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Summary

Transcript level inference methods, such as quantification and assembly methods
often lose accuracy due to the lack of long range information from short NGS reads.
In this thesis we introduce a novel experimental-computational RNA-seq protocol
called Ladder-seq that introduces an additional layer of information based on the
length of transcripts. Ladder-seq separates transcripts based on their length prior
to sequencing. As a result of this separation, the reads obtained from sequencing
contain information about the length of its originating transcript.

We validate the quality of separation of transcripts computationally and we also
confirm that the length separation does not add any bias by comparing the Ladder-
seq data with publicly available long and short read RNA-seq data set. Additionally
we model migration patterns of mRNA through a gel during the process of sepa-
ration which we use to extend and tailor state-of-the-art RNA-seq methods for
quantification, reference based assembly and and de novo assembly.

We demonstrate on simulated data that the accuracy of quantification of our ex-
tension of kallisto for Ladder-seq for complex genes expressing up to 10 isoforms is
the same as the accuracy of quantification of conventional kallisto for genes express-
ing merely 2 transcripts. Our reference-based assembly scheme based on StringTie2
achieves a 30.8% higher precision in reconstructing the single transcript expressed
by a gene when compared to its conventional counterpart and is more than 30%
more sensitive on complex genes. Our de novo assembly approach using Trinity
correctly assembles 78% more transcripts than conventional Trinity and at the same
time improves precision equally by 78%.

In a real data set, the comparison of more accurate transcript reconstructions
by Ladder-seq reveals 40% more genes harboring isoform switches compared to con-
ventional RNA-seq approaches. We demonstrate that the distribution of reads to
transcripts is more accurate in case of Ladder-seq based Kallisto as compared to
its conventional counterpart. We utilize our novel approach to study the role of
m6A methylation as a regulator of splicing in mouse neural progenitor cells (NPCs).
Ladder-seq unveils widespread changes in isoform usage in mouse NPCs upon m6A
depletion by Mettl14 knock-out. Genes harboring isoform switches are enriched for
m6A methylated genes and m6A tends to be close to differentially spliced exonic
regions. Lastly we verify a selection of novel transcripts exhibiting isoform switches
which were only identified by Ladder-seq based pipelines in our own long read se-
quencing data.
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Chapter 1

Introduction

The intricacies of life and the mechanisms behind the processes that govern life have
been confounding humans for centuries. For years philosophers have tried to decode
the meaning and purpose of life and out came various independent theories ranging
from distant places like Greece, India and China to name a few. The concept of
biology existed in ancient medical traditions like Ayurveda, Egyptian and Greco-
Roman medicine, but the foundations of modern medicine can be attributed to the
immense development in science and technology during the European renaissance
and early modern period. The discovery of cells by Robert Hooke and the subsequent
invention of the first compound microscope by Antoine van Leeuwenhoek in the
seventeenth century, opened up a previously unknown world, the world of micro-
organisms and kick started the field of biology known as cell biology.

1.1 Cell biology

Cell biology is the study of cells and it revolves around the concept of the cell
being the fundamental building block of life. The first concrete definition of the cell
was stated by scientists Schleiden and Schwann who stated that all living creatures,
simple or complex were made up of one or more cells and that the cell is the structural
and functional unit of life [1]. This definition of the cell came to be known as the
cell theory. With the improvement in microscopy, scientists were able to observe the
intricacies of the cell in unprecedented details. From the early days of discovering
components of cells and their functions, cell biology has evolved a lot to attain its
most recent embodiment, the ”Modern cell theory” [2] which includes among others
the following main ideas:

• All living things are composed of cells.

• All living things arise from pre-existing cells by division.

• The cell is the fundamental unit of structure and function in all living organ-
isms.

• Cells contain certain molecules called DNA which contain hereditary informa-
tion which is inherited from parent cells to children cells.
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There are various sub-fields within cell biology, for instance the study of biochemical
reactions and the metabolism of the cell, the structure of cell components, cell
communication etc. Genetics is one such sub-field of cell biology which is the study
of heredity and the storage and expression of hereditary information in cells. In the
following sections we are going to dive deeper into some of the important concepts
of genetics.

1.1.1 DNA and the genome

Cells store their hereditary information in double stranded molecules called De-
oxyribonucleic acid or DNA. Though the DNA was first isolated as early as 1871 by
Friedrich Miescher [3], it was not until the middle and later half of the 20th century
that the famous double helical structure of the DNA was identified by the combined
efforts of scientists Rosalind Franklin, Maurice Wilkins, James Watson and Francis
Crick [3].

The DNA is composed of chains of molecules called nucelotides which are twisted
into a double helix shape. Nucleotides in DNA can contain four types of nitrogen
bases, adenine, cytosine, guanine and thymine represented as A, C, G and T. The two
strands of the DNA comprise two polypeptide chains which contain complementary
nucleotides, meaning that an adenine molecule on one of the strands will always
be aligned to a thymine molecule in the other strand and a guanine aligned to a
cytosine (Fig. 1.1a). This is known as base complementarity and the molecular forces
between the nucleotides are responsible for the stable double helix structure.

The DNA molecule is further compacted and organized into several parts known
as chromosomes. The number of chromosomes varies between organisms for example
humans have their DNA divided into 23 chromosomes while mice have 20.

Similar to the way of storing information in a computer file using only 1s and 0s,
information about protein synthesis is stored using the four letter alphabet A,C,T
and G for the four nucleotide bases. A gene is a small section of the DNA which
can be represented as a sequence of nucleotide pairs and is the basic unit of heredity
where information about one or more types of molecules can be stored. All the
genetic information in a cell is collectively called the genome.

1.1.2 Central dogma of molecular biology

Information stored in the DNA needs to be expressed in order to guide the synthesis
of a myriad of molecules which make the various physiological processes possible in
cells. The mechanism of translating the coded information in DNA to synthesize
proteins is the same in all cells and is referred to as the ”Central dogma of molecular
biology” [5] (Fig. 1.2). According to the central dogma, the DNA is converted to
a single stranded molecule called Ribonucleic acid or RNA (Fig. 1.1b) through a
process called transcription. RNA and DNA have three common nucleotide bases,
adenine, guanine and cytosine. In place of thymine, RNA contains uracil which is
an unmethylated form of thymine [6].The RNA molecules which encode proteins are
called messenger RNA or mRNA. During transcription the double stranded DNA is
first converted to an intermediate molecule called pre-mRNA or primary transcript.
In eukaryotic organisms, the pre-mRNA undergoes further processing in order to
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Figure 1.1: Structures of DNA and RNA. (a) Double helical structure of the DNA com-
prising two polynucleotide chains coiled around each other. The monomeric nucleotides
on each strand are joined to each other by hydrogen bonds follwing base pairing rules, (A
with T and C with G). (b) Single stranded RNA molecule containing the same nucleotides
as DNA except for Thymine which is Uracil in RNA. [4]

form mature mRNA, whereas in prokaryotes the mature mRNA is mostly produced
directly from the DNA. Transcription is usually carried out by protein complexes
called RNA polymerases which bind to specific parts of the DNA called promoter
regions to start the process of transcription.

The second part of the central dogma states that mature mRNA is converted
to proteins through the process called translation. Ribosomes are macromolecular
protein complexes which carry out the process of translation by assembling amino
acids to peptide chains based on the sequence specified by the mature mRNA.

1.1.3 RNA and transcriptome

Each cell (or population of cells) in a particular organism contains the same copy
of the genome but has a different functionality. Different cells need different sets of
proteins to be synthesized from the same genome. A single gene can encode multiple
mRNA molecules which in turn can produce a number of proteins. Genes are divided
into two types of segments/sequences, exons and introns (Fig. 1.3a). Exons are
segments that encode a part of the mature mRNA while introns don’t. Pre-mRNA,
which is the first form of RNA that is produced from DNA after transcription,
contains both the introns and exons. The introns are removed and the exons are
joined together to form a mature mRNA molecule, broadly referred to as a transcript
or isoform, through a process called splicing.

During the splicing reaction, different exons can be selected to be included or
excluded in the resulting mRNA allowing one gene to code for multiple proteins.
The variation in transcripts is brought forward by a combinatorial selection of ex-
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Figure 1.2: The central dogma of molecular biology. Double stranded DNA is converted to
RNA through a process called transcription and using a protein called RNA polymerase.
Single stranded RNA molecules are converted into proteins with the aid of another protein
called ribosome and the process is known as translation.

ons through a process called alternative splicing [7]. This is a major contributor
to protein diversity in multi-cellular organisms. For instance it allows the human
genome, consisting of 20,000 genes to encode for many more proteins. Fig. 1.3 shows
an example gene with four exons and its isoforms and proteins which are obtained
by combinations of exons.

Other mechanisms that contribute to the diversity of mRNA encoded by genes
include intron retention where parts of an intron remains in the final transcript and
alternative transcription start and end sites where there are multiple transcription
start and end sites for a single exon.

1.1.4 Regulation of gene expression

We have briefly seen how information in cells are stored in DNA. Genes, which are
sub-divisions of DNA encode for multiple RNA molecules called transcripts. The
wide range of mechanisms that are used to increase or decrease gene expression
are known as gene regulation mechanisms. Gene regulation has been observed in
every step starting from regulation of transcription in order to control the amount of
mRNA produced, post transcriptional modifications of mRNA to post translational
modifications of proteins.

Transcriptional regulation is an umbrella term representing all the processes that
control the transcription of genes to produce mRNA. Though the basic methods
of transcriptional regulation are similar in prokaryotes and eukaryotes, the latter
contains genes which are more complex and typically encode and express multiple
RNA transcripts, hence requiring more complex control mechanisms. Transcription
factors (TFs) are a family of proteins which bind to certain sequences in the DNA
to activate or deactivate a particular gene. TFs, need to bind to certain parts of the
gene called transcription factor binding sites (TFBS) and then the RNA polymerase

8



Protein A

5´ 3´

Protein B Protein C Protein D

5´ 3´

DNA
Exon1 Exon2 Exon3 Exon4

Intron1 Intron2 Intron3

Transcription

Pre-mRNA

Mature mRNAIsoform A

Isoform B

Isoform C

Isoform D

Alternative splicing

Translation

a

b

c

d

Figure 1.3: Alternative splicing to yield different proteins from the same gene. (a) An
example gene consisting of 4 exons and 3 introns. (b) Pre-mRNA, the initial RNA prod-
uct after transcription containing introns. (c) During the process of alternative splicing,
different combinations of exons yields four different isoforms. (d) Four different protein
products, one from each isoform.

can bind to the promoter region to start the transcription. TFs can work alone
or with other proteins to increase the transcription of genes in which case they
are called activators. They can also reduce the expression by blocking the RNA
ploymerase from binding to the gene and then are termed as repressors.

There are various other factors that contribute to transcriptional regulation. The
structure and folding of the DNA can make it either facilitate or hinder the binding
of the RNA-polymerase to the DNA thus regulating gene expression. Epigenetics,
which is the study of heritable changes in phenotype that does not involve changes
in the DNA sequence, is another very common method of regulation of gene ex-
pression. Epigenetic modifications include DNA methyation, histone modifications,
chromatin remodelling and non-coding RNA modification [8]. DNA methylation, a
common epigenetic modification is a heritable epigenetic mark where a methyl group
is covalently transferred to the DNA molecule [9]. When located in the promoter
region of a gene, methylation typically acts as a repressor of gene transcription.

Another category of critical regulators of transcript expression are the post tran-
scriptional modifications of RNA molecules. These are modification which the RNA
undergoes in between the transcription and translation phases. One of the common
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post transcriptional modifications is splicing. Polyadenylation, which is another
very common modification involves the process of addition of a segment containing
only adenine molecules (also called the ploy-A tail) to the end of the mRNA. One
of the more recently discovered post transcriptional modifications of RNA is known
as epitranscriptomics. Similar to DNA molecules, RNA also undergoes chemical
modifications.

1.1.5 Epitranscriptomic regulation and m6A

The advent of high throughput sequencing and the development of specific antibod-
ies, has revealed N6-methyladenosine (m6A) as the most abundant internal modifica-
tion of mRNA in eukaryotic cells [10] and is involved in multiple aspects of mRNA
biology including alternative splicing [11, 12, 13, 14]. m6A modification plays an
important role in the regulation of cell fate, proliferation, and metabolism and the
biogenesis of tumours [15]. Similar to DNA methylation, m6A modification adds
a methyl group to the adenine in an RNA molecule. Fig. 1.4 shows the difference
between unmethylated and methylated adenosine.

O

NOH

N

N

N

NH2

O

NOH

N

N

N

Ch3

NH2
a

Adenosine Methylated Adenosine

b

Figure 1.4: Differences between the chemical structure of nonmethylated and methylated
adenosine. [16]

m6A modifications are implemented by RNA methyltransferases (writers), RNA
demethylase (erasers) and m6a binding proteins (readers). These are proteins which
either add remove or simply read methylation modifications from an RNA molecule
[17]. Mettl3 and Mettl14 are two of the most common m6A writers and over-
expression of genes that code for these proteins leads to a increase in m6A [18].
Similarly RNA demethylase ALKBH5 is an eraser which if overexpressed in cells
results in a depletion of m6A and lastly N6-methyladenosine RNA binding protein
1, YTHDF1 is a reader which promotes the translation of m6A-modified mRNA
[15]. m6A is involved in multiple aspects of mRNA biology including alternative
splicing [11, 12, 13, 14].

1.2 Sequencing

Sequencing refers to various techniques that are used to determine the linear se-
quence of the four necleotides, adenine, guanine, cytosine and thymine as they occur
in the DNA or RNA. Frederick Sanger in 1977 developed a method for sequencing
DNA and that opened the door to an enormous amount of hereditary information
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stored in the double stranded molecules. In case of the DNA, sequencing reveals the
order of neucleotides of a given fragment containing both exons and introns while in
the case of RNA, the order of nucleotides contain only exons which were included in
the particular mature mRNA. Sequencing mRNA molecules is somewhat different
from sequencing DNA owing to the fact that mRNA is single stranded. Generally
the first step of RNA-seq involves the conversion of mRNA molecules to comple-
mentary DNA (cDNA) molecules. The cDNA library can then be sequenced using
the same principles as genomic sequencing.

The first sequencing methods, also known as first generation sequencing were
introduced in the 1970s and included methods like Maxim Gilbert and Sanger se-
quencing with the later being the more commonly used of the two [19]. Though
these methods were quite accurate in determining the sequence of neucleotides, the
low throughput and high cost of sequencing slowly led to the advent of the second
generation sequencing (also known as high throughput or massively parallel sequenc-
ing). The utility of the newer technologies were further enhanced by the tremendous
improvements in computational power and as a result it was possible to sequence
and store very large datasets of DNA and RNA.

Second generation sequencing breaks DNA (or cDNA in case of RNA-seq) into
shorter fragments by an enzymatic reaction and produces a very high number of
short sequences or reads with lengths ranging from 75 to 500 base pairs which rep-
resent the nucleotide sequence from each fragment. The extremely high depth (the
number of reads from a particular genomic or transcriptomic location) makes NGS
an extremely valuable technology for downstream analyses that need a lot of sta-
tistical power, for example the estimation of abundance of transcripts. Some of the
most common platforms for second generation sequencing are Roche 454, Illumina
MiSeq and Illumina HiSeq. Conventional sequencing procedures, which is also called
bulk sequencing, involve the extraction of genomic or transcriptomic content from
an entire tissue or population of cells and then the subsequent sequencing and down-
stream analysis. A much newer variant of sequencing is single cell sequencing which
focuses on the isolation and sequencing of DNA or mRNA from individual cells.

Despite being a very powerful tool in the analysis of the underlying genomic
and transcriptomic landscape, second generation sequencing has its shortcomings.
One of the most important limitations is the relatively short length (approx. 75
- 500 base pairs) of reads which do not span more than two exons making the
characterization of alternative splicing events difficult. Moreover, genomes often
have repeated sequences causing individual reads to map to multiple places in the
genome (multi mapping reads) leading to difficulties to analysis such as assembling
transcripts. The drawbacks of short reads are discussed in more details in Section
1.4.

The latest sequencing technologies, which are also referred to as third generation
sequencing, like Pacific Biosciences (PacBio) and Oxford Nanopore Technologies
(ONT) produce reads of length greater than 10000 base pairs and can in principle
cover entire transcripts. Third generation sequencing poses a critical advantage
over short reads because of their extremely long reads, however the error rates are
typically higher in case of long reads which can negatively affect analysis. The depth
achieved by long reads is also quite low compared to short reads thus decreasing the
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power of statistical inference with them.

We have touched upon the most prevalent types of sequencing. The rest of the
introduction will focus on some details of short read RNA-seq and its applications.

Second generation RNA-seq : a technical overview

RNA sequencing (RNA-seq) is a sequencing method for determining sequnce of
transcripts that are expressed in cells. Fig. 1.5 is an overview of the general protocol
of second generation RNA-seq. The first step is the extraction and selection of RNA
from cell. Ribosomal RNA (rRNA) is the most abundant form of RNA in cell, and
they do not encode for proteins, hence not so relavant in gene/transcript expression
analyses. Thus mRNA, which is translated to proteins needs to be separated from
the rRNA before sequencing. One common post transcriptional modification of
mRNA is the addition of a 3’ poly-A tail [20]. A prevalent way of isolation of
mRNA from other forms of RNA is by the use of oligo(dT) primers, which are
magnetic beads attached to a chain of deoxy thimidine residues which bind to the
poly-A tail of mRNAs [21].

The isolated mRNA is fragmented by chemical hydrolysis or enzymatic digestion
to a size appropriate for the chosen sequencing platform [22]. The fragmented mRNA
is then converted into complementary DNA (cDNA) by a reverse transcriptase using
random primers [22]. Adapter oligonucleotides are ligated to the cDNA to allow
amplification and enable sequencing [22]. Alternatively the extracted mRNA can
be first converted to a cDNA library by reverse transcription and fragmented and
sequenced afterwards [23]. The fragments can be amplified by polymerase chain
reaction (PCR) and is sequenced in a high throughput sequencer to obtain reads
from either one end (single end reads) or from both ends (paired end reads) of the
fragment [23].

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

Sequencer
Single end reads

Paired end reads

TTTTT

TTTTT

TTTTTTTTTT

TTTTT

RNA extraction
and selection Fragmentation

sequencing adaptor,

Reverse
transcription,
PCR and

a b

c

d

ligation

Figure 1.5: Schematic showing the general process of second generation RNA-seq. (a)
Cellular RNA is extracted and ploy A tailed mRNA is isolated using oligo dT beads. (b)
The isolated mRNA is fragmented. (c) The fragmented mRNA is reverse transcribed using
polymerase chain reaction (PCA) to create cDNA libraries to which sequencing adaptors
are attached. (d) The sequencer reads fragments either from one side or from both to
produce single end or paired end reads.
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1.3 Analysis of RNA-seq data

Over the past decade, RNA-seq has become a very powerful tool in the analysis
of the transcriptome. Common applications involve the quantification and identi-
fication of transcripts from the produced sequence read data for which a plethora
of computational methods have been developed. Transcript quantification methods
assign reads to known species-specific transcripts to obtain a quantitative measure-
ment for their relative expression, while the assembly of transcript sequences can
reveal novel mRNA molecules. In contrast to the reference-based assembly that
builds full-length transcripts from reads ordered by a prior alignment to a reference
genome, the de novo assembly approach reconstructs transcripts based on the se-
quence overlap of reads alone and can be applied to species for which no or just a
highly fragmented reference genome is available. Another important inference from
RNA-seq data is to find genes that are differentially expressed across groups of sam-
ples [24]. There are many methods for analysing differential expression of genes and
transcripts with DESeq2 [24] being one of the most used ones.

