
Precision Spectroscopy of the
2S-nP Transitions

in Atomic Hydrogen
Lothar Maisenbacher

München 2020





Precision Spectroscopy of the
2S-nP Transitions

in Atomic Hydrogen

Lothar Maisenbacher

Dissertation
an der Fakultät für Physik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Lothar Maisenbacher

aus Pforzheim

München, den 10.12.2020



Erstgutachter: Prof. Dr. Theodor W. Hänsch
Zweitgutachter: Prof. Dr. Randolf Pohl
Tag der mündlichen Prüfung: 27.1.2021



Zusammenfassung

Präzisionsspektroskopie an atomarem Wasserstoff ist eine wichtige Methode die Quanten-
elektrodynamik (QED) gebundener Systeme, einer der Bausteine des Standardmodells, zu
testen. Im einfachsten Fall besteht ein solcher Test aus dem Vergleich einer gemessenen Über-
gangsfrequenz mit der Vorhersage der QED, welche für das Wasserstoffatom mit sehr hoher
Präzision berechnet werden kann. Diese Berechnungen benötigen allerdings bestimmte physi-
kalische Konstanten als Eingangsparameter, unter anderem die Rydberg-Konstante R∞ sowie
den Protonenladungsradius rp, welche gegenwärtig beide zu einem großen Teil selbst durch
Wasserstoffspektroskopie bestimmt werden. Für einen Test der QED ist es deshalb notwendig,
die Übergangsfrequenzen von mindestens drei verschiedenen Übergängen zu bestimmen. Glei-
chermaßen ist ein Vergleich der aus Messungen verschiedener Übergänge bestimmten Werte
für R∞ und rp ein Test der QED.

Hierzu wurde in dieser Arbeit Laserspektroskopie der optischen 2S-nP-Übergänge durch-
geführt. Da es sich bei diesen Übergängen um Ein-Photonen-Übergänge handelt, sind sie
von einem anderen Satz an systematischen Effekten betroffen als Zwei-Photonen-Übergänge,
auf denen die meisten anderen spektroskopischen Messungen an Wasserstoff basieren. Um zu
einem Test der QED beitragen zu können, muss ihre Übergangsfrequenz mit einer relativen
Unsicherheit in der Größenordnung von eins zu 1012 bestimmt werden, in absoluten Einheiten
etwa auf 1 kHz. Dies ist etwa 10 000 Mal kleiner als die relativ große natürliche Linienbreite
der 2S-nP-Übergänge, weshalb für eine erfolgreiche Messung sowohl ein sehr großes Signal-
zu-Rausch-Verhältnis als auch ein detailliertes theoretisches Verständnis der Linienform der
beobachteten Resonanz notwendig ist.

Die 2S-nP-Übergänge wurden an einem kryogenen Strahl aus Wasserstoffatomen, die op-
tisch in den metastabilen 2S-Zustand angeregt wurden, untersucht. Der Atomstrahl wur-
de rechtwinklig mit zwei gegenläufigen Spektroskopie-Laserstrahlen gekreuzt, die die Atome
weiter in den nP-Zustand anregten. Die Fluoreszenz des anschließenden, raschen spontanen
Zerfalls diente als Messsignal. Die Anregung mit zwei gegenläufigen Strahlen führt zu zwei
Dopplerverschiebungen der gleichen Größe, aber mit umgekehrten Vorzeichen, die sich da-
mit aufheben. Eine nach der Geschwindigkeit der Atome aufgelöste Detektion erlaubte die
Bestimmung eventuell verbliebener Dopplerverschiebungen, die im Rahmen der Messunsicher-
heit jedoch für beide unten vorgestellten Messungen ausgeschlossen werden konnten.

In einem ersten Experiment wurde der 2S-4P-Übergang untersucht. Quanteninterferenz
zwischen benachbarten atomaren Resonanzen führte zu subtilen Verformungen der Linien-
form, die sich aufgrund der sehr hohen Auflösung bezogen auf die Linienbreite als signifi-
kant herausstellten. Die durch diese Verformungen verursachten Linienverschiebungen konn-
ten direkt beobachtet und mit einem auf Störungstheorie basierenden Linienformmodell ent-
fernt werden. Somit konnte die Übergangsfrequenz mit einer relativen Messungenauigkeit
von 4 zu 1012 bestimmt werden. In Kombination mit der sehr präzise gemessenen 1S-2S-
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Übergangsfrequenz erlaubte dies die zu dem Zeitpunkt präziseste Bestimmung von R∞ und
rp mittels Spektroskopie an atomarem Wasserstoff. Darüber hinaus wurde eine gute Über-
einstimmung mit dem durch Spektroskopie an myonischem Wasserstoff bestimmten, sehr viel
präziseren Wert für rp festgestellt, welcher signifikant von den vorherigen Daten aus (elek-
tronischem) Wasserstoff abweicht und damit zu Zweifeln an der Gültigkeit der QED geführt
hatte. Der myonische Wert für rp wurde seitdem von weiteren Experimenten bestätigt. Die
2S-4P-Messung wird im Anhang dieser Arbeit behandelt.

Trotz des hohen Signal-zu-Rausch-Verhältnisses war die Genauigkeit der 2S-4P-Messung
durch die Zählrate des Messsignals limitiert. Um die Präzision weiter zu erhöhen, war ein
Übergang mit kleinerer Linienbreite und ein verbessertes experimentelles Signal notwendig.
Deshalb wurde mit der Untersuchung des 2S-6P-Übergangs, welcher eine dreimal kleinere
natürliche Linienbreite bietet, begonnen. Der Atomstrahlapparat wurde modifiziert, wodurch
eine entsprechende Reduktion der experimentell beobachteten Linienbreite und ein fast eine
Größenordnung höherer Fluss an langsamen Atomen im Atomstrahl erreicht werden konnte.
Zusammen mit einer Neukonstruktion des Detektors führte dies im Vergleich zur 2S-4P-
Messung zu einem bis zu 16-fach höherem Signal und machte damit den Weg zu höherer Prä-
zision frei. Um diese Präzision zu ermöglichen, war darüber hinaus eine Weiterentwicklung der
Dopplerverschiebungsunterdrückung notwendig. Dazu wurde ein Faserkollimator entwickelt,
der eine exzellente Strahlqualität der Spektroskopie-Laserstrahlen bei der neuen Übergangs-
wellenlänge von 410 nm bietet.

Dies ermöglichte eine Messung der 2S-6P-Übergangsfrequenz mit einer statistischen Un-
sicherheit von 430 Hz, fünfmal niedriger als für die 2S-4P-Messung. Dies entspricht einer
Unterdrückung der Dopplerverschiebung um sechs Größenordnungen. Bei dieser Präzision
wird die Lichtkraftverschiebung durch die Beugung der Atome am optischen Gitter, welches
durch die gegenläufigen Laserstrahlen erzeugt wird, signifikant. Diese Lichtkraftverschiebung
wurde zum ersten Mal für die 2S-nP-Übergänge beobachtet und konnte durch ein hierfür
entwickeltes Modell gut beschrieben werden. Die Größe aller anderen systematischen Effekte,
mit Ausnahme der sehr genau bekannten Rückstoßverschiebung, wird mit jeweils kleiner als
500 Hz abgeschätzt. Die blinde Datenanalyse ist zum Zeitpunkt des Verfassens dieser Arbeit
noch im Gange, weshalb noch keine Übergangsfrequenzen angegeben werden können. Die vor-
läufige Analyse lässt jedoch eine fünffache Verbesserung der Bestimmung von R∞ und rp im
Vergleich zur 2S-4P-Messung und eine zweifache Verbesserung im Vergleich zur momentan
präzisesten Bestimmung an atomarem Wasserstoff erwarten. Damit liegt die Unsicherheit auf
den bestimmten Wert für rp innerhalb eines Faktors fünf der Unsicherheit des myonischen
Wertes. Die 2S-6P-Messung ist zentraler Gegenstand dieser Arbeit.



Abstract

Precision spectroscopy of atomic hydrogen is an important way to test bound-state quantum
electrodynamics (QED), one of the building blocks of the Standard Model. In its simplest
form, such a test consists of the comparison of a measured transition frequency with its QED
prediction, which can be calculated with very high precision for the hydrogen atom. However,
these calculations require some input in the form of physical constants, such as the Rydberg
constant R∞ and the proton charge radius rp, both of which are currently determined to
a large degree by hydrogen spectroscopy itself. Therefore, the frequency of at least three
different transitions needs to be measured in order to test QED. Equivalently, a comparison
of the values of R∞ and rp determined from measurements of different transitions constitutes
a test of QED.

To this end, laser spectroscopy of optical 2S-nP transitions has been performed in this
work. As these transitions are one-photon transitions, they are affected by a different set of
systematic effects than the two-photon transitions on which most other spectroscopic mea-
surements of hydrogen are based. In order to contribute to the test of QED, their transition
frequencies must be determined with a relative uncertainty on the order of one part in 1012,
corresponding to approximately 1 kHz in absolute terms. This is in turn approximately a
factor of 10 000 smaller than the relatively broad natural linewidth of the 2S-nP transitions,
and a successful measurement requires both a very large experimental signal-to-noise ratio
and a detailed theoretical understanding of the line shape of the observed resonance.

The 2S-nP transitions were probed on a cryogenic beam of hydrogen atoms, which were
optically excited to the metastable 2S level. The atomic beam was crossed at right angles
with counter-propagating spectroscopy laser beams, which further excited the atoms to the
nP level. The fluorescence from the subsequent rapid spontaneous decay served as experimen-
tal signal. The excitation with two counter-propagating beams led to two Doppler shifts of
equal magnitude, but opposite sign, which thus canceled each other out. A velocity-resolved
detection was used to determine any residual Doppler shifts, which could be excluded within
the measurement uncertainty for both of the measurements discussed below.

In a first experiment, the 2S-4P transition was probed. Quantum interference of neigh-
boring atomic resonances produced subtle distortions of the line shape, which were found to
be significant because of the very large resolution relative to the linewidth. The line shifts
caused by the distortions were directly observed and could be removed by use of a line shape
model based on perturbative calculations. With this, the transition frequency was determined
with a relative uncertainty of 4 parts in 1012. In combination with the very precisely mea-
sured 1S-2S transition frequency, this allowed the, at the time, most precise determination
of R∞ and rp from atomic hydrogen. Moreover, good agreement was found with the much
more precise value of rp extracted from spectroscopy of muonic hydrogen, which had been
in significant disagreement with previous data from (electronic) hydrogen, causing concern
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about the validity of QED. This result has since been confirmed by other experiments. The
2S-4P measurement is treated in the appendix of this thesis.

The 2S-4P measurement, despite its large signal-to-noise ratio, was limited by counting
statistics. To improve precision, a transition with a narrower linewidth and an improved
experimental signal was necessary. Hence, the study of the 2S-6P transition, which offers a
three times smaller natural linewidth, was begun. The atomic beam apparatus was upgraded,
resulting in a corresponding decrease of the experimentally observed linewidth, and a close
to an order of magnitude larger flux of atoms in the low-velocity tail of the atomic beam.
Together with a detector redesign, this led to an up to 16 times larger signal than for the 2S-
4P measurement, opening the path to increased precision. The Doppler-shift suppression was
also rebuilt to support such precision, including a fiber collimator developed for this purpose,
which provides high-quality spectroscopy beams at the new transition wavelength of 410 nm.

This enabled a measurement of the 2S-6P transition frequency with a statistical uncer-
tainty of 430 Hz, five times lower than for the 2S-4P measurement and corresponding to a
suppression of the Doppler shift by six orders of magnitude. At this level of precision, the light
force shift from the diffraction of atoms at the light grating formed by the counter-propagating
spectroscopy beams becomes significant. This light force shift was directly observed for the
first time for the 2S-nP transitions and found to be well-described by a model derived for
this purpose. The size of all other systematic effects, except the very precisely known recoil
shift, is estimated to be below 500 Hz each. The blind data analysis is ongoing at the time of
writing and thus no transition frequencies can yet be given. However, a preliminary analysis
suggests a five-fold improvement in the determination of R∞ and rp as compared to the 2S-
4P measurement, and a two-fold improvement over the currently most precise determination
from atomic hydrogen. This places the uncertainty of the determined value of rp within a
factor of five of that of the muonic value. The 2S-6P measurement is treated in the main text
of this thesis.
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Chapter 1

Introduction

Hydrogen spectroscopy

Hydrogen spectroscopy [1] is fundamental to our understanding of physics, not least because
of its instrumental role in the development of quantum mechanics [2] and its subsequent
evolution into quantum electrodynamics (QED) [3]. The success of QED [4, 5], in turn,
inspired quantum field theory (QFT), which forms the basis of the Standard Model of particle
physics and includes QED as one of its building blocks. The Standard Model has been
experimentally tested extensively, culminating in the discovery of the long predicted Higgs
boson [6, 7]. Nevertheless, the Standard Model is known to be incomplete, as it only includes
three out of the four fundamental interactions, missing a QFT of gravity. It also cannot
describe, in its present form, experimental observations such as neutrino oscillations [8, 9],
which imply a nonzero neutrino mass. Moreover, astrophysical observations such as galactic
rotation curves [10] and the anisotropies of the cosmic microwave background [11] challenge
our current understanding of matter and the evolution of the universe itself, which has lead
to the hypotheses of dark matter and dark energy [12]. Traces of this physics beyond the
Standard Model, or just new physics, are expected to be detectable in atomic and molecular
physics experiments through interactions with various hypothesized fields and particles [13–
18].

The role of hydrogen spectroscopy in this pursuit is to compare with ever-increasing
experimental precision the frequency of various transitions, i.e. the energy difference between
atomic levels, to the predictions of bound-state QED. This is because the QED predictions
for the energy levels of the hydrogen atom, being the simplest of all stable atoms, can be
calculated with an extreme precision, exceeding 12 digits for some transitions [4].

The proton radius puzzle

However, some input from experiments in the form of physical constants is generally required
to calculate those predictions, either because the needed constants cannot (yet) be calculated,
such as the fine-structure constant α, the electron-to-proton mass ratio me/mp, and the
proton charge radius rp, or they serve as conversion factors from natural units to the system
of units used in the laboratory, as is the case for the Rydberg constant R∞. For the current
state of theory and experiments, rp and R∞ are at least partly determined from hydrogen
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Figure 1.1: Determinations of the Rydberg constantR∞ (top axis) and proton charge radius rp (bottom
axis) from hydrogen spectroscopy. The 2014 H world data (adjustment 8 of [4], blue triangle and blue-
shaded region) consists of the 16 most precise hydrogen spectroscopy measurements, including the
1S-2S measurement of [23], available as of 2014. The measurement of the 2S-2P transition in muonic
hydrogen ([22], purple square and purple-shaded region) gives a much more precise value of rp, but
disagrees by 4σ (gray arrow) with the 2014 H world data. Published in 2017 [24] and reproduced in
Appendix A, the measurement of the 2S-4P transition frequency (green star) was the first of a new
batch of measurements trying to resolve this discrepancy. The 2S-4P result agrees with the muonic
result, but disagrees with the 2014 H world data by 3.3σ. A 2019 microwave measurement of the
2S-2P transition ([25], black pentagon) gives a value of rp that is very similar to the 2S-4P result.
Two measurement of the 1S-3S transition, using different laser spectroscopy techniques, either favor
the muonic result (MPQ, [26], pink plus) or the 2014 H world data (LKB, [27], brown cross). The
results of the 2S-6P measurement discussed in this thesis are still blinded and thus not shown. The
determined values of rp and R∞ are highly correlated, allowing them to be shown in the same graph.

spectroscopy1, such that measurements of at least three distinct transitions are needed to
compare the predictions with the experiments. Put another way, if QED is correct, the
determinations of these constants from different measurements are expected to be consistent.
It is thus no surprise that a novel, very accurate determination of the proton charge radius
through spectroscopy of the 2S-2P transition in muonic hydrogen2 [21, 22] was met with
considerable interest. This is because it disagreed by four standard deviations (σ) with the
previously established value (“2014 H world data”, adjustment 8 of [4]) determined from the
spectroscopy of (electronic) atomic hydrogen (H). This situation is shown Fig. 1.1. Despite
a flurry of theoretical activity, no widely accepted solution to this so-called proton radius
puzzle (PRP) has been put forward.

1rp can also be determined from elastic electron–proton scattering [19, 20]. However, these determina-
tions are currently less precise than determinations from hydrogen spectroscopy, and, as this work focuses on
spectroscopic measurements, are not further discussed here.

2Muonic hydrogen is an atom formed by a proton and a negative muon. The muon is approximately
200 times heavier than the electron, and correspondingly the Bohr radius of muonic hydrogen is about 200 times
smaller than in regular (electronic) hydrogen. The finite size of the proton therefore has a larger influence on
the energy of the atomic S levels, enabling the much more precise measurement of rp using muonic hydrogen.
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Measurement of the 2S-4P transition frequency

The proton radius puzzle also inspired precision measurement groups around the world to
begin new, or improve existing, spectroscopic measurements of electronic hydrogen. This was
also the case at the Laser Spectroscopy Division at the Max Planck Institute of Quantum
Optics (MPQ), where the existing hydrogen spectroscopy apparatus was modified to allow for
a measurement of the 2S-4P transition. This apparatus had previously been used to determine
the 1S-2S transition frequency with a relative uncertainty of 4.2× 10−15 [23] through two-
photon laser spectroscopy, during which the 2S-4P transition had been used to determine the
speed distribution of the atoms. Conveniently, a corresponding laser system was thus already
available.

The 1S-2S apparatus provides a cryogenic beam of hydrogen atoms in the metastable
2S level, which can then be further laser-excited to the higher-lying nP levels. This mea-
surement comes with two primary challenges: first, the Doppler shift of the one-photon
2S-nP transition needs to be suppressed by many orders of magnitude, as the atoms are still
moving at relatively high speeds. Second, in order to reach a competitive precision, the line
center of the resonance needs to be determined to about one part in N = 10 000 of its ob-
served linewidth, which is comparatively large with ΓF ≈ 20 MHz. N is known as the line
splitting, and is shown for various laser spectroscopy measurements of H in Fig. 1.2. Such
a high line splitting requires both a large experimental signal-to-noise ratio (SNR) and a
detailed theoretical understanding of the line shape. Those challenges were successfully met
using sophisticated optics in the form of an active fiber-based retroreflector (AFR, [28]) to
suppress the Doppler shift, a high-efficiency fluorescence detector with a high SNR, and a
line shape model integrating distortions from quantum interference [29], respectively. With
this, the 2S-4P transition frequency could be determined with an uncertainty of 2.3 kHz,
significantly smaller than the PRP, which corresponds to 8.9 kHz in terms of the transition
frequency. At the time, this also corresponded to a precision second only to the measurement
of the much narrower 1S-2S transition [23]. Since the second-best measurement, which now
had been improved, limits the determination of physical constants, combining the 2S-4P and
the 1S-2S measurements lead to a much more accurate determination of R∞ and rp (green
star in Figs. 1.1 and 1.2) than from any other pair of H measurements. In fact, the result-
ing uncertainty is equivalent to that of the complete 2014 H world data. The determination
disagrees by 3.3σ with the latter, but is in good agreement with the muonic value. In other
words, the QED prediction of the 2S-4P transition frequency, using the 1S-2S and muonic
2S-2P measurement as input, agrees with the measured 2S-4P transition frequency within its
12 digits of accuracy. The result decreased the wiggle room of a theoretical explanation of the
PRP based on hypothesized fundamental differences between the muon and electron, while
increasing the likelihood of some underlying experimental problem in H spectroscopy.

The 2S-4P measurement was published in 2017 [24], after more than two years of data
analysis, and is reproduced in Appendix A. The author, who joined the Laser Spectroscopy
Division at MPQ in early 2014, took part in preparing and carrying out the experiment
leading to the data set of [24], and did the final analysis of this data set as presented in [24].
A preliminary data analysis is given in the 2016 thesis of co-author Axel Beyer [30], who
had been working on the project since 2010. A. B. and the author were jointly awarded the
2018 Helmholtz Prize for their work on the 2S-4P measurement.
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Figure 1.2: The frequency uncertainty σν0 of selected laser-spectroscopy precision measurements of
atomic hydrogen versus the observed linewidth ΓF (full width at half maximum). Measurements with
a constant line splitting N , defined as σν0 = ΓF/N , lie on diagonal lines, shown for N = 100, 1000,
10 000 (dashed lines). All laser spectroscopy results contained in the 2014 H world data ([31–34], small
blue circles) are shown, including the 1S-2S measurement ([23], orange circle). The 1S-2S transition
frequency has been determined with the by far smallest uncertainty, for which a moderate N of 200
is sufficient, as the transition also has the by far smallest linewidth. The 2017 2S-4P measurement
(Appendix A, green star) reaches a line splitting of almost N = 10 000, but was recently surpassed in
frequency uncertainty by the 2020 measurement of the narrower 1S-3S transition ([26], pink plus), for
which an almost one order of magnitude lower line splitting was sufficient. The 2S-6P measurement
(red diamond) discussed in this thesis is projected to reach a 50 % higher line splitting than the
2S-4P measurement, corresponding to a four-fold lower frequency uncertainty due to the narrower
linewidth.

Recent developments in hydrogen spectroscopy

Since the 2S-4P measurement, three more hydrogen spectroscopy results have been published:
first, in 2018, an improved measurement [27] of the 1S-3S transition frequency from the
Laboratoire Kastler Brossel (LKB, brown cross in Fig. 1.1). This result, again combined with
the 1S-2S measurement, favors the 2014 H world data over the muonic and 2S-4P values.
Second, an improved microwave measurement of the 2S-2P transition, i.e. the Lamb shift,
became available in 2019 [25]. From this measurement, rp can be determined without the
need for high-precision input from another H measurement, and gives a very similar result
and uncertainty (black pentagon in Fig. 1.1) as the 2S-4P measurement. Third, very recently,
a competing 1S-3S measurement [26] was completed across the hallway at MPQ (pink plus in
Figs. 1.1 and 1.2), likewise favoring the muonic value over the 2014 H world data, but with a
2.4 times lower uncertainty than the 2S-4P result. This result is intriguing because it can be
directly compared to the LKB result of the same transition without having to use any theory
input, a comparison that is currently limited in statistical power by the LKB measurement.

All in all, the PRP remains not fully understood, but rather might fade away as higher
accuracy measurements become available. Indeed, it may never be quite resolved in the sense
that a common experimental factor shifting the measurements of the 2014 H world data is
found, assuming that both theory and the muonic value are correct. In some sense, the
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determination of rp through H spectroscopy is a distraction from testing QED and searching
for new physics, since there is one less free parameter when rp can be taken from the much
more precise muonic measurement. Then, comparing the frequencies of any two different
transitions constitutes a QED test, with the comparison of two measurement of the same
transition serving as a test on accuracy of H spectroscopy itself.

The road to increased precision using the 2S-6P transition
The work presented in this thesis follows the quest for ever increasing accuracy and thus an
improved test of QED. Already during the work on the 2S-4P measurement it became clear
that the large linewidth is a substantial limitation to its precision, as the measurement was
limited by counting statistics despite its large signal-to-noise ratio. On the other hand, the
techniques developed for this measurement, foremost the Doppler-shift suppression with the
AFR, did not appear to be limiting factors just yet. A logical choice was then to move to
a 2S-nP transition with a higher principal quantum number n, as the natural linewidth Γ
approximately decreases as n−3 (see Section 2.2.1), while the measurement scheme itself can
remain largely unchanged. Thus, using the 2S-6P transition instead of the 2S-4P transition
results in a decrease in Γ by a factor of 3.3, from 12.9 MHz to 3.89 MHz.

Moreover, the change in transition frequency from ν2S-4P = 617 THz to ν2S-6P = 731 THz
leads to an increased sensitivity to R∞ and rp in combination with the 1S-2S transition
frequency. This translates into an increased size of the PRP of 12.1 kHz in terms of the 2S-
6P transition frequency. One way to see this is that the 1S-2S transition frequency contains
a large correction to the 1S level energy from the finite size of the proton (see Eq. (2.1)),
while the 2S-nP transition frequencies are relatively unaffected. Then, the measurement of
the latter mainly determines R∞, which is proportional to the transition.

On paper, all that needed to be done to switch to the 2S-6P transition was thus a straight-
forward exchange of the laser system and some optics1. Unsurprisingly, things turned out
not be quite that simple. First, a smaller natural linewidth Γ is only of use if the observed
linewidth ΓF is not limited by other effects, with the main culprit in this experiment being
Doppler broadening through the divergence of the atomic beam. By adding a variable beam
aperture, adapting the experimental geometry, and improving alignment diagnostics and pro-
cedures, an observed linewidth of down to ≈6 MHz was realized, a factor of three lower than
the observed linewidth of the 2S-4P transition, as shown in Fig. 1.3.

The next challenge concerned the centerpiece of the AFR, a fiber collimator producing
a Gaussian beam with very little aberrations [28], necessary to successfully suppress the
Doppler shift. Unfortunately, because of the now shorter wavelength of 410 nm instead of
486 nm, the previously used collimator, assembled from off-the-shelf optics, could not be
reused. At the same time, no off-the-shelf optics were available at the new wavelength and
initial custom-made designs proved unsuccessful. This started a more than a year-long process
of improving both optics design procedures and measurement procedures. Fortunately, it was
at this point in early-2017 that Vitaly Wirthl joined the project, who took on a large share
of this endeavor and at the time of writing is preparing a corresponding publication [35].
The resulting collimator design, along with other improvements of the AFR, allowed for a
complete suppression of the Doppler shift in the measurement of the 2S-6P transition, as

1A single laser system at 820 nm can be used to drive the 2S-6P and the 1S-3S transition by using the
second and fourth harmonic, respectively. Such a laser system already was set up by 2014, and used both as
master laser for the 2S-6P measurement and as reference laser for the aforementioned 1S-3S measurement.
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Figure 1.3: Comparison of the typical experimental fluorescence signals from a single line scan over the
2S-6P1/2 resonance (blue points) and the 2S-4P1/2 resonance (red squares). Two integration ranges
of the delay time τ are shown (see Chapter 4), corresponding to the signal from atoms with a mean
speed of (A) v̄ ≈ 260 m/s and (B) v̄ ≈ 120 m/s, as determined for the 2S-6P transition. Voigt fits
(colored lines) to the data reveal the observed linewidth ΓF and the amplitude A. The 2S-6P data
were recorded in 2019, using a spectroscopy laser intensity of I = 3.9 W/m2 (peak intensity per
direction, corresponding to P2S-6P = 30 µW), a flux of 3.1× 1017 atoms/s into the system, and a nozzle
temperature of TN = 4.8 K. The 2S-4P data were recorded in 2014 and are part of the 2017 publication
(see Appendix A), with the same line scan shown in Fig. 2 (B) therein. They were recorded with a laser
intensity of I = 2.8 W/m2, a more than five times higher flux of 1.7× 1018 atoms/s, and TN = 5.8 K.
The probability for an atom to be resonantly excited to the nP level is here approximately proportional
to µ2I/Γ, where Γ is the natural linewidth and µ is the dipole moment (see Tables 2.1 and B.1). For
the parameters used here, this excitation probability is ≈20 % larger for the 2S-4P transition. The
2.2 (16) times larger signal and ≈2 (≈3) times lower observed linewidth of the 2S-6P resonance shown
in (A) ((B)), despite lower atomic flux and excitation probability, is the result of improvements of the
atomic beam formation and shaping and of the detector assembly that were implemented as part of
this thesis.

deduced from the preliminary data analysis discussed below. The 2S-6P spectroscopy laser
and the AFR are discussed in detail in Section 4.4.

While the linewidth of the 2S-nP transitions decreases with higher n, the sensitivity to
stray electric fields and thus dc-Stark shifts of the transition frequency strongly increases.
This is why for the 2S-6P measurement an in situ determination of the electric fields inside
the apparatus is necessary, while for the 2S-4P measurement an estimation based on previous
experiments was deemed sufficient. To this end, the detector assembly needed to be redesigned
to reduce possible sources of stray fields and to accommodate electrodes. The latter allows
the atoms themselves to be used as electric field sensors during the transition frequency
measurement.

The redesign of the detector assembly also opened up the possibility to further improve
the collection efficiency of fluorescence photons emitted by the decay of the 6P level, and thus
improve the SNR of the measurement. If not only the efficiency, but also the solid angle of the
detection is increased, line shape distortions from quantum interference (QI) can be reduced,
as shown in the 2S-4P measurement (see Appendix A and [29]). In fact, the detection in the
latter measurement was designed to maximize the QI effect while still providing a relatively
large SNR. Having studied and understood the QI effect, it could now be minimized, while
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at the same time increasing the collection efficiency. This was achieved by using a modified
detection geometry, and, most importantly, a photoemission material with a higher quantum
efficiency. In fact, the signal was now so high that the detectors approached their maximum
sustainable count rate, requiring more sophisticated diagnostics and electronics. However,
as shown in Fig. 1.3, those efforts were rewarded with a substantially larger SNR than for
the 2S-4P measurement, which allowed for a reduction of the number of atoms entering the
system and of the spectroscopy laser intensity, which both decrease the influence of various
systematic effects. The detector assembly is the topic of Section 4.6.

The suppression of the Doppler shift not only relies on the AFR, but also on the interro-
gation of atoms with different mean speeds v̄. In this way, any remaining residual Doppler
shift, which is proportional to v̄, can be determined and removed by an extrapolation to zero
speed. Experimentally, lower speeds are accessed through a delay time τ after the production
of 2S atoms, which allows the faster atoms of the initially thermal speed distribution to es-
cape, leaving only slower atoms to be interrogated. During initial 2S-6P measurements, still
using the cryogenic hydrogen nozzle of the 2S-4P measurement and the same flux of atoms, it
was however found that the number of slow atoms in the beam was much lower than expected
for a thermal distribution. This observation holds true when taking the photoionization of
the 2S atoms into account, to which such a depletion was previously attributed to in the 1S-
2S measurement [36]. Through an investigation of various atomic fluxes, nozzle temperatures,
and nozzle designs, atomic collisions removing slow atoms from the beam were identified as
the main cause of the depletion. Remarkably, the depleted speed distribution is well-described
by adding a single-parameter exponential suppression of slow atoms. Using the gained knowl-
edge, a nozzle design and beam parameters were found for which considerably more slow
atoms are present in the beam. This is why the signal shown in Fig. 1.3 (B), originating
from atoms with a mean speed of v̄ ≈ 120 m/s, is 16 times larger in the 2S-6P measurement
than in the 2S-4P measurement, while the signal of faster atoms with v̄ ≈ 260 m/s, shown in
Fig. 1.3 (A), is 2.2 times larger. Section 4.5 describes the details of this investigation.

The ultraviolet 1S-2S preparation laser, used to excite the atoms to the metastable 2S level,
was already employed during the 2S-4P measurement. The reliability of its in-vacuum en-
hancement cavity was a major limitation to the time of operation of the apparatus during this
measurement, ultimately leading to a premature end of the final measurement run. Thus, the
cavity underwent various design changes and improvements, as detailed in Section 4.3. The
various upgrades of the experiment also necessitated a new data acquisition (DAQ), which
during the 2S-4P measurement was still based on more than 20-year-old software. To this
end, in 2015 the complete software and hardware of the DAQ was replaced as described in
Section 4.7.

The 2S-6P measurement

By March 2019, the experimental apparatus was finally ready to attempt a precision mea-
surement of the 2S-6P transition. In the following five months, in total 3155 line scans of the
2S-6P resonance were recorded in three measurement runs (A–C, see Table 6.1), surpassing
the ≈2400 line scans that make up the published data set of the 2S-4P measurement. Between
those runs, the experimental apparatus was further optimized, and the recorded data were
preliminarily analyzed. While many of the measurement procedures were automatized, the
apparatus could not be operated unattended or remotely. Furthermore, on each measurement
day, a series of alignment procedures were necessary, and thus spectroscopy data could gen-
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Figure 1.4: Measurement time, in the local timezone, of all 3155 line scans of the 2S-6P measurement,
distributed over 25 measurement days.

erally only be acquired after a few hours of preparation. As it tends to happen, this resulted
in much of the precision data acquired in the evening and at night, as shown in Fig. 1.4.

For the initial run A, a spectroscopy laser power P2S-6P of 30 µW and 15 µW was used
for the two fine-structure components of the 2S-6P transition, 2S-6P1/2 and 2S-6P3/2, re-
spectively. This corresponds to a similar nP excitation fraction as for the powers used in
the 2S-4P measurement. Because of the improvements outlined above, the 447 line scans of
this run are sufficient to achieve a two times lower statistical frequency uncertainty than the
total 2S-4P measurement. With this, a sub-1 kHz-uncertainty measurement of the transition
frequency came into reach. However, as the statistical uncertainty decreases, the relative
contribution of systematic uncertainties to the total uncertainty increases. The light force
shift (LFS), which just happens to be on the order of 1 kHz and was relatively unimportant
for the 2S-4P measurement, now took on the role of such a potentially limiting systematic
effect. The LFS corresponds to the diffraction of the partially coherent matter waves of
the atoms at the light grating created by the counter-propagating spectroscopy laser beams,
which suppress the much larger first-order Doppler shift. Since the LFS scales approximately
linearly with the spectroscopy laser power, it was decided1 to reduce this power and thus
trade statistics for a lower LFS.

Therefore, during run B, which consists of 2085 line scans, most scans were acquired at a
three times lower laser power of 10 µW for the 2S-6P1/2 transition and its equivalent for the
2S-6P3/2 transition. For the remaining scans 20 µW and 30 µW, and their equivalents, were
used, which can be used to constrain any remaining laser power dependency of the result. The
statistics of the low-power scans are already sufficient to determine the transition frequency to
≈600 Hz, with the total necessary systematic corrections of approximately the same size. This
corresponds to a line splitting of 13 000 relative the average observed linewidth of ≈8 MHz.

Unlike the line shifts from quantum interference, the LFS has not been directly observed
for the 2S-nP transitions. Moreover, it depends on the only approximately known properties
of the atomic beam, and the correct way to model the LFS has been under discussion since
the 2S-4P measurement. The model of the LFS developed for this work, which is the topic of
Chapter 3, predicts that the sign of the LFS changes when a small offset angle α0 is introduced

1The author is grateful to Eric Hessels for very helpful discussions about the 2S-6P measurement during
his visit to MPQ in May 2019.
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between atomic beam and spectroscopy laser beams, which ordinarily are aligned to cross at
a right angle. To test this model, such an offset angle was set for most line scans of run C.
The frequency difference found between this data and data without such an offset angle is
found to be in excellent agreement with the prediction of the LFS model.

At this point, the failure rate of the various devices, lasers, feedback loops, and so on
started to exceed the repair rate, and the measurement was concluded at the end of August.

Current status of the analysis of the 2S-6P measurement
Since then, the author has followed a two-pronged approach: first, a preliminary analysis of
the 2S-6P measurement to quickly find inconsistencies or other problems that might require
additional data to be taken or new systematic effects to be evaluated. Second, a description
and careful analysis of the many changes made to the experimental apparatus and routine,
and the various test measurements done, in rapid succession during 2017–2020. This is not
merely useful for documentation purposes, but seems to be more and more a prerequisite for
a complete analysis of 2S-6P measurement.

This is why the description of the experimental apparatus in Chapter 4 takes up the bulk of
this thesis. It is mostly independent of the other chapters, but for the reader unfamiliar with
hydrogen spectroscopy Chapter 2 introduces some general concepts and the 2S-6P transition
in particular.

The analysis of the 2S-6P measurement is split over multiple chapters. Chapter 2 contains
the derivation of the optical Bloch equations necessary to describe the dynamics and line shape
of the 2S-6P transition. The motivation, derivation, and evaluation of the light force shift
model fills Chapter 3. This model is especially dependent on an accurate description of the
beam of metastable atoms, which is given in Chapter 5. This chapter also covers the analysis
of the line scans.

Chapter 6 presents the preliminary results of the 2S-6P measurement. It is meant to give
an overview over the data set, as the data analysis is still ongoing and the results are subject
to change. To prevent experimenter bias, a blind analysis is performed, that is an unknown
offset is added to the 2S-6P transition frequency. Only once the data analysis is thought to be
complete will the offset be removed. Therefore, no value of the 2S-6P transition frequency can
be given yet. However, the statistical significance, simulation corrections, and the size and
uncertainty of systematic shifts are discussed in detail. The estimated frequency uncertainty
of the 2S-6P measurement and the corresponding line splitting are shown in Fig. 1.2.

Finally, a conclusion and an outlook are given in Chapter 7.
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Chapter 2

Theory

2.1 Energy levels of atomic hydrogen

The energy levels in atomic hydrogen (H) can be expressed as (see [4] and Appendix A)

EnlJ = chR∞

(
− 1
n2 + fnlJ(α, me

mp
, . . . ) + δl0

CNS
n3 r2

p

)
, (2.1)

where n, l and J are the principal, orbital, and total angular momentum quantum numbers,
respectively. The first term describes the gross structure of H as a function of n. The
Rydberg constant R∞ = meα

2c/2h links the natural energy scale of atomic systems and the
International System of Units (SI), which is used in the laboratory. R∞ thus connects the
mass of the electron me, the fine-structure constant α, the Planck constant h, and the speed
of light in vacuum c.

The second term in Eq. (2.1), fnlJ(α, me
mp
, . . . ) = X20α

2+X30α
3+X31α

3 ln(α)+X40α
4+ . . .,

accounts for relativistic corrections, contributions coming from the interactions of the bound-
state system with the quantum electrodynamics (QED) vacuum fields, and other corrections
calculated in the framework of QED. The electron-to-proton mass ratio me/mp enters the
coefficients Xik through recoil corrections caused by the finite proton mass.

The last term in Eq. (2.1) with coefficient CNS is the leading-order correction originating
from the finite charge radius of the proton, rp, defined as the root mean square (RMS) of its
charge distribution [4]. It only affects atomic S levels (with l = 0) for which the electron’s
wave function is nonzero at the origin. Higher-order nuclear charge distribution contributions
are included in fnlJ(α, me

mp
, . . . ).

An instructive and comprehensive, if slightly outdated, overview of the derivation of
Eq. (2.1), including effects of external fields and leading-order corrections from QED and
nuclear effects, is given in [37]. The state-of-the-art QED calculations are summarized in [4].
From this, the uncertainty of the QED prediction for the 2S-6P transition frequency is found
to be approximately 300 Hz, corresponding to a relative uncertainty of 4× 10−13.

Eq. (2.1) does not take into account the hyperfine structure (HFS), chiefly arising from
the interaction of the nuclear magnetic dipole moment with the magnetic field generated by
the electron. The HFS is associated with the additional quantum number F . While the HFS
is not included in the description of [4], it is treated in detail in [38].

Throughout this work, numerical values of Eq. (2.1) in SI units are taken from the recent
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compilation of [39], with additional HFS corrections taken from [38] if necessary (see Sec-
tion 6.2.4.6). In contrast to [4], [39] use the muonic value of the proton radius rp from [22].

The constants entering fnlJ(α, me
mp
, . . . ) can be determined with sufficient accuracy from

experiments other than hydrogen spectroscopy [4, 17, 18, 40, 41]. Thus, effectively two con-
stants in Eq. (2.1) are left to be determined by hydrogen spectroscopy, R∞ and rp. This
procedure has lead to a determination of R∞ with a relative uncertainty of 8.7× 10−12,
using the measurement of the 2S-4P transition (see Appendix A) in combination with the
1S-2S transition frequency [23]. A recent measurement of the 1S-3S transition [26] has fur-
ther reduced the relative uncertainty to 3.6× 10−12. Using the value of rp determined by
spectroscopy of muonic hydrogen [22] and likewise combining it with the 1S-2S transition
frequency, R∞ can be determined with a relative uncertainty of 9× 10−13 [39]. This makes
R∞ one of the most precisely determined constants of nature to date. As has been detailed
in Chapter 1, comparing the values of R∞ and rp determined from different combinations of
spectroscopic measurements constitutes a powerful test of QED.

2.2 2S-nP transitions

2.2.1 General properties

The subject of this thesis is the study of the 2S-nP transitions (n> 2) in atomic hydrogen,
specifically the 2S-6P transition. The 2S-nP transitions are transitions between electronic
energy levels separated in energy by hνA,0, where νA,0 is an optical frequency on the order of
hundreds of THz. The involved levels have orbital quantum numbers l = 0 and l = 1, respec-
tively, and therefore are of different parity, which implies the existence of an electric dipole
moment µ. Thus, the transitions are dipole-allowed (E1) and can be excited by absorption
of a single photon with energy close to hνA,0. Fig. 2.1 shows the relevant level scheme for the
2S-6P transition.

The lower energy level is the metastable 2S level. This level is special in that its dom-
inant1 decay mechanism to the 1S ground level is not a dipole-allowed transition, but the
simultaneous emission of two photons whose combined energies equal the energy difference
between the 1S and 2S levels. This leads to a comparatively very long radiative lifetime
of τ2S = 121.53(2) ms [42], making the 1S-2S transition the narrowest optical transitions in
atomic hydrogen with a natural linewidth of2 Γ2S = 1.31 Hz.

In the experiment discussed in this thesis, the atoms typically traverse the entire experi-
mental apparatus3 within about 1 ms, leading to a decay of 0.9 % of the atoms in the 2S level.
The interaction time during which the 2S-6P transition is probed is even shorter, with even

1The 2S level can also decay through other, here negligible mechanisms [37]: the magnetic dipole (M1)
transition to the 1S ground level with an associated lifetime of 2 days, and the electric dipole (E1) transition
to the lower-lying 2P1/2 level (which in turn rapidly decays to the 1S level), which has an associated lifetime
of 20 years because of the small energy separation between the 2S and 2P1/2 levels.

2Here the following unit conventions are used, inspired by [43]: lifetimes τ are given in units of s. Decay
rates and linewidths A, γ,Γ are either given in units of dcy/s (decays per second) or Hz (cycles per second),
with the numerical value given by 1/τ or 1/2πτ , respectively. Frequencies are given in rad/s (radians per
second) or Hz, with the numerical value in rad/s given by 2π times the numerical value in Hz. Where possible,
the symbol ω is used for the former case and the symbols f, ν are used for the latter case.

3The propagation length is L+ rdet ≈ 0.23 m, the typical atom speed is vtyp = 200 m/s (see Chapter 4 for
details).
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Figure 2.1: Level scheme (not to scale) for the spectroscopy of the 2S-6P transition, showing the
relevant energy levels of atomic hydrogen and their couplings through laser light and radiative decay.
The atoms are prepared in the metastable 2SF=0

1/2 , mF = 0 level (|i〉) by driving the two-photon tran-
sition from the 1SF=0

1/2 , mF = 0 ground level (|f1〉) with the 1S-2S preparation laser (λ1S-2S = 243 nm,
purple) (see Section 2.2.6). The 2S-6P spectroscopy laser (λ2S-6P = 410 nm, blue) probes either of
the two transitions from |i〉 to the excited 6PF=1

1/2 , mF = 0 (|e1〉) or 6PF=1
3/2 , mF = 0 (|e2〉) level, which

are separated in energy by the 6P fine-structure splitting ∆νFS(6P) ≈ 405 MHz. Here, the resonant
excitation to |e1〉 is shown, with |e2〉 only excited off-resonantly (light blue). The excited levels rapidly
decay, directly or through cascades, to the 1S and 2S manifold with rate Γe-1S and γe-2S, respectively,
resulting in a natural linewidth of Γ = 3.89 MHz. Most decays (branching ratio Γe-1S/Γ = 88.2 %) are
Lyman (Ly) decays leading to the 1S manifold, with direct decays from the 6P manifold (Ly-ε decays,
branching ratio Γdet/Γ = 80.5 %, energy hν = 13.22 eV) predominantly detected in the experiment.
The remaining γe-2S/Γ = 11.8 % of decays are Balmer (Ba) decays leading to the 2S manifold, with
γei/Γ = 3.9 % and γei/Γ = 7.9 % leading back to the initial level |i〉 from |e1〉 and |e2〉, respectively.
Energy levels shown in gray are only weakly coupled through decay cascades or optical pumping, with
excitation of the 6PF=0

1/2 and 6PF=2
3/2 levels from |i〉 forbidden by angular momentum conservation.

the slowest atoms observed spending only approximately 60 µs traversing the laser beams1,
during which a fraction of 5× 10−4 of the 2S atoms decays. Therefore, in the discussions in
this thesis related to the radiative decay of the nP level, both the 1S and 2S levels are treated
as stable. That is, all decays and decay cascades result with the atom either in the 1S or
2S level, with the final decay thus a Lyman (Ly) or Balmer (Ba) decay, respectively. The
2S decay is however included in the simulations of the preparation of the atoms in 2S level
by two-photon absorption from the 1S level, as described in Section 5.2.

The upper levels of the 2S-nP transitions are the two fine-structure manifolds nPJ with
J = 1/2 and J = 3/2 and orbital quantum number l = 1. The fine-structure splitting
∆νFS(nP) that separates these manifolds in energy approximately scales as n−3. These levels
can decay through dipole-allowed transitions to lower-lying S and D levels, directly or through

1The interaction time is approximately given by T ≈ 2W0/v, where W0 is the 1/e2 beam radius of the 2S-
6P spectroscopy laser beams through which the atoms fly and v is the speed of the atoms. Here, W0 = 2.2 mm,
and atoms with speeds down to v ≈ 70 m/s are observed (see Chapter 4).
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a cascade reaching the 1S or 2S level. This includes direct decay to the 1S level, which because
of the large energy difference bridged (hν > (3/4)R∞) is the dominant decay channel, with
e.g. 81 % (84 %) of decays for n = 6 (n = 4) being of this type. Consequently, the nPJ levels
have a rather short radiative lifetime τ and thus broad natural linewidth Γ compared to
nl, l 6= 1 levels, where the decay to the 1S level is not dipole-allowed. For example, the
linewidth of the 2S-6P transition is Γ = 3.89 MHz, while the 2S-6S and 2S-6D transitions
have linewidths of 0.30 MHz and 1.34 MHz, respectively [33].

While both the number of possible decays and the energy differences bridged increase for
increasing n, the wave function overlap and thus the magnitude of the dipole moment µ for
a given lower level decrease with increasing n. The Rabi frequency Ω, for example, which is
directly proportional to µ (see Section 2.3), is a factor of 2.4 lower for the 2S-6P transition
than for the 2S-4P transition. In total, the smaller dipole moment dominates and the natural
linewidths of the 2S-nP transitions decrease with n approximately as Γ ∝ n−3. Thus, going
from n = 4 to n = 6 leads to a decrease in Γ by a factor of 3.3 from 12.9 MHz to 3.89 MHz. This
decrease is the main reason why the 2S-6P transition was chosen over the previously studied
2S-4P transition (see Appendix A) for the improved measurement of the 2S-nP transition
frequencies presented in the main text of this work.

Quantum interference (QI) between the two possible paths from an initial 2S level to a
given final level through either fine-structure manifold gives rise to distortions of the observed
resonance (see Section 2.3.2.3). If not properly taken into account, the distortions can cause
systematic shifts of the observed transition frequency of up to Γ2/∆νFS(nP) [29, 44]. Because
both Γ and ∆νFS(nP) scale as n−3, and the ratio ∆νFS(nP)/Γ is approximately 100, the
frequency shifts can reach Γ/100, constituting another advantage of moving to higher values
of n.

There is however a major disadvantage of moving to higher values of n, which is the scaling
of the dc-Stark shift with n7. This is discussed in detail in Section 2.4.

2.2.2 The 2S-6P transition

The level scheme of the 2S-6P transition as relevant to the experiment discussed here is
shown in Fig. 2.1. The atoms are first prepared in the metastable 2SF=0

1/2 , mF = 0 level by
optical excitation from the thermally populated 1SF=0

1/2 , mF = 0 ground level, corresponding
to a frequency difference of ν1S-2S = 2.466 PHz. To this end, the two-photon transition
between the two levels is driven in a Doppler-free manner with the 1S-2S preparation laser
at a wavelength of λ1S-2S = 243 nm (see Section 2.2.6).

The 2S-6P transition, with a transition frequency of ν2S-6P = 730.7 THz, is probed with a
second laser. This 2S-6P spectroscopy laser, which is linearly polarized and has a wavelength
of λ2S-6P = 410 nm, is set to be resonant with either of the two transitions from the initial
2SF=0

1/2 , mF = 0 level to the 6PF=1
1/2 , mF = 0 or 6PF=1

3/2 , mF = 0 excited level. Throughout this
work, the two transitions are referred to as 2S-6P1/2 and 2S-6P3/2 transition, respectively,
while the term 2S-6P transition is used when referring to both transitions. The 6PF=1

1/2 , mF =0
and 6PF=1

3/2 , mF = 0 level belong to different fine-structure manifolds and are separated in
energy by the 6P fine-structure splitting ∆νFS(6P) ≈ 405 MHz (see Section 6.2.4.6).

Counter-propagating laser beams are used to suppress the first-order Doppler shift of
this one-photon transition (see Section 2.2.4). The excitation of all other 6P levels by the
spectroscopy laser is forbidden by angular momentum conservation. In this way, only one
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Table 2.1: Atomic properties of the 2S-6P transition, as used in the simulations and theory corrections
in this work. Either one of the two dipole-allowed one-photon transitions from the initial metastable
2SF=0

1/2 , mF = 0 level (|i〉) to the excited 6PF=1
J , mF = 0 level (|e1〉 and |e2〉 for J = 1/2 and J = 3/2,

respectively) are probed with a linearly polarized laser. The hydrogen level energies, including fine
and hyperfine structure, needed to calculate the properties were taken from [39] and assume the
muonic value of the proton radius rp from [22]. The physical constants needed to convert from atomic
units to SI units were taken from [45]. The precision of the values given for dipole moments, Rabi
frequencies, decay rates, and ac-Stark shift and photoionization coefficients exceeds the available (and
required) accuracy, since the dipole moments are calculated using the non-relativistic Schrödinger
equation and corrections such as relativistic effects (leading to terms on the order of α2 ∼ 5× 10−5)
are not accounted for. Furthermore, only electric dipole (E1) transition have been taken into account.
However, this precision allows for (future) comparisons of underlying calculations. The corresponding
atomic properties of the 2S-4P transition are given in Table B.1.

J (excited level) 1/2 (|e1〉) 3/2 (|e2〉)
Transition frequency νA,0 (kHz) 730 690 111 486.4 730 690 516 650.9
Transition wavenumber KL (1/m) 15 314 132 15 314 141

Dipole moment µ (e a0) − 9
512
√

105 9
512
√

2× 105
Dipole moment µ (10−30 C m) −1.527 140 2.159 701
Rabi frequency Ω0 (rad/s (W/m2)−1/2) 2π × 63 263.5 2π × 89 468.1
Natural linewidth Γ (Hz) 3 894 977 3 894 983
Decay rates A (dcy/s)
γe-2S: |e1/2〉 → 2S manifold 2π × 461 496 2π × 461 497
γei: |e1/2〉 → |i〉 2π × 153 471 2π × 306 073
Γe-1S: |e1/2〉 → 1S manifold 2π × 3 433 481 2π × 3 433 486
Γdet: Detected signal (Ly-ε)a 2π × 3 136 549 2π × 3 136 552

Non-resonant ac-Stark shift
coefficientb βac,q (Hz/(W/m2)) 8.879 25× 10−5 9.275 23× 10−5

Photoionization coefficientc βioni (Hz/(W/m2)) 1.610 73× 10−5 1.886 88× 10−5

Mass of hydrogen atom mH (kg) 1.673 533× 10−27

Recoil shift ∆νrec (Hz) 1 176 026 1 176 027
Recoil velocity vrec (m/s) 0.965 016 0.965 016

aIn the experiment, only Lyman decays are detected, with Ly-ε photons accounting for ∼99 % of the signal
(see Tables 2.2 and 4.1).

bThis coefficient is derived from a perturbative calculation (see Appendix C.1) and does not include near-
resonant contributions.

cSee Appendix C.2. Only the excited level can be photoionized by light of frequency νA,0.

hyperfine sublevel is addressed for each manifold. If this was not the case, e.g. if circular
instead of linear laser polarization was used, the unresolved hyperfine structure would lead
to overlapping resonances, since the hyperfine splitting of the 6P levels is smaller than their
linewidth.

As described above, the excited levels rapidly decay, directly or through cascades, to the
1S and 2S manifold with rate Γe-1S and γe-2S, respectively, resulting in a natural linewidth
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of Γ = 3.89 MHz. The fluorescence from these decays serve as the signal in the experi-
ment1. Most decays (branching ratio Γe-1S/Γ = 88.2 %) are Lyman (Ly) decays leading to the
1S manifold, with direct Ly-ε decays (branching ratio Γdet/Γ = 80.5 %, energy hν = 13.22 eV)
predominantly detected in the experiment. The remaining γe-2S/Γ = 11.8 % of decays are
Balmer (Ba) decays leading to the 2S manifold, with γei/Γ = 3.9 % and γei/Γ = 7.9 % lead-
ing back to the initial level from the 6PF=1

1/2 , mF = 0 and 6PF=1
3/2 , mF = 0 level, respectively.

The rate of this latter so-called back decay is a main difference between the 2S-6P1/2 and
2S-6P3/2 transition, and influences the observed line shape. Specifically, both the light force
shift (see Chapter 3) and the quantum interference shifts (see Section 2.3.2) increase with
increasing back decay.

The atomic properties of the 2S-6P1/2 and 2S-6P3/2 transition are summarized in Ta-
ble 2.1. The 2S-6P transition has to our knowledge so far not been studied in detail using
laser spectroscopy2.

2.2.3 Resonance condition for one-photon absorption
Energy and momentum conservation requires the frequency νL,0, as determined in the labo-
ratory frame of reference, of the laser light to be absorbed by the atom to be different from
the atom’s resonance frequency νA,0. For an atom with velocity v (|v| ≡ v) interacting with
a laser beam with wave vector KL (|KL| ≡ KL = 2πνL,0/c), with both v and KL measured
in the laboratory frame, a relativistic energy and momentum balances gives [46]

νL,0
νA,0

=

√
1− v2

c2

1− KL
2πνL,0

· v

 1
1− hνA,0

2mc2

 . (2.2)

Here, m is the mass of atom referenced halfway between the upper and lower atomic levels
separated by νA,0, i.e. m = mH + h(νl + νA,0)/c2 where mH is the rest mass of the atom in
its ground level and hνl the energy of the lower level.

In the experiment described in this work, atoms cross a laser beam at almost right angles
α = π/2− δα, such that KL · v/2πνL,0 = cos(α)v/c = sin(δα)v/c, where δα (|δα| � π/2) is
the small angle from the orthogonal towards the laser beam propagation direction. Expanding
Eq. (2.2) in v/c and hνA,0/mHc

2 then gives

νL,0 = νA,0 + νA,0
sin(δα)v

c
+

hν2
A,0

2mHc
2 −

νA,0
2

(
v

c

)2
, (2.3)

where terms up to second order in v/c and first-order in hR∞/mHc and sin(δα)v/c have been
included, using the upper limit for the binding energy of an hydrogen atom of cR∞ for νA,0 and
νl in the latter expression. For the typical experimental speed of vtyp = 200 m/s and typical
angle of δαtyp = 4 mrad, v/c ≈ 6.7× 10−7, (v/c)2 ≈ 4.5× 10−13, sin(δα)v/c ≈ 2.7× 10−9,
and hR∞/mHc ≈ 1.4× 10−8. Thus, dropping higher-order terms is a good approximation for
the relative accuracy of one part in 10−13 required here.

1One may also detect the remaining population in the 2S manifold, as e.g. done for the measurement of the
2S-4P transition of [32].

2The 2S-6P transition was used in [33] to study the velocity distribution of an atomic beam of hydrogen,
but no precision measurement of its transition frequency was reported.
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The second term in Eq. (2.3), linear in v, is the first-order Doppler shift,

∆νD =
νA,0
c

sin(δα)v = βDv‖, (2.4)

with the velocity component along the laser beam direction v‖ = sin(δα)v and the first-order
Doppler shift coefficient βD = νA,0/c. For the 2S-6P transition, βD ≈ 2.437 MHz/(m/s),
resulting in a shift of ∆νD ≈ 2.0 MHz for vtyp and a typical angle of δαtyp = 4 mrad. This
shift is almost four orders of magnitude larger than the accuracy of the experiment, requiring
an intricate suppression as shown in Fig. 2.2 and discussed in the following section.

Of special importance to the experiment discussed here is the fact that any first-order
Doppler shift can be expressed as the product of a Doppler slope1 κ and the atom’s velocity
v,

∆νD = κv. (2.5)

For the case described in Eq. (2.4), the Doppler slope is given by κ = βD sin(δα), which
for δαtyp results in κ = 9.7 kHz/(m/s). Thus, the experiment requires a suppression of the
Doppler slope to the order of κ = 1 Hz/(m/s). If the Doppler slope κ is not known initially,
it can be determined from the experiment by measuring νL,0 for different values of v. Since
∆νD is the only term linear in v in νL,0, the slope of the linear dependence of νL,0 on v is
equal to κ. Likewise, extrapolating this linear dependence to v = 0 m/s gives νL,0 free from
the first-order Doppler shift. Here, this procedure is referred to as Doppler extrapolation.
Note that the value of νL,0 found through the Doppler extrapolation is not identical to the
value of νL,0 at v = 0 m/s, as the second-order Doppler shift, discussed below and quadratic
in v, is not removed.

The third term in Eq. (2.3) is the recoil shift,

∆νrec =
hν2

A,0
2mHc

2 , (2.6)

which is independent of v. Within the approximations here and for an atom initially at rest,
h∆νrec can be understood as the kinetic energy required for the atom to take up the photon’s
momentum ~KL. For each absorbed momentum ~KL, the atom’s velocity increases by the
recoil velocity vrec in the direction of the laser beam, KL/KL, with

vrec =
hνA,0
mHc

(2.7)

using2 νL,0 ≈ νA,0. The same change in velocity occurs upon emission of a photon by the atom,
but with the atom’s velocity decreasing in the direction of emission. For stimulated emission,
the emission is along the stimulating laser beam, while for spontaneous emission the direction
is given by the corresponding radiation pattern of the transition. For the 2S-6P transition,
∆νrec ≈ 1.176 MHz and vrec = 0.965 m/s (see Table 2.1). Note that the first-order Doppler
shift of an atom with v‖ = vrec is ∆νD = βDvrec = 2∆νrec, i.e. after absorbing a photon from

1In [28], the symbol η is used for the Doppler slope. However, since η is used for the asymmetry parameter
in this work, here κ is used as symbol for the Doppler slope instead.

2The recoil velocity vrec as defined here does not enter any frequency corrections, but is a convenient
quantity for qualitative descriptions. As such, the approximation made here is adequate.
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rest the atom sees a first-order Doppler shift corresponding to twice the recoil frequency. The
recoil shift has been directly observed in absorption spectroscopy in [46].

The final term in Eq. (2.3) is the second-order or relativistic Doppler shift,

∆νSOD = −
νA,0

2

(
v

c

)2
, (2.8)

It is, as the name suggests, a consequence of relativistic time dilation, which leads to a higher
laser frequency in the co-moving frame of the atom relative to the laser frequency measured
in the laboratory frame. As such, and in contrast to the first-order Doppler shift, it does not
depend on the direction of the atom’s velocity, v/v, but only on the square of the atom’s
speed v. For the 2S-6P transition and vtyp, ∆νSOD ≈ −163 Hz. ∆νSOD has been tested within
6 % in a transversal configuration similar to the experiment discussed here in [47] and to much
higher precision in a longitudinal configuration, e.g. in [48].

2.2.4 Suppression of the first-order Doppler shift
As detailed in the previous section, the first-order Doppler shift experience by atoms flying
through the laser beam needs to be suppressed by many order of magnitude to allow for
precision spectroscopy of the 2S-nP one-photon transitions. The basic idea followed here is
to not use a single laser beam, but instead two counter-propagating laser beams to probe
the atoms such that the Doppler shifts of the fluorescence signals from each beam cancel.
This scheme is outlined in Fig. 2.2 and has been discussed at some length in a previous
publication focusing on the 2S-4P transition [28] and an upcoming publication focusing on
the 2S-6P transition [35].

2.2.4.1 Suppression scheme

First, consider again the case of a hydrogen atom in the metastable 2S level with velocity v
(|v| ≡ v) crossing a single laser beam with wave vector KL,1 and frequency νL = νL,0 + ∆νL
(see Fig. 2.2 (A)), where νL,0 here is the resonance frequency expected if no Doppler shift
was present. The resulting fluorescence signal is shifted in frequency through the first-order
Doppler effect by

∆νD = 1
2πKL,1 · v = βD sin(δα)v, (2.9)

where the crossing angle δα is again the small angle from the orthogonal between the atom’s
trajectory and the laser beam and βD is the first-order Doppler shift coefficient introduced in
Eq. (2.4). In the absence of homogeneous broadening, saturation, and quantum interference
effects, the signal has a Lorentzian line shape with a full width at half maximum (FWHM)
linewidth corresponding to the natural linewidth Γ [49].

Adding a second, counter-propagating laser beam with wave vectorKL,2 such thatKL,2 =
−KL,1 at any point causes the appearance of a second resonance in the signal (see Fig. 2.2 (B)).
The condition KL,2 = −KL,1 implies that the second beam exactly retraces the phase of the
first laser beam, and that both beams have the same frequency. Hence, this second resonance
is Doppler-shifted by an equal, but opposite amount −∆νD as the first resonance. The total
fluorescence signal is then a doublet of resonances separated in frequency by 2∆νD. If the two
beams additionally have exactly the same intensity at any point, the total signal is symmetric
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Figure 2.2: Scheme for the suppression of the first-order Doppler shift and the mechanism for Doppler
broadening from atomic beam divergence, showing both the atom and laser beams (top) and the
observed fluorescence signal versus laser detuning (bottom). (A) A hydrogen atom in the metastable
2S level (H(2S), red arrow) crossing a single laser beam (blue arrow) with wave vectorKL,1 at an angle
α = π/2− δα and with speed v experiences a first-order Doppler effect, shifting the observed atomic
resonance (Lorentzian line shape, blue line) by ∆νD ∝ sin(δα)v from its unperturbed position (black
and gray dotted lines). The line width Γ of the resonance is unchanged from its unperturbed value.
(B) A counter-propagating laser beam with wave vectorKL,2 that retraces the phase of the first beam
(KL,2 = −KL,1), e.g. generated by suitable retroreflection from a mirror (HR), adds to the signal
a second resonance (dashed blue line). This resonance is Doppler-shifted by an equal, but opposite
amount −∆νD. The total signal (black line) from this doublet of resonances is not shifted in frequency.
(C) Signal from multiple atoms (red arrows) forming an atomic beam with angular divergence ∆α.
The total signal (Voigt line shape, black line) is made up of many resonance doublets with different
Doppler shifts. As each doublet is unshifted in frequency, the total signal is also unshifted. However,
its linewidth ΓF is broadened over the linewidth Γ of each atomic resonance. (D) An offset angle α0
from the orthogonal between the atomic and laser beams splits the total signal into two resonances
from the forward- (solid red lines) and backward-traveling (dashed red lines) laser beams, with the
frequency splitting of this doublet given by ∆ν0 ∝ 2 sin(α0)v.

about the unperturbed resonance frequency and its center of mass is free from the first-order
Doppler effect1.

2.2.4.2 Experimental realization and imperfections

While the Doppler-suppression scheme using two laser beams is conceptually straightforward,
its experimental implementation is rather challenging for the level of suppression needed
here [28, 35]. The scheme used here is to retroreflect a single laser beam on a highly-
reflective (HR) plane mirror to create a second, counter-propagating beam. If the beam
waist of the first, forward-traveling beam is placed exactly on the mirror surface, and the
mirror surface is perfectly plane and exactly orthogonal to the beam axis, the phase-retracing

1In the experiment, the resonance frequency of the total signal is found by fitting a line shape function to
the sampled data, which is a nonlinear procedure. Care has to be taken to use both a line shape function that
matches the data well and an adequate sampling of the data in order to ensure that the determined resonance
frequency approaches the Doppler-free center of mass.
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condition is fulfilled. If the mirror is also perfectly reflective, the forward- and backward-
traveling beams will have the same intensity, and all conditions for Doppler suppression are
fulfilled. The experimental realization and imperfections are discussed in Section 4.4.

Imperfections in the counter-propagating beams can degrade the suppression in two ways
[28]. First, if the wave vectors of the two beams are, at a given point, not quite anti-parallel,
but have a small angle of ε (|ε| � π) between them, the total signal will have a residual
Doppler shift of

∆νD = βD
sin(δα) + sin(−δα+ ε)

2 v ≈ 1
2βDεv = κ(ε)v, (2.10)

where in the approximation terms on the order of ε(δα)2 have been neglected. The residual
Doppler slope from this angular mismatch is thus κ(ε) = 1

2βDε, independent of the crossing
angle δα. A residual Doppler slope of κ(ε) = 1 Hz/(m/s) then corresponds to ε = 0.8 µrad. In
the experiment, the alignment of ε as given by the tip and tilt of the HR mirror from the beam
axis is not expected to be on this level1. Additionally, the local angular mismatch seen by an
atom flying through the laser beams might be much larger, as the phase-retracing condition
is violated either by the beam waist not being placed exactly at the HR mirror or by residual
aberrations present in the beam. However, ε is expected to randomly vary as vibrations affect
the tip and tilt and as the experimental alignment to an as low as possible value of ε, including
the position of the beam waist, is redone many times during the measurement runs. Then, if
ε varies, on average, about zero, κ(ε) is expected to average to zero as well.

Second, the two beams might also have a slightly different intensity. For example, if the
reflectance of the HR mirror is R = 1 − ξ, the power, and if the beams are phase-retracing
also the intensity, of the backward-traveling beam is only 1−ξ of that of the forward-traveling
beam. The residual Doppler shift in this case is

∆νD = βD
sin(δα) + (1− ξ) sin(−δα)

2 v ≈ 1
2βDδαξv = κ(ξ)v. (2.11)

The residual Doppler slope κ(ξ) = 1
2βDδαξ now depends on the crossing angle δα, as opposed

to the previous case. For the HR mirror used in the experiment, ξ = 5× 10−5, resulting in
κ(ξ) = 0.24 Hz/(m/s) for the typical crossing angle δαtyp = 4 mrad and sufficiently small for
the accuracy reached in the experiment. However, just as for the local angular mismatch, the
local intensity mismatch seen by the atoms might be much larger and therefore the reflectance
of the HR mirror cannot serve as an upper limit of the intensity mismatch. As for the first
case, if δα, and the part of ξ related to the position of the beam waist, varies about zero from
alignment to alignment, κ(ξ) is expected to average to zero as well.

For a symmetric atomic beam which is aligned such that, on average, the atoms cross the
laser beams at a small offset angle α0 (|α0| � π/2) from the orthogonal, there is for each
atom with a crossing angle of α0 + δα̃ another atom with a crossing angle α0 − δα̃, where δα̃
is an angle within the beam divergence. For the first case of imperfections, the Doppler shift
is then again given by Eq. (2.10) and is independent of both δα̃ and α0. For the second case,
δα is replaced with α0 in Eq. (2.11). Combining both cases then gives

∆νD ≈
1
2βD (ε+ α0ξ) v = κ(ε, ξ)v, (2.12)

1A misalignment of ε = 0.8 µrad only reduces the power coupled back into the fiber, an experimentally
accessible value, by 5× 10−5, well below the detectable reduction of ≈ 0.1 %, which corresponds to ε ≈ 4 µrad.
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where a term proportional to εξ has been dropped. An alignment of the offset angle α0,
together with the alignments affecting ε and ξ described above, to a value as close to zero as
possible is thus crucial to achieve a sufficient suppression of the Doppler shift. As detailed
below, an offset angle of up to α0 = 12 mrad is applied in some measurements to help with
the characterization of some systematic effects. In order to still ensure that the Doppler shift
averages to zero, the sign of this offset is then flipped every so often, e.g. the measurement is
actually done at α0 = ±12 mrad.

While the Doppler slope is thus ideally expected to average to zero, it is not clear on
which time scale this averaging occurs and whether the realignments randomly vary about zero
without systematic offsets. Additionally, beam aberrations in combination with the excitation
dynamics of the atoms might lead to a Doppler slope that does not vary with the realignments.
This is why in the experiment, as described in the previous section, the resonance frequency
of atoms of different speeds v is observed, allowing for the experimental determination of
the residual Doppler slope κ and thus an in-situ characterization of the suppression scheme.
Importantly, even with this determination, an as-good-as-possible suppression is still crucial,
as the modeling of the line shape and of systematic effects besides the Doppler shift relies on
the presence of phase-retracing beams. Additionally, the speeds v used in the experimental
determination, also derived from simulations, have an associated uncertainty that is limiting
for too large values of κ.

2.2.4.3 Excitation with counter-propagating beams

The use of two counter-propagating beams instead of a single laser beam not only, on average,
doubles the intensity seen by the atoms, but also creates an intensity standing wave with
periodicity λ2S−6P/2 = 205 nm, through which the atoms fly. This modifies the excitation
dynamics, as the atoms can now absorb photons from either beam, with the associated recoil
kick pointing in opposite directions. In turn, this gives rise to the light force shift, which is
one the main systematic effects of the 2S-6P measurement and the topic of chapter Chapter 3.

2.2.4.4 Doppler-free two-photon absorption

Finally, counter-propagating beams are also commonly employed to suppress the first-order
Doppler shift of two-photon transitions [50]. Indeed, this technique is used in this work to
prepare the atoms in the metastable 2S level through Doppler-free two-photon absorption on
the 1S-2S transition, as was done in the 1S-2S measurement [23] and the 2S-4P measurement
(see Appendix A). While the basic idea is the same for one- and two-photon transitions,
i.e. the cancelation of the Doppler shifts of the two beams, the mechanism is different. In a
two-photon transition, one photon from each of the beams is absorbed, resulting in a single
resonance free from Doppler shifts, as opposed to two resonances that are only free from
Doppler shifts when their combined signal is detected. Consequently, this so-called Doppler-
free component is also not subject to Doppler broadening (see next section). Additionally,
there is a Doppler-shifted and -broadened component, corresponding to the absorption of two
photons from either of the beams. However, the contribution of this component to the signal
is usually negligible due to its large linewidth compared to the Doppler-free component.



22 2. Theory

2.2.5 Doppler broadening
While the use of two counter-propagating laser beams discussed in the previous section sup-
presses the first-order Doppler shift, it does not suppress the associated Doppler broadening
of the observed linewidth. It is instructive to first consider two limiting cases: if the Doppler
shift is much smaller than the natural linewidth, |∆νD| � Γ, the two resonances overlap
almost completely and the linewidth of the total signal is close to Γ. On the other hand,
for |∆νD| � Γ, the doublet will be well-separated in frequency and each resonance will again
appear to be Lorentzian. However, if the Doppler shift ∆νD is on the order of the natural
linewidth Γ, the two resonances will partly overlap and the total signal will appear to have
an increased FWHM linewidth ΓF, as shown in Fig. 2.2 (B).

In an atomic beam experiment as described in this work, a distribution of atomic trajec-
tories with different crossing angles δα is probed, with each trajectory contributing a doublet
with frequency separation 2∆νD to the total signal (see Fig. 2.2 (C)). The total signal is then
additionally inhomogeneously broadened, i.e. the broadening stems from the fact that the
total signal is made up from the signal of many atoms, each with a different line shape. If
the distribution of δα can be approximated by a Gaussian with a FWHM of ∆α� π, which
corresponds to the atomic beam divergence, and centered at α0 = 0 mrad, the distribution of
Doppler shifts ∆νD is also approximately Gaussian with a FWHM of ΓG ≈ νA,0∆αv/c. The
line shape of the total signal is given by the convolution of the doublet line shape from each
atom, approximated by two Lorentzians, and the Gaussian distribution of Doppler shifts,
resulting in a Voigt line shape [49]. The total FWHM linewidth of a Voigt line shape is
approximately given by [51]

ΓF ≈ 0.5346ΓL +
√

0.2166Γ2
L + Γ2

G (2.13)

and always equal or above ΓL and ΓG. The atomic beam used for the spectroscopy of the
2S-6P transition has a divergence of ∆α ≈ 10 mrad, which at the typical experimental speed
of vtyp = 200 m/s results in ΓG ≈ 4.9 MHz and ΓF ≈ 7.3 MHz, nearly twice the natural
2S-6P linewidth of Γ = 3.9 MHz.

This broadening substantially impacts the experiment. First, all else being equal, it
increases the statistical uncertainty in the determination of the resonance frequency, which is
approximately proportional to the total linewidth. Thus, in order to gain from the narrower
natural linewidth of the 2S-nP transitions with increasing n, the divergence of the atomic
beam must not be limiting the total linewidth. Second, it complicates and adds uncertainty to
the theoretical modeling of the line shape, as it must include the properties of the atomic beam,
which are only approximately described by Gaussian distributions. Importantly, however, the
center of mass of the total line shape is still free from the first-order Doppler effect independent
of the atomic beam properties, as long as the laser beams are phase-retracing.

So far, it has been assumed that α0 = 0 mrad, i.e. that the laser beams and the center of
mass of the atomic beam cross at exactly right angles. In the experiment, this configuration
is usually used to acquire spectroscopy data, and is ensured through an in-situ alignment in
which the laser beams are rotated relative to the atomic beam. If the offset angle α0 is not
zero, on the other hand, the total signal can again split into a doublet of two resonances (see
Fig. 2.2 (D)) with a frequency splitting given by ∆ν0 = 2νA,0 sin(α0)v/c. Each resonance is
associated with one of the laser beams, but contains the signal from all atoms. The total line
shape is then the sum of two Voigts, which throughout this work is referred to as a Voigt
doublet. While such a configuration is unfavorable in terms of statistical uncertainty, some
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systematic effects like the light force shift change their behavior, which can be exploited to test
the theoretical modeling of these effects. Indeed, for this reason some spectroscopy data were
acquired in the 2S-6P measurement for α0 = 7.5 mrad and α0 = 12.0 mrad, corresponding
to ∆ν0 = 7.3 MHz and ∆ν0 = 11.7 MHz for vtyp, respectively. Note that in the experiment,
limits on the accuracy of the determination and setting of α0 mean that even in the case
where no offset angle is explicitly applied, a small residual, nonzero offset angle α0 will be
present, which can lead to additional line broadening.

The discussion has up to now neglected saturation effects. Depending on their Doppler
shift ∆νD, atoms will resonantly interact, on the one extreme (|∆νD| � Γ), with only one
or, on the other extreme (|∆νD| � Γ), with both laser beams at the same time. Thus, the
intensity seen by the atoms depends on ∆νD, which in turn implies that if saturation effects
are non-negligible, the signal seen from the latter case will not be twice the signal as seen from
the former case, as would be expected otherwise. This then leads to a smaller total signal for
∆νL . Γ than expected from the Voigt or Voigt doublet line shape, as both observed in the
simulations and in the experiment. In theory, these saturation effects can then be included in
a more sophisticated line shape model. However, experimentally they are hard to distinguish
from deviations stemming from the non-Gaussian distribution of the atomic beam.

2.2.6 Preparation of metastable 2S atoms using the 1S-2S transition
The 1S-2S transition in atomic hydrogen has been extensively studied [23, 52, 53] as its narrow
natural linewidth of Γ2S = 1.31 Hz makes it an excellent choice for precision measurements. As
opposed to the 2S-nP transitions, the 1S-2S transition is not dipole-allowed, but can be excited
through the absorption of two photons at a wavelength of λ1S−2S = 243 nm. This allows it
to be studied free from first-order Doppler shifts through two-photon laser spectroscopy (see
Section 2.2.4.4).

Here, this technique is used to prepare the hydrogen atoms, initially in the 1S ground
level as they enter the experimental apparatus, in the metastable 2S level. Specifically, the
transition from the 1SF=0

1/2 , mF = 0 level (|f1〉) to the 2SF=0
1/2 , mF = 0 level (|i〉) is driven with

the 1S-2S preparation laser, as shown in Fig. 2.1. The transition frequency is predicted to be

ν1S-2S = ν1S-2S,cent + (3/4)∆νHFS(1S1/2)− (3/4)∆νHFS(2S1/2)
= 2 466 062 345 323 723(11) Hz, (2.14)

where ν1S-2S,cent is the frequency of the 1S-2S hyperfine centroid, measured in [23], and
∆νHFS(1S1/2) and ∆νHFS(2S1/2) are 1S and 2S hyperfine splittings, measured in [54] and [55],
respectively. This excitation scheme addresses one-quarter of the thermally-populated 1S
atoms, as the three F =1 ground levels are not resonantly coupled by the preparation laser.
Likewise, the three F =1 levels of the 2S1/2 manifold are not populated.

The two-photon excitation of this transition is studied in detail in [56]. The time scale of
the excitation is given by the two-photon Rabi frequency

Ω1S-2S = 2
(
mN +me
mN

)3

2
(
2πβge

)
I = I ×

(
463 (rad/s)/(MW/m2)

)
, (2.15)

where I is the laser intensity per direction, i.e. the intensity of each of the counter-propagating
beams. The coefficient βge = 3.681 11× 10−5 Hz/(W/m2) is given in Table II of [56], and mN
and me are the nucleus and electron mass, respectively. For the typical parameters used
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here, the intensity at the center of the beams is I = 7.2 MW/m2, resulting in Ω1S-2S =
3.3× 103 rad/s. Note that the two-photon Rabi frequency is proportional to the intensity
and thus the square of the laser electric field, as opposed to the one-photon Rabi frequency
introduced in Section 2.3.1, which is linear in the electric field. The 2S excitation probability
for short interaction times t� 1/Ω1S-2S is then approximately given by P2S ≈ (Ω1S-2St)2 ∝ t2I2.
In the experiment described here, t can be on the order of 1 ms, and thus well outside the
limit for short interaction times.

A single photon from the preparation laser, with an energy of (3/8)hcR∞ = 5.10 eV, is
energetic enough to photoionize the 2S level, which has an ionization energy of (1/4)hcR∞ =
3.40 eV. The resulting ionization rate (see Appendix C.2) is

γioni(2S) = 2
(
mN +me
mN

)3 (
−
√

1/3
)

2πβ̃(0)
ioni(2S)I

= I ×
(
1513 (ionizations/s)/(MW/m2)

)
, (2.16)

with β̃(0)
ioni(2S) = −2.082 06× 10−4 Hz/(W/m2) as given in Table C.4. For the parameters used

here, the loss of 2S atoms from ionization dominates over the natural decay of the 2S level,
leading to a decrease in lifetime of up to three orders of magnitude. Ionization limits the
maximum achievable population in the 2S level, as with increasing 2S population, the loss
rate due to ionization starts to dominate over the excitation rate to the 2S level. In fact, it
can be shown [56] that the 2S population cannot exceed1 P2S = 0.175, independent of the
laser intensity used.

For linear laser polarization, as used here, the probability of a photoelectrons to be emitted
into an infinitesimal solid angle dΩ along direction (φ, θ) is p(θ) dΩ ∝ cos2(θ) dΩ, where θ
is the angle to the polarization direction [37]. The photoelectron emerges with an energy of
1.70 eV, taking up a fraction of mN/(me + mN) ≈ 0.998 of the excess energy. The proton,
on the other hand, only gains 0.9 meV and recoils with a speed of 421 m/s, which is however
comparable to the thermal speed of the cold atoms in the atomic beam employed here.

While the excitation is free from the first-order Doppler shift, it is affected by both the
second-order Doppler shift and the ac-Stark shift. The second-order Doppler shift is given
through Eq. (2.8) as

∆νSOD,1S-2S = −ν1S-2S2

(
v

c

)2
= v2 ×

(
−13.7 mHz/(m/s)2

)
. (2.17)

The mean speed of the atoms probed in the experiment described here ranges within v̄ =
66 m/s . . . 256 m/s (see Table 5.1), resulting in ∆νSOD,1S-2S = −60 Hz . . .−899 Hz.

The ac-Stark shift, the shift of the energy levels due to the interaction with the oscillating
laser field, is discussed in detail in Appendix C.1. For the 1S-2S transition, it is given by

∆νac,1S-2S = 2
(
mN +me
mN

)3 (
−
√

1/3
)(

β̃(0)
ac (2S)− β̃(0)

ac (1S)
)
I

= I ×
(
334 Hz/(MW/m2)

)
. (2.18)

1The value given for the maximum 2S population was calculated neglecting the natural decay, and the
second-order Doppler and ac-Stark shift, but including those effects does not change the value appreciably.
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The coefficients β̃(0)
ac are given in Table C.2. For the typical intensity at the center of the

beam, the ac-Stark shift is ∆νac,1S-2S = 2.4 kHz.
Both shifts are thus typically much larger than the natural linewidth. As the speed and the

path through the laser beams vary from atom to atom, each atom sees different effective values
for ∆νSOD,1S-2S and ∆νac,1S-2S. This leads to a substantial inhomogeneous broadening of the
linewidth. Ionization, on the other hand, leads to a homogeneous broadening and line shape
distortions. Additionally, the observed resonance is affected by time-of-flight broadening [57],
as the time it takes the atoms to fly though the apparatus, 0.8 ms. . . 3.1 ms, is much shorter
than the lifetime τ2S of the 2S level. The amount of broadening again depends on the path
the atoms take through the laser beams, but it is on the order of kHz as it is approximately
given by the inverse of the interaction time. All in all, the four mechanism lead to an observed
linewidth of ΓF ∼ 3 kHz, and the combination of the second-order Doppler and ac-Stark shifts,
which are of opposite sign, lead to a shift of the observed transition frequency on the order
of hundreds of Hz. To accurately take into account these mechanism in the formation of the
atomic beam of metastable 2S atoms, a Monte Carlo simulation of many atomic trajectories
is used as described in Section 5.2. A typical observation of the 1S-2S resonance with the
apparatus presented in this thesis is shown in Fig. 7.2.

Static electric fields couple the 2S levels to the short-lived 2P levels, leading to dc-Stark
shifts and quenching. The 1S levels are not affected, as there are no levels of opposite parity
with the same principal quantum number. Specifically, the 2SF=0

1/2 , mF = 0 level couples to
the 2PF=1

1/2 and 2PF=1
3/2 levels, separated in energy by −910 MHz and 10.0 GHz, respectively.

This shifts the 2SF=0
1/2 , mF =0 level1, and thus the transition, by

∆νdc,1S-2S = βdc(2SF=0
1/2 , mF =0)F 2 = F 2 ×

(
442 mHz/(V/m)2

)
, (2.19)

where F is the magnitude of the static electric field F . This expression is valid for ∆νdc,1S-2S �
910 MHz.

The static electric fields quench the 2S level, i.e. reduce its effective lifetime, since the
population transferred to the 2P level through the coupling quickly decays to the 1S ground
level with a lifetime of τ2P = 1/Γ2P = 1.6 ns. The quenched decay rate of the 2SF=0

1/2 , mF =
0 level2 can be estimated as

Γ2S,qu = Γ2S + βdc,qu(2SF=0
1/2 , mF =0)Γ2PF

2

= Γ2S + Γ2PF
2 × (6.0× 10−10 1/(V/m)2) ≈ F 2 ×

(
0.38 (dcy/s)/(V/m)2

)
, (2.20)

where the approximation is valid within 1 % for F > 47 V/m. The approximate quenched
2S lifetime is then

τ2S,qu ≈ 1/F 2 ×
(
2.6 s (V/m)2

)
. (2.21)

Note that the minimum lifetime of the quenched 2S level is 2τ2P.
1The dc-Stark shift coefficients are found by solving the time-independent Schrödinger equation, using the

level energies of [39] and thus including the fine and hyperfine structure. Unlike the ac-Stark shift given
above, where the fine and hyperfine structure was ignored, this results in different coefficients for the different
2S hyperfine levels: βdc is 352 mHz/(V/m)2 and 329 mHz/(V/m)2 for the 2SF=1

1/2 ,m = 0 and m = ±1 sublevels,
respectively, with the electric field taken to be along the z-axis.

2As for the dc-Stark shift, the quenched decay rate depends on the 2S hyperfine level in question: βdc,qu is
3.8× 10−10 1/(V/m)2 and 4.3× 10−10 1/(V/m)2 for the 2SF=1

1/2 ,m = 0 and m = ±1 sublevels, respectively. If
the hyperfine structure is ignored, Γ2S,qu ≈ F 2 ×

(
0.27 (dcy/s)/(V/m)2), comparable to the value of [58].
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2.3 Atom–light interaction

2.3.1 Master equation of atom–light interaction for a multi-level atom
The master equation of atom–light interaction is a description of the interaction of an atom
with an electromagnetic (EM) field, modeled as a reservoir of photons. The EM field consist of
both a coherent laser field and the vacuum electromagnetic field and thus lead to a description
that includes absorption from and stimulated emission into the laser field, and spontaneous
emission into free space modes, corresponding to emission stimulated by the vacuum field.
The master equation gives the time evolution of the atom’s density matrix %(t) as it evolves
through the coupling to the EM field. The resulting coupled first-order differential equations
for the elements of %(t) are known as the optical Bloch equations (OBEs). From %(t), the
expectation values at time t of operators, such as the population in an atomic level, can be
calculated. The master equation reproduced here is derived in Chapter 2 in [59]. We will
briefly outline the derivation and the assumptions made therein.

We consider an atom at rest with M + 1 energy levels with energy eigenstates |n〉, n =
0, 1, . . . ,M and with corresponding energies ~ω̃n. The unperturbed atom is then described
by the Hamiltonian

H0 = ~
M∑
n=0

ω̃n|n〉〈n|. (2.22)

The population in each level is given by an(t) = Tr(%(t)|n〉〈n|). In the hydrogen atom, there
are infinitely many bound states, but for levels not excited with a laser or otherwise populated
by decays the population can be assumed to be zero at all times, allowing us to treat only a
finite number of levels. Furthermore, the continuum states corresponding to an ionization of
the atom are ignored. Both approximations hold for a sufficiently low enough laser intensity
for a given precision goal, which is the case for the experimental situation considered here.

Only dipole-allowed transitions between the levels are considered here, since those are
typically many orders of magnitude stronger than dipole-forbidden transitions. This is an ad-
equate description for spectroscopy of the dipole-allowed 2S-nP transition, but this e.g. would
not describe the excitation of the 1S-2S transition. There are K dipole-allowed transitions
between the (lower) level |mi〉 and the (upper) level |ni〉, i = 1, 2, . . . ,K, with a corresponding
angular transition frequency ωni,mi = (Eni − Emi)/~. The transitions are identified by the
unique index i, with the corresponding projection operators

S+
i = |ni〉〈mi|, (2.23)
S−i = |mi〉〈ni|, (2.24)

and the angular transition frequency

ωi ≡ ωni,mi . (2.25)

Here, we limit the derivation through the approximations below to optical transitions, i.e. ωi
is on the order of hundreds of THz.

Each transition is associated with a dipole moment µi, given by the corresponding matrix
element of the electric dipole operator µ, µi = 〈ni|µ|mi〉. The transition frequency and
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the magnitude of dipole moment, µi = |µi|, determine the spontaneous emission rate Γi of
transition i as

Γi = ω3
i µ

2
i

3πε0~c3 , (2.26)

where c is the speed of light in vacuum and ε0 is the permittivity of free space. Γi is identical
to the Einstein A coefficient.

To describe the cross-damping through spontaneous emission between a pair of transitions
i and j, i 6= j, we define a parameter γij as

γij =
√

ΓiΓj
µi·µj

µiµj
(i 6= j). (2.27)

γij thus depends on the relative orientation of the dipole moments µi and µj , with γij
vanishing for orthogonal dipole moments. For i = j, γij reduces to γii ≡ Γi.

To simplify the equations, we work in the interaction picture, where the time evolution of
the unperturbed atom is shifted from the density matrix % to the state vectors |n〉. Using the
unitary transformation U = eiH0t/~, the density matrix in the interaction picture is given by

%I = U%U †. (2.28)

Note that since H0 is diagonal, U is diagonal as well, and thus this transformation corre-
sponds to a multiplication of each state vector with a phase factor. Then, Tr(%I(t)|n〉〈n|) =
Tr(%(t)|n〉〈n|) = an(t). Since we are here only interested in (the change of) the level popula-
tions an(t), from which the fluorescence signal can be calculated, we do not need to transform
back to % to interpret the results.

To derive the master equation, several approximations have to be made. The first approx-
imation in [59] is the Born approximation, which assumes that the state of the EM field is
not changed in time by the interaction with the atom. This is a valid approximation in our
case, since only very few of the photons in the laser field are absorbed by the atoms, and the
spontaneous decay of the atoms distributes photons in sufficiently many modes of the EM
field, since there is no preferred mode as would e.g. be the case with a cavity.

The second approximation made is the rotating wave approximation (RWA), in which
rapidly oscillating terms of angular frequencies ωi+ωj are ignored in the derivation. Neglecting
these terms leads to a model error, the so-called Bloch-Siegert shift, which tends to be very
small for optical transitions. E.g., for the 2S-6P transitions, using the typical parameters
given in Table 2.1, this shift is on the order of 1 µHz. We include the Bloch-Siegert shift in
the non-resonant ac-Stark shift, as discussed in Appendix C.1.

The third approximation made is the Markov approximation. Under this approximation,
it is assumed that % evolves on a time scale that is much shorter than the time scale of
radiative processes in the atom, which in turn determine the typical correlation time of atom-
field interaction. This approximation is justified because the time scale of radiative processes
is given by the angular transition frequencies ωi, while % evolves at best with the spontaneous
emission rates Γi (here, Γi ∼ tens of Mdcy/s), which are many orders of magnitudes smaller.

In general, there can beW laser fields interacting with the atoms with angular frequencies
ωL,l and Rabi frequencies Ω(l)

i for l = 1, . . . ,W . This interaction is described by the atom-laser
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interaction Hamiltonian HL, with the laser fields described as coherent light fields1, given by

HL(t) = −1
2~

W∑
l=1

K∑
i=1

[
Ω(l)
i S

+
i e
−i(ωL,l−ωi)t + H.c.

]
. (2.29)

The Rabi frequency of transition i and laser field l is

Ω(l)
i = 1

~
µi ·El. (2.30)

The electric field of the laser is

El = ēl

√
2Il
cε0

, (2.31)

where ēl is a unit vector giving the orientation of the laser polarization and Il is the intensity
of the laser beam.

