Arithmetic of Stark units in global fields

Dissertation
an der Fakultit fiir Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universitat
Miinchen

vorgelegt von
Pascal Stucky
Datum: 16.08.2021



1. Gutachter: Prof. Dr. Werner Bley
2. Gutachter: Prof. Dr. Cornelius Greither
Tag der Disputation: 30.11.2021



Contents

(1__Introductionl 7
(I.1 Structure of the thesis . . . . . ... ... ... ... ... ... ..., 10
(1.2  Acknowledgements| . . . . . . . . . ... ... oL 11

[2  Stark’s conjecture and Rubin-Stark units in the abelian case 13
2.1 Preliminaries . . . . . . . . . .. 13

1.1 Valuations| . . . . . . .. .o 13
[2.1.2  Duals and exterior powers| . . . . . . ... ... ... ... 14
2.1.3 Idempotents| . . . . . . . ... ... 15
.14 [-tunctions . . . . . . . . ..o 16
2.1.5  S-units and Dirichlet’s unit theorem| . . . . . . ... ... ... 18
[2.1.6  The analytic class number formula] . . . . . ... ... ... .. 19
[2.2  Stark’s conjecture| . . . . ... ..o 20
221 Thecaser=11 . . . . . . . . .. 21
[2.3  The Rubin-Stark conjecturel . . . . . . . ... ... ... ... .. 22
2.3.1 Theadditional set 71 . . . . . . . ... 0oL 22
.32 Rubin’s latticel . . . ... ..o 23
[2.4 Rubin-Stark elements and their properties| . . . . . . . ... ... ... 25
2.4.1 Relation of the different elementsl . . . . . . ... ... ... .. 25
2.4.2  Functorial Behaviour] . . . . . . . ... .00 26

[3  An annihilation result for global function fields| 29
[3.1 Class field theory in global tunction fields|. . . . . . .. ... ... ... 29
(3.2  Ellipticunits| . . . . ... ... .. 31

[3.2.1  Unramified elliptic units| . . . . . . . ... ... ... ... ... 31
[3.2.2  Ramified elliptic units| . . . . . . ... ... ... ... ... .. 34
[3.2.3  T'he group of elliptic units in an arbitrary real abelian extension| 34
[3.2.4 Kronecker’s Limit Formulael . . . . .. .. .. ... ... 36
B3 Anindexformulal . . . . . .. ... 37
[3.3.1  Sinnott’s modulel . . . . . ..o 37
[3.3.2 Index computations|. . . . . . .. ... 39
B.3.3 Theindex d(L)| . . .. ... .. ... ... .. ... ... 45
[3.4 A non-trivial root of an ellipticumit| . . . . . . ... ... ... ... 51
[3.4.1  Preliminariesl . . . . . . . . ... .. oo 51
[3.4.2  The distinguished subfields £ . . . .. ... ... ... ... .. 52
[3.4.3 Theellipticunits . . . . ... ... ... ... ... 53




4 CONTENTS
[3.4.4  Enlarging the group Cy of elliptic unitsof 1| . . . . . ... . .. 59

[3.5 Semispecial numbers| . . . ... 000000 60
[3.6  Annihilating the ideal class group| . . . . . . . ... ..o 67

[4 A Solomon-type conjecture for totally real number fields| 75
(4.1 'The Iwasawa-theoretic Mazur-Rubin-Sano conjecture] . . . . . . . . .. 75
4.2 A Solomon-type conjecture|. . . . . . . .. ... 7
4.2.1 Solomon’s k-construction|. . . . . . . .. ... 7

[4.2.2  Cyclotomic character| . . . . . .. ... ... .. ... ...... 79

[4.2.3  'T'he valuations at the split primes above p . . . . . . . . . . .. 80

[4.2.4  T'he remaining primes| . . . . . . ... ... ... ... 81

425 A T-modified versionl . . . . . .. ..o 82

4.3 Relation of the conjectures| . . . . . . . ... ... ... ... 83

[ An algorithmic study of the Mazur-Rubin-Sano conjecture] 91
[>.1 The computation of Rubin-Stark elements| . . . . . . . ... ... ... 91
(5.1.1  Computing the (S,7)-units| . . . . . .. ... ... ... .... 91

[>.1.2  Computing the L-values| . . . . . .. ... ... ... ... ... 94

h.1.3  Determine the real coefficientsf . . . . . . . ... ... ... ... 94

b.1.4  Determine the rational coefficientsl. . . . . . ... ... ... .. 95

[5.2  Computing Stark units over real quadratic fields| . . . . . . . . . . . .. 97
[>.2.1 The real values of the conjugates of the Stark unit|. . . . . . . . 97

[5.2.2  Rounding process| . . . . . . .. .. ... .. L. 98

[>.2.3  Error computation| . . . . ... ..o 99

[>.3  Examining Conjecture4.2.90 . . . . . . . . ... ... ... ... 104
bh3.1 Thecasee=11 . . .. . . . . . ... . ... 104

bh3.2 Thecasee=2 . . .. . . . . .. .. 105

[>.4  Computational results . . . . . ... ... ... L. 106




Abstract

Since the introduction of Stark units by H. Stark in the 1970’s, these elements and their
higher-rank analogues are of major interest for algebraic number theory. They can be
seen as the starting point of several recent developments such as the study of Euler
systems or the equivariant Tamagawa Number Conjecture (eTNC).

In the known cases of Stark’s conjecture for number fields, these units are a source
of annihilators for ideal class groups as can be seen in the work of C. Greither and
R. Kucera, respectively H. Chapdelaine and R. Kucera. One of the applications de-
scribed in this thesis is the transfer of these results to the case of global function fields.
A result obtained in the proof is an index formula for a group of elliptic units (which
are essentially an instance of Stark units due to the work of D. Hayes), analogously to
a result of H. Oukhaba for elliptic units.

Another application of Stark units (actually cyclotomic units in this case) is a con-
struction of certain p-units by D. Solomon for abelian extensions over Q. This con-
struction was adapted to the case of imaginary quadratic base fields by W. Bley and
M. Hofer and can be used as a major ingredient in proving the e TNC. In fact, the study
of the valuations of these p-units is a vital part in solving the Iwasawa-theortic version
of the Mazur-Rubin-Sano conjecture (IMRS) in these special cases. In the second part
of this thesis, Solomon’s construction is generalized to the case of totally real base
fields and then a conjectural statement on the valuations is formulated. It is also shown
that this statement is equivalent to the IMRS which provides theoretical evidence for
the conjecture. Finally, an algorithm for numerical verification up to a certain p-adic
precision together with some computational results is presented.



Zusammenfassung

Seit der Einfithrung von Stark-Einheiten durch H. Stark in den 1970er-Jahren sind sie
und ihre Verwandten hoheren Ranges von hohem Interesse fiir die algebraische Zahlen-
theorie. Sie konnen als Ausloser fiir verschiedene kiirzliche Entwicklungen wie das
Studium von Eulersystemen oder die dquivariante Tamagawazahlvermutung (eTNC)
gesehen werden.

In den bekannten Fillen der Stark-Vermutung {iber Zahlkérpern sind diese Einheiten
eine Quelle fiir Annihilatoren der Idealklassengruppe, wie man in den Arbeiten von
C. Greither und R. Kucera bzw. H. Chapdelaine und R. Kucera sehen kann. Eine der
in dieser Arbeit beschriebenen Anwendungen ist der Transfer dieser Resultate auf den
Fall der globalen Funktionenkorper. Ein Resultat dieses Beweises ist eine Indexformel
fiir eine Gruppe von elliptischen Einheiten (die, wie die Arbeit von D. Hayes zeigt,
tatsichlich eine Instanz von Stark-Einheiten bilden), analog zu einem Ergebnis von
H. Oukhaba fiir elliptische Einheiten.

Eine weitere Anwendung von Stark-Einheiten (in diesem Fall zyklotomische Ein-
heiten) ist eine Konstruktion von p-Einheiten von D. Solomon fiir abelsche Erweiterun-
gen iiber Q. Diese Konstruktion wurde von W. Bley und M. Hofer auf den Fall von
imaginar-quadratischen Grundkorpern iibertragen und kann als eine der Hauptzutaten
im Beweis der e TNC benutzt werden. Tatséchlich leistet das Studium der Bewertun-
gen dieser p-Einheiten einen wichtigen Beitrag zur Losung der Iwasawa-theoretischen
Version der Mazur-Rubin-Sano-Vermutung (IMRS) in diesen Spezialfillen. Im zweiten
Teil dieser Dissertation wird Solomon’s Konstruktion auf den Fall von total reellen
Grundkorpern verallgemeinert und anschliefend eine Vermutung iiber die Bewertun-
gen formuliert. Es wird auch gezeigt, dass diese Aussage dquivalent zur IMRS ist, was
theoretische Evidenz fiir die Vermutung liefert. Abschliefsend wird ein Algorithmus zur
numerischen Verifikation bis zu einer bestimmten p-adischen Prézision zusammen mit
einigen rechnerischen Ergebnissen prasentiert.



Chapter 1

Introduction

The ideal class group of a number field is one of the main objects of interest in algebraic
number theory. One approach of understanding these class groups is the study of anni-
hilators. One of the first results in this direction is the famous result of L. Stickelberger
in [Sti90]. Expressed in modern language, he explicitly constructed the Stickelberger
element 07,9 € Q[Gal(L/Q)] for a finite abelian extension L/Q via the Galois action
of Gal(L/Q) on certain roots of unity and used it to define the Stickelberger ideal
01/0Z]|Gal(L/Q)] N Z[Gal(L/Q)]. He then proved that this ideal annihilates the ideal
class group of L, a statement which is nowadays known as Stickelberger’s Theorem.

A natural question is now if it is possible to generalize this statement to other ex-
tensions. It turns out, that the Stickelberger element is in fact simply the equivariant
combination of the values at s = 0 of the L-functions associated to those characters cor-
responding to the extension L/Q. We can easily generalize this by defining 0, s to be
the element in C[G] such that x(0./k,s) = Ls(x,0) for any character y € Hom(G,C*).
The index S indicates that the Stickelberger element depends on a finite set of places S
containing the archimedean places and the places which ramify in L/K. This element
is then related to the S-truncated version of the L-functions. It was shown by H. Klin-
gen and C. Siegel, that 0,k ¢ indeed has rational coefficients (see [Sie70]). In [DRSO]
P. Deligne and K. Ribet proved that Annge(1(L))01/k,s € Z[G], where Anngi(—)
denotes the Z[G]-annihilator and p(L) is the group of roots of unity contained in L.

The generalization of Stickelberger’s result is then

Annz[g](,u(L))@L/K’S Q Annz[g] (Cls(L)) s

where clg(L) denotes the S-class group of L. This statement is known as Brumer’s
conjecture.

Around the same time, H. Stark published his series of papers (|Sta7l], [Sta75],
[Sta76| and [Sta80]) proposing the existence of certain units, now called Stark units,
containing information about the first derivative of the S-truncated L-functions of char-
acters of an arbitrary finite abelian extension of number fields. The set S is assumed to
contain at least one completely split place, which implies that the L-functions vanish
at s = 0. The Stickelberger element will therefore be trivial in this case, hence it seems
natural to consider first derivatives here. Stark also proved the conjecture for abelian
extensions of Q, where the Stark units are simply given by cyclotomic units, and for
abelian extensions of imaginary quadratic base fields, where the Stark units turn out
to be elliptic units.
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His approach was connected to the work of Brumer by J. Tate in [Tat81b| and
[Tat81a] culminating in the Brumer-Stark conjecture (which was proven away from 2
very recently by S. Dasgupta and M. Kakde in [DK20]). He predicted not only that any
ideal to the power |u(L)|- 05, k,s is principal, but even determined a possible generator.
The results of Stark and Tate are summarized in the lecture notes |Tat84]. In this
formulation, Tate also included the case of global function fields under the common
notion of global fields.

A few years before, D. Hayes and V. Drinfeld had developed the theory of elliptic
modules (nowadays called Drinfeld modules), which enabled them to explicitly con-
struct ray class fields of global function fields (see [Dri74|, [Hay74| and [Hay79]). With
this theoretical background, P. Deligne proved the Brumer-Stark conjecture for global
function fields using the theory of 1-motives. Stark’s conjecture is also known in this
case, the Stark units here are function field analogues of the elliptic units as can be
seen in [Hay85|.

In the meantime, G. Gras proposed another approach towards annihilators of class
groups. He considered the subgroup of cyclotomic units C;, in an abelian extension
L/Q and conjecturally relates the Jordan-Holder series of the p-part (O] /CL), of the
quotient of the unit group of L modulo this subgroup to the Jordan-Holder series of
the p-part of the ideal class group, where p is an odd prime not dividing [L : K] (see
|Gra77]). The conjecture was proven by B. Mazur and A. Wiles as a consequence of
the Iwasawa main conjecture (see [MW84]).

A few years later, V. Kolyvagin reproved the Gras conjecture via the approach of
Euler systems in [Kol90|. This theory is based on the work of F. Thaine in |Tha88|,
K. Rubin in |[Rub87] and Kolyvagin himself in [Kol88|. Thaine used cyclotomic units to
explicitly construct annihilators of the p-part of the class group of an abelian extension
L/Q. Rubin adapted this approach to extensions of an imaginary quadratic base field
K using elliptic units instead of cyclotomic units. Kolyvagin’s result was about Selmer
groups of elliptic curves using Heegner points. In his work about Euler systems, he
formalized these different approaches in a common language and collected the necessary
common properties of these different objects to introduce the notion of an Euler system.
The crucial breakthrough over the previous works of Thaine and Rubin was that this
paper introduced an inductive procedure which enables Kolyvagin to bound the orders
of these groups, rather than just to obtain an annihilator.

The Euler system machinery is summarized and further developed by K. Rubin in
[Rub00| and is an established source of annihilators of ideal class groups and bounds of
Selmer groups. It was also adapted to the case of global function fields (see e.g. |[FX96|
and [XZ01]). An analogue of the Gras conjecture for global function fields was stated
and proven by C. Popescu in [Pop99|.

However, there are limits to this approach. As indicated in |[GKO04], in the case
of a cyclic extension of prime power degree the Euler system of cyclotomic units will
produce an annihilation result which is even weaker than the annihilators obtained from
genus theory. In order to improve this approach, C. Greither and R. Kucera enlarged
the subgroup of the cyclotomic units by taking certain roots of the generators in the
case of a cyclic extension of primer power degree (see |GK04|, |[GKO06| and |[GK15]).
With these semispecial numbers, they were able to prove a stronger annihilation result
for these extensions. This approach was adapted by H. Chapdelaine and R. Kucera to



cyclic extensions of prime power degree over imaginary quadratic base fields in |[CK19).
The cyclotomic units here are again replaced by elliptic units.

In both of these cases, the objects of interest are in fact instances of Stark units and
the main ingredients for the proofs are the functorial behaviour of these units combined
with the assumptions on the cyclic extension L/K. Since we know another instance of
Stark units in the case of global function fields, it seems natural to ask the follwing

Question. Can we formulate and proof an analogous annihilation result for global
function fields?

Question. Can we generalize these results to other global fields in terms of Stark units?

The answer to the first question is yes and is given in [Stu20]. We will repeat the
arguments in Chapter |3| with some more details. In particular, we prove an index
formula (see Theorem [3.3.9)), show that we can take certain roots of the elliptic units
(see Theorem and prove the desired annihilation result (see Theorem [3.6.9).

The second question can not yet be answered completely. In its current form, the as-
sumptions on the extension L/K imply that the Stark units are trivial in any other case,
since the first derivatives of the L-functions vanish. However, there exist approaches to
weaken these assumptions and extend the results (see e.g. [GK20a], |GK20b]|, [Fra20]).

Another approach might be to replace the Stark units by their analogues in the
higher rank cases. The formulation of Stark’s conjecture in [Tat84] already deals with
the case that S contains at least » > 0 completely split places, hence the vanishing order
of the S-truncated L-functions will be at least r. If » = 0, we recover the Stickelberger
element, for » = 1 we obtain the Stark units as proposed by Stark himself. In the case
of r > 1, Tate considers the r-th derivative of the S-truncated L-functions and imposes
a rationality condition to the values at s = 0.

However, in Tate’s formulation of Stark’s conjecture for rank r, there is no analogue
of the Stark units and hence no form of “integrality statement”. This was resolved by
K. Rubin in [Rub96|. He used an additional finite set 1" of places of K satisfying certain
hypothesis and worked with a T-modified version of the L-functions. Considering the r-
th derivatives, Rubin defined an element n, s € A" QOj 1> where OF ¢ is a certain
Z|Gal(L/K)]-submodule of the S-units, the (S,7)-units of L. This element is called
the Rubin-Stark element and although it is in general not contained in A" OE 57> Rubin
was able to predict a certain “integrality condition” on 7z, g 7.

Before we return to the questions about annihilators of ideal class groups, we will
shortly indicate another important feature of Stark units and Rubin-Stark elements.
These elements behave functorially when changing some of the input data, e.g. the set
S, the set T or the top field L. This is discussed in detail in Section [2.4.2] but for
now it suffices to note that if S contains more than r completely split places, then
the corresponding Rubin-Stark element is trivial since the r-th derivatives of the S-
truncated, T-modified L functions vanish. Hence if we change the top field L to a
subfield L’ such that there exist places in S that split completely in L’ but not in L,
we see that the Rubin-Stark element 1 s7(r) € A" QO g is trivial (we modified
the notation to reflect the considered rank here). But there may exist a non-trivial
Rubin-Stark element n g 7(1') € N QOr 57, where 1" is the number of places in S
which split completely in L’. This leads to the natural
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Question. Can we relate the rank-r Rubin-Stark element 7, sr(r) to the rank-r’
Rubin-Stark element g gr(1")?

Although we do not have a definitive answer to this question, we have a conjec-
tural statement which describes this relation, the Mazur-Rubin-Sano conjecture. This
conjecture was independently formulated in [MR11]| and [Sanl14].

In [BKS17], the authors formulated an Iwasawa-theoretic version (IMRS) and used
it as one of the main ingredients in a machinery for proving the equivariant Tamagawa
Number Conjecture (eTNC). The IMRS is known when K = Q and its proof relies on
a classical result of D. Solomon in [Sol92]. In the second part of his article, Solomon
used the constructed p-unit to obtain an annihilation result on the ideal class group
indicating that trying to prove the IMRS and to derive annihilation results is at least
intrinsically linked.

Before one can try to obtain analogous annihilation results for other base fields,
one has to generalize Solomon’s construction. For imaginary quadratic base fields, this
is done by W. Bley in [Ble04] for split primes p and by W. Bley and M. Hofer in
[BH20|] also for non-split primes. Studying the valuations of the constructed p-unit,
they can also prove the IMRS and the eTNC for imaginary quadratic base fields with
some additional assumptions (see |Ble06] and |[Hof18|). These assumptions have been
removed in recent work of D. Bullach and M. Hofer (see [BH21]).

In Chapter [ of this thesis, we generalize Solomon’s construction to the case of
arbitrary totally real base fields and state a conjecture on the valuations of the resulting
elements (see Conjecture . Then we show that the given generalization is indeed
equivalent to the IMRS (see Theorem which gives (additionally to the known
cases described above) strong theoretical evidence for the formulated conjecture. In the
last chapter, we also develop an algorithm to test Conjecture up to a certain level
(see Algorithm and the computed cases described in Section provide some

numerical evidence.

1.1 Structure of the thesis

We will first introduce Stark’s conjecture and the Rubin-Stark conjecture for any finite
abelian extension of global fields in Chapter 2 We will also define the Stark units,
Stark elements and Rubin-Stark elements and present some basic properties here.

Then in Chapter 3| we will consider the case of global function fields and will intro-
duce elliptic units for such extensions, which can in fact be considered as Stark units.
We will prove an index formula and derive a result on annihilators of the ideal class
group for certain extensions.

Afterwards, we will move to the number field case and will introduce the Iwasawa-
theoretic Mazur-Rubin-Sano conjecture in Chapter Then we will generalize the k-
construction of Solomon resulting in a reformulation of IMRS in terms of the constructed
element.

Finally, we will present an algorithmic approach on our refomulated conjecture in
Chapter [5
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Chapter 2

Stark’s conjecture and Rubin-Stark
units in the abelian case

In this chapter we will state Stark’s conjecture for a finite abelian extension of global
fields and its integral refinement due to Rubin. Then we introduce (Rubin-)Stark
elements, Stark units and state important properties of these.

2.1 Preliminaries

This section contains well-known definitions and results which will be used throughout
this thesis.

2.1.1 Valuations

Let L/ K be a finite abelian extension of global fields. Let v be a place of K (archimedean
or non-archimedean) and w be a place of L above v. The Galois group G := Gal(L/K)
acts transitively on the places above v by ow := w o o (see e.g. [Neu92, Ch. II,
Thm. (9.4)]) and we define the decomposition group of w as

Dy :={0€G:ow=w}.

Since G is abelian, this subgroup is independent of the choice of w, hence we can write
D, instead of D,,. If D, is trivial, i.e. there exist [L : K] different places above v, we
say that v is completely split.

Remark 2.1.1. Note that the decomposition group of an archimedean place can either
be trivial (if v is complex or both v and w are real) or contain exactly one non-trivial
element (if v is real and w is complex).

If v (and hence w) is non-archimedean, let O,, be the valuation ring associated to
w and let k(w) = O, /w be the residue class field of w. The norm of w is defined as
Nw := |k(w)|. For an archimedean place w we set

Nuw e {e, w is real,

e?, w is complex.

13
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We define the inertia group
I, ={c€D,:oce=x modw VreO,}.

This is again independent of the choice of w since G is abelian and so we simply write
I, instead of I,,. If v and w are archimedean, then we set I, := D,,.

The place v is ramified if I, is non-trivial and the ramification indez is defined as
t, := |I,]. Hence an archimedean place can either be completely split if D, = {id} or
ramified with ramification index 2.

The quotient D, /I, is a cyclic group generated by the Frobenius automorphism and
we define o, € D, to be any lift of this Frobenius automorphism.

For a non-archimedean place v, we denote the corresponding normalized valuation
by ord,. For an archimedean place v associated to an embedding ¢,: K — C (real or
complex), we set

ord,(z) := —log |t,(z)] Vre K.
In any case, we define the absolute value associated to v by

||, == No~ @) vy e K.

Note that if v is real, we get |z|, = |t,(z)], and if v is complex, then |z|, = |1, ()|,

2.1.2 Duals and exterior powers

Let R be a commutative, reduced, Noetherian ring. For an R-module M we define
M* := Hompg(M, R) to be its dual module. Then for any ¢ € M* and r > 1 there
exists an R-homomorphism

r r—1
o™ AM— \M
R R
B A A S (D () g A AT A A,
i=1

where the Z;-notation indicates that the z;-term is omitted.
[terating this construction, we obtain an R-homomorphism

/\ M* — Homp(\ M, \ M)
R AR (2.1.1)
Pr A A (i ol oo o (m))

for 0 < ¢ < r. Using this homomorphism, we will regard elements of /\% M* as homo-
morphisms AR M — AR " M.

Remark 2.1.2. In the case r =7 we find the explicit formula
(Gr A Ap) (@i A Az = det ((%(xj))lgm) (2.1.2)

(for example by induction and Laplace’s formula).
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We finish this section by a collection of useful facts on exterior powers and duals,
the proofs of which will be omitted. They can for example be found in the author’s
master thesis. We also set R'M := R’ ®g M for any commutative R-algebra R'.

Lemma 2.1.3. Let R’ be a commutative R-algebra. There is a canonical R'-module
isomorphism R' @p Ny M = Ny R'M.

Now let Frac(R) be the total ring of fractions of R, i.e. the localization at the set of
non-zero-divisors. Then we obtain

Lemma 2.1.4. Let M be a finitely-generated R-module. Then the map

M* — Hompyac(r) (Frac(R)M, Frac(R))
O <z — _cp(x))

S S

is an injective R-module homomorphism and induces an isomorphism of Frac(R)-modules
Frac(R) ® p M* = Hompyae(r) (Frac(R) M, Frac(R)).

Lemma 2.1.5. Let G be a finite, abelian group and let M be a Z[G]-module, then the
canonical map

Homgz (M, Z) — Homge (M, Z|G)
pr— (x> ) plo(x))o™)

oceG

s an isomorphism.

2.1.3 Idempotents

Let GG be a finite, abelian group and G be the group of irreducible characters of G. For
any ring R C C we let a character x € G act on the group algebra R[G] by extension
of scalars, i.e. for a = ) . a,0 with a, € R, we let

x(@) =3 aox(o) €C.

oceG

For y € G the idempotent associated to x is defined as
ey = €] Z x(o)o™t € ClG].

The values of a character x are roots of unity, so when we adjoin all values of x to Q
we obtain a cyclotomic field denoted by Q(x). For a o € Gal(Q(x)/Q) we find that

o~

oo x € Hom(G,C*) = G, so this defines another irreducible character of G called x°.
Hence we obtain an equivalence relation

X~ — Jo € Gal(Q(x)/Q) : ¥ = 7.

We denote the equivalence class of x by [x], and the set of all these classes by G / ~.
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Let x € G. Then the rational tdempotent associated to x is defined as
€ = Z ey -
VE(X]

Now we collect some properties of (rational) idempotents.

Lemma 2.1.6. Let x € G.
(i) €l € Q[G].

(i) The equality e, = x(T)ey holds for all T € G (hence, ae, = x(a)e, for all
a € C[G]).

(11i) Let 1 € G. Then exCyp = Oyypy and €1y1€1] = Oy []C1] -
(iv) We have eré ey = Z[X]E@/N epg = id.
(v) The set {ey : x € GY} is an orthogonal basis for the C-vector space C[G], i.e.
ClG] =Pe, - C.
xe@
Moreover, there is an isomorphism of Q-vector spaces

QG P ey Q).

]G/~

Note that by (v) we have an isomorphism of Q-vector spaces ep - Q[G] = Q(x).

2.1.4 L-functions

Let v be a place of K and recall that o, € G is a lift of the Frobenius automorphism.
Let x € G be a character of G and let

1

er, - o

’[’U| O'EI'U
be the idempotent associated to the subgroup I, in G. Then the definition

x(v) :== x(over,)

is independent of the choice of o,. Note that we have x(v) # 0 if and only if I, C ker().
For a finite set of primes S O S, of K containing the archimedean places we define
the S-truncated L-function Lg(x,s) associated to x as the Euler product

H(l — x(v)Nv=*)~t, Re(s) > 1,
vgS

where the product runs over all places of K which are not contained in S.
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If S =54, we simply write

L<X7 5) = LSoo (X? S) :

If x =1 we obtain that

Ls(1,s) = (r,s(s)
is the S-truncated Dedekind (-function of K.

