the graded vector space, and
the boundary operator naturally takes us from a vector space to a lower vector space.
A KK relation can then be understood as a vector ν ∈ V (0)

n , the vector space of full
cones in Rn−2, such that for every (n− 2) element subset I of [|Hn|] = {1, 2, ..., |Hn|},
i.e. I ∈

(
[|Hn|]
n−2

)
, we have that (∏

i∈I

∂hi

)
ν = 0. (8.45)
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This is exactly the statement that the geometry corresponding to ν has no boundary
of dimension 0 at the origin of Rn−2. The matter of finding such a vector can be cast
as a simple linear algebra problem as follows. Consider the

(|Hn|
n−2

)
× (n − 2)! matrix

Mn obtained by applying all combinations of boundary operators labeled by (n − 2)
element subsets of I of [|Hn|] on each ray (n − 2)-form associated with each positive
sector with ordering σ ∈ On as follows

(Mn)Iσ =

(∏
i∈I

∂hi

)
ω(c[σ]). (8.46)

This boundary matrix is a map Mn : V
(0)
n → V

(n−2)
n and its kernel is simply the list

of all combinations of positive sectors that conspire to not have a boundary at the
origin of Rn−2, thus encoding the KK relations. We will illustrate this construction
by considering a few examples at low n, but the construction completely generalizes
to all n [41].

Four-particle MHV Amplitudes

Taking as a starting point the cone decomposition of the momentum amplituhedra
discussed in section 8.3, we identify the three hyperplanes intersecting the origin of
R

2 as follows

h1 : α4 = 0 , h2 : α2 + α4 = 0 , h3 : α2 = 0 . (8.47)

Along these hyperplanes we define six rays pointing in opposite directions

r1 = (1, 0) = −r4 , r2 = (0, 1) = −r5 , r3 =
1√
2

(−1, 1) = −r6 . (8.48)

These rays correspond to those drawn in Figure 8.1. Using the definition in (8.36),
the ray forms for each positive sector are simply

ω(c[1234]) = r̃1 ∧ r̃2 , ω(c[1243]) = r̃2 ∧ r̃3 ,

ω(c[1423]) = r̃3 ∧ r̃4 , ω(c[1432]) = r̃4 ∧ r̃5 ,

ω(c[1342]) = r̃5 ∧ r̃6 , ω(c[1324]) = r̃6 ∧ r̃1 .

(8.49)

Using the labels from (8.47), we obtain the boundary matrix by continually applying
the boundary operator (8.38) associated with each hyperplane labels to get

M4 =

(1234) (1243) (1324) (1342) (1423) (1432) {1, 2} 0 1 −1 1 −1 0 ∂h1∂h2

{1, 3} 1 −1 0 −1 0 1 ∂h1∂h3

{2, 3} 1 −1 0 −1 0 1 ∂h2∂h3

r̃1 ∧ r̃2 r̃2 ∧ r̃3 r̃6 ∧ r̃1 r̃5 ∧ r̃6 r̃3 ∧ r̃4 r̃4 ∧ r̃5

. (8.50)
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We can obtain the kernel of this matrix by applying the MathematicaTM function
NullSpace on the matrix, yielding the following set of null-vectors

kerM4 =


−1 0 0 0 0 1
0 0 −1 0 1 0
1 0 1 1 0 0
1 1 1 0 0 0

 . (8.51)

The standard KK relations for n = 4 are then obtained by multiplying

kerM4 · A4[σ] = 0, (8.52)

leading to the relations

−A4,2[1, 2, 3, 4] + A4,2[1, 4, 3, 2] = 0, (8.53)

−A4,2[1, 3, 2, 4] + A4,2[1, 3, 2, 4] = 0, (8.54)

A4,2[1, 2, 3, 4] + A4,2[1, 3, 2, 4] + A4,2[1, 3, 4, 2] = 0, (8.55)

A4,2[1, 2, 3, 4] + A4,2[1, 2, 4, 3] + A4,2[1, 3, 2, 4] = 0. (8.56)

These relations are identical to the ones in (2.72) and found in section 8.2.

The approach described in this section was employed to find all the KK relations
for n ≤ 7 in the MHV sector, and since the KK relations are identical for all k-sectors,
we have effectively found all KK relations for all n ≤ 7. We expect the algorithm to be
valid for all n. The geometric interpretation is not applicable when discussing higher
k sectors, however. This is because the momentum amplituhedron is a Grassmannian
geometry and have boundaries that are “curvy” and no longer linear inequalities like in
(8.47). This means that the higher k sectors can no longer be decomposed into simple,
simplicial regions. Therefore more sophisticated machinery needs to be introduced in
order to perform a similar analysis beyond the MHV sector. We will return to this
point after a brief discussion on how the construction above works for the kinematic
associahedron, discussed in chapter 5.

8.4 Kleiss-Kuijf Relations for the Kinematic

Associahedron

We wish to reemploy the homological algorithm of the previous section to find KK
relations for bi-adjoint φ3 theory. That is, identify KK relations as oriented sums of
kinematic associahedra with no vertices in their boundary stratification. The
kinematic associahedron for abitrary orderings is defines in section 5.5 and upon
inspection of Figure 5.4 and Figure 5.5 we observe that the kinematic associahedra
generally have several vertices in their boundary stratification. This requires us to
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ensure cancellation around each vertex. This might appear different from the
momentum amplituhedron case, but we remind the reader that the MHV momentum
amplituhedron has

(
n
2

)
= n(n−1)

2
vertices in its boundary stratification, which are

shared among all orderings σ ∈ On and the momentum amplituhedron for a given
ordering around a single vertex is isomorphic to the momentum amplituhedron for
another ordering around a different vertex [41]. Therefore, if we ensure vertex
cancellation for one combination of orderings, all vertices are removed from the
boundary stratification due to the isomorphism of the differently ordered momentum
amplituhedra. Similarly for the kinematic associahedron, we zoom in on the
neighborhood of a single vertex v ∈ Vn of the kinematic associahedron and reproduce
the homological algorithm above. Here every kinematic associahedron appears as a
(n− 3)-dimensional simplicial cone spanned by (n− 3) rays. We apply the algorithm
described in the previous section by zooming in on each vertex individually and find
a boundary matrix corresponding to cancellation around said matrix, then we
assemble each boundary matrix into a single common boundary matrix whose kernel
exposes KK relations for the kinematic associahedron.
A single cone corresponding to a kinematic associahedron with a given ordering in
the neighborhood of a single vertex v is denoted by

c(v)[β] =

v + span
R≥0

{
rv
jβ1
rv
jβ2
...rv

jβn−3

}
, if v ∈ An(β)

0, otherwise
, (8.57)

where rv
jβi

are rays. As for the momentum amplituhedron case, we associate a ray

(n− 3)-form to each cone around the vertex v as follows

ω(c(v)[β]) = (−1)nflip(β)

det

(
rv
jβ1
rv
jβ2
...rv

jβn−3

)
∣∣∣∣det

(
rv
jβ1
rv
jβ2
...rv

jβn−3

)∣∣∣∣ r̃
v

jβ1
∧ r̃v

jβ2
∧ ... ∧ r̃v

jβn−2

. (8.58)

We set ω(c(v)[β]) = 0 if v 6= A[β] and define the boundary operators in complete
analogy with (8.3) and we then construct the boundary matrices. The KK relations
appear as the common null space of all the boundary matrices associated with each
vertex. We shall in the following give examples for n = 4 and n = 5 kinematic
associahedra. We notice that there are exactly pn − |Vn| independent KK relations,
with pn is the number of non-empty positive regions of kinematic associahedra and
|Vn| is the combined number of vertices for all kinematic associahedra orderings which
coincides with Cn−2, the (n− 2)nd Catalan number [81].

