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Summary

Repeated severe market downturns since the turn of the century and the current low

interest rate environment represent two main challenges for banks and insurance com-

panies in the past decades. This dissertation covers precisely these two topics. The

�rst two essays apply �nancial mathematical and statistical methods to improve the

modelling of interest rates. Essay 3 examines the practical application of risk-based

investment strategies.

The �rst essay proposes a new modelling framework for the 2-Additive-Factor Gaus-

sian (Gauss2++) model. This interest rate model is also known in a di�erent rep-

resentation as the 2-Factor Hull-White model. It is commonly used in the insurance

industry to calculate a company's liabilities as well as for risk management and fore-

casting purposes. Our framework allows us to apply the model under the risk neutral

and the real world measure in a consistent manner. It further accounts for stable

and realistic long-run interest rate forecasts under the real world measure. In this

context �stable� means that long-run forecasts (e.g. 30 years forecasts) do not �uc-

tuate much if the model is calibrated on, e.g., a yearly basis. Large �uctuations of

long-run forecasts is a common problem of the Gauss2++ model in the insurance

industry and results from the fact that a constant function calibrated on short-term

interest rate forecasts is used to determine the transition from the risk neutral to

the real world measure. We introduce a time dependent function, which allows us to

regularize the interest rates in the long forecasting horizon without loosing the an-

alytic tractability of zero-coupon bond prices or increasing computational e�ort much.

In Essay 2 we propose a time-varying autoregressive model of order one for short- and

long-term predictions of interest rates. Our model improves the forecasting perfor-

mance in the short horizon compared to the Gauss2++ model, while still producing

realistic values in the long-run. Interest rates as well as other economic variables
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show a (close to) random walk behaviour although economic theory says that they

are mean reverting. We assume that this behaviour originates from a time-varying

mean reversion level. By modelling the constant of an autoregressive model of order

one (AR(1) model) by a stationary latent process we account for these changes in

our model. We use a Bayesian formulation to incorporate prior assumptions on the

mean reverting process in the model and thereby regularize predictions in the far

future. We use MCMC-based inference by deriving all full conditional distributions

and employ a Metropolis-Hastings within Gibbs sampler approach to sample from

the posterior (predictive) distribution. In combining data-driven short-term predic-

tions with long-term distribution assumptions our model is competitive to existing

methods in the short horizon while yielding reasonable predictions in the long-run.

The third essay investigates the application of risk-based investment strategies. Hav-

ing experienced a sequence of dramatic market downturns in the recent past, such

as the dotcom crisis starting in 2000, the �nancial crisis around 2008, the European

sovereign debt crisis unfolding in 2010, and most recently the Corona crash in 2020,

there has been an increased interest in risk-based investment strategies. In the liter-

ature it is shown that risk-based investment strategies can produce large alphas and

increase Sharpe ratios. However, such strategies have not yet made major inroads

into many practical applications. In this essay we �ll this gap and apply a risk-based

investment strategy on a framework for a pension scheme, which implements an inter-

generational risk transfer by establishing a collective reserve. Combining this pension

scheme with the risk-based investment strategy improves the performance of the pen-

sion fund and reduces the risk of a negative reserve in times of a market crisis. We

furthermore investigate the implications of imposing varying degrees of diversi�cation

across assets in such a scheme.
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Zusammenfassung

Wiederholt schwere Markteinbrüche seit der Jahrtausendwende und das aktuelle Nied-

rigzinsumfeld stellten Banken und Versicherungen in den letzten Jahrzehnten vor

groÿe Herausforderungen. Diese Dissertation befasst sich genau mit diesen beiden

Problemen. Die ersten beiden Essays wenden �nanzmathematische und statistische

Methoden an, um die Modellierung von Zinsen zu verbessern. In Essay 3 werden

praktische Anwendungen risikobasierter Anlagestrategien untersucht.

Das erste Essay schlägt einen neuen Modellierungsrahmen für das 2-Additive-Factor-

Gauÿ-Modell (Gauss2++ Modell) vor. Dieses Modell ist in einer anderen Darstellung

auch bekannt als das 2-Factor Hull-White-Modell. Es wird in der Versicherungs-

branche häu�g zur Bewertung von Verbindlichkeiten des Unternehmens sowie für

Risikomanagement- und Prognosezwecke verwendet. Unser Modellierungsrahmen

ermöglicht es, das Modell unter dem risikoneutralen und dem sogenannten real-

world Maÿ in konsistenter Weise anzuwenden. Darüber hinaus trägt es zu sta-

bilen und realistischen langfristigen Zinsprognosen unter dem real-world Maÿ bei. In

diesem Zusammenhang bedeutet �stabil�, dass langfristige Prognosen (z.B. 30-Jahres-

Vorhersagen) nicht stark schwanken, wenn das Modell z.B. auf Jahresbasis kalibriert

wird. Groÿe Schwankungen von langfristigen Prognosen sind ein bekanntes Problem

des Gauss2++ Modells in der Versicherungswirtschaft und resultieren daher, dass

eine an kurzfristigen Zinsprognosen kalibrierte konstante Funktion verwendet wird,

um den Übergang von der risikoneutralen in die reale Welt zu modellieren. Wir führen

eine zeitabhängige Funktion ein, die es uns ermöglicht, langfristige Zinsprognosen zu

regulieren, ohne die analytische Berechenbarkeit von Nullkupon-Anleihen zu verlieren

oder den Rechenaufwand stark zu erhöhen.

In Essay 2 schlagen wir ein zeitvariables autoregressives Modell erster Ordnung für

kurz- und langfristige Zinsvorhersagen vor. Unser Modell hat eine verbesserte Prog-
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nosegüte für kurzfristige Zinsvorhersagen im Vergleich zum Gauss2++ Modell und

liefert gleichzeitig langfristig realistische Werte. Zinsen sowie auch andere ökonomi-

sche Zeitreihen verhalten sich (nahezu) wie ein Random Walk, obwohl sie nach der

Theorie immer wieder zu einem Mittelwert zurückkehren sollten. Wir vermuten, dass

dieses Verhalten von einem zeitvariablen Mean-Reversion-Niveau herrührt. Indem wir

die Konstante eines AR(1)-Modells durch einen stationären latenten Prozess model-

lieren, berücksichtigen wir diese Eigenschaft in unserem Modell. Wir verwenden einen

Bayesianischen Ansatz, um a-priori Annahmen über den Mittelwertprozesses in das

Modell aufzunehmen und damit die langfristigen Vorhersagen zu regulieren. Wir ver-

wenden MCMC-basierte Inferenz, indem wir alle vollständig bedingten Verteilungen

herleiten und einen Metropolis-Hastings-Ansatz im Rahmen eines Gibbs-Samplers

verwenden, um eine Stichprobe aus der posteriori (prädiktiven) Verteilung zu erhal-

ten. Durch die Kombination datengetriebener kurzfristiger Vorhersagen mit langfristi-

gen Verteilungsannahmen hat unser Modell für kurzfristige Vorhersagen eine ähnliche

Güte wie existierende statistische Modelle, liefert aber zusätzlich langfristig realisti-

sche Vorhersagen.

Das dritte Essay untersucht die Anwendung risikobasierter Anlagestrategien. Nach

einer Reihe dramatischer Markteinbrüche in der jüngeren Vergangenheit, wie der

Dotcom-Krise ab 2000, der Finanzkrise um 2008, der europäischen Staatsschuldenkrise

im Jahr 2010 und zuletzt dem Corona-Crash im Jahr 2020, gab es ein erhöhtes

Interesse an risikobasierten Anlagestrategien. In der Literatur wird gezeigt, dass

risikobasierte Anlagestrategien groÿe Alphas erzeugen und Sharpe-Ratios erhöhen

können. Allerdings werden solche Strategien noch selten in praktischen Anwendungen

eingesetzt. In diesem Essay schlieÿen wir diese Lücke und wenden eine risikobasierte

Anlagestrategie im Rahmen eines Rentensystems an, welches einen generationsüber-

greifenden Risikotransfer mit Hilfe einer kollektiven Reserve umsetzt. Die Kombina-

tion eines solchen Rentensystems mit einer risikobasierten Anlagestrategie verbessert

die Performance des Pensionsfonds und verringert das Risiko einer negativen Reserve

in Zeiten einer Marktkrise. Darüber hinaus untersuchen wir die Auswirkungen un-

terschiedlicher Diversi�zierungsvorgaben in einem solchen System.
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Chapter I. Introduction and Methods

I. Introduction and Methods

The application of �nancial econometric models combines statistical and mathemat-

ical theory and methods to understand and solve problems in �nancial economics.

Especially the modelling of �nancial times series such as prices, returns, interest

rates, etc. as well as portfolio optimization and risk measures are important �elds

in �nancial econometrics. This thesis contributes to two broad challenges: Modelling

and forecasting of interest rates and investigating risk-based investement strategies

in practical applications.

The following three subsections successively introduce the theory and methods for

the three essays, which are presented in chapters 2 to 4.

1. Introduction to Essay 1

Essay 1 covers the Gauss2++ interest rate model and is titled:

The Gauss2++ model � A Comparison of Di�erent Measure Change Speci�cations

for a Consistent Risk-Neutral and Real World Calibration

The challenge of modelling interest rates consists in the multivariate setting since

each interest rate with a speci�c maturity represents a modelling dimension. The

Gauss2++ model belongs to the class of short-rate models, which only model the

(one-dimensional) short-rate � the instantaneous interest rate � and derive all fun-

damental quantities (like spot interest rates or bonds) from it by using the �nancial

mathematical method of risk-neutral valuation. In the following important de�nitions

as well as mathematical concepts are introduced mainly using Brigo and Mercurio

(2007) as a reference.
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Chapter I. Introduction and Methods

1.1. De�nitions

The main building blocks of �xed income quantities are zero-coupon bonds. They

represent the present value of one amount of currency, which is to be paid at a future

time T . They can not be observed in the market, but are just auxiliary quantities

from which other �nancial quantities � e.g., interest rates, swaps, swaptions, etc. �

can be derived. A detailed de�nition is given in Brigo and Mercurio (2007):

1.1 De�nition. A zero-coupon bond is a �nancial contract, which guarantees the

holder the payment of one amount of currency at a time T , which is the maturity of

the bond. The contract value at time t < T is denoted by P (t,T ).

Another important building block in the �xed income market are spot interest rates.

We distinguish between three types, namely: continuously-compounded, annually-

compounded and simply-compounded spot interest rates. Interest rates with other

compounding frequencies can be de�ned, but they are not relevant for the essays in

this thesis. Interest rates can be calculated from zero-coupon bond prices and vice

versa. A detailed de�nition can be found in Brigo and Mercurio (2007):

1.2 De�nition. The continuously-compounded spot interest rate is the con-

stant rate, at which an investment of P(t,T) at time t accrues continuously to yield

one amount of currency at maturity T. It is denoted by r(t,T) and is given by

r(t,T ) =
− ln(P (t,T ))

T − t
. (I.1)

Therefore, a zero-coupon bond price at time t with maturity T in terms of continuously-

compounded interest rates is

P (t,T ) = e−r(t,T )(T−t).

1.3 De�nition. The annually-compounded spot interest rate is the constant

rate, at which an investment of P(t,T) at time t yields one amount of currency if

reinvested once a year at this rate. It is denoted by R(t,T) and is given by

R(t,T ) =
1

P (t,T )
1

T−t
. (I.2)

2



Chapter I. Introduction and Methods

Therefore, a zero-coupon bond at time t with maturity T in terms of annually-

compounded interest rates is

P (t,T ) =
1

(1 +R(t,T ))(T−t)
.

1.4 De�nition. The simply-compounded spot interest rate is the constant rate,

at which an investment has to be made to produce an amount of one unit of currency

at maturity, starting from P(t,T) units of currency at time t, when accruing occurs

proportionally to the investment time. It is denoted by L(t,T) and is given by

L(t,T ) =
1 − P (t,T )

(T − t)P (t,T )
.

Therefore, a zero-coupon bond at time t with maturity T in terms of simply-compounded

interest rates is

P (t,T ) =
1

1 +L(t,T )(T − t)
.

From interest rates and zero-coupon bond prices derivatives can be constructed. In

Essay 1 swaptions are used to calibrate the risk-neutral dynamics of the Gauss2++

model. A swaption is an option on an interest rate swap.

1.5 De�nition. An interest rate swap is a contract that exchanges interest rate

payments between two parties starting from a future time instant.

Often swaps involve the exchange of a �xed interest rate for a �oating rate, or vice

versa, to reduce or increase exposure to �uctuations in interest rates. The interest rate

swap is called a payer swap (PS) if the �xed rate is paid and the �oating leg is received.

If it is the other way around it is called a receiver swap (RS). We assume that payments

of the �xed and the �oating rates occur at the same dates and with the same year

fraction. The �oating rate is reset at points in time {Tα, Tα+1, . . . , Tβ−1} and payments

occure at {Tα+1, . . . , Tβ}. We further set T = {Tα, . . . ,Tβ} and τ = {τα+1, . . . , τβ}, where

τi = Ti − Ti−1. In this case the value at time t of a RS is given by

RS(t,T ,τ,N,K) = N
β

∑
i=α+1

τiP (t,Ti) (K − F (t,Ti−1,Ti)) , (I.3)

where N is the nominal value of the contract, K is the �xed rate and F (t,Ti−1,Ti) is

3



Chapter I. Introduction and Methods

the forward interest rate. A suitable de�nition for the forward interest rate is given

in Brigo and Mercurio (2007):

1.6 De�nition. The simply-compounded forward interest rate prevailing at

time t for the expiry T > t and maturity S > T is denoted by F (t, T, S) and is de�ned

by

F (t, T,S) =
1

S − T
(
P (t,T )

P (t,S)
− 1) .

It is the fair value at time t for the �xed rate, K, in a forward rate agreement with

expiry T and maturity S.

1.7 De�nition. A forward rate agreement is a contract that pays the holder a

�xed interest rate for the period between T and S. Its value is given by

N(S − T )(K −L(T,S)).

With De�nition 1.5 and equation (I.3) we can now give a de�nition for a swaption,

an interest rate derivative, which is often used in the insurance industry to calibrate

interest rate models.

1.8 De�nition. A swaption is an option on an interest rate swap. A european

payer (receiver) swaption gives the holder the right, but not the obligation, to enter a

payer (receiver) swap, at a given future time, the swaption maturity.

Usually the swaption maturity coincides with the �rst reset date of the underlying

interest rate swap. If the value of the swap at maturity is positive the option will

be exercised. Therefore, the payo� of a receiver swaption at maturity is given by

applying the positive part function on the value of the receiver swap at maturity (c.f

equation (I.3))

N (
β

∑
i=α+1

τiP (Tα,Ti) (K − F (Tα,Ti−1,Ti)))

+
.

Discounting this value to the current time yields the value of the swaption at time t.

The value of a payer swaption can be derived analogously.

The value of the swaption entails information about what the market participants

expect today at time t for the distribution of future interest rates at time Tα. For
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Chapter I. Introduction and Methods

example, if the price of a receiver swaption decreases, this can mean that the expec-

tation of market participants about future forward rates F (Tα,Ti−1,Ti) increases and

vice versa. If we want to determine the parameters of an interest rate model, we

can use this forward-looking information by choosing the parameters such that the

model reproduces the market price of the swaption. This approach is di�erent to the

approach using historic data. In this case the historic data determines distributional

characteristics and with it the parameters of the model. For example, the maximum

likelihood method chooses the parameters, with which the model would have most

likely produced the historic data. Of course, both approaches have their advantages

and disadvantages. Using historic data as a random sample is an intuitive approach.

Neglecting this information could be criticised for the forward-looking approach. At

the same time the time series must not behave the same in the future as it behaved

in the past. It lies in the responsibility of the user, which approach is appropriate for

the given application.

1.2. The Mathematical Concept of Risk-Neutral Valuation

The price of a �nancial product highly depends on its riskiness. Investors are typically

risk-averse and therefore demand for an additional compensation to invest in risky

assets. For example, to calculate the fair price of a claim on a risky amount paid in

the future the expected payo� needs to be adjusted according to the inherent risk.

This must be done for each claim individually.

The concept of risk-neutral valuation gives an alternative approach to calculate the

fair price. Its basic idea is that a claim can be hedged, i.e., the payo� can be replicated

by a self-�nancing strategy (c.f. De�nitions 1.9 and 1.10). If the market is arbitrage

free and complete, this strategy must have the same unique price as the claim. But

if the claim can be replicated the price does not depend on the risk appetite of the

investors. Therefore, one can build a theoretical risk-neutral world, in which all in-

vestors are risk-neutral, and today's price of the claim in this world should be the

same. This theoretical world simpli�es the calculation of the expected payo� since all

assets behave the same in expectation, because a riskier asset does not need to have

a higher expected return as the investors are risk-neutral. Therefore, the discounted

payo� of any claim does not need to be adjusted for claim speci�c risk characteristics.
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Chapter I. Introduction and Methods

Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983) were the �rst, who

formulated this concept in a sound mathematical framework. We use a similar no-

tation as Brigo and Mercurio (2007). Consider a time horizon T > 0, a probability

space (Ω,F ,P) and a right-continuous �ltration F = {Ft ∶ 0 ≤ t ≤ T}. In the consid-

ered economy K + 1 assets are traded continuously from time 0 until time T . Their

price processes are modelled by a (K + 1)-dimensional Itô process S = (St)t∈[0,T ] with

components S0, S1, . . . ,SK , where Si = (Si
t)t∈[0,T ] for i = 0, . . . ,K. The �rst asset S0

is the bank account and de�ned by

dS0
t = rtS

0
t dt, S0

0 = 1,

where rt is the short-rate at time t. On this mathematical model of an economy

Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983) established a link

between the economic concept of an arbitrage free market (c.f. De�nition 1.11) and

the existence of an equivalent martingale measure (or risk-neutral measure) (c.f. Def-

inition 1.12). On this basis, they proved that the unique arbitrage free price of any

attainable contingent claim is given by the expectation of the discounted claim payo�

under such an equivalent martingale measure. This last result represents the main

formula that explains how spot interest rates can be modelled by using a short-rate

model. The following shall give more insight into this concept by �rst de�ning both:

an arbitrage free market and an equivalent martingale measure.

For a formal description of an arbitrage free market we �rst have to provide a de�ni-

tion for a trading strategy as well as a self �nancing trading strategy (see Brigo and

Mercurio (2007)):

1.9 De�nition. A trading strategy is a (K + 1)-dimensional process ϕ = (ϕt)t≤T ,

whose components ϕ0, ϕ1, . . . , ϕK are locally bounded and predictable. They represent

the number of units of the assets S0, . . . ,SK, respectively, held by an investor. The

value process associated with a strategy ϕ is de�ned by

Vt(ϕ) = ϕtSt =
K

∑
k=0

ϕk
tS

K
t , 0 ≤ t ≤ T

6



Chapter I. Introduction and Methods

1.10 De�nition. A strategy is self-�nancing if its value changes only due to changes

in the asset prices.

1.11 De�nition. An arbitrage free market is characterized by the non-existence

of a self-�nancing strategy ϕ, such that V0(ϕ) = 0, but P(VT (ϕ) > 0) > 0.

The de�nition of an equivalent martingale measure is as follows (see Brigo and Mer-

curio (2007)):

1.12 De�nition. An equivalent martingale measure Q with respect to the bank

account is a probability measure on the space (Ω,F), such that

� Q and P are equivalent measures, i.e. Q(A) = 0 if and only if P(A) = 0 for

every A ∈ F .

� the Radon-Nikodym derivative dQ/dP belongs to L2(Ω,F ,P), i.e. it is square

integrable with respect to P.

� The discounted asset price process D(0,t)St is an (F ,Q)-martingale, i.e.,

EQ[D(0,t)Sk
t ∣ Fu] =D(0,u)S

k
u,

for all k = 1, . . . ,K and all u, t with 0 ≤ u ≤ t ≤ T .

EQ[⋅] denotes the expectation under Q. D(t,T ) is the discount factor and is given by

D(t,T ) =
S0
t

S0
T
since S0 is the bank account.

Harrison and Pliska (1981) then proved that the market is free of arbitrage if (and

only if) there exists an equivalent martingale measure. This link builts the basis for

another fundamental result concerning attainable contingent claims (see Brigo and

Mercurio (2007)):

1.13 Proposition. Assume there exists an equivalent martingale measure Q and let

H be an attainable contingent claim. Then, for each time t, 0 ≤ t ≤ T , there exists a

unique price πt associated with H, i.e.,

πt = E
Q[D(t, T )H ∣Ft]. (I.4)

7



Chapter I. Introduction and Methods

1.14 De�nition. A contingent claim is a square-integrable and positive random

variable on (Ω,F ,P).

1.15 De�nition. A contingent claim H is called attainable if there exists some

self-�nancing ϕ such that VT (ϕ) =H. Such a ϕ is said to generate H, and πt = Vt(ϕ)

is the price at time t associated with H.

According to Proposition 1.13 the price of an attainable contingent claim is given by

the discounted expected payo� under the equivalent martingale measure. The point

is that this holds for any attainable contingent claim and therefore generalizes the

result of Black and Scholes (1973). Also a zero-coupon bond price can be seen as

a contingent claim that has a certain payo� of one amount of currency at maturity.

Short-rate models use equation (I.4) to price zero-coupon bonds, from which spot

interest rates can be derived. This shows the importance of this result for short-rate

models.

The second �nancial mathematical result, which we want to introduce in this chap-

ter, is the Girsanov theorem (see Girsanov (1960)). Changing the probability mea-

sure from P to Q or vice versa also changes the dynamics of the underlying assets

S0, . . . ,SK . If we change the measure according to Girsanov, the drift of the SDE

changes but the di�usion coe�cient remains the same.

1.16 Proposition. Let (Wt)t∈[0,T ] be an (Ft)t∈[0,T ]-Brownian motion on [0,T ] under

P and Φ = (Φt)t∈[0,T ] a progressive process such that ∫
T

0 ∥Φs∥
2ds < ∞.

Let ZT = e
(∫

T
0 Φtr

s dWs−
1
2 ∫

T
0 ∥Φs∥

2ds) and suppose E[ZT ] = 1. Then (W̃t)t∈[0,T ] given by

W̃t =Wt − ∫

t

0
Φsds

is an (Ft)t∈[0,T ]-Brownian motion on [0,T ] under Q, where

dQ
dP
= ZT .

Assuming the dynamics of the asset price process (Sk
t )t∈[0,T ] is under P as follows

dSk
t = µ(t,S

k
t )dt + σ(t,S

k
t )dWt,

8
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where µ(t,Sk
t ) and σ(t,Sk

t ) is the drift and the di�usion coe�cient, respectively, de-

pending on time t and the asset Sk itself. If we perform a measure change according

to Girsanov the dynamics changes as follows:

dSk
t = [µ(t,S

k
t ) + σ(t,S

k
t )Φt]dt + σ(t,S

k
t )dW̃t,

where (Φt)t∈[0,T ] is the progressive process of the above proposition and (W̃t)t∈[0,T ] is

a Brownian motion under the new measure Q.

The dynamics under the risk-neutral measure are needed if we are interested in pricing

contingent claims. The dynamics under the real world measure are important if we

are interested, e.g., in forecasting or calculating risk measures. Since we are interested

in a consistent model for both worlds in Essay 1, the process Φ needs to be speci�ed.

If we have a complete market, i.e., all contingent claims are attainable, and we start

from the real world measure, Φ is unique. But if we start the other way around from

the risk-neutral dynamic, any function that full�lls the Girsanov conditions can be

chosen. It is the responsibility of the user to choose Φ appropriately. In Essay 1 we

suggest a time-dependent function for Φ, while the standard model in the insurance

industry assumes a constant. This standard model su�ers form the in�exibility of the

former especially regarding predictions in the long horizon. We show that this can

be avoided by employing a time-varying function.

1.3. Short-rate models

There exist two broad classes of short-rate models: equilibrium and no-arbitrage

models. Most equilibrium short-rate models concentrate on the dynamic of the short-

rate and derive interest rates with longer maturities from it. Prominent candidates of

this model class include Vasicek (1977), Cox et al. (1985) and Du�e and Kan (1996).

No-arbitrage models focus on exactly �tting the term structure at a speci�c point in

time to prevent arbitrage opportunities. Representatives of this class are introduced

by Hull and White (1990) and Heath et al. (1992).

Short-rate models are mainly used for pricing interest rate derivatives. They are,

therefore, directly de�ned under the risk-neutral measure such that the method of

risk-neutral valuation can be applied. Consider a one-factor short-rate model with

9
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the following general form of a SDE:

drt = µ(t, rt)dt + σ(t, rt)dWt,

where (Wt)t∈[0,T ] is a Brownian motion under the risk neural measure Q and and µ

and σ are two functions of time t and the short-rate rt. Since a zero-coupon bond

can be seen as a contingent claim, we can use equation (I.4) to calculate its price. As

the price of a zero-coupon bond amounts to 1 at maturity T and the discount factor

D(t,T ) is given by S0
T

S0
t
= e−∫

T
t rsds, this formula reduces to

P (t,T )
(I.4)
= EQ[D(t,T )P (T,T )∣Ft]

= EQ [e−∫
T
t rsds∣Ft] . (I.5)

From zero-coupon bond prices spot interest rates are readily de�ned, e.g., via (I.1) or

(I.2). Therefore, spot interest rate scenarios can be generated and, e.g., used to price

(complex) interest rate derivatives with a Monte Carlo approach. Equation (I.5),

therefore, represents the core formula for short-rate models.

