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1. Introductory Summary 

Major depressive disorder (MDD) is a debilitating mental disorder: It is one of the leading 

causes of years lived with disability, second only to low back pain (Global Burden of 

Disease Study 2013 Collaborators, 2015). Worldwide, it affects around 6% of individuals 

each year, 20% of individuals during their lifetime, and women about twice as often as 

men. Current treatments for MDD primarily include monoaminergic drugs and psycho-

therapy, but about a third of patients do not respond to these treatments (Rush et al., 

2006). With a population of 83 million people (Statistisches Bundesamt, 2021), this 

means in Germany alone over 1.5 million people will suffer from a chronic form of de-

pression annually with no effective treatments available. These numbers emphasise that 

identifying new treatments for this large number of patients is a crucial public health ob-

jective that could reduce tremendous amounts of personal suffering and associated 

health care costs. Achieving this public health objective, however, requires a better char-

acterisation and pathophysiological understanding of depression. 

Diagnostically, depression can be diagnosed in one of two ways. On one side, patients can 

be diagnosed with MDD according to the criteria of the Diagnostic and Statistical Manual 

of Mental Disorders (DSM-5). This requires the presence of at least one of two core symp-

toms of depressed mood or anhedonia and four or more of seven other symptoms includ-

ing fatigue, feelings of guilt, changes in appetite, psychomotor changes, sleeping prob-

lems, cognitive problems, and suicidality (American Psychiatric Association, 2013). Im-

portantly, these symptoms have to be present over a period of two weeks to qualify for 

the MDD diagnosis and they cannot be the result of another medical condition. The ab-

sence of a comorbid medical condition sets a clear dividing line for the other side of the 

diagnostic dichotomy, whereby depression is diagnosed under the umbrella of ‘comorbid 

depression’ in the context of a concurrent ‘physical’ illness such as rheumatoid arthritis, 

hepatitis, or diabetes (Gold et al., 2020; Smolen et al., 2018). Historically, comorbid de-

pression has been considered to be a psychosocial consequence to the debilitating phys-

ical illness symptoms or as a consequence of treatment. However, several lines of evi-

dence suggest that common factors contribute both to MDD and comorbid depression. 

Identifying and characterising these factors is a key research priority since it could open 

up the opportunity for new treatments targeting patients in both diagnostic groups. The 

focus of this thesis is one such factor, namely systemic inflammation, which has been im-

plicated in depression by an accumulating amount of research over the past decades and 

may act akin to a “friendly fire”, whereby the body’s own defences exhibit detrimental 

off-target effects. 
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1.1 Mechanistic links connecting the immune system and the brain 

If systemic inflammation was an important risk factor in depression, this would require 

plausible mechanistic links connecting the immune system and the brain. Contrary to the 

historical notion of these systems as independent and shielded by the blood-brain-bar-

rier (BBB), it is well known today that there is cross-talk between the immune system 

and the brain via multiple pathways and key examples of immune-brain cross-talk are 

summarised next (Dantzer, O’Connor, Freund, Johnson, & Kelley, 2008; Galea, Bechmann, 

& Perry, 2007). Pro- and anti-inflammatory cytokines, which constitute the main messen-

gers of the immune system, can relay signals through afferent nerves such as the vagus 

nerve. Cytokines can also enter the brain through volume diffusion in circumventricular 

zones outside of the BBB, via active BBB transport, or via local production from 

periventricular macrophages (Dantzer et al., 2008). In the brain, immune activity is also 

regulated through microglia that make up about 5-10% of central nervous system (CNS) 

cells. Microglia assume the role of CNS-resident macrophages and can be activated to 

combat tissue damage and to recognise and respond to emerging pathogens (Mondelli, 

Vernon, Turkheimer, Dazzan, & Pariante, 2017). In addition to cytokine signals from the 

periphery, these microglia can also produce cytokines locally and activity of pro-inflam-

matory cytokines has established effects on learning and plasticity processes, cognitive 

function, and behaviours. This has highlighted the importance of considering immune 

and brain functioning together as there are several plausible ways how inflammation can 

influence brain functioning and ultimately depression (Dantzer, 2001; McAfoose & 

Baune, 2009).  

1.2 Inflammation and depression 

1.2.1 Evidence from cross-sectional studies 

Beyond mechanistic links, multiple lines of evidence have also specifically implicated sys-

temic inflammation in depression. First, depression prevalence is much higher in chronic 

inflammatory illnesses as compared to the general population. Compared to the point 

prevalence of MDD in the general population of approximately 6%, the prevalence of 

comorbid MDD in chronic inflammatory illnesses is about 39% for rheumatoid arthritis, 

22% for inflammatory bowel disease, and 28% for psoriasis (Gold et al., 2020; Otte et al., 

2016).  

Second, a wealth of cross-sectional case-control studies has indicated that circulating 

acute-phase reactants such as C-reactive protein (CRP), pro-inflammatory cytokines and 

chemokines are upregulated in patients with MDD as compared to healthy individuals 
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and these studies have been summarised in multiple systematic reviews and meta-anal-

yses (Dowlati et al., 2010; Goldsmith, Rapaport, & Miller, 2016; Haapakoski, Mathieu, 

Ebmeier, Alenius, & Kivimäki, 2015; Howren, Lamkin, & Suls, 2009; Köhler et al., 2017). 

Most prominently, these studies have indicated an upregulation of CRP, which has been 

the most frequently studied inflammatory marker, and meta-analytic findings suggest 

that 21-34% of patients with depression have elevated levels of CRP according to the 

common medical cut-off of >3mg/L (Osimo, Baxter, Lewis, Jones, & Khandaker, 2019). 

Among cytokines, Köhler et al. (2017) have conducted the most comprehensive system-

atic review and meta-analysis, including 82 case-control studies reporting data on 3,212 

MDD patients and 2,798 healthy controls. Their findings most reliably implicated the pro-

inflammatory cytokines interleukin (IL)-6 and tumour necrosis factor (TNF)-α in depres-

sion, but additionally showed elevations of IL-10, IL-12, IL-13, IL-18, IL-1 receptor antag-

onist, soluble IL-2 receptor, soluble TNF receptor 2, and C-C chemokine ligand (CCL)-2 

(also referred to as monocyte chemoattractant protein [MCP]-1) as well as reduced in-

terferon (IFN)-γ.  

 

 

Figure 1. Directed Acyclic Graph (DAG) illustrating differences in the nature of the inflam-
mation-depression association, which could be (A) a true causal association (B) due to 
confounding, (C) a reversed causal association, or (D) a complex combination such as a 
partly confounded, truly causal, bidirectional association. 

The meta-analyses by Köhler et al. (2017) and others provide compelling evidence for 

case-control differences in pro-inflammatory protein concentrations, but they cannot ad-

dress key remaining questions on the nature of the inflammation-depression association 

(see Figure 1). In particular, while the inflammation-depression association may be due 
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to a true causal effect of systemic inflammation (Fig. 1A), it could also be the result of 

residual confounding from known or unknown third variables (Fig. 1B), or it may reflect 

reverse causality, whereby the state of depression itself leads to increased levels of in-

flammation (Fig. 1C). Adding to these possible models, the inflammation-depression as-

sociation may also be a complex combination of these models (Fig. 1D); for instance, in-

flammation may have a true causal effect for depression, but this association may be 

partly confounded and could be bidirectional.  

1.2.2 Evidence from longitudinal studies 

Longitudinal studies are one step closer to allowing inferences on causality. They can be 

used to provide evidence for two of Bradford Hill’s viewpoints on causality (Bradford Hill, 

1965), namely temporality (i.e., changes in the exposure precede changes in the outcome) 

and biological gradient (i.e., larger changes in the exposure result in larger changes in the 

outcome). In one of the first studies of this kind and using data from 2,447 children in the 

Avon Longitudinal Study of Parents and Children (ALSPAC), Khandaker et al. (2014) in-

deed showed that serum levels of IL-6 at age nine years were longitudinally associated 

with depressive symptoms at age 18 years in a linear dose-response fashion. Importantly, 

this association persisted after adjustment for important sociodemographic and lifestyle 

confounding variables and after adjusting for past psychological and behavioural prob-

lems. Evidence from such longitudinal studies has recently been synthesised in the first 

systematic review and meta-analysis including 38 studies reporting on data from 58,256 

participants (Mac Giollabhui, Ng, Ellman, & Alloy, 2020). Results were in favour of a bidi-

rectional association of IL-6 and depression, whereby IL-6 was associated with future de-

pressive symptoms and vice versa. Results for CRP were less conclusive with association 

estimates attenuating in meta-regression and there was no support for longitudinal as-

sociations of TNF-α. Overall, these results support bidirectional causal models for se-

lected pro-inflammatory markers such as IL-6 (cf. Fig. 1A & 1C), but residual confounding 

cannot be fully excluded by longitudinal research, so remains a possibility. 

1.2.3 Experimental evidence 

To formally test if systemic inflammation exerts a causal effect on depression, evidence 

from experimental approaches is required that selectively modulate the exposure (here: 

inflammation), but not potential confounding variables, and evaluate effects of the expo-

sure on the outcome (here: depression). Currently, the evidence from experimental ap-

proaches originates from animal studies, experimental medicine studies of immune-mod-

ulating drugs and from studies using Mendelian randomisation (MR) analyses.  
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1.2.3.1 Animal and human studies of immune-modulating drugs 

As early as in the late 1980s and early 1990s, experimental studies in animals have 

demonstrated that activation of the immune system following infections or administra-

tion of pro-inflammatory cytokines induces so-called sickness behaviour in animals in-

cluding loss of interest in activities, social isolation, hypersomnia, and anorexia among 

others, which mirror symptoms of depression in humans (Dantzer, 2001; Hart, 1988; 

Kent, Bluthé, Kelley, & Dantzer, 1992). Evidence from human studies has led to similar 

results as drugs that promote states of systemic inflammation are associated with the 

emergence of depressive symptoms; for instance, a large literature base has demon-

strated that cancer patients treated with pro-inflammatory treatments such as inter-

feron-α or IL-2 develop symptoms consistent with a diagnosis of MDD in up to 50% of 

patients (Capuron, Ravaud, & Dantzer, 2001; Musselman et al., 2012; Raison & Miller, 

2003). A similar pattern of results has been observed in patients with hepatitis C who 

also are at increased risk of developing depression subsequent to interferon treatment 

(Udina et al., 2012). These experimental results of increased inflammation leading to 

sickness behaviour and depressive symptoms also support evolutionary conceptualisa-

tions of inflammation and depression, whereby symptoms such as anhedonia, social iso-

lation, and fatigue could foster states of retreat, recovery and protection from pathogens 

(Miller & Raison, 2016). 

Evidence from clinical trials of anti-inflammatory drugs has also been accumulating 

providing the flipside perspective on potential causality of the inflammation-depression 

association. Non-steroidal anti-inflammatory drugs (NSAIDs) and newer anti-cytokine 

drugs such as monoclonal antibodies (mAbs) are commonly used to treat illnesses asso-

ciated with chronic inflammation such as rheumatoid arthritis. As depressive symptoms 

are often assessed as potential side effects in RCTs of these drugs for chronic inflamma-

tory conditions, this offers the opportunity to evaluate the treatment potential of im-

mune-modulating drugs, and thus their causal effect, on depressive symptoms.  

The effectiveness of anti-inflammatory drugs for treatment of depressive symptoms in 

chronic inflammatory illnesses has been summarised in multiple systematic reviews and 

meta-analyses (Kappelmann, Lewis, Dantzer, Jones, & Khandaker, 2018; Köhler-Forsberg 

et al., 2019; Köhler et al., 2014; Wittenberg et al., 2020). In the first of these studies, Köh-

ler and colleagues (2014) have synthesised evidence from RCTs using NSAIDs and anti-

cytokine drugs, which showed evidence for small-to-moderate benefits of these drugs in 

treating depressive symptoms compared to placebo arms (standardised mean difference 

[SMD]= 0.34, 95% CI: 0.11-0.57) based on data from 5,447 participants. Subsequent 

meta-analyses have resulted in similar results with SMD of 0.40 (95% CI: 0.22–0.59) in a 

meta-analysis of anti-cytokine drugs based on 2,370 participants (Kappelmann et al., 
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2018), with SMD of 0.29 (95% CI: 0.12-0.45) in a meta-analysis of industry anti-cytokine 

data from 10,743 participants (Wittenberg et al., 2020), and SMD of 0.49 (95% CI: 0.33-

0.64) in an update of the initial meta-analysis on multiple types of anti-inflammatory 

drugs (Köhler-Forsberg et al., 2019). Importantly, evidence from meta-regression and 

stratified analyses in two of these meta-analyses suggested that the benefits of the anti-

inflammatory drugs were not fully explained by improvements in physical illness symp-

toms of the condition under investigation (Kappelmann et al., 2018; Wittenberg et al., 

2020). This suggests that anti-inflammatory drugs have anti-depressant effects that are 

(at least partly) independent from the pathophysiology of the autoimmune condition un-

der investigation. Taken together, these findings highlight a potential causal role of in-

flammation for depressive symptoms in the context of physical illnesses. 

Outside the context of physical illnesses, however, these RCTs cannot ascertain if effec-

tiveness of anti-inflammatory drugs persists for psychiatric patients with MDD. In MDD, 

only few studies with small sample sizes have been conducted so far. Regarding cytokine 

inhibitors, the first RCT investigated the effectiveness of the anti-TNF-α mAb infliximab 

versus placebo for 40 patients with MDD and results did not show any overall benefit of 

infliximab versus placebo (Raison et al., 2013). In post-hoc analyses, however, the au-

thors showed that infliximab resulted in greater response rates for patients with 

CRP>5mg/L as compared to those with CRP<5mg/L. In a subsequent RCT, McIntyre and 

colleagues (2019) have replicated the study design of the original infliximab RCT in an 

investigation of bipolar depression. While the authors did not find that baseline CRP lev-

els moderated the drug’s effectiveness, self-reported levels of childhood maltreatment, 

which are also associated with inflammation (Baumeister, Akhtar, Ciufolini, Pariante, & 

Mondelli, 2016), predicted treatment response. Lastly, there is also evidence that base-

line CRP levels moderated the effectiveness of minocycline, a tetracycline antibiotic with 

anti-inflammatory properties, as adjunct to monoaminergic treatment (Nettis et al., 

2021).  

1.2.3.2 Evidence from Mendelian randomisation studies 

MR is a genetic approach to untangling causality, which takes advantage of Mendel’s law 

that genetic variants are inherited randomly from parents to offspring (Hemani, Zheng, 

et al., 2018). In this way MR is similar to a clinical trial (Fig. 2A) and allows for valid tests 

of causality if three major assumptions are met. These assumptions state that (i) the ge-

netic variants or single nucleotide polymorphisms (SNPs) are associated with the expo-

sure, (ii) these SNPs are not directly associated with the outcome if the exposure is con-

trolled for, and (iii) the SNPs have no direct effect on potential confounding variables that 

could mediate effects on the outcome (Fig. 2B). Regarding the effect of inflammation on 

depression, there have been two prior MR studies investigating evidence for potential 
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causality. The first study was conducted by Wium-Andersen and colleagues (2014) who 

analysed data on serum CRP, genotypes of four SNPs located in the CRP gene, and infor-

mation on hospitalisation or death with depression in two Danish general population 

samples including 78,809 individuals. While the authors observed associations of serum 

CRP concentrations with depression, there was no association between genetically pre-

dicted CRP and genetically predicted hospitalisation or death with depression from MR 

analysis (OR=0.79, 95% CI: 0.51-1.22). The second study was conducted by Khandaker 

and colleagues (2020) who used data from 367,703 unrelated individuals from the UK 

Biobank study with 4% of the sample qualifying for probable moderate or severe lifetime 

depression. Selecting four SNPs in the CRP gene associated with serum CRP concentra-

tions and three SNPs in the IL6R gene associated with serum IL-6 concentrations, the au-

thors observed potential causal associations of increased genetically predicted CRP 

(OR=1.35, 95% CI: 1.12–1.62) and of increased genetically predicted IL-6 (OR=1.18, 

95% CI: 1.07–1.29) with probable lifetime depression. Beyond CRP and IL-6, Khandaker 

et al. (2020) also observed a MR association of genetically predicted increases in triglyc-

erides with probable lifetime depression (OR=1.18, 95% CI: 1.09–1.27) suggesting that 

a combination of these immuno-metabolic risk factors may causally contribute to depres-

sion and cardiovascular disease, which commonly occur comorbidly (Gold et al., 2020).  

 

 

Figure 2. This figure illustrates the (A) principles of Mendelian randomisation (MR) stud-
ies and their complementarity to clinical trials and (B) the assumptions underlying MR 
analyses, which are abbreviated with IV (instrumental variable). This figure has been re-
produced under Creative Commons Attribution License from Hemani et al. (2018). 

In sum, these results provide mixed support for potential causal effects of inflammation 

in depression. While findings of immune-modulating drugs in autoimmune conditions 

and cancer support a causal role of inflammation in depression and depression-like be-

haviour in animals, results in MDD suggest anti-inflammatory treatments may not exhibit 

overall effectiveness and could instead be specific to a potential subgroup of patients with 

evidence of low-grade inflammation. Current research efforts are trying to characterise 
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these subgroups in terms of immunological, metabolic, and clinical complexity, which is 

also the focus of the current thesis. 

1.3 Complexity of the inflammation-depression association 

1.3.1 Immunological complexity 

Regarding immunological complexity, most studies to date have investigated depression 

in the context of associations with CRP. CRP is a broad inflammatory marker and used 

throughout medicine to index inflammation as a substrate of the acute phase response 

(Cray, Zaias, & Altman, 2009). However, CRP has complex pro- and anti-inflammatory 

roles, so investigating CRP could be problematic as a uniform index of systemic low-grade 

inflammation (Del Giudice & Gangestad, 2018). Cytokines could represent more specific 

markers as they have more circumscribed immunological functions such as differentia-

tion of naïve T helper (TH) cells into specific TH cell lines (e.g., TH1, TH2, TH17 or Treg cells), 

stimulation of antibody production, or induction of lymphocyte chemotaxis (Himmerich, 

Patsalos, Lichtblau, Ibrahim, & Dalton, 2019). Cytokines also constitute plausible media-

tors of neurobiological functioning; for instance, IL-1β, IL-6, and TNF-α have been impli-

cated in central plasticity and learning processes (McAfoose & Baune, 2009). 

As outlined in section 1.2.1, case-control studies have highlighted the most consistent as-

sociations of depression with IL-6 and TNF-α among others (Köhler et al., 2017). These 

cytokines have also been implicated in chronic inflammatory illnesses such as rheuma-

toid arthritis and psoriasis and they constitute treatment targets in these illnesses 

(Kappelmann et al., 2018; Wittenberg et al., 2020). It remains unclear, however, what 

signalling pathways underlie their potential effects in depression. For example, IL-6 can 

bind to membrane-bound IL-6 receptors (IL-6R) that are present on few different cell 

types such as certain lymphocytes and hepatocytes. Together with glycoprotein 130 

(gp130) this can induce so-called IL-6 classic signalling with downstream pro- and anti-

inflammatory effects including the acute-phase response and CRP production (see Figure 

3). However, IL-6 can also induce signalling by binding with soluble IL-6Rs, which to-

gether with gp130 initiates the largely pro-inflammatory IL-6 trans-signalling on cells 

that do not naturally express IL-6Rs (Hunter & Jones, 2015). Importantly, it is currently 

unclear which of these pathways (if any) are implicated in depression and currently ap-

proved anti-IL-6 drugs such as tocilizumab do not selectively block specific IL-6 path-

ways, which may lead to unnecessary drug side effects.  
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Figure 3. Illustration of current understanding of IL-6 biology; see Hunter and Jones 
(2015) for a review. Figure reproduced and adapted from Ye and Kappelmann et al. 
(2021); see Appendix B. 

Beyond the unclarities around IL-6 signalling pathway involvement, other mechanistic 

unclarities remain as well. For instance, there is substantial immunological complexity in 

the CNS as (i) cytokine receptors are present on multiple cell types including astrocytes, 

microglia, and neurons, (ii) these cells interact locally following cytokine signalling lead-

ing to alterations in monoaminergic and glutamatergic neurotransmission, and (iii) in-

flammation leads to systems-level alterations in communication between different brain 

regions such as between prefrontal cortex, anterior cingulate, insula, hippocampus, and 

amygdala (Miller & Raison, 2016). These examples show that future research needs to 

clarify which cytokines are selectively implicated in depression and which signalling 

pathways mediate their risk-increasing effects peripherally and centrally. In turn, this in-

formation can help to potentially pinpoint existing drugs with anti-depressant potential 

and/or it could pave the way for the development of new therapeutics that are specific 

for potential pathways such as IL-6 trans-signalling.  

1.3.2 Metabolic complexity 

Metabolic complexity provides a potential additional contributor to the association of in-

flammation and depression as multiple plausible metabolic pathways could influence de-

pression and specific depressive symptoms dependently and independently from inflam-

mation. 

Most importantly, there are intricate bidirectional associations between metabolic 

dysregulation and systemic inflammation. Infiltrating macrophages in white adipose tis-

sue produce pro-inflammatory cytokines (Osborn & Olefsky, 2012). Additionally, lipids, 

ceramides, and reactive oxygen species can activate pattern recognition receptors (PRRs) 

for pathogen-associated and damage-associated molecular patterns (PAMPs & DAMPs) 

in subcutaneous or visceral adipose tissue. This initiates formation of NOD-like receptor 



10 | Introductory Summary 

 

(NLPR) 3 inflammasomes in the cytoplasm that are important regulators of innate im-

munity following infections as they initiate cell death through pyroptosis (Sharma & 

Kanneganti, 2021). In the absence of infection, however, NLPR3 inflammasomes can pro-

mote aggravation of inflammation via IL-1β and IL-18 release and disruption of insulin 

signalling, which can lead to a vicious cycle of adiposity and inflammation (Sharma & 

Kanneganti, 2021). NLPR3 inflammasomes can also promote glucocorticoid receptor 

(GR) cleavage and thereby reinforce hypothalamus-pituitary-adrenal (HPA) axis overac-

tivation (Milaneschi, Simmons, van Rossum, & Penninx, 2019). Lastly, pro-inflammatory 

signalling can also promote insulin resistance and reduce glucose uptake through direct 

effects on pancreatic β-cells (Branchi et al., 2020).  

Metabolic dysregulation can also lead to effects on the brain independent of inflamma-

tion. MDD and BMI GWA studies have pointed out jointly implicated genes such as neu-

ronal growth regulator 1 (NEGR1), which affects synaptic plasticity mechanisms in brain 

regions relevant for mood and appetite regulation (Milaneschi et al., 2019). Partitioned 

heritability studies have further suggested that heritability for increased BMI is related 

to polygenic contributions of central nervous system (CNS) cells (Finucane et al., 2015) 

and expression of glutamatergic neurons in particular (Finucane et al., 2018). Mechanis-

tically, leptin signalling could be one of the drivers of altered energy homeostasis in these 

brain systems. Leptin is an anorexigenic molecule that usually confers satiety signals after 

a meal (Cui, López, & Rahmouni, 2017). In obesity, however, states of leptin resistance 

can develop due to ineffective leptin transport across the BBB or dysfunctional leptin re-

ceptors (Milaneschi et al., 2019). This can alter hypothalamic signalling to reward circuits 

relevant for wanting and liking aspects of food, brainstem nuclei responsible for auto-

nomic nervous system functioning, and executive control networks, which ultimately dis-

inhibits eating behaviour and favours energy intake over expenditure (Cui et al., 2017; 

Richard, 2015).  

1.3.3 Clinical complexity 

Regarding clinical complexity, studies have suggested early on that symptoms falling un-

der the “sickness syndrome” umbrella (e.g., fatigue, sleeping problems, changes in appe-

tite) may be most relevant in a state of inflammation as the state of sickness itself pheno-

typically aligns with these depressive symptoms (Dantzer et al., 2008). This hypothesis 

has gained an increasing amount of support from cross-sectional general population-

based and case-control studies that have mainly found associations of inflammatory 

markers such as CRP with fatigue (Jokela, Virtanen, Batty, & Kivimäki, 2016; White, 

Kivimäki, Jokela, & Batty, 2017), sleeping problems (Jokela et al., 2016; White et al., 

2017), and changes in appetite (Jokela et al., 2016; Lamers, Milaneschi, de Jonge, Giltay, 
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& Penninx, 2018; Simmons et al., 2020) while there has been less support for associations 

with other symptoms such as depressed mood, anhedonia, or other more psychological 

symptoms such as feelings of guilt (Köhler-Forsberg et al., 2017; White et al., 2017). 

Changes in appetite in particular has received a lot of attention as increased appetite is a 

key feature of atypical depression, which is more prevalent among women and has also 

been specifically associated with certain inflammatory markers (Lamers et al., 2018; 

Rainville & Hodes, 2019; Simmons et al., 2020). Cross-sectional studies also suggest as-

sociations of pro-inflammatory markers with anxiety disorders (Costello, Gould, Abrol, & 

Howard, 2019), which are highly comorbid with depression (Kendler, 1996), but the as-

sociation with individual anxiety symptoms has not been investigated in detail. Overall, 

just like cross-sectional research on composite depression phenotypes, however, these 

studies cannot ascertain directionality and the influence of confounding factors, that have 

been variably adjusted for in these studies, remains unclear. 

Recently, studies using longitudinal designs and genetic analyses have moved more 

closely to untangling the symptom-specificity of inflammation. For instance, Chu and col-

leagues (2019) report data from the ALSPAC study that demonstrated longitudinal asso-

ciations of IL-6 at age 9 years with fatigue, sleeping problems, concentration difficulties 

and diurnal variation in mood at age 18 years after adjusting for age at initial assessment, 

sex, ethnicity, paternal occupation, BMI and self-reported infection at time of blood col-

lection. An alternative approach to longitudinal analyses has been the use of polygenic 

risk scores (PRS), which use SNP effect sizes from large-scale genome-wide association 

study (GWAS) summary statistics as weights to calculate a genetic score for predisposi-

tion to the same phenotype in a target sample (Choi, Mak, & O’Reilly, 2020). Milaneschi 

and colleagues (2017) have used this approach to show that MDD with increased appe-

tite, but not MDD with decreased appetite, is associated with a CRP PRS. While both of 

these studies offer further support for longitudinal associations of inflammatory markers 

with individual symptoms or symptom-based MDD phenotypes, both longitudinal cohort 

and PRS investigations can still be biased from unmeasured confounding. For instance, 

PRSs usually consist of a multitude of SNPs across the genome, so they map information 

from highly pleiotropic pathways underlying their target phenotype. This was particu-

larly evident in the study by Milaneschi and colleagues (2017) who observed similar as-

sociations of MDD with increased appetite with BMI and CRP PRSs. Since CRP and BMI 

show moderate genetic correlations (Ligthart et al., 2018), it thus remains unclear if in-

flammation, metabolic dysregulation or an unmeasured third factor could underlie the 

observed associations. Understanding the role of potential confounders such as meta-

bolic dysregulation is important, however, since it may point out whether anti-inflamma-

tory approaches or other treatments such as lifestyle interventions targeting metabolic 

dysregulation could be more promising in depression. Therefore, experimental evidence 
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such as from clinical trials or MR are needed to evaluate potential symptom-specificity of 

inflammation further. 

A final drawback of prior studies has been a focus on investigating inflammation-depres-

sion associations under the “common cause” hypothesis. The common cause hypothesis 

represents medicine’s overarching disease framework, in which symptoms are passive 

indicators of the underlying disease. According to this framework, for instance, lung can-

cer causes symptoms such as cough or chest pain, but these symptoms should be statisti-

cally independent from each other once controlling for the underlying disease. This 

framework has also been applied to MDD, which would mean associations of inflamma-

tion with individual symptoms are mere indicators of associations to the underlying MDD 

illness phenotype (Figure 4A). Contrary to this framework, however, recent conceptuali-

sations have considered MDD from a so-called complexity perspective. Under this per-

spective, symptoms are thought to causally interact in their own right rather than being 

mere passive illness indicators (Borsboom, 2017). This formulation aligns with clinical 

perceptions, in which a symptom such as fatigue can trigger other symptoms such as hy-

persomnia or sad mood (Figure 4B). Following this framework, complex symptom inter-

actions could themselves underlie illness expressions, for instance, through self-reinforc-

ing vicious symptom cycles.  

If depressive symptoms followed such a complexity framework, this would also have im-

plications for association studies of inflammatory markers and individual symptoms. 

These studies have usually evaluated associations for each symptom in isolation without 

controlling for respective other depressive symptoms (e.g., Chu et al., 2019). While this 

work is important and can point out potential symptom specificity of inflammatory mark-

ers, these analyses cannot ascertain if associations to some symptoms are direct or reflect 

indirect associations via other depressive symptoms. Taking the example model in Figure 

4B, bivariate association analyses cannot discern that associations of inflammation with 

sad mood and sleeping problems are only indirect and mediated via fatigue (Figure 4C). 

Making such distinctions is important, however, as symptoms that are the direct conse-

quence of inflammation could theoretically be targeted best by treating the inflammation 

while symptoms that are only indirect consequences of inflammation could also be tar-

geted by interrupting causal effects of the mediating symptom (e.g., preventing sleeping 

problems by targeting fatigue through behavioural activation). Disentangling such direct 

and indirect associations requires multivariate approaches that assess partial/unique as-

sociations (Figure 4D). 

Recently, network analysis techniques have emerged as a novel analytic strategy to as-

sess direct and indirect associations (Epskamp, Borsboom, & Fried, 2018). Thus far, two 

studies have applied this analysis strategy to evaluate associations of CRP, IL-6, and TNF-
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α with individual depressive symptoms (Fried et al., 2019; Moriarity, Horn, Kautz, 

Haslbeck, & Alloy, 2021; n.b., only Fried et al. have assessed IL-6 and TNF-α). The most 

consistent associations emerging from these analyses were between serum CRP and 

changes in appetite and fatigue, suggesting that these symptoms could be directly associ-

ated with inflammation. However, both of these studies relied on cross-sectional data, 

again highlighting the potential for residual confounding and reverse causality.  

 

 

Figure 4. DAGs illustrating the inflammation-depression association under (A) a common 
cause view, whereby inflammation causes MDD and symptoms are merely passive illness 
indicators, and under (B) a hypothesised true causal model, in which symptoms are 
causal agents, so inflammation may cause individual symptoms such as fatigue that then 
causally influence other symptoms such as sad mood and sleeping problems. Assuming 
the causal model presented in Figure 4B, association analyses would lead to differences 
between (C) bivariate and (D) partial/unique associations, which are reflected here as 
lines/edges. 