Remark 2.1.7. If v € S,4n, then the factor in the Euler product is 1 since x(v) = 0.
We may therefore assume S,,,, C S.

If K is a number field, it is well known that the above Euler product admits a
meromorphic continuation to the whole complex plane. This continuation will also be
denoted by Lg(x,s). If x = 1, then (x s(s) has a simple pole at s = 1, otherwise the
continuation is holomorphic everywhere.

If K is a global function field, we again obtain a meromorphic continuation to the
complex plane which is holomorphic whenever L, = LX) is not a constant field
extension (see |[Ros02, Thm. 9.25]).

We summarize some results on L-functions in the next

Proposition 2.1.8. (i) If L’ D L is a finite abelian extension of K with Galois group
G' and 1 is the inflation of x to G', then we have

LS(X7 5) = LS(T/% S) )
i.e. the L-function is invariant under inflation.

(11) We have

Cos) = Ciels) - T L0 s)
x#1
where the product runs over all non-trivial characters of G.
Proof. (i) This is [Neu92, Ch. VII, Thm. (10.4)(iii)].
(ii) This is [Neu92, Ch. VII, Cor. (10.5)(iii)]. O

Remark 2.1.9. Note that the proofs in [Neu92| do not use the fact that the L-functions
considered there are defined over number fields. In fact, these statements even hold for
non-abelian extensions and Artin- L-functions.

We combine the L-functions with the character idempotents to obtain the equivari-
ant S-truncated L-function

Og(s) = Z Lg(x, s)ey—1

xe@

with values in C[G].
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Now let T" be a finite set of places of K which is disjoint from S (in particular, all
places in 7" must be non-archimedean and unramified). Then we define

or(s) = [J(1 =0, ' Nv'™)

veT

and obtain the S-truncated, T-modified L-function

Lsr(x.s) = Ls(x,s) - x ' (6r(s)) = Ls(x, ) - H(l — x(0,)Nvt™)

veT

and its equivariant version
Osr = Os(s) - dr(s) .

Since x(d7(0)) # 0 for all x € G, we see that the T-modification does not change the
order of vanishing of the L-function at s = 0. We obtain

Lemma 2.1.10. Suppose that S # 0. The order of vanishing of Lg(x,s) (and also
Lsr(x,s)) is given by

L _Jlvesixw =11, x#1,
TS -1, x=1

Proof. This can be found in the proof of |Tat84, Ch. I, Prop. 3.4]. O

2.1.5 S-units and Dirichlet’s unit theorem

Let S be a non-empty finite set of places of K containing the archimedean places,
ie. O Sw. Let S :={w | v:v & S} be the places of L above the places in S.
The S-integers of L/K are defined as

Ors:={ue L*:ord,(u) >0 Ywé¢ SL}. (2.1.3)
The S-units of L/K are the units of this ring, i.e.
Ops={u€ L :ord,(u) =0 Vw¢ S},

Let Y5 = @MGSL Zw be the group of Sp-divisors and let X ¢ be the subgroup of
divisors of degree 0. We consider the Dirichlet regulator

)\52 OE,S —>RXL’S
Ur— — Z log |ul, w.

wEST,

This map induces an exact sequence
1— u(L) — Of g 25 \s(0F 5) — 0,

where p(L) is the group of roots of unity of L. With extension of scalars and Dirichlet’s
unit theorem, we obtain an isomorphism

As: ROY ¢ — RXp g (2.1.4)

of R[G]-modules. By representation theory, we obtain the following
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Corollary 2.1.11. The Q|G]-modules QOy ¢ and QXy s are isomorphic.

Let » > 0. We define R R
Gsr ={x€G :rgy,=r}

and the idempotent

€Sy 1= E €y -

XEGS,T

For characters x ~ 1 we clearly have ker() = ker(¢), so rg, = rg,. This implies that
for x € Gg, we have [x] C Gg,, so we can write

esr = Z Z €y = Z e € @[G} .

[X]Qés,r we[x] [X}gés,r

Therefore, eg, - QX ¢ and eg, - QOZ’S are isomorphic eg, - Q[G]-modules.
Proposition 2.1.12. The eg, - Q[G]-module eg, - QX s is free of rank r for all r > 0.

Remark 2.1.13. e As a direct consequence of Proposition 2.1.12] we find that
esr - QOf g is a free eg, - Q[G]-module of rank 7.

T

e A similar argument shows that eg, - RXp s = eg, - RO} ¢ = (es, - R[G])".

2.1.6 The analytic class number formula

As before, let S be a non-empty finite set with S O S,,. By choosing Z-bases of the
torsion-free part of (9;75 and X g, we can read Ag: ROES — RX ¢ as an isomor-
phism of R-vector spaces with respect to these bases. Then we define the S-requlator
of L as

RL,S = |det(/\5)| € R.

We also define the S-class group of L as the ideal class group clg(L) of Op g. Then the
S-class number hy, g of L is defined as |clg(L)|. We set wy, := |u(L)| and we obtain the
analytic class number formula:

Theorem 2.1.14 (Analytic class number formula). Let r = |S.| — 1 and let Cgfg(()) be
the leading term of the Dedekind (-function, i.e.

(r) R -r
CL,S(O) = Llsg%s Crs(s)-

Then we obtain

hr sR
C(r) 0) = — LSTLS
wr,

Proof. If K and L are number fields, this can be found e.g. in [Neu92, Ch. VII,
Cor. (5.11)]. In the case of global function fields, this is [Ros02, Thm. 14.4]. O
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2.2 Stark’s conjecture
Let » > 0. We introduce the following hypothesis on S:
Hypothesis 2.2.1. The finite set of places S satisfies the following properties:
(i) S 2 S U Sram.
(ii) S contains at least r places V' := {wy, ..., v,_1} which split completely in L.
(iii) [S| >r+ 1.

With these hypotheses and Lemma [2.1.10, we find that rg, > r for each character
X. Define

@g) (0) := ll_{% s "Og(s)

and analogously @ s = limg 057" Ogr(s) = d7(0)0 T)(O)
Let v' € S\V be an arbitrary but fixed place. For each i =0, ...,7—1, we fix a place
w; | v; of L (and also a place w’ over v). From ([2.1.4)), we get an induced isomorphism

(AXs): RN\ Ofg — RN Xis

Z[G] Z[G)

and we define the Stark element 1.5 € R Ny OF g of order v by

(\As)(1,s) = OF)(0) - (wo — W) A+ A (wy—y — ') .

Remark 2.2.2. We have 7, ¢ € eg, - R/\Z[G] fs, i.e. the Stark element lies in the

es,~component. Indeed, for a character y € G with rsy > T, we find ex]@( (0) = 0.
Since A" Ag is an R[G]-isomorphism, this implies efnz,s = 0.
Since eg, - R /\Q[G} Of s is a free eg, - R[G]-module of rank 1 by Remark we
can write
Nps =AU A Au,, (2.2.1)

with A € eg, - R[G] and uy, ..., u, € Of g
Now we can state Stark’s conjecture:

Conjecture 2.2.3 (St(L/K,S,r)). The Stark element has rational coefficients,

Remark 2.2.4. As we will see in Corollary this conjecture is implied by the
Rubin-Stark conjecture (Conjecture below). Hence Stark’s conjecture holds when-
ever the Rubin-Stark conjecture is true and we give a list of known cases in Remark [2.3.6]
Indeed, there are no cases known to the author where Stark’s conjecture is proven but
the Rubin-Stark conjecture is unknown.
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2.2.1 Thecaser=1

The statement of St(L/K, S,1) is that the Stark element 7,5 is contained in QO ¢
We know that 7z s € ROJ g, hence there exists a unit ¢ € Of g and A € R such that
nL.s = Ae. Then St(L/K,S,1) is true if and only if A € Q.

Remark 2.2.5. In fact, there exist infinitely many such pairs (A, ¢), since we get
(a™*N)(ag) = Xe = npg for any o € Z. However, if any of these coefficients \ is
rational, then all such coefficients are rational.

For w := wy, we consider the dual w* € Homgg (Y5, Z[G]) = Y/ ¢ obtained by
Lemma [2.1.5] i.e.

=) o VoES.

oeG_
ow=w

This induces a map w*: RX; g — R[G] and from the definition of 1 g, we get that

045(0) = (w* 0 Ag)(.s) = —A Y logle”|, o

oeG

Considering the y-components, we get

L(x,0) = =AY log||, x

ceG

for all y € G. In this special case, Stark considered a particular choice for the pair
(A e):

Conjecture 2.2.6 (St(L/K,S), cf. [Tat84, Ch. IV, Conj. 2.2|). Let S be a finite set
of places satisfying Hypothesis[2.2.1) for r = 1 and let w be a fized place of L above the
completely split place v. Then there exists a unit €1, g € OL,S which satisfies:

(i) K(gL/SL) is abelian over K.

(ii) If |S| > 3 then |eps|z = 1 for all w { v. If S = {v,v'} and w' is a place of L
above V', then |eps|, .. = ler,sl,, forallo € G.

(iii) For each character x € G we have

L/ X7 :——ZlOg‘8L5|

O'GG

The element €1, g is called the Stark unit.

Remark 2.2.7. (i) The Stark unit ¢, g is only defined up to a root of unity in L.
Hence, all following equations should be read modulo u(L).

(ii) If S contains a second place which splits completely in L we obtain e, 5 = 1

(cf. Remark [2.3.6).
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(iii) Stark units can be determined explicitly in several cases:

e K = Q and v = oo. Then L is a totally real abelian extension of Q and

hence contained in Q((,,) for some m € N. Let S = S, (L/K) U {c0}.
Then we have

er,s = No@n)/r(1 = ) ,

(cf. |[Popll, Remark 4.4.2]).

e K is an imaginary quadratic number field and v = co. Then ¢, 5 is essentially

an elliptic unit. Let S = S;um(L/K)U{oo} and let f be the conductor of L.
Using the elliptic unit ¢y, 5 0, defined by Oukhaba in [Ouk03, §3|, we obtain
with the Kronecker limit formula (2.4) in loc. cit.

wr,
o 12’LKwaf
€L,S = PLj0u )

where f; is the least positive integer contained in f.

K is a global function field and v is a fixed prime oco. Let § be the conductor
of L (this is an integral ideal of Ok ). Then there is an analogue oj pq
of the elliptic units constructed by Hayes in [Hay85, Thm. 4.17]. With the
Kronecker limit formula in this case (cf. last equation in loc. cit.), we then
obtain

U!L
— wy
er,s = Nuy/n(ag,ma) "

where Hj is the real ray class field of conductor f (for a precise definition see

Section [3.1)).

In these cases, Stark’s conjecture is known to be valid.

2.3 The Rubin-Stark conjecture

We will now introduce an integral refinement of St(L/K, S, r), the Rubin-Stark conjec-

ture.

2.3.1 The additional set T

The group of S-units still has Z-torsion. Although this is irrelevant when we talk about
rationality (since the torsion is killed by tensoring with Q), it clearly matters when
we consider integrality statements (as we have already seen in Section . We can
avoid this problem by working with the T-modified version of the L-functions and a
torsion-free T-modified unit group.
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Hypothesis 2.3.1. The finite set of places T satisfies the following properties:
i) SNT = 0.
(ii) Let T, be the set of places of L over the places in T. Then

{Cew(l): (=1 modw YweTr}=/{1}.
The hypothesis is satisfied if e.g. T' contains two primes of different residue charac-
teristic or if T" contains one prime of residue characteristic not dividing wry..

Definition 2.3.2. Let S satisfy the Hypothesis I]and let T be a finite set of places
such that SNT = (). The (S,T)-units of L are deﬁned as

Ofsr ={u€O0fg:u=1 modw YweTL}.
Lemma 2.3.3. If T satisfies Hypothesis then

(i) OF sr is a free Z-module.

(i) QO ¢ = QO ST
(iii) If u € OFf g, then u’" r(0) ¢ Of ST

Then we obtain a T-version of the Stark element, the Rubin-Stark element
nesr € R /\%[G} OF s which is defined by

(A Xs)(z.s7) = O5R(0) - (wo —w') A+ A (wy—y — ')

Analogously to Remark[2.2.2] the Rubin-Stark element is contained in the eg,-component
and we obtain a representation

nLsT = Aruir A« ANyt (2.3.1)

with Ar € eg, - R[G] and uy 7, ..., up 7 € OF g1
Then the T-version of Stark’s conjecture is

Conjecture 2.3.4 (St(L/K,S,T,r)). The Rubin-Stark element has rational coeffi-
cients, i.e. N s € Q/\;[G} OE,S,T.

2.3.2 Rubin’s lattice
We define Rubin’s lattice by
[jcﬁﬁT:{ue@/\Ogmlwﬂ\ A@JW)EHG]V%wwwrewﬁaﬂﬂ-
Z[G Z[G)
Then the Rubin-Stark conjecture is

Conjecture 2.3.5 (RS(L/K,S,T,r)). The Rubin-Stark element is contained in Rubin’s
lattice, i.e. npsT € n%[a] Or st
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Remark 2.3.6. The Rubin-Stark conjecture is known in the following cases:

e S contains more than 7 places which split completely in L: Then clearly eg, = 0
and hence 1z g7 = 0.

e [ = K: As a corollary of the previous case.

e r = 0: This is shown e.g. in [Tat84, Ch. III, Thm. 1.2|. In the number field case,
this is essentially the result of Deligne and Ribet, see [DR&0)].

e [L: K] =2: See [Rub96, Thm. 3.5].

e Certain multi-quadratic extensions if » = 1, for the proof and more details
see [DST97).

e The cases listed in Remark (in these cases we always have r = 1).

e Whenever the ¢eINC holds (see |[Bur07, Cor. 9.2|), e.g. if K = Q (see |[BGO3|
and [Flall]), K is imaginary quadratic (see |Ble06| and [BH21|) or K is a global
function field (see [Burll]).

e K is a totally real number field and L is a CM-extension of K as a consequence
of the Brumer-Stark conjecture which is proven in [DK20).

For our results in Chapter {4 we want to consider a p-component of the Rubin-Stark
conjecture as stated in [BKS17, Conj. 2.1]. So we fix an odd prime p and set

R X
UL757T T ZpOL,S,T'

By fixing an isomorphism C = C,, we can consider 1, g7 € C, /\;p[G} Ur.sr, and we
define

N Unsri={ue @ A\ Unsrl (oA Ao () €G] Yr, 0 € U g}
Zp[G] Z[G]

Note that Up s is a Z,[G]-module and U} g, = Homg, (UL s, Zy|G]). There is

a natural isomorphism 7Z, ﬂ%[c} Orsr = ﬂ%p[G] Ur,st. Then the p-component of the
Rubin-Stark conjecture reads

Conjecture 2.3.7 (RS(L/K, S, T,7),). nrsr € (g6 UrLsr-

We will simply write A" or ()" from now on, whenever the considered ring is clear
from the context.
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2.4 Rubin-Stark elements and their properties

2.4.1 Relation of the different elements

First, we consider the relation of the different elements introduced in the last sections:
Lemma 2.4.1. (i) For a fized data (L/K,S,T,r), the Stark element and the Rubin-

Stark element satisfy the relation

s = r(0)nps = [[(1 =0, ' Nv) s e R\ Of g1

veT

(i) If r =1 and St(L/K,S) holds, then the Stark unit and the Stark element satisfy
the relation

ers =wg-nrs € QOf 5.
Then it follows directly that

or(0)

wr,

nL,sT = €L,s -

Proof. (i) Since @g)T(O) = 6T(O)@g)(0) and A" \g is an R[G]-isomorphism, the de-
sired relation follows directly from the definitions of 1y s and 1z s 7.

(ii) The first relation follows directly from the arguments in Section[2.2.1l The second
relation is obtained by combining the first relation with part (i). O

As a consequence, we obtain several implications between the conjectures:

Corollary 2.4.2. (i) St(L/K,S,r) is equivalent to St(L/K,S,T,r) for all sets T
satisfying Hypothesis|2.35. 1.

(1) St(L/K,S,r) is equivalent to St(L/K,S,T,r) for any set T satisfying Hypothe-
sis[2.3.1

(111)) RS(L/K,S,T,r) implies St(L/K,S,T,r) and hence also St(L/K,S,r).

(w) Ifr =1, St(L/K,S) is equivalent to RS(L/K, S, T, 1) for all T satisfying Hypoth-
esis[2.3.11

Proof. For (i) and (ii) we show

St(L/K,S,T,r) for some set T
— St(L/K,S,r)
—  St(L/K,S,T,r) for all sets T.
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For the first implication, we only have to show that 1—o, ' Nv is invertible in Q[G] for all
v. Then we can invert §r(0) in Q[G] and the implication follows from Lemma [2.4.1 (i)}

For the inverse element we can use the geometric sum up to n :=|D,| — 1:

Xn:( L)t 1— (o' No)"*t 1 — Nyt
o V)t = = .
pr 1—o0,tNv 1—-o0,'Nv
Hence, we get

n

1

(1 — O'v_l]\/v’l})_1 = w Z(O'U_lNU)k S Q[G] .

The second implication follows directly from Lemma [2.4.1 (1)]
Part (iii) is clear since ()" Of ¢ € QA" OF 1.
Part (iv) is shown for instance in [Rub96|, Prop. 2.5|. O

2.4.2 Functorial Behaviour

In this section, we want to cite some results on the functorial behaviour of Rubin-Stark
elements under several changes of the basic data. We fix K, L, S, T and r satisfying the
Hypotheses 2.2.1 and 2.3.1] By Lemma [2.4.1] the same results can be applied to the

Stark units and the Stark elements.

Changing the set S

Let S D S be a finite set of primes disjoint to 7. Then the data K, L,S’,T and r
satisfies the hypotheses of the Rubin-Stark conjecture and we get the

Proposition 2.4.3. RS(L/K, S, T,r) implies RS(L/K,S’,T,r) and we get

NL,s', 7 = H (1—0,") nrsr.
ves\S

Proof. See [Rub96|, Prop. 3.6] and [Rub96| Prop. 6.1]. O

Note that r is fixed here, i.e. Proposition is only non-trivial, if S"\ S does not
contain a prime which splits completely. For adding completely split primes to S, we
have to introduce some more notation and fix an ordering of the set S’

Concretely, let S" = {vy, ..., v,} such that V' = {vy,...,v,»_1} are completely split.
Moreover, we assume V = {vg,...,v,_1} C S and '\ S =V'\V = {v,,...,v._1}. We
choose a prime w; | v; of L for each i = r,...,r" — 1. Define W := {w,,...,w_1}. For
each of these w;, we obtain the G-equivariant valuation by applying Lemma [2.1.5

Ord,,: L™ — Z[G]
xr—> Z ord,, (o(x))o .

oeqG
Combining these maps restricted to O; ¢ 1., we get

,r,/

OrdW = (Ordwr /\ tet /\ Ol"dwT,_l) 6 HomZ[G}(/\ OZ,S’,T’ A O;,S/,T) .
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Remark 2.4.4. If W = {w} consists only of one place, we will simplify the notation
and write Ord,, instead of Ordy,,. It will be clear from the context whether Ord,, is the
map applied to a number field element or the map applied to an element in an exterior
power. In fact, the definitions are consistent and meet in the case ' =1 and r = 0.

Now we can state the next

Proposition 2.4.5. For S and S’ as above, RS(L/K,S',T,r") implies RS(L/K,S,T,r)
and

n,sr = (—1)" Ordw (nr,s0.7)
where e =1’ — 1.
Proof. See [Rub96, Prop. 5.2 and Thm. 5.3]. O

Remark 2.4.6. The ordering described here is in fact the ordering as in [BKS16, §5.3|
shifted by one index. The shift is not necessary, but it turns out to be more convenient
for the statement of the conjectures in Chapter [4

We also want to consider a variant of the previous proposition. Suppose that
S = 58"\ {v;} for any i € {0,....,7” — 1}, i.e. we assume that we only remove one
completely split prime but this prime can be at an arbitrary position in V'. Then we
obtain

Proposition 2.4.7. For S and S" as above, RS(L/K,S",T,r") implies RS(L/K,S, T, )
and

st = (1) Ordy, (n,s17) -
Proof. See [Rub96, Prop. 5.2 and Thm. 5.3]. O

Changing the set T

Proposition 2.4.8. Let T D T be a finite set of primes disjoint to S. Then
RS(L/K, S, T,r) implies RS(L/K,S,T',r) and

nL,s, " = H (1—0,'Nv) - nsr.
veT'\T

Proof. See [Pop02, Prop. 5.3.1]. O

Change of the top field
As a last case, we want to take a look at the top field L.

Proposition 2.4.9. Suppose we have an intermediate field K C L' C L, then
RS(L/K, S, T,r) implies RS(L' /K, S,T,r) and

s = (\ Noj)wsr) -

Proof. See [Rub96| Prop. 6.1]. ]



28

CHAPTER 2. STARK’S CONJECTURE



Chapter 3

An annihilation result for global
function fields

In this chapter we define a group of elliptic units for global function fields and derive an
index formula for this group. Then we use these elliptic units to prove an annihilation
result for the ideal class group for cyclic extensions of prime power degree. The content
of this chapter is also presented in [Stu20]| and is accepted for publication in Acta
Arithmetica.

3.1 Class field theory in global function fields

We start with some new notation and a short review of some basic class field theoretical
facts for global function fields. This review is based on |[Hay85, §3, §4].

Let K be a global function field and oo be a fixed place of K. We fix the following
notation:

e I, is the constant field of K,

e O is the ring of functions which have no poles away from oo, i.e. we have O =

Ok {0} in the sense of ([2.1.3),

e d., is the degree of oo,
o h(K) (resp. h:= hg) is the class number of K (resp. Ok), i.e. h = hi o0,
o Wy =g —1,

e for any integral ideal m of K let Sy := {p C O | p prime,p | m} be the support
of m.

As in the previous chapter, we let ord,, be the valuation at oo and let K., be the
completion of K at oo with constant field F,. For any prime p of K we let k(p) be the
residue class field at p and Np = |k(p)|. Note that we have Np = ¢48®). Further we
get

h=h(K)ds .

29
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Now let p be a sign-normalized rank-1 Drinfeld module with respect to a fixed sign-
function sgn. Then we set K1) to be the extension of K generated by all coefficients
of p., x € Ok. Note that this extension is finite. Now for any integral ideal m C Oy,
we introduce:

® pn is the generator of the principal ideal generated by the elements p, for all
r €m,

e A, is the set of m-torsion points of p,
o Ky = Kau)(An),

e M, is the maximal real subfield of K, and is called the real ray class field of K
modulo m (in particular H = H ) is the real Hilbert class field of K),

o Hyoo = U, Hun-

For any extension L/K we define:

e (O} is the integral closure of Ok in L,

e hy is the class number of Oy,

o if p C Ok is a prime ideal, then py, is the product of all ideals of Oy, above p,
e if L/K is abelian and m is an integral ideal of K, then we set L, = L N Hy,
e S (L) is the set of places of L above co.

As before, we let p(L) be the group of roots of unity in L and set wy := p(L). Note
that wg = ¢ — 1. We also define

R s
(doo log(q))LEsK1—1

RL =

(cf. |[Ros02, Ch. 14]).
Remark 3.1.1. It is shown in [Hay85, §3, §4] that
(1) wp,, = wo for all m (see [Hay85, §3]), so Fy, is the constant field of Hy,

(i) [Hn: K] = 1 |(Og/m)]| (see [Hay85, Eq. (3.2)]) for m % (1) and [H : K] = h,

_h
(ili) [Kw : Hu] = weo for m 5 1 (see [Hay85, §4]) and [K(1) : H] = 3= for m = (1) (see
|[Hay85|, Cor. 4.8(2)]).

Now suppose that the extension L/K is Galois and p is a prime of K. Then we
recall that

e Dy C Gal(L/K) is the decomposition group of a prime B of L above p. If L/K
is abelian, this subgroup does not depend on the choice of the prime B3, hence we
write D, in this case.

o [y C Dy is the inertia subgroup. If L/K is abelian we write again I,.
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e (B, L/K) (or oy if the extension is clear) is a lift to Gal(L/K) of the corresponding
Frobenius element in Dy /Iy;. These elements form a conjugacy class in Gal(L/K)
which will be denoted by (p, L/K) (or 0,). If L/K is abelian and p is unramified,
this conjugacy class contains only one element which coincides with the Artin
symbol.

For any abelian group G, the group of irreducible characters of G will again be
denoted by G = Hom(G, C*). For any subset U C G, we define

NU:=> o€ Z[G].

oceU

Additionally to the character idempotents, we define the idempotent associated to a
subgroup U
1

ey = mNU € Q[G].

3.2 Elliptic units

Let € be the completion of the algebraic closure of K, and let I" be a lattice in €2, i.e. a
finitely generated projective Ox-module. The exponential function associated to I is
defined by

er Q—Q
z>—>zH(1—E).
~yel »)/
¥#0

We say that I' is special, if the rank-1 Drinfeld module associated to I' (see
[Hay85|, §5]) is sign-normalized with respect to the fixed sign-function sgn. For each I,
there exists an invariant £(I') € 2% such that {(I")I" is special. This invariant is unique
up to multiplication by an element of F.