Four Particle Amplitudes

For n = 4 there are exactly six non-empty positive regions labeled by β ∈ O4. We
remind ourselves that the positive regions admit reflection symmetry
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↓ ↓ ↓

Figure 8.11: Partial triangulations in the definition of positive regions ∆4(β). The
regions give rise to the positive regions in (8.63)

∆n(β) = ∆n(β−1), therefore we only get three distinct positive regions
∆4(1234) = ∆4(1432), ∆4(1243) = ∆4(1432), and ∆4(1423) = ∆4(1324). Using the
definition of ∆n(β) in section 5.5, we express the regions as follows

∆4(1234) = {X13 ≥ 0, X24 ≥ 0}, (8.59)

∆4(1243) = {X13 ≥ 0}, (8.60)

∆4(1423) = {X24 ≥ 0}. (8.61)

These regions can be determined from the partial triangulation of the square, as can
be seen in Figure 8.11. The two-dimensional space of constraints H4, defined in (5.11)
is the same for all orderings and is found to be

H4 = {(X13, X24) : X24 = c13 −X13}, (8.62)

using the label Hn for the space of constraints for the kinematic associahedron to
avoid confusion with Hn, the collection of hyperplanes for a given positive sector.
The intersection of the positive regions with the space of constraints simply yields the
kinematic associahedra for each ordering σ as follows

A4[1234] = [0, c13] , A4[1243] = [0,+∞) , A4[1423] = (−∞, c13] . (8.63)

The space of kinematic associahedra has two vertices, v1 = (0) and v2 = (c13), which
we organize in V4 = {v1, v2}. The kinematic associahedra for different orderings are
then understood as lines, that is one-dimensional cones, emanating from each vertex
and we organize the kinematic associahedra in Table 8.3. Here we take rv1 = (1) and
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β A4(β) around v1 = (0) around v2 = (c13)

(1234) [0, c13] v1 + span
R≥0
{rv1} v2 + span

R≥0
{rv2}

(1243) [0,+∞) v1 + span
R≥0
{rv1} ∅

(1423) (−∞, c13] ∅ v2 + span
R≥0
{rv2}

Table 8.3: Associahedra for n = 4 in the neighbourhood of each vertex in V4 as one-
dimensional cones.

β A4(β) around v1 = (0) around v2 = (c13)

(1234) [0, c13] r̃v1 −r̃v2

(1243) [0,+∞) −r̃v1 0
(1423) (−∞, c13] 0 r̃v2

Table 8.4: Ray one-forms describing associahedra for n = 4 in the neighbourhood of
each vertex in V4.

rv2 = (−1). We then associate a ray 1-form to each associahedra as given in Table 8.4.
We obtain a boundary matrix for each vertex, namely

M
(v1)
4 =

(
1 −1 0

)
, M

(v2)
4

(
−1 0 1

)
. (8.64)

We stack these matrices into M4 =
(
M

(v1)
4 M

(v2)
4

)
, the common space of null vectors

spans

kerM4 =
(
1 1 1

)
, (8.65)

implying that the kinematic associahedron forms obey

ω
(1234)
4 + ω

(1243)
4 + ω

(1423)
4 = 0, (8.66)

from which we extract the KK relation

m4(1, 2, 3, 4) +m4(1, 2, 4, 3) +m4(1, 4, 2, 3) = 0. (8.67)

We can visualize the relation (8.66) as in Figure 8.12 where the kinematic associahedra
combines into a single, infinite line void of any vertices, and therefore encoding the
KK relations.

Five Particle Amplitudes

For n = 5 we encounter two permutations β ∈ On associated with empty positive
regions, namely ∆5(13524) = ∆5(14253) = ∅. Therefore we count p5 = 4! − 2 = 22
non-trivial permutations and under the cyclic invariance we are left with 11 district
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⊕ ⊕ =

(8.68)

Figure 8.12: Oriented sum of three associahedra for n = 4 producing an infinite line.
We note that we fix the affine subspace X13 + X24 = c and intersect with different
positive regions.

Figure 8.13: Kinematic associahedra for n = 5. The depicted geometries are all
oriented counter-clockwise.
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kinematic associahedra. The 11 positive sectors are sketched on Figure 8.13. As
described in section 5.3 the standard ordered kinematic amplituhedron for n = 5 is a
pentagon. The five vertices are common to all positive sectors and found in (X13, X14)
coordinates to be

v1 = (0, 0), v2 = (c13, 0), v3 = (c13 + c14, c14), (8.69)

v4 = (c13 + c14, c13 + c24), v5 = (0, c14 + c24), (8.70)

which we organize into V5 = {v1, v2, v3, v4, v5}. From the definition of the affine
subspace, we identify the five hyperplanes (lines) by

X1,3 = 0︸ ︷︷ ︸
h1

, X1,4 = 0︸ ︷︷ ︸
h2

, X1,3 − c13 − c14 = 0︸ ︷︷ ︸
h3

, X1,4 − c14 − c24 = 0︸ ︷︷ ︸
h4

, X1,3 −X1,4 − c13 = 0︸ ︷︷ ︸
h5

,

(8.71)
and organize them into Hn = {h1, h2, h3, h4}. Around each vertex v ∈ V5 we identify
each positive region as: a) a two-dimensional cone spanning two rays pointing along
the hyperplanes, if the region encompasses the vertex, or b) as the empty region
otherwise. We can associate a ray 2-form to each positive region ω(cv[β]) and define

a boundary matrix using the boundary operator (8.38) for each vertex, M
(v)
5 . Each

boundary matrix M
(v)
5 has size

(|H5|
2

)
× p5

2
= 10 × 11. In order to find the common

kernel, we stack the matrices as

M5 =
(
M

(v1)
5 , M

(v2)
5 , M

(v3)
5 , M

(v4)
5 , M

(v5)
5

)
, (8.72)

the kernel of which is six dimensional and gives rise to the following relations

ω
(12345)
5 + ω

(12354)
5 + ω

(12435)
5 + ω

(14235)
5 = 0 ,

ω
(12345)
5 + ω

(12435)
5 + ω

(12453)
5 + ω

(13245)
5 = 0 ,

ω
(12345)
5 + ω

(13245)
5 + ω

(13425)
5 + ω

(13452)
5 = 0 ,

ω
(13425)
5 + ω

(14235)
5 + ω

(14325)
5 = 0 ,

ω
(12435)
5 − ω(13425)

5 + ω
(14352)
5 = 0 ,

ω
(13245)
5 + ω

(13254)
5 − ω(14235)

5 = 0 , (8.73)

for a certain choice of 11 basis orderings in O5 labeling the distinct positive regions.
The relations (8.73) together with the reflection identities gives rise to 6 + 11 = 17

distinct KK relations between canonical forms ω
(β)
5 and therefore also between the

partial amplitudes m5(β). We illustrate one of these relations in Figure 8.14 where we
take the oriented sum of the regions, which conspire to cancel all the zero-dimensional
boundaries and therefore the sum of canonical forms vanish.



