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Abstract
Since the introduction of Stark units by H. Stark in the 1970’s, these elements and their
higher-rank analogues are of major interest for algebraic number theory. They can be
seen as the starting point of several recent developments such as the study of Euler
systems or the equivariant Tamagawa Number Conjecture (eTNC).

In the known cases of Stark’s conjecture for number fields, these units are a source
of annihilators for ideal class groups as can be seen in the work of C. Greither and
R. Kučera, respectively H. Chapdelaine and R. Kučera. One of the applications de-
scribed in this thesis is the transfer of these results to the case of global function fields.
A result obtained in the proof is an index formula for a group of elliptic units (which
are essentially an instance of Stark units due to the work of D. Hayes), analogously to
a result of H. Oukhaba for elliptic units.

Another application of Stark units (actually cyclotomic units in this case) is a con-
struction of certain p-units by D. Solomon for abelian extensions over Q. This con-
struction was adapted to the case of imaginary quadratic base fields by W. Bley and
M. Hofer and can be used as a major ingredient in proving the eTNC. In fact, the study
of the valuations of these p-units is a vital part in solving the Iwasawa-theortic version
of the Mazur-Rubin-Sano conjecture (IMRS) in these special cases. In the second part
of this thesis, Solomon’s construction is generalized to the case of totally real base
fields and then a conjectural statement on the valuations is formulated. It is also shown
that this statement is equivalent to the IMRS which provides theoretical evidence for
the conjecture. Finally, an algorithm for numerical verification up to a certain p-adic
precision together with some computational results is presented.



Zusammenfassung
Seit der Einführung von Stark-Einheiten durch H. Stark in den 1970er-Jahren sind sie
und ihre Verwandten höheren Ranges von hohem Interesse für die algebraische Zahlen-
theorie. Sie können als Auslöser für verschiedene kürzliche Entwicklungen wie das
Studium von Eulersystemen oder die äquivariante Tamagawazahlvermutung (eTNC)
gesehen werden.

In den bekannten Fällen der Stark-Vermutung über Zahlkörpern sind diese Einheiten
eine Quelle für Annihilatoren der Idealklassengruppe, wie man in den Arbeiten von
C. Greither und R. Kučera bzw. H. Chapdelaine und R. Kučera sehen kann. Eine der
in dieser Arbeit beschriebenen Anwendungen ist der Transfer dieser Resultate auf den
Fall der globalen Funktionenkörper. Ein Resultat dieses Beweises ist eine Indexformel
für eine Gruppe von elliptischen Einheiten (die, wie die Arbeit von D. Hayes zeigt,
tatsächlich eine Instanz von Stark-Einheiten bilden), analog zu einem Ergebnis von
H. Oukhaba für elliptische Einheiten.

Eine weitere Anwendung von Stark-Einheiten (in diesem Fall zyklotomische Ein-
heiten) ist eine Konstruktion von p-Einheiten von D. Solomon für abelsche Erweiterun-
gen über Q. Diese Konstruktion wurde von W. Bley und M. Hofer auf den Fall von
imaginär-quadratischen Grundkörpern übertragen und kann als eine der Hauptzutaten
im Beweis der eTNC benutzt werden. Tatsächlich leistet das Studium der Bewertun-
gen dieser p-Einheiten einen wichtigen Beitrag zur Lösung der Iwasawa-theoretischen
Version der Mazur-Rubin-Sano-Vermutung (IMRS) in diesen Spezialfällen. Im zweiten
Teil dieser Dissertation wird Solomon’s Konstruktion auf den Fall von total reellen
Grundkörpern verallgemeinert und anschließend eine Vermutung über die Bewertun-
gen formuliert. Es wird auch gezeigt, dass diese Aussage äquivalent zur IMRS ist, was
theoretische Evidenz für die Vermutung liefert. Abschließend wird ein Algorithmus zur
numerischen Verifikation bis zu einer bestimmten p-adischen Präzision zusammen mit
einigen rechnerischen Ergebnissen präsentiert.



Chapter 1

Introduction

The ideal class group of a number field is one of the main objects of interest in algebraic
number theory. One approach of understanding these class groups is the study of anni-
hilators. One of the first results in this direction is the famous result of L. Stickelberger
in [Sti90]. Expressed in modern language, he explicitly constructed the Stickelberger
element θL/Q ∈ Q[Gal(L/Q)] for a finite abelian extension L/Q via the Galois action
of Gal(L/Q) on certain roots of unity and used it to define the Stickelberger ideal
θL/QZ[Gal(L/Q)] ∩ Z[Gal(L/Q)]. He then proved that this ideal annihilates the ideal
class group of L, a statement which is nowadays known as Stickelberger’s Theorem.

A natural question is now if it is possible to generalize this statement to other ex-
tensions. It turns out, that the Stickelberger element is in fact simply the equivariant
combination of the values at s = 0 of the L-functions associated to those characters cor-
responding to the extension L/Q. We can easily generalize this by defining θL/K,S to be
the element in C[G] such that χ(θL/K,S) = LS(χ, 0) for any character χ ∈ Hom(G,C×).
The index S indicates that the Stickelberger element depends on a finite set of places S
containing the archimedean places and the places which ramify in L/K. This element
is then related to the S-truncated version of the L-functions. It was shown by H. Klin-
gen and C. Siegel, that θL/K,S indeed has rational coefficients (see [Sie70]). In [DR80]
P. Deligne and K. Ribet proved that AnnZ[G](µ(L))θL/K,S ⊆ Z[G], where AnnZ[G](−)
denotes the Z[G]-annihilator and µ(L) is the group of roots of unity contained in L.

The generalization of Stickelberger’s result is then

AnnZ[G](µ(L))θL/K,S ⊆ AnnZ[G](clS(L)) ,

where clS(L) denotes the S-class group of L. This statement is known as Brumer’s
conjecture.

Around the same time, H. Stark published his series of papers ([Sta71], [Sta75],
[Sta76] and [Sta80]) proposing the existence of certain units, now called Stark units,
containing information about the first derivative of the S-truncated L-functions of char-
acters of an arbitrary finite abelian extension of number fields. The set S is assumed to
contain at least one completely split place, which implies that the L-functions vanish
at s = 0. The Stickelberger element will therefore be trivial in this case, hence it seems
natural to consider first derivatives here. Stark also proved the conjecture for abelian
extensions of Q, where the Stark units are simply given by cyclotomic units, and for
abelian extensions of imaginary quadratic base fields, where the Stark units turn out
to be elliptic units.
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8 CHAPTER 1. INTRODUCTION

His approach was connected to the work of Brumer by J. Tate in [Tat81b] and
[Tat81a] culminating in the Brumer-Stark conjecture (which was proven away from 2
very recently by S. Dasgupta and M. Kakde in [DK20]). He predicted not only that any
ideal to the power |µ(L)| · θL/K,S is principal, but even determined a possible generator.
The results of Stark and Tate are summarized in the lecture notes [Tat84]. In this
formulation, Tate also included the case of global function fields under the common
notion of global fields.

A few years before, D. Hayes and V. Drinfeld had developed the theory of elliptic
modules (nowadays called Drinfeld modules), which enabled them to explicitly con-
struct ray class fields of global function fields (see [Dri74], [Hay74] and [Hay79]). With
this theoretical background, P. Deligne proved the Brumer-Stark conjecture for global
function fields using the theory of 1-motives. Stark’s conjecture is also known in this
case, the Stark units here are function field analogues of the elliptic units as can be
seen in [Hay85].

In the meantime, G. Gras proposed another approach towards annihilators of class
groups. He considered the subgroup of cyclotomic units CL in an abelian extension
L/Q and conjecturally relates the Jordan-Hölder series of the p-part (O×L/CL)p of the
quotient of the unit group of L modulo this subgroup to the Jordan-Hölder series of
the p-part of the ideal class group, where p is an odd prime not dividing [L : K] (see
[Gra77]). The conjecture was proven by B. Mazur and A. Wiles as a consequence of
the Iwasawa main conjecture (see [MW84]).

A few years later, V. Kolyvagin reproved the Gras conjecture via the approach of
Euler systems in [Kol90]. This theory is based on the work of F. Thaine in [Tha88],
K. Rubin in [Rub87] and Kolyvagin himself in [Kol88]. Thaine used cyclotomic units to
explicitly construct annihilators of the p-part of the class group of an abelian extension
L/Q. Rubin adapted this approach to extensions of an imaginary quadratic base field
K using elliptic units instead of cyclotomic units. Kolyvagin’s result was about Selmer
groups of elliptic curves using Heegner points. In his work about Euler systems, he
formalized these different approaches in a common language and collected the necessary
common properties of these different objects to introduce the notion of an Euler system.
The crucial breakthrough over the previous works of Thaine and Rubin was that this
paper introduced an inductive procedure which enables Kolyvagin to bound the orders
of these groups, rather than just to obtain an annihilator.

The Euler system machinery is summarized and further developed by K. Rubin in
[Rub00] and is an established source of annihilators of ideal class groups and bounds of
Selmer groups. It was also adapted to the case of global function fields (see e.g. [FX96]
and [XZ01]). An analogue of the Gras conjecture for global function fields was stated
and proven by C. Popescu in [Pop99].

However, there are limits to this approach. As indicated in [GK04], in the case
of a cyclic extension of prime power degree the Euler system of cyclotomic units will
produce an annihilation result which is even weaker than the annihilators obtained from
genus theory. In order to improve this approach, C. Greither and R. Kučera enlarged
the subgroup of the cyclotomic units by taking certain roots of the generators in the
case of a cyclic extension of primer power degree (see [GK04], [GK06] and [GK15]).
With these semispecial numbers, they were able to prove a stronger annihilation result
for these extensions. This approach was adapted by H. Chapdelaine and R. Kučera to
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cyclic extensions of prime power degree over imaginary quadratic base fields in [CK19].
The cyclotomic units here are again replaced by elliptic units.

In both of these cases, the objects of interest are in fact instances of Stark units and
the main ingredients for the proofs are the functorial behaviour of these units combined
with the assumptions on the cyclic extension L/K. Since we know another instance of
Stark units in the case of global function fields, it seems natural to ask the follwing

Question. Can we formulate and proof an analogous annihilation result for global
function fields?

Question. Can we generalize these results to other global fields in terms of Stark units?

The answer to the first question is yes and is given in [Stu20]. We will repeat the
arguments in Chapter 3 with some more details. In particular, we prove an index
formula (see Theorem 3.3.9), show that we can take certain roots of the elliptic units
(see Theorem 3.4.12) and prove the desired annihilation result (see Theorem 3.6.9).

The second question can not yet be answered completely. In its current form, the as-
sumptions on the extension L/K imply that the Stark units are trivial in any other case,
since the first derivatives of the L-functions vanish. However, there exist approaches to
weaken these assumptions and extend the results (see e.g. [GK20a], [GK20b], [Fra20]).

Another approach might be to replace the Stark units by their analogues in the
higher rank cases. The formulation of Stark’s conjecture in [Tat84] already deals with
the case that S contains at least r ≥ 0 completely split places, hence the vanishing order
of the S-truncated L-functions will be at least r. If r = 0, we recover the Stickelberger
element, for r = 1 we obtain the Stark units as proposed by Stark himself. In the case
of r > 1, Tate considers the r-th derivative of the S-truncated L-functions and imposes
a rationality condition to the values at s = 0.

However, in Tate’s formulation of Stark’s conjecture for rank r, there is no analogue
of the Stark units and hence no form of “integrality statement”. This was resolved by
K. Rubin in [Rub96]. He used an additional finite set T of places of K satisfying certain
hypothesis and worked with a T -modified version of the L-functions. Considering the r-
th derivatives, Rubin defined an element ηL,S,T ∈

∧rQO×L,S,T , where O
×
L,S,T is a certain

Z[Gal(L/K)]-submodule of the S-units, the (S, T )-units of L. This element is called
the Rubin-Stark element and although it is in general not contained in

∧rO×L,S,T , Rubin
was able to predict a certain “integrality condition” on ηL,S,T .

Before we return to the questions about annihilators of ideal class groups, we will
shortly indicate another important feature of Stark units and Rubin-Stark elements.
These elements behave functorially when changing some of the input data, e.g. the set
S, the set T or the top field L. This is discussed in detail in Section 2.4.2, but for
now it suffices to note that if S contains more than r completely split places, then
the corresponding Rubin-Stark element is trivial since the r-th derivatives of the S-
truncated, T -modified L functions vanish. Hence if we change the top field L to a
subfield L′ such that there exist places in S that split completely in L′ but not in L,
we see that the Rubin-Stark element ηL′,S,T (r) ∈

∧rQO×L′,S,T is trivial (we modified
the notation to reflect the considered rank here). But there may exist a non-trivial
Rubin-Stark element ηL′,S,T (r′) ∈

∧r′ QO×L′,S,T , where r′ is the number of places in S
which split completely in L′. This leads to the natural
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Question. Can we relate the rank-r Rubin-Stark element ηL,S,T (r) to the rank-r′
Rubin-Stark element ηL′,S,T (r′)?

Although we do not have a definitive answer to this question, we have a conjec-
tural statement which describes this relation, the Mazur-Rubin-Sano conjecture. This
conjecture was independently formulated in [MR11] and [San14].

In [BKS17], the authors formulated an Iwasawa-theoretic version (IMRS) and used
it as one of the main ingredients in a machinery for proving the equivariant Tamagawa
Number Conjecture (eTNC). The IMRS is known when K = Q and its proof relies on
a classical result of D. Solomon in [Sol92]. In the second part of his article, Solomon
used the constructed p-unit to obtain an annihilation result on the ideal class group
indicating that trying to prove the IMRS and to derive annihilation results is at least
intrinsically linked.

Before one can try to obtain analogous annihilation results for other base fields,
one has to generalize Solomon’s construction. For imaginary quadratic base fields, this
is done by W. Bley in [Ble04] for split primes p and by W. Bley and M. Hofer in
[BH20] also for non-split primes. Studying the valuations of the constructed p-unit,
they can also prove the IMRS and the eTNC for imaginary quadratic base fields with
some additional assumptions (see [Ble06] and [Hof18]). These assumptions have been
removed in recent work of D. Bullach and M. Hofer (see [BH21]).

In Chapter 4 of this thesis, we generalize Solomon’s construction to the case of
arbitrary totally real base fields and state a conjecture on the valuations of the resulting
elements (see Conjecture 4.2.9). Then we show that the given generalization is indeed
equivalent to the IMRS (see Theorem 4.3.2) which gives (additionally to the known
cases described above) strong theoretical evidence for the formulated conjecture. In the
last chapter, we also develop an algorithm to test Conjecture 4.2.9 up to a certain level
(see Algorithm 5.3.1) and the computed cases described in Section 5.4 provide some
numerical evidence.

1.1 Structure of the thesis

We will first introduce Stark’s conjecture and the Rubin-Stark conjecture for any finite
abelian extension of global fields in Chapter 2. We will also define the Stark units,
Stark elements and Rubin-Stark elements and present some basic properties here.

Then in Chapter 3 we will consider the case of global function fields and will intro-
duce elliptic units for such extensions, which can in fact be considered as Stark units.
We will prove an index formula and derive a result on annihilators of the ideal class
group for certain extensions.

Afterwards, we will move to the number field case and will introduce the Iwasawa-
theoretic Mazur-Rubin-Sano conjecture in Chapter 4. Then we will generalize the κ-
construction of Solomon resulting in a reformulation of IMRS in terms of the constructed
element.

Finally, we will present an algorithmic approach on our refomulated conjecture in
Chapter 5.
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Chapter 2

Stark’s conjecture and Rubin-Stark
units in the abelian case

In this chapter we will state Stark’s conjecture for a finite abelian extension of global
fields and its integral refinement due to Rubin. Then we introduce (Rubin-)Stark
elements, Stark units and state important properties of these.

2.1 Preliminaries
This section contains well-known definitions and results which will be used throughout
this thesis.

2.1.1 Valuations

Let L/K be a finite abelian extension of global fields. Let v be a place ofK (archimedean
or non-archimedean) and w be a place of L above v. The Galois group G := Gal(L/K)
acts transitively on the places above v by σw := w ◦ σ (see e.g. [Neu92, Ch. II,
Thm. (9.4)]) and we define the decomposition group of w as

Dw := {σ ∈ G : σw = w} .

Since G is abelian, this subgroup is independent of the choice of w, hence we can write
Dv instead of Dw. If Dv is trivial, i.e. there exist [L : K] different places above v, we
say that v is completely split.

Remark 2.1.1. Note that the decomposition group of an archimedean place can either
be trivial (if v is complex or both v and w are real) or contain exactly one non-trivial
element (if v is real and w is complex).

If v (and hence w) is non-archimedean, let Ow be the valuation ring associated to
w and let k(w) = Ow/w be the residue class field of w. The norm of w is defined as
Nw := |k(w)|. For an archimedean place w we set

Nw :=

{
e, w is real,
e2, w is complex.

13



14 CHAPTER 2. STARK’S CONJECTURE

We define the inertia group

Iw := {σ ∈ Dv : σx ≡ x mod w ∀x ∈ Ow} .

This is again independent of the choice of w since G is abelian and so we simply write
Iv instead of Iw. If v and w are archimedean, then we set Iv := Dv.

The place v is ramified if Iv is non-trivial and the ramification index is defined as
tv := |Iv|. Hence an archimedean place can either be completely split if Dv = {id} or
ramified with ramification index 2.

The quotient Dv/Iv is a cyclic group generated by the Frobenius automorphism and
we define σv ∈ Dv to be any lift of this Frobenius automorphism.

For a non-archimedean place v, we denote the corresponding normalized valuation
by ordv. For an archimedean place v associated to an embedding ιv : K −→ C (real or
complex), we set

ordv(x) := − log |ιv(x)| ∀x ∈ K .

In any case, we define the absolute value associated to v by

|x|v := Nv− ordv(x) ∀x ∈ K .

Note that if v is real, we get |x|v = |ιv(x)|, and if v is complex, then |x|v = |ιv(x)|2.

2.1.2 Duals and exterior powers

Let R be a commutative, reduced, Noetherian ring. For an R-module M we define
M∗ := HomR(M,R) to be its dual module. Then for any ϕ ∈ M∗ and r ≥ 1 there
exists an R-homomorphism

ϕ(r) :
r∧
R

M −→
r−1∧
R

M

x1 ∧ · · · ∧ xr 7−→
r∑
i=1

(−1)i−1ϕ(xi) · x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xr ,

where the x̂i-notation indicates that the xi-term is omitted.
Iterating this construction, we obtain an R-homomorphism

i∧
R

M∗ −→ HomR(
r∧
R

M,

r−i∧
R

M)

ϕ1 ∧ · · · ∧ ϕi 7−→ (m 7→ ϕ
(r−i+1)
i ◦ · · · ◦ ϕ(r)

1 (m))

(2.1.1)

for 0 ≤ i ≤ r. Using this homomorphism, we will regard elements of
∧i
RM

∗ as homo-
morphisms

∧r
RM −→

∧r−i
R M .

Remark 2.1.2. In the case r = i we find the explicit formula

(ϕ1 ∧ · · · ∧ ϕr)(x1 ∧ · · · ∧ xr) = det
(

(ϕi(xj))1≤i,j≤r

)
(2.1.2)

(for example by induction and Laplace’s formula).
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We finish this section by a collection of useful facts on exterior powers and duals,
the proofs of which will be omitted. They can for example be found in the author’s
master thesis. We also set R′M := R′ ⊗RM for any commutative R-algebra R′.

Lemma 2.1.3. Let R′ be a commutative R-algebra. There is a canonical R′-module
isomorphism R′ ⊗R

∧r
RM

∼=
∧r
R′ R

′M .

Now let Frac(R) be the total ring of fractions of R, i.e. the localization at the set of
non-zero-divisors. Then we obtain

Lemma 2.1.4. Let M be a finitely-generated R-module. Then the map

M∗ −→ HomFrac(R)(Frac(R)M,Frac(R))

ϕ 7−→
(
x

s
7→ ϕ(x)

s

)
is an injective R-module homomorphism and induces an isomorphism of Frac(R)-modules
Frac(R)⊗RM∗ ∼= HomFrac(R)(Frac(R)M,Frac(R)).

Lemma 2.1.5. Let G be a finite, abelian group and let M be a Z[G]-module, then the
canonical map

HomZ(M,Z) −→ HomZ[G](M,Z[G])

ϕ 7−→ (x 7→
∑
σ∈G

ϕ(σ(x))σ−1)

is an isomorphism.

2.1.3 Idempotents

Let G be a finite, abelian group and Ĝ be the group of irreducible characters of G. For
any ring R ⊆ C we let a character χ ∈ Ĝ act on the group algebra R[G] by extension
of scalars, i.e. for a =

∑
σ∈G aσσ with aσ ∈ R, we let

χ(a) =
∑
σ∈G

aσχ(σ) ∈ C .

For χ ∈ Ĝ the idempotent associated to χ is defined as

eχ :=
1

|G|
∑
σ∈G

χ(σ)σ−1 ∈ C[G] .

The values of a character χ are roots of unity, so when we adjoin all values of χ to Q
we obtain a cyclotomic field denoted by Q(χ). For a σ ∈ Gal(Q(χ)/Q) we find that
σ ◦ χ ∈ Hom(G,C×) = Ĝ, so this defines another irreducible character of G called χσ.
Hence we obtain an equivalence relation

χ ∼ ψ ⇐⇒ ∃σ ∈ Gal(Q(χ)/Q) : ψ = χσ .

We denote the equivalence class of χ by [χ], and the set of all these classes by Ĝ/ ∼.
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Let χ ∈ Ĝ. Then the rational idempotent associated to χ is defined as

e[χ] :=
∑
ψ∈[χ]

eψ .

Now we collect some properties of (rational) idempotents.

Lemma 2.1.6. Let χ ∈ Ĝ.

(i) e[χ] ∈ Q[G].

(ii) The equality τeχ = χ(τ)eχ holds for all τ ∈ G (hence, aeχ = χ(a)eχ for all
a ∈ C[G]).

(iii) Let ψ ∈ Ĝ. Then eχeψ = δχψeχ and e[χ]e[ψ] = δ[χ][ψ]e[χ].

(iv) We have
∑

χ∈Ĝ eχ =
∑

[χ]∈Ĝ/∼ e[χ] = id.

(v) The set {eχ : χ ∈ Ĝ} is an orthogonal basis for the C-vector space C[G], i.e.

C[G] =
⊕
χ∈Ĝ

eχ · C .

Moreover, there is an isomorphism of Q-vector spaces

Q[G] ∼=
⊕

[χ]∈Ĝ/∼

e[χ] ·Q(χ) .

Note that by (v) we have an isomorphism of Q-vector spaces e[χ] ·Q[G] ∼= Q(χ).

2.1.4 L-functions

Let v be a place of K and recall that σv ∈ G is a lift of the Frobenius automorphism.
Let χ ∈ Ĝ be a character of G and let

eIv :=
1

|Iv|
∑
σ∈Iv

σ

be the idempotent associated to the subgroup Iv in G. Then the definition

χ(v) := χ(σveIv)

is independent of the choice of σv. Note that we have χ(v) 6= 0 if and only if Iv ⊆ ker(χ).
For a finite set of primes S ⊇ S∞ of K containing the archimedean places we define

the S-truncated L-function LS(χ, s) associated to χ as the Euler product∏
v/∈S

(1− χ(v)Nv−s)−1 , Re(s) > 1 ,

where the product runs over all places of K which are not contained in S.
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If S = S∞, we simply write

L(χ, s) = LS∞(χ, s) .

If χ = 1 we obtain that

LS(1, s) = ζK,S(s)

is the S-truncated Dedekind ζ-function of K.

Remark 2.1.7. If v ∈ Sram, then the factor in the Euler product is 1 since χ(v) = 0.
We may therefore assume Sram ⊆ S.

If K is a number field, it is well known that the above Euler product admits a
meromorphic continuation to the whole complex plane. This continuation will also be
denoted by LS(χ, s). If χ = 1, then ζK,S(s) has a simple pole at s = 1, otherwise the
continuation is holomorphic everywhere.

If K is a global function field, we again obtain a meromorphic continuation to the
complex plane which is holomorphic whenever Lχ = Lker(χ) is not a constant field
extension (see [Ros02, Thm. 9.25]).

We summarize some results on L-functions in the next

Proposition 2.1.8. (i) If L′ ⊇ L is a finite abelian extension of K with Galois group
G′ and ψ is the inflation of χ to G′, then we have

LS(χ, s) = LS(ψ, s) ,

i.e. the L-function is invariant under inflation.

(ii) We have

ζL(s) = ζK(s) ·
∏
χ 6=1

L(χ, s) ,

where the product runs over all non-trivial characters of G.

Proof. (i) This is [Neu92, Ch. VII, Thm. (10.4)(iii)].

(ii) This is [Neu92, Ch. VII, Cor. (10.5)(iii)].

Remark 2.1.9. Note that the proofs in [Neu92] do not use the fact that the L-functions
considered there are defined over number fields. In fact, these statements even hold for
non-abelian extensions and Artin-L-functions.

We combine the L-functions with the character idempotents to obtain the equivari-
ant S-truncated L-function

ΘS(s) :=
∑
χ∈Ĝ

LS(χ, s)eχ−1

with values in C[G].
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Now let T be a finite set of places of K which is disjoint from S (in particular, all
places in T must be non-archimedean and unramified). Then we define

δT (s) :=
∏
v∈T

(1− σ−1
v Nv1−s)

and obtain the S-truncated, T -modified L-function

LS,T (χ, s) = LS(χ, s) · χ−1(δT (s)) = LS(χ, s) ·
∏
v∈T

(1− χ(σv)Nv
1−s)

and its equivariant version

ΘS,T = ΘS(s) · δT (s) .

Since χ(δT (0)) 6= 0 for all χ ∈ Ĝ, we see that the T -modification does not change the
order of vanishing of the L-function at s = 0. We obtain

Lemma 2.1.10. Suppose that S 6= ∅. The order of vanishing of LS(χ, s) (and also
LS,T (χ, s)) is given by

rS,χ =

{
|{v ∈ S : χ(v) = 1}| , χ 6= 1,

|S| − 1, χ = 1.

Proof. This can be found in the proof of [Tat84, Ch. I, Prop. 3.4].

2.1.5 S-units and Dirichlet’s unit theorem

Let S be a non-empty finite set of places of K containing the archimedean places,
i.e. S ⊇ S∞. Let SL := {w | v : v ∈ S} be the places of L above the places in S.

The S-integers of L/K are defined as

OL,S := {u ∈ L× : ordw(u) ≥ 0 ∀w /∈ SL} . (2.1.3)

The S-units of L/K are the units of this ring, i.e.

O×L,S := {u ∈ L× : ordw(u) = 0 ∀w /∈ SL} .

Let YL,S =
⊕

w∈SL Zw be the group of SL-divisors and let XL,S be the subgroup of
divisors of degree 0. We consider the Dirichlet regulator

λS : O×L,S −→ RXL,S

u 7−→ −
∑
w∈SL

log |u|w w .

This map induces an exact sequence

1 −→ µ(L) −→ O×L,S
λS−→ λS(O×L,S) −→ 0 ,

where µ(L) is the group of roots of unity of L. With extension of scalars and Dirichlet’s
unit theorem, we obtain an isomorphism

λS : RO×L,S
∼=−→ RXL,S (2.1.4)

of R[G]-modules. By representation theory, we obtain the following
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Corollary 2.1.11. The Q[G]-modules QO×L,S and QXL,S are isomorphic.

Let r ≥ 0. We define
ĜS,r := {χ ∈ Ĝ : rS,χ = r}

and the idempotent

eS,r :=
∑

χ∈ĜS,r

eχ .

For characters χ ∼ ψ we clearly have ker(χ) = ker(ψ), so rS,χ = rS,ψ. This implies that
for χ ∈ ĜS,r we have [χ] ⊆ ĜS,r, so we can write

eS,r =
∑

[χ]⊆ĜS,r

∑
ψ∈[χ]

eψ =
∑

[χ]⊆ĜS,r

e[χ] ∈ Q[G] .

Therefore, eS,r ·QXL,S and eS,r ·QO×L,S are isomorphic eS,r ·Q[G]-modules.

Proposition 2.1.12. The eS,r ·Q[G]-module eS,r ·QXL,S is free of rank r for all r ≥ 0.

Remark 2.1.13. • As a direct consequence of Proposition 2.1.12 we find that
eS,r ·QO×L,S is a free eS,r ·Q[G]-module of rank r.

• A similar argument shows that eS,r · RXL,S
∼= eS,r · RO×L,S ∼= (eS,r · R[G])r.

2.1.6 The analytic class number formula

As before, let S be a non-empty finite set with S ⊇ S∞. By choosing Z-bases of the
torsion-free part of O×L,S and XL,S, we can read λS : RO×L,S −→ RXL,S as an isomor-
phism of R-vector spaces with respect to these bases. Then we define the S-regulator
of L as

RL,S = |det(λS)| ∈ R .

We also define the S-class group of L as the ideal class group clS(L) of OL,S. Then the
S-class number hL,S of L is defined as |clS(L)|. We set wL := |µ(L)| and we obtain the
analytic class number formula:

Theorem 2.1.14 (Analytic class number formula). Let r = |SL| − 1 and let ζ(r)
L,S(0) be

the leading term of the Dedekind ζ-function, i.e.

ζ
(r)
L,S(0) := lim

s→0
s−rζL,S(s) .

Then we obtain

ζ
(r)
L,S(0) = −hL,SRL,S

wL
.

Proof. If K and L are number fields, this can be found e.g. in [Neu92, Ch. VII,
Cor. (5.11)]. In the case of global function fields, this is [Ros02, Thm. 14.4].
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2.2 Stark’s conjecture

Let r ≥ 0. We introduce the following hypothesis on S:

Hypothesis 2.2.1. The finite set of places S satisfies the following properties:

(i) S ⊇ S∞ ∪ Sram.

(ii) S contains at least r places V := {v0, ..., vr−1} which split completely in L.

(iii) |S| ≥ r + 1.

With these hypotheses and Lemma 2.1.10, we find that rS,χ ≥ r for each character
χ. Define

Θ
(r)
S (0) := lim

s→0
s−rΘS(s)

and analogously Θ
(r)
S,T = lims→0 s

−rΘS,T (s) = δT (0)Θ
(r)
S (0).

Let v′ ∈ S \V be an arbitrary but fixed place. For each i = 0, ..., r−1, we fix a place
wi | vi of L (and also a place w′ over v′). From (2.1.4), we get an induced isomorphism

(
r∧
λS) : R

r∧
Z[G]

O×L,S −→ R
r∧

Z[G]

XL,S

and we define the Stark element ηL,S ∈ R
∧r

Z[G]O
×
L,S of order r by

(
r∧
λS)(ηL,S) = Θ

(r)
S (0) · (w0 − w′) ∧ · · · ∧ (wr−1 − w′) .

