Xcerpt: A Rule-Based Query and Transformation Language
for the Web

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften
an der Fakulit fur Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universét Miinchen

von
Sebastian Schaffert

Oktober 2004

Erstgutachter: Prof. Dr. Francois Bry (Universitat Minchen)
Zweitgutachter: Prof. Dr. Georg Gottlob (TU Wien)
Tag der mundlichen Prifung: 13. Dezember 2004

Abstract

This thesis investigates querying the Web and the Semariz W proposes a new rule-
based query language call¥derpt Xcerpt differs from other query languages in that it uses
patterns instead of paths for the selection of data, andanittsupports both rule chaining
and recursion. Rule chaining serves for structuring langerigs, as well as for designing
complex query programs (e.g. involving queries to the Sdimalieb), and for modelling
inference rules. Query patterns may contain special aactstlike partial subqueries, optional
subqueries, or negated subqueries that account for theydarty flexible structure of data on
the Web.

Furthermore, this thesis introduces the syntax of the laggXcerpt, which is illustrated
on a large collection of use cases both from the conventidfedd and the Semantic Web.
In addition, a declarative semantics in form of a Tarsklestpodel theory is described, and
an algorithm is proposed that performs a backward chainiaguation of Xcerpt programs.
This algorithm has also been implemented (partly) in a iypioal runtime system. A salient
aspect of this algorithm is the specification of a non-stashdmification algorithm called
simulation unificationthat supports the new query constructs described abovs ufification
is symmetric in the sense that variables in both terms carobed On the other hand it is in
contrast to standard unification assymmetric in the seretethile unification determines that
the one term is a subterm of the other term.

Zusammenfassung

Diese Arbeit untersucht das Anfragen des Webs und des Sesafzert Webs. Sie stellt
eine neue regel-basierte Anfragesprache namens Xcerpfe®ipt unterscheidet sich von an-
deren Anfragesprachen insofern, als dass es zur SeleldioDa&ten sog. Pattern (,,Muster”)
verwendet und sowohl Regelschliessen als auch Rekurstenstiitzt, was sowohl zur Struk-
turierung groRerer Anfragen als auch zur Erstellung kexgnl Anfrageprogramme, und zur
Modellierung von Inferenzregeln dient. Anfrage-Patteimhen spezielle Konstrukte, wie
partielle Teilanfragen, optionale Teilanfragen, oderiegg Teilanfragen, enthalten, die der
besonders flexiblen Struktur von Daten im Web geniigen.

In dieser Arbeit wird weiterhin die Syntax von Xcerpt einglft, und mit Hilfe mehrerer
Anwendungsszenarien sowohl aus dem konventionellen ats aus dem semantischen Web
erlautert. Ausserdem wird eine deklarative Semantik ih \8in Tarski’'s Modelltheorie
beschrieben und ein Algorithmus vorgeschlagen, der aic&wartsschliessende Auswer-
tung von Xcerpt durchfiihrt und in einem prototypischenfzaitsystem implementiert wurde.
Wesentlicher Bestandteil des Riickwartsschliesserdigsbpezifikation eines nicht-standard
Unifikations-Algorithmus, der die oben genannten speaielKcerpt-Konstrukte beriick-
sichtigt. Diese Unifikation ist symmetrisch in dem Sinnessiaie Variablen in beiden
angeglichenen (,,unifizierten”) Termen binden kann. Ardweits ist sie im Gegensatz zur
Standardunifikation assymmetrisch in dem Sinne, dass dkrrda geleistete Angleich den
einen Term als ,, Teilterm” des anderen erkennt.

Sebastian Schaffert 1

“At times our own light goes out and is rekindled by a sparlafranother person. Each of us
has cause to think with deep gratitude of those who haveditite flame within us.”

— Albert Schweitzer

Acknowledgements

The language Xcerpt presented in this thesis would not éxity without the continuous support and
contribution of many fellow researchers and students atthigersity of Munich, at the University of
Linkodping (Sweden), and elsewhere. Of those, particulatityide goes to the following colleagues:

e Francois Bry University of Munich, with whom | had many — sometimes hddiat always fruitful
— discussions on almost all issues concerning Xcerpt.

e Wiodzimierz DrabentPolish Academy of Sciences, Warszawa, for discussing anofjpeading,
and hinting to some important mistakes.

¢ Norbert Eisinger University of Munich, for spending much time with me dissing syntax and
semantics of the language, and for being (almost) alwaye tliken | needed him.

e Georg Gottlob Technical University of Vienna, for being willing to taklee burden of being second
supervisor of this thesis

e Jan Matusziiski University of Linkoping, for giving me the chance to praseny work and for
many interesting discussions and ideas.

Also, | thank Tim Furche (University of Munich), Paula-Laia Patranjan (University of Munich), and
Artur Wilk (University of Linkdping) for working with me orseveral aspects of Xcerpt.

Furthermore, several graduate students, who worked oardgphlnd project theses during the develop-
ment of Xcerpt, deserve to be mentioned separately:

e Sacha Bergewho is now a fellow researcher, developed in his diplomaishtge visual language
visXcerptwhich builds upon Xcerpt and has received a lot of attentidthé research community. A
short introduction into this work can be found near the enthisfthesis.

o Oliver Bolzercurrently investigates Semantic Web querying with Xcegmpart of his diploma thesis
and contributed many improvements to the source code ofrtitetgpical runtime system presented
in this thesis.

e Sebastian Krausvorked extensively with the language Xcerpt during his alipa thesis, in which
he developed a comprehensive set of use cases for Xcerpg,&forhich also appear in this thesis.
His work had much influence on the development of appropldaiguage constructs for Xcerpt.

e Andreas Schroedateveloped in his project thesis several different appres¢h backward chain-
ing in Xcerpt. Discussions and work with him ultimately leimdthe operational semantics as it is
presented in this thesis.

...and last but not least: most gratitude goes to my famigfipporting me patiently during the course
of this thesis.

This research has been partly funded by the European Coiomizsd by the Swiss Federal Office
for Education and Science within the 6th Framework Prograrmpmject REWERSE number 506779 (cf.
Piorewersenet____).

Traunstein and Munich, October 2004

1\ Sebastian Schaffert

http://rewerse.net

CONTENTS

CONTENTS

b—Xcerpi 63
Bl TwoSymtax@s 63
K2 Data Terms: An Abstraction for Data ontheWeb 64

M21 TermSpecifications. 65
B22 Referencks 66
k23 Amrbutds 66
B24 Namespades. 67
K3 Query Terms: Patterns for SelectingPata oo 69
M31 Incompletendss 69
K32 Term Variables | abel/Namespace Variahles and-tf@onstrugt 71
K33 Position Specification and Positional Varidbles 73
K34 Subterm Negation: Withdut o oot e 74
B35 RegularExpressidns 76
K4 _Query Fvaluation: Ground Query Term Simuldtion 78
K41 Ground Query Terms and Ground Query Term Glaphs 79
K42 Term Sequences and Succebsors 80
K43 Ground Query Term Simulatlon e 81
K44 Simulation Order and Simulation Equivalénce 87
BS Querds 88
lB51 ResourceDeclaratibns 88
K52 Conjunctions and Disjunctionsof Qudries 88
K53 QueryNegation:dot, 89
bs4 Conditiods 90
K6 Construct Terms: Patterns for ConstructingPata 92
B61 Vamablds 92
K62 Groupingand Sorting: alland SAME o v v v e e 93
K63 Functionsand Aggregatibns 99
k64 OptionalSubterms: optichal 99
K7 Construct-Query Rules (QEVIEWS) . . v v vttt 102
Bz1 RuleChainidg 103
BZ2 Goals 105

b__Xcerpt Use Casds 107

Bl RestructuringDdta 107
511 listof Authorsvs LISEOETHI®S . .« o v v oo ov v e e e e e e oo 107
512 Resolving ID/IDREFreferenes 108
BE13 CompletinganHTMI tallle 109
B14 listofStudents 111
B15 SeparationofConcefns. 113

B2 Queryingthe Web e 115
B.2.1__Personal Portal Page: News and Wehther 116
B22 WebCrawlbr 119

B3 SemanticWebReasoding 124
B31 CliqueofFrienlls 124
.32 Ontology Reasoning: The Book Ontolbgy coeen oot e 126

VI Sebastian Schaffert

CONTENTS

Bl _Preliminards 133
i SS L e 134

621 Polarityof Subterths e 134

i SS L e e 136

6.3 Standardisation Apart (or Rectification) 137

Stratification for Grouping

221 TermFormulhs o 144
I2.2 Xcerpt ng.tams_as_EQ_r_mﬂjlas 144
[2.3_Substitutions and Substitution $ets 145
[231 Preliminary NOHORS . . .« o v o e e 145
[232 Applicationto QUErVTEeINS .« « « « o o v v e e e e e 147
[2.33 Applicationto ConstructTerlns 148
[2.3.4 Applicationto Query Term Formullas o v v v v e 150
[Z4__Interpretationsand Entailment e 150
241 InterpretatioRs o 151
242 SatisfactionandMadkls 151
I%é_axmsfuf_&manﬂts 153
S i e e e e e e e e e s a 155
I8__Operational Semantics 157
% 157
NS e e e 158

B12 Solution Setofa ConstraintSlore 160
B.1.3 Constraint Simplificatibn« o oo e 161
B1.4 Consistency Verification RUIES o o v o o e 161

i 10 162
e o4
B2 Simulation Unificatidn e 165
8 mulation Unifieks e e e 165
B22 DecompositionRules e 166
B23 Examplds 173
B.2.4 Soundness and Completehess 179

B3 BackwardChainig e 180
B31 Dependency Constraint o e 180
M%mm&dg 181

33 Examplds e e 182

B.3.4 Soundnessand Completehess 185

e Perspectivds 191
9.1 Advanced Query Constrdets e 191
011 AdvancedTextProcesding 191

012 Duplicate EmMinatidn« v v v oo e 192

9.1.3 Advanced Filter and Exclusion Mechankms 192

Sebastian Schaffert VI

CONTENTS

[nde 239
[Bibliographyl 241
ICurriculum Vitael 248
VIl

Sebastian Schaffert

Part |

Introduction and Motivation

CHAPTER
ONE

Introduction

1.1 Motivation

Data on the Web

The advent of the Internet, and in particular of the World &iteb (in the rest of this thesis usually
referred to as “the Web”), has resulted in the availabilithoge amounts of data that are accessible by
anyone. However, such data — being represented in documvétten in the language HTMLHypertext
Markup Language- is mostly aimed at presentation in a user agentiftbesse)) and not meant for further
automatic treatment, like information extraction, conattion or other further calculation. For example,
a Web shop might represent a list of products in an HTML talhé tontains one column for prices, but
the user agent is merely capable of displaying this tablecagqndcannot automatically add the value added
tax to prices, since it has no means to differentiate betvileerprice and e.g. the article number. Such
documents are thus mostlyout oriented

The World Wide Web Consortiur(lWSCﬂ recognised this deficiency and in 1996 initiated the devel-
opment of theExtensible Markup Languag&XML). XML allows authors to define custom, application-
specific markup languages (cf. Section] 2.2) that may be umestriicturing documents according to their
contentrather than according to théayout For example, the Web shop mentioned above might represent
its article list using custom markup that clearly distirghés between prices, article numbers and article
names. Layoutis added to such documents by using extaytesheetthat the browser can use to arrange
content properly.

XML is currently not only used for representing documentghia traditional sense (i.e. documents
containing mostly text), but also as a means for exchangidgstoring arbitrary data, such as data stored
in a relational or object oriented database. In particitlé&s,nowadays the data exchange format of choice
in application areas such as electronic commerce, molebidbogy and astronomy, and is used as the
basis for many Web applications. Interestingly, howevevlLXis much less restrictive than traditional
database formats regarding the structure and schema oatheTtherefore, XML data is often also called
semistructuredcf. ChaptefR).

In order to retrieve information from structured documettte Web needs query languages (il [73]).
A Web query language needs to consider properties that atdigieto the representation and querying of
data on the Web. In particular, it needs to be able to dealpéttial information, multiple sources that are
not managed by a central administration, and changing thaietsres, and it has to be simple enough to be
used by a wide range of users that are not experts in prognagnimiit want to formulate simple queries.
Querying and transformation of XML data has received muténéibn, and the W3C proposaXQuery
[[I3] andXSLT (both described in SectidB.3) have become de facto stdadlarthis purpose, although
they are often criticised — among other things — for their ptaxity.

[T TWWW.wWa.org__]

http://www.w3.org

1.1. MOTIVATION

The Semantic Web

In addition to the development of XML, a major endeavour indesearch is the so-call&kmantic Web
a term coined by W3C founder Tim Berners-Lee iBaentific Americamrticle[I¥] describing the future
of the Web. The Semantic Web aims at enriching data (thatgisrepresented in XML) by meta-data
and (meta-)data processing that allows Web based systetakdmdvantage of “intelligent” reasoning
capabilities.
Such meta-data is currently mainly represented in
ontologies(e.g. using the languagegBWL and RDF
[[I3.[I13], ofTopic MapgBd]) that describe hierarchies
of concepts, and relations between them. For example, a / T
Semantic Web application for a book store could assi @
categories to books as shown in Figlird 1.1. A customer, \
interested irhistory andfiction might also get offers for ;’
books that are in the subcategoritesssic medisevaand ! |
modern(like the bookFolket i Birkdl in the Figure),al- :
though these books are not directly contained in the cat- "~ /
egory history, because the data processing system has ,\
access to the ontology and can thus infer the fact that a
book about medizeval times is a historic book. Figure 1.1: A categorisation of books as it might
Obviously, Semantic Web processing also neeggcur in a Semantic Web ontology
qguery languages, but although most Semantic Web formalamsased on XML (e.gOWL or RDF
[[CI3,C13]), current XML query languages likQueryand XSLTare not well suited for the task, as they
lack reasoning capabilities. Instead, there are sevesglgsals for specific Semantic Web query and rea-
soning languages (e.QWL-QLor RQL). However, all current proposals are special purpose laggsithat
only implement a specific form of reasoning, e.g. that of daderdescription logic likeS3(JQ [E8, [B3],
and are only capable of querying data in specific formatsdQi¥¢l or RDF.

/

Xcerpt

The language Xcerpt introduced in this thesis is a declaratule-based query language for Web data (in
particular XML) that is based on concepts from logic progmaing [Z2,[108]. It differs from conventional
XML query languages in several aspects (@ésign Principleselow). Xcerpt aims at being simple to
use for a wide range of users while being powerful enough tll lmemplex query programs. For this
reason, it is developed based on many practical applicatiohile at the same time providing a solid
formal semantics that allows the implementation of diffémintime systems.

In contrast to conventional XML query languages, Xcerptvjites means to reason with Semantic
Web data similar to those of other rule-based or logic pnognéng languages (e.g. Prolog). In contrast
to special purpose Semantic Web query languages, Xcerppahte of querying any kind of Web data
(combining meta-data with data), and has been conceivetbte ' implement a wide range of different
reasoning mechanisms as needed.

The goal of this thesis is to introduce the language Xcerpt@sery language for the conventional and
the Semantic Web, and provide a formal semantics that itiialda for the implementation of a runtime
system. A major contribution of this work is the specificatiof a non-standard unification algorithm
calledsimulation unificatiorthat is well-suited for querying Web data, because it alltavgse less rigid
structures and supports incomplete query specificatiohs unification is symmetric in the sense that is
capable of binding variables occurring in both of the uniitdctures; on the other hand it is — in contrast
to the standard unification specified by Robindad [91] — asgtrimin that it tries to find the one structure
as a substructure of the other instead of trying to make thigrale

As part of this thesis, a prototypical runtime system has\lteeloped that partly implements Xcerpt
based on the formal semantics presented here.

2English translation (from Swedish): “The people of Birka”

4 Sebastian Schaffert

CHAPTER 1. INTRODUCTION

1.2 Outline of this Thesis

This thesis is structured into three parts consisting ofdespters, and an appendix consisting of four
chapters:

e The first part (calledntroduction and Motivatiohintroduces into the area of Web query languages.
ChapteflL is this introduction. Chapldr 2 describes datesgmtation formats for the Web, in par-
ticular XML and semistructured data. Chagdikr 3 concludeditkt part and describes requirements
and proposals for Web query languages.

e The second part (callethe Language Xcerpgives a detailed description of the language Xcerpt.
Chaptef¥ begins with the syntax and an informal descripgfcthe semantics. Chaptgr 5 provides
an extensive list of different use cases for Xcerpt. Chd@thascribes syntactic restrictions imposed
on Xcerpt programs. In the formal semantics, Xcerpt prograne assumed to conform to these
restrictions. Chaptdll 7 proposes a declarative semarnttickderpt in the form of a Tarski style
model theory, and ChaptEl 8 provides a complementary bacdkelaining operational semantics.
In particular, the operational semantics describes thalsiion unification algorithm.

e The third part (callecConclusion describes perspectives for further work on Xcerpt (in Gadp)
and concludes this thesis (in Chagigr 10).

e The appendix contains supplemental material. Most imptltait contains a description of the
prototypical runtime system implemented as part of thisi@ppendifA) and some of the more
extensive proofs of theorems in Chapf@rs 7[@nd 8 (AppdddixAB)p, this part contains an index, a
list of examples, the bibliography, and a resume of the autho

1.3 Design Principles of Xcerpt

The following major design principles have guided the desifithe language Xcerpt, and to some extent
also differentiate Xcerpt from other query languages tlaatehbeen proposed for the conventional Web,
the Semantic Web, and for querying databases.

1.3.1 Referential Transparency and Answer Closedness
Referential Transparency

Referential transparency means that all occurrences okaregsion have the same meaning (within a
certain scope of definition). This is an important propeftgeclarative languages, as it eases understand-
ing of programs and thus allows for an easier developmenftereance, and optimisation. Referential
transparency is usually found in purely functional langesagnd in logic programming languages (like
Haskell, SML, or Prolog), but not in imperative languagésxDava or C), whose notion of state inherently
conflicts with referential transparency. In particulag ML query languages XQuery and XSLT are not
fully referentially transparent due to their notionaantext nodes

Answer Closedness

The propertyanswer closednessxpresses that every answer can itself be used as a queryguarg
language, this means in particular that any subquery carigstjcally) be replaced by an answer to this
subquery, yielding a new, valid query. Usually, logic pmming languages are answer closed (e.g.,
occurrences of variables can be replaced by their bindirmg)languages using a different syntax for
guerying than for the data are not (e.g. SQL or XQuery). Amsglesedness is desirable, as it eases
understanding of programs for developers by ensuring airaiintaxes for both data and query.

Sebastian Schaffert 5

1.3. DESIGN PRINCIPLES OF XCERPT

1.3.2 Answers as Arbitrary XML Data

XML is the lingua francaof data interchange on the Web. As a consequence, answeild slecexpressible
as every possible XML application. This includes both teithaut markup and text with freely chosen
markup and structure. This requirement is obvious and widetepted for conventional Web query lan-
guages. Semantic Web query languages, too, should be eapiadbélivering answers in every possible
XML application so as to make it possible, e.g. to mediatevbenh RDF and XTM data or to translate
RDF data from one RDF syntax into another RDF format.

1.3.3 Pattern-Based Queries
The Navigational Approach

XML documents describe tree or rooted graph structuresre@tiXML query languages like XQuery or
XSLT [[I3,[I08] use aavigationalor path-basedapproach to select data items in such tree structures,
i.e. a selection is specified in terms of a path expressiame(lysexpressed in the language XP4I]108])
consisting of a sequence of location steps that specify bawach the node that contains the desired data
in a stepwise manrlgr For instance, consider a (well-formed) XML document coritey the data of an
address book. Such a document could look as follows:

<address-book>
<person>
<name>
<first>Mickey</first>
<last>Mouse</last>
</name>
<phone>19281118</phone>
<email>mickey@mouse.org</email>
<Iperson>
<person>
<name>
<first>Donald</first>
<last>Duck</last>
</name>
<email>donald@duck.com</email>
<Iperson>
</address-book>

Constructs like<address-hook> are so-calledopening tagsof an element, and constructs like
</address-book> are so-calleatlosing tagsof an element. Arelements the part of the document be-
tween, and including, an opening tag and a fitting closing ¢ag <email>mickey@mouse.org</email>
is an element). Thelement labeis the label used in the opening and closing tags of the elededimi-
tion. Everything (i.e. both text and other elements) eragdidsy the opening and closing tag of an element
is called theelement contenif this again includes elements, those are catlbild element®f the ele-
ment. Child elements of the samarentare calledsiblings In the example above, the element with label
address-book contains two child elements with labgdrson , each of which contains child elements with
labelsname andemail . As with every well-formed term structure, it is easy to des the nesting of such
elements describes a tree structure.

For retrieving the phone number of the person with first namiekey” and last name “Mouse” using
a navigational query language, one has to construct a patiegsion that navigates this tree structure by
first looking at the element with labedldress-book , then moving to each child element labellison
in turn and from there into theame, first andlast elements to ensure that the person is in fact “Mickey
Mouse”, then back again to select the content of the siblieigent labelleghhone . In XPath, this selection
can thus be expressed as follows:

3XQuery, XSLT and XPath are introduced in much more detail liate B

6 Sebastian Schaffert

CHAPTER 1. INTRODUCTION

[child::address-book/child::person/child::name[chil d::first="Mickey" and
child::last="Mouse"}/following-sibling::phone

Navigation paths enclosed|[in are so-calledjualifiersthat are used as conditions for selecting elements,
i.e. in the example above, they are used to select only sarmh elements that have a child with label
first and content “Mickey” and a child with lab&lst and content “Mouse”.

Arguably, such a path navigation is often straightforwanddimple queries, but can be awkward for
everything that goes beyond that, as longer queries becificalltito comprehend and the structure of the
gueried data is lost. Furthermore, the navigational apgroaly allows to select one data item at a time.
For example, it is not possible to select both the phone nuabe the email address in a single query.
Instead, several queries have to be performed and thegesuitposed afterwards.

Another problem is that it is possible to use many differesthpexpressions to select the same data
items. The path expression used above retrieves the samasgl#ie following XPath expression (which
differs in that it selects the phone number as child ofpitrson element instead of as sibling of thame
element):

[child::address-book/child::person[child::name/chil d::first="Mickey" and
child::name/child::last="Mouse"]/child::phone

Note that if a person entry contained twame children instead of only one, the two XPath expressions
would in fact differ, because the second expression colddtthefirst element of the firstame element,
and thelast element of the seconthme element, whereas the first XPath expression requires bdth to
children of the sameame element.

In addition, XPath also supports backward navigation stiepisallow to specify navigations that move
upwards in the tree. A third XPath expression using backwakigation stepspérent:*) that retrieves
the same data as the previous two is for example:

[child::address-book/child::person/child::name[chil d::first="Mickey" and
child::last="Mouse"]/parent::*/child::phone

Note that backward navigation steps require to also keepemany such nodes that have already been
visited and thus can be problematic with respect to effigieNMoreover, patterns with backward steps are
often difficult for a programmer to understand and/or cdtyespecify.

Obviously, this multitude of different path expressionstfte same query also contributes to queries
being difficult to comprehend.

The Positional Approach

In contrast, in gositionalor pattern-base@pproach a query pattern is likédam that gives arexampleof

the data that is to be selected, like the forms of the lang@®&Je [IZ1] or query atoms in logic program-
ming. So as to retrieve data items, a query pattern can fumtbre be augmented by zero or more variables.
In a pseudo XML notation, the query for the phone number ofcidly Mouse” could be expressed in a
pattern as follows (variables are, as in XQuery, indicated keadingb):

<address-book>
<person>
<name>
<first>Mickey</first>
<last>Mouse</last>
</name>
<phone>$PHONE</phone>
</person>
</address-book>

Note how the query pattern very closely resembles the quiela¢a. As a query pattern may contain
more than one variable, also selecting the email addressiiga task:

Sebastian Schaffert 7

1.3. DESIGN PRINCIPLES OF XCERPT

<address-book>
<person>
<name>
<first>Mickey</first>
<last>Mouse</last>
</name>
<phone>$PHONE</phone>
<email>$EMAIL</email>
</person>
</address-book>

Arguably, such a pattern-based approach to querying hass@dvantages compared to the path-based
approach discussed above:

1. Query patterns resemble the data very closely and aretaysto grasp.
2. Query patterns provide only a limited set of possib#itie select the same data items.
3. The higher level of abstraction of query patterns leavesenoom for automatic optimisations.

4. In query patterns, several data items can be selectediimgle sjuery (using one variable for each
item).

Interestingly, a navigational language that only allowsvard axes is very similar to a query pattern (with
only a single variable). The articlEJB1] shows that any XRatpression containing backward navigation
steps can be transformed into an expression containingomard navigation steps. Thus, query patterns
are at least as expressive as path selections.

One of the goals of this thesis is to show that a pattern-bagpbach to querying Web data is feasible
and may result in simpler, more declarative queries. Rattased queries for querying Web data have
first been proposed in the languages Un[l [31] and XML-IJ [48} those languages have never gained
much acceptance. Xcerpt, presented in this thesis, bugdsa these approaches and improves them in
many aspects.

Comparison with Relational Database Query Languages

Note that query languages for relational database systeaadly also use a path-based approach (based
on thetuple calculugEl, [1]). Suppose the address book used above is given ategdarelation) in a

relational database as follows:
addressbook | first | last | phone | emsil |

Mickey | Mouse | 19281118 | mickey@mouse.org
Donald | Duck NULL donald@duck.com

An SQL expression selecting the phone number of Mickey Maumsad look as follows (in a verbose
notation that adds the relation name to all selections, so assemble the XML example above more
closely):

SELECT addresshook.phone
FROM addressbook
WHERE addressbook first="Mickey’ and addressbook.last= 'Mouse'

In relational database systems, the path-based approgmie¢sed in theéuple calculu} is however
very similar to the pattern-based approach (expressectiddimain calculus because the flat, relational
tuples (in the first normal form) do not leave much room forigation steps. A transformation from path-
based into pattern-based queries and vice versa is poasithleas been shown Bdgar CoddE [23]. In
Datalog (cf. for exampld[ID1]), which is very close to thextn calculus, the query above is expressed
as follows using atomic formulas (from first order logic) agy patterns:

8 Sebastian Schaffert

CHAPTER 1. INTRODUCTION

phone(P) :- addressbook('Mickey’,’Mouse',P,) .

If one goes beyond such simple structures, like XML documemtnon-first normal form tuples, the
difference becomes increasingly apparent (like in the XMareples above).

In relational databases, a language that employs a pasiapproach is the langua@BE [[LZ7] (query
by exampl® which is the foundation of the easy-to-use database osaface MS Access. In QBE, a query
for the phone number of Mickey Mouse can be specified by gigigqgery pattern of the following form:

addr essbook | first | last | phone | emnil |
| Mickey | Mouse | | P._email |

The email address is bound to the varialdmail and printed by the commarki. Note the similarity of
this QBE query pattern and of the first order logic or Datalmgrfula.

Comparison with the Object Query Language OQL

Object oriented database systems are capable of repregémte and graph shaped data very similar to
the trees and graphs represented by XML (but requiring a rmarie rigid structure). The most prominent
language for object oriented database systersJ& [B] (the Object Query LanguageBeing influenced
by SQL, OQL also uses path-based selections of values inataetice. In OQL, the query for the phone
number of the person with first name “Mickey” and last name Ude’ is specified as follows (note the
close resemblance with the XPath selection):

SELECT p.phone
FROM AddressBook a, a.person p
WHERE p.name.first = 'Mickey’ AND p.name.last = 'Mouse’

1.3.4 Incomplete Specification of Query Patterns

Although query patterns resemble terms or atoms in logi ming, they have to take into account
properties that are peculiar to Web data and queries to tH#.\Wehe most significant difference is that
Web data (as represented in HTML or its generalisation X\MAg & much more flexible schema compared
to data in logic programming or relational databases, evéhe extent that much of the schema might be
unknown or irrelevant to a query author.

Consider for example an address list published on a Web pdtimugh this data might conform to a
certain schema (like HTML), the actual structure of the doeutis still largely unknown, because schemas
for data on the Web allow much flexibility (like arbitrary retition of substructures, optional substructures
or alternative substructures). For instance, the addigsmight contain presentational markup and an
introductory text, but a query for the phone number of “Migikdouse” should be equally valid if it does
not, since these parts are irrelevant to the query.

The “rigid” query patterns of logic programming are not fiées for such queries: authors of a query
would need to consider the complete and exact structureeafdhument and provide at least wildcards for
data that is irrelevant to the query, i.e. they still havedee about somethingrelevantor unknown

For a pattern-based Web query language, it is thus desitalide able to specifjncomplete query
patterns Incompleteness has several facets:

1. Incompleteness inreadtfl allows to omit wildcards for neighbouring nodes in the datet E.g.
in a query for the phone number in an address book, it is nasseey to provide wildcards for all
email addresses that might also be part of the address baryk en

2. Incompleteness idepthallows to select data items that are located at arbitrafknown depth and
skip all structure in between. E.g. when querying addressesrin a Web page that are located in a
table somewhere in an HTML element, it is possible to jusp siti intermediate structure between
the root node of the data tree and the table containing threent

4ChapteP discusses in more detail how data is representtralieb
5Breadthanddepthrefer to the tree or rooted graph induced by an XML documehis Graph is further discussed in Section

3.

Sebastian Schaffert 9

1.3. DESIGN PRINCIPLES OF XCERPT

3. Incompleteness with respectdaler allows to specify neighbouring nodes in a different ordanth
the one in that they occur in the data tree. E.g. when sefgtti@ phone number and email of an
address book entry, itis irrelevant whether the email agidoecurs before or after the phone number.

4. Incompleteness with respectaptional elementsllows to query for certain substructures if they
exist, but still let the query succeed if they do not existtHa address book, this may be used to
select the phone number if it exists, but still retrieve thene, regardless whether or not it does.

A further goal of this thesis is to discuss extensions to dtenfentary) query patterns of logic program-
ming, i.e. the atomic formulas of first order logics, that su@able to querying conventional and Semantic
Web data featuring various facets of incompleteness.

1.3.5 Rules
Deduction Rules

The language Xcerpt described in this thesis wssRiction rulegor short‘rules”) to structure query pro-
grams. A deduction rule is simply & . .then ... statement. If the condition (a query pattern) is satisfied,
then the consequence (a result or construction pattera¥ism@ed to hold. Usually, the construction pattern
uses data selected in the query pattern. Thus, a deduct®isrsimilar to avIEW in relational database
systems.

For instance, a rule may be used to expressithiie query for the email address of “Mickey Mouse”
succeedghenthere exists a row in an HTML table listing this address:

<address-book>

<person>

<name> . <tr>

<first> <[first> .

¢ DM Ol Hoseo
<td>$EMAIL</td>

</name> <>
<email>$EMAIL</email>

<Iperson>

</address-book>

The condition part of a rule (introduced By is often referred to in the following as th@dyor query part
of a rule, whereas the consequence (introducetthby) is often referred to as theeador construct part
of arule.

Arguably, rules are declarative, rather easy to understaddgrovide a high level of abstraction. They
are thus well suited for both, novice users who only caswallte queries, and experienced programmers
who want to write complex query programs.

Rule Chaining

Since a rule defines itself new data of the same kind as theegueata (similar to/IEWSin relational
database systems), it is also possible to query this newbgatéher rules. This process is often referred
to asrule chaining Rule chaining can serve to conceptually structure largegmams into parts that are
easier to manage. Such structuring is advantageous foy thethuman user (as programs can be grasped
and maintained more easily), and the machine (as code caibfyose reused and does not need to be
processed more than once during parsing). In a sense, raieirfp can thus be compared to function or
subroutine calls in programming languages.

Furthermore, rule chaining is necessary to perfdeductioni.e. to specify how non-existing data is
derived from existing data. Deduction rules thus allow teeghtensional semantics to data, very much
like rules in logic programming, and might be well-suited 8emantic Web applications.

10 Sebastian Schaffert

CHAPTER 1. INTRODUCTION

Recursion

Querying Web data often requires more expressive powetishasually found in query languages, e.g. for
complex restructuring of tree or graph structured datadéip define infinite data seE1I01]. To provide
this expressive power, it is sometimes desirable to alole recursion i.e. a rule may query not only
the results of other rule applications but also the resdlessrevious application of itself. An interesting
application for recursive rule chaining is e.g. a Web crauhat recursively follows the hyperlinks found
in an HTML document.

This thesis aims at demonstrating this on a wide range of pleapplications (ChaptEl 5 is dedicated
to different use-cases and applications of Xcerpt).

1.3.6 Forward and Backward Chaining
Forward and Backward Chaining

Chaining in rule-based languages can be evaluated usindiff@cent approaches:

e Forward Chaining. Forward Chaining is data drivenapproach. Starting with the initial database,
rules are evaluated iteratively against the data untilraditin is achieved (“fixpoint”), i.e. no rule
application yields data items that have not already beenas Forward Chaining is useful for
instance for materialising views and for view maintenatcg,can be problematic if the fixpoint is
infinite, i.e. the iteration never terminates. Also, as fargvchaining is not goal oriented, most of the
derived data is usually irrelevant to the query.

e Backward Chaining. Backward Chaining is guery drivenapproach. Beginning with a dedicated
guery called thgyoal, program rules and data items are recursively selectea@yf éine relevant for
“proving” that a query succeeds. The query is then replageithé query part (possibly consisting
of a conjunction or disjunction of smaller queries) of théested rule, and the process is repeated
until all queries can be evaluated against data items in dit@badse (“facts”). Backward Chaining
is useful when the expected result is small in comparisoh thié number of possible results of the
program. Thus, backward chaining is goal-oriented. On therchand, naive backward chaining
may not terminate even in cases where the fixpoint is finitefanglard chaining is guaranteed to
terminate.

Rule-based query languages for traditional databasersgstixe Datalog O], often implement for-
ward chaining, because forward chaining can be evaluated efficiently and its implementation is usu-
ally straightforward. If recursion is not allowed (e.g. wihmaterialising views), or if there are no so-called
dependency cycldn the data considered, forward chaining is also unprobiensance it always termi-
nates. On the other hand, logic programming languageslysogilement backward chaining, as they are
working with more complex data structures and thus allowrgion, and do not require dependency cycle
freeness of the data.

On the Web, both a forward and a backward chaining approgoéespo be desirable. Forward chain-
ing is useful to materialise query results, e.g. for crepsitatic Web pages from an XML document that
specifies the content and a query program that adds styliagnmtion. Backward chaining is useful if the
queried data is not a local resource but instead the Welb, itgkeich is — although finite — very large and
difficult to grasp as a whole, as pages might for instance eatfilable at the moment. Although possible
in theory, considering the whole Web as a starting point ffarevard chaining evaluation is not viable in
practical applications, because the size of the Web exdbedsnit for reasonable response times.

This thesis mainly investigates backward chaining for @eatihg query programs. This decision has
several interesting consequences, most notably the inttimoh of a new, non-standard unification algo-
rithm and a runtime engine based on constraint solving.

Non-Standard Unification

When using backward chaining, simple pattern matching obrimplete patterns with data items of a
database is not sufficient: queries need to be evaluatedsigaie heads that might also contain vari-
ables, and variables thus cannot always be bound only togmumd values. It is furthermore usually

Sebastian Schaffert 11

1.3. DESIGN PRINCIPLES OF XCERPT

{ FOR $person in document("addressbook.xml")//person,
$first in $person/nameffirst/text(),
$last in $person/name/last/text()
RETURN
 { $first } { $last }
}

Figure 1.2: XQuery uses subqueries for grouping: This qeenstructs an HTML list from an address
book.

<address-book>

<person>
<name>
i <first>$FIRST</first> . |
" <last>$LAST</last> then al | $FIRST $LAST
<ful>
</name>
</person>

</address-book>

Figure 1.3: Grouping witkll in a pattern and rule-based query language with strict s¢iparof querying
and construction

desirable to also bind (oestrict) the variables in the rule head so as to improve performaycedtricting
the set of possible answers early in the chaining process.

Therefore, logic programming languages that rely on bac#twaaining, likeProlog, use a method
calledunificationinstead of pattern matching, first introduced by Robinso@965 [@1]. A unification
yields variable bindings whose application makes the gaed/the rule head syntactically equal except
for variable renaming. However, thigandard unificatiordoes not take into account incomplete query
patterns like those that are used in Xcerpt. An importartt@fahis thesis is therefore to introduce a new,
non-standard unification calleiimulation unificatiorthat respects incomplete query patterns.

1.3.7 Separation of Querying and Construction

A further salient property of the language Xcerpt, and oré tlistinguishes it from almost all other Web
guery languages, is that it strictly separates queryingfconstruction. Such a separation is desirable as
the data items that occur in a query pattern are those of teeeglidata, while the data items occurring in
a construction pattern are those of the resulting data. InX&ms, this means that in general, the two
belong to different schemas. Mixing them makes programserdificult to conceive and thus can result
in avoidable programming errors.

A fundamental aspect of this strict separation is that —kenih other query languages — it is not
possible to use embedded subqueries in the style of XQueBRdrin Xcerpt. While rule chaining can
be a substitute for many subqueries, it is not possible tatuse groupingseveral data items within a
single Web page. Grouping is e.g. necessary to arrangetakt®of an address book in an HTML list.
Whereas other query languages like XQuery use a subquergrattdration construct for this purpose
(Figure[I?), Xcerpt introduces a special construct caditdhat declaratively specifies that data items
selected in a query pattern have to be grouped (Figile 1tBeiseparated construction pattern. Like in
SQL, the grouping construetll can be used together with aggregation functions to compmgdesgated
values; unlike SQL, it can also be used without aggregatiotions, in which case it serves to construct
a list of subterms. Thusll takes into account the nested term structure of XML document

12 Sebastian Schaffert

CHAPTER 1. INTRODUCTION

1.3.8 Reasoning Capabilities

As already mentioned in thilotivation, the Semantic Web aims at adding meta-data to resourcegon th
Web that allow tareasonwith data and thus provide a certain amount of “intelligérioedata processing
on the Web. Current proposals for the specification of meta-dre thékesource Description Framework
(RDF) [II9], Topic Maps[BH], and theOntology Web Languag@WL) [LI8], which are all based on
XML as a format for data representation. Nonetheless, mdst Xuery languages are not well suited
for querying such data, wherefore several new query andnéaglanguages for Semantic Web data have
been proposed (e.RQL [E4] and OWL-QL [AF]). However, all current proposals are special purpose
languages that only allow to implement specific forms of oeasy, e.g. those of a certain description logic
like $3(JQ [E8,[R9], and are only capable of querying certain kinds ¢éde.g. expressed in tlesource
Description FrameworlRDF [I13], or théWWeb Ontology LanguageWL [[LId].

Such restrictions, while acceptable for research purp@sesnot desirable in practise, as they artifi-
cially separate querying and working with data from quegyand working with meta-data. However, XML
qguery languages should be able to profit from semantic irdtion in all possible formats and likewise,
gueries to Semantic Web data should be able to also query Xiviteat.

The last principle is therefore to support the implemeantatif a wide range of different reasoning
algorithms for the Web (without committing to a single fodiea), while at the same time being capable
of querying any kind of Web data. The rule-based approact hgeXcerpt is promising for this task, as
the rules are very similar to the inference or deductiongriidogic programming, and rule chaining with
recursion allows to build complex reasoners. At the same,tidterpt is developed as a query language
for Web data and thus provides capabilities to easily netri@oth data and meta-data. In addition to an
implementation in Xcerpt, certain constructs that are dssdly needed for querying the Semantic Web
might be built natively into the language Xcerpt for effiaigrreasons (cf. Sectid®.2).

The implementation of Semantic Web reasoning algorithmx&igrpt is not covered extensively in this
thesis, but some small examples of Semantic Web applicationprovided. Applying Xcerpt to Semantic
Web reasoning is, however, currently being investigatesireral related projects.

Sebastian Schaffert 13

1.3. DESIGN PRINCIPLES OF XCERPT

14 Sebastian Schaffert

CHAPTER
TWO

Data Representation on the Web

The Internet and the Web have changed the way of how infoomégiauthored and represented in many
ways. While the only possibility to author text and make iaigable to a wider audience used to be to
submit it to a journal or to publish a book, which usually meamather thorough reviewing process and
possibly involved considerable expenses, the Web allowsranto author, access and publish content
very easily, which results in a huge amount of documents wihally differing structures. Likewise,
whereas data mostly used to be stored in large, central altalwith relatively homogeneous structure
and restricted access, information on the Web is decesglheterogeneous and often allows access by
anyonE. While there are also many social issues associated wilcki@inge, the main focus of this thesis
is on the new way how data is represented on the Web.

Two initially independent developments contribute to tfeipresentation: thextensible markup lan-
guage(XML), which has its roots in the document representatiomgwnity, and the concept eémistruc-
tured data(SSD), which has been developed to represent heterogedatauthat is not well-suited for tra-
ditional database systems. Sectibn$ 2.1[@dd 2.2 give inttimehs into semistructured data and XML. They
follow similar descriptions in[A7] andd4]. XML and semistitured data have many concepts in common,
and consequently, SectipnP.3 tries to bridge the gap bettineetwo. Three larger example scenarios for
XML and semistructured data are given in Secfia 2.4, whighalso be referred to in other parts of this
thesis. Sectiofir 25 continues with a graph representatisemistructured data and of XML. Finally, Sec-
tionZB introduces the notion afoted graph simulatiopwhich is a similarity relation between two graphs
that can serve as a foundation for both, querying graphtstred data and validating graph structured data
against a schema, and which is thus the base for the languzgptpresented in this thesis.

Beyond the information provided in this Chapter, interdstaders might find a good introduction into
the history of the Web in Tim Berners-Lee’s bodleaving the Well[d]. A more thorough overview over
semistructured data and the Web is provided by the latha on the Welf].

2.1 Semistructured Data

2.1.1 Traditional Database Systems

Traditional database management systems (DBMS) — i.ecibjented, relational, hierarchical or net-
work database management systems — require to specifydasdgéman advance of storing any data. A
schema defines in which structures data items have to begaddirthey are to be stored in the DBMS. For
instance, in relational DBMS, the schema definition spexifibich relations are available and how many
and what kinds of fields they allow.

Such a schema definition ifgid in the sense that (1) all data must adhere to it, and (2) it et
defined in advance. Whereas this restriction might be skenisitiraditional database systems that store a

1A premier example of this isVikipedia the online encyclopedia, to which anyone can contributi wiinimum technical

efforts. [ﬁDI”WWW.WIRIDeala.OTQ)

15

http://www.wikipedia.org

2.1. SEMISTRUCTURED DATA

huge amount of very uniform data, it is undesirable on the Wedere the data is very heterogeneous and
might come from different sources. It furthermore detersiynasers from authoring content, as they either
fear or are not proficient with in-advance schema definitammgs prefer to let the schema evolve during the
authoring process.

A further disadvantage of this approach is that data is lisnat self-explanatory and invalid without its
schema information. For example, a tupl€"tfickey","Mouse",19281118) does not fully convey what
kind of information it represents. The fact that “Mickey Ms®l is probably a name can be guessed from the
data with reasonable certainty. But the meaning of the va8#81118 is unclear without further schema
information, it might for example be the birth date, a sosieturity number, or a telephone nunkber
However, self-explanatory data is desirable on the Webyéls data is often exchanged between different
parties (and thus systems) not sharing a common schemasoragiesentation format.

Of course, it has to be mentioned that a rigid schema defindleso has many advantages, most of
them of technical nature (optimisability, data storage) smme of social nature (author has to think about
the schema in advance), which are the reasons why rigid schare well established in current database
systems.

2.1.2 Semistructured Data

Semistructured data has been of interest in database chssace the mid-ninetieEl[Bl EJd01EE] £2] 83].
In contrast to the traditional database management systeatsibed above, semistructured data does not
require a schema definition. For this reason, semistrutiiaga was first referred to asstructured data
[BQ). This term has been abandoned because it does not cthratesgmistructured datkieshave structure,
the structure is merely not given separately and in advamaeinstead is part of the data. The term
semistructured datdescribes such data more adequately: neither is the détasfulctured with a rigid,
in-advance schema (like in traditional database managesystems) nor is it completely unstructured
(like raw images or plain text). Instead, it is “structutgmying” or “self-describing” and thus allows very
flexible structuring of the data.

Semistructured data is syntactically representeddrgistructured expressignghich are very similar
to term structures in logic or functional programming laages. The example above can be represented as
a semistructured expression as follows:

person [
name |
first ["Mickey"],
last ["Mouse"]

]1
phone ["19281118"]

]

This data item is self explanatory, as the structure is fdhteodata.

Semistructured data is not limited to flat tuples or treecétmed data as the example above might
imply. Graph structures can be represented in semistreattexpressions by means aibject identifiers
andreferencesThe following extension of the address book adds a subsgjmeknows to the two person
entries so as to represent tiviitkey Mouse knowsDonald Duck and vice versa:

address-book |
&ol @ person |

name [
first ["Mickey"],
last ["Mouse"]

]1
phone ["19281118"],
knows [&02]

2ltis, in fact, the (assumed) birth date (18th of Novembe28)Df Mickey Mouse

16 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

address—book

<

/ ﬁf
name phone knows knows
"50773"
/T\ first ; last ; first /T\ last
"Mickey" "Mouse" "Donald" "Duck"

Figure 2.1: Graph induced by a semistructured expression

]1
&02 @ person |

name [
first ["Donald"],
last ["Duck"]

1,
knows ["&o01]
]
]

Note also, that this semistructured “database” has twaesnwith differing structure: whereas the first
entry contains a phone number, the second does not.

FigurelZ] illustrates the graph induced by the example ebidote that this thesis uses node-labelled
graphs whereas ifJ[4], graphs are edge-labelled.

Expressions of the forr@n are calledreferencer object identifiergoid). Occurrences of the form
"&01 arereferring occurrencesoccurrences of the fordol @ person [...] aredefining occurrences
of an oid. An object identifier can be defined exactly once,rbtarred to O or more times. If an oid is
referred to, then it has to be defined as well.

Furthermore, it is often useful to distinguish betweetteredandunordereddata. Consider for instance
a publication list of the following forfh

publications [

book |
tite ["Folket i Birka p a Vikingarnas Tid"],
authors |

author ["Mats Wahl"],
author ["Sven Nordgvist"]
author ["Bj orn Ambrosiani"]
]
1

3The titles translate from Swedish to English as “The peopRirka in the Viking Age” and “The Book about Vikings”

Sebastian Schaffert 17

A W N R

2.1. SEMISTRUCTURED DATA

book [
tite ["Boken Om Vikingarna"],
authors |

author ["Catharina Ingelman-Sundberg"]

]
]
]

This semistructured expression contains both orderedamdiared content: whereas it might be irrelevant
whether the first book occurs before the second, the ordartbbes might be significant for correct cita-
tions. Unordered content leaves a certain amount of freddostorage systems, in that they can decide to
rearrange data for more efficient storage or for buildingies. It is thus convenient to provide constructs
for expressing ordered sequences (denotegfd.by) and unordered sequences (denoted.y). With

this extension, the semistructured database above capteseated as follows:

publications {

book {
title ["Folket i Birka p a Vikingarnas Tid"],
authors |

author ["Mats Wahl"],
author ["Sven Nordqvist"]
author ["Bj orn Ambrosiani"]

]
13
book {
tite ["Boken Om Vikingarna"],
authors |
author ["Catharina Ingelman-Sundberg" |

]
}

The syntax chosen for semistructured expressions in tliiddedeliberately deviates from other syn-
taxes as described e.g. [[4] and is closer to the syntavedatiguage Xcerptintroduced later in this thesis.
More formally, semistructured expressions are defined lasife using a context free grammar (following

a Definition in ZT] and[[ZB]):

<sse> = (oid "@")? (label "{}" | label <list>) .
<list> := <ordered-list> | <unordered-list> .
<ordered-list> := "[* <sse-or-reference> (", <sse-or-re ference>)*
<unordered-list> "{" <sse-or-reference> (" <sse-or- reference>)* "} .
<sse-or-reference> = <sse> |

nm Strlng nm | nn Old .

nn

In this grammar, expressions betweeand> are non-terminal symbols (or variable®.”, "[* ,"{" ,
"I" and"}" are terminal symbolsoid andlabel denote object identifiers and expression labels (tag
names), respectively.

If a semistructured expressieris of the formlabelt 1,..,t] orlabelft 4,...t p}, thenthe;
are calledsubexpressions of e

2.1.3 Other Languages for Representing Semistructured Dat

Besides the semistructured expressions used above, Isettesaformalisms have been proposed in the
literature, most notabl®EM/LoreandACeDB which are briefly introduced below:

18 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

OEM/Lore

OEM, theobject exchange modekas developed as part of tHsimmisproject at Stanford [3E_BE H4],
a project aiming at integrating heterogeneous informatimunrces. According t&f4], “an OEM object is a
guadrupe(label,oid,type,value) , Wherelabel is a character strin@jd is the object’s identifier, and
type is eithercomplex or some identifier denoting an atomic type (likéeger |, string , gif-image
etc.). Whenrtype is complex , then the object is called@mplex objectandvalue is a set (or list) of oids.
Otherwise, the object is atomic objecandvalue is an atomic value of that type.” In the original OEM,
graphs are thus node labelled, like in this thesis.

Most other representation formats are variants of OEM, ab@EM can be considered the de facto
standard for representing semistructured data. In péatiduore [@] is an edge-labelled variant of OEM,
and used as the primary representation for semistructaizdnl [4] and[31L].

In Lore, the address book example used above is expresselioasst

{address-book: {

person: &o01{
name: { first. "Mickey", last: "Mouse" },
phone: 19281118,
knows: &02

13

person: &02{
name: { first. "Donald", last: "Duck" },
knows: &0l

OEM/Lore does not differentiate between ordered and umeddeontent.

ACeDB

ACeDB (A C. elegandatabase [TAT]4 1] is a database system originally dpedlto store genetic data
of a specific organismQ. elegank As such data is usually rather heterogeneous and oftemipiete,
ACeDB is capable of dealing with missing parts or loose $tmgcand can thus be considered as a general
format for representing semistructured data, althoughDmitially was not developed for this purpose.

Unlike other languages for semistructured data, ACeDBirequhe definition of a schema. However,
the data is not required to strictly conform to it, data itemmey be missing. Also, the data itself still carries
the structure necessary to identify data items.

The address book example can be expressed using ACeDBasgsoll

?Person name UNIQUE first Text
last Text
phone Text
knows ?Person

&ol name first "Mickey"
last "Mouse"
phone "19281118"
knows &02

&02 name first "Donald"
last "Duck”
knows &ol

The first block defines the schema of the data. A person mustdawique name, and may have a phone
number and know other persons. The second and third blockiiserthe data items representing the two
persons.

Sebastian Schaffert 19

2.2. XML — THE EXTENSIBLE MARKUP LANGUAGE

2.2 XML —the Extensible Markup Language

This section introduces into XML, theXtensible Markup LanguageSectiolZ2Z]1 begins with a short
introduction into the concept aharkup languageand SectiolLZ212 briefly summarises the history and
motivation that lead to the development of XML. Taeatomy of an XML docume(BectioZZR) intro-
duces into the building stones from which XML documents amaposed, namely therologue character
sets elementscharacter dataattributesandentities This introduction is not complete, but should pro-
vide a good understanding for XML. Sectibn212.4 brieflyddtmces two XML schema languag&s[Ds
andRelax NG The XML reference mechanisni®/IDREF is presented in Sectid@ Z.P.5. In order to use
elements structured according to different schemas wih@ingle document, XML supports so-called
namespacesvhich are discussed in Sectibn?]2.6.

2.2.1 Markup Languages

The notionmarkuporiginates from the verb “to mark up”, which means to anretakt documents with
formatting instructions for use in type setting. arkup languagelefines a set of valid instructions for
marking up text documents. Three kinds of markup languagesisually differentiated: (13pecificor
layout orientedmarkup languages, (generalisedr structure orienteanarkup languages, and (@neric
or metamarkup languages.

Specific or Layout Oriented Markup Languages

Specific or layout oriented markup languages contain a fie¢@&formatting instructionghat may be
used to mark up text documents (ebgld or italic). Examples for such languages aestScript[Bd],
which provides instructions for typesetting a document gmiater, orHTML (the hypertext markup lan-
guagé [[MOY,ITOY], which is a markup language that provides instons for rendering documents in a Web
browser. For example, the HTML expressiiirMickey Mouse formats the texMickey Mouse in
bold font.

Generalised or Structure Oriented Markup Languages

Generalised or structure oriented markup languages coafaied set of instructions that allow to structure
a document logically (e.g. inhaptersandsectiony. Examples for such languages are the venerale
GML (Document Composition Facility Generalized Markup Langg)dB3] or DocBooll, a language
designed for structuring documents into chapters, sextietic.

Generic or Meta Markup Languages

Generic or meta-markup languages allow to define customupddnguages. They do not specify any
markup, but are instead a means for defining new markup, lootstfucture and presentation. The most
widespread such language3$&ML, the Standard Generalized Markup Languafi#, but it is increas-
ingly superseded by XML. In spite of its nafhe&SGML is a meta markup language that originated in the
document management community as a unified method for dgfinarkup languages (call&GML ap-
plicationg for structured documents. For example, both HTML and DadBare specified as an SGML
application.

An SGML application is defined in terms of a grammar specifieddocument type definitiogfdTD),
which is like a database schema definition, albeit for textkeng. SGML schemas are mandatory: every
SGML document is required to be associated with and conforansdchema.

5SGML was developed as a refinement of DCF GML and kept the ngewetalised” from that language

20 Sebastian Schaffert

http://www.docbook.org

CHAPTER 2. DATA REPRESENTATION ON THE WEB

2.2.2 A Generic Markup Language for the Web

Although HTML has many deficiencies and has thus undergamefiant changes, the Web of the year
2004 mostly consists of HTML documents containing text eabtvith presentational markup. There are
probably three reasons for this: (1) HTML allows users talgagfine hyperlinks (i.e. clickable references
to other documents), (2) HTML igpen i.e. it is not restricted to a specific product and availablenyone,
and (3) HTML issimple to usend thus enables a wide variety of users to author coright [18

However, the limitation to presentational markup is one @ML's most significant disadvantages:
most data available on the Web is — although maclipimeessable- not machinaunderstandablei.e.
computers are able to process and display the data but haweaus to reason with it. For example, a web
shop might list articles with prices in an HTML table, but threwser of a user is not aware of the fact that
certain numbers are prices whereas other numbers merelfideroducts.

A generic markup language like SGML would improve this ditom significantly: authors of Web
pages can “mark up” all prices with custom markup such they ttan be automatically recognised by
machines. The problem with SGML is that it is complicated $e,uas it always requires to adhere to a
possibly complex schema, and allows many abbreviatioks @mitting of closing or opening tags or tag
minimisation) that can lead to confusion or ambiguities.

Recognising the deficiencies of HTML and SGML, Werld Wide Web Consortiuw3C) proposed
in 1996 the language XML, theXtensible Markup LanguadEId], which aims at unifying the advantages
of SGML and HTML in providing a meta-markup language that\a to define custom markup, but which
keeps the simplicity of HTML so as to enable a wide range dfiartg and application programmers to use
it. In particular, XML simplifies SGML in the following aspé&

e it removes ambiguous constructs likeg minimisation(as inMickey Mouse</>), interleaved
opening and closing tagas in<i>Mickey Mouse</i>), etc.

e it allows documents without a schema definition
e it supports hyperlinks and references
e isis intended to be used not only for documents but also ftar itlems

Or toﬂquote Tim Berners-Lee in ércientific Americarmrticle entitled “XML and the Second-Generation
Web'li:

“Just as HTML created a way for every computer user to reaet documents, XML makes
it possible, despite the Babel of incompatible computetesys, to create an Esperanto that
all can read and write. Unlike most computer data formats| Xiarkup also makes sense to
humans, because it consists of nothing more than ordinary te

Although initially developed primarily as a document reggptation format, “to meet the challenges
of large-scale electronic publishir[b’XML is now increasingly being used for data exchange anchge
The development of native XML database systems like Xiﬁiiexisﬂ or Tamin@, and data exchange
formats like SOAB] bear testimony of this development.

Nowadays, it is necessary to differentiate between XML Esguageand XML as aractivity, which
contains a plethora of different developments centeredrat XML, like XML Schenf&, XML Linkinﬁ
andXML Queryﬁ. While many of these activities are often criticised foritltemplexity and redundancy,
XML as a language is mostly considered to be well established

p./IXml.apache.org/Xindice.
p.//exist.sourcerorge.ne

19T TWww_SoTwarean.com/iammo,

D./WWW.Wo.0rJ Soaplz-par

13 D://WWW.W.3.0rQ; 1INKINg

Sebastian Schaffert 21

http://www.sciam.com/article.cfm?articleID=0008C786-91DB-1CD6-B4A8809EC588EEDF
http://www.w3.org/XML/
http://xml.apache.org/xindice/
http://exist.sourceforge.net/
http://www.softwareag.com/tamino/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Linking
http://www.w3.org/XML/Query

2.2. XML — THE EXTENSIBLE MARKUP LANGUAGE

2.2.3 Anatomy of an XML Document

An “XML document” is a file, or collection of files, that adharéo the general syntax specified in the
XML Recommendation[[I16], independent of the concreteiappbn. XML documents consist of an
optionaldocument prologuand adocument treeontainingelementscharacter dataandattributes with

a distinguished root element.

Document Prologue

The document prologue is used to define properties of an XMiudent, like the version of XML used,
the character encoding, processing instructions and schgormation. It consists of the following parts:

e a mandatory)XML declarationdenoted by?xml version="1.0" ...?> which specifies the ver-
sion of XML used, and optionally the encoding of the document

e zero or more application speciffrocessing instructionthat may be evaluated when loading an
XML document denoted by?target data?> , wheretarget identifies the application to which
the instruction is directed, ardta represents additional information for the application

e an optional schema declaration in terms of a DTD, defineckeititernally, or system file, or as a
public identifier associated with a DTD which is assumed tér@wvn to the processing progrﬁn

Example 2.1 (XML Document Prologue)

The following document prologue initiates an XML documenfiocBook format (the DTD of which is
identified by a public identifier), to be processed with aegthleestylesheet.css and an encoding of
ISO-8859-15 (Western Europe with Euro):

<?xml version="1.0" encoding="1SO-8859-15"?>
<?stylesheet href="stylesheet.css"?>

<IDOCTYPE book PUBLIC "-//Norman Walsh//DTD DocBk XML V1.4 /EN"
"http://dochook.org/docbook/xml/1.4/db3xml.dtd">

Although several improved schema languages like XML Schiifill] and Relax NGI[39] for XML exist,
both XML 1.0 and the recently released XML 1.1 only suppod tieclaration of DTD schemas in the
document prologue (see schema languages below).

Character Set and Encodings

Since the Web is a place containing documents in many diffdemguages, XML has been designed as
an internationalised language from the beginning. XML sufspall characters defined in ISO/IEC 10646
(a superset of Unicoﬂ), amounting to approximately 4 billion. To represent thelsaracters in concrete
documents, XML supports a variety of encodings, which caspezified in the XML declaration of the
document prologue. Table2.1 lists some of the more frecqeieariacter encodin& Of these encodings,
XML language processors need to implement at I8agt8 andUTF-16 .

Elements

Elements are used to “mark up” the document. They are idedtify a label (callethg namégand specified
by opening and closing tags that enclose the element cordgetning tags are of the forgtabel ...>

and contain the label and optionally a set of attributes is@w). Closing tags are of the forafabel>

and contain only the label. Labels start with either an dhetiaal character (with respect to the defined
character encoding) or with underscorelrhey may contain any alphanumeric characters, and the sjgn
-,. and. . The character is reserved for separating namespace prefixes from eleragrés

15public identifiers are commonly used for widespread XML ations like XHTML or DocBook
1T www.umicodeorg_]
17A comprehensive list can be found at WikiPe @D en-WiKipedia-orgwikrCharacter_encoang__]

22 Sebastian Schaffert

http://www.unicode.org
http://en.wikipedia.org/wiki/Character_encoding

CHAPTER 2. DATA REPRESENTATION ON THE WEB

ASCII American Standard for Character Information Interchangebit
Big5 Traditional Chinese, Hong-Kong and Taiwan, 2 byte
GB2312 Simplified Chinese&xubjia Biaozhin Ma), People’s Republic of China, 2 byte

ISO-2022-JP Japanese, 1-2 bytes variable length (confpadiBSCII)
ISO-8859-1 Latin, Western European without Euro, 8-bit
ISO-8859-2 Latin, East European, 8-bit

ISO-8859-15 Latin, Western European with Euro, 8-bit

KOI8-R Cyrillic, Russian, 8-bit
UTF-8 Unicode, 1-4 bytes variable length (compatible to AFC
UTF-16 Unicode, 2 byte

Table 2.1: Frequently used character encodings in XML

Example 2.2 (XML Elements)
<address-book>

cont ent
</address-book>

Elements may contain either other elements, character alabmth fnixed content In analogy with the
document tree, such content is often referred tatdaklren of an element. Interleaving of the opening
and closing tags of different elements (esh><i>Text</i>) is forbidden. The order of elements
is relevant (so-calledocument order This is a reasonable requirement for storing text datanight
be too restrictive when storing data items of a databaselidgtjpns working with XML data thus often
ignore the document order. If an element contains no coritantly be abbreviated atabel/> , i.e. the
“closing slash” is contained in the start tag.

Example 2.3 (Empty Elements)
In HTML, line breaks are indicated by an empty element witheldr . In XML syntax, this is specified as

An XML document always contains a distinguished elemeriedaheroot elementhat encloses all other
content of the document. If a schema is associated with an ¥btiument, then the root element has to
be an instance of this schema in order for a document teabd . Documents that do not conform to a
specified schema, but otherwise adhere to the XML specificatieinvalid, butwell-formed

Character Data

Besides elements, XML documents may contain character tlageneral, character data is written “as-
is”, i.e. it is not enclosed in special symbols like in manggnamming languages or the semistructured
expressions above.

Example 2.4 (Character Data)
The following XML document contains character data mixethvelement content:

<document>
The quick brown fox <highlight>jumps</highlight> over the lazy dog.

</document>

Whitespace in character data is ignored and certain re$eharacters (likg) are disallowed. Therefore,
XML provides an additional construct for escaping chanadgga, so-callecCDATA sections CDATA
sections are enclosed €#[CDATA[and]> .

Example 2.5 (CDATA Sections)

The following is only character data and does not contairkonar

<|[CDATA[The quick brown fox <highlight>jumps</highligh t> over the lazy dog.]]>

Sebastian Schaffert 23

2.2. XML — THE EXTENSIBLE MARKUP LANGUAGE

Attributes

Opening tags of elements may contain a set of key/value paliledattributes Attributes are of the form
name = "value" wherename may contain the same characters as element labels and sausharacter
sequence which is always enclosed in quétesd in which white space is insignificant. An opening tag
may contain attributes in any order, but each attribute neemeoccur at most once.

Example 2.6 (XML Attributes)
<person id="mickey mouse">
<name>
<first>Mickey</first>
<last>Mouse</last>
</name>
<phone type="home">19281118</phone>
</person>

XML defines certain reserved attributes, currertiylang (which defines the language of the element
content) andml:space (which in XML 1.1 defines that whitespace is significant). thermore, certain
extensions of XML, likeXLink [[CId] andXML NamespaceffLId], reserve attributes prefixed kink:
andxmins: .

Example 2.7 &l : | ang)
The reserved attributenllang may be used to specify the language of element contents.nTdyse.g.
be used to specify two different titles for a book:

<book>
<title xml:lang="sv">
Folket i Birka p & Vikingarnas Tid
<ftitle>
<title xml:lang="de">
Die Leute von Birka. So lebten die Wikinger.
<ftitle>
<title xml:lang="en">
The people of Birka in the Viking Age
<ftitle>
</book>

Entities

XML entities are a macro mechanism for reusing commonly usmttent. In particular, the reserved
characters and& can be expressed using entities. Note that, unlike many othero mechanisms, XML
entities cannot be parametrised.

Entitiesare defined in the document type definition in the prologuenoK®IL document (or in an
external DTD) with the construgENTITY name "value"> , which defines the entityame to be an ab-
breviation forvalue . value may contain any content, including markugntity referencefave the form
&name;, wherename is the name of an either predefined or previously definedyerifthie occurrence of
&name; is then literally replaced by the value of the entity.

Example 2.8 (Entities)
The following example defines an entityarn to be the databold>Warning:</bold> (i.e. the word
“Warning” printed in bold face) and refers to it later Bwarn; :

<?xml version="1.0" encoding="1S0-8859-15"?>

<IDOCTYPE paragraph [
<I[ELEMENT paragraph ANY >
<IENTITY warn "<bold>Warning:</bold>">

24 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

& &
< <
&at; >
' '
"
&#x; the ISO/IEC 10646 character with hexadecimal number x

n

Table 2.2: Predefined character references available in XML

>

<paragraph>
&warn; Don't ever try this out yourself.
</paragraph>

Entities can also be used foharacter referencesFor exampleglt; refers to the lettex, which is
otherwise not allowed in character data. Tdhld 2.2 sumesmdharacter references that may be used in
XML.

Example 2.9 (Character References)
The following character reference includes the characterhich has the hexadecimal number 0x03B1 (or

945 in decimal format): The character B1; is rendered as The characten.

A third application of entities that is of interest is the pifidlity to include binary data in an XML
document, like a PNGRprtable Network Graphiggmage with so-calle@gxternal entities

Example 2.10 (External Entities with Binary Content)
The following external entity includes the PNG imdmare.png in the XML document:

<IENTITY figure SYSTEM "J/figure.png" NDATA png>

2.2.4 XML Schema Languages

An XML schema language describes what structure an XML d@ntnis allowed to have. For example,
the schema of an address book might specify that all entreegeguired to contain a name, but the phone
number is optional. Unlike SGML or relational databasesX®fl. document is not required toonform

to a schema, or even tavea schema, but if it does, it is calledlid with respect to its schema. However,
schema definitions are advantageous as they allow for atitoogimisations, may be used to commu-
nicate the admissible structure between authors and maosuine authoring process if schema-aware
editors are used.

Several languages for defining schemas are available. €hi®s briefly introduces the languages
DTD (as it is part of the XML specification) arffelax NG(as it is more flexible than DTD and used for
schema specifications in this thesis). Other approachesXML Schemd 1] or Schematrorfgl]) are
not discussed here, as schema languages are outside tleeo$tiois thesis.

DTD

The specification for XML DTDs, odocument type definitions included in the W3C XML recommen-
dation [II®]. DTDs allow to define the possible structure df(Xdocuments in terms of a tree grammar.
DTDs allow four kinds oimarkup declarations

Element Declarations have the fornrk!lELEMENT label content> , wherelabel is the element label
andcontent defines what kind of content an element may have. The conédimitibn has the following
structure:

Sebastian Schaffert 25

2.2. XML — THE EXTENSIBLE MARKUP LANGUAGE

e (child 4,...,child n) denotes an ordered sequence of child elements of tgflds 1, ...,
child .
e (child 1]...|child n) denotes alternatives of child elements of typetsld 4, ..., child n.

e child? denotes optional child elements, sequences or altersative

e child* denotes repetition of child elements, sequences or atteesg0 or more)
e child+ denotes repetition of child elements, sequences or atteesg1 or more)
e (#PCDATA) denotes character content

e ANYdenotes that the element may contain any content

e EMPTYdenotes that the element may not contain content

If an element is allowed to contain both other elements aagagtier data, it is said to be wfixed content
In DTDs, it is not possible to associate types liktegeror floatwith character content.

Attribute List Declarations have the form

<IATTLIST element-label att-name 1 att-type 1 # qualifier
att-name , att-type , # qualifier>

whereelement-label is the label of the element to which the attributes belattgiame ; is the name of
theit" attribute anditt-type ; is the type definition of content of th& attribute. The most important type
definitions arg:

CDATAfor character content

ID for defining occurrences of identifiers (see ID/IDREF in 8sdPZZ5)

IDREF for referring occurrences of identifiers (see ID/IDREF ic@m[ZZb)

(token 1q,...,token n) for definingn alternative attribute valuesken 1,...,token n, where ao-
kenconforms to the same syntax requirements as an element label

Each attribute pair definition has an additioqadlifier ~, which is one ofREQUIRED(all instance
elements must have the attribut®)PLIED (instance elements may have the attributeffldED value |,
wherevalue is the fixed value of the attribute.

Entity Declarations have already been described in Seclion®.2.3.

Notation Declarations are used to identify external binary formats and specifpé&ebpplications that
can be used to process the format. For example, the notatardtion

<INOTATION png SYSTEM "fusr/bin/gimp">
<IATTLIST picture format NOTATION (png | jpg)>

specifies that pictures take a format attribute with valdestberpng orjpg and that the helper application
for the notatiorpng is called via the system cdlisr/bin/gimp . Notation declarations are apparently only
rarely used.

Example 2.11 (DTD)
The following DTD defines a grammar for the address book useiee

18gther types ar&IMTOKENENTITY andNOTATION

26 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

<IELEMENT address-book (person*)>
<IELEMENT person (name,phone?)>
<IELEMENT name (first,last)>
<IELEMENT first (#PCDATA)>
<IELEMENT last (#PCDATA)>
<IELEMENT phone (#PCDATA)>

<IATTLIST person oid ID # REQUIRED
knows IDREF # IMPLIED >

Although DTDs are very widespread, they have several saanifideficiencies:

¢ they do not allow context dependent definitions of eleménisthus not possible to define that the
name child element of @erson has a different structure than thame child element of aompany
in the same document.

¢ they do not support typed content; for instance, it might esirdble to restrict a phone number to
only digits and dashes.

o itis difficult to express repetitions of cardinalitym.
¢ their syntax differs from the syntax used for XML documents.

A further criticism of DTDs is that they are not restricteddpecifying the schema of a document
or database, but also allow to define content, e.g. in esititel D/IDREF, or in attribute default values
(qualifier FIXED above). Thus, a DTD can be consideregr@processing specificatioather than a mere
schema specification

XML DTDs differ from SGML DTDs in various aspects. Most impantly, XML DTDs are in contrast
to SGML DTDscase sensitivand allow all ISO/IEC 10464 characters. On the other hand|. XM Ds
do not support unordered content specification (SG I\&Iaperatoﬂ.

Relax NG

Relax NG [3P[I0P] is a schema language defined byQhsis Operconsortium and thus developed
independently from XML Schema and the W3C. It has recentgnkadlopted as an ISO/IEC standard and
is used by IETE} as the “official” XML schema language for defining the scherh8e@ F publications

in XML format. It has a solid formal foundation in the theortcee automata (Relax NG uses so-called
hedge automadaand is rather easy to learn and use, while still being flexdimd more expressive than
DTD. Relax NG has an XML-based syntax and a so-callempactotation, which resembles the syntax
for semistructured expressions used in this thesis. WhaheaXML syntax allows to use many existing
tools like editors or browsers, the compact notation is mecber and easy to read for human users.

This section provides an short intuitive introduction iRRelax NG’s compact notation. Readers inter-
ested in the XML notation or in a more thorough descriptioRefax NG should refer t¢39] oL TID2], or
to Relax NG's websif.

A Relax NG schema is defined in terms of production rulesiiegalar tree grammarwhere the left
hand side is always a non-terminal symbol (where a diststgad non-terminal symbol callsthrt is the
start symbol of the grammar) and the right hand side is eghexlement definition, an attribute definition,
text, a datatype from an external library (e.g. XML Schem#aBges[[IIP]) or an ordered or unordered
list of the former constructs. Elements are introduced leykisywordelement , followed by the label and
the specification for the admissible children. For examile grammar rule

nphone = element phone { text }
193 good summary can be founJEDWWW-XmT.CoMpUD/a/gsorad]

20|ETF is an abbreviation for the so-callédternet Engineering Task Forcvhich defines many of the standards the Internet
builds upon, e.g. TCP/IP, HTTP or the various email starslfi@@www.iet.org____)
E 14OV oo |

Sebastian Schaffert 27

http://www.xml.com/pub/a/98/07/dtd/
http://www.ietf.org
http://www.relaxng.org

2.2. XML — THE EXTENSIBLE MARKUP LANGUAGE

defines the non-terminal symhgihone to describe elements with label “phone” and only text conten

The specification of admissible children is a list of furtldefinitions or non-terminals separated by
, (ordered sequence), &y (unordered set), or bl (alternatives). For instance, the following grammar
defines the non-terminadme to be elements with label “name” and unordered child elesaith labels
“first” and “last”:

nname =
element name {
element first { text } &
element last { text }

}

In the specification of admissile children, it is (as usuagjlmammars but in contrast to DTD) possible
to replace any non-terminal by its definition and vice versariprove readability. For example, in the
definition ofname above, it would be possible to replace the definitions of tamentdirst andlast by
non-terminals as follows:

nname = element name { nfirst & nlast }
nfirst = element first { text }
nlast = element last { text }

Repetitions of elements may be specified using the operatansl + like in regular expressions and
DTDs. The following grammar rule specifies that address-book element may contain an arbitrary
number of children defined by the non-termipedson :

start = element address-book { person* }

Attributes are defined using the keywatttibute , followed by the attribute name and the specifica-
tion of the admissible values. They are defined in the samenaraas elements. The following grammar
rule completes the addressbook schema by providing theititafifor persons. Note that Relax NG sup-
ports to import external datatype libraries, in this cA84L Schema Datatypéprefixxsd:).

person =
element person {
attribute oid { xsd:ID } &
attribute knows { xsd:IDREF } &
name &
phone*

}

Example 2.12 (Relax NG)
The following Relax NG document again summarises the scHerthe address book (in compact nota-
tion).

datatypes xsd = "http:/www.w3.0rg/2001/XMLSchema-data types"

start = element address-book { person* }
person =
element person {
attribute oid { xsd:ID } &
attribute knows { xsd:IDREF } &
element name {
element first { text } &
element last { text }
} &
element phone { text }*

}

28 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

For many applications, Relax NG is more suitable than DTRabse it is more expressive than DTD
(in DTD, it is e.g. not possible to define two elements witheldlmame” but differing structure, once for
a person, once for a company). In addition, Relax NG gramm@&asy to read and maintain, as their
syntax is close to the usual syntax of grammars, and they are ftexible than DTDs as they allow to
structure a grammar independent from the structure desthly the grammar. For these reasons, Relax
NG is used for XML schema definitions in this thesis.