1.3.1 Expression analysis of transcripts using RNA-seq

Expression analysis or quantification of transcripts involves assigning reads to a pre-
viously identified set of transcripts in order to determine their relative abundances.
The first step in this process involves mapping reads to a known set of transcripts
using splice aware alignment methods such as STAR [25] and HISAT [26]. The task
of assigning reads to individual transcripts gets complicated because of the pres-
ence of overlapping transcripts from the same gene which results in reads mapping
to multiple isoforms. Due to this read mapping ambiguity, quantification methods
need to resort to statistical models in order to determine transcript abundances.
There are various methods for quantifying transcripts. A popular way of assigning
reads is by using a statistical method which maximizes the likelihood of transcript
expressions given the observed read data.

1.3.1.1 Estimating transcript abundance

Mapping of RNA-seq reads to a reference produces two categories of mappings,
uniquely mapped reads, i.e. reads which map to only one transcript and reads
which map to overlapping exons and thus mapping to more than one transcript.
Estimating the abundance of transcripts is essentially a counting problem where we
want to count the number of reads that map to a particular transcript. While it is
easy to determine the originating transcript of a uniquely mapping read, we have
to probabilistically assign the non-uniquely mapping reads to transcripts. A naive
approach is to assign reads with equal probability to the transcripts that they map
to. However this is not correct since the probability of a read originating from a
particular transcript would be proportional to the number of copies of the transcript
originally present in the sample.

One of the most popular approaches to fractionally assign ambiguously mapping
fragments is by using the EM algorithm. The algorithm initializes all transcripts
with equal abundances. The expected value of the abundances are calculated based
on the observed reads and their estimates are refined in every iteration using the
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read counts and the abundances calculated in the previous iteration. This process
is continued till the values of the abundances converge. Fractional assignment of
reads and the EM algorithm are explained in details in Section 4.1.1.

1.3.1.2 Pseudo alignment based quantification

Mapping RNA-seq reads to a genome using conventional algorithms such as STAR
[25] and HiSat [26] can be time consuming and can be a deterrant to analysis [27].
A recent alternative to the time consuming step of read mapping involves extracting
short sequences of length k (k-mers) from reads and using the counts of these k-mers
to estimate transcript abundance [28]. However breaking reads down into k-mers
can lead to a loss in accuracy due to the k-mers aligning to many more transcripts
than reads, thus making the problem of assigning these reads even more difficult.
Kallisto [27] attempts to solve the problem of low accuracy using a method based
on pseudoalignment of reads and fragments. As the name suggests, there is no real
alignment of reads to transcripts in this method. Instead the pseudoalignment of a
read refers to a subset S ⊂ T , where T is the set containing all the transcripts that
need to be quantified. Unlike conventional read mapping, the pseudoalignment does
not specify the exact coordinates to which the read maps to, but rather only the set
of transcripts that the read maps to.

Kallisto first creates an index using the transcriptome. K-mers are extracted
from the annotated set of transcripts and a colored deBruijn graph is constructed
where the colors represent different transcripts and nodes represent k-mers. The set
of transcripts that overlap a particular k-mer is called the k-compatibility class of
that k-mer. Pseudoalignment of a read is the intersection of all the k-compatibility
classes of the k-mers in present in that read. The output of the pseudoalignment
step is a set of transcripts for each read called equivalence class. The equivalence
class of a read represents the possible transcripts from which that read could have
originated.
The relative abundances of transcripts are calculated from the equivalence classes
of the reads using the following likelihood function.

L(α) ∝
∏
e∈E

(∑
t∈e

αt
lt

)ce

(1.1)

E is the set of equivalence classes observed from the data and ce represents the num-
ber of reads (counts) that have the equivalence class e. αt represents the abundance
of a transcript t and lt is its effective length. The likelihood is optimized using the
EM algorithm similar to conventional methods.

1.3.2 Assembly using RNA-seq

Short read RNA-seq produces reads which do not span for more than two to three
exons in an mRNA. Assembly methods use these short sequences to reconstruct
full length transcripts. Alternative splicing is an extremely common phenomenon in
eurakryotes and more than 90% genes in humans undergo alternative splicing to pro-
duce different mRNA products [29]. Assembling transcripts can help identify novel
genes and transcripts as well as confirm the presence of the already annotated ones.
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There are two broad categories of transcript assembly methods. Reference based as-
semblers such as Stringtie [30], Scallop [31], CIDANE [32], CLASS [33], maps reads
to a reference genome and then assembles transcripts using the alignments of the
reads to the genome. Denovo assemblers such as ABySS [34], SOAPdenovo-trans
[35], Oases [36] and Trinity [37], on the other hand infers transcripts without the
use of a reference genome and is typically used for situations when a high qual-
ity reference genome is not available, for instance for profiling cancer tissues or for
organisms which lack an accurately annotated reference genome.

1.3.2.1 Reference based assembly using StringTie

In this part we look at methods for reference based assembly in details and introduce
the algorithm used by StringTie. The first step of reference based assembly is similar
to the first step of quantification of transcripts. RNA-seq reads are mapped to a
reference genome using a splice aware aligner such as such as STAR [25] and HISAT
[26]. An alternative splice graph (ASG) is created using reads mapped at each gene
locus which contains information about all the transcripts that are expressed in the
sample (Fig. 1.6). Each path through the ASG represents an isoform. StringTie uses
a maximum-flow problem to assign reads to paths in the ASG in order to determine
expressed transcripts and also to identify novel ones.

Alternative splice graph

A graph is defined as a pair G = (V,E) where V is a set of vertices or nodes and
E is a set of edges connecting the vertices. A graph is called a directed graph if its
edges have directions and its called a directed acyclic graph (DAG), if the edges can
never form a closed loop.
An alternative splice graph is a DAG where the nodes represent contiguous genomic
segments spanned by reads and edges denote reads which align in between two
exons indicating the presence of both the exons in one transcript. The ASG used
by StringTie contains two additional vertices, the source s and sink t vertices. The
addition of the source and sink vertices allows every transcript to be represented
by an s − t path in the ASG. The edges are weighted by the number of spliced
alignments spanning them and the vertices are weighted by the average number of
reads (per base coverage) that map to the genomic sequence represented by that
vertex divided by the length of the segment.

Transcript finding algorithm used by StringTie

StringTie attempts to find the transcript whose corresponding s−t path in the ASG
has the largest per-base coverage and assigns the maximum number of reads possible
to this transcript. The reads supporting the transcript with the largest coverage is
removed from the ASG and this process is repeated till there are no more transcripts
left in the ASG which are supported by reads.
The heaviest s− t path in the ASG is found using a heuristic algorithm which starts
at the vertex with the highest per base coverage and extends the path to first to
the source and then to the sink. The adjacent node is chosen based on the highest
number of paired end reads that is compatible with the path chosen so far.
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Figure 1.6: Splice graph : The four transcripts in (a) can be represented by the directed
acyclic graph in (b). The nodes of the graph represent the exons of the transcripts. Two
additional nodes, the start s and sink t, colored in black are added to the graph in order
to represent each transcript as an s− t path in the graph.

Next a flow network (check [30] for details) is created using the identified heaviest
path and the reads that contribute to it. The network represents the transcript with
the highest coverage and the reads which map to this transcript contribute to the
capacities of this network. It is important to note that all reads contributing to the
heaviest transcript might not have originated from this transcript and thus should
not be included while calculating its relative abundance. They might map because
of shared exonic regions with other isoforms of the same gene. StringTie tries to
explain the maximal number of reads that might contribute to the transcript inferred
by the flow network and it does so by calculating the maximum flow the network,
which gives the relative abundance of the transcript. The reads which contribute
to the max-flow are removed from the initial ASG and the process of finding the
heaviest path and assigning a max flow to it is repeated till the maximum weight of
paths through the ASG falls below a threshold.

1.3.2.2 Denovo assembly using Trinity

In the absence of a high quality reference genome, it is not possible or useful to map
transcripts prior to assembly. In these cases transcripts need to be assembled de
novo. In this section, we discuss some of the methods used for de novo assembly
and take a look at the strategies used by Trinity [37] for assembling transcripts.
The inability to map reads to a reference genome makes the problem of assembling
transcripts more complicated. A common approach taken by de novo assemblers
is to extract sequences of length k (k-mers) from reads and construct a de Bruijn
graph using these k-mers. Nodes in the graph represent individual k-mers and two
nodes are connected if their sequences overlap by k − 1 nucleotides. A graph like
this can be used to enumerate all the splice variants for a certain gene. The specific
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algorithms used for creating the de Bruijn graph and enumerating transcripts differs
between methods. Trinity contains three modules which are invoked in a sequential
manner in order to assemble transcripts from RNA-Seq reads.

The first module, inchworm, assembles linear transcripts (without considering
alternative splicing) by first extracting k-mers and their frequency of occurrence
and storing them in a dictionary. It selects the most frequent k-mer in the dictio-
nary and extends to the left and right by choosing the next frequent k-mer with
an overlap of k − 1 to the current one. The extension process is continued till no
overlapping k-mers are left and the resulting sequence represents a contig, a com-
plete or incomplete transcript representing at most one complete splice variant for
a gene. The next module, chrysalis uses contigs built by inchworm to create a
de Bruijn graph. The contigs are pooled together into individual components if
these sequences overlap by a certain length. Each component is used to generate a
de Bruijn graph which is then used by the next module to enumerate transcripts.
Reads are assigned to the components by choosing the component which shares the
most k − 1 mers with the reads. Finally butterfly, the third module compacts
the graph by certain operations such as collapsing multiple nodes in a linear path
into one node, trimming spurious edges etc.. Finally it uses the reads pairings from
chrysalis in a dynamic programming based algorithm to enumerate paths with the
most evidence of contiguity which represent the assembled transcripts.

1.3.2.3 Identifying transcripts from long reads

Third generation sequencing technologies have the potential to outcome the draw-
backs of short reads, especially because the long reads span entire transcripts and
thus eliminating the error prone probabilistic assignment of reads to transcripts.
However long reads also come with some limitations such as high error rates, degra-
dation of RNA prior to it being captured for sequencing, long molecules breaking
during library preparation and in case of cDNA sequencing the reverse transcrip-
tase failing to capture the full RNA molecule [29]. These shortcomings hamper the
transcript detection rate for long reads and methods are forced to discard a number
of reads from third generation sequencing technologies which do not cover entire
transcripts [29].

Various methods have been developed to correct errors and to extract full length
transcripts from error prone and/or fragmented long reads. Some of the most widely
used tools are IsoSeq3 (included in smrtlink v5.1, PacificBioscience, Menlo Park, CA,
USA) (previously ToFU [38]), TAPIS [39], SQANTI [40], StringTie2[29] and FLAIR
[41].

StringTie [30], a method originally designed only for short read data was updated
to be used for both short and long reads in a more recent release of the method called
StringTie2 [29]. The general algorithm used by both the releases are quite similar
as explained in Section 1.3.2.1. For the context of this thesis, we use StringTie2 for
assembling transcripts from both short and long reads.

We also use the FLAIR pipeline to identify full length transcript isoforms from
ONT reads. It first maps long reads to a reference genome using a spliced aligner
for long reads such as minimap2 [42]. A known set of splice sites obtained from
previous annotation or assembly using short reads is used to correct the mapped
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long reads where reads containing splice sites that are not included in the known
set are discarded. The corrected reads are grouped according to splice junctions
and transcription start and end sites and the FLAIR collapse module is used to
summarize reads from groups to representative isoforms which are also called the
first-pass isoform set. A further step involves mapping the raw reads to the first-
pass isoform set and keeping isoforms which are supported by at least 3 reads with
sufficiently high mapping quality (MAPQ ≥= 1).

1.4 Length based separation of mRNA to improve
transcriptome quantification and reconstruction

The average length of an mRNA transcript is in the range of a several thousand
neucleotides whereas the reads produced by second generation RNA-seq are only a
few hundred neucleotides long. Despite many methodological advances, the accu-
racy of transcript-level inference methods developed over the last decade is severely
limited due to the lack of long-range information contained in each individual short
read. They perform particularly poor in the quantification of lowly expressed tran-
scripts and transcripts from complex genes [43, 44, 45] that share large parts of their
sequences due to alternative splicing which increases assignment ambiguity of short
reads. Even more so when seeking to assemble novel transcripts, reference-based
assembly methods typically miss several thousands of true transcripts and similarly
construct thousands of incorrect sequences [30, 46]. Again, this applies in particular
to complex genes expressing multiple isoforms [47, 48], which are highly prevalent
in humans [49, 50] and frequently involved in disease pathogenesis [51, 52]. Multi-
sample approaches such as the recently introduced PsiCLASS [46] try to address
these limitations by assembling transcripts simultaneously across multiple RNA-seq
samples. On the other hand, third-generation technologies such as those marketed
by PacBio or Oxford Nanopore are able to read full-length transcripts but at a lower
throughput, a higher error rate, and a higher cost per base [53].

This thesis introduces a new variant of the RNA-seq protocol that effectively
breaks gene complexity by separating mRNAs according to their length into a small
number of bands prior to their fragmentation. We define gene complexity as the
number of expressed transcripts from a particular gene. The difficulty in quantifi-
cation or assembly increases with an increase in gene complexity. The experimental
deconvolution can aid in the computational reconstruction of a transcriptome by
providing two types of long-range information. First, reads obtained in different
bands must originate from different transcript species (of different length). This
can reduce the phasing ambiguity of distant exons imposed especially by complex
genes expressing many overlapping transcripts. Second, each band contains by de-
sign reads from transcripts of a certain length range. This can guide an algorithm
to assemble or assign reads to transcripts only of a correct length. We extend and
tailor state-of-the-art RNA-seq analysis methods for quantification, reference-based
assembly, and de novo assembly to utilize the extra layer of information introduced
in Ladder-seq in order to detect and quantify transcripts at an unprecedented level
of accuracy and reveal transcripts that are invisible to conventional RNA-seq ap-
proaches.
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More accurate transcript-level estimates from Ladder-seq will facilitate down-
stream differential analysis. Recent studies have highlighted the role of chemical
modifications of mRNA as a heretofore unknown layer of regulation of gene expres-
sion. m6A is the most abundant internal modification of mRNA in eukaryotic cells
[10] and is involved in multiple aspects of mRNA biology including alternative splic-
ing [11, 12, 13, 14]. We utilize the accurate analysis using Ladder-seq in a study of
epitranscriptomic regulation of splicing in mouse neural progenitor cells (NPCs).
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Chapter 2

An experimental-computational
approach to improve RNA-seq

analysis

2.1 Ladder-seq

The difficulty in assembling and estimating abundance of transcripts from short read
data is exacerbated by the fact that reads map to exonic regions which are com-
mon among overlapping transcripts. Computational methods usually assign such
ambiguously mapping reads to transcripts using statistical models. This statistical
assignment of reads to overlapping transcripts becomes harder with the increase in
gene complexity due to the increase in the number of possible transcripts that a
particular read can be attributed to. However all transcripts from a particular gene
are not of the same length and they can be separated by their length into a small
number of bands prior to their fragmentation (Fig. 2.1). In this chapter we introduce
the principles of Ladder-seq and compare the data generated using Ladder-seq with
publicly available RNA-seq datasets (of the same cell types as Ladder-seq ) in order
to validate whether any bias was introduced due to the length separation. Parts of
this chapter are taken from [54].

Ladder-seq is a new variant of the RNA-seq protocol that can be defined as an
experimental-computational approach which effectively reduces gene complexity by
separating mRNAs according to their length thus generating reads colored by the
length range of the transcript that it originates from. This experimental deconvolu-
tion simplifies the analysis of RNA-seq data by providing extra layers of information
on top of the sequence read out of fragments. Reads in Ladder-seq contain infor-
mation about the length of the the set of originating transcripts from which a prior
probability distribution of observing a random read from a transcript of a certain
length observed in a certain band can be calculated. This prior can be leveraged
by methods to fine tune analyses such as quantification, assembly and differential
expression of transcripts.

We define effective complexity of a transcript as the maximum number of tran-
scripts from the same gene that is left behind in a single band after the mRNA has
been separated by length. Gene complexity and effective complexity are the same in
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case of conventional RNA-seq. The premise of Ladder-seq is to make transcript as-
sembly and quantification easier by reducing the effective complexity of transcripts.

Conventional RNA-seq Ladder-seq
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Figure 2.1: Ladder-seq uses a denaturing agarose gel to separate mRNA by length into
discrete bands prior to library preparation and sequencing. Each band contains transcripts
of a certain length range that depends on the location of cuts through the gel. The
originating band of the resulting reads is tracked using barcodes. In our dataset of mouse
neural progenitor cells, Ladder-seq reveals transcript Paip2b-204 that contains intronic
sequence of transcript Paip2b-201.

2.2 Generation of Ladder-seq libraries of mouse neural
progenitor cells

To achieve mRNA separation by transcript length, we performed denaturing gel
electrophoresis. All samples were run on the same denaturing agarose gel. After
electrophoresis, each sample was cut into 7 bands, each containing transcripts of a
given length range. Slicing of the gel into 7 bands was guided by a single-stranded
RNA ladder running on the same gel and the location of cuts were at approximately
1000 bp, 1500 bp, 2000 bp, 3000 bp, 4000 bp and 6000 bp.

These cuts effectively reduce gene complexity in our data set (Fig. 2.2)a by
partitioning transcripts expressed per gene into different subgroups. We denote
the size of each subgroup as its effective complexity. For each gene the maximum
effective complexity is the largest number of its expressed transcripts contained in
the same band.

In theory, the largest reduction in effective complexity would be achieved by
separating each transcript of a particular length into a band of its own. On the
other hand, fewer cuts might be sufficient to achieve a similar improvement over
conventional RNA-seq for species with a less complex transcriptome. We examined
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the reduction of the mean and maximum effective complexity using a R script which
we provide in our repository. It visualizes (see 2.2 for an example) and summarizes
the distributions of original gene complexities and resulting effective complexities
using descriptive statistics either genome-wide or for a given set of genes of interest,
based on a related RNA-seq data set of a given species.
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Figure 2.2: (a) Reduced (effective) gene complexity in Ladder-seq. We estimate transcript
expression in Mettl14 KO sample 1 using kallisto on Ladder-seq reads pooled across bands
and show the histogram of gene complexity measured as the number of expressed tran-
scripts. In Ladder-seq, we partition the set of expressed transcripts into 7 bands and count
the number of transcripts contained in each band according to their annotated length (plus
200 nt average poly(A) tail size [55]), assuming cuts at 1000 bp, 1500 bp, 2000 bp, 3000
bp, 4000 bp and 6000 bp. The resulting histogram of “effective” gene complexity shows
an increased fraction of gene bands with low complexity. (b) Reduction in maximum and
average effective complexity with an increase in the number of cuts. The set of 6 cuts
is identical to the cuts used in our experiments (1000 bp, 1500 bp, 2000 bp, 3000 bp,
4000 bp, 6000 bp). We removed the cut at 1500 bp and in addition the cut at 2000 bp
to simulate sets of 5 and 4 cuts, respectively. We added cuts at 2500 bp and 3500 bp to
simulate a set of 8 cuts and additional a cut at 5000 bp to simulate 9 cuts.