Remark 2.2.2. We have ηL,S ∈ eS,r · R
∧r

Z[G]O
×
L,S, i.e. the Stark element lies in the

eS,r-component. Indeed, for a character χ ∈ Ĝ with rS,χ > r, we find e[χ]Θ
(r)
S (0) = 0.

Since
∧r λS is an R[G]-isomorphism, this implies e[χ]ηL,S = 0.

Since eS,r · R
∧r

Z[G]O
×
L,S is a free eS,r · R[G]-module of rank 1 by Remark 2.1.13, we

can write
ηL,S = λ · u1 ∧ · · · ∧ ur , (2.2.1)

with λ ∈ eS,r · R[G] and u1, ..., ur ∈ O×L,S.

Now we can state Stark’s conjecture:

Conjecture 2.2.3 (St(L/K, S, r)). The Stark element has rational coefficients,
i.e. ηL,S ∈ Q

∧r
Z[G]O

×
L,S.

Remark 2.2.4. As we will see in Corollary 2.4.2, this conjecture is implied by the
Rubin-Stark conjecture (Conjecture 2.3.5 below). Hence Stark’s conjecture holds when-
ever the Rubin-Stark conjecture is true and we give a list of known cases in Remark 2.3.6.
Indeed, there are no cases known to the author where Stark’s conjecture is proven but
the Rubin-Stark conjecture is unknown.
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2.2.1 The case r = 1

The statement of St(L/K, S, 1) is that the Stark element ηL,S is contained in QO×L,S.
We know that ηL,S ∈ RO×L,S, hence there exists a unit ε ∈ O×L,S and λ ∈ R such that
ηL,S = λε. Then St(L/K, S, 1) is true if and only if λ ∈ Q.

Remark 2.2.5. In fact, there exist infinitely many such pairs (λ, ε), since we get
(α−1λ)(αε) = λε = ηL,S for any α ∈ Z. However, if any of these coefficients λ is
rational, then all such coefficients are rational.

For w := w0, we consider the dual w∗ ∈ HomZ[G](YL,S,Z[G]) = Y ∗L,S obtained by
Lemma 2.1.5, i.e.

w∗(w̃) =
∑
σ∈G
σw=w̃

σ ∀w̃ ∈ SL .

This induces a map w∗ : RXL,S −→ R[G] and from the definition of ηL,S, we get that

Θ′S(0) = (w∗ ◦ λS)(ηL,S) = −λ
∑
σ∈G

log |εσ|w σ
−1 .

Considering the χ-components, we get

L′S(χ, 0) = −λ
∑
σ∈G

log |εσ|w χ(σ)

for all χ ∈ Ĝ. In this special case, Stark considered a particular choice for the pair
(λ, ε):

Conjecture 2.2.6 (St(L/K, S), cf. [Tat84, Ch. IV, Conj. 2.2]). Let S be a finite set
of places satisfying Hypothesis 2.2.1 for r = 1 and let w be a fixed place of L above the
completely split place v. Then there exists a unit εL,S ∈ O×L,S which satisfies:

(i) K(ε
1/wL
L,S ) is abelian over K.

(ii) If |S| ≥ 3 then |εL,S|w̃ = 1 for all w̃ - v. If S = {v, v′} and w′ is a place of L
above v′, then |εL,S|σw′ = |εL,S|w′ for all σ ∈ G.

(iii) For each character χ ∈ Ĝ we have

L′S(χ, 0) = − 1

wL

∑
σ∈G

log
∣∣εσL,S∣∣w χ(σ) .

The element εL,S is called the Stark unit.

Remark 2.2.7. (i) The Stark unit εL,S is only defined up to a root of unity in L.
Hence, all following equations should be read modulo µ(L).

(ii) If S contains a second place which splits completely in L we obtain εL,S = 1
(cf. Remark 2.3.6).
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(iii) Stark units can be determined explicitly in several cases:

• K = Q and v = ∞. Then L is a totally real abelian extension of Q and
hence contained in Q(ζm) for some m ∈ N. Let S = Sram(L/K) ∪ {∞}.
Then we have

εL,S = NQ(ζm)/L(1− ζm) ,

(cf. [Pop11, Remark 4.4.2]).

• K is an imaginary quadratic number field and v =∞. Then εL,S is essentially
an elliptic unit. Let S = Sram(L/K)∪ {∞} and let f be the conductor of L.
Using the elliptic unit ϕL,f,Ou defined by Oukhaba in [Ouk03, §3], we obtain
with the Kronecker limit formula (2.4) in loc. cit.

εL,S = ϕ

wL
12hKwKff

L,f,Ou ,

where ff is the least positive integer contained in f.

• K is a global function field and v is a fixed prime∞. Let f be the conductor
of L (this is an integral ideal of OK,S). Then there is an analogue αf,Ha

of the elliptic units constructed by Hayes in [Hay85, Thm. 4.17]. With the
Kronecker limit formula in this case (cf. last equation in loc. cit.), we then
obtain

εL,S = NHf/L(αf,Ha)
wL
wHf ,

where Hf is the real ray class field of conductor f (for a precise definition see
Section 3.1).

In these cases, Stark’s conjecture is known to be valid.

2.3 The Rubin-Stark conjecture

We will now introduce an integral refinement of St(L/K, S, r), the Rubin-Stark conjec-
ture.

2.3.1 The additional set T

The group of S-units still has Z-torsion. Although this is irrelevant when we talk about
rationality (since the torsion is killed by tensoring with Q), it clearly matters when
we consider integrality statements (as we have already seen in Section 2.2.1). We can
avoid this problem by working with the T -modified version of the L-functions and a
torsion-free T -modified unit group.
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Hypothesis 2.3.1. The finite set of places T satisfies the following properties:

(i) S ∩ T = ∅.

(ii) Let TL be the set of places of L over the places in T . Then

{ζ ∈ µ(L) : ζ ≡ 1 mod w ∀w ∈ TL} = {1} .

The hypothesis is satisfied if e.g. T contains two primes of different residue charac-
teristic or if T contains one prime of residue characteristic not dividing wL.

Definition 2.3.2. Let S satisfy the Hypothesis 2.2.1 and let T be a finite set of places
such that S ∩ T = ∅. The (S, T )-units of L are defined as

O×L,S,T := {u ∈ O×L,S : u ≡ 1 mod w ∀w ∈ TL} .

Lemma 2.3.3. If T satisfies Hypothesis 2.3.1, then

(i) O×L,S,T is a free Z-module.

(ii) QO×L,S ∼= QO×L,S,T .

(iii) If u ∈ O×L,S, then uδT (0) ∈ O×L,S,T .

Then we obtain a T -version of the Stark element, the Rubin-Stark element
ηL,S,T ∈ R

∧r
Z[G]O

×
L,S,T which is defined by

(
r∧
λS)(ηL,S,T ) = Θ

(r)
S,T (0) · (w0 − w′) ∧ · · · ∧ (wr−1 − w′) .

Analogously to Remark 2.2.2, the Rubin-Stark element is contained in the eS,r-component
and we obtain a representation

ηL,S,T = λTu1,T ∧ · · · ∧ ur,T (2.3.1)

with λT ∈ eS,r · R[G] and u1,T , ..., ur,T ∈ O×L,S,T .
Then the T -version of Stark’s conjecture is

Conjecture 2.3.4 (St(L/K, S, T, r)). The Rubin-Stark element has rational coeffi-
cients, i.e. ηL,S,T ∈ Q

∧r
Z[G]O

×
L,S,T .

2.3.2 Rubin’s lattice

We define Rubin’s lattice by
r⋂

Z[G]

O×L,S,T :=
{
u ∈ Q

r∧
Z[G]

O×L,S,T | (ϕ1 ∧ · · · ∧ ϕr)(u) ∈ Z[G] ∀ϕ1, ..., ϕr ∈ (O×L,S,T )∗
}
.

Then the Rubin-Stark conjecture is

Conjecture 2.3.5 (RS(L/K, S, T, r)). The Rubin-Stark element is contained in Rubin’s
lattice, i.e. ηL,S,T ∈

⋂r
Z[G]O

×
L,S,T .
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Remark 2.3.6. The Rubin-Stark conjecture is known in the following cases:

• S contains more than r places which split completely in L: Then clearly eS,r = 0
and hence ηL,S,T = 0.

• L = K: As a corollary of the previous case.

• r = 0: This is shown e.g. in [Tat84, Ch. III, Thm. 1.2]. In the number field case,
this is essentially the result of Deligne and Ribet, see [DR80].

• [L : K] = 2: See [Rub96, Thm. 3.5].

• Certain multi-quadratic extensions if r = 1, for the proof and more details
see [DST97].

• The cases listed in Remark 2.2.7 (in these cases we always have r = 1).

• Whenever the eTNC holds (see [Bur07, Cor. 9.2]), e.g. if K = Q (see [BG03]
and [Fla11]), K is imaginary quadratic (see [Ble06] and [BH21]) or K is a global
function field (see [Bur11]).

• K is a totally real number field and L is a CM-extension of K as a consequence
of the Brumer-Stark conjecture which is proven in [DK20].

For our results in Chapter 4, we want to consider a p-component of the Rubin-Stark
conjecture as stated in [BKS17, Conj. 2.1]. So we fix an odd prime p and set

UL,S,T := ZpO×L,S,T .

By fixing an isomorphism C ∼= Cp, we can consider ηL,S,T ∈ Cp

∧r
Zp[G] UL,S,T , and we

define

r⋂
Zp[G]

UL,S,T :=
{
u ∈ Qp

r∧
Z[G]

UL,S,T | (ϕ1 ∧ · · · ∧ ϕr)(u) ∈ Zp[G] ∀ϕ1, ..., ϕr ∈ U∗L,S,T
}
.

Note that UL,S,T is a Zp[G]-module and U∗L,S,T = HomZp[G](UL,S,T ,Zp[G]). There is
a natural isomorphism Zp

⋂r
Z[G]O

×
L,S,T

∼=
⋂r

Zp[G] UL,S,T . Then the p-component of the
Rubin-Stark conjecture reads

Conjecture 2.3.7 (RS(L/K, S, T, r)p). ηL,S,T ∈
⋂r

Zp[G] UL,S,T .

We will simply write
∧r or

⋂r from now on, whenever the considered ring is clear
from the context.
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2.4 Rubin-Stark elements and their properties

2.4.1 Relation of the different elements

First, we consider the relation of the different elements introduced in the last sections:

Lemma 2.4.1. (i) For a fixed data (L/K, S, T, r), the Stark element and the Rubin-
Stark element satisfy the relation

ηL,S,T = δT (0)ηL,S =
∏
v∈T

(1− σ−1
v Nv) · ηL,S ∈ R

r∧
O×L,S,T .

(ii) If r = 1 and St(L/K, S) holds, then the Stark unit and the Stark element satisfy
the relation

εL,S = wL · ηL,S ∈ QO×L,S .

Then it follows directly that

ηL,S,T =
δT (0)

wL
εL,S .

Proof. (i) Since Θ
(r)
S,T (0) = δT (0)Θ

(r)
S (0) and

∧r λS is an R[G]-isomorphism, the de-
sired relation follows directly from the definitions of ηL,S and ηL,S,T .

(ii) The first relation follows directly from the arguments in Section 2.2.1. The second
relation is obtained by combining the first relation with part (i).

As a consequence, we obtain several implications between the conjectures:

Corollary 2.4.2. (i) St(L/K, S, r) is equivalent to St(L/K, S, T, r) for all sets T
satisfying Hypothesis 2.3.1.

(ii) St(L/K, S, r) is equivalent to St(L/K, S, T, r) for any set T satisfying Hypothe-
sis 2.3.1.

(iii) RS(L/K, S, T, r) implies St(L/K, S, T, r) and hence also St(L/K, S, r).

(iv) If r = 1, St(L/K, S) is equivalent to RS(L/K, S, T, 1) for all T satisfying Hypoth-
esis 2.3.1.

Proof. For (i) and (ii) we show

St(L/K, S, T, r) for some set T
=⇒ St(L/K, S, r)

=⇒ St(L/K, S, T, r) for all sets T.
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For the first implication, we only have to show that 1−σ−1
v Nv is invertible in Q[G] for all

v. Then we can invert δT (0) in Q[G] and the implication follows from Lemma 2.4.1 (i).
For the inverse element we can use the geometric sum up to n := |Dv| − 1:

n∑
k=0

(σ−1
v Nv)k =

1− (σ−1
v Nv)n+1

1− σ−1
v Nv

=
1−Nvn+1

1− σ−1
v Nv

.

Hence, we get

(1− σ−1
v Nv)−1 =

1

1−Nvn+1

n∑
k=0

(σ−1
v Nv)k ∈ Q[G] .

The second implication follows directly from Lemma 2.4.1 (i).
Part (iii) is clear since

⋂rO×L,S,T ⊆ Q
∧rO×L,S,T .

Part (iv) is shown for instance in [Rub96, Prop. 2.5].

2.4.2 Functorial Behaviour

In this section, we want to cite some results on the functorial behaviour of Rubin-Stark
elements under several changes of the basic data. We fix K,L, S, T and r satisfying the
Hypotheses 2.2.1 and 2.3.1. By Lemma 2.4.1, the same results can be applied to the
Stark units and the Stark elements.

Changing the set S

Let S ′ ⊇ S be a finite set of primes disjoint to T . Then the data K,L, S ′, T and r
satisfies the hypotheses of the Rubin-Stark conjecture and we get the

Proposition 2.4.3. RS(L/K, S, T, r) implies RS(L/K, S ′, T, r) and we get

ηL,S′,T =
∏

v∈S′\S

(1− σ−1
v ) · ηL,S,T .

Proof. See [Rub96, Prop. 3.6] and [Rub96, Prop. 6.1].

Note that r is fixed here, i.e. Proposition 2.4.3 is only non-trivial, if S ′ \ S does not
contain a prime which splits completely. For adding completely split primes to S, we
have to introduce some more notation and fix an ordering of the set S ′.

Concretely, let S ′ = {v0, ..., vn} such that V ′ = {v0, ..., vr′−1} are completely split.
Moreover, we assume V = {v0, ..., vr−1} ⊆ S and S ′ \ S = V ′ \ V = {vr, ..., vr′−1}. We
choose a prime wi | vi of L for each i = r, ..., r′ − 1. Define W := {wr, ..., wr′−1}. For
each of these wi, we obtain the G-equivariant valuation by applying Lemma 2.1.5:

Ordwi : L
× −→ Z[G]

x 7−→
∑
σ∈G

ordwi(σ(x))σ−1 .

Combining these maps restricted to O×L,S′,T , we get

OrdW := (Ordwr ∧ · · · ∧Ordwr′−1
) ∈ HomZ[G](

r′∧
O×L,S′,T ,

r∧
O×L,S′,T ) .
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Remark 2.4.4. If W = {w} consists only of one place, we will simplify the notation
and write Ordw instead of Ord{w}. It will be clear from the context whether Ordw is the
map applied to a number field element or the map applied to an element in an exterior
power. In fact, the definitions are consistent and meet in the case r′ = 1 and r = 0.

Now we can state the next

Proposition 2.4.5. For S and S ′ as above, RS(L/K, S ′, T, r′) implies RS(L/K, S, T, r)
and

ηL,S,T = (−1)re OrdW (ηL,S′,T ) ,

where e = r′ − r.

Proof. See [Rub96, Prop. 5.2 and Thm. 5.3].

Remark 2.4.6. The ordering described here is in fact the ordering as in [BKS16, §5.3]
shifted by one index. The shift is not necessary, but it turns out to be more convenient
for the statement of the conjectures in Chapter 4.

We also want to consider a variant of the previous proposition. Suppose that
S = S ′ \ {vi} for any i ∈ {0, ..., r′ − 1}, i.e. we assume that we only remove one
completely split prime but this prime can be at an arbitrary position in V ′. Then we
obtain

Proposition 2.4.7. For S and S ′ as above, RS(L/K, S ′, T, r′) implies RS(L/K, S, T, r)
and

ηL,S,T = (−1)i Ordwi(ηL,S′,T ) .

Proof. See [Rub96, Prop. 5.2 and Thm. 5.3].

Changing the set T

Proposition 2.4.8. Let T ′ ⊇ T be a finite set of primes disjoint to S. Then
RS(L/K, S, T, r) implies RS(L/K, S, T ′, r) and

ηL,S,T ′ =
∏

v∈T ′\T

(1− σ−1
v Nv) · ηL,S,T .

Proof. See [Pop02, Prop. 5.3.1].

Change of the top field

As a last case, we want to take a look at the top field L.

Proposition 2.4.9. Suppose we have an intermediate field K ⊆ L′ ⊆ L, then
RS(L/K, S, T, r) implies RS(L′/K, S, T, r) and

ηL′,S,T = (
r∧
NL/L′)(ηL,S,T ) .

Proof. See [Rub96, Prop. 6.1].
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Chapter 3

An annihilation result for global
function fields

In this chapter we define a group of elliptic units for global function fields and derive an
index formula for this group. Then we use these elliptic units to prove an annihilation
result for the ideal class group for cyclic extensions of prime power degree. The content
of this chapter is also presented in [Stu20] and is accepted for publication in Acta
Arithmetica.

3.1 Class field theory in global function fields
We start with some new notation and a short review of some basic class field theoretical
facts for global function fields. This review is based on [Hay85, §3, §4].

Let K be a global function field and ∞ be a fixed place of K. We fix the following
notation:

• Fq is the constant field of K,

• OK is the ring of functions which have no poles away from ∞, i.e. we have OK =
OK,{∞} in the sense of (2.1.3),

• d∞ is the degree of ∞,

• h(K) (resp. h := hK) is the class number of K (resp. OK), i.e. h = hK,{∞},

• w∞ := qd∞ − 1,

• for any integral ideal m of K let Sm := {p ⊆ OK | p prime, p | m} be the support
of m.

As in the previous chapter, we let ord∞ be the valuation at ∞ and let K∞ be the
completion of K at ∞ with constant field F∞. For any prime p of K we let k(p) be the
residue class field at p and Np = |k(p)|. Note that we have Np = qdeg(p). Further we
get

h = h(K)d∞ .

29
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Now let ρ be a sign-normalized rank-1 Drinfeld module with respect to a fixed sign-
function sgn. Then we set K(1) to be the extension of K generated by all coefficients
of ρx, x ∈ OK . Note that this extension is finite. Now for any integral ideal m ⊆ OK ,
we introduce:

• ρm is the generator of the principal ideal generated by the elements ρx for all
x ∈ m,

• Λm is the set of m-torsion points of ρ,

• Km := K(1)(Λm),

• Hm is the maximal real subfield of Km and is called the real ray class field of K
modulo m (in particular H = H(1) is the real Hilbert class field of K),

• Hm∞ :=
⋃
n≥1Hmn .

For any extension L/K we define:

• OL is the integral closure of OK in L,

• hL is the class number of OL,

• if p ⊆ OK is a prime ideal, then pL is the product of all ideals of OL above p,

• if L/K is abelian and m is an integral ideal of K, then we set Lm = L ∩Hm,

• S∞(L) is the set of places of L above ∞.

As before, we let µ(L) be the group of roots of unity in L and set wL := µ(L). Note
that wK = q − 1. We also define

RL :=
RL,S∞(L)

(d∞ log(q))[L:K]−1

(cf. [Ros02, Ch. 14]).

Remark 3.1.1. It is shown in [Hay85, §3, §4] that

(i) wHm = w∞ for all m (see [Hay85, §3]), so F∞ is the constant field of Hm,

(ii) [Hm : K] = h
wK
|(OK/m)×| (see [Hay85, Eq. (3.2)]) for m 6= (1) and [H : K] = h,

(iii) [Km : Hm] = w∞ for m 6= 1 (see [Hay85, §4]) and [K(1) : H] = w∞
wK

for m = (1) (see
[Hay85, Cor. 4.8(2)]).

Now suppose that the extension L/K is Galois and p is a prime of K. Then we
recall that

• DP ⊆ Gal(L/K) is the decomposition group of a prime P of L above p. If L/K
is abelian, this subgroup does not depend on the choice of the prime P, hence we
write Dp in this case.

• IP ⊆ DP is the inertia subgroup. If L/K is abelian we write again Ip.
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• (P, L/K) (or σP if the extension is clear) is a lift to Gal(L/K) of the corresponding
Frobenius element in DP/IP. These elements form a conjugacy class in Gal(L/K)
which will be denoted by (p, L/K) (or σp). If L/K is abelian and p is unramified,
this conjugacy class contains only one element which coincides with the Artin
symbol.

For any abelian group G, the group of irreducible characters of G will again be
denoted by Ĝ = Hom(G,C×). For any subset U ⊆ G, we define

NU :=
∑
σ∈U

σ ∈ Z[G] .

Additionally to the character idempotents, we define the idempotent associated to a
subgroup U

eU :=
1

|U |
NU ∈ Q[G] .

3.2 Elliptic units
Let Ω be the completion of the algebraic closure of K∞ and let Γ be a lattice in Ω, i.e. a
finitely generated projective OK-module. The exponential function associated to Γ is
defined by

eΓ : Ω −→ Ω

z 7−→ z
∏
γ∈Γ
γ 6=0

(
1− z

γ

)
.

We say that Γ is special, if the rank-1 Drinfeld module associated to Γ (see
[Hay85, §5]) is sign-normalized with respect to the fixed sign-function sgn. For each Γ,
there exists an invariant ξ(Γ) ∈ Ω× such that ξ(Γ)Γ is special. This invariant is unique
up to multiplication by an element of F∞.

3.2.1 Unramified elliptic units

Following [Ouk97, §2], we can fix a fractional ideal c of K and a choice of the invariant
ξ(c) such that the sign-normalized rank-1 Drinfeld module associated to Γ := ξ(c)c is
exactly ρ. Let D be the differential of the twisted polynomial ring (see e.g. [Hay85, §4]).
Then for any integral ideal a of K, the rank-1 Drinfeld module associated to D(ρa)a

−1Γ
is sign-normalized with respect to sgn, hence we can choose ξ(a−1c) = D(ρa)ξ(c). Any
fractional ideal of K is of the form d = ab−1c and setting τ := (d−1c, K(1)/K), we can
define

ξ(d) =
D(ρb)

D(ρa)τ
ξ(c) .

Lemma 3.2.1. The element ξ(d) is well defined, i.e. it is independent of the choice of
a and b. It may depend on the choice of c and ξ(c).
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Proof. Suppose that d = ab−1c = a′b′−1c. This implies ab′ = a′b and hence

ρab′ = ρa′b .

The ideal class group acts on the set of isomorphism classes of rank-1 Drinfeld modules
and via this action we obtain (cf. [Ros02, Prop. 13.15])

ρab′ρ
σab′
a′ = ρaa′b′ = ρ

σaa′
b′ ρaa′ ,

ρa′bρ
σa′b
a = ρaa′b = ρ

σaa′
b ρaa′ .

Since aa′ 6= 0 (we only consider nonzero ideals), we have D(ρaa′) 6= 0. Further we have
σab′ = σa′b = τσaa′ , so we get(

D(ρb)

D(ρa)τ

)σaa′
=
D(ρ

σaa′
b )

D(ρ
σa′b
a )

=
D(ρa′b)

D(ρaa′)

=
D(ρab′)

D(ρaa′)
=
D(ρ

σaa′
b′ )

D(ρ
σab′
a′ )

=

(
D(ρb′)

D(ρa′)τ

)σaa′
.

With these definitions, we obtain analogously to [Ouk97, Lemma 3] the following
explicit form of the principal ideal theorem

Lemma 3.2.2. Let d1, d2 and d be fractional ideals of K. Then the ideal d2d
−1
1 OK(1)

is
principal generated by ξ(d1)/ξ(d2). Moreover, we have(

ξ(d1)

ξ(d2)

)(d,K(1)/K)

=
ξ(d1d

−1)

ξ(d2d−1)
.

Now let σ ∈ Gal(H/K) be arbitrary and let a ⊆ OK be such that (a−1, H/K) = σ.
Let x ∈ OK be a generator of the principal ideal ah, then we can define

∂(σ) :=
(
xξ(a)h

)w∞/wK .

Remark 3.2.3. (i) The element ∂(σ)wK is well-defined, i.e. it is independent of the
choice of a and x. Indeed, it is even independent of the choice of c and ξ(c): If
c′ and ξ′(c′) were used to define invariants ξ′(d) for any fractional ideal d, then
ξ′(d)d would again correspond to a sign-normalized rank-1 Drinfeld module. Since
these lattices only differ by an element of µ(H) (see e.g. [Ouk97, §2]), we obtain
ξ(d) = ζξ′(d) for some ζ ∈ µ(H). Taking the w∞-th power kills the root of unity,
so the element ∂(σ)wK will be the same.

(ii) The above definition differs from the one given in [Ouk97] by the factor 1/wK in
the exponent. This definition of ∂(σ) still depends on the choice of the generator
x and of the ideal c and ξ(c). However, two different choices only differ by an
element of µ(K). Since we are only interested in subgroups of the units containing
µ(K), it suffices to define ∂(σ) “up to roots of unity”.

Lemma 3.2.4. Let σ, σ1, σ2 ∈ Gal(H/K). Then ∂(σ1)
∂(σ2)

∈ O×H and(
∂(σ1)

∂(σ2)

)σ
=
∂(σ1σ)

∂(σ2σ)
.
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Proof. Let di ⊆ OK be such that (d−1
i , H/K) = σi and let xi ∈ OK be a generator of

dhi for i = 1, 2. From Lemma 3.2.2, we obtain that

ξ(d1)h

ξ(d2)h
OK(1)

= dh2(dh1)−1OK(1)
=
x2

x1

OK(1)
.

Therefore,

x1ξ(d1)h

x2ξ(d2)h
∈ O×K(1)

.

It is shown in [Yin97, Lemma 1.5 (1)] that

[O×K(1)
: O×H ] =

w∞
wK

,

hence we get

∂(σ1)

∂(σ2)
=

(
x1ξ(d1)h

x2ξ(d2)h

)w∞/wK
∈ O×H .

Now let d ⊆ OK be such that (d−1, H/K) = σ and let x ∈ OK be a generator of dh.
Then xix is a generator of (did)h and we obtain

x1xξ(d1d)h

x2xξ(d2d)h
=
x1

x2

(
ξ(d1d)

ξ(d2d)

)h
.

Now we can apply Lemma 3.2.2 to the second quotient and obtain

x1xξ(d1d)h

x2xξ(d2d)h
=
x1

x2

((
ξ(d1)

ξ(d2)

)(d−1,K(1)/K)
)h

.

Since x1, x2 ∈ K, we get (x1/x2)(d−1,K(1)/K) = x1/x2 and hence

x1xξ(d1d)h

x2xξ(d2d)h
=

(
x1

x2

(
ξ(d1)

ξ(d2)

)h)(d−1,K(1)/K)

=

(
x1ξ(d1)h

x2ξ(d2)h

)(d−1,K(1)/K)

.

Raising to the w∞/wK-th power gives

∂(σ1σ)

∂(σ2σ)
=

(
∂(σ1)

∂(σ2)

)(d−1,K(1)/K)

.

Since ∂(σ1)/∂(σ2) ∈ H and

(d−1, K(1)/K)|H = (d−1, H/K) = σ ,

we obtain the desired result.



34 CHAPTER 3. ANNIHILATORS IN GLOBAL FUNCTION FIELDS

3.2.2 Ramified elliptic units

Using the exponential function, we can define the elements

λm := ξ(m)em(1)

for each integral ideal m 6= (1). It is shown in [Hay85, §5] that this element is a generator
of the m-torsion points Λ′m of the sign-normalized rank-1 Drinfeld module ρ′ associated
to ξ(m)m. The construction of Km does not depend on the chosen Drinfeld module but
only on the sign-function, hence λm ∈ K(1)(Λ

′
m) = Km (cf. [Hay85, §4]). Indeed, if b is

an integral ideal of OK such that b is prime to m and (b, K(1)/K) = (m−1, K(1)/K),
then one can show that (bc, Km/K) defines a bijection Λm −→ Λ′m (note that ξ(m)m is
associated to the Drinfeld module bc∗ρ, then use [Hay85, Thm. 4.12]). It is also shown
in [Hay85, Thm. 4.17] that

αm := −NKm/Hm(λm) = λw∞m ∈ Hm

is a unit if m is not a prime power and that αpk generates the ideal pw∞/wkHm
.

Remark 3.2.5. (i) The element λm depends on the choice of c which was used to
define the invariants ξ(m). As already noted in Remark 3.2.3, changing c would
change ξ(m) by a root of unity in H, therefore αm = λw∞m is independent of this
choice.

(ii) Note that our definition of αm differs from the one in [Hay85] by a sign,
i.e. αm = −αm,Ha. This is neccessary for obtaining the correct norm relation,
see Proposition 3.2.9 below.

3.2.3 The group of elliptic units in an arbitrary real abelian
extension

Now let L be a real abelian extension of K of conductor m. Remember that for any
integral ideal n ⊆ OK we defined Ln = L ∩Hn. Set

ϕL,n := NHn/Ln(αn)
h .

Remark 3.2.6. Raising to the h-th power is neccessary to ensure compatibility with
the unramified elliptic units for the desired index formula. If there are no unramified
elliptic units (e.g. when L/K is a totally ramified extension), we can also work with the
elements ηn = ϕ

1/h
L,n , see Section 3.4.

Corollary 3.2.7. (i) If n is not a prime power, then ϕL,n ∈ O×Ln
.

(ii) If n = pk, then ϕL,n generates the ideal p[H:L(1)]hw∞/wK
Ln

.

Proof. This follows directly from [Hay85, Thm. 4.17].
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Definition 3.2.8. (i) For σ1, σ2 ∈ Gal(L(1)/K) define

∂L(σ1)

∂L(σ2)
:= NH/L(1)

(
∂(σ̂1)

∂(σ̂2)

)
,

where σ̂i is any lift of σi to Gal(H/K).

(ii) The subgroup ∆L of O×L(1)
, generated by µ(L) and the elements

∂L(σ1)

∂L(σ2)

for σ1, σ2 ∈ Gal(L(1)/K), is the group of unramified elliptic units of L.

(iii) The elements ϕL,n for n | m, n 6= (1) are called the ramified elliptic numbers of L.

(iv) The Gal(L/K)-submodule PL of L× generated by ∆L and the ramified elliptic
numbers is called the group of elliptic numbers of L.

(v) The group of elliptic units CL of L is defined by CL := PL ∩ O×L .