2.2.5 XML References: ID/IDREF

References in XML serve two purposes. The first, implemeloyeB®/IDREF, is to support cross references
within a document. In the document context, this may be usegfer to the bibliography, or to other
sections in the text. In the same manner, it may also be usttnvwdata items of a database to form
graph structures. Thu®/IDREF is a structural reference mechanism. The second, implemented by
XLink, is to connect several documents — possibly even at difféoeations — with so-calletiyperlinks
Such references cannot be considered as structural, thegitaer at the level of the content and typically
only resolved by explicit user interaction (e.qg. clicking @ link in a browser). Since this thesis does not
investigate browsing aspects, only ID/IDREF is describegth

ID/IDREF references are implemented by using two special typesrifatts:identifiers(denoted by
ID) are used to specify that the attribute value is a uniqudiiikarfor the element containing the attribute,
andidentifier referenceédenoted byDREF) are used to specify that the attribute value is a referanaat
element identified by a unique identifier. Both types needetadsociated to attributes by a DTD or other
schema definition.
Example 2.13 (ID/IDREF)
The following XML document models the address book of Sedddl?. Note that the DTD is used to
identify the attributes that are used as identifiers andeefees.

<?xml version="1.0" encoding="is0-8859-15"?>

<IDOCTYPE address-book |
<IELEMENT address-book (person*)>
<IELEMENT person (name,phone?)>

<IATTLIST person oid ID # REQUIRED
knows IDREF # IMPLIED >
>

<address-book>
<person oid="01" knows="02">

<name>
<first>Mickey</first>
<last>Mouse</last>
</name>
<phone type="home">19281118</phone>
<Iperson>
<person oid="02" knows="01">
<name>
<first>Donald</first>
<last>Duck</last>
</name>
<Iperson>

</address-book>

Although this reference mechanism is very similar to the @df@rences of semistructured expressions
introduced in SectioR 2.2, the limitation to attributessd not allow to position references beneath the

Sebastian Schaffert 29

2.2. XML — THE EXTENSIBLE MARKUP LANGUAGE

children of an element in case the order is significant. FangXe, in the address book above, it is not
possible to position the referenk@ws as thelast child of theperson elements using ID/IDREF.

2.2.6 XML Namespaces

In many documents, it is desirable to combine parts of ségef®emas. For instance, the adress book
might contain an elemememarks for each entry, in which it is possible to write free text atated with
certain parts of (X)HTML, like bold or italic face. Unfortately, such combinations often result in naming
conflicts or ambiguities (“does theame element refer to company names from one schema or to person
names from another?”).

Therefore, XML supports so-called namespa€esl[117] thafuaty associate elements with names-
paces. Namespaces are identified by so-cafieinationalised resource identifie¢tR|, [EI)E] Elements
in an XML document can be associated with a hamespace IRI foaked namespace prefixesrhich
appear in the opening and closing tags and are separatedHeoatement label by a colon. Namespace
prefixes are defined by certain attribute-value pairs andalie in the scope of the element they are de-
finedin (i.e. in the element itself and in all descendantgmispace prefixes can be chosen arbitrarily and
always resolve to the IRI they are associated with.

It is also possible that two different prefixes are assodiatith the same namespaces, in which case
the elements prefixed with either of them are obviously insgi®me namespace.

Example 2.14 (XML Namespaces)

In the address book, it might be desirable to complemennaliess by arremarks element that contains
free text remarks, possibly marked up with certain HTML ederts, about the entry. The following XML
document shows how namespaces can serve this purposes ltheseamespace prefixto refer to the
address book schema, and the namespace pradirefer to the XHTML schema:

<a:address-book xmins:a= “http://www.myschemas.org/address-book"
xmins:b=""http://www.w3.0rg/2002/06/xhtmI2" >
<a:person a.oid= "&ol" aknows= "&02" >
<a:name>

<afirst> Mickey </a:first>
<alast> Mouse</a:last>
</a:name>
<a:phone a:type= "home" >19281118 </a:phone>
<a:remarks>
<p:strong> Note: </b:strong> The phone number is also the
<b:em>birthday </b:em> !
</a:remarks>
</a:person>
<aperson a.oid= "&02" aknows= "&o0l" >
<a:name>
<afirst> Donald </a:first>
<alast> Duck</a:last>
</a:name>
</a:person>
</a:address-book>

In this example, an address book browser might render XHTMments using an HTML component

(like Java’'s HTML componentin the packajgeax.swing.text.html) while displaying all elements of
the http://www.myschemas.org/address-book namespace in an application specific manner (e.g. in a
table).

22|RIs are introduced in XML 1.1 and replace the formerly usd®ls) oruniform resource identifiersiRlIs differ from URIs in
that they can contain characters from any character set.

30 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

XML namespaces are always declared by usingkthles attribute, either followed by a colon and a
namespace prefix (as in the example above), or as a stanel-attoibute (in the latter case, the so-called
default namespace is defined for elements that have no pridfixespace prefix declarations may appear
inside any element and thus have a clearly defined scopénefarbre, namespace prefix declarations may
be shadowed by redefining a namespace prefix within the sd@readready defined prefix with the same
name.

2.3 XML, Semistructured Expressions and Semistructured D&

Although XML and semistructured data have initially beeddpendent developments, and initially have

been aimed at different application areas (i.e. documemesentation vs. databases), they have much in
common: both represent rooted graph structured data, bestraicture-carrying and schema independent
and both allow to represent very heterogeneous data itenfiact, XML can be seen as just another syntax

for semistructured expressions. For instance, the XML dunt

<publications>
<book>
<title>Folket i Birka p a Vikingarnas Tid</title>
<authors>
<author>Mats Wahl</author>
<author>Sven Nordqvist</author>
<author>Bj rn Ambrosiani</author>
</authors>
</book>
<book>
<titte>Boken Om Vikingarna<ititle>
<authors>
<author>Catharina Ingelman-Sundberg</author>
</authors>
</book>
</publications>

corresponds to the following semistructured expression:

publications [
book |
tite ["Folket i Birka p a Vikingarnas Tid"],
authors |
author ["Mats Wahl"],
author ["Sven Nordgvist"]
author ["Bj orn Ambrosiani"]
]
l
book [
title ["Boken Om Vikingarna"],
authors |
author ["Catharina Ingelman-Sundberg"]
]
]
]

Beyond this straightforward correspondence, howeverstation of XML into semistructured ex-
pressions and vice versa is not always possible. Whereaistagetured expressions can contain both
ordered and unordered data (or in the case of OEM only uneddgata), XML elements are always or-
dered. Furthermore, references in XML behave slightlyedéhtly than in semistructured expressions (see

Sebastian Schaffert 31

2.4. THREE SCENARIOS FOR QUERYING SEMISTRUCTURED DATA

SectioZZF). In particular, object identifiers in semistured expressions must be known, i.e. the data
must be managed centrally. This restriction is impossibl@m open Web. Likewise, semistructured ex-
pressions do not have a counterpart for XML attributes, @ssing instructions, entities, document type
definitions, schema languages, XLink hyperlinks, and sinféatures.

Despite these differences, semistructured expressiena aseful “abstraction” of XML documents.
On the one hand, the deficiencies mentioned above are adttedy used (processing instructions, entities)
or can be overcome in a straightforward manner (attribiaade seen as flat, unordered elements). On the
other hand, semistructured expression provide with a seneipresentation of semistructured data that is
capable of differentiating between ordered and unordeveteat and has a flexible reference mechanism
while at the same time avoiding many constructs that arenealt or add unnecessary complexity.

2.4 Three Scenarios for Querying Semistructured Data

Throughout this document, many examples will be illustidtased on three scenarios introduced in this
section. The first two scenarios are examples for semistredtdatabases: siudent databaseepresents
information gathered during a course and tvank databasesepresent the databases of two online book-
stores. The last example is more document oriented: it ssthieisisitself (but for obvious reasons only
incomplete). All databases and documents are given botorm 6f an XML document and in form of

a semistructured expression, and are accompanied by a aaefmition in Relax NG compact notation,
which serves to further illustrate the structure of the daiiis not itself used in further examples. In the
two database examples, the semistructured expressioreis gsing unordered specification of subexpres-
sions, since this is reasonable in a database context. iNmteyver, that the XML document representation
is always ordered.

2.4.1 Student Database

Imagine a lecture that is accompanied by a course manageysem (CMS), which manages all kinds of
data about students. At the beginning of a teaching terrdestis have to register with their name, student
id and email address. Of course, students are studentspar&d® not fill in their student id — maybe they
have not remembered it and do not have their student retiistreard ready. During the teaching term,
students have to submit their solutions to the weekly exesdbefore certain deadlines. Since students are
not obliged to submit all exercises, each student might hagesing exercise entries. Teaching staff correct
the solutions and assign scores to each. As teachers usisdiyave other things to do, a teacher only
corrects some exercises at a time and updates the datalcasgiagly, while other solutions might still be
uncorrected.

The XML documenstudents.xml (given in FigurdZZB) contains the data of such a course ne&nag
ment system. It represents a snapshot taken at a certain siomee students have not (yet) submitted
their solutions, some submitted solutions have not yet beerected. Furthermore, information is in parts
incomplete, as the student id is missing for some students.

The student database uses the following intuitive schenfarfaal schema definition in Relax NG
compact notation is given in Figute®.2):

e each studentis represented bstilent element and its subtree

e each student has at least a name (elemant), an arbitrary number of email addresses (element
email) and an optional inscription number (elememdtrnr), which might be missing in case a
student did not specify it at the registration.

e for each solution to an exercise a student submitted, thgeotige entry contains aexercise
element with at least the exercise number (elemember), and optionally a score (elemestbre),
which is used to represent the result of correction.

Naturally, in such a system it is necessary to be able to questpin kinds of data and generate sum-
maries. For example, the CMS might provide a page listingtatlents with name and email, but the email

32 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

stud-db = element students {
element student {
element name { text },
element email { text }*,
element matrnr { text }?,
element exercise {
element number { text },
element score { text }?
}*
}*

Figure 2.2: Schema of the student database in Rela{NG [38paot notation

should be in a format that is not easily parsable by spam addr@rvesters (so-called “spamvertised” ad-
dresses). Also, teachers might be interested in the totaésdor each student, in information like “all
students that did not submit a solution to exercise 2", drstldents whose submission of the solutions
to exercise 3 have not yet been corrected”. All of these g@adand some more) will be presented in the
remainder of this thesis.

This database is representative for a large number of seittisted databases. Information might be
missing (like email address or inscription number), or &y not given (exercises that have not been
submitted, or are not yet corrected). The individual estdee heterogeneous, for instance there might be
several email addresses for a student, but only one for@tder in such databases is usually irrelevant
(indicated by curly braces in the Xcerpt syntax).

2.4.2 Bookstore

The second scenario considers two online bookstores thasent their data in an XML databB3eSince
both use customised applications, the structures andmonit¢he two databases differ: whereas the first
bookstore (bookstore A) stores information about titlehats, price and publisher, the second bookstore
(bookstore B) does not have information about authors amtigher but instead provides for each book
a review part that contains comments made by readers of a. bBokhermore, the data provided by
bookstore A is not homogeneous: while some books have af latthors, others have instead an editor,
which contains in addition to first and last name also an affiln. Figurd 2} shows the database of
bookstore A and Figuled.6 shows the database of bookstore B.

The Relax NG compact notation of the schemas for both boodsie given in FigurE214. Note that
this scenario is in analogy to a use case inXiguery Use CasgB4], from which it differs in two aspects:
(1) book entries are augmented byaaithors element to group the authors. This is useful to illustrass th
a database may contain both ordered and unordered cor2¢imstead of the by now rather well known
Computer Science books, this thesis uses a set of books thleoviking Age to make reading a little more
diversified. Note that parts of the XQuery use case are dieclis more detail later in this thesis (Section
E1).

As in the student database above, the XML document repiasemdiffers slightly from the semistruc-
tured expression. One aspect is that the semistructuragssipns are unordered (except the list of au-
thors), the other is that attributes have to be represestsdizexpressions in a semistructured expression.
To this aim, they are grouped within a subexpression witkllaftributes that is always the first subex-
pression of an expression.

Many queries are conceivable in this scenario. Common esiarie to list all titles for an author, or to
list books of a certain publication year, with a certainrgjrin the title, and so on. More complex queries
could create a summary of prices for both bookstores, otegemediated list of books with the minimum

2335ch a database is e.g. accessibJEPITWWW.amazon.comwenservices]

Sebastian Schaffert 33

http://www.amazon.com/webservices

2.4. THREE SCENARIOS FOR QUERYING SEMISTRUCTURED DATA

<students>
<student>
<name>Donald Duck </name>
<email> donald@duck.org </email>
<matrnr> 123456789 </matrnr>
<exercise>
<number> 1</number>
<score> 15</score>
</exercise>
<exercise>
<number> 2</number>
<score> 7</score>
</exercise>
<exercise>
<number> 3</number>
</exercise>
</student>
<student>
<name>Mickey Mouse </name>
<email> mickey@mouse.org </email>
<matrnr> 987654321 </matrnr>
<exercise>
<number> 1</number>
<score> 3</score>
</exercise>
<exercise>
<number> 3</number>
<score> 14</score>
</exercise>
</student>
<student>
<name>Goofy </name>
<email> goofy@goofy.org </email>
<email> goofy@disney.com </email>
<exercise>
<number> 2</number>
<score> 13</score>
</exercise>
<exercise>
<number> 3</number>
</exercise>
</student>
</students>

Figure 2.3: The student database as an XML document and asistrisestured expression. Note that the

students {
student {
name { "Donald Duck" 1},
email { "donald@duck.org" 3
matrmr { "123456789" '}
exercise {
number { 1 },
score { 15}
13
exercise {
number { 2 },
score { 7}
13
exercise {
number { 3}

}
13
student {
name { "Mickey Mouse" 1},
email { "mickey@mouse.org" },
matrnr { "987654321" 1},
exercise {
number { 1 },
score { 3}
13
exercise {
number { 3},
score { 14}
}
13
student {
name { "Goofy" 1},
email { "goofy@goofy.org" 1
email { "goofy@disney.com” L
exercise {
number { 2 },
score { 13 }
13
exercise {
number { 3}
}
}
}

semistructured expression is unordered whereas the XMurdent is ordered.

34

Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

bib = element bib { book* } reviews = element reviews { entry* }
book = entry =
element book { element entry {
attribute year { text }, element title { text },
element title { text }, element price { text },
(authors | editor), element review { text }
element publisher { text }, }
element price { text }
}
authors =

element authors {
element author { last, first }*

}
editor =
element editor { last, first, affil }
last = element last { text }
first = element first { text }
affl = element affiliation { text }

Figure 2.4: Schemas of the two bookstore databases in R&gEH] compact notation

price and the name of the bookstore where we can get this mimiprice. Also, one could be interested
in “which books that A sells are not sold by B”.

2.4.3 Document-Centric: PhD Thesis

The last of the three scenarios is this PhD thesis itselfclwig an good representative for document-
centric data. Not only is the data in such a document usuadlgred, it also contains a very heterogeneous
structure with deep levels of nesting, and also cross nefe®to bibliographic information and other parts
of the document.

The following Relax NG grammar provides a simplified, incdete definition of the schema for this
thesis (incomplete parts are indicated by . ..):

report = element report { abstract, part*, appendix? }
part = element part { chapter* }

appendix = element appendix { chapter* }

chapter element chapter { title, scontent }

section = element section { title, scontent }

paragraph = element paragraph { title?, pcontent }
scontent = paragraph* & section* & bibliography
pcontent = text* & cite* & emph* & strong*

For obvious reasons, the following XML document only congah fragment of this thesis:

<report>
<abstract xml:lang="en">

</abstract>
<abstract xml:lang="de">

</abstract>
<part>

<title>Introduction and Motivation</title>
</part>

Sebastian Schaffert 35

2.4. THREE SCENARIOS FOR QUERYING SEMISTRUCTURED DATA

<bib>
<book year="1995">
<title> Vikinga Blot ~ </title>
<authors>
<author>
<last> Ingelman-Sundberg ~ </last>
<first> Catharina </first>
</author>
</authors>
<publisher> Richters </publisher>
<price> 5.95 </price>
</book>
<book year="1998">
<title> Boken Om Vikingarna </title>
<authors>
<author>
<last> Ingelman-Sundberg </last>
<first> Catharina </first>
</author>
</authors>
<publisher> Prisma </publisher>
<price> 22.95 </price>
</book>
<book year="1999">
<title> Folket i Birka @ Vikingarnas Tid <ftitle>
<authors>
<author>
<last> Wabhl</last>
<first> Mats </first>
</author>
<author>
<last> Nordgvist </last>
<first> Sven</first>
</author>
<author>
<last> Ambrosiani </last>
<first> Bfirn </first>
</author>
</authors>
<publisher> BonnierCarlsen </publisher>
<price> 39.95 </price>
</book>
<book year="1997">
<title> Vikingar i
<editor>
<last> Larsson </last>
<first> Mats </first>
<affiliation> Lunds universitet
</editor>
<publisher> Atlantis </publisher>
<price> 49.95 </price>
</book>
</bib>

Osterled </title>

</affiliation>

Figure 2.5: The Bookstore Databdsik.xml
expression.

bib {
book { attributes { year { "1995" '} },
title { "Vikinga Blot" }
authors [
author {
last { "Ingelman-Sundberg" I
first { "Catharina" }

1
publisher { "Richters" },
price { "5.95" '}
3
book { attributes { year { "1992" '},
title { "Boken Om Vikingarna" },
authors [
author {
last { "Ingelman-Sundberg" L
first { "Catharina" }
}

l
publisher { "Prisma" },
price { "22.95" }

h
book { attributes { year { "1999" }},

title { "Folket i Birka @ Vikingarnas Tid"

authors [

author {
last { "Wahl" 1},
first { "Mats" '}

h

author {
last { "Nordgvist" 1},
first { "Sven" '}

h

author {
last { "Ambrosiani" },
first { "Bprn" }

}
1
publisher { "BonnierCarlsen” }
price { "39.95" '}
2
book { attributes { year { "1997" } 3,
tile { "Vikingar i Osterled" 1},
editor {
last { “Larsson" 1},
first { "Mats" 1},
affiliation { "Lunds universitet"
h
publisher { "Atlantis" }
price { "49.95" '}
}
}

of bookstore A as XML document and as semistructured

36

Sebastian Schaffert

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

CHAPTER 2. DATA REPRESENTATION ON THE WEB

<reviews>
<entry>
<title> Folket i Birka @ Vikingarnas Tid
<price> 34.95 </price>
<review>
A children’s book telling the story of two siblings
in the Viking town of Birka; nicely illustrated.
<Ireview>
</entry>
<entry>
<title>
Boken Om Vikingarna
<fitle>
<price> 24.95 </price>
<review>
A good description of Viking culture.
<Ireview>
</entry>
<entry>
<title> Vikingar i Osterled </title>
<price> 49.95 </price>
<review>
History of the Viking travels to Byzantine (Miklagird).
</review>
</entry>
<Ireviews>

<ltitle>

Figure 2.6: The Bookstore Databasgews.xml
expression.

reviews {
entry {
title { "Folket i Birka @& Vikingarnas Tid" }
price { "34.95" '}
review {

"A children’s book telling the story of two siblings
in the Viking town of Birka; nicely painted illustrated.”

}
}
entry {
title {
"Boken Om Vikingarna"
price { "24.95" '}
review {
"A good description of Viking culture."
}
}
entry {
tile { "Vikingar i Osterled" '}
price { "45.95" '}
review {
"History of the Viking travels to Byzantine (Miklagird)."
}
}

}

of bookstore B as XML document and as semistructured

<part>
<titte>The Language Xcerpt<ftitle>
<chapter>
<title>Xcerpt: Core Language<ftitle>
<section>
<title>Xcerpt Terms<ftitle>
<paragraph>
A term in Xcerpt is a representation of a semistructured data base, or
a pattern for querying or constructing such a database. In pa rticular,
terms may be used for representing XML documents, but they ar e also
suited for other semistructured data formats like OEM <cite ref="0oem95"/>
or RDF <cite ref="rdf"/>.
</paragraph>
<section>
<titte>Data Terms</section>
</section>
<section>
<title>Query Terms</section>
</section>
</section>
<section>

<title>Xcerpt Programs</title>
</section>
</chapter>
</part>

<appendix>

Sebastian Schaffert

37

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

2.5. GRAPH REPRESENTATION OF SEMISTRUCTURED DATA

<chapter>
<title>Full Grammar<ftitle>
<section>
<title>Data Terms<ftitle>

</section>

</chapter>
<chapter>
<tite>XML Syntax</title>
<section>
<titte>Core Xcerpt Terms<f/title>

</section>

</chapter>
<chapter>
<title>Bibliography</title>
<bibliography>
<entry id="oem95">
<title>Object Exchange across Heterogeneous Information Sources</title>
<booktitle>11th Conference on Data Engineering</booktit le>
<author>Yannis Papakonstantinou</author>
<author>Hector Garcia-Molina</author>
<author>Jennifer Widom</author>
<year>1995</year>
<lentry>

</bibliography>
</chapter>
</appendix>
</report>

2.5 Graph Representation of Semistructured Data

Semistructured expressions and XML documents induce graph straightforward manner, which has
already been introduced intuitively in Sect[anl2.1, andiigfer elaborated below. Formally, semistructured
expressions can be represented either as an edge-labetischanode-labelled graph. This thesis always
represents a semistructured expression as a node-lagedigld, as this representation is closer to the graph
model of XML specified in theXML Information S4lLZ0]. A similar, node-labelled graph representation
is also used in thelocument object modeWwhich is a uniform application programming interface for
accessing and manipulating XML data. Note, however, [lai$és edge-labelled graphs instead.

Definition 2.1 (Graph Induced by a Semistructured Expressia)
Given a semistructured express@rThegraph induced by & a tupleGe = (V, E,r), with:
1. aset olvertices(or node3V defined as the set of all subexpressions @ficludinge itself)

2. asetokdges ECV xV x N characterised as follows:

o for all expression®y, e, e3 € V: if e is thei" subexpression of; and of the fornfoid (a
reference), ands is of the formoid @ e’ , with oid an identifier an&’ an expression, then
(e1,€3,i) €E

o for all expressionsy,e; € V: if ey is theith subexpression ad andnotof the form™oid , then
(e1,€2,i) €E

38 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

3. adistinguished verticec V called theroot nodewith r = e

Thelabel of a vertice is the label of the subexpression representéd by

This definition differs in two aspects from the intuitive gharepresentation used in Sectlon] 2.1: (1)
vertices represent complete subexpressions instead pfials, and (2) edges are associated with the
respective positions of the subexpressions within theraigoth properties are necessary to distinguish
between ordered and unordered content. Note that for seictisted expressions with unordered content,
the position has to be ignored.

Example 2.15 (Graph Induced by a Semistructured Expression
Consider again the semistructured expression repregeariaddress book with two entries.

address-book {
&ol @ person {
name [
first ["Mickey"],
last ["Mouse"]
]l
phone ["19281118"],

knows [&02]
}1
&02 @ person {
name [
first ["Donald"],
last ["Duck"]
]1
knows ["&o01]
}

Note that this expression differs from the expression us&kitiodZZT]2 in that certain subexpressions
contain unordered content.

FigurelZY illustrates the graph induced by this semistingct expression. Note that in contrast to the
graph of Figurd_Z]1 the vertices now comprise subexpressimtead of labels (although space restric-
tions require that subexpressions are abbreviated by .nd)edges are labelled with the position of the
subexpression (indicated in red colour).

As usual, graphs are represented in this thesis with theatdbe top and the leaves at the bottom. In
this context, the maximum number of immediate subexprassida (sub)expression is called theadth
and the maximal number of edges from the root to a leaf is d@ahe depthof the tree, semistructured
expression, or XML document.

2.6 Rooted Graph Simulation — A Similarity Relation for Rooted
Graphs

The language Xcerpt presented in this thesis ps¢tern matchingo select data items in a semistructured
database (or XML document). A pattern can be considered axampleof the data in the database,
albeit one that usually is augmented by variables and omitshrof the structure that is irrelevant for the
selection. A pattern thus has to sienilar to the queried data.

Pattern matching in Xcerpt (and UnQL, for that matter) isdubsn a similarity relation between the
graphs induced by two semistructured expressions, whidtalled graph simulation[ed, [Z1]. Graph
simulation is a relation very similar to graph homomorphésbbut more general in the sense that it allows
to match two nodes in one graph with a single node in the otfagrtgand vice versa.

Sebastian Schaffert 39

2.6. ROOTED GRAPH SIMULATION — A SIMILARITY RELATION FOR ROUGED GRAPHS

Qaddress—book{ .}

person{...

ame|...] i phone... knows]...]

l 2 1 2

"50773"
Qﬁrst[...@last[...] Qﬁrst[...@last[...]
"Mickey" "Mouse" "Donald" "Duck"

Figure 2.7: Graph Induced by the semistructured expresgi&xampldZTb.

Figure 2.8: Rooted Graph Simulations (with respect to weattbornment equality)

The following definition is inspired fronf[36¥ 7] and refintee simulation considered ilJP4]. Recall
that a (directed) rooted graih= (V, E,r) consists in a s&f of vertices, a sefE of edges (i.e. ordered pairs
of vertices), and a vertaxcalled the root of5 such thats contains a path fromto each vertex os. Note
that the initial definition of a rooted graph simulation does take into account the edge labels of graphs
induced by a semistructured expression, it is defined onrgemede labelled and rooted graphs. Note
furthermore, that in general, there might be more than anelsition between two graphs, which leads to
the notion ofminimalsimulations also defined below.

Definition 2.2 (Rooted Graph Simulation)
Let Gy = (V1,E1,r1) andG, = (Vo, Ep,r2) be two rooted graphs and let C V; x V, be an order or equiv-
alence relation. A relatiof C Vi x Vs is arooted simulatiorof G; in G with respect tov if:

1.1 8 Io.
2. If vy 8 vo, thenvy ~ vs.
3. If vi S vp and(vy,Vy,i) € Ey, then there exists, € V, such thav] 8 V, and(vo,V,, j) € Ez

A rooted simulatior8 of G; in G, with respect to~ is minimalif there are no rooted simulatioss of G,
in G, with respect to~ such thas’ C 8 (andS+# S).

Definition[Z2 does not preclude that two distinct vertigegndV; of G; are simulated by the same
vertexv, of Gy, i.e.v1 8 v andv; 8 vo. Figure[ZB gives examples of simulations with respect & th
equality of vertex adornments. The simulation of the rigtaraple is not minimal.

40 Sebastian Schaffert

CHAPTER 2. DATA REPRESENTATION ON THE WEB

The existanceof a simulation relation between two graphs (without vaeapcan be computed effi-
ciently: results presented iBJ67] give rise to the assuompthat such problems can generally be solved
in polynomial time and space. However, computation of patteatching usually requires to compute not
only one, but all minimal simulations between two graphsyinich case the complexity increases with the
size of the “answer”.

Interestingly, graph simulation can also be used for schealidation (cf. e.g.[[#]). In this case, a
schema is considered as a graph in which all instances hauatdate. This suggests that schema valida-
tion and querying are closely related: schema validationbgaconsidered as querying the schema with a
semistructured expression. If the query succeeds, thessipn is an instance of the schema (i.e. valid). If
the query fails, the expression is no instance of the schemanalid).

Sebastian Schaffert 41

2.6. ROOTED GRAPH SIMULATION — A SIMILARITY RELATION FOR ROUGED GRAPHS

42 Sebastian Schaffert

CHAPTER
THREE

Web Query Languages

As we have seen in Chapfdr 2, XML is increasingly used not aslg format for representing text docu-
ments, but also as a format for representing semistructlabases and for exchange of data on the Web.
As such, it becomes more and more important to be abigiésy XML data. Obviously, query languages
for XML need to respect the peculiarities of the data and titfer from traditional query languages.
Likewise, a query language for thi#ebneeds not only to be capable of querying XML data, it also seed
to be able to perform network operations, and — followingReasoning Capabilitiedesign principle of
Sectior L3 — support reasoning mechanisms for the Senalab.

This Chapter first argues why Web query languages need tadaravhigher expressive power than
traditional database query languages (Sefidn 3.1). iit tbatinues with an overview of desirable charac-
teristics of Web query languages followidg] 73] (SecfiaB)3 Finally, existing Web guery languages are
summarised (Sectid}.3), with a focus on the predominagtiages<Path XSLTandXQuery

3.1 Database vs. Web Query Languages

Traditionally, access to a database management systeraliserbusing a query language (the so-called
data manipulation languageembedded in a so-calldubst languaggwhich can be any programming
language available on a system, dayaor C). In this setup, the query language only has limited exjpress
power, whereas more complex computations are performeukeimast languag&ID0]. For example, in
relational database systems, query languages are useialiypnally completdi.e. they support all of the
operations of the relational algebra, ligmjection selectionandjoins), but exclude recursion and thus do
not provide the same expressive power as general purpogeaprming languages.

Example 3.1

The original versions of SQL, e.g. did not allow to compute tfansitive closure of a relation (this func-
tionality has later been added to SQL'® [6], but is not pathe core standard). Consider e.g. a binary
relationuncle that relates nephews with their (immediate) uncles:

uncl e | nephew uncl e
Donald Duck Scrooge Duck
Huey Duck Donald Duck
Dewey Duck Donald Duck
Louie Duck Donald Duck

Note that the (transitivedncle relationship between e.g. Dewey Duck and Scrooge is notttijre
represented in the table. Query languages like SQL (edhizar SQL3) are in general (i.e. if the number
of transitive steps is not known in advance) not capable toieréng this information. In contrast, more
expressive languages likgatalog are capable of doing this by using recursion. The followiegursive
Datalog query describes this transitive closure:

43

3.2. DESIRABLE CHARACTERISTICS OF WEB QUERY LANGUAGES

uncle(X,Y) :- uncle(X,Z), uncle(Z,Y).

This restriction is deliberate as it allows for many autamaptimisations that are much more difficult
or even not possible in more expressive languages. Howstaee many applications need to perform more
powerful query tasks while at the same time making use ofdiartages of database management systems
(like efficient storage and access, concurrency, etc.gbdase management systems have been combined
with more expressive languages (usually languages prayitie full expressiveness of first order logic, or
at least the expressiveness of thern-fragment of first order logic). Such systems are often refkto as
knowledge base systelffifld]. According to[[I0OD], “applications require a knowtgetbase system if they
have a recursive or nested structure that needs to be qugried3s).

Since XML documents and semistructured databases ofteprigersuch nested structures, a query
language for such data consequently needs to be more eixpries traditional database query languages
like SQL. Consider for example an XML document containingaagé text (e.g. a book or this thesis)
structured in chapters and sections (for an example, cfid®®EEZB). A typical query could be to retrieve
all sections (at arbitrary level of nesting) where the titantains the substring “XML". Since this query
needs to consider sections at an depth unknown by the qutrgraguch queries cannot be expressed in
languages that do not support recursion. In general, @ating of graph structured data also requires
languages with a higher expressive power than is availakitaditional query languagel[4], p.54).

Also, embedding a Web query language into a host languagkeis not feasible: queries might be
exchanged between different Web sites and processed itrioulisd manner (e.g. either on the client, or
on the server, or on both); relying on a host language woujdire that all participating Web sites are able
to evaluate the query language as well as the host languagseGuently, a Web query language needs to
beself-containedcf. characteristicEl 3 in Secti@B.2 below).

When guerying on th8emantic Wefcf. SectiollI318), a higher expressiveness is even mqueriant.
Reasoners like FaCTIb8] or RACER]55] need the expressiwepof the description logi8HJIQ B,
but the Semantic Web is still in development and more poweefasoners are conceivable. To support
arbitrary Semantic Web reasoners, it is thus desirabledvighe query languages that have the same power
as general purpose programming languages.

3.2 Desirable Characteristics of Web Query Languages

From Sectiofi 311, it is already possible to see that Web daaguages need to be different from traditional
database query languages in terms of expressive powersattion introduces further characteristics that
have been deemed desirable for Web query languages. Inttble &ratabase Desiderata for an XML
Query LanguagdlZ3], David Maier summarises 13 such characteristics folXddery languages (David
Maier uses the terirXQueryto refer to any XML query language; at the time of publicatitre language
now called XQuery did not exist). The following is a quoterfr&ection 2 of this article. References have
been adapted to point to the correct items and emphasis basadéeed to improve readability.

1. XML Output

An XQuery should yield XML output. Such a closure propertg @any benefits. De-
rived databases (views) can be defined via a single XQuenery@eomposition and
decomposition is aided. It is transparent to applicatiohstiver they are looking at base
data or a query result.

2. Server-side Processing

XQuery should be suitable for server-side processing. ;TauxXQuery should be self-
contained, and not dependent on resources in its creatitddor evaluation. While
an XQuery might incorporate variables from a local contthere should be a “bound”
form of the XQuery that can be remotely executed without imegth communicate with
its point of origin. An example of local content that shout“bound away” is the local
alias for a namespace. (See Requireriight 11.)

3. Query Operations

44 Sebastian Schaffert

CHAPTER 3. WEB QUERY LANGUAGES

Selection, extraction, reduction, restructuring and ciovatiion should all be possible
in a single XQuery. This requirement is a consequence of iRementl®, really. It
should not be necessary to resort to another language ocipfeuttQueries to perform
these operations. One reason is that an XQuery server migghtnalerstand the other
language, necessitating moving fragments of the desisedtteack to the sender for final
processing. Some of these operations greatly reduce data®s, so are highly desirable
to perform on the server side to reduce network requiremdristher, efficient query
optimization and evaluation depends on having as much adaisa and manipulation
described in advance as possible, to plan the best daevadtinovement and processing
strategies.

What | mean my these different operations, briefly:

e Selection Choosing a document or document element based on conterttuse
or attributes.
Extraction Pulling out particular elements of a document.
Reduction Removing selected sub-elements of an element.
Restructuring Constructing a new set of element instances to hold quedeé&al
Combination Merging two or more elements into one.

[...]

4. No Schema Required
XQuery should be usable on XML data when there is no schem®}xhown in ad-
vance. XML data is structurally self-describing, and it gliobe possible to an XQuery
to rely on such “just-in-time” schema information in its &w@ion. This capability means
XQueries can be used against an XML source with limited kedge of its documents’
precise structures.

5. Exploit Available Schema
Conversely, when DTDs are available for a data source, itilshioe possible to judge
whether an XQuery is correctly formed relative to the DTDg] o calculate a DTD for
the output. This capability can detect errors at compileetiather than run time, and
allows a simpler interface for applications to manipulatpiary result.

6. Preserve Order and Association

XQueries should preserve order and association of elenreXf8lL data. The order of
elements in an XML document can contain important infororat- a query shouldn’t
lose that information. Similarly, the grouping of sub-ekawts within elements is usually
significant. For example, if an XQuery extragtile> and<author> sub-elements
from <book> elements in a bibliographic data source, it should prestrwetitle> -
<author> associations.

7. Programmatic Manipulation
XQueries should be amenable to creation and manipulatigerdigrams. Most queries
will not be written directly by users or programmers. Rathieey will be constructed
through user-interfaces or tools in application developteavironments.

8. XML Representation
An XQuery should be representable in XML. While there may merthan one syntax
for XQuery, one should be as XML data. (Note that XSL is writia XML.) This
property means that there do not need to be special mechatisstore and transport
XQueries, beyond what is required for XML itself. It also pekatisfy Requiremeh} 7.

9. Mutually Embedding with XML
XQueries should be mutually embedding with XML. That is, a@uery should be able
to contain arbitrary XML data, and an XML document should bkedo hold arbitrary
XQueries. The latter capability allows XML document to aintboth stored and virtual
data. The former capability allows an XQuery to hold arbitreonstants, and allows for

Sebastian Schaffert 45

3.3. EXISTING WEB QUERY LANGUAGES

partial evaluation of XQueries. Representation of arbjtcanstants helps with Require-
mentl®. Partial evaluation is useful in a distributed envinent where data selected at
one source is sent to another source and combined with dat th

10. XLink and XPointer Cognizant
XQuery should provide for following XLinks and XPointers.n® expects much XML

will contain external and internal cross-references, Whicuery should be able to tra-
verse.

11. Namespace Alias Independence
An XQuery should not be dependent on namespace aliasesdoaalXML document.
An XQuery of course needs to disambiguate elements namissdtiar in more than one
DTD for a document. However, it is unreasonable to expecttiery creator to know
the internal aliases that a document uses for those DTDs, Ala query is issued over
a group of documents, they may well use different aliasethimsame DTD.

12. Support for New Datatypes
XQuery should have an extension mechanism for conditiodaerations specific to a
particular datatypes. | am thinking mainly of specializge@i@tions for selecting differ-
ent kinds of multimedia content.

13. Suitable for Metadata
XQuery should be useful as a part of metadata descriptions.e¥ample, a metadata
interchange format for data warehousing transformatiorsusiness rules might have
components that are queries. It would good if XQuery couldubed in such cases,
rather than defining an additional query language. Anotbssible metadata use would
be in conjunction with XMI for expressing data model conisti® An implication is that
gueries should be able to stand alone, and not have to bedggbema URL or URI.

3.3 Existing Web Query Languages

3.3.1 XPath

XPath, theXML Path Languag{fl0d], is a selection language aiming at addressing pads 6fML docu-
ment. As it lacks capabilities for restructuring data iteihsannot be considered a true query language, it
is rather aselection languageHowever, many other query languages are based on XPatartinydar the
two most prominent query languages XSLT and XQuery, whiehpaesented below.

Data Model: Ordered Tree

XPath models an XML document as ardered tree XPath differentiates between several kinds of nodes,
includingdocument nodeglement nodesttribute nodesindtext nodesThis document tree induces the
so-called document order, which is obtained by traverdiegdocument tree in a depth-first, left-to-right
manner. XPath does not consider non-tree graph structkeesdmistructured expressions, and ID/IDREF
are only supported by explicit dereferencing.

Navigation Steps

An XPath expression specifies a sequenagavigationor location stepgseparated by and beginning with
“I'™) in this tree, similar to what a car navigation system mightvide to locate a certain address. For
example, to select the phone numbeMidkey Mouse in the address book used in Chadikr 2, an XPath
expression would specify to start at the document node geto the element nodddress-book , from
there move to each of the children, and for each child to tineeria determine whether the namé/iskey
Mouse. In this case, it would select in the next step the child noille labelphone :

[child::address-book/child::person[
child::name[child::first = "Mickey" and child:last = "Mo use")/child:phone

46 Sebastian Schaffert

CHAPTER 3. WEB QUERY LANGUAGES

axis description

/ select the document root (which is considered the pareriteof t
document element)

ancestor proper ancestor of current node

ancestor-or-self current node or proper ancestor of current node

attribute attribute of current node

child immediate descendant (child) of current node

descendant proper descendant of current node

descendant-or-self current node or proper descendant of current node

following node following the current node in document oder

following-sibling

preceding
preceding-sibling

node following the current node in document oder and at the
same depth as the current node

node preceding the current node in document oder

node preceding the current node in document oder and at the
same depth as the current node

namespace namespace node of the current node
parent immediate ancestor (parent) of current node
self current node

Table 3.1: Axis Specifications available in XPath

The result of such a selection is always a sequence of nodethXloes not differentiate between a single
value and the sequence consisting only of that value. Thisshdous implications, for instance, the
operator is not true equality but only “existential” eqtplii.e. it tests whether the intersection of two
seguences is non-empty.

Axis Specifications

The navigation steps in XPath expressions contain soeta¥is specificationthat specify the “direction”
of the traversal in the document tree. In the example abbeeynly axis specifier used welsild . Other
frequently used axis specifiers atescendant , which selects not only immediate child nodes but also
child nodes of child nodes and so forth, golbwing-siblings selects all siblings that come after the
currently selected node in document order. Axis specibioatare separated from node tests:by Table
B summarises the axis specifications available in XPath.

An XPath expression beginning with a forward slash (i)ealways specifies a traversal anchored at the
root, and is thus called absoluteXPath expression. An XPath expression beginning with ahgradxis
specifications iselativeto the currentontext node

Node Tests

Navigation steps consist obde testshat specify what kinds of nodes to select. XPath supponsg
others, the following node tests:

nane matches elements of typeane

* matches every element

nanespace: name matches elements of typeane from the given names-
pace

nanespace: * matches every element from the given namespace

comment() matches comment nodes
text() matches text nodes
node() matches every node

The most common form of node test is to specify the elemenenamin the example above.

Sebastian Schaffert 47

3.3. EXISTING WEB QUERY LANGUAGES

Predicates

Predicates express further conditions on node tests tha¢ymnd the capabilities of simple matching. For
example, they may be used to select every second elementaraaleperson element nodes that contain
a child node with labelirst and further text childMickey , together with a child node with labkist

and further text childouse. Predicates are enclosed in square bradkétsand follow the node test (or
other predicates). Predicates may contain:

location path the predicate succeeds if the evaluation of the locatioh peturns a
non-empty sequence

expOPexp compares two expressions, which may either be atomic vdhesion
paths or function calls, with OP. The following comparisqretators
are supported:

e =tests whether the intersection of two sequences is nonyempt
e |= tests whether the intersection of two sequences is empty

e > >= < and<= convert the two expressions to numbers and com-
pare them accordingly

predand pred connects two predicates witind
predor pred connects two predicates witin

Abbreviated Syntax

Those axis specifications that are most frequently useddald) anddescendant-or-self) can also
be expressed using atbreviated syntgxvhich closely resembles path specifications for direetoand
files in UNIX. The following table summarises the availabtdbeeviations:

Expression Abbreviation
child:: nane name
/descendant-or-self:: name /[name
self::node()

parent::node() .

attribute:: namne @ane
[position()= nj [n]

All other axes have no counterpart in the abbreviated syHatxit is possible to mix abbreviated and
non-abbreviated syntax as required.

In the abbreviated syntax, the selection of the phone nuwity&tickey Mouse” is more conveniently
expressed as:

/address-book/person[name[first = "Mickey" and last = "Mo use"])/phone

3.3.2 XSL/XSLT

The Extensible Stylesheet LanguEg'acIudes both a transformation language (calsl Transforma-
tionsor XSLT) and a formatting language (call¥&L Formatting Objecter XSL-FO). Both are specified
as XML applications (i.e. they use an XML syntax) and are tsed by theWorld Wide Web Consor-
tium (W3C), where they have achieved the statu¥M#FC Recommendatipwhich in W3C terms is the
equivalent of a standard.

Whereas XSL-FO is merely a language containing instrustfonformattingdocuments (similar to
HTML), XSLT [[[0d] can be considered a query language, asdta to select data from an XML document
and rearrange it in a new structure. XSLT is currently maumsgd to transform XML documents into
HTML, but other applications exist.

48 Sebastian Schaffert

http://www.w3.org/Style/XSL/

CHAPTER 3. WEB QUERY LANGUAGES

XML-based Syntax

XSLT stylesheetgi.e. query or transformation programs) are themselves XMtuments. An XSLT
stylesheet can be seen a®am or templatefor the resulting XML document, augmented by data selection
expressions. This is advantageous for two reasons:

e it allows to easily embed queries in documents that contaistiy static content, similar to other
Web languages like PHP or JSP.

e it allows to treat XSLT stylesheets as data, i.e. XSLT stydets can be input as well as output of
another XSLT stylesheet.

XSLT stylesheets have the following XML structure:

<?xml version="1.0"?>
<xsl:stylesheet xmins:xsl="http://www.w3.0rg/1999/XS L/Transform">
tenpl ate rul es

</xsl:stylesheet>

Template Rules

An XSLT stylesheet is always given in terms of a sequendemplate rules A template rule consists of
an XPath expression (called tpatterr) functioning as ayuardto the rule (i.e. a condition that specifies
when the rule is applicable), and an XML fragment used #snagplatefor the output that may contain
either fixed markup, XPath expressions for data selectioreaursive applications of template rules.

Example: Recall the address book example used earlier. The followi&OT stylesheet creates an
HTML document summarising the entries of the address boakiable.

<?xml version="1.0"?>
<xsl:stylesheet xmins:xsl="http://www.w3.0rg/1999/XS L/Transform">

<xsl:template match="/address-book">
<html>
<head><title>Address Book</title></head>
<body>
<table>
<tr><td>Name</td><td>Phone</td><td>Email</td></tr>
<xsl:apply-templates select="./person"/>
</table>
</body>
</html>
</xsl:template>

<xsl:template match="person">
<tr>
<td><xsl:value-of select="./nameffirst"/>
<xsl:value-of select="./name/last"/></td>
<td><xsl:value-of select="./phone"/></td>
<td><xsl:value-of select="./email"/></td>
<ftr>
</xsl:template>

</xsl:stylesheet>

Sebastian Schaffert 49

3.3. EXISTING WEB QUERY LANGUAGES

The first template rule matches the root element (specified lifyit has the labehddress-book . It
contains a template that creates some static HTML markup ecursively applies the stylesheet to all
person child elements relative to the current element (i.e. thé edement). The second template rule
matches only elements that have a labglev$on , but at arbitrary depth. It constructs a table row and fills
it with values relative to the current element.

Structural Recursion

The fundamental computation model of XSLT is structuralrson over the structure of a single, fixed
input document, beginning with the root element and tramgr® the leaves. In the course of this traversal,
template rules are applied in case their patterns match angtmt is immediately written to the result
document. Since rules have to adhere to this traversaljitggneral cannot serve to structure a stylesheet
into logical components. As a consequence, it is neithesiplesto query more than one document nor to
query the results of other rule applications for furtherqessing within a single stylesheet.

However, the author of a stylesheet can deviate from thetmt#aves traversal by specifying explicit
selections in recursive calls apply-templates or by using absolute or backward XPath expressionsin a
rule pattern or selection. The following template ruledi&ir each person the names of person that he/she
knows. It first selects the value of the attriblktews into the variableknows, then outputs the person
name, then applies the stylesheet to all names of personthibigerson knows. The latter are selected
beginning again at the root element, and consequentlyséhéstion deviates from the default traversal of
the tree.

<xsl:template match="person">
<xslvariable name="knows" select="@knows"/>
<p>
Person Name: <xsl:value-of select="name/first"/>
<xsl:value-of select="name/last"/>

Knows: <xsl:apply-templates select="//person[@oid = $kn ows)/name"/>
</p>
</xsl:template>

Imperative Constructs

Besides the recursive application of template rules, XSiovigles a set of imperative constructs that may
be used inside of template rules:

e xsl:for-each may be used to iterate over all elements of a sequence stlactn XPath expres-
sion

e xslif may be used to output certain parts only if some conditioceads (nalse)

e xsl:choose is a generalisation ofsl:if that allows to specify several alternatives guarded by
conditions and works likease or switch in other programming languages

Example: The example in the previous paragraph listed all known perbat the output does not
contain commas to separate the different names. The foltpvafinement adds commas after a name in
case it is not the last name of the lissl:for-each is used to iterate over the sequence of person names
that are known, and arslif inserts a comma in case the name is not the last element ieduesce:

<xsl:template match="person">
<xslvariable name="knows" select="@knows"/>
<p>
Person Name: <xsl:value-of select="name/first"/>
<xsl:value-of select="name/last"/>

Knows: <xsl:for-each select="//person[@oid = $knows]/na me"/>
<xsl:value-of select="first"/>

50 Sebastian Schaffert

CHAPTER 3. WEB QUERY LANGUAGES

<xsl:value-of select="last"/>
<xsl:if test="position() = last()">,</xsl:if>
</xsl:for-each>
</p>
</xsl:template>

Named Templates

XSLT allows to add names to template rules by usingarae attribute, in which case the template rule
is also called anamed template Named templates can then be called explicitly (as oppaselet im-
plicit xsl:apply-templates) by xsl:call-template , Similar to function calls in other programming
languages. Such calls can take an arbitrary number of naaradeters (usingsl:with-param) and can
also be recursive. This feature provides XSLT with the céiiako express any kind of computatiofJ66].

Example: The following XSLT template recursively calculates theulty of the parameten. The
parameteakk is an accumulator, which is necessary because all conistnuafta template is immediately
written to the output and cannot be bound to variables if greater than 1, then the template is called
recursively, withn decreased by 1 and the accumulator multipliechbyOtherwise, the accumulator is
returned. Both parameters are assigned a default value of

<xsl:template name="fac">

<xsl:param name="n" select="1"/>
<xsl:param name="akk" select="1"/>

<xsl:choose>
<xsl:when test="$n > 1">
<xsl:call-template name="fac">
<xsl:with-param name="n" select="$n - 1"/>
<xsl:with-param name="akk" select="$n * $akk"/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$akk"/>
</xsl:otherwise>
</xsl:choose>

</xsl:template>

Due to its verbose XML syntax, XSLT programs often appearerammplicated than they are. Also,
the built-in recursion over the tree structure of the inpotument — while being very powerful — often
confuses users, in particular beginners.

3.3.3 XQuery

XQuery [IT3] is an XML query language developed by ¥ML Query Working GrOLH)at W3C. Itis
currently aw3C Working Draftbut scheduled to becom&é3C Recommendatigne. the W3C equivalent
of a standard) soon. TH&ML Query Working Groujs a committee with participants from both, academia
and industry, and the design of the language is influenced dayyrdifferent groups, which sometimes
gives the impression that XQuery tries to solve all problemsnce (a phenomenon often referred to as
“design-by-committe(ﬂ)

The following introduction is inspired by the recently pishled bookXQuery from the Expert§d],
the first chapter of which is also available onflnand by the lecture notes found BIl[27].

p./icZ.com/cgrwikizbesignsytommitiee
p.//WWW.datadirect.com/tecnzone/xmisxquery/docs/ Kalz _cUl.pdr |

oo D

Sebastian Schaffert 51

http://www.w3.org/XML/Query
http://c2.com/cgi/wiki?DesignByCommittee
http://www.datadirect.com/techzone/xml/xquery/docs/katz_c01.pdf

3.3. EXISTING WEB QUERY LANGUAGES

Data Model

Like XSLT, XQuery regards every XML document as@udered treeconsisting of (among othergjement
nodes attribute nodesandtext nodeswith a particular node called theot node which is parent of the
node corresponding to the outermost element and reprabentshole document.

Everyvaluein XQuery is a sequence of nodes or atomic values, there isstination between a single
element and the sequence consisting only of this elemenegfence is always ordered, usually (if not
explicitly sorted differently) in so-calledocument ordeii.e. in order of appearance in the XML document.
Atomic values can be typed using a type system that is sirolaML schema’s basic types. Also, the
document itself can be associated with a schema definition.

Path Expressions

XQuery uses XPath for selecting nodes in this tree. Any XRafiression is itself an XQuery program.
The following XQuery program thus retrieves all authorslie bibliography example of Sectifn 2.2
(abbreviated XPath syntax):

/bib/book/authors/author

The result of an XQuery program is in general not a tree liIR€SLT but instead dorest i.e. a sequence
of trees. In the example above, the result would be:

<author>
<last>Ingelman-Sundberg</last>
<first>Catharina</first>
</author>

<author>
<last>Ingelman-Sundberg</last>
<first>Catharina</first>

<lauthor>

<author>
<last>Wahl</last>
<first>Mats</first>

<lauthor>

<author>
<last>Nordgvist</last>
<first>Sven</first>

<lauthor>

<author>
<last>Ambrosiani</last>
<first>Bj orn<ffirst>

<lauthor>

Constructing Nodes

Similar to XSLT, queries can be embedded in constructiorepat that resemble the intended result. A
very simple XQuery program is thus just an XML document withany XQuery specific expressions:

<result>
Hello World!
<[result>

52 Sebastian Schaffert

CHAPTER 3. WEB QUERY LANGUAGES

When embedding XQuery expressions in construction pat¢iney are enclosed in curly bradek .
Anything not enclosed in curly braces is written to the otigmd not evaluated. The following XQuery
program groups the forest created above undautmors element:

<authors>
{ /bib/book/authors/author }
</authors>

Variables

An expression of the forrfinane is called avariable reference Variables may be bound walues i.e.
sequences of subtrees selected by XPath expressiorf0BaadLET below). Variable references may be
used in XPath expressions where they are substituted byliimeling. If the value (a sequence!) of the
binding contains more than one item, then each of these iesubstituted in turn, building a union of all
selected data items.

Example:Assume, the variablgb is bound to a sequence bdok subtrees in the bibliography. The
following XQuery expression creates a sequence of autloothé books contained Bb:

$b/authors/author

Variables may not only occur at the beginning of an expresisid in certain cases also within it. The
following example assumes that the variadiieis bound to the (sequence containing only the) stbiak
(in contrast to the example above, whébewas bound to the sequence of subtrees with lated). This
expression again creates a sequence of authors:

[bib/$b/authors/author

FLWOR Expressions

Variables are bound in so-called FLWOR (read “flower”) exgsiens. FLWOR is an abbreviation com-
posed of the initial letters of the five fundamental XQuerywerdsFOR...LET ...WHERE..ORDER BY
...RETURN

FOR and LET serve to bind variables in different manners. Wheré@Riterates over all items in a
sequence and binds a variable successively to each itenatfarrto the singleton sequence containing
only that item) LET binds the variable once to the complete sequence.

Example:The following expression binds the varial§le successively to each book in the bibliography
(selected by the XPath expressibib/book):

FOR $b IN /bib/book
whereas the following expression binds the varighl¢o the sequence of all books:
LET $b := /bib/book

FORIoops may also iterate over several sequences, which igécis a shortcut for nested loops and
allows to compute e.g. the cross-product of two sequenaasinktance, the following expression builds
the cross-product of all books and all authors:

FOR $b IN /bib/book,
$a IN /bib//author

WHERE allows to attach conditions to filter the admissible bindimd a variable in &0Rexpression.
For instance, the following expression binds the varigblenly to books published after 1997:

FOR $b IN /bib/book
WHERE $b/@year > 1997

Sebastian Schaffert 53

3.3. EXISTING WEB QUERY LANGUAGES

ORDER BY specifies an ordering for the variable bindings ifGRexpressionORDER BYs followed
by an XPath expression selecting the nodes based on whiskduence should be ordered. The following
XQuery expression successively binds the vari&ble all books of the bibliography sorted by title:

FOR $b IN /bib/book
ORDER BY $bititle

RETURN returns the result of an XQuery expression. The result imagpecified by an XQuery (sub-
Jexpression, i.e. it may contain construction templatd2atk expressions, or nested FLWOR expressions.
For instance, the following XQuery expression (example X®@®from theXQuery Use CasedB4)) lists
for each book in the bibliography the title and authors, gexlinside aesult element:

<results>
{
FOR $b IN doc("file:bib.xml")/bib/book
RETURN
<result>
{ $hhitle }
{ $b/author }
<[result>
}
</results>

FLWOR expressions can also be nested. The following XQuepyession (example XMP-Q4 from
theXQuery Use Casefists for each author in the bibliography the author’s name the titles of all books
by that author, grouped insideresult element, i.e. the symmetric case for the example abovesdt al
uses a function calledistinct-values that eliminates duplicates in a sequence:

<results>
{
LET $a := doc("file:bib.xml")//author
FOR $last IN distinct-values($a/last),
$first IN distinct-values($a[last=$last]/first)
ORDER BY $last, $first
RETURN
<result>
<author>
<last>{ $last }</last>
<first>{ $first }</first>
</author>
{
FOR $b IN doc("file:bib.xml")/bib/book
WHERE some $ba IN $b/author
satisfies ($ba/last = $last and $ha/first=$first)
RETURN $bititle

}
<[result>
}
<[results>

The two previous examples also show a major deficiency of X@Quathough both examples query
exactly the same data, the second query expression is muehammplicated, as it has to arrange the data
in a new structure, whereas in the first example the resutk girilar in structure to the original document.

54 Sebastian Schaffert

CHAPTER 3. WEB QUERY LANGUAGES

The Positional Variable at

Iterations withFORalso allow to simultaneously bind a variable to the positibthe current item in the
sequence. This is achieved by the constatictThe following XQuery expression selects books together
with their position in the bibliography, and outputs thisaim appropriate XML representation:

<results>
{
FOR $b at $p IN /bib/book
RETURN
<result>
<position>{ $p }</position>
<title>{ $bftitle }<ftitle>
<[result>

}

</results>

Selecting the position can be important as the positiomatmveys meaning. For example, in an
HTML table, the position is the only way to refer to a certaiuenn or row.

Joins

It is often useful to combine data from different sources.tfie aim, XQuery supports not only to bind
multiple variables in &ORloop (which computes the cross product), but also to joimtbased on certain
join conditions. Join conditions are added to WNHERElause of an XQuery expression, like any other
condition. For example, the following query expressioests books from both databases of SedfionP.4.2
to combine them in a unified representation:

<books>
{
FOR $b IN doc("file:bib.xml")/bib/book,
$r IN doc("file:reviews.xml")/reviews/entry
WHERE $bititle = $rititle
RETURN
<book>
{ $britle }
{ $b/authors }
{ $rireview }
</book>

}

</books>

Using nesting of query expressions, XQuery is capable ofesging a wide range of different join
conditions, like equijoin, left outer join, etc.

Quantifiers

Sometimes it is necessary to determine whegigtems orat least ondtem in a sequence satisfy a certain
condition. This is achieved using the quantifielsandsomdan aWHERElause. For instance, the following
XQuery expression selects only such books where one of tieweis “Sven Nordqvist™:

FOR $b IN doc("file:bib.xml")/bib/book
WHERE some $a in $b/authors/author

satisfies ($a/last = "Nordgvist' and $affirst = "Sven")
RETURN $h

Sebastian Schaffert 55

3.3. EXISTING WEB QUERY LANGUAGES

Conditional Expressions: if ...then ...else ...

XQuery usesf ...then ...else ... expressions similar to conditional expressions in othar la
guages. Both théhen and theelse branch are required, but it is possible to (seas return value to
denote empty content. The following XQuery expressios fist each book having at least one author the
titte and the first two authors, and adds an engdgl element in case there are more than two authors

(example XMP-Q6 ofl[34]):

<bib>

for $b in doc("file:bib.xml")//book
where count($b/author) > 0

return
<book>
{ $btitle }
{
for $a in $b/author[position()<=2]
return $a
}
{
if (count($b/author) > 2)
then <et-al/>
else ()
}
</hook>
}
</bib>

Operators and Functions

XQuery provides a variety of pre-defined operators and fanstthat can be used in XQuery expressions.
These include arithmetic operators (like-, or *), comparison operators (like, !=, or >), sequence
operators (likaunion , intersect , orexcept), and a function library containing functions for many task
that occur frequently (like date/time conversion, striegreh, etc.).

User-Defined Functions

It is also possible to define own functions that can be useduse frequently used query expressions, or
to define recursive traversals of a data structure. Funddimitions in XQuery have the following form

(f name is the function name$par anmi, $ paran®, ... is a list of parameters with namearam1,
param2, etc):

define function fnane ($parant, $paran, ..)
as element()*

{

XQuery expression

}

The expressions element()* indicates that the return type of the function is an arbjtrarmber of
elements (see types below).

3.3.4 Survey over other Web Query Languages

The remainder of this section gives a brief survey over oML query languages that are relevant to this
thesis because they have properties that are interestitigefdevelopment of the language Xcerpt. Besides

56 Sebastian Schaffert

CHAPTER 3. WEB QUERY LANGUAGES

the languages listed below, there exist many other XML quamguages that are not discussed here,
e.g.XQL [Bd] andXirQL [B7] (both are similar to XPath)Quilt [B] (the main predecessor of XQuery),
Lorel [A (which is an extension of the Object Query Language OQseammistructured datafxt [[4] (the
Functional XML Transformersimilar to XSLT), FnQuery[Bd] (adds XPath-like constructs for querying
XML to Datalog and/or Prolog)XPathLog/LoPiX[[ZH] and X-DEVICE [[d] (both are deductive path-
based query languages for XMLJog [[1] and CXQuery[BH] (the Constraint XML Query Language
are extension of Datalog with XPath expressidnvebLogEd], XML-RL [[[Q] (the XML Rule Language
andXET/XDD[[] (XML Equivalent Transformatiofsin addition to these pure query languages, there are
furthermore the languag&ducelBA] andCDucelll3], which extend the functional programming language
ML by constructs for XML processing, and the libratgXml[Z1], which adds XML processing support
to the functional programming languagaskell

All of these languages atextuallanguages aimed at querying XML or semistructured dataidBes
this, a number o¥isualquery languages exist (e YML-GL [BJ], Xing [Ed], Complete Answer Aggregates
[3], BBQ [[[T], QURSED[EA], VXT [BF], andLixto [[A]) that allow to compose query programs using
a visual interface. Since visual querying is not the focuthef thesis, none of them are described here
in detail. Furthermore, a number of query languages aimingiarying Semantic Web data are proposed
(e.g.RDQL[EH], OWL-QL[AT], andTRIPLE[EY]), which are not capable of querying plain XML data and
thus also not discussed here.

UnQL

UnQL [B]] (the Unstructured Query Languayjés a query language originally developed for querying
semistructured data and precedes the development of XMhsltater been adopted to querying XML, but
the origins are still apparentin many language properteekample, UnQL has a non-XML syntax that is
very similar to the syntax of OEM presented in Seclion2.1B)QL usesjuery pattern@andconstruction
patternsand a query consists of a singlelect ...where ... rule that separates construction from
guerying. Queries may be nested, in which case the sepaddtguerying and construction is abandoned.

Example 3.2 (UnQL)

Select all authors and titles of books written after 1991 eetdrn them inresult elements contained
within aresults element. Note the use of nesteafect ...where ... statements to group titles and
authors.

select { results: (
select { result: { title: T,
(select { author: A }
where { author: A } in Book)

}

where { book: Book } in Bib,
{ year: Y, title: T } in Book) },
Y > 1991
where { bib: Bib } in db

Since UnQL has originally not been developed for the Wel,afiparently not possible to address arbi-
trary Web documents. Instead, the example above uses difietezalleddb to refer to the semistructured
database represented by the docurbiém|

Pattern-Based Querying and Simulation. UnQL is to the best of our knowledge the first language to
propose a pattern-based querying (albeit with subquergtead of rule chaining) for semistructured data
(including XML). It furthermore usegraph simulatioras its foundation for evaluation, which inspired the
usage of simulation for the evaluation of Xcerpt.

Sebastian Schaffert 57

3.3. EXISTING WEB QUERY LANGUAGES

XML-QL

XML-QL[EH] is a pattern-based, rule-based query language for Xb#ighed at AT&T Labs. Like UnQL,

it usesquery patternsnitiated by WHEREand augmented by variables for selecting data @mstruction
patternsinitiated by CONSTRUCTor reassembling selected data in new structures. An XMLeRery
always consists of a sing@WHERE-CONSTRUGTile, which may be divided into several subqueries. The
following example gives a flavour of how XML-QL queries arenstructed using nested subqueries. Like
in XQuery and XSLT, expressions beginning wihare variables. Note also that XML-QL uses tag-
minimisation to abbreviate closing tags.

Example 3.3 (XML-QL)
Select all authors and titles of books written after 1991 estdrn them inresult elements contained
within aresults element. Like in UnQL, subqueries are used to group titlesaarhors.

WHERE
<bib>
$book
<[> IN "bib.xml"
CONSTRUCT <results>
WHERE <book year=$y>
<title>$t</>
<author>$a</>
</book> IN $book, y > 1991
CONSTRUCT <result>
<title>$t</>
WHERE $a2 IN $a
CONSTRUCT <author>$a2</>
<[result>
<[results>

Logic Variables. One of the main characteristics of XML-QL is that it uses gueatterns containing
multiple variables that may select several data items amna thstead of path selections that may only
select one data item at a time. Furthermore, variablesaitasito the variables of logic programming, i.e.
“joins” can be evaluated over variable name equality. Skigk_-QL does not allow to use more than one
separate rule, it is often necessary to employ subquerigsrform complex queries.

XMAS

XMASIIZA], (theXML Matching And Structuring langualyés an XML guery language that builds upon
XML-QL. Like XML-QL, XMAS uses query patternsand construction patternsand rules of the form
CONSTRUCT ..WHERE However, XMAS extends XML-QL in that it provides a powerfgloup-
ing constructinstead of relying on subqueries for grouping data item&iwiain element. It furthermore
supportgattern restrictionghat allow to restrict the admissible bindings of a variable

Example 3.4 (XMAS)

Select all authors and titles of books written after 1991 eetdrn them inresult elements contained
within aresults element. Note that XMAS provides special grouping conssrémr grouping titles and
authors and thus avoids nested subqueries.

CONSTRUCT
<results>
<result>
$T
$A {$A}
</result> {$T}
<results>

58 Sebastian Schaffert

CHAPTER 3. WEB QUERY LANGUAGES

WHERE
<bib>
<book year=$Y>
$T: <title/>
$A: <author/>
<[>
</> IN "bib.xml"
AND $Y > 1991

Grouping Constructs. In any kind of tree or graph structured databases, it is delgirtogroup data
items beneath a node in the construction of the result. Famgle, when constructing the list of authors
with all titles in the example used in this Section, it is resagy to group allesult elements that can be
created for different authors beneath tésilts element. Likewise, it is necessary to group all book titles
of an author beneath thesult element corresponding to that author.

Many query languages (like XQuery, UnQL, and XML-QL) implent grouping by reverting tsub-
gueriesthat are embedded in the construction pattern, which leadsdose intertwining of query and
construction patterns (as shown in the examples for XQuén@L, and XML-QL above). In contrast,
languages like XMAS (and Xcerpt) provide high-legebuping constructghat allow to collect data items
that are bound in a separate query pattern. Such groupirgjracts usually specify a set of variables
on whose bindings the grouping is performed. A data item éaterd for each different combination of
bindings for these variables.

In XMAS, grouping is expressed by enclosing the variablesvbose bindings the grouping is per-
formed in curly braces and attaching them to the end of theattdrn that specifies the structure of the
resulting instances. In ExamleB.4 abovessalt element is created for every instancesdf(indicated
by {$T} after the closing tag of the elememsult). Within every such result element, all authors are
collected (indicated b{$A}).

When comparing this XMAS query with the XML-QL query abovejd easy to see that grouping
constructs that result in a separation of querying and coctsbn are a desirable property for a query
language, as the query is more declarative and therefoier ¢agrasp.

Pattern Restrictions. A pattern restrictionrestricts the admissible bindings of a variable to such data
items that match a certain query pattern. In XMAS, pattestrigions may be attached to variables in the
WHERBart of a rule and are denoted byfollowed by the restricting pattern. In Examplgl3.4 abdbe,
variables$T and$A are restricted to certain patterns.

Arguably, a pattern restriction is a very declarative meargpecify restrictions for variables. In lan-
guages that do not support pattern restrictions, it is rsacgd0 add the restriction by using additional
external constraints that are not part of the query patterd thus break up the query pattern. As a conse-
guence, queries in such languages are not only less cohaiseften also less efficient to evaluate.

Sebastian Schaffert 59

3.3. EXISTING WEB QUERY LANGUAGES

60 Sebastian Schaffert

Part |l

The Language Xcerpt

61

CHAPTER
FOUR

Xcerpt: A New Programming Paradigm for Querying the Web

This Chapter introduces the syntactical constructs ofdhguage Xcerpt and gives an intuitive meaning to
them based on many examples without immediately providiegaormal definition. Similar descriptions
have also been published [IIJE3] 93]. More extensive exasrgala be found in the next chapter.

This Chapter is structured as follows: Sectigd 4.1 dessritv® different syntaxes that are available
for Xcerpt programs, one based on XML and the other using @&mompact term syntax. Sectibnl4.2
describeglata termgswhich are Xcerpt's means to represent semistructuredaatalosely resemble the
semistructured expressions of Secfiad 2.1. Seffildn 48dntegjuery termswhich are patterns used to
select subterms from data terms by binding variables. Thegmble data terms, but provide advanced
constructs for querying. Secti@¥.4 formally describesciiag of query with data terms and introduces
the notion ofground query term simulatiorwhich is central to this thesis and replaces the syntdctica
equivalence used in most standard pattern matching agmeeadNext, Sectioir 4.5 describes how query
terms can be combined to form more compigreries SectiorlZFb then introducesnstruct termswhich
serve to reassemble variable bindings gathered in quetiesew structures. Of particular interest here
are the powerful grouping construat andsomethat serve to create nested lists of subterms. Finally,
SectioZJ introducesonstruct-query rulethat combine queries with construct terms.

4.1 Two Syntaxes

Xcerpt uses two different syntaxes for programs and seuncigtred data, an XML syntax and a compact
term syntax (called the Xcerpt syntax). The XML syntax abow use standard XML tools like parsers,
editors or browsers (in particular, the visXcerpt prot@ypd [IS[TF] is based on a rendering of the XML
syntax in Mozilla). The Xcerpt syntax, which is used in moattp of this thesis, is a more compact
representation of Xcerpt programs. It is more convenientfith presentation and editing of Xcerpt
programs. Furthermore, to emphasise that XML is not the oepyesentation format for semistructured
data (see Sectidn 2.1 above), the Xcerpt syntax also predd®ore generic format with a deliberate
abstraction from XML. The XML syntax of Xcerpt is not presedtin this thesis. Regular updates are
available afipTwww.xcerptorg |

Besides such “convenience features”, the Xcerpt syntawalto express language constructs that have
no direct counterpartin XML and thus can only be represeintéte XML syntax by using Xcerpt-specific
attributes and elements:

e graph-structured dataSemistructured data is in general graph structured (cftic®dg21). While
several linking and reference mechanisms for XML exist.(¥lgnk [[I0] and ID/IDREF [1I¥)),
they privilege hierarchical data, as all of them need ekpliereferencing.

In contrast, references in Xcerpt terms are treated as &maadarent-child relationship when match-
ing a query pattern against a “database”.

63

http://www.xcerpt.org

4.2. DATA TERMS: AN ABSTRACTION FOR DATA ON THE WEB

¢ unordered/ordered contenin XML documents, content is always considered as bendgred(the
so-calleddocument ord€x In many applications, particularly in semistructurethti@ses, it is how-
ever desirable to be able to consider dataiasrdered i.e. the order in which data items occur is
irrelevant.

Xcerpt allows to mix both ordered and unordered content.

e query specific constructsAs Xcerpt is a pattern-based language, it is necessary icheterm pat-
terns with certain query-specific constructs like varialdepartial/total and ordered/unordered term
specification (se®uery Termbelow), but nonetheless stay as close as possible to thesesgiation
of data items.

4.2 Data Terms: An Abstraction for Data on the Web

Data terms represent XML documents and data items in seristed databases. Data terms correspond
to groundfunctional programming expressions agrdundlogical atoms. Syntactically, they are very sim-
ilar to the semistructured expressions introducddih 2iitHey contain additional constructs that allow to
represent peculiarities of XML (like attributes). Aparbifn the special constructs for ordered/unordered
term specification and the Xcerpt reference mechanism,tdatss are thus just a simplified syntax for
XML, or “XML in disguise”. Data terms are not restricted tqoresenting XML data or semistructured ex-
pressions: they are meant as an abstraction of many of tialaegormalisms for rooted, graph structured
data like data represented in OEM or ACeDB, but also Lisp g-@ssions or RDF graphs.

<data-term> = (oid "@")? <ns-label> <list>
<ns-label> := (<ns-prefix> ")? label
<ns-prefix> = label | N | {
<list> = <ordered-list> | <unordered-list>
<ordered-list> = [<attributes> ? <data-subterms> ? "|"
<unordered-list> = "{" <attributes> ? <data-subterms> ? "}
<data-subterms> = <data-subterm> ("" <data-subterm>)*
<data-subterm> = <data-term> | ™ string "™ | number | "™ oid .
<attributes> = Tattributes" "{" <attribute> ("" <attribute> >
<attribute> = <ns-label> " ™ sting ™ "}

Like in the grammar of Sectidn 2.1, expressions betweand> are non-terminal symbols (or vari-
ables). Expressions enclosed in the quotation chardctarsare terminal symbolsid andlabel denote
object identifiers and expression labels (tag hames), ctsply. oid , label , andstring are character
sequences corresponding to XML identifiers, tag names,ett¢ontentnumber is an arbitrary integer or
floating point numberiri is aninternationalised resource identifiexs defined in[[@1]. In this thesis, the
symbol” is often replaced by the more concise symhakhich is unfortunately not available in ASCII.

If a data termt is of the formlabellt 1,...t] orlabelft 4,..t p}, then thet; are calledm-
mediate subterms of tSubterms of the; are calledindirect subterm®f t. If neither “immediate” nor
“indirect” is specified, the terrsubtermusually only refers to the immediate subterms of a term. kd-an
ogy to the XML terminologyt is theparent termof its subterms, (immediate) subterms are sometimes also
referred to aghild terms and the topmost parent term is called thet term In anjattributesgxpression
of the formattributes{label 1{.--},....[abel n{-}} . the labels must be different, because XML
attributes need to have different names.

Example 4.1

Consider again the publication list from Sectlonl2.1. Theresentation of this semistructured data item
as a data term (or semistructured expression) is shown oleftheAn equivalent representation (except
subterm ordering) as an XML document is shown on the righteltteat the document prologue is omitted
for brevity.