In the experiments discussed in this thesis, at any time only one single-frequency laser with
angular frequency ωL is interacting with the atoms. However the laser beam is retroreflected
to create a forward- ("+", l = 1) and a backward-traveling ("−", l = 2) beam with identical
frequencies ωL = ωL,1 = ωL,2. For ideal retroreflection, both polarization and intensity will be
the same for the two beams, ē = ē1 = ē2 and I = I1 = I2. Taking the propagation direction
to be along the x-axis and with the laser wavenumber KL = ωL/c, the Rabi frequencies of
the beams are

Ω(1)
i ≡ Ω+

i = Ωi,0e
iKLx, (2.32)

Ω(2)
i ≡ Ω−i = Ωi,0e

−iKLx, (2.33)

Ωi,0 = µi · ē
√

2I
~2cε0

. (2.34)

With this, Eq. (2.29) becomes

HL(t) = −1
2~

K∑
i=1

[
Ωi,0

(
eiKLx + e−iKLx

)
S+
i e
−i(ωL−ωi)t + H.c.

]

= −~ cos(KLx)
K∑
i=1

[
Ωi,0S

+
i e
−i(ωL−ωi)t + H.c.

]
, (2.35)

which corresponds to the atom encountering a standing light wave with local intensity Iloc =
4I cos2(KLx) and with a periodicity of half the laser wavelength λ = c/ωL. We note that
while the two laser beams have the same frequency in the laboratory frame, an atom moving
with velocity vx along the x-axis will observe the frequencies ωL±KLvx due to the first-order
Doppler shift (see Eq. (2.4)).

1A similar expression of HL(t) is given in Eq. (2.65) of [59], but the expression here corresponds to a laser
field phase-shifted by π/2 in order to recover the usual OBEs as given e.g. in [60]. The factor of 1/2 in our
Eq. (2.29) is a result of the rotating wave approximation, since only the co-rotating terms accounting for half
the electric field were kept.
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We can now give an expression for the master equation in the interaction picture for
atom–light interaction, including a coherent laser field (cf. Eq. (2.74) in [59], where we here
assume zero thermal photons1):

δ%I

δt
= 1
i~

[
HL(t), %I

]
+ Lrelax(%I), (2.36)

with Lrelax(%I) =
K∑

i,j=1
Lrelax
ij (%I), (2.37)

and Lrelax
ij (%I) = γije

i(ωi−ωj)t
(
−1

2
(
S+
i S
−
j %

I + %IS+
i S
−
j

)
+ S−j %

IS+
i

)
. (2.38)

Eq. (2.36) is the master equation in Lindblad form. The first term gives the time evolution
as generated by the Hermitian Hamiltonian HL, as described by the quantum analog of the
Liouville equation, the von Neumann equation. It describes the interaction of the atom
with the coherent laser field, i.e. absorption and stimulated emission of laser photons. The
second term is the relaxation superoperator Lrelax acting on the density matrix %I, Lrelax(%I),
corresponding to spontaneous emission of photons from the atom caused by the interaction
with the vacuum electromagnetic field. The dynamics of the vacuum field itself are, by
construction, not described by %I. When we refer to the optical Bloch equations in this work,
we generally mean the coupled first-order differential equations for the elements of %I as given
in Eq. (2.36).

We note that Lrelax(%I) contains not only terms proportional to γii ≡ Γi and thus describ-
ing the spontaneous emission of a photon from transition i, but also terms proportional to
γij , i 6= j, describing the cross-damping through spontaneous emission between transitions i
and j.

It is instructive to look in detail at the contribution 〈u|Lrelax
ij (%I)|v〉 to the matrix element

〈u|δ%I/δt|v〉 of δ%I from Lrelax(%I) for transitions i and j. We distinguish two cases: first, i
and j have the same lower level, |mi〉 ≡ |mj〉 (mi = mj), and, second, i and j have different
lower levels, |mi〉 6= |mj〉 (mi 6= mj). 〈u|Lrelax

ij (%I)|v〉 is then given by

〈u|Lrelax
ij (%I)|v〉

= γije
i(ωi−ωj)t

(
−1

2δmi,mj
(
δu,ni〈nj |%I|v〉+ δv,nj 〈u|%I|ni〉

)
+ δu,mjδv,mi〈nj |%I|ni〉

)
= γije

i(ωi−ωj)t
{
−1

2

(
δu,ni〈nj |%I|v〉+ δv,nj 〈u|%I|ni〉

)
+ δu,mjδv,mi〈nj |%I|ni〉 mi = mj

δu,mjδv,mi〈nj |%I|ni〉 mi 6= mj .

(2.39)

For the first case, consider the change in the population of the (common) lower level from
spontaneous decays of transitions i and j, 〈mi|Lrelax

ij (%I)|mi〉 ∝ γij〈nj |%I|ni〉. This matrix
element is of particular interest for experiments detecting fluorescence, as it is equal to the
fluorescence signal of these decays. For i = j, this term just describes the spontaneous decay
of the upper level |ni〉. However, for i 6= j, this term becomes a cross-damping term and
describes an additional contribution to the fluorescence signal proportional to both γij and
the coherence between the two upper levels 〈nj |%I|ni〉. Such a coherence is, for example,
induced through the simultaneous (resonant or off-resonant) excitation of the upper levels

1This corresponds to N = 0 in [59].
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from a common initial level. For the experiment discussed here, a term of this form allows
the quantum interference between excitations and subsequent decays of two different fine-
structure manifolds (see Section 2.3.2.3).

In the second case, the only nonzero matrix element is 〈mj |Lrelax
ij (%I)|mi〉 ∝ γij〈nj |%I|ni〉,

which describes the evolution of the coherence between the distinct lower levels of transitions
i and j. Thus, this coherence is induced by cross-damping through spontaneous emission
between the two transitions. In the special case where the upper levels are also distinct,
this describes the transfer of the coherence between the upper levels to the lower levels,
which will later play an important role when including the momentum exchange between
atoms and photons in the atom–light interaction (see Section 3.4.1). However, as opposed to
the first case, there is no quantum interference term contributing to the fluorescence signal
from two decays with distinct lower levels (i.e. 〈mi|Lrelax

ij (%I)|mi〉 = 〈mj |Lrelax
ij (%I)|mj〉 = 0)

independent on whether the decays have a common upper level or not.
In the corresponding expression for δ%I

δt given in [59], there are also terms proportional to
a coefficient δij , where the indices i, j again identify atomic transitions. Terms proportional
to δii correspond to shifts of the energy levels caused by the coupling to the vacuum field.
However, those energy shifts are already absorbed in the level energies ωi used here, since they
are included in the QED corrections discussed before. Terms proportional to δij , i 6= j describe
a dynamical coupling between atomic transitions driven by the vacuum field. However, for the
hydrogen atom it can be shown that these contributions cancel when only (optical) transitions
between manifolds of different principal quantum number n are considered [61], as is the case
here.

2.3.2 Quantum interference and the big model of the 2S-6P transition

Based on the procedure described in the previous section, a model for the spectroscopy of
the 2S-6P transition as described in this work and shown in Fig. 2.1 is derived. Because
this model includes all relevant atomic levels, it is here referred to as big model. A similar
model was used for the 2S-4P measurement (see Appendix A) and the 1S-3S measurement
of [26]. The big model is based on work by Arthur Matveev, who is currently preparing a
corresponding publication.

2.3.2.1 Laser-driven excitations

The atom is assumed to be initially in the 2SF=0
1/2 , mF =0 level, which is taken to be stable as

motivated in Section 2.2.1. The optical excitation to this initial level is taken into account with
a separate model of the atomic beam, which is described in Section 5.2. Counter-propagating
beams of the spectroscopy laser, with linear polarization along the z-axis, couple the initial
level to the 6PF=1

1/2 , mF =0 and 6PF=1
3/2 , mF =0 level. As in the experiment, the spectroscopy

laser frequency is scanned over either of the two corresponding transitions, i.e. the 2S-6P1/2
or 2S-6P3/2 transition. All other excitations to the 6P manifold are forbidden by angular
momentum conservation for the chosen initial level and laser polarization. However, through
decays, the 2SF=1

1/2 levels may be populated, which are off-resonantly coupled to the 6P man-
ifold. Therefore, all dipole-allowed excitations from the 2S manifold to the 6P manifold, and
the corresponding levels, are included in the big model.

Non-resonant couplings by the laser light from the 2S levels (6P levels) to nP (nS and nD)
levels with main quantum number n 6= 6 (n 6= 2) are not taken into account in the big model.
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Table 2.2: Probability p and numberN of Lyman (Ly) and Balmer (Ba) decay paths, i.e. decay cascades
with the final decay leading from the n′P level to the nS level for n = 1 and n = 2, respectively, for an
atom initially in the 6PF=1

1/2 , mF = 0 level. The decay paths are grouped by the spherical component
q = −∆mF = 0,±1 of the final decay, corresponding to π, σ± decays, respectively. p is the ratio of the
strengths of the considered decay paths to the total strength of all dipole-allowed decay paths leading
to the 1S and 2S level. N includes the number of possible paths leading to the n′P level from which
the final decay starts. There are no decay paths to the 5P level and thus no Ly-δ or Ba-γ decays.

n n′ Energy π (q = 0) σ± (q = ±1) Sum (σ− + π + σ+)
(eV) p (%) N p (%) N p (%) N

Ly-α 1 2 10.20 1.910 4479 2.188 4272 6.287 13 023
Ly-β 1 3 12.09 0.339 108 0.387 106 1.113 320
Ly-γ 1 4 12.75 0.068 54 0.078 53 0.223 160
Ly-ε 1 6 13.22 26.843 1 26.843 1 80.528 3
Ly 1 29.160 4642 29.496 4432 88.152 13 506
Ba-α 2 3 1.89 0.046 108 0.052 106 0.149 320
Ba-β 2 4 2.55 0.010 54 0.011 53 0.032 160
Ba-δ 2 6 3.02 3.889 1 3.889 1 11.667 3
Ba 2 3.952 160 3.952 160 11.848 483
Sum 33.448 4805 33.448 4592 100.000 13 989

Table 2.3: Same as Table 2.2, but for an atom initially in the 6PF=1
3/2 , mF = 0 level.

n n′ Energy π (q = 0) σ± (q = ±1) Sum (σ− + π + σ+)
(eV) p (%) N p (%) N p (%) N

Ly-α 1 2 10.20 2.087 6201 2.100 5898 6.287 17 997
Ly-β 1 3 12.09 0.371 134 0.371 130 1.113 394
Ly-γ 1 4 12.75 0.074 67 0.074 65 0.223 197
Ly-ε 1 6 13.22 53.685 1 13.421 1 80.528 3
Ly 1 56.218 6403 15.967 6094 88.151 18 591
Ba-α 2 3 1.89 0.005 134 0.005 130 0.149 394
Ba-β 2 4 2.55 0.011 67 0.011 65 0.032 197
Ba-δ 2 6 3.02 7.778 1 1.945 1 11.667 3
Ba 2 7.839 202 2.005 196 11.849 594
Sum 64.057 6605 17.972 6290 100.000 19 185

Instead, the resulting non-resonant ac-Stark shift and photoionization are treated separately
in Appendix C, but are found to be negligible at the current level of accuracy and for the
laser intensities used here (see Table 2.1).
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Table 2.4: Probability p and numberN of Lyman (Ly) and Balmer (Ba) decay paths, i.e. decay cascades
with the final decay leading from the n′P level to the nS level for n = 1 and n = 2, respectively, for
an atom initially in the 6PF=1

1/2 , mF = 0 level. Similar to Table 2.2, but with the decay paths grouped
by the final hyperfine level reached.

n n′ nSF=0
1/2 , mF = 0 nSF=1

1/2 , mF = 0 nSF=1
1/2 , mF = ±1

p (%) N p (%) N p (%) N

Ly-α 1 2 1.774 2623 1.177 3528 1.668 3436
Ly-β 1 3 0.314 72 0.209 76 0.295 86
Ly-γ 1 4 0.063 36 0.042 38 0.059 43
Ly-ε 1 6 26.843 1 0 0 26.843 1
Ly 1 28.994 2732 1.427 3642 28.865 3566
Ba-α 2 3 0.042 72 0.028 76 0.004 86
Ba-β 2 4 0.009 36 0.006 38 0.008 43
Ba-δ 2 6 3.889 1 0 0 3.889 1
Ba 2 3.940 109 0.034 114 3.937 130

Table 2.5: Same as Table 2.4, but for an atom initially in the 6PF=1
3/2 , mF = 0 level.

n n′ nSF=0
1/2 , mF = 0 nSF=1

1/2 , mF = 0 nSF=1
1/2 , mF = ±1

p (%) N p (%) N p (%) N

Ly-α 1 2 2.759 3557 1.011 4916 1.258 4762
Ly-β 1 3 0.491 86 0.178 96 0.222 106
Ly-γ 1 4 0.098 43 0.036 48 0.044 53
Ly-ε 1 6 53.685 1 0 0 13.421 1
Ly 1 57.034 3687 1.225 5060 14.946 4922
Ba-α 2 3 0.066 86 0.024 96 0.03 106
Ba-β 2 4 0.014 43 0.005 48 0.006 53
Ba-δ 2 6 7.778 1 0 0 1.945 1
Ba 2 7.858 130 0.029 144 1.981 160

2.3.2.2 Spontaneous decays

Dipole-allowed decays from the 6PF=1
1/2 , mF = 0 and 6PF=1

3/2 , mF = 0 level either directly, or
through cascades, lead to either the 1S or 2S manifold, resulting in many different possible
decay paths, with the final decay always a Lyman or Balmer decay, respectively. Upon a
decay, the angular momentum of the atom changes by ~, as required by the conservation of
momentum since the emitted photon has spin 1. The projection of the angular momentum of
the photon onto the z-axis is q~, where q = −1, 0, 1. Accordingly, the quantum number mF

identifying the hyperfine sublevels of the atom changes by ∆mF = −q, i.e. mF → mF − q.
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Decays with q = −1, 0, 1 are referred to as σ−, π, σ+ decays, respectively1. Identifying the
decays by their value of q corresponds to a decomposition of the electric dipole operator µ
into spherical harmonics with spherical components µq [29]. For brevity, q is here referred
to as the spherical component. The angular distribution p(θ) of the emitted photon, where
θ is the angle to the z-axis, is also governed by angular momentum conservation [62]. This
results in

p(θ) = 3
8π
(
1− cos2(θ)

)
(2.40)

for π (q = 0) decays, and

p(θ) = 3
16π

(
1 + cos2(θ)

)
(2.41)

for σ± (q = ±1) decays.
All dipole-allowed decay paths from the 6PF=1

1/2 , mF =0 and 6PF=1
1/2 , mF =0 level are listed

according to their spherical component q in Table 2.2 and Table 2.3, respectively. Likewise,
Table 2.4 and Table 2.5 list the same decay paths for the two excited levels, but grouped
according to which final hyperfine level is reached. All 13 989 or, respectively, 19 185 listed
decay paths and the involved intermediate and final levels are included in the big model. The
corresponding Tables B.2 to B.5 for the 4P excited levels are given in Appendix B.

2.3.2.3 Quantum interference

Quantum interference (QI) between two possible paths leading from the initial level to the
detection of a fluorescence photon through either fine-structure manifold gives rise to dis-
tortions of the observed fluorescence signal [29, 44]. The first (second) path consists of a
laser-driven excitation to the 6PF=1

1/2 , mF = 0 (6PF=1
3/2 , mF = 0) level and a subsequent decay

with spherical component q. Since the laser at any time is only close to resonance for one the
excited levels, which are separated by in energy by ∆ = ∆νFS(6P) ≈ 100×Γ, the off-resonant
path essentially acts as a perturbation to the resonant path. The resulting distorted line
shape of the 2S-nP transitions is discussed in detail in Appendix A and [29]. A corresponding
line shape model, the so-called Fano-Voigt line shape, is also derived therein, based on the
Kramers-Heisenberg formula, which describes the scattering of photons by atomic electrons
[63]. Here, we do not employ this line shape model, but instead use the big model to describe
and correct for the line shape distortions from quantum interference.

The quantum interference is enabled by cross-damping through spontaneous emission
between the decays i and j from the excited level, described by the corresponding cross-
damping terms in the master equation (see Eqs. (2.36) and (2.39)), which are proportional
to γij (see Eq. (2.27)). If the decays i and j correspond to different spherical components
q, their dipole moments µi and µj are orthogonal and γij is zero, and thus there is no
interference. In this way, separate interference effects are observed for decays with different q,
and the resulting fluorescence signals with their characteristic angular emission distributions
as given in Eqs. (2.40) and (2.41) can be added up incoherently. There is no interference in
the fluorescence signal from decays leading to different final levels, as in this case the paths

1The definition used here corresponds to light emitted along the positive z-axis being right-handed (left-
handed) circularly polarized about the z-axis for σ+ (σ−) decays. Along any other emission direction, the
light is not purely circularly polarized.
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are distinguishable and the corresponding cross-damping terms, but not γij , are zero (see
Eq. (2.39) and discussion thereafter).

Quantum interference as described above is observable in the fluorescence signal from any
of the decays of the excited levels. In principle, subsequent decays from intermediate levels,
forming a decay cascade, are also subject to quantum interference. However, the interference
tends to wash out as the decay cascade progresses, as many intermediate levels are involved.

Furthermore, in addition to the two paths through either fine-structure manifold with
the same main quantum number n, there are also far-off-resonant paths leading through
n′P levels with different main quantum numbers n′ 6= n. However, since these levels are
separated in energy from the resonant level by ∆ > 4 000 000×Γ, and the line shape distortions
from quantum interference approximately scale as Γ2/∆ [29], the effect from these paths is
negligible.

In the experiment described here, the direct Ly-ε decay of the excited levels to the
1S ground levels constitute approximately 97 % of the total detected fluorescence signal (see
Section 4.6.5), which is thus subject to almost the full QI distortions. Because both the
QI distortion and the angular emission distribution depend on q, the observed QI distortion
depends on the solid angle of the fluorescence detection [29]. Only in the case with a full
detection coverage, i.e. a detection solid angle of 4π, do the distortions disappear in the limit
of negligible optical pumping effects. This is possible because the distortions of the fluo-
rescence signal are of opposite sign for the π and σ± decays in the excitation scheme used
here. The dependence of the line shape distortions on the detection was investigated in detail
in the 2S-4P measurement (see Appendix A). For the 2S-6P measurement discussed in this
work, the detection solid angle, and the orientation of the linear laser polarization relative to
the detector assembly, was chosen such that QI distortions and the associated line shifts are
minimized.

2.3.2.4 Derivation of the OBEs

Using the list of excitations and decays, and all 150 involved levels, the optical Bloch equa-
tions (OBEs) of the big model are derived using Eq. (2.36). Importantly, these equations
include cross-damping terms proportional to γij , i 6= j, which lead to quantum interference.
The level energies are taken from [39], and the physical constants needed to convert from
atomic units to SI units are taken from [45]. Some fast-rotating terms that do not affect the
dynamics of the system, as their effect is either small or averages out, are removed from the
OBEs to speed up the numerical integration. The details of this procedure will be given in
the aforementioned upcoming publication.

To model the fluorescence observed in the experiment, separate signal equations for each
Lyman or Balmer decay and each spherical component q are added. Each signal equation
is defined as the sum, over all contributing decays and their cross-damping terms, of the
increase in population of the corresponding lower level due to spontaneous decay of the upper
levels, as given by Eq. (2.39). In this way, the effective solid angle of the detection in the
experiment can be included by weighting the signals with different q by the product of their
angular emission distribution (see Eqs. (2.40) and (2.41)) and the spatial detection efficiency
of the fluorescence detection, found through simulations (see Section 4.6.6). Likewise, the
signals corresponding to fluorescence at different frequencies can be weighted by the spectral
sensitivity of the fluorescence detection (see Section 4.6.5).

Finally, the resulting equations are separated into real and imaginary parts, and equations
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that are always zero for the initial state given above are removed. In total, this procedure
results in OBEs consisting of 732 real-valued coupled differential equations, including 42 signal
equations. The OBEs are then numerically integrated for a given trajectory, i.e. the path
an atom takes through the spectroscopy laser beams, and for different frequency detunings
∆ν2S-6P of the spectroscopy laser, as detailed in Section 5.3.

The big model as described here does not include external electric or magnetic fields, but
either can be included in the Hamiltonian. This has been done for electric fields to model the
dc-Stark shift, as discussed in Section 2.4.

2.4 dc-Stark shift of resonances observed through fluorescence

Static electric fields, just like the time-varying electric field of the laser, couple different atomic
levels. This coupling leads to dc-Stark shifts of the level energies and new eigenstates which
contain an admixture of other levels to the level of interest.

A coupling between the levels |1〉 and |2〉 with energies E(|1〉) and E(|2〉) leads to new
eigenstates |1′〉 and |2′〉 with energies E(|1′〉) and E(|2′〉). The energy of level |1′〉, formed
by an electric-field-induced coupling between levels |1〉 and |2〉, is in leading order given by
time-independent second-order perturbation theory as [62]

E(|1′〉) = E(|1〉)− |µ · F |
2

∆E , (2.42)

where ∆E = E(|2〉) − E(|1〉). µ is the dipole moment of the transition between |1〉 and |2〉
(see Section 2.3.1), and F is the applied static electric field with field strength F = |F |. An
analogous expression applies to the energies of level |2′〉. The energy difference, in frequency
units, between the unperturbed level |1〉 and the perturbed level |1′〉 is known as the dc-Stark
shift of level |1〉,

∆νdc(|1〉) = E(|1′〉)− E(|1〉)
h

= −|µ · F |
2

h∆E = βdc(|1〉)F 2. (2.43)

Likewise, ∆νdc(|2〉) = −∆νdc(|1〉). βdc(|1〉) is the quadratic dc-Stark shift coefficient of
level |1〉, which in general depends on the relative orientation of µ and F . The shift is
proportional to the inverse energy difference between the coupled levels and the square of the
electric field strength F , and ∆νdc(|1〉) is negative if ∆E > 0 and positive otherwise. That
is, the energy difference between |1′〉 and |2′〉 increases with increasing F .

Likewise using time-independent second-order perturbation theory, the new eigenstates
are given by

|1′〉 =
(

1− 1
2
|µ · F |2

∆E2

)
|1〉 − µ · F∆E |2〉 = a|1〉 − b|2〉, (2.44)

|2′〉 =
(

1− 1
2
|µ · F |2

∆E2

)
|2〉+ µ · F

∆E |1〉 = a|2〉+ b|1〉, (2.45)

where |a|2 + |b|2 = 1 +O(|µ · F |4/∆E4).
Now, consider the case where |1〉 is the excited level of a dipole-allowed transition from

an initial level |i〉 with energy difference E(|1〉)−E(|i〉)� |∆E|. There is no dipole moment
between |i〉 and |2〉, as they are by definition of same parity, and thus if no electric field
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is applied only the transition |i〉 → |1〉 is dipole-allowed. However, if an electric field is
applied, the new eigenstates |1′〉 and |2′〉 both contain a contribution from |1〉. Therefore,
both the transition |i〉 → |1′〉 and the transition |i〉 → |2′〉 are allowed, and, in the absence of
saturation effects, the relative excitation probability of |2′〉 as compared to |1′〉 is |b|2/|a|2 =
|µ · F |2/∆E2 +O(|µ · F |4/∆E4).

The effective dc-Stark shift of a transition frequency depends on the how the frequency
is determined. If the resonances of the |i〉 → |1′〉 and |i〉 → |2′〉 transition are well-separated
in frequency, their transition frequencies can be determined independently, if incoherent and
coherent line shifts from the far-reaching slopes of the resonances and quantum interference,
respectively, are neglected. Then, the determined frequency of the |i〉 → |1′〉 (|i〉 → |2′〉)
transition will be shifted by ∆νdc(|1〉) (∆νdc(|2〉) = −∆νdc(|1〉)). That is, the frequency shift
of the transition frequencies corresponds to the frequency shift of the level energies.

If the resonances are however not well-separated in frequency, a measurement will yield
some combination of the transition frequencies and the associated dc-Stark shifts. For ex-
ample, for the case that the measurement determines the center of mass of both resonances,
the determined transition frequency will be shifted from the unperturbed frequency of the
|i〉 → |1〉 transition by

∆νdc(COM) = |a|2∆νdc(|1〉) + |b|2
(∆E

h
+ ∆νdc(|2〉)

)

= −
(

1− 1
2
|µ · F |2

∆E2

)2 |µ · F |2

h∆E + |µ · F |
2

∆E2

(
∆E
h

+ |µ · F |
2

h∆E

)

= O
(
|µ · F |4

∆E4

)
. (2.46)

That is, to leading order the dc-Stark shifts cancel out and the unperturbed transition fre-
quency is recovered. The frequency shift of the observed resonance is thus not given by the
frequency shift of the level energies, but can be much smaller.

In a real atomic system, the levels |1〉 and |2〉 will have limited lifetimes and thus nonzero
linewidths, which are also not necessarily identical. The lifetime cannot be included within
time-independent perturbation theory, and the expressions derived above are not valid if the
frequency difference between the coupled levels approaches their linewidths. A treatment
taking into account the time evolution of the system is then necessary, e.g. using optical
Bloch equations (OBEs).

The excited levels will also in general not decay to the same final levels and the emitted
fluorescence will likewise in general not be detected with the same efficiency in a given ex-
perimental apparatus, i.e. the relative weight of the resonances depends on the experimental
realization. Moreover, there might be more than one perturbing level |2〉 that needs to be
taken into account. To complicate things further, the shift of a combination of resonances
is not necessarily given by the center of mass. In the experiment discussed here, the tran-
sition frequency is found by fitting a line shape function, which is a nonlinear procedure,
to a resonance sampled at discrete frequency detunings. However, the two limiting cases
discussed above are still instructive, and indeed the dc-Stark shift of the 2S-6P1/2 transition
corresponds approximately to the dc-Stark shift of the 2S-6P1/2 level, while the 2S-6P3/2 tran-
sition experiences a much smaller dc-Stark shift than would be expected from the shift of the
6PF=1

3/2 level.
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Table 2.6: Quadratic dc-Stark shift coefficients βdc, β̃dc,π, and β̃dc,σ± of the relevant 2S and 6P levels.
βdc is calculated using second-order perturbation theory and gives the shift of the level energies,
applicable for the 2SF=0

1/2 , mF = 0 and 6PF=1
1/2 , mF = 0 level. β̃dc,π and β̃dc,σ± , on the other hand, are

derived from the shift of the observed resonance of the 2S-6P3/2 transition, simulated using the big
model. β̃dc,π and β̃dc,σ± give the shift observed for the fluorescence signal from π and σ± decays,
respectively. If all decays are detected with equal efficiency, the observed shift is given by π + 2σ±.
The static electric field F is taken to be either parallel (‖) or perpendicular (⊥) to the electric field E
of the linearly polarized laser. See text for details.

Level Orientation of F βdc β̃dc,π β̃dc,σ± β̃dc,π+2β̃dc,σ±
(Hz/(V/m)2)

2SF=0
1/2 , mF =0 — 0.442 — — —

6PF=1
1/2 , mF =0 F ‖ E −1749 — — —

F ⊥ E −1504 — — —

6PF=1
3/2 , mF =0 F ‖ E −33 566 −370 −441 −411

F ⊥ E −167 1215 −2165 −115

The dc-Stark shift of the 6PF=1
1/2 , mF = 0 level results mostly from the coupling to the

6SF=0
1/2 and 6SF=1

1/2 levels, which are separated in frequency from the 6PF=1
1/2 level by 34 MHz

and 41 MHz, respectively, and thus outside both the natural linewidth of Γ = 3.89 MHz and
the observed linewidth of ΓF . 10 MHz. The observed dc-Stark shift ∆νdc(2S-6P1/2) of the
2S-6P1/2 transition then approximately matches that of the 6PF=1

1/2 , mF = 0 level, minus the
much smaller dc-Stark shift of the initial 2SF=0

1/2 , mF =0 level (see Section 2.2.6). This results
in

∆νdc(2S-6P1/2) =
(
βdc(6PF=1

1/2 , mF =0)F 2 − βdc(2SF=0
1/2 , mF =0)

)
F 2, (2.47)

with the values of βdc given in Table 2.6. An example of the experimentally observed shift of
the 2S-6P1/2 transition is shown in Fig. 6.10 (A, C).

The dc-Stark shift of the 6PF=1
3/2 , mF = 0 level, on the other hand, results mostly from

the coupling to the 6DF=2
3/2 and 6DF=1

3/2 levels, which are only separated in frequency from
the 6PF=1

3/2 level by 57 kHz and −469 kHz, respectively. That is, they are well within the
linewidth of the 6PF=1

3/2 level, and the observed shift of the 2S-6P3/2 transition is not expected
to correspond to the shift of the 6PF=1

3/2 , mF =0 level. This also means that if a strong enough
electric field is applied the observed resonance splits into multiple components, with the
contribution from the 6DF=2

3/2 level dominating as the excitation probability scales as 1/∆E2.
To find the dc-Stark shift of the 2S-6P3/2 transition as observed in the fluorescence signal,

the couplings caused by the static electric field are included in the OBEs of the big model (see
Section 2.3.2). Note that to this end, levels which otherwise would not be coupled, i.e. the
6S and 6D levels, need to be added, together with the levels they decay to, which may not
already be taken into account. Then, the OBEs are solved for various electric field strength
F and with the electric field applied either along or perpendicular to the electric field vector
E of the laser field. For field strengths F & 5 V/m, a splitting of the resonance into two
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components, which shift into opposite directions as F increases, is visible. This is also clearly
observed in the experiment, as shown in Fig. 6.10 (B).

The modeling is complicated by the fact that the resulting line shape will in general be
different for the different spherical components of the decays, i.e. π and σ± decays. As is
the case for line shifts from quantum interference discussed in Section 2.3.2, the observed
dc-Stark shift thus depends on the spatial detection efficiency and the orientation of the laser
electric field E relative to the detector assembly through the different radiation patterns
of the decays. The line shapes corresponding to π and σ± decays are therefore separately
fit with a line shape function to extract the resonance frequencies ν0. ν0 versus F then
gives the dc-Stark shift of the 2S-6P3/2 transition for a given spherical component. For the
experimental parameters used here, ν0 shifts approximately quadratically with F , and ν0
versus F is fit with a parabola to extract the effective dc-Stark shift coefficients β̃dc,π and
β̃dc,σ± for π and σ± decays, respectively. The coefficients also depend on the laser power, the
frequency sampling of the resonance, and the line shape function. An experimental example
of this quadratic behavior is shown in Fig. 6.10 (D).

Table 2.6 gives the result for an atom crossing the 2S-6P spectroscopy laser beams with
a speed of vtyp = 200 m/s and at an angle δα = 2 mrad. A spectroscopy laser power of
P2S-6P = 10 µW, and a uniform frequency sampling and Voigt line shapes are used. As
can be seen, β̃dc,π and β̃dc,σ± are two orders of magnitude smaller than βdc for the case
that the electric field is oriented parallel to the laser field (F ‖ E). Without this partial
cancelation, the dc-Stark shift as given by βdc would certainly be limiting to the experiment.
For perpendicular orientation (F ⊥ E), the situation is reversed, and β̃dc,π and β̃dc,σ± are
an order of magnitude larger than βdc, which however is comparatively small to begin with.
The coefficients change by less than 15 % when the spectroscopy laser power is tripled. All in
all, the dc-Stark shift of the 2S-6P3/2 transition as observed through fluorescence is similar
to that of the 2S-6P1/2 transition.

In the experiment discussed here, stray electric fields and the resulting dc-Stark shift are
determined in situ. To this end, bias electric fields of strength F are applied along a given
direction (see Section 4.6.7) and the resonance frequency is measured as a function of F . This
data is then fit with a parabola of the form

ν0(F ) = β̃dc(F −∆F )2 + ν0(F = 0 V/m), (2.48)

where ∆F is the strength of the stray electric field, and β̃dc the effective quadratic dc-Stark
shift coefficient, along the direction of the applied bias field. From this, the dc-Stark shift
caused by the stray electric field along the given bias field direction is found through

∆νdc,2S-6P = β̃dc∆F 2. (2.49)

This procedure is done for all three directions and the three dc-Stark shifts are added to
find the total dc-Stark shift. Fig. 6.10 (C, D) show examples of this procedure from the
2S-6P measurement.

From such determinations during the 2S-6P measurement, β̃dc is found to be approxi-
mately within −1700 Hz/(V/m)2 and −1470 Hz/(V/m)2 for the different directions and for
the 2S-6P1/2 transition, in good agreement with the values given above. For the 2S-6P3/2 tran-
sition, β̃dc is found to be approximately −400 Hz/(V/m)2 for all directions, demonstrating
the much lower effective dc-Stark shift coefficient of the observed resonance as opposed to
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the shift of the level energies. A detailed investigation including the detection efficiency and
different spectroscopy laser powers used is still outstanding.

Finally, the dipole moments µ and energy separations ∆E between nl levels with the same
n scale as n2 and n−3, respectively [37]. Thus, the dc-Stark shift of the 2S-nP transitions scales
approximately as n7. For n = 4→ n = 6, this corresponds to a 17-fold increased sensitivity to
stray electric fields, which is why for the 2S-6P measurement an in-situ determination of these
fields was necessary, while an estimation of the shift was sufficient for the 2S-4P measurement.



40 2. Theory



Chapter 3

Light force shift

The basic idea of the experiment treated in this thesis is to cross an atomic beam of hydrogen
atoms (H) with two counter-propagating laser beams, resonant with the 2S-6P transition.
The counter-propagating beams suppress the first-order Doppler shift, while also forming a
standing light wave. This situation is shown in Fig. 3.1. The standing light wave can be
thought of as a light grating causing diffraction of an atom or matter wave, analogous to a
mechanical grating causing diffraction of a light wave. This chapter addresses the question of
how to describe and model the light grating, the matter wave, and their interaction, ultimately
leading to an analysis of the resulting shift of the resonance observed in fluorescence. This
shift is referred to as the light force shift (LFS).

Since the experimental geometry is crucial in determining how to model the light force
shift, Section 3.1 briefly describes the geometry and important parameters. The coherence
properties of the atomic beam, and thus the question whether the atom indeed has to be
described as a matter wave undergoing interference at the light grating, are discussed in
Section 3.2 and an analogy to classic optics is drawn. In Section 3.3, the quantum mechanical
description of the atomic beam is derived, using the link between classical phase-space density
and its quantum analogue, the Wigner function. In Section 3.4, the knowledge gained from
the quantum mechanical description is then used to develop a model of the light force shift
that takes into account the momentum exchange of the atom–light interaction.

The analysis of the light force shift presented here was made possible by theory support
from Yue Chang and Tao Shi, who started working on this problem, originally in the context of
the 2S-4P measurement, during their time at the Theory division of the Max Planck Institute
of Quantum Optics. A joint publication detailing these efforts is in preparation.

3.1 Experimental geometry and parameters

As shown in Fig. 3.1, hydrogen atoms at room temperature are fed to a cold (TN = 4.8 K)
nozzle, where they thermalize by sticking to and escaping again from the H2-coated walls.
They leave the nozzle through orifices with radius r1 = 1 mm, forming a beam along the
z-axis. Each atom leaving the nozzle can be assigned a classical trajectory with momentum
p = (px, py, pz), describing its center-of-mass motion. The atoms can also undergo collisions
in the nozzle, producing trajectories with the lowest transverse momentum (|px| � |pz|). For
a detailed drawing of the nozzle, see Fig. 4.25.

The 1S-2S preparation laser (λ1S-2S = 243 nm), propagating along the z-axis, excites the
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Figure 3.1: The geometry of the spectroscopy of the 2S-6P transition on a cryogenic atomic beam.
Hydrogen atoms (H, dashed and dotted lines) at room temperature are fed to a cold (TN = 4.8 K)
nozzle (orifice radius r1 = 1 mm), where they thermalize by sticking to and escaping again from the
H2-coated walls, forming a beam along the z-axis. Each atom leaving the nozzle can be assigned a
classical trajectory with momentum p = (px, py, pz), describing its center-of-mass motion. The atoms
can also undergo collisions in the nozzle, producing trajectories with the lowest transverse momentum
(|px| � |pz|). The 1S-2S preparation laser (λ1S-2S = 243 nm, purple), propagating along the z-axis,
excites the ground level (1S, |f〉) atoms to the initial level (2S, |i〉). At a distance of L1 = 154 mm
from the nozzle orifice, an aperture of width 2r2 = d2 = 1.2 mm narrows the atomic beam’s transverse
(along x-axis) velocity distribution by blocking some atoms (the aperture height in the y-direction
is 2r2,y = d2,y = 2 mm). A further distance L2 = 50 mm from the aperture, a standing light wave
along the x-axis (blue) is formed by two counter-propagating beams with transverse 1/e2 intensity
radius W0 = 2.2 mm. The beams, derived from the 2S-6P spectroscopy laser (λ2S-6P = 410 nm),
probe the 2S-6P (|i〉 → |e〉) transition, with Lyman photons (wiggly line) emitted upon decay to the
ground level (|e〉 → |f〉) serving as signal. The standing light wave acts as a grating with periodicity
λ2S-6P/2 = 205 nm for the atoms, leading to a so-called light force shift of the observed 2S-6P resonance.
The transverse coherence length of the atomic wave increases during propagation, as symbolized by
the widening line, and is comparable to the light grating’s periodicity.

ground level (1S, |f〉) atoms to the initial level (2S, |i〉). At a distance of L1 = 154 mm from the
nozzle orifice, an aperture of width 2r2 = 1.2 mm narrows the atomic beam’s transverse (along
x-axis) velocity distribution by blocking some atoms (the aperture height in the y-direction
is 2r2,y = 2 mm). A further distance L2 = 50 mm from the aperture, a standing light wave
along the x-axis is formed by the two counter-propagating beams of the active fiber-based
retroreflector, used to suppress the Doppler shift of the 2S-6P transition. The beams have a
transverse 1/e2 intensity radius W0 = 2.2 mm and are derived from the 2S-6P spectroscopy
laser (λ2S-6P = 410 nm). In this way, the 2S-6P (|i〉 → |e〉) transition is probed, with Lyman
photons emitted upon decay to the ground level (|e〉 → |f〉) serving as signal. The standing
light wave acts as a grating with periodicity λ2S-6P/2 = 205 nm for the atoms, leading to a
so-called light force shift (LFS) of the observed 2S-6P resonance.

3.2 Coherence properties of the atomic beam

Two limiting regimes of the interaction between the light grating and the atoms can be distin-
guished. In the first limit, the atoms behave like classical well-localized particles, experiencing
a force from the light grating acting at their center of mass. This limit is treated e.g. in [60,
64], and was used to describe the observed channeling of atoms in a light grating [65], and
line shifts in saturation spectroscopy of helium atoms [66]. In the other limit, the atoms are
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completely delocalized and behave like a plane wave, simultaneously interacting at all points
with the light grating. This leads to a diffraction of the matter waves on the light grating [67],
completely analogous to diffraction of light waves on a solid grating. In which regime, i.e. in
either one of the limits or somewhere in between, an experiment operates depends on the
coherence length lc of the atoms, which is the length scale over which interference can be
observed. If the coherence length is much smaller than the periodicity of the light grating,
the atoms can be treated as localized particles, but otherwise diffraction effects need to be
taken into account.

Quantum mechanically, the nozzle can thought of as a source of matter waves. A matter
wave of a particle with momentum p has a wavelength corresponding to de Broglie wavelength

λdB = h

p
, (3.1)

where p = |p|. For a hydrogen atom moving at vtyp = 200 m/s, the de Broglie wavelength
is 2 nm. The de Broglie wavelength determines the size of the smallest wave packet that
can constructed for the given particle [64], but is in general not identical to the coherence
length, which can be much larger as we will see below. In this sense, a matter wave behaves
identically to a light wave.

In a thermal gas of atoms at temperature TN, as is the case inside the nozzle, the average
de Broglie wavelength is approximated by the thermal de Broglie wavelength

λdB,th =
√

2π~2kBTN

mH
, (3.2)

where mH is the mass of the hydrogen atoms, and kB is the Boltzmann constant. For TN =
4.8 K, as used in the experiment, λdB,th = 0.8 nm. For the special case of a thermal gas of
atoms, the coherence length is identical to its thermal de Broglie wavelength [68].

If we naively assume that the coherence length at the light grating is given by the coherence
length of the thermal gas inside the nozzle, it would appear that interference effects from the
light grating, which has a periodicity of λ2S-6P/2 � lc ≡ λdB,th, are be negligible. However,
as is well known from the Van Cittert-Zernike theorem in classical optics discussed below,
interference patterns can be observed from gratings placed in beams even if the source is
incoherent, i.e. the source’s coherence length is negligible compared to the grating periodicity.
This particular type of coherence is determined by the geometry of the experiment and is
characterized by a transverse coherence length lc,t. As we will see in the quantum mechanical
treatment given in Section 3.3, an analogous effect applies in the description of the atomic
beam, and the transverse coherence length is found to be comparable to the periodicity of
the light grating. Thus, the diffraction at the grating has to be taken into account in the
theoretical description of the experiment.

3.2.1 The Van Cittert-Zernike theorem
From classical optics, it is well known that light from an extended incoherent light source1 can
produce interference patterns, i.e. have some degree of spatial coherence and thus coherently

1Incoherence here is taken to mean that the phase of waves emerging from different sections of the source
are uncorrelated, i.e. the time average of the product of the fields emerging from different sections is zero.
Note that the incoherence of the source implies that there is some spread in the wavelength, i.e. the source
cannot be strictly monochromatic [69].
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illuminate a certain area. The degree of coherence is contained in the function g(1)(P1,P2),
the absolute value of which gives the visibility of the interference pattern between light from
spatially separated points P1 and P2. We here have dropped the time dependence of g(1),
since we are only interested in spatial and not temporal coherence.

The degree of coherence of an extended incoherent light source is described by the Van
Cittert-Zernike theorem, which we will briefly outline here following section 10.4.2 in [69]. An
incoherent source of light A with constant intensity is assumed to occupy some part of a source
plane, with the extent of the source given by I(ξ, η), where (ξ, η, 0) are the Cartesian coordi-
nates of point S in the source plane. We assume I to be normalized, i.e.

∫∫
A I(ξ, η)dξdη = 1.

The light is observed at points P1 and P2 in an observation plane parallel to the source plane
and at a distance L. The Cartesian coordinates of points P1 and P2 are (X1, Y1, L) and
(X2, Y2, L).

We further assume that the extent of the source and the observation region, i.e. the region
containing Pi, are small compared to the distance between Pi and the source, and that the
source and observation region are centered on an axis normal to the planes. This corresponds
to the situation of a well-collimated light or atomic beam propagating along the z-axis.

We then find that the absolute value of the degree of coherence |g(1)| in the observation
plane (referred to as |µ12| in [69]) is given by

|g(1)(P1,P2)| =
∣∣∣∣∫∫

A
I(ξ, η)e−ikdB(pξ+qη)) dξ dη

∣∣∣∣ , (3.3)

with p = (X1 − X2)/L, q = (Y1 − Y2)/L, and kdB = 2π/λdB. Thus, |g(1)| is equal to the
absolute value of the Fourier transform of the source intensity I. Correspondingly, |g(1)|2
is the intensity distribution of the far-field diffraction pattern at the observation plane of a
uniformly illuminated diffraction aperture with the same shape as the source placed in the
source plane.

For the special case of a circular source with radius r1, Eq. (3.3) evaluates to

|g(1)| = 2J1(v)
v

, (3.4)

with the Bessel function of first kind and first order J1, and v = 2πr1
√
p2 + q2/λdB =

2πr1
√

(X1 −X2)2 + (Y1 − Y2)2/λdBL. The expression 2J1(v)/v has a central lobe of am-
plitude 1, dropping to 1/e at ∆v ≈ 2.584. After a zero crossing, where no interference is
observed, some degree of coherence is reached with another lobe at higher v, but only with
a maximum amplitude of 0.132. The amplitude further decreases for larger v. We can thus
think of ∆v as the typical scale of v for which coherence is observed. This translates to a
typical length scale over which points P1 and P2 can be separated transverse to the axis of
the system and still be illuminated coherently, given by

lc,t = ∆v
2π

L

r1
λdB = 1.29

π

L

r1
λdB. (3.5)

We identify this typical length scale as the transverse coherence length lc,t, which corresponds
to the distance of double slits placed transverse to the beam for which the visibility of the
observed interference fringes is 1/e.

For simplicity and to be able to compare with results to be derived below, we replace the
circular source with a Gaussian source with a 1/e width of r1, i.e. I(ξ, η) = e−(ξ2+η2)/r2

1/πr2
1.
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Then, (the absolute value of) the degree of coherence (Eq. (3.3)) itself is also a Gaussian,

|g(1)| = exp
(
−k

2
dBr

2
1

4L2

(
(X1 −X2)2 + (Y1 − Y2)2

))
, (3.6)

with the corresponding transverse coherence length

lc,t = 1
π

L

r1
λdB. (3.7)

Thus, with this choice of the size of the Gaussian source the result is comparable with the
one of the circular source.

3.3 Quantum mechanical description of the atomic beam

3.3.1 Definition of Wigner function and first-order correlation function
So far, we have used a classical description that neglects quantum features such as the uncer-
tainty principle. A more complete description is the Wigner function1 W (x, px), a quasiprob-
ability distribution in position x and momentum px, forming the quantum analog to the clas-
sical phase-space distribution [70, 71]. It is connected to the density matrix ρ by a Wigner
transform, defined as

W (x, px) = 1
π~

∫ ∞
−∞
〈x+ x′|ρ|x− x′〉e−2ipxx′/~ dx′, (3.8)

with the normalization property
∫∫
W (x, px)dxdpx = 1.

The marginals of W (x, px) give the x and px probability distributions, fx(x) =∫∞
−∞W (x, px)dpx and fp(px) =

∫∞
−∞W (x, px)dx.

ρ can be recovered from W (x, px) by a Weyl transform, which gives ρ in position space as

〈x|ρ|x′〉 =
∫ ∞
−∞

W (x+ x′

2 , p)ei(x−x′)px/~ dpx. (3.9)

Likewise, the momentum space representation of ρ can be retrieved through

〈px|ρ|p′x〉 =
∫ ∞
−∞

W (x, px + p′x
2 )ei(px−p′x)x/~ dx. (3.10)

The coherence properties in position and momentum space for a translation of δx and
momentum offset δpx, respectively, are given by the first-order correlation functions

g(1)(δx) =
〈x+ δx

2 |ρ|x−
δx
2 〉√

〈x+ δx
2 |ρ|x+ δx

2 〉〈x−
δx
2 |ρ|x−

δx
2 〉
, (3.11)

g(1)(δpx) =
〈px + δpx

2 |ρ|px −
δpx
2 〉√

〈px + δpx
2 |ρ|px + δpx

2 〉〈px −
δpx
2 |ρ|px −

δpx
2 〉

. (3.12)

This definition is analogous to the degree of coherence in classical optics as used in the
derivation of the Van Cittert-Zernike theorem above.

1Note that in this work the symbols W and W0 are used for the beam radius W and waist radius W0 of
the 2S-6P spectroscopy laser as well as the Wigner functions W (x, px) and W0(x, px).
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3.3.2 Wigner function at the nozzle
Describing our experiment with a Wigner function then however requires the knowledge of
the density matrix of the atoms leaving the nozzle, which a priori is unknown. We reduce the
problem to two dimensions, transverse and along the atomic beam, chosen to be along the
x-axis and z-axis, respectively. Because we are interested in the transverse coherence of the
beam, we limit the Wigner function to the transverse dimension (x, px), while the movement
along the beam axis (z, pz) is treated classically, i.e. it enters the Wigner function only as a
parameter.

First, let us find the classical phase-space distribution f0(x, px) of the atoms as they are
leaving the nozzle. The atoms are assumed to be in thermal equilibrium and thus their distri-
bution of transverse momenta follows the Maxwell-Boltzmann distribution. The probability
to find an atom with momentum px is fp(px) = exp

(
−p2

x/2σ2
px

)
/
√

2πσpx , with the trans-

verse momentum distribution width σpx =
√
mH/β. Here, mH is the mass of the hydrogen

atoms, β = kBTN, and kB is the Boltzmann constant. To model the spatial confinement of
the nozzle with radius r1, we again choose to work with a Gaussian distribution in space
to simplify the derived expressions, i.e. the probability to find an atom at position x is
fx(x) = exp

(
−x2/r2

1
)
/
√
πr1. Thus, the classical phase-space distribution at the nozzle is

f0(x, px) = 1√
2πσpxr1

exp
(
− p2

x

2σpx

)
exp

(
−x

2

r2
1

)
. (3.13)

It is tempting to assume that the initial Wigner function is identical to f0(x, px), but in
general this is not the case. Such a direct replacement would e.g. not exclude the case of
decreasing both σpx and r1 towards zero, leading to a violation of the Heisenberg uncertainty
principle.

To see whether in our case f0(x, px) is a good approximation to the corresponding
Wigner function W0(x, px), it is instructive to compare the classical phase-space distribu-
tion fHO(x, px) of thermally excited one-dimensional classical harmonic oscillator with the
Wigner function WHO(x, px) of its quantum equivalent [70, 72]. The Hamiltonian of these
systems is given by H = (p2

x/2mH) + 1
2mHω

2x2, ω being the angular frequency of the os-
cillator, and with H,x, px replaced by their operator equivalents in the quantum case. We
find

fHO(x, px) = βω

2π exp
(
−β

(
p2
x

2mH
+ 1

2mHω
2x2
))

(3.14)

for the classical case and

WHO(x, px) = 1
π~

tanh (~ωβ/2) exp
(
−β tanh (~ωβ/2)

~ωβ/2

(
p2
x

2mH
+ 1

2mHω
2x2
))

(3.15)

for the quantum mechanical case.
The difference between the classical and quantum case is the factor κ = tanh (~ωβ/2)

~ωβ/2 in the
exponent, which ensures that the uncertainty principle is not violated as TN → 0. In our case,
fHO(x, px) is identical with f0(x, px) when ω =

√
2/βmHr1, i.e. we can model that atoms at

the nozzle exit as a harmonic oscillator. For typical values of our experiment (see Table 2.1
for mH), TN = 4.8 K, r1 = 1 mm, we find 1 − κ ≈ 2× 10−14. Thus, the differences between
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the classical and quantum case are very small in our case and we can reasonably assume that
W (x, px) is well approximated by f(x, px).

Now that the initial Wigner function W0(x, px) is known, W0(x, px) ≡ f0(x, px), we can
give expressions for the initial density matrix ρ0 using Eqs. (3.9) and (3.10):

〈x+ x′

2 |ρ0|x−
x′

2 〉 = 1√
π

1
r1

exp
(
− 1
r2

1
x2 −

σ2
px

2~2x
′2
)
, (3.16)

〈px + p′x
2 |ρ0|px −

p′x
2 〉 = 1√

2πσpx
exp

(
− 1

2σ2
px

p2
x −

r2
1

4~2 p
′2
x

)
. (3.17)

From Eqs. (3.11) and (3.16), the transverse coherence length at the nozzle, lc,t,0, is found
to be (assuming δx� r1)

lc,t,0 =
√

2~
σpx

= λdB,th√
π
. (3.18)

As expected, it corresponds to the thermal de Broglie wavelength, with a prefactor of 1/
√
π

owing to differing definitions of coherence length in the literature.
Analogous to a coherence length, a typical momentum can be given over which the atomic

state is coherent. Such a property will determine the visibility of an interferometer that creates
a momentum difference between the two interfering paths. From Eqs. (3.12) and (3.17) we
find this transverse momentum coherence scale pc,t,0 to be (assuming δpx � σpx)

pc,t,0 = 2~
r1
. (3.19)

For the experimental parameters used so far, lc,t,0 = 0.45 nm and pc,t,0/mH =
1.3× 10−4 m/s.

3.3.3 Wigner function at the light grating without intermediate aperture
Knowing the Wigner functionW0(x, px) at the exit of the nozzle, the Wigner function further
downstream of the atomic beam along the z-axis can readily be found when assuming that
atom-atom interactions are negligible. In this case, the atoms propagate force-free and the
time evolution of the Wigner function is given by the classical Liouville equation [70]. At the
position of the light grating, z = L, the Wigner function is

W2′(x, px) = W0(x− px
L

pz
, px)

= 1√
2πσpxr1

exp
(
− p2

x

2σpx

)
exp

−
(
x− px Lpz

)2

r2
1

. (3.20)

The free evolution of the atoms thus causes a shearing of the Wigner function in phase-
space, mapping the initial momentum distribution onto the position distribution. A mea-
surement of the position distribution for various evolution distances L can then be used to
reconstruct the Wigner function, as has e.g. been done for a beam of He atoms [73].
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The density matrix at z = L is found by substitutingW2′(x, px) into Eqs. (3.9) and (3.10),
giving

〈x+ x′

2 |ρ2′ |x−
x′

2 〉 = 1√
π

1
rb,2′

exp
(
− 1
r2

b,2′
x2 − r2
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b,2′

σ2
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2~2x
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2σ2
pxL

~r2
b,2′pz

xx′
)
, (3.21)

〈px + p′x
2 |ρ2′ |px −

p′x
2 〉 = 1√

2πσpx
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− 1

2σ2
px

p2
x −

r2
1

4~2 p
′2
x + i

L

~pz
pxp
′
x

)

= 〈px + p′x
2 |ρ0|px −

p′x
2 〉 exp

(
i
L

~pz
pxp
′
x

)
, (3.22)

where rb,2′ =
√
r2

1 + 2σ2
px

(
L
pz

)2
is the resulting width of the distribution in position space.

The increasing width rb,2′ can be understood as resulting from the convolution of
two Gaussians, the initial position distribution, and the spreading in space for each
point in this distribution given by the initial momentum distribution. The phase factor
exp (i(2σ2

pxL/~r
2
b,2′pz)xx′) in Eq. (3.21) accounts for the curvature of the wavefront emerging

from the nozzle.
From Eqs. (3.11) and (3.21), the transverse coherence length at z = L is found to be

(assuming δx� rb,2′)

lc,t,2′ = rb,2′

r1

√
2~
σpx

= rb,2′

r1
lc,t,0

=
√
l2c,t,0 + 4~2L2

p2
zr

2
1
. (3.23)

Thus, the transverse coherence length is enhanced by a geometrical factor rb,2′/r1, a behavior
expected from the Van Cittert-Zernike theorem. lc,t,2′ can also be interpreted as the root of
the sum of squares of the initial transverse coherence length lc,t,0 and a contribution growing
linear with L, which dominates for L� r1(p2

z/σ
2
px).

For the case of a well-collimated atomic beam as assumed in the derivation of the Van
Cittert-Zernike theorem above, px � pz and L� r1, and thus p ≈ pz and λdB ≈ h/pz. With
these approximations, we find

lc,t,2′ ≈

√
l2c,t,0 +

( 1
π

L

r1
λdB

)2
≈ 1
π

L

r1
λdB, (3.24)

which is identical to the result of the Van Cittert-Zernike theorem as given in Eq. (3.7). Under
these assumptions, the phase factor in Eq. (3.21) reduces to exp (i(π/LλdB)r2), with r the
transverse distance from the beam axis (x = r/2, x′ = −r).

The transverse momentum coherence scale, on the other hand, is not enhanced during
the propagation and remains unchanged from its initial value, pc,t,2′ ≡ pc,t,0. Indeed, the
density matrix in momentum space only acquires a phase factor, corresponding to a phase
shift between different momentum components px.

For the experimental parameters used so far, lc,t,2′ = 129 nm and thus lc,t,2′ � lc,t,0, owing
to the geometrical enhancement during free propagation.
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3.3.4 Wigner function at the light grating with intermediate aperture
In the experiment, there is an aperture between the nozzle and the light grating to reduce
the transverse momentum width of the atomic beam and thus the Doppler broadening of the
observed hydrogen resonance. The aperture has a radius r2 and is placed at z = L1 < L. The
light grating is then a further distance L2 = L− L1 from this aperture.

As done when deriving the Wigner function at the nozzle, W0(x, px), we will assume that
we can treat the Wigner function like a classical phase-space density. Then, the action of the
aperture can taken into account by multiplying the Wigner function at z = L1 with a mask in
position space with a transmission proportional to exp(−x2/r2

2), thus modeling the aperture
as a soft Gaussian aperture as has been done for the nozzle. The resulting Wigner function
at z = L1 is

W1(x, px) = rm
r2

√
1 +

2L2
1σ

2
px

p2
zr

2
m

exp
(
−x

2

r2
2

)
W0(x− px

L1
pz
, px), (3.25)

where rm =
√
r2

1 + r2
2 and the prefactor ensure proper normalization.

Propagating W1(x, px) a further distance L2 along the z-axis, we arrive at the Wigner
function after the aperture and at the position of the light grating, z = L,

W2(x, px) = W1(x− px
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(3.26)

As before, plugging W2(x, px) in Eq. (3.9), we find the density matrix in position space
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with rb,2 = r1r2
rm

√√√√√√
p2
z

σ2
px

+ 2
(
L2

r2
1

+ L2
2
r2
2

)
p2
z

σ2
px

+ 2L
2
1

r2
m

, (3.28)
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The width of the distribution in position space rb,2 has two limiting regimes, determined
by the ratio between rm/L1 and σpx/pz, which are related to the beam divergences purely
from the geometry and purely from the initial transverse momentum width, respectively. For
L2 � L1, L ≈ L2, nozzle and aperture act as a single source and the width can be written
as rb,2 ≈ Lαfar with the far-field 1/e beam divergence angle αfar. Then, in the case of
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rm/L1 � σpx/pz, the divergence becomes αfar =
√

2σpx/pz, while for rm/L1 � σpx/pz it is
given by αfar = rm/L1. Our experiment operates in the latter limit.

As before, using Eq. (3.11) and assuming δx� rb,2, we can identify lc,t,2 as the transverse
coherence length. Comparing it to the case without aperture, lc,t,2′ (Eq. (3.23)), we find

lc,t,2
lc,t,2′

=

√
1 +

(
L2
L

r1
r2

)2
. (3.31)

Thus, the effect of the aperture on the transverse coherence length dominates only when
L2
r2
� L

r1
, in which case the aperture effectively acts as source.

The phase φ2 now includes the effects from diffraction on the aperture on the curvature of
the wavefront, and as for the transverse coherence length these effects only become dominant
for L2

r2
� L

r1
.

The density matrix in momentum space derived from W2(x, px) using Eq. (3.9) is
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with σpx,2 = σpx
1√

1 + 2σ2
px
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1
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px

+ 2L2
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, (3.33)

pc,t,2 = 2~rm
r1r2

= rm
r2
pc,t,0. (3.34)

Unsurprisingly, the width of the distribution in momentum space σpx,2 has again two limit-
ing regimes. For rm/L1 � σpx/pz, the influence of the aperture is negligible and σpx,2 ≈ σpx,2′ ,
while for rm/L1 � σpx/pz the momentum width is dominated by the nozzle and aperture radii
and not the initial momentum distribution width, giving σpx,2 ≈ (pz/

√
2)(rm/L1)� σpx .

We recall that so far, the transverse momentum coherence scale pc,t,0 (Eq. (3.19)) was
given by the inverse source size and, unlike the transverse coherence length, not geometrically
enhanced. This is also the case for the transverse momentum coherence scale pc,t,2 (Eq. (3.34)),
found using Eq. (3.12) and assuming δpx � σpx . pc,t,2 now reflects source and aperture
size, but not the propagation distance, and only changes by a factor of rm/r2 from the
previous value pc,t,0. The geometric enhancement of transverse coherence length is instead
again reflected in a phase factor of the density matrix, now taking into account both L1 and
L2.

Having derived these results, it is instructive to again look at our experimental situation,
where the aperture is placed close to the light grating (L2/L1 = 0.33) and has approximately
the same size as the nozzle (r2/r1 = 0.6), giving rm ≈ 1.94. Since the purpose of the
aperture is to reduce the momentum width of the beam, the parameters are chosen such
that rm/L1 � σpx/pz, resulting in a reduction from σpx/mH = 199 m/s to σpx,2 = 0.88 m/s,
corresponding to divergence angle of αfar = rm/L1 = 7.6 mrad. At the same time, the
transverse coherence length lc,t,2 only increases (Eq. (3.31)) by a small factor of 1.08 to
as compared to the situation without the aperture. Put another way, there is no direct
relationship between the transverse coherence length and the transverse momentum width.

Thus, for the experimental parameters used so far, lc,t,2 = 139 nm and pc,t,2/mH =
2.4× 10−4 m/s.
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3.3.5 Comparison with fully coherent Gaussian wave packet
It is instructive to compare the results obtained above, where we assumed the atoms to be
in a thermal state with essentially classical behavior, with a fully coherent Gaussian wave
packet described by a pure state. The wave function ψG of such a wave packet in 1D with an
initial 1/e probability radius of wx(t = 0) ≡ wx,0 and centered at position x = x0 is given in
position and momentum space at time t = 0 by

〈x|ψG〉 = 1√√
πwx,0

exp
(
−(x− x0)2

2w2
x,0

)
, (3.35)
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Thus, in momentum space its standard deviation probability width is given by σpx,G =
~/wx,0

√
2. This wave packet corresponds to a minimum uncertainty case with σpxσx,0 =

σpxwx,0/
√

2 = ~/2.
For a free particle of mass mH, the solution to the time-dependent Schrödinger equation

with Hamiltonian HFP = p2
x/2mH can be directly given in momentum space as
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)
. (3.37)

As expected for a free particle, its momentum width does not change in time. In position
space, we find
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with the 1/e probability width at time t

wx(t) =
√
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m2
Hw

2
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. (3.39)

The size of the wave packet increases over time, its probability to be observed at any point
in space is said to be spreading. The spreading is not a quantum mechanical feature in
itself, but just the probability density expected of an ensemble of freely expanding classical
particles initially found in a region with size wx,0 and with momentum distribution of width
σpx,G. However, in the classical case we can chose the initial size and momentum distribution
independently, while here it is dictated by the uncertainty principle.

The density matrix at time t is
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Plugging the density matrix into the expressions for the degree of coherence, Eqs. (3.11)
and (3.12), gives
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2
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, (3.42)
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~
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~mH

)
. (3.43)

The degree of coherence in both position and momentum space is a pure phase factor with
an absolute value of unity for all times, and thus the coherence length and the coherence
momentum scale are infinite.

It can be shown (subject of a later publication) that averaging the initial position x0 over
the periodicity of the light grating will result in a signal identical to that from an incoherent
input state with the same momentum content as the wave packet. Thus, for our experimental
parameters, an initial-position-averaged wave packet will give the same result as the Wigner
function. This is an especially import result in light of some authors using wave packets as
input states for experimental situations that might be more accurately described by a thermal
state as given by a Wigner function [74].

3.4 Light force shift of the 2S-6P transition

In the previous section, the density matrix ρ2 (Eqs. (3.27) and (3.32)) of the atomic beam at
the position of the light grating has been derived, using the Wigner function. The resulting
transverse coherence length is comparable to the periodicity of the light grating formed by
the 2S-6P spectroscopy laser, and thus the atoms cannot be described as localized particle as
they cross the grating, but instead must be treated quantum mechanically. In the following,
a model of the 2S-6P excitation taking into account this delocalization is developed. This
model is then used to simulate the light force shift (LFS) of the 2S-6P transition as observed
for the atomic beam.

3.4.1 Atom–light interaction including momentum exchange
To this end, the optical Bloch equations (OBEs) as introduced in Section 2.3.1 must be
modified to not only take the internal degrees of freedom of the atom, the energy eigenstates
or levels |n〉, into account, but also its external degrees of freedom, i.e. its momentum p. The
external and internal degrees of freedom are coupled through the atom–light interaction, since
each absorption of a laser photon by the atom not only changes the internal level of the atom,
but the atom also takes up the momentum ~KL of the photon, where KL is the wave vector
of the laser beam. Likewise, the atom both loses momentum and changes its internal level
during an emission event. Therefore, the state of the atom can be described in the combined
basis |n〉|p〉, where |p〉 is a momentum eigenstate. In position space, a momentum eigenstate
|p〉 corresponds to a plane wave state with wave vector p/~.

Absorption and stimulated emission of photons only changes the atom’s momentum by
discrete amounts and in the direction of the laser beams, i.e. by ±~KL, corresponding to a
change in velocity by vrec = ~|KL|/mH ≈ 0.97 m/s. Spontaneous emission, on the other hand,
leads to momentum change in a random direction, as given by the radiation pattern of the
transition, and the momentum change given by the energy bridged by the decay. However,
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there are only at most a few emission events as the atoms cross the laser beams, since the
atoms predominantly decay to the 1S ground level, which is not coupled by the spectroscopy
laser. Along the axis of the atomic beam (z-axis), the typical velocity is much larger than
the recoil velocity, vz � vrec, and thus spontaneous emission will not change this velocity and
the interaction time T = W0/vz appreciably. The velocity along the y-axis is comparable to
the x-axis, vy ≈ vx, but in contrast to the x-axis there is no light grating along the y-axis.
An emission of N photons along the y-axis will lead to a shift in y-position after crossing the
beam of ∆y = NvrecT = NW0vrec/vz. Since vz � vrec, this shift is much smaller than the
beam size and thus does not change the dynamics of the atom–light interaction. We thus here
restrict our quantum mechanical treatment of the momentum to the dimension (x-axis) along
the laser beams. This restriction reduces the basis of momentum eigenstates to |p〉x, where p
is the transverse momentum along the x-axis, and the combined basis becomes |n〉|p〉x.

The level scheme for 2S-6P spectroscopy (see Fig. 2.1) is simplified to model the light force
shift (LFS). To describe the excitation of the atom by the spectroscopy laser, we assume that
the laser field only couples to a single transition1, the 2SF=0

1/2 , mF =0−6PF=1
J , mF =0 (here ab-

breviated as 2S-6P) transition, with fine-structure component J either 1/2 or 3/2. This tran-
sition with transition frequency νA,0 couples the metastable initial level |i〉 = |2SF=0

1/2 , mF =0〉
with the excited level |e〉 = |6PF=1

J , mF = 0〉. The atom is assumed to be initially in the |i〉
level, as is the case in the experiment. The laser field is, as derived in Section 2.3.1, assumed
to be composed of two laser beams counter-propagating along the x-axis with identical fre-
quency νL and identical polarization and intensity, resulting in identical Rabi frequencies Ω±
for to forward- (+) and backward-traveling (−) beam. The absorption and stimulated emis-
sion of a photon from and into the forward-traveling (backward-traveling) beam changes the
momentum of the atom by ~KL (−~KL) and −~KL (~KL), respectively, where KL = |KL| is
the wavenumber of the laser beams.

As a further simplification, the decay channels of the excited level |e〉 are restricted to a
Ba-δ decay back to the initial level |i〉 with rate γei (“back decay”), and a Ly-ε decay to the
1S ground level |f〉 with rate Γef � γei. The internal dynamics of the atom are in this way
reduced to a three-level system, with the 2SF=0

1/2 levels, and the decay of the excited level to
those levels with rate γe-2S−γei, not explicitly taken into account. γei is a factor of two larger
for the 2S-6P3/2 transition (γei/Γ ≈ 8 %) than for the 2S-6P1/2 transition (γei/Γ ≈ 4 %), which
leads to a larger LFS for the former transition as seen below. In order to match the linewidth
of the excited level to the value of the natural linewidth Γ, the decays to the 2SF=0

1/2 levels
are assumed to lead to the ground level, i.e. Γef = Γe-1S + γe-2S − γei. This is a reasonable
approximation since the 2SF=0

1/2 are only coupled off-resonantly to the 6P manifold by the
spectroscopy laser. The Ly-ε decays constitute the fluorescence signal in the experiment. To
retrieve this signal in the model, the signal seen on the decay back to the ground level is
scaled by Γdet/Γ. Note that this does not change the dynamics of the system. The ground
level is not coupled by the spectroscopy laser, i.e. atoms that have reached this level are of
no interest in the description of the experiment. The values of the decay rates are given in
Table 2.1.

A spontaneous emission event with a defined frequency, but random direction, randomly

1This implies that this model of the light force shift does not take into account the quantum interference
between the fine-structure components of the 2S-6P transition, which is instead treated with the big model
including both fine-structure components and other coupled levels, but not the momentum of the atom (see
Section 2.3.2).
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Figure 3.2: The coupling of internal atomic levels and the atom’s momentum by the transfer of
momentum ~KL between the counter-propagating laser beams (Rabi frequencies Ω±) and atom during
absorption and stimulated emission events (straight arrows) leads to a ladder-like level scheme (black).
The coupled internal atomic levels are the initial (2S, |i〉), excited (6P, |e〉), and ground (1S, |f〉) levels.
Using the basis of momentum eigenstates |p〉

x
, where p is the atom’s transverse momentum along the

x-axis, the state of the atom can be described in a combined basis |i/e/f〉|p〉
x
(solid horizontal lines).

The ladder continues indefinitely for negative and positive momenta (gray arrows), and is here shown
in the laboratory frame for the case of zero p0. A spontaneous back decay from |e〉 to |i〉 (green
dotted wiggly lines), occurring with rate γei, randomly changes the momentum along the x-axis by
∆pD,1 ∈ [−~KL, ~KL], i.e. p0 → p1 = p0 + ∆pD,1, leading to a ladder-like level scheme (red) shifted in
momentum. Decays to |f〉 (rate Γef, black and red dashed wiggly lines) also change the momentum,
but this is of no consequence to the evolution of the system as |f〉 is not coupled to other levels by
the laser beams. The dotted horizontal lines mark the laser detuning from the excited states (not to
scale) with the laser on-resonance with the |i〉|0~KL〉x to |e〉|±~KL〉x transitions. The light blue digits
number the shown states.

changes the momentum along the x-axis by ∆pD. For the back decay to the initial level,
∆pD ∈ [−~KL, ~KL] with a normalized probability density of [75]

N (∆pD) = (3/8)(1 + ∆pD/~KL), (3.44)

corresponding to the projection of the radiation pattern of a π decay onto the x-axis (see
Eq. (2.40)).

The coupling of internal atomic levels and the atom’s momentum leads to a ladder-like
level scheme, shown in Fig. 3.2 in the laboratory frame of reference, where both laser beams
have the same frequency. The states are coupled by the laser beams through absorption
and stimulated emission (straight arrows in Fig. 3.2), and by spontaneous emission (wiggly
lines). An atom initially completely delocalized and with transverse momentum p0 along
the x-axis is in the state |i〉|p0〉x (#1). By absorbing a photon with momentum ±~KL from
either the forward- or the backward-traveling laser beam, the atom is excited to the level |e〉
while gaining the photon’s momentum, i.e. it is now in the state |e〉|p0 ± ~KL〉x. Generally,
the atom interacts with the combined field of both laser beams simultaneously, leading to the
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atom being a superposition of multiple states. The probability density of such a superposition
is modulated at a spatial frequency of λ2S-6P/2, corresponding to a localization of the atom
through the interaction with the light grating.

Because there are two counter-propagating laser beams, the level scheme and thus the LFS
is symmetric with respect to the incoming transverse momentum, i.e. invariant for p0 → −p0.
Furthermore, by taking into account the momentum exchange, the recoil shift and first-order
Doppler shift have been naturally included in the model. That is, the energy difference
between the states |i〉|p0〉x and |e〉|p0 ± ~KL〉x is hνA,0 + ~2K2

L/2mH + p0~KL/mH, with the
three terms corresponding to the transition frequency νA,0, the recoil shift ∆νrec, and the
first-order Doppler shift ∆νD (see Section 2.2.3). The frequency detuning ∆ν2S-6P of the
spectroscopy laser is here defined to take the recoil shift into account, such that zero detuning
corresponds to a laser frequency of νA,0 + ∆νrec.

A stimulated emission event into the laser beams can further increase the atom’s momen-
tum (states #10 and #13), leading to a total momentum transfer of ±2~KL. This two-photon
process is resonant for the special case of p0 = ±~KL, and corresponds to first-order Bragg
scattering of the atom on the light grating [76]. However, since the laser frequency is kept
close to the transition frequency between initial and excited levels, the process is near-resonant
with the intermediate excited state |e〉|0~KL〉x, leading to a loss into the ground level by spon-
taneous decay. Higher-order resonant processes for even higher momentum transfer are also
possible, i.e. transition from |i〉|±N~KL〉x to |i〉|∓N~KL〉x, where N is an integer. The losses
due to spontaneous emission increase accordingly, as N intermediate near-resonant states are
involved, which limits the efficiency of the process. Thus, depending on the level of accuracy
needed, the maximum momentum change through absorption and stimulated emission can be
constrained to allow for a numerical solution. To this end, the integer Nk,max is introduced,
with the maximum momentum change given by ±Nk,max~KL, resulting in 2Nk,max + 1 states
for each value of p.

A spontaneous back decay from |e〉 to |i〉 (green dotted wiggly lines in Fig. 3.2) changes the
momentum along the x-axis by the random amount ∆pD,1, i.e. p0 → p1 = p0 + ∆pD,1, leading
to a ladder-like level scheme (red) shifted in momentum. If the atom is again excited to |e〉,
another back decay with p1 → p2 = p1 + ∆pD,2 can lead to another level scheme shifted in
momentum by the random amount ∆pD,2. In principle, this process can continue indefinitely.
However, since Γef � γei, the atom in most case decays to the ground level |f〉, from where it
cannot be excited again. Thus, for a given level of accuracy, the maximum number of back
decays can be constrained to NBD,max. After NBD,max back decays, the atom can thus only
decay to the 1S ground level. In order to keep the linewidth of the excited level at its natural
linewidth Γ, the decay rate for this final decay is set to Γ.

As mentioned above, the atom is in general in a superposition of excited states. A spon-
taneous decay then transfers this superposition from the excited to the initial or ground level,
and shifts the momentum of all contained states by the same amount. That is, the coherence
between the states with different momenta, but the same internal level, is preserved. It is
only through this transfer of coherence that the spatial modulation of the probability density
of the excited levels is likewise transferred to the initial or ground level. This transfer of
coherence is contained in the cross-damping between the decays linking the respective excited
and initial or ground levels, as described in Section 2.3.1. Importantly, this also means that
if the system is to be described with OBEs, the corresponding cross-damping terms of the
master equation (see Eq. (2.36)) must not be neglected.

Since ∆pD and thus ∆pD,1, ∆pD,2, . . . are random, the ladder-like level scheme in principle
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consists of an infinite number of states, even if finite Nk,max and NBD,max are introduced. To
allow the translation of the system into OBEs, the following approximations are used: NBD,max
and Nk,max are set to 1 and 4, respectively, and the value of ∆pD,1 is fixed. This results in
OBEs including 27 states and consisting of 207 real-valued coupled differential equations. Four
signal equations are included, which contain, respectively, the signal of the Ba-δ back decays,
the Ly-ε decays before a back decay has occurred, the Ly-ε decays after a back decay has
occurred, and the sum of the latter two1, where the Ly-ε signals have been scaled as mentioned
above. For each set of input parameters, the OBEs are then numerically integrated N∆pD
times for N∆pD

different values of ∆pD,1, and the results are averaged according to Eq. (3.44).
Specifically, we here use the Gaussian quadrature rule with N∆pD

= 4 points to average over
∆pD,1.

The LFS is then found by following this averaging procedure for a given input state and
for a range of laser detunings ∆ν2S-6P. From these results, a line scan, i.e. the signal as a
function of ∆ν2S-6P, can be constructed, with all Ly-ε decays constituting the signal as in the
experiment. This line scan is then treated like an experimental line scan (see Chapter 5), and
the LFS ν0,LFS is found by fitting a line shape function.

The results of a numerical integration of the LFS model for the 2S-6P1/2 and 2S-6P3/2 tran-
sition are shown in Fig. 3.3. The input state corresponds to a completely delocalized atom
with transverse momentum p0, i.e. at the start of the numerical integration only the state
|i〉|p0〉x is populated. The speed of the atom is v = 200 m/s, and it thus crosses the light
grating at an angle δα ≈ p0/mHv from the orthogonal. The resonance frequency ν0 of the
simulated line scans is here determined by fitting Voigt line shapes, with ν0,LFS ≡ ν0 consti-
tuting the value of the LFS. The power of the spectroscopy laser is P2S-6P = 30 µW (15 µW) for
the 2S-6P1/2 (2S-6P3/2) transition, and the transverse beam profile is Gaussian with a 1/e2

intensity radius of W0 = 2.2 mm, as used in the experiment. Note that the dipole moment
of the 2S-6P3/2 transition is a factor of

√
2 larger than that of the 2S-6P1/2 transition, and

thus using a power of P2S-6P/2 for the 2S-6P3/2 transition is equivalent to using P2S-6P for
the 2S-6P1/2 transition. ν0,LFS shows small wiggles at p0 ≈ 0.3~KL, 0.85~KL, . . . , which are
numerical artifacts from the averaging over the back decay momentum change ∆pD,1.

As shown in Fig. 3.3 (A), for zero p0 the LFS is found to be approximately −600 Hz for
both the 2S-6P1/2 transition (solid green line) and the 2S-6P3/2 transition (dashed red line).
With increasing p0, the LFS becomes more negative, till at p0 = ~KL a resonance-like feature
is reached. Above this resonance, the light force shift is always positive. The LFS is generally
larger for the 2S-6P3/2 transition, which is a result of its two times larger back decay rate γei.
This is demonstrated by setting γei artificially to zero (black dotted line).

The resonance at p0 = ~KL is not fully shown in Fig. 3.3 (A), but highlighted in
Fig. 3.3 (B). Around this point, the LFS reaches up to 230 kHz. This is a result of the
two-photon transition from |i〉|~KL〉x to |i〉| − ~KL〉x, which becomes resonant for p0 = ~KL,
as discussed above. The LFS here is identical for both transitions, because the resonance is
not a consequence of the back decay, with the same LFS observed for a zero γei. The width
of this two-photon resonance is given by the limited interaction time between atom and the
laser beams. Since the resonance always occurs at p0 = ~KL, the corresponding transverse
angle δα ≈ ~KL/mHv is inversely proportional to v.

Above the resonance, the now positive LFS trends towards a value of 2.7 kHz and 4.9 kHz

1No additional signal equation is needed for this incoherent sum of two other signals, but is included for
convenience.
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Figure 3.3: (A) Simulation of the light force shift (LFS) ν0,LFS versus transverse momentum p0
(bottom axis) for the 2S-6P1/2 transition (solid green line) and 2S-6P3/2 transition (dashed red line).
p0, given in units of the photon momentum ~KL, is the momentum along the spectroscopy laser
beams forming the light grating. The incoming atom is in the 2S level and delocalized along the
transverse direction (|e〉|p0〉x). The speed of the atom is v = 200 m/s, and it thus crosses the light
grating at an angle δα ≈ p0/mHv (top axis) from the orthogonal. ν0,LFS is determined by fitting
Voigt line shapes to simulated line scans, found by integrating the optical Bloch equations of the LFS
model. The corresponding level scheme is shown in Fig. 3.2. The power of the spectroscopy laser is
P2S-6P = 30 µW (15 µW) for the 2S-6P1/2 (2S-6P3/2) transition, giving the same Rabi frequency for
both transitions because of the larger dipole moment for the 2S-6P3/2 transition. The larger LFS of
the 2S-6P3/2 transition is caused by its two times higher back decay rate γei to the 2S initial level.
The LFS without back decay, i.e. γei set to zero, is also shown (black dotted line), using the same Rabi
frequency as with nonzero γei. The wiggles at p0 ≈ 0.3~KL, 0.85~KL, . . . are numerical artifacts from
the averaging over the back decay momentum change ∆pD,1. (B) Same data as (A), but showing the
region around p0 = ~KL, where a two-photon resonance leads to an especially large LFS independent
of the back decay rate.

for the 2S-6P1/2 and 2S-6P3/2 transition, respectively. If the back decay is not included in the
description, however, the LFS trends towards zero above the resonance, again demonstrating
the importance of including the back decay in the description of the LFS.

Fig. 3.4 shows the LFS for the 2S-6P1/2 transition for three different values of the spec-
troscopy laser power used in the 2S-6P measurement, P2S-6P = 10 µW, 20 µW, and 30 µW. The
LFS scales approximately linearly with laser power, independent of the value of the transverse
momentum, and including at the resonance.

The accuracy of the OBE model was verified using simulations based on the Monte Carlo
wave function (MCWF) (or quantum jump) method [75, 77, 78]. In this method, the number
of back decays need not be limited and the back decay momentum change ∆pD need not be
discretized. This is possible because in this method, the wave function is evolved in time using
a pseudo-Hamiltonian, and at each time step a decay with a random momentum change may
take place. This procedure is then repeated for many of these so-called quantum trajectories1

1Not to be confused with the (classical) trajectory of an atom, i.e. its position as a function of time. Here,
the term trajectory is used for such classical trajectories, especially in the context of the Monte Carlo simulation
of the atomic beam, while the quantum trajectories of the MCWF method are referred to as such.
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Figure 3.4: (A) Simulation of the light force shift (LFS) ν0,LFS versus transverse momentum p0 and
the spectroscopy laser power P2S-6P. Similar to Fig. 3.3, but only results for the 2S-6P1/2 transition are
included. The LFS scales approximately linearly with P2S-6P, independent of the value of the transverse
momentum. (B) Same data as (A), but showing the region around p0 = ~KL, where a two-photon
resonance leads to an especially large LFS, which also scales approximately linearly with P2S-6P.

to find the average evolution of the system, from which the density matrix, which is the object
calculated with the OBEs, can be found. While the MCWF method is thus a very versatile
method to solve problems involved spontaneous decay, it is for the problem discussed here
much more computationally expensive than the OBE approach, as a large number quantum
trajectories are needed to accurately model the LFS.

The LFS was calculated with the MCWM method for atoms with a speed of v = 200 m/s
and transverse momenta of p0/~KL = 0, 1, 2, using 2× 108 quantum trajectories each. The
2S-6P3/2 transition was used and the laser power was set to P2S-6P = 15 µW. First, the number
of back decays is not limited and Nk,max, that is the maximum momentum change, is varied.
ν0,LFS changes by less than 5 Hz, even at the resonance for p0/~KL = 1, from Nk,max = 3 to
Nk,max = 4, and by less than 100 mHz when increasing Nk,max further to 5. Second, using
Nk,max = 4, the maximum number of back decays NBD,max is varied and compared to the
situation where no such restriction is imposed. For NBD,max = 1 (NBD,max = 2), the difference
to the latter case is below 30 Hz (0.4 Hz), corresponding to less than 4 % (5× 10−4) of the
corresponding LFS. Thus, using Nk,max = 4 and NBD,max = 1 in the OBE model is a good
approximation at the current level of accuracy, where the LFS needs to be corrected to within
∼30 % of its size. This OBE model is referred as LFS model throughout this work and is used
to correct the results of the 2S-6P measurement, as discussed below.

Finally, the error made by using the Gaussian quadrature rule to average over the back
decay momentum change ∆pD,1 in the LFS model was estimated. To this end, the average LFS
for δα = 0 mrad to 20 mrad was evaluated using, on the one hand, the Gaussian quadrature
rule with N∆pD

= 4, and, on the other hand, an evenly spaced sampling of ∆pD,1 with
N∆pD

= 101. No numerical artifacts are visible when using the latter, but the computation
time is 25 times larger. The results were found to agree within ≈1 %, which we here assume
to be the error associated with the use of the Gaussian quadrature rule.
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3.4.2 Light force shift for the atomic beam
In the previous section, we have shown how the light force shift (LFS) of the 2S-6P transition
can be modeled for a single delocalized atom with defined transverse momentum p0 and speed
v, using optical Bloch equations (OBEs). We now return to the question of how to simulate
the light force shift as observed for the atomic beam. In principle, the momentum space
representation of the density matrix ρ2 of the atomic beam (Eq. (3.32)) can be directly used
as input state for the LFS model. There are however two caveats: first, ρ2 is continuous,
while the model uses discrete momentum states. Second, the excitation of the atoms to the
2S initial level by two-photon absorption from the 1S-2S preparation laser has so far been
neglected, and the circular nozzle and the rectangular aperture have been approximated by
Gaussians.

These points can be addressed by comparing the transverse momentum coherence scale
pc,t,2 = mH × 2.4× 10−4 m/s of the atomic beam, derived in Section 3.3.4, with the typical
transverse momentum scale of the atom–light interaction, given by ~KL = mHvrec ≈ mH ×
0.97 m/s. Since pc,t,2 � ~KL, the coherence between momentum states can be neglected in
the description of the light force shift. In other words, the density matrix in momentum space
can be treated as diagonal, since the coherence between the occupied momentum states drops
of very rapidly and is effectively zero for momentum states coupled by the laser. Likewise,
momentum states that have some mutual coherence are separated by such a small amount of
momentum compared to the momentum scale of the interaction that they can treated as a
single input state.

We can thus model the atomic beam as an incoherent sum of delocalized atoms, i.e. plane
waves in position space. This closely matches the situation of the extended incoherent light
source treated above (see Section 3.2.1), where fully coherent plane waves are emitted from
each point in the light source. It is only through the incoherent sum, i.e. the addition of the
resulting intensity interference patterns from each plane wave, that the coherence is limited
to the value given by the spatial coherence length.

In this way, the LFS model can be connected to the modeling of the atomic beam as
a set of Ntraj classical atom trajectories with defined position and momentum, introduced
in Section 5.2. This Monte Carlo modeling takes into account the 1S-2S excitation and the
time-resolved detection of the experiment through an appropriate weighting of the trajectories.
For each trajectory, the LFS model is then solved for a delocalized atom with a transverse
momentum matching that of the trajectory. The signal found in this way is then summed
up over all Ntraj trajectories, corresponding to an incoherent sum of the interference patterns
observed in the signals. The sum of the signals as a function of laser detuning is then
fit with the appropriate line shape function, with the determined resonance frequency ν0,LFS
corresponding to the light force shift for this set of trajectories. The results of such a procedure
for trajectory sets describing the 2S-6P measurement are shown in Fig. 6.6 (A).

Note that using such classical trajectories instead of the Wigner function corresponds to
neglecting the diffraction of the atomic beam on the aperture, but importantly not the light
grating. The diffraction at the aperture however is negligible, since it is much larger than the
transverse coherence length.
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Chapter 4

Hydrogen spectrometer

This chapter discusses the experimental setup, or hydrogen spectrometer, used for laser spec-
troscopy on the 2S-nP transitions in atomic hydrogen (H) at the Laser Spectroscopy Division
of the Max Planck Institute of Quantum Optics (MPQ). First, the core component of the
spectrometer, the atomic beam apparatus, is introduced in Section 4.1. The vacuum sys-
tem containing the atomic beam apparatus is the subject of Section 4.2. Details of the laser
system used to optically excite hydrogen atoms from the 1S ground level to the metastable
2S level are given in Section 4.3. The spectroscopy laser that drives the 2S-6P transition
and the active fiber-based retroreflector (AFR), necessary to suppress the first-order Doppler
shift of the atoms moving through the spectroscopy laser beams, are detailed in Section 4.4.
The formation of the cryogenic atomic beam of hydrogen atoms is described in Section 4.5.
Section 4.6 focuses on the detector assembly that collects the fluorescence from the atoms
as they decay from the 6P level. The data acquisition hardware and software that controls
the experiment and collects and stores the measurement data are discussed in Section 4.7.
Finally, Section 4.8 covers the determination of the laser frequencies in SI units.

4.1 Atomic beam apparatus

A 3D view of the core part of the hydrogen spectrometer, the atomic beam apparatus, is
shown in Fig. 4.1. Here, the various components shown in the figure are introduced, each
labeled with a two-letter acronym, which will then be discussed in more detail in the next
sections.

The atomic beam apparatus sits inside a vacuum chamber, which is split into two differen-
tially pumped regions (see Section 4.2). The outer vacuum region, pumped with a turbopump,
is connected to the inner high-vacuum region only through the high-vacuum entrance (EA)
and output (OA) apertures. The high-vacuum region is pumped with a cryopump through
holes (CC) at the bottom of the high-vacuum enclosure (HV) and through a wire mesh at
the bottom of the detector cylinder (DC). A single-layer magnetic shield (MS) encloses the
high-vacuum region.

Atomic hydrogen (H) at room temperature, generated by dissociating molecular hydrogen
(see Section 4.5.1), is fed through tubing (TT) made from PTFE1 to a copper nozzle (NZ)
(see Section 4.5.2). The nozzle is attached to a helium continuous-flow cryostat (CS) and

1PTFE: polytetrafluoroethylene, commonly known under its brand name Teflon.
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Figure 4.1: 3D view (orthographic projection) of the atomic beam apparatus, as used to determine
the transition frequency of the 2S-6P transition. Some parts are shown cut open to reveal other-
wise hidden details. See Section 4.1 for details. AA: α0 alignment actuator, AB: atomic beam,
AM: variable aperture actuator, BB: base cylinder ball bearing, BD: bottom detector, CC: connec-
tion to cryopump, CS: cryostat, DC: detector cylinder, DE: detector electrodes, EA: high-vacuum
entrance aperture, FC: 1S-2S Faraday cage, FQ: AFR four-quadrant photomultiplier, HR: AFR
high-reflectivity mirror, HV: high-vacuum enclosure, IC: piezo-actuated 243 nm incoupling mirror,
MM: piezo-actuated AFR mirror mount, MS: magnetic shield, NZ: copper nozzle, OA: high-vacuum
output aperture, OC: 243 nm outcoupling mirror, PB: atomic beam and 1S-2S preparation laser
beam, PR: 1S-2S preparation region, RC: rotatable base cylinder, RM: collimator rotation mount,
SB: 2S-6P spectroscopy laser beams, SC: four-lens fiber collimator, SF: polarization-maintaining fiber,
SH: AFR shutter, SR: 2S-6P spectroscopy region, TD: top detector, TT: PTFE tubing, VA: variable
aperture; AFR: active fiber-based retroreflector, PTFE: polytetrafluoroethylene (Teflon).

cooled down to TN = 4.8 K. H thermalizes to the nozzle temperature and exits the nozzle
channel through two orifices, forming a cold beam (AB). Only atoms passing through the
high-vacuum entrance aperture, i.e. to the right in Fig. 4.1, and into the high-vacuum region
are probed in the experiment. Together with the nozzle channel, an aperture of fixed height
and variable width (VA) further downstream limits the divergence of the atomic beam. The
width of the aperture is remote-controlled using two actuators (AM) (see Section 4.5.3).