1.4 Aims and results of this thesis 

The aim of this thesis was to advance our understanding on the association of inflamma-

tion and depression. To meet this aim, the objective of the first study was to use existing 

GWAS data sources (i) to quantify potential genetic correlation between inflammation, 

metabolic dysregulation, and specific depressive symptoms and (ii) to test potential cau-

sality of association using MR analysis. Results from genetic correlation and MR analyses 

showed that CRP exhibits consistent co-heritability across depressive symptoms while 

the potential causal underlying factors of this co-heritability could be increased BMI for 

four depressive symptoms and increased IL-6 activity for suicidality. The objective of the 
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second study was to evaluate direct and indirect associations of specific depressive symp-

toms and genetic predisposition to higher inflammatory markers and BMI using network 

analysis in three large general-population-based and patient samples. This showed that 

the CRP PRS had a consistent direct association with changes in appetite while there were 

less consistent associations of the CRP PRS with fatigue and anhedonia, the TNF-α PRS 

with fatigue, and the BMI PRS with changes in appetite and anhedonia. In two further 

studies using large cohort data from the Netherlands Study of Depression and Anxiety 

(NESDA) and UK Biobank studies (Appendices A & B), we showed that CRP was associ-

ated with depressive rather than with anxiety symptoms, which provided evidence for 

disorder-specificity. Among depressive symptoms, the most consistent associations 

emerged with fatigue and sleeping difficulties and MR indicated that these associations 

could be due to a causal effect of increased IL-6 activity. 

Together, the results from this thesis point towards symptom-specificity of the inflam-

mation-depression association and the importance of symptom directionality, they high-

light the interwoven nature of inflammation and metabolic factors, and they suggest po-

tential immunological specificity for IL-6 rather than CRP. Each of these intricacies and 

their potential interpretations is discussed in further detail below and in light of a plau-

sible causal model underlying these findings (see Figure 4). This is then followed by dis-

cussion on limitations, future outlook, and conclusion.  

 

Figure 4. Schematic overview of simplified plausible causal model underlying findings 
from this thesis and previous literature.  

1.5 Refining evidence on symptom-specificity 

Although there appears to be consistent co-heritability between CRP and BMI with all 

depressive symptoms, we observed consistent evidence for symptom-specificity across 
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the four studies. Serum CRP and IL-6 seemed to be specifically associated with depressive 

rather than anxiety symptoms (Appendices A & B).  Among depressive symptoms, higher 

serum CRP, polygenic risk for CRP, and serum IL-6 were specifically associated with fa-

tigue and sleeping difficulties (Study 2 & Appendix A). There were also associations of 

higher serum CRP and polygenic risk for CRP with changes in appetite and specifically 

with increased appetite, but associations with serum CRP attenuated once controlling for 

BMI (Study 2 & Appendix A). In contrast, higher serum IL-6 was associated with de-

creased appetite even after controlling for BMI (Appendix A). MR analyses did not sug-

gest that higher CRP was causally contributing to increased risk for depressive symptoms 

(Study 1, Appendices A & Appendix B). However, increased IL-6 activity was a potential 

causal factor for suicidality, fatigue, and sleeping difficulties and we also observed MR 

associations of increased BMI with depressive symptoms of changes in appetite, fatigue, 

anhedonia, and feelings of inadequacy (Study 1 & Appendix A). 

Taken together, the findings from this thesis most consistently replicate previous findings 

on changes in appetite, fatigue, and sleeping problems. Regarding changes in appetite, a 

large body of prior cross-sectional, longitudinal, and network analysis studies using pol-

ygenic risk scores and serum inflammatory markers have suggested associations be-

tween CRP, IL-6, TNF-a, and BMI with changes in appetite (Fried et al., 2019; Jokela et al., 

2016; Lamers et al., 2018; Milaneschi, Lamers, & Penninx, 2021; Milaneschi et al., 2017; 

Moriarity et al., 2021; Pistis et al., 2021; Simmons et al., 2020). We add to this evidence in 

Study 2 by showing this is likely to be a direct effect as highlighted by associations with 

PRSs for BMI and CRP. In Study 1, we further show that the association is likely arising 

from a causal effect of BMI suggesting that metabolic dysregulation could be a causal fac-

tor underlying expression of this symptom. Importantly, studies that assessed increased 

and decreased appetite separately observed that immuno-metabolic dysregulations were 

specific for increased appetite (Badini et al., 2020; Lamers et al., 2018; Milaneschi et al., 

2016, 2017; Pistis et al., 2021; Simmons et al., 2020) and Milaneschi et al. (2021) have 

recently used the same MR instruments for BMI that were used in Study 1 to show that 

increased genetically predicted BMI was specifically associated with MDD with increased 

appetite. This also aligns with divergent association directions in study 2 (i.e., increased 

BMI PRS associated with decreased appetite in MARS & STAR*D studies and with in-

creased changes in appetite in the UK Biobank sample) and favours a potential causal 

etiological role of metabolic dysregulation for increased appetite specifically (cf. Figure 

4). 

Results for fatigue and sleeping difficulties also align with prior studies, where fatigue 

showed the most consistent associations across the literature with similar reports from 

PRS, cross-sectional, and longitudinal studies (Badini et al., 2020; Fried et al., 2019; Jokela 
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et al., 2016; Lamers et al., 2018; Moriarity et al., 2021). From animal research it is well 

known that sickness triggers behaviours such as lethargy, inactivity, and sleepiness 

among other symptoms (Hart, 1988) and humans with autoimmune conditions charac-

teristically suffer from fatigue and sleeping problems (Dantzer et al., 2008). Regarding 

sleeping problems, it is also interesting to note that data from NESDA suggested associa-

tions of CRP and IL-6 with sleeping problems arise from increased rather than decreased 

sleep (Appendix A), which confirms MR results from Study 1, where we did not observe 

any association between higher CRP/IL-6 with clinical insomnia while there were some 

indications for associations of IL-6 activity with the composite symptom of sleeping prob-

lems. The specificity to increased sleep (i.e., hypersomnia) rather than decreased sleep 

again aligns with findings suggesting increased immuno-metabolic dysregulations in 

atypical depression, in which hypersomnia is one of the key features (Milaneschi, Lamers, 

Berk, & Penninx, 2020). 

Among other symptoms exhibiting associations with immuno-metabolic markers such as 

feelings of inadequacy with BMI (Study 1), or anhedonia with BMI and CRP (Study 2), our 

findings for suicidality were most surprising. Clinically, suicidality is a complex behav-

ioural phenotype and directly responsible for a large proportion of MDD-associated mor-

tality, particularly in young and otherwise healthy individuals (Otte et al., 2016; Turecki 

et al., 2019). Therefore, it was surprising to identify a potential causal role of a druggable 

molecule such as IL-6 for suicidality. Previous research has suggested that IL-6 is in-

creased in cerebrospinal fluid (CSF) and post-mortem brains of suicide attempters and 

completers, respectively (Ganança et al., 2016; Lindqvist et al., 2009). Suicidality was also 

among the subset of symptoms that improved following application of the anti-TNF-α 

drug infliximab in a previous RCT (Raison et al., 2013). The inconsistency in our serum 

versus MR findings, however, highlights the need for future research to determine 

whether our findings on IL-6 and suicidality translate to therapeutic effectiveness. Re-

analysis of autoimmune RCT data of anti-inflammatory drugs for their specific effects on 

suicidality could provide one means to address this outstanding research question. 

In sum, findings from the studies included in this thesis suggest that pro-inflammatory 

proteins such as CRP, IL-6 and TNF-α are associated with a unique profile of depressive 

symptoms, predominantly including fatigue, sleeping problems, changes in appetite, and 

suicidality. Granular symptom analyses differentiating between increased/decreased 

sleep and increased/decreased appetite further reveal that the inflammatory signature 

may be specific to increases in appetite and sleep. This aligns with findings for atypical 

depression and suggests that immuno-metabolic factors could be specifically related to a 

unique depressive symptom profile. Investigation of this profile benefits from in-depth 
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depressive symptom assessments including granular assessments of diametrically op-

posing symptoms such as changes in appetite and sleep.  

1.6 The role of metabolic dysregulation  

The inflammation-dependent and -independent metabolic pathways outlined in section 

1.3.2 provide interesting clues for the interpretation of findings in this thesis as they sug-

gest varying contributions of metabolic and immunological signatures across depressive 

symptoms (see also Figure 4).  

Specifically, MR analyses in Study 1 highlighted that higher BMI was potentially causally 

associated with anhedonia, fatigue, changes in appetite, and feelings of inadequacy. From 

these four symptoms, we only observed a potential causal effect of IL-6 activity on fatigue 

(Appendix A). At the same time, network analyses in Study 2 indicated that particularly 

the association of the BMI PRS with changes in appetite suggested a consistent direct as-

sociation (the BMI PRS-anhedonia association showed inconsistent valence). There could 

be two plausible explanations for these findings. First, they could indicate that the causal 

effect of higher BMI on changes in appetite could be mediated by processes independent 

from the immune system and, since other studies have suggested the association is spe-

cific to increased appetite (Milaneschi et al., 2021; Pistis et al., 2021), leptin could be a 

promising mediator. Specifically, higher BMI could result in leptin resistance, central al-

teration of homeostatic and reward processes, and consequent disinhibition of eating be-

haviour. Second, metabolic dysregulation could act via immunological mechanisms other 

than the IL-6/IL-6R pathway and here the NLP3 inflammasome and downstream IL-1β 

and IL-18 signalling could be promising targets for future studies, particularly since IL-

1β is known to act centrally through effects on long-term potentiation and depression 

(McAfoose & Baune, 2009).  

Since MR analyses also suggested a causal effect of BMI on feelings of inadequacy and 

anhedonia, the same mechanisms could play a role here. For these symptoms, however, 

it could also be possible that they are a consequence of increased appetite and therefore 

only exhibit an indirect causal association with BMI. This hypothesis also follows from 

the more inconsistent evidence for direct associations between the BMI PRS with anhe-

donia in Study 2 and absence for such direct associations in previous network studies 

(Fried et al., 2019; Moriarity et al., 2021).  

Finally, findings for fatigue suggest potential causal roles of both BMI and IL-6 activity 

(Study 1 & Appendix A). These associations also seem to be direct and not mediated by 

other symptoms based on evidence from Study 2 and previous network studies (Fried et 

al., 2019; Moriarity et al., 2021). Consequently, it is plausible that metabolic dysregulation 
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and IL-6 could have independent, additive or related mechanisms contributing to the 

emergence of fatigue. This could include IL-6 release from visceral adipose tissue and 

downstream central effects on brain processes (discussed next in section 1.7) or IL-6-

related leptin resistance and downstream alterations in reward and energy-processes 

(Milaneschi et al., 2019). Since fatigue is part of the sickness behaviour characteristically 

described in animals, mechanistic research in animals could help to establish the exact 

CNS pathways through which adiposity and IL-6 could lead to fatigue. 

1.7 Moving towards specific immunological pathways 

The combination of findings from the studies included in this thesis points to potential 

immunological complexity involved in the inflammation-depression association. On the 

one hand, we found consistent evidence for genetic correlations of higher CRP across de-

pressive symptoms (Study 1), of direct associations of higher polygenic risk for CRP with 

changes in appetite and fatigue (Study 2), and of higher serum CRP with depressive symp-

toms overall and specific symptoms of fatigue, sleeping problems, depressed mood, and 

changes in appetite (Appendices A & B). On the other hand, 1-sample and 2-sample MR 

analyses suggested that higher genetically predicted CRP was either not associated with 

MDD and specific depressive symptoms (Study 1) or associated with decreased risk for 

depressive symptoms (Appendix A & B). At the same time, higher genetically predicted 

IL-6 activity, as indexed using CRP readout, was associated with increased risk for de-

pressive symptoms overall and specifically with suicidality, fatigue, and sleeping prob-

lems (Study 1, Appendices A & B). These MR findings were surprising because IL-6 is a 

key driver of CRP response under the IL-6 classic signalling pathway (Hunter & Jones, 

2015), so we would expect that IL-6 and CRP affect depression risk in the same direction. 

Since this is not the case, results are likely incompatible with risk-mediation via IL-6 clas-

sic signalling and support a role of IL-6 trans-signalling in depression as outlined in Fig-

ure 5. Specifically, this model suggests that associations between higher serum CRP with 

depression could be the result of broad IL-6 activity resulting in concurrent increases of 

IL-6 classic and trans-signalling, but with IL-6 trans-signalling mediating risk for depres-

sion.  

If IL-6 trans-signalling was specifically related to depression in a subgroup of patients 

with symptoms of fatigue, sleeping problems, and suicidality, this would have important 

clinical implications. First, it would mean that currently approved anti-IL-6 drugs such as 

tocilizumab or sirukumab could be effective for the treatment of depression as they block 

both IL-6 pathways. However, it could also mean that these drugs have unnecessary side 

effects associated with inhibition of IL-6 classic signalling such as the hypercholesterol-

aemia and weight gain observed following tocilizumab administration (Scott, 2017; 
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Waetzig & Rose-John, 2012). Selective anti-IL-6 trans-signalling drugs could therefore 

represent more promising drug candidates for depression as they avoid side effects re-

lated to inhibition of IL-6 classic signalling. Here, drugs mimicking sgp130 have been pro-

posed as key candidates since sgp130 blocks IL-6 trans-signalling under physiological 

conditions and is unrelated to IL-6 classic signalling pathway activity (Waetzig & Rose-

John, 2012). While there are no currently approved sgp130 drugs available, promising 

results have been reported recently for the sgp130 fusion protein olamkicept for the 

treatment of active inflammatory bowel disease in a phase II RCT (Schreiber et al., 2021). 

Therefore, if findings on IL-6 trans-signalling in depression replicate, drugs such as 

olamkicept could be valuable treatment candidates for some patients with depression. 

 

 

Figure 5. Proposed relationship between MR findings of IL-6 and CRP with depressive 
symptoms integrated into IL-6 signalling pathways. Figure adapted from Ye and Kappel-
mann et al. (2021). 1Estimates reflect 2-sample MR results from Appendix B, Table 4. 

Using MR techniques, it is difficult to conclusively establish the role of IL-6 classic and 

trans-signalling since full effects of genetic variants are still mostly unknown and impli-

cated genes code proteins involved in both pathways. For instance, the IL6R gene used in 

MR analyses in this thesis codes both membrane-bound and soluble IL-6Rs. Similarly, ge-

netic variants located in the IL6ST gene (which encodes sgp130) and associated with 

sgp130 concentrations have recently been used in another study as instruments for IL-6 

trans-signalling to test potential causality with recurrent depression (Kelly, Smith, & 

Mezuk, 2021). While findings again pointed to a selective role for IL-6 trans-signalling in 
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depression, IL6ST also encodes the ubiquitously expressed, membrane-bound gp130 

necessary for both IL-6 signalling pathways, so findings remain inconclusive due to the 

pleiotropic roles variants in these genes. Future MR studies may be able to disentangle 

these pathways further once more fine-grained GWAS summary data become available. 

For instance, studies could use factorial 1-sample MR designs looking at specific risk-in-

creasing effects of genetic variants associated with greater adamalysin proteases (ADAM) 

activity of ADAM17 and ADAM10 expression, which promote IL-6R membrane shedding 

(Hunter & Jones, 2015), in combination with genetic variants associated with higher 

sgp130 concentrations. Similarly, computational modelling has suggested that the IL-6R 

to gp130 ratio could constitute an index for IL-6 classic vs trans-signalling (Reeh et al., 

2019), so SNPs associated with this ratio could be used as proxies in MR. Generally, how-

ever, research would also benefit from studies using alternative approaches to triangu-

late IL-6 signalling pathway specificity in depression. This could involve analysis of IL-6 

pathway-specific transcriptomic/protein indices (e.g., IL-6R to gp130 ratio) as mediators 

of tocilizumab response in depression RCT data or pharmacological studies testing the 

anti-IL-6 trans-signalling drug olamkicept in animal models of depression or subse-

quently in humans. 

While this proposed work will help understand the role of IL-6/IL-6R pathways in de-

pression further, future studies also need to investigate other immunological pathways 

in relation to depression as well as the reactivity of these pathways. For instance, this 

could involve testing the potential involvement of NLPR3 inflammasomes in depression 

as noted in section 1.6. Moreover, studies should also investigate the role of other cyto-

kines and individual cell types in depression (Himmerich et al., 2019). Here, investigation 

of different T helper (TH) cell lineages could be important. For instance, IL-6 is known to 

promote greater differentiation of naïve TH cells towards the TH17 and away from regu-

latory T (Treg) cell lineages (Bettelli et al., 2006) and initial work in depression suggests 

that there is dysregulation of TH17-Treg cells that could predate excess inflammatory ac-

tivity in depressed patients (Grosse et al., 2016). Therefore, the TH17 pathway requires 

further investigation in depression as well as in relation to specific depressive symptoms.  

Finally, the dynamics of the immune response have not been investigated in much detail. 

In addition to relevance of tonic levels of immune activity, the immune system’s primary 

role is to react in response to the emergence of pathogens. This reactivity is not captured 

well in studies of genetic or singular serum measures of inflammation and recent work 

indeed suggests, for instance, that inflammatory indices of lipopolysaccharide (LPS) stim-

ulated serum showed larger associations with depression as compared to a basal inflam-

mation index (van Eeden et al., 2020). Future studies should therefore further explore 
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associations of depression with dynamic immune alterations, for instance using LPS stim-

ulation of serum samples, direct endotoxin challenge of human participants 

(Schedlowski, Engler, & Grigoleit, 2014), dynamic immune response assessments (e.g., 

using saliva measures) following laboratory-based stress tasks (Marsland, Walsh, 

Lockwood, & John-Henderson, 2017), or simply using multiple measurement time points 

for inflammatory markers. The latter could also help to assess circadian alterations of 

these markers that have been reported in autoimmune conditions such as rheumatoid 

arthritis (Straub & Cutolo, 2007). Taken together, such a focus on system-wide immune 

changes and innate immune system responsivity could help further elucidate the aetiol-

ogy of certain depressive symptoms and identify a potential subgroup of patients with 

depression who may benefit from alternative treatment approaches.  

1.8 Limitations and future outlook 

Several limitations and requirements for future studies have already been reported in the 

previous sections. These included calls for more refined symptom measurement includ-

ing assessments of symptom direction for composite symptoms, investigation of mecha-

nisms underlying associations of higher BMI with symptoms of increased appetite and 

fatigue, and on the role of individual IL-6 and other immune pathways with depression 

and symptoms of fatigue, hypersomnia, and suicidality. With regards to the studies of this 

thesis, however, there are two notable additional limitations and requirements for future 

research that warrant discussion. 

First, associations tested and reported in this thesis rely on observational analyses and 

experimental animal/human work is needed to fully establish causality between im-

muno-metabolic markers and symptoms of depression. Cross-sectional and longitudinal 

studies can be biased from measured and unmeasured residual confounding factors as 

noted multiple times in this thesis. MR analytic strategies have been developed to circum-

vent these limitations (Lawlor, Harbord, Sterne, Timpson, & Davey Smith, 2008), but they 

still rely on three major assumptions. Most importantly, genetic variants may affect the 

outcome through pathways other than the exposure, which is termed horizontal pleiot-

ropy and which affects genetic correlation and PRS analyses to an even larger extent. In 

MR, several sensitivity analyses exist to test evidence for horizontal pleiotropy such as 

MR Egger analysis or Cochran’s Q statistic (Hemani, Bowden, & Davey Smith, 2018), 

which were used in studies of this thesis. However, as long as the functional role of indi-

vidual SNPs used as genetic instruments is not fully established, horizontal pleiotropy 

cannot be fully ruled out as alternative explanation. Therefore, triangulation of evidence 

has been recommended (Lawlor, Tilling, & Davey Smith, 2017; Ohlsson & Kendler, 2020) 
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and this should ideally involve experimental approaches in animals and humans to con-

firm/falsify results from this thesis.  

Second, studies need to investigate other populations and patient groups to test general-

isability of findings and their applicability to certain patient groups. Studies in the present 

thesis focused on four different samples including UK Biobank, MARS, STAR*D, and 

NESDA studies. All of these studies are from so-called WEIRD (Western Educated Indus-

trialised Rich Democratic) populations that are not representative of the world’s overall 

population or the world’s population of patients suffering from depression (Henrich, 

Heine, & Norenzayan, 2010). This issue is further aggravated for genetic association anal-

yses in this thesis, which were restricted to individuals of European descent, so future 

studies need to replicate findings from this thesis in non-WEIRD populations. Genetic as-

sociation analyses also focused on depression in the context of the UK Biobank general 

population sample. While evidence consistent with the view of depression as a continuum 

lends support for this type of investigation (Flett, Vredenburg, & Krames, 1997), qualita-

tive differences between MDD patients as compared to depressive symptoms in non-clin-

ical individuals are also plausible. Additionally, the association of inflammatory markers 

with depression could be particularly relevant for patients with certain psychiatric or 

physical illness comorbidities. Therefore, future studies are needed to replicate findings 

in patients with depression and to explore if associations of inflammatory markers with 

depressive symptoms in patients are specific for patients with particular psychiatric or 

physical comorbidities. 

1.9 Conclusion 

The studies presented as part of this thesis aimed to further untangle the association of 

inflammation and depression by investigating if associations are specific for certain in-

flammatory markers, specific for certain depressive symptoms, whether they replicate 

on the genetic level with regards to co-heritability, and whether they are direct or indi-

rect. Taken together, the evidence from this thesis in combination with prior studies sup-

ports a proposed model in which higher BMI is causally associated with increased appe-

tite and fatigue, and increased appetite could have corollary effects on feelings of inade-

quacy and anhedonia. At the same time, increased IL-6 activity could have causal associ-

ations with fatigue, hypersomnia, and suicidality. Certain mechanistic explanations for 

these pathways have been proposed in this thesis such as leptin resistance or NLPR3 in-

flammasome activity underlying associations of BMI with increased appetite or IL-6 

trans-signalling being responsible for associations of IL-6 with fatigue, hypersomnia, and 

suicidality. These mechanisms need to be explored in future work using more fine-
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grained GWAS data sources and experimental animal/human studies to triangulate evi-

dence for causality. This work should also address limitations of the studies in this thesis 

such as reliance on WEIRD samples and unclarity on the functional role of individual SNPs 

used in MR analysis. Thereby, future work could help elucidate and define a potential im-

muno-metabolic subgroup of depressed patients that could benefit from alternative 

treatments such as anti-inflammatory drugs or lifestyle interventions leading to a more 

personalised approach to the treatment of depression. 
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2. Dissecting the association between inflammation, metabolic 

dysregulation, and specific depressive symptoms 

2.1 Summary 

The first study had two major objectives to identify which depressive symptoms are plau-

sible candidates for an inflammation-related aetiology. The first objective was to quantify 

genetic correlations between CRP, as a broad inflammatory index, and BMI, as an index 

of metabolic dysregulation, with specific depressive symptoms. The second objective was 

to evaluate potential causality of CRP, IL-6 activity, and BMI for these specific symptoms. 

To meet these objectives, we used summary data from available GWA studies on CRP, 

BMI, specific depressive symptoms, and MDD. We applied linkage disequilibrium score 

regression to infer SNP-based heritability for these traits and, applying this method to 

GWAS data from two phenotypes concurrently, to infer SNP-based co-heritability (also 

termed genetic correlation). Next, we created genetic proxy instruments for CRP levels, 

IL-6 signalling, and BMI from these GWAS data sources by selecting SNPs associated with 

higher CRP, IL-6 activity, soluble IL-6Rs, and BMI located around genetic loci coding for 

these proteins (i.e., SNPs in the CRP gene associated with CRP levels & SNPs in IL6R gene 

associated with CRP or sIL-6R levels) or throughout the genome for BMI. Extracting as-

sociation estimates of the same SNPs with depressive symptom and MDD outcome phe-

notypes, we then performed inverse-variance weighted (IVW) MR analysis to test for po-

tential causality of effects. We also performed sensitivity analyses using alternative ge-

netic instruments, weighted median MR and MR Egger analysis, and tested heterogeneity 

of effects to evaluate the potential for horizontal pleiotropy (i.e., effect mediation via 

pathways other than via the exposure).  

Results showed robust genetic correlations of CRP with all depressive symptoms and 

with the overall MDD phenotype. Similar genetic correlations of these symptoms were 

present with BMI. Contrary to this, MR analysis indicated that genetic correlations of CRP 

with depressive symptoms were unlikely to be due to a causal effect of CRP. Yet, we ob-

served a consistent association of increased genetically predicted IL-6 activity with sui-

cidality across MR instruments and sensitivity analyses. We also observed consistent as-

sociations of increased genetically predicted BMI with four depressive symptoms, namely 

anhedonia, fatigue, changes in appetite and feelings of inadequacy.  

These results provide evidence for genetic co-heritability between immuno-metabolic 

markers and specific depressive symptoms. They also indicate that this co-heritability 

could be due to confounding for some depressive symptoms while increased IL-6 activity 

could be a causal factor underlying suicidality and increased BMI could be a causal factor 
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underlying anhedonia, fatigue, changes in appetite, and feelings of inadequacy. These 

findings provide a more refined characterisation of a potential immuno-metabolic de-

pression phenotype and could open up the opportunity to test new treatments such as 

anti-IL-6 drugs for suicidality. 

2.2 Contributions and reference 

The study “Dissecting the Association Between Inflammation, Metabolic Dysregulation, 

and Specific Depressive Symptoms: A Genetic Correlation and 2-Sample Mendelian 

Randomization Study” was published in JAMA Psychiatry in October, 2020. NK, MKG, 

GMK, and EBB were responsible for concept and design; NK, JA, MKG, DC, NR, SL, GMK for 

acquisition, analysis, or interpretation of data; NK, JA, MKG, NR, GMK for statistical 

analysis; NK for drafting of manuscript; SL, GMK for administrative, technical, or material 

support; NK, JA, MKG, DC, NR, SL, GMK, EBB for critical revision of content; and JA, DC, 

GMK, and EBB for supervision. 
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Dissecting the Association Between Inflammation, Metabolic
Dysregulation, and Specific Depressive Symptoms
A Genetic Correlation and 2-Sample Mendelian Randomization Study
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IMPORTANCE Observational studies highlight associations of C-reactive protein (CRP), a
general marker of inflammation, and interleukin 6 (IL-6), a cytokine-stimulating CRP
production, with individual depressive symptoms. However, it is unclear whether
inflammatory activity is associated with individual depressive symptoms and to what extent
metabolic dysregulation underlies the reported associations.

OBJECTIVE To explore the genetic overlap and associations between inflammatory activity,
metabolic dysregulation, and individual depressive symptoms.

GWAS DATA SOURCES Genome-wide association study (GWAS) summary data of European
individuals, including the following: CRP levels (204 402 individuals); 9 individual depressive
symptoms (3 of which did not differentiate between underlying diametrically opposite
symptoms [eg, insomnia and hypersomnia]) as measured with the Patient Health
Questionnaire 9 (up to 117 907 individuals); summary statistics for major depression,
including and excluding UK Biobank participants, resulting in sample sizes of 500 199 and up
to 230 214 individuals, respectively; insomnia (up to 386 533 individuals); body mass index
(BMI) (up to 322 154 individuals); and height (up to 253 280 individuals).

DESIGN In this genetic correlation and 2-sample mendelian randomization (MR) study, linkage
disequilibrium score (LDSC) regression was applied to infer single-nucleotide variant–based
heritability and genetic correlation estimates. Two-sample MR tested potential causal
associations of genetic variants associated with CRP levels, IL-6 signaling, and BMI with
depressive symptoms. The study dates were November 2019 to April 2020.

RESULTS Based on large GWAS data sources, genetic correlation analyses revealed consistent
false discovery rate (FDR)–controlled associations (genetic correlation range, 0.152-0.362;
FDR P = .006 to P < .001) between CRP levels and depressive symptoms that were similar in
size to genetic correlations of BMI with depressive symptoms. Two-sample MR analyses
suggested that genetic upregulation of IL-6 signaling was associated with suicidality
(estimate [SE], 0.035 [0.010]; FDR plus Bonferroni correction P = .01), a finding that
remained stable across statistical models and sensitivity analyses using alternative instrument
selection strategies. Mendelian randomization analyses did not consistently show
associations of higher CRP levels or IL-6 signaling with other depressive symptoms, but
higher BMI was associated with anhedonia, tiredness, changes in appetite, and feelings of
inadequacy.

CONCLUSIONS AND RELEVANCE This study reports coheritability between CRP levels and
individual depressive symptoms, which may result from the potentially causal association of
metabolic dysregulation with anhedonia, tiredness, changes in appetite, and feelings of
inadequacy. The study also found that IL-6 signaling is associated with suicidality. These
findings may have clinical implications, highlighting the potential of anti-inflammatory
approaches, especially IL-6 blockade, as a putative strategy for suicide prevention.
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A ccumulating evidence implicates the immune system
in the pathogenesis of major depression (MD).1 Low-
grade inflammation, as indicated by higher (>0.3 mg/dL

[>3 mg/L]) C-reactive protein (CRP) levels, is present in about
one-quarter of patients with MD and longitudinally predicts
occurrence of depressive symptoms.2,3 Results of studies4-9

have suggested specificity of the association of inflammation
and depression to a subset of depressive symptoms. C-
reactive protein and the proinflammatory cytokine interleu-
kin 6 (IL-6), an upstream stimulator of CRP production, have
been reported to be associated with increased appetite, sleep
problems, loss of energy, diurnal variation in mood, and con-
centration difficulties. However, findings vary with regard to
which inflammatory markers and depressive symptoms were
assessed and which findings were replicated.6 There is also de-
bate on the robustness of the reported associations after ad-
justment for metabolic traits, such as body mass index (BMI),
which attenuates inflammation-symptom associations.6 Such
attenuation corresponds to recent suggestions of a combined
immune-metabolic subtype of depression10 and warrants fur-
ther research to disentangle immune from metabolic associa-
tions with depressive symptoms.

Associations of inflammation with specific depressive
symptom profiles may be clinically relevant. Research sug-
gests that anti-inflammatory drugs may improve depressive
symptoms in patients with chronic inflammatory physical ill-
ness independent of improvements in physical illness.11-14 In
MD, it has been reported that immunotherapies may be help-
ful for those patients with evidence of low-grade inflamma-
tion or inflammation-associated risk factors.15,16 Informed by
these reports, several ongoing randomized clinical trials (RCTs)
are selecting patients with evidence of elevated levels of in-
flammatory proteins or based on neuroimaging markers of in-
flammation or inflammation-related symptoms (eg, work by
Khandaker et al17 and 2 other clinical trials18,19). Therefore,
identification of depressive symptoms that are associated with
inflammation is key information that may aid patient selec-
tion in future RCTs.

Genetic approaches and increasing availability of genome-
wide association study (GWAS) data may enable more fine-
grained dissection of inflammation–depressive symptom as-
sociations. Genome-wide association studies have highlighted
a polygenic architecture underlying both MD and serum CRP
levels with many single-nucleotide variants (SNVs) exhibit-
ing small associations.20,21 Such polygenic associations can be
summarized using polygenic risk scores (PRSs),22 which sum
the presence of risk alleles in individuals to create a single score.
Milaneschi and colleagues23,24 have reported that PRSs for both
increased CRP levels and BMI are associated with symptom pro-
files characteristic of atypical (increased appetite or weight)
but not typical (decreased appetite or weight) MD. However,
it remains unclear from these analyses if symptoms other than
changes in appetite or weight underlie the CRP–atypical MD
association and whether this association is potentially causal
or arising from metabolic factors.

Linkage disequilibrium score (LDSC) regression25,26 and
mendelian randomization (MR)27 analyses could further dis-
sect the associations between inflammation, metabolic fac-

tors, and depressive symptoms. Linkage disequilibrium score
regression allows assessment of SNV-based phenotype heri-
tability and coheritability between 2 traits. Mendelian ran-
domization analyses enable an assessment of potential causal
association between 2 traits based on the Mendel law that ge-
netic variants are inherited independently, thus providing a
natural RCT.28,29 Initial studies21,30,31 using LDSC regression and
MR analyses reported mixed findings on associations of in-
flammatory markers and MD. None of these studies exam-
ined whether inflammation was associated with specific de-
pressive symptoms.