64 Sebastian Schaffert

CHAPTER 4. XCERPT

ublications
p blicat {

00
title{["Folket i Birka @ Vikingarnas Tid"],
authors [

<publications>

<book> e -
<title>Folket i Birka @ Vikingarnas Tid</title>
<authors>

author ["Mats Wahl"], <author>Mats Wahl</author>
author ["Sven Nordqyist"] <author>Sven Nordqvist</author>
author ["Bfirm Ambrosiani"] <author>Bfirn Ambrosiani</author>
</authors>
</book>
%ook { <book> .)
titleh["B[oken Om Vikingara" |, :gﬂ?ﬁ(?rggen Om Vikingarna</titie>
authors .
author ["Catharina Ingelman-Sundberg” | </a<uai1rl11(t)f;<s);>Catharma Ingelman-Sundberg</author>
</book>
) } </publications>
In this example, the terms with labedok areimmediate subterm@ child termsof the term with label
publications , which is also theoot term The term with labepublications is thus theparent term

of the terms with labebook . The terms labelleduthor are immediate subterms of the respective terms
labelledauthors , andindirect subterm®f e.g. the respective terms labellgmbk .

Data terms may be used as an abstraction for many other fiemsahat represent hierarchical or graph
structured data. The following two examples show the pakibin list as a_isp S-expressioand in the

Object Exchange Mod¢DEM).

(publications
(book . .
Entle "Folket i Birka @ Vikingarnas Tid")
authors
author "Mats Wahl")
author "Sven Nordqvist")
author "Bprn Ambrosiani")

look)
titte "Boken Om Vikingarna")
authors i
(author "Catharina Ingelman-Sundberg")

ublications:
{p blicat

00k:

{ title: "Folket i Birka @ Vikingarnas Tid",
authors;

{ author: "Mats Wahl",
author: "Sven Nordqvist",
author: "Bfirn Ambrosiani"

b(})ok:, .

{ title: "Boken Om Vikingarna",
authors: .

{ author: "Catharina Ingelman-Sundberg" }

4.2.1 Term Specifications

Like semistructured expressions, data terms allow theifépegton of orderedandunorderedists of sub-
terms. These properties are expressed by using diffeneds kif braces to parenthesise the subterms.

e Square brackets (i.¢.]) denoteordered term specification.e. the order of subterms in the list is
significant. An ordered term specification allows to seletttsrms by position and is important e.qg.
in text documents.

e Curly braces (i.e{ }) denoteunordered term specificatione. the order of subterms in the term
is insignificant, although they are stored in a particulgjusmce. An unordered term specification
allows to rearrange subterms in the list e.g. for buildingiradex for faster access, or for more
efficient use of a storage system (like grouping severallsubterms in a single page of background
memory while storing large subterms in an individual pagehgaUnordered term specification is
commonly found in semistructured databases.

In ExampldZ1L above, the term with lalpablications has an unordered term specification, meaning
that the order of theook subterms is irrelevant, i.e. the storage system might ehtmeearrange them in
a different order. The terms with labalithors have ordered term specification, meaning that the order of
the list ofauthor elements is significant (e.g. for proper citing).

Terms with different term specifications may be nested Gudaterms of a term may have a term
specification different from the parent term’s), but negtof term specifications within the same list
of subterms is not permitted. For example, the tdfgfia","b"],h{"c","d"}} is a data term, but
f{"a",["b","c"],"d"} is not.

Sebastian Schaffert 65

4.2. DATA TERMS: AN ABSTRACTION FOR DATA ON THE WEB

4.2.2 References

References are used for representing graph structuresxtuat syntax. In Xcerpt data terms, subterms of
the formoid @ t (read: “oid at t”) aredefining occurrencesf oid and associate the identifieid with
the subterm . Subterms of the forrfoid (or foid , read: “reference to oid”) aneferring occurrencesf

oid and refer to the subterm associated with the identifter As with semistructured expressions, every
identifier may occur at most once in a defining occurrence aandentifier used in a referring occurrence
must also occur in a defining occurrence somewhere.

References in data terms are a unified representation fvatih@us linking mechanisms available for
XML (and other formalisms), like ID/IDREF, XPointer, XLin&nd URIs, and serve to simplify their rep-
resentation in Xcer;ﬂ. Unlike other query languages, Xcerpt automatically deesfees such references
when querying, i.e. a reference can be treated like a pafelitrelationship.

Example 4.2
The following two terms are considered to be equivalent:
f{ f{
b{&1l@df} b { 1&ol },
c{ T&ol} c{&l@d{}
} }

4.2.3 Attributes

Unlike XML, Xcerpt does not have a special representationaftributes. Instead, XML attributes are
treated as subterms of a term with the specific restrictianttie value may not be structured content. An
attribute of the formkey = "value" is represented in Xcerpt as a term of the fdey{"value"}

In order to separate attributes from child elements and taizn the possibility to perform one-to-
one transformations between Xcerpt and XML, Xcerpt grolnesrt in a special subterm with the label
attributes . Since attributes in XML are always unordered, this spestibterm always has an unordered
term specification (see above). As a convention, every éata should contaiat most onattributes
subterm, and this subterm, if existent, should befits¢ subterm in the list of subterms (even in case the
parent term is unordered). Also, all attributes of a terndrteehave different labels.

Example 4.3
Each book in théib.xml database of Sectid@Z}.2 contains an attrilyaée in the XML syntax. Con-
sider for example the following book:

<book year="1995">
<tite> Vikinga Blot <ftitle>
<authors>
<author>
<last> Ingelman-Sundberg </last>
<first> Catharina </first>
</author>
</authors>
<publisher> Richters </publisher>
<price> 5.95 </price>
</hook>

In Xcerpt syntax, this book can be represented as followge Moparticular that the element itself is
ordered (as it is a representation of an XML document) whiéedttributes are unordered:

INote that Xcerpt is not limited to its own reference mechamis.g. ID/IDREF can easily be dereferenced using an apiatepr
query (cf. Sectiofl2112).

66 Sebastian Schaffert

CHAPTER 4. XCERPT

book [
attributes { year { "1995" 1}},
title | "Vikinga Blot" Is
authors [
author [
last ["Ingelman-Sundberg" I
first ["Catharina"]
}
1
publisher ["Richters" I
price ["5.95"]

This treatment of attributes has the main advantage thakoeptions are needed in the definition of
Xcerpt extensions like variables or regular expressiamsteld, since attributes are represented in the same
term structure as elements, it is possible to use the stddastructs for all occurrences of attributes.

4.2.4 Namespaces

Xcerpt supports namespaces in a straightforward mannefdahaws closely the use of namespaces in
XML (cf. SectionlZZZF). Like in XML, namespaces are URIsiform resource identifiejor IRIs (inter-
nationalised resource identifiecsNamespace prefixes can be declared and are then sepacstetbfm
IabeIsEby a colon. As an extension to XML namespaces, it & @dssible to use the namespace URI as a
prefixy.

Namespace Declarations

Namespace prefixes are declared with the keyweimefix ~ followed by the defined prefix,aand the
namespace IRI. The default namespace (i.e. the namespadlesabterms that do not have an explicit
namespace prefix) can be defined with the keywsrdefault , followed by=and the namespace IRI of
the default namespace.

<ns-declaration> ::= "ns-prefix" <ns-prefix> "=" " iri ’
| Ilns_defaultll II:H ny Irl ny

As a simplification over XML namespaces, this thesis allo@saspace declarations only outside
terms. This restriction obviously anticipates nested repaee declarations and shadowing, and thayga
tactic one-to-one mapping between XML documents and Xcerpt teresepving the namespace prefixes
is not always possible, although the two approaches haveadent expressiveness (both allow to associate
namespace IRIs with term/element labels). Transformind Xfcuments that use nested namespace dec-
larations into data terms and vice versa is neverthelesstpesis thamamespacethemselves are preserved
and just thenamespace prefixesight get lost. Further refinements of namespaces that takeatccount
both nested declarations and shadowing are currently limnegtigated.

Namespaces in Data Terms

In Xcerpt terms, namespaces are used almost as in XML. Thesigysficant difference to XML is that
the namespace IRl may also be used as a namespace prefixs tagii it is not necessary to define the
namespace in advance.

2In XML, this is not admissible due to syntactic restrictionscerpt does not need to adhere to such restrictions as itis n
necessary to retain backwards compatibility with applicet that are not namespace aware.

Sebastian Schaffert 67

4.2. DATA TERMS: AN ABSTRACTION FOR DATA ON THE WEB

"y

<ns-prefix> = label | ™ uri

Example 4.4 (Namespaces in Xcerpt)

Consider again Examp[e2]14 on pdgé 30, which illustrateduge of namespaces in XML by adding
aremarks element to address book entries that might contain HTML etgmfor markup. It uses the
namespace prefito refer to the address book schema, and the namespacetypiefixfer to the XHTML
schema. As a data term, this document might be representeliicaes:

ns-prefix a
ns-prefix b

"http://www.myschemas.org/address-book"
"http:/ww.w3.0rg/2002/06/xhtm|2"

a:address-book {
&ol @ a:person {

a:name {
afirst { "Mickey" 1},
alast { "Mouse" }

13

a:phone {

attributes {
atype { ‘"home" }

h
"19281118"
13
aknows { 7&o02 },
arremarks {
b:strong{ "Note:" }, "The phone number is also the" , b:em{ "birthday" }, ""
}
13
&02 @ a:person {
a:name {
afirst { "Donald" },
alast { "Duck" }
}
}

Instead of declaring the namespace prefixwould also be possible to use the namespace URI directly,
as in the following example. Note also the use of the defart@space declaration.

ns-default = “http://www.myschemas.org/address-book"

address-book {
&ol @ person {

name {
first { "Mickey" 1},
last { "Mouse" }

13

phone {

attributes {
type { "home" }

}

"19281118"

68 Sebastian Schaffert

CHAPTER 4. XCERPT

13
knows { 7&02 },
remarks {
"http:/fwww.w3.0rg/2002/06/xhtml2" :strong{ "Note:" },
“The phone number is also the" ,
"http://www.w3.0rg/2002/06/xhtml[2" :em{ "birthday" }, "I"
}
13
&02 @ person {
name {
first { "Donald" },
last { "Duck" }
}
}

4.3 Query Terms: Patterns for Selecting Data

Query terms are (possibly incomplete) patterns matcheithstgaleb resources represented by data terms.
A pattern is like &orm augmented by variables acting as place holders for daiavett from data terms
(cf. SectioZI.313), very similar to (non-ground) atomsaigit programming. Query terms build upon data
terms, but may contaimariables constructs for expressirigcompletenesg&f. SectiodZ.314), as well as
position specificationsubterm negatiorand subterm exclusion.

4.3.1 Incompleteness

As discussed in SectidnI.B.4, query patterns need to sujppomplete query specifications, because
data represented on the Web has a much more flexible schemalale represented e.g. in relational
databases. Query terms may contain constructs for expgesgiompleteness ibreadth in depth with
respect torder, and with respect toptional subtermsThe terms “breadth” and “depth” refer to the graph
induced by a data term or semistructured expression (cfid®sEZp andCZZ]1). Note that the constructs
described here together realise requirerfient 4 (“no schequared”) of David Maier’s database desiderata
(cf. SectiorZ3P).

Incompleteness in Breadth: Partial Term Specifications

Incompleteness in breadth (i.e. within the subterms of éineesparent term) is expressed by using so-called
partial andtotal term specifications

e double square or curly braces (i[e]] or{{ }}) denotepartial term specifications.e. a data
term matched by the query term may contain additional soisterot matched by subterms of the
query term.

e single square or curly braces (ife} or{ } as in data terms) denotetal term specifications.e. a
data term matched by the query term must not contain additeubterms that are not matched by
subterms of the query term.

Consequently, a data term that is used as a query term matclyatself (and all such terms that are equiv-
alent with respect to subterm ordering in case of unordend specifications), whereas a query term con-
taining partial term specifications matches possibly itdigimany data terms. As with ordered/unordered
term specifications, subterms with different term spedifices may be nested, but nesting within the same
list of subterms is disallowed.

Sebastian Schaffert 69

4.3. QUERY TERMS: PATTERNS FOR SELECTING DATA

Example 4.5 (Total/Partial Term Specifications)
Consider thebib.xml document of the bookstore example from SecfionP.4.2. THewing two are
guery terms for this database:

bib { bib {{
book { book {{
title { "Boken Om Vikingarna" } title {{ "Boken Om Vikingarna" 1
} B
} b

This query term does not match with the data ternt,his query term will match with the data term, as it
as its total term specification requires that there &lows for additional books and additional elements
exactly one book with exactly oridle element. inside thebook element.

Incompleteness wrt. Order: Unordered Term Specifications

Like data terms, query terms may contain botidered term specificationsquare bracketf] and
[1), andunordered term specificatior(surly braces } and{{ }}). Lett; be a query term and
lett, be a data term:

e if t has an ordered term specification, then it matches tyitimly if t, also has an ordered term
specification. Furthermore, all subtermgpfmust match subterms tain the same order of appear-
ance.

¢ if t; has an unordered term specification, then it matches tyjtli t, has either an ordered term
specification or an unordered term specification. All subteoft; must match subterms i in
arbitrary order.

In case a query term uses ordered and partial term spedaficdatie matched data term has to contain
corresponding subterms in the same order as the subterme qgfiery term, but there may be additional
subterms in between.

Example 4.6 (Ordered/Unordered Term Specifications)

Consider théib.xml example of SectioiZZ4.2. Recall that in this example th@fiauthors for each book
uses arorderedterm specification. The following two query terms show thiéedénce between ordered
and unordered term specifications in query terms:

bib {{ bib {{
book {{ book {{
authors [[authors {{
author { author {
first ["Bj orn"], first ["Bj orn"],
last ["Ambrosiani®] }, last ["Ambrosiani”] L
author { author {
first | "Sven"], first ["Sven"],
last ["Nordqvist"] } last ["Nordquist"] }
I i
i i
B }

Match with all books where the author “BjornMatch with all books that have (at least) the two
Ambrosiani” appears before the author “Svemuthors “Bjorn Ambrosiani” and “Sven Nordqvist”
Nordgvist”. in any order.

This query term does not match with the data ternThis query term will match with the database, as
as the authors in the database do not have the satihe query term does not enforce a particular order
order as in the query term. on authors.

70 Sebastian Schaffert

CHAPTER 4. XCERPT

Incompleteness in Depth: Descendant

Incompleteness in depth is expressed usingléseendant construct. A query term of the fordesc t
(read: “descendantt”) matches with all data terms thatainft subterm that is matched byt an arbitrary
depth (including zero). It is the counterpart to the Kleetae eperator of regular path expressions and to
XPath's descendant (in short notatigh? construct (cf. Section3.3.1).

Example 4.7 (Descendant)

The following query term matches with a text document (like bne introduced in Secti@@2ZH.3), if at
arbitrary depth below the root term, the data term représgrhbe text document containssaction
term with atitte subterm containing the string “Data Terms”, i.e. either etis@, a subsection, a sub-
subsection, etc.

report {{
desc section {{
title {{ "Data Terms" }},
1
1

Currently, the descendant construct is unrestricted, it.ématches” with any path. Extensions are
being considered that allow restrictions to these patlysusing regular expressions over labels, or sets of
admissible term labels.

Incompleteness wrt. Optional Subterms: Optional

Terms containing a subterm of the fowoptional t specify to match the subtermwith a subterm of
the data term if possible (and yield variable bindings far #ariables irt accordingly); otherwise, the
evaluation of the query does not fail, but does not yield aindibgs for the variables inh.

Example 4.8

Consider in the following the student database exampledoited in SectiofZ4.1. The following query
term retrieves student names (variabme and student ids (variablidatrNr). If both exist, both are
returned. If only the name exists, the evaluation does niofifa. the query term still matches), but binds
only the variableName If there is no hame in the data term, the query term fails ttechis.

students {{
student {{
name { var Name },
optional matrnr { var MatrNr }
i
B

The construcbptional is not strictly necessary as the same queries can be exgregsesing sev-
eral query terms instead of only one. However, it is a coremntonstruct in many practical examples
of semistructured databases and XML documents, as the sclguages of such formats often allow
optional elements.

4.3.2 Term Variables, Label/Namespace Variables and the:-Construct

Variables act as “handles” for those subterms of the data that match with the subterm the variable
is “attached to”. If a query term matches with a data term vidiéables are bound to the corresponding
subterms. They can thus be used to retrieve data from a datatel assemble it in a new structure (with
the help of construct terms, Sectionl4.6 below). As in logimgpamming, a single variable can occur at

Sebastian Schaffert 71

4.3. QUERY TERMS: PATTERNS FOR SELECTING DATA

several positions in a term. Of course, bindings to suctat#es have to be consistent for all occurrences,
i.e. all occurrences of the same variable must have the sardmg.

Matching a query term with a data term yields a set of altéraaubstitutions, each of which represents
a possible binding for the variables in the query term suahttie resulting ground instance matches with
the data term (see Sectibnl4.4 below). Obviously, the usenofdered and partial term specifications
allows several alternative bindings for the variables #ilgulfill this requirement.

In Xcerpt query terms, the following variable notions aredis

e Variables without restrictiorare expressed using the keywead followed by an identifier (variable
name). They can be bound to any subterm in the data term anldusrgery similar to the variables
in logic programming, i.e. they act as place holders.

e Variables with restrictionare expressed like a variable without restriction follolsgdhe symbol>
or — (read “as”) and a query term. They can only be bound to sulstefrthe data term that match
with the pattern they are restricted to. Note that variabtgrictions are also used in the language
XMAS (cf. Sectior[33H).

e Label Variablesare, like variables without restrictions, expressed bpgitie keywordar followed
by an identifier, but they occur at the position of a label iruany term. They can be bound to any
label of a subterm of the data term that matches with the m@ntterm specification.

e Namespace Variableare similar to label variables. They occur at the positioraafamespace
prefix in a query term. Namespace variables are always bautine thamespace URI/IRI, not to the
namespace prefix.

Note that in logic programming, variable restrictions agpresented using external constraints. The
advantage of constraining a variable to certain subtevitien a query term instead afutsidethe query
is to better convey the overall structure of the considerezty] Arguably, restricting variables inside the
guery term more appropriately realises the concepguefy patterns

Example 4.9 (Substitutions)

In the student database (Sectland.4.1), the query ternm ginethe left hand side matches the variable
Namewith the student name and varialiimail with the email address. The right hand side lists different
substitutions that yield ground instances of the query tiaih match with the data term given in Figure

3 on pagE34.

Name Donald Duck

students {{ Substitutiono,: Email donald@duck.org
student {{ Substitutionoy: Eam$ Mll(ckey Mouse
name { var Nam_e 1 mail mickey@mouse.org
B email {f var Email } Substitutionos: Ef:zﬁ g(i)cfyf@ygoofy org
B Substitutionoy: Name Goofy

Email goofy@disney.com

Note in particular thaGoofy is listed twice as the data term contains two possible enddilesses that
can be bound to the variabenail .

Example 4.10 (Pattern Restrictions)
The following query terms for theib.xml database of SectidiZ}.2 illustrate the difference betwee
variables without and with pattern restrictions.

72 Sebastian Schaffert

CHAPTER 4. XCERPT

bib {{ bib {{
book {{ book {{
var X, var X — title { }},
authors {{ var AUTHOR}} authors {{ var AUTHOR}}
i i
} }

In this query term, the occurrence of the variablén this query term, the occurrence of the varia¥le

X is unrestricted. Thus, the variab¥emight be is restricted to such subterms that are matched by
bound to any subterm of thmok element (besides the query termiitle {{ }} . Thus, the variabl&
authors), e.g. toprice ortitle , since the vari- can only be bound to thi¢gle element.

ableX occurs without restriction.

The use of the keywordar to introduce a variable is not strictly necessary. It is mfp@ssible to
determine from the context whether a term is a variable or hotparticular, extensions of the Xcerpt
syntax are investigated that allow to declare variables dorstext block. However, using the keyword
var simplifies the syntax in particular for the programmer, aglaws to easily identify variables without
having to look at the context.

Label variables are useful to retrieve structural inforiorathat is unknown in advance, e.g. when trans-
forming an XML document into an HTML representation disptaythe structure of the XML document
(as e.g. in the implementation of the visual langueigXcerptld, I8 [T15)).

Example 4.11 (Label Variables)
Consider the student database of figird 2.3. The followirengterm retrieves the label of the element
containing the string “Goofy” in the variable

students {{
student {{
var X {{ "Goofy" }},
1
1

4.3.3 Position Specification and Positional Variables

In some applications it is desirable to query subterms ordycertain position while still being able to use
partial query patterns, or to query the position of subteémtise database. For example, a query to a report
in XML format could select the second paragraph of all sestio

In query terms, subterms of the fopuosition X t denote that the query term only matches with data
terms that have at positiota subternt’ that is matched by. The position specificatioX is either a
positive number, or a negative number, or a variable:

e apositive numbespecifies the position of the matched subterm below its péeem, where 1 is the
position of the first subterm

e anegative numbespecifies the position relative to the last subterm of themamwhere—1 is the
position of the last subterm.

e avariable matches with a subterm with any position and binds the virittbthe position of this
subterm as a positive integer number.

Position specification is admissible in all kinds of termafieations, i.e. ordered and unordered as
well as total and partial query terms. Note, however, thiat ifossible to express patterns that are contra-
dictory and thus impossible to match, as position specifinatmight conflict with ordered or total term
specifications (e.df[position 2 a, position 1 b]] or f{position 2 a}).

Sebastian Schaffert 73

4.3. QUERY TERMS: PATTERNS FOR SELECTING DATA

Note that a term containing a subterm with position spediticacan never match against a data term
with unordered term specification, as in such cases them iisformation available about the position of

elements.
Example 4.12 (Position Specification)

Consider an HTML document containing a table with books amzkp, like the following:

<table> table
<th> th
<td>No.</td> td
<td>Title</td> td
<td>Price</td> td
</th>
<tr> h
<td>3675</td> [y
<td>Vikinga Blot</td> td
<td>5.95</td> q
<ftr> t
<tr> 1
<td>6743</td> r [
<td>Boken Om Vikingarna</td> d
<td>22.95</td> td
<Jtr> td
</table>]

No"],
"Title"],
"Price"

|l3.675l|]’
"Vikinga_ Blot"],
|l5.95l|]

743]
"Boken "Om Vikingarna"],
"22.95"]

Now suppose you want to select the titles and prices of baokkis HTML table. Since there is no
possibility to determine this via subterm labels, it is re=szey to explicitly specify the position in the

selection, as in the following query term:

table {{
td {{
positon 2 td { var Title },
positon 3 td { var Price }
b
i

A solution that is even more flexible takes advantage of thieneo labels in the table headings and uses
variables in the position specification to select the posgiof the columns with label “Title” and “Price”.
The same variables are then used in place of the positiond 2 afithe example above.

table {{
th {{
positon var TPos td { 'Title" h
positon var PPos td { "Price" '}
1
td {{

position var
position var
1
1

TPos td { var Title },
PPos td { var Price }

Note that this query term does not assume that the price cohames after the title column!

4.3.4 Subterm Negation: without

Subterms of the formwithout t

denote so-calledubterm negationSubterm negation allows to express

that a data term shouldot contain subterms matching a certain query pattern. It ig applicable to
subterms and may not be used at the root level. Furthermobgersn negation is only reasonable in
partial term specifications, and order does not have infeeenadhe negated subterms (only on all positive

subterms).

74

Sebastian Schaffert

CHAPTER 4. XCERPT

This kind of negation is useful in semistructured data, asstthema of such data often allows to omit
subterms. For example, a query might ask for “all studergs did not submit their homework” (i.e. all
student elements that do not contain an element indicatimigtiey submitted their homework). Note that
in relational database systems, this negation is veryairtolquerying for NULL values.

Example 4.13
Recall the student database from SeclionP.4.1. The falipwiiery term retrieves students that did not
submit exercise 2 in the variabfe

students {{
var S — student {{
without exercise {{ number { 2 } }}
1
1

The query matches if there is at least one student that dddewe arexercise element with number 2.

Subterms negated lwithout may contain variables, but such an occurrence can never yaeiable
bindings, i.e. it is not possible to retrieve all subtermatttionot occur. Accordingly, all variables that
occur in the scope of without have to appear elsewhere outside the scope of a negatiomuzir(sf.
Sectiof&PR). Nonetheless, using variables in negate@subtcan be useful, as shown in the following
example.

Example 4.14

Given a text document like the PhD thesis described in Selfild3. The following query term uses
subterm negation to retrieve all references to citatioashive no corresponding entry in the bibliography
in the variableCitation ~ (note the representation of attributes in the Xcerpt tertatimn):

report {{
desc var Citation — cite {
attributes {ref { var Ref }}
}1
desc hibliography {{
without entry {{
attributes {id{ wvar Ref }}}
i
b

3
END

As there is no bibliography entry with ae& of rdf , the result of evaluating this rule against the sample
document of pade®5 is:

var Citation = cite { attributes { ref{ "rdf" }}}

Subterm negation is axistentialnegation: As long as there exists at least one term whichmioteontain
the negated subterm (and matches with the remainder of tterpg all other terms are irrelevant. There
might be terms that contain the negated subterm, thosesidgphot match. Note that although subterm
negation might appear less expressive than full negatidailase, it does in fact share the same problems
if it occurs in combination with thall construct introduced below.

Sebastian Schaffert 75

4.3. QUERY TERMS: PATTERNS FOR SELECTING DATA

4.3.5 Regular Expressions

Query terms provide advanced text processing capabilisggyregular expressionabbreviatedRE). In
language theory, a regular expression is a means to defiuaréanguage (see e.§]57]) and matches
with a character sequence, if the character sequence is G afdhe language defined by the regular
expression. In Xcerpt, regular expressions may be usedréiilplace of strings or in place of subterm
labels, and take the form

I <regexp>/

where<regexp> is a regular expression based on the syntax defin@&D8IX[Ed] (Portable Operating
System Interfagewith some Xcerpt-specific extensions (see below). POSHlee expressions are very
widespread (they are e.g. used in the langudgel Python andJavg and thus well known to many
programmers.

Example 4.15 (Regular Expressions)

The following query term against a text document (like thewtoent described in Sectiftn ZH.3) selects
all sections that contain the substring “XML” in their titlee. where an arbitrary number of characters
appears before and after a substring “XML" (expressed by

report {{
desc var S — section {{
title {{ I*XMLY)
i
B

POSIX Regular Expressions

As POSIX regular expressions are very well-known, thisithesly provides a brief summary over the
major constructs used for building regular expressionse [Ehguage definition is available &]60], and
many introductory books into programming languages pmedhorough treatment of the topic (see e.g.
[E)).

In POSIX, an underlying character set is assumed (e.g. dejcd/alid characters are all characters of
the character set, where an ordinary (i.e. not special)aciar usually matches only itself, and the special
character matches all characters.

Special Characters Special characters are not matched. The following spebiatacters are used in
POSIX regular expressions:

character(s) description
* arbitrary repetition (0-) of the preceding character oresioession

+ arbitrary repetition, but at least one (1-) of the precedingracter or
subexpression

? optional occurrence (0-1) of the preceding character ogxqutession

| separates alternatives

{n} exactlyn occurrences of the preceding character or subexpression

{n,m} betweerm andm occurences of the preceding character or subexpres-
sion

anchor (beginning of line)

$ anchor (end of line)

(and) enclose subexpressions (see below)
[and] define character classes (see below)
\ guote special characters

If a special character is to match instead of being integgkédt has to be quoted using the prefix symhol
For instance\. matches the point and matches the plus character.

76 Sebastian Schaffert

CHAPTER 4. XCERPT

Character Classes Square brackets are used to define character classestd.ef eearacters. A charac-
ter class matches with all characters that are part of tiss clehe following character classes are predefined
by POSIX:

[alnum:] [entrl] [lower:] [:space:]
[:alpha:] [digit] [print] [upper]
[blank] [graph:] [punct] [xdigit]

For example, the character cldstnum:] contains all alphanumeric charactdngyper] contains
all upper case characters, drithnk:] contains all whitespace characters of the character set.

Itis also possible to define new character classes by engladimatched characters in square brackets.
The character clagabc] for instance matches with the characters a, b, and c. Cleareleisses may
contain range expressions using the hyphen characteiinlilgezA-Z] (matching all Latin lower/upper
case letters), where the range is defined depending on tleglyingd) character set (e.g. ASCII or Unicode).

Character classes are negated if the first character afteqbning bracket iS. For instance[-+]
denotes all characters excepnd+. Note the different meaning 6fin regular expressions as negation of
character classes and as beginning of line anchor, and irpXeems as reference to an identifier.

Subexpressions. POSIX allows to specify subexpressions in regular expoassn order to retrieve spe-
cific parts from the matched text. A subexpression is endlgsparenthesgsand) (often alsd(and\) ,

e.g. in the search function of the editemac3y. Subexpressions can later be referred to by their position
If subexpressions are nested, the position is determinedbyting the opening parentheses.

Example 4.16 (POSIX Regular Expressions)
The following regular expression matches with date strisfghe form “1999-12-23" (i.e. in ISO syntax)
and retrieves the year, month and day in the subexpressi@ed 3.

([1-9]{0-9]{3})-([01]{0-9])-([0-3]0-9])
Backreferences. Backreferences are denoted \ny, wheren is a single digit other than 0. A backref-

erenccraﬂmatches a literal copy of whatever was matched byahiesponding n’th subexpression of the
patter

The regular expression matches e.g. the strings
(*)-\1 a-a

go-go

wiki-wiki

Note that “regular expressions with backreferences” arietly speaking) not regular, they describe a
subset of context free languages.

Xcerpt Extensions

In POSIX, the (substrings matched by) subexpressions &ered to by position after the matching is
evaluated. This approach is well suited for imperative leages likePerl or Javg where the evaluation

is sequential. For example, the followiRgrl program retrieves the year, month, and day from the string
"2004-03-04" by referring to the positions of the subexpressions afterdgular expression is matched.
The overbraces highlight the respective subexpressions.

1 2 3
if("2004-03-04" =" / ([1-9][0-9] {3})- ([01][0-9))- ([0-3][0-9D) {
$year = $1;
$month = $2;
$day = $3;
}
3Note that matching with backreferences is NP-hEEBIDEDIOVer.coMNPTI), as it is possible to encode the 3-SAT

problem in a regular expression with backreferences.

Sebastian Schaffert 77

http://perl.plover.com/NPC/

4.4. QUERY EVALUATION: GROUND QUERY TERM SIMULATION

In Xcerpt, referring to subexpressions by position is natsfele: it is incompatible with pattern-
matching as it requires a specific control flow and does notifft Wcerpt's notion of variable binding.
Instead, Xcerpt introduces variables (restrictions) into regular expression patterns, simitathe way
variables are part of term patterns. With this extensiobegpressions can take the form

(var <name> —..)

where... denotes the regular expression patternenathe> is the name of the variable restricted by this
pattern. When the regular expression is matched againstraatier sequence, the variable is bound to the
part of the character sequence that is matched by the sm@ﬂ For example, the following query
term binds the year, month and day of a date string to thebhlagay, M and D:

I(var Y —[1-9]0-9K3)(var M —[01[0-9)(var D —[0-3][0-9])/

Note that subexpressions of the fofry) are still possible as a means for structuring the expression
but the character sequences they matched with cannot bevestr

Example 4.17 (Variables in Regular Expressions)

The following query term retrieves student names and endaitesses from the filstudents.xml and
separates the local namésér) from the domain namebpmain) of the email addresses. The first subex-
pression binds everything from the beginning of the strindi€ated by) up till the first appearance @
(indicated by the character clg8®] matching all characters exce@tto the variabldJser . The second
subexpression binds every alphanumeric character (imgudand-) after the@to the variablédomain.

in { resource { "file:students.xml" |3
students {{
student {{
name { var Namg,
email {
['(var User —[@]+)@(var Domain —f[a-zA-Z0-9.-]+)/
}
b
i
}

Such a separation could be useful for rendering email adelsemn Web pages in a “spamvertised form”, i.e.
not easily recognisable by automatic email address hamgeghe variable bindings fafser andDomain
could be reassembled in a construct term (see below) witltabdeirepresentation (e.g. separdser and
Domain by <at>).

4.4 Query Evaluation: Ground Query Term Simulation

Matching query terms with data terms is based on the notianaied graph simulationgtroduced in
SectioZPB. Intuitively, a query term matches with a datatéf there exists at least one substitution for the
variables in the query term (call@hswer substitutioof the query term) such that the corresponding graph
induced by the resultinground query term simulates in the graph induced by the data terncoOfse,
graph simulation needs to be modified to take into accountiffierent term specifications, descendant
construct, optional subterms, subterm negation, and aegupressions.

It might appear that it would suffice to restrict simulatiombatching a ground query term with a data
term instead of allowing to match two ground query terms; énmv, a relation on arbitrary combinations of
ground query terms is useful as ground query term simuladitater used to definemulation equivalence

4Note that this approach is similar to the extensions of @gexkpressions in the language PytHon]104], where a groyfhenae
the form(?P<name>...) . The substring matched by this group is later accessibléheimymbolic name&name>.

78 Sebastian Schaffert

CHAPTER 4. XCERPT

and a (partial) ordering on the set of ground query termss @tdering is used in the definition of answers
below to ensure that a variable is always bound to the maxiossdible value.

To simplify the formalisation below, it is assumed thatrgs and regular expressions are represented as
compound terms with the string or regular expression ad,labesubterms, and a total term specification.
For example, the strintello, World" is represented as the tefhtello, World"{}

4.4.1 Ground Query Terms and Ground Query Term Graphs
Let 79 be the set of all query terms.

Definition 4.1 (Ground Query Term)
1. A query term is calledjyround if it does not contain (subterm, label, namespace, or iposil)
variables.

2. 79 C 79 denotes the set of all ground query terms, @8Ad- 79 denotes the set of all data terms.

In the following, we differentiate between the ground quesmym itself and the graphs induced by a
ground query term. Whereas the term itself contains sulstefnthe form’id andid@t , all references
are dereferenced in the graph induced by the ground query 8y thepositionof a subterm in a ground
guery term, we mean the position in the list of children oft tteem. For example, iffa,b,c} , cis the
subterm at position 3. Likewise, fid@a,’id} , id@a is the subterm at position 1, afid is the subterm
at position 2. Note that the position of subterms in the giiagiiced by a ground query term is defined
differently: in the last example, the subteeninas both the position 1 and the position 2. For this reason,
we will usually speak abowguccessorsvhen referring to the graph induced by a ground query term, an
aboutsubtermswhen referring to the syntactical representation of a gdoguery term.

Thegraph induced by a ground query terfor short:ground query term graphs defined in analogy
to the graph induced by a semistructured expression (cfida€£8) as follows.

Definition 4.2 (Graph Induced by a Ground Query Term)
Given a ground query tert Thegraph induced by ts a tupleG; = (V,E,r), with:

1. asetoterticegornodedV defined as the set of all immediate and indirect) subtermén¢luding
t itself).

2. asetokdges EC V xV x N characterised as follows:

o for all termsty,ty,t3 € V: if t5 is the subexpression ¢f at positioni and of the fornToid
(a referring occurrence), ariglis of the formoid @ t' (a defining occurrence), withid an
identifier and’ aterm g V), then(ty,ts,i) € E.

o for all termsty,t, € V: if ty is the subexpression ¢f at positioni andnot of the form~oid
then(ty,tz,i) € E.

3. adistinguished vertaxe V called theroot nodewith r =t.

Thelabel of a vertex is either the label, the string value, or the ragekpression of the subterm it repre-
sents.

Like for semistructured expressions in Sectiod 2.6, reprisg vertices as complete subterms and
edges with positions is necessary for the definition of tiheutation relation, as it conveys information
about ordered/unordered and partial/total term spedifieat and the respective positions of subterms in
a term. Figur€dl1 illustrates this definition on two groungky terms. Note that for space reasons, the
vertices in both graphs do not contain the subterms, butthelyerm labels and specifications.

The following additional terminology from graph theory isad below. LeG = (V,E,r) be the graph
induced by a ground query term. For any two nodes V andv, €V, if (v1,Vs,i) € E for some integer
(i.e. there is an edge from to v»), v; andv, are calledadjacent v; is theith successoof vy, andv; is a
predecessoof v,.

Sebastian Schaffert 79

4.4. QUERY EVALUATION: GROUND QUERY TERM SIMULATION

@

1 2 1

() @ O

1 2 3 1 2 N\3

@ ©

Figure 4.1: Graphs induced Hya, ajc,d,a]] and f[[&1 @ a{{c,d, T &1}}]]

4.4.2 Term Sequences and Successors

The following section uses the notion of (finiteym sequences represent the (immediate) successors of
a term. Note that sequences of subterms are used regarfileeknd of subterm specification. In case of
unordered term specifications, there is still a sequenceliésms given by the syntactical representation
of the term.

Recall in the following that a functiofi : N — M can be seen as a (binary) relatibric N x M such
that for every two different pair&;,m;) € f and(nz,m,) € f holds thatn; # n,. Considering a function
as a relation is more convenient for the representationaqpiesgces. A functiori : N — M is furthermore
calledtotal, if f is defined for every element &f.

Definition 4.3 (Term Sequence)
1. LetX be a set of terms and I& = {1,...,n} (n > 0) be a set of non-negative integers. té&km
sequenceés a total functior5C N x X mapping integers to terms.

Instead of writingS= {(1,a), (2,b), ... }, term sequences are often denote®by (a,b,...).
2. LetSbe aterm sequence, and ¢et (i,t) be an element is.

¢ theindexof sis defined asndexs) =i (projection on the first element)
e thetermof sis defined aserm(s) = x (projection on the second element)

If S={(...,a,...) is a term sequence, i.&= {...,(a,i),...}, thenterm((a,i)) = a. Since using
term((a,i)) is very inconvenient, we shall often writeinstead of(a,i) and e.g. usa € Sinstead of
(a,i) € S, Accordingly, we use the noticindexa) to represent the position of the subtearin the term
sequence, unless we have to distinguish multiple occueseofa in S.

Note that empty term sequences are not precluded by thetdefirind term sequences are always
finite, because they serve to represent the (immediategssiors of a term. Instead @rm sequenceve
shall often simply writesequenceas other sequences are not considered in this thesisintibrof an
element can also be called thesitionof that element. However, the notiGmdexis preferred to better
distinguish between thaosition construct in a query term and the position in the sequence.

Sequences allow for multiple occurrences of the same terrar ekample, bothS = (a,b,a) =
{(1,a),(2,b),(3,a)} andT = (a,a,b) = {(1,a),(2,a),(3,b)} are term sequences afandb.

Based on the graph induced by a ground query term, the defirgfithe sequence of successors is as
expected:

Definition 4.4 (Sequence of Successors)
Lett be a ground query term, I& = (V,E,t) be the graph induced liyand letv € V be a node irG; (i.e.
subterm ot). Thesequence of successafsv, denotedSucgv), is defined as

Sucgv) = {(i,V) | (wV,i) €E}
Note thatSucgv) may be the empty sequen¢g, if v does not have successors.

Consider the termt; = f{a,a,b}. The sequence of successorstpfis Sucdt;) = (a,a,b) =
{(1,a),(2,a),(3,b)}. Consider furthermore = 01@f[a,T 01,b]. The sequence of successorstofs

80 Sebastian Schaffert

CHAPTER 4. XCERPT

Figure 4.2: Minimal simulation of [[a{{ }},a{{c,d,a{{ }} }}]] in f[&1 @ a{c,d,T &1}]

Succty) = (a,01@f[a,T 01,b],b) = {(1,a),(2,01@f[a,1 01,b]),(3,b)}. Note that the reference i is
dereferenced (one level).

Mostly, the sequence of successors and the sequence of diate)esubterms of a term coincide. The
most significant difference is that the sequence of successalready dereferenced, i.e. all references
are “replaced” by the subterms they refer to. For this reagmremainder of this Section uses the term
successoristead ofsubterms Although it is somewhat imprecise, the notisabtermis often added in
parentheses to emphasise the coincidence of the two sexpi@nmmost cases.

In Chaptel¥, the following additional notions of subseqesnand concatenation of sequences are
needed. Both definitions are straightforward. In order stiijuish subsequences from subsets, we usually
write SC S

Definition 4.5 (Subsequences, Concatenation of Sequences)
LetS=(s,...,Sn) andT = {t3,...,ts) be term sequences.

1. T is called asubsequencef S, denotedr C S, if there exists a strictly monotonic mappimgsuch
that for each(i,x) € T there existgm(i),x) € S.

2. Theconcatenatiorof SandT, denotedso T, is defined as

SoT =(S1,...,Sm,t1,...,tn)

Consider for example the sequenggs- (a,b) = {(1,a),(2,b) }andSz (a,a,b)={(1,a),(2,a),(3,b)}.
S is a subsequence 8f with (1) = 1, 11(2) = 3 or W|th n(l) = 2,1(2) = 3. The concatenation & and
S yields

S0 =(abaab)={(1a),(2b),(3a),(4a),(5b)}

4.4.3 Ground Query Term Simulation

Using the graphs induced by ground query terms, the notiomatied simulation almost immediately
extends to all ground query terms: intuitively, there exiatsimulation of a ground query termin a
ground query ternty, if the labels and the structure of (the graph inducedtpgan be found in (the graph
induced by}, (see Figur€Z]2). So as to define an ordering on the set ofalihgrquery terms, ground
guery term simulation is designed to be transitive and riziex

Naturally, the simulation on ground query terms has to reispe different kinds of term specification:
if t1 has atotal specification, it is not allowed that there exist succeséassubterms) of, that do not
simulate successors tif if t; has arorderedspecification, then the successors,dfiave to appear in the
same order as their partnerdir{but there might be additional successors between thera gpbcification
is also partial).

The definition ofground query term simulatias characterised using a mapping between the sequences
of successors (i.e. subterms) of two ground terms with omeaye of the following properties, depending

Sebastian Schaffert 81

4.4. QUERY EVALUATION: GROUND QUERY TERM SIMULATION

on the kinds of subterm specifications and occurrences afdhstructsvithout andoptional . Recall
that a mapping is called total if it is defined on all elemerita set and partial if it is defined on some
elements of a set.

Definition 4.6
Given two term sequenc@®$ = (s, ...,Sn) andN = (t3,...,tn).

1. A partial or total mappingr: M — N is called

e indexinjectiveifforall s,s; € M withindexs) # indexs;) holds thaindex 11(s)) # index11(s;))

¢ index monotonicif for all s,s; € M with indexs) < indexs;j) holds thatindex(s)) <
index(s;))

e index bijectiveif it is index injective and for alty € N exists ars € M such that(s) = tx.

e position respectingif for all 5 € M such thats is of the formposition j s/ holds that
index1(s)) = j

e position preservingif for all s € M such thas is of the formposition | s/ holds thatri(s)
is of the formposition | t; andj =1.

2. A partial mappingt: M — N is calledcompletablevith respect to some proper®y if there exists a
partial or total mappingr : M — N such that

e 11(5) =17(s) for all 5 € M on whichrmis defined, and
o there exists at least one tespe M on whichris undefined andr’ is defined and
e P holds forr’

Index monotonienappings preserve the order of terms in the two sequencearangsed for matching
terms with ordered term specificationsdex bijectivenappings are used for total term specifications.

A position respectingnapping maps a term with position specification to a term it specified
position and is required (and only applicable) if the ternttmthe sequence of successors (subtemhs)
uses total and ordered term specification. E.g. given twogé{ position2 b}} and f[a, b, b], a position
respecting mapping maps the subtguosition2 b only to the firstb, because its position is 2, but not to
the second, because its position is 3.

A position preservingnapping maps a term with position specification to a term #ithsame posi-
tion specification; it is applicable in case the sequenceaiofasssors of the second teinis incomplete
with respect to order or breadth, as the exact position damadetermined otherwise in these cases. In
particular, this ensures the reflexivity and transitivifyttee ground query term simulation (see Theorem
E3 below). E.g. given the termf{{ position2 b}} and f{a, b, position2 b}, the subternposition2 b of
the first term needs to be mapped to the subteosition2 b of the second term, but cannot be mapped to
the firstb because its position is not “guaranteed”.

To summarise, @osition respectingnappingrespectshe specified position by mapping the subterm
only to a subterm at this position. On the other hangpsition preservingnappingpreserveshe position
by mapping the subterm only to a subterm with the same pasfiecification.

Thecompletablgroperty is used for optional and negated terms. If a termahreegated successor, the
mapping of its sequence of successors to the successorsadradsterm has to be defined on all successors
that are not negated, but must not be completable to any ofefated successors. For example, given the
termsf{{a,without b}} and f{a,b,c}, all positive subterms of the first term can be mapped to suiste
of the second term, but this mapping is completable to thateegsubtermvithout b causing the match
to fail. For optional successors, thempletablgproperty is used to ensure that the simulation is maximal
with respect to optional successors, i.e. all successorwlicch it is possible need to participate in the
simulation.

Besides these properties, ground query term simulatiodsgeaotion ofabel matcheso allow match-
ing of string labels, regular expressions, or both:

Definition 4.7 (Label Match)
A term labell; matches with a term labél, if

82 Sebastian Schaffert

CHAPTER 4. XCERPT

o if I1 andl, both are character sequences or both are regular expresien; = I, or

e if |1 is aregular expression ahglis a character sequence, thgr L(l1) whereL(l1) is the language
induced by the regular expressign

I, does not match withy in all other cases.

Example 4.18
1. the labels of the term&{a, b} and f{b,a} match

2. the labels of the termf&{a, b} andg{b,a} do not match
3. the labels of the termig/ and"Hello World" match
4.

the labels of the ternisiello World" and/*/ do not match

The following definition characterising a ground query tesimulation of a ground query tertp into
a ground query ternty is divided into several parts. The first part (poilks 1 Bhd &jatibes simulation
for terms not containing the subterm negatigthout , which is rather straightforward. Subsequent parts
extend the notion of simulation by introducimghout first only into the ternt; and then also into the
termt, (pointsi3 andb), and the last part (pdiht 6) describes sitionlan case ofoptional subterms.
Both extensions are rather complex and therefore treatet aely.

Let G = (V,E,t) be the graph induced by a ground query térrm the following,Sucqt’) denotes the
sequence of all successors (i.e. immediate subternt§)ro6, Succ (t') C Sucgt’) denotes the sequence
of all successors of a terthin G that are not of the forrmithout t”, andSucc (t) denotes the sequence
of all successors of a terthin G that are of the fornwithout t” (i.e. Succ (t') W Succ (t') = Sucdt’)).
FurthermoreSucé(t’) C Sucét’) denotes the sequence of all successors of a teimG that are not of
the formoptional ~ t”, andSucé(t’) C Sucdt’) denotes the sequence of all successors of a tethat
are of the formoptional ~ t” (i.e. Sucé(t’) w Sucé(t’) = Sucgt’)). Note thatSucc C Suce, because a
combination ofwithout andoptional is not reasonablg.

Definition 4.8 (Ground Query Term Simulaton)

Letry andr, be ground (query) terms, and 81 = (Vi,E1,r1) andG, = (V,, Ep,r») be the graphs induced
by r; andry. Arelation<C V; x V, on the set¥; andV, of immediate and indirect subtermsmfandr,

is called aground query term simulatigrif and only if:

1. r1 <ry (i.e. the roots are ir)

2. if vi < v and neithew; nor v, are of the formdesc tnor have successors of the formighout t
oroptional t, then the label§; andl, of v; andv, match and there existstatal, index injective
mappingrt : Sucgvi) — Sucgve) such that for alk € Sucgvi) holds thas < r1(s). Depending on
the kinds of subterm specifications\afandv,, 1Tin addition satisfies the following requirements:

V1 Vo it holds that
l1[s1,-..,Sm] [P ST is index bijectiveandindex monotonic
l1{s1,...,Sm} Iolt1, ..., tn mris index bijectiveandposition respecting
I2{t1,...,tn} rris index bijectiveandposition preserving
I1[[s1,- - - Sml] Io[t1,. .. tn) ris index monotoni@ndposition respecting
Io[[ts,. . ., tn]] Tis index monotoni@ndposition preserving
I1{{s1,...sm}} | l2{te,-..,tn} TTis position preserving
I2[t1,. .., tn] TTis position respecting
Io{{t1,...,tn}} | misposition preserving
I2[[t1,- -, tn]] TTis position preserving

3. if vi < v andv; is of the formdesc {, then

e Vv, is of the formdesc ¢ andt; <t, (descendant preservingr

Soptional only has effect on the variable bindings, avithout may never yield variable bindings

Sebastian Schaffert 83

4.4. QUERY EVALUATION: GROUND QUERY TERM SIMULATION

e t; <V, (descendant shallgwor
o there exists &, € SubTv,) such thaw;, <V, (descendant deg¢p

4. if vi < vy, vq has successors of the fomithout t, andvs is either of the formx{ty,...,tm} or of the
formlxlts,...,tm], then the labell andl; of v andv, match, and there existd@tal, index injective
mappingrt: Succ (v1) — Sucgv,) such that for als € Succ (v;) holds thats < 7i(s). Depending
on the kinds of subterm specificationswfandv,, rrin addition satisfies the following requirements:

1 Vo it holds that
I1[[s1,- - - Sml] Io[t1,. .. tn) ris index monotoni@ndposition respecting
I1{{s1,...sm}} | l2{te,-..,tn} TTis position preserving

I2[t1,. .., tn] TTis position respecting

Furthermore T is not completablewith respect to the above mentioned properties to a (pantial
total) mappingr’ : Sucgv;) — Sucgv,) such that there exists a successarSucc (v;) with t of
the formwithout t’ andt’ < mi(t).

In this case, the simulation is calleggation respecting
5. if vy <X v,, bothv; andv, have successors of the fomithout t, andvs is either of the form
[2{{t1,...,tm}} or of the formlx[[ts,...,tm]], then the label$; andl, of v; andv, match, and there
exists aotal, index injective mapping : Sucgvi) — Sucgv,) such that
e for all se Succ (v;) holds thats < r1(s)

e for all s € Succ (v;) such thats is of the formwithout s holds thatr(s) is of the form
without t’ andt’ < ¢ (negation preservinf]

Depending on the kinds of subterm specificationsjadindv,, 17in addition satisfies the following
requirements:

1 Vo it holds that
I1[[s1, - - - Sml] I2[[t1, . - -, tn]] ris index monotoni@ndposition preserving
I1{{s1,...sm}} | 12{{t1,...,tn}} | is position preserving

I2[[t1, . - -, tn]] TTis position preserving

6. if vi < vp, andvy or v, have successors of the fooptional t, then the labelf; andl, of v; andv,
match and there existspartial or total, index injective mapping : Sucgvi) — Sucdv,) such that
e 1Tis total onSucé(vy)

e depending on the kinds of subterm specifications and oatcegeof subterm negations va
andvs, 1T satisfies the requirements listed in the tables above

e forall s€ Sucé(vy) holds thatr(s) € Sucé(vy) ands < (s)

e for all s€ Sucé(v1) such thas s of the formoptional s for which rtis defined holds that
either

(a) 71(s) € Sucé(vp) ands' < mi(s), or
(b) m(s) € Sucé(vy), m(s) is of the formoptional ~ t/, ands' <t/
e 1Tis not completable to a mapping that also satisfies these requiremﬂnts
In all other cases (e.g. combinations of subterm specificathot listed aboveX is no ground query

term simulation. In subsequent parts of this thesis, thebgym always refers to relations that are ground
guery term simulations.

6Note that this property requirés= s’ although one might expest < t’ on a first glance. The reason is tisaheeds to exclude
at least the same subtermstaand therefore needs to be more general

"This restriction, while not strictly necessary for groumdnts, ensures that always a maximal number of optional subte
participates in a simulation and thus yields variable bigdi

84 Sebastian Schaffert

CHAPTER 4. XCERPT

Note that although graph simulation allows to relate twoe®df the one graph with a single node of
the other graph, it is desirable to restrict simulationsMeein two ground query terms iojective cases,
i.e. such cases where no two subtermtg affe simulated by the same subternt,ofWhile it makes certain
queries more difficult, this restriction turned out to be m@asier to comprehend for authors of Xcerpt
programs and reflected the intuitive understanding of gpatterns.

Example 4.19

The following comprehensive list of examples illustrates different requirements for a ground query term

simulation. They are grouped in categories, each refetdiige relevant requirement in Definitibn}.8.
For illustration purposes, subterms are annotated witin theéex as subscript. This subscript is not

considered to be part of the label. Algosition is abbreviated agos, optional is abbreviated agpt ,

andwithout is abbreviated as for space reasons.

1. total ordered term specification (cf. requiremenf2)
Letty = f[ay,b,c3], to = flag,bp,c3,d4], t3 = flay,Cp,ba], t4 = f{ay,b2,c3}, andts = glay, by, c3]

e t; <ty: there exists a total, index bijective, and index monoteméppingrr from (a;, by, c3) to (a;, by, c3)
with s < 71(s), mapping each subterm to itself.

ty A to: there exists no index bijective mapping frafam, by, c3) to (a;,bp,c3,ds), as the two sets have
different cardinality.

t; A t3: there exists no index monotonic mapping frdaa, by, c3) to (az, ¢z, bz) with s < mi(s); the only
mapping that would satisfy=< r1(s), i.e. {a; — a3,by — bg, c3 — ¢}, is not index monotonic.

t1 A t4: the braces of; andt, are incompatible.

t1 A ts: the labels of1 andts do not match.
2. total unordered term specification (cf. requiremen{2)
Letty = f{aq, by, Ca}, to = f[ay, by, C3,da], t3 = f[an,Cz, b3, ta = f{ag, by, c3}, andts = glay, by, ¢3]
e t; <t3: there exists a total and index bijective mappimdrom (a;, by, c3) to (as, by, c3) with s < 71(s),
mapping each subterm to itself, thus being position présgrv

e t; Aty there exists no index bijective mapping fraam, by, c3) to (a;,by,c3,ds), as the two sets have
different cardinality.

e t; <t3: there exists a total and index bijective mappmfyom (a;, by, c3) to (as, ¢z, b3) with s< 11(s), the
mapping{a; — a1,by — bz, c3— c,} (it does not need to be index monotonic) and it is triviallgiion
respecting, becausgdoes not contain position subterms.

e t; <X14: there exists a total and index bijective mappimdrom (a;, by, c3) to (a1, by, c3) with s < 71(s),
mapping each subterm to itself, thus being position présgrv

e t; Ats: the labels of; andts do not match
3. partial ordered term specification (cf. requirement[d)
Letty = f[[by,C2]], t2 = f[ag,bp,C3,d4], t3 = flay,Cp, b3, t4 = f{ay, b, c3}, andts = f[by, az,c3)
o t1 =tq

e 1 <ty: there exists a total, index injective, and index monotanappingrr = {b; — by,cy — c3} with
s=< 11(s). Itis trivially position respecting.

o t; At3: there exists no mappingwith s < 71(s) that is also index monotonic, becaugeloes not contain
b andc in the right order.

e t1 At4: the braces of; andts are incompatible.
e t; <t5: there exists a total, index injective, and index monotenappingt = {by — by,cy — c3} with
s=< 11(s). Itis trivially position respecting.

4. partial unordered term specification (cf. requirement[)
Letty = f{{by,co}}, to = flag,b2,C3,d4], t3 = flag,Co,b3], ta = f{ay,bp,c3}, ts = flby,az,c3), andts =
flag, by, d3]. All mappingsion Sucgt;) are trivially position respecting and position preserving

e t1 =2y

e t; < to: there exists a total, index injective mapping= {by — by, ¢z — c3} with s < 11(s)

Sebastian Schaffert 85

4.4. QUERY EVALUATION: GROUND QUERY TERM SIMULATION

t1 < ts: there exists a total, index injective mappimg= {by — bz, ¢z — ¢} with s< 11(s)

t1 < t4: there exists a total, index injective mappimg= {by — by, cs — c3} with s < 11(s)

t; <ts: there exists a total, index injective mapping= {b; — by, ¢y — c3} with s =< 11(s)

t1 A tg: there exists no total mappirmgsuch that < 11(s) holds for alls, astg does not contain a subterm
matching withc,.

5. position specification (cf. requiremeni})
Letty = f{{cy,pos 2bp}}, tz = f[ay, by, cg), t3 = f[by,C2, a3, ta = f[[ay, by, c3]] andts = f[[ag, pos 2y, 3]

e t; <t1: there exists a total, index injective, position presegvinappingm = {c; — c1,pos 2hy —
pos 2by} with s < r1(s)

e 1 <ty: there exists a total, index injective, position respegtimpping= {c1 — C3z),pos 2by — by}
with s < 11(s)

e t; At3: there exists no position respecting mappmwith s < 11(s); the only mapping witts < 7i(s) is
not position respecting, as it contains pos,2— b; .

e t; A4 there exists no position preserving mappmgvith s < 11(s), becausey contains no subterm of
the formpos 2 t’; positionrespectings not sufficient, as; is incomplete and might match further terms
with b at a different position than 2, e.g. the teffiay, d, b3, ¢4], in which casex would not be transitive.

e t; <t5: there exists a total, index injective, position presegvinappingm = {c; — C3),pos 2hy —
pos 2b>} with s < 11(s); in contrast td,, the termts “preserves transitivity” of<.

6. descendant (cf. requiremenfB)
Lett; =desc fa}, t» =desc fa}, t3 = desc f{a,b}}, andty = g{f{a},h{b}}
e t; <ty, becausd {a} < f{a}
e t; At3, becausd {a} £ f{{a,b}}
e t1 <14, because, contains a subtertj such thatf {a} <t}.

7. unordered term specification: subterm negation (cf. requiementdd and®)
Letty = f{{aq, "o {{d1}} }}, to = f{au,Co}, ts= f{a1,b2{d1,&},c3}, ta = f{{ar, C2}}, ts = f {{an, ~b2{{ }}, C3}},
andtg = f{{a1, bp{{d1,e}},c3}}. All mappingsm on Sucqt;) are trivially position respecting and position
preserving.

e t; < t: there exists a (partial) mappimg= {a; — a; } that is total onSucc (t;) = & and for alls €
Succ (t7) holds thats < 7i(s), and 1T cannot be completed to a mappingsuch that there existstae
Succ (tp) of the form—t’ witht’ < 77(t), becausé, does not contain a subterm matchimg{d; }}

o t; At3: every partial mappingrwith s < mi(s) for all s€ Succ (ty), i.e. only the mappingr= {a; — a; },
can be completed to a mappimg, i.e. the mapping? = {a; — a;,—bp{{d1}} — bp{d1,e}}, such that
there exists &€ Succ (1) of the form—t’ (i.e. =bp{{d1 }}) with t’ < 1'(t) (i.e. bp{{d1}} < bp{d1,e2})

o t; Aty there exists no mapping such that alt € Succ (t;) are mapped omit) of the form—t’, as
Succ (t4) = 0. Note thaty is of a form defined in requiremelk 4.

e t; <t5: there exists a total index injective (and vacuously positiespecting) mapping = {a; —
a1, —bp{{d1}} — —bo{{ }})} such that for alk € Succ (t;) holds thatt < ri(t) (i.e. a3 < ap), and for
all =t € Succ (t1) with —t' = m7(—t) holds that’ <t, i.e.b{{ }} < by{{d1}}. Note that because of the
negation, it is necessary that< t instead ot < t’; otherwise, transitivity of< would not be guaranteed
(see the footnote in requiremdt 5).

e t; Atg: in the only mappingt = {a3 — a3, —bp{{d1}} — —by{{d1,e2}}} in which for allt € Succ ()
holds that < mi(t) (i.e.a; < ap), it does not hold that for alht € Succ (t1) with —t’ = m(—t) holds that
t’ <t, becausd{{d1,e>}} A bp{{d1}}. Note that because of the negation, it is necessary'thatinstead
of t < t’; otherwise, transitivity of< would not be guaranteed, because&ould match with a term that
would not match withy, e.g. f{a;,—by{d; },c3} (see again the footnote in requiremght 5).

8. ordered term specification: subterm negation (cf. requirenents[d and®)
Lett; = f[[a1,—by]], letto = f[by,ap,c3], and letts = f[as,cp, bs]. Position requirements are again trivial.
e t; <ty there exists an index monotonic mapping= {(a;,ap)} that is total onSucc™ (t1) = a; and for
all se Succ (t1) holds thats < 71(s), and T cannot be completed to a mappingsuch that there exists a

t € Succ (1) of the form—t’ witht’ < 77/ (t), such thatt' is index monotonic; the only feasible completion
= {a; — ap, by — by } is not index monotonic.

Sebastian Schaffert

CHAPTER 4. XCERPT

o t; At3: there exists an index monotonic mappirtg= {a; — a; } that is total onSucc (t;) = a; and for
all se Succ (1) holds thass < 1(s), but it can be completed to an index monotonic mappihg {a; —
a1, by — bz} such that there existstae Succ (t1) of the form—t’ (i.e. —by) with t’ < 77'(t)

9. optional subterms (cf. requirement{®)
Lett; = f{{optag,by}}, letty = f{by,co}, letts = f{a1,bp,c3}, and letty = f{{a1,optby}}

e t1 <t;: there exists an injective mappimg= {opta; — optay, by — by} such thas < ri(s) that cannot be
completed to a mapping’ with these properties, asis already total; the other mappirg= {b, — by}
fulfils the same properties, but can be completett.to

e t; <ty: there exists a partial injective mappimg= {b, — by } such thas < 71(s) for all s€ Sucé(ty) that
cannot be completed tord with these properties, @& does not simulate in any subtermtef

e t; <tg: there exists an injective mappimg= {opta; — a1,by — by} such that < 7i(s) that cannot be
completed to a mapping’ with these properties, asis already total; the other mapping= {b, — by}
fulfils the same properties, but can be completett.to

e t1 At4: the mappingr= {opta; — ajg,by — opt by}, which is the only mapping respecting the other
properties, does not fulfil the requirement that for st Sucé(t;) holds thatr(s) € Sucé(ty). This
restriction is important, becaugsgdoes not guarantee that there exists a subterm labzlled

4.4.4 Simulation Order and Simulation Equivalence

Ground query term simulation has been designed carefullyetdransitive and reflexive, because it is
desirable that ground query term simulation is an orderivgr che set79 of ground query terms. In
particular, this property is used in the definitionasfswersbelow.

Theorem 4.9
< is reflexive and transitive.

Proof. cf. Appendi{Ed O

With this result, the following corollary follows triviat

Corollary and Definition 4.10
=< defines a preor(ﬂnn the set of all ground query terms called dimulation order

Note that the simulation order is not antisymmetric (d.§a,b} < f{b,a} and f{b,a} < f{a, b},
but f{a,b} # f{b,a}) and thus does not immediately provide a partial ordering. tiiérefore define an
equivalence relation as follows:

Definition 4.11 (Simulation Equivalence)
Two ground query termg andt; are said to beimulation equivalentenoted; =t5, if t; <t; andt, <t;.

The meaning of simulation equivalence is rather intuitiveo terms are considered to be equivalent,
if they differ only “insignificantly”, e.g. in a different aker in the sequence of subterms in unordered
term specifications (e.d.{a,b} and f{b,a}). This is consistent with the intuitive notion of unordered
term specifications given above. Note, however, tiat a} % f{a}, because the first term contains two
a subterms, whereas the second contains onlyagmebterm, i.e. there cannot exist an index bijective
mapping of the successors of the first into the successoleafdcond term (and vice versa). Simulation
equivalence plays an important role later, because it altowonsider terms as “equal” that behave equally.

Simulation equivalence extends to non-ground terms inagsttforward manner: two non-ground
query termd; andt; are simulation equivalent, if for every grounding subsititn o holds thato (t;) =
o(t2). Note that for any two data terntsandt; it holds that ift; < t, thent; = t;, because data terms do
not contain partial term specifications.

Note that simulation equivalence is similar, but not eqogbisimulation, because bisimulation requires
thesamerelation to be a simulation in both directions, whereas $itinn equivalence allows two different
relations.

= partitionsT? into a set of equivalence classé$/~. On this setX is a partial ordering. Given two
equivalence classése 79/~ andf, € T79/~, we shall writef; < T iff t; <t,.

8a preorder is defined as a transitive, reflexive relation

Sebastian Schaffert 87

4.5. QUERIES

Corollary 4.12
= is a partial ordering off9/~.

In this partial ordering, it even holds that given two tetmandt, such that there exists a least upper
boundts, thents is unique except for ternts that are equivalent wre.

4.5 Queries

A queryis a connection of zero or more query terms using the n-arpectivesand andor, the query
negationnot, and the conditional construataseandif. A query may furthermore be associated with re-
sources against which the query terms are evaluated. Degtaplery terms (i.e. query terms not contained
in one of the aforementioned constructs) and detached deens associated with a resource are called
guery atomsotherwise the query iseompound query

45.1 Resource Declarations

Queries may be associated with input resource declaratigmessed in terms of a URI or IRI, in which
case all query terms that are part of the query are evalugeidsi the XML documents or semistructured
databases located at the given URI/IRI. Resource dedasasillow Xcerpt programs to consider any Web
site as input for a query program. An input resource dedtarathas the following form:

in {
resource [<uri>, <format>],
<query>

}

<uri> isthe URI or IRl used to locate the resource on the Web. A URIdhay refer to any Web resource,
but the current prototype (cf. Chapfel A) currently only gogis resources accessible via the network
protocolshttp (Hypertext Transfer Protocplandfile (i.e. files located on the local disk)xformat>
optionally specifies the format of the resource and may be gé¢he runtime system to choose the correct
parser. Feasible input formats for Xcerpt are resourcesi#fsrribe semistructured data in various formats
(e.g. Xcerpt, XML, HTML, LISP, RDF, OEM or BTEX).

Example 4.20
Assume that the XML document bib.xml containing the data @fkstore A is accessible via the URI
http://www.xcerpt.org/bib.xml . A query retrieving all book titles in this document is exgged as
follows:
in {
resource ["http://www.xcerpt.org/bib.xml" ,xmlt],
bib {{
book {{
var Title > title { 1}
b
b
}

Resource declarations may be nested, in which case thamosedeclaration is relevant for the query;
all outer declarations are shadowed.

4.5.2 Conjunctions and Disjunctions of Queries

Queries can be connected with the n-ary boolean conneaidesindor . An expression of the form
and{ Q1,.., Qn} isanandconnected query, an expression of the forinQ,..., Qn} is anor connected

88 Sebastian Schaffert

CHAPTER 4. XCERPT

query. Intuitively,or merelymergeghe resulting sets of substitutions resulting from the tps#l;, ..., 9y
(like union in relational database systems), wheraak creates the cross product of the substitution sets
and thugoinsthe individual substitutions (if none of thg contains a negation).

Curly braces in boolean connectives leave the evaluatiderapen to the runtime system. The eval-
uation engine may then apply heuristics to determine amgtorder of evaluation. For instance, the
evaluation engine might prefer queries that do not invoktwoark 1/0. Square brackets enforce a specific
evaluation order.

Example 4.21 (Boolean Connectives in Queries)

and { or {
in { in {
resource [“file:bib.xml" 1 resource [“file:bib.xml" 1
bib [[bib [[
book [[book [
title [var T], title [var T],
price [var Pa] price [var P]
I I
I I
h h
in { in
resource [“file:reviews.xml" Is resource [‘file:reviews.xml" Is
reviews [reviews |[[
entry [[entry [[
tite [var T, title [var T,
price [var Pb] price [var P]
I I
I I
} }
} }

Two queries to the XML documentib.xml and Two queries to the XML documenbib.xml and
reviews.xml connected with the boolean connecreviews.xml connected with the boolean connec-
tive and. Note that the two query terms share théive or . Although the two query terms share the
variableT. Since bindings of a variable in a substivariable T and P, this query does not evaluate a
tution need to be consistent, this expression joiein asor representalternativesresults of the two
the prices of books with the same title in the twayueries are thus merely merged (i.e. the union of the
book stores. two sets of substitutions is formed), and the result
is a combined list of book titles and prices from the
two book stores. Books found in both bookstores
are listed twice.
In the following, query specifications are often converliedenoted by infix or postfix\ instead of
and and infix or postfixv instead ofor , as inQ; A - - - A Qy instead ofand{Q1,...,Qn}
Note that it is possible to specify empty conjunctions argjutiictions. As is common in logic, the
empty conjunction represerttsith and the empty disjunction represefatsity. Convenient abbreviations
are thusTrue for the empty conjunction anfehlse for the empty disjunction.

4.5.3 Query Negation: not

Besides the subterm negation introduced in Seflonl4. &veafyithout construct), Xcerpt also supports
guery negationdenoted by expressions of the fonat Q. The query negation used in Xcerpthisgation

as (finite or infinite) failurdike in logic programming, i.e. a negated queoy Q succeeds if the quely
fails. Like in negated subterms, variables occurring ingated query do not yield bindings, i.e. they have
to appear elsewhere in the query outside the scope of a apgatistruct (cfrange restrictednesSection

E2).

Sebastian Schaffert 89

4.5. QUERIES

Example 4.22

Recall the two XML documentbib.xml andreviews.xml representing the data of two book stores
introduced in SectionZ4.2. The following query uses guegyation to query for such books that appear
in the first document but not in the second:

and {
in {
resource [“file:bib.xml" ,xmlt],
bib {{
book {{
title { var Title '}
1

b
13
not in {
resource [“file:reviews.xml" ,xmlt],
bib {{
review {{
entry { var Title }
i
i
13

From a theoretical viewpoint, classical negation would 8eaatageous as it would ensure a precise
declarative semantics, which does not exist for negatiofaitgre in some cases. However, classical
negation is not feasible in many practical applicationsngider for example a train time table. Using
classical negation, the time table would have to contairienhot only for the train connections that exist,
but also for all train connections that amt exist (i.e. infinitely many). With negation as failure, it is
sufficient that the query for a train fails (i.e. an entry fon@n-existent train does not exist) to fulfil the
guery. Because of the well-known problems with the dedlaaemantics of negation as failure, negation
in Xcerpt requires so-callestratification(cf. Sectiod&H).

In contrast to the subterm negatiwithout introduced in SectiolZ3.4, query negation isnaversal
negation. If the query is negated, there must not exist a teittn which it matches, i.e. all terms are
required tanot match with the pattern. Note that (subterm and query) negatinot covered in the formal
semantics described in Chagigr 7.

45.4 Conditions

Using patterns to restrict admissible variable bindinga query (either by variable position in the pattern
or by pattern restrictions) is limited to structural prajes like the term-subterm or sibling relationships
and does not allow to express conditions that go beyondrpattatching (like “the value of variable V
has to be larger than 50”). To express sgeimantic conditionsXcerpt uses so-callecondition boxes
(reminiscent of the condition boxes used in the langu@B& [[Z4]). A condition box is attached to a
queryQ and has the form

Q where { Conditions }

Conditions apply only to the variables occurring@ other variables besides those occurrinQirare
not allowed to occur in the condition box. Conditions are panison operators (e.gx, <, >, <, =, or
#) and need to have at least one of the variables occurringeimtiery as parameter. It is furthermore
possible to use arithmetic expressions in conditions (ettiSn[ZEB below), but aggregation constructs

90 Sebastian Schaffert

CHAPTER 4. XCERPT

are not allowed, as the conditions apply to each differebssution separately (like th&/HEREpart in the
language SQLI6R

Example 4.23

The following query uses a condition box to select all stuslénthestudents.xml document (cf. Section
EZZ) that have a score higher than 10 in the first exercise:

in {
resource [“file:students.xml" 1
students {{
var S — student {{
desc exercise {
number { 1 },
score { var Score }
}
i
i

} where { var Score > 10 }

Condition boxes may be attachedaoykind of query, includinggnd andor connected queries. The
following example illustrates this property:

Example 4.24

Recall the book store databases introduced in SeEflol 2Iheé following query selects books that are
cheaper in bookstore A than in bookstore B (cf. also Exalngi)4

and {
in {
resource [“file:bib.xml" 1
bib [[
book [[
title [var T],
price [var Pa]
I
I
)
in
resource [“filereviews.xml" 1
reviews [[

entry [[
title | var T],
price [var Pb]
I
I

} where { var Pa < var Pb}

When evaluating conditions, a basic type system would bieat#s to distinguish e.g. the comparison
operator< on numbers from the comparison operatoon strings. As typing is not investigated in this the-
sis, it is assumed that different operator symbols are usedifferent types and type casting is performed
implicitly by the runtime system.

9Note that SQL supports conditions over aggregated valuae$iVINGclause. Such conditions can be expressed in Xcerpt via
rule chaining

Sebastian Schaffert 91

4.6. CONSTRUCT TERMS: PATTERNS FOR CONSTRUCTING DATA

4.6 Construct Terms: Patterns for Constructing Data

Construct terms serve to reassemble variable bindingshndre determined by query terms, so as to form
new data terms. Whereas query terms are patterns for th¢adatahus may contain partial term speci-
fications), construct terms are patterns for the result tans may only contain total term specifications).
Construct terms may furthermore contain variables (but-noestrictions), and so-callegrouping con-
structsused for grouping different substitutions. Like in datarier both constructs] and{ } may
occur in construct terms for expressing ordered and uneddsequences of subterms. The constructs
[l and{}} arenotallowed, as they express partial term specificatidrish do not make sense
when constructing data items.

4.6.1 Variables

In construct terms, variables serve as place holders fosubéerms they are bound to. Construct terms
may contain label variables, namespace variables, anérsabfariables without restriction. Allowing
variable restrictions in construct terms is not desiraédeq construct term is merely a specification of how
the variables should be reassembled and is not intended&tram the set of possible variable bindings.
Obviously, however, label variables may take only values éine admissible as term labels and namespace
variables may only be bound to URIs or IRIs.

