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Abstract

Transcranial direct current stimulation (tDCS) is a safe and efficient intervention for
treating major depressive disorder (MDD). However, research has suggested heterogeneity
of response between patients. The emerging field of precision psychiatry aims to use
statistical modeling of multi-modal data to tailor treatment to the single patient. To this
end, more in-depth analysis of randomized controlled trials (RCTs) will be relevant (1) due
to limited availability of other large datasets with high phenotypic detail and (2) to develop
tools for personalization within counterfactually controlled environments (i.e. experimental
designs with sham intervention and/or active treatment comparison) to distinguish specific
vs. non-specific patterns in treatment data. Previous research has aimed at identifying
patient-related factors associated with better response. However, most analyses have
operated on the group-level, ignoring natural clusters within the patients’ constituting
factors, their individual trajectories of symptom improvement, and their presented symptoms.
Furthermore, group-based modeling strategies were limited to explanatory approaches using
in-sample hypothesis-testing, that are ill-suited to prognosticate outcomes of single patients.

This dissertation provides a methodological framework for reevaluation of existing
clinical trial data (1) to provide future investigations with more differentiated units of
analysis and (2) to complement explanatory approaches with predictive modeling strategies
enabling prediction of single-patient outcomes. Using data from a landmark 3-arm clinical
trial paradigmatic for a rigorously controlled experimental design (10-week treatment of
tDCS vs. escitalopram vs. placebo) the dissertation provides three blueprint studies for
modeling heterogeneity of tDCS response:

Study 1 characterized response to tDCS by considering patient-individual dynamics of
symptom change over the course of treatment. Distinct trajectories of tDCS response could
be identified (rapid-, slow-, and no/minimal improvement), representing patient subgroups
with varying strength and speed of improvement. These results suggest development of
individualized treatment protocols and exploration of prolonged treatment courses.

Study 2 reevaluated the efficacy of tDCS, in distinct, naturally occurring clusters of
depressive symptoms. Using unsupervised machine learning (ML), a global depression
measure (HAM-D) was parsed into 4 distinct symptom clusters. Analysis of cluster-scores
showed superiority of tDCS and escitalopram over placebo in core depressive symptoms, but
only tDCS was superior in improving sleep and only escitalopram was superior in improving
guilt/anxiety symptoms, suggesting treatment selection based on patients’ symptom profiles.

In Study 3 supervised ML algorithms were employed to predict response to tDCS. In
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this proof-of-concept approach, response could be predicted above chance on the single-
patient level, but overall accuracy was modest. Features employed for model training were
explored using interpretable ML methods. Trained algorithms were provided to the field
for expansion as well as tests of generalizability and incremental utility.

The presented studies illustrate how in-depth secondary analyses of clinical trial data
can aid personalization of treatment. The provided methodological framework can be
expanded (options are discussed) and generalized to other contexts and interventions that
show heterogeneity of treatment effects. Yet, the empirical studies also epitomize challenges
precision psychiatry is faced with, including low data availability, low outcome granularity,
and limited external validation opportunities. The dissertation concludes with a discussion
of challenges and future directions resulting from infrastructural demands in data acquisition,
data management, data sharing, and interdisciplinary collaboration.



Zusammenfassung

Depressive Störungen stellen eine prävalente, stark beeinträchtigende Erkrankung dar, die
häufig rezidivierend auftritt und mit einer signifikanten Sterblichkeit einhergeht. Etwa 20-
40% der Patient*innen profitieren nicht ausreichend von den empfohlenen Leitlinienverfahren
(Pharmakotherapie und Psychotherapie), deren Einsatz zusätzlich durch Nebenwirkungen
bzw. hohe Kosten und niedrige Zugänglichkeit erschwert wird. Die Entwicklung alternativer
Behandlungstechniken hat demnach eine hohe klinische Relevanz.

Die transkranielle Gleichstromstimulation (tDCS) ist eine wirksame und verträgliche
Methode zur Behandlung von Depressionen, die sich durch ein gutes Sicherheitsprofil und
eine hohe Kosteneffizienz auszeichnet. TDCS ist ein nicht-invasives Verfahren zur Elek-
trostimulation des Gehirns, bei der durch das Aufsetzen von Elektroden ein schwacher
Gleichstrom induziert wird. Auch wenn die genauen Wirkmechanismen der Behandlung
noch nicht abschließend geklärt sind, kann vermutlich durch Veränderungen des Ruhe-
membranpotentials Einfluss auf die Erregbarkeit der Neuronen genommen werden, was zu
Veränderungen der neuronalen Feuerrate und des Timings neuronaler Pulse führen kann.

Die Wirksamkeit der Methode konnte in einer Reihe klinischer Studien und Metaanal-
ysen demonstriert werden, jedoch gibt es über Studien hinweg auch gemischte Befunde
und nur etwa ein Drittel der Patient*innen zeigt ein ausreichendes Therapieansprechen.
Eine Erklärung für die begrenzte Wirksamkeit antidepressiver Behandlungsansätze ist die
Tendenz bei Auswahl und Art der Behandlung, einem standardisierten Vorgehen zu folgen
("one-size-fits-all" Paradigma), ohne sich an der spezifischen Disposition des Patienten/ der
Patientin und seines/ihres Symptomprofils auszurichten. Da Behandlungen in der Regel auf
Basis von Diagnosen ausgewählt werden, führt dies häufig zu einem Prozess gemäß Versuch
und Irrtum, der längere Behandlungsdauern und unbefriedigende Behandlungsergebnisse
zur Folge haben kann.

Im Rahmen der Präzisionspsychiatrie (Precision Psychiatry) wird versucht, Patient*innen
und Behandlung besser aufeinander abzustimmen. Ein Ansatz, der zu diesem Zweck verfolgt
wird, ist die Suche nach Merkmalen, die mit einem besseren Therapieansprechen assoziiert
sind und eine genauere Vorhersage des Behandlungserfolgs eines Patienten/ bzw. einer
Patientin ermöglichen können. Die Detektion solch komplexer, klinischer Muster erfordert
die statistische Analyse großer Mengen multimodaler Behandlungsdaten. Im Bereich der
Hirnstimulation macht dies die Sekundäranalyse von Daten aus randomisiert-kontrollierten
Studien (RCT) notwendig.

RCTs stellen den Goldstandard für den Nachweis der klinischen Wirksamkeit einer
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Behandlung dar (in der Regel durch den Vergleich mit einer Placebo-Bedingung oder einer
aktiven Kontrollintervention), könnten jedoch auch für die Personalisierung von Gehirn-
stimulationsverfahren einen wichtigen Stellenwert einnehmen: Zum einen, weil im Bereich
der Stimulationsverfahren über die RCTs hinaus noch keine weiteren großen Datensätze
mit ausreichend detaillierter Beschreibung von Patient*innencharakteristika zur Verfü-
gung stehen. Zum anderen, weil die experimentelle Ausrichtung der RCTs eine rigide
Kontrolle der spezifischen und unspezifischen Behandlungseffekte auf die Variabilität im
Therapieansprechen ermöglicht. In Sekundäranalysen von RCTs konnten bereits einige mit
Behandlungserfolg assoziierte Merkmale identifiziert werden, jedoch wurden größtenteils
gruppenbasierte Ansätze verwendet, welche natürliche Cluster in Patient*innenmerkmalen,
in individuellen Trajektorien der Symptomveränderung und in den von Patient*innen
präsentierten Symptomprofilen außer Acht lassen. Außerdem wurden gruppenbezogene
Analysen in der Regel mittels explanativer Modellierungsstrategien und inferenzstatistis-
cher Hypothesentests durchgeführt, welche sich für anwendungsorientierte Prognosen von
Behandlungsergebnissen einzelner Patient*innen nicht eignen.

Diese Dissertation stellt am Beispiel von tDCS einen methodisch-statistischen Rah-
men zur Analyse von RCTs im Rahmen der Präzisionspsychiatrie vor. Die enthaltenen
statistischen Verfahren sollen eine differenzierte Modellierung der Variabilität im Thera-
pieansprechen und somit besseres Verständnis für die Voraussetzungen von Behandlungserfol-
gen ermöglichen. Dieses Analyseparadigma soll (1) das Ableiten differenzierterer Konstrukte
zur Beschreibung unterschiedlichen Therapieansprechens ermöglichen und (2) explanative
Ansätze zur Datenmodellierung um prädiktive Ansätze ergänzen, welche Vorhersagen über
das Respondieren einzelner Patient*innen treffen können.

Innerhalb dieses Rahmens wurden auf Basis der größten derzeit verfügbaren klinischen
Studie zur Wirksamkeit von tDCS (ELECT-TDCS) drei empirische Studien durchgeführt. In
ELECT-TDCS wurde in einem Non-Inferiority-Design über einen Behandlungszeitraum von
10 Wochen die Wirksamkeit von tDCS mit der eines Selektiven Serotonin-Wiederaufnahme-
Inhibitors (Escitalopram) und einer Placebobehandlung (Sham tDCS) verglichen. Für eine
verlässliche experimentelle Kontrolle der Behandlungseffekte erhielten die Patient*innen
jeder Gruppe zusätzlich eine Placeboversion der jeweils anderen Behandlung (tDCS +
Placebopille; Escitalopram + sham tDCS; Doppelplacebo). ELECT-TDCS kann somit
als beispielhafte Studie für ein streng kontrolliertes RCT zur Überprüfung spezifischer
Behandlungseffekte angesehen werden und eignet sich demnach als Blaupause zur em-
pirischen Demonstration des hier vorgestellten Analyseparadigmas zur Modellierung von
Therapieeffekten.

Studie 1

In Studie 1 wurde das Ziel verfolgt, das antidepressive Ansprechen auf tDCS unter Beachtung
individueller Unterschiede in der Dynamik der symptomatischen Verbesserung zu evaluieren.
Latente Growth Mixture Modelle (LGMM) wurden berechnet, um Patient*innen auf
Grundlage ihrer spezifischen longitudinalen Symptomverläufe zu charakterisieren und somit
Rückschlüsse auf unterschiedliche Geschwindigkeiten in der therapeutischen Ansprechrate
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zuzulassen. In diesem Zusammenhang konnten drei distinkte Wachstumskurvencluster
(schnell, langsam, keine/minimale Verbesserung), identifiziert werden, welche Gruppen von
Patient*innen repräsentieren, die mit ähnlicher Intensität und Latenz auf die Behandlung
reagierten. Die Kategorien zeigten eine hohe klinische Relevanz, da sie bereits nach einer Be-
handlungswoche differenziell das Theapieansprechen (Response und Remission) prädizieren
konnten. Zudem wurden nur Kategorien für eine weitergehende Analyse zugelassen, die zu-
mindest 5% der Gesamtpopulation abdeckten. Insgesamt wurden 43.6% der Patient*innen,
die mit tDCS behandelt wurden, in die schnelle Verbesserungskategorie eingeordnet. Dieser
Befund ist von hoher Relevanz, da gruppenbasierte Auswertungen ein Therapieansprechen
erst nach Ende der akuten Behandlungsphase vermuten ließen. Ein schnelleres Respondieren
wäre im Kontext der Entwicklung heimbasierter Anwendungen von tDCS vielversprechend,
um die Belastung durch tägliche Besuche klinischer Behandlungszentren zu reduzieren.

Die Kategorien waren mit unterschiedlichen a-priori selektierten Charakteristika as-
soziiert: So zeigte sich ein schlechteres Therapieansprechen bei Patient*innen jüngeren
Alters und bei Patient*innen mit stärkerer Symptomlast. Diese Patient*innengruppen
scheinen somit weniger wahrscheinlich schnelle Behandlungserfolge zu zeigen und könnten
von längeren Behandlungen profitieren. Zudem war ein langsameres Ansprechen auf die
Behandlung mit der Einnahme von Benzodiazepinen assoziiert. Dieser Befund ist besonders
relevant, da Benzodiazepine ein modifizierbares Behandlungselement darstellen und vor
der Therapie mit tDCS in ihrer Dosis reduziert oder abgesetzt werden könnten. Weitere
mit dem Therapieansprechen assoziierte Merkmale wurden durch ein exploratives, kreuz-
validiertes Ranking-Verfahren mit Hilfe eines elastic-net Algorithmus identifiziert. Diese
beinhalteten unter anderem globale Maße der Symptomschwere (Montgomery-Åsberg De-
pressionsskala [MADRS] und Beck Depressionsinventar [BDI], das Ersterkrankungsalter,
Einnahme von Schlafmitteln (Nicht-Benzodiazepin-Agonisten, auch als z-Drugs bezeichnet)
und mit präfrontaler Aktivität assoziierte Konstrukte (negativer Affekt, Eigenschaftsangst).
Die Ergebnisse sind bedeutsam für die Personalisierung von Behandlungen mit tDCS, da sie
die Entwicklung individualisierter Stimulationsprotokolle nahelegen und die Überprüfung
des Nutzens verlängerter Behandlungszeiträume suggerieren.

Studie 2

In Studie 2 wurden die Effekte von tDCS auf unterschiedliche depressive Symptomclus-
ter untersucht. Wirksamkeitsstudien antidepressiver Behandlungsansätze berichten fast
ausschließlich globale Depressionsmaße (z.B. Summenwerte), für deren Berechnung über
die Ausprägung der einzelnen Symptome hinweg aggregiert wird. Allerdings besteht
insbesondere beim Krankheitsbild der Depression eine erhebliche Heterogenität auf der
Symptomebene. Das pauschale Verrechnen einzelner Symptomwerte erschwert somit eine
differenzierte Betrachtung des Wirkprofils der Interventionen. In Folge der Aggregation
können beispielsweise ausbleibende Effekte in einer Symptomgruppe Verbesserungen in
einer anderen Symptomgruppe überdecken.