3.2.1 Unramified elliptic units

Following [Ouk97, §2|, we can fix a fractional ideal ¢ of K and a choice of the invariant
&(c) such that the sign-normalized rank-1 Drinfeld module associated to I' := £(c)c is
exactly p. Let D be the differential of the twisted polynomial ring (see e.g. [Hay85, §4]|).
Then for any integral ideal a of K, the rank-1 Drinfeld module associated to D(p,)a™'T
is sign-normalized with respect to sgn, hence we can choose £(a™'¢) = D(p,)&(c). Any
fractional ideal of K is of the form d = ab~'c and setting 7 := (97 !¢, K(1)/K), we can
define

D(p)
£0) = &(c) .
® = Dl
Lemma 3.2.1. The element £(0) is well defined, i.e. it is independent of the choice of
a and b. It may depend on the choice of ¢ and &(c).
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Proof. Suppose that 9 = ab~'c = a’b’~!c. This implies ab’ = a’b and hence

Pav’ = Pa’b -
The ideal class group acts on the set of isomorphism classes of rank-1 Drinfeld modules
and via this action we obtain (cf. [Ros02, Prop. 13.15])
pab,pz/ab/ — paa,b/ — p‘;’uu/paa,7
ParePa”™ = Paas = o™ Pocr -

Since aa’ # 0 (we only consider nonzero ideals), we have D(p,y) # 0. Further we have
Oap! = Og/p = TOqy, SO We get

D(pa)” D(pe*®)  D(pax)
_ D(pab/) . D(pgf‘“’) B D(Pb’) Taa
"~ D(paw) D(pg") - (D(pu,)r) . H

With these definitions, we obtain analogously to |[Ouk97, Lemma 3] the following
explicit form of the principal ideal theorem

Lemma 3.2.2. Let 01,05 and 0 be fractional ideals of K. Then the ideal ngl_lOK(D 18
principal generated by £(01)/£(02). Moreover, we have

(6(01) ) (0,Kq)/K) B £(007Y)
£(0s) (007

Now let o € Gal(H/K) be arbitrary and let a C O be such that (a7!, H/K) = 0.
Let © € Ok be a generator of the principal ideal a”, then we can define

d(o) :== (m{(a)h)ww/wl( :

Remark 3.2.3. (i) The element 0(0)"% is well-defined, i.e. it is independent of the
choice of a and z. Indeed, it is even independent of the choice of ¢ and &(c): If
¢ and &'(¢’) were used to define invariants &’'(9) for any fractional ideal 9, then
¢'(0)0 would again correspond to a sign-normalized rank-1 Drinfeld module. Since
these lattices only differ by an element of p(H) (see e.g. [Ouk97, §2]), we obtain
£(0) = ¢£'(0) for some ¢ € pu(H). Taking the ws-th power kills the root of unity,
so the element J(0)"% will be the same.

(ii) The above definition differs from the one given in [Ouk97] by the factor 1/wg in
the exponent. This definition of d(¢) still depends on the choice of the generator
x and of the ideal ¢ and £(¢). However, two different choices only differ by an
element of ;(K'). Since we are only interested in subgroups of the units containing
wu(K), it suffices to define d(¢) “up to roots of unity”.

Lemma 3.2.4. Let 0,01,09 € Gal(H/K). Then ggal) € Op and

02)

() =,
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Proof. Let 0; C Ok be such that (0[1, H/K) = o0; and let z; € Ok be a generator of
o for i = 1,2. From Lemma [3.2.2) we obtain that

£(0,)" h(ahy—1 x2
WOK(I) =0y (01) OK(I) x_IOKu)
Therefore,
1‘15(01)
€ Oy
29&(02)" )
It is shown in [Yin97, Lemma 1.5 (1)] that
w
x . mx)] _ Yoo

hence we get

é)(01) . $15(01)h weefre X
a ($2§(02)h> <O

Now let @ C Ok be such that (07!, H/K) = ¢ and let z € Ok be a generator of d".
Then z;x is a generator of (9;0)" and we obtain

e (Es)

:ngf(DgD)h )
Now we can apply Lemma to the second quotient and obtain

nzf(0)"  m (5(01))(“%@/& h
TowE(090)h 1y £(02) :

LK1y /K)

Since x1, 25 € K, we get (x1/25) = x1 /x5 and hence

2o2é(00)0  \ 22 \£(22) 228 (02)"

naf(0,0)" (ﬂ <£(al))h> o (:Ulf(al)h)(b_l’[((l)/f() |

Raising to the ws /wg-th power gives

Since d(01)/0(02) € H and
O Kay/K)|ln =@ H/K) =0,

we obtain the desired result. O]
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3.2.2 Ramified elliptic units

Using the exponential function, we can define the elements

Am = E(m)en(1)

for each integral ideal m # (1). It is shown in [Hay85, §5| that this element is a generator
of the m-torsion points A/, of the sign-normalized rank-1 Drinfeld module p’ associated
to £(m)m. The construction of K, does not depend on the chosen Drinfeld module but
only on the sign-function, hence Ay € K(1)(Ay,) = Ky (cf. [Hay85| §4]). Indeed, if b is
an integral ideal of Ok such that b is prime to m and (b, K1)/K) = (m™!, K1)/K),
then one can show that (bc, Ky,,/K) defines a bijection A,, — A/, (note that {(m)m is
associated to the Drinfeld module be* p, then use [Hay85, Thm. 4.12]). It is also shown
in [Hay85, Thm. 4.17] that

Oy 1= _NKm/Hm(AnJ = )\;lioo - Hm

is a unit if m is not a prime power and that ay,: generates the ideal puI}:’/ Wk

Remark 3.2.5. (i) The element A\, depends on the choice of ¢ which was used to
define the invariants £(m). As already noted in Remark [3.2.3| changing ¢ would
change £(m) by a root of unity in H, therefore oy = Al> is independent of this
choice.

(ii) Note that our definition of «, differs from the one in [Hay85| by a sign,
i.e. am = —oum me. This is neccessary for obtaining the correct norm relation,

see Proposition below.

3.2.3 The group of elliptic units in an arbitrary real abelian
extension

Now let L be a real abelian extension of K of conductor m. Remember that for any
integral ideal n C Ok we defined L, = L N H,. Set

PLn = NHn/Ln (an)h .

Remark 3.2.6. Raising to the h-th power is neccessary to ensure compatibility with
the unramified elliptic units for the desired index formula. If there are no unramified
elliptic units (e.g. when L/K is a totally ramified extension), we can also work with the

elements n, = @2/ : , see Section .

Corollary 3.2.7. (i) Ifn is not a prime power, then ¢r, € Of .

(i) If n = p*, then @1, generates the ideal p[[Z:LU)]hwoo/wK.

Proof. This follows directly from [Hay85, Thm. 4.17]. O
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Definition 3.2.8. (i) For 0y,0, € Gal(L(;)/K) define

oy = Ve (553

where &; is any lift of 0; to Gal(H/K).

(ii) The subgroup Ay of OZ(D, generated by u(L) and the elements

8L(01)
8L(02)

for 01,09 € Gal(L)/K), is the group of unramified elliptic units of L.

(iii) The elements ¢y, for n | m, n # (1) are called the ramified elliptic numbers of L.

(iv) The Gal(L/K)-submodule P of L* generated by Aj and the ramified elliptic
numbers is called the group of elliptic numbers of L.

(v) The group of elliptic units Cp, of L is defined by Cp, := P, N OF.

Proposition 3.2.9. We have

YL p | n,
1—o; !
NL"F/Ln (QOL,“P) - SOL,l‘l ’ 7[ } p * nn 7é (1>7
Weo /W [H:L 9r (1
mp (aL(LJ(';—)l)> , n=(1),

where o, = (p, Ly/K) and z, is a generator of p". The last equation should be read

modulo roots of unity (cf. Remark .
Proof. We start with the definition of ¢y, ,, and obtain

Niop /2 (PL0p) = Nitgy /20 (@) = Nty 1, (Nity /1, (0p))"
= NHn/Ln (Nan/Hn (A;L':;JOO ))h
Now we obtain from |Tat84), Ch. IV, Lemme 1.1] that w,, is the greatest common divisor

of elements in the set {Na—1 | 0, = (a, Hy/K) = 1}. Then there exist ideals ay, ..., a,,
with o4, = 1 for each ¢ such that

n

Weo ::EE:fVai—-l,

i=1
and we obtain
Ny /in(Prmp) = [ ] Netwza (N AT )"
i=1
In [Ouk95] Oukhaba defined elliptic units 1(1;n,a"!n) for (a,n) = 1 which satisfy

Y(1;n,a tn) = \Nomoe,
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He also proved

Y(Ln,a 'n), pln,

. —10Vy) —
N m,((15np, 0" np)) = {¢(1;n, afln)lfalfl, pran#(1).

Inserting this yields for p | n

Nipsra(@rm) = [ [ Netw/ea Q0 ™" = Notyyr, A=) = o1

i=1
The case p t n, n # (1) follows analogously.
In the case n = 1, we use |Ouk97, Remark 1], where he showed that

Nr, /K, (1p) = é(g(_c)o

for a generator 1, of A,. As noted above, we can choose j, = )\‘(,bc’K"/ K)il, where b is an
integral ideal prime to p such that (b, K(1)/K) = (p~*, K1)/ K). Then we obtain with
Lemma [3.2.2)

~1, (r 1, K)/K) o
NKP/K(U()\IJ) = NKP/K(1)<Mp)(bC7K<1>/K) = (%) 5( K) )

Set x := x,, then the above observation yields

NLP/L(U(SOLAJ) = NLp/Lu) (NKP/Lp()‘P)h) = NKP/L(I) O‘P)h

h
= Nk /Lq, (NKP/K(I) ()‘p))
K

= NujL, (NK<1>/H (%)}j

wK/woo
Woo /WK g(OK)hMOO/wK
e (NK“”H (o e

| o(1) )"/
= alFwLwl Ny, <NK<1>/H (m)

: (1
b

— pWoo /WK [H:L(1)] (aL—(l)> O
(o))

3.2.4 Kronecker’s Limit Formulae

We fix a prime wy € Sy (Hy). Then for each subfield M of Hy, there is a unique prime
in Soo(M) below wy. Since oo splits completely in H,,, the valuations of these primes
are compatible. By abuse of notation, we denote each of these valuations by ord.,
i.e. for an element v € H,, we implicitly set

ordeo () := ord, ()

and analogously for each subfield M of Hy. The same convention will be used for
absolute values.
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Now we can state Kronecker’s second limit formula:

—

Proposition 3.2.10. (i) Let (1) # n | m and let x € Gal(H,/K). Then we have

L) =— 3 orda(ad)x(0).

* seGal(Hy/K)

—

(ii) For any non-trivial character x € Gal(H/K), we have

L0 =t > onda(d)().

ceGal(H/K)

Proof. Part (i) is exactly the last equation in [Hay85|, whereas part (ii) follows directly
from |Ouk97, Proof of Prop. 3] and Remark O

Remark 3.2.11. The proposition shows that we can regard the ramified elliptic units

as Stark units which was already indicated in Remark [2.2.7] Indeed, for n # 1 the set
S := S, U{oo} contains all places which ramify in H,/K and |S| > 2. Moreover, S
contains the completely split prime co. By definition of the L-function, we obtain

Ls(x;s) = (1 = x(00)Noo™) Ls,(x,5) = (1 = Noo™*)Ls, (X, 5)

and hence
1 — or [o%4
Ls(x,0) =log(Noo)Ls, (x,0) = ——  »  log (Noo™ "*~(*¥)) (o)
® seGal(Hq/K)
1
=—— > loglagl,, x(0).
* oeGal(Hy/K)

Comparing this with Conjecture yields €, s = ay up to roots of unity.

3.3 An index formula

3.3.1 Sinnott’s module

Remember that for a prime p of K the element 0, € G = Gal(L/K) is the lift of an
associated Frobenius element in D,/I,. Define 7, := o, 'e;, € Q[G].

Definition 3.3.1. (i) For any integral ideal n of O, we define

Py =N Gal(L/L) [ [(1 - ).
pln

(ii) The Z|G]-submodule U’ of Q[G] generated by p/,, where n runs through all integral
ideals of Ok is called Sinnott’s module.

(iii) Define U] to be the kernel of multiplication by NG in U’.
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Remark 3.3.2. (i) The notation U’ and pl, is adopted from |[CK19|. In the second
part of this chapter, we use a modification of Sinnott’s module which will be
denoted by U.

(ii) Note that for all integral ideals n, we have Ly = Lgedmm), hence p = pfgcd(mm).

Therefore, it suffices to consider the elements p) with n | m.

iii) If n # (1), we have p/, € U/. As in the imaginary quadratic case (cf. [Ouk03|) the
n 0
component of U’ generated by p’(l) intersected with U is generated by

poy(l—0o), oed.
If 0,0" € G are lifts of the same element 7 € Gal(L()/K), then
Py (L= 0) = pyy(L = o'),
hence it suffices to consider the elements
poy(1=7), 7€ Gal(Ly/K),
where 7 € G is an arbitrary lift of 7.

Now recall the convention introduced in Section and consider the logarithmic
map

IL: L — Q[G]

and the element

Also define
7 =1 —eg)l.
The analogue of [Ouk03|, Prop. 6] is then the next

Proposition 3.3.3. Let n # 1 be such that n| m and let 7 € Gal(L(1y/K), then

[1(prn) = wphy,

i (G0) ==

where T € G is any lift of T.
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Proof. We can verify the equalities on the y-components where x runs through all
non-trivial characters of G. Let m, be the conductor of x. Since ¢, € Ly, we compute

X3 (#rn) = D ordec (#7,) X' (0)

ceG

= Y > ords (977) X o)X (7

c€Gal(Ln/K) 7€Gal(L/Ly)

=X(NGal(L/Ly)) Y orde (¢7,) x (o).

o€Gal(Ln/K)

We first observe that if m, { n then x(N Gal(L/L,)) = 0, so

X(IL(¢Ln)) = 0= x(wpy) -

Therefore, it suffices to consider the characters such that m, | n. In this case, we have
Gal(L/L,) C ker(x) and hence y is the inflation of a character of Gal(L,/K) which
we will also denote by x (this is justified by Proposition [2.1.8 (i))). This character can
be inflated to a character x of Gal(H,/K') with Gal(H,/L,) C ker(x). Then we obtain

with Proposition [3.2.10 (i)}

XI5 (orn) = X(N Gal(L/Lo))h > orde (Npgyr,(an)?) X' (0)
o€Gal(Ln/K)

= X(NGal(L/L))h > > ords (af7) X (o7)

0€Gal(Ly/K) T€Gal(Hy/K)

= x(N Gal(L/Ly,))h Z orde (@) x (o)

o€Gal(Hy/K)
Ly))hweo Ls, (X_17 0)
)

L) [T = x 7' (0))x(w)

pln

= x(N Gal(L/
= x(N Gal(L/

= X(pw)-
The other equation follows analogously with Proposition [3.2.10 (ii)} ]
Corollary 3.3.4. We have [} (PL) = w - U].

Proof. This follows directly from Remark [3.3.2] [

3.3.2 Index computations

We briefly recall the definition of Sinnott’s Index (see [Ouk03, §4]). Let V' be a finite-
dimensional vector space over L = @ or R. A subgroup X of V is called lattice if
rkz(X) = dimz (V) and LX = V. If A and B are lattices of V and ~ is an automorphism
of V such that v(A) = B, then we define

[A: B] = |det(v)] .

If B C A, then [A: B] is the usual group index. Now we can prove
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Proposition 3.3.5. We have

. h
U} 15 (Py)] = (hoe) =171 2Bl
th

Proof. We can adjust the proof of |[Ouk03|, Prop. 7] to our situation. Using Proposi-

tion and

we obtain with the analytic class number formula [2.1.14

CL Seo(L) ( ) = gK,{OO}(O) ) H Lj{oo}(X7 0)
x#1

— _ Ry (doo log(q))ILH1—1 H L(x,0),

Wk
x#1

where r = |Sx(L)| — 1. Note that Rg () = 1 since O (0o} = MK). Remember that

_ R, Soo (L)
Ry = (doo log(q))[LiEI=1"

Applying Theorem [2.1.14{ once again, this yields

h
H L X: wK LLhRL .

By Corollary we have [} (P,) = wU] and hence we obtain
U = 1L(Pr)] = [Up = wUp] = |det(w)]
()
= J[xw)

x#1
[LK HL -1 0
x#1
A hrR
— (hway, [L:K]-1 WkhRphvg
(httos) “wih
The equality (x) follows from [Sin80, Lemma 1.2 (b)]. O

Let p | m be a prime ideal of K. The norm relation of Proposition implies that

Woo /Wi [H:L .
Ty forltLml o Py, where z, is a generator of p”.

Definition 3.3.6. Let Q1. be the subgroup of P;, generated by p(L), Az and the ele-
ments xww/wK[H @) for all p | m.

Now we can state the analogue of [Ouk03| Prop. §]
Proposition 3.3.7. We have

[L,[L N Hye : Ly
PPrNK: QU N K]’

[5.(PL) : 1(CL)] =

where p runs though all mazimal ideals of O.
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For the proof we need the following
Lemma 3.3.8. (i) ker(l) N OF = u(L).

(ii) 1 (Cr) =1;(CL).

Proof. (i) The inclusion u(L) C ker(ly) N Of is clear. So let « € ker(l,) N OF, then
by definition of OF, the valuation of x at every place which is not dividing oo
is 0. But since x € ker(l;), we find

0=l(z) = z:ordoo(a:")a_1
oelG

and hence ord,,(z7) = 0 for all 0 € G. Therefore, the valuation of = at any place
is 0, so # must be in the field of constants. Since x # 0, we obtain x € u(L).

(ii) Let u € Cp, then

1

(Tel lL(U) = @lL<NL/K(U)) .

Since Nk (u) € O = p(K), we get by part (i)

€q lL(U) = 0,
hence
lp(u) = I (u). O
Proof of Proposition[3.5.7. We easily see that if L C H, then P, = Qp = Cf and
L = Luyy = LN Hye, so there is nothing to show. Hence we can assume m # (1).
Defining P' := P;"* and C' := P'N Of = C}*, we compute
(15 (Pr) : 1(C")]
G (Pp): 13(Cp)] =
R ARG
UL (Pr) - (P o :
= L (P): 1;(C
10 0] ) )
= [IL(P) - 1L,(C")]

15 (Py) 5 (P)] = wi ™™ = [15(Cy) < 15.(C).

We also define @ := Q7" and A" := Q'NOF. Then we claim that Q' Nker(l;) = Q@'NK
and P’ Nker(l7) = P'N K. One of the inclusions is clear in both cases, since obviously
K> Cker(l}). For the other inclusion let « € ker({} ). Then for any ¢ € G we find

0=ocli(x)=1(z7"),

so 277! € ker(l;). From [Hay85, Cor. 4.13] we get that z°~! € Of for every z € P/,
hence also for every x € Q. By Lemma we conclude that 27! € u(L), and since
x is a wy-th power, we find 2! = 1 for every o € G. Hence z € K.
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From this we obtain the following commutative diagramm with exact rows and
columns:

1 1 1

| | |

*

| — S QONEK — QAN s Q)15 (A) —— 1

I

| — 5 PAK — PO~y 15 (P)/I5(C7) —— 1
Applying the snake lemma gives
UL (P) - ()] _ [P/C: Q/A]

UL(Q) - IL(A)] - [PPNEK QN K]

Since K* C ker(l}) we get [; (Q') = 17 (A"). Now suppose that m = []°_, p7* is the prime
decomposition of the conductor of L. For the computation of the index [P'/C": Q'/A]
we choose prime ideals B; C Oy, such that B; | p; and define ¢; to be the ramification
index of B; over p,. Let ord; be the valuation associated to 3;, then we can consider
the map

ord;: L* — Z°

x +— (ordy(z), ..., ordg(z)) .
It is clear that C" = P’ Nker(ord;) and hence we obtain
[P/C": @A) = [ordy(P') : ord,(Q)]
For this index we compute for 1 <i<sand 1 <e<eg;

ord(p145) = ord (Vi 1, (04)")
=h- t(L/Lpf) . OI'd.i(]\[pr/Lpf (Oépf» s

where ¢(L/Lye) denotes the ramification index of p; := B; N Lye in L/Lye and ord; is
the valuation associated to p;. Recall that

angHp({_ = (pi)qﬁ(:/wK — quoo/wK 7
qlps

S0 we obtain

Weo

a prime, | }| - [(Hy / Fye) = e CERIOIE

ord (N1, (o)) = | {0 € O,
where f(Hye/Lye) is the inertia degree of p; in Hye, and hence

Woo
ordi(goLm?) = 'LU_Kht(L/Lple)[H . L(l)] .
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This gets clearly minimal for e = e; hence we obtain

ord;(P) = @ (wLU)OOh t(L/Lye:) [ H - L(l)]Z> :

i=1 Wi
On the other hand we find

Ord,i (xL?zL(l)]wOO/WK> — w;.o[H . L(l)] Ordi(xpi)'
Wk

ince y, 1 nerator W in
Since z,, is a generator of p?, we obta

Ordi@m) =h- Uz

and hence
i Wi, Weo
dr(Q') = h|I,|[H : Li|Z) .
ord.(Q') zﬂj( o ] [ Lw)2)
Putting these results together, we find
ord, () < ord (@] = T[22l
A L yn/ oy
=1 pz
With [Lyei : L] = t(L/IpL" —y we obtain the desired result. O
1 pzl

Now we can state the index formula analogously to |[Ouk03, Thm. 1]:

Theorem 3.3.9. Set d(L) := [P,* N K : Q;* N K]. Then we get

(hweo ) LK"Yy g by, Hp[L N Hyoo @ Ly [Z[G] - U]
th [L : L(l)] d(L)

O : CL] =

Proof. Let R = Z|G] and let Ry be the kernel of multiplication by NG in R. Since
ker(l) N OF = p(L) by Lemma [3.3.8 (i), we get
[OF : CL] = [1L(OF) : 1L(CL)] = [1L(OF) : Rol[Ro : 1.(CL)]
[RO : Ué] /
=——"“—[U): 11,(C
Ro-1,(07)] 0 )

- %[Ué 1 (P (Pr) = 1L(C)).

Note that all the indices above are defined since each of the Z-modules has the same
rank. By definition of Sinnott’s index, one can easily show that

[Ro : 1L(Of)] = [det(A)] ,
where A is the matrix with entries

(orduy (i) weSw (L)\{wo}
i€ {1, LK) 1)
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where wy is an arbitrary place in S,(L) and the units uy, ..., u.x)-1 € OF project to
a basis of Of /u(L). By the definition of the regulator, we hence get

Ry, = |det(—A)| = |det(A)]
so [Ro : I(O])] = Rr. Moreover, the identity
[R:U']=[NG-R:NG-UR,: U]

holds. It is clear that NG - R = NG - Z and for computing NG - U’" we just have to
consider

NG - pjyy = NG - N Gal(L/L)) = |Gal(L/Ly))| - NG.
Therefore, NG - U’ = |Gal(L/L(1))| - NG - Z and together we get
[NG-R:NG-U'|=|Gal(L/Lu))| = [L: L]

and hence

[R:U'|

Using these computations and the results of the Propositions [3.3.5] and [3.3.7] we obtain

(hwoo)[L‘K}_lehL Hp[L N Hyo : L(l)] [R : U/]
wih T:lo]  dD)

05 Cp) = O

We state some results on [R : U’] similar to [Ouk03, §6, §7:

Proposition 3.3.10. (i) The index [R : U'] is an integer divisible only by primes
dividing [L : Lqay). Moreover, if Gal(L/Lqy) is the direct product of its inertia
groups or if at most two primes ramify in L/K, then [R:U'] = 1.

(ii) If G is cyclic, then [R: U'| = 1.

(iii) If L = Hy for some integral ideal m = [[;_, p;* for some s > 3 and (h,wg) =1,
we get

R:U]=wi® Y
where e is the index of the subgroup generated by the classes of p; in cl(K).
Proof. (i) This is [Ouk03, Prop. 16].
(ii) This is [Sin80, Thm. 5.3].

(iii) This is |[Ouk03, Prop. 18].
Note that the arguments are based only on the group structure of G' and hence can
also be applied in the case of function fields. n
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Remark 3.3.11. (i) In |[Ouk92] H. Oukhaba defined a group &, of elliptic units in

(i)

an unramified extension L/K. He also showed that the elements of £1<“>" are
of the form

0(5eham)

for 0 € G and certain rational numbers m, € Q (cf. Prop. 3.6 in loc. cit.). He
also derived an index formula in this case:

h

In this case, our index formula yields

h
X . —(h - [L:K]fle L.
0 : Ci) = (9120

From the above description we find that S}j’“h C (', and we get

Woo wr,
[CL:gL h] :ha

In [Yin97| L. Yin defined a group C of extended cyclotomic units in the ray
class fields K. The ramified elliptic units in this article are in fact norms of
Yin’s cyclotomic units. However our construction of the unramified units is quite
different to the one in [Yin97|. Nevertheless, Yin also computed an index formula

0%, + (CNOg )] = wicha, ,

where a = 0if s <2 and a = ¢(25°2—1) — (s — 2) if s > 3. Note that there is the
additional assumption (h,wg) = 1 in the case s > 3. With these assumptions,
we get from our index formula

o Wrhm, (s
(0% + Cry) = () I 28 V(R U

With Proposition |3.3.10] this yields

0%, Ol = (hwoe) 2 wichyy,

3.3.3 The index d(L)

To conclude this section, we want to analyze the index d(L) in some detail. We obtain

d(L)

= 1 in essentially the same cases as listed in [Ouk03, Remark 2| for imaginary

quadratic base fields. First we see that if L C H, then there are no ramified elliptic
units and hence P, = Qr = Cp, so d(L) = 1. Hence we can assume m # (1) for the
rest of this section.
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Lemma 3.3.12. The quotient (P, N K)/(QY* N K) is annihilated by
(i) [H: L],
(i) the least common multiple of [Lyei : L] fori=1,...s.

The proof of part (i) is similar to the one of [Ouk03, Lemma 2| and needs the
following analogue of |[Ouk03, Lemma 1]:

Lemma 3.3.13. Let x € Py,. Then there exists a € K, an abelian extension M /K and
y € M such that

(i) vt = qvrv=/vsyl where f = hwpwe,
(11) The valuation of o at every prime ideal of O is divisible by h.

Proof. 1t suffices to check the claim for the generators of Pp. If x € (L), 2% =1 and
hence we can choose a =y = 1.
Let © = ¢, for some n | m, n # (1). Then by definition, we get

f

2L = Np, p, (A= )he = I 700 .
T7€Gal(Hn/Lxn)

where 7 is any lift of 7 to Gal(K,/L,). Setting a := 1 and

y= [ 7O €k,

T7€Gal(Hn/Lx)
we obtain the desired properties.
Now let z = gi((clrg for some o € Gal(L(;)/K). Let p be a prime ideal of Ok such
that (p, L(1)/K) = o~'. Let 8 be a generator of p". Then by the norm relation m

we get

Tt = ﬂi[H:Lm}wLwoo/wK NLP/L(I) (WL,p)wL
L O\
f

= BHLlwrwe/wk H () 7
TGGal(Hp/L(l))

where 7 is any lift of 7 to Gal(/K,/L(1)). Hence we obtain the desired result by setting
a = g HLm] and
Y= H T(N\p) € K, O

TGG&I(HP/L(U)

Proof of Lemma[3.3.13 (i) Let R be the subgroup of K* generated by x;”fw‘”/ K for

[HL(l)]woo/wK

i=1,...,s. Since @, is generated by p(L), Ay and the xy, , we obtain
that Q7" is generated by A" and the :B,L?:L(l)]www/ Y Since

AT"NK =AT"NO0Ok =AT"Npu(K) =1,
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(i)

we finally obtain that
QY N K = RHLw],

Now we are left to show P;"* N K C R. For this purpose let x € Py, be such that
z¥t € P* N K. By Lemma , we obtain elements o € K and y € M such
that vt = qWrv=/"skyf Since z¥t € K, we find that y/ € K. Since K(y) C M
is abelian over K, we can apply [Sta80, Lemma 6] to obtain an element z € K
such that y/“x = 2/ (note that wg | f). Therefore, we get that y/ = (- 2//*x for
some ¢ € p(K), so

TP — C i (azh)wLwoo/wK )

Therefore, ¢ € LYt N u(K) = 1. Since x is a unit outside py, ..., ps, s0 is az’.