Example 4.25
In the bookstore example from Sectlon 214.2, assume the théhe following set of answer substitutions
for the variablegitle andAuthor :

oy Title title { "Vikinga Blot" }

Author author { last { "Ingelman-Sundberg" }, first { "Catha rina" }}
o, Title title { "Boken Om Vikingarna" }

Author author { last { "Ingelman-Sundberg" }, first { "Catha rina" }}
o3 Title title { "Folket i Birka p a Vikingarnas Tid" }

Author author { last { "Wahl" }, first { "Mats" }}
o4 Title title { "Folket i Birka p a Vikingarnas Tid" }

Author author { last { "Nordqvist" }, first { "Sven" }}
o5 Title title { "Folket i Birka p a Vikingarnas Tid" }

Author author { last { "Ambrosiani" }, first { "Bj omn" }}

The following construct term collects a single title/autpair for these substitutions (one for each substi-
tution):

results {
result { var Title , var Author }

}

The result of applying the substitutions above to this aoresterm are the following five data terms:

results {
result {
title { "Vikinga Blot" h
author { last { "Ingelman-Sundberg” }, first { "Catharina" 1}
}
}

results {
result {

92 Sebastian Schaffert

CHAPTER 4. XCERPT

title { "Boken Om Vikingarna" }

author { last { "Ingelman-Sundberg" }, first { "Catharina" 1}
}
}
results {
result {
title { "Folket i Birka p a Vikingarnas Tid" }
author { last { "Wahl" 1}, first { "Mats" } }
}
}
results {
result {
title { "Folket i Birka p a Vikingarnas Tid" |3
author { last { “Nordqvist" }, first { "Sven" }}
}
}
results {
result {
title { "Folket i Birka p a Vikingarnas Tid" |3
author { last { "Ambrosiani* '}, first { "Bj orn" }}
}
}

4.6.2 Grouping and Sorting: all and some

It is often desirable to collect all bindings for a variabtea single answer term. Thggouping constructs
all andsome serve this purpose:

e all groupsall possible instancesf the enclosed subterms resulting from different vari&ielings
as children of the enclosing term. At least one instance di&ist, and the number of instances
always needs to be finite (otherwise the program does notrate).

e some groups non-deterministicalome of the possible instanagfthe enclosed subterms resulting
from variable bindings as children of the enclosing termm8ads quantified by a number which
restricts the (maximum) number of alternatives to use. Asi®ne instance has to exist.

The requirement that there has to exist at least one instarfm@h grouping constructs may seem unin-
tuitive. However, a construct term can only be evaluatetéfrule it is part of “fires”, i.e. the query part
succeeds and thus yields at least one substitution for ttelas occurring in the query. If this behaviour
is not desired, the grouping constructs can be combinedopiidnal (see below).

Example 4.26 (Grouping Constructs)

Consider again the substitutions of Exandple¥.25. Thewioilg construct term creates a list bult
subterms (one for each title/author combination from thesstutions) below aesults term using the
all -construct to collect all instances:

results {
all result { var TITLE, var AUTHOR}

}

The result of applying the substitutions to this constraatt might be the following data term (compare
with the set of data terms from Example3.25):

Sebastian Schaffert 93

4.6. CONSTRUCT TERMS: PATTERNS FOR CONSTRUCTING DATA

results {
result {
title { "Vikinga Blot" h
author { last { "Ingelman-Sundberg" }, first { "Catharina" 1}
13
result {
title { "Boken Om Vikingarna" }
author { last { "Ingelman-Sundberg” }, first { "Catharina" 1}
13
result {
title { "Folket i Birka p a Vikingarnas Tid" }
author { last { "Wahl" 1}, first { "Mats" }}
13
result {
title { "Folket i Birka p a Vikingarnas Tid" }
author { last { "Nordqvist" }, first { "Sven" }}
13
result {
title { "Folket i Birka p a Vikingarnas Tid" |3
author { last { "Ambrosiani® }, first { "Bj orn" }}
}
}

Formally,all t or some n t denote the grouping of all or some instanceg afbtained from all
possible bindings of the variables that are free in the ternBubterms ot that again have the form
al t orsome n' t are recursively evaluated in the same manner (see belowariAble isfreein a
(sub)ternt , if it (1) occurs int , and (2) is not in the scope of another, nested grouping naiste.g. in
the term

results {
all result { var TITLE, var AUTHOR}
}
both variable§ITLE andAUTHORare not free, since they are in the scope ofilan construct. In the term
results {
result { all var TITLE, var AUTHOR}
}

the variableAUTHORs free, whereas the variab®TLE is not free. A variable is said to Hece for a
grouping construgtif it is free in the term enclosed by the grouping constricg. in the ternall t , all
variables that are free in are free for the outermostl . All free variables in a construct term need to
have the same binding in each of the substitutions that & fias grouping.

Example 4.27
Consider a slightly modified variant of the previous constterm. Note that only the variabPJTHORSs
in the scope of thell construct, while the variabl®TLE is free.

result { var TITLE, all var AUTHOR}

The result of applying the set of answer substitutions ofepa[Z2¥ to this construct term is the following
set of data terms:

94 Sebastian Schaffert

CHAPTER 4. XCERPT

result {

title { "Vikinga Blot" h

author { last { "Ingelman-Sundberg" }, first { "Catharina" }l
}
result {

title { "Boken Om Vikingarna" },

author { last { "Ingelman-Sundberg" }, first { "Catharina" }l
}
result {

title { "Folket i Birka p a Vikingarnas Tid" |3

author { last { "Wahl" 1}, first { "Mats" },

author { last { "Nordqvist" }, first { "Sven" '},

author { last { "Ambrosiani" }, first { "Bj orn" '}
}

Note that each of the three resulting data terms uses onlgiadang for the variabl@ITLE of the construct
term, but groups possibly several bindings of the varid#@HOR In each instance (i.e. data term), the
grouping construct groups together substitutions tha tia same binding faHTLE . As there exists only
one substitution for each of the titles “Vikinga Blot” anddBen Om Vikingarna”, the grouping construct
only groups a single substitution in the first two data teringhe third data term, three substitutions are
grouped (each having the same bindingTdiLE , but a different binding foAUTHOR

The grouping constructsl andsome are similar to the so-callecbllection construct§} and[] in
XMAS [[7] and to the grouping construg} in XML-RL [£Q].

Nesting of Grouping Constructs

Grouping constructs may be nested to perform more compgsuaturing tasks. Recall that a term of the
formall t collects all instances ofwith different bindings for the free variablestinIf t contains nested
grouping constructgachinstance of is further grouped according to the nested grouping coastrior
example, the construct term

results {
all result {
al var TITLE,
var AUTHOR
}
}

creates for each binding of the variaBléTHORi.e. the variable that is free for the outdr) an instance

of the subtermesult . In each instance, the inngt collects all instances of the variallFLE (that are
part of substitutions with the same binding B&THOR Thus, the construct term creates a list of book titles
for each author, and groups ttesult subterms below &sults term. Likewise, the construct term

results {
all result {
var TITLE,

all var AUTHOR

}
}

lists for each book title all authors. Intuitively, nesteabgping constructs are similar to nested iteration
constructs in imperative languages (likke or while loops), where the inner loop performs a complete
run for each iteration of the outer loop. Note, however, tiestted grouping constructs do not compute the

Sebastian Schaffert 95

4.6. CONSTRUCT TERMS: PATTERNS FOR CONSTRUCTING DATA

“cross-product”, but instead have to respect the diffeamstver substitutions: in the example above, every
result elements contains a book title, andy the authors of that book, whereas the cross-product wasild li
for each result also the authors of other books. If it is @dmsé to compute the cross-product, it is necessary
to appropriately modify the query/query term such thatliests titles and authors independently.

Explicit Grouping: group by

In many cases, it is desirable to group by variables whoseegahould not appear in the result, wherefore
they are not part of the subterm that is enclosed by a grougngtruct. For example, a construct term
might group resulting instances based on the position ofvaim@an HTML table while not including this
position (i.e. the integer number) in the result. While ttasult could be achieved by using several rules
(one for creating the result and one for filtering out supetfiiparts), this solution is very cumbersome. For
this reason, the grouping construalls andsome may be accompanied bygeoup by clause containing
the (additional) variables by which the instances are gedufuch clauses have the form

all <subternes group by { <variabl es>}
or
some <n> <subt erne group by { <vari abl es> }

where<n> is the maximum number of instances fome, <subt er n® is the subterm of which instances
are created, andvar i abl es>is a comma-separated list of variables. All these variadesonsidered
to be part of the free variables of the subterm enclosed bgrihging construct and thus used for grouping,
regardless of whether they appeakisubt er > or not..

Example 4.28 (Explicit Grouping)
Consider an HTML table, the cells containing arbitrary esluThe following query term retrieves all cell
values, together with row and column number:

desc table {{
position var Row tr {{
positon var Col td { var Value }
i
}

Now assume that the table should be “transposed”, i.e. rodscalumns are exchanged. The following
construct term creates such a transposed table. Since sit®ops are necessary for grouping but should
not be included in the resulting data term, it ugesip by for this purpose:

table [
all tr [
all td [var Value] group by { var Row}
] group by { var Col }

]

The construct term is evaluated as follows: For each diffidsending ofCol (Col is the only free variable
in the scope of the outall), aninstance off [...] is created. Within each instance, the inaler
creates an instance toff [...] for each different binding oRow (within the set of substitutions having
the same binding foCol).

Sorting: order by

The grouping constructsll and some create sequences of subterms in arbitrary order (althcugp t
should try to return results in the same order in which theesponding subterms appear in the original

96 Sebastian Schaffert

CHAPTER 4. XCERPT

sources, if possible). In order to sort the resulting seqe@acording to the bindings for certain variables,
the grouping constructdl andsome may be augmented bysarting specificationSorting specifications
are very similar to explicit grouping and have the form

all <subterns order by (<conparison>) [<variabl es>]
or
some <n> <subt ernp order by (<conparison>) <vari abl es>]

where<n> is the maximum number of instances fome, <subt er n® is the subterm of which instances
are created, andvar i abl es> is a comma-separated list of variableg.onpar i son> is the name of
the comparison function to be used in sorting. Comparisantfans take as arguments two lists of terms
(representing two different substitutions for the vargshih<var i abl es>) and return a value indicating
whether the first list is less than, equal to, or greater tharsecond list. The current prototype runtime
system (cf. AppendiKJA) supports the two exemplary compariginctiondexical andnumeric (both

in ascending order); further comparison functions may ley@mmed natively in the implementation
language of the prototype (i.e. Haskell).

The list of variables influences the grouping in two ways:i(iktances are grouped as if the variables
occurred in agroup by clause (i.e. are considered part of the variables free ®gtiouping construct)
and (2) the instances are sorted on the bindings of the Vesiai the list using the specified compar-
ison function. In the two exemplary functions, sorting isfpemed primarily with respect to the first
variable in the list and more specific for each of the follogviveriables. For instance, a variable list
[var Lastvar First] would specify to sort primarily by the last names, and witinistances with the
same last name sort by the first name.

Example 4.29
Sort the list of books by the book titles in ascending lexaraler:

results {
all result { all var Author , var Title } order by (lexical) [var Title]

}

Example 4.30
Consider the following query term (evaluated against the XMcument representing the data of bookstore
A in SectiolZZZP):

bib {{
book {{
var Title — title {{ }}
var Author — author {{ var First — first {{ }}, var Last — last { }} }}
b
i

The following construct term creates a list of authors farhebook title. Authors are sorted by last
name and then by first name. Note that grouping is performethervariableAuthor , as well as the
variabled ast andFirst

results {
all result {
all var Author order by (lexical) [var Last, var First],
var Title

Sebastian Schaffert 97

4.6. CONSTRUCT TERMS: PATTERNS FOR CONSTRUCTING DATA

Comparison with GROUP BY and Aggregations in SQL

Xcerpt's grouping constructs are very similaiGBOUP B¥lauses in SQLJ6], which allow to group results
with the same bindings on the specified variables into a coetbiepresentation. In SQGROUP BYs
usually used in conjunction with an aggregation functioaramome of the variables not used for grouping.
However, grouping in Xcerpt differs from grouping in SQL ieveral aspects:

e grouping is part of theonstructioninstead of thejuery

e grouping without aggregation functions is necessary, asrptc unlike SQL, allows complex tree
structures instead of flat tuples.

e grouping constructs haveszope therefore, it is in most cases not necessary to explicpgcgy
the variables used for grouping. Instead, all free vargbighe scope (i.e. enclosed subterm) are
implicitly used.

e grouping constructs can beested a nested grouping construct is very similar to an aggrepgati
function that creates a term sequence.

In relational databases, nesting of grouping constructdswreate results that are in non-first normal form,
i.e. tuples that are not flat, which is usually not permitted Xcerpt, nesting is possible (and desirable)
because the data is tree-structured in the first place.

Example 4.31

Consider a relatio$cores(Student,ExerciseNr,Score) used for storing exercise results of students.
To keep the example simple, it is assumed that the first at&rim a tuple $tudent) holds the student
name. The following table represents the data from SeEldApP

Scores | Student ExerciseNr Score
Donald Duck 1 15
Donald Duck 2 7
Mickey Mouse 1 3
Mickey Mouse 3 14
Goofy 2 13

To sum up the totals for each student in SQL, one usually groughe attribut&tudent and aggregates
(for each student) over the attribiBeore . The attributeExerciseNr is ignored:

SELECT Student, sum (Score) FROMScores GROUP BYStudent

In Xcerpt, the same result would be created with the follgnéonstruct term using nested grouping
constructs and an aggregation function (aggregationsémpare introduced in Sectibn 4.3 below). Note
that althoughgroup by is used in this construct term, it could be omitted becauseréniableStudent
already appears inside the oudér and thus is used implicitly for grouping:

totals {
all score {
name { var Student 1},
total-score { sum (all var Score) }
} group by { var Student }
}

98 Sebastian Schaffert

CHAPTER 4. XCERPT

4.6.3 Functions and Aggregations

In addition to arranging data in a new structure, it is oftesidhble to perform some sort of computation to
create new content. For example, a bookstore might wanewept books with the value added tax added
to all prices, or calculate totals for the items containe@l@qustomer’s virtual shopping cart. For this reason,
construct terms in Xcerpt may contdimctions(i.e. computations with a fixed number of arguments) and
aggregationgi.e. computations with a variable number of arguments)thBonctions and aggregations
take the form

<f nane> (<argunents>)

where<f nanme> is the function or aggregation name axdr gunent s> is a comma-separated list of
arguments (variables or other non-grouping subterms)adrcase of aggregationsar gunent s> may
also contain the grouping construatls andsome.

Example 4.32 (Shopping Cart: Adding the VAT and Computing Tdals)

Consider the XML document representing the data of booksiafin Sectiof2Z12). The following con-
struct term might be used to create an HTML presentation okbdn a shopping cart were prices are
shown both without and with value added tax (in this case: J16¥he last row computes totals for all
prices.

table [
th [td [“Title"], td [“"Price Net"], td["VAT"], td[‘Total" 1],
all tr [
td [var Title],

td [var Price],
td [mult (var Price , 0.16)
td [mult (var Price , 1.16)

tr [
t "Totals"],

sum (all var Price)],

sum (all mult (var Price , 0.16))],

sum (all mult (var Price , 1.16))],

— =
o O O o

—
————

Since a type system is not in the scope of this thesis, therumplementation assumes implicit
type casting in functions and aggregations. For exampéefuhctionmult (for multiplication) implic-
itly assumes that all parameters are numbers. In order wge@ comprehensive set of functions and
aggregations, a type system would however be beneficial.

The current implementation supports a number of exemplamgtfons and aggregations, which are
summarised in TablEZ.1. For some frequently used functihis table also gives an abbreviated, infix
notation that may be used instead of the more verbose geioenal Beyond these, a wide range of
functions are conceivable. The documXQuery 1.0 and XPath 2.0 Functions and Operaf{fitFd] gives
an overview over functions that are desirable in Web querguages.

4.6.4 Optional Subterms: optional

Recall from SectiofiZ3 1 that the constraptional in query terms allows to express that certain sub-
terms of a query term need only be matched if a correspondibtesn exists in the data term against
which the query term is evaluated. In case the optional sabt®ntains variables, it might happen that
some of the substitutions resulting from the evaluatiorhefdquery do not contain bindings for these vari-
ables (as the corresponding subterm did not participateimiatching). As a consequence, construct terms
containing such variables need to make provisions for saskhs This is expressed by marking subterms

Sebastian Schaffert 99

4.6. CONSTRUCT TERMS: PATTERNS FOR CONSTRUCTING DATA

Name | Abbreviated | Default | Description
Functions
add(n,m) n+m — adds the two numeric argumemntandm
sub(n,m) n-m — subtracts the two numeric argumentandm
mult(n,m) n*m — multiplies the two numeric argumentandm
div(n,m) n/m — divides the two numeric argumemnmtandm
concat(n,m) n ++ m — concatenates the two string argumengdm
glb(n,m) — — calculates the greatest lower bound of two temasdm
wrt. simulation order
lub(n,m) — — calculates the least upper bound of two temasidmwrt.
simulation order
Aggregations
count(...) — 0 count the number of arguments
sum(...) — 0 compute the sum of all (numeric) arguments
avg(...) — NaN compute the average of all (numeric) arguments
min(...) — +inf compute the minimum of all (numeric) arguments
max(...) — —inf compute the maximum of all (numeric) arguments
join(...) — join all string arguments to a single string
first(...) — exception| return the first argument
reverse...) — empty return the arguments in reverse order

Table 4.1: Exemplary functions and aggregations availabt®nstruct terms. All functions and aggrega-
tions perform an implicit type casting to the type given (érgumeric” or “string”). The default value for

aggregation functions is used in case the argument list [gyerexception

indicates a runtime error and

empty the empty list. For normal functions, default values areapglicable.

containing variables that are possibly unbounaponal Like in query terms, such subterms take the

form

optional

<subt er n»

but it is also possible to add a default value to be used if stairce can be created as in

optional

<subt er n> with default

<def aul t >

where<subt er n® is the subterm containing the optional variables. In casesat one of the variables in
<subt er n® is not bound (i.e. no ground instance can be created), thédira simply omits the optional
subterm, whereas the second form substitutes the suktéehaul t > for <subt er n>. <def aul t >

may be any construct term.

Example 4.33

Consider the XML document representing the student databbSectiod2Z4]1. The following query
term retrieves the student name and optionally his ingorigptumber (contained in the subterm labelled
matrnr) from this document. Note the useatftional to indicate optional selections.

students {{

student {{

name { var Name },

optional matrnr { var MatrNr }
b

)

100 Sebastian Schaffert

CHAPTER 4. XCERPT

Assume that a teacher wants to create an HTML table listingfadent names with inscription numbers,
leaving columns empty for each substitution that does notaio a binding for the variablgatrNr . The
corresponding construct term would look as follows:

table [
all tr [
td [var Name],
td [optional var MatrNr]
]
]

By using a default specification, it us also possible to irtber string'unknown” instead of simply leaving
the columns empty for those substitutions that do not cordavalue forMatrNr , as in the following
construct term:

table [
all tr [
td [var Name],
td [optional var MatrNr with default "unknown"]
]
]

The optional does not necessarily prefix the variable immediately, buy inatead enclose a whole
subterm containing optional variables; the following domst term does not generate a second column if
there is no inscription number available, instead of legire second column empty:

table [
all tr |
td [var Name],
optional td [var MatrNr]
]
]

Grouping Constructs and Optional Subterms

As mentioned above, the grouping constratits andsome require the existence of at least one instance of
the enclosed subterms, because a query only succeedseifetkists at least one binding for its variables.
With optional , this restriction can be lifted: query terms with optionabterms might match while not
yielding any bindings for the variables occurring in thewgpimg construct. Witloptional in the construct
term, it is thus possible to express possibly empty grouping

Example 4.34 (Grouping and Optional)
The following query term selects student names and scorsglwhitted exercises. The subterm labelled
exercises is markedoptional in order to also select students without any exercise sigioms.

students {{

student {{

name { var Name },

optional exercise {{ score { var Score } }}
1

)

Sebastian Schaffert 101

4.7. CONSTRUCT-QUERY RULES (OR VIEWS)

Given the set of answer substitutions of this query termfdhewing construct term computes the sum of
all exercises for each student. If no exercise has been sighiythe sum is O:

scores {
all student {
name { var name },
total { sum (optional all var Score with default 0)}
}
}

In case no exercise has been submitted (i.e. there existsxdim@ for the variableéscore for a student),
there exists no instance fall var Score and the default value of 0 is used as the only argument to
the aggregation functiosum(...) . Otherwise, a sequence of scores is created and summedngp usi
sum(...) . Since the default value atim(...) happens to be 0 if the number of arguments is zero (cf.
Table[Z1), thewith default clause may also be omitted in this case. Alternatively, thestruct term
could be written as

scores {
all student {
name { var name },
total { optional sum (all var Score) with default 0}
}
}

In this case, the aggregation functiamn(...) is not evaluated if there is no instance &rvar Score ;
the value 0 is substituted without any further computation.

In practise, it is irrelevant whether thgtional encloses the grouping construct (as in the examples
above) or vice versa; both approaches are reasonable.

4.7 Construct-Query Rules (or Views)

An Xcerptquery program(or simply program) consists of one or moreonstruct-query rulesConstruct-
query rules (shortrules) relate a construct term to a query (i.e.ardor or connected set of query terms).
Xcerpt rules aré-thenrules, i.eif a query succeedthena resultis created. The syntax of rules in Xcerpt
loosely resembles SQL and is similar to the syntax used in XplLand XMAS (cf. Sectiofi:3314). Rules
have the form

CONSTRUCT
<construct ternp
FROM
<query>
END

where<quer y> is a query as defined in Sectibi4.5 anclonst ruct terne is a single construct
term. Rules areange restricted all variables occurring irkkconst ruct t er n> must also occur and
yield bindings in<quer y> (cf. Sectio&R). Also, all rules in a program are underdtas if they were
variable disjoint, i.e. the scope of a variable is limitecatnule (‘standardisation apart’, cf. pagdZL37). If
<quer y> can be evaluated successfully, a rule is said tafydicable

Intuitively, a rule specifies how to transform the sourceadathich possibly is located at several Web
sites) into a different representation. The query (or “gumart”) specifies how to select data items from
different source documents, the construct term (or “coesart”) specifies how to reassemble these data
items in a new combined structure, yielding new data termsulécan thus be seen asiawupon source

102 Sebastian Schaffert

CHAPTER 4. XCERPT

data, very much like the views in query languages for retatialatabase systems. However, in contrast
to views in such languages, an Xcerpt rule is not applicdbie idata items exist, because the query part
cannot be evaluated.

Example 4.35

The following rule creates a unified view upon the book datebeof the two book stores introduced
in SectiolZZZP, summarising the prices for books that appeboth databases. The query part con-
sists of anand-connection of two query terms evaluated against the two Xddcuments representing
the book databases. The construct part reassembles thetilbesland prices in both book stores in a
books-with-prices subterm.

CONSTRUCT
books-with-prices [
all book-with-prices [

title [var T], price-a [var Pa], price-b [var Pb]
]
]
FROM
and {
in {
resource [“file:bib.xml" Is
bib [[
book [[
title [var T], price [var Pa]
I
I
)
in
resource [“file:reviews.xml" 1
reviews [[
entry [[
title | var T], price [var Pb]
I
I
}
}
END

More formally, a rule (together with the queried resourégs) specification of a set of data terms (for
more details, see Chapfdr 7). These are cad#ledltsof the rule induced by the answer substitutions of the
query. Whether or not this set is materialised depends ooaherete implementation and the needs of the
application. Note, however, that in general a materidabgas not possible, because the number of induced
data terms might be infinite due to (recursive) rule chairigeg below).

4.7.1 Rule Chaining

As in logic programming languages like Prolog or Datalogedfd rules can query the results (instances)
of other rules, a process usually referred towds chaining Recursive rule chaining is possible, in which
case a rule queries the results of a previous applicatiotseif.i Rule chaining distinguishes Xcerpt from
most of the languages introduced in Secfion}.3.4: althdhghanguages UnQL, XML-QL, and XMAS
all are rule-based, neither of them supports rule chairffuge Chaining serves several purposes:

o |t allows to break down complex queries in smaller composiémt are easier to grasp and more
declarative.

Sebastian Schaffert 103

4.7. CONSTRUCT-QUERY RULES (OR VIEWS)

o Itallows to structure queries in logical components (“safian of concerns”). For example, a query
might be composed of several rules that query differentuess and create a unified intermediate
format (“mediators”), and a rule that queries data in thierimediate format and creates an XML
document suitable for presentation in a browser. Furthiesrmight be used to create different
presentation formats for mobile devices or paper editioitalsle for printing.

¢ It allows to build complex queries that require recursiohislincludes, in particular, reasoning with
Semantic Web data: a frequently needed operation is e.gotheutation of the transitive closure of
a relation.

Several application scenarios for rule chaining can bedanrChapteflb. In Xcerpt, any query that is not
associated with an external resource is considered totefee results of other rules within the program.

Example 4.36

Recall the rule used in ExamdIeZZ135 above, which createsfi@dinepresentation of books in two book
stores. The following Xcerpt rule further queries this wdfrepresentation to create an HTML document
suitable for presentation in a browser (cf. also the morailbet description of this example in Section

BET3):

CONSTRUCT
table [
tr[td ["Title" I d | "Price at A" I W] "Price at B" 11
all tr[td[var Title], td [var PriceA], td [var PriceB]]
]
FROM
books-with-prices [[
book-with-prices [[
tite [var Title],
price-a [[var PriceA]],
price-b [[var PriceB]|
I

1
END

Likewise, the following (very similar) rule queries the sammified representation to create a WML docu-
ment suitable for a mobile device (e.g. cellular phone):

CONSTRUCT
wml |
all card [
"Title: " , var Title
"Price A: ", var PriceA ,
"Price B: ", var PriceB
]
]
FROM

books-with-prices [

book-with-prices [[
title [var Title 1,
price-a [[var PriceA],
price-b [[var PriceB]

104 Sebastian Schaffert

CHAPTER 4. XCERPT

Operationally, rule chaining can be seen as very similaré@gdure or function calls (or perhaps “rou-
tines”) in other programming or query languages. Rule laiggs in general allow to evaluate rules in two
directions, so-called “forward chaining” and “backwardafing”.

e Forward chaining isule driven Rules are evaluated iteratively against the current seata terms
until saturation is achieved (the so-callédpoin). Forward Chaining is useful for instance for
materialising views and for view maintenance, and is widedgd in deductive databases []. If a
guery program contains recursive rules, forward chainmgdresult in an infinite fixpoint, i.e. the
evaluation does not terminate. Also, if forward chaininguéed to answer a query, most of the
derived data is usually irrelevant to the query — forwardting is not goal driven.

e Backward chaining igoal driven Beginning with a query (composed of one or several quemggr
program rules are selected if they are relevant for “provénguery term. The query term in question
is then replaced by the query part of the selected rule. Bakehaining is useful when the expected
result is small in comparison with the number of possiblailtesof the program. On the other
hand, naive backward chaining may not terminate even iascaere the fixpoint is guaranteed
to terminate. Backward chaining is mainly used in expertriovidedge base systems and in logic
programming languages like Proldg]71].

In a Web environment, both forward and backward chainingdegrable. A forward chaining approach
is e.g. useful when creating a static Web site (consistingegéral Web pages) from an input document
containing the content and an Xcerpt program used as a &stgéd” for adding layout and structure suitable
for presentation in a Web browser, i.e. “materialising tAeMHL view” on the input data. On the other hand,
backward chaining is hecessary when querying large ca@lexbf documents, in particular the Web itself,
where it is in practise not possible to begin with the comgpbett of data terms. In fact, if the considered
set of data terms is the complete Web, its contents might eeemknown at the beginning.
Whereagattern matchingas introduced in Sectidn3.4) is sufficient for a forwardinhmay evaluation,
a backward chaining evaluation requirgsfication as query terms need to be “matched” with construct
terms and variables in both terms need to be bound. Xcerpteusen-standard unification algorithm called
simulation unificationwhich is introduced in Chapt&l 8. Chapi&r 8 also describeackward chaining
algorithm for Xcerpt programs, anf]25] compares differgmproaches to backward chaining in Xcerpt.
A forward chaining algorithm is not investigated in this sie

4.7.2 Goals

Xcerpt programs may contain a particular form of rules chfieals The first instance of the construct
term of a goal is considered to beesultof a program. Goals serve as the starting point of a backward
chaining evaluation, but are otherwise very similar to tbenmal rules introduced in this Section. They
have the form

GOAL
out {
resource [<resource specification>],
<construct ternp
}
FROM
<query>
END

where<const ruct ternk and<quer y> are defined as for normal rules. A goal is always associated
with an output resourcgwhich uses the same syntax as the input resources intrddocgectio4F)
specifying the resource to which the result is written inecd® goal is evaluated successfully. If no output
resource is given, it is implicitly assumed that the resudtisbe written to standard output, e.g. the current
console. In this case, goals have the form

Sebastian Schaffert 105

4.7. CONSTRUCT-QUERY RULES (OR VIEWS)

GOAL

<construct tern»
FROM

<query>
END

The instances of goals cannot be queried by the queries eff nites. Goals thus do not participate in rule
chaining, except for being the starting point of the (baadkixhaining) evaluation. Every program needs
to contain at least one goal.

Example 4.37
Consider the two rules of ExamiIe2136. The following twolgaaay be used to write their results to the
files prices.html (in HTML format) andprices.wml (in WML format):

GOAL
out {
resource [“file:prices.html" , "html"],
html [
head [title ["Price Comparison" 11
body [var Content]
]
}
FROM
var Content — table {{ }}
END
GOAL
out {
resource [“file:prices.wml" , wmlt],
var Content
}
FROM
var Content wml {{ B}
END

106 Sebastian Schaffert

CHAPTER
FIVE

Xcerpt Use Cases

5.1 Restructuring Data

5.1.1 List of Authors vs. List of Titles

The following two examples are taken from the use cési of the XML Query Use CasdB4] (queries
Q3 and Q4). Consider the document representing the billpygr database of bookstore A in Section
EZ2 (FigurdZE). In the first example, the task is to lisir‘€ach book in the bibliography the title and
authors, grouped insideresult ~ element”; the second example lists “for each author in thédgraphy
the author's name and the titles of all books by that authmuped inside aesult element”. The
following two Xcerpt rules create these results using reegite constructs.

CONSTRUCT CONSTRUCT
results [results [
all result [all result [
var Title all var Title
all var Author var Author ,
]]
]]
FROM FROM
in { in {
resource [“file:bib.xml" 1 resource [“file:bib.xml" 1
bib [[bib [[
book [[book [[
var Title — title {{ }}, var Title — title {{ }},
var Author — author {{ }} var Author — author {{ }}
I I
I I
} }
END END

Note that the two Xcerpt rules are mostly identical, excepttie position of the innall construct. In
both cases, the query part consists of a single query terociassd with the resourdge:bib.xml , i.e.
an XML document namekib.xml and located in the local file system. This query term bindvén@bles
Tite andAuthor to corresponding pairs dife /author elements irbib.xml . These bindings are used
in the construct term to construct the result:

e In the first example (on the left), the primary grouping isfpemed on the book titles, i.e. one
instance of aesult element is created for each different bindingTale . Nested grouping is

107

5.1. RESTRUCTURING DATA

then performed on the variabdethor , simply listing all different bindings (for a given instamof
Title).

¢ Inthe second example (on the right), the primary groupirigsgead performed on the book authors,
i.e. one instance of esult element is created for each different bindingdothor . The nested
grouping then lists all bindings dftle for each such instance.

Interestingly, these two examples differ considerablytiierlanguage XQuery (whereas in Xcerpt, the only
difference is the position of the nestall construct). The following two XQuery queries are taken from
the XML Query Use Caseand yield similar results to the two Xcerpt queries allove

<results> <results>
{ {
for $b in doc("file:bib.xml")/bib/book let $a := doc("file:bib.xml")/fauthor
return for $last in distinct-values($a/last),
<result> $first in distinct-values($a[last=$last]/first)
{ $briitle } order by $last, $first
{ $b/author } return
</result> <result>
<author>
<[results> <last>{ $last }</last>
<first>{ $first }</first>
</author>

{
for $b in doc("file:bib.xml")/bib/book
where some $ba in $b/author
satisfies ($ba/last = $last
and $baffirst=$first)
return $bltitle

<[result>

<[results>

It is easy to observe that the left query is much simpler thanright query (which requires the use
of nested subqueries), although the queried data is idgnti& reason for this might be that while the
result of the first query is similar in structure to the queériata, the second query requires considerable
restructuring. Arguably, separation of querying and cautston in Xcerpt better conveys the structure of
both, the result and the queried data.

5.1.2 Resolving ID/IDREF references

While Xcerpt provides its own reference mechanism (see@d4i), it is also straightforward to use and
dereference ID/IDREF references using a variable thatrsdnwa query term both at the position of the ID
and at the position of the IDREF. Suppose there exists an Xduthent representing a large text (e.g. this
PhD thesis, see Sectibn ZW.3). References to the bibpbgnaight be represented using ID/IDREF. The
following query selects all authors cited in a section é&dit Xcerpt Terms” by dereferencing ID/IDREF
references igite elements to the respectiertry elements in the bibliography and retrieving the authors
contained in them:

CONSTRUCT
authors {
all var Author
}
FROM
in {
resource [‘“file:report.xml” Is

1the ordering of results may be different as ordering is nguired in the task description

108 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

report {{
desc section {{
title { "Xcerpt Terms" },

desc cite {
attributes {ref { var Ref }}
}
i
desc bibliography {{
entry {{

attributes {id{ var Ref }}
var Author — author {{ }}

b
1
b

}
END

Note the use of the speciaftributes subterm to represent XML attributes in Xcerpt. In the first
subterm ofeport , the variableRef is bound successively to all identifiers of citations reddrto the sec-
tions with title “Xcerpt Terms”; the same variable is usedria second subterm to select the corresponding
bibliography entries, for which all authors are succedgiseund to theAuthor variable.

In combination with the subterm negatiaithout , it is possible to verify whether an XML document
contains references to non-existing identifiers. The ¥athgy Xcerpt rule illustrates this on the PhD thesis
example (compare also with the query above). It queriesakiefor all citations (retrieving them in the
variableRef) and checks whether the bibliography does not contain a&spanding entry. Note that the
second occurrence of the varialBlef is part of a negated subterm.

CONSTRUCT
unresolved_citations {
all var Citation

}
FROM
in {
resource [“filereport.xml" I
report {{
desc var Citation — cite {
attributes {ref { var Ref }}
2
desc bibliography {{
without entry {{
attributes f{id{ var Ref } }}
i
i
b
}
END

5.1.3 Completing an HTML table

Xcerpt's grouping constructl andsome can be used to perform powerful computations. Consider an
HTML table containing numeric values (e.g. a spreadsheeesented in an HTML document), like the
following (very simple) table:

Sebastian Schaffert 109

5.1. RESTRUCTURING DATA

<html>
<head><title>A simple table<ftitle></head>
<body>
<table>
<tr>
<td>1</td><td>2</td>
<tr>
<tr>
<td>3</td><td>4</td>
<ftr>
</table>
</body>
</html>

A typical task could be to query this table and create a nelg taith the totals for each row and column
added. Due to Xcerpt's grouping constructs, this query @expressed using a single rule:

CONSTRUCT
table [
all tr [
al td [var Value],
td [sum (all var Value)]
] group by { var Row },
tr [
all td |
sum (all var Value)
] group by { var Col },
td [sum (all var Value)]
]
]
FROM
in {
resource ["http://www.example.com/table.html" , 'html"],
html {{
desc table {{
positon var Row tr {{
positon var Col td {{ var Value }}

b
i
b

}
END

Note the use of the construgbup by (cf. SectiodZG12) and the use of the aggregation funation
(cf. SectioTZEI3). The query is evaluated as follows (carapvith Exampl€Z28 on pafiel96): the query
term selects all values of cells in the table, together with tespective row and column number (using
the construcposition). The construct term creates a table by adding one tovelement) for each row
in the original table (by grouping on the varialitew), and an additional row for the totals at the end of
the table. In each row, all table cells of the respective nohe original table are inserted, and a new
cell is added summing up the values of all cells (using theegation functiorsum). In the final row, a
new cell is created for each column (by grouping on the véi@bl , and each of these cells contains the
totals of the whole column (using the aggregation funcsian over all values that have the same column

110 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

number). Finally, the last cell of the last row is created gy aggregating over all possible values
without consideringol or Row.

An equivalent result can be achieved using the following twi@s. Whereas the first rule adds a
column containing the totals of eacbw, the second column adds a row containing the totals of each
column Both rules interact via rule chaining, i.e. the result oéouale application is queried by the other.
As a consequence, it is not necessary to calculate the iz of all cells separately. Interestingly, the
order in which the rules are applied is not relevant, bothuateon orders yield the same result (they are
confluent. Note that the example is not complete: one of the rules sie@dpecify the resource from
which the source document is to be retrieved.

CONSTRUCT
table [
all tr [
al td [var Value],
td [sum (all var Value)]
] group by { var Row},
J
FROM
desc table {{
positon var Row tr {{
positon var Col td {{ var Value }}

b
}
END
CONSTRUCT
table [
all tr [
al td [var Value],
] group by { var Row},
tr [
al td |
sum (all var Value)
] group by { var Col },
]
]
FROM

desc table {{
position var Row tr {{
positon var Col td {{ var Value }}

b

b
END

5.1.4 List of Students

Consider the XML document representing the student dagedfeSectioZZ]1. The following query term
retrieves student information (i.e. name, optionally studid, and all exercises, if available) from this
document. Note the use ofitonal to indicate optional selections.

students {{
student {{

Sebastian Schaffert 111

5.1. RESTRUCTURING DATA

name { var Name },

optional matrnr { var MatrNr },

optional exercise {{
number { var Excercise },
optional score { var Score }

i

b
B

Assume that a teacher wants to create a Web site listingrtfusmation in an HTML table. He would
probably use a construct term like the following:

table [
all tr |
td [var Name],
td [optional var MatrNr with default "unknown"],
td [
optional ul [
all i [
"Exercise ", var Excercise
", Score " , optional var Score with default "not yet available"

The result is constructed as follows: for each bindinglafe a table row is created containing the name
in the first column. If there exists a binding for the varialflgrNr as well, the second column contains
this binding; otherwise, it contains the valtumknown" . The third column creates an unordered HTML
list, if at least one binding foExercise exists (i.e. there exists an instance for thg ...] subterm).
For each submitted exercise (binding of the varidbleercise), this list contains an entry. If a binding
for Score is also available, it is included in the result; if not, thersg "not yet available” is issued.

A sample result for the XML document of Section 214.1 thuskkoas follows:

table [
tr [
td ["Donald Duck"],
td ["123456789"],

td [
ul [
li ["Excercise " , "1", ", Score " , "15"],
li [“Excercise " , "2", " Score " , "3"],
li ["Excercise " , "3", ", Score " , "not yet available"]

]
]
tr [
td ["Mickey Mouse"],
td ["987654321"],
td [
ul [

112 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

li [‘“Excercise " , "1", " Score " , "3"],
li [“Excercise " , "3", ", Score " , "14"]
]
]
1
tr [
td ["Goofy"],
td [“unknown"],
td |
ul [
li ["Excercise " , "2", ", Score " , "13"],
li ["Excercise " , "3", ", Score " , "not yet available"]

5.1.5 Separation of Concerns

Xcerpt rule chaining provides programmers with a meangtmaire complex query programs. A common
way to structure a program is “separation of concerns”, gegarating program logic or querying from
presentation. Consider for example a complex query proghanqueries two online bookstores (cf.
SectionZZZP) and provides a summary over the prices fokdbaoboth book stores{ML Query Use
Cases, XMP-QB5[4]). An Xcerpt rule creating an HTML representation abldok as follows (cf. also
SectioZ7N):

CONSTRUCT
html [
head [title | "Price Overview" 11
body [
table [
tr[td ["Title"] d [‘"Price at A"], td ["Price at B*]],
al tr[td] var T, td[var Pa],td[wvar Pb]]
]
]
]

FROM
and {
in {
resource [“file:bib.xml" I
bib [
book [[
title [var T],
price [var Pa]
I
I
b
in
resource [“file:reviews.xml" I
reviews [[
entry [[

title [var T],
price [var Pb]

Sebastian Schaffert 113

5.1. RESTRUCTURING DATA

END

The query part of this rule consists of two query terms evalliagainst the two data terms representing
the bookstore databases. Note that both contain the vafigbt binding the book title (thus both query
terms need to match with books of the same title), whereggdiffer in the variables used for binding the
price.

Now assume that besides the HTML representation, it is a¢sirable to provide a representation
suitable for mobile devices, e.g. in the format WMbifgless markup IanguaE)e This would require
an additional Xcerpt rule with the same query part but défferconstruct term. Assuming that the query
part is complex, this approach is error prone and resultgagnams that are difficult to maintain as it
contains many redundancies, and it is also more difficultrésig the meaning of query programs. Using
rule chaining, it is, however, possible to reuse the “coxiptpiery part by separating it from the presen-
tation and creating an intermediate representation fodt#ta (in the example below: for each book, a
book-with-prices term containingitle , price-a andprice-b subterms for the title, the price in the
first bookstore and the price in the second bookstore). Timmpler” representation can then be queried
by the two rules that create HTML and WML representations:

GOAL
out {
resource [“file:prices.html" , html"]
html [
head [title | "Price Overview" 11
body [
table [
tr[td ["Title" I W] "Price at A" I W] "Price at B" 11
al tr[td] var Title], td [var PriceA], td [var PriceB]]
]
]
]
}
FROM

books-with-prices [[
book-with-prices [[
tite [var Title 1,
price-a [[var PriceA],
price-b [[var PriceB]
I
1l

END
GOAL
out {
resource [“file:prices.wml" , o xmlt],
wml |
all card |
"Title: " , var Title
"Price A: " , var PriceA ,
"Price B: " , var PriceB

114 Sebastian Schaffert

http://www.wapforum.org/DTD/wml_1.1.xml

CHAPTER 5. XCERPT USE CASES

]
]

}
FROM

books-with-prices [[
book-with-prices [[
tite [var Title 1,
price-a [[var PriceA],
price-b [[var PriceB]
I

I
END

CONSTRUCT
books-with-prices [
all book-with-prices [
title [var T,
price-a [var Pa],
price-b [var Pb]
]
]

FROM
and {
in {
resource [“file:bib.xml" I
bib [[
book [[
title [var T],
price [var Pa]
I
I
)
in
resource [“file:reviews.xml" 1
reviews [[
entry [[
title [var T],
price [var Pb]
I
I
}
}
END

5.2 Querying the Web

Queries in the examples above considered mostly statieobstored at one place and didn't take into
account the dynamic and distributed nature of data on the Weis Section illustrates on two scenarios
how Xcerpt can be used to write queries to such Web data. T$tesGienario implements a Web service
that generates a dynamic personal portal page, integnaéiwg and weather information from the Web.
The second scenario describes a (simple) Web crawler thatecased to traverse Web pages by following
hyperlinks. For both approaches, backward chaining isspadie over forward chaining: in the first case,
the queried data changes very frequently, which would redaiupdate the portal even if noone is currently

Sebastian Schaffert 115

5.2. QUERYING THE WEB

viewing it; in the second case, the queried data is in the voase the complete Web, which is obviously
too large for a forward chaining evaluation.

5.2.1 Personal Portal Page: News and WeatHr

The task of this scenario is to create a singmesonal portal pag&Veb service that integrates information
from various Web sources, like news or weather. To this dim,3ection first describes rules for retrieving
news and weather information from dynamically updated Wades and then combines this information in
an integrated portal page. The news and weather servicesageas exemplary scenarios; other services
are conceivable that can be queried and integrated in the samner.

A salient aspect of this use case is that the queries areatedlagainst other Web services; the queried
data is highly dynamic, which requires to dynamically eesduthe queries when a user visits the personal
portal page in a browser. Furthermore, the use of sevees fal querying the various resources illustrates
separation of concerrsnd provides a modular program design.

Querying Headlines of a News Ticker

Many media companies (like newspapers, magazines or saevbroadcasters) provide a so-caliesivs
ticker (or news feeglon their Web pages, which is constantly updated with thestatews and contains
highly dynamic data. A common format used for representegsitickers is an XML application called
RDF site summargsometimes also calletith site summaryor RsfA typical RSS document could look
as follows (the following excerpt is a news feed from the Sisledaily Dagens Nyhetgr

<rss version="0.91">
<channel>

<title>Dagens Nyheter</title>
<link>http://www.dn.se/</link>

<description> . . o
De viktigaste nyheterna fr an Sveriges st orsta morgontidning.
</description>
<language>sv-se</language>
<image>
<titte>Dagens Nyheter</title>
<url> http://www.dn.se/content/2/c4/13/99/logoDagens Nyheter.gif</url>
<link>http:/ww.dn.se/</link>
<width>144</width>
<height>18</height>
<fimage>
<item> e .)
<title>D odligt gift i amerikanska senaten.<ftitle> i
<link>http://www.dn.se/DNet/jsp/polopoly.jsp?d=145& amp;a=229799</link>
<description> ,
Det dodliga giftet ricin har p atr affats i ett postrum i den amerikanske
senaten i Washington. Ingen person har skadats.
</description>
</item>
<item> . . .
<title>Ingen f agelinfluensa i Tyskland</title>
<link>http://www.dn.se/DNet/jsp/polopoly.jsp?d=145& amp;a=229844</link>
<description>
Tester fr an Hamburg visar att de tv & kvinnor som misst anktes, vara
smittade av f agelinfluensan, som h arjar i Asien, inte bar p a smittan.
</description>
<fitem>
<item> o o . T
<titte>S a paverkas du av partiernas familjepolitik</title>
<link>http:/iwww.dn.se/DNet/jsp/polopoly.jsp?d=145& amp;a=229781</link>
<description>
Med sin nya familjiepolitik n armar sig kristdemokraterna folkpartiet
?gh |centern. L &s DN:s genomgang av de olika partiernas familjepolitiska
orslag.
</description>
<fitem>
</channel>

</rss>

3This use-case is available[@ip7IdemoXcerpL.orgicqr-pijporarxcerpt___———————]

116 Sebastian Schaffert

http://demo.xcerpt.org/cgi-bin/portal.xcerpt
http://purl.org/rss/1.0/

CHAPTER 5. XCERPT USE CASES

Querying this RSS document with Xcerpt is straightforwafthe following Xcerpt rule provides an
HTML view summarising the information contained in it. Ndket the result of this rule isdiv element
that may be used in other rules to build a more complex paggeniit a complete HTML document itself.

CONSTRUCT
div [
attributes { id { "news" } },
hl ["Channel:" , var Channel],
all div |
div [attributes { class { "headline" }}, var Title],
div [attributes { class { "abstract" }'}, var Description Is
div [a [attributes { href { var Link }}, "More .." 11
]
J
FROM
in {
resource ["http://lwww.dn.se/DNet/jsp/polypoly.jsp?d=1399" Is
rss [[
channel [[
title [[var Channel 1],
item [[

title [var Title],
link [[var Link 1],
description [var Description I

I

With additional styling information (e.g. given in CSS), esult of this rule might look as in Figure
(snapshot taken on 09/06/2004). Since the data is hitymigimic, backward chaining is preferable for
evaluation, i.e. the data is queried when the result is r&tgde

Querying Weather Information

Similarly, many weather services provide their informatanline in form of XML “feeds” that can be
gueried by Xcerpt. The following is a snapshot taken fiatp//www.weatherroom.com , which pro-
vides a wealth of information for display on the personatalor

<WeatherFeed xmins="http://www.weatherroom.com">
<Current>
<Location> Munich / Riem, Germany </Location>
<RecordedAt> Munich / Riem, Germany </RecordedAt>
<Updated> 950 AM GMT+1 WED JUN 9 2004 </Updated>
<Conditions> Fair </Conditions>

<Image>http://www.weatherroom.com/images/fcicons/fa ir.gif</Image>
Visibility>Mi</Visibility>

<Temp>25°C</Temp>

<Humidity>51%</Humidity>

<Wind>W 10 MPH</Wind>

<Barometer>30.21 in.</Barometer>

<Dewpoint>14 °C</Dewpoint>
<Heatlndex>26 °C</HeatIndex>
<WindChill>25 °C</WindChill>

Sebastian Schaffert 117

5.2. QUERYING THE WEB

Channel: Dagens Nyheter

Traindustrin farligaste arbetsplatsen

Traindustriarbetare, metallarbetare och gruvarabetare har Sveriges farligaste jobb. Det visar en

rapport som AFA, Arbetsmarknadens forékringsaktiebolag , har sammanstallt,
L8s mer ...
Allt fler skaffar bredband

Operatérerna tj&nar pengar som aldrig tidigare, férra &ret sex miljarder kronor vilket &r en

Bkning med tolv procent jamfért med 2002, Det visar Post- och telestyrelsens rapport Svensk

Telemarknad 2003,
L8s mer ...
FN antar resolution om Iraks framtid

FN:s s&kerhetsrdd har enhélligt antagit en resolution framlagd av USA och Storbrittanien om
Irak. Resolutionen klargér att Iraks nya ledare kan beordra den USA-ledda militara styrkan att

lamna landet n&r som helst.
L8s mer ...
Polisman tog sitt liv efter barnporrazzia

Ytterligare en person, en 45-arig polis, har tagit sitt liv efter att han gripits | den omfattande

barnporrazzian fér tva veckor sedan.
Las mer ...
T

Figure 5.1: Exemplary result of transforming an RSS feed T&/H with Xcerpt

<Sunrise>4:13 AM GMT+1</Sunrise>

<Sunset>8:11 PM GMT+1</Sunset>

<MoonPhase>Last Quarter Moon</MoonPhase>
<[Current>

<Forecast>
<Date>+1 WED JUN 09 2004</Date>
<Time>0500 AM GMT+1 WED</Time>
<Afternoon> <Conditions>Partly Cloudy</Conditions> </A
<Evening> <Conditions>Partly Cloudy</Conditions> </Eve
<Overnight> <Conditions>Fair</Conditions> </Overnight >
<Morning> <Conditions>Fair</Conditions> </Morning>
</Forecast>

fternoon>
ning>

<Copyright>This feed is copyright 2004 weatherroom.com.<

[Copyright>
</WeatherFeed>

Similar in style to the “news ticker” rule, the following Xga rule creates an HTMldiv element
containing the current conditions (e.g. “Fair” or “PartoGdy”), the current temperature, and the current
wind conditions from the “weather feed”. Obviously, othefdrmation could be retrieved as well (like the

weather forecast).

CONSTRUCT
div [
attributes {id { ‘weather" }},
hl { "Weather for " var Loc },
div [
table [
tr[td ["Conditions"] td [var Conditions]],
tr[td [“Temperature"], td [var Temp]],
all tr [td ["Wind"], td [var Wind]]
]
1
div [
img { attributes { src { var Image }}
]
118 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

]
FROM
in {
resource ["http://www.weatherroom.com/xml/ext/EDDM" , o xmlt],
WeatherFeed {{
Current {{
Location { var Loc },
Temp { var Temp },
Conditions { var Conditions },
Image { var Image },
Wind { var Wind }
B
b

}
END

Creating a Combined Representation: The Personal Portal Rge

Using rule chaining, the information from the news and wertluery can be integrated easily into a
common HTML page by using a single goal. The query of the goatains two query terms used for
guerying the results of the two rules described above irgovéiriableNews andWeather . The construct
term (head) of the goal provides the appropriate HTML framdwThe element labelleglyle contains
additional styling information e.g. expressed usGascading Style ShedSSS, [I1b]), which is not given
in the example.

GOAL
html [

head [
title ["Personal Portal"]
style [...]

1

body [

hl ["Personal Portal" 1
var News,

var Weather

]

]
FROM

and {
var News — div {{ attributes {id{ ‘"news" }} W
var Weather — div {{ attributes {id{ ‘“weather" }}}}

}
END

Combined with the two other rules, this goal can be used tdeément a dynamic Web service that is
evaluated every time a user points his browser to the pcatg pnd requests “fresh” data from the dynamic
resources. Figule.2 shows a sample evaluation of thigg@mo¢pn 09/06/2004).

5.2.2 Web Crawler

A Web crawler (sometimes also called “spider” in analogy\éeb”) is a program that visits Web pages
and recursively follows hyperlinks to other Web pages. Webwiers are e.g. used by search engines to
index existing Web pages. Other applications include $éagcfor a certain piece of information in a

Sebastian Schaffert 119

5.2. QUERYING THE WEB

Personal Portal

News Channel: Dagens Nyheter Weather for Munich /

i i N Riem, Germany
Barnflickan allvarligt psykstérd

Barnflickan | Knutbymalet licer av en allvarlig psykisk Conditions Fair r!
stérning, konstaterar Soclalstyrelsens rattsliga rad. Till falid s

av den psykiska stérningen finns risk for att hon ska begd Temperature 77 A ® F

nya allvarliga brott. Wind W 10 MPH

Lés mer ...

Strejkvarsel mot semesterfarjor

T morgon utvidgar Seko den tidigare varslade strejken. Det
kan stélla till stora problem fér farjetrafiken just nar
semesters&songen har borjat,

L&s mer ...

Godtycke avgdr narkotikavéarden

Vérden av narkotikamissbrukare skiljer sig kraftigt &t i
landet. Det &r cacceptabelt, enligt Bjérm Fries, nationell
narkotikapolitisk samordnare.

L&s mer ...

Dyrare mat i Sverige an i 6vriga EU

Regeringen bér géra det |&ttare for nya aktorer att komma
fram, menar Konkurrensverket,

L&s mer ...

Figure 5.2: A sample evaluation of the “portal” program.

larger collection of Web pages, e.g. a complete Web site @n eeveral Web sites. A rule-based language
with recursion, like Xcerpt, is a natural choice for implewting a Web crawler. In the following, several
examples based on a basic Web crawler are illustrated. Roowbreasons, only a backward chaining
approach is feasible for evaluating such a crawler.

Note that the crawler, as it is implemented here, does nattiiom on the current prototype (cf. Ap-
pendix[A), as the latter does not support variables in resoapecifications (for technical reasons) and
provides no means to memoise sites that have already bard\Vighich, in case of cyclic hyperlinks,
anticipates termination).

A Basic Web Crawler

The following Xcerpt program consisting of two rules illtesies the scheme for the traversal of hyper-
links on a very basic crawler, which only retrieves the URJatained as hyperlinks in the pages it visits,
grouped inside arawler subterm. The first rule simply queries all hyperlinkssibterms) on the page
http:/fwww.xcerpt.org , and serves as the base case for the evaluation. The sedendplements the
recursive case: it first recursively calls the crawler far URIs of all hyperlinks in visited pages and then
gueries these URIs again for hyperlinks, grouping them taedJRIs retrieved from the recursive call)
inside thecrawler subterm. Note that this crawler is ngrouping stratifiablg(cf. Sectior[&.4]1) and thus
currently not covered by the formal semantics given in Céidbt

CONSTRUCT
crawler {
all link { var Link }
}
FROM
in {
resource ["http:/www.xcerpt.org" I
desc a {{
attributes { href { var Link } }}
b
}

120 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

END

CONSTRUCT

crawler {
all link { var Link }
all link { var RecLink }

}
FROM
and |
crawler {{
link { var Reclink }
H
in {
resource [var RecLink],
desc a {{
attributes { href { var Link } }
B
}
]
END

This crawler is very basic in several aspects, as it doestiaeve the content of visited Web pages and
thus does not allow to search for anything beyond the URIgsited pages. Also, it provides no means to
check for cyclic structures of hyperlinks and thus mightteoininate in such cases.

A Content Aware Crawler

The basic crawler can be extended to a more sophisticatedecrthat also retrieves the content of Web
pages (starting dtttp://www.xcerpt.org) in a straightforward manner as follows. Note that instefad o
the links contained in a page, the crawler now simply reasethe complete content of pages, which is
searched for subterms in the recursive call (in the second rule). Thelrésa list of Web pages each
wrapped inside page subterm.

CONSTRUCT
crawler {
page {
from { "http://www.xcerpt.org" h
content { var Content }
}
}
FROM
in {
resource [“http://lwww.xcerpt.org" Is
var Content > html { 3}

}
END

CONSTRUCT
crawler {
all var RecPage,
all page {
from { var Link 1},
content { var Content }

Sebastian Schaffert 121

5.2. QUERYING THE WEB

}
}
FROM
and {
crawler {{
var RecPage — page {{
content {{
desc a {{ attributes { href { var Link }} }
b
i
1
in {
resource [var Link],
var Content > html {{ }}
}
}
END

Searching a Web of Pages

The content-aware crawler may be used to implement varietigval tasks. For example, the following
goal retrieves the URIs of all Web pages that contaihlaelement containing the word “XML” and that are

reachable from the sitstp://www.xcerpt.org by chaining with the rules of the content-aware crawler:
GOAL
results {
all var URI
}
FROM
crawler {{
page {{
from { var URI },
content {{
desc hl {{ /*XMLX }}
3
}
3
END

Representing a Web of Pages as Nested Xcerpt Terms

The content-aware crawler simply creates a list of Web pagddgnores the “hyperlink graph” that con-
nects these pages. It might, however, be desirable to Eqmréss graph as a nested Xcerpt term, e.qg.
to easily search over the hyperlink structure. The follayvadditional rules convert the result of the
content-aware crawler into such a nested tree structureaf@hgstructure would be conceivable, but is
more complicated). The first rule retrieves all “leaves8.(such subterms that do not contain a hyperlink).
The second rule recursively retrieves (nested) pagesribiegj with the “leaves”) and queries the content-
aware crawler for all pages that refer to these pages. Adestiecture is constructed in the head of this
rule.

CONSTRUCT
pages {

122 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

var Page
}
FROM
crawler {{
var Page — page {{
content {{
without desc a {{ }}
3
}

)
END

CONSTRUCT
pages {

page {
from { var From },
content { var Content 1},
pages {

all var Page

}

}

}
FROM

and {
pages {{
var Page — page {{
from { wvar Link }
ly
i
crawler {{
page {{
from {{ var From }}
content {{
var Content » desc a {{ attributes { href { var Link } } }}
1
y
ly

}
END

Using the nested structure constructed by these rulespdssible to express queries to the hyperlink
structure of the crawled Web pages. For example, the fatigwgioal retrieves pages that are reachable by
pages containing the word “XML":

GOAL
result {
all var URI
}
FROM
pages {
desc page {{
content {{ desc [*XML.* }},
pages {{

Sebastian Schaffert 123

5.3. SEMANTIC WEB REASONING

desc page {{
from { var URI }
b

i
}

}
END

5.3 Semantic Web Reasoning

The Semantic Web aims at enriching Web data with meta-dath €gen meta-meta-data), allowing re-
trieval of data while respecting available “semantic” imf@mtion. A query language for such data needs
to be able to query both standard (XML) data and meta-dathfiathermore needs to provide reasoning
capabilities that go beyond simple retrieval (cf. “ReasgnCapabilities”, Sectioi—I3.8). In the current
state of the Semantic Web, meta-data is usually expressahie kind of ontology language (e.g. OWL,
[[I8]), which essentially allows to describe a hierarchynetwork of concepts and properties of these
concepts. The two most common reasoning tasks are to deeesubconcepts/superconcepts (e.g. to infer
that “fiction book” is a subconcept of “book”), and to test uter a given object (i.e. Web resource) is
an instance of a particular concept (e.g. to infer that aageliook about the “Viking Age” is a “history
book™).

This section illustrates the use of Xcerpt for querying XMatal together with Semantic Web data.
To this aim, a small example called tiique of Friends(Sectioll231) is first used to illustrate some
basic reasoning (mainly theansitive closureof a relation) for the Semantic Web. This example does not
use any particular Semantic Web language itself. Buildingheese concepts, a more complex scenario
is introduced (Sectioi5.3.2), which illustrates queryingollection of books in the presence of a simple
book ontology defined in the language OWLTIL18].

5.3.1 Clique of Friends

Consider a collection of address books where each addregshias an owner and a set of entries, some
of which are marked as “friend” to indicate that the pers@oamted with this entry is considered a friend
by the owner of the address book. In XML, this collection ofleebs books can be represented in a
straightforward manner as follows:

<address-books>
<address-book>
<owner>Donald Duck</owner>
<entry>
<name>Daisy Duck</name>
<friend/>
<lentry>
<entry>
<name>Scrooge McDuck</name>
</entry>
</address-book>

<address-book>
<owner>Daisy Duck</owner>
<entry>
<name>Gladstone Duck</name>
<friend/>
<lentry>

124 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

<entry>
<name>Ratchet Gearloose</name>
<friend/>
</entry>
</address-book>
</address-books>

In this example, the collection contains two address botiles first owned by “Donald Duck” and
the second by “Daisy Duck”. Donald’s address book has twoientone for “Scrooge”, the other for
“Daisy”, and only “Daisy” is marked as “friend”. Daisy’s adgss book again has two entries, both marked
as “friend”.

The clique-of-friendsof Donald is the set of all persons that are either direchfiseof Donald (i.e.
in the example above only “Daisy”) or friends of a friend (i'&ladstone” and “Ratchet”), or friends of
friends of friends (none in the example above), and so on. fikstastep towards this clique of friends, the
following Xcerpt rule defines the relatidnend-of as a view over the address book collecfon.

CONSTRUCT
friend-of | var X, var Y]
FROM
in {
resource [‘“file:address-books.xml" 1

address-books {{
address-book {{
owner { var X},

entry {{
name { var Y },
friend {}
i
i
i
}
END

Note that it would be easy to define the relatfoend-of as reflexive by simply using curly braces
instead of square brackets in the construct term.
Defining the transitive closure of the relation requires eursive rule, but is pretty straightforward

otherwise: a persoM is a friend-of-friend of some persolX, if Y is either afriend-of X or there
exists a persod that is afriend-of X, such that is afriend-of-friend of Z:
CONSTRUCT
friend-of-friend | var X, var Y]
FROM
or {
friend-of [var X, var Y],
and {
friend-of [var X, var Z],
friend-of-friend | var Z, var Y]
}
}
END

5Note that, in contrast to other logic programming approaciwerpreting the term labellddend-of as a relation is only
valid with respect to the application at hand; in gendrghd-of is just a term.

Sebastian Schaffert 125

5.3. SEMANTIC WEB REASONING

Finally, theclique-of-friends is simply the collection of alfriend-of-friend relationships. Itis
constructed in a goal as follows:

GOAL
clique-of-friends {
all var FOF
}
FROM
var FOF — friend-of-friend {{ }}
END

Although this example does not make use of Semantic Web thegaglationship to reasoning is ob-
vious. The book ontology below uses very similar rules fdirdeg a relationsubclass-of ~ that may be
used to collect sub- or superconcepts.

5.3.2 Ontology Reasoning: The Book Ontology

Consider a book store (like the two book stores of Sefflopthat provides an online catalogue contain-
ing the books it offers. Searching a book usually requirescteng the book titles and maybe abstracts
of the content. If a customer wants to search by topic ratiem by title (e.g. “history books”), this kind
of search usually misses many of the relevant entries andsy&large number of false positives. For
example, the book entitled “Folket i Birka” (Swedish: “Thedple of Birka”, a historical novel for chil-
dren illustrating the life of people in a Viking Age town) isly found when searching for “Birka”, which
already requires much knowledge over the domain of inte&ssemantic” query would be able to in-
clude the book “Folket i Birka” when searching for books atitwe “Viking Age” or “History Books for
Children” without requiring to include more specific seapelrameters.

The Book Ontology

Using the Semantic Web, such semantic queries become lea3ibe online book store might provide
an ontology describing the relations between differen¢gaties of books, and the properties of these
categories. The following example uses the Web OntologyguageOWL [[LI8] for describing a simple
part of this book ontology:

<rdf:RDF xmins:owl = "http://www.w3.0rg/2002/07/owl#"
xmins:rdf "http:/fwww.w3.0rg/1999/02/22-rdf-syntax- ns#"
xmins:rdfs = "http://lwww.w3.0rg/2000/01/rdf-schema#" >

<owl:Class rdf:ID="Book"/>

<owl:Class rdf:ID="Novel">
<rdfs:label>Novel</rdfs:label>
<rdfs:subClassOf rdf:resource="#Book"/>
</owl:Class>

<owl:Class rdf:ID="History">
<rdfs:label>History Book</rdfs:label>
<rdfs:subClassOf rdf:resource="#Book"/>
</owl:Class>

<owl:Class rdf:ID="Classic_History">
<rdfs:label>Book about Classic History</rdfs:label>
<rdfs:subClassOf rdf:resource="#History"/>

126 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

6\

-

|
-
Historical
Novel

Figure 5.3: Part of a book ontology for an online book storidsines indicate subconcepts, dotted lines
intersection of concepts.

</owl:Class>

<owl:Class rdf:ID="Mediaeval_History">
<rdfs:label>Book about Mediaeval History</rdfs:label>
<rdfs:subClassOf rdf:resource="#History"/>
</owl:Class>

<owl:Class rdf:ID="Modern_History">
<rdfs:label>Book about Modern History</rdfs:label>
<rdfs:subClassOf rdf:resource="#History"/>
</owl:Class>

<owl:Class rdf:ID="Historical_Novel">
<rdfs:label>Historical Novel</rdfs:label>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Novel"/>
<owl:Class rdf:about="#History"/>
</owl:intersectionOf>
</owl:Class>

</rdf:RDF>

This ontology describes the following hierarchy of conedef. Figurd 5.B):
e aNoveland aHistory Bookis aBook
e books abouClassic History Mediaeval HistoryandModern HistoryareHistory books.

o Historical Novelis the intersection dflistory BookandNovel(both referenced bigf:about). Note
that intersection is stronger than simply being the subeptsoof two concepts.

Note that OWL ontologies may be serialised in XML in manyeli#nt manners, e.g. using nestetiClass
definitions.

Subclass Checking with Xcerpt

Using the rules for transitive closure of tedique of Friendschecking subclasses in this hierarchy of con-
cepts is straightforward. The following Xcerpt program defi a relatiorsubclass-of that relates con-
cepts with all parent concepts based on the serialisatitimdfook ontology above. The first rule defines

Sebastian Schaffert 127

5.3. SEMANTIC WEB REASONING

a relationimmediate-subclass-of , which provides a simplified view on the ontology data andtes a
concept (variablX) with its immediate parent concepts (varialsle The second rule definesbclass-of

as the transitive closure oviemmediate-subclass-of (note the similarity with thdriend-of-friend

rule in the previous section). Note also the use of XML naraesp in this program.

ns-prefix owl = "http:/ww.w3.0rg/2002/07/owl#"
ns-prefix rdf = "http://lwww.w3.0rg/1999/02/22-rdf-syntax-ns#"
ns-prefix rdfs = "http://www.w3.0rg/2000/01/rdf-schema#"

CONSTRUCT
immediate-subclass-of [var X, var Y]
FROM
in {
resource [‘“file:books.ow!" Is
rdf:RDF {{
var X — owl:Class {{
rdfs:subClassOf {{
attributes {{ rdf:resource { A var YRef —%/ } }}

i
32

var 'Y — owl:Class {{
attributes {{ rdf:ID { var YRef } }}

i
i
}
END
CONSTRUCT
subclass-of [var X var Y]
FROM
or {
immediate-subclass-of [var X, var Y],
and {
immediate-subclass-of | var X, var Z],
subclass-of | var Z, var Y]
}
}
END

Checking for all parent concepts or child concepts of a $jgezdncept is now easy. For example, the
following goal retrieves all child concepts of the concejithwdfs:label “History Book” by chaining
with the rules above:

ns-prefix owl = "http:/Mww.w3.0rg/2002/07/owl#"
ns-prefix rdfs = "http://www.w3.0rg/2000/01/rdf-schema#"

GOAL
subconcepts {
all var Concept
}
FROM
subclass-of |
var Concept ,

128 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

owl:Class {{
rdfs:label { "History Book" }
b

]
END

Annotating Books with Meta-Data

To add “semantic” meta-data to the XML document used fores@nting the book store database, it is
necessary to annotate the data as follows. Each book is givaiquadfID , and relationships between
books (identified by the value odf:ID and concepts in the ontology are established (usifigpe).
Changes to the original document are indicated by red colour

<bib xmins:owl = "http://www.w3.0rg/2002/07/owl#"

xmins:rdf = "http://www.w3.0rg/1999/02/22-rdf-syntax- ns#" >
<book year="1995" rdf:ID="vikinga_blot" >
<titte> Vikinga Blot ~ </title>
<authors>
<author>

<last> Ingelman-Sundberg </last>
<first> Catharina </first>
</author>
<[authors>
<publisher> Richters </publisher>
<price> 5.95 </price>

</book>
<book year="1998" rdf:ID="boken_om_vikingarna" >
<title> Boken Om Vikingarna </title>
<authors>
<author>

<last> Ingelman-Sundberg </last>
<first> Catharina <ffirst>
</author>
</authors>
<publisher> Prisma </publisher>
<price> 22.95 </price>

</book>
<book year="1999" rdf:ID="folket_i_birka" >
<title> Folket i Birka @ Vikingarnas Tid <ltitle>
<authors>
<author>

<last> Wahl</last>
<first> Mats </first>
</author>
<author>
<last> Nordqvist </last>
<first> Sven</first>
</author>
<author>
<last> Ambrosiani </last>
<first> Bpm </first>
</author>
</authors>
<publisher> BonnierCarlsen </publisher>
<price> 39.95 </price>

</book>

<book year="1997" rdf:ID="vikingar_i_ dsterled" >
<title> Vikingar i Osterled </title>
<editor>

<last> Larsson </last>
<first> Mats </first>
<affiliation> Lunds universitet <[affiliation>
</editor>
<publisher> Atlantis </publisher>
<price> 49.95 </price>
</book>

<owl:Thing rdf:about="#vikinga_blot">
<rdf:type rdf:resource="#Mediaeval_History"/>
<rdf:type rdf:resource="#Novel"/>
</owl:Thing>

<owl:Thing rdf:about="#boken_om_vikingarna">

Sebastian Schaffert 129

5.3. SEMANTIC WEB REASONING

<rdf:type rdf:resource="#Mediaeval_History"/>
</owl:Thing>

<owl:Thing rdf:about="#folket_i_birka">
<rdf:type rdf:resource="#Mediaeval_History"/>
<rdf:type rdf:resource="#Novel'/>
</owl:Thing>

<owl:Thing rdf:about="#vikingar_i_dsterled">
<rdf:type rdf:resource="#Mediaeval_History"/>
</owl:Thing>

</bib>

Although the construadwl:Thing looks strange, it is required by the OWL specification when de
scribing resources defined elsewhere. Note that a book ysassbciated with the most specific concepts
it belongs to: the book “Folket i Birka” has thdf:ID folket -i _birka and belongs to the concepts
Mediaeval _History andNovel , but not explicitly to the conceptdistory or Book.

Ontology Reasoning: Querying by Topic

Using the book ontology, the Xcerpt rules for checking sutoepts, and the extended book document, it
is now possible to perform “semantic” queries as describede introduction. Consider a customer that is
interested in “History Books”, i.e. all books belonging fther the concept itself, or to any subconcept. In
Xcerpt, a query for such books can be expressed by the faipwile (hamespace prefixes are omitted for
brevity but are defined as above):

CONSTRUCT
history_books {
all var Book

}
FROM
and {
in {
resource [“file:bib.xml" Is
bib {{
var Book — book {{
attributes { rdf:ID { var ID } }}
i
owl:Thing {{
attributes {{ rdf:about { /#(var ID —X/} 3},
rdf:type {{
attributes {{ rdfrresource { #(var Class —.%)/ } 1,
1
1
}
2
subclass-of [
owl:Class {{
attributes { rdf:ID { var Class } }}
32
owl:Class {{
rdfs:label { "History Book" }
1
]
}
END

130 Sebastian Schaffert

CHAPTER 5. XCERPT USE CASES

This rule queries the extendéd.xml document for all books, and retrieves the respective cdasse
they belong to (by querying thewl:Thing subterms describing thef.ID of the books). By querying
the results of the rule defining the relatisubclass-of , it is then verified whether the book is indeed a
“History Book”.

The rule above can be generalised for arbitrary instanteitea straightforward manner. The following
Xcerpt rule defines a relatidielongs-to that explicitly associates a book with all concepts (“ctss¥it
belongs to. Note that both variablélsss andSuperClass are grouped inside thedasses subterm, as
some books might yield more than one binding for the varigldss .

CONSTRUCT
belongs-to [
var Book
classes {
all var Class ,
all var SuperClass

}
]
FROM
and {
in {
resource [“file:bib.xml" Is
bib {{
var Book — book {{
attributes { rdf:ID { var ID } }}
i
owl:Thing {{
attributes {{ rdf:about { /#(var ID —X/} 3},
rdf:type {{
attributes {{ rdfrresource { /#(var Class —.%)/ } 1},
1
1
}
2
subclass-of [
owl:Class {{
attributes { rdf:ID { var Class } }}
i
var SuperClass
]
}
END

Note that this rule is not capable of inferring that a corelaiok that is a “Novel” about “Medieaeval
History” is also a “Historical Novel”, as it lacks supportrfOWL's intersection construct.

Ontology Reasoning: Intersection

Recall that the ontology used in this Section also cont&iesbncept “Historical Novel”, which is defined
as the intersection of “History Book” and “Novel”. Whereagagying for “History Book” is rather straight-
forward, querying for “Historical Novel” requires more cpiex rules taking into account the intersection
of concepts.