170 8. Momentum Amplituhedron & Kleiss-Kuijf Relations

⊕ ⊕ =

Figure 8.14: Oriented sum of three associahedra for n = 5 giving rise to the KK
relation ω

(13425)
5 + ω

(14235)
5 + ω

(14325)
5 = 0.

8.5 Poset-based Homological Algorithm

In section 8.2 we considered the geometric origins of the KK relations for the MHV
momentum amplituhedron through its polytopal realization in terms of simplicial
cones. There, we saw how certain positive sectors share boundaries which cancel in
the boundary stratification of their oriented sum. While the positive sectors are not
equivalent to the momentum amplituhedra geometries per se, they encode which
momentum amplituhedra share boundaries. Exploiting this construction, we
presented a homological algorithm to find KK relations for momentum amplituhedra
in section 8.3 and kinematic associahedra in section 8.4.

When moving beyond the MHV sector, we find that this approach is limited by the
fact that we cannot reduce the space of canonical coordinates, {αi} parameterizing
the λ matrix by identifying a subset of sign-flip conditions respected by all color
orderings. Furthermore, the inequalities coming from the sign-flip conditions – and
therefore the boundaries of the momentum amplituhedra – are no longer linear: for
2 < k < n−2, momentum conservation between λ and λ̃ produces rational inequalities
for the canonical coordinates coming from the sign-flips. These complicated curvy
boundaries in the neighborhood of each vertex makes the conical description unfeasible
beyond the MHV sector. Fortunately, the conical description is not essential for the
construction and upon introducing some more complicated machinery, we can derive
KK relations from a strictly homological perspective for all k sectors. Indeed the only
information the cones provided us in section 8.3 was

� which rays are shared by different color orderings

� which pairs of rays live in the same one-dimensional intersection of hyperplanes.

Using these two pieces of information, we can identify combinations of positive sectors
containing rays pointing in opposite directions, therefore removing the common vertex
from which the rays are emitted.

In the following, we abstract the derivation of KK relations for the k = 2 sector: we
will employ the partially ordered set as the positive sectors, which can in principle be
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applied to any helicity sector. The construction will be parameterization independent
as it takes as input the combinatorical structure of the boundaries of the momentum
amplituhedra discussed in section 6.3 and found using the MathematicaTM package
amplituhedronBoundaries [88]. The algorithm will first be considered for the positive
sectors of the n = 4, k = 2 momentum amplituhedron and subsequently we proceed
with a discussion on how to generalize to full momentum amplituhedron geometries
for higher n and k sectors.

8.5.1 Revisiting MHV amplitudes

As described in section 8.3, O4 is the set of four tuples describing the 3! = 6 different
four-particles orderings. For each ordering σ ∈ O4, we associate a simplicial cone
c[σ] in R2 parameterized by (α2, α4) associated with the momentum amplituhedron
for the given ordering. These regions are shown in Figure 8.1 and each cone has
two one-dimensional boundaries which are semi-infinite lines spanned by rays and a
single zero-dimensional boundary, the vertex v at the origin. We label the six rays
as in section 8.3 by ri for i = 1, ..., 6. We collect all these structures into a set P(σ)

containing the geometry itself along with all of its boundaries, e.g. for the standard
ordering we have

P(1234) = {c[1234], r1, r2, v}. (8.74)

This set admits a partial ordering, where the first element is 2 dimensional, the next
two elements ri are 1 dimensional and the last element v is 0 dimensional. We refer
to P(σ) as a partial-ordered set or poset. Here partial order, denoted by � is defined
for any two boundaries2 B1, B2 ∈ P(σ) such that

B1 � B2 if B1 = B2 or B1 is a boundary (of any co-dimension) of B2 . (8.75)

If B1 � B2 and if B1 6= B2 we write B1 ≺ B2. Since each boundary B ∈ P(σ) has a
well-defined dimension, P(σ) is a graded poset.

This organization of geometries and their boundaries into a poset can be done
for any positive geometry as follows. Consider a positive geometry (X,X≥0) and let
P [X≥0] be the set consisting of X≥0 and its boundaries of all codimension. We refer
to this graded poset as the boundary stratification of X≥0. We will use shorthand P =
P [X≥0] for brevity in the following. We can encode the combinatorical relationship
between boundaries in P in Hasse diagrams. Hasse diagrams are graphs of nodes and
edges, where each node refer to an element in P and two nodes are connected by a
directed edge if one node represents a boundary of the other node. Specifically, if B1

is a codimension-1 boundary of B2, we draw a directed edge e = (B1,B2) from B2 to
B1. Here we refer to B2 as the source node, ∂−(e) = B2 of e , and B1 as the target

2We refer to each element, including c[σ], in P(σ) as boundaries.
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node, ∂+(e) = B1, of e. We use a lower case e to denote a directed edge in a Hasse
diagram and H[P ] to label the Hasse diagram associated with a poset P and E as the
collective set of all its directed edges e.

We sketch the Hasse diagrams for the six orderings σ ∈ O4 in Figure 8.15. Here,
we have labeled each edge by a subset of expressions {α2, α4, α2 + α4} which we refer
to as the edge labels. Given a directed edge e = (B2,B1), an expression l = l(~α) in
the canonical coordinates is an edge label for e if one reaches B1 in the limit l → 0 of
B2. We use a lowercase l for the individual edge labels and the upper case L(e) for
the collection of edge labels for a given edge. For instance, for the standard ordering
H[P(1234)] we have edges

e1 = (c[1234], r1) , e2 = (c[1234], r2) , e3 = (r1, v) , e4 = (r2, v) , (8.76)

with edge labels

L(e1) = {α4} , L(e2) = {α2} , L(e3) = {α2, α2 + α4} , L(e4) = {α4, α2 + α4} .
(8.77)

Fixing n and k, we can introduce collections of positive geometries which might be
related through the KK relation. We label each relevant positive geometry by a
permutation, σ ∈ On. Then {Pσ}σ∈On denotes an indexed set of boundary

stratifications of positive geometries X
(σ)
≥0 . Assigning edge labels to each edge in

every Hasse diagram, we denote E the set of all edges in the Hasse diagrams

E ≡
⋃
σ∈On

E[Pσ], (8.78)

and given an edge label we define

Ě ≡ {e ∈ E : l ∈ L(e)}, (8.79)

to be the set of all edges which has l as an edge label. For n = 4, the posets {Pσ}σ∈O
are constructed such that Ě(α2), Ě(α4), and Ě(α2 + α4) contain 12 edges each as
can be seen in Figure 8.15. Having defined the Hasse diagrams and edge labels, we
have effectively generalized our notion of positive sectors as we shall see later. In
order to find KK relations, we also require a boundary operator in this setting. Here,
we generalize “boundary operators with respect to hyperplanes” to “boundary
operators with respect to edge labels” and in complete analogy with section 8.3, we
will define a boundary matrix, the kernel of which will precisely span the KK
relations. In order to define a boundary matrix, we require a homological boundary
operator. In order to ensure a proper nilpotent boundary operator we assign certain
signs to each edge in every Hasse diagram according to the criteria called the
diamond compatibility criteria as we shall define in the following using the notions of
poset intervals and diamonds.
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Figure 8.15: The Hasse diagrams H[P(σ)] for the simplicial cones (see section 8.2) all
four-particle orderings relevant for the n = 4, k = 2 momentum amplituhedron.