The atoms emerging from the nozzle are initially in the 1S electronic ground level. To
generate a cold beam of atoms in the metastable 2S level (2S atoms), the atomic beam is over-
lapped with a collinear preparation laser beam (PB) with a wavelength of 243 nm, resonant
with the two-photon 1S-2S transition (see Section 4.3). A linear two-mirror enhancement
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cavity with an 1/e2 intensity radius of 0.3 mm (IC: 243 nm incoupling mirror with reflectance
RIC = 98.4 %, OC: 243 nm outcoupling mirror with reflectance ROC = 99.8 %) is used to en-
hance the 1S-2S laser intensity seen by the atoms (see Section 4.3.3). In this way, the atoms
are excited to the 2S level while flying through the apparatus, shielded from stray electric
fields inside the 1S-2S preparation region (PR) by the 1S-2S Faraday cage (FC).

After passing through the variable aperture (VA), this atomic beam then interacts in
the 2S-6P spectroscopy region (SR) with the two counter-propagating 2S-6P spectroscopy
laser beams (SB) with a wavelength of 410 nm. The laser beams are derived from the
2S-6P spectroscopy laser (see Section 4.4.1), which is guided into the vacuum chamber us-
ing a polarization-maintaining optical fiber (SF). The centerpiece of the apparatus is the
active fiber-based retroreflector (AFR, see Section 4.4.2), consisting of a four-lens fiber
collimator (SC), a high-reflectivity (HR) mirror (HR) mounted in a piezo-actuated mir-
ror mount (MM), a remotely-operated shutter (SH), and a four-quadrant photomulti-
plier (PMT) (FQ). The collimator produces a high-quality Gaussian beam with an 1/e2 inten-
sity radius of W0 = 2.2 mm, which is retroreflected at the HR mirror. The tip and tilt of the
mirror is actively controlled, using the actuated mirror mount, such that the beam is coupled
back into the optical fiber. In this way, two counter-propagating, wavefront-retracing1 laser
beams are produced. The forward-traveling beam can also be blocked right before the mirror
with the shutter, such that no returning laser beam is created. A small of part of the laser
light leaks through the HR mirror and is detected on the four-quadrant PMT. The collimator
and optical fiber can be rotated about the beam axis using a manual rotation mount (RM),
allowing for a rotation of the linear polarization direction as determined by the fiber.

The 2S atoms are excited to the short-lived 6P level while flying through the 2S-6P spec-
troscopy laser beams. They decay while still in the spectroscopy region, primarily emitting
fluorescence photons at a wavelength of 93.8 nm. These photons are energetic enough to
eject photoelectrons from the walls of the detector cylinder (DC) (see Section 4.6), which are
then detected using electron multipliers at the top (TD) and bottom (BD) of the detector
cylinder. The input face of the electron multipliers is held at a positive bias voltage relative
to the grounded detector cylinder to attract the photoelectrons. In order not to disturb the
atoms, the resulting electric fields are shielded with wire meshes (DE) above and below the
spectroscopy region. Bias voltages to measure and offset remaining stray electric fields can be
applied to these meshes and four copper electrodes forming the walls of the detector cylinder
within the spectroscopy region (see Fig. 4.34).

The detector cylinder, which is mounted on a rotatable base cylinder (RC) itself connected
to the high-vacuum enclosure through a ball bearing (BB), can be remotely rotated about its
axis, using the α0 alignment actuator2 (AA). Since the components of the AFR, defining the
propagation axis of the spectroscopy laser, are attached to the rotation mount, this allows
an adjustment of the offset angle α0 between the spectroscopy laser and the atomic beam, as
defined by the apertures and the propagation axis of the preparation laser beam. Note that
the offset angle α0 is defined as the angle from the orthogonal between the atomic and laser

1Wavefront-retracing is here taken to mean that the wave vectors of the two beams are antiparallel at any
point. This property was referred to as phase-retracing in our previous publications [24, 28].

2Thorlabs Z825BV dc servo motor actuator with rotary encoder. Absolute on-axis accuracy is specified as
130 µm, and the bi-directional repeatability as <1.5 µm. A linear movement of 1 mm corresponds to a rotation
of the cylinder by 16.7 mrad at α0 ≈ 0 mrad. In the experiment, the position of the actuator (as given by its
encoder) that corresponds to α0 = 0 mrad is determined in situ [28], and all subsequent rotations are performed
relative to this position.
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beams, which cross at close to right angles and thus α0 is on the order of a few mrad.
The experiment itself is performed by repeating a fixed measurement cycle, a so-called

chopper cycle, with a rate of fchop = 160 Hz. First, the 1S-2S preparation laser beam is
unblocked and the length of the enhancement cavity stabilized to it. Atoms traveling through
the apparatus are thus excited to the 2S metastable level. After (1/fchop)/2 = 3.125 ms, the
1S-2S laser beam is blocked again. The 2S-6P spectroscopy laser beams are not blocked and
thus atoms flying through them can be excited from the 2S to the 6P level. The blocking of the
1S-2S laser beam triggers the start at τ = 0 µs of the time-resolved detection of fluorescence
from atoms decaying from the 6P level. Each pulse from either electron multiplier is recorded
as a single count. Since the 1S-2S laser beam is blocked during detection, it cannot photoionize
the 2S atoms, which would otherwise lead to a large background count rate. Since also no
1S-2S excitation takes place anymore, atoms detected at a delay time τ must have been flying
through the apparatus for at least a time τ . This limits the maximum speed of the detected
atoms to1 vmax ≈ L/τ , where L is the distance from the nozzle to the 2S-6P laser beam. Thus,
the time-resolved detection gives way to a velocity-resolved detection. After again 3.125 ms
of detection, the 1S-2S laser beam is unblocked again and the cycle begins anew.

In total, 160 chopper cycles are repeated within 1 s and the number of counts as a function
of delay time τ is summed up over the cycles. Then, experimental parameters such as the
frequency of the 2S-6P spectroscopy laser are changed and the experiment is repeated (see
Section 4.7). The essential data set is then the number of counts as a function of delay time
τ and laser frequency, referred to as a line scan through this work. From this, the transition
frequency of the 2S-6P transition can be determined if combined with the determination of
the laser frequency (see Section 4.8).

Another, longer experimental cycle is imposed by the nozzle being slowly clogged by
freezing hydrogen. Because of this, the nozzle channel reduces in diameter over time, till
the 1S-2S laser beam which passes through the channel is attenuated to such a degree that
operation of the experiment is not possible anymore. The nozzle is then heated up to room
temperature to remove the frozen hydrogen and other trace gases (“unfreezing the nozzle”).
This experimental cycle is here referred to as freezing cycle (FC), with each measurement
day separated into multiple freezing cycles. The duration of a freezing cycle for the nozzle
geometry, nozzle temperature, and hydrogen flow used here is approximately ∆tFC = 120 min.
The FCs that make up the 2S-6P measurement are each assigned a name consisting of the
measurement run they belong to (see Table 6.1) and a consecutive number within that run,
e.g. B29 is the 29th FC within run B.

4.2 Vacuum system

The atomic beam apparatus introduced in Section 4.1 sits inside a vacuum chamber in order
to probe the hydrogen atoms free from collisions with background gas particles. A 3D view
of the vacuum system is shown in Fig. 4.2. As in Fig. 4.1, key components are labeled with
a two-letter acronym, with components shown in both figures sharing the same acronym.

1Strictly speaking, the maximum longitudinal velocity vz along the atomic beam is constricted to L/τ , but
here v ≈ vz since the atomic beam is well-collimated.
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Figure 4.2: 3D view (orthographic projection) of the vacuum system containing the atomic beam
apparatus (see Fig. 4.1): (A) Complete system including support frames and pumps, and (B) upper
part of system with the circular vacuum chamber and its lid removed, and the enhancement cavity
spacer and atomic beam apparatus cut open to reveal the mounting and differential pumping scheme.
Coordinate axes for both views are shown in the upper right corner. See Section 4.2 for details.
AF: adjustable feet, BD: bottom detector, BW: 243 nm Brewster’s window, CF: vacuum cham-
ber frame, CL: vacuum chamber lid, CP: cryopump, CS: cryostat, DT: dissociator discharge tube,
EA: high-vacuum entrance aperture, EB: EC spacer bellows, EM: EC mounting brackets, ER: EC
spacer Invar rods, ET: EC spacer tubes, FL: cylindrical vacuum chamber floor, HD: hydrogen dissoci-
ator, HV: high-vacuum enclosure, IC: piezo-actuated 243 nm incoupling mirror, MS: magnetic shield,
MW: dissociator microwave cavity, NA: nozzle alignment stage, OA: high-vacuum output aperture,
PB: atomic beam and 1S-2S preparation laser beam, TF: temperature sensor vacuum chamber floor,
TO: turbopump optical table, TP: turbopump, TT: PTFE tubing, VC: cylindrical vacuum chamber;
EC: 243 nm enhancement cavity, PTFE: polytetrafluoroethylene (Teflon).

4.2.1 Vacuum chamber

The vacuum chamber (VC) containing the atomic beam apparatus is a stainless steel cylinder
of 498 mm inner diameter and 332 mm usable height, as measured from the chamber floor (FL)
to the chamber lid (CL). The vacuum chamber is split into two differentially pumped regions,
the outer vacuum region chiefly containing the cryostat (CS) with the hydrogen nozzle and
the 243 nm enhancement cavity, and the inner high-vacuum region containing the 1S-2S prepa-
ration region and the 2S-6P spectroscopy region. The two vacuum regions are separated by
the chamber floor and the high-vacuum enclosure (HV), and are only connected through two
apertures, an entrance aperture (EA) of 2.4 mm diameter and 1.0 mm length, and an output
aperture (OA) of 7 mm diameter and 13 mm length. Additionally, a bypass controlled by a
valve can be used to temporarily connect the two regions with much higher conductance.
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4.2.2 Outer vacuum region
The outer vacuum region is pumped with a hybrid-bearing turbopump1 (TP) with a pumping
speed of 555 l/s for H2. The required fore-vacuum is generated by an oil-free roughing pump2.
The turbopump is attached to the vacuum chamber through a vibration isolator and mounted
on a separate optical table (TO), standing on the laboratory floor. When no hydrogen is
introduced into the vacuum system, the background pressure in the outer vacuum region (POV,
calibrated for N2 gas, see below) is typically 2× 10−6 mbar.

4.2.3 High-vacuum region and cryopump
The inner high-vacuum region is pumped by a cryopump3 (CP) with a pumping speed of
10 000 l/s for H2, attached to the bottom of the vacuum chamber. The cryopump is based on
the Gifford-McMahon cycle [79], using helium as working fluid and an external compressor.
The cryopump is a major design constraint because of its large size, the strong vibrations
caused by the movement of the displacer inside the cryopump, and the large temperature
difference between vacuum chamber and cryopump. In fact, spectroscopy data can only be
acquired when the cryopump is not running, forcing an experimental cycle of switching, every
few minutes, between running the cryopump and taking data. However, the cryopump offers
a pumping speed and capacity for hydrogen unmatched by other types of oil-free vacuum
pumps. The cryopump cools down to a temperature of 19 K, which is below the freezing point
of common residual gases such as water vapor, nitrogen, and oxygen, but above the freezing
point of hydrogen. Instead, hydrogen is removed from the environment by cryosorption
in activated charcoal coating the inside of the cryopump [79]. The cryopump’s very large
pumping speeds of 10 000 l/s and 29 000 l/s for N2 and H2O, respectively, allow for a fast
cycling time of breaking vacuum for maintenance and then pumping down to pressures on
the order of 1× 10−7 mbar within approximately 8 h. When no hydrogen is introduced into
the vacuum system, the background pressure in the high-vacuum region (PHV2, calibrated for
N2 gas, see below) is typically 5× 10−8 mbar.

4.2.4 Vacuum diagnostics
The pressures in the two vacuum regions are measured with hybrid pressure gauges4, com-
bining a gauge based on a thermal conductivity measurement of the gas (Pirani gauge) and
a hot-filament ionization gauge (Bayard-Alpert gauge), used above and below pressures of
5× 10−3 mbar, respectively. To monitor the pressure POV in the outer vacuum region, a
gauge is placed after a right-angle bend attached to the vacuum chamber. The high-vacuum
region is monitored with two pressure gauges. One gauge is directly attached to a port on
the vacuum chamber below the chamber floor, thus probing the pressure PHV1 close to the
spectroscopy region. The hot filament of this gauge however creates charged particles that are
detected mainly in the bottom electron multiplier (BD), leading to a background count rate
on the order of 100 counts/s, hundred times higher than when the hot filament is switched

1Pfeiffer HiPace 700, compression ratio of 4× 105 for H2, with static magnetic bearing on the high-vacuum
side and mechanical bearing on the fore-vacuum side. After the end of the measurement, the turbopump
was replaced with a magnetically levitated version with similar specifications to further reduce mechanical
vibrations.

2Pfeiffer ACP 40, 37 m3/h nominal pumping speed.
3Leybold RPK 10000.
4Leybold Ionivac ITR 90 and Ionivac ITR 200 S.



4.2 Vacuum system 67

off. For this reason, a second gauge, measuring pressure PHV2, is placed after two right-angle
bends, attached to another port below the chamber floor. This gauge does not lead to an
increase in the background count rate, and during a measurement only this gauge (and the
outer vacuum gauge) are switched on. The pressure ratio between the two high-vacuum
gauges in general depends on the pressure, temperature, and gas types present. During mea-
surement conditions, i.e. with both the cryopump and nozzle cold and hydrogen streaming
into the apparatus, PHV1/PHV2 ≈ 0.65. Furthermore, for these conditions the background gas
is dominated by H2, while the gauges are calibrated for N2 gas, which leads to a correction
factor of 2.4, determined by the manufacturer. These two factors are used to determine the
background pressure in the high-vacuum region from the measured value of PHV2.

A residual gas analyzer1 (RGA) using a quadrupole mass spectrometer is also attached
to the high-vacuum region through a right-angle bend. The RGA is mainly used for vacuum
diagnostics such as identifying small leaks.

4.2.5 Mounting of in-vacuum 243 nm enhancement cavity

In order to keep the 243 nm enhancement cavity on resonance with the laser even when the
cryopump is running, the enhancement cavity is decoupled from the vacuum chamber. The
vacuum chamber is mounted on a aluminum frame (CF), which is fixed to the laboratory
floor. The enhancement cavity, however, is mounted on a spacer that in turn is mounted on
an optical table using brackets (EM). The laser system itself is also placed on this optical
table. The spacer (see Fig. 4.2 (B)) consists of two steel tubes (ET) and four Invar rods (ER).
The vacuum chamber and the spacer are connected through flexible bellows (EB) to seal the
vacuum connection while suppressing the transmission of vibrations. The incoupling (IC)
and outcoupling (OC) mirrors of the enhancement cavity are mounted in manually-actuated,
top-adjusted mirror mounts. In order to adjust the position of the high-vacuum region relative
to the beam axis of the enhancement cavity, the whole vacuum chamber can be moved using
the three adjustable feet (AF), leaving the enhancement cavity essentially unaffected. The
height of each of the three feet can be adjusted independently, and the two front feet, i.e. on
the far end from the optical table, can be moved towards and away from the optical table.
To allow the latter motion, the foot close to the optical table can slide on a metal plate.

During the 2S-4P measurement (see Appendix A), a second spacer holding the mirror
mounts was mounted inside the first spacer, using needle-like rods and O-rings, in an effort
to further reduce the amount of vibrations reaching the enhancement cavity from the vacuum
chamber. However, this lead to frequent shifts of the enhancement cavity alignment when
pumping down to vacuum, and, ultimately, was found to be more sensitive to vibrations of
the vacuum chamber than the current arrangement.

4.2.6 Mounting of hydrogen nozzle cryostat

The cryostat (CS) which cools down the hydrogen nozzle to TN = 4.8 K is mounted in an
upright position in the lid of the vacuum chamber. It is a continuous-flow cryostat using liquid
helium from a storage dewar. The evaporated helium is captured in a recycling system. Upon
cooling down from room temperature, the cryostat contracts2 such that the nozzle channel

1Pfeiffer PrismaPlus QMG 220 F1.
2The contraction predominantly results in a vertical movement of the nozzle, but there is also some move-

ment in the horizontal plane due to a bending motion.
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is not aligned with the 1S-2S laser beam passing through it. To compensate for this and to
align the nozzle to the laser beam, the cryostat can be positioned relative to the chamber lid
in all three dimensions using the nozzle alignment stage (NA). A flexible bellow protruding
into the vacuum chamber is used to seal the vacuum while allowing the cryostat to be pushed
across the chamber lid, using micrometer screws, and to be moved in the vertical direction
using a translation screw.

The cryostat also acts as a cryopump for the outer vacuum region. When the nozzle is
cooled down, the heat shield of the cryostat (visible as the gold-colored tube in Fig. 4.2 (B))
is held at an intermediate temperature. With its large surface area, it freezes out water
vapor and other contaminants, such as residual organic solvents and hydrocarbons. This
mechanism can possibly increase the life time of the 243 nm enhancement cavity mirrors,
which are believed to degrade through the accumulation of hydrocarbons on their surfaces
facilitated by molecular-bond-cracking UV light. For this reason, the enhancement cavity is
only operated with the nozzle, and thus the cryostat, cooled down.

4.2.7 Cryopump-induced temperature drifts and gradients
Unfortunately, the cryopump also cools down the vacuum chamber and its components
through radiative cooling and direct thermal contact. An in-vacuum temperature sen-
sor1 (TF) taped to the high-vacuum enclosure directly above the cryopump measures the
temperature of the vacuum chamber floor. Another sensor measures the temperature of the
enhancement cavity spacer. With only the cryopump running, but the nozzle still at room
temperature, the vacuum chamber floor is cooled down from room temperature to approxi-
mately 13 °C over a course of approximately 10 h. During the experimental cycle, when the
nozzle is also cooled down, this temperature further decreases and reaches values of down to
10 °C. This is attributed to the nozzle’s cryostat cooling down the vacuum chamber through
the lid on which it is mounted2.

This cooling adversely affects the experiment in several ways. First, the alignment of the
various components, contracting at different rates, drifts as the temperature changes. This
effect is most crucial for the optics of the 2S-6P spectroscopy laser beam, where especially the
distance between the fiber and the fiber collimator is highly sensitive to shifts on the µm level.
Second, components itself may be directly affected by the temperature change. In particular,
the bottom electron multiplier (BD), which sits directly above the cryopump without thermal
shielding, cools down by such a degree that its internal resistance and gain properties change
substantially (see Section 4.6.2). Third, thermal gradients throughout the apparatus are
inevitable as the chamber floor cools down but the rest of the vacuum chamber is held at
room temperature. Thus, gradients are expected to be mainly along the vertical direction.
A stray electric field in the spectroscopy region (this measurement is based on spectroscopy
of the 2S-6P transition and was therefore only performed with the cryopump cooled down)
along this direction was repeatedly observed for various detector designs, which is suspected
to be caused by such a temperature gradient, especially since the detector cylinder is only
weakly thermally coupled to the vacuum chamber.

To mitigate these adverse effects, a temperature state close to the steady state is favorable.

1Analog Devices AD590.
2No effort was made to shield the in-vacuum temperature sensors from thermal radiation and at least some

of the temperature decrease (seen by both sensors) when the cryostat is cooled down could be attributed to
thermal radiation.
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This is achieved by running the cryopump till the temperature in the chamber stabilizes before
starting the measurement, a process that takes about half a day. This is much longer than the
times it takes for the cryopump itself to reach its target temperature, which is about 2 h. It
is still necessary to stop the cryopump after a day of measurement to release the cryopumped
particles to avoid a saturation of the pump. However, this only takes about 5 h, after which the
cryopump can be restarted. During this time, the components in the chamber only warm up
slightly, and the experiment can be resumed after running the cryopump for about 6 h. This
procedure reduces the remaining temperature drifts and gradients substantially. The overall
temperature gradient from the cold cryopump to the warm vacuum chamber, however, is of
course still present. Note that this procedure deviates considerably from how the experiment
was operated previously during the 1S-2S measurement [23] and the 2S-4P measurement (see
Appendix A), where the cryopump was only switched on a few hours before starting the
measurement, leading to strong temperature drifts requiring constant adjustment of various
components during the measurement.

4.2.8 Cryopump-induced vibrations

The atomic beam apparatus discussed in Section 4.2, apart from the 243 nm enhancement
cavity and the cryostat, is mounted on the vacuum chamber floor. It is thus mechanically
directly coupled to the floor of the laboratory and subjected to the vibrations from the
cryopump. This especially affects the active fiber-based retroreflector (AFR), since it relies
on the precise alignment of its high-reflectivity mirror creating the retroreflected beam. In
fact, disturbances on the laboratory floor, such as walking, are easily visible as fluctuations
in the amount of light being coupled back into the fiber of the AFR. When the cryopump
is running, this signal is strongly disturbed. Thus, when spectroscopy data are taken, the
cryopump is switched off and any disturbances in the laboratory are avoided.

An improvement to this situation could be to mount the high-vacuum enclosure and its
contents to the spacer holding the 243 nm enhancement cavity, with the resulting gap between
the enclosure and the vacuum chamber floor closed with a flexible seal. This mounting
needs to be adjustable, since the enclosure can now no longer be aligned relative to the
enhancement cavity by adjusting the vacuum chamber position. Such a mounting is currently
being evaluated. It remains to be seen if this does not adversely affect the performance of the
enhancement cavity.

4.2.9 Access to the inside of vacuum chamber

To access the inside of the vacuum chamber, the chamber lid, including the cryostat, can be
lifted up using a pulley attached to an overhead crane. First, however, the PTFE tubing (TT)
leading from the discharge tube (DT) of the hydrogen dissociator (HD) to the nozzle has to
be disconnected. This is achieved by removing the right-angle bend leading to the turbopump
and then disconnecting the PTFE tubing through the now accessible flange. Unfortunately,
this also requires removing the four-quadrant PMT ((FQ) in Fig. 4.1).

To break the vacuum, the vacuum chamber is filled with dry nitrogen gas, which is cap-
tured from evaporating liquid nitrogen stored in a dewar. Care was taken to have a constant
stream of nitrogen even when the chamber lid was open in order to reduce contamination of
the vacuum chamber and to protect the electron multipliers from moisture.



70 4. Hydrogen spectrometer

00:00
06:00

12:00
18:00

00:00
06:00

12:00

Day time (during 04.06.2019 19:00 - 06.06.2019 16:30 (UTC))

10−7

10−6

10−5

10−4

10−3

Pr
es

su
re

 (c
al

ib
ra

te
d 

fo
r H

2)
 (m

ba
r)

FC
B28

FC
B29

FC
B30

FC
B31

Pressure PHV2
high-vacuum
region

Pressure POV
outer vacuum
region

Temperature
vacuum
chamber floor

Cryo-
pump
on

H flow on,
TN > 20 K

H flow on,
TN = 4.8 K

10.0

12.5

15.0

17.5

20.0

22.5

25.0

In
-v

ac
uu

m
 te

m
pe

ra
tu

re
 (
◦ C

)

Figure 4.3: Typical pressures and temperatures in the vacuum chamber during an experimental run.
The pressures (left scale) in the high-vacuum (dark blue line) and outer vacuum (light blue line)
region are shown together with the temperature (right scale) of the vacuum chamber floor (orange
line). Also marked are the times when the cryopump was running (purple shading), and when hydrogen
was introduced into the apparatus through the nozzle at temperature TN > 20 K (green shading) or
TN = 4.8 K (light pink shading). During the latter times, experimental data were taken, split into
freezing cycles (FCs). Part of the hydrogen freezes on the nozzle, ultimately clogging it, requiring an
intermediate unfreezing between FCs. The turbopump was started two hours before the beginning of
the shown data (at 17:00), after the vacuum chamber was opened for maintenance and exposed to dry
nitrogen at ambient pressure for 7 h. The pressure readings have been calibrated for H2. See text for
details and for special times (dashed gray vertical lines).

4.2.10 Typical pressures and temperatures

Fig. 4.3 shows the pressures and the temperature in the vacuum chamber during the course of
a measurement day. The pressure readings in the figure have been calibrated for H2 (increased
by a factor of 2.4 with respect to standard N2 calibration), leading to an overestimation of
the pressure when no hydrogen is flowed into the system. Here, the pressure values given
are calibrated for H2 when hydrogen is introduced into the system, and calibrated for N2
otherwise. The procedure and timing discussed here is similar on all other measurements
days.

The vacuum chamber was opened for maintenance and exposed to dry nitrogen at ambient
pressure for 7 h on the previous day. In the course of this, the hydrogen nozzle was removed
from the cryostat, cleaned as described in Section 4.5.2.1, and re-installed. The vacuum
chamber was closed and the turbopump started two hours before the beginning of the data
shown in Fig. 4.3. After approximately 5 h, the pressures in the outer vacuum (light blue line in
Fig. 4.3) and high-vacuum (dark blue line in Fig. 4.3) regions reach POV = 4× 10−5 mbar and
PHV2 = 2× 10−4 mbar, respectively, and the cryopump is switched on (purple shading). After
approximately 2 h, the cryopump reaches its target temperature of 19 K, with the two steep
drops in pressure visible during this time thought to correspond to the cryopump reaching
the freezing point of first water vapor and then nitrogen. Over the next 14 h, the pressures
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Figure 4.4: Similar to Fig. 4.3, but showing only the situation during the freezing cycle FC B29.
Instead of the temperature of the vacuum chamber floor, the temperature TN of the nozzle is shown
(orange points).

decrease to POV = 2× 10−6 mbar and PHV2 = 6× 10−8 mbar. During the same time, the
temperature of the vacuum chamber floor (orange line) decreases from room temperature
to 14 °C, with the initial decrease taking about 10 h. However, the temperature of other
components further removed from the cryopump is still changing after this initial decrease,
as e.g. observed in the collimation of the 2S-6P spectroscopy laser beam. At 7:40, the bypass
between the vacuum regions is closed, leading to a small pressure increase in the outer vacuum
region as the cryopump stops pumping substantially on this region.

At 12:17, the cooldown of the cryostat is started, leading to both a slight drop in pressure
in the outer vacuum region (to POV = 1.3× 10−6 mbar) as the cryostat’s heat shield acts
as a cryopump and a further drop in chamber floor temperature as the cryostat cools down
the chamber lid. By 12:50, the nozzle temperature has reached TN = 30 K, where it is kept
using a heating wire wrapped around the cryostat. At this temperature, hydrogen does not
freeze out on the nozzle. The actual temperature oscillates by several K, as the feedback loop
is optimized for lower temperatures, leading to the pressure oscillations visible in Fig. 4.4.
Next, the hydrogen dissociator is put into operation by flowingQH2 = 0.35 ml/min (at 0 °C and
1013.25 mbar) of H2 into the system and starting the discharge (green shading). This increases
the pressure in the two vacuum regions to POV = 1.4× 10−5 mbar and PHV2 = 2.2× 10−7 mbar,
with the values now calibrated for H2 as it dominates over the background gas. The flow
corresponds to a leak rate of 6.3× 10−3 mbar l/s, and thus from the value of POV the effective
pumping speed of hydrogen out of the outer vacuum region can be deduced to be 450 l/s.
Since the nozzle had be cleaned, the discharge is kept running for approximately 1 h to
flush out residues from the cleaning process (see Section 4.5.2.1). At the same time, the
243 nm enhancement cavity is aligned.

To start the data taking, the nozzle is cooled down to TN = 4.8 K at 14:05. This corre-
sponds to the start of a freezing cycle (FC), as at this temperature hydrogen freezes to the
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nozzle. Thus, less hydrogen is flowing into the vacuum chamber, reducing the pressures1 to
POV = 5.5× 10−6 mbar and PHV2 = 1.6× 10−7 mbar. From this drop in pressure, and the
pressures without hydrogen, the fraction of hydrogen Qcold/Qwarm that does not freeze out on
the nozzle can be estimated. Taking the pressures in the outer vacuum region, where the
pressure with hydrogen flowing into chamber is much larger than the background pressure,
Qcold/Qwarm is found to be approximately 1/3. This measurement is reproducible and is used
to characterize the hydrogen transport and nozzle properties, as discussed in Section 4.5.2.

During the freezing cycle, the cryopump needs to be switched off intermittently in order
to take spectroscopy data. In Fig. 4.3, the pressures and the nozzle temperature during
FC B29 are shown, illustrating the operation of the cryopump (FC B29 instead of FC B28 is
shown, because the alignment done during FC B28 makes it a somewhat atypical example).
Typically, the cryopump is switched on for approximately a quarter of the time during an
FC, keeping the pressure in the high-vacuum region below PHV2 = 2× 10−7 mbar. However,
this procedure consumes more than a quarter of the available measurement time, as the tip-
tilt stabilization of the HR mirror of the AFR needs some time to settle down before the
acquisition of spectroscopy data can be continued.

After about 2 h, the hydrogen frozen in the nozzle starts to disturb the operation of the
243 nm enhancement cavity, and the nozzle needs to be heated up to melt the hydrogen
ice. As the nozzle temperature passes the hydrogen freezing point, the pressure spikes up to
POV = 1× 10−2 mbar for a few seconds caused by the large amounts of hydrogen suddenly
released. The nozzle is heated up to room temperature to remove contaminants frozen to
it. During the 2S-4P measurement (see Appendix A), the nozzle was only heated up to
approximately 50 K, with the fluorescence signal varying substantially between the different
FCs. It was found that heating up to room temperature, on the other hand, allows for a
quite reproducible fluorescence signal. It is conceivable that water vapor is produced in the
hydrogen dissociator, freezing to the nozzle and influencing the atomic beam formation if not
removed between FCs.

Heating the nozzle up to room temperature and then again cooling it down to 30 K takes
approximately 45 min. Then, the next FC can be started, following the routine outlined above.
At the end of the last FC of the measurement day, here after the end of FC B30 at 22:35, the
nozzle is heated up, the cryopump is switched off, and the bypass from the high-vacuum to the
outer vacuum region is opened. As the cryopump warms up, it releases the cryopumped gases,
causing multiple peaks in pressure, with the pressures stabilizing at POV = 2× 10−6 mbar and
PHV2 = 5× 10−6 mbar after about 5 h. In total, the cryopump is switched off for 7.5 h before
being started again at 6:00 at the start of the next measurement day. This ensures that the
temperature of the atomic beam apparatus does not drift too much, with the vacuum chamber
floor peaking at 16 °C before decreasing again. After about 7 h of running the cryopump,
the first FC of the next day starts. This measurement schedule continues till experimental
problems, such as a degradation of the mirrors of the 243 nm enhancement cavity, force the
measurement run to be interrupted. For the data acquired for this thesis, the longest such
run lasted 8 d.

1If no hydrogen is flowing into the vacuum chamber, the decrease in pressures when the nozzle temperature
is reduced from 30 K to 4.8 K is much smaller, i.e. the additional cryopumping is negligible compared to the
loss of hydrogen on the nozzle.
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Figure 4.5: Sketch of relevant components of the 243 nm laser system (“FP1”), part of the 1S-2S prepa-
ration laser, with a focus on components that change the frequency, phase, or power of the laser
light. See Section 4.3.1 for details. AOM: acousto-optic modulator, ECDL: external-cavity diode
laser, EOM: electro-optic modulator, PDH: Pound-Drever-Hall technique, PM fiber: polarization-
maintaining fiber, SHG: second-harmonic generation, SM fiber: single-mode fiber, TA: tapered ampli-
fier.

4.3 1S-2S preparation laser

The 1S-2S preparation laser is used to prepare the hydrogen atoms in the metastable 2S level
by Doppler-free two-photon excitation from the 1S ground level. Specifically, as detailed in
Section 2.2.6, the 1SF=0

1/2 −2SF=0
1/2 transition is driven, corresponding to a transition frequency

of ν1S-2S = 2.466 PHz. Thus, ultraviolet (UV) laser light at wavelength λ1S-2S = 243.1 nm is
needed, the generation of which is described in Section 4.3.1. To enable the velocity-resolved
detection employed in the experiment, this light is periodically blocked and unblocked by an
optical chopper, discussed in Section 4.3.2. The UV laser power from the laser system is not
sufficient to excite a large enough fraction of the atoms to the metastable 2S level, and thus
the intensity seen by the atoms is further increased using an in-vacuum enhancement cavity.
This cavity and its operation during the experiment are discussed in detail in Section 4.3.3.

4.3.1 243 nm laser system
Fig. 4.5 sketches the relevant components of the 243 nm laser system (known as “FP1” in
the hydrogen laboratory), generating the laser light necessary to drive the 1S-2S transition.
The following discussion mainly focuses on components that change the frequency, phase, or
power of the laser light.

The laser system starts with a home-built master laser in the infrared at frequency
νFP1,ECDL (λ ≈ 972.5 nm). The laser is an external-cavity (semiconductor) diode laser (ECDL,
cavity length of 23 cm) in the Littrow configuration, described in detail in [80]. The 30 mW
of power from this laser is amplified with a semiconductor tapered amplifier (TA), delivering
up to 2.7 W when supplied with a current of 4 A.

Part of this infrared light (≈65 mW) is split off to measure and stabilize the laser frequency
(dashed box in Fig. 4.5). To coarsely determine the master laser frequency, some light is sent
to a wavemeter1 with a frequency accuracy of 60 MHz through a single-mode (SM) optical

1HighFinesse WS7.
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fiber. The rest of the light is shifted in frequency by an acousto-optic modulator (scan
AOM) operating in a double-pass configuration using the −1st diffraction order, i.e. the total
frequency shift ∆ν corresponds to twice the (radio) frequency sent to the AOM, fFP1,Scan ≈
435 MHz, giving ∆ν = −2fFP1,Scan. This AOM is used to scan and set the frequency of the light
interacting with the atoms in the apparatus. Some light, now of frequency νFP1,ECDL−2fFP1,Scan,
is split off and sent through a polarization-maintaining (PM) optical fiber to the frequency
comb described in Section 4.8 to determine the laser frequency in Hz, and to compare the
optical spectrum of the master laser to that of the 2S-6P spectroscopy laser.

The remaining light is sent through another PM fiber to an enclosure with passive acous-
tic and active vibration isolation. Here, another AOM (fiber noise AOM) operating in the
−1st diffraction order shifts the light frequency by ∆ν = −fFiber = 39 337 184 Hz. This AOM is
part of a scheme to cancel the phase noise introduced by thermal expansion and acoustic noise
in the PM fiber connecting the enclosure and the master laser [81]. The remaining light (ap-
proximately 6 µW) is then sent to a high-finesse Fabry-Pérot cavity (finesse of ≈400 000 and
free spectral range of 1.933 GHz), consisting of two high-reflecting mirrors and a spacer made
from ultra-low expansion glass (ULE) sitting inside a thermally stabilized vacuum enclosure,
described in detail in [82]. The master laser frequency is stabilized to the resonance frequency
of this reference cavity (“locked”) using the Pound-Drever-Hall (PDH) technique [83] (mod-
ulation frequency of ≈ 20 MHz). To this end, an electro-optic modulator (EOM) inside the
master laser cavity is used as an actuator, with the output of a fast (bandwidth ∼1 MHz) and
a slow (bandwidth ∼100 kHz) feedback loop applied separately to the two electrodes of the
EOM’s crystal [80, 82]. An additional feedback loop (bandwidth ∼1 Hz) compensates drifts
of the cavity length by moving the grating which forms the cavity end mirror.

The main part of the infrared light is converted to the UV and used in the experiment
(lower branch in Fig. 4.5). To this end, the light is frequency doubled twice, using two resonant
second-harmonic generation (SHG) ring cavities [84] in a four-mirror bow-tie configuration.
These two SHG cavities and the TA described before are part of a commercial laser system1.
The first SHG cavity uses a lithium triborate (LBO) crystal as nonlinear material, giving up
to 1.2 W of power at λ ≈ 486.3 nm. The second SHG cavity uses a β-barium borate (BBO)
crystal as nonlinear material, generating up to 90 mW of power at λ1S-2S ≈ 243.1 nm, that is
light with the frequency νFP1,Exp = 4νFP1,ECDL. Both SHG cavities use critical phase match-
ing [85] and their optical length is stabilized using the PDH technique and piezo actuators.
It was found that while the output power of the first SHG cavity is quite stable and only
needs to be optimized once a day, the output power of the second SHG cavity is susceptible
to both slow downward drifts and sudden jumps. The original output power can then usually
be recovered by moving the BBO crystal such that a different part of it is used in the SHG
process.

The intensity and phase of the generated UV light are then further modified before being
coupled into the in-vacuum 243 nm enhancement cavity, where it interacts with the H atoms
at frequency νFP1,Exp. The various involved optical elements are shown in Fig. 4.6 and will be
discussed in the next sections.

4.3.2 Optical chopper
Our measurement scheme relies on the velocity-resolved detection of metastable H, as dis-
cussed in Section 4.1. This detection is enabled by periodically switching off and on the

1Toptica TA-FHG pro.
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Figure 4.6: Optical layout of the 1S-2S preparation laser beam and the 243 nm enhancement cavity.
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excitation of H to the metastable level by intermittently blocking the 1S-2S preparation laser
beam. To this end, the laser beam is focused through an optical chopper1 with an equal-width
slotted wheel. The chopper runs at 160 Hz, i.e. switching the transmission on or off every
3.125 ms, with the resulting phases here referred to as bright and dark phase, respectively.
The rise and fall times are 3 µs, limited by the focus size and slot width. Since large parts of
the experiments are triggered on this chopping of the beam, it is advantageous to generate
an electric trigger using an auxiliary trigger laser2 as shown in Fig. 4.6. The two laser beams
cross at a slight angle in the plane of the chopper wheel, with the trigger laser detected on a
photodetector. The overlap is checked routinely and the jitter in the switching time the two
beams is typically found to be less than 3 µs. Possibly due to imperfections of the chopper
wheel, there is also a variation of approximately ±5 µs in the duration for which the laser
is switched on or off. From the photodetector signal, a TTL-compatible3 chopper trigger is
derived and distributed4 to various devices.

4.3.3 In-vacuum 243 nm enhancement cavity
The UV laser power from the laser system is not sufficient to excite a large enough fraction
of the hydrogen atoms to the metastable 2S level during the limited time available as the
atoms travel from the nozzle to the spectroscopy region. To increase the amplitude of the
electromagnetic field seen by the atoms, and thus the excitation fraction, an in-vacuum two-
mirror enhancement cavity is used in which the UV light circulates resonantly [86]. However,

1Stanford Research Systems SR540 (O540RCH head and O5402530 blade) with New Focus 3501 controller.
2Thorlabs CPS532-C2 (532 nm, 0.9 mW) or CPS405 (405 nm, 4.5 mW).
3TTL: transistor–transistor logic, which here is used synonymous with requiring a logic level for the true

state of 5 V.
4The TTL trigger is distributed using a fan-out line driver (Pulse Research Labs PRL-414C-BNC) to drive

the 50Ω-terminated trigger inputs of some devices. Delayed triggers are generated with a pulse generator
(Quantum Composers 9300) or various function generators (Rigol DG1022Z, DG1062Z), which were found to
be very versatile.
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Figure 4.7: Model of the effect of mirror degradation D on (A) finesse F and (B) power enhancement
PE of the 243 nm enhancement cavity. D is the fraction of light that is lost due to degradation
on each reflection of the incoupling (IC) and outcoupling (OC) mirror, i.e. D = DIC = DOC. The
OC transmittance is TOC = 0.012 % and the absorption and scattering losses of the IC and OC are
AIC = 0.20 % and AOC = 0.33 %. Different values (colored lines) of the IC transmittance TIC are shown,
with TOC = 1.40 % (green line) corresponding to the experimental situation.

the cavity mirrors degrade in the presence of strong UV light, limiting the time of operation
of the experiment, and requiring some design compromises. In the followng, the design of
the cavity (see Sections 4.3.3.1 and 4.3.3.2), the mirror degradation (see Section 4.3.3.3),
the determination of intracavity power (see Section 4.3.3.4), the stabilization of the cavity
length and intracavity power (see Section 4.3.3.5), and the auxiliary alignment laser (see
Section 4.3.3.6) are discussed.

4.3.3.1 Cavity layout, finesse and power enhancement

The cavity consists of a flat (rIC = ∞) incoupling mirror (IC) and a concave outcoupling
mirror (OC) with a nominal radius of curvature (ROC) of rOC = 4 m, spaced apart by LEC =
355 mm (see Fig. 4.6). This corresponds to a running-wave half-symmetric cavity [86] with a
free spectral range of FSR = c/2LEC = 422 MHz. The beam waist, which is located on the
flat IC, has a 1/e2 intensity radius of w1S-2S = 297 µm, with the beam radius only increasing
to 311 µm on the OC, as the Rayleigh range zr,1S−2S = 1.14 m is more than three times larger
than LEC. The linear polarization of the laser field inside the cavity is oriented along the
(horizontal) x-axis, i.e. coming out of the page in Fig. 4.6.

The resonance frequency νq,n,m of a cavity for an nm-th order Hermite-Gaussian mode is
given by (see Eq. (23) of Chapter 19 of [86])

νq,n,m =
(
q + (n+m+ 1)

arccos(√g1g2)
π

)
FSR, (4.1)

where q is an integer and g1, g2 > 0. For the enhancement cavity, g1 = 1 − LEC/rIC and
g2 = 1− LEC/rOC. Thus, the resonance frequency of higher-order modes is shifted from that
of the fundamental (Gaussian) mode (n = m = 0) by the transverse mode spacing

∆νTMS =
arccos(√g1g2)

π
FSR. (4.2)

For the enhancement cavity, ∆νTMS = 40.7 MHz, giving FSR/∆νTMS ≈ 10.4.
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The reflectances RIC and ROC of the IC and OC, respectively, can be written as

RIC = 1− TIC −AIC −DIC = RIC,0 −DIC, (4.3)
ROC = 1− TOC −AOC −DOC = ROC,0 −DOC, (4.4)

where TIC and TOC are the transmittances, and AIC and AOC are losses due to absorption
and scattering. DIC and DOC are additional losses due to mirror degradation, i.e. they are
assumed to be zero initially, when the mirrors have reflectances RIC,0 and ROC,0, but increase
as the mirrors degrade.

The finesse F of the enhancement cavity is given by [86]

F = π (RICROC)1/4

1−
√
RICROC

. (4.5)

The finesse is a particularly useful quantity, because it is experimentally accessible through
a measurement of the spectral width δν of the cavity resonances, from which the finesse is
given by F = FSR/δν.

The power enhancement PE is defined as the ratio of the optical power impinging on the
IC, Pin, to the optical power per direction circulating inside the cavity, Pcirc. Including the
effect of mirror degradation, it is given by

PE = Pcirc

Pin
= ηmode

(1−DIC)TIC(
1−
√
RICROC

)2 , (4.6)

where ηmode is the spatial overlap or mode matching between the free space mode and the
resonant cavity mode. The factor (1−DIC) in the numerator accounts for the fact that mirror
degradation also lowers the power transmitted into the cavity. For given values of all losses
besides the IC transmittance, Ltotal = TOC +AIC +AOC +DIC +DOC, the power enhancement
is maximal for the impedance-matched case where TIC = Ltotal.

In the experiment, the cavity is kept on resonance with the fundamental Gaussian mode by
appropriately stabilizing (“locking”) the cavity length to the preparation laser. Beam shaping
optics are used to optimize the overlap of the incoming laser beam with this mode, resulting
on average in a mode matching of ηmode ≈ 85 %. ηmode is here determined by measuring the
cavity transmission for the fundamental mode and for the visible higher-order modes.

The finesse F and power enhancement PE as a function of the degradation losses D =
DIC = DOC for different values of TIC are shown in Fig. 4.7, assuming perfect mode matching,
i.e. ηmode = 1. The OC transmittance TOC, and the absorption and scattering losses of the IC
and OC, given by AIC and AOC, respectively, are set to the values determined for the mirrors
used here (see Section 4.3.3.2). Note that instead assuming DIC = 2D,DOC = 0 or vice
versa leaves the values of F unchanged and only changes PE by a few percent. For the case
with no degradation, the impedance-matched case (TIC = 0.53 %, blue line) shows a power
enhancement of 184. However, as the degradation losses increase, the originally impedance-
matched case turns into an undercoupled case (TIC < Ltotal) and the power enhancement
quickly decreases. If the cavity however is initially overcoupled (TIC > Ltotal), the maximal
power enhancement is lower initially, but can stay over a certain threshold for a wider range
of degradation losses. This is the regime used here, with TIC chosen to be 1.40 % (green line),
for which an power enhancement of up to 148 is expected, which reduces to 126 when taking
the typical experimental mode matching into account.
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4.3.3.2 Cavity incoupling and outcoupling mirrors

The IC1 has a multi-layer dielectric coating with a specified reflectance of 98.3 % and trans-
mittance of 1.4 % at 0° angle of incidence (AOI), as determined by the manufacturer2. The
coating consists of alternating layers of hafnium dioxide (HfO2, n ≈ 2.1 [87]) and silica (SiO2,
n ≈ 1.51 [88]), deposited to the substrate using ion beam sputtering (IBS), with a calculated
absorption of 0.18 %. To avoid etalons between the two mirror surfaces, the backside of the IC
both has an anti-reflection coating (reflectance < 2× 10−4) and is wedged by 30′. While it is
straightforward to confirm the transmittance measurement in the laboratory, giving the same
value of TIC = 1.4 % as determined by the manufacturer, a reliable reflectance measurement
is more challenging. To this end, an OC3 with the identical coating applied in the same run
as the IC was used. The finesse F of a cavity consisting of the IC and this special OC was
found to be 195, corresponding to total losses of 3.2 % per round trip. Using the measured
transmittance, the remaining losses due to absorption and scattering are then deduced to be
AIC = 0.20 % per mirror. This value closely matches the calculated coating absorption, which
thus seems to be the limiting factor, with scattering losses playing a negligible role. From
these measurements, the non-degraded reflectance of the IC is thus found to be RIC,0 = 98.4 %.

The regularly used OC4 has a multi-layer dielectric high-reflectivity coating with a spec-
ified reflectance of > 99.9 %. The coating materials and deposition technique are the same
as for the IC and a similar reflectance bandwidth is achieved. Unfortunately, the backside is
neither anti-reflection coated nor wedged, giving rise to etalon effects on the transmitted light
on the order of 4 % under 0° AOI, which is the configuration used in the cavity. The trans-
mittance of the OC was measured to be TOC = 1.2× 10−4 at 8° AOI, using a photodetector
at different, calibrated gain settings. The reflectance again is deduced from the finesse of the
cavity, now using the OC with the IC described above. A maximum finesse of F = 320 is
observed (see Fig. 4.8) in this configuration, corresponding to total losses of 1.94 % per round
trip. Using the measured transmittance, and absorption and scattering losses of the IC, the
total losses of the OC are found to be 0.34 %. Subtracting the measured transmittance, the
losses due to absorption and scattering are then AOC = 0.33 %. While no calculated coating
absorption is supplied by the manufacturer, it is reasonable to assume that theses losses are
also predominantly caused by coating absorption, since the coating and substrate polishing
are very similar to the IC. Furthermore, a slightly higher coating absorption is expected from
the OC because of its higher reflectance and thus the need for more coating layers. Finally,
the non-degraded reflectance of the OC is then ROC,0 = 99.7 %, below the specified value.

The IC is specified with a irregularity and spherical bending power of less than5 55 nm

1Substrate and custom coating from LayerTec (purchased 2016, article number 132659, coating run numbers
131914 (frontside) and 131916 (backside)). Substrate material is excimer-grade fused silica, dimensions are
7.75 mm diameter, 4 mm thickness, and 6 mm diameter clear aperture. Substrate has been superpolished to a
root-mean-square surface roughness below 0.15 nm.

2The determination adjusts process parameters to match a theoretical model of the coating to a broad-
band transmission measurement (230 nm. . . 1100 nm). The reflectance and transmittance at the wavelength of
interest are then taken from the adjusted model.

3LayerTec (article number 132666), same substrate material and polishing as IC, dimensions are 12.7 mm
diameter and 6.35 mm thickness.

4Substrate and custom coating from Research Electro-Optics (purchased 2002, lot number 602-0617-02,
coating run number C2512). Substrate material is fused silica, dimensions are 12.7 mm diameter and 10 mm
thickness. Substrate has been superpolished to a root-mean-square surface roughness below 0.1 nm.

5This corresponds to λ/10 irregularity and spherical bending power at the measurement wavelength of
λ = 546 nm.
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Figure 4.8: Measured finesse (blue circles) and deduced degradation losses D (red squares) of the
243 nm enhancement cavity over time. D, the fraction of light that is lost due to degradation on
each reflection of the incoupling (IC) and outcoupling (OC) mirror, is determined by assuming that
any decrease in finesse is caused by an increase of D. The gray vertical lines mark times when the
cavity was realigned (solid line), leading to the light inside the cavity hitting the mirrors at different
spots, and when the mirrors were cleaned (dashed lines). Not marked is a previous cavity realignment
on 18.04.2019, after which the cavity was not operated until the start of the data shown here. The
runtime of the cavity, i.e. the time it was resonant with the preparation laser, during the time span
from the first to the last finesse measurement within each section, as marked by the vertical lines, is
given at the bottom of the plot.

over its clear aperture, corresponding to an ROC of less than ±80 m. The tolerance of the
ROC of the OC is not documented, but similar mirrors from the same manufacturer have an
specified tolerance of 1 %. Fortunately, the waist radius is not very sensitive to changes in the
ROC of the mirrors. Varying rIC by its tolerance and rOC within 5 %, the cavity waist radius
varies only between w1S-2S = 290 µm . . . 304 µm. This range does not limit the accuracy of
the intensity determination (see Section 4.3.3.4) nor significantly influences the result of the
atomic beam simulations, and the nominal value of w1S-2S = 297 µm is used, with the beam
waist placed at the position of the IC.

A measurement of the transverse mode spacing ∆νTMS can also be used to determine the
ROC of either of the mirrors if the ROC of one mirror, or the ratio of the ROCs, is known.
It was however found that the piezo actuator (see Section 4.3.3.5) on which the IC is glued
deforms the IC, leading to shift in ∆νTMS as the voltage applied to the piezo actuator is
varied1. Assuming rOC = 4 m, the deformation corresponds to an rIC, for the IC used during
the measurement, between −1000 m. . .−50 m, i.e. the IC becomes convex as seen from inside
the cavity.

4.3.3.3 Mirror degradation and power enhancement

The degradation of mirrors illuminated with intense UV light has been observed in various
experiment under different conditions and for different types of mirror coatings [89–93]. Sev-

1One might assume that when no piezo voltage is applied, the IC is not deformed, leading to rOC =
4.03(17) m when taking into account the IC ROC tolerance. However, the IC is glued while the piezo actu-
ator, mirror, and piezo holder are heated up to ≈50 °C and thus might be permanently deformed at room
temperature.



80 4. Hydrogen spectrometer

31.05.2019

01.06.2019

02.06.2019

03.06.2019

04.06.2019

05.06.2019

06.06.2019

07.06.2019

08.06.2019

09.06.2019

10.06.2019

25

50

75

100

125

150

Po
w

er
 e

nh
an

ce
m

en
t P

E Cavity realigned
Mirrors cleaned

Observed PE
during line scans
(mean: 40, max.: 50)
Expected PE
from finesse measurement
(mean: 52, max.: 137)

Figure 4.9: Observed (blue circles) and expected (orange squares) power enhancement PE of the
243 nm enhancement cavity over time. The observed PE is determined from measurements of the
impinging power Pin, the circulating power Pcirc, and the mode matching ηmode, with only the value of
PE during line scans shown. The expected PE is deduced from a subset of the finesse measurements
shown in Fig. 4.8 and using Eq. (4.6). The gray vertical lines mark times when the cavity was realigned
(solid line), leading to the light inside the cavity hitting the mirrors at different spots, and when the
mirrors were cleaned (dashed lines).

eral, possibly related degradation mechanisms have been identified: first, the contamination
of the mirror surfaces through the UV-assisted photodeposition of hydrocarbons present in
the background gas [89, 94]. Second, the volume degradation through defect formation inside
the coatings and the mirror substrate itself [89]. Third, the depletion of oxygen from the top
coating layer for certain coating materials [95].

The degradation of the mirrors of the 243 nm enhancement cavity severely limits the time
the cavity can be operated before the power enhancement is reduced below an acceptable
level. The degradation is clearly visible as a decrease in finesse over time, as shown in Fig. 4.8
for the time period of run B of the 2S-6P measurement (see Table 6.1). The degradation can
be slowed somewhat by intermediately cleaning the cavity mirrors1 (dashed lines in Fig. 4.8),
which however requires breaking the vacuum and risks a misalignment of the cavity. At
some point, the power enhancement cannot be restored through cleaning and the mirrors
either need to be exchanged or, alternatively, the cavity needs to be realigned such that the
different spots on the mirrors are illuminated by the cavity mode. For the data shown in
Fig. 4.8, the runtime between such two realignments was 60 h, during which the mirrors were
cleaned four times. Within this time, the finesse decreases from ≈300 to ≈180. To prolong
the life time of the mirrors and thus increase the time of operation of the experiment as much
as possible, the cavity is only locked during the measurement itself, with all other alignments
done while the length of the cavity is scanned. This also ensures that the amounts of residual
trace gases other than hydrogen are reduced as much as possible during operation, since both
the cryopump and the heat shield of the cryostat should efficiently remove traces gases and
especially hydrocarbons from the background gas.

The degraded mirrors showed localized spots, especially visible when breathing upon the
mirror, at the position of the cavity mode. These spots could not be removed with common

1Either methanol or acetone were used as solvents for cleaning, with no notable difference found in the
cleaning efficiency.
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organic solvents. Interestingly, both when cleaning and replacing the mirrors, it was found
that the incoupling mirror (IC) was substantially more affected by degradation than the
outcoupling mirror (OC), to the point where it was sufficient to only clean the OC during
the whole 2S-6P measurement, while it was necessary to realign the beam position on the
IC multiple times. Note that the reduction in finesse and in power enhancement is expected
to be not or only weakly dependent, respectively, on which mirror degrades. All occasions
during the 2S-6P measurement on which the mirrors were cleaned, the cavity was realigned,
or the IC was replaced are marked in Fig. 4.10. A similar behavior was also observed with a
previous batch of ICs from the same manufacturer as the current OC and most likely coated
using electron beam evaporation instead of the IBS used for the current batch of ICs. A
notable difference between the IC and OC is the distance to the nozzle, and thus the flux of
atomic hydrogen, with the IC sittings six times closer to it than the OC. However, the IC
was also observed to be more affected by degradation1 in the experiment of [93] at the same
wavelength and with a similar cavity configuration, even without the presence of hydrogen.
This hints at volume degradation playing a role, since for the IC the deeper coating layers
and the substrate are exposed to the intensity of the impinging light. For the OC, on the
other hand, these parts are only exposed to the transmitted light, whose intensity is smaller
by more than two orders of magnitude. Furthermore, mirror degradation was also found to
be an issue in the study of antihydrogen [91]. There, an enhancement cavity very similar to
the one discussed here was used, but placed inside a cryostat and thus in an environment with
a much lower background pressure, which should drastically reduce surface contamination.
They also tested their cavity within a high vacuum environment such as the one used here
and found a much faster rate of degradation. The oxygen depletion of the top layer found
in [95] was observed to be preventable by using SiO2 as material for the top layer, which is
the case for the IC, while the material of the top layer of the OC is unknown. However, both
mirrors used in [93], where as mentioned a similar degradation as found here was observed,
had a SiO2 top layer. All in all, it is likely that multiple degradation mechanism are at play,
with different mechanism dominating for different intensities and vacuum contaminations.

In [89] it was found that degraded mirrors could be partially restored using a combination
of oxygen plasma treatment to clean the surfaces, and thermal annealing to heal defects in the
bulk. The experiments of [90, 93] instead placed the mirrors in an oxygen atmosphere, which
was found to prevent degradation at sufficient pressures on the order of 1 mbar. Inspired
by this, it was here attempted to undo the degradation by admitting ≈10 mbar of oxygen
into the vacuum chamber and locking the cavity. This indeed was found to increase the
circulating power on the timescale of minutes. Interestingly, the same behavior was observed
when using nitrogen instead of oxygen. However, when then locking the cavity again during
the measurement, the power enhancement and thus finesse quickly dropped to the level seen
before the cleaning procedure. Interestingly, a similar procedure was successfully used to undo
some degradation in [91]. After the completion of the 2S-6P measurement, work was started
to implement an oxygen atmosphere for the mirrors of the 243 nm enhancement cavity. This
however requires multiple differential pumping stages to keep the partial pressure of oxygen
at a sufficiently low level in the spectroscopy region.

The observed reduction in finesse F can be translated into degradation lossesD as detailed
in Section 4.3.3.1. The resulting values, assuming that each of the mirrors has additional losses
D, are shown in Fig. 4.8 and are within 0 %. . . 1 %, with the latter value too large to continue

1D.C. Yost, private communication.
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Figure 4.10: The calibration factors for the integrating sphere photodetector (blue points, left scale)
and the fast photodetector (orange points, right scale). Both detectors monitoring the light transmitted
through the 243 nm enhancement cavity, from which the intracavity power P1S-2S is deduced. The
corresponding solid horizontal lines show the average values. As in Fig. 4.8, the gray vertical lines
mark times when the cavity was realigned (solid line), the cavity mirrors were cleaned (dashed lines),
and a new IC was installed (dotted line). The calibration factor for the fast photodetector is shown
for gain of 50 of its preamplifier by scaling the measurements taken at a gain of 20 accordingly.
CV: coefficient of variation, IC: incoupling mirror.

the experiment. An almost equivalent graph is obtained when assuming losses 2D on either
the IC or OC. Using these values and Eq. (4.6), the expected power enhancement can be
calculated, which is shown together with the observed power enhancement in Fig. 4.9 for
a subset of the measurements days of measurement run B. The observed and expected PE
are in reasonable agreement for the first half of the shown data, while for the second half,
after a cavity realignment, the expected PE is larger than the observed PE. Especially the
large PE of 137 deduced from a finesse measurement right after the realignment could not
be observed during the measurement, where the maximum achieved1 PE is 50. In fact, a
rapid degradation within tens of seconds was commonly observed upon locking the cavity for
initially very high finesse configurations, with the further degradation proceeding at a much
slower pace as shown in Fig. 4.8.

4.3.3.4 Determination of intracavity power

The power P1S-2S = Pcirc circulating inside the enhancement cavity is deduced by measuring the
power Ptr of the light transmitted through the cavity’s outcoupling mirror (OC), which is on
the order of 100 µW. Here, P1S-2S is defined as the power per direction inside the cavity during
the bright phase of the optical chopper, i.e. the atoms see two counter-propagating beams with
a power of P1S-2S each while the preparation laser is unblocked. As the power here is referenced
to the bright phase, the circulating power averaged over many chopper cycles is ηcircP1S-2S,
where ηcirc is the fraction of time the light is admitted to the cavity. For the equal slit width
chopper used here, ηcirc is nominally 1/2. A 50:50 non-polarizing beamsplitter2 allows the

1[93] reported a PE of 80 with similar cavity mirrors and at the same wavelength, but with the mirrors
placed in an oxygen atmosphere as mentioned above.

2Thorlabs BSW20.
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transmission to be simultaneously monitored on a high-gain, low-bandwidth photodetector1
attached to an integrating sphere2, and a low-gain, high-bandwidth photodector3. The output
of both photodetectors is further amplified and filtered with low-noise voltage preamplifiers4,
and in total the detection bandwidths are 5 kHz and 1 MHz for the integrating sphere and
fast photodetectors, respectively. The beam is focused on the fast photodetector, but left
collimated for the integrating sphere. Both photodetectors are shielded from stray light using
blackout fabric and beam tubes, and electronic offsets were subtracted at the preamplifier.
Using an integrating sphere reduces the effect of beam pointing fluctuations and drifts on
the detector signal, as the attached photodetector is illuminated from many directions and
at many positions. However, this reduces the power seen by the detector, necessitating a
large gain and thus reduced bandwidth. Therefore, the higher-bandwidth detector is used to
deduce the finesse of the cavity while scanning its length, and to remove intensity noise, as
discussed in the Section 4.3.3.5. Of course, the latter application will in principle then add
any beam pointing dependencies of the fast detector to the intensity noise. However, these
beam pointing effects are seen on a timescale longer than a typical frequency scan.

To convert the voltage readings of the photodetectors to optical power, the transmitted
power is measured with a calibrated photodiode power meter5 while the cavity is length-
stabilized to the laser. The reading of the power meter, P̃tr,PM, is the transmitted power
averaged over many seconds, and the average circulating power when the laser is not blocked
by the chopper is given by Ptr,PM = P̃tr,PM/ηcirc. The power meter is placed directly before
the beamsplitter (see Fig. 4.6), and thus the light transmitted through the OC additionally
passes through a Brewster’s window and is reflected on a steering mirror before reaching
the power meter. This additional path leads to a reduction in power to 92 % of its level
at the position of the OC and thus the transmitted power is Ptr = Ptr,PM/0.92. Using the
measured transmittance TOC of the OC, the power circulating inside the cavity is then given
by P1S-2S = Ptr,PM/(0.92 × TOC) = Ptr,PM/1.1× 10−4. Finally, Ptr,PM is compared to the
voltage readings of the two photodetectors directly before and after placing the power meter
before the beamsplitter, from which two calibration factors corresponding to the ratio of
the intracavity power P1S-2S to the voltage readings are derived. The voltage readings are
derived from the time-resolved signal of the photodetectors as detailed in Section 4.3.3.5.
The calibration factors were measured whenever the enhancement cavity was re-aligned and
at additional intermediate times, with a total of 11 calibration factors for each photodetector
available during the precision measurement time period. These calibration factors are shown
in Fig. 4.10, with the calibration factor for the fast photodetector shown for a gain of 50
of its preamplifier by scaling the measurements taken at a gain of 20 accordingly. For the
integrating sphere photodetector, the average calibration factor is found to be 0.83 W/V with
a coefficient of variation (CV) of 3 % and a maximum deviation from the mean of 6 %. For

1Home-built with 5 kHz bandwidth.
2LabSphere LBS-3P-GPS with a diameter of 5.3 in. The reflectance of the inside of the sphere is specified

as 97 % at a wavelength of 250 nm and an angle of incidence of 8°.
3Thorlabs PDA25K2, using a gallium phosphide (GaP)-based photodiode with responsivity of 0.024 A/W

at 243 nm. It has a built-in, gain-adjustable transimpedance amplifier, used at the 20 dB gain setting offering
15 kV/A gain and 1 MHz bandwidth.

4Stanford Research Systems SR560. For the integrating sphere and fast photodetectors, voltage gains of
200 and 50 (before 28.05.2019) or 20 (from 28.05.2019 on) and low-pass filters (6 dB/decade) with corner
frequencies 30 kHz and 1 MHz are used, respectively.

5Newport 918D-UV-OD3R, based on a UV-enhanced silicon photodiode. The calibration uncertainty is
specified as ±2 % at λ = 243 nm.
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the fast photodetector, the average calibration factor is found to be 2.34 W/V with a CV of
4 % and a maximum deviation from the mean of 7 %. Interestingly, the reproducibility of the
fast photodetector is thus comparable to that of the integrating sphere photodetector.

An intracavity power P1S-2S is found for each line scan in the following way: the appropri-
ate calibration factor is retrieved, either using the value measured on the same or an earlier
day. Then, the average voltage reading of the integrating sphere photodetector (see Fig. 4.11
and Section 4.3.3.5) for the data points within the line scan is multiplied with the calibration
factor, resulting in a value of P1S-2S for each data point. Finally, the average value and the
standard deviation of P1S-2S over these data points is evaluated and assigned to the corre-
sponding line scan. Fig. 4.12 shows the resulting values of P1S-2S for the 2S-6P measurement
discussed in this work.

4.3.3.5 Stabilization of cavity length and intracavity power

The length of the 243 nm enhancement cavity is stabilized such that it is resonant with the
light of the preparation laser using a servo loop. The length of the cavity can be varied through
the voltage applied to a circular piezo actuator1 to which the incoupling mirror is glued. A
correction or error signal is generated using the Pound-Drever-Hall (PDH) technique [83, 96]
and fed back to the piezo actuator using a proportional–integral (PI) controller2. The capture
range of this error signal and thus of the servo loop, i.e. the maximum instantaneous change in
length for which the error signal can still be used to return the cavity to resonance, is critical
for the stabilization. This is because during the 3 ms-long dark phase where the chopper
blocks the preparation laser, no error signal is available and no feedback can be applied to
the piezo actuator. Thus, any length change during this time larger than the capture range
will disturb the stabilization, with large disturbances especially likely when the cryopump is
running. The capture range of the PDH error signal is given by fPDHλ1S-2S/FSR, where fPDH

is the frequency of the sinusoidal phase modulation on the laser light necessary in the PDH
technique. Here, fPDH ≈ 47.3 MHz is used, corresponding to a capture range of ≈27 nm, for
which the cavity length can be reliably stabilized even when the cryopump is running3.

The phase modulation is applied to the laser light using an EOM4 (PDH EOM in Fig. 4.6).
The nonlinear material of the EOM is a BBO crystal, since this material has a high damage
threshold in the UV region [97]. The crystal is anti-reflection coated and initially (in 2014)
showed a transmission of 95 %, which had decreased to 85 % by 2019. Unfortunately, some
unwanted static birefringence5 was observed, thought to originate from strain induced in
the crystal by its mount6 or an improperly cut crystal. This birefringence can spoil the
linear polarization of the UV light. It is possible to minimize this effect by adjusting the
polarization direction. However, the direction found this way must not coincide with the

1PI Ceramic PD080.31, 8.0 mm outer diameter, 4.5 mm inner diameter, and 2 µm range. Agilent Torr Seal
is used to glue the mirror to the actuator and the actuator to its copper mount.

2Vescent Photonics D2-125.
3This was not the case for the previously used modulation frequency of 20 MHz in combination with the

previously used second cavity spacer as described in Section 4.2.5.
4Qubig EO-47B3-UV, with an integrated resonant circuit with a specified quality factor of 125 at 47.2 MHz.

Note that the exact resonance frequency depends on the amount of RF power sent to the EOM.
5BBO is an uniaxial crystal, with the dominant electro-optic coefficient being r11 = 2.5 pm/V. Thus, for

phase modulation, the light is sent along the optical axis and a sinusoidal electric field is applied transverse to
the optical axis. There should then be no static birefringence in the ideal case.

6The birefringence increases as the RF power sent to the EOM is increased. Judging from the time scale
of the increase, the effect seems to be of thermal origin.
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modulation axis of the crystal, leading to residual amplitude modulation in combination with
polarizing elements, such as the Brewster’s windows. An intermediate adjustment aiming to
minimize both the residual circular polarization and amplitude modulation is used. Since
only linearly polarized light can drive the 1SF=0

1/2 − 2SF=0
1/2 transition, the presence of circular

polarization lowers the effective excitation rate.
Before the laser light enters the cavity, a small part is split off, using an AR-coated plane

window as beam sampler, and sent to the input power photodetector (see Fig. 4.6), whose
signal is thus proportional to Pin. Likewise, the counter-propagating reflection off of the
cavity is sent to an avalanche photodiode detector1, and the PDH error signal is derived from
its signal. The length stabilization is switched off during the dark phase to prevent noise
and offsets on the error signal from affecting the servo loop, which otherwise could move the
cavity length outside the loop’s capture range. Specifically, the stabilization is switched on
10 µs after the start of the bright phase, as heralded by the trigger signal derived from the
optical chopper (see Section 4.3.2), for a duration of 2995 µs, and thus is typically switched off
≈20 µs before the end of the bright phase. This safety margin ensures that the stabilization
is always switched off before the light itself is blocked. It however also effectively increases
the delay time τ , nominally measured from the start of the dark phase as determined by the
chopper trigger, by ≈20 µs.

The performance of the cavity length stabilization during a typical freezing cycle as seen
on the various photodetector signals is shown in Fig. 4.11 (A), with Fig. 4.11 (B) and (C)
showing the start and end of the bright phase in detail. The optical chopper unblocks the
preparation laser at τ ≈ −3130 µs, as heralded by the chopper trigger (green line and shading),
and seen as a step-like increase on the input power photodetector (red line and shading).
The cavity transmission as measured by the fast photodetector (purple line and shading) is
initially at a low value, increasing to its steady-state value after the length stabilization is
switched on (dashed vertical lines). The stabilization typically settles within ≈150 µs after
the start of the bright phase, with the signal approximately rising with a time constant of
50 µs, corresponding to a stabilization bandwidth of ≈7 kHz, after an initial drift within the
capture range. The integrating sphere photodetector (blue line and shading) sees a slower
rise time of 90 µs, limited by its detection bandwidth. At the end of the bright phase, the
transmission quickly decreases as the length stabilization is switched off, shortly before the
laser itself is blocked. Note that the bright phase here lasts ≈3130 µs instead of the expected
3125 µs, probably caused by imperfections of the optical chopper wheel. This is also the
reason why here the length stabilization is switched off ≈25 µs instead of ≈20 µs before the
end of the bright phase. To determine the delay-time-averaged impinging and intracavity
power, the corresponding signals are averaged over a window between 500 µs. . . 3000 µs after
the start of the bright phase (dotted lines in Fig. 4.11) (see also Section 4.7.3). As discussed
in the Section 4.3.3.4, the intracavity power P1S-2S is found from the signal of the integrating
sphere photodetector, with the start time of the averaging window matched to the rise time
of this photodetector.

The transient behavior when switching the length stabilization on and off also affects the
determination of the intracavity power. In Section 4.3.3.4, it was assumed that for a fraction
ηcirc = 1/2 of the time, the cavity is stabilized at a constant circulating power P1S-2S, while for
the rest of the time no power is circulating. Because of the transient behavior, the atoms in the
experiment actually see a circulating power below P1S-2S at the start of the bright phase, but

1Thorlabs APD430A2/M.
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Delay time τ (µs)

Figure 4.11: Performance of the 243 nm enhancement cavity length and intracavity power stabilization.
Shown are delay-time-resolved sampled analog signals, normalized and offset for clarity, of 1920 data
points, belonging to 64 line scans during a single freezing cycle (FC B35). The signal of each data point
has been averaged over 160 chopper cycles, with the standard deviation over these cycles shown as
superimposed shaded regions. The solid lines mark the average over all data points and chopper cycles.
(A) The signals during the bright phase of the chopper cycle. Shown are the trigger from the optical
chopper (green), the power impinging on the cavity as measured by the input power photodetector
(red), and the cavity transmission measured with the fast (purple) and integrating sphere (blue)
photodetectors. The faint shaded region with a large standard deviation visible on the transmission
signals is caused by a single data point. The vertical lines window the times during which the length
(dashed lines) and intracavity power (dash-dotted lines) stabilizations are active, and the portion of
the transmission signals used to determine the average intracavity power P1S-2S (dotted lines). The
lower row shows in detail the same signals during (B) the start and (C) the end of the bright phase.

a circulating power above P1S-2S when the cavity has stabilized. By comparing the integrals
of the transmission photodiode signal over the averaging window, on the one hand, and over
the whole chopper cycle, on the other hand, the instantaneous power during the averaging
window can be related to the power averaged over many chopper cycles as measured with the
power meter. For the data of the fast photodetector shown in Fig. 4.11, the ratio between
the integrals is 2.054. That is, the instantaneous power is 2.054/2 − 1 = 2.7 % higher than
the average power assuming the cavity is fully stabilized exactly half the time. In any case,
the atoms in the experiment sample the complete bright phase and not only the averaging



4.3 1S-2S preparation laser 87

1.0 1.5
 
 

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. o

cc
ur

en
ce

s

Power
not stabilized
(N=722),
mean: 1.26 W
(fast PD: 1.20 W)
Power stabilized
(N=2433),
mean: 1.07 W
(fast PD: 1.08 W)

A

0.0 0.5 1.0
 

Power
not stabilized,
mean: 0.41 %
(fast PD: 0.41 %)
Power stabilized,
mean: 0.06 %
(fast PD: 0.01 %)

B

0 1 2
 

Power
not stabilized
(N=21660),
mean: 0.8 %
(fast PD: 1.2 %)
Power stabilized
(N=72990),
mean: 0.3 %
(fast PD: 1.0 %)

C

Average over line scan of
intracavity power P1S − 2S  (W)

CV over line scan of
intracavity power P1S − 2S (%)

CV over delay time and chopper
cycles of intracavity power P1S − 2S (%)

Figure 4.12: Stability of the 1S-2S intracavity laser power P1S-2S during the 2S-6P measurement,
separated into line scans where the intracavity power was not (722 line scans, blue bars) or was
(2433 line scans, orange bars) stabilized (see Table 6.1). (A) Histogram of P1S-2S assigned to the line
scans by averaging over the values of P1S-2S of the 30 data points each scan contains. For each data
point, P1S-2S in turn is found by averaging the time-resolved cavity transmission signal over a window
of delay times and chopper cycles as shown in Fig. 4.11, and converting the signal to a power reading
with the calibration factors of Fig. 4.10. The signal of the integrating sphere photodetector is used, but
the mean value from the fast photodetector is given in the legend. (B) Coefficient of variation (CV)
of P1S-2S over the points within each line scan, with the points on average separated in time by 2.3 s.
(C) CV over delay times and chopper cycles within each data point. See text for details.

window. Thus, for a complete picture, the simulations of the experiment (see Section 5.2)
ideally should use the time-dependent power as determined from the combination of the full
photodiode signal and the power meter measurements. As an approximation, here the cavity
is assumed to be fully stabilized exactly half the time with an instantaneous power equal to
the average power P1S-2S.

During the 2S-4P measurement (see Appendix A), the intracavity power during the bright
phase was not stabilized, but left free-running and thus subject to drifts of both the input
power and the power enhancement of the cavity. This was also the case for some of the data
taken during the 2S-6P measurement. However, an intracavity power stabilization was added
on 28.05.2019 and used during the bulk of measurement run B and the complete run C (see
Table 6.1). To this end, an AOM1 is used to control the power impinging on the cavity by
diffracting some of the light to a beam dump. The amount of light dumped is controlled2
with the amount of RF power sent to the AOM. The fast transmission photodetector is used
to generate the error signal for this stabilization, which uses an identical PI controller as
the length stabilization. The integrating sphere photodetector provides an out-of-loop cavity
transmission signal. The power stabilization is only active during part of the bright phase
to minimize interference with the length stabilization. It is switched on 200 µs after the
start of the bright phase to ensure that the length stabilization has settled, and switched

1IntraAction ASM-1101M3, 110 MHz center frequency. The active medium is UV-grade fused silica with a
broadband UV anti-reflection coating and a transmission of 98 % at 243 nm.

2To adjust the RF power, the amplitude modulation feature (3 dB bandwidth of 50 kHz) of the RF synthe-
sizer (Rohde & Schwarz SMC100A) is employed.
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off again after a further 2705 µs (dash-dotted lines in Fig. 4.11), i.e. 200 µs before the length
stabilization is switched off1. The effect of the intracavity power stabilization is clearly visible
in Fig. 4.11, with the steady-state cavity transmission (purple shading) varying less over time
than the input power (red shading), which is measured after the AOM and thus shows the
compensation applied by the feedback loop.

Fig. 4.12 shows the behavior of the intracavity power P1S-2S during the line scans of the 2S-
6P measurement, separated into sets where the power was not stabilized (blue bars) and was
stabilized (orange bars). When the power is not stabilized, the coefficient of variation (CV)
over the data points within each line scan (see Fig. 4.12 (B)) is on average 0.41 %, but reduces
to 0.06 % for the data with active power stabilization. Note that the fast photodetector shows
a lower average CV of 0.01 % for the latter case, but the same CV for the former case, which
is to be expected since it is part of the feedback loop. Likewise, the average CV over delay
time and chopper cycles for each data point (see Fig. 4.12 (C)) drops from 0.8 % to 0.3 %.
Interestingly, the fast photodetector shows a larger average CV of 1.0 % and only a small effect
of the stabilization in this case. This is thought to be caused by the detection bandwidth of
the fast photodiode, limited to 250 kHz by the sampling of the signal, exceeding the ≈50 kHz
feedback bandwidth of the stabilization.

4.3.3.6 Alignment laser

An auxiliary alignment laser that follows the beam path of the 1S-2S preparation laser through
the vacuum chamber, as shown in Fig. 4.6, is used to adjust the variable aperture and image
the hydrogen nozzle. A helium–neon laser at λ = 632.8 nm is used for this purpose, as the
243 nm mirrors used in the enhancement cavity and for steering are only weakly reflective at
this wavelength and because of its good beam quality. The beam paths of the alignment laser
and the 1S-2S laser, which are counter-propagating, are combined using the steering mirrors
right before and after the two Brewster’s windows of the vacuum chamber as beamsplitters.
Two irises, placed close to either of the two mirrors and referred to as front and back iris,
respectively, are used to fine-adjust the overlap of the beams. This overlap is adjusted at
least once every measurement day before the start of the measurement itself. The alignment
laser can be blocked with a remote-controlled shutter, with the laser always blocked when
spectroscopy data are acquired.

A removable mirror sends the beam of the alignment laser, after passing through the vac-
uum chamber, either to a photodetector (alignment PD) or to an image sensor (nozzle image
sensor). When using the laser to adjust the width of the variable aperture, its collimated
beam, which has an 1/e2 intensity radius of ≈450 µm, is sent through the chamber and de-
tected on the alignment photodetector to enable a knife-edge measurement as described in
Section 4.5.3. To suppress intensity fluctuations during these measurements, the measure-
ment signal is normalized to the output power of the alignment laser using an additional
photodetector.

To image the nozzle, the alignment laser beam is made to diverge using a removable lens
creating an intermediate focus, such that the nozzle channel is approximately uniformly illu-
minated. The nozzle channel is then imaged onto the nozzle image sensor using an additional
lens in front of the sensor. This image is used to adjust the nozzle position and observe the

1The intracavity power stabilization is thus switched off ≈100 µs before the end of the averaging window.
This is unintended, but was only realized after the end of the measurement. In fact, there is no reason the
power stabilization should not be kept on till right before the length stabilization is switched off.
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Figure 4.13: (A) Calculated losses AAL introduced by different apertures for a Gaussian laser beam
with waist radius w1S-2S = 297 µm as used in the 243 nm enhancement cavity: circular aperture with
diameter a (blue line), square aperture of size a×a (orange line), and rectangular aperture of a×2 mm
(green line). (B) shows the same results as (A), but on a logarithmic scale.

nozzle during the measurement, as discussed in Section 4.5.2.5.

4.3.3.7 Apertures inside the cavity and cavity alignment

There are multiple apertures inside the 243 nm enhancement cavity as shown in Fig. 4.1 and
Fig. 4.6. Of those, the circular nozzle channel (diameter 2r1 = 2 mm), the circular high-
vacuum entrance aperture (diameter 2.4 mm), and the rectangular variable aperture (size
1.2 mm×2 mm) are relevant to the operation of the cavity. Each pass of the laser beam through
an aperture causes losses AAL, such that the total losses per round trip inside the cavity are
increased by 2AAL. The losses AAL for circular, square, and rectangular apertures for the beam
parameters of the cavity are shown in Fig. 4.13, with the losses from the three aforementioned
apertures all below 6× 10−5. However, this is only the case when the laser beam is exactly
centered on the apertures. An offset of 200 µm from the center of the variable aperture along
its narrower width increases the apertures losses to AAL = 0.35 %, leading to almost 40 %
higher total round-trip losses compared to the non-degraded case with perfect alignment. For
this reason, the width of the variable aperture can be remotely adjusted along the horizontal
dimension (x-axis) to compensate for drifts in the alignment (see Section 4.5.3). Furthermore,
as the nozzle channel diameter decreases due to the accumulation of solid hydrogen during the
freezing cycle, the losses quickly increase below a certain threshold, with AAL = 0.35 % and
AAL = 1.0 % reached for 2r1 = 1 mm and 2r1 = 0.9 mm, respectively. When this threshold
is reached, the experiment has to be stopped as the power enhancement of the cavity is
insufficient.

The alignment of the apertures relative to the optical axis of the cavity is done in multiple
steps. For the initial alignment of the enhancement cavity, done while the vacuum chamber
lid is removed, the entrance and output aperture of the high-vacuum enclosure are removed,
the cryostat and attached nozzle are moved out of the cavity beam, and the variable aperture
is fully opened. The beam is then centered on both the IC and OC using the steering mirrors
before the cavity, before closing the beam path inside the cavity by adjusting first the tip
and tilt of the OC and then of the IC. After aligning the enhancement cavity, the entrance
and output apertures are installed again. Using the adjustable feet of the vacuum chamber
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as shown in Fig. 4.2, the chamber, to which the apertures are fixed, is positioned such that
the 1S-2S laser beam is centered on the entrance aperture and the variable aperture, which
is still fully open. A beam profiling camera and lens tissue, which scatters the laser beam
such that the shadow of the apertures are visible, are used during this alignment procedure,
with the camera alternately placed after the entrance and variable apertures. This alignment
procedure is estimated to be accurate within 100 µm. When the chamber is evacuated, this
alignment might drift, since the cavity is fixed to the optical table and not the vacuum
chamber itself. This drift is monitored by observing the transmission of higher-order modes
of the cavity, which are especially susceptible to aperture losses due to their larger spatial
extent. Typically, no change in transmission is observed and the alignment is thought to be
intact after evacuation.

The nozzle position and the horizontal width of the variable aperture can be adjusted in-
dependently of the other apertures and while the chamber is under vacuum. These alignments
are described in Section 4.5.2.5 and Section 4.5.3, respectively.

From the aperture losses, the number of photons that hit the inside of the fluorescence
detector assembly can be estimated. The by far largest losses of 5.3× 10−5 occur at the
variable aperture. From a Monte Carlo integration, it is estimated that 5 % of the pho-
tons scattered from the edges of this aperture, as limited by the geometry, reach the inte-
rior walls of the detector. For an intracavity power of P1S-2S = 1 W, this corresponds to
3.3× 1012 photons/s hitting the detector walls during the bright phase of the optical chopper.
The illuminated sections of the detector walls are coated with graphite, resulting in the emis-
sion of 2× 107 photonelectrons/s, using the photoelectron yield given in Table 4.1. Note that
the 2S-6P fluorescence signal is only detected during the dark phase of the optical chopper,
i.e. when the preparation laser is blocked, and thus these scattered photons and resulting
photoelectrons do not affect the signal.

4.4 2S-6P spectroscopy laser

The 2S-6P spectroscopy laser is used to excite hydrogen atoms from the metastable 2S level
to the 6P level, requiring light at a frequency of ν2S-6P = 730.7 THz or, correspondingly,
a wavelength of λ2S-6P = 410.3 nm. This laser light is generated by frequency-doubling an
infrared laser, as outlined in Section 4.4.1. A crucial component in the spectroscopy of the 2S-
nP transitions is the active fiber-based retroreflector (AFR), which uses counter-propagating
laser beams to suppress the first-order Doppler shift the hydrogen atoms moving through the
beams would otherwise experience. To this end, a low-aberration collimator is required, which
had to be specially designed for use with the 2S-6P transition, as detailed in Section 4.4.3.
The control and stabilization of the retroreflection used to generate the counter-propagating
beams are discussed in Section 4.4.4, while the stabilization of the intensity of these beams
is the topic of Section 4.4.5. Finally, the polarization of the laser beams is also monitored,
as shown in Section 4.4.6. The content of this section is largely identical to a publication
co-authored with Vitaly Wirthl [35], with more details found therein.

4.4.1 410 nm laser system
The 410 nm laser system (known as “FP3” in the hydrogen laboratory), shown in Fig. 4.14,
generates the laser light necessary to drive the 2S-6P transition. The system is very similar
to the 243 nm laser system described in Section 4.3.1. The master laser, operating in the
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Figure 4.14: Sketch of relevant components of the 410 nm laser system (“FP3”), part of the 2S-
6P spectroscopy laser, with a focus on components that change the frequency, phase, or power of the
laser light. δJ,3/2 is 0 (1) when the 2S-6P1/2 (2S-6P3/2) transition is probed. See Section 4.4.1 for details.
AOM: acousto-optic modulator, ECDL: external-cavity diode laser, EOM: electro-optic modulator, PM
fiber: polarization-maintaining fiber, SHG: second-harmonic generation, SM fiber: single-mode fiber,
TA: tapered amplifier.

infrared at frequency νFP3,ECDL (λ ≈ 820.6 nm), is a home-built external-cavity diode laser
(ECDL, cavity length of 20 cm) in the Littrow configuration [80]. The output of the master
laser is amplified to an optical power of 1.1 W using a tapered amplifier (TA), supplied with
a current of 2.2 A. As opposed to the 243 nm laser system, the infrared light is doubled in
frequency only once. This is achieved using a lithium triborate (LBO) crystal, placed in a
home-built bow-tie ring cavity, generating 100 mW. . . 150 mW of 410 nm laser light. The light
is then sent through an 11 m-long polarization-maintaining (PM) fiber to the optical table of
the hydrogen spectrometer.

The frequency stabilization and determination of the 410 nm system is analogous to that of
the 243 nm system. The frequency of the master laser is stabilized to an identically constructed
high-finesse Fabry-Pérot reference cavity (free spectral range of 1.932 GHz). Some light at
frequency νFP3,ECDL is sent through a PM fiber to the frequency comb to determine the laser
frequency in Hz, and to compare the optical spectrum of the master laser to that of the
1S-2S preparation laser (see Section 4.8).

However, as opposed to the 243 nm system, no cancelation for the phase noise picked up by
the fiber between the cavity and the master laser is implemented because of the lower require-
ments on the laser spectrum. The double-passed acousto-optic modulator (offset AOM) placed
between the master laser and the reference cavity shifts the laser frequency by −2fFP3,Offset

and into resonance with the reference cavity. Unlike for the 243 nm system, this AOM is not
used to scan the frequency of the light seen by the atoms, as the required range of 100 MHz
at the second harmonic exceeds the tuning range of the master laser. Instead, a doubled-
passed AOM1 (scan AOM) operating at fFP3,Scan = 325 MHz . . . 375 MHz is used to shift the

1Brimrose TEF-350-100-400, 350 MHz center frequency and 100 MHz bandwidth.
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frequency of the frequency-doubled light. An additional AOM1 (fine-structure AOM) further
shifts the frequency by fFP3,FS ≈ 406 MHz when addressing the 2S-6P3/2 transition, but is
bypassed when the 2S-6P1/2 transition is probed.

The remaining components are discussed as part of the active fiber-based retroreflector in
the next section.

4.4.2 Active fiber-based retroreflector
The general concept of an active fiber-based retroreflector (AFR) is discussed in detail in [28].
The main idea is to collimate a laser beam from a single-mode fiber and use a highly-
reflective (HR) mirror to couple the light back through the collimator into the same fiber.
Using a beamsplitter before the fiber, the backcoupled light fraction can be monitored and
maximized by adjusting the distance between the collimator and the fiber as well as tip-tilt
alignment of the HR mirror. This tip-tilt alignment is actively stabilized with piezoelectric
actuators on the mirror mount2. Maximizing the backcoupled light fraction corresponds to
optimizing the wavefront-retracing property of the beam: for a perfectly flat, fully reflective
HR mirror and an aberration-free beam, the wavefront-retracing and amplitude matching
conditions are satisfied if the waist of the collimated beam is located on the mirror, resulting
in all of the optical power being coupled back into the fiber.

The optical setup of our hydrogen spectrometer relevant to the AFR is shown in Fig. 4.15.
We start with around 100 mW of 410 nm laser light which is sent to the experiment through
a 11 m-long polarization-maintaining (PM) fiber from the 410 nm laser system. An acousto-
optic modulator (AOM, same as scan AOM in Fig. 4.14) is used to scan the optical frequency

1TEF-350-200-380/500, 350 MHz center frequency and 150 MHz. . . 200 MHz bandwidth.
2Radiant Dyes MDI-H with piezo drive. Two Newport 8301-UHV Picomotor precision motors have been

added to increase the alignment range.
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Figure 4.16: 3D view (orthographic projection) of the in-vacuum active fiber-based retroreflec-
tor (AFR) setup, which is part of the atomic beam apparatus shown in Fig. 4.1. AB: atomic beam,
BB: base cylinder ball bearing, BR: brass ring spacer between collimator lenses, CA: collimator–fiber
alignment, FQ: AFR four-quadrant photomultiplier, HM/HP: horizontal (tip) precision motor (HM)
and piezo actuator (HP), HR: AFR high-reflectivity mirror, MM: piezo-actuated AFR mirror mount,
OR: O-ring holding collimator lens system in place, PB: 1S-2S preparation laser beam, RC: rotatable
base cylinder, RM: collimator rotation mount, SB: 2S-6P spectroscopy laser beams, SC: four-lens
collimator, SF: polarization-maintaining fiber, SH: AFR shutter, SR: 2S-6P spectroscopy region,
ZM/ZP: precision motor (ZM) and piezo actuator (ZP) for fiber–collimator distance adjustment.

across the resonance and an electro-optical modulator (EOM1) in sequence with a polarizing
beamsplitter (PBS) and half-wave plates is used for intensity control. The light is transferred
via another 5 m-long PM fiber to a polarization switching and polarimetry unit (PSPU). The
intensity after this fiber is stabilized using the signal of photodetector PD1 in combination
with EOM1 as an actuator (1st intensity stabilization). Additional photodetectors (PD2,
PD3 and PD4) monitor the intensity out-of-loop. In order to switch between horizontal and
vertical linear polarizations, either of the two paths are opened by mechanical shutters. Glan-
Thompson polarizers with PER > 50 dB improve the polarization extinction ratio PER =
Pmax/Pmin of light coupled into the last fiber, where Pmax and Pmin are the maximal and
minimal transmitted optical powers in the two orthogonal polarization directions. Isolators
in each arm suppress optical etalons, with lowest number of optical surfaces as possible placed
after the isolators, and shutters closing the unused arm. After the PSPU, the light passes a
non-polarizing beamsplitter (BS 2) and is sent through another beamsplitter (BS 3).