Proposition 3.2.9. We have

NLnp/Ln(ϕL,np) =


ϕL,n, p | n,
ϕ

1−σ−1
p

L,n , p - n, n 6= (1),

x
w∞/wK [H:L(1)]
p

(
∂L(1)

∂L(σ−1
p )

)
, n = (1),

where σp = (p, Ln/K) and xp is a generator of ph. The last equation should be read
modulo roots of unity (cf. Remark 3.2.3).

Proof. We start with the definition of ϕL,np and obtain

NLnp/Ln(ϕL,np) = NHnp/Ln(αnp)
h = NHn/Ln(NHnp/Hn(αnp))

h

= NHn/Ln(NHnp/Hn(λ
w∞
np ))h.

Now we obtain from [Tat84, Ch. IV, Lemme 1.1] that w∞ is the greatest common divisor
of elements in the set {Na− 1 | σa = (a, Hm/K) = 1}. Then there exist ideals a1, ..., an
with σai = 1 for each i such that

w∞ =
n∑
i=1

Nai − 1 ,

and we obtain

NLnp/Ln(ϕL,np) =
n∏
i=1

NHn/Ln(NHnp/Hn(λ
Nai−1
np ))h .

In [Ouk95] Oukhaba defined elliptic units ψ(1; n, a−1n) for (a, n) = 1 which satisfy

ψ(1; n, a−1n) = λNa−σa
n .
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He also proved

NHnp/Hn(ψ(1; np, a−1np)) =

{
ψ(1; n, a−1n), p | n,
ψ(1; n, a−1n)1−σ−1

p , p - n, n 6= (1).

Inserting this yields for p | n

NLnp/Ln(ϕL,np) =
n∏
i=1

NHn/Ln(λ
Nai−1
n )h = NHn/Ln(λ

w∞
n )h = ϕL,n .

The case p - n, n 6= (1) follows analogously.
In the case n = 1, we use [Ouk97, Remark 1], where he showed that

NKp/K(1)
(µp) =

ξ(p−1c)

ξ(c)

for a generator µp of Λp. As noted above, we can choose µp = λ
(bc,Kp/K)−1

p , where b is an
integral ideal prime to p such that (b, K(1)/K) = (p−1, K(1)/K). Then we obtain with
Lemma 3.2.2

NKp/K(1)
(λp) = NKp/K(1)

(µp)
(bc,K(1)/K) =

(
ξ(p−1c)

ξ(c)

)(p−1c,K(1)/K)

=
ξ(OK)

ξ(p)
.

Set x := xp, then the above observation yields

NLp/L(1)
(ϕL,p) = NLp/L(1)

(
NKp/Lp(λp)

h
)

= NKp/L(1)
(λp)

h

= NK(1)/L(1)

(
NKp/K(1)

(λp)
)h

= NH/L(1)

(
NK(1)/H

(
ξ(OK)

ξ(p)

)h)

= NH/L(1)

(
NK(1)/H

(
xw∞/wK

ξ(OK)hw∞/wK

(xξ(p)h)w∞/wK

)wK/w∞)

= x[K(1):L(1)]NH/L(1)

(
NK(1)/H

(
∂(1)

∂(σ−1
p )

)wK/w∞)

= xw∞/wK [H:L(1)]NH/L(1)

(
∂(1)

∂(σ−1
p )

)
= xw∞/wK [H:L(1)]

(
∂L(1)

∂L(σ−1
p )

)
.

3.2.4 Kronecker’s Limit Formulae

We fix a prime w0 ∈ S∞(Hm). Then for each subfield M of Hm, there is a unique prime
in S∞(M) below w0. Since ∞ splits completely in Hm, the valuations of these primes
are compatible. By abuse of notation, we denote each of these valuations by ord∞,
i.e. for an element x ∈ Hm we implicitly set

ord∞(x) := ordw0(x)

and analogously for each subfield M of Hm. The same convention will be used for
absolute values.
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Now we can state Kronecker’s second limit formula:

Proposition 3.2.10. (i) Let (1) 6= n | m and let χ ∈ ̂Gal(Hn/K). Then we have

LSn(χ, 0) =
1

w∞

∑
σ∈Gal(Hn/K)

ord∞(ασn )χ(σ) .

(ii) For any non-trivial character χ ∈ ̂Gal(H/K), we have

L(χ, 0) =
1

w∞h

∑
σ∈Gal(H/K)

ord∞(∂(σ))χ(σ) .

Proof. Part (i) is exactly the last equation in [Hay85], whereas part (ii) follows directly
from [Ouk97, Proof of Prop. 3] and Remark 3.2.3.

Remark 3.2.11. The proposition shows that we can regard the ramified elliptic units
as Stark units which was already indicated in Remark 2.2.7. Indeed, for n 6= 1 the set
S := Sn ∪ {∞} contains all places which ramify in Hn/K and |S| ≥ 2. Moreover, S
contains the completely split prime ∞. By definition of the L-function, we obtain

LS(χ, s) = (1− χ(∞)N∞−s)LSn(χ, s) = (1−N∞−s)LSn(χ, s)

and hence

L′S(χ, 0) = log(N∞)LSn(χ, 0) = − 1

w∞

∑
σ∈Gal(Hn/K)

log
(
N∞− ord∞(ασn )

)
χ(σ)

= − 1

w∞

∑
σ∈Gal(Hn/K)

log |ασn |∞ χ(σ) .

Comparing this with Conjecture 2.2.6 yields εHn,S = αn up to roots of unity.

3.3 An index formula

3.3.1 Sinnott’s module

Remember that for a prime p of K the element σp ∈ G = Gal(L/K) is the lift of an
associated Frobenius element in Dp/Ip. Define τp := σ−1

p eIp ∈ Q[G].

Definition 3.3.1. (i) For any integral ideal n of OK , we define

ρ′n := N Gal(L/Ln)
∏
p|n

(1− τp) .

(ii) The Z[G]-submodule U ′ of Q[G] generated by ρ′n, where n runs through all integral
ideals of OK is called Sinnott’s module.

(iii) Define U ′0 to be the kernel of multiplication by NG in U ′.
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Remark 3.3.2. (i) The notation U ′ and ρ′n is adopted from [CK19]. In the second
part of this chapter, we use a modification of Sinnott’s module which will be
denoted by U .

(ii) Note that for all integral ideals n, we have Ln = Lgcd(n,m), hence ρ′n = ρ′gcd(n,m).
Therefore, it suffices to consider the elements ρ′n with n | m.

(iii) If n 6= (1), we have ρ′n ∈ U ′0. As in the imaginary quadratic case (cf. [Ouk03]) the
component of U ′ generated by ρ′(1) intersected with U ′0 is generated by

ρ′(1)(1− σ) , σ ∈ G .

If σ, σ′ ∈ G are lifts of the same element τ ∈ Gal(L(1)/K), then

ρ′(1)(1− σ) = ρ′(1)(1− σ′) ,

hence it suffices to consider the elements

ρ′(1)(1− τ̃) , τ ∈ Gal(L(1)/K) ,

where τ̃ ∈ G is an arbitrary lift of τ .

Now recall the convention introduced in Section 3.2.4 and consider the logarithmic
map

lL : L× −→ Q[G]

x 7−→
∑
σ∈G

ord∞(xσ)σ−1

and the element

ω := hw∞
∑
χ∈Ĝ
χ 6=1

L(χ, 0)eχ−1 .

Also define

l∗L := (1− eG)lL .

The analogue of [Ouk03, Prop. 6] is then the next

Proposition 3.3.3. Let n 6= 1 be such that n | m and let τ ∈ Gal(L(1)/K), then

l∗L(ϕL,n) = ωρ′n ,

l∗L

(
∂L(1)

∂L(τ)

)
= ωρ′(1)(1− τ̃) ,

where τ̃ ∈ G is any lift of τ .
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Proof. We can verify the equalities on the χ-components where χ runs through all
non-trivial characters of G. Let mχ be the conductor of χ. Since ϕL,n ∈ Ln, we compute

χ(l∗L(ϕL,n)) =
∑
σ∈G

ord∞
(
ϕσL,n

)
χ−1(σ)

=
∑

σ∈Gal(Ln/K)

∑
τ∈Gal(L/Ln)

ord∞
(
ϕστL,n

)
χ−1(σ)χ−1(τ)

= χ(N Gal(L/Ln))
∑

σ∈Gal(Ln/K)

ord∞
(
ϕσL,n

)
χ−1(σ) .

We first observe that if mχ - n then χ(N Gal(L/Ln)) = 0, so

χ(l∗L(ϕL,n)) = 0 = χ(ωρ′n) .

Therefore, it suffices to consider the characters such that mχ | n. In this case, we have
Gal(L/Ln) ⊆ ker(χ) and hence χ is the inflation of a character of Gal(Ln/K) which
we will also denote by χ (this is justified by Proposition 2.1.8 (i)). This character can
be inflated to a character χ of Gal(Hn/K) with Gal(Hn/Ln) ⊆ ker(χ). Then we obtain
with Proposition 3.2.10 (i)

χ(l∗L(ϕL,n)) = χ(N Gal(L/Ln))h
∑

σ∈Gal(Ln/K)

ord∞
(
NHn/Ln(αn)

σ
)
χ−1(σ)

= χ(N Gal(L/Ln))h
∑

σ∈Gal(Ln/K)

∑
τ∈Gal(Hn/K)

ord∞ (αστn )χ−1(στ)

= χ(N Gal(L/Ln))h
∑

σ∈Gal(Hn/K)

ord∞ (ασn )χ−1(σ)

= χ(N Gal(L/Ln))hw∞LSn(χ
−1, 0)

= χ(N Gal(L/Ln))
∏
p|n

(1− χ−1(p))χ(ω)

= χ(ρ′nω) .

The other equation follows analogously with Proposition 3.2.10 (ii).

Corollary 3.3.4. We have l∗L(PL) = ω · U ′0.

Proof. This follows directly from Remark 3.3.2.

3.3.2 Index computations

We briefly recall the definition of Sinnott’s Index (see [Ouk03, §4]). Let V be a finite-
dimensional vector space over L = Q or R. A subgroup X of V is called lattice if
rkZ(X) = dimL(V ) and LX = V . If A and B are lattices of V and γ is an automorphism
of V such that γ(A) = B, then we define

[A : B] := |det(γ)| .

If B ⊆ A, then [A : B] is the usual group index. Now we can prove



40 CHAPTER 3. ANNIHILATORS IN GLOBAL FUNCTION FIELDS

Proposition 3.3.5. We have

[U ′0 : l∗L(PL)] = (hw∞)[L:K]−1 · wKhLRL

wLh
.

Proof. We can adjust the proof of [Ouk03, Prop. 7] to our situation. Using Proposi-
tion 2.1.8 (ii) and

L′{∞}(χ, 0) = log(N∞) · L(χ, 0) = d∞ log(q) · L(χ, 0) ,

we obtain with the analytic class number formula 2.1.14

ζ
(r)
L,S∞(L)(0) = ζK,{∞}(0) ·

∏
χ 6=1

L′{∞}(χ, 0)

= −
hRK,{∞}

wK
(d∞ log(q))[L:K]−1

∏
χ 6=1

L(χ, 0) ,

where r = |S∞(L)| − 1. Note that RK,{∞} = 1 since O×K,{∞} = µ(K). Remember that

RL =
RL,S∞(L)

(d∞ log(q))[L:K]−1 . Applying Theorem 2.1.14 once again, this yields

∏
χ 6=1

L(χ, 0) =
wKhLRL

wLh
.

By Corollary 3.3.4 we have l∗L(PL) = ωU ′0 and hence we obtain

[U ′0 : l∗L(PL)] = [U ′0 : ωU ′0] = |det(ω)|
(∗)
=
∏
χ 6=1

χ(ω)

= (hw∞)[L:K]−1
∏
χ 6=1

L(χ−1, 0)

= (hw∞)[L:K]−1 · wKhLRL

wLh
.

The equality (∗) follows from [Sin80, Lemma 1.2 (b)].

Let p | m be a prime ideal of K. The norm relation of Proposition 3.2.9 implies that
x
w∞/wK [H:L(1)]
p ∈ PL, where xp is a generator of ph.

Definition 3.3.6. Let QL be the subgroup of PL generated by µ(L),∆L and the ele-
ments xw∞/wK [H:L(1)]

p for all p | m.

Now we can state the analogue of [Ouk03, Prop. 8]

Proposition 3.3.7. We have

[l∗L(PL) : lL(CL)] =

∏
p[L ∩Hp∞ : L(1)]

[PwL
L ∩K : QwL

L ∩K]
,

where p runs though all maximal ideals of OK.
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For the proof we need the following

Lemma 3.3.8. (i) ker(lL) ∩ O×L = µ(L).

(ii) lL(CL) = l∗L(CL).

Proof. (i) The inclusion µ(L) ⊆ ker(lL) ∩ O×L is clear. So let x ∈ ker(lL) ∩ O×L , then
by definition of O×L , the valuation of x at every place which is not dividing ∞
is 0. But since x ∈ ker(lL), we find

0 = lL(x) =
∑
σ∈G

ord∞(xσ)σ−1

and hence ord∞(xσ) = 0 for all σ ∈ G. Therefore, the valuation of x at any place
is 0, so x must be in the field of constants. Since x 6= 0, we obtain x ∈ µ(L).

(ii) Let u ∈ CL, then

eG · lL(u) =
1

|G|
lL(NL/K(u)) .

Since NL/K(u) ∈ O×K = µ(K), we get by part (i)

eG · lL(u) = 0 ,

hence
lL(u) = l∗L(u) .

Proof of Proposition 3.3.7. We easily see that if L ⊆ H, then PL = QL = CL and
L = L(1) = L ∩ Hp∞ , so there is nothing to show. Hence we can assume m 6= (1).
Defining P ′ := PwL

L and C ′ := P ′ ∩ O×L = CwL
L , we compute

[l∗L(PL) : l∗L(CL)] =
[l∗L(PL) : l∗L(C ′)]

[l∗L(CL) : l∗L(C ′)]

=
[l∗L(PL) : l∗L(P ′)]

[l∗L(CL) : l∗L(C ′)]
[l∗L(P ′) : l∗L(C ′)]

= [l∗L(P ′) : l∗L(C ′)]

since

[l∗L(PL) : l∗L(P ′)] = w
[L:K]−1
L = [l∗L(CL) : l∗L(C ′)] .

We also define Q′ := QwL
L and ∆′ := Q′∩O×L . Then we claim that Q′∩ker(l∗L) = Q′∩K

and P ′ ∩ ker(l∗L) = P ′ ∩K. One of the inclusions is clear in both cases, since obviously
K× ⊆ ker(l∗L). For the other inclusion let x ∈ ker(l∗L). Then for any σ ∈ G we find

0 = σl∗L(x) = lL(xσ−1) ,

so xσ−1 ∈ ker(lL). From [Hay85, Cor. 4.13] we get that xσ−1 ∈ O×L for every x ∈ P ′,
hence also for every x ∈ Q′. By Lemma 3.3.8 we conclude that xσ−1 ∈ µ(L), and since
x is a wL-th power, we find xσ−1 = 1 for every σ ∈ G. Hence x ∈ K.
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From this we obtain the following commutative diagramm with exact rows and
columns:

1 1 1

1 Q′ ∩K Q′/∆′ l∗L(Q′)/l∗L(∆′) 1

1 P ′ ∩K P ′/C ′ l∗L(P ′)/l∗L(C ′) 1

l∗L

l∗L

Applying the snake lemma gives

[l∗L(P ′) : l∗L(C ′)]

[l∗L(Q′) : l∗L(∆′)]
=

[P ′/C ′ : Q′/∆′]

[P ′ ∩K : Q′ ∩K]
.

SinceK× ⊆ ker(l∗L) we get l∗L(Q′) = l∗L(∆′). Now suppose that m =
∏s

i=1 p
ei
i is the prime

decomposition of the conductor of L. For the computation of the index [P ′/C ′ : Q′/∆′]
we choose prime ideals Pi ⊆ OL such that Pi | pi and define ti to be the ramification
index of Pi over pi. Let ordi be the valuation associated to Pi, then we can consider
the map

ordL : L× −→ Zs

x 7−→ (ord1(x), ..., ords(x)) .

It is clear that C ′ = P ′ ∩ ker(ordL) and hence we obtain

[P ′/C ′ : Q′/∆′] = [ordL(P ′) : ordL(Q′)] .

For this index we compute for 1 ≤ i ≤ s and 1 ≤ e ≤ ei

ordi(ϕL,pei ) = ordi(NHpe
i
/Lpe

i
(αpei

)h)

= h · t(L/Lpei
) · õrdi(NHpe

i
/Lpe

i
(αpei

)) ,

where t(L/Lpei
) denotes the ramification index of p′i := Pi ∩ Lpei

in L/Lpei
and õrdi is

the valuation associated to p′i. Recall that

αpei
OHpe

i
= (pi)

w∞/wK
Hm

=
∏
q|pi

qw∞/wK ,

so we obtain

õrdi(NHpe
i
/Lpe

i
(αpei

)) =
w∞
wK

∣∣∣{q ⊆ OHpe
i
| q prime, q | p′i

}∣∣∣ · f(Hpei
/Fpei

) =
w∞
wK
· [H : L(1)] ,

where f(Hpei
/Lpei

) is the inertia degree of p′i in Hpei
, and hence

ordi(ϕL,pei ) =
w∞
wK

ht(L/Lpei
)[H : L(1)] .
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This gets clearly minimal for e = ei hence we obtain

ordL(P ′) =
s⊕
i=1

(
wLw∞
wK

h · t(L/Lp
ei
i

)[H : L(1)]Z
)
.

On the other hand we find

ordi

(
x

[H:L(1)]w∞/wK
pi

)
=
w∞
wK

[H : L(1)] ordi(xpi) .

Since xpi is a generator of phi , we obtain

ordi(xpi) = h · |Ipi |

and hence

ordL(Q′) =
s⊕
i=1

(
wLw∞
wK

h |Ipi | [H : L(1)]Z) .

Putting these results together, we find

[ordL(P ′) : ordL(Q′)] =
s∏
i=1

|Ipi |
t(L/Lp

ei
i

)
.

With [Lp
ei
i

: L(1)] =
|Ipi |

t(L/L
p
ei
i

)
, we obtain the desired result.

Now we can state the index formula analogously to [Ouk03, Thm. 1]:

Theorem 3.3.9. Set d(L) := [PwL
L ∩K : QwL

L ∩K]. Then we get

[O×L : CL] =
(hw∞)[L:K]−1wKhL

wLh

∏
p[L ∩Hp∞ : L(1)]

[L : L(1)]

[Z[G] : U ′]

d(L)
.

Proof. Let R = Z[G] and let R0 be the kernel of multiplication by NG in R. Since
ker(lL) ∩ O×L = µ(L) by Lemma 3.3.8 (i), we get

[O×L : CL] = [lL(O×L ) : lL(CL)] = [lL(O×L ) : R0][R0 : lL(CL)]

=
[R0 : U ′0]

[R0 : lL(O×L )]
[U ′0 : lL(CL)]

=
[R0 : U ′0]

[R0 : lL(O×L )]
[U ′0 : l∗L(PL)][l∗L(PL) : lL(CL)] .

Note that all the indices above are defined since each of the Z-modules has the same
rank. By definition of Sinnott’s index, one can easily show that

[R0 : lL(O×L )] = |det(A)| ,

where A is the matrix with entries

(ordw(ui)) w∈S∞(L)\{w0}
i∈{1,...,[L:K]−1}

,
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where w0 is an arbitrary place in S∞(L) and the units u1, ..., u[L:K]−1 ∈ O×L project to
a basis of O×L/µ(L). By the definition of the regulator, we hence get

RL = |det(−A)| = |det(A)| ,

so [R0 : lL(O×L )] = RL. Moreover, the identity

[R : U ′] = [NG ·R : NG · U ′][R0 : U ′0]

holds. It is clear that NG · R = NG · Z and for computing NG · U ′ we just have to
consider

NG · ρ′(1) = NG ·N Gal(L/L(1)) =
∣∣Gal(L/L(1))

∣∣ ·NG .
Therefore, NG · U ′ =

∣∣Gal(L/L(1))
∣∣ ·NG · Z and together we get

[NG ·R : NG · U ′] =
∣∣Gal(L/L(1))

∣∣ = [L : L(1)]

and hence

[R0 : U ′0] =
[R : U ′]

[L : L(1)]
.

Using these computations and the results of the Propositions 3.3.5 and 3.3.7 we obtain

[O×L : CL] =
(hw∞)[L:K]−1wKhL

wLh

∏
p[L ∩Hp∞ : L(1)]

[L : L(1)]

[R : U ′]

d(L)
.

We state some results on [R : U ′] similar to [Ouk03, §6, §7]:

Proposition 3.3.10. (i) The index [R : U ′] is an integer divisible only by primes
dividing [L : L(1)]. Moreover, if Gal(L/L(1)) is the direct product of its inertia
groups or if at most two primes ramify in L/K, then [R : U ′] = 1.

(ii) If G is cyclic, then [R : U ′] = 1.

(iii) If L = Hm for some integral ideal m =
∏s

i=1 p
ei
i for some s ≥ 3 and (h,wK) = 1,

we get

[R : U ′] = w
e(2s−2−1)
K ,

where e is the index of the subgroup generated by the classes of pi in cl(K).

Proof. (i) This is [Ouk03, Prop. 16].

(ii) This is [Sin80, Thm. 5.3].

(iii) This is [Ouk03, Prop. 18].
Note that the arguments are based only on the group structure of G and hence can

also be applied in the case of function fields.
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Remark 3.3.11. (i) In [Ouk92] H. Oukhaba defined a group EL of elliptic units in
an unramified extension L/K. He also showed that the elements of EwKw∞hL are
of the form ∏

τ∈G

(
∂L(1)∂L(τσ−1)

∂L(σ−1)∂L(τ)

)wKmτ
for σ ∈ G and certain rational numbers mτ ∈ Q (cf. Prop. 3.6 in loc. cit.). He
also derived an index formula in this case:

[O×L : EL] =
hL

[H : L]
.

In this case, our index formula yields

[O×L : CL] = (hw∞)[L:K]−1wKhL
wLh

.

From the above description we find that Ew∞hL ⊆ CL and we get

[CL : Ew∞hL ] = h
wL
wK

.

(ii) In [Yin97] L. Yin defined a group C of extended cyclotomic units in the ray
class fields Km. The ramified elliptic units in this article are in fact norms of
Yin’s cyclotomic units. However our construction of the unramified units is quite
different to the one in [Yin97]. Nevertheless, Yin also computed an index formula

[O×Hm
: (C ∩ O×Hm

)] = waKhHm ,

where a = 0 if s ≤ 2 and a = e(2s−2− 1)− (s− 2) if s ≥ 3. Note that there is the
additional assumption (h,wK) = 1 in the case s ≥ 3. With these assumptions,
we get from our index formula

[O×Hm
: CHm ] = (hw∞)[Hm:K]−1wKhHm

w∞h
w
−(s−1)
K [R : U ′] .

With Proposition 3.3.10, this yields

[O×Hm
: CHm ] = (hw∞)[Hm:K]−2waKhHm .

3.3.3 The index d(L)

To conclude this section, we want to analyze the index d(L) in some detail. We obtain
d(L) = 1 in essentially the same cases as listed in [Ouk03, Remark 2] for imaginary
quadratic base fields. First we see that if L ⊆ H, then there are no ramified elliptic
units and hence PL = QL = CL, so d(L) = 1. Hence we can assume m 6= (1) for the
rest of this section.
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Lemma 3.3.12. The quotient (PwL
L ∩K)/(QwL

L ∩K) is annihilated by

(i) [H : L(1)].

(ii) the least common multiple of [Lp
ei
i

: L(1)] for i = 1, ..., s.

The proof of part (i) is similar to the one of [Ouk03, Lemma 2] and needs the
following analogue of [Ouk03, Lemma 1]:

Lemma 3.3.13. Let x ∈ PL. Then there exists α ∈ K, an abelian extension M/K and
y ∈M such that

(i) xwL = αwLw∞/wKyf , where f = hwLw∞,

(ii) The valuation of α at every prime ideal of OK is divisible by h.

Proof. It suffices to check the claim for the generators of PL. If x ∈ µ(L), xwL = 1 and
hence we can choose α = y = 1.

Let x = ϕL,n for some n | m, n 6= (1). Then by definition, we get

xwL = NHn/Ln(λ
w∞
n )hwL =

 ∏
τ∈Gal(Hn/Ln)

τ̂(λn)

f

,

where τ̂ is any lift of τ to Gal(Kn/Ln). Setting α := 1 and

y :=
∏

τ∈Gal(Hn/Ln)

τ̂(λn) ∈ Kn ,

we obtain the desired properties.
Now let x = ∂L(1)

∂L(σ)
for some σ ∈ Gal(L(1)/K). Let p be a prime ideal of OK such

that (p, L(1)/K) = σ−1. Let β be a generator of ph. Then by the norm relation 3.2.9
we get

xwL = β−[H:L(1)]wLw∞/wKNLp/L(1)
(ϕL,p)

wL

= β−[H:L(1)]wLw∞/wKNHp/L(1)
(λw∞p )hwL

= β−[H:L(1)]wLw∞/wK

 ∏
τ∈Gal(Hp/L(1))

τ̂(λp)

f

,

where τ̂ is any lift of τ to Gal(Kp/L(1)). Hence we obtain the desired result by setting
α := β−[H:L(1)] and

y :=
∏

τ∈Gal(Hp/L(1))

τ̂(λp) ∈ Kp .

Proof of Lemma 3.3.12. (i) LetR be the subgroup of K× generated by xwLw∞/wKpi for
i = 1, ..., s. Since QL is generated by µ(L),∆L and the x[H:L(1)]w∞/wK

pi , we obtain
that QwL

L is generated by ∆wL
L and the x[H:L(1)]wLw∞/wK

pi . Since

∆wL
L ∩K = ∆wL

L ∩ OK = ∆wL
L ∩ µ(K) = 1 ,
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we finally obtain that

QwL
L ∩K = R[H:L(1)] .

Now we are left to show PwL
L ∩K ⊆ R. For this purpose let x ∈ PL be such that

xwL ∈ PwL
L ∩K. By Lemma 3.3.13, we obtain elements α ∈ K and y ∈ M such

that xwL = αwLw∞/wKyf . Since xwL ∈ K, we find that yf ∈ K. Since K(y) ⊆ M
is abelian over K, we can apply [Sta80, Lemma 6] to obtain an element z ∈ K
such that yfwK = zf (note that wK | f). Therefore, we get that yf = ζ · zf/wK for
some ζ ∈ µ(K), so

xwL = ζ · (αzh)wLw∞/wK .

Therefore, ζ ∈ LwL ∩ µ(K) = 1. Since x is a unit outside p1, ..., ps, so is αzh.
Since each valuation of α is a multiple of h by part (ii) of Lemma 3.3.13, we get

αzhOK = phr11 · · · phrss =

(
s∏
i=1

xripi

)
OK

for some ri ∈ N. Hence,

xwL = ζ ·

(
s∏
i=1

xripi

)wLw∞/wK

,

where ζ is again an element of LwL ∩ µ(K) = 1. Therefore, xwL ∈ R.

(ii) Let x ∈ PL be such that xwL ∈ PwL
L ∩K. By the definition of PL, x can be written

as

x = u ·
s∏
i=1

ϕλi
L,p

ei
i

,

where u ∈ O×L and λi ∈ Z[G] (note that the elliptic numbers ϕL,pei for 1 < e < ei
can be written as a norm of ϕL,peii ). Now we define ordi,K to be the valuation
associated to pi. Remember that ordi is the valuation of a fixed prime ideal Pi of
L over pi. Then we obtain

ordi,K(xwL) =
1

|Ipi |
ordi(x

wL) =
wL
|Ipi|

ordi(ϕ
λi
L,p

ei
i

) .

Using the valuation computed in the proof of Proposition 3.3.7 and defining µi ∈ Z
to be the sum over the coefficients of λi (i.e. µi is λi evaluated by the trivial
character), we get

ordi,K(xwL) =
µit(L/Lp

ei
i

)

|Ipi |
· w∞
wK

wLh[H : L(1)] ∈ Z .

Let g be the least common multiple of the [Lp
ei
i

: L(1)] for i = 1, ..., s. Since

[Lp
ei
i

: L(1)] =
|Ipi |

t(L/L
p
ei
i

)
, we get that

ordi,K(xwLg) ∈ w∞
wK

wLh[H : L(1)]Z .
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But we know that the ideal pw∞/wK ·wLh[H:L(1)]

i is generated by x
w∞/wK ·wL[H:L(1)]
pi

which is an element of QwL
L ∩K. Since x is a unit outside of p1, ..., ps, we find

xwLgOK =
s∏
i=1

p
ri·w∞/wK ·wLh[H:L(1)]

i =

(
s∏
i=1

x
ri·w∞/wK ·wL[H:L(1)]
pi

)
OK

for some ri ∈ Z and hence xwLg ∈ QwL
L ∩K.

With the results above, we deduce

Proposition 3.3.14. If one of the following conditions holds, then d(L) = 1:

(i) L ⊆ H,

(ii) H ⊆ L,

(iii) [H : L(1)] and [L : L(1)] are coprime.

Proof. (i) This was already noted in the beginning of this section.

(ii) This is Lemma 3.3.12 (i), since [H : L(1)] = 1 in this case.

(iii) Since [Lp
ei
i

: L(1)] | [L : L(1)], the combination of Lemma 3.3.12 (i) and 3.3.12 (ii)
proves this case.

In order to obtain more results on the index d(L), we establish a connection to
distribution theory. This approach was already used in [Ouk03] for imaginary quadratic
base fields.

For this purpose, we set D := PwL
L /(QwL

L ∩K). The Z-rank of PwL
L is [L : K]−1+s.

Moreover, we have seen in the proof of Lemma 3.3.12 that QwL
L ∩ K is generated by

x
[H:L(1)]wLw∞/wK
pi , hence the Z-rank of QwL

L ∩K is s and D has Z-rank [L : K] − 1. By
the construction of QL, it is also clear that NG ·D = 0, so (PwL

L ∩K)/(QwL
L ∩K) = DG.

Let

Σ =
⊕
n|m

Z[Gal(Ln/K)]

and let S ⊆ Σ be the submodule generated by the following relations: For n | m and a
prime q such that n′ := nq | m take

N Gal(Ln′/Ln)− 1Gal(Ln/K) if q | n ,
N Gal(Ln′/Ln)− (1Gal(Ln/K) − (q, Ln/K)−1) if q - n ,

where 1Gal(Ln/K) denotes the element 1 in the component Z[Gal(Ln/K)].
Now let T be the set of all ideals n | m such that n =

∏s
i=1 p

eiri
i with ri ∈ {0, 1}.