Since each valuation of « is a multiple of i by part (ii) of Lemma [3.3.13] we get

a"O = pi™ - phrs = (Hx )

for some r; € N. Hence,
WL Woo /WK

where ( is again an element of L= N u(K ) = 1. Therefore, 2" € R.

Let x € P, be such that % € P/’ N K. By the definition of P, x can be written
as

S
A
=1

where u € OF and \; € Z[G] (note that the elliptic numbers ¢y e for 1 < e <e;
can be written as a norm of ¢, ). Now we define ord; x to be the valuation
associated to p;. Remember that ord is the valuation of a fixed prime ideal 3; of
L over p;. Then we obtain

ord; (") = — ord;(z"*) = W ordi(gp’L\ip%) :

Using the valuation computed in the proof of Proposition and defining p; € Z
to be the sum over the coefficients of \; (i.e. y; is A; evaluated by the trivial
character), we get

Mz‘t(L/iji) Woo

ord; k(z"") = 1
Pi

—wh[H : Loy € Z.

Wg
Let g be the least common multiple of the [Ly: : L] for i = 1,...,s. Since
[Lpfi . L(l)] =

m we get that

OI‘di7K( ng) € —th[H L )]Z
Wk
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But we know that the ideal p;ﬂw/wK'th[H:L(l)] is generated by x;m/wK'wL[H:LM

which is an element of Q7> N K. Since z is a unit outside of py, ..., p,, we find
VIO, = ﬁp:i'wOO/wK"th[H:L(l)} _ ( 5 x;i.ww/wK.wL[H:Lu)]) Ox
=1 =1
for some r; € Z and hence "9 € Q7" N K. O
With the results above, we deduce
Proposition 3.3.14. If one of the following conditions holds, then d(L) = 1:
() LCH,
(i) HC L,
(iii) [H : L] and [L : Ly are coprime.
Proof. (i) This was already noted in the beginning of this section.

(ii) This is Lemma (3.3.12 (i)|, since [H : L(;y] = 1 in this case.

(iii) Since [Lyei @ L) | [L : L], the combination of Lemma (3.3.12 (i)| and [3.3.12 (ii)|
proves this case. (]

In order to obtain more results on the index d(L), we establish a connection to
distribution theory. This approach was already used in [Ouk03| for imaginary quadratic
base fields.

For this purpose, we set D := P;'* /(Q7* N K). The Z-rank of P;’* is [L : K| —1+s.

Moreover, we have seen in the proof of Lemma [3.3.12] that Q7> N K is generated by
xLIjZL“)]wme/wK, hence the Z-rank of Q7* N K is s and D has Z-rank [L : K] — 1. By
the construction of @, it is also clear that NG-D = 0, so (P*NK)/(Q}*NK) = DY.

Let

S = P zZ[Gal(Ly/K)]

njm

and let S C ¥ be the submodule generated by the following relations: For n | m and a
prime q such that n’ :=nq | m take

NGal(Ln//Ln) — 1Ga1(Ln/K) if q | n,
NGal(Lﬂ'/Ln) - (1Gal(Ln/K) - (qv LH/K)_l) if q + n,

where 1ga(r,/x) denotes the element 1 in the component Z[Gal(L,/K)].

Now let 7 be the set of all ideals n | m such that n = [[;_, p{""* with r; € {0,1}.
For any n € T define S(n) to be the ideal of Z[Gal(L,/K)] generated by the elements
NI,,(n) for p; | n, where I,,(n) is the inertia subgroup of p; in Gal(L,/K). Let z, be

the exponent of the torsion subgroup of Z[Gal(L,/K)]/S(n). Then we obtain the next
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Theorem 3.3.15. We have
rkz(X/S) =[L: K].
Moreover, the torsion subgroup Tor(3/S) of ¥/S is finite and annihilated by [], o7 -

Proof. One can use the proof of [BOO1, Thm. 3.1|. Note that we do not work with ray
class fields here, but using L, instead of K, and then defining the same objects will
give the same result for our case. O

Proposition 3.3.16. If /S is Z-torsion free, then d(L) = 1.

Proof. First, we claim that we obtain a surjective map f: ¥/S — D. Indeed, we can
define f': 3 — D by sending o € Gal(L,/K) to the class of p7%” if n # (1) and to the

aL(O'71

class of (Tl)) o if n = (1). This map is clearly surjective and by the norm relations
in Proposition
f:3/S — D.

On the other hand, we can define a map ¢': ¥ — U’ by sending o € Gal(L,/K) to
oph,, where o is any lift of o to Gal(L/K). This map is again surjective and S C ker(¢’),
hence we obtain a surjective map g: ¥/S — U’.

Since g is surjective and we have rkyz(U’) = [L : K] = rkz(3/S), we obtain that
ker(g) € Tor(X/S). Whenever ¥/S is Z-torsion free, we hence obtain that g is an
isomorphism. If this is true, we can define ¢: U" — D by ¢ = f o g~!. This is clearly
a surjective map and since p(NG - u) = NG - ¢(u) = 0, we get that NG - U" C ker(yp).
Since Uy, U’ and NG - U’ are torsion-free, we get Uj = U'/NG - U’ as Z-modules and
therefore we obtain a surjective map Uj — D. Since U] has Z-rank [L : K] — 1 and is
Z-torsion-free, we obtain U} = D. Finally, since (U})Y = {0}, we get that DY = {1}
and hence d(L) = 1. O

, we obtain that S C ker(f’). Hence, we obtain a surjective map

Proposition 3.3.17. If one of the following conditions holds, ¥./S is Z-torsion free
and hence d(L) = 1:

(i) Gal(L/Lqy) is the direct product of its inertia subgroups.

(i) s € {0,1,2}.
(iii) Gal(L/Lqy) is cyclic.
Proof. (i) Here we can use the proof of [BO01, Prop. 3.5], modified to our case by
replacing K, by L,. Then the claim is simply [BO01, Cor. 3.8].

(ii) The case s = 0 is already covered by Proposition [3.3.14

For s = 1, we have m = p° and hence Gal(L/Lq)) = I,. Therefore, this case
follows from part (i).

For s = 2, we have m = p{'p5’. We clearly get that L« /L is totally ramified
at each prime above p; and unramified everywhere else, so Lpil N Lpgz = L.
Comparing the ramification indices and the degrees of the extensions shows that
L = Ly Lye> and we get I, N1y, = {1} and Iy, x Iy, = Gal(L/L(y)), so the claim
follows again from part (i).
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(iii) Let ¢ € Z be a prime number, then we will show that ¢ t z, for each n € T with the

same method as in the proof of [BOO1, Prop. 3.5]. For this purpose let I,(n) be
the inertia group of p in Gal(L,/L1y) and let S(n) be the ideal of Z[Gal(Ly/L))]
generated by NI,(n) for p | n. We decompose

Z[Gal(Lo/K)]/S(m) = D Z[Gal(La/Lqw))l/S()7T,

’TEGal(L(l)/K)

where 7T is a lift of 7 to Gal(L,/K). So we have to show that Z[Gal(Ln/L(l))]/g(n)

has no ¢-torsion, or equivalently that
Z, ® Z{Gal(Lo/ L)) /S(n) = ZelGal(La/ L))}/ S(n)

is Zy-torsion-free (by abuse of notation we denote the ideal S(n)Zg[Gal(Lu/L(l))]
also by S(n)).

Now let Gal(Ly/Ln)) = G' x Gy(n), where Gy(n) is the ¢-Sylow subgroup of
Gal(Ly/Lqy) and ¢ { |G'|. Similarly to the arguments in [BOO1|, we obtain a
decomposition by the irreducible characters of G’ and hence we have to show that

A[Ge(m)]/S () Ay [Ge(n)]

has no Z-torsion, where A, = e,Z,[G"]. If we decompose I,(n) = I;(n) x I, ,(n)
into its (-Sylow subgroup I, ¢(n) and its prime-to-(-part I (n), we find that

e Ny() = § ¢ Mot XL ) =1,
v 0, (L)) £ 1.

Hence, the ideal S(n)A, [Gy(n)] is generated by e, - N1, ,(n) for all p | n such that
X(I,(n)) = 1. Since Gal(L/L)) is cyclic, so are Gy(n) and each I, ,(n). Hence,
the I, ,(n) are totally ordered by inclusion and we can find a prime q such that
Iqe(n) C I, o(n) for all other primes p | n with x(Z,(n)) = 1. Therefore,

SM)A[Ge(n)] = (ey - Nge(n)).
The Z,~-module
A[Ge(m)]/(ey - N1ge(n))

is free, so it is Zs-torsion free and therefore ¢ 1 z,. Since this is true for each prime
¢ and each n € T, we find that ¥/S is Z-torsion-free and hence d(L) = 1. O



3.4. A NON-TRIVIAL ROOT OF AN ELLIPTIC UNIT ol

3.4 A non-trivial root of an elliptic unit

With this definition of elliptic units we can prove an analogue of the main result of
[CK19| in the case of global function fields. In the first step towards this annihilation
result, we will take certain roots of our elliptic units.

3.4.1 Preliminaries

We use the notation from the previous sections with the following additional assump-
tions:

e Suppose p is an odd prime such that ptq-(¢g—1) - h.
e L is a real cyclic extension of K of degree p* for some positive integer k.
e We change the notation to I' := Gal(L/K). Let o be a generator of I'.

Remark 3.4.1. Note that the assumption on L and p t h are exactly the same as in
[CK19|. The assumption p{ (¢—1) = wg is also implied by the hypotheses stated there.
The only new assumption is p { ¢, i.e. we suppose that p is prime to the characteristic
of K, which is a natural hypothesis when dealing with function fields.

Note that since p 1 h, we have
LNH=K

and we assume that there are exactly s > 2 primes pq,...,ps of K which ramify in L.
We introduce the additional notation:

o [:={1,..,s},

— ; h
® r;:=xy, is a generator of p7,

B, is a fixed prime ideal of L over p;,

For any abelian extension M/K let D;(M) := D,, C Gal(M/K) be the decom-
position group of p; and I;(M) := I, € D;(M) be the inertia group of p;,

t; == |I;(L)| is the ramification index of B, over p;,
e n;:=[G:D;(L)].
Then it follows that ¢;n; | p* and

n;—1

PO =[] ‘I‘;jai~
=0

Since p {1 ¢, this implies that the extension L/K is tamely ramified and hence its
conductor is square-free. Therefore the conductor is given by m; := m =[] je1 Pj-



52 CHAPTER 3. ANNIHILATORS IN GLOBAL FUNCTION FIELDS

3.4.2 The distinguished subfields F}

For any subset ) # J C I we set m; :=[] jes Pj- With our previous observation we find
that L C Hy,.

Lemma 3.4.2. L C[]. ., H,,.

jel

Proof. By class field theory, we have a canonical isomorphism (see e.g. [Hay85| Eq. (3.1)])
Gal(Hw/H) = (O /m)”* /im(u(K)) .

With the Chinese Remainder Theorem, we get

.  [Hw:H]  [(Og/m)*|/wk [Licr (Ok /p;) "]
[Hy HHm] = [ng]—_lpj ¥ HjE[[Hp]. CH) wKHjeI‘(OK/pj)X|/wK

jel

o s—1
= Wg -

The second equality follows since for any 2 < j < s we obtain Hy,, N z;ll H, = H by
considering the ramification of p;. Since p { wy, we get L C [[,c; Hy,. O

Using the canonical isomorphism of the above proof, we obtain
Gal(H,,/H) = (Ok /p;)* / im(u(K)) ,

which is a cyclic group. Since ¢; | [L,, : K] | [Hy, : K] and p { h, it follows that
tj | [Hy, : H]. Using p { h and |[CK19, Lemma 2.1] we can define F; to be the unique
subfield of H,, such that [F; : K] =t;. Then F;NH = K and F};/K is totally ramified
at p; and unramified everywhere else.

From now on, we will write H; := Hy, for each ) # J C I and

Fy=]]F cH,.

jeJ

Note that the conductor of F; is m;. The definition of F; implies that the Galois group
Gal(Fr/Fnyy) = 1;(Fr) is the inertia subgroup of a prime of F; above p;, in particular
for each j € I we have |Gal(F;/Fp )| =t;.

Lemma 3.4.3. For any two subsets ) # J; C Jy C I, we have Fy, = Fy, N Hy,.
Moreover, FiNH = K.

Proof. The inclusion F;, C Fj;, N Hy, is clear. For the other inclusion, we use induction
onn = |Jy\ Ji|. The case n = 0, i.e. J| = Jo, is clear. If n > 1, we fix an index
j € Jo\ Ji and we see that

Fp O Hy © Fry 0 Hypggy € Fipvg
by the induction hypothesis. But we clearly also have F;, N H;, C H},, hence
FJ2 N HJ1 g FJQ\{]} N HJ1 g FJ1

by the induction hypothesis.
The second assertion follows, since [F; : K] is a p-power and p 1 h. ]
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Proposition 3.4.4. For each j € I we have FjHp ;3 = LHp 5. The Galois group
G = Gal(F;/K) = [ [ Gal(F}/Fp ;)
jel
1s the direct product of its inertia subgroups. Moreover L C F7.

Proof. We can take the proof of [CK19, Prop. 2.2] here, since no changes are necessary.
O

Corollary 3.4.5. (i) For each j € I we have
(L) = Gal(L/L N Fpgy) = (014 .

Moreover, FpgpyL = Fr and [LN Fpygy - K] = et

E.
(i1) Fr/L is an unramified abelian extension.

iii) There exists at least one index jo € I such that t;, = p* so that G = Gal(F;/K
Jo
has exponent p*.

Proof. See |[CK19, Cor. 2.3]. O

3.4.3 The elliptic units
Since F; N H = K by Lemma there are no unramified elliptic units and we define

1/h
Ny = NHJ/FJ<amJ) = QOF{,,mJ € O, ,

cf. Remark [3.2.6, Let 0; € G = Gal(F;/K) be the lift of the Frobenius of p; which
is uniquely defined by oy[r, , = (pj, Fn 3/ K) and oj|r; = 1. Then we can state the
next

Lemma 3.4.6. For any j € I we have
D,(E) = (™) = (ol 1%
Proof. See [CK19, Lemma 3.1]. O
Analogously to [CK19, Lemma 3.2|, we obtain
Lemma 3.4.7. We have u(Fr) = u(K).

Proof. For ( € u(Fy), the extension K({)/K is a constant field extension. Since all
constant field extensions are unramified, we get K(¢) C F;NH = K, s0 ¢ € u(K). O

Proposition implies that for each J C I and each j € J

1—0'.71 .
N oy dingy s IR, 3.4.1
FJ/FJ\{J}<77J) {Cx;{)cjx;/wx J\ {ji} =0, ( )

for some ¢ € p(K).



o4 CHAPTER 3. ANNIHILATORS IN GLOBAL FUNCTION FIELDS

In analogy to [CK19], we use the following definition of elliptic units:

Definition 3.4.8. e The group of elliptic numbers Pr, of Fr is defined to be the
Z|G]-submodule of F} generated by u(K) and by n, for all § # J C I.

e The group of elliptic units Cr, of Fr is then defined as Cp, := Pr, N O, .

e The group of elliptic numbers Pr, of L is defined as the Z[T']-submodule of L*
generated by u(K) and Ng,/p,nr(ng) forall O # J C 1.

e The group of elliptic units Cr, of L is defined as Cr, :== P, N OF.

Since F1 N H = K = LN H, one can check that these elliptic units are related to
the units of Definition by

CFI :C%] ‘/"L(K>7
Cp=Cp-uK).

This fact and Theorem [3.3.9] imply the next Lemma. We first need the following

Notation. Let L be the maximal subfield of L containing K such that L/K is ramified
in at most one prime ideal of K.

Note that since I' is cyclic and of prime power order, the field L is unique.

Lemma 3.4.9. (i) We have

0F, + Cr,] = wlfr1 1o
T Y

> h
[OZ . CL] _ w[ogzK]fl hL -
hIL : L]

(ii) For 8 € Pp, we have B € Cp, if and only if Np,/k(B) € p(kK).

Sketch of a proof. For more details and part (i) see [CK19, Lemma 3.4]. First, we
see that by the observation above [Cp, : Cp,] = hlFrEI=tand [C;, : Cp] = hIEEI-L
Moreover, it follows from Proposition [3.4.4, Proposition [3.3.10 (resp. [3.3.10 (1))

and Proposition [3.3.17 (resp. [3.3.17 (1)) that the last quotient in Theorem [3.3.9
is equal to 1 for L (resp. Fy). We also obtain wr, = wy = wg by Lemma 5.4.?,

Lay = K, Fi N Hye = Fj for p = p; and [[;_,[F; : K] = [F; : K], which yields the
first equation. For the second equation, we consider the definition of L. By part (iii)
of Corollary [3.4.5] we know that there is at least one prime p; which is totally ramified
in L. Therefore, L is the maximal subfield of L which is unramified at every prime
except p;, hence L = LN Hye. Since for p # p; the extension L N Hpe is unramified at
p; and p; is totally ramified in L, we find that L N Hy« = K for p # p; hence we obtain
[1,[L N Hyw : K] = [L: K]. O
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Now we use a modification of Sinnott’s module defined in [GK14b|. This module U
is a Z[G]-submodule of Q[G] @ Z° generated over Z[G] by certain elements p;, J C I.
Each Z-summand is endowed with the trivial G-action and has a standard basis element
denoted by e;.

Define

U PF] — U
Ny —— PnJ
for 0 # J C I and ¥U(u(K)) = 0.

Lemma 3.4.10. The map V is a well-defined Z[G]-module homomorphism satisfying
ker(V) = p(K) and U = Y (Ppg,) ® (NG - Z).

Proof. The proof closely follows the proof of [CK19, Lemma 3.5].
From |GK14b| we get that
U={ps|J S I}z @ NG-Z. (3.4.2)

Hence, we obtain an embedding of Z[G]-modules ¢: U/NG - Z — U such that
im(e) = ({ps|J € I})ziq)- Define a map ®: U — Pp, by

CI)(PJ):TII\L J,C«--la
®(pr) = 0.

Comparing the relations [GK14b| (1.10)] with the norm relations in Proposition [3.2.9)
shows that @ is a well-defined Z[G]-module homomorphism. By the definition p; = NG
from |GK14b|, we get ®(NG - Z) = ®(p;Z) = 0 and since

Pry = {{ns |0 # J € I} U p(K)zie) = (2(U) U p(K) zicy

we obtain a surjective Z[G]-homomorphism ®: U/NG - Z — Pg, /u(K). Note that
U (and hence U/NG - Z via ¢) and Pp, /u(K) are Z-torsion-free, therefore ® is an
isomorphism if and only if both modules have the same Z-rank (see below).
We note that since the elliptic numbers are S-units where S consists of the s ramify-
ing places, the Dirichlet unit theorem implies that rkyz(Prg,) < s+ rkz(O; ). Moreover,

I
we know from the norm relations (3.4.1)) that Pp, contains powers of xy, ..., z5. These
are linearly independent over Z and are clearly not contained in Cp, hence we find that
s +1kz(OF,) > 1kz(Pr,) > s+ 1kz(Cr,)
and since the elliptic units have finite index in O;I, we obtain equality. Therefore,

rkz(Pp,) = s + kg (Of,) = s + [Fy : K| = 1 =1kg(U) — 1, (3.4.3)

where the last equation follows from |GK14b, Remark 1.4|. Hence d is an isomorphism
and we can define ¥': Pp, — U as the composition of maps

Pry — P Ju(K) 25 UNG -2 U
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By definition, we then obtain

U'(ns) = prs,
V(u(K)) =0,
so ¥ = ¥, The decomposition U = U(Pp,) & (NG - Z) follows from (3.4.2)). O

We call

n:i= NFI/L(UI)

the top generator of both Py, and Cp. Set B := Gal(F;/L) C Gal(F;/K) = G, then we
have I' = (o) = G/B.

Lemma 3.4.11. An elliptic number B € Pp, belongs to L if and only if V(B) is fived
by B, i.e. V(Pg,)B = U(Pr, NL).

Proof. See [CK19, Lemma 4.1]. O

Recall that n; is the index of the decomposition group of the ideal 93; C L in T
Without loss of generality we can assume

ng <ng < - < ng

and we set n = n, = max{n; | i € I}. Since p | t, we have n | p*~* and by Corol-

lary we get t; = p and hence n; = 1. Let L' be the unique subfield of L
containing K such that [L’ : K| = n. Note that (¢") = Gal(L/L’) and that p; splits
completely in L'/ K. Now we can state

Theorem 3.4.12. There is a unique o € L such that N (o) = 1 and such that
n = oY holds, where y = Hf;;(l — o"). This o 1s an elliptic unit of Fy, so that
a € Cr, N L. Moreover, there is v € L* such that o = 177",

Proof. See |[CK19, Thm. 4.2]. We repeat the proof here in order to make some of the
arguments more explicit. The main idea is to use the next

Proposition 3.4.13. Let f € Z[X]\ {0,%£1} and let A = Z[X]/fZ[X]. Let M be a
finitely generated A-module without Z-torsion. Then

(i) Extl(M,A) = 0.

(ii) Let y be a nonzerodivisor in A, and let x € M. Then x € yM if and only if for
all o € Homs (M, A) we have p(z) € yA.

Proof. See |GK14al Prop. 6.2|. O

If s =2 then y = 1 and we can set « = n. Clearly o = 1Y and since p, splits
completely in L' we obtain that Np,;/(«) = 1 from the norm relation (see ([3.4.4)
below). If s > 2, y is always a zero divisor in Z[I'] (note that since n; | p*, we get that
X" —1] X?" —1 and hence 0™ — 1| 0? —1 = 0 for each ). So in order to apply
Proposition we need to work in an appropriate quotient of Z[T'], where y is a

nonzerodivisor. Let N,, = Zf:/ln o™ then N, can be understood as the norm operator
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from L to L'. Let R = Z|I'|/N,Z[I'] and let v: R — (1—0¢")Z[I'] be the multiplication
by 1 — o™ Since the annihilator of 1 — o™ is exactly given by Z - N,, = N, Z[I'] (see
e.g. [Neull, Thm. (1.3)]), v is an isomorphism of Z[I'|-modules. Define

M = {z € U(Pg,)? | Nz = 0}

where W is the map from Lemma [3.4.10] It is clearly an R-module and since M C U
it has no Z-torsion. Using the definition of  and the norm relation [3.2.9] we obtain

where NB =5 7 € Z[|G], and

Nryw(m) = Nryw(nr) = Neg e (g sy =1, (3.4.4)

.....

Here we used that o4, = id since pg splits completely in L'. In particular we get that
U(n) = NB-py € M.

Note that the Z[[']-module structure on M is compatible with its R-module struc-
ture via the natural projection Z[I'] — R. Since we get U = U(Pg,)? & NG - Z
from Lemma [3.4.10, we may view M as a Z[[']-submodule of U”. Then U” /M has no
Z-torsion: suppose that there exists x € U with cx € M for a positive integer c¢. Then
¢(Nyz) = N,(cx) = 0. Since N,z € U and U has no Z-torsion, this implies N,z = 0
and hence r € M.

To each R-linear map ¢ € Hompg(M, R) we may associate the Z[['|-linear map
v 09 € Homgr (M, Z[I']). Fixing such a 1) we want to prove that Y(NB - pp) € yR.

Setting f = X?" — 1 in Proposition we get A = Z[X]/fZ][X] = Z|I']. Since
UP /M has no Z-torsion, part (i) implies that Extz(U?/M,Z[[]) = 0. With the
definition of Ext' we get the existence of ¢ € Homyzr(U?, Z[I']) such that @[y = yo.
Define v € Homyr(U?, Z[I']) by v(z) = (1 — 0)p(z). For the next step we observe:

(i) For alli € I, t;e; € UP, where t; = |I;| with I; = Gal(F;/Fn ) and e; is defined
in |[GK14b]. Moreover, v(t;e;) = 0 since o acts trivially on e;.

(ii)) We get from Lemma that 1 —o;|, € (1—0™)Z[I'] since 0|, is a power of ™.
ﬂ

Similarly, for 7 € I; we get from Corollary [3.4.5 (i)| that 7|, is a power of ot /t
which is indeed a power of o™ hence 1 — 7|, € (1 — o™)Z[T].

These observations combine with the formula in |[GK14b, Cor. 1.7(ii)| to give

v(NB-py) € [J(1 = o™)Z[T].
i=1

We want to reduce this formula by 1 — o, so we have to show that multiplication by
1—o is injective on (1 —0)"Z[I']. Suppose that € (1—0)"Z[['| and (1—0)z = 0. Then
x is in the annihilator of 1 — ¢ in Z[I']. But as z is a multiple of (1 — o)™, we find that
22 = 0. Since f = X?" —1 is square-free, the ring Z[X]/fZ[X] = Z[T] has no nilpotent
elements, therefore + = 0 and multiplication by 1 — o is injective on (1 — ¢™)Z[I']. This
implies

yo(NB-p) = ¢(NB-pg) € | [(1 = o™)Z[T].

1=2
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Since 7 is an R-module isomorphism, we obtain

s—1

W(NB-py) € [[(1—0™)R=yR.

=2

Now set g = Z’i’i/lnX(i_l)”. From n | p*~1, we get that g ¢ {0,41} and applying
Proposition to A = Z[X]/gZ[X] = R, we get an element § € M such that
y6 = NB-py = ¥(n). Note that y is a nonzerodivisor in R: Since (X" —1)g = X?" —1
is separable, the zeros of X™ — 1 and ¢ are distinct. Identifying y with the image of the
polynomial Hf;; (1 — X™) in A, we see that each factor appearing in the product is a
divisor of X™ — 1 and is hence prime to g. Therefore, this product is no zero divisor in
A and so y is no zero divisor in R.