Using large-scale GWAS data sources, the present study ap-
plied a combination of LDSC regression and MR analyses on
measures of inflammation, as indicated by CRP levels and IL-6
signaling or activity, BMI, as an index of metabolic dysregu-
lation, and 9 specific depressive symptoms. We tested 2 hy-
potheses. First, are the associations between inflammation and
specific depressive symptoms underpinned by a common ge-
netic basis (ie, coinherited)? Second, is inflammation poten-
tially causally associated with specific depressive symp-
toms?

Methods
GWAS Data Sources
This genetic correlation and 2-sample MR study was per-
formed from November 2019 to April 2020. Sample sizes and
characteristics of GWAS data sources20,21,32-39 are listed in
Table 1. They are described in detail in the eMethods in the
Supplement.

Briefly, we included GWAS data sources to maximize
sample sizes yet avoid sample overlap. These data sources in-
cluded the following information: serum CRP levels from
204 402 individuals included in the Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE) Inflam-
mation Working Group21; depressive symptoms from the Neale
laboratory39; summary statistics for MD from a subset (ie, ex-
cluding 23andMe participants) of 2 prior Psychiatric Genom-
ics Consortium (PGC) reports20,32 that respectively include and

Key Points
Question Do inflammatory pathways share a genetic background
with individual depressive symptoms, and do they potentially
causally contribute to them?

Findings Based on large genome-wide association study data
sources, this genetic correlation and 2-sample mendelian
randomization study found genetic overlap between a higher
C-reactive protein (CRP) level, a broad marker of inflammation,
and 9 depressive symptoms; upregulated interleukin-6 signaling, a
major stimulator of CRP, emerged as a potential causal risk factor
for suicidality. Body mass index, but not interleukin 6 or CRP, was
potentially causally associated with 4 other depressive symptoms.

Meaning Interleukin 6 overactivity could be associated with
suicidality; interleukin-6 blockade may be a novel treatment target
that warrants future research.
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exclude UK Biobank participants, resulting in final sample sizes
of 500 199 and up to 230 214 individuals (details are given in
the eMethods in the Supplement); BMI (up to 322 154 indi-
viduals) and height (up to 253 280 individuals) from the
Genetic Investigation of Anthropometric Traits (GIANT)
consortium33,34; and soluble IL-6 receptor (sIL-6R) protein lev-
els from the INTERVAL study.35 Genome-wide association stud-
ies on depressive symptoms were based on UK Biobank data
as assessed in an online follow-up survey using the self-
report Patient Health Questionnaire 9 (PHQ-9) (up to 117 907
individuals).40,41 The PHQ-9 asks about the presence of 9 de-
pressive symptoms, as defined in the DSM-IV (Fourth
Edition),42 over the past 2 weeks (eTable 1 and eTable 2 in the
Supplement list symptom descriptions and frequency statis-
tics in the UK Biobank sample). Three PHQ-9 symptoms (sleep
problems, changes in appetite, and psychomotor changes) do
not differentiate between underlying diametrically opposite
symptoms (eg, insomnia and hypersomnia). Although these
symptoms are included for comprehensiveness of analyses, we
emphasize that any associations specific to one (but not the
other) underlying symptom are likely obscured in analyses. We

have included GWAS data for insomnia36 (up to 386 533 indi-
viduals) to disentangle associations with sleep problems to
some extent but could not identify GWAS data for other
underlying symptoms.

All original GWAS investigations were conducted with eth-
ics committee approval. The UK Biobank study received ap-
proval from the National Health Service National Research
Ethics Service. Written informed consent was obtained from
participants.

LDSC Regression Analysis
Linkage disequilibrium score regression regresses SNV GWAS
χ2 statistics for 1 phenotype (to infer SNV-based heritability)
or χ2 statistics cross products for 2 phenotypes (to infer SNV-
based coheritability) on LDSCs (ie, the sum of a SNV pairwise
squared correlation with other SNVs in a 1cM window43).
Genetic correlations between 2 phenotypes can be inferred by
the regression slope.25,26

We used LDSC regression to assess the SNV-based herita-
bility (h2) of all phenotypes and the genetic correlations of CRP
levels, MD, BMI, and height with depressive symptoms. For

Table 1. GWAS Data Sources

Phenotype GWAS data source Sample size
Study or
population Covariates and exclusions Objective

Reported genome-wide
statistically significant
hits

CRP levels Ligthart et al,21

2018
204 402 GWAS

meta-analysis of
88 studies of
European
individuals

Covariates: age, sex,
population substructure,
relatedness. Exclusions: >4 SD
above the mean, autoimmune
disease, immunotherapy

Primary exposure
(LDSC regression and
MR)

48 Independent loci

Depressive
symptoms

Neale
laboratory,39

2020

Up to 117 907a UK Biobank study Covariates: age, age2, sex, age
by sex, age2 by sex, 20
principal components

Primary outcome NA

MD PGC; Wray et al,32

2018
Up to 230 214
(45 396 cases and
97 250 controls)a

Meta-analysis of
PGC studies
without UK
Biobank and
23andMe samples

Covariates using RICOPILI38:
age, sex, principal components

Secondary outcome
(LDSC regression and
MR) and positive
control (LDSC
regression)

44 Independent loci

MDb PGC; Howard
et al,20 2019

500 199 (170 756
Cases and 329 443
controls)

Meta-analysis of
PGC studies and
UK Biobank
without 23andMe
samples

Covariates in UK Biobank: age,
sex, genotyping array, 8
principal components.
Covariates in PGC studies using
RICOPILI38: age, sex, principal
components

Secondary outcome
(LDSC regression and
MR)

101 Independent loci

BMI GIANT
consortium; Locke
et al,33 2015

Up to 322 154a Meta-analysis of
80 GWAS data in
European adults

Covariates: age, age2, sex,
study-specific covariates (eg,
genotype-derived principal
components)

Secondary exposure
(LDSC regression and
MR)

97 Independent loci

Insomnia Jansen et al,36

2019
Up to 386 533a UK Biobank

without 23andMe
sample

Covariates: age, sex, genotype
array, 10 genetic principal
components

Secondary outcome
(LDSC regression and
MR)

202 Independent loci

Height GIANT
consortium; Wood
et al,34 2014

Up to 253 280a Meta-analysis of
79 GWAS data

Covariates: age, sex,
study-specific covariates (eg,
genotype-derived principal
components)

Negative control (LDSC
regression)

423 Independent loci

sIL-6R
plasma
levels

Rosa et al,37

2019; Sun et al,35

2018

2994 INTERVAL study in
the United
Kingdom

Covariates: sex, age, duration
between blood draw and
processing, 3 principal
components

Secondary exposure
(MR)

NA

Abbreviations: BMI, body mass index; CRP, C-reactive protein; GIANT, Genetic
Investigation of Anthropometric Traits; GWAS, genome-wide association study;
LDSC, linkage disequilibrium score; MD, major depression; MR, mendelian
randomization; NA, not applicable; PGC, Psychiatric Genomics Consortium;
RICOPILI, Rapid Imputation for Consortias Pipeline; sIL-6R, soluble interleukin 6
receptor.
a Exact sample sizes vary per depressive symptom phenotype (minimum,

117 177; median, 117 822; maximum, 117 907) and per single-nucleotide variant

for MD (Wray et al,32 2018) (minimum, 55 795; median, 142 646; maximum,
230 241), BMI (minimum, 50 005; median, 233 524; maximum, 322 154),
insomnia (minimum, 366 461; median, 385 989; maximum, 386 533), and
height (minimum, 50 003; median, 251 631; maximum, 253 280).

b Note that depression was characterized differently among samples in the
study by Howard et al,20 including definitions of broad depression, probable
MD, and MD diagnosis ascertained from hospital records.
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genetic correlations with depressive symptoms, MD and height
served as positive and negative control variables showing
strong and absent associations with depressive symptoms, re-
spectively. European ancestry information from the 1000
Genomes Project was used as the linkage disequilibrium ref-
erence panel, aligning with European origin of GWAS
samples.44 We used the Benjamini-Hochberg method45 to con-
trol the false discovery rate (FDR) across PHQ-9 symptoms for
each phenotype.

2-Sample Mendelian Randomization Analyses
Genetic Instruments
Mendelian randomization uses genetic variants associated with
an exposure as instruments to test for potential causal asso-
ciation of this exposure with an outcome. Genetic instru-
ments were based on functional knowledge of the inflamma-
tory pathway underlying CRP production. C-reactive protein
is produced in the liver as a consequence of upstream IL-6 sig-
naling via membrane-bound IL-6 receptors (IL-6Rs) on
hepatocytes.46 The IL-6Rs also exist in soluble form in the
plasma (sIL-6Rs), but IL-6–sIL-6R complexes are neutralized
under physiological conditions.46-49 Therefore, lower sIL-6R
plasma levels constitute an indirect index of IL-6 signaling.37,49

We used genome-wide statistically significant, indepen-
dent (R2 < 0.1), and strong (F statistics >10)50 genetic instru-
ments for higher CRP levels, IL-6 signaling, and
BMI21,33,35,37,51,52 as summarized in Table 2. In the eMethods
in the Supplement, we describe details for genetic instru-
ment selection, clumping procedure, comparison with previ-
ous work,31 a functional description of included SNVs, and the
number of SNVs across instruments and analyses (eTables 3-7
and eFigure 1 in the Supplement). Briefly, we defined 2 main
genetic instruments for upregulated CRP levels and IL-6 sig-

naling using SNVs around CRP (GenBank 1401) and IL6R
(GenBank 3570) genes, respectively, that were associated with
CRP levels based on CRP GWAS summary statistics.21,51

As alternative approaches and to demarcate associations
of inflammator y activ ity from those of metabolic
dysregulation,53 we defined further genetic instruments for
CRP levels, IL-6 signaling, and BMI. We used SNVs associated
with CRP levels and BMI throughout the genome and SNVs in
the IL6R gene associated with sIL-6R plasma levels, which were
inversed to reflect an indirect marker of IL-6 signaling.

Statistical Analyses
Two-sample MR analyses were performed using R, version
3.6.0 (R Foundation for Statistical Computing) and the
TwoSampleMR package.54,55 Exposure and outcome GWAS
summary statistics were harmonized by aligning summary sta-
tistics to the forward strand if the forward strand was known
or could be inferred. Ambiguous SNVs and SNVs with a non-
inferable forward strand were excluded from analyses.

We first performed fixed-effects meta-analysis of genetic
instruments using inverse-variance weighting (IVW).56 Stan-
dard errors were computed with the Wald estimator and delta
weighting to account for uncertainty in genetic association with
the exposure.57 To assess the robustness of our findings, the
weighted median MR approach was performed, which pro-
vides valid estimates if at least 50% of the MR instrument
weights on the exposure are valid.56,58,59

To assess horizontal pleiotropy (ie, an association of the
genetic instrument with the outcome independent of the ex-
posure), we tested for the presence of statistically significant
(P < .05) heterogeneity in IVW MR analyses using the Coch-
ran Q statistic.60 We also performed more restrictive MR analy-
ses focusing on SNVs within CRP and IL6R genes (compare gene

Table 2. Genetic Instruments for MR Analyses

Exposure GWAS data source SNV F statisticsa SNV location

No. of SNVs

Prior MR report

Used in
present
reportb

Used in
prior MR
report

Main MR analyses

↑CRP levels CRP GWAS
meta-analysis21

Minimum, 32.2; median,
89.7; mean, 256.5;
maximum, 1829.1

CRP gene (within 300-kb region of
GRCh37/hg19 coordinates:
chr1:159 382 079-159 984 379)

17 24 Georgakis et al,51 2020

↑IL-6 signaling CRP GWAS
meta-analysis21

Minimum, 48.6; median,
73.8; mean, 144.5;
maximum, 458.2

IL6R gene (GRCh37/hg19
coordinates:
chr1:154 077 669-154 741 926)

6 7 Georgakis et al,51 2020

Additional MR
analyses

↑CRP levels
(alternative
approach)

CRP GWAS
meta-analysis21

Minimum, 30.0; median,
50.2; mean, 86.5;
maximum, 987.2

Genome-wide 139 NA NA

↑IL-6 signaling
(alternative
approach)

sIL-6R plasma-level
GWAS35

Minimum, 16.8; median,
72.2; mean, 271.4;
maximum, 5041.9

Within 250-kb region around IL6R
gene (GRCh37/hg19 coordinates:
chr1:154 077 669-154 741 926)

29 34 Rosa et al,37 2019

↑BMI BMI GWAS
meta-analysis of
Locke et al,33 2015

Minimum, 29.0, median,
39.6; mean, 54.7;
maximum, 238.5

Genome-wide 95 NA NA

Abbreviations: BMI, body mass index; chr1, chromosome 1; CRP, C-reactive
protein; GWAS, genome-wide association study; IL-6, interleukin 6; kb, kilobase;
MR, mendelian randomization; NA, not applicable; sIL-6R, soluble interleukin 6
receptor; SNV, single-nucleotide variant; ↑, increasing.
a F statistics were computed using the following approximation:

F = β2 ÷ SE.2,37,52

b Available number of SNVs used is reported here for Patient Health
Questionnaire 9 depressive symptom outcome; however, these differ per
outcome, and exact numbers are listed in eTable 7 in the Supplement.
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loci in Table 2) using MR-Egger estimation for genetic instru-
ments including SNVs throughout the genome, leave-one-
out, and single-SNV MR analyses.58,61,62 Details are available
in the eMethods in the Supplement.

All MR analyses were FDR controlled across PHQ-9 symp-
toms using the Benjamini-Hochberg method.45 Because main
IVW MR analyses for CRP levels and IL-6 signaling focused on
2 genetic instruments, we also corrected these comparisons
with the Bonferroni method.

Availability of Data and Materials
Genome-wide association study data sources are openly avail-
able as GWAS summary statistics and by request for CRP lev-
els from the CHARGE Inflammation Working Group.21 Ge-
netic instrument files and analysis scripts are available on the
Open Science Framework.63

Results
LDSC Regression Analyses
Using LDSC regression, we estimated SNV-based heritability
(h2) and genetic correlations of CRP levels,21 BMI,33 MD (based
on work by Wray et al32 as positive control), and height (nega-
tive control)34 with depressive symptoms, MD,20,32 and
insomnia36 (Figure 1). Exact values are listed in eTables 8, 9,
and 10 in the Supplement.

The SNV-based heritability was low for depressive symp-
toms (h2 range = 0.0143-0.0631), MD (h2 range = 0.0599-
0.0723), and CRP levels (h2 = 0.0941), whereas BMI
(h2 = 0.1297) and height (h2 = 0.3120) displayed relatively
higher levels. Of note, h2 for suicidality was slightly below the
suggested threshold of z > 4 (h2 z = 3.97), which could reflect
a potential unreliability of genetic correlation estimates.26

There was evidence for genetic correlations of CRP levels with
all depressive symptoms after FDR correction (genetic corre-
lation range, 0.152-0.362), with the lowest correlation seen for
depressed mood (genetic correlation [SE] = 0.152 [0.056]; FDR
P = .006) and the highest for changes in appetite (genetic cor-
relation [SE] = 0.362 [0.067]; FDR P < .001). C-reactive pro-
tein levels showed small genetic correlations with MD and in-
somnia (eTable 10 in the Supplement). Body mass index
showed a similar pattern of genetic correlations in that the BMI–
depressive symptom estimates were associated with CRP–
depressive symptom estimates (Pearson r = 0.89, P = .001;
Spearman ρ = 0.92, P = .001).

MR Analyses
Mendelian randomization analyses allowed testing of poten-
tial causal association between proinflammatory activity and
depressive symptoms. Figure 2 shows MR analyses for CRP lev-
els, IL-6 signaling, and BMI instruments using IVW
meta-analysis20,32 (exact values are listed in eTable 11 in the
Supplement).

Findings for CRP Levels
Mendelian randomization analyses of the CRP levels instru-
ment did not show evidence for associations with depressive

symptoms, MD, or insomnia (eTable 11 and eTable 12 in the
Supplement). Using the alternative CRP instrument, there was
some evidence for associations of increased CRP levels with
tiredness, changes in appetite, and psychomotor changes
(Table 3),20,32,45 but none of these associations replicated in
weighted median MR (eTable 13 in the Supplement).

Findings for IL-6 Signaling
We observed an association of upregulated IL-6 signaling with
suicidality even after conservative FDR and Bonferroni cor-
rections (estimate [SE], 0.035 [0.010]; FDR plus Bonferroni

Figure 1. Single-nucleotide variant (SNV)–Based Heritability and Genetic
Correlation Estimates for MD and Depressive Symptoms

Genetic correlation
–0.25 0.750.500.250 1.00

Outcome

MD (Howard et al,20 2019) 0.0599

MD (Wray et al,32 2018) 0.0723

Anhedonia 0.0386

Depressed mood 0.0400

Sleep problems 0.0528

Tiredness 0.0631

Changes in appetite 0.0497

Feelings of inadequacy 0.0350

Concentration problems 0.0379

Psychomotor changes 0.0231

Suicidality 0.0143

Insomnia 0.0463

h
2

CRP levels BMI Height MD (Wray et al,32 2018)

The SNV-based heritability coefficients (h2) for major depression (MD) and
depressive symptoms (y-axis) are shown on the z-axis. Sleep problems, changes
in appetite, and psychomotor changes reflect composite symptoms, which may
obscure associations specific to one but not the other underlying symptom
(psychomotor retardation or agitation, increased or decreased weight or
appetite, and insomnia or hypersomnia). The error bars indicate 95% CIs, which
were calculated using Fisher z transformation. Outcomes below the dashed line
are the Patient Health Questionnaire 9 depressive symptoms.
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P = .01) (eFigure 2 in the Supplement), but there were no as-
sociations with MD, insomnia, or other depressive symp-
toms. The IL-6–suicidality association was replicated with the
(indirect) IL-6 signaling instrument and across IVW and
weighted median MR analyses (main IL-6 signaling weighted
median estimate [SE], 0.030 [0.011]; P = .006; alternative IL-6
signaling IVW estimate [SE], 0.002 [0.001]; P = .005; and al-
ternative IL-6 signaling weighted median estimate [SE], 0.002
[0.001]; P = .047) (Table 3 and eTable 12 and eTable 13 in the
Supplement). There was also some evidence in IVW but not
weighted median MR analysis for associations of (indirect) IL-6
signaling with sleep problems, but not with insomnia, sug-
gesting potential association specificity to hypersomnia
(Table 3).

Findings for BMI
In IVW MR analyses, the instrument used for BMI indicated
that higher BMI was associated with anhedonia, tiredness,
changes in appetite, and feelings of inadequacy (estimate
[SE], 0.046 [0.012]; FDR P = .001 for anhedonia; estimate
[SE], 0.049 [0.018]; FDR P = .02 for tiredness; estimate [SE],
0.121 [0.013]; FDR P < .001 for changes in appetite; and esti-
mate [SE], 0.028 [0.011]; FDR P = .02 for feelings of inad-
equacy) (Figure 2 and eTable 11 and eFigure 3 in the Supple-
ment). Except for feelings of inadequacy, these associations
persisted in weighted median MR analyses (estimate [SE],
0.042 [0.016]; P = .007 for anhedonia; estimate [SE], 0.057
[0.023]; P = .01 for tiredness; estimate [SE], 0.141 [0.017];
P < .001 for changes in appetite; and estimate [SE], 0.031

Figure 2. Mendelian Randomization Inverse-Variance Weighted (IVW) Associations of Genetic Instruments for Upregulated C-Reactive Protein (CRP)
Levels, Interleukin 6 (IL-6) Signaling, and Higher Body Mass Index (BMI) With Major Depression (MD) and Depressive Symptoms

MR IVW estimate (95% CI)
–0.02–0.04–0.06–0.08–0.10 0 0.02 0.04

Outcome
MD (Howard et al,20 2019)

Suicidality

Psychomotor changes

Concentration problems

Feelings of inadequacy

Changes in appetite

Tiredness

Sleep problems

Depressed mood

Anhedonia

Insomnia

MD (Wray et al,32 2018)

MR IVW estimate (95% CI)
–0.3 –0.1–0.2–0.4 0 0.1 0.2

MR IVW estimate (95% CI)
–0.1 0 0.20.1

CRP levels IL-6 signaling BMI

Sleep problems, changes in appetite, and psychomotor changes reflect
composite symptoms, which may obscure associations specific to one but not
the other underlying symptom (psychomotor retardation or agitation, increased

or decreased weight or appetite, and insomnia or hypersomnia). The error bars
indicate 95% CIs. Outcomes below the dashed line are the Patient Health
Questionnaire 9 depressive symptoms.

Table 3. MR IVW Estimates of Alternative Genetic Instruments for Upregulated CRP Levels and IL-6 Signaling

Outcome

CRP levels (genome-wide) IL-6 signaling (indirect)

Estimate (SE) P value FDR P valuea Estimate (SE) P value FDR P valuea

MD (Howard et al,20 2019) −0.021 (0.011) .06 NA −0.002 (0.003) .53 NA

MD (Wray et al,32 2018) 0.020 (0.020) .33 NA −0.012 (0.007) .09 NA

Insomnia −0.010 (0.013) .42 NA 0.004 (0.003) .25 NA

Anhedonia 0.002 (0.005) .64 .64 0.000 (0.002) .80 .80

Depressed mood −0.004 (0.005) .45 .58 0.000 (0.001) .72 .80

Sleep problemsb 0.012 (0.008) .16 .29 0.005 (0.002) .01c .06

Tiredness 0.021 (0.007) .002c .02c 0.002 (0.002) .26 .40

Changes in appetiteb 0.012 (0.006) .048c .14 0.001 (0.002) .46 .59

Feelings of inadequacy −0.003 (0.006) .63 .64 −0.002 (0.002) .14 .30

Concentration problems −0.005 (0.005) .34 .51 0.003 (0.002) .06 .19

Psychomotor changesb −0.006 (0.003) .046c .14 0.001 (0.001) .24 .40

Suicidality 0.004 (0.003) .15 .29 0.002 (0.001) .005c .049c

Abbreviations: CRP, C-reactive protein; FDR, false discovery rate;
IL-6, interleukin 6; IVW, inverse-variance weighting; MD, major depression;
MR, mendelian randomization; NA, not applicable.
a P values were FDR controlled across depressive symptoms of each outcome

using the Benjamini-Hochberg method.45

b Sleep problems, changes in appetite, and psychomotor changes reflect
composite symptoms, which may obscure associations specific to one but not
the other underlying symptom.

c P < .05 for nominal and FDR-controlled statistically significant results.
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[0.016]; P = .06 for feelings of inadequacy) (eTable 12 in the
Supplement).

Assessment of Horizontal Pleiotropy
Assessing if SNV-outcome associations are mediated via the
exposure and not via other mechanisms (ie, horizontal plei-
otropy) is a key prerequisite for validity of causal inference from
MR analysis. As detailed in the eResults in the Supplement, we
assessed horizontal pleiotropy by measuring between-SNV
heterogeneity (eTable 14 and eTable 15 in the Supplement), and
we performed sensitivity analyses that are more robust to plei-
otropy, including gene-restricted MR, MR-Egger regression, and
MR analyses excluding outlying pleiotropic SNVs (eFigure 4
and eTables 16-20 in the Supplement). The association of IL-6
signaling with suicidality was robust across sensitivity analy-
ses (main IL-6 signaling Cochran Q = 5.77; P = .33; gene-
restricted IVW estimate [SE], 0.027 [0.011]; P = .01). The as-
sociations of higher BMI with anhedonia, tiredness, changes
in appetite, and feelings of inadequacy were directionally con-
sistent in all sensitivity analyses (MR-Egger slope [SE], 0.028
[0.036]; P = .44 for anhedonia; MR-Egger slope [SE], 0.043
[0.056]; P = .45 for tiredness; MR-Egger slope [SE], 0.183
[0.038]; P < .001 for changes in appetite; and MR-Egger slope
[SE], 0.050 [0.033]; P = .14) for feelings of inadequacy.

Discussion
We tested SNV-based genetic correlation and potential MR as-
sociation between proinflammatory activity and individual de-
pressive symptoms. Using LDSC regression, we showed con-
sistent genetic correlations between CRP levels, a sensitive
index of inflammatory activity, and depressive symptoms as
assessed with the PHQ-9. Genetic correlations between CRP
levels and each specific depressive symptom were small and
similar in size (genetic correlation range, 0.152-0.362). Men-
delian randomization analyses for specific depressive symp-
toms showed consistent evidence for associations between
higher IL-6 activity and suicidality. Findings of increased CRP
levels and IL-6 overactivity with other PHQ-9 symptoms were
inconsistent, but there were some indications that IL-6 sig-
naling could be associated with hypersomnia, which requires
replication in future work. Regarding metabolic dysregula-
tion and depressive symptoms, we found consistent MR as-
sociations of higher BMI with anhedonia, tiredness, changes
in appetite, and feelings of inadequacy. However, our MR analy-
ses did not replicate prior research showing MR associations
of CRP levels or IL-6 signaling with MD31 (eDiscussion in the
Supplement).

Inflammation and Suicidality
Suicidality and suicidal behavior have a multifactorial origin,
and identification of causal markers is critical to advance pre-
vention and treatment efforts.64,65 Increased levels of inflam-
matory markers, and IL-6 in particular, have been found to be
associated with suicidality or suicidal behavior, and patients
with chronic inflammatory illnesses, such as inflammatory
bowel disease, exhibit increased suicide rates.66-69 We pro-

vide evidence for an association between higher IL-6 signal-
ing and suicidality. Findings of this association were consis-
tent across LDSC regression and MR analyses using different
genetic proxies for IL-6 signaling.

An association between IL-6 signaling and suicidality may
have important clinical implications. First, suicidality may be-
come a useful symptom (characteristic of inflammatory activ-
ity beyond CRP levels) for stratification efforts in RCTs of im-
munotherapy in depression. Second, it may be informative to
evaluate the symptom-specific effectiveness of immunothera-
pies for depression and for treating suicidality in particular.
Raison and colleagues15 demonstrated the symptom-specific ef-
fectiveness of the tumor necrosis factor α inhibitor infliximab
for suicidality (among 4 other symptoms) in patients with MD
with high CRP levels before treatment. Data from available RCTs
of immunotherapies for chronic inflammatory illnesses and from
RCTs of anti–IL-6 and anti–IL-6R drugs in MD17 may be valu-
able to further examine symptom-specific immunotherapy out-
comes. Therefore, our findings emphasize the need for consid-
ering suicidality in immunopsychiatry research and highlight
the clinical potential of immunotherapies, and specifically IL-6R
blockade, for treatment of suicidality.

Inflammation, Metabolic Dysregulation,
and Depressive Symptoms
Apart from suicidality and preliminary indications for hyper-
somnia, results for inflammation and other PHQ-9 depres-
sive symptoms were divergent between LDSC regression, in
which robust genetic correlations between CRP levels and de-
pressive symptoms were found, and MR analyses, in which in-
consistent associations that did not replicate across instru-
ments or statistical models were found (Table 3 and
eTables 11-17 in the Supplement). This dissociation of genetic
correlation and MR results for other PHQ-9 depressive symp-
toms may offer important new insights into the interrelation-
ship between low-grade inflammation, metabolic dysregula-
tion, and depression.

Mendelian randomization associations of higher BMI, but
not of increased inflammatory markers, with anhedonia, tired-
ness, changes in appetite, and feelings of inadequacy suggest
that metabolic dysregulation may underlie the coheritability
of inflammatory activity with these symptoms. In the con-
text of previous results,4,70-72 it is likely that associations with
changes in appetite are specific to increased appetite or hy-
perphagia. Taken together, these results suggest immune and
metabolic factors may constitute separate, symptom-
specific risk factors in depression.

Because depressive symptoms themselves could pro-
mote proinflammatory lifestyle choices, such as an un-
healthy diet and reduced physical activity,73,74 reverse causal
inference needs to be assessed as an alternative or additional
explanation. Future studies need to replicate our results and
should further investigate pleiotropic or residual confound-
ing factors that could explain genetic correlations between CRP
levels and BMI with depressed mood, concentration prob-
lems, and psychomotor changes. In these studies, symptoms
should ideally be assessed without composite items and based
on multiple symptom indicators.
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Strengths and Limitations
We report genetic analyses of inflammatory activity, meta-
bolic dysregulation, and depressive symptoms based on large
GWAS data sources. Our sample size maximizes power for ge-
netic analyses.

This study also has some limitations. First is a lack of
granular information on some depressive symptoms
assessed by the PHQ-9, which does not differentiate
between diametrically opposite symptoms. Although inclu-
sion of insomnia summary data helped in providing some
preliminary suggestions on associations between IL-6 and
hypersomnia, more detailed investigations disentangling
composite symptoms are needed.

Second, depressive symptoms in the general population
and in patients with MD are likely to exist on a continuum,
but they could also be different with regard to their
origin and implications, especially because depressive
symptoms are common and may arise in the general
population owing to a variety of reasons other than
depression.75 In future work, MR analysis of symptoms in
patients with MD is required to assess the relevance of our
findings for depressive symptoms occurring in the context
of MD.

Third, inferences on causality should ideally rely on mul-
tiple types of studies because MR analyses rely on 3 key as-
sumptions that are not always met or completely testable.57,76

Ohlsson and Kendler77 have advocated triangulation of cau-

sality using different study designs, such as MR and RCTs,
which we also support.

Fourth, our IL-6 signaling instrument was weighted on
downstream associations with CRP levels, and it is debatable
if this approach captures an independent association of IL-6
signaling. However, the fact that we replicated our results using
an sIL-6R–based instrument supports this interpretation.

Conclusions
This genetic correlation and 2-sample MR study reports a de-
tailed investigation of inflammatory activity, metabolic dys-
regulation, and specific depressive symptoms using LDSC re-
gression and 2-sample MR analyses of large GWAS data. The
findings suggest small but robust genetic correlations of BMI
and CRP levels with depressive symptoms, and MR associa-
tions show that higher BMI could be a causal risk factor for an-
hedonia, tiredness, changes in appetite, and feelings of inad-
equacy. Regarding proinflammatory processes, IL-6 signaling
may be potentially causally associated with suicidality. This
hypothesis is clinically relevant because symptom expres-
sion of suicidality could help identify patients who will re-
spond to immunotherapy. The findings also suggest that phar-
macological approaches targeting IL-6 signaling may be
valuable for treatment of suicidality, which requires further
research.
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3. Polygenic risk for immuno-metabolic markers and specific 

depressive symptoms 

3.1 Summary 

To pinpoint etiological pathways between inflammation and depression, the objective of 

Study 2 was to evaluate associations between polygenic risk for higher immuno-meta-

bolic markers and specific depressive symptoms and to test if these associations are di-

rect or indirect. To meet these objectives, we used data from three large samples, the 

general population-based UK Biobank study, the MDD outpatient Sequenced Treatment 

Alternatives to Relieve Depression (STAR*D) study, and the MDD inpatient Munich Anti-

depressant Response Signature (MARS) study. Samples were restricted to individuals 

from European descent and with available data on seven depressive symptoms (i.e., de-

pressed mood, anhedonia, sleep problems, fatigue, changes in appetite, psychomotor 

changes, & suicidality) and genotype information. This resulted in final sample sizes of 

110,010 individuals from UK Biobank, 1,143 outpatients from STAR*D, and 1,058 inpa-

tients from MARS samples. Using discovery GWAS data for five immuno-metabolic mark-

ers (C-reactive protein [CRP], interleukin [IL]-6, IL-10, tumour necrosis factor [TNF]-α, 

BMI), polygenic risk scores (PRSs) for participants were computed using the Bayesian 

regression and continuous shrinkage priors (PRS-CS) approach. Network analysis was 

applied on symptom and PRS data using the fused graphical least absolute shrinkage and 

selection operator (FGL) algorithm, which jointly estimates networks across samples, 

and (as secondary analysis) unregularized model search estimation. Three consistency 

criteria were defined to evaluate findings in terms of consistency across samples, statis-

tical bootstraps, and estimation algorithms.  