Finally, the laser light (5 µW. . . 30 µW laser power) reaches the in-vacuum AFR setup,
shown in Fig. 4.16, via an 80 cm-long polarization-maintaining (PM) fiber1 (SF). The whole
in-vacuum AFR setup is mounted on the rotatable base cylinder (RC), which sits on a
ball bearing (BB) such that the angle between the spectroscopy laser beams (SB) and the
atomic beam of metastable hydrogen (AB), which is collinear to the 1S-2S preparation laser
beam (PB), can be aligned close to 90°. The four-lens collimator (SC) is mounted onto a
mirror mount combined with a manual precision rotation stage2 (RM). The distances from
the fiber tip and the last lens surface of the collimator to the center of the cylinder are
20 cm and 12 cm, respectively. The collimation is adjusted with the help of a commercial

1Vacuum-compatible Nufern PM-S405-XP fiber in a 900 µm-diameter PEEK jacket, produced and AR-
coated by Diamond GmbH.

2Thorlabs POLARIS-K2S3, PRM2/M.
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fiber translation mount1 which we rebuilt for accurate distance control using a precision mo-
tor2 (ZM) combined with a piezo actuator3 (z-adj. piezo, ZP). This part is placed onto a cage
system mounted to a flexure adjustment plate4 (CA) needed for precise centering between
the fiber and the collimator. The light is retroreflected by the HR mirror5 (HR), which is
mounted in a piezo-actuated mirror mount (MM) at a distance of 16 cm from the center of
the cylinder. The reflected light passes back through the fiber, where approximately one-half
of the backcoupled light is detected after BS 3 on the avalanche photodiode (backcoupling
APD) whose signal is used for the tip-tilt stabilization using the piezo actuators of the mirror
mount (only the horizontal piezo actuator (HP) is shown in Fig. 4.16). Another fraction
of the backcoupled light passes BS 2 where the polarimeter is placed in the unused beam
path. The home-built remotely controlled shutter (SH) makes it possible to block the re-
flected beam to acquire spectroscopy data without the Doppler suppression provided by the
counter-propagating beams.

The sum signal of the four-quadrant photomultiplier6 (PMT, FQ) after the HR mirror
is used for a second intensity stabilization of the wavefront-retracing beams, with EOM2
serving as actuator. The PMT is mounted under an angle of ≈10° with an interference
bandpass filter7 and scattering disk8. The use of a position-sensitive PMT has the practical
advantage of misalignment monitoring. An angular misalignment of the HR mirror or the
collimator-fiber system by 200 µrad leads to a complete loss of the backcoupled signal [28].
If the optimal orientation of AFR is lost (e.g. during work on the apparatus), the horizontal
and vertical position signals of the PMT help to retrieve the alignment.

During the 2S-6P measurement, the 410 nm laser power was measured, on each mea-
surement day, right before the fiber to the in-vacuum AFR setup, using a calibrated power
meter9. The 2S-6P spectroscopy laser power P2S-6P is then given by the fiber coupling efficiency
multiplied by the power meter reading. The power meter is specified to have a calibration
uncertainty of ±5 %, a power linearity of ±1 %, and a active area uniformity of ±1 %. By
placing the power meter in a designated mount for each power measurement, we find that
the relative measurement uncertainty limited by the active area uniformity can be reduced
to ≈0.5 %. The fiber coupling efficiencies were measured10 to be 0.788(7) and 0.807(7) for
vertical and horizontal polarization, respectively, with the two polarization directions used
for the linear laser polarization angle setting of, respectively, θL = 56.5° and θL = 146.5°
during the 2S-6P measurement. The fiber coupling was optimized on each measurement day
by optimizing the sum signal on the PMT (with the intensity stabilization switched off). The
uncertainty for the absolute value of P2S-6P is estimated, from the specifications of the power
meter, to be ≈7 %, while the relative uncertainty between measurement days is estimated to

1Thorlabs SM1.
2Newport 8301-V.
3Thorlabs PK4FQP2.
4Thorlabs CP1XY.
5Custom order from LayerTec: reflectivity R > 99.995 %, transmission T u 2× 10−5, substrate with

λ/30 @ 633 nm irregularity and <1.5Å RMS roughness.
6Hamamatsu R11265-200-M4.
7Edmund Optics 34-494, 10 nm-wide passband (FWHM), centered at 413 nm.
8DG10-1500-A.
9Thorlabs PM160.

10Note that when measuring the power before the fiber, one has to either take into account or block the
second-order reflection from the beamsplitter BS 3, which propagates at an angle to the main beam and is not
coupled into the fiber, but contains 1.7 % of the total power of both beams.
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be ≈1.3 % (quadrature sum of uncertainties for fiber coupling efficiency, power meter linearity,
and active area uniformity).

4.4.3 Low-aberration collimator

In the AFR, the collimator plays a central role since aberrations may be imprinted on the
wavefronts of the spectroscopy laser beams. These aberrations distort the wavefronts such
that there may be no position in the collimated beam with a plane wavefront, and thus the
backward-traveling beam will not retrace the wavefronts of the forward-traveling beam. The
backcoupled light fraction is a quantity which characterizes how well the wavefront-retracing
property is maintained, because this quantity is directly linked to the overlap integral of
the forward- and backward-traveling beams. In our previous setup of the AFR at 486 nm, a
collimator design based on two achromatic lens doublets was used to minimize aberrations and
achieve a backcoupled fraction consistent with 100 % within 1 % [28]. Apart from correcting
chromatic aberrations, which are irrelevant for our single-wavelength application, achromatic
lens doublets have the advantage of reducing spherical aberration compared to a single lens.

With shorter wavelengths, designing suitable optics becomes more challenging since fewer
glass types are sufficiently transparent and can be combined into achromatic lens doublets. In
theory, aberration-free collimation can be achieved with a single aspheric lens of the desired
shape. To this end, we tested custom-made aspheres1 machined with the advanced technique
of magnetorheological finishing (MRF) [98, 99]. Unfortunately, imperfections from polishing
were still clearly visible on the collimated beam and only around 80 % of backcoupled light
fraction could be achieved.

Therefore, we chose to only work with spherical lenses which are available with small sur-
face roughness. First, at 410 nm we tested a three-lens collimator based on spherical fused-
silica lenses2. A design with minimized aberrations was found by following conventional ray-
tracing techniques such as optimizing the point-spread function and minimizing the optical
path difference of rays, similar to the previous two-achromats design at 486 nm [28]. However,
when testing the assembled custom-made collimator we found that residual spherical aberra-
tions limit the backcoupled fraction to 94(1.2)%. Contrary to our previous experience where
collimator imperfections were clearly visible as distortions in the collimated beam [28], aber-
rations of the three-lens collimator were not visible in the intensity profiles of the collimated
beam and were revealed only by a caustic measurement, i.e. beam profile measurements at
different position within a caustic, shown below in Fig. 4.19. For our application, the usual
ray tracing design process had to be extended by wave optics propagation tools. Finally,
together with the manufacturing company3 we arrived at a four-lens design whose optical
performance was confirmed with a caustic measurement and showed no aberrations above
our detection limit. With this collimator, we achieved a measured backcoupled light frac-
tion of 99.3(1.2)%, consistent with 100 %. In the following, the design and characterization
process of the four-lens collimator is summarized.

1Thorlabs MRF-polished diffraction-limited, high-precision aspheres AL1225H (stock item) and AL1225H-
50URAD-SP (custom order, best possible surface quality with 50 µrad peak-valley slope, optimized for perfor-
mance between 380–410 nm.)

2Note that this is not the three-lens collimator mentioned in [28], which was an even earlier version of poor
manufacturing quality and an unfortunate design, since the last surface of the last lens was chosen to be flat,
forming an etalon with the HR mirror.

3Bernhard Halle Nachfl. GmbH, Germany.
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4.4.3.1 Design process

For our previous collimator at 486 nm, each of the commercial achromatic doublets exhibited
little spherical aberrations by itself, and the combination of two doublets found by ray tracing
turned out to satisfy the requirements of the AFR without further investigation. For shorter
wavelengths, after we found that the three-lens collimator designed by ray tracing optics
alone showed residual aberrations revealed through the caustic measurement (see Fig. 4.19
introduced below), the design process was extended by wave optic propagation tools1. Ray
tracing allows the minimization of wavefront aberrations within a given aperture width, with
the Gaussian beam profile not easily accounted for. For a given number of lenses a compromise
has to be made between the width of the aperture employed for minimizing the wavefront
deviations and the magnitude of acceptable deviations from the aberration-free wavefront.

The aberration-free focusing phase and the leading spherical aberration term can be writ-
ten as

φfoc(r) = −k r
2

2 f , φab(r) ≈ S
(
r4

W 4 − 2 r2

W 2

)
, (4.7)

with f being the focal distance, k the wave-number and W the beam radius at the position
where the aberration is imprinted. The focusing effect of the r4-term in φab(r) is compen-
sated by the r2-term to isolate the contribution of the aberration alone. The parameter S
characterizes the strength of spherical aberration. If in our case (λ = 410 nm, f = 30 mm,
W = 2.2 mm) we would use a single thin plano-convex collimating spherical lens, spherical
aberrations would be as large as S ≈ 3 following the analytical expression of [100]. In the
case of spherical aberrations, deviations from the aberration-free wavefront increase as ∝ r4.
Hence, for larger radial distances r it becomes progressively more difficult to meet the ray
tracing compromise between the width of the aperture employed for minimizing the wave-
front deviations and the magnitude of acceptable deviations, especially at shorter wavelength.
Because the wings of a laser beam extend to large r, it is a priori unclear which ray tracing
criteria should be used.

Therefore, we followed an iterative design procedure together with the manufacturing
company. Ray tracing was used as a guidance based on the manufacturability of lenses and
the requirement of effective focal length of f ≈ 30 mm. Using wave optics propagation,
the designs found in this way were evaluated with simulated intensity profiles in the caustic
measurement simulation. Furthermore, the electric field phase and amplitude were extracted
for simulations of residual Doppler shift with optical Bloch equations. Another important
design criterion is the consideration of residual reflections from lens surfaces back to the fiber
and to the spectroscopy region. After several iterations we found that three lenses are not
enough to meet our requirements and a four-lens design was needed. In order to be able to
use the same collimator for spectroscopy of all 2S-nP transitions with n ≥ 4, the collimator
was designed for the wavelength range from 380 nm to 486 nm. The final collimator design
with an effective focal length of f = 31.02 mm is shown in Fig. 4.17. This focal length, in
combination with the fiber used here, results in a collimated beam with a waist radius of
W0 = 2.2 mm [35].

1Zemax OpticStudio 15.5 Professional, which includes the Physical Optics Propagation (POP) module.
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10 mm

Figure 4.17: Four-lens collimator design with blue solid rays illustrating the collimated beam from
the fiber. Shown lens radius corresponds to the open lens apertures. Dashed rays exemplary show
reflections from the last surface back into the fiber (red) and from the first surface back to the HRmirror
(orange). The analysis of these spurious reflections is important for the collimator design process, since
they may lead to a performance loss of the active fiber-based retroreflector or induce a residual Doppler
shift.

4.4.3.2 Residual reflections from lens surfaces

Though all the collimator lenses are AR-coated for the desired wavelength1, residual reflections
can lead to performance loss of the AFR. Here, we only consider single reflections from lens
surfaces, since multiple reflections are strongly suppressed through the AR coating. Then,
two types of reflections need to be considered. First, reflections of the forward-traveling wave
from lens surfaces back towards the fiber. The part of these reflections that is coupled back
into the fiber can disturb the tip-tilt stabilization. To reduce the influence of these reflections,
efficient coupling into the fiber needs to be avoided which can be evaluated by calculating the
spatial overlap ηfiber of the reflected beam with the fiber mode.

The second type of reflections are reflections of the backward-traveling beam back toward
the atomic spectroscopy region and the HR mirror. These reflections can influence the spec-
troscopy in two ways. Just like the reflection toward the fiber, an optical etalon is formed with
the collimated beam, with the spatial overlap given by ηcoll. The presence of this etalon will
lead to intensity variations in the spectroscopy region, depending on the distance between
the reflecting surface and the HR mirror as well as the laser frequency, which is varied to
record the atomic resonance. However, since the laser intensity is stabilized to the signal of
the PMT behind the HR mirror, these intensity modulations are suppressed and will instead
influence the backcoupled light, possibly disturbing the tip-tilt stabilization. The reflections
can also give rise to a residual Doppler effect. The more the reflections are focused near the
spectroscopy region, either before or after the reflection of the HR mirror, the greater the
intensity imbalance between the beams as seen by the atoms. To minimize the influence of
these reflections, the design was chosen such that all reflections are diverging with a beam
radius Wrefl �W at the first pass through the spectroscopy region.

The values of ηfiber and ηcoll for all 8 possible first-order reflections are smaller than
η < 1× 10−5, such that with an additional suppression from the AR coating the overlaps are
<1× 10−8. The beam radiusWrefl of the second type of reflections is always above 20 mm. An
example of a reflection back to the fiber from the last collimator surface is illustrated with red
dashed rays in Fig. 4.17. Orange dashed rays illustrate the reflection back to the HR mirror
and the spectroscopy region from the first surface, demonstrating that not only surfaces

1Custom coating from LayerTec, reflectivity R < 0.15 % for 0–10° angle of incidence for 400–490 nm. A
different AR coating would be necessary if the collimator is to be used at shorter wavelengths, e.g. for the
2S-8/9/10P transitions. An uncoated version of the collimator is available for this purpose.
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with negative curvature radii may focus the reflected beam towards the atoms. The highly
suppressed 28 combinations of reflections from two lens surfaces of the forward-traveling beam
lead to 26 strongly diverging and two nearly-collimated beams at the spectroscopy region.

4.4.3.3 Doppler shift simulations with optical Bloch equations

Simulations of the Doppler shift with optical Bloch equations played a decisive role in the
collimator design process. The collimator designs were evaluated using the wave optics prop-
agation tool of our optics design software, with the Gaussian beam profile (beam waist radius
of w0 = 1.9 µm representing the fiber mode) as an input beam. The actual fiber mode deviates
slightly from a Gaussian beam profile, which is treated in detail in [35]. We extracted the
electric field amplitude and phase after the collimator to perform simulations of the residual
Doppler shift in the AFR. For this purpose, optical Bloch equations were numerically solved
for our configuration of the experiment, using the atomic system for the 2S-6P transitions in
hydrogen with 10 µW of laser power. We simulated individual trajectories of atoms moving
through the center of the laser beam at different angles α = 90° + δα, and determine the
Doppler shift ∆νD by fitting a Voigt function to the resulting fluorescence line shape. The
atomic velocity is set to v = 200 m/s which would result in an unsuppressed collinear (α = 0°)
Doppler shift of ∆νD = 490 MHz and ∆νD = 2 MHz for δα = 4 mrad. In the simulations,
we evaluate the Doppler shift as a function of the fiber–collimator distance δdfc defined such
that zero δdfc corresponds to the collimation with maximized backcoupled light fraction. No
tip-tilt misalignment of the reflected beam from the HR mirror is assumed here.

Fig. 4.18 (A) compares simulations of perfect paraxial collimation to the four-lens colli-
mator. Both cases are evaluated for different angles δα. The top graph shows the result-
ing Doppler shift ∆νD. The bottom graphs show two AFR beam properties: the intensity
mismatch of forward- and backward-traveling beams at their beam centers, ξcent, and the
backcoupled light fraction Pbc. In the perfectly orthogonal case (zero δα, gray points and
lines), the Doppler shift is strongly suppressed and here found to be zero within the numerical
uncertainty independent of δdfc. For δα 6= 0, there is only a single distinguished value of δdfc
where the Doppler shift vanishes independent of δα. For an aberration-free Gaussian beam,
this value corresponds to the maximum backcoupled light fraction (δdfc = 0 µm).

Here, only single atomic trajectories are evaluated, though in the experiment a finite
atomic beam divergence of 8–10 mrad (FWHM) is present (see Fig. 5.4). However, as
Fig. 4.18 (A) demonstrates, the Doppler shift is approximately linear in δα within the range
of interest. For a symmetric atomic beam which is aligned such that, on average, the atoms
cross the laser beams at an small offset angle α0 (|α0| � π/2) from the orthogonal, there is for
each atom with a crossing angle of α0 +δα̃ another atom with a crossing angle α0−δα̃, where
δα̃ is an angle within the beam divergence. This results in a partial cancelation of the overall
Doppler shift, with the remaining residual Doppler shift corresponding to that of a single
trajectory with angle δα = α0. As a figure of merit for the AFR performance, we evaluate the
Doppler shift at the point of maximum backcoupling (zero δdfc) for an angular displacement
of δα = 4 mrad, corresponding to the typical alignment accuracy in the experiment (see blue
points and lines in Fig. 4.18 (A)). The residual Doppler shift for the aberration-free collima-
tion with the Gaussian beam is exactly zero. For the four-lens collimator with the Gaussian
beam as the input beam, we find almost no difference to the aberration-free Gaussian beam
such that ∆νD = −0.01 kHz.

In Fig. 4.18 (B) several simulations are shown for δα = 4 mrad. For the three-lens col-
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Figure 4.18: The top graphs show the simulated Doppler shift ∆νD for the 2S-6P transition for different
active fiber-based retroreflector (AFR) configurations versus the fiber–collimator distance δdfc. The
bottom graphs show the intensity mismatch ξcent and the backcoupled light fraction Pbc, also versus
δdfc. (A) Aberration-free paraxial collimation compared to the four-lens collimator for different angles
δα. As a figure of merit, the Doppler shift is evaluated at the maximal backcoupling (δdfc = 0 µm)
for δα = 4 mrad (blue points and lines), demonstrating that the four-lens collimator performs almost
as well as the aberration-free collimation, with no substantial difference observed in the simulations.
(B) Simulations for δα = 4 mrad. The simulation for the four-lens collimator is shown in blue as
a reference to (A). The three-lens collimator (orange) as well as a Gaussian beam with spherical
aberrations (green) show a residual Doppler shift of ∆νD ≈ 2–5 kHz, thereby limiting the performance
of the AFR. This residual Doppler shift is mainly caused by the intensity mismatch ξcent which vanishes
for approximately the same value of δdfc as the Doppler shift.

limator with the Gaussian beam as input (orange line) we find ∆νD = −1.79 kHz. Though
this residual Doppler shift still corresponds to a suppression factor >105 of the full collinear
shift, its value is comparable to the uncertainty of the previous 2S-4P result [24]. The calcu-
lated backcoupled light fraction for the three-lens collimator approximately agrees with the
measured value of 94.0(1.2)%. The Gaussian beam with spherical aberrations of S ≈ −0.35
from Eq. (4.7) (an approximate value according to the measured beam quality factor from
Fig. 4.19) results in ∆νD = −4.68 kHz (green line). We find again that the residual Doppler
shift is mainly caused by the intensity mismatch which vanishes approximately for the same
value of δdfc. Therefore, in principle, for an aberrated beam in the AFR one could adjust
δdfc such that the Doppler shift vanishes. However, in practice, reliable identification and
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adjustment of this position is challenging unless it is the point of maximized backcoupled
light fraction.

Two effects may lead to a residual Doppler shift in the AFR (see Section 2.2.4): first, non-
matching wavefronts of the forward- and backward-traveling beams, and second, imbalances
of their intensities. Surprisingly, we find in our simulations, that the second effect dominates
the induced Doppler shift for imperfections caused by aberrations. We do not observe signif-
icant deviations from our simulation results if, after propagation of forward- and backward-
traveling beam, the wavefront mismatch but not the intensity mismatch of both beams is fully
neglected in the spectroscopy region. Therefore, though aberrations are initially imprinted in
the wavefront of the beam, after propagation, they are effectively manifested in an intensity
mismatch in terms of their influence on the Doppler shift. For an aberration-free beam, the
fiber–collimator distance with optimal backcoupled fraction (δdfc = 0 µm) corresponds to the
same distance with balanced intensities of forward- and backward-traveling beams. In the
presence of aberrations, those distances are not the same, such that for δdfc = 0 µm there is
a residual Doppler-shift mainly due to the intensity imbalance.

4.4.3.4 Measurement of collimator performance

We measured the collimator performance at 410 nm by analyzing intensity profiles in the
caustic measurement shown in Fig. 4.19. If the radiusW (z) of a beam with an arbitrary mode
decomposition is defined through the second-moments of the transverse intensity distribution
(“D4σ-method” according to the ISO standard [101]), any beam radius W (z) follows the
hyperbolic propagation law [86, 102, 103],

W (z) = W0

√
1 + (z − z0)2/z2

R, with zR = πW 2
0

M2λ
, (4.8)

where z0 is the waist position, zR the Rayleigh length, and W0 the beam radius at the waist
(or simply waist radius). The factor M2 entering the above equation through zR is denoted
as the beam quality factor. This factor relates the waist radius W0 as defined above to the
waist radius w0 of a Gaussian beam with the same Rayleigh length zR through W0 = M w0.
As we will find below, the collimator used here has a value of M2 very close to one, and thus
the values ofW0 and w0 are identical within the measurement uncertainty in this special case.

For an impinging beam with a beam quality factorM2
0 passing through optics with spher-

ical aberrations of strength S as defined in Eq. (4.7), the beam quality factor M2 of the
transmitted beam is modified by an additional contribution M2

S as [100]

M2 =
√(

M2
0
)2 +

(
M2
S

)2
, with M2

S ≈
√

2S. (4.9)

The beam radius W (z) is determined for the orthogonal x and y transverse directions
according to the second-moment definition with a self-convergent-width factor [104] of Fs = 3.
This beam radius determination is performed at different positions around the focus of theM2

lens (f = 750 mm), corresponding to propagation distances from −10 zR to +10 zR around
the waist position. From the fit according to Eq. (4.8) the beam waist radii W0,x and W0,y,
waist positions z0,x and z0,y, and beam quality factors M2

x and M2
y are extracted. These

values determine the ellipticity ε, astigmatism a, and combined beam quality factors M2 as

ε = max
(
W0,x
W0,y

,
W0,y
W0,x

)
, a = z0,x − z0,y

(zR,x + zR,y) /2
, M2 =

√
M2
xM

2
y . (4.10)
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Figure 4.19: Caustic measurement of the three-lens and four-lens collimators at 410 nm. Top: The
beam radiusW (z), obtained from second-order moments in the x and y directions, is shown versus the
propagation distance z (with different offset for the two collimators) after the f = 750 mm focusing
lens. The plot on the right shows the same data in detail in the region of up to four Rayleigh lengths
zR after the focus, where distortions due to spherical aberrations are expected to be most pronounced.
The fitted beam quality value for the three-lens collimator is M2 = 1.124(6), caused by spherical
aberrations with |S| ≈ 0.34, whereas for the four-lens collimator the beam quality of M2 = 1.013(5)
is not limited by spherical aberrations, but only by the fiber mode profile. Bottom: Normalized
intensity profiles at selected propagation distances A to L (from −10 zR to +10 zR, marked on top
plots) are depicted, along with reference Gaussian beams of 1/e2 intensity radius W (z).

The fits and the determined parameters are shown at the upper part of Fig. 4.19. The
measured ellipticity of a few percent is in agreement with the slightly elliptical beam from
our polarization-maintaining fiber. The reduced astigmatism of the four-lens collimator, α =
0.014(4), was achieved with the help of alignment using the caustic measurement, compared
to the three-lens collimator with α = 0.216(5) where the collimator was aligned with the help
of centering the observed distortions in the intensity profiles. For the three-lens collimator we
find M2 = 1.124(6) which corresponds to |S| = 0.33(1) according to Eq. (4.9). Aberrations
are also revealed as distortions in intensity around the focus after the M2 lens, see bottom
of Fig. 4.19 where the intensity profiles at selected positions A to L, as marked on the top,
are shown. For the three-lens collimator we observe the characteristic intensity profiles for
a beam with spherical aberrations [105]. Note that distortions in intensity appear only in
the region between zR and 4 zR after the focus, which demonstrates that the manifestation
of aberrations cannot be readily observed in intensity of collimated beam without the caustic
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Figure 4.20: Measured beam profile of the collimated beam in the spectroscopy region of the active
fiber-based retroreflector (12 cm after the collimator) for: (A) 3-lens collimator, (B) 4-lens collimator.
A weak “orange-peel” structure is visible in both beam profiles, but more pronounced on the 4-lens
collimator beam profile. Cuts through the beam profiles are shown in (C) along with a Gaussian fit
to the data (offset for 4-lens collimator).

measurement. In the simulations of caustic intensity profiles for the given three-lens collimator
design, we find a larger dip depth and more distorted intensity profiles than observed, which
we attribute to high sensitivity to single-mode fiber input parameters. For the four-lens
collimator, no beam profile distortions are observed in agreement with simulations using the
given lens design, and the beam quality factor M2 = 1.013(5) is limited only by the not
exactly Gaussian profile from the single-mode fiber [35].

The collimated beam intensity profiles in the spectroscopy region (corresponding to 12 cm
propagation distance after the collimator) are shown in Fig. 4.20 (A) and (B) for the three-lens
and four-lens collimator, respectively. Though no performance shortcomings of the four-lens
collimator are observed in the caustic measurement, a weak residual “orange-peel” structure
is observed on the collimated beam of both collimators, which is more pronounced for the
four-lens collimator. This structure is barely observed on cuts through intensity profiles as
shown in Fig. 4.20 (C). We observed similar but much stronger deviations in beam profiles
from aspheric lenses where these mid-spatial-frequency errors are more pronounced, as well
as for some other collimators. It is important to note that these lens imperfections imprint
phase distortions which may disturb the wavefront-retracing property of the AFR. After
propagation, these phase distortions transform into intensity distortions and may introduce
a residual Doppler shift. Therefore, it is important to ensure best possible lens polishing
quality, minimizing mid-spatial frequency errors. In our case, the lens surfaces and polishing
processes responsible for deviations observed in Fig. 4.20 (B) could not yet be identified
and remain under investigation. Ultimately, for our experiment only the velocity-resolved
spectroscopy measurement provides certainty on the suppression factor of the Doppler shift.
In the preliminary data analysis discussed in this thesis, we see no evidence for a residual
Doppler shift within the uncertainty of the measurement1.

As discussed at the beginning of this section, the backcoupled light fraction gives an im-
portant figure of merit of the collimator performance. Compared to the three-lens collimator
with a backcoupled fraction of 94.0(1.2)%, the backcoupled light fraction of the four-lens

1The preliminary analysis of the 2S-6P measurement (see Chapter 6) results in a residual Doppler slope
|κ| < 3.5 Hz/(m/s), corresponding to a Doppler shift of < 700 Hz for an atom with a speed of v = 200 m/s.
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collimator is measured to be 99.3(1.2)%. Note that this number gives the spatial overlap of
the forward- and backward-traveling beams in the AFR, with the known transmission losses
of the beam path from the spectroscopy region to the backcoupling APD are taken into ac-
count. The uncertainty of 1.2 % is deduced from the quadrature sum of uncertainties for
position-dependent photodiode sensitivity, beamsplitter transmission, fiber attenuation, as
well as AR coating uncertainties of the fiber coupling lens, fiber tips, and collimator lenses.

4.4.4 Retroreflection control and stabilization

In order to achieve the wavefront-retracing retroreflection in the AFR, it is necessary to adjust
the distance between the fiber and the collimator (collimation distance) such that the position
of the flat wavefront of the collimated beam is at the HR mirror. Moreover, the horizontal
and vertical (tip and tilt) directions of the HR mirror need to be oriented such that the
wave vectors of the forward- and backward-propagating waves are antiparallel to each other.
If both conditions (collimation and tip-tilt alignment) are optimized, the backcoupled light
fraction is maximized.

The stabilization of the HR mirror tip-tilt orientation is described in detail in the previous
work [28]. In short, modulating the two piezo actuators for the tip-tilt movement of the
HR mirror mount with weak signals of different frequencies (producing maximal angular
misalignment of approximately ±1 µrad) and detecting this modulation in the backcoupled
light with two lock-in amplifiers, two error signals are generated which are used for the tip and
tilt stabilization feedback loops. We tried improving the bandwidth of the feedback by using
higher modulation frequencies. Due to the entanglement between horizontal and vertical
movement of the mirror mount, as well as due to mechanical resonances, a crosstalk between
the horizontal and vertical piezo actuators is present. In order to find frequencies with minimal
crosstalk between horizontal and vertical modulation, we measure the corresponding transfer
functions of the HR mirror assembly. For this measurement we use an auxiliary laser beam
hitting the HR mirror from the back side to allow for an in-situ measurement (with PMT
being removed) under a small (≈5°) angle, and detect the reflection with a position-sensitive
detector while sweeping the frequency of horizontal and vertical piezo actuators. Though
higher modulation frequencies of 1.52 kHz (vertical) and 2.09 kHz (horizontal) with minimal
crosstalk (typically 10–30 % amplitude ratio of horizontal to vertical error signals) could be
identified, the feedback bandwidth could not be improved due to large mechanical resonances
around 30 Hz caused by the rotatable geometry of the whole AFR setup.

Fig. 4.21 shows the performance of the tip-tilt stabilization, where in (A) and (B) the
in-loop error signals are plotted. The bandwidth of stabilization as deduced from the in-loop
error signals is around 10 Hz. However, no significant noise suppression is observed on the
spectrum of the backcoupled light shown in (C), with even a slight increase of noise visible
for low frequencies when the tip-tilt stabilization is switched on. Only a small decrease of
noise is visible on the backcoupled light for resonances around 30 Hz. Apart from Rayleigh
scattering from fiber discussed below, the unobserved noise suppression in the backcoupled
light could originate from the large amount of noise common to both directions which cannot
be suppressed due to large cross-talk. Though for inspection of this issue no out-of-loop
measurement of the tip-tilt stabilization is available in our setup, the performance of the
tip-tilt feedback is clearly observed in the backcoupled light when scanning the piezo actuator
controlling the fiber–collimator distance as described below and shown in Fig. 4.22. Likewise,
during a typical hour-long precision spectroscopy measurement, the tip-tilt feedback maintains
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Figure 4.21: Performance of the tip-tilt stabilization of the active fiber-based retroreflector. Spectra
of the in-loop error signals produced by the lock-in amplifiers (1 ms time constant) for the horizontal
and vertical (tip and tilt) feedbacks of the HR mirror are shown in (A) and (B). The spectrum of the
backcoupled light on the backcoupling APD (see Fig. 4.15) is shown in (C). All spectra are shown with
tip-tilt stabilization switched on (orange line), off (blue line) and with the laser blocked (gray line).
Each faint line is a 15 s average with a resolution bandwidth of 0.25 Hz, whereas heavy lines are the
average of all data. Large resonances around 30 Hz are observed on all signals, limiting the feedback
bandwidth to around 10 Hz as deduced from the in-loop error signals.

the retroreflecting condition.
In the previous setup [28] the collimation distance was adjusted by using a remote-

controlled motor and maximizing the observed signal on the backcoupling APD. With this
procedure the backcoupled signal could typically be optimized within ≈1 %. We improved
the distance control by adding a piezo actuator to the precision motor, which is now used
for pre-alignment only. In order to determine the optimal piezo voltage, we typically scan
the applied voltage with a frequency of 1 Hz over a period of 30 s such that the fluctuations
on the backcoupling APD are averaged out, see Fig. 4.22. Due to the not exactly on axis
translation of the fiber, we observe tip-tilt misalignment on the in-loop error signals shown
in (C) and (D), resulting in a large drop of the backcoupled light fraction (3 %) shown in (A)
with tip-tilt stabilization switched off (brown lines). With the tip-tilt stabilization switched
on (blue and orange lines), the drop of the backcoupled light fraction by ±0.5 % for ±1.5 µm
around δdfc = 0 µm agrees with simulations from Fig. 4.18. From the fitted dashed line the
optimal piezo voltage is determined, allowing to set the fiber–collimator distance to within
approximately ±0.2 µm of the optimal value corresponding to ±0.1 % of the maximum back-
coupled light fraction value. In our setup we observe only slow drifts of the optimal collimation
distance on the order of 0.2 µm per hour (correlated with temperature) such that typically an
adjustment is performed every 1-2 hours with no need of active stabilization.

The observed modulation on the backcoupled light fraction in Fig. 4.22 (A) demonstrates
how in addition to the precise distance control, the piezo actuator provides the possibility to
inspect the AFR for optical etalons. The corresponding λ/2 modulation is depicted along with
fit residuals in (B), not exactly matching all the data due to expected nonlinearities of the
piezo actuator of ∼20 % over the full range. In order to avoid etalons, we use only AR-coated
optics and place all photo-detectors at large angles (&10°). The fiber tips are angle-cleaved
under 8° and AR-coated. After a thorough investigation, we found that the modulation we
observe originates from Rayleigh scattering inside the fiber. A small fraction on the order of
10−3 of the scattered light from randomly distributed scattering points inside the fused silica
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Figure 4.22: Demonstration of the improved fiber–collimator distance control using a piezo actuator.
All plots show the recorded data when scanning the voltage of the piezo actuator with a frequency of
1 Hz over an averaging time of 30 s. The common x-axis has been converted from the applied voltage
and leverage factor to the fiber–collimator distance δdfc, with zero δdfc corresponding to maximum
backcoupling. In (A) the normalized signal of the backcoupled light is shown. If the tip-tilt stabilization
is switched off (brown lines), clear tip-tilt misalignment is observed on the in-loop error signals of the
tip-tilt stabilization shown in (C) and (D), leading to a large drop in the backcoupled light fraction
of ≈3 % in (A) over the full distance range. With tip-tilt being stabilized (blue and orange lines),
this drop is reduced to ≈0.5 % in agreement with simulations from Fig. 4.18. The dashed line in (A)
shows a quadratic fit to the data with tip-tilt stabilization switched on. A clearly visible modulation
is observed on all of the signals, originating from Rayleigh scattering inside the fiber leading to an
etalon-like effect. Along with the fit residuals of the backcoupled fraction in (B), the expected λ/2
modulation is drawn (dashed gray line) which also reveals the nonlinearity of the piezo actuator.
As expected, the modulation is stronger when the 2nd intensity stabilization (to the PMT after the
HR mirror) is switched on (orange line), as compared to the case with intensity not stabilized (blue
line).

of the fiber is guided forward and backward in the fiber mode [106–108], interfering with the
strong reflection from the HR mirror. As expected, stabilizing the intensity after the fiber
leads to an increased modulation (orange lines) as compared to the case with the stabilization
switched off (blue lines). Since the amplitude of fluctuations from Rayleigh scattering in the
backcoupled light increases with the square root of the fiber length, we use an as short as
possible fiber. The detailed report of our investigation of the etalon-like effect from Rayleigh
scattering in fiber will be subject of a future publication.

4.4.5 Intensity stabilization

Since the fluorescence signal depends on the intensity of the exciting laser beams, it is ad-
vantageous to implement an intensity stabilization in the AFR. Various sources like pointing
fluctuations, polarization drifts, electronic noise in the laser system or frequency-dependent
AOM efficiencies lead to intensity fluctuations already before the light reaches the AFR fiber.
In the previous setup only the intensity of this light before the fiber was stabilized [28].
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Figure 4.23: Spectra of the PMT and PD3 photodetector signals showing the performance of the
two intensity stabilizations of the active fiber-based retroreflector, shown for active stabilization on
(orange line) or off (blue line) along with the background noise (gray line). (A) Spectrum on the out-
of-loop PD3 detector demonstrating the performance of the first high-bandwidth (∼30 kHz) intensity
stabilization to PD1 (with second intensity stabilization switched off). The frequency interval up to
500 Hz is plotted with a resolution bandwidth (RBW1) of 6.25 Hz and with RBW2 = 62.5 Hz for higher
frequencies. (B, C) Second intensity stabilization of wavefront-retracing beams using the PMT signal
after the HR mirror (with first intensity stabilization switched on). The in-loop PMT spectrum in (B)
demonstrates the bandwidth of around 10 Hz while additional noise is imprinted on PD3 as shown
in (C).

However, the intensity of the wavefront-retracing beams in the AFR is then still affected by
the coupling efficiency of the AFR fiber, subject to pointing fluctuations, as well as by the
frequency-dependent interference from the Rayleigh scattering mentioned above. In order
to stabilize the intensity of the wavefront-retracing beams, we use the summed signal of all
four quadrants of the PMT behind the HR mirror (see Fig. 4.15). Due to the low power
reaching the PMT (70–400 pW) and the resulting large shot noise, only a low-bandwidth
stabilization can be achieved such that the high-bandwidth first intensity stabilization (with
PD1 in Fig. 4.15 serving as detector) is still needed to suppress other noise. Two different
electro-optic modulators (EOM1 and EOM2 in Fig. 4.15) are being used as actuators, with
a low-pass filter placed before EOM2 to adapt for lower feedback bandwidth.

Fig. 4.23 shows the performance of the two intensity stabilizations by comparing the spec-
tra for the corresponding stabilization switched on (orange line) and off (blue line). In (A)
the spectrum of the out-of-loop detector PD3 demonstrates the (∼30 kHz bandwidth of the
first intensity stabilization (with the second intensity stabilization switched off). The spec-
trum of the PMT signal which is the in-loop detector of the second intensity stabilization is
shown in (B), where the feedback bandwidth of ∼10 Hz is observed from the merging point
of the blue and orange data lines. The second intensity stabilization imprints the noise of the
stabilized signal on the PMT to the light before fiber observed on the spectrum of PD3 signal
in (C). Note that also shot noise from the PMT signal is imprinted which cannot be fully
avoided. Using a low-pass filter with a corner frequency of 80 Hz in the second intensity sta-
bilization we found a compromise between a sufficient suppression of noise and an acceptable
additional imprinting of shot noise at lower frequencies.

When scanning the atomic resonance, at each point the frequency applied to the AOM in
Fig. 4.15 is switched, thereby causing a short dead time (in our case ∼400 µs using the signal
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generator1) where no light passes through the AOM. The error signal generated from noise
during that dead time perturbs the feedback loops. To avoid this, we use a pulse generator
triggered to frequency switching to place the feedback loops on hold during and after the
dead time, adapted to each of the feedback loops (20 ms for 1st intensity stabilization, 22 ms
for 2nd intensity stabilization, 50 ms for tip-tilt stabilization).

Furthermore, we implemented the possibility to automatically switch the power of the
spectroscopy laser beams by using digital step attenuators2 connected in series at the output of
the photodiodes. In this way, the signal levels of the feedback loops remain unchanged without
the need to modify the feedback loop parameters. The power switching allows us to perform
simultaneous spectroscopy measurements with different laser powers, thereby investigating
the light force shift discussed in Chapter 3.

4.4.6 Polarization monitor
For the 2S-6P transition measurement, we try to achieve the best possible linear polarization
of the wavefront-retracing beams. Any residual circularly polarized light leads to a first-order
Zeeman shift which vanishes for fully linearly polarized light (see Section 6.2.4.3). Further-
more, the linear polarization rotation angle at the position of the atoms, θL, strongly influences
the quantum interference line shift (see Section 6.2.3). One way to achieve a well-controlled
polarization in the AFR would be to place a polarizer with high polarization extinction ra-
tio (PER) after the collimator. However, such a polarizer might lead to optical etalons,
wavefront distortions, and residual intensity fluctuations, and requires additional space cur-
rently not available in our setup. Therefore, we choose to work only with a well-characterized
polarization-maintaining (PM) fiber.

Here, we use the Stokes formalism to describe the evolution of the state of polarization,
which is at any point given by a Stokes vector S = (S0, S1, S2, S3) [109]. In particular, the
residual circularly polarized light fraction is given by S3/S0, where S0 is the total intensity and
S3 the intensity difference between right and left circularly polarized light. The orientation of
the polarization ellipse, or linear polarization rotation angle, θ, is given by the other two Stokes
parameters as tan 2θ = S2/S1. For fully polarized light, as is the case here, S2

1 +S2
2 +S2

3 = S2
0 ,

and the polarization extinction ratio PER is related to the residual circularly polarized light
fraction as |S3/S0| ≈ 2

√
1/PER for PER � 1.

In order to achieve a high PER after a PM fiber, it is important to use incoming light with
a high PER, and to align the linear polarization rotation angle of the incoming light to the
polarization-maintaining axis of the fiber. For our PM fiber, this alignment has to be better
than 1°, which we achieve by placing the polarizers in the PSPU (see Fig. 4.15) on rotation
mounts. Furthermore, we find that the coupling lens as well as mirrors and beamsplitters
after the polarizers may distort the input polarization due to stress-induced birefringence. We
minimize this effect by also placing the fiber onto a rotation mount, and systematically varying
the orientation of both the polarizers and the fiber mount. For their optimal orientations,
the polarization is aligned to both the stress-induced birefringence axis of optical components
after the polarizers (such that the resulting effect from their birefringence is minimized), and
the polarization-maintaining axis of the fiber.

Typically, for PM fibers in the near UV, the specified PER of output polarization (for
optimal alignment of input polarization) is around 20 dB, corresponding to a circularly polar-

1Rohde & Schwarz SMC100A.
2Mini-Circuits ZX76-31R5A-PPS+.
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ized fraction of |S3/S0| < 20 %. For our PM fibers, we find that stress-induced birefringence
at the fiber connectors mostly limits the achieved polarization extinction ratio and that in a
sample of commercial, connectorized fibers some have a higher PER of >26 dB, corresponding
to |S3/S0| < 10 %. Likewise, the fluctuations over time of the orientation θ of the polarization
ellipse at the fiber output are found to be below 3°. Such a specially selected fiber is used in
the AFR. Furthermore, we observe that by thermally isolating the part of the fiber outside
of vacuum, only slow polarization drifts occur on the time scale of hours.

To monitor the polarization in the AFR, we implemented polarimetry of the backcoupled
light by placing a polarimeter1 to measure the polarization state Smeas in the unused beam
path before BS 2 as depicted in Fig. 4.15. This allows a partial reconstruction of the polariza-
tion state Satom after the collimator, and thus the polarization state of the light interacting
with the atoms. The full polarization state could in principle be obtained from polarimetry
of the light leaking through the HR mirror, assuming the effects of the HR mirror on the
transmitted polarization state are sufficiently characterized and are constant over time. Since
this would further increase the complexity of the setup and require an in-vacuum polarimeter
for <100 pW of laser power, this approach was not implemented here.

In the following, we summarize how the measured polarization state Smeas of the backcou-
pled light relates to the polarization state Satom of the light interacting with the atoms. The
light starts with a well-characterized polarization state Sin, which in our setup is taken to be
between beamsplitters BS 2 and BS 3 (see Fig. 4.15). It then passes various optical compo-
nents, including the fiber and the collimator, in the forward direction, resulting in polarization
state Satom. It is then retroreflected at the HR mirror and passes through the same compo-
nents in the backward direction, resulting in a polarization state Sback at the same position
as where Sin is defined. Finally, the backcoupled light passes through additional components
before reaching the polarimeter, where the polarization state Smeas is measured. We separate
the problem into two parts. First, the reconstruction of Satom from Sback is treated, which
involves only components common to both the forward- and backward-traveling direction.
This part includes the fiber, which here is the dominant source of polarization drifts, caused
mainly by temperature fluctuations in the laboratory. Second, the polarization evolution from
Sback to Smeas is considered, which involves components not common to the forward- and
backward-traveling direction, and not subject to significant polarization drifts in our setup.

The total birefringence effect of any number of non-polarizing components can be described
by the combined Mueller matrix R(φ) Γ(δ, β) [110, 111]. R(φ) is the Mueller matrix of a
rotator (such as an element with circular birefringence) with rotation angle φ, and Γ(δ, β)
is the Mueller matrix of a linear retarder (such as a wave plate) with retardance δ and the
birefringence axis oriented at an angle β. The matrix R(φ) does not change the circularly
polarized fraction S3/S0, but only rotates the orientation of the polarization ellipse. Note that
the parameters φ, δ, and β are only effective parameters describing the overall polarization
behavior of the system, and are not necessarily linked to the circular or linear birefringence
of each element (e.g. the fiber).

Importantly, the parameter φ, which describes the effective circular birefrigence, can be
nonzero even if none of the physical objects in the system exhibit circular birefringence,
e.g. when cascading multiple linear retarders. This can be easily understood when visualized
on the Poincaré sphere: The action of a wave plate corresponds to a rotation about an axis
in the equatorial plane, while the action of a rotator corresponds to a rotation about the

1Schäfter+Kirchhoff SK010PA-UV.
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north–south axis. The combination of two or more wave plates can be described as a single
rotation, with the axis of this rotation however not generally lying in the equatorial plane.
Thus, the resulting rotation cannot be described by a single wave plate, and the combination
of wave plate and rotator is necessary.

We can therefore describe the forward propagation through the common optical system
by the Mueller matrix

F (δ, β, φ) = R(φ)Γ(δ, β), (4.11)

such that

Satom = F (δ, β, φ)Sin. (4.12)

Because the coordinate system is different for the return path, the common optical system is
not described by the same Mueller matrix as in the forward direction, but by its representation
in the coordinate system of the returning beam. For the linear retarder this corresponds to
flipping the sign of the orientation to the vertical, β → −β, while the retardation stays
unchanged. On the other hand, because for a reciprocal medium the direction of rotation
is always the same when referenced to the direction of propagation, the Mueller matrix for
the rotator for the return path is identical to that of the forward path. Thus, the combined
Mueller matrix for forward propagation through the system, retroreflection, and backward
propagation through the system reads

B(δ, β, φ) = Γ(δ,−β)R(φ)MR(φ)Γ(δ, β), (4.13)

and thus

Sback = B(δ, β, φ)Sin. (4.14)

Here, M = Γ(π, 0) is the Mueller matrix of a mirror [109]. We note that

R(φ)MR(φ) = M , (4.15)

that is, the orientation of the polarization ellipse after forward propagation cannot be de-
termined from the backcoupled light, since its rotation in the forward direction is exactly
reversed in the backward direction. However, since the shape of the ellipse is not affected,
information about the circularly polarized fraction after forward propagation is still contained
in the backcoupled light.

Consider first a perfect incoming horizontal or linear polarization, (S2/S0)in = ±1,
(S2/S0)in = (S3/S0)in = 0, and, for simplicity, (S0)in = 1. This choice results in a polar-
ization state after forward propagation of

Satom = F (δ, β, φ)Sin

=


1

± cos(2β) cos(2β + 2φ)± sin(2β) cos(δ) sin(2β + 2φ)
± cos(2β) sin(2β + 2φ)∓ sin(2β) cos(δ) cos(2β + 2φ)

± sin(2β) sin(δ)

 , (4.16)
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and a backcoupled polarization state of

Sback = B(δ, β, φ)Sin

=


1

± sin2(2β) cos(2δ)± cos2(2β)
∓ sin(4β) sin2(δ)
∓ sin(2β) sin(2δ)

 . (4.17)

As expected, the second and third components of Satom, describing the orientation θatom ≡ θL

of the polarization ellipse after forward propagation, depend on the effective circular birefrin-
gence rotation angle φ, while Sback is independent of φ and only depends on δ and β. Thus,
θL cannot be determined from Sback. However, the fourth component of Satom, (S3/S0)atom,
describing the circularly polarized fraction, only depends on δ and β, allowing a (partial)
reconstruction from Sback.

To this end, we solve for (S3/S0)atom given Sback = (1, s1, s2, s3). It turns out that only the
absolute value of (S3/S0)atom, but not its sign, can be determined in this way. Furthermore,
there are two solutions for |(S3/S0)atom|, given by

|(S3/S0)atom|± = A±|s3|
√
s4

3 + s2
2

(
2 + s2

3 ± 2
√

1− s2
2 − s2

3

)
, (4.18)

with A± =

√√√√2s2
2 + s2

3 ± s2
3

√
1− s2

2 − s2
3

2s2
3(s2

2 + s2
3)(4s2

2 + s4
3) . (4.19)

We find that |(S3/S0)atom|− ≤ 1/
√

2 and |(S3/S0)atom|+ ≥ 1/
√

2. If we can constrain
the value of |(S3/S0)atom|, e.g. through an auxiliary measurement, the ambiguity between
|(S3/S0)atom|+ and |(S3/S0)atom|− can be resolved. This is the case for the AFR, where
|(S3/S0)atom| < 20 %, and we will use the solution |(S3/S0)atom|− for |(S3/S0)atom| in the
following.

Keeping only the lowest-order terms of s2 ≡ (S2/S0)back and s3 ≡ (S3/S0)back,
|(S3/S0)atom|− reduces to

|(S3/S0)atom|− '
1
2

√
(S2/S0)2

back + (S3/S0)2
back. (4.20)

This approximation deviates by less than 2 %, corresponding to our typical measurement
uncertainty, from the full solution for |(S3/S0)atom| < 0.3. The same approximation can also
be directly retrieved by assuming |β| � 1 in Eqs. (4.16) and (4.17). The latter derivation
agrees with the intuitive picture that for a given wave plate with an arbitrary value of δ, a
linear input polarization is only (approximately) preserved if β � 1.

Finally, small imperfections of the incoming polarization state Sin, that is, a small circu-
larly polarized fraction, (S3/S0)in � 1, and a small rotation from the vertical or horizontal,
(S2/S0)in � 1, can be taken into account with

|(S3/S0)atom| '
1
2

√(
(S3/S0)back − (S3/S0)in

)2 +
(
(S2/S0)back + (S2/S0)in

)2
. (4.21)

In our setup, (S3/S0)in ' −0.024 (' 0.012) and (S2/S0)in ' −0.036 (' 0.039) for vertical
(horizontal) input polarization.
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Figure 4.24: The absolute value of the circularly polarized fraction |(S3/S0)atom| of the light seen by the
atoms, as deduced from polarimetry of light backcoupled through the active fiber-based retroreflector.
|(S3/S0)atom| is found using Eqs. (4.21) and (4.22). (A) Histogram summarizing the polarization
data from 2875 2S-6P line scans (22 measurement days). |(S3/S0)atom| is always less than 10 %,
corresponding to a polarization extinction ratio of PER > 26 dB. (B) |(S3/S0)atom| for the individual
line scans versus time (faint lines) for each measurement day, with one exemplary day (199 spectroscopy
line scans) highlighted (black line).

Optical elements, including non-polarizing beamsplitters, can be subject to polarization-
dependent transmission and reflectivity, thereby acting as partial polarizers. For the com-
ponents of the common optical system, we here find that the latter are unbalanced between
orthogonal polarizations on the level of 2 % and thus negligible. If this were not the case, the
above treatment would be insufficient and the system would instead need to be modeled as
a combination of a partial polarizer in between two different wave plates and an additional
rotator [110].

We now consider the polarization evolution of the backcoupled light on the non-common
path from Sback to Smeas, which can be described by a Mueller matrix MBS, such that

Sback = M−1
BS Smeas. (4.22)

MBS is experimentally determined and is found to be mainly determined by the properties
of beam splitter BS 2 (see Fig. 4.15), which shows a polarizing effect on the order of 20 %.
Because the backreflected light is transmitted through or reflected from BS2 for vertical or
horizontal polarization, respectively,MBS is found to be different for the two input polariza-
tions.

Eqs. (4.21) and (4.22) allow the monitoring of the absolute value of the circularly polar-
ized fraction of the light seen by atoms from polarimetry of the backcoupled light, given a
characterization of the polarization effect of the optical components before the polarimeter.
We confirmed this method in a test measurement by measuring the polarization after the col-
limator with a second polarimeter placed behind the HR mirror (with the PMT of Fig. 4.15
removed), and comparing it to the derived result from the simultaneous measurement of the
backcoupled polarization. Based on the uncertainties for Stokes parameter measurements
(∼1 %), combined with the uncertainty in the determination of MBS, we estimate the abso-
lute accuracy on deducing |(S3/S0)atom| to be 2 %. The same test measurement was also used
to confirm that fluctuations over time of the linear polarization rotation angle at the position
of the atoms, θL, are below 3°.
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On most measurement days of the 2S-6P measurement, we continuously took polarime-
try data. In Fig. 4.24, the absolute value of the circularly polarized fraction |(S3/S0)atom|
of the light seen by the atoms is shown, as deduced from polarimetry of the backcoupled
light according to the above equations. The histogram of Fig. 4.24 (A) shows the values for
|(S3/S0)atom| for 22 measurement days with a total number of 2875 spectroscopy line scans.
|(S3/S0)atom| is always less than 10 %, corresponding to a polarization extinction ratio of
PER > 26 dB. Note that the distribution of |(S3/S0)atom| is skewed, which is partly caused
by an offset in (S3/S0)atom introduced by the stress-induced birefringence of the fiber con-
nectors and the collimator. The time variation of the circularly polarized fraction is shown in
Fig. 4.24 (B), showing slow drifts on the time scale of hours attributed to thermal fluctuations
in the laboratory. Because of the in situ monitoring of |(S3/S0)atom|, a subset of line scans
with |(S3/S0)atom| well below 10 % can be selected, if needed.

4.5 Cryogenic atomic beam

To reach the required accuracy in the spectroscopy of the 2S-nP transitions, a cryogenic
atomic beam with a high flux of atomic hydrogen is required. This is because the lower the
temperature TN of the atoms in the beam, the lower their speed v ∝

√
TN, in turn leading to

reduced systematic effects, foremost the first-order Doppler effect, which scales as ∝ v. The
high flux is needed to reach high enough statistics to accurately determine the line center.
Here, a temperature of TN ≈ 5 K is used, which can be reached with relatively simple liq-
uid helium cryostats. The main challenge in producing such a beam is the recombination of
atomic hydrogen atoms (H), initially produced in a dissociator (see Section 4.5.1) from molec-
ular hydrogen (H2), back into energetically preferred hydrogen molecules. This recombination
tends to occur as the atoms collide with walls and is typically only negligible for certain ma-
terials at certain temperatures. On the other hand, the atoms need to be guided, i.e. through
collisions with walls, from the dissociator to a cold nozzle at TN (see Section 4.5.2), where
they thermalize again through collisions, before escaping into vacuum and forming the atomic
beam. The challenge is then to find a design with as little recombination as possible while
also thermalizing the atoms to a low temperature, which here is achieved by accumulating
solid H2 on the cold walls of the nozzle. Finally, the atomic beam created in this way needs
to be collimated to limit the Doppler broadening of the atomic resonance, which is achieved
through a variable beam aperture (see Section 4.5.3).

4.5.1 Hydrogen dissociator

The hydrogen atoms probed in the experiment are produced in a dissociator, in which hydro-
gen molecules (H2) are dissociated into two hydrogen atoms (H). The H2 gas is taken from a
gas cylinder and has a purity of ≥ 99.999 %. It is fed through a palladium hydrogen purifier1
to further increase the purity.

The hydrogen dissociator itself consists of an H2-filled discharge tube inserted into a
microwave (MW) cavity. The MW fields sustain an electrodeless discharge inside the tube,
producing a plasma, and, finally, hydrogen atoms. The design of both the discharge tube
assembly and the microwave cavity are very similar to that described in detail in [112] (see

1The purifier was removed during the light force shift measurements at the end of July 2019, as the purity
of the molecular hydrogen was found to be most likely limited by air leaks after the purifier.
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especially Figs. 2 and 3 therein). The MW cavity extends approximately 28 mm along the
discharge tube and is resonant at 2.45 GHz. The input MW is derived from a solid-state
MW generator1. 40 W of MW power is sent to the cavity, and, after adjusting the MW cavity
length, typically no reflection back to the generator is observed when the discharge is running,
except when the discharge tube is degraded (see below).

The discharge tube has an inner diameter of 7.25 mm (outer diameter 9.3 mm, length
250 mm) and is made of crystalline sapphire (Al2O3), which has a superior thermal conduc-
tivity compared to fused quartz as used in [112]. As opposed to the discharge tube used
in [112], the sapphire tube itself has no built-in small orifice to limit to flow of H into the
vacuum chamber. Instead, at the end of the discharge tube towards the vacuum chamber,
a PTFE tube with an inner diameter of 5.3 mm and extending 35 mm into the discharge
tube is inserted. The PTFE tube itself has a small, exchangeable2 orifice with a diameter of
300 µm and a length of 2.07 mm, corresponding to a conductance of 6.0× 10−6 m3/s for H at
a temperature of −20 °C using the equations given in [113]. The orifice sits at a distance of
60 mm from the center of the MW cavity. The discharge tube is cooled at the position of the
MW cavity with gaseous nitrogen, which itself is cooled by passing through tubing immersed
in liquid nitrogen. The temperature of the nitrogen gas after the discharge tube is typically
kept at −30 °C. . .−10 °C, controlled by varying the flow of nitrogen gas.

The flow of H2 into the discharge tube, QH2 , is controlled with a gas dosing valve. The
flow is measured right before this valve with a thermal mass flow meter3, which gives readings
of the volumetric flow in units of ml/min referenced to a temperature of 0 °C and a pressure
of 1013.25 mbar. Throughout this work, these reference conditions are used for flows given in
units of ml/min. Additionally, the pressure of H2 is monitored directly after the valve and
right before the discharge tube, using a pressure gauge4 which itself measures the thermal
conductivity of the gas (Pirani gauge). Typically, the discharge is operated with a flow of
QH2 = 0.35 ml/min, corresponding to 1.57× 1017 molecules/s, for which an H2 pressure of
approximately 1.6 mbar is measured. Using the conductance of the orifice for H and assuming
a gas temperature of −20 °C, the flow for this pressure is calculated to be 0.31 ml/min, in
reasonable agreement with the measured flow.

The dissociator is operated by first filling the discharge tube with H2, then switching
on both the MW power and the discharge tube cooling, and finally starting the discharge
with a high-voltage pulse applied to the outside of the discharge tube5. The pressure reading
drops slightly after the discharge is started, which is attributed to a rise in the temperature
of the gas mixture inside the discharge tube. At the same time, the flow reading remains
constant, indicating that the cooled orifice limiting the flow stays at a constant temperature.
No attempt was made at measuring the degree of dissociation of the gas leaving the discharge.

1SAIREM GMS, max. output power 200 W.
2From February to May 2019, an orifice of 500 µm diameter and 3.5 mm length was used (conductance

1.7× 10−5 m3/s for H at and at −20 °C). To achieve the same flow of H with the newer, smaller orifice, an
approximately three times higher pressure of H2 was used. The smaller orifice allows lower H flows without
degrading the discharge tube.

3Bronkhorst F-111B, calibrated for molecular hydrogen for volumetric flows between
0.18 ml/min. . . 9 ml/min. The flow measurement has an uncertainty of ±0.5 % of the reading plus
±0.009 ml/min, i.e 3 % at 0.35 ml/min.

4Leybold TTR 101 N. The gauge reading is calibrated for N2 gas, which is converted to a H2 reading using
the calibration curve supplied by the manufacturer.

5Electro-Technic Products BD-10ASV high-frequency generator, generating 20 kV. . . 50 kV pulses.
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However, in the similar design of [112] a degree of dissociation1 αdis on the order of 90 % was
routinely achieved, and it seems reasonable to assume a similar performance in our system.
Furthermore, the limiting factor for the degree of dissociation is most likely the transport of
the gas to the nozzle.

The output end of the discharge tube protrudes into the vacuum chamber. PTFE tubing
of 6 mm inner diameter, attached to the PTFE tube inserted into the discharge tube, is used
to guide the produced H to the nozzle. In total, a distance of 435 mm is covered, including
five right-angle bends owing to the geometry of the atomic beam apparatus (the second
half of the tubing is visible on the left in Fig. 4.1, labeled (TT)). The straight sections use
commercially available PTFE tubes, while the bends were machined from bulk PTFE. The
recombination probability per collision of H on PTFE surfaces was found to range between
γPTFE = 1× 10−4 . . . 4.5× 10−4 for commercial PTFE tubing in2 [112]. Neglecting the bends
in our tubing and assuming free molecular flow, the number of wall collisions during the
transport of H through the tubing is found to be approximately 8000 [112]. The actual
number of collisions is certainly higher due to the bends, but no estimation of this correction
was attempted. Using this number of collisions, the degree of dissociation αdis after the
tubing is expected to range between 14 %. . . 53 % for initially pure atomic hydrogen. Using
αdis = 90 % at the input of the tubing, this further decreases to αdis = 12 % . . . 47 % at the
nozzle. The signal observed in the 2S-6P measurement hints at a substantially lower αdis than
estimated here, with the underestimation of the collisions in the tubing a likely cause for this
discrepancy.

While it may be tempting to use the residual gas analyzer (RGA) attached to the chamber
to measure αdis, this is not easily possible since the hydrogen atoms have to undergo many
wall collisions, each associated with a high probability of recombination, before reaching the
RGA (see Section 4.2.4). Furthermore, a strong signal corresponding to the mass of hydrogen
atoms is always present from the dissociation of heavier hydrogen-containing compounds
by the mass spectrometer. However, one might interfere some measure of the degree of
dissociation by monitoring the signal corresponding to molecular hydrogen. Previously, the
RGA was attached to the cylindrical vacuum chamber, i.e. probing the outer vacuum region.
In this configuration, a drop of ≈6 % in the molecular hydrogen signal was observed upon
starting the discharge in the dissociator and with the nozzle at room temperature. Note that
for this measurement, QH2 was set to ≈2.3 ml/min, much higher than used in the experiment
described here.

During the experiment, it was sometimes observed that the reflection of MW power from
the cavity could not be removed anymore by adjusting the MW cavity (and with the purple
glow of the discharge dimmed noticeably), worsening over time and ultimately leading to the

1Throughout this work, the definition the degree of dissociation as αdis = NH/(NH +2NH2) is adopted, also
used in [112], where NH and NH2 are the number of hydrogen atoms and hydrogen molecules, respectively.

2Interestingly, [112] also cite, before discussing their own results, a much lower value of 2× 10−5 for γPTFE

from an experiment described in [114]. However, [114] do not give a value for the recombination probability
per collision γPTFE, but instead measure a loss rate of 2.1/s due to recombination on PTFE-covered walls held
at room temperature. To convert this loss rate to a value of γPTFE, the rate of wall collisions in the experiment
of [114] needs to be estimated, which is not done in [114]. This nontrivial conversion is apparently done, but
not mentioned, in [112], resulting in γPTFE = 2× 10−5. Since the conversion thus cannot be retraced, and
because the value of γPTFE found in this way is much lower than values measured in [112], this result is not
used here. On the other hand, the values of γPTFE measured in [112], and given here in the main text, are
derived from the measured degree of dissociation αdis after a straight PTFE tube combined with a detailed
estimation of the number of collisions during transport in this tube.
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point where the discharge could not be started anymore. This behavior coincides with the
degradation of the discharge tube, with a metallic layer forming on the inside at the location
of the MW cavity. This layer is suspected to consist of aluminum, formed by a reaction of
sapphire with atomic hydrogen. The intervals in which the layer formed are not clearly linked
to the operating time of the discharge. In one particular case, occurring after the discharge
was operated with a lower pressure of hydrogen (<1 mbar) than previously used, the layer
formed more quickly than usual. It was found that the layer can be quickly removed by
immersing the discharge tube in a solution of 5 % NaOH in deionized water. Afterwards, the
discharge tube is cleaned in isopropyl alcohol using an ultrasonic cleaner. After re-assembling
the discharge, the discharge is run for a few hours to flush out remaining solvent or other
contaminants. After this procedure, the experiment can be continued.

4.5.2 Cryogenic nozzle

4.5.2.1 Nozzle design and temperature stabilization

After being transported through the PTFE tube, the room temperature hydrogen atoms
reach the cryogenic nozzle, where they ideally thermalize to the nozzle’s temperature TN

before forming an atomic beam. The nozzle, shown in Fig. 4.25, is a copper block with
a through-hole with a diameter of 2.0 mm and a length of 8.0 mm as nozzle channel and
a 4.0 mm diameter blind hole as input channel, with the channels thus forming a t-shape.
This through-hole design is necessary since the 1S-2S preparation laser beam is collinear
with the atomic beam and thus needs to propagate through the nozzle channel. The nozzle
block is attached to the cold finger of the helium continuous-flow cryostat1. A silicon diode
temperature sensor2 is mounted to the nozzle block to measure its temperature TN. A thin
layer of thermal grease3 is applied to the polished interfaces between nozzle and cryostat, and
nozzle and temperature sensor. Brass screws are used for mounting, as brass is non-magnetic
and its thermal expansion is slightly higher than that of the copper parts. An additional
sensor4 measures the temperature inside the cold finger of the cryostat.

The PTFE tubing carrying the H atoms from the discharge tapers toward the nozzle
input channel to efficiently transfer the atoms into the nozzle. A PTFE spacer5 with a wall
thickness of only 0.45 mm creates a small gap of 0.2 mm width between the tubing and the
cryogenic input channel of the nozzle while reducing the thermal conduction between the
two. The tubing is supported through a copper holder attached to the thermal shield of the
cryostat, with the tubing and holder thermally isolated using a polyurea aerogel spacer6. This
design is meant to keep the PTFE tubing, which is held at room temperature at its other end
near the dissociator, from cooling down to the nozzle temperature, where the recombination
probability on PTFE increases substantially [115, 116]. In an earlier version of the nozzle, used
to acquire the data shown in Fig. 4.28 and Fig. 4.30 but not during the 2S-6P measurement,
the PTFE tubing was directly attached to the nozzle without a spacer.

1ICEoxford ICICLE, 3.6 W (4.6 W) cooling power at 4.2 K (4.7 K).
2LakeShore DT-670-BO-1.4L, accuracy of temperature reading is ±12 mK between 1 K and 10 K.
3Apiezon N.
4LakeShore CX-1030-AA-1.4L thin film resistance cryogenic temperature sensor.
5Before the PTFE spacer was installed on 28.05.2019, a polyurea aerogel spacer was used. This spacer

however could easily be flattened when mounting the nozzle due to its softness, making it challenging to
maintain a controlled, small gap between the nozzle and the PTFE tubings.

6Aerogel Technologies Airloy X103 M, thermal conductivity k = 29 mW/(m K).
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Figure 4.25: Drawing of the hydrogen nozzle: (A) orthographic projection, (B) drawing in x-y-plane
as seen from 2S-6P spectroscopy region, and section view cuts along (C) (vertical) y-z-plane c and
(D) (horizontal) x-z-plane d. All dimensions are in mm. The (1) t-shaped nozzle is a copper block
with a through-hole with a diameter of 2.0 mm and a length of 8.0 mm as nozzle channel and a
4.0 mm diameter blind hole as input channel. The nozzle block is attached to the cold finger of the
cryostat (upper part of nozzle block and cryostat not shown). A (2) temperature sensor is attached
to the nozzle block. Hydrogen atoms flow to the nozzle through (3) PTFE tubing, which tapers
toward the nozzle input channel. A thin-walled (4) PTFE spacer creates a small gap between the
tubing and input channel and reduces the thermal conduction. The tubing is supported through a
(5) copper holder attached to the thermal shield of the cryostat (upper part of holder and thermal
shield not shown). Tubing and holder are thermally isolated using a (6) polyurea aerogel spacer.
PTFE: polytetrafluoroethylene (Teflon).

As detailed below, the fluorescence signal is sensitive to the nozzle temperature TN and
thus the temperature fluctuations, especially during a line scan, should be kept as small as
possible to avoid adding excess noise on the signal. To this end, the nozzle temperature is
actively stabilized1 using a heating wire inside the cryostat as actuator. The bandwidth of
this feedback loop is limited by the controller update rate of 10 Hz, and the temperature is
read out and saved once per data point, approximately every 2 s. Fig. 4.4 shows the nozzle
temperature during a typical freezing cycle, while Fig. 4.26 (A) shows a histogram of the
nozzle temperature for the line scans and data points of the 2S-6P measurement, where TN

was stabilized to 4.8 K. For the latter, TN fluctuates from point-to-point with a standard
deviation of 7.5 mK. The fluctuations of the scan-averaged temperature from scan to scan,
which are separated by at least ≈1 min, are substantially smaller, with a standard deviation
of 0.8 mK. Thus, the time scale of the visible fluctuations is on the order seconds, as may
be expected from the feedback loop. Fluctuations on a shorter time scale, not resolved here,
seem unlikely due to the macroscopic size of the cold head and nozzle. As can be seen from
the histogram of the standard deviations of TN over each line scan, shown in Fig. 4.26 (B), the

1Implemented with the Cryogenic Control Systems (Cryo-con) Model 32B temperature controller and its
built-in a PID controller.
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Figure 4.26: Stability of the nozzle temperature TN during the 2S-6P measurement. (A) Histogram
of TN during the measurement’s 3155 line scans (see Table 6.1). Each line scan contains 30 data
points, which are on average separated in time by 2.3 s, with the nozzle temperature read out once
per data point. TN, which is stabilized to 4.8 K, shows point-to-point fluctuations (blue bars) with a
standard deviation (SD) of 7.5 mK. The scan-averaged nozzle temperature (orange bars) fluctuates
substantially less from scan to scan, with a SD of 0.8 mK. (B) Histogram of the standard deviation
of TN over each line scan. See text for details.

fluctuations are fairly similar for each line scan. The exact choice of feedback loop parameters
seemed to have little impact on the size of the fluctuations, hinting at the fact that the feedback
bandwidth is insufficient to suppress them. They could, however, be somewhat reduced by
finding a suitable combination of helium flow and power sent to the heating wire, with lower
flows tending to produce lower fluctuations. Care however has to be taken that enough cooling
power, i.e. enough helium flow, is available at any time to allow the operation of the feedback
loop. Otherwise, large temperature spikes can occur, which can release frozen hydrogen from
the nozzle and in turn lead to pressure spikes in the vacuum chamber.

At some points, yellowish deposits were found on the nozzle near the inlet. These deposits
could be removed using industrial soap1, with the nozzle afterwards cleaned in isopropyl
alcohol, and with an ultrasonic cleaner used for both steps. One suspicion is that the deposits
are remains of the cleaning of the discharge tube as discussed in Section 4.5.1. When installing
a newly machined nozzle, the same cleaning produce was followed. The nozzle temperature
was found to exhibit intermittent temperature spikes for the first few freezing cycles after
such a cleaning procedure, possibly caused by soap and solvent residues interfering with the
formation of the frozen layer of H2.

4.5.2.2 Trajectory distribution in the atomic beam

For an ideal gas of atomic hydrogen contained in a closed container and at thermal equilibrium
with the container walls at temperature TN, the probability distribution peq(v) of the speeds2

1Edisonite Super.
2The usual definition of the speed v as the magnitude of the velocity v is used here. However, often times the

term velocity distribution instead of speed distribution is used when referring to the probability distribution
of v.
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v of the atoms is given by the Maxwell-Boltzmann distribution [117]

peq(v) dv =
(

mH
2πkBTN

)3/2
4πv2e

−
mHv

2

2kBTN dv, (4.23)

where kB is the Boltzmann constant and peq(v) dv is the probability to find an atom within
the speed interval v to v + dv. The mean speed of this distribution is

vth =
√

8kBTN

πmH
, (4.24)

which is here used as a measure of the thermal speed. For room temperature, vth is 2482 m/s,
while for the typical nozzle temperature of TN = 4.8 K, vth is reduced to 318 m/s.

An effusive atomic beam is created by adding a small source orifice to the container,
such that the speed distribution inside the container remains unchanged. The probability for
atoms to escape the container through the orifice is proportional to v, and thus the speed
distribution peff(v) of the atoms contributing to the signal is proportional to peq(v) multiplied
with v [117], i.e.

peff(v) dv ∝ v3e
−
mHv

2

2kBTN dv. (4.25)

The mean speed of this distribution is given by [117]

veff = 3
4

√
2πkBTN

mH
, (4.26)

corresponding to 2924 m/s and 374 m/s for room temperature and TN = 4.8 K, respectively.
To distinguish the two distributions, Eq. (4.23) and Eq. (4.25) are sometimes referred to as
the volume or number density distribution and flux distribution, respectively.

The nozzle used here only vaguely resembles this ideal situation of an effusive beam. The
thermalization and beam formation are based on collisions of the room-temperature atoms
coming from the dissociator with the cold walls of the nozzle and with other atoms and
molecules. Most atoms leave the nozzle after only a few collisions, and in [112, 118] cryogenic
atomic beams of hydrogen with a speed distribution given by Eq. (4.25) were observed for
nozzle designs where the atoms underwent only a few collisions with the cold walls. How-
ever, [118] also found evidence of deviations from Eq. (4.25) when collisions between the
particles in the nozzle are thought to play an important role. Specifically, they found that if
the source orifices are actually part of a through-hole, as is the case here, the speed distri-
bution of atoms emerging under a small angle to the beam axis showed fewer slow atoms as
expected from Eq. (4.25). These atom trajectories can only be the product of collisions with
other particles, as there is no direct line of sight to a wall. Similar deviations in the speed
distribution have also been observed in room-temperature beams of atomic hydrogen [27, 92,
119].

Such a depletion of slower atoms associated with intra-beam collisions between the parti-
cles inside the beam is sometimes referred to as the Zacharias effect, after the failed attempt
to construct the first cesium fountain clock relying on the presence of these atoms in a ther-
mal beam [120, 121]. This depletion was clearly observed in thermal beams of potassium and
cesium and shown to be the product of collisions inside the beam right after the source orifice
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in [122]. The difference between these collisions and the collisions leading to thermalization
inside a closed container is that the former can deflect atoms from the beam and thus from the
region of high particle density, such that additional collisions returning the atoms to the beam
are unlikely. These atoms are then effectively removed from the beam. In the experiment
here, only atoms with an divergence angle of less than ≈10 mrad to the beam axis are probed,
and thus a small deflection is sufficient for this removal. The slower the relative speed of the
colliding particles, the larger the interaction time and therefore the deflection angle, leading
to a preferred removal of slow atoms [122, 123]. Inside the nozzle, deflected atoms can return
to the beam through wall collisions. However, fast atoms traveling at a small divergence
angle to the beam axis have a higher probability to escape the nozzle than slower atoms,
again leading to a depletion of slow atoms for the low-divergence part of the beam [124].
Various attempts have been made to find an analytical description of the influence of these
collisions on the resulting speed distribution, focusing on collisions inside the nozzle [124],
collisions right after the source orifice [122], and collisions with particles from the residual
background gas as the atoms propagate through the apparatus [123]. The models generally
rely on simplifying assumptions that are not entirely justified here, and the input parameters
such as the composition of the colliding particles are not well known here. Additionally, all
three effects most likely contribute here.

To estimate how important a role collisions play inside and right after the nozzle, one can
compare the mean free path λmfp of the atoms to the dimensions of the nozzle. The situation
is here complicated by the fact that both collisions between hydrogen atoms and between
hydrogen atoms and molecules are thought to be important (see below). If the collision cross
section σ of the colliding particles is known, λmfp can be calculated through the relation
λmfp = 1/(

√
2σn), where n is the number density of collision partners [117]. For a thermal

gas, often the viscosity η instead of σ is given, which is related through σ = (1/η)
√
mkBT/π

and where m and T are the particle mass and temperature of the gas, respectively [125]. The
viscosity of a gas of hydrogen atoms has been calculated at T = 5 K as 0.365 Pa s in [126],
giving1 σ = 5.2× 10−19 m2. The author is not aware of calculations of η for a mixture of
H and H2 at cryogenic temperatures, but [127] found that η of this mixture is less than
50 % larger than for a gas of H between 100 K and room temperature. As an estimate, here
the cross section found for H is also used for H–H2 collisions. For the typical pressure of
3.6× 10−5 mbar inside the nozzle used in the experiment (see below), the particle density is
n = 5.4× 1019/m3, and the mean free path is λmfp = 25 mm. Thus, λmfp is about three times
larger than the channel length of the nozzle, l = 8 mm, with this ratio known as the Knudsen
number Kn = λmfp/l ≈ 3.1 [124]. In the model of [124], the onset of modifications on the
speed distribution is found to be for Kn below 10. For comparison, Kn is estimated to be
0.01 inside the nozzle of the aforementioned room temperature hydrogen beam [92].

In any case, the depletion of slow atoms is clearly observed in the experiment discussed
here, as the amplitude of the 2S-6P resonance decreases with increasing delay time τ , and thus
decreasing mean atom speed v̄, more rapidly than expected for an effusive beam. Furthermore,
the depletion increases with larger flows of hydrogen into the system, leading to a larger
particle density inside the nozzle, inside the beam, and in the vacuum chamber itself due to
the higher gas load (see Section 4.5.2.4). Since the particle density approximately drops of
with the square of the inverse distance to the nozzle, collisions within or shortly after the nozzle

1This cross section is thus almost two orders of magnitudes larger than the sometimes used coarse estimation
of σ as πa2

0 = 8.8× 10−21 m2, where a0 is the Bohr radius.
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are more likely than during the propagation to the 2S-6P spectroscopy region. Importantly,
the magnitude of the depletion typically increases during the course of the freezing cycle as
the volume inside the nozzle shrinks due to the freezing, implying that collisions in this region
are largely responsible for the depletion. However, the background counts on the fluorescence
signal, detected far away from the nozzle and only present when 2S atoms are produced,
also significantly increases with larger flows. This suggests that intra-beam collisions and
collisions with the residual gas inside the vacuum chamber, kicking 2S atoms out of the beam,
are responsible for the background. Thus, both collisions close to the nozzle and during the
propagation to the spectroscopy region must be assumed to be important in the description
of the experiment.

Here, a phenomenological model of the depletion of slow atoms is used. To this end,
Eq. (4.25) is multiplied with an exponential suppression term, giving

p(v) dv ∝ v3e
−
mHv

2

2kBTN e−
vcutoff
v dv. (4.27)

The cutoff speed vcutoff is the characteristic speed below which atoms are removed from
the beam and is treated as an adjustable parameter. This approach is motivated by the
analytical results of [122], where the depletion of slow atoms through intra-beam collisions
was found to be approximately of this functional form (see Eq. (8) and Fig. 13 of [122]). It is
determined from the spectroscopy data by matching the observed behavior of the resonance
amplitude with the delay time τ with the prediction of simulations using Eq. (4.27). For
the 2S-6P measurement, vcutoff ranges between −3 m/s. . . 112 m/s (see Fig. 6.1). A similar
approach was used in [27, 119].

To model the atomic beam and thus the experiment, not the speed distribution, but
the joint spatial, angular, and speed distribution of the atoms emerging from the nozzle is
needed, here referred to as the distribution of atom trajectories. For an effusive beam emerging
through an source orifice such that no collisions occur as the atoms escape the container, the
distribution p(θ) dΩ of the angle θ of the atoms in the beam, measured to the normal of the
plane in which the orifice lies, is [117]

p(θ) dΩ ∝ cos θ dΩ, (4.28)

where Ω is the solid angle and dΩ = 2π sin θ dθ is the surface element of a unit sphere in spher-
ical coordinates. Eq. (4.28) is often referred to as cosine law or, in optics, as Lambert’s cosine
law, with the factor cos θ leads to a peaking of the otherwise isotropic emission in the direction
of the normal of the orifice1. This distribution is modified if collisions occur as the atoms
pass through the orifice, and for a nozzle channel a peaking of the beam is expected [112].
Again, however, these descriptions rely on insufficiently determined parameters, and with the
most commonly used approximation of a long channel, i.e. a channel much longer than its
radius, not applicable here. In any case, here only atoms flying with an angle θ ≤ 10.4 mrad
can reach the spectroscopy region due to geometrical constraints (for the typical width of the

1The occurrence of the cosine law can be explained as follows: in the container, there is no preferred
direction, and each combination of position and direction is equally likely. For each position and direction
that leads through the orifice, i.e. the trajectory after the last collision with a wall or another particle, the
probability to leave is proportional to v. However, the effective size of the orifice is proportional to cos θ, where
θ is the angle between the direction and the normal of the orifice. Thus, the probability to find trajectories
with an angle θ outside the orifice is proportional to cos θ.
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variable aperture of 1.2 mm). On this scale, the beam peaking from the nozzle channel does
not change the shape of the angular distribution in a relevant way1.

However, a possibly much larger influence on the distribution of atom trajectories is that
trajectories with an angle smaller than θ = 2.5 mrad can only be the product of collisions
with other particles, as there is no direct line of sight to the walls of the nozzle. Thus, if those
collisions produce substantially less trajectories compared to wall collisions, the atomic beam
at the spectroscopy region might actually be best described as a hollow tube2. It is thus of
great interest to model the conditions and the collisions inside the nozzle and the beam with
good accuracy. While some preliminary studies have been made, this is beyond the scope
of this thesis, but will be revisited for the final analysis of the 2S-6P measurement. For the
analysis presented here, a spatially-independent emission is assumed, with the angular and
speed distributions given by Eq. (4.28) and Eq. (4.27), respectively.

So far, the discussion has not included the excitation of the ground state (1S) atoms
emerging from the nozzle to the metastable 2S level. In the description of the experiment,
however, ultimately the distribution of 2S atoms is needed, since only those atoms are probed
in the spectroscopy of the 2S-nP transitions. The excitation takes place as the atoms fly
through the laser beam of the 1S-2S preparation laser, with the probability to find an atom in
the 2S level now itself depending on the exact trajectory as e.g. some atoms spend most of time
inside the laser beam and others just cross it for a short time. A Monte Carlo simulation is
used to model the trajectory distribution of the 2S atoms, as described in detail in Section 5.2.

4.5.2.3 Hydrogen recombination, freezing, and degree of dissociation

The atoms undergo only a few collisions with the cold nozzle walls before forming the atomic
beam. However, for most materials, including PTFE, copper, and aluminum, the recombi-
nation probability increases strongly below 60 K and reaches up to 20 % per collision [115].
Thus, even a few collisions lead to large decrease in the degree of dissociation αdis. On the
other hand, the recombination probability for collisions with solid H2, while also strongly
increasing with decreasing temperature, can be much lower in that temperature range (see
orange line in Fig. 4.27). It is thus advantageous to cover the inside of the nozzle with solid
H2, which implies that the partial pressure of H2 inside the nozzle must not be below the
saturated vapor pressure of solid H2. As the vapor pressure strongly increases with tempera-
ture (see blue line in Fig. 4.27), this limits the temperature range to below about 6 K if the
pressure inside the nozzle and the vacuum system are to be kept within a reasonable range.
An even lower temperature yet is advantageous, as higher pressures inside the nozzle also
disturb the velocity distribution of the atomic beam as discussed above. The H2 freezing
out on the nozzle is in this way also largely removed from the atomic beam and from the
vacuum chamber, where it otherwise can lead to collisions removing atoms from the beam

1The fraction of atoms that reach the spectroscopy region, however, is substantially influenced by the
angular distribution, with e.g. the cosine law increasing the on-axis flux of atoms by a factor of two over
isotropic emission. This results in a large uncertainty when attempting to estimate the number of atoms
probed in the spectroscopy region.

2Note that this does not imply that there are no atoms crossing the 2S-6P spectroscopy laser beams with
angles smaller than δα = 2.5 mrad to the beam axis, as δα is the projection of the angle θ from the atomic
beam axis on the laser beam axis. For the typical atom speed vtyp = 200 m/s, a trajectory crossing the 2S-
6P spectroscopy laser beams with an angle δα = 2.5 mrad experiences a Doppler shift of ∆νD ≈ 1.2 MHz (see
Section 2.2.3). This corresponds to ≈30 % of the natural linewidth of the 2S-6P transition. Thus, the line
shape resulting from such a hollow atomic beam might not be immediately distinguishable from the case of a
uniform beam.



122 4. Hydrogen spectrometer

3.5 4.0 4.5 5.0 5.5 6.0 6.5
Temperature (K)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Sa
tu

ra
te

d 
va

po
r p

re
ss

ur
e 
P H

2,
sa

t

of
 s

ol
id

 H
2 (

m
ba

r)

100

101

102

103

104

Co
ef

fie
nc

t γ
H

2/P
H

 o
f r

ec
om

bi
na

tio
n

pr
ob

ab
ili

ty
 γ

H
2 o

f H
 o

n 
so

lid
 H

2 (
m

ba
r−1

)

Figure 4.27: Saturated vapor pressure PH2,sat of solid H2 (blue line, left scale) and the recombi-
nation probability γH2 of H per collision with solid H2 as a function of temperature. γH2 is given
by multiplying γH2/PH (orange line, right scale) with the partial pressure of H, PH, which is esti-
mated to be 4.8× 10−6 mbar inside the nozzle for the experimental conditions discussed here. At
this partial pressure and a temperature of 4.8 K, PH2,sat = 2.3× 10−5 mbar, γH2/PH = 56 mbar−1, and
γH2 = 2.7× 10−4. The underlying measurements are taken from [112, 128, 129], see text for details.

and pressure shifts of the observed resonance. However, this freezing will also lead to the
nozzle clogging over time as more and more solid H2 accumulates. Thus, a balance between
sufficient coverage of the nozzle walls with H2, the time it takes the nozzle to freeze1, and the
recombination probability has to be found. Here, this is achieved by experimentally finding a
suitable combination of nozzle temperature TN and flow QH2 of hydrogen into the system, with
αdis at the nozzle is fixed by the properties of the PTFE tubing. For the 2S-6P measurement,
the combination TN = 4.8 K and QH2 = 0.35 ml/min was used.

H adsorbs to H2-coated surfaces with an absorption energy of 38 K [129]. The adsorbed
atoms are thought to be mobile on the surface and can recombine to H2 with other adsorbed
atoms. Since the number of absorbed atoms is proportional to the volume density of atoms nH,
the recombination probability γH2 per collision with the H2-coated wall itself is proportional
to nH as γH2 = (4/vth)KS2nH [112], where vth is the thermal speed of the atoms as given
in Eq. (4.24). The measurements of [129] give KS2 = 8.5× 10−28 m4 K1/2 s−1, resulting in
γH2 = nH × (3.7× 10−23 m3) = PH × (56 mbar−1) at a temperature of 4.8 K, where PH is the
partial pressure of H. The resulting temperature dependence of γH2/PH is shown as the orange
line in Fig. 4.27.

The saturated vapor pressure PH2,sat of solid H2 increases from 1× 10−8 mbar to
6× 10−3 mbar between 3.5 K and 6.5 K [128] (see blue line in Fig. 4.27). At a temper-
ature of TN = 4.8 K, PH2,sat = 2.3× 10−5 mbar, which is above the typical pressure of
POV = 5.5× 10−6 mbar in the outer vacuum region (see Section 4.2.10), in which the nozzle
sits. However, inside the nozzle the pressure is higher due to the constant influx of hydrogen.
Indeed, the freezing of hydrogen in the nozzle is observed in the experiment, constituting a

1If αdis at the nozzle is so large such that almost no H2 can freeze out, one might also cover the walls of
the nozzle with H2 by initially keeping the discharge switched off. Then, after starting the discharge, both the
recombination probability and the growth of H2 are reduced.
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major limiting factor for the measurement time as the frozen hydrogen blocks the 1S-2S prepa-
ration laser beam.

The gas dynamics inside the nozzle are rather complicated as H2 freezes to and sub-
limates from the nozzle walls and H adsorbs to the H2-coated walls and recombines, de-
pending on and at the same time changing the local density of H and H2. Furthermore,
no direct measurement of the degree of dissociation αdis after the PTFE tubing or after
the nozzle is available. Nevertheless, some coarse estimates regarding the gas dynamics
can be made. The typical flow of QH2 = 0.35 ml/min of hydrogen molecules into the
dissociator corresponds to 1.57× 1017 molecules/s, as detailed in Section 4.5.1. Using an
FEM simulation1 and neglecting the adsorption of H2 to the walls as well as the recom-
bination of H, the partial pressures of H and H2 inside the nozzle for different values of
the degree of dissociation αdis at the nozzle input can be found. Note that the partial
pressure of H2 can be above the solid phase vapor pressure in the simulation, which is
not the case in equilibrium. Here, this is interpreted as a sign that freezing of H2 will
occur. For TN = 4.8 K and αdis = 50 %, 25 %, 10 %, the partial pressures at the cen-
ter of the nozzle are found to be PH = 2.4× 10−5 mbar, 1.2× 10−5 mbar, 4.8× 10−6 mbar
and PH2 = 1.7× 10−5 mbar, 2.6× 10−5 mbar, 3.1× 10−5 mbar for H and H2, respectively.
The corresponding recombination probabilities per collision for these H partial pressures are
γH2 = 1.3× 10−3, 6.7× 10−4, 2.7× 10−4, at least a factor of ten lower than for PTFE, copper,
or aluminum at the same temperature [115]. However, for lower temperatures γH2 rapidly
increases, reaching 5× 10−2 for TN = 3.7 K and PH = 4.8× 10−6 mbar. At TN = 4.8 K,
QH2 = 0.35 ml/min, and αdis . 25 %, PH2 is thus slightly above PH2,sat = 2.3× 10−5 mbar,
allowing the formation of solid H2. However, since PH2 , PH2,sat, and PH are all of comparable
magnitude, the atomic beam at least partly consists not only of H, but also of H2.

The number of cold wall collisions of particles leaving the nozzle is estimated with a particle
tracing simulation2, in which the particles are released 28 mm below the nozzle inlet inside the
PTFE tubing, which is assumed to be at a temperature such that no solid H2 is formed there.
Collisions between the particles are neglected. In this way, two distributions are determined:
first, the total number Nrecomb of cold wall collisions, relevant to the recombination dynamics.
Second, the number Nth of cold wall collisions after the last PTFE (hot) wall collision, relevant
for the thermalization dynamics. Both distributions posses a steep initial rise with a long
exponential tail. Nrecomb has a mode of 7 and a mean of 26 collisions, with 95 % of particles
leaving the nozzle after less than 75 collisions. Nth has a mode of 3 and a mean of 7 collisions,
with 95 % of particles undergoing less than 19 collisions and 91 % of particles undergoing more
than one collision. As H is adsorbed to H2, it is reasonable to assume that a single cold wall
collision is enough to thermalize H to the wall temperature, with at least a single collision
necessary for particles to leave the t-shaped nozzle.

Using the mean value of 26 cold collisions and the values of γH2 given above, the degree of
dissociation is only negligibly reduced to 97 % . . . 99 % of its level at the nozzle input. Thus,
recombination of H on the H2-coated walls of the nozzle plays a minor role compared to the
recombination during transport through the PTFE tubing. With this, the result found in
Section 4.2.10 that at TN = 4.8 K the hydrogen flow into the outer vacuum region is only
Qcold/Qwarm = 1/3 of its value at TN = 30 K can be interpreted as an upper bound of αdis at

1Finite element method, implemented using the Free Molecular Flow module of the commercial simulation
software package COMSOL.