After electrophoresis, mRNA from each band of each sample was extracted from
the agarose gel and equal volumes per band were used for cDNA library construction.
Libraries were multiplexed 1:1 for sequencing in the Illumina HiSeq 2500, yielding
approximately 100 million 2×76-bp paired-end reads per sample. mRNA from each
band of each sample was extracted from the agarose gel and equal volumes per band
were used for cDNA library construction. Each band from each sample was given a
unique barcode to track the originating band (per sample) of each read.

We generated Ladder-seq datasets from wild-type (WT) and Mettl14 knock-out
(cKO) mouse neural progenitor cells (NPCs). Mettl14 encodes for a methyltrans-
ferase necessary for m6A methylation of mRNA. KO mice have a targeted deletion
of Mettl14 exons 7, 8 and 9 that is only present in NPCs and their progeny [56].
Four independent replicates were prepared per genotype.

2.3 Validation of experimental quality

To ensure that our electrophoresis protocol effectively separates denatured mRNAs,
we performed a trial electrophoresis run, after which mRNA from each band was
run again on a denaturing agarose gel with each band loaded into a separate lane.
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Figure 2.3: (a) Assessment of length separation by denaturing gel electrophoresis. Length
separated mRNA was run on a new denaturing agarose gel with each band loaded into
a separate lane. (b) In silico gel: For every annotated transcript, the intensity of a
point with y-coordinate equal to its annotated length (plus 200 nt average poly(A) tail
size [55]) shows the fraction of reads obtained from each band (x-axis) that can be assigned
unambiguously to it. (c) Distribution of reads across bands that can be unambiguously
assigned to annotated transcripts.

Fig. 2.3a and table table B.1 shows that mRNA was effectively separated into 7
distinct length ranges with a certain degree of overlap between consecutive bands.

We created an in silico gel by using the pseudoalignment feature in conventional
kallisto to get a set of reads that map unambiguously to annotated transcripts.
Fig. 2.3b shows the percentage of reads from each band that map uniquely to tran-
scripts. The intensity of the points show that higher bands have more reads that
map to longer transcripts and vice versa rendering an image very similar to the
actual picture of the agarose gel (Fig. 2.3a). This serves as a further confirmation
of the separation mRNA into different bands depending on their length.

2.3.1 Estimating mRNA migration

The experimental and in silico gel in Fig. 2.3(a) and Fig. 2.3(b) show that reads
usually end up in corresponding bands based on the length of transcripts from
which they came from. However we observe a smear indicating the existence of a
distribution according to which reads migrate across the gel. Fig. 2.3.1(c) is another
representation of the in silico gel which shows the uniquely mapping read count from
each band with the colors representing the different length ranges. We observe peaks
of particular colors representing shorter transcript lengths in smaller bands and vice
versa. This gives a better view of the smear as we see that uniquely mapping reads
from a certain length range have a peak in the expected band but also counts in the
neighbouring bands.

In order to estimate the migration pattern of a transcript of length ` through the
agarose gel across k bands, we introduce probability mass function f(x) over discrete
random variable x ∈ [k] := {1, . . . , k}, which indicates the band to which transcripts
of length ` migrate. If we observe reads sampled from transcripts of length ` in bands
X1, . . . , Xn ∈ [k], then we simply count how often reads are obtained in a given band
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and take the relative frequency as density estimate:

f̂(i) =

∑n
j=1 1(Xj = i)

n
,

where 1 is the indicator function that takes value 1 if its argument evaluates to true
and 0 otherwise. To obtain reads for which we can infer the originating transcript
with high confidence, we select reads that uniquely map to a single annotated tran-
script. More precisely, we run the kallisto pseudoalignment step and select all reads
that are compatible with only a single transcript according to the NH tag.
In addition, we account for potentially incomplete transcript annotations that may
cause reads sampled from unannotated transcripts (of different length) to nega-
tively affect our migration estimate of a transcript (length) it was wrongly assigned
to. To this end, we assemble transcripts using StringTie2 from reads pooled across
bands and aligned using STAR. We augment the transcript annotation with novel
transcripts before running the kallisto pseudoalignment to obtain a more conser-
vative selection of uniquely mapping reads. We do not consider reads mapping
(uniquely) to newly assembled transcripts. We further restrict observations to reads
that uniquely map to protein-coding transcripts (Ensembl release 95), which are
typically annotated more accurately, and which we were able to confirm to be ex-
pressed through the StringTie2 assembly on the intron chain level. We require a
minimum number of 50 reads to uniquely map to a transcript of length at most
8000 bp to be considered in our estimation. The resulting set of reads along with
their band of origin identified by the barcode constitute observations X1, . . . , Xn for
the length of the transcript they uniquely align to.
If no (high-quality) transcript catalog is available based on which uniquely mapping
reads can be identified, e.g. in de novo assembly or in the case of poorly studied
species, synthetic RNA spike-in controls of varying lengths [57] can be used to sim-
ilarly estimate transcript migration error from reads mapping to spike-in controls.
Since transcripts of similar length show similar migration patterns through the
gel [58], we combine reads uniquely mapping to transcripts of a certain length range
to more reliably estimate f(x) based on a larger number of reads. Starting from
the shortest transcripts, we greedily define transcript length ranges as the short-
est possible length intervals longer than 100 bp which contain at least 50 different
transcript species to which at least a total number of 700, 000 reads map uniquely.
For each of these length ranges, we estimate one probability mass function f(x) as
described above. The resulting length ranges are listed in Table B.3.

2.3.2 Comparison with publicly available datasets

2.3.2.1 Correlation

In order to examine if the process of separating transcripts by their length prior
to sequencing introduced any systematic bias or any shift in correlation or tran-
script detection rate, we compared transcript abundances calculated using pooled
reads from all bands in Ladder-seq data to publicly available conventional RNA-seq
data. The Pearson correlation coefficients of log2 transformed transcript per million
(TPM) values demonstrate high technical reproducibility of our Ladder-seq protocol
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(r=0.96-0.98; Fig. 2.4). We added a pseudo count of 0.1 to the tpm values prior
to the log2 transformation in order to avoid very large negative numbers. Further-

Figure 2.4: Scatter plot of log2-transformed transcript expression values (TPM) estimated
from 4 WT and 4 KO NPC Ladder-seq samples. Pairwise comparisons between WT
samples are shown in the lower triangular, between KO samples in the upper triangular
of the matrix. Pearson correlation coefficients are shown for all pairwise comparisons.
Transcript expression was estimated by kallisto from pooled reads ignoring their separation
into bands.

more, transcript expression levels were well-correlated between each of the four WT
Ladder-seq samples and three conventional RNA-seq reference data sets (without
length separation) from WT NPCs rep1, rep2 and rep3 (r=0.81-0.82; Fig. 2.5 and
Appendix Table B.5), despite using different experimental batches. Pearson correla-
tion coefficients of our Ladder-seq samples were similar to those of 5 public RNA-seq
samples of mouse NPCs [40, 59] (Appendix Tables B.4 and B.5), which holds also
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Figure 2.5: Scatter plot of log2-transformed transcript expression values (TPM) estimated
from 4 Ladder-seq samples (90 mio paired-end reads per sample) and a conventional RNA-
seq sample (no length separation, 30 mio single-end reads) from WT NPCs. Transcript
expression in the 4 Ladder-seq samples was estimated by kallisto from pooled reads ignor-
ing their separation into bands. Pearson correlation coefficients are shown for all pairwise
comparisons of the 4 Ladder-seq samples with reference RNA-seq sample NPC Rep2. Cor-
relation with two other reference RNA-seq samples are given in Appendix Table B.5.

when correlation was stratified by transcript length ranges that follow the location
of cuts used in our experiments (Fig. 2.6).
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Figure 2.6: Pearson correlation of transcript expression stratified by band. The values
reported are mean correlation coefficients across 4 WT Ladder-seq NPC samples and
across 2 and 3 regular RNA-seq samples of mouse WT NPCs by Tardaguila et al. [40]
and Chen et al. [59], respectively (variance not visible). Expression was estimated by
kallisto using pooled reads across bands in Ladder-seq. For each band, log2-transformed
expression values (TPM) of transcripts with annotated length falling in the corresponding
range were compared to the 3 reference RNA-seq samples from WT NPCs.

2.3.2.2 Checking for length bias based on residuals

Transcripts with low correlation did not differ significantly in length from highly
correlated tanscripts (Fig. 2.7). Using a linear regression model to predict abundance
calculated from NPC Rep2 by abundance calculated from Ladder-seq WT data, we
divided transcripts into two sets, one with a |residual| > 1 and the other |residual| ≤
1. We compared the distribution of lengths of these two groups of transcripts and
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using the non-parametric Wilcoxon’s test we found no evidence of the means of the
distributions being different, signified by extremely high p-values (> 0.94). This is
further confirmation that there is not systematic bias by length of transcripts.
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Wilcoxon p-value = 0.9464
Ladder-seq WT1 vs NPC Rep2

Wilcoxon p-value = 0.9940
Ladder-seq WT2 vs NPC Rep2

Wilcoxon p-value = 0.9705
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Figure 2.7: Comparison of transcript length between high and low residual transcripts.
After fitting a linear regression model between estimated transcript expressions (≥ 1TPM,
log2-transformed) in WT Ladder-seq NPC samples and reference RNA-seq sample NPC
Rep2, high residual transcripts were defined as those with |residual| > 1, low residual
transcripts as the remaining transcripts (|residual| ≤ 1). Transcript expression was esti-
mated by kallisto, pooling reads from all bands in Ladder-seq samples. The two groups of
transcripts were compared using Wilcoxon’s test.

2.3.2.3 Transcript detection

The total number of detected annotated transcripts is highly similar between Ladder-
seq and conventional RNA-seq (Fig. 2.8 and 2.9), and the detection rate increased
with transcript length as previously reported [60] (Fig. 2.10 and 2.11).
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Figure 2.8: Number of detected transcripts by Ladder-seq and conventional RNA-seq. An
annotated transcript is considered detected if the estimated count is at least 1. Expression
was estimated by kallisto using pooled reads across bands in Ladder-seq. The 4 WT
Ladder-seq NPC samples are compared to the 2 RNA-seq samples of WT NPCs from
Tardaguila et al. [40]. Ladder-seq data sets were randomly sampled to an identical read
depth as the data sets by Tardaguila et al. (94 mio single-end reads).
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Figure 2.9: Number of detected transcripts by Ladder-seq and conventional RNA-seq. An
annotated transcript is considered detected if the estimated count is at least 1. Expression
was estimated by kallisto using pooled reads across bands in Ladder-seq. The 4 WT
Ladder-seq NPC samples are compared to RNA-seq samples of WT NPCs from Tardaguila
et al. [40], Chen et al. [59], and the 3 reference samples (NPC). All data sets were randomly
sampled to an identical read depth (20 mio single-end reads) as the reference NPC data
sets.
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Figure 2.10: Transcript detection rate of Ladder-seq and RNA-seq. The fraction of tran-
scripts with estimated count at least 1 is stratified by transcript length, using ranges that
follow the location of cuts used in our experiments. Expression was estimated by kallisto
using pooled reads across bands in Ladder-seq. The 4 WT Ladder-seq NPC samples are
compared to RNA-seq samples of WT NPCs from Tardaguila et al. [40], Chen et al. [59],
and the 3 reference samples (NPC). All data sets were randomly sampled to an identical
read depth as the reference NPC data sets (20 mio single-end reads).
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Figure 2.11: Transcript detection rate of Ladder-seq and RNA-seq. The fraction of tran-
scripts with estimated count at least 1 is stratified by transcript length, using ranges that
follow the location of cuts used in our experiments. Expression was estimated by kallisto
using pooled reads across bands in Ladder-seq. The 4 WT Ladder-seq NPC samples are
compared to the 2 RNA-seq samples of WT NPCs from Tardaguila et al. [40]. Ladder-seq
data sets were randomly sampled to an identical read depth as the data sets by Tardaguila
et al. (94 mio single-end reads).
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Chapter 3

Benchmark framework

Methods for assembly and quantification need to be tested for their accuracy, mean-
ing that the genes or transcripts or their relative abundances that are predicted or
estimated by these methods need to be verified against a ground truth, or in other
words, information that is known to be true. Ground truth for RNA-seq data does
not exist since we don’t precisely know the actual set of transcripts and their levels
of expression in a sample [61]. As a result, benchmarking for analysis methods for
RNA-seq data is often done using simulated data [61]. Some of the most widely used
simulators are RSEM [62], Polyester [63] and FluxSimulator [64]. Most of these sim-
ulators train some statistical model parameters from real RNA-seq data and then
use these parameters to simulate reads.
In this chapter we describe in details the methods that we used to create simulated
Ladder-seq data from conventional RNA-seq data and also the benchmarking strate-
gies that we used to evaluate the methods that we have extended to be used with
Ladder-seq data. Parts of this chapter are taken from [54].

3.1 Simulation

We extend RSEM [62] by an additional in silico length separation step that includes
the introduction of migration errors to simulate data with similar characteristics
as data generated by our novel Ladder-seq protocol. Since the effectiveness of the
experimental deconvolution of reads into different bands by Ladder-seq depends on
the differences in lengths of expressed, overlapping transcripts, we simulated reads
from a transcriptome using abundances and error profiles learned from a real data
set. Following the approach in [27], we simulated 30 million and 75 million 2×75-
bp paired-end reads from transcripts whose abundances were estimated by RSEM
from sample NA12716 7 of the Genetic European Variation in Health and Disease
(GEUVADIS) [65].

3.1.1 Simulating Ladder separation

Given the RNA-seq reads produced by the simulator, we generate a matching
Ladder-seq sample by assigning each read randomly to one of a fixed number of
bands (here 7) to introduce in silico length separation. This random assignment
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follows the probability mass function estimated from our NPC Ladder-seq sample
KO 1, given the length of the transcript the read originates from (provided by the
simulator). Fig. 3.1 gives an overview of the benchmark strategy.

Ground truth
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NA12716_7

4. kallisto,
    StringTie2,
    trinity

4. kallisto-ls,
    StringTie-ls,
    trinity-ls

5.

5.

RNA-seq

Ladder-seq1. RSEM
(estimate)

2. RSEM
(simulate)

Figure 3.1: Overview of the benchmark strategy. 1. The ground truth transcriptome
including abundances and error profile is calculated by RSEM from GEUVADIS sample
NA12716 7. 2. Reads are simulated from the ground truth transcriptome by RSEM to
obtain RNA-seq samples of different sequencing depths. 3. A matching Ladder-seq sample
is obtained by separating reads in silico according to probability mass functions estimated
from our NPC Ladder-seq sample (and variants thereof). 4. Transcripts are quantified and
assembled by our Ladder-seq tailored transcript analysis methods kallisto-ls, StringTie-ls,
and Trinity-ls from the Ladder-seq sample, while their conventional counterparts are run
on the corresponding RNA-seq sample. 5. The results are compared to the ground truth
to evaluate and compare their accuracy.

3.1.2 Different levels of separation

To demonstrate how a more accurate experimental separation of transcripts by
length can benefit transcript-level inference from Ladder-seq, we additionally sim-
ulated three Ladder-seq experiments that introduce gradually decreasing levels of
migration errors. For every transcript length range for which we have estimated
probability mass function f(x) from our NPC Ladder-seq sample, we halve the rel-
ative frequency of reads in every band as we move further away from its mode and
normalize all values to sum up to 1. More precisely, for bands numbered consecu-
tively from 1 to k, let m denote the band that contains the mode of f̂(x) estimated
for a given length range. Then

f 1(i) =
f̂(i)/2|i−m|∑k
j=1 f̂(j)/2|i−m|

(3.1)

Similarly, f 2(x) and f 3(x) are obtained by replacing f̂ in (3.1) by f 1(x) and f 2(x),
respectively. By randomly assigning simulated reads according to probability mass
functions f i(x), i = 1, 2, 3, instead of f̂(x), we obtain three additional Ladder-seq
datasets with reduced levels of migration errors.

Finally, we simulated a most optimistic Ladder-seq experiments that is able to
perfectly separate transcripts by length, without introducing any migration error.
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This leads to a degenerate probability mass function for each length range implied
by the 7 in silico cuts in which the read band is a constant random variable that
takes only a single value, the correct band corresponding to that length range.

3.2 Benchmarking

We used the same metrics as in a benchmark of transcript quantification methods
[43] to measure the accuracy of conventional RNA-seq and Ladder-seq based es-
timates of transcript expression. MARD denotes the arithmetic mean of absolute
relative differences, calculated as |i−j|/(i+j) for estimated and ground truth counts
i and j, respectively. We excluded transcripts with zero estimates by both methods,
that is, if i + j = 0. Pearson correlation was calculated between log2 transformed
TPM values, after adding 0.1 TPM. The advantage of Ladder-seq seq to conven-
tional RNA-seq is due to the reduction of effective complexity achieved by separating
transcripts based on their length. Quantification of genes expressing multiple tran-
scripts benefit more from the reduction of effective complexity by Ladder-seq as
compared to genes expressing a single or a few transcripts. In order to examine
the improvement of accuracy with an increase in gene complexity, we compare the
correlation and MARD values of Ladder-seq to conventional quantification based
on the complexity of their originating gene. More precisely, we group transcripts
into 10 groups, starting from genes with two expressed transcript to genes with 10
expressed transcripts.

Consistent with previous studies [66, 29], the accuracy of reference-based and de
novo assemblies is evaluated using sensitivity defined as TP/(TP+FN) and precision
defined as TP/(TP+FP), where true positives (TP) denote correctly assembled
transcripts, false negatives (FN) true transcripts missing in the assembly, and false
positives (FP) wrongly assembled transcripts. We considered a transcript truly
expressed if reads sampled by RSEM in the 30 million reads data set fully cover
the transcript, and if it was estimated by RSEM to be expressed in GEUVADIS
sample NA12716 7 with at least 0.1 TPM. An identical ground truth transcriptome
facilitates comparison of sensitivity and precision values between different sequencing
depths and so we used the ground truth set of transcripts from the 30 million reads
data set to evaluate the assembly from the 75 million reads data set. We used
the same transcriptome for comparing the results of denovo assemblies between the
methods. The next section gives a detailed overview of process of generating the
ground truth.