Intervals, the Diamond Compatability Criteria and the
Boundary Operator

We define the poset intervals for two boundaries B1 ≺ B2, [B1,B2] as the set of all
boundaries, B, in the poset, P , such that B1 � B � B2 as follows

[B1,B2] ≡ {B ∈ P : B1 � B � B2}. (8.80)

Consider the poset interval between two boundaries I = [B1,B2], where dim(B2) =
dim(B1) + 2 and I = {B1,B,B′,B2}. Here we take B and B′ as co-dimension-one
boundaries of B2, we refer to such an interval as a diamond, reflecting the fact that the
Hasse diagram for this interval is diamond shaped and we refer to any such subgraph
with this structure as a diamond. The Hasse diagrams for the cones c[σ], for σ ∈ O5,
depicted in Figure 8.15 are all examples of diamonds. For a generic interval, I, we
assign a sign to each edge in the Hasse diagram of I, H(I) such that for every diamond
subgraph, D, we have ∏

e∈E[D]

sign e = −1, (8.81)

where the product is over every edge in the diamond D and sign e is the sign
assignment on e. Assigning signs in a Hasse diagram such that for every diamond
subgraph the criteria is fulfilled is referred to as a diamond compatible assignment.
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This condition ensures that the boundary operator, defined momentarily, will be
nilpotent and therefore the algorithm will be homological. There are several choices
of sign assignments and an example of a sign assignment for the Hasse diagrams in
Figure 8.15 is given in Figure 8.16.

Figure 8.16: Example of diamond-compatible sign assignment for the Hasse diagrams
H[P(σ)], σ ∈ O4.

We are now ready to define the boundary operator, denoted ∂l, with respect to
each edge label l as follows. Consider the boundary B ∈ P(σ), for a given σ ∈ On, we
set

∂lB ≡
∑

e:B→B′∈Ě(l)

B′, (8.82)

that is, summing over all directed edges e with B as its source node ∂− (e) = B with l
as its edge label. As an example, consider the Hasse diagrams in Figure 8.16, we see
that

∂α4∂α2c[1234] = ∂α4r2 = v, and ∂α2∂α4c[1234] = ∂α2r1 = −v . (8.83)

Due to the sign assignment of the edges in Figure 8.16 the boundary operator is
nilpotent ∂2

l = 0 for each edge label. This follows from the fact that for each pair of
edges (e, e′) connected to a single boundary, the sets of their edge labels are disjoint
L(e) ∩ L(e′) = ∅. Defining the total boundary operator as the sum

∂ ≡
∑
l

∂l, (8.84)
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summing over all possible edge labels, counting each label once, it is easy to see that
the boundary operator is nilpotent as follows

∂2c[σ] = (∂α2 + ∂α4 + ∂α2+α4)2 c[σ] = 0, (8.85)

for all σ ∈ O4 given that we have assigned diamond compatible signs as in
Figure 8.16. Graphically, the boundary operators allows us to move from one level,
that is the set of boundaries of the same dimension, to a lower level and therefore we
can define chains of boundary operators all the way from the top of a Hasse diagram
(the positive sector itself) to the bottom (its zero dimensional boundaries). We
introduce the notion of complete paths, complete path labels, and boundary operators
with respect to complete path labels in the following.

Complete Path Labels and the Boundary Matrix

Consider the boundary stratification P of a d-dimensional positive geometry (X,X≥0)
and let v be one of its zero-dimensional boundaries. We denote by Iv = [v,X≥0]
the interval between the lowest element min Iv = v and the top dimensional element
max Iv = X≥0, the positive sector itself. A complete path γ in Iv is then defined as a
path tracing edges in the Hasse diagram, H[Iv] from X≥0 to v, expressed as a d-tuple
of edges γ = (e1, ..., ed) from a connected chain ∂−(e1) = X≥0 and ∂+ed with every
pair of adjacent edges (ei, ei+1) in γ satisfying ∂+(ei) = ∂−(ei+1). In the following,

we refer to Γ[Iv] as the set of complete paths in Iv. Let {I(σ)
v }σ∈On = {[v,X(σ)

≥0 ]}σ∈On
be an indexed family of intervals, sharing the vertex min I(σ)

v = v as their minimal
element. Furthermore, assume we have assigned compatible signs to each edge in the
Hasse diagrams. We then take Γv to be the set of complete paths in all Hasse diagrams
as follows

Γv ≡
⋃
σ∈On

Γ[I(σ)
v ]. (8.86)

Additionally, take ~l = (l(1), ..., l(d)) the d-tuple of all edge labels and

Γ̌(~l ) =
⋃
σ∈On

{
γ = (e1, . . . , ed) ∈ Γ[I(σ)

v ] : ei ∈ Ě(l(i))
}
⊆ Γv , (8.87)

the set of all complete paths in each interval which can be identified by ~l. In the case
where Γ̌(~l ) 6= ∅ we refer to ~l as a complete path label. In the example of the n = 4

simplicial cones we note there are 4 complete paths which can be labeled by~l = (α4, α2)
and therefore (α4, α2) is a complete path label since Γ̌(α4, α2) has 4 elements.
In the following the complete path labels will be the equivalent of “rays pointing
in opposite directions” which can be seen from the following. Consider a complete
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path label ~l = (l(1), .., l(d−1),l(d)). The complete paths in Γ̌(~l) allows us to identify all
one-dimensional boundaries inhabiting the same one-dimensional variety defined by
l(1) = ... = l(d−1) = 0. The one dimensional boundaries are simply given by the source
nodes ∂−ed of the final edges in each path γ ∈ Γ̌. This machinery allows us to identify
different one dimensional boundaries which either

� are the same one-dimensional boundary or

� join together to form the one-dimensional variety l(1) = ... = l(d−1) = 0,

without solving any equations. We define the boundary operator with respect to a
complete path label ~l = (l(1), ..., l(d)) as follows

∂~l ≡ ∂l(d) ...∂l(1) , (8.88)

as the product, in the reverse order, of boundary operators with respect to each edge
label in ~l. E.g. for n = 4 we have the two complete path labels ~l1 = (αw, α4) and
~l2 = (α4, α2) relevant for the boundary stratification of c[1234] as can be seen on 8.17,
we take

∂(α2,α4)c[1234] = ∂α4∂α2c[1234] = v and ∂(α4,α2)c[1234] = ∂α2∂α4c[1234] = −v .
(8.89)

Equipped with the boundary operators for all complete path label, we can now proceed
to define the boundary matrix in this setup, in parallel to section 8.3. We do this in
two steps: first we identify a minimal collection of complete paths needed in order
for the kernel of the resulting boundary matrix to be congruent with the space of all
KK relations and second, we define the boundary matrix with respect to a minimal
collection of complete paths.