2Implemented using the Mathematical Particle Tracing module of COMSOL. Adding collisions between the
particles does not change the results substantially.
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the nozzle input. This is because, to good approximation, no new H2 is formed in the nozzle
and all hydrogen not leaving the nozzle must freeze out on its walls as H2. The real value of
αdis might be much lower as some of the H2 still leaves the nozzle, as discussed above.

From these coarse estimates, including those made in Section 4.5.1, it is not unreasonable
to assume that the degree of dissociation at the nozzle input is only on the order of αdis =
10 %. Together with the observed flow reduction Qcold/Qwarm, this results in1 αdis = 30 %
after the cold nozzle (TN = 4.8 K). In other words, for each H atom leaving the nozzle, on
average 1.17 H2 molecules are also emitted, and only 3.13× 1016 atoms/s leave the nozzle
as 1.57× 1017 molecules/s stream into the dissociator. Note that the nozzle has two orifices,
and only half of the particles leaving the nozzle are emitted towards the 2S-6P spectroscopy
region and thus are of interest in the experiment here, while the other half hits the incoupling
mirror of the 243 nm enhancement cavity. That is, the number of atoms and molecules
leaving the nozzle per second in the direction of the spectroscopy region is estimated to be
N
′
1S = 1.6× 1016 atoms/s and N ′H2

= 1.8× 1016 molecules/s, respectively.
At the same time, 1.04× 1017 molecules/s freeze out on the nozzle, corresponding to a

growth of solid hydrogen2 of 14.1 mm3/h. This volume is sufficient to cover the whole interior
of the nozzle with an approximately 0.3 mm thick layer of solid hydrogen after two hours,
shrinking the diameter of the nozzle channel to 1.4 mm. Two hours corresponds to the time
after which the losses of the 1S-2S preparation laser beam propagating through the nozzle
become too large to continue the experiment and the solid hydrogen needs to be removed
by heating the nozzle. For these losses to occur, however, the reduction in diameter needs
to be ≈1.0 mm (see Section 4.3.3.7). Indeed, this reduction is close to the actual value
observed in the imaging of the nozzle as shown in Fig. 4.33, with the difference between the
naively expected and the observed reduction attributed to uneven freezing inside the nozzle,
as detailed in Section 4.5.2.5.

4.5.2.4 Influence of nozzle temperature and hydrogen flow on atomic beam

To study the influence of the nozzle temperature TN and hydrogen flowQH2 on the properties of
the atomic beam, test measurements were conducted where both parameters were varied while
recording line scans of the 2S-6P transition. The resulting time-resolved count rates of the top
detector, Non-res, with the spectroscopy laser on resonance, and Noff-res, with the laser detuned
by 50 MHz from the resonance where almost no excitation takes place, are combined to give the
amplitude, Non-res−Noff-res, and the background-to-amplitude ratio (BAR), Noff-res/(Non-res−
Noff-res). This procedure mimics the analysis of the 2S-6P resonances by fitting line shapes
(see Fig. 5.1), but allows for a finer time resolution. Fig. 4.28 shows the result of the first
test measurement, where three freezing cycles (FC) were acquired in sequence in a single day,
with QH2 set to 1.00 ml/min, 0.50 ml/min, and 0.35 ml/min, respectively, while TN = 4.6 K
was kept constant. As done during the 2S-6P measurement, the nozzle was heated up to
room temperature between the second and third FC to remove frozen trace gases. Between
the first and second FC, however, the nozzle was only heated up to ≈35 K, as was previously
done in the 2S-4P measurement (see Appendix A), which removes frozen hydrogen, but not
necessarily other trace gases present in the vacuum system. The residual pressure in the

1For a degree of dissociation at the nozzle input of αdis and a ratio Qcold/Qwarm between the flow for a cold
nozzle, where some of the H2 freezes out, but H recombination is negligible, and the flow for a warm nozzle,
where no H2 freezes out, the degree of dissociation after the nozzle is αdis/(Qcold/Qwarm).

2The density of solid hydrogen is 0.089 g/cm3 at a temperature of 4.8 K [128].
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Figure 4.28: Average number of time-resolved fluorescence counts detected at the top detector for
different flows QH2 of H2 into the hydrogen dissociator. The nozzle is held at a temperature of
TN = 4.6 K, slightly lower than the typical 4.8 K, and, different to the design used in the precision
measurement, the PTFE input tube is directly attached to the nozzle without a spacer. For each flow,
data are recorded for one freezing cycle (FC), limited by the freezing of the nozzle after a time ∆tFC.
(A) 2S-6P amplitude Non-res−Noff-res, where Non-res and Noff-res are the counts with the spectroscopy
laser on resonance and detuned from the resonance, respectively. The counts are sorted into 5 µs-long
bins at delay time τ , summed over 160 chopper cycles, and averaged of over the first half (solid lines)
and second half (dashed lines) of the FCs. (B) Same data as in (A), but the amplitude is normalized
to the average of delay 2. The purple-shaded regions indicate the duration of the delays 1-16 used
in the analysis (see Table 5.1). (C) The background-to-amplitude ratio Noff-res/(Non-res − Noff-res)
averaged over the complete FC. The data are additionally averaged over 4 and 10 bins for delays 13
to 15 and delay 16, respectively, to reduce the noise level. The powers of the 2S-6P spectroscopy and
1S-2S preparation lasers were P2S-6P = 30 µW and P1S-2S = 0.85 W, respectively.

outer vacuum region during the freezing cycles is dominated by H2 and is found to be POV =
1.1× 10−5 mbar, 6.2× 10−6 mbar, 4.8× 10−6 mbar for the three values of QH2 .

Assuming again αdis = 10 % at the nozzle input and using the FEM simula-
tion described above, the three hydrogen flows are found to correspond to PH =
1.3× 10−5 mbar, 6.6× 10−6 mbar, 4.7× 10−6 mbar (PH2 = 8.5× 10−5 mbar, 4.3× 10−5 mbar,
3.0× 10−5 mbar) and γH2 = 1.6× 10−3, 7.9× 10−4, 5.7× 10−4. For 26 collisions with H2-
coated walls inside the nozzle, this results in a maximum reduction of αdis to 96 % of the
value at the input. The duration ∆tFC of the three FCs, i.e. the time it takes till the growing
layer of solid H2 interferes with the 1S-2S spectroscopy laser, was found to be 34 min, 73 min,
and 93 min. Thus, ∆tFC is inversely proportional to QH2 , which implies that the H2 growth
rate is independent of QH2 and thus PH. This is consistent with the estimation above that
indeed the recombination inside the nozzle is negligible in comparison to the recombination
on the PTFE tubings, which does not depend on PH. Likewise, the prompt amplitude (delay
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time τ . 500 µs) increases approximately linearly when increasing the flow from 0.35 ml/min
to 1.00 ml/min for both the first and the second half of the FCs (solid and dashed lines in
Fig. 4.28, respectively). For 0.50 ml/min, the amplitude expected from this scaling only is
observed during the second half of the FC, which might be related to the low temperature
used to unfreeze the nozzle. This linear behavior also suggests that the formation of the
H2 layer progressed in a similar way, compatible with the result of the FEM simulation that
the partial pressure of H2 is always well above the saturated vapor pressure of solid H2 of
PH2,sat = 9.5× 10−6 mbar. Note that for TN = 4.8 K and QH2 = 0.35 ml/min as used in the
2S-6P measurement, the mode of the FC durations1 ∆tFC is 120 min, about 30 % longer than
in the test measurements here at TN = 4.6 K. If this difference is indeed significant, it could
be caused by the absence of a thermally isolating spacer between the PTFE tubings and the
nozzle in the test measurements, as discussed in Section 4.5.2.1.

Importantly, for larger τ , the scaling of the amplitude with QH2 as seen for the prompt
amplitude reduces, with all three values of QH2 resulting in the same number of counts for
the maximum delay time. This implies a relative decrease of slower atoms, which dominate
the amplitude at large τ , for increasing flow. This behavior is highlighted in Fig. 4.28 (B),
which shows the same amplitudes, but normalized to the average number of counts in delay 2
(τ = 60 µs . . . 110 µs) to show their relative scaling with τ . As detailed in Section 4.5.2.2, this
behavior is expected as the increasing pressure inside the nozzle and the atomic beam leads
to more collisions, removing primarily slow atoms from the beam. For the maximum delay
time τ = 2.5 ms, there are a factor of 3.5 less atoms for QH2 = 1.00 ml/min as compared to
three times lower hydrogen flow of QH2 = 0.35 ml/min.

Fig. 4.28 (C) shows the background-to-amplitude ratio. The background is known to be
related to the presence of 2S atoms, as the background is observed only if, simultaneously,
the preparation laser is on-resonance with the 1S-2S transition, hydrogen is introduced into
the system, and the atomic beam is overlapped with the preparation laser. The BAR in-
creases with increasing hydrogen flow, i.e. the background counts increase more than the
on-resonance counts shown in Fig. 4.28 (A, B). This behavior is expected if the background
counts are caused by 2S atoms quenched or kicked out of the beam by intra-beam collisions
with other atoms and molecules, and by collisions with residual hydrogen molecules in the
vacuum chamber, as the number density of both increases with increasing hydrogen flow2.

In a second test measurement, shown in Fig. 4.29 and Fig. 4.30, the hydrogen flow was
kept constant at QH2 = 0.35 ml/min while the temperature TN of the nozzle was varied
between 3.7 K and 6.0 K. This measurement consists of a single FC, with the temperature
changed every few minutes and a few line scans recorded at each temperature. The prompt
amplitude (see Fig. 4.29 (A)) increases as the temperature is increased from initially 3.7 K
(at 18:09), with the maximum amplitude reached for approximately 5.2 K (at 18:24). At the

1FCs stopped for other reasons than the nozzle freezing are not included in this statistic. The coefficient
of variation of ∆tFC is 10 % over the 56 FCs considered.

2Intra-beam collisions and collisions with residual hydrogen molecules could possibly be distinguished by
their different delay dependence. This is because the probability for collisions that quench or remove 2S atoms
from the beam is expected to depend on the relative speed of the collision partners. With increasing τ , the
speed of the 2S atoms decreases, while the speed of other 1S atoms and molecules in both the beam and in the
residual gas stays is independent of τ , as only a small fraction of atoms is excited to the 2S level. However,
since the residual gas is at room temperature, the relative speed of collisions with these residual particles
is dominated by the speed of the room-temperature particles. Thus, it changes less with τ as compared to
intra-beam collisions. This situation is complicated by the fact that the 6P excitation probability, which gives
the amplitude, also increases with decreasing speed of the 2S atoms.
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Figure 4.29: Average number of time-resolved fluorescence counts detected at the top detector, similar
to Fig. 4.28, but for different nozzle temperatures TN = 3.7 K . . . 5.2 K and a constant flow of QH2 =
0.35 ml/min of H2 into the dissociator. For each temperature, data are recorded for a few minutes,
with the temperature, the time of the measurement, and the fraction Qcold/Qwarm of hydrogen not
freezing out on the nozzle shown in the legend of (A). For (A, B), the data are averaged over 4 and
10 bins for delays 13 to 15 and delay 16, respectively, while for (C) all bins within each delay are
averaged. The powers of the 2S-6P spectroscopy and 1S-2S preparation lasers were P2S-6P = 30 µW
and P1S-2S = 0.65 W, respectively.

same time, the ratio Qcold/Qwarm of hydrogen freezing out on the nozzle increases from 10 %
to 39 %. These observations are consistent with an increase in recombination of H on the
solid H2 inside the nozzle with lower temperature, as expected from the rapid increase of the
recombination probability per collision γH2 (see Fig. 4.27). For TN = 3.7 K, γH2 is estimated
to be 4.3 % and αdis is consequently reduced to 42 % of its value at the nozzle input.

For higher temperatures than 5.2 K, shown in Fig. 4.30, the prompt amplitude decreases
again, while Qcold/Qwarm keeps increasing. At 5.8 K, Qcold/Qwarm even surpasses 100 %, im-
plying that more hydrogen leaves the nozzle than enters it. This could be a transient effect
caused by hydrogen frozen to the nozzle walls at lower temperatures sublimating into the gas
phase again at higher temperatures. Indeed, for the parameters used so far, the saturated
vapor pressure of solid H2 is expected to surpass the partial pressure of H2 inside the nozzle
at approximately 4.9 K (see Fig. 4.27). At around this point, H2 will then stop freezing on the
nozzle and the pressure inside the nozzle, the beam, and the vacuum system increases. The
latter pressure increases more than four-fold from 4.8× 10−6 mbar at 5.2 K to 2.2× 10−5 mbar
at 6.0 K. The removal of frozen H2 at some points during FC is also supported by the unusu-
ally long duration of this FC of ∆tFC ≈ 160 min. Because of the transient nature of this test
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Figure 4.30: Similar to Fig. 4.29, but additionally including data for a larger nozzle temperature range
TN = 3.7 K . . . 6.0 K (solid lines), and data acquired after the temperature was cycled to check the
reproducibility of the observed signal (dashed lines).

measurement, the inside of the nozzle is still at least partially covered by solid H2 at all times,
as confirmed by the imaging of the nozzle. Thus, the reduction of the amplitude could be
caused both by recombination on exposed copper walls, where the recombination probability
per collisions could be as high as 20 % [115], and by the increased pressure interfering with the
formation of the atomic beam. However, right after the maximum temperature at 6.0 K, the
temperature was again reduced to 4.6 K at 18:46 (dashed orange line in Fig. 4.30), and a very
similar amplitude as at 18:13 was found, suggesting that either no walls were exposed during
at higher temperatures or the exposed sections were quickly covered by solid H2 again. The
amplitude was also found to be reproducible when returning, after the temperature cycling
was completed, to 4.8 K, ≈45 min after first measuring at this temperature (dashed dark green
line in Fig. 4.30).

Fig. 4.29 (B) and Fig. 4.30 (B) again show the same amplitudes, but normalized to
the average number of counts in delay 2. For temperatures up to 4.6 K, no change in the
normalized amplitude is observed. Starting from 4.8 K, again a depletion of slow atoms is
visible, with the amplitude at the maximum delay time decreasing by almost two orders of
magnitude from 4.6 K to 6.0 K and by one order of magnitude for intermediate delay times of
τ ≈ 1000 µs, corresponding to mean atom speeds of v̄ ≈ 60 m/s and v̄ ≈ 120 m/s, respectively
(see Table 5.1). This depletion is attributed to the increased pressure in the system, removing
slower atoms from the beam as detailed in Section 4.5.2.2.

The BAR, shown in Fig. 4.29 (C) and Fig. 4.30 (C), starts to increase strongly at 5.4 K,
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Figure 4.31: Comparison with simulation results for the experimental time-resolved fluorescence count
rate for (A) the various hydrogen flows QH2 , at a nozzle temperature of TN = 4.6 K, of Fig. 4.28 and
(B) the various nozzle temperatures TN, at a hydrogen flow of QH2 = 0.35 ml/min, of Fig. 4.30. The
underlying speed distribution of the simulations is given by Eq. (4.27). The bins within each delay are
averaged to match the simulation results.

with a five-fold increase observed between 4.8 K and 6.0 K. This further supports the as-
sumption that intra-beam collisions and collisions with residual hydrogen molecules cause the
background, as both increase as more molecular hydrogen leaves the nozzle with increasing
temperature.

For all temperatures, the BAR increases slightly with increasing τ . As discussed before,
this is to be expected as the mean speed of the 2S atoms decreases with τ , but the velocity
distributions of 1S atoms and molecules in the beam, and residual particles in the background
gas, stay unchanged. However, for TN . 4.8 K, the prompt BAR within the first ≈50 µs
is observed to be larger, at ≈10 %, than for the next 1 ms or so. For 3.7 K, where this
effect is most pronounced, the prompt BAR reaches ≈11 % before dropping to ≈3 %. As
the nozzle temperature, and with it the overall BAR, increases, the effect is less and less
visible. The effect is also visible in the BAR of the first measurement (see Fig. 4.28 (C)). A
possible mechanism could be that some of the atoms leaving the nozzle are, conversely to the
arguments made before, not thermally accommodated to its temperature, e.g. because they
only underwent one or more elastic collision inside the nozzle. These atoms can then also be
excited to the metastable 2S level and consequently contribute to both the background and on-
resonance signal. The latter contribution is strongly suppressed by the low 2S-6P excitation
probability for room temperature atoms due to the 1/v scaling for short interaction times.
The contribution to the background from collisions with residual hydrogen molecules, on the
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Figure 4.32: Time-resolved fluorescence count rate of the top (blue lines) and bottom (orange lines)
detector for all 41 freezing cycles (FCs) during run B of the 2S-6P measurement (see Table 6.1). Only
data contributing to the measurement of the 2S-6P1/2 (2S-6P3/2) transition with a spectroscopy laser
power of P2S-6P = 30 µW (P2S-6P = 15 µW) are shown (data groups G1B, G2–3 and G7B, G8–9, see
Table 6.2). The nozzle temperature is TN = 4.8 K and the hydrogen flow is QH2 = 0.35 ml/min, except
for one and two FCs for which QH2 = 0.25 ml/min and 0.30 ml/min, respectively. As in Fig. 4.28,
(A) the 2S-6P amplitude, (B) the amplitude normalized to the average of delay 2, and (C) the
background-to-amplitude ratio are shown. Each line corresponds to the average over a single FC, with
the bold line the average over all FCs. The data are additionally averaged over 4 and 10 delay time
bins for delays 13 to 15 and delay 16, respectively, to reduce the noise level.

other hand, is only expected to be reduced by a factor of ≈
√

2 as compared to cold atoms.
Thus, the presence of room-temperature atoms can lead to an increased BAR. For the thermal
velocity of hydrogen atoms at room temperature, 2924 m/s, the maximum possible delay time
for 2S excitation is 70 µs, which matches the observed time scale. The disappearance of the
effect for increasing temperature, on the other hand, could then be related to the increased
pressure in the nozzle, leading to thermalizing collisions between particles, and changes in the
temperature accommodation properties of the nozzle walls.

It is instructive to compare the measured amplitudes to the behavior expected for an
atomic beam with a speed distribution of the form of Eq. (4.27), which takes the depletion
of slow atoms into account with an exponential suppression term characterized by the cutoff
speed vcutoff . The expected behavior is extracted from Monte Carlo simulations, as detailed
in Section 5.2, using the corresponding nozzle temperatures and laser powers. The experi-
mentally observed and simulated amplitudes for the first measurement at different hydrogen
flows QH2 are shown in Fig. 4.31 (A). For all flows, the amplitude for large delay times τ
and thus slower atoms is below the simulated amplitude if no exponential suppression is as-
sumed (crosses), i.e. vcutoff = 0 m/s. However, the observed amplitude, where here the data
from the second half of the FCs are used (dashed lines), can be described by the simulations
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when assuming vcutoff to be 130 m/s (diamonds), 65 m/s (right-pointing triangles), and 30 m/s
(left-pointing triangles) for QH2 = 1.00 ml/min, 0.50 ml/min, and 0.35 ml/min, respectively.

Fig. 4.31 (B) shows the corresponding situation for the second measurement for four val-
ues of the nozzle temperature TN. Within the experimental uncertainty, the experimental
data for TN = 3.7 K (blue line) and TN = 4.8 K (green line) are approximately described by
unsuppressed speed distributions (crosses and left-pointing triangles). For increasing temper-
atures, however, a nonzero cutoff speed vcutoff is needed to describe the data, found to be
65 m/s and 350 m/s for TN = 5.2 K (red line and right-point triangles) and 5.8 K (purple line
and diamonds). For reference, the expected behavior for vcutoff = 0 m/s at TN = 5.8 K is also
shown (gray diamonds), demonstrating that the observed suppression of slow atoms is much
larger than to be expected from the increased nozzle temperature alone.

The nozzle temperature and hydrogen flow at which to acquire spectroscopy data are thus
a compromise between the size of the prompt amplitude, the depletion of slow atoms, the
background-to-amplitude ratio, pressure shifts, and the time it takes the nozzle to freeze.
For the 2S-6P measurement, a temperature of TN = 4.8 K and a flow of QH2 = 0.35 ml/min
was chosen. The prompt amplitude is close to the maximum at this temperature, while the
depletion of slow atoms is only just visible, and the BAR is still reasonably low. At the same
time, the FC duration of ≈2 h is long enough to include alignment procedures and auxiliary
measurements in each FC without reducing the amount of acquired line scans by too much.

Fig. 4.32 shows the fluorescence count rate on both the top and bottom detector during
all 41 FCs of run B of the 2S-6P measurement (see Table 6.1). The chosen nozzle parameters
were used for all FCs, except for one and two FCs, where QH2 was slightly lower at 0.25 ml/min
and 0.30 ml/min, respectively.

4.5.2.5 Imaging and alignment of nozzle

In the experiment, the cryogenic nozzle is observed on an imaging sensor. To this end, as
described in Section 4.3.3.6 and shown in Fig. 4.6, the transmission of the alignment laser
propagating through the vacuum chamber, including the variable aperture and the nozzle
channel, is detected. Some of the resulting nozzle images are shown in Fig. 4.33, with the
visible interference fringes caused by the coherent illumination. The perspective corresponds
to the view along the atomic beam towards the spectroscopy region.

To ensure the symmetry of the atomic beam, the nozzle channel needs to be centered on
the apertures of the beam apparatus as well as on the optical axis of the 243 nm enhancement
cavity. As described in Section 4.3.3.7, the latter is itself centered on the apertures, such
that centering the nozzle channel on the cavity’s optical axis is sufficient. Since the alignment
laser in turn is overlapped with the optical axis of the cavity, the problem is reduced to
centering the nozzle channel on the beam axis of the alignment laser. The nozzle can be
moved in the three dimensions by moving the cryostat relative to the vacuum chamber (see
Section 4.2.6). The nozzle alignment proceeds as follows: first, the nozzle is moved out of
beam of the alignment laser and the variable aperture is fully opened. Next, the front iris (see
Fig. 4.6), which is centered on the alignment laser, is almost fully closed and the resulting
diffraction spot on the imaging sensor is marked with reference circles (see Fig. 4.33 (J)). The
nozzle is then moved back into the beam of the alignment laser such that the image of the
nozzle channel is centered within the reference circles (see Fig. 4.33 (A)). Finally, the width of
the variable aperture is reduced to the measurement setting, blocking part of the alignment
laser and thus part of the transmission through the nozzle channel (see Fig. 4.33 (B), where
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Figure 4.33: Imaging and alignment of the cryogenic hydrogen nozzle. The nozzle temperature TN is
shown in the top right corner. (A–E) The clogging through the accumulation of solid H2 inside the
nozzle during a typical freezing cycle (FC; shown is FC B8), with the images taken right before, and
0 min, 60 min, 100 min, 120 min after the start of the FC. The time since the start of the FC is shown
in the bottom right corner. From (A) to (B), the width of the variable aperture is reduced, blocking
part of transmission laser used for illumination. (F–H) The unfreezing of the nozzle after the FC, with
the time passed since starting the heating of the nozzle to room temperature shown in the bottom
right corner. (I) The result of the unfreezing, with nozzle ready for the next FC. (J) Reference circles
centered on alignment laser, with the nozzle moved out of the laser beam and the front iris almost
fully closed. The same reference circles are shown in all images and have an radius of ≈1.0 mm and
≈0.5 mm.

the aperture width was set to 1.2 mm). This procedure is done at least once per measurement
day before the first freezing cycle (FC) and whenever deemed necessary, as judged from the
images, before the subsequent FCs.

The imaging of the nozzle is also useful to monitor and study the clogging of the nozzle
with solid H2 during the course of an FC. Fig. 4.33 (A-E) show the nozzle right before, and
0 min, 60 min, 100 min, 120 min after the nozzle was cooled down to TN = 4.8 K from 30 K,
corresponding to the start of an FC. For the FC shown, FC B8, the nozzle including the
PTFE spacer between the PTFE tubings and the nozzle input was used (see Section 4.5.2.1).
The nozzle was cleaned on the same day, with one test FC done before FC 8B to remove
residues from the cleaning procedure. The reduction of the radius of the nozzle channel
from initially 1 mm to ≈0.5 mm is clearly visible. The channel does not freeze symmetrically
(note that the clipping on the left and right edges already visible in Fig. 4.33 (B) is from
the variable aperture, and not freezing), with less H2 accumulating at the bottom towards
the inlet. Nevertheless, some freezing does occur at the bottom. This freezing pattern could
correspond to the situation where material mainly accumulates at top and the sides of inner
region of the nozzle, where the input (radius of 2 mm) and nozzle channel cross, with the
nozzle channel itself being uniformly covered with a comparatively thin layer of H2. This
is also compatible with the observation from the particle tracing simulation described above
that most wall collisions occur at this inner region.

After the end of the FC, the nozzle is heated up to room temperature to remove the
accumulated solid H2 and other frozen trace gases by stopping the flow of liquid helium to
the cryostat and switching on the heating wire inside it to maximum power. The nozzle during
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this unfreezing is shown in Fig. 4.33 (F–H), with the nozzle temperature having reached 60 K,
85 K, 200 K within 60 s, 120 s, 8 min, respectively. The variable aperture has been fully opened
again for these images and at 200 K the thermal expansion of the cryostat has visibly shifted
the nozzle downward. The frozen material still present at 60 K and 85 K is thought to be
mainly remaining solid H2, with the unfreezing process commonly observed to last a few
minutes. It was also sometimes observed that pieces of material disappeared from the field
of view only to reappear after a few seconds, which could correspond to these pieces moving
within the inner region of the nozzle with the view blocked by the smaller nozzle channel. At
200 K, no large pieces of material remain visible. However, the outline of the nozzle channel
frequently appeared fuzzy as compared to the start of the measurement, with the fuzziness
only disappearing close to room temperature. This could be caused by trace gases with a
high melting point such as water. After 40 min, as shown in Fig. 4.33 (I), the cycle of heating
the nozzle up to room temperature and back down to 30 K is complete and the next FC can
begin. In this case, the nozzle has returned to its initial position and no alignment of its
position is necessary.

4.5.3 Variable beam aperture
A variable beam aperture is used to limit the divergence of the atomic beam. The diver-
gence along the propagation direction (x-axis) of the 2S-6P spectroscopy laser is especially
important, since it limits the observed linewidth of the 2S-6P resonance through Doppler
broadening (see Section 2.2.5). However, the minimal size of the aperture is limited by the
beam size of the 1S-2S preparation laser, as its beam path leads through the aperture and a
too small aperture size will lead to excessive transmission losses (see Section 4.3.3.7). In order
to achieve an as small as possible aperture width d2 along the x-axis, the aperture consists
of two vertical blades that can be moved along x-axis using remote-controlled actuators1.
This adjustment capability, as opposed to using a fixed-width aperture as done during the
2S-4P measurement (see Appendix A), is necessary to compensate for drifts in the alignment
of the apparatus (see also Section 4.3.3.7). The width can be varied between 0 mm. . . 8 mm,
with d2 = 1.2 mm used during the 2S-6P measurement. The height of the aperture (i.e. along
the y-axis), on the other hand, is fixed to d2,y = 2.0 mm. The variable aperture (VA), along
with its actuators (AM), is shown in Fig. 4.1.

To both calibrate the width of the aperture, and to center it on the 1S-2S preparation
laser, the alignment laser, which is overlapped with the preparation laser, is used (see Sec-
tion 4.3.3.6). To this end, first a knife-edge measurement for each blade is performed, from
which the position of the blade edge, as given by the rotary encoders of the actuators, rel-
ative to the alignment laser can be extracted. Then, the blades are moved, again using the
rotary encoders, to the positions corresponding to the desired aperture width. To this end,
a conversion factor between the movement of the actuators and the blades needs to be taken
into account, as the blades are driven through a 90° bellcrank. This factor was determined
from the technical drawings of the aperture and confirmed by test measurements. Finally,
the centering on the 1S-2S preparation laser is checked by observing the transmission of the
243 nm enhancement cavity while shifting the position of the aperture with the width held
constant. Typically, a small offset on the order of 100 µm is found and corrected, which is at-
tributed to imperfect overlap between the alignment and preparation laser. This procedure is

1Thorlabs Z806V dc servo motor actuators with rotary encoders. Absolute on-axis accuracy is specified as
42 µm.



134 4. Hydrogen spectrometer

repeated on each measurement day. A proof-of-principle test of the calibration scheme, using
an early version of the aperture, was carried out by Clarissa Kroll as part of her bachelor’s
thesis [130].

4.6 Fluorescence detector assembly

The purpose of the fluorescence detector assembly is two-fold: first, it should detect as many
of the fluorescence photons emitted by the decay of the 6P level as possible. Second, it should
provide a spectroscopy region free from electric and magnetic fields, and with a sufficiently
low background pressure.

The first requirement is met by basing the design on the detection of Ly-ε photons, which
constitute over 80 % of the fluorescence (see Tables 2.2 and 2.3). These photons, with a
wavelength of 94 nm, are quickly absorbed by common optical materials, making an efficient
detection, covering a large solid angle, using refractive of reflective optics rather challenging.
However, they are energetic enough (hν = 13.22 eV) to eject photoelectrons from many ma-
terials, including graphite and aluminum, used here, which have work functions of ≈4.6 eV
and ≈4.0 eV, respectively [131]. The basic design idea is then to cover an as large solid angle
as possible with these materials, while efficiently collecting and detecting the photoelectrons.
The collection of the photoelectrons is achieved using applied electric fields, which guide
the electrons to two channel electron multipliers (CEM). Finally, these CEMs convert each
electron into an electric pulse, which is subsequently counted in a time-resolved fashion.

To fulfill the second requirement, the 2S-6P excitation and the decay take place inside a
shielded inner region of the detector assembly, constituting the 2S-6P spectroscopy region.
Here, the atomic beam and the 2S-6P spectroscopy laser beams cross. Grounded electrodes
surround the region and shield it from stray electric fields. A magnetic shield around the
inner vacuum region, together with coils outside the vacuum chamber, reduce the magnetic
fields in the spectroscopy region to an acceptable level. A low background pressure inside the
region is achieved by a direct connection to the cryopump.

4.6.1 Detector design

The detector assembly is shown cut-open and sitting at its position inside the beam apparatus
in1 Fig. 4.1. It is built around the detector cylinder (DC in Fig. 4.1), which has an inner radius
of 28 mm and a length of 174.5 mm, and is oriented along the vertical y-axis. The atomic
beam (PB) and 2S-6P spectroscopy laser beams (SB), which propagate in the horizontal
(x-z-) plane through the cylinder’s center, enter and exit through apertures in the cylinder’s
wall. The beams cross in the center of the cylinder, the interaction point, which is the point of
origin of the fluorescence. The cylinder is split into three sections along its length, the top and
bottom sections, housing the channel electron multipliers (CEMs) and made from aluminum,
and the center section, containing the interaction point and made from copper. The two
CEMs, the top (TD) and bottom detector (BD), sit at the center of each respective end of the
cylinder. The CEMs slightly protrude into the cylinder by 2.3 mm and 2.8 mm, respectively,
such that both their input surfaces are at a distance of 84.7 mm from the interaction point.
The top of the cylinder is closed with an aluminum cap, while the bottom of the cylinder is

1Note that both Fig. 4.1 and Fig. 4.34 do not show the graphite coating applied to some parts, in order to
reveal the material of the parts.
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Figure 4.34: Drawing of the inner region of the fluorescence detector assembly, enclosing the 2S-
6P spectroscopy region: (A) Orthographic projection, and section view cuts along (B) vertical plane
and (C) horizontal plane through center. All dimensions are in mm. There are four ring electrodes that
are quarter segments of a ring: Two electrodes with circular apertures (15.0 mm diameter) for the 2S-
6P spectroscopy laser beams, (1) towards HR mirror (+x), and (2) towards fiber collimator (−x); two
electrodes with rectangular apertures (16.5 × 7.0 mm2) for the atomic beam and the 1S-2S preparation
laser beam, (5) downstream (+z), and (6) upstream (−z). The two remaining electrodes are spherical
segments of wire mesh, (3) top (+y), and (4) bottom (−y); they are electrically isolated from (1-2,
5-6) with a (7) polyimide spacer.

only separated from the cryopump right below it by a fine graphite-coated wire mesh, with
a graphite-coated copper frame holding the bottom detector. During usual operation, all
parts of the detector assembly are held at the same potential, except the CEMs, whose input
surfaces are held at 270 V to create electric fields to collect the photoelectrons emitted from
the walls. The detector cylinder is mounted coaxially to the rotatable base cylinder (RC),
which has an inner radius of 36 mm. The rotatable base cylinder is made from brass and is
connected to the high-vacuum enclosure (HV) through a ball bearing, allowing it to rotate,
together with the detector cylinder, about its axis.

The 26 mm-long center section of the cylinder forms the inner region of the detector
assembly, enclosing the spectroscopy region, with the interaction point at its center. It is
shown in detail in Fig. 4.34. The inner radius of this section of 26.2 mm is slightly smaller than
that of the rest of the cylinder. The section’s side wall is split into four electrically isolated ring
electrodes, with each electrode forming a quarter section of a ring and containing an aperture1:
two electrodes with circular apertures with a diameter of 15.0 mm for the 2S-6P spectroscopy
laser beams ((1, 2) in Fig. 4.34), and two electrodes with rectangular apertures with a width
of 16.5 mm and a height of 7.0 mm for the atomic beam and the 1S-2S preparation laser beam
((3, 4) in Fig. 4.34). The electrodes are made from copper and separated from each other
by a small gap of ≈0.5 mm. To fully enclose the inner region with electrodes, two spherical
segments of wire mesh sit above and below the ring electrodes ((5, 6) in Fig. 4.34). The
spherical segments are not quite hemispherical, as their radius of 28.7 mm is slightly larger
than the inner radius of the ring electrodes. The wire mesh2 is made from 30.5 µm-diameter
stainless steel wires spaced 0.508 mm apart, resulting in an open area of 88 %. The wire
mesh, which is initially flat, is bent into shape and then kept in shape by clamping its rim

1The corresponding apertures in the rotation mount are slightly larger: the circular apertures have a
diameter of 17.0 mm, and the rectangular apertures have a width of 27.0 mm and a height of 7.0 mm.

2TWP, part number 050X050T0012.
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into copper rings while under tension. The same wire mesh is used in the bottom of the
detector cylinder. The ring and spherical electrodes, and the spherical electrodes and the
rest of the detector assembly, are electrically isolated using 0.5 mm-thick spacers machined
from polyimide blocks1 ((7) in Fig. 4.34). These spacers are hidden from the inner region by
recessing from the inner walls by 3.0 mm (see (7) in Fig. 4.34 (B)). The electrode assembly
is held in place and fixed to the outer sections of the cylinder by titanium screws, which are
isolated by polyimide sleeves to prevent a short-circuiting of the electrodes.

The six electrodes form a Faraday cage, shielding the spectroscopy region from stray
electric fields and the electric fields used to collect the photoelectrons at the CEMs. The
electrodes, including the wire meshes, are coated with colloidal graphite, serving multiple
purposes. First, the metals used can form isolating oxide layers, which can accumulate charge,
e.g. from photoelectrons, and thus cause stray electric fields. Second, the use of both copper
and stainless steel electrodes gives rise to contact potentials between dissimilar electrodes2,
and thus electric fields, as the work functions of both materials are different on the order of
0.1 eV [131, 132]. Third, surface contamination, e.g. from residues of the solvents used for
cleaning, oxidation, and the crystal structure of the metals affect the local work function [131–
133], likewise leading to contact potentials and stray electric fields. By covering the electrodes
with colloidal graphite, which does not form oxide layers and is applied right before the
parts are installed in the vacuum chamber, a uniform conductive layer with a uniform work
function is created and these effects are suppressed. Such a coating has been successfully
used to suppress stray electric fields in previous experiments in the same apparatus as used
here [134], and in other hydrogen atomic beam experiments [33, 135]. It was also found to
prevent stray electric fields from contact potentials from dissimilar materials in [136]. The
graphite coating was also applied to all parts in close proximity to the atomic beam, including
the high-vacuum entrance aperture (EA in Fig. 4.1), the 1S-2S Faraday cage (FC), made
from the same wire mesh as used for the electrodes, the variable aperture (VA), the rotatable
base cylinder (RC), and the high-vacuum output aperture (OA).

Colloidal graphite is known to consist of 1 µm-diameter plates [137, 138], with various com-
mercial suspensions in water or organic solvents available3. Here, colloidal graphite suspended
in isopropyl alcohol4 is used, which is spray-applied to the surfaces. The open area of the
wire mesh, i.e. its transparency, reduces as graphite accumulates on the wires. It was found
through evaluation of camera and optical microscope images to vary between 72 %. . . 81 %,
while for uncoated case the expected open area of 88 % was recovered. This corresponds to a
23 µm. . . 10 µm-thick graphite layer covering the wires. To achieve the lower layer thickness
while still covering the complete mesh from all sides, an iterative approach of repeatedly

1DuPont Vespel is used, which is a polyimide-based plastic.
2One might intuitively understand the electric fields arising from contact potentials in the following way:

when the electrodes are electrically connected with negligible resistance, as is the case here when they are
grounded, the Fermi level is identical in all electrodes. The work function is the energy required to remove an
electron from a metal to the surrounding vacuum. Removing an electron from one electrode and into another,
dissimilar electrode, would then result in an energy gain or loss, given by the difference in work functions, if
no electric field exists between the electrodes. As the Fermi levels are however identical, this violates energy
conservation, unless an electric field exists between the electrodes in which the electron losses or gains the
difference in work functions.

3Commonly used and experimentally studied are Aquadag and DAG 580, available from Agar Scientific,
which are suspensions of colloidal graphite in distilled water and ethanol, respectively.

4Kontakt Chemie Graphit 33 (manufacturer reference 76009-AC), spray can. It is not a scientific product,
and variations in the resulting coating between batches were observed. For future experiments, a more well-
controlled scientific product is recommended.
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spray-painting and checking the graphite coverage under an optical microscope was neces-
sary. As this process was improved during the course of the 2S-6P measurement, the mesh
transparency is estimated to be 70 % during measurement run A, and 80 % during runs B
and C (see Table 6.1).

Moreover, during run A, additional so-called blocking meshes were installed in the detector
assembly. These meshes are identical to the spherical wire mesh electrodes, and are placed
5 mm above and below the top and bottom electrodes, respectively. They are electrically
isolated from both the top and bottom sections, and the top and bottom electrodes, using
identical spacers as used between the latter and the ring electrodes. The original purpose
of the blocking meshes was to prevent charged particles from entering the top and bottom
sections by applying appropriate voltages. Ultimately, this was not done and the blocking
meshes were left grounded. However, the additional meshes result in a reduced effective
transparency of the combination of mesh electrode and blocking mesh of 0.72 ≈ 50 %.

As opposed to the inner region, the top and bottom sections of the detector cylinder are
not coated with graphite, but the aluminum is left exposed. This is because, as discussed in
Section 4.6.5, the photoelectron yield of aluminum is substantially higher than for graphite.
At the same time, the suppression of stray electric fields is of no concern inside these sections,
as they are expected to be much smaller than the applied electric field. Importantly, the
aluminum is not protected from oxidation, but machined, cleaned with industrial soap and
organic solvent, and installed in the vacuum chamber, during which it is exposed to ambient
air for at least a few days. Thus, the aluminum is expected to be covered by an aluminum
oxide layer [139]. Furthermore, the aluminum parts were left as is and not polished after
machining, leading to a surface with poor optical properties, even for visible light. The
stainless steel wire mesh at the bottom of the cylinder is coated with graphite to keep that
number of materials to be considered in the simulation of the detector at two. Note that for
the photon energies relevant here, the photoelectron yield of colloidal graphite is higher than
for copper, but lower than for stainless steel, which is comparable to aluminum [131, 132].

4.6.2 Channel electron multipliers

Channel electron multipliers (CEMs) allow the detection of single electrons and photons. To
this end, a bias voltage Vbias is applied to a channel of suitable geometry and made from
appropriately processed glass, such that electrons entering the channel release secondary
electrons upon striking the channel walls, which in turn release more secondary electrons,
ultimately resulting in an electronic pulse consisting of many millions of electrons that can
be easily detected [140, 141]. The detectors here are operated in the pulse counting mode, in
which the amplitude of the output pulses is independent of the exact conditions in the early
stages of electron multiplication. This is achieved by using a sufficiently high bias voltage,
such that the number of electrons in each pulse, and thus the gain, eventually saturates
during the multiplication process through space charge effects. In this mode, the output
pulses can then be converted with a fixed-threshold discriminator into logic pulses, which are
subsequently counted with a multichannel scaler.

The electron pulses leaving the channel correspond to a current, given by Icts = NeGCEM,
where N is the number of pulses per second, or count rate, e is the elementary charge, and
GCEM the gain of the CEM. A bias current Ibias = Vbias/RCEM, where RCEM is the total
resistance including the channel resistance Rchan, flows in the opposite direction as Icts and
replenishes the electrons in the channel walls. This gives an upper limit on the count rate,
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as Icts cannot exceed Ibias. However, the gain starts to decrease around Icts & 0.1 Ibias [141],
which in an application where the count rate exhibits a high dynamic range further limits
the maximum count rate. This is because the gain has to be adjusted such that the detector
operates in pulse counting mode within the whole dynamic range, which is not possible if the
gain itself changes too much with the count rate. This also applies to the experiment discussed
here, and the maximum count rate should thus not be much higher than N ∼ 0.1Ibias/eGCEM.

To detect electrons, the input end of the CEM must be at a potential Vin that is higher
than its surroundings. The output end of the channel, in turn, must be at a higher potential
Vout, such that Vout−Vin = Vbias. The pulses exiting the channel are collected on an electrically
isolated collector, which has to be placed at a yet even higher potential Vcoll. To extract and
count the pulses from the CEM, the collector is capacitively coupled to a signal cable.

The CEMs used here1 have six spiral channels, twisted around a solid center, with their
inputs and outputs, respectively, at the same potential. The input surface of the CEMs
conically tapers from a diameter of 10.2 mm to a flat surface of 3.0 mm diameter, which
contains the channel openings. A titanium cap with an outer diameter of 11.1 mm and an
aperture of 8.5 mm is slipped onto the input end, serving both as a holder and as an electric
contact, held at2 Vin = 270 V. The titanium cap replaces the stainless steel cap installed by
the manufacturer, which protects the rim of input surface from chipping. The cap is clamped
at its outer edges between two rings made from PTFE, which electrically isolate it from the
detector assembly. To prevent the accumulation of charges on the insulating rings, they are
hidden from the inside of the detector cylinder behind grounded conductors.

The CEMs have an integrated bias resistor with resistance Rbias between the channel
output and a flap to which a voltage Vflap is applied. The total resistance between the
flap and the input is then RCEM = Rchan + Rbias, with Rbias specified as ranging within
10 %. . . 20 % of RCEM. In the following, it is assumed that Rbias = 0.15RCEM. The CEMs are
special extended dynamic range (EDR) versions, which were found to have, on average and
at room temperature, a total resistance of RCEM ≈ 15 MΩ and thus a channel resistance of
Rchan ≈ 13 MΩ. This is about a factor of two lower resistance compared to the previously
used standard version, increasing the typical bias current to Ibias ≈ 120 µA. This, in turn,
corresponds to a maximum count rate of N = 1.5× 106 counts/s for a typical gain of GCEM =
5× 107. The use of a low-resistance CEM is especially necessary for the bottom detector,
which sits directly above the cryopump and is cooled well below room temperature. As the
temperature coefficient of the CEM resistance is negative, this cooling leads to an increase of
RCEM by 50 %. . . 70 % and a corresponding decrease in the maximum count rate. Using the
temperature coefficients measured in [143], this increase corresponds to the bottom detector
cooling down to ≈220 K. The same two CEMs were used during the 2S-6P measurement, and
their resistances when the vacuum chamber was not cooled down was found to be RCEM =
17.6 MΩ and RCEM = 18.0 MΩ for the top and bottom detector, respectively. Cooling down
the vacuum chamber through the cryopump leads to an average increase to RCEM = 18.3 MΩ

1Photonis MAGNUM Electron Multiplier 5901 EDR (specification number PS36892). Total resistance
specified as RCEM = 10.8 MΩ . . . 16.9 MΩ, maximum operating voltage is 3 kV. See [142] for specifications.

2None of the various high-voltage sources tested could maintain an arbitrary voltage at the channel input
when a high voltage was applied to the channel output. This problem could be circumvented by adding a
500 kΩ � RCEM resistance to ground in parallel at the output of the supplies. This effectively flips the
(conventional) current direction from into the voltage supply to out of the voltage supply. FUG MCN 35-350
and FUG MCN 140-1250 were used as voltage supplies for the input ends of the top and bottom detector,
respectively.
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and RCEM = 27.2 MΩ, respectively.
The voltage at the channel output is Vout = (Vflap − Vin)Rbias/RCEM + Vin = 0.85Vflap +

0.15Vin ≈ 0.85Vflap, and the bias voltage is Vbias = 0.85(Vflap − Vin). The purpose of this bias
resistor is that the same high-voltage supply can be used to for both the channel output and
the collector. Here, separate high-voltage supplies1 are used for the channel output and the
collector in order to be able to adjust the voltage across the gap between the channel output
and the collector. To this end, a small electrical circuit, made from standard high-voltage-
compatible components and enclosed in vacuum-compatible epoxy, is directly attached to the
output pin of the collector. The high-frequency pulses are split off with a 470 pF capacitor
and are transmitted through a 50Ω resistor, defining the output impedance, to the coaxial
signal cable. The high voltage Vcoll is applied to the collector through a current-limiting
270 kΩ resistor. Finally, the output side of the capacitor is connected to the grounded shield
of the high-voltage coaxial cable through a 1 MΩ resistor to avoid high voltage building up
through capacitor leakage currents. Here, Vcoll is held at Vflap + 200 V, resulting in a voltage
across the channel output–collector gap of approximately 0.15Vflap + 200 V ≈ 500 V.

Outside the vacuum chamber, preamplifiers2 with a voltage gain of 10 further increase the
pulse height. If necessary, the pulses are attenuated before the preamplifiers. Resistive dc-
coupled 1:2 splitters are used to send equal power to the discriminators and to an oscilloscope
to monitor the pulses. All electrical components involved have an impedance of 50Ω to avoid
reflections and ringing, except the low-impedance output of the preamplifiers. Discriminators3
convert the pulses into logic pulses if they cross a given voltage threshold, here typically
set to −100 mV, and these logic pulses are counted by the data acquisition as detailed in
Section 4.7.3.

The pulses from the CEMs have a full width at half maximum (FWHM) of approximately
≈5 ns, with no ringing or reflections visible. The distribution of the (absolute value of the)
amplitude of the pulses, known as the pulse height distribution (PHD), is recorded with
the oscilloscope. Fig. 4.35 (A) shows the PHD for various bias voltages Vbias for the CEM
used as bottom detector during the 2S-6P measurement. For low values of Vbias (. 1.4 kV
in Fig. 4.35), the CEM gain is not saturated and the PHD is approximately an exponential
distribution (black dashed lines in Fig. 4.35 (A)). As Vbias is increased, the gain increases, with
the distribution starting to resemble a Gaussian distribution (dashed lines in Fig. 4.35 (A))
as the gain starts to saturate (≈ 1.6 kV in Fig. 4.35). This is the onset of the pulse counting
mode [141]. The resulting distribution is typically characterized by its FWHM divided by
its mean, FWHM/V0, ranging between 40 % to 110 % for the CEMs used here, and found
to be ≈80 % for the CEM of Fig. 4.35. The count rate versus Vbias, shown in Fig. 4.35 (B),
is also an important indicator of whether the right combination of Vbias and discriminator
threshold has been found, since the count rate should be insensitive to the exact value of
both parameters around this point4. Further increasing Vbias beyond this point eventually
leads to a strong increase in count rate as ion feedback disturbs the gain mechanism [141].
In the experiment, both the PHD and the behavior of the count rate are used to find the
value of Vbias where the CEM operates in pulse counting mode, which for data of Fig. 4.35
was determined to be Vbias = 1.68 kV. This procedure is here, and in Fig. 4.35, typically

1Heinzinger LNC3000-20 pos high-voltage supplies, max. voltage 3 kV.
2FAST ComTec TA1000B-10, dc-coupled, 3 dB bandwidth of 710 MHz, maximum output voltage ±1.3 V.
3Phillips Scientific 704 with four channels, max. continuous repetition rate of 300 MHz.
4Here, increasing Vbias much beyond the onset of pulse counting mode was avoided to avoid damaging the

CEMs.
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Figure 4.35: (A) Pulse height distribution for different bias voltages Vbias of the channel electron
multiplier (CEM) used as bottom detector during the 2S-6P measurement (solid lines). For Vbias .
1.4 kV, the distribution is approximately exponential (black dashed lines). For increasing Vbias, it is
better described by a Gaussian distribution (dashed lines), characterized by FWHM/V0, where FWHM
is the full width at half maximum, and V0 the mean of the distribution. (B) Counts in delays 1-16
versus Vbias. Charged particles from an ionization pressure gauge are used as input particles. The
pulse height at the output of the CEM is a factor of two lower than as detected at the oscilloscope.
See text for details.

done using charged particles stemming from an ionization pressure gauge as input particles
(see Section 4.2.4). Usually, no substantial difference in the PHD was found when using the
fluorescence of the 2S-6P transition instead, for which of course the whole experiment needs
to be operated. However, because of the much higher count rate from the fluorescence, which
can lower the gain of the CEM as discussed above, Vbias sometimes needed to be further
increased by 40 V. . . 80 V. The gain GCEM of the CEM can also be estimated from the data
of Fig. 4.35 (A) by deducing the mean charge in the pulses from V0 and the pulse length.
Taking into account the additional voltage gain of 2 from the combination of preamplifier,
attenuator, and splitter, this estimation gives GCEM = 7.6× 107 at Vbias = 1.68 kV. The
dark count rate of the CEMs used in the experiment in this configuration is typically below
10 cts/s.

The more charge has been extracted from a CEM, the lower its gain tends to be for a
given bias voltage. This aging is thought to stem from degradation of the channel surfaces
near the output [141, 144]. Therefore, the bias voltage Vbias for which the CEMs operate in
pulse counting mode needs to be checked regularly, which was done as detailed above on each
measurement day during the 2S-6P measurement. Due to aging, Vbias needed to be increased
during this measurement from 1.51 kV to 1.64 kV for the top detector and from 1.64 kV to
1.9 kV for the bottom detector.
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Figure 4.36: Count rate of the top detector (blue lines and circles) during the dark and bright phase,
i.e. when the 1S-2S preparation laser is blocked and unblocked, respectively, by the optical chopper.
(A, B) Count rate versus delay time, and count rate during (C) dark and (D) bright phase versus
measurement time. An exponential fit (red line) of the form a(1 − b exp((t − t0)/τrise)), where a, b,
t0, and τrise are free parameters, to the initial rise of the count rate (τ < 40 µs) reveals a rise time
of τrise = 5.8 µs. The data were taken using a hydrogen nozzle of an earlier design, which behaves
differently from the nozzle used here otherwise, and was operated at a temperature of TN = 5.8 K
and a hydrogen flow of QH2 = 1.95 ml/min. All active surfaces of the detector were graphite-coated.
The powers of the 2S-6P spectroscopy and 1S-2S preparation lasers were P2S-6P = 30 µW and P1S-2S =
0.95 W, respectively, and the width of the variable aperture was set to d2 = 2 mm. See text for details.

4.6.3 Saturation of channel electron multipliers through photoionization
of 2S atoms

As discussed in the previous section, the CEMs can only sustain a certain maximum count
rate if the pulse height distribution is to remain constant, while at the same time operation
at high count rates can limit the lifetime of the CEMs. Unfortunately, the photoionization of
metastable 2S atoms (see Section 2.2.6) through the 1S-2S preparation laser leads to a high
number of photoelectrons inside the detector during the bright phase of the optical chopper
(scattered photons, as discussed below, only play a minor role). These electrons are then
readily detected by the CEMs, and can lead to count rates in excess of 1× 107 counts/s,
limited only by the available bias current and thus well above the count rate sustainable
in pulse counting mode. This overwhelming of the CEMs also affects the operation during
the dark phase, when the preparation laser is blocked, while at the same time considerably
decreasing the lifetime of the CEMs.

Fig. 4.36 shows the result of a test measurement of the CEM performance under these
conditions, for both the bright and the dark phase. The data were taken using a hydrogen
nozzle of an earlier design (the same one as used during the 2S-4P measurement), which
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behaves differently from the nozzle used here otherwise and described above, and was operated
at a slightly higher temperature of TN = 5.8 K, and at a much higher hydrogen flow of
QH2 = 1.95 ml/min, than the latter. Additionally, all active surfaces of the detector were
graphite-coated, and the variable aperture width was set to d2 = 2 mm. The test measurement
used the top detector, which had a different, but of the same type, CEM (RCEM = 13.5 MΩ)
installed as during the 2S-6P measurement. Fig. 4.37 (A) shows the count rate of the top
detector versus delay time τ , averaged over about 8 min, with τ < 3125 µs and τ ≥ 3125 µs
corresponding to the dark and bright phases, respectively. Note that not the complete bright
phase is captured, which continues to τ = 6250 µs. The spectroscopy laser is on-resonance
with the 2S-6P transition at all times. While the count rate during the bright phase follows
the familiar pattern discussed before and stays below 1 Mcts/s, during the bright phase it
saturates at ≈18 Mcts/s, close the maximum limit allowed by the bias current. The transient
oscillations of the enhancement cavity stabilization (not shown here, see Section 4.3.3.5) are
reflected in the count rate at the start of the bright phase. Interestingly, the count rate initially
rises over a few µs at the start of the dark phase, right after the preparation laser is blocked,
as shown in detail in Fig. 4.37 (B). Such a behavior is not expected from the fluorescence
itself, because the 2S-6P spectroscopy laser is always on and the flux of 2S atoms does not
change within the time scale of the initial rise. Instead, this behavior is here attributed to the
CEM itself as it adjusts to the sudden decrease in count rate, with the time scale given by the
effective RC time constant τrise of the CEM and the high-voltage supplies. An exponential fit
(red line) results in τrise = 5.8 µs.

A decrease in the count rate over the course of minutes after starting the test measurement
is also observed, affecting both the dark and bright phase, as shown in Fig. 4.36 (C) and (D),
respectively. The power of both preparation and spectroscopy laser was constant during this
time, as was the hydrogen flow and nozzle temperature. Furthermore, the hydrogen discharge
was started and the nozzle cooled down 15 min before the enhancement cavity was stabilized
to the preparation laser, corresponding to the start of the test measurement. At the same
time, the pulse height distribution (PHD) of the CEM changes from a Gaussian distribution,
which at that point was stable for two hours of operation at low count rate, to an exponential
distribution, while the high voltages applied to the CEM were kept constant. Therefore, the
high count rate seems to reduce the gain of the CEM, which in turn does not operate in pulse
counting mode anymore, leading to a decrease in the number of pulses counted also during
the dark phase. Just as the change in the PHD happens on the course of a few minutes, it
here does not return to its previous state immediately after stopping the test measurement.
However, after switching off the CEM for a few minutes, the PHD returns to its original state.

A second test measurement was carried out, two weeks after the first test measurement,
to pinpoint the source of the counts during the bright phase. The parameters were the same
as for the first measurement, except that the 2S-6P spectroscopy laser is kept off-resonance
and the variable aperture width is initially set to d2 = 1.2 mm. Fig. 4.37 (A) shows the
count rate of the top detector during the bright phase versus the voltage U−y applied to
the bottom electrode of the detector assembly’s inner region. For U−y = 0 V, with the no
hydrogen flowing into the system and the preparation laser detuned from the 1S-2S transition
by ∆ν1S-2S = 200 kHz, but circulating with P1S-2S = 0.95 W inside the enhancement cavity, a
count rate of 1.4 Mcts/s is observed (solid blue line). These counts are attributed to photons
scattered out of the enhancement cavity at the apertures along the beam path. Starting the
flow atomic hydrogen into the chamber, with the preparation laser still off-resonant, increases
the count rate to 1.9 Mcts/s (dash-dotted blue line). This increase could possibly stem from
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Figure 4.37: Count rate of the top detector for the (A) bright and (B) dark phase, versus the positive
voltage U−y applied to the bottom electrode. The experimental conditions are the same as for Fig. 4.36,
but with the 2S-6P preparation laser kept off-resonance. See text for details.

the Doppler-broadened excitation of 2S atoms.
Setting the frequency of the preparation laser on-resonance with the Doppler-free 1S-

2S transition increases the count rate by almost an order of magnitude to 11.9 Mcts/s (blue
circles). If these additional counts stem from electrons created by the photoionization of
2S atoms, it should be possible to reduce the number of counts by pulling the electrons
towards the bottom detector with an electric field. To this end, U−y is increased, while
all other electrodes are kept grounded. This results in an electric field and potential at
the center of the detector of F0 = U−y × (21.7 1/m) and U0 = 0.288U−y, respectively, as
determined by simulations (see Section 4.6.7). As the photoelectrons have an energy of
1.70 eV (see Section 2.2.6), they should not be able to escape to the top detector for a voltage of
U−y = 1.70/0.288 = 5.9 V (dotted black line). In reality, this condition is less stringent, as the
2S atoms are photoionized at all positions along the atomic beam, while the electric potential
drops off towards to apertures in the electrodes (at the apertures, it is only U ≈ 0.03U−y).
The expected behavior is indeed observed as U−y is increased, with the count rate starting to
drop around U−y = 5 V, and reaching 1.9 Mcts/s for U−y = 10 V. For even higher voltages,
the count rate drops below the value seen with the preparation laser off-resonant. This is
because the scattered photons are expected to be mainly detected through the emission of
photoelectrons from the detector walls, of which those emitted from inside the inner region
are likewise pulled towards the bottom detector.

The measurement is repeated with the variable aperture width increased to d2 = 2.0 mm
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Figure 4.38: Similar to Fig. 4.37, but with a negative voltage U+y applied to the top electrode instead
of the bottom electrode. See text for details.

(orange points and dashed line). The increased aperture width does not change the count
rate appreciably. This behavior is expected if the majority of the counts stem from the
photoionization of 2S atoms, since most atoms that would otherwise be blocked by a narrower
aperture do not cross the beam of the preparation laser again. For increasing U−y, a behavior
very similar for the earlier case is observed. The number of counts without hydrogen, on
the other hand, is strongly reduced to 0.15 Mcts/s (orange solid line), as less photons are
scattered on the aperture.

A complementary measurement, instead of applying positive voltage to the lower electrode,
is to apply a negative voltage U+y to the upper electrode instead. For large enough values
of U+y, this also prevents the photoelectrons from reaching the top detector. The results of
the measurement, now again for d2 = 1.2 mm, are shown in Fig. 4.38. While here also a
suppression of the count rate is observed, a voltage about a factor two lower is needed. This
could be because the electric field inside the top section, which guides the electrons to the
CEM, is now also disturbed. Indeed, the field lines directly above the top electrode point
towards the walls of the detector cylinder, as the electric field from the CEM is weak in this
region.

4.6.4 Gain switching of channel electron multipliers
As detailed in the preceding section, the large count rate on the CEMs during the bright
phase, much above the sustainable limit, alters the pulse height distribution (PHD), leads
to a transient nonlinear detector response at the onset of the dark phase, and reduces the
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Figure 4.39: Circuit diagram of the high-voltage switches. The circuit shown integrates the Behlke
HTS 41-03-GSM switch (dashed box), used for the top detector. The circuit used for the bottom
detector integrates the HTS 31-01-GSM switch and is identical, except that the resistance of R1 is
1 MΩ. The number and breakdown voltage of the Zener diodes (here, four diodes D1–4 are shown) is
adjusted as needed. See text for details.

lifetime of the CEMs. While in principle the decrease in gain can be countered by an increase
of the bias voltage, it is not clear how the CEMs behave during the strongly different count
rates of the dark and bright phase1. For example, it could be possible that this reduces the
dynamic range in the dark phase, distorting the line shape of the 2S-6P resonance.

A way to circumvent this problem is to substantially reduce the gain during the bright
phase, such that the CEMs are effectively switched off and almost no current from ampli-
fied pulses is flowing2. This is here achieved by reducing the bias voltage Vbias using high-
voltage (HV) switches. To not disturb the fluorescence count rate at the start of the dark
phase, this gain switching needs to happen within a few µs. To this end, push-pull transistor
switches3 are used to vary the voltage Vflap applied to the flap of the CEMs, resulting in a
lower gain voltage through Vbias = 0.85(Vflap − Vin). During the dark phase, the switches set
Vflap to Vflap,high, for which the CEMs are in pulse counting mode, while during the bright
phase, Vflap is set to Vflap,low < Vflap,high, such that close to no output pulses are detected
(see Fig. 4.35 (B)). Vflap,high is derived directly from the HV supplies, while Vflap,low is derived
from Vflap,high using Zener diodes to ground in a circuit resembling a voltage regulator4. The
corresponding circuit diagram is shown in Fig. 4.39, with Vflap,high applied at the HV input
terminal and the CEM flap connected to the HV output terminal. By choosing and adding
in series Zener diodes with different breakdown voltages, Vflap,low can be picked almost arbi-
trarily and thus matched to the gain characteristics of the CEM. Note that setting Vflap,low

1In principle, this could be investigated by observing the PHD of dark and bright phase separately, using
an RF switch.

2During the 2S-4P measurement, an RF switch was used to block the counts from the CEMs from reaching
the discriminator during the bright phase. This however does not prevent the adverse effects on the CEMs
themselves.

3Behlke HTS 31-01-GSM and HTS 41-03-GSM, max. operating voltage 3 kV and 4 kV, respectively.
4Initially, both Vflap,high and Vflap,low were derived from independent HV supplies. However, this was found

to limit the switching speed as the charge stored in the CEM has to flow across the supplies upon switching.
Using Zener diodes, on the other hand, allows the charges to flow to ground across a much lower resistance.
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Figure 4.40: Time-resolved fluorescence count rate of the (A, C) top and (B, D) bottom detector
during run B of the 2S-6P measurement (see Table 6.1). Only the data for τ < 160 µs are shown (see
Fig. 4.32 for the full data). (C, D) show the same data as (A, B), but normalized to the average count
rate in delay 2. The legend of (B) is applicable to all plots, with on resonance, on wing, and background
corresponding to a detuning of the 2S-6P spectroscopy laser from the resonance of |∆ν2S-6P| = 0 MHz,
8 MHz. . . 10 MHz, and 50 MHz, respectively. The data are further grouped by the spectroscopy laser
power P2S-6P = 30/15 µW, 20/10 µW, and 10/5 µW for the 2S-6P1/2/2S-6P3/2 transition (data groups
G1B/G7B, G2/G8, G3/G9, see Table 6.2). The delay times of the falling chopper trigger (τ = 0 µs,
dashed black line), the rising HV switch (τ = 2 µs, dotted black line), and the start of delay 1 (τ = 10 µs,
solid black line) are marked. The legends in (C) and (D) show the rise time τrise of the on-resonance
fluorescence count rate, as determined from an exponential fit within 5 µs ≤ τ < 40 µs, similar as done
in Fig. 4.36.

to ground would lead to a large potential difference across the channel output–collector gap,
and reverse the field inside the channel as the input is still held at a positive voltage, both
of which should be avoided. During the 2S-6P measurement, Vflap,low was set to 1.76 kV and
1.85 kV for the top and bottom detector, respectively.

A TTL signal, derived from a function generator that is triggered on the chopper trigger,
is applied to the control input of the HV switches, where the high signal level corresponds
to the HV output of the switches set to the high level. The rising edge of the TTL signal is
delayed by 2 µs from the falling edge of the chopper trigger, heralding the beginning of the
dark phase, and the signal is held at high level for 2.6 ms. Thus, the complete delay time
τ = 10 µs . . . 2560 µs during which the 2S-6P fluorescence is counted is covered. The rise and
fall time of the HV output, as determined from the ac-coupled monitor output (see Fig. 4.39),
was found to be ≈200 ns, with a delay of likewise ≈200 ns between the TTL signal and the HV
output, well within the requirement stated above. However, the internal power driver of the
HV switches produces pulses every few hundred µs on the HV output. These pulses mimic
the output pulses of the CEMs and are counted by the data acquisition. A low-pass filter
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with an RC time constant of 680 ns, placed between the HV output and the CEM, is sufficient
to reduce the amplitude of these pulses to a negligible level, while at the same time keeping
the rise and fall time within the acceptable range. There are also pulses on the HV output
during switching, which are of larger amplitude and not completely suppressed. However,
as the switching occurs before and after the fluorescence is counted, the resulting spurious
counts are excluded. As these spurious counts also disturb the measurement of the PHD,
RF switches installed before the oscilloscope used for this measurement (see Section 4.6.2)
block any signal from the CEMs during the gain switching.

The gain switching of the CEMs was first tested using charged particles from an ionization
pressure gauge, as used to measure the PHD in Section 4.6.2, since they result in a constant,
time-independent count rate on the order of 10 kcts/s. The test used the same top detector as
used in the test measurement discussed in Section 4.6.3. When switching Vflap from Vflap,low
to Vflap,high, the count rate stabilizes with a time constant of τrise = 2 µs . . . 3 µs, thought to
be limited by the capacitance of the CEM itself, similar to the behavior observed due to
saturation without the HV switches (see Section 4.6.3 and Fig. 4.36 (B)). There is also an
increase with a much longer time constant of ≈300 µs after the initial rise, during which the
count rate increases by approximately 1.7 %, also observed on the HV output voltage. The
behavior is identical for both HV switches. The count rate when the HV output is at its low
level, i.e. Vflap,low, is zero.

The HV switches were used during the complete 2S-6P measurement. Fig. 4.40 shows the
fluorescence count rate for delay times τ < 160 µs during run B (see Table 6.1) of the mea-
surement. The data are grouped into on resonance, on wing, and background, corresponding
to a detuning of the 2S-6P spectroscopy laser from the resonance of |∆ν2S-6P| = 0 MHz,
8 MHz. . . 10 MHz, and 50 MHz, respectively, and into spectroscopy laser powers P2S-6P =
30/15 µW, 20/10 µW, and 10/5 µW for the 2S-6P1/2/2S-6P3/2 transition. The maximum
on-resonance count rate reaches ≈1.4 Mcts/s for P2S-6P = 30/15 µW. Spurious counts as the
HV output switches to its high level (dotted black line) are visible, with the top detector
affected more strongly. The initial rise of the fluorescence count rate caused by the switching
of the gain is clearly visible in the normalized count rate shown in Fig. 4.40 (C) and (D).
Exponential fits (not shown) to the on-resonance count rate within 5 µs ≤ τ < 40 µs reveal
rise times of 3.0 µs. . . 3.2 µs and 5.5 µs. . . 6.2 µs for the top and bottom detector, respectively.
The difference between the detectors is attributed to their different resistances RCEM, owing
to the cold temperature of the bottom detector (see Section 4.6.2). A slight, but statistically
significant, decrease in the rise time with decreasing laser power is present, hinting at a slight
dependence of the rise time on the count rate, which depends linearly on the laser power.

The background count rate, as expected, is nearly identical for all laser powers, i.e. the
background-to-amplitude ratio increases with decreasing laser power. However, it shows a
clear excess of counts compared to the on-resonance count rate within the first 50 µs, super-
imposed on the rise from the gain switching. As the on-resonance count rate is at least a
factor of 7 larger than the background count rate, the excess is not expected to be visible in
the latter. It is thus unclear whether this excess is also present with the laser on resonance
with the 2S-6P transition, as the background signal, coming from 2S atoms, cannot be readily
disentangled from the much larger fluorescence from the decay of the 6P level. However, plac-
ing the laser not on resonance, but on the wing of the resonance such that the 6P fluorescence
contributes the same count rate as the background (red line), the excess should be half as
strong if it indeed only is present on the background signal. This is indeed clearly the case.
As discussed in Section 4.5.2.4, this excess could be caused by atoms that have not or only
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partially thermalized to the temperature of the nozzle, but further experiments, e.g. using
different nozzle designs, are needed to study this hypothesis.

During the bright phase, less than 0.03 cts/s are detected on average for the top detector.
The reduction of the gain of the bottom detector, on the other, is not quite as strong, and on
average 51 cts/s are still detected in the bright phase. Using the ratio of the residual bright
phase count rate when the laser is on- and off-resonance, and the corresponding count rates
at the start of the dark phase, the count rate the detectors would be exposed to during the
bright phase without gain switching can be estimated to be close to 10 Mcts/s. This count
rate would by far exceed the sustainable count rate in pulse counting mode and lead to a
modified PHD as seen in Section 4.6.3. Furthermore, this bright phase count rate is 30 times
higher than the average count rate during the dark phase, and thus the gain switching is
expected to increase the lifetime of the CEMs, as given by the accumulated charge, by a
factor of more than 30.

4.6.5 Detector properties pertaining to detection efficiency
The detection efficiency of CEMs was found to be above 90 % for electrons with kinetic
energies within 200 eV. . . 700 eV in [141, 145]. Here, the input surface of the CEMs is held
at Vin = 270 V above the rest of the grounded detector surfaces, and thus the photoelectrons
emitted or reflected from these surfaces will have an energy close to 270 eV, as their initial
kinetic energy is negligible in comparison with the energy gained from the electric field (see
below). Therefore, the detection efficiency of photoelectrons is here assumed to be ≈90 %.
The quantum efficiency of photon detection was measured in [146] to be ≈10 % for Ly-ε
photons (hν = 13.22 eV) and ≈2 % for Ly-α photons (hν = 10.20 eV). The photons from
the 1S-2S preparation laser (hν = 5.10 eV), on the other hand, are only detected with an
quantum efficiency of ∼1× 10−8 according to [147]. The small titanium cap covering the rim
of the CEM input cone is held at the same potential as the input surface itself. The secondary
electron yield of titanium is ∼2 [148] for 270 eV electrons and thus here it is assumed that
any electron hitting the small cap is equivalent to hitting the input surface of the CEM,
i.e. Pdet,Ti = 100 %.

The active surfaces of the detector are either coated with colloidal graphite or consist of ox-
idized aluminum. These materials have work functions of 4.6 eV and 4.0 eV, respectively [131],
and thus only photons stemming from Lyman decays, for which hν ≥ 10.20 eV, are energetic
enough to eject photoelectrons. As can be seen from Tables 2.2 and 2.3, for the 2S-6P tran-
sition 91 % of these decays are Ly-ε (hν = 13.22 eV) and 7 % are Ly-α (hν = 10.20 eV), while
Ly-β (hν = 12.09 eV) and Ly-γ (hν = 12.75 eV) only contribute 1.3 % and 0.3 % of Lyman
photons, respectively. The properties of the two materials relevant to modeling the spatial
detection efficiency and spectral sensitivity of the fluorescence detection are given in Table 4.1
and discussed in the following.

The photoelectron yield Yel, photon reflectance Pph, and photoelectron energy distribution
were measured for both materials1 in [131] at near-normal incidence at an angle of α = 7.5°.
The measurements are shown in Fig. B.1 (A–C) for reference. Importantly, the aluminum
sample used in [131] was left exposed to atmosphere for at least several days, and thus
should be covered with an oxide layer just as the aluminum parts used here. Note that Yel is

1In [131], the properties of colloidal graphite are measured for a coating made with Aquadag, which is a
suspension of colloidal graphite in distilled water. Here, colloidal graphite suspended in isopropyl alcohol is
used. It is assumed that the properties of the dried coatings are comparable.
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Table 4.1: Properties of the materials used in the detector relevant to modeling the detection effi-
ciency. See Section 4.6.5 for details and Fig. B.1 for the measurements from which the properties were
extracted. Only the photon energies relevant to the modeling of the 2S-6P and 2S-4P measurements
are included.

Material Photon hν (eV) Yel (%) Pph (%) nr Eel,0 (eV) Γel (eV) Pel (%)

Colloidal
graphite
(gr)

1S-2S 5.10 0.0006 — — — — —
Ly-α 10.20 0.7 ≈7 1.7 — — —
Ly-γ 12.75 4.1 ≈15 2.2 2.4 2.5 ≈60
Ly-ε 13.22 4.8 ≈15 2.2 2.5 2.8 ≈60

Oxidized
aluminum
(Al)

1S-2S 5.10 0.0009 — — — — —
Ly-α 10.20 3.9 ≈40 4.4 — — —
Ly-γ 12.75 18 ≈15 2.2 1.9 2.4 ≈10
Ly-ε 13.22 20 ≈15 2.2 1.9 2.4 ≈10

here defined as the number of photoelectrons ejected per incoming photon, not per absorbed
photon, with the latter given by Yel/(1−Pph). Using the Fresnel equations, the refractive index
nr of the material can be calculated from Pph, since at near-normal incidence the reflectance
of s- and p-polarized light are sufficiently similar. The photoelectron energy distribution was
not measured for graphite in its colloidal form, but for an atomically clean sample; it is here
assumed that the distributions are identical. The distributions can be described by a normal
distribution centered at energy Eel,0 and with a full width at half maximum (FWHM) of Γel
for both materials, as given in Table 4.1.

The electron reflectance Pel was measured for colloidal graphite1 in [138], and for non-
oxidized aluminum in [149] as reproduced in [150]. Both measurements are shown for reference
in Fig. B.1 (D). For the values of Pel given in Table 4.1, the incoming electron energy was
assumed to correspond to Eel,0. The emission of secondary electrons is negligible here, as
only the most energetic photoelectrons have an energy slightly above the work function of the
materials considered. The scattering of both electrons and photons is assumed to be diffuse,
since the surface irregularity is thought to be much larger than the wavelength of the particles
(an electron with an energy of 1 eV has a de Broglie wavelength of 1.2 nm).

Since the photoelectron yield for Ly-α photons is only 15 %. . . 20 % of the yield of Ly-ε
photons, Ly-α photons only account for≈1 % of the detected signal, similar to the contribution
from Ly-β and Ly-γ decays. Thus, only Ly-ε photons need to be taken into account to
model the detector with sufficient accuracy. Furthermore, Ly-ε photons have a 4.2 times
higher photoelectron yield higher on oxidized aluminum than on colloidal graphite. The
corresponding increase in signal has indeed been observed upon exchanging the detector
material from graphite-coated copper to aluminum.

1In [138], DAG 580, which is suspension of colloidal graphite in ethanol, was used to apply the graphite
coating, which is assumed to have similar properties as the coatings prepared here.
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4.6.6 Simulation of spatial detection efficiency

To estimate the spatial detection efficiency, the detection of Ly-ε photons is modeled using a
Monte Carlo particle tracing simulation1. To this end, the geometry of the detector cylinder is
approximated, with the surfaces either corresponding to colloidal graphite or aluminum. The
apertures in the electrodes are modeled as graphite-coated tubes, closed at the far end, with a
length of ≈23 mm and the appropriate cross section. The wire meshes of the electrodes and the
bottom of the detector cylinder are modeled as graphite-coated surfaces with a transparency of
TWM and TWM,BD, respectively, for both photons and electrons. For the electrodes, transmitted
particles enter the top or bottom sections of the detector cylinder, while particles crossing
the bottom of the detector cylinder disappear from the simulation. Each surface type is
assigned a photoelectron yield Yel, a photon reflectance Pph, an electron reflectance Pel, and a
Gaussian photoelectron energy distribution centered at Eel,0 and with a FWHM of Γel, with
the corresponding values taken from Table 4.1.

All surfaces are grounded, except the CEM input surface, which is held at 270 V. The
resulting electric field inside the top and bottom sections is found by solving Laplace’s equation
using the finite difference method. The step size of this calculation is set to 0.2 mm and 2× 105

iterations are used. The center section, or spectroscopy region, is assumed to be free from
electric fields.

The fluorescence photons are emitted from the interaction point. Spherical coordinates
are used with the polar angle θ = −90° . . . 90° measured against the vertical y-axis, i.e. the
axis of the detector cylinder, and the azimuthal angle φ = −180° . . . 180° measured against
the atomic beam (z-) axis. For each run of the simulation, M emission directions are picked
at random, where here M = 2× 105 is used. For each photon emitted, or trajectory, in
turn one of the emission directions is randomly selected, and the photons flies through the
vacuum until a surface is encountered. Here, as determined by the properties of the surface,
the photon is either reflected, absorbed and a photoelectron emitted, or absorbed (or enters
the cryopump) and the trajectory is stopped. The polarization of the photon and the angle
of incidence are not taken into account, i.e. Yel, Pph, and Pel are assumed to be independent
of both2. This assumption is partly motivated by the large surface irregularity, which should
reduce possible dependencies on the angle of incidence.

The angular distribution of both the diffuse reflection of photons and electrons as well
as the emission of photoelectrons, is assumed to be given by (Lambert’s) cosine law (see
Eq. (4.28)), according to which the emission angles are randomly found. If an photoelectron
is emitted, its energy is randomly drawn from the Gaussian distribution for the emitting
surface. The trajectory of electrons is affected by the local electric field through the Lorentz
force, and upon striking a surface it is likewise reflected or absorbed. This procedure continues
till the photon or electron is either absorbed or hits the input surface of one the CEMs. In the
latter case, it is counted as a click on the corresponding detector with a probability of 90 %

1The simulation is written in the Object Pascal programming language, using Embarcadero Delphi 10.3.
The original version was created by Arthur Matveev, and was subsequently adapted and modified by the
author.

2While implementing a simulation taking these effects into account is beyond the scope of this work, not least
because experimental data on the polarization dependence of photoemission are scarce in the parameter region
needed here, it should be estimated in future work if polarization-dependent effects like quantum interference
need to be corrected for using only simulation data. For the 2S-6P measurement, the effects of quantum
interference are reduced to a negligible level using the fine-structure centroid without having to rely on the
accuracy of the detection efficiency simulation to a large degree.
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Figure 4.41: Spatial detection efficiencies of the (A) top and (B) bottom detector versus fluorescence
emission direction, using the material properties given in Table 4.1 and wire mesh transparencies
of TWM = TWM,BD = 80 %. Spherical coordinates are used with the polar angle θ = −90° . . . 90°
measured against the vertical y-axis, i.e. the axis of the detector cylinder, and the azimuthal angle
φ = −180° . . . 180° measured against the atomic beam (z-) axis. The projection of the resulting
spherical surface to 2D uses the equal-area Hammer projection. (C, D) Detection efficiency versus
polar angle θ, averaged over the azimuthal angle φ, for different simulation parameters for the (C) top
and (D) bottom detector. The data from (A, B) correspond to the bold blue lines in (C, D).

and 10 % for electrons and photons, respectively. In total, Ntraj,ph trajectories are calculated
in this way, where Ntraj,ph here is typically on the order of 1× 108.

The resulting spatial detection efficiencies of the two detectors as a function of fluorescence
emission direction is shown in Fig. 4.41 (A, B), using the material properties given in Table 4.1
and wire mesh transparencies of TWM = TWM,BD = 80 %. Spherical coordinates are used with
the polar angle θ = −90° . . . 90° measured against the vertical y-axis, i.e. the axis of the
detector cylinder, and the azimuthal angle φ = −180° . . . 180° measured against the atomic
beam (z-) axis. The same data, averaged over φ, are shown as bold blue lines in Fig. 4.41 (C)
and (D) for the top and bottom detector, respectively. The detection efficiency is highest
within the respective hemisphere, reaching ≈13 % for fluorescence photons hitting the detector
cylinder walls close to the top or bottom (θ ≈ ±70°). It then decreases towards the center
of the cylinder, with the steep drop at θ ≈ ±28° corresponding to the boundary between
the top/bottom sections and the inner region. Here, the material changes from aluminum
to colloidal graphite. The boundary back to aluminum in the opposing hemisphere again is
visible at θ ≈ ∓28°. For the top detector, photons hitting the aluminum top of the cylinder
lead to a peak around θ ≈ 77°, but the detection efficiency is lower than for photons hitting
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Table 4.2: Overview of parameters and results of detection efficiency simulations as shown in Fig. 4.41.
See text for details.

Set TWM

(%)
TWM,BD

(%)
Pph (%) Pel (%) Pdet,Ti

(%)
PDE,TD

(%)
PDE,BD

(%)
ηDE,TD

(%)
ηDE,BD

(%)gr Al gr Al
1 80 80 15 15 60 10 100 2.22 2.09 30.5 26.1
2 70 70 15 15 60 10 100 1.99 1.86 30.2 25.8
3 60 60 15 15 60 10 100 1.75 1.63 30.1 26.1
4 50 70 15 15 60 10 100 1.47 1.38 30.1 26.0

the wall as the photoelectrons need to be deflected by 180° to hit the CEM. On the other
hand, for the bottom detector most photons for θ & 70° escape into the cryopump, with only
few photoelectrons ejected from the graphite-coated wire mesh. Photons directly hitting the
CEMs lead to peaks at θ ≈ ±90°. The apertures in the electrodes are faintly visible as regions
of reduced detection efficiency near the equator. The total detection efficiency is found to
be PDE,TD = 2.2 % and PDE,BD = 2.1 % for the top and bottom detector, respectively. Note
that PDE,TD + PDE,BD ≤ 100 %, as each fluorescence photon can only be detected by either
CEM, meaning that here 4.3 % of all photons emitted by the atoms are collected. It is also
instructive to estimate the solid angle covered by the detection. Since the detection efficiency
is not a step-like function, one way to do this is to pick a detection efficiency threshold
above which the solid angle is thought to contribute. Here, a threshold of 20 % of the peak
detection efficiency is picked, resulting in the top and bottom detector covering a fraction of
ηDE,TD = 31 % and ηDE,BD = 26 % of the total solid angle, respectively.

Fig. 4.41 (C, D) additionally shows the detection efficiencies for wire mesh transparencies
TWM = TWM,BD of 70 % (orange line) and 60 % (green line). Between θ ≈ −50° . . . 90° and
θ ≈ −50° . . . 70°, the detection efficiency of the top and bottom detector, respectively, scales
linearly with TWM, as all particles, photons or photoelectrons, need to cross the wire mesh
electrodes to reach the CEMs from the inner region. For θ . −50° and θ & 50°, on the other
hand, an inverse scaling with TWM is observed, as photons hitting the wire mesh electrodes
in one hemisphere are predominantly detected by the CEM in the opposite hemisphere. The
same behavior is visible for θ . 70° for the bottom detector, since a lower TWM of the wire
mesh at the bottom of the cylinder also implies less particles escaping into the cryopump.

To simulate the detection efficiency during run A, where the additional blocking meshes
were installed in the detector assembly, TWM and TWM,BD are assumed to be 50 % and 70 %,
respectively (red line in Fig. 4.41 (C, D)). The behavior of the detection efficiency is similar
to that of TWM = TWM,BD = 70 %, but the overall detection efficiency is only ≈66 % of the
latter. This approximately matches the differences seen in the fluorescence signal between
run A, on the one hand, and run B and C, on the other hand.

The resulting total detection efficiencies and solid angle coverages of the simulations are
given in Table 4.2.

4.6.7 Detector electrodes and bias electric fields
Stray static electric fields inside the inner region of the detector assembly can cause a sys-
tematic offset of the measured 2S-6P transition frequency through the dc-Stark shift. Such
stray fields may originate from multiple sources. First, fields present outside the inner region,



4.6 Fluorescence detector assembly 153

Table 4.3: Electric field strength F within a sphere of 5 mm radius, centered within the inner region
of the detector assembly, when applying a voltage of ±1 V on opposing electrodes along axis i. The
values were obtained with a FEM simulation using geometry of the inner region of the detector
assembly as shown in Fig. 4.34. The field component Fi along direction i when moving from the center
((x, y, z) = (x1, x2, x3) = (0, 0, 0)) along the j-axis is well approximated by Fi = Fi,0(1 + bi,jx

2
j ). See

text for details.

Axis Fi,0 bi,1 bi,2 bi,3 max |(Fi−F )/F | max
∣∣(Fi−F̄i)/F̄i∣∣

(V/m) (10−3/mm2)
x (i = 1) 18.99 4.04 −3.09 −0.95 3.02× 10−3 9.33× 10−2

y (i = 2) 43.47 0.23 −0.54 0.22 2.21× 10−5 1.25× 10−2

z (i = 3) 19.65 −1.06 −3.11 4.20 3.05× 10−3 9.70× 10−2

e.g. the electric fields used to collect electrons at the electron multipliers, fields from charges
accumulating on poorly conducting surfaces, or fields from contact potentials, may extend
into the inner region through the wire mesh or the apertures. Second, an imperfect graphite
coating or foreign particles on the electrodes may lead to charges building up on the elec-
trodes themselves. Third, the fields from charges on the electrically-isolating spacers between
the electrodes might not be shielded sufficiently. Fourth, temperature differences between
the electrodes might lead to a thermoelectric voltage difference through the Seebeck effect or
cause a contact potential through the temperature-dependence of the work function. Fifth,
an inhomogeneous distribution of charged particles1 inside the inner region itself could cause
electric fields.

For all but the last possibility, the stray electric fields can then be measured using the
six electrodes surrounding the inner region, and the atoms themselves as field sensors. To
this end, bias voltages are applied to opposing electrodes to create a bias electric field along
the given direction, which adds to or subtracts from any present stray electric fields. By
determining the voltage for which dc-Stark shifts of the 2S-6P transition from the stray
electric fields are canceled in all three directions, the field strength and direction of the stray
electric fields can be deduced.

The electric fields resulting from bias voltages applied to the three electrode pairs are
determined using a FEM simulation2 based on the geometry of the inner region as shown
in Fig. 4.34. Only the electric field in the region where the atoms are probed by the 2S-
6P spectroscopy laser beams is of interest, here taken to be a sphere of 5 mm radius centered
within the inner region. To increase the uniformity of the fields, voltages of opposite sign are
applied to the opposing electrodes along direction i, where i = 1, 2, 3 are taken to be along the

1The photoelectrons here have an energy of ≈2 eV, corresponding to a speed of 8.4× 105 m/s. They thus
cross the full diameter of the inner region of the detector within 60 ns. At a count rate of 1× 106 cts/s, reached
for the short delays for P2S-6P = 30 µW, and a detection efficiency of 2 % on each detector, ∼3 photoelectrons
are then expected at any time within the inner region. Electrons created by photoionization of 2S atoms by the
preparation laser (see Section 2.2.6) are expected to have left the inner region by the time the 2S-6P transition
is probed in the dark phase. On the other hand, the protons produced by photoionization have a speed of
421 m/s in the rest frame of the initial atom–photon system. Thus, they are not necessarily expected to leave
the inner region by the time the transition is probed. However, the stray electric fields invariably present inside
the inner region are expected to remove these particles within tens of µs.

2Finite element method, implemented using the AC/DC module of the commercial simulation software
package COMSOL.
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x-,y-,z-axes, respectively. By symmetry, at the center of the sphere ((x, y, z) = (x1, x2, x3) =
(0, 0, 0)), the electric field points along the i-axis with strength Fi,0. When moving from
the center along the j-axis, the field component along i is found to be well-described by a
parabolic dependence, Fi = Fi,0(1 + bi,jx

2
j ). Table 4.3 gives Fi,0 and bi,j for the case where

a voltage of ±1 V is applied to the opposing electrodes along axis i. The non-uniformity
within the sphere is here characterized by max |(Fi−F )/F | and max

∣∣∣(Fi−F̄i)/F̄i∣∣∣, also given
in Table 4.3, and reaching up to 0.3 % and 9.7 %, respectively.

4.7 Data acquisition

The data acquisition (DAQ) of the spectrometer is a combination of software and hardware
components responsible for controlling and reading out the various measurement devices, and
saving and displaying the acquired data. The design of the DAQ follows the periodic nature
of the experiment, which the repeating cycle of producing metastable 2S atoms, and then
exciting them to and observing their decay from the 6P level in a time-resolved fashion. This
requires the acquisition devices to be synchronized with each cycle, which is achieved through
direct triggering of the involved hardware. Furthermore, it also requires large amounts of data
to be quickly processed and stored to keep the experimental duty cycle as high as possible.
In the following, first, the structure of the experimental data is explained, followed by a
description of the software and hardware involved in the DAQ. Finally, the time-resolved
sampling of analog signals and counting of fluorescence from the atoms is discussed in more
detail. The DAQ described here was set-up during the course of this thesis, replacing all
previous hard- and software.

4.7.1 Data structure

The experimental data are structured into chopper cycles, data points, and line scans, as
shown in Fig. 4.42. The 6.25 ms long chopper cycle is the fundamental block, consisting of
a bright and dark phase of an equal duration of 3.125 ms. During the bright phase, the 1S-
2S preparation laser is allowed into the beam apparatus and excites some of the atoms to the
metastable 2S level. The preparation laser is then blocked by the optical chopper, heralding
the start of the dark phase at delay time τ = 0 µs, during which the 2S atoms are excited
to the 6P level by the 2S-6P spectroscopy laser and subsequently decay. The fluorescence of
these decays is detected, with individual detector clicks counted in a time-resolved fashion.
Likewise, samples of analog signals are recorded as a function of delay time. After the optical
chopper unblocks the preparation laser again, the cycle begins anew.

In total, 160 chopper cycles are repeated in sequence and with the same experimental
parameters, forming a data point that thus contains 1 s of data. The analog samples are
averaged over the cycles, but not the delay times, and the fluorescence counts are accumu-
lated over the cycles into delay time bins. Additional data, such as the various synthesizer
frequencies, the nozzle temperature, and so on, are read out once per data point.

Finally, a line scan is a sequence of multiple data points, with the frequency of either
the 2S-6P spectroscopy laser (for line scans of the 2S-6P resonance) or the 1S-2S preparation
laser (for line scans of the 1S-2S resonance) changed, or scanned, in between the data points.
Scan parameters such as the line sampling method used are saved for each line scan.
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Figure 4.42: Timing sequence for the acquisition of (A) a single data point, consisting of 160 chopper
cycles, and (B) a line scan, consisting of multiple data points. The signals shown in (B) correspond
to those of the same color in (A). See text for details. SD: standard deviation, max. dev.: maximum
absolute deviation from average.