3.2.1 Generation of the ground truth transcriptome for benchmarking
assembly methods

The reads simulated using RSEM contain information about the transcript and the
exact position in the transcript that they were simulated from. Using this infor-
mation we create a bed file containing transcript names and locations of contiguous
segments of a transcript which are covered by individual reads. We use bedtools [67],
specifically its merge and intersect utilities to merge the locations covered by indi-
vidual reads and retain transcripts which are covered completely from one end to the
other. Additionally, in order to get a correct view of the complexity of assembling
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transcripts we group overlapping transcripts into contiguous loci and calculate gene
complexity on these groups instead of calculating complexity based on annotation.
The grouping is achieved using the program groupGenes [32] which substitutes the
gene-id of a transcript by the locus-id of its group based on shared sub-exons [32].
Finally we divide the set of fully covered and grouped transcripts by gene complex-
ity using the utility gtfFilter [32] to complexities of 1 to 10 and 10+ transcripts
expressed per gene locus and keep transcripts with an expression level more than
0.1 transcripts per million (TPM).

3.2.2 Gffcompare

As in [30, 31], we used GffCompare [68] to compare transcripts assembled by StringTie2
or StringTie-ls to truly expressed transcripts. GffCompare defines an assembled
transcript as correct if it shares the exact same sequence of introns with a true
transcript. In the de novo assembly benchmark, correct assemblies by Trinity and
Trinity-ls need to be identified through an alignment of their sequences which we
computed using BLAT [69]. Applying commonly used criteria [35, 70], we require
the sequences to align with 95% identity and at most 1% insertion and deletion rate,
and apply transcript coverage cut-offs of 80%, 85%, 90%, and 95%.
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Chapter 4

Transcript Quantification

Reads that map to a unique genomic position often cannot be assigned unambigu-
ously to one of a gene’s transcripts, since alternatively spliced isoforms may overlap
in genomic coordinates. Transcript quantification methods therefore use a statis-
tical model of RNA-seq to probabilistically assign reads to transcripts such that
estimated transcript abundances can best explain the observed reads. In this chap-
ter we introduce our extension of the statistical model of RNA-seq to our new
protocol Ladder-seq and our implementation of an Expectation-Maximization (EM)
algorithm that infers maximum likelihood (ML) estimates of transcript abundances
in this model. Parts of this chapter are taken from [54].

4.1 kallisto-ls

4.1.1 Fractional assignment of reads

There are two primary measures of transcript expression, the fraction of transcripts
and the fraction of nucleotides of the transcriptome that is made up of a given gene
or transcript [71]. We denote these quantities as ρt and αt respectively (equations
4.1 and 4.2).

αt =
ρt × lt∑
t′εT ρt′ × lt′

(4.1)

ρt =
αt
lt∑

t′εT
αt′
lt′

(4.2)

The fundamental assumption of RNA-seq is that the fraction of reads derived from
a transcript t is a function of αt and that Nt/N approaches αt as N →∞ where Nt

is the number of fragments that map to transcript t and N is the total number of
fragments [71]. Thus α̂t, an estimator for αt can be calculated using equation 4.3.

α̂t =
Nt

N
(4.3)
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Transcript expression is estimated using a generative model of the RNA-seq read
sequencing process. The model parameters are θ = θ1, ...θT which are the expression
levels of transcripts 1, ...T . The observed data of the model consists of n = 1...N
read sequences. The goal is to estimate the model parameters which maximize the
probability of the observed data which we denote as Pr(n|θ).

The exact mapping of reads to transcripts are unknown and this makes the
estimation of the model parameters that maximize the probability of the observed
data difficult. In order to simplify this process, we introduce some hidden binary
variables which define the mapping of reads to transcripts. The hidden variable for
a read n originating from transcript t is defined by Znt such that

Znt =

{
1, if read n comes from transcript t

0, otherwise
(4.4)

The complete likelihood of the data along with the hidden variables is given by
equation 4.5.

Pr(n, Z|θ) (4.5)

Since the distribution of the hidden variables is also unknown, the EM algorithm is
used to estimate the model parameters which maximize equation 4.5. EM alternates
between estimating the hidden variables based on current estimates of the model
parameters, θ̂ and then recalculating the parameters from these estimates. The E
step of EM calculates the expected value of the posterior distribution of the hidden

variables, Pr
(
Z|n, θ̂

)
and the M step then maximizes the likelihood of the data

Pr (n, Z|θ) w.r.t. Pr
(
Z|n, θ̂

)
and updates the estimates of the model parameters

θ̂. The steps are repeated with the updated values of the model parameters till they
converge.

The steps of the EM algorithm are as follows:

1. Initialization : All transcripts are initialized with the same abundance, ρ̂t
(0) =

1
T

, where T is the total number of transcripts.

2. For m = 1, 2, ... repeat

• E step: If a read Rn maps to a set of transcripts e then the then the
expected value of the hidden variable Znt is calculated based on the current
values of the model parameters ρ̂t (Equation 4.6).

EZ|n,ρ̂t

(
Z

(m)
nt

)
=


ρ
(m)
t∑

t′εe ρ
(m)

t′
, if tεe

0, otherwise
(4.6)

• M step: This step maximizes the likelihood of observing the data along
with the expected values of the hidden variables to yield the maximum

36



likelihood estimators of the model parameters. The values of α̂t and ρ̂t
are updated by the equations 4.8 and 4.7.

α̂t
(m+1) =

1

N

(
N∑
n=1

EZ|n,ρ̂t

(
Z

(m)
nt

))
(4.7)

ρ̂t
(m+1) =

α̂t
(m+1)

lt∑
t′εT

α̂′
t

(m+1)

lt′

(4.8)

3. The E and M steps are repeated with the updated values of ρ̂t until they
converge.

4.1.2 Conventional kallisto

Kallisto is a pseudo-alignment based RNA-seq quantification method which uses
the EM algorithm as described above to estimate transcript quantification levels.
Kallisto is based on the following likelihood function [27] of RNA-seq:

L(α) ∝
∏
e∈E

(∑
t∈e

αt
lt

)ce

(4.9)

It counts the number of fragments ce that cannot be distinguished by the set of
transcripts e they are compatible with and are thus considered equivalent. lt denotes
the effective length [72] of transcript t and parameters αt the probability of obtaining
a fragment from a transcript t.

4.1.3 Adapting the conventional likelihood function to Ladder-seq

Most statistical models assume that reads are sampled proportionally to transcript
abundances and their lengths and include parameters for the length distribution of
fragments if sequenced from both ends (paired-end reads), for sequence bias and
positional bias, and for sequencing errors. The main difference in the Ladder-seq
protocol is that the barcode of each read indicates the band from which its origi-
nating transcript was extracted. The read’s band contains transcripts of a specific
length range and thus provides valuable information when trying to probabilistically
resolve its assignment ambiguity between transcripts of different length.

In a perfect scenario, all the transcripts of a certain length would migrate to
the same band and the abundance estimation could be performed on each band
separately. However in reality, all transcripts don’t migrate to the band that they
are supposed to. The migration of transcripts follows a distribution which can be
measured from read mapping data as we have shown in section 2.3.1. As a result
of the probabilistic migration of transcripts across bands, reads from many bands
can map to a set of transcripts of particular length.

After estimating migration patterns in a Ladder-seq sample, kallisto-ls uses an
EM algorithm similar to kallisto to infer maximum likelihood estimates of transcript
abundances in our statistical model of Ladder-seq.
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In Ladder-seq, we observe fragments that originate from transcripts in different
bands. The probability of obtaining a fragment from a transcript t in band b then is
αtβtb, where βtb denotes the fraction of transcript t in band b which we precompute in
f̂(b) for each range of transcript lengths as described above. If we split equivalence
class counts ce between k different bands, i.e.

ce =
k∑
b=1

ceb ,

then the likelihood function for Ladder-seq becomes

L(α) ∝
∏
e∈E

k∏
b=1

(∑
t∈e

αtβtb
lt

)ceb

(4.10)

We extend the EM algorithm implemented in kallisto to find the values of α that
maximize likelihood (4.10). Based on the modified likelihood, the hidden variable
for a read n from band b originating from transcript t is defined by Zntb such that

Zntb =

{
1, if Rn comes from band b and transcript t

0, otherwise
(4.11)

The E and M steps of the EM algorithm are modified as follows:

1. Initialization : All transcripts are initialized with the same abundance, ρ̂t
(0) =

1
T

, where T is the total number of transcripts.

2. For m = 1, 2, ... repeat

• E step: If a read Rn from a band b maps to a set of transcripts e then the
then the expected value of the hidden variable Zntb is calculated based on
the current values of the model parameters ρ̂t (Equation 4.12).

EZ|n,ρ̂t

(
Z

(m)
ntb

)
=


ρ
(m)
t ×βtb∑

t′εe ρ
(m)

t′ ×βt′b
, if tεe

0, otherwise
(4.12)

• M step: This step maximizes the likelihood of observing the data along
with the expected values of the hidden variables to yield the maximum
likelihood estimators of the model parameters θ. Thus the values of α̂t
and ρ̂t are updated by the equations 4.14 and 4.13.

α̂t
(m+1) =

1

N

(
k∑
b=1

N∑
n=1

EZ|n,ρ̂t

(
Z

(m)
ntb

))
(4.13)

ρ̂t
(m+1) =

α̂t
(m+1)

lt∑
t′εT

α̂′
t

(m+1)

lt′

(4.14)
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3. The E and M steps are repeated with the updated values of ρ̂t until they
converge.

Consistent with the original kallisto implementation, the EM algorithm termi-
nates if αtN has changed by less than 1% compared to the previous iteration for
every transcript t with αtN > 0.01, where N is the total number of fragments.

The observed data likelihood remains a concave function under this adjustment,
provided we precompute the extent of migration errors as shown by section 2.3.1.
We can thus compute maximum likelihood values of transcript abundances using an
EM algorithm.

4.1.3.1 Proof of concavity of Ladder-seq likelihood

The log-likelihood function of Ladder-seq is:

ln(L(α)) =
∑
e∈E

k∑
b=1

ceb ln

(∑
t∈e

αtβtb
lt

)
. (4.15)

For arbitrary but fixed e ∈ E and b ∈ [k] we define

f(α) = ceb ln

(∑
t∈e

αtβtb
lt

)
. (4.16)

Analog to [71] we prove in the following that f(α) is concave, from which it follows
that ln(L(α)) is concave too. Let H(α) represent the Hessian matrix of function
f(α):

Hjk(α) =
∂2ceb ln

(∑
t∈e

αtβtb
lt

)
∂αj∂αk

(4.17)

= −ceb
βjbβkb
ljlk

1(∑
t∈e

αtβtb
lt

)2 (4.18)

Then we can rewrite H(α) = −z(α)xTx, where

z(α) =
ceb(∑

t∈e

αtβtb
lt

)2 and (4.19)

x =

(
β1b
l1
,
β2b
l2
,
β3b
l3
, . . . ,

β|e|b
l|e|

)
. (4.20)

Since z(α) > 0, we have for all y =
(
y1, y2, . . . , y|e|

)
:

yH(α)yT = y
(
−z(α)xTx

)
yT (4.21)

= −z(α)(yxT )(xyT ) (4.22)

= −z(α)(yxT )2 (4.23)

≤ 0 (4.24)
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Thus H(α) is negative semi-definite and f(α) is concave.

We extend the EM implementation in sotware tool kallisto [27] to quantify tran-
scripts based on compatibilities of reads with transcripts rather than precise align-
ments. These compatibilities can be computed much faster through a pseudoalign-
ment and provide a sufficient statistic for the abundances [27]. According to recent
benchmarks [43, 73], alignment-free methods such as kallisto quantify transcripts
much faster yet compare favourably in terms of accuracy to alignment-based meth-
ods like RSEM [62].

4.1.4 Additional length information improves the assignment of ambiguous
reads to transcripts

In order to get a detailed picture of the difference between the fractional distribution
of reads by conventional RNA-seq and Ladder-seq , we selected a set of transcripts
from the simulated data consisting of 30 million reads and show the difference in
distribution of reads by conventional kallisto and kallisto-ls. Reads mapping to
overlapping regions of transcripts are conventionally assigned equally to the corre-
sponding transcripts during the first iteration of the EM algorithm. Abundances
in the following iterations are estimated depending on the assignment of reads in
the first iteration. Ladder-seq can deconvolute the signal, starting from the first
iteration, if the transcripts in question have lengths sufficiently different in order
to migrate in different bands. Reads in Ladder-seq are not only assigned based on
the number of transcripts that they map to, but also on the band that the read
originated from, which in turn depends on transcript length.

Fig. 4.1 shows the distribution of reads in conventional-RNA and the Ladder-
seq. While reads are assigned to transcripts most always with equal probability by
conventional RNA-seq, we observe that Ladder-seq assigns reads from smaller bands
to transcripts of smaller lengths with a higher probability and vice versa. This leads
to more accurate quantification.

In this particular example conventional kallisto assigns 0.000013 counts to the
transcript T1 (ENST00000357668), 334 counts to transcript T2 (ENST00000524124),
and 4.11 counts to the transcript T3 (ENST00000519483) while in the ground truth
they have 83.04, 250 and 15.30 counts respectively. The overestimation of T2 by
conventional kallisto is at the cost of underestimating T1 and T3. This is due fact
that transcripts T1 and T3 have huge overlapping regions T2 with very few reads
mapping to their short unique regions. This results in most of the overlapping reads
being assigned to T3 and hence the erroneous estimation. The assignment of the
same set of reads by kallisto-ls leads to a better quantification since the reads are
assigned probabilistically based on the band that they originate from. As a result,
reads from lower bands are assigned almost exclusively to T3 because of its short
length and reads from the higher bands are assigned to T1 and T2 also based on their
length. kallisto-ls assigns 67, 256.74 and 17.16 counts to the transcripts T1, T2 and
T3 respectively which is much closer to the ground truth counts than conventional
kallisto.

Based on the estimation of the degree to which migration errors cause transcripts
to end up in the “wrong” band (section 2.3.1) we adjust the probability of obtaining
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a read in a given band from a specific transcript by the probability of seeing a
transcript of the same length in the corresponding band.

4.2 Evaluation

To assess the advantages of our Ladder-seq tailored EM implementation, kallisto-ls,
over conventional kallisto we compared their performance on simulated Ladder-seq
samples and matching RNA-seq sample, respectively (Fig. 3.1). As in the original
benchmark in [27], we used RSEM to simulate reads from a transcriptome with
abundances and error profiles estimated from sample NA12716 7 of the Genetic
European Variation in Health and Disease (GEUVADIS) data set. We simulated
20 datasets of 30 million and 20 datasets containing 75 million RNA-seq reads and
from each of these samples we derived a matching Ladder-seq sample using our in
silico length separation. The RNA-seq and corresponding Ladder-seq samples differ
only in the random assignment of reads to bands but are otherwise identical. The
details of the simulation process is explained in Section 3.1.

Prior to running the EM algorithm on the Ladder-seq samples, kallisto-ls esti-
mates migration patterns using the procedure described in the 2.3.1.

We measure quantification accuracy by mean absolute relative difference (MARD)
and Pearson correlation (section 3.2), the same metrics used in a benchmark of tran-
script quantification methods [43]. Even though conventional kallisto provides highly
accurate abundance estimates on this simulated RNA-seq sample, the additional
length information contained in the corresponding Ladder-seq sample is employed
by kallisto-ls to even more accurately quantify transcripts (Fig. 4.2 and Appendix
Fig. C.1). In fact, kallisto-ls is able to quantify transcripts of genes expressing 10
isoforms as accurately (in terms of MARD) as conventional kallisto is able to quan-
tify merely two expressed isoforms. A larger fraction of genes expressing a single
transcript were estimated to be lowly expressed in sample NA12716 7 by RSEM
(Table C.1), making their quantification less accurate by both kallisto-ls and its
conventional counterpart. Even the slightly higher fraction among genes expressing
2 transcripts has a small negative impact on quantification accuracy. Nevertheless,
kallisto-ls achieved better MARD and correlation for these sets of transcripts (Ta-
bles C.2 and C.3). To evaluate the impact that a more precise length separation has
on the accuracy of Ladder-seq, we mimic an idealised version of the Ladder-seq pro-
tocol which perfectly separates transcripts by length without any migration errors.
To this end, the same set of reads is partitioned into the same number of bands
deterministically according to the length of the originating transcript. Fig. 4.2 (and
Appendix Fig. C.1) shows that a more accurate length separation can in principle
improve quantification accuracy even further, yielding a reduction in MARD of more
than 31% for genes expressing 4 transcripts, for example. All results are listed in
Appendix Tables C.2 and C.3.
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Figure 4.1: Reduced read assignment ambiguity in Ladder-seq.(a) This illustrative ex-
ample shows reads that were sampled in bands 2,3,6 and 7 in our genome-wide simula-
tion study from 3 transcripts (t1 = ENST00000519483, t2 = ENST00000524124, t3 =
ENST00000357668) that largely overlap (not all transcripts shown). The color of each
read indicates the transcript to which the read is dominantly assigned after the first E-
step of the EM algorithm in the original kallisto implementation based on conventional
RNA-seq data (bottom) and in our extension of the algorithm to Ladder-seq (top). More
precisely, we color every read according to the additional fraction that is assigned to the
transcript of maximal assignment. The original algorithm fractionally assigns each read
equally to every transcript it overlaps (normalized by length), leading to indistinguishable
black reads. Our adaptation of the algorithm utilizes the partitioning of reads into bands
to hint at the read’s originating transcript, demonstrated by matching read and transcript
colors. Based on the migration patterns estimated from the length of the 3 transcripts,
our EM algorithm assigns larger read fractions to transcripts that are expected to occur
more abundantly in the read’s band.. This length-based deconvolution allows the EM
algorithm to ultimately quantify transcript abundances more accurately. In this exam-
ple, our Ladder-seq specific EM algorithm estimates 67, 257, and 17 counts (rounded) for
transcripts t1, t2, and t3 respectively, which closely match their true expression of 83, 250,
and 15 counts, respectively. In contrast, original kallisto fails to detect expression of t1 (0
counts) and overestimates expression of t2 (334 counts) from highly ambiguous RNA-seq
reads. It estimates 4 counts for t3.
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Figure 4.2: Reduced read assignment ambiguity in Ladder-seq improves transcript quan-
tification. Quantification accuracy of kallisto-ls compared to conventional kallisto. 30 mil-
lion 75 bp paired-end reads were simulated by RSEM from transcripts with abundances
estimated from GEUVADIS sample NA12716 7. Results for 75 million simulated reads
are shown in Fig. C.1. RSEM simulations were repeated 20 times, and mean values are re-
ported. Pearson correlation of estimated and ground truth abundance in log2 transformed
transcripts per million (TPM) and mean absolute relative difference (MARD) are shown
as a function of gene complexity, i.e. the number of transcripts expressed by a gene. For
the ease of visualization, we omit genes expressing a single transcript many of which are
estimated to be lowly expressed in this sample by RSEM. Nevertheless, kallisto-ls achieves
slightly better MARD and correlation for this set of transcripts (Appendix Table C.2).
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Chapter 5

Assembly

5.1 Reference-based transcript assembly - StringTie-ls -
general framework

Fragments in a RNA-seq library are much shorter than their originating transcripts,
and therefore the phasing of distant exons into full-length transcripts must rely on
local connectivity information provided by reads connecting neighboring exons and
on local read coverage. Current methods represent this connectivity by a graph
structure such as the splicing graph [74], and infer transcripts as paths through this
graph, using the coverage along transcripts as an additional selection criteria. In
contrast to the problem of quantifying the abundance of a small set of transcripts
annotated for a given gene, the space of possible candidate transcripts that can
be obtained by combining locally connected exons in paths through the graph can
grow exponentially, and smoothing the local coverage along transcripts cannot un-
ambiguously point to a single best subset of transcripts [75]. Here, we propose a
computational framework (see Fig. 5.1) that enables conventional RNA-seq assem-
bly methods to exploit the extra layer of information provided by Ladder-seq to
reduce the ambiguity in combining distant splicing events into transcript isoforms.
Parts of this chapter are taken from [54].