For any n ∈ T define S(n) to be the ideal of Z[Gal(Ln/K)] generated by the elements
NIpi(n) for pi | n, where Ipi(n) is the inertia subgroup of pi in Gal(Ln/K). Let zn be
the exponent of the torsion subgroup of Z[Gal(Ln/K)]/S(n). Then we obtain the next
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Theorem 3.3.15. We have

rkZ(Σ/S) = [L : K] .

Moreover, the torsion subgroup Tor(Σ/S) of Σ/S is finite and annihilated by
∏

n∈T zn.

Proof. One can use the proof of [BO01, Thm. 3.1]. Note that we do not work with ray
class fields here, but using Ln instead of Kn and then defining the same objects will
give the same result for our case.

Proposition 3.3.16. If Σ/S is Z-torsion free, then d(L) = 1.

Proof. First, we claim that we obtain a surjective map f : Σ/S −→ D. Indeed, we can
define f ′ : Σ −→ D by sending σ ∈ Gal(Ln/K) to the class of ϕwLσL,n if n 6= (1) and to the

class of
(
∂L(σ−1)
∂L(1)

)wL
if n = (1). This map is clearly surjective and by the norm relations

in Proposition 3.2.9, we obtain that S ⊆ ker(f ′). Hence, we obtain a surjective map
f : Σ/S −→ D.

On the other hand, we can define a map g′ : Σ −→ U ′ by sending σ ∈ Gal(Ln/K) to
σ̃ρ′n, where σ̃ is any lift of σ to Gal(L/K). This map is again surjective and S ⊆ ker(g′),
hence we obtain a surjective map g : Σ/S −→ U ′.

Since g is surjective and we have rkZ(U ′) = [L : K] = rkZ(Σ/S), we obtain that
ker(g) ⊆ Tor(Σ/S). Whenever Σ/S is Z-torsion free, we hence obtain that g is an
isomorphism. If this is true, we can define ϕ : U ′ −→ D by ϕ = f ◦ g−1. This is clearly
a surjective map and since ϕ(NG · u) = NG · ϕ(u) = 0, we get that NG · U ′ ⊆ ker(ϕ).
Since U ′0, U ′ and NG · U ′ are torsion-free, we get U ′0 ∼= U ′/NG · U ′ as Z-modules and
therefore we obtain a surjective map U ′0 � D. Since U ′0 has Z-rank [L : K]− 1 and is
Z-torsion-free, we obtain U ′0 ∼= D. Finally, since (U ′0)G = {0}, we get that DG = {1}
and hence d(L) = 1.

Proposition 3.3.17. If one of the following conditions holds, Σ/S is Z-torsion free
and hence d(L) = 1:

(i) Gal(L/L(1)) is the direct product of its inertia subgroups.

(ii) s ∈ {0, 1, 2}.

(iii) Gal(L/L(1)) is cyclic.

Proof. (i) Here we can use the proof of [BO01, Prop. 3.5], modified to our case by
replacing Kn by Ln. Then the claim is simply [BO01, Cor. 3.8].

(ii) The case s = 0 is already covered by Proposition 3.3.14.

For s = 1, we have m = pe and hence Gal(L/L(1)) = Ip. Therefore, this case
follows from part (i).

For s = 2, we have m = pe11 pe22 . We clearly get that Lp
ei
i
/L(1) is totally ramified

at each prime above pi and unramified everywhere else, so Lp
e1
1
∩ Lp

e2
2

= L(1).
Comparing the ramification indices and the degrees of the extensions shows that
L = Lp

e1
1
Lp

e2
2

and we get Ip1 ∩ Ip2 = {1} and Ip1 × Ip2 ∼= Gal(L/L(1)), so the claim
follows again from part (i).
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(iii) Let ` ∈ Z be a prime number, then we will show that ` - zn for each n ∈ T with the
same method as in the proof of [BO01, Prop. 3.5]. For this purpose let Ip(n) be
the inertia group of p in Gal(Ln/L(1)) and let S̃(n) be the ideal of Z[Gal(Ln/L(1))]
generated by NIp(n) for p | n. We decompose

Z[Gal(Ln/K)]/S(n) ∼=
⊕

τ∈Gal(L(1)/K)

Z[Gal(Ln/L(1))]/S̃(n)τ̃ ,

where τ̃ is a lift of τ to Gal(Ln/K). So we have to show that Z[Gal(Ln/L(1))]/S̃(n)
has no `-torsion, or equivalently that

Z` ⊗ Z[Gal(Ln/L(1))]/S̃(n) = Z`[Gal(Ln/L(1))]/S̃(n)

is Z`-torsion-free (by abuse of notation we denote the ideal S̃(n)Z`[Gal(Ln/L(1))]

also by S̃(n)).

Now let Gal(Ln/L(1)) = G′ × G`(n), where G`(n) is the `-Sylow subgroup of
Gal(Ln/L(1)) and ` - |G′|. Similarly to the arguments in [BO01], we obtain a
decomposition by the irreducible characters of G′ and hence we have to show that

Aχ[G`(n)]/S̃(n)Aχ[G`(n)]

has no Z`-torsion, where Aχ = eχZ`[G′]. If we decompose Ip(n) = I ′p(n) × Ip,`(n)
into its `-Sylow subgroup Ip,`(n) and its prime-to-`-part I ′p(n), we find that

eχ ·NIp(n) =

{
eχ ·NIp,`(n), χ(I ′p(n)) = 1,

0, χ(I ′p(n)) 6= 1.

Hence, the ideal S̃(n)Aχ[G`(n)] is generated by eχ ·NIp,`(n) for all p | n such that
χ(I ′p(n)) = 1. Since Gal(L/L(1)) is cyclic, so are G`(n) and each Ip,`(n). Hence,
the Ip,`(n) are totally ordered by inclusion and we can find a prime q such that
Iq,`(n) ⊆ Ip,`(n) for all other primes p | n with χ(I ′p(n)) = 1. Therefore,

S̃(n)Aχ[G`(n)] = (eχ ·NIq,`(n)) .

The Z`-module

Aχ[G`(n)]/(eχ ·NIq,`(n))

is free, so it is Z`-torsion free and therefore ` - zn. Since this is true for each prime
` and each n ∈ T , we find that Σ/S is Z-torsion-free and hence d(L) = 1.



3.4. A NON-TRIVIAL ROOT OF AN ELLIPTIC UNIT 51

3.4 A non-trivial root of an elliptic unit

With this definition of elliptic units we can prove an analogue of the main result of
[CK19] in the case of global function fields. In the first step towards this annihilation
result, we will take certain roots of our elliptic units.

3.4.1 Preliminaries

We use the notation from the previous sections with the following additional assump-
tions:

• Suppose p is an odd prime such that p - q · (q − 1) · h.

• L is a real cyclic extension of K of degree pk for some positive integer k.

• We change the notation to Γ := Gal(L/K). Let σ be a generator of Γ.

Remark 3.4.1. Note that the assumption on L and p - h are exactly the same as in
[CK19]. The assumption p - (q−1) = wK is also implied by the hypotheses stated there.
The only new assumption is p - q, i.e. we suppose that p is prime to the characteristic
of K, which is a natural hypothesis when dealing with function fields.

Note that since p - h, we have

L ∩H = K

and we assume that there are exactly s ≥ 2 primes p1, ..., ps of K which ramify in L.
We introduce the additional notation:

• I := {1, ..., s},

• xj := xpj is a generator of phj ,

• Pj is a fixed prime ideal of L over pj,

• For any abelian extension M/K let Dj(M) := Dpj ⊆ Gal(M/K) be the decom-
position group of pj and Ij(M) := Ipj ⊆ Dj(M) be the inertia group of pj,

• tj := |Ij(L)| is the ramification index of Pj over pj,

• nj := [G : Dj(L)].

Then it follows that tjnj | pk and

pjOL =

nj−1∏
i=0

P
tjσ

i

j .

Since p - q, this implies that the extension L/K is tamely ramified and hence its
conductor is square-free. Therefore the conductor is given by mI := m =

∏
j∈I pj.
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3.4.2 The distinguished subfields Fj

For any subset ∅ 6= J ⊆ I we set mJ :=
∏

j∈J pj. With our previous observation we find
that L ⊆ HmI .

Lemma 3.4.2. L ⊆
∏

j∈I Hpj .

Proof. By class field theory, we have a canonical isomorphism (see e.g. [Hay85, Eq. (3.1)])

Gal(Hm/H) ∼= (OK/m)×/ im(µ(K)) .

With the Chinese Remainder Theorem, we get

[Hm :
∏
j∈I

Hpj ] =
[Hm : H]

[
∏

j∈I Hpj : H]
=
|(OK/m)×| /wK∏

j∈I [Hpj : H]
=

∏
j∈I |(OK/pj)×|

wK
∏

j∈I |(OK/pj)×| /wK

= ws−1
K .

The second equality follows since for any 2 ≤ j ≤ s we obtain Hpj ∩
∏j−1

i=1 Hpi = H by
considering the ramification of pj. Since p - wK , we get L ⊆

∏
j∈I Hpj .

Using the canonical isomorphism of the above proof, we obtain

Gal(Hpj/H) ∼= (OK/pj)×/ im(µ(K)) ,

which is a cyclic group. Since tj | [Lpj : K] | [Hpj : K] and p - h, it follows that
tj | [Hpj : H]. Using p - h and [CK19, Lemma 2.1] we can define Fj to be the unique
subfield of Hpj such that [Fj : K] = tj. Then Fj ∩H = K and Fj/K is totally ramified
at pj and unramified everywhere else.

From now on, we will write HJ := HmJ for each ∅ 6= J ⊆ I and

FJ :=
∏
j∈J

Fj ⊆ HJ .

Note that the conductor of FJ is mJ . The definition of FI implies that the Galois group
Gal(FI/FI\{j}) = Ij(FI) is the inertia subgroup of a prime of FI above pj, in particular
for each j ∈ I we have

∣∣Gal(FI/FI\{j})
∣∣ = tj.

Lemma 3.4.3. For any two subsets ∅ 6= J1 ⊆ J2 ⊆ I, we have FJ1 = FJ2 ∩ HJ1.
Moreover, FI ∩H = K.

Proof. The inclusion FJ1 ⊆ FJ2 ∩HJ1 is clear. For the other inclusion, we use induction
on n = |J2 \ J1|. The case n = 0, i.e. J1 = J2, is clear. If n ≥ 1, we fix an index
j ∈ J2 \ J1 and we see that

FJ2 ∩HJ1 ⊆ FJ2 ∩HJ2\{j} ⊆ FJ2\{j}

by the induction hypothesis. But we clearly also have FJ2 ∩HJ1 ⊆ HJ1 , hence

FJ2 ∩HJ1 ⊆ FJ2\{j} ∩HJ1 ⊆ FJ1

by the induction hypothesis.
The second assertion follows, since [FI : K] is a p-power and p - h.
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Proposition 3.4.4. For each j ∈ I we have FjHI\{j} = LHI\{j}. The Galois group

G = Gal(FI/K) =
∏
j∈I

Gal(FI/FI\{j})

is the direct product of its inertia subgroups. Moreover L ⊆ FI .

Proof. We can take the proof of [CK19, Prop. 2.2] here, since no changes are necessary.

Corollary 3.4.5. (i) For each j ∈ I we have

Ij(L) = Gal(L/L ∩ FI\{j}) = 〈σpk/tj〉 .

Moreover, FI\{j}L = FI and [L ∩ FI\{j} : K] = pk

tj
.

(ii) FI/L is an unramified abelian extension.

(iii) There exists at least one index j0 ∈ I such that tj0 = pk so that G = Gal(FI/K)
has exponent pk.

Proof. See [CK19, Cor. 2.3].

3.4.3 The elliptic units

Since FI ∩H = K by Lemma 3.4.3, there are no unramified elliptic units and we define

ηJ := NHJ/FJ (αmJ ) = ϕ
1/h
FI ,mJ

∈ OFJ ,

cf. Remark 3.2.6. Let σj ∈ G = Gal(FI/K) be the lift of the Frobenius of pj which
is uniquely defined by σj|FI\{j} = (pj, FI\{j}/K) and σj|Fj = 1. Then we can state the
next

Lemma 3.4.6. For any j ∈ I we have

Dj(L) = 〈σnj〉 = 〈σj|L, σp
k/tj〉 .

Proof. See [CK19, Lemma 3.1].

Analogously to [CK19, Lemma 3.2], we obtain

Lemma 3.4.7. We have µ(FI) = µ(K).

Proof. For ζ ∈ µ(FI), the extension K(ζ)/K is a constant field extension. Since all
constant field extensions are unramified, we get K(ζ) ⊆ FI ∩H = K, so ζ ∈ µ(K).

Proposition 3.2.9 implies that for each J ⊆ I and each j ∈ J

NFJ/FJ\{j}(ηJ) =

{
η

1−σ−1
j

J\{j} , J \ {j} 6= ∅,
ζx

w∞/wK
j J \ {j} = ∅,

(3.4.1)

for some ζ ∈ µ(K).
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In analogy to [CK19], we use the following definition of elliptic units:

Definition 3.4.8. • The group of elliptic numbers PFI of FI is defined to be the
Z[G]-submodule of F×I generated by µ(K) and by ηJ for all ∅ 6= J ⊆ I.

• The group of elliptic units CFI of FI is then defined as CFI := PFI ∩ O×FI .

• The group of elliptic numbers PL of L is defined as the Z[Γ]-submodule of L×
generated by µ(K) and NFJ/FJ∩L(ηJ) for all ∅ 6= J ⊆ I.

• The group of elliptic units CL of L is defined as CL := PL ∩ O×L .

Since FI ∩ H = K = L ∩ H, one can check that these elliptic units are related to
the units of Definition 3.2.8 by

CFI = ChFI · µ(K) ,

CL = ChL · µ(K) .

This fact and Theorem 3.3.9 imply the next Lemma. We first need the following

Notation. Let L̃ be the maximal subfield of L containing K such that L̃/K is ramified
in at most one prime ideal of K.

Note that since Γ is cyclic and of prime power order, the field L̃ is unique.

Lemma 3.4.9. (i) We have

[O×FI : CFI ] = w[FI :K]−1
∞

hFI
h
,

[O×L : CL] = w[L:K]−1
∞

hL

h[L : L̃]
.

(ii) For β ∈ PFI we have β ∈ CFI if and only if NFI/K(β) ∈ µ(K).

Sketch of a proof. For more details and part (ii) see [CK19, Lemma 3.4]. First, we
see that by the observation above [CFI : CFI ] = h[FI :K]−1 and [CL : CL] = h[L:K]−1.
Moreover, it follows from Proposition 3.4.4, Proposition 3.3.10 (ii) (resp. 3.3.10 (i))
and Proposition 3.3.17 (iii) (resp. 3.3.17 (i)) that the last quotient in Theorem 3.3.9
is equal to 1 for L (resp. FI). We also obtain wFI = wL = wK by Lemma 3.4.7,
L(1) = K, FI ∩ Hp∞ = Fj for p = pj and

∏s
j=1[Fj : K] = [FI : K], which yields the

first equation. For the second equation, we consider the definition of L̃. By part (iii)
of Corollary 3.4.5 we know that there is at least one prime pi which is totally ramified
in L. Therefore, L̃ is the maximal subfield of L which is unramified at every prime
except pi, hence L̃ = L ∩Hp∞i

. Since for p 6= pi the extension L ∩Hp∞ is unramified at
pi and pi is totally ramified in L, we find that L∩Hp∞ = K for p 6= pi hence we obtain∏

p[L ∩Hp∞ : K] = [L̃ : K].
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Now we use a modification of Sinnott’s module defined in [GK14b]. This module U
is a Z[G]-submodule of Q[G] ⊕ Zs generated over Z[G] by certain elements ρJ , J ⊆ I.
Each Z-summand is endowed with the trivial G-action and has a standard basis element
denoted by ej.

Define

Ψ: PFI −→ U

ηJ 7−→ ρI\J

for ∅ 6= J ⊆ I and Ψ(µ(K)) = 0.

Lemma 3.4.10. The map Ψ is a well-defined Z[G]-module homomorphism satisfying
ker(Ψ) = µ(K) and U = Ψ(PFI )⊕ (NG · Z).

Proof. The proof closely follows the proof of [CK19, Lemma 3.5].
From [GK14b] we get that

U = 〈{ρJ | J ( I}〉Z[G] ⊕NG · Z . (3.4.2)

Hence, we obtain an embedding of Z[G]-modules ι : U/NG · Z −→ U such that
im(ι) = 〈{ρJ |J ( I}〉Z[G]. Define a map Φ: U −→ PFI by

Φ(ρJ) = ηI\J , J ( I ,

Φ(ρI) = 0 .

Comparing the relations [GK14b, (1.10)] with the norm relations in Proposition 3.2.9
shows that Φ is a well-defined Z[G]-module homomorphism. By the definition ρI = NG
from [GK14b], we get Φ(NG · Z) = Φ(ρIZ) = 0 and since

PFI = 〈{ηJ | ∅ 6= J ⊆ I} ∪ µ(K)〉Z[G] = 〈Φ(U) ∪ µ(K)〉Z[G] ,

we obtain a surjective Z[G]-homomorphism Φ̃ : U/NG · Z −→ PFI/µ(K). Note that
U (and hence U/NG · Z via ι) and PFI/µ(K) are Z-torsion-free, therefore Φ̃ is an
isomorphism if and only if both modules have the same Z-rank (see (3.4.3) below).

We note that since the elliptic numbers are S-units where S consists of the s ramify-
ing places, the Dirichlet unit theorem implies that rkZ(PFI ) ≤ s+ rkZ(O×FI ). Moreover,
we know from the norm relations (3.4.1) that PFI contains powers of x1, ..., xs. These
are linearly independent over Z and are clearly not contained in CFI hence we find that

s+ rkZ(O×FI ) ≥ rkZ(PFI ) ≥ s+ rkZ(CFI )

and since the elliptic units have finite index in O×FI , we obtain equality. Therefore,

rkZ(PFI ) = s+ rkZ(O×FI ) = s+ [FI : K]− 1 = rkZ(U)− 1 , (3.4.3)

where the last equation follows from [GK14b, Remark 1.4]. Hence Φ̃ is an isomorphism
and we can define Ψ′ : PFI −→ U as the composition of maps

PFI � PFI/µ(K)
Φ̃−1

−→∼= U/NG · Z ι
↪→ U .
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By definition, we then obtain

Ψ′(ηJ) = ρI\J ,

Ψ′(µ(K)) = 0 ,

so Ψ = Ψ′. The decomposition U = Ψ(PFI )⊕ (NG · Z) follows from (3.4.2).

We call

η := NFI/L(ηI)

the top generator of both PL and CL. Set B := Gal(FI/L) ⊆ Gal(FI/K) = G, then we
have Γ = 〈σ〉 ∼= G/B.

Lemma 3.4.11. An elliptic number β ∈ PFI belongs to L if and only if Ψ(β) is fixed
by B, i.e. Ψ(PFI )B = Ψ(PFI ∩ L).

Proof. See [CK19, Lemma 4.1].

Recall that ni is the index of the decomposition group of the ideal Pi ⊆ L in Γ.
Without loss of generality we can assume

n1 ≤ n2 ≤ · · · ≤ ns

and we set n = ns = max{ni | i ∈ I}. Since p | ts we have n | pk−1 and by Corol-
lary 3.4.5 (iii) we get t1 = pk and hence n1 = 1. Let L′ be the unique subfield of L
containing K such that [L′ : K] = n. Note that 〈σn〉 = Gal(L/L′) and that ps splits
completely in L′/K. Now we can state

Theorem 3.4.12. There is a unique α ∈ L such that NL/L′(α) = 1 and such that
η = αy holds, where y =

∏s−1
i=2 (1 − σni). This α is an elliptic unit of FI , so that

α ∈ CFI ∩ L. Moreover, there is γ ∈ L× such that α = γ1−σn.

Proof. See [CK19, Thm. 4.2]. We repeat the proof here in order to make some of the
arguments more explicit. The main idea is to use the next

Proposition 3.4.13. Let f ∈ Z[X] \ {0,±1} and let A = Z[X]/fZ[X]. Let M be a
finitely generated A-module without Z-torsion. Then

(i) Ext1
A(M, A) = 0.

(ii) Let y be a nonzerodivisor in A, and let x ∈ M. Then x ∈ yM if and only if for
all ϕ ∈ HomA(M, A) we have ϕ(x) ∈ yA.

Proof. See [GK14a, Prop. 6.2].

If s = 2 then y = 1 and we can set α = η. Clearly α = ηy and since ps splits
completely in L′ we obtain that NL/L′(α) = 1 from the norm relation (see (3.4.4)
below). If s > 2, y is always a zero divisor in Z[Γ] (note that since ni | pk, we get that
Xni − 1 | Xpk − 1 and hence σni − 1 | σpk − 1 = 0 for each i). So in order to apply
Proposition 3.4.13, we need to work in an appropriate quotient of Z[Γ], where y is a
nonzerodivisor. Let Nn =

∑pk/n
i=1 σin, then Nn can be understood as the norm operator
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from L to L′. Let R = Z[Γ]/NnZ[Γ] and let γ : R −→ (1−σn)Z[Γ] be the multiplication
by 1 − σn. Since the annihilator of 1 − σn is exactly given by Z · Nn = NnZ[Γ] (see
e.g. [Neu11, Thm. (1.3)]), γ is an isomorphism of Z[Γ]-modules. Define

M := {x ∈ Ψ(PFI )B | Nnx = 0}

where Ψ is the map from Lemma 3.4.10. It is clearly an R-module and sinceM ⊆ U
it has no Z-torsion. Using the definition of η and the norm relation 3.2.9, we obtain

Ψ(η) = Ψ(NFI/L(ηI)) = NB ·Ψ(ηI) = NB · ρ∅ ,

where NB =
∑

τ∈B τ ∈ Z[G], and

NL/L′(η) = NFI/L′(ηI) = NF{1,...,s−1}/L′(η{1,...,s−1})
1−σ−1

s = 1 . (3.4.4)

Here we used that σs|L′ = id since ps splits completely in L′. In particular we get that
Ψ(η) = NB · ρ∅ ∈M.

Note that the Z[Γ]-module structure onM is compatible with its R-module struc-
ture via the natural projection Z[Γ] −→ R. Since we get UB = Ψ(PFI )B ⊕ NG · Z
from Lemma 3.4.10, we may viewM as a Z[Γ]-submodule of UB. Then UB/M has no
Z-torsion: suppose that there exists x ∈ UB with cx ∈M for a positive integer c. Then
c(Nnx) = Nn(cx) = 0. Since Nnx ∈ U and U has no Z-torsion, this implies Nnx = 0
and hence x ∈M.

To each R-linear map ψ ∈ HomR(M, R) we may associate the Z[Γ]-linear map
γ ◦ ψ ∈ HomZ[Γ](M,Z[Γ]). Fixing such a ψ we want to prove that ψ(NB · ρ∅) ∈ yR.

Setting f = Xpk − 1 in Proposition 3.4.13, we get A = Z[X]/fZ[X] ∼= Z[Γ]. Since
UB/M has no Z-torsion, part (i) implies that Ext1

Z[Γ](U
B/M,Z[Γ]) = 0. With the

definition of Ext1 we get the existence of ϕ ∈ HomZ[Γ](U
B,Z[Γ]) such that ϕ|M = γ ◦ψ.

Define v ∈ HomZ[Γ](U
B,Z[Γ]) by v(x) = (1− σ)ϕ(x). For the next step we observe:

(i) For all i ∈ I, tiei ∈ UB, where ti = |Ii| with Ii = Gal(FI/FI\{i}) and ei is defined
in [GK14b]. Moreover, v(tiei) = 0 since σ acts trivially on ei.

(ii) We get from Lemma 3.4.6 that 1−σi|L ∈ (1−σni)Z[Γ] since σi|L is a power of σni .
Similarly, for τ ∈ Ii we get from Corollary 3.4.5 (i) that τ |L is a power of σpk/ti
which is indeed a power of σni , hence 1− τ |L ∈ (1− σni)Z[Γ].

These observations combine with the formula in [GK14b, Cor. 1.7(ii)] to give

v(NB · ρ∅) ∈
s∏
i=1

(1− σni)Z[Γ] .

We want to reduce this formula by 1 − σ, so we have to show that multiplication by
1−σ is injective on (1−σ)nZ[Γ]. Suppose that x ∈ (1−σ)nZ[Γ] and (1−σ)x = 0. Then
x is in the annihilator of 1− σ in Z[Γ]. But as x is a multiple of (1− σ)n, we find that
x2 = 0. Since f = Xpk − 1 is square-free, the ring Z[X]/fZ[X] ∼= Z[Γ] has no nilpotent
elements, therefore x = 0 and multiplication by 1− σ is injective on (1− σn)Z[Γ]. This
implies

γ ◦ ψ(NB · ρ∅) = ϕ(NB · ρ∅) ∈
s∏
i=2

(1− σni)Z[Γ] .
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Since γ is an R-module isomorphism, we obtain

ψ(NB · ρ∅) ∈
s−1∏
i=2

(1− σni)R = yR .

Now set g =
∑pk/n

i=1 X(i−1)n. From n | pk−1, we get that g /∈ {0,±1} and applying
Proposition 3.4.13 (ii) to A = Z[X]/gZ[X] ∼= R, we get an element δ ∈ M such that
yδ = NB · ρ∅ = Ψ(η). Note that y is a nonzerodivisor in R: Since (Xn− 1)g = Xpk − 1
is separable, the zeros of Xn− 1 and g are distinct. Identifying y with the image of the
polynomial

∏s−1
i=2 (1−Xni) in A, we see that each factor appearing in the product is a

divisor of Xn − 1 and is hence prime to g. Therefore, this product is no zero divisor in
A and so y is no zero divisor in R.

Since δ ∈ M, we have δ ∈ Ψ(PFI )B and Nnδ = 0. By Lemma 3.4.11, there exists
α′ ∈ PFI ∩ L unique up to a root of unity such that δ = Ψ(α′). We get

Ψ(NL/L′(α
′)) = NnΨ(α′) = Nnδ = 0 ,

hence NL/L′(α
′) = ζ ∈ µ(K). As p - wK , there is ζ ′ ∈ µ(K) such that NL/L′(ζ

′) = ζ−1.
Setting α := α′ζ ′ ∈ PFI ∩ L, we get that NL/L′(α) = 1 and δ = Ψ(α). Therefore, we
find Ψ(αy) = yδ = Ψ(η), so ζ ′′ = α−yη ∈ ker(Ψ) = µ(K). Furthermore, we clearly get
1 = NL/L′(α

−yη) = (ζ ′′)p
k/n and since p - wK this implies ζ ′′ = 1. From NL/K(α) = 1

we get that α is indeed an elliptic unit of FI .
The uniqueness of α can be found in [CK19]. The existence of γ as in the theorem

is just an application of Hilbert’s Theorem 90 to the extension L/L′.

Remark 3.4.14. There is an alternative description of a power of α in terms of the
conjugates of η (cf. [CK19, Remark 4.3]). For each j = 1, ..., s define the elements

Nnj =

pk/nj∑
i=1

σinj , ∆nj =

pk/nj−1∑
i=1

iσinj .

Then we obtain

(1− σnj)Nnj = 0 , (1− σnj)∆nj = Nnj −
pk

nj
.

Also note that the norm operator NL/L′ corresponds to the element Nn. We obtain from
Theorem 3.4.12 that η = αy. Since NL/L′(α) = αNn = 1, we also get that αNnj = 1 for
all j = 1, ..., s. Hence, we obtain

η
∏s−1
i=2 ∆ni = α

∏s−1
i=2 (Nni−p

k/ni) = α(−1)s
∏s−1
i=2 p

k/ni = α(−1)sr ,

where r :=
∏s−1

i=2
pk

ni
is a power of p. Therefore, αr = η(−1)s

∏s−1
i=2 ∆ni .
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3.4.4 Enlarging the group CL of elliptic units of L

We label the subfields of L containing K by

K = L0 ( L1 ( L2 ( · · · ( Lk = L

hence we obtain [Li : K] = pi. Moreover, we define

Mi := {j ∈ I | tj > pk−i} .

Since we have already seen that ns = 1, we obtain from the definition of Mi that

1 ∈M1 ⊆M2 ⊆ · · · ⊆Mk = I .

For j ∈Mi we get pi > pk

tj
and with Corollary 3.4.5 (i) we obtain that pj ramifies in Li.

On the other hand, if pj ramifies in Li, this implies that tj > [L : Li] = pk−i. This
shows that the conductor of Li is equal to mMi

and so Li ⊆ FMi
by Proposition 3.4.4,

applied to Li. Define

ηi := NFMi/Li
(ηMi

)

for i = 1, ..., k, then ηk = η ∈ L is the top generator of CL.
Now we fix j ∈ {1, ..., s} and let Li = LTj hence the index i is determined by

tj = pk−i. By Lemma 3.4.6 we get that

〈σnj〉/〈σpk/tj〉 = 〈σj|L, σp
k/tj〉/〈σpk/tj〉 .

This quotient group can be interpreted as the restriction to Li since σp
k/tj = σp

i gen-
erates Gal(L/Li), so we can find a smallest positive integer cj such that σ−cjnj |Li = σj|Li .
Moreover, we see that pj splits completely in Li/K if and only if nj = pk

tj
, in this case

we get in particular that cj = 1 since σnj is already an element of the inertia group of
pj of L/K. If pj does not split completely in Li/K, we find that nj < pk

tj
and hence

〈σnj |Li〉 = 〈σj|Li〉. In each case, we find that p - cj, so 1−σcjnj and 1−σnj are associated
in Z[Γ].

Now let i ∈ {1, ..., k} be such that |Mi| > 1. We want to apply Theorem 3.4.12 to
the extension Li/K and obtain an elliptic unit αi ∈ CFMi ∩ Li and a number γi ∈ L×i
such that

(i) ηi = αyii , where yi =
∏

j∈Mi
1<j<maxMi

(1− σcjnj),

(ii) αi = γzii , where zi = 1− σcmaxMi
nmaxMi .

Note that the new cj factors can be obtained since 1−σnj and 1−σcjnj are associated.
In particular we find for |Mi| = 2 that yi = 1 and αi = ηi as the product is empty. For
i ∈ {1, ..., k} with |Mi| = 1 we set γi = ηi and αi = η1−σ

i .