The following Xcerpt rule builds upon the genebiglongs-to relation to also include concepts that
contain intersections. For each book, it creatbsl@ngs-to-extended term containing the book and all

Sebastian Schaffert 131

5.3. SEMANTIC WEB REASONING

concepts (contained in the subterm labeliladses), including those defined by the intersection of other
concepts:

CONSTRUCT
belongs-to-extended {
var Book,
classes { all var Class, var ISClass }
}
FROM
and {
belongs-to [var Book, classes {{ var Class }}],
in {
resource ["file:books.owl" 1
rdf:RDF {{
var ISClass > owl:Class {{
owl:intersectionOf {{ }}
b
i
13
not {
and {
in {
resource [‘“file:books.ow!" Is
rdf:RDF {{
var ISClass > owl:Class {{
owl:intersectionOf {{
owl:Class {{
attributes { rdf:about { var CRef } }}
b
b
i3
var SomeClass — owl:Class {{
attributes { rdf:ID { var CRef } }}
i
b
13
belongs-to [var Book, classes {{ without ~ var SomeClass }}],
}
}
}
END

This rather complex rule is evaluated as follows. The first tyuery terms of the conjunction in
the query part retrieve books with associated conceptsaflasBook andClass), and possible candidate
concepts defined by intersection (varialS€lass). The last part of this conjunction is a negated subquery
that checks whether all of the concepts used in the definitid®Class (bound to the variabl8omeClass
by dereferencing using the variabliRef) are associated with the book boundBaok, i.e. there does
not exist a concept dSClass bound toSomeClass that is not contained in the concepts associated with
Book. Note that, due to range restrictedness, it is necessanely poth the ontology and tthelongs-to
relation twice; otherwise, the variablBsok andISClass would not yield bindings.

132 Sebastian Schaffert

CHAPTER
SIX

Range Restrictedness, Standardisation Apart, and Staditfin

This Chapter discusses syntactic restrictions to whichrpdcprograms in this thesis are considered to
conform. These restrictions either simplify the formal serics in Chaptel7, or avoid programming
mistakes, or both. All of them are purely syntactical projgsrthat they can be verified statically when
programs are parsed.

Range RestrictedndbtSectioBP) is a restriction on the kinds of admissibleswnd goals. Rules/-
Goals that are range restricted do not contain variablelBdrconstruct part that are not “justified” (i.e.
bound by a non-negated query term) in the query part. Rarsgiéated programs can be evaluated in both
a backward chaining and a forward chaining fashion, whepeagrams that are not range restricted often
are difficult to treat in forward chaining algorithms, besauesults of a rule are not necessarily ground.

Stratification(SectiodG) is a further restriction on programs that ammthe grouping construcad
andsome or the negation construct®t andwithout . In stratified programs, negation is only allowed
if it does not affect recursive rule evaluations. Stratifima avoids many of the problems that come with
non-monotonic negation.

As this thesis does not intend to cover the wide areas of nometonic negation and different ap-
proaches to forward chaining, stratification and rangeictstiness are suitable assumptions for the for-
malisation of Xcerpt as it is presented here. Other, lesd,ragpproaches are feasible and not excluded by
Xcerptper se

6.1 Preliminaries

In subsequent chapters, the following notations are usadrtplify the discussion over the semantics of
Xcerpt programs:

e Programsare sets of rules (and goals), usually denote®by{Ry,...,Rn}.

e Rulesare denoted bir =t° « Q, wheret® is the construct term of the rule afdthe query part; the
set of rules of a prograr is usually denoted bR C P

e Goalsare denoted b =t® «—4 Q, wheret® is the construct term of the rule afdthe query part;
the set of goals of a prograhis usually denoted bg C P

¢ Queriesof the formand{Qy,.., Qn} are sometimes denoted Q¢ A---AQn or by A ;< Qi; like-
wise, queries of the forrar {Q1,..., Qn} are sometimes denoted RV ---V Qn or by Vi< Qi
and queries of the formot Q are sometimes denoted b.

e Resourcesire considered to be internalised, i.e. it is assumed thatata term referred to by an
input resource specification of the foim{... } is part of the program; this assumption simplifies
the formal treatment below and can be implemented in a $iffaigvard (but inefficient) manner.

IMany publications, e.g[T11] an[IP8], refer tange restrictedprograms asillowed or safeprograms

133

6.2. RANGE RESTRICTEDNESS

e The setl’ denotes the set of all ternt&? C T the set of all query term§9 C 79 the set of all ground
query terms, an@® C 79 the set of all data terms.

In most parts of the formalisation, rules and goals are ratirdjuished unless explicitly mentioned; this
simplification is useful as rules and goals are very simidso, parts of the formalisation use a simplified
term representation, where strings and regular expression simply treated as compound terms with
empty content and total term specification. E.g. the stttM]." is represented dXML"{} .

6.2 Range Restrictedness

Intuitively, range restrictedness means that a variabteiwing in a rule head also must occur at least once
in the rule body. This requirement simplifies the definitidriree formal semantics of Xcerpt, as it allows
to assume that all query terms are unified with data termeadsof construct terms (i.e. variable free
and collection free terms). Without this restriction, itnecessary to consider undefined or infinite sets
of variable bindings, which would be a difficult obstacle &forward chaining evaluation. Besides this
formal reason, range restricted programs are also usualtg intuitive, as they disallow variables in the
head that are not justified somewhere in the body.

The following sections give a formal, syntactic critericor frange restrictedness, which considers
negated queries and optional subterms as described in8€dB W 2311 addZ}.3, as well as disjunctions
in rule bodies.

6.2.1 Polarity of Subterms

So as to determine whether a rule is range restricted, Jaragurrences in query and construct terms are
associated with the polaritigmsitive(+) or negative(—), and the attributesptional (?) or not optional
(") for such variables that are contained within an optiostree and thus are not bound in all valid
matchings. Intuitively, aegativevariable occurrence isdefiningoccurrence, whereagmsitivevariable
occurrence is @onsumingdccurrence. Since most terms are considered to be not aptibe attribute !
is omitted in most examples.

The polarity of variable occurrences in a term can be detezthby recursively attributing all subterms
of a term.

Definition 6.1 (Polarity of Subterms)
1. Lett be a query term with polaritp and optionalityo.
o if tis of the formwithout t’, thent’ is of polarity+ (regardless op) and optionalityo
e if tis of the formoptional t/, thent’ is of polarity p and optionality ?.

e if tis of one of the form${{t],...,t\}}, I{ts,....th}, l[[t3,-...th]] or I]ty,....tn] (n > 0), then
t7, ...t} are of polarityp and optionalityo.

o if tis of the formdesc t’ thent’ is of polarity p and optionalityo.
e if tis of the formvar X — t’ thent’ is of polarity p and optionalityo.

2. Lett be a construct or data term with polarfyand optionalityo.

o if tis of the formoptional t’, thent’ is of polarity p and optionality ?.

e if t is of one of the formd {t},...,t}} or f[t],...,t}] (n>0), thent], ..., t;, are of polarityp
and optionalityo.

o if tis of the formsall t’ orsome t’, thent’ is of polarity p and optionalityo.
e if tis of the formop(t},...,t}), with opa function or aggregation identifier, thén ,t, are
of polarity p and optionalityo.

The root of a query term is usually of negative polarity (ahndstdefine variable bindings), as query
terms usually occur in rule bodies. The root of a constructata term is usually of positive polarity.

134 Sebastian Schaffert

CHAPTER 6. RANGE RESTRICTEDNESS, STANDARDISATION APARTND STRATIFICATION

Example 6.1 (Polarities within a Term)

The following figure gives the polarities for a query terme(folarity of the root node is thusquerying

a student database for such students that have not subemnitedseE. Some students might not have an
student id (“matrnr”), indicated by the keywouogtional

- students {{

- student {{
-name { -var N},
-optional - ?matrnr { - ?var MNr },
- exercises {{
- without exercise {{ nr { +var E} }}
i
b

i

Note that both variabldd andMNr occur negatively (and thus define variable bindings), widléable
E occurs positively (and thus does not define a variable bgjdiRurthermore, variablEINr is attributed
as optional.

In a rule, the construct term in the head always has positlaripy and the query part has negative
polarity and both are, by default, not optional. If negat@mstructs occur, the polarity changes according
to Definition[&]. Furthermore, if parts of a query are neddtgnot , the polarity of these parts is again
positive:

Definition 6.2 (Polarity in Rules)
1. If R=t°« Qis arule or goal witht® a construct term an@ a query part, then the polarity of is
+ and the polarity oRQ is —.

2. LetQ be a query part with polaritp.

o if Qis of the formnot Q, thenQ is of polarity+ (regardless op)

e if Qis of the formsand{Qs,...,Qn}, andQq,...,Qn], 0r{Q1,...,Qn} oror[Qs,...,Qn), then
Qq, ..., Qn are of polarityp

e if Qis of the formin{R Q'}, with R a resource specification a@dl a query, therQ' is of
polarity p andR s of polarity + (regardless op)

o if Qis of the formt (a query term), thehis of polarity p.

Note that the polarity of negated subterms and queriedwayspositive, regardless of the level of
nesting. The rationale behind this is that, since negatid{terpt isnegation as failur@and not the negation
of classic logic, additional negations do not completelyere previous negations. Variable occurrences
that are in the scope of at least one negation constructweyslconsuming occurrences, since negation
as failure requires to perform auxiliary computations.

Example 6.2 (Polarities in a Rule)
Consider the following example of a rule, which is intendecteate a list of students which have not
submitted exercise 2.

CONSTRUCT FROM
not_submitted { - students {{
all +student { - student {{
name { +var N}, -name { -var N},
matrnr { - optional - ?matmr { -?var MNr},
optional ?var MNr - exercises {{
with default "N.N." - without exercise {{ nr{ +21}}
} i
} b
} i
END

Sebastian Schaffert 135

6.2. RANGE RESTRICTEDNESS

The variabledN andMNr occur both positively and negatively. The variaM®r is in addition at-
tributed as optional, as it is contained in a subterm thapioal.

6.2.2 Range Restrictedness

Range restrictedness requires that in a rule, for each agnguccurrence of a variable, there exists at
least one defining occurrence. Furthermore, a variable fidctwall defining occurrences are optional also
needs to be optional on all consuming occurrences. Thigatsh is straightforward to understand, as it
just requires that “each variable in the head or in a negaitedyeeds to be bound elsewhere”.

This intuitive definition of range restrictedness is corogled by the possibility of disjunctions in the
rule body, in which case a variable occurring positivelytie tule head needs to occur negativelgath
disjunct. Since disjunctions can also be nested, it is Wsefiefine adisjunctive rule normal form

Definition 6.3 (Disjunctive Rule Normal Form)
1. Arule or goal® — Qis in disjunctive rule normal form, iff the query pa®tis in disjunctive normal
form, wheret® is a construct term, possibly associated with an outputreso

2. Aquery partQis in disjunctive normal form, iff it has the for@, V- -- vV Qn (n > 0) such that each of
theQ; has the form A--- Ata At ;- A=t (M> 0,k > 0) with tf being query terms, possibly
associated with input resources.

Note that, although rules are disjunctive like in other togirogramming languages, the disjunctions
cannot be factored out by splitting a rule in two, as the rdachmight contain thall construct which
collects all alternative bindings and is thus obviouslyiaficed by the disjunctions in the rule body.

Proposition 6.4
Every rule can be transformed into disjunctive rule norroatd.

Proof Sketch.Transformation is straightforward and follows mostly thrWwn transformation rules for formulas in
first order languages. Resource specifications can behdistd to query terms by simply making explicit their scope
using a recursive traversal over the formula.

O

Range restrictedness requires that each variable thatopositively in one of the disjuncts occurs
also negatively in the same disjuncts. Range restrictedadsrmalised by the following definition:

Definition 6.5 (Range Restrictedness)
LetRbe arule or goal and &Y =t®«— Q1 V.-V Qp (n > 0) be the disjunctive rule normal form & R
is said to baange restrictediff

1. for each disjunc®; (1 <i < n) holds that each variable occurring with positive polanitgithert®
or Q; also occurs at least once with negative polarit@jn

2. each variable attributed aptionaland withnegative polarityn at least one of th&; (1 <i <n), and
without another non-optional, negative occurrenc@jnis also attributed as optional in all positive
occurrences iQ; andt®.

A programP is calledrange restrictedif all rulesR € P are range restricted.

Example 6.3 (Range Restrictedness)

Consider the following rule, which is a slight modificatiohExampldG.P and is intended to retrieve such
students that have not submitted exeréselhe rule is not range restricted as the varidbleccurs only
with positive polarity, and the variabMNr is not attributed as optional in the rule head:

136 Sebastian Schaffert

CHAPTER 6. RANGE RESTRICTEDNESS, STANDARDISATION APARTND STRATIFICATION

CONSTRUCT FROM
not_submitted { - students {{
all +student { - student {{
name { +var N} -name { -var N},
matrnr { -optional - ?matrnr { -?var MNr },
var MNr - exercises {{
} - without exercise {{ nr { var E } }}
} i
} i
}
END

An interesting example of a somewhat strange but nonethedege restricted programis the following
rule, in which two query terms mutually define one variablélezbonsuming another:

Example 6.4
CONSTRUCT
f{ +var X +var Y}
FROM
-and {
-g{ -var X - without k{ +var Y 1}}
-h{ -var Y, -without { +var X} }
}
END

Note that the first query term has a negative (defining) oeoe of the variablX and a positive
(consuming) occurrence of the varialMewhile the second term has a negative (defining) occurrehce o
the variableY and a positive (consuming) occurrence of the variableAlthough this example looks
strange, it is, by definition, range restricted.

It might be argued that such programs are not range restrideause the defining occurrences of the
variables are in a mutual lock and that the query part of ths thus cannot be evaluated. However, such
programs do not have the problems that range restrictednessto solve: they can be evaluated in a
forward chaining manner, and all variable bindings arediaitd justified by a query.

6.3 Standardisation Apart (or Rectification)

In Xcerpt, rules are standardised apart f@etified. Informally, this means that rules are considered to
be variable disjoint and all variables occurring in a rule estricted to a single rule instance, i.e. each
recursive application of the rule uses “different” or “fnésariables. In an implementation, standardisation
apart can easily be achieved by simply renaming the vagdoleeach instance using fresh, otherwise
unused variable names. In the formalisation below, statist#ion apart is realised by treating every rule
as universally closed.

Standardisation apart is an important property for ruleebddanguages, as it ensures a certain amount
of “locality”: otherwise, in each rule it would be necessaoyconsider all variable occurrences in the
complete program, which yields programs that are very diffito maintain. Furthermore, recursion is
only reasonably defined if each instance of a rule in a reeairsile chain uses different variables.

6.4 Stratification for Grouping Constructs and Negation

Stratification is a technique first proposed by Apt, Blairg &alker [3] to define a class of logic programs
where non-monotonic features like Xcerpt's grouping cars or negation can be defined in a declarative
manner. The principal idea of stratification is to disallomgrams with a recursion over negated queries
or grouping constructs and thereby precluding undesiatdgrams. While this requirement is very strict
(e.g. the Web crawler of Sectif@BP.2 is not stratifiables) aidvantages are that it is straightforward to

Sebastian Schaffert 137

6.4. STRATIFICATION FOR GROUPING CONSTRUCTS AND NEGATION

understand and can be verified by purely syntactical meath®uti considering terms that are not part of
the program. Several refinements over stratification haee beoposed, e.docal stratification[B7] that
allow certain kinds of recursion, but these usually reqoicge “knowledge” of the program or the queried
resources.

Xcerpt programs in this thesis are considered to be stiaiaFurthermore, the notion of stratifica-
tion is not only used for proper treatment of negation, ibagtends to rules with grouping constructs,
because a recursion over grouping constructs usually defindesirable behaviour. In this section, this
new, so-calledjyrouping stratificatioris introduced first (Sectidi©.4.1). Subsequemtggation stratifica-
tionis introduced in accordance with the definition giverllh [Be¢tiod8.Z1), and both stratifications are
combined to so-callefiill stratificationof Xcerpt programs (Sectido 6.} .3).

6.4.1 Grouping Stratification

The grouping constructdl andsome are powerful constructs that are justified by many practgelli-
cations (cf. Chaptdd5). However, using them in recursivesrallows to define programs with no useful
meaning. Consider for example the program

f{all var X} «— f{{var X}}

f{a}
The meaning of such programs is often unclear and unintelmgléfte program author. Besides this issue,
rules with grouping constructs usually require that alesuthey depend on are completely evaluated, be-
causall expresses to colleall possible results, and a too early evaluation of a groupimgtroct might
yield terms that do not properly reflect the meaning of theighag constructs. Consider the program

f{all var X} «— g{{var X}}

g{varY} < h{{varY}}

9{a}

h{b}
Obviously, the evaluation of the first rule depends on théuas®n of the second rule, and because the first
rule expresses to collect all subterms @, d is necessary to defer the evaluation of the first rulel timé
second rule is evaluated, although the rule body of the fitetwould already match with{a}.

In this thesis, the solution to both issues is to disallowursion of rules with grouping constructs,
and to require that all rules on which a rule with groupingstaicts depends can be evaluated first. This
property can be verified syntactically syratifyinga program with so-calledrouping stratification If a
program is nogrouping stratifiableit might (but not necessarily does) contain problematiesu

Informally, the grouping stratification is rather straifgintvard: for a program, create a dependency
graph between rules, i.e. a multi-graph where verticesessnt rules and edges represent the possibility
that one rule calls the other, and mark those edges where avitll grouping construct in the rule head
depends on any other rule. A program is caliedtifiable if it is possible to partition the dependency graph
into disjunctive layers (so-callestrata) such that the rules in each layer only have unmarked deperate
to other rules in the same layer or lower layers, and markedml#encies to rules in strictly lower layers.
In this way, only such rules may contain grouping construdisre the results required for satisfying the
guery part can be completely fixed beforehand. Note thatdkimition of stratification differs slightly
from the traditional definition (as given e.g. [d [8]) in thiadlefines dependencies between rules rather than
between terms. The rationale for this is twofold: first, tpace that is partitioned is the set of rules, and
not the set of terms; second, grouping constructs affeatileeas a whole and not individual terms.

In the following,P =P, W ... WR, denotes th@artitioning of a setP into disjoint subset®, ..., .
Furthermore, the following definition uses the notiorsmfiulation unificatiordefined in Chaptdd 8 to de-
fine dependencies between rules, because Xcerpt doesfeotdtfate between term labels and predicates
(cf. Sectio”ZP). Also, simulation unification allows tdésinto account variables or regular expressions
occurring in term labels. Note that using unification stiled not correspond tolacal stratificationas

proposed byl[d7].

2Rather than calling a prograstratifiedas in the original definition, we call #tratifiableas it is not necessary to compute the
stratification during (backward chaining) evaluation.

138 Sebastian Schaffert

CHAPTER 6. RANGE RESTRICTEDNESS, STANDARDISATION APARTND STRATIFICATION

Definition 6.6 (Grouping Stratification)
Given a progranf® consisting of rules/goal§Ry,...,Rn} (m>1).

1. AruleR=t°— Q depend®n a ruleR =t¢ — Q, if there exists a query tertd in Q such that®
simulation unifies irt¢, i.e. simulation unification af in t yields a non-empty substitution set

2. Pis calledgrouping stratifiableif there exists a partitioningi(> 1)
P=P WP,

of P such that for every stratuf (1 <i < n) and every rulik € R holds:

« if the rule head oRR contains no grouping constructs aRdlepends on a rul® thenR ¢
Uj<i P, i.e.R is either in the same stratum Br in a lower stratum thaR

e if the rule head oR contains grouping constructs aRalepends on a rul® thenR € ;. Pj,
i.e.R is in a strictly lower stratum thaR

The partitionP =P, W---& P, is called agrouping stratificatiorof P, and theR are calledyrouping strata
of P.

Example 6.5
Consider the two programs above.

1. First we have

f{all var X} — f{{var X}}
f{a}

This program is not grouping stratifiable, because the refedds on itself and obviously cannot be
in a lower stratum than itself.

2. The second example is

f{all var X} «— g{{var X}}
g{varY} — h{{varY}}
o{a}

h{b}

This program is grouping stratifiable into two str&eandP; as follows:

P, f{all var X} — g{{var X}}
P g{varY}—h{{varY}}
o{a}
h{b}

Note that the definition of dependency (itEIn 1 in the definitdove) only considers isolated unifica-
tions of a query term with a construct term and does not réghata recursive chain of rules might be
inconsistent and thus unproblematic. Consider for exatigi@rogram

f{all var X} — and{g{var X},k{var X}}

g{g{varY}} — f{{varY}}
9{a}
k{a}
Although the program is not grouping stratifiable (becaush® grouping construct in the first rule, the

second rule would be in a lower stratum than the first, but degiends on the first rule, it also needs to
be at least in the same or in a higher stratum), it has a vabavanf {a}, because the second rule only

Sebastian Schaffert 139

6.4. STRATIFICATION FOR GROUPING CONSTRUCTS AND NEGATION

“produces” terms of the forrg{g{...}}, whereas the query part of the first rule only successfulbrigs
g{a}, because the query f&fvar X} otherwise fails.

A refined approach (not investigated in this thesis) coutérm the definition above such that depen-
dencies are not treated as isolated relations between tes, thut instead as chains of rules, where the
substitution sets returned by the simulation unificationa ichain are verified for consistency (which in
practice results in a partial evaluation of the programtuReive chains with inconsistent substitution sets
could then be admitted. Note that this refinement is simildocal stratificationas proposed b¥I$7].

Note furthermore that treatment of external resourcespatih in principle precluded in this and sub-
sequent chapters, is easy: rules or data terms identifiedtbynal resources are always considered to be
in a stratum lower than any other rule or data term of the @nogr

6.4.2 Negation Stratification

Negation as Failure (NaF, cIJB0]), like Xcerptist , is common in rule-based programming languages
(e.g. Prolog and Datalog). In NaF, a negated query succédds guery itself fails finitely (i.e. can be
proven to be not provable). NaF is desirable for a Web quergdage, because it is close to the intuitive
understanding of negation: for instance, it is natural suage that a train not listed in a train timetable
does not exist, instead of requiring that every non-extgtaim is explicitly listed in the timetable.

Although NaF has a purely operational meaning, it is dekr&bprovide a declarative semantics as
well, because the latter is usually easier to understamdtti@evaluation algorithm. Unfortunately, like
recursion over grouping constructs, negation as failul@val for programs whose meaning is unclear.
Consider for instance the following Xcerpt program:

f{a} < not f{a}

Backward chaining evaluation of this rule does not tern@n&dr provingf{a}, it is necessary to show (in
an auxiliary computation) th&t{a} does not hold, which again requires to evaluate the rulesarah.

Declaratively, the meaning of this rule is problematic. \Whepresenting rules by implication as in
traditional logic programming, this rule is simply equieat to f {a} vV -—f{a}, which simplifies tof {a}.
This interpretation does not reflect the operational beha\(ivhich is the definition for negation as failure)
described in the previous paragraph. Other approachedieaveconsidered (like Clarke’s completion or
default negation) that interpret the symbeldifferently, but all of these have similar problems.

In this thesis, Xcerpt programs are therefore assumed tdsbenagation stratifiablea syntactic re-
striction that excludes such programs that involve prollieruse of negation as in the example above.
Negation stratification in Xcerpt programs is defined in tisaal manner (as e.g. ill[8]). In stratifiable
programs, both recursion and negation are allowed, buttagien “through negation” is disallowed.

Note that (negation) stratification is one of many approachuggested for negation in logic program-
ming and deductive databases. In contrast to most otheoagpipes (likavell-founded semantiax stable
model semantigsstratification has the advantage that it is a propertyithdécidable, can be determined
statically, and considers only the examined program, vwaseneost other approaches also require the data
on which the program operates. This latter requirementjsactical for Web query languages, as it would
require to consider the complete Web when compiling Xcerpgam

As stratification is a rather rigid requirement and also eaek programs that are unproblematic and
desirable, it might also be interesting to investigateaddht, more sophisticated approaches to negation,
e.g.local stratification[Bd] or paraconsistent interpretatiorf&8,28] in future work. However, all of these
approaches first need to be evaluated for their practicdicality.

Similar to grouping stratification, negation stratificatidivides a program (represented as a set of
rules) intostrata The main idea is to disallow recursion over negated quebigsallow any other kind of
recursion. A ruleRis said to depend negatively on another mRlgif the rule body ofR contains a negated
query term (i.e. a query term contained in one or nmmteconstructs) that simulation unifies with the head
of R. Likewise, a ruleR is said to depend positively on another rie if the rule body ofR contains a
non-negated query term that simulation unifies with the refal. Note that double negation of a query

3In a sense, one could say that after 20 years of research emapatonic negation, we have to return to the beginningstaue
the particularities of the Web.

140 Sebastian Schaffert

CHAPTER 6. RANGE RESTRICTEDNESS, STANDARDISATION APARTND STRATIFICATION

term also yields a negative dependency, becaosémplements negation as failure and the query term
thus does not yield variable bindings. If a rikepositively depends on a rulg, thenR may be in the
same layer aR or in any lower layer. If a rul®R depends negatively on a ruR, thenR must be in a
strictly lower layer tharR. Again, this definition differs from the traditional defiinit of stratification in
that it considers dependencies between rules rather thesede terms. The justification for this decision
is similar to the reasons given in the previous section.

Again, the following definition uses tt@mulation unificatiordescribed in Chapt€l 8. Recall also, that
P=P, ¥ ... ¥ P, denotes thgartitioning of a setP into disjoint set$.

Definition 6.7 (Negation Stratification)
Given a progranf® consisting of rules/goal§Ry,...,Rn} (m>1).

1. LetR=1t°« QandR =t « Q be rules.

e R depends positivelgn R, if there exists a query tert§ where all variable occurrences have
negative polarity irQ such that? simulation unifies in, i.e. simulation unification of® in t¢
yields a non-empty substitution set

e R depends negativebn R, if there exists a query tert§ in Q such that at least one variable
occurs positively irt9, andtd simulation unifies irt®, i.e. simulation unification of9 in t¢
yields a non-empty substitution set

2. Pis callednegation stratifiablgif there exists a partitioningi(> 1)
P=P W P

of P such that for every stratuf (1 <i < n) and every rul&k € R holds:

e if Rdepends positively on a ru thenR € (J;; P}, i.e. R is either in the same stratum Bs
or in a lower stratum thaR

e if Rdepends negatively on a ruR thenR € J;; Pj, i.e. R is in a strictly lower stratum than
R

The partitionP =P, W---w P, is called anegation stratificatiorof P, and theR are callechegation strata
of P.

Example 6.6 (Negation Stratification)
1. The following program (consisting of a single rule) canbe stratified, as the rule negatively de-
pends on itself:

f{a} < not f{a}

2. The following program can be stratified into three stradanfbottom to top:

Py p{} —and{not of},s{}}
Poa{} —r{}

r{} —s{}
Py S{}

Sebastian Schaffert 141

6.4. STRATIFICATION FOR GROUPING CONSTRUCTS AND NEGATION

6.4.3 Full Stratification: Combining Grouping Stratificati on and Negation Strati-
fication

Grouping stratification and negation stratification candmalined in a straightforward manner. The group-

ing strata further divide the negation strata (or vice vessigh that the respective properties also hold. As

before, this definition uses the simulation unification diésd in Chaptd8, and=P;, ¥ ... & P, denotes
a partitioning of a setP into disjoint set$3.

Definition 6.8 (Full Stratification)
Given a progran® consisting of rules/goalgRy, ..., Rn} (m> 1).

1. LetR=1t°«— QandR =t¢ «— Q be rules.
e R depend®n R if there exists a (negated or non-negated) query & Q such thatt?
simulation unifies int®

e R depends positiveyn R’ if there exists a non-negated query tefhin Q such that¥ simula-
tion unifies int

e R depends negativen R if there exists a negated query tenot t9 in Q such that¥ simula-
tion unifies int¢

2. Pis calledfully stratifiable(or simplystratifiablé), if there exists a partitioningh(> 1)
P=P g P

of P such that for every stratuf (1 < i < n) and for every rul&Rk € B holds:

¢ if R depends negatively on a ruk&, or the head oR contains grouping constructs aid
depends positively or negatively &, thenR' < [J;;Pj, i.e. R is in a strictly lower stratum
thanR

o if the head ofR contains no grouping constructs aRddepends positively on a rul then
R € Uj<Pj, i.e.R isin the same or in a lower stratum thEn

The partitionP =P, W--- Py is called afull stratificationof P, and theR are calledstrataof P.

142 Sebastian Schaffert

CHAPTER
SEVEN

Declarative Semantics: A Model Theory for Xcerpt

This chapter introduces a model theory for grouping steddié Xcerpt programs without negation. In-
tuitively, the definition of interpretations and models iragghtforward: an interpretation is a set of data
terms and specifies what data terms exist; a model is therysanpnterpretation that consists of the terms
that are “produced” by the rules in a program.

The model theory for Xcerpt programs follows the classicatKi-style semantics for first order logic
rather closely, but needs to take into account the partitigle of Xcerpt terms and programs. As a first
step, Sectiol 712 introducésm formulaswhich depart from the formulas in first order logic in thagyh
do not differentiate between relation symbols and term symibecause Xcerpt only considers “data” and
not “statements”. Next, a notion @ubstitution setss described in Sectioi 1.3. Substitution sets take
the role of substitutions in first order logic and logic pragrming and are required to properly convey the
meaning of the grouping construets andsome. Interpretations and satisfaction of term formulas arae the
defined in Sectiofill4. This definition makes use ofgtwind query term simulatiorelation described in
SectioZ} to take into account query terms with incomplete specifications (e.g. unordered or partial
terms). In SectioR715, a fixpoint semantics for stratifiatderpt programs is suggested, first for programs
without negation, and then for arbitrary Xcerpt programinaly, SectioZb contains some concluding
remarks on the model theory and fixpoint semantics introd hege.

7.1 Preliminaries

Like in ChaptefD, the following notations are used througlsubsequent sections to simplify the discus-
sion of the semantics of Xcerpt programs:

e Programsare sets of rules (and goals), usually denote®by{R,...,Rn}.

e Rulesare denoted biR=1° «— Q, wheret® is the construct term of the rule afdthe query part; the
set of rules of a program is usually denoted bR C P

e Goalsare denoted b = t® <4 Q, wheret® is the construct term of the rule aftdthe query part;
the set of goals of a programis usually denoted bg C P

e Queriesof the formand {Qy,.., Qn} are sometimes denoted Q¢ A--- AQp 0r by A, Qi; like-
wise, queries of the formr {Qg,..., Qn} are sometimes denoted Ry V ---V Qn or by \/;.j<, Qi
and queries of the formot Q are sometimes denoted by.

e Resourcesire considered to be internalised, i.e. it is assumed thatata term referred to by an
input resource specification of the foim{... } is part of the program; this assumption simplifies
the formal treatment below and can be implemented in a $iffaigvard (but inefficient) manner.

e The setl’ denotes the set of all ternt&? C T the set of all query term§9 C 79 the set of all ground
query terms, an@® C 79 the set of all data terms.

143

7.2. TERMS AS FORMULAS

In most parts of the formalisation, rules and goals are ratirdjuished unless explicitly mentioned; this
simplification is useful as rules and goals are very simidso, parts of the formalisation use a simplified
term representation, where strings and regular expression simply treated as compound terms with
empty content and total term specification. E.g. the sthit." is represented aXML"{} .

The model theory described below requires programs to beping stratifiable (cf. DefinitiofLtl8),
as the meaning of such programs are in every case reasomabteermore, negation (as failure) is not
further investigated in this thesis, but standard logigpaonming approaches might be applicable (as e.g.
described in[[A38]).

7.2 Terms as Formulas

Classical logic distinguishes between

e terms, which are composed of function symbols and servetassttactures representing objects of
the application domain at hand, and

e atomic formulas, which are composed of relation symbolstands and represent statements about
objects of the application domain.

Statements represented by formulas have truth valuesctebjpresented by terms have no truth value.
In contrast, XML and Web data does not need this distinctimtause it has no (formal) semantics and
merely holds semistructured data. Therefore, Xcerpt téomsesponding to Web data) are considered as
being atomic formulas representing the statement thaetgective terms “exist”. A salient aspect of this
representation is the possibility to specify integrity swaints for data terms. These are briefly introduced
in the PerspectivesSectio3pb.

7.2.1 Term Formulas

Atomic formulas are composed of Xcerpt query, construat, data terms, and of the two special terms
1 and T (denoting falsity and truth). As an intuition, such atomizriiulas are statements about the
existence or satisfiability of a term. Compound formulas barconstructed in the usual manner using
the connectivey, A, =, <, and—, and the quantifiers and3. Instead of quantifying each variable
separately, the construet may be used to universally quantify all free variables in arfala. Also,
instead of writingF, Vv --- vV F,, we sometimes writ&/,.;.,F, and instead of writindg=, A --- A F,, we
sometimes writé\; ;- F. o

In the following, formulas built in this manner shall be ealliXcerpt term formulasor simplyterm
formulas If a term formula consists only of query terms, it is alsdedtuery term formulaif it consists
only of construct terms, it is callegbnstruct term formula

Example 7.1

The following example shows a term formula built up from guiarms, implications and quantifiers. It
represents an integrity constraint that requires all baokée bib.xml document to have at least one
author:

V B . bibf{ var B — book{{ }} } =
3 A . bib{{ var B — book{{ authorsf{{ var A }} }} }}

7.2.2 Xcerpt Programs as Formulas

Like in traditional logic programming, rules in Xcerpt areplications. However, Xcerpt rules with group-
ing constructs have a particular semantics that cannotgresented as implications in the usual manner.
We therefore keep the denotatitfin— Q to represent rules.

In addition to the usual quantifieksandd, the grouping construcl andsome that may be part
of a construct term may bind variables in a formula within adfic scope, usually the head and body
of a rule. As these constructs are contained within the tdraoctsire, their scope is not immediately

144 Sebastian Schaffert

CHAPTER 7. DECLARATIVE SEMANTICS

apparent. It is thus useful to introduce new symbels > that are used to indicate the scopeatif
the grouping constructs contained in them. In practices itdither desirable nor useful to have scopes
extending over different subformulas for the grouping ¢ars contained in a single construct term, thus
a single scope for all grouping constructs suffices. Thegjrauconstructs of a construct term always refer
to the variables of a single rule and thus all have the sangesco

Example 7.2
Consider for example the program (in formula notation)

gf{a,b,c}
flal var X} « g{{ var X}

The scope of thell construct in the rule head is made explicit usiag > in the following manner:
glabc A <f{al var X} «— g{var X} >

As usual, formulas representing programs are always ceresido be universally closed, even if quan-
tifiers are not explicitly given.

Example 7.3
Consider the following Xcerpt program (in the notation attuced in Sectiolr@.1 and with internalised
resources):

flal var X var Y} «— and{ gff var X}}, h{{ e{ wvar Xvar Y} }} }

gl var X] — h{{ e[var X }
h[e[a], e[b,1], e[c,1], e[d,2]]

The formula representation of this program is as follows:

VY <flal var X var Y} «— gffvar X} A hf{el var Xvar Y} }} > A
VXgl var X] «— h{{e var X} > A
h[e[a,1], e[b,1], e[c,1], e[d,2]]

The variableX in the first rule is in the scope of tld construct in the rule head, while the varialsle
is in the scope of the universal quantification represenyedvb Note that the scope of tte is restricted
to the first rule and the occurrencesxah the second rule are not affected (thO§in the second rule).

7.3 Substitutions and Substitution Sets

7.3.1 Preliminary Notions

A first intuitive notion of substitutions has already beewegi in SectiodZ]4. This notion was rather
straightforward and similar to the usual definition of sith&ibns, since Sectidn4.4 only considered query
and data terms. However, variable restrictions occurminguery terms have to be taken into account. As
a variable might be restricted, not every substitution {gliapble to every query term.

Also, Xcerpt construct terms extend the usual terms by gngugonstructs that group several substitu-
tions within a single ground instance by using the constralct andsome. For instance, given a construct
term f{all var X} and three alternative substitutiofX — a}, {X — b} and{X — c}, the resulting data
termisf{a,b,c}.

In order to define such groupings, it is therefore necessaprdvide a construct that represents all
possible alternatives and can be applied to a construct fEis is called asubstitution sebelow. Substi-
tution sets are used in Sectionl7.4 which defines satisfattioXcerpt term formulas and later in Section
BZ1 to define the notion of imulation unifier In the following, substitutions are denoted by lowercase
greek letters (likeg or m), while substitution sets are denoted by uppercase gréekdglike> or IM).

Sebastian Schaffert 145

7.3. SUBSTITUTIONS AND SUBSTITUTION SETS

Substitutions

A substitutioris a mapping from the set of (all) variables to the set of @@hstruct terms. In the following,
lower case greek letters (like or 1) are usually used to denote substitutions. As usual in madties, a
substitution is a mapping of infinite sets. Of course, fineresentations are usually used, as the number
of variables occurring in a term is finite. Substitutions aften conveniently denoted as sets of variable
assignments instead of as functions. For example, we v{/v(te—> aY — b} to denote a substitution
that maps the variabl¥ to a and the variable¥ to b, and any other variable to itself. In general, a
substitution provides assignments for all variables, buglevant” variables are not given in the description
of substitutions.

If a substitution isappliedto a query ternt9, all occurrences of variables for which the substitution
provides assignments are replaced by the respective assigs (see Sectidi_ZB.2 below). The resulting
term is called annstanceof t9 and the substitution. Not every substitution can be appbeslery query
term: variable assignments in the substitution have toessgriable restrictions occurring in the pattern
for a substitution to be applicable (see dlSg1.3.2). If astiion o respects the variable restrictions
in a query ternt9, it is said to bea substitution for . For example, the substitutioh)(— f{a}} is a
substitution fovar X — f{{}}, but not forvar X — g{{}}. Note that a substitution cannot be applied to
a construct term, because construct terms may contain gu@uapnstructs that group several instances of
subterms together. Instead, substitution sets are usédi$gurpose (see below).

A substitutiono is called agrounding substitutiofior a termt, if o(t) is a ground query term. Con-
sequently, a grounding substitution is always a mappingfitoe set of variable names to the set of data
terms (i.e. ground construct terms). A substitutions called anall-grounding substitutionif it maps
every variable to a data term. Naturally, every all-gromgdsubstitution is a grounding substitution for
every query term to which it is applicable. Note that the regaloes not hold: a grounding substitution is
grounding wrt. some termand does not necessarily assign ground terms to variablesaorring int.

A substitutiono; is asubsetof a substitutiono, (i.e. 01 C 0), if 01(X) = g2(X) for every variable
nameX with 01(X) # X (i.e. 01 does not maiX to itself), where2 denotes simulation equivalence (cf.
SectionZZ}4). Correspondingly, two substitutiansand o, are considered to bequal(i.e. 01 = 02),
if 01 C 0p ando, C 01. For example{X — f{a,b}} and{X — f{b,a}} are equal. This definition is
reasonable because the data terms resulting from applymguch substitutions are treated equally in the
model theory described below.

The compositionof two substitutionso; and g,, denoted byo; o g is defined ag o1 o 02)(t) =
o1(0»(t)) for every query term. Note that the assignmentsdn take precedence, becauseis applied
first. Consider for example; = {X — a,Y — b} ando, = {X — c}, and atermt = f{var X,var Y}.
Applying the compositiomm; o 0, to t yields (g1 0 02)(t) = f{c,b}.

Therestriction of a substitutiono to a set of variable namas, denoted byojy, is the mapping that
agrees witho onV and with the identical mapping on the other variables.

Substitution Sets

A substitution seis simply a set containing substitutions. In the followingper case greek letters (like
and®) are usually used to denote substitution sets.

Substitution sets can appliedto a queryor construct term (cf. SectiofiSZB.2 dnd 74.3.3). The result
of this application is in general a set of terms calleditigtancesf the substitution set and the term. A
substitution sek is only applicable to a query tertf, if all substitutions inx are applicable t¢9. In this
case 2 is calleda substitution set fort Since construct terms do not contain variable restristievery
substitution set except for the empty set is a substitutriics a construct term. There exists no query or
construct ternt such that the empty substitution gétis a substitution set fdr

A substitution set for a termt is called agrounding substitution seif all instances ot and% are
ground query terms or data terms. A substitution>é&t called anall-grounding substitution seiff all
o € 2 are all-grounding substitutions.

Thecompositiorof two substitution set¥; andZ,, denoted a&; o %, is defined as

21020 = {0'100'2|O'1€Zj_,0'2622}

146 Sebastian Schaffert

CHAPTER 7. DECLARATIVE SEMANTICS

Consider for example the substitution s&ts= {{X — a}} and%; = {{Y — b},{Y — c}}. Then
J102p= {{X — aY — b} {X— aY — C}}

Therestrictionof a substitution seX to a set of variable¥, denoted by, is the set of substitutions
in X restricted tov.

Similarly, theextensiorof a substitution seX restricted to a set of variabl&sto a set of variable¥’
with V C V’, extends every substitutiom in X to substitutionss’ by adding all possible assignments of
variables inv’\ V to data terms. For example, the extension of the restriatbstisution set{ {X — a} }
to the set of variable§X, Y} is the (infinite) se{ {X — a,Y — a},{X —a,Y —b},...}

Note that in practice, it would be desirable to define sulnitih sets asnulti-setsthat may contain
duplicate elements: if an XML document contains two perswarsed “Donald Duck”, then it should be
assumed that these are different persons with the same Raoweding a proper formalisation with multi-
sets is, however, not in the scope of this thesis, as subsedegnitions and proofs would be much more
complicated without adding an interesting aspect to thea&disation.

Maximal Substitution Sets

So as to properly convey the meaningabf , it is not sufficient to consider arbitrary substitutionsséthe
interesting substitution sets are those thataagimalfor the satisfaction of the query paptof a rule. As
satisfaction is not yet formally defined, this property $fai now simply be called.

Intuitively, the definition of maximal substitution setssigaightforward: a substitution sEtsatisfying
P is a maximal substitution set, if there exists no substitutet® satisfyingP such that> is a proper
subset ofp. However, this informal definition does not take into acdahat there might be substitution
sets that differ only in that some substitutions contairdlyigs that are irrelevant because they do not occur
in the considered term formu@. Maximal substitution sets are therefore formally definefcdlows:

Definition 7.1 (Maximal Substitution Set)

Let Q be a quantifier free query term formula with set of variabetet P be a property, and lef be a set
of substitutions such th&t holds forZ. X is called amaximal substitution set wrt. P and @there exists
no substitution se® such thaP holds for® andZ, is a proper subset @by, (i.e.Zy S ®y).

7.3.2 Application to Query Terms

Since query terms do not contain the grouping constraitsndsome applying substitutions and substi-
tution sets is straightforward. Application of a single stitoition yields asingleterm where some variable
occurrences are substituted, while application of a stitisih set yields &etof terms where some vari-
ables are substituted.

Definition 7.2 (Substitutions: Application to Query Terms)
Lett9 be a query term.

1. The application of aubstitutiono to t%, written o (t%) is recursively defined as follows:

e glvar X)=t'if X—t)eo

e g(varX — s)=t'if (X+—1t')eogando(s) <t
o o(H{ty,....tn}) = a(f){o(ts),...,0(tn)}

o o(ffts,....tn]) = o(f)[o(ta),.. (tn)]

. G(f{{tb tal}) = o(H){fo(t)--- o(tn)}}

o o(f[lty,....ta]]) = o(f)[[o(ta),...,0(tn)]]

° O'(Wlthout t) without o (t)

e o(optional t) = optional a(t)

for somen > 0.

Sebastian Schaffert 147

7.3. SUBSTITUTIONS AND SUBSTITUTION SETS

2. The application of aubstitution sek tot9 is defined as follows:
st ={o(t% | o€}

Note that not every substitution can be applied to a queng t8r If a variable int? is restricted as in
var X — s, then a substitution can only be applied if it provides bngdi for X that are compatible to
this restriction. Likewise, a substitution set is only apable to a query terrtfl, if all its substitutions are
applicable tdaq.

Since query terms never contain grouping constructs, thairadity of Z(t) always equals the cardi-
nality of . In particular, ifZ = 0, thenZ(t) = 0, even ift is a ground query term. Since an interpretation
with an empty substitution set would be a model for any fommsubstitution sets in the following are con-
sidered to be non-empty. In case no variables are boundjtsiios sets are usually defined &s= {0}.

7.3.3 Application to Construct Terms

Applying a single substitution to a construct term is nosm®ble as the meaning of the grouping con-
structsall andsomeis unclear in such cases. In the following, the applicat®ithus only defined for
substitution sets. On substitution sets, the groupingteects group such substitutions that have the same
assignment on thizee variablesof a construct term. For each such group, the applicatiohestibstitu-
tion X yields a different construct term. A variable is considefredin a construct term if it is not in the
scope of a grouping construct. The set of free variables ohateuct ternt€ is denoted by V (t€). Recall
also that= denotes simulation equivalence between two ground terms.

Definition 7.3 (Grouping of a Substitution Set)
Given a substitution set and a set of variablég = {X,..., X} such that allo € X have bindings for all
X, 1<i<n.

e The equivalence relatiory C X x X is defined aso; ~v 0 iff 01(X) =2 g,(X) forall X e V.
e The set of equivalence classes.,, with respect tavy is called thegrouping ofZ on V.
e Each of the equivalence clasdeg) € £/~ is accordingly defined o] = {1€% | T =y o}

Informally, each equivalence clags] € Z/~,, contains such substitutions that have the same assign-
ment for each of the variablesh

Example 7.4
Given the substitution s&t = { 01, 0, 03} with

o1 ={X1—aXo—b},oo={X1—aXo— c}, andoz = {X; — ¢, Xp — b}
The grouping o onV = {X3} is
o [o1] =[02] = {{X1—a,X — b}, {X1— a,Xz—c}}
o [03] = {{X1—c,Xo— b}}

The application of a substitution set to a construct ternsgfmy containing grouping constructs) is
defined in terms of this grouping. Given a substitution Sethe applicatior>(t®) to a construct term
t® with free variable=V (t°) yields exactly|Z/~¢, . | results, one for each different binding of the free
variables int®.

Example 7.5
Given a ternt = f{Xg,g{all X2} },i.e.FV(t) = {X;}. Consider again

T={{X1—aXo— b}, {X1—aXo—c},{Xi—c X — b}}
from ExampldZ}. The result of applyiigtot is
2(t) = {f{ag{b,c}}, f{c.o{b}}}

148 Sebastian Schaffert

CHAPTER 7. DECLARATIVE SEMANTICS

The following definition specifies how a substitution setppked to a construct ter¥. The defini-
tion is divided into two parts: In the first part, it is assuntkdt all substitutions in the substitution get
contain the same assignments for the free variabl&€s(@ariables occurring within the scope of grouping
constructs are unrestricted). As the quotEﬁ;FWtc) in this case obviously only contains a single equiva-
lence class, the application of this restricketb t¢ yields only a single term, which simplifies the recursive
definition. In the second part of DefinitifQ¥ .4, this regtadn is lifted.

Since the construction of data terms requires to constrewtlists of subterms, the following defini-
tion(s) use the notion derm sequencestroduced in SectiolZ4.2. Recall that a sequence is ayina
relation between a set of integers and a set of terms, andlyudeaoted byS= (xy,...,X,) for somen and
termsx;. Recall furthermore the definitions sfibsequencesdconcatenatioriDefinition[Z3 on page$1).

Defining the semantics afrder by furthermore requires a functiosort;((-,-), whereV is a se-
guence of variables, that takes as arguments a groupingudfsditsition set oV and returns a sequence
of substitution sets ordered accordingftv/) and the variables iW. f (V) is a total ordering on the set of
subs’ﬂtution sets that assign ground terms to the varigb\¢somparing variable bindings for the variables
inV.

Definition 7.4 (Substitutions: Application to Construct Terms)
1. LetZ be a substitution set and It be a construct term such that all free variables“dfave the
same assignment in all substitutionsiofi.e. 2/~ .., = {[0]}. The restricted application af to
t¢, written [a](t%), is recursively defined as follows:

o [o](varV)=(o(V)H
[o](f{t1,...,tn}) = {[o](F){[o](tr) o--- o [O](tn)}) fOr somen >0
[o](f[t1,...,ta]) = ([o](D)[[o](t1) o - o [O](tn)]) for somen >0
[ol(allt) = [ra](t) o - o [n] (t) where{[ra],..., [t]} = [0]/~¢y,,
(
(

[] [] []
—_ —h

[o](all t group by V) = [ra](t) o --- o [(t) where{[ra],.... [t]} = [0]/~¢y v
[o](all t order by f V) =[11](t)o---o [T](t)

where([11],..., []) = sort(f(V), [O]/~cy 0)
[o](some k}=[11](t) o---o [w](t) where{[rs], ..., [w]} € [0]/~py,
[o](some kt group by Y= [11](t) o--- o [wi] (t) where{[t1], ..., [t} € [O] />y v
[o](some kt order by f V= [11](t) o--- o [1k](t)

where([ra],.... [n]) © sort(f(V), [0]/~y 0)

[0] (optional f) = { [o](t) ifthe ground instanc@o](t) exists

() otherwise

e [o](optional t with defaultf) = { %g% E:/)) Icf,tt::n?v?g:nd instancgo] (t) exists

where[1]1,...,[r]k are pairwise different substitution sets.

2. Lett®be aterm, and IgEV (t¢) be the free variables itf. The application of substitution sek to
t®is defined as follows:

S(t) = {t | [0] € Z/npye, A () =[0](t%)}

Although not explicitly defined above, integrating aggrigas and functions in this definition is
straightforward.

1As the substitution set is grouped Wnall substitutions ifa] (respectively[t]) provide identical bindings for variables a
°Note thato is the representative of the equivalence clash

Sebastian Schaffert 149

7.4. INTERPRETATIONS AND ENTAILMENT

Example 7.6
Consider the substitution set

={{X~ f{a},Y —g{a}}, {X— f{a},Y = g{b}}, {X = T{b}.Y —g{a} } }

and the construct termg = h{all var X,var Y} andt, = h{var X,all var Y}. GroupingZ according to
the free variableEV (t1) = {Y} int; andFV (t2) = {X} in t, yields

Z/:Fv(tl) = {{X — f{a},Y—g{a}},{X+— f{b},Y — g{a}}}, {{X — f{a},Y — g{b}}}
Yory = (X f{ah Y- ofal) {X - f{a}Y = g{b}}}, {{X— f{b},Y —g{a}}}

The ground instances tf andt, by > are thus

() = {h{f{a},f{b} o{a}}, h{f{a},g{b}} }
3(t) = {h{f{a},o{a},o{b}}, h{f{a},o{b}} }

7.3.4 Application to Query Term Formulas

In the following, it is often interesting to study groundtasces not only of terms but also of compound
formulas. The following definition defines the applicatidrsabstitution sets to formulas consisting only
of query terms (so-calleduery term formulas construct terms are problematic, as they group several
substitutions and thus do not behave “synchronously” witlryg terms in the same formula. Fortunately,
the formalisation of Xcerpt programs does not need to censamulas containing construct terms. The
only exception are program rules, which are treated seglgranyway.

Applying a substitution set to a query term formula is stnéfigrward: as each substitution in a substi-
tution set represents a different alternative, the aptitinaf the substitution set to a query term formula
simply yields a conjunction of all different instances.

Definition 7.5 (Substitutions: Application to Query Term Formulas)
Let F be a quantifier-free term formula where all atoms are quemgddaquery term formula

1. The application of gubstitutiono to F, written o (F), is recursively defined as follows:

° O'(Fj_/\Fg):O'(Fl)/\ (Fz)
e 0(FiVR)=0(F)Vao(R)
o 0(-F')=-0(F')
e 0(—-F')=-0(F)

7.4 Interpretations and Entailment

The definition of satisfaction of Xcerpt term formulas, andarticular of Xcerpt programs, is similar to
the approach taken in classical first order logic, but diffier several important aspects: term formulas
do not differentiate between relations and terms, and tbenipleteness of query terms and the grouping
constructs in construct terms have to be taken into accdsettioZZ1 gives an intuitive meaning of
interpretations for Xcerpt term formulas. Satisfactiorttien defined in Section—Z.3.2 in terms of the
simulation relationintroduced earlier in Sectidi3d.4. Based on this definitibsatisfaction, entailment
between formulas can be defined in the classical manner.

150 Sebastian Schaffert

CHAPTER 7. DECLARATIVE SEMANTICS

7.4.1 Interpretations

As terms are considered to be formulas themselves, intatfimes — informally — convey whether “a term
exists” or “a term does not exist”. Thus, a first approximatiefines an interpretation as a set of data
terms (which are also ground query terms). A ground atom &i.ground query term) is then satisfied
if it is contained in the set, or it simulates into a term thatcontained in the set. Since Xcerpt data
terms represent Web pages, this definition is natural argkdimthe application, and thus well suited for
reasoning on the Web. Such a definition may be unusual fronass{€hl Logic perspective, but is rather
common in logic programming for it is close to Herbrand iptetations.

Furthermore, an interpretation provides a grounding suitistn set which provides assignments to all
free variables in the formulas considered. Interpretatame thus formally defined as follows:

Definition 7.6 (Interpretation)
An interpretation Mis a tupleM = (1,Z) wherel is a set of data terms and# 0 is a grounding substitution
set.

The set of data termisconveys what data terms (Web pages) are considered to €ristsubstitution
setX is necessary to properly treat formulas containing freéabées, and allows to provide a recursive
definition of satisfaction below. As formulas are usuallyays (explicitly or implicitly) universally closed,
> can be seen as a mere technicality of the definition and iswaat for the general notion of satisfaction.
For this reason, the following Sections often somewhat @oigely equate interpretations with the set of
data termg.

Note that # 0. OtherwiseZ(t) would yield an empty set of terms even in cagea ground query term.
As the application of a substitution set to a query term fdenyields a conjunction over all substitutions,
application of © would yield an empty conjunction, i‘e. To define a substitution set that merely maps
each term to itself it has to be specifiedzas { 0 } where the empty substitutiam corresponds to the
identity function.

Itis important to note that the interpretations considérex are very specific in that they only consider
termsas objects, instead of arbitrary objects. They are thudasite Herbrand interpretations in traditional
model theory. However, this restriction is reasonableeas formulas do not intend to represent arbitrary
objects.

7.4.2 Satisfaction and Models

Although similar to the definition of satisfaction in clasal logic, satisfaction for Xcerpt term formulas
differs in several important aspects, in particular thés&adtion of atoms (i.e. terms) and of program
rules. A term (atomic formula) is considered to be satisfigdnd only if) its ground instance simulates
in some term of the interpretation. Considering the Web astanpretation, this means that a query term
“succeeds” (is satisfied) if there exists a Web page (data)teuch that the ground instance of the query
term simulates into this data term.

Unlike in traditional logic programs, rules in Xcerpt aretrnieated as (classical) implications(
below), because the grouping construgits andsome require that the query part of a rule is not only
satisfied, but that it is also satisfied in the maximal maninerthe substitution set yielding the ground
instance of the construct term must include all possiblesstuitions for which the query part is satisfied.
Otherwise, interpretations would include answer termafare that differ from the intuitive understanding
of the constructall andsome (see ExamplE—Z18 below). The definition of satisfaction faedpt rules
uses the notion of maximal substitution sets defined aboefinition[Z].

With the exception of term and rule satisfaction, the follogwefinition follows the classical definition
of satisfaction. Note in particular, that the negation usethis definition isclassicalnegation and not
negation as failure (as the query negation in Xcerpt progyam

Definition 7.7 (Satisfaction, Model)
1. LetM = (I, %) be an interpretation (i.e. a set of data telnad a substitution sét), and lett be a
construct or query term.

The satisfaction of a term formukain M, denoted b |= F, is defined recursively over the structure
of F:

Sebastian Schaffert 151

7.4. INTERPRETATIONS AND ENTAILMENT

MET holds
MEL does not hold
Mt iff forall t' € Z(t) there exists a ternf € | such that’ < t¢
M = —F iff MIpEF
MEFA--AFR if MEFand...andM =F,
MEFV---VFK iff MpEgEFoO...orMEFR,
MEF =G if ME-FVG
M = Wx.F iff forall t €I holdsthatM’ = (1,Z') E F,
where¥’' = {0 o {x—t}| o€ X}
M E Ix.F iff there existsa €1 suchthaM’ = (1,%') = F,

where¥’' = {0 o {x—t}| o€ X}
MEV'<tc—Q> iff M =(,¥)t°for a maximal grounding substitution sEt for Q
with M' = Q

2. If aformulaF is satisfied in an interpretatiovi, i.e. M |= F, thenM is called anodelof F.

Note that the maximality requirement in the last part of @fers to the satisfaction @ in M and
ensures that grouping constructs in the head of the ruleuastigited properly.

The standardisation apart of Xcerpt rules (cf. Secliah &lRws to replacez by ' in the model
definition forv* <t « Q>>. Otherwise, the substitutions iand3’ would have to be merged 00 3.

Example 7.7 (Satisfaction of Term Formulas)
LetM = (1,%) be an interpretation with

I fla,b], f[a,c],b}
> = }{X»—>a, Y — b} {X+—a, YI—>C}}

The following statements hold fou:
1. M k= f[a,b], because for eadhe Z(f[a,b]) = { f[a,b]} exists &’ € | witht <’
2. M |~ f[a,d], because for= f[a,d] € Z(f[a,d]) = {f[a,d]} does not exist & € | witht <t'.
3. M [f{a,b}, because for eadhc (f{a,b}) = { f{a,b}} exists &’ € | witht <t’
4. M = f{{var X,var Y}}, because

e 0 ={X+—a Y+ b}andoy(f{{var X,varY}})
e 0o ={X+—a Y+ c}andoy(f{{var X,var Y}})

f[a,b], and

=<
= fla,c]

(631

. M E3Z.f{{var Z}}, becaus&/’ = (1,X') with
={{X—aY—b Z—a},{X— aY—c Z— a}}
is a model forf {{var Z}}

6. M }=VvZ.f{{var Z}}, because there exists a teffia, b| as substitution foZ such thaM (= f{{ f[a,b]}}

7. M = VZ.var Z, because for alt € | holds thatM’ = (I,%) with ¥’ = {{X —a, Y — b, Z—
th{X— aY—c Z— t}}
is a model fovar 7

For a progranP, a model is intuitively an interpretation that containsta# data terms that are “pro-
duced” byP (and possibly also further data terms unrelateBR)to

Example 7.8 (Satisfaction of Xcerpt Programs)
Let P be the following Xcerpt program (in compact notation):

3This result might be surprising from a classical perspegiut it is self-evident when considering terms as formulaéversal
quantification quantifies over all existing terms, and obslg all these are satisfied in any interpretation.

152 Sebastian Schaffert

CHAPTER 7. DECLARATIVE SEMANTICS

p{al var X} «— off var X}}
afa,b,c}

e the interpretatioM; = (I, {0}) with I, = {a{a,b,c}, p{a,b,c} } is a model foiP, i.e. My |= P.

e the interpretatiorM, = (I,{0}) with 1; = {a{a,b,c}, p{a,b}} is no model forP, i.e. My [~ P,
because{a, b} is not the ground instance pf all var X} by themaximalsubstitution set for which
g{{var X}} is satisfied

e the interpretatiorMs = (I3,{0}) with 13 = {q{a,b,c}, p{a,b,c}, p{a,b}} is a model forP, i.e.
M3 = P, because{a,b,c} € |; the additionalp{a,b} is not produced by, but irrelevant for the
satisfaction oP in Ms.

Note that “terms” with infinite breadth are precluded by tredimition of terms and can thus never
appear in an interpretation. Programs where a rule “defisiedi terms do not have a model. For example,
the program

f{all var X} — g{var X}
g{g{varY}} «— g{var Y}
o{a}

does not have a model, because the first rule defines a “tertine 66rmf {a,g{a},g{g{a}},...}. To avoid
non-terminating evaluation of such programs, it is de$iraifind sufficient requirements to preclude such
programs syntactically. This is however out of the scopdisfthesis.

7.5 Fixpoint Semantics

A classical approach to describing the semantics of logigmms is the so-callefixpoint semantics
first proposed by Van Emden and KowaldkiTL03]. In the fixpaiemantics, a model is constructed by
iteratively trying to apply program rules (using an operatalled Tp) to a set of data terms and adding
their results until a fixpoint is reached, i.e. no new datmtecan be added. This smallest fixpointis then a
model of the program (assuming that programs do not contgation).

Example 7.9
Consider again the program

f{all var X} — g{{var X}}
ofa}

By definition, the starting point is always = 0. In the first iteration, no rules are applicable, but theada
terms are added to the set. Thus,

l1=Tp(0) = {g{a}}

The next iteration allows to apply the program rule. Thus,

l,="Tp(l1) = {o{a}, f{a}}

Further application of rules does not add new terms, thus the smallest fixpoint. It is easy to see
thatl, is also a “reasonable” model of the program. Note that thezeother fixpoints besides, e.g.
{o{a}, f{a}, f{b}}, all of them supersets ¢5.

The following section proposes a fixpoint semantics for Yiterograms with grouping constructs but
without negation, and shows that the fixpoint of the progrmedso a model of a program. Since the fixpoint
semantics is the most precise characterisation of Xceqggrpms available, it is also used as the reference
for the verification of the backward chaining algorithm. ghams with negation are not considered in this
thesis, but their treatment should be very similar to thattrent of negation in other logic programming

Sebastian Schaffert 153

7.5. FIXPOINT SEMANTICS

languages. Since Xcerpt programs are negation stratifiatdémilar approach to the approach taken by
Apt, Blair, and Walker[[B] appears promising.

This thesis slightly diverges from the traditional definitiof the fixpoint operatofp in that it defines
Tp as a function whose result contains not only the new termslsotthose given as argument. Thus, it
is sufficient to simply leflp saturate in iterative applications instead of using a cempbtion of pow-
ers of the formTp T n. Arguably, this approach is more straightforward, becatseflects the intuitive
understanding of program evaluation.

Recall thatw denotes the first ordinal number, i.e. the smallest numlzrisharger than any natural
number. ThusT’ denotes the application @ “until a fixpoint is reached” (whether it be finite or infinite)
The fixpoint operator is defined as follows:

Definition 7.8 (Fixpoint Operator Tp, Fixpoint Interpretation)
Let P be an Xcerpt program.

1. The fixpoint operatofp is defined as follows:

Te(l) = 1U{t?| there exists a rule < Qin P and substitution sex
such that is the maximal set witlfl,) = Q andt® € Z(t°),
ortd is a data term iP }

2. The fixpoint ofTp is denoted byMp = T’ (0) and called the fixpoint interpretation Bf

A problem with this first definition is that it can yield integiations that contain unjustified terms in
case the program contains grouping constructs, because with grouping constructs require the rule
body to be satisfied maximally, but not all required inforimatmight be available in the iteration dp
where the rule is applied.

Example 7.10
Consider the following Xcerpt program (cf. Exampl€l6.5):

f{all var X} «— g{{var X}}

g{var Y} « h{{var Y}}

g{a}

h{b}
Applying the fixpoint operatofp yields the following results:

Té(‘D) {g{a},h{b}}

MP = TP (0) {g{a}vh{b}vg{b}v f{a}a f{avb}}
However, f{a} should not occur, because it is not the result of the maximastitution forg{{var X}}.
Obviously, applying the first rule already T is too early.

Therefore, we refine the notion of fixpoint interpretatiom§ixpoint interpretations for stratifiable pro-
grams. Constructing fixpoints for Xcerpt programs contairgrouping constructs is based on the grouping
stratification of such programs and simply applies the fiRpoperator stratum by stratum, beginning with
the lowest stratum and ending with the highest. The follgndefinition follows closely a definition by
Apt, Blair, and Walker[[B]:

Definition 7.9 (Fixpoint Interpretation for Stratifiable Pr ograms)

Let P be a program with grouping stratificatiéh= P, & - - - WP, (n > 1). The fixpoint interpretatioMp is
defined by

M1 = Tg(0)

M, = T}:(,‘Z)(Ml)

M, = T,é;‘])(Mn,l)
W|th MP == Mn.

154 Sebastian Schaffert

CHAPTER 7. DECLARATIVE SEMANTICS

Note that this definition oMp is in principle applicable to all kinds of stratificationgei.grouping
stratification, negation stratification, and full stratfiion.

Example 7.11
Consider the following Xcerpt program stratifiable into teteataP; andP, (cf. ExampldGhb):

P, f{all var X} — g{{var X}}
P g{varY}—h{{varY}}
o{a}
h{b}

Applying the fixpoint operatofp, for the stratunP; yields the following sets:

Tp;(o) = {g{a},h{b}}
My = TP1(0) = {g{a}vh{b}vg{b}}

My = TP21 is a fixpoint for this stratum. Further application of the fikpt operatoiTp, for the stratun® to
this set then results in:

Mo = T&Z(Ml) = {g{a}ah{b}ag{b}af{avb}}

it is easy to see thail, = T&Z(Ml) is a model ofP, and thatM, does not contain unjustified terms.

We now show that the fixpoint of a program is also a model. Nuteever, that the inverse statement
does not hold:

Theorem 7.10
Let P be a grouping stratified program without negation. Then ttpgofint Mp of P is a model ofP.

Proof. SupposéMp is not a model of. Then there exists a tertmot in Mp that is required byvlp andP. There are
two cases for this:

e tis a data term iP. By definition of Tp, t is then inMp. 4

e tisaground instance of a rule iy i.e. there exists a ruk& < Qin P and a substitution sé&tthat is a maximal
substitution withMp = Z(Q) such that € Z(t®). By definition of Tp, it holds that=(t®) C Mp. 4
|

7.6 Remarks

The model theory and fixpoint semantics described abovege@/rather straightforward declarative se-
mantics for Xcerpt programs. However, this semantics istisfactory in that it only covers a limited set
of Xcerpt programs (namely those that are grouping strbté)adoes not cover negation (as failure), and
does not provide a theory of minimal model as is usually dartesiditional logic programming. Solutions
to the restrictions imposed by stratification and to negatidght be found in other approaches that have
been investigated in logic programming. Minimal modelséhbeen investigated extensively in the course
of this thesis, but a satisfactory definition has not yet bieemd. Under satisfactory we understand a
characterisation of Xcerpt programs that exactly covessdmantics given by fixpoint interpretations, but
which is not just fixpoint interpretations wrapped in di#fat clothes. Furthermore, this characterisation
still needs to be easy to understand. Characterisatiohdéh@ot adhere to these properties would not add
anything to the semantics of Xcerpt programs.

Sebastian Schaffert 155

7.6. REMARKS

156 Sebastian Schaffert

CHAPTER
EIGHT

Operational Semantics: Backward Chaining and Simulatiotfi¢ation

This chapter describes an algorithm for the evaluation @rtprograms using a backward chaining strat-
egy. The algorithm is defined in terms of a simple constraitues (described in Sectidi®.1). Constraint
solving is a method that allows a rather efficient evaluabgrexcluding irrelevant parts of the solution

space as early as possible, and has been applied to manig@iraobblems (cf.[[AI]). Constraint solving
is advantageous because

e it uses declarative simplification rules that are easy teeustdnd,
e it allows to reduce the search space by detecting inconsiste early,
e it tries to avoid complex computations (like creating ansigems) as long as possible, and

e it allows to easily add user-defined theories specified mseof additional simplification rules to the
evaluation engine.

This constraint solver differs from traditional consttagnlvers in that it needs to treat disjunctions between
constraint formulas and negation, but the approach takemitieather straightforward.

The evaluation algorithm is defined in two parts: first, amathm calledsimulation unificationis
introduced. Simulation unification is a novel kind of (nadarglard) unification that allows to treat the
particularities of Xcerpt terms properly and is based onntbttons of ground query term simulation and
answers of Chapt&ld 4. It has first been proposeflih [24] anarikér refined here. Based on simulation
unification, abackward chaininglgorithm is then described that eventually determinesvanserms as
defined in Chaptdd 7. Salient aspects of this backward algadgorithm are the treatment of the grouping
constructsall andsome, and the unusually high level of branching in the proof triwes result from
incomplete term specifications. While evaluation rulesgiargrams with negation and optional subterms
are given, these are not verified against the declarativaisées, as the fixpoint theory described in Chapter
[@ currently does not cover negation.

This chapter is structured as follows: Seciiod 8.1 intreduthe constraint solver and data structures
used in this chapter, and defines the meaning of a consttair im form ofsolution sets Sectiol 8P
describes the simplification rules that constitute simaitatinification algorithm and shows the correctness
of this algorithm against an abstract formalisation of ngzsteral simulation unifiers. Finally, Sectionl8.3

describes the rules for a backward chaining evaluation.uhdness and weak completeness result for this
algorithm is also given.

8.1 A Simple Constraint Solver
The evaluation of Xcerpt programs is described in terms afrestraint solver that applies so-calkichpli-
fication rulesto a constraint store consisting of conjunctions and digjons of constraints. The purpose

of the constraint solver is to determine variable bindingsvariables occurring in query and construct

157

8.1. A SIMPLE CONSTRAINT SOLVER

terms, which ultimately yield substitutions that can bedugecreate the answer terms of a program. A
simplification rule in this thesis has the following form:

C

Gy
D

whereCy,...,C, (n> 1) are atomic constraints (the condition) dbds either an atomic constraint, or a
conjunction or disjunction of constraints (the conseqegni€ a simplification rule is applied, then the con-
junctionCy A --- ACy in the constraint store is replaced by the constrinNote that these simplification
rules are similar to the simplification rules in the langu@gmstraint Handling RulefEd], albeit with a
different notation.

The constraint solver is non-deterministic to a high degnethat the order in which simplification
rules are applied is not significant. This approach mightcd@atageous, as it gives much freedom to the
evaluation engine to e.g. perform optimisations (cf. Saf@L.3).

This constraint solver differs from common approaches at the result of a rule may contain dis-
junctions, whereas usually only conjunctions are admit®dch constraint solvers have been studied in
constraint programming research, e.g[ln]126]. The apggreaken in this thesis is rather simplistic, as it
after each application of a simplification rule creates tisudctive normal form (DNF) of the constraint
store. Simplification rules are independently applied ®dlfferent conjuncts of the DNF. This approach
is rather inefficient in implementations, and various ojgations can be considered. A straightforward
optimisation would be to not create the DNF afachsimplification step, but instead only if it is “neces-
sary”, because no other simplification rules apply. Howesarh optimisations are not further investigated
in this thesis, as the focus is on Web query languages andhnairgstraint programming.

Furthermore, the constraint solver needs to be able tonegtion. As both negation construots
andwithout describe negation as failure, the negation behaves ditigreo classic negation in some
cases (cf. ExamplEZd.4). The treatment of negation is destrin the formula simplification rules in
SectiorlBT1, and in the consistency verification rules and 5 in Sectioi811.4 below.

8.1.1 Data Structures and Functions
Constraints

The main data structure of the evaluation algorithm iscihrstraint storevhich may contain several types
of constraints, including other (sub-)constraint stoFes.the purpose of this thesis, constraints are defined
by the following grammar (defined in a variantextended Backus-Naur Foj)m

<constraint> := <conjunction> | <disjunction>
| "True’ | 'False’
| '(<constraint>)
| <sim-constraint>
| <dep-constraint>
| <query-constraint> .

<conjunction> = <constraint> (' A’ <constraint>)+ .

<disjunction> := <constraint> (' V' <constraint>)+ .

<negation> ="' = <constraint> .

<sim-constraint> = <query-term> ’ =<y’ <construct-term> .
<dep-constraint> := (" <constraint> ' | <constraint>)" .
<query-constraint> =’ (' <query-term> ')" £ gata-term-list>? ¥y
<dbterm-list> = <data-term> (, <data-term>)* .

It is easy to observe that a constraint store usually cansfsrbitrary conjunctions, disjunctions, and
negations of constraints. As usual, conjunctions alwakes precedence over disjunctions unless explicitly
specified by parentheses. A brief description of the othedkbf constraints is given below:

158 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

Truth Values. The truth values “True” and “False” have their expected nirgaim a constraint store.
Simplification of the constraint store can eliminate therallitases except when they are the only remain-
ing constraint.

Simulation Constraint. A simulation constraint — writteqj <, t, for some construct, data, or query
termt; and some construct or data tetsn- is a binary constraint which requires that variables atg on
bound to data terms such that there is a ground query ternlatioubetween the ground instances of
t; andt,. The termt; is called the left hand side of the simulation constraint gnid called the right
hand side of the simulation constraint in subsequent seti®o as to distinguish the simulation constraint
from the ground query term simulation, but nonetheless emigh the relationship between the two, the
symbol =, is used (withu for “to be unified”). Note that the right hand side of a simidatconstraint is
always necessarily a construct or data term, because thpdifgiation rules in the simulation unification
and backward chaining algorithms never put a query termedeitht hand side.

Most simulation constraints can be further reduced by d@pglthe simulation unification algorithm on
them until at least one of the sides consists merely of ablidf a simulation constraint is of the form
X <yt whereX is a variablet is also called ampper boundf X. Likewise, if a simulation constraint is
of the formt < X, t is called arlower boundof X.

Query Constraint. A query constraint is a constraint consisting of a valid Xdeuery (i.e. either a
guery term, an and/or-connection of queries, a negated/quean input resource specification containing
a query). Query constraints are used to represent questartnot yet evaluated and are unfolded during
the evaluation (if necessary). For some qu@ryhe query constraint is denoted (9).

A query constraint may optionally have a set of associat¢a téams which results from resolving and
parsing an external resource (elimination of iftheconstruct). If a query constraik®) is associated with
the data termsty, ..., tn}, this is denoted byQ), . ,1-

Dependency Constraint. A meta-constraint stating a dependency between two comistréf C and
D are constraints, the dependency constr@nlt D) requires tha€ may only be evaluated if the evaluation
of D did not fail (otherwise, the complete constraint fails) U§B usually needs to be completely evaluated
beforeC can be processed. The substitutions resulting from thesatiah of D are applied tcC if they
exist (i.e. under the condition that D is neitl&isenor True).