Results from these analyses showed a unique association of the CRP PRS with changes in 

appetite that met all three consistency criteria. Meeting two consistency criteria, we also 

observed unique associations between higher polygenic risk for CRP with greater fatigue 

and reduced anhedonia; between higher polygenic risk for TNF-α with greater fatigue; 

and between higher polygenic risk for BMI with greater changes in appetite and anhe-

donia. These results align with previous literature suggesting that immuno-metabolic al-

terations are primarily associated with neurovegetative symptoms of depression such as 

changes in appetite and fatigue among others. They also extend findings from previous 

studies by demonstrating these associations replicate for PRSs for immuno-metabolic 

markers (e.g., as compared to serum cytokine measurements) and that associations are 

direct and unlikely to be fully mediated by other depressive symptoms. Taken together, 

these findings could inform future clinical trials of anti-inflammatory drugs or lifestyle 
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interventions for depression that could benefit from selective recruitment of patients 

with an atypical/ neurovegetative symptom profile. 

3.2 Contributions and reference 

The study “Polygenic risk for immuno-metabolic markers and specific depressive symp-

toms: A multi-sample network analysis study” was published in Brain, Behavior and Im-

munity in March, 2021. NK, EBB, GMK, and JA were responsible for concept and design; 

NK, DC, NR, SM, VS, LT, JS, EBB, GMK, and JA for acquisition, analysis, or interpretation of 

data; NK, JS, and JA for statistical analysis; NK for drafting of manuscript; CHARGE inflam-

mation working group for administrative, technical, or material support; NK, DC, NR, SM, 

VS, LT, JS, SL, EBB, GMK, and JA for critical revision of content; and DC, EBB, GMK, and JA 

for supervision. 
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A B S T R A C T   

Background: About every fourth patient with major depressive disorder (MDD) shows evidence of systemic 
inflammation. Previous studies have shown inflammation-depression associations of multiple serum inflamma
tory markers and multiple specific depressive symptoms. It remains unclear, however, if these associations 
extend to genetic/lifetime predisposition to higher inflammatory marker levels and what role metabolic factors 
such as Body Mass Index (BMI) play. It is also unclear whether inflammation-symptom associations reflect direct 
or indirect associations, which can be disentangled using network analysis. 
Methods: This study examined associations of polygenic risk scores (PRSs) for immuno-metabolic markers (C- 
reactive protein [CRP], interleukin [IL]-6, IL-10, tumour necrosis factor [TNF]-α, BMI) with seven depressive 
symptoms in one general population sample, the UK Biobank study (n = 110,010), and two patient samples, the 
Munich Antidepressant Response Signature (MARS, n = 1058) and Sequenced Treatment Alternatives to Relieve 
Depression (STAR*D, n = 1143) studies. Network analysis was applied jointly for these samples using fused 
graphical least absolute shrinkage and selection operator (FGL) estimation as primary analysis and, individually, 
using unregularized model search estimation. Stability of results was assessed using bootstrapping and three 
consistency criteria were defined to appraise robustness and replicability of results across estimation methods, 
network bootstrapping, and samples. 
Results: Network analysis results displayed to-be-expected PRS-PRS and symptom-symptom associations (termed 
edges), respectively, that were mostly positive. Using FGL estimation, results further suggested 28, 29, and six 
PRS-symptom edges in MARS, STAR*D, and UK Biobank samples, respectively. Unregularized model search 
estimation suggested three PRS-symptom edges in the UK Biobank sample. Applying our consistency criteria to 
these associations indicated that only the association of higher CRP PRS with greater changes in appetite fulfilled 
all three criteria. Four additional associations fulfilled at least two consistency criteria; specifically, higher CRP 
PRS was associated with greater fatigue and reduced anhedonia, higher TNF-α PRS was associated with greater 
fatigue, and higher BMI PRS with greater changes in appetite and anhedonia. Associations of the BMI PRS with 
anhedonia, however, showed an inconsistent valence across estimation methods. 
Conclusions: Genetic predisposition to higher systemic inflammatory markers are primarily associated with so
matic/neurovegetative symptoms of depression such as changes in appetite and fatigue, consistent with previous 
studies based on circulating levels of inflammatory markers. We extend these findings by providing evidence that 
associations are direct (using network analysis) and extend to genetic predisposition to immuno-metabolic 
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markers (using PRSs). Our findings can inform selection of patients with inflammation-related symptoms into 
clinical trials of immune-modulating drugs for MDD.   

1. Introduction 

Recent findings suggest that every fourth patient with Major 
Depressive Disorder (MDD) shows evidence of systemic, low-grade 
inflammation as indicated by elevated (>3mg/L) C-reactive protein 
(CRP) concentrations (Osimo et al., 2019). This association has been 
supported by cross-sectional case-control studies synthesised in multiple 
meta-analyses (Dowlati et al., 2010; Goldsmith et al., 2016; Haapakoski 
et al., 2015; Howren et al., 2009; Köhler et al., 2017) as well as longi
tudinal studies (Khandaker et al., 2014; Lamers et al., 2020; Mac Giol
labhui et al., 2020). Clinically, patients with evidence of inflammation 
do not respond as well to standard monoaminergic and psychothera
peutic treatments (Liu et al., 2020; Lopresti, 2017). These patients may, 
however, benefit from alternative treatment with immune-modulating 
drugs (Kappelmann et al., 2018; Köhler-Forsberg et al., 2019; Witten
berg et al., 2020). To prioritise drug and patient selection for clinical 
trials, it is crucial to further understand immunological and clinical 
complexity of inflammation-symptom associations, which may allow 
shortlisting of promising immunotherapeutic drug targets and could 
highlight patients with a profile of inflammation-related depression. 

Regarding immunological complexity, studies have reported various 
associations of serum inflammatory proteins with depression, including 
among others CRP, interleukin (IL)-6, IL-10, and tumour necrosis factor 
(TNF)-α (Goldsmith et al., 2016; Haapakoski et al., 2015; Köhler et al., 
2017). Evidence from in-depth immunophenotyping further suggests 
that there may be distinct subgroups of inflammation-related depression 
as shown by immune cell count clustering and transcriptome analyses 
(Cattaneo et al., 2020; Lynall et al., 2020). These studies suggest that 
elevated serum levels of inflammatory markers are associated with 
depression, but associations of depression with genetic/lifetime predis
position to higher inflammatory markers has been studied less 
frequently and primarily for CRP (Badini et al., 2020; Kappelmann et al., 
2021; Milaneschi et al., 2017b, 2016). Elevated serum levels of in
flammatory markers also conflate tonic and phasic levels of inflamma
tory markers while genetic/lifetime predisposition to inflammatory 
markers specifically maps their tonic levels. This differentiation could be 
relevant as highlighted by research into tonic versus phasic dopamine 
levels (see Bilder et al., 2004), whereby tonic levels regulate the 
amplitude of the phasic response, which has unique consequences for 
downstream signalling. Lastly, inflammatory markers such as CRP are 
influenced by metabolic factors (Timpson et al., 2011), which may 
causally underlie some inflammation-symptom associations (Kappel
mann et al., 2021), so a combined investigation of immuno-metabolic 
factors is needed to disentangle their etiological roles. 

Regarding clinical complexity, most prior research has restricted its 
investigation of the inflammation-depression association to complexity 
on one side, that is focusing on multiple immune markers (e.g., cell 
counts/ serum cytokine levels) while studying a composite depression 
phenotype (Goldsmith et al., 2016; Haapakoski et al., 2015; Köhler 
et al., 2017) or focusing on multiple depressive symptoms or symptom 
groups in the context of a single inflammatory marker (mostly CRP) 
(Badini et al., 2020; Jokela et al., 2016; Köhler-Forsberg et al., 2017; 
Lamers et al., 2020, 2019; White et al., 2017). Among studies focusing 
on individual symptoms, results have highlighted associations of in
flammatory markers with specific depressive symptoms of fatigue, 
changes in appetite, anhedonia, and suicidality (Badini et al., 2020; Chu 
et al., 2019; Jokela et al., 2016; Kappelmann et al., 2021; Köhler-Fors
berg et al., 2017; Lamers et al., 2020, 2018; Milaneschi et al., 2017a; 
Simmons et al., 2018; White et al., 2017). However, most of these 
studies have considered associations of inflammatory markers with each 
depressive symptom in isolation (Chu et al., 2019; Jokela et al., 2016; 

Kappelmann et al., 2021; Köhler-Forsberg et al., 2017; Lamers et al., 
2018; White et al., 2017). Although these prior approaches have led to 
important findings, they cannot address potential causal interactions 
between symptoms, thus conflate evidence for indirect and direct as
sociations. For example, analyses of isolated symptoms could hypo
thetically provide evidence for associations of CRP with both fatigue and 
sleep problems even if CRP was only indirectly associated with fatigue 
via its effect on sleep problems. A network-based approach provides one 
means of disentangling such direct from indirect inflammation-symptom 
associations. 

Network theory and related analysis techniques have recently been 
put forward to accommodate the symptomatic complexity of mental 
disorders (Borsboom, 2017). Network theory proposes putative causal 
interactions between symptoms (e.g., fatigue causing concentration 
problems causing low mood), which could result in self-reinforcing vi
cious symptom cycles triggering and maintaining mental disorders. Such 
associations have been investigated in an increasing amount of studies 
on psychological symptom networks (Contreras et al., 2019; Robinaugh 
et al., 2020). To accommodate etiological factors beyond symptoms, 
however, recent work has proposed an expansion of symptom networks 
to so-called ‘multi-plane’ networks, for instance also including genetic, 
metabolic, immunological, or environmental variables (Guloksuz et al., 
2017). To our knowledge, so far, two studies have evaluated such multi- 
plane networks in the context of inflammation and depression by jointly 
analysing serum CRP (plus IL-6 & TNF-α in the study of Fried et al., 
2019), BMI, and potential covariates with individual depressive symp
toms (Fried et al., 2019; Moriarity et al., 2020a). The most consistently 
replicated findings between these two studies suggested unique associ
ations of CRP with fatigue and changes in appetite. A third study has 
recently also provided evidence that the symptom structure itself was a 
function of CRP levels; that is, interconnections between symptoms were 
moderated by CRP (Moriarity et al., 2020b). All of these previous studies 
were based on serum markers for inflammatory proteins, however, 
reflective of acutely elevated inflammatory activity. Therefore, it re
mains unclear if inflammation-symptom associations generalise to ge
netic/lifetime predisposition to higher immuno-metabolic marker 
levels. 

In the present study, we explored associations of polygenic risk 
scores (PRSs) for four major pro- and anti-inflammatory markers (i.e., 
CRP, IL-6, IL-10, & TNF-α) and Body Mass Index (BMI), as a metabolic 
marker, with individual depressive symptoms using a multi-sample, 
multi-plane network analysis approach. We evaluated associations in 
three large samples including the inpatient Munich Antidepressant 
Response Signature (MARS) study (n = 1,058), the outpatient 
Sequenced Treatment Alternatives to Relieve Depression (STAR*D) 
study (n = 1,143), and the general population UK Biobank cohort (n =
110,010) (Hennings et al., 2009; Rush et al., 2004; Sudlow et al., 2015). 
This investigation aimed to contribute to the study of inflammation and 
depression by simultaneously addressing (i) combined immunological 
and symptom complexity (using network analysis), (ii) unclarity 
regarding the influence of genetic/lifetime predisposition to higher 
immuno-metabolic marker levels on depression (defining immuno- 
metabolic markers using PRSs), and (iii) issues of replicability and 
generalisability (testing associations in one large general population and 
two clinical samples). 

2. Methods 

An overview of the study design and analytic procedure is presented 
in Fig. 1. 
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2.1. Study samples 

The Munich Antidepressant Response Signature (MARS) study was a 
naturalistic, observational study of inpatients with major depressive 
disorder (MDD) or bipolar disorder conducted between 2000 and 2015 
in three Southern German hospitals (Hennings et al., 2009). Based on an 
original sample of 1,411 patients, the present study included 1,058 
patients of European descent with an ICD diagnosis of MDD (F32 and 
F33 codes) and genetic and depressive symptom data. 

The STAR*D trial (identifier: NCT00021528) was a multisite, 
multistep, randomised controlled trial (RCT), conducted from 2000 to 
2004, evaluating different treatment options and sequences for out
patients suffering from DSM-IV MDD without psychotic features (Rush 
et al., 2004). Based on an original sample of 1,953 patients who took 
part in the STAR*D genetics study, the present study included 1,143 
individuals of European descent with genetic and depressive symptom 
data. 

The UK Biobank is a general population cohort including >500,000 

Fig. 1. Study design and analysis pipeline. BIC = Bayesian information criterion; CV = cross-validation; PC = principal component (or multi-dimensional scaling 
component used for MARS & STAR*D); ϕ = PRS-CS tuning parameter. 
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individuals, recruited from 2006 to 2010, with genotyping and in-depth 
phenotyping information (Bycroft et al., 2018). About 157,000 in
dividuals from the initial sample took part in a follow-up mental health 
survey (Davis et al., 2020) and we included a subset of 110,010 in
dividuals that were of European descent and had available genetic and 
depressive symptom data. 

2.2. Ethics approval and informed consent 

MARS received local ethics approval from Ludwig Maximilians 
University Munich (Hennings et al., 2009). STAR*D received ethics 
approval from 14 participating institutional review boards, a National 
Coordinating Center, a Data Coordinating Center, and the Data Safety 
and Monitoring Board at the National Institute of Mental Health (Rush 
et al., 2006, 2004). The UK Biobank study received ethics approval from 
North West Centre for Research Ethics Committee and Human Tissue 
Authority research tissue bank (Bycroft et al., 2018); this project was 
approved under project no. 26999. All three studies collected informed 
consent from participants prior to study participation. 

2.3. Depressive symptom assessment 

Depressive symptoms were assessed differently across the three 
samples. MARS and STAR*D studies used the observer-rated Hamilton 
Rating Scale for Depression (HAM-D) (Hamilton, 1986) while the UK 
Biobank study used the self-report Patient Heath Questionnaire (PHQ)-9 
(Löwe et al., 2004). From these questionnaires, we selected seven 
depressive symptoms for joint analyses across samples. These symptoms 
included completely overlapping symptoms of depressed mood, anhe
donia, fatigue, and suicidality, but also partially overlapping symptoms 
of sleep problems, changes in appetite, and psychomotor changes. 
Supplementary Table 1 provides an item-level overview of depressive 
symptoms and Supplementary Table 2 displays symptom coding, where 
this differed from original Likert scale ratings. 

Regarding partially overlapping symptoms of sleep problems, 
changes in appetite, and psychomotor changes, the PHQ-9 only assesses 
information on conflated symptoms (e.g., insomnia and hypersomnia 
are conflated to sleep problems) while the HAM-D incorporates dis
aggregated symptoms. To harmonise these symptom data for retention 
in network analyses, we conflated HAM-D symptoms of psychomotor 
retardation and agitation to “psychomotor changes”. For sleep problems 
and changes in appetite (available in the PHQ-9), only insomnia and loss 
of appetite are available in the HAM-D, so we included both conflated 
and unidirectional symptoms in network analyses as previous studies 
have specifically highlighted associations of inflammation with these 
symptoms (Jokela et al., 2016; Milaneschi et al., 2017b). We reasoned 
that comparative appraisal of associations, for example with changes in 
appetite and loss of appetite, could give further indications on potential 
specificity of associations to symptom directions, as observed in previ
ous reports (Kappelmann et al., 2021; Milaneschi et al., 2021b, 2021a). 

We also note that we have not included items of “guilt or self-blame” 
from the respective studies in our analyses as we considered the item 
content of HAM-D and PHQ-9 too distinct. Specifically, the HAM-D 
conflates feelings of guilt with delusions of guilt and death, thus mov
ing towards psychotic symptomatology. Contrary to this, the PHQ-9 also 
includes “feelings of inadequacy” about oneself, which are not covered 
by the HAM-D item. 

2.4. Genotyping, quality control and imputation 

We provide detailed information on genotyping, quality control and 
imputation procedures in the Supplementary Methods. Briefly, geno
typing in the MARS study was conducted using three genotyping arrays 
across the recruitment period (see Supplementary Fig. 1), the Illumina 
610 k (n = 548), Illumina OmniExpress (n = 284) and Illumina GSA (n 
= 226) arrays. In STAR*D, genotyping was conducted using the 

Affymetrix Human Mapping 500 K Array Set (n = 979) and the Affy
metrix Genome-Wide Human SNP Array 5.0 (n = 969) that displayed a 
concordance of > 99%; described in detail by Garriock et al. (2010). In 
the UK Biobank study, samples were genotyped on the UK BiLEVE 
Axiom Array or the Affymetrix UK Biobank Axiom Array (Bycroft et al., 
2018). Following imputation in all samples, single nucleotide poly
morphisms (SNPs) with info-metric > 0.6, minor allele frequency (MAF) 
> 1%, genotyping missingness < 2%, and no deviation from Hardy- 
Weinberg Equilibrium (MARS & STAR*D: P > 1e-5; UK Biobank: P >
1e− 7) were retained. 

2.5. Polygenic risk scores 

2.5.1. Immuno-metabolic marker selection and GWAS data sources 
PRSs for CRP, IL-6, IL-10, TNF-α, and BMI were computed based on 

available summary statistics from genome-wide association studies 
(GWAS; Ahola-Olli et al., 2017; Ligthart et al., 2018; Locke et al., 2015). 
These inflammatory markers were selected, because (i) they showed 
robust differences in case-control studies; (ii) CRP, IL-6, and TNF-α have 
been the most frequently investigated inflammatory markers overall in 
the context of depression; and (iii) IL-10 was the most frequently studied 
anti-inflammatory cytokine, so could be informative on direction of 
associations between depressive symptoms and innate immune activity 
(Köhler et al., 2017; Osimo et al., 2019). BMI was selected as the most 
frequently investigated metabolic marker. 

GWAS data for CRP were obtained from a large GWAS of 88 studies 
including 204,402 individuals of European descent (Ligthart et al., 
2018). GWAS data for IL-6, IL-10, and TNF-α were obtained from a 
GWAS of 8,293 Finns (Ahola-Olli et al., 2017); of note, Finns have Si
berian ancestry (Lamnidis et al., 2018), which leads to a divergence from 
European ancestry of our analytic samples. GWAS data for BMI were 
obtained from the Genetic Investigation of Anthropometric Traits 
(GIANT) consortium that included up to 322,154 individuals of Euro
pean descent (Locke et al., 2015). 

2.5.2. PRS computation 
PRSs can be computed by summing the GWAS association estimates 

of risk alleles for each individual. Classically, this summation is done 
using an approach termed “clumping and thresholding” (C + T), which 
first reduces summary statistics to independent SNPs and then applies 
one or multiple thresholds (usually based on P-values) to restrict sum
mation to SNPs with high evidence for associations with phenotypes 
(Choi et al., 2020). As the optimal threshold for the C + T approach is 
unknown and should ideally be estimated in a separate dataset with 
available phenotype data, we computed PRSs using the Bayesian 
regression and continuous shrinkage priors (PRS-CS) approach, which 
has been shown to perform similar to or outperform other PRS compu
tation approaches such as C + T (Ge et al., 2019; Ni et al., 2020). 

PRS-CS takes a linkage disequilibrium (LD) reference panel into ac
count (we used European ancestry data from 1000 Genomes Project 
phase 3 samples) to update SNP effect sizes in a blocked fashion, thus 
providing accurate LD adjustment. We pre-specified the global 
shrinkage parameter ϕ using suggested defaults for less polygenic (ϕ =
1e-4) and more polygenic (ϕ = 1e-2) phenotypes as ϕ = 1e-4 for CRP, IL-6, 
IL-10, and TNF-α, and as ϕ = 1e-2 for BMI; see details in Supplementary 
Methods. Following PRS computation in individual samples, polygenic 
scores were corrected for age, sex, and the first two genotyping principal 
or multidimensional scaling (MDS) components using linear regression; 
two genotyping principal or MDS components were selected as visual 
inspection of component inter-correlations did not suggest evidence for 
population stratification. Genotyping MDS components were computed 
based on raw Hamming-distances in MARS and STAR*D, and using 
principal component analysis on high-quality, unrelated individuals in 
the UK Biobank sample (Bycroft et al., 2018). PRSs in MARS were 
additionally corrected for the genotyping array. Following computation, 
higher PRSs reflect higher genetic predisposition to respective immuno- 
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metabolic phenotype levels. 

2.5.3. PRS evaluation 
In Supplementary Table 3, we provide the number of SNPs included 

in PRS computation in each sample, which was approximately around 
one million SNPs for each phenotype-sample combination. The pro
portion of SNP overlap between samples (for the same phenotype) was 
> 0.89 suggesting that mostly overlapping SNPs contributed to PRSs 
(Supplementary Table 4). Taking these overlapping SNP sets, correla
tions between the posterior SNP effect sizes between samples were large 
for CRP (Pearson’s r range: 0.69–0.76) and BMI (Pearson’s r range: 
0.79–0.80) and relatively smaller for IL-6, IL-10, and TNF-α (Pearson’s r 
range: 0.41–0.46; see Supplementary Table 5). This suggests polygenic 
risk was quantified more similarly across samples for CRP and BMI as 
compared to IL-6, IL-10, and TNF-α. 

We quantified the impact that pre-specification of the hyper
parameter ϕ had on resulting PRSs, which was likely small (Supple
mentary Table 6). Specifically, PRSs with pre-specified ϕ exhibited large 
correlations with PRSs based on automatic learning of ϕ from GWAS 
summary data (termed PRS-CS-auto in the literature; Pearson’s r range: 
0.82–0.98). Furthermore, moderate-to-large correlations remained to 
PRSs based on extreme grid search boundary values of ϕ (Pearson’s r 
range: 0.47–0.93). 

Since MARS utilised three different genotyping arrays, we verified 
that our approach of combining data from these arrays into one sample 
was justified before proceeding with the main analysis (see Supple
mentary Methods and Supplementary Figs. 2 and 3). 

2.6. Network analysis 

2.6.1. Estimation 
Network analysis was conducted using R software (version 4.0.3; R 

Core Team, 2017). In network analysis, unique associations between 
variables reflect partial correlations and are termed ‘edges’. Variables in 
the network are referred to as ‘nodes’. 

Network models can be broadly categorised into regularized and 
unregularized models, that have distinct advantages and disadvantages. 
Regularised models apply penalties that shrink edges towards zero. This 
has the advantage that it results in sparser and more parsimonious 
network models as small edges can be set exactly to zero. Contrary to 
this, non-regularized models do not apply such a penalty- while it is still 
possible to control the false positive rate- and recent studies have sug
gested that unregularized models perform better in estimating psycho
logical symptom networks and multi-plane immunopsychiatric 
networks than regularized network models (Moriarity et al., 2020a; 
Williams et al., 2019). A disadvantage of unregularized models, how
ever, is that they are currently only suitable for network estimation of 
individual samples/datasets. Contrary to this, regularised models have 
recently been adapted for application in multi-sample contexts using so- 
called fused graphical LASSO (FGL) estimation. FGL estimation allows 
synthesising data across multiple samples, which increases statistical 
power. 

Based on these respective advantages and disadvantages, we have 
decided to use a regularized network model as primary analysis, which 
maximises statistical power due to the multi-sample design of our study. 
As unregularized models are preferable for estimation of individual 
samples and may be better suited to retrieve multi-plane edges, how
ever, we also apply unregularized network estimation as secondary 
analysis. 

In primary analyses, networks were estimated using FGL estimation 
as implemented in the EstimateGroupNetwork package (version 0.2.2; 
Costantini et al., 2020, 2019; Danaher et al., 2014). FGL estimation 
relies on the two tuning parameters λ1, which penalizes network density, 
and λ2, which penalizes edge differences across samples. Values for these 
tuning parameters were selected using 10-fold cross-validation to opti
mise the Bayesian Information Criterion (BIC). As recommended, we set 

weights for the importance of each sample as ‘equal’ to ascertain that a 
single sample would not dominate estimation (Danaher et al., 2014). 

As secondary analysis, we estimated unregularized networks for each 
sample individually using the gaussian graphical stepwise model selec
tion (“ggModSelect”) algorithm implemented in the qgraph package 
(version 1.6.5; Epskamp et al., 2012) based on Spearman correlations 
and starting from an empty model. Throughout results, we refer to this 
estimation strategy as “unregularized model search” or “model search” 
for simplification. 

2.6.2. Node predictability 
We also estimated node predictability, which describes the amount 

of variance in a node that is explained by all other nodes in the network, 
so can be interpreted akin to R2 (Haslbeck and Fried, 2017). Node pre
dictability cannot be inferred from FGL or model search networks as it 
requires a node-wise estimation approach. Therefore, we used a mixed 
graphical model as a third estimation strategy as implemented in the 
mgm package (version 1.2–10), selecting tuning parameter λ based on 
BIC optimisation in 10-fold cross-validation (Haslbeck and Waldorp, 
2020). Of note, this model was only used to infer node predictability, 
which provides additional information on network density and sample 
comparability. However, we do not report any individual edge estimates 
based on this model as FGL estimation and unregularized model search 
are better suited for our study aims. 

2.6.3. Visualisation 
Networks were visualised with the qgraph package using an average 

layout estimated with the Fruchterman-Reingold algorithm for the FGL 
networks. This algorithm places nodes close to each other that are 
connected by large edges (Epskamp et al., 2012). While this simplifies 
network appraisal, it is important to note that nodes and edges should 
not be interpreted based on their relative position within the network, 
which can be unstable. 

2.6.4. Stability 
To evaluate stability of estimated networks, we assessed accuracy of 

edge estimates using bootstrapping strategies. Specifically, for FGL 
networks 500 bootstrapped samples with replacement were drawn, and 
FGL networks re-estimated, using the implementation in the Estimate
GroupNetwork package (Costantini et al., 2020). For unregularized 
model search estimation, the same procedure was applied using non- 
parametric bootstrapping procedures implemented in the bootnet pack
age (version 1.4.3; Epskamp et al., 2018). 

2.6.5. Interpretation 
We interpreted estimated networks based on the presence, stability, 

and replicability of edges as defined using three consistency criteria. 
First, we tested if edges were nonzero in FGL networks as well as nonzero 
and directionally consistent in > 50% of bootstrapped analyses (con
sistency criterion 1) akin to a previous PRS-symptom network study in 
psychosis by Isvoranu and colleagues (2020). Second, we tested if edges 
between PRSs and symptoms replicated (according to criterion 1) across 
FGL networks of the three samples (consistency criterion 2). Third, we 
tested if edges were present in secondary analyses using unregularized 
model search estimation, again confirmed in > 50% of bootstrapped 
estimations exhibiting directionally consistent estimates (consistency 
criterion 3). 

2.7. Availability of data and materials 

Data from original studies is not openly available, but can be 
requested; see details in Supplementary Table 7. GWAS summary data 
for IL-6, IL-10, and TNF-α is openly available from the original publi
cation by Ahola-Olli and colleagues (2017), for BMI from the GIANT 
consortium, and can be requested for CRP from the CHARGE inflam
mation working group. We provide analysis scripts and estimated 
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network matrices (including bootstrapped network matrices) on the 
Open Science Platform (OSF) under https://osf.io/q4vw9/. 

3. Results 

Baseline characteristics of study populations are displayed in 
Table 1. 

3.1. Network analysis 

We conducted network analyses of five immuno-metabolic PRSs 
(CRP, IL-6, IL-10, TNF-α, & BMI) and seven depressive symptoms using 
two estimation techniques (FGL & unregularized model search 

estimation) in three samples (MARS, STAR*D & UK Biobank). Bootstrap 
analyses were conducted to assess stability of networks and node pre
dictability estimated using a mixed graphical model. We defined three 
consistency criteria to assess robustness and replicability of our results 
across estimation techniques, bootstrapping, and samples. Focus of this 
network investigation were unique associations (termed edges in 
network analysis) between PRSs and symptoms, which are summarised 
in Table 2. 

3.1.1. Fused Graphical LASSO (FGL) estimation suggests four consistent 
PRS-symptom edges according to criteria 1 & 2 

Using FGL estimation, we obtained networks that are visualised in 
Fig. 2. PRS-symptom edge bootstrapping results are displayed in Fig. 3 
with PRS-PRS and symptom-symptom edge bootstrapping results shown 
in Supplementary Figs. 4 and 5. 

As expected, nodes within the same plane displayed relatively 
stronger within-plane (i.e., symptom-symptom & PRS-PRS) than 
between-plane (i.e., PRS-symptom) associations. Among PRSs, CRP 
displayed associations with BMI (edge weight range across samples: 
0.16–0.19) while IL-6, IL-10, and TNF-α (based on the same GWAS) were 
associated with each other (edge weight range across samples: 
0.08–0.52). Associations of BMI and CRP with IL-6, IL-10, and TNF-α 
were largely absent or very small (edge weight range across samples: 
− 0.02–0.01). Among symptoms, the largest associations were present 
between the core symptoms depressed mood and anhedonia (edge 
weight range across samples: 0.14–0.55), which is to-be-expected in 
clinical samples where these symptoms form the basis of the MDD 
diagnosis. Edge bootstrapping results in Supplementary Fig. 4 also 
illustrate interesting edge differences between samples that are likely 
arising from the diverging symptom definitions in individual samples. 
For instance, edges of fatigue with changes in appetite (edge weight =
0.21) and sleep problems (edge weight = 0.33) were relatively larger in 
the UK Biobank, assessing composite symptoms of changes in appetite 
and sleep problems, but substantially smaller in MARS (fatigue-changes 
in appetite: edge weight = 0.09; fatigue-sleep problems: edge weight =
0.10) and STAR*D (fatigue-changes in appetite: edge weight = -0.01; 
fatigue-sleep problems: edge weight = -0.01), assessing loss of appetite 
and insomnia. 

Regarding PRS-symptom edges, FGL estimation surprisingly resulted 
in a much larger number of PRS-symptom edges in MARS and STAR*D 
samples compared to the UK Biobank sample with 28 (MARS), 29 
(STAR*D), and 6 (UK Biobank) nonzero PRS-symptom edges. 26 
(MARS), 28 (STAR*D), and 5 (UK Biobank) of these edges fulfilled cri
terion 1 (nonzero edges are nonzero and directionally consistent in >
50% of bootstraps). Although the difference between samples could 
have resulted from network differences of clinical versus general 
population-based samples, it may also reflect some degree of inconsis
tency or even noise as edge estimates often exhibited unstable directions 
of association in clinical samples (see Table 2). 