Definition 3.4.15. The Z[Γ]-submodule CL of O×L generated by µ(K) and α1, ..., αk is
called the extended group of elliptic units.
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Then we obtain a similar result as given in [CK19, Thm. 5.2]

Theorem 3.4.16. The group of elliptic units CL of L is a subgroup of CL of index
[CL : CL] = pν, where

ν =
k∑
j=1

∑
i∈Mj

1<i<maxMj

ni .

Moreover, setting ϕL := (
∏s

i=1 t
ni
i ) ·

∏k
j=1 p

−nmaxMj , we get

pν = ϕL · [L : L̃]−1

and

[O×L : CL] = wp
k−1
∞ · hL

h
· ϕ−1

L .

Proof. We use the same proof as in [GK15, Thm. 3.1]. Note that we need the factors
cj appearing in the definition of the αi here.

Remark 3.4.17. If p - w∞, we obtain ϕL | hL. As in [CK19, Remark 5.3], this
divisibility statement is really stronger than [FI : L] | hL (which we obtain since FI/L
is unramified). Indeed, by [GK15, Prop. 3.4], [FI : L] | ϕL and we obtain equality if
and only if n1 = · · ·ns−1 = 1.

3.5 Semispecial numbers

We use the same notation as before and fix m, which is a power of p such that pks | m.
We know that for a prime ideal q of K we have

Gal(Hq/H) ∼= (OK/q)×/ im(µ(K))

via Artin’s reciprocity map. In particular, Gal(Hq/H) is cyclic. This enables us to
formulate the next

Definition 3.5.1. For a prime ideal q of K such that |OK/q| ≡ 1 mod m, we define
K[q] to be the (unique) subfield of Hq containing K such that [K[q] : K] = m. For a
finite field extension M/K, we define M [q] := MK[q].

Note that since |OK/q| ≡ 1 mod m and p - |µ(K)|, we get that the order of
Gal(Hq/H) is divisible by m. Hence we obtain the existence and uniqueness of K[q]
from the fact that p - h and [CK19, Lemma 2.1]. Since K[q] is contained in Hq it is
unramified outside q. Moreover, since p - h we get that H ∩K[q] = K and hence it is
totally ramified at q. Finally, since p - |OK/q| we find that this ramification is tame.
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Definition 3.5.2. Let Qm be the set of all prime ideals q of K such that

(i) |OK/q| ≡ 1 +m mod m2,

(ii) q splits completely in L,

(iii) for each j = 1, ..., s, the class of xj is an m-th power in (OK/q)×.

Now we want to study condition (iii) in some more detail. Let q be such that
|OK/q| ≡ 1 mod m. Since H ∩ K[q] = K, we get Gal(H[q]/H) ∼= Gal(K[q]/K) by
restriction. The first group is the unique quotient of the cyclic group Gal(Hq/H) of
order m, hence it is obtained by factoring out m-th powers. Therefore, we get with the
Artin reciprocity map and p - wK

(OK/q)×/m ∼= Gal(H[q]/H) ∼= Gal(K[q]/K) ,

where the composition map takes the class of α ∈ OK \ q to (αOK , K[q]/K). Now the
facts that xjOK = phj and p - h imply that condition (iii) is equivalent to

(pj, K[q]/K) = 1 ∀j = 1, ..., s .

Definition 3.5.3. A number ε ∈ L× is called m-semispecial if for all but finitely many
q ∈ Qm, there exists a unit εq ∈ O×L[q] satisfying

(i) NL[q]/L(εq) = 1,

(ii) if qL[q] is the product of all primes of L[q] above q, then ε and εq have the same
image in (OL[q]/qL[q])

×/(m/pk(s−1)).

Since each q ∈ Qm is totally ramified in K[q]/K and splits completely in L/K, we
find that L[q]/L is totally ramified at each prime above q and L∩K[q] = K. This implies
that the two maps Gal(L[q]/L) −→ Gal(K[q]/K) and Gal(L[q]/K[q]) −→ Gal(L/K)
given by restriction are isomorphisms.

Analogously to [CK19, Thm. 6.4], we get the next

Theorem 3.5.4. The elliptic unit α ∈ CFI ∩ L from Theorem 3.4.12 is m-semispecial.

Proof. Recall that α is a y-th root of the top generator η of CL. We need to show
that for almost all q ∈ Qm, there exists an εq satisfying the conditions (i) and (ii) of
Definition 3.5.3. In fact, we construct such an εq for each q ∈ Qm. The idea will be
similar to the one used in the proof of Theorem 3.4.12.

We fix a prime q ∈ Qm and set Q := |OK/q|. To simplify the notation, we set
ps+1 := q, Fs+1 := K[q] and I ′ := {1, ..., s + 1}. For any non-empty subset J ⊆ I ′, we
define FJ :=

∏
j∈J Fj, mJ :=

∏
j∈J pj (the conductor of FJ) and

ηJ := NHJ/FJ (αmJ ) .

If J ⊆ I we just recover the old definitions of FJ and ηJ . By construction we find that
FI [q] = FI′ and mI′ = qmI . Since FI [q] is totally ramified at each prime of FI over q,
we still have µ(FI [q]) = µ(K). Let Gq := Gal(FI [q]/K) and let PFI [q] be the group of
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elliptic numbers of FI [q], i.e. PFI [q] is the Z[Gq]-submodule of FI [q]× generated by µ(K)
and by ηJ for all ∅ 6= J ⊆ I ′.

Let Uq ⊆ Q[Gq]⊕ Zs+1 be the modification of Sinnott’s module defined in [GK14b]
for the parameters v = s + 1, Ij = Gal(FI′/FI′\{j}) for j = 1, ..., v (this is the inertia
group of pj in Gq) and σj ∈ Gq is such that σj|Fj = 1 and σj|FI′\{j} = (pj, FI′\{j}/K).

Using the sequence

Gal(FI [q]/K[q]) ⊆ Gq −→ G = Gal(FI/K) ,

we can identify Gal(FI [q]/K[q]) with G via the restriction map. In particular, for
i 6= s+ 1 the group Ii is just the same as before. Analogously, we recover the subgroup
B via this identification by setting B := Gal(FI [q]/L[q]). Since q ∈ Qm, we find by
condition (iii) (i.e. (pj, K[q]/K) = 1) that the σi map to the old σi for i ∈ I and that
σs+1 ∈ B since q splits completely in L. The situation is illustrated in the following
diagram:

FI [q]

FI L[q]

L K[q]

K

ts+1

Is+1

B

Γ=〈σ〉

G

Gq

Recall that U = 〈ρJ | J ⊆ I〉Z[G] and the standard basis of Zs is denoted by e1, ..., es.
Define π : Q[G]⊕ Zs −→ Q[G] to be the projection onto the first summand. Then the
module U ′ := π(U) is generated by ρ′J := π(ρJ) for J ⊆ I. For the new module Uq we
denote the Z[Gq]-generators by ρ̃J and the standard basis of Zs+1 by ẽ1, ..., ẽs+1. Then
we can cite the next

Lemma 3.5.5 ([GK15, Lemma 2.1]). There are injective Z[G]-homomorphisms
χ : U −→ Uq and χ′ : U ′ −→ Uq defined by

χ(ρJ) = ρ̃J∪{s+1} , χ′(ρ′J) = ρ̃J ,

for each J ⊆ I. Moreover, Uq
∼= U ⊕ Z⊕ (U ′)m−1 as Z[G]-modules.

Applying Lemma 3.4.10 to the new situation, we obtain a homomorphism

Ψq : PFI [q] −→ Uq

of Z[Gq]-modules defined by Ψq(ηJ) = ρ̃I′\J for ∅ 6= J ⊆ I ′ and Ψq(µ(K)) = 0. More-
over, ker(Ψq) = µ(K) and Uq = Ψq(PFI [q])⊕NGq · Z. Setting η̂ := NFI [q]/L[q](ηI′) to be
the top generator of CL[q], we have

Ψq(η̂) = NB ·Ψq(ηI′) = NB · ρ̃∅
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and Ψq(PFI [q]∩L[q]) = Ψq(PFI [q])
B (cf. Lemma 3.4.11). Let again n := max{ni | i ∈ I},

Nn :=
∑pk/n

i=1 σin and R := Z[Γ]/NnZ[Γ], where now Γ = Gal(L[q]/K[q]) = 〈σ〉. Note
that the new σ can be chosen such that it restricts to the old σ.

Let γ : R −→ (1 − σn)Z[Γ] be the isomorphism of Z[Γ]-modules induced by the
multiplication by 1 − σn. Note that we can understand Nn as the norm operator of
L[q]/L′[q], where L′ is again the unique subfield of L such that [L′ : K] = n.

Analogously to what we did in the proof of Theorem 3.4.12, we find that the set

Mq := {x ∈ Ψq(PFI [q])
B | Nnx = 0}

is an R-module without Z-torsion such that UB
q /Mq has no Z-torsion. Then we can

apply Proposition 3.4.13 with the polynomial f = Xpk − 1 to obtain

Ext1
Z[Γ](U

B
q /Mq,Z[Γ]) = 0 .

Since ps splits completely in L′ and also in K[q], it splits completely in L′[q]. Hence,
we can use the norm relation 3.2.9 to obtain

η̂Nn = NL[q]/L′[q](η̂) = NFI [q]/L′[q](ηI′) = 1 .

This implies that NB · ρ̃∅ ∈Mq. To each ψ ∈ HomR(Mq, R) we associate the map γ ◦ψ
which can be naturally viewed as an element of HomZ[Γ](Mq,Z[Γ]). Then the vanishing
of Ext1 implies the existence of a ϕ ∈ HomZ[Γ](U

B
q ,Z[Γ]) such that ϕ|Mq = γ ◦ ψ.

Restricting the projection π : Q[G] ⊕ Zs −→ Q[G] to U , we obtain a surjective map
π|U : U −→ U ′ which can be composed with the map χ′ from Lemma 3.5.5 to the
Z[G]-linear map χ′ ◦ π|U : U −→ Uq. By restricting further to UB we hence obtain
χ′ ◦ π|UB ∈ HomZ[Γ](U

B, UB
q ) and ϕ ◦ χ′ ◦ π|UB ∈ HomZ[Γ](U

B,Z[Γ]).
Using the same notation as in the proof of Theorem 3.4.12, we see that clearly

π(tjej) = 0 for all j ∈ I. Hence we get the same observations for the map v = ϕ◦χ′◦π|UB
and can apply [GK14b, Cor. 1.7(ii)] to obtain

ϕ(NB · ρ̃∅) = ϕ ◦ χ′ ◦ π(NB · ρ∅) ∈
s∏
i=1

(1− σni)Z[Γ] = (1− σ)y(1− σn)Z[Γ] , (3.5.1)

where y =
∏s−1

i=2 (1 − σni) as before. The first equality follows from the fact that
χ′ ◦ π(ρ∅) = ρ̃∅ by Lemma 3.5.5 and by the linearity of χ′ ◦ π|UB .

Since NB · ρ̃∅ ∈Mq, we can apply any ψ ∈ HomR(Mq, R) to it. From the injectivity
of γ and (3.5.1), we get that

ψ(NB · ρ̃∅) ∈ (1− σ)yR .

With Proposition 3.4.13 we get the existence of an element δ ∈Mq such that

(1− σ)y · δ = NB · ρ̃∅ = Ψq(η̂) .

Since δ ∈Mq, we find β′ ∈ PFI [q]∩L[q] such that δ = Ψq(β
′) and Ψq(NL[q]/L′[q](β

′)) = 0.
Therefore, ξ := NL[q]/L′[q](β

′) ∈ ker(Ψq) = µ(K). Then NL[q]/L′[q](ξ) = ξp
k/n and since

p - |µ(K)|, there is ξ′ ∈ µ(K) such that NL[q]/L′[q](ξ
′) = ξ−1. Setting β := β′ξ′, we still
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have δ = Ψq(β) and obtain NL[q]/L′[q](β) = 1. With the same argument as in the proof
of Theorem 3.4.12, we find that β(1−σ)y = η̂.

As NL[q]/L′[q](β) = 1, we obtain that NFI [q]/K(β) = 1 and hence we get with
Lemma 3.4.9 (ii) that β ∈ CFI [q] ∩ L[q].

We want to show that α = ε is m-semispecial, so we need to construct a unit
εq ∈ L[q] which satisfies the norm relation (i) and the congruence relation (ii) of Defi-
nition 3.5.3. Setting εq := β1−σ, we obtain such a unit:

For the norm relation, we can repeat the computation of Remark 3.4.14 to obtain

βr(1−σ) = η̂(−1)s
∏s−1
i=2 ∆ni .

Applying ∆1 to each side and using NL[q]/L′[q](β) = βNn = 1, we get

βrp
k

= η̂(−1)s+1
∏s−1
i=1 ∆ni . (3.5.2)

Since q splits completely in L/K, we can use the norm relation 3.2.9 (adapted to the
new situation) to obtain

NL[q]/L(η̂) = NFI [q]/L(ηI′) = NFI/L(ηI)
1−σ−1

s+1 = 1 . (3.5.3)

Inserting (3.5.2) into (3.5.3) together with p - wK implies NL[q]/L(β) = 1, so the first
condition of Definition 3.5.3 is satisfied.

For the congruence relation, we need the next

Proposition 3.5.6. Let q ∈ Qm, Q := |OK/q| and let qL[q] be the product of all primes
of L[q] above q. Then

η̂Q(1−σ) ≡ η(1−σ)Q−1
m mod qL[q] ,

where η is the top generator of CL and η̂ is the top generator of CL[q].

Before proving this, we will finish the proof of Theorem 3.5.4. Using the notation
from Remark 3.4.14, one can easily show that Proposition 3.5.6 implies

βr(1−σ)2Q ≡ αr
Q−1
m

(1−σ) mod qL[q] ,

where r =
∏s−1

i=2
pk

ni
. Applying ∆1 =

∑pk−1
i=1 iσi and using the facts that αN1 = 1,

(1− σ)∆1 = N1 − pk and (σ − 1)N1 = 0, we get

βp
kr(1−σ)Q ≡ αp

krQ−1
m mod qL[q] .

By dividing out m-th powers, we get that βpkr(1−σ) and αpkr have the same image
in (OL[q]/qL[q])

×/m, since Q−1
m
≡ 1 mod m by condition (i) on primes in Qm. Since

r | pk(s−2), we deduce that β1−σ and α have the same image in (OL[q]/qL[q])
×/(m/pk(s−1)).

Hence ε = α and εq = β1−σ satisfy the congruence relation.
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Proof of Proposition 3.5.6. Let x ∈ OK such that xOK = qh. Let Km := K(ζm), where
ζm is a primitive m-th root of unity. Then Km/K is a constant field extension and
hence it is unramified everywhere. Moreover, it is an abelian extension. Now we can
define M := Km(x1/p), and since O×K = µ(K), p - |µ(K)| and Km contains a primitive
p-th root of unity, this definition is independent of the choice of the generator x and of
its p-th root. Then M/K is a Galois extension.

We claim that x is not a p-th power in Km. If x = αp, then the valuation of x at
q would be p-times the valuation of α at q since Km/K is unramified. But xOK = qh

and as p - h, this is a contradiction. Hence the extension M/Km is cyclic of degree p.
For finishing the proof, we need the next

Lemma 3.5.7. Let q ∈ Qm and recall that σ is the unique generator of Gal(L[q]/K[q])
which restricts to the original generator of Gal(L/K). Then there exists a prime l of
K such that

(i) |OK/l| ≡ 1 mod m,

(ii) l is unramified in L[q] and (l, L[q]/K) = σ−1,

(iii) q is inert in K[l]/K.

Proof. By an explicit analysis of the Galois automorphisms, one can check that Km/K
is an abelian extension whereas M/Km is not. Since [M : Km] = p, there are no
intermediate fields and hence Km/K is the maximal abelian subextension of M . This
implies thatM∩L[q] = Km∩L[q], as L[q]/K is an abelian extension. Since Km∩L[q] is
unramified and p - h, we find Km ∩L[q] = K. Then there exists a τ ∈ Gal(L[q] ·M/K)
which restricts to σ−1 ∈ Gal(L[q]/K) and to a generator of Gal(M/Km) ⊆ Gal(M/K).

Using a variant of Čebotarev’s Density Theorem (cf. [Ros02, Thm. 9.13B]), we see
that there exists a prime l such that the Frobenius of l is the conjugacy class of τ and
|OK/l| ≡ 1 mod m. Then the first two conditions are satisfied and it remains to prove
that q is inert in K[l].

Since τ acts as the identity on Km, we find that l splits completely in Km/K. Let
L be a prime of Km over l, then OKm/L ∼= OK/l. Moreover, by

〈τ |M〉 = Gal(M/Km) ∼= Z/pZ ,

L must be inert in M . It is easily seen that OM/LOM ∼= (OKm/L)[ξ], where ξ is the
class of x1/p modulo LOM . If x was a p-th power in (OKm/L)×, this extension would
be trivial, hence the inertia degree of L would be one. This is a contradiction since L
is inert in M , so we have shown that x cannot be a p-th power in (OK/l)×.

Recall that we get (OK/l)×/m ∼= Gal(K[l]/K) from Artin’s Reciprocity Theo-
rem and p - wK . Since x is not a p-th power in (OK/l)×, it clearly follows that
(xOK , K[l]/K) = (q, K[l]/K)h is not a p-th power in Gal(K[l]/K). As Gal(K[l]/K)
is cyclic of order m and p - h, we obtain that (q, K[l]/K) generates Gal(K[l]/K) and
hence q is inert in K[l].
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Using the notation from the proof of Theorem 3.5.4 and the prime l satisfying the
conditions of the previous lemma, we can define the elliptic units

ηl := NHlmI
/L[l](αlmI ) ,

η̂l := NHlmI′
/L[ql](αlmI′

) ,

where L[ql] is the compositum of L[q] and L[l]. Using the norm relation, we find

NL[ql]/L[l](η̂l) = η
1−σ−1

q

l ,

NL[ql]/L[q](η̂l) = η̂1−σ−1
l = η̂1−σ ,

NL[l]/L(ηl) = η1−σ−1
l = η1−σ ,

where σq = (q, L[l]/K) and σl = (l, L[q]/K) = σ−1 by condition (ii).
Since q ∈ Qm, q splits completely in L/K and by condition (iii), the primes of L

above q are inert in L[l]/L. Then each prime of L[q] above q must also be inert in
L[ql]/L[q]. Moreover, each prime above q is unramified in L[l]/L and totally ramified
in L[q]/L, therefore it is also totally ramified in L[ql]/L[l] and the product of all primes
of L[ql] above q is given by qL[q]OL[ql]. Therefore, we get the following isomorphism of
rings

OL[ql]/qL[q]OL[ql]
∼= OL[l]/qOL[l] .

Since L[q] and L[l] are linearly disjoint over L and q splits completely in L/K, we can
extend σq ∈ Gal(L[l]/K) to L[ql] such that this extension (also denoted by σq) restricts
to the identity on L[q]. In particular, σq generates Gal(L[ql]/L[q]).

From the above isomorphism, we get that σq acts as raising to the Q-th power on
OL[ql]/qL[q]OL[ql]. Moreover, the group Gal(L[ql]/L[l]) is the inertia group at q and acts
trivially on OL[ql]/q̃OL[ql]. Therefore, we can express the action of the norms NL[ql]/L[l]

and NL[ql]/L[q] on OL[ql]/qL[q]OL[ql] as raising to the power m respectively to the power∑m−1
i=0 Qi. As Q ≡ 1 mod m, there exists an integer r > 0 such that

∑m−1
i=0 Qi = mr.

Combining our results, we get that

η̂Q(1−σ) ≡ η̂Qmrl ≡ η
Qr(1−σ−1

q )

l ≡ η
r(Q−1)
l ≡ (ηmrl )

Q−1
m

≡ η(1−σ)Q−1
m mod qL[q]OL[ql] .

Since the natural map OL[q]/qL[q] −→ OL[ql]/qL[q]OL[ql] is injective, we obtain the desired
result.

This finishes the proof of Proposition 3.5.6 and hence the proof of Theorem 3.5.4 is
now complete.
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3.6 Annihilating the ideal class group
Using the same notation as before, we define

µi := nmaxMi
.

This is always a power of p and since Mi ⊆ Mi+1, we get µi ≤ µi+1. We call an index
i ∈ {1, ..., k − 1} a jump if µi < µi+1. Further, we declare 0 and k to be jumps and set
µ0 = 0. Then we get the next

Lemma 3.6.1. Let 0 = s0 < s1 < ... < sκ = k be the ordered sequence of all jumps.
Then the set

κ⋃
t=1

{ασist | 0 ≤ i < pst − pst−1}

is a Z-basis of CL.

Proof. See [CK19, Lemma 7.1].

With this basis, we obtain our next result:

Lemma 3.6.2. Let r be the highest jump less than k, i.e. µr < µr+1 = ns. Assume that
ρ ∈ Z[Γ] is such that αρk ∈ CLr . Then

(1− σpr)ρ = 0 .

Proof. See [CK19, Lemma 7.2].

Now we need an additional condition on the p-power m. We already know that
(m, q) = 1, since p - q, so q ∈ (Z/mZ)×. Let d denote its order, then there exists i ≥ 0
and b ∈ Z with p - b such that

qd − 1 = b · pim.

If we define m′ := pim, we still have pks | m′ and d is the order of q modulo m′, so we
can assume without loss of generality that i = 0. Now we can define f to be the order
of q in (Z/m2Z)×.

Lemma 3.6.3. We have m | f
d
.

Proof. We have

qf = (qd)f/d = (1 + bm)f/d

≡ 1 +
f

d
bm mod m2 .

Since f is the order of q in (Z/m2Z)×, we obtain that the left hand side is congruent
to 1 modulo m2, hence

m2 | f
d
bm

Since p - b, this implies

m | f
d
.
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Theorem 3.6.4. Let m be a power of p such that m | f
d
and let V ⊆ L×/m be a

finitely generated Zp[Γ]-submodule. Without loss of generality choose representatives of
generators of V which belong to OL. Suppose there is a map z : V −→ (Z/mZ)[Γ] of
Zp[Γ]-modules such that z(V ∩K×) = 0, where V ∩K× means V ∩ (K×(L×)m/(L×)m).
Then for any c ∈ cl(OL)p, there exist infinitely many primes Q in L such that:

(i) q := Q ∩K is completely split in L/K,

(ii) [Q] = c, where [Q] is the projection of the ideal class of Q into cl(L)p,

(iii) Q := |OL/Q| ≡ 1 +m mod m2,

(iv) for each j = 1, ..., s, the class of xj is an m-th power in (OK/q)×,

(v) no prime above q is contained in the support of the generators of V and there is
a Zp[Γ]-linear map ϕ : (OL/qOL)×/m −→ (Z/mZ)[Γ] such that the diagram

V (Z/mZ)[Γ]

(OL/qOL)×/m

z

ψ
ϕ

commutes, where ψ corresponds to the reduction map.

Remark 3.6.5. The reduction map ψ is defined on the chosen set of generators: Let
x ∈ OL be a representative of such a generator, then x is the class of x ∈ OL/qOL.
Since no prime above q is contained in the support of x, we get x ∈ (OL/qOL)×.
Hence, we can set ψ(x) to be the class of x in (OL/qOL)×/m. This yields a well-defined
Zp[Γ]-homomorphism.

Proof. Let HL be the p-Hilbert class field of L, i.e. the abelian extension such that
Gal(HL/L) is isomorphic to cl(OL)p. Define Lm := L(ζm) and Lm2 := L(ζm2), where
ζm (resp. ζm2) is a primitive m-th (resp. m2-th) root of unity. Note that these are
constant field extensions, in particular we obtain Lm = LFqd and Lm2 = LFqf .

Define L′ := Lm(ker(z)1/m), L′′ := Lm(V 1/m) and M := Lm(P 1/m), where P is the
subgroup of L× (actually K×) generated by x1, ..., xs. Moreover, let L′′m2 := L′′Lm2 ,
Mm2 := MLm2 and L′′′ := L′′m2Mm2 . We first check that all these extensions are Galois
over K.

Let Km = KFqd and Km2 = KFqf , then Lm = LKm and Lm2 = LKm2 are Galois
over K. Since P ⊆ K, we clearly get that Gal(Lm/K) acts (trivially) on P , so the
Kummer extensionM is Galois over K. Analogously, we need to show that Gal(Lm/K)
acts on ker(z) (resp. V ) to obtain that L′ (resp. L′′) is Galois over K. Since both ker(z)
and V are subsets of L, it suffices to check that Γ acts on them. For V this is clear
since V is a Zp[Γ]-module. Since z is a Zp[Γ]-homomorphism, Γ also acts on the kernel
of z. Hence the extensions L′ and L′′ are Galois over K. Then also the composites with
K2
m are Galois over K.
Note that by Kummer theory

M ∩ L′′ = Lm(P 1/m) ∩ Lm(V 1/m) = Lm((P ∩ V )1/m) .

Since V ∩ P ⊆ V ∩K× ⊆ ker(z), this implies M ∩ L′′ ⊆ L′.
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Lemma 3.6.6 (cf. [GK04, Lemma 18]). (i) Lm2 is the maximal abelian subextension
of L′′′/L.

(ii) Lm is the maximal abelian subextension of L′′/L.

(iii) L′′′ ∩HL = L.

Proof. (i) We have an exact sequence

1 −→ Gal(L′′′/Lm2) −→ Gal(L′′′/L) −→ Gal(Lm2/L) −→ 1 .

The group Gal(Lm2/L) is isomorphic to the unique subgroup H of (Z/m2Z)× of
order f and its action is determined by

σa(ζm2) = ζam2 ,

where a ∈ H and σa is the corresponding element in Gal(Lm2/L) under this
isomorphism.

By Kummer theory, the extension L′′′/Lm2 is an abelian p-extension and with the
above observations, the action of H on B := Gal(L′′′/Lm2) is given by

(a, σ) 7−→ σa .

Note that we can choose q as a generator of H since f is the order of q in
(Z/m2Z)×. Then the coinvariants of B are given by

BH = B/IHB = B/(q − 1)B .

As p - q − 1 = wK and B is a p-group, we obtain (q − 1)B = B and hence
the coinvariants vanish. This implies that Gal(L′′′/L)/B ∼= Gal(Lm2/L) is the
maximal abelian quotient and hence Lm2/L is the maximal abelian subextension.

(ii) Analogously to (i).

(iii) Since HL/L is abelian, we obtain L′′′ ∩ HL = Lm2 ∩ HL. Since HL is a real
extension of L, this intersection must be contained in the splitting field of ∞ in
Lm2 . By [Ros02, Prop. 8.13], the splitting field of ∞ in Lm2 = LFqf is the unique
subextension of degree (f, d∞). By p - d∞, this subextension has degree prime to
p and since HL is a p-extension, we obtain HL ∩ Lm2 = L.
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The situation can be illustrated in the following diagram:

L′′′

L′′Lm2

L′′M MLm2

HL L′′ (L′ ∩M)Lm2

L′ Lm2 M

L′ ∩M

Lm

L

K

Now we want to construct a suitable element τ ∈ Gal(L′′′/L) such that the statement
of Theorem 3.6.4 follows from an application of Čebotarev’s Densitiy Theorem.

For the first step, let e0 ∈ Hom((Z/mZ)[Γ], µm) be given by

e0

pk−1∑
i=0

aiσ
i

 = ζa0m .

Then e0 generates Hom((Z/mZ)[Γ], µm) as a Z[Γ]-module and therefore the Z-span of
σ−je0, j = 1, ..., pk, is Hom((Z/mZ)[Γ], µm). Moreover, we obtain from Kummer theory

Gal(L′′/L′) ∼= ker(Hom(V, µm)→ Hom(ker(z), µm))
∼= Hom(im(z), µm) .

From Baer’s criterion (see [Wei94, 2.3.1 and Ex. 2.3.1]) we get that µm ∼= Z/mZ is
injective as a Z/mZ-module, therefore we get a surjective map

Hom((Z/mZ)[Γ], µm) � Hom(im(z), µm) ∼= Gal(L′′/L′) .

Let τ1 be the image of e0 under this isomorphism, then τ1 is a Z[Γ]-generator
of Gal(L′′/L′).
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In the second step we want to extend τ1 to an element τ2 ∈ Gal(L′′M/Lm) which
restricts to the identity on M . This is possible if and only if τ1 is the identity on
M ∩ L′′. We already observed that M ∩ L′′ ⊆ L′ and since τ1 ∈ Gal(L′′/L′), we clearly
have τ1|M∩L′′ = id.

In the last step, we want to extend τ2 to an element τ of Gal(L′′′/L) such that
τ(ζm2) = ζ1+m

m2 . First we see that this would imply τ(ζm) = ζm hence we get the
necessary condition τ2|Lm = id. This is true since τ2 ∈ Gal(L′′M/Lm). Moreover, the
order of τ |Lm2 ∈ Gal(Lm2/Lm) must be the order of 1 + m in (Z/m2Z)×, which is m.
Hence [Lm2 : Lm] = f

d
must be divisible by m which is shown in Lemma 3.6.3. A last

condition is that L′′M ∩Lm2 = Lm. As Lm2 is abelian over L, this follows from Lemma
3.6.6 (ii).

Now since HL/K and L′′′/K are Galois, we find that HLL
′′′/K is Galois and we

let σ ∈ Gal(HLL
′′′/K) be an element such that σ|L′′′ = τ and σ|HL = σc, where

σc ∈ Gal(HL/L) corresponds to the class c ∈ cl(OL)p. Such an element exists since
HL ∩ L′′′ = L and σc|L = id = τ |L. By Čebotarev’s Density Theorem (cf. [Ros02,
Thm. 9.13A]), there exist infinitely many primes q of K such that (q, HLL

′′′/K) is in
the conjugacy class of σ. As the support of the generators of V consists only of finitely
many primes, we obtain infinitely many primes q such that the primes of L above q are
not contained in this support. Now we are left to show that these primes satisfy the
conditions (i)-(v).

Since σ|L = τ |L = id, we get that q is completely split in L, so we obtain (i).
We get

(Q, HL/L) = (Q, HLL
′′′/L)|HL = (q, HLL

′′′/K)|HL = σ|HL = σc ,

because of (i) hence we obtain (ii).
For (iii), we use the fact that σ|Lm = τ |Lm = id, so Q splits completely in Lm. Let

Q̃ be a prime of Lm above Q and let Q̂ be a prime of Lm2 above Q̃, then we get

ζ
(Q̃,Lm2/Lm)
m ≡ ζNQ̃

m mod Q̂

by the definition of the Frobenius. Since ζm is a constant, this implies

ζ
(Q̃,Lm2/Lm)

m2 = ζNQ̃
m2 .