4.7.2 Soft- and hardware overview and line scans
The software of the DAQ, referred to as Pythonic hydrogen (pyh), is written in the Python
programming language1 and allows the control of the spectrometer through a graphical user
interface. It controls and reads out various devices, that are connected using a variety of
interfaces to a control computer running pyh. The software also saves and displays the
acquired data, and fits the line scans with various line shape models. pyh is written in a
modular fashion, allowing e.g. the use of modules only concerned with reading and analyzing
the data, but not acquiring it, to be used during the post-analysis of the data. In total, the
software controls 12 analog input channels sampling each chopper cycle, two analog input
channels only read out when needed, four counter channels, six analog output channels, 10
digital output channels, six frequency synthesizers, three mechanical actuators, two voltage
sources, and one cryogenic temperature controller. For precise timing signals independent of
the status of the control computer, a programmable multifunction DAQ device2 is used.

Two classes of data are distinguished: first, purely numerical data with many values
1Python Software Foundation, version 3.6. Available at https://www.python.org.
2National Instruments PCIe-6353.
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acquired per second from the sampling of analog signals (16-bit floating point values) and
the counting of atomic fluorescence (32-bit integers). Second, a mixture of categorical and
numerical data with only a single set of data acquired at intervals of one second or longer,
i.e. attached to a data point or line scan. The first class is stored in arrays1 of the appropriate
data type. The second data type is stored in table-like date frames2 that can contain a mixture
of data types. Each data point and each line scan are assigned a 128-bit long universally unique
identifier (UUID), which is used to cross-reference the data, and a coordinated universal
time (UTC) timestamp. Fits to the line scans are also saved in data frames.

To acquire data, the software first sets the control parameters of the various devices. For
some devices, settling times are enforced after a change in parameters, such as when the
frequency of the 2S-6P spectroscopy laser is modified, to allow the various feedback loops to
settle before data are acquired. When all devices are ready and the settling times have passed,
a software-timed global start trigger is issued. Then, starting from the next bright phase of
the chopper analog signals are sampled and fluorescence counts are accumulated over 160
chopper cycles. This sequence is timed in hardware, as described in the next section. After
these chopper cycles, the data are read-out from the devices and stored in the corresponding
arrays and data frames, with a new UUID assigned to this data point. Next, new parameters
are set, and the next data point is acquired. The dead time, including settling times, between
subsequent data points was on average 450 ms for the 2S-6P measurement, i.e. the time
between two data points was 1.45 s. If the data points are part of a line scan, a new entry to
the scan data frame is added after the scan is complete, and the UUID assigned to the line
scan is also added to the entries of all data points involved. After each line scan or a fixed
number of data point, the data are written to the hard disk of the control computer using the
HDF53 file format. This results in approximately 250 kB of data written for each data point,
with lossless compression used as implemented within the framework of HDF5.

For a line scan, the only parameter varied between subsequent data points is the laser
frequency. Additionally, there is also the possibility to acquire so-called dual (line) scans. The
idea is to perform two line scans at almost the same time while varying one or more auxiliary
experimental parameters between these scans. To this end, a single data point of the first
of the two scans is acquired. Then, the chosen auxiliary parameters, but not the frequency
of the scanned laser, are changed, and a single data point of the second scan is acquired.
This procedure results in two line scans that are effectively recorded within seconds of each
other, as opposed to two line scans taken in sequence, which would be separated by almost
one minute. During measurement run B of the 2S-6P measurement, dual scans were used to
acquire line scans at different powers of the 2S-6P spectroscopy laser (see Table 6.2), in an
attempt to further distinguish drifts in the experimental apparatus from line shifts related
to the change in laser power. In this case, the dead time of 370 ms between data points
for dual scans was slightly less than for non-dual scans, while the time between data points
for each of the two line scans within the dual scans increased to 2.7 s. This resulted in an
average time between data points of 2.3 s for the combination of non-dual and dual scans in
the 2S-6P measurement.

1Implemented using the ndarray object of NumPy, a Python package for scientific computing. Available at
https://www.numpy.org. See e.g. [151].

2Implemented using the DataFrame objects of pandas, a Python package for data analysis. Available at
https://pandas.pydata.org. See e.g. [152].

3Hierarchical Data Format, version 5 [153].
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4.7.3 Time-resolved detection
Fig. 4.42 shows the timing sequence during the acquisition of a data point and a line scan.
The experimental scheme hinges on a precise determination of the delay time τ relative to
the start of the dark phase of each chopper cycle. Hence, the data acquisition is referenced to
the chopper trigger (shown in blue in Fig. 4.42), which is derived from optical chopper itself,
as described in Section 4.3.2. As the optical chopper is always running, the chopper trigger
is gated such that exactly 160 chopper cycles are covered for each data point. The start of
each data point is signaled by the software with a global start trigger (shown in orange),
which arrives at random times relative to the optical chopper cycle. From this trigger, the
chopper trigger gate (shown in green) is generated with the multifunction DAQ device. This
gate is triggered on the falling edge of the chopper trigger with a delay of 10 µs, such that
the triggering falling edge is not contained with the gate anymore. The length of the gate is
set to match the duration of 160 + 1/4 chopper cycles. In this way, the gate covers 160 rising
and 160 falling edges of the chopper trigger, with a safety margin of ±1/4 chopper cycles to
account for variations in the actual length of the individual chopper cycles. The gate is used
to open an RF switch1, transmitting the chopper trigger and resulting in the gated chopper
trigger (shown in red). Using more sophisticated hardware such as a custom-programmed
FPGA (field-programmable gate array) could replace the RF switch while adding flexibility,
but this approach was not pursued here.

The sampling of analog signals (shown in purple) and the counting of the fluorescence
signals (shown in brown) are then referenced to the rising and the falling edge, respectively,
of the gated chopper trigger. This triggering scheme is implemented because the acquisition
needs to be synced with each individual chopper cycle, which is subject to some timing jitter
stemming from imperfections of the optical chopper wheel (see Section 4.3.2). Furthermore,
the acquisition hardware cannot be re-triggered while an acquisition is in progress, forcing
a short dead time between the chopper cycles. Since the experimental scheme hinges on an
precise determination of the delay time of the fluorescence counts from the start of the dark
phase, and the detectors are switched off during the bright phase, the counting is triggered
on the start of the dark phase. The analog signals, on the other hand, should cover the bright
phase directly preceding the dark phase covered by the fluorescence counters, and the main
part of the dark phase itself. In this way, e.g. intensity variations of the 1S-2S preparation
laser during the bright phase can be captured. Since at the end of the dark phase there are
no fluorescence counts observed anymore, the necessary dead time for re-triggering is placed
there and the trigger is set to the start of the bright phase. Therefore, the acquisition window
for the fluorescence signals then covers two sequential chopper cycles, as is shown at the
bottom of Fig. 4.42 (A) (pink scale).

Multichannel scalers2 count the number of fluorescence clicks from the two detectors as a
function of the delay time τ from the falling edge of the gated chopper trigger. The counts
are sorted into 1024 time bins with a width of 5 µs each. The bins cover the complete dark

1Mini-Circuits ZX80-DR230+, frequency range is from DC to 3 GHz and the absolute max. input voltage
is 5 V. The voltage of the TTL true state is thus too high for the switch, and NIM (Nuclear Instrumentation
Module) logic levels are used, where the false and true states are at 0 V and −0.8 V, respectively. To this end,
the chopper trigger is converted from TTL to NIM, and the gated chopper trigger from NIM to TTL where
needed.

2Two FAST ComTec MCS4 multichannel scalers with two stop channels each, maximum count rate of
400 MHz and a minimum bin length of 50 ns. Two of the channels are used for the detectors, and a third
channel records pulses from a generator also triggered on the optical chopper for debugging purposes.
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phase with delay times τ = 0 µs . . . 3125 µs and part of the bright phase of the next chopper
cycles, corresponding to approximately τ = −3125 µs . . .−1130 µs. The latter bins are used
to checked whether the gain of the detectors is indeed reduced far enough such that no clicks
are detected. The multichannel scalers internally accumulate the counts in these bins over
the 160 chopper cycles before sending the data to the control computer.

Analog-to-digital converters1 (ADCs) take 1525 16-bit samples of the analog signals with
a rate of 250 kHz, starting from the rising edge of the chopper trigger. The covered delay
times are approximately τ = −3125 µs . . . 2975 µs. The sampling times are defined using a
trigger signal, generated with the multifunction DAQ device, and distributed to the ADCs.
After acquiring data for 160 chopper cycles, the ADCs send 160×1525 samples to the control
computer for each channel. There, the average over the chopper cycles, but not the delay
time, is calculated and saved, along with the standard deviation and the maximum deviation
from the mean for each delay time. The chopper trigger itself is also sampled. In this way,
the exact time of its falling edge, which is within the sampling region, can be determined, and
delay times relative to it can be assigned to the samples. Thus, the analog and fluorescence
signals shared a common delay time reference.

Additionally, the average, the standard error of the mean, and the maximum deviation
from the mean over both the chopper cycles and a given window of the delay times is calculated
for each channel. This window is defined relative to either the rising or falling edge of the
chopper trigger. In this way, e.g the average intensity of the 1S-2S preparation laser for each
data point is determined using a window starting and ending 500 µs and 3000 µs, respectively,
after the rising edge (see Fig. 4.11).

During a line scan, after the data acquired over the 160 chopper cycles are processed, a
new set of experimental parameters is sent to the devices and the next 160 chopper cycles are
acquired, as shown in Fig. 4.42 (B). This is repeated till all data points constituting the line
scan are recorded, after which the next line scan starts, and so on.

4.7.4 Logging of additional parameters
Some additional parameters, such as the pressures inside the vacuum system, the laboratory
temperature and humidity, the signals of various monitoring photodetectors, etc. are contin-
uously logged at intervals of 30 s. . . 60 s. The underlying software is referred to as Pythonic
hydrogen logger (pyhl). The logged data are stored, along with UTC timestamps, in a sep-
arate data base, and can be combined with the data acquired with pyh by matching the
timestamps.

4.8 Determination of laser frequencies

An optical frequency comb2 [154] is used to compare the optical frequencies of the 1S-2S prepa-
ration laser and the 2S-6P spectroscopy laser to the microwave frequency of a passive hydrogen
maser3. All frequency synthesizer used to modify the optical frequencies of the lasers before
interacting with the atoms are also referenced to the hydrogen maser. The frequency of the

1National Instruments PCI-6143 and PXI-6143 in a PXIe-1073 chassis, each offering eight analog input
channels with a maximum sampling rate of 250 kHz and a maximum vertical resolution of 16 bit.

2Menlo Systems FC1500-250-ULN ultra-low-noise optical frequency comb. The integrated femtosecond
laser system generating the frequency comb is based on polarization-maintaining erbium-doped fibers.

3T4Science pH Maser 1008, Allan deviation specified as 5× 10−13 and 9× 10−15 at 1 s and 1 h, respectively.
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hydrogen maser, in turn, is continuously compared against the caesium standard, which is the
basis of the unit of hertz in the International System of Units (SI), using a global navigation
satellite system (GNSS) receiver. The fractional frequency offset between the maser and the
caesium standard is kept below 1× 10−13 by manual adjustment, usually required every few
months. This fractional offset translates into an absolute offset of 73 Hz for the 2S-6P tran-
sition and 247 Hz for the 1S-2S transition. By using the GNSS corrections and averaging the
frequency comparison over a sufficiently long gating window, here typically 30 min, this offset
can be further reduced during the data analysis.

However, the full GNSS corrections can only be applied after a delay of a few days, when
the satellite ephemerides become available. This is not a problem for the measurement of the
2S-6P transition, as at the time of the measurement its line center only needs to be known
on the order of 10 kHz to ensure correct sampling of the resonance. On the other hand, the
typical offset limits the accuracy with which the optimal frequency of the 1S-2S preparation
laser can be predicted during the measurement. This is why this optimal frequency, i.e. the
frequency at which the highest number of 2S atoms is produced for a given delay, is found
experimentally for each freezing cycle. Caused by the drift of their respective high-finesse
Fabry-Pérot cavities, the frequency of the preparation and spectroscopy laser drift with linear
rates of approximately 2 kHz/day and 4 kHz/day, respectively. During the ≈1 min required to
record a single line scan, this corresponds to a drift of ≈0.5 Hz and ≈1 Hz, respectively, much
below the required level. During the measurement, the frequency drift of the preparation
laser is compensated multiple times per freezing cycle, while the line sampling of the 2S-
6P resonance is adjusted before each freezing cycle.

The frequency ν of any mode of the frequency comb can be fully determined by its mode
number N , the repetition rate frep, and the carrier-envelope offset (CEO) frequency fCEO

through the relation ν = N × frep + fCEO. Both frep and fCEO are radio frequencies that
are straightforward to synthesize and count electronically. The fundamental comb, with its
spectrum centered at a wavelength of ≈1.5 µm, is frequency-doubled to reach the visible
spectrum. This leaves the repetition rate unchanged, but doubles the CEO frequency, such
that the frequency of a mode of the frequency-doubled comb is given by ν = N × frep +
2fCEO. Here, instead of stabilizing frep and fCEO, one mode of the frequency-doubled comb,
with mode number NFP3 = 1 461 379, is phase-coherently stabilized, with an offset frequency
of fFP3,FC ≈ 47 MHz, to the fundamental of the 2S-6P spectroscopy laser with frequency
νFP3,ECDL ≈ 365.344 708 THz (see Fig. 4.14). To this end, an optical beat note between
the comb mode and the spectroscopy laser is detected with a photodetector. The CEO
frequency of the frequency comb is phase-coherently stabilized, using an f-to-2f interferometer,
to fCEO = −45 MHz. In this way, the frequency of the comb modes is fully determined, with
the frequency of the spectroscopy laser given by

νFP3,ECDL = NFP3 × frep + 2fCEO + fFP3,FC. (4.29)

The offset frequency fFP3,FC is chosen such that the repetition rate of the frequency comb is
approximately frep = 250 MHz.

Likewise, the frequency of the preparation laser (see Fig. 4.5) is given by

νFP1,ECDL = NFP1 × frep + 2fCEO + fFP1,FC + 2fFP1,Scan, (4.30)

where fFP1,FC ≈ 40 MHz is the beat frequency between the preparation laser and the mode
of the frequency-doubled comb with mode number NFP1 = 1 233 028. fFP1,Scan is the radio
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frequency, referenced to the hydrogen maser, sent to an acousto-optic modulator (AOM) to
shift the laser frequency relative to the resonance frequency of the high-finesse cavity (see
Section 4.3.1).

The frequencies frep, fCEO, fFP1,FC, and fFP3,FC are continuously determined using Λ-type
counters1 [155, 156], referenced to the hydrogen maser. fFP1,FC and fFP3,FC are additionally
counted using independent redundancy counters, used to diagnose counting issues.

The frequency of the laser light interacting with the atoms can then be found by appro-
priately taking into account the frequency shifting by AOMs and doubling or quadrupling in
nonlinear crystals. For the 1S-2S preparation laser, the frequency inside the 243 nm enhance-
ment cavity in the laboratory frame is (see Section 4.3.1 and Fig. 4.5)

νFP1,Exp = 4νFP1,ECDL. (4.31)

For the 2S-6P spectroscopy laser, the frequency, likewise in the laboratory frame, of the light
coupled into the active fiber-based retroreflector is (see Section 4.4.1 and Fig. 4.14)

νFP3,Exp = 2νFP3,ECDL + 2fFP3,Scan + δJ,3/2fFP3,FS. (4.32)

fFP3,Scan and fFP3,FS are radio frequencies referenced to the hydrogen maser, and δJ,3/2 is 0 (1)
when the 2S-6P1/2 (2S-6P3/2) transition is probed. fFP3,FS is set to match the 6P fine-structure
splitting ∆νpred

FS (6P) (see Section 6.2.4.6 and Eq. (6.23)). Offsets, randomly generated2 and
unknown to the author, are added to νFP3,Exp, without modifying the original data, during
the blind data analysis of 2S-6P transition frequency. Two separate offsets are used for the
analysis of the 2S-6P1/2 transition and of the 2S-6P3/2 transition.

Because of the low intrinsic noise and the fast feedback bandwidth of the frequency comb,
the beat note of the frequency comb with the 1S-2S preparation laser while the frequency comb
is stabilized to the 2S-6P spectroscopy laser reveals the combined spectrum of the preparation
laser and spectroscopy laser. The combined spectrum then serves as an upper limit for the
spectrum of the two lasers. Both laser systems use external-cavity diode lasers (ECDLs)
similar to the one described in [80] as master lasers, and consequently their combined spectrum
resembles the one shown therein. It consists of a carrier with a width of a few Hz atop a
weak but MHz-broad noise pedestal, with the carrier 35 dB above the noise pedestal when
observed with a resolution bandwidth of 20 kHz.

1K+K Messtechnik FX80.
2The random offset is drawn from a normal distribution centered at the expected 2S-6P transition frequency

as taken from [39], i.e. using the muonic proton radius of [22], and with a standard deviation of 12 kHz. The
same distribution is used to determine the center of the frequency sampling of the experimental resonance.



Chapter 5

Data analysis and numerical model-
ing

5.1 Data analysis procedure

The goal of the experiment described in this work is the determination of the resonance
frequency of the 2S-6P transitions in atomic hydrogen. To this end, the line scans over these
resonances are analyzed to extract the resonance frequency ν0. Each line scan consists of the
number of fluorescence photons detected, or counts, as a function of the delay time τ and
the frequency detuning ∆ν2S-6P of the 2S-6P spectroscopy laser, with the latter sampled at
30 points. Fig. 5.1 shows a typical line scan, in this case for the 2S-6P1/2 transition and using
P2S-6P = 10 µW of spectroscopy laser power. The time-resolved counts of each line scan are
binned into 16 delays (Ndlys = 16), as defined in Table 5.1. The resulting 16 signals each
contain the contribution from a different velocity group of atoms, ranging in mean atom speed
v̄ from 256 m/s to 66 m/s for delay 1 and delay 16, respectively.

Each of these delays is analyzed independently by fitting a line shape function to the data,
as described in Section 5.1.1. This results in a value for the resonance frequency ν0 for each
delay, as shown in Fig. 5.3 for the same line scan as shown in Fig. 5.1. Since each delay
corresponds to a different mean atom speed v̄, any velocity-dependent frequency shift will
show up as a modulation of ν0 as a function of v̄. The dominant shift in this experiment is
the first-order Doppler shift, linear in v̄. This shift is removed by a linear extrapolation of
ν0 to zero speed, resulting in a resonance frequency free from the first-order Doppler shift,
ν0,e, as discussed in Section 5.1.2. The extrapolated frequencies ν0,e form the basis of the
determination of the 2S-6P transition frequencies. Thus, the frequency sampling, i.e. the
frequency detuning of the 30 points (N∆ = 30) sampling the resonances, has been chosen
such that the statistical uncertainty in ν0,e is as low as possible, as detailed in Section 5.1.3.

5.1.1 Line shape functions

Ideally, the line shape function that is fit to the data is identical to the experimentally observed
line shape. However, this exact function is rarely known, as is the case here, where e.g. the
properties of the atomic beam, which are only known to some degree, substantially influence
the line shape. Instead, a line shape function LS(∆νL,p) is used, which for appropriate values
of the free parameters p approximates the the experimental line shape sampled at frequency
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Figure 5.1: Typical line scan of the 2S-6P1/2 transition, consisting of 30 data points of the counts
on the top detector as a function of frequency detuning ∆ν2S-6P of the 2S-6P spectroscopy laser. The
counts are binned into 16 delays covering a range of delay times τ (see Table 5.1), with four of the
resulting signals for delays 2, 10, 13, and 16 shown here (points). The uncertainty on each data point
is assumed to be shot noise only, i.e. the square root of the counts. Each delay is fit independently
with a Voigt line shape (solid lines) to extract the resonance frequency ν0. For larger τ , the linewidth
ΓF decreases as slower atoms are probed and the Doppler broadening ΓG reduces, with ΓF only 20 %
above the natural linewidth of Γ = 3.89 MHz for delay 16. The number of counts decreases with
increasing τ , leading to an increasing dominance of shot noise over other noise sources such as atomic
beam fluctuations, which tends to improve the reduced chi-square χ2

red of the fit. A Lorentzian fit
shown for delay 2 (blue dashed line), does not properly account for the Doppler broadening for short
τ , while for delay 16 a Voigt fit is indistinguishable from a Lorentzian. The counts on the bottom
detector are comparable, but not shown here for clarity. The powers of the 2S-6P spectroscopy and
1S-2S preparation lasers were P2S-6P = 10 µW and P1S-2S = 1.1 W, respectively, and the line scan is
part of data group G3 (see Table 6.2).

detunings ∆νL.

5.1.1.1 Lorentzian line shape

The fluorescence signal from a single atomic resonance has a Lorentzian line shape [49], which
can be expressed as

L(∆νL, ν0, A,ΓL, y0) = A
(ΓL/2)2

(∆νL − ν0)2 + (ΓL/2)2 + y0. (5.1)

∆νL is the frequency detuning, i.e. the frequency difference to some reference frequency, ν0
is the resonance frequency or line center, A is the line amplitude, ΓL is the full width at half
maximum (FWHM) linewidth, and y0 is a detuning-independent offset of the signal. The
latter four are used as free fit parameters in the data analysis. The total FWHM linewidth
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Table 5.1: Overview of the Ndlys = 16 delays into which the time-resolved fluorescence counts are
binned for analysis. Each delay covers a range of delay times τ , relative to the blocking of the 1S-
2S preparation laser at τ = 0 µs, and spans a total delay time ∆τ . Using a Monte Carlo simulation
of atomic trajectories (see Section 5.2) and a model of the 2S-6P fluorescence signal (see Section 5.3),
the velocity distribution of the atoms probed within each delay is determined. From this, the mean
speed v̄ and the FWHM ∆v of the 6P speed distribution of the atoms contributing to the fluorescence
signal is determined. Ai is the expected line amplitude for delay i, given relative to A2. p6P,sig is
the average probability for an 2S atom to contribute to the fluorescence signal when the spectroscopy
laser is on resonance, given separately for the three values of the spectroscopy laser power P2S-6P used
in the 2S-6P measurement. P2S-6P is here referenced to the 2S-6P1/2 transition, i.e. the actual power
used for the 2S-6P3/2 transition is a factor of two lower. The number in parenthesis is the standard
deviation over multiple simulations covering the parameters given in Table 5.3 and the parameters of
data groups G1–G12 of the 2S-6P measurement as given in Table 6.2.

Delay
i

τ
(µs)

∆τ
(µs)

v̄
(m/s)

∆v
(m/s)

∆vx(2S)
(m/s)

Ai

A2

p6P,sig (%)

P2S-6P (µW)
10 20 30

1 10. . . 60 50 256.4(6.5) 217(5) 3.36(11) 1.022(2) 6 12 17
2 60. . . 110 50 255.0(6.4) 215(5) 3.36(11) 1.000(0) 6 12 17
3 110. . . 160 50 253.0(6.3) 213(5) 3.33(11) 0.970(2) 6 12 17
4 160. . . 210 50 250.0(6.1) 210(5) 3.27(11) 0.932(3) 6 12 17
5 210. . . 260 50 245.5(5.8) 206(4) 3.17(10) 0.882(6) 6 12 18
6 260. . . 310 50 238.6(5.4) 198(4) 3.02(8) 0.818(8) 7 13 19
7 310. . . 360 50 229.8(5.0) 190(3) 2.82(7) 0.743(11) 7 14 20
8 360. . . 410 50 219.8(4.5) 180(3) 2.61(6) 0.663(13) 8 15 22
9 410. . . 510 100 204.4(3.9) 167(3) 2.33(4) 1.090(29) 9 17 24
10 510. . . 610 100 184.3(3.3) 150(4) 2.01(3) 0.811(29) 11 20 28
11 610. . . 710 100 166.5(2.7) 136(5) 1.76(3) 0.595(27) 13 23 32
12 710. . . 910 200 146.1(2.3) 114(5) 1.50(2) 0.758(45) 15 27 37
13 910. . . 1210 300 120.8(1.8) 89(4) 1.20(2) 0.558(44) 19 34 45
14 1210. . . 1510 300 99.0(1.3) 71(4) 0.94(2) 0.252(26) 24 41 54
15 1510. . . 2010 500 81.2(1.2) 54(6) 0.76(2) 0.175(22) 29 48 62
16 2010. . . 2560 550 65.5(0.9) 34(7) 0.60(2) 0.068(12) 35 56 70

ΓF is by definition identical to ΓL. The Lorentzian line shape is symmetric about ∆νL = ν0
and the signals at ∆νL = ν0 and ∆νL = ν0 ± ΓL/2 are A + y0 and A/2 + y0, respectively.
The Lorentzian line shape however is not a good fit to the experimental data, except for the
longest delay times and thus slowest atoms, as its shape does not match the observed Doppler
broadening (see blue dashed line in Fig. 5.1).

5.1.1.2 Voigt line shape

The transverse velocity distribution of the atomic beam causing the Doppler broadening can
be approximated by a Gaussian with a FWHM linewidth of ΓG, as simulations such as those
shown in Fig. 5.4 (A) reveal. Then, the resulting line shape can be approximated with a Voigt
function [49], which is defined as the convolution of a Lorentzian line shape with a Gaussian.
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Figure 5.2: Line scan of the 2S-6P1/2 transition with an offset angle of α0 = 12.0 mrad from the
orthogonal between the atomic and laser beams, leading to a splitting of the signal into a doublet of
resonances separated in frequency by ∆ν0. As in Fig. 5.1, four of the resulting signals for delays 2, 10,
13, and 16 are shown (points). Each delay is fit with a Voigt doublet line shape (solid lines), giving
the resonance frequencies ν1 and ν2 of the two resonances, which are weighted with their amplitudes
to find the resonance frequency ν0. The Voigt doublet does not include saturation effects, which lead
to a lower-than-expected signal, as compared to the case of no saturation, for atoms interacting with
both laser beams simultaneously (∆ν2S-6P . ΓF). The fit minimizes the total deviation from the data,
leading to the fitted line shape lying below the signal for atoms interacting with a single laser beam
only (∆ν2S-6P & ΓF). This results in a large χ2

red, especially for short τ where ∆ν0 > ΓF. The powers
of the 2S-6P spectroscopy and 1S-2S preparation lasers were P2S-6P = 30 µW and P1S-2S = 1.0 W,
respectively, and the line scan is part of data group G14 (see Table 6.2).

The Voigt line shape is given by

V(∆νL, ν0, A,ΓL,ΓG, y0) = A

Re[w(ib)] Re[w(z)] + y0, (5.2)

with z = a+ ib = 2
√

ln 2
ΓG

((∆νL − ν0) + iΓL/2) . (5.3)

w(z) := e−z
2 erfc(−iz) is the Faddeeva function, defined through the complex complementary

error function erfc. ΓL and ΓG are the Lorentzian and Gaussian linewidths, respectively. ΓG

is treated as a free fit parameter in the data analysis, increasing the total number of free fit
parameters to five. The total FWHM linewidth ΓF is given by Eq. (2.13) and its uncertainty
is found through propagation of the uncertainties of ΓL and ΓG, including their correlation.
The normalization is again such that the signal on resonance (∆νL = ν0) is A+y0. The Voigt
line shape describes the experimental line shape well for all delays, with ΓF varying by more
than a factor of two between the different delays (see solid lines in Fig. 5.1).
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5.1.1.3 Voigt doublet line shape

When an offset angle α0 between the atomic beam and the 2S-6P spectroscopy laser beams
is set in the experiment, the observed signal splits into a doublet of two Doppler-broadened
resonances (see Section 2.2.5). A line scan for such a configuration is shown in Fig. 5.2. In
this case, the sum of two Voigts can be used to approximate the resulting line shape. This
so-called Voigt doublet is defined as

VD(∆νL, ν1, ν2, A1, A2,ΓL,ΓG, y0) = V(∆νL, ν1, A1,ΓL,ΓG, y0/2)
+ V(∆νL, ν2, A2,ΓL,ΓG, y0/2),

(5.4)

where ν1 and ν2 are the resonance frequencies of the two resonances and A1 and A2 are
their amplitudes. The underlying Voigt line shapes share the same Lorentzian, Gaussian, and
total linewidths, since the natural linewidth and broadening mechanism are identical, and the
detuning-independent offset y0 is added to the total line shape. There are thus, compared to
the Voigt line shape, two more free fit parameters, bringing the total to seven. In the data
analysis, the resonance frequency ν0 of the total line shape is of interest, which here is defined
as the average of ν1 and ν2, weighted by their amplitudes, resulting in

ν0 = A1ν1 +A2ν2
A1 +A2

. (5.5)

ν0 thus corresponds to the center of mass of the two resonances.
It is furthermore advantageous to consider additional combinations of the fit parameters:

the frequency splitting of the doublet, given by ∆ν0 = |ν2 − ν1|, and the amplitude ratio
A1/A2 with ν2 ≥ ν1, i.e. A1/A2 is always the ratio of the amplitude of the lower frequency
resonance and the amplitude of the higher frequency resonance. The uncertainties of all
these combinations are found through the propagation of uncertainties of the involved fit
parameters, including their correlations as determined by the fit.

The Voigt doublet describes the experimental data only reasonably well (see solid lines
in Fig. 5.2), which is mainly due to the fact that saturation effects, just like for the Voigt,
are not included. These saturation effects lead to a lower-than-expected signal, as compared
to the case of no saturation, for atoms interacting with both laser beams simultaneously
(∆ν2S-6P . ΓF), while atoms interacting with a single laser beam only (∆ν2S-6P & ΓF) are less
affected by saturation effects. See Fig. 5.2 for details.

5.1.1.4 Asymmetric line shapes

All the line shapes discussed so far are symmetric about the line center. The experimental
line shape, on the other hand, is not expected to be symmetric, as both quantum interference
effects and the light force shift introduce an asymmetry. Using a line shape that takes this
asymmetry into account through an additional parameter allows to determine the asymmetry
and remove the associated line shift from the experimental data. The analysis of the 2S-
4P measurement (see Appendix A) used such a line shape, the Fano-Voigt line shape, to
account for line shifts from quantum interference. However, the usually present correlation
between the additional asymmetry parameter and the determined resonance frequency can
increase the uncertainty in the latter. This is why, together with the overall much smaller
asymmetry as compared to the 2S-4P measurement, a symmetric line shape is used in the
data analysis presented here, with the line shifts from the remaining asymmetry accounted
for through simulation corrections.
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5.1.1.5 Fitting of line shape functions to data

The line shape functions LS(∆νL,p) are fit to the data through a least-squares optimization.
The data consist of N∆ pairs of frequencies detunings ∆νL,i and the number of detected
counts yi for each delay. The square root of the number of counts yi is used as an estimate
of the uncertainty in the number of counts, σi = √yi. This corresponds to the assumption
that the uncertainty is only given by the shot noise in the number of photons detected1. The
least-square optimization minimizes the total squared deviations of the data from the model,
weighted by the uncertainty, i.e. the quantity

χ2 =
∑
i

(
yi − L(∆νL,i,p)

)2

σ2
i

. (5.6)

For each of the fit parameters p, the optimization gives an estimate of its most likely value and
an estimate of the one-standard-deviation uncertainty (1σ) of this value. The 1σ uncertainty
of a parameter is defined as the change in the value of that parameter that leads to an
increase in χ2 by one, all while the values of all other parameters are optimized to achieve the
lowest χ2. Additionally, the optimization returns the estimated correlations between all fit
parameters. For the assumption of Gaussian uncertainties, as used here, and further assuming
that the measurement errors of the data points are uncorrelated, the least-square optimization
corresponds to a maximum likelihood estimation [157, 158]. In this case, the distribution of
χ2 follows the chi-square distribution for k degrees of freedom [157], where k here is taken to
be N∆ −M , with M the number of fit parameters.

An useful quantity in this context is the reduced chi-square statistic, given by

χ2
red = χ2

k
. (5.7)

This is because, for the case of uncorrelated Gaussian uncertainties and large k, χ2
red is

approximately normally distributed with a mean of 1 and a standard variation of 2/
√
k.

Throughout this work, χ2
red is commonly given for fit results and weighted averages, with

the value usually given in parenthesis the standard deviation expected for the corresponding
value of k.

When k is not large, it is instructive to calculate the p-value, which is the probability of
finding a χ2 at least as large as the observed χ2, assuming the chi-square distribution with k
degrees of freedom describes the data (see Eq. (39.71) of [158]). It is furthermore sometimes
helpful to convert this p-value into the single-sided significance Z (see Eq. (39.46) of [158]). Z
is defined so that a Z standard deviation upward fluctuation of a Gaussian random variable
would have an upper tail area equal to p [158]. The p-value is used to discuss the results of
the 2S-6P measurement in Chapter 6, and the significance is given as Zσ if p < 0.5.

5.1.2 Delay analysis and Doppler extrapolation
The fits of the line shape functions to each line scan results in a set of fit parameter
estimates for each of the 16 delays. For example, the 16 resonance frequencies ν0 and

1Strictly speaking, the probability distribution of counts is given by the Poisson distribution, which however
is well-approximated by a Gaussian centered at the expected number of counts yi with standard deviation of√
yi for yi & 10 [157]. This condition is met for all experimental data of the 2S-6P transition. In this case, the

expected number of counts yi can also be replaced with the observed number of counts, which is the procedure
used here.
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Figure 5.3: The (A) resonance frequencies ν0 and (B) FWHM linewidths ΓF of the delays of the
line scan shown in Fig. 5.1 as a function of the delays’ mean atom speeds v̄ (see Table 5.1). The fit
results and their uncertainties (blue points and error bars) are derived from fits of a Voigt line shape
to the individual delays. (A) A linear fit (green line), the so-called Doppler extrapolation, results
in values for the Doppler-free resonance frequency ν0,e and the Doppler slope κ. The uncertainty of
the linear model (green shading) changes with v̄ through the linear correlation coefficient re (here,
−0.97) between ν0,e and κ. A weighted average gives the Doppler-averaged resonance frequency ν0,a
(orange shading, showing the region within ν0,a ± 1σ). Here, the Doppler slope is in good agreement
with zero and the values of ν0,e of ν0,a agree within their 1σ uncertainties. (B) The FWHM linewidth
ΓF decreases with decreasing v̄, as the Doppler broadening gets smaller and smaller. For the slowest
delays, ΓF approaches the natural linewidth Γ (dashed line).

16 FWHM linewidths ΓF of the line scan from Fig. 5.1 are shown in Fig. 5.3. The delay
dependence of ν0 is of particular importance to this experiment, as it corresponds to a veloc-
ity dependence through the different mean speeds v̄ of the delays (see Table 5.1). As discussed
in Section 2.2.3 and Section 2.2.4, any residual, i.e. not removed by the Doppler suppression
scheme, first-order Doppler shift will manifest itself as a linear dependence of ν0 on v̄. That
is, the velocity dependence of ν0 can be modeled as

ν0(v̄) = ν0,e + κv̄, (5.8)

where ν0,e is the Doppler-free resonance frequency, i.e. the value of ν0 extrapolated to zero
speed, and κ is the (residual) Doppler slope. Fitting Eq. (5.8) to the data, referred to as
Doppler extrapolation and equivalent to a linear regression [157], then results in estimates
of ν0,e and κ, their uncertainties as propagated from the uncertainties σν0 in ν0, and the
linear correlation coefficient re between ν0,e and κ. Note that no uncertainty1 is assumed
for the values of v̄, which are derived from simulations. Instead, the underlying simulation

1Fitting a straight line with uncertainties in both coordinates is somewhat surprisingly a considerable
statistical and numerical problem, see e.g. Section 15.3 of [157].
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parameters are varied, resulting in different values of v̄, and the Doppler extrapolation is
repeated. The result of such an Doppler extrapolation is shown (green line and shading) in
Fig. 5.3 (A). The correlation coefficient re is completely determined by the behavior of the
uncertainties σν0 over the delays and the values of v̄, independent of ν0 and the absolute values
of σν0 . For the 2S-6P measurement, re = −0.95 . . .−0.97, and thus it is highly probable that
random noise leading to a higher-than-average value of ν0,e will lead to a lower-than-average
value of κ.

Some insight might also be gained by an average over ν0, weighted by σν0 , giving the
Doppler-averaged resonance frequency ν0,a. ν0,a has a three to four times lower statistical
uncertainty than ν0,e, but is not free from the Doppler shift. However, while ν0,a thus cannot
be used to determine the transition frequencies, it can be used to compare the resonance fre-
quencies of different experimental configurations for which the Doppler shift can be assumed
to be identical or to have averaged to a low enough level. This was used in the 2S-4P measure-
ment (see Appendix A) to show the influence of quantum interference effects on ν0,a, which
otherwise would have not been visible for the larger uncertainty of ν0,e. The Doppler average
is also shown (orange shading) in Fig. 5.3 (A).

In the analysis of the 2S-6P measurement, the Doppler-free resonance frequencies ν0,e
are used to determine the transition frequency. However, small simulation corrections as
described in the following sections need to be taken into account. These corrections can also
change with v̄, as e.g. atoms will spend more or less time interacting with the laser beams.
To prevent that the corrections mimic a first-order Doppler shift and thus compromise the
Doppler extrapolation, the simulation corrections are applied to ν0 of each delay before the
extrapolation and averaging is done. The extrapolation and averaging is performed for each
of the M line scans, thus resulting in M values for ν0,e, κ, and ν0,a. In general, the residual
Doppler slope is not expected to be constant during the measurement, as the apparatus is
repeatedly realigned. Thus, one might expect the values of κ and ν0,a to show some excess
scatter beyond what is expected from their uncertainties, while the Doppler-free values of
ν0,e should be free from this scatter. In the experimental data, indeed a significant excess
scatter is observed for κ and ν0,a. ν0,e, however, also shows some, albeit lower, but significant,
excess scatter. This is attributed to the fact that the uncertainties so far are all based on the
assumption of pure shot noise on the observed signal, while technical noise has been neglected.
Thus, this assumption is not entirely justified and the excess scatter needs to be taken into
account, which is here done through an appropriate scaling of the uncertainties.

It should also be noted that this excess scatter is not clearly observed on the χ2
red dis-

tribution of the Doppler extrapolation. A possible explanation, as explored by Monte Carlo
simulations, could be that technical noise, e.g. fluctuations of the nozzle temperature, is highly
correlated between the delays, leading to an excess shift ν0 of the same sign and of similar
size for all delays. Such a shift would then not be visible as excess scatter within a single
Doppler extrapolation, but would show up as excess scatter between different Doppler ex-
trapolations. The correlation between the delays comes about as the delays are separated by
at most hundreds of µs, while the signal at each frequency point is accumulated for 1 s. Thus,
technical noise on a time scale longer than hundreds of µs affects all delays in a similar way,
which is the time scale expected for e.g. temperature and atomic flux fluctuations. Further
investigations into the influence of such fluctuations are in progress, but beyond the scope of
this work.

The other fit parameters apart from ν0 (amplitude A, linewidths ΓL, ΓG, ΓF, offset y0,
doublet frequency splitting ∆ν0) vary significantly over the delays and neither an average nor
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an extrapolation over the delays is instructive. The behavior of the FWHM linewidth ΓF is
shown as an example in Fig. 5.3 (B). Thus, the analysis has to take into account a large range
of fit parameters, complicating the interpretation and visualization of the data. On the other
hand, for some fit parameter combinations can be found that do not vary substantially over
the delays, which here are the relative offset or background-to-amplitude ratio, y0/A, and, for
the Voigt doublet, the amplitude ratio A1/A2.

5.1.3 Frequency sampling of resonances

Table 5.2: The 15 unique absolute values of the frequency detuning ∆ν2S-6P used to sample the 2S-
6P resonances during a line scan. The resonance is sampled symmetrically about zero detuning,
including twice at zero detuning, resulting in a total of 30 frequency detuning points. Different
frequency detunings are used depending on the offset angle α0 to account for the different line shapes.
See Section 5.1.3 for details.

|∆ν2S-6P| (MHz)
α0(mrad) 0. . . 6 6. . . 10 > 10

0.0000 0.0000 0.0000
1.2546 1.0702 2.2173
1.8268 2.1403 3.2279
2.3104 3.1276 4.0820
2.7650 3.9738 4.8856
3.2190 4.7845 5.6899
3.6946 5.6168 6.5368
4.2171 6.5261 7.4773
4.8251 7.5970 8.5973
5.5937 9.0174 10.0931
6.7157 11.4855 12.6965
8.9994 15.7649 16.8413

22.6662 24.3237 25.1310
36.3331 37.1618 37.5655
50.0000 50.0000 50.0000

In order to gather enough statistics to accurately determine the 2S-6P transition frequency,
the line scans over the resonance need to be repeated many times. It is thus crucial to select
the frequency detuning ∆ν2S-6P of the N∆ points at which the resonances are sampled such
that the statistical uncertainty is as low as possible, while also sampling all parts of the
experimental line shape. In other words, the frequency sampling should be chosen such
that fitting the line shape function to the data results in an estimate of the true resonance
frequency that is consistent, free from bias, efficient, and robust [158]. For a single resonance,
these requirements are approximately fulfilled by placing most of the points on the slope of
the resonance while also placing a few outer points at a large detuning and L points at zero
detuning. The frequency sampling is always symmetric about zero and thus (N∆ − L)/2
unique points with nonzero frequency detuning need to be found. To find the slope points,
the derivative of the expected line shape with respect to frequency can be used as a guide
to the local density of points. The problem of choosing the points is however complicated
by the fact that all delays necessarily are subject to the same frequency sampling, while the
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linewidth and line shape changes greatly, as shown in Fig. 5.1. Additionally, in the end what
should be minimized is the statistical uncertainty of the Doppler-free resonance frequency
ν0,e, as determined by the Doppler extrapolation detailed in the previous chapter. Then, it
might be advantageous to chose the points such that the frequency sampling of the slower
delays is optimized at the cost of that of the faster delays to compensate for the decrease in
signal.

To find a suitable frequency sampling, a Monte Carlo simulation using the approximate
line shapes and amplitudes observed for the different delays in the experiment was carried
out. A Voigt or Voigt doublet line shape with variable line width was used as a template to
find the frequency detuning points. Then, the statistical uncertainty of ν0,e was minimized by
varying the template line width and the placement of the additional outer points. The number
of points at zero detuning was chosen to be two to determine the drift in amplitude during
the line scan. The total number of points, 30, and the integration time at each point, 1 s, is
a compromise between, on the one hand, a comprehensive sampling of the line shape and a
high enough number of counts to approximate the shot noise on the counts with a Gaussian
distribution, and, on the other hand, a short enough measurement time per line scan to allow
for many line scans during a freezing cycle. The latter helps in estimating the excess scatter
seen in the experiment, which is mainly visible by comparing different line scans.

The 15 unique absolute values |∆ν2S-6P| of frequency detuning points, including zero de-
tuning, found in this way are shown in Table 5.2. To account for the different line shapes
observed when using different offset angles α0 (see Fig. 5.1 and Fig. 5.2), three sets of |∆ν2S-6P|
are used for values of α0 close to 0 mrad, 8 mrad, and 12 mrad. The listed detunings were
used to acquire all spectroscopy data except for some line scans from the data groups G1A,
G7A, and G14, where slightly different detunings were used initially.

To suppress the influence of drifts in the signal during the line scan, e.g. caused by drifts
in atomic flux, the order in which the resonances are sampled is randomly picked. This is
done again in a symmetric fashion, i.e. a detuning and a random sign is picked and data
are acquired. Then, the sign of the detuning is flipped and again data are acquired, before
moving on to the next randomly determined detuning. This randomization is done anew for
each line scan. The points at zero detuning are exempt from this procedure, with data at
zero detuning acquired at the start and at the end of a line scan. In this way, the changes in
amplitude during the line scan can be determined and, assuming a linear drift, corrected for.
This has not been done for the data presented in this thesis, but will be included in the final
analysis.

By symmetry, for a perfectly symmetric line shape and a symmetric sampling about the
usually a priori unknown line center, the resonance frequency determined through sampling
is independent of the choice of frequency detunings. However, neither is the experimental
line shape perfectly symmetric nor is the sampling symmetric about the line center, which
additionally is not uniquely defined for an asymmetric line shape. Then, the choice of fre-
quency detunings can influence the determined resonance frequency. The resulting so-called
sampling bias is here partly taken into account by also sampling the simulated line shapes at
the same detunings as the experimental data, using the true resonance frequency, known in
the simulations, as zero detuning. By correcting the experimental data with the simulations,
the sampling bias is then also partially accounted for. To also take into account that zero
detuning in the experiment might not correspond to zero detuning in the simulations, one
can estimate this offset by comparing the frequency used for zero detuning for each line scan
with the transition frequency determined in the measurement. Then, the simulations can be



5.2 Modeling of the atomic beam of metastable hydrogen 171

analyzed separately for each line scan using this offset. This was done for the 2S-4P mea-
surement (see Appendix A), where a large sampling bias on the order of the final uncertainty
was found. For the 2S-6P measurement, care was taken to use a small offset on the order of
10 kHz, which should reduce the sampling bias well below the level seen in the 2S-4P mea-
surement. However, for the final analysis this needs to be confirmed with the aforementioned
procedure.

5.2 Modeling of the atomic beam of metastable hydrogen

The trajectory that the atoms take through the 2S-6P spectroscopy laser substantially influ-
ences both the observed line shape and systematic shifts of the line center, especially through
the light force shift. Thus, an accurate model of the trajectories of metastable (2S) atoms
is needed. The model used here is based on a Monte Carlo approach: first, a geometric
trajectory is randomly picked, consisting of the origin and velocity of a ground state (1S)
atom as it emerges from the nozzle into vacuum. Second, the probability to find this atom
in the 2S level at the spectroscopy region and for a given delay time τ is determined. To
this end, the interaction with the 1S-2S preparation laser beam as the atom flies from the
nozzle to the spectroscopy region is simulated by numerically solving the appropriate optical
Bloch equations (OBEs). This procedure is then repeated for Ntraj trajectories. The range
of parameters for this Monte Carlo simulation is listed in Table 5.3. A collection of Ntraj for
a given set of parameters is here referred to as a trajectory set.

5.2.1 Monte Carlo simulation of 2S trajectories
The speed distribution p(v) dv and angular distribution p(θ) dΩ of the atoms emerging from
the nozzle have been discussed in Section 4.5.2.2. The atoms are assumed to originate from
the nozzle orifice of radius r1, and the speed and angular distribution are assumed to be
identical over the orifice. For each trajectory, a random position within this orifice, a random
speed v according to p(v) dv, and a random θ and φ according to p(θ) dΩ are picked. θ and
φ are the polar and azimuthal angles with respect to the normal through the center of the
orifice and parallel to the z-axis, and dΩ = 2π sin θ dθ is the corresponding surface element.
If the resulting trajectory passes through the variable aperture of width (height) d2 = 2r2
(d2,y = 2r2,y) along the x-axis (y-axis) and located at a distance L1 along the z-axis from
the orifice, the trajectory is kept. Otherwise, new trajectories are drawn till this condition is
satisfied. For the parameters of Table 5.3, a fraction of Pgeo = 3.2× 10−5 of the trajectories
emerging from the nozzle in the direction of the 2S-6P spectroscopy region pass through the
variable aperture into this region1.

The dynamics of the 1S-2S excitation through two-photon absorption is discussed in Sec-
tion 2.2.6. To model the excitation for each trajectory, here the OBEs given in Eqs. (10a–c)
of [56] are used, taking into account the second-order Doppler shift, the ac-Stark shift, and
photoionization of the 2S level. For the numerical integration of the OBEs, integration delays
of constant length ∆τint < min ∆τi are used, such that for each (experimental) delay i of
length ∆τi there is an integer number Mint,i of integration delays. Here, ∆τint = 10 µs is
used, such that Mint,1 = 5 and Mint,16 = 55. The minimum and maximum delay time τ of

1A fraction of 3× 10−4 of the trajectories pass through the upstream high-vacuum entrance aperture. Note
that the nozzle has two orifices, and only half of the particles leaving the nozzle are emitted towards the
2S-6P spectroscopy region, while the other half hits the incoupling mirror of the 243 nm enhancement cavity.
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Table 5.3: Range of parameters used for the Monte Carlo simulation of the trajectories of metastable
2S atoms. Each trajectory set uses a single value for each parameter, adjusted to the experimental
conditions the trajectory set is describing.

Parameter Value
Geometry
Nozzle orifice radius r1 1.0 mm
Distance L1 from nozzle orifice to variable aperture 153.6 mm
Width d2 = 2r2 of variable aperture along x-axis 1.2 mm
Height d2,y = 2r2,y of variable aperture along y-axis 2.0 mm
Distance L from nozzle orifice to 2S-6P spectroscopy laser 204.0 mm

Velocity distribution of ground state (1S) atoms

Speed distribution p(v) dv ∝ v3e
−

mHv2

2kBTN e−
vcutoff

v dv
Angular distribution p(θ) dΩ ∝ cos(θ) dΩ
Nozzle temperature TN 4.8 K
Cutoff speed vcutoff 30 m/s. . . 65 m/s

1S-2S preparation laser
Beam waist radius w1S-2S (1/e2 intensity radius) 297 µm
Distance of waist to nozzle orifice 0.0 mm
Intracavity power P1S-2S (per direction) 1.00 W. . . 1.50 W
Detuning from 1SF=0

1/2 − 2SF=0
1/2 resonance ∆ν1S-2S 740 Hz. . . 1380 Hz

Chopper frequency fchop (equal slit width) 160 Hz

these integration delays covers the full range of the experimental delays, resulting here in
255 integration delays. For each trajectory k, a random delay time τj is picked within each
integration delay. The trajectory is then treated as if it had exited the nozzle orifice at a time
such that it arrives at the center of the 2S-6P spectroscopy laser beams a time τj after the
1S-2S preparation laser has been switched off. Thus, L/vz,k−τj , where vz,k is the trajectory’s
longitudinal velocity and L is the distance from the nozzle orifice to the spectroscopy laser
beams, determines whether and for how long the trajectory can interact with the preparation
laser. If L/vz,k − τj ≤ 0, there is no interaction with the laser, i.e. the interaction time is
T1S-2S,j,k = 0. For 0 < L/vz,k − τj ≤ (1/fchop)/2, the trajectory starts interacting with the
laser as it leaves the nozzle for a total interaction time of T1S-2S,j,k = L/vz,k − τj . The same
interaction time results for (1/fchop)/2 < L/vz,k − τj ≤ 1/fchop, as the preparation laser is
switched off by the optical chopper during τj − (1/fchop) . . . τj − (1/fchop)/2, but the position
at which the trajectory starts interacting with the laser shifts from the nozzle towards the
spectroscopy region. Finally, for L/vz,k − τj > 1/fchop, the trajectory interacts with more
than one chopper cycle. For the parameters used here, this can only occur for trajectories
with vz,k < 56 m/s, and as an approximation only the first chopper cycle is taken into ac-
count. Furthermore, it is assumed here that the intracavity power of the preparation laser,
as seen by the atoms, is P1S-2S for a duration of 1/2fchop when switched on by the optical
chopper, and zero otherwise. As discussed in Section 4.3.3.5, due to the transient behavior
of the cavity stabilization, this is not quite the case in the experiment and thus constitutes
a further approximation. While beyond the scope of this thesis, in principle the measured
time-resolved behavior of the intracavity power could be used in the simulations instead of
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Table 5.4: Average 2S excitation probabilities and related quantities as determined from the Monte
Carlo simulation of 2S trajectories for the experimental delays as defined in Table 5.1 and the simulation
parameters given in Table 5.3. See text for details.

Delay i P2S,i η2S,i P̃2S,i
T̄1S-2S,i
(µs)

N2S,i/N
′

1S
(s)

P2S,dcy

1 2.2× 10−2 1 2.2× 10−2 580 5.8× 10−9 1.6× 10−3

2 2.2× 10−2 1 2.2× 10−2 530 5.7× 10−9 1.6× 10−3

3 2.1× 10−2 1 2.1× 10−2 480 5.5× 10−9 1.6× 10−3

4 2.0× 10−2 1 2.0× 10−2 430 5.2× 10−9 1.6× 10−3

5 1.8× 10−2 1.0 1.8× 10−2 381 4.7× 10−9 1.7× 10−3

6 1.6× 10−2 9.9× 10−1 1.6× 10−2 335 4.2× 10−9 1.7× 10−3

7 1.4× 10−2 9.7× 10−1 1.4× 10−2 300 3.5× 10−9 1.8× 10−3

8 1.3× 10−2 9.0× 10−1 1.1× 10−2 277 2.9× 10−9 1.9× 10−3

9 1.0× 10−2 7.9× 10−1 8.2× 10−3 260 4.2× 10−9 2.1× 10−3

10 9.2× 10−3 5.6× 10−1 5.2× 10−3 258 2.7× 10−9 2.3× 10−3

11 8.9× 10−3 3.8× 10−1 3.3× 10−3 267 1.7× 10−9 2.6× 10−3

12 7.3× 10−3 2.5× 10−1 1.8× 10−3 289 1.9× 10−9 3.0× 10−3

13 6.5× 10−3 1.1× 10−1 7.2× 10−4 336 1.1× 10−9 3.6× 10−3

14 7.1× 10−3 3.8× 10−2 2.7× 10−4 396 4.2× 10−10 4.4× 10−3

15 6.1× 10−3 1.5× 10−2 9.5× 10−5 473 2.5× 10−10 5.4× 10−3

16 6.6× 10−3 4.4× 10−3 2.9× 10−5 569 8.4× 10−11 6.7× 10−3

this approximation.
For each trajectory and integration delay, the numerical integration of the OBEs is per-

formed for the given interaction time T1S-2S,j,k and the given position at which the interaction
starts1. The natural decay of the 2S population during the time τj after the preparation laser
has been switched off but before the trajectory reaches the spectroscopy laser beams is also
taken into account. This computation then gives the 2S excitation probability P2S,int,j,l of
the trajectory, i.e. the probability of an atom described by this trajectory and for the delay
time τj to be found in the metastable 2S level at the spectroscopy laser beams. P2S,int,j,l
is set to zero for T1S-2S,j,k = 0. The average effective 2S excitation probability P̃2S,i for the
experimental delay i is then found by the average of P2S,int,j,k over the Ntraj trajectories and
the Mint,i integration delays,

P̃2S,i = 1
NtrajMint,i

∑
j,k

P2S,int,j,k. (5.9)

Importantly, this procedure implies that every run of the simulation uses the same set of
trajectories for all experimental delays. It is also instructive to find the average 2S excitation
probability P2S,i and the average interaction time T̄1S-2S,i of only those trajectories that have
interacted with the laser, i.e. for which T1S-2S,j,k > 0, as P2S,i is a measure of the excitation
dynamics. Likewise, the fraction η2S,i of trajectories that have interacted with the laser is of
interest, with P̃2S,i = η2S,i P2S,i. The values of P2S,i, η2S,i, P̃2S,i, and T̄1S-2S,i for the preliminary
analysis of the 2S-6P measurement are given in Table 5.4.

1If there are multiple integration delays for which the interaction starts at the nozzle, the computation can
be reduced to a numerical integration with a single start position, but multiple end position, or, equivalently,
interaction times. This speeds up the computation substantially, as many trajectories fall into this category.
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Table 5.5: Speed distribution of the delays given in Table 5.1. The maximum speed vmax of atoms
that can contribute to the signal is determined by the delay time τ through vmax ≈ L/τ , where L is
the distance from the nozzle orifice to the 2S-6P spectroscopy laser beams. The mean speed of these
atoms is different if no excitation is taken into account, giving the 1S distribution with mean speed
v̄(1S), or if the weighting of the 1S-2S excitation or both the 1S-2S and 2S-6P excitation is taken into
account, giving the 2S distribution with mean speed v̄(2S) and the signal distribution with mean speed
v̄, respectively. The latter distribution is relevant for the evaluation of systematic effects such as the
Doppler shifts, with v̄ also given Table 5.1. Likewise, the FWHM of the 1S and 2S distribution along
the x- (∆vx) and y-axis (∆vy) is given. The number in parenthesis is the standard deviation over
multiple simulations covering the parameters given in Table 5.3 and the parameters of data groups
G1–G12 as given in Table 6.2.

Delay vmax
(m/s)

v̄(1S)
(m/s)

v̄(2S)
(m/s)

v̄
(m/s)

∆vx(1S)
(m/s)

∆vx(2S)
(m/s)

∆vy(1S)
(m/s)

∆vy(2S)
(m/s)

1 >1000 383.7(2.3) 313.3(6.2) 256.4(6.4) 3.25(3) 3.36(11) 3.98(4) 4.56(20)
2 >1000 383.7(2.3) 312.4(6.2) 255.0(6.3) 3.25(3) 3.36(11) 3.98(4) 4.60(20)
3 >1000 383.7(2.3) 310.2(6.0) 253.0(6.2) 3.25(3) 3.33(11) 3.98(4) 4.62(20)
4 >1000 383.7(2.3) 305.2(5.8) 250.0(6.1) 3.25(3) 3.27(10) 3.98(4) 4.61(20)
5 971 383.7(2.3) 296.3(5.3) 245.5(5.8) 3.25(3) 3.17(10) 3.98(4) 4.55(20)
6 785 381.4(2.3) 283.5(4.9) 238.6(5.4) 3.25(3) 3.02(8) 3.97(4) 4.44(18)
7 658 371.9(2.1) 268.2(4.4) 229.8(4.9) 3.23(3) 2.82(7) 3.95(4) 4.25(16)
8 567 354.4(1.9) 252.1(4.0) 219.8(4.5) 3.16(3) 2.61(6) 3.89(4) 4.01(14)
9 498 332.6(1.7) 229.9(3.5) 204.4(3.9) 3.05(2) 2.33(4) 3.76(3) 3.65(11)

10 400 288.5(1.3) 203.0(2.9) 184.3(3.2) 2.73(2) 2.01(3) 3.39(3) 3.21(8)
11 334 251.0(1.2) 180.6(2.5) 166.5(2.7) 2.41(2) 1.76(3) 3.00(2) 2.84(6)
12 287 220.7(1.1) 156.5(2.0) 146.1(2.2) 2.14(2) 1.50(2) 2.66(2) 2.43(4)
13 224 176.8(0.9) 127.5(1.6) 120.8(1.8) 1.72(1) 1.20(2) 2.15(2) 1.96(3)
14 169 135.5(0.8) 103.0(1.1) 99.0(1.3) 1.33(1) 0.94(2) 1.66(2) 1.56(2)
15 135 109.8(0.7) 83.8(1.1) 81.2(1.2) 1.08(1) 0.76(2) 1.35(2) 1.26(2)
16 101 83.5(0.7) 66.8(0.9) 65.5(0.9) 0.82(1) 0.60(2) 1.03(2) 1.00(3)

In the experiment, 160 chopper cycles are acquired for each data point. Thus, for each
delay i, data are acquired for a total time of 160× τi. The number of 2S atoms N2S,i that fly
through the beams of the 2S-6P spectroscopy laser during this time is then

N2S,i = P̃2S,i × 160×∆τi × Pgeo ×N
′
1S, (5.10)

where N ′1S is the number of 1S atoms leaving the nozzle per second in the direction of the
2S-6P spectroscopy region (see Section 4.5.2.3). N2S,i/N

′
1S is also given in Table 5.4. In order

to show the simulation results in a way that highlights the limitations of the Monte Carlo
procedure used, the number of simulated 2S atoms defined by

N2S,sim,i = P̃2S,i ×
∆τi
50 µs ×Ntraj (5.11)

is used, which is proportional to N2S,i.

5.2.2 Velocity distribution of 2S trajectories
The results of a Monte Carlo simulation of 2S trajectories using Ntraj = 1× 107 trajectories
and for typical parameters of the 1S-2S preparation laser are shown in Fig. 5.4. A typical
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Figure 5.4: Monte Carlo simulation of the trajectories of metastable 2S atoms at the 2S-6P spec-
troscopy laser beams. The intracavity power and atomic detuning of the 1S-2S preparation laser are
set to P1S-2S = 1.1 W and ∆ν1S-2S = 970 Hz, respectively, and the speed distribution has a cutoff speed
of vcutoff = 65 m/s. (A) Number of simulated 2S atoms N2S,sim versus the transverse velocity vx along
the 2S-6P spectroscopy laser beams for different delays (solid lines). The underlying distribution of 1S
atoms is shown for reference (dashed lines), scaled to envelope the 2S distribution. The legend shows
the FWHM ∆vx of the 2S and 1S distributions. (B) Number of simulated 2S atoms N2S,sim versus
the speed v. The longer interaction time for slower atoms shifts the distribution to slower velocities as
compared to the 1S distribution (dashed lines), shown normalized to the 2S distribution. The legend
shows the mean speed v̄ for the 2S and 1S distributions. (C) Number of simulated 2S atoms N2S,sim
versus the transverse angle δα from the z− towards the x-axis (solid lines). The width of the 1S
distribution (dashed lines), scaled to envelope the 2S distribution, is given by geometry and identical
for all delays. The legend again shows the FWHM ∆α of the 2S and 1S distributions. The simulation
shown here contains Ntraj = 1× 107 random atomic trajectories. The remaining parameters of the
simulation are listed in Table 5.3. See text for details.

cutoff speed of vcutoff = 65 m/s is used to model the initial speed distribution, with the values
of the remaining input parameters given in Table 5.3. The distribution of the transverse
velocity vx of the 2S atoms along the 2S-6P spectroscopy laser beams (or x-axis) is of par-
ticular importance for the experiment, as it determines the Doppler broadening and strongly
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influences the light force shift. Fig. 5.4 (A) shows the number of simulated 2S atoms N2S,sim
versus vx for different delays (solid lines). The underlying distribution of the same trajecto-
ries, i.e. trajectories that have interacted with the preparation laser, but not weighted with
the 2S excitation probability, is also shown for reference (dashed lines). For simplicity, this
distribution is referred to as the 1S distribution throughout this work. Note that the distribu-
tion of all atoms flying through the spectroscopy region, i.e. including trajectories that have
not interacted with the laser, is constant in time, with only the 2S excitation probability of
these atoms being modulated with the chopper cycles. As all atoms up to delay 4 interact
with the preparation laser, i.e. P2S = 1, the 1S distribution shown for delay 2 in Fig. 5.4
corresponds to the unweighted distribution of all atoms. The 1S distribution has been scaled
to envelope the 2S distribution, revealing that the latter is flattened and narrowed from the
initially approximately Gaussian distribution of the 1S atoms. This is attributed to the fol-
lowing mechanism: atoms with low transverse velocity, depending on their initial position,
tend to either not be excited to the 2S level as they miss the preparation laser beam, or
already start to be ionized as they spend most of the time inside the laser beam. Then, the
excitation probability is effectively lower for these atoms than for atoms crossing the laser
beams such that ionization is not yet limiting. This results in a narrower FWHM ∆vx(2S)
of the 2S distribution as compared to the FWHM ∆vx(1S) of the 1S distribution, with these
values also given in Table 5.5.

The distribution for the transverse velocity vy along the y-axis, orthogonal to both the
spectroscopy laser beams and the atomic beam axis, is not shown in Fig. 5.4, but the FWHM
along this direction is given in Table 5.5. Geometrically, the divergence along this direction is
expected to be larger by a factor of (r1 + r2,y)/(r1 + r2) = 1.25, owing to the larger size of the
variable aperture along the y-axis. The ratio ∆vy(1S)/∆vx(1S) indeed closely matches this
expectation, while the ratio ∆vy(2S)/∆vx(2S) is somewhat larger for low delays and rises to
almost 1.7 for high delays caused by the 2S excitation dynamics. This is an example of the
complex interplay between geometric constraints and the 2S excitation, making the prediction
of the beam properties without a trajectory simulation rather challenging1.

The distribution of the speed v is shown in Fig. 5.4 (B) for 2S atoms (solid lines) and
1S atoms (dashed lines), with the latter normalized to the 2S distribution. Since the atomic
beam is well-collimated, vx, vy � v, it follows that vz ≈ v, where vz is the longitudinal
velocity along the atomic beam (z-) axis. Importantly, v determines the size of the first-
order and second-order Doppler shifts. The maximum longitudinal velocity and thus speed
of atoms interacting with the preparation laser is limited by the delay time τ to vmax = L/τ ,
substantially affecting the distribution starting with approx. delay 6, and visible as a sharp
cut in the 1S distribution. The distribution of 2S atoms is shifted to slower velocities as
compared to the 1S distribution, as slower atoms experience longer interaction times, leading
to a larger excitation probability, as compared to faster atoms. In turn, the mean speed of
2S atoms, v̄(2S), is lower than that of the 1S atoms, v̄(1S). The values of vmax, v̄(1S), and
v̄(2S) are also given in Table 5.5. Note that v̄(1S) of delays 1 . . . 6 is slightly higher than the
mean speed expected for an effusive beam (see Eq. (4.26)), which is caused by the effect of
the cutoff speed on the speed distribution.

1Another example is that one might be tempted, in the expectation to reach a lower beam divergence, to
decrease the beam waist radius of the preparation laser, allowing for a smaller width of the variable aperture.
However, this was simulated to not necessarily lead to a lower divergence, as most of the low-divergence
trajectories are ionized in the now higher peak intensity of the laser beam. Reducing the laser power, on the
other hand, will lower the 2S excitation probability, and so on.
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Lastly, Fig. 5.4 (C) shows N2S,sim versus the transverse angle δα from the z− towards
the x-axis (solid lines). The width of the 1S distribution (dashed lines), here shown scaled to
envelope the 2S distribution, is given by geometry and identical for all delays with a FWHM
of ∆α(1S) = 10.6 mrad. However, the 2S distribution is modified by the aforementioned
excitation dynamics, resulting in a narrower FWHM ∆α(2S) (see legend).

5.3 Modeling of the 2S-6P fluorescence signal

So far, the modeling of the atomic beam of metastable atoms as a set of trajectories has been
discussed in Section 5.2. To complete the description of the experiment, the excitation of
these 2S atoms to the 6P levels by the 2S-6P spectroscopy laser beams, and the resulting
decay giving the fluorescence signal, has to be modeled. Two models are employed here: first,
the big model, introduced in Section 2.3.2, which takes into account all atomic levels coupled
through the spectroscopy laser or dipole-allowed decays, but does not include the exchange
of momentum between the atoms and the laser beams. Second, the light force shift (LFS)
model, introduced in Section 3.4, which uses a simplified three-level system, but explicitly
includes the atom’s momentum and the exchange of momentum.

5.3.1 Evaluating the big model and LFS model for the atomic beam

Both models consist of two sets of optical Bloch equations (OBEs), one for each of the two
2S-6P transitions. The frequency detuning ∆ν2S-6P of the spectroscopy laser is the frequency
difference to the corresponding unperturbed transition frequency.

The OBEs are solved for one trajectory from the atomic beam model at a time. Each
trajectory consists of an initial position x0, a velocity v, and a set of excitation probabilities
P̃2S,i, with i = 1 . . . 16, corresponding to the delays used in the experiment. Neglecting for
now the momentum exchange with the laser beams, the atom’s path through the apparatus
and the laser beams versus time t is a straight line given by x(t) = x0 + vt.

The laser beams are assumed to have a Gaussian transverse intensity profile I(y, z) with
a 1/e2 intensity radius of W0, with the peak intensity adjusted such that the power contained
in each beam is P2S-6P. The divergence of the laser beams along the x-axis is not taken into
account, as the relative change of the intensity radius over the relevant region is less than
1× 10−7. For the 2S-6P measurement, W0 = 2.2 mm is used. With this, the time-dependent
intensity envelope I(t) = I(y(t), z(t)), i.e. not taking into account the standing-wave pattern
of the intensity along the x-axis, as seen by the atom can be found. I(t) in turn corresponds
to a time-dependent Rabi frequency Ω0(t) ∝

√
I(t) of the 2S-6P excitation (see Eqs. (2.30)

and (2.31)). The integration boundaries of t are chosen such that the integration starts and
ends with the atom at z − z′ = −7.5 mm and z − z′ = 7.5 mm, respectively, where z is the
coordinate along the atomic beam axis, and z′ is the position of the center of the spectroscopy
laser beams.

For some experimental settings, an offset angle α0 between the atomic beam and the
spectroscopy laser beams is applied. This angle is taken into account by rotating v about the
y-axis by α0, with x(t) changing accordingly.

The big model does not depend explicitly on x(t), and its initial state is set such that all
population is in the initial level |i〉 (2SF=0

1/2 , mF =0). The first-order Doppler shift is taken into
account implicitly through the dependence of the (complex) Rabi frequencies Ω± of the two
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counter-propagating beams on the position x(t) of the atom along the beams (see Eqs. (2.32)
to (2.34)). Note that through this, the standing-wave pattern formed by the beams, but not
the diffraction on it, is included.

The LFS model explicitly includes the atom’s momentum p = mHvx along the axis of
the laser beams, and accordingly the initial state is set to |i〉|p〉x. This state corresponds
to a completely delocalized atom, and therefore the initial position along the x-axis is of no
consequence. Likewise, the Doppler shift and the standing-wave pattern are explicitly included
through the antiparallel wave vectors of the counter-propagating beams. The momentum and
position along the y, z-axes is only implicitly included through the intensity envelope I(t), as
done in the big model.

The OBEs of both models include signal equations that contain the expected fluorescence
signal from each atom, i.e. the expected number of photons emitted by the decays included
in the signal equation. For the big model, all Lyman decays for each spherical component
q are summed up with equal weights1, resulting in three signals for the possible values of
q = −1, 0, 1. These three signals are weighted with their detection efficiency, given by the
simulations of the spatial detection efficiency for the two detectors (see Section 4.6.6), the
angular distribution of the emitted photons, which depends on q (see Eqs. (2.40) and (2.41)),
and the linear laser polarization angle θL. θL is the angle of the polarization vector of the
2S-6P spectroscopy laser beams, which lies in the y-z-plane, from the axis of the detector
cylinder, oriented along the y-axis. It enters the detection efficiency of the signals as the
photon angular distribution is given with respect to the polarization direction, while the
spatial detection efficiency is given with respect to the axis of the detector cylinder. After
weighting the three signals in this way, they are summed up, resulting in one signal for each
detector and each value of θL.

For the LFS model, only the Ly-ε decays with q = 0 are used as signal, as there are no
other Lyman decays in this model. The detection efficiency thus need not be included, and
the signal is identical for both detectors and independent of θL.

The OBEs of both models are numerically integrated using a Runge-Kutta method2.
This integration is repeated for the N∆ values of the frequency detunings ∆ν2S-6P given in
Table 5.2, depending on which experimental situation is simulated. To take into account the
delay-dependent 1S-2S excitation, the signal is scaled with the excitation probabilities P̃2S,i.
In this way, the fluorescence signal from a single 2S trajectory for the Ndlys = 16 experimental
delays and sampled at N∆ detunings is found.

This procedure is repeated for all Ntraj trajectories in the given trajectory set. The signal
for each delay and detuning is either summed up over all trajectories, or, as used below, for
subsets of trajectories grouped by their speed v = |v|. Thus, simulated line scans mimicking
the experiment are found. The line scans are treated like their experimental counterparts,
as detailed in Section 5.1. For clarity, the resonance frequencies determined from fits to the
delays are identified by ν0, ν0,BM, and ν0,LFS for experimental line scans, simulated line scans
from the big model, and simulated line scans from the LFS model, respectively.

All in all, adding the 2S-6P excitation to a given set of 2S trajectories adds the fol-
1This neglects the spectral sensitivity of the detection and overestimates the contribution from Ly-α decays

relative to Ly-ε decays (see Table 4.1; other decays only contribute negligibly), which in turn can lead to an
underestimation of quantum interference effects (see Section 2.3.2.3). In the final version of the analysis, the
Lyman decays will be weighted with the spectral sensitivity of the fluorescence detection.

2The method Dopr853 of [157] is used, which is an eigth-order Dormand-Prince method. The absolute and
relative tolerance are set to 1× 10−10 and 5× 10−11, respectively.
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lowing parameters that should be matched to the experimental values: the probed transition
(2S-6P1/2 or 2S-6P3/2), the spectroscopy laser power P2S-6P, the radiusW0 of the spectroscopy
laser beams, the offset angle α0, and for the big model a specific detection efficiency simulation
and the linear laser polarization angle θL.

5.3.2 Speed distribution of atoms contributing to the fluorescence signal
The big model is used to determine the speed distribution of the atoms contributing to the
6P fluorescence signal. This so-called 6P speed distribution is different from that of the
underlying set of 2S trajectories, the 2S speed distribution, because the excitation probability
to the 6P level, and thus the probability to emit a fluorescence photon, depends on the
trajectory of the atom. This probability approximately scales, neglecting saturation effects,
with the interaction time T with the spectroscopy laser, T ≈ 2W0/v. Thus, the 6P speed
distribution is shifted to lower speeds as compared to the 2S speed distribution.

To determine the 6P speed distribution for a given trajectory set, the trajectories are first
grouped by their speed v into 200 bins of width 5 m/s each, spanning v = 0 m/s . . . 1000 m/s.
Then, as described above, simulated line scans are calculated with the big model for each
speed bin and fit with the appropriate line shape function. The 6P speed distribution is then
given by (vj , Ai,j), where vj is the mean speed of the jth speed bin and Ai,j the line amplitude
found by the fit to this bin and for delay i = 1 . . . 16.

The mean speed v̄i of the delay i is found by the weighted average

v̄i =
∑
j Ai,jvj∑
j Ai,j

. (5.12)

Likewise, the root mean square (RMS) speed v̄RMS,i is found by

v̄RMS,i =

√√√√∑j Ai,jv
2
j∑

j Ai,j
. (5.13)

The full width at half maximum (FWHM) of the speed distribution, ∆v, is determined by
a Gaussian fit to (vj , Ai,j) for each delay. The values of v̄ and ∆v for the experimental
parameters of the 2S-6P measurement are given in Table 5.1.

The line scans calculated for the speed bins are then summed up, giving line scans cor-
responding to the expected fluorescence signal from all atoms. Fits to these line scans then
reveal the expected line amplitude Ai for each delay i. The simulated line amplitudes cannot
be directly compared to those seen in the experiment due to the large uncertainties such as the
poorly known degree of dissociation of the atomic beam. However, the delay-dependence of
the line amplitudes, i.e. Ai/Ak as compared to a chosen reference delay k, can be compared,
as factors common to all delays drop out. Here, k = 2 is used, and Ai/A2 as found from
simulations of the experiment is given in Table 5.1. The ratio of Ai/A2 of the simulations to
that of the experiment, i.e. (Ai/A2)exp/(Ai/A2)sim, is the so-called experiment-to-simulation
amplitude ratio. The cutoff speed vcutoff of the underlying 1S speed distribution is found
by minimizing the experiment-to-simulation amplitude ratio. This corresponds to adjusting
vcutoff such that the simulations best reproduce the delay-dependence of the line amplitudes
observed in the experiment.

Finally, the ratio of Ai to the number N2S,sim,i of simulated 2S atoms that contribute to
delay i is formed. This ratio corresponds to the average probability p6P,sig for an 2S atom
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Figure 5.5: Simulation of the 6P speed distribution, i.e. the speed distribution of atoms contributing to
the 6P fluorescence signal, based on the 2S trajectory set shown in Fig. 5.4 obtained from a Monte Carlo
simulation. The trajectories are propagated through the 2S-6P spectroscopy laser using the big model
to find the fluorescence signal, given by the expected number of photons emitted by Lyman decays
versus detuning. The spectroscopy laser power is P2S-6P = 10 µW and no offset angle α0 is applied.
The trajectories are sorted by their speed v into 200 bins of width 5 m/s each, and the resulting line
scans are fit with a Voigt line shape for each bin and delay. (A) The number of fluorescence photons
expected with the laser on the 2S-6P resonance, corresponding to the line amplitude A found by the
fits, versus the speed v. Selected delays are shown (colored lines). Within each delay, a mean atomic
speed v̄ (circles) is determined by an average of the binned speeds, using the amplitudes A as weights.
(B) The delay-dependence of the line amplitude, i.e. the line amplitude relative to that of delay 2,
versus v̄ (blue circles). The increasing duration of the delays for longer delay times partly compensates
the drop in the number of emitted photons per unit time (orange squares). (C) The mean speed v̄
(blue circles) and the FWHM ∆v (orange squares) of the 6P speed distribution for the 16 different
delays.

to contribute to the fluorescence signal through excitation to the 6P level and subsequent
emission of a Lyman photon. Table 5.1 gives p6P,sig separately for the three values of the
spectroscopy laser power P2S-6P used in the 2S-6P measurement. As expected, p6P,sig increases
with decreasing v̄ and thus increasing interaction time T . It also approximately scales linearly
with P2S-6P, except for the slowest delays where saturation effects start to play a substantial
role.

Fig. 5.5 shows an example of such an analysis, using the 2S trajectory set of Fig. 5.4.
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The spectroscopy laser power is set to P2S-6P = 10 µW and no offset angle α0 is applied,
and accordingly a Voigt line shape is used. The line amplitude Ai,j versus the speed vj is
shown for selected delays (colored lines) in Fig. 5.5 (A), with the resulting mean speed v̄i
marked (circles). Fig. 5.5 (B) shows the the delay-dependence of the line amplitude, Ai/A2,
versus v̄i (blue circles). The same data, but normalized to the duration ∆τ of the delays
(orange squares), shows that the increasing duration of the delays for longer delay times partly
compensates the drop in the number of emitted photons per unit time. Finally, Fig. 5.5 (C)
shows the mean speed v̄ (blue circles) and the FWHM ∆v (orange squares) of the 6P speed
distribution for the 16 different delays.

5.3.3 Comparison of expected and experimentally observed fluorescence
signal

Knowing p6P,sig, the amplitude of the fluorescence signal expected in the experiment, i.e. the
number of counts accumulated on each detector over 160 chopper cycles and with the spec-
troscopy laser resonant with the 2S-6P transition, can be estimated. For delay i, the number
of counts is

N6P,i = N2S,i × p6P,sig,i × PDE. (5.14)

N2S,i is the total number of 2S atoms that contribute to the signal, as given in Eq. (5.10). The
ratio N2S,i/N

′
1S is given in Table 5.4 for the experimental parameters of the 2S-6P measure-

ment, where N ′1S is the number of 1S atoms leaving the nozzle per second in the direction of
the 2S-6P spectroscopy region. PDE is the detection efficiency of fluorescence photons, which
is derived from the simulations discussed in Section 4.6.6. Values of PDE for the top (PDE,TD)
and bottom (PDE,BD) detector are given in Table 4.2 for the detection of Ly-ε photons.

Taking the corresponding values from Tables 4.2, 5.1 and 5.4 and using the estimate
N
′
1S = 1.6× 1016 atoms/s of Section 4.5.2.3, the amplitude of the fluorescence signal of delay

13 for a spectroscopy laser power of P2S-6P = 10 µW is expected to be ≈74 kcts. In the
2S-6P measurement, however, the maximum observed amplitude was only ≈4 kcts, that is,
almost a factor of 20 lower than expected.

On the other hand, the simulations reproduce the observed linewidth ΓF for the different
delays and spectroscopy laser powers within a few percent. Since ΓF is strongly affected by
Doppler broadening and thus highly dependent on the distribution of 2S trajectories, this is
a stringent test of the modeling of both the 2S trajectories and the 2S-6P fluorescence signal.
The experimentally observed scaling of the signal with P2S-6P is also well reproduced by the
simulations.

A more likely explanation for the discrepancy in the expected and observed signal is
the overestimation of the degree of dissociation αdis, i.e. the fraction of hydrogen atoms as
compared to hydrogen molecules in the beam. As discussed in Section 4.5.1, this value is
poorly known, and it is possible that recombination losses, especially during the transport of
the atoms from the dissociator to the nozzle, are much higher than estimated here. Further
experimental studies, possibly including a direct measurement of αdis, are needed to resolve
this discrepancy.
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Chapter 6

2S-6P transition frequency measure-
ment

This chapter gives an overview over the preliminary results of the 2019 2S-6P transition
frequency measurement. As the data analysis is still ongoing at the time of writing, all
frequency results given are blinded by adding a random offset not known to the author.
Furthermore, due to time constraints, and since the results are subject to change as the
analysis progresses, the description is kept brief and should mainly serve as an outline of the
data set.

6.1 Overview of acquired data and analysis procedure

6.1.1 2019 measurement runs
As described in the Introduction (see Chapter 1), in 2019 three measurement runs (A–C)
to determine the 2S-6P transition frequency were conducted. Table 6.1 lists these runs and
the corresponding experimental configurations, which are briefly discussed below. Each run
consists of multiple measurement days, with each measurement day again separated into
multiple freezing cycles (FCs). In total, 3155 line scans were acquired in 73 FCs.

For run A and B, the atomic beam and the 2S-6P spectroscopy laser beams were aligned
to cross at right angles, i.e. α0 = 0 mrad, to minimize the observed linewidth, the residual
Doppler shift, and the light force shift. During run C, on the other hand, the atomic beam and
the laser beams were deliberately set to cross at a small offset angle α0 from the orthogonal.
The primary purpose of this was to increase the size of the light force shift in order to check
its theoretical modeling. Most of the data in run C were taken at α0 = ±12.0 mrad, but for
some data α0 = ±7.5 mrad and α0 = 0 mrad were used.

Both the 2S-6P1/2 and the 2S-6P3/2 transitions were probed in run A and B, i.e. the
transitions to the two fine-structure (FS) components 6P1/2 and 6P3/2, respectively. This
allows the two respective transition frequencies ν1/2 and ν3/2 to be combined to form the 2S-
6P centroid ν2S-6P, for which line shifts from quantum interference (QI) of the FS components
are greatly suppressed (see Section 6.2.4.6). Run C, on the other hand, only contains data on
the 2S-6P1/2 transition. For each given FC, only one of the transitions was probed, with the
number of FCs and valid line scans for each transition and run given in Table 6.1.

The power P2S-6P of the 2S-6P spectroscopy laser was set to, respectively, 30 µW and
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Table 6.1: Overview of the three measurement runs A, B, and C during which the data of the 2S-
6P transition frequency measurement was collected in 2019. α0: Offset of atomic–laser beam angle,
θL: linear laser polarization angle, P1S-2S: intracavity power of 1S-2S preparation laser, detector blocking
meshes: whether the additional blocking meshes were installed in the detector assembly, FS: probed
fine-structure component, P2S-6P: power of 2S-6P spectroscopy laser, FCs: number of freezing cycles
contained in run, valid line scans: number of valid line scans contained in run.

Meas.
run

Time
period
(2019)

α0
(mrad)

θL

(°)
P1S-2S

(W)

Detector
blocking
meshes

FS P2S-6P

(µW) FCs
Valid
line

scans

A 24.3.–3.4.
(6 days) 0 56.5 1.0 –

1.7 Installed 6P1/2 30 13 285

6P3/2 15 3 162

B 23.5.–9.6.
(14 days) 0 56.5,

146.5
1.0 –
1.3 Removed 6P1/2 10, 20, 30 21 1093

6P3/2 5, 10, 15 20 992

C 29.7.–7.8.
(5 days)

0,±7.5,
±12.0 56.5 1.0 –

1.1 Removed 6P1/2 30 16 623

Total 73 3155

15 µW for the 2S-6P1/2 and 2S-6P3/2 transitions during run A. For run B, data were taken at
two-fold and three-fold reduced laser powers, with most of the data taken at the latter. This
was done because using a lower laser power decreases the size of the light force shift and, to
a lesser extend, line shifts from quantum interference (QI).

The majority of the data were acquired with the linear laser polarization of the 2S-6P spec-
troscopy laser aligned such that QI line shifts were approximately minimized (see Fig. 6.8).
To this end, θL was set to 56.5°, where θL is the angle of the polarization vector from the axis
of the detector cylinder. To confirm the theoretical modeling of the observed QI line shifts,
which in turn critically depends on the modeling of the detection efficiency, some data during
run B were taken at θL = 146.5°, where the QI line shifts are larger.

The intracavity power P1S-2S of the 1S-2S preparation laser was kept between 1.0 W and
1.3 W during runs B and C. For run A, the power reached 1.7 W for the first FC, decreasing
to 1.0 W for the final FC. For the bulk of run B and all of run C, the intracavity power was
stabilized (see Section 4.3.3.5), but not for run A.

Finally, during run A additional blocking meshes were installed inside the detector assem-
bly, as discussed in Section 4.6.1. The blocking meshes were removed prior to run B.

6.1.2 Data groups and their analysis

For data analysis purposes, the data are further grouped by measurement run, the probed
transition, and the values of α0, θL, and P2S-6P. The resulting 17 data groups are listed in
Table 6.2.
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Table 6.2: Overview of the data groups G1–G14, with the line scans in each data group taken during
the same measurement run and for the same fine-structure (FS) component, offset of atomic–laser beam
angle α0, linear laser polarization angle θL, and power of 2S-6P spectroscopy laser P2S-6P. FCs: number
of freezing cycles contained in group, valid line scans per detector: number of valid line scans contained
in group for the top and bottom detector, line shape func.: line shape function used for analysis, dual
scan: whether line scans were acquired as dual scans and which parameter was varied.

Data
group

Meas.
run FS α0

(mrad)
θL

(°)
P2S-6P

(µW) FCs
Valid

line scans
per detector

Line
shape
func.

Dual
scan

Top Bottom
G1A A

6P1/2 0 56.5

30 13 285 285

Voigt

—
G1B B 30 18 148 141 P2S-6P

G1C C 30 16 77 68 —
G2 B 20 18 147 138

P2S-6PG3 B 10 18 598 564
G4 B

6P1/2 0 146.5
30 3 34 31

Voigt P2S-6PG5 B 20 3 34 31
G6 B 10 3 132 119
G7A A

6P3/2 0 56.5

15 3 162 162

Voigt

—
G7B B 15 17 143 116

P2S-6PG8 B 10 18 151 124
G9 B 5 18 568 461
G10 B

6P3/2 0 146.5
15 2 21 20

Voigt P2S-6PG11 B 10 2 22 21
G12 B 5 2 87 80
G13 C 6P1/2

7.5 56.5 30 3 106 106 Voigt
doublet —G14 C 12.0 30 11 440 394

6.1.2.1 Simulation corrections

For each data group, up to three sets of 2S trajectories are generated using a Monte Carlo
simulation, as detailed in Section 5.2. For each set, the power P1S-2S and frequency detuning
∆ν1S-2S of the 1S-2S spectroscopy laser are adjusted to match the experimental values. Mul-
tiple sets are used for data groups with a large spread of P1S-2S or ∆ν1S-2S. Each line scan
is then assigned the set most closely matching P1S-2S and ∆ν1S-2S during that line scan. The
cutoff speed vcutoff of the velocity distribution is set1 to approximately match the average
vcutoff of the line scans of the data group, shown in Fig. 6.1. For all data groups of run A
(run B and C), vcutoff = 30 m/s (vcutoff = 65 m/s) is used. A total of Ntraj = 1× 106 and
Ntraj = 4× 106 trajectories are used for data groups G1–G12 and G13–14, respectively. The
latter data groups require a larger number of trajectories to reach a sufficient accuracy in the

1vcutoff is determined by comparing the delay dependencies of the experimental and simulated line ampli-
tudes, as discussed in Section 5.3.2.
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Figure 6.1: Variation of the cutoff speed vcutoff during the 2S-6P measurement. vcutoff is determined
for each valid scan and each detector by minimizing the ratio of the experimental to the simulated
amplitudes for all delays. (A) vcutoff versus measurement time for the different data groups. Each
almost vertical stripe (colored lines and points) corresponds to a freezing cycle (FC). (B) Same data
as (A), but shown as change in vcutoff during each FC (colored lines and points), relative to the value
of vcutoff at 60 min after the start of the FC. (C) The maximal and minimal experiment-to-simulation
amplitude ratio for the data of (B) (colored diamonds and circles, respectively), and for reference when
vcutoff is set to zero (gray symbols).

simulations of the light force shift. The remaining parameters of the Monte Carlo simulation
are identical for all data groups and their values are given in Table 5.3.

The generated trajectory sets serve as input to the big model and the light force shift
model, as discussed in Section 5.3. For each trajectory set, line scans from both models
are calculated, using the values of α0, θL, and P2S-6P of the corresponding data group. For
this preliminary analysis, the same detection efficiency simulation with mesh transparencies
TWM = TWM,BD = 80 % is used for all data groups (see Section 4.6.6), that is the blocking
meshes during run A are neglected. The mean speed v̄ and root mean square speed v̄RMS of
each delay is determined for each trajectory set as described in Section 5.3.2.

Both the experimental and simulated line scans are fit using the same line shape function.
For data groups with α0 = 0 mrad a Voigt line shape is used (see Section 5.1.1.2 and Fig. 5.1),
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while for data groups G13 and G14, where α0 = 7.5 mrad and α0 = 12.0 mrad, respectively,
the Voigt doublet line shape is employed (see Section 5.1.1.3 and Fig. 5.2). The simulated
line scans use the same frequency sampling of the spectroscopy laser detuning ∆ν2S-6P as used
for the experimental line scans (see Table 5.2).

In this way, each delay of each experimental line scan is assigned a fit result from the big
model (with resonance frequency ν0,BM), a fit result from the light force shift model (with
resonance frequency ν0,LFS), and a value of v̄ and v̄RMS. From the latter, the second-order
Doppler shift ∆νSOD can be calculated (see Section 6.2.4.1). The resonance frequency ν0 of
each delay of each experimental line scan is then corrected for the SOD, shifts dominated by
quantum interference (QI), and the light force shift by subtracting ∆νSOD + ν0,BM+ν0,LFS,
i.e. ν0 → ν0− (∆νSOD + ν0,BM+ν0,LFS). The complete analysis is also repeated for some or all
simulation corrections omitted to find their impact on the determined resonance frequency
of the 2S-6P transition (see Fig. 6.4). Note that, since both ν0,BM and ν0,LFS are determined
from fits to line scans, systematic shifts from e.g. the chosen frequency sampling might be
accounted for twice. This remains to be studied in detail in the future. However, when the
2S-6P centroid is formed (see Section 6.2.4.6), the corrections from ν0,BM almost completely
cancel out, leaving only those from ν0,LFS, in which this particular problem is circumvented.