Since § € M, we have § € U(Pp,)? and N,§ = 0. By Lemma [3.4.11} there exists
o' € Pr, N L unique up to a root of unity such that 6 = ¥(a’). We get

\II(NL/L/(O/)) = Nn\II(Oé/) = Nn5 = 0,

hence N1/ (a') = ¢ € p(K). As pfwg, there is ¢’ € u(K) such that Ny, (¢') = ¢
Setting a := /¢’ € Pp, N L, we get that Np,/(a) =1 and § = ¥(a). Therefore, we
find U(a¥) = yé = ¥(n), so (" = a™¥n € ker(V) = pu(K). Furthermore, we clearly get
1= Ny(an) = (¢"* /" and since p t wy this implies ¢’ = 1. From Npk(a) =1
we get that « is indeed an elliptic unit of FJ.

The uniqueness of a can be found in |[CK19|. The existence of y as in the theorem
is just an application of Hilbert’s Theorem 90 to the extension L/L'. [

Remark 3.4.14. There is an alternative description of a power of « in terms of the
conjugates of n (cf. [CK19, Remark 4.3|). For each j = 1,..., s define the elements

p*/n; p*/ni—1

Ny, = g o™i, Ay, = E 10" .
i=1

=1

Then we obtain

k
(1—06"™)N,, =0, (1—0")A, =N, — .
nj

Also note that the norm operator Ny, ;s corresponds to the element N,,. We obtain from
Theorem [3.4.12 that n = a¥. Since Ny /(o) = o™ = 1, we also get that o™i =1 for
all j =1,...,s. Hence, we obtain

iy i PN 1 e S LD Co b | i P Gy

—1 pk . _1ysTTs—1
where r := [, £ is a power of p. Therefore, a” = n(~1)"Iliza &ni
- 1
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3.4.4 Enlarging the group C;, of elliptic units of L
We label the subfields of L containing K by
K=LoGCLiCLC---CLy=1L
hence we obtain [L; : K] = p'. Moreover, we define
M= {jel|t;>p""}.
Since we have already seen that n, = 1, we obtain from the definition of M; that

leMi CM,C---CM,=1.

For j € M; we get p' > f—: and with Corollary |3.4.5 (i)| we obtain that p; ramifies in L;.
On the other hand, if p; ramifies in L;, this implies that ¢; > [L : L;] = p*~*. This
shows that the conductor of L; is equal to my;, and so L; C Fiy, by Proposition [3.4.4]
applied to L;. Define

1 = Ny, /0,01,

fori =1,....k, then n, = n € L is the top generator of Cy.
Now we fix j € {1,...,s} and let L; = L% hence the index i is determined by

t; = p*~". By Lemma we get that
(™) (o 14) = (o], 0?15 (P 1)

This quotient group can be interpreted as the restriction to L; since ot /i = gt gen-
erates Gal(L/L;), so we can find a smallest positive integer ¢; such that =" |, = ;|-

Moreover, we see that p; splits completely in L;/K if and only if n; = 2" in this case

o
we get in particular that ¢; = 1 since 0™ is already an element of the inertia group of
p; of L/K. If p; does not split completely in L;/K, we find that n; < ’t’—: and hence
(0™ |L,) = (0j]1,). In each case, we find that p { ¢j, so 1—0%™ and 1—o¢™ are associated
in Z[I'].

Now let ¢ € {1,...,k} be such that |M;| > 1. We want to apply Theorem to
the extension L;/K and obtain an elliptic unit a; € Cr,, N L; and a number ~; € L
such that Z

() m= ol where yy =TT e, (1—0%™),
1<j<max M;

(11) o = '71217 Where 2 = 1— O-Cmax M; T'max M;

Note that the new c; factors can be obtained since 1 —¢™ and 1 —¢%"™ are associated.
In particular we find for |M;| = 2 that y; = 1 and «; = 7; as the product is empty. For
i€ {1,....,k} with |[M;| =1 we set ; = n; and o; =, °.

Definition 3.4.15. The Z[[']-submodule C;, of OF generated by u(K) and ay, ..., ay is
called the extended group of elliptic units.
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Then we obtain a similar result as given in [CK19, Thm. 5.2]

Theorem 3.4.16. The group of elliptic units Cp, of L is a subgroup of Cr, of index
[Cp, : Cr] = p¥, where

=Y

]21 ieMj
1<i<max M;

Moreover, setting oy, == ([[;_, ti") - H?le_""‘a"Mj, we get

and

h (IDL'

OF : o] =i

Proof. We use the same proof as in [GK15, Thm. 3.1]. Note that we need the factors
c; appearing in the definition of the a; here. [

Remark 3.4.17. If p 1 w., we obtain ¢ | hy. As in |[CK19, Remark 5.3], this
divisibility statement is really stronger than [F; : L] | hy (which we obtain since Fy/L
is unramified). Indeed, by |GK15, Prop. 3.4|, [Fy : L] | »1, and we obtain equality if
and only if ny =---n,_1 = 1.

3.5 Semispecial numbers

We use the same notation as before and fix m, which is a power of p such that p** | m.
We know that for a prime ideal q of K we have

Gal(Hy/H) = (Ok/q)™ / im(u(K))

via Artin’s reciprocity map. In particular, Gal(H,/H) is cyclic. This enables us to
formulate the next

Definition 3.5.1. For a prime ideal q of K such that |Ok/q| =1 mod m, we define
Klq] to be the (unique) subfield of Hy containing K such that [K[q] : K] = m. For a
finite field extension M /K, we define M|[q] := M K|q].

Note that since |Ok/q| = 1 mod m and p { |u(K)|, we get that the order of
Gal(H,/H) is divisible by m. Hence we obtain the existence and uniqueness of K|q]
from the fact that p 1 h and |[CK19, Lemma 2.1|. Since K[q] is contained in Hj it is
unramified outside q. Moreover, since p t h we get that H N K[q] = K and hence it is
totally ramified at q. Finally, since p 1 |Og/q| we find that this ramification is tame.
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Definition 3.5.2. Let Q,, be the set of all prime ideals q of K such that
(i) |Ok/q| =1+ m mod m?,
(ii) q splits completely in L,
(iii) for each j =1,...,;s, the class of z; is an m-th power in (O /q)*.

Now we want to study condition (iii) in some more detail. Let q be such that
|Ok/q] =1 mod m. Since H N K|q] = K, we get Gal(H|[q]/H) = Gal(K|[q]/K) by
restriction. The first group is the unique quotient of the cyclic group Gal(H,/H) of
order m, hence it is obtained by factoring out m-th powers. Therefore, we get with the
Artin reciprocity map and p f wg

(Ox/a)"/m = Gal(H[q]/H) = Gal(K[q]/K),

where the composition map takes the class of & € O \ q to (aOk, K[q]/K). Now the
facts that ;0 = p? and p t h imply that condition (iii) is equivalent to

(n;, K[g]/K) =1 Vj=1,..,s.

Definition 3.5.3. A number ¢ € L* is called m-semispecial if for all but finitely many
q € Qp, there exists a unit g5 € Of, satisfying

(i) Nigyeleq) =1,

(i) if gz is the product of all primes of L[q] above g, then ¢ and &4 have the same
image in (Opq/qr)/(m/p").

Since each q € Q,, is totally ramified in K[q]/K and splits completely in L/K, we
find that L[q]/L is totally ramified at each prime above q and LNK[q] = K. This implies
that the two maps Gal(L[q]/L) — Gal(K|[q]/K) and Gal(L[q]/K]q]) — Gal(L/K)
given by restriction are isomorphisms.

Analogously to |[CK19, Thm. 6.4], we get the next

Theorem 3.5.4. The elliptic unit o € Cp, N L from Theorem s m-semispecial.

Proof. Recall that « is a y-th root of the top generator n of C,. We need to show
that for almost all ¢ € Q,,, there exists an ¢, satisfying the conditions (i) and (ii) of
Definition . In fact, we construct such an g4 for each q € Q,,. The idea will be
similar to the one used in the proof of Theorem [3.4.12]

We fix a prime q € Q,, and set @ := |Ok/q|. To simplify the notation, we set
Psi1:=0q, Fsy1 := K[q] and I" := {1,..., s + 1}. For any non-empty subset J C I’ we
define Fy :=[[,c; £y, my := ][, p; (the conductor of F;) and

ny = NHJ/EI(amJ) :

If J C I we just recover the old definitions of F; and n;. By construction we find that
Filq] = Fpr and mp = qmy. Since Fy[q] is totally ramified at each prime of F} over g,
we still have pu(Fr[q]) = p(K). Let Gq := Gal(Fy[q]/K) and let Pp,q be the group of
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elliptic numbers of Fr[q], i.e. Pp,[q is the Z[G,]-submodule of F7[q]* generated by p(K)
and by n; for all ) £ J C I'.

Let U, C Q[G,] ® Z*™* be the modification of Sinnott’s module defined in [GK14b]
for the parameters v = s + 1, I; = Gal(Fp//Fyng;y) for j = 1,...,v (this is the inertia
group of p; in Gy) and 0; € G is such that oj|p, =1 and oj|r,, , = (0;, Fr\(53/K).

Using the sequence

Gal(Frlg]/Kla]) € Gq — G = Gal(F1/K) |

we can identify Gal(Fy[q]/K[q]) with G via the restriction map. In particular, for
1 # s+ 1 the group I; is just the same as before. Analogously, we recover the subgroup
B via this identification by setting B := Gal(F;[q]/L[q]). Since q € Q,,, we find by
condition (iii) (i.e. (p;, K[q]/K) = 1) that the o; map to the old o; for i € I and that
os11 € B since q splits completely in L. The situation is illustrated in the following
diagram:

Recall that U = (p; | J C I)zj¢ and the standard basis of Z° is denoted by ey, ..., €.
Define 7: Q[G] & Z° — Q|G] to be the projection onto the first summand. Then the
module U’ := 7(U) is generated by p; := 7(p;) for J C I. For the new module U, we
denote the Z|G,|-generators by p; and the standard basis of Z*™ by €1, ..., €541. Then
we can cite the next

Lemma 3.5.5 (|GK15, Lemma 2.1|). There are injective Z[G]-homomorphisms
X:U—Uy and x': U — U, defined by

X(PJ) = ﬁJU{s—O—l} ) X/(Pf]) =ps,
for each J C I. Moreover, Uy = U ®Z & (U')"' as Z|G]-modules.
Applying Lemma to the new situation, we obtain a homomorphism
Vq: Prrje) — Ug

of Z[G4]-modules defined by Wq(n,) = pp\s for 0 # J C I' and U4(p(K)) = 0. More-
over, ker(V,) = pu(K) and Uy = Vq(Pr,q) ©® NGq - Z. Setting 1) := Np,(q/L1q(n17) to be
the top generator of Crq), we have
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and Uy (Pp,q N L{a]) = Uq(Pryq)? (cf. Lemma. Let again n := max{n, | i € I},
N, = fi{" o™ and R := Z[']/N,Z|T], where now I' = Gal(L[q]/K[q]) = (o). Note
that the new o can be chosen such that it restricts to the old o.

Let v: R — (1 — ¢™)Z|I'] be the isomorphism of Z[I']-modules induced by the
multiplication by 1 — ¢”. Note that we can understand N, as the norm operator of
L[q]/L'[q], where L’ is again the unique subfield of L such that [L': K] = n.

Analogously to what we did in the proof of Theorem [3.4.12] we find that the set

./\/lq = {x € \Ifq('PFI[q})B | N,x = 0}

is an R-module without Z-torsion such that UqB /Mg has no Z-torsion. Then we can
apply Proposition |3.4.13| with the polynomial f = X?" — 1 to obtain

Extyr (Uy /Mg, Z[T]) = 0.

Since p, splits completely in L' and also in K[q], it splits completely in L’[q]. Hence,
we can use the norm relation 13.2.9 to obtain

A = Nryog () = Neyayoe(nr) = 1.

This implies that NB-py € M. To each ¢ € Homp(M,, R) we associate the map yo1)
which can be naturally viewed as an element of Homgr) (Mg, Z[I']). Then the vanishing
of Ext' implies the existence of a ¢ € Homgr(UP, Z[I]) such that ¢|ry, = 7o ¢.
Restricting the projection 7: Q[G] & Z* — Q|G| to U, we obtain a surjective map
m|ly: U — U’ which can be composed with the map x’ from Lemma to the
Z|G)-linear map X' o w|y: U — U,. By restricting further to U” we hence obtain
X om|ys € Homgr(UP,UP) and @ o X’ o 7|ys € Homyr(U”, Z[I)).

Using the same notation as in the proof of Theorem [3.4.12] we see that clearly
n(t;e;) = 0forall j € I. Hence we get the same observations for the map v = pox’om|ys
and can apply |[GK14b, Cor. 1.7(ii)| to obtain

P(NB-py) =pox on(NB-py) € [[(1—0™)Z[] = (1 —o)y(1 —o™Z[], (35.1)

i=1

where y = [[JZ,(1 — ™) as before. The first equality follows from the fact that

X o m(pp) = pp by Lemma and by the linearity of X’ o 7|ys.
Since NB-py € M, we can apply any ¢ € Homp(Mg, R) to it. From the injectivity

of v and , we get that
$(NB 7)€ (1 o)yR.
With Proposition we get the existence of an element § € M, such that
(1—=0)y-0=NB-py=Tq().

Since § € My, we find 8" € Pp,q N L[q] such that § = Uy(5") and Vq(Nrg/rq(8)) = 0.
Therefore, & := Nppg/uq(6) € ker(Vy) = pu(K). Then Ny mq(§) = €7"/" and since
pt|p(K)|, there is & € p(K) such that Ny pq(€) = 1 Setting § := f'¢’, we still
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have § = W,() and obtain Npq/rq(8) = 1. With the same argument as in the proof

of Theorem [3.4.12] we find that (=7 = 5,
As Nigyuq(B) = 1, we obtain that Npgq/k(5) = 1 and hence we get with

Lemma that 5 € Cpiq N Llq).

We want to show that @ = ¢ is m-semispecial, so we need to construct a unit
g4 € L[q] Which satisfies the norm relation (i) and the congruence relation (ii) of Defi-
nition 3l Setting &, := $'77, we obtain such a unit:

For the norm relation, we can repeat the computation of Remark to obtain

s— 1
57“(1 o) _77( DI An,
Applying A; to each side and using Ny g, 1/q(8) = 8 =1, we get
gt = {EUTHIIS Any (3.5.2)

Since q splits completely in L/K, we can use the norm relation 9| (adapted to the
new situation) to obtain

~ |
Niye(h) = Neygyo(nr) = Neyyp(nn)' =% = 1. (3.5.3)

Inserting (3.5.2) into (3.5.3) together with p { wg implies Nyjq/.(f) = 1, so the first
condition of Definition [3.5.3] is satisfied.

For the congruence relation, we need the next

Proposition 3.5.6. Let q € Q,,, Q := |Ok/q| and let qrq be the product of all primes
of L|q] above q. Then
7Q01=0) = 1)

=1 mod qL[q] s

where 1 is the top generator of C, and 1) is the top generator of Crg

Before proving this, we will finish the proof of Theorem [3.5.4] Using the notation
from Remark [3.4.14] one can easily show that Proposition [3.5.6] implies

™ —0 J— 7’@ —0
ri-7Q = %509 mod gy

where r = [[}2, 2" Applying A; = Zfi;l io’ and using the facts that o™ = 1,

1=2 n;

(1-0)A; =N, —pF and (0 — 1)N; = 0, we get

By dividing out m-th powers, we get that 5Pkr(1_”) and o?"" have the same image
in (Org/qrq)*/m, since % = 1 mod m by condition (i) on primes in Q,,. Since
r | pP¢72), we deduce that 3177 and « have the same image in (Opq /qrg)”/(m/pFE=D).
Hence ¢ = a and ¢, = 3'77 satisfy the congruence relation. O]
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Proof of Proposition[3.5.6 Let x € Ok such that zOx = q". Let K,,, := K((,), where
(m is a primitive m-th root of unity. Then K,,/K is a constant field extension and
hence it is unramified everywhere. Moreover, it is an abelian extension. Now we can
define M := K,,(2'/?), and since O} = u(K), pt |u(K)| and K,, contains a primitive
p-th root of unity, this definition is independent of the choice of the generator x and of
its p-th root. Then M/K is a Galois extension.

We claim that x is not a p-th power in K,,. If x = o, then the valuation of = at
q would be p-times the valuation of a at q since K,,/K is unramified. But 2O = q"
and as p 1 h, this is a contradiction. Hence the extension M/K,, is cyclic of degree p.
For finishing the proof, we need the next

Lemma 3.5.7. Let q € Q,, and recall that o is the unique generator of Gal(L[q]/K[q])
which restricts to the original generator of Gal(L/K). Then there ezists a prime | of
K such that

(i) |0/l =1 mod m,
(11) U is unramified in L[q] and (I, L[q]/K) = o~ !,
(111) q is inert in K|l}/K.

Proof. By an explicit analysis of the Galois automorphisms, one can check that K, /K
is an abelian extension whereas M/K,, is not. Since [M : K,,] = p, there are no
intermediate fields and hence K,,/K is the maximal abelian subextension of M. This
implies that M NL[q] = K,,NL[q], as L[q]/K is an abelian extension. Since K,,NL[q] is
unramified and p 1 h, we find K,,, N L]q] = K. Then there exists a 7 € Gal(L[q] - M/K)
which restricts to o' € Gal(L[q]/K) and to a generator of Gal(M/K,,) C Gal(M/K).

Using a variant of Cebotarev’s Density Theorem (cf. [Ros02, Thm. 9.13B]), we see
that there exists a prime [ such that the Frobenius of [ is the conjugacy class of 7 and
|Ok /Il =1 mod m. Then the first two conditions are satisfied and it remains to prove
that q is inert in KTI].

Since T acts as the identity on K,,, we find that [ splits completely in K,,/K. Let
£ be a prime of K, over [, then O, /£ = Ok/l. Moreover, by

(Tlar) = Gal(M/Ky,) = Z/pZ,

£ must be inert in M. It is easily seen that Oy /L0y = (Ok,,/L)[£], where £ is the
class of 2'/? modulo £0,;. If x was a p-th power in (O, /£)*, this extension would
be trivial, hence the inertia degree of £ would be one. This is a contradiction since £
is inert in M, so we have shown that x cannot be a p-th power in (Og/I)*.

Recall that we get (Ok/1)*/m = Gal(K[l]/K) from Artin’s Reciprocity Theo-
rem and p t wg. Since x is not a p-th power in (Og/l)*, it clearly follows that
(2O0x, K[I]/K) = (g, K[I]/K)" is not a p-th power in Gal(K[l]/K). As Gal(K[l]/K)
is cyclic of order m and p { h, we obtain that (q, K[l]/K) generates Gal(K[l]/K) and
hence q is inert in K. O
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Using the notation from the proof of Theorem [3.5.4] and the prime [ satisfying the
conditions of the previous lemma, we can define the elliptic units

= NH[mI/L[[]<04[mI) )
o= NH[mI,/L[q[](a[mI/) )

where L[ql] is the compositum of L[q] and L[l]. Using the norm relation, we find

-1
1—0q

Nijgn/zi () =m0y
Niqu/ci () = 7'~
1—0_1

Npyo(m) =0

1
_ ~l—0o
- 7] )
. 1-0
- 7] )

where o = (g, L[l]/K) and oy = ([, L[q]/K) = o~ by condition (ii).

Since q € Q,,, q splits completely in L/K and by condition (iii), the primes of L
above q are inert in L[l]/L. Then each prime of L[q] above q must also be inert in
L[ql]/L[q]. Moreover, each prime above q is unramified in L[[]/L and totally ramified
in L[q]/L, therefore it is also totally ramified in L[gl]/L[l] and the product of all primes
of Lql] above q is given by qzqOLjqy- Therefore, we get the following isomorphism of
rings

Oriay/arigOray = Orp/a0ry -

Since L[q] and L[[] are linearly disjoint over L and q splits completely in L/K, we can
extend o, € Gal(L[l]/K) to L[ql] such that this extension (also denoted by o) restricts
to the identity on L[q]. In particular, o, generates Gal(L[ql]/L[q]).

From the above isomorphism, we get that o, acts as raising to the ()-th power on
OLiqn/92iqOLiqy- Moreover, the group Gal(L[gl]/L[l]) is the inertia group at q and acts
trivially on Opqq /HOL[qq. Therefore, we can express the action of the norms Npqq/(
and Nz on Orqn/qzq Oy as raising to the power m respectively to the power
S QN As Q =1 mod m, there exists an integer r > 0 such that 327" ' QF = mr.
Combining our results, we get that

Q-1

ﬁQ(lfU) @1 — ( =

) = n'")

er — QT‘(l—O'q_l)
[ g
(1-0) %

Ul
7 mod qrgOrq -

Since the natural map Opg/qrig — OLiqy/9LiOLqy is injective, we obtain the desired
result. O

This finishes the proof of Proposition [3.5.6] and hence the proof of Theorem is
now complete.
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3.6 Annihilating the ideal class group

Using the same notation as before, we define

i = NMmax M, -

This is always a power of p and since M; C M;,,, we get p; < p;41. We call an index
ie{l,...k—1} a jump if p; < p;y1. Further, we declare 0 and k to be jumps and set
1o = 0. Then we get the next

Lemma 3.6.1. Let 0 = 5o < 51 < ... < s, = k be the ordered sequence of all jumps.
Then the set

K
U{O&;‘: ’ 0 < 1< pst _p5t71}
t=1

is a Z-basis of Cp,.
Proof. See [CK19, Lemma 7.1]. O
With this basis, we obtain our next result:

Lemma 3.6.2. Let 1 be the highest jump less than k, i.e. p, < pir11 = ns. Assume that
p € Z[T'] is such that of € Cp,.. Then

(1—0")p=0.
Proof. See [CK19, Lemma 7.2]. O

Now we need an additional condition on the p-power m. We already know that
(m,q) =1, since ptq, so q € (Z/mZ)*. Let d denote its order, then there exists i > 0
and b € Z with p t b such that

@ —1=b-p'm.

If we define m’ := pim, we still have p** | m’ and d is the order of ¢ modulo m/, so we
can assume without loss of generality that ¢ = 0. Now we can define f to be the order
of ¢ in (Z/m*Z)*.

Lemma 3.6.3. We have m | 5.
Proof. We have
o = (a")1" = (14 bm)

El—l—gbm mod m?.

Since f is the order of ¢ in (Z/m?Z)*, we obtain that the left hand side is congruent
to 1 modulo m?, hence

m? | Ebm

Since p t b, this implies
f
_ O
m | y
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Theorem 3.6.4. Let m be a power of p such that m | 5 and let V- C L*/m be a
finitely generated Z,[I']-submodule. Without loss of generality choose representatives of
generators of V' which belong to Op. Suppose there is a map z: V. — (Z/mZ)[I] of
Zy[T'|-modules such that z(V N K*) =0, where VN K* means V N (K>*(L*)™/(L*)™).
Then for any ¢ € cl(Or),, there exist infinitely many primes Q in L such that:

(1) q:= QN K is completely split in L/K,

(it) [Q] = ¢, where [Q] is the projection of the ideal class of Q into cl(L),,
(i) @ :=10L/Q] =1+ m mod m?,

(i) for each j =1,...,s, the class of x; is an m-th power in (Ok/q)*,

(v) no prime above q is contained in the support of the generators of V' and there is
a Zy|T]-linear map ¢: (Or/qOL)* /m — (Z/mZ)[T'| such that the diagram

V ——=—— (Z/mZ)[T]

b=
(04/a0L)* fm

commutes, where v corresponds to the reduction map.

Remark 3.6.5. The reduction map v is defined on the chosen set of generators: Let
x € Op be a representative of such a generator, then T is the class of x € Op/qOy.
Since no prime above q is contained in the support of z, we get T € (Or/qOL)*.
Hence, we can set 1(z) to be the class of T in (Or/qOr)* /m. This yields a well-defined
Z,|I']-homomorphism.

Proof. Let Hp be the p-Hilbert class field of L, i.e. the abelian extension such that
Gal(Hp /L) is isomorphic to cl(Of),. Define L, := L((y) and Ly, := L((y2), where
Cm (resp. (p2) is a primitive m-th (resp. m2-th) root of unity. Note that these are
constant field extensions, in particular we obtain L,, = LF and L,,2 = LF .

Define L' := L,,(ker(z)/™), L” := L,,(VY™) and M := L,,(PY™), where P is the
subgroup of L* (actually K*) generated by x1,...,x5. Moreover, let L”, := L"L,,2,
M2 := ML,> and L" := L" ,M,,>. We first check that all these extensions are Galois
over K.

Let K,, = KF and K,,» = KF, then L,, = LK,, and L,,» = LK are Galois
over K. Since P C K, we clearly get that Gal(L,,/K) acts (trivially) on P, so the
Kummer extension M is Galois over K. Analogously, we need to show that Gal(L,,/K)
acts on ker(z) (resp. V') to obtain that L’ (resp. L") is Galois over K. Since both ker(z)
and V are subsets of L, it suffices to check that I'" acts on them. For V this is clear
since V' is a Z,[I']-module. Since z is a Z,[I']-homomorphism, I also acts on the kernel
of z. Hence the extensions L’ and L” are Galois over K. Then also the composites with
K32 are Galois over K.

Note that by Kummer theory

MAOL" = L,(PY'™"y N L,(VY™) = L,,(PNV)Y/™).

Since VNP C VN K* Cker(z), this implies M N L" C L'.
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Lemma 3.6.6 (cf. [GK04, Lemma 18]). (i) L,,2 is the mazimal abelian subextension

(1)
(iii)

of L" /L.
L., is the mazimal abelian subextension of L"/L.

L"NHp,=L.

Proof. (i) We have an exact sequence

1 — Gal(L"/Lyz2) — Gal(L" /L) — Gal(Ly/L) —> 1.

The group Gal(L,,2/L) is isomorphic to the unique subgroup H of (Z/m?Z)* of
order f and its action is determined by

0a(Cmz) = (2,

where a € H and o, is the corresponding element in Gal(L,,2/L) under this
isomorphism.

By Kummer theory, the extension L"”/L,,2 is an abelian p-extension and with the
above observations, the action of H on B := Gal(L"/L,,2) is given by

(a,0) —> o“.

Note that we can choose ¢ as a generator of H since f is the order of ¢ in
(Z/m?Z)*. Then the coinvariants of B are given by

By =B/IyB=B/(q—1)B.

As ptq—1 = wg and B is a p-group, we obtain (¢ — 1)B = B and hence
the coinvariants vanish. This implies that Gal(L”/L)/B = Gal(L,,2/L) is the
maximal abelian quotient and hence L,,2/L is the maximal abelian subextension.

Analogously to (i).