We define a minimal collection of complete path labels, Γmin ⊂ Γv, which is a
collection of path labels γ, such that for all intervals between positive geometries for
each ordering and a vertex element I(σ)

v all one dimensional boundaries are represented
at least once. More accurately, there exists a complete path γ ∈

⋃
~l∈Γmin

Γ̌(~l) in
a minimal collection of complete path labels such that γ passes through the one-
dimensional boundary B (i.e. ∂−ed = B) and all the complete paths in the minimal
collection covers the entire collection of one-dimensional boundaries for all intervals
I(σ)
v .

The minimal collections of complete paths {Γ̌(~l)}~l∈Γmin
are generally not disjoint

and their union is a strict subset of Γv. A minimal collection for n = 4 is given by
{~l1,~l2,~l3} and we quote them in the following [41]

~l1 (solid) = (α4, α2) , (8.90a)

~l2 (dashed) = (α2, α4) , (8.90b)

~l3 (dotted) = (α2 + α4, α2) , (8.90c)
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Figure 8.17: Complete paths for n = 4 and the minimal collection of labels which
identify them.

and sketch them in Figure 8.17 as solid, dashed, and dotted paths, respectively. Finally,
we are ready to define the boundary matrix with respect to a minimal collection of
complete paths, denoted M(Γmin) as follows [41]

Mjσ(Γmin) = ∂~ljX
(σ)
≥0 =

 ∑
γ=(e1,...,ed)∈Γ̌(~lj)∩Γ[I(σ)

v ]

( d∏
t=1

sgn(et)
) v , (8.91)

where we take ~lj ∈ Γmin, σ ∈ On and v is the common minimal element of each
interval – the common vertex.

We have expressed the boundary operator as a sum over all complete paths in
H[I(σ)

v ] labeled by ~lj and for each complete path we have taken the product of the
signs along the edges as prescribed by the diamond compatibility condition. As in
section 8.3, the null space of Mjσ(Γmin) encodes all KK relations between the positive

geometries {X(σ)
≥0 }σ∈On . This can be seen by the fact that any minimal collection of

complete paths has the property that for each one-dimensional boundary B in an
interval {I(σ)

v }σ∈On , there is at least one complete path identified by one of the labels
Γmin passing through B. Having found the kernel, we label νnull ∈ kerMjσ(Γmin) as a
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non-trivial element of the null space of Mjσ(Γmin). We identify νnull as a linear

combination of positive geometries {X(σ)
≥0 }, such that for every complete path label

~l = (l(1), . . . , l(d−1), l(d)) ∈ Γmin, ∂~l νnull = 0; for every one-dimensional variety defined
by l(1) = · · · = l(d−1) = 0, passing through the zero-dimensional boundary v which
contains a non-empty subset of one-dimensional boundaries from the intervals in
{I(σ)

v }, the one-dimensional boundaries inhabiting this variety conspire in νnull to
completely remove the zero-dimensional boundary. Therefore the null vector νnull

corresponds to an oriented sum of geometries without a zero-dimensional boundary
in its boundary stratification. This means that the oriented sum cannot be a positive
geometry and, therefore the corresponding linear combination of canonical
differential forms must vanish, according to the analysis of section 4.3.

As an example, consider the minimal collection of complete path labels given in
(8.90) for n = 4. We assemble the corresponding boundary matrix as follows

M =

 ∂~l1c[1234] · · · ∂~l1c[1432]
∂~l2c[1234] · · · ∂~l2c[1432]
∂~l3c[1234] · · · ∂~l3c[1432]

 =

 −1 0 −1 0 1 1
1 −1 0 1 0 −1
0 1 1 −1 −1 0

 . (8.92)

We find the following basis for the null space of M :

c[1234]⊕ c[1432] , (8.93)

c[1324]⊕ c[1423] , (8.94)

c[1234]⊕ c−[1324]⊕ c−[1342] , (8.95)

c[1234]⊕ c[1243]⊕ c−[1324] . (8.96)

We want to replace the cones in each of the four null vectors listed above by their
corresponding canonical differential forms and set each linear combination to zero.
However, we are required to multiply each canonical differential form by an
appropriate sign to ensure its leading singularities – that is, its residues on
zero-dimensional boundaries – are compatible with the signs we assigned to the edges
of the corresponding Hasse diagram. To find these multiplicative weights, we begin
by listing the canonical differential forms for each cone,

Ω(c[1234]) = Ω(c[1432]) = d logα4 ∧ d logα2 , (8.97)

Ω(c[1243]) = Ω(c[1342]) = d logα2 ∧ d log(α2 + α4) , (8.98)

Ω(c[1324]) = Ω(c[1423]) = d log(α2 + α4) ∧ d logα4 , (8.99)

which we can be read off directly from Figure 8.1. For every complete path label
~l = (l(1), l(2)) ∈ {~l1,~l2,~l3} in (8.90), we define the residue along ~l, res~l as follows

res~l = resl(2)=0 resl(1)=0 . (8.100)
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For each color ordering σ ∈ O4, the weight required to be multiplied by Ω(c[σ]),

denoted by w[σ], can be obtained by taking a single complete path label ~l with respect

to σ (i.e. Γ̌(~l) ∩ Γ[I(σ)
v ] 6= ∅) and computing the residue as follows

res~l Ω(c[σ])× v = w[σ]× ∂~l c[σ] . (8.101)

We obtain the following weights for the n = 4 case:

w[1234] = −1 = −w[1432] , w[1243] = −1 = −w[1342] , w[1324] = 1 = −w[1423] .
(8.102)

We make the replacements c[σ] → w[σ]Ω(c[σ]) in (8.93) and set each null vector to
zero. Then the KK relations for n = 4 appear the canonical forms as follows

−Ω(c[1234]) + Ω(c[1432]) = 0 , (8.103)

−Ω(c[1324]) + Ω(c[1423]) = 0 , (8.104)

Ω(c[1234]) + Ω(c[1324]) + Ω(c[1342]) = 0 , (8.105)

Ω(c[1234]) + Ω(c[1243]) + Ω(c[1324]) = 0 , (8.106)

which is exactly the KK relations for four-particle MHV amplitudes discussed in (8.53).
This algorithm can be applied to the general n case by using the intervals

{I(σ)
v }σ∈On . For all color orderings σ ∈ On, we define the weight w[σ] by taking any

complete path label ~l for an interval I(σ)
v and computing the residue as follows

res~l Ω(X
(σ)
≥0 )× v = w[σ]× ∂~lX

(σ)
≥0 , (8.107)

where Ω(X
(σ)
≥0 ) is the canonical differential form for X

(σ)
≥0 , while v is the

zero-dimensional boundary common to each interval, and res~l is residue operation

along ~l. Each vector in the null space of the boundary matrix (with respect to some
minimal collection) can then be mapped to a KK relation by the replacement

X
(σ)
≥0 → w[σ]× Ω(X

(σ)
≥0 ) and setting the null vector to zero.

8.5.2 All Helicity Sectors

The homological algorithm described in the previous section was used to derive KK
relations for “simplified” MHV momentum amplituhedra, where each geometry is just
an oriented simplicial cone in (n − 2) dimensions. We recall that the actual, full
momentum amplituhedra are of dimension (2n− 4). However, since the only input of
this algorithm was the boundary stratification of each positive sector, we can rederive
the KK relations using the boundary stratifcations of the momentum amplituhedra
for all color orderings. While this is excessive for the MHV sector, it is crucial for
deriving KK relations for all helicity sectors. Two steps in the procedure, however,
require some elaboration. We need to specify
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1. how to find the boundary stratification of the momentum amplituhedron for
different orderings, and

2. how to generate edge labels for a given boundary stratification.