Um ein besseres Verständnis für die symptomspezifischen antidepressiven Effekte
von tDCS zu erlangen, wurde ein gängiges Maß zur Symptomerfassung, die Hamilton



xviii Zusammenfassung

Depression Rating Skala (HAM-D), mit Hilfe von unsupervised Machine Learning (ML)
Algorithmen hinsichtlich in den Symptomen vorhandener Untergruppen untersucht. Durch
den Einsatz von hierarchischen, agglomerativen Clusterverfahren konnten vier getrennte
Cluster identifiziert werden (depressive Kernsymptomatik, Schlafprobleme, Angst- und
Schuldsymptome sowie atypische Symptome). Diese Clusterstruktur fand sich ebenfalls in
einer analog durchgeführten Analyse einer großen psychopharmakologischen Vergleichsstudie
(STAR*D) und fand sich ebenfalls in einer Sensitivitätsanalyse mit k-means Clustering
Algorithmen, was die Robustheit der Ergebnisse stützt. Vergleiche der Wirksamkeit der
tDCS-Behandlung innerhalb der Cluster zeigten eine ausgeprägtere Verbesserung in der
depressiven Kernsymptomatik und in den mit Angst und Schuld assoziierten Symptomen
als in den schlafbezogenen sowie den atypischen Symptomen. Dieses Ergebnis zeigte sich in
allen drei Behandlungsgruppen. Zudem verringerte sich die depressive Kernsymptomatik in
stärkerem Ausmaß als die Angst- und Schuldsymptomatik.

Beim Vergleich zwischen den Gruppen zeigte sich hinsichtlich der Verringerung der
depressiven Kernsymptomatik eine Überlegenheit gegenüber der Placebobehandlung nach
Behandlung mit Escitalopram und auch nach Behandlung mit tDCS. Hinsichtlich der
schlafbezogenen Symptomatik führte jedoch nur die tDCS-Behandlung zu einer signifikanten
(stärkeren) Reduktion, während in Bezug auf die Angst- und Schuldsymptomatik nur die
Behandlung mit Escitalopram eine signifikante Reduktion zur Folge hatte. Es zeigte
sich, dass Escitalopram zudem die depressive Kernsymptomatik in stärkerem Ausmaß
verringerte als tDCS, was die Hauptbefunde des ELECT-TDCS Trials auf Basis des globalen
Depressionswertes widerspiegelt. Dies sind die ersten Ergebnisse, die eine Überlegenheit
von tDCS gegenüber Placebo in einem Symptomcluster suggerieren, in welchem eine
psychopharmakologische Intervention nicht überlegen war. Die Ergebnisse können zur
Personalisierung der antidepressiven Behandlung beitragen, da sie Entscheidungen über die
Selektion von tDCS gegenüber pharmakologischen Interventionen auf Basis des individuellen
depressiven Symptomprofils ermöglichen.

Studie 3

In Studie 3 wurde die Vorhersagbarkeit (Proof-of-Concept) des Therapieansprechens einzel-
ner Patient*innen unter Einsatz prädiktiver Modellierungsansätze geprüft. In der prädik-
tiven Modellierung liegt der Fokus explizit auf einer möglichst genauen Vorhersage einzelner
Datenpunkte und eignet sich daher besonders gut für die Prognose von Behandlungverläufen
im klinischen Setting. Im Gegensatz dazu nutzen die in der psychiatrischen Forschung häufig
eingesetzten explanativen Verfahren formale Hypothesentests zur Prüfung angenommener
Gruppeneffekte oder assoziativer Zusammenhänge, deren Verallgemeinerbarkeit über die
beobachtete Stichprobe hinaus anhand inferenzstatistischer Kriterien bewertet wird (p-
Werte, Effektstärken). Diese Verfahren sind eignen sich daher weniger gut für die Vorhersage
externer oder zukünftiger Datenpunkte. Im prädiktiven Ansatz wird am Beispiel von Pa-
tient*innen, deren Behandlungsergebnis bereits bekannt ist, ein statistisches Modell trainiert,
welches Muster in den Daten erkennen kann, die mit einem wahrscheinlichen Behandlungser-
folg assoziiert sind (Traning). Zur Evaluation der Vorhersagegenauigkeit des Modells (Test)
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ist es wichtig, eine explizite Trennung zwischen Fällen herzustellen, die zum Training des
Algorithmus herangezogen wurden und denen, die zur Evaluierung des Modells dienen.
Ist diese Trennung nicht gegeben, besteht die Gefahr einer Überanpassung des Modells
an die Daten (Overfitting), was zu einer schlechteren Vorhersagegenauigkeit des Modells
und zu überoptimistischen Einschätzungen der Vorhersagegenauigkeit führen kann. Eine
derartige Trennung von Trainings- und Testdaten wird beispielsweise im Paradigma der
nested-Cross-Validation (CV) angestrebt, bei welcher die verfügbaren Daten nach dem
Zufallsprinzip in ähnlich große Bestandteile (Folds) geteilt werden. Dabei wird jeweils ein
Fold aus der Modellierung herausgehalten (hold-out oder Test-Set), während auf den übrigen
Daten der Algorithmus trainiert werden kann (Trainings-Set). Der nicht zum Training
verwendete Teil der Daten wird dann zur Vorhersageprüfung des Modells genutzt. Das
iterative Wiederholen dieses Vorgangs erlaubt es, den gesamten Datensatz zur Untersuchung
der Vorhersagbarkeit des Behandlungsausgangs zu nutzen.

Zur Vorhersage des Therapieansprechens in ELECT-TDCS wurden XG-Boost Algo-
rithmen mit klinischen und soziodemographischen Daten trainiert, die ausschließlich vor
Therapiebeginn erhoben wurden. Diese Auswahl von Prädiktoren (Features) hat den Vorteil
besonders kostengünstig und mit verhältnismäßig geringem Aufwand erhebbar zu sein. Das
Therapieansprechen (Response) wurde definiert als ≥50% Symptomreduktion von Baseline
bis Behandlungsende in Woche 10. Die Algorithmen wurden im Rahmen einer 5-fach
wiederholten, 10-fold nested CV trainiert und hinsichtlich ihrer Vorhersagegenauigkeit
evaluiert. Dieser Prozess wurde analog innerhalb jeder Behandlungsgruppe wiederholt
(tDCS, Escitalopram, Placebo). Die kreuzvalidierte Evaluation der Modelle ergab eine
signifikant überzufällige Vorhersagegenauigkeit für das tDCS-Modell (BAC = 64.75%)
und das Escitalopram-Modell (BAC = 59.80%). Eine Placebo Response konnte nicht
systematisch vorhergesagt werden (BAC = 42.90%). Diese Erkennungsraten fallen im
Vergleich zur Genauigkeit (BAC = 85%) von Algorithmen, die zur Prädikton von Behand-
lungansprechen auf repititive transkranielle Magnetstimulation (rTMS) verwendet, wurden
gering aus. Die rTMS Modelle wurden jedoch mit Bildgebungsdaten aus der strukturellen
Magnetresonanztomographie trainiert. Die in ELECT-TDCS erreichte Genauigkeit ist
jedoch vergleichbar mit der von Algorithmen aus großen psychopharmakologischen Studien
(STAR*D), die ebenfalls nur mit klinischen (Fragebogen-)daten trainiert wurden (BAC =
65%).

Zur Prüfung behandlungsspezifischer Vorhersagemuster, wurden der Algorithmus,
der zur Erkennung einer tDCS Response trainiert wurde, auf Daten der Patient*innen
angewendet die Escitalopram erhielten und umgekehrt. Response konnte jeweils nicht
durch den für die andere Intervention trainierten Algorithmus vorhergesagt werden, was den
Schluss von unterschiedlichen Wirkmechanismen der Behandlungen nahelegt. Patient*innen,
die nach 10-wöchiger Behandlung mit Escitalopram und Placebo noch keine Verbesserung
der Symptome zeigten, konnten im Rahmen einer, an ELECT-TDCS angeschlossenen, Open-
Label Phase eine zusätzliche tDCS Behandlung erhalten. Zur weiteren Validierung der tDCS
Modelle wurde das Therapieansprechen innerhalb dieser Open-Label Phase vorhergesagt.
Als Responder prognostizierte Patient*innen zeigten eine stärkere Verbesserung in ihrer
Symptomatik. Dieser Effekt war jedoch nicht signifikant (möglicherweise aufgrund der
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kleinen Stichprobengröße in der Open-Label Phase).
Eine weitere Exploration der Modelle wurde mittels interpretierbarer Machine Learning

(IML) Methoden durchgeführt. Diese Methoden erlauben durch Permutation der Werte
einzelner Prädiktorvariablen den Informationsgehalt dieser Variablen für das Modell un-
brauchbar zu machen. Die Reduktion der Vorhersagegenauigkeit durch die systematische
Eliminierung der jeweiligen Variable kann somit Schlüsse über ihren Beitrag zum Klassifika-
tionsprozess zulassen. Prospektiv wird eine höhere Vorhersagegenauigkeit notwendig sein,
um prädiktive Modelle zur Stützung klinischer Therapieentscheidungen nutzen zu können.

Die in Studie 3 trainierten Algorithmen stellen einen Proof-of-Concept Ansatz dar, wur-
den aber dennoch der tDCS Forschungsgemeinschaft zur Erweiterung und zur Überprüfung
ihrer Generalisierbarkeit (anhand externer Datensätze) und ihrer klinischen Anwendbarkeit
zur Verfügung gestellt.

Fazit

Traditionell wurde eine inter-individuelle Variabilität im Therapieansprechen als ein Hinder-
nis für die Entwicklung standardisierter Behandlungprotokolle angesehen. Unter Berücksich-
tigung der phänotypischen Variabilität depressiver Patient*innen, wird der "One-size-fits-all"
Ansatz psychiatrischer Behandlungen mehr und mehr in Frage gestellt. Stattdessen werden
vermehrt präzisionsorientierte Ansätze zur Verbesserung der Passung zwischen Behandlung
und Patient*in verfolgt.

Im Rahmen dieser Dissertation wurde der Beitrag von RCTs zum präzisionspsychi-
atrischen Paradigma (1) als Datenquelle für Modellentwicklung und Beschreibung der
Heterogenität von Effekten psychiatrischer Behandlung und (2) als experimenteller Rahmen
für die divergente Validierung mit Behandlungseffekten assoziierter klinischer Muster im
Vergleich zu Mustern innerhalb aktiver und Placebokontrollbedingungen herausgestellt.
Analysen undifferenzierter RCT-Ergebnismaße können jedoch ein Übersehen relevanter
Informationen in den Patient*innenencharakteristika, den individuellen Symptomverläufen
und den Symptomen der Patient*innen zur Folge haben und häufig zur RCT-Auswertung
eingesetzte explanative Verfahren lassen keine direkten Vorhersagen über Behandlungsver-
läufe einzelner Patient*innen zu.

Die Dissertation stellt einen methodisch-statistischen Rahmen für Sekundäranaly-
sen klinischer Studiendaten am Beispiel der ELECT Studie vor, welcher Lösungsansätze
mit direktem Bezug zu den Problemen traditioneller Analysen klinischer Studiendaten
beinhaltet. Die Implementation dieser Lösungsansätze wurde beispielhaft in drei em-
pirischen Studien demonstriert. Die Ergebnisse dieser Studien weisen auf Möglichkeiten
hin, die Personalisierung antidepressiver Behandlung durch individuelle Behandlungspro-
tokolle und Adaptation modifizierbarer Behandlungsfaktoren, durch Interventionsselektion
auf Basis des individuellen Symptomprofils und durch prädiktiv-analytisch ermittelte
Wahrscheinlichkeiten des Behandlungserfolgs einzelner Patient*innen zu verbessern. Jedoch
beschränkt sich die Aussagekraft dieser Ergebnisse auf den speziellen Behandlungskontext
von ELECT-TDCS, was eine weitergehende Überprüfung der Generalisierbarkeit der Ergeb-
nisse erforderlich macht. Innerhalb des Analyseparadigmas wurde in der Dissertation die
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Kombinierbarkeit explanativer und prädiktiver Modellierungsansätze demonstriert und die
Nutzung von ML-Methoden in die präzisionsorientierte Erforschung von tDCS eingeführt.

Zusammenfassend zeigt sich am Beispiel von tDCS, dass die Individualisierung von
psychiatrischer Versorgung noch am Anfang ihrer Entwicklung steht. Jedoch kann das
präsentierte Paradigma für tiefergehende Analysen klinischer Studiendaten auf andere
Interventionen und Kontexte übertragen werden, in welchen die bestehende Variabilität von
Behandlungsergebnissen eine Personalisierung nahelegt. Die Dissertation kann zu einem
verbesserten Verständnis der Effekte von tDCS verhelfen und somit zur Verbesserung der
Intervention beitragen. Während es unklar ist, ob die Behandlung mit tDCS vollständig
individualisierbar ist, stellen die Methoden des präzisionspsychiatrischen Paradigmas einen
vielversprechenden Ansatz zur Optimierung psychiatrischer Forschung und Behandlung
dar. Jedoch wird es analog zu jedem aufkommenden Forschungsparadigma notwendig sein,
verfrühtem Optimismus mit Vorsicht zu begegnen, damit das Wohl der Patient*innen an
erster Stelle steht.
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Chapter 1

Introduction

1.1 Treatment of Depression with TDCS
Major depressive disorder (MDD) is a prevalent (Kupfer et al., 2016), seriously impairing
mental disorder, which is often recurrent and causes significant mortality (Kessler et al.,
2003; Liu et al., 2020). The World Health Organization ranks MDD as one of the leading
causes of disability worldwide as measured by years lived with the disability (Murray et al.,
1996; Lopez et al., 2006). Chronic and treatment-resistant courses of illness are experienced
by an estimated 15-25% of MDD patients and 20-40% of patients do not benefit sufficiently
from available treatments that are recommended by current psychiatric guidelines (Härter
et al., 2010; Parikh et al., 2016; Kennedy et al., 2016), including pharmacotherapy (Wong
et al., 2010; Rush et al., 2006b) and psychotherapy (Hofmann et al., 2012). Furthermore,
pharmacological interventions are limited by adverse effects (Carvalho et al., 2016) and while
psychotherapeutic interventions are moderately effective for treating depression (Cuijpers
et al., 2011) they are curbed by delayed effects (Keller et al., 2000), costs, and limited
availability (Cuijpers, 2017). Consequently, there is an urgent demand for alternative
methods of treatment, which makes the development and optimization of novel techniques
a priority.