Working with interest rate forecasts or risk measures, the short-rate model needs

to be regarded under the real world measure. If we perform a measure change ac-

cording to Girsanov (c.f. proposition 1.16) the corresponding one-factor short-rate

model has the following dynamic

drt = [µ(t,rt) +Φ(t,rt)σ(t,rt)]dt + σ(t,rt)dW̃t,

where (W̃t)t∈[0,T ] is now a Brownian motion under the real world measure and Φ is

a progressive process satisfying the conditions in the Girsanov proposition. It can

be interpreted as the market price of risk, as it adds multiplied with the di�usion

coe�cient σ(t,rt) an additional amount to the risk-neutral drift µ(t,rt).

To derive the zero-coupon bond price under the real world measure, we can not use

formula (I.4) as the price process discounted with the bank account is no longer a

martingale. To get a martingale under the real world measure we have to discount

10
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the zero-coupon bond price by a cash �ow XP (t,T )(t), which has the same drift as the

zero-coupon bond under the real world measure. In general XP (t,T )(t) is not known

and di�ers for each product, which is the reason why one switches to the risk-neutral

measure if interested in pricing contingent claims, as one can use the bank-account for

any product, here. But by specifying the change of measure according to Girsanov,

i.e., by specifying Φ, we have implicitly de�ned this cash �ow for every asset in the

market. Therefore, we can calculate the price of a zero-coupon bond analogously to

the risk-neutral case by using the martingale property and that P (T,T ) = 1:

P (t,T ) = EP [
XP (t,T )(t)

XP (t,T )(T )
∣Ft] . (I.6)

Note that we take the expectation under the real world measure P. From formula I.6

interest rate scenarios under the real world measure can be generated and used for

forecasts as well as to calculate risk measures.

Short-rate models di�er in the underlying process of the short-rate. In Essay 1 of

this thesis we focus on the Gauss2++ model � in a di�erent representation also

known as the 2-Factor Hull-White model. For this short-rate model there exists an

analytic solution for the risk-neutral price of a zero-coupon bond (c.f. equation (I.5)).

We show that for this model any time-dependent function for Φ can be used without

loosing the analytic tractability of a zero-coupon bond price in the real world. We em-

phasise that a time-dependent function is necessary to regularize long-run predictions

by referring to an analysis in Hull et al. (2014), where it is argued that otherwise un-

realistic interest rates in the long horizon can be reached. This is a common problem

in the insurance industry, where a constant function for Φ is used. This issue will be

tackled in Essay 2. We suggest two time-dependent candidates for Φ, which are still

easy to calibrate: a step function and a linear function. In our application we test all

three approaches (�constant�, �step� and �linear�) over a time horizon of 3 years and

indeed observe more realistic and stable interest rates in the long forecasting horizon

for the time-dependent candidates.
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2. Introduction to Essay 2

Essay 2 of this thesis concentrates on the forecasting performance of interest rate

models and is titled:

A Bayesian Time-Varying Autoregressive Model for Improved Short- and Long-Term

Prediction

Short-rate models perform poorly in forecasting (see, e.g., Du�ee (2002)). Factor

models � like the dynamic Nelson-Siegel model developed by Diebold and Li (2006) �

often concentrate on short-term predictions (up to 1 or 2 years) and neglect the per-

formance of the model in the long-run (e.g., up to 40 years). The goal of our research

is to propose a model, which accounts for both: short- and long-term predictions. By

accounting for long-term predictions we mean that we want a model that is able to

regularize long-term forecasts to prohibit unrealistic results. We suggest a Bayesian

time-varying autoregressive model, which is competitive to the dynamic Nelson-Siegel

model in the short-horizon, but also generates realistic long-term predictions. This is

especially of interest for insurance companies, as they use interest rate scenarios for

up to 40 years to calculate risk measures for speci�c insurance products.

In Essay 2 we compare the results of our Bayesian time-varying autoregresseive mod-

el to the dynamic Nelson-Siegel model. We therefore introduce both models in the

following.

2.1. The dynamic Nelson-Siegel Model

In practice interest rates are not directly observed but need to be estimated from

bond prices. There are di�erent estimation procedures:

McCulloch (1975) and McCulloch and Kwon (1993) estimate a smooth discount curve

using cubic splines.

2.1 De�nition. The discount curve at time t is de�ned by the assignment

T → P (t,T ), T > t.
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The smooth discount curve is then converted to interest rates (c.f. equation (I.1))

for the relevant maturities. Shea (1983) shows that the resulting discount curve di-

verges at long maturities, which results in unlikely interest rate curve shapes. Vasicek

and Fong (1982) apply a similar approach using exponential splines and a negative

transformation of the maturity instead of the maturity itself. This ensures that the

interest rates converge to a �xed limit with increasing maturity. A third and very

popular approach is given by Fama and Bliss (1987), who construct forward rates by

calculating the forward rate step by step that is necessary to meet the bond price

with the next longer maturity. From these forward rates the corresponding interest

rates are derived.

The development of a parsimonious model for the interest rate curve was also the

concern of Nelson and Siegel (1987), who suggest a parsimonious exponential approx-

imation for the instantanious forward rate.

2.2 De�nition. The instantanious forward rate at time t for maturity T , T > t

is denoted by f(t,T ) and is de�ned by

f(t,T ) = lim
S→T+

F (t,T,S) =
∂P (t,T )

∂T
.

F (t,T,S) is the forward rate (c.f. De�nition 1.6).

The �Nelson-Siegel forward rate� can be viewed as the sum of a constant and a

Laguerre function, which is the product of a polynomial and an exponential decay

term and is used for mathematical approximations. It has the following functional

form:

f(t,T ) = β1 + β2e
−λ(T−t) + β3λe

−λ(T−t),

where λ is a constant, which governs the exponential decay, and β1, β2, β3 ∈ R. Spot
interest rates are then given by the average of the instantaneous forward rates

r(t,T ) =
1

T − t ∫
T

t
f(t,m)dm,

13
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which results in the following functional form for spot interest rates:

r(t,T ) = β1 + β2
1 − e−λ(T−t)

λ(T − t)
+ β3 (

1 − eλ(T−t)

λ(T − t)
− eλ(T−t)) .

This functional form is �exible enough to represent the common interest rate curve

shapes: monotonic, humped and S-shaped. While the Nelson and Siegel model (see

Nelson and Siegel (1987)) is a static model, Diebold and Li dynamize it by making

the parameters β1, β2 and β3 time-varying (see Diebold and Li (2006)), i.e.,

r(t,T ) = β1,t + β2,t
1 − e−λ(T−t)

λ(T − t)
+ β3,t (

1 − eλ(T−t)

λ(T − t)
− eλ(T−t))

and interpret them as three latent dynamic factors (see Diebold and Li (2006)). The

exponential terms are regarded as the factor loadings.

The loading on β1,t is one. Therefore, this factor can be interpreted as the level of the

interest rate curve, as it loads on each maturity with the same amount. The loading

on β2,t is 1−e−λ(T−t)
λ(T−t) , which represents a function (of the time to maturity T − t) that

starts in 1 and slowly decays for longer maturities. Loading a higher amount for the

short than for the long maturities in�uences the steepness of the interest rate curve.

Therefore, Diebold and Li interpret the second factor as the slope of the interest rate

curve. And �nally the loading of β3 is (1−e
λ(T−t)

λ(T−t) − e
λ(T−t)), which starts at 0, then in-

creases and decays back to zero. It, therefore, in�uences the medium long maturities

and β3,t can be interpreted as the curvature.

Diebold and Li estimate the three factors β1, β2 and β3 from historic interest rate data

and apply time series models on the extracted factor data for forecasting purposes.

From the forecasted factors, forecasts of the whole interest rate curve can be derived.

They focused their analysis on one, six and twelve months predictions, neglecting the

results of long-term forecasts of, e.g., up to 40 years. This is in line with economic

theory as today's information hardly has any predictive power for interest rates in

such a long horizon. But one can anticipate that the model still produces forecasts

that lie in an economically reasonable range. In Essay 2 we show that this is not the

case for a standard AR(1) model, which is also applied by Diebold and Li (2006).

As today's data can not be used to predict interest rates in the long horizon we
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suggest a Bayesian approach that allows to incorporate prior assumptions about the

long-term behaviour in a sound mathematical way and without in�uencing short-term

predictions much.

2.2. Stationary processes

A key factor for long-term forecasts is stationarity of a (possibly trend and seasonal

adjusted) time series.

2.3 De�nition. A stochastic process (xt)t≥0 is weakly stationary if the following

conditions hold:

1. the unconditional mean is constant, i.e. E[xt] = µ < ∞ for all t ≥ 0

2. the unconditional variance is �nite, i.e. V ar(xt) = σ < ∞ for all t ≥ 0

3. the autocovariance Cov(xtk , xtl) with k < l depends only on the time di�erence

tl − tk, i.e. Cov(xtk , xtl) = Cov(xtk+s, xtl+s), where s ∈ N.

If the unconditional mean and unconditional variance lie in a reasonable range, the

model produces realistic long-term predictions.

In Essay 2 we work with an AR(1) process, which is de�ned as follows

xt = α + βxt−1 + ϵt, (I.7)

where xt represents the observed variable at time t and α and β are real valued

constants. If ∣β∣ < 1 the process is stationary. The innovation process ϵt can be, e.g.,

a Gaussian white noise process.

2.4 De�nition. A weak white noise process is a stochastic process (xt)t≥0 if for

all t, tk and tl with k ≠ l it holds

1. E[xt] = 0

2. V ar(xt) = σ < ∞

3. Cov(xtk , xtl) = 0
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2.5 De�nition. A Gaussian white noise process (xt)t≥0 is a weak white noise

process, where xt is independent and identically (i.i.d) normally distributed for all

t > 0, i.e. xt
i.i.d.
∼ N(0,σ2)

If β approaches 1 the unconditional expectation of the process given by

E[xt] =
α

1 − β

and the unconditional variance

V ar(xt) =
σ2

1 − β2

approach in�nity (for α > 0). Note that if β is 1 the process is no longer stationary.

Lanne and Saikkonen (2002) state that applying a linear model to economic time

series that exhibit an almost non-stationary behaviour can lead to implications not

in line with economic theory. For example, the almost non-stationary behaviour can

only be captured by the model by a large variance, which might lead to values that

are not realistic for the relevant time series. Lanne and Saikkonen (2002) argue that

it might be an indication of factors not accounted for by the employed linear model if

the time series shows an almost non-stationary behaviour. This is the point of view

we take in Essay 2. We assume that unobserved factors in�uence the current mean

reversion level, which results in longer deviations from the long-term mean giving the

impression of non-stationarity. We account for these latent factors by introducing a

latent continuous stochastic process for the constant α into an AR(1) model. In con-

trast to the Markov switching regression model by Hamilton (1989) or the threshold

autoregressive model (TAR) and the smooth transition autoregressive model (STAR)

introduced by Lim and Tong (1980) and Chan and Tong (1986), we do not assume

that changes to the parameter occur on a discrete basis and stay piecewise constant,

but arise continuously. This leads to a time-varying mean reversion level. As we

assume that the latent process is weakly stationary itself the original process is still

weakly stationary.

The idea is further visualized in Figure I.1. We simulated an almost non-stationary

time series with an unconditional mean of zero. In Figure a) the simulated series is vi-

sualized as well as the expected future development of three �tted models: An AR(1)
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a) b)

Figure I.1.: A comparison of a linear AR(1) model with no restrictions for the constant

parameter, a linear AR(1) model restricting the constant parameter to 0 and a

BTVC-AR(1) model applied on a simulated time series.

model with a constant, an AR(1) model with a constant restricted to 0 and our new

model, the Bayesian time-varying constant autoregressive model of order 1 (BTVC-

AR(1)). The AR(1) model with a constant takes an unconditional mean which is

highly negative and even far away from the image of the simulated time series. The

second AR(1) model restricts the constant to 0 to regularize the long-run mean to

0, but at the same time the expected values in the short-horizon are pulled to this

long-run mean, which can lead to inferior short-term predictions. The BTVC-AR(1)

model assumes that the almost non-stationary behaviour stems from fundamental

changes in the mean reversion level due to unobserved factors. The time-varying

constant leads to a time-varying mean reversion level, which is visualized in Figure

b) of Figure I.1. In the short-horizon the model follows the current trend in the time

series as the mean reversion level lies below the last observation. Since the latent

process mean reverts to zero also the original time series tends to this value in expec-

tation in the long-run. The Bayesian formulation further allows us to impose prior

assumptions about the long-term mean and long-term variance via the latent process

for parameter α. These prior assumptions do not in�uence the short-term predictions

much but strike through for the longer forecasting horizon. In the short-horizon the

model accounts for the current data and, therefore, for the current market situation,
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but in the long-run the distribution tends to the prior assumptions. Therefore, it

allows to regularize the long-term predictions.

Extracting the level factor of the Nelson-Siegel model from historic interest rate data

yields that this factor shows an (almost) non mean reverting behaviour, which im-

plies an (almost) non-stationary behaviour. Economic theory predominantly assumes

that interest rates are (in the long-run) mean reverting but as statistical tests would

reject the stationarity assumption for interest rates, this theory lacks statistical evi-

dence. We assume that unobserved macroeconomic factors and political interest rate

decisions by central banks in�uence the temporary mean reversion level of interest

rates. Therefore, the BTVC-AR(1) model can be used to account for that if distri-

butional properties in the short- as well as in the long horizon are of interest. In the

short-horizon the model is competitive to linear time series models, appropriate prior

assumptions are used to regularize the interest rates in the long run.

3. Introduction to Essay 3

Essay 3 of this thesis investigates the application of risk-based investment strategies

and is titled:

Risk-managed Collective Pension Schemes with Intergenerational

Bene�t Smoothing

The interest for risk-based investment strategies has grown in the last years, especial-

ly since the dotcom crisis starting in 2000, the �nancial crisis in 2008, the European

sovereign debt crisis unfolding in 2010 and the market crash in 2020 because of the

corona pandemic. These strategies, however, have not found their way into many

practical applications. In Essay 3 we �ll this gap and show the bene�t of a risk-based

investment strategy applied to a pension scheme framework. This pension scheme

implements an intergenerational transfer of market risk by establishing a collective

reserve. Combining this pension scheme with a risk-based investment strategy im-

proves the performance of the pension investments and decreases the risk of a negative

reserve in times of a market crisis.
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In the following risk-based investement strategies are introduced and the idea of risk

sharing penision schemes is explained.

3.1. Risk-based investment strategies

Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) showed that in

context of a (zero-investment and self-�nancing) momentum strategy it is bene�cial

to scale the investment according to a risk measure. Popular choices for a risk measure

are the variance or the volatility. Scaling corresponds to having a weight in the long

and short position of the zero-investment strategy that is di�erent from one and varies

over time. Moreira and Muir (2017) generalized this result to additional investment

factors: the market, size, value, pro�tability and investment factors from the Fama

and French �ve-factor model (see Fama and French (1993)), the pro�tability and

investment factors from the q-factor model of Hou et al. (2015), and the betting-

against-beta factor of Frazzini and Pedersen (2014).

There are several ways to construct risk-managed portfolios, but they are all similar

in spirit. Let rt be the return of a portfolio. Scaling rt by a function of a risk measure,

ϑ, results in the return of the managed portfolio:

rϑ,t = g(ϑt)rt (I.8)

ϑt represents the conditional risk measure. The function g(⋅) scales the investment

to meet a given risk target (e.g. the unconditional risk level). As we just scale the

long and short position of the investment the managed portfolio is still self-�nancing.

In the literature one can �nd the application of various risk measures. For example

Barroso and Santa-Clara (2015) and Barroso et al. (2017) use the volatility, while

Cederburg et al. (2020) and Moreira and Muir (2017) use the variance. Also the

estimation of the risk measure may vary. Cederburg et al. (2020) use nonparametric

sample estimates of realized variance, whereas Daniel and Moskowitz (2016) and

Moreira and Muir (2017) use a parametric model. All these studies specify g(⋅) to be

proporational to the inverse of the used risk measure, i.e.,

g(ϑ) =
c

ϑ
,
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where c is a constant to meet a given risk target. In Essay 3 we follow the approach of

Moreira and Muir (2017) and obtain the risk-based portfolio return, rRA,t, by setting

rRA,t =
ct
σ2
t

,

where σ2
t is the conditional variance estimated by a GARCH(1,1) model and ct is

a time-varying c-factor such that the unconditional variance matches a given target

level conditioned only on past return observations.

3.2. Risk sharing pension schemes

In Essay 3 we apply a risk-based investment strategy to a pension scheme that bal-

ances the market risk between di�erent generations of investors.

The best known pension schemes are the de�ned bene�t (DB) and de�ned contri-

bution (DC) pensions schemes. They represent the two extreme versions regarding

the amount of market risk the two parties � the employer and the employee (or in-

vestor) � are exposed to.

A DB pension plan promises the employee a de�ned amount at their retirement. The

employee is therefore not exposed to market risk as this speci�c amount does not

depend on the performance of the capital markets. The employer on the other hand

bears all the market risk, as he or she has to compensate for the amount if the capital

markets perform bad such that the de�ned bene�t amount is not reached at retire-

ment. Because of low interest rates in recent years many DB plans were underfunded

(see, e.g., Donnelly (2017)). Therefore, employers are closing down their DB plans

and replacing them by DC plans instead (see, e.g., Donnelly (2017)).

A DC pension plan de�nes a certain contribution provided by the employer on a reg-

ular basis. The money is invested in the capital markets and paid o� at retirement.

The �nal amount depends on the performance of the capital markets. In a time of

crisis this can result in huge di�erences for employees, whose retirement dates lie only

a few months apart. Therefore, in this case the employee is fully exposed to market

risk, while the employer is not.

The pension scheme we are working with in Essay 3 is a collective de�ned contri-
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bution (CDC) scheme. It is a special type of risk sharing pension plans that allows

di�erent generations of savers to share the market risk. Risk sharing pension schemes

in general have been shown to be welfare-improving, compared to the individually

optimal lifecyclestrategy (see, e.g., Gollier (2008); Cui et al. (2011); Donnelly (2017))

and are discussed, e.g., in Pugh and Yermo (2008) and Blommestein et al. (2009). In

our framework, we conduct the risk sharing via a collective reserve that belongs not

to an individual investor but to the collective. In times, in which the market decreas-

es, the negative return for the investors is compensated by releases of the reserve.

If the capital markets perform better than expected part of the return is used to

replenish the collective reserve. This approach smoothes the volatile market returns

and achieves that the investment of all generations of investors performs similarly. In

other words, the market risk is shared between them.

In Essay 3 we examine the application of a risk-based investment strategy to such a

risk sharing pension scheme framework. We compare performance and risk measures

of the pension fund with respect to a static weight strategy, which assumes constant

weights over the investment horizon. Furthermore, we investigate the implications

of imposing varying degrees of minimum diversi�ation requirements across the assets

under investigation.
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Abstract
Especially in the insurance industry interest rate models play a crucial role, e.g. to 
calculate the insurance company’s liabilities, performance scenarios or risk meas-
ures. A prominant candidate is the 2-Additive-Factor Gaussian Model (Gauss2++ 
model)—in a different representation also known as the 2-Factor Hull-White model. 
In this paper, we propose a framework to estimate the model such that it can be 
applied under the risk neutral and the real world measure in a consistent manner. 
We first show that any time-dependent function can be used to specify the change of 
measure without loosing the analytic tractability of, e.g. zero-coupon bond prices in 
both worlds. We further propose two candidates, which are easy to calibrate: a step 
and a linear function. They represent two variants of our framework and distinguish 
between a short and a long term risk premium, which allows to regularize the inter-
est rates in the long horizon. We apply both variants to historical data and show that 
they indeed produce realistic and much more stable long term interest rate forecast 
than the usage of a constant function, which is a popular choice in the industry. This 
stability over time would translate to performance scenarios of, e.g. interest rate sen-
sitive fonds and risk measures.

Keywords  2-Factor Hull-White model · Gauss2++ model · Risk neutral and real 
world · Change of measure · Time-varying market price of risk

The original version of this article was revised: Equations under Section 3 and Section 3.3 are 
updated.
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1  Introduction

Two prominent approaches to model the term structure of interest rates are the 
classes of equilibrium and no-arbitrage models. Most equilibrium models concen-
trate on the dynamic of the short-rate—the instantaneous interest rate—and derive 
interest rates with longer maturities from it. Prominent candidates of this model 
class include the models of Cox et  al. [3], Duffie and Kan [9] and Vasicek [18]. 
No-arbitrage models focus on exactly fitting the term structure at a specific point in 
time to prevent arbitrage possibilities. Representatives of this class are introduced by 
Heath et al. [11] and Hull and White [12].

Applications of these models often relate to pricing interest rate derivatives, 
which is the reason why they are directly defined under the risk neutral measure 
most of the time. A general form of a one-factor short-rate model under the risk neu-
tral measure is, e.g. given by

where � and � are two functions, which can depend on time point t and the short-rate 
r, and W is a Brownian motion. A lot of advances in theoretic models and their esti-
mation have been conducted in the last 30 years, but only in connection to pricing 
(see Diebold and Li [6]). Regarding these models little attention has been given to 
forecasting and risk management purposes (see Diebold and Li [6]). For these appli-
cations the corresponding model needs to be regarded under the real world measure. 
Under this measure the corresponding one factor short-rate model has the following 
dynamic

where � is the market price of risk and can also depend on t and r. W̃ is a Brownian 
motion under the real world measure. The exact functional choice for � completes 
the model specification under the real world measure. Dai and Singleton [5] as well 
as Jong [14] use a fixed multiple of the model’s variance for the market price of 
risk and investigate the in sample fit of specific short-rate models, but do not focus 
on forecasting. Duffee [8] concludes that the class of term structure models ana-
lysed in Dai and Singleton [5] fail in forecasting. He argues that a restriction for the 
market price of risk to be a fixed multiple of the variance reduces the flexibility of 
the model. Hull et al. [13] stress that the market price of risk for a model with few 
factors should be time-dependent. This results not from an economic interpretation 
but from a modelling issue because of an insufficient number of factors (see Hull 
et al. [13]). They estimated the market price of risk based on historical 3-month and 
6-month interest rates and came to a similar result as Ahmad and Wilmott [1], Cox 
and Pedersen [4] and Stanton [17]. But they argue that this value is only valid in the 
short horizon. Keeping this market price of risk constant could lead to extreme risk 
premiums and interest rates in the long horizon.

In this paper we tackle exactly this problem for the Gauss2++ model. Instead of 
assuming a constant, we assume a time-varying function for the market price of risk. 

dr(t) = �(t, r)dt + �(t, r)dW(t),

dr(t) =

[

�(t, r) + �(t, r)�(t, r)

]

dt + �(t, r)dW̃(t),
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In contrast to Hull et al. [13], who estimate the market price of risk for each fore-
casting horizon individually, we propose two parametric functions. The step func-
tion is the easiest non-constant function, which allows to model a market price of 
risk valid in the short and one valid in the long horizon. The linear function assumes 
that the market price of risk in the short horizon converges linearly to a long-term 
level. With these simplified time-dependent functions it is possible to account for the 
problem mentioned by Hull et al. [13] and the functions can still be easily estimated 
by historical data or calibrated in a forward looking manner to interest rate forecasts.

In our backtest we use a very similar calibration approach as described in Korn 
and Wagner [15]. The framework illustrated in this monograph has been developed 
by the Fraunhofer ITWM on behalf of the Produktinformationsstelle Altersvorsorge 
GmbH (PIA) and is the industry standard to classify packaged retail and insurance 
based investment products (PRIIPs) into chance-risk classes. For the interest rate 
model they use a Gauss2++ model with a presumed constant market price of risk. 
Following their calibration procedure allows us to compare our results to real appli-
cations in the insurance industry.

The structure of the paper is as follows. In Sect. 2 we introduce the Gauss2++ 
model under the risk neutral and the real world measure in a very general frame-
work. In Sect. 3 we propose the constant function for comparison reason as well as 
the step and the linear function to specify the change of measure and explain how 
they can be estimated. All three variants of the Gauss2++ model are applied to data 
and backtested for the last 3 years in Sect. 4. In the final section the results are sum-
marized and concluded.

2 � The Gauss2++ model in the risk neutral and the real world

Throughout this section a filtered probability space (Ω,F, (Ft)t∈[0,T],�) is given, 
where � is either the risk neutral measure ℚ with respect to the bank account or 
the real world measure ℙ . T  represents an appropriate modelling horizon. The bank 
account (B(t))t∈[0,T] is given by

where r(t) denotes the short-rate. We further adopted notations and descriptions of 
the Gauss2++ model from the relevant chapters in Brigo and Mercurio [2].

2.1 � The Gauss2++ model under the risk neutral measure

Short-rate models differ in the underlying process for the short-rate. The Gauss2++ 
model assumes that the short-rate is given by a sum of two correlated normally dis-
tributed processes, (x(t))t∈[0,T] and (y(t))t∈[0,T] , and a deterministic function � , which 
is well defined on the time interval [0, T]:

dB(t) = r(t)B(t)dt, B(0) = 1,

r(t) = x(t) + y(t) + �(t), r(0) = r0,
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where r0 is the short-rate at time point 0. The processes (x(t))t∈[0,T] and (y(t))t∈[0,T] sat-
isfy under the risk neutral measure ℚ the following stochastic differential equations

where a, b, � , � are non-negative constants and −1 ≤ � ≤ 1 is the instantaneous cor-
relation between the two Brownian motions W1 and W2.