The first point can be treated as follows. For generic n and k, with 2 ≤ k ≤ n−2, there
are

(
n
k

)
zero-dimensional boundaries (or vertices) of the standard-ordering momentum

amplituhedron Mn,k = M(12...n)
n,k and each vertex is shared by all particle orderings

[41]. These boundaries are in one-to-one correspondence with vertices of the positive
Grassmannian G+(k, n) via the linear map as discussed in section 6.2. Each vertex
of Mn,k can be labeled by a k-element subset I of [n] = {1, 2, . . . , n} representing
the matrix in the positive Grassmannian with only non-zero entries in the k columns
labeled by I, corresponding to a vertex in G+(k, n). Consider for instance the n = 6,
k = 3 case: we take the subset (123) to refer to the matrix

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 . (8.108)

We will denote the vertex of Mn,k identified by I ∈
(

[n]
k

)
as vI . The poset interval

between Mn,k and vI , denoted by [vI ,Mn,k], can be obtained using the function
momInterval from the MathematicaTM package amplituhedronBoundaries [88].

Given an arbitrary ordering σ ∈ On, the interval between M(σ)
n,k and vI is isomorphic

to the interval between the standard ordering momentum amplituhedron and the
vertex vσ−1(I) labeled by σ−1(I) ≡ {σ−1(i1), σ−1(i2), . . . , σ−1(ik)} [41];

[vI ,M(σ)
n,k]
∼= [vσ−1(I),M(12···n)

n,k ] . (8.109)

Consequently, momInterval allows us to obtain intervals for different orderings in
the neighborhood of each vertex vI . Two examples of such intervals for M(σ)

4,2 for the
orderings σ = (1234) and σ = (1324) can be found in Appendix F.

Regarding the question of generating edge label for a given boundary stratification,
we find that for any boundary B of the momentum amplituhedron M(σ)

n,k, we can
identify the exact amplitude singularities associated with each boundary. That is, we
can find which exact spinor brackets and multi-particle Mandelstam variables vanish
for a given boundary, B. Moreover, when analyzing the boundary structure of the
n = 6 and k = 3 momentum amplituhedron, we find that some lower dimensional
elements in the boundary poset of Mn,k might have boundaries corresponding to a
sum of several external momenta going soft. This will distinguish the multi-particle
Mandelstam variables si1,...,im from the multi-particle momenta pi1 + . . . + pir soft
singularities, for r > 2. We will denote the set of vanishing spinor brackets, multi-
particle Mandelstam variable factorization channels and the multi-particle momenta
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pi1 +. . .+pir by Z(B). Now, given a directed edge e = (B2,B1) in the Hasse diagram for

the interval [vI ,M(σ)
n,k] we fix the set of edge labels for e to be S(e) = Z(B1)\Z(B2). It

contains all spinor brackets, Mandelstam variables and sums of momenta which vanish
for B1 but are not zero for B2.

Once we have generated all intervals and all edge labels have been assigned, the
poset-based homological algorithm can be used to derive the KK relations in all helicity
sectors and not just positive sectors as in the MHV case. Importantly, it is sufficient
to consider momentum amplituhedra around a single vertex, say v{1,2,...,k}, to derive
all KK relations. This is due to the fact that all momentum amplituhedra share
all vertices in their boundary stratification and the momentum amplituhedra in the
neighborhood of a given vertex vI are identical with the ones around v{1,2,...,k}, after
a relabeling the external particles. We have explicitly verified that our algorithm
reproduces the correct KK relations for all 2 ≤ k ≤ n − 2 and for n ≤ 7, and we
conjecture that the algorithm is valid all n and k momentum amplituhedra.
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Chapter 9

Conclusion and Outlook

The star player of this dissertation is the momentum amplituhedron, defined in
chapter 6 and the latter three chapters are exclusively concerned with the
developments on the ideas first presented in [39]. We have proposed an object
encoding scattering amplitudes in N = 4 sYM as the image of the positive
Grassmannian through a map of bosonized spinor helicity variables respecting some
positivity conditions. The natural notion of the canonical form of the momentum
amplituhedron is related to N = 4 scattering amplitudes with the Grassmann
odd-parameters exchanged with differentials on spinor helicity variables, after
stripping off a copy of supermomentum conservation.

Further study of the canonical forms of momentum amplituhedra has revealed a
surprising relationship between the momentum amplituhedron and the kinematic
associahedron [40]. Stripping off the highest degree of little group scaling from the
canonical form of momentum amplituhedron produces the kinematic associahedron
canonical form when pulled back or pushed forward to the proper space. This can be
understood as a reflection of the common singularities of scattering amplitudes in
N = 4 sYM and bi-adjoint φ3 theory, specifically the common factorization channels.

A detailed investigation of the novel geometric structure continued to yield
surprising results. In particular, after providing a second definition of the momentum
amplituhedron directly in kinematic space, more suitable for describing momentum
amplituhedra of various color orderings, the Kleiss-Kuijf relations [42] emerge
naturally from studying geometries of different color orderings in the same space [41].
This is a luxury only available to the momentum amplituhedron since the space of
spinor helicity variables allows for the direct comparison of momentum amplituhedra
of differently color orderings in the same kinematic space. This was first observed for
the MHV case where the momentum amplituhedron has a simplicial decomposition,
and the boundary structure only consists of linear inequalities, which match up
neatly as cones spanning the full fan of R(n−2). The construction was further
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generalized to all sectors of the momentum amplituhedron in an algorithm discussed
in the latter part of chapter 8. This is a stunning result as the amplitudes relations
stem from the color structure of N = 4 sYM which the momentum amplituhedron
inherently does not carry information about. The construction also appeared to be
applicable to the kinematic associahedron where similar relations were found as a
consequence of the double color structure of scattering amplitudes in bi-adjoint φ3

theory.

Obviously, the natural question of a generalization of the momentum
amplituhedron to include loops is still at the time of writing left unanswered. Here, a
few challenges bear mention: as explored in section 4.4, loop momentum has a very
neat representation as “lines in momentum twistor space” and this representation
was crucial to the original formulation of the loop amplituhedron in [1]. Here, the
notion of “hiding particles” defines positivity conditions for the lines defining the
loop variables, ensuring that the loop amplituhedron inherits the correct boundary
structure as expected for scattering amplitudes. It appears, that not only does an
obvious notion of hiding particles not generalize to the momentum amplituhedron,
but a deeper question about defining loop-momenta in non-planar settings is raised:
in non-planar sectors, it is not obvious how to actually define the loop-momenta at
the integrand level [95]. Several strides have been made to circumvent this challenge,
recently in 2019 by Bourjaily et al. [96], however the generalization to the
momentum amplituhedron does not seem obvious at the time of writing. Another
immediate open question directly related to the construction of the momentum
amplituhedron concerns the extra positivity conditions mixing (Λ, Λ̃) found in (6.71).
The origins of these conditions are still unclear from a physical perspective.