Applying consistency criterion 2 (consistency of results across sam
ples), we observed replicable edges of the CRP PRS with anhedonia 
(negative edge weight), changes in appetite, and fatigue as well as of the 
TNF-α PRS with fatigue; these edges were manually unfaded in Fig. 2. It 
is important to note that the edge between the CRP PRS and changes in 
appetite has a diverging valence in individual samples; in MARS and 
STAR*D (assessing loss of appetite) the edge weight was negative and in 
the UK Biobank study (assessing changes in appetite) the edge weight 
was positive. 

3.1.2. Unregularized model search estimation suggests three consistent PRS- 
symptom edges according to criterion 3 

Using unregularized model search estimation, we again observed 
networks with relatively larger within-plane (i.e., PRS-PRS & symptom- 
symptom) than between-plane (i.e., PRS-symptom) edges. Networks 
were comparable to FGL estimation, but generally sparser than those 
using FGL estimation; see network graphs in Supplementary Fig. 6 and 

Table 1 
Baseline characteristics of MARS, STAR*D, and UK Biobank samples.   

MARS STAR*D UK Biobank 

N 1,058 1,143 110,010 
Sex    
Women, N (%) 563 (53.2%) 676 (59.1%) 61,212 (55.6%) 
Men, N (%) 495 (46.8%) 467 (40.9%) 48,798 (44.4%) 
Age in years    
Mean (SD) 47.8 (14.4) 43.2 (13.6) 56.2 (7.7) 
Range 18–87 18–75 39–72 
Study location Germany United States United Kingdom 
Study population MDD inpatients MDD outpatients General 

population 
CRP PRS    
Mean (SD) − 0.01 (1.00) 0.00 (1.00) − 0.01 (1.00) 
Range − 3.14–3.15 − 3.21–2.94 − 4.58–4.21 
IL-6 PRS    
Mean (SD) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 
Range − 3.33–3.34 − 3.41–3.94 − 4.07–3.92 
IL-10 PRS    
Mean (SD) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 
Range − 3.11–3.24 − 3.28–3.13 − 4.35–4.60 
TNF-a PRS    
Mean (SD) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 
Range − 3.61–3.67 − 3.35–3.52 − 4.17–4.51 
BMI PRS    
Mean (SD) − 0.02 (1.01) 0.00 (1.00) − 0.04 (1.00) 
Range − 3.02–4.06 − 3.04–3.20 − 4.53–3.96 
PHQ-9 sum-score    
Mean (SD) – – 2.7 (3.6) 
Range – – 0–27 
Missing, N (%) – – 351 (0.3) 
HAM-D sum-score    
Mean (SD) 23.8 (5.9) 22.4 (4.9) – 
Range 5–42 13–38 – 
Missing, N (%) 6 (0.6%) 0 (0%) – 
Depressed mood    
Mean (SD) 3.05 (0.88) 2.59 (0.77) 0.23 (0.56) 
Range 0–4 0–4 0–3 
Anhedonia    
Mean (SD) 3.63 (0.68) 2.54 (0.76) 0.26 (0.56) 
Range 0–4 0–4 0–3 
Sleep problems    
Mean (SD) 3.46 (2.00) 3.42 (1.77) 0.71 (0.99) 
Range 0–6 0–6 0–3 
Fatigue    
Mean (SD) 1.49 (0.68) 1.68 (0.55) 0.66 (0.81) 
Range 0–2 0–2 0–3 
Changes in appetite    
Mean (SD) 0.77 (0.66) 0.68 (0.80) 0.25 (0.62) 
Range 0–2 0–2 0–3 
Psychomotor 

changes    
Mean (SD) 1.44 (0.96) 1.42 (0.72) 0.07 (0.34) 
Range 0–4 0–4 0–3 
Suicidality    
Mean (SD) 1.35 (1.15) 0.94 (0.85) 0.05 (0.28) 
Range 0–4 0–4 0–3 

Note: MDD = Major Depressive Disorder, SD = Standard deviation, PHQ-9 =
Patient Health Questionnaire-9, HAM-D = Hamilton Rating Scale for 
Depression. 
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bootstrapping results in Supplementary Figs. 7–9. 
Regarding PRS-symptom edges, only three edges were estimated as 

nonzero, which were all observed in the UK Biobank sample and fulfilled 
consistency criterion 3 (nonzero edges are also nonzero and direction
ally consistent in > 50% of bootstraps); these edges have been manually 
unfaded in Supplementary Fig. 6. The specific PRS-symptom edges were 
between the BMI PRS and changes in appetite and anhedonia and be
tween the CRP PRS and changes in appetite. Comparing these edges to 
FGL estimation, the edge of the CRP PRS with changes in appetite 
replicated one of the edges fulfilling consistency criteria 1 and 2 while 
the two edges observed for the BMI PRS were only fulfilling consistency 
criterion 1 (presence in FGL estimation and > 50% of bootstraps). 
Moreover, the BMI PRS association with anhedonia was negative using 
unregularized model search estimation, but positive using FGL 
estimation. 

3.2. Node predictability 

Average node predictability was similar across samples for PRS 
nodes with 16% (UK Biobank), 17% (MARS), and 19% (STAR*D) of 
variance explained by all other nodes in the network. Contrary to this, 
average node predictability for symptom nodes differed with 38% of 

variance explained by all other nodes in the UK Biobank sample and only 
9% in both clinical samples. These findings highlight differences in 
network density of symptoms in the UK Biobank (using the PHQ-9) and 
clinical samples (using the HAM-D). 

4. Discussion 

The present study investigated associations of PRSs for immuno- 
metabolic markers with depressive symptoms using a multi-plane, 
multi-sample network analysis approach. Based on three consistency 
criteria emphasising robustness and replicability of network analysis 
results across statistical bootstraps, samples, and estimation methods, 
we observed a unique association between the CRP PRS and changes in 
appetite that met all three consistency criteria. In addition to this as
sociation, we observed five additional PRS-symptom associations that 
met two consistency criteria. These included edges of the CRP PRS with 
anhedonia (negative association) and fatigue, the TNF-α PRS with fa
tigue, and the BMI PRS with anhedonia and changes in appetite. How
ever, the BMI PRS-anhedonia association switched association direction 
depending on the estimation method, so may not be fully consistent 
despite fulfilling our consistency criteria. Due to the novelty of our 
analysis approach, we highlight several methodological considerations 

Table 2 
PRS-symptom edge consistency criteria (C) across network analyses.   

MARS STAR*D UK Biobank  

PRS-symptom edges FGL (C1) Model search (C3) FGL (C1) Model search (C3) FGL (C1) Model search (C3) FGL consistency (C2) 

CRP        
Anhedonia − 0.016 (67%)  − 0.043 (95%)  − 0.002 (60%)  Yes 
Depressed mood − 0.009 (57%)  0.045 (94%)     
Sleep problems* − 0.02 (75%)  0.031 (84%)     
Fatigue 0.053 (98%)  0.025 (79%)  0.011 (100%)  Yes 
Changes in appetite* − 0.034 (89%)  − 0.043 (94%)  0.003 (91%) 0.013 (73%) Yes 
Psychomotor changes 0.039 (91%)  0.001 (53%)     
Suicidality − 0.02 (74%)  − 0.038 (88%)      

IL-6        
Anhedonia − 0.047 (97%)       
Depressed mood − 0.001 (52%)       
Sleep problems*   − 0.02 (82%)     
Fatigue 0.012 (72%)       
Changes in appetite* − 0.032 (87%)  0.032 (85%)     
Psychomotor changes        
Suicidality 0.053 (95%)  − 0.029 (83%)      

IL-10        
Anhedonia 0.008 (67%)  − 0.005 (66%)     
Depressed mood   − 0.002 (52%)     
Sleep problems*   0.014 (72%)     
Fatigue   0.007 (66%)     
Changes in appetite* 0.021 (80%)       
Psychomotor changes 0.015 (66%)  0.033 (90%)     
Suicidality   0.054 (99%)      

TNF-α        
Anhedonia 0.054 (96%)  0.013 (66%)     
Depressed mood − 0.017 (66%)  − 0.017 (75%)     
Sleep problems* − 0.005 (57%)  0.005 (68%)     
Fatigue 0.016 (65%)  0.032 (91%)  0.002 (58%)  Yes 
Changes in appetite* − 0.015 (70%)  0.023 (75%)     
Psychomotor changes 0.008 (63%)  0.008 (59%)     
Suicidality   0.047 (94%)      

BMI        
Anhedonia 0.036 (91%)  0.033 (86%)   − 0.010 (63%)  
Depressed mood        
Sleep problems* 0.06 (99%)  0.055 (97%)     
Fatigue − 0.016 (74%)       
Changes in appetite*   − 0.031 (87%)  0.054 (100%) 0.066 (100%)  
Psychomotor changes 0.003 (55%)  − 0.023 (83%)     
Suicidality 0.021 (75%)  0.04 (91%)     

Note: Cell values reflect edge weights (i.e., partial correlation coefficients) and the percentage of 500 bootstrap estimations that edges were present. Estimates are 
restricted to those edges, for which > 50% of bootstrapped samples were non-zero and directionally consistent (i.e., criteria 1 & 3). *Changes in appetite and sleep 
problems are measured as composite symptoms in UK Biobank, but as loss of appetite and insomnia in MARS and STAR*D samples. 
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below, which we hope provides a helpful framework to the discussion of 
our findings afterwards. 

4.1. Methodological challenges and opportunities 

Combining PRSs with psychological symptom networks is a rela
tively recent extension of network analysis and, to our knowledge, has 
only been applied in one previous investigation incorporating a 
schizophrenia PRS into a psychotic symptom network (Isvoranu et al., 
2020). Therefore, it is important to emphasise the unique challenges and 
opportunities of this approach. 

First, as noted by Isvoranu et al. (2020), statistical power is poten
tially the greatest challenge of PRS-symptom network analysis. Network 
analysis itself requires relatively large sample sizes for psychological 
symptom networks (Epskamp et al., 2018; Fried and Cramer, 2017), 
which should be in the hundreds or thousands depending on the number 
of nodes in the network. Inclusion of PRSs into psychological symptom 
networks, and especially of potential pathomechanistic (e.g., inflam
matory) rather than main illness (e.g., depression/schizophrenia) scores 
into these networks, aggravates the sample size requirements for 

network analysis as PRSs only explain a fraction of variance in the 
heritable component of their target phenotypes (Choi et al., 2020; Wray 
et al., 2020). 

Second, and because PRSs only measure a fraction of variance in 
their target phenotype, unique associations observed in network ana
lyses are inevitably smaller than actual target phenotype-symptom as
sociations. Taking this study as an example, absolute sizes of CRP PRS- 
symptom associations were 5- to 10-fold smaller than those from a prior 
network investigation using serum CRP concentrations by Moriarity 
et al. (2020a). Therefore, PRS-symptom associations are unlikely to give 
meaningful insights into size of association with the target phenotype, 
but should, in our opinion, be interpreted based on robust presence/ 
absence of specific associations. 

Third, the large statistical power requirements and difficulty quan
tifying such power for a given study may lead to biased result in
terpretations. Absence of PRS-symptom associations could be 
interpreted as false negatives while presence of association may be 
interpreted as true positives. Such divergence in interpretation neces
sarily biases the literature towards hypothesis confirmation. Conse
quently, any associations observed in PRS-symptom network analyses 

Fig. 2. Estimated FGL networks across samples. Networks are visualised with the qgraph package. Blue lines indicate positive and red lines negative associations, 
respectively, with larger associations displayed with thicker lines. Circles around nodes display node predictability, which can be interpreted similar to explained 
variance. Maximum size of edge associations is 0.55. As the primary focus of this investigation was to identify consistent PRS-symptom associations, we manually 
unfaded edges between PRSs and symptoms if these edges met quality criteria 1 and 2 (see Table 2). Changes in appetite and sleep problems are measured as 
composite symptoms in UK Biobank, but as loss of appetite and insomnia in MARS and STAR*D samples. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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should be followed up by- and interpreted in line with- evidence from 
other studies, thus adhering to the recommended triangulation of evi
dence approach (Lawlor et al., 2017; Ohlsson and Kendler, 2019). 

Despite these challenges, PRS-symptom networks also provide mul
tiple opportunities. First, PRSs reflect estimates of genetic liability to 
phenotype expression, so can give an indication on the influence of 
lifelong predisposition to higher phenotype levels on the symptom level. 
In this way, PRS-symptom associations also provide an indication 
regarding temporality of association, which Bradford-Hill defined as one 
of the viewpoints for causality (Bradford Hill, 1965). It is important to 
note, however, that evidence for a unidirectional temporal association 
does not preclude bi-directionality. Moreover, PRSs combine informa
tion from a multitude of genetic variants (in our case from ~ 1 million 
SNPs) that are not restricted to functional SNPs, can include false posi
tive associations (i.e., noise), and can also tag information of pleiotropic 
environmental confounding factors. Therefore, causal inferences should 
rely on separate evidence from clinical trials and/or more focused ge
netic approaches such as Mendelian randomisation studies (Lawlor 
et al., 2008). 

Second, the PRS-symptom network analysis approach allows the 
concurrent investigation of multiple immuno-metabolic markers with 
multiple symptoms. Thereby, immunological and clinical complexity is 
addressed concurrently, which is an advantage to previous in
vestigations. Furthermore, network analyses usually estimate partial/ 
unique associations, so any emerging associations could suggest direct 
causal paths from PRS phenotypes to individual symptoms, so may 
pinpoint so-called ‘bridge symptoms’ that act as etiological docking sites 
of risk effects on the symptom plane. 

Third, large-scale population-based or patient cohort studies, 
commonly used in network analysis, often do not have detailed immu
nophenotyping data available. If at all, studies mostly have data 

available for serum CRP, but rarely for more specific cytokines. 
Conversely, the advent of large GWAS investigations has produced a 
substantial amount of large cohort databases with in-depth genotyping 
and phenotyping information. Combining such databases with GWAS 
summary statistics from more focused investigations, such as on indi
vidual cytokines (Ahola-Olli et al., 2017), enables the investigation of a 
diverse range of immunopsychiatric research questions. 

Fourth, PRS-symptom networks could be extended, for instance, by 
adding serum inflammatory markers to these networks, which could 
provide additional insights into associations between genetic/lifetime 
predisposition to, and acute levels of, immuno-metabolic markers with 
individual symptoms. 

4.2. Associations of immuno-metabolic markers with depressive symptoms 

Network analysis results showed consistent associations of the CRP 
PRS with changes in appetite, which was the only association that ful
filled all of our quality criteria. The BMI PRS showed similar associations 
with changes in appetite, but only fulfilled two quality criteria. Impor
tantly, both of these associations were positive in the UK Biobank 
sample, which assessed changes in appetite, and negative in MARS and 
STAR*D samples, which assessed loss of appetite. Previous studies 
reporting results from cross-sectional, longitudinal, genetic correlation, 
PRS, and Mendelian randomisation analyses have also consistently re
ported associations of CRP/BMI with changes in appetite (Fried et al., 
2019; Jokela et al., 2016; Kappelmann et al., 2021; Moriarity et al., 
2020a). Importantly, whenever studies disaggregated appetite symp
toms into decreased versus increased appetite, associations of CRP/BMI 
were specific to increased appetite (Lamers et al., 2018; Milaneschi 
et al., 2021b, 2021a, 2017b; Pistis et al., 2021; Simmons et al., 2018). In 
light of these findings, our results provide indirect support for an 

Fig. 3. Bootstrapped 95% quantile intervals of PRS-symptom edges using FGL estimation. Bootstrapped 95% quantile intervals (i.e., 95% of the distribution of raw 
bootstrapped edge estimates) are highlighted as shaded area for each edge. Black points indicate the raw FGL sample estimate while red points indicate the raw 
bootstrapped mean estimate. Edges are indicated on the y-axis and sorted by mean edge weight across samples in descending order. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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immune-metabolic contribution to increased appetite specifically. 
In addition to these PRS associations with changes in appetite, we 

also observed associations of higher CRP PRS with lower anhedonia and 
greater fatigue and of higher TNF-α PRS with greater fatigue. Fatigue in 
particular has long been considered to have a neuroimmune basis 
(Dantzer et al., 2014), is common across other medical illnesses char
acterised by chronic inflammation, and has been reliably associated 
with inflammatory markers in previous studies including two network 
investigations (Fried et al., 2019; Jokela et al., 2016; Lamers et al., 2020; 
Moriarity et al., 2020a; van Eeden et al., 2020; White et al., 2017). While 
there have also been some studies suggesting associations of inflam
matory markers with anhedonia (Köhler-Forsberg et al., 2017; van 
Eeden et al., 2020), it is important to note that associations of the CRP 
PRS with anhedonia observed in the present report were negative, so do 
not offer straightforward replication of these findings. Nonetheless, we 
have recently shown in Mendelian randomisation analyses that BMI 
could be a potential causal factor for both fatigue and anhedonia 
(Kappelmann et al., 2021), so continued investigation of these symp
toms is warranted. 

Together, our findings add to the notion of an immuno-metabolic 
subtype of depression characterised by neurovegetative symptoms of 
changes in appetite and fatigue (Dantzer et al., 2008; Milaneschi et al., 
2020). We also expand upon previous work by showing that genetic/ 
lifetime predisposition to higher inflammation and metabolic dysregu
lation increases risk for depression and, based on network analysis re
sults, these etiological factors may specifically confer their risk on the 
broader depression syndrome through symptoms such as changes in 
appetite and fatigue. These results can inform the design of clinical trials 
of anti-inflammatory approaches and metabolic interventions by spe
cifically selecting patients with an atypical, neurovegetative symptom 
presentation. As clinical trials for immune-modulating drugs are 
currently still characterised by relatively small sample sizes (Husain 
et al., 2020; Khandaker et al., 2018; McIntyre et al., 2019; Nettis et al., 
2021; Raison et al., 2013), it may be worthwhile to pilot new in
terventions with neurovegetative symptoms/phenotypes as outcome 
variables. This might increase statistical power and sensitivity to detect 
effects for these proof-of-concept trials and could then be followed up by 
larger trials testing broader clinical efficacy measures. 

4.3. Strengths and limitations 

Strength of this study include availability of large general 
population-based and patient samples (maximising replicability and 
generalisability), polygenic definition of immuno-metabolic risk vari
ables (indexing lifetime predisposition to higher immuno-metabolic 
marker levels), and application of network analysis (addressing immu
nological and clinical complexity concurrently). We have addressed 
some of the more general limitations of combined PRS-symptom 
network analysis above, but there are three more specific limitations 
that warrant mentioning. 

First, data used in the current study included inpatients, outpatients, 
and individuals from the general population and was based on different 
scales to measure depressive symptoms. Depressive symptom structure 
varies between acutely ill patients versus those in remission (van Bor
kulo et al., 2015), which may have influenced PRS-symptom associa
tions. Moreover, two of the seven symptoms used in the present report 
only overlap partially; the UK Biobank study includes conflated items on 
sleep problems and changes in appetite while MARS and STAR*D 
include items on insomnia and loss of appetite, respectively. This dif
ference may explain some of the inconsistencies observed in the current 
report such as the diverging valence of edge estimates between CRP and 
changes in appetite. However, this may have also reduced statistical 
power to detect associations. Study questionnaires also differed 
regarding the method of assessment as the HAM-D is observer-rated and 
the PHQ-9 self-reported. By definition, inflammation-symptom research 
is affected from modality-specific measurement variability (Moriarity 

and Alloy, 2021) and in our study this is aggravated through the added 
variability unique to the method of symptom assessment (Möller, 2000). 
Future studies would benefit from inclusion of studies with the same 
questionnaire and disaggregated symptom measures. 

Second, the combination of clinical and general population samples 
poses unique challenges. The application of a clinical depression mea
sure in the UK Biobank study could have resulted in potential floor ef
fects for some symptoms while specific selection of MDD patients into 
MARS and STAR*D studies could have resulted in ceiling effects for core 
symptoms of depressed mood and anhedonia as these are required for a 
diagnosis. Selection of clinical populations in network studies can also 
result in Berkson/collider bias (de Ron et al., 2019), which can induce 
negative correlations. This again warrants replication of our results in 
independent samples. 

Third, PRSs are based on GWASs with highly diverging samples sizes 
as a large number of individuals were included in the GWAS for BMI and 
CRP (>200 thousand individuals) and smaller numbers of individuals 
(~8 thousand individuals) for IL-6, IL-10, and TNF-α. Consistency of 
effect sizes following the PRS-CS approach was also larger for CRP and 
BMI as compared to IL-6, IL-10, and TNF-α. This is likely to have shifted 
the balance of statistical power towards detection of PRS-symptom as
sociations to BMI and CRP rather than IL-6, IL-10, and TNF-α. Therefore, 
our findings require replication once larger individual cytokine GWASs 
become available. 

5. Conclusion 

The present investigation studied associations between four major 
pro- and anti-inflammatory markers, BMI, and depressive symptoms by 
applying network analysis across one large general population and two 
patient samples. Defining immuno-metabolic markers using polygenic 
risk scores expanded previous reports by suggesting direct associations 
of genetic/lifetime predisposition to immune-metabolic markers with 
depressive symptoms and provided evidence for temporality of associ
ation. Despite methodological restrictions of the presented approach, we 
observed associations of polygenic risk for CRP with changes in appetite 
and fatigue, for TNF-α with fatigue, and similar associations for BMI. 
These findings align with recent conceptualisations of an immuno- 
metabolic subgroup of depressed patients characterised by atypical, 
neurovegetative symptom profiles. Results can inform future clinical 
trials of anti-inflammatory approaches by prioritising these patients for 
selection into clinical trials. 
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Holliday, E.G., Moed, M., Langenberg, C., Räikkönen, K., Ding, J., Campbell, H., 
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Deary, I.J., Mägi, R., Vandenput, L., van der Harst, P., Desch, K.C., Kooner, J.S., 
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T.B. Grammer J. Gräßler H. Grönberg C.J. Groves G. Gusto J. Haessler P. Hall T. 
Haller G. Hallmans C.A. Hartman M. Hassinen C. Hayward N.L. Heard-Costa Q. 
Helmer C. Hengstenberg O. Holmen J.-J. Hottenga A.L. James J.M. Jeff Å. Johansson 
J. Jolley T. Juliusdottir L. Kinnunen W. Koenig M. Koskenvuo W. Kratzer J. Laitinen 
C. Lamina K. Leander N.R. Lee P. Lichtner L. Lind J. Lindström K. Sin Lo S. Lobbens 
R. Lorbeer Y. Lu F. Mach P.K.E. Magnusson A. Mahajan W.L. McArdle S. McLachlan 
C. Menni S. Merger E. Mihailov L. Milani A. Moayyeri K.L. Monda M.A. Morken A. 
Mulas G. Müller M. Müller-Nurasyid A.W. Musk R. Nagaraja M.M. Nöthen I.M. Nolte 
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White, J., Kivimäki, M., Jokela, M., Batty, G.D., 2017. Association of inflammation with 
specific symptoms of depression in a general population of older people: the English 
Longitudinal Study of Ageing. Brain. Behav. Immun. 61, 27–30. https://doi.org/ 
10.1016/j.bbi.2016.08.012. 

Williams, D.R., Rhemtulla, M., Wysocki, A.C., Rast, P., 2019. On Nonregularized 
Estimation of Psychological Networks. Multivariate Behav. Res. 1–23. https://doi. 
org/10.1080/00273171.2019.1575716. 

Wittenberg, G.M., Stylianou, A., Zhang, Y., Sun, Y., Gupta, A., Jagannatha, P.S., 
Wang, D., Hsu, B., Curran, M.E., Khan, S., Chen, G., Bullmore, E.T., Drevets, W.C., 
2020. Effects of immunomodulatory drugs on depressive symptoms: a mega-analysis 
of randomized, placebo-controlled clinical trials in inflammatory disorders. Mol. 
Psychiatry 25, 1275–1285. https://doi.org/10.1038/s41380-019-0471-8. 

Wray, N.R., Lin, T., Austin, J., McGrath, J.J., Hickie, I.B., Murray, G.K., Visscher, P.M., 
2020. From basic science to clinical application of polygenic risk scores: a primer. 
JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2020.3049. 

N. Kappelmann et al.                                                                                                                                                                                                                          

https://doi.org/10.1177/0004867417701996
https://doi.org/10.1177/0004867417701996
https://doi.org/10.1097/00005650-200412000-00006
https://doi.org/10.1016/j.biopsych.2019.11.017
https://doi.org/10.1016/j.biopsych.2019.11.017
https://doi.org/10.1001/jamapsychiatry.2019.0779
https://doi.org/10.1016/j.biopsych.2020.01.014
https://doi.org/10.1016/j.biopsych.2015.10.023
https://doi.org/10.1001/jamapsychiatry.2020.4373
https://doi.org/10.1038/mp.2015.86
https://doi.org/10.1038/mp.2015.86
https://doi.org/10.1001/jamapsychiatry.2017.3016
https://doi.org/10.1001/jamapsychiatry.2017.3016
https://doi.org/10.1016/S0924-9338(00)00229-7
https://doi.org/10.1016/j.neubiorev.2021.01.008
https://doi.org/10.1016/j.neubiorev.2021.01.008
https://doi.org/10.1016/j.bbi.2020.10.020
https://doi.org/10.1016/j.bbi.2020.12.005
https://doi.org/10.1038/s41386-020-00948-6
https://doi.org/10.1001/jamapsychiatry.2019.3758s
https://doi.org/10.1001/jamapsychiatry.2019.3758s
https://doi.org/10.1017/S0033291719001454
https://doi.org/10.1017/S0033291719001454
https://doi.org/10.1038/s41398-021-01236-7
https://doi.org/10.1001/2013.jamapsychiatry.4
https://doi.org/10.1001/2013.jamapsychiatry.4
https://doi.org/10.1017/S0033291719003404
https://doi.org/10.1017/S0033291719003404
https://doi.org/10.1176/appi.ajp.163.11.1905
https://doi.org/10.1176/appi.ajp.163.11.1905
https://doi.org/10.1038/s41380-018-0093-6
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1038/ijo.2010.137
https://doi.org/10.1001/jamapsychiatry.2015.2079
https://doi.org/10.1001/jamapsychiatry.2015.2079
https://doi.org/10.1038/s41398-020-00920-4
https://doi.org/10.1016/j.bbi.2016.08.012
https://doi.org/10.1016/j.bbi.2016.08.012
https://doi.org/10.1080/00273171.2019.1575716
https://doi.org/10.1080/00273171.2019.1575716
https://doi.org/10.1038/s41380-019-0471-8
https://doi.org/10.1001/jamapsychiatry.2020.3049


References | 51 

 

References 

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5®). Washington, DC: American Psychiatric Pub. 

Badini, I., Coleman, J. R., Hagenaars, S. P., Hotopf, M., Breen, G., Lewis, C. M., & Fabbri, C. 
(2020). Depression with atypical neurovegetative symptoms shares genetic 
predisposition with immuno-metabolic traits and alcohol consumption. 
Psychological Medicine, 1–11. https://doi.org/10.1017/S0033291720002342 

Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M., & Mondelli, V. (2016). Childhood 
trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive 
protein, interleukin-6 and tumour necrosis factor-α. Molecular Psychiatry, 21(5), 
642–649. https://doi.org/10.1038/mp.2015.67 

Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., … Kuchroo, V. K. (2006). 
Reciprocal developmental pathways for the generation of pathogenic effector TH17 
and regulatory T cells. Nature, 441(7090), 235–238. 
https://doi.org/10.1038/nature04753 

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5–
13. https://doi.org/10.1002/wps.20375 

Bradford Hill, A. (1965). The environment and disease: association or causation? 
Proceedings of the Royal Society of Medicine, 58(5), 295. 

Branchi, I., Poggini, S., Capuron, L., Benedetti, F., Poletti, S., Tamouza, R., … Pariante, C. M. 
(2020). Brain-immune crosstalk in the treatment of major depressive disorder. 
European Neuropsychopharmacology, 1–19. 
https://doi.org/10.1016/j.euroneuro.2020.11.016 

Capuron, L., Ravaud, A., & Dantzer, R. (2001). Timing and specificity of the cognitive 
changes induced by interleukin-2 and interferon-α treatments in cancer patients. 
Psychosomatic Medicine, 63(3), 376–386. https://doi.org/10.1097/00006842-
200105000-00007 

Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: a guide to performing polygenic 
risk score analyses. Nature Protocols, 15(9), 2759–2772. 
https://doi.org/10.1038/s41596-020-0353-1 

Chu, A. L., Stochl, J., Lewis, G., Zammit, S., Jones, P. B., & Khandaker, G. M. (2019). 
Longitudinal association between inflammatory markers and specific symptoms of 
depression in a prospective birth cohort. Brain, Behavior, and Immunity, 76, 74–81. 
https://doi.org/10.1016/j.bbi.2018.11.007 

Costello, H., Gould, R. L., Abrol, E., & Howard, R. (2019). Systematic review and meta-
analysis of the association between peripheral inflammatory cytokines and 
generalised anxiety disorder. BMJ Open, 9(7), e027925. 
https://doi.org/10.1136/bmjopen-2018-027925 

Cray, C., Zaias, J., & Altman, N. H. (2009). Acute phase response in animals: a review. 
Comparative Medicine, 59(6), 517–526. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/20034426 

Cui, H., López, M., & Rahmouni, K. (2017). The cellular and molecular bases of leptin and 
ghrelin resistance in obesity. Nature Reviews Endocrinology, 13(6), 338–351. 