Short-rate models derive spot rates via prices of zero-coupon bonds. As the 
short-rate in the Gauss2++ model is normally distributed, there exists an analytic 
solution for a zero-coupon bond price, P(t, T), at time point t and maturity T:

where

and

A derivation can be found in Brigo and Mercurio [2]. With formula (1) for the zero-
coupon bond price under the risk neutral measure spot rates can be directly derived 
via

where r(t, T) represents the spot rate at time point t and a maturity of T.
The financial market we actually model consists of a bank account and a set 

of zero-coupon bonds, P(t,  T), which differ in the maturity T. The dynamic of 
a zero-coupon bond price can be derived from the bond price formula in (1) by 
applying Ito’s formula and is given by

A detailed derivation can be found in “Appendix 1”. Note that all assets have the 
same drift as it is the case in the risk neutral world.

dx(t) = −ax(t)dt + �dW1(t), x(0) = 0,

dy(t) = −by(t)dt + �dW2(t), y(0) = 0,

�dt = dW1(t)dW2(t),

(1)P(t, T) = e
− ∫ T

t
�(s)ds−B(a,t,T)x(t)−B(b,t,T)y(t)+ 1

2
V(t,T),

B(z, t, T) =
1 − e−z(T−t)

z

V(t, T) =
�2

a2

[
(T − t) +

2

a
e−a(T−t) −

1

2a
e−2a(T−t) −

3

2a

]

+
�2

b2

[
(T − t) +

2

b
e−b(T−t) −

1

2b
e−2b(T−t) −

3

2b

]

+ 2�
��

ab

[

(T − t) +
e−a(T−t) − 1

a
+

e−b(T−t) − 1

b
−

e−(a+b)(T−t) − 1

a + b

]

.

(2)r(t, T) =
−ln(P(t, T))

T − t
,

dP(t, T) = P(t, T)

[

r(t)dt − �B(a, t, T)dW1(t) − �B(b, t, T)dW2(t)

]

.



1 3

The Gauss2++ model: a comparison of different measure change…

2.2 � The Gauss2++ model under the real world measure

To calculate performance scenarios and risk indicators the Gauss2++ model must be 
regarded under the real world measure ℙ.

2.2.1 � The change of measure

By specifying the Gauss2++ model under the risk neutral measure, we implicitly 
assume an arbitrage free market. Therefore, we can make the transition to a real world 
measure ℙ by defining the change of measure according to Girsanov, who states that a 
progressive and square-integrable process � =

(
Φ1(t),Φ2(t),… ,Φd(t)

)
t∈[0,T] deter-

mines a new probability measure ℙ such that if (Ŵ(t))t∈[0,T] is a standard d-dimensional 
(Ft)t∈[0,T]-Brownian motion under ℚ , then

defines a standard d-dimensional (Ft)t∈[0,T]-Brownian motion under ℙ (see Girsanov 
[10]).

The Gauss2++ model is a two-factor model and � is therefore two-dimensional. Its 
components can be interpreted as the market price of risk for each factor in the model. 
We will represent � such that the resulting processes (x(t))t∈[0,T] and (y(t))t∈[0,T] still 
belong to the class of Ornstein–Uhlenbeck processes under ℙ

Note that we restrict � to be a function of time. By this the change of measure only 
changes the mean reversion level. More general measure change specification can be 
applied. For example, Diez and Korn [7] introduce a measure change for the 1-Fac-
tor Vasicek model, which influences the mean reversion level as well as the mean 
reversion speed.

The conditions for the Girsanov theorem translate directly to the functions dx(t) and 
dy(t) . In the following we will specify the change of measure via dx(t) and dy(t) . An 
appropriate interpretation of these functions will be given in Sect. 2.2.2.

2.2.2 � The dynamics under the real world measure ℙ

With the representation of � as in (3) the dynamics of the processes x and y in the 
Gauss2++ model change according to Girsanov to

W̆(t) ∶= �W(t) + ∫
t

0

�(s)ds

(3)�(t) =

�
Φ1(t)

Φ2(t)

�

=

�
−

adx(t)

�

−
bdy(t)

�
√
1−�2

+
�adx(t)

�
√
1−�2

�

.

(4)dx(t) = a(dx(t) − x(t))dt + �dW̃1(t), x(0) = 0,

(5)dy(t) = b(dy(t) − y(t))dt + �dW̃2(t), y(0) = 0,
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where W̃1 and W̃2 are two correlated Brownian motions under ℙ . The derivation can 
be found in “Appendix 2”. We observe that x and y are still Ornstein–Uhlenbeck 
processes with the solutions

The mean reversion level of each process at time point t amounts to dx(t) and dy(t) , 
respectively. Recall that the sum of x(t) and y(t) and a deterministic function �(t) 
under the risk neutral measure adds up to the instantaneous return rate r(t) of a risk 
free investment. Changing the measure changes the mean reversion level at time 
point t from 0 to dx(t) for the process x and to dy(t) for the process y. Therefore, 
dx(t) + dy(t) can be interpreted as the local long run risk premium of the short-rate—
the amount, which is added in the real world to the risk neutral short-rate in the long 
run, if dx(t) + dy(t) would stay constant over time. If this amount is negative, future 
bond prices increase in expectation compared to the risk neutral world and a risk 
averse investor, therefore, gets compensated for the risk of investing in a risky bond. 
This means in contrast to equity prices, in a market where investors are risk averse, 
future interest rates tend to be lower in the real world than in the risk neutral world 
(see, e.g. Hull et al. [13]). Therefore, dx(t) and dy(t) can be interpreted as the local 
long run risk premium the corresponding risk factor is mean reverting to at time 
point t.

In the following we will specify the change of measure by these two functions 
instead of the market prices of risk. The market price of risk of each risk factor 
is then directly defined by these two functions.

If we assume a step or a piecewise linear function for dx(t) and dy(t) the functional 
form of the individual market prices of risk are the same.

The dynamics of a zero-coupon bond with maturity T under ℙ has the follow-
ing form

The derivation can be found in “Appendix 3”.

(6)x(t) = ∫
t

0

e−a(t−u)adx(u)du + � ∫
t

0

e−a(t−u)dW̃(u),

(7)y(t) = ∫
t

0

e−b(t−u)bdy(u)du + � ∫
t

0

e−b(t−u)dW̃(u).

Market price of risk of risk factor 1: −
adx(t)

�

Market price of risk of risk factor 2: −
bdy(t)

�
√
1 − �2

+
�adx(t)

�
√
1 − �2

.

(8)
dP(t, T) =P(t, T)

[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt

− P(t, T)B(a, t, T)�dW̃1(t) − P(t, T)B(b, t, T)�dW̃2(t)



1 3

The Gauss2++ model: a comparison of different measure change…

2.2.3 � The bond price formula under the real world measure

The price of a zero-coupon bond under ℙ is obtained by the same analytic formula 
as in (1). The only difference is that the x- and the y-process are now regarded 
under the real world measure (see Diez and Korn [7]). In the following we will 
shortly explain why the formula does not change under this new measure.

To calculate the price of a zero-coupon bond under the real world measure we 
use the following conditional expectation

where XP(t,T) represents the cash flow, with which we have to discount the zero-
coupon bond such that the discounted price process is a martingale under ℙ . The 
dynamic of XP(t,T) coincides with the deterministic part of the zero-coupon bond 
price dynamic in (8) and is therefore specified by the change of measure:

A short proof can be found in “Appendix 4”. The solution of this dynamic is given 
by

The price of a zero-coupon bond at time point t is therefore given by

The ratio in the expectation amounts to

To determine the distribution of this ratio, we first derive the distribution of the inte-
gral in the exponent, i.e.

It can be shown that I(t, T) is normally distributed with mean

and variance

P(t, T)

XP(t,T)(t)
= Eℙ

[
P(T , T)

XP(t,T)(T)

|
|||
Ft

]

,

dXP(t,T)(t) = XP(t,T)(t)
[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt, XP(t,T)(0) = 1.

XP(t,T)(t) = e∫ t

0 (r(u)−B(a,u,T)adx(u)−B(b,u,T)bdy(u))du.

P(t, T) = Eℙ

[
XP(t,T)(t)

XP(t,T)(T)

|
|||
Ft

]

.

XP(t,T)(t)

XP(t,T)(T)
= e− ∫ T

t (r(u)−B(a,u,T)adx(u)−B(b,u,T)bdy(u))du.

I(t, T)∶=∫
T

t

(
r(u) − B(a, u, T)adx(u) − B(b, u, T)bdy(u)

)
du.

(9)M(t, T) = ∫
T

t

�(u)du +
1 − e−a(T−t)

a
x(t) +

1 − e−b(T−t)

b
y(t)
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The variance is the same as in the risk neutral world as the change of measure does 
not influence the variance of the processes. Note that also the mean has the same 
form as in the risk neutral case as the terms B(a, u, T)adx(u) and B(b, u, T)bdy(u) in 
I(t, T) cancel out in the calculations. The derivations can be found in “Appendix 5”.

The expression e−I(t,T) is therefore log-normally distributed and the zero-coupon 
bond price under ℙ is given by the same analytic formula as under ℚ:

3 � Local long run risk premium functions—specification 
and calibration

In the following three different types of functions for dx(t) and dy(t) are intro-
duced: the constant, the step and the linear function. Following the interpretation in 
Sect. 2.2.2 these functions represent the long run risk premium for each risk factor at 
a specific time point t in the Gauss2++ model. The functional equations of the three 
types are 

where dx , lx , mx and dy , ly , my are real valued constants and �A represents the indica-
tor function of a subset A.

The constant function assumes that the local long run risk premium is constant 
for the whole modelling horizon. The latter two functions distinguish between a 
local long run risk premium valid in the short and in the long horizon, seperated 
at time point � . As mentioned in Sect. 2.2.2 the same holds for the market price of 
risk, respectively. Hull et al. [13] argue that a time-varying market price of risk is 

(10)

V(t, T) =
�2

a2

[
(T − t) +

2

a
e−a(T−t) −

1

2a
e−2a(T−t) −

3

2a

]

+
�2

b2

[
(T − t) +

2

b
e−b(T−t) −

1

2b
e−2b(T−t) −

3

2b

]

+ 2�
��

ab

[

(T − t) +
e−a(T−t) − 1

a
+

e−b(T−t) − 1

b
−

e−(a+b)(T−t) − 1

a + b

]

.

P(t, T) = Eℙ

[
e− ∫ T

t
r(u)−B(a,u,T)adx(u)−B(b,u,T)bdy(u)du ∣ Ft

]

= e
−M(t,T)+

1

2
V(t,T)

= e
− ∫ T

t
�(u)du− 1−e−a(T−t)

a
x(t)−

1−e−b(T−t)

b
y(t)+

1

2
V(t,T)

.

Constant: dx(t) = dx

dy(t) = dy

Step: dx(t) = �t≤𝜏dx + �t>𝜏 lx

dy(t) = �t≤𝜏dy + �t>𝜏 ly

Linear: dx(t) = �t≤𝜏(1 − mxt)dx + �t>𝜏 lx

dy(t) = �t≤𝜏(1 − myt)dy + �t>𝜏 ly



1 3

The Gauss2++ model: a comparison of different measure change…

necessary to account for unobserved risk factors and to prevent unrealistic interest 
rate forecasts in the long horizon. They therefore estimate an individual market price 
of risk for each forecasting horizon. We use a more parsimonious function with 
regard to the number of parameters. The step function we propose is the simplest 
time-varying function that expects that the local long run risk premium differs in the 
short and the long horizon but is still constant in each period. The linear function 
implements the property that the local long run risk premium in the short horizon 
approaches the long term level linearly. The simplicity of these functions allows a 
straight forward calibration to interest rate forecasts.

Because of the distributional properties of the Gauss2++ model the expected 
values for interest rates under the real world measure ℙ for any future time point 
can be calculated:

where RPx(t) and RPy(t) represent the actual risk premium of the short-rate at time 
point t for each risk factor and are given by the first integral in (6) and (7)

For the constant, the step and the linear function these integrals can be easily calcu-
lated. To get the risk premium for longer maturities the functions RPx(t) and RPy(t) 
are weighted by a loading function, which accounts for the different riskiness of the 
corresponding zero-coupon bonds

To calibrate the local long run risk premium functions, dx(t) and dy(t) , the param-
eters of the functions are chosen in such a way that the model meets specific interest 
rate forecasts in expectation. For the constant type two interest rate forecasts are 
needed. For the other two types four interest rate forecasts are necessary—two short 
term and two long term forecasts. The time parameter � , which determines the sepa-
ration between the short and the long term local long run risk premium must lie 
between the forecasting horizons of the two short and the two long term forecasts.

In Fig. 1 the three types of local long run risk premium functions have been 
exemplary calibrated. � has been set to 24 months, which is the forecasting hori-
zon of the short term interest rate forecasts.

In the following subsections the calibration procedures for all three types 
of local long run risk premium functions, which are applied in this paper, are 
described.

(11)Eℙ[r(t, T)] = Eℚ[r(t, T)] +
B(a, t, T)

T − t
RPx(t) +

B(b, t, T)

T − t
RPy(t),

RPx(t)∶=∫
t

0

e−a(t−u)adx(u)du,

RPy(t)∶=∫
t

0

e−b(t−u)bdy(u)du.

B(a, t, T)

T − t
and

B(b, t, T)

T − t
.
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3.1 � The constant function

The constant functions represented in Fig.  1a implement a constant local long 
run risk premium for the whole modelling horizon, which can amount to 40 years 
or more for actual applications in the insurance industry, e.g. to classify certi-
fied pension contracts into risk classes. The absolute risk premiums, RPx(t) and 
RPy(t) , are given by:

Note that if t → ∞ , RPx(t) and RPy(t) indeed converge to dx and dy , the long run 
risk premiums, respectively. To calibrate the parameters of the constant functions 
two interest rate forecasts, r̂(t1, T1) and r̂(t2, T2) , are used. Plugging the absolute risk 
premium functions, RPx(t) and RPy(t) , into (11) and setting the expectations equal to 
the interest rate forecasts results in the following two equations

As the expectations are linear functions in dx and dy , the two parameters can be eas-
ily determined.

The constant function for the local long run risk premium in the Gauss2++ 
model and this calibration procedure is a standard approach in the insurance 
industry. As the values for dx and dy determine the risk premium for the whole 
modelling horizon, their calibration is crucial for the model’s interest rate dis-
tribution. Especially if the interest rate forecasts used for the calibration have a 
short forecasting horizon, the resulting distribution in the long horizon is very 
sensitive to these forecasts. For example if the interest rate forecasts and the for-
ward rates—calculated from the current yield curve—are very different, to reach 
the forecasts a huge risk premium is necessary, which might be valid in the short 
horizon, but produces extreme interest rates in the long horizon. The next two 
functions account for this problem by representing a time-varying local long run 
risk premium.

RPx(t) = (1 − e−at)dx,

RPy(t) = (1 − e−bt)dy.

(I) r̂(t1, T1)
!
= EQ[r(t1, T1)] +

B(a,t1,T1)

(T1−t1)
(1 − e−at1 )dx +

B(b,t1,T1)

(T1−t1)
(1 − e−bt1 )dy,

(II) r̂(t2, T2)
!
= EQ[r(t2, T2)] +

B(a,t2,T2)

(T2−t2)
(1 − e−at2 )dx +

B(b,t2,T2)

(T2−t2)
(1 − e−bt2 )dy.

Fig. 1   Local long run risk premium functions
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3.2 � The step function

The step functions represented in Fig. 1b take the same value as the corresponding 
constant function up to time � as the same interest rate forecasts have been used 
for the short horizon, but then they jump to a different level to account for the risk 
premium in the long horizon. Similar to the constant function the absolute risk pre-
mium functions can easily be calculated and amount to

Note that if t → ∞ , RPx(t) and RPy(t) now converge to lx and ly , respectively. To 
calibrate the four parameters of the step function two short term and two long term 
interest rate forecasts are used resulting in the following equations:

where t1 ≤ t2 < t3 ≤ t4 . � must lie between t2 and t3 , i.e. t2 ≤ 𝜏 < t3.
Instead of interest rate forecasts direct forecasts of the absolute risk premium of 

the short-rate can be used. This approach is applied by Hull et al. [13], who estimate 
risk premiums for each forecasting horizon from historical data, but they also scale 
their result to a long term short-rate forecast. Another possible approach is to take 
the ultimate forward rate (UFR) from Solvency II as a long term target, which is 
reached at a future time point with a specific percentage (e.g. 95% of the UFR in 40 
years) and to 100% in the limit, i.e. t → ∞.

3.3 � The linear function

The linear functions represented in Fig. 1c avoid the sudden jump as it is the case in 
the step functions and converge in the short term linearly to a long term level. The 
absolute risk premiums at time point t can be calculated as before and amount to

RPx(t) =
(
e−a(t−min(t,�)) − e−at

)
dx +

(
1 − e−a(t−min(t,�))

)
lx,

RPy(t) =
(
e−b(t−min(t,�)) − e−bt

)
dy +

(
1 − e−b(t−min(t,�))

)
ly.

(I) r̂(t1, T1)
!
= EQ[r(t1, T1)] +

B(a,t1,T1)

(T1−t1)
RPx(t1) +

B(b,t1,T1)

(T1−t1)
RPy(t1),

(II) r̂(t2, T2)
!
= EQ[r(t2, T2)] +

B(a,t2,T2)

(T2−t2)
RPx(t2) +

B(b,t2,T2)

(T2−t2)
RPy(t2),

(III) r̂(t3, T3)
!
= EQ[r(t3, T3)] +

B(a,t3,T3)

(T3−t3)
RPx(t3) +

B(b,t3,T3)

(T3−t3)
RPy(t3),

(IV) r̂(t4, T4)
!
= EQ[r(t4, T4)] +

B(a,t4,T4)

(T4−t4)
RPx(t4) +

B(b,t4,T4)

(T4−t4)
RPy(t4),

RPx(t) =
((

e−a(t−min(t,�)) − e−at
)(

1 +
mx

a

)
− e−a(t−min(t,�))mx min(t, �)

)
dx

+
(
1 − e−a(t−min(t,�))

)
lx,

RPy(t) =

(
(
e−b(t−min(t,�)) − e−bt

)
(

1 +
my

b

)

− e−b(t−min(t,�))my min(t, �)

)

dy

+
(
1 − e−b(t−min(t,�))

)
ly.
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Note again that if t → ∞ , RPx(t) and RPy(t) converge to lx and ly , the long term risk 
premiums, respectively. To calibrate dx , lx , dy and ly four interest rate forecasts as for 
the step function are used. By imposing that the absolute risk premium functions, 
RPx(t) and RPy(t) , are differentiable at the forecasting horizon � to prevent a kink 
in the absolute risk premium function, two further conditions are incorporated to 
specify mx and my:

where (RP
⋅
)�
−
(�) and (RP

⋅
)�
+
(�) denote the derivative from the left and from the right, 

respectively. Solving the equations for mx and my leads to the following closed form 
solutions reducing the number of free parameters to four:

Note that with this condition the same number of interest rate forecasts as for the 
step function are needed to calibrate dx(t) and dy(t).

4 � Results

In this section the calibration results of three variants of our framework for the 
Gauss2++ model are presented. The variants differ in the assumption about the 
local long run risk premium functions, which determine the change from the risk 
neutral to the real world measure. Variant 1 assumes a constant, variant 2 a step and 
variant 3 a linear local long run risk premium function for the risk factors. In the 
first subsection the three variants of the Gauss2++ model are compared if calibrated 
at the same valuation date. In Sect. 4.2 we show with a backtest over the last three 
years that variant 2 and 3 produce much more stable interest rate scenarios for the 
long forecasting horizon over this time period. This stability would transfer to per-
formance scenarios and risk measures of, e.g. an interest rate sensitive fonds.

4.1 � Calibration at one valuation date

The calibration process of the Gauss2++ model can be split into two steps. In the 
first step the model is calibrated under the risk neutral measure. This step does not 
depend on the choice of the local long run risk premium function and is therefore 
the same for all modelling cases. In the second step the change of measure is cali-
brated. The choice of the local long run risk premium function plays an important 
role and leads to different interest rate scenarios, performance measures and risk 
indicators.

(V) (RPx)
�
−
(�) = (RPx)

�
+
(�),

(VI) (RPy)
�
−
(�) = (RPy)

�
+
(�),

mx =
dx − lx

dx�
,

my =
dy − ly

dy�
.
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To calibrate the model at a specific valuation date under the risk neutral meas-
ure the term structure of interest rate swaps and swaption volatilities at this date 
are used. In the Gauss2++ model the deterministic and time-dependent function � 
ensures the market consistency regarding the current term structure by being defined 
as follows:

f M(0, t) represents the instantaneous forward rate at time point 0 for a maturity t, i.e. 
f M(0, t) =

�PM (0,t)

�T
 , where �P

M

�T
 denotes the partial derivative with respect to the sec-

ond argument and PM(0, t) is the market zero-coupon bond price. For the derivation 
and further information the reader is referred to Brigo and Mercurio [2]. The param-
eters a, b, �, � and � of the model are chosen in such a way that the model prices of 
the considered swaptions coincide with the market prices. For this the downhill sim-
plex algorithm1 is used to minimize the root mean squared error (RMSE):

where CModel,i represents the model price of swaption i of the Gauss2++ model and 
CMarket,i is the market price of that swaption. The swaptions considered in the cali-
bration process differ with respect to their tenor and maturity combination, which is 
denoted by the subscript i. N represents the number of considered swaptions. The 
analytic formula for the price of a swaption in the Gauss2++ model can be found in 
Brigo and Mercurio [2]. Table 1 shows the result of a calibration at the 31.12.2019. 
We used at-the-money receiver swaptions with a maturity and tenor combination of 
{5, 7, 10, 12, 15, 20} × {5, 7, 10, 12, 15, 20} , i.e. in total N = 36 swaption prices. The 
RMSE amounts to 0.0619. In the optimization we further restricted � to lie between 
− 1 and 1 as well as all other parameters to be > 0.

These parameters together with the current interest rate curve determine the 
dynamics of the Gauss2++ model under the risk neutral measure.

In the second step the local long run risk premium functions, which determine 
the change of measure, are calibrated to interest rate forecasts as described in Sects. 
3.1–3.3. For the short term interest rate forecasts we use forecasts published by 
the OECD for a 3-month and a 10-year interest rate. To take the OECD forecasts 

�(t) = f M(0, t) +
�2

2a
(1 − e−at)2 +

�2

2b
(1 − e−bt)2 + �

��

ab
(1 − e−at)(1 − ebt).

RMSE =

√√√
√

N∑

i=1

(
CModel,i(a, b, �, �, �) − CMarket,i

)2
,

Table 1   Parameters of the 
Gauss2++ model calibrated at 
31.12.2019

a b � � �

0.2997 0.0407 0.0114 0.0114 − 0.9998

1  For a detailed description of this algorithm—also known as the Nelder–Mead algorithm—the reader 
is referred to Nelder and Mead [16]. For the reflection coefficient, the expansion coefficient and the con-
traction coefficient of the algorithm we have chosen the values 1.0, 2.0 and 0.5, respectively.
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we have been inspired by the framework developed by the Frauenhofer ITWM on 
behalf of PIA to classify PRIIPs into chance-risk classes (see Korn and Wagner 
[15]). Their model represents the industry standard for PRIIP calculations. The lat-
est OECD forecasts regarding the 31.12.2019 for the longest horizon, which is the 
fourth quarter of 2021, amount to − 0.4% and 0.4% , respectively.2 For the long term 
interest rate forecasts, which are needed to calibrate the step and the linear function, 
we take the average of monthly 3-month and 10-year interest rates over the last 15 
years also published by the OECD. This is a valid approach if interest rates follow 
a stationary process, because in this case historical data can be considered as a ran-
dom sample from the corresponding interest rate distribution. Hull et al. [13] point 
out that this approach is questionable if monetary and fiscal policies are expected to 
be materially different from those in the past. Nevertheless any other model based 
on historical data would be questionable and the user of the model can alternatively 
provide personal estimates or an expert judgment. The historical average amounts to 
1.08% for the 3-month and 1.84% for the 10-year interest rate and as we assume these 
forecasts to be a long run average we set the forecasting horizon to 40 years—the 
modelling horizon. We further set � to 24 months, which is the forecasting horizon 
of the short term OECD forecasts.

Table 2 shows the calibration results for the three local long run risk premium 
function types.

The values of dx and dy coincide for the constant and the step function as the same 
interest rate forecasts have been used in the calibration process. But in contrast to 
the step function, which takes the values of lx and ly after 24 months, the constant 
function stays constant for the whole modelling horizon. It also appears that the step 
and the linear function take the same values for lx and ly . But there is a slight differ-
ence as their functional forms differ in the first two years, which influences the abso-
lute risk premium in future time points. This influence decreases in time, such that 
the difference is negligible as we calibrated lx and ly to forecasts with an forecasting 
horizon of 40 years.

Figures  2, 3 and 4 visualize for the three calibrated variants of the Gauss2++ 
model the development of the expectation of the short-rate, the 10-year and the 
20-year interest rate for forecasting horizons of up to 40 years. The solid line rep-
resents the expectation under the risk neutral measure, the dashed line shows the 
expected values under the real world measure.