One such class of new interventions are non-invasive brain stimulation techniques
(NIBS). Their therapeutic application is based on the modulation of brain activity through
the delivery of a stimulus without the introduction of instruments inside the body or
breaking the skin (Dayan et al., 2013). In MDD, the application of NIBS techniques
targeting prefrontal cortical areas has emerged as a novel treatment option with promising
effects (Palm et al., 2016; Dunlop et al., 2017).

In 2009, transcranial magnetic stimulation (TMS), a method that applies a changing
magnetic field using a magnetic coil to cause electric currents at specific areas of the
brain through electromagnetic induction (Barker et al., 1985; Lefaucheur et al., 2014), was
approved as the first NIBS technique for the treatment of MDD by the Food and Drug
Administration (FDA) (Connolly et al., 2012). While TMS has shown promising results
in various clinical trials (Brunoni et al., 2017a), it is associated with small risks of seizure
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(Rosa and Lisanby, 2012) and relatively expensive.

1.1.1 Rationale for TDCS
Within NIBS, transcranial electric stimulation (tES) constitutes a class of techniques, where
a weak direct or alternating current is applied via electrodes, that are placed directly on
the scalp, with the largest body of evidence for transcranial direct current stimulation
(tDCS). TDCS is a promising treatment alternative due to its excellent safety profile in
short-term application and has not been associated with seizures (Bikson et al., 2016).
Further advantages of tDCS are its ease of use and superior cost effectiveness, as compared
to other NIBS methods (Gandiga et al., 2006). Mechanisms of tDCS action are not fully
elucidated, however, tDCS has been shown to influence neuronal firing rates and spike timing
probably by inducing shifts in resting membrane potentials towards de- or hyperpolarization,
i.e. eliciting an increase or decrease of the neuron’s excitability, respectively (Fritsch et al.,
2010; Nitsche and Paulus, 2000; Purpura and McMurtry, 1965; Woods et al., 2016).

One strategy for effective targeting of network structures involved in MDD is a
wide spread stimulation, simultaneously reaching relevant brain regions as well as their
connecting fiber tracts. In MDD, tDCS is usually applied over the dorsolateral prefrontal
cortex (DLPFC), which is considered a particularly relevant target for mood regulation
(Mayberg et al., 2000; McTeague et al., 2017). By acting on neuronal activity in target
regions and functional connectivity between electrodes, tDCS can potentially modulate
multiple neural networks involved in MDD, such as distinct resting state networks (Keeser
et al., 2011). This has been shown for prefrontal tDCS (Wörsching et al., 2016; Chan et al.,
2021), though findings were not consistent across studies. Very recently, engagement of
stimulation targets and modulation of depression-relevant circuits have been shown in a
pilot study in MDD, supporting prefrontal tDCS as a mechanism-based antidepressant
intervention (Jog et al., 2021).

1.1.2 Results of Clinical Trials for Treatment of MDD
The efficacy and safety of tDCS has been demonstrated in several clinical trials (Fregni
et al., 2006; Boggio et al., 2008; Brunoni et al., 2013c; Martin et al., 2011) and meta-analyses
(Nitsche et al., 2009; Brunoni et al., 2016; Moffa et al., 2020; Mutz et al., 2019). However,
results are heterogeneous across studies and across patients with only about a third showing
a clinical response (Brunoni et al., 2016; Moffa et al., 2020)). In a recent randomized
controlled trial (RCT), tDCS did not show non-inferiority to escitalopram (Brunoni et al.,
2017b), and in another large multicenter trial no superiority of tDCS over sham (placebo)
could be demonstrated (Loo et al., 2018).

The variability of responses to tDCS challenges its successful application in psychiatric
care. Thus, while there is need for further confirmatory RCTs in order to develop tDCS
towards clinical implementation, it seems pivotal to further improve its efficacy and to gain
a deeper understanding of its antidepressant mechanisms.
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1.1.3 Improving Efficacy of TDCS for Treating MDD
Small between-group effect sizes and substantial between-subject heterogeneity of treatment
response emphasize the relevance of improving efficacy of tDCS (Razza et al., 2020; Fregni
et al., 2020). As in other NIBS methods, this heterogeneity may result from a variety
of sociodemographic, connectivity-based, neurofunctional, neuroanatomical, and genetic
factors that mediate the variability of stimulation effectiveness (Brunoni et al., 2012). One
explanation for the limited efficacy of antidepressant treatments in general, is that they are
typically selected within a one-size-fits-all paradigm with little guidance on patient-specific
symptomatic burden, the neurobiological underpinnings of the symptoms, or related lifestyle
factors. However, each patient is unique and particularly for treatment of MDD, their
uniqueness may be of relevance to care (Chekroud et al., 2017b). Discovery and validation
of response predictors that reliably operate in the individual patient setting could increase
effectiveness and applicability of tDCS (Borrione and Brunoni, 2019). To address this lack
of personalization in psychiatric treatment, the framework of precision psychiatry has been
proposed, aiming to tailor psychiatric treatment to the individual characteristics of each
patient (Fernandes et al., 2017).

1.2 Personalizing TDCS in the Context of Precision
Medicine

1.2.1 Precision Psychiatry and the Status Quo in NIBS and
TDCS Research

The underlying concept of precision medicine (PM), as previously defined by Hodson
Hodson (2016), is constituted in individually tailoring health care according to the patient’s
genes, lifestyle and environment. In recent years, this framework has gained increased
traction, as highlighted by the founding of the Precision Medicine Initiative in 2015 (Collins
and Varmus, 2015). Since then, it has been conceptualized in several medical disciplines
including psychiatry (precision psychiatry) (Williams, 2016; Fernandes et al., 2017; Friston,
2017).

In precision psychiatry, there is a strong focus on exploiting statistical analyses of
large bodies of data to uncover complex clinical patterns. These data-derived tools can in
turn be used to optimize patient stratification and clinical management, selection between
treatment modalities, treatment adjustment, and improved prognosis tailored to each
patient (Drysdale et al., 2017; Bzdok and Meyer-Lindenberg, 2018). Since a clinician’s
choice of the optimal treatment often does not exclusively depend on knowledge about
causes or maintaining factors of the symptoms of a given patient, systematic benchmarking
of treatment response probabilities for intermediate phenotypes has a translational potential
in matching patients with the right treatment options and in reducing delays between bench
and bedside (Perna and Nemeroff, 2017).
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Personalization of NIBS

Parallel to research on other therapies such as psychotherapy (Cuijpers et al., 2016) and
pharmacotherapy (Menke, 2018), NIBS techniques are a highly promising field for the
development of personalized interventions which may replace current “one-size-fits-all”
approaches. As stimulation parameters can be directed to specifically affected brain
areas, NIBS techniques are well suited for a precision-oriented approach that is guided by
information about the circuits underlying emotional, cognitive, and self-reflective functions
relevant to MDD, in order to individualize patient-oriented treatments (Williams, 2016).

Within this framework, directions for precision-oriented personalization of the inter-
vention itself include (1) optimization of stimulation timing using closed-loop approaches
that may allow synchronization with neural oscillatory network activation through live
functional magnetic resonance imaging (fMRI) or electroencephalography (EEG) read-outs
(Schestatsky et al., 2013) (2) optimization of location and dosage by systematic variation
of treatment parameters (e.g. electrode positioning and size, intensity and duration of
stimulation, number of sessions per day, and interval between sessions) and establishment of
dose-effect relationships using computational finite element models (FEM) of electric fields
(efields) as a proxy of dosage (Thielscher et al., 2011; Mezger et al., 2021) (3) combined
and synergistic approaches with other interventions such as pharmacological treatments
(Brunoni et al., 2013c), (computerized) cognitive training (Wolkenstein and Plewnia, 2013;
Brunoni et al., 2014), and psychotherapy (Bajbouj and Padberg, 2014; Bajbouj et al., 2018).
For general summaries on the opportunities and challenges of precision psychiatry in NIBS,
see the review articles by Borrione and colleagues Borrione et al. (2020) and Padberg and
colleagues Padberg et al. (2021). A fourth approach of precision-oriented personalization
is the search for patient-specific factors that allow prediction of a patient’s response to
treatment. The objectives of this dissertation are primarily focused on this strategy.

Identification of Responders and Non-Responders

The search for responders and non-responders is motivated by the assumption that particular
patients, subgroups of patients, or subgroups of symptoms may benefit from the intervention
while others do not (Guerra et al., 2020). Instead of a trial-and-error approach, the objective
is to identify these distinctly responding entities and to match the right treatment with the
right patient or the right symptom, respectively.

In brain stimulation, most attempts to characterize preconditions for a patient’s
response to treatment have been focused on identification of associated factors on the
group-level. Early predictor analyses in data from open and controlled rTMS and tDCS
trials proposed disease-related factors such as treatment resistant depression (TRD) and
episode duration that were later replicated (Brakemeier et al., 2007, 2008; Fregni et al.,
2006; Holtzheimer III et al., 2004).

While there are many studies on associations of TMS treatment response with neu-
rophysiological markers including neuroimaging data, it is more difficult to focally target
cortex regions using tES methods. Still, there is an increasing number of findings, relating
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biomarkers to antidepressant tDCS response, including individual factors of cortex mor-
phology such as grey matter volumes of PFC sub-regions (Bulubas et al., 2019), individual
efield strength in the left anterior cingulate cortex (ACC) (Suen et al., 2021), and regional
functional activation of the DLPFC (Nord et al., 2019), plasma levels of neurotrophic
factors, interleukins and their receptors (Brunoni et al., 2018; Goerigk et al., 2021), heart
rate variability (Brunoni et al., 2013b), and genetics (Brunoni et al., 2013a).

Despite the rapidly growing number of associative findings, there does not yet seem to
be a consistent functional or structural pattern to explain heterogeneity of response to tDCS.
Consequently, the identified predictors have not yet been of clinical relevance for stratified
treatment. The limited understanding of MDD and its neurobiological underpinnings might
itself be a large factor for the insufficient explainability of heterogeneous treatment effects.
However, some of the uncertainty may be attributable to undifferentiated concepts of
response (Uher et al., 2010), the measures used to define it (Fried and Nesse, 2015; Olbert
et al., 2014), and the framework used to identify and validate predictors. While some of
these shortcomings may be explained by axioms within the analysis of RCT data, these
trials may assume (or retain) an integral role in precision psychiatry and should thus be
analysed using more in-depth concepts of analysis. The following paragraphs will outline
some of the upsides and pitfalls of using RCT data for treatment personalisation.

Precision Medicine and Randomised Controlled Trials

The gold-standard research paradigm for the evaluation of tDCS treatment effects in MDD
is the demonstration of group-level treatment response, usually compared to a placebo
group within RCTs. While these trials are indispensable for demonstration of efficacy on
the population level (evidence based practice), they have also been the main source of data
to be used in the attempt to personalize brain stimulation techniques, i.e. due to limited
availability of data, most secondary analyses attempting to find predictors for response
have focused on data from RCTs.

However, the role of placebo and RCTs in the context of PM is still unclear. To identify
responders and non-responders to treatment, one would tend to focus on variability in
treatment outcomes of those patients that have received an active stimulation and discard
data from those who received a sham treatment. However, while the variability in treatment
effects is the core assumption motivating the search for responders and predictive biomarkers,
it has recently been questioned whether there is indeed a larger induction of variability
in response to active brain stimulation (i.e. variability as a consequence of treatment) as
compared to the observed variability in response to sham (placebo stimulation). In a large
meta analysis (N = 5748), Homan et al. (2021) found only little evidence for different
amounts of treatment response variability after active compared to sham treatment. These
results suggest, that the need for and possibility of personalization through explanation of
treatment-induced variability remains an open question.

The incorporation of RCTs as rigorously planned experiments to provide counterfactual
control (i.e. what would effects have looked like without the treatment or with another
treatment) not only of the efficacy of treatments but also of the models to predict variability
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in their effects might therefore remain of relevance to PM. Conversely, a precision-oriented
approach may contribute to tackling and distinguishing the specific vs. non-specific (placebo)
effects of treatment. Thus, the reconciliation of the experimentally (placebo-)controlled
approach of the RCT with individual-level personalization seems necessary, both from a
practical (data availability) and a conceptual point of view.

However, in understanding the variability that can be observed after active treatment,
there are challenges that require new statistical frameworks for dissecting patient-individual
effects. One of the challenges for the prediction of treatment response in data from clinical
trials, is that they are often evaluated on arbitrarily chosen or undifferentiated primary and
secondary outcomes, while other variance components relevant for unraveling treatment
effects may be overlooked. Thus, to profit from clinical trial data in an attempt to personalize
treatment, some caveats in analyzing RCT data should be considered.

1.2.2 Caveats in Analyzing Classical Primary and Secondary Out-
comes of RCTs

The primary hypotheses of RCTs are often evaluated on units of analysis that make it
difficult to comprehend variability on the individual patient level (i.e. demonstration of
group average improvement in global depression scores). In fact, RCTs are designed to
minimize the impact of individual patient nuance, but these nuances could be crucial in the
explanation and definition of treatment response. Secondary outcomes often include the
use of statistical cut-offs for categorization of treatment response for better interpretability,
which can lead to arbitrary dichotomies between patients (e.g. 50% improvement cutoff
conceptually assigns 1% and 49% improvement to same and 49% and 51% to a different
response category)(Senn, 2018). In the decision-making process about who to treat with
tDCS, this often leaves three relevant questions unanswered: (1) Is a specific patient likely
to show response to tDCS? (2) Which specific aspects of the condition can be expected
to improve? (3) To what extent and when is the treatment going to help? The following
paragraphs summarize the caveats in traditional definitions and analyses of treatment
response.