In this scheme, a separate splicing graph is built from reads in each band, which
can help to dramatically shrink the combinatorial space of possible transcripts and
facilitate their computational deconvolution into estimates of relative abundance.
Furthermore, reads in a given band originate from transcripts of a certain length
range which we use to further inform the selection of paths in individual splicing
graphs. Note that we do not rely on the location of cuts through the gel as indicated
by the RNA ladder to define transcript length constraints but derive constraints from
distributions of transcript lengths across bands (Section 2.3.1 and Table B.3). These
length constraints can aid in breaking (too long) erroneous fusions and in eliminating
(too short) transcript fragments. We then integrate individual assemblies into a non-
redundant set of transcripts. Finally, we use kallisto-ls to assign reads to transcripts
assembled by the above procedure according to our statistical model of Ladder-seq.
In contrast to the hard length constraints applied during the assembly, kallisto-ls
assigns reads probabilistically taking into account the computationally estimated
migration error and can thus refine our final reconstruction.
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Figure 5.1: Ladder-seq based transcript assembly. Overview of the proposed computa-
tional framework. For each band, a graph is constructed that captures connectivity infor-
mation contained in reads or their alignments. Reference-based assembly methods such
as StringTie2 use variants of splicing graphs to capture connectivity of exonic segments in
expressed transcripts evidenced by spliced alignments of reads. Transcript sequences are
then assembled by traversing paths through these graphs according to some optimization
criteria, a maximum flow in the case of StringTie2. In contrast to conventional RNA-seq,
where truly expressed transcripts need to be identified among a large number of possi-
ble paths through a single graph per locus, Ladder-seq limits the search for expressed
transcripts to paths in smaller graphs that are constructed for each band separately. In
addition, reads in different bands are obtained from transcripts of a certain length range,
imposing length constraints that can further direct the search for the correct paths. After
having inferred the best possible set of transcripts satisfying given length constraints in
each band independently, we integrate them to a refined set of transcripts by assigning
reads to them according to our statistical model of Ladder-seq, which relies on previously
estimated migration patterns through the gel. This last step takes into account the depen-
dence between bands introduced by the imperfect experimental separation of transcripts.
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5.1.1 Detailed method

We chose StringTie2 [29] as the presumably most accurate RNA-seq assembly method
[76, 29] to illustrate the benefit of our Ladder-seq tailored assembly approach over
its conventional RNA-seq counterpart. Reads from all bands are aligned to the refer-
ence genome sequence using a short read aligner such as STAR [25] in the 1passmode.
Prior to mapping, STAR creates an index using the genome and it can be provided
with a known set of splice junctions for a more splice informed mapping. We de-
cided to index the genome without using splice junctions in order to find more novel
splicing events. We assemble transcripts from every band using StringTie2 with
default options. We additionally pool reads from neighboring bands and assemble
transcripts using them in order to recover potentially low-expressed transcripts that
migrated close to the boundary between two bands.

StringTie-ls estimates migration patterns in a Ladder-seq sample using the his-
togram based approach described in section 2.3.1 and uses these estimates to identify
too short transcript fragments and too long transcript fusions. More precisely, for a
transcript t of length ` assembled in the jth band we look up the probability mass
function f(x) corresponding to the length range that contains ` to determine the
most likely band bi to which a transcript of length ` would have migrated to. If j 6= i
and j 6= i + 1, we remove t. Note that band bi+1 corresponds to the next longer
range of transcripts but can contain also slightly shorter transcripts from band bi
due to secondary structure effects. Similarly, if t was assembled in the combination
of bands j and j + 1, we discard t if j < i or j > i + 2. To account for potential
overlap with longer UTRs, we do not remove too long transcripts assembled in a
band i+ 2 . . . 7 if they are sufficiently high expressed (> 1 TPM), contain a unique
intron, and if their first or last exon is longer than 500 bp.

The individual assemblies are subsequently merged using the GffCompare tool
which computes the union of all intron chains. In other words, transcripts that
imply the exact same sequence of introns as a transcript assembled in a different
band are discarded. We further eliminate single-exon transcripts that are identified
as redundant by the merge mode of StringTie2 as well as transcript fragments that
are fully contained in other transcripts with compatible intron chains. These tran-
scripts most likely constitute transcript fragments that were only partially assembled
from reads obtained from transcripts that migrated to a different band. We retain,
however, transcripts with identical (partial) intron chain if they start or end within
an intron of the containing transcript, unless a very small overhang of at most 2
bases indicates noisy read alignments. Finally, we quantify assembled transcripts
using our statistical model of Ladder-seq implemented in kallisto-ls, and report all
transcripts estimated to be expressed with at least 0.1 TPM.

5.2 De novo transcript assembly - Trinity-ls

To study the transcriptome of species for which no or just a highly fragmented
reference genome is available or in samples with a substantially altered genomic
sequence, transcripts need to be assembled de novo. However, omitting the read
mapping step that arranges reads in order leaves the sequence overlap of reads as
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the only source of information to be utilized by methods in this most challenging
setting of transcript-level inference.

Most methods, including one of the most widely used methods Trinity [37], stitch
together k-mers, subsequences of k nucleotides, to transcript sequences by traversing
paths in so called de Bruijn graphs. Alternative paths in complex graphs can in
part be resolved to individual isoforms or paralogous transcripts using the pairing
information of reads. No part of the data connects subpaths at longer distances,
which can cause erroneous fusions of isoforms or paralogs, especially in complex
genes with a large number of alternative splicing events [77].

Here, we follow a similar strategy as in the reference-based assembly (Fig. 5.1)
to access the additional layer of information provided by Ladder-seq to guide the
de novo assembly of full-length transcripts by Trinity. We run Trinity on the reads
from each band separately using default parameters. In contrast to the reference-
based assembly, we do not pool reads from neighboring bands since the absence
of a reference genome makes it harder to subsequently detect and remove false
positive transcripts. After estimating migration patterns from Ladder-seq data using
the histogram-based method (Section 2.3.1), Trinity-ls applies length constraints to
assembled transcripts following the same strategy as in the reference-based approach.
It then concatenates the individual assemblies, since the absence of a reference
genome does not allow to detect potential redundancy with respect to the exon-
intron structure of transcripts. Again, Trinity-ls quantifies assembled transcripts
using our statistical model of Ladder-seq implemented in kallisto-ls and applies an
expression threshold of 0.1 TPM.

We benchmark Trinity-ls, our Trinity based de novo assembly approach for
Ladder-seq, and conventional Trinity on the same simulated 30 million and 75 mil-
lion Ladder-seq reads and matching RNA-seq samples used in the experiments on
quantification and reference-based assembly. Trinity-ls estimates migration patterns
from simulated Ladder-seq samples using the histogram-based approach described
above. Applying similar criteria as for example in [35], we consider a transcript
correctly assembled if BLAT [69] aligns its sequence to a true transcript with 95%
sequence identity and at most 1% insertion and deletion rate. In the most strict
setting, we require the reconstructed transcript to cover at least 95% of the full
transcript length and additionally evaluate the performance when applying a 80%,
85%, and 90% length threshold.

5.3 Evaluation

5.3.1 StringTie-ls

We used the same simulated Ladder-seq samples and its matched RNA-seq sam-
ples as in the kallisto-ls benchmark (section 4.2) to evaluate the performance of
StringTie-ls, our StringTie2 based assembly approach for Ladder-seq, in comparison
to conventional StringTie2 ran on the corresponding RNA-seq samples (Fig. 3.1).
The larger data set contains the same number of reads (75 million pairs) as used
in the original StringTie2 benchmark. Starting from the migration error estimated
from our real data, we created additional Ladder-seq samples that mimic an im-
proved length separation step by gradually reducing the degree of migration errors
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as shown in section 3.1.2. RNA-seq and Ladder-seq reads were aligned identically to
the reference genome (GRCh38) using STAR [25], and again StringTie-ls estimated
migration patterns from the simulated Ladder-seq samples using the histogram-
based method. We calculate sensitivity as the fraction of truly expressed transcripts
that precisely match the sequence of introns of an assembled transcript, and pre-
cision as the fraction of assembled transcripts that match an expressed transcript
(section 3.2).

Fig. 5.2 shows that StringTie-ls is able to correctly reconstruct a much larger
fraction of expressed transcripts than conventional StringTie2, and as expected this
improvement in sensitivity increases with gene complexity. For genes expressing 4
transcripts, StringTie-ls detects 16% more transcripts than conventional StringTie2,
and this improvement increases to 31.1% and 35.2% for complex genes expressing 7
and 10 transcripts, respectively. The gap between these two technologies widens with
a more accurate length separation of transcripts, reaching an improvement of 25.2%
for genes expressing 4 transcripts, and 49.2% and 58.7% for genes of complexity 7
and 10, respectively, in the most optimistic scenario. In this setting, StringTie-ls
is able to reconstruct transcripts of complex genes expressing 7 transcripts with a
higher sensitivity than conventional StringTie2 is able to detect just three isoforms
expressed by a gene. At the same time, StringTie-ls assembles transcripts with
higher precision across all complexity classes. Especially on genes that express only
a small number of transcripts, StringTie-ls benefits enormously from the additional
length information that allows it to detect too short transcript fragments. For genes
expressing a single transcript, for example, StringTie-ls recognizes 699 out of 824
false positive assemblies by conventional StringTie2 as being too short and eliminates
them, improving precision by 30.8% compared to its conventional counterpart. For
complex genes expressing multiple transcripts a better length separation is required
to yield a marked improvement in precision. We observed a similar improvement
on the larger data set (Appendix Fig. D.1), with only marginally higher sensitivity
and precision compared to the lower sequencing depth. All results are listed in the
Appendix Tables D.1-D.4.

5.3.2 Trinity-ls

Fig. 5.3 shows an enormous performance gain of Trinity-ls over conventional Trin-
ity, both in terms of sensitivity and precision when assembling transcripts de novo
from 75 million reads with a 90% transcript length cut-off. For genes expressing 5
transcript isoforms, for example, Trinity-ls achieves a similar sensitivity than Trinity
does for genes that express just a single transcript. Again, the low expression of
some genes expressing a single transcript (C.1) makes them more difficult to assem-
ble than transcripts of genes with higher complexity. In the most optimistic scenario
with perfect length separation, Trinity-ls is able to distinguish 10 isoforms expressed
by the same gene more accurately than conventional Trinity recovers the single tran-
script expressed by a gene. In total, Trinity-ls correctly recovers an additional 4072
(78%) transcripts compared to Trinity, while at the same time increasing precision
equally by 78%. A more accurate separation of transcripts by length further boosts
the performance of Trinity-ls, approaching an additional 163% of correctly discov-
ered transcripts and a 3.9-fold increase in precision in the most optimistic scenario
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Figure 5.2: Ladder-seq based transcript assembly. Accuracy of transcript assembly from 30
million simulated RNA-seq and matching Ladder-seq reads. Sensitivity (a) and precision
(b) of StringTie-ls and its conventional counterpart StringTie2 are shown as a function of
gene complexity measured as the number of expressed transcripts. StringTie-lsi denotes
the result of StringTie-ls on the simulated Ladder-seq data set to which i-fold error re-
duction was appliced (see Methods) starting from the migration error estimated from the
NPC sample (StringTie-ls). StringTie-ls - perfect represents the results of StringTie-ls
on the most optimistic Ladder-seq experiment in which transcripts perfectly separate by
length, without any migration error.

in which transcripts can be perfectly separated by their length.
We observed a similar improvement when applying different length thresholds or

when analysing a smaller data set containing 30 million reads (Appendix Fig. D.2).
As expected, fewer transcripts are correctly reconstructed from the smaller set of
reads, yet with slightly higher precision. All results are listed in Appendix Ta-
bles D.7-D.6.
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Figure 5.3: Accuracy of de novo transcript assembly from 75 million simulated RNA-
seq and matching Ladder-seq reads. Trinity-lsi denotes the results of Trinity-ls on the
simulated Ladder-seq data set to which i-fold error reduction was applied (see Methods)
starting from the migration error estimated from the NPC sample (Trinity-ls). Trinity-ls
- perfect represents the results of Trinity-ls on the most optimistic Ladder-seq experiment
in which transcripts perfectly separate by length, without any migration erorr. (left)
Sensitivity of Trinity-ls and its conventional counterpart Trinity at 90% transcript length
cut-off is shown as a function of gene complexity measured as the number of expressed
transcripts. (middle) Total number of correctly assembled transcripts at 90% transcript
length cut-off. (right) Precision in de novo assembly at 90% transcript length cut-off.
Overall precision is shown since assembled transcript fragments cannot be assigned unam-
biguously to individual genes.
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Chapter 6

Real data analysis using Ladder-seq

6.1 Ladder-seq improves differential analysis of reconstructed
transcriptomes

In addition to benchmarking the accuracy of transcript inference from simulated
Ladder-seq data, we evaluated its impact on the differential analysis of reconstructed
transcriptomes between two biological conditions. We used Ladder-seq to profile
the transcriptome of wild type (WT) and Mettl14 knock-out (KO) mouse neural
progenitor cells (NPCs) (4 independent replicates per genotype). To assess tran-
script usage under these conditions we first assembled transcripts using StringTie-ls
on each sample to identify novel transcripts that are expressed consistently across
replicates of the same genotype. We quantified annotated (Ensembl release 95) and
newly reconstructed transcripts using kallisto-ls and compared their expression be-
tween conditions to detect their differential usage. For comparison with conventional
RNA-seq, we ran the same computational pipeline replacing the Ladder-seq tailored
methods kallisto-ls and StringTie-ls by their conventional counterparts which ignore
the separation of reads into bands (Fig. 6.1).
Since no ground truth is available for the real Ladder-seq data sets, we used char-
acteristics of genes and experimental data to provide indirect evidence on the cor-
rectness of isoform switches only detected by Ladder-seq and evidence that switches
identified only by the conventional pipeline are likely a consequence of inaccurate
transcript assembly and quantification. Results presented in this chapter are taken
from [54].

6.1.1 Isoform switches

Isoform switch is a phenomenon where the expression levels of two isoforms will
switch depending on the conditional treatment of the samples. The R Biocon-
ductor package IsoformSwitchAnalyzeR [78] was used for differential isoform usage
(DIU) analysis. Identification of differentially used isoforms across all genes with Iso-
formSwitchAnalyzeR is done through DEXseq [79], a statistical method originally
developed for differential exon usage which has since been shown to adequately
control for false discovery rate in the setting of DIU. Analysis of consequences of
isoform switches was performed through IsoformSwitchAnalyzeR with the function
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Figure 6.1: Computational pipeline for differential isoform usage analysis with conven-
tional RNA-seq and Ladder-seq . Reads were aligned using STAR aligner prior to tran-
script assembly for both pipelines.

analyzeSwitchConsequences. This function allows to add input data from CPAT [80]
for analysis of coding potential and from PfamScan [81] for protein domain annota-
tion.
Ladder-seq identified 40% more genes harboring switching isoforms in Mettl14 KO
compared to conventional RNA-seq (Fig. 6.2). While the overlap between the two
methods is high (1,114 genes), there is a substantial number of genes that was re-
ported only by conventional RNA-seq (763 genes) and even more identified only by
Ladder-seq (1,520 genes).

6.1.1.1 Gene complexity

In order to assess how difficult it is to accurately assemble and quantify those tran-
scripts identified as switching, only by Ladder-seq or the conventional pipeline or
by both, we examined gene complexity, which we define as the number of expressed
transcripts per gene. Genes identified as switching exclusively by Ladder-seq ap-
pear to be particularly hard to reconstruct by the conventional pipeline without the
additional length separation (Fig. 6.3). In contrast, Ladder-seq breaks down gene
complexity by separating transcripts into bands according to their length, effectively
reducing the number of transcripts that need to be reconstructed in an individual
band. This effective complexity is considerably lower in all three categories of genes
identified as switching (Fig. 6.3), including genes identified as switching only by the
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Figure 6.2: Venn diagram showing overlap between switching genes identified by Ladder-
seq and conventional RNA-seq.

conventional pipeline which thus did not pose a particular challenge to the Ladder-
seq protocol.
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Figure 6.3: Gene complexity and effective gene complexity for switching genes identified by
Ladder-seq and conventional RNA-seq. The effective complexity is defined as the number
of transcripts in a single band after separating the mRNA by length.

6.1.1.2 Identified isoform switches

By separating reads coming from transcripts of different lengths, Ladder-seq un-
covers otherwise buried transcripts that are not identified by conventional RNA-
seq. This is exemplified by the isoform switch in gene Pi4k2a which is only iden-
tified by our method (Fig. 6.4a). Pi4k2a expresses mostly the annotated ENS-
MUST00000066778 transcript in WT, while KO also expresses a shorter un-annotated
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transcript (TCONS 00005143) in which a normally m6A tagged exonic region is
spliced out. The separation of reads from the shorter transcript TCONS 00005143
and reads from the longer transcript ENSMUST00000066778 into bands 4 and 5, re-
spectively, allowed StringTie-ls to detect this novel transcript whose usage switches
between conditions (Fig. 6.4b). Interestingly, the shorter transcript which is absent
from the mm10 Ensembl release 95, does exist in the later release 98 version (ENS-
MUST00000235932), confirming that what Ladder-seq assembled is indeed accurate.
In addition we confirmed this isoform switch with reverse transcription quantitative
PCR (RT-qPCR) on WT and Mettl14 KO mouse NPCs (Fig. 6.7). Additional il-
lustrative examples of isoform switches uncovered only by Ladder-seq are shown in
Figures 6.5 and 6.6.
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Figure 6.4: (a) Isoform switch identified by Ladder-seq in Pi4k2a. Red arrow shows
location of m6A methylation. (b) Coverage plot shows how reads from the shorter
un-annotated TCONS 00005143 are separated from reads belonging to the longer EN-
SMUST00000066778.