Table 2   Parameters of the local 
long run risk premium functions

dx dy lx ly

Constant function − 0.0112 0.0779
Step function − 0.0112 0.0779 − 0.0081 − 0.0088

Linear function − 0.0151 0.1672 − 0.0081 − 0.0088

2  https://​stats.​oecd.​org: The rounded numbers can be found, if one selects the data for the Economic 
Outlook N.106 of November 2019 in the section Economic Projections.
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For the variant of the Gauss2++ model, which uses the constant function as 
the local long run risk premium function, the expected real world interest rates 
lie above the risk neutral expectation. This means, that a risk seeking behaviour 
of the investors is assumed for the whole modelling period, because an investor 
accepts a lower expected return for a corresponding bond if the interest rates are 
expected to be higher in the real world compared to the risk neutral world. Ahmad 
and Wilmott [1] show that there have been time periods where investors seem to 
have historically behaved in this way. But in general investors are assumed to be 
risk averse and therefore interest rates should be lower in the real world than in 
the risk neutral world, which is an opposite behaviour to equity prices (see, e.g. 
Hull et al. [13]). For the other two variants of the Gauss2++ model the expected 

Fig. 2   Constant function: expected values of the short-rate, the 10-year and the 20-year interest rate 
under the risk neutral and the real world measure

Fig. 3   Step function: expected values of the short-rate, the 10-year and the 20-year interest rate under the 
risk neutral and the real world measure

Fig. 4   Linear function: expected values of the short-rate, the 10-year and the 20-year interest rate under 
the risk neutral and the real world measure
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real world interest rates lie also above the risk neutral interest rates in the short 
horizon but below in the long horizon. This assumption of risk seeking behav-
iour in the short horizon stems from the quite high forecasts of the OECD for the 
short horizon, but it might be valid in the current market situation. In contrast 
to the constant case, which keeps this risk seeking behaviour assumption for the 
whole modelling horizon, in the long run the other two variants of the Gauss2++ 
model assume in this calibration a risk averse behaviour. The difference between 
the step and the linear function is only visible in the short horizon. While the 
step function has a kink in the expectation after � years, the linear function is 
smoother due to its condition that the derivative of the absolute risk premium 
function exists at this time point.

Furthermore, the absolute difference in the risk neutral and real world expecta-
tions decreases for interest rates with longer maturities. This results from the less 
variation of interest rates with longer maturities, which is an implicit model charac-
teristic of the Gauss2++ model and is supported by historical data as well. A risk 
premium is therefore higher (less negative) for a risk averse and lower (less positive) 
for a risk seeking investor in an arbitrage free market.

Figure 5 shows the absolute risk premium functions of the short-rate for all three 
modelling types.

It can be observed that for the constant and the step function the absolute risk 
premium is the same up to year 2. After that year the Gauss2++ variant with the 
step function has a kink in the absolute risk premium as the local long run risk pre-
mium changes to a different level, while the modelling case with the constant func-
tion continuous to approach the long term risk premium determined by the short 
term interest rate forecasts. The modelling case with the linear function results in 
a different risk premium for the first 2 years, but approaches—without a kink—the 
same long term risk premium as the step function.

All three functions intersect after 2 years as this is the forecasting horizon of the 
short term interest rate forecasts, which were used for the calibration. The absolute 
risk premium at this time point must be the same for all modelling cases such that 
the expected interested rates of the model coincide with the forecasts.

Fig. 5   Absolute risk premium 
function for the variants of the 
Gauss2++ model



1 3

The Gauss2++ model: a comparison of different measure change…

We further investigated the resulting yield curve shapes of the three variants of 
the Gauss2++ model. The variant, which uses a constant function, represents the 
industry standard regarding PRIIP calculations (see Korn and Wagner [15]). An 
unpleasent feature of this model is the unrealistic high frequency of inverse yield 
curves with growing time (see Diez and Korn [7]). In their paper they show that 
for the 2-Factor Vasicek model the number of inverse yield curves can be reduced 
by assuming a negative risk premium. The share of inverse yield curves in our cali-
bration of the three variants were investigated in a simulation study. We simulated 
10,000 yield curve paths with each calibrated model and counted the number of 
yield curves, which have a higher 1-year interest rate than a 30-year interest rate. 
The result is visualized in Fig. 6. We can see a similar behaviour as described in 
the paper of Diez and Korn [7]. The variant with the constant function, which has a 
positive risk premium over the modelling horizon, shows an unrealistic high share 
of inverse yield curves. The other two variants have a negative risk premium and 
decrease the number of inverse yield curves in the long run compared to the risk 
neutral case. Using the step or the linear function for the risk premium results there-
fore not only in more realistic interest rates but also in more realistic yield curve 
shapes in the long horizon.

4.2 � Backtest

In this subsection the different variants of the Gauss2++ model calibrated on a 
quarterly basis over the last 3 years are compared.

As in Sect. 4.1 interest rate swaps and swaption volatilities have been used for 
the risk neutral calibration of the Gauss2++ model. To calibrate the parameters of 
the local long run risk premium functions in the second calibration step short term 
interest rate forecasts published by the OECD and a long term average have been 
used. The forecasts are shown in Table 3. The calibration results of the parameters 
of the Gauss2++ model under the risk neutral measure and of the local long run risk 

Fig. 6   The share of inverse yield 
curves for the Gauss2++ model 
under the risk neutral measure 
and under the real world meas-
ure using a constant, a step and 
a linear function for the market 
price of risk
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Table 3   Interest rate forecasts of the OECD and historical average of the 3-month and the 10-year inter-
est rate

https://​stats.​oecd.​org: The rounded numbers can be found, if one selects the annual interest rate forecasts 
of the corresponding Economic Outlook in the section Economic Projections

Date Short term interest rate forecasts Historical average

Forecasting horizon 3-m IR 10-y IR 3-m IR 10-y IR

(in months) (in %) (in %) (in %) (in %)

30.09.2019 15 − 0.3 1.0 1.13 1.91
30.06.2019 18 − 0.3 1.0 1.18 1.98
31.03.2019 21 −0.2 1.6 1.22 2.04
31.12.2018 24 −0.2 1.6 1.26 2.10
30.09.2018 15 − 0.2 1.3 1.31 2.16
30.06.2018 18 − 0.2 1.3 1.35 2.23
31.03.2018 21 − 0.3 1.4 1.39 2.30
31.12.2017 24 − 0.3 1.4 1.44 2.36
30.09.2017 15 − 0.3 1.6 1.48 2.43
30.06.2017 18 − 0.3 1.6 1.52 2.50
31.03.2017 21 − 0.3 1.6 1.57 2.56
31.12.2016 24 − 0.3 1.6 1.63 2.63

Fig. 7   Absolute risk premium functions

Fig. 8   Development of the expectation of the 10-year interest rate over the modelling horizon for all 
three variants of the Gauss2++ model
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premium function for each variant of the Gauss2++ model can be found in Tables 4, 
5, 6 and 7 in “Appendix 6”.

For each calibration the absolut risk premium function of the short-rate and the 
development of the expected 10-year interest rate have been calculated and visual-
ised in Figs. 7 and 8.

The absolute risk premium function of the short-rate for the Gauss2++ model, 
which uses the constant function for the local long run risk premium, depends 
highly on the risk neutral calibration results and the forecasts of the OECD. An 
unfavorable combination of market data and interest rate forecasts can lead to a 
high value for the local long run risk premium. This value might be reasonable to 
meet the short term forecasts used for the calibration, but as it stays constant over 
time it is the value the absolute risk premium is converging to. Therefore, this 
problem can strike through if the modelling horizon is much longer than the fore-
casting horizon of the interest rates used for the calibration. In this case a time-
varying local long run risk premium function, which can be calibrated to a short 
and a long term forecast, is more convenient to regularize the risk premium. As it 
can be seen in Fig. 7 the variants of the Gauss2++ model, which use the step or 
the linear function for the local long run risk premium, produce more stable risk 
premiums in the long horizon. In each calibration the absolute risk premium is 
positive in the first years, which presumes a risk seeking behaviour of the inves-
tors, but in the long horizon the absolute risk premium lies between − 0.5 and 
−2.5% representing a risk averse market. Also the interest rate distribution in the 
long horizon is more stable. Figure 8b, c show that the expectation of the 10-year 
interest rate in the long horizon change only little in each calibration according 
to the historical average, which was used for the long term interest rate forecast.

5 � Conclusion

As the Gauss2++ model is often used for pricing purposes, the focus in the lit-
erature lies on the evolution of interest rates under the risk neutral measure ℚ . 
But regarding risk management and forecasting applications the model under the 
real world measure is needed. In this paper we introduced a framework to apply 
the model under both measures in a consistent manner. This framework first con-
ducts a calibration under the risk neutral measure and then determines the change 
of measure such that it is possible to switch between the risk neutral and the real 
world. We showed that according to Girsanov this change of measure can be speci-
fied by any time-dependent function without loosing the analytic tractability of, e.g. 
zero-coupon bond prices. Hull et al. [13] argue that because of unobserved risk fac-
tors, which are not included in the model, a time-varying function should be used, 
because otherwise unrealistic interest rates in the long forecasting horizon could be 
reached. We therefore compared the industry standard, which uses a constant func-
tion to model the change of measure, with two variants, which use either a step or 
a linear function. These functions are the simplest extensions of the constant func-
tion to a time-varying function without increasing the computational effort much. 
By accounting for different risk premiums in the short and in the long horizon the 
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time-varying functions result in much more stable interest rate forecasts in the long 
run if calibrated at different valuation dates. From a macroeconomical point of view 
it makes sense that current market fluctuations should not influence interest rate 
forecasts in the long horizon, e.g. in 40 years, much. This would also imply that risk 
measures calculated with the Gauss2++ model, which uses one of the time-varying 
functions for the change of measure, would be more consistent if estimated at differ-
ent valuation time points.

We further investigated the yield curve shapes by conducting a simulation study. 
The result is in line with the findings of Diez and Korn [7] for the 2-Factor Vasicek 
model. Assuming a positive risk premium—as it was the case in our calibration for 
the constant function—the number of inverse yield curves increases compared to the 
risk neutral case. This also replicates the problem of too many inverse yield curves 
in the insurance industry for PRIIP calculations (see Diez and Korn [7]). The other 
two variants represented in this paper, which apply a time-varying function for the 
market price of risk, assume a negative risk premium in the long run and have a 
much lower amount of inverse yield curves. Using a step or a linear function for the 
market price of risk, therefore, not only leads to more realistic interest rates in the 
long run, but also creates more realistic yield curve shapes.

Appendix 1: Bond price dynamic under the risk neutral measure

By defining

the price of a zero-coupon bond P(t, T) at time point t and maturity T can be calcu-
lated for the Gauss2++ model under the risk neutral measure ℚ by

A proof of this formula can be found in Brigo and Mercurio [2]. The derivatives of 
A(t, T) and V(t, T) with respect to the first entry and of B(z, t, T) with respect to the 
second entry are given by

Furthermore, it holds

To calculate the zero-coupon bond price dynamic, we apply Ito’s formula to (12), 
i.e.

A(t, T) = −∫
T

t

�(s)ds +
1

2
V(t, T),

(12)P(t, T) = eA(t,T)−B(a,t,T)x(t)−B(b,t,T)y(t).

A�(t, T) = �(t) +
1

2
V �(t, T),

V �(t, T) = −�2B(a, t, T)2 − �2B(b, t, T)2 − 2���B(a, t, T)B(b, t, T),

B�(z, t, T) = −e−z(T−t).

B(z, t, T)z − B�(z, t, T) = 1.
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Appendix 2: The dynamics of the Gauss2++ factors x and y 
under the real world measure

The dynamics of the two processes x and y under the risk neutral measure ℚ can 
be expressed in terms of two independent Brownian motions Ŵ1 and Ŵ2 , i.e.

where

According to Girsanov’s theorem , as Ŵ = (Ŵ1, Ŵ2) is a standard 2-dimensional 
Brownian motion and let (�(t))t∈[0,T] = (Φ1(t),Φ2(t))t∈[0,T] be a progressive and 
square-integrable process, the process W̆ defined by

is a standard 2-dimensional Brownian motion under a new measure, which we call 
ℙ and declare to be the real world measure. This means that the dynamic of the two 
Brownian motion Ŵ1 and Ŵ2 under the real world measure ℙ is given by

dP(t, T) =P(t, T)
[
A(t, T) − B(a, t, T)x(t) − B(b, t, T)y(t)

]�
dt + P(t, T)(−B(a, t, T))dx(t)

+ P(t, T)(−B(b, t, T))dy(t)

+
1

2
P(t, T)B(a, t, T)2�2dt

+
1

2
P(t, T)B(b, t, T)2�2dt

+ P(t, T)B(a, t, T)B(b, t, T)���dt

=P(t, T)

[

A�(t, T) − B�(a, t, T)x(t) − B�(b, t, T)y(t) + B(a, t, T)ax(t) + B(b, t, T)by(t)

+
1

2
B(a, t, T)2�2 +

1

2
B(b, t, T)2�2

+ B(a, t, T)B(b, t, T)���

]

dt

− B(a, t, T)P(t, T)�dW1(t)

− B(b, t, T)P(t, T)�dW2(t)

=P(t, T)[�(t) + x(t) + y(t)]dt − B(a, t, T)P(t, T)�dW1(t) − B(b, t, T)P(t, T)�dW2(t)

=P(t, T)r(t)dt − B(a, t, T)P(t, T)�dW1(t) − B(b, t, T)P(t, T)�dW2(t).

dx(t) = −ax(t)dt + �dŴ1(t),

dy(t) = −by(t)dt + ��dŴ1(t) + �
√
(1 − �2)dŴ2(t),

dW1(t) = dŴ1(t),

dW2(t) = �dŴ1(t) +
√
(1 − �2)dŴ2(t).

W̆(t) ∶= �W(t) + ∫
t

0

�(s)ds
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Therefore, the dynamics of the two processes x and y under the real world measure 
are then given by

If we specify Φ(t) as in (3) this simplifies to

Representing the dynamics by two correlated Brownian motions W̃1 and W̃2 results 
in the equations given in (4) and (5).

Appendix 3: Bond price dynamic under the real world measure

The dynamic of a zero-coupon bond price P(t, T) under the risk neutral measure 
ℚ expressed by the two independent Brownian motions Ŵ1 and Ŵ2 is given by

Applying Girsanov’s theorem as in “Appendix 2” the dynamic under the real world 
measure ℙ amounts to

d �W1(t) = dW̆1(t) − Φ1(t)dt,

d �W2(t) = dW̆2(t) − Φ2(t)dt.

dx(t) =

�

− Φ1(t)𝜎 − ax(t)

�

dt + 𝜎dW̆1(t),

dy(t) =

�

− Φ1(t)𝜂𝜌 − Φ2(t)𝜂
√
(1 − 𝜌2) − by(t)

�

dt + 𝜂𝜌dW̆1(t)

+ 𝜂
√
(1 − 𝜌2)dW̆2(t).

dx(t) = a(dx(t) − x(t))dt + 𝜎dW̆1(t),

dy(t) = b(dy(t) − y(t))dt + 𝜂𝜌dW̆1(t) + 𝜂
√
(1 − 𝜌2)dW̆2(t).

dP(t, T) =P(t, T)r(t)dt − P(t, T)B�(a)�dŴ
1(t) − P(t, T)B�(b)��dŴ

1(t)

− P(t, T)B�(b)�
√
(1 − �2)dŴ2(t),

=P(t, T)r(t)dt −

�

P(t, T)B�(a)� + P(t, T)B�(b)��

�

dŴ1(t)

− P(t, T)B�(b)�
√
(1 − �2)dŴ2(t).
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Representing the dynamic by two correlated Brownian motions W̃1 and W̃2 results in 
the equation given in (8).

Appendix 4: Individual discount rate for the zero‑coupon bonds 
in the real world

Proof  To proof that P(t,T)
X(t,T)

 is indeed a martingale we calculate the dynamic of the dis-
counted price process.

dP(t, T) =P(t, T)r(t)dt −

�

P(t, T)B𝜏(a)𝜎 + P(t, T)B𝜏(b)𝜂𝜌

�

d �W1(t)

− P(t, T)B𝜏(b)𝜂
√
(1 − 𝜌2)d �W2(t)

=P(t, T)

�

r(t) +

�

B𝜏(a)𝜎 + B𝜏(b)𝜂𝜌

��

−
adx(t)

𝜎

�

+ B𝜏(b)𝜂
√
(1 − 𝜌2)

�

−
bdy(t)

𝜂
√
(1 − 𝜌2)

+
𝜌adx(t)

𝜎
√
(1 − 𝜌2)

��

dt

−

�

P(t, T)B𝜏(a)𝜎 + P(t, T)B𝜏(b)𝜂𝜌

�

dW̆1(t)

− P(t, T)B𝜏(b)𝜂
√
(1 − 𝜌2)dW̆2(t)

=P(t, T)

�

r(t) − B𝜏(a)adx(t) − B𝜏(b)bdy(t)

�

dt

−

�

P(t, T)B𝜏(a)𝜎 + P(t, T)B𝜏(b)𝜂𝜌

�

dW̆1(t)

− P(t, T)B𝜏(b)𝜂
√
(1 − 𝜌2)dW̆2(t).
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Appendix 5: Bond price formula under the real world measure

To calculate the price of a zero-coupon bond under the real world measure ℙ , the 
distribution of

has to be determined. In the following we show, that the integral in the exponent is 
normaly distributed and calculate the mean and the variance of

We first concentrate on the integral over the short-rate r(s), which is a sum of the x- 
and the y-process and a deterministic function

The integral over the process x is given by

d
P(t, T)

X(t)
= d

( 1

X(t)
⋅ P(t, T)

)

=
1

X(t)
dP(t, T) + P(t, T)d

1

X(t)
+ d

⟨

P(t, T),
1

X(t)

⟩

=
1

X(t)
dP(t, T) −

P(t, T)

X(t)

[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt

=
P(t, T)

X(t)

[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt

−
P(t, T)

X(t)
B(a, t, T)�dW̃1(t) −

P(t, T)

X(t)
B(b, t, T)�dW̃2(t)

−
P(t, T)

X(t)

[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt

= −
P(t, T)

X(t)
B(a, t, T)�dW̃1(t) −

P(t, T)

X(t)
B(b, t, T)�dW̃2(t)

exp

(

−∫
T

t

(
r(u) − B(a, u, T)adx(u) − B(b, u, T)bdy(u)

)
du

)

(13)I(t, T)∶=∫
T

t

(
r(u) − B(a, u, T)adx(u) − B(b, u, T)bdy(u)

)
du.

r(s) = x(s) + y(s) + �(s).
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The first integral amounts to

For the second integral we use the integration by parts formula

For the third integral we again use the integration by parts formula

∫
T

t

x(u)du = ∫
T

t

(

x(t)e−a(u−t) + ∫
u

t

ae−a(u−s)dx(s)ds

+ ∫
u

t

�e−a(u−s)dW̃1(s)

)

du

= ∫
T

t

x(t)e−a(u−t)du

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1

+∫
T

t ∫
u

t

ae−a(u−s)dx(s)dsdu

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

+ ∫
T

t ∫
u

t

�e−a(u−s)dW̃1(s)du.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3

1 = x(t)∫
T

t

e−a(u−t)du = x(t)
[
−
1

a
e−a(u−t)

]T

t
= x(t)

1 − e−a(T−t)

a
.

2 = ∫
T

t

(

∫
u

t

easdx(s)ds

)

ae−audu

= a∫
T

t

(

∫
u

t

easdx(s)ds

)

du

(

∫
u

t

e−avdv

)

= a

[(

∫
T

t

eaudx(u)du

)(

∫
T

t

e−avdv

)

− ∫
T

t

(

∫
u

t

e−avdv

)

eaudx(u)du

]

= a

[

∫
T

t

(

∫
T

u

e−avdv

)

eaudx(u)du

]

= ∫
T

t

(
1 − e−a(T−u)

)
dx(u)du

= ∫
T

t

aB(a, u, T)dx(u)du.
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The corresponding expressions for ∫ T

t
y(u)du can be obtained analogously. We 

observe that the results of integral 2  for ∫ T

t
x(u)du and ∫ T

t
y(u)du cancel out with 

the last two terms in equation (13). Therefore it remains

As W̃ = (W̃1, W̃2) is a 2-dimensional Brownian motion under ℙ , I(t, T) is normally 
distributed and the mean and the variance can be easily retrieved resulting in (9) and 
(10).

Appendix 6: Tables of backtest results

See Tables 4, 5, 6 and 7.

3 = � ∫
T

t

(

∫
u

t

easdW̃1(s)

)

ae−audu

= � ∫
T

t

(

∫
u

t

easdW̃1(s)

)

du

(

∫
u

t

e−avdv

)

= �

[(

∫
T

t

eaudW̃1(u)

)(

∫
T

t

e−avdv

)

− ∫
T

t

(

∫
u

t

e−avdv

)

eaudW̃1(u)

]

= �

[

∫
T

t

(

∫
T

u

e−avdv

)

eaudW̃1(u)

]

= � ∫
T

t

[
−
e−av

a

]T

u
eaudW̃1(u)

=
�
a ∫

T

t

(
1 − e−a(T−u)

)
dW̃1(u)

I(t, T) = ∫
T

t

�(u)du +
1 − e−a(T−t)

a
x(t) +

1 − e−b(T−t)

b
y(t)

+
�
a ∫

T

t

(
1 − e−a(T−u)

)
dW̃1(u) +

�

b ∫
T

t

(
1 − e−b(T−u)

)
dW̃2(u).
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Table 4   Calibration results of 
the risk neutral calibration on a 
quarterly basis from 31.12.2016 
to 30.09.2019

Date a b � � �

30.09.2019 0.2694 0.0269 0.0121 0.0089 − 0.8950

30.06.2019 0.1216 0.0628 0.0363 0.0283 − 0.9687

31.03.2019 0.3978 0.0331 0.0333 0.0091 − 0.8576

31.12.2018 0.1628 0.0521 0.0183 0.0154 − 0.8629

30.09.2018 0.6100 0.0429 0.0459 0.0104 − 0.8722

30.06.2018 0.2901 0.0459 0.0104 0.0112 − 0.9941

31.03.2018 0.5120 0.0386 0.0142 0.0097 − 1.0000

31.12.2017 0.3803 0.0471 0.0236 0.0120 − 0.8854

30.09.2017 0.0880 0.0655 0.0421 0.0460 − 0.9938

30.06.2017 0.1260 0.0890 0.0504 0.0517 − 0.9963

31.03.2017 0.2940 0.0581 0.0152 0.0146 − 0.9984

31.12.2016 0.2427 0.0606 0.0178 0.0173 − 1.0000

Table 5   Quarterly calibration 
results for the constant local 
long run risk premium functions 
from 31.12.2016 to 30.09.2019

Date dx dy

30.09.2019 − 0.0676 0.7400
30.06.2019 − 0.2848 0.5787
31.03.2019 − 0.0267 0.3636
31.12.2018 − 0.0539 0.2182
30.09.2018 − 0.0107 0.1518
30.06.2018 − 0.0173 0.1481
31.03.2018 − 0.0112 0.1099
31.12.2017 − 0.0150 0.0913
30.09.2017 − 0.7023 0.9836
30.06.2017 − 0.3883 0.5497
31.03.2017 − 0.0330 0.1710
31.12.2016 − 0.0405 0.1725
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Table 6   Quarterly calibration 
results for the step local long 
run risk premium functions 
from 31.12.2016 to 30.09.2019

Date dx dy lx ly

30.09.2019 − 0.0676 0.7400 − 0.0090 − 0.0129

30.06.2019 − 0.2848 0.5787 − 0.0376 − 0.0292

31.03.2019 − 0.0267 0.3636 − 0.0114 − 0.0034

31.12.2018 − 0.0539 0.2182 − 0.0163 − 0.0029

30.09.2018 − 0.0107 0.1518 − 0.0101 − 0.0047

30.06.2018 − 0.0173 0.1481 − 0.0107 − 0.0090

31.03.2018 − 0.0112 0.1099 − 0.0087 − 0.0129

31.12.2017 − 0.0150 0.0913 − 0.0099 − 0.0111

30.09.2017 − 0.7023 0.9836 − 0.0364 − 0.0087

30.06.2017 − 0.3883 0.5497 − 0.0423 − 0.0233

31.03.2017 − 0.0330 0.1710 − 0.0131 − 0.0068

31.12.2016 − 0.0405 0.1725 − 0.0154 − 0.0033

Table 7   Quarterly calibration 
results for the linear local long 
run risk premium functions 
from 31.12.2016 to 30.09.2019

Date dx dy lx ly

30.09.0219 − 0.1332 1.5015 − 0.0090 − 0.0129

30.06.2019 − 0.5474 1.1457 − 0.0376 − 0.0292

31.03.2019 − 0.0461 0.7377 − 0.0114 − 0.0034

31.12.2018 − 0.0959 0.4471 − 0.0163 − 0.0029

30.09.2018 − 0.0114 0.3111 − 0.0101 − 0.0047

30.06.2018 − 0.0250 0.3087 − 0.0107 − 0.0090

31.03.2018 − 0.0144 0.2355 − 0.0087 − 0.0129

31.12.2017 − 0.0216 0.1970 − 0.0099 − 0.0111

30.09.2017 − 1.3930 1.9854 − 0.0364 − 0.0087

30.06.2017 − 0.7567 1.1001 − 0.0423 − 0.0233

31.03.2017 − 0.0567 0.3550 − 0.0131 − 0.0068

31.12.2016 − 0.0700 0.3556 − 0.0154 − 0.0033
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Abstract

Motivated by the application to German interest rates, we propose a time-varying

autoregressive model for short and long term prediction of time series that exhibit

a temporary non-stationary behavior but are assumed to mean revert in the long

run. We use a Bayesian formulation to incorporate prior assumptions on the mean

reverting process in the model and thereby regularize predictions in the far future.

We use MCMC-based inference by deriving relevant full conditional distributions and

employ a Metropolis-Hastings within Gibbs sampler approach to sample from the

posterior (predictive) distribution. In combining data-driven short term predictions

with long term distribution assumptions our model is competitive to the existing

methods in the short horizon while yielding reasonable predictions in the long run.