52 | References 

 

https://doi.org/10.1038/nrendo.2016.222 

Dantzer, R. (2001). Cytokine-Induced Sickness Behavior: Where Do We Stand? Brain, 
Behavior, and Immunity, 15(1), 7–24. https://doi.org/10.1006/brbi.2000.0613 

Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From 
inflammation to sickness and depression: when the immune system subjugates the 
brain. Nature Reviews Neuroscience, 9(1), 46–56. 
https://doi.org/10.1038/nrn2297 

Del Giudice, M., & Gangestad, S. W. (2018). Rethinking IL-6 and CRP: Why they are more 
than inflammatory biomarkers, and why it matters. Brain, Behavior, and Immunity, 
70, 61–75. https://doi.org/10.1016/j.bbi.2018.02.013 

Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., & Lanctôt, K. L. 
(2010). A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry, 
67(5), 446–457. https://doi.org/10.1016/j.biopsych.2009.09.033 

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and 
their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. 
https://doi.org/10.3758/s13428-017-0862-1 

Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., … Price, A. L. 
(2015). Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nature Genetics, 47(11), 1228–1235. 
https://doi.org/10.1038/ng.3404 

Finucane, H. K., Reshef, Y. A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., … Price, A. 
L. (2018). Heritability enrichment of specifically expressed genes identifies disease-
relevant tissues and cell types. Nature Genetics, 50(4), 621–629. 
https://doi.org/10.1038/s41588-018-0081-4 

Flett, G. L., Vredenburg, K., & Krames, L. (1997). The continuity of depression in clinical 
and nonclinical samples. Psychological Bulletin, 121(3), 395–416. 
https://doi.org/10.1037/0033-2909.121.3.395 

Fried, E. I., von Stockert, S., Haslbeck, J. M. B., Lamers, F., Schoevers, R. A., & Penninx, B. W. 
J. H. (2019). Using network analysis to examine links between individual depressive 
symptoms, inflammatory markers, and covariates. Psychological Medicine, 1–9. 
https://doi.org/10.1017/S0033291719002770 

Galea, I., Bechmann, I., & Perry, V. H. (2007). What is immune privilege (not)? Trends in 
Immunology, 28(1), 12–18. https://doi.org/10.1016/j.it.2006.11.004 

Ganança, L., Oquendo, M. A., Tyrka, A. R., Cisneros-Trujillo, S., Mann, J. J., & Sublette, M. E. 
(2016). The role of cytokines in the pathophysiology of suicidal behavior. 
Psychoneuroendocrinology, 63, 296–310. 
https://doi.org/10.1016/j.psyneuen.2015.10.008 

Georgakis, M. K., Malik, R., Gill, D., Franceschini, N., Sudlow, C. L. M., Dichgans, M., … 
Slagboom, E. P. (2020). Interleukin-6 Signaling Effects on Ischemic Stroke and Other 
Cardiovascular Outcomes. Circulation: Genomic and Precision Medicine, 13(3), 168–
171. https://doi.org/10.1161/CIRCGEN.119.002872 

Global Burden of Disease Study 2013 Collaborators. (2015). Global, regional, and national 
incidence, prevalence, and years lived with disability for 301 acute and chronic 
diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the 



References | 53 

 

Global Burden of Disease Study 2013. The Lancet, 386, 743–800. 
https://doi.org/10.1016/S0140-6736(15)60692-4 

Gold, S. M., Köhler-Forsberg, O., Moss-Morris, R., Mehnert, A., Miranda, J. J., Bullinger, M., 
… Otte, C. (2020). Comorbid depression in medical diseases. Nature Reviews Disease 
Primers, 6(1), 69. https://doi.org/10.1038/s41572-020-0200-2 

Goldsmith, D. R., Rapaport, M. H., & Miller, B. J. (2016). A meta-analysis of blood cytokine 
network alterations in psychiatric patients: comparisons between schizophrenia, 
bipolar disorder and depression. Molecular Psychiatry, 21, 1696–1709. 
https://doi.org/10.1038/mp.2016.3 

Grosse, L., Hoogenboezem, T., Ambrée, O., Bellingrath, S., Jörgens, S., de Wit, H. J., … 
Drexhage, H. A. (2016). Deficiencies of the T and natural killer cell system in major 
depressive disorder. Brain, Behavior, and Immunity, 54, 38–44. 
https://doi.org/10.1016/j.bbi.2015.12.003 

Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimäki, M. (2015). Cumulative 
meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive 
protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 
49, 206–215. https://doi.org/10.1016/j.bbi.2015.06.001 

Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience & 
Biobehavioral Reviews, 12(2), 123–137. https://doi.org/10.1016/S0149-
7634(88)80004-6 

Hemani, G., Bowden, J., & Davey Smith, G. (2018). Evaluating the potential role of 
pleiotropy in Mendelian randomization studies. Human Molecular Genetics, 27(R2), 
R195–R208. https://doi.org/10.1093/hmg/ddy163 

Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D., … Haycock, P. C. 
(2018). The MR-Base platform supports systematic causal inference across the 
human phenome. ELife, 7, e34408. https://doi.org/10.7554/eLife.34408.001 

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. Nature, 
466(7302), 29–29. https://doi.org/10.1038/466029a 

Himmerich, H., Patsalos, O., Lichtblau, N., Ibrahim, M. A. A., & Dalton, B. (2019). Cytokine 
Research in Depression: Principles, Challenges, and Open Questions. Frontiers in 
Psychiatry, 10, 30. https://doi.org/10.3389/fpsyt.2019.00030 

Howren, M. B., Lamkin, D. M., & Suls, J. (2009). Associations of depression with C-reactive 
protein, IL-1, and IL-6: a meta-analysis. Psychosomatic Medicine, 71(2), 171–186. 
https://doi.org/10.1097/PSY.0b013e3181907c1b 

Hunter, C. A., & Jones, S. A. (2015). IL-6 as a keystone cytokine in health and disease. 
Nature Immunology, 16(5), 448–457. https://doi.org/10.1038/ni.3153 

Jokela, M., Virtanen, M., Batty, G., & Kivimäki, M. (2016). Inflammation and specific 
symptoms of depression. JAMA Psychiatry, 73(1), 87–88. 
https://doi.org/10.1001/jamapsychiatry.2015.1977 

Kappelmann, N., Lewis, G., Dantzer, R., Jones, P. B., & Khandaker, G. M. (2018). 
Antidepressant activity of anti-cytokine treatment: a systematic review and meta-
analysis of clinical trials of chronic inflammatory conditions. Molecular Psychiatry, 
23(2), 335–343. https://doi.org/10.1038/mp.2016.167 



54 | References 

 

Kelly, K., Smith, J. A., & Mezuk, B. (2021). Depression and interleukin-6 signaling: A 
Mendelian Randomization Study. Brain, Behavior, and Immunity. 
https://doi.org/10.1016/j.bbi.2021.02.019 

Kendler, K. S. (1996). Major Depression and Generalised Anxiety Disorder. British Journal 
of Psychiatry, 168(S30), 68–75. https://doi.org/10.1192/S0007125000298437 

Kent, S., Bluthé, R.-M., Kelley, K. W., & Dantzer, R. (1992). Sickness behavior as a new 
target for drug development. Trends in Pharmacological Sciences, 13(C), 24–28. 
https://doi.org/10.1016/0165-6147(92)90012-U 

Khandaker, G. M., Pearson, R. M., Zammit, S., Lewis, G., & Jones, P. B. (2014). Association 
of serum interleukin 6 and C-reactive protein in childhood with depression and 
psychosis in young adult life: a population-based longitudinal study. JAMA 
Psychiatry, 71(10), 1121–1128. 
https://doi.org/10.1001/jamapsychiatry.2014.1332 

Khandaker, G. M., Zuber, V., Rees, J. M. B., Carvalho, L., Mason, A. M., Foley, C. N., … Burgess, 
S. (2020). Shared mechanisms between coronary heart disease and depression: 
findings from a large UK general population-based cohort. Molecular Psychiatry, 
25(7), 1477–1486. https://doi.org/10.1038/s41380-019-0395-3 

Köhler-Forsberg, O., Buttenschøn, H. N., Tansey, K. E., Maier, W., Hauser, J., Dernovsek, M. 
Z., … Mors, O. (2017). Association between C-reactive protein (CRP) with depression 
symptom severity and specific depressive symptoms in major depression. Brain, 
Behavior, and Immunity, 62, 344–350. https://doi.org/10.1016/j.bbi.2017.02.020 

Köhler-Forsberg, O., Nicolaisen Lydholm, C., Hjorthøj, C., Nordentoft, M., Mors, O., & 
Benros, M. E. (2019). Efficacy of anti-inflammatory treatment on major depressive 
disorder or depressive symptoms: Meta-analysis of clinical trials. Acta Psychiatrica 
Scandinavica, 0–2. https://doi.org/10.1111/acps.13016 

Köhler, C. A., Freitas, T. H., Maes, M., de Andrade, N. Q., Liu, C. S., Fernandes, B. S., … 
Carvalho, A. F. (2017). Peripheral cytokine and chemokine alterations in depression: 
a meta-analysis of 82 studies. Acta Psychiatrica Scandinavica, 135(5), 373–387. 
https://doi.org/10.1111/acps.12698 

Köhler, O., Benros, M. E., Nordentoft, M., Farkouh, M. E., Iyengar, R. L., Mors, O., & Krogh, J. 
(2014). Effect of anti-inflammatory treatment on depression, depressive symptoms, 
and adverse effects: a systematic review and meta-analysis of randomized clinical 
trials. JAMA Psychiatry, 71(12), 1381–1391. 
https://doi.org/10.1001/jamapsychiatry.2014.1611 

Lamers, F., Milaneschi, Y., de Jonge, P., Giltay, E. J., & Penninx, B. W. J. H. (2018). Metabolic 
and inflammatory markers: associations with individual depressive symptoms. 
Psychological Medicine, 48(7), 1102–1110. 
https://doi.org/10.1017/S0033291717002483 

Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N., & Davey Smith, G. (2008). 
Mendelian randomization: Using genes as instruments for making causal inferences 
in epidemiology. Statistics in Medicine, 27(8), 1133–1163. 
https://doi.org/10.1002/sim.3034 

Lawlor, D. A., Tilling, K., & Davey Smith, G. (2017). Triangulation in aetiological 
epidemiology. International Journal of Epidemiology, 45(6), dyw314. 



References | 55 

 

https://doi.org/10.1093/ije/dyw314 

Ligthart, S., Vaez, A., Võsa, U., Stathopoulou, M. G., de Vries, P. S., Prins, B. P., … Slagboom, 
E. P. (2018). Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic 
Inflammation and Highlight Pathways that Link Inflammation and Complex 
Disorders. The American Journal of Human Genetics, 103(5), 691–706. 
https://doi.org/10.1016/j.ajhg.2018.09.009 

Lindqvist, D., Janelidze, S., Hagell, P., Erhardt, S., Samuelsson, M., Minthon, L., … Brundin, 
L. (2009). Interleukin-6 Is Elevated in the Cerebrospinal Fluid of Suicide Attempters 
and Related to Symptom Severity. Biological Psychiatry, 66(3), 287–292. 
https://doi.org/10.1016/j.biopsych.2009.01.030 

Mac Giollabhui, N., Ng, T. H., Ellman, L. M., & Alloy, L. B. (2020). The longitudinal 
associations of inflammatory biomarkers and depression revisited: systematic 
review, meta-analysis, and meta-regression. Molecular Psychiatry. 
https://doi.org/10.1038/s41380-020-00867-4 

Marsland, A. L., Walsh, C., Lockwood, K., & John-Henderson, N. A. (2017). The effects of 
acute psychological stress on circulating and stimulated inflammatory markers: A 
systematic review and meta-analysis. Brain, Behavior, and Immunity, 64, 208–219. 
https://doi.org/10.1016/j.bbi.2017.01.011 

McAfoose, J., & Baune, B. T. (2009). Evidence for a cytokine model of cognitive function. 
Neuroscience & Biobehavioral Reviews, 33(3), 355–366. 
https://doi.org/10.1016/j.neubiorev.2008.10.005 

McIntyre, R. S., Subramaniapillai, M., Lee, Y., Pan, Z., Carmona, N. E., Shekotikhina, M., … 
Mansur, R. B. (2019). Efficacy of Adjunctive Infliximab vs Placebo in the Treatment 
of Adults With Bipolar I/II Depression. JAMA Psychiatry, 1–8. 
https://doi.org/10.1001/jamapsychiatry.2019.0779 

Milaneschi, Y., Lamers, F., Berk, M., & Penninx, B. W. J. H. (2020). Depression 
Heterogeneity and Its Biological Underpinnings: Toward Immunometabolic 
Depression. Biological Psychiatry, 88(5), 369–380. 
https://doi.org/10.1016/j.biopsych.2020.01.014 

Milaneschi, Y., Lamers, F., & Penninx, B. W. J. H. (2021). Dissecting Depression Biological 
and Clinical Heterogeneity—The Importance of Symptom Assessment Resolution. 
JAMA Psychiatry, 78(3), 341. https://doi.org/10.1001/jamapsychiatry.2020.4373 

Milaneschi, Y., Lamers, F., Peyrot, W., Abdellaoui, A., Willemsen, G., Hottenga, J.-J., … Lu, C. 
(2016). Polygenic dissection of major depression clinical heterogeneity. Molecular 
Psychiatry, 21, 516–522. https://doi.org/10.1038/mp.2015.86 

Milaneschi, Y., Lamers, F., Peyrot, W. J., Baune, B. T., Breen, G., Dehghan, A., … Penninx, B. 
W. J. H. (2017). Genetic Association of Major Depression With Atypical Features and 
Obesity-Related Immunometabolic Dysregulations. JAMA Psychiatry, 74(12), 1214. 
https://doi.org/10.1001/jamapsychiatry.2017.3016 

Milaneschi, Y., Simmons, W. K., van Rossum, E. F. C., & Penninx, B. W. J. H. (2019). 
Depression and obesity: evidence of shared biological mechanisms. Molecular 
Psychiatry, 24(1), 18–33. https://doi.org/10.1038/s41380-018-0017-5 

Miller, A. H., & Raison, C. L. (2016). The role of inflammation in depression: from 
evolutionary imperative to modern treatment target. Nature Reviews Immunology, 



56 | References 

 

16(1), 22–34. https://doi.org/10.1038/nri.2015.5 

Mondelli, V., Vernon, A. C., Turkheimer, F., Dazzan, P., & Pariante, C. M. (2017). Brain 
microglia in psychiatric disorders. The Lancet Psychiatry, 4(7), 563–572. 
https://doi.org/10.1016/S2215-0366(17)30101-3 

Moriarity, D. P., Horn, S. R., Kautz, M. M., Haslbeck, J. M. B., & Alloy, L. B. (2021). How 
handling extreme C-reactive protein (CRP) values and regularization influences CRP 
and depression criteria associations in network analyses. Brain, Behavior, and 
Immunity, 91, 393–403. https://doi.org/10.1016/j.bbi.2020.10.020 

Musselman, D. L., Lawson, D. H., Gumnick, J. F., Manatunga, A. K., Penna, S., Goodkin, R. S., 
… Miller, A. H. (2012). Paroxetine for the Prevention of Depression Induced by 
Interferon Alfa. New England Journal of Medicine, 5701(13), 961–966. 
https://doi.org/10.1056/NEJM200103293441303 

Nettis, M. A., Lombardo, G., Hastings, C., Zajkowska, Z., Mariani, N., Nikkheslat, N., … 
Mondelli, V. (2021). Augmentation therapy with minocycline in treatment-resistant 
depression patients with low-grade peripheral inflammation: results from a double-
blind randomised clinical trial. Neuropsychopharmacology, 46(5), 939–948. 
https://doi.org/10.1038/s41386-020-00948-6 

Ohlsson, H., & Kendler, K. S. (2020). Applying Causal Inference Methods in Psychiatric 
Epidemiology. JAMA Psychiatry, 77(6), 637–644. 
https://doi.org/10.1001/jamapsychiatry.2019.3758 

Osborn, O., & Olefsky, J. M. (2012). The cellular and signaling networks linking the 
immune system and metabolism in disease. Nature Medicine, 18(3), 363–374. 
https://doi.org/10.1038/nm.2627 

Osimo, E. F., Baxter, L. J., Lewis, G., Jones, P. B., & Khandaker, G. M. (2019). Prevalence of 
low-grade inflammation in depression: a systematic review and meta-analysis of 
CRP levels. Psychological Medicine, 49(12), 1958–1970. 
https://doi.org/10.1017/S0033291719001454 

Otte, C., Gold, S. M., Penninx, B. W. J. H., Pariante, C. M., Etkin, A., Fava, M., … Schatzberg, A. 
F. (2016). Major depressive disorder. Nature Reviews Disease Primers, 2(1), 16065. 
https://doi.org/10.1038/nrdp.2016.65 

Pistis, G., Milaneschi, Y., Vandeleur, C. L., Lasserre, A. M., Penninx, B. W. J. H., Lamers, F., … 
Kutalik, Z. (2021). Obesity and atypical depression symptoms: findings from 
Mendelian randomization in two European cohorts. Translational Psychiatry, 11(1), 
96. https://doi.org/10.1038/s41398-021-01236-7 

Rainville, J. R., & Hodes, G. E. (2019). Inflaming sex differences in mood disorders. 
Neuropsychopharmacology, 44(1), 184–199. https://doi.org/10.1038/s41386-
018-0124-7 

Raison, C. L., & Miller, A. H. (2003). Depression in cancer: New developments regarding 
diagnosis and treatment. Biological Psychiatry, 54(3), 283–294. 
https://doi.org/10.1016/S0006-3223(03)00413-X 

Raison, C. L., Rutherford, R. E., Woolwine, B. J., Shuo, C., Schettler, P., Drake, D. F., … Miller, 
A. H. (2013). A randomized controlled trial of the tumor necrosis factor antagonist 
infliximab for treatment-resistant depression: the role of baseline inflammatory 
biomarkers. JAMA Psychiatry, 70(1), 31–41. 



References | 57 

 

https://doi.org/10.1001/2013.jamapsychiatry.4 

Reeh, H., Rudolph, N., Billing, U., Christen, H., Streif, S., Bullinger, E., … Dittrich, A. (2019). 
Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the 
IL-6 receptor α to gp130 expression: fusing experimental insights and dynamic 
modelling. Cell Communication and Signaling, 17(1), 46. 
https://doi.org/10.1186/s12964-019-0356-0 

Richard, D. (2015). Cognitive and autonomic determinants of energy homeostasis in 
obesity. Nature Reviews Endocrinology, 11(8), 489–501. 
https://doi.org/10.1038/nrendo.2015.103 

Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Warden, D., … 
Fava, M. (2006). Acute and Longer-Term Outcomes in Depressed Outpatients 
Requiring One or Several Treatment Steps: A STAR*D Report. American Journal of 
Psychiatry, 163(11), 1905. https://doi.org/10.1176/appi.ajp.163.11.1905 

Schedlowski, M., Engler, H., & Grigoleit, J. S. (2014). Endotoxin-induced experimental 
systemic inflammation in humans: a model to disentangle immune-to-brain 
communication. Brain, Behavior, and Immunity, 35, 1–8. 
https://doi.org/10.1016/j.bbi.2013.09.015 

Schreiber, S., Aden, K., Bernardes, J. P., Conrad, C., Tran, F., Höper, H., … Rosenstiel, P. 
(2021). Therapeutic Interleukin-6 Trans-signaling Inhibition by Olamkicept 
(sgp130Fc) in Patients With Active Inflammatory Bowel Disease. Gastroenterology, 
160(7), 2354–2366. https://doi.org/10.1053/j.gastro.2021.02.062 

Scott, L. J. (2017). Tocilizumab: A Review in Rheumatoid Arthritis. Drugs, 77(17), 1865–
1879. https://doi.org/10.1007/s40265-017-0829-7 

Sharma, B. R., & Kanneganti, T. (2021). NLRP3 inflammasome in cancer and metabolic 
diseases. Nature Immunology, 22(5), 550–559. https://doi.org/10.1038/s41590-
021-00886-5 

Simmons, W. K., Burrows, K., Avery, J. A., Kerr, K. L., Taylor, A., Bodurka, J., … Drevets, W. 
C. (2020). Appetite changes reveal depression subgroups with distinct endocrine, 
metabolic, and immune states. Molecular Psychiatry, 25(7), 1457–1468. 
https://doi.org/10.1038/s41380-018-0093-6 

Smolen, J. S., Aletaha, D., Barton, A., Burmester, G. R., Emery, P., Firestein, G. S., … 
Yamamoto, K. (2018). Rheumatoid arthritis. Nature Reviews Disease Primers, 4(1), 
18001. https://doi.org/10.1038/nrdp.2018.1 

Statistisches Bundesamt. (2021). Current population: Population based on the 2011 
Census. Retrieved May 31, 2021, from 
https://www.destatis.de/EN/Themes/Society-Environment/Population/Current-
Population/Tables/liste-current-population.html 

Straub, R. H., & Cutolo, M. (2007). Circadian rhythms in rheumatoid arthritis: Implications 
for pathophysiology and therapeutic management. Arthritis & Rheumatism, 56(2), 
399–408. https://doi.org/10.1002/art.22368 

Turecki, G., Brent, D. A., Gunnell, D., O’Connor, R. C., Oquendo, M. A., Pirkis, J., & Stanley, B. 
H. (2019). Suicide and suicide risk. Nature Reviews Disease Primers, 5(1). 
https://doi.org/10.1038/s41572-019-0121-0 

Udina, M., Castellvi, P., Moreno-Espana, J., Navines, R., Valdes, M., Forns, X., … Martin-



58 | References 

 

Santos, R. (2012). Interferon-induced depression in chronic hepatitis C: a systematic 
review and meta-analysis. Journal of Clinical Psychiatry, 73(8), 1128–1138. 
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22967776 

van Eeden, W. A., van Hemert, A. M., Carlier, I. V. E., Penninx, B. W. J. H., Lamers, F., Fried, 
E. I., … Giltay, E. J. (2020). Basal and LPS-stimulated inflammatory markers and the 
course of individual symptoms of depression. Translational Psychiatry, 10(1), 235. 
https://doi.org/10.1038/s41398-020-00920-4 

Waetzig, G. H., & Rose-John, S. (2012). Hitting a complex target: an update on interleukin-
6 trans-signalling. Expert Opinion on Therapeutic Targets, 16(2), 225–236. 
https://doi.org/10.1517/14728222.2012.660307 

White, J., Kivimäki, M., Jokela, M., & Batty, G. D. (2017). Association of inflammation with 
specific symptoms of depression in a general population of older people: The English 
Longitudinal Study of Ageing. Brain, Behavior, and Immunity, 61, 27–30. 
https://doi.org/10.1016/j.bbi.2016.08.012 

Wittenberg, G. M., Stylianou, A., Zhang, Y., Sun, Y., Gupta, A., Jagannatha, P. S., … Drevets, 
W. C. (2020). Effects of immunomodulatory drugs on depressive symptoms: A mega-
analysis of randomized, placebo-controlled clinical trials in inflammatory disorders. 
Molecular Psychiatry, 25(6), 1275–1285. https://doi.org/10.1038/s41380-019-
0471-8 

Wium-Andersen, M. K., Ørsted, D. D., & Nordestgaard, B. G. (2014). Elevated C-Reactive 
Protein, Depression, Somatic Diseases, and All-Cause Mortality: A Mendelian 
Randomization Study. Biological Psychiatry, 76(3), 249–257. 
https://doi.org/10.1016/j.biopsych.2013.10.009 

Ye, Z., Kappelmann, N., Moser, S., Davey Smith, G., Burgess, S., Jones, P. B., & Khandaker, G. 
M. (2021). Role of inflammation in depression and anxiety: Tests for disorder 
specificity, linearity and potential causality of association in the UK Biobank. 
EClinicalMedicine, 38, 100992. https://doi.org/10.1016/j.eclinm.2021.100992 

 



Appendix A: Association of inflammation with depression and anxiety symptoms | 59 

 

Appendix A: Association of inflammation with depression and 

anxiety symptoms 

Summary 

To establish diagnostic and symptom specificity of inflammation as a risk factor in affec-

tive disorders, the objective of this third study was to test if serum CRP and IL-6 were 

consistently associated with all depressive and anxiety symptoms, to test the relevance 

of symptom direction of composite depressive symptoms, and to evaluate potential 

causal effects of CRP and IL-6 on depressive and anxiety symptoms using 1-sample and 

2-sample MR. To this end, data from UK Biobank (N=147,478) and Netherlands Study of 

Depression and Anxiety (NESDA; N=2,905) cohorts was analysed. In multiple linear re-

gression, associations of serum CRP and IL-6 with specific depressive and anxiety symp-

toms were tested using sequential adjustment for potential confounding variables includ-

ing age, sex, and socioeconomic status (Model 1), additional adjustment of smoking, alco-

hol consumption, physical activity and type 2 diabetes or cardiovascular disease (Model 

2), and additional adjustment of BMI (Model 3). In NESDA, symptom direction of these 

associations was further investigated for composite symptoms of changes in appetite, 

sleeping problems, and psychomotor changes. Finally, 1-sample and 2-sample MR analy-

sis was applied to test potential causal associations using genetic variants indexing CRP 

and IL-6 based on associations with serum CRP concentrations in the UK Biobank or es-

timates from discovery GWAS, respectively.  

Meta-analysis of associations across UK Biobank and NESDA cohorts suggested CRP was 

associated with depressive symptoms of depressed mood, fatigue, sleeping problems, and 

changes in appetite following multiple comparison correction and adjustment for socio-

demographic and lifestyle confounders (Model 2), but the association with changes in 

appetite fully attenuated with additional adjustment for BMI. Extended analyses in 

NESDA showed that associations of CRP were specific to hypersomnia rather than symp-

toms indexing aspects of insomnia. They were also specific to increased appetite rather 

than decreased appetite. Findings for IL-6 in NESDA further suggested associations of 

higher IL-6 with hypersomnia, fatigue, decreased appetite and anhedonia. Finally, 1-sam-

ple and 2-sample MR analyses suggested potential causal associations of higher CRP with 

lower suicidal ideation and lower cognitive problems and of higher IL-6 activity with 

greater fatigue and sleeping problems following multiple comparison correction. Taken 

together, these findings provide consistent evidence implicating the IL-6/IL-6R pathway 

in the aetiology of depressive symptoms of fatigue and sleeping difficulties. They also 
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highlight the importance of considering metabolic dysregulation in the context of inflam-

mation and of considering symptom direction for symptoms of changes in appetite and 

sleeping problems. These results provide a more fine-grained picture implicating inflam-

mation specifically in the aetiology of so-called atypical symptoms of depression, which 

emphasises the benefit of studying potential anti-inflammatory and lifestyle interven-

tions targeting this group. 
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INTRODUCTION 

A role for inflammatory dysregulation in depression has been suggested by a large body 

of evidence. Clinical studies have shown that a quarter of patients with hepatitis C de-

velop a depressive episode following pro-inflammatory interferon treatment [1]. Large 

meta-analyses report cross-sectional and longitudinal associations between inflamma-

tory markers - such as C-Reactive Protein (CRP) and Interleukin 6 (IL-6) - and depression 

[2–7]. Indeed, inflammation is present in about a quarter of depressed patients as evi-

denced by elevated CRP levels [8]. However, there are key outstanding questions regard-

ing symptom specificity and potential causality of association. 

Previous studies have mainly used composite measures of depression, but it is a pheno-

typically heterogenous syndrome. Depression is also highly comorbid with anxiety, but 
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studies of inflammation and anxiety symptoms are scarce [9]. It is possible that inflam-

mation is relevant for some but not all affective symptoms. Higher inflammatory marker 

levels have been reported to be mainly associated with anhedonia and neurovegetative 

symptoms such as fatigue, appetite and sleep alterations [10–16]. However, assessments 

in previous research often conflated divergent alterations in neurovegetative symptoms 

(e.g. increased vs decreased appetite). Emerging evidence suggests that inflammatory 

and metabolic alterations map more consistently onto “atypical” energy-related symp-

toms, particularly increased sleep, appetite/weight, fatigue and leaden paralysis [17–19]. 

Inflammation is unlikely to be relevant for all cases of depression. A symptom-based ap-

proach may provide insights into mechanisms of inflammation-related depression and 

could help inform patient selection in immunotherapy trials.    

In addition to symptom-specificity, another key issue is causality of association. Mende-

lian Randomization (MR) is an approach to evaluate potential causality, which uses ge-

netic variants as proxy instruments (unrelated to confounding variables based on Men-

del’s law of random allele segregation) to test exposure-outcome associations [20]. A re-

cent MR study of depressive symptoms indicated that IL-6 signalling could be causally 

linked with suicidality [21]. However, this study did not triangulate MR results using phe-

notypic association analyses on serum inflammatory markers and did not investigate 

anxiety symptoms or particular direction of change (increase vs decrease) in neurovege-

tative symptoms specifically. MR studies of depressive and anxiety symptoms including 

more granular information on direction of symptom change is required to gain greater 

insights into the potential role of inflammation in these disorders.  

We have examined specificity and potential causality of associations for CRP and IL-6 

with depressive and anxiety symptoms using large-scale data from two well-established 

European cohorts, UK Biobank (UKB) and Netherlands Study of Depression and Anxiety 

(NESDA). In addition to testing symptom-level associations for CRP in two cohorts, we 

have carried out further analysis in the NESDA cohort using: (1) IL-6 levels as exposure; 

and (2) granular information on direction of change for particular symptoms (e.g., sleep 

problems, appetite alterations) as outcomes in relation to IL-6 and CRP. Furthermore, we 

have carried out one- and two-sample MR analyses to test whether associations of IL-6 

and CRP with specific depressive and anxiety symptoms are likely to be causal using ge-

netic variants regulating levels/activity of these inflammatory markers as instrumental 

variables. 
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METHODS 

Study cohorts 

The present study utilised data from the UK Biobank (UKB) study [22], a population-

based cohort comprising 502,524 UK residents aged 40-69 years, and the Netherlands 

Study of Depression and Anxiety (NESDA) [23], an ongoing cohort study of 2,981 partic-

ipants aged 18-65 years with current or past depressive and/or anxiety disorder and 

healthy controls. Detailed descriptions of study cohorts are available as Supplementary 

Methods. 

Briefly, we included up to 147,478 participants from the UKB sample with data on CRP 

and depressive/anxiety symptoms. For Mendelian Randomisation analysis, a sample of 

unrelated individuals with European ancestry and genotype information was used in-

cluding up to 325,441 participants to estimate single-nucleotide polymorphism (SNP)-

exposure associations with CRP for one-sample MR analysis and up to 111,572 partici-

pants to estimate SNP-outcome associations. From the NESDA sample, 2,905 participants 

with complete data at baseline on inflammatory markers and depressive/anxiety symp-

toms were selected. Biomarkers and symptoms were assessed again at 2-year and 6-year 

follow-up, totalling ~7,000 observations. 

The UKB study was approved by the UK Biobank’s research ethics committee and Human 

Tissue Authority research tissue bank. The current analysis was approved under project 

no. 26999. The NESDA research protocol was approved by the ethical committee of par-

ticipating universities. Participants from both cohorts provided informed consent. 

Depressive and anxiety symptoms  

In UKB nine depressive and seven anxiety symptoms were assessed using Patient Health 

Questionnaire (PHQ)-9 and Generalized Anxiety Disorder (GAD)-7 questionnaires, re-

spectively [24]. We identified similar items from NESDA that were assessed by different 

questionnaires (i.e., Inventory of Depressive Symptomatology [IDS-SR30], Beck Anxiety 

Inventory [BAI] & Penn State Worry Questionnaire [PSWQ]) at baseline, 2- and 6-year 

follow-up. Items coding similar domains (e.g., anhedonia assessed as lack of “general in-

terest” and “capacity for pleasure”) and items coding specific neurovegetative symptoms 

(e.g., sleeping problems separately measured as “increased” or “decreased” sleep) were 

conflated to align these with UKB data for ease of comparison. All symptoms were bi-

narised to reflect a measure of any versus no symptom endorsement. For depressive 

symptoms we also created two summary scores, “psychological” and “somatic”, based on 

a 2-factor model based on reported genetic covariance among nine PHQ-9 symptoms in 

UKB [25].  
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In extended NESDA analyses, items measuring neurovegetative symptoms were left dis-

aggregated coding for specific alterations. Details on questionnaires, items and coding are 

in Supplementary Methods and Supplementary Table 1.  

Inflammatory markers 

In both UKB and NESDA, circulating CRP levels were measured using high-sensitivity as-

says. In NESDA, circulating IL-6 levels were additionally available, and both inflammatory 

markers were assessed at baseline, 2- and 6-year follow-up which were modelled in re-

peated-measurement analyses. Details on blood sampling and technical assay features 

are described in Supplementary Methods. 

Covariates 

The same set of covariates was considered in both cohorts, which included age, sex, soci-

oeconomic status (SES), smoking (current/former/never), quantity of alcohol consump-

tion, type and time spent in physical activity, lifetime history of type two diabetes (T2D) 

and cardiovascular diseases (CVD), and body mass index (BMI). SES was measured via 

the Townsend Deprivation Index (a composite score of deprivation derived from national 

census data [26]) in UKB, and as years of education in NESDA. All covariates in NESDA 

were measured at baseline. Covariate measurements and their distribution are described 

in Supplementary Methods and Supplementary Tables 2 and 3. 