6.1.2 Accuracy of read assignment by Ladder-seq based methods as
compared to conventional methods

Ladder-seq makes use of estimated probability distributions describing how reads
from a transcript of a given length are expected to be distributed among the different
bands of the gel, i.e. how a mRNA molecule migrates through a denaturing agarose
gel. We can use these distributions to assess whether the originating bands of reads
assigned during quantification to a transcript of a given length follow the estimated
distribution. We used Jensen Shannon divergence (JSD), a measure of similarity
between two probability distributions, to compare estimated to assigned read band
distributions for transcripts as quantified by conventional kallisto or by kallisto-
ls. JSD values for kallisto-ls were consistently low for all identified switching genes,
which is to be expected given that kallisto-ls makes explicit use of these distributions
to guide the assignment of reads. On the other hand, JSD values for conventional
kallisto were highest for those genes identified as switching only by conventional
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Figure 6.5: Isoform switche identified only by Ladder-seq in gene Tram1l1. (a) Red
arrows show location of m6A methylation. TCONS00006855 is a novel isoform of Tram1l1
that was assembled by both methods, but conventional RNA-seq failed to identify the
isoform switch. Without length information, conventional RNA- seq reads in KO bands
2 and 3 were predominantly assigned to the annotated transcript in band 4. Error bars
indicate 95% confidence intervals. (b) Coverage plots for switching gene Tram1l1 showing
separation of reads from transcripts of different lengths.

RNA-seq (Fig. 6.8a). In fact, more generally we observed that the more conventional
kallisto differs from kallisto-ls in its transcript quantification, the more its assigned
read band distribution deviates from the estimated distribution, resulting in larger
JSD values (Fig. 6.8c). At the same time, the conventional pipeline leads to larger
JSD values if fewer reads are available that can be uniquely mapped to individual
transcripts and thus direct the correct assignment of ambiguous reads (Fig. 6.8b).
This makes larger JSD values likely an indication of erroneous assignments of reads
by conventional kallisto.

6.2 Mettl14 KO leads to isoform switches in m6A methylated
genes

Having identified a large set of genes with isoform switches using Ladder-seq, we
next set out to delineate the characteristics of these events and their relationship to
m6A methylation. We identified m6A tagged genes in a public m6A RIP-seq dataset
from mouse NPCs [82] and built a set of high confidence m6A peaks. BED files
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Figure 6.6: Isoform switches identified only by Ladder-seq in gene Exo1. Red arrows show
location of m6A methylation. TCONS 00000541 and TCONS 00000542 are novel isoforms
of Exo1 detected only by Ladder-seq. Error bars indicate 95% confidence intervals. (b)
Coverage plots for switching gene Exo1 separation of reads from transcripts of different
lengths.

containing peaks called by MACS2 [83] from two replicates with two input samples
each, were downloaded from NCBI’s Gene Expression Omnibus (GSE104686). Using
Bedtools intersect [84] we identified peaks that were reproducible in both replicates
with both input controls. We then annotated these high confidence peaks using the
annotatePeaks.pl program from the Homer suite [85] to identify the genes harboring
m6A methylation. We also performed Gene Ontology enrichment analyses using the
R Bioconductor package TopGO [86]. Only genes passing the pre-filtering step for
differential isoform usage (TPM >1) were considered for the gene universe.
We found that switching genes are significantly enriched for m6A methylated genes
(fisher’s exact test p-value = 2.36 e-19), with 1,141 out of 2,634 switching genes con-
taining m6A (Fig. 6.10a). These genes are enriched for Gene Ontology terms related
to transcriptional regulation, neurogenesis and synaptic signaling (Fig. 6.9(a)).

6.2.1 Spatial proximity between m6A and alternative splicing

To investigate the involvement of m6A methylation in isoform switching, we ex-
plored a potential spatial proximity between m6A and alternative splicing. We
assessed whether exonic segments [32] bounding differentially spliced regions are
enriched for m6A methylation. Pairs of switching isoforms from m6A methylated
genes were partitioned into minimal exonic segments that are bounded by splice
sites, transcription start, or transcription end sites of the two involved transcripts.
These segments represent the largest exonic fragments that are entirely contained in
one or both of the two transcripts. A segment bounds a differentially splice region
if it is part of only one of the two transcripts, if it is not the first or last segment
of that transcript, and if it is adjacent to a segment that is contained in both tran-
scripts. We take into account the length of segments in the Fisher exact test by
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Figure 6.7: Relative quantification of isoform expression with RT-qPCR. Three biological
replicates were tested per genotype. Each sample was tested in triplicate and normalized
to B-Actin. Expression levels of each differentially expressed isoform were normalized
to the expression of a common isoform identified in both WT and Mettl14 KO, which
consistently showed no significant difference between WT and KO NPCs.

distinguishing individual bases that can lie within or outside of bounding segments
and that can be methylated or not.
We analysed alternative splicing events using the IsoformSwitchAnalyzeR R Biocon-
ductor package [87] with the functions extractSplicingSummary, which summarizes
the types of alternative splicing occurring in each isoform switch, and extractSplicin-
gEnrichment, which identifies the uneven usage of a particular alternative splicing
type in one of the conditions assayed. We found a significant enrichment of m6A
within these segments (fisher’s exact test: pvalue = 8.6 e-39), with 32.2% overlap-
ping at least one m6A peak, compared to 20% of all remaining exonic segments
(Fig. 6.10b). This enrichment persists when normlizing for segment length (pvalue
= 1.09 e-5) to account for a possible bias towards longer exons [88, 89]. In this test
of association m6A tags within spliced out introns are not accounted for, given the
nature of m6A RIP-seq data. Illustrative examples of m6A methylation within a dif-
ferentially spliced exonic segment are shown for neurogenesis related genes Fbxl5 [90]
and Ptprz1 [91] (Fig. 6.9b and Fig. 6.10c).

6.2.2 Consequences of isoform switches on functional protein domains

We then studied the consequences of isoform switches on functional protein domains.
We found 295 genes with loss of functional domains in the upregulated isoform
in the KO. Gene Ontology enrichment analysis of these genes shows enrichment
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for neuronal function related terms such as glutamatergic synaptic transmission,
synapse organization and GABA secretion (Fig. 6.9c). For example, the isoform
switch in Kif1b leads to upregulation of the shorter Kif1b-alpha isoform compared
to WT where the most prominent expressed isoform is the longer Kif1b-beta isoform
with no significant change in the overall gene expression (Fig. 6.10d). Kif1b-alpha
lacks multiple domains contained in the longer beta isoform and is expressed in non-
neuronal tissues, while Kif1b-beta is the neuronal isoform and is responsible for the
transport of synaptic vesicle precursors [92].

To delineate the role of m6A in different types of alternative splicing we cat-
egorized the splicing events occurring within each switching pair. Most splicing
events were balanced between WT and Mettl14 KO, meaning that the number of
gains and losses of a certain type of splicing event (e.g. exon skipping) in the up-
regulated isoform were roughly the same. Intron retention events, however, were
imbalanced with upregulated isoforms in KO having significantly more intron reten-
tion losses than gains (Fig. 6.9d and Fig. 6.10e). Again, these genes were enriched
for m6A methylated genes (pvalue = 1.6 e-06). Gene Ontology enrichment analysis
revealed enrichment for terms unrelated to neuronal functions but rather associated
with pluripotency, such as DNA repair, DNA recombination and gamete generation
(Fig. 6.9e). We explored the consequences of intron retention losses in our dataset
and found an enrichment for non-sense mediated decay (NMD) insensitive isoforms
as well as for shorter 3’UTR (Fig. 6.10f), both hallmarks of decreased regulation
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of gene expression [93, 94]. Finally, we validated a selection of identified isoform
switches by performing qPCR in WT and Mettl14 KO mouse NPCs (Fig. 6.7) with
qPCR primers specific for each pair of switching isoforms and a primer common
to both isoforms for normalization (Appendix Table B.8). Together, these results
indicate that Mettl14 KO in mouse NPCs leads to widespread changes in isoform
usage in genes that are normally tagged with m6A methylation, and that m6A tends
to be close to differentially spliced regions of switching genes. Isoform switches lead
to loss of functional protein domains in neuronal genes and loss of intron retentions
in non-neuronal and pluripotency related genes.
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Figure 6.9: Mettl14 KO leads to isoform switches in m6A methylated genes. (a) Gene
Ontology for m6A methylated genes containing isoform switches. (b) Isoform switch in
Ptprz1. Red arrow shows location of m6A methylation. (c) Gene Ontology analysis for
genes with loss of protein domains in KO NPCs. (d) Splicing analysis: Number of gains
and losses of each splicing event in KO NPCs. A3: Alternative 3’ acceptor site; A5:
Alternative 5’ acceptor site; ES: Exon skipping; IR: Intron retention; MEE: Mutually
exclusive exon; MES: Multiple exon skipping. (e) Gene Ontology enrichment analysis of
genes with intron retention loss in KO NPCs.

6.3 Long-read sequencing confirms many Ladder-seq
transcripts in mouse NPCs

Third-generation sequencing technologies such as those from Oxford Nanopore Tech-
nologies (ONT) and Pacific Biosciences (PacBio) can produce reads longer than
10,000 bp which in principle allow to cover full-length transcripts. We therefore per-
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Figure 6.10: Mettl14 KO leads to isoform switches in m6A methylated genes and leads to
loss of protein domains and loss of intron retentions. (a) Venn diagram showing overlap
between switching genes and m6A methylated genes. (b) Enrichment of m6A methylation
within exonic segments bounding differentially spliced regions. In this example, both
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location of m6A methylation. (d) Isoform switch in gene Kif1b leads to upregulation of
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formed ONT long-read native RNA (ONT-RNA) and direct cDNA (ONT-cDNA)
sequencing of wild-type and Mettl14 knock-out mouse NPCs and obtained 2.1 and
1.8 million high-quality reads in WT and KO, respectively, from the native RNA
library, and 5.8 and 4.9 million reads in WT and KO, respectively, from the cDNA
library. Gene and transcript expression levels were well-correlated between ONT
and Ladder-seq samples (Fig. 6.11 and Tables B.6,B.7) and consistent with previ-
ously reported correlations between ONT and conventional RNA-seq data [95, 60].

6.3.1 Processing of ONT long-read libraries

Though ONT reads are theoretically supposed to span entire transcripts many of
the long reads capture only partial transcripts due to premature degradation of the
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three other Ladder-seq samples are listed in Tables B.6 and B.7.

mRNA, long molecules breaking during library preparation and failure of the reverse
transcriptase to capture the complete molecule in case of cDNA sequencing [29]. We
used FLAIR v1.5.1 [41] to identify and StringTie2 [29] to assemble transcripts from
ONT reads.

ONT reads were aligned to Ensembl mouse genome assembly GRCm38 using
minimap2 v2.17-r941. Following recommendations at https://github.com/lh3/

minimap2, we used option -ax splice to allow spliced alignments and provided
splice junctions extracted from the corresponding Ensembl release 95 transcriptome
annotation with parameter --junc-bed. In the alignment of native RNA reads, we
additionally used options -k14 -uf as recommended. We ran FLAIR with default
settings on pooled reads from both WT and KO replicates and extracted condition-
specific transcripts that had an estimated count of at least 1 in at least one of the
2 replicates per condition. FLAIR uses minimap2 internally to align reads using
options -ax splice -t 8 --secondary=no and corrects misaligned splice sites us-
ing the Ensemble 95 annotation. It groups corrected reads with identical intron
chains while comparing TSS/TSE with a window size of 100 bp, collapsing them to
representative transcripts. It retains transcripts with at least 3 aligned reads with
minimum MAPQ of 1. StringTie2 was run with the -L option (for long reads) on
each of 2 bam files generated respectively from pooled replicates of 2 conditions.
GffCompare v0.10.4 was used to compare transcripts between ONT data sets and
with transcripts assembled in Ladder-seq. Transcripts were considered identical if
they shared the exact same sequence of introns. To quantify expression and compute
the number and rate of detected annotated transcripts (Ensemble release 95) in an
ONT data set, we followed the strategy proposed in [60]. We aligned reads to the
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mouse cDNA sequences from Ensembl GRCm38.95 using minimap2 with options
-ax map-ont and quantified their expression using salmon v1.2.1 with options -l A

and --noErrorModel. A transcript was considered detected if its estimated count
was at least 1.

6.3.2 Identification of transcripts assembled from short reads by StringTie-ls
in ONT data

The lower sequencing depth and the higher error rate of long reads as compared to
short reads result in an incomplete transcriptome reconstruction from long reads that
also includes false transcripts. Nevertheless, a transcript assembled by StringTie-ls
from the Ladder-seq data or by StringTie2 from the corresponding RNA-seq sample
(ignoring the separation of reads into bands) is likely to be truly expressed if it
can be independently identified in the long read data. We therefore provide in Ta-
bles B.11 and B.12 the number of transcripts identified from long reads by FLAIR or
assembled by StringTie2 that were also assembled by StringTie-ls or its conventional
counterpart in at least one of the four short read replicate samples. Conventional
StringTie2 missed many long read transcripts successfully recovered by StringTie-
ls, in both conditions and compared to both native RNA and cDNA libraries. The
large number of transcripts assembled from short reads that were not identified in
the long read data but that were contained in the Ensembl gene annotation can be
attributed to the incompleteness of the long read transcriptomes.

We compared the Ladder-seq inferred WT transcriptome of mouse NPCs (Fig. 6.1)
used to study isoform switches in m6A methylated genes with transcripts identified
by FLAIR [41] from ONT long reads. 63.3% of ONT-cDNA transcripts were con-
tained in at least one WT Ladder-seq transcriptome with relative expression at
least 0.1 TPM. Among those, 79.3% were independently assembled by StringTie2
from the ONT-cDNA data, whereas only 24.7% of the remaining transcripts (those
only reported by ONT-cDNA) were also found by StringTie2 in the long-read data
(Fig 6.12a). Similarly, we found 68.7% of transcripts that occur in both our long-read
and the Ladder-seq transcriptome to also be contained in a recently published (Dong
et al. [96]) ONT long-read mouse NPC transcriptome (Fig. 6.12a). In contrast, this
independently generated set of transcripts contained only 11.4% of ONT-cDNA
transcripts that were not reported by Ladder-seq. The substantially lower valida-
tion rate in an independent data set or by the StringTie2 assembly suggests that a
larger fraction of transcripts missing in the Ladder-seq transcriptomes were falsely
inferred by FLAIR from ONT-cDNA reads, and similarly from our ONT-RNA data
(Fig. 6.13a). In contrast, 32.5% of transcripts uniquely identified by Ladder-seq
(average TPM ≥ 1) were also identified in the previously published NPC dataset
by Dong et al. This almost three times higher validation rate suggests high confi-
dence for this subset of transcripts, which is further supported by a larger fraction
of annotated transcripts amongst them. While 69% of Ladder-seq-only transcripts
(TPM ≥ 1) were annotated, this was true for only 2.7% of FLAIR-only transcripts
(TPM ≥ 1). Furthermore, a large fraction of FLAIR-only transcripts (18.1% com-
pared to 0.5% for Ladder-seq-only transcripts) matched an annotated sequence of
introns only partially, which may reflect a failure of ONT-reads to cover full-length
transcript sequences [60].
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Figure 6.12: Comparison of Ladder-seq and ONT direct cDNA long-read sequencing
(ONT-cDNA) on mouse NPCs. (a) Orange bars show validation by StringTie2 (left panel)
or by an independent ONT dataset (Dong et al. [96]) (right panel) of transcripts found
by both Ladder-seq and ONT-cDNA while light blue bars show validation values for tran-
scripts reported only by ONT-cDNA. (b) Boxplots showing expression levels (TPM) for
transcripts identified both by long-reads and Ladder-seq (green boxes) and for transcripts
identified only by Ladder-seq (grey boxes). Left panel shows values for all Ladder-seq
transcripts with TPM higher than 1. Right panel shows values for Ladder-seq switching
transcripts with TPM higher than 1. Boxplot definition: Bottom and top of the box
correspond to lower and upper quartiles of the data, bar is the median and whiskers are
median ±1.5× interquartile range.

As expected [60], Ladder-seq detected more annotated genes and transcripts than
could be mapped from the ONT libraries (Fig. 6.14 and 6.15). Nevertheless, 71.1%
of transcripts reconstructed by Ladder-seq with relative abundance at least 1 TPM
were identified by FLAIR or assembled by StringTie2 in the ONT-cDNA data set,
or were contained in Dong et al. (Fig. 6.16). This overlapping set of transcripts
showed higher expression levels than the remaining set of transcripts that were
uniquely identified by Ladder-seq (Figure 6.12b), suggesting the limited sequencing
depth of the ONT data set as one possible explanation for their absence in the
long-read transcriptome [60]. This was consistently observed in the ONT-RNA data
(Fig. 6.16 and 6.13b). A more likely explanation for the low abundance of transcripts
reported only by FLAIR (Fig. 6.17) is a higher rate of incorrectly inferred sequences
among them as suggested by their low validation rate and low fraction of annotated
transcripts (see above). A similar fraction (57.8%) of transcripts upregulated in WT
or KO as part of an isoform switch in our Ladder-seq analysis were identified by
FLAIR or assembled by StringTie2 in our WT and KO ONT-cDNA data sets. We
observed a similar shift in relative transcript expression between overlapping and
uniquely identified switching transcripts (Fig. 6.12b and Fig. 6.13b).

6.3.3 Validation of isoform switches inferred by Ladder-seq in ONT read
data

For 5 out of the 6 isoform switches validated by RT-qPCR (Fig. 6.7), the two par-
ticipating isoforms were identified by at least one of the two methods (StringTie2 or
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Figure 6.13: Comparison of Ladder-seq and ONT native RNA long-read sequencing (ONT-
RNA) on mouse NPCs. (a) Orange bars show validation by StringTie2 (left panel) or by
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with TPM higher than 1. Boxplot definition: Bottom and top of the box correspond to
lower and upper quartiles of the data, bar is the median and whiskers are median ±1.5×
interquartile range.

FLAIR) in the ONT-cDNA data set (Appendix Table B.9). StringTie2 alone assem-
bled both involved transcripts for 4 isoform switches, while FLAIR identified them
only in 2 switches. The single switch for which both methods independently detected
both isoforms was formed by the two highest expressed transcripts. In contrast, the
only isoform missed by both methods was the lowest expressed among all 12 tran-
scripts. Additionally, the shorter transcript which is absent from the mm10 Ensembl
release 95 and exists in the later release 98 version (ENSMUST00000235932) (Sec-
tion 6.1.1.2), is also present in the ONT data (Appendix Table B.9) and (Appendix
Table B.10. Overall, the two methods disagreed on the presence of 6 out of 12
validated switching isoforms, which underlines the nontrivial nature of the compu-
tational task of inferring high confidence transcripts from long reads. As expected,
the lower sequencing depth in the ONT-RNA data set resulted in a smaller number
of confirmed isoforms (Appendix Table B.10).

Finally, we used ONT long reads of WT and KO NPCs to validate novel tran-
scripts involved in isoform switches reported only by conventional RNA-seq or
switches identified only by Ladder-seq. Among all 499 novel switching isoforms de-
tected exclusively by Ladder-seq, 206 (41.3%) were identified from ONT-cDNA or
ONT-RNA long read data by FLAIR or assembled by StringTie2, or were contained
in a recently published [96] ONT long-read mouse NPC transcriptome. While the
validation rate among novel switching isoforms identified by both Ladder-seq and
conventional RNA-seq is slightly higher (56.9%), only 18 out of 97 (18.6%) novel
switching isoforms reported only by conventional RNA-seq were confirmed by long-
read sequencing.
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Figure 6.14: Number of detected genes (a) and transcripts (b). An annotated gene or
transcript is considered detected if the estimated count is at least 1. Both replicates were
pooled for the native RNA and direct cDNA ONT samples of WT NPCs.