By the properties of the Frobenius element, we obtain

(Q̃, Lm2/Lm) = (Q̃, HLL
′′′/Lm)|Lm2 = (q, HLL

′′′/K)|Lm2 = τ |Lm2 ,

so

ζQm2 = ζNQ
m2 = ζNQ̃

m2 = ζ
τ |L

m2

m2 = ζ1+m
m2 .

Therefore, we get (iii).
We first observe that since q splits completely in Lm, we get OK/q ∼= OLm/Q̃. Let

ξj ∈M be an m-th root of xj and let Q′ be an ideal of M above Q̃. From

(Q̃,M/Lm) = (Q̃, HLL
′′′/Lm)|M = (q, HLL

′′′/K)|M = τ |M = id ,
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we obtain that Q̃ splits completely in M and hence

[ξj] ∈ OM/Q′ ∼= OK/q

satisfies [ξj]
m = [xj]. This is (iv).

For (v) we notice that (Z/mZ)[Γ] is an injective (Z/mZ)[Γ]-module (this can be
shown with [Wei94, Prop. 3.2.4]), hence it suffices to consider im(ψ) instead of
(OL/qOL)×/m. Then we obtain the desired map ϕ from the homomorphism theorem
if and only if ker(ψ) ⊆ ker(z).

So let u ∈ ker(ψ), i.e. u is an m-th power in (OL/qOL)×. Then by the Chinese
Remainder Theorem, u is also an m-th power in (OL/Q)× for each prime Q of L above
q. Since we have already seen that Q splits completely in Lm, u is also an m-th power
in (OLm/Q̃)× for any prime Q̃ above Q. Considering the extension Lm(u1/m), we find
that for any prime Q∗ of Lm(u1/m) above Q̃, we get

OLm(u1/m)/Q
∗ = OLm/Q̃(u1/m) = OLm/Q̃,

so each prime Q is completely split in Lm(u1/m). Then clearly τ |Lm(u1/m) = id and since
we can do this for any Γ-conjugate of Q, we obtain the same result for any Γ-conjugate
of τ |Lm(u1/m). But by construction, the conjugates of τ |L′′ generate Gal(L′′/L′), hence
Gal(L′′/L′) acts trivially on Lm(u1/m). Therefore, Lm(u1/m) ⊆ L′ and hence u ∈ ker(z).
This yields (v).

For the desired annihilation result, we need the next

Theorem 3.6.7 (cf. [Rub87, Thm. (5.1)]). Let q be a prime of K which splits completely
in L, set Q := |OK/q|. Let M be a finite extension of L which is abelian over K and
such that in M/L, all primes above q are totally tamely ramified and no other primes
ramify. Write qM for the product of all primes of M above q and let A denote the
annihilator in (Z/(Q− 1)Z)[Γ] of the cokernel of the reduction map

{ε ∈ O×M | NM/L(ε) = 1} −→ (OM/qM)× .

Write w := Q−1
[M :L]

. Then A ⊆ w(Z/(Q − 1)Z)[Γ] and for every prime Q of L above q,
w−1A annihilates the ideal class of Q in cl(OL)/[M : L].

Proof. The proof of Rubin also works for function fields.

Now we can prove:

Theorem 3.6.8. Let m be a power of p divisible by pks such that m | f
d
. Assume

that ε ∈ OL is m-semispecial and let V ⊆ L×/m be a finitely generated Z[Γ]-module.
Suppose that the class of ε belongs to V . Let z : V −→ (Z/mZ)[Γ] be a Z[Γ]-linear map
such that z(V ∩K×) = 0. Then z(ε) annihilates cl(OL)p/(m/p

k(s−1)).

Proof. Set m′ := m/pk(s−1). We must prove that the image of any class c ∈ cl(OL)p in
cl(OL)p/m

′ is annihilated by z(ε). We can apply Theorem 3.6.4 to produce a completely
split prime Q of L and a prime q of K below Q which satisfy the properties (i)-(v).
Since ε is m-semispecial and q ∈ Qm by (iii) and (iv), there exists a unit εq in L[q]
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with NL[q]/L(εq) = 1 and such that the elements ε and εq have the same image in
(OL[q]/qLq])

×/m′ ∼= (OL/qOL)×/m′. Applying Theorem 3.6.7 to M = L[q], we get that
the annihilator A of B := (OL[q]/qL[q])

×/〈im(εq)〉 annihilates the class of Q in cl(OL)/m.
By property (iii), m is the exact p-power dividing Q− 1, therefore the p-part of B is

B/m = ((OL[q]/qL[q])
×/m)/〈im(εq)〉

and the projection Ap of A to (Z/mZ)[Γ] is the annihilator of B/m. So Ap annihilates
[Q] in cl(OL)p/m.

From this, we obtain that A′, the projection of Ap to (Z/m′Z)[Γ], annihilates [Q]
in cl(OL)p/m

′. Since (OL[q]/qL[q])
×/m is free cyclic over (Z/mZ)[Γ], it follows that A′

is the annihilator of B/m′.
Therefore, we have to show that z(ε) ∈ A′. Since ε and εq have the same image in

(OL[q]/qL[q])
×/m′, A′ is also the annihilator of

((OL[q]/qL[q])
×/m′)/〈im(ε)〉 = ((OL/qOL)×/m′)/〈ψ(ε)〉 ,

where ψ is the reduction map from Theorem 3.6.4 considered modulom′. Using the dia-
gram from property (v), we get that ϕ(ψ(ε)) ∈ A′, since (OL/qOL)×/m′ is (Z/m′Z)[Γ]-
cyclic (for more details, see the last paragraph in [GK04]).Therefore, z(ε) ∈ A′ and we
are done.

The main result of this chapter is the next

Theorem 3.6.9. Let r be the highest jump less than k. Then we have

AnnZ[Γ]((O×L/CL)p) ⊆ AnnZ[Γ]((1− σp
r

) cl(OL)p) .

The number r is determined by pk−r = max{tj : j ∈ J}, where the set J is defined as
J = {j ∈ {1, ..., s} : nj = ns}.

Proof. The proof of [CK19, Thm. 7.5] can be used without any changes.
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Chapter 4

A Solomon-type conjecture for totally
real number fields

In this chapter we formulate a conjectural generalization of [Sol92, Thm. 2.1] for totally
real number fields. We also prove the equivalence of this conjecture to the Iwasawa-
theoretic Mazur-Rubin-Sano conjecture, which is formulated in the first section. Since
the IMRS is a consequence of the eTNC (see [BKS16, Thm. 5.16]), the conjectural
statements presented in Section 4.2 are also implied by the eTNC.

4.1 The Iwasawa-theoretic Mazur-Rubin-Sano conjec-
ture

Let K be a number field, fix an odd prime p and set Sp to be the set of places of K
above p. Let L∞ be a Galois extension of K such that G := Gal(L∞/K) = ∆×Γ, where
∆ is a finite abelian group and Γ ∼= Zp. Then we define L := LΓ

∞, so L is a finite abelian
extension of K with G := Gal(L/K) ∼= ∆, and K∞ := L∆

∞, so K∞ is a Zp-extension of
K and Gal(K∞/K) ∼= Γ. We denote the n-th level of this Zp-extension by Kn and set
Ln = LKn. Let Gn := Gal(Ln/K) and Γn := Gal(Ln/L) ∼= Z/pnZ, so Gn ∼= ∆ × Γn.
Define I(Γ) (resp. I(Γn)) to be the augmentation ideal of Zp[[Γ]] (resp. Zp[Γn]).

Let S ⊇ S∞(K) ∪ Sram(L/K) ∪ Sp and T be finite sets of places satisfying Hy-
potheses 2.2.1 and 2.3.1. Let V be the set of places in S which split completely in
L∞ and V ′ be the set of places in S which split completely in L. Then V ⊆ V ′ and
we set r := |V |, r′ := |V ′| and e := r′ − r. We use the ordering introduced in Sec-
tion 2.4.2, i.e. S = {v0, ..., vn}, V = {v0, ..., vr−1} and V ′ = {v0, ..., vr−1, vr, ..., vr′−1}.
Let W := {wr, ..., wr′−1} be the set of chosen primes of L over V ′ \ V used in the
formulation of the Rubin-Stark conjecture.

For the rest of this section we work under the following

Hypothesis 4.1.1. For each level n, the p-component of the Rubin-Stark conjecture
RS(Ln/K, S, T, r)p with S, T and r as above holds.
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For the statement of the conjecture, we need to introduce three more maps.
We start with the canonical embedding from [San14, Lemma 2.11]

r⋂
UL,S,T −→

r⋂
ULn,S,T

which induces an injection

νn :
r⋂
UL,S,T ⊗Zp I(Γn)e/I(Γn)e+1 −→

r⋂
ULn,S,T ⊗Zp Zp[Γn]/I(Γn)e+1 .

Secondly, we define IΓ (resp. IΓn) to be the kernel of the map Zp[[G]] −→ Zp[G]
(resp. Zp[Gn] −→ Zp[G]). For any place w ∈ W , we fix a place w∞ of L∞ above
w. Then on each level n, we can use the place wn of Ln below w∞ to define the local
reciprocity map recw := recwn : L× −→ Γn. This induces a map

Recw : L× −→ IΓn/I
2
Γn

x 7−→
∑
σ∈G

(recw(σ(x))− 1)σ−1 .

Consider the isomorphism from [San14, Eq. (3)]

Zp[G]⊗Zp I(Γn)/I(Γn)2 ∼=−→ IΓn/I
2
Γn

σ ⊗ a 7−→ σ̃a ,
(4.1.1)

where a denotes the image of a ∈ I(Γn) modulo I(Γn)2 and σ̃ ∈ Gn is an arbitrary lift
of σ ∈ G ∼= Gn/Γn. Then

∧
w∈W Recw induces a homomorphism

Recn :
r′⋂
UL,S,T −→

r⋂
UL,S,T ⊗Zp I(Γn)e/I(Γn)e+1

by [San14, Prop. 2.7]. Taking the limit over n we get

RecW :
r′⋂
UL,S,T −→

r⋂
UL,S,T ⊗Zp lim←− I(Γn)e/I(Γn)e+1 ∼=

r⋂
UL,S,T ⊗Zp I(Γ)e/I(Γ)e+1 .

The third map will be

Nn :
r⋂
ULn,S,T −→

r⋂
ULn,S,T ⊗Zp Zp[Γn]/I(Γn)e+1

a 7−→
∑
σ∈Γn

σa⊗ σ−1 .

Now we can state

Conjecture 4.1.2 (IMRS(L/K, S, T, r)p). There exists a

ξ = (ξn)n ∈
r⋂
UL,S,T ⊗Zp I(Γ)e/I(Γ)e+1

such that

νn(ξn) = Nn(ηLn,S,T )

for all n ≥ 1 and

eS,r′ξ = (−1)reeS,r′ RecW (ηL,S,T ) in eS,r′Qp

r⋂
UL,S,T ⊗Zp I(Γ)e/I(Γ)e+1 .
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Remark 4.1.3. (i) Note that the conjecture in [BKS17] is formulated for a single
character. In the above formulation, the characters with rS,χ = r′ are combined
in the idempotent eS,r′ .

(ii) If such an element ξ exists, it is unique since the maps νn are injective.

(iii) By [BKS17, Prop. 4.4(iv)], we can restrict ourselves to the case that V ′ \ V ⊆ Sp.

4.2 A Solomon-type conjecture
Now let K be a totally real number field and let L∞ be an extension as in the previous
section such that the extension K∞/K is indeed the cyclotomic Zp-extension. In this
case, the extension L∞/L is also the cyclotomic extension.

Remark 4.2.1. If Leopoldt’s conjecture is true for K, then the cyclotomic extension
is the only Zp-extension of K, so the above choice is in fact no restriction in this case.

We additionally suppose that at least one place of K splits completely in L∞,
i.e. r ≥ 1, and at least one place splits completely in L but not in L∞, i.e. e ≥ 1.
In this section, we replace Hypothesis 4.1.1 by

Hypothesis 4.2.2. For each level n, the Stark conjecture St(Ln/K, S) with S as before
holds.

We hence obtain a Stark unit εLn,S ∈ O×Ln,S for each n. Note that this is only defined
up to a root of unity. Nevertheless, since L∞ and hence L can be embedded into R, we
have µ(L) = {±1} and since e ≥ 1 (so r′ ≥ 2), we get NLn/L(εLn,S) ∈ µ(L). Therefore,
we can normalize the Stark units by requiring NLn/L(εLn,S) = 1 for each n. These
normalized Stark units then form a norm coherent sequence by Proposition 2.4.9.

4.2.1 Solomon’s κ-construction

Now we apply the construction of [Sol92] in our case. For this, we need

Conjecture 4.2.3. For each n there exists an element βLn,S ∈ L×n /L
× such that

β
(γ−1)e

Ln,S
= εLn,S.

Remark 4.2.4. This is true for e = 1 by Hilbert’s Theorem 90.

Lemma 4.2.5. If such a βLn,S exists, it is unique.

Proof. For e = 1, this is again Hilbert’s Theorem 90, so we assume e > 1. Suppose that
we find bLn,S, b′Ln,S ∈ Ln satisfying

b
(γ−1)e

Ln,S
= εLn,S = (b′Ln,S)(γ−1)e .

Hence, we get for α :=
bLn,S
b′Ln,S

that α(γ−1)e = 1, so α(γ−1)e−1 ∈ L×. Therefore, we find

1 = NLn/L(α(γ−1)e−1

) = (α(γ−1)e−1

)p
n

and since µ(L) = ±1, we get that α(γ−1)e−1
= 1. Inductively, we obtain that αγ−1 = 1,

so α ∈ L×.
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Hypothesis 4.2.6. For the rest of this section, we assume that Conjecture 4.2.3 holds.

Then we can define κL,S,n := NLn/L(βLn,S) ∈ L×/(L×)p
n . By abuse of notation, we

let

ordQ : L×/(L×)p
n −→ Z/pnZ
x 7−→ ordQ(x)

for any place Q of L. Then we obtain the following properties:

Lemma 4.2.7. (i) κL,S,n ≡ κL,S,m mod (L×)p
m for all m ≤ n.

(ii) For all primes Q of L coprime to p, we have ordQ(κL,S,n) = 0 in Z/pnZ.

Proof. (i) We find with Proposition 2.4.9 and Lemma 2.4.1 (ii)

NLn/Lm(βLn,S)(γ−1)e = NLn/Lm(β
(γ−1)e

Ln,S
) = NLn/Lm(εLn,S) = εLm,S .

Hence, the uniqueness from Lemma 4.2.5 implies βLm,S = NLn/Lm(βLn,S) ∈ L×m/L×.
Then by definition we get

κL,S,m = NLm/L(βLm,S) = NLm/L(NLn/Lm(βLn,S)) = NLn/L(βLn,S)

= κL,S,n ∈ L×/(L×)p
m

.

(ii) Define b(d)
n := β

(γ−1)e−d

Ln,S
for d = 0, ..., e − 1, i.e. b(0)

n = εLn,S. Note that b(d)
n ∈ L×n

is independent of the choice of representative of βLn,S. We now use induction to
prove that b(d)

n is an Sp-unit for d = 0, ..., e− 1.

For d = 0, this is part (ii) of St(L/K, S): Since we have a completely split infinite
place, either |S| ≥ 3, hence εLn,S ∈ O×Ln , or S = {∞, p}, where p is the unique
prime of K over p. Then εLn,S ∈ O×Ln,S = O×Ln,Sp .

So let d > 0 and suppose that b(d−1)
n ∈ O×Ln,Sp . Using the Kolyvagin derivative

D =
∑pn−1

i=0 iγi, which satisfies (γ − 1)D = pn −NLn/L, we obtain

(b(d−1)
n )D = (b(d)

n )(γ−1)D =
(b

(d)
n )p

n

NLn/L(b
(d)
n )

.

Since d < e, we get that

NLn/L(b(d)
n ) = NLn/L(β

(γ−1)e−d

Ln,S
) = 1 .

So for any prime Qn - p we get

pn ordQn(b(d)
n ) = ordQn((b(d−1)

n )D) = 0

as b(d−1)
n ∈ O×Ln,Sp and hence also b(d)

n ∈ O×Ln,Sp .
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Now let Q be a prime of L coprime to p. Then Q is unramified in Ln/L and we
fix a prime Qn of Ln over Q. Now we can copy the proof of [Sol92, Prop. 2.2],
i.e. we compute

(b(e−1)
n )D = β

(γ−1)D
Ln,S

= β
pn−NLn/L
Ln,S

=
βp

n

Ln,S

NLn/L(βLn,S)
.

This implies

ordQ(κL,S,n) ≡ ordQn(NLn/L(βLn,S)) ≡ − ordQn((b(e−1)
n )D)

≡ 0 mod pn .

The Lemma enables us to define

κL,S := (κL,S,n)n ∈ lim←−
n

O×L,S/(O
×
L,S)p

n ∼= ZpO×L,S = UL,S .

Remark 4.2.8. If r ≥ 2, we clearly have L′S(χ, 0) = 0 for all characters χ ∈ Ĝ and
hence εLn,S = 1 for all n. Therefore, we get βLn,S = 1 and also κL,S,n = 1 for all n, so
κL,S is trivial in this case. This approach can hence only be interesting if r = 1 and we
will work under this assumption from now on.

4.2.2 Cyclotomic character

For each n ≥ 0 let ζn be a primitive pn+1-th root of unity. We assume that these satisfy
ζpn+1 = ζn. We consider the local extensions Qp(ζn)/Qp and set Qp(ζ∞) =

⋃
n≥0 Qp(ζn).

Then an element σ ∈ Gal(Qp(ζ∞)/Qp) is uniquely determined by its action on ζn for
all n, i.e. we find elements aσ,n ∈ (Z/pn+1Z)× such that σ(ζn) = ζ

aσ,n
n . Taking the limit

over n, we then get aσ = (aσ,n)n ∈ Z×p , such that

σ(ζn) = ζaσn

for all n. This relation defines the cyclotomic character

χcyc : Gal(Qp(ζ∞)/Qp)
∼=−→ Z×p

σ 7−→ aσ .

Considering the cyclotomic extension Qp,∞/Qp, we find that

Gal(Qp,∞/Qp) ∼= Gal(Qp(ζ∞)/Qp(ζ0)) ⊆ Gal(Qp(ζ∞)/Qp)

and the cyclotomic character induces an isomorphism

χcyc : Gal(Qp,∞/Qp) −→ 1 + pZp
σ 7−→ χcyc(σ̃) ,

where σ̃ is the lift of σ obtained from the above isomorphism, i.e. σ̃|Qp(ζ0) = id.
Considering the local reciprocity map recp : Z×p −→ Gal(Qp(ζ∞)/Qp), we get from

[Neu11, Part II, Thm. (7.16)]

χcyc(recp(x)) = x−1 . (4.2.1)
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4.2.3 The valuations at the split primes above p

Returning to our number fields, recall that we assume r = 1 and we will denote the
unique archimedean place which splits completely in L∞ by v0, i.e. V = {v0}. we refine
the ordering of the set V ′ = {v0, v1, ..., vep , ..., ve} by assuming without loss of generality
that (V ′ \V )∩Sp = {v1, ..., vep}, i.e. the first ep places in V ′ \V lie over p. Hence, these
places correspond to prime ideals p1, ..., pep of K over p. Finally, we set Si := S \ {vi}
and V̂ = {vep+1, ..., ve} = V ′ \ (V ∪ Sp).

Then we see that LPi is a finite extension of Qp for each i = 1, ..., ep. Completing
L∞ at the unique prime above Pi, we get the cyclotomic Zp-extension of LPi , i.e. the
field LPi,∞ := LPiQp,∞. Let k := LPi ∩Qp,∞, then we get

Γ ∼= Gal(LPi,∞/LPi)
∼= Gal(Qp,∞/k) ⊆ Gal(Qp,∞/Qp) .

Now fix a topological generator γ of Γ, then we can use the above identification to read
γ as an element of Gal(Qp,∞/Qp). Hence, we can apply χcyc to γ and obtain an element
of 1 + pZp. Applying the p-adic logarithm, this defines a unique element

ω := logp(χcyc(γ)) ∈ pZp .

For each i = 1, ..., ep, we obtain a Stark element ηL,Si ∈ Q
∧eO×L,Si . By (2.2.1) this

must be of the form λ(i)u
(i)
1 ∧· · ·∧u

(i)
e for some λ(i) ∈ Q and elements u(i)

1 , ..., u
(i)
e ∈ O×L,Si .

Inspired by our definitions of Rec and Ord, we set for any prime P of L above p

LogP : L× −→ Qp[G]

x 7−→
∑
σ∈G

logp(NLP/Qp(σ(x)))σ−1 .

Moreover, by abuse of notation we denote the p-adic completion of OrdP also by
OrdP for any P of L above p, i.e. we define

OrdP : UL,S = ZpO×L,S −→ Zp[G]

α⊗ u 7−→ α⊗OrdP(u) .

For a place p ∈ V̂ and the corresponding fixed place P of L above p, the decompo-
sition group of P in Γ is generated by the Frobenius σP ∈ Γ. This is indeed a unique
element of Γ since P is unramified in L∞, hence there exists an nP ∈ Zp such that
σP = γnP .

Now we can formulate our main conjecture:

Conjecture 4.2.9. For all i = 1, ..., ep, we have

OrdPi(κL,S) = (−1)i+ep
2λ(i)

ωep
det


(

LogPβ
(u

(i)
α )
)

1≤β≤ep
1≤α≤e(

nPβ OrdPβ(u
(i)
α )
)
ep+1≤β≤e

1≤α≤e

 ∈ Zp[G] .

In particular, if V ′ \ V ⊆ Sp, we get e = ep and hence for all i = 1, ..., e

OrdPi(κL,S) = (−1)i+e
2λ(i)

ωe
det
(

LogPβ
(u(i)

α )
)

1≤β≤e
1≤α≤e

∈ Zp[G] .
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Remark 4.2.10. We will see in the next section that the right hand side is in fact the
explicit computation of

(−1)eeS,r′(OrdPi ◦RecW )(ηL,S,T ) ,

hence it is clearly independent of the choice of λ(i) and u(i)
α .

Example 4.2.11. Consider the case K = Q, then L will be a totally real abelian
extension of Q. Suppose that p is completely split in L. Let S = {∞, p} and f be the
conductor of L, then Ln ⊆ Q(ζfp(n+1)) and hence εLn,S = NQ(ζ

fp(n+1)
)/Ln(1 − ζfp(n+1))

(see Remark 2.2.7). Since V ′ \ V = Sp = {p}, we get e = 1 and hence Conjecture 4.2.3
is true by Hilbert’s Theorem 90. Therefore, the elements κL,S,n can be constructed as
above. On the other hand ηL,S1 = 1

2
εL,S\{p} = 1

2
NQ(ζf )/L(1 − ζf ), so the statement of

Conjecture 4.2.9 is

ordP(κL,S) = −
logp(ιP(NQ(ζf )/L(1− ζf )))

logp(χcyc(γ))
,

where P is any place of L above p and ιP : L −→ LP
∼= Qp is the embedding corre-

sponding to P. This is exactly the result of Solomon (see [Sol92, Thm. 2.1]).

Remark 4.2.12. In fact, we could also formulate Conjecture 4.2.9 if K is an imaginary
quadratic field. Then we still have only one completely split infinite place, so the
statement will probably be non-trivial. Then L∞ is not necessarily the cyclotomic
extension. Indeed if p is split in K and L∞ is the Zp-extension, which is unramified
at one of the primes over p, we recover (under some additional assumptions) exactly
[Ble04, Thm. 3.4]. If p is non-split, we find that L∞ is a subfield of the ray class field
K(fp∞) =

⋃
nK(fpn), where f is the conductor of L. In this case, the corresponding

formulation of Conjecture 4.2.9 is a consequence of [BH20, Thm. 2.7] (again under
additional assumptions). This, together with the case K = Q, may be considered as a
first theoretical evidence.

4.2.4 The remaining primes

So far we determined (at least conjecturally) the order of κL,S at the primes of L, which
are coprime to p and at the primes above pi for i = 1, ..., ep. Hence, we are left to
consider the primes of L above the primes in Sp \ V ′. Fix such a prime q ∈ Sp \ V ′ and
let Q be a prime of L above q. Let Dq ⊆ G be the decomposition group of q. With the
identification G ∼= ∆, we obtain a corresponding subgroup of ∆ and we set L′∞ = L

Dq
∞

and L′ = LDq . Then L′∞ is the cyclotomic Zp-extension of L′ and we let L′n be the n-th
level of this extension (so L′n = L

Dq
n with the canonical identification G ∼= Gal(Ln/Kn)).

Proposition 4.2.13. If Conjecture 4.2.3 holds for L′, then we get ordQ(κL,S) = 0.

Proof. We find that Hypothesis 4.2.2 for L′ is implied by the hypothesis for L, so we
can assume that this hypothesis holds. Then for each n, we obtain a Stark unit εL′n,S
and by Proposition 2.4.9 we get εL′n,S = NLn/L′n(εLn,S). Hence if Conjecture 4.2.3 is true
for L, then we can set αL′n,S = NLn/L′n(βLn,S) and find εL′n,S = α

(γ−1)e

L′n,S
. Note that the
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sets V ′ and V may change when moving from L to L′, hence we obtain e′ ≥ e places in
S which are completely split in L′ but not in L′∞. If we assume that Conjecture 4.2.3
holds for L′, then we obtain elements βL′n,S ∈ (L′n)×/(L′)× satisfying β(γ−1)e

′

L′n,S
= εL′n,S.

Then as in the proof of Lemma 4.2.5 we get αL′n,S = β
(γ−1)e

′−e

L′n,S
in (L′n)×/(L′)× and hence

κ
(γ−1)e

′−e

L′,S,n ≡ NL′n/L
′(αL′n,S) ≡ NL/L′(κL,S,n) mod ((L′)×)p

n

.

With Lemma 4.2.7, we get

κ
(γ−1)e

′−e

L′,S = NL′/L(κL,S) ∈ UL′,S
and from [Neu92, Ch. III, Thm. (1.2)]

f(Q/Q′) · ordQ(κL,S) = ordQ′(NL/L′(κL,S)) = ordQ′(κ
(γ−1)e

′−e

L′,S ) .

If there is a second place v ∈ S, which is completely split in L′∞, we find κL′,S = 1 by
Remark 4.2.8, so ordQ(κL,S) = 0 in this case. If we still have only one place, which is
completely split in L′∞, we see that e′ > e, since there is at least one additional prime
which splits completely in L′, namely the place q. But then

κ
(γ−1)e

′−e

L′,S = 1 ,

so we find again ordQ(κL,S) = 0.

4.2.5 A T -modified version

For a T -modified version, we use that St(Ln/K, S) implies RS(Ln/K, S, T, 1) by Corol-
lary 2.4.2 and consider the Rubin-Stark elements ηLn,S,T ∈ O×Ln,S,T for n ≥ 1. If we
assume Conjecture 4.2.3, we find elements β2

Ln,S,T
∈ L×n /L× such that (β2

Ln,S,T
)(γ−1)e =

η2
Ln,S,T

by setting β2
Ln,S,T

= β
δT (0)
Ln,S

. Defining κ2
L,S,T,n := NLn/L(β2

Ln,S,T
) we find κ2

L,S,T,n =

κ
δT (0)
L,S,n and hence κ2

L,S,T,n ∈ O×L,S,T by Lemma 4.2.7 and 2.3.3 (iii). Taking the limit, we
get κ2

L,S,T = (κ2
L,S,T,n)n ∈ UL,S,T . Since p is odd, 2 is invertible in Zp and we can define

κL,S,T := 1
2
⊗ κ2

L,S,T ∈ UL,S,T .
Remark 4.2.14. If T contains a place v with σv = 1, then δT (0)/2 ∈ Z[G] so we can
directly define βLn,S,T = β

δT (0)/2
Ln,S

(and analogously for κL,S,T,n and κL,S,T ) in this case.

As before, we get a Rubin-Stark element η(i)
T := ηL,Si,T ∈ Q

∧eO×L,Si,T for each
i = 1, ..., e. By (2.3.1), this must be of the form λ

(i)
T u

(i)
1,T ∧ · · · ∧ u

(i)
e,T for some λ(i)

T ∈ Q
and elements u(i)

1,T , ..., u
(i)
e,T ∈ O

×
L,Si,T

. Then the T -version of Conjecture 4.2.9 is

Conjecture 4.2.15. For all i = 1, ..., ep, we have

OrdPi(κL,S,T ) = (−1)i+ep
λ

(i)
T

ωep
det


(

LogPβ
(u

(i)
α,T )

)
1≤β≤ep
1≤α≤e(

nPβ OrdPβ(u
(i)
α,T )

)
ep+1≤β≤e

1≤α≤e

 ∈ Zp[G] .

In particular, if V ′ \ V ⊆ Sp we get for all i = 1, ..., e

OrdPi(κL,S,T ) = (−1)i+e
λ

(i)
T

ωe
det
(

LogPβ
(u

(i)
α,T )

)
1≤β≤e
1≤α≤e

∈ Zp[G] .
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4.3 Relation of the conjectures

Throughout this section, we assume that Hpothesis 4.2.2 is true. We first relate Con-
jecture 4.2.9 with its T -version:

Lemma 4.3.1. Conjecture 4.2.9 is equivalent to Conjecture 4.2.15 for all sets T satis-
fying Hypothesis 2.3.1.

Proof. This follows directly from Lemma 2.4.1, the fact that

κL,S,T = κ
δT (0)/2
L,S

and [Tat84, Ch. IV, Lemme 1.1].

In the rest of this section, we will prove the major theoretical evidence for Conjec-
ture 4.2.9:

Theorem 4.3.2. Assume that Conjecture 4.2.3 holds for any subfield of L. Then
Conjecture 4.2.15 is equivalent to IMRS(L/K, S, T, 1)p (Conjecture 4.1.2).

For the proof of the theorem, we first state a reformulation of IMRS(L/K, S, T, 1)p
from [BH21]. Their approach starts with [BH21, Conj. (3.2)] for general Euler systems
and arbitrary rank r. In our special case of Rubin-Stark elements and r = 1, this can
be formulated as

Conjecture 4.3.3. Let ηS,T := (ηLn,S,T )n ∈ lim←−n ULn,S,T = UL∞,S,T be the limit of the
norm-coherent sequence of Rubin-Stark elements. Then

ηS,T ∈ IeΓUL∞,S,T .

Remark 4.3.4. Bullach and Hofer proved the validity of the above conjecture under
certain assumptions, a list can be found in [BH21, Thm. (3.5)]. In particular, Conjec-
ture 4.3.3 is a consequence of a variant of the Iwasawa Main Conjecture (see [BH21,
Remark (3.6)]).