Statistical Analysis 

Cross-cohort analyses of associations between CRP and depressive/anxiety symptoms 

Associations between CRP levels and depressive/anxiety symptoms were estimated by 

regressing individual symptoms and summary scores on log-transformed values of CRP. 

Details of statistical models are given in Supplementary Methods. In order to explore the 

impact of covariates on the association between CRP and symptoms, estimates were ad-

justed for age, sex and SES (Model 1), additionally adjusted for smoking, alcohol con-

sumption, physical activity and T2D/CVD (Model 2), and additionally adjusted for BMI 

(Model 3).  

Cohort-specific estimates were pooled using random-effects meta-analysis with the Der-

Simonian and Laird method [27]. For each model, False-Discovery Rate (FDR) q-values 

were calculated taking into account testing across 16 symptoms and 2 summary scales. 

Extended analyses using IL-6 levels and additional symptoms in NESDA 

Items measuring neurovegetative (appetite, sleep and psychomotor) symptoms were 

disaggregated in order to estimate associations between specific alterations (e.g., in-

crease vs decrease) and inflammation. We also used (log)IL-6 levels as exposure, not 
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measured in UKB. For each model, FDR q-values were calculated accounting for testing 

across 21 symptoms and two summary scales. 

Mendelian Randomization analyses 

Instrument selection 

We used multiple genetic instruments for CRP [28, 29], based on SNPs in the CRP gene 

associated with serum CRP concentrations, and for IL-6 [28, 30, 31], based on SNPs in the 

IL-6R gene associated either with serum CRP concentrations (as downstream readout of 

IL-6) or with serum IL-6 concentrations. Further details are provided as Supplementary 

Methods and in Supplementary Table 4. 

MR analysis 

Availability of CRP concentrations in the UKB sample allowed both one-sample and two-

sample MR analyses with SNP-exposure estimates obtained from original reports (two-

sample MR) or by regressing CRP on SNPs in UKB (one-sample MR). SNP-outcome esti-

mates were all obtained by regressing outcome phenotypes on SNPs. Regression analyses 

were controlled for 20 genotype principal components, age, age2, sex, and age*sex. We 

performed standard variant harmonisation procedures on obtained estimates [32]. As 

main analysis, we used fixed-effects inverse variance weighted (IVW) meta-analysis per 

exposure-outcome combination or Wald ratio estimation for the single-SNP IL-6 instru-

ment [30]. Potential horizontal pleiotropy was evaluated using Cochrane’s Q statistic 

[33]. Further details are noted in Supplementary Methods. 

 

RESULTS 

Table A1 shows main variables including symptom endorsement and inflammatory 

marker levels in UKB and NESDA cohorts. See Supplementary Table 5 and Supplementary 

Figures 1 & 2 for main variables and CRP and IL-6 levels across NESDA assessment waves. 
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Table A1. Main variables of interest in the two cohorts 

  UK Biobank  NESDA 

    N = 143,465   N = 2,905 
     

Sociodemographics     

Age years (mean ± SD)  55.9 (7.7)  41.9 (13.1) 

Sex (F) (%)  56.2  66.5 
     

Symptom endorsement - Depression (%)     

D.1 Anhedonia  18.5  13.9 

D.2 Depressed mood  21.9  21.6 

D.3 Sleep problem  48.7  25.9 

D.4 Fatigues  49.9  36.5 

D.5 Appetite change  18.2  7.7 

D.6 Feelings of inadequacy  19.2  24.2 

D.7 Cognitive problems  17.9  21.9 

D.8 Psychomotor change  5.5  18.1 

D.9 Suicidal ideation  4.3  12.2 
     

Symptom summary scales     

Psychological symptoms (mean ± SD)  0.74 (1.51)  0.721 (1.04) 

Somatic symptoms (mean ± SD)  1.65 (2.03)  1.09 (1.30) 
     

Symptom endorsement - Anxiety (%)     

A.1 Anxiety  28.0  24.5 

A.2 Worrying control  23.4  24.8 

A.3 Generalized worrying   31.6  31.5 

A.4 Lack of relaxation  28.3  32.3 

A.5 Restlessness  11.8  25.7 

A.6 Irritability  27.2  21.0 

A.7 Foreboding  16.6  20.4 
     

Inflammatory markers      

CRP (mg/L) (median, IQR)  1.15 (0.58-2.37)  1.22 (054 - 3.00) 

IL-6 (pg/mL) (median, IQR)  NA  0.75 (0.49 - 1.25) 

Note: UK Biobank sample size reflects all individuals with complete symptom and CRP 
data. For NESDA baseline values are reported; measures at 2- and 6-year follow-up are 
reported in Supplementary Table 5 and Supplementary Figures 1 & 2. NA=not applicable. 
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Association between CRP and depressive/anxiety symptoms in UKB and NESDA 

 

Figure A1. Association estimates of CRP with depressive and anxiety symptoms from UKB 
and NESDA cohorts. Association estimates are shown with individual depressive and anx-
iety symptoms (A) and depressive summary scores (B). Models have been adjusted for 
age, sex and SES (Model 1), additionally adjusted for smoking, alcohol consumption, 
physical activity and T2D/CVD (Model 2), and additionally adjusted for BMI (Model 3). 
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Table A2. Pooled Association Results between CRP and Depressive/Anxiety Symptoms 

  Model 1   Model 2   Model 3  

Symptom OR (95% CI) P Q OR (95% CI) P Q OR (95% CI) P Q 

Depressive symptoms          

Anhedonia 1.13 (1.03-1.23) 0.01 0.02 1.08 (0.99-1.18) 0.101 0.203 1.03 (0.96-1.11) 0.423 0.789 

Depressed mood 1.1 (1.07-1.13) <0.001 <0.001 1.06 (1.05-1.08) <0.001 <0.001 1.03 (1.01-1.04) <0.001 0.002 

Sleeping problems 1.07 (1.06-1.08) <0.001 <0.001 1.05 (1.04-1.06) <0.001 <0.001 1.02 (1.01-1.03) <0.001 0.003 

Fatigue 1.17 (1.15-1.18) <0.001 <0.001 1.12 (1.11-1.14) <0.001 <0.001 1.06 (1.05-1.07) <0.001 <0.001 

Appetite changes 1.3 (1.2-1.4) <0.001 <0.001 1.25 (1.23-1.28) <0.001 <0.001 1.02 (0.96-1.1) 0.499 0.789 

Feelings of inadequacy 1.02 (0.91-1.14) 0.734 0.777 1 (0.9-1.1) 0.925 0.979 0.98 (0.92-1.05) 0.564 0.789 

Cognitive problems 1.08 (1.01-1.16) 0.034 0.055 1.05 (0.99-1.11) 0.092 0.203 1.02 (1-1.03) 0.043 0.128 

Psychomotor changes 1.07 (0.87-1.3) 0.537 0.644 1.03 (0.86-1.22) 0.778 0.875 0.99 (0.86-1.13) 0.859 0.859 

Suicidal ideation 1.04 (0.86-1.26) 0.683 0.768 1 (0.86-1.17) 0.991 0.991 0.99 (0.91-1.09) 0.856 0.859 

Anxiety symptoms          

Anxiety 1.01 (1-1.03) 0.012 0.022 1 (0.99-1.01) 0.758 0.875 1 (0.99-1.02) 0.606 0.789 

Worrying control 1.05 (1.03-1.08) <0.001 <0.001 1.03 (1.02-1.04) <0.001 <0.001 1.01 (1-1.03) 0.033 0.12 

Generalised worrying 1.03 (1.01-1.04) <0.001 <0.001 1.01 (0.99-1.02) 0.309 0.505 1 (0.99-1.01) 0.833 0.859 

Lack of relaxation 1.04 (1.02-1.05) <0.001 <0.001 1.01 (1-1.02) 0.057 0.147 1.01 (1-1.02) 0.206 0.464 

Restlessness 0.98 (0.84-1.15) 0.834 0.834 0.96 (0.85-1.1) 0.586 0.812 0.96 (0.86-1.08) 0.52 0.789 

Irritability 1.09 (1.07-1.1) <0.001 <0.001 1.06 (1.05-1.08) <0.001 <0.001 1.03 (1.01-1.04) <0.001 <0.001 

Foreboding 1.04 (0.98-1.1) 0.21 0.29 1.01 (0.96-1.07) 0.677 0.871 1 (0.97-1.02) 0.812 0.859 
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Depressive symptom 

score 

β (SE) P Q β (SE) P Q β (SE) P Q 

Psychological symptoms 0.043 (0.042) 0.312 0.402 0.023 (0.029) 0.42 0.63 0.006 (0.012) 0.614 0.789 

Somatic symptoms 0.14 (0.11) 0.203 0.29 0.099 (0.077) 0.2 0.36 0.041 (0.028) 0.144 0.371 

Note: estimates describe the association with the outcome per 1 unit increase in (log)CRP. 
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Figure A1 shows results from individual cohorts and Table A2 shows meta-analytic 

pooled estimates representing the associations of CRP with individual depressive/anxi-

ety symptoms and summary scores for somatic and psychological symptoms of depres-

sion (exact numbers in Supplementary Tables 6 & 7). Based on the pooled analyses, after 

adjustment for sociodemographic, lifestyle and health-related factors (Model 2), higher 

CRP was associated with appetite change (OR=1.25, 95%CI=1.23-1.28), fatigue 

(OR=1.12, 95%CI=1.11-1.14), depressed mood (OR=1.06, 95%CI=1.05-1.08), and sleep 

problems (OR=1.05, 95%CI=1.04-1.06) among depressive symptoms, and with irritabil-

ity (OR=1.06, 95%CI=1.05-1.08) and worrying control (OR=1.03, 95%CI=1.02-1.04) 

among anxiety symptoms. CRP was not associated with somatic and psychological symp-

tom summary scores for depression. Evidence for associations attenuated with increas-

ing confounder adjustment and especially after including BMI; however, associations of 

CRP with fatigue, sleep problems, depressed mood and irritability remained statistically 

significant. 

Further analyses using IL-6 levels and additional symptoms in NESDA 

Among symptoms identified in cross-cohort analysis, extended analyses examining 

(log)IL-6 levels and disaggregated neurovegetative symptoms confirmed associations 

with altered sleep, appetite and fatigue (Figure A2, full results Supplementary Tables 8 & 

9). In particular, both higher CRP and IL-6 showed converging associations with hyper-

somnia (CRP OR=1.27, 95%CI=1.13-1.43; IL-6 OR=1.26, 95%CI=1.07-1.49) and fatigue 

(CRP OR=1.12, 95%CI=1.04-1.21; IL-6 OR=1.19, 95%CI=1.07-1.33). In contrast, diver-

gent associations with appetite alterations emerged, with CRP linked to increased appe-

tite (OR=1.21, 95%CI=1.08-1.35) and IL-6 linked to decreased appetite (OR=1.45, 

95%CI=1.18-1.79). IL-6 but not CRP was also associated with anhedonia (OR=1.30, 

95%CI=1.12-1.52). Additional adjustment for BMI did not change results substantially, 

but the association between CRP and increased appetite was no longer significant. In 

model 2, higher IL-6 was associated with depressed mood, but not after considering mul-

tiple testing. IL-6 was not associated with anxiety symptoms. 
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Figure A2. NESDA association estimates of CRP and IL-6 with depressive and anxiety 
symptoms. Association estimates are shown with individual depressive and anxiety 
symptoms (A) and depressive summary scores (B). Models have been adjusted for age, 
sex and SES (Model 1), additionally adjusted for smoking, alcohol consumption, physical 
activity and T2D/CVD (Model 2), and additionally adjusted for BMI (Model 3). 

Results for Mendelian randomization analyses 

IVW one-sample and two-sample MR results for CRP and IL-6 instruments are displayed 

in Figure A3 based on genetic instruments derived from Georgakis et al.[28] Exact nu-

meric results for these and other instruments are provided in Supplementary Tables 10 

and 11.  
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Overall, MR results showed that genetically predicted higher CRP levels were associated 

with lower risk of depressive and anxiety symptoms. After adjusting for multiple com-

parisons, evidence for associations remained for suicidal ideation, cognitive problems, 

and the psychological symptom summary score. On the other hand, MR results for IL-6 

showed that genetically predicted increased IL-6 signalling was associated with in-

creased fatigue, sleep problems and suicidality, but only associations with fatigue and 

sleep problems persisted after corrections for multiple testing.  

 

Figure A3. Mendelian randomisation results of CRP and IL-6 with depressive and anxiety 
symptoms. MR association estimates are shown with individual depressive and anxiety 
estimates (A) and depression summary scores (B). Results reflect MR IVW estimates 
based on Georgakis et al.(Georgakis et al., 2020) instruments; exact numeric values are 
presented in Supplementary Tables 11 & 12. 
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Of note, MR results for the aforementioned associations of genetically predicted CRP/IL-

6 with specific depressive symptoms were directionally consistent with results from a 

previous report using two-sample MR and a different combination of genetic instruments 

for CRP and IL-6 (cf. Kappelmann et al.[21]). 

Assessment of heterogeneity did not indicate that the aforementioned associations were 

likely to be due to horizontal pleiotropy except for the MR associations between lower 

CRP with increased suicidality (Supplementary Table 12 & 13). 

 

DISCUSSION 

Using large-scale data from two well-established cohorts, we report an extensive evalua-

tion of the associations between inflammatory markers and individual symptoms of de-

pression and anxiety, including cross-cohort analyses, extended phenotype analyses on 

symptoms assessed at more granular resolutions, and MR analysis testing potential cau-

sality. Our results provided evidence for symptom-specificity. Inflammation does not 

map uniformly onto all affective symptoms, but rather are more consistently associated 

with specific depressive symptoms of fatigue, altered appetite, sleep problems (in partic-

ular hypersomnia), and the core symptom of depressed mood as compared to other 

symptoms of depression and anxiety. Furthermore, we provide evidence consistent with 

a potentially causal role of IL-6 in fatigue and sleep alterations; please see Supplementary 

Table 14 for an overview of main results. 

Results across different analytical models and biomarkers highlighted more consistent 

associations of inflammation with depressive than with anxiety symptoms. For anxiety, 

associations were mainly limited to CRP and irritability, a symptom also commonly pre-

sent in depression. These results align with an extensive evidence-base suggesting an as-

sociation between inflammation and depression, and with a more limited evidence-base 

indicating an association between increased CRP levels mainly in subjects with general-

ized anxiety disorder (GAD), including our previous work from NESDA, ALSPAC, and UK 

Biobank cohorts [2–5, 9, 11, 17–19, 21, 34–36]. Together, these findings support the idea 

that systemic inflammation could be specifically related to depressive rather than anxiety 

symptoms. 

Our results provide evidence for further phenotype-specificity within the depression syn-

drome suggesting that inflammation maps specifically onto symptoms of fatigue, sleeping 

problems, changes in appetite, and depressed mood. These findings are consistent with 

previous research[10–15] including the concept of immuno-metabolic depression and 
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with inflammation-related “sickness behaviour” observed in human and animal studies 

[37, 38].  

We add to this evidence-base by providing data for similar and distinct associations for 

IL-6 and CRP for certain symptoms, especially sleep and appetite. Only hypersomnia, but 

not loss of sleep, showed consistent associations with CRP and IL-6. We report an intri-

guing dissociation between these inflammatory markers regarding their associations 

with appetite.  CRP and IL-6 were specifically associated with increased and decreased 

appetite, respectively. These findings are consistent with evidence from animal models 

showing that CRP directly inhibits leptin binding to its central receptors, abolishing its 

anorexigenic effect and disinhibiting food intake [39]. In contrast, in obese mice with lep-

tin resistance, the central activation of IL-6 trans-signalling has been shown to suppress 

feeding and improve glucose tolerance [40]. Similarly, it has been previously shown that 

increased BMI, a major stimulus for CRP production [41], is associated with appetite al-

terations [21], but only with increased appetite [42]. These data shed light on the impact 

of obesity on the association between CRP and appetite alterations, which was fully at-

tenuated after controlling for BMI.  

The pathways linking BMI, inflammation and depression, and their role in those path-

ways, are particularly complex. It is known that genetic risk variants for inflammation 

and for depression also have a major role in BMI increase [43, 44]; this may create a con-

figuration in which BMI is both a confounder and a collider (Supplementary Figure3), 

whose adjustment or lack thereof may lead to biased estimates. Nevertheless, all associ-

ations with other symptoms remained statistically significant after BMI adjustment, alt-

hough relatively reduced. 

Findings from MR analyses also highlight divergence between inflammatory markers. IL-

6 seems to have a potential causal effect in the development of fatigue and sleep prob-

lems, in line with evidence on the role of inflammation in “sickness behaviour” [37, 38].  

In contrast, CRP did not show significant MR estimates for the same symptoms, despite 

strong associations with circulating protein levels. These results suggest that the CRP-

depressive symptom associations may represent epiphenomena emerging from common 

underlying factors such as metabolic dysregulation. This idea is consistent with previous 

evidence suggesting shared genetic liability between CRP and symptoms of fatigue, al-

tered sleep and appetite [15, 18, 21]. Furthermore, genetically-elevated CRP levels were 

associated with lower risk of psychological symptoms, cognitive problems and suicidal-

ity. Similar divergent MR results have also been reported for schizophrenia and depres-

sion, suggesting a protective effect of CRP and a risk-increasing effect of soluble IL-6 re-

ceptor (IL-6R) on schizophrenia and depression risk, respectively [45, 46]. We have also 
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previously reported that IL-6R variants associated with higher serum IL-6 levels (but de-

creased IL-6R activity) and CRP variants associated with higher CRP levels are both asso-

ciated with increased risk of depression in the UK Biobank [47]. It could be hypothesized 

that the genetic instrument for CRP may partially capture the activity of IL-6 classic sig-

nalling that promotes regenerative and protective responses for neuronal function [48]. 

Hence, IL-6 classic signalling may potentially underlie protective findings for schizophre-

nia and depression. Conversely, IL-6 trans-signalling, which has been implicated in 

chronic inflammatory conditions such as rheumatoid arthritis and is primarily responsi-

ble for the pro-inflammatory role of IL-6 [49], may be responsible for risk-increasing as-

sociations of genetic instruments for IL-6. Future analyses joinlty considering CRP and 

IL-6 genetic instruments may clarify the direct effect of each marker.  

It is also important to investigate if immunological markers beyond CRP and IL-6 are po-

tentially causally associated with depression, and to identify potential cellular drivers for 

IL-6 dysfunction. While CRP and IL-6 are commonly measured inflammatory markers, 

they have multiple pro- and anti-inflammatory roles such as those exerted through IL-6 

classic and trans-signalling [48], which complicates inferences about specific immuno-

logical mechanisms conferring risk for depression. Case-control studies have implicated 

multiple other pro- and anti-inflammatory markers in depression [6] and immunophe-

notyping work suggests that patients exhibit increased monocyte, CD4+ T cell, and neu-

trophil counts [50]. Mechanistically, it has been suggested that these dysregulations could 

contribute to depression risk via multiple processes such as kynurenine pathway activa-

tion, imbalances in T cell subsets towards a pro-inflammatory phenotype, and reduced 

neuroplasticity [51]. Distinguishing these processes requires further population-based 

studies and experimental animal and human studies including detailed immunopheno-

typing of patients with depression.  

Finally, while MR analysis can provide evidence for causality, population genomic ap-

proaches alone are not sufficient to clarify pathophysiologic mechanisms fully and trian-

gulation of evidence from different approaches are required, including experimental 

studies of immune-modulation in humans. A potential pathophysiological role for inflam-

mation is consistent with evidence from meta-analyses showing antidepressant effects of 

anti-inflammatory agents [52–54]. However, some of the studies had small samples 

and/or were focused on patients with primary illnesses other than depression. A recent 

RCT [55] of anti-IL-6 monoclonal antibody sirukumab showed improvement in anhe-

donia but did not report significant difference in overall depression severity. Although 

this study used elevated CRP as entry criteria, one off measurement of CRP may not be 

sufficient to identify patients with persistent inflammation.  A number of ongoing trials 
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including small proof-of-concept studies are now testing potential clinical effects of im-

mune-modulation on depression [56, 57], especially in patients with signs of heightened 

and/or persistent inflammation. In future, adequately powered RCTs along with careful 

consideration of patient selection are required. 

Strengths and Limitations 

Strengths of the work include use of large samples from two European cohorts allowing 

replication/verification of findings, combined phenotypic and genetic analyses, and eval-

uation of both depressive and anxiety symptoms. A limitation was the lack of more gran-

ular data on specific vegetative depressive symptoms and IL-6 levels in UKB. Further-

more, as participants in NESDA and UK Biobank studies were relatively old and the over-

whelming majority of subjects enrolled were of European ancestry, results cannot be gen-

eralized to younger populations and populations of other ancestries.  

 

CONCLUSIONS 

In the current investigation of associations of inflammation with depression and anxiety, 

we provide evidence for specificity at several levels. First, systemic inflammation is 

mainly associated with depressive rather than anxiety symptoms. Second, within depres-

sion, inflammation is particularly associated with somatic/neurovegetative symptoms 

such as fatigue, altered sleep, appetite as well as depressed mood and anhedonia. Third, 

within symptoms, IL-6 and CRP have opposing effects on appetite but similar effects on 

fatigue. In addition, using MR analysis we provide evidence that the IL-6/IL-6R pathway 

could be causally linked with fatigue and sleeping problems. The field now requires ex-

perimental studies of IL-6 modulation in humans and animals to further evaluate causal-

ity, potential pathogenic mechanisms, and to assess potential usefulness of (add-on) im-

munotherapies for depression.  
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Appendix B: Role of inflammation in depression and anxiety  

Summary 

To identify patients with inflammation-related pathophysiology, the objectives of this 

fourth study were to test whether inflammation is a disorder-specific or trans-diagnostic 

risk factor for depression and anxiety, whether this association follows a linear dose-re-

sponse pattern, whether associations differed between women and men, and if associa-

tions are likely to be causal. To meet these objectives, we used data from up to 144,890 

participants of the UK Biobank study that participated in the optional follow-up mental 

health survey and completed questionnaires for depressive and generalised anxiety dis-

order (GAD) symptoms. We used multiple linear regression to assess if higher serum CRP 

was associated with these depressive and anxiety symptoms and binary measures of 

probable depression and GAD diagnoses. Bivariate probit regression and multiple regres-

sion adjusted for the respective other outcome were then applied to test evidence for 

potential disorder-specificity of CRP. Next, 1-sample and 2-sample MR analysis was ap-

plied to test potential causality of CRP and IL-6 on these outcomes. Finally, sex-stratified 

analyses were applied to see if associations varied between women and men and inverse 

probability weighted regression was used to test if results were sensitive to potential se-

lection bias within the larger UK Biobank cohort.  

Overall, results demonstrated consistent associations of higher serum CRP with depres-

sive and anxiety symptoms as well as with probable depression and GAD even after ad-

justing for age, sex, socioeconomic status, BMI, smoking, alcohol, physical activity, ethnic-

ity, type 2 diabetes and cardiovascular disease. These results followed a linear dose-re-

sponse pattern and associations of CRP were larger for depression than anxiety outcomes 

with evidence for disorder-specificity. Although inconsistently, there was some evidence 

for larger associations in women than in men. MR suggested that CRP had a potential 

causal risk-decreasing effect on depression and anxiety while IL-6 activity had a risk-in-

creasing effect. This could highlight a potential role of IL-6 trans-signalling rather than 

IL-6 classic signalling in depression. Future experimental work needs to disentangle IL-

6/IL-6R pathways further and clinical trials are needed to test drugs targeting these path-

ways for depression. 
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INTRODUCTION 

Innate immune dysfunction represents a putative mechanism for depression and other 

psychiatric disorders opening up the possibility of new treatment approaches distinct 

from current monoaminergic drugs.1,2 In depression, for instance, there is evidence of 

low-grade systemic inflammation as indexed by elevated concentrations of C-reactive 

protein (CRP >3mg/L) in 21–34% of patients,3 along with increased concentrations of 

interleukin-6 (IL-6) and other inflammatory cytokines in blood and in cerebrospinal fluid 

(CSF).4–8 A number of randomised controlled trials (RCTs) are now testing the effects of 

anti-inflammatory drugs in patients with depression (e.g., Khandaker et al.9, 

NCT02473289, NCT02362529). However, there are key outstanding questions, particu-

larly regarding specificity and causality of association, that require addressing for a 

clearer understanding of the potential role of inflammation in illness pathogenesis and to 

inform future clinical trials.  
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Depressive disorders overlap with anxiety disorders both genetically and clinically.10,11 

Anxiety symptoms now form part of the diagnostic criteria for major depressive disorder 

(MDD) as “anxious distress specifier” in the diagnostic and statistical manual of mental 

disorders 5th edition (DSM-5).12 Preliminary evidence from case-control studies also in-

dicates that inflammation could be implicated in generalized anxiety disorder (GAD), alt-

hough findings from studies are mixed and prospective studies indicate that inflamma-

tion could increase subsequent to the development of an anxiety disorder.13,14 Addition-

ally, to our knowledge no studies have tested whether inflammation is a common or spe-

cific risk factor for depression and anxiety. This is an important issue as it may help to 

identify potentially unique or shared mechanisms for psychiatric disorders that com-

monly co-occur. 

Regarding causality, longitudinal studies and meta-analyses have reported evidence for 

a temporal association between elevated CRP and IL-6 concentrations at baseline and risk 

of depressive symptoms subsequently,15–18 but other studies have not fully replicated as-

sociations of these markers with subsequent depressive disorders19,20 and residual con-

founding still remains a possibility. Mendelian randomization (MR) is an epidemiological 

approach that uses genetic variants as instruments to untangle the problem of unmeas-

ured confounding as genetic variants are randomly inherited from parents to offspring 

and fixed at conception.21 Therefore, if genetically-predicted values of a risk factor are 

associated with a disease outcome, then it is likely the association between the risk factor 

and outcome has a causal basis.  

Existing MR studies have provided mixed evidence on the association of inflammation 

with different psychiatric disorders. Hartwig et al. reported potential protective effects 

of elevated CRP for schizophrenia,22 contrasting with findings from observational stud-

ies.23,24 For depression, one study did not find evidence for a potential causal role of in-

flammation,25 while more recent studies reported potential causal roles for increased IL-

6 and CRP serum concentrations in depression,26 for increased IL-6 activity for suicidality 

specifically,27 and for increased soluble IL-6R levels for recurrent depressive symp-

toms.28 While these findings may indicate disorder-specificity, further research is re-

quired to enable definite conclusions regarding causality of association. Furthermore, to 

our knowledge, MR studies of inflammation and anxiety have thus far only investigated 

individual anxiety symptoms.29 

We have used data from up to 144,890 individuals from the UK Biobank study, a large 

general population-based cohort, to test associations of circulating CRP concentrations 

with depression and anxiety. As outcomes, we have used symptom scores and categorical 

probable diagnosis in the total sample and in men and women separately to assess po-
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tential sex difference, strength and reproducibility of association. We have examined ev-

idence for dose-response by testing linearity of association. We have examined specificity 

of association by testing whether the association of CRP with depression and anxiety is 

stronger for one outcome than the other, or is similar between outcomes. Furthermore, 

we have carried out MR analysis in the full sample, and in men and women separately, to 

test whether associations of CRP and IL-6 with depression and anxiety are consistent 

with potential causal roles for these biomarkers in these conditions.  

 

METHODS 

Study population 

The UK Biobank is a population-based cohort with a range of phenotyping assessments, 

biochemical assays and genome-wide genotyping from over 500,000 UK residents aged 

40-69 years at baseline, recruited between 2006 and 2010 from 22 assessment centres 

throughout the UK.30 Our primary outcomes were depressive and anxiety symptoms that 

were assessed online as part of a follow-up mental health survey completed by up to 

157,115 individuals between July 2016 and July 2017.31 The current study used available 

data from the maximum number of UK Biobank participants for each analysis (N up to 

144,890). The UK Biobank study was subject to ethics committee approval and partici-

pants gave their informed consent prior to participation; see details in Supplementary 

Methods. 

Exposure 

Using blood samples collected in the UK Biobank baseline visit between 2006 and 2010 

or the first repeat assessment visit between 2012 and 2013, serum high-sensitivity CRP 

concentrations were measured by immunoturbidimetric assay on a Beckman Coulter 

AU5800. Minimum detection limit was 0.08 mg/L. CRP values in the entire sample 

(n=486,424) ranged from 0.08 to 79.96 mg/L; mean=2.60 (SD=4.36) mg/L. The distri-

bution of CRP concentrations for this study (n=146,954) was divided into quintiles or 

deciles, which were used as categorical variables. We also carried out additional analyses 

using CRP as a continuous variable (natural log-transformed).  

Outcomes 

Our primary outcomes were depressive and anxiety symptoms occurring in the last 2 

weeks as measured using the Patient Health Questionnaire (PHQ)-9 and the Generalised 

Anxiety Disorder (GAD)-7 questionnaire, respectively.32,33 Symptoms were coded as 0-3 

depending on self-reported severity. We created sum-scores for each scale, which were 
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used as primary outcomes. Categorical diagnoses of probable depression and GAD were 

used as secondary outcomes, which were defined using commonly used cut-off criteria of 

PHQ-9≥10 and GAD-7≥10. See details in the Supplementary Appendix. 

Covariates 

As covariates, we included age, sex, body mass index (BMI), smoking, alcohol use, physi-

cal activity, ethnicity, Townsend Deprivation Index (TDI), and diabetes and cardiovascu-

lar disease; see Supplementary Appendix for details.  

Statistical Analyses 

Analyses were performed using Stata/SE 16.0 (Stata, College Station, TX). Baseline char-

acteristics of participants were examined across CRP quintiles.  

Association of CRP with depression and anxiety, linearity and sex difference 

Linear regression was used to estimate the associations between CRP concentrations 

(quintiles or deciles) and depressive and anxiety symptom scores. For the purpose of in-

terpretation, coefficient estimates were anti-log transformed to odds ratio and 95% con-

fidence interval (CI). We adjusted regression models for age, sex, BMI, smoking, alcohol 

use, physical activity, ethnicity, TDI, and diabetes and cardiovascular disease.  

To investigate the nature of associations with depressive and anxiety symptoms and any 

dose-response effect in greater detail, CRP concentrations were divided into deciles with 

deciles 2-10 compared with the lowest decile group (decile 1). Floating absolute risks 

were estimated, which were then plotted against the median CRP concentrations in each 

decile. We computed ORs for trend by using quintile number as predictor. We assessed 

potential quadratic associations by including a quadratic term (CRP-squared). We per-

formed sex-stratified analyses and also tested for interaction between sex and CRP by 

including interaction terms in regression models. Lastly, we evaluated the influence of 

selection/collider bias for participation in the optional mental health survey using in-

verse probability weighted regression of the fully adjusted regression models of depres-

sion and anxiety outcomes on CRP;34,35 see Supplementary Methods for details. 

Test for specificity vs commonality of association of CRP between depression and anxiety 

We used bivariate probit regression to test for specificity of association of CRP between 

depression and anxiety using both continuous and categorical outcomes. Probit regres-

sion jointly modelled the outcomes of depression and anxiety with CRP, and then tested 

for equality of regression parameters expressing the effect of CRP on each outcome using 

the likelihood ratio test. We compared a model that allowed estimates to differ between 

outcomes with a model where estimates were constrained to be equal for both outcomes. 