0.8

0.6

0.4

0.2

0.0

T
ra

ns
cr

ip
t d

et
ec

tio
n 

ra
te

Transcript Length

[4
00

,8
00

]
[8

00
,1

20
0]

[1
20

0,
16

00
]

[1
60

0,
20

00
]

[2
00

0,
24

00
]

[2
40

0,
28

00
]

[0
,1

00
0]

[2
80

0,
32

00
]

[3
20

0,
36

00
]

[3
60

0,
20

50
13

]

[4
00

,8
00

]
[8

00
,1

20
0]

[1
20

0,
16

00
]

[1
60

0,
20

00
]

[2
00

0,
24

00
]

[2
40

0,
28

00
]

[0
,1

00
0]

[2
80

0,
32

00
]

[3
20

0,
36

00
]

[3
60

0,
20

50
13

]

[4
00

,8
00

]
[8

00
,1

20
0]

[1
20

0,
16

00
]

[1
60

0,
20

00
]

[2
00

0,
24

00
]

[2
40

0,
28

00
]

[0
,1

00
0]

[2
80

0,
32

00
]

[3
20

0,
36

00
]

[3
60

0,
20

50
13

]
Ladder-seq ONT-RNA ONT-cDNA

Figure 6.15: Transcript detection rate of Ladder-seq and ONT long-read sequencing. The
fraction of transcripts with estimated count at least 1 is stratified by transcript length,
using identical ranges as in [60]. For Ladder-seq, mean transcript fractions across the 4
WT NPC samples are reported (variance not visible). Both replicates were pooled for the
native RNA and direct cDNA ONT samples of WT NPCs.
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Figure 6.16: Cumulative percentage of Ladder-seq transcripts identified by long-read se-
quencing. Bars show percentage of Ladder-seq transcripts identified by FLAIR (green),
plus those additionally identified by StringTie2 (blue), plus transcripts additionally found
in a recently published long-read mouse NPC transcriptome (light blue) (Dong et al. [96]).
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Figure 6.17: Comparison of expression between common and FLAIR-only transcripts.
Boxplot shows expression levels (TPM) for transcripts identified both by long-reads (using
FLAIR) and Ladder-seq (TPM ≥ 1) and for transcripts identified only by FLAIR from
ONT-cDNA reads. Boxplot definition: Bottom and top of the box correspond to lower and
upper quartiles of the data, bar is the median and whiskers are median ±1.5× interquartile
range.
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Chapter 7

Discussion and Outlook

7.1 Discussion

In this thesis we introduced Ladder-seq, a combined experimental-computational
approach that dramatically improves the accuracy with which the set of expressed
transcripts can be inferred from short RNA-seq reads, incorporating varying degrees
of prior knowledge of a species’ genome sequence or its transcriptome. The exper-
imental separation of transcripts by their lengths provides an additional layer of
information that can be utilized by computational analysis methods to detect and
quantify transcripts that cannot be distinguished based on short read data alone.
In contrast, a higher read depth alone cannot mitigate identifiability issues of con-
ventional RNA-seq [97, 98]. We demonstrated that a more accurate reconstruction
of the transcriptome benefits its subsequent comparison and in our experiments
revealed isoform switches of differentially methylated transcript isoforms that are
invisible to conventional RNA-seq approaches.

7.1.1 Computational framework

Our computational framework for reference-based and de novo assembly of tran-
scripts from Ladder-seq reads employs previously developed methods StringTie2
and Trinity without any internal modifications. We therefore provide a Snakemake-
based [99] workflow template that allows users to implement the same framework
based on other methods that have originally been developed for the analysis of
conventional RNA-seq data. This will make a plethora of computational methods
that have been developed over the last decade instantly available for the analysis of
Ladder-seq data sets.

On the other hand, we expect algorithms that are tailored to the specifics of
Ladder-seq to even further improve the accuracy of reconstructed transcriptomes.
Our modification of kallisto explicitly models the length information contained in
Ladder-seq reads as well as the errors made in the experimental separation of tran-
scripts, and considers reads from all bands at once. StringTie-ls and Trinity-ls, how-
ever, use their conventional counterparts as black boxes separately on each band and
impose discrete length constraints on their output. Algorithms that borrow infor-
mation across bands when analyzing splicing graphs or de Bruijn graphs and take
length information into account already during graph traversal would make better
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use of Ladder-seq data and could help to push the boundaries of this technology
even further.

7.1.2 Experimental protocol

On the experimental side, the Ladder-seq protocol involves a denaturing gel elec-
trophoresis to achieve length separation of mRNAs. In our proof of principle exper-
iment we separated transcripts into 7 bands. In principle, a larger number of cuts
could further reduce the effective complexity transcriptome-wide (Fig. 2.2(b)) or of a
subset of genes of interest, and thus simplify the computational task of inferring their
expressed transcripts. On the other hand, fewer cuts might be sufficient to achieve
a similar improvement over conventional RNA-seq for species with a less complex
transcriptome. In our repository we therefore provide R code that can guide the
selection of the number and approximate location of cuts. It visualizes (see Fig. 2.2
for an example) and summarizes the distributions of original gene complexities and
resulting effective complexities using descriptive statistics either genome-wide or for
a given set of genes of interest, based on a related RNA-seq data set of a given
species. In practice, the separation accuracy of the gel will ultimately limit the
number of cuts that will benefit the computational analysis, but other separation
strategies might imply different trade-offs.

We used a gel based approach to separate transcripts because of its relative sim-
plicity and low cost. Most laboratories have access to this technology, making it
easy for groups working routinely with RNA sequencing to implement our novel
Ladder-seq protocol. However, the separation of mRNAs by their lengths could
be achieved using other technologies including solid phase reversible immobilization
beads [100], capillary electrophoresis [101], and ion-pair reversed-phase HPLC [102].
These methods will vary in degrees of accuracy in separating mRNAs, costs, and
level of involvement for the experimentalist. As we demonstrated with our simu-
lated data experiments, a higher accuracy in the separation step will yield a greater
advantage in transcriptome reconstruction.
High accuracy of Ladder-seq transcriptomes of mouse NPCs was confirmed by com-
parison with transcripts inferred from ONT long reads. While the overlap between
the two technologies was large, many transcripts were uniquely inferred from long
reads. Their substantially lower validation rate, however, suggests the presence of a
larger fraction of false transcripts. Alternatively, the low expression of transcripts
uniquely identified by Ladder-seq indicates the limited sequencing depth of ONT as a
possible reason for their absence in the long-read data set. Both differences between
long-read sequencing and Ladder-seq are expected. Even though long-read technol-
ogy greatly simplifies many analytical challenges that occur in short-read assembly,
experimental challenges and higher error rate of long reads motivated the devel-
opment of different computational strategies to extract high-confidence, full-length
transcripts. Different approaches and filtering criteria can yield substantially differ-
ent results [96], as observed in our own experiments using StringTie2 and FLAIR. In
addition, long-read sequencers have much lower throughput and thus detect a much
smaller fraction of genes and transcripts as contained in short-read libraries. The
lower sequencing depth renders the statistical comparison of transcript abundances
between conditions as performed in our study infeasible. Current studies therefore
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combine long reads with high-throughput short-read (Ilumina) sequencing [103], and
limit the differential analysis to fold change calculations [104]. Ladder-seq improves
this limitation by combining the high throughput of short-read RNA-seq with the
ability to reveal transcript isoforms that are invisible to conventional RNA-seq. How-
ever, if a large number of overlapping transcripts expressed by a complex gene have
similar lengths, Ladder-seq will not offer any benefit over conventional RNA-seq in
resolving such intrinsically difficult expression patterns from short reads.

7.1.3 Biological findings

In our Ladder-seq experiment on mouse NPCs, we explored the consequences of the
deletion of m6A writer protein Mettl14 on isoform usage. Ladder-seq identified a
large number of genes with isoform switches. We showed that differentially spliced
exonic segments of a transcript tend to lie close to a methylation site. This re-
sult suggests a direct involvement of m6A in alternative splicing in NPCs, possibly
through interaction of m6A readers with the splicing machinery as it has been re-
ported for other cell types and organisms [11, 12, 13, 14]. Which nuclear m6A reader
is active in NPCs remains to be determined. An intriguing finding of our study is the
enrichment for intron retention losses in Mettl14 KO NPCs in non-neuronal genes
related to DNA repair and gamete generation. Intron retentions are known to act as
regulators of gene expression during normal development [105], and previous work
reported progressive intron retention gains in genes related to cell cycle, pluripo-
tency and DNA repair during the process of differentiation from mouse embryonic
stem cells to neurons [106]. Expression of these genes is under tighter control as
differentiation progresses. Intron retention losses in Mettl14 KO NPCs suggest that
they are in a lesser state of differentiation compared to WT NPCs, which fits with
the previous finding of delayed differentiation of radial glial cells (RGC) in Mettl14
KO mice [56]. This is the first in-depth analysis of m6A-mediated alternative splic-
ing in NPCs, and highlights the diversity of m6A function within a single cell type.
It further extends the role of m6A in NPCs from mediating mRNA degradation [56]
to regulating isoform usage, which is known to be especially important in the brain.

7.2 Outlook

The identification and quantification of RNA molecules in biological samples have
come a long way starting from the days of microarrays to third generation and single
cell sequencing. The per base cost of bulk RNA sequencing has decreased drastically
over the last decades to a point now that an entire genome can be sequenced under
1000 dollars. The throughput on the other hand has exponentially increased and
nowadays a standard sequencing experiment would be able to produce approximately
30 to 100 million reads which would have been unimaginable twenty years ago when
the protocol was first introduced. The extremely high depth of short read RNA-seq
enables researchers to assemble transcripts and estimate abundance quite accurately.
In the last two decades, a multitude of computational methods have been developed
for the purpose of down stream analysis of RNA-seq data. We have discussed a few
of the most important methods and analyses in the introduction. Nevertheless there
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are some drawbacks of short read RNA-seq data for example limited read length and
multi-mapping reads posing difficulty in assembling repeat regions in the genome.

The transcriptomic space is very complex and the characterization of expressed
transcripts can be quite difficult, mostly because of the ambiguity in recognizing the
originating transcript from RNA-seq reads. We set out with the goal of deconvolving
the transcriptomic puzzle by providing an extra layer of information to the methods
for assembly and quantification. To this end, we have worked on a new protocol for
RNA-seq called Ladder-seq which aims to separate transcripts by their length prior
to their fragmentation using a gel-electrophoresis technique. We have extended one
the most used methods for quantification and developed pipelines for both reference
based and denovo assembly using state-of-the-art tools. Our benchmarking point to
a significant improvement of Ladder-seq based methods compared to conventional
RNA-seq based methods.

Ladder-seq, the concerted advancement of the RNA-seq protocol and its compu-
tational methods, will allow research facilities to study the composition and dynam-
ics of the transcriptome at an unprecedented level of accuracy based on a technology
that has been established for over more than a decade.
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Appendix A

Software and data availability

Data availability

Ladder-seq raw sequencing data from WT and Mettl14 KO mouse NPCs, conven-
tional RNA-seq data from WT mouse NPCs and ONT long-read sequencing from
WT and Mettl14 KO mouse NPCs are available in GEO (GSE158985).

Code availability

The kallisto-ls, StringTie-ls, and Trinity-ls programs and workflows are available at

• https://github.com/canzarlab/kallisto-ls,

• https://github.com/canzarlab/LadderSeq-Assembly, and

• https://github.com/canzarlab/LadderSeq-DeNovo,

respectively. The results of our benchmark studies can be reproduced via a Snake-
file [99] available at https://github.com/canzarlab/ladder_benchmark.
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Appendix B

Comparison of Ladder-seq with other
datasets

Sample
Band

1 2 3 4 5 6 7

KO1 4116 5178 5377 6916 7483 11245 27274

KO2 3494 3881 6393 7415 8638 12206 24566

KO3 3895 3534 5581 7918 9927 11697 24203

KO4 3916 5328 5967 7711 8647 9518 25819

WT1 3825 4249 5716 8906 7856 8786 28274

WT2 4044 4908 5375 8394 5797 9925 32397

WT3 4717 3622 6125 8422 10350 8140 28191

WT4 4015 3677 5851 9518 8748 12355 22991

Table B.1: Approximate number of transcripts per band in WT and KO Ladder-seq NPC
samples. Values reported denote the number of transcripts whose majority of uniquely
assigned reads were obtained from the corresponding band.

Reference sample Ladder-Seq Tardaguila et al. Chen et al.

NPC Rep1 0.82 (0.0016) 0.68 (0.0009) 0.79 (0.0095)
NPC Rep2 0.82 (0.0031) 0.67 (0.0043) 0.78 (0.0090)
NPC Rep3 0.81 (0.0054) 0.66 (0.0048) 0.76 (0.0085)

Table B.2: Pearson correlation of transcript expressions. The values reported are mean
correlation coefficients and standard deviations across 4 WT Ladder-seq NPC samples
and across 2 and 3 regular RNA-seq samples of mouse WT NPCs by Tardaguila et al. [40]
and Chen et al. [59], respectively. Expression was estimated by kallisto using pooled
reads across bands in Ladder-seq. log2-transformed values (TPM) were compared to the
3 reference RNA-seq samples from WT NPCs.
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Number Length interval (bp)

1 [0,909]
2 [910,1082]
3 [1083,1267]
4 [1268,1439]
5 [1440,1589]
6 [1590,1756]
7 [1757,1919]
8 [1920,2069]
9 [2070,2272]
10 [2273,2461]
11 [2462,2700]
12 [2701,2931]
13 [2932,3229]
14 [3230,3553]
15 [3554,3892]
16 [3893,4524]
17 [4525,5323]
18 [5324,6777]
19 [6378, - )

Table B.3: Transcript length intervals used in the analysis of neural progenitor cells. For
each length range listed, we estimate a probability mass function that models the migration
pattern of transcripts whose lengths fall within that range.

Reference sample Ladder-Seq Tardaguila et al. Chen et al.

NPC Rep1 0.95 (0.0020) 0.89 (0.0029) 0.95 (0.0008)
NPC Rep2 0.94 (0.0021) 0.89 (0.0013) 0.94 (0.0017)
NPC Rep3 0.94 (0.0016) 0.88 (0.0013) 0.93 (0.0025)

Table B.4: Pearson correlation of gene expressions. The values reported are mean correla-
tion coefficients and standard deviations across 4 WT Ladder-seq NPC samples and across
2 and 3 regular RNA-seq samples of mouse WT NPCs by Tardaguila et al. [40] and Chen
et al. [59], respectively. Expression was estimated by kallisto using pooled reads across
bands in Ladder-seq. log2-transformed values (TPM) were compared to the 3 reference
RNA-seq samples from WT NPCs.

Reference sample Ladder-Seq Tardaguila et al. Chen et al.

NPC Rep1 0.82 (0.0016) 0.68 (0.0009) 0.79 (0.0095)
NPC Rep2 0.82 (0.0031) 0.67 (0.0043) 0.78 (0.0090)
NPC Rep3 0.81 (0.0054) 0.66 (0.0048) 0.76 (0.0085)

Table B.5: Pearson correlation of transcript expressions. The values reported are mean
correlation coefficients and standard deviations across 4 WT Ladder-seq NPC samples
and across 2 and 3 regular RNA-seq samples of mouse WT NPCs by Tardaguila et al. [40]
and Chen et al. [59], respectively. Expression was estimated by kallisto using pooled
reads across bands in Ladder-seq. log2-transformed values (TPM) were compared to the
3 reference RNA-seq samples from WT NPCs.
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Reference sample WT1 WT2 WT3 WT4

ONT-cDNA Rep1 0.82 0.82 0.83 0.82
ONT-cDNA Rep2 0.82 0.83 0.84 0.83
ONT-RNA Rep1 0.78 0.79 0.80 0.79
ONT-RNA Rep2 0.78 0.80 0.80 0.79

Table B.6: Pearson correlation of gene expressions between Ladder-seq and ONT long read
samples. Expression was estimated by kallisto using pooled reads across bands in Ladder-
seq samples WT1-4. log2-transformed values (TPM) were compared to the 2 biological
replicates of ONT cDNA and direct RNA samples from WT NPCs. Only protein coding
genes with expression higher than 1TPM in both compared samples were included in the
analysis.

Reference sample WT1 WT2 WT3 WT4

ONT-cDNA Rep1 0.74 0.74 0.75 0.75
ONT-cDNA Rep2 0.76 0.76 0.77 0.77
ONT-RNA Rep1 0.71 0.73 0.73 0.73
ONT-RNA Rep2 0.71 0.73 0.73 0.73

Table B.7: Pearson correlation of transcript expressions between Ladder-seq and ONT
long read samples. Expression was estimated by kallisto using pooled reads across bands
in Ladder-seq samples WT1-4. log2-transformed values (TPM) were compared to the 2
biological replicates of ONT cDNA and direct RNA samples from WT NPCs. Only protein
coding genes with expression higher than 1TPM in both compared samples were included
in the analysis.

Primer pair

Gene Target isoform forward reverse

Pi4k2a ENSMUST00000066778 CTGTCATGAGAGGCCAGATCCTA CCTGTCACCTGCAGGATTTCT

TCONS 00005143 ACAATAAGAGCCCCCTGCAC GACCCCTGCTGGCTCCT

common TCAGGGGAGAATCGTTGCTG CCCTGGTTGAGAACAAGGCA

Tram1l1 TCONS 00006857 AGCGGTACCAGAAAGGGTTG AGAGTGCATTGCCATTCCGA

TCONS 00006855 GCCGGTGACTACTGTATCC GGACCGTCTCTTCCTTCCAC

common TGTGGAAGGAAGAGACGGTC GCACAGAGACACCACATAGC

Fbxl5 ENSMUST00000047857 AGGACTAGTGTCTGTTGGCAG GAAGTCGCTGGGAGTGTAGTC

TCONS 00008324 ACCATGGTCTCAGTTGGTCTTG AGCCTTGCCTGCACTTTTCAG

common AAGTGGTCTCAGCTGGCAAA ATACCAGTCACCTCTTGCCCA

Ptprz1 ENSMUST00000090568 ATGACACAGGCATAGCTCCG GGCTACTATTACTGGCCTCTGC

TCONS 00008800 AACCAGTATACAATGAGGCCAGT CAGACACGATCACAAGGGGT

common GATTGTTCACGATGAGCACGG GACTCCCGGCCTCATCAAAT

Kif1b ENSMUST00000030806 TCCTTTACAAAAAGGAGAAGGAGGA ATCAGAATCCGCGTCCAGTC

TCONS 00007441 GCAGCAGAGACTGGACTACG CTCTGCAGCCAGAGATCGAG

common TTGCCATACGGGAAGATGGG GCCTGGCCAACCCTTGTAAT

Rai1 TCONS 00001859 TTGCCTTCCTCTCTCTCCAG ACGGCAGCCTCTTATGTTTG

ENSMUST00000171108 TAGCTGTGGACATGCCGTGTA CATTGGCACATGGGTAGTGG

common ACATAAGAGGCTGCCGTTGT CTGGATGGGATCAAGGACCG

Table B.8: List of primers used for quantitative RT PCR analysis.
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Transcript Gene
of

Origin

Novel
(yes/no)

Upregulated
in: (Geno-

type)

Identified
by Flair

Identified
by

StringTie2

in
Dong
et al.