Problem 1: Assumption of Homogeneous Change over the Course of Treatment

One aspect limiting the understanding of heterogeneous tDCS response and its predictors
is constituted in the dynamics of symptomatic improvement. The main interest of the
efficacy evaluation in RCTs is the treatment-dependent difference in symptomatic change
over time. In statistical methods used to test the hypotheses of clinical trials on continuous
outcomes (e.g. linear mixed regression modeling (LMM) (Cnaan et al., 1997)) this difference
in symptom change, acting as the primary unit of analysis, is represented in the time x
group interaction effect. However, the axioms of these hypothesis tests assume an average
trajectory within each treatment group (single-class model) (Uher et al., 2010). In other
words, from baseline until endpoint (i.e. when clinical response rates are defined cross-
sectionally), all patients who received the treatment are assumed to improve in the same
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way. While sub-grouping approaches defined by cut-offs on the last observed measurement
of depression severity take into account information about the degree of improvement (e.g.
response vs. non-response), but ignore the time course of symptomatic change and can
consequently lead to inefficient analyses (Quitkin et al., 1984; Royston et al., 2006; Muthén
et al., 2008). However, if continuous change is merely evaluated on the treatment group
level, information about the more fine-grained dynamics of response, such as subgroups of
fast responding vs. slow responding patients, is lost (Beunckens et al., 2008).

Problem 2: Measurement of Treatment Effects Using Aggregate Outcomes

Clinical trials including patients with MDD, who are treated with tDCS, almost exclusively
report aggregate symptom severity scores as primary outcomes (e.g. Hamilton Depression
Rating Scale (HAM-D) (Hamilton, 1960); Beck Depression Inventory (BDI) (Beck et al.,
1961); Montgomery-Åsberg Depression Rating Scale (MADRS) (Montgomery and Åsberg,
1979)). However, there is also heterogeneity on the level of depressive symptoms (psychome-
trically speaking, on the item level) presented by the patients (Fava et al., 1997; Musil et al.,
2018), which may impede the evaluation of clinical interventions for depression (Fried and
Nesse, 2015; Olbert et al., 2014) and the identification of predictors for response. Factor
analytic studies (Li et al., 2014; Romera et al., 2008) and meta-analyses (Shafer, 2006) of
large MDD patient populations indicate the organisation of MDD symptoms into up to 5
clusters depending on the employed symptom checklist. Treatment effects on one cluster of
symptoms may be masked in the final sum scores by a lack of treatment effects on another
group of symptoms. This has been suggested as one explanation for the mixed results from
larger comparative meta-analyses for antidepressant treatments (Chekroud et al., 2017a;
Cipriani et al., 2009; Gartlehner et al., 2011). While symptoms may be organized based on
clinical experience (Lin and Stevens, 2014), without clear recommendations on matching
symptoms (rather than diagnostic categories) to treatments this approach may contribute to
the above-mentioned trial-and-error selection process, leading to longer treatment duration
(Rush et al., 2006a; Chekroud et al., 2017a).

Problem 3: Losing Sight of the Individual Outcome

The primary research goal in RCTs is to introduce novel treatment options that benefit
a majority of one particular clinical group. Consequently, statistical methods used in the
evaluation of treatment response have a long-standing focus on formally testing group effects
(null-hypothesis testing, NHT), which is achieved by fitting a project-specific probability
model to explain treatment-induced variance in symptom outcomes (Breiman et al., 2001b).
As an important practical consequence these methods based on the concept of statistical
significance have less obvious potential for judgments on single individuals within a treatment
group (Bzdok and Meyer-Lindenberg, 2018).

Applications of NHT methods usually aim at finding statistical effects in the data
at hand (in-sample estimates), without evaluating fitted models on unseen or future data
points (Bzdok and Yeo, 2017). This lack of ubiquitous out-of-sample model validation in
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NHT may explain some of the mixed results across different RCTs. Hence, NHT takes the
form of a one-step procedure by producing an effect size or p-value that can itself not be
extrapolated for prognosis of a patient’s improvement in a later step (Friedman et al., 2001).
In fact, observed statistically significant effects by a p-value do not measure reproducibility
or replication (Goodman, 1992). In psychiatry, this has led to a large number of statistically
significant, but not reproducible results (Ioannidis, 2005; Nuzzo, 2014) and even if a result
is reproducible, significant findings may not be clinically meaningful (Abi-Dargham and
Horga, 2016; Ioannidis, 2016) and may not reach a high prediction accuracy in unseen data
(Arbabshirani et al., 2017; Breiman et al., 2001b; Shmueli et al., 2010). By adopting this
retrospective point of view, the prognostic potential of NHT is reduced and its relevance
for clinical practice is impeded.

Summarily, while the approach of investigating predictors for better treatment outcomes
and characteristics of responders is generally not new, data are often under-analysed and
associations are masked by undifferentiated units of analysis. These shortcomings limit
the understanding of response heterogeneity which has traditionally been regarded as a
limitation for developing standardized tDCS treatment procedures.

1.2.3 Using TDCS Studies for Developing a Paradigm of In-
Depth Analyses of Clinical Trials

With more frequent application of the precision-oriented approach and its tools for in-depth
analyses, there may be new opportunities to better exploit the available clinical trial data,
both on the level of more differentiated treatment outcomes and on the level of predictive
analytics to model them (Bzdok and Meyer-Lindenberg, 2018). Driven by a general increase
in data availability (UK Biobank (Sudlow et al., 2015); Enhancing NeuroImaging Genetics
through Meta-Analysis (ENIGMA) (Thompson et al., 2014)) more computational methods
such as latent variable modeling for meaningful reduction of data dimensionality (Galbraith
et al., 2002) and predictive approaches from the domain of artificial intelligence (AI)
(Jameson and Longo, 2015) are being applied in psychiatry (Chekroud et al., 2017b; Bzdok
and Meyer-Lindenberg, 2018).

These methods (including the subset of machine learning [ML] algorithms) (1) can
detect general principles within a series of observations and (2) can handle large numbers
of predictors where researchers were historically forced to limit the number of variables
in their analyses (Zou and Hastie, 2005), while (3) making few formal assumptions about
associations between variables and the distribution of the data (Goodfellow et al., 2016;
Bzdok, 2017). Thus, they follow data-driven decision rules, rather than arbitrarily defining
outcomes (e.g. traditional dichotomous cutoff values) or selecting variables as predictors.
Available modeling tools comprise unsupervised algorithms for dimensionality reduction
and clustering that can effectively discover unknown constellations in patient data and
supervised methods specialized for accurate outcome prediction (Mohri et al., 2018). Hence,
complementing the benefits of classical NHT in psychiatry, these new methods provide
promising alternatives in addressing current challenges in application of brain stimulation
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techniques.
While these computational tools have not been used much in the field of brain stim-

ulation and, to our knowledge, not at all in tDCS research, their application has been
called for in a number of recent commentaries and review articles on NIBS within precision
psychiatry (Passos and Mwangi, 2018; Borrione and Brunoni, 2019; Borrione et al., 2020;
Padberg et al., 2021).

In their review on personalizing non-invasive transcranial brain stimulation in psychiatry,
Padberg and colleagues Padberg et al. (2021), suggested more in-depth analysis of available
trial data aligned with comparable approaches in pharmacotherapy (Chekroud et al.,
2017a) and rTMS research (Drysdale et al., 2017; Kaster et al., 2019; Siddiqi et al., 2020).
Employing computational methods, these approaches look beyond average treatment-group-
level analyses and aggregate symptom measures (see 1.2.2 Problems 1-2) by deriving more
meaningful, data-driven units of analysis. Aside from these refinements on the outcome level,
a shift of focus towards prediction as a two-step procedure, incorporating cross-validation
(CV) frameworks as a gold standard to evaluate fitted models capacity to extrapolate
predictions to unseen instances, may alleviate insufficient model validation and limited
applicability in single-subject settings (see 1.2.2 Problem 3) (Friedman et al., 2001; Passos
and Mwangi, 2018; Borrione et al., 2020; Padberg et al., 2021)

Based on the proposals by Padberg et al. (2021), a framework for in-depth clinical trial
analysis was constructed. The next paragraphs give a brief summary on the methodological
approaches within that framework, with direct reference to the above-described problems
associated with traditional statistical methods (see 1.2.2). Thereafter, blueprint empirical
studies for the implementation of each approach are presented.

Remedy Problem 1: Parsing Symptomatic Improvement

One approach to evaluate response to antidepressant treatment, but without ignoring
differences in the time course of symptomatic improvement is to categorize patients based
on their specific temporal patterns of change using latent variable methods (Beunckens
et al., 2008; Muthén et al., 2008). Contrasting conventional methods of categorization
(Montgomery, 1994; Frank et al., 1991), latent variable methods such as growth mixture
modelling (GMM) capture heterogeneity as it naturally occurs in the observations by
allowing individual variation of straight and curved trajectories (i.e. linear, quadratic,
cubic) to identify different rates of change at different stages of the treatment process. In
NIBS, this procedure has previously been adopted from pharmacological (Smagula et al.,
2015) and psychotherapy studies (Uher et al., 2010) to identify distinct trajectories of
change during standard and accelerated rTMS treatment (Kaster et al., 2019, 2020). The
concept of parsing symptomatic improvement using latent variable modeling, as suggested
by Padberg et al. (2021), is schematically summarized in Figure 1.1.
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Figure 1.1: Upper row: Traditional RCT analysis: patient-specific change is condensed into
one group-average trajectory resulting in imprecise representations of response, as patients’
symptoms may change with different celerity and intensity; Consequently, responders can
only be characterized based on associations with undifferentiated units of analysis. Lower
row: Deriving of new units of analysis for precision medicine: Patients are grouped based on
their longitudinal patterns of change (latent-class solution). Associated characteristics and
predictors masked in the one-class solution can be explored more effectively. All displayed
graphs are hypothetical, i.e. not based on real data. Adopted and modified from (Padberg
et al., 2021).

Remedy Problem 2: Parsing Study Outcomes

Treatment effects on specific depressive symptoms may be undetectable, if they are analyzed
after aggregation (e.g. sum scores), as is intended by most scale manuals and reporting
guidelines (Kearns et al., 1982). However, evaluating effects on the individual symptom level
may be prone to family-wise errors and impractical, since clinicians would have to remember
procedures specific to each symptom (Chekroud et al., 2017a). Computational methods can
be applied to establish natural clusters within the symptoms to restructure measures into
data-driven sub-components. Traditional statistical approaches on dimensionality reduction
have some shortcomings, including difficult-to-interpret constellations of symptoms groups
with cross-loadings (e.g. in factor analysis, FA) (Uher et al., 2009) and susceptibility to
experimenter bias when choosing the number of groups to retain (Williams et al., 2010).
Unsupervised ML provides a subset of methods that supply deterministic, easy-to-visualize
solutions, that assign each symptom to a fixed cluster while avoiding assumptions about
the pre-specified number of clusters to keep (Murtagh and Contreras, 2012). In NIBS, this
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procedure has previously been adopted from pharmacological and psychotherapy studies
(Chekroud et al., 2017a; Bondar et al., 2020) to identify distinct symptom-specific treatment
targets for circuit-based rTMS treatment (Siddiqi et al., 2019). The concept of parsing
study outcomes using unsupervised ML techniques, as suggested by Padberg et al. (2021),
is schematically summarized in Figure 1.2.

Figure 1.2: Upper row: Traditional RCT analysis: Symptom change is measured and
reported in aggregated scale units (e.g. sum-scores), resulting in imprecise representations
of phenotypes as information about response in natural symptom subgroups is masked;
Consequently, treatments alternatives can only be selected based on overall severity ratings.
Lower row: Derivation of new units of analysis for precision medicine: Symptoms are
clustered based on the similarity of their responses (e.g. all sleep related components are
grouped but remain independent of other domains). Treatment-induced change can be
analyzed on the level of the cluster score. Treatment alternatives can be selected based
on their response profiles in treating specific groups of symptoms. All displayed graphs
are hypothetical, i.e. not based on real data. Adopted and modified from (Padberg et al.,
2021).

Remedy Problem 3: Single-patient vs. Group-level Prediction of Treatment
Response

For decades, the primary working unit of mental health research and evidence-based practice
has been "the group". The primary data-modeling strategy was mostly association-based
(explanatory), aiming to describe observational data by formally testing hypotheses about
group-differences and factors related to better treatment response (Breiman et al., 2001a;
Shmueli et al., 2010).



12 1. Introduction

An alternative modeling strategy is algorithmic modeling or predictive modeling. It
has a long-established focus on prediction as the primary criterion of statistical quality
(Friedman et al., 2001). While the quality of explanatory models may be judged by using
statistical concepts such as explained variance, significance, and effect sizes within the
sample (in-sample-estimates), success in predictive modeling is quantified using estimates of
accuracy, i.e. in successfully predicting category or value of previously unseen data points
(out-of-sample estimates)(Breiman et al., 2001a), as is the gold-standard in translational
science (Cannon et al., 2016; Carrion et al., 2016). Because predictive models can be applied
to and obtain answers from single observations, they have the potential to bring the single
patient as a new working unit into reach (Dwyer et al., 2018; Bzdok and Meyer-Lindenberg,
2018; Topol, 2019). Taking the form of a two-step procedure, predictive models are initially
fit on an amount of available data (training set), then the generalizability of the trained
model is evaluated by testing its capacity to extrapolate to new data (test set) (Friedman
et al., 2001). This forward-oriented workflow yields a particular notion of clinical relevance
and makes techniques for out-of-sample generalization of predictive models candidates for
catalyzing progress in personalized tDCS treatments (Bzdok and Meyer-Lindenberg, 2018;
Chekroud et al., 2017b).