Another interesting avenue of investigation would build upon the ideas presented
in chapter 8 and in the paper [41]. Here, we studied the scattering amplitude
relations described in section 2.4 in the context of the momentum amplituhedron,
and surprisingly, the relations stemming from the gauge/color structure of N = 4
sYM appears naturally in the geometric framework, where gauge redundancy is not
manifestly enforced and color is never introduced. There exists however, as detailed
in section 2.4, a further set of scattering amplitudes relations reducing the basis of
color ordered scattering amplitudes from (n − 2)! to (n − 3)! – the BCJ relations
(2.77). Attempts have been made at generalizing the results of [41] to also include
the BCJ relations. However, at the time of writing, there is no concrete evidence
that the momentum amplituhedron encodes the BCJ relations geometrically. This
question of BCJ relations for the momentum amplituhedron is a curious one, due to
the relation between the BCJ relations and the double-copy construction [53], where
it is possible to encode scattering amplitudes in gravity as the product of two
Yang-Mills scattering amplitudes [97]. While the outstanding question of a positive
geometry for gravity is an obvious avenue of investigation in its own right [98],
understanding the BCJ relations for the momentum amplituhedron might give hints
at an exotic geometry governing the scattering of gravitons through the double copy
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construction.
Furthermore, there is also an outstanding question of a mathematically rigorous
definition oriented sum proposed in section 4.3. A similar construction was
considered by Dian and Heslop in [99] in their recent work on the correlahedron. We
are leaving a rigorous mathematical definition of the oriented sum to future work.

These two directions, naturally following from the work described in this
dissertation, forms a natural starting point for further research. However in the
research program as a whole several fascinating avenues of research also arise: first, a
generalization of the amplituhedron to encode more realistic theories, e.g. QCD. To
this end, there is an immediate challenge in how to define a positive geometry related
to the differential form associated with scattering amplitudes in theories with
less-than-maximal supersymmetry, discussed by He and Zhang in [84]. We believe,
that a starting point for such geometries might be the momentum amplituhedron
since the spinor helicity variables are naturally suited to discuss scattering
amplitudes in generic Yang-Mills theories including QCD.
Another promising direction of study involves going beyond the loop-level integrands
to loop-level integrals. Since loop integrands are rational functions and most of the
phenomenologically relevant information is tied up with the full, integrated
scattering amplitude, much effort has gone into developing techniques to evaluate
scattering amplitude integrals, for instance, bootstrap methods [100], various
representations, e.g. due to Baikov [101], differential equations [102]. These methods
have revealed and benefited from the fact that there is a lot of structure in the
transcendental functions appearing in loop integrals. Perhaps, these transcendental
functions can be encoded geometrically [38] by integrating canonical forms with
respect to each other as briefly discussed in section 4.1.

Throughout this work, we have taken steps towards a new framework for quantum
field theory based on the notion of positive geometries. We have seen how the central
axioms of quantum field theory, locality, and unitarity, have been replaced by the
notion of positivity and appear as emergent qualities. This represents a new leap
forward in the program of scattering amplitudes without reference to space-time and
therefore makes a small step towards alleviating the great tension between quantum
mechanics and gravity that has haunted theoretical physics for decades. This is an
extremely lofty goal and requires, among other things, the rederivation of the great
trove of known theorems and general results in quantum field theory from its around
eighty years of history as was initiated in [48].
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Appendix A

Orthogonal complement

Throughout the dissertation we make use of the notion of orthogonal complements,
specifically in chapters 3 and 6. The orthogonal complement is naturally defined for
the Grassmannian, the space of k planes in n dimensions. For a given k − plane in
the Grassmannain c ∈ G(k, n) we can naturally associate an (n− k) plane, c⊥ defined
as [72]

c · c⊥ = 0. (A.1)

The matrix c⊥ defined up to GL(n−k) transformations and can therefore be associated
with an element in G(n− k, n) and the minors can be determined precisely from the
minors of c as we shall see in the following. We consider the matrix

B =


b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...
bk1 bk2 . . . bkn

 . (A.2)

Describing a k-plane B in an n-dimensional space. We define its orthogonal
complement B⊥ as an (n − k)-plane in n dimensions. Such plane can be
parametrized by an (n− k)× n matrix

B⊥ =


b⊥11 b⊥12 . . . b⊥1n
b⊥21 b⊥22 . . . b⊥2n
...

...
. . .

...
b⊥n−k 1 b⊥n−k 2 . . . b⊥n−k n

 . (A.3)

Acting on this matrix with a GL(n− k) transformation describes the same plane in a
different basis. We can relate the maximal minors of B and B⊥

(i1, ..., in−k)
⊥
B = gεi1...in−kj1...jk(j1, ..., jk)B (A.4)
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Where the set {j1, ..., jk} = {i1, ..., in−k}c is the complementary set of the set
{i1, ..., in−k} and g is an unfixed scalar global to all sets of minors. We describe B as
a patch in the positive Grassmannian such that

B = (1k×k|b) (A.5)

and the orthogonal complement

B⊥ = (−bT |1(n−k)×(n−k)). (A.6)

One can check, by taking {j1, ..., jk} = {1, ..., k}, that

g = (−1)k(n−k). (A.7)

Since (A.4) is not an involution, we can generally associate

(j1, ..., jk) = g̃εj1...jki1...in−k(i1, ..., in−k)
⊥
B (A.8)

In order for this to agree with (A.4) we need to fix

g̃ = (−1)k(n−k)g = 1 (A.9)

In chapter 6 we let positive matrices play the role of B and twisted positive matrices
play the role of B⊥ and find the following relations between minors of matrices

(j1, ..., jk) = εj1...jki1...in−k(i1, ..., in−k)
⊥ (A.10)

〈j1, ..., jk−2〉⊥ = εj1..jk−2i1....in−k+2
〈i1, ..., in−k+2〉 (A.11)

[j1, ...jk+2] = εj1...jk+2i1...in−k+2
[i1, ..., in−k−2]⊥ (A.12)

which are necessary for the claim that the momentum amplituhedron fulfills the
proposed sign-flip conditions [84].
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Extended Fock-Goncharov
Parametrization for n = 5

The λ̃ matrix in the extended Fock-Goncharov parametrization reads

λ̃ =

(
t−1
1 0 t−1

3 λ̃1
3 t−1

4 λ̃1
4 t−1

5 λ̃1
5

0 t−1
2 s12 t−1

3 λ̃2
3 t−1

4 λ̃2
4 t−1

5 λ̃2
5

)
(B.1)

with

λ̃1
3 =

R1234(R1345(R̄1234 + 1)− R̄1234R̄1345)− R̄1234R̄1345

R1234R̄1234((R1234 + 1)R̄1345 −R1345(−R1234R̄1345 + R̄1234(R̄1345 + 1) + 1))
(B.2)

λ̃1
4 =

(R̄1234 + 1)(R̄1234(R̄1345 + 1)−R1234(R1345 + 1))

R1234R̄1234((R1234 + 1)R̄1345 −R1345(−R1234R̄1345 + R̄1234(R̄1345 + 1) + 1))
(B.3)

λ̃1
5 =

(R̄1234(R̄1345 + 1) + 1)(R1234 − R̄1234)