The justification for the dependency constraint are theirements of the grouping construets and
some, which require to consider all alternative solutions fa ttuery part of arule. il or some appears
in the head of a rule which is evaluated, the unification of@guwith the head cannot be completed before
the rule is fully evaluated.

Functions

substitutions(CS): The ultimate step of the algorithm, after no more rules apdiegble or necessary,
is always to generate a set of substitutions from the canststore. In this stepCSis put in DNF, all
constraints of the fornX <t (whereX is a variable and is a construct terﬂ) are replaced bX =t and
for each conjunct o€ Sa separate substitution is generated from these repla¢eniNote that

e substitutiongTrue) is the set of all all-grounding substitutions
e substitutionéFalse) = {}, i.e. there exists no substitution.
Thus, neither a result ofrue nor a result ofFalse are desirable for a query containing variables. For-

tunately, the evaluation algorithm never yielllsue in case a variable occurs in a query, and only yields
Falseif the evaluation fails.

1due to the way rules are evaluated, the right hand side of alaion constraint is always a construct term

Sebastian Schaffert 159

8.1. A SIMPLE CONSTRAINT SOLVER

apply(Z,t): Applying a set of substitutionsto a term is implemented recursively over the term struc-
ture. The implementation of this function can be derivedrfi@efinitiondZP anf 14 in a straightforward
manner.

retrieve(R): Given a resource descriptid® the functionretrievgR) returns a set of those terms
that are represented by this resource provided that thecdatan some way be parsed into Xcerpt's term
representation. A resource description may for exampl¢éadoa URI for identifying the resource and a
format specification to indicate which parser to use. Thesruiprototype (cf. ChaptEdA) provides support
for XML, HTML and Xcerpt syntax, but different formats are mecor less straightforward to implement
(e.g. Lisp S-expressions, RDF statements or relationabdaes).

restrict(V,C): restricts the constraint stoteto only such (non-negated) simulation constraints where
the lower bound is a variable occurring\in This function is used for evaluating query negation below.

deref(id): Dereferences the term reference identifieddand returns the subterm associated with
the identifierid.

vars(Q): Returns the set of all variables occurring non-negated imezy®Q.

8.1.2 Solution Set of a Constraint Store

As the evaluation algorithm aims at determining an (alloyaing) substitution set for certain variables,
each constraint store conceptually represents a (allrgliog) substitution set in which each substitution
provides assignments for all conceivable variable namieis. Set is called theolution sebf the constraint
store, and represents the possible answers that the @valofthe constraint store yields. Depending on
the constraint store, this solution set is restricted tes8tiliions fulfilling certain conditions. For example,
the constrainX =<, f{a} requires that all substitutions in the solution set provadeassignment for the
variableX that is compatible (i.esimulate$ with f{a}. Likewise, the constraint{{}} <, X requires that
the solution set only contains substitutions that providessignmerttfor X such thatf {{}} <t.

In the following, we will consider only the solution set of ally solved constraint store. Such a
constraint store contains only simulation constraints nelene side of the inequation is a variable, of
conjunctions or disjunctions of constraints, and of theleao constraint§ rue andFalse This notion
of solution sets will be used in the formalisation of simigdatunifiers later in this chapter. Recall that
all-grounding substitutions are substitutions that magrepossible variable to a data term.

Definition 8.1 (Solution Set of a Constraint Store)

Let CSbe a completely solved constraint store, i.e. consisting ohsimulation constraints where one
side is a variable, conjunctions, disjunctions, and thddmoconstraint3 rueandFalse The solution set
Q(CS9) is a grounding substitution set recursively defined as Wto

e Q(True) is the set of all all-grounding substitutions (cf. Secfio8)7

Q(False) = {}, i.e. the empty set
o Q(X =<yt) is the set of all all-grounding substitutioossuch thaio (X) = o (t)
e Q(t =<y X) is the set of all all-grounding substitutioossuch thaio (t) < g(X)

e Q(CIAGC) =Q(C)NQ(Cy)

Q(CVCy) = Q(CL) UQ(C,)

e Q(-C)=Q(True)\ Q(C)

160 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

The rationale behind using sets of all-grounding subgtitistis that a constraint store in general merely
restricts the possible answers. Further constraints naidtitnew variables that would have to be consid-
ered. Using infinite substitutions also simplifies workinghathe solution set, because it suffices to use
simple set operations instead of introducing a new “sulifdit theory”. For example, merging of two
all-grounding substitution sets merely requires the sgetion of both.

Note that the solution set of a constraint stBf&is in general always infinite, because each substitution
contains assignments for an infinite number of variablesvéder, restricting this set to only finitely many
variablesV (i.e. those variables occurring @S), yields a finite set in case every such variable occurs in
each conjunct of the disjunctive normal form@8$on the right side of a simulation constraint.

The following result is important because it relates thetrales notion of solution set to the actually
computed substitutions. It follows trivially from the ddfion of solution sets and the definition of the
functionsubstitutions). Recall thaty, is the substitution sei restricted to the variables W.

Corollary 8.2

LetCS=C; V---VCy be a constraint store in disjunctive normal form, &hthe set of variables occurring
in CS If in every conjunciC;, each variableX € V occurs in a simulation constraint of the fodh=, t
wheret is a data term, thesubstitutiongCS) = Q(CY)y.

Note that as Xcerpt programs are range restricted, thidlaoydiolds for every full evaluation of an
Xcerpt program.

8.1.3 Constraint Simplification
The usual simplification rules for formulas apply, for exdenp
e FalsenCreduces td-alsefor any constrain€, FalseV C reduces t& for any constrain€
e TrueACreduces t& for any constrain€, TrueV C reduces td ruefor any constrain€
e —(CAD) simplifies to—CV -D, =(CV D) simplifies to—~C A =D
e ———C simplifies to—C
e —False= Trueand—True= False

Note, however, that constraints of the formC (whereC is not of the form-C’) may not be simplified
to C, because the range restrictedness disallows variabléigsdlso for variables that are negated twice
or more times.

8.1.4 Consistency Verification Rules

Before a variable can be bound to a term, it is necessaryttbatanstraints for this variable atensistent
There are two kinds of consistency verification rulesnsistencyandtransitivity, divided into four rules
to distinguish the cases with and without negation. The fifte described here reduces certain kinds of
negated simulation constraints.

All consistency verification rules are considered to be phitie constraint solver and are needed both
for the simulation unification and the backward chainingoalthm. It is assumed that they are always
applied if possible and that the constraint store can allaytseated as consistent.

Rule 1: Consistency

The consistencyule guarantees that upper bounds for a variable are censisthis verification rule
implements the solution set definition 8{C A D) = Q(C) N Q(D) and ensures that a conjunct does not
induce two assignments for a variable that are not simulaguivalent.

X =uty
Xﬁutz
X=utiAty Zuta At Suty

Sebastian Schaffert 161

8.1. A SIMPLE CONSTRAINT SOLVER

Note that both; andt, are necessarily construct or data terms. Thus, the conisttgiis applicable,
which requires a construct or data term on the right hand side

Example 8.1 (Consistency Rule)
1. consider the two simulation constraits<, f{var Y} andX =<, f{a}; applying the consistency
rule yieldsX <, f{var Y} Aa=,Y AY =, a(after mutual unification), which limits the bindings for
Y toa.

2. consider the two simulation constrains=<, f{a} andX =<, f{b}; applying the consistency rule
determines that they are inconsistent, becdysg and f{b} do not simulate.

Rule 2: Transitivity

Thetransitivity rule replaces variable occurrences of a variabla the upper bounds of a variable by the
upper bound oK. This rule is justified by the simulation pre-order define€worollarfZID and is needed
to ultimately create ground terms as bindings for all vddabln the following, the notatiorijt’/X] denotes
“replace all occurrences ofint byt’”.

t1 <u t] such that; contains the variablX
X b
X <ut2 Aty =<y tift2/X]

Note that the first constraint is consumed by this rule. Thightrappear somewhat unusual, as further
applications of the transitivity rule might yield new corahts. However, if some constraint of the form
X <ut; is added, it needs to be compatible with the constrdint, t, (which is still in the conjunction)
and would thus not yield differing information.

Example 8.2 (Transitivity Rule)
1. consider the simulation constraints<, Y andY =, a; applying the transitivity rule yields the
additional constraink <, aand removeX <, Y.

2. consider the simulation constrai¢s=<,, f{var Y} andY =, & applying the transitivity rule yields
the additional constrair < f{a} and removeX =, f{var Y}.

It would be possible to define a similar transitivity rule fhe lower bounds in a simulation constraints.
This is, however, not necessary, as the lower bounds do alat yariable bindings and thus need not be
ground.

8.1.5 Constraint Negation

Negated constraints represent exclusion of certain Varlsibdings, and may result from the evaluation
of the constructsiithout (subterm negationpptional (optional subterms), anabt (query negation).
For example, the constraintX < f{a,b}) disallows bindings foiX that are simulation equivalent with
f{a,b}. Note that, although these constructs implement negasofailure, constraint negation is the
ordinary negation of classical logic. The usual transfdromerules apply, namely:(CAD) = -CV -D,
—(Cv D) =-CA-D, -True= False and—-False= True Note, however, that—C # C, becaus€ is
not allowed to define variable bindings (cénge restrictednesSectior[GR).

The following three additional consistency verificatioheuare used in the constraint solver to treat
constraint negation. All three rules assume that the negatppears immediately in front of an atomic
constraint. This assumption is safe when the constraimé soin disjunctive normal form. The rules
continue the numbering scheme of the previous consistegrifjoation rules. Therefore, the first rule has
number 3.

162 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

Rule 3: Consistency with Negation

To detect inconsistencies between a non-negated and a°jaiulation constraints, the consistency rule
needs to be modified to yield inconsistency in case a nonteéganstraint for a variable is consistent
with a negated constraint for the same variable. The foligwile means that if a simulation constraint
provides an upper bound for a variable (which representsididate binding for the variable), then there
must not be a negated simulation constraint that excludes fiper bound:

X =uty
_‘(X ju tZ)
X 2utiA-(t et Aty <uty)

Example 8.3 (Consistency Rule with Negation)
Consider the constraint store

X =u f{a,b} A=(X =y f{b,a}) A=(X =y g{a})
Applying the consistency rule with negation yields

X =y f{a b} A—(f{a b} <, f{b,a} A f{b,a} <, f{a,b}) A=(X <y g{a})
the DNF of which is

X =u f{a,b} A—(f{ab} =, f{b,a}) A~(X <y g{a})v
X =u f{a, b} /\ﬁ(f{ba a} =u f{a, b}) /\ﬁ(x =u g{a})

and after further decomposition steps

X =4 f{a,b} A—=(True) A (X 2y g{a})Vv
X =<y f{a,b} A=(True) A—(X 2y 0{a})

which ultimately yield~alseg i.e. no valid bindings.

Note that although subterm and query negation can nevet yaiable bindings themselves, there
might be variables that only appear in negated simulatiorsitaints but nowhere else in a non-negated
simulation constraint, e.g. as the result of decompositiitin without ~ or optional . These are treated by
Rule 5 below.

Rule 4: Transitivity with Negation

Like the consistency rule, the transitivity rule needs tatapted to cover negation properly. The following
rule specifies that if there is a negated simulation constreere the upper bourt{l contains a variable,
and this variable is bounded in a non-negated simulatiostcaint, then substituting the upper bound for
the variable in the first constraint must not yield a simolati

=(t1 <y t7) such that; contains the variabl¥
X =u b2
—|(t1 =<u ti) AX =Syt A ﬂ(tl =<u ti[tz/X])

Likewise, if there is a non-negated simulation constraihere the upper bound contains a variable
occurring in a negated simulation constraint, then suligiy the upper bound for the variable in the first
constraint must not yield a simulation.

t; <y t] such that; contains the variablX
_‘(X ju tZ)
1 <y ti N ﬁ(X =ut2) A ﬁ(tl =<u ti[tg/X])

Note that unlike rule 2, transitivity with negation may netwove any of the original constraints, be-
cause information would be lost.

Sebastian Schaffert 163

8.1. A SIMPLE CONSTRAINT SOLVER

Rule 5: Negation as Failure

The last rule is necessary for cases where a variable onlyaapjin a negated simulation constraint, but
nowhere else in a non-negated simulation constraint ofdhstcaint store. Due to the range restrictedness
of Xcerpt rules, such constraints can never be producedttiiia the treatment ofiot orwithout (range
restrictedness enforces that each variable occurring iegated part also appears elsewhere in a non-
negated part). They may, however, be the consequence atatps of rules 3 and 4, and might be
produced when decomposing a query term containing the mmtsptional (see Sectiofii82.2 below).

Such constraints are reducedRalse The rationale behind this is that, in case the variable does
not occur elsewhere outside a negation, the simulationt@nsinside the negation represents a solution
for a negated query or subterm, and therefore the negatesdraont must fail. In case the variable does
also appear elsewhere outside a negation rules 3 and 4 dreadg (Wwhich again might yield negated
simulation constraints).

—(X =y t) such thaiX does not appear in a non-negated simulation constraint
False

Constraints of the formTrue and—Falseare treated by the formula simplification described above.
ExampldBP shows a case where this consistency rule is deddeinteresting application of this rule
involves double negation:

Example 8.4 (Negation as Failure Rule)

Consider the simulation constraint-(X =, t) such thatX does not occur elsewhere in a non-negated
simulation constraint. Applying Rule 5 to this constraimlgls —False= True (and notX =<, t as
one might expect). The rationale for this is that the negatised is negation as failure and not classical
negation, and variables within a simulation constraint éina negated twice do not define variable bindings
(see also the definition afinge restrictednesis Chaptefb).

8.1.6 Program Evaluation

Program evaluation starts at the program goals, and trestewmine answer terms by evaluating the query
parts for each goal in a backward chaining fashion. GivenognamP, the general scheme of program
evaluation is as follows (the backward chaining algoritkself is described in Sectidi’®.3 below):

Algorithm 8.1

procedure main():
foreachgoalt — Q € P do:
let Subst= solve(Q)p)
print apply(t,Subst)

Of course, printing the result in the scheme above has teotsppossible output resource associated
with the head of a goal. The backward chaining algorithmifitisecalled with the functionsolveC)
(whereC is a constraint) which returns a list of substitutions ttesit from solving the constraint given
as parameter. The general scheme of the funatiidwveis as follows (cf. the functiomubstitutions()
above):

Algorithm 8.2

function solve(Constraint C):
while a rule can be applied to @o:
select some constraint D in C and some rule R applicable to D
let D' := apply rule R to D
replace Dby D’inC
put C in disjunctive normal form and verify consistency
return substitutions(C)

164 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

Note that “rule” in the algorithm above denotes a simplifimatrule of the constraint solver and not
an Xcerpt rule. Rules from all three parts may be interleauedl the decision on the selection of rule
applications is deliberately left open (i.e. the algoritdescribed here is non-deterministic), as long as
the selection is “fair” (i.e. each possible rule is applieithim finitely many steps). This non-determinism
allows for interesting considerations about selectioatsgies that have not been investigated much in logic
programming (cf. Sectidn 3.3.4).

8.2 Simulation Unification

Simulation Unificationas previously described ifirJP4], is an algorithm that, git@o termst; andt,,
determines variable substitutions such that the grourtdriees ot; andt, simulate. Like standard uni-
fication (cf. [@1]), simulation unification isymmetridn the sense that it can determine (partial) bindings
for variables in both terms. Unlike standard unifications ihoweverasymmetridn the sense that it does
not make the two terms equal, but instead ensures a groumg tgum simulation, which is directed and
asymmetric. The outcome of Simulation Unification is a sedudfstitutions calledimulation unifier

Simulation Unification consists mainly of decompositiofesuthat operate recursively and in parallel
on the two unified terms (Sectidl_8P.2). When all terms amapetely decomposed, the result is a
constraint store containing conjunctions and disjunatiohsimulation constraints where the left or the
right side is a variable. These yield variable bindings bylaeing simulation constraints of the form
X <yt by X =t. The consistency verification rules described above erthatell simulation constraints
are consistent and can be interleaved at any point.

8.2.1 Simulation Unifiers

In Classical Logic, a unifier is a substitution for two tertp@ndt, that, applied td; andty, makes the
two terms identical. Theimulation unifiersntroduced here follow this basic scheme, with two extemsio
instead of equality, simulation unifiers are based on thegnfasetric) simulation relation of Sectido}.4
and instead of a single substitution, substitution setsyieduced in Sectiofi .3 are considered. Both
extensions are necessary, as they recognise the specigt Xoastructall andsomeand incomplete term
specifications.

Informally, a simulation unifierfor a query termt9 and a construct terrtf is a set of substitutions
>, such that each ground instant% of t9 in ¥ simulates into a ground instant® of t¢ in £. This
restriction is too weak for fully describing the semanti€the evaluation algorithm. For example, consider
a substitution sef = {{X — a,Y — b}, {X - b,Y a}, a query termi9 = f {var X} and a construct term
t¢ = f{var Y}. With the informal description abov&,would be a simulation unifier af in t¢, but this is
not reasonable. We therefore also require that the sutistito € > that yieldstq’ alsois “used” byd. This
can be expressed by grouping the substitutions accorditigetfree variables it (cf. Definition[ZZB on

pagd1ZB).

Definition 8.3 (Simulation Unifier)

Let t% be a query term, lef® be a construct term with the set of free variabf&s(t®), and letz be an
all-grounding substitution sek is called asimulation unifierof t9 in t¢, if for each[o] € Z/ng(tc) holds
that

v e [o](t%) ¥ < [o](t%)

Recall from Sectiof. 713 that all substitutions in an allgrding substitution set assign data terms to
each variable. Intuitively, it is sufficient to only considgrounding substitutions faf andt®. However,
all-grounding substitution sets simplify the formaligatiof most general simulation unifiers below.

Example 8.5 (Simulation Unifiers)
1. Lett9= f{{var X,b}} andlett®= f{a varY,c}. A simulation unifier ot?in t®is the (all-grounding)
substitution set

1= {{X»—>a,Y|—>b},{X»—>C,Y»—> b}}

Sebastian Schaffert 165

8.2. SIMULATION UNIFICATION

2. Lett% = f{{var X}} and lett® = f{all var Y}. A simulation unifier oft% in t® is the (all-grounding)
substitution set

2y = {{X —aY—bh{X—aY— a}}

Assignments for variables not occurring in the tetfhandt® are not given in the substitutions above.

Simulation unifiers are required to lgeoundingsubstitution sets, because otherwise the simulation
relation cannot be established. Also, only grounding suhigin sets can be applied to construct terms
containing grouping constructs, because a grouping is osgiple otherwise. This restriction is less sig-
nificant than it might appear: as rules in Xcerpt are rangéictsd, the evaluation algorithm always
determines bindings for the variablestfp so that it is always possible to extend the solutions detexch
by the simulation unification algorithm to a grounding sitbhfibn set by merging with these bindings.

Usually, there are infinitely many unifiers for a query ternd anconstruct term. Traditional logic
programming therefore considers the most general unifigufm.e. the unifier that subsumes all other
unifiers. Since simulation unifiers are always groundingsitition sets, such a definition is not possible
for simulation unifiers. Instead, we define th@st general simulation unifigimgsu) as the smallest
superset of all other simulation unifiers. Note that theorothost general simulation unifiés — although
different in presentation — indeed similar to the tradiibnotion of most general unifiers, because a most
general simulation unifier subsumes all other simulatiafiens.

Definition 8.4 (Most General Simulation Unifier)

Lett% be a query term and &t be a construct term without grouping constructs such thaetbxists at
least one simulation unifier @f in t°. Themost general simulation unifi€mgsu) oft9 in t¢ is defined as
the union of all simulation unifiers af in t°.

In SectionlBZH, we shall see that the simulation unificatityorithm described here computes the
most general simulation unifier. Note that the most genérallation unifier is indeed always a simulation
unifier if t does not contain grouping constructs. This is easy to semusedhe union of two simulation
unifiers simply adds ground instancestbfindt® where for every ground instant® of td there exists a
ground instance®’ of t® such that? <t¢. This does in general not hold for construct terms with giogp
but as grouping is not treated inside the unification algaritthe definition above suffices for the purpose
of formalising the results of this algorithm.

8.2.2 Decomposition Rules

Decomposition rules take a single simulation constrait &y to recursively decompose the two terms
in parallel until no further rules are applicable. Each deposition step yields one or more subsequent
constraints, often even a large disjunction containingralitives. This reflects the many different alterna-
tive ground query term simulations that need to be consiierease of partial term specifications. This
section begins with several notations that mostly are ainii those used in Sectibnh.4.

All decomposition rules are first given without examplescdese the examples tend to be very ex-
tensive, and mutually depend on other decomposition ri8estiol 8213 illustrates important aspects of
simulation unification on several more extensive examples.

Preliminaries

In the following, letl (with or without indices) denote a label, andtttienote query terms anmélconstruct
terms (both with or without indices). Furthermore, lebe a special term (not occurring as subterm in any
actual term) with the property that for a@lt£ | holds that <, | = False i.e. no term unifies withL. In

the following sections, it is furthermore assumed tfatontains neither grouping constructs, functions,
aggregations, nor optional subterms. In practice, thigiction is insignificant, because construct terms
containing one of these constructs are always made groundebeomputing the simulation unification
(seeDependency Constraitelow).

166 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

Definition 8.5
Given two termg® = I{t],...,t}} andt? = I{t?,... 12}, the following sets of functionBx : (t,...,t}) —
(t2,...,t2) are defined (cf. Definitiol 4 6):

e SubT" C (t1,...,t}) is the sequence of all non-negated subterms @hd SubT- C (t1,...,t1) is
the sequence of all negated subtermstof

e SubT C (t},...,t}) is the sequence of all non-optional subterms'@ndSub™ C (t},...,t}) is the
sequence of all optional subtermstbf

e I is the set of partial, index injective functiomsfrom (tf, ... t}) to (t?,...,t2) that are total on
SubT" and onSubT, each completed by— L for all t on whichris not defined

e [Mmonis the sefl restricted to all index monotonic functions

o Iy is the sefl restricted to all index bijective functions

o [ppis the set of all positiopreservingfunctions

o [y is the set of all positiomespectingunctions

® Mm_pr = MmonNMpr, Mp_pr = Mpij "M pr, Mp_pp = Mpij "M pp, @andMm_p = Mpij N Mmon

To simplify the rules below, ajpartial mappings i1 are assumed to be completed by mapping all values
on which the mappings are undefined to the special ternin this manner, every mapping I can be
considered to be total in case the distinction is not necgssaereas in the cases where partial mappings
are consideredftional andwithout), the distinction is made explicitly.

Example 8.6
Consider the term&" = f[[a, without b]] andt? = f[a,b,c]. The set of index monotonic mappings of the
set of subterms df! into the set of subterms of (Mmon) is as follows @ithout b abbreviated asb):

{a—a,—-b— L} {a—Db,=b+— 1} {a—c,-b— 1}
{a—a,—b+— b} {ar—Db,=b+— c}
{a—a,-b—c}

Note that all these mappings can be generated in a ratheghéfoaward manner by creating a table
with the termgt} - - -t} arranged top-down and the tertifs- -t2 arranged left-right and then determining
paths from the first line to theé" line that fulfil certain properties. This technique is cdltbememoisation
matrix and described for the prototype in AppendiXAl7.2.

Root Elimination

Root elimination rules compare the roots of the two termsdislibute the unification to the subterms.

Brace Incompatibility The first set of rules treat incompatibility between braced #ous all of these
rules reduce the simulation constrainBalse For instance, an ordered simulation into an unordered term
is not reasonable, as the order cannot be guaranteed.

Decomposition Ruldecomp.1:

Iftd,.ota] <o HE,.. 31 It 8] =u {tE, . tE)
False False

Sebastian Schaffert 167

8.2. SIMULATION UNIFICATION

Left Term without Subterms This set of rules consider all such cases where the left teyes dot
contain subterms. These cases have to be treated sep#ratelthe general decomposition rules below,
since using the latter would yield the wrong result in sucbesa For instance, an empiy is equvialent

to False but the result should always Ggue in case the left term is only a partial specification. In the
following, letm > 0 andk > 1:

Decomposition Ruldecomp.2:

W = {2,002) = 12 3] I[]] = 12, 12
True True True
{7} <o H{t2,... 12} {7} <o lt2,... 63 1] <u lt2,... 13
False False False
{1} =u {} {1} =Zul] 1] =u]
True True True

As specified by these rules, a term without subterms but &apapeecification (double braces) matches
with any term which has the same label. If the term specificas total, it matches only with such terms
that also do not have subterms.

Decomposition withoutal | , some, wi t hout, and opti onal The general decomposition rules
eliminate the two root nodes in parallel and distributestthiication to the various combinations of sub-
terms that result from ordered/unordered specificationfeord total/partial term specifications. If there
exists no such combination, then the result is an eraptwhich is equivalent té-alse These term speci-
fications are represented by the different sets of mapgidgsij, Mmon Mpr, @andlyp. In the following,
letn,m> 1.

Decomposition Ruldecomp.3:

{t],.. .12} jull{t%a-'-vltr%\} {t],....ta}} jull[tf"”it%]
Vienpp A1<i<alis Su TI(t) Vienp Ai<i<ali” SuTI(t)
H{th, .. th <, I{t%z,...,t,%}l H{th,.. 1 <, I[tlf,...,tr%]1

Ve nnpp A1<i<nti Zu TI(E) Ve npe Ar<i<ntis =u ()

V rteMmon My A1<i<nti <u TI(E) V reMmor M A1<icnti Zu Ti(th)

For instance, if the left term has a partial, unordered digation for the subterms, the simulation
unification has to consider as alternatives all combinatiminsubterms of the left term with subterms of
the right term, provided that each child on the left gets acimiag partner on the right.

Label Mismatch In case of a label mismatch, the unification fails. In thedaihg, letl; # I.
Decomposition Ruldecomp.4:

{{t],. 3 =< {2, 2 a{t],. th) <0 {td,.. 12

False False
ll{{t:l%vatr]l-}} jU Iz[tﬁlz_aatr%] ll{t]]_-vatr]l-} ju Iz[tﬁlz_aatr%]
False False
l[[th, .. 2] =u 23, 13 l[td, .. t3] =<y 2td, ... t2)
False False

168 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

— Elimination

Pattern restrictions of the ford — t* <, t? are decomposed by additygas upper bound for the variable
X (as usual), adding the pattern restriction as lower bound f@o ensure that there exists no upper bound
that is incompatible with the pattern restriction), and ietiately trying to unifyt; andt,. The latter
step is not strictly necessary, as it would also be perforbyecbnsistency rule 2 (transitivity). However,
immediate evaluation is advantageous as it excludes inatibi@ upper bounds immediately.
Decomposition Rulear:

X —t! <, t?
tT <2 At < XA X =<, t2

Descendant Elimination

The descendant construct in terms of the falesc tis decomposed by first trying to unifywith the other
term, and then trying to unifgdesc twith each of the subterms of the other term in turn. In this nean
unifying subterms at all depths can be determined.niet 0.

Decomposition Ruldesc:

desal <, I{t?,... 12} desal =<, Ift?,...,t2]
th < H{t,...t5} V Vigemdesct <y t7 th <y I[tf,.. 3] V Vicjemdesct =, t7

Decomposition withwi t hout

The declarative specification wfthout in the ground query term simulation of Sect[gnl4.4 requines t

a partial function (of the set of non-negated subterms inéoset of subterms of the second term) is not
completable to a (partial or total) function such that on¢hef negated subterm is mapped to a subterm
in which it simulates. Since the term on the right hand sida simulation constraint is always a data or
construct term, it is sufficient to consider the case wheeeitht term does not contain negated subterms
(casd in DefinitioZ]8). For a simulation constraing,, t, the decomposition rules for the case without
negated subterms is intuitively described as follows:

e A mappingris first restricted to the non-negated subterms'pf.e. the subterms of the left term
that are not of the formwithout t, on which the decomposition is performed in the same way as
for decomposition withoutithout . Note that there might be several different mappings that ar
identical with T for all the non-negated subterms and only differ on the respysiibterms.

e Itis then necessary to verify whether there exists a mapmirigat maps the non-negated subterms
of t! to the same subterms ot as 17 (in particular, 77 might be t itself), and permits to map at
least one negated subtemwithout s of t! to a subterns® of t? such thass! < s°. In this case, the
mapping restricted to the positive subterms'ds considered to be invalid, because it is completable
to a mapping that allows to map a negated subtertt & a matching non-negated subtermtaf
Thus,all mappings that map the positive subterms’dab the same subterms tf have to be ruled
out.

It is important to note that the set of mappirgss defined (in the Preliminaries above) as the set of all
partial functions that ar¢otal on the set of positive subformulas. Recall furthermore, tiivamappings in
M are completed by mapping all undefined valueg to

In the following, letSubT" C (t},...,t}) be the sequence of all subterms not of the ferithout t,
and letSubT- C (t},...,t}) be the sequence of all subterms of the fovithout t. Also, two functionst
andr? are considered to be equal on the positive part, demot8dbT") = 77 (SubT"), if for all t € SubT"
holds thatrt(t) = 17 (t). Furthermore, lep(-) be a function that removes thdéthout construct in front of
a negated subterm, i.p(withoutt) = t.

Sebastian Schaffert 169

8.2. SIMULATION UNIFICATION

Decomposition Rulaithout:

e <o)
\/nel‘lpp (/\t*eSubT+ t Syt A (\/n’el‘lpp with 7(SubT+)=17 (SubT*) Vi-esubt- p(t) =u n/(tf)))

i, 3] =<u I[t2,... t3]
Vrenmpr (/\t+e:3ubT+ t 2yt A (\/n'enm.pr with i(SubTH)=rr(SubT+) Vi-esubT- P(t7) =u n’(t’)))

H{td,.. t1) =<u It3,.. . 13
Viren (/\t+esubT+t+ STt) A (vn’el'lpr with ri(SubTr)=rt (SubT+) Vi-esubt- P(t7) =y "I(tf)))

Note that decomposition withithout is currently not covered in the completeness and corregtnes
proofs of Sectioi 8214.

Decomposition withopt i onal in the query term

Intuitively, decomposition wittoptional in the query term should “enable” the maximal number of op-
tional subterms such that they can participate in the sitimnla In the following, this is expressed as
follows:

o for all required subterms (i.e. not of the foroptional t), the treatment is as before (since all
negated subterms are required, they must be treated herelladui this is omitted in the rules
below to enhance readability)

o forall optional subterms, a certain number is “enabled” igiag appropriate simulation constraints,
and all others are “disabled” by adding appropriate negsitedlation constraints

In the following, these requirements are expressed asisilgiven a partial mapping € N (by definition
rrmust be total on the set of non-optional subterms, but mayhépon the set of optional subterms), it is
first verified whethert yields a simulation by unifying all terms on whighis defined with their mapping
(in the same manner as before). In the second part of the farrtus then necessary to ensure that

is also themaximalmapping with this property, i.e1 is not completable to a mappirmg such that this
would also yield a simulation. This is ensured by adding aated) disjunction testing for all mappings
that are identical witht on the subterms for whicit is defined, but differ on the other subterms, whether
there exists an additional subterm that would unify with$hbterm it is mapped to ir’'. If yes, iis not
maximal and completable t@. If no, Tis maximal.

For a given mappingr, let SubT; C SubTbe the sequence on whicghis defined and not mapped to
L, i.e. forallt € SubT; holds thatri(t) # L, and letSubT, = SubT\ SubT,. Also, two functionstand
are considered to be equal on a set of subteXmsSubT, denoted(X) = '(X), if for all t € X holds
thatmi(t) = 7' (t). Furthermore, lep(-) be a function that removes tlogtional construct in front of an
optional subterm, i.ep(optionalt) =t.

170 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

Decomposition Ruleptional:

. ot3 <o {2, 12
Vreny_pp (/\teSub'ﬁt St A= (Vﬂenb,ppwith nsubf)=rt(subf) Viesug, Pt) =u "’(t')))

H{td,... t}) <o 1{t2,... 12}
Vrerpp (/\teSub‘F[t =y TI(t) A (VwEnpp with m(SubTy) =7 (Suby) Ve esupg, P') =u Tl’(t')))

I[t,... t3] <u I1t3,... 12
Ve o (/\teSub‘F[t =SuTI(t) A= (Vn'erlm,b with ri(Sub)=r7(Suby) Vrresapr, P) =u "’(t/)))

i, 3] =u 1[t2,.. t8]
Vrenm o (/\teSub'ﬁt = Ti(t) A= (Vﬁerlm,pr with 7i(Sub)=17(Subk) Vs, P) =u ﬁ(t')))

V"G”b—pr (/\tGSubEt S TI(t) A (Vﬂenb,pr with 7(SubTy)=17 (SubT) Vt’em p(t") <u n’(t’)))

H{td, ...t} =<y I[t2,... t2]
\/nel‘lpr (/\teSub‘F[t =u T[('[) A= (Vn’el‘l pr With 11(SubTr)=77(SubT;) vt/em p(t/) =u nl(t/)))

Note the close similarity to the decomposition rules fontercontainingwithout . Intuitively, this
similarity means that decomposition withtional ~ corresponds to creating all different alternatives where
zero or moreoptional ~ subterms are “turned on” by omitting tloptional and the others are “turned
off” by replacingoptional by without , and evaluating all resulting terms as alternatives. Gtamndor
example the term

f{{var X — a,optionalvar Y — b,optionalvar Z— c}}

The substitution resulting from the evaluation of this guerm is equivalent to the union of the results of
the four terms

f{{var X — a,varY — b,varZ— c}}

f{{var X — a,varY — b,withoutvar Z— c}}

f{{var X — a,withoutvar Y — b,var Z— c}}

f{{var X — a,withoutvar Y — b,withoutvar Z— c}}

Note that this representation might be surprising on a filshag, because the intuitive understanding
of optional would be to simply leave out the optional subterms insteatkplacing them by negated
subterms, as in:

f{{var X — a,varY — b,varZ— c}}
f{{var X — a,varY — b}}

f{{var X — a,varZ— c}}

f{{var X — a}}

However, this term representation does not reflect that éioregd subterm igequiredto match, if it is
possibleto match. Consider for example a unification with the tdrm, c}. The correct solution would be
the substitution set

r={{X—az~c}}
whereas the evaluation of the second set of terms would yield

2= {{X»—»a,Z»—»c},{XHa}}

Sebastian Schaffert 171

8.2. SIMULATION UNIFICATION

Note that decomposition witbptional is currently not covered in the completeness and corregtnes
proofs of Sectioi 8214.

Example[8D on padedl76 illustrates the decomposition ofra t®ntaining two optional subterms.
Note that more efficient evaluation techniques for the dgmusition rules above are conceivable. For
example, if one of the unification steps in the part for whicis defined already fails, it is not necessary to
consider all different alternative mappings that are equahe subterms on whicttis defined.

Incomplete Decomposition with grouping constructs, fundbns, aggregations, and optional subterms
in construct terms

A unification with a term containing grouping constructsadtions, or aggregations is in general incom-
plete because a complete decomposition requires to hardéeconstraints over the constraint store itself,
which is very inconvenient. Consider for instance a uniftat {a,b,c} <, f[all X]. To provide the
full information stated in this constraint, it would be nesary to add a meta-constraint stating that there
must be exactly three alternative bindings ¥grand of those, one must lag anotherb and the thirdc.
Evaluation of a query containing would thus become very complex.

Although a complete decomposition is preferable, it ist(foately) not necessary for evaluating Xcerpt
programs, as grouping constructs always depend on thengiedf the variables in the query part of a rule.
Rules containing grouping constructs are treated byd#endency constraifitf. Sectio8.3]1), which
performs an auxiliary computation for solving the querytigdia rule and then substitutes the results in the
rule head. Thus, in this case it is sufficient to treat the caiifon of a query term with a data term, which
does not contain grouping constructs (and obviously alseaniables).

However, it is still desirable to unify a term containing gping constructs as far as possible in order
to exclude irrelevant evaluations of query parts in the depacy constraint as early as possible. For
example, the term§{a, b} andg{all var X} will never yield terms that unify, regardless of the binding
for X. Likewise, the termd{g{a},g{b}} and f{all h{var X}} will never yield terms that unify, because
neitherg{a} norg{b} can be successfully unified with any of the ground instanfégar X}.

Therefore, the algorithm described here takes a differgmtaach, in which a unification witall only
yields anecessarget of constraints, notsufficientset. The algorithm is thuscompletgor “partial”) in
this respect.

The following decomposition rule is used, where the retwalue is either simplyfrue or False with
the informal meaning “there might be a result” or “a resufpiscluded”.

Decomposition Rulgrouping:

t1 =<, allt?
(tr <, t?) # False
In the case where the constraint is reducedrae, it is possible that there is a result, but it is also
possible that there is none, depending on the further etiatuaf the variables it?.

Term References: Memoing of Previous Computations

Resolving References. References occurring in either term of a simulation coirstiere dereferenced
in a straightforward manner using tHere f(-) function described above:
Decomposition Rulderef:

id < 12 L <uti
T 21”1 erefid) —Lr=u 119 42 gerefid)
=t v =t

Memoing. Dereferencing alone is not sufficient for treating refeembecause the simulation unification
would not terminate in case both terms contain cyclic refees. The technique used by the algorithm to
avoid this problem isnemoing(also known agabling). In general, memoing is used to avoid redundant
computations by storing the result of all previous compatetin memory (e.g. in a table). If a computation
has already been performed previously, it is not neceseagpieat it as the result can simply be retrieved
from memory. This technique is among others used in centaeémentations of Prolog [IPE137].
Consider for example the following (naive) implementatid the Fibonacci numbers in Haskell:

172 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

fib :: Int — Int

fib 0 = 1

fib 1 =1

fib n = fib (n—1) + fib (n—2)

Without memoing, this implementation performs many redintccomputation. For example, for the
computation offib(n) it is necessary to computéb(n— 1) and fib(n— 2), and for the computation of
fib(n— 1) it is necessary to computeb(n— 2) and fib(n—3). Thus, fib(n— 2) needs to be computed
twice. With memoing, the second computation could insteder to the previous computation.

In Xcerpt, memoing for unification with references can belenpented by keeping for each conjunct
in the disjunctive normal form a history of all previous apptions of simplification rules (without their
results) that were used for the creation of the conjunctvémedecomposition step it is then first verified
whether the considered constraints have already beerag®dlin a previous application of this simplifica-
tion rule. If yes, the constraint reducesttoug if no, the computation is continued as usual.

In the following rule, letH be a set of constraints that have been considered in pregjmliations
of simplification rules in the current conjunct of the disjtime normal form (history). Furthermor#, is
considered to be not of the fordesc t
Decomposition Ruleemoing:

desct =<, t?suchthadesct <, t2eH t! <, t?suchthat! <, t2e K
False True

It might be somewhat surprising that the constraint is reduo True/Falseinstead of inserting the
result of a previous computation. The rationale behindiththat the result of the previous computation
is already part of the current conjunct in the disjunctivernal form. True andFalseare the neutral ele-
ments of conjunction and disjunction, and thus terminageuthification while keeping results of previous
computations. Exampl€s8]10 dn0d8.11 illustrate the sitiomlainification with references.

8.2.3 Examples

Since most examples for the decomposition rules are rattemngve, they are all grouped in this Section to
improve readability. As in the examples in Seciiad 4.4, thestructoptional is sometimes abbreviated
by opt , the construgposition is sometimes abbreviated bys, and the construetithout is sometimes
abbreviated by~. The latter abbreviation is unproblematic,-asan otherwise never occur within a term.
Some of the more complicated examples also provide a “deositign tree” which shows the application
of decomposition steps in the different conjuncts of the DINEhese trees, nodes represent conjuncts and
edges represent decompositions. If applying a simplificatille to a conjunct yields a disjunction, its
corresponding node has more than one alternative sucee$sgad from the root to the leaves, these trees
allow to follow the sequences of decomposition steps theat te substitutions. The consistent end states
of the constraint store are often emphasised by a rectarfgaitae.

Example 8.7 (Decomposition)
This example consists of three decompositions of simplelsition constraints. FiguréSBIIB.2, 8.3
provide a graphical illustration of the decompositions.
1. Consider the simulation constraint (cf. Figlird 8.1)
C = f{{var X}} <, f{a,b,c}

Applying the decomposition ruldecomp.3wvith three different mappingg € I to this simulation
constraint yields

var X <ya Vv varX=<yb Vv varX=<,c

No further simplification rules are applicable.

’Note that Haskell's lazy evaluation performs a techniqueilar to memoing

Sebastian Schaffert 173

8.2. SIMULATION UNIFICATION

f{{var X}} <, f{a,b,c}
decomp.3 ecomp.3 decomp.3

var X <y a var X <y b var X <, ¢

Figure 8.1: Derivation tree of {{var X}} =<, f{a,b,c} (Example[BY, part 1). Different paths denote
different alternatives, nodes represent conjuncts, agdscepresent applications of simplification rules.

f{{var X,var Y}} <, f{a,b,c}
decomp.3 decomp.3 decomp.3

var X <yaAvarY =<yb var X <yaAvaryY =,c var X <ybAvarY =<,c

Figure 8.2: Derivation tree of[[var X,var Y]] <, f[a,b,c] (ExampldBY, part 2). Different paths denote
different alternatives, nodes represent conjuncts, agdsrepresent applications of simplification rules.

2. Consider the simulation constraint (cf. Figlitd 8.2)
C = f[|var X,var Y]] <, f[a,b,c]

Note the partial, ordered term specification of the left teBrecomposition with rulelecomp.2nd
the three different index monotonic mappimgs Mmonyields

var X <gaAvarY =<yb

VvV var X <XyaAvaryY =<,c
VvV varX=<ybAvarY =<,c

3. Consider the simulation constraint (cf. Figlitd 8.3)
C= f{{var X — b}} <, f{ab,c}
As both terms are unordered, decomposition ddeomp.3vith the three differentr € 1 yields
var X —b=<yavvarX—b=<ybvvarX—b=,c
Decomposition of the— construct reduces the constraint store to
b=<ya A varX=<ya A b=y var X
V. b=ybAvarX=<yb A b=yvarX
V. b=ycAvarX=,cA b=y varX
Simulation unification in all three conjuncts yields
False A var X <ya A b=<yvar X
vV TrueA varX=<yb A b= varX
VvV FalseA var X <,c A b=<yvar X

and formula simplification simplifies this constraint sttwe

var X <yb A b=<yvar X

174 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

f{{var X — b}} <, f{a,b,c}
decomp.3 decomp.3 decomp.3
var X - b=<,a var X — b =<yb var X —b=<,¢c
var var var
b=<yaAvarX=<,a b=<ubAvarX=<,b b<ucAvarX=,c
A b=<yvar X A b=<yvar X A b=<yvar X
unify unify unify
False A var X <y a True A var X <y b False A var X <, ¢C
A b=<yvar X A b=<yvar X A b=<yvar X
simplify simplify simplify
False |vaerub A b=y varX| False

Figure 8.3: Derivation tree df{{var X — b}} <, f{a,b,c} (ExampldBY, part 3). Different paths denote
different alternatives, nodes represent conjuncts, agdsrkpresent applications of simplification rules.

Example 8.8 (Simulation Unification withwi t hout)
1. Consider

C = f{{a,without b}} <, f{a,c}

The setl1 of partial mappings that are total @ubT" is as follows (partial mappings completed by
mapping undefined values ﬂoﬁ:

{a—a,-b— L} {ar—c,~b— 1}
{a—a,-b—c} {ar—c,—b— a}

From this set, the constraiitis decomposed into the following constraint formula (using de-
composition rule for terms containingthout):

Note thatt <, 1 always evaluates tbalse Evaluating the constraints contained in the negated
subformulas yields:

a=yan—(Falsev False
VvV a=ycA—(FalsevFalse

and formula simplification results in
a=yava=x,c
which of course can be further decomposeiitoe

2. ConsidecC = f{{a,without b}} =<, f{a b}

The sef1 of partial mappings that are total @ubT" is as follows (completed by mapping all terms
on which the mappings are undefinedltyx

{a—a,-b— L} {ar—b,-b— 1}
{a— a,~b+— b} {arb,-b+— b}

3note thatwithout bis abbreviated by-b

Sebastian Schaffert 175

8.2. SIMULATION UNIFICATION

From this set, the constrai@tis decomposed into the following constraint formula (using de-
composition rule for terms containingthout):

Evaluating the constraints contained in the negated sohflas yields:

a=yan—(Falsev True)
VvV a=ycA-(FalsevFalse

and formula simplification results in
a=<yc

which of course can be further decomposetatse

Example 8.9 (Simulation Unification with opt i onal)
Consider the constrai = f[[a, optg{var X},opth{var Y}]] <y, f[a,g{b}]

The setlTmon of partial, index monotonic mappings that are totalQubT (the non-optional subterms
of the left term) is as follows (partial mappings are comgdighy mapping undefined values t9:

Nmon={ {a—a optg{var X} — L, opth{varY}+— L1}

{a— a, optg{var X} — g{b}, opth{varY}— 1}
{ar a, optg{var X} — L, opth{var Y} — g{b}}
{ar g{b}, optg{var X} +— 1, opth{varY}+— 1} }

From this set, the constrai@itis decomposed into the following constraint formula (ugimg decomposi-
tion rule for terms containingptional). The construcbptional is already eliminated using the helper
rule described above:

a=<yan -(g{varX} <y L vV h{varY} =<yLlV
g{var X} <y9{b} Vv h{varY}=<,LV
g{var X} <y L v h{varY} <yg{b})
h{varY} <, L)
g{var X} <, L)
g{var X} <y L

Vo oa=xya A g{var X} =<yg{b} A —(
Vo a=xya A h{varY} =yg{b} A —(

Vo a=yg{b} A =(vV h{varY} <, L)

Note that <, | always evaluates t8alse Evaluating the constraints contained in the negated suhfias
yields:

a=<yaAn —(False Vv Falsev
var X Xyb Vv Falsev
False VvV False)
v a=yaA g{varX} <4y9{b} A —(False)
v a=yaA h{varY} =<,g{b} A —(False)
vV a=ug{b} A —-(False v False)
Formula simplification and application of consistency raiigegation) yields
a=<yaAn False
v a=yaA g{varX} <yg{b} A True
v a=yaA h{varY} <,0{b} A True
VvV oa=ug{b} A True

Note that reducing the first line tealseinformally states “the mapping is completable”, whereasTtrue
values in lines 2—4 state that “the mapping is not completaflecause the right term only contains two
subterms and the mapping needs to be injective). After@idiecomposition and simplification steps, this
formula is simplified tovar X < b (as desired).

176 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

Example 8.10 (Simulation Unification with References)
Consider the simulation constraint

C = f{{ol@g{{var X =1 01} }} =u f{g{a},02@gy{b, T 02}}

In the following, the sequence of decomposition steps #mtlt in a complete simulation unification of
the simulation constraint is described. For each conjuhetsetH; denotes the current memoing history
of the conjunct. So as to better distinguish the path that teahis history, the index is composed of the
numbers of the branches followed in previous steps. For pigi(;21 is the history of the node that can
be located by following the first branch on the top level, theand branch on the second level, and the first
branch on the third level. Note that Figllf€l8.4 gives a gregihiepresentation of the decomposition tree
that might be easier to read. In this tree, the history of eeriectasily determined by following the path
from the root node to the current node, and thus not giveriatpl The first decomposition step yields

ol@g{{var X —1ol}} <, g{a} Ha={C}
Vv ol@g{{var X —1 ol}} <, 02@g{b, T 02} H, ={C}

Note that the; denote the history for every conjunct, and is in this stepstimae for both conjuncts, as
they “share the same history”. Further decomposition tesul

var X —Tol=,a Hi=HiU{ol@g{{var X —1 ol}} <y o{a} }
VvV varX—10l=yb Hop = HoU{ol@g{{var X —7 ol1}} <, 02@g{b, 1 02}}
VvV var X —101 =102 Hoo = HoU{ol@g{{var X —7 ol1}} <, 02@g{b, 1 02}}

Application of the— decomposition in all three conjuncts yields

Tol=<yaAn Tol=<yvarX A varX=<,a Hip1=Hpau{var X -1 0l <, a}
V. Tol=ybA Tol=yvarX A var X <yvar X=<,b Ho11=HorU{var X =1 0l <, b}
V. Tol=yT02A Tol=<yvar X A var X <,7 02 Hop1 = HopU{var X =1 0l <1 02}

In the next stepel is dereferenced tol@g{{var X —1 ol}} in all conjuncts. This gives the result:

ol@g{{var X —701}} <yaA Tol=<,varX A varX=<,a Hi111=Hi11U{1 0l =<, a}
VvV ol@g{{var X —70l}} <ybA T0ol=x,varX A var X <yb Ho111=Ho11U{T 01 <, b}
VvV ol@g{{var X =7 0l1}} <y1 02 A T0l=,var X A var X <1 02 Hop11=Hop1U {7 01 =1 02}

Decomposition in the first two conjuncts and dereferencing?dn the third conjunct then yields:

Falsen Tol=<yvar X A var X <ya
Hi1111= H1111U {ol@g{{var X =71 01}} =<u a}
Vv FalseA Tol=<yvar X A varX=<yb
Ho1111= HarnaU{ol@g{{var X —1 ol}} <, b}
VvV ol@g{{var X —10l}} <y, 02@g{b,7 02} A 101 =,var X A var X <,02@g{b, 1 02}
Hoo111= Hoo11U {ol@g{{var X =71 01}} =<ul 02,var X <y7 02}

The next step eliminates the first two conjuncts because d¢bhatainFalse In the third conjunct, the
memoingule is applicable to the first simulation constraiot@g{{var X —1 01}} <, 02@g{b, 1 02} €
Hoo C Hoo111 It thus reduces td rueand terminates the otherwise infinite computation:

Truen 70l =,var X A var X <y var X <,02@g{b, 1 02} Hoo1111= Hoo111

Now the second occurrence of can be dereferenced. The following constraint store isekelt of the
simulation unification:

ol@g{{var X —1 01}} <, var X A var X <, var X =, 02@g{b, | 02}
Haz11111= Hoz1111U {1 01 <y var X}

Sebastian Schaffert 177

8.7

uayeyos uenseqas

"apou 1ey) 01 1004 ay) wolj yred ayy Aq pajuasaidal st apou e Jo)f101siy Bulowasw ay L

‘(aCEpIdwex3) {{zo | ‘q}6@zo‘{e}b}) "= {{ {{10 | X Jen}}6@T0}}J0 9011 UOHEALSQ '8 BInbi4

f{{ol@g{{var X =1 01}} }} <, f{g{a},02@g{b, T 02}}

decomp.3

01@g{{var X -1 o1}} <ug{a}

decomp.3

var X —Tol<,a

var
Tol=<yan Tol=

deref

var X Avar X <, a

ol@g{{var X —1 ol}} <yan

Tol=<yvar X

decomp.4

A var X <ya

False

decomp.3

ol@g{{var X —1 ol}} <, 02@g{b, 1 02}

decomp.3

var X —Tol<,a

var
Tol=<ybA T0l1=

deref

var X Avar X <y b

ol@g{{var X —1 ol}} <yb A

Tol=<yvar X

decomp.4

A var X <yb

False

decomp.3
var X —1

var

Tol=yTo2A Tol=y

deref d

ol <yT 02

var X A var X <,T 02

ol@g{{var X —1 01}} <4T 02 A
7T0ol=<yvar X A var X <1 02

Tol=<yvar X A var

simplify

deref @
ol@g{{var X —1 01}} <, 02@g{b, T 02} A
10l =y var X A var X <, 02@g{b, T 02}
memoing
TrueA

X =<y 02@g{b, 1 02}

Tol=<yvar X A var

X <y 02@g{b, 1 02} |

o = {X— 02@y{b, 1 02} }

NOILVYIIHINN NOILYINWIS '8

CHAPTER 8. OPERATIONAL SEMANTICS

f{{ desc 4{}} }} =u f{ 01@a{T 01} }

decomp.3

desc §{}} <y 01@a{1 o1}

desc desc

a{{}} <uo1@a{10l} descdl}} <uf ol

decomp.2 deref

True desc {}} <y 0l@a{1 o1}

memoing

False

Figure 8.5: Derivation tree of{{ desc {}} }} <u f{ ol@a{1 o1} } (ExampldB1h). In this graph, the
memoing historyH of a node is represented by the path from the root to that node.

Example 8.11 (Simulation Unification with References and Decendant)
Consider the simulation constraint

C=f{{descd{}} }} <u f{ol@af{] 01} }

The sequence of decomposition steps is as follows (cf. E[gF for a graphical illustration). The first
decomposition stepeécomp.Byields

desc 4{}} <y o0l@a{1 ol} H,={C}
Application of the descendant decomposition splits thestraimt store into two conjuncts as follows:

a{{}} <y 0l@a{1 o1} Hi11=HiU{desc d{}} <,0l@a{7 01}}

Vv descd{}} =y 01 Hio=HiU{desc d{}} <u0l@a{7 ol}}
Decomposition in the first conjunct yieldsue, and in the second conjunat] can be dereferenced:
True Hi11=Hu{a{{}} 2uol@a{7 ol}}

v desc d{}} <uol@a{] ol} Hio1=HipU{desc d{}} <u1 01}

As desc d{}} =y ol@a{t ol} € H; C Hi»1, the memoing rule is applicable and reduces the second
conjunct toFalse and the process terminates as no more rule is applicable.

True Hig11=Hana
Vv False Hi211=H121

8.2.4 Soundness and Completeness

The following theorem shows soundness and completenefsefaimulation unification algorithm applied
to a simulation constraint of the fortf <, t¢. t9is assumed to not contain subterm negation or optional
subterms. Also, as rules with grouping constructs are aveggluated in an auxiliary computation using
the dependency constraint, it is assumed thabes not contain grouping constructs. Furthermtrées
assumed not to contain functions, aggregations or optsutaterms.

Theorem 8.6 (Soundness and Completeness of Simulation Ugition)

Let t% be a query term without subterm negation and optional soistemd lett® be a construct term
without grouping constructs, functions/aggregationd, @ptional subterms. A substitution gets a most

general simulation unifier aft andt® if and only if the simulation unification df <, t¢ terminates with a
constraint stor€Ssuch that = Q(CS).

Proof. cf. Appendi{E2 0

Sebastian Schaffert 179

8.3. BACKWARD CHAINING

8.3 Backward Chaining

The backward chaining algorithm presented here is insfiiyeithe SLD resolution calculus used in logic
programming[[ZL]. However, traditional approaches likeDStesolution do not account well for Xcerpt
constructs like partial term specification or grouping ¢ats. Both kinds of constructs seriously influ-
ence the resolution calculus:

High Branching Rate.n traditional logic programming, there are two elementsniohdeterminism that
lead to branching in the proof tree: selection of the praditaunfold in the evaluation of a rule body, and
the selection of the program rule used for further chainicerpt's usage of partial patterns adds a third
element: When using partial patterns, there is in generaimgle way to match two terms. Instead, all
possible alternative matchings have to be considered habaxs to a significantly higher branching rate.
Grouping Constructsll andsome. Unlike Prolog’ssetof andbagof predicates, the grouping constructs
all andsome are an integral part of the language. It is hence desirabkupport such higher order
constructs in the proof calculus itself rather than trepthem as external predicates.

In the following, a backward chaining algorithm based onstmint solving is introduced. It makes
use of the simple constraint solver of Secfiad 8.1 and thelsition unification algorithm of Sectidn’3.2.
In this algorithm, it is assumed that Xcerpt programs argearestricted, stratified, and separated apart
(cf. Chapteb). Evaluation always begins with a singledéal query constraint, i.e. a single constraint of
the form(Q) for some goat® —¢ Q, and terminates when the constraint store either fails sufiéciently
solved to produce the answer term for the &)%ufﬁciently" currently means that the constraint store is
solved completely, but it might be desirable to investiggigmisations based on the construct tefnof
the goal that solve only relevant parts of the constrairresto

Instead of using backtracking to evaluate rule chaining,itackward chaining algorithm for Xcerpt
uses disjunctions in the constraint store to represennaltiges. In this manner, it is possible to use other
selection strategies than depth-first search for the setect paths to evaluate. This is desirable asahe
construct requires to find all solutions to a query anyway.

Note that the algorithm does not necessarily terminaterfpiirgout, as programs may contain recursive
rules that produce infinite chains. As it is desirable to hthieexpressive power in Xcerpt, it is the duty of
programmers to ensure that programs terminate. Non-tatmmmight also be desirable, e.g. to produce
continuous streams of data (together with #fle construct), but such applications have not yet been
investigated in detail (cf. SectigQ@b.2).

The following Sections first introduce the dependency cairgtas a means to treating the grouping
constructgll andsome, functions, and aggregations by performing an auxiliamppatation. Afterwards,
simplification rules for unfolding folded queries are dissed, which also implement the main part of the
algorithm Different approaches to backward chaining inngteave been considered in the course of this
thesis[Zb[AWU]. The approach presented here is a furthaeraént of the “all at once” approach presented

in [29].

8.3.1 Dependency Constraint

The dependency constraint is of the foftp <, t, | D) for a simulation constrairty <, t, and some
constrainD (usually a folded query) and expresses a temporal and dmattdependency betwegn<, t,
andD. A dependency constraint of the form above requires to cetafyl evaluate the constraibxin

an auxiliary computation (also considering other constsawith which the dependency constraint is in
conjunction) beforg < ty, and applies the substitution resulting from the evaluedid tot, (application
tot; is not necessary as the tertpsandt, stem from different rules and are thus variable disjoirftthé
evaluation oD fails, then the dependency constraint also fails withoatuwatingt; <, t>. The following
simplification rule formalises this treatment:

(gt =utb | D)
Vigesty) i Su

> = subs{solvgD))

4Recall that the result of a goal is always either failure cingle data term.

180 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

Note that ifZ is empty (i.e. there is no solution f@), the set>(ty) is empty and thus the result of the
evaluation is the empty disjunction, which simplifiesRalse In case the evaluation & yields simply
True the resulting substitution s&tis not empty, but contains the empty substitution (idejtity

The dependency constraint is necessary because the (itete)ngimulation unification with a con-
struct term containing the grouping construats or some, or functions and aggregations, usually does
not sufficiently characterise the possible bindings of tgables in the two terms.

In order to detect inconsistencies early (and avoid unrsacggecursion), it is reasonable to perform
a partial unification between the query term and the conistarm and add that result tO in order
to exclude such cases for which no answer can exist. Confidénstance the simulation constraint
f{{g{var X}}} <y f{all h{var Y}}). A partial unification could determine that for MImust hold that
o{-} =uY, but notg{var X} <, Y as this would possibly yield inconsistent restrictions tee variable
X. The following refinement of the rule above uses the incotepglecomposition odll andsome to add
such information:

(tt =yt | D)
Vigesty) i Su

¥ = substsolveD A t! <,t?))

8.3.2 Query Unfolding

The rules for query unfolding take a folded query constrafrthe form(Q) and evaluate it by “unfolding”

it. For and/or connected queries, this simply means toidige the evaluation to the subqueries and
connect the corresponding folded query constraints wighréispective connectives. For query terms (i.e.
atomic queries), this means either to query the terms atdbecéated resource, or to query the construct
parts of program rules. In both cases, the algorithm reversgmulation unification for determining the
solution. In case a query term queries the construct papsagfram rules, it is furthermore necessary to
evaluate the respective query parts of the rules and to &eeaf grouping constructs that possibly occur
in the construct part of rules. The following query unfolgliules are used:

And/Or-Connection The connectivesind andor are simply mapped to their counterparts in the con-
straint store. The rules fandandor are therefore straightforward:

(and{Qq,...,Qn})x (or {Q1,...,Qn})x
(Qu)r A+ A {Qn)x (Qu)® V-V (Qn)x

Note that the resource specificati@ns distributed recursively, and that in particutirmay be empty (i.e.
R=0).

Query Negation Xcerpt query negation is negation as failure (NaF), anduatet in an auxiliary com-
putation very much like the dependency constraint. Theresthis auxiliary computation is a constraint
formulaC specifying which variable bindings are disallowed for tlaigbles occurring irQ. It is thus
first restricted to constraints containing variables thatup in Q and then added negated to the original
constraint store. The consistency verification rules 3-th@ftonstraint solver ensure that variables cannot
be bound to values disallowed &y

(not Q>:R

——¢ — V=vardQ),C = restrict(V, solve{(Q)x))

Resource Specification In the case where the query is the specification of an inpaotireg, this resource
needs to be retrieved. The functimairievg RS peg¢takes a resource specification of any form (e.g. an URI
together with a format specification of “xml” such that it da@ parsed correctly) and returns a set of data
terms corresponding to this resource. Note that it is alssipte that a resource contains more than one
term, e.g. when the resource is another Xcerpt program.

(in{R?(g;OQDﬂ%/ R = retriev RSpeg

Note that the old resource specificati®his shadowed by the new resource specificafiearetrieve RS peg

Sebastian Schaffert 181

8.3. BACKWARD CHAINING

Query Term Two simplification rules process query terms. The first ridasiders query terms with
associated resources. In this case, the query term is waftddadisjunctionof simulation constraints, one
constraint for each resource. The intuitive meaning is fgamy of the given resources”.

The second query term unfolding works on such query termishiéngeno resource associated. In such
a case, the query term is evaluated against all rules in thgrgm. For each rule containing grouping
constructs, functions, or aggregations, a dependencyradmtsis added which evaluates the unification
between the query term and the head of the rule only, if they loéthe rule can be evaluated successfully
and the result can be applied to the rule head. For each rut®ntaining a grouping construct, the folded
query is replaced by a simulation constraint between theyqgieem and the construct term of the rule
together with the (folded) query part of the rule. Each rua@eation is an alternative, hence the result is a
disjunction of constraints.

In the following, let®,,,.., C P be the set of program rulg§ — Q such that® contains grouping
constructs, functions, aggregations, or optional suldeemd letP,,.,....,C P bet the set of program rules
t® «— Q such that® does not contain grouping constructs, functions, aggi@gstor optional subterms.
Note that goals are not considered in either case, as thegtguarticipate in chaining. Furthermore> 0
andm> 0.

(t%0
vtc‘*QE?grouping(tq ju tc | <Q>0) v vtc‘*erjnongroupingtq ju tc/\ <Q>® v vtdEPtq ju td

8.3.3 Examples

This Section contains several examples that show variqueces of the evaluation algorithm. Like for
simulation unification in Sectidi8.2.3 above, the examplesalso illustrated in derivation trees. Nodes
represent conjuncts, edges represent applications ofigapon rules, and different nodes on the same
level are alternatives. Each néialseleaf node in these trees represents an alternative solafitime
evaluation.

Example 8.12 (Chaining)
Consider the following Xcerpt program (represented in cactpotation and with internalised resources):

f{var X} — and{g{{var X}},h{var X}}
g{a,b}
h{b}

Figurel&® shows the evaluation of the quéfyvar R}). Note the use of consistency verification rules in
some of the lower parts of the tree.

Example 8.13 (Chaining, Query Negation)
Consider the following Xcerpt program (represented in cactpotation and with internalised resources):

f{var X} — and{g{{var X}},not h{var X} }
g{a,b}
h{b}

Figure[8Y shows the evaluation of the quéfyfvar R}). Note the use of consistency verification rules
in some of the lower parts of the tree and the auxiliary comafpen used for evaluating the negated part.
This auxiliary computation is indicated by the dashed lind avaluategh{var X}) like in Exampld81IP
before tovar X <y b.

182 Sebastian Schaffert

Uayeyas uenseqas

€8T

(Bur

-ureyo) zTEIIdwex3 ul weiboid syl yum ({H reajq bonenjeaa ayy Buimoys aaJ) uonealiaq :9'g ainbi4

(f{var R})

unfold query unfold query unfold query

f{var R} =, f{var X} A (and{g{{var X}},h{var X}}) f{var X} <,g{a,b} f{var X} <, h{b}

unfold query unify unify

var R=<,var X A (g{{var X}}) A (h{var X}) False False

unfold query, sep. apart unfold query, sep. apar
var R=yvar X A (h{var X}) var R=yvar X A (h{var X})
gf{var X}} =, f{{var X'}} A (and{...}) gf{var X}} <, h{b}
unify unfold query unify
var R=<yvar X A (h{var X}) var R=<yvar X A (h{var X})
False A (and{...}) False
simplify simplify
var R=<,var X A (h{var X})
False Ag{{var X}} <ug{a b} False
unfold query, sep. apart unfold query/ unfold query
var R=<var X A g{{var X}} <, g{a,b} var R=<var X A g{{var X}} <, g{a,b} var R=<var X A g{{var X}} <, g{a,b}
h{var X} =, f{var X"}... h{var X} <, g{a,b,c} h{var X} <, h{b}
unify, simplify unify, simplify umf/ \mfy
var R<yvar X A var X <y a var R<yvar X A var X <y b
var X <y b var X <, b
False False
consistency, unify, simpli!;‘ consistency, unify, simpli')‘
False var R var X A var X <, b
transitivity

var R=,var X A var X<,b A varR=<;b

SOILNVYNSFS TVNOILVHIdO '8 431dVHD

8.3. BACKWARD CHAINING

(f{var R})
unfowd queNuery
f{var R} =, f{var X} A (and{g{{var X}},not h{var X}}) f{var X} <,g{a,b} f{var X} <, h{b}
unfold query unify unify
var R=<,var X A (g{{var X}}) A (not h{var X}) False False

unfold query, sep. apartyrfold query, bep. apart

var R=<, var X A (not h{var X}) var R=<, var X A (not h{var X})
g{{var X}} <y f{{var X'}} A (and{...}) g{{var X}} <, h{b}
unify unfold query unify
var R=, var X A (not h{var X}) var R=,var X A (not h{var X})
False A (and{...}) False
simplify simplify
False var R=<, var X A (not h{var X}) False

A g{{var X}} <, o{a, b}

unfold query

var R=< var X A —~(h{var X}) A g{{var X}} <, g{a,b}
|

auxiliary comp.(h{var X}) |
|
I
var R=<,var X A —=(var X <y b) A g{{var X}} <, g{a,b}

unify unify
var R=<,var X A =(var X <, b) A var X<, a var R=<,var X A =(var X <, b) A var X<, a
consistency (neg. consistency (neg.

varR=<,varX A varX<ya A ~(a=ybvb=,a) varR=,varX A varX=,b A =(b=<,bVvb=,b)

unify, negation unify, negation
var R=<,var X A var X <,a A True var R=<,var X A var X <,a A False
simplify simplify
| var R<yvar X A var X <, a | False

Figure 8.7: Derivation tree showing the evaluatiori bfvar R}) with the program in Example81L3 (chain-
ing with negation).

184 Sebastian Schaffert

CHAPTER 8. OPERATIONAL SEMANTICS

(f{{var R}})

unfold query unfold query /unfold query unfold query

(f{{var R}} =, f{all var X} | (g{var X})) f{{varR}} <yg{varY} A (h{varY}) f{{varR}} =<y0{a} f{{var R}} <, h{b}

|
| auxiliary computation
| X =substitutiong(g{var X})) unify unify unify
| cf. FigurdE®
|
Vies(t{all var x}) fH{var R}} <yt False A (h{varY}) False False
simplify
f{{var R}} =, f{a,b} False
unify / \umfy
varR<ua| varR<ub|

Figure 8.8: Derivation tree showing the evaluatiori bfvar R}) with the program in Example&1L4 (chain-
ing with grouping constructs).

Example 8.14 (Chaining, Grouping Constructs)
Consider the following grouping stratifiable Xcerpt pragrécf. Example§8l5 arld 711 1):

f{all var X} < g{var X}
g{varY} — h{varY}
g{a}

h{b}

The evaluation of a quer§{{var R}} in this program is shown in Figur€sB.8 (main evaluation) and
(auxiliary computation of{var X} for the dependency constraint). Note that the evaluatiothef
dependency constraint in Figllrels.9 uses the incomplefieation withall to avoid unnecessary auxiliary
computations.

8.3.4 Soundness and Completeness

In this section, it is shown that the backward chaining atpor is sound with respect to the fixpoint se-
mantics described in Secti@l.5, and that it is completdl iceaes where the algorithm terminates. This
completeness result is weak, but appears to be inherentkwiad chaining. As rules with grouping con-
structs in the rule head require the body to be maximallgfed (cf. Chaptdd7), the proofs for soundness
and completeness are tightly interweaved. We thereforestiaw the following Lemma, which is at the
core of both soundness and (weak) completeness. Recal) (88 denotes the solution set of a constraint
storeCS

Lemma 8.7

Let P be a negation-free, grouping stratified Xcerpt programavitigoals, leMp be the fixpoint of, and
let Q be a negation-free query (composed of one or more query Yelftise evaluation of Q) terminates
with a constraint stor€S thenX = Q(CS) is a maximal substitution set witddp = Z(Q).

Proof. cf. Appendi{E3 O

This Lemma contains almost all necessary “ingredientsbfiith soundness and completeness: it states
that the solution set of the resulting constraint store isaaimal (i.e. “complete”) substitution set for the
satisfaction (i.e. “soundness”) of the query part of a goal.

Sebastian Schaffert 185

98T

uayeyos uenseqas

‘'suoneindwod Aseljixne

RIM uonealyiun a1ajdwoaul ay) eyl aloN

Alessaosauun pioAe 03 Sjureisuod Aouspuadap syl ul pasn si

‘'sawrel) Aq paiybiybiy ae suonninsgns Bumpgiaiayip ayl ‘(s1onnsuod Buidnosb yum Buiureyd) ¥R

a|dwex3 ul weiboid ayy yum ({X rea}b) jaemmidwod Areljixne ay) Buimoys aai) uoireaad :6°g ainbi4

(g{var X})

unfold query unfold query

(g{var X} =, f{all var X'} | (g{var X'}))

unify (incomplete)

(False | (g{var X'}))

simplify unfold query

False varX =, varY A (h{varY} =<, f{all var X'} | (g{var X'}))

unify (incomplete)

var X <yvarY A (False| (g{var X'}))

simplify

False

g{var X} <y g{varY} A (h{varY})

fold query

unfold query

ofvar X} <ugfa} g{var X} <, h{b}

unify unify unify

var X <yvarY A (h{varY}) False

unfold query

var X <yvarY A h{var Y} <, g{a}

unify

var X ZyvarY A False

simplify

False

unfold query

var X <yvarY A h{var Y} <, h{b}

unify

var X ZyvarY AvarY =y b

transitivity

var X <yvarb A varY <,b

ONINIVHD dHdvMXOvd €8

CHAPTER 8. OPERATIONAL SEMANTICS

Recall for the remainder of this section that goals diffenirrules in that the ground instances of the
goal heads cannot be queried by query terms. This differisnuet reflected in the declarative semantics
described in Chaptgl 7, but can be achieved by ensuringdrguery term simulates into a ground instance
of a goal head, e.g. by wrapping goal heads as subterms ahantith a label not used elsewhere in the
program.

Soundness

Theorem 8.8 (Soundness of the Backward Chaining Algorithm)

Let P be a negation-free, grouping stratified Xcerpt program, lab& = t® —4 Q be a goal inP. If
the evaluation of) in P terminates with a constraint sto@8 inducing a grounding substitution sEt=
substitutionsC8), thenZ(t€) is a subset of the fixpoiilp of P.

Proof. Let P be a negation-free, grouping stratified Xcerpt program, lah@ = t® <y Q be a goal inP. Assume
thatP’ C P is P without the goals. According to LemriaB.7, evaluatioq@j in P’ terminates with a constraint store
CS=D; V-V Dy in disjunctive normal form such that the substitution $et Q(CS) is a maximal substitution set
with Mps |= LP(Q)

As the results of goals do not participate in rule chainirgliag the goals t®' does not influence the other rules
in P’ and only adds new data termshty. Thus, also foMp holds thatVp = W(Q), andW is maximal. W(t€) C Mp
then follows from the definition ofp. Furthermore, becaudeis range restricted, it holds that every variaklen
t¢ appears in every conjungy; in a simulation constraint of the ford <, t. Hence, with Corollarf8]2 follows that
substitutiontCS) = Q(CS)y, whereV is the set of variables occurring i Thus,substitution§CS) yields the same
ground instances df asW = Q(CS). The backward chaining algorithm is thus sound. O

Completeness

In general, backward chaining is incomplete with respethédfixpoint semantics described in Chajider 7.
This is easy to see on a small example. Consider the program

f{a} « f{a}
f{a}

The fixpoint for this program obviously is simplyf{a}}. However, evaluation of e.d.{var X} does
not terminate in the backward chaining evaluation, bec#iuseule in the program above is applicable
infinitely often. This problem is not particular to Xcerptther logic programming languages like Prolog
terminate neither with such programs.

To solve this, SLD resolutiol[T1] usedairnessclause that states that every clause (i.e. rule or data
term) must be used eventually, which ensures that SLD résnldetermines an answer after finitely many
steps, if an answer exists. Unfortunately, this fairnessis¢ is not applicable in Xcerpt, because the
grouping constructs require to retrieate solutions to a query, whereas fairness only guaranteestofia
solution after finitely many steps. Consider for exampleptagram

g{all var X} « f{var X}
f{a} « f{a}
f{a}

This program is grouping stratifiable and the fixpoint of thisgram is obviously f{a},g{a}}. Con-
struction of the resulg{a} however requires to retrieve all solutionsftvar X}; a single solution does
not suffice because it violates the maximality requiremethé semantics of thel construct.

Hence, we restrict the statement of completeness to negiée, grouping stratified Xcerpt programs
for which the evaluation algorithm terminateshis result is obviously somewhat unsatisfactory, beeaus
any non-terminating program would be complete under thésimption. We therefore also give criteria
and suggest enhancements that ensure that programs terifiinease the fixpoint is finite).