We apply our model to interest rate data and contrast the forecasting performance to

that of a 2-Additive-Factor Gaussian model as well as to the predictions of a dynamic

Nelson-Siegel model.

Keywords: MCMC Metropolis-Hastings, Gibbs sampler, Bayesian time-varying

autoregressive models, long run regluarization, interest rate models



1. Introduction

To forecast an univariate time series the first model of choice is often a linear

model. An archetype of this model class in the context of time series analysis is the

autoregressive model of order 1 (AR(1)), which is defined as follows:

xt = α + βxt−1 + εt, (1)

where xt represents the variable that is defined on t ∈ Z and was observed at

time points t = 1, . . . , T . α and β are real valued constants, while |β| < 1 is as-

sumed to ensure stationarity. The innovation process εt can be, e.g., a Gaussian

white noise process, i.e., an independent and identically (i.i.d.) normal distributed

εt
i.i.d.∼ N (0, σ2) for all time points t. In this classical model, the one-step-ahead ex-

pectation E(xt | xt−1) = α+βxt−1 and variance Var(xt | xt−1) = σ2 are closely linked

to the marginal characteristics E(xt) = α
1−β and Var(xt) = σ2

1−β2 approached in the

long run. In this sense, fitting the short-term behavior of a time series with a linear

model has wide implications for its long-term behavior, and, conversely, controlling

the long-term behavior of the model constraints its short-time fit. In practice, this

close linkage may present an important limitation when short-term performance con-

flicts with long-term plausibility.

This gets evident in the macroeconomic literature and, more specifically, in contrast-

ing modeling approaches for interest rates, which motivate this work: Among others,

Diebold and Li (2006) focus on predictions in the short horizon. The authors apply

an AR(1) process to extracted factors of the yield curve. While they do make the

long-term assumption that interest rates are principally mean reverting, the process

exhibits an almost integrated behavior. Estimating the model parameters of a near

integrated but stationary AR(1) model might give large estimation errors and lead to

unrealistic long run mean estimates far beyond the range of the data. Duffee (2011)

even discard the mean reversion / stationarity assumption. In their proposed ran-

dom walk model, the prediction variance linearly increases in time leading to extreme

values in the long run. The strong focus on the short horizon might lead to question-

able and potentially implausible long-term behavior. Also the model of Caldeira and

Torrent (2017), who apply a nonparametric functional data approach, has the focus

on the short horizon. In contrast, Korn and Wagner (2019) apply a linear model to

model long horizon features. Their proposal is a Gauss2++ model with a forward
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looking estimation approach, i.e., they calibrate the parameters of their model with-

out using historical data but amongst current prices of interest rate derivatives and

long run survey forecasts. The Gauss2++ model is a standard model in the insurance

industry, where plausible forecasts in the longer run are required. As demonstrated

later in this paper, their model achieves a realistic long run distribution, however, at

the expense of inferior short term predictions.

The aim of this paper is to bridge the gap between short and long horizons, gen-

eralizing above mentioned approaches to a model with the flexibility to a) sufficiently

adapt to sample data to yield good short-term predictions and b) apply suitable reg-

ularization to achieve plausible long- and middle-term forecasts at the same time.

This is particularly, yet not exclusively, relevant in applications where a stable sta-

tionary distribution is assumed in the long run – despite observing a ’temporary non-

stationary behavior’ in the available data where, e.g., unconstrained linear model fits

or a Dickey-Fuller test (Dickey and Fuller, 1979) would indicate an integrated process.

As in general linearity is often a restrictive assumption in practice and many time

series exhibit features that cannot be captured by a linear model (Hamilton, 1989),

a lot of research has been conducted to introduce different types of nonlinear models

in the last decades. In particular, nonlinear models offer more flexibility to account

for both, short and long horizon.

A bi-linear model is an example of a nonlinear model, which assumes a nonlinear

relationship between the covariates and response variable (Granger and Andersen,

1978, Rao and Gabr, 2012), although not often used in macroeconomic applications

(Morley, 2009). A more immediate approach is to allow one (or more) parameters of

a linear model to change over time. This comprises the regime switching and time-

varying parameter models.

Regime switching models can allow for a different mean reversion level in the short

and the long horizon. This feature can be used to regularize the long run mean of the

model. The first approaches to regime switching models were conducted by Quandt

(1958), who considered a switching regression model extending a linear regression

model by allowing the parameters to switch between different states according to a

random variable. Bacon and Watts (1971) introduced a smooth transition model,
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which implements a smooth transition from one regime to another without a sudden

jump. Goldfeld and Quandt (1973) introduced the Markov switching regression model

and use a discrete latent Markov process to determine the current regime. These

models were adapted to time series models by Lim and Tong (1980) and Chan and

Tong (1986) introducing the threshold autoregressive model (TAR) and the smooth

transition autoregressive model (STAR), respectively. Hamilton (1989) introduced

the Markov switching autoregressive model for applications in economics, which have

been investigated thoroughly together with different variants in the literature (Hag-

gan and Ozaki, 1981, Jansen and Teräsvirta, 1996, Teräsvirta, 1994). Lanne and

Saikkonen (2002) used a TAR-model, which only allows regime changes for the con-

stant parameter α, and applied it to strongly autocorrelated time series data – which

is very related to temporary non-stationary behavior of the time series and, therefore,

to the aim of the paper. When there is, however, no concrete indication for the pro-

cess dynamics to result from switches between discrete underlying states, we consider

it more natural and promising to assume a continuous latent process.

In contrast to regime switching models, time-varying parameter models allow one

(or more) of the parameters in a linear model to be driven by its own continuous

process (Morley, 2009). For example, if the parameter vector (α, β, σ2) of the linear

AR(1) model becomes a stochastic process, this results in a time-varying autoregres-

sive model of order 1 (TV-AR(1))

xt = αt + βtxt−1 + εt (2)

with εt ∼ N (0, σ2
t ). Certain distribution assumptions for the underlying stochastic

process of the parameter vector (αt, βt, σt) are made in practice to complete the

TV-AR(1) model specification (Teräsvirta et al., 2010). Similar to the TAR model

in Lanne and Saikkonen (2002) the time variation of the TV-AR(1) model can be

restricted to the constant parameter αt, resulting in a time-varying constant autore-

gressive model of order 1 (TVC-AR(1)):

xt = αt + βxt−1 + εt. (3)

If |β| < 1 and the latent process of αt is stationary, the process x is also stationary.

But due to random shifts in the mean reversion level – because of the time-varying
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constant parameter – realizations of the model can resemble those of a (close to)

random walk process, when restricting to a limited time window.

Another time-varying parameter model is the shifting endpoint model introduced by

Kozicki and Tinsley (2001). Similar to the TVC-AR(1) model their approach has a

time-varying mean reversion level, referred to as shifting endpoints. In particular,

Van Dijk et al. (2014) applied this model to interest rates presenting a slow moving

trend using exponential smoothing or long survey forecasts. There is also a strand

of literature, which connects the level of interest rates in the long run to the ex-

pected inflation dynamics, also referred to as trend inflation (Kozicki and Tinsley,

2001, Rudebusch and Wu, 2008, Bekaert et al., 2010, Cieslak and Povala, 2015). As-

sociating the variable of interest with appropriate covariates might practically help

in several scenarios, but does not directly address the core of the present problem.

In this paper, we propose a model approach competitive in terms of short horizon

forecasts, yet controlled to obtain realistic predictive distributions for the long hori-

zon. We propose a Bayesian TVC-AR(1) model, which is stationary but can resem-

ble short-term properties of an integrated or nearly integrated linear process due to

a stochastic mean reversion level. The model allows us to regularize the long run

distribution of the time series without affecting short term distributions adversely.

Different to Van Dijk et al. (2014) we do not use a deterministic shifting mean rever-

sion level, but incorporate long run assumptions via prior information in a Bayesian

approach, such that the latent coefficient process, and with it the mean reversion

dynamics, are still estimated from the data.

In particular, the novelty of our approach lies in the model allowing us to (1) reg-

ularize long run predictions by using prior assumptions, (2) separate the modeling

process into a data driven short horizon model-part and a long horizon model-part

that is determined by prior (or expert) assumptions and (3) yield improved forecast-

ing performance in the short horizon compared to the commonly used linear dynamic

Nelson-Siegel model and Gauss2++ model, while retaining realistic long run distri-

butions. Moreover, we place particular emphasis on the interpretability of the model

structure and prior parameters, preserving a close link to the common linear models.

This allows to include expert knowledge or assumptions in accordance with economic

theory about the long run behavior of a time series into the model in a sound math-

ematical way. We here specifically focus on the application to interest rates. As our
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model allows to regularize long run predictions, it is also of particular interest for

insurance companies, where realistic long run interest rate forecasts are needed to

evaluate the risk and performance of specific insurance products.

The remainder of this paper is arranged as follows. Section 2 specifies the Bayesian

TVC-AR(1), including the derivation of required full conditional posterior distribu-

tions and the application of a Metropolis-Hastings within Gibbs sampling routine for

statistical inference. In Section 3 we discuss an application of our model to interest

rate data and compare the forecasting performance as well as the long run distribu-

tion of our nonlinear model with the dynamic Nelson-Siegel model (short-term focus)

and the Gauss2++ model (long-term focus). We conclude with Section 4 and give a

brief outlook on potential further research topics.

2. A Bayesian TVC-AR(1) Model for Long Run Regularization

In this Section we introduce the Bayesian TVC-AR(1) (BTVC-AR(1)) model. The

model incorporates assumptions about the long-term behavior of the time series and

thereby regularizes the process in the long horizon. At the same time, the model is

mainly driven by the given data in the short run and thus fosters a good short-term

prediction.

2.1. The BTVC-AR(1) Model

The BTVC-AR(1) model is defined as follows:

xt = αt + βxt−1 + εt, for t ∈ Z, (4)

where β represents the mean reversion speed and |β| < 1 to secure stationarity. εt

is assumed to be a Gaussian white noise process, i.e., εt
i.i.d.∼ N (0, σ2). We further

specify αt as a stationary Gaussian process, which is defined to have the unconditional

expectation θ := ϑ · 1 and covariance Σ on the observed time points t = 1, . . . , T ,

i.e.,

α := (α1, α2, ..., αT ) ∼ NT (θ,Σ). (5)

As this time frame is most relevant, we focus on α for further investigations. The

Bayesian approach considers the parameters of model (4) as random variables. For the

6



conditional prior distribution of β conditional on σ2 a truncated normal distribution

with lower bound −1 and upper bound 1 is assumed as a prior, i.e.,

β|σ2 ∼ N (µβ, σ
2 · σ2

β,−1, 1),

with conditional prior expectation µβ and additional multiplicative variance param-

eter σβ. The prior distribution for σ2 is an inverse gamma distribution with shape

and scale parameter, a and b, respectively,

σ2 ∼ IG(a, b).

These two prior distributions are conjugate priors for model (4) if the respective

other parameter is known and therefore allow for an analytical derivation of the

corresponding full conditional distributions.

Using these priors the defined model can be seen as a Bayesian version of the

TVC-AR(1) model. The mean θ and covariance Σ might be assumed fixed or defined

as random variables with further attached prior distributions. In the latter case (5)

describes the distribution of α conditional on θ and Σ. Placing priors on these pa-

rameters allows to incorporate assumptions about the long run distribution into the

model as further elaborated in Section 2.2.

While this basic model setup is flexible in many ways and particular in terms of

its covariance structure assumptions for α, further practical insights can be obtained

from a more in-depth model characterization. In the following, we will shed light on

useful properties of this framework when assuming an AR-covariance structure. This

covariance structure has shown to provide good results in applications.

2.2. Arbitrating Between Short and Long Run Distribution

The goal of our work is to propose a new modeling framework, which can regu-

larize the long run distribution of (nearly) integrated time series by keeping a good

forecasting performance in the short horizon. Linear models often concentrate on the

conditional distribution in the short horizon, but due to the near integration property

of the time series this can lead to inappropriate long run distributions. For example,

if the AR(1) model is estimated for a time series, which shows a (close to) random

walk behavior, the parameter β of the model will take a value close to 1. This can
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lead to a large long run variance given by

σ2

1− β2
,

potentially yielding unrealistic values in the long run that have never been observed

in the past. On the other hand, calibrating β to a given long run variance is not

straightforward without deteriorating the short run prediction performance. Figure

1 depicts this undesired behavior by showing the long run mean of a linear AR(1)

model which is driven by the conditional short run distribution at the expense of an

unrealistic long-term distribution.

We address this issue by incorporating a time-varying mean reversion level, which

locally preserves the good short term prediction and at the same time regularizes

the long run distribution. The current mean reversion level valid in the short run

can be different to the long run behavior accounting for the current market situation

and therefore improving the short run prediction. We enable the model to stay in

a reasonable range in the long run by assuming a stationary process for the time-

varying mean reversion level and a stronger mean reversion to this time-varying level

than a linear AR(1) model would induce to its constant mean reversion level. Such

a behavior can be achieved by introducing a time-varying α parameter into a linear

AR(1) model with additional prior assumptions. In particular, this does not change

the (weak) stationarity property of the model if the assumed process for α is (weakly)

stationary itself. This can be verified by calculating the unconditional mean, the

unconditional variance and the unconditional covariance:

E(xt) =
ϑ

1− β

Var(xt) =
σ2

(1− β2)
+

Var(αt) + 2β Cov(αt, xt−1)

(1− β2)

Cov(xt−h, xt) =
h−1∑

i=0

βi Cov(αt−i, xt−h) + βh Var(xt−h)

As the α-process is stationary and

Cov(αt, xt−h) =
∞∑

i=0

βi Cov(αt, αt−h−i),
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the BTVC-AR(1) is (weakly) stationary.

The time-varying α increases the flexibility of our model to account for short and

long run distributional properties. As current observations have almost no influence

in the very long run, a reasonable way to include information about the long run mean

and long run variance in a Bayesian setting is via prior assumptions for α. We will

further elaborate this in Section 2.2.1 and 2.2.2. The time-varying α also increases

the flexibility of the model such that the conditional distribution in the short run is

consistent with the empirical data, i.e., E(xt+h|xt, xt−1, . . . ) and Var(xt+h|xt, xt−1, . . . )
still reflect the empirical distribution for a short horizon h.

Our BTVC-AR(1) model can therefore produce both a conditional short term

distribution, which roughly corresponds to an unrestricted linear model, and a long

run distribution with a reasonable range of values.

2.2.1. The Long Run Mean and Time-Varying Mean Reversion

The mean reversion level in a linear AR(1) model as specified in (1) amounts to

α

1− β .

As the mean reversion level stays constant over time it is also the long run mean of

the model. In contrast, the mean reversion level in the BTVC-AR(1) model changes

over time and is given by
αt

1− β
for time point t. This local mean reversion level is in general different to the long-term

mean and can even pull the process away from it in expectation, i.e,

∣∣ E(xt+h|xt, xt−1, . . . )− µLR
∣∣ ≥

∣∣xt − µLR
∣∣,

where µLR is the unconditional mean of the time series and xt denotes a fixed reali-

sation of the process. This helps fitting the model to a time series exhibiting a (close

to) random walk behavior. The long run mean of the BTVC-AR(1) depends on the

unconditional mean of α and amounts to

ϑ

1− β
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in our model. We assume the data to be centered around a prior specified long run

mean. By setting θ = 0, i.e., ϑ = 0, this long run mean is reached in expectation

after reshifting the simulated data.

The implications of the time-varying mean reversion level of the BTVC-AR(1)

model are visualized in Figure 1. Two AR(1) models (with unrestricted and restricted

constant parameter) and the BTVC-AR(1) model have been exemplary fitted to a

simulated stationary time series, which shows a (nearly) integrated behavior and is

visualised in Figure 1.

In the left graphic the “historical” time series can be seen as well as the expected

future development according to the three models. The AR(1) model with no re-

strictions has a long-term mean far away from the historical domain, as its focus lies

on the conditional short term distribution. The restricted AR(1) model sets the α

parameter to 0 to regularize the long run mean, but at the same time the expected

values in the short horizon are pushed in the direction of the long run level leading

to an inferior forecasting performance. The parameters of the estimated unrestricted

and restricted AR(1) model are given in Table 1.

constant β σ2

restricted AR(1) 0 0.9935 0.7787
unrestricted AR(1) -0.1645 0.9978 0.7554

Table 1: Estimated parameters for the restricted and unrestricted AR(1) model.

If we assume that the (close to) random walk behavior stems from changes in the

mean reversion level determined by unobserved variables, the BTVC-AR(1) model has

a more desired behavior. The time-varying constant parameter in the model leads to

a time-varying mean reversion level and can therefore account for the changes induced

by the unobserved variables. The long run mean can still be regularized to 0 while

influencing the short term distribution less abruptly. This allows the time series to

follow the current trend in expectation and veer away from the long run mean for a

couple of time steps. The reason for this behavior is that the latent α-process induces

a local mean reversion level that lies below the last observation, which can be seen in

the right plot of Figure 1 showing the average latent mean reversion level extracted

during the simulation process. In the long run the mean reversion level returns in

expectation to the prespecified value of 0.
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(a) (b)

Figure 1: A comparison of a linear AR(1) model with no restrictions for the constant parameter, a
linear AR(1) model with a fixed constant parameter (α = 0) and a BTVC-AR(1) model applied on
a simulated time series.

2.2.2. Long Run Variance

The long run variance of a linear AR(1) model is given by

σ2

1− β2
.

The closer the model behaves like a random walk, i.e., the closer β approaches 1, the

larger the long run variance gets under the assumption of a fixed conditional variance

σ2. In terms of the long run variance, the BTVC-AR(1) model is more flexible by

incorporating two sources of variation, the residual term of the AR(1) model and

variance of the latent α-process. The model’s long run variance is given by

Var(xt) =
σ2

1− β2
+

Var(αt) + 2β Cov(αt, xt−1)

1− β2
. (6)

The first term has the same form as the long run variance of a linear AR(1) model

and can be interpreted as the “unconditional” variance around the time-varying mean

reversion level, i.e., the variance conditional on the α-process. The second term incor-

porates the part of the variance stemming from the α-process and depends on both its

unconditional variance and unconditional covariances. This allows the BTVC-AR(1)

model to be more flexible and to control the long run variance of xt, while reducing

the opposing effect on the conditional distribution in the short horizon. The model
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thus still produces short term distributions consistent with the given data. If α is

a constant process, the second term is 0 and the BTVC-AR(1) model reduces to a

linear AR(1) model.

Prior Assumptions. With the goal in mind to control the long-term variance based on

prior information, a more refined specification of the BTVC-AR(1) model is helpful in

order to translate this information into the model. We will use a centered α-process

with an AR-covariance structure for demonstrative purposes. In this case, α can be

represented by a linear AR(1) model

αt = ραt−1 + ηt, for t ∈ Z,

where ρ represents the correlation between two successive time steps and ηt is an

i.i.d. Gaussian white noise process, i.e., ηt
i.i.d.∼ N (0, τ 2). The long run variance of the

BTVC-AR(1) model is then given by

Var(xt) =
σ2

(1− β2)
+

τ 2(1 + ρβ)

(1− ρβ)(1− β2)(1− ρ2) . (7)

As indicated by the equation, τ 2 and σ2 play an interrelated role in the model for

the long run variance. Increasing one can be compensated by reducing the other one.

To avoid identifiability issues, it is thus necessary to account for this interrelation

through a meaningful prior parameter assumption. If the process xt is supposed

to reach a certain objective variance in the long run, the degrees-of-freedom in (7)

reduce from four to three. For example, for given ρ, β and σ2 and a prior value

assumption for Var(xt), the variance of xt has a one-to-one relationship with τ 2 and

it is straightforward to solve (7) for τ 2. Denote the solution by τ̃ 2. To ensure positivity

the truncation limits for the prior distribution of β can be set to −1 and
√

Var(xt)−σ2

Var(xt)
.

For this specific covariance structure, a possible prior distribution of τ 2 can thus be

defined by the conditional distribution

τ 2|ρ, β, σ2 ∼ δτ̃2 , (8)

where δ denotes a degenerated distribution with point mass 1 at τ̃ 2. This definition

forces the process to reach its prespecified long run variance Var(xt) while controlling
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the speed of mean reversion of the α-process through ρ. A conjugate prior for ρ is a

normal distribution truncated below by −1 and from above by 1, i.e.,

ρ ∼ N (µρ, σ
2
ρ,−1, 1), (9)

with mean µρ and variance σ2
ρ.

The previous prior specifications allow to introduce prior information into the

model in a straightforward manner while maintaining the properties of the BTVC-

AR(1) model.

2.2.3. The Short Run Distribution

For the short run distribution of the BTVC-AR(1) model the goal is to balance

between a consistent estimation with the observed data and the opposing effect of the

prespecified long run distribution. For a linear AR(1) model with a restricted long

run mean of 0 the conditional expectation and the conditional variance amount to

E(xt+1|xt, . . . ) = βxt,

Var(xt+1|xt, . . . ) = σ2.

The model can get arbitrarily close to a centered random walk if β approaches 1,

while the long run variance increases at the same time as shown in Section 2.2.2. For

the BTVC-AR(1) model we get

E(xt+1|xt, . . . ) = E(αt+1|xt, . . . ) + βxt,

Var(xt+1|xt, . . . ) = Var(αt+1|xt, . . . ) + σ2.

A random walk behavior, i.e., E(xt+1|xt) ≈ xt, can be reached without β necessarily

being close to 1 due to the conditional expectation of the α-process that supports

the random walk behavior in the short horizon. This increases the flexibility of the

BTVC-AR(1) model compared to a linear AR(1) model in combining short and long

run distributional characteristics.

We can further decompose the conditional expectation to see the similarities of the

BTVC-AR(1) model to a linear AR(T) process if we consider a time series observed

on time points t = 0, . . . , T . Let ᾰ = (α1, ..., αT+1) denote the time-varying constant
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extended to T + 1 in a consistent manner with the BTVC-AR(1) model definition,

i.e., the same covariance parameterization is assumed. For a given data set x =

(x0, ..., xT ), the conditional distribution of ᾰ|x is multivariate normal (c.f. Appendix

A.1), i.e.,

ᾰ|x ∼ N (µ̆, Σ̆).

As µ̆ = 1
σ2 Σ̆∆̃ with ∆̃ = (x1 − βx0, ..., xT − βxT−1, 0)>, the conditional expectation

of αT+1 is given by the last entry of µ̆,

E(αT+1|x) =
1

σ2
sT+1,.∆̃,

where sT+1,. = (sT+1,1, . . . , sT+1,T+1) and si,j represent the entries of Σ̆. The one

step ahead conditional expectation of the model therefore amounts to

E(xT+1|xT , . . . ) =
(sT+1,T

σ2
+ β

)
xT +

T−1∑

i=1

sT+1,T−i − βsT+1,T−(i−1)
σ2

xT−i −
sT+1,1β

σ2
x0.

This shows that the conditional expectation depends on all previous time points like in

a linear AR(t) model, allowing the BTVC-AR(1) model to better account for current

trends in the process. Due to the given covariance structure for α the number of

parameters are, however, much less than in an actual AR(t) process.

2.3. Bayesian Inference

The main parameters of interest in the BTVC-AR(1) model are α̃, β and σ2 with

α̃ extending α by future time points up to the modeling horizon h, i.e.,

α̃ = (α1, ..., αT , ..., αT+h).

This extension is necessary to sample from the predictive posterior distribution of the

parameters and to generate forecasts. The prior distribution of α̃ incorporates the

same assumptions as the prior distribution of α, i.e.,

α̃ ∼ NT+h(θ̃, Σ̃)

14



where

θ̃ = ϑ · 1 and Σ̃ =




Σ ΠT+1 . . . ΠT+h

Π>T+1 σ2
α

...
. . .

Π>T+h σ2
α




with ΠT+j = {Cov(αT+j, α1), . . . ,Cov(αT+j, αT+j−1)}>, i.e., the vector of covariances

of αT+j and all previous time points 1, . . . , (T + j − 1). For these time points the

same (autoregressive) covariance parameterization as for α is assumed for consistency

reasons. σ2
α represents the unconditional variance of the latent α-process. In the case

of an AR-covariance structure as assumed before σ2
α = τ2

1−ρ2 and Cov(αs, αs+k) = ρk

for any s, k ∈ Z.

The goal of Bayesian inference is to find the joint posterior distribution, p(α̃, β, σ2|x),

conditional on the observed data x = (x0, ..., xT ). If the full conditional distribution

of all parameters is known, the Gibbs sampler (Gelman et al., 2013) can be used to

draw samples from this joint posterior distribution and inference can be based on

Monte Carlo approximation (Chib, 2001). By regularizing the long run variance un-

der the assumption of an AR-covariance structure and choosing a degenerated prior

distribution for τ 2 as in (8), the full conditional distributions of ρ, β and σ2 depend on

the prior of τ 2 and can not be derived analytically. We therefore apply a Metropolis-

Hastings within Gibbs sampling routine (Millar and Meyer, 2000). We will state the

algorithmic details in the following section and here only derive the necessary distri-

butions.

As the model defined in Section 2.2.2 can be considered under a different param-

eterization where τ 2 is given by the function

τ 2 = f(ρ, β, σ2,Var(xt))

and thus fixed for given ρ, β, σ2 and a specified long run variance Var(xt), we will

focus on deriving two conditional distributions in order to be able to employ a two-

step Gibbs sampling procedure. The goal is to iteratively sample α and the vector

(ρ, β, σ2) based on the respective other full conditional distribution. As it is not

straightforward to derive the conditional distribution for the latter vector, we will here

derive conditional distributions for all parameters involved as if the parameter τ 2 was
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fixed and later employ these distributions to derive a suitable proposal distribution

in a Metropolis-Hastings procedure. In the following subsections we just state the

(full) conditional distributions. A more detailed derivation can be found in Appendix

A.1-Appendix A.4.