Lemma 4.3.5. Conjecture 4.2.3 is equivalent to Conjecture 4.3.3 for all sets T satis-
fying Hypothesis 2.3.1.

Proof. First assume that Conjecture 4.2.3 holds. Then as in the proof of Lemma 4.2.7,
we can show that βγ−1

Ln,S
∈ O×Ln,S. Define αn,m := NLm/Ln(βLn,S) for m ≥ n, then a

similar computation as in the proof of Lemma 4.2.7 shows that αn,m ∈ O×Ln,S and hence
α2
n,m,T := α

δT (0)
n,m ∈ O×Ln,S,T by Lemma 2.3.3 (iii). Note that

NLm/Lm′
(βLm,S) ≡ βLm′ ,S mod (L×)p

m−m′

for all m ≥ m′ and hence

α2
n,m,T ≡ α2

n,m′,T mod (O×Ln,S,T )p
m−m′

.
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Therefore, we can define

λ2
n,T := (α2

n,m,T )m≥n ∈ lim←−
m

O×Ln,S,T
(O×Ln,S,T )pm−n

= ULn,S,T

and

λn,T :=
1

2
⊗ λ2

n,T ∈ ULn,S,T .

By definition, the sequence (λn,T )n is norm coherent and we get with Lemma 2.4.1

λ
(γ−1)e

n,T =
1

2
⊗ ((α2

n,m,T )(γ−1)e)m≥n =
1

2
⊗ (NLm/Ln(β

(γ−1)e

Lm,S
)δT (0))m≥n

=
1

2
⊗ (NLm/Ln(εLm,S)δT (0))m≥n =

1

2
⊗ (ε

δT (0)
Ln,S

)m≥n = (ηLn,S,T )m≥n .

Therefore, (λn,T )
(γ−1)e

n = ηS,T , so Conjecture 4.3.3 holds.
For the other implication, we assume that ηS,T ∈ IeΓUL∞,S,T . This implies, that

there exists a norm coherent sequence (λn,T )n such that λ(γ−1)e

n,T = ηLn,S,T in ULn,S,T .
With the identification already used in the first part of the proof, we find elements
αn,m,T ∈ O×Ln,S,T such that

λn,T = (αn,m,T )m≥n ∈ lim←−
m

O×Ln,S,T
(O×Ln,S,T )pm−n

,

and hence

ηLn,S,T = u
(0)
n,Tα

(γ−1)e

n,2n,T

for some u(0)
n,T ∈ (O×Ln,S,T )p

n . Since this holds for all sets T satisfying Hypothesis 2.3.1,
we can choose T = {v} for some v /∈ S such that σv = 1 and hence by Lemma 2.4.1, we
find ηLn,S,T = ε

(1−Nv)/wLn
Ln,S

. With enough sets of this form, we can apply [Tat84, Ch. IV,
Lemme 1.1] to write wLn =

∑
i ai(1−Nvi) and hence

εLn,S =
∏
i

ε
ai

1−Nvi
wLn

Ln,S
=
∏
i

ηaiLn,S,Ti =
∏
i

(u
(0)
n,Ti

)ai︸ ︷︷ ︸
=:u

(0)
n

·
(∏

i

αain,2n,Ti︸ ︷︷ ︸
=:αn,2n

)(γ−1)e

= u(0)
n α

(γ−1)e

n,2n ,

where αn,2n ∈ O×Ln,S and u
(0)
n ∈ (O×Ln,S)p

n . Since NLn/L(εLn,S) = 1, we can apply
Hilbert’s Theorem 90 to obtain an element β(1)

n ∈ L×n /L× such that (β
(1)
n )γ−1 = εLn,S.

Then we define u(1)
n := β

(1)
n

α
(γ−1)e−1

n,2n

∈ L×n /L× and obtain

u(0)
n = (u(1)

n )γ−1 .
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Therefore, we have

(u(1)
n )γ = u(1)

n u(0)
n =⇒ (u(1)

n )γ
i

= u(1)
n

i−1∏
j=0

(u(0)
n )γ

j

and we compute

NLn/L(β(1)
n ) = NLn/L(u(1)

n ) =

pn−1∏
i=0

(u(1)
n )γ

i

=

pn−1∏
i=0

u(1)
n

i−1∏
j=0

(u(0)
n )γ

j

= (u(1)
n )p

n

pn−1∏
i=0

i−1∏
j=0

(u(0)
n )γ

j ∈ (L×n )p
n ∩ L× = (L×)p

n

.

Hence, we find a representative b(1)
n of β(1)

n such that NLn/L(b
(1)
n ) = 1. Applying Hilbert’s

Theorem 90 again, we find an element β(2)
n ∈ L×n such that (β

(2)
n )γ−1 = b

(1)
n . Defining

u
(2)
n := β

(2)
n

α
(γ−1)e−2

n,2n

∈ L×n /L×, we obtain

u(1)
n = (u(2)

n )γ−1 .

A similar computation as before shows that

NLn/L(β(2)
n ) ∈ (L×n )p

n ∩ L× = (L×)p
n

,

so we can choose a representative b(2)
n with NLn/L(b

(2)
n ) = 1. This procedure can be

applied until we obtain β(e)
n ∈ L×n /L× satisfying (β

(e)
n )(γ−1)e = εLn,S.

By [BH21, Prop. 3.13], IMRS(L/K, S, T, 1)p is equivalent to

Conjecture 4.3.6. Conjecture 4.3.3 holds and

eS,r′ · λ0,T ⊗ (γ − 1)e = (−1)eeS,r′ RecW (ηL,S,T ) (4.3.1)

in eS,r′UL,S,T ⊗Zp I(Γ)e/I(Γ)e+1, where (λn,T )n is the norm coherent sequence satisfying
λ

(γ−1)e

n,T = ηLn,S,T in ULn,S,T for all n ≥ 1.

In fact, the equation (4.3.1) can be considered as an equality in a certain submodule
of eS,r′UL,S,T ⊗Zp I(Γ)e/I(Γ)e+1 related to the module of universal norms UN1

0 of rank 1
and level 0 introduced in [BD21]. The universal norms of rank t and level n are defined
as

UNt
n :=

⋂
m≥n

(
t∧
NLm/Ln

)(
t⋂
ULm,S,T

)
⊆

t⋂
ULn,S,T ,

so in our special case we obtain

UN1
0 =

⋂
m≥0

NLm/L(ULm,S,T ) ⊆ UL,S,T .
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Lemma 4.3.7. (i) For a character χ with rS,χ = r′, we get dimQp(χ)(Qp(χ)UN1
0) = 1.

(ii) For a character χ with rS,χ = r′ and any i ∈ {1, ..., ep}, we get

e[χ]Qp[G]UN1
0 ∩ e[χ] ker(OrdPi) = 0 .

Proof. Part (i) is [BH21, Lemma (3.1)(c)]. For part (ii), it clearly suffices to construct
a non-trivial element x ∈ Qp(χ)UN1

0 which is not contained in e[χ] ker(OrdPi) (recall
that e[χ]Qp[G] ∼= Qp(χ)). This is done in the proof of [BH21, Lemma (3.16)] and the
hypothesis e = 1 is not used for this construction. We repeat the argument briefly: Let
hL be the class number of L and let x be a generator of PhL

i . Then e[χ] OrdPi(x) =
hLe[χ] 6= 0, so it remains to proof that x ∈ QpUN1

0. Since Pi | p and L∞/L is the
cyclotomic Zp-extension, Pi is totally ramified in each Ln. Denoting the unique prime
ideal of Ln over Pi by Pi,n, we get Pi = NLn/L(Pi,n) and hence x ∈ NLn/L(O×Ln,S) for
each n. Therefore, x ∈ QpUN1

0 (see [BD21, Lemma 3.10]).

We now repeat the first part of the proof of [BH21, Lemma (3.15)], to show that
(4.3.1) can be considered as an equality in eS,r′QpUN1

0 ⊗Zp I(Γ)e/I(Γ)e+1. We will see
that the assumption e = 1 is not necessary for this part. This is clear for the left hand
side since λ0,T is a universal norm by construction. The map eS,r′Qp RecW on the right
hand side is either the zero map, then clearly 0 ∈ eS,r′UN1

0⊗Zp I(Γ)e/I(Γ)e+1. If it is not
the zero map, we find at least one character χ such that eχ RecW (and hence e[χ] RecW )
is non-zero. Applying [BKS16, Lemma 4.2] to

Ψ :=
⊕
P∈W

e[χ] RecP : Qp(χ)UL,S,T −→
⊕
P∈W

Qp(χ) ,

we get that Ψ is surjective and

im

(
e[χ] RecW : Qp(χ)

r′∧
UL,S,T −→ Qp(χ)UL,S,T ⊗Zp I(Γ)e/I(Γ)e+1

)
= ker(Ψ)⊗ I(Γ)e/I(Γ)e+1 .

Clearly Qp(χ)UN1
0 ⊆ ker(e[χ] RecP) for all P ∈ W , i.e. Qp(χ)UN1

0 ⊆ ker(Ψ). Since Ψ is
surjective, we get

dimQp(χ)(ker(Ψ)) = rS,χ − e = r′ − (r′ − r) = r = 1 ,

so ker(Ψ) = Qp(χ)UN1
0 and the right hand side is indeed an element of eS,r′QpUN1

0⊗Zp
I(Γ)e/I(Γ)e+1.

With the Lemma above, we get that OrdPi is injective on this module for any
i = 1, ..., ep, hence (4.3.1) is equivalent to

eS,r′ OrdPi(λ0,T )⊗ (γ − 1)e = (−1)eeS,r′(OrdPi ◦RecW )(ηL,S,T ) .

Note that OrdPi on the left hand side is indeed the equivariant valuation map acting
on elements of L× (resp. ZpL×), whereas OrdPi on the right hand side is an induced
map acting on elements in an exterior power (cf. Section 2.1.2).
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The proof of Lemma 4.3.5 shows that λ0,T = κL,S,T . Considering the right hand
side, we get from the homomorphism (2.1.1) that

OrdPi ◦RecW = (−1)e RecW ◦OrdPi .

Then by Proposition 2.4.7, we find

OrdPi(ηL,S,T ) = (−1)iηL,Si,T = (−1)iη
(i)
T .

Hence, we are left to compute RecW (η
(i)
T ). As before, let η(i)

T = λ
(i)
T u

(i)
1,T ∧ · · · ∧ u

(i)
e,T .

Then by (2.1.2),

RecW (η
(i)
T ) = λ

(i)
T det(RecPβ(u

(i)
α,T ))1≤α,β≤e .

With the isomorphism (4.1.1), we get for any x ∈ L×

RecPβ(x) =
∑
σ∈G

(recPβ(σ(x))− 1)σ−1 =
∑
σ∈G

σ−1 ⊗ (recPβ(σ(x))− 1) .

Since γ is a generator of Γ, we know that recPβ(x) is a (p-adic) power of γ. Therefore,
for any x ∈ L× we can define s(x) ∈ Zp by recPβ(x) = γs(x).

Lemma 4.3.8. For x ∈ L×, we have

s(x) =

{
− 1
ω

logp(NLPβ
/Qp(x)), 1 ≤ β ≤ ep,

nPβ ordPβ(x) ep + 1 ≤ β ≤ e.

Proof. First consider the case that ep + 1 ≤ β ≤ e, then Pβ is unramified in L∞/L,
hence the local reciprocity map is determined by the Frobenius σPβ = γnPβ associated
to Pβ and the valuation of x. We hence get

recPβ(x) = γnPβ
ordPβ

(x) .

Now let 1 ≤ β ≤ ep. From local class field theory, we know that the local reciprocity
map is a surjection L×Pβ � Gal(LPβ ,∞/LPβ) and we denote its kernel by VPβ . Since
LPβ ,∞ is a totally ramified p-extension, it suffices to consider principal units, i.e. we even
get a surjection 1+PβOLPβ

� Gal(LPβ ,∞/LPβ) with kernel V (1)
Pβ

:= VPβ ∩1+PβOLPβ
.

Analogously, we obtain for each level n surjections L×Pβ � Gal(LPβ ,n/LPβ) with kernel

VPβ ,n and 1 + PβOLPβ
� Gal(LPβ ,n/LPβ) with kernel V (1)

Pβ ,n
:= VPβ ,n ∩ 1 + PβOLPβ

.
As we have seen in Section 4.2.2, the local reciprocity map for Qp is an isomorphism
1 + pZp −→ Gal(Qp,∞/Qp), whose inverse is related to the cyclotomic character (see
(4.2.1)). On the n-th level, this isomorphism restricts to 1+pZp

1+pn+1Zp −→ Gal(Qp,n/Qp).
By [Neu11, Part II, Thm. (5.10)], we hence obtain for each n the following commutative
diagram:

Γn Gal(LPβ ,n/LPβ) Gal(Qp,n/Qp)

1 + PβOLPβ
/V

(1)
Pβ ,n

1+pZp
1+pn+1Zp

pZp
pn+1Zp

L× L×Pβ/VPβ ,n Qp/〈pZ〉 × µp−1 × (1 + pn+1Zp)

∼=

(−)−1◦χcyc∼=recPβ ∼=
NLPβ

/Qp logp
∼=

recPβ

∼=
NLPβ

/Qp

∼=
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Note that the extension LPβ/Qp (and hence LPβ ,n/Qp) might not be normal. In this
case, one can consider the normal closure of LPβ (resp. LPβ ,n) to apply [Neu11, Part II,
Thm. (5.10)]. However, we still end up with a diagram as above. Now we can take
inverse limits and since this is left exact, we obtain

Γ Gal(LPβ ,∞/LPβ) Gal(Qp,∞/Qp)

1 + PβOLPβ
/V

(1)
Pβ

1 + pZp pZp

L× L×Pβ/VPβ Qp/〈pZ〉 × µp−1

∼=

(−)−1◦χcyc∼=recPβ ∼=
NLPβ

/Qp logp
∼=

recPβ

∼=
NLPβ

/Qp

∼=

(4.3.2)

We immediately see that the norm maps in the middle and bottom line must be
injective. Recall that for any x ∈ L× we defined s(x) ∈ Zp by recPβ(x) = γs(x). Then
x can be embedded into L×Pβ and there exists y ∈ 1 + PβOLPβ

such that

recPβ(y) = recPβ(x) = γs(x) .

From the above diagram, we get that this is equivalent to

logp(NLPβ
/Qp(y)) = logp(χcyc(γ

s(x))−1) = −s(x)ω .

So we are left to show that

logp(NLPβ
/Qp(y)) = logp(NLPβ

/Qp(x)) .

But from the above diagram, we see that NLPβ
/Qp(y) and NLPβ

/Qp(x) differ by an
element of 〈pZ〉 × µp−1 = ker(logp).

With the above Lemma, we get for 1 ≤ β ≤ ep

RecPβ(x) =
∑
σ∈G

σ−1 ⊗ (γs(σ(x)) − 1)

=
∑
σ∈G

s(σ(x))σ−1 ⊗ (γ − 1)

= − 1

ω

∑
σ∈G

logp(NLPβ
/Qp(σ(x)))σ−1 ⊗ (γ − 1)

= − 1

ω
LogPβ

(x)⊗ (γ − 1)

and analogously for ep + 1 ≤ β ≤ e

RecPβ(x) = nPβ OrdPβ(x)⊗ (γ − 1) .

In our case, we hence get

RecPβ(u
(i)
α,T ) =

{
− 1
ω

LogPβ
(u

(i)
α,T )⊗ (γ − 1), 1 ≤ β ≤ ep,

nPβ OrdPβ(u
(i)
α,T )⊗ (γ − 1), ep + 1 ≤ β ≤ e.



4.3. RELATION OF THE CONJECTURES 89

Inserting this yields

eS,r′ OrdPi(κL,S,T )⊗ (γ − 1)e = eS,r′ RecW ((−1)iη
(i)
T )

= eS,r′(−1)iλ
(i)
T det

 −
(

1
ω

LogPβ
(u

(i)
α,T )⊗ (γ − 1)

)
1≤β≤ep
1≤α≤e(

nPβ OrdPβ(u
(i)
α,T )⊗ (γ − 1)

)
ep+1≤β≤e

1≤α≤e



= eS,r′(−1)i+ep
λ

(i)
T

ωep
det


(

LogPβ
(u

(i)
α,T )

)
1≤β≤ep
1≤α≤e(

nPβ OrdPβ(u
(i)
α,T )

)
ep+1≤β≤e

1≤α≤e

⊗ (γ − 1)e .

Since I(Γ)e/I(Γ)e+1 ∼= Γ ∼= Zp and (γ − 1)e is a generator, it follows that

eS,r′ OrdPi(κL,S,T ) = eS,r′(−1)i+ep
λ

(i)
T

ωep
det


(

LogPβ
(u

(i)
α,T )

)
1≤β≤ep
1≤α≤e(

nPβ OrdPβ(u
(i)
α,T )

)
ep+1≤β≤e

1≤α≤e

 .

and hence, we are left to consider the characters χ with rS,χ > r′. Since e[χ]ηL,Si,T = 0
for such a character, we also find that the right hand side vanishes for these characters.
If we can show that e[χ] OrdPi(κL,S,T ) = 0 for these characters, then Conjecture 4.2.15
follows.

For this we consider the extensions Lχ := Lker(χ) resp. Lχ,n = L
ker(χ)
n . Since rS,χ > r′,

we have at least one place v ∈ S \ V ′ such that Gv ⊆ ker(χ), i.e. v splits completely
in Lχ. If there is such a place which is not only completely split in Lχ but also in Lχ,∞,
we find for each n that

NLn/Lχ,n(ηLn,S,T ) = ηLχ,n,S,T = η1−σv
Lχ,n,S,T

= 1 .

In this case, we also find βLχ,n,S,T = NLn/Lχ,n(βL,n) ∈ L×χ,n/L× satisfying β(γ−1)e

Lχ,n,S,T
= 1.

Indeed, this implies βLχ,n,S,T ∈ L× and hence

κLχ,S,T,n = NLχ,n/Lχ(βLχ,n,S,T ) = NL/Lχ(κL,S,T,n) ∈ (L×χ )p
n

.

Therefore, we get that

eχ OrdPi(κL,S,T,n) = eχ
∑
σ∈G

ordPi(σ(κL,S,T,n))σ−1

=
∑
σ∈G

ordPi(σ(κL,S,T,n))χ(σ−1)eχ

=
∑

σ∈Gal(Lχ/K)

ordPi(σ(κLχ,S,T,n))χ(σ−1)eχ

≡ 0 mod pn .

Since for ψ ∼ χ, we have ker(χ) = ker(ψ), this holds for all ψ ∈ [χ] and hence
e[χ] OrdPi(κL,S,T,n) ≡ 0 mod pn for all n. Taking the limit, we get

e[χ] OrdPi(κL,S,T ) = 0 ∈ e[χ]Zp[G] .



90 CHAPTER 4. SOLOMON-TYPE CONJECTURE

Last but not least, we have to consider the case that S contains no additional place
which is completely split in Lχ,∞. In this case, the difference e increases when moving
from L and L∞ to Lχ and Lχ,∞. Indeed, Conjecture 4.3.3 then implies that there exists
an αLn,S,T ∈ L×χ,n/L× such that αγ−1

Ln,S,T
= NLn/Lχ,n(βLn,S,T ) (maybe we could take even

some powers of γ − 1). But then we find that

NL/Lχ(κL,S,T,n) = NLχ,n/L(αLn,S,T )γ−1 = 1

and hence a similar computation as above shows that

e[χ] OrdPi(κL,S,T ) = 0 ∈ e[χ]Zp[G]

in this case.
This finishes the proof of Theorem 4.3.2. We can deduce the following

Corollary 4.3.9. (i) If Conjecture 4.2.15 holds for L/K, S and T and v /∈ S is a
place of K, which is completely split in L∞, then Conjecture 4.2.15 also holds for
L/K, S ∪ {v} and T .

(ii) If the equation in Conjecture 4.2.15 holds for any 1 ≤ i ≤ ep, then it holds for all
i = 1, ..., ep.

(iii) The validity of Conjecture 4.2.15 does not depend on the choice of γ.

Proof. (i) From Theorem 4.3.2 we get that IMRS(L/K, S, T, 1)p holds by assump-
tion, hence we obtain IMRS(L/K, S∪{v}, T, 1)p from [BKS17, Prop. 4.4(iv)] and
therefore Conjecture 4.2.15 also holds for this data.

(ii) We have seen before that the equation in Conjecture 4.2.15 for any 1 ≤ i ≤ ep
is equivalent to (4.3.1), hence the other equations follow from an application of
OrdPj for j 6= i.

(iii) It is clear that κL,S,T and hence the statement of Conjecture 4.2.15 depend on
the generator γ. However, if the conjecture is true for a certain choice of γ, this
implies IMRS(L/K, S, T, 1)p. Since this is independent of γ, we hence obtain
Conjecture 4.2.15 for any other choice of γ.

Remark 4.3.10. Part (i) of the above corollary indeed proves that we can restrict to
the simpler formulation under the assumption V ′ \ V ⊆ Sp.



Chapter 5

An algorithmic study of the
Mazur-Rubin-Sano conjecture

In this chapter, we want to use our reformulation of IMRS(L/K, S, T, 1)p to numerically
verify the conjecture up to some level n. We use the notation and assumptions from the
last chapter, in particular K is a totally real field, L∞ is an abelian extension containing
the cyclotomic Zp-extension K∞/K and L = LΓ

∞. We assume that Stark’s conjecture
and Conjecture 4.2.3 hold for each level n (Hypotheses 4.2.2 and 4.2.6) and that r = 1
(Remark 4.2.8).

We first present an algorithm to compute Rubin-Stark elements (for arbitrary r).
In the second part, we consider the computation of Stark units in the case when K
is a real quadratic field. Then we combine the presented algorithms to compute all
the necessary values for testing Conjecture 4.2.15 up to level n. In the last section,
we construct examples L/K, where Conjecture 4.2.15 is not implied by any theoretical
results known to the author and present the computational results for these examples.

5.1 The computation of Rubin-Stark elements

In order to verify Conjecture 4.2.9, we need to compute Rubin-Stark elements in the
field L. The basis for this computation was developed in the author’s master thesis.
We will start with a short presentation of this approach. The rounding method from
the master’s thesis is replaced by an improved version described in Section 5.1.4.

5.1.1 Computing the (S, T )-units

The algorithm for the computation of the (S, T )-units was provided by Werner Bley.
We assume that we are able to compute O×L,S as an abstract abelian group OL,S

together with an embedding ιL,S into the field L. An algorithm for this can be found
in [Coh93, §6.5]. We sort the generators b1, ..., b|SL| of OL,S such that b|SL| generates
the torsion part, i.e. ιL,S(b|SL|) generates µ(L). Now let TL = {t1, ..., tl} and choose a
generator πi of (OL/ti)× for each i. Then ιL,S(bj) /∈ ti for all i and j, hence we obtain

91
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integers αij such that ιL,S(bj) ≡ π
αij
i mod ti. Defining the matrices

A1 = (αij) 1≤i≤l
1≤j≤|SL|

, A2 =

Nt1 − 1 0
. . .

0 Ntl − 1


and

A = (A1|A2) ∈ Zl×(|SL|+l) ,

we find

Proposition 5.1.1. Consider the map

ϕ : Z|SL|+l −→ OL,S

(z1, ..., z|SL|+l) 7−→
|SL|∑
j=1

zjbj

and set OL,S,T := ϕ(ker(A)). Then ιL,S(OL,S,T ) = O×L,S,T .

Proof. Let z = (z1, ..., z|SL|+l) ∈ ker(A), then
∑|SL|

j=1 αijzj = −z|SL|+i(Nti − 1) for each
i = 1, ..., l. Hence

ιL,S(ϕ(z)) ≡ π
∑|SL|
j=1 αijzj

i ≡ π
−z|SL|+i(Nti−1)

i ≡ 1 mod ti

for all i, so ιL,S(OL,S,T ) ⊆ O×L,S,T .
Now suppose that x ∈ O×L,S,T . Since the ιL,S(bj), j = 1, ..., |SL| generate O×L,S, there

exist integers z1, ..., z|SL| such that x = ιL,S(
∑|SL|

j=1 zjbj). Choosing

z|SL|+i = − 1

Nti − 1

|SL|∑
j=1

αijzj

for i = 1, ..., l, we obtain and element z ∈ Z|SL|+l such that x = ιL,S(ϕ(z)) and the
above computation shows that z ∈ ker(A).

Hence, the computation of O×L,S,T can be reduced to compute the kernel of A. The
result of this computation is the abstract subgroup OL,S,T of OL,S and the generators of
this subgroup define a Q-basis {u1, ..., u|SL|−1} of QO×L,S,T via ιL,S. Set m := |SL| − 1.

For our computation of Rubin-Stark elements we want to use the decomposition by
the rational idempotents e[χ]. Since e[χ] ·QO×L,S,T is a free e[χ] ·Q[G]-module of rank r,
i.e. an r-dimensional Q(χ)-vector space, there exists indices i1(χ), ..., ir(χ) ∈ {1, ...,m}
such that {e[χ]ui1(χ), ..., e[χ]uir(χ)} is a Q(χ)-basis of e[χ] · QO×L,S,T . Note that these
indices depend on the equivalence class [χ] but not on the character χ. For determining
these indices, we use the following lemma from the author’s master thesis:

Lemma 5.1.2. A family of elements {v1, ..., vl} ∈ e[χ] ·QO×L,S,T is linearly independent
over Q(χ) if and only if the family {σvj |σ ∈ G, 1 ≤ j ≤ l} spans a Q-vector space of
dimension l · [Q(χ) : Q].
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Hence, we can apply the

Algorithm 5.1.3. Input: u1, ..., um together with the G-action, [Q(χ) : Q] and e[χ].

(1) Search an index i1(χ) such that e[χ]ui1(χ) 6= 0.

(2) Let d be the number of already computed indices. If d = r, return the indices
i1(χ), ..., ir(χ).

(3) Test the family e[χ]ui1(χ), ..., e[χ]uid(χ), e[χ]uj on linear independence over Q(χ) for
some index j > id(χ).

(4) If the family is linear independent, set id+1(χ) = j and go to step (2), else go to
step (3) with the new index j + 1.

Remark 5.1.4. Computing σ(ui) as a linear combination of the u1, ..., um can be quite
time consuming. Here it is helpful to compute the action of G on the abstract abelian
group OL,S,T and then reduce the computation to a simple matrix multiplication.

Since e[χ]ui1(χ), ..., e[χ]uir(χ) is a Q(χ)-basis of e[χ] · QO×L,S,T ∼= Q(χ)O×L,S,T , we can
represent e[χ]us for all s = 1, ...,m in this basis, i.e.

e[χ]us =
r∑

α=1

µsα([χ])e[χ]uiα(χ)

for some µsα([χ]) ∈ Q[G] (note that µsα([χ])e[χ] is unique, whereas µsα([χ]) is not).
These coefficients still depend on [χ], but we will only use them in the context of a
fixed equivalence class, hence we will simply write µsα from now on. For the rounding
process, it will be necessary to determine (a choice of) these coefficients µsα. For this,
we use the following

Algorithm 5.1.5. Input: u1, ..., um together with the G-action, i1(χ), ..., ir(χ) and e[χ].

(1) Compute ast ∈ Q, t = 1, ...,m such that e[χ]us =
∑m

t=1 astut for each s = 1, ...,m.

(2) Use the G-action on OL,S,T to compute bαt(σ) ∈ Q, t = 1, ...,m, σ ∈ G such that
σe[χ]uiα(χ) =

∑m
t=1 bαt(σ)ut for each α = 1, ..., r.

(3) Solve the system of linear equations ast =
∑r

α=1

∑
σ∈G csα(σ)bαt(σ) over Q.

(4) Return µsα =
∑

σ∈G csα(σ)σ ∈ Q[G] .

Indeed we see that with this choice of µsα, we get

r∑
α=1

µsαe[χ]uiα(χ) =
r∑

α=1

∑
σ∈G

csα(σ)σe[χ]uiα(χ) =
r∑

α=1

∑
σ∈G

csα(σ)
m∑
t=1

bαt(σ)ut

=
m∑
t=1

astut = e[χ]us.
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5.1.2 Computing the L-values

The Rubin-Stark element is determined by the values of the S-truncated T -modified
L-functions. So we need to determine the value L(r)

S,T (χ, 0) for each character χ with
rS,χ = r. There exist algorithms for the computation L(d)(χ, 0) for an arbitrary d-th
derivative of the L-function associated to a Hecke character (see e.g. [Dok04]), so all
we have to do is to identify our given character χ with a Hecke character and compute
the additional factors caused by the sets S and T . In particular, we may have to adjust
the order of the computed derivative, since in general rS,χ 6= rS∞,χ. As the algorithm
described in this chapter is implemented in MAGMA, we use the built-in intrinsic
for the computation of L(d)(χ, 0). Although the identifications in MAGMA may be a
bit tricky, the involved operations are elementary and can be retraced directly in the
implementation.

Also note that we distinguish the case χ = 1, since we know the leading term of the
Dedekind ζ-function from the analytic class number formula.

5.1.3 Determine the real coefficients

As mentioned before, we decompose the Rubin-Stark element by rational idempotents,
i.e.

ηL,S,T =
∑

[χ]⊆ĜS,r

e[χ]ηL,S,T .

Note that ηL,S,T lies in the eS,r-component (cf. Remark 2.2.2). With the basis computed
in Section 5.1.1, we obtain

ηL,S,T =
∑

[χ]⊆ĜS,r

e[χ]λ[χ]ui1([χ]) ∧ · · · ∧ uir([χ]) =
∑

[χ]⊆ĜS,r

∑
ψ∈[χ]

eψλψ

ui1([χ]) ∧ · · · ∧ uir([χ]) ,

where λψ ∈ C such that
∑

ψ∈[χ] eψλψ = e[χ]λ[χ] ∈ R[G]. Applying

(w0 − w′)∗ ∧ · · · ∧ (wr−1 − w′)∗ ∈ HomR[G](∧rRO×L,S,T ,R[G])

(where we use the identification (2.1.1)) to the definition of ηL,S,T , we obtain

λψ det(−
∑
σ∈G

log
∣∣σ(uiα([χ]))

∣∣
wβ
ψ(σ−1))1≤α,β≤r) = L

(r)
S,T (ψ−1, 0) ∈ C (5.1.1)

for each ψ ∈ [χ].
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Hence, we can compute ηL,S,T with the following

Algorithm 5.1.6. Input: L, K, S and T .

(1) Determine r as the number of the completely split primes v0, ..., vr−1 in S.

(2) Choose places wβ of L for β = 0, ..., r − 1 such that wβ | vβ.

(3) Compute the (S, T )-units as the abstract group OL,S,T together with its G-action.