R1234R̄1234((R1234 + 1)R̄1345 −R1345(−R1234R̄1345 + R̄1234(R̄1345 + 1) + 1))
(B.4)

λ̃2
3 = −s1,2(R1234(R1345(R̄1234 + 1)− R̄1234R̄1345)− R̄1234R̄1345)

R1234R̄1234(R1345 − R̄1345)
(B.5)

λ̃2
4 =

s1,2(R1234(R1345 + 1)− R̄1234(R̄1345 + 1))

R1234R̄1234(R1345 − R̄1345)
(B.6)

λ̃2
5 =

s1,2(R̄1234 −R1234)

R1234R̄1234(R1345 − R̄1345)
. (B.7)
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Appendix C

Formulae for Six-point Amplitudes

The arguments of the square roots, ∆1 and ∆2, appearing when finding the inverse of
the map g6, see (7.51) are found to be

∆1 = s2
12(s23 − s234)2 + (s23(s34 − s56) + s123(s234 − s34))2+

+ 2s12

(
−(s34 + s56)s2

23 + (s34(s123 − 2s56) + (s34 + s56 + s123)s234)s23+

+ s123(s34 − s,34)s234) , (C.1)

∆2 = (s23s56 − s61s56 + s61s123 − s123s234 + s45(s234 − s56))2−
− 4s45s56s61(s23 + s56 − s123 − s234) , (C.2)

while the explicit form for Γ appearing in the solutions for the inverse of the map h6

in (7.55) is as follows

Γ = (s34 − s56) s56s
2
23 +

(
s56 (s56s61 + s45 (s56 − s234)− s123 (s61 − 2s234))

− s34 (s56 (s61 + s123) + s45 (s56 − s234) + s123 (s61 + s234))
)
s23

+ s123

(
(s45 − s123) s2

234 +
(
− s56 (s45 + s61) + s61s123

+ s34 (−s45 + 2s61 + s123)
)
s234 + s34 (s45s56 + s61 (s123 − s56))

)
+ s12

(
(s45 + s123) s2

234 −
(
s56 (s45 − s61) + (s61 − 2s45) s123

+ s23 (s45 + s56 + s123)
)
s234 + s23 (s56 (s23 − s45 − s61) + s61s123)

)
. (C.3)
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Appendix D

Geometry of the Differential Form
ν6,2

Pushing the differential form ω6,2 forward to the differential form on G6 (g6)∗ ω6,2 = ν6,2,
we find that the square-roots present in the individual solutions g−1

6,i cancel exactly
when summing over all four solutions, and we are left with the following

ν6,2 =ν
(A)
6,2 (s12, s23, s34; s45, s56, s61) + ν

(B)
6,2 (s12, s45, s123; s34, s61, s234)

−ν(A)
6,2 (s45, s56, s61; s1,2, s23, s34)− ν(B)

6,2 (s34, s61, s234; s12, s45, s123), (D.1)

where

ν
(A)
6,2 (s12, s23, s34; s45, s56, s61) = d log s12 ∧ d log s34 ∧ d log

(
s45s61

s14s56

)
+

s23

s123 − s234

d log

(
s12s34

s2
23

)
∧ d log

(
s14

s23

)
∧ d log

(
Q

s14s56

)
, (D.2)

ν
(B)
6,2 (s12, s45, s123; s34, s61, s234) =

s123

s123 − s234

×

{[
d log

(
s45

s12

)
∧ d log (s14s23)− d log

(
s12

s56

)
∧ d log

(
s56

s23

)]
∧ d logQ

+

[
d log s56 ∧ d log

(
s12s34

s23

)
− d log s23 ∧ d log

(
s45s61

s56

)]
∧ d log

(
s14

Q

)}
+ d log s12 ∧ d log s45 ∧ d logQ , (D.3)

s14 = s23 + s56− s123− s234 and Q = s23s56− s123s234. The above form, ν6,2 has simple
poles exactly on all planar two-particle Mandelstam variables, and additionally on s14

and on Q. These two remaining appear as a consequence of the Gram determinant
condition for n = 6 in four dimensions. They appear exactly as denominators in the
two solutions to the Gram determinant in (7.55).
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Taking subsequent residues of ν6,2, we not only obtain total residues of ±1, but
also of ±2 on zero-dimensional boundaries, in contradistinction to canonical forms
which, by definition, can only have residues ±1 on boundaries of zero dimension [38].
One might have expected ν6,2 to be a canonical form, due to the fact that it is the
push-forward of the canonical form ω6,2. However, since push-forwards only preserve
top-dimensional canonical forms [38], and ω6,2 is not top-dimensional (being defined on
L6), we anticipate that this is the explanation of the appearance of the ±2 residues –
the non-canonical behavior of ν6,2. In every solution, we have verified that g−1

6,i , given

by ν
(i)
6,2 = (g−1

6,i )
∗ω6,2 is indeed a positive geometry with residues ±1. This suggests

that the geometry of ν6,2 is a geometric sum of four positive geometries ν
(i)
6,2 and as

was explored in section 4.3, the sum of positive geometries can give rise to geometries
that are not positive geometries.



Appendix E

Positivity conditions on V5,2 from

W(σ)
5,2

We find the positivity conditions for n = 5 and k = 2 by intersecting the affine
subspace V5 with the winding spaces of the 4! = 24 different color orderings of the
n = 5 scattering amplitude.
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5,2

〈12〉 〈13〉 〈14〉 〈15〉 〈23〉 〈24〉 〈25〉 〈34〉 〈35〉 〈45〉
(12345) + + + + + + + + + +
(12354) + + + + + + + + + -
(12435) + + + + + + + - + +
(12453) + + + + + + + - - +
(12534) + + + + + + + + - -
(12543) + + + + + + + - - -
(13245) + + + + - + + + + +
(13254) + + + + - + + + + -
(13425) + + + + - - + + + +
(13452) + + + + - - - + + +
(13524) + + + + - + - + + -
(13542) + + + + - - - + + -
(14235) + + + + + - + - + +
(14253) + + + + + - + - - +
(14325) + + + + - - + - + +
(14352) + + + + - - - - + +
(14523) + + + + + - - - + +
(14532) + + + + - - - - - +
(15234) + + + + + - - + - -
(15243) + + + + + + - - - -
(15324) + + + + - + - + - -
(15342) + + + + - - - + - -
(15423) + + + + + - - - - -
(15432) + + + + - - - - - -

Table E.1: The positivity conditions fromWσ
5,2 for all orderings σ ∈ O5. The positivity

of 〈1i〉 > 0 allows the remaining positivity conditions to be embedded in R
3



Appendix F

Poset Intervals for MHV
Four-point Amplitudes

In this appendix we present in Fig. F.1 the Hasse diagrams of the intervals between
the momentum amplituhedra M(1234)

4,2 , M(1324)
4,2 and the zero-dimensional boundary,

or vertex, v{1,2}, representing the full boundary stratification. The intervals for the
other orderings are topologically equivalent to the ones presented here. In the Hasse
diagrams, we explicitly indicate the edge labels, i.e. the spinor brackets which vanish
when approaching a specific boundary, and a diamond-compatible assignment of signs
to every edge.
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Figure F.1: Hasse diagrams of the interval betweenM(1234)
4,2 (left) andM(1324)

4,2 (right),
and the vertex v{1,2}.
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