2.3.1. Full Conditional Distributions of α

In the following we derive the full conditional distribution of α̃. It holds

p(α̃|β, σ2,x) ∝ p(x|α̃, β, σ2) · p(α̃) = L(α̃, β, σ2) · p(α̃). (10)

Due to the conditional independence induced by the Markov assumption in the AR(1)

model the likelihood of the parameters is given by

L(α̃, β, σ2) = p(x|α, β, σ2) =
T−1∏

j=0

φ(xT−j|αT−j + βxT−j−1, σ
2), (11)

where φ(·|µ, σ̃2) denotes the density function of a normal distribution with expecta-

tion µ and variance σ̃2. Note, that we have assumed a degenerated distribution with

point mass 1 for the first entry in x. An alternative option is to estimate the uncon-

ditional distribution. For increasing length of the time series the difference between

these two approaches will however vanish.

With (10) and (11) and the prior distributions specified in Section 2.1 the full

conditional distributions of α̃, can be derived analytically. Under the assumption

that θ̃ = 0 as specified in Section 2.2.1 to regularize the long run mean, the full

conditional distribution of α̃ is given by

α̃|β, σ2,x ∼ NT (µ̃post, Σ̃post).

with

µ̃post = Σ̃post∆̃
1

σ2
and Σ̃post =

(
Σ̃
−1

+
1

σ2

(
IT 0

0 0

))−1
.

∆̃ in this case denotes

∆̃ = (x2 − βx1, . . . , xT − βxT−1, 0, . . . , 0).
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As ∆̃ incorporates data information up to time point (vector entry) T , is 0 for time

points > T and Cov(αT+j, αT ) −→ 0 with increasing j, the mean of the full condi-

tional distribution tends to 0, corresponding to the unconditional mean of the prior

distribution. The covariance structure of the full conditional distribution behaves

analogously. Therefore, the distribution of αT+j | x, β, σ2 in the long run tends to the

prior distribution. This means that the prior distribution of α effectively regularizes

the distribution of x in the long horizon towards the prespecified long run mean and

long run variance.

Note that the derivations are independent of the specific choice of Σ̃. If prior dis-

tribution assumptions for the parameters in Σ̃ are used, we need to further condition

on the hyper-parameters for the full conditional distribution of α̃. In the following,

we assume an AR-covariance structure for α̃ and therefore need to condition on the

parameters ρ and τ 2.

We note that, in general, regarding the α process as a vector of parameters can lead

to a computational burden when calculating the inverse of Σ̃ for Σ̃post. In this case

it might be preferable to represent the model in state space and to use a forward

filtering backward sampling algorithm as proposed by Carter and Kohn (1994) and

Frühwirth-Schnatter (1994). In our specific case, however, we initialize a specific

parametric covariance structure and did not experience any computational problems.

2.3.2. Full Conditional Distributions of ρ, β, σ2

If we assume an AR-covariance structure with prior distributions for its parameters

as specified in Section 2.2.2, the conditional distribution of ρ is given by

ρ|α, τ 2 ∼ N (µρ,post, σ
2
ρ,post,−1, 1)

where

σ2
ρ,post =

(∑T−1
j=0 α

2
T−j−1

τ 2
+ σ−2ρ

)−1

µρ,post =

(∑T−1
j=0 αT−jαT−j−1

τ 2
+
µρ
σ2
ρ

)
σ2
ρ,post.
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The conditional distribution of β is given by

β|x,α, σ2 ∼ N
(
µβ,post, σ

2
β,post,−1,

√
V ar(xt)− σ2

V ar(xt)

)

where

σ2
β,post =

(∑T−1
j=0 x

2
T−j−1

σ2
+ (σσβ)−2

)−1

µβ,post =

(∑T−1
j=0 d̆T−jxT−j−1

σ2
+

µβ
σ2σ2

β

)
σ2
β,post.

d̆T−j is defined by d̆T−j := xT−j − αT−j.

The conditional distribution of σ2 is given by an inverse gamma distribution with

parameters

ã =
T + 1

2
+ a and b̃ =

∑T−1
j=0 ε

2
T−j

2
+ b+

(β − µβ)2

2σβ
,

where εt is the error term of the BTVC-AR(1) model (c.f. (4)). This means

σ2|α̃, β,x ∼ IG(ã, b̃).

Note that this only holds if the prior of β | σ2 is a normal distribution instead of a

truncated normal distribution as assumed in Section 2.1. When using a truncated

distribution assumption, the derivation of the full conditional of σ2 is more intricate as

the prior distribution of β also conditions on σ2. Since our approach will make use of

the full conditionals as proposal distributions in the Metropolis-Hastings part of our

sampling routine, this simplification allows a more straightforward implementation

while we observe that values outside the given truncation are highly unlikely and

practically occur with zero probability in our application.

2.4. Markov Chain Monte Carlo Inference

In the following we assume again an AR-covariance structure for Σ determined

by the parameters ρ and τ 2 with prior distributions as specified in Section 2.2.2.
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To conduct inference, we use the Metropolis-Hastings within Gibbs sampler. More

specifically, we generate samples from the posterior distribution by iteratively sam-

pling from the full conditional distribution of α̃ given a sample of (ρ, β, σ2) and vice

versa. Based on the derivation of the full conditional distribution for α in the pre-

vious section we are able to directly sample from a multivariate normal distribution

to generate values for α. To obtain a sample from p(ρ, β, σ2 | α,x) conditional

on α, we apply the Metropolis-Hastings algorithm as neither the joint distribution

of ρ, β, σ2 nor each single full conditional distribution is available. A suitable and

already available proposal distribution q for these parameters is given by

q(ρ, β, σ2 | α, x) = q(ρ | α, x)q(β | α, σ2, x)q(σ2 | α, β, x). (12)

In other words, we use the product of all full conditional distributions under the

assumption of a fixed τ 2.

In the BTVC-AR(1) model we use this approach in a first step to draw from

the joint posterior distribution p(α̃, β, σ2 | x). A detailed description of the sampling

routine can be found in Appendix B. In a second and final step, we use these samples

to generate paths of the x-process as follows:

x
(m)
T+j = α

(m)
T+j + β(m)x

(m)
T+j−1 + εT+j, j > 0,

where m denotes the simulated path. In Appendix C we give some insights about the

performance and further details about the MCMC algorithm applied to our dataset.

3. Application To Interest Rate Data

We now apply the BTVC-AR(1) model to the first principal component (PC) of a

principal component analysis (PCA) on interest rate data to predict the term struc-

ture of interest rates and compare it to the 2-Additive-Factor Gaussian (Gauss2++)

model (Brigo and Mercurio, 2007) and the dynamic Nelson-Siegel model (Diebold and

Li, 2006) with respect to the forecasting performance and the long run distribution.

3.1. Motivation and Background

The Gauss2++ model is a popular short-rate model in the insurance industry,

used, e.g., to classify certified pension contracts into risk classes. Because its mean

reversion level is calibrated to external interest rate forecasts, it generates realistic
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interest rates in the long horizon, which is a necessary model feature for insurance

companies, as they are obliged to calculate risk measures and performance scenarios

for specific insurance contracts for up to 40 years (European Union, 2017). Never-

theless, Diebold and Li (2006) point out that short-rate models perform poorly in

forecasting. Their dynamic Nelson-Siegel model shows a better forecasting perfor-

mance than the Gauss2++ model in the short horizon, but can produce unrealistic

interest rates in the very long horizon. Our model, which we call the BTVC-AR(1)-

Factor model in the following as it applies the BTVC-AR(1) model to the first PC

of a PCA, combines both: a good forecasting performance in the short horizon and

realistic interest rates in the long horizon. It further accounts for the strong autocor-

relation and the (close to) random walk behavior of interest rates.

3.2. Data

We use data of the German term structure of interest rates estimated by the

Deutsche Bundesbank from prices of German government bonds. The exact estima-

tion procedure can be found in Schich (1997). The time span ranges from September

1997 to August 2016. Figure 2 shows the monthly evolution of the interest rate curves.

In the last ten to fifteen years a decrease of the interest rates can be observed. Each

maturity represents a dimension in the data set. We use PCA to reduce the dimension

of the data set for the following reason. According to Litterman and Scheinkman

(1991) a three factor model can explain for each interest rate with a specific maturity

a minimum of 96% of the variability in the data. We here extract these (principle)

factors but only use the first two to facilitate a fair comparison with the Gauss2++

model, which is a two factor model. Furthermore, the first two PCs already account

for more than 99% of the variability in the given data. Figure 3 shows the loadings

and the time series of the two extracted PCs.

The loadings of the first PC are similar for all 20 maturities, while the loadings of the

second PC are positive for short and negative for long maturities. The first and the

second PC are therefore often interpreted as level and slope of the term structure,

respectively.
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Figure 2: Time series of the term structure of German government bond yields.

Figure 3: The scores and the loadings of the first two PCs.
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The decrease of the interest rates in the last years is also visible in the level factor,

showing a downward trend. There is an ongoing discussion in the literature about

mean reversion of interest rates. Economic theory predominantly assumes that in-

terest rates are (in the long run) mean reverting. But statistical evidence is not so

clear (van den End, 2011). The mainstream literature says that unit roots can not be

rejected, which would imply that interest rates are not mean reverting (Rose, 1988,

Stock and Watson, 1988, Campbell and Shiller, 1991, Siklos and Wohar, 1997). More

recent literature investigates the unit root hypothesis by fractional integrated tech-

niques that apply differencing to time series by an order smaller than or greater than

one (Baum et al., 2000, Gil-Alana, 2004). These studies find that shocks to interest

rates have a long memory, which explains their (close to) random walk behavior.

3.3. Estimation of Model Parameters

In this subsection the estimation of the BTVC-AR(1)-Factor model and the two

benchmark models is described.

3.3.1. Modeling Interest Rates with the BTVC-AR(1)-Factor Model

The factors of our BTVC-AR(1)-Factor model are the first two PCs extracted by

a PCA and interpreted as level and slope of the interest rate curve. The level factor

shows a (close to) random walk behavior, which can not be adequately captured by

a stationary linear model. Following the economic theory view that interest rates

(and therefore also the level) are mean reverting (in the long run) and assuming that

the random walk behavior results from changes in the mean reversion level, we use

therefore the BTVC-AR(1) model for this PC. It allows us to account for the (close

to) random walk behavior as well as to regularize the level of the interest rate curve

in the long horizon via prior assumptions. The slope factor is more stable over time.

As an augmented Dickey Fuller test suggests that the existence of a unit root can be

rejected, a linear AR(1) model is used for this factor. By modeling the level and the

slope factor interest rate forecasts r̂t(τ) with maturity τ can be calculated via

r̂t(τ) = µ(τ) + ξ1(τ)l̂t + ξ2(τ)ŝt, (13)

where l̂t and ŝt denote the forecasts of the level and the slope factor, respectively.

ξ1(τ) and ξ2(τ) denote the loading of the first and second PC for maturity τ . Before

applying the PCA the data has been centered and therefore µ(τ) is the mean interest
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rate of the data set for maturity τ . We now specify the prior assumptions of the

BTVC-AR(1) model for the level factor and the estimation procedure of the AR(1)

model for the slope factor.

The Level Factor

Latent AR1 parameter α. For this application we assume an AR-covariance

structure for the α-process of the BTVC-AR(1) model with the parameters ρ and τ 2

representing the correlation of two successive time points and the conditional vari-

ance, respectively. The unconditional mean of the α-process is set to 0, which implies

the assumption that the long run mean of the level factor is 0. Because we also as-

sume that the slope factor is a centered process this means that the long run interest

rate curve converges in expectation to the average interest rate curve of the dataset.

Autocorrelation parameter ρ. As specified in Section 2.2.2 we assume for ρ a

truncated normal distribution with the parameters µρ = 0.98 and σ2
ρ = 0.0012 with

lower truncation −1 and and upper truncation 1 as a hyper prior, i.e.,

ρ ∼ N (0.98, 0.001,−1, 1)

The truncation ensures the stationarity of the process. The parameters of this hyper-

prior rely on expert judgment and incorporate the assumption of a weak mean revert-

ing α-process into the model and therefore allow the mean reversion level of the level

factor to deviate from the long run mean for longer periods. This yields the (close

to) random walk behavior present in (our) interest rate data.

Variance of the latent process. According to Section 2.2.2 the parameter τ 2 is

set in each iteration of the sampling procedure such that the long run variance of

the level factor amounts to a prespecified value. We here use the value 120, which

is inferred from a quantile of the unconditional distribution. By giving consideration

of the rather unusual market situation of extremely low interest rates we make the

assumption that the last observation is equal to the 7.5%-quantile. Due to the model

assumptions, the unconditional distribution is normal with mean 0 and the corre-

sponding unconditional variance can be calculated easily.

Slope parameter of the AR(1) model. For β we assume that µβ = 0.95 and

σ2
β = 0.0152. This expert judgment represents a weak mean reversion to the time-
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varying mean reversion level. The lower and upper truncation of the truncated normal

distribution amount to −1 and
√

Var(xt)−σ2

Var(xt)
to ensure the stationarity of the model as

well as the positivity of τ 2, i.e.,

β|σ2 ∼ N
(

0.95, σ20.0152,−1,

√
Var(xt)− σ2

Var(xt)

)

Residual variance. For the prior distribution of σ2 the shape and scale parameter

a and b are set to 0.5 and 2 respectively, representing an uninformative prior.

By specifying the parameters of the prior (and hyper-prior) distributions the full

conditional distribution of α̃ as well as the conditional distributions of the other pa-

rameters can be analytically derived as described in Section 2.3. Combining the Gibbs

Sampler and the Metropolis-Hastings algorithm as explained in Section 2.4, paths of

the level factor can be generated. Forecasts of the level factor are then represented

by the average of the simulated paths.

The Slope Factor

The linear AR(1) model for the slope factor is given by

st = c+ γst−1 + ηt,

where γ is a real valued constant between −1 and 1 and ηt is a Gaussian white

noise process, i.e., ηt ∼ N (0, σ̆2). The constant parameter c is set to 0. The other

parameters are estimated by a standard ordinary least squares approach.

3.3.2. Modeling Interest Rates With the Gauss2++ Model

The Gauss2++ model – in a different representation also known as the 2-Factor-

Hull-White model – is a popular interest rate model in the insurance industry used

for pricing interest rate derivatives as well as for risk management and forecasting

purposes. The model assumes that the short-rate r(t), which is the interest rate with

an infinitesimal small maturity, is given by the sum of two latent processes (x(t))t≥0
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and (y(t))t≥0, and a deterministic function ϕ:

r(t) = x(t) + y(t) + ϕ(t).

The latent processes are modeled by dependent Ornstein-Uhlenbeck processes, which

are the continuous version of a linear AR(1) process. Interest rates with longer matu-

rities are then derived from the short-rate via pricing the corresponding zero-coupon

bonds, which is analytically possible due to the model’s distributional assumptions.

The estimation process is materially different from the one of the other two models

as it does not use historic data but calibrates the model to current future market

assumptions (implicitly) provided by the current interest rate curve, interest rate

derivatives as well as interest rate forecasts. By applying the downhill simplex al-

gorithm the parameters of the model are chosen in such a way that forward rates –

implicitly given by the current interest rate curve – and swaption prices are met in

expectation. The relevant data has been extracted from Bloomberg. Additionally

the mean reversion level of the two latent factors are analytically set such that two

interest rate forecasts with a maturity of 3 months and 10 years, which are published

by the Organisation for Economic Co-operation and Development (OECD), are met

in expectation. This approach is in line with the standard calibration procedure in

the insurance industry (Korn and Wagner, 2019).

3.3.3. Modeling Interest Rates With the Dynamic Nelson-Siegel Model

The dynamic Nelson-Siegel model of Diebold and Li applies specific time series

models to extracted latent factors. Diebold and Li tested several time series models

on the level, slope and curvature factors of the Nelson-Siegel interest rate curve and

compared the forecasting performance Diebold and Li (2006). In this paper we follow

one of their approaches, in which they apply a PCA on interest rate data and use an

univariate linear AR(1) process for each of the first three PCs. Because of comparison

reasons to the other two two-factor models in this paper, we just use the first two

PCs. The parameters of the AR(1) model are estimated by the ordinary least squares

method.

3.4. Backtest

We now compare the forecasting performance of the BTVC-AR(1)-Factor model,

the Gauss2++ model and the dynamic Nelson-Siegel model and analyse their long
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run distributions of the 10-year interest rate.

3.4.1. Comparison of the Forecasting Performance

For the out-of-sample backtest we apply an expanding window approach. The

data of the first 10 years of the observations are used to estimate the parameters of

the BTVC-AR(1)-Factor model and the dynamic Nelson-Siegel model as described in

the Section 3.3. The Gauss2++ model is calibrated to the current market data. We

then forecast the interest rates for the maturities of 1, 3, 5 and 10 years (representing

the yield curve) for the horizons of 1, 3, 6 and 12 months. We expand the training

sample by one month and repeat the procedure again. This is done until 12 months

before the last observation in the data set. To evaluate the forecasting performance

the error between the predicted interest rate r̂τ (t) and the actual interest rate rτ (t)

with the maturity τ is calculated, i.e.,

errorτ (t) = rτ (t)− r̂τ (t).

Table (D.2)-(D.5) in the Appendix D show the mean and the standard deviation of

this error for each model. In addition, the root mean squared error

RMSE(τ) =

√√√√ 1

N

N∑

k=1

(rτ (k)− r̂τ (k))2 (14)

for the given deviation is calculated, where N is the number of forecasts conducted

in the backtest.

The RMSE for the 1-month ahead forecasts is similar for all three models. For

longer forecasting horizons the Gauss2++ model shows the highest RMSE. For exam-

ple, the 6-month ahead forecast of the 10-year interest rate of the Gauss2++ model

has a RMSE approximately twice as high as the RMSE of the other two models and

more than three times as high for the 12-month ahead forecast. This supports the

statement of Diebold and Li (2006) that short-rate models perform poorly in fore-

casting. However, it should be mentioned that the performance of the Gauss2++

model highly depends on the interest rate forecasts used in the calibration process.

Regarding the predominant negative mean error suggests that the OECD forecasts

have been too optimistic in the past.
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The results of the BTVC-AR(1)-Factor model and the dynamic Nelson-Siegel

model are more consistent. For the forecasting horizon of 1-month the BTVC-AR(1)-

Factor model shows a slightly lower RMSE except for the 10-year interest rate. For

the 3-months, 6-months and 12-months forecasting horizons the BTVC-AR(1) model

shows a lower RMSE for the short maturities, but a higher RMSE for the longer

maturities compared to the dynamic Nelson-Siegel model. Note that the dynamic

Nelson-Siegel model anticipated the downward trend present in the last years, which

might have been beneficial in terms of the forecasting performance in the past, but also

produces unrealistic interest rates in the long horizon. In contrast the BTVC-AR(1)-

Factor model forces the model to mean revert to a prespecified level to regularize the

interest rates in the long horizon. It can therefore follow the current trend only for

a couple of time steps, which might explain the slightly worse performance for the

6- and 12-months forecasting horizon. The fact that the RMSE error is still similar

to the dynamic Nelson-Siegel model suggests that this does not affect the forecasting

performance in the short horizon much.

3.4.2. Comparison of the Distribution in the Long Run

We further investigate the interest rate distribution in the long horizon. This is

especially important for insurance companies as risk measures and performance sce-

narios for their products have to be calculated for up to 40 years (European Union,

2017). We therefore fit all three models on all data points up to the last observation

date of the data set. We then simulate paths of the 10-year interest rate and visualize

the distribution in 40 years. The median of the dynamic Nelson-Siegel model amounts

to approximately -10%. A value that is not realistic for the 10-year interest rate. In

comparison, the distribution of the BTVC-AR(1)-Factor model and the Gauss2++

model seem to be more realistic as the range of their distributions is (mainly) pos-

itive between 0% and 10%. It can be observed that the standard deviation of the

Gauss2++ model is much smaller than of the BTVC-AR(1)-Factor model and as the

median is quite high negative values are not reached by this model. This is due to the

fact that the Gauss2++ model assumes a stronger mean reversion than historic data

would suggest. The (close to) random walk behavior is better captured by the BTVC-

AR(1)-Factor model leading to a prediction range which fits historical observations

quite well. This is due to the regularization of the mean and the standard deviation

of the BTVC-AR(1)-Factor model induced by appropriate prior assumptions, which
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Figure 4: Comparison of the distributions of the 10-year interest rate in 40 years modeled by the
dynamic Nelson-Siegel model, the Gauss2++ model and the BTVC-AR(1)-Factor model.

represents the main difference to other interest rate models.

4. Conclusion

In this paper we introduced a new Bayesian framework for the TVC-AR(1) model

particularly suitable for nearly integrated time series which can not be estimated by

a linear model consistent with economic theory or historical observations. In these

cases a (close to) random walk behavior can be an indication for a missing variable, for

which we account for by the usage of a non-linear model. The time-varying constant

of the BTVC-AR(1) allows a stochastic mean reversion level leading to realizations,

which exhibit a random walk behavior although being stationary and do not have an

exploding long run variance. Additionally, with the Bayesian approach it is possible to

incorporate prior assumption about the long run distribution into the model without

affecting the short-term predictions adversely. This gives the possibility to include

expert knowledge or well known economic facts about the long-term behavior of the

time series into the model that is otherwise fully data-driven in the short term forecast.

We apply the proposed approach to interest rate data. We find that the BTVC-

AR(1)-Factor model, which applies a BTVC-AR(1) model to the first PC of a PCA,
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shows a similar forecasting performance as the dynamic Nelson-Siegel model in the

short horizon but in contrast produces realistic interest rates in the very long horizon

and also yields better forecasts compared to the Gauss2++ model.

The presented framework allows for many different specifications and is, in par-

ticular, flexible in terms of the assumed covariance structure of the latent α process

in the model. In this paper we propose an AR-covariance structure and explain how

model parameters can be inferred in this special case. Investigating other covariance

structures may further improve the forecasting performance in the short horizon while

still regularizing the distribution in the long run.
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Data Availability Statement

The data that support the findings of this study are available at https://www.

bundesbank.de/de/statistiken/zeitreihen-datenbanken. These data were de-

rived from the following resources available in the public domain: BBK01.WZ9801,

BBK01.WZ9802, BBK01.WZ9803, BBK01.WZ9804, BBK01.WZ9805, BBK01.WZ9806.
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Appendix A. Full Conditional Distributions

Appendix A.1. The Full Conditional Distribution of α̃

The prior distribution of α̃ is a centered Gaussian process with a specific covari-

ance structure Σ̃, i.e.,

α̃ = (α1, ..., αT , ..., αT+h) ∼ NT (0, Σ̃)

The following derivations will be independent of the specific choice of Σ̃. By defining

∆j = xj+1 − βxj

as well as ∆ = (∆0, . . . ,∆T−1)> and the fact that

φ(xt|αt + βxt−1, σ
2) = φ(αt|∆t−1, σ

2)

allows a straightforward derivation of the full conditional of α̃:

p(α̃|β, σ2,x) ∝ p(x|α̃, β, σ2)p(α̃|β, σ2)

∝ p(x|α, β, σ2)p(α̃)

∝ exp

(
− 1

2σ2
(α−∆)>(α−∆)

)
· exp

(
−1

2
α̃>Σ̃−1α̃

)

∝ exp


−

1

2
(α̃>Σ̃−1

postα̃− 2α̃>Σ̃−1
postΣ̃post∆̃0

1

σ2︸ ︷︷ ︸
=:µ̃post

)




with Σ̃−1
post = Σ̃−1 + 1

σ2

(
It 0

0 0

)
and ∆̃0 = (∆>,0)>.

This is the kernel of a multivariate Gaussian distribution with covariance Σ̃post

and mean vector µ̃post, i.e

α̃ | β, σ2,x ∼ N (µ̃post, Σ̃post).
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Appendix A.2. The Full Conditional Distribution of ρ

If an AR-covariance structure is assumed for α̃ the latent α-process can be written

in the following form

αt = ραt−1 + ηt,

where ρ determines the correlation between two successive time steps and ηt is a

Gaussian white noise process, i.e., ηt ∼ N (0, τ 2).

The full conditional distribution of ρ can be therefore derived as follows:

p(ρ|τ 2,α) ∝ L(ρ, τ 2) · p(ρ) =
T−1∏

j=0

φ(αT−j|ραT−j−1, τ 2) · p(ρ). (A.1)

The likelihood L(·) in the above equation can be reformulated as

L ∝ exp

(
− 1

2τ 2

{
−2ρ

[
T−1∑

j=0

αT−jαT−j−1

]
+ ρ2

[
T−1∑

j=0

α2
T−j−1

]})
.

The calculation is similar to the one in appendix Appendix A.5. Defining the two

terms in square brackets as η and χ, respectively, we get

L ∝ exp

(
− 1

2τ 2
{
−2ρη + ρ2χ

})
.