Using the mean speeds v̄, a Doppler extrapolation (and averaging) as described in Sec-
tion 5.1.2 is done for both the experimental and simulated line scans. This results in values
of the Doppler-free resonance frequency ν0,e, the Doppler slope κ, and the Doppler-averaged
resonance frequency ν0,a for each line scan and detector. Note that because the simulation
corrections have been applied to the resonance frequencies of the individual experimental de-
lays, they influence the determined value of κ and in general lead to corrections of different
size and even sign for ν0,e and ν0,a. ν0,e, κ, and ν0,a from the simulations are not used directly
in the analysis, but only to visualize the simulation corrections, as in e.g. Fig. 6.8. Thus,
in the following, ν0,e, κ, and ν0,a refer to values derived from the experimental data unless
otherwise mentioned.

6.1.2.2 Detector correlations

The values of ν0,e, κ, and ν0,a of each line scan are correlated for the two detectors because
of noise on the fluorescence signal common to both detectors, i.e. noise other than shot noise
or from the detectors themselves. Linear correlation coefficients r are determined for each
data group. They range between 0.29 . . . 0.49, 0.48 . . . 0.70, and 0.70 . . . 0.80, respectively, for
the three quantities, with a larger correlation observed for data groups where a larger laser
power P2S-6P was used. This is to be expected, as a larger P2S-6P leads to a higher fluorescence
signal and thus a lower relative contribution of shot noise. The correlation coefficients are
taken into account when averaging the results from the two detectors, with all data shown in
this chapter corresponding to this detector average1.

6.1.2.3 Excess scatter

Finally, ν0,e, κ, and ν0,a are averaged over each of the freezing cycles (FCs) contained in
each data group, using the corresponding statistical uncertainties as weights. The reduced
chi-square χ2

red,FC of these weighted averages is typically found to be above one, indicating
1For some line scans, only data from the top detector is available (see Table 6.2), because of transient

excess scatter and spikes on the bottom detector. In this case, only the data from the top detector and not
the detector average is used.
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an excess scatter of the results from each line scan. For the 2S-6P measurement, the mean
χ2

red,FC is χ̄2
red,FC = 1.7, 2.6, and 6.7 for the three quantities (see Figs. 6.2 and 6.3), with each

FC containing a mean number of 18.8 scans. As discussed in detail in Section 5.1.2, this is
expected for the averages of κ and ν0,a if the Doppler shift varies over time, e.g. from drifts of
the experimental alignment. The Doppler extrapolation should remove those shifts and ν0,e
should ideally show no excess scatter. While the excess scatter is significantly lower for ν0,e
than for κ and ν0,a, it still is significantly above one. This is attributed to additional noise
on the fluorescence signal, e.g. from variations in the atomic flux from nozzle temperature
fluctuations1, which also leads to the aforementioned detector correlations.

To account for this excess scatter, the uncertainties of the FC-averaged values of ν0,e,
κ, and ν0,a are scaled by the corresponding

√
χ2

red,FC (for χ2
red,FC ≤ 1, no scaling is done,

i.e. the uncertainty is never decreased). Whether and at what point this scaling is done is a
somewhat arbitrary choice, and here the effect of the scaling on the value of ν0,e found for
the 2S-6P1/2 and 2S-6P3/2 transition is less than 30 Hz. The idea here is the following: first,
before each FC, the nozzle is heated up to room temperature, cooled down, and centered in
the preparation laser beam. The hydrogen dissociator, which is stopped during this process,
is restarted. At the start of each FC, the optimal detuning of the preparation laser is found
by spectroscopy of the 1S-2S laser and the offset angle α0 is set using the observed Doppler
shift of the 2S-6P transition [28]. Second, it is assumed that there is additional noise on the
fluorescence signal, and that this noise is approximately the same for each FC. Third, some
variation of the residual Doppler shift from FC to FC is possible, as it should depend on
the alignment at some level. Then, scaling the average over each FC by

√
χ2

red,FC removes
this noise. It does however not remove possible scatter from FC to FC and day to day from
the preparation and alignment procedure, which manifests itself as a χ2

red above one for the
weighted average over the scaled, FC-averaged values of ν0,e. The results from this procedure
for the 2S-6P measurement are presented in the next section.

6.2 Preliminary results of the 2S-6P measurement

6.2.1 Blinded transition frequencies

6.2.1.1 The 2S-6P1/2 transition

The blinded results from the measurement of the 2S-6P1/2 transition are shown in Fig. 6.2.
All data for this transition from the 2S-6P measurement is taken into account, including
for a nonzero α0, i.e. data groups G1–G6, G13, and G14 (colored diamonds). The data
within each group has been analyzed as described in Section 6.1.2, and corrections for the
light force shift, quantum interference line shifts, and second-order Doppler shift have been
included. This results in a value and uncertainty of the Doppler-free resonance frequency ν0,e,
Doppler slope κ, and Doppler-averaged resonance frequency ν0,a for each of the 106 freezing
cycles (FC), shown in Fig. 6.2 (A), (C), and (E), respectively. The corresponding χ2

red,FC of the
weighted average over all line scans within each FC is given in (B), (D), and (F), respectively,
and (G) shows the number of line scans in each FC. The uncertainties of ν0,e, κ, and ν0,a have

1The standard deviation of the nozzle temperature TN during the line scans and the χ2
red of the fits to the

line scan are found to be significantly positively correlated. This is currently, along with other noise source,
being investigated further.
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Figure 6.2: Blinded results of the measurement of the 2S-6P1/2 transition for the different data groups
and freezing cycles (FCs). All data, including for a nonzero α0, are considered (data groups G1–G6,
G13, G14). Shown is the FC average of the (A) Doppler-free resonance frequency ν0,e, (C) Doppler
slope κ, and (E) Doppler-averaged resonance frequency ν0,a. The corresponding χ2

red,FC of the weighted
average over all line scans within each FC is given in (B), (D), and (F), respectively, and the uncer-
tainties of ν0,e, κ, and ν0,a have been scaled by

√
χ2

red,FC. Purple bands indicate the 1σ uncertainty
region of weighted averages over all 106 FCs. Corrections for the light force shift, quantum interference
line shifts, and second-order Doppler shift have been included. Only the statistical uncertainty, includ-
ing detector correlations, but not the uncertainty of the corrections, is taken into account. (G) The
number of line scans within each FC. Histograms of the data within each plot are shown on the right.

been scaled by
√
χ2

red,FC, which results in a mean increase of
√
χ̄2

red,FC = 1.30, 1.63, and 2.66,
respectively.

The weighted average of the Doppler-free resonance frequencies ν0,e of all 106 FCs gives



190 6. 2S-6P transition frequency measurement

the blinded transition frequency ν̃1/2 of the 2S-6P1/2 transition (purple band in Fig. 6.2 (A)),

ν̃1/2 ≡ ν̄0,e = 24.397(485) kHz with χ2
red = 1.20(14). (6.1)

ν̃1/2 so far only includes the statistical uncertainty, but not the uncertainty of the corrections
or other systematic uncertainties. In total, ν̃1/2 has been corrected by 760 Hz, consisting of
a 696 Hz, 210 Hz, and −145 Hz correction for the light force shift (LFS), quantum interfer-
ence (QI) line shifts, and second-order Doppler shift (SOD), respectively (see Fig. 6.4).

The χ2
red of the weighted average is in reasonable agreement with the assumption of no

excess scatter between the FCs. If the uncertainties of each FC are not scaled up to account
for the excess scatter within each FC, ν̃1/2 shifts by only 17 Hz, but the uncertainty decreases
to 401 Hz, while χ2

red increases to 1.82 ≈ (485 Hz/401 Hz)2× 1.20. The statistical uncertainty
of ν̃1/2 is a factor of 6.0 lower than the comparable uncertainty1 of the 2S-4P1/2 transition
frequency of Appendix A.

Likewise, the weighted average of the Doppler slopes κ of all FCs gives (purple band in
Fig. 6.2 (C))

κ̄ = 0.84(3.00) Hz/(m/s) with χ2
red = 1.22(14), (6.2)

κ̄ is in good agreement with zero, and it corresponds to a Doppler shift of 168(600)Hz for
an atom with vtyp = 200 m/s. The corrections of the resonance frequencies of each line scan
result in κ̄ being corrected by −5.4 Hz/(m/s), consisting of a −4.7 Hz/(m/s), −2.4 Hz/(m/s),
and 1.7 Hz/(m/s) correction for the LFS, QI line shifts, and SOD, respectively (see Fig. 6.4).
Thus, were those corrections not applied, κ̄ would only be reasonable compatible with zero
by 2σ. The χ2

red similar to that of ν̃1/2, indicates that the excess scatter between FCs and
measurement days is not substantially larger than within each FC. This suggests that the
alignment procedures performed for each FC result in a negligible, or at least reproducible,
residual Doppler shift, compared to the uncertainty of the measurement and the change in
residual Doppler shift during an FC. This was not the case for the 2S-4P measurement (see
Appendix A), where excess day-to-day scatter was observed.

Finally, the weighted average of the Doppler-averaged resonance frequencies ν0,a of all FCs
results in (purple band in Fig. 6.2 (E))

ν̄0,a = 24.974(260) kHz with χ2
red = 1.65(14). (6.3)

ν̄0,a has been corrected by −274 Hz, consisting of a −253 Hz, −208 Hz, and 187 Hz correction
for the LFS, QI line shifts, and SOD, respectively (see Fig. 6.4). With those corrections
included, ν̃1/2 and ν̄0,a agree within 1σ of their combined uncertainty. Without those correc-
tions, however, there is a 3σ tension between ν̃1/2 and ν̄0,a.

The value of χ2
red indicates a significant excess scatter of ν̄0,a between FCs, as opposed

to ν̃1/2 and κ̄. This is unsurprising, as ν0,a is more sensitive to residual Doppler shifts and
additional noise on the fluorescence signal, as demonstrated by the much larger excess scatter
within the FCs as compared ν0,e and κ. Thus, excess scatter between the FCs that is only
visible as a slightly larger χ2

red for ν̃1/2 and κ̄ can lead to a clearly too large value of χ2
red for

ν̄0,a.
1For the 2S-4P measurement, the first-order Doppler shift was accounted for differently than here, and the

statistical uncertainty of ν̄0,e should be compared to the first-order Doppler shift uncertainty given in Table
S2 of Appendix A.
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However, if one is not interested in the absolute frequency, but only in frequency differences
between subsets of the data, one may still use ν̄0,a by taking the excess scatter into account.
To this end, ν̄0,a is again scaled by

√
χ2
red, but this time using the χ2

red of the weighted average
of the FCs in the subset of data in question. This gives the scaled Doppler-averaged resonance
frequency ν̂0,a =

√
χ2
redν̄0,a ≈ 1.28 ν̄0,a. ν̂0,a is used in the tests for the LFS model and the big

model, which is used to calculate the QI line shifts. A similar procedure was used to observe
the QI line shifts in the 2S-4P measurement (see Appendix A).

One such test is to look at the measurement results for the 2S-6P1/2 transition versus the
spectroscopy laser power P2S-6P, shown in Fig. 6.5 (A–C). Only data for which α0 = 0 mrad
are considered, since data with nonzero α0 were only taken for P2S-6P = 30 µW and thus tend
to complicate the interpretation of the test. With the power-dependent corrections for the
light force shift and the QI line shifts taken into account, both ν̄0,e and ν̂0,a for different P2S-6P

are found to be highly compatible.

6.2.1.2 The 2S-6P3/2 transition

Similarly, the blinded results from the measurement of the 2S-6P3/2 transition are shown in
Fig. 6.3. All 62 FCs of data for this transition from the 2S-6P measurement are taken into
account, i.e. data groups G7–G12 (colored diamonds). Unlike for the 2S-6P1/2 transition, no
data were acquired for a nonzero α0. The weighted average of all FCs gives

ν̃3/2 ≡ ν̄0,e = −3.315(601) kHz with χ2
red = 1.23(18), (6.4)

κ̄ = −3.14(3.75) Hz/(m/s) with χ2
red = 1.22(18), (6.5)

ν̄0,a = −3.695(312) kHz with χ2
red = 1.40(18). (6.6)

ν̃3/2 (ν̄0,a) has been corrected by 1149 Hz (729 Hz), consisting of a 1313 Hz (381 Hz), −22 Hz
(163 Hz), and −142 Hz (186 Hz) correction for the LFS, QI line shifts, and SOD, respectively
(see Fig. 6.4). As for the 2S-6P1/2 transition, the LFS correction dominates the total correc-
tion. However, the correction is approximately a factor of two larger for ν̃3/2 than for ν̃1/2,
which is mainly because there is some cancelation of the LFS for the data taken at zero α0
and at α0 = 12.0 mrad for the latter.

The χ2
red for ν̃3/2 and κ̄ are similar to those of the 2S-6P1/2 transition and likewise in

reasonable agreement with the assumption of no significant excess scatter between the FCs.
If the uncertainties of each FC are not scaled up to account for the excess scatter within each
FC, ν̃3/2 shifts by only −24 Hz, but the uncertainty decreases to 479 Hz, while χ2

red increases to
1.89 ≈ (601 Hz/479 Hz)2×1.23. ν̃1/2 and ν̄0,a agree within their combined uncertainty whether
the corrections are included or not. The statistical uncertainty of ν̃3/2 is a factor of 4.7 lower
than the comparable uncertainty of the 2S-4P3/2 transition frequency of Appendix A.

The χ2
red for ν̄0,a indicates, as expected, a significant excess scatter between the FCs,

albeit at a lower level than seen for the 2S-6P1/2 transition. Analogous to that transition, a
scaled Doppler-averaged resonance frequency ν̂0,a =

√
χ2
redν̄0,a ≈ 1.18 ν̄0,a is defined to test

frequency differences within the data set.
As for the 2S-6P1/2 transition, κ̄ is in good agreement with zero with a similar uncertainty.

κ̄ includes a −1.8 Hz/(m/s) correction, consisting of a −4.8 Hz/(m/s), 1.3 Hz/(m/s), and
1.7 Hz/(m/s) correction for the LFS, QI line shifts, and SOD, respectively (see Fig. 6.4).
Correspondingly, κ̄ is also compatible with zero even if those corrections are not included.
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Figure 6.3: Similar to Fig. 6.2, but showing the blinded results of the measurement of the 2S-6P3/2 tran-
sition for the different data groups (data groups G7–G12) and freezing cycles (FCs).

The measurement results for the 2S-6P3/2 transition versus the spectroscopy laser power
P2S-6P are shown in Fig. 6.5 (D–E). ν̄0,e and ν̂0,a for different P2S-6P are found to be compatible,
whether the power-dependent corrections for the light force shift and the QI line shifts are
taken into account or not.

6.2.1.3 Combining the 2S-6P1/2 and 2S-6P3/2 transition

The blinded 2S-6P centroid is given by (see Section 6.2.4.6 and Eq. (6.21))

ν̃2S-6P = 1
3 ν̃1/2 + 2

3 ν̃3/2 = 5.922(432) kHz, (6.7)
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Figure 6.4: Simulation corrections included for the measurement of the (A, B) 2S-6P1/2 and (C,
D) 2S-6P3/2 transition. All data, including for a nonzero α0, are taken into account (data groups G1–
G14). Shown are the detector- and freezing-cycled-averaged (A, C) Doppler-free resonance frequency
ν̄0,e (blue circles), Doppler-averaged resonance frequency ν̄0,a (orange squares), and (B, D) Doppler
slope κ̄ (green diamonds). Three corrections are applied in sequence: light force shift (LFS), quantum
interference (QI) line shifts, and second-order Doppler shift (SOD) corrections. The error bars indicate
the 1σ statistical uncertainty of the experimental data, but do not include the uncertainty of the
corrections.

where the statistical uncertainties ν̃1/2 and ν̃3/2 have been assumed to be uncorrelated and
the additional offset from Eq. (6.21) has been absorbed in the blind offset of ν̃2S-6P. The
corrections applied to ν̃1/2 and ν̃3/2 are assumed to be fully correlated, leading to a correc-
tion of ν̃2S-6P by 1019 Hz, consisting of a 1107 Hz, 55 Hz, and −144 Hz for the LFS, QI line
shifts, and SOD, respectively. Thus, the corrections are dominated by the LFS, justifying the
considerable effort that has been put into the derivation and verification of the LFS model.
The statistical uncertainty of ν̃2S-6P is a factor of 4.9 lower than the comparable uncertainty
of the 4P centroid transition frequency of Appendix A.

One may average the values of the Doppler slope κ̄ for the two transitions, assum-
ing they are uncorrelated, to give a performance limit on the Doppler suppression of
−0.71(2.34)Hz/(m/s). This corresponds to a Doppler shift of −142(468)Hz for an atom
with vtyp = 200 m/s.

6.2.2 Experimental test and uncertainty of light force shift model

The data discussed so far have been corrected for the light force shift (LFS), using the model
developed in Chapter 3. This models predicts that the LFS changes from a negative shift to a
positive shift for atoms flying along the laser beams with a (transverse) velocity vx exceeding
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Figure 6.5: Blinded results of the measurement of the (A–C) 2S-6P1/2 and (D–F) 2S-6P3/2 transition
versus the power of the 2S-6P spectroscopy laser, P2S-6P. Only data for which α0 = 0 mrad are consid-
ered (data groups G1–G12). Shown are the detector- and freezing-cycle-averaged (A, D) Doppler-free
resonance frequency ν̄0,e, (B, E) Doppler slope κ̄, and (C, F) scaled Doppler-averaged resonance
frequency ν̂0,a, without (gray diamonds) and with (green diamonds) corrections for quantum interfer-
ence line shifts and light force shift. The gray and purple bands indicate the 1σ uncertainty region
of weighted averages without and with corrections, respectively, with the p-value and significance Zσ
given in the legend. Only the statistical uncertainty, but not the uncertainty of the corrections, is
taken into account. A small offset has been added along the x-axis for clarity.

the recoil velocity of vrec ≈ 0.97 m/s. For the special case of vx ≈ vrec, a resonance-like
behavior occurs with a large LFS on the order of 200 kHz (see Fig. 3.3), which however only
affects a small class of atoms. In the experiment, as shown in Fig. 5.4, most atoms have
a transverse velocity below the recoil velocity, and the overall LFS of the Doppler-free and
-averaged frequencies is negative. However, if the atomic beam and the spectroscopy laser
beams do not cross at right angles, but instead at an offset angle α0 from the orthogonal,
the transverse velocity increases and the negative LFS of some atoms can be balanced by the
positive shift experienced by others, with eventually the total shift becoming positive.

To verify this prediction, data were taken for the 2S-6P1/2 transition1 at α0 = 7.5 mrad
and 12.0 mrad (data groups G13 and G14, respectively), and using a spectroscopy laser power
of P2S-6P = 30 µW and a linear laser polarization angle of θL = 56.5°. These data can then
be compared to data taken for α0 = 0 mrad for the same values of P2S-6P and θL, i.e. data
groups G1A–G1C. The model predictions for the LFS as calculated for these data groups
are shown versus the mean speed v̄ of the delays in Fig. 6.6 (A). Only the fastest delays

1The reader might wonder why the 2S-6P1/2 transition and not the 2S-6P3/2 transition was used for this
purpose, since the LFS is up to a factor of two higher for the latter (see Fig. 3.3). The reason is that at the
time of the measurement, the influence of the back decay to the initial 2S level, which causes this difference,
was not fully understood.
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Figure 6.6: (A) Model prediction for the LFS ν0,LFS versus mean speed v̄ of the delays, shown for data
groups G1A–G1C, G13, and G14. The LFS is mainly negative for zero α0 (G1A–G1C, blue, orange,
and green lines), but positive for α0 = 7.5 mrad (G13, red line) and α0 = 12.0 mrad (G14, purple line).
This is because the LFS changes from a negative to a positive shift for transverse velocities above the
recoil velocity vrec ≈ 0.97 m/s, with the transverse velocity increasing as α0 is increased. The slight
differences between G1A–G1C are mainly caused by the different powers of the 1S-2S preparation laser
used for these data groups. (B) Measurement of the light force shift (LFS) of the 2S-6P1/2 transition
versus offset of atomic–laser beam angle, α0. The experimentally determined Doppler-free resonance
frequency ν̄0,e (blue diamonds) and the line shift predicted by the LFS model (orange crosses) are
shown relative to their values for α0 = 0 mrad, where the predicted shift amounts to −1.49 kHz. The
experimental data has been corrected for quantum interference line shifts and second-order Doppler
shift, which are much smaller than the LFS observed here. The uncertainty of the experimental data
for α0 = 0 mrad has been absorbed into the uncertainty for α0 6= 0 mrad and is thus not shown. Only
the statistical uncertainty, but not the uncertainty of the corrections, is taken into account. The model
is in excellent agreement with the experimental data. The spectroscopy laser power P2S-6P = 30 µW
and linear laser polarization angle θL = 56.5 mrad are the same for all data shown (data groups G1A–
G1C, G13, G14). A small offset has been added along the x-axis for clarity.

for zero α0 experience a positive LFS, since the beam divergence is large enough that these
atoms exceed the recoil velocity in the transverse direction, while slower delays see a negative
LFS of larger magnitude. Through the Doppler extrapolation to zero speed, this results in
a negative Doppler-free resonance frequency ν0,e of the LFS prediction. For the data groups
with α0 > 0, the LFS is always positive, as most atoms have a transverse velocity exceeding
the recoil velocity, except for the last delay for α0 = 7.5 mrad, which however only has little
statistical weight. Consequently, ν0,e of the LFS prediction is positive for α0 > 0.

The experimentally determined Doppler-free resonance frequency ν̄0,e from these data
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Figure 6.7: Blinded results of the measurement of the 2S-6P1/2 transition versus offset of atomic–laser
beam angle, α0 (data groups G1–G6, G13, G14). Shown are the detector- and freezing-cycle-averaged
(A) Doppler-free resonance frequency ν̄0,e, (B) Doppler slope κ̄, and (C) scaled Doppler-averaged
resonance frequency ν̂0,a, without (gray diamonds) and with (green diamonds) corrections for the
light force shift (LFS) taken into account. Both include corrections for quantum interference line
shifts and second-order Doppler shift. The gray and purple bands indicate the 1σ uncertainty region
of weighted averages without and with corrections, respectively, with the p-value and significance Zσ
given in the legend. Only the statistical uncertainty, but not the uncertainty of the corrections, is
taken into account. A small offset has been added along the x-axis for clarity.

groups is shown in Fig. 6.6 (B) (blue diamonds), along with the line shift predicted by
the LFS model (orange crosses), versus α0. Both the experimental data and the prediction
are shown relative to their values for α0 = 0 mrad, where the predicted shift amounts to
−1.49 kHz. The experimental data has been corrected for quantum interference line shifts
and second-order Doppler shift, which are much smaller than the LFS observed here, but
not for the LFS as is done here elsewhere. The uncertainty of the experimental data for
α0 = 0 mrad has been absorbed into the uncertainty for α0 6= 0 mrad. Because there is only
one measurement day of data for α0 = 7.5 mrad, the uncertainty for this value is large and it
does not contribute significantly to this test.

As can be seen from Fig. 6.6 (B), the LFS model is in excellent agreement with the
experimental data. The frequency difference between the data for α0 = 0 mrad and α0 =
12 mrad is found to be

ν̄0,e(12.0 mrad)− ν̄0,e(0 mrad) = 4.37(1.82) kHz, (6.8)

which only contains negligible corrections of 173 Hz and 25 Hz for QI line shifts and the SOD,
respectively. The corresponding prediction of the LFS model is

ν0,e(12.0 mrad)− ν0,e(0 mrad) = 4.27 kHz. (6.9)
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The uncertainty of the prediction, which should be found by varying the parameters entering
the modeling of the atomic beam within their experimental constraints, has not yet been
evaluated in detail, but is estimated to be below 20 % based on preliminary evaluations. Note
that the parameters used for the prediction given here were not chosen to best reproduce the
LFS, but are either given by geometry, measured laser parameters, or determined from the
data using the big model, but not the LFS model, as described in Section 6.1.2.

Fig. 6.7 (A), (B), and (C) show the influence of the LFS corrections on the Doppler-free
resonance frequency ν̄0,e, Doppler slope κ̄, and scaled Doppler-averaged resonance frequency
ν̂0,a, respectively, for all data for the 2S-6P3/2 transition, versus α0. Including the LFS cor-
rections (green diamonds and purple band) improves the consistency for ν̄0,e, κ̄, ν̂0,a over the
case where only the corrections for quantum interference line shifts and second-order Doppler
shift are included (gray diamonds and band).

6.2.3 Quantum interference line shift corrections

Quantum interference (QI) line shifts are strongly suppressed by the large solid angle of the
fluorescence detection and the choice of the linear laser polarization angle θL. Fig. 6.8 shows a
simulation of the QI line shifts of the Doppler-free resonance frequency ν0,e versus the linear
laser polarization angle θL, for the 2S-6P1/2 (solid lines) and 2S-6P3/2 transition (dashed
lines). The simulation uses the big model (see Section 2.3.2) in conjunction with simulations
of the spatial detection efficiency (Table 4.2). The QI line shifts are shown for the four
different detection efficiency simulations of Fig. 4.41, corresponding to different values for the
transparency of the wire meshes inside the fluorescence detector assembly, for the top detector
(colored lines) and the bottom detector (faint colored lines). The spectroscopy laser power
is set to P2S-6P = 30 µW and P2S-6P = 15 µW, with the remaining experimental parameters
corresponding to those of data groups G1B and G10 for the 2S-6P3/2 and 2S-6P3/2 transition,
respectively. For P2S-6P = 10 µW and P2S-6P = 5 µW, the line shifts are approximately smaller
by one-third.

As expected from the perturbative analysis of the 2S-nP transitions [29], the line shifts are
approximately sinusoidal in θL, of opposite sign for the 2S-6P1/2 and 2S-6P3/2 transition, and
approximately a factor of two larger for the 2S-6P1/2 transition. Importantly, the sinusoidal
behavior is not symmetric about zero line shift, i.e. a simple average over θL leads to a
systematic offset in ν0,e. The line shifts are very similar for the different detection efficiency
simulations and the two detectors, reaching an approximate amplitude of 4 kHz and 2 kHz
for the 2S-6P1/2 and 2S-6P3/2 transition, respectively. The QI line shifts are approximately a
factor of 8 smaller than for the 2S-4P measurement (see Fig. 4 (A, B) of Appendix A), which is
a result of both the lower linewidth and larger detection solid angle of the 2S-6P measurement.

Most of the experimental data were taken for θL = 56.5° (light blue bar), where the
QI line shifts are approximately minimal, i.e. close to the so-called magic angle. For the
estimated alignment uncertainty of ±3° of θL, the shifts are within −250 Hz and −1.4 kHz
for the 2S-6P1/2 transition and 125 Hz and 0.7 kHz for the 2S-6P3/2 transition. Some data
were also taken at θL = 146.5° (light blue bar), were the line shifts are larger, reaching up to
3.8 kHz and 2.0 kHz for the two transitions. The shifts are also of opposite sign at θL = 146.5°
as compared to θL = 56.5°, leading to a partial cancelation of the QI line shifts if all data is
averaged as done here to find the transition frequencies.

As was done for the 2S-4P measurement, one may take advantage of the fact that the
line shifts are of opposite sign for the two transitions and combine their transition frequencies
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Figure 6.8: Simulation using the big model of the shift of the Doppler-free resonance frequency ν0,e from
quantum interference (QI) versus the linear laser polarization angle θL, for the 2S-6P1/2 (solid lines)
and 2S-6P3/2 transition (dashed lines). ν0,e is found by fitting Voigt line shapes to the individual delays
and extrapolating to zero speed, as is done for the experimental data. The observed shift depends on
the detection efficiency, which is determined from simulations, four of which for different parameters
are shown here for the top detector (colored lines) and the bottom detector (faint colored lines) (see
Fig. 4.41 and Table 4.2). Combining the 2S-6P1/2 and 2S-6P3/2 transitions into the 2S-6P centroid
(see Eq. (6.21)) reduces the observed shift to below 200 Hz (dotted lines). The values of θL used in the
experiment, θL = 56.5° (146.5°) (light blue bars), were chosen to minimize the QI line shifts, which
are below 20 Hz (50 Hz) for the centroid. The spectroscopy laser power is set to P2S-6P = 30 µW and
P2S-6P = 15 µW, with the experimental parameters corresponding to those of data groups G1B and
G10 for the 2S-6P3/2 and 2S-6P3/2 transition, respectively. The QI line shifts are approximately a
factor of 8 smaller than for the 2S-4P measurement (see Fig. 4 (A, B) of Appendix A).

with appropriate weighting into the 2S-6P centroid as defined in Eq. (6.21). This reduces the
observed shift to below 200 Hz (dotted lines) for all values of θL. For θL = 56.5° (146.5°), the
QI line shifts of the centroid are below 20 Hz (50 Hz).

Fig. 6.9 (A–C) and (D–E) show the corrections for the QI line shifts as applied to the mea-
surement of the 2S-6P1/2 and 2S-6P3/2 transition, respectively, versus θL. Data with nonzero
α0 is excluded, as there is no such data for θL = 146.5°. With the QI corrections included, the
consistency of the data generally increases, except for ν̄0,e for the 2S-6P3/2 transition, where
the corrections lead to a slight strain in the data.

The uncertainties of the QI corrections are yet to be evaluated in more detail by varying
more of the parameters entering the detection efficiency simulation. However, forming the
2S-6P centroid (see Section 6.2.1.3) reduces the QI corrections to below 100 Hz, which is well
below the statistical uncertainty.
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Figure 6.9: Blinded results of the measurement of the (A–C) 2S-6P1/2 and (D–F) 2S-6P3/2 transition
versus the linear laser polarization angle of the 2S-6P spectroscopy laser, θL. Only data for which α0 =
0 mrad are considered (data groups G1–G12). Shown are the detector- and freezing-cycle-averaged
(A, D) Doppler-free resonance frequency ν̄0,e, (B, E) Doppler slope κ̄, and (C, F) scaled Doppler-
averaged resonance frequency ν̂0,a, without (gray diamonds) and with (green diamonds) corrections for
quantum interference line shifts, while the light force shift corrections are always included. The gray
and purple bands indicate the 1σ uncertainty region of weighted averages without and with corrections,
respectively, with the p-value and significance Zσ given in the legend. Only the statistical uncertainty,
but not the uncertainty of the corrections, is taken into account. A small offset has been added along
the x-axis for clarity.

6.2.4 Additional corrections and uncertainties

6.2.4.1 Second-order Doppler shift

The second-order Doppler shift (SOD) is treated in Section 2.2.3. It leads to a shift of the
transition frequency as seen in the laboratory frame of reference by ∆νSOD, given in Eq. (2.8)
for an atom flying through the spectroscopy laser beams with speed v. To describe the average
SOD for a given delay, which contains a distribution of speeds, v is replaced with the root
mean square speed v̄RMS. This results in

∆νSOD = −
νA,0

2

(
v̄RMS

c

)2
. (6.10)

v̄RMS and ∆νSOD range, on average, between 274 m/s. . . 67 m/s and −304 Hz. . .−18 Hz for
delays 1. . . 16.

The resonance frequency ν0 of each delay of each line scan is corrected for the SOD by
subtracting ∆νSOD for the corresponding value of v̄RMS, i.e. the correction leads to a higher res-
onance frequency. Consequently, the Doppler-averaged resonance frequency ν0,a is corrected
upwards by 187 Hz (186 Hz) for the 2S-6P1/2 (2S-6P3/2) transition. However, the always neg-
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Figure 6.10: In situ determination of stray electric fields along the y-axis and the corresponding dc-
Stark shift for the (A, C) 2S-6P1/2 transition and the (B, D) 2S-6P3/2 transition. Voltages U+y and
U−y = −U+y are applied to the top and bottom electrode, respectively, of the detector assembly’s
inner region, resulting in a bias electric field along the y-axis with field strength Fy,0 ∝ U+y at the
center of the inner region (see Table 4.3). (A, B) Delay 13 of line scans for different values of Fy,0
(colored circles), along with fits (colored lines) of Voigt line shapes or Voigt doublet line shapes (for
the 2S-6P3/2 transition and nonzero Fy,0). The resonance of the 2S-6P3/2 transition splits into two
components if a large enough electric field is applied, resulting from the coupling to the 6D levels,
which are separated in frequency by much less than the linewidth (see Section 2.4). The dc-Stark shift
of the center of mass ν0, as given by the Voigt doublet fit, is much smaller than that of the individual
resonances. The signal on the top detector is shown, which increases for negative Fy,0 as electrons are
pulled from the inner region towards the top section of the detector assembly. (C, D) Doppler-free
resonance frequency ν0,e versus field strength Fy,0. Parabolas are fit to these data (see Eq. (2.48))
to reveal the effective quadratic dc-Stark shift coefficients β̃dc, and the strengths of the stray electric
field ∆F , along the direction of the bias field. The dc-Stark shifts caused by the stray fields are then
given by ∆νdc,2S-6P = β̃dc∆F 2. The power of the 2S-6P spectroscopy laser was P2S-6P = 30 µW (15 µW)
for the 2S-6P1/2 (2S-6P3/2) transition.

ative SOD increases (quadratically) in magnitude with the speed, which in the linear Doppler
extrapolation leads to an additional negative Doppler slope of −1.7 Hz/(m/s) for both tran-
sitions. The effect of this Doppler slope outweighs the shift of the individual delays, and the
Doppler-free resonance frequency ν0,e is corrected downwards, i.e. in the opposite direction
as ν0,a, by −145 Hz (−142 Hz) for the 2S-6P1/2 (2S-6P3/2) transition. The corrections for the
SOD are also shown in Fig. 6.4.



6.2 Preliminary results of the 2S-6P measurement 201

6.2.4.2 dc-Stark shift

Stray electric fields inside the detector assembly can lead to dc-Stark shifts of the observed
transition frequency (see Section 2.4). The stray electric fields ∆F were determined in situ
during the 2S-6P measurement by applying bias electric fields along the different directions
(see Section 4.6.7) and determining the resulting dc-Stark shift of the 2S-6P transition. This
procedure also gives the effective dc-Stark shift coefficients β̃dc, i.e. the shift of the resonance
observed in fluorescence as opposed to the shift of the atomic energy levels (see Section 2.4),
from which the dc-Stark shifts caused by the stray fields can be determined as ∆νdc,2S-6P =
β̃dc∆F 2. An example of such a determination is shown in Fig. 6.10.

On most measurement days of the 2S-6P measurement, such determinations were per-
formed at least once for each direction. In total, 269 determinations were performed, of
which 223 and 46 used the 2S-6P1/2 and 2S-6P3/2 transition, respectively. For some freez-
ing cycles dedicated to the measurement of the 2S-6P3/2 transition, the stray electric field
determination nevertheless used the 2S-6P1/2 transition because the resulting line scans are
simpler to analyze and the effective dc-Stark shift is larger, increasing the precision of the
determination. These determinations have only been preliminary evaluated so far, with the
stray fields found to be typically below 0.1 V/m (0.3 V/m) along the x- and z-axis (y-axis),
corresponding to an observed total shift below 500 Hz. The uncertainty with which this shift
can be corrected for is currently evaluated. The data shown here have not yet been corrected
for the dc-Stark shift.

6.2.4.3 Zeeman shift

The earth’s magnetic field inside the beam apparatus is compensated by three orthogonal pairs
of Helmholtz coils outside the vacuum chamber (see Fig. 4.2). In addition, the 2S-6P spec-
troscopy region is shielded from residual magnetic fields by a single-layer high-permeability
metal (mu-metal) shield surrounding the high-vacuum enclosure (see Fig. 4.1). All compo-
nents inside this enclosure, and the enclosure itself, are made from non-magnetic materials.
Within a 5 mm-radius sphere centered in the 2S-6P spectroscopy region, the magnetic flux
densityB was measured to have a maximum magnitude |B| of 7 mG, with the field component
Bx along the x-axis below 1 mG.

For a given magnetic flux density B along the quantization axis, the linear Zeeman effect
shifts the energies of the magnetic sublevels with mF =±1 of the 6PF=1

1/2 manifold by

∆ν = mF gFµBB/h = mF B × (0.467 kHz/mG). (6.11)

Likewise, the sublevels of the 6PF=1
3/2 manifold are shifted by

∆ν = mF gFµBB/h = mF B × (2.33 kHz/mG). (6.12)

gF is the appropriate g-factor and µB is the Bohr magneton. Note that gF is independent of
the principal quantum number n.

To analyze the Zeeman shifts for the experiment discussed here, we first assume that
the magnetic field point along the propagation direction of the spectroscopy laser beams,
i.e. along the x-axis of the apparatus, which is chosen as the atom’s quantization axis. In
this frame, the laser field is given by a combination of two spherical components that can be
identified as the right- and left-handed circularly polarized components of the laser beams
with amplitude Eσ+ and Eσ− , driving the transition to the mF = 1 and mF =−1 magnetic
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sublevels, respectively. The fluorescence signal from the mF = 1 (mF = −1) sublevel has
an amplitude approximately proportional to |Eσ+ |2 (|Eσ− |2), and is shifted in frequency by
gFµBBx/h (−gFµBBx/h), where Bx is the magnetic flux density along the x-axis. The center
of weight of the fluorescence signal, and thus the observed transition frequency, is then shifted
by

∆νZeeman = |Eσ+ |2 − |Eσ− |2

|Eσ+ |2 + |Eσ− |2
gFµBBx

h
= S3
S0

gFµBBx
h

, (6.13)

where S3/S0 is residual circularly polarized light fraction as defined in Section 4.4.6.
To analyze the situation where the propagation direction of the laser beams is not collinear

with the magnetic field, the atom’s quantization axis is kept along the magnetic field and the
laser field is decomposed again in this frame. In general, this leads to three spherical compo-
nents, Eσ+ , Eσ− , and Eπ, where Eπ drives the transition to the unshifted mF = 0 sublevel.
Note that Eσ+ and Eσ− are now not identical to the right- and left-handed components of
the laser beams. Taking, without loss of generality, that the magnetic field with flux density
B is oriented at an angle θ from the laser propagation direction, this decomposition results in
∆νZeeman = (S3/S0)gFµBB cos θ/h. This is equivalent to Eq. (6.13), since B cos θ ≡ Bx, and
thus only the magnetic field component along the laser beams needs to be considered.

The residual circularly polarized light fraction at the position of the atoms, |(S3/S0)atom|,
was measured in-situ during most line scans as detailed in Section 4.4.6. It is found to be also
below 10 % (see Fig. 4.24). Using this value, and the maximum value of Bx as given above,
results in an upper limit for the Zeeman shifts of |∆νZeeman| = 47 Hz and |∆νZeeman| = 233 Hz
for the 2S-6P1/2 and 2S-6P3/2 transition, respectively. The Zeeman shift and the associated
uncertainty is not included in the preliminary analysis shown here.

Towards the end of the 2S-6P measurement, some line scans of the 2S-6P3/2 transition
with an applied bias field of Bx ≈ 50 mG were acquired to serve as an additional check
on the estimation of the Zeeman shift. This data needs to be studied in detail, but in the
preliminary analysis no shift of the observed transition frequency within the uncertainty of
3 kHz was found.

6.2.4.4 Pressure shift

The interaction, or collisions, of the hydrogen atoms in the beam with other nearby particles
can lead to pressure shifts of the observed transition frequency [159]. Two classes of collisions
are distinguished here: intra-beam collisions with other atoms or hydrogen molecules in the
beam, and collisions with particles from the background gas. The particles in the atomic beam
are assumed to be at the temperature of the nozzle TN, while the background gas is taken to
be at room temperature. Furthermore, it is assumed that the background gas consists solely
of hydrogen molecules.

For the 2S-6P measurement, a flow of hydrogen molecules into the dissociator of up to
QH2 = 0.35 ml/min was used. The resulting number of atoms and molecules leaving the nozzle
per second in the direction of the spectroscopy region is estimated in Section 4.5.2.3 to be
N
′
1S = 1.6× 1016 atoms/s and N

′
H2

= 1.8× 1016 molecules/s, respectively. The background
pressure in the spectroscopy region, and thus the pressure of room-temperature hydrogen
molecules, is estimated to be PHV1 = 1× 10−7 mbar (see Sections 4.2.4 and 4.2.10).

Arthur Matveev and colleagues have performed a Monte Carlo simulation of the pressure
shift expected for the 2S-6P1/2 and 2S-6P3/2 transition from intra-beam collisions with other
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hydrogen atoms [160]. The simulation used the approximate parameters and geometry of the
2S-6P measurement, including the 1S-2S excitation and the time-resolved detection. From
this, the pressure shift was found to be below 10 Hz for all delays. Scaling these results for the
actually used parameters and geometry, especially the tenfold lower flux of hydrogen atoms,
further reduces this upper limit to 1 Hz.

A. M. has also estimated the pressure shift from hydrogen molecules, both from intra-beam
and background collisions. A corresponding publication is in preparation and the numbers
reproduced here are preliminary. The estimates give an upper limit of the pressure shift from
intra-beam collisions with hydrogen molecules of 0.2 Hz, and an upper limit of 5 Hz from
collisions with the background gas of hydrogen molecules.

6.2.4.5 Recoil shift

As detailed in Section 2.2.3, the measured laser frequency νL,0 must be corrected for the
recoil shift ∆νrec (see Eq. (2.6)) in order to determine the atom’s resonance frequency νA,0.
Using the value of ∆νrec given in Table 2.1, the Doppler-free and Doppler-averaged resonance
frequencies of the 2S-6P1/2 and 2S-6P3/2 transition need to be corrected for a recoil shift of

∆νrec = 1176.03 kHz. (6.14)

As this correction is identical to all data groups, it is of no consequence to the blinded results
given here.

6.2.4.6 Fine- and hyperfine-structure corrections

In the measurement presented here, the two transition frequencies ν1/2 and ν3/2 from the
hyperfine level 2SF=0

1/2 to either of the hyperfine levels 6PF=1
1/2 and 6PF=1

3/2 are determined.
However, some systematic effects, especially the quantum interference shifts, cancel to a
large degree when combining these measured frequencies to what is here referred to as the
2S-6P centroid ν2S-6P. ν2S-6P is the transition frequency from the 2S hyperfine centroid,
i.e. the level energy if the nuclear spin was zero, to the 6P line-strength-averaged fine-structure
centroid. The relevant levels and transition frequencies, and the corrections discussed below,
are shown in Fig. 6.11.

First, the contribution from the hyperfine structure to the measured transition frequencies
ν1/2 and ν3/2 is considered. The hyperfine interaction splits the fine-structure levels, of which
2S1/2, 6P1/2, and 6P3/2 are here of interest, into doublets [38, 39]. Here, the resulting 2SF=0

1/2 ,
6PF=1

1/2 , and 6PF=1
3/2 hyperfine levels are probed, which are shifted from the fine-structure levels

by the hyperfine energies ∆νHFS(2SF=0
1/2 ), ∆νHFS(6PF=1

1/2 ), and ∆νHFS(6PF=1
3/2 ), respectively.

The value of ∆νHFS(2SF=0
1/2 ) and its uncertainty can be obtained from a measurement of

the 2S hyperfine splitting ∆νHFS(2S1/2) [55] through

∆νHFS(2SF=0
1/2 ) = −(3/4)∆νHFS(2S1/2). (6.15)

∆νHFS(6PF=1
1/2 ) and ∆νHFS(6PF=1

3/2 ) can be obtained from hydrogen theory as detailed
in [38, 39]. They include a small correction from off-diagonal elements in the hyper-
fine Hamiltonian, leading to an energy shift of hyperfine levels with the same value of F ,
but different values of J [161, 162]. These corrections to the level energies amount to
∆νo.d.

HFS(6PF=1
1/2 ) = −∆νo.d.

HFS(6PF=1
3/2 ) = −92(1) Hz [39].
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Figure 6.11: Level scheme (not to scale) of the 2S-6P transition including fine structure (FS) and hyper-
fine structure (HFS). The transition frequencies of the 2SF=0

1/2 −6PF=1
1/2 (ν1/2) and 2SF=0

1/2 −6PF=1
3/2 (ν3/2)

transitions (line strength ratio 1:2) are experimentally determined. The transition frequency from the
2S HFS centroid to the line-strength-averaged 6P FS centroid, the 2S-6P centroid ν2S-6P, is determined
by combining ν1/2 and ν3/2 and correcting for the hyperfine shifts ∆νHFS(2SF=0

1/2 ), ∆νHFS(6PF=1
1/2 ), and

∆νHFS(6PF=1
3/2 ). The 6P fine-structure splitting ∆νFS(6P) here corresponds to the energy difference of

the 6PF=1
1/2 and 6PF=1

3/2 levels. In this drawing, the scale of the HFS is 130 times larger than for the
FS, and the scale of the 6P levels is 40 times larger than for the 2S levels.

Since for each hyperfine doublet only one level is shifted by this effect, the center of
gravity of the hyperfine doublets, as compared to the situation where the off-diagonal elements
are neglected, is also shifted by ∆νo.d.

HFS(6P1/2) = (3/4)∆νo.d.
HFS(6PF=1

1/2 ) and ∆νo.d.
HFS(6P3/2) =

(3/8)∆νo.d.
HFS(6PF=1

3/2 ). From Table 1 of [38], where the 6P hyperfine splittings ∆νHFS(6P1/2)
and ∆νHFS(6P3/2) and the center-of-gravity shifts ∆νo.d.

HFS(6P1/2) and ∆νo.d.
HFS(6P3/2) are given,

the values and uncertainties of the 6P hyperfine energies can be derived through the relations

∆νHFS(6PF=1
1/2 ) = (1/4)∆νHFS(6P1/2) + ∆νo.d.

HFS(6P1/2), (6.16)
∆νHFS(6PF=1

3/2 ) = −(5/8)∆νHFS(6P3/2) + ∆νo.d.
HFS(6P3/2). (6.17)

Finally, the numerical values of the hyperfine energies are given by

∆νHFS(2SF=0
1/2 ) = −133 167 625.7(5.0) Hz, (6.18)

∆νHFS(6PF=1
1/2 ) = 547 798(6) Hz, (6.19)

∆νHFS(6PF=1
3/2 ) = −547 460(6) Hz. (6.20)
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The hyperfine centroid is then defined as the level energy after removing, or correcting for, the
contribution from the hyperfine structure, corresponding to a hypothetical situation where
the nuclear spin is set to zero.

To determine the 2S-6P centroid ν2S-6P, the two hyperfine-corrected transition frequencies
are averaged weighted by their line strengths, as given by the square of the dipole moment
µ. For 2SF=0

1/2 −6PF=1
1/2 and 2SF=0

1/2 −6PF=1
3/2 , the line strength ratio is 1:2 (see Table 2.1). This

results in

ν2S-6P = 1
3
(
ν1/2 −∆νHFS(6PF=1

1/2 )
)

+ 2
3
(
ν3/2 −∆νHFS(6PF=1

3/2 )
)

+ ∆νHFS(2SF=0
1/2 )

= 1
3ν1/2 + 2

3ν3/2−132 985 252(7) Hz, (6.21)

with the given uncertainty assuming that the values given in Eq. (6.20) are uncorrelated.
On the other hand, the difference of the measured transition frequencies gives the ex-

perimental value ∆νexp
FS (6P) of the 6P fine-structure splitting ∆νFS(6P) of the 6PF=1

1/2 and
6PF=1

3/2 levels as

∆νexp
FS (6P) = ν3/2 − ν1/2. (6.22)

Note that here the 6P fine-structure splitting ∆νFS(6P) refers to the energy difference between
the measured HFS levels, while other authors may use the same expression to refer to the
energy difference of the hyperfine centroids. Of course, using the values given in Eq. (6.20),
the conversion between the two definitions is straightforward.

The predicted value ∆νpred
FS (6P) of ∆νFS(6P) may be obtained from the difference in the

total binding energies of the 6PF=1
1/2 and 6PF=1

3/2 levels as given in Table IV of [39], resulting in

∆νpred
FS (6P) = 405 164.5(1) kHz. (6.23)

This value serves as a reference to which the experimental value ∆νexp
FS (6P) can be compared

after unblinding the data.
Due to the preliminary nature of the data analysis shown here, neither ν2S-6P nor

∆νexp
FS (6P) are given at this point. Note that in order to assign uncertainties to these two

combined frequencies, the correlations between the uncertainties of two measured frequencies
need to be studied first.
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Chapter 7

Conclusion and outlook

In the course of this thesis, the precision of laser spectroscopy of the 2S-nP transitions in
atomic hydrogen has been improved significantly. This has been demonstrated by measure-
ments of both the 2S-4P transition and the 2S-6P transition. The achieved precision advances
the test of one of the fundamental theories of physics, quantum electrodynamics (QED), and
sheds light on discrepancies such as the proton radius puzzle. It also allows the precise de-
termination of physical constants, with the at the time best determination of the Rydberg
constant R∞ and the proton radius rp from atomic hydrogen achieved with the measurement
of the 2S-4P transition. The recent measurement of the narrower 2S-6P transition is set to
further significantly improve upon this result.

The 2S-4P measurement, which has been performed during the first half of the work
underlying this thesis (published in 2017 [24], see Appendix A), surpassed the frequency
uncertainty of other hydrogen measurements besides the much narrower 1S-2S transition by
at least a factor of three. Furthermore, many of the systematic effects encountered for the
dipole-allowed 2S-nP transitions are different from those of the more commonly probed two-
photon transitions, making them an ideal check on the accuracy of and discrepancies within
hydrogen spectroscopy itself.

The two prominent challenges of this experiment are the first-order Doppler shift and
the large natural linewidth. The 2S-4P measurement and its analysis showed that both can
be successfully addressed, through an intricate optical setup, and a very large experimental
signal-to-noise ratio and a detailed understanding of the line shape, respectively. The im-
portance of the latter was highlighted by the presence of subtle distortions of the line shape,
caused by quantum interference of neighboring atomic resonances, which could lead to sub-
stantial line shifts if not properly accounted for. These line shifts, which were only significant
because of the very large resolution relative to the linewidth, were directly observed, and
could be removed by use of a line shape model based on perturbative calculations. With this,
the 2S-4P transition frequency was found with a relative uncertainty of 3.7× 10−12, corre-
sponding to 2.3 kHz in absolute terms or almost one part in 10 000 of the observed linewidth.
Combining the 2S-4P and 1S-2S transition frequencies, R∞ could be determined with a rel-
ative uncertainty of 8.7× 10−12, making it one of the most precisely determined physical
constants. The likewise determined value of rp is compatible with the muonic result [22], a
result also favored by most subsequent precision measurements [20, 25, 26].

To further improve the precision, the study of the 2S-6P transition was begun, with work
starting in earnest towards the end of the 2S-4P measurement. The beam apparatus and
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Figure 7.1: Determinations of the Rydberg constant R∞ (top axis) and proton charge radius rp
(bottom axis) from hydrogen spectroscopy, similar to Fig. 1.1, but including the estimated preliminary
uncertainty (red error bar) of the 2S-6P measurement when combined with the 1S-2S measurement [23].
At the time of writing, the 2S-6P transition frequency is blinded and thus no values for rp and R∞
derived from it can be given, and the shown error bar is placed at an arbitrary value of rp and R∞.

its cryogenic beam of metastable atoms were improved substantially to harness the lower
natural linewidth of the 2S-6P transition, resulting in an up to three times lower observed
linewidth and a close to an order of magnitude larger flux of slow atoms as compared to
the 2S-4P measurement. An improved precision also requires an improved suppression of the
first-order Doppler shift, being the limiting effect in the previous measurement. To this end,
the active fiber-based retroreflector was rebuilt for the new transition wavelength of 410 nm,
including a newly designed fiber collimator offering excellent beam quality only limited by the
fiber itself, polarization monitoring, and improved stabilization and alignment schemes. The
detector assembly was redesigned to accommodate electrodes and to offer both a larger solid
angle and efficiency for the fluorescence detection. Through these improvements, implemented
in the course of this thesis, the fluorescence signal could be increased by up to an factor of 16
compared to the 2S-4P measurement (see Fig. 1.3).

Full use of the increased experimental resolution can however only be made if it is accom-
panied by a likewise improved understanding of the fluorescence line shape and modeling of
the experiment. This is why a considerable effort was made to understand theoretically, to
model numerically, and to measure experimentally the light force shift (LFS), which is the
largest systematic correction for the 2S-6P measurement and had so far not been studied in
detail or observed directly for the 2S-nP transitions. This lead to a model of the LFS which
was subsequently experimentally tested in the 2S-6P measurement. Excellent agreement be-
tween the model and the experiment was found. The modeling of the cryogenic atomic beam,
and especially its speed distribution, is also critical, as it serves as input to the LFS model,
the extrapolation of the Doppler shift, and other simulation corrections. Consequently, an
improved model of the beam was developed and tested in a series of measurements.

The 2S-6P transition was probed during three measurement runs in 2019. The statistical
uncertainty of the resulting data set, including the uncertainty from the extrapolation of
the Doppler shift, is 430 Hz, five times lower than for the 2S-4P measurement. This also
implies that the Doppler shift suppression was successfully extended by a factor of five, now
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corresponding to a suppression of the full collinear shift by six orders of magnitude.
The data analysis is still in progress at the time of writing, and since the results are

blinded to prevent experimenter bias, no preliminary results can be given here. However,
factoring in the expected systematic uncertainties, an uncertainty of ≈600 Hz seems feasible,
which is within a factor of two of the uncertainty of QED calculations as given in [4]. The
corresponding relative uncertainty for a determination of R∞ and rp, when combined with
the 1S-2S transition, is 1.6× 10−12 and 2.3× 10−3, respectively. As shown in Fig. 7.1, this
would improve on the 2S-4P and recent 1S-3S values by a factor of five and two, respectively,
and would be within a factor of five of the uncertainty of the determination of rp from muonic
hydrogen.

Towards the 2S-6P transition frequency
Some work remains to be done for the results to be unblinded: first, the uncertainties of the
simulation corrections, primarily for the LFS, need to be estimated by varying the various
input parameters within their experimental constraints. Second, the experimental determi-
nations of the dc-Stark shift performed at regular intervals during the 2S-6P measurement
have to be evaluated and compared to simulations to derive a corresponding correction and
uncertainty. Third, the excess scatter of the data should be studied more closely by corre-
lating it with other experimental parameters and through simulations. Fourth, and closely
related, one might be able to reduce the scatter by removing the drift of the fluorescence
count rate during line scans, but care must be taken that no systematic shifts are inadver-
tently introduced by such a procedure, which should be tested with Monte Carlo simulations.
These simulations are also necessary to constrain any systematic shifts from the sampling
of the resonance. Fifth, the interplay between the two models used to find the simulation
corrections, the big model and the LFS model, needs to be studied. To this end, it might be
possible to combine both models.

The data set of the 2S-6P measurement also contains additional information that has so
far not been looked into in detail. During measurement run B of the 2S-6P measurement,
all line scans were acquired in pairs in an interlaced manner, resulting in so-called dual scans
that were effectively recorded within seconds of each other (see Section 4.7.2). Three types of
pairs were recorded, using 10/30 µW, 10/20 µW, and 10/10 µW of spectroscopy laser power1
for the first/second line scan. While the dual scans were treated like independent scans in
the preliminary analysis, they may prove useful to disentangle residual Doppler shifts and
power-dependent effects such as the LFS.

Moreover, 85 line scans of the 1S-2S transition were acquired during the 2S-6P mea-
surement to set the frequency detuning of the preparation laser. As opposed to previous
1S-2S measurements in the same apparatus [23], where the 2S atoms where quenched with a
static electric field and the resulting fluorescence was detected, here the fluorescence from the
decay of the 6P level serves as signal. This results in an orders of magnitude larger signal,
as shown in Fig. 7.2. However, the intracavity power used here is three times larger than the
maximum power used in [23], and thus line shape distortions from inhomogeneous ac-Stark
shifts are more pronounced here. Together with the second-order Doppler shift, this leads
to shifts of approximately 1 kHz between the different delays, with the statistical uncertainty
for each delay on the order of 10 Hz. These line scans could be useful in two ways: first, the

1The powers given apply to the 2S-6P1/2 transition, with the equivalent powers used for the 2S-6P3/2 tran-
sition a factor of two lower.
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Figure 7.2: Typical line scan of the 1SF=0
1/2 − 2SF=0

1/2 transition, using an intracavity power of P1S-2S =
1.0 W for the 1S-2S preparation laser for (A) delays 2, 10 and 13, and (B) delays 14–16. The 2S-
6P spectroscopy laser, with a power of P2S-6P = 30 µW, is kept on resonance while the frequency
detuning ∆ν1S-2S of the preparation laser is scanned. The counts (here shown for the top detector)
from the fluorescence of the 6P level constitute the signal, and are binned into the same delays (colored
circles) as used for the 2S-6P line scans (see Table 5.1). Lorentzian fits (colored lines) to the data reveal
the resonance frequency ν0, with the statistical uncertainty σν0 given in parenthesis. Line distortions
from inhomogeneous ac-Stark shifts and second-order Doppler shifts are especially pronounced for
short delay times (see Section 2.2.6). The linewidth is ΓF ≈ 3.3 kHz. Compared to the signal observed
at P1S-2S = 370 mW in the most recent 1S-2S measurement (see Fig. 2 of [23]), the signal here is 80 (45)
times larger for atoms with mean speed v̄ ≈ 100 m/s (v̄ ≈ 160 m/s). In total 85 of such 1S-2S line
scans were recorded during the 2S-6P measurement.

frequency shift between the delays could be compared to the predictions from the simulations
developed for the 2S-6P measurement. This constitutes a powerful check on the modeling of
the experiment because the shifts are much larger than the statistical uncertainty. Second,
to extract R∞ and rp from the 2S-6P measurement without losing any of its precision, the
1S-2S transition frequency only needs to be known within approximately 500 Hz, correspond-
ing to a relative uncertainty of 2× 10−13. A determination of the 1S-2S transition frequency
at this level of uncertainty from the data of the 2S-6P measurement seems feasible, and
would allow the determination of R∞ and rp without any additional input. For much lower
uncertainties, the determination of the laser frequency will most likely become the limiting
factor.

Finally, for each freezing cycle of the 2S-6P measurement at least one alignment of the
offset angle α0, which is the angle from the orthogonal between the atomic and laser beams,
was performed, resulting in a total of 76 such alignments. For each alignment, line scans
at various values of α0, with and without the shutter of the active fiber-based retroreflector
blocking the returning spectroscopy laser beam, are acquired, which so far have only been
used to set α0 close to zero during the measurement. 160 of these line scans were recorded
for α0 > 2.5 mrad and with the shutter open, i.e. the Doppler shift suppression active, with
α0 ≈ 5 mrad used for most. These line scans could possibly also be used in the measurement
of the LFS, albeit the difference in the LFS from data taken at α0 = 0 mrad is rather small
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for these comparatively low values of α0.
The line scans for which the shutter was closed, on the other hand, contain information

on the speed distribution through the now unsuppressed Doppler shift [28]. However, these
line scans have so far not been studied in detail, because the approximately Maxwellian speed
distribution of the atoms leads to line shape distortions for α0 6= 0 mrad, as the line shape of
each atom is convoluted with the speed distribution of the atomic beam. These distortions
need to be accounted for if the speed distribution is to be determined from these line scans
with an accuracy below approximately 10 %. In a preliminary analysis, the speed distribution
derived from these line scans was found to agree well with the speed distribution used in this
work, which is based on an exponential suppression of low speeds and was verified using the
observed delay-dependent line amplitudes.

Future experiments using the 2S-nP apparatus
Having measured the 2S-4P and 2S-6P transition, an obvious choice for future experiments
is to move to 2S-nP transition with an even higher n. Indeed, a laser system1 capable of
driving the transitions with n = 8, 9, 10 has already been set up in the laboratory by Florian
Stehr as part of his master’s thesis [163]. Using this laser system, the 2S-8P transition has
been observed in an early test measurement. Yet, there are two principal problems with
this strategy: first, the obvious advantage of a higher n is the narrower natural linewidth
of the transition. However, even for the 2S-6P transition the observed linewidth is limited
by the divergence of the atomic beam, which cannot be easily reduced in the current setup.
This is because decreasing the width of the apertures forming the beam will lead to large
losses for the 243 nm enhancement cavity. To this end, the beam size of the cavity mode
could be reduced, but this will also increase the ionization of the 2S atoms and lead to a
lower effective excitation probability. Alternatively, one might implement apertures based
on static electric or laser fields that selectively quench the metastable 2S atoms. Second,
the dc-Stark shift increases as n7 (see Section 2.4), which with the currently present electric
bias fields would quickly limit the precision. Thus, the bias fields would need to be reduced,
which might be most straightforwardly done by increasing the size of the spectroscopy region.
Replacing the cryopump and the thermal gradients it causes, as discussed below, may also
help. Finally, there is one problem particular to the 2S-8PF=1

1/2 transition: since the fine-
structure splitting of the 8P level closely matches that of the 2S level, the 2SF=1

1/2 levels, which
are populated by decays from the 8P level, are near-resonantly coupled to the 8PF=1

3/2 levels,
leading to overlapping resonances in the fluorescence signal. It thus might be a better strategy
to improve the measurement of the 2S-6P transition with the strategies outline in the section
below.

Another interesting experiment is the spectroscopy of the 2S-nP transitions in atomic
deuterium. This is especially so since there is a measurement of the deuteron charge radius
from laser spectroscopy of muonic deuterium [164]. As for the corresponding measurement of
rp, this measurement is much more precise than determinations from electronic deuterium,
and, importantly, the muonic deuteron charge radius is likewise discrepant with these de-

1Toptica TA-SHG pro, consisting of an extended-cavity diode laser, a tampered amplifier, and a resonant
second-harmonic generation stage. The output wavelength is tunable between 380 nm and 389 nm. Similar to
the 1S-2S preparation laser and the 2S-6P spectroscopy laser, this system is frequency-stabilized to a high-
finesse Fabry-Pérot cavity. A beat note with the frequency comb to determine the laser frequency is also
available.
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terminations. Thus, in addition to the proton radius puzzle there is also a deuteron radius
puzzle [165]. However, as opposed to the former, no recent electronic deuterium spectroscopy
results have become available to shed light on this puzzle. Therefore, a precise determination
of the 2S-nP transition frequencies in atomic deuterium would be highly desirable.

Such a measurement, compared to the hydrogen equivalent, comes with an additional
challenge because the deuteron is a spin 1 particle. For hydrogen, angular momentum selection
rules only allow a single hyperfine component of the 2S-6P1/2 or 2S-6P3/2 transition when
using the 2SF=0

1/2 level as initial level, independent of the polarization of the laser. This is no
longer the case in deuterium, and both hyperfine components are allowed and overlap within
their linewidths. This has the following two consequences: first, the center of mass of the two
components can depend on the experimental conditions. However, preliminary investigations
reveal that, using again linear laser polarization and the fluorescence as signal, the center
of mass is fixed to a certain value unless any two of the following three conditions is not
fulfilled: there is no residual circular polarization of the laser beams, the two 2SF=1/2

1/2 initial
levels are equally populated, and both σ+ and σ− decays are detected with equal efficiency1.
Within some uncertainty, these are quite reasonable assumption. Furthermore, they can be
tested, e.g. by comparing the frequency found when using σ+- and σ−-polarized light for the
excitation. To this end, the generation and monitoring of arbitrary polarization states inside
the spectroscopy region has been preliminary investigated.

Second, quantum interference can now not only occur between different fine-structure
components, as is the case for hydrogen, but additionally between the hyperfine components.
Because of their small frequency difference, this can lead to much stronger distortions of
the line shape, as demonstrated in [166, 167] for lithium. Fortunately, there is again some
cancellation, with both an imbalance in the population of the initial levels and a different
detection efficiency for the σ± decays needed for distortions of the line shape to occur. All in
all, a measurement of deuterium seems feasible, and in fact such a measurement is currently
in preparation by Vitaly Wirthl.

The line scans of the 1S-2S transition shown in Fig. 7.2 demonstrate the potential of mea-
surements of this transition using the 2S-nP apparatus. However, currently, improving on
the relative uncertainty of 4.2× 10−15 of the latest measurement of the 1S-2S transition [23]
does not lead to an improved test of QED, as the much higher uncertainties of other transi-
tion frequencies are limiting. Furthermore, such an improvement implies knowing the speed
distribution to better than 1 m/s, which is below the change in mean speed observed in the
2S-6P measurement during a single freezing cycle (see Fig. 6.1). One may however improve
the measurement of the 2S hyperfine splitting [55], for which, when combined with the very
precisely known 1S hyperfine splitting, QED predictions with a much smaller uncertainty
than the current experimental uncertainty are available. This measurement relies on rapidly
switching between the two hyperfine components of the 1S-2S transition, and the influence
of the speed distribution is consequently reduced if only the frequency difference is of inter-
est2. Looking further into the future, an improved measurement of the 1S-2S transition may
become desirable as the equivalent measurement in antihydrogen continues to improve [168–

1Note that σ+ and σ− decays have the same radiation pattern, but have a different polarization except
along the direction orthogonal to the quantization axis.

2Interestingly, however, in the most recent measurement of the 2S hyperfine splitting of [55] a rather large
difference in the speed distribution of the two hyperfine components was still observed. The reason for this is
currently unclear, but could be caused by the different dc-Stark and Zeeman shifts of the two components.
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170].
Finally, laser cooling of hydrogen has been pursued for many decades and various schemes

have been proposed [93, 171–177], but so far it could not be successfully implemented as part of
a spectroscopic measurement. A strategy that seems promising and relatively straightforward
to test is to laser cool the already slow atoms in the beam, with only a few recoils necessary
to load them into an optical trap. This optical trap could be at a magic wavelength for the
1S-2S transition [178], i.e. a wavelength where the ac-Stark shifts of the 1S and 2S levels
cancel. The understanding gained about the speed distribution of the atomic beam in this
thesis could be helpful in that regard. A project investigating such a scheme is currently
underway at the Laser Spectroscopy Division.

Planned and suggested improvements of the hydrogen spectrometer

While the hydrogen spectrometer used to probe the 2S-nP transitions has been substantially
improved in many aspects in the course of this work, there is still plenty of room for more
improvement. It would be especially advantageous to increase the fraction of time spec-
troscopy data are taken during the operation of the apparatus by decreasing the time spent
on preparing and aligning the spectrometer.

During the writing of this thesis, it was realized that the limiting factor for the degree
of dissociation αdis of hydrogen is most likely not recombination inside the nozzle, as was
assumed before, and which is difficult to improve within the given constraints on the nozzle
geometry. Instead, the transport of hydrogen through PTFE (Teflon) tubing to the nozzle
is thought to be limiting, with αdis at the input of the nozzle might possibly being as low as
1 % (see Sections 4.5.1, 4.5.2.3 and 5.3.3). That is, the particles arriving at the nozzle are
mostly hydrogen molecules which freeze on the nozzle, eventually clogging it and leading to
the experimental cycle based on 2 hour-long freezing cycles. Fortunately, this also means that
it should be relatively straightforward to increase αdis by reducing the length of the tubing,
by increasing the diameter of the tubing, or both. Increasing αdis at the nozzle input would
greatly improve the experiment, since the freezing of the nozzle would take longer, while at
the same time the number of hydrogen atoms in the beam would increase. The latter would
then allow for a reduction in the flow of hydrogen into the system, further increasing the
duration of the freezing cycle, while reducing collisions between particles and thus the loss of
slow atoms. As each freezing cycle comes with a substantial overhead from the time needed
to unfreeze the nozzle and realign the atomic beam, a longer freezing cycle would greatly
improve the amount of data that can be acquired in a measurement day, not to mention
reduce the workload of the experimenter. Additionally, as can seen in Fig. 6.1, the speed
distribution of the atomic beam changes as the nozzle freezes. If this freezing can be slowed
down, this effect might be substantially reduced as well.

Another limitation on the time of operation is the degradation of the mirrors of the
243 nm enhancement cavity. To this end, an upgrade of the apparatus is currently prepared
that would place the mirrors inside an oxygen atmosphere to prevent this degradation, using
multiple differential pumping stages to keep the partial pressure of oxygen at a sufficiently
low level in the spectroscopy region. The reliability of the 1S-2S spectroscopy laser, especially
its second-harmonic generation cavity producing the 243 nm light, was also an issue during
the 2S-6P measurement. The laser has since been upgraded by the manufacturer and reliably
outputs more than 100 mW of power at 243 nm.

The cryopump limits the experiment in several ways: first, it cools down the apparatus,
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leading to temperature drifts and gradients, which entail frequent realignments and, possibly,
stray electric fields. Second, as it cannot be run while data are acquired, it consumes valuable
measurement time during each freezing cycle. Third, the vibrations it produces while switched
on disturb the active fiber-based retroreflector and the 243 nm enhancement cavity. Fourth,
because of its large size, it cannot be mounted on an optical table and instead is placed
on the laboratory floor, which couples environmental noise to the vacuum chamber. Its
large pumping speed and capacity for hydrogen have made it so far challenging to find a
suitable replacement for the cryopump. However, recently a non-evaporable getter material1
has become available that offers a sufficiently large sorption capacity for hydrogen [179] to
replace the cryopump. This upgrade should be relatively straightforward, as only the large
bottom flange of the vacuum chamber needs to be replaced. In the long term, the vacuum
chamber could then be redesigned without the design constraints currently required by the
cryopump.

Finally, fluctuations of the nozzle temperature are thought to be mainly responsible for
the noise present on the fluorescence signal. The cryostat used during the 2S-6P measurement
has since been replaced with a different model2 which offers a higher temperature stability.
The alignment stage to which the cryostat is attached has also been upgraded to improve
the ease and precision of the nozzle alignment, and can be fitted with motorized actuators if
needed.

All in all, with a longer freezing cycle, an enhancement cavity not subject to mirror
degradation, a reliable 243 nm laser source, and without the disturbances from the cryopump,
it should be possible to automate the experiment to such a degree that many hours of data can
be taken without the need for the experimenter to be present in the laboratory. This, in turn,
could enable a higher precision for the spectroscopy of the 2S-nP transition, since a longer
time of operation allows for more detailed experimental studies of systematic effects such as
the light force shift. It also allows the power of the spectroscopy laser to be further reduced,
thereby decreasing the size of the light force shift and other power-dependent systematic
effects.

With this, a factor of two higher precision for the 2S-nP transitions seems feasible, which
would correspond to an uncertainty comparable to that of the QED calculations. There are
no decisive obstacles to even higher precision3, although, as the history of the experiments
performed here shows, a seemingly simple fluorescence line shape can be full of surprises.

1ZAO, which is a Zr-V-Ti-Al alloy, available from SAES Getters.
2Advanced Research Systems LT3, temperature stability specified as ≤2 mK.
3Cesium fountain clocks achieve a precision corresponding to almost one part in 106 of the observed

linewidth [180], almost two orders of magnitude higher than what was achieved in the 2S-6P measurement.



Appendix A

2S-4P transition frequency measure-
ment

This appendix reprints the publication containing the description and results of the 2S-
4P transition frequency measurement. The publication originally appeared as (referred to
as [24] throughout this document):

A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K. Khabarova, A. Grinin, T. Lamour, D. C.
Yost, T. W. Hänsch, N. Kolachevsky, and T. Udem, “The Rydberg constant and proton size
from atomic hydrogen”, Science 358, 79–85 (2017).

The supplementary materials of the publication, containing many details on the experimental
method and the data analysis, are reprinted after the publication itself.

https://doi.org/10.1126/science.aah6677
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The Rydberg constant and proton size
from atomic hydrogen
Axel Beyer,1 Lothar Maisenbacher,1* Arthur Matveev,1 Randolf Pohl,1†
Ksenia Khabarova,2,3 Alexey Grinin,1 Tobias Lamour,1 Dylan C. Yost,1‡
Theodor W. Hänsch,1,4 Nikolai Kolachevsky,2,3 Thomas Udem1,4

At the core of the “proton radius puzzle” is a four–standard deviation discrepancy between
the proton root-mean-square charge radii (rp) determined from the regular hydrogen (H)
and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured
the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R1 =
10973731.568076(96) per meter and rp = 0.8335(95) femtometer. Our rp value is 3.3
combined standard deviations smaller than the previous H world data, but in good
agreement with the µp value.We motivate an asymmetric fit function, which eliminates line
shifts from quantum interference of neighboring atomic resonances.

T
he study of the hydrogen atom (H) has
been at the heart of the development of
modern physics. Precision laser spectros-
copy of H is used today to determine fun-
damental physical constants such as the

Rydberg constant R1 and the proton charge ra-
dius rp, defined as the root mean square (RMS)
of its charge distribution. Owing to the simplicity
of H, theoretical calculations can be carried out
with astonishing accuracy, reaching precision
up to the 12th decimal place. At the same time,
high-resolution laser spectroscopy experiments
deliver measurements with even higher accu-
racy, reaching up to the 15th decimal place in the
caseof the 1S-2S transition (1,2), the most precisely
determined transition frequency in H.
The energy levels in H can be expressed as

Enlj ¼ R1 � 1

n2
þ fnlj a;

me

mp
;…

� ��

þ d‘0
CNS

n3
rp

2

�
ð1Þ

where n, l, and j are the principal, orbital, and
total angular momentum quantum numbers, re-
spectively. The first termdescribes the gross struc-
ture of H as a function of n and was first observed
in the visible H spectrum and explained empir-
ically by Rydberg. Later, the Bohrmodel, in which
the electron is orbiting a pointlike and, in sim-
plest approximation, infinitely heavy proton, pro-
vided a deeper theoretical understanding.

The Rydberg constant R1 =mea
2c/2h links the

natural energy scale of atomic systems and the SI
unit system. It connects the mass of the electron
me, the fine structure constant a, Planck’s con-
stant h, and the speed of light in vacuum c.
Precision spectroscopy of H has been used to
determine R1 by means of Eq. 1 with a relative
uncertainty of 6 parts in 1012, making it one of the
most precisely determined constants of nature to
date and a cornerstone in the global adjustment
of fundamental constants (3).
The second term in Eq. 1, fnljða; me

mp
;…Þ ¼

X20a2 þ X30a3 þ X31a3lnðaÞ þ X40a4 þ …, ac-
counts for relativistic corrections, contributions
coming from the interactions of the bound-state
system with the quantum electrodynamics (QED)
vacuum fields, and other corrections calculated
in the framework of QED (3). The electron-to-
proton mass ratio me/mp enters the coefficients
X20, X30, … through recoil corrections caused by
the finite proton mass.
The last term in Eq. 1 with coefficient CNS is

the leading-order correction originating from the
finite charge radius of the proton, rp (3). It only
affects atomic S states (with l = 0) for which the
electron’s wave function is nonzero at the origin.
Higher-order nuclear charge distribution contri-
butions are included in fnljða; me

mp
;…Þ.

The proton radius puzzle

The proton charge radius rp has been under de-
bate for some time now because the very accu-
rate value from laser spectroscopy of the exotic
muonic hydrogen atom (µp) (4, 5) yielded a value
that is 4%, corresponding to 5.6s, smaller than
the CODATA 2014 value of rp (3) [see (6–8) for
reviews on this issue]. The CODATA value is ob-
tained from a combination of 24 transition fre-
quency measurements in H and deuterium and
several results from elastic electron scattering
(9–11). The accuracy of the µp result is enabled
by the fact that the muon’s orbit is ~200 times

smaller than the electron’s orbit in H, resulting
in a seven orders of magnitude larger influence
of rp on the energy levels.
Here we study the spectroscopic part of the

discrepancy, in particular the 4s discrepancy be-
tween the µp value and the global average of all
transitions measured in H (12) (H world data,
Fig. 1). Recently, a similar discrepancy has arisen
for the deuteron radius with a new result from
laser spectroscopy of muonic deuterium (13).
ConsideringEq. 1 and the fact that fnljða; me

mp
;…Þ

is known with sufficiently high accuracy, one
finds a very strong correlation between R∞ and
rp. CODATA quotes a correlation coefficient of
0.9891. Equation 1 involves two parameters, R∞

and rp, which need to be determined simulta-
neously from a combination of at least two mea-
surements in H. The 1S-2S transition frequency
serves as a cornerstone in this procedure. Owing
to its small natural line width of only 1.3 Hz, ex-
perimental determinations are one thousand
times more accurate than for any other transi-
tion frequency in H, where typical line widths
amount to 1 MHz or more.
Examining previous determinations of the

value pairs [R∞, rp] from H (Fig. 1, bottom), one
notes that many of the individual measure-
ments are in fact not in disagreement with the
µp value. The discrepancy of 4s appears when
averaging all H values (µp versus H world data;
Fig. 1, top).

Principle of the measurement

Here we report on a measurement of the 2S-4P
transition in H (Fig. 2A), yielding [R∞, rp] with
an uncertainty comparable to the aggregate H
world data and significantly smaller than the
proton radius discrepancy, which corresponds to
8.9 kHz in terms of the 2S-4P transition frequen-
cy. This uncertainty requires a determination
of the resonance frequency to almost one part
in 10,000 of the observed line width of 20 MHz
(Fig. 2B).
The previous most accurate measurements

[see, e.g., (14–16) and references therein] were
limited by the electron-impact excitation used
to produce atoms in themetastable 2S state. This
excitation results in hot atoms with mean ther-
mal velocities of 3000 m/s or more and an un-
controlled mixture of population in the four 2S
Zeeman sublevels. In turn, this typically leads to
corrections on the order of tens of kilohertz be-
cause of effects such as the second-order Doppler
and ac-Stark shifts or the excitation of multiple
unresolved hyperfine components.
Our measurement is essentially unaffected by

these systematic effects (17) because we use the
Garching 1S-2S apparatus (1, 2) (Fig. 3) as a well-
controlled cryogenic source of 5.8-K cold 2S atoms.
Here, Doppler-free two-photon excitation is used
to almost exclusively populate the 2SF¼0

1=2 Zeeman
sublevel without imparting additional momen-
tum on the atoms.
The remaining main systematic effects in our

experiment are the first-order Doppler shift and
apparent line shifts caused by quantum interfer-
ence of neighboring atomic resonances, both of
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which are suppressed by using methods spe-
cifically developed for this measurement and de-
tailed below.

Quantum interference

Line shape distortions caused by quantum inter-
ference from distant neighboring atomic reso-
nances have recently come into the focus of the
precision spectroscopy community (18). To the
best of our knowledge, this effect has been con-
sidered in the analysis of only one of the previous
H experiments andwas found to be unimportant
for that particular experimental scheme (19). The
effect was found to be responsible for discrep-

ancies in the value of the fine structure constant
a extracted from various precision spectroscopy
experiments in helium (20, 21). The root of the
matter is that natural line shapes of atomic reso-
nances may experience deviations from a perfect
Lorentzian when off-resonant transitions are
present. One common way of dealing with these
effects has been to perform sophisticated nu-
merical simulations to correct the experimental
results (18, 20, 22–26). These simulations re-
quire a highly accurate characterization of the
experimental geometry if the line center needs
to be determined with high accuracy relative to
the line width, as is the case in this measure-

ment. Here we remove this necessity and a
source of potential inaccuracies by a suitable
line shape model to compensate for the line
shape distortions.

Two driven oscillators

Within the framework of perturbation theory,
the induced dipole moment D

→ðwÞ of an atom
driven by a laser field E

→
at frequency w is given

by the Kramers-Heisenberg formula (27–29). For
two resonances at w0 and w0 + D with identical
damping constants G, the resulting dipole mo-
ment is given by

D
→ðwÞº D

→

0

ðw0 � wÞ þ iG=2

þ D
→

1

ðw0 þ D� wÞ þ iG=2
ð2Þ

It is analogous to two coherently driven resonat-
ing classical dipoles D

→

0 and D
→

1. In the quantum
description, each of these dipoles is constructed
through an absorbing and an emitting dipole,
connecting the initial state ( jii ) with the final
state (j f i) via the excited states (jei; je′i) (see Fig.
2A). With the atomic dipole matrix elements djk
with j; k∈ i; e; e′; f , the contributing dipole mo-
ments are given by D

→

0ºðE→ � d→ieÞd
→

ef and D
→

1º
ðE→ � d→ie′ Þd

→

e′ f . The induced dipoleD
→ðwÞgenerates a

fieldºðr→ � D
→ðwÞÞ � r

→
=jr→3j at position r

→
whose

power spectrum Pðw; r→Þ is proportional to the
square modulus of D

→ðwÞ. It consists of two real
valued Lorentzians and a non-Lorentzian cross
term. The latter depends not only on the relative
orientation of D

→

0 and D
→

1 but also on the direction
of the emitted radiation relative to the orienta-
tion of the dipoles. Because the orientation of the
dipoles is itself a function of the laser polariza-
tion, i.e., the orientation of E

→
, the observed cross

term will effectively depend on the orientation of
the laser polarization relative to detection direc-
tion. If the detection is not pointlike, as is the case
in our measurement, which is designed for an
as-large-as-possible collection efficiency, the
exact detection geometry will enter in the ob-
served cross term. The relative strength of the
cross term tends to decrease with increasing
detection solid angle, with the cross term com-
pletely disappearing for detection of all radiation
emitted, i.e., in a 4p solid angle.
For a sufficiently large separation of the two

resonances (G/D << 1), the second resonance at
w0 + D can be treated as a perturbation to the
resonance at w0 and the full line shape Pðw; r→Þ
can be expanded around the resonance atw0 (28)

Pðw; r→Þ≈ C

ðw� w0Þ2 þ ðG=2Þ2 þ aðw� w0Þ

þ bðw� w0Þ
ðw� w0Þ2 þ ðG=2Þ2 ð3Þ

The first term represents the Lorentzian line
shape with amplitude C of the isolated, unper-
turbed resonance at w0, whereas the other two
terms denote perturbations caused by the pres-
ence of the second resonance. The second term,
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Fig. 1. Rydberg constant R1 and proton RMS charge radius rp. Values of rp derived from this
work (green diamond)and spectroscopyof mp (mp; pink bar and violet square) agree.We find a discrepancy
of 3.3 and 3.7 combined standard deviations with respect to the H spectroscopy world data (12) (blue bar
and blue triangle) and the CODATA 2014 global adjustment of fundamental constants (3) (gray hexagon),
respectively. The H world data consist of 15 individual measurements (black circles, optical measure-
ments; black squares, microwave measurements). In addition to H data, the CODATA adjustment
includes deuterium data (nine measurements) and elastic electron scattering data. An almost identical
plot arises when showing R1 instead of rp because of the strong correlation of these two parameters.
This is indicated by the R1 axis shown at the bottom.
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linear in w and of amplitude a, accounts for the
resonance of interest sitting on the far-reaching
Lorentzian tail of the perturbing resonance. The
dispersive-shaped third term stems from the non-
Lorentzian cross term and accounts for the quan-
tum interference between the resonances, with
the dependence of the cross term on the detec-
tion geometry now absorbed in the amplitude b.
For a typical fluorescence-detection geometry,
the line shifts caused by the coherent third
termmay be much larger than the ones caused
by the incoherent second term.
The emergence of asymmetric line shapes be-

cause of interference between a resonant and a
nonresonant process is perhaps best known
from Fano resonances (30), where a background
and a resonant scattering process interfere. It
should not then be surprising that Eq. 3 is very
similar to the line shape of Fano resonances.
Neglecting the influence of the perturbing

resonance and thus the quantum interference
between the resonances, e.g., by a fit of the spec-
trum Pðw; r→Þ with a single Lorentzian, leads to
apparent shifts of the determined line center of
approximately (28)

Dw ¼ bG2

4C
þ aG4

8C
≈� D

→

0 � D
→

1

2D2
0

G2

D

þ O G4

D3

� �
ð4Þ

Typical values of G2/D are on the order of 10–2 G
for the transitions listed for H in Fig. 1. This is
one order of magnitude larger than the proton
radius discrepancy, which amounts to about 10–3

G or less for all individual 2S-nl measurements
in Fig. 1. However, these measurements do not
detect the emitted radiation (but rather the
surviving 2S population), which diminishes the
effect of quantum interference drastically at
the cost of a reduced signal-to-noise ratio. The
second term in Eq. 4, which stems from the term
proportional to a in Eq. 3, is much smaller (on
the order of 10–6 G) and may be safely ignored at
this point. Importantly, the shift changes sign
when exchanging D

→

0 and D
→

1 and replacing D
with –D, i.e., the two resonances always shift in
opposite directions. Thus, by combining mea-
surements of both resonances with appropriate
weights, the shift may be drastically reduced or
even canceled, a fact we will make use of below.

Atomic line shape model

For the 2S-4P transition in H, the role of the
mutually perturbing resonances is played by the
two dipole-allowed transitions to the fine struc-
ture components of the excited state, 2S-4P1/2
and 2S-4P3/2 (Fig. 2). Somewhat analogous to
Young’s double-slit experiment, the atom can
coherently evolve from the initial 2S state, through
any of the two 4P fine structure components, be-
fore finally reaching the 1S ground state. Given
the separation between the two components, D =
106 × G, and the natural line width, G = 2p ×
12.9 MHz, Eq. 4 predicts apparent, geometry-
dependent line shifts of up to ~120 kHz. With
our large solid angle detectors, the maximum

shift is reduced to 45 kHz, corresponding to five
times the proton radius discrepancy.
One way to model this shift is to perform elab-

orate simulations of the entire experiment by
numerical integration of the optical Bloch equa-
tions (OBE), including all relevant intermediate
states and, importantly, the often-neglected cross-
damping terms between them leading to quan-
tum interference (18, 20, 22–26). The results of
this simulation then have to be evaluated for the
experimental geometry, a requirement that may
be difficult to meet with sufficient accuracy. For
the 2S→{4P1/2, 4P3/2}→1S excitation spectrum
considered here, this simulation consists of a
total number of 2707 coupled, complex-valued
ordinary differential equations. We have per-
formed such anOBE simulation of the experiment
using high-performance computation resources
provided by the Max Planck Computing and

Data Facility. By taking into account our exper-
imental geometry with a sophisticated model,
including particle tracing of the detected photo-
electrons, the simulation is able to explain the
measured data very well (see dashed line in Fig. 4,
A and B). However, it is challenging to reliably
estimate the uncertainty of the modeling of the
detection geometry that dominates the simula-
tion uncertainty.
Realizing that the natural line shape of the

2S→{4P1/2, 4P3/2}→1S excitation spectrum can
also be parametrized according to Eq. 3, a much
simpler data analysis is possible. This only re-
quires one additional free parameter, b/C, which
encodes the experimental geometry (we have
dropped the negligible term proportional to a).
For sufficiently low excitation rates such as in
this experiment, the influence of quantum inter-
ference will then lead to a nonzero b/C, but the
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Fig. 2. Hydro-
gen 2S-4P
spectroscopy.
(A) Relevant
energy levels
for hydrogen
2S-4P spec-
troscopy are
shown (not to
scale). The
atoms are
prepared in the

2SF¼0
1=2 meta-

stable state (ji〉)
by two-photon
excitation with
a preparation
laser at 243 nm.
The spectros-
copy laser at
486 nm drives
the one-photon
2S-4P1/2 and
2S-4P3/2 transi-
tions to the

4PF¼1
1=2 (je〉) and

4PF¼1
3=2 (je′〉)

states to deter-
mine the
transition fre-
quencies n1/2
and n3/2,
respectively.
These states
decay rapidly, predominantly to the 1S ground state (jf〉) either directly through Lyman-g fluorescence
at 97 nm (Ly-g, branching ratio 84%) or indirectly through the 3S, 3D, and 2P levels, yielding one
Lyman-a photon at 121 nm (Ly-a, branching ratio 4%). The remaining 12% of the decays lead back to
the 2S state through Balmer-b decay (Ba-b), with 4% decaying back to the initial 2SF¼0

1=2 state.
Excitations from the 2SF¼0

1=2 to the 4PF¼0
1=2 and 4PF¼2

3=2 levels are forbidden by angular momentum

conservation. (B) Typical experimental fluorescence signal from a single line scan over the 2S-4P1/2

(left) and 2S-4P3/2 (right) resonance (black diamonds). The observed line width (full width at half
maximum) of ~2p × 20 MHz is larger than the natural line width G = 2p × 12.9 MHz because of
Doppler and power broadening. The accuracy of our measurement corresponds to almost 1 part in
10,000 of the observed line width. The constant background counts are caused by the decay of 2S
atoms inside the detector (17). kcts, kilocounts.
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extracted line center w0 will not be shifted with
respect to its unperturbed value. In contrast to the
OBE simulation, the influence of the experimental
geometry can be precisely extracted from the
spectroscopy data, rather than required as an
external input.
To also take into accountGaussian broadening

mechanisms, such as the atomic beam diver-
gence in our experiment detailed below, the ex-
panded line shape (Eq. 3) is convolved with a
Gaussian of width GG (full width at half max-
imum). Again omitting the small linear term
proportional to a, this yields what we in the
following will refer to as Fano-Voigt line shape
(17, 31, 32)

FðwÞ ¼ AfRe½wðzÞ� þ 2hIm½wðzÞ�g ð5Þ
where w(z) denotes the Faddeeva function of
the argument z ¼ 2

ffiffiffiffiffiffiffi
ln2

p ½ðw� w0Þ þ iG=2�=GG.
Analogous to Eq. 3, the Fano-Voigt line shape
consists of a Voigt profile, corresponding to the
convolution of the Gaussian and the Lorentzian
profile, and a dispersive-shaped perturbation.
The asymmetry parameter h = bG/4C measures
the amplitude of this perturbation relative to the
observed line strength A and directly gives the
line shift, in units of the observed linewidth, that
is canceled by including the perturbation.
Additional line shifts caused by the interplay

of quantum interference with both the back de-
cay of the 4P state to the initial 2S state and the

depletion of this initial state are not fully ac-
counted for by the Fano-Voigt line shape but
could in principle be removed by using an even
more sophisticated line shape. However, those
additional shifts are considerably smaller and
less geometry-dependent than the shift removed
by the Fano-Voigt line shape. Thus, we apply
small model corrections to the data [1.3(2) kHz
for the most affected 2S-4P1/2 transition] deter-
mined by fitting the Fano-Voigt line shape to the
OBE simulations (17). Note that these additional
shifts also have opposite signs for the twomutually
perturbing resonances. Although the bulk of the
broadening caused by the atomic beam diver-
gence and saturation effects is well described
by the Fano-Voigt line shape, small deviations
symmetric about the line center remain. In com-
bination with an imperfectly symmetric experi-
mental sampling of the resonance about its center,
this can lead to a sampling bias in the deter-
mined line centers.We reduce this sampling bias
by selectively removing a small amount of exper-
imental points to enforce fair sampling (17). The
remaining sampling bias is estimated with a
Monte Carlo simulation using the experimen-
tal sampling and signal-to-noise ratio, leading
to a maximum correction of 0.8(0.7) kHz.