Transcript
TPM

TCONS 00006857 Tram1l1 yes WT no yes no 5.182658

TCONS 00006855 Tram1l1 yes KO no yes no 1.019803

TCONS 00007441 Kif1b yes WT yes no no 15.8415

ENSMUST00000030806 Kif1b no KO yes yes yes 10.74802

ENSMUST00000047857 Fbxl5 no WT yes yes yes 8.185762

TCONS 00008324 Fbxl5 yes KO no yes no 5.860712

ENSMUST00000171108 Rai1 no WT no no no 0.9653895

TCONS 00001859 Rai1 yes KO no yes no 2.400327

ENSMUST00000066778 Pi4k2a no WT yes yes yes 12.9707

TCONS 00005143 Pi4k2a yes KO no yes yes 4.405247

ENSMUST00000090568 Ptprz1 no WT yes yes no 69.8157

TCONS 00008800 Ptprz1 yes KO yes yes yes 27.55367

Table B.9: Identification by ONT direct cDNA long-read sequencing (ONT-cDNA) of
qPCR-validated switching transcripts in Mettl14 KO mouse NPCs. Table describes
whether each differentially used transcript is identified by FLAIR or StringTie2 in our
ONT-cDNA dataset or is contained in a recently published long-read mouse NPC tran-
scriptome (Dong et al. [96]).

Transcript Gene
of

Origin

Novel
(yes/no)

Upregulated
in: (Geno-

type)

Identified
by Flair

Identified
by

StringTie2

in
Dong
et al.

Transcript
TPM

TCONS 00006857 Tram1l1 yes WT yes no no 5.182658

TCONS 00006855 Tram1l1 yes KO no yes no 1.019803

TCONS 00007441 Kif1b yes WT no no no 15.8415

ENSMUST00000030806 Kif1b no KO no no yes 10.74802

ENSMUST00000047857 Fbxl5 no WT yes yes yes 8.185762

TCONS 00008324 Fbxl5 yes KO no yes no 5.860712

ENSMUST00000171108 Rai1 no WT no no no 0.9653895

TCONS 00001859 Rai1 yes KO no no no 2.400327

ENSMUST00000066778 Pi4k2a no WT yes yes yes 12.9707

TCONS 00005143 Pi4k2a yes KO no yes yes 4.405247

ENSMUST00000090568 Ptprz1 no WT yes yes no 69.8157

TCONS 00008800 Ptprz1 yes KO yes yes yes 27.55367

Table B.10: Identification by ONT native RNA long-read sequencing (ONT-RNA) of
qPCR-validated switching transcripts in Mettl14 KO mouse NPCs. Table describes
whether each differentially used transcript is identified by FLAIR or StringTie2 in our
ONT-RNA dataset or is contained in a recently published long-read mouse NPC tran-
scriptome (Dong et al. [96]).
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Conventional StringTie-ls

FLAIR 15643 17731
FLAIR + Ensembl 22285 26869

StringTie2 16438 19184
StringTie2 + Ensembl 23415 28588

FLAIR + StringTie2 19050 22797
FLAIR + StringTie2 + Ensembl 24539 30416

All 20215 25319
All + Ensembl 24910 31654

Table B.11: Number of transcripts identified by conventional StringTie2 or StringTie-ls
that were independently identified in ONT long reads in WT samples. The set of tran-
scripts assembled in any of the four WT Ladder-seq samples was compared to transcripts
identified by FLAIR, assembled by StringTie2, or inferred from either of the two methods
(FLAIR + StringTie2). Set All additionally contains transcripts from a recently pub-
lished [96] ONT long-read mouse NPC transcriptome. Each long read transcriptome was
alternatively augmented by transcripts annotated in Ensembl release 95 (+Ensembl).

Conventional StringTie-ls

FLAIR 15005 16888
FLAIR + Ensembl 22089 26128

StringTie2 15395 17931
StringTie2 + Ensembl 23252 27848

FLAIR + StringTie2 18119 21554
FLAIR + StringTie2 + Ensembl 24300 29538

Table B.12: Number of transcripts identified by conventional StringTie2 or StringTie-
ls that were independently identified in ONT long reads in Mettl14 KO samples. The
set of transcripts assembled in any of the four KO Ladder-seq samples was compared
to transcripts identified by FLAIR, assembled by StringTie2, or inferred from either of
the two methods (FLAIR + StringTie2). Each long read transcriptome was alternatively
augmented by transcripts annotated in Ensembl release 95 (+Ensembl).
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Appendix C

Quantification results

Gene complexity
1 2 3 4 5 6 7 8 9 10

23.39 12.10 9.5 8.6 8.5 8.3 9.2 8.7 7.9 8.3

Table C.1: Fraction of low expressed transcripts. For each gene complexity, we show the
fraction of transcripts with ground truth expression less than 0.5 TPM as estimated by
RSEM in sample NA12716 7.
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Figure C.1: Quantification accuracy of kallisto-ls compared to conventional kallisto on 75
million paired-end reads simulated by RSEM from GEUVADIS sample NA12716 7. Mean
values across 20 simulations are reported. Pearson correlation of estimated and ground
truth abundance in log2 transformed transcripts per million (TPM) and mean absolute
relative difference (MARD) are shown as a function of gene complexity, i.e. the number
of transcripts expressed by a gene. For ease of visualization, we omit genes expressing a
single transcript, many of which are estimated to be lowly expressed in this sample by
RSEM. Nevertheless, kallisto-ls achieves slightly better MARD and correlation for this set
of transcripts (Table C.3).
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Complexity Conventional kallisto kallisto-ls kallisto-ls perfect

MARD Correlation MARD Correlation MARD Correlation

1 0.288 0.924 0.272 0.932 0.261 0.935
2 0.240 0.974 0.211 0.981 0.180 0.981
3 0.229 0.976 0.194 0.983 0.162 0.986
4 0.234 0.967 0.198 0.979 0.160 0.984
5 0.256 0.961 0.212 0.978 0.170 0.981
6 0.252 0.962 0.215 0.974 0.167 0.979
7 0.264 0.956 0.224 0.970 0.177 0.976
8 0.268 0.955 0.223 0.969 0.177 0.976
9 0.279 0.946 0.232 0.964 0.182 0.974
10 0.280 0.944 0.241 0.962 0.194 0.971

11+ 0.315 0.922 0.268 0.950 0.212 0.958

Table C.2: Quantification accuracy of kallisto-ls compared to conventional kallisto on 30
million paired-end reads simulated by RSEM from GEUVADIS sample NA12716 7. Mean
values across 20 simulations are reported. Pearson correlation of estimated and ground
truth abundance in log2 transformed transcripts per million (TPM) and mean absolute
relative difference (MARD) are shown for gene complexities 1-10 and larger than 10 (11+).
Complexity denotes the number of transcripts expressed by a gene. In the calculation of
MARD, the absolute difference between estimated counts and the ground truth is divided
by the sum of the two, where transcripts with zero estimates by both methods were
excluded. kallisto-ls perfect refers to the results of kallisto-ls on the most optimistic Ladder-
seq experiment in which transcripts perfectly separate by length, without any migration
error.
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Complexity Conventional kallisto kallisto-ls kallisto-ls perfect

MARD Correlation MARD Correlation MARD Correlation

1 0.265 0.936 0.254 0.942 0.243 0.944
2 0.195 0.986 0.177 0.988 0.152 0.987
3 0.189 0.987 0.168 0.990 0.130 0.992
4 0.197 0.980 0.172 0.986 0.131 0.990
5 0.209 0.979 0.192 0.986 0.144 0.988
6 0.214 0.978 0.195 0.983 0.147 0.987
7 0.223 0.974 0.199 0.980 0.155 0.983
8 0.229 0.973 0.202 0.980 0.155 0.984
9 0.240 0.966 0.208 0.975 0.159 0.983
10 0.232 0.969 0.220 0.976 0.165 0.982

11+ 0.273 0.954 0.242 0.967 0.188 0.973

Table C.3: Quantification accuracy of kallisto-ls compared to conventional kallisto on 75
million paired-end reads simulated by RSEM from GEUVADIS sample NA12716 7. Mean
values across 20 simulations are reported. Pearson correlation of estimated and ground
truth abundance in log2 transformed transcripts per million (TPM) and mean absolute
relative difference (MARD) are shown for gene complexities 1-10 and larger than 10 (11+).
Complexity denotes the number of transcripts expressed by a gene. In the calculation of
MARD, the absolute difference between estimated counts and the ground truth is divided
by the sum of the two, where transcripts with zero estimates by both methods were
excluded. kallisto-ls perfect refers to the results of kallisto-ls on the most optimistic Ladder-
seq experiment in which transcripts perfectly separate by length, without any migration
error.

83





Appendix D

Assembly results

D.1 Ref-based assembly results
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Figure D.1: Accuracy of transcript assembly from 75 million simulated RNA-seq and
matching Ladder-seq paired-end reads. RNA-seq and Ladder-seq reads were aligned iden-
tically to the reference genome (GRCh38) using STAR [25]. Sensitivity and precision of
StringTie-ls and its conventional counterpart StringTie2 are shown as a function of gene
complexity measured as the number of expressed transcripts. Sensitivity and precision are
calculated with respect to the same set of ground truth transcripts as in the smaller 30
million read pairs data set. All results are listed in Appendix Tables D.3 and D.4.
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Complexity
Sensitivity

Conventional StringTie-ls StringTie-ls 1 StringTie-ls 2 StringTie-ls 3 StringTie-ls perfect

1 74.8 75.6 76.2 77.0 77.0 77.5
2 78.5 82.8 83.7 84.0 84.2 84.4
3 70.0 78.6 79.6 81.2 82.7 83.9
4 65.1 75.5 77.1 79.0 80.5 81.5
5 57.7 70.5 71.9 74.5 75.7 77.5
6 52.8 66.5 67.9 71.1 72.4 74.2
7 49.8 65.3 67.7 70.4 72.0 74.3
8 45.9 60.7 62.0 66.4 67.4 69.2
9 43.4 58.4 59.4 63.0 64.8 67.5
10 42.1 56.9 59.1 62.1 64.2 66.8

11+ 32.8 48.8 50.4 54.2 56.2 58.5

Table D.1: Sensitivity of transcript assembly from 30 million simulated RNA-seq and
matching Ladder-seq paired-end reads. Sensitivity of StringTie-ls and its conventional
counterpart StringTie2 is shown for gene complexities 1-10 and larger than 10 (11+).
Complexity denotes the number of transcripts expressed by a gene.

Complexity
Precision

Conventional StringTie-ls StringTie-ls 1 StringTie-ls 2 StringTie-ls 3 StringTie-ls perfect

1 60.3 78.9 80.2 80.1 80.3 81.1
2 62.0 77.2 78.9 80.4 80.5 80.6
3 62.3 72.6 74.1 75.6 77.1 77.8
4 65.6 72.9 74.6 76.6 77.8 78.2
5 63.9 69.3 71.0 73.4 75.1 75.8
6 61.2 65.6 67.1 70.6 71.4 73.1
7 61.7 63.3 65.2 68.6 70.3 72.7
8 59.3 61.6 62.6 66.2 67.7 69.3
9 59.0 61.0 60.7 63.9 65.4 67.4
10 58.4 59.0 50.1 62.5 64.3 67.4

11+ 52.3 53.9 54.4 57.1 58.8 60.9

Table D.2: Precision of transcript assembly from 30 million simulated RNA-seq and match-
ing Ladder-seq paired-end reads. Precision of StringTie-ls and its conventional counterpart
StringTie2 is shown for gene complexities 1-10 and larger than 10 (11+). Complexity de-
notes the number of transcripts expressed by a gene.

Complexity
Sensitivity

Conventional StringTie-ls StringTie-ls 1 StringTie-ls 2 StringTie-ls 3 StringTie-ls perfect

1 84.3 89.0 89.5 89.9 90.2 90.4
2 82.5 88.9 89.5 90.3 90.4 90.6
3 72.7 82.1 84.2 85.6 86.4 88.3
4 66.9 77.7 79.5 82.6 83.7 85.6
5 60.1 72.6 74.5 77.7 79.3 81.4
6 54.6 68.4 69.9 74.1 75.7 78.0
7 51.6 68.0 69.1 73.1 74.6 77.5
8 47.3 62.7 64.4 68.2 70.1 72.2
9 44.9 59.3 61.8 65.2 67.4 71.4
10 43.1 57.0 60.2 63.9 65.8 69.2

11+ 34.0 49.9 51.0 55.6 58.1 60.9

Table D.3: Sensitivity of transcript assembly from 75 million simulated RNA-seq and
matching Ladder-seq paired-end reads. Sensitivity of StringTie-ls and its conventional
counterpart StringTie2 is shown for gene complexities 1-10 and larger than 10 (11+).
Complexity denotes the number of transcripts expressed by a gene.
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Complexity
Precision

Conventional StringTie-ls StringTie-ls 1 StringTie-ls 2 StringTie-ls 3 StringTie-ls perfect

1 61.8 77.8 80.1 79.6 80.1 79.6
2 62.0 77.8 79.1 79.9 81.3 80.9
3 64.4 73.8 75.9 77.6 78.5 80.0
4 64.6 72.0 72.9 75.5 77.5 77.9
5 62.7 68.6 70.9 73.9 74.8 77.0
6 59.0 65.0 66.0 70.5 71.3 73.6
7 58.6 63.4 64.7 66.3 68.9 71.9
8 58.0 61.7 62.1 65.9 67.6 69.9
9 56.3 59.5 61.3 64.4 66.7 69.9
10 53.6 57.8 59.1 61.8 64.2 67.6

11+ 49.7 53.7 53.8 56.8 58.9 61.8

Table D.4: Precision of transcript assembly from 75 million simulated RNA-seq and match-
ing Ladder-seq paired-end reads. Precision of StringTie-ls and its conventional counterpart
StringTie2 is shown for gene complexities 1-10 and larger than 10 (11+). Complexity de-
notes the number of transcripts expressed by a gene.

D.2 De novo assembly results
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Figure D.2: Accuracy of de novo transcript assembly from 30 million (top row) and 75
million (bottom row) simulated RNA-seq and matching Ladder-seq paired-end reads. (a)
Sensitivity of Trinity-ls and its conventional counterpart Trinity at 90% transcript length
cut-off is shown as a function of gene complexity measured as the number of expressed
transcripts. (b) Total number of correctly assembled transcripts at different transcript
length cut-offs. (c) Precision at different transcript length cut-offs. All results are listed
in Appendix Tables D.7-D.6.
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Method
# of Transcripts Precision

80% 85% 90% 95% 80% 85% 90% 95%

Conventional Trinity 5571 5377 5189 4977 0.093 0.089 0.086 0.083
Trinity-ls 10070 9671 9261 8665 0.167 0.160 0.153 0.144
Trinity-ls 1 10772 10388 9966 9334 0.193 0.186 0.179 0.167
Trinity-ls 2 12160 11756 11253 10614 0.251 0.243 0.232 0.219
Trinity-ls 3 12825 12438 11944 11274 0.280 0.272 0.261 0.247
Trinity-ls perfect 14514 14138 13652 12976 0.356 0.347 0.335 0.318

Table D.5: Accuracy of de novo transcript assembly from 75 million simulated RNA-
seq and matching Ladder-seq paired-end reads. Total number of correctly assembled
transcripts and precision are reported at different transcript length cut-offs.

Complexity
Sensitivity

Conventional Trinity Trinity-ls Trinity-ls 1 Trinity-ls 2 Trinity-ls 3 Trinity-ls perfect

1 0.329 0.350 0.370 0.385 0.405 0.417
2 0.327 0.426 0.451 0.476 0.495 0.514
3 0.256 0.379 0.389 0.435 0.456 0.499
4 0.208 0.353 0.371 0.417 0.434 0.484
5 0.183 0.331 0.354 0.396 0.420 0.465
6 0.158 0.304 0.330 0.375 0.399 0.459
7 0.145 0.291 0.314 0.352 0.381 0.433
8 0.137 0.274 0.298 0.343 0.364 0.421
9 0.118 0.248 0.267 0.311 0.331 0.393
10 0.105 0.236 0.249 0.297 0.307 0.372

11+ 0.079 0.184 0.207 0.239 0.259 0.314

Table D.6: Sensitivity of de novo transcript assembly from 75 million simulated RNA-seq
and matching Ladder-seq paired-end reads. Sensitivity of Trinity-ls and its conventional
counterpart Trinity at 90% transcript length cut-off is shown for gene complexities 1-10
and larger than 10 (11+). Complexity denotes the number of transcripts expressed by a
gene.

Method
# of Transcripts Precision

80% 85% 90% 95% 80% 85% 90% 95%

Conventional Trinity 5468 5283 5052 4823 0.111 0.107 0.102 0.097
Trinity-ls 8778 8351 7908 7307 0.207 0.197 0.186 0.172
Trinity-ls 1 9279 8849 8388 7743 0.238 0.227 0.215 0.199
Trinity-ls 2 10386 9941 9457 8786 0.304 0.291 0.277 0.257
Trinity-ls 3 11071 10632 10127 9454 0.345 0.331 0.315 0.294
Trinity-ls perfect 12065 11644 11145 10440 0.412 0.397 0.380 0.356

Table D.7: Accuracy of de novo transcript assembly from 30 million simulated RNA-
seq and matching Ladder-seq paired-end reads. Total number of correctly assembled
transcripts and precision are reported at different transcript length cut-offs.
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Complexity
Sensitivity

Conventional Trinity Trinity-ls Trinity-ls 1 Trinity-ls 2 Trinity-ls 3 Trinity-ls perfect

1 0.251 0.241 0.252 0.283 0.294 0.301
2 0.283 0.317 0.343 0.374 0.380 0.406
3 0.233 0.299 0.316 0.347 0.373 0.398
4 0.206 0.285 0.299 0.343 0.361 0.397
5 0.182 0.274 0.291 0.320 0.350 0.366
6 0.166 0.270 0.284 0.317 0.343 0.384
7 0.142 0.248 0.268 0.312 0.319 0.361
8 0.143 0.230 0.253 0.291 0.317 0.345
9 0.128 0.220 0.226 0.260 0.277 0.317
10 0.118 0.219 0.235 0.267 0.286 0.318

11+ 0.083 0.177 0.187 0.211 0.233 0.262

Table D.8: Sensitivity of de novo transcript assembly from 30 million simulated RNA-seq
and matching Ladder-seq paired-end reads. Sensitivity of Trinity-ls and its conventional
counterpart Trinity at 90% transcript length cut-off is shown for gene complexities 1-10
and larger than 10 (11+). Complexity denotes the number of transcripts expressed by a
gene.
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