Probit estimates were converted into ORs by multiplying probit parameters by 1.6.36 In 
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addition, we adjusted the regression models of depression for anxiety (along with other 

covariates) and vice versa as additional tests for disorder specificity. 

Mendelian randomisation approach 

Genotyping  

We used genotyping data of 342,081 unrelated individuals of White ancestry; see Supple-

mentary Methods for details on genotyping array, central and post-imputation quality 

control. We used a summary-based approach for MR analyses,37 so sample sizes differed 

for estimation of SNP-exposure and SNP-outcome associations. For estimation of SNP-

outcome associations, sample sizes varied between 100,739-110,173 per outcome; see 

Supplementary Table 1 for sample sizes for SNP-exposure associations. 

SNP selection 

We selected genetic variants in the CRP and IL-6 receptor (IL6R) gene regions previously 

shown to be associated with CRP or IL-6 concentrations (Supplementary Table 1).38–41 

Genetic instruments differ in strength based on the precision with which they have been 

estimated in original GWAS studies. As instrument strength informs statistical power for 

MR analysis, we used genetic instruments from Georgakis et al.38 for primary MR analysis, 

which have the largest strength (Supplementary Table 1), and report results from other 

instruments39–41 as sensitivity analysis.  

We extracted SNP-exposure estimates from previous reports to perform 2-sample MR 

analysis. Based on availability of CRP concentrations in the UK Biobank study, which can 

be used as downstream readout of IL-6 activity under the classic IL-6 signalling path-

way,38 we also estimated SNP-exposure associations (for 1-sample MR) and SNP-out-

come associations, in the full sample and separately for men and women for sex-stratified 

MR; see details in Supplementary Methods and Supplementary Figure 1. 

Mendelian randomisation analyses 

We performed MR analysis using inverse-variance weighted (IVW) regression of the ge-

netic associations with the outcome on the genetic associations with the exposure.37 To 

evaluate the potential impact of selection/collider bias for participation in the optional 

mental health survey, we repeated IVW MR analyses with SNP-outcome associations ob-

tained using inverse probability weighted regression.34 We also evaluated potential hor-

izontal pleiotropy using Cochran’s Q.37 See details in Supplementary Appendix.  
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RESULTS 

Baseline Characteristics 

In 146,954 participants (43.6% men), mean age at recruitment was 56.5 (SD=7.8) years. 

Median CRP concentration was 1.15 mg/L (IQR=0.58-2.38 mg/L). Table B1 shows char-

acteristics of study participants by CRP quintiles. Mean depressive symptom scores were 

2.76 (SD=3.70, range: 0-27) and mean anxiety symptom scores 2.15 (SD=3.41, range: 0-

21); these scores exhibited a moderate-to-large correlation (Pearson’s r=0.68). 5.5% of 

individuals qualified for a probable diagnosis of depression, 4.4% for a probable diagno-

sis of GAD, and 0.6% for both probable depression and probable GAD. 

 

Table B1. Baseline characteristics of study participants by quintiles of CRP levels in the UK 

Biobank cohort (n=146,954) 

Study characteristics 
Q1 
(n=34,787) 

Q2 
(n=32,125) 

Q3 
(n=29,113) 

Q4 
(n=26,733) 

Q5 
(n=24,196) 

P value 

CRP (mg/L) median (range) 
0.36 (0.08-
0.55) 

0.77 (0.56-
1.02) 

1.33 (1.03-
1.75) 

2.33 (1.76-
3.33) 

5.42 (3.34-78.22) <0.001 

Age (years) 54.3 (7.8) 55.82 (7.7) 56.5 (7.6) 56.9 (7.6) 56.6 (7.7) <0.001 

Women (%) 20262 (58.3) 17255 (53.7) 15588 (53.5) 14867 (55.6) 14931 (61.7) <0.001 

White ethnicity (%) 33601 (96.6) 31166 (97.0) 28228 (97.0) 25907 (96.9) 23399 (96.7) <0.001 

TDI, median (SD) -1.7 (2.8) -1.8 (2.8) -1.8 (2.8) -1.7 (2.8) -1.5 (2.9) <0.001 

BMI (kg/m2) 24.1 (3.1) 25.8 (3.4) 27.0 (3.9) 28.2 (4.3) 30.1 (5.8) <0.001 

Smoking status (%) 
   

  
 

    Never 21603 (62.1) 18927 (58.9) 16509 (56.7) 14722 (55.1) 12555 (51.9) 
 

    Current 1965 (5.7) 1981 (6.2) 2057 (7.1) 2162 (8.1) 2418 (10.0) 
 

    Ex-smokers 11157 (32.1) 11138 (34.7) 10484 (36.0) 9783 (36.6) 9163 (37.9) <0.001 

Alcohol status (%) 
   

  
 

    Never/Ex 1743 (5.0) 1581 (4.9) 1578 (5.4) 1633 (6.1) 1659 (6.9) 
 

    Occasional (≤ 3 times per week) 14376 (41.3) 13856 (43.2) 13052 (44.8) 12719 (47.6) 12184 (50.4) 
 

    Regular (> 3 times per week) 18657 (53.7) 16677 (51.9) 14475 (49.7) 12369 (46.3) 10342 (42.8) <0.001 

Physical activity (%) 
   

  
 

    Inactivity 27490 (90.0) 24961 (80.1) 22180 (79.1) 19756 (77.7) 16816 (74.9) 
 

    Moderately inactive 1350 (4.0) 1548 (5.0) 1633 (5.8) 1742 (6.9) 1969 (8.8) 
 

    Moderately active 4342 (12.8) 3881 (12.5) 3443 (12.3) 3206 (12.6) 2967 (13.2)  

    Active 779 (2.3) 778 (2.5) 780 (2.8) 722 (2.8) 711 (3.2) <0.001 

Diabetes (%) 780 (2.2) 881 (2.7) 983 (3.4) 1022 (3.8) 1210 (5.0) <0.001 

Cardiovascular disease (%) 1029 (3.0) 1093 (3.4) 1076 (3.7) 1035 (3.9) 973 (4.0) <0.001 

Note: Differences were estimated using mean and SD for continuous variables, with p-
values from ANOVA test, or using number and percent for categorical variables, with χ2 
test. 
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Association of CRP Concentration with Depressive and Anxiety Symptom Scores 

Results for associations of CRP with depressive and anxiety symptoms are presented in 

Figure B1 across different CRP deciles in the total sample, and for women and men sepa-

rately in Supplementary Figures 2 and 3. Overall, CRP was associated with depressive and 

anxiety symptoms after adjusting for all potential confound factors, but adjustment for 

BMI attenuated these associations to some extent (Supplementary Tables 2 & 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1. Odds ratios for higher depressive and anxiety symptom scores per decile of 
CRP levels in the UK Biobank cohort. CRP: C-reactive protein; Confidence intervals (CIs) 
were calculated using a floating absolute risk technique; Odds ratios were adjusted for 
age, sex, BMI, smoking status, alcohol intake, physical activity, TDI, ethnic group, diabetes 
and cardiovascular disease; red: depression score; blue: anxiety score  

Using CRP as a continuous variable, the adjusted OR for higher depressive symptom score 

per-unit increase in log CRP was 1.09 (95% CI, 1.06-1.11). Using CRP as a categorical var-

iable, the adjusted OR for higher depressive symptom score for participants in the top, 

compared with bottom, quintile of CRP was 1.29 (95% CI, 1.21-1.38). Inverse probability 

weighted regression analyses of depressive symptoms did not suggest that results were 
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affected by collider bias, as the adjusted OR=1.31 (95% CI, 1.22-1.41) for participants in 

the top, compared with bottom, quintile of CRP was similar. 

Using CRP as a continuous variable, the adjusted OR for higher anxiety symptom score 

per-unit increase in log CRP was 1.03 (95% CI, 1.02-1.05). Using CRP as a categorical var-

iable, the adjusted OR for higher anxiety symptom score for participants in the top, com-

pared with bottom, quintile of CRP was 1.12 (95% CI, 1.05-1.19). Again, evidence did not 

suggest results were affected by collider bias with similar OR of 1.12 (95% CI, 1.05-1.20) 

in sensitivity analyses. 

Association of CRP Concentration with Probable Diagnoses of Depression and GAD 

CRP was associated with probable diagnosis of depression (Table B2). Using CRP as a 

continuous variable, the adjusted OR for depression per-unit increase in log CRP was 1.09 

(95% CI, 1.06-1.11). Using CRP as a categorical variable, the adjusted OR for depression 

for participants in the top, compared with bottom, quintile of CRP was 1.29 (95% CI, 1.18-

1.40). Evidence did not suggest results were affected by collider bias with similar OR of 

1.29 (95% CI, 1.18-1.41) in sensitivity analyses. 

CRP was associated with probable diagnosis of GAD (Table B3). Using CRP as a continu-

ous variable, the adjusted OR for GAD per-unit increase in log CRP was 1.05 (95% CI, 1.02-

1.08). Using CRP as a categorical variable, the adjusted OR for GAD for participants in the 

top, compared with bottom, quintile of CRP was 1.15 (95% CI, 1.05-1.26). Again, evidence 

did not support collider bias as likely explanation with similar OR of 1.13 (95% CI, 1.02-

1.24) in sensitivity analyses. 
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Table B2. Association of C-reactive protein levels with probable diagnosis of depression in the UK Biobank cohort 

  log CRP as con-
tinuous variable 

CRP Q1 
(n=34,372) 

CRP Q2 
(n=31,704) 

CRP Q3 
(n=28,714) 

CRP Q4 
(n=26,350) 

CRP Q5 
(n=23,750) 

Per-Q effect P-value 
for trend 

All participants (cases = 8,888; controls = 145,468) 

Model 1 (n=144890) 1.27 (1.24-1.29) 1 [reference] 1.11 (1.03-1.19) 1.19 (1.10-1.28) 1.44 (1.34-1.54) 2.05 (1.91-2.20) 1.19 (1.17-1.21) <0.001 

Model 2 (n=144600) 1.12 (1.09-1.15) 1 [reference] 1.08 (1.00-1.16) 1.10 (1.02-1.18) 1.22 (1.13-1.31) 1.41 (1.31-1.53) 1.09 (1.07-1.10) <0.001 

Model 3 (n=138766) 1.09 (1.06-1.11) 1 [reference] 1.07 (0.99-1.15) 1.08 (1.00-1.17) 1.16 (1.07-1.26) 1.28 (1.18-1.39) 1.06 (1.04-1.08) <0.001 

Model 4 (n=138765) 1.09 (1.06-1.11) 1 [reference] 1.07 (0.99-1.16) 1.08 (1.00-1.17) 1.16 (1.07-1.26) 1.29 (1.18-1.40) 1.06 (1.04-1.08) <0.001 

Women (cases = 5,641; controls = 81,562) 

Model 1 (n=81610) 1.28 (1.25-1.32) 1 [reference] 1.06 (0.96-1.16) 1.22 (1.12-1.34) 1.40 (1.28-1.53) 2.11 (1.94-2.29) 1.20 (1.18-1.23) <0.001 

Model 2 (n=81454) 1.12 (1.08-1.15) 1 [reference] 1.03 (0.94-1.13) 1.13 (1.03-1.24) 1.18 (1.07-1.30) 1.41 (1.27-1.55) 1.09 (1.06-1.11) <0.001 

Model 3 (n=77818) 1.10 (1.06-1.14) 1 [reference] 1.02 (0.93-1.13) 1.13 (1.02-1.25) 1.17 (1.06-1.30) 1.33 (1.20-1.48) 1.07 (1.05-1.10) <0.001 

Model 4 (n=77818) 1.10 (1.06-1.13) 1 [reference] 1.02 (0.93-1.13) 1.13 (1.02-1.25) 1.17 (1.06-1.30) 1.33 (1.20-1.48) 1.07 (1.05-1.10) <0.001 

Men (cases = 3,247; controls = 63,906) 

Model 1 (n=63280) 1.22 (1.18-1.27) 1 [reference] 1.23 (1.09-1.38) 1.17 (1.04-1.32) 1.53 (1.36-1.72) 1.87 (1.66-2.11) 1.16 (1.13-1.19) <0.001 

Model 2 (n=63146) 1.13(1.08-1.17) 1 [reference] 1.16 (1.03-1.30) 1.04 (0.92-1.18) 1.27 (1.12-1.43) 1.44 (1.27-1.64) 1.08 (1.05-1.12) <0.001 

Model 3 (n=60948) 1.07 (1.02-1.11) 1 [reference] 1.12 (0.99-1.27) 1.00 (0.88-1.14) 1.14 (1.00-1.29) 1.21 (1.06-1.39) 1.04 (1.01-1.07) 0.02 

Model 4 (n=60947) 1.07 (1.03-1.12) 1 [reference] 1.13 (1.00-1.28) 1.01 (0.89-1.15) 1.15 (1.01-1.31) 1.23 (1.07-1.41) 1.04 (1.01-1.07) 0.01 

Note: Data show OR and 95% CIs unless otherwise indicated. P for trend is from regression models with quintiles. Model 1, unadjusted; 
model 2, adjusted for age, sex, and BMI (body mass index); model 3, model 2 additionally adjusted for smoking, alcohol, physical activity, 
ethnicity, and TDI (Townsend deprivation index at recruitment); model 4, model 3 additionally adjusted for diabetes and cardiovascular 
disease; *: CRP concentration was log transformed; Median CRP level was 1.15 mg/L (range 0.08-78.22 mg/L)
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Table B3. Association of C-reactive protein levels with probable GAD diagnosis in the UK Biobank cohort 

  log CRP as contin-
uous variable 

CRP Q1 
(n=34,499) 

CRP Q2 
(n=31,809) 

CRP Q3 
(n=28,829) 

CRP Q4 
(n=26,451) 

CRP Q5 
(n=23,950) 

Per-Q effect P  for trend 

All participants (cases = 6,395; controls = 139,143) 

Model 1 (n=145,538) 1.11 (1.08-1.14) 1 [reference] 0.95 (0.88-1.03) 0.95 (0.88-1.03) 1.05 (0.97-1.13) 1.38 (1.28-1.49) 1.08 (1.06-1.10) <0.001 

Model 2 (n=145,239) 1.07 (1.04-1.10) 1 [reference] 0.99 (0.91-1.07) 0.99 (0.91-1.07) 1.05 (0.97-1.14) 1.24 (1.14-1.36) 1.05 (1.03-1.07) <0.001 

Model 3 (n=139,341) 1.05 (1.02-1.08) 1 [reference] 0.97 (0.90-1.06) 0.99 (0.91-1.07) 1.02 (0.94-1.12) 1.15 (1.05-1.26) 1.03 (1.01-1.05) 0.004 

Model 4 (n=139,340) 1.05 (1.02-1.08) 1 [reference] 0.98 (0.90-1.06) 0.98 (0.90-1.07) 1.02 (0.94-1.11) 1.15 (1.05-1.26) 1.03 (1.01-1.05) 0.005 

Women (cases = 4,247; controls = 77,717) 

Model 1 (n=81,964) 1.10 (1.07-1.13) 1 [reference] 0.97 (0.88-1.07) 0.95 (0.86-1.05) 1.03 (0.93-1.13) 1.38 (1.26-1.51) 1.07 (1.05-1.10) <0.001 

Model 2 (n=81,799) 1.08 (1.04-1.11) 1 [reference] 1.00 (0.91-1.10) 0.98 (0.88-1.08) 1.05 (0.94-1.16) 1.29 (1.16-1.43) 1.05 (1.03-1.08) <0.001 

Model 3 (n=78,110) 1.07 (1.03-1.10) 1 [reference] 0.98 (0.89-1.09) 0.99 (0.90-1.10) 1.04 (0.94-1.16) 1.23 (1.10-1.38) 1.05 (1.02-1.07) 0.001 

Model 4 (n=78,110) 1.06 (1.03-1.10) 1 [reference] 0.99 (0.89-1.09) 0.99 (0.89-1.10) 1.04 (0.93-1.16) 1.23 (1.10-1.37) 1.05 (1.02-1.07) 0.001 

Men (cases = 2,148; controls = 61,426) 

Model 1 (n=63,574) 1.10 (1.06-1.16) 1 [reference] 0.97 (0.85-1.11) 1.02 (0.89-1.17) 1.12 (0.98-1.28) 1.33 (1.16-1.53) 1.07 (1.04-1.11) <0.001 

Model 2 (n=63,440) 1.07 (1.02-1.12) 1 [reference] 0.97 (0.85-1.11) 1.02 (0.89-1.17) 1.12 (0.98-1.28) 1.33 (1.16-1.53) 1.04 (1.01-1.08) 0.018 

Model 3 (n=61,231) 1.02 (0.98-1.07) 1 [reference] 0.94 (0.82-1.08) 0.95 (0.83-1.10) 0.97 (0.84-1.13) 1.02 (0.87-1.20) 1.01 (0.97-1.04) 0.74 

Model 4 (n=61,230) 1.02 (0.98-1.07) 1 [reference] 0.95 (0.82-1.08) 0.95 (0.83-1.10) 0.97 (0.84-1.13) 1.02 (0.87-1.20) 1.01 (0.97-1.04) 0.74 

Note: Data show ORs and 95% CIs unless otherwise indicated. P for trend is from regression models with quintiles. Model 1, unadjusted; 
model 2, adjusted for age, sex, and BMI (body mass index); model 3, model 2 additionally adjusted for smoking, alcohol, physical activity, 
ethnicity, and TDI (Townsend deprivation index at recruitment); model 4, model 3 additionally adjusted for diabetes and cardiovascular 
disease; *: CRP concentration was log transformed; Median CRP level was 1.33 mg/L (range 0.08-79.96 mg/L). 
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Test for specificity vs commonality of association of CRP with depression and anxiety  

In bi-variate probit regression analysis, we found evidence for a stronger association of 

CRP with depressive symptoms (OR=1.014; 95% CI, 1.011-1.017) than anxiety symp-

toms (OR=1.004; 95% CI, 1.002-1.007). Results for probit regression using probable di-

agnoses of depression and GAD as outcomes were similar (see Supplementary Results).  

In regression analyses, evidence for association of CRP with depression symptoms re-

mained after adjusting for anxiety symptoms (OR=1.06; 95% CI, 1.05-1.08), but the as-

sociation of CRP with anxiety symptoms switched its valence after adjusting for depres-

sive symptoms (OR=0.98; 95% CI, 0.97-0.99).  

Linearity of association 

Evidence was compatible with linear associations of CRP with both depression and anxi-

ety across all analyses using symptom scores and probable diagnoses as outcomes (P-

value for all quadratic terms >0.05). 

Examination of potential sex difference 

In sex-stratified analyses, point estimates were larger for women than men for both de-

pression and anxiety symptom outcomes (Supplementary Tables 2-3, Supplementary 

Figures 2-3). However, evidence for an interaction between CRP and sex was present only 

for depressive symptoms (adjusted ORwomen=1.35; 95%CI, 1.23-1.48; adjusted OR-

men=1.21; 95%CI, 1.10-1.33; P-value for interaction term=0.032). For categorical out-

comes, point estimates were larger for women for probable GAD (Tables 2-3), but evi-

dence did not support interaction for either outcomes (all P>0.2). 

Results for Mendelian randomization analyses 

Genetically-predicted concentration/activity of IL-6 and CRP were associated with both 

depression and anxiety. However, these associations differed with regards to direction of 

association (i.e., increased vs decreased risk), particular outcome definition, and sex. Ta-

ble B4 shows results for IVW MR analyses based on Georgakis et al.38 genetic instruments 

for CRP and IL-6. 
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Table B4. IVW Mendelian randomisation analysis of association of IL-6 and CRP with depression and anxiety 

 Depression Symptom Score Probable depression Anxiety Symptom Score Probable GAD 

Model OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

CRP         

2-Sample MR 0.88 (0.80-0.98) 0.020 0.95 (0.85-1.07) 0.424 0.87 (0.80-0.95) 0.003 0.82 (0.72-0.94) 0.004 

1-Sample MR 0.89 (0.79-1.00) 0.055 1.01 (0.88-1.14) 0.939 0.88 (0.79-0.97) 0.008 0.84 (0.73-0.98) 0.027 

   Women 0.98 (0.85-1.12) 0.754 1.12 (0.96-1.30) 0.152 0.86 (0.76-0.98) 0.023 0.85 (0.72-1.01) 0.059 

   Men 0.78 (0.63-0.96) 0.018 0.84 (0.66-1.06) 0.138 0.91 (0.78-1.05) 0.192 0.83 (0.62-1.11) 0.209 

IL-6         

2-Sample MR 1.34 (1.05-1.72) 0.019 1.15 (0.86-1.54) 0.340 1.13 (0.91-1.41) 0.269 1.24 (0.89-1.73) 0.194 

1-Sample MR 1.32 (1.03-1.67) 0.025 1.18 (0.89-1.56) 0.246 1.11 (0.90-1.37) 0.313 1.18 (0.86-1.62) 0.297 

   Women 1.42 (1.01-1.97) 0.041 1.46 (1.00-2.13) 0.048 1.15 (0.85-1.56) 0.362 1.51 (1.01-2.25) 0.044 

   Men 1.24 (0.88-1.74) 0.218 0.86 (0.54-1.37) 0.516 1.08 (0.79-1.47) 0.636 0.79 (0.47-1.33) 0.385 

Note: Estimates for men and women are based on sex-stratified 1-sample MR analyses.
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For CRP, per-unit increase in genetically-predicted concentrations of log-transformed 

CRP was associated with lower risk for depressive symptoms (1-sample MR: OR=0.89; 

95% CI, 0.79-1.00; 2-sample MR: OR=0.88; 95% CI, 0.80-0.98), and lower risk for anxiety 

symptoms (1-sample MR: OR=0.88; 95% CI, 0.79-0.97; 2-sample MR: OR=0.87; 95% CI, 

0.80-0.95). Using the categorical outcomes, MR analyses also showed that increased ge-

netically-predicted CRP was associated with lower risk for probable GAD, but point esti-

mates for probable depression were close to one (Table B4). In sex-stratified MR anal-

yses, higher genetically predicted CRP concentrations were associated with relatively 

lower risk for depressive symptoms in men, and with relatively lower risk for anxiety 

symptoms in women.  

For IL-6, per-unit increase in higher genetically-predicted IL-6 activity was associated 

with increased risk for depressive symptoms (1-sample MR: OR=1.32, 95% CI 1.03-1.67; 

2-sample MR: OR=1.34, 95% CI 1.05-1.72), but not with probable depression or either 

anxiety outcome. In sex-stratified MR analyses, we found evidence that higher genet-

ically-predicted IL-6 activity was associated with increased risk for depressive symp-

toms, probable depression, and probable GAD in women only. 

MR analyses using alternative genetic instruments were directionally consistent with 

these results, albeit with larger confidence intervals possibly due to the lower statistical 

power for these instruments (Supplementary Table 4). Results for sensitivity analyses 

evaluating the impact of selection/collider bias were similar to main IVW analyses (Sup-

plementary Table 5).  

Evidence did not suggest directional horizontal pleiotropy was a likely explanation for 

any of the IVW MR results as assessed using Cochran’s Q (Supplementary Table 6).  

 

DISCUSSION 

Based on data from the UK Biobank cohort, a large general population cohort, we report 

that circulating CRP concentrations are associated with depressive and anxiety symp-

toms and with probable diagnoses of depression and GAD in a linear, dose-response fash-

ion. At the same time, we show evidence for disorder-specificity suggesting that CRP is 

more strongly associated with depression compared to anxiety. We also found some evi-

dence for sex-specificity. CRP was more strongly associated with depression in women 

than in men. Using MR analyses, we provide evidence that higher IL-6 activity could rep-

resent a potential causal factor increasing depression, while genetically predicted higher 

CRP concentrations appeared to potentially be protective for depression and anxiety, 

which contrasts findings for serum CRP.  
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Associations of inflammation with depression and anxiety 

Although inflammation was associated with both depression and anxiety, we report 

stronger associations for depression outcomes indicating disorder-specificity. This aligns 

with meta-analyses of case-control studies showing higher concentrations of CRP and 

other inflammatory markers in depression,3,4,6–8 while there are relatively fewer studies 

suggesting this for anxiety.13 Cohort studies of affective symptoms also suggest that cir-

culating IL-6 and CRP concentrations are predominantly associated with depressive ra-

ther than anxiety symptoms.29 Together, current evidence is consistent with the idea that 

systemic inflammation may be particularly relevant for depression rather than anxiety 

disorders.  

Our results also provide some evidence for sex-specificity. Associations of serum CRP 

concentrations with depression and anxiety were mostly stronger in women than men. 

Results for sex-stratified MR analyses suggested that higher IL-6 could be a risk factor for 

depressive symptoms specifically for women while higher CRP could be protective for 

depressive symptoms specifically for men and for anxiety symptoms specifically for 

women. It is important to note, however, that confidence intervals of sex-stratified MR 

estimates overlapped between sexes emphasising the tentative nature of these results. 

Existing evidence on potential sex-difference for associations between inflammatory 

makers and depression has also been mixed. A previous meta-analysis reported no sex-

specificity of the association between CRP and depression.3 In contrast, two recent stud-

ies reported that IL-6 was associated with depressive symptom chronicity and treatment 

response specifically in women.20,42 Atypical depression, which is characterised by im-

muno-metabolic dysregulation, has also been reported to be more common in women.43 

Hitherto most studies have considered sex as a covariate. Further research is needed to 

replicate our findings regarding potential sex-specificity. 

Our findings lend support to RCTs testing immunotherapies targeting the IL-6/IL-6R 

pathway for patients with depression. Anti-inflammatory treatments have been shown 

to exhibit antidepressant activity in chronic inflammatory illnesses.44–46 In depression, 

initial results suggest that these drugs may be useful for patients with evidence of inflam-

mation and inflammation-related risk factors.47–49 This hypothesis is now being investi-

gated in ongoing RCTs that are selecting patients based on evidence of inflammation and 

inflammation-related phenotypes.9,50 The present study further highlights characteristics 

associated with inflammation, e.g., female sex, to inform stratified patient selection in fu-

ture clinical trials.  
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Potential interpretations for divergent effects of CRP and IL-6 

Using genetic variants in the IL6R and CRP gene loci, we have found that higher genet-

ically predicted IL-6 activity was associated with increased risk of depression, but higher 

genetically predicted CRP levels were associated with decreased risk of depression. 

These findings are intriguing because IL-6 signalling is a key driver of CRP response,51,52 

and so we would expect both to affect depression risk in a comparable way. One potential 

explanation could be that IL-6 classic and trans-signalling have divergent effects on de-

pression risk. We have illustrated this hypothesis in Figure B2, which describes IL-6 sig-

nalling pathways and a Directed Acyclic Graph of these pathways incorporating our MR 

results.  

 
Figure B2. Potential divergent effects of specific IL-6 signalling pathways on depression 
risk. Figure B2a shows IL-6 classic and trans-signalling pathways; see review by Hunter 
and Jones 51. Figure B2b displays our working hypothesis arising from MR results that IL-
6 trans-signalling confers increased risk for depression. 1MR estimates are based on 2-
sample MR analysis using Georgakis et al. 38 genetic instruments and continuous depres-
sive symptoms as outcome (cf. Table B4). Abbreviations: gp130=glycoprotein 130; 
Dep.=depression; CRP=C-reactive protein; IL-6=interleukin-6. 

In brief, IL-6 classic signalling occurs via its action on membrane-bound IL-6 receptors 

(IL-6Rs) expressed by limited cell types. IL-6 also binds with circulating soluble IL-6R 

(sIL-6R) to form an IL-6-sIL-6R complex, which then activates IL-6 signalling by binding 
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with the ubiquitous glycoprotein 130 on other cells that naturally lack IL-6Rs. This is 

called IL-6 trans-signalling, which is thought to underlie pro-inflammatory effects of IL-6 

in chronic inflammatory diseases.51  

Mechanistically, the observed increased depression risk conferred by IL6R SNPs that in-

crease CRP levels38 could happen as a result of either increased IL-6 classic or trans-sig-

nalling. Our results indicate that it may be due to increased trans-signalling, because we 

also see that SNPs in the CRP gene that increase CRP levels38 are protective for depres-

sion. It is well-known that CRP is mainly produced by hepatocytes as a result of increased 

IL-6 classic signalling.51 Taken together, these findings also align with a recent MR study 

on the effects of genetically predicted sIL-6R, sgp130 (an inhibitor of IL-6 trans-signal-

ling51), and CRP on recurrent depression, which suggested that increased IL-6 trans-sig-

nalling or decreased IL-6 classic signalling could be responsible for a risk-increase in re-

current depressive symptoms.28  

While the MR approach can provide evidence supporting causality, as we do here for IL-

6 and depression, disentangling the issue of IL-6 classic vs trans-signalling is beyond the 

scope of population genomics approaches as full effects of genetic variants used are un-

known. The field now requires experimental studies of IL-6 modulation in humans and 

animals to further examine causality, pathogenic mechanisms, and therapeutic potential 

of anti-IL-6 and other immunotherapies for depression. Findings from these studies may 

help to devise more targeted IL-6 pathway-specific interventions. 

Strengths and Limitations 

Strengths of the work include use of a large population-based sample, a range of affective 

symptoms, and complementary analysis using protein levels and genetic variants. We as-

sessed reproducibility and strength of association using different outcomes and sex-strat-

ified analysis, evidence of linearity and potential causality of associations. Limitations of 

the work include focus on self-reported symptom score/probable diagnosis. Self-report 

measures of depression can capture different characteristics than observer-rated 

measures, so findings need to be replicated using the observer-rated modality.53 Depres-

sion is also a phenotypically heterogeneous syndrome and previous studies have re-

ported that inflammation may be associated with specific symptoms, such as fatigue, 

changes in appetite and sleep, and suicidality.27,29,43 Aetiology of depressive symptoms 

could also vary across the lifespan, so findings from UK Biobank participants (mean age 

of 57 years) need to be replicated in other age groups. Second, although there was little 

evidence that associations of CRP with depression and anxiety could be due to selec-

tion/collider bias into the optional UK Biobank Mental Health Survey, selection/collider 

bias for participation in the UK Biobank cohort itself would likely be larger and remains 
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a possible explanation for our findings that we could not explore. This is particularly rel-

evant as the UK Biobank study includes individuals who are among others older, more 

likely to be women, healthier and of higher socioeconomic status compared to the general 

UK population.54 Third, MR findings were based on a subgroup of individuals of European 

ancestry, which is a common issue in genetic studies, warranting replication in other eth-

nic groups. Finally, IL-6 was not measured in the UK Biobank cohort, so we were unable 

to assess associations of serum IL-6 concentrations with depression and anxiety.  

Conclusions 

We report evidence for associations of higher serum CRP concentrations with depressive 

and anxiety symptoms, which are stronger for depressive than for anxiety symptoms and, 

although less consistently, for women than for men. Findings from MR analyses are con-

sistent with a causal role of altered activity of the IL-6/IL-6R pathway in depressive 

symptoms, suggesting that this pathway could be a promising, new therapeutic target for 

depression. Due to uncertainties regarding the full functional effects of genetic variants 

used as MR instruments, the field now requires human and animal experimental studies 

to elucidate mechanisms for divergent effects for CRP and IL-6 on illness risk. This may 

help to devise more targeted interventions. 
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