(4) Determine the characters χ ∈ ĜS,r and compute the rational idempotents e[χ]

(5) For each [χ] ∈ ĜS,r:

(5.1) Use Algorithm 5.1.3 to determine the indices i1(χ), ..., ir(χ).

(5.2) For each ψ ∈ [χ] compute L(r)
S,T (ψ−1, 0) as described in Section 5.1.2.

(5.3) Directly compute the determinant on the left hand side of (5.1.1) and deter-
mine λψ.

(6) Combine the eψλψ to e[χ]λ[χ] ∈ R[G].

(7) Return ηL,S,T as a list of tuples consisting of the coefficient e[χ]λ[χ] and the units
ui1(χ), ..., uir(χ).

5.1.4 Determine the rational coefficients

Now St(L/K, S, T, r) is equivalent to e[χ]λ[χ] ∈ Q[G] for all equivalence classes [χ] and
we want to determine these rational coefficients. In order to do this, we assume that
the Rubin-Stark conjecture holds. If this is true, the procedure described below will
determine the rational coefficients λ[χ]e[χ], hence if the procedure fails, we get a counter
example for the Rubin-Stark conjecture. Conjecture RS(L/K, S, T, r) implies that for
any ϕ1, ..., ϕr ∈ HomZ[G](O×L,S,T ,Z[G]), we get

(ϕ1 ∧ · · · ∧ ϕr)(ηL,S,T ) ∈ Z[G] .

Since |G| e[χ] ∈ Z[G], this implies

(ϕ1 ∧ · · · ∧ ϕr)(|G| e[χ]ηL,S,T ) = |G| e[χ]λ[χ] det(ϕα(uiβ([χ])))1≤α,β≤r ∈ Z[G] (5.1.2)

for all [χ]. Fix an equivalence class [χ] and let e[χ]u
∗
iα([χ]) ∈ HomQ(χ)(Q(χ)O×L,S,T ,Q(χ))

be the dual map, i.e.

e[χ]u
∗
iα([χ])(e[χ]uiβ([χ])) = δαβ .

Then we obtain the following

Lemma 5.1.7. Let N be the least common multiple of the denominators of the coeffi-
cients µsα ∈ Q[G], i.e. Nµsα ∈ Z[G] for all s = 1, ...,m, α = 1, ..., r. Then

ϕα : O×L,S,T −→ Z[G]

u 7−→ N · |G| e[χ]u
∗
iα([χ])(e[χ]u)

is a well-defined Z[G]-homomorphism.
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Proof. By definition, we obtain for each s = 1, ...,m

ϕα(us) = N · |G| e[χ]µsα ∈ Z[G] .

For the linearity, let λ ∈ Z[G]. Then e[χ]λ ∈ e[χ]Q[G] ∼= Q(χ) and since e[χ]u
∗
iα([χ]) is

Q(χ)-linear, we obtain

ϕα(λu) = N · |G| e[χ]u
∗
iα([χ])(e[χ]λu) = e[χ]λ ·N · |G| e[χ]u

∗
iα([χ])(e[χ]u)

= λϕα(u) .

Using these maps, we get from (5.1.2) that

|G|r+1N re[χ]λ[χ] ∈ Z[G]

Therefore, we obtain the Rubin-Stark element with rational coefficients from

Algorithm 5.1.8. Input: L,K,S and T .

(1) Use Algorithm 5.1.6 to compute e[χ]λ[χ] ∈ R[G] and the units ui1(χ), ..., uir(χ). Also
store the abstract group OL,S,T together with the G-action.

(2) For each equivalence class [χ] do:

(2.1) Use Algorithm 5.1.5 to compute the µsα ∈ Q[G] and determine the integer
N .

(2.2) Compute the coefficients of |G|r+1 N re[χ]λ[χ] as real numbers and round these
to integers aσ ∈ Z.

(2.3) Set λ[χ],Q :=
∑

σ∈G
aσ

|G|r+1Nrσ ∈ Q[G] as the new coefficient for the [χ]-
component.

(3) Return ηL,S,T as a list of tuples consisting of the coefficient λ[χ],Q and the units
ui1(χ), ..., uir(χ).

Remark 5.1.9. (i) The L-values and the logarithms in the above algorithm can only
be determined up to a certain precision, hence we always obtain an error term in
our computation. We determine the error term by comparing our resulting real
coefficients before the rounding process with the rational coefficients determined
by the rounding process.

(ii) As already mentioned above, the described procedure was already part of the
author’s master thesis. The main difference is the new rounding process which
allows to round real numbers to integers instead of finding approximations of
rational numbers.

(iii) There exists also an algorithm for computing Rubin-Stark units by K. McGown,
J. Sands and D. Vallières in [MSV19]. Their approach is formulated in the lan-
guage of Artin systems but is quite similar to the one presented in the author’s
master thesis. In particular, they also round real numbers to rational values to a
high precision.
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5.2 Computing Stark units over real quadratic fields
The algorithm for the Rubin-Stark elements described in the previous section can the-
oretically be applied to arbitrary fields L/K. The main problem is, that we have to
compute the ring of integers and the units of the top field L, which limits the compu-
tations to fields of low degree (many fields L with [L : Q] < 30 and small discriminant
can be handled in reasonable time). When examining Conjecture 4.2.15, we have to
compute the Rubin-Stark elements in L/K (which is possible in the considered cases),
but we also need the Stark units in the extensions Ln/K. For this purpose, we have to
improve the algorithm exploiting the specialization to the case r = 1 and by restricting
to real quadratic base fields K. These improvements are based on [Rob97] and will be
described in the following sections.

5.2.1 The real values of the conjugates of the Stark unit

We use the notation from the last chapter and we assume from now on that K is a
real quadratic field. Moreover, we restrict to the case that S = S∞ ∪ Sram(L/K) ∪ Sp.
In particular, we assume that Stark’s conjecture is true, i.e. we work under Hypothe-
sis 4.2.2. Set m := [Ln : K]. In the case r = 1, we know that RS(L/K, S, T, 1) for all T
is equivalent to St(L/K, S) (see Corollary 2.4.2) and instead of computing ηLn,S,T , we
compute all the conjugates εσLn,S for σ ∈ Gn. These are determined by the polynomial

f =
∏
σ∈Gn

(X − εσLn,S) =
m∑
k=0

bkX
k ∈ K[X] .

So it suffices to determine the coefficients bk ∈ K. These are uniquely determined by
their embeddings τ1(bk) and τ2(bk), where τi : K −→ R corresponds to the infinite place
∞i of K for i = 1, 2. Without loss of generality, we can assume that ∞1 is the unique
place which splits completely in L∞ (as assumed in the beginning of Section 4.2 and
Remark 4.2.8). We start determining τ1(bk) by computing τ(εσLn,S) for all σ ∈ Gn, where
τ : Ln −→ R is the embedding corresponding to the chosen place w of Ln above ∞1.

The defining equations

L′S(χ, 0) = −1

2

∑
σ∈Gn

log
∣∣εσLn,S∣∣w χ(σ)

for all χ ∈ Ĝn can be transformed into

(log
∣∣εσLn,S∣∣w)σ∈Gn = A−1(−2L′S(χ, 0))χ∈Ĝn ,

where A is the matrix with rows (χ(σ))σ∈Gn .
Hence, we can compute (an approximation of)

∣∣εσLn,S∣∣w =
∣∣τ(εσLn,S)

∣∣ by computing
the values of the L-series (see Section 5.1.2). We then obtain τ(εσLn,S) > 0 and hence
τ(εσLn,S) =

∣∣τ(εσLn,S)
∣∣ from [Rob97, Cor. 2.13]. So we can (approximately) compute

τ1(f) =
m∑
k=0

τ1(bk)X
k =

∏
σ∈Gn

(X − τ(εσLn,S)) ∈ R[X] .

For the values τ2(bk), we use that |S| ≥ 3 in our case, hence by part (ii) of St(L/K, S)
we get that |εLn,S|w′ = 1 for all w′ -∞1.
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In particular, this holds for the places above ∞2 and we hence obtain

|τ2(bk)| ≤
(
m

k

)
.

Since |εLn,S|w′ = 1 for all finite places w′ of Ln, we know that εLn,S ∈ O×Ln and hence
bk ∈ OK for all k. This information will be sufficient to uniquely determine the bk and
hence εσLn,S for all σ. This process will be described in the next section.

5.2.2 Rounding process

We want to determine an element a ∈ OK from an approximation α ∈ R of τ1(a) and
an upper bound C for the absolute value of τ2(a), i.e. we search a ∈ OK satisfying

|α− τ1(a)| ≤ δ ,

|τ2(a)| ≤ C ,

where δ is the maximal error of the approximation α (in our concrete case, this is
determined by the precision used in the computations of the L-values and will be
examined in some detail in the next section). We assume that the upper bound C is
fixed, whereas the precision of the approximation can be adjusted, i.e. we are able to
make δ as small as necessary.

Visualizing the situation in R2, we obtain the following picture:

R ⊃ im(τ1)

R ⊃ im(τ2)

α

C
2δ

(τ1(a), τ2(a))

points in OK ,
embedded in R2

via τ1 and τ2
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If δ is small enough, we only obtain exactly one lattice point in the red rectangle
and this point must hence be our desired a ∈ OK . So we need a method to determine
all the lattice points in a rectangle with corners (x1, y1), (x2, y1), (x2, y2) and (x1, y2).

We know that OK = 〈1, d〉Z, where d is determined by the discriminant of K. We
set di := τi(d) and hence the lattice consists of the points

{(λ+ µd1, λ+ µd2) ∈ R2 : λ, µ ∈ Z} .

Then a lattice point is contained in the rectangle if and only if

x1 ≤ λ+ µd1 ≤ x2,

y1 ≤ λ+ µd2 ≤ y2.

The second line implies y1−µd2 ≤ λ ≤ y2−µd2. Inserting this into the first line yields
the inequalities

x1 ≤ y2 + µ(d1 − d2),

x2 ≥ y1 + µ(d1 − d2),

i.e.

x1 − y2 ≤ µ(d1 − d2) ≤ x2 − y1.

Once we fix x1, x2, y1, y2 ∈ R, we can hence compute all possible values for µ ∈ Z.
These are only finitely many and hence for each of these values, we can then compute
the possible values for λ. Then we obtain a complete list of elements aλ,µ = λ+µd ∈ OK
such that (τ1(aλ,µ), τ2(aλ,µ)) is contained in the given rectangle.

Remark 5.2.1. This approach is a simplification of the procedure described in [Rob97,
§2.3]. It is only possible since K is real quadratic, whereas Roblot’s method works for
an arbitrary totally real base field.

5.2.3 Error computation

In this section, we describe how we can choose the precision for the calculation of the
L-values such that the resulting rectangle contains exactly one lattice point a. We
first assume that we consider a rectangle whose lower border is centered around (0, 0).
This rectangle obviously contains the lattice point (0, 0). The height of the rectangle is
fixed, hence we need to determine the maximal width 4δ of a rectangle of this height h
containing only one lattice point. We will apply this only on rectangles of height h ≥ 1
and since 1 ∈ OK , we see that a rectangle of width 2 and height h contains at least
two lattice points, i.e. we already have an upper bound 4δ < 2. Now we can use the
procedure described in the previous section to determine all the (finitely many) lattice
points in the rectangle with corners (−1, 0), (1, 0), (1, h) and (−1, h). Let (x, y) be the
lattice point in this rectangle with minimal |x|, then for any 2δ < x, the rectangle of
width 4δ and height h only contains the lattice point (0, 0). If we place a rectangle with
height h and width 2δ at any point in R2, the resulting rectangle will contain at most
one lattice point. Therefore, if our approximation α of a satisfies |τ1(a)− α| ≤ δ < x

2
,

a can be uniquely determined.
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So we have to choose our precision P for the computation of the L-values such that
the resulting error is less than our given δ. We compute

L′S(χ, 0) = Lχ + Λχ ,

where Lχ ∈ C is our approximation and Λχ ∈ C is the error term.
Remember that if A is the matrix with the rows (χ(σ))σ∈Gn , then we can compute

A−1 exactly over Q(χ). In order to combine this with the L-values, we have to embed
the matrix entries into C and hence obtain

aσ,χ + ασ,χ ,

where aσ,χ is the complex value from the embedding and ασ,χ is the error term.
We hence obtain

log
∣∣εσLn,S∣∣w = −2

∑
χ∈Ĝn

(aσ,χ + ασ,χ)(Lχ + Λχ)

= −2
∑
χ∈Ĝn

aσ,χLχ

︸ ︷︷ ︸
=:xσ,log

+
(
−2

∑
χ∈Ĝn

(aσ,χΛχ + ασ,χLχ + ασ,χΛχ)

︸ ︷︷ ︸
=:ξσ,log

)
,

where xσ,log is the approximation of log
∣∣εσL,S∣∣ and ξσ,log is the error term.

Therefore, we obtain

τ(εσLn,S) = exp(xσ,log + ξσ,log) = exp(xσ,log)︸ ︷︷ ︸
=:xσ

+ exp(xσ,log)(exp(ξσ,log)− 1)︸ ︷︷ ︸
=:ξσ

with the approximation xσ and error term ξσ. For an expression for the coefficients bk of
the polynomial f =

∏
σ∈Gn(X−εσLn,S), we set m := |Gn| and fix an ordering {σ1, ..., σm}

of Gn and define

Ik,m = {(i1, ..., ik) : 1 ≤ i1 < · · · < ik ≤ m}

to be the set of all ordered k-tuples over {1, ...,m}. Set xi := xσi and ξi := ξσi . Then
we compute

τ1(f) =
m∏
j=1

(X − (xσj + ξσj)) =
m∑
k=0

(−1)kXm−k
∑

(i1,...,ik)∈Ik,m

k∏
j=1

(xij + ξij) .
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Hence, we get

τ1(bm−k) = (−1)k
∑

(i1,...,ik)∈Ik,m

k∏
j=1

(xij + ξij)

= (−1)k
∑

(i1,...,ik)∈Ik,m

k∑
r=0

∑
(j1,...,jr)∈Ir,k

r∏
s=1

xijs

∏
j∈{1,...,k}
j /∈(j1,...,jr)

ξij

= (−1)k
∑

(i1,...,ik)∈Ik,m

k∏
j=1

xij︸ ︷︷ ︸
=:dm−k

+ (−1)k
∑

(i1,...,ik)∈Ik,m

k−1∑
r=0

∑
(j1,...,jr)∈Ir,k

r∏
s=1

xijs

∏
j∈{1,...,k}
j /∈(j1,...,jr)

ξij

︸ ︷︷ ︸
δm−k

,

where dm−k is our approximation of τ1(bm−k) and δm−k is the resulting error. We want
to determine a computation precision P such that max1≤k≤m−1 |δk| ≤ δ, where δ is the
bound fixed in the beginning of this section such that the resulting rectangle contains
only one lattice point. Note that f is always normed with constant term 1, i.e. it is
not necessary to consider the indices 0 and m. Set

L := max
χ
|Lχ| , a := max

σ,χ
|aσ,χ| ,

xlog := max
σ
|xσ,log| , x := max

σ
|xσ| ,

and analogously for the error terms. Then we get

|δm−k| ≤
∑

(i1,...,ik)∈Ik,m

k−1∑
r=0

∑
(j1,...,jr)∈Ir,k

r∏
s=1

∣∣xijs ∣∣ ∏
j∈{1,...,k}
j /∈(j1,...,jr)

∣∣ξij ∣∣
≤

∑
(i1,...,ik)∈Ik,m

k−1∑
r=0

∑
(j1,...,jr)∈Ir,k

r∏
s=1

x
∏

j∈{1,...,k}
j /∈(j1,...,jr)

ξ

=
∑

(i1,...,ik)∈Ik,m

k−1∑
r=0

∑
(j1,...,jr)∈Ir,k

xrξk−r

=

(
m

k

) k−1∑
r=0

(
k

r

)
xrξk−r

=

(
m

k

)(
(x+ ξ)k − xk

)
.

The definition of ξσ yields ξ ≤ x ·maxσ |exp(ξσ,log)− 1|. For the next steps, we assume
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that the error term ξσ,log is small. More precisely, we demand

ξlog = max
σ
|ξσ,log| ≤

1

4m2
. (5.2.1)

In particular, |ξσ,log| < 1 for all σ and hence we can use the error estimate of the
exponential function to obtain

ξ ≤ xmax
σ
|2ξσ,log| = 2xξlog .

We hence obtain

|δm−k| ≤
(
m

k

)
xk((1 + 2ξlog)k − 1)

=

(
m

k

)
xk

k∑
i=1

(
k

i

)
2iξilog

≤
(
m

k

)
xk

(
2kξlog +

k∑
i=2

(
k

i

)
2i

1

(2m)i
ξ
i/2
log

)

≤ 3

(
m

k

)
xkkξlog .

We can estimate

ξlog ≤ 2m(aΛ + αL+ αΛ)

and hence

|δm−k| ≤ 6

(
m

k

)
xkkm(aΛ + αL+ αΛ) .

Now suppose that we start our computation with a precision P , i.e. we compute P
digits of the L-values and the matrix entries. Let s, t, u ∈ N be defined as

s := dlog10(a)e , t := dlog10(L)e , u := max
1≤k≤m−1

d|log10(|dk|)|e . (5.2.2)

Then we get α ≤ 10s−P , Λ ≤ 10t−P and hence

|δm−k| ≤ 6

(
m

k

)
xkkm(10s+t−P + 10s+t−P + 10s+t−2P )

≤ 18

(
m

k

)
xkkm · 10s+t−P .

Let P ′ be the necessary precision of the result, i.e. 10−P
′ ≤ δ, then we find

10−P
′ ≥ max

1≤k≤m−1
|δm−k|

⇐= 10−P
′ ≥ max

1≤k≤m−1

(
18

(
m

k

)
xkkm · 10s+t−P

)
⇐= −P ′ ≥ max

1≤k≤m−1

(
dlog10(18

(
m

k

)
xkkm)e

)
+ s+ t− P

⇐⇒ P ≥ max
1≤k≤m−1

(
dlog10(18

(
m

k

)
xkkm)e

)
+ s+ t+ P ′ .
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In order to satisfy the estimate (5.2.1), we also need

2m(aΛ + αL+ αΛ) ≤ 1

4m2

⇐= 6m · 10s+t−P ≤ 1

4m2

⇐⇒ s+ t− P ≤ −dlog10(24m3)e
⇐⇒ P ≥ s+ t+ dlog10(24m3)e .

Note that we also have to compute at least as many digits as necessary for the maximal
(or minimal) coefficient, i.e. we also get an inequality P ≥ u + P ′. Hence, we choose
the computation precision as

P = max

(
u+ P ′, s+ t+ dlog10(24m3)e, max

1≤k≤m−1

(
dlog10(18

(
m

k

)
xkkm)e

)
+ s+ t+ P ′

)
.

(5.2.3)

In our computations, we first compute the L-values with a low precision to determine
s, t, u and x, then we define the correct precision as above and recompute the L-values
with this new precision.

We summarize the computation of the conjugates εσLn,S in the

Algorithm 5.2.2. Input: Ln and K.

(1) Use the description in the beginning of Section 5.2.3 to determine the maximal
accepted error δ.

(2) Determine the set S.

(3) Determine the necessary precision to obtain an exact result:

(2.1) Compute L′S(χ, 0) with low precision as described in Section 5.1.2.

(2.2) Compute the matrix A and its inverse.

(2.3) Compute the polynomial τ1(f) ∈ R[X].

(2.4) Compute s, t and u as defined in (5.2.2) and determine the necessary precision
P with (5.2.3).

(4) Compute L′S(χ, 0), the matrix A−1 and τ1(f) with the new precision.

(5) Use the procedure described in Section 5.2.2 to determine the coefficients bk from
the approximations τ1(bk) and the bounds for τ2(bk).

(6) Return the roots of f as elements of Ln, these are the conjugates εσLn,S, together
with a Gn-action on these conjugates.

Remark 5.2.3. If we chose δ small enough, we will obtain exactly one lattice point for
each coefficient bk in step (5), i.e. the resulting Stark unit will be uniquely determined
by this algorithm.
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5.3 Examining Conjecture 4.2.9

By Corollary 4.3.9 (i), we can restrict ourselves to the case S = S∞ ∪ Sram(L/K) ∪ Sp.
This implies that V ′ \ V ⊆ Sp, i.e. we can consider the simpler formulation given in
Conjecture 4.2.9. Moreover, since K is real quadratic, we have e ≤ 2. If e = 0, we get
βLn,S = εLn,S and hence κL,S,n = 1 for all n, so there is nothing to check.

5.3.1 The case e = 1

This is either the case if p is non-split in K or pOK = pp′ where p is completely split
in L and p′ not. Then we can simplify the statement of Conjecture 4.2.9 considerably.
First of all, we only consider i = 1 (since there are no other completely split primes over
p) and we get ηL,S\{p} ∈ Q

⋂1OL,S\{p}. In fact, we can even determine the coefficient
due to Lemma 2.4.1 (ii), namely we get

ηL,S\{p} = ε
1/2
L,S\{p} .

Then Conjecture 4.2.9 simplifies to

OrdP(κL,S) =
1

ω
LogP(εL,S\{p}) .

Inserting the definitions of OrdP and LogP and comparing coefficients then yields

ordσP(κL,S) =
1

ω
logp(NLP/Qp(ε

σ
L,S\{p})) (5.3.1)

for all σ ∈ G.
To check these equalities on a level n, we apply the following

Algorithm 5.3.1. Input: L,K, n and p.

(1) Generate the field Ln.

(2) Apply Algorithm 5.2.2 to compute the conjugates εσLn,S for σ ∈ Gn.

(3) Determine the topological generator γ := recP(1 + p)−1 as an element of Γn and
compute ω.

(4) Apply Hilbert’s Theorem 90 to compute the conjugates βσLn,S for σ ∈ Gn.

(5) Compute κL,S,n =
∏

σ∈Γn
βσLn,S and its conjugates (as elements of Ln).

(6) Identify κσL,S,n with the corresponding element in L.

(7) Compute ordσP(κL,S,n) mod pn.

(8) Apply Algorithm 5.2.2 to compute εσL,S\{p} for σ ∈ G.

(9) Compute logp(NLP/Qp(ε
σ
L,S\{p})) and compare both sides of (5.3.1).
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For the computation of recP(1 + p)−1 in step (3) we use the algorithm described in
[Ble03, §3.2]. By the diagram (4.3.2), we get that the cyclotomic character sends the
resulting element to

NLP/Qp(1 + p) =

{
1 + 2p+ p2, p non-split,
1 + p, p split.

In both cases, we see that the result generates 1+pZp, i.e. we find that γ := recP(1+p)−1

is indeed a topological generator of Γ. By Corollary 4.3.9 (iii), we can use this choice
for the desired verification.

For step (4), we use the constructive proof of Hilbert’s Theorem 90, given in [Neu92,
Ch. IV, Thm. (3.5)]. The algorithm for this was provided by W. Bley.

For the identification in step (6), we use the minimal polynomial of κL,S,n over K,
which we can compute since we know all the conjugates of κL,S,n.

For the local computations in step (9), we use the identification

OL/Pt ∼= OLP
/PtOLP

∼= OKp/p
tOKp

∼= OK/pt

for any t ≥ 1. If we want to compute logp(NLP/Qp(x)) for some x ∈ OL, we can hence
find an element xK ∈ OK such that xK ≡ x mod Pt. Now if p is split in K, we can use
the same method to find an element xZ ∈ Z such that xZ ≡ xK mod pt and indeed,
xZ ≡ NLP/Qp(x) mod pt in this case. If p is non-split, we find that

NLP/Qp(x) ≡ NKp/Qp(xK) ≡ NK/Q(xK) mod pt.

Hence, we can reduce the local computations to the described global computations if
we restrict to a p-adic precision t. Since we can only compare both sides of (5.3.1) up
to level n anyway, it suffices to take t > n big enough such that the p-adic logarithm
can be computed up to precision n.

For the computation of logp, we now decompose xZ into ζ ∈ µp−1 and b ∈ 1 + pZp.
This decomposition can again be done with the global elements and we use a variant of
an algorithm provided by W. Bley. Then logp(xZ) = logp(b) can be explicitly calculated
with the power series from [Neu92, Ch. II, Thm. (5.4)].

5.3.2 The case e = 2

This can only be the case when p is split in K and both primes p and p′ above p
are completely split in L, i.e. p is completely split in L. So we have to compute
ηL,S\{p} ∈ Q

∧2O×L,S\{p} and ηL,S\{p′} ∈ Q
∧2O×L,S\{p′}. For the computations in exte-

rior powers, it is convenient to use the T -modified version. Then we can apply Algo-
rithm 5.1.8 and we obtain

ηL,S\{p},T = λTu1,T ∧ u2,T =
∑
[χ]

e[χ]λ[χ],Qui1([χ]) ∧ ui2([χ]) ,

ηL,S\{p′},T = λ′Tu
′
1,T ∧ u′2,T =

∑
[χ]

e[χ]λ
′
[χ],Qu

′
i1([χ]) ∧ u′i2([χ]) .
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Then Conjecture 4.2.15 is equivalent to

OrdP(κL,S,T ) = −
∑
[χ]

e[χ]λ[χ],Q

ω2
det

(
LogP(ui1([χ])) LogP′(ui1([χ]))
LogP(ui2([χ])) LogP′(ui2([χ]))

)
,

OrdP′(κL,S,T ) =
∑
[χ]

e[χ]λ
′
[χ],Q

ω2
det

(
LogP(u′i1([χ])) LogP′(u

′
i1([χ]))

LogP(u′i2([χ])) LogP′(u
′
i2([χ]))

)
.

By Corollary 4.3.9 (ii), it suffices to check one of the above equations. We first apply
the steps (1)-(4) of Algorithm 5.3.1. Note the element αLn,S, obtained from Hilbert’s
Theorem 90, is not the desired βLn,S. Now we can check whether NLn/L(αLn,S) is
a pn-th power in L by determining the roots of the polynomial xpn − NLn/L(αLn,S)
in L. If we find such a root, we can divide by this root to obtain α′Ln,S such that
NLn/L(α′Ln,S) = 1, hence we can apply Hilbert’s Theorem 90 a second time to obtain
βLn,S. This proves Conjecture 4.2.3 in this setting up to level n under the assumption
that Stark’s conjecture holds for level n. Then we can compute κσL,S,n for σ ∈ G as in
the previous section. So the left hand side can be directly computed as

OrdP(κL,S,T,n) =
δT (0)

2
OrdP(κL,S,n) ,

in Z/pnZ[G]. For the right hand side, we use Algorithm 5.1.8 for the Rubin-Stark
elements. We can again choose γ = recP(1 + p)−1 and hence we can perform the local
computations analogously to the e = 1-case to obtain the matrix entries as elements
of Z/ptZ[G], where t is the precision of the local computations. Then we can clearly
compute the right hand side and if we chose t big enough, we can again compare both
sides modulo pn.

By Theorem 4.3.2, the procedure described above gives an algorithm to verify
IMRS(L/K, S, T, 1)p up to level n under the assumption that the Rubin-Stark con-
jecture holds for the extension L/K and that Stark’s conjecture holds for level n.

5.4 Computational results
The algorithms described above can in fact be applied to an arbitrary extension L
of a real quadratic number field K. However, the computation of the unit groups
(which are necessary to compute Rubin-Stark elements) are very expensive and should
only be applied to extension of low degree (the author experienced that for fields with
[L : Q] > 30 the computation may take more than 24 hours or fail completely). Another
limiting factor is the computation of L-values with high precision. As we have seen in
Section 5.2.3, the necessary precision grows logarithmically with the absolute value
of the L-values and the resulting polynomial coefficients. The computations show that
these values can be very large even in rather small extensions, so the resulting necessary
precision and hence the computation costs also grow fast. Moreover, the computation
of the exact roots in the number field Ln as well as determining the maximal accepted
error δ may be very time consuming and need a lot of memory. The author successfully
tested the computation of Stark units in a field of degree [L : Q] = 56 with a necessary
precision of 167. The computation needed about 48 hours on a laptop with 1.80 GHz
and 8 GB RAM.
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After these introductory remarks on the limitations, we will now see how to con-
struct non-trivial examples for the computations. For simplicity, we restrict to the case
of cyclic extensions L/K. We start by fixing a degree, e.g. deg = 4, and an upper
(resp. lower) bound dmax (resp. dmin) for d, where K = Q(

√
d). Moreover, we choose

an upper (resp. lower) bound fmax (resp. fmin) for the minimal integer contained in the
conductor of our desired extension L. The author always used the natural lower bounds
dmin = 2 and fmin = 1, but it would be possible to restrict the considered cases by these
bounds even further. We also fix a list of primes which will be considered, e.g. 3 and 5.

For each square-free d, we then construct the real quadratic field K = Q(
√
d) and

compute a list of all ideals f up to fmax of OK . We can reduce this list by requiring
that the norm of f is greater than fmin and also greater than fmax/m, where m is the
smallest non-trivial norm of ideals in the list (i.e. m ≤ 4). For the remaining candidates
f, we compute the ray class group Gf∞1∞2 and all subgroups H of Gf∞1∞2 such that
the quotient Q := Gf∞1∞2/H has exactly deg elements. If this quotient is cyclic, we
construct the abelian extension L/K with Galois group Q. In the next step, we iterate
through our chosen primes and check for each p ⊆ OK if p splits completely in L. If
one of the infinite places of K splits completely in L while the other one does not, we
find that L satisfies all the necessary assumptions and we store L, p and e in a list of
cases which should be investigated.

With this procedure, we also obtain fields with smaller conductors, since these can
be obtained by quotients with a suitable subgroup H. However, if we choose the lower
bound such that fmin > fmax/m, we will skip some conductors which are too small to
have norm greater than fmin, but too big to correspond to such a quotient.

The author used this method with deg = 4, dmax = 70 and fmax = 60. We hence
covered the cases

d ∈ {2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35,

37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70}

for the primes 3 and 5. This results in 170 cases of interest distributed as seen in Table
5.1:

p
e 1 2split non-split

3 4 52 2

5 16 88 8

Table 5.1: Number of cases for p and e with the chosen bounds

The relevant base fields for these cases correspond to

d ∈ {13, 14, 21, 22, 26, 30, 35, 38, 39, 41, 42, 43, 53, 55, 58, 61, 65, 66, 69, 70} .

Choosing n = 1, the author checked Conjecture 4.2.15 in all these cases on the first level
with a positive result. The author was also able to compute several singular cases for
p = 7 and n = 1 with a positive result. These results are again based on the assumption
that the Rubin-Stark conjecture holds for L/K and Stark’s conjecture holds for L1/K.
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