Plugging this into (A.1) and using a normal prior with parameters µρ, σ
2
ρ for ρ, we

have

p(ρ|τ 2,α) ∝ exp

(
−1

2

{
ρ2χ

τ 2
− 2

ρη

τ 2

})
exp

(
−1

2

{
ρ2

σ2
ρ

− 2
ρµρ
σ2
ρ

})

∝ exp

(
−1

2

{
ρ2 ·

( χ
τ 2

+ σ−2ρ

)
− 2ρ

(
η

τ 2
+
µρ
σ2
ρ

)})

and thus ρ|τ 2,α ∼ N (µρ,post, σ
2
ρ,post) with

σ2
ρ,post =

( χ
τ 2

+ σ−2ρ

)−1

and

µρ,post =

(
η

τ 2
+
µρ
σ2
ρ

)
σ2
ρ,post.
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If a truncated normal prior is used, the truncation is transferred to the full conditional

distribution.

Appendix A.3. The Full Conditional Distribution of β

Analogously to (10) and (11) we have

p(β|α, σ2,x) ∝ L(β,α, σ2) · p(β) =
T−1∏

j=0

φ(xT−j|αT−j + βxT−j−1, σ
2) · p(β). (A.2)

By defining d̆t−j := xt−j − αt−j and as

φ(xt−j|αt−j + βxt−j−1, σ
2) = φ(βxt−j−1|d̆t−j, σ2)

the likelihood L(·) in the above equation can be reformulated as

L ∝ exp

(
− 1

2σ2

{
−2β

[
T−1∑

j=0

d̆T−jxT−j−1

]
+ β2

[
T−1∑

j=0

x2T−j−1

]})
.

You can find a more detailed calculation in Appendix A.5. Defining the two terms

in square brackets as η and χ, respectively, we get

L ∝ exp

(
− 1

2σ2

{
−2βη + β2χ

})
.

Plugging this into (A.2) and using a normal prior with parameters µβ, σ
2
β for β, we

have

p(β|α, σ2,x) ∝ exp

(
−1

2

{
β2χ

σ2
− 2

βη

σ2

})
exp

(
−1

2

{
β2

σ2
β

− 2
βµβ
σ2
β

})

∝ exp

(
−1

2

{
β2 ·

( χ
σ2

+ σ−2β

)
− 2β

(
η

σ2
+
µβ
σ2
β

)})

and thus β|x, α, σ2 ∼ N (µβ,post, σ
2
β,post) with

σ2
β,post =

( χ
σ2

+ σ−2β

)−1
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and

µβ,post =

(
η

σ2
+
µβ
σ2
β

)
σ2
β,post.

If a truncated normal prior is used, the truncation is transferred to the full conditional

distribution.

Appendix A.4. The Full Conditional Distribution of σ2

In this Section we derive the full conditional distribution of σ2. As before

p(σ2|α, β,x) ∝
T−1∏

j=0

φ(xT−j|αT−j + βxT−j−1, σ
2) · p(σ2) · p(β | σ2),

which is equal to

(σ2)−
t
2 exp

(
− 1

2σ2

T−1∑

j=0

ε2T−j

)
·p(σ2)·p(β | σ2) =: (σ2)−

t
2 exp

(
− 1

2σ2
κ

)
·p(σ2)·p(β | σ2).

By using an inverse gamma distribution with shape and scale parameters a, b, or short

IG(a, b), for the prior of σ2 we get

(σ2)−(t/2) exp

(
− 1

2σ2
κ

)
· (σ2)−(a+1) exp(−b/σ2)

· (σ2)−
1
2 exp

(
− 1

2σ2σ2
β

(β − µβ)2

)
1

Φ(
1−µβ
σσβ

)− Φ(
−1−µβ
σσβ

)
=

(σ2)−(t/2) exp

(
− 1

2σ2
κ

)
· (σ2)−(a+ 3

2) exp


−

b+
(β−µβ)2

2σ2
β

σ2


 1

Φ(
1−µβ
σσβ

)− Φ(
−1−µβ
σσβ

)
≈

(σ2)−( t+1
2

+a+1) exp


−

κ
2

+ b+
(β−µβ)2

2σ2
β

σ2


 .

In the last step we omitted the last term, which results from the truncation, as in

our application the truncation is not very restrictive such that this term is close to

1. Thus the full conditional distribution is approximately also an inverse gamma

distribution with parameters ã = t+1
2

+ a and b̃ = κ
2

+ b+
(β−µβ)2

2σ2
β

, i.e.,

σ2|α, β,x ∼ IG(ã, b̃).
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Appendix A.5. Rewriting the Likelihood of the Parameters

By defining d̆t−j := xt−j − αt−j, the likelihood of the parameters can be reformu-

lated as follows:

L(β,α, σ2) =
T−1∏

j=0

φ(xT−j|αT−j + βxT−j−1, σ
2)

=
T−1∏

j=0

1√
2πσ2

exp

(
−(xT−j − αT−j − βxT−j−1)2

2σ2

)

=
T−1∏

j=0

1√
2πσ2

exp

(
−(d̆T−j − βxT−j−1)2

2σ2

)

=
T−1∏

j=0

1√
2πσ2

exp

(
−(d̆2T−j − 2βxT−j−1d̆T−j + β2x2T−j−1

2σ2

)

∝
T−1∏

j=0

exp

(
− 1

2σ2

{
−2βxT−j−1d̆T−j + β2x2T−j−1

})

= exp

(
− 1

2σ2

{
−2β

T−1∑

j=0

d̆T−jxT−j−1 + β2

T−1∑

j=0

x2T−j−1

})
.

Appendix B. Metropolis-Hastings within Gibbs Sampler Routine

Starting with an initial sample (α(0), β(0), (σ2)(0), ρ(0), (τ 2)(0)), where

(τ 2)(0) = f(β(0), (σ2)(0), ρ(0), V ar(xt))

as specified in (8), we first draw a sample of α̃ values from its full conditional dis-

tribution. We proceed with the Metropolis-Hastings algorithm step by drawing from

the conditional distributions of ρ, σ2 and β as derived in Section 2.3. Furthermore,

τ 2 is set according to (6) such that a prior specified long run variance is met. We

calculate the density value of the proposal distribution q specified in (12), i.e.,

q(ρ(n+1),β(n+1), (σ2)(n+1) | (τ 2)(n), β(n), (σ2)(n),α,x) =

q(ρ(n+1) | (τ 2)(n),α, x)q((σ2)(n+1) | β(n)α,x)q(β(n+1) | (σ2)(n),α,x)
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We further calculate the density value of the proposal distribution for the parameters

of the previous step conditional on the new drawn parameter, i.e.,

q(ρ(n),β(n), (σ2)(n) | (τ 2)(n+1), β(n+1), (σ2)(n+1),α, x) =

q(ρ(n) | (τ 2)(n+1),α, x) · q((σ2)(n) | β(n+1),α, x) · q(β(n) | (σ2)(n+1),α, x)

The true conditional posterior density is given by

p(ρ, β, σ2 | α,x) ∝ p(x | β, σ2,α)p(α | ρ, f(ρ, β, σ2))p(ρ)p(β | σ2)p(σ2)

The acceptance probability is calculated by

paccept. = min

(
1,
p(ρ(n+1), β(n+1), (σ2)(n+1) | α(n+1),x)

p(ρ(n), β(n), (σ2)(n) | α(n+1),x)
·

q(ρ(n), β(n), (σ2)(n) | ρ(n+1), β(n+1), (σ2)(n+1),α(n+1),x)

q(ρ(n+1), β(n+1), (σ2)(n+1) | ρ(n), β(n), (σ2)(n),α(n+1),x)

)

A new drawn sample is accepted if a uniform distributed random variable is smaller

than the acceptance probability. Otherwise the sample from the previous step is

taken. After a burn-in period the parameter set (α̃(m), β(m), (σ2)(m)) is approximately

distributed according to the joint posterior distribution p(α̃, β, σ2 | x).

Appendix C. Diagnostics of the MCMC algorithm

In this section we present diagnostics of the Metropolis-Hastings within Gibbs

sampler (MHwGS) routine used for the dataset in our application.

To investigate the distribution of the 10-year interest rate at a forecasting horizon of

40 years, we use the prior distributions as specified in Section 3.3.1 and draw 10.000

samples by applying the MHwGS routine as described in Appendix B. The chosen

proposal distribution results in an acceptance rate of 30.92%. After a burn-in phase

of 100 samples, we apply thinning to reduce autocorrelation and take every 10th pa-

rameter set to simulated paths of the first principal component. The autocorrelation

functions for selected parameters are are visualized in Figure C.5.
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(a) (b)

(c) (d)

Figure C.5: Autocorrelation function of the paramters, which stay constant over time.
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Appendix D. Backtest Results

Maturity Mean Std. Dev. RMSE

The BTVC-AR(1)-Factor model
1 year -0.0268 0.2566 0.0659
3 year -0.0469 0.2289 0.0541
5 year -0.0681 0.2402 0.0617
10 year -0.0640 0.2346 0.0586

The Gauss2++ model
1 year -0.0808 0.2361 0.0618
3 year -0.1037 0.2252 0.0610
5 year -0.1203 0.2139 0.0598
10 year -0.1429 0.2130 0.0654

The dynamic Nelson-Siegel model
1 year -0.0290 0.2615 0.0685
3 year -0.0462 0.2311 0.0550
5 year -0.0653 0.2410 0.0617
10 year -0.0589 0.2340 0.0577

Table D.2: Results of the out-of-sample 1-month ahead forecasting.
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Maturity Mean Std. Dev. RMSE

The BTVC-AR(1)-Factor model
1 year -0.1264 0.5064 0.2697
3 year -0.1505 0.4640 0.2358
5 year -0.1725 0.4354 0.2174
10 year -0.1625 0.3875 0.1751

The Gauss2++ model
1 year -0.2057 0.5329 0.3236
3 year -0.2707 0.4702 0.2923
5 year -0.3098 0.4208 0.2714
10 year -0.3435 0.3875 0.2667

The dynamic Nelson-Siegel model
1 year -0.1327 0.5152 0.2803
3 year -0.1482 0.4665 0.2374
5 year -0.1643 0.4343 0.2137
10 year -0.1478 0.3827 0.1668

Table D.3: Results of the out-of-sample 3-month ahead forecasting.
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Maturity Mean Std. Dev. RMSE

The BTVC-AR(1)-Factor model
1 year -0.2809 0.7683 0.6631
3 year -0.3093 0.6941 0.5725
5 year -0.3311 0.6330 0.5062
10 year -0.3110 0.5462 0.3920

The Gauss2++ model
1 year -0.4094 0.8105 0.8184
3 year -0.5402 0.6768 0.7457
5 year -0.6098 0.6090 0.7393
10 year -0.6545 0.5824 0.7693

The dynamic Nelson-Siegel model
1 year -0.2900 0.7857 0.6951
3 year -0.3022 0.7045 0.5825
5 year -0.3130 0.6380 0.5008
10 year -0.2812 0.5446 0.3727

Table D.4: Results of the out-of-sample 6-month ahead forecasting.
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Maturity Mean Std. Dev. RMSE

The BTVC-AR(1)-Factor model
1 year -0.5956 0.9591 1.2652
3 year -0.6264 0.7861 1.0041
5 year -0.6526 0.6834 0.8881
10 year -0.6275 0.5986 0.7484

The Gauss2++ model
1 year -0.9047 1.0709 1.9546
3 year -1.1531 0.7939 1.9541
5 year -1.2745 0.7255 2.1458
10 year -1.3345 0.8060 2.4246

The dynamic Nelson-Siegel model
1 year -0.6004 0.9961 1.3424
3 year -0.6024 0.8218 1.0316
5 year -0.6098 0.7096 0.8702
10 year -0.5657 0.6024 0.6793

Table D.5: Results of the out-of-sample 12-month ahead forecasting.
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Chapter III. A Bayesian Time-Varying Autoregressive Model for Improved Short-
and Long-Term Prediction
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Abstract

In view of the repeated severe market downturns since the turn of the century, the

interest in risk–based investment strategies has grown in recent years. However, such

strategies have not yet made major inroads into the design of pension programs. In

this paper, we fill this gap by combining a risk–managed investment strategy with

a pension scheme where benefits are smoothed across generations by establishing a

collective reserve. We demonstrate that combining the two helps to improve the

performance of the pension investments and decreases the risk of a negative reserve

in times of a market crisis. We furthermore investigate the implications of imposing

varying degrees of diversification across assets in such a scheme.
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1. Introduction

Having experienced a sequence of dramatic market downturns in the recent past,

such as the dotcom crisis starting in 2000, the financial crisis around 2008, the Eu-

ropean sovereign debt crisis unfolding in 2010, and most recently the Corona crash

in 2020, there has been an increased interest in risk–based investment strategies. In

these strategies, the asset allocation varies dynamically and is determined—at least in

part—by the prevailing risk level of the assets. Barroso and Santa-Clara (2015) and

Daniel and Moskowitz (2016) showed that in the context of a momentum strategy, it

is beneficial to invest less in an asset when its volatility is experiencing above normal

levels and vice versa. Moreira and Muir (2017) demonstrated that a risk–managed

investment strategy dominates a conventional buy–and–hold strategy.

There are various ways of constructing risk–managed portfolios, but they are all

similar in spirit. Let rt be the return of a portfolio representing a factor. Scaling rt

by a function of a risk measure, ϑ, results in the return of the managed portfolio

rϑ,t = g(ϑt)rt, (1)

where ϑt represents conditional risk. Function g(·) scales the investment such that

a given risk target (e.g., the unconditional risk level) is met. Various risk measures

have been applied in the literature. Common choices have been volatility (see, e.g.,

Barroso et al. (2017), Barroso and Santa-Clara (2015), Daniel and Moskowitz (2016),

Eisdorfer and Misirli (2020)) or variance (see, e.g., Cederburg et al. (2020), Moreira

and Muir (2017)). Also, the strategies for estimating the risk measure vary. Daniel

and Moskowitz (2016) and Moreira and Muir (2017) use a parametric model, whereas

Barroso and Santa-Clara (2015), Cederburg et al. (2020) and Daniel and Moskowitz

(2016) use nonparametric sample estimates of realized volatility or realized variance.

Regarding the choice of function g(·), all these studies specify g(·) to be proportional

to the inverse of the risk measure employed, i.e.,

g(ϑ) =
c

ϑ
,

where constant c is chosen such that the portfolio meets a given target risk.

In this paper, we investigate to what extent a collective pension scheme may ben-

efit from a risk–managed investment strategy. Several concepts of collective pension

2
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schemes have been proposed in the literature and their outcomes compared to those

of individual saving plans (see, for example, Gordon and Varian (1988), Krueger and

Kubler (2006), Teulings and De Vries (2006), Ball and Mankiw (2007), Gollier (2008),

Cui et al. (2011), Goecke (2013a), Bovenberg and Mehlkopf (2014) and Chen et al.

(2016)). One feature of a collective pension scheme is the intergenerational risk trans-

fer. Gordon and Varian (1988) introduce an optimal state–organized risk–sharing

scheme that spans across future generations. Gollier (2008) proposes a model that

smooths asset return volatility and allows for intergenerational risk sharing by intro-

ducing a collective reserve pool. He shows that such a scheme increases the expected

utility of savers when compared to individual saving plans. See also Schumacher

(2021) for a discussion of this scheme. Goecke (2013a) adopts this idea and proposes

a specific decision mechanism that guides the dynamic fund management. Investment

schemes involving intergenerational risk transfer have also been proposed in Grosen

and Jørgensen (2000), Døskeland and Nordahl (2008), Hoevenaars and Ponds (2008),

Baumann and Müller (2008), Westerhout (2011), and Bams et al. (2016).

In our analysis, we adopt the framework of a collective reserve, whose funds are

not designated to any individual investor but rather serve as a collective buffer that

smooths the individuals’ returns across generations. In times where market returns

fall below a given target return, investors are compensated by releases of the reserve.

If they exceed the target return, the excess return is used to replenish the collective

reserve. This approach smooths out volatile market returns and ensures that the

investment of successive cohorts of investors performs similarly. In other words, the

market risk is shared between generations of investors.

In this paper we investigate the properties of a risk–managed pension scheme with

a collective reserve. In our framework, the dynamic asset allocation is directly tied

to the projected market risk of the assets. This style of risk–based fund management

contrasts with that in Goecke, which links risk exposure to the status of the reserve

level. Focusing directly on risk has several advantages. First, it allows to directly

control the risk of the fund—and it is precisely the goal to distribute risk fairly across

generations. Second, due to their near–random–walk behavior, price movements on

capital markets are hard to predict. Unlike capital market returns, market risks have

a more or less clear dynamic structure that can be used for forecasting. Moreover,

there is evidence of a dynamic interplay between risk and return. For example, at

times when equity market risk is low or falling, returns tend to be high and vice

3
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versa. If this is the case, risk–based fund management can improve the the fund’s

risk–adjusted performance.

We also investigate the impact of imposing minimum–diversification requirements

on the assets in the portfolio. We illustrate the proposed scheme by applying it to a

portfolio consisting of two asset classes, namely equity, represented by the German

DAX index, and government bonds, represented by the German REXP index. In

doing so, we follow Goecke (2013a), which allows us to compare the reserve–based

and the risk–based strategies.

Our results demonstrate that a risk–managed investment strategy can improve

the absolute and the risk–adjusted performance of the pension fund. It also reduces

the decline in the reserve when the market drops, as such declines are typically ac-

companied by higher market volatility—a phenomenon that our risk–based strategy

explicitly takes into account.

The remainder of this paper is arranged as follows. In Section 2 we introduce the

risk–managed investment strategy. Section 3 summarizes the reserve–driven approach

in Goecke (2013a) and details our risk–driven framework. In Section 4 we empirically

illustrate our approach using German market data covering the period 1967 to 2020

and compare the results of the two strategies. The final section concludes.

2. Risk–managed Investing

A risk–based investment strategy manages a portfolio dynamically according to

the prevailing risk of the assets in the portfolio. Current risk can be measured in

different ways. Conditional volatility or variance are commonly used candidates. Let

rt be the excess return of a portfolio and σ̂t be an estimate of the portfolio’s conditional

volatility. We follow Moreira and Muir (2017) and obtain the risk–managed portfolio

return, rRA,t, by setting

rRA,t =
ct
σ̂2
t

rt. (2)

Moreira and Muir set ct = c, where constant c is chosen such that the unconditional

variance of the risk–managed portfolio matches a given target. For example, let σ∗2

4
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be the target level of unconditional variance, the constant c is given as follows

Var

(
c

σ̂2
t

rt

)
= σ∗2 ⇔ c =

√√√√ σ∗2

Var
(

1
σ̂2
t
rt

) (3)

In their application, Moreira and Muir estimate Var
(

1
σ̂2
t
rt

)
using the full data sample,

which gives the estimate a forward–looking character.

In our application, we specify a time–varying c-factor, ct, which is conditioned

only on past return observations. This avoids the use of an ex–post optimal c-factor

and results in gradually varying unconditonal variance levels (c.f. Figure 3 below).

Specifically, we choose ct such that the risk–managed strategy has the same average

weight as a compareable buy–and–hold strategy with a strategic weight β∗. In Equa-

tion (2) ct
σ̂2
t

represents the weight at time t. We choose ct for a given t as the value

such that the average weight over a predefined time horizon equals β∗, i.e.,

1

k

k∑

i=1

ct
σ̂2
t−i

= β∗ ⇔ ct =
β∗

1
k

∑k
i=1

1
σ̂2
t−i

, (4)

where k represents the number of past observations. σ̂2
t is the estimate for the variance

of the portfolio.

3. Collective Defined–Contribution Pension Scheme

A collective defined–contribution (CDC) pension scheme is a pension plan where

the investor and the plan sponsor pay fixed contribution rates in terms of a defined–

contribution (DC) plan. However, all the assets are pooled, which allows the imple-

mentation of risk–sharing mechanisms by which the investor is not exposed to the

typical risks of a DC pension plan.

In this section we first describe the general outline of a CDC model with a reserve

pool.1 Next, then describe the reserve–based framework as adopted by Goecke and

the risk–based framework we use for our risk–managed investment strategy.

1To make the differences between the reserve–based and the risk–based approaches clear, our
notation largely follows that of Goecke (2013a).
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Figure 1: Illustration of potential variations in the returns of a CD investment plans

3.1. Motivation and General Outline

In a DC scheme the contributions made by the investor and the plan sponsor

are attributed to the individual investor. The final amount received upon retirement

depends entirely on the development of the capital market during the accumulation

phase. This can lead to large variations in the returns different generations of investors

receive. Figure 1 illustrates this problem. It shows the performance of an initial

investment of one euro in 1970 in a market portfolio represented by the DAX. 30 years

later the value grew to 21.26 euro. Three years later, at the end of the dotcom slump,

a retiree would have received a return of just 6.74 euro on the initial investment.

The potential inequality of payouts received by different cohorts of retirees is a

major criticism of proponents of pay–as–you–go plans. As we will see below, such

intergenerational imbalances can be greatly reduced by building a risk–sharing mech-

anism into a DC pension plan.

In our framework, intergenerational risk–sharing is accomplished by introducing

a collective reserve. The reserve is a fraction of the pooled total assets. It is not
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allocated to individual investors, but rather to the collective as a whole. The idea

is that in times when investments underperform or decline, releases from the reserve

will make up for the performance gaps in the individual accounts. And in times

when investments exceed the target return, the reserve is replenished. This smooths

volatility market returns and stabilizes performance across investor cohorts.

The basic idea of a CDC plan can be summarized by the balance–sheet equation

At = Vt +Rt, (5)

where At represents the current value of the pension fund’s assets, Vt is the total

value of the individual accounts of the savers, and Rt is the reserve belonging to the

collective. Vt and Rt represent the liabilities to the savers. The value of assets At

evolves in line with the capital market and its value is therefore subject to significant

fluctuations. By transferring most of these fluctuations to the reserve, the individual

accounts Vt can grow steadily. And a steady growth rate of Vt reduces the risk of

intergenerational inequality.

The task of the fund management is to decide on a, say, monthly basis on the

portfolio weights and on the amounts allocated to individual accounts Vt and to or

from the reserve Rt. The weights can be linked to the reserve status, via the reserve

ratio, ρt, e.g.,2

ρt :=
Rt

At
.

In the case the reserve ratio is high, i.e., the reserve accounts for a large fraction of

the assets, At, the portfolio weights is shifted toward higher risk. Conversely, when

the reserve ratio is below a certain target value, the weights in risky asset classes are

reduced. Linking portfolio weights to reserve levels can result in a kind of momentum

strategy, since reserve levels below a certain target value are often the consequence of

market declines, whereas levels above the target occur in the wake of bull markets.

The amount distributed to the individual accounts and to the reserve is set by the

profit participation, ηt, which determines the discrete or continuous monthly return

2Goecke uses the log reserve ratio, i.e., ρlogt := ln
(

At

Vt

)
= − ln

(
1− Rt

At

)
, so that process ρlogt has

a straightforward continuous–time representation.
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on Vt, i.e.,

Vt+1 = (1 + ηt)Vt, (6)

or

Vt+1 = eηtVt. (7)

Keeping the value of ηt close to constant lets Vt grow smoothly over time and, thus,

reduces the risk of intergenerational inequality. By setting ηt at the beginning of a

month, the growth of the individual accounts, Vt+1, is also automatically determined.

However, at time t the end–of–month value of the total assets, At+1, is a stochastic

quantity. If the return on At in month t deviates from ηt, the reserve pool Rt+1 has

to absorb the difference.

3.2. Reserve–based CDC Pension Scheme

The reserve–based scheme put forth by Goecke manages the pension fund by

controlling the parameters σt and ηt based on the following asset liability management

(ALM) adjustment rules:

σt = σ∗ + a(ρlogt − ρlog
∗
) (8)

ηt = µ̂t(σt) + b(ρlogt − ρlog
∗
), (9)

where a and b are nonnegative constants determining the speed of adjustment. σ∗

and ρlog
∗

represent the target levels of the portfolio risk and the log reserve ratio,

respectively. These levels are specified upfront by the fund manager.

The term ρlogt − ρlog
∗

in (8) and (9) represents the link to the reserve status

and balances the risk between generations of savers. If the pension fund follows a

geometric Brownian motion, the expected portfolio return, µ̂t, used to determine the

declaration ηt, then depends on the volatility of the portfolio at time t via

µ̂t(σt) = µ1M,t + rSRσt −
1

2
σ2
t ,

where µ1M is the one–month (risk–free) money market rate, and rSR is the risk pre-

mium per unit of risk used in the drift of the geometric Brownian motion.

8
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ALM-rules (8) and (9) determine the portfolio weights and the amounts allocated

to the individual accounts Vt and the reserve Rt. Letting the fund portfolio consist

of the two asset classes stocks and high–grade bonds and assuming that the volatility

of the bond portfolio is negligible, then the fund’s volatility is given by

σt = βtσstocks,

where βt represents the weight in the stock portfolio, and σstocks is the volatility of

the stock portfolio. The portfolio weights are implicitly given by σt. This implies the

portfolio weight for stocks, i.e.,

βt =
σt

σstocks
.

Unless leveraging is allowed, we have 0 ≤ σt ≤ σstocks.

The declaration, ηt, is determined by ALM-rule (9). It determines Vt+1, the value

of the individual accounts at the end of the month according to (7). Any imbalance

between the realized growth of At+1 and the already allotted Vt+1 is then compen-

sated by Rt+1. The declaration ηt is set so that savers participate fairly in capital

market returns. If ρt is equal to the target ρ∗, the declaration corresponds to the

return, µ̂t(σt), expected by the market model used. Thus, b(ρt − ρ∗) balances the

risk between different generations of savers. If b > 0 and ρt < ρ∗ the declaration

is reduced and the reserve account is increased which benefits future savers. If, on

the other hand, b > 0 and ρt > ρ∗, the current saver benefits from the good market

performance in the past through a higher declaration.