Theorem 8.9 (Weak Completeness of the Backward Chaining Atrithm)
Let P be a negation-free, grouping stratified Xcerpt programh wistratificatior? = P - - - WPy, (m> 1),
and letG = t® ¢ Q be a goal irP such that the evaluation & terminates. Assume th&thas a fixpoint

Sebastian Schaffert 187

8.3. BACKWARD CHAINING

Mp = T’ (P). If the evaluation o in P terminates with a constraint stof& thenCSinduces anaximal
substitution sek with Z(t¢) C Mp (i.e. there exist no other ground instances®ah Mp).

Proof. By Theorenf BB, evaluation &fin P yields a constraint sto@Sinducing a substitution s&with 5(t¢) C Mp.
Hence, we only have to show thats also maximal writ®, i.e. there exists n&’ with %, C va for the set of variables
V occurring int®.

From LemmdB8l7, we know that the evaluation(@ in P terminates with a constraint sto@&Ssuch that¥ =
Q(CS) is a maximal substitution witMp = W(Q), and thus¥(t®) C Mp. Furthermore¥ is maximal wrt. toQ. As by
definition of goals, no ground instancestbtesides those produced by the goal may Bxustis thus also maximal
wrt. W(t) C Mp. Also, we have already seen in the proof of Thedemh 8.8%hasubstitutionéCS) = Q(CS), where
% yields the same ground instanceg©&sQ(CS). Thus,Z is also maximal wrtZ(t) C Mp. O

Criteria for Termination

No Recursion. Disallowing recursion is an obvious way to ensure termaratiThis restriction appears
very strict on a first glance. However, due to the powerfulgiog constructall andsome, this restricted
class still allows many useful programs that would requéieursion in traditional logic programming. For
example, the program computing the sum of rows and columas HiTML table described in Sectipn 5.3
didn't use recursion despite the rather complex task. Likewmany of the other examples of Chajider 5
did not require recursion while still being useful programs

Of course, as has been argued before, there are many ajgplicétat still require recursion. It is
therefore important to study refinements of this restrictloat disallow only certain kinds of recursion. A
useful candidate are programs where only the ground instasfarules are non-recursive (so-callecally
hierarchical programsBd)).

Retrieving only Some Solutions. In many cases, it is actually not necessary to retrieve altisms of

the constraint store, e.g. when the rules that depend orethesion do not contain grouping constructs.
Also, a user might be satisfied with results that can be deli/en a certain time span. For both cases, the
change to the evaluation algorithm would only be minor:eastof iterating as long as a rule can be applied
to the constraint store, the functisnolve(-) (SectioBI16) would need to terminate as soon as one of
the conjuncts of the constraint store is completely solv&do, a fair rule application strategy would be
necessary (e.g. breadth-first search or some other conselateh strategy).

Tabling. Tabling [31]is a technique (used e.g. in XSB Prolog) whedrirelant and non-terminating rule

applications are avoided by caching the results of prevégdications, and is known to terminate more
often than the SLD resolution used in standard Prdlogl[1@5particular, it avoids the problem described
above.

Sotherwise, disambiguation is possible because resulteal§glo not participate in rule chaining

188 Sebastian Schaffert

Part Il

Conclusion

189

CHAPTER
NINE

Perspectives

This thesis only provides the foundations for the languagerpt. In its current state, Xcerpt is not suited
for usage in practical applications, because it lacks masyrable constructs and the current implemen-
tation is rather inefficient and implements the presentadudage constructs only in parts. This chapter
provides perspectives for future research that might darter to the success of the language.

9.1 Advanced Query Constructs

As shown in this thesis, the language Xcerpt in its currennfis well suited for a number of Web appli-
cations. However, Xcerpt only provides a number of core tants. Many queries are therefore either not
possible or rather complicated to express. This sectiaflpriescribes areas where additional constructs
might be desirable and in some cases suggests concretaggngxtensions that have been thought of.

9.1.1 Advanced Text Processing
Text Querying Beyond Markup Boundaries

Most XML documents on the Web do not represent semistrudtitatabases” but rather text content with
markup serving various purposes, including layout (as inMid), text structure, and annotations. In the
form presented in this thesis, Xcerpt only provides regeiqressions for text processing. However, for
advanced text processing, e.g. searching for certainrseggaegardless of whether they are interrupted by
markup or not, regular expressions do not suffice. Consatenfample the following fragment of Goethe’s
poem “Der Zauberlehrlingf’ Markup is added to indicate beginning and end of a verse agihbing and
end of a line.

<verse>

<line>Hat der alte Hexenmeister</line>

<line>sich doch einmal wegbegeben!</line>

<line>Und nun sollen seine Geister</line>

<line>auch nach <emph>meinem</emph> Willen leben.</line >
</verse>

For many applications, it is interesting to query ignoring intermediate markup. For example, it might
be desirable to query for verses where the words “nach meiv@dlan” occur in a sentence. Advanced
text querying constructs are necessary to allow for thigl kihquerying. While a simple modification of
regular expressions appears possible, there might bedatioins when combining these with regular query

lenglish: “The Sorceror’s Apprentice”

191

9.1. ADVANCED QUERY CONSTRUCTS

patterns. E.g. in the example above, one might want to quethé sentence “nach meinem Willen” where
at least one of the words is emphasised.

Markup Overlap

Likewise, it is often necessary or interesting to consideuinents with so-calledverlap i.e. where the
enclosed range of one element partly overlaps with the bariesl of another elemerdi[lIA5]44]. Such
representations are required when representing diff&ieds of markup for the same text document (e.g.
layout, structure, and annotations), and often occur inmgational linguistics. Consider for example
the following (not well-formed) document (text by Mark Twiai Lines and sentences are marked up.
Obviously, they overlap as not every sentence begins anglierekactly one line:

<line><sentence>Don't go around saying the world</line>
<line>owes you a living.</sentence><sentence>The world o wes you</line>
<line>nothing.</sentence><sentence>It was here first.< [sentence></line>

There are various means to represent such markup: in a siagienent (but then it is not well-formed
XML), in several documents (containing much redundancsing distinguished empty elements for start
and end tags, or by adding “layers” of markup to a base doctinmeresting queries to such documents
would e.g. be “all lines ignoring sentences” or “sentencegifning in line 2". Supporting such queries
would be interesting for many text processing tasks.

9.1.2 Duplicate Elimination

The grouping constructdl andsome currently do not eliminate duplicate variable bindings wheilding
ground instances of construct terms, because such dupétiatination is usually computationally expen-
sive and often not desirable (e.g. if an address book cantaim person entries with name “John Smith”,
then they represent two distinguished persons). For sopleeafions it might however be useful to let the
programmer specify a grouping with duplicate eliminatidnpossible approach is to add a new keyword
unique that may be used together wigh andsome. Consider for example the construct term:

unique-entries {
all unique entry {
name { var Name },
}
}

This construct term would ensure that for every bindinyarfiethere exists exactly oretry subterm
in the resulting data term.

Extending the model theory and evaluation to take into astthis construct is not difficult. However,
further refinements are possible: for example, it might bsirdble to eliminate duplicates as early as
possible so as to keep the constraint store small.

9.1.3 Advanced Filter and Exclusion Mechanisms

Many applications demand to filter out certain subterms efatwhile retaining the overall nesting struc-
ture of the remaining subterms. For example, one might erattable of contents of a book represented
as an XML document (cf. the example in Secfiand.4.3) by filgeout all subterms besides thieapter
section , andtile subterms. Such filtering can be implemented in Xcerpt bygisstursive rules for
structural recursion over the input document. However)émenting this recursion can be rather inconve-
nient and inefficient, and thus special purpose construetdesirable. In David Maier’s characteristics of
a Web query language (Sectianl3.2), such constructs are atisat under theeductionquery operation.

192 Sebastian Schaffert

CHAPTER 9. PERSPECTIVES

This section proposes two so-calléiering constructs As subterms of a data term are selected in
Xcerpt by binding to variables in a query term, both condatay only be used inside a pattern restriction
for a query term variable. To distinguish this “filtering"tpern restriction from the usual pattern restriction,
it uses the arrow~ instead of—. The first construct is calleglus and filters out from the bindings of
the variables all subterms besides those matched by subtdrthe query term explicitly marked by the
keywordplus . The second construct is the symmetric counterpart catliedisand filters out from the
bindings all subterms matched by subterms of the query teankex by the keywordinus , but leaves all
others.

Both constructs may be used in front of every subterm withéxt pattern restriction of a variable in a
guery term. This in particular includes subterms contajfiimther variables. Every subterm in-a pattern
restriction is still required to match, even if it is prefixbg minus . If a different behaviour is desirable,
plus andminus may be combined with other Xcerpt constructs ldpdonal . Also, a combination with
constructs likelesc is useful, as shown in the following examples:

Example 9.1 fri nus)

Consider the XML documentviews.xml described in the bookstore scenario in SecfionP.4.2. The
following query term binds book entries to the variaBt®k, but excludes alleview subterms from the
bindings:

reviews {{
var Book ~~ entry {{
minus review {{ }}
i

i)

Example 9.2 pl us)

Consider the “thesis” example from Sectdn24.3. From tiésis, the table of contents can be retrieved
by using the following query term with the filtering constrystus . Only those sections are taken that
contain at least one paragraph.

var TOC ~~ plus report {{
desc plus chapter {{
plus title { plus /¥ }
optional desc plus section {{
plus title { plus /* }
paragraph {{ }}
i
i
B

Note that all subterms except for the one labeflegraph are marked wittplus . This means that
only section subterms with garagraph subterm are considered, but tpegagraph subterms are not
part of the variable binding forOC

Note thatplus andminus influence the meaning of the unmarked subterms: if subtersnenarked
with plus , then unmarked subterms are not part of the variable binding if subterms are marked with
minus , then unmarked subterms are part of the variable bindingréfore, a reasonable restriction is that
plus andminus may not be used together for subterms of the same parent.

Interestinglyplus andminus require considerable modifications to the ground query s&mulation
and simulation unification, because subterms marked witieigilus orminus need to match with several
subterms of a data term for a single binding of the variablgaiaing the pattern restriction. For example,
a query term of the form

var X ~ f{{a,minus b,c}}

Sebastian Schaffert 193

9.2. SUPPORT FOR SPECIAL THEORIES AND REASONERS

requires to removall b subterms of from the bindings of the variabl¢ (e.qg. for the data terri{a, b, b, c},
whereas ground query term simulation would maprtive's b to only oneb in the data term.

The filtering described above is very basic. More sophisttdorms are conceivable. For example,
there might be applications in which it is desirable to eselallb subterms that have two children that are
equal. A possible pattern restriction could be

var X ~ f{{a,minus b{varY,varY},c}}

. However, as the variabM can only be bound to a single value within one alternativis, Would only
excludeb subterms with that property for a certain bindingYof Some sort of “term quantification” is
therefore useful, like in

var X ~ f{{a,minusall b{varY,varY},c}}

9.1.4 Advanced Constraint Solving

The evaluation algorithm described in Chafifer 8 uses venplsi constraints and a very straightforward
constraint solver, which resembles constraint solversdecalledinite domaing&l], but works with terms
instead of integers. Many more sophisticated constrainesefor different application areas have been
studied in literature, for a collection see e[gl[51].

9.2 Support for Special Theories and Reasoners

Many complex query tasks appear frequently in Web queridthoAgh many of these tasks can be im-

plemented in Xcerpt, a special purpose construct built fhéolanguage is often easier and more natural
to use. Also, this implementation is often rather ineffitieompared with an optimised implementation

in a language that is close to machines. Therefore, it mighdésirable to support special theories and
associated reasoners in future versions of Xcerpt. This@edescribes two concrete applications where
this is reasonable: Semantic Web reasoning and time reasoni

Semantic Web Reasoning

With the rise of the Semantic Web, support for Semantic Webrtelogies like OWLIIIR] or RDATI19]

is increasingly important. However, querying such dataobelythe mere structure (as in Sectlonl 5.3)
usually requires profound knowledge of the underlying epis (e.gdescription logick and has to take
into account different syntactical representations ofdfu@me data. Integrating support for such Semantic
Web reasoning into Xcerpt would therefore be desirable. éxample, it would be possible to connect
efficient description logics reasoners likaCT [EF] or RACER[EH] to support reasoning with OWL-DL
ontologieE instead of using the rather basic and inflexible reasonerites in Sectiof B]l3. Since there is
no single standard reasoner for the Semantic Web, and $iacetmantic Web is developed at a very rapid
pace, it is also desirable to let the user specify the kingasoner (and ontology language) to use.

Time Reasoning

As most of the data on the Web is associated with some sorinef éind date (e.g. timetables, creation
dates of documents, validity periods, etc), being able ®rgjibased on time and date is often necessary.
Unfortunately, there is no single format for representiinget (even within a country, there are usually
several representations for the same date and time), aredaresdifferent concepts that depend on culture
and tradition and are not necessarily aligned with commdenckar systems (e.g. “Full Moon”, “Easter”).
Querying time is therefore often a very complicated taskin@eble to transparently query time would
therefore be a very convenient property. Such support doiidtegrated into Xcerpt by e.g. using a time
reasoner as described [@]29].

20WL-DL is the fragment of OWL that is covered by the descdptlogic STHIQ.

194 Sebastian Schaffert

CHAPTER 9. PERSPECTIVES

9.3 Meta-Programming and Meta-Querying

In meta-programmingor meta-queryinyj programs are considered to be data that can be queried and
constructed by other programs. A prominent example of auagg that allows meta-programming is
LISP, but meta-programming has also been studied for dagiaeal query languages, e.g. in Meta-SQL

3.

9.3.1 Meta-Programming on the Web

On the Web, meta-programming is especially appealing,usech allows to consider programs (Xcerpt,
XChange, XQuery, ...) as arbitrary resources. Meta-prograg on the Web has several application
areas:

Locating Web Services. The Web offers an increasing number of so-called “Web seslior “Web
applications”. A Web service is a resource offering a cartanctionality, and differs from static resources
like XML or HTML documents in that its content is usually geated dynamically based on user input,
e.g. search engines, online stores, online databasednetis “Web of services”, locating Web services
that provide a certain functionality is of interest, andtfapproaches that address this issue are currently
investigated, like th&inkdping Semantic Web Butl§d] or OWL-S [33].

As Web services are often implemented in Web languages likerp{, XQuery, or XSLT, meta-
programming with Xcerpt can play an important role in thisaarimagine a collection of Web services
implemented in Xcerpt. With meta-programming, a user capldcify an Xcerpt query that queries all
Web services and selects only those that fulfil a certaingntgpe.g. all Web services that produce RSS
news feeds (cf. Sectidi®2P.1). Of course, certain semantigerties, like the termination of a program,
are undecidable and thus not queryable.

This scenario can easily be spun further: since the aversgeisi probably not capable of writing a
complex Xcerpt program for querying Web services, it coddibeful to use a more natural description of
a Web service (like in th&emantic Web Butlesr in OWL-S) and use an Xcerpt meta-program to create
another Xcerpt meta-program that implements the actualydaethe Web services. Combining this with
built-in ontology reasoning (cf. Secti@a®.2) would eveloalto reason with a “Web service ontology”.

Software Development and Maintenance. In software developmentand maintenance, programmers are
often interested in finding parts of a program that matchageroperties. For example, a programmer
might want to query (and modify!) all Xcerpt rules queryingextain resource that moved to a different
Web site. Likewise, it is often useful to have a certain axdtmodel of a program (like UML or different
modelling languages). Meta-programming with Xcerpt waalldw to define rules that provide a simplified
view on another Xcerpt (or XChange, XQuery) program.

A salient application of meta-programming with Xcerpt ifstbontext would beisXcerptl[4,[I8 [T5]:
the visual rendering of an Xcerpt program could be perfortnedsing another Xcerpt program instead of
XSLT and CSS as in the current implementation.

Automatic Program Construction. In many Web applications it is desirable to construct Xcemo:
grams “on-the-fly” based on certain input data. Considefdlewing scenario: an online bookstore uses
XChange and Xcerpt to process customer orders (as eventsiistAmer orders a certain book, but the
online bookstore does not have the book on stock. The ordgersycould then automatically create an
XChange rule telling the system that if the book arrives athibok store, it should be sent further to the
customer.

Verification and Source-to-Source Transformations. Meta-programming can also be used to imple-
ment syntactic verifications like grouping and negatioatgtcation (cf. Chaptdil6) as an Xcerpt (meta-)
program. Likewise, it might be possible to implement souegource transformations of Xcerpt pro-
grams (i.e. transforming an Xcerpt program to another Xigempgram) within Xcerpt, e.g. for the purpose
of optimisations, simplifications, or typing and type irdace.

Sebastian Schaffert 195

9.3. META-PROGRAMMING AND META-QUERYING

9.3.2 Supporting Meta-Programming in Xcerpt

Implementing meta-programming in Xcerpt appears stréogivard on a first glance: simply take the XML
representation of an Xcerpt program and use it as the resatfir@ query. However, this approach is not
sufficient, because it does not allow to properly distinguistween Xcerpt constructs (e.g. variables) of
the currently evaluated program and Xcerpt constructsefjtreried program. For example, consider the
following query term (in the XML syntax not described in thiesis):

<xcerptrule xmins:xcerpt="http://xcerpt.org/1.0/pro grams" xcerpt:total="no">
<xcerpt:construct>
<f>
<xcerpt.variable name="X"/>
</f>
</xcerpt:construct>
</xcerpt:rule>

In this query term, it is unclear whether the varialflés part of the evaluated program and thus needs
to be bound to the content of tHeelement in the construct part of the queried rule, or whethewariable
X is part of the queried program, in which case the query onliches with rules that contain a construct
part with anf element containing a variable nam¥édin the following, two different approachesto solving
this problem are suggested. Both seem worth investigating.

Quoting. Traditionally, this problem is addressed by implicitlydeProlog) or explicitly (e.g. LISP)
guoting data, i.e. telling the system what is consideredetaldta and what is considered to be program.
For example, the query term above could be quoted to sayttslabilld only match rules with a construct
part containing the variabl¢ as follows:

<xcerpt:quote xmins:xcerpt="http://xcerpt.org/1.0/pr ograms">
<xcerpt:rule xcerpt:total="no">
<xcerpt:construct>
<f>
<xcerpt:variable name="X"/>
<[f>
</xcerpt:construct>
</xcerpt:rule>
</xcerpt:quote>

As a companion to quoting, it would also be necessary to haanatruct “unquote” that reverts the
effect of a “quote”. This would be necessary to say that thialsée X is part of the evaluated program:

<xcerpt:quote xmins:xcerpt="http://xcerpt.org/1.0/pr ograms">
<xcerpt:rule xcerpt:total="no">
<xcerpt:construct>
<f>

<xcerpt:unquote>
<xcerpt:variable name="X"/>
</xcerpt:unquote>
</f>
</xcerpt:construct>
</xcerpt:rule>
<Ixcerpt:quote>

196 Sebastian Schaffert

CHAPTER 9. PERSPECTIVES

Namespaces. Besides quoting, XML provides another means to addresg tidgn: namespaces. Names-
paces can be seen as a sophisticated way of quoting, betaysallbw to disambiguate elements from
different (not restricted to two) resources. The query aboould be addressed as follows (note that the
namespace prefix definitions are deliberately not URISs):

<gp:rule xmins:qp=" queried progrant xminsiep=" eval uated progran
ep:total="no">
<gp:construct>
<f>
<ep:variable name="X"/>
</f>
</gp:construct>
</gp:rule>

The main problem with this approach is that, by the current>@gecification, both Xcerpt programs
are in thesamenamespaceh(tp://xcerpt.org/1.0/program), whereas the query above would require
them to be different. A possible solution to this problem Wiole to use the Xcerpt namespace only for
the evaluated program and use the resource URI of the quandgaam as the namespace for the queried
program, but other approaches are conceivable and integégtinvestigate.

9.4 Distributed and Peer-to-Peer Evaluation

In the algorithms and implementations described in thisitheXcerpt programs are evaluated locally on
a single system, which requires access to the whole programdistributed, open environment like the
Web, this kind of evaluation is increasingly replaced bytriisited or even peer-to-peer evaluation. Both
kinds of evaluation can be advantageous over a local evaiuiatr several reasons, among others:

e reduced network usagenly the queries and their results need to be transferredtbe network

e increased performancequeries that are evaluated on the Web site containing ttee @ make
better use of the local organisation of the data, like indexctures, etc. Also, several queries may
be evaluated in parallel.

e more fine-grained access contr¢the Web site containing the data can decide whpiatisof the data
to include in the result based on access rights of the reiqgeateb site instead of either admitting
or denying access to the data as a whole.

In the following, distributed and peer-to-peer evaluatibXcerpt programs are described in more detail:

9.4.1 Distributed Evaluation

In a distributed evaluation, parts of the program are seatreamote Web site for evaluation. After evalua-
tion, the remote Web site sends back the result to the reqgesite for further processing. Itis conceivable
to distribute query terms, queries, or even rules in thismaanFor query terms, the remote Web site only
needs to implement the&imulation unificationalgorithm, and sends back to the requesting site a set of
substitutions. For queries or even rules, the remote Webngieds to implement parts of the backward
chaining algorithm as well. The first approach has the adggnthat simulation unification always termi-
nates and Web site administrators do not need to worry alamlly livritten queries. The second approach
has the advantage that it allows to better distribute progr@ the queried resources.

Distributed evaluation can be transparent to the programthe evaluation engine can automatically
verify whether the remote site specified in the input reseof@ query is capable of evaluating query terms
or rules and then decide to merely send the query and waih&result instead of retrieving the resource
and performing a local evaluation.

Sebastian Schaffert 197

9.5. OPTIMISED EVALUATION AND IMPLEMENTATION

9.4.2 Peer-to-Peer Evaluation

Peer-to-peer evaluation is a special kind of decentralidisttibuted evaluation in which the participating
sites (peers) are not known in advance, as peers connectsuhdect from the network at any time. In
general, itis unknown which peers have the requested datpjexies are usually sent further by each peer
to all or some of its neighbours in order to reach a large gahie@network.

Peer-to-peer networks are usually distinguished by thegrele of openness and structure. Openness
means that any peer can connect and disconnect at any tineiusé means the amount of information
that is available about the data contained in the network.ekample, early peer-to-peer networks like
Napsterused a central database for storing information about tleeeaf content of all peers. As this kind
of network is considered to be vulnerable, more recent feeeer networks are more decentralised: each
peer only has knowledge about itself and about its imme gieges.

For Xcerpt, a peer-to-peer evaluation would thus in paldiconean that queries are not evaluated with
respect to a specific input resource but instead sent to aqgmrer network to request answers from those
peers that can give them. Again, it is conceivable to distélonly query terms, queries, or rules. Also,
different kinds of peer-to-peer networks with varying degg of openness and structure can be used.

As peer-to-peer networks are open, it might be possiblelieaé exists an answer to a query, although
none is returned within a certain amount of time. Consedyeittwould be interesting to investigate
Xcerpt programs with a certain amount of uncertainty.

9.5 Optimised Evaluation and Implementation

In the evaluation algorithm and runtime system describekigthesis, optimised evaluation of Xcerpt was
not the primary goal. Optimisations can address variouts fgdrthe evaluation algorithm. This section
briefly discusses possible optimisations for simulatioificetion, for rule chaining, and in the constraint
solver. Furthermore, a virtual machine implementatioruggested, which is currently worked on.

9.5.1 Identifying Complexity of Language Parts

A first step towards optimisations is to identify the comjitiexf various parts of the algorithm, in par-
ticular of the simulation unification algorithm. Prelimiyanvestigations have shown that the simulation
unification problem is NP hard, as the 3-SAT problem can baced to . on the other hand, it is known
that rooted graph simulation can be computed in polynorined {&1].

Identifying restrictions of query terms that reduce the ptaxity of simulation unification therefore
appear to be promising, as they can help to improve the imgr¢ation for those cases. For example, a
possible restriction would be to only consider linear teries terms where each variable name occurs at
most once. Other restrictions could consider only ordendtesm specifications, in which case the number
of possible combinations of subterms is reduced signifigant

9.5.2 Simulation Unification

The simulation unification algorithm is at the very heartraff program evaluation. It is therefore justifiable
to investigate even rather complex optimisations. Thradkbf optimisations are proposed here:

Index Structures

A common technique in relational database systems is tongis istructures to reduce the complexity for
certain kinds of queries. An index structure is a certaimldhabstraction from the data (often in form of a
tree structure or hash table) that is comparably small asylteaaccess, whereas the data itself is rather big
and slow to access. Interest in index structures for XML dailigt started recently, but several promising
approaches exist, an overview of which is given[ii]123]. Mafsthese approaches only address certain
kinds of queries, and it is not yet clear how they can be irtisghwith simulation unification.

3Internal memo of Klaus Schulz

198 Sebastian Schaffert

CHAPTER 9. PERSPECTIVES

Streamed Evaluation

In a streamed evaluation of queries (usually expressed att¥Pthe queried XML data is considered to
have infinite or at least indefinite breadth. Such data carbe.groduced by a newsfeed (cf. the example
in Sectior221) or by sensors that monitor certain praessnstantly (e.g. weather sensors). Streamed
evaluation of XPath queries is e.qg. investigatedd [BD, A8lopting the techniques describednl[BQ, 79] to
simulation unification appears to be possible. Althoughrtéurrently) only considers XML documents
of finite and known breadth, investigating a streamed ev@minaf simulation unification can still be a
useful optimisation, because streamed evaluation alloaseapass evaluation of simulation unification
and thus requires only a constant (plus space for the vagabmount of memory.

Schema Information

A third refinement of the evaluation algorithm could make ob¢he schema information that might be
associated with certain XML documents to reduce the “amofiimcompleteness”. For example, if a
query termt = f{{a,b}} tries to match with a document whose schema statesathaian only appear
afterb’s, then it is possible to refine the query tetto t = f[[b,a]] and remove the (expensive) unordered
term specification. Similar refinements can be performediésc , for optional , and forwithout . A
salient aspect is to combine this approach with a type infaxreas proposed in e.d_T124] to optimise
unifications even with the heads of rules.

9.5.3 Rule Chaining

Optimising rule chaining has been of major interest in thetext of other logic programming languages
like Prolog. This section briefly summarises three areasight be interesting for further investigations.

Clause Indexing

Clause indexing is a means to organise rules in some sortleistructure so as to more efficiently decide
which rules of a program are relevant for the evaluation oéain query, i.e. the heads of which rules
might unify with a certain query. Applying clause indexireghniques to Xcerpt should in many cases
be rather simple due to the similarities between Xcerpt antbg. Clause indexing for Prolog has been
studied extensively; an overview over available literatcein be found afT$9].

Query and Clause Selection Strategies

A salient aspect of optimisation can be the selection gyafer the selection of the next query and/or
clause that is evaluated in backward chaining. Since Xgeggrams do not have a fixed evaluation order
for the queries in a rule body (except for negation) or fousks, Xcerpt provides much more freedom
for such optimisations than languages like Prolog. Quexesd be associated with a certain cost, and the
evaluation algorithm could decide to first evaluate quesiils a low cost in the expectation that some of
the more expensive computations will not be necessaryetels. For example, it might be reasonable to
first evaluate queries against local resources and delagvidaation of queries against remote resources
as far as possible.

Program Rewriting

Program rewriting takes a program and transforms it to a lgimgnd/or faster program that preferably
yields the same results as the original program. In Xcerpgnam rewriting can be used for several opti-
misations. For example, rules that obviously never paxdi in the evaluation can be eliminated, several
rules that interact via chaining can be combined to a single or several queries to the same resource
can be combined to a single query selecting all of the requlega. Many approaches to optimisation by
program rewriting have been proposed. A survey is givelldh, [Bection 3.

Sebastian Schaffert 199

9.6. TERM FORMULAS AS INTEGRITY CONSTRAINTS

Memoing/Tabling

Memoing[llZd] (also calledabling) is a technique that stores (“memos”) results of previousmatations

to avoid unnecessarily repeated evaluations of the sangggopart. Also, memoing allows to detect
cyclic computations in many cases, e.g. in the computatfahe simulation unification algorithm for
terms with cycles (cf. Sectido8.2) or in certain cases okiaacd chaining (cf. Section8:3.4). For these
reasons, memoing is e.g. implemented in the XSB Prolog mﬂst@vestigating memoing in Xcerpt is
worthwhile, because redundancy on the Web usually meaeategly retrieving remote resources, which
is usually very time consuming.

9.5.4 Constraint Solver

The constraint solver used by the current implementatidacising in several aspects. Most importantly,
repeatedly creating the disjunctive normal form is venffinent. An interesting enhancement of the con-
straint solver would therefore be to not consider the digjive normal form of a formula and then each
disjunct separately in the constraint solver, but instégdconstraint store as a whole. Such a constraint
solver would need to be able to work with disjunctions in doaist stores. To the best of our knowledge,
such constraint solvers have not been investigated mudtenature, as disjunctions are usually imple-
mented in the underlying host language (e.g. Prolog).

Another enhancement could be to support user-defined edmstand constraint solvers, e.g. expressed
in the language CHHI®0], to allow users to add their own tiesao the constraint solver. In this manner,
it would e.g. be possible to integrate time reasoning ortatgje theories in Xcerpt.

9.5.5 Virtual Machine

In order to establish Xcerpt as a Web query language thatabl@sn practice, the design and imple-
mentation of a virtual machine for program evaluation cangeful. A virtual machine provides a suitable
low-level language into which programs implemented in dbigevel language (like Xcerpt) can be trans-
formed. The advantages of this approach are manifold:

e acompiler for the language is easier to implement, as thddeel language is tailored to implement
the high-level language

e the instruction set of the virtual machine is closer to th&trinction set of the processor and thus
easier to implement on different platforms

¢ the virtual machine can be used both in a compiler and in @mpneter of the language
¢ the language of the virtual machine allows for low-leveliopgations

The virtual machine can be designed and implemented in eassfor the simulation unification and for
the rule chaining algorithm. A virtual machine for simutatiunification is already worked on in a project
thesis, and a virtual machine for rule chaining is planned.

9.6 Term Formulas as Integrity Constraints

A salient aspect of term formulas as introduced in Sedii@hi¥the posibility to specify integrity con-
straints for XML or semistructured data by using univessall existentially quantified formulas and im-
plications. One example has already been mentioned earlier

Example 9.3
An integrity constraint that requires all books in thiexml document to have at least one author:

V B . bibf{ var B — book{{ } } =
3 A . bib{ var B — book{{ authors{{ var A }} }} }}

200 Sebastian Schaffert

http://xsb.sourceforge.net/

CHAPTER 9. PERSPECTIVES

Integrity constraints would also allow to specify conditiathat are (currently) not expressible in XML
schema languages (like RelaxNG or XML schema). For exantipdy, could be used to require that for
every IDREF reference, there exists an element with theesponding ID:

vV Ref . desc attributes { idref { var Ref }'}} =
3 1d . desc attributes {{ var Id — id{ var Ref } }}

Furthermore, it would be possible to specify XML schematd #iso depend on the content of the doc-
ument. The following problem arised in the course of a pridjeesis that aimed at modelling a publication
listin XML. In the publication list, there are many differegntries, for example journal articles, articles in
proceedings, proceedings, etc. All of these have much imoam but differ in some aspects. Furthermore,
since the list needs to be easily extensible by new types lofqations, the type (e.gournal or book)
is represented as the value of an element rather than byediffparent elements (one might question this
representation, but assume that it is like this). The foilgifragment could be part of such a publication
list (in Xcerpt syntax):

publist {
entry {
type { "book" },
title { "Data on the Web" },
isbn { "1-55860-622-X" },

,
entry {

type { “journal" },
title { "Journal of the ACM" },
issn { "0004-5411" },

}
}
Obviously, books have an ISBN number, whereas journals aav8SN number. A schema definition

that would take this into account would be difficult and camtaany redundancies. Instead, two integrity
constraints of the following form could ensure this propert

v Book . publist {{ var Book — entry {{ type { "book" } }} =
3 ISBN . publist {{ var Book — entry {{ var ISBN — isbn {{ }} }}

v Journal . publist {{ var Journal — entry {{ type { "journal" } }} =
3 ISSN . publist {{ var Journal — entry {{ var ISSN — issn {{ }} }}

Sebastian Schaffert 201

9.6. TERM FORMULAS AS INTEGRITY CONSTRAINTS

202 Sebastian Schaffert

CHAPTER
TEN

Conclusion

Summary

This thesis investigated how logic programming techniouees be applied to querying (Semantic) Web
data. For this purpose, a new Web query language called Xbagbeen introduced, and its usefulness
has been shown on many practical examples in both the sthaddrthe Semantic Web. In addition to the
language specification, a declarative and operational sérsdnas been proposed that follows closely the
traditional logic programming approach. Soundness an&wempleteness of the operational semantics
with respect to the declarative semantics has been shovihd@ase of programs without negation.

Arguably, logic programming techniques are suitable fobWeerying: queries based on derivation
rules are often more intuitive than those using other ma@adton techniques, they allow for a straight-
forward visualisation (irvisXcerpj, and the reasoning capabilities bridge the gap betweeatd Web
guerying and Semantic Web queryingowever the particularities of data representation on the Web de-
mand significant changes to traditional logic and logic paogming: data does often not conform to a
rigid schema, data might be incomplete or redundant, ang whifflerent data items might be groupedin a
single document under a common root. To address these eagrits, Xcerpt introduced incomplete query
specifications for querying such data and grouping contstfoc creating such data as integral parts of the
language. A salient aspect of this thesis is therefore threldpment of a suitable unification algorithm
that is capable of working with such incomplete query speatifons, and an extensible backward chaining
algorithm that integrates support for grouping constructs

Concluding Remarks

Designing a programming or query language is a difficult ame tconsuming task, and this thesis only
serves as the first building stone towards the Web query EggXcerpt. Much remains to be done (some
of the possibilities have been sketched in Chdgter 9), amdrhas that may be addressed in future research
are manifold.

203

204 Sebastian Schaffert

Part IV

Appendix

205

APPENDIX
A

A Prototypical Runtime System

As part of this thesis, a prototypical runtime system forleating Xcerpt programs has been implemented.
This runtime system (from now on called “the prototype”)v& both as a testbed for new features and
algorithms, and as a means to implement and test XcerptegueBeing a prototype, this implementa-
tion lacks some features that are desirable for practigaiagiions (like the negation construcist and
without) and evaluation speed was not one of the primary goals (&thevaluation is reasonably fast in
many cases).

The runtime system is implemented in the functional langudgskell which, due to its purely func-
tional approach, is particularly well suited for the purpa$ prototypical implementations. Haskell allows
to program at a very high level of abstraction and thus to stage to the more formal definition of the
evaluation algorithm(s) in Chapt@r 8.

The following sections illustrate various aspects of thaqiype and its evaluation. Since the complete
implementation is rather extensive (approximately 6508diof code), this chapter only highlights impor-
tant aspects while the complete source code is provideceitrehic form affip7Www.xcerp.org]
Most of the code presented here is furthermore simplified the real implementation for presentation
purposes. The descriptions here are thus rather meangaisieto the source code than as a standalone
description and in most parts require to have the sourcealdgnd. The documentation in this chapter is
structured according to the module structure of the sowrde .cEach section starts with a small illustration
of the (sub-)module hierarchy.

The source code of the prototype is copyright of the authmigw@ade available under the GNU General
Public License (GPL), a copy of which is contained in the sewrchive. It uses several packages from
third parties, particularly the HaXML and HXML XML parserand an implementation of the HTTP
protocol. HaXML is available under GNU Library General Haltlicence (LGPL), and HXML and HTTP
under BSD license. All components are Open Source and maigtrdbdted freely. The code is compiled
with the Glasgow Haskell CompilefGHC) and runs on both Unix and Windows systems. Makefiles for
make on Unix are provided.

A.1 Usage of the Prototype

The Xcerpt prototype consists of two callable Unix or Winddpinary programs:
e xcerpt (orxcerptexe) implementsthe command line interpreter
e convert (orconvertexe) converts between different Xcerpt syntaxes (i.e. XML aradit).

xcerpt can operate in two modes: either with a program as argumegilti@ion mode), or in interac-
tive command mode. The first mode of operation is most fretipesed and simply evaluates the given
program, which can be read either from a file or from standgpdt. The second mode of operation serves
mainly debugging purposes and allows to test various aspéthe program evaluation (like unification).

207

http://www.xcerpt.org

A.1. USAGE OF THE PROTOTYPE

A.1.1 Command Line Switches

The progranxcerpt supports the following command line options. As is commoruoiix systems, all
options are prefixed by and provided in both a short and a long form:

short option long option description

-V --version show version number

-h, -? --help show usage

-l --interactive launch interactive interface

-C --Cgi add CGl headers in output

-g term --goal=term evaluate query term against program
-p FILE --program=FILE evaluate program

- <format> -in= <format> inputformat
-0 <format> --out= <format> outputformat

The command line switch starts the prototype with the interactive interface, othige, it is started in
evaluation mode. The switeh is useful when using Xcerpt programs as E@dripts that are evaluated on
a Web server; it adds appropriate HTTP headers (ikgent-Type:) to the output that allow browsers
to render the result correctly.

As input format (switch-i), the prototype supportenl (the Xcerpt program is in XML syntax),
xcerptl (the Xcerpt program is in the old Xcerpt syntax), awdrpt2 (the Xcerpt program is in the
new Xcerpt syntax). If no input format is specified, the défaalue ofxcerpt2 is used. Output formats
can be specified only, if the goals of the program do not caraaiexplicit format specification. The
switch supports the same argumentd asOther switches are explained in the following Section.

Running an Xcerpt Program

The basic command line syntax for running an Xcerpt progsam i
xcerpt (<program file>) or xcerpt -p (<program file>)

The latter syntax is provided for symmetry with theswitch. In both cases, the fikpr ogram fi |l e>
is loaded as an Xcerpt program and all goals in it are evaduate

In combination with these commands, it is possible to usewitchesc , -i , and-o described above.
In all cases, the output of the Xcerpt program is writtenegitto the resources specified in the program
or to standard output (i.e. the current console) if no expliatput resources are given. The syntax of the
output again is either specified in the output resource,®s¥imtax specified by is used.

In addition, it is possible to evaluate a query term spec#igtie command line against the rules of the
program. In this case, the prototype is called with

xcerpt -9 <query term> -p <programfile>

Note that the switchp is required, and that the specified query term must be in the&agyspecified with

-i . The query term is evaluatexhly against the rules of the program, not against its goals. dtien is
useful when developing Xcerpt programs. The output is a fsstilostitutions, always written to standard
output, and in the syntax specified by the swich

Xcerpt Programs as Unix Scripts

On Unix systems, it is possible to turn “text files” into ex&hle scripts by providing in the first line a
specification of the interpreter to use. In this case, it Eigant to just call the script itself instead of
specifying the complete command for the interpreter on trernand line. For example, shell scripts for
the standard Unix shell usually look as follows:

1Common Gateway Interfaca common standard for creating dynamic Web applications

208 Sebastian Schaffert

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

#1/bin/sh
echo "Hello World."

The first line specifies where to find the executable of theim&ter (in the example aboylgn/sh), the
rest is the content of the script. The whole script is pasedti¢ standard input of the interpreter. The
Xcerpt prototype supports this behaviour. An Xcerpt pragcan look as follows:

#!/usr/local/bin/xcerpt
GOAL
result { all var Book }
FROM
in {
resource { "file:bib.xml" },
bib {{ var Book }}

}
END

Assuming, the Xcerpt program is stored in a file with nameks , it can be evaluated by just entering
the commandbooks instead ofkcerpt books (assuming the permissions are set correctly). This is par-
ticularly useful when writing Web applications. In this eathe Web server does not need to be aware of
Xcerpt and can simply treat the Xcerpt program as a CGl script

Interactive Interface

The interactive interface can be started with the commasadpt -1 . It provides acommand prompt
indicated by the prefix symbo®s . The following commands are available in this interface:

Commands for program management:

sload <resource> load the program at the specified resource into memory
run run the loaded programs
:Clear remove all loaded programs from memory

Generic commands:
:quit leave the interactive interface
thelp show summary of commands
:version show version information
‘reset remove all settings
:set <key> = <value> set the propertykey> to <value>
‘set show all options

Debugging commands:

unify <t1> = <t2> unify <t1> and<t2> and return the resulting constraint store
:parse <resource> print the term representation of the specified resource

An example session in this interactive interface (loading anning a program) looks as follows:

how may | help you?
?- :load prog.xcerpt
Loading prog.xcerpt ...
?- :run

<resul ts>

Note that the interface might behave in unexpected waysaltitaskell's lazy evaluation. For exam-
ple, the program is not actually loaded before the command is issued. As it is intended mainly for
debugging the prototype, the interactive interface doegpravide additional commands. It is, however,
easy to add this functionality if desirable.

Sebastian Schaffert 209

A.2. OVERALL STRUCTURE OF THE SOURCE CODE

A.2 Overall Structure of the Source Code

Figure A.1: Overall module and file structure; modules iregriles in red

The source code of the runtime system is structured usingdHashierarchical module mechanism.
The outline of the structure is shown in FiglireJA. 1. On theléwel, there is the modubécerpt containing
the actual runtime system and the two fikesrpt.hs andconverths , which implement the command
line interface and the conversion program and both use phatte moduleXcerpt . The moduleXcerpt
consists of the following submodules:

Xcerpt.Data contains data structures and helper functions to operatigese structures
Xcerpt.lIO contains functions for accessing local and remote ressueée accessing them in Haskell

Xcerpt.Parser contains the various parser modules (currently Xcerptiorrs and 2, XML and HTML)
and provides functions for parsing strings into the datacstires ofXcerpt.Data

Xcerpt.Show contains functions for formatting and pretty-printing thegta structures ofcerpt.Data

Xcerpt.EngineNG implements the core part of the runtime system the unifinatial the constraint-based
backward chaining algorithm

Xcerpt.Methods contains the implementations of predefined functions, egagfions and comparisons
that are available in Xcerpt programs

In the following, the respective modules are explained imentetail and certain aspects are highlighted to
provide proficient programmers the means to modify the pypwas desired to test new features. Most
of the code presented here is simplified: the prototype lysoahtains additional data structures or more
complex function definitions that are needed for technieasons or have been introduced for certain test
cases. Itis assumed that the reader is already proficiemiproigramming in Haskell, and is familiar with
tools like parser and lexer generators (ljlaec andlex).

210 Sebastian Schaffert

B

P OOWO~NOOUD WNEPE

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

A.3 Module Xcerpt.Data: Data Structures

Figure A.2: Module and File Structure of the package Xc&ata; modules in green, files in red

The structure of the modukerpt.Data is shown in Figur€AI. The module consists of four files:

Term.hs defines a unified data structure for representing data, gaadyconstruct terms, and provides
helper functions to perform various tasks on these terngs {id all variables, test whether two
terms are equal, ...).

Program.hs contains data structures for programs, rules, resourndsj@eries
Constraint.hs contains the internal data structures of the constrainesol

BTree.hs contains the definition of generic BTrees used internallyame aspects of program evaluation
(see below)

Term.hs andProgram.hs are the files that are most relevant to developers. Their statatures are
explained in the following two sections.

A.3.1 Term.hs: Data Structures for Terms

Data Structures

Listing [& defines the data structuferm, which is used to represent data, construct, and query terms
a unified structure. The code is simplified in that it omits searanstructs to improve readability.

Listing A.1: Data Definition offerm

data Term = Elem { label :: Term, namespace :: String,
ordered, total :: Bool, children :: [Term] }
| Text String
| RegExp { pattern :: String, vars :: [Maybe String] }
| Vvar String
| String :— Term
| Desc Term
| All [Term]
| Some Int [Term]
| Reference { identifier :: String, refers :: Maybe Term }
| Anchor { identifier :: String, content :: Term }

Lines 1 and 2 define the most common fornTerfm, i.e. compound terms (e.fig,b,c]) that consist
of alabel, anamespacea subterm specificatiomfderedandtotal), and a list of subtermshildren). A
label is of typeTerm, because this allows to represent text labels, variableldaland regular expression
labels in a uniform manner; the types of the other fields aggttforward. In Haskell, field names may
be used as functions for retrieving the respective fieldezahssuming that a compound term is bound to
a variable , the following code retrieves the label tof

Sebastian Schaffert 211

A WOWN PR

A.3. MODULE XCERPT.DATA: DATA STRUCTURES

label t

Lines 3 and 4 defin@erms for representing text content and regular expressions.d€fiaition of a
regular expression consists of a regular expression pdiiteiPOSIX syntax without Xcerpt extensions)
and a list of variables associated with the subexpressiotigt pattern. Processing of Xcerpt extensions
is performed during parsing.

Lines 5 and 6 define variables and variables with restristiof variable is always identified by its
name. Variable names in the runtime system are usuallyrdiffeo the original variable names in the
Xcerpt program, because variable renaming is performeebio @onflicts between different rule instances.

Line 7 defines the structure of descendant terms, and lines 8 aefine the structure of terms of the
formall t andsome it B.

Lines 10 and 11 define referring occurrences and definingroaxeees of references. A referring occur-
rence (constructdreference) consists of a reference name and possibly the referred(ittime reference
is already dereferenced). A defining occurrence simply@ases an identifier with a term.

Terms can e.g. be created in the following manner:

let t = Elem { label = "f”, namespace = ”http ://www.example.com”,
ordered = True, total = True,
children = [Text a, Text b, Text c] }

Besides the definition shown above, the fikgm.hs contains definitions for arithmetic expressions
and conditions.

Helper Functions

The file Term.hs contains two higher order helper functions based on whicktrother functions are
defined. Both take a function as argument and implement arigereursive traversal over the structure of
Term, applying the function argument to each subterm.

collectinTerm takes as arguments a term, a transformation function, aingefgnction, and a default
value, and returns a collection of information based on taesformation and merging functions;
the transformation function maps subterms to arbitraryesbnd the merging function merges a list
of these values to a single value

recurseTerm takes as arguments a term, a transformation function (emgg one term to another),
and returns a transformed term with the same structure

These generic functions are best illustrated on some exaophelper functions that are defined based
on them. The following function checks whether a term car#ai grouping construct. It uses the function
collectinTerm and merges the results usiog

Listing A.2: Helper function defined usingllectinTerm

containsGrouping :: Term — Bool

containsGrouping (All _) = True

containsGrouping (Some _ _) = True

containsGrouping t = collectInTerm t containsGrouping or False

Lines 2 and 3 define that terms of the foatht andsome i t contain a grouping construct. In a
sense, these definitions overwrite the recursive travargaémented by collectinTerm. Line 4 applies to
all other cases and calisllectinTerm with containsGrouping as transformation functionr as merg-
ing function, and a default value Bélse . Assuming that the examined term is compleliectinTerm
applies the transformation function to all children and gesrthe list of results with the merging function.

Likewise, the following function usegecurseTerm to rename all variables in a term by adding a
certain postfix (given as first argument):

2poth take a list of terms as arguments for future extensions

212 Sebastian Schaffert

A WOWNBR

AWN PR AwWN P

A~ WNPRF

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

Listing A.3: Helper function defined usingcurseTerm

renameVariables :: String — Term — Term

renameVariables p (Var x) = (Var x++p)

renameVariables p (x $Aleadsto$ t) = (x++p) :— renameVariables p t
renameVariables p t = recurseTerm t (renameVariables p)

Lines 2 and 3 add the postfipxto variable names, and line 3 in addition applies the fumctimthe
pattern restriction. Line 4 implements for all other termis@ursive traversal in whicfrenameVariables
p) is applied to all subterms.

One of the main advantage of these two generic functionsaisntfodifications of the data structures
(e.g. adding a new kind of terms) usually only need to be riftein the definition of these two helper
functions; all functions that are based on them work wittfatther modification. Whenever changing the
data structures, it is therefore important to modify atiélasse two functions as well.

A.3.2 Program.hs: Data Structures for Programs

Listing A.4: Data structures for programs

data Program = Prog [Rule] deriving Show
data Rule = Rule { rhead :: Term, rbody :: Query }
| Goal { output :: [Resource], rhead :: Term, rbody :: Query }
deriving Show

Consider ListingZ&AH. Programs are simply representedsés dif rules. A rule is either a goal (line 3)
or a standard rule (line 2). Both rules and goals consist ofeahread (a term) and a rule body (a query part
— see below); in addition, goals contain a (list of) outpgbugrces.

Listing A.5: Data structures for query parts

data Query = QTerm {resources :: [Resource], term :: Term }
| QAnd { resources :: [Resource], queries :: [Query] }
| QOr { resources :: [Resource], queries :: [Query] }

deriving (Eq,Show)

A query part is either a query term, &nd-connection of query parts, or @r-connection of query
partsﬂ Each query part has a list of associated resources (whichtinggempty), i.e. the construct of
Xcerpt is already resolved during parsing.

Listing A.6: Data structures for resources

XML URI

Xcerpt URI

HTML URI

Parsed Term
deriving (Eq,Show)

data Resource

Resources can be either in XML, Xcerpt, or HTML format (lirles3). The respective constructors are
used by the parser to determine which parsing module to userdsource is identified by a URI. Line 4
is used to represent data terms or XML/HTML documents thee lzdready been parsed. The prototype
retrieves all resources in a preprocessing step and repitaseurce specifications of the first three kinds
by a parsed representation. The advantage of this appreaeltinical: program evaluation does not
need to perform 1/0O and thus avoids the complexity of Hask#ID system. Instead, it focusses on the
complexity of program evaluation. While this might seenfficeent, Haskell's lazy evaluation guarantees
that resources are only actually retrieved when neededoffilyedrawback is that it anticipates the use of
variables in resource specifications.

3The fileProgram.hs defines some additional kinds of queries not mentioned leirafirove readability.

Sebastian Schaffert 213

A.4. MODULE XCERPT.IO: INPUT/OUTPUT

A.4 Module Xcerpt.lO: Input/Output

Figure A.3: Module and File Structure of the package Xcé@ptmodules in green, files in red

The moduleXcerpt.lO contains functions for performing input/output operasiomlocal files or over
the network. The module contains the following files:

ResourceHandler.hsis the main file of this module; it defines functions for retiigy a resource into a
term or string

Browser.hs and HTTP.hs implement access to network resources via the HTTP pratduey are taken
from a library implemented by Warrick Grﬂymd available under the BSD license

The two important functions exported BgsourceHandler.hs are the following:

parseResourcetakes a resource specification as defined above and retuarsedgerm structure of the
data using the parser for the specified format

writeResource takes a term and writes it to the specified resource. The fgshaent is a file handle used
if the specified resource is standard output téout:), in which case the output can be redirected
by the system as appropriate.

' T omenanes.paradlse.ne[.nz?wgrnckq? asRe_/n up/_|

214 Sebastian Schaffert

http://homepages.paradise.net.nz/warrickg/haskell/http/

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

A.5 Module Xcerpt.Parser: Parser

HIIII:

Figure A.4: Module and File Structure of the package Xc@atser; modules in green, files in red

The Xcerpt parser currently consists of three parsing mesdul
Xcerpt.Parser.Xcerpt provides functions for parsing terms and programs in Xcgyptax (old and new)
Xcerpt.Parser. XML provides functions for parsing terms and programs in XMLtayrfbased on HXMﬂ)

Xcerpt.Parser.HTML provides functions for parsing HTML documents into Xcegtts; it differs from
the XML parser in that it is somewhat error-resistant anektid also parse documents that are not
well-formed XHTML

All parser modules provide the functiparseTerm for parsing (data) terms, and the Xcerpt and XML
parser in addition provide the functiparseProgram for parsing programs (in Xcerpt and XML syntax).

A.5.1 Xcerpt.Parser.Xcerpt: Xcerpt V1 and V2 Parser

The Xcerpt parser module consists of two separate parseeston the old Xcerpt syntax (V1) primarily
used in publications before 2004 (e g1[23]), and one forrtb Xcerpt syntax (V2) used in 2004 and
later (and also in this thesis). Both parsers are implendamging the Haskell lexer generameﬂ and the
Haskell parser generatbappﬂ.

Lexer Specifications

In alex tokens are defined in terms of regular expressions, sitalather lexer generators. More specific
instructions for usinglexcan be found in thalexdocumentatiorl[46]. For example, the following code
defines identifiers to begin with an alphabetic character@mdinue with alphanumeric characters. It
returns a tokeitldentifier which stores the current position in the input file and theealf the character
sequence matching the token. The first lines define charelasmres, and the last two lines define the token
Tldentifier

I EIE”WWW |'gm|ao.com/ joe/nxmi |

o 5

Sebastian Schaffert 215

http://www.flightlab.com/~joe/hxml
http://www.haskell.org/alex/
http://www.haskell.org/happy/

A.5. MODULE XCERPT.PARSER: PARSER

$idchar = [AZ az 09 \- _\]
tokens :-
<0> $alpha $idchar* { tok (\p s -> Tidentifier p s) }

The filesXcerptLexerV1lx andXcerptLexerV2.x contain the respective lexer definitions for the old
and new Xcerpt syntax, including definitions for the variawvailable tokens. Both files define a function
lexer that takes as input a single string and returns as outputef iskens.

Grammar Specifications

The parser generatbiappyuses LALR(1) grammars that consist of rules in a syntax simo Backus-
Naur Form (BNF), but extended by constructs that allow torgefictions for grammar rules. Developers
interested in extending or modifying the parser should ctihsippys documentation af[14]. For instance,
the following code specifies the grammar rule for compouneritterms with partial and unordered term
specification as a label (non-terminal), followed by two wipg curly braces (terminals), a list of terms
(non-terminal), and two closing curly braces (terminailsjeturns aTerm instance with constructdiiem
and the field values set appropriately (occurrences of $r tefthe value of the n’th token of the rule).
Furthermore, a list of term®{TermL) is defined as either a term (non-terminal), followed by a c@and

a list of terms, or a single term, or an empty list of termseturns a Haskell list oferm elements:

PTerm :: { Term }
PTerm : label '{ '{ PTermL '} '} { Elem {label=(Text $1), n amespace="",
total=False, ordered=False, children=$4}}

PTermL : PTerm ' PTermL { ($1:$3) }
| PTerm { $10 }
I {0}

The filesXcerptParserV1y andXcerptParserV2.y contain the grammar definitions for parsing Xcerpt
terms and programs. In particular, they define the functiarseTerm andparseProgram , which com-
bine the lexer with the generated parser. Both take as inmitgle string and return &erm resp. a
Program . In addition, the parser module contains the grammar diglinRegexParser.y , which defines

a grammar for parsing regular expressions with Xcerpt eskbers. The regular expression parser is used
internally inside the Xcerpt and XML parsers.

A.5.2 Xcerpt.Parser. XML: XML parser

The prototype’s XML parser module uses the HXML parser foskédl, which is very efficient and makes
use of Haskell's lazy evaluation. The module consists offiles:

HXMLToXcerpt.hs provides transformation functions that convert XML datanfirHXML's internal data
structures to the prototypelerm structure. In particular, these transformation functitahe care of
attributes and Xcerpt term constructs like term specificetior variables, and resolve namespaces.

XMLParser.hs provides transformation functions that transform a termtaming appropriate constructs
in the Xcerpt namespachtip://xcerpt.org) into aProgram .

A.5.3 Xcerpt.Parser.HTML: HTML parser

Unfortunately, most of the HTML documents available in tgdaVeb do not conform to the XHTML
standard and are therefore not well-formed XML. To make dsxisting Web pages, the Xcerpt proto-
type also contains an HTML parser module. This module usesitiskell XML parser HaXMLIIA1],
which provides an error tolerant HTML parser that parses HTddcuments into the same structure as
XML documents. The HTML parser consists of the single fileMLParser.hs , which defines a function
parseTerm to parse HTML documents intoBerm structure. A functiorparseProgram is not available
for HTML, as Xcerpt programs cannot be represented in HTML.

216 Sebastian Schaffert

O wWN PR

O~ wWNPEF

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

A.6 Module Xcerpt.Show: Output Formatting

Figure A.5: Module and File Structure of the package Xc&tmw; modules in green, files in red

The moduleXcerpt.Show contains functions for pretty-printing Xcerpt data stures. The main
interfaces to these functions are the clas&esptPrintable andXMLPrintable , which define pretty-
printing in Xcerpt (V1 and V2) and in XML syntax.

Listing A.7: XcerptPrintable

class XcerptPrintable a where
asXcerpt :: Int — a — String

showXcerpt :: XcerptPrintable a = a — String
showXcerpt = asXcerpt 0

The classXcerptPrintable defines a function prototypasXcerpt that takes the current level of
nesting (nt) and the data structure to be printeg &s arguments and returnsSaing . The function
showXcerpt is a convenient wrapper for the default nesting level.of

Listing A.8: XMLPrintable

class XMLPrintable a where
asXML :: Bool — Int — a — String

showXML :: XMLPrintable a = a — String
showXML = asXML True O

Likewise, the clasXMLPrintable defines a function prototypesXML. asXML takes as arguments a
Bool indicating whether to add Xcerpt attributes ésdered/unorderedndtotal/partial term specifications
in the resulting XML document, aint for the current level of nesting, and the data structure tprbveed
(a). Again, the functiorshowXML is a convenient wrapper for default level of nesting and agicKcerpt
attributes.

Both classes are instantiated for the data structlems, Rule , andProgram . The module is divided
into the following files:

XcerptV1.hs contains the definition and implementation of the chkEsptPrintable for the old Xcerpt
V1 syntax (before 2004)

XcerptV2.hs contains the definition and implementation of the clXssrptPrintable for the new
Xcerpt V2 syntax (2004 and later)

XML.hs contains the definition and implementation of the cldd&Printable for the XML syntax

Sebastian Schaffert 217

A.7. MODULE XCERPT.ENGINENG: PROGRAM EVALUATION

A.7 Module Xcerpt.EngineNG: Program Evaluation

Figure A.6: Module and File Structure of the package Xc&mgineNG; modules in green, files in red

The moduleXcerpt.EngineNG s the “heart” of the runtime system: it contains the evabraalgo-
rithms described in ChaptEl 8 and consists of the followiadg

Matrix.hs contains an auxiliary data structure used by the unificatigorithm called thenemoisation
matrix; using it, simulation unification can be evaluated in a ra#ficient manner.

Unify.hs contains the implementation of tisgmulation unificatioralgorithm described in Sectidn®.2; it
uses the memoisation matrix and the constraint solver ibestbelow.

Program.hs contains the implementation of the backward chaining atigordescribed in Sectidn3.3; it
uses the unification algorithm and the constraint solvecrilesd below.

Solver.hs contains the implementation of a simple and somewhat inefiidut reliable constraint solver

Substitutions.hs implements functions for converting constraint stores substitutions, and for applying
substitutions to terms (cf. Sectibnl.3)

The following Sections illustrate this implementation iore detail.

A.7.1 Constraint Solver

The constraint solver implemented in the flelver.hs operates on a (conjunctive) list 6bnstraint s
and yields a list of consistent alternative conjunctionsafistraints. It applies simplification rules (or
“verification rules”) to pairs of constraints. Each apptioa of a verification rule yields a pair of two lists:
a list of removed constraints and a list of new constraints.

type VerificationRule = (Constraint,Constraint) — ([Constraint], [Constraint])

In contrast to traditional constraint solvers, the restitimplification rules in this prototype may also
contain disjunctions; in the results of verification rulégse are represented by a constraint of the form

Or [...], and the incremental solver (ierifyinc) generates the disjunctive normal form represented by
a list of lists of constraints (i.e. a disjunction of conjtinas of constraints).
The current implementation uses the two verification retesistency and transitivity (both

also defined irBolver.hs), which correspond to the respective rules in SediionB.The definition of
consistency s given in ListindA:

Listing A.9: Consistency Rule

consistency :: VerificationRule

218 Sebastian Schaffert

~NOo ok~ w

OO WNER

© 00 N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

consistency (cl@(tsl@(Var v,.) :< ts2), cc@(tsl’'@(Var v',.) :< ts2'))
| (v ==v') = ([c1],[solve $ andFl [(unify t2 t2'), (unify t2' t2)]])
where t2 fst ts2
t2”’ fst ts2’
consistency - (11.0D

The definition in line 3 catches the case where the two canssrare of the formwar v <t; and
var V <t} such tha = V. In this case, one of the constraints is remowdd,(and the two upper bounds
are unified, i.ety < to At; < t5 is added. Line 7 matches all other cases and neither remavesdds
constraints, indicating thabnsistency is not applicable.

The main part of the constraint solver is implemented in thecfionverifyinc (which stands for
incremental verification verifyinc takes as parameters a list of verification functions (cdlyemly
consistency andtransitivity), and two lists of constraints (the current constraintestond thencre-
ment i.e. the newly added constraints). The increment mustysvee a part of the constraint store and
the constraint store without the increment is considerdzktoonsistent; in this way, it is sufficient to only
consider pairs of constraints where at least one of the m@in& is part of the increment. The function
verifylnc is implemented as follows (note the comments in the sourde)co

Listing A.10: Constraint Solver

verifylnc :: [VerificationRule] — [Constraint] — [Constraint] — [[Constraint]]
verifylnc rules current [] = maybe [] (:[]) $ simplifyPath current

verifylnc rules current added = concat $ recVerify $ added’
where run = flatPair . unzip . filter (# ([],[])) $ map (applyRules rules) (pairs (
id current) (added))

— recursively call verifylnc for all conjuncts in the disjunctive

— normal form (see added’ below); first parameter to verifylnc is

— the list of verification rules, second is the verified constraint
— store minus the removed constraints and plus the new constraints ,
— third is the list of new constraints (increment)

recVerify = map (Ax — verifylnc rules (old ‘addList’' (new x)) (new x))

— the new constraints of x are the constraints of x minus the
— current list of constraints
new x = (dupelim x) ‘minusList*‘ current

— the remaining list of constraints is the current list of
— constraints minus the removed constraints
old = current ‘minusList‘ removed’

— added’ is a list of lists of constraints containing the
— disjunctive normal form of all additions (generated by getPaths)
added’ = simplifyPaths $ getPaths (And $ snd run)

removed’ = fst run

— generate all pairs of the elements of two lists. since the first
— list always contains the second list as a tail, and the order of
— the pairs is of no importance, we can drop all elements of the
— second list if it contains the current element.
pairs 11 12 = let 11’ = filter isSimConstraint |1

12" = filter isSimConstraint 12

in [(x,y) | x < 11",
y <« (droplfuntil 12’ x 12°), x # y]

Sebastian Schaffert 219

A.7. MODULE XCERPT.ENGINENG: PROGRAM EVALUATION

Since it uses Haskell's function combinato$sand.), the definition of the functiomerifylnc (line
5) is best read from right to left, and begins with the aurjlidefinition ofrun (line 6): run implements
a complete run over all pairs of constraints from the old trast store urrent) and constraints from
the incrementddded). The result is a pair consisting of a list of constraintd theed to be removed, and
a list of constraints that need to be added in subsequestafalérifyinc . From the result ofun , the
valuesadded’ (line 25, containing the disjunctive normal form of the neamstraints) andemoved’ (line
27, containing a list of constraints to be removed) are exdh With these lists, the functioecVerify
(line 13) is called, which callgerifyinc ~ recursively for each of the conjunctsadded’ . The recursion
terminates upon saturation, i.e. when no new constraistadded (line 3). The application cdncat to
the results of recVerify merges the results of the sepasatersive calls into a single list. The result is a
list of consistent conjunctions, each representing amredt&e solution.

Besidesverifyinc , the fileSolver.hs contains a functiogimplify ~ that can be applied to any con-
straint or constraint store to create a simplified repregim without considering dependencies between
constraints. In particulasimplify eliminates the constraints with boolean value3raé or False . The
file Solver.ns defines two additional convenience functions used below:

solveCStakes an arbitrary constraint (in general a constrainejt@nd returns a consistent constraint
store in disjunctive normal form, or the boolean constrbatde .

solveM takes a memoisation matrix containing constraints or sakrioes (usually created in a unifica-
tion), and returns a consistent constraint store in digjuamormal form, or the boolean constraint
False .

A.7.2 Unification

The file Unify.hs contains a prototypical implementation of the Simulationifidation algorithm de-
scribed in Chaptdr8.2. This Section first introduces aeanplementation, which is straightforward but
has a very bad time and space behaviour. As an improvementtoseapproach, the so-calledemoisa-
tion matrix (defined in the fileMatrix.hs) is then introduced. Unification with the memoisation matsi
considerably more efficient both with respect to time anaspé further refinement of the memoisation
matrix ismatrix compactisatioa pruning method to exclude parts that never contributevadid answer),
with which this Section is concluded.

The implementation is described in a very simplified mantteractual code in the prototype contains
many further constructs that improve efficiency or cover samhthe more complex constructs, but antic-
ipate a clean presentation. The algorithms are describadHaskell-like notation, with some syntactic
additions that are not available in Haskell but useful fadability. In particular, it uses the Xcerpt term
notation instead of the prototype’s data structure.

Due to the potentially exponential size of the desired tetinle and space complexity are in general
exponential. However, an important measure is the numbeniditation stepsi.e. recursive calls of the
unify function, that are performed. Each such step is comput@tioexpensive, as it requires string
comparisons of the labels and recursive callsrofy for (in the worst case) all possible combinations
of children of the unified subterms. Thus, the number of uaiifin steps is a measure of the number of
comparisons that need to be done.

Naive approach

When unifying two (compound) terms with matching labels, tlaive approach simply builds a disjunction
of all alternative combinations of recursive unificatiofishe subterms and solves each separately (like the
declarative description of Simulation Unification in Seafi82). unify is thus a function that takes two
terms as arguments and return€astraint representing the disjunction of combinations of subterm
unifications and has the following signature:

unify :: Term — Term — Constraint

In the following, letmappings be the set of functiond as defined in Definitiof 8l 5 (this list can be cre-
ated in Haskell in a straightforward manner). The functinify ~for two compound termg {{ts,...,ta}}
[2{s1,...,Sn} can be implemented as follows:

220 Sebastian Schaffert

A WN PR

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

Listing A.11: Naive Implementation ahify

unify |1{{t1,4.4,tn}} |2{3174~7Sm} =
if Iy #l then False
else Or [And (zipWith unify [t1,... ,tn] [Sn(l)r--- 'Sﬂ(n)]})
| ™ <—mappings]

So, in the case of a label mismatch, the result is the atonmistcaintFalse(see rule 4 in Chapt€l 8). In
any other cases, for each mappimgn mappings , a conjunctive constraint store is created by recursively
applying theunify - function to the list of childrerity, . .., t;] and their mappingsy1); - - -, Sp(n) |-

Example A.1
Consider a unification of the two termas= f{{var X, c}} andt, = f{a,b,c,d}. Applying the naiveinify
tot; andt, yields (in mathematical notation):

(unify(var X,a) Aunify(c,b)) Vv (unify(var X,a) Aunify(c,c)) v (unify(var X,a) Aunify(c,d))v
(unify(var X,b) Aunify(c,a)) v (unify(var X,b) Aunify(c,c)) v (unify(var X,b) Aunify(c,d))v
(unify(var X,c) Aunify(c,a)) v (unify(var X,c) Aunify(c,b)) v (unify(var X,c) Aunify(c,d))v
(unify(var X,d) Aunify(c,a)) v (unify(var X,d) Aunify(c,b)) v (unify(var X,d) Aunify(c,c))

or after evaluating the recursive callsunify :

(var X < aAFalse Vv
(var X < bAFalse v
(var X < cAFalse) v
(var X < dAFalse v

(var X <aATrue)V (var X < aAFalsgV
(var X <bATrue) Vv (var X < bAFalseV
(var X < cAFalse Vv (var X < cAFalseV
(var X < dAFalse Vv (var X < dATrue)Vv

Itis easy to observe that this implementation contains nedyndancies (e.gnify(c,c) is computed
thrice).

After unification, it is necessary to apply the constrainvepto the resulting constraint store in order
to eliminate conjunctions that are inconsistent (eitheralse one of the recursive unification steps fails
or because two constraints exclude each other). The cortsirdver inSolver.hs provides a function
solveCS , which takes an arbitrary constraint store and creates sistent constraint store in disjunctive
normal form.

Complexity. As there ar%m’f—!n)! different total injective mappings frofts, ...t} to {s,...,Sm}, the car-

dinality of mappings is (m%'n), As a consequence, the resulting disjunctive constraine still contain':?—!!
conjunctive subformulas, and requ'rle(m%!n)! unification steps. In particular, many recursive unificasio

will be performed on the same pairs of subterms, leading tohmedundancy.

The Memoisation Matrix

An optimisation over the naive appriach is to remove redmhdnification steps by only performing each
unification of pairs of subterms once. The results of thesarsidve calls are stored in a matrix called
the memoisation matrias it memos the results of unifications for further proaggsiIn this manner, it
is possible to reduce the number of necessary unificatiqus stignificantly; whereas the naive approach
requiredn- (m%'n), unification steps, the memoisation matrix requires at most unification steps at one
level. Nonetheless, the desired exponential result camdagead in later steps by collecting the appropriate
unification results in the matrix.

Theunify function uses the following additional data structure (uediinMatrix.hs) to store unifi-
cation results (the actual implementatiorMatrix.hs is much more complex, as it allows to use nested
matrices and stores additional properties needed for céegeordered and/or total term specifications):

data MMatrix = MMatrix [[Constraint]]

Sebastian Schaffert 221

A OWN P

A WN PP

A.7. MODULE XCERPT.ENGINENG: PROGRAM EVALUATION

The matrix is initialised with all possible combinationsiafifications of children from one term with
children of the other terfl.Using the termé {{ts,...,t.}} andlo{sy,...,sn} as above, the matrix is thus
of sizenx m:

Listing A.12: Memoisation Matrix Creation

initMatrix :: [Term] — [Term] — [[Constraint]]
initMatrix [] | = []
initMatrix (t:ts) [S1,... ,Sn] =
((map (unify t) [St,... ,Sm]) : initMatrix ts [Si,... ,Sm])
Usage of the matrix is best illustrated on an example:
Example A.2

Consider a unification of the two ternf{{var X,c}} and f{a,b,c,d}. The matrix for the children is
initialised as follows:

t1\tz a b c d
var X | unify(var X,a) | unify(var X,b) | unify(var X,c) | unify(var X,d)
c unify(c,a) unify(c,b) unify(c,c) unify(c,d)

Immediate evaluation gives the following matrix:

t1\t a b c d
var X | var X<a | varX<b | var X<c | var X =<d
c False False True False

a

Creating the different total mappings of subterms of the tene to subterms of the other term from
this matrix is straightforward; informally, each mappingriesponds to a different “path” through the
matrix such that a single cell of every row is collected. N this method is similar to the “Connection
Method” described if[d0]. The functiagetPaths serves to create all mappings:

Listing A.13: Path Generation in Memoisation Matrix

getPaths :: [[Constraint]] — [[Constraint]]
getPaths [] = [[]]
getPaths [I] = map (Ax — [x]) |

getPaths (x:xs) = [(x':xs’) | x' « x, xs' « (getPaths xs)]

Using Haskell'dist comprehensiorthe set of paths is expressed in a very compact manner. Howev
bear in mind that there ar@r{‘j!—n)! possible paths in the matrix. In case the term specificatidheocorre-
sponding query term is ordered or total, the functietfaths needs to be modified appropriately to only
generate monotonic or surjective mappings; this modificas straightforward and not described here.

Example A.3

The following table shows some of the top-down paths thrahghmemoisation matrix of ExamdleA.2.
Each path represents a total mapping of subternis tf subterms of,. Note that the leftmost path (in
green colour) is not a valid mapping, as it is not injectivee Becond path beginning withi fy(var X, a)
(in red colour) in contrast even represents a total, infectindmonotonicmapping and would thus be
suitable for ordered matchings. The third path (in blue eglts not monotonic, but it is injective.

ti\tz_ | a | b | c | d
var X | unify(var X,a) | unify(var X,b) | unify(var X,c) | unify(a,d)

c unify(c,a) unify(c,b) unify(c,c) unify(c,d)

8Note that, using Haskell’s lazy evaluation, the actual eslaf the cells are only computed upon use; implementatioashier
languages should reflect this appropriately

222 Sebastian Schaffert

N

[EnY

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

a

The result of a unification is a constraint store in disjuretiormal form, the conjunctions of which
each correspond to a top-down path in the memoisation mdtmithe example above, e.g. the red path
represents the conjunctiear X <aATrue

Combining the pieces introduced separately above, theiummify with memoisation matrix is thus
implemented as follows (in simplified form):

Listing A.14: unify with Memoisation Matrix

unify |1{{t1,4.4,tn}} |2{3174~7Sm} =
if I3 #ly then False
else Or . map And . getPaths $ initMatrix [t1,... ,tn] [S1,... ,Sm]

During or after unification, it is necessary to resolve insistencies by calling the constraint solver for
the resulting matrix. For this purpose, the flelver.hs (described above) provides a functisoiveM
that takes a (filled) memoisation matrix as input and solees ®f the conjunctive paths in it. As an optimi-
sation, the implementation in the prototype instead sodwes while collecting the different paths. To this
aim, the functiorsolveM reverts to a differentimplementation fgetPaths calledgetConsistentPaths ,
which uses the incremental constraint soleifyinc ~ to only generate paths that are consistent.

Complexity. The overall space and time complexity is still exponentialthe possible size of the
desired result is exponential as well. However, the coniglexeasured in the number of unification steps
in this approach is reduced to at masim, wheren, m are the number of nodes int, respectively. Each
node fromt; is at most unified with each node frag but in many practical cases less — depending on the
depth and breadth of the term structure.