Supervised ML algorithms, such as support vector machines (Cortes and Vapnik,
1995), decision trees (Breiman, 2001; Buntine, 1992), and neural-networks for deep learning
(LeCun et al., 2015) are a promising set of tools for predictive modeling (Bzdok and Meyer-
Lindenberg, 2018; Dwyer et al., 2018). While their approximation to the data often requires
optimization of additional, learner-specific parameters (hyperparameter-tuning) (Feurer
and Hutter, 2019), which can be computationally intensive, they have advantages that lend
themselves particularly well to modeling of observational mental health data: They can
handle high-dimensional input data (i.e. large numbers of predictors), are capable of identi-
fying highly non-linear patterns within the observations (James et al., 2015), and can even
handle multiple outcomes at once (multi-class prediction) (Aly, 2005). Importantly, within
ML frameworks generalizability can be optimized and evaluated efficiently using resampling
techniques via computer simulation (e.g. leave-one-out resampling, bootstrapping, k-fold
cross validation). In these nested frameworks data can iteratively be split into training and
test data. The average accuracy within all hold-out test sets is returned as an estimate
for the out-of-sample generalizability (Stone, 1974; Filzmoser et al., 2009). The degree of
required model generalizibility can be increased by selecting left-out folds that are more
detached from the training data systematically (e.g. leave-site out, leave-continent out)
(Koutsouleris et al., 2016) or temporally (e.g. prospective validation) (Dwyer et al., 2018).
A prototypical procedure of training a predictive model on clinical trial data to predict
patient-level response is displayed in Figure 1.3.

For summaries on the application of ML in psychiatry see the review articles by Dywer
and colleagues Dwyer et al. (2018) and Bzdok and Meyer-Lindenberg Bzdok and Meyer-
Lindenberg (2018). While there are numerous studies that have applied ML algorithms
for pre-treatment prediction of therapeutic outcomes in MDD (for a review see Lee et al.
(2018)), results from the field of non-invasive brain stimulation are scarce (Koutsouleris
et al., 2018) and no studies have used clinical data to predict response to tDCS.
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Figure 1.3: Prediction of treatment response on the single-patient level. (A) Following
treatment with tDCS, patients are labeled as responders or non-responders. (B) Multi-
modal data can be used to train a predictive model (e.g. supervised ML model) to classify
pre-labeled patients into responders and non-responders. This may include hyperparameter-
tuning, weighing of observations, and sampling strategies to counter class-imbalance. Within
a nested cross-validation (CV) paradigm, this step is embedded in the inner CV loop and
is usually combined with preprocessing steps including imputation, scaling, and feature
selection. Trained models are used to predict out-of-sample instances. Prediction takes
place both in the inner CV loop validation folds and in the outer CV loop for unbiased
performance evaluation. (C) Generalizability can be assessed by validating the model in
increasingly diverse test sets. While in nested CV, one test fold consisting of randomly
selected patients from the same dataset or trial is iteratively left out to predict unseen
instances while training on the rest of the data, models can be evaluated in naturally left-out
test sets (e.g. leave-site out validation). Prospective validation involves the employment of
existing models to new subjects, i.e., in real life circumstances or in algorithm-informed
clinical trials.

1.3 The Present Dissertation

1.3.1 Rationale
While tDCS has been shown to be a safe and effective treatment for MDD, its efficacy
should be increased and heterogeneity in treatment response should be better understood.
Up to this point, RCTs provide the largest available body of systematically collected data.
However, they often remain under-analyzed with regard to differential clinical response on
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the subgroup-level, patient-level, and symptom-level. This lack of predictability hinders
prognosis in individual cases and may lead to misinformed treatment choices.

Precision psychiatry is a developing paradigm grounded in the notion of selecting the
right treatment for the right patient at the right time, taking into account each person’s
variability in constituting factors and symptomatic burden. The present dissertation
aims to provide a methodological framework for reevaluation of clinical trials by example
of a paradigmatic analysis of ELECT-TDCS. By conducting more in-depth analyses of
representative clinical data, the goals of the empirical studies embedded in the dissertation
were three-fold:

The first objective was to gain a deeper understanding for the longitudinal dynamics
of response within patients treated with tDCS. For this purpose, we aimed to identify
distinct, naturally occurring trajectories of symptom improvement over the duration of
treatment. By categorizing patients based on their longitudinal patterns of change, rather
than at the least observed measurement, these trajectory classes would capture heterogeneity
in development of response over the course of tDCS treatment (e.g. fast responding, slow
responding, delayed responding). Following this approach, we aimed to formally test,
whether longitudinal response categorization could add explanatory value to a single mean
growth curve (i.e. challenge the assumption of homogeneous change, see 1.2.1) and to
characterize the identified trajectory classes by exploring associated characteristics.

The second objective was to reevaluate the efficacy of tDCS in treating specific
subgroups of depressive symptoms. For this goal, alternative outcome measures with a more
precise capture of distinct symptom domains had to be derived, while avoiding statistical
shortcomings of experimenter bias (e.g. number of clusters to retain), or difficult to interpret
cross-loadings between domains. Unsupervised machine-learning was employed to establish
a data-driven grouping of depressive symptoms, as assessed by items of a common aggregate
measure (HAM-D) into depressive symptom clusters. Resulting clusters would be assessed
for their robustness by comparing them to other clustering solutions on depressive symptoms
following the same rationale. Based on these newly created outcomes, we aimed to test
whether tDCS or an alternative antidepressant intervention could be chosen according to
their effects on specific clusters of symptoms to achieve better overall response.

The third objective was to translate the question of who is going to benefit from
tDCS to a predictive modeling paradigm. This objective was chosen, as there are currently
no objective tools available to guide clinical decision making in the single-patient setting.
Our goal was to use supervised ML algorithms trained on easy-to-obtain clinical data
measured ahead of treatment to predict individual tDCS response at the end of treatment.
To make most use of the available data while getting unbiased accuracy estimates, we chose
state-of-the-art nested cross-validation frameworks for hyperparameter-optimization and
model evaluation. Importantly, in this setup the steps of model development and model
validation are strictly separated, thus mimicking the real clinical situation where existing
models are used for prognosis of success over an individual course of treatment. Trained
predictive models would then be made available as a collaborative research product. As
supervised ML models have often been labeled as "black-box models", part of our objective
was to incorporate general model-agnostic methods that make the creation of the ML
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models and their decisions more interpretable.
To test the robustness of our findings following these three objectives and suspend

the possibility that any uncovered patterns of tDCS response merely resemble general
mechanisms of response to antidepressant treatment, we chose to conduct our analyses in a
double-controlled design, including analysis of a second active pharmacological intervention
with a distinct mode of action and analysis of a placebo group.

In detail, the three empirical studies presented in this dissertation contribute to the
above-described goals as follows:

Study 1

In Study 1, distinct trajectories of tDCS response were characterized using latent trajectory
modeling in the largest RCT (N = 245) for treating MDD to date (The Escitalopram
versus Electric Current Therapy for Treating Depression Clinical Study, ELECT-TDCS,
ClinicalTrials.gov, NCT01894815). The main objective was to gain insight into the dy-
namics of symptomatic change above the group level. The ELECT-TDCS trial enrolled
antidepressant-free patients diagnosed with an acute unipolar, non-psychotic, depressive
episode, and with a minimum baseline score of 17 points on the HAM-D Scale (17-items).
Participants were randomized to a 10-week treatment with either prefrontal tDCS (22
sessions of 30 minutes, 2 mA bifrontal stimulation), an active pharmacotherapy (20 mil-
ligram/day escitalopram), or placebo. The resulting trajectory classes were representative
of patient subgroups, who showed similar strength and speed of symptomatic improvement.
Only groups with a clinically relevant capture of patients were accepted for further analysis.
Assignment rates to the identified trajectory classes were compared both relative to patients,
who received the same treatment, as well as relative to the entire sample. A selection of top-
down (hypothesis-driven) predictors from previous literature were tested using multinomial
logistic regression models with conservative correction for multiple testing. Additionally,
bottom-up (data-driven) methods were employed to explore associated characteristics using
a cross-validated stability ranking procedure combined with elastic net regularization.

Study 2

In Study 2, the issue of small antidepressant efficacy of tDCS and considerable inter-
individual variability of response was reevaluated at the outcome level, assuming that
aggregate measures might be insufficient to address the diverse spectrum of antidepressant
treatment effects. Using data from the ELECT-TDCS clinical trial, which originally
employed the HAM-D as the primary measurement of depressive symptoms, we applied
unsupervised ML (agglomerative hierarchical clustering) to identify naturally occurring
symptom clusters within the HAM-D rating scale. This approach followed a rationale that
was previously applied in the Sequenced Treatment Alternatives to Relieve Depression
(STAR*D) trial (N = 4039). Resulting symptom clusters were then compared to the
STAR*D clustering solution which was derived in a larger sample and robust to replication
in a second cohort (Combining medications to enhance depression outcomes, CO-MED, N =
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640). Symptom clusters were tested for differences in their responsiveness to treatment both
across and within the treatment arms, using multilevel modeling on within-cluster severity
scores regularized for the number of items within each cluster, addressing the question, if
any of the interventions were favourable for treating a specific group of symptoms.

Study 3

Study 3 is to our knowledge the first study to employ supervised ML for prediction of tDCS
treatment response on the single-subject level. Using a comprehensive dataset of easily
obtainable, clinical and neuropsychological variables from the ELECT-TDCS trial, extreme
gradient tree boosting algorithms (XGBoost) were employed to predict response, defined as
a minimum improvement of 50% on the HAM-D scale within each of the treatment groups
(tDCS, escitalopram, placebo). Predictive models were trained and evaluated within a
state-of-the-art framework of repeated nested cross-validation. To test the specificity of the
ML models and to explore potential mechanistic differences between the interventions, we
applied classifiers trained to predict escitalopram response on the tDCS data and vice-versa.
The tDCS classifier was further validated in an external open-label phase at the end of the
trial. Finally, interpretable machine learning (IML) methods were applied to explore the
role of associated characteristics and to inspire future explanatory research.
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1.3.2 Parts of the Dissertation and Author Contributions

Table 1.1: Publications in the dissertation and author contributions

Study Publication Author Contributions
1 Goerigk, S., Padberg, F., Bühner, M., Sarubin, N.,

Kaster, TS., Daskalakis, ZJ., Blumberger, DM., Bor-
rione, L., Razza, LB., and Brunoni, AR., (2021). Dis-
tinct Trajectories of Response to Prefrontal tDCS in
Major Depression: Results from a 3-arm randomized
controlled trial. Neuropsychopharmacology, 46(4),
774-782.
https://doi.org/10.1038/s41386-020-00935-x

SG, FP, and ARB conceptualized the study, ana-
lyzed the data, and interpreted the results.
LB and LBR were involved in data acquisition and
interpretation of the findings.
MB, NS, TSK, ZJD, and DMB were involved in
the interpretation of the findings.

2 Goerigk, S., Padberg, F., Chekroud, A., Kambeitz,
J. Bühner, M., and Brunoni, AR., (2021). Parsing the
Antidepressant Effects of Non-Invasive Brain Stimu-
lation and Pharmacotherapy: a Symptom Clustering
Approach on ELECT-TDCS. Brain Stimulation, 14(4),
906-912.
https://doi.org/10.1016/j.brs.2021.05.008
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FP: Conceptualization, Resources, Writing - Review
and Editing, Supervision, Funding acquisition
AC: Conceptualization, Methodology, Writing - Re-
view and Editing
JK: Conceptualization, Methodology, Writing - Re-
view and Editing
MB: Writing - Review and Editing, Supervision
ARB: Conceptualization, Validation, Resources,
Writing - Original Draft, Visualization, Supervision,
Project administration, Funding acquisition

3 Kambeitz, J., Goerigk, S., Gattaz W., Falkai P.,
Benseñor, I.M., Lotufo P.A., Bühner M., Koutsouleris
N., Padberg, F., Brunoni, A.R., (2020), Clinical pat-
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original draft, Writing - review and editing.
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original draft, Writing - review and editing.
WG: Project administration, Writing - original draft,
Writing - review and editing.
PF: Writing - original draft, Writing - review and
editing.
IMB: Funding acquisition, Writing - original draft,
Writing - review and editing.
PAL: Funding acquisition, Writing - original draft,
Writing - review and editing.
MB: Writing - original draft, Writing - review and
editing.
NK: Funding acquisition, Project administration,
Writing - original draft, Writing - review and editing.
FP: Funding acquisition, Project administration,
Writing - original draft, Writing - review and editing.
ARB: Conceptualization, Funding acquisition,
Project administration, Writing - original draft,
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Note. Contributions of the author of this dissertation are in bold. Formatting of contribu-
tions in Study 1 follows the ICMJE best practice recommendations as required by Springer
Nature (www.icmje.org); Contributions in Studies 2 and 3 are organized according to
the Elsevier CRediT author statement guidelines (https://www.elsevier.com/authors/
policies-and-guidelines/credit-author-statement).
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Table 1.1 lists the empirical studies that contribute to this dissertation. All authors have
contributed significantly to the research presented in the articles. The right column of
Table 1.1 shows the respective individual contributions.