3.3. Risk–Based CDC Pension Scheme

In our risk–based CDC scheme we tie the portfolio weights, βt, directly to the

market risk rather than first determining σt by ALM-rule (8) to implicitly obtain βt.

Moreover, we implement a different, more forward looking strategy for specifying µ̂t

and, thus the declaration ηt.

According to (2), in the two-asset case with stocks and bonds, the risk–based

weight of stocks, βRAt , is given by

βRAt =
ct
σ̂2
t

. (10)

Factor ct can be chosen so that the average weight of the risk-managed strategy
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corresponds to some given value (c.f Equation (4)). σ̂2
t is an estimate of the conditional

variance of the equity returns. In the application below, it is obtained from a plain

GARCH(1,1) model given by 3

rt = ω + σtεt (11)

σ2
t = γ0 + γ1σ

2
t−1 + γ2r

2
t ,

where εt is an independent, identically and normally distributed random variable.

The GARCH model is estimated recursively from rolling windows of daily log–returns.

Then, conditional variance forecasts for the next 22 business days are generated and

summed up to get a proxy for next month’s variance, i.e.,

σ̂2
temp,t =

22∑

j=1

σ̂2
d,t+j,

where σ̂2
d,j is the daily conditional variance forecast given by

σ̂2
d,t+1 = γ0 + γ1σ

2
d,t + γ2r

2
stocks,t,

σ̂2
d,t+k = γ0 + (γ1 + γ2)σ̂

2
d,t+k−1,

with rstocks,t denoting the daily log–return of the stock portfolio at time t. In addi-

tion, we apply a smoothing procedure by taking exponential moving average over the

preceding ksmooth months’ estimates, i.e.,

σ̂2
1 = σ̂2

temp,1

σ̂2
t = ασ̂2

temp,t + (1− α)σ̂2
t−1, for t > 2,

where α = 2/(ksmooth + 1). Such a smoothing procedure avoids excessively volatile

portfolio weights in risk–driven portfolio allocations.

Using (10), these weights are then linked to the reserve status via

βt = βRAt

(
ρt
ρ∗

)m
,

3Clearly, more elaborate GARCH models could be used in order to better capture possible fat–
tailedness and skewness in the conditional distributions of the returns.
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where m is a nonnegative constant determining the speed of adjustment with which

the target level of reserve ratio is approached. If m = 0, βt = βRAt for all t. For m > 0

the equity ratio is linked to the reserve status, i.e., more than βRAt is invested in equity

if the reserve ratio is above its target, ρ∗, and less if it is below. We restrict βt to be

between 0 and 1 to rule out any leveraging of equity investments by shorting bonds.

Once the equity weights βt are determined, the bond weights are 1 − βt, assuming

that the pension fund remains fully invested in these two asset classes.

Finally, we need to determine the profit participation, ηt. Letting µ̂t be the

weighted sum of estimates of the monthly returns of the two asset classes, i.e.,

µ̂t = βtµ̂stocks,t + (1− βt)µ̂bonds,t,

we have

ηt = µ̂t

(
ρt
ρ∗

)n
,

where n is again a nonnegative constant, which determines the speed of the adjust-

ment toward the target reserve ratio. If µ̂stocks,t and µ̂bonds,t are both positive, then

ηt ≥ 0. To rule out the possibility of the reserve becoming negative, ηt may need to

be adjusted to compensate for the losses that would result in a negative reserve.

4. Comparison of Reserve–based and Risk–based Schemes

In this section we present the results of a backtest using German equity and

bond data. We construct CDC pension funds according to the two frameworks intro-

duced in Section 3. These funds consist of two asset classes: stocks and bonds. The

portfolio of stocks is represented by the German stock index (DAX) and the bond

portfolio is represented by the German bond performance index (REXP). We com-

pare performance and risk measures of the two frameworks. We further investigate

the implication of imposing varying degrees of minimum diversification requirements

accross the assets under investigation.

4.1. Data

We backtest the frameworks on a time series of the DAX and the REXP covering

the period from 1967 to 2020. Monthly data of the REXP since 1967 and daily

data of the DAX since 1987 is published by the Deutsche Bundesbank. For the time

period before 1987 we use for the DAX a back-calculation of Stehle et al. (1996),
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which goes back until 1959. They amongst included dividend payments and their

calculation, therefore, can be considered as a good representation of the performance

of a well mixed German stock portfolio (see Stehle et al. (1996)). Figure 2 shows

the performance of a one euro investment in the two indices. Furthermore, the figure

includes the money market account representing a monthly revolving investment at

the one-month money market rate. This index is included as it represents the risk–free

rate of the applied market model in the reserve–based framework.

Figure 2: Performance of a one-euro investement from 1967 until 2020

4.2. Model Parameters for the Backtest

For the backtest we set the starting values of the pension funds as follows: A0 = 100,

V0 = 80 and R0 = 20. Therefore, the starting reserve ratio (log reserve ratio) is given

by ρ0 = 20% (ρlog0 = 18%).

For the reserve–based framework we use the same parameterization as in the reference
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model introduced in Goecke (2013b). The parameters a and b, which determine the

speed of adjustment due to the reserve status, are set to 0.6 and 0.3, respectively. The

target volatility σ∗ of 10% corresponds to a target weight in the DAX of β∗ = 0.5.

The target log reserve ratio is set to the starting value of 18%. rSR is the Sharpe

ratio and corresponds to an annual risk premium of about 4.5% with respect to the

risk–free money market rate. The unconditional annual standard deviation of the

DAX is set to 20%. The values are summarized in Table 1.

a b σ∗ ρlog0

∗
rSR σDAX

0.6 0.3 10% 18% 0.225 20%

Table 1: Parameters set for the reserve–based framework.

For the risk–based framework with a risk–managed investment strategy we use the

following parameterization. To determine the risk–managed portfolio weights βRAt

the c-factor ct and the conditional variance σ2
t have to be estimated. The c-factor

ct is determined using equation (4) by considering the previous 5 years, i.e., k =

60, and a target weight β∗ = 50%, which images the 10% for the target volatility

σ∗ in the reserve–based framework. To estimate the conditional variance σ2
t the

GARCH(1,1) model is estimated on a rolling window of daily log-returns over the

previous 3 years. For smoothing the variance estimates of the last 12 months are

considered, i.e. ksmooth = 12. In Figure 3 the unsmoothed and smoothed monthly

volatility estimates calculated according to the framework explained in Section 3.3

are shown.
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Figure 3: Volatility Esimates: Unsmoothed and smoothed with an exponential moving average
approach.

To determine the expected return of the portfolio, µ̂t, we set µ̂DAX,t = 0.67%

for all t, which corresponds to an expected annual return of approximately 8%. For

µ̂REXP,t we use an average over a rolling window of monthly returns of the last 5 years

as the return of the REXP is influenced amongst by political decisions of the central

bank.

We further set the parameters m and n, which—similar to a and b in the reserve–

based framework—control the speed of adjustment due to the reserve status, to 1.5

and 1.0, respectively. The target reserve ratio is set in accordance with the framework

of Goecke to 20%. All parameters are summarized in Table 2.

m n k β∗ ksmooth ρ∗ µ̂DAX

1.5 1.0 60 0.5 12 20% 0.67%

Table 2: Parameter set for the framework with a risk–managed investment strategy

With these values both frameworks are set and can be backtested on the given

dataset.
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4.3. Backtest

In Figure 4 we compare the performance of a DAX– and a REXP–investment with

an investment in CDC pension funds using the two frameworks described in Section

3. We denote the two pension funds as reserve–based CDC Plan and risk–based CDC

Plan according to the applied framework. The figure shows the development of a

one euro investment in the beginning of the observation period. The very smooth

course of the CDC plans is the result of the reserve, which smooths the volatile

market returns over time. We observe that both CDC plans lie above the DAX

most of the time although having only an average equity ratio of 59.8% and 51.9%,

respectively. Furthermore, the risk–managed investment strategy indeed results in a

higher performance.

Figure 4: Performance of the reserve–based and the risk–based CDC Plan compared to the DAX
and the REXP.

Figures 4a and 4b show the reserve ratio, ρt, the equity ratio, βt, and the profit

participation, ηt, for the reserve–based and the risk–based schemes over the backtest
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period.

(a) Reserve–based CDC Plan

(b) Risk–based CDC Plan

Figure 4: Development of the reserve ratio, the equity ratio and the profit participation of the CDC
plans
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The reserve–based CDC Plan has a positive reserve ratio over the investment

horizon, which lies between 2.6% and 56.1%. The equity ratio takes values between

0% and 100% and is on average 59.8%. The profit participation may be negative.

The risk–based CDC Plan applies a risk–managed investment strategy, which

leads to a smaller decline in the reserve ratio during a market crisis compared to

the reserve–based CDC Plan. For example, in the dotcom crisis the equity ratio

is decreased earlier than in the reserve–based CDC Plan due to the increase of the

volatility in this time period. This reduces the losses and prohibits a large decline

of the reserve ratio below its target value. The reserve ratio lies between 4.3% and

56.7%. The equity ratio takes values between 4.2% and 100% and is on average 51.9%.

The profit participation is positive over the investment horizon.

We further investigate the performance and the risk of the CDC plans and a

static saving plan. The static saving plan invests each month 50% in a stock portfolio

represented by the DAX and 50% in a bond portfolio represented by the REXP.

Table 3 presents the total performance, the annual performance, the annual standard

deviation and annual semi standard deviation as well as the Sharpe ratio and Sortino

ratio. Furthermore, the maximum drawdown and the average annual turnover of the

applied investment strategy are given. To calculate the average annual turnover we

first determine the monthly turnover by

turnoverm,t =

∣∣∣∣βt −
PDAX,t
At

∣∣∣∣ ,

where PDAX,t is the value of the stock portfolio represented by the DAX at time

t before adjusting the weights according to the applied framework or investment

strategy. To get the annual turnover we sum up the monthly turnovers within a

calendar year

turnovery,tj =

tj∑

t=tj−11

turnoverm,t,

where tj indicates the last month of a year. The average annual turnover is then

given by the arithmetic mean over all annual turnovers.
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Static Plan Reserve–based
CDC Plan

Risk–based
CDC Plan

Total Performance (%) 4881.01 6750.60 8354.48
Annual Performance (%) 7.51 8.16 8.58
Annual Std. Dev. (%) 9.93 1.47 1.36
Neg. Annual Semi-Vola (%) 6.17 0.04 0
Sharpe Ratio 0.76 5.55 6.30
Sortino Ratio 1.22 189.21 Inf
Maximum Drawdown (%) 34.52 0.38 0
Average Annual Turnover (%) 12.55 51.47 50.75

Table 3: Performance and Risk Measures

The static Plan has the lowest annual performance. As no risk–sharing mechanisms

are implemented, the risk—measured by the annual standard deviation, the annual

semi-vola or the maximum drawdown—is much higher compared to the pension plans.

An unfavourable starting date for an investment in the static saving plan can therefore

lead to large deviations from the average annual performance of 7.51%. The Sharpe

ratio and Sortino ratio are therefore also small compared to the pension plans. The

positive average turnover results from monthly adjustments to keep the weights con-

stant over time.

In both CDC plans the collective reserve smooths the volatile market returns, which

reduces the risk of the individual accounts Vt. As we consider the performance and

risk not of At of a CDC plan but of Vt, whose fluctuations are mainly covered by the

reserve Rt, this leads to lower risk measures and a higher Sharpe ratio and Sortino ra-

tio. While the risk—measured by the annual standard deviation, the annual semi-vola

or the maximum drawdown—are similar for both CDC plans, the annual performance

of the risk–based CDC Plan is higher than of the reserve–based CDC Plan. This leads

to an even higher Sharpe ratio and Sortino ratio. The Sortino ratio of the risk–based

CDC Plan is infinity as the negative annual semi-vola is zero as the return of this

strategy is always positive. The dynamic investment strategies lead to a higher av-

erage annual turnover than the static saving plan, but is for both plans with 51.47%

for the reserve–based CDC Plan and 50.75% for the risk–based CDC Plan similar.

In practice, applied investment strategies often include minimum diversification re-

quirements. We therefore investigate the implications of such requirements on the

two CDC plans by imposing minimum investment constraints for the DAX and the
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REXP. As we are invested in two asset classes imposing a minimum weight on one

asset class results in a maximum weight constraint for the other. We impose the

following varying degrees of minimum requirements for both asset classes: 0%, 10%,

20%, 30%, 40% and 50%. We calculate for all possible constraint combinations the

same performance and risk measures as in Table 3 for the unconstrained case. Table

4 summarizes the results for the reserve–based CDC Plan and Table 5 for the risk–

based CDC Plan.

For a fixed lower bound of the DAX increasing the lower bound of the REXP decreases

the annual performance in both frameworks, but it also decreases the risk-measures

such that the Sharpe ratio is increased. Only for the risk–based CDC Plan and a min-

imum DAX investment of 50% the Sharpe ratio decreases with the REXP constraint.

The reason is that these strict constraints can lead to situations, in which according

to the general allocation rules of the framework the reserve would get negative. This

is especially the case in times of a market crisis. Compared to the reserve–based CDC

Plan the risk–based CDC Plan prohibits a negative reserve by suspending the general

rules of the framework to determine ηt in these situations. Instead a negative value

for ηt is allowed, which exactly compensates the negative amount of the reserve. We

can observe such situations if we impose a lower bound of 40% or higher on the DAX.

A negative value for ηt increases the risk measures and can lead to smaller Sharpe

ratios and Sortino ratios.

We observe that the risk–based CDC Plan has in general a higher annual perfor-

mance, Sharpe ratios and Sortino ratios. Only in the case that the lower bound of

the DAX is 40% or higher the Sharpe ratios and Sortino ratios for the reserve–based

CDC Plan are higher. The reason is again, that while the reserve–based CDC Plan

allows a negative reserve the risk–based CDC Plan prohibits this on the cost of higher

risk measures.

Furthermore, we observe that the average annual turnover can be reduced by imposing

higher lower bound constraints on the two assets.
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Lower Lower Bound REXP (%)
Bound
DAX (%) 0 10 20 30 40 50

0

Total Performance (%) 6750.60 6527.39 6256.91 6112.79 5687.66 5123.87
Annual Performance (%) 8.16 8.09 8.01 7.96 7.82 7.61

Annual Std. Dev. (%) 1.47 1.40 1.33 1.24 1.15 1.05
Neg. Annual Semi-Vola (%) 0.04 0.04 0.04 0.04 0.04 0.03

Sharpe Ratio 5.55 5.77 6.04 6.41 6.80 7.28
Sortino Ratio 189.21 192.5 195.88 204.88 220.97 250.44

Max. Drawdown (%) 0.38 0.36 0.34 0.31 0.28 0.29
Avg. Annual Turnover (%) 51.47 47.88 43.77 37.42 31.71 25.82

10

Total Performance (%) 6734.14 6512.04 6241.47 6089.57 5668.27 5109.42
Annual Performance (%) 8.15 8.08 8.0 7.95 7.81 7.61

Annual Std. Dev. (%) 1.47 1.40 1.33 1.24 1.15 1.04
Neg. Annual Semi-Vola (%) 0.04 0.04 0.04 0.04 0.04 0.03

Sharpe Ratio 5.55 5.77 6.04 6.41 6.8 7.29
Sortino Ratio 190.54 193.92 197.41 206.60 223.16 253.88

Max. Drawdown (%) 0.38 0.36 0.34 0.31 0.28 0.29
Avg. Annual Turnover (%) 50.02 46.43 42.34 36.10 30.36 24.43

20

Total Performance (%) 6759.16 6524.56 6248.57 6063.51 5647.45 5110.87
Annual Performance (%) 8.16 8.09 8.00 7.94 7.80 7.61

Annual Std. Dev. (%) 1.47 1.40 1.32 1.24 1.15 1.04
Neg. Annual Semi-Vola (%) 0.04 0.04 0.04 0.04 0.04 0.03

Sharpe Ratio 5.55 5.77 6.04 6.42 6.80 7.30
Sortino Ratio 183.17 185.63 188.25 195.86 210.12 234.9

Max. Drawdown (%) 0.38 0.36 0.34 0.31 0.29 0.30
Avg. Annual Turnover (%) 47.99 44.55 40.3 34.54 28.82 22.50

30

Total Performance (%) 6314.17 6111.22 5844.02 5616.91 5250.46 4718.36
Annual Performance (%) 8.02 7.96 7.87 7.79 7.66 7.45

Annual Std. Dev. (%) 1.48 1.41 1.34 1.25 1.17 1.07
Neg. Annual Semi-Vola (%) 0.08 0.08 0.08 0.08 0.07 0.07

Sharpe Ratio 5.43 5.64 5.89 6.22 6.56 6.99
Sortino Ratio 103.41 103.14 102.26 102.22 104.2 104.77

Max. Drawdown (%) 1.13 1.13 1.13 1.12 1.07 1.04
Avg. Annual Turnover (%) 44.36 40.83 36.75 31.4 25.52 19.61

40

Total Performance (%) 6176.84 5982.32 5737.15 5522.15 5138.20 4585.32
Annual Performance (%) 7.98 7.92 7.83 7.76 7.62 7.40

Annual Std. Dev. (%) 1.50 1.43 1.36 1.28 1.20 1.10
Neg. Annual Semi-Vola (%) 0.13 0.13 0.13 0.13 0.13 0.13

Sharpe Ratio 5.33 5.52 5.76 6.06 6.35 6.71
Sortino Ratio 62.33 61.97 61.16 60.70 60.38 58.85

Max. Drawdown (%) 2.41 2.41 2.41 2.41 2.36 2.32
Avg. Annual Turnover (%) 39.58 35.90 31.70 26.77 20.75 15.25

50

Total Performance (%) 5997.36 5887.40 5698.83 5432.67 5032.40 4440.81
Annual Performance (%) 7.92 7.89 7.82 7.73 7.58 7.33

Annual Std. Dev. (%) 1.53 1.47 1.40 1.33 1.24 1.15
Neg. Annual Semi-Vola (%) 0.19 0.19 0.19 0.19 0.18 0.18

Sharpe Ratio 5.17 5.36 5.58 5.82 6.10 6.40
Sortino Ratio 41.73 41.64 41.20 40.82 40.97 39.93

Max. Drawdown (%) 3.95 3.94 3.94 3.91 3.75 3.63
Avg. Annual Turnover (%) 34.94 31.64 26.75 21.96 15.86 12.55

Table 4: Performance and Risk Measures for the reserve–based CDC Plan
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Lower Lower Bound REXP (%)
Bound
DAX (%) 0 10 20 30 40 50

0

Total Performance (%) 8354.48 7802.53 7289.87 6672.46 6017.33 5248.36
Annual Performance (%) 8.58 8.44 8.31 8.13 7.93 7.66

Annual Std. Dev. (%) 1.36 1.31 1.26 1.19 1.11 1.02
Neg. Annual Semi-Vola (%) 0 0 0 0 0 0

Sharpe Ratio 6.30 6.45 6.62 6.81 7.12 7.54
Sortino Ratio Inf Inf Inf Inf Inf Inf

Max. Drawdown (%) 0 0 0 0 0 0
Avg. Annual Turnover (%) 50.75 46.15 41.12 36.05 30.37 25.81

10

Total Performance (%) 8438.47 7880.26 7360.32 6735.12 6077.24 5296.18
Annual Performance (%) 8.60 8.46 8.33 8.15 7.95 7.68

Annual Std. Dev. (%) 1.36 1.31 1.25 1.19 1.11 1.01
Neg. Annual Semi-Vola (%) 0 0 0 0 0 0

Sharpe Ratio 6.32 6.48 6.65 6.84 7.15 7.58
Sortino Ratio Inf Inf Inf Inf Inf Inf

Max. Drawdown (%) 0 0 0 0 0 0
Avg. Annual Turnover (%) 50.49 45.88 40.87 35.80 30.15 25.58

20

Total Performance (%) 8614.59 8020.40 7501.66 6879.63 6176.26 5361.66
Annual Performance (%) 8.64 8.50 8.36 8.19 7.98 7.70

Annual Std. Dev. (%) 1.35 1.30 1.24 1.18 1.10 1.00
Neg. Annual Semi-Vola (%) 0 0 0 0 0 0

Sharpe Ratio 6.39 6.56 6.73 6.94 7.25 7.68
Sortino Ratio Inf Inf Inf Inf Inf Inf

Max. Drawdown (%) 0 0 0 0 0 0
Avg. Annual Turnover (%) 48.50 43.95 38.68 32.86 27.62 23.21

30

Total Performance (%) 8536.83 7896.88 7410.42 6890.92 6174.84 5335.89
Annual Performance (%) 8.62 8.47 8.34 8.20 7.98 7.69

Annual Std. Dev. (%) 1.34 1.28 1.23 1.17 1.09 1.00
Neg. Annual Semi-Vola (%) 0 0 0 0 0 0

Sharpe Ratio 6.43 6.60 6.80 7.03 7.31 7.71
Sortino Ratio Inf Inf Inf Inf Inf Inf

Max. Drawdown (%) 0 0 0 0 0 0
Avg. Annual Turnover (%) 46.49 42.56 36.70 29.84 24.42 20.24

40

Total Performance (%) 8423.05 7792.20 7286.18 6799.91 6138.96 5267.38
Annual Performance (%) 8.59 8.44 8.31 8.17 7.97 7.67

Annual Std. Dev. (%) 1.42 1.37 1.32 1.27 1.21 1.17
Neg. Annual Semi-Vola (%) 0.33 0.36 0.38 0.38 0.41 0.49

Sharpe Ratio 6.06 6.16 6.30 6.45 6.58 6.57
Sortino Ratio 25.75 23.63 21.86 21.53 19.60 15.76

Max. Drawdown (%) 3.33 3.68 3.96 3.95 4.26 5.04
Avg. Annual Turnover (%) 43.61 39.46 32.76 26.04 20.16 16.10

50

Total Performance (%) 8041.52 7529.90 6967.65 6485.76 5846.61 5093.13
Annual Performance (%) 8.50 8.37 8.22 8.08 7.87 7.60

Annual Std. Dev. (%) 1.98 1.95 1.94 1.90 1.89 1.90
Neg. Annual Semi-Vola (%) 1.31 1.34 1.38 1.37 1.41 1.49

Sharpe Ratio 4.29 4.29 4.23 4.26 4.17 4.01
Sortino Ratio 6.49 6.26 5.96 5.89 5.57 5.10

Max. Drawdown (%) 11.91 12.26 12.71 12.67 12.96 13.71
Avg. Annual Turnover (%) 40.62 34.66 28.81 22.13 16.01 12.55

Table 5: Performance and Risk Measures for the risk–based CDC Plan
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Regarding the total performance it seems to be optimal for both frameworks to

choose a lower bound of 20% for the DAX and 0% for the REXP. Figure 5 shows the

performance of a one-euro investment under these constraints. In Figure 6a and 6b

the sequences of of the reserve ratio, the portfolio weight in the DAX and the profit

participation ηt are shown as in the unconstraint case above.

Figure 5: Performance of the reserve–based and the risk–based CDC Plan with lower bound con-
straints of 20% for the DAX investment and 0% for the REXP investment.
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(a) Reserve–based CDC Plan (b) Risk–based CDC Plan

Figure 6: Development of the reserve ratio, the equity ratio and the profit participation of the
CDC plans with lower bound constraints of 20% for the DAX investment and 0% for the REXP
investment.

In practical applications a minimum investment amount is imposed on all asset

classes to guarantee a minimum of diversification. We therefore present in Figure

7 the performance of a one-euro investment with the constraint that at least 20%

is invested in the DAX and 20% is invested in the REXP. Figure 8a and 8b show

the developement of the reserve ratio, the portfolio weight in the DAX and the profit

participation ηt as before. We can see that the weight in the DAX is not only bounded

below by 20% but has also a maximum weight of 80%. This results from the lower

bound constraint of the REXP investment as the pension fund is fully invested in

these two asset classes.
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Figure 7: Performance of the reserve–based and the risk–based CDC Plan with lower bound con-
straint of 20% for the DAX investment and 20% for the REXP investment.

(a) Reserve–based CDC Plan (b) Risk–based CDC Plan

Figure 8: Development of the reserve ratio, the equity ratio and the profit participation of the
CDC plans with lower bound constraint of 20% for the DAX investment and 20% for the REXP
investment.

5. Conclusion

We have applied a risk–managed investment strategy to a CDC pension framework

that implements a collective reserve to smooth risk and benefits across generations.
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We compared the results to a reserve–based CDC pension framework as put forth by

Gollier (2008) and implemented by Goecke (2013a).

By smoothing the volatile market returns we achieve an intergenerational risk

transfer as the investment of each generation of investors performs similar. This works

well as we showed by comparing the performance of the pension scheme frameworks

to a static saving plan. A risk–managed investment strategy accounts for the current

risk in the capital markets and prevents serious declines of the collective reserve

in times of a market crisis. We further showed that a risk–managed investment

strategy applied in a CDC pension framework can increase the annual return, Sharpe

ratios and other performance measures. We also investigate implications of imposing

varying degrees of minimum–diversification requirements across assets. The results

with constraints are more representative for real world applications. We showed that

with these constraints we still give rise to an attractive absolute and risk–adjusted

performance. Also the average annual turnover can be reduced by imposing suitable

constraints.

In this paper we have applied the risk–managed investment strategy in the spirit

of Moreira and Muir (2017) to investigate the implications of such a strategy on a

given application. In our proposed framework any investment strategy can be easily

implemented. Therefore, further approaches could add a momentum strategy which

might further improve performance and risk measures.
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