Matrix Compactisation

An important observation is that a large part of the fieldshef tatrix will evaluate td-alsein many
applications. Since a path will be translated into a corjuacconstraint store, each path containing at
least ond-alseis immediatelyFalseitself. It is thus desireable to not consider such pathdat al

The Xcerpt Prototype usesmaatrix compactisatiosuch that paths containirieplsewill not be con-
sidered. This compatisation can be implemented as follows:

Listing A.15: Matrix Compactisation

compactise :: [[Constraint]] — [[Constraint]]
compactise matrix = map (filter (Ax — x # False)) matrix

Each row of the matrix is compactised such that it no longetaios anyralse constraints. Thus,
each path is valid if it isand-connected. Obviously, applying tlgetPaths function to a matrix that
is compactised in such a way still returns the same (valithgas it would have returned without the
compactisation. All missing paths are those that would levaduated td-alsewhen theand-connector
would have been applied.

However, using the inexpensive compactisation can rechedime and space consumption in many
practical cases, as a large amount of paths usually cordatilaast oné-alse This can easily be seen on
the example used above.

Example A.4
Since many of the child unifications evaluate to false, thagactised matrix looks as follows:

ti\te | |
var X | unify(var X,a) | unify(var X,b) | unify(var X,c) | unify(var X,d)

c unify(c,c)

Sebastian Schaffert 223

N

A.7. MODULE XCERPT.ENGINENG: PROGRAM EVALUATION

Obviously, the number of paths is reduced significantly ljefpaths in ExampleZA 3, there is only the
red path left), while the overall result is not changed. a

Tests conducted using the Haskell implementation as destiiere have shown an execution time
improvement by a factor of 30 in average for the considerdd.d&lote that this compactisation does
not allow to determine whether the mapping corresponding path is injective and/or monotonic, so
generating the correct paths for ordered unification reguio add additional information to the matrix
cells. In the current prototype, this is done by adding tH#esun positions for the second term.

The completenify function with memoisation matrix and matrix compactisatiooks as follows:

Listing A.16: unify with matrix compactisation

unify |1{{t1,4.4,tn}} |2{3174~7Sm} =
if Iy #1l, then False
else Or . map And . getPaths . compactise $ initMatrix [t1,... ,ta] [S1,... ,Sm]

A.7.3 Backward Chaining

The backward chaining algorithm is implemented in the Rilegram.hs . The main functions exported
by this file arerunProgram (evaluate a program and write resulting terms to resoungesiféed in pro-
gram or standard output if no resource is giveiRunProgram (evaluate a program and write resulting
terms to resources specified in program or the handle prdvim¢his function if no resource is given),
andtRunProgram (evaluate a program and return a list of all resulting terdisiespecting potential re-
source specifications). Furthermore, this file provideduhetionsevalQuery andevalQueryCompat for
evaluating a query part against a program instead of evafutte goals in the program

The main data structure used by the backward chaining #igoit a tree (structur@Tree of module
Xcerpt.Data.BTree) representing the current constraint store. In this traehdeaf node represents a
conjunct of the disjunctive normal form, but unlike the dexpmsition trees of Chapt€l 8, this tree does
not convey the history of applications of simplificationasil The sole purpose of this tree is to provide an
efficient method for building the DNF by splitting a leaf nadéo two or more successors if a disjunction
needs to be inserted. To operate on this tRregram.hs provides four internal functioniesertAtC
(to insert a constraint in a certain leaf nodegleteAtC (to remove a constraint in a certain leaf node),
replaceAtC (to replace a constraint in a certain leaf node), spthceC (to replace a constraint in all
leaf nodes). All functions ensure that a conjunct is comsisby calling the constraint solver described
above.

When evaluating a program, the algorithm loops over all eodis (functiorrunC) in a breadth-first
fashion, selects constraints that are not yet fully evaldigtunctionselectC), and applies simplification
rules (functioreval) until no more simplification rules can be applied. For thisgmseyunC uses a data
structure calledtvalContext as helper (it mainly contains the current program and theeatiposition in
the constraint store).

The functioneval decides, depending on the kind of constraint, how to evaltla constraint and
applies unification of query unfolding if necessary. Theulssare combined and the tree representing
the constraint store is updated. Of particular interedtastteatment of the dependency constraint, which
requires to perform an auxiliary computation before theitimg” constraint can be evaluated. Depending
on the result of this auxiliary computation, either the f#sg substitutions are applied, or the constraint
fails.

Query unfolding and standardisation apart is performedbyfuinctionunfoldQuery , which takes as
an additional argument a prefix used for variable renaminigis Prefix is composed depending on the
current level of recursion and the position of queries in@jwaction/disjunction such that it is sufficiently
unigue to avoid conflicts during evaluation. Note that udifod a query term may yield dependency con-
straints in case the query term is evaluated against thedfeadile containing a grouping construct.

224 Sebastian Schaffert

O©CoOoO~NOOUTh WNPE

APPENDIX A. A PROTOTYPICAL RUNTIME SYSTEM

A.8 Module Xcerpt.Methods: User-Defined Functions

Figure A.7: Module and File Structure of the package Xc#étpthods; modules in green, files in red

The moduleXcerpt.Methods

contains the definitions of functions that are available aeppt either

as arithmetic/string functions in construct terms (Alghmetics.hs), or as aggregation functions (file
Aggregations.hs
function explicitly to the parser, all functions are stone@ssociated lists in which each entry consists of a
pair of string and function definition.

, Or as sorting specification order by (file Comparisons.hs). So as to not add every

Listing A.17: Definition of Aggregation Functions

type AggregationFunction =

aggregations
aggregations =

[
"sum” ,
"avg”,
"min”,
"max” ,
"reverse”
"first”,
"last”,
"rest”,
"prefix”,

]

(

A~~~ SN~~~

count”,

[(String,AggregationFunction)]

(¢:[h
(1D
(1D
(¢:[h
(1D
, reverse
take 1
take 1 .
tail

reverse .

[Term] — [

. Text . show .
. Text . show
. Text . show .
. Text . show .
. Text . show .
reverse
tail . rev

Term]

length)),

. sum . map parseFloat)),
avg . map parseFloat)),
min’ . map parseFloat)),
max’ . map parseFloat)),

)

)

)

)

erse)

Listing[AT4 shows the definition of the associateddigiregations , which contains the definition of
the currently available aggregation functions. Helpercfioms (likemap’) are omitted for space reasons.
The lists in the fileg\rithmetics.hs

Extending the prototype by new user-defined functions caachéved easily by adding new function
definitions to these lists.

andComparison.hs

are defined in a similar manner.

Sebastian Schaffert

225

A.8. MODULE XCERPT.METHODS: USER-DEFINED FUNCTIONS

226 Sebastian Schaffert

APPENDIX
B

Proofs

B.1 Proof of Theorem 4.9 (Reflexivity and Transitivity of <)

Theorem[Zd
=< is reflexive and transitive.

In order to prove Theoref3.9, the following Lemmais firstwho

Lemma B.1

Given three sequences of ground query tekingl, andN, and two (partial or total) mappings: L — M
andt : M — N. Furthermore, letro T denote function composition such thato 17)(x) = 7(71(x)). The
following properties hold:

1. if both randr are index bijective, so igo T.

2. if bothmandt are index monotonic, So igo T.

3. if bothrandt are position preserving, Soiso T.

4. if Tis position preserving andis position respecting, themo T is position respecting.
5

. if mTis position respecting andis index monotonic and index bijective, therv 1 is position re-
specting.

Proof.

1. Trivial.

2. Trivial.

3. Letr € L such thaterm(r) is a subterm of the fornposition i . From the hypothesis, it follows that= 71(r)
such thaterm(s) is a subterm of the fornposition k § with i = k. Likewise, it follows thaterm(1(s)) is a
subterm of the fornposition j t with k= j. Consequently, = j andro 7 is position preserving.

4. Letr € L such thaterm(r) is a subterm of the fornposition i . From the hypothesis, it follows that= 71(r)
such thaterm(s) is a subterm of the fornposition k § with i = k. Likewise, it follows thatr(s) maps to a
subterm with index such thak = j. Thusi = j andmo 1 is position respecting.

5. Letr € L such thatterm(r) is a subterm of the formposition i . From the hypothesis, it follows that
indexi(r)) =i . Sincert is index monotonic and index bijective, it follows thetmaps everys, to a sub-

termt; such thaindexsc) = indexs;j). Thusi = indexsj) andro T is position respecting.
O

Proof of TheorerfrZ19.

1. Reflexivity
The Lemma is proved by induction over the structure of grogadry terms. In all cases, label matching is
reflexive. It thus suffices to show that there exists a subteappingrt with the correct properties. Letbe a
ground query term:

227

B.1. PROOF OF THEOREM 4.9

e if tis of the formf[ty,...,ty], and all of the; are reflexive, then the mappimgwith mi(t;) =t; for all t; is
trivially index monotonic and index bijective.

e if tis of the formf{ts,...,tn}, and all of the; are reflexive, then the mappimgwith r1(tj) = t; for all t;
is trivially index bijective; it is furthermore position serving, as each subterm of the fopwsition j t
is mapped to the subterposition jt

e if tis of the formf{{t1,...,ta}}, and all of the; are reflexive, then the mappimgwith m(t;) = t; for all
tj is position respecting (as above), and it furthermore hthdsfor eacht; € SubT+ holdst; < mi(t;) (as
t; is reflexive by assumption), and for eagke SubT~ holdsi(t;) < t; (again becausg is reflexive by
assumption).

e if tis of the formf[[ty,...,tn]], and all of thet; are reflexive, then the mappimgwith 7(tj) = t; for all t;
is trivially index monotonic and position preserving; tlaraining conditions are in analogy to above

All other cases are trivially satisfied.
2. Transitivity

It is easy to see that label matching is transitive. tyety, andts be ground query terms such that< t, and
to <ts. Itis to show that; <t3. The lemma is proved by induction over the term structurg,dp, andts. Not
all combinations are given; the remaining cases are pravadimilar manner to cases listed here.

e if t1 is of the form f1{r1,...,r}, thenty is either of the form (1)f2{s1,...,sm} or (2) fa[s1,...,Sm|
becausé; <tp, and there exists a mappimgfrom the successors of to the successors tf that is index
bijective and position preserving.

Case (1): t3 is of the forms (1.1)3{u,...,un} or (1.2) f3[u1,..., Un]

Case (1.1): there exists a mapping from the successors ¢f to the successors ¢f that is index
bijective and position preserving; with LemfiaB.1, it felle thatrro T is index bijective and
position preserving, and with the induction hypothesisliofvs thatt; < t3.

Case (1.2): there exists a mapping from the successors of to the successors ¢f that is index
bijective and position respecting; with LemilalB.1, it felthatrro 1 is index bijective and
position respecting, and with the induction hypothesislibfvs thatt; < ts.

Case (2): t3 is of the formfs[uy, ..., un], and there exists a mappinghat is index monotonic and index
bijective; with LemmdE1L, it follows thatro T is index bijective and position respecting, and with
the induction hypothesis it follows thit < t3

e if t1 is of the formfy{{rq,...,r }}, thenty is either of the form (1)f2{s1,...,Sn}, (2) f2{{s1,...,Sn}},
(3) f2[[s1,. .-, Sm]], or (4) fa[s1, ..., Sm|
Case (1): there exists a mapping of SubT" (t;) to SubT(tz) that is position preserving and not com-
pletable to subterms of the formithout s furthermoret3 is of the forms (1.1)f3{us,...,un} or

(1.2) fg[ul, .. .,Un}

Case (1.1): there exists a mapping from the successors of to the successors ¢f that is index
bijective and position preserving; with LeminaB.1, it fellethatrro T is also position preserv-
ing and ag is index bijective jto T is not completable; with the induction hypothesis it follow
thatt; <tz

Case (1.2): there exists a mappimgfrom the successors tf to the successors tf that is index bi-
jective and position respecting; with LemfnalB.1, it follothat 770 T is also position respecting
and agr is index bijective, it follows thatto T is not completable; with the induction hypothesis
it follows thatty < ts.

Case (2): there exists a total mappingof SubT(t;) to SubT(t,) that is position preserving such that:

(@) forallr € SubT"(t) holds thatr < ri(r)

(b) for all r € SubT (1) of the formwithout r’ holds thatr(r) is of the formwithout < and
g=<r

furthermorets is of the forms (2.1)f3{uy,...,un}, (2.2) f3[us,...,un], (2.3) f3{{us,...,un}}, or

(2.4) fg[[ul, .. .,Un”

Case (2.1): there exists a mappingfrom the successors tf to the successors tf that is position
preserving and not completable; with LemmalB.1, it followattrTo T is also position preserv-
ing; with (b), it follows thatro 7 is also not completable, because a completion to a subterm
without r' of t; would require that there exists a subteunof t3 such that’ < u;, but no such
subterm can exist, because (b) requires that there existbtarmwithout $ of t, such that

g < r’ andt, is not completable (i.awvithout ¢ excludes all subterms for whiath < u; would
hold).

228 Sebastian Schaffert

APPENDIX B. PROOFS

Case (2.2): similarto 2.1 and 1.2

Case (2.3): there exists a mappingfrom the successors tf to the successors tf that is position
preserving and for which holds that

— forall s€ SubT"(ty) holds thats < 1(s)

— forall s€ SubT (t2) of the formwithout ~ s" holds that(s) is of the formwithout ~ u’ and
u=s

with LemmdE1, it follows thairo 7 is also position preserving; with (a), (b), and the induetio

hypothesis follows that

— forall r € SubT"(t1) holds thatr < (7o T)(r)

— for all r € SubT (t1) of the formwithout r’ holds that(rro T)(r) is of the formwithout
v andu <s

consequentlyt; < ts.
Case (2.4): similarto 2.3 and 1.2
Case (3): similar to 2
Case (4): similarto 1

3. ifty is of the formdesc {, then either (1}; < tp, or (2)t, has a subterrt}, such that] < t5, or (3)t, is of the
form desc § such that] <t5.

Case (1): asty <tz holds alsdi <t3 and thud; <ts.

Case (2): tp has a subterrt}, such that; <t}. Asty < t3, there exists a subterthof t3 such that, < t5. Thus,
t1 <5, and thug; < ts.

Case (3): trivial

Sebastian Schaffert 229

B.2. PROOF OF THEOREM 8.6

B.2 Proof of Theorem 8.6 (Soundness and Completeness of Silau
tion Unification)

Theorem[&3 (Soundness of Simulation Unification)

Lett9 be a query term without subterm negation and optional soitstand let® be a construct term without
grouping constructs, functions/aggregations, and optisubterms. A substitution s&tis a most general
simulation unifier ot andt® if and only if simulation unification of? <, t° terminates with a constraint
storeCSsuch that = Q(CS).

We first show that simulation unification terminates for amexy termt® and construct ternf, and
then show soundness and completeness by induction oveuthiear of rule applications.

Lemma B.2 (Termination of Simulation Unification)

Lett9 be a query term without subterm negation and optional soitstand let® be a construct term without
grouping constructs, functions/aggregations, and optisabterms. Simulation unification of <, t©
terminates.

Proof. We prove termination by assigning a rank to atomic condsaimd showing that the rank decreases with
every rule application. Consider a tree where each node &amic constraint (i.e. either a boolean or a simulation
constraint). Application of a simulation unification rulielgs the constraints that are successors of this node uGonj
tions and disjunctions split into several successors. kamele, application oflecomp.3o a simulation constraint

of the formf{a,b} <, f{c,d} yields the successor nodas< ¢, a <, d, b <, ¢, andb <, d. By Konig’'s Lemma, it
suffices to show that every successor of a node has a stoethrIrank than its predecessor. Ranks of constraints are
defined as follows:

rank(True) = 0 depthl{t,...,tn}) = 1+maf,(deptht))
rank(False) =0 depth{l{{t,...,tn}}) = 1+maxf.,(deptht))
rank(t; <ytp) = depthty) +deptHtn) deptHl[ts,...,tn]) = 1+ma},(deptht))
deptHl[[ts,..-,tn]]) = 1+maf,(deptht))
depthvar X) =1 depthdesc) = 1+deptht)
depthivar X <yt) = 1+deptHt) deptHid@t) = 1+deptht)

Furthermoredepti7 id) is defines agn+ 1) - deptHt), wheren is the number of remaining applications of the
deref rule to 7 id in the course of the evaluation, ahds the referenced term. Obviously,is finite because the
memoing rule eventually terminates a path when a pair ofggsnunified that has already been considered. Since
there are only finitely many subterms in each term, this happeevitably in every computation that would otherwise
not terminate.

1. application odecomp.ldecomp.2or decomp.4
The rank trivially decreases, because all three kinds efreéduce the constraint store to eitheneor False

2. application odecomp.3

A constraint of the forntd <, t¢ wheretd = I {{t},...,t}}} andt® = I{t?,...,t2} (independent of the kinds
of braces) is reduced to finitely many successors of the #rm, t? for some childrert! of t9 andt? of

t° Lett! andt? be any such children. Obviouslgteptht!) < depthtd) anddepttt?) < deptHt°®). Then,
rank(t <y t?) < rank(t? <y t°).
3. application ofvar
A constraint of the fornvar X —t <, t¢is reduced to three successors:
e rank(t <,t%) = deptHt) +deptht®) < (1+deptht)) +deptHt®) = rank(t? <, t°)
e rank(var X <, t%) = 1+deptht®) < (1+deptht)) + deptht®) = rank(t9 <, t¢), asdeptht) > 1
e rank(t <y var X) =deptht) +1 < (1+deptht)) + deptHt®) = rank(t9 <, t®), asdeptht®) > 1
4. application ofdesc
A constraint of the forndesc t=<, t® wheret® = I{tf, ...,t2} is reduced to two kinds of successors:
e rank(t <yt =rank(t) +rank(t®) < (1+rank(t)) +rank(t®) = rank(desc t= t%)

e rank(desc t=, t?) = 1+ rank(t) + rank(t?) < 1+ rank(t) + rank(t®) = rank(desc t=y t¢) for some
1<i<n

230 Sebastian Schaffert

APPENDIX B. PROOFS

5. application ofderef

A constraint of the fornf id <yt is reduced taleref(id) <y t. Letn be the number of remaining applications
of the dereferencing rule

rank(Tid <yt) = (n+1)-depth{deref(id)) + deptHt) > depth{deref(id)) + deptHt) = rank(deref(id) <, t)

because iff id occurs indere f(id), then thederefrule is only applicablen— 1 times and thus the rank is strictly
lower.

6. application oimemoing

A constraint of the formt9 <, t¢ is reduced toT rue or Falsein case it has already been considered. Since
rank(True) = rank(False) = 0, the rank is trivially reduced to a lower value.

Proof of TheorerfiL 8l6.
We prove theorelli8 6 by induction over the numkef applications of decomposition rules to the constrainitest
C initialised byC =19 <, t°. In every case, it is to show th&X(C) is the most general simulation unifiertdfin t°.
Sincet® does not contain grouping constructs, we know that efefyc =/~ ., consists of a single substitution.
This simplifies matters significantly, as it requires thaubsditution se€ is a simulation unifier only if for alb € X
holds thato (t9) < o (t%) (*).
Induction Base.Letk =0, i.e. no rules are applicable. We have to consider two cases

1. Cis of the formvar X < t° for a variableX and a construct termn
By definition, Q(C) contains exactly the substitutiomswhereoa (X) =t’ s.t.t’ = g(t®). Obviously,Q(C) is a
simulation unifier ot% in tC.
Q(C) is also the most general simulation unifiertBfin t. Assume it was not. Then there exi&¥ Q(C)
s.t.Z is a simulation unifier ofd in t¢, i.e. (with *) for everyo € = holds that¥ = g(t9) = g(X) simulates
into t¢ = o (t°). Let nowo € ¥ and lettY = g(X) be one of the ground instancestéfs.t. ¢ ¢ Q(C), but
t9 simulates into the ground instancetéfin . Becauses is a simulation unifier and thus an all-grounding
substitution set? is a data term. By definition £, it thus holds that® 2 t¢. Contradiction wittt% ¢ Q(C) 4

2. Cis of the formt% <, var X for a variableX and a query terrh.
By definition, Q(C) contains exactly the substitutiomswhereo (X) =t’ s.t. o(t9) <t’. Obviously,Q(C) is a
simulation unifier ot% in tC.
Q(C) is also the most general simulation unifiertBfin t°. Assume it was not. Then there exi&¥ Q(C)
s.t. 2 is a simulation unifier otd in t¢, i.e. (with *) for everyo € = holds thatt? = o(t%) simulates into
t¢ = g(t°) = o(X). Let nowo € ¥ and lett¥ = g (t9) be one of the ground instancest8fs.t.a ¢ Q(C), but
t9 simulates into the ground instant%eof t€ in o. Then it holds that (t9) < o(X), and thuso is in Q(C).

Induction Step. Assume now that the number of decomposition stegs iBy induction hypothesis, Theorel B.6
holds for alli < k. We have to consider the following cases:

1. application odecomp.Xbrace incompatibility)

let t9=1[t],...,t}] andt® = I1{t?,... 12}
orlettd = I[{t},... ,t}] andt® = 1{t2,...,t2}

As the braces of? andt® are incompatible, ground instancest®fwill not simulate in ground instances tff
regardless of the substitutions. Thus, the mgstfoh t¢, defined as the union of all simulation unifiers, is
empty. decomp.Ieduces both cases to the constraint skakse By definition, Q(False) = { }, and thus the
theorem is correct.

2. application odecomp.Zleft term without subterms)

e lettd=1{{}} andt® = I{tzf,.“,tﬁ} or
lettd=1{{ }} andt® =I[tZ,...,t2] or
lettd =I[[]] andt® =1[t?,...,t2] andn > 1
Thent simulates irt® for every grounding substitution settSf Thus, the mgsu dfl in t€ is the set of all
all-grounding substitutionslecomp.2educes all three casesToue, and with the definition o€(True)
as the set of all all-grounding substitutions, the theorgoirect.

Sebastian Schaffert 231

B.2. PROOF OF THEOREM 8.6

o lettd=1{} andt® = I{tzf,...,t,%} or
lettd =1{ } andt® =1[t%,...,t3] or
lettd =[] andt® =1[tZ,...,t2] andn > 1
Thent9 never simulates in ground instancest9fbecause there exists no index bijective function from
()to (t2,...,t2) for n> 1. Thus, the mgsu dfl in t¢, defined as the union of all simulation unifiers, is
empty.decomp.2educes all three cases to the constraint Stalee By definition,Q(False) = { }, and
thus the theorem is correct.

o lett9=I{}andt®=1{}or
lettd=1{} andt®=I[] or
lettd=1[] andt® =[]
Thentd simulates int® for every substitution set. Thus, the mgsut®in t¢ is the set of all all-grounding
substitutions.decomp.Zeduces all three casesToue and with the definition of2(True) as the set of
all all-grounding substitutions, the theorem is correct.

3. application odecomp.3general decomposition)
Lettd = 1{{t},...,t1}} and lett® = 1{t2,...,t2}.
The mgsu oftY in t¢ is the sets of all all-grounding substitutiong such thato(t9) < a(t®). According
to Definition[Z3, it thus holds that there exists a total,eidnjective, and position preserving mapping
from SubT(o(t%)) = (t1,...,t}) to SuUbT(a(t%)) = (t2,...,t3) such that for eaclft € SubT(a(t9)) holds that
t! < o(t!), and= consists of all suclo.
Application of decomp.30 t <, t¢ yields C = /e, A1<i<mt' <u 7(t!). Thus, as by definitionQ(C) =
Q(VC') =UQ(C"), Q(C) substitutions for all possible total, index injective, amasition preserving functions
1. Consider now som€’ = A;j<mt! <y 7(tt) for some mappingt. By definition, we know thaf2(C') =
Ni<i<n Q! <y m(tl)), and by induction hypothesis, eagft! <y m(t!)) is the most general simulation unifier
of tF in m(t!). Q(C') is thus the maximal all-grounding substitution set that &naulation unifier for each of
thet! in ri(tl). Thus,Q(C) = UQ(C') is the maximal all-grounding set that is a simulation uniferany of
the mappingsr, and as the labels of andt® match,Q(C) is the most general simulation unifiertfin t°.
The argumentation is identical in the other cases with themgton of the chosen set of functiofis which is
obviously correct.

4. application ofdecomp.4label mismatch)
Lettd andt® be terms such that the labels mismatch. Hence, ground gegaft9 will not simulate in ground
instances of° regardless of the substitutions. Thus, the mgstf @f t¢, defined as the union of all simulation
unifiers, is emptydecomp.Teduceg <, t¢ to the constraint storBalse By definition,Q(False) = { }, and
thus the theorem is correct.

5. application ofvar (— elimination)
Lettd =var X —t! and lett® =t2.
An all-grounding substitution sét has to satisfy the following conditions to be a simulatioifienof t9 in t¢:

(@) = must be applicable tear X — t1, i.e. it may only contain substitutiors for which holds thatr(t) <
o(X)
(b) it must be a simulation unifier ofar X in t2, i.e. for every substitution set in X holds thaio (X) < o (t?)

We now show that the evaluation of the ruar satisfies both conditions and is maximal, i.e. a most general
simulation unifier oft9 in t¢. var reduceg? <, t¢ to a constraint stor€S=t1 <, tZ Atl <, X AX < t2. By
definition,
Q(CY =Q(tt <yt?) N Q(tr <y X) N Q(X =y t?)
N—_———

—_— —
A B C

e Bis the mgsu of! in var X; thus, for everyo € B holds thato(t1) < o(X)
e Cis the mgsu ofar X anda(t?)

BN C describes exactly the mgsu tin t¢, because it fulfils the requirements (1) and (2) given aboxkisa
maximal, becausB andC are maximal.

As, by induction hypothesis! <, t2 computes the mgsu ot in t2, ANBNC = BNC (i.e.t! <, t2 does not
remove further substitutions froBiNC). Note that this corresponds to the fact ttfai,, t2 is merely used to
improve the evaluation performance.

Thus, the theorem is correct for this case.

232 Sebastian Schaffert

APPENDIX B. PROOFS

6. application odesc(descendant elimination)
Lettd =desctand let® = I{t?,...,t3} ort® =1[t?,...,t2] (n > 0).
A substitution seE is then a simulation unifier if for every € S holds that there exists a subtetfof o(t°)
such thato(t) < td, and it is the mgsu, if it is the union of all all-grounding silation unifiers that adhere to
this restriction.
Application of the ruledescreduces the constraitft <yt toC =t <, t°Vv /1< desc t<yt?. Thus,

QC)=Q(t =t U |J Q(desct=yt?)

1<i<n
A

B

By induction hypothesisi is the mgsu of =<, t¢, andB is the union of the mgsus ¢ <, ti2 for some subterm
t? of t°. By Definition[Z3,Q(C) is thus the maximal set of all-grounding substitutions tsa simulation
unifier oft% in t© and thus the mgsu.

7. application oimemoingtermination in case of constraints that have already bestetd)
It suffices to consider the rurmemoingthe rulederefis trivially correct, it simply implements the definition of
dereferencing in ground query term graphs (cf. Definifig} 4.
In the following, lett® be some construct term of the foris@! {tZ, ... ,t2} orid@I[t?, ...,t2] such that at least
one of thai2 contains a reference td, i.e.t® contains at least one cycle. It is not necessary to consttierts
without identifiers or without cycles, because the theoreldsfor these as shown in the rest of this proof.
We already know that simulation unification is sound and detegfor all rule applications besidesemoing
We have to show that thmemoingrules have no influence on the resulting set of all-groundimgstitutions,
i.e. with memoing, we get the same result as without memaing (nfinite application of decomposition rules).

e lett9 = desct a substitution seX is the mgsu o9 in t€, if it contains exactly the substitutiors for
which holds thao (t%) < o(t°).
Evaluation ofC = t9 <, t¢ for the first time yieldsC =t <, t®V V/1<jpdesc t=y t? by applying the
rule desc Assume that further evaluation 6feventually yields a constraint store (in DNF) of the form
C1V---VG V---VCnyfor somem> 1, and thaC; again is of the formd <, t¢, because thdesc t=,, t?
leading toC; contains a cyclic reference td. Evaluatingtd < t® again then obviously does not yield
substitutions that are not already inducedly ---VCi_1 VCi11 V- -V Cn, and thus replacinG; by the
neutral element for disjunction has no influence® <, t°). Simulation algorithm is thus sound and
complete in this case.

o lett9 be an arbitrary query term of the foria/ @t

Decomposition with any of the rules excagascreducegd <, t¢ to either an atomic constraint or to a
disjunction of conjunctions (in DNF), i.e.

C=C11A---ACip V---VCig A+~ ACin V---VCm1 A+ ACin,

Assume now that any of tH@ ; is again of the form9 <, t® because some subtermst$fndt® contain
cyclic references t@’ andid, i.e. evaluation o€; ; would again yielcC. As in the previous case, no new
information would be added, and thus replao@ag by the neutral element for disjunctiof{ue) has no
influence orQ(t% <, t). Simulation algorithm is thus sound and complete in thiecas

Sebastian Schaffert 233

B.3. PROOF OF LEMMA 8.7

B.3 Proof of Lemma 8.7 (Soundness and Completeness of the Bac
ward Chaining Algorithm)

LemmalB1

Let P be a negation-free, grouping stratified Xcerpt programavitigoals, leMp be the fixpoint of, and
let Q be a negation-free query (composed of one or more query Yelftise evaluation of Q) terminates
with a constraint stor€S thenX = Q(CS9) is a maximal substitution set wittp = Z(Q).

Proof. The proof is done by induction over the numimesf unfolding steps (applications of reduction rules) that a
performed until a constraint sto@Sinitialised byCS= (Q) is completely solved (i.e. no further rules are applicable)
Induction Base. Let firstn = 1, i.e. there is exactly one query term unfolding step. TR@&ontains only data terms,
andQ is of the formt% (a query term), i.e. the constraint store is initialisedMdS == (t9).

Application of query term unfolding thus redudg$ to

Cs =tI=<utfv...vtd=<,td

for all data termg® € P (1 <i <n).

As simulation unification is sound and complete andi?rme already ground, the algorithm computes a constraint
store representing substitution sBis= Q(t9 <, t{),..., %, = Q(t9 <y t) such tha\ ;5. o(t9) <t4 holds for every
tid (1 <i <n)(*). Note that some of th&; may be empty, in which case it is not required that a grountdunte of the
query term simulates into the data telri‘i‘n

By definitiondZB anfL7Ap contains all data termt§ that are inP. Thus,Mp = t¢ for everytd, and with ()
holds thatVip = Z(Q), whereX =3, U---UX, = Q(CS;). As P only contains data termbp only consists of the data
terms inP. Sincet is unified with every data term iR, Z is also a maximal substitution set withp = 2(Q).

Induction Step. Now assume that the number of query term unfolding steps fanstraint store initialised with
CS = (Q) is n. By the induction hypothesis, LemifiaB.7 holds for all deidres of lengthk < n.

1. Suppos® is of the formand{Qs,...,Qm} withm> 2.

It suffices to consider the case= 2, i.e.Q = and{Q1,Q>}, as it is always possible to transfor@to an
equivalent query of the formnd{Q1,and{Qo,...,Qm}}.

Unfolding (Q) to (Q1) A (Qy) requires one unfolding step. Hence, solving each of(@e requiresk; query
unfolding steps with < n. By induction hypothesidylp =21 (Q1) andMp = 25(Q2) with 3 = Q((Q1)) and
2 =Q((Q1)), andX; andX, are maximal.

Itis to show that
Z=0((Q1) A {Q2)) =Q(Q1)NQ(Q2) =21NZp

is the maximal substitution set witp |= Z(Q).

We first show thaMp = Z(Q), i.e.Mp = Z(Q1 A Qy), i.e.Mp |=X(Q1) andMp = Z(Q,). For eacho € X holds
thato € 23 ando € 2, becaus& = 21 N3y AsMp |=21(Q1), it also holds thaMp = 2(Q1). Similar for Q.

We then show thaX is also maximal. Assume thatis not maximal. Then there exists a substitutig X such
thatMp = 0(Q), i.e.Mp = 0(Q1) andMp |= 0(Q2). As X1 andX, are maximal forQ; andQ, by induction
hypothesisg € Z; andg € Z,. Contradiction withx =31 N3, ando ¢ X 4.

2. Suppos@&) is of the formor{Qq,...,Qm} with m> 2.

Unfolding (Q) to (Q1) V (Qy) requires one unfolding step. Hence, solving each of(@e requiresk; query
unfolding steps with < n. By induction hypothesisMp |= 2;(Q;) with Zj = Q(solv(Q;))) for eachi with
1<i <m, and each of thg; is maximal (*).

Also, by definition of the solution s&(-), it follows trivially that
Z=0((Q1) V---V(Qm)) = Q((Q1)) U---UQ((Qn)y =X U---UZm
With (*), it is easy to see tha&f = > U--- U Xy is a maximal substitution set witlp = 2(Q).
3. Suppose® is of the formt9, i.e. a query term. Application of the query term unfoldingertoCS, yields
Cs =V (=t @Q) v Voo t=tA@) vV =t
t6—Q € Pgrouping t6—Q € Pnongrouping tdep

Obviously, none of théQ') requires more than — 1 unfolding steps to solve. Hence, for each rfle- Q/
the algorithm computes a constraint stGg such thaty = Q(Cq) is by induction hypothesis a maximal set

234 Sebastian Schaffert

APPENDIX B. PROOFS

with Mp |= 2 (Q'). By Definition[Z3,Mp thus contain&y (t€) for the construct terrtf corresponding t@ .
Also, Mp does not contain ground instancesbeyond those iXgy (t%), becaus&y is maximal forQ (*).
Corresponding to the structure 615, we now partitionMp into three (possibly overlapping) set;, Mng,
and My, whereMg contains the data terms resulting from rules with groupigg contains the data terms
resulting from rules without grouping, at; contains the data terms occurringdnTo show that the algorithm
computes a maximal substitution &awith Mp |= %(Q), it suffices to show that the algorithm computes maximal
substitution set3g for Mg, Zng for Mng, andX4 for Mq.

(@) ConsideCS = Vico ePypmgt? Sut | (Q)). Itis to show that the algorithm computes a constraint
storeCq = D1V -+ V Dy from CS; such thatq = Q(Cy) is a maximal substitution set wittlg |= 4(t%),
and eactD; corresponds to the evaluation of a dependency constraihiedorm (t4 <, t¢ | (Q/)) in
Cs.

Lett® «— Q be one of the rules iffyupinp 1-€. With grouping construct. Simplification of the dependy
constraint(td <, t¢ | (Q')) yields V“'JGZQ' (tc)tq <ut¢ for the substitutiorey = Q((Q’) resulting from
the evaluation ofQ’). As simulation unification is correct, the algorithm comgaut substitution seb
such that each ground instartfec ®(t9) simulates into a ground instantee ¥'(t°). Thus,Mg = ®(t9)
for every suchb, and in particular fokg = |J® holds thatVg |= Zg(t9).

As Mg does not contain data terms not produced by one of the rulBgip., g is also maximal in that

respect.
(b) ConsideCg/ = VtCHQ’eTnongmupmgtq =utA(Q). Itis to show that the algorithm computes a constraint

storeCng such thang = Q(Cng) is a maximal substitution set withng = Zng(t9).

Lett® — Q' be one of the rules ifPyng i-€. Without grouping construct. Evaluation of this rulelgs
D =t9=,t°A(Q'). LetC be the constraint store resulting from the unificatibr, t°, and letCq be the
constraint store resulting from the evaluation(@f). By induction hypothesis, it holds th&ty induces
a substitution sefy = Q(Cq) such thatMp = 2o (Q') andZy is maximal. Also,Q(C) is the most
general simulation unifier df! in tC.

By definition, Mp contains all ground instances ©5fby ¢, and thus, as® does not contain grouping
constructs, all ground instancestbfby 2y NQ(C). As Q(C) is a simulation unifier of9 in t€, it thus
also holds thatb = Q(D) = Q(C) N Q(Cq) is a substitution set witMp |= ®(t9), and® is maximal,
becaus€)(C) is the most general simulation unifier a@dCq) is maximal by induction hypothesis.

(c) ConsidelCS’ = V/acpt? <u td. It is to show that the algorithm computes a constraint sfgreuch that
%4 = Q(Cy) is @a maximal substitution set wittdy = Zq(t9).
Like Induction Base

Sebastian Schaffert 235

B.3. PROOF OF LEMMA 8.7

236 Sebastian Schaffert

LIST OF EXAMPLES

Example2.1 XMI DocumentPrologue 22
Example 2.2 XML Elememts v vt o e e e e 23
Example23 EmptyFlemehts. 23
Example24 CharacterDBta 23
Example 2.5 CDATA Sectiohs o o i e 23
Example26 XML Attributds 24
Example2.7 xmilang | 24
Example 2.8 ENtiti®S 0 24
Example 2.9 Character Referefices o o i i e 25
[Example 2.10 External Entities with Binary Confent o . . . o v o o v v i 25
Example2.11 DTD o o 26
Example2.12 Relax NG 28
Example 2,13 IDIADRHF o e e 29
Example 214 XMI Namespades 30
i SSION 39
Example 310 e e 43
Example32 UnQlL 57
Example33 XML-Ql 58
58
64
66
66
Example 44 Namespacesin XCBIPt oo vttt e e 68
Example 45 Total/Partial Term Specifications« cieie o e e e 70
Example 46 Ordered/Unordered Term Specifications - - o o o v o v v v v v i i 70

Example 49 Substitutions 72
[Example 4.10 Pattern Restrictibns

Example 4.1

B.3. PROOF OF LEMMA 8.7

Example 424 90
Example 423 e 91
Example 424 91
Example 429 e 92
xample 4.26 ouping Con CtS . . e e e 93
Example 427 e 94
xample 4,28 EXPICIt GrOUPING - o v v v v e e e e 96
Example 429 e 97
Example 430 e 97
Example 431 e 98
xample 4 hopping Cart: Adding the VAT and Computin@®ot. 99
Example 433 e 100
xample 4.34 oupingand Optignal e e 101
Example 439 e 103
Example 430 e 104
Example 437 e 106
xample 6 Polarities withina TeFm e 135
Example 6.2 PolaritiesinaRble e 135

Example 81 Consistency Rlile L e 162

Example 82 Transitivitv RUle e 162

238 Sebastian Schaffert

constraint_I34=1%9
constraint storel 58
construct tern.31=102
functions and aggregatios]99
grouping BRES_TOTTID9
all,
explicit,[38 10D
nesting[@b
some[8B
sorting [I6
optional subterm§ PE=T02
variables[3P
construct term formulal44

construct-query rul§_TDP=TI06

data term[{@4=89
attributes[Gb
namespaceE H7169
reference{ 86
subterm specificationE165
dependency constraili 181380

fixpoint, 154, I53-EI5H 135
interpretation[-I34154
operatofTp, [[54,154
stratifiable programg,54

folded queryseequery constraint

goal [ITb

ground query term79
graph induced by79
predecessors di. 79
successors di. T80

interpretation 151, [[51 [I5h

mapping
completable82
index bijective 82,[I51
index injective 82,[I51
index monotonic82, &1
position preserving32
position respecting2

239

INDEX

model, 151, I51EI5B

negation

query[8D

subtermseequery term, subterm negation

query[BBETIL
query constrainE_IH8 _Th281
query term[GHEA8
descendani 1
incomplete term specificatiop 9371
optional subterm§T1
ordered subterm specificatiq] 70
partial subterm specificatiof,J69
position specificatiol 18- 4
regular expressiong 116378
subterm negatiofl. YE75
total subterm specificatiol. 159
unordered subterm specificatifa] 70
variables[71E73
label 72
namespac€_¥2
pattern restrictiod_12
position [ZBTOO
query term formulal44, [IZ1 15D

range restrictedness36,[[33-E13Y

Relax NG2Z¥

rule chainingCIOI_T1 8119
recursionCIAL T2 L TPE 126

satisfaction]151, IR1EI5B
Semantic Web4,
semistructured datd6-18 BIH32 3B
semistructured expressidn] 163, 31,[33
graph induced b{. 1738
subexpressiofi 18
simulation[ZD
ground query term83
minimal,40
on rooted graph<l0
simulation constrainE_T$8
simulation equivalenc&7, 128 [TZB

INDEX

simulation ordel 37
simulation unificationl_I94=1¥ 9

soundness and completen€ss] £79] 230

simulation unifier165
most generall 66, [[79 23D
standardisation apat37
stratification(IEL3 2
grouping,138 [[33£12D
negation 141, IZ0-ETZ1
substitution 146
application[TZHEI30
to a construct terni.49
to a query term147
to a query term formulal,50
composition of _TZ6
equality of [T4b
for a query term_146
grounding,146
restriction of [IZb
subset o .146
substitution set]46,[183
application 146 [IZ1-EIRD
composition of146
extension of_147
grounding,146
grouping of,148 163
maximal,147
restriction of (T4¥

term formula,144

term sequenc&0
concatenatiol 31
subsequencEB1

UnQL,=2

XMAS,
XML, 20-31
attributes[2l
character datf—P3
documeni22
valid,[23
well-formed [ZB
document ordef23
document prologu& P2
document type definitiorg5-27

DTD, seedocument type definition

elementd 22

entities[21

ID/IDREF,[I03
XML-QL,
XPath [ZbEZB
XQuery[R1ERb
XSL/XSLT, E8E=1

240

Sebastian Schaffert

BIBLIOGRAPHY

[1] JTC 1/SC 34. Standard Generalized Markup Language (SGMinternational Organization for
Standardization (1ISO), 1986. ISO 8879:1986.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wien€he Lorel Query Language for
Semistructured Datdnternational Journal on Digital Libraries1(1):68—-88, April 1997.

[3] Serge Abiteboul. Querying Semi-Structured DataPceedings of ICD;Tpages 1-18, 1997.

[4] Serge Abiteboul, Peter Buneman, and Dan Su®ata on the Web. From Relations to Semistruc-
tured Data and XML Morgan Kaufmann, 2000.

[5] A. M. Alashqur, S. Y. W. Su, and H. Lam. OQL: A query langeggr manipulating object-oriented
databases. IProceedings of 15th International Conference on Very Ldbgga Bases (VLDB)
Amsterdam, 1989.

[6] ANSI. Database Language SQL (Structured Query Languag#99. ISO/IEC 9075:1999.

[7] Chutiporn Anutariya, Vilas Wuwongse, and Vichit Watggailin. An Equivalent-Transformation-
Based XML Rule Language. IRroceedings of the International Workshop on Rule Markup-La
guages for Business Rules on the Semantic Web (RuleV&&2linia, Italy, June 2002. Asian Insti-
tute of Technology.

[8] Krzysztof Apt, Howard Blair, and Adrian Walker. TowardsTheory of Deductive Knowledge. In
Jack Minker, editor-oundations of Deductive Databases and Logic Programpihgpter 2, pages
89-148. Morgan Kaufmann, 1988.

[9] Krzysztof Apt and Roland Bol. Logic Programming and Ne&ga: A Survey. Journal of Logic
Programming 19/20:9-71, 1994.

[10] N. Bassiliades and I. Vlahavas. Intelligent Queryirighieb Documents Using a Deductive XML
Repository. In2nd Hellenic Conference on Atrtificial Intelligence (SET0B2), Thessaloniki,
Greece, April 2002.

[11] Robert Baumgartner, Sergio Flesca, and Georg Gottldie Elog Web Extraction Language. In
Robert Nieuwenhuis and Andrei Voronkov, editoPspceedings of the 8th International Confer-
ence on Logic for Programming, Atrtificial Intelligence, aRéasoning (LPAR 2001)NCS 2250,
Havana, Cuba, December 2001. Springer-Verlag.

[12] Robert Baumgartner, Sergio Flesca, and Georg Gottidbual Web Information Extraction with
Lixto. In Proceedings of the 27th International Conference on Vengé®ata Bases (VLDB'0])
Rome, September 2001.

[13] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XMéntic General-Purpose Language. In
Proceedings of the ACM International Conference on Fumai&rogramming2003.

241

BIBLIOGRAPHY

[14] Sacha Berger. Conception of a Graphical Interface foei®ing XML. Master’s thesis, Institute for
Informatics, University of Munich, 2003. (Diplomarbeit).

[15] Sacha Berger, Francois Bry, and Sebastian Schaffeiisual Language for Web Querying and
Reasoning. IProceedings of Workshop on Principles and Practice of S¢im&ieb Reasoning
(PPSWR’03)LNCS 2901, Mumbai, India, December 2003. Springer-Verlag

[16] Sacha Berger, Francois Bry, Sebastian Schaffert, @mdstoph Wieser. Xcerpt and visXcerpt:
From Pattern-Based to Visual Querying of XML and Semistuited Data. InProceedings of the
International Conference on Very Large Databases (VLDR'&&rlin, Germany, September 2003.

[17] Alexandru Berlea and Helmut Seidl. fxt — A TransfornostLanguage for XML Documentgour-
nal of Computing and Information Technology, Special Issu®omain-Specific Languagez001.

[18] Tim Berners-Lee.Weaving the Web — The Past, Present and Future of the World Web by its
Inventor Orion Publishing Group, London, UK, 1999.

[19] Tim Berners-Lee, James Handler, and Ora Lassila. Theas#c web. Scientific AmericanMay
2001.

[20] Wolfgang Bibel. Automated Theorem Provinyieweg Verlag, Wiesbaden, second edition, 1987.

[21] Francois Bry and Peer Kroger. A Computational Bigldgatabase Digest: Data, Data Analysis,
and Data ManagemerRistributed and Parallel Database43(1):7-42, 2002.

[22] Francois Bry, Dan Olteanu, and Sebastian Schafferau@ing constructs for semistructured data.
In Proceedings of WebH2001 at DEX)¥unich, Germany, September 2001.

[23] Francois Bry and Sebastian Schaffert. A Gentle Inticttbn into Xcerpt, a Rule-based Query and
Transformation Language for XML. IRroceedings of the International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web (RuleM&&2linia, Italy, June 2002. (invited
article).

[24] Francois Bry and Sebastian Schaffert. Towards a Datile Query and Transformation Language
for XML and Semistructured Data: Simulation Unification. Pnoceedings of the International
Conference on Logic Programming (ICLP'QZ)NCS 2401, Copenhagen, Denmark, July 2002.
Springer-Verlag.

[25] Francois Bry, Sebastian Schaffert, and Andreas Saden A contribution to the Semantics of
Xcerpt, a Web Query and Transformation Languagd?risceedings of the 18th Workshop Logische
Programmierung (WLP04LNCS, Potsdam, Germany, 2004. Springer-Verlag.

[26] Francois Bry. An Almost Classical Logic for Logic Pn@gnming and Nonmonotonic Reasoning. In
Proceedings of Workshop on Paraconsistent Computatioogid (PCL'2002) Copenhagen, Den-
mark, July 2002.

[27] Francois Bry. XML and Databases. Lecture Notes, 2002.
[P www.pms.iImu.de/publikationen/FLN_Xmidata bases

[28] Francois Bry and Sebastian Schaffert. An EntailmentReasoning on the Web. FProceedings
of Workshop on Rules and Rule Markup Languages for the WdbNR03), LNCS 2876, Sanibel
Island, Florida, USA, 2003. Springer-Verlag.

[29] Francois Bry and Stephanie Spranger. Towards a Midtendar Temporal Type System for (Seman-
tic) Web Query Languages. In Hans-Jirgen Ohlbach and S8ab&chaffert, editord?roceedings
of the International Conference on Logic Programming (I8, LNCS 3208, St. Malo, France,
September 2004. Springer-Verlag.

[30] P. Buneman, S. Davidson, and D. Suciu. Programmingtoacts for unstructured data. DBLP,
1995.

242 Sebastian Schaffert

http://www.pms.ifi.lmu.de/publikationen/#LN_xmldatabases

BIBLIOGRAPHY

[31] Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL: Aruanguage and Algebra for
Semistructured Data Based on Structural RecursitribB Journaj 9(1):76-110, 2000.

[32] Peter Buneman, Vladimir Gapeyev, Haruo Hosoya, Mithain, Benjamin Pierce, Jérdbme
Vouillon, and Philip Wadler. XDuce: A Typed XML Processinghguage. Project Website.
[Pfp7/xauce.sourcerorge.net__

[33] Stefano Ceri, Ernesto Damiani, Piero Fraternali, 8tefParaboschi, and Letizia Tanca. XML-GL:
A Graphical Language for Querying and Restructuring XML Doents. InSistemi Evoluti per
Basi di Dati pages 151-165. 1999.

[34] Don Chamberlin, Peter Fankhauser, Massimo Marchaod,Jonathan Robie. XML query use cases.
W3C Working Draft 20, December 200RTD:/TWWW.W3.0rg/ T RIXMIQUETy-USe-Ccases]

[35] Don Chamberlin, Jonathan Robie, and Daniela FloresQuilt: An XML Query Language for
Heterogeneous Data Sources. Rroceedings of Third International Workshop on the Web and
Databases (WebDB20Q@)olume 1997 of NCS Springer-Verlag, 2000.

[36] Sudarshan Chawathe, Hector Garcia-Molina, Joachimider, Kelly Ireland, Yannis Papakon-
stantinou, Jeffrey D. Ullman, and Jennifer Widom. The TSIM\project: Integration of heteroge-
neous information sources. I6th Meeting of the Information Processing Society of Japages
7-18, Tokyo, Japan, 1994.

[37] Weidong Chen and David S. Warren. Tabled Evaluatioh Wiglaying for General Logic Programs.
Journal of the ACM43(1):20-74, 1996.

[38] Yi Chen and Peter Revesz. Cxquery: A novel xml query leage.

[39] James Clark and Makoto Murata. RELAX NG Specification
[htip:Trelaxng.org/spec-Z00 11203 . niml] 2001. ISO/IEC 19757-2:2003.

[40] K.L. Clark. Negation as Failure. In H. Gallaire and J.nWer, editorsl.ogic and Databasepages
293-322. Plenum, New York, 1978.

[41] E. F. Codd. A Database Sublanguage Founded on the &adtCalculus. In E. F. Codd and A. L.
Dean, editorsProceedings of 1971 ACM-SIGFIDET Workshop on Data DesdoriptAccess and
Control, San Diego, California, November 11-12, 19@ages 35-68. ACM, 1971.

[42] E. F. Codd. Relational Completeness of Data Base Sghkges.In: R. Rustin (ed.): Database
Systems: 65-98, Prentice Hall and IBM Research Report RJS&7 Jose, Californial972.

[43] Jan Van den Bussche, Stijn Vansummeren, and Gottfrisd&h. Towards practical meta-querying.
Technical report, University of Limburg, Belgium, Octol2803.

[44] Steven DeRose. Markup Overlap: A Review and a Horse. -
treme Markup Languages 2004 Montréal, Canada, August 2004. IDEAlliance.
PTEDTWWw.EXTrememarkup.comiexureme/Z004;___]

[45] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alavy, and Dan Suciu. XML-QL: A Query
Language for XML, 1998. W3C submission.

[46] Chris Dornan, Isaac Jones, and Simon Marlow. Alex User Guide
PEp7www.haskel.orgralexidoc/nimyalex.nimi]

[47] Martin Erwig. A Visual Language for XML. IMEEE Symp. on Visual Languaggsmges 47-54,
2000.

[48] Richard Fikes, Patrick Hayes, and lan Horrocks. OWL-QIA Language for Deductive Query
Answering on the Semantic Web. Technical report, KnowleSiggtems Laboratory, Stanford Uni-
versity, Stanford, CA, 2003.

Sebastian Schaffert 243

http://xduce.sourceforge.net
http://www.w3.org/TR/xmlquery-use-cases
http://relaxng.org/spec-20011203.html
http://www.extrememarkup.com/extreme/2004/
http://www.haskell.org/alex/doc/html/alex.html

BIBLIOGRAPHY

[49] Jeffrey E. F. FriedIMastering Regular Expression®’'Reilly, 2nd edition, 2002.

[50] Thom Frahwirth. Constraint handling rules. In A. P&k, editor,Constraint Programming: Basics
and Trendsvolume 910 oL.NCS Springer-Verlag, Berlin, March 1995.

[51] Thom Frihwirth and Slim Abdennadhegssentials of Constraint Programmin@pringer-Verlag,
Heidelberg, 2003.

[52] Norbert Fuhr and Kai GroRjohann. XIRQL — An ExtensionX@L for Information Retrieval. In
Proceedings ACM SIGIR 2000 Workshop on XML and Informatitmi&/al, 2000.

[53] C. F. Goldfarb, E. J. Mosher, and T. |. Peterson. An anigstem for integrated text processing. In
Proceedings of the American Society for Information Sa@gwalume 7, 1970.

[54] R. Goldman, S. Chawathe, A. Crespo, and J. McHugh. Adstahtextual interchange format for
the object exchange model (oem). Technical report, Stdridaiiversity, October 1996.

[55] Volker Haarslev and Ralf Moller. RACER System Destigp. In International Joint Conference
on Automated Reasoning (IJCAR’200%)ena, Italy, June 2001.

[56] Monika R. Henzinger, Thomas A. Henzinger, and Peter @pké. Computing Simulations on Finite
and Infinite Graphs. Technical report, Computer Scienceaiexent, Cornell University, July 1996.

[57] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ulimamtroduction to Automata Theory, Lan-
guages, and ComputatioAddison-Wesley, second edition, 2001.

[58] I. Horrocks. FaCT and iFaCT. In P. Lambrix, A. Borgida, Menzerini, R. Mdller, and P. Patel-
Schneider, editorgroceedings of the International Workshop on Descriptiogits (DL'99) pages
133-135, Linkdping, Sweden, 1999.

[59] I. Horrocks, U. Sattler, and S. Tobies. Practical reéisg for very expressive description logics.
Logic Journal of the IGPL8(3):239-263, 2000.

[60] IEEE / The Open Group. POSIX Regular Expressions
The Open Group Base Specifications Issue 6 edition, 2001.
D-/TWWW.0PENQroup.org/onnnepuns, ase €1S/Xbd_cnhapUd.nim
[61] IETF. Internationalized Resource Identifiers (IRIs)October 2003. Draft 5,
D:JTWWW.W3.0rg/Tnternationaniri-ediyaraii-auer ST-IN-U5.1X

[62] R. Durbin J. Thierry-Mieg. Syntactic definitions foreatlACeDB data base manager. Technical
report, MRC-LMB xx.92, MRC Laboratory for Molecular BiolggCambridge, 1992.

[63] Rick Jelliffe. The Schematron Assertion Language .1.5 Academia
Sinica Computing Centre, 2002. Language Specification,
[p7IXmI-asce.neresource/scnematon/scnematronZ_____———— 0oo.nml_]

[64] Gregory Karvounarakis, Sofia Alexaki, Vassilis Chojshides, Dimitris Plexousakis, and Michel
Scholl. RQL: A Declarative Query Language for RDF. The Eleventh International World Wide
Web Conference (WWW’'Q2jonolulu, Hawaii, USA, May 2002.

[65] Howard Katz, editor. XQuery from the Experts: A Guide to the W3C XML Query Language
Addison-Wesley, 2003.

[66] Stephan Kepser. A Proof of the Turing-completeness @&LX and XQuery. In
Extreme Markup Languages 2004 Montréal, Canada, August 2004. IDEAlliance.
D WWw.exiTememarkup.com/exutemerZooa, |

[67] Pekka KilpelainenTree Matching Problems with Applications to Structuredt T@atabases PhD
thesis, Dept. of Computer Sciences, University of Helsihkivember 1992.

244 Sebastian Schaffert

http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap09.html
http://www.w3.org/International/iri-edit/draft-duerst-iri-05.txt
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://www.extrememarkup.com/extreme/2004/

BIBLIOGRAPHY

[68] Laks V. S. Lakshmanan, Fereidoon Sadri, and lyer N. &manian. A Declarative Language for
Querying and Restructuring the Web. 6th IEEE Intl Workshop on Research Issues in Data En-
gineering — Interoperability of Nontraditional Databasgstems (RIDE-NDSpages 12-21, New
Orleans, Louisiana, February 1996.

[69] Michael Ley. Prolog clause indexing (overview). websi 2004.
PR www.informatik.uni-trier.de7 Teyrap/prologn ndexing.nimi__}

[70] Mengchi Liu. A Logical Foundation for XML. IfProceedings of the 14th International Conference
on Advanced Information Systems Engineering (CAISE 10MCS 2348, Toronto, Canada, 2002.
Springer-Verlag.

[71] J.W. Lloyd. Foundations of Logic Programmingsymbolic Computation. Springer-Verlag, second,
extended edition, 1987.

[72] B. Luddscher, Y. Papakonstantinou, and P. VelikhovBref Introduction to XMAS. Technical
report, Database Group at University of California, Sangbijel 999.

[73] David Maier. Database Desiderata for an XML Query Laaggt InProceedings of QL'98 - The
Query Languages Workshop998 Jiip/www.wi.org/ T ands/ororgsl |

[74] Simon Marlow and Andy GillHappy User Guidgip/Www.nasKkel-org/nappy/gocimmrmappy-nimr 1

[75] Wolfgang May. A Logic-Based Approach to XML Data IntegratioRhD thesis, Albert-Ludwigs-
Universitat Freiburg i.Br., April 2001. Habilitationdsft.

[76] Holger MeussLogical Tree Matching with Complete Answer Aggregates fariBving Structured
DocumentsPhD thesis, University of Munich, 2000.

[77] Robin Milner. An Algebraic Definition of Simulation beeen Programs. Technical Report CS-205,
Computer Science Department, Stanford University, 19%anfSrd Aritifical Intelligence Project,
Memo AIM-142.

[78] Kevin D. Munroe and Yannis Papakonstantinou. BBQ: AWdkinterface for Integrated Browsing
and Querying of XML. InvDB, 2000.

[79] Dan Olteanu, Tim Furche, and Francois Bry. An Effici&mgle-Pass Query Evaluator for XML
Data Streams. IData Streams Track, 19th Annual ACM Symposium on AppliedpGting,
Nicosia, Cyprus, March 2004. ACM.

[80] Dan Olteanu, Tim Furche, and Francois Bry. Evaluattamplex Queries against XML streams
with Polynomial Combined Complexity. [xlst Annual British National Conference on Databases
Edinburgh, United Kingdom, July 2004.

[81] Dan Olteanu, Holger Meuss, Tim Furche, and Francoig. BiXPath: Looking Forward. In
Proceedings of Workshop on XML Data Management (XMLO#Ntp://www.pms.informatik.uni-
muenchen.de/publikationen/#PMS-FB-2002-4, 2002. $priYerlag LNCS.

[82] The OWL Services CoalitiorOWL-S: Semantic Markup for Web Servidesc 2003.

[83] Yannis Papakonstantinou, Hector Garcia-Molina, aednifer Widom. Object exchange across
heterogeneous information sources. In P. S. Yu and A. L. BnCéditors11th Conference on Data
Engineeringpages 251-260, Taipei, Taiwan, 1995. IEEE Computer Societ

[84] Yannis Papakonstantinou, Michaelis Petropoulos, \@mllis Vassalos. QURSED: Querying and
Reporting Semistructured Data. ACM SIGMOD 2002.

[85] Steve Pepper and Graham MoorXML Topic Maps (XTM) 1.0 TopicMaps.Org, 2001. Top-
icMaps.Org Specificatiofiffp:Twww.Iopicmaps.org/xtim/mndex.ntmi]

Sebastian Schaffert 245

http://www.informatik.uni-trier.de/~ley/db/prolog/indexing.html
http://www.w3.org/TandS/QL/QL98/
http://www.haskell.org/happy/doc/html/happy.html
http://www.topicmaps.org/xtm/index.html

BIBLIOGRAPHY

[86] E. Pietriga, V. Quint, and J.-Y. Vion-Dury. VXT: A Visu@pproach to XML Transformations. In
ACM Symp. on Document Engineerj201.

[87] Teodor Przymusinsik. On the Declarative Semantics edirtive Databases and Logic Programs.
In Jack Minker, editorFoundations of Deductive Databases and Logic Programmihgpter 5,
pages 193-216. Morgan Kaufmann, 1988.

[88] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey eészch on deductive database systems.
Journal of Logic Programming?23(2):125-149, 1993.

[89] Glenn C. Reid, editor.PostScript Language: Program Desigmddison-Wesley, 1988. Adobe
Systems Inc.

[90] Jonathan Robie, Joe Lapp, and David Schach. XML Quenglage (XQL). InProceedings of
QL'98 — The Query Languages Workshdp98.

[91] J. A. Robinson. A Machine-Oriented Logic Based on thesdhation Principle. ACM Journal
12(1):23-41, January 1965.

[92] Sebastian Schaffert. Grouping constructs for semitiired data. Master’s thesis, University of
Munich, April 2001.

[93] Sebastian Schaffert and Francois Bry. Querying thé Weconsidered: A Practical Introduction
to Xcerpt. InExtreme Markup Languages 200Miontréal, Canada, August 2004. IDEAlliance.
D WWw.exiTememarkup.com/exutemerZooa, |

[94] Andreas Schroeder. An Approach to Backward Chainingdarpt (Projektarbeit). Master’s thesis,
Institute for Informatics, University of Munich, 2004.

[95] Andy Seaborne. RDQL — A Query Language for RDF. W3C Menfgmission, January 2004.
PR TWWwW.W3.0rg/SUbmISSIon/RDOLT |

[96] Dietmar Seipel. Processing XML Documents in PROLOG.Pmceedings of the 17th Workshop
Logische Programmierung (WLPQDresden, Germany, December 2002.

[97] Nahid Shahmebhri, Juha Takkinen, and Ceéiherg. Towards Creating Workflows On-the-Fly and
Maintaining Them Using the Semantic Web: The sButler Ptaéetinkoping University. Inl2th
International World Wide Web Conference (WWW 2026D3.

[98] John C. Shepherdson. Negation in logic programmingJdeok Minker, editorfFoundations of
Deductive Databases and Logic Programmiogapter 1, pages 19-88. Morgan Kaufmann, 1988.

[99] Michael Sintek and Stefan Decker. TRIPLE—An RDF Quém§erence, and Transformation Lan-
guage. InProceedings of DDLP’20Q1Japan, October 2001.

[100] Jeffrey D. Ullman.Principles of Database and Knowledge-Base Systems (Vdidihe Computer
Science Press, 1988.

[101] Jeffrey D. Ullman, Hector Garcia-Molina, and Jennifgidom. Database Systems: The Complete
Book Prentice Hall, 2001.

[102] Eric van der VliestRelax NG O’Reilly, 2003.

[103] M. H. van Emden and R. Kowalski. The Semantics of Logi@@rogramming Languagéournal
of the ACM 3:733-742, 1976.

[104] Guido van Rossum et aPython pp7Zmwww.pyhon.oral |

[105] Sofie Verbaeten, Konstantionos Sagonas, and Dannychkeeyg. Termination Proofs for Logic
Programs with TablingACM Transactions on Computational Log®(1):57-92, January 2001.

246 Sebastian Schaffert

http://www.extrememarkup.com/extreme/2004/
http://www.w3.org/Submission/RDQL/
http://www.python.org/

BIBLIOGRAPHY

[106] W3 Consortium.Extensible Stylesheet Language Transformations (X®Ndyember 1999. W3C
Recommendatioifip7Www.w3.0rg/ T RIXST]

[107] W3 Consortium.HTML 4.01: The HyperText Markup Languade999. W3C Recommendation,
Piwwww3.org TRImmiaoy]

[108] W3 Consortium XML Path Language (XPathiINovember 1999aTip/WWwW.W3.0org/ TR/xpan__}

[109] W3 Consortium. XHTML 1.0: The Extensible HyperText Markup Langua?@00. W3C Recom-
mendationipIWWW.W3.org TRIXmmy |

[110] W3 Consortium. XML Linking Language (XLink) June 2001. W3C Recommendation,
P wwww3orgTRIXINK |

[111] W3 Consortium. XML Schema Part 0: Primer 2001. W3C Recommendation,
PpwWw.w3-org/ TRIXmischema-0/ |

[112] W3 Consortium. XML Schema Part 2: Datatypes2001. W3C Recommendation,
PTwWww3org/ TRIXmischema-21_______ |

[113] W3 Consortium.XQuery: A Query Language for XMIEebruary 2001. W3C Recommendation,
[PEpTWwWwW.W3-0rg/ TRIXQUeTy/ 1

[114] W3 Consortium. XQuery 1.0 and XPath 2.0 Functions and Operatoidovember 2003.
o www.w3.org/TRIXpath-functions]]

[115] W3 Consortium.Cascading Style Sheets, level 2 revisiofirébruary 2004. W3C Candidate Rec-
ommendatioripIWwWW-w3.org TRICSSZ0]

[116] W3 ConsortiumExtensible Markup Language (XML) 1 Bebruary 2004. W3C Recommendation,
TR TTWWW-W3.0Tq/ TRTZO04TREC-XMITL-Z00402047]

[117] W3 Consortium. Namespaces in XML 1.1February 2004. W3C Recommendation,
PTpTWWW.w3.0rq/ T RTZ00ATREC-XmI-NamesL1- 200402047 |

[118] W3 Consortium. OWL Web Ontology Languagd-ebruary 2004. W3C Recommendation,
PowWwWww3.org/ TRIow-retll |

[119] W3 Consortium. Resource Description FrameworlEebruary 2004. W3C Recommendation,
D TWww.W3-org/ TRITai-primer/ 1

[120] W3 Consortium. XML Information Set (Second Editigrijebruary 2004. W3C Recommendation,
[PTp:WwWw.W3.0rg/ TRIZO04/REC-XmI-InfoSet- 200402047 1

[121] Malcolm Wallace and Colin Runciman. Haskell and XMLet@ric Combinators or Type-Based
Translation? InProceedings of the International Conference on FunctidPralgramming Paris,
September 199D WWW.CS.york.ac.UKip/Haxmmepgd.niml |

[122] David S. Warren. Memoing for Logic Progran@ommunications of the ACNWarch 1992.

[123] Felix Weigel. Content-Aware DataGuides for Index8gmi-Structured Data. Diplomarbeit/diploma
thesis, Institute of Computer Science, LMU, Munich, 2003.

[124] Artur Wilk and Wtodzimierz Drabent. On Types for XML @ty Language Xcerpt. IRroceedings
of the International Workshop on Principles and Practic&efmantic Web Reasoning (PPSWR’03)
LNCS 2901. Springer Verlag, December 2003.

[125] Andreas Witt. Multiple Hierarchies: New Aspects of &bld Solution. In Ex-
treme Markup Languages 2004 Montréal, Canada, August 2004. IDEAlliance.
[PEpWwWw.extrememarkup.comiexareme/Z0047____—]

Sebastian Schaffert 247

http://www.w3.org/TR/xslt
http://www.w3.org/TR/html401/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml-names11-20040204/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.cs.york.ac.uk/fp/HaXml/icfp99.html
http://www.extrememarkup.com/extreme/2004/

BIBLIOGRAPHY

[126] Jorg Wirtz and Tobias Muller. Constructive digjtion revisited. InKl - Kunstliche Intelligenz
pages 377-386, 1996.

[127] Moshe M. Zloof. Query-by-example: A data base langu3igM Systems Journal 6(4):324—-343,
1977.

248 Sebastian Schaffert

Curriculum Vitae

Finn Sebastian Schaffert was born on 18th of March, 1976 astberg, Bavaria, Germany, and is of
German and Swedish nationality. He attended primary sdhamol 1982-1986 in Siegsdorf and high school
from 1986-1995 in Traunstein, where he received his higbaltegree (Abitur) in 1995. From July 1995
to June 1996 he served in the mandatory military servicese2 82nd Alpine BatallionGebirgspgerbatal-
lion 232) in Berchtesgaden, Germany.

From 1996 to 2001, he studied Computer Science with a min&dofcation Science at the Institute
for Informatics, University of Munich (LMU). He finished higudies with honours and his diploma thesis
was onGrouping Constructs for Semistructured Dajaartly published in an article at DEXA01[P2,
E3]), supervised by Prof. Dr. Frangois Bry. During his $tisgd Sebastian worked in the institute’s system
administration unit, and performed contract work for vasalients including Siemens AG. Also, he is
the main developer of a successful Open Source project. Bafr to 2004, he authored/coauthored 20
articles presented at scientific conferences and gave t&dhtalks.

Since May 2001, Sebastian is working as a research and tgpassistant at the research and teaching
unit for Programming and Modelling LanguagéBMS) at the University of Munich headed by Prof. Dr.
Francois Bry. His research interests include query andnaraming languages, semistructured data, and
the (Semantic) Web.

Sebastian is married and has two daugthers. Besides hissgiofial interests, he likes the mountains
and the sea, where he sometimes goes hiking, sailing, ardbwifing. He is also interested in history.

249

	I Introduction and Motivation
	Introduction
	Motivation
	Outline of this Thesis
	Design Principles of Xcerpt
	Referential Transparency and Answer Closedness
	Answers as Arbitrary XML Data
	Pattern-Based Queries
	Incomplete Specification of Query Patterns
	Rules
	Forward and Backward Chaining
	Separation of Querying and Construction
	Reasoning Capabilities

	Data Representation on the Web
	Semistructured Data
	Traditional Database Systems
	Semistructured Data
	Other Languages for Representing Semistructured Data

	XML -- the Extensible Markup Language
	Markup Languages
	A Generic Markup Language for the Web
	Anatomy of an XML Document
	XML Schema Languages
	XML References: ID/IDREF
	XML Namespaces

	XML, Semistructured Expressions and Semistructured Data
	Three Scenarios for Querying Semistructured Data
	Student Database
	Bookstore
	Document-Centric: PhD Thesis

	Graph Representation of Semistructured Data
	Rooted Graph Simulation -- A Similarity Relation for Rooted Graphs

	Web Query Languages
	Database vs. Web Query Languages
	Desirable Characteristics of Web Query Languages
	Existing Web Query Languages
	XPath
	XSL/XSLT
	XQuery
	Survey over other Web Query Languages

	II The Language Xcerpt
	Xcerpt
	Two Syntaxes
	Data Terms: An Abstraction for Data on the Web
	Term Specifications
	References
	Attributes
	Namespaces

	Query Terms: Patterns for Selecting Data
	Incompleteness
	Term Variables, Label/Namespace Variables and the -Construct
	Position Specification and Positional Variables
	Subterm Negation: without
	Regular Expressions

	Query Evaluation: Ground Query Term Simulation
	Ground Query Terms and Ground Query Term Graphs
	Term Sequences and Successors
	Ground Query Term Simulation
	Simulation Order and Simulation Equivalence

	Queries
	Resource Declarations
	Conjunctions and Disjunctions of Queries
	Query Negation: not
	Conditions

	Construct Terms: Patterns for Constructing Data
	Variables
	Grouping and Sorting: all and some
	Functions and Aggregations
	Optional Subterms: optional

	Construct-Query Rules (or Views)
	Rule Chaining
	Goals

	Xcerpt Use Cases
	Restructuring Data
	List of Authors vs. List of Titles
	Resolving ID/IDREF references
	Completing an HTML table
	List of Students
	Separation of Concerns

	Querying the Web
	Personal Portal Page: News and Weather
	Web Crawler

	Semantic Web Reasoning
	Clique of Friends
	Ontology Reasoning: The Book Ontology

	Range Restrictedness, Standardisation Apart, and Stratification
	Preliminaries
	Range Restrictedness
	Polarity of Subterms
	Range Restrictedness

	Standardisation Apart (or Rectification)
	Stratification for Grouping Constructs and Negation
	Grouping Stratification
	Negation Stratification
	Full Stratification: Combining Grouping Stratification and Negation Stratification

	Declarative Semantics
	Preliminaries
	Terms as Formulas
	Term Formulas
	Xcerpt Programs as Formulas

	Substitutions and Substitution Sets
	Preliminary Notions
	Application to Query Terms
	Application to Construct Terms
	Application to Query Term Formulas

	Interpretations and Entailment
	Interpretations
	Satisfaction and Models

	Fixpoint Semantics
	Remarks

	Operational Semantics
	A Simple Constraint Solver
	Data Structures and Functions
	Solution Set of a Constraint Store
	Constraint Simplification
	Consistency Verification Rules
	Constraint Negation
	Program Evaluation

	Simulation Unification
	Simulation Unifiers
	Decomposition Rules
	Examples
	Soundness and Completeness

	Backward Chaining
	Dependency Constraint
	Query Unfolding
	Examples
	Soundness and Completeness

	III Conclusion
	Perspectives
	Advanced Query Constructs
	Advanced Text Processing
	Duplicate Elimination
	Advanced Filter and Exclusion Mechanisms
	Advanced Constraint Solving

	Support for Special Theories and Reasoners
	Meta-Programming and Meta-Querying
	Meta-Programming on the Web
	Supporting Meta-Programming in Xcerpt

	Distributed and Peer-to-Peer Evaluation
	Distributed Evaluation
	Peer-to-Peer Evaluation

	Optimised Evaluation and Implementation
	Identifying Complexity of Language Parts
	Simulation Unification
	Rule Chaining
	Constraint Solver
	Virtual Machine

	Term Formulas as Integrity Constraints

	Conclusion

	IV Appendix
	A Prototypical Runtime System
	Usage of the Prototype
	Command Line Switches

	Overall Structure of the Source Code
	Module Xcerpt.Data: Data Structures
	Term.hs: Data Structures for Terms
	Program.hs: Data Structures for Programs

	Module Xcerpt.IO: Input/Output
	Module Xcerpt.Parser: Parser
	Xcerpt.Parser.Xcerpt: Xcerpt V1 and V2 Parser
	Xcerpt.Parser.XML: XML parser
	Xcerpt.Parser.HTML: HTML parser

	Module Xcerpt.Show: Output Formatting
	Module Xcerpt.EngineNG: Program Evaluation
	Constraint Solver
	Unification
	Backward Chaining

	Module Xcerpt.Methods: User-Defined Functions

	Proofs
	Proof of Theorem 4.9
	Proof of Theorem 8.6
	Proof of Lemma 8.7

	List of Examples
	Index
	Bibliography
	Curriculum Vitae