1.3.3 Open Science Statement
While patient-sensitive data were not acquired with consent to be uploaded to a public
repository, for the purpose of replicability of results each article contains a data availability
section, stating that data can obtained upon reasonable request from the corresponding
authors. Codes for supervised ML algorithms are deposited on github: https://github.
com/biolpsychlab/Predict_TDCS.

https://github. com/biolpsychlab/Predict_TDCS
https://github. com/biolpsychlab/Predict_TDCS
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Chapter 5

General Discussion

The present dissertation introduced a methodological framework to reevaluate clinical
trials in the context of precision psychiatry using the example tDCS. In-depth methods
of analysis within this framework allow parsing of patient-individual components and
response-dynamics, as well as the prediction of treatment response on the single-patient
level. Based on newly derived and traditional units of analysis, statistical models of both
the explanatory and algorithmic modeling traditions were applied over the course of this
exploratory research, to gain a deeper understanding for the heterogeneity of response
to tDCS on the patient- and subgroup-level. The framework was empirically taken to
the test, using a comprehensive dataset from ELECT-TDCS, i.e. a landmark tDCS
trial. To differentiate general antidepressant and tDCS-specific effects, all clinical patterns
identified within the group of patients treated with tDCS were compared to another active
pharmacological intervention, and to placebo.

Study 1 investigated whether group-level response to tDCS could be better understood
as a combination of naturally occurring trajectories of symptom change over the course
of treatment. By using latent growth mixture modelling, classes of rapidly, slowly, and
no/minimally responding patients could be identified. In tDCS, these classes showed distinct
profiles of associated characteristics, suggesting, amongst others, the relevance of higher
depression severity, use of benzodiazepines, and age for poorer response to tDCS.

In Study 2 it was explored whether efficacy of tDCS, as commonly evaluated on
aggregate measures for the severity depressive symptoms, could be better understood in
terms of its effects on distinct, naturally occurring clusters of symptoms. Using unsupervised
ML methods, the HAM-D (17-items) scale was parsed into 4 distinct symptom clusters,
effectively replicating results found within a large, representative sample for antidepressant
treatment (STAR*D). Results of efficacy analyses suggested that antidepressant effects
of tDCS and escitalopram were stronger in core depressive and guilt/anxiety symptoms
than in clusters related to sleep and atypical symptoms. However, while both tDCS and
escitalopram were superior to placebo in reducing core depressive symptoms, only tDCS
was superior to placebo in improving sleep symptoms and only escitalopram was superior
in improving guilt/anxiety symptoms.

In Study 3 supervised ML algorithms trained on easily-obtainable clinical and de-
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mographic baseline data were employed to predict end-of-treatment response to tDCS.
Cross-validated out-of-sample accuracy was modest but above chance levels for algorithms
trained on pre-labelled tDCS and escitalopram data, while placebo response could not
effectively be predicted. Importantly, models were sensitive only to predict response to
the intervention that they were trained for, but could not be successfully be generalized to
the other treatment (i.e. tDCS models could not predict escitalopram response and vice
versa), even though they were fit on identical sets of features. IML methods identified
highly contributing features that were distinct for both active interventions. For tDCS,
clinical features related to prefrontal cortex activation, such as negative affect, were among
the most highly ranked variables.

A detailed discussion of the three empirical studies has already been given in their
respective chapters. Thus, the general scientific contribution of the present dissertation and
its implications for the field of tDCS research and for secondary analyses of clinical trials
in general are the focal topic of the general discussion. It is discussed what the present
work can and cannot contribute to the existing literature on prediction of successful tDCS
treatment. Finally, future directions and challenges for the emerging field of precision tDCS
therapies are summarized.

5.1 Overall Contribution of the Present Dissertation
One key in improving tDCS treatment in MDD is its personalization to the patient. While
in precision psychiatry the question of who is going to benefit from what kind of treatment
is more strongly coming into focus, methods applied within this paradigm (such as ML)
often require large samples with high phenotypic detail (Bzdok and Meyer-Lindenberg,
2018). However, in tDCS research data is mostly limited to clinical trials, thus, to provide
evidence-based strategies for personalization, the data that already exists must be explouted
efficiently. Another issue that may make RCTs a key component of future precision
approaches, is the uncertainty about specific, treatment-induced variability after NIBS
treatment, which would be a prerequisite for personalisation of the intervention Homan et al.
(2021). However, this open question cannot be pursued by analysis of NIBS data alone, but
only in comparison with other active control groups or in comparison with placebo. Thus,
given demand for the experimental attributes of the RCT design, the framework for in-depth
RCT analysis presented within this presentation may contribute to the distinction between
specific vs. non-specific (placebo) effects of treatment and thus to better personalisation
options.

Importantly, the methods embedded within the presented methodological framework
enable better exploitation of already existing clinical trial data. While efficacy analyses of
RCTs are primarily focused on demonstrating group-based improvement of the treatment,
ancillary analyses using new statistical models can provide more differentiated focus in
explaining varying treatment effects and enable the translational step to other trials and
settings.

This framework should be regarded as an intermediary step, linking data that was
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gathered under systematically controlled conditions to new investigations within precision
psychiatry (e.g. stratified treatment scenarios) as well as to more naturalistic big data
contexts using data from routine care (see 5.3).

Using data from a high-quality sample this dissertation provides a blueprint for this type
of systematic RCT analysis combining both sub-grouping approaches for more meaningful
categories of response as well as prediction of treatment response within the single subject
setting.

5.1.1 Deriving New Units of Analysis
One contribution of the present dissertation was to illustrate how statistical methods could
be applied to parse traditional measures used in RCTs. Two different data-driven approaches
were presented, each targeting a different aspect of the treatment: the symptoms and the
patients. An increasing number of studies suggest that traditional concepts of clinical
categorization are not ideal sets of reference (Gabrieli et al., 2015). This implies that neither
a diagnosis by itself nor a global score on a diagnosis-specific measure seem to adequately
portray, if a patient is an eligible recipient for tDCS and how the treatment is going to take
effect. Thus, focusing on more differentiated units of analysis provides relevant information
about the treatment process and the treatment selection that would otherwise have been
missed:

One aim of the present dissertation was to gain a deeper understanding for the
longitudinal dynamics of response within patients treated with tDCS. While previous
research investigating response to tDCS has traditionally been focused on explaining change
as presented by the entire group of patients on average, studies on other antidepressant
interventions have identified distinct response trajectories to treatment (Uher et al., 2010;
Kaster et al., 2019). For tDCS in particular, a differentiation with respect to response
latency seems relevant, as "late effects" of the treatment have previously been suggested
(Brunoni et al., 2017; Li et al., 2019). Consequently, determination of non-response may be
premature for the slowly-improving patients in shorter treatment procedures.

Study 1 was the first to describe depression response trajectories over a 10 week
treatment with tDCS. Importantly, assignment of each patient to a change-sensitive category
was clinically relevant as the three identified latent trajectory classes could differentiate
in terms of response and remission rates after only one week of treatment. Without
a categorization procedure capable of taking individual trajectories of symptom change
into account, associations with clinically relevant characteristics, such as the modifiable
treatment factor concomitant benzodiazepine use that was related to poorer treatment
response, may have been masked within a cross-sectional two-class solution. Associations
between higher baseline severity as well as younger age with worse response suggest that
these patients are less likely to respond instantaneously and may require a longer duration
of tDCS treatment. While further work will be necessary to replicate these findings, the
existence of slow and fast responding sub-populations suggests possibilities for development
of individualized treatment protocols and exploration of the utility of prolonged tDCS
treatment courses. Furthermore, these results raise the possibility that identified trajectory
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classes represent separate neurophysiological phenotypes of MDD with preferential response
to tDCS (Drysdale et al., 2017).

Another aim was the reevaluation of tDCS efficacy for distinct depressive symptom
clusters. While most clinical trials have previously been evaluated on the change in global
measures of depression severity (aggregate measures), studies on other antidepressant
interventions (Chekroud et al., 2017; Bondar et al., 2020) have identified distinct treatment
effects on different groups of symptoms. This goal was pursued in Study 2 and required
derivation of another set of new units of analysis, this time in the outcome space (i.e.
on the symptom-level). Evaluation of HAM-D cluster scores, rather than HAM-D sum
scores provided insight in the effects tDCS had on each symptom cluster. Furthermore, it
allowed more high-resolution comparisons between the treatment-profiles of the two active
antidepressant interventions. These are the first results suggesting superiority of tDCS
over placebo in a symptom cluster, where pharmacological treatment was not found to be
superior. These findings have relevant implications for the personalization of treatment
choices, however, the differences would have been missed using an aggregate measure of
symptom severity.

While Study 2 used unsupervised ML to find natural sub-groups within the item space,
another application related to the derivation of new units of analysis which could be used
to expand the here-presented mythological framework, is to group patients (instead of
symptoms) according to their constituting factors. For instance, the diagnostic categories
in the Diagnostic and Statistical Manual of Mental Disorders (DSM) and International
Classification of Diseases (ICD) are mostly based on symptom phenomenology and are thus
often not congruent with patterns in brain and behavior. Thus, by assigning patients to
a single diagnostic category, the contribution of different pathophysiological mechanisms
on the clinical picture is ignored. ML methods provide automatic extraction of previously
unknown patterns in single patients from different levels of biological and behaviour data,
cutting across the diagnostic categories (manifolds). These data-driven sub-groups can
be characterized by their interaction with disease and treatment processes (Bzdok and
Meyer-Lindenberg, 2018; Insel and Cuthbert, 2015).

In an intermediary step, statistical reassessments that provide new units of analysis
can be hypothesis-generating for future studies. In the context of experimental studies,
a cluster of symptoms (e.g., insomnia cluster) could be the dependent variable in which
the efficacy of tDCS (e.g. using different sets of parameters or in combination with other
treatments) would be assessed. Furthermore, these units provide options for systematically
testing the intervention in different sub-groups. For instance, studies relying on testing a
specific predictor would involve stratifying the sample into patients who have and those
who do not have the respective characteristic (alternative stratification could be into groups
of patients who predominantly present symptoms of specific clusters), and then testing the
efficacy of the intervention, ideally in comparison to a placebo group.
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5.1.2 Integration of Explanatory and Predictive Modeling
The methods applied in the framework for reanalyzing clinical trials in the context of
precision psychiatry, as presented in this dissertation, constitute a pluralistic composition of
models operating both in the notion of significance as well as in the prediction of previously
unseen instances. The framework should thus be discussed in terms of its contribution to
the ongoing controversy about the explanatory versus the predictive approach to modeling
mental health outcomes within psychiatric research and data science in general (Yarkoni
and Westfall, 2017; Breiman et al., 2001).

While explanation and prediction are the two main goals of most research endeavors
(Simon, 2001), they are qualitatively distinct in terms of their approach, their principled
assessment for extrapolation of an effect beyond the available data, and mathematical
models, hence, they answer distinct questions (Shmueli et al., 2010). In recent years, classical
explanatory modeling has been increasingly scrutinized due to its lack of reproducibility and
predictive power (Ioannidis, 2005; Abi-Dargham and Horga, 2016; Dwyer et al., 2018). The
predictive modeling approach is better suited to create highly accurate models than previous
explanatory work and can be readily applied within the single patient setting (Bzdok, 2017).
However, often these highly accurate models can neither explain the underlying (causal)
mechanisms nor the statistical mechanisms that cause their predictions. For this reason,
ML models have often been criticized of being black-box algorithms (Castelvecchi, 2016).

Interestingly, while both approaches are not incompatible, they are rarely used together
(Mahmoodi et al., 2017). In the endeavor of personalising treatments an integration
of predictive and explanatory modeling may be helpful to optimize trade-offs in both
approaches as has been previously suggested for social and behavioral research (Mahmoodi
et al., 2017). On the one hand, even in studies that have primarily explanatory objectives,
ML methods can still offer invaluable benefits when they are used instrumentally by reducing
dimensionality of data, increasing research efficiency, and minimizing p-hacking (Yarkoni
and Westfall, 2017). For example, in Studies 1 and 3 of the present dissertation, machine
learning methods could provide a comprehensive ranking of baseline characteristics by their
contribution to classify outcomes of tDCS treatment. However, these large numbers of
predictors would have inevitably caused issues of multicollinearity and model identification
in traditional statistical models (Zou and Hastie, 2005). Specifically, predictive modeling
might advance the understanding of tDCS response heterogeneity by identifying relevant
targets that could then be targeted in process-oriented clinical studies.

On the other hand, explanation can improve prediction of future instances by specifying
data-informed models. These models would potentially be more sparse, more robust to
changes in the data they are trained on, and less dependent on continuous re-calibration
(Von Rueden et al., 2019). Mahmoodi et al. (2017) suggest establishing a productive cycle
by creating novel, theoretical insights based on prediction efforts and including explanatory
insights to create better informed prediction models.
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5.1.3 Ingetration of Data-driven and Theory-driven Approaches
The dichotomy of data-driven versus hypothesis testing methods also touches upon deductive
(knowledge-driven) approaches (Popper and Keuth, 2005) and induction (data-driven)
approaches for the identification of clinical patterns within the patient data: In the context
of precision psychiatry, the accumulation of large datasets has introduced a scientific practice
that creates insights exclusively from data (e.g. data-derived subgroups of patients vs.
DSM/ICD diagnoses)(Bzdok and Meyer-Lindenberg, 2018; Drysdale et al., 2017). While
this approach can avoid confirmation bias within the research community (Nickerson, 1998),
claims that big data approaches make the scientific method obsolete (Anderson, 2008) have
elicited warnings from a "big data hybris" (Lazer et al., 2014).

Arguably, the epistemological strategy to better understand heterogeneity of treatment
response should be to combine both, deductive and inductive practices. For example, in
Study 1 both top-down (i.e. literature-driven) and bottom-up strategies were employed for
the selection of variables to test as predictors of trajectory class assignment probabilities,
leading both to the confirmation of candidate predictors as well as to the identification of
novel associations to be tested in future explanatory trials. Thus, data-driven analysis com-
bined with well-formalized theories about mechanisms of action leading to the investigation
of increasingly refined research questions appears to be a realistic and promising hybrid
approach to investigate response to tDCS (Platt, 1998).