Experimental setup

To measure the 2S-4P transition frequency and
study the effect of quantum interference, we use

the dedicated setup depicted in Fig. 3 (33–35). A
cryogenic beam of H in the metastable 2S state
obtained from Doppler-free two-photon excitation
of the 1S-2S transition is crossed at right angles
with radiation from the spectroscopy laser at
486 nm, driving the 2S-4P transition. The hyper-
fine splitting in the 2S state is resolved in the 1S-2S
excitation, so that the atoms are almost exclusively
prepared in the 2SF¼0

1=2 sublevel. From this state,
only two dipole-allowed transitionsmay be driven
as depicted in Fig. 2, either to the 4PF¼1

1=2 state (2S-
4P1/2 transition) or to the 4PF¼1

3=2 state (2S-4P3/2
transition). The linear polarization of the spec-
troscopy laser is oriented at angle qL to the hori-
zontal and defined by a polarization-maintaining
(PM) fiber (intensity polarization extinction ratio
200:1). The polarization can be rotated about the
laser beam axis by either making use of the two
orthogonal PM axes of the fiber or rotating the
fiber itself.
To observe the effects of quantum interference

more clearly, we have split our large solid angle
detector by a vertical wall along the spectroscopy
laser beam, creating two detectors that observe
the fluorescence of the 4P state from different
directions, but with the same solid angle. The
Lyman-g extremeultraviolet photons emitted upon
this rapid decay of the short-lived 4P state to the
1S ground state release photoelectrons from the
graphite-coated innerwalls of the detectors, which
are counted by two channel electron multipliers,
CEM1 and CEM2; the output of these multipliers
is our signal.

Doppler shift

The mean thermal velocity of atoms in our cryo-
genic beam is about 300 m/s, 10 times smaller
than in previous experiments. In addition, a high
level of compensation of the first-order Doppler
shift is achieved by using an active fiber-based
retroreflector specifically developed for this ex-
periment (36). The transition is driven by two
phase-retracing antiparallel laser beams, leading
to Doppler shifts of opposite sign and equal am-
plitude for atoms being excited by the respective
beams. To verify this scheme, we probe atomic
samples with mean velocities ranging from 295
down to 85m/s. These low velocities are achieved
by quickly switching off the 1S-2S excitation light
at 243 nm and letting the fastest 2S atoms escape
before acquiring data (time-of-flight resolved de-
tection scheme). Any residual first-order Doppler
shift can be constrained by extracting the rate of
change of the observed transition frequency with
the mean velocity of the atoms interrogated for
each delay time. We extract this Doppler slope
from the same data used to determine the tran-
sition frequencies presented here and find it to
be compatible with zero for each transition after
averaging all our data. The corresponding fre-
quency uncertainty is found by multiplying the
Doppler slopewith themean velocity of all atoms
interrogated, 240 m/s, giving an uncertainty of
2.9 and 2.8 kHz for the 2S-4P1/2 and the 2S-4P3/2
transitions, respectively. The two antiparallel laser
beams weakly couple different momentum eigen-
states of the 2S atoms and can drive Raman
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Fig. 3. Experimental apparatus (not to scale). A preparation laser at 243 nm is used to excite
hydrogen atoms that emerge from the cold copper nozzle (5.8 K) from the ground state to the 2S state.
The 2S-4P transition is driven with the spectroscopy laser at 486 nm. This laser is coupled to an
active fiber-based retroreflector [consisting of polarization-maintaining (PM) fiber, collimator, and high-
reflectivity (HR) mirror] oriented perpendicular to the atomic beam; this setup provides a large
suppression of the first-order Doppler effect (36). In the dark phases of the chopper wheel, Lyman-g
fluorescence photons (g) emitted upon the rapid 4P→1S decay are detected via photoelectrons (e−)
by channel electron multipliers CEM1 and CEM2. The two detectors are separated by a vertical wall
along the direction of the 486-nm light propagation. The 2S-4P excitation region is shielded from
stray electric fields (with dedicated meshes) and magnetic fields (with magnetic shielding, not
shown), resulting in stray fields below 0.6 V/m and 1 mG, respectively (17). The blue double-sided
arrow labeled

→
E indicates the electric field of the 486-nm spectroscopy laser with orientation qL

against the horizontal.

RESEARCH | RESEARCH ARTICLE



transitions between them. Because the coupling
is detuning dependent, it can lead to small line
shifts, which we evaluate with an auxiliary OBE
simulation that takes into account the recoil of
the atoms. For our atomic beam geometry and
excitation rates, this light force shift is found
to be below 0.5 kHz for both transitions mea-
sured (17).
Although the laser beam configuration resem-

bles the well-known saturated absorption con-
figuration, the characteristic dip in the line shape
expected for this configuration is not present
here because the Doppler width of the atomic
beam closely matches the natural line width of
the 2S-4P transition and we work in the low-
saturation regime.

Observation of quantum interference
line shifts

Figure 4 shows the effects of quantum interfer-
ence line distortions for the 2S-4P1/2 and 2S-4P3/2
transitions. Data were acquired at different ori-
entations qL of the linear laser polarization (see
Fig. 3) and thus for different orientations of the
induced atomic dipole relative to the field of view
of the detectors. The data set consists of a total
number of 22,928 and 25,064 individual reso-
nances for the 2S-4P1/2 and 2S-4P3/2 transitions,
respectively, with varying amounts of resonances
recorded per qL setting.

By using the Voigt approximation (h = 0 in
Eq. 5) as line shape model, a qL dependence of
the extracted resonance frequency is observed
for both transitions and detectors (Fig. 4, A and
B). The amplitudes of the shift of 40 and 20 kHz
for the 2S-4P1/2 and 2S-4P3/2 transitions, respec-
tively, are much larger than the proton radius
discrepancy of 8.9 kHz. Although averaging
over qL reduces the shift, it does not average to
zero and a significant shift of 6:8 and –3.0 kHz
remains for the two transitions, respectively, as
determined from our simulation. As expected
from Eq. 4, the shifts of the two mutually per-
turbing transitions are of opposite signs; as ex-
pected from the symmetry of the experimental
geometry, exchanging the two detectors corre-
sponds to mirroring the laser polarization about
the vertical (qL = 90°). The behavior is well
reproduced by our simulation (dashed lines in
Fig. 4), confirming that the detection geometry
has been correctly taken into account. This is a
direct observation of a quantum interference line
shift in the regime of large separation between
the atomic resonances (D/G > 100); for the un-
resolved D2 lines in lithium (D/G ≈ 1), similar
effects have been observed before (29, 37).
Fitting the resonances with the Fano-Voigt

line shape, on the other hand, removes the qL
dependence (Fig. 4, C and D), with the geom-
etry dependence now absorbed in the asym-

metry parameter h. The residual amplitudes
(Ares, dotted lines in Fig. 4) of possible remaining
quantum interference shifts are determined by
fitting a parametrized version of our simulation
to the data and are found to be well compatible
with zero, except for a 3.2(1.2) kHz effect for the
CEM1 data of the 2S-4P1/2 transition. When av-
eraging over qL and both detectors to determine
the 2S-4P1/2 and 2S-4P3/2 transition frequencies,
this results in insignificant residual shifts of 0.3(3)
and 0.0(3) kHz, respectively (17). Because the
Doppler shift uncertainty on the order of 10 kHz
per point is correlated between the two line shape
models, it is not included in the error bars shown
in Fig. 4 to highlight the difference between the
models. When including the Doppler shift and
systematic uncertainties (red-shaded area in
Fig. 4), we see only a small scatter of the data
points, with the notable exception of the points
for 0° and 90° for the 2S-4P1/2 transition. These
points were taken during the first two days of
the measurement where the larger observed line
width suggests a slight misalignment between
the 2S-4P excitation laser and the atomic beam.
However, discarding these data would only shift
the final result (Eq. 9) by an insignificant 0.3 kHz.

2S-4P absolute transition frequency

Having removed the influence of quantum inter-
ference by using the Fano-Voigt line shape, we
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Fig. 4. Observation of quantum interference. Shown are apparent
line shifts caused by quantum interference (A and B) and their
suppression (C and D). Observed line centers of the 2S-4P1/2 (A) and
2S-4P3/2 (B) transitions determined with symmetric Voigt fits show
a dependence on the direction of the linear laser polarization qL with an
amplitude of up to 40 kHz in our geometry. Our numerical simulation
(dashed lines) reproduces this behavior very well (17). Using the Fano-Voigt

line shape (Eq. 5) removes the qL dependence (C) and (D). Blue and
green symbols indicate data recorded with CEM1 and CEM2, respectively
(see Fig. 3). Error bars indicate the statistical uncertainty only. The red-
shaded areas (17) show the weighted mean of both detectors, including
the final uncertainty dominated by the Doppler shift uncertainty. The
dotted lines show an estimate of possible remaining line shifts with
amplitude Ares.
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can now give the unperturbed transition fre-
quencies by averaging over the different laser
polarization settings and both detectors. The
laser frequency has been determined with a fre-
quency comb linked to a Global Positioning Sys-
tem (GPS)–referenced hydrogen maser. For the
transition frequencies from the2SF¼0

1=2 state to the
4PF¼1

1=2 state (n1/2) and the 4PF¼1
3=2 state (n3/2), we

find

n1=2 ¼ 616520152555:1ð3:0ÞkHz ð6Þ

n3=2 ¼ 616521519990:8ð3:0ÞkHz ð7Þ

where the given uncertainties include both sta-
tistical and systematic uncertainties and are dom-
inated by the Doppler shift uncertainty. This
result corresponds to an improvement of a factor
of 4.9 and 3.3 in uncertainty, respectively, com-
pared to the previous best measurements of the
2S-4P1/2 and 2S-4P3/2 transitions (16). The values
in Eqs. 6 and 7 have been corrected for the recoil
shift of 837.23 kHz. Details of the data analysis
and a list of corrections and uncertainties are
given in (17) (see table S2).
We subtract v1/2 from v3/2 to obtain the 4P fine

structure splitting DnexpFS (4P) between the 4PF¼1
1=2

and the 4PF¼1
3=2 states (17) (see table S3)

DnexpFS ð4PÞ ¼ 1367435:7ð4:3ÞkHz ð8Þ

The fine structure splitting is essentially free from
finite-size corrections and can therefore be cal-
culated very precisely (38), yielding DntheoFS ð4PÞ =
1367433.3(3) kHz.With a difference of 2.4 (4.3) kHz,
our experimental result is in excellent agree-
ment with the theoretical value. Furthermore,
it represents the most accurately determined fine
structure splitting in H inferred from an optical
transition frequency measurement.

Even more importantly, because any shifts
caused by quantum interference will be of op-
posite signs for the two resonances, the com-
parison of DnexpFS ð4PÞ and DntheoFS ð4PÞ provides a
sensitive measure for residual quantum inter-
ference shifts and an independent test of the
internal consistency of our data analysis. If not
accounted for, the quantum interference line
shifts would lead to a discrepancy of about 10 kHz
between DnexpFS ð4PÞ and DntheoFS ð4PÞ in our mea-
surement, when the signal is averaged over all
polarization angles and both detectors. To in-
crease the sensitivity of this test further, one
can compare data for laser polarizations where
the line shifts are largest, e.g., at qL ≈ 110° for
CEM2. Here, the difference of the splitting to
the theory value is 10.0(16.9) kHz, after the
Fano-Voigt line shape has compensated for an
~70-kHz shift.
To make use of the fact that the quantum

interference effects, including those not com-
pensated for by the Fano-Voigt line shape and
accounted for by small model corrections, shift
the two resonances in opposite directions, it is
advantageous to determine the transition fre-
quency from the 2S hyperfine centroid to the 4P
fine structure centroid [i.e., the centroid of the
hyperfine centroids; see eq. S16 in (17)] using
Eqs. 6 and 7

n2S�4P ¼ 616520931626:8ð2:3ÞkHz ð9Þ

With this combination, themodel correction and
the upper limit on possible residual line shifts
caused by quantum interference are reduced to
a negligible 0.1(1) and 0.2 kHz, respectively. The
final measurement uncertainty of 2.3 kHz is
four times smaller than the proton radius dis-
crepancy for the 2S-4P transition. The uncer-
tainty is dominated by the first-order Doppler
shift uncertainty, given by the weighted average

of the corresponding uncorrelated uncertainties
for the 2S-4P1/2 and 2S-4P3/2 transitions. A list
of the corrections applied and the contributions
to the total uncertainty is given in Table 1.

Rydberg constant and proton
charge radius

Following (3), we combine Eq. 9 with our pre-
vious measurement of the 1S-2S transition fre-
quency (1, 2) to determine the value pair [R∞, rp]
using Eq. 1

R1 = 10973731.568076(96) m–1 (10)

rp = 0.8335(95) fm (11)

providing the most accurate determination of
these values from H spectroscopy with uncer-
tainties equivalent to the aggregate H world
data. We find good agreement with the µp value
(4, 5), but a discrepancy of 3.3 combined stan-
dard deviations to the H world data (see Fig. 1)
for both R1 and rp. Our new value for R1 also
agrees with the one obtained from the combina-
tion of the muonic deuterium measurement (13)
and the 1S-2S transition frequency in electronic
deuterium (39).
Previous H experiments almost exclusively used

the depletion of the 2S initial state population to
detect 2S-nl excitations in a number of different
detection geometries. These schemes are gener-
ally much less prone to the effects of quantum
interference. This advantage, however, comes at
the price of a considerably reduced signal-to-noise
ratio (compared to our fluorescence-detection
scheme), which makes the identification and
study of small systematic shifts much more dif-
ficult. Averaging results from various sources
(i.e., geometries) may further be expected to
cancel the potential residual shifts caused by
quantum interference to some extent so that it
seems rather unlikely that this effect can explain
the observed discrepancy with the H world data.
The discrepancy of the results in this workwith

the H world data limits the precision of tests of
bound-state QED. Provided that QED calcula-
tions are correct, new experiments with improved
accuracy will help to understand the discrep-
ancy. Several of such experiments using various
approaches are currently under way (40–48). The
tools developed in this work for 2S-4P spectros-
copy can now be applied to other 2S-nP transi-
tions to provide additional experimental data.
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Materials and methods

1 Data acquisition and analysis

1.1 Data acquisition
Here we briefly review the experimental setup as depicted in Fig. 3 in the main text. Excita-
tion of the 2SF=0

1/2 state takes place by Doppler-free two-photon excitation of the 1SF=0
1/2 -2SF=0

1/2

transition using a preparation laser at 243 nm. The line width of this excitation is ∼2 kHz
(full width at half maximum (FWHM)) and is limited by time-of-flight broadening (1). Be-
cause this line width is much smaller than the 621 MHz laser detuning necessary to drive the
1SF=1

1/2 -2SF=1
1/2 transition by Doppler-free two-photon excitation, the 2SF=1

1/2 states are only pop-
ulated by Doppler-sensitive two-photon excitation. This leads to a negligible population of
approx. 3× 10−7 in each of the three 2SF=1

1/2 states relative to the population in the 2SF=0
1/2 state,

because only a small number of atoms are in the velocity class that is resonant with this tran-
sition. The atoms then travel from the 1S-2S excitation region to the 2S-4P excitation region,
where they interact with the two counter-propagating beams of the spectroscopy laser at 486 nm.
Detection of the 2S-4P fluorescence only takes place after the production of 2S atoms has been
discontinued at time τ = 0, i.e. the 1S-2S excitation light has been blocked by a chopper wheel
running at 160 Hz. At an excitation light intensity of about 1.4 W/m2 (0.6 W/m2) per direction
of the spectroscopy laser (beam waist w0 = 1.85 mm), on average about 30% of the atoms in the
2SF=0

1/2 state are excited to the 4PF=1
1/2 (4PF=1

3/2 ) state. The Lyman-γ (and, with lower efficiency,
Lyman-α) extreme ultraviolet photons emitted by the atoms upon decay release photoelectrons
from the graphite-coated inner walls of the detectors, which are subsequently counted by the
detectors CEM1 and CEM2. The detector assembly is differentially pumped with a cryopump
to ensure a background gas pressure lower than 1 × 10−7 mbar inside the 1S-2S and 2S-4P
excitation regions.

The recorded counts are binned according to their arrival time τ into 10 delay time intervals
[τi, τi+1], ranging from delay times of 10µs to 2621µs. The width of the intervals was chosen in
a way that provides comparable counting statistics to all 10 data sets and ranges from 50µs for
early delay times to 1711µs for the longest delay time. The individual subsets of data obtained
in this way sample different velocity groups of the excited atoms, which is used to constrain the
first-order Doppler shift (see Sec. 2.1).

For each measurement setting, i.e. orientation of the linear laser polarization θL, the angle
α between the spectroscopy laser beams and the atomic beam is adjusted to be close to α =
90◦ before the actual data acquisition. This is achieved by blocking the spectroscopy laser
beam before the HR mirror that otherwise retroreflects it and then minimizing the slope of the
resulting first-order Doppler shift as a function of atomic velocity (36). Absolute frequency data
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for the 2S-4P transitions is subsequently acquired with active Doppler compensation, i.e. with
counter-propagating, actively stabilized (HR mirror tip/tilt) laser beams, for a specific setting of
the laser polarization angle θL.

A single resonance scan consists of 29 randomized frequency points and takes about 90 s (35).
The resonance is scanned by alternating between the red- and blue-detuned sides to reduce a
possible bias in the deduced line centers by slow drifts in the fluorescence count rate caused by
a drift in the number of 2S atoms reaching the 2S-4P excitation region. At each frequency point,
the signal is integrated over 170 cycles of the chopper wheel, then the polarization is rotated by
90 ◦ (36) and the signal is integrated over another 170 cycles. This rotation of polarization is ac-
complished by coupling light from two paths into the two orthogonal polarization-maintaining
axes of the fiber used for light delivery and successively switching between the paths. Typical
resonances recorded with CEM2 for the first delay interval are shown in Fig. 2B in the main
text.

For each measurement day, data are taken for a fixed value of θL and θL + 90 ◦. In total, a
typical measurement day consists of about 100 resonance scans per polarization direction, lead-
ing to a total number of about 4000 individual resonances per day (2 detectors, 2 polarization
directions, 10 individual velocity subsets).

We observe background counts, i.e. counts when the spectroscopy laser is tuned off-resonance,
caused by the decay of some of the metastable 2S atoms inside the detection region (the dark
count rate of the detectors when no 2S atoms are present is negligible). The off-resonance
background y0, measured relative to the on-resonance amplitude A above the background, is
not identical for the two detectors. On average, y0/A ≈ 0.21 for CEM1 and y0/A ≈ 0.10 for
CEM2, even though the amplitude A is very similar for CEM1 and CEM2. This background is
much larger than the minimum background expected from the decay of unperturbed 2S atoms
flying through the detector, which we estimate contributes only y0/A ≈ 0.002 and is expected
to be identical for both detectors. We attribute the increased background to secondary electron
emission from 2S atoms striking the downstream detector wall near CEM1. This is because the
small size of the opening in the detector wall, designed to allow efficient differential pumping
and a large detection solid angle, does not allow all 2S atoms to leave the detection region, espe-
cially in the presence of unavoidable small misalignments. This process can also account for the
different background levels of the two detectors, since the detection efficiency of the secondary
electrons emitted from the downstream detector wall is not expected to be identical between the
detectors. We have also considered the possibility of collisional quenching, by a background
gas, or Stark quenching, by stray electric fields, of the 2S atoms. We estimate the pressure of
H2 molecules, the dominant background gas in the vacuum chamber, needed to account for the
observed background to be 9 × 10−6 mbar, by far exceeding the experimental upper limit on
the pressure inside the detector, 1× 10−7 mbar. Similarly, an electric field of 50 V/m would be
needed for Stark quenching to explain the background, much larger than the experimental limit
of 0.6 V/m (see Sec. 2.7).

Even though the background seen by the two detectors is different by more than a factor of
two, the transition frequencies determined using our full analysis, but only the data from either
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detector, are in excellent agreement. Using our numerical simulations, we have confirmed that
the presence of a background due to the decay of 2S atoms does not influence the determined
transition frequency. Additionally, we have also repeated the data analysis detailed below, but
including a linear dependence of the background on laser detuning, and find the result to be in
agreement with the result of the main analysis, which assumes only a constant background.

1.2 Line shape model
The line shape of an atom at rest which is subject to small distortions caused by quantum
interference of one additional far-detuned resonance may be expressed by (28):

P (ω,~r) ≈ C

(ω − ω0)2 + (Γ/2)2
+ a(ω − ω0) +

b(ω − ω0)

(ω − ω0)2 + (Γ/2)2
, (S1)

where ω0 is the frequency of the resonance of interest and Γ the natural line width of this
resonance. The geometry dependence expressed by ~r and the frequency separation ∆ of the
perturbing resonance from the resonance of interest is buried in the coefficients C, a, b. We
drop the a term, as discussed in the main text, because the corresponding shifts are smaller than
the shifts due to the b term by an additional factor of Γ2/∆2 < 10−4 for the case of our 2S-4P
spectroscopy, yielding

P (ω,~r) ≈ C

(ω − ω0)2 + (Γ/2)2
+

b(ω − ω0)

(ω − ω0)2 + (Γ/2)2
. (S2)

To take into account the finite Doppler width caused by the transverse divergence of the
atomic beam, we convolve this line shape with a Gaussian:

p(∆ω) =
2
√

ln 2√
πΓG

e
−4 ln 2

(∆ω)2

Γ2
G , (S3)

where ΓG gives the FWHM of p(∆ω) that describes the probability to find an atom with its res-
onance frequency shifted by ∆ω by the first-order Doppler shift. ΓG can in principle be taken
from the simulations of the atomic beam described in the discussion of the first-order Doppler
shift, however there is a slight dependence on experimental parameters such as the angle be-
tween the atomic and laser beam. Since saturation effects and the resulting power-broadening
of the resonance are not explicitly included in the line shape model, they will implicitly show
up as an increase of both ΓG and Γ over the value expected just from atomic beam divergence.
Note that for short delay times (τ < 400µs), Doppler-broadening dominates, while for longer
delay times saturation effects are the dominant broadening mechanism. For these reasons, both
ΓG and Γ are used as free parameters when fitting the experimental data. We find that ΓG (Γ)
ranges from 14 MHz (13 MHz) to 6 MHz (16 MHz) for the different delay times (see Sec. 2.1),
leading to total FWHM line width ranging between 22 MHz and 17 MHz.
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The convolution of Eq. S2 and Eq. S3 can be written as:

F (ω) = C
4
√
π ln 2

ΓGΓ

{
Re[w(z)] +

Γ

2

b

C
Im[w(z)]

}
, (S4)

with z = 2
√

ln 2[(ω − ω0) + iΓ/2]/ΓG and the Faddeeva function w(z) given by (49)

w(z) ≡ e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
. (S5)

Defining the asymmetry parameter as η ≡ bΓ/4C and replacing the constant multiplicative
prefactor with the free fit parameter A = C 4

√
π ln 2

ΓGΓ
, we recover the Fano-Voigt line shape given

in Eq. 5 of the main text. To account for the experimental background (see Sec. 1.1), a constant
term y0 is added to the line shape (to Eq. S2 and thus Eq. S4) as a free fit parameter.

We test the Fano-Voigt line shape by fitting it to the results of the OBE simulation described
in the main text and find a high suppression of quantum interference line shifts. To test the
robustness of the fit and to control possible biases, we conduct a Monte Carlo simulation with
the experimental frequency sampling of the resonance and the observed signal-to-noise ratio,
including slow drifts in the latter, applied to the line shape from the OBE simulation.

1.3 Data analysis
Each recorded resonance, consisting of N pairs of laser frequency and number of fluorescence
photons detected, is fit with the Fano-Voigt line shape with six free parameters (line center
ν0 = ω0/2π, amplitude A, background y0, Lorentzian line width Γ, Gaussian line width ΓG and
asymmetry parameter η). We assume that the uncertainty σy,i on the number of fluorescence
photons detected yi for each frequency point i is dominated by shot noise, i.e. σy,i ≈ √yi (since
yi � 1, we can approximate the Poisson distribution with a normal distribution). The optimal
values of the free parameters are then found by minimizing χ2, with the uncertainty of the
values corresponding to an increase of χ2 of 1 around the optimal values.

We use χ2
red = χ2/NDOF, with NDOF = N − 6, as a measure of the goodness of fit. The re-

sulting χ2
red distribution for the individual resonance fits deviates from the distribution expected

for the assumed noise in two regards. First, the mode of the observed distribution is about 20%
larger than expected, corresponding to a mean χ2

red of ∼1.20. Second, while the distribution
follows the expected shape for χ2

red . 2, there is an excess of resonance fits with χ2
red & 2.

The former is partly caused by the fact that while the Fano-Voigt line shape describes the
observed line shape very well, there are small deviations between the two. The deviations can
be decomposed in a contribution symmetric about the line center (up to 4% relative deviation)
and a contribution asymmetric about the line center, more than an order of magnitude smaller
than the symmetric contribution. The symmetric contribution is caused by (1) saturation effects
related to the depletion of the initial 2SF=0

1/2 state and (2) non-Gaussian Doppler-broadening, both
not included in the Fano-Voigt line shape. This symmetric contribution can lead to a sampling
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bias, as discussed in Sec. 2.5. The asymmetric contribution is caused by quantum interference
effects not described by the Fano-Voigt line shape and discussed in Sec. 2.4. These deviations
increase the fit residuals over what would be expected from pure shot noise and shift the mode
of the observed χ2

red distribution to higher values. From our Monte Carlo simulation used to test
the Fano-Voigt line shape (see Sec. 1.2), we expect this effect to increase the mode by 10%.

Additionally, there are other sources of noise present in the system. Besides shot noise,
we expect the dominant noise contribution to be drifts in the number of 2S atoms reaching the
2S-4P excitation region caused by built-up of hydrogen ice on the cryogenic nozzle and drifts in
the 243 nm laser power and in the condition of the RF discharge producing the hydrogen atoms.
This additional noise also shifts the mode of the observed χ2

red distribution to a higher value than
expected for pure shot noise.

These drifts also cause an excess of resonance fits with χ2
red & 2 as compared to the shot

noise only situation, as can be deduced from our Monte Carlo simulation when properly model-
ing the drifts by interpolating the observed line amplitude and background as function of time.
Another contribution are short (i.e. only affecting one or two frequency points), but large per-
turbations of the system, such as discharges in the detectors causing a short spike in count rate.
To remove such events from the data analysis, a χ2

red cut-off of 3 is introduced, i.e. individual
resonance fits with a χ2

red ≥ 3 are neglected in the data analysis. This results in a removal of
less than 4% of the recorded resonances. The effect of this cut-off on the determined transition
frequencies is within the final uncertainties.

By design, the free parameter η of the Fano-Voigt line shape is correlated with the line center
ν0. For the typical signal-to-noise ratios of the recorded resonances, this leads to a significantly
larger uncertainty on the line center when fitting the Fano-Voigt line shape as compared to
fitting the Voigt line shape (where η = 0). To decrease this uncertainty, η is not treated as a
free parameter for each resonance, but rather treated as one free parameter shared by a subset
of resonances, effectively increasing the signal-to-noise ratio. Each subset only contains data
taken for a specific laser polarization setting θL and for a single delay time interval and detector
and thus subject to the same line distortions due to quantum interference corresponding to the
same value of η. With this procedure, the uncertainty on the line center is reduced by about a
factor of 2 and to the same level as when using the Voigt line shape. Since the Fano-Voigt line
shape tends to be a numerically unstable fit for resonances where the Gaussian broadening is
negligible (ΓG < 0.1 MHz), we use a Fano-Lorentzian fit, i.e. the line shape given in Eq. S2
that does not include the Gaussian broadening of the Fano-Voigt. Both procedures, fitting using
a shared η and using the Fano-Lorentzian fit where appropriate, do not change the determined
transition frequencies within the fit uncertainty.

Finally, to determine the transition frequencies given in the main text, small model, sampling
bias and light force shift corrections (see Sec. 2.4, 2.5 and 2.3) are determined for each recorded
resonance and applied to the extracted line center. The transition frequencies are deduced by
a weighted average of the line centers for all laser polarization settings θL, all delay times and
both detectors, using the fit uncertainty on the line center as weight. The statistical uncertainty
given corresponds to the uncertainty of the weighted average. The χ2

red of this weighted average
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is 1.16 for both the 2S-4P1/2 and 2S-4P3/2 transitions.

2 Corrections and uncertainties
Lists of the corrections applied and the contributions (at the one standard deviation σ level)
to the total measurement uncertainty for two measured transitions 2S-4P1/2 and 2S-4P3/2 are
given in table S2. We assume that the individual uncertainty contributions in each list are not
correlated and add them in quadrature. The uncertainty contributions are, however, correlated
between the two transition frequencies and we give the corresponding correlation coefficient r
(rX,Y = cov(X,Y )

σXσY
for the contributions X , Y , with cov(X, Y ) the covariance between X and Y ).

The derived corrections and uncertainties for the 4P fine structure centroid ν2S−4P and 4P fine
structure splitting ∆νexp

FS (4P) are given in Table 1 in the main text and table S3, respectively. In
the following, each of the items in the lists is briefly discussed.

2.1 First-order Doppler shift
The suppression of the first-order Doppler shift using an active fiber-based retroreflector (AFR)
and the experimental constraint on this suppression have been discussed in the main text and
at length in (36). In contrast to (36), where a symmetric line shape was used to determine the
line center, we here analyze our data as detailed in Sec. 1.3 using the Fano-Voigt line shape
and small corrections from simulations. This is important because there is a dependence of the
line distortions due to quantum interference on the interaction time with the spectroscopy beam
and thus the mean velocity of the atoms (see Sec. 2.4). If those line distortions are not properly
accounted for, they can result in an apparent shift of the transition frequency as a function of
delay time, thus mimicking a Doppler shift.

The velocity distribution of the atoms for the different detection delay times is not only given
by the initial velocity distribution of the atoms leaving the nozzle and the subsequent collimation
by the apertures (see Fig. 3 of the main text), but is also influenced by the beam radius, power
and detuning of the 243 nm laser that excites the ground state atoms to the 2SF=0

1/2 level. To
model this, we perform a Monte Carlo simulation of atomic trajectories, taking into account the
1S-2S and 2S-4P excitation. To estimate the uncertainty of this approach, we vary the input
parameters, including the initial velocity distribution, and compare the simulation results with
experimentally accessible parameters such as the signal amplitude and line width for different
delay times, which are both highly sensitive to the velocity distribution. The mean velocity
vi of atoms excited to the 4P level is found to range between 295(40) m/s and 85(10) m/s for
the ten different delay time intervals, leading to an overall mean velocity of v̄ = 240(30) m/s
for all delay times considered. The transverse velocity distribution, i.e. along the direction of
the 486 nm beams and relevant for Doppler broadening as opposed to a shift, is approximately
Gaussian with a FWHM that ranges from 6(1) m/s down to 1.9(2) m/s.
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Using these mean velocities vi and the measured transition frequencies νi for the ten differ-
ent delay time intervals, the rate of change m of the transition frequency as a function of mean
velocity, or Doppler slope, can be extracted for different subsets of the data. This is done by
fitting a linear model ν = mv+δν to the data, with the uncertainty on the Doppler slope derived
from the uncertainty on the measured transition frequencies. If χ2

red = χ2/8 of the determina-
tion is found to be above 1, the Doppler slope uncertainty is scaled with

√
χ2

red to arrive at a
conservative estimate of the Doppler slope uncertainty σm. Finally, the corresponding Doppler
uncertainty σν,D on the transition frequency averaged over the delay times is found by multiply-
ing the Doppler slope uncertainty with overall mean velocity of all delay times, σν,D = σmv̄.

When comparing the Doppler slopes extracted in this way for different measurement days,
we find some excessive day-to-day scatter. We attribute this to slight misalignments in the
AFR, such as in the angle α between the spectroscopy laser beams and the atomic beam or in
the position of the beam waist of the laser beams, which should ideally coincide with HR mirror
surface (36). Indeed, for a few measurement days the observed line width was slightly larger
than on average, hinting at a possible slight misalignment of α. These misalignments can cause
a residual Doppler shift with a sign depending on the direction of misalignment. Since the AFR
is re-adjusted for most measurement days and since we expect the misalignments to be in a
random direction, we expect the Doppler shift to compatible with zero when averaging over a
sufficient number of days or, equivalently, re-alignments.

For the complete data set for each transition measured, we find the Doppler slopes to be
m = 0.7(12.1) Hz/(m/s) and m = 9.5(11.8) Hz/(m/s) for the 2S-4P1/2 and 2S-4P3/2 transi-
tions, respectively, and thus compatible with zero. The excessive scatter manifests itself in an
increased χ2

red of 1.83 and 1.47 for the two transition and has already been taken into account
for the uncertainties by scaling with

√
χ2

red. Since the Doppler slopes are found to be compat-
ible with zero, we do not apply a correction to the transition frequencies, but only include the
uncertainty on the slopes. Finally, the Doppler uncertainty on the transition frequencies ν1/2

and ν3/2 is found to be 2.92 kHz and 2.84 kHz, respectively. We assume the uncertainties to be
uncorrelated for the two transitions (r = 0) and thus find a Doppler uncertainty of 2.13 kHz for
ν2S−4P.

2.2 Quantum interference
While we have thoroughly tested the compensation of line shifts due to quantum interference
with the Fano-Voigt line shape using our simulations (see Sec. 1.2, 1.3 and 2.4), we here es-
timate the level of compensation directly from the experimental data. The basic idea is that
any residual line shifts should follow the same functional behavior ∆ν ≡ ∆ν(θL), where θL is
again the linear laser polarization angle, as the uncompensated line shifts seen when using the
Voigt line shape for data analysis (see Fig. 4 (A and B) in the main text). For this purpose, we
parametrize ∆ν(θL), starting from the analytical expression derived in the perturbative limit.
For the 2S-4P1/2 transition, ∆ν(θL) is a simple sinusoidal function, while for the 2S-4P3/2

transition ∆ν(θL) is a more complicated function that can be approximated by a power series
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in sinusoidal functions (as will be detailed elsewhere). The parametrization ∆ν(θL, Ares,∆ν0)
has two free parameters, amplitude Ares and offset ∆ν0, while the phase and period are fixed
to the value of the uncompensated line shift and 180 ◦, respectively. ∆ν(θL, Ares,∆ν0) is then
fit to the data analyzed with the Fano-Voigt line shape, taking into account only the statistical
uncertainty.

We first analyze the difference between the detectors, i.e. the difference in the observed
line centers, which is somewhat more sensitive to quantum interference effects than the signal
from the individual detectors. Here, we find a residual amplitude of Ares = 4.46(1.36) kHz
(compared to 54.8(1.3) kHz for the Voigt line shape) for the 2S-4P1/2 transition and a residual
amplitude of Ares = −1.68(2.00) kHz (compared to 28.6(2.0) kHz for the Voigt line shape) for
the 2S-4P3/2 transition. Thus, the residual amplitude of the 2S-4P3/2 transition is compatible
with zero, while there is small residual effect for 2S-4P1/2 transition.

To identify the origin of the residual amplitudes and to estimate the related uncertainty,
we analyze the data of the individual detectors (see Fig. 4 (C and D) in the main text). The
amplitudes of residual line shifts Ares are found to be well compatible with zero for detector
CEM2 for the 2S-4P1/2 transition (Ares = −0.09(0.84) kHz) and for both detectors CEM1 and
CEM2 for the 2S-4P3/2 transition (Ares = −0.16(1.23) kHz and Ares = 0.11(1.06) kHz, respec-
tively). For detector CEM1 and the 2S-4P1/2 transition, we find a small residual amplitude of
Ares = 3.23(1.16) kHz with a goodness of fit of χ2

red = 6.6. Thus, the residual amplitude seen
in the difference is solely caused by the data from one of the detectors, CEM1. We note that
otherwise the data from the two detectors, including the line shifts due to quantum interference
(see Fig. 4 (A and B) in the main text), are very similar. To cross-check the compensation of
asymmetries with the Fano-Voigt line shape, we have also analyzed the residual amplitudes us-
ing the Voigt line shape combined with our simulations (resulting in large corrections of tens
of kilohertz) and find very similar results. The significance of this nonzero residual amplitude
should be contrasted with the fact that a simple weighted average describes the data equally
well (χ2

red = 6.7). Furthermore, as evident in the large χ2
red, we have so far neglected residual

Doppler shifts, which contribute an uncertainty as large as the residual amplitude and are ex-
pected to cause the day-to-day scatter seen here (with data for different θL values recorded on
different days) (see Sec. 2.1). Note that discarding the data for θL = 0 ◦ and θL = 90 ◦ for the
2S-4P1/2 transition, which shows increased scatter as discussed in the main text, reduces the
significance of the nonzero residual amplitude only slightly.

The transition frequencies given in the main text are determined by averaging over θL. To
estimate residual quantum interference line shifts of these transition frequencies, the relation
of the amplitude Ares and offset ∆ν0 is investigated using our OBE simulations, using the ex-
perimental sampling of θL. We find ∆ν0/Ares ≈ 0.2 and ∆ν0/Ares ≈ −0.2 for the 2S-4P1/2

and 2S-4P3/2 transitions. With this, and after averaging over the two detectors, the residual
line shifts are determined to be 0.29(33) kHz and 0.00(26) kHz for the 2S-4P1/2 and 2S-4P3/2

transitions, respectively, where χ2
red > 1 has been taken into account by scaling the uncertainties

with
√
χ2

red.
We have tried to reproduce, using our simulations, the occurence of a residual amplitude
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in only one of the two detectors, but were not able to come up with a satisfactory explanation.
One potential reason for a broken symmetry between the detectors is that the 2S-4P excitation
region is not pointlike, but corresponds to the laser beam size (beam waist w0 = 1.85 mm,
detector radius 28 mm). This in turn leads to the two detectors observing slightly different solid
angles and atomic velocities, and we indeed observe a slight differential Doppler shift between
the two detectors.

However, when averaging over the two detectors and θL, both the line shifts due to this
residual amplitude, as shown above, and the residual Doppler shift (see Sec. 2.1) are found
to be compatible with zero, which is why we are confident that this residual effect does not
influence our final results obtained by this average.

Thus, we assign an uncertainty of 0.33 kHz and 0.26 kHz due to residual quantum inter-
ference line shifts to the measured transition frequencies ν1/2 and ν3/2 respectively. Since the
uncertainties are assumed to be limited by statistics, they are uncorrelated (r = 0) for the two
transitions, resulting in an uncertainty of 0.20 kHz for ν2S−4P.

2.3 Light force shift
Atoms that are on a classical trajectory through a near-resonant standing wave may be subject
to forces that are attractive to the nodes or anti-nodes for red or blue detuning, respectively (50).
In this simple classical view, it seems obvious that the observed resonance can be distorted be-
cause this effect can enhance the red wing of the resonance while reducing the signal on the
blue side, or, depending on the trajectory, vice versa. In fact one may model these line dis-
tortions by solving the OBEs with a position-dependent Rabi frequency simultaneously with
Newton’s equation of motion (51,52). However, this simple classical description of atomic mo-
tion is attached to several conditions (52). One of them is that the atoms need to be sufficiently
localized in order to assign a position-dependent force to them. In our case this condition is
violated for two reasons: the transverse temperature of the 2S atoms is low enough to yield a
coherence length of the atomic matter wave comparable to the periodicity of the optical poten-
tial (λ/2 = 243 nm). In addition, a single photon recoil is enough to separate the ground state
part of the wave function by several half wavelengths from the excited state part while the atom
crosses the 2S-4P spectroscopy beams.

The system then has to be described by including the atom’s transverse momentum p along
the 2S-4P spectroscopy laser beams in the quantum mechanical model together with the atom’s
internal dynamics. Interaction with the laser beams changes the atom’s momentum by ±n~k,
corresponding to the exchange of n photons with momentum ~k, and thus couples the corre-
sponding momentum states, while spontaneous decay leads to a random recoil which averages
to zero. In this picture, the coupling of the momentum states modifies the line shape of the
transition probed and leads to a coherent superposition of the momentum states, corresponding
to a partial localization similar to the classical picture. An analytic solution to this problem
can be obtained with the effective Hamiltonian approach (see e.g. (53)), using the Wigner func-
tion to describe the initial momentum state of the atoms emerging from the nozzle and flying
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through the apertures in the apparatus (subject of an upcoming publication). Because of the
rapid decay of the 4P excited state to 1S ground state, the otherwise infinite momentum space
can be reduced and n = 4 is found to be sufficient to describe the system. This analytic solution
ignores the back decay of the excited 4P state to the initial 2SF=0

1/2 state, but since the branching
ratio is only 4% this approximation is adequate and has been confirmed with more sophisticated
models including this back decay. While it should in principle be possible to include effects that
influence the initial momentum state such as the 1S-2S excitation in this analytical solution, we
could also show that it is sufficient to describe the initial momentum state as a (fully delocalized)
momentum eigenstate |p〉. We can then employ our OBE simulation to describe the system in a
realistic experimental setting by including the momentum eigenstates |p+ n~k〉 along with the
internal states of the atom. Using the atomic trajectories discussed in Sec. 2.1 as input for the
OBE simulation, a Monte Carlo simulation can then be used to estimate shifts of the observed
line center caused by the coupling of momentum states.

In this way, we find a light force shift of -0.43(40) kHz and -0.26(25) kHz for the 2S-4P1/2

and 2S-4P3/2 transitions, respectively. The ν1/2 and ν3/2 transition frequencies have been cor-
rected for this shift. The uncertainty is limited by our knowledge of the atomic velocity distri-
bution, which is correlated for the two transitions. Thus the uncertainties are fully correlated
(r = 1) for the two transitions, leading to a correction of -0.32(30) kHz for ν2S−4P.

2.4 Model corrections
The Fano-Voigt line shape is derived from the perturbative description of quantum interference,
i.e. it does not account for effects such as back decay from the excited 4P state to the initial
2SF=0

1/2 state and the depletion of this initial state, leading to a saturation of the observed tran-
sition. In our system, 4% of the decays of the 4P state lead back to the initial 2SF=0

1/2 state and
we excite about 30% of the 2S atoms to the 4P state. Under these conditions, the line asymme-
tries due to quantum interference can increase more than two-fold over the perturbative regime
for the slowest probed atoms, i.e. those with longest interaction times with the spectroscopy
laser. However, we find that the Fano-Voigt line shape is still a good description for our system,
since the bulk of the increased line asymmetry is matched by it and thus can be accounted for
by fitting the Fano-Voigt line shape to the observed resonances. Only a small residual asym-
metry that does not match the asymmetry of the Fano-Voigt line shape remains. Importantly,
this residual asymmetry is significantly less detection geometry-dependent than the asymmetry
removed by the Fano-Voigt line shape, since it mainly stems from the small modification of the
2SF=0

1/2 population caused by the back decay of the 4P state to this state, which is independent
of the detection geometry. This allows us to model this residual asymmetry without the need to
accurately describe the detection geometry. The line shifts associated with this residual asym-
metry depend on the intensity of and interaction time with the spectroscopy laser and are on the
order of 1 kHz. As all effects stemming from quantum interference, the shifts are of opposite
sign for the two perturbing resonances. Since the intensities in the experiment were chosen such
that the Rabi frequencies are approximately identical for the two transitions probed, the shifts
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are of ratio 2:1 for the 2S-4P1/2 and the 2S-4P3/2 transitions. Thus, for the 4P fine structure
centroid ν2S−4P they largely cancel.

Apart from these effects related to quantum interference, there is also an AC Stark shift of
the atomic levels involved and a line shift associated with off-resonant excitations caused by
optical pumping into the 2SF=1

1/2 states. Both contributions lead to small shifts of the observed
line center on the order of 0.10 kHz. The initial population in the 2SF=1

1/2 states from Doppler-
sensitive two-photon excitation is negligible compared to the population accumulated in these
states through optical pumping.

All these effects are included in the OBE simulations of our system. For each recorded res-
onance, a corresponding line shape is generated from the OBE simulation. Experimental noise,
consisting of shot noise and slow drifts in the number of 2S atoms contributing to the signal,
is added and the resulting resonance is fit with the Fano-Voigt line shape, a process that is re-
peated multiple times in the fashion of a Monte Carlo simulation. The line center determined
from these fits is then used a model correction for the recorded resonances. With this, we find a
model correction of 1.34(23) kHz and -0.50(10) kHz for the ν1/2 and ν3/2 transition frequencies,
respectively. The uncertainty is estimated by varying the input parameters to the OBE simula-
tion within the experimental constraints. Some of the contributions to the uncertainty, such as
the spectroscopy laser power, are uncorrelated, while others, such as the atomic velocity distri-
bution, are correlated for the two transition measurements. The total uncertainty is found to be
partially anticorrelated (r = −0.65) for the two measurements, resulting in a model correction
of 0.11(6) kHz for ν2S−4P.

2.5 Sampling bias
As has been detailed in Sec. 1.3, there are small deviations symmetric about the line center
between the observed line shape and the Fano-Voigt line shape used for data analysis (the
asymmetric deviations are much smaller and included in the model corrections discussed in
Sec. 2.4). In combination with an experimental frequency sampling of the resonances that is
not quite symmetric about the line center, this can lead to a bias in the line center determined
from the fit to the resonance. We use our Monte Carlo simulations discussed in Sec. 2.4 to
estimate this bias and find it to be up to 2.1 kHz for the 2S-4P3/2 transition.

To reduce this bias, we enforce fair sampling of the resonance by selectively removing up
to two experimental frequency points for each resonance. The procedure is the following: First,
the simulated resonance is fit with the Fano-Voigt line shape for all available simulation points
and with no experimental noise added. Then, it is fit for the experimental frequency points,
with the difference in extracted line centers giving the bias to be reduced. Next, experimental
frequency points are removed and the simulated resonance is fit again. This is repeated for all
combinations of removing one or two points. Finally, we choose to remove the one or two
experimental points without which the bias is lowest (no point is removed if the bias is lowest
for full sampling), resulting on the removal of 1.94 frequency points on average. This procedure
is applied to every recorded resonance. The experimental data is then fit again with these points
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removed, leading to a slight increase in the statistical uncertainty of approximately 4%.
After applying this procedure, the sampling bias is, again using the Monte Carlo simulations,

found to be 0.34 kHz and 0.83 kHz for the 2S-4P1/2 and 2S-4P3/2 transitions, respectively. The
transition frequencies ν1/2 and ν3/2 have been corrected for this bias and an uncertainty of
0.40 kHz and 0.70 kHz, respectively, is assigned to these corrections. This uncertainty accounts
for the fact that a separate OBE simulation is used to estimate the light force shift (see Sec. 2.3)
and that this simulation shows very similar symmetric deviations (since it also includes the same
saturation effects and same Doppler-broadening as the quantum interference OBE simulation)
and thus leads to a very similar sampling bias. In order to avoid a double counting of this bias,
we only correct for the bias found for the quantum interference OBE simulation, but add the bias
of the light force shift OBE simulation as uncertainty. The uncertainty for the two transitions is
uncorrelated (r = 0), and thus ν2S−4P includes a correction of 0.44(49) kHz.

2.6 Second-order Doppler shift
The second-order Doppler effect is not canceled by the excitation of the 2S-4P transition utiliz-
ing phase-retracing beams. However, the signal weighted, mean squared velocity v2 = 255(30) m/s
provided by the cryogenic source of 2S atoms and estimated using the Monte Carlo simulations
described above, is sufficiently small so that the second-order Doppler shift only amounts to

∆νSOD = −1

2

v2

c2
ν2S−4P = −0.22(5) kHz. (S6)

The measured transitions frequencies ν1/2 and ν3/2 are corrected for the second-order Doppler
shift by subtracting ∆νSOD. The uncertainty is fully correlated (r = 1) for the two transitions,
and thus the correction and uncertainty for ν2S−4P is the same as for the individual frequencies.

2.7 dc-Stark shift
Special care was taken to suppress stray electric fields in the 2S-4P excitation region to avoid the
associated line shifts due to the dc-Stark effect. A grounded Faraday cage made from stainless
steel mesh with two wires (diameter 30µm) per millimeter shields the excitation region from
the static electric fields created by the channel electron multiplier input surfaces (+270 V) (see
Fig. 3 in the main text). The Faraday cage and all surfaces in the excitation region are spray-
coated with colloidal graphite to suppress the built-up of patch charges and to avoid fields due
to contact potentials. An upper limit of 0.6 V/m has been obtained for the field strength of
stray electric fields using 1S-2S spectroscopy in a dedicated setup with similar dimensions and
identical coating (1, 2, 54). We use this upper limit on the field strength to estimate line shifts
for the 2S-4P transitions.

The dc-Stark effect shifts the energies of the 4PF=1
1/2 and 4PF=1

3/2 levels (the shift of the 2SF=0
1/2

level is negligible on the current level of accuracy) in the presence of a static electric field
~F , with the energy shift ∆ω = 2π × aj,mF

F 2 proportional to the square of the field strength
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F = |~F |. The coefficients aj,mF
depends on the orientation of the static electric field ~F with

respect to the quantization axis of the atom, given by the linear laser polarization ~E. The
coefficients aj,mF

, derived by diagonalizing the atomic Hamiltonian in the presence of a static
electric field and fitting the resulting energy shifts with a quadratic function, are shown in table
S1.

The upper limit for the dc-Stark shift of the transition frequencies for the worst case orien-
tation of the stray electric fields is −0.03 kHz and −0.49 kHz for the 2S-4P1/2 and 2S-4P3/2

transitions, respectively. However, we assume that the orientation of possible stray electric
fields ~F is not correlated with the orientation of the linear polarization ~E of the spectroscopy
laser. Since the transition frequencies ν1/2 and ν3/2 are determined from data taken for different
orientations of the laser polarization (see Fig. 4 in the main text), the upper limit on the dc-Stark
shift for these transitions is further reduced by averaging over the different orientations of stray
electric fields. With this, we estimate an uncertainty due to the dc-Stark shift of 0.03 kHz and
0.30 kHz for the ν1/2 and ν3/2 transition frequencies, respectively. The uncertainty for the two
transitions is uncorrelated (r = 0) and the combined uncertainty is 0.20 kHz for ν2S−4P.

Furthermore, we note that the shift of the line center extracted by fitting the observed reso-
nance may be smaller than the shift of the energy levels, since the electric field does not only
shift the energy of the involved levels, but mixes different atomic levels. In this way, exci-
tations of the 4S and 4D levels (which now have some admixture of the 4P level) become
dipole-allowed. These transitions tend to cancel out the dc-Stark shift of the 4P levels when the
transitions are within the recorded laser frequency range. We have however not fully investi-
gated this cancellation, which depends on the excitation dynamics of the system, and thus here
use the shift of the energy levels as upper limit for the shift of the resonances.

2.8 Zeeman shift
The earth’s magnetic field is pre-compensated by three orthogonal pairs of Helmholtz coils out-
side the vacuum chamber. In addition, the 2S-4P excitation region is shielded from residual
magnetic fields by a double-layer high-permeability metal (mu-metal) shield. Thereby, mag-
netic fields are suppressed to less than 1 mG in a volume of about 15 cm3 around the 2S-4P
excitation region.

For a given magnetic flux density B, the linear Zeeman effect shifts the energies of the
magnetic sublevels mF = ±1 of the 4PF=1

1/2 (4PF=1
3/2 ) state by ∆E/~ = gFµBBmF/~ = 2π ×

0.467 kHz/mG (∆E/~ = 2π × 2.33 kHz/mG), using the appropriate g-factor gF and the Bohr
magneton µB. The observed transition frequency, i.e. the center of weight of the signals from
the different magnetic sublevels, will only be shifted if the mF = ±1 sublevels contribute
with different amplitudes. This situation requires some circularly polarized light about the
direction of the magnetic field, i.e. a mismatch in the intensities |EL|2 and |ER|2 of the left- and
right-polarized components as given by the Stokes parameter v = (|EL|2 − |ER|2)/(|EL|2 +
|ER|2). An upper limit for the shift of the observed transition frequency of ∆ω = ∆E/~ × v
is obtained by assuming that the magnetic field is aligned along the spectroscopy laser beam.
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We determine v from the measured intensity polarization extinction ratio Per = 1/200, limited
by the polarization-maintaining fiber, and find v = 0.14. Thus, we estimate the uncertainty
due to the Zeeman shift to be below 0.07 kHz and 0.33 kHz for the ν1/2 and ν3/2 transition
frequencies, respectively. The shift is uncorrelated (r = 0) for the two measured transitions and
a combined uncertainty of 0.22 kHz is assigned for ν2S−4P. The quadratic Zeeman effect that
would also affect the initial 2SF=0

1/2 , mF = 0 and the 4PF=1
1/2 , mF = 0 and 4PF=1

3/2 , mF = 0 states
is negligible at our current level of accuracy.

2.9 Pressure shift
To estimate the pressure shift we use the impact approximation for binary collisions (55). The
interaction energy between the perturbed and the perturbing atom is required as input for this
theory and is given by the near-field dipole-dipole interaction:

V̂ =
1

4πε0R3

(
d̂1xd̂2x + d̂1yd̂2y − 2d̂1zd̂2z

)
, (S7)

where R is the distance between the atoms and d̂ij with j = x, y, z are the components of the
electric dipole moment for the perturbing (i = 1) and perturbed (i = 2) atoms. The energy shift
of the product state |n〉 = |n1〉 ⊗ |n2〉 = |n1, n2〉 of the perturbing and perturbed atoms due to
the Van-der-Waals interaction can be calculated using second-order perturbation theory:

EVdW(n) =
∑

m,En 6=Em

|〈n|V̂ |m〉|2
En − Em

=
C6

R6
, (S8)

where |m〉 are all possible product states of the two atoms andEm is the energy of state |m〉. The
interaction energy is thus ∝ 1/R6 and the strength of the interaction is expressed by the coeffi-
cientC6. For resonant interactions,En−Em = 0, and Eq. S8 is not valid anymore. Furthermore,
in our case the perturbing and perturbed atoms can be connected by dipole-allowed transition
(e.g. colliding 4P and 1S atoms) and thus a resonant interaction of |n1, n2〉with |n2, n1〉 and non-
vanishing 〈n1, n2|V̂ |n2, n1〉 is possible, corresponding to an excitation exchange between the
atoms. Nevertheless, it is well known that these interactions only cause a line broadening, but
do not cause a line shift (56). Hence we can estimate the largest contribution with the smallest
possible En − Em and use the analytic expressions for the dipole matrix elements for collid-
ing hydrogen atoms in any states. Furthermore, we assume that all perturbing particles are 1S
atoms, since the density of 2S atoms is only ∼10−3 of the 1S atom density and the contribution
due to collisions with background molecules can be neglected as there is no close degeneracy.
The perturbation of atoms in the 2S initial state causes a negligible line shifts on the current
level of accuracy, leaving only the perturbation of the excited 4PJ atoms caused by collisions
with 1S atoms to consider. We approximate the sum in Eq. S8 with the minimum combined
internal energy difference given by the hyperfine splitting of 4Pj states (7.39623(7) MHz for
j = 1/2 and 2.95647(3) MHz for j = 3/2, see Fig. 2A in the main text) and obtain

C6(4P1/2 − 1S) = 1.9× 105hcR∞a
6
0, C6(4P3/2 − 1S) = 1.9× 106hcR∞a

6
0, (S9)
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with the Bohr radius a0. Within the impact approximation the C6 Van-der-Waals interaction
leads to a frequency shift of (55)

∆ω ≈ 2.9

(
C6

~

)2/5

v3/5N, (S10)

where v is velocity of colliding atoms and N is the density of the perturbing atoms. From
our experimental data, we estimate the concentration of 1S atoms in the beam to be Nbeam ≈
2.2 × 1015 atoms/m3 at temperature 5 K and the concentration of background atoms to be not
more than Nbkg ≈ 2.4 × 1015 atoms/m3 at temperature 300 K. Estimating the collisional ve-
locity of the atoms by their mean velocity, we find the contributions to the pressure shifts of
the two measured transitions to be ∆ω(4P1/2 − 1S, beam-beam) ≈ 2π × 3 Hz, ∆ω(4P1/2 −
1S, beam-background) ≈ 2π×9 Hz, ∆ω(4P3/2−1S, beam-beam) ≈ 2π×8 Hz and ∆ω(4P3/2−
1S, beam-background) ≈ 2π×23 Hz. Thus, the pressure shift is estimated to be below 0.01 kHz
for the 2S-4P1/2 transition and below 0.03 kHz for the 2S-4P3/2 transition. The uncertainty is
assumed to be fully correlated (r = 1) for the two transitions, resulting in an uncertainty of
0.02 kHz for ν2S−4P.

2.10 Laser spectrum and frequency calibration
The two laser systems used in the measurement, the spectroscopy laser for 2S-4P excitation
at 486 nm and the preparation laser for 1S-2S excitation at 243 nm, share a similar design.
Both laser systems consist of an external cavity diode laser as master oscillator running at
972 nm (57). The frequency of the lasers is stabilized to high-finesse Fabry-Pérot cavities (58),
which reduces the laser line width to a few Hz. However, the delta-shaped laser line sits on
a weak but broad noise pedestal (58). After power amplification with a tapered amplifier, the
light is frequency doubled (frequency doubled twice) to 486 nm (243 nm) for the spectroscopy
(excitation) laser system. The spectral purity of the lasers is routinely monitored by a beat note
between the two systems at 486 nm.

Asymmetries of the noise pedestal that might fold into the observed 2S-4P line shapes are
small because of the use of long external cavity diode lasers (see (57, 58)). We obtain an upper
limit of 0.10 kHz by artificially removing the noise pedestal on one side of the measured laser
spectrum, numerically folding it into the 2S-4P line shape, and fitting the result. The same laser
was used for both transition measurements and thus the upper limit is fully correlated (r = 1)
for the two measurements.

Both laser systems are phase-coherently linked to an Er-doped fiber frequency comb which
is referenced to an active hydrogen maser. The maser serves as the frequency reference for the
experiment and is calibrated (steered) via the global positioning system (GPS), resulting in a
fractional frequency uncertainty of 1 part in 1013. The maser calibration uncertainty translates
to an uncertainty of 0.06 kHz for the 2S-4P transition frequencies and is fully correlated (r = 1)
for the two measured transitions.
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The absolute frequencies of the laser systems are determined with a beat note with the
frequency comb at 972 nm. The frequency of the 2S-4P spectroscopy light ν486

Laser at 486 nm at a
given time t can be deduced from the beat note data with

ν486
Laser = 2× (N × νrep + 2νCEO − νLO) + 2× (νbeat(t)− νAOM(t)), (S11)

where νrep = 250 MHz denotes the repetition rate of the the frequency comb, νCEO = 30 MHz
the carrier-envelope offset frequency, νLO the frequency of an additional local oscillator used to
mix down the frequency of the beat note to νbeat(t) ≈ 20 MHz and νAOM(t) ≈ 350±30 MHz the
frequency of the acousto-optic modulator (AOM) used for scanning over the atomic resonance.
The comb mode numbers are N = 1 233 042 and N = 1 233 044 for the measurement of the
2S-4P1/2 and 2S-4P3/2 transitions, respectively.

The laser frequencies are determined with a linear fit of the comb beat note data νbeat(t)
and using Eq. S11, leading to an uncertainty in the laser frequency determination of less than
0.10 kHz for each recorded resonance. This leads to a negligible uncertainty for the determined
transition frequencies.

2.11 Recoil shift
Energy and momentum conservation require the absorbed photon energy to be larger than the
atomic resonance frequency ν by the recoil shift of the atom upon absorption. The correspond-
ing recoil shift can be written as

∆νrecoil =
h

2MH

(ν
c

)2

≈ 837.23 kHz, (S12)

with the mass of the hydrogen atom MH. ∆νrecoil is known with much smaller uncertainty than
required here. h/MH can be calculated using the experimental values of the ratio h/me of the
Planck constant h and the electron mass me, the binding energy of the H atom and the mass of
the proton and the electron in atomic mass units (3). The transition frequencies ν1/2, ν3/2 and
ν2S−4P given in the main text have been corrected for the recoil shift.

2.12 Hyperfine corrections
In order to obtain the transition frequency from the 2S hyperfine centroid to the 4P fine structure
centroid (see fig. S1), the measured transition frequencies ν1/2 and ν3/2 have to be corrected for
the hyperfine shift of the 2SF=0

1/2 , 4PF=1
1/2 and 4PF=1

3/2 states (table II in (38))

∆νHFS(2SF=0
1/2 ) = −133 167.6257(51) kHz, (S13)

∆νHFS(4PF=1
1/2 ) = +1848.8(1) kHz, (S14)

∆νHFS(4PF=1
3/2 ) = −1847.7(1) kHz. (S15)
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These shifts have been obtained experimentally (for 2S, see (59)) and by extrapolation to higher
n and include a small off-diagonal term of ∆νo.d.

HFS = ±0.313 kHz for the 4P states. The transition
frequency from the 2S hyperfine centroid to the 4P fine structure centroid, ν2S−4P (Eq. 9 in the
main text), is obtained by a weighted average of the hyperfine centroids

ν2S−4P =
1

3

(
ν1/2 −∆νHFS(4PF=1

1/2 )
)

+
2

3

(
ν3/2 −∆νHFS(4PF=1

3/2 )
)

+ ∆νHFS(2SF=0
1/2 )

=
1

3
ν1/2 +

2

3
ν3/2 − 132 552.092(75) kHz. (S16)

The fine structure splitting ∆νtheo
FS (4P) of the 4PF=1

1/2 and 4PF=1
3/2 states may readily be ob-

tained from the difference in the total binding energies of the 4PF=1
1/2 and 4PF=1

3/2 states given in
table IV in (38)

∆νtheo
FS (4P) = 1 367 433.3 (3) kHz. (S17)
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Supplementary figures
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Figure S1: Hydrogen 2S-4P level scheme (not to scale). The transition frequencies of the
2SF=0

1/2 -4PF=1
1/2 (ν1/2) and 2SF=0

1/2 -4PF=1
3/2 (ν3/2) transition are experimentally determined. The

transition frequency from the 2S hyperfine structure centroid to the 4P fine structure cen-
troid, ν2S−4P, is determined by combining ν1/2 and ν3/2 and correcting for the hyperfine shifts
∆νHFS(2SF=0

1/2 ), ∆νHFS(4PF=1
1/2 ) and ∆νHFS(4PF=1

3/2 ). The fine structure splitting ∆νFS(4P) corre-
sponds to the energy difference of the 4PF=1

1/2 and 4PF=1
3/2 states.
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Supplementary tables

Table S1: List of quadratic coefficients for the dc-Stark effect for the relevant atomic levels and
different orientations of the static electric field ~F with respect to the laser polarization ~E.

Level Orientation of ~F aj,mF
(Hz/(V/m)2)

4PF=1
1/2

~F ‖ ~E -97

4PF=1
1/2

~F ⊥ ~E -83

4PF=1
3/2

~F ‖ ~E 186

4PF=1
3/2

~F ⊥ ~E -1354

Table S2: List of corrections ∆ν and uncertainties σ for the determination of the 2SF=0
1/2 -4PF=1

1/2

(ν1/2) and 2SF=0
1/2 -4PF=1

3/2 (ν3/2) transition frequencies and the correlation coefficient r of the
uncertainties for the two transitions.

Contribution 2SF=0
1/2 -4PF=1

1/2 (ν1/2) 2SF=0
1/2 -4PF=1

3/2 (ν3/2)
Correlation
coefficient

∆ν (kHz) σ (kHz) ∆ν (kHz) σ (kHz) r

Statistics 0.00 0.48 0.00 0.56 0
First-order Doppler shift 0.00 2.92 0.00 2.84 0
Quantum interference shift 0.00 0.33 0.00 0.26 0
Light force shift -0.43 0.40 -0.26 0.25 1
Model corrections 1.34 0.23 -0.50 0.10 -0.65
Sampling bias -0.34 0.40 0.83 0.70 0
Second-order Doppler shift 0.22 0.05 0.22 0.05 1
dc-Stark shift 0.00 0.03 0.00 0.30 0
Zeeman shift 0.00 0.07 0.00 0.33 0
Pressure shift 0.00 0.01 0.00 0.03 1
Laser spectrum 0.00 0.10 0.00 0.10 1
Frequency standard (hydrogen maser) 0.00 0.06 0.00 0.06 1
Recoil shift -837.23 0.00 -837.23 0.00 n/a

Total -836.4 3.0 -836.9 3.0 0.011

20



Table S3: List of corrections ∆ν and uncertainties σ for the determination of the 4P fine struc-
ture splitting ∆νexp

FS (4P).

Contribution ∆ν (kHz) σ (kHz)

Statistics 0.00 0.74
First-order Doppler shift 0.00 4.07
Quantum interference shift 0.00 0.42
Light force shift 0.17 0.15
Model corrections -1.84 0.30
Sampling bias 1.17 0.81
Second-order Doppler shift 0.00 0.00
dc-Stark shift 0.00 0.30
Zeeman shift 0.00 0.34
Pressure shift 0.00 0.02
Laser spectrum 0.00 0.10
Frequency standard (hydrogen maser) 0.00 0.06
Recoil shift 0.00 0.00

Total -0.5 4.3
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B.1 Properties of the 2S-4P transition

Table B.1: Atomic properties of the 2S-4P transition. See Table 2.1, the corresponding Table for the
2S-6P transition, for details.

J (excited level) 1/2 (|e1〉) 3/2 (|e2〉)
Transition frequency νA,0 (kHz) 616 520 152 558.5 616 521 519 991.8
Transition wavenumber KL (1/m) 12 921 307 12 921 336

Dipole moment µ (e a0) − 512
2187

√
10
3

512
2187

√
2·10

3
Dipole moment µ (10−30 C m) −3.623 866 5.124 920
Rabi frequency Ω0 (rad/s (W/m2)−1/2) 2π × 150 123 2π × 212 306
Natural linewidth Γ/2π (Hz) 12 920 479 12 920 522
Decay rates A (1/s)
γe-2S: |e1/2〉 → 2S manifold 2π × 1 537 123 2π × 1 537 134
γei: |e1/2〉 → |i〉 2π × 512 375 2π × 1 024 756
Γe-1S: |e1/2〉 → 1S manifold 2π × 11 383 356 2π × 11 383 388
Γdet: Detected signal (Ly-γ)a 2π × 10 840 785 2π × 10 840 804

Non-resonant ac-Stark shift
coefficientb βac,q (Hz/(W/m2)) 3.184 21× 10−4 3.211 97× 10−4

Photoionization coefficientc βioni (Hz/(W/m2)) 1.053 00× 10−4 1.224 46× 10−4

Mass of hydrogen atom mH (kg) 1.673 533× 10−27

Recoil shift ∆νrec (Hz) 837 230 837 234
Recoil velocity vrec (m/s) 0.814 232 0.814 234

aIn the experiment, only Lyman decays are detected, with Ly-γ photons accounting for ∼99 % of the signal
(see Tables 4.1 and B.2).

bThis coefficient is derived from a perturbative calculation (see Appendix C.1) and does not include near-
resonant contributions.

cSee Appendix C.2. Only the excited level can be photoionized by light of frequency νA,0.
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Table B.2: Probability p and number N of Lyman (Ly) and Balmer (Ba) decay paths, i.e. decay
cascades with the final decay leading from the n′P level to the nS level for n = 1 and n = 2,
respectively, for an atom initially in the 4PF=1

1/2 , mF = 0 level. The decay paths are grouped by the
spherical component q = −∆mF = 0,±1 of the final decay, corresponding to π, σ± decays, respectively.
p is the ratio of the strengths of the considered decay paths to the total strength of all dipole-allowed
decay paths leading to the 1S and 2S level. N includes the number of possible paths leading to the
n′P level from which the final decay starts. There are no decay paths to the 3P level and thus no Ly-β
or Ba-α decays.

n n′ Energy π (q = 0) σ± (q = ±1) Sum (σ− + π + σ+)
(eV) p (%) N p (%) N p (%) N

Ly-α 1 2 10.20 1.268 54 1.466 53 4.199 160
Ly-γ 1 4 12.75 27.968 1 27.968 1 83.904 3
Ly 1 29.236 55 29.434 54 88.103 163
Ba-β 2 4 2.55 3.966 1 3.966 1 11.897 3
Ba 2 3.966 1 3.966 1 11.897 3
Sum 33.201 56 33.399 55 100.000 166

Table B.3: Same as Table B.2, but for an atom initially in the 4PF=1
3/2 , mF = 0 level.

n n′ Energy π (q = 0) σ± (q = ±1) Sum (σ− + π + σ+)
(eV) p (%) N p (%) N p (%) N

Ly-α 1 2 10.20 1.375 67 1.412 65 4.199 197
Ly-γ 1 4 12.75 55.936 1 13.984 1 83.904 3
Ly 1 57.311 68 15.396 66 88.103 200
Ba-γ 2 4 2.55 7.931 1 1.983 1 11.897 3
Ba 2 7.931 1 1.983 1 11.897 3
Sum 65.242 69 17.379 67 100.000 203
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Table B.4: Probability p and number N of Lyman (Ly) and Balmer (Ba) decay paths, i.e. decay
cascades with the final decay leading from the n′P level to the nS level for n = 1 and n = 2,
respectively, for an atom initially in the 4PF=1

1/2 , mF = 0 level. Similar to Table B.2, but with the
decay paths grouped by the final hyperfine level reached.

n n′ nSF=0
1/2 , mF = 0 nSF=1

1/2 , mF = 0 nSF=1
1/2 , mF = ±1

p (%) N p (%) N p (%) N

Ly-α 1 2 1.187 36 0.784 38 1.114 43
Ly-γ 1 4 27.968 1 0.000 0 27.968 1
Ly 1 29.155 37 0.784 38 29.082 44
Ba-β 2 4 3.966 1 0.000 0 3.966 1
Ba 2 3.966 1 0.000 0 3.966 1

Table B.5: Same as Table B.4, but for an atom initially in the 4PF=1
3/2 , mF = 0 level.

n n′ nSF=0
1/2 , mF = 0 nSF=1

1/2 , mF = 0 nSF=1
1/2 , mF = ±1

p (%) N p (%) N p (%) N

Ly-α 1 2 1.823 43 0.681 48 0.848 53
Ly-γ 1 4 55.936 1 0.000 0 13.984 1
Ly 1 57.759 44 0.681 48 14.832 54
Ba-γ 2 4 7.931 1 0.000 0 1.983 1
Ba 2 7.931 1 0.000 0 1.983 1
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B.2 Detection efficiency
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Figure B.1: Measurements of the properties of the materials used in the detector relevant to modeling
the detection efficiency, as summarized in Table 4.1. The measurements shown in (A–C) are taken
from [131], while the measurements of (D) are taken from [138] for graphite and from the results of
[149] as reproduced in [150] for aluminum.
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Appendix C

Non-resonant ac-Stark shift and
photoionization coefficients

The ac-Stark shift is the shift in energy of atomic levels caused by the interaction with elec-
tromagnetic radiation. Experimentally, it manifests itself as a shift in the observed transition
frequency as a function of laser intensity, with typically only effects first order in intensity
relevant. The shift of the transition frequency is the combined effect of the ground and excited
level of the transition shifting in energy. However, this shift can and generally does contain
various contributions, typically requiring different theoretical descriptions. One contribution
is the non-resonant coupling of the two levels of the transition to other levels, which is dis-
cussed here and can be treated in a perturbative fashion. This is typically the dominant
contribution in the spectroscopy of two-photon transitions, such as for the 1S-2S transition
used in this work. For one-photon transitions, such as the 2S-nP transitions, resonant con-
tributions become dominant. Then, a non-perturbative treatment such as solving the optical
Bloch equations discussed in Section 2.3.1 is necessary. Note that in this case, optical pump-
ing effects that lead to an intensity-dependent frequency shift will also be included in the
ac-Stark shift coefficient determined in this way.

In the next section, we discuss the contribution to the ac-Stark shift through non-resonant
coupling, since it is not included in our optical Bloch equations. The closely related effect of
photoionization is discussed in Appendix C.2.

C.1 Non-resonant ac-Stark shift

C.1.1 Light shift operator

We define the light shift operator QLS
q of an atom interacting with a single-frequency laser

field, following [56] but extending the description to arbitrary light polarizations, as

QLS
q =

∑
±

(−1)q r±q
1

H0 − Eφ ± ~ωL
r∓q, (C.1)

where rq, q = −1, 0, 1, are the spherical components of the electron position operator r, H0
is the unperturbed atomic Hamiltonian, and ωL is the angular frequency of the laser light.
Eφ is the energy of the atomic level under consideration, |φ〉 = |n, l,m〉, completely described
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by the principal quantum number n, the orbital angular momentum quantum number l, and
the magnetic quantum number m, i.e. for now we neglect fine and hyperfine structure.

Within the electric dipole approximation [37, 62], the electric dipole operator is given by
µ = er. The interaction between the atomic dipole and the electric field Ẽ of the laser light
is described by the operator V = −µẼ = −erẼ = −e∑q(−1)qr−qẼq. Thus, the components
q = −1, 0, 1 of the light shift operator form a complete spherical basis of the light polarization.
Throughout this section, without loss of generality, we take the z-axis as the quantization axis
of the atom, i.e. m measures the angular momentum projection onto the z-axis. Then, the
component q = 0 corresponds to linear polarization along the z-axis, while the components
q = ±1 correspond to circular (σ±) polarizations about the z-axis, i.e. with the electric field
vector rotating in the x-y-plane. Any polarization state can then be described by decomposing
it into these spherical components.

The ordering of the components of the operator r±q in Eq. (C.1) can be understood
as follows: the “−” term corresponds to an absorption of a photon with polarization q,
described with the operator r+q, changing the z-component of the atom’s angular momentum
by ∆m = q and leading to an excitation of a higher-lying virtual level. This is followed
by the emission of a photon (∆m = −q), described with the operator r−q, leading back to
the initial level. The “+” term, on the other hand, corresponds to the emission of a photon
(∆m = −q) and the excitation of a lower-lying virtual level, followed by the absorption of a
photon (∆m = q) leading back to the initial level.

The choice of the relative ± signs of the denominator and the operators r±q in Eq. (C.1)
can be motivated by decomposing into spherical components the real-valued electric field
Ẽ±(t, z) of circularly polarized laser light. As we define it here, Ẽ+ rotates counterclockwise
and Ẽ− rotates clockwise about the z-axis with frequency ωL, corresponding to σ+ and
σ− polarizations1, respectively. The decomposition of Ẽ±(t, z) results in

Ẽ±(t, z = 0) = Ẽ0√
2

(cos(ωLt)x̂± sin(ωLt)ŷ)

= Ẽ0
2
√

2
e−iωLt(x̂± iŷ) + Ẽ0

2
√

2
eiωLt(x̂∓ iŷ)

= ∓Ẽ0
2 e−iωLtr̂± ±

Ẽ0
2 eiωLtr̂∓, (C.2)

where x̂, ŷ are the Cartesian basis vectors in the plane of the electric field, r̂± = ∓ 1√
2(x̂ ±

iŷ) are the spherical basis vectors, and Ẽ0 is the electric field amplitude. Thus, the real-
valued electric field actually contains two counter-rotating components in the spherical basis2.
Realizing that e−iωLt and eiωLt correspond to the virtual absorption and emission of photons

1Note that some authors adopt the convention in which the sense of rotation is measured with respect to
the propagation direction the laser beam, and not with respect to the laboratory frame of reference as done
here. E.g., in the first convention, σ± polarization turns into σ∓ polarization upon retroreflection, while in
our convention, it does not.

2When an atomic transition is resonantly driven, only the e−iωLt part of Eq. (C.2) contributes to the
transition probability in an appreciable way, and the eiωLt part is usually neglected through the so-called
rotating wave approximation (see Section 2.3.1). Within this approximation, Ẽ± is then proportional to r̂±,
and in this context r̂± is often used synonymously with circular polarization. In the case of the light shift,
however, both oscillating parts of Eq. (C.2) generally correspond to off-resonant virtual excitations and we
thus cannot neglect either part.
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[63], respectively, in combination with the conclusions from the previous paragraph, then
dictates the structure of Eq. (C.1).

The dynamic polarizability PωL,q
(φ) of the atomic level |φ〉 is given by the corresponding

matrix element of QLS
q ,

PωL,q
(φ) = 〈φ|QLS

q |φ〉. (C.3)

PωL,q
(φ) is in general complex, with the real part describing an energy shift and the imaginary

part corresponding to a population loss through photoionization [56, 62]. Consequently, we
define the ac-Stark shift ∆νac as the energy shift, measured in frequency units (Hz), of the
level |φ〉 when the atom is placed in a laser beam with intensity Iloc as

∆νac(φ) = − e2

2ε0hc
Iloc Re

[
PωL,q

(φ)
]

= βac,q(φ)Iloc. (C.4)

Here, βac,q(φ) is the (real-valued) ac-Stark shift coefficient, given in units of Hz/(W/m2).
To evaluate PωL,q

(φ), we insert a complete basis of atomic levels, ∑∫ u |u〉〈u| = 1, |u〉 =
|nu, lu,mu〉, where the sum here symbolizes both a sum over the discrete bound levels of the
atom and an integral over the continuum levels, i.e. for a free electron and ionized core,

PωL,q
(φ) =

∑∫
u

∑
±

〈φ|(−1)q r±q|u〉〈u|r∓q|φ〉
Eu − Eφ ± ~ωL

=
∑∫
u

∑
±

|〈u|r∓q|φ〉|2

Eu − Eφ ± ~ωL
, (C.5)

where we have used H0|u〉 = Eu|u〉, with Eu ≡ Eu(nu, lu) the energy of level |u〉. The matrix
elements 〈u|rq|φ〉 are to good approximation constant over the range over which ωL is varied
when probing the atomic resonance.

C.1.2 Perturbation theory and on-resonance contributions
The expression given in Eq. (C.5) can be derived using second-order time-dependent pertur-
bation theory [56, 62, 181] and taking the operator V defined above as perturbation. During
this derivation, terms oscillating with twice the optical frequency (∝ e±i2ωLt) occur. However,
the contribution to the ac-Stark shift from these terms will average out for time scales much
longer than the inverse optical frequency, which is almost always fulfilled in spectroscopy
experiments. The terms are thus dropped to arrive at Eq. (C.5).

From this point of view, it is clear that Eq. (C.5) is only valid for the case of a small
perturbation that does not change the state of the atom substantially. Clearly, this is not the
case when driving a dipole-allowed transition with resonant laser light, leading to a substantial
depopulation and repopulation through decay of the initial state, as is the case in this work
for 2S-nP transitions. In Eq. (C.5), this results in a divergence, since for a laser resonant
with the transition from |φ〉 to |φ′〉, i.e. ~ωL = Eφ′ − Eφ, the “−” term in PωL,q

(φ) diverges
as Eu − Eφ − ~ωL = 0 for u = φ′, and likewise the “+” term in PωL,q

(φ′) diverges as Eu −
Eφ′ + ~ωL = 0 for u = φ. This divergence may be removed by including the linewidth Γu
of the perturbing level |u〉 by the replacement1 Eu − Eφ ± ~ωL → Eu − Eφ ± ~ωL + iΓu/2
in Eq. (C.5). Additionally, when |Eu − Eφ| ≈ ~ωL, we can no longer neglect the fine and
hyperfine structure as done here, since e.g. for the 2S-nP transitions there is a nonzero shift

1See [63], where the linewidth of the intermediate level in the related Kramers-Heisenberg equation is taken
into account in the same way.
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from the nP J = 1/2 level when resonantly driving the transition to the nP J = 3/2 level and
vice versa. However, even when including the linewidth and the fine and hyperfine structure,
the perturbative treatment cannot account for optical pumping effects, which are dominant
contributions to the effective ac-Stark shift for the 2S-nP transitions. Therefore, we have
to use non-perturbative methods such the optical Bloch equations discussed in Section 2.3.1
to determine the near-resonant contributions to the ac-Stark shift. In the following, these
contributions are excluded from PωL,q

, thus giving only the non-resonant ac-Stark shift. For
the 2S-nP transitions, this means that the level shift of the 2S (nP) level calculated in this
way includes the coupling to all levels except the resonant coupling to the nP (2S) level. On
the other hand, for two-photon transitions starting from the 1S or 2l levels, there are no
diverging contributions and hence all terms are included in PωL,q

.

C.1.3 Relation to the Bloch-Siegert shift
We note that, returning again to the case of a laser with polarization q and resonant with
the transition from |φ〉 = |nφ, lφ,mφ〉 to |φ′〉 = |nφ′ , lφ′ ,mφ′ = mφ+ q〉, the non-diverging “+”
term in PωL,q

(φ) for |u〉 = |nφ′ , lφ′〉 and the “−” term in PωL,q
(φ′) for |u〉 = |nφ, lφ〉 can be

evaluated and are included in the results given here. In fact, these terms together constitute
the Bloch-Siegert shift, which is a model error built into the master equation of atom–light
interaction when using the rotating wave approximation (RWA). For optical transitions, the
RWA is well motivated, and is used in this thesis, as detailed in Section 2.3.1. Evaluating the
terms of the Bloch-Siegert shift explicitly, we find

∆νφ′ac(φ) = − e2

2ε0hc
Iloc
|〈nφ′ , lφ′ ,mφ − q|r−q|φ〉|2

Eφ′ − Eφ + ~ωL
, (C.6)

∆νφac(φ′) = − e2

2ε0hc
Iloc
|〈nφ, lφ,mφ′ + q|rq|φ′〉|2

Eφ − E′φ − ~ωL
. (C.7)

It is instructive to look at the case for q = 0. Noting |〈nφ′ , lφ′ ,mφ|r0|φ〉|2 =
|〈nφ, lφ,mφ′ |r0|φ′〉|2 and using the definition of the Rabi frequency Ωφ→φ′ of the transition
from |φ〉 to |φ′〉 as given in Eqs. (2.30) and (2.31), we find

∆νφ′ac(φ) = −∆νφac(φ′) = − 1
2π

Ω2
φ→φ′

8ωL
. (C.8)

The Bloch-Siegert shift of the transition is then ∆νφac(φ′) − ∆νφ′ac(φ) = (1/2π) Ω2
φ→φ′/4ωL,

which matches1 the expression given in Eq. (2.45) of [182]. For the 2S-4P and 2S-6P transitions
and linear laser polarization, the contribution of the Bloch-Siegert shift to the non-resonant
ac-Stark shift is about 6 % and 4 %, respectively.

C.1.4 Spherical tensor decomposition

It is instructive to decompose QLS
q into two sets of spherical tensors of rank k ≤ 2 with 2k+ 1

components each, Q(k,±)
q′ , q′ = −k,−k + 1, . . . , k (see [183] for a similar decomposition of

1A different expression for the Bloch-Siegert shift is given in [29]. However, the contribution calculated
there is from driving to resonance separated in energy with a single field, which is different from the situation
here, where a single resonance is driven with an on-resonance and off-resonance field.
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the two-photon transition operator). Q(k,±)
q′ are given by the tensor product of two spherical

vectors (spherical tensors of rank 1, here the two position operators rq) and a scalar (a
spherical tensor of rank 0, here 1

H0−Eφ±~ωL
) as (see Eq. (14.45) of [159])

Q
(k,±)
q′ =

∑
q1,q2

〈1 q1 1 q2|k q′〉 rq1
1

H0 − Eφ ± ~ωL
rq2 . (C.9)

For a given laser polarization q, the light shift operator QLS
q is then given by

QLS
q =

∑
k,q′

∑
±
a

(k,±)
q′ (q)Q(k,±)

q′ , (C.10)

with a
(k,±)
q′ (q) = (−1)q〈1 ±q 1 ∓q|k q′〉

=
{

(−1)q〈1 ±q 1 ∓q|k 0〉 q′ = 0
0 q′ 6= 0. (C.11)

The numerical values of the coefficients a(k,±)
0 (q) are given by:

k a
(k,±)
0 (−1) a

(k,±)
0 (0) a

(k,±)
0 (+1)

0 −
√

1/3 −
√

1/3 −
√

1/3
1 ±

√
1/2 0 ∓

√
1/2

2 −
√

1/6
√

2/3 −
√

1/6

Inspecting a(k,±)
0 (q), we can further simplify Eq. (C.10) to

QLS
q =

∑
k

a(k)(q)
∑
±

(∓1)kQ(k,±)
0 =

∑
k

a(k)(q)Q(k), (C.12)

with a(k)(q) = a
(k,−)
0 (q), (C.13)

Q(k) =
{
Q

(k,−)
0 +Q

(k,+)
0 k = 0, 2

Q
(1,−)
0 −Q(1,+)

0 k = 1.
(C.14)

Therefore, for q = 0, corresponding to linear polarization along the z-axis, QLS
q only contains

spherical tensors of rank 0 and 2, while for q = ±1, corresponding to circular polarization
about the z-axis, QLS

q additionally contains rank-1 spherical tensors.
The calculation of the dynamic polarizability is then shifted to the evaluation of the matrix

elements of Qk0, since

PωL,q
(φ) =

∑
k

a(k)(q)
∑
±

(∓1)k〈φ|Q(k,±)
0 |φ〉. (C.15)

The problem can be further simplified by the use of the Wigner-Eckart theorem (see
Eq. (14.14) of [159]), giving

PωL,q
(φ) =

∑
k

a(k)(q)
∑
±

(∓1)k(−1)l−m〈n, l||Q(k,±)||n, l〉
(

l k l
−m 0 m

)
, (C.16)
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Table C.1: Numerical values of ac-Stark shift coefficients β̃(k)
ac for the 2S-nP transitions, with the laser

frequency chosen such that one-photon excitation is resonant. The coefficients include the coupling
of the 2S (nP) level to all other levels except the nP (2S) level, see text for details. The coefficient
βac,q(φ̃) for a given HFS level can be found by applying Eq. (C.20) and the finite nucleus mass can by
included by multiplying with the factor given in Eq. (C.22). As for the numbers given in Table 2.1,
relativistic effects have been neglected and the results are only expected to be accurate on the order
of α2, but a higher precision is given to facilitate comparison with results given elsewhere.

2S-nP β̃
(0)
ac (2S) β̃

(0)
ac (nP) β̃

(1)
ac (nP) β̃

(2)
ac (nP)

(Hz/(W/m2)) (Hz/(W/m2)) (Hz/(W/m2)) (Hz/(W/m2))
2S-3P 6.064 87× 10−4 −3.988 32× 10−3 1.784 63× 10−3 −1.499 42× 10−3

2S-4P −4.710 19× 10−4 −1.769 53× 10−3 2.625 75× 10−4 −1.858 76× 10−4

2S-5P −5.230 83× 10−4 −1.334 00× 10−3 8.888 53× 10−5 −5.865 28× 10−5

2S-6P −5.200 67× 10−4 −1.166 71× 10−3 4.168 79× 10−5 −2.651 68× 10−5

2S-7P −5.128 16× 10−4 −1.082 56× 10−3 2.319 98× 10−5 −1.445 54× 10−5

2S-8P −5.067 49× 10−4 −1.033 58× 10−3 1.432 61× 10−5 −8.832 02× 10−6

2S-9P −5.021 97× 10−4 −1.002 30× 10−3 9.471 67× 10−6 −5.825 90× 10−6

2S-10P −4.988 37× 10−4 −9.810 11× 10−4 6.556 14× 10−6 −4.060 22× 10−6

where the last term is the Wigner 3-j symbol and 〈n, l||Q(k,±)||n, l〉 is the reduced matrix
element1 of Q(k,±)

q′ . This reduced matrix element can be expressed in terms of the reduced
matrix elements of the position operator r, from which the tensor Q(k,±)

q′ was constructed
from, as (see Eq. (7.1.1) of [184])

〈n, l||Q(k,±)||n, l〉 =
√

2k + 1 (−1)k+2l ∑
nu,lu

{
1 1 k
l l lu

}
|〈nu, lu||r||n, l〉|2

Eu(nu, lu)− Eφ(n, l)± ~ωL
, (C.17)

where the curly brackets is the Wigner 6-j symbol, and again the sum over nu includes both
a sum over the bound and the continuum levels.

C.1.5 ac-Stark shift coefficient for fine and hyperfine levels

The coupling of the orbital angular momentum L with the electron spin S results in fine
structure (FS) sublevels with angular momentum J = L+ S. Since L and S commute, the
reduced matrix elements of Q(k,±)

q′ with respect to the FS sublevel |n, l, J〉 are given by (see
Eq. (14.69) of [159])

〈n, l, J ||Q(k,±)||n, l, J〉 = (−1)l+S+J+k〈n, l||Q(k,±)||n, l〉(2J + 1)
{
l J S
J l k

}
. (C.18)

1The reduced matrix element is defined by and determined through the Wigner-Eckart theorem, which is
given with different phase and normalization factors by different authors, thus resulting in different values of
the reduced matrix element. The definition of [159] matches that of [184] and [56], but not of [62].
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Table C.2: Numerical values of ac-Stark shift coefficients β̃(k)
ac as in Table C.1, but for a selection

of 1S-nS, 1S-nD, and 2S-nD transitions relevant for precision spectroscopy, with the laser frequency
chosen such that two-photon excitation is resonant. These results extend the values given in Tables
IV, VI, and VII in [56] to arbitrary laser polarizations.

1S/2S-nl β̃
(0)
ac (1S/2S) β̃

(0)
ac (nl) β̃

(1)
ac (nl) β̃

(2)
ac (nl)

(Hz/(W/m2)) (Hz/(W/m2)) (Hz/(W/m2)) (Hz/(W/m2))
1S-2S 4.638 90× 10−5 −2.423 61× 10−4 — —
1S-3S 5.232 59× 10−5 −1.698 88× 10−4 — —
1S-4S 5.513 13× 10−5 −1.500 80× 10−4 — —
1S-3D 5.232 59× 10−5 −3.661 18× 10−4 −4.152 06× 10−6 1.600 28× 10−5

1S