Since H /L is abelian, we obtain L” N H;, = L,2 N Hy. Since Hy is a real
extension of L, this intersection must be contained in the splitting field of co in
L,,2. By [Ros02, Prop. 8.13|, the splitting field of oo in L,,2 = LFs is the unique
subextension of degree (f,d). By p 1 ds, this subextension has degree prime to
p and since Hj, is a p-extension, we obtain H; N L,,2 = L. [
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The situation can be illustrated in the following diagram:

L///

-

"M ML,

S
H, L / (L' O M) Ly <
\ \ L |
m2/

L'nM

\L

K

Now we want to construct a suitable element 7 € Gal(L" /L) such that the statement
of Theorem follows from an application of Cebotarev’s Densitiy Theorem.
For the first step, let eg € Hom((Z/mZ)[I'], i) be given by

pF-1
€0 E aial = 76?110
=0

Then ey generates Hom((Z/mZ)[I'], ) as a Z[I'J-module and therefore the Z-span of
o ey, j=1,...,p%, is Hom((Z/mZ)[T'], ). Moreover, we obtain from Kummer theory

Gal(L"/L") = ker(Hom(V/, y,,) — Hom(ker(2), tn))
=~ Hom(im(z), i) -

From Baer’s criterion (see [Wei94, 2.3.1 and Ex. 2.3.1|) we get that p, = Z/mZ is
injective as a Z/mZ-module, therefore we get a surjective map

Hom((Z/mZ)[T], ptm) — Hom(im(z), ) = Gal(L" /L") .

Let 7 be the image of ey under this isomorphism, then 7 is a Z[[']-generator
of Gal(L"/L").
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In the second step we want to extend 71 to an element 7 € Gal(L"M/L,,) which
restricts to the identity on M. This is possible if and only if 7 is the identity on
M N L". We already observed that M N L” C L' and since 7, € Gal(L"/L"), we clearly
have T1|MQLN = id.

In the last step, we want to extend 75 to an element 7 of Gal(L” /L) such that
T(Cn2) = (}ntm First we see that this would imply 7((,) = (, hence we get the
necessary condition 75|, = id. This is true since 7, € Gal(L”M/L,,). Moreover, the
order of 7|, , € Gal(Ly2/L,,) must be the order of 14 m in (Z/m?Z)*, which is m.
Hence [L,,> : L,,] = £ must be divisible by m which is shown in Lemma A last

d
condition is that L"M N L,,> = L,,. As L,,2 is abelian over L, this follows from Lemma

5.6.0(3)

Now since H/K and L"” /K are Galois, we find that H,L" /K is Galois and we
let 0 € Gal(HL"/K) be an element such that o|,» = 7 and o|y, = o, where
o. € Gal(Hp/L) corresponds to the class ¢ € cl(Of),. Such an element exists since
H, NL" = L and o, = id = 7|;. By Cebotarev’s Density Theorem (cf. [Ros02)
Thm. 9.13A]), there exist infinitely many primes q of K such that (q, H,L”/K) is in
the conjugacy class of 0. As the support of the generators of V' consists only of finitely
many primes, we obtain infinitely many primes q such that the primes of L above q are
not contained in this support. Now we are left to show that these primes satisfy the
conditions (i)-(v).

Since 0|, = 7| = id, we get that q is completely split in L, so we obtain (i).

We get

(Q,H./L) = (Q,H,L" /L), = (4, HLL" /| K)|g, = ol|u, = 0oc,

because of (i) hence we obtain (ii).
_ For (iii), we use the fact that o|,, = 7|7, = id, so Q splits completely in L,,. Let
£ be a prime of L,, above Q and let Q be a prime of L,,> above Q, then we get

§7L L77L ) o
C,(n m2/Lm) N mod Q
by the definition of the Frobenius. Since (,, is a constant, this implies

QL 2/Lm %)

m2

By the properties of the Frobenius element, we obtain
(D, L [ Lon) = (Q, HLL" [ L)1, 0 = (@ HLL" [ K1,y = T
SO
(9, = (¥R = (MR = (Tl — (tym

Therefore, we get (iii). N
We first observe that since q splits completely in L,,, we get Ok /q = Oy, /Q. Let
§; € M be an m-th root of z; and let Q" be an ideal of M above Q. From

(Q, M/Lyn) = (Q, HLL" L) s = (@, HLL" [ K)|vs = 7|ar = id,
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we obtain that 9 splits completely in M and hence

€] € On/Q = Ok /g

satisfies [{;]™ = [z;]. This is (iv).

For (v) we notice that (Z/mZ)[l'] is an injective (Z/mZ)[I']-module (this can be
shown with [Wei94, Prop. 3.2.4]), hence it suffices to consider im(¢)) instead of
(Or/qO0L)*/m. Then we obtain the desired map ¢ from the homomorphism theorem
if and only if ker(z)) C ker(z).

So let u € ker(¢), i.e. u is an m-th power in (Or/qOL)*. Then by the Chinese
Remainder Theorem, u is also an m-th power in (O /Q)* for each prime Q of L above
q. Since we have already seen that Q splits completely in L,,, u is also an m-th power
in (O, /Q)* for any prime 9 above 9. Considering the extension L,,(u'/™), we find
that for any prime Q* of L,,(u?/™) above 9, we get

OLm(ul/m)/D* = OLm/{D(ul/m) = OLm/ﬁ,

so each prime £ is completely split in L,,(u'/™). Then clearly 7| Lo (ut/m) = id and since
we can do this for any I'-conjugate of £, we obtain the same result for any I'-conjugate
of 7|1, u1/my- But by construction, the conjugates of 7|p» generate Gal(L"/L’), hence
Gal(L" /L") acts trivially on L,,(u'/™). Therefore, L,,(u'/™) C L' and hence u € ker(z).
This yields (v). O

For the desired annihilation result, we need the next

Theorem 3.6.7 (cf. [Rub87, Thm. (5.1)]). Let q be a prime of K which splits completely
in L, set Q := |Ok/q|. Let M be a finite extension of L which is abelian over K and
such that in M /L, all primes above q are totally tamely ramified and no other primes
ramify. Write qu; for the product of all primes of M above q and let A denote the
annihilator in (Z/(Q — 1)Z)[I'] of the cokernel of the reduction map

{e € O [ Nagyole) =1} — (Om/an)” -

Write w = % Then A C w(Z/(Q — 1)Z)[I'] and for every prime Q of L above q,

w™t A annihilates the ideal class of Q in cl(O)/[M : L.
Proof. The proof of Rubin also works for function fields. m
Now we can prove:

Theorem 3.6.8. Let m be a power of p divisible by p** such that m | 5. Assume
that ¢ € Of, is m-semispecial and let V- C L*/m be a finitely generated Z[I'|-module.
Suppose that the class of € belongs to V. Let z: V. — (Z/mZ)[I'] be a Z[T']-linear map
such that 2(V N K*) = 0. Then z(g) annihilates c1(Oy),/(m/p*~Y).

Proof. Set m' := m/p**=1). We must prove that the image of any class ¢ € cl(Op), in
cl(Or),/m’ is annihilated by z(e). We can apply Theoremto produce a completely
split prime 9 of L and a prime q of K below £ which satisfy the properties (i)-(v).
Since € is m-semispecial and q € Q,, by (iii) and (iv), there exists a unit ¢, in L[q]
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with Npq/r(eq) = 1 and such that the elements ¢ and ¢, have the same image in
(Or/arq)”/m' = (O1/q0L)*/m’. Applying Theoremto M = L[q], we get that
the annihilator A of B := (Opjq/qr[q) ™ /(im(g4)) annihilates the class of Q in cl(Op)/m.
By property (iii), m is the exact p-power dividing ) — 1, therefore the p-part of B is

B/m = ((Orjg/ariq)™/m)/(im(eq))

and the projection A, of A to (Z/mZ)[I'] is the annihilator of B/m. So A, annihilates
Q] in cl(OL),/m.

From this, we obtain that A’, the projection of A, to (Z/m/Z)[I'], annihilates [Q]
in cl(Or),/m’. Since (Org/qry)™/m is free cyclic over (Z/mZ)[I'], it follows that A’
is the annihilator of B/m/.

Therefore, we have to show that z(¢) € A’. Since ¢ and ¢, have the same image in
(Or/ary)”/m', A" is also the annihilator of

((Orq/are)*/m')/(im(e)) = ((Or/aOL)*/m")/(¥(e)) ,

where 1) is the reduction map from Theorem considered modulo m’. Using the dia-
gram from property (v), we get that ¢(¢(e)) € A’, since (Or/qOL)*/m is (Z/m'Z)[T']-
cyclic (for more details, see the last paragraph in [GK04|).Therefore, z(e) € A" and we
are done. O

The main result of this chapter is the next

Theorem 3.6.9. Let r be the highest jump less than k. Then we have
Anngr ((OF /Cr)p) € Anngyry((1 — a?") cl(O1),) .

The number r is determined by p*~" = max{t; : j € J}, where the set J is defined as
J={je{l,...,s} :n; =n4}.

Proof. The proof of [CK19, Thm. 7.5] can be used without any changes. O
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Chapter 4

A Solomon-type conjecture for totally
real number fields

In this chapter we formulate a conjectural generalization of [Sol92, Thm. 2.1] for totally
real number fields. We also prove the equivalence of this conjecture to the Iwasawa-
theoretic Mazur-Rubin-Sano conjecture, which is formulated in the first section. Since
the IMRS is a consequence of the eTNC (see |[BKS16, Thm. 5.16]), the conjectural
statements presented in Section are also implied by the eTNC.

4.1 The Iwasawa-theoretic Mazur-Rubin-Sano conjec-
ture

Let K be a number field, fix an odd prime p and set S, to be the set of places of K
above p. Let Lo, be a Galois extension of K such that G := Gal(L./K) = A XTI, where
A is a finite abelian group and I' & Z,,. Then we define L := L., so L is a finite abelian
extension of K with G := Gal(L/K) 2 A, and K, := L%, so K, is a Z,-extension of
K and Gal(K./K) = T'. We denote the n-th level of this Z,-extension by K, and set
L, = LK,. Let G, := Gal(L,/K) and '), := Gal(L,/L) =2 Z/p"Z, so G, = A x T,.
Define I(I') (resp. I(I'y)) to be the augmentation ideal of Z,[[I']] (resp. Z,[[';]).

Let S O Seo(K) U Spam(L/K) U S, and T be finite sets of places satisfying Hy-
potheses [2.2.1] and [2.3.1} Let V' be the set of places in S which split completely in
Lo and V' be the set of places in S which split completely in L. Then V C V' and
we set r := |V|, v := |V’| and e := 1" — r. We use the ordering introduced in Sec-
tion [2.4.2 i.e. S = {vg, ..., v}, V = {vg, ..., v,_1} and V' = {vg, ..c; Vp1, Uy ooy U1
Let W := {w,,...,wv_1} be the set of chosen primes of L over V' \ V used in the
formulation of the Rubin-Stark conjecture.

For the rest of this section we work under the following

Hypothesis 4.1.1. For each level n, the p-component of the Rubin-Stark conjecture
RS(L, /K, S,T,r), with S, T and r as above holds.

75
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For the statement of the conjecture, we need to introduce three more maps.
We start with the canonical embedding from [Sanl4, Lemma 2.11|

T T
ﬂ Upst — ﬂ Ur,..sr

which induces an injection

Vn:hUL,s,T@)ZPI(Fn)e/I(F )€+1—>ﬂULnST®Zp o[Cnl/I(T,)e T

Secondly, we define Ir (resp. Ir,) to be the kernel of the map Z,[[G]] — Z,|G]
(resp. Z,[G,] — Z,[G]). For any place w € W, we fix a place w of Lo, above
w. Then on each level n, we can use the place w,, of L, below w., to define the local
reciprocity map rec,, := rec,,, : L* — [',,. This induces a map

Rec,: L — Ir, /I}
xr — Z rec, (o — 1o~

oeG
Consider the isomorphism from [Sanl4, Eq. (3)]
2,[G) ©, (01, 5 I, /13, )
oRar— E,

where @ denotes the image of a € I(T',,) modulo I(T',)? and ¢ € G, is an arbitrary lift
of 0 € G=G,/T,. Then A\, .y Rec, induces a homomorphism

Rec,, : ﬂ ULst — ﬂ Urst ®z, I(T,)/I(T,)

by [Sanl4, Prop. 2.7]. Taking the limit over n we get

7,/

ReCWZ ﬂ UL,S,T — ﬂ UL,S,T ®Zp l&l[(f‘n)e/]( e+1 ﬂ UL ST ®Zp (F)e/](r)e+1 .
The third map will be

Ny ﬂULnST—>ﬂULnST®Z o[ Tnl /(D)
a+—> Zaa@a’

oan

Now we can state

Conjecture 4.1.2 (IMRS(L/K,S,T,r),). There exists a

&= (&)n € [ \Upsr @z, [(T)/1(T)H
such that

(gn) = (77Ln ST)
for alln >1 and

es& = (—1)" eg, Recw (nr,s7) in s, Qy m ULsr ®z, I(L)/I(T)+.
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Remark 4.1.3. (i) Note that the conjecture in [BKS17| is formulated for a single
character. In the above formulation, the characters with rg, = ' are combined
in the idempotent eg,.

(ii) If such an element £ exists, it is unique since the maps v, are injective.

(iii) By [BKS17, Prop. 4.4(iv)|, we can restrict ourselves to the case that V'\ V' C S,,.

4.2 A Solomon-type conjecture

Now let K be a totally real number field and let L., be an extension as in the previous
section such that the extension K., /K is indeed the cyclotomic Z,-extension. In this
case, the extension L, /L is also the cyclotomic extension.

Remark 4.2.1. If Leopoldt’s conjecture is true for K, then the cyclotomic extension
is the only Z,-extension of K, so the above choice is in fact no restriction in this case.

We additionally suppose that at least one place of K splits completely in L,
i.e. r > 1, and at least one place splits completely in L but not in L., i.e. e > 1.
In this section, we replace Hypothesis by

Hypothesis 4.2.2. For each level n, the Stark conjecture St(L, /K, S) with S as before
holds.

We hence obtain a Stark unit €7, 5 € Ofm g for each n. Note that this is only defined
up to a root of unity. Nevertheless, since L., and hence L can be embedded into R, we
have p(L) = {£1} and since e > 1 (so 1’ > 2), we get Ny, /r(er,.s) € u(L). Therefore,
we can normalize the Stark units by requiring Ny, /.(er,.s) = 1 for each n. These
normalized Stark units then form a norm coherent sequence by Proposition [2.4.9]

4.2.1 Solomon’s k-construction
Now we apply the construction of [Sol92| in our case. For this, we need

Conjecture 4.2.3. For each n there exists an element (1, s € L)/L* such that
ﬁﬂfsl) =E&L,,S-
Remark 4.2.4. This is true for e = 1 by Hilbert’s Theorem 90.

Lemma 4.2.5. If such a B, s exists, it is unique.

Proof. For e = 1, this is again Hilbert’s Theorem 90, so we assume e > 1. Suppose that
we find bz, 5,07 ¢ € Ly satisfying

b(’Y—l)e

Ln.S = ELnS = (ban,s)(v_l)e :

Hence, we get for a := Z,LLS that «=D° =1, so aO"V" € L*. Therefore, we find
Ln,S
1= Ny (a0) = (200

and since (L) = £1, we get that o'~ = 1. Inductively, we obtain that a7~ = 1,
soa € L™, O]
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Hypothesis 4.2.6. For the rest of this section, we assume that Conjecture holds.

Then we can define k1.5, = N, /.(BL.,s) € L*/(L*)"". By abuse of notation, we
let

ordg : L* /(LX) — Z/p"Z

T — ordg(x)

for any place Q of L. Then we obtain the following properties:
Lemma 4.2.7. (i) kps5n = Kr.5m mod (LX) for all m < n.
(11) For all primes Q of L coprime to p, we have ordg(kr sn) =0 in Z/p"Z.

Proof. (i) We find with Proposition and Lemma [2.4.1 (ii)|
Niw /i (Bras) 0™ = Noyn, (B978) = Niwyr(erns) = Ls.-

Hence, the uniqueness from Lemma implies 8z,,.s = N, /1. (Br,.s) € Ly /L*.
Then by definition we get

kr,Sm = Neo/L(Brm,s) = Niw/n(Ne, /om (Bra,s)) = Ne,/o(Br.,s)
= Kpgn € L*/(LX)P".

(ii) Define by := g:sl)e_d ford=0,..,e—1,ie by =e. 5 Note that by’ € L
is independent of the choice of representative of 81, s. We now use induction to
prove that b is an Sp-unit for d =0, ...,e — 1.

For d = 0, this is part (ii) of St(L/K, S): Since we have a completely split infinite
place, either [S| > 3, hence €1, s € Of , or S = {oo,p}, where p is the unique
prime of K over p. Then er,,.s € Of «=0f o .

So let d > 0 and suppose that S Or,. s,- Using the Kolyvagin derivative
D = Zfzgl 7", which satisfies (y — 1)D = p" — Ny, /1, we obtain

(b

(B=NP = (oD = L
Np, /(05

Since d < e, we get that

NLn/L(bq(zd)> = NLn/ng:;)e )=1.
So for any prime Q,, 1 p we get

p"ordg, (0P = ordg, (B")P) =0

as bV € Oy, s, and hence also b e Or,.s,-
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Now let Q be a prime of L coprime to p. Then 9 is unramified in L,,/L and we
fix a prime 9Q,, of L, over Q. Now we can copy the proof of [Sol92, Prop. 2.2],
i.e. we compute

BlLu.s

n_NLn/L
/8(7 1)D — ﬁp = —_—
(b )P =B g Ln,S Ni,/1(BL.,.s)

This implies
orda(kz,5,) = orda, (N1, /(Br,.s)) = — orda, (b )")
=0 mod p". 0
The Lemma enables us to define

Remark 4.2.8. If » > 2, we clearly have L(x,0) = 0 for all characters y € G and
hence €1, ¢ = 1 for all n. Therefore, we get 51, s = 1 and also k15, = 1 for all n, so
Kr,s s trivial in this case. This approach can hence only be interesting if »r = 1 and we
will work under this assumption from now on.

4.2.2 Cyclotomic character

For each n > 0 let (, be a primitive p"*!-th root of unity. We assume that these satisfy

i1 = Cu- We consider the local extensions Q,(¢,)/Qp and set Q,(Coo) = U0 @p(Gn)-
Then an element o0 € Gal(Q,(¢x)/Q,) is uniquely determined by its action on , for

all n, i.e. we find elements a,,, € (Z/p"'Z)* such that ¢((,) = (27" Taking the limit
over n, we then get a, = (ag.n)n € Z), such that

O-(Cn) = Cga
for all n. This relation defines the cyclotomic character
Xeye: Gal(Qp(Co0)/Qp) = Z;
0 Qg .
Considering the cyclotomic extension Q, «/Q,, we find that
Gal(Qyp00/Qp) = Gal(Qy(Coo)/Qp(Co)) € Gal(Qy(Coo)/Qp)
and the cyclotomic character induces an isomorphism
Xeye: Gal(Qp00/Qp) — 1+ pZ,
o+ chc(g) )

where ¢ is the lift of o obtained from the above isomorphism, i.e. 7|g, () = id.
Considering the local reciprocity map rec,: Z} — Gal(Q,((x)/Qp), we get from
[Neull, Part II, Thm. (7.16)]

Xeye(recy(x)) = 27" (4.2.1)
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4.2.3 The valuations at the split primes above p

Returning to our number fields, recall that we assume r = 1 and we will denote the
unique archimedean place which splits completely in L., by vg, i.e. V' = {vg}. we refine
the ordering of the set V' = {vg,v1, ..., ve,, ..., Ve } by assuming without loss of generality
that (V'\V)NS, = {v1,...,ve, }, i.e. the first e, places in V'\ V' lie over p. Hence, these
places correspond to prime ideals py, ..., p., of K over p. Finally, we set S; := S\ {v;}
and V = {vg, 11, ., v} = V' \ (VUS,).

Then we see that Ly, is a finite extension of @, for each ¢ = 1,...,e¢,. Completing
L at the unique prime above B;, we get the cyclotomic Z,-extension of Liy,, i.e. the
field Loy, oo := Lp,Qpoo. Let k := Ly, N Q) o0, then we get

I'= Gal(L‘Bi,OO/L‘Bi) = Gal(@p,oo/k) C Gal(Qp,w/Qp) .

Now fix a topological generator v of I', then we can use the above identification to read
7 as an element of Gal(Q,,~./Q,). Hence, we can apply X, to 7 and obtain an element
of 1 + pZ,. Applying the p-adic logarithm, this defines a unique element

w =108, (Xeye(7)) € PZy -
For each i = 1,...,¢,, we obtain a Stark element 7,5, € Q \°Of .. By (2.2.1) this
must be of the form )\(i)ugi) A---Au for some A® € @ and elements ugi), u e Of s,
Inspired by our definitions of Rec and Ord, we set for any prime P of L above p
Logy: L™ — Q,[G]
v 3108, (Niy 0, (o))
ceG
Moreover, by abuse of notation we denote the p-adic completion of Ordy also by
Ordy for any B of L above p, i.e. we define
OI‘df_p : UL,,S’ = ZPOZ,S — ZP[G]
a®ur— a® Ordg(u).

For a place p € V and the corresponding fixed place B of L above p, the decompo-
sition group of P in I' is generated by the Frobenius oy € I'. This is indeed a unique
element of I' since P is unramified in L., hence there exists an ny € Z, such that
op =",

Now we can formulate our main conjecture:

Conjecture 4.2.9. For alli =1, ...,e,, we have

(2)
o 9)\® ( (Log%(ua )> 1§<B§<ep \
Ordy, (kz.s) = (~1)* 2 det . )e@m.

- ®
w-r \(n‘ﬁg Ordmﬁ (u& )>ep+1§,3§3

1<a<e

In particular, if V' \'V C S, we get e = e, and hence for alli=1,...;e
I\Q

we

Ordy, (kr5) = (—1)"*° det (Log% (uld

o) 1<f<e
1<a<e

€ Z,|G] .
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Remark 4.2.10. We will see in the next section that the right hand side is in fact the
explicit computation of

(—1)6657,1/(01“(1331. o} RecW)(nL,S,T) y

hence it is clearly independent of the choice of A®) and ul,

Example 4.2.11. Consider the case K = Q, then L will be a totally real abelian
extension of Q. Suppose that p is completely split in L. Let S = {oo,p} and f be the
conductor of L, then L, € Q((fpn41)) and hence e, s = N‘@(Cfp(n+1>)/L"(1 — Ctptnt1))

(see Remark [2.2.7). Since V' \ V = S, = {p}, we get e = 1 and hence Conjecture [1.2.3]
is true by Hilbert’s Theorem 90. Therefore, the elements xy g, can be constructed as
above. On the other hand nr s, = fer.s\py = 5Na(,)/L(l — ¢s), so the statement of

Conjecture is

~log, (tp(Nogepy/2(1 = ¢5)))
Ing(XCyC('Y))

ordy(kr,s) = ,

where B is any place of L above p and vp : L — Ly = Q) is the embedding corre-
sponding to B. This is exactly the result of Solomon (see [Sol92, Thm. 2.1]).

Remark 4.2.12. In fact, we could also formulate Conjecture if K is an imaginary
quadratic field. Then we still have only one completely split infinite place, so the
statement will probably be non-trivial. Then L., is not necessarily the cyclotomic
extension. Indeed if p is split in K and L., is the Z,-extension, which is unramified
at one of the primes over p, we recover (under some additional assumptions) exactly
[BleO4, Thm. 3.4]. If p is non-split, we find that L., is a subfield of the ray class field
K(fp>) = U, K(fp"), where § is the conductor of L. In this case, the corresponding
formulation of Conjecture is a consequence of [BH20, Thm. 2.7] (again under
additional assumptions). This, together with the case K = Q, may be considered as a
first theoretical evidence.

4.2.4 The remaining primes

So far we determined (at least conjecturally) the order of kg at the primes of L, which
are coprime to p and at the primes above p; for i« = 1,...,¢e,. Hence, we are left to
consider the primes of L above the primes in S, \ V’. Fix such a prime q € S, \ V' and
let Q be a prime of L above q. Let D; C G be the decomposition group of q. With the

identification G = A, we obtain a corresponding subgroup of A and we set L. = LY
and L' = LPa. Then L/_ is the cyclotomic Z,-extension of L' and we let L/, be the n-th

level of this extension (so L/, = L with the canonical identification G = Gal(L, /K,)).
Proposition 4.2.13. If Conjecture [{.2.9 holds for L', then we get ordg(rp,s) = 0.

Proof. We find that Hypothesis for L' is implied by the hypothesis for L, so we
can assume that this hypothesis holds. Then for each n, we obtain a Stark unit €7,

and by Proposition we get €1, ¢ = N, /1 (€1,,5). Hence if Conjecture is true
for L, then we can set ay;, s = Np, /1 (Br,.,s) and find €1, g = oz(LW,_,Sl)e. Note that the
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sets V' and V may change when moving from L to L, hence we obtain ¢’ > e places in
S which are completely split in L’ but not in L/_. If we assume that Conjecture m

holds for L', then we obtain elements 31, ¢ € (L},)*/(L')* satisfying ﬁgf;})e =er s

Then as in the proof of Lemma {4.2.5(we get a; s = 5,(-]7;)6 “in (L)% /(L)% and hence

(-1~

KL/,S,n ENL;L/L’(OZL’”,S) ENL/L’(KJL,S,n) mod ((L/>X)p".
With Lemma we get
Ii(]}:gl)e B = NL//L(/{L,S) € UL’7S

and from [Neu92, Ch. III, Thm. (1.2)]

f(Q/Q,) . OI‘dQ(KJL,S) = OrdQ/(NL/L/(mL’S)) = ordQ,(,i(Lj’—Sl)e 76) ‘

If there is a second place v € S, which is completely split in L/, we find k- ¢ = 1 by
Remark so ordg(kr,g) = 0 in this case. If we still have only one place, which is
completely split in L/_, we see that ¢ > e, since there is at least one additional prime
which splits completely in L', namely the place q. But then

ke =1,
so we find again ordg(rr,s) = 0. O

4.2.5 A T-modified version

For a T-modified version, we use that St(L,,/K, S) implies RS(L, /K, S, T,1) by Corol-
lary and consider the Rubin-Stark elements 7., s+ € Of g7 for n > 1. If we

assume Conjecture (4.2.3| we find elements 57 ¢ € LX/L* such that (87 ¢,)07)" =

2 : 2 _ o (0) : 2 o 2 2 _
nz,.sr by setting 87 ¢, = ;. Defining k7 51, = NLn/L(ﬁLn,S,T) we find k% g1, =

/{?é?z and hence #7 g7, € Of ¢ by Lemma |4.2.7 and [2.3.3 (iii), Taking the limit, we
get H%’S’T = (n% s1n)n € Ursr. Since p is odd, 2 is invertible in Z, and we can define
Krsr =3 ® kKL gp € ULsr.