5.1.4 Using Machine Learning for tDCS Research
Finally, this dissertation illustrates two distinct scenarios for employment of ML in clinical
data. The main promise of using ML methods in psychiatric intervention research is to
harvest their potential to detect and formalize complex patterns in clinical information,
behavior, brain, and genes, both to advance a more biologically grounded definition of
conventional psychiatric disorders (i.e. using objectively measurable endophenotypes) as
well as to improve predictability of treatment outcomes. The studies included in this
dissertation are the first ones in the field to use supervised and unsupervised ML approaches
for the assessment of response to tDCS.

Study 2 employed unsupervised ML methods to uncover natural depressive symptom
clusters within aggregate measures of symptom severity. While person-centered unsuper-
vised ML approaches can potentially parse the population of patients treated with brain
stimulation into data-driven endophenotypes (Drysdale et al., 2017), this symptom-centered
approach is an example for transposing commonly used model inputs into the outcome
space (i.e. clustering symptoms instead of patients).

In contrast, supervised ML algorithms are well suited for accurate outcome prediction
and have the potential to give a pre-informed prognosis about treatment success as well
as predicting valid and immediately usable clinical objects, such as stimulation dosage
and location. Following methodological procedures of previous work from the rTMS
field (Koutsouleris et al., 2018b), Study 3 applied supervised ML to predict response to
tDCS after a 10-week treatment period using only a set of easily collectable clinical and
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demographic information at baseline. While the developed supervised ML models should
still be considered on the proof-of-concept level, they have been provided to the field and
can, once data availability increases, be expanded (e.g. by adding new features) and, with
improving accuracy, be clinically evaluated in terms of generalization (independent or third
party test sets), model scope (locally representative samples and samples of the target
population), and incremental utility (real-life workflow, complementing state-of-the art).

Thus, both studies show that reevaluation of clinical trial data in combination with
supervised and unsupervised ML approaches, provides a wide range of opportunities for
optimizing tDCS treatment and treatment selection.

5.2 Limitations of the Present Dissertation and Im-
plications for tDCS Research

The present dissertation has some limitations, out of which several epitomize the fact that
personalisation of tDCS treatment is still in its beginnings. The primary limitation in the
deployment of state-of-the-art statistical models to personalize tDCS is likely the size of
available datasets, both in terms of the number of included subjects as well as the insufficient
granularity of information (e.g. biomarkers, medical history, number of measurements per
week). As clinical efficacy of tDCS remains unproven, further phase-3 controlled studies are
still necessary. Consequently, systematic collection of vast amounts of data, for example
from routine clinical care, has not yet been feasible. Further limitations within the present
dissertation are summarised below:

5.2.1 Outcome Measures and Unclear Prognostic Labels
One of the objectives of the present dissertation was to derive more meaningful units of
analysis, as compared to those measures primarily used in the evaluation of clinical trials.
However, while the resulting units provide an increased detail in capturing variability of
treatment response, they are still fundamentally based on a clinician-rated scale (HAM-
D, 17 items). Thus, they remain susceptible to the caveats associated with this type of
symptomatic assessment. These caveats include rater effects (Bühner, 2011) and situational
measurement bias.

Study 3 used a traditional definition of response (>50% improvement) as the outcome to
be predicted by the ML models to allow comparisons with previously developed algorithms
in the field of NIBS (Koutsouleris et al., 2018b). The pitfalls of introducing this type of
arbitrary dichotomies have been summarized above (see 1.2.2). Thus, it would be a logical
next research step to combine the building blocks that were separately illustrated within
the empirical studies of this dissertation, and predict newly derived, data-driven units in
the outcome space (i.e. assignment to trajectory classes from Study 1 or symptom-cluster
scores from Study 2) within the single-subject prediction paradigm.

Furthermore, the self- or clinican-rated symptom assessment may be complimented
using objective behavioral correlates of MDD. A promising approach for the acquisition
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of objective behavioral data may be offered by technical devices carried by patients. For
instance, smartphone data could enable early detection of clinical events, such as rumination,
unrest, or suicide attempts (Farhan et al., 2016). Ambulatory assessments using smartphones
have previously been classified into passive sensing (recording from sensors and phone usage
in the background)(Stachl et al., 2017) and active logging (in-situ reported experiences
using diaries or so-called experience sampling) (Harari et al., 2017, 2020; Schödel, 2020).
Furthermore, recorders for biosignals such as heart rate monitors (Wilhelm and Grossman,
2010) and actigraphs (Van De Water et al., 2011), have been used in the past, however,
these are exceedingly getting integrated into smart devices (Miller, 2012). Moreover, digital
sensors able to monitor movement, communication habits, and diverse behaviors are entering
everyday life (Internet of things, (Ashton et al., 2009)).

Within the present dissertation, effects of tDCS were only investigated in terms of
better response to treatment but not in terms of adverse effects. Since safety of treatment
represents a second relevant outcome in brain stimulation interventions, adverse events (AE)
should be considered as an integral outcome in future studies on personalizing tDCS. For
instance, the loss-functions of certain ML methods such as multi-objective reinforcement
learning models (MORL) can be defined to simultaneously optimize conflicting alternatives
(e.g. dose-response vs. dose-safety trade-off) (Tzeng and Huang, 2011).

Furthermore, it might be relevant to probe both, depressive symptoms and time-varying
clinical predictors over longer measurement periods, instead of restricting inputs for model
training only to baseline data. This is relevant, because depression-related constructs and
self-concepts (e.g. mood) are highly volatile and situation dependent. Thus, they can vary
over the span of a day (Peeters et al., 2003). While it would be advantageous to give a
patient a precise as possible prognosis before the onset of the treatment (baseline-informed
model), even estimations of treatment success after a number of weeks (early response)
would considerably shorten treatment times and spare the patients a lengthy process of
trial-and-error. In this context, Senn (2018) recommends testing treatment response at
least twice in the same individual, as only treatments with some consistency of response
can efficiently be tailored to the patient, while inconsistent treatment outcomes are too
futile to identity subsets of responders. One promising approach in gaining some insight
into these (situation- and patient-dependent) inconsistencies of response are N-of-1 studies
that monitor frequent treatment application over a longer period (Araujo et al., 2016).

5.2.2 Predictors
Another limitation besides the deficiency of objectivity in the outcome space is the lack
of detailed information in the feature space used to predict response to tDCS. While the
clinical, demographic, and neurocognitive baseline variables in Studies 1 and 3 have the
advantage of being obtainable without larger efforts or costs, no neuroanatomical, functional,
or genetic markers were used in the training of the statistical models. However, these data
might hold relevant detail for the classification of responders vs. non-responders. In fact,
using a subset of patients from the same clinical trial (ELECT-TDCS), two studies could
identify associations between clinical outcomes and grey matter volumes of PFC subregions
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as well as with individual efield strength in the left ACC (Bulubas et al., 2019; Suen et al.,
2021). While these results suggest that therapeutic outcomes may be related to individual
cortex morphology, above-mentioned factors have neither been tested for their predictability
in a cross-validated framework by themselves, nor in combination with the variables used
in the present dissertation yet.

Interestingly, Koutsouleris et al. (2018b) could predict response to 21 days of rTMS
treatment with higher cross-validated accuracy (85%) using pre-treatment structural Mag-
netic Resonance Images (sMRI) of patients with schizophrenia, while comparable studies
predicting remission from pharmacological treatment across large datasets (STAR*D) using
only clinical data reached similar accuracy as in this dissertation (64.6%)(Chekroud et al.,
2016). This raises the possibility of a multi-level classification approach for the trade-off
in cost-efficiency and accuracy by applying a model trained on clinical characteristics in a
first step and then applying high-effort and high-cost structural MRI models in patients
with previously low classification thresholds (Koutsouleris et al., 2018a).

5.2.3 Validity and Generalizability
It is important to note that the results from the present dissertation are specific to the
interventions conducted in the context of the ELECT-TDCS trial (Brunoni et al., 2015,
2017). Besides potential effects due to the double-controlled trial design (i.e. tDCS patients
received an additional placebo pill rather than pure stimulation), study-specific factors
include the setup of the tDCS device and the parameters employed. While effects may vary
depending on the specific treatment administered (Brunoni et al., 2012), no “optimal” or
“standard” tDCS protocols for MDD are currently available. Furthermore, ELECT-TDCS
included only antidepressant-free, unipolar, non-psychotic patients without substance abuse
or dependence, and without personality disorders.

This raises a general issue regarding generalizibility of models fit on data from RCTs:
While strict criteria on the inclusion and exclusion of eligible patients are understood
as a marker of quality within the experimental character of randomized controlled trials
(e.g. multiple comorbidities, concomitant therapeutic regimens), this can impede the
translation of findings and algorithmic tools to other settings, such as “real-world” clinical
practice. Thus, external validation is warranted to generalize study results to other
contexts and avoid translational issues related to idiosyncrasies of patients (e.g., cultural
homogeneity), materials and staff (e.g. study personnel, stimulation devices) and methods
(e.g., measurement procedure) (see Figure 1.3).(Dwyer et al., 2018)

The cross-validation frameworks applied for model evaluation in this dissertation, tested
predictive performance on previously unseen data. However, no validation on treatment
data from completely external contexts could be conducted, as for now, there are no other
tDCS trials that use comparable feature sets while having similar treatment duration. Thus,
data availability, the harmonization of existing datasets, as well as the standardization of
gathered information in future trials remain a challenge (see 5.3).

To avoid false-positive findings (Type-I errors) due to multiple hypothesis-testing
and pairwise comparisons between treatment groups, statistical confidence measures were
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consistently adjusted for the false discovery rate (FDR) (Benjamini and Hochberg, 1995).
In completely data-driven procedures, even more conservative corrections were applied
(99.9% CIs). However, the findings presented in this dissertation are the result of secondary
analyses the ELECT-TDCS trial was neither explicitly planned nor powered for. Thus,
they should be understood as exploratory and they mandate further investigation in future
studies.

5.2.4 Long-term Effects of Treatment
Within the ELECT-TDCS trial, effects of tDCS were investigated over a 10-week period.
Thus, the time frame that this dissertation can provide insides for is limited to this acute
treatment phase. While only few studies with relatively small sample sizes report follow-up
data (e.g. over a 6-month course) relapse rates vary between 27-50% (Aparicio et al.,
2019; Martin et al., 2013; Valiengo et al., 2013). However, for the personalization of tDCS
treatment the durability of treatment effects would be another relevant aspect. For example,
one study suggested differences in relapse rates between nontreatment- versus antidepressant
treatment-resistant patients (Aparicio et al., 2019). While high rates of relapse are also
problematic after treatments with electroconvulsive therapy (ECT) (Sackeim et al., 2001)
and rTMS (Kedzior et al., 2015) in the absence of maintenance treatment, tDCS might
provide the advantage of being applicable at home due to its portability. In this context,
self-administered application of tDCS can be distinguished between remotely supervised
tDCS and home-use (domiciliary) tDCS (Palm et al., 2018). Combining predictive tools
for relapse prediction with home-based maintenance application may provide a promising
approach for more stable and long-lasting treatment effects in the single-patient setting.

5.3 Challenges and Future Directions in Personalized
Application of tDCS

There are many reasons to extend the framework of precision psychiatry to tDCS research.
Foremost, this goal should be pursued with a view to an improved clinical applicability.
However, some challenges have to be overcome before tDCS can be established as a
personalized treatment option for MDD. While there are hurdles in each of the ingredient
disciplines that act jointly in the effort of personalizing tDCS, the following section will
focus on more general obstacles related to the results of this dissertation. The interested
reader may be referred to specific summaries of pitfalls of tDCS (Brunoni et al., 2012),
computational neuroscience (Huys et al., 2016), and ML (James et al., 2015; Domingos,
2012).

5.3.1 Routine Data Collection and Data Sharing
As previously stated, availability of large, multi-modal datasets is one of the primary
limitations, when it comes to predictive analytics in mental health. Mega-cohorts such as
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the UK Biobank (Sudlow et al., 2015) and international consortia like ENIGMA (Thompson
et al., 2014) provide multi-modal acquisition of clinical and biological data at scale. While
analyses of complex multidimensional patterns on different biological levels may reveal
new pathways for conducting research on individual factors (Bzdok and Meyer-Lindenberg,
2018; Padberg et al., 2021), the collection of larger quantities of treatment data remains a
challenge in brain stimulation research.

In tDCS, further phase-3 controlled clinical trials will first have to be conducted to
prove its efficacy. However, to successfully exploit the methods from the precision psychiatry
framework, patient documentation should be acquired as meticulously as possible in such
trials. Whenever possible, investigators should collect comprehensive sets of biomarkers
to be analyzed in association with the primary hypothesis of the study (Borrione et al.,
2020). Once efficacy of tDCS can be proven, further sham controlled trials will no longer
be ethically feasible, as equipoise to placebo could no longer be assumed (Miller and Brody,
2002). At this point clinical and academic centers performing tDCS should routinely
incorporate collection of patient characteristics (clinical and demographic information,
rating-scales, questionnaires, and tests on cognitive changes) as well as biomarkers (brain
scans and molecular data). A comparable approach has already been implemented for
treatment with ECT (Global ECT-MRI Research Collaboration) which could serve as a
prototypical model for tDCS (Oltedal et al., 2017).

To reach adequate sample sizes and to appropriately consider generalizability when
designing or reporting studies with translational aims, consolidation of models and data
across different study centers or even continents is inevitable. This requires global efforts
in research collaboration and data sharing. To this end, support by open-access and
(properly anonymized) data sharing initiatives (Ayris et al., 2016; Soderberg, 2018), will
be essential for overcoming difficulties in assessing literature and primary data. Thus,
regulatory agencies should further endorse policies that ensure clinical trial data can be
shared under request (Borrione et al., 2020).