Remark 4.2.14. If T contains a place v with o, = 1, then §1(0)/2 € Z|G] so we can

directly define 8, s7 = ZZE?/ 2 (and analogously for 1 s, and k1 gr) in this case.

As before, we get a Rubin-Stark clement 1Y) = nyg,0 € QA OF g, p for each
i=1,...,e. By (2.3.1), this must be of the form )\gf)ugl)T /ARERWAN US)T for some )\gf) cQ

and elements ugz)T, o ug)T € OIX/’ s, 7 Then the T-version of Conjecture |4.2.9| is

Conjecture 4.2.15. For alli =1, ...,e,, we have

()
)\(i) ( (Log‘ﬁﬁ (ua,T)) 1<B<e, \

Ordly, (kp,57) = (—1)r 2L det e AR
wer k(nmﬁ Ord‘.pg (ng,)T)>ep+1</5<e)
1<a<e

In particular, if V' \'V C S, we get for alli =1, ...;e
' /\(i) :
Ordy, (rz,5,7) = (1)~ det <L0gq3ﬁ (ug,)T))lg,Bge € Zy|G].

1<a<e
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4.3 Relation of the conjectures

Throughout this section, we assume that Hpothesis 4.2.2] is true. We first relate Con-
jecture [£.2.9) with its T-version:

Lemma 4.3.1. Conjecture is equivalent to Conjecture[4.2.19 for all sets T' satis-
fying Hypothesis|2.35. 1.

Proof. This follows directly from Lemma [2.4.T], the fact that

67(0)/2
krsr = ks

and [Tat84, Ch. IV, Lemme 1.1]. O

In the rest of this section, we will prove the major theoretical evidence for Conjec-
ture [4.2.9

Theorem 4.3.2. Assume that Conjecture [{.2.3 holds for any subfield of L. Then
Conjecture is equivalent to IMRS(L/K, S, T, 1), (Conjecture[4.1.3).

For the proof of the theorem, we first state a reformulation of IMRS(L/K, S, T, 1),
from [BH21|. Their approach starts with [BH21, Conj. (3.2)] for general Euler systems
and arbitrary rank r. In our special case of Rubin-Stark elements and r = 1, this can
be formulated as

Conjecture 4.3.3. Let nsr = (L, s17)n € @n Ur,st = UL, st be the limit of the
norm-coherent sequence of Rubin-Stark elements. Then

nsr € ItUL st -

Remark 4.3.4. Bullach and Hofer proved the validity of the above conjecture under
certain assumptions, a list can be found in [BH21, Thm. (3.5)]. In particular, Conjec-
ture is a consequence of a variant of the Iwasawa Main Conjecture (see [BH21,
Remark (3.6)]).

Lemma 4.3.5. Conjecture [{.2.3 is equivalent to Conjecture [{.3.3 for all sets T satis-
fying Hypothesis[2.3.1]

Proof. First assume that Conjecture holds. Then as in the proof of Lemma [4.2.7]
we can show that ﬁg;ls € Ozn,s- Define oy = Np,./0,(BL,,s) for m > n, then a
similar computation as in the proof of Lemma{4.2.7| shows that o, ,, € Ofm ¢ and hence

a2, 7= any) € OF g5 by Lemma [2.3.3 (iii)} Note that

N, (Brns) =B, s mod (LX) "

m

for all m > m’ and hence

/
2 _ 2 X pmTm
Cpm, 7 = X/ T mod (OLn,S,T)
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Therefore, we can define

Of
2 2 Ln,S,T _
)\mT T (O{an m>n € L OX pm—n ULn,S:T
Ln,ST)

and

1
An,T = B ® )\in cUr,st-

By definition, the sequence (A, 1), is norm coherent and we get with Lemma

1)e 1 _1\e 1 —1)e
N =5 (000 n) T e = 5 © (Ve (B8 )T )z
1 1
=5 (N0 (E2,8) " D) inzn = = ® (€ii(0))mzn = (ML, ST )m>n -

2

Therefore, ()\mT)%%l)e = ng,r, so Conjecture m holds.
For the other implication, we assume that ngr € IfUr, sr. This implies, that

there exists a norm coherent sequence (A, r), such that )\8;1)6 = np,.st in U, sr.
With the identification already used in the first part of the proof, we find elements
nmr € OF, g such that

X
Ln,S,T

) )pm—n )

>\nT (aan)m>n S 1 m X
“ (OF s

and hence

0) (v—1)¢
NL,,s,T = U, Tan 2n,T

X

for some uﬁ% € ( Lo, SVT)p”' Since this holds for all sets T" satisfying Hypothesis 2.3.1

we can choose T' = {v} for some v ¢ S such that o, = 1 and hence by Lemma [2.4.1] we

find 0z, sr = g(Ll évv /Ln  With enough sets of this form, we can apply [Tat84, Ch IV,

Lemme 1.1] to write wy, = >, a;(1 — Nv;) and hence

1-—Nv;

c _ T (0) a®
Ln,S = €Ln,S nLnST n2nT
Z l
— U»ELO) =i0n2n
_ . (0), (v=1)°
= Uy an,2n )

where a9, € Of ¢ and u e (OF, g)7". Since Ny, i(er,.s) = 1, we can apply
Hilbert’s Theorem 90 to obtain an element 3" € € L) /L* such that (ﬁ,(Ll))V_1 =€L,.5-
Then we define ul)) = RS LY} /L* and obtain

(“/*1>e 1
n,2n
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Therefore, we have

W) =uPu? = @) =P Ty

n

5=0
and we compute
pr—1 . pr—1 i—1 _
NLn/L(ﬁ’Ig/l)) = NLn/L(un1)> = H (unl))’w = H unl) (unO))’yj
i=0 i=0 5=0
pr—14—1
= (" T TT@) e ()P noe = (L=
i=0 j=0

Hence, we find a representative b of 57(11) such that Ny, , L(bg)) = 1. Applying Hilbert’s

Theorem 90 again, we find an element 8 € L such that (6&2))7_1 = b, Defining
@
USSR} SO L} /L*, we obtain

u = =
n Q=2
n,2n

h = Py

A similar computation as before shows that

Npe(B) € (Ly)y" N L = (LX)

so we can choose a representative bl with N, L /L(bg)) = 1. This procedure can be
applied until we obtain 8\ € LX/L* satisfying (B)-D° = LS O

By [BH21, Prop. 3.13|, IMRS(L/K, S, T, 1), is equivalent to
Conjecture 4.3.6. Conjecture holds and

€5, )\O,T &® (’7 - 1)6 = (—1)663774 RecW(UL,S,T) (431)
in esUpsr ®z, [(T)/I(T)", where (A1), is the norm coherent sequence satisfying
/\7(],;1)8 =n,sr n UL, st for alln > 1.

In fact, the equation (4.3.1]) can be considered as an equality in a certain submodule
of e, Up 57 ®z, I(I')¢/1(T)*! related to the module of universal norms UNj of rank 1
and level 0 introduced in [BD21|. The universal norms of rank ¢ and level n are defined
as

t t t
UN! = ﬂ </\ NLm/Ln> (ﬂ ULm,S,T> C ﬂULn,s,T,
m>n

so in our special case we obtain

UN; = ﬂ Np./tWUr,.s1) CULsr.

m>0
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Lemma 4.3.7. (i) For a character x withrs, = 1', we get dimg, () (Q,(x)UNg) = 1.
(i1) For a character x with rg, = 1" and any i € {1,...,e,}, we get
e Qp[GIUNG M ey ker(Ordg,) = 0.

Proof. Part (i) is [BH21, Lemma (3.1)(c)]. For part (ii), it clearly suffices to construct
a non-trivial element z € Q,(x)UN; which is not contained in ef ker(Ordy,) (recall
that e;jQp[G] = Qp(x)). This is done in the proof of [BH21, Lemma (3.16)| and the
hypothesis e = 1 is not used for this construction. We repeat the argument briefly: Let
hr, be the class number of L and let z be a generator of P*. Then ef,j Ordy, () =
hrepy # 0, so it remains to proof that z € QpUN(l). Since B; | p and L /L is the
cyclotomic Z,-extension, B; is totally ramified in each L,,. Denoting the unique prime
ideal of L,, over *B; by B; ., we get B; = Np,/(Pin) and hence x € NLn/L<OZn,S) for
each n. Therefore, z € Q,UNj (see [BD21, Lemma 3.10]). O

We now repeat the first part of the proof of [BH21, Lemma (3.15)], to show that
can be considered as an equality in eg,/Q,UNy ®z, I(I')°/I(T)*". We will see
that the assumption e = 1 is not necessary for this part. This is clear for the left hand
side since A 7 is a universal norm by construction. The map eg, Q, Recy on the right
hand side is either the zero map, then clearly 0 € eg,»UNg®z, I(T')°/I(T)*+!. If it is not
the zero map, we find at least one character y such that e, Recy (and hence ep,j Recyy)
is non-zero. Applying [BKS16, Lemma 4.2| to

.= @ efy Recy : Q,(x)Ursr — @ Q(x)

PeWw PeWw

we get that W is surjective and

im <6M Recw : Q,(x) /\ Ursr — Q,(x)ULsr ®z, I(F)C/I(F)Hl)
= ker(W¥) ® I(T)¢/I(T)°*.

Clearly Q,(x)UNg C ker (e, Recy) for all p € W, ie. Q,(x)UNy C ker(¥). Since ¥ is
surjective, we get

dimg,(y) (ker(¥)) =rgy —e=71"— (' —r)=r=1,

so ker(¥) = Q,(x)UN; and the right hand side is indeed an element of eg,»Q,UN} ®z,
I(I)/T(T).
With the Lemma above, we get that Ordg, is injective on this module for any

i=1,...,ep, hence (4.3.1)) is equivalent to
€S r Ordspi<)\0’T) & (’}/ — 1)6 = (—1)6€S7T/(Ol'dq3i @) Recw)(nL757T) .

Note that Ordy, on the left hand side is indeed the equivariant valuation map acting
on elements of L* (resp. Z,L*), whereas Ordgy, on the right hand side is an induced
map acting on elements in an exterior power (cf. Section [2.1.2)).
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The proof of Lemma shows that A\gr = kr g7r. Considering the right hand
side, we get from the homomorphism (2.1.1)) that

Ordgy, o Recyy = (—1)° Recyy o Ordy;, .
Then by Proposition [2.4.7, we find
Ordy, (71,57) = (—=1)'nrs.r = (—1)'n}) .
Hence, we are left to compute Recw(ngpi))

Then by (2.1.2)),

. As before, let 77T = )\ U1T - /\uezf.

Recw (1) = Ay det(Recy, (ugr)i<apse
With the isomorphism (4.1.1)), we get for any x € L*
Recy, (z) = Z(recmﬁ(a( ZO‘ ® (recp,(o(r)) —1).
oeG oeG
Since v is a generator of I', we know that recy,(z) is a (p-adic) power of . Therefore,
for any z € L we can define s(z) € Z, by recy, (z) = 7**).

Lemma 4.3.8. For x € L™, we have

o) = 4 75108 (Nig 0, (@), 1< <y,
N, ordys, () e, 1< <e

Proof. First consider the case that e, +1 < < e, then *Bp is unramified in L /L,
hence the local reciprocity map is determined by the Frobenius oy, = 7"%# associated
to P4 and the valuation of z. We hence get

recy, (z) = 7" ordyg (@)

Now let 1 < 8 < e,. From local class field theory, we know that the local reciprocity

map is a surjection Ly — Gal(Lyy 0/ Ly,) and we denote its kernel by Vy,. Since
Ly,  is a totally ramified p-extension, it suffices to consider principal units, i.e. we even

get a surjection 1 +‘I§5(’)Lm —» Gal(Ly, 00/ Lyp,) with kernel V( = Vi, N1+ P01, -
Analogously, we obtain for each level n surjections Lg;, — Gal(Lmﬁ,n /Lyp,) with kernel

: 1

Vign and 1+ PpO0L,, - — Gal(Lyp,n/Ly,) with kernel ng;n = Vi N1+ POy,
As we have seen in Section , the local reciprocity map for @, is an isomorphism
1+ pZ, — Gal(Q,/Q,), whose inverse is related to the cyclotomic character (see
(4.2.1)). On the n-th level, this isomorphism restricts to % — Gal(Q,,./Q,).
By |[Neull] Part II, Thm. (5.10)], we hence obtain for each n the following commutative
diagram:

r, — Gal(ch57n/Lr_]3ﬁ) € ’ Gal(@p,n/@p)
I‘GCQBBTE gl(_)_lochc
recy; 1 o v N/ . 14pZ, log,, . _PLyp
8 + "B/B L‘ﬁg/ PLER " 14pntizZ, = T opntiz,
oo T

L* ——— L;s /V‘ﬁﬁn —> Qu/(P") X prp—1 x (1 + p"1Zy)



88 CHAPTER 4. SOLOMON-TYPE CONJECTURE

Note that the extension Ly,/Q, (and hence Ly, ,/Q,) might not be normal. In this
case, one can consider the normal closure of Ly, (resp. Ly, ,) to apply [Neull, Part II,
Thm. (5.10)]. However, we still end up with a diagram as above. Now we can take
inverse limits and since this is left exact, we obtain

b — Gal(Ly, o0/ Ly,) — Gal(Qp00/Q)

reCmBTg NJ/(_)lochc

Nirg . /0 lo
recys 1+ PBs0s,, /ngj T vZ, Tg> vZ, (4.3.2)

T e

b 7
L L‘EB/V‘% ——— @/ (") X prpa

We immediately see that the norm maps in the middle and bottom line must be
injective. Recall that for any z € L* we defined s(z) € Z, by recy,(z) = v*®). Then
x can be embedded into ngﬁ and there exists y € 1 + ‘B/BOL% such that

recy, (y) = recy, () = 75(‘6) .

From the above diagram, we get that this is equivalent to
0g, (N1, /0, (1)) = 108, (Xeye (V") ™) = —s()w.
So we are left to show that
log,(NLy, /0,(y)) = 10g,(NLy, /0, (%)) -

But from the above diagram, we see that NL% /0,(y) and NL%3 /0, (z) differ by an
element of (p”) x p1,_1 = ker(log,,). O

With the above Lemma, we get for 1 < g <e,

Recy, (v Za @) 1)

= Z s(o(x))o' @ (y—1)
=L S g (g e 0 (1= 1)
ceqG
1

=~ Logy, (1)@ (v~ 1)
and analogously for e, +1 < 3 <e
Recy, (z) = nyp, Ordy, (z) @ (v — 1)

In our case, we hence get

L Logy, (ulr) ® (y—1), 1<8<e,

Rec u(i) = ol
% (tar) { L Ordy, () @ (Y= 1), e,+1<f<e.
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Inserting this yields
€S,/ Ordspi(/iLvs,T) X ("}/ — 1)6 = €5y Recw((—l)lng))

( _ (% Logy, (ully) ® (v — U)lgﬁéep \‘

' 1<a<e
k(nmﬁ Ordmg(ug,):r) ® (7 - 1))ep+1§ﬁ§e
1<a<e
, (Log (u(i) ))
)\(z) B\, T/ J1<B<ep
T

- det (Z) 1<a<e ® ('7 o 1)6 .
wer k(nmﬁ Ord‘m (UQ,T>>ep+1<ﬁ<e)

= €5 (—1)i)\§,£) det

= e ( _ 1)i+6p

1<a<e

Since I(T)¢/I(T)** 2T = Z, and (v — 1)¢ is a generator, it follows that

(i)
NG ( (Logm(“a,:r)>1gﬁge,, \|
T

eg . Ordy. (K = eg . (—1)iTe det _I<a<e )
S,r v (FLsT) sr(—1) wer (n% Or d%(u(l)ﬂ) repe
«, e e
plS(;Se_

and hence, we are left to consider the characters y with rg, > r’. Since e;nrs, 7 = 0
for such a character, we also find that the right hand side vanishes for these characters.
If we can show that ep,; Ordy, (kr,s7) = 0 for these characters, then Conjecture
follows.

For this we consider the extensions L, := L") resp. L, ,, = LX) Since Tsy > 1,
we have at least one place v € S\ V' such that G, C ker(x), i.e. v splits completely
in L,. If there is such a place which is not only completely split in L, but also in L, ,
we find for each n that

_ _ =0y _
NLn/LX,n<77Ln,S,T) = Ny, ST = Ny ST = 1.

In this case, we also find 8, s = Ni,/r,..(BLn) € L;m/LX satisfying B&;{ET = 1.
Indeed, this implies 8z, , s € L™ and hence

KLy,5Tm = Niy /iy (Brynsr) = Nojoy (Frsrn) € (L )
Therefore, we get that

ey Ordy, (KL srn) = €y Y ordy, (0(kL57n))0 "
ceG

= Z ordy, (0 (kr.s1n))x(0 ey

oceG

= > ordy (0(kLsmn))X(0 ey
seGal(Ly /K)

=0 mod p".

Since for ¢ ~ x, we have ker(y) = ker(¢), this holds for all ¢» € [x| and hence
epy Ordg, (kr,57n) =0 mod p” for all n. Taking the limit, we get

epg Ordy, (kL,57) = 0 € epZy[G].
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Last but not least, we have to consider the case that S contains no additional place
which is completely split in L, . In this case, the difference e increases when moving
from L and Ly, to L, and L, . Indeed, Conjecture .3.3| then implies that there exists
an ar, s € Ly, /L* such that O‘Z;,IS,T = N1,/ (BL,.s,7) (maybe we could take even
some powers of v — 1). But then we find that

N (6rsmn) = Niyolon, sr) =1
and hence a similar computation as above shows that
€[] Ol"dq3i(/{L757T) =0e€ e[X]ZP[G]

in this case.

This finishes the proof of Theorem [£.3.2l We can deduce the following

Corollary 4.3.9. (i) If Conjecture holds for L/K,S and T and v ¢ S is a
place of K, which is completely split in Lo, then Conjecture also holds for
L/K,SU{v} and T.

(i1) If the equation in Conjecture holds for any 1 <1i < e,, then it holds for all

1=1,...,¢p.
(111) The validity of Conjecture does not depend on the choice of .

Proof. (i) From Theorem we get that IMRS(L/K, S, T,1), holds by assump-
tion, hence we obtain IMRS(L/K, SU{v},T, 1), from |[BKS17, Prop. 4.4(iv)| and
therefore Conjecture also holds for this data.

(ii) We have seen before that the equation in Conjecture [4.2.15| for any 1 < i < ¢,
is equivalent to (4.3.1), hence the other equations follow from an application of
Ordy, for j # i.

(iii) It is clear that xp g7 and hence the statement of Conjecture depend on
the generator v. However, if the conjecture is true for a certain choice of v, this
implies IMRS(L/K, S,T,1),. Since this is independent of 7, we hence obtain
Conjecture for any other choice of ~. O

Remark 4.3.10. Part (i) of the above corollary indeed proves that we can restrict to
the simpler formulation under the assumption V' \ V' C §,.



Chapter 5

An algorithmic study of the
Mazur-Rubin-Sano conjecture

In this chapter, we want to use our reformulation of IMRS(L/K, S, T, 1), to numerically
verify the conjecture up to some level n. We use the notation and assumptions from the
last chapter, in particular K is a totally real field, L., is an abelian extension containing
the cyclotomic Z,-extension K./K and L = L. . We assume that Stark’s conjecture
and Conjecture hold for each level n (Hypotheses [4.2.2] and [4.2.6)) and that r =1

(Remark [4.2.8]).

We first present an algorithm to compute Rubin-Stark elements (for arbitrary r).
In the second part, we consider the computation of Stark units in the case when K
is a real quadratic field. Then we combine the presented algorithms to compute all
the necessary values for testing Conjecture [4.2.15[ up to level n. In the last section,
we construct examples L/ K, where Conjecture is not implied by any theoretical
results known to the author and present the computational results for these examples.

5.1 The computation of Rubin-Stark elements

In order to verify Conjecture [4.2.9] we need to compute Rubin-Stark elements in the
field L. The basis for this computation was developed in the author’s master thesis.
We will start with a short presentation of this approach. The rounding method from
the master’s thesis is replaced by an improved version described in Section [5.1.4]

5.1.1 Computing the (5, 7)-units

The algorithm for the computation of the (.S, 7)-units was provided by Werner Bley.
We assume that we are able to compute OES as an abstract abelian group Oy g
together with an embedding ¢z, s into the field L. An algorithm for this can be found
in [Coh93, §6.5]. We sort the generators by, ...,bs,| of Or g such that bjs,| generates
the torsion part, i.e. tf g(bs,|) generates p(L). Now let Ty = {t1,...,t;} and choose a
generator m; of (Op/t;)* for each i. Then ¢f, 5(b;) ¢ t; for all i and j, hence we obtain

91
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integers a; such that vy 5(b;) = m; ¥

;7 mod t;. Defining the matrices

Nt; —1 0
A = (Oéij) 1<i<l Ay =
1§]§|SL‘ O Ntl . 1
and
A= (A1|A2) c ZZX(|SL|+Z)’
we find

Proposition 5.1.1. Consider the map

@Y: Z'SLHZ — OL,S
ISL]
(215 o0 28, | 41) Z 2;b;

j=1
and set O s = p(ker(A)). Then i1, 5(OLsr) = OFf o1

Proof. Let z = (21, ..., 2|5, |+1) € ker(A), then ZﬁLll ®ijzj = —2 5, +i(Ny, — 1) for each
1 =1,...,1. Hence

trs(p(2) = 7?]:1 W = ; AT — 0 nod t;

for all i, so 11,5(Or,s1) € OF g1
Now suppose that x € Of g Since the 11, 5(b;),7 =1, ...,|S| generate Of g, there
exist integers 2, ..., 25, | such that z = LL,S(Z‘]-S:LJ z;b;). Choosing
1 ISL|
R|Spl+i = _Nti 1 jZIOéz’ij

for i = 1,...,1, we obtain and element z € ZI*zI*! such that z = ¢, 5(¢(2)) and the
above computation shows that z € ker(A). ]

Hence, the computation of OF 4 can be reduced to compute the kernel of A. The
result of this computation is the abstract subgroup Oy, g7 of Or ¢ and the generators of
this subgroup define a Q-basis {uy, ..., us, -1} of QOf g via 1 5. Set m := [Sr| — 1.

For our computation of Rubin-Stark elements we want to use the decomposition by
the rational idempotents e(,j. Since ef,j - QOF ¢ 1 is a free ey - Q[G]-module of rank 7,
i.e. an r-dimensional Q(x)-vector space, there exists indices i1 (), ..., i (x) € {1,...,m}
such that {epgui,(y), - e[X]ui(} 18 a Q(x)-basis of e - QOf gp. Note that these
indices depend on the equivalence class [x] but not on the character y. For determining
these indices, we use the following lemma from the author’s master thesis:

Lemma 5.1.2. A family of elements {v1, ..., v} € ey - QOF g1 is linearly independent
over Q(x) if and only if the family {ov;|o € G,1 < j <1} spans a Q-vector space of
dimension | - [Q(x) : Q].
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Hence, we can apply the
Algorithm 5.1.3. Input: ws, ..., un, together with the G-action, [Q(x) : Q] and ef.
(1) Search an index i;(x) such that epju;, () 7 0.

(2) Let d be the number of already computed indices. If d = r, return the indices
01(X), -y 1 (X)-

(3) Test the family eyjus (), ---» €[] Uiy(y) €U, On linear independence over Q() for
some index j > i4(x).

(4) If the family is linear independent, set iq.1(x) = 7 and go to step (2), else go to
step (3) with the new index j + 1.

Remark 5.1.4. Computing o(u;) as a linear combination of the uy, ..., u,, can be quite
time consuming. Here it is helpful to compute the action of GG on the abstract abelian
group Oy, g and then reduce the computation to a simple matrix multiplication.

Since efyui (x)» - € Uin(x) 13 @ Q(x)-basis of ey - QOf g7 = Q(x)Of g7, We can
represent e u, for all s = 1,...,m in this basis, i.e.

ChJU Z fsa (X)) € Uiax)

for some p.0([x]) € Q[G] (note that p([x])ep is unique, whereas p([x]) is not).
These coefficients still depend on [x], but we will only use them in the context of a
fixed equivalence class, hence we will simply write ps, from now on. For the rounding
process, it will be necessary to determine (a choice of) these coefficients ps,. For this,
we use the following

Algorithm 5.1.5. Input: uy, ..., up, together with the G-action, i1(x), ..., ir(x) and e[y
(1) Compute ay € Q,t = 1,...,m such that epju, = Y ", aqu, for each s =1, ..., m.

(2) Use the G-action on Op g1 to compute by (o) € Q,t =1,...,m,0 € G such that
Tl Win(x) = D peq bar(0)uy for each o =1,....7

(3) Solve the system of linear equations ag = >, 1 > cq Csal(0)bar(0) over Q.

(4) Return pieq =), e Csal0)o € Q[G] .

Indeed we see that with this choice of ., we get

r

D HsaiUia(y) = Z D aalo)oepgtiinpg = Y Y sal0) Y bar(0)us
t=1

a=1 a=1oceG a=1ceG

= E AstUy = €[y Us-
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5.1.2 Computing the L-values

The Rubin-Stark element is determined by the values of the S-truncated T-modified
L-functions. So we need to determine the value L(;)T()Q 0) for each character x with
rsy = r. There exist algorithms for the computation L) (x,0) for an arbitrary d-th
derivative of the L-function associated to a Hecke character (see e.g. [Dok04]), so all
we have to do is to identify our given character y with a Hecke character and compute
the additional factors caused by the sets S and 7T'. In particular, we may have to adjust
the order of the computed derivative, since in general rg, # rs_ . As the algorithm
described in this chapter is implemented in MAGMA, we use the built-in intrinsic
for the computation of L@ (y,0). Although the identifications in MAGMA may be a
bit tricky, the involved operations are elementary and can be retraced directly in the
implementation.

Also note that we distinguish the case x = 1, since we know the leading term of the
Dedekind (-function from the analytic class number formula.

5.1.3 Determine the real coefficients

As mentioned before, we decompose the Rubin-Stark element by rational idempotents,
ie.