5.3.2 Basic Research Outside of Clinical Application
Basic research outside of the clinical application of tDCS in MDD could provide further
advances in its clinical efficacy. A better understanding of brain networks involved in
pathophysiological processes, that do not only represent topographically linked nodes,
but dynamic networks coupled by oscillatory brain activities could be driven by advances
in disciplines such as genetics or multi-modal brain imaging and may help directing the
stimulation to pathophysiologically relevant targets (Padberg et al., 2021). Furthermore,
prospects for increasing tDCS response in MDD improve with a better understanding
of the neurological effects of tDCS. A common feature in tDCS trials is its capability
to elicit lasting changes in regional cortical excitability. Investigations for a deepened
understanding of the extent to which synaptic plasticity can be induced by the stimulation
(e.g. long-term potentiation (LTP)-type or long-term depression (LTD)-type changes) may
be beneficial for potentiation of its antidepressant effects. Basic research outside of clinical
populations may help to improve the understanding of the technique’s effects. For instance,
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pre-clinical studies (e.g. translational reseach in animals) (Brunoni et al., 2011) and
computer simulation (Thielscher et al., 2011) may give insights about mechanisms of action
that are still undetermined. Finally, studies in healthy populations could optimize selection
within the stimulation parameter space and aid development of closed-loop approaches for
efficient online control of the intervention (Lorenz et al., 2019).

5.3.3 Development of Predictive Tools
Automatized Model Development and Optimization

With higher complexity of data and research objectives, the process of generating a successful
predictive model (e.g. supervised ML) relies increasingly on appropriate steps taken by the
programmer. These steps include adequate preprocessing, feature selection or engineering,
model selection and optimization, as well as valid assessments of model performance and
generalization (as outlined in 4.2). Informed decisions within this algorithmic pipeline
require both experience as well as trial-and-error processes, which can be a challenge
for the developer. For this reason, many studies skip the optimization process of the
model pipeline entirely. This has been epitomized in a survey of neuroimaging studies,
which showed that 73% of the studies used the same ML model and did not perform any
hyperparameter tuning (Arbabshirani et al., 2017). However, without knowledge of the
underlying processes that generate the data, on average, most ML algorithms produce the
same, usually not optimal, results ("No Free Lunch Theorem") (Wolpert et al., 1995). In
most health disciplines, clinicians and researchers in the field of brain stimulation are not
specifically trained in programming ML algorithms. However, the discipline of so-called
automated machine learning (AutoML) dramatically simplifies the above-mentioned steps
for non-experts (Hutter et al., 2019). AutoML covers the entire pipeline (end-to-end) from
the raw dataset, over the selection of the model, to the deployable algorithm (e.g. Auto
Keras (Jin et al., 2018) and auto-sklearn (Feurer et al., 2019)).While this trend can be
expected to accelerate, automation will increase requirements for proper model evaluation.

Creating Complex Models Using Small Samples

Data availability can be assumed to increase quickly in the future. However, the sample
sizes required for successful model training in ML can quickly amount to large numbers with
increasing model complexity. In deep-learning algorithms, a particularly complex set of
methods, the number of required free parameters may easily add up to millions (Goodfellow
et al., 2016). Training these models with data from only hundreds of patients may induce
overfitting within the training sets (i.e. the model perfectly learns patterns in the training
data) and thus limit prediction performance in real-world data (Friedman et al., 2001). This
problem is aggravated in high dimensional data sources (Arbabshirani et al., 2017), such as
genetic and neuroimaging data (so-called large P small N problems) (Cearns et al., 2019).
Acquiring datasets of this size, does not seem feasible in brain stimulation and psychiatric
research in general.
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However, new approaches from the ML domain specifically address the problem of
training predictive models on small datasets (Cearns et al., 2019). For instance, random
augmentation of existing data (data perturbing) is a mathematical means to artificially
enlarge training sets. This approach has been successfully applied in image processing
(Krizhevsky et al., 2017). The optimal degree of randomness to add can be introduced as a
tunable hyperparameter in the model training process. In a second approach, transfer learn-
ing can be used for the transformation of variables into lower dimensional representations
based on previous training on other datasets (Esteva et al., 2017). Similarly, generative
adversarial neural networks (GAN) can be employed for intra-domain transfer learning,
by combining both generative and classification processes to create arbitrary numbers of
stimuli (e.g. brain scans) required for model training (Radford et al., 2015).

From Research Algorithms to Decision Support Frameworks

At current, most research on the development of predictive tools in psychiatry is still within
the notion of proof-of-concept studies. However, real-world estimates of performance and
prognostic stability will have to be demonstrated before algorithms for prediction of tDCS
response can be clinically deployed (Cearns et al., 2019). In other medical disciplines,
algorithmic tools have been lined up to compete against trained clinicians in terms of
their ability to correctly diagnose diseases and predict treatment outcomes (Ardila et al.,
2019). However, it seems unlikely that algorithms by themselves will run the clinical
decision-making process in psychiatric treatment due to the interpersonal nature of mental
health care, even if algorithmic tools were to outperform clinician’s prognoses. Instead,
decision support systems alongside human therapists could prove to be a promising and
more socially accepted application scenario in the clinical use of predictive models Cearns
et al. (2019). In tDCS, prospective RCTs could test if a collaboration of a clinician and an
algorithmic tool could reach significantly higher accuracy in predictions than the clinician
prognostication alone (i.e. outperforming the state of the art) (Passos and Mwangi, 2018).
In this scenario, the human-AI synergy would be of particular importance, combining
clinical expertise with carefully calibrated (Niculescu-Mizil and Caruana, 2005) probabilistic
estimates as model outcomes (Hahn et al., 2013). For further recommendations on the
implementation of clinical AI monitoring systems in psychiatry, including ongoing post
deployment evaluation, security assessment, and algorithmic bias strategies see the review
by Cearns and colleagues (Cearns et al., 2019).

Another aspect bringing the precision-oriented approach for tDCS into clinical practice
is its economical feasibility. Cost-effectiveness analyses will have to be performed to examine
if the personalization approach is advantageous. For example, while tDCS devices have
the advantage of being relatively cheap, using bio-markers that have to be measured using
expensive neuroimaging procedures may relativize the savings on the intervention side.
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Understanding the Predictions

As previously outlined, (most) algorithmic tools are by no means black-boxes but apply
deterministic, albeit rather complex rules to make predictions. IML methods (Molnar et al.,
2020), such as the ones applied in Study 3, can help to understand these rules (e.g. to
identify the most relevant variables). In a straightforward manner, so-called model-agnostic
techniques systematically obscure certain sets of features and measure the resulting decrease
in prediction performance. This mechanism works independently of the applied model
type and can thus be applied in a variety of statistical scenarios. Another model-specific
approach evaluates the fitted model itself. Examples include interpretation of weight-maps
in support vector machines (Cortes and Vapnik, 1995), the gini impurity measure in tree-
based classifiers (Breiman, 2001) or the visualization of layer-wise data transformation
in neural networks (Bach et al., 2015). However, besides understanding the interplay of
model inputs, it is also relevant to register steps taken in the algorithmic pipeline such
as preprocessing, feature engineering and performance evaluation, to understand model
behaviour and ensure replicability of results. Within this notion, the recently presented
conceptual framework of AI Transparency (Hahn et al., 2018) provides a “checklist” to
quantify the maturity of a project and to monitor steps of model development.

5.3.4 Interdisciplinarity and Collaboration
The development of an interdisciplinary infrastructure represents another challenge in
establishing personalized tDCS research within the data-driven framework of precision
psychiatry. When faced with a multi-omics approach (so-called panomics) for revelation of
the underlying biological pathways involved in psychiatric disorders, interdisciplinary collab-
oration of researchers from many disciplines will be required (e.g. clinicians, psychologists,
computer scientists, mathematicians). The technical infrastructure required for handling
big data (e.g. multimodal neuroimaging) poses another challenge, as most clinicians and
psychologists mandated to acquire clinical data have primary education in data analysis but
not in management and organization of large databases and utilization of high-performance
computing (e.g. cluster systems, cloud computing). Training programs may have to adapt
to novel requirements, including cross-disciplinary communication of methods and clinical
concepts to improve the collection, organization, and integration of mental health data
(Yarkoni, 2012). Furthermore, synergy between healthcare delivery systems and academic
institutions provides opportunities, as healthcare providers can extract structured data to
be modelled and shared as a collaborative research product (Williams et al., 2015).

5.3.5 Ethical Considerations
Alongside the opportunities that personalization of tDCS provides for the improvement of
patient care, ethical questions need to be considered as well. While organisation of large
multi-modal data repositories seems essential for modeling complex patterns of brain and
behaviour, patient records have to be handled responsibly in terms of data privacy and
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data security (Annas et al., 2003). On an organizational level, data privacy requires making
data processing steps transparent to patients. While recursive anonymization of data is
usually a requirement in modern research and data sharing initiatives, vast amounts of
personal information (e.g. brain scans) (Valizadeh et al., 2018) may render re-identification
of patients possible. It is thus crucial that patients are given as much control over their data
as possible, that they are properly informed about study purposes and types of collected
data, and that no data is saved without previous informed consent (Appelbaum et al.,
1987).

In terms of security, technical measures to handle patient data, for instance secure
transfer and storage as well as the timely deletion after the purpose of their collection is
fulfilled have to be provided. Thus, researchers should carefully rehearse data acquisition
and handling procedures with ethical committees and data protection officers at their
institutions to comply with national and international regulation (e.g. Europe: General
Data Protection Regulation, GDPR, USA: Health Insurance Portability and Accountability
Act, HIPAA).

Clinical application of algorithms for classification of treatment success will have to be
approved by regulations from central agencies (e.g. USA: Food and Drug Administration,
Europe: European Medicines Agency) before its widespread use. This particularly involves
the implementation of guidelines for biomarker development (Amur et al., 2015), that
should be informed by a strong evidence base provided by academia and industry, as well
as governmental agencies Dwyer et al. (2018).

Finally, while prognostic tools can play a role in making better informed treatment
choices, the stakes are high when asking whether to give or withhold a treatment, therefore,
this kind of decision should not exclusively be made on probabilistic grounds, but also
involve humanistic consideration.

5.4 Conclusion
Traditionally, inter-individual variability of treatment response has been regarded as a
limitation for developing standardized tDCS treatment procedures for MDD. However,
taking the considerable phenotypic heterogeneity of depressive patients into account, the one-
size-fits-all approach is increasingly questioned throughout psychiatric treatment. Instead,
precision-oriented approaches aim to improve the treatment by tailoring it to the patient.

The present dissertation discussed the role of clinical trials in PM. It suggested that
clinical trials may play an important role both (1) as a source of data to use in model
development for a better understanding of the variability of treatment effects and (2)
as an experimental framework that allows divergent validation of these models within
active and placebo control conditions. In this context, caveats associated with analyses of
traditional RCT outcomes that limit detailed examination of response heterogeneity, have
been described. Earlier research predominantly used the treatment group as the primary
working unit and ignored relevant clinical patterns within the patients, within the individual
improvement trajectories, and within the presented symptoms.
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The dissertation provided a methodological paradigm for renalysis of clinical trial data
by example of an analysis of ELECT-TDCS. Within this paradigm in-depth statistical
modeling approaches were presented in direct reference to the above-mentioned problems.
The implementation of these approaches was demonstrated in three blueprint empirical
studies investigating individual trajectories of improvement over the course of treatment,
tDCS efficacy in distinct depressive symptom clusters, and the predictability of response in
the single-patient setting.

The findings of the empirical studies point to opportunities of personalizing tDCS
treatment of MDD: Patients who show distinct trajectories of change may profit from
individualized treatment protocols. Concomitant benzodiazepine use is a modifiable factor
related to poorer response and should be carefully investigated within upcoming trials, while
younger patients and those with higher depression severity who are more likely to respond
slowly may require longer duration of tDCS treatment. TDCS and escitalopram were
both found to be superior to placebo in treating core depressive symptoms, yet only tDCS
was superior in treating sleep related symptoms, while only escitalopram was superior in
treating guilt/anxiety symptoms. Single-subject prediction using supervised ML algorithms
provides above-chance classification of treatment response, using an easily obtainable set of
baseline data. While predictive modeling has high potential for guiding clinical decisions in
the future, the algorithms must first reach higher accuracy and their generalizability and
incremental utility must be demonstrated.

Besides the derivation of more differentiated units of analysis and prediction on the
single-subject level, analyses within the presented methodological framework demonstrated
that exploratory research could fruitfully integrate approaches from the explanatory model-
ing and the predictive modeling cultures. More generally, the application of ML techniques
was introduced to precision-oriented tDCS research.

Through the empirical studies, some of the current limitations and challenges that the
personalization of tDCS for treating MDD is faced with were demonstrated in the present
dissertation, including limited availability of large datasets, imprecise measurement of
depressive symptoms and and associated characteristics in absence of objective biomarkers
and behavioural measures, and lack of external validation possibilities. Further challenges
not exclusive to tDCS research but referring to precision psychiatry in general are the
establishment of interdisciplinary infrastructure, responsible handling of personal data, and
initiatives in open science.

In summary, the personalization of mental health care is still in its beginnings, as
has been demonstrated using the example of tDCS. However, the presented framework for
in-depth analysis of clinical trials can be generalized to other interventions and contexts
where variability of exerted effects suggests the individualization of treatment. By providing
blueprint empirical studies for the implementation of new statistical methods within the
framework of precision psychiatry this dissertation can specifically contribute to a deeper
understanding of the heterogeneity of tDCS effects to improve this low-cost, tolerable, and
safe intervention.

While it is unclear, if tDCS can be transformed into a fully individualized tool, the
methods used in precision psychiatry offer a promising future direction in psychiatry research
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and clinical care. As with any emerging field of research, optimistic biases may have to be
overcome with judicious caution to serve the best interests of the patients.
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