NL,s, T = Z €x)ML,s,T -
[X}Qés,r

Note that 1y, g7 lies in the eg,-component (cf. Remark [2.2.2). With the basis computed
in Section [5.1.1], we obtain

NL.sT = Z ERJ A Uir () AN+ A Ui () = Z Z%M Wiy ([x]) N+ AN Wi (1)) 5

[X}Qas,r [X}Qas,r we[x]
where )\, € C such that ZwE[x] epAy = €A € R[G]. Applying
(wo —w')* A=+ A (wp— —w')* € Hompgg) (A"ROT 6 1, R[G])

(where we use the identification (2.1.1))) to the definition of 7, g1, we obtain

A det(—= Y log |0 (uin(ia))],,, ¥(0 ™ Dizassr) = Lsp(w,0) € C (5.1.1)

oeG

for each ¢ € [x].
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Hence, we can compute 7y, g7 with the following
Algorithm 5.1.6. Input: L, K, S and T.

(1) Determine r as the number of the completely split primes vy, ..., v,_1 in S.

(2) Choose places wg of L for =0, ..., — 1 such that ws | vs.

(3) Compute the (S, T")-units as the abstract group Oy, s together with its G-action.
(4) Determine the characters y € @S,T and compute the rational idempotents ey,
(5) For each [x] € G,

(5.1) Use Algorithm to determine the indices i1 (x), ..., ir(X).

(5.2) For each ¢ € [x] compute Lg:)T(w_l, 0) as described in Section [5.1.2]

(5.3) Directly compute the determinant on the left hand side of (5.1.1]) and deter-
mine \y.

(6) Combine the eyAy to ey € R[G].

(7) Return 7 gr as a list of tuples consisting of the coefficient e},j A, and the units

Uiy (x)y ooy Win(x)-

5.1.4 Determine the rational coefficients

Now St(L/K,S,T,r) is equivalent to ep A € Q[G] for all equivalence classes [x] and
we want to determine these rational coefficients. In order to do this, we assume that
the Rubin-Stark conjecture holds. If this is true, the procedure described below will
determine the rational coefficients Apyjefy), hence if the procedure fails, we get a counter
example for the Rubin-Stark conjecture. Conjecture RS(L/K, S, T,r) implies that for
any @1, ..., ¢r € Homgq(Of g1, Z[G]), we get
(1 A ANpr)(nest) € ZIG.

Since |G| epy) € Z[G], this implies

(er A Ao )(IGlepgnrsr) = |Glepg Ay det(@a(uis () 1<ap<r € ZIG] (5.1.2)

for all [y]. Fix an equivalence class [x] and let efu; () € Homgu(Q(x)Or g7, QX))
be the dual map, i.e.

€l Ui () (€0 Ui (1)) = Oap -
Then we obtain the following

Lemma 5.1.7. Let N be the least common multiple of the denominators of the coeffi-
cients o € Q[G], i.e. Nuso € Z|G] for all s =1,....,m,a=1,...,7. Then

ur— N - |G| e[X}ufa([X])(e[X}u)

is a well-defined Z[G]-homomorphism.
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Proof. By definition, we obtain for each s =1,...,m
Ya(us) = N - |G| EixMsa € Z[Gl.

For the linearity, let A € Z[G]. Then e\ € e Q[G] = Q(x) and since epu; () is
Q(x)-linear, we obtain

Pa(Au) = N - |G| epgui, g (epgAu) = epg A - N - [Glepguy, ) (epgu)
= A\pa(u). O

Using these maps, we get from (5.1.2) that
|G|TJrl NTG[X])\[X] € Z[G]
Therefore, we obtain the Rubin-Stark element with rational coefficients from
Algorithm 5.1.8. Input: L,K,S and T

(1) Use Algorithm to compute e\ € R[G] and the units w;, (), ..., i, (). Also
store the abstract group Oy, g7 together with the G-action.

(2) For each equivalence class [x] do:

(2.1) Use Algorithm to compute the p5, € Q[G] and determine the integer
N.

(2.2) Compute the coefficients of |G|T+1 NT"ep Ay as real numbers and round these
to integers a, € Z.

(2.3) Set Ay == Doec |G|T“+NTU € Q|[G] as the new coefficient for the [x]-
component.

(3) Return 1, g7 as a list of tuples consisting of the coefficient Ajq and the units

Uiy (x)r oo Win(x)-

Remark 5.1.9. (i) The L-values and the logarithms in the above algorithm can only
be determined up to a certain precision, hence we always obtain an error term in
our computation. We determine the error term by comparing our resulting real
coefficients before the rounding process with the rational coefficients determined
by the rounding process.

(ii) As already mentioned above, the described procedure was already part of the
author’s master thesis. The main difference is the new rounding process which
allows to round real numbers to integers instead of finding approximations of
rational numbers.

(iii) There exists also an algorithm for computing Rubin-Stark units by K. McGown,
J. Sands and D. Valliéres in [MSV19]. Their approach is formulated in the lan-
guage of Artin systems but is quite similar to the one presented in the author’s
master thesis. In particular, they also round real numbers to rational values to a
high precision.
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5.2 Computing Stark units over real quadratic fields

The algorithm for the Rubin-Stark elements described in the previous section can the-
oretically be applied to arbitrary fields L/K. The main problem is, that we have to
compute the ring of integers and the units of the top field L, which limits the compu-
tations to fields of low degree (many fields L with [L : Q] < 30 and small discriminant
can be handled in reasonable time). When examining Conjecture [£.2.15] we have to
compute the Rubin-Stark elements in L/K (which is possible in the considered cases),
but we also need the Stark units in the extensions L, /K. For this purpose, we have to
improve the algorithm exploiting the specialization to the case r = 1 and by restricting
to real quadratic base fields K. These improvements are based on [Rob97| and will be
described in the following sections.

5.2.1 The real values of the conjugates of the Stark unit

We use the notation from the last chapter and we assume from now on that K is a
real quadratic field. Moreover, we restrict to the case that S = Se U Sy (L/K) U S,,.
In particular, we assume that Stark’s conjecture is true, i.e. we work under Hypothe-
sis|4.2.2] Set m :=[L,, : K]. In the case r = 1, we know that RS(L/K, S,T,1) for all T
is equivalent to St(L/K,S) (see Corollary and instead of computing 1z, s, we
compute all the conjugates €7 ¢ for o € G,. These are determined by the polynomial

f=1](X-¢e7,6)=> bX*eK[X].
0€Gn k=0
So it suffices to determine the coefficients b, € K. These are uniquely determined by
their embeddings 7 (bx) and 75(by), where 7;,: K — R corresponds to the infinite place
oo; of K for i = 1,2. Without loss of generality, we can assume that oco; is the unique
place which splits completely in L., (as assumed in the beginning of Section and
Remark. We start determining 71 (by,) by computing 7(e7, ) for all ¢ € G,,, where
7: L, — R is the embedding corresponding to the chosen place w of L,, above oco;.
The defining equations

Ls(x,0) = —5 Z log |€Ln5}

Uegn

for all x € é; can be transformed into

(lOg |€([Tjn7s|w>cr€gn = A_l(_2L{S‘<X7 O>>X€g/\n ’

where A is the matrix with rows (x(0))seg, -

Hence, we can compute (an approximation of) ‘gims‘w = |7(£9, )| by computing
the values of the L-series (see Section . We then obtain 7(cf, ) > 0 and hence
7(e9, g) = |7(€9, )| from [Rob97, Cor. 2.13]. So we can (approximately) compute

Zﬁ (b)) X" = H( —7(e7,.5)) € RIX].

O'egn

For the values 75(bx), we use that |S| > 3 in our case, hence by part (ii) of St(L/K,S)
we get that |er, ], = 1 for all w’{ o0;.
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In particular, this holds for the places above ooy and we hence obtain

m

o)l < ()

Since |ep,, s|,, = 1 for all finite places w’ of L,, we know that ¢7, s € Of and hence
bi € O for all k. This information will be sufficient to uniquely determine the b, and
hence e for all 0. This process will be described in the next section.

5.2.2 Rounding process

We want to determine an element a € Ok from an approximation o € R of 7(a) and
an upper bound C' for the absolute value of 75(a), i.e. we search a € O satisfying

o —1(a)| <9,
IT2(a)| < C,

where 0 is the maximal error of the approximation « (in our concrete case, this is
determined by the precision used in the computations of the L-values and will be
examined in some detail in the next section). We assume that the upper bound C' is
fixed, whereas the precision of the approximation can be adjusted, i.e. we are able to
make § as small as necessary.

Visualizing the situation in R?, we obtain the following picture:
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If ¢ is small enough, we only obtain exactly one lattice point in the red rectangle
and this point must hence be our desired a € O. So we need a method to determine
all the lattice points in a rectangle with corners (x1,41), (2, y1), (22, y2) and (z1,y2).

We know that Ox = (1,d)z, where d is determined by the discriminant of K. We
set d; := 7;(d) and hence the lattice consists of the points

{()\+Md1,)\+ﬂd2) €R2 . )\,ILLEZ}
Then a lattice point is contained in the rectangle if and only if

xlg)\+ud1§x2,
11 <A+ pdy < yo.

The second line implies y; — puds < A < y9 — uds. Inserting this into the first line yields
the inequalities

ry < yp + pldy — dy),
Ty > y1 + p(dy — dy),

1.e.
1 — Yo < pu(dy —do) < x9 — Y.

Once we fix x1,29,y1,y2 € R, we can hence compute all possible values for p € Z.
These are only finitely many and hence for each of these values, we can then compute
the possible values for A. Then we obtain a complete list of elements ay , = A+ud € Ok
such that (71(ay,), 72(ax,)) is contained in the given rectangle.

Remark 5.2.1. This approach is a simplification of the procedure described in [Rob97,
§2.3]. It is only possible since K is real quadratic, whereas Roblot’s method works for
an arbitrary totally real base field.

5.2.3 Error computation

In this section, we describe how we can choose the precision for the calculation of the
L-values such that the resulting rectangle contains exactly one lattice point a. We
first assume that we consider a rectangle whose lower border is centered around (0, 0).
This rectangle obviously contains the lattice point (0,0). The height of the rectangle is
fixed, hence we need to determine the maximal width 40 of a rectangle of this height A
containing only one lattice point. We will apply this only on rectangles of height h > 1
and since 1 € Ok, we see that a rectangle of width 2 and height h contains at least
two lattice points, i.e. we already have an upper bound 40 < 2. Now we can use the
procedure described in the previous section to determine all the (finitely many) lattice
points in the rectangle with corners (—1,0), (1,0), (1, k) and (—1,h). Let (z,y) be the
lattice point in this rectangle with minimal |z|, then for any 20 < x, the rectangle of
width 49 and height h only contains the lattice point (0,0). If we place a rectangle with
height h and width 2§ at any point in R?, the resulting rectangle will contain at most
one lattice point. Therefore, if our approximation a of a satisfies |71(a) —a| <0 < 3,
a can be uniquely determined.
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So we have to choose our precision P for the computation of the L-values such that
the resulting error is less than our given §. We compute

Lg(x,0) = Ly + Ay,

where L, € C is our approximation and A, € C is the error term.

Remember that if A is the matrix with the rows (x(0))seg,, then we can compute
A1 exactly over Q(x). In order to combine this with the L-values, we have to embed
the matrix entries into C and hence obtain

Aoy + Oy s

where a, , is the complex value from the embedding and «, , is the error term.

We hence obtain

log |5(£n,S|w = —2 Z (Qoy + Qo) (Ly + Ay)

Xeén
= =2 Z oo Ly +< —2 Z (@ox Ay + gy Ly + gy Ay) ) )
XEGn XEGn
= 1o =ito 1o

where 10 is the approximation of log ’8%7 S| and &, 1og is the error term.

Therefore, we obtain

T(E%n,s) = exp(mmlog + SU,log) = fxp(xa,logl+§Xp<wa,log>(eXp(€a,log) - 12
:‘:;U :‘:go'

with the approximation z, and error term &,. For an expression for the coefficients b, of
the polynomial f =[], .5 (X —¢7, g), we set m := |G, | and fix an ordering {01, ..., 0/, }
of G,, and define

[k,m:{(il,...,ik) 1< << Sm}

to be the set of all ordered k-tuples over {1,...,m}. Set x; := x,, and §; := &,,. Then
we compute

n(f) =X = (@, +&)) =D (xS T, +&,)-

m m
=1 k=0 (i1,vesin) E i T=1
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Hence, we get

k
Tl(bm—k) = (_1)k Z H Ti; + 5’]

(11,0001 ) €l J=1

Y Y Y Ie IO 6

(i15-sik)€lk,m T=0 (J1,0sdir) €Ly g =1 JE{1,....k}
j%(jlv“'va)
k
k
(1150 ) €Dy m =1
::d'mfk
k—1 r
k
+(=1) > e 11 &
(ilv---ﬂ'k)elk,m r=0 (jlr"ajr)e-[r,k: s=1 ‘]'6{‘17---7]?}
FE(G1,endr)
N - g
6m—k:

where d,,,_j, is our approximation of 7y (b,, 1) and d,,_j is the resulting error. We want
to determine a computation precision P such that maxj<x<m-1 |0k < d, where § is the
bound fixed in the beginning of this section such that the resulting rectangle contains
only one lattice point. Note that f is always normed with constant term 1, i.e. it is
not necessary to consider the indices 0 and m. Set

L :=max|L,| , a = max |ay,/| ,
X X

Tlog 1= MAX |4 log] T = max |z,| ,
ag g

and analogously for the error terms. Then we get

hds Y Y [Iel T l6)

(i17"‘7ik)€1k,7n r=0 (jlv“’vj'r)EIr,k s=1 ]6{17 7k}
JEG1sedr)

sz'“izﬁxns

(11,500 )€l m T=0 (j1,....5r)ELr ke =1 jE{1,...,
JE(1,-- Jr)

SR S SRR

(7:17~-'»ik)elk,7n r=0 (jl v~~~7jr)€17',k

-()Z (e
I(Z)«x+éf—x@-

The definition of &, yields £ < - max, [exp(&,10g) — 1|. For the next steps, we assume
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that the error term &, 10, is small. More precisely, we demand
1

yrk

In particular, |{,10e] < 1 for all o and hence we can use the error estimate of the

exponential function to obtain

élog = HlélX |€a,10g| < (521)

f S xmgx |2§a,10g| = 2xflog .

We hence obtain

k
m k 1
< k 2 21/ 1/2
— k Z ( kflog + ; (Z) (2m)z€10g>
m
< 3 k}>x kglog

We can estimate

log < 2m(al + oL + al)

and hence
m

k

Now suppose that we start our computation with a precision P, i.e. we compute P
digits of the L-values and the matrix entries. Let s,t,u € N be defined as

s:=[logip(a)],  t:=Tlogy(L)],  w:= max fllog,(|di])]T. — (52:2)

1<k<m-1

|0m—k| < 6( >:ckkm(a/\ +al+al).

Then we get o < 10°~F, A < 10*~" and hence
my i s+t—P s+t—P s+t—2P
m—k|
|0 |<6(k)x km(10 + 10 + 10 )
<18 (7:) 2Pk - 105HF

Let P’ be the necessary precision of the result, i.e. 107" < 4, then we find

1077 > max 1\(5m_k]

1<k<m—
- T o s+t—P
— 107" > max (18( )x km - 10 )
1<k<m-—1 k
_p m k’ -
<— P> 1§r]§1§8;7}1(_1 ([10g10(18<k>37 km)]) +s+t—P
m
> k .
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In order to satisfy the estimate (5.2.1)), we also need

1
2 A L AN < —
m(aA + aL + al) < g
1
— 6m - 107" < —
" — 4m?
= s+t — P < —[log,,(24m*)]
= P > s+t + [logy(24m?)] .

Note that we also have to compute at least as many digits as necessary for the maximal
(or minimal) coefficient, i.e. we also get an inequality P > u + P’. Hence, we choose
the computation precision as

P = max (u + P’ s+t + [logyo(24m?*)], | nax <ﬂog10(18 <7Z> xkkmﬂ) +s+t+ P’> .

(5.2.3)
In our computations, we first compute the L-values with a low precision to determine
s,t,u and z, then we define the correct precision as above and recompute the L-values

with this new precision.
We summarize the computation of the conjugates €7 g in the

Algorithm 5.2.2. Input: L, and K.

(1) Use the description in the beginning of Section to determine the maximal
accepted error 6.

(2) Determine the set S.
(3) Determine the necessary precision to obtain an exact result:

Compute L(x,0) with low precision as described in Section [5.1.2]
Compute the matrix A and its inverse.

Compute the polynomial 71 (f) € R[X].

Compute s, t and u as defined in and determine the necessary precision

P with (5.2.3).

(4) Compute L(x,0), the matrix A~! and 7;(f) with the new precision.

(5) Use the procedure described in Section to determine the coefficients by from
the approximations 7 (bx) and the bounds for 75(by).

eturn the roots of f as elements of L,,, these are the conjugates €7 ., together
6) Return the roots of lements of L,, th the conjugates €7, g, togeth
with a G,-action on these conjugates.

Remark 5.2.3. If we chose d small enough, we will obtain exactly one lattice point for
each coefficient by in step (5), i.e. the resulting Stark unit will be uniquely determined
by this algorithm.
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5.3 Examining Conjecture 4.2.9

By Corollary , we can restrict ourselves to the case S = Soo U Spam(L/K) U S,.
This implies that V' \ V C S, i.e. we can consider the simpler formulation given in
Conjecture [£.2.9] Moreover, since K is real quadratic, we have e < 2. If e = 0, we get
Br..s = €L, and hence Ky g, = 1 for all n, so there is nothing to check.

5.3.1 The case e =1

This is either the case if p is non-split in K or pOx = pp’ where p is completely split
in L and p’ not. Then we can simplify the statement of Conjecture 4.2.9| considerably.
First of all, we only consider ¢ = 1 (since there are no other completely split primes over
p) and we get 1y s\(p} € Qﬂl Ors\fp}- In fact, we can even determine the coefficient
due to Lemma [2.4.1 (ii), namely we get

1/2
NL,s\{p} = €L,5\{p} -

Then Conjecture [4.2.9| simplifies to

1
Ordp(rrs) = —Logy(ers\p)

Inserting the definitions of Ordy and Logy and comparing coefficients then yields

1 ag
ordop(rr,s) = —10g, (Niy/0, (€7.5\(p))) (5.3.1)

for all o € G.
To check these equalities on a level n, we apply the following

Algorithm 5.3.1. Input: L, K,n and p.
(1) Generate the field L,.
(2) Apply Algorithm m to compute the conjugates 7 ¢ for o € G,,.

1

3) Determine the topological generator v := recy(1 + p)~" as an element of I',, and
B

compute w.
(4) Apply Hilbert’s Theorem 90 to compute the conjugates By s for o € G,.
(5) Compute .50 = [I,er, 57, s and its conjugates (as elements of Ly,).
(6) Identify x7 g, with the corresponding element in L.
(7) Compute ordyyp(kr,s,) mod p™.
(8) Apply Algorithm to compute £7 g\ for o € G.

(9) Compute log,(Nry /g, (€7 s (p))) and compare both sides of (.3.1]).
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For the computation of recy(1 + p)~! in step (3) we use the algorithm described in
[Ble03| §3.2]. By the diagram (4.3.2]), we get that the cyclotomic character sends the
resulting element to

9 .
+p, p split.

In both cases, we see that the result generates 1+pZ,, i.e. we find that y := recgp(1+p)~*
is indeed a topological generator of I'. By Corollary , we can use this choice
for the desired verification.

For step (4), we use the constructive proof of Hilbert’s Theorem 90, given in [Neu92,
Ch. IV, Thm. (3.5)]. The algorithm for this was provided by W. Bley.

For the identification in step (6), we use the minimal polynomial of kg, over K,
which we can compute since we know all the conjugates of K, g

For the local computations in step (9), we use the identification

OL/B' = O, /P'OL, = Ok, /p' Ok, = Ok /p'

for any ¢t > 1. If we want to compute log,(Nr, /q,()) for some x € Of, we can hence
find an element zx € Ok such that zx = x mod B*. Now if p is split in K, we can use
the same method to find an element x7 € Z such that 7 = xx mod p' and indeed,
r7 = Ny )q,(2) mod p' in this case. If p is non-split, we find that

Ny, /q,(x) = Nk, /g, (tx) = Nkjg(rk) mod p'.

Hence, we can reduce the local computations to the described global computations if
we restrict to a p-adic precision t. Since we can only compare both sides of up
to level n anyway, it suffices to take ¢ > n big enough such that the p-adic logarithm
can be computed up to precision n.

For the computation of log,, we now decompose zz into ¢ € p,—1 and b € 1 + pZ,.
This decomposition can again be done with the global elements and we use a variant of
an algorithm provided by W. Bley. Then log,(xz) = log,(b) can be explicitly calculated
with the power series from |[Neu92, Ch. II, Thm. (5.4)].

5.3.2 The case e =2

This can only be the case when p is split in K and both primes p and p’ above p
are completely split in L, i.e. p is completely split in L. So we have to compute
nr.s\{p} € QNA’ OZ’S\{p} and 7 s\(py € QA° OZ,S\{p’}' For the computations in exte-
rior powers, it is convenient to use the T-modified version. Then we can apply Algo-
rithm [£.1.8 and we obtain

NLS\pT = At Atiar = > Aot (W) A Yia()
Ix]

LSy = Nptlh 7 Aty =Y epq N ol () /N (i) -
Ix]
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Then Conjecture [4.2.15|is equivalent to

eI AN.Q (Logm(Uzl([x1>) Logw(uilux})))
Ordg(krs7) = — ————==det ;
plisT) %: w2 Logy (Uin () Loggy Uiy (1))

/!
Orde(rp50) = 3 ebdAéx],@ dot (Iﬁogm(ugl([xn) iogm' (uél(m))) ,

b 08y (U (y)) - Logy (1)
By Corollary , it suffices to check one of the above equations. We first apply
the steps (1)-(4) of Algorithm [5.3.1] Note the element ay, s, obtained from Hilbert’s
Theorem 90, is not the desired 3, s. Now we can check whether Ny ,(az,.s) is
a p"-th power in L by determining the roots of the polynomial 2" — N sp(ar, s)
in L. If we find such a root, we can divide by this root to obtain aj ¢ such that
Nip,jr(a}, s) = 1, hence we can apply Hilbert’s Theorem 90 a second time to obtain
Br,.s- This proves Conjecture in this setting up to level n under the assumption
that Stark’s conjecture holds for level n. Then we can compute 7 g, for o € GG as in
the previous section. So the left hand side can be directly computed as

o7 (0
T2( ) Ol"dq;g(FLL’S’n),

in Z/p"Z|G]. For the right hand side, we use Algorithm for the Rubin-Stark
elements. We can again choose v = recg(1 + p)~! and hence we can perform the local
computations analogously to the e = 1-case to obtain the matrix entries as elements
of Z/p'Z|G], where t is the precision of the local computations. Then we can clearly
compute the right hand side and if we chose ¢ big enough, we can again compare both
sides modulo p".

By Theorem [4.3.2] the procedure described above gives an algorithm to verify
IMRS(L/K,S,T,1), up to level n under the assumption that the Rubin-Stark con-
jecture holds for the extension L/K and that Stark’s conjecture holds for level n.

Ordm(ﬁL,S,T,n) =

5.4 Computational results

The algorithms described above can in fact be applied to an arbitrary extension L
of a real quadratic number field K. However, the computation of the unit groups
(which are necessary to compute Rubin-Stark elements) are very expensive and should
only be applied to extension of low degree (the author experienced that for fields with
[L : Q] > 30 the computation may take more than 24 hours or fail completely). Another
limiting factor is the computation of L-values with high precision. As we have seen in
Section [5.2.3] the necessary precision grows logarithmically with the absolute value
of the L-values and the resulting polynomial coefficients. The computations show that
these values can be very large even in rather small extensions, so the resulting necessary
precision and hence the computation costs also grow fast. Moreover, the computation
of the exact roots in the number field L,, as well as determining the maximal accepted
error 6 may be very time consuming and need a lot of memory. The author successfully
tested the computation of Stark units in a field of degree [L : Q] = 56 with a necessary
precision of 167. The computation needed about 48 hours on a laptop with 1.80 GHz
and 8 GB RAM.
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After these introductory remarks on the limitations, we will now see how to con-
struct non-trivial examples for the computations. For simplicity, we restrict to the case
of cyclic extensions L/K. We start by fixing a degree, e.g. deg = 4, and an upper
(resp. lower) bound dpay (resp. dmi) for d, where K = Q(v/d). Moreover, we choose
an upper (resp. lower) bound fiax (resp. fuin) for the minimal integer contained in the
conductor of our desired extension L. The author always used the natural lower bounds
dmin = 2 and f;, = 1, but it would be possible to restrict the considered cases by these
bounds even further. We also fix a list of primes which will be considered, e.g. 3 and 5.

For each square-free d, we then construct the real quadratic field K = Q(\/E) and
compute a list of all ideals § up to fiax of Ox. We can reduce this list by requiring
that the norm of § is greater than fy;, and also greater than fy,../m, where m is the
smallest non-trivial norm of ideals in the list (i.e. m < 4). For the remaining candidates
f, we compute the ray class group Gjso, o0, and all subgroups H of G, o0, such that
the quotient @ := Gjoo,0,/H has exactly deg elements. If this quotient is cyclic, we
construct the abelian extension L/K with Galois group ). In the next step, we iterate
through our chosen primes and check for each p C Ok if p splits completely in L. If
one of the infinite places of K splits completely in L while the other one does not, we
find that L satisfies all the necessary assumptions and we store L,p and e in a list of
cases which should be investigated.

With this procedure, we also obtain fields with smaller conductors, since these can
be obtained by quotients with a suitable subgroup H. However, if we choose the lower
bound such that fim > fmax/m, we will skip some conductors which are too small to
have norm greater than f.,;,, but too big to correspond to such a quotient.

The author used this method with deg = 4, dyax = 70 and fi.x = 60. We hence
covered the cases

de{2,3,5,6,7,10,11,13,14,15,17,19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35,
37,38,39,41,42,43,46,47,51,53, 55,57, 58, 59, 61, 62, 65, 66,67, 69, 70}

for the primes 3 and 5. This results in 170 cases of interest distributed as seen in Table

Bk

e 1 9

P split | mnon-split
3 4 52 2
5) 16 88 8

Table 5.1: Number of cases for p and e with the chosen bounds

The relevant base fields for these cases correspond to
d € {13,14,21,22,26, 30, 35, 38,39,41,42, 43,53, 55, 58, 61, 65, 66, 69, 70} .

Choosing n = 1, the author checked Conjecture[4.2.15]in all these cases on the first level
with a positive result. The author was also able to compute several singular cases for
p = T7and n = 1 with a positive result. These results are again based on the assumption
that the Rubin-Stark conjecture holds for L /K and Stark’s conjecture holds for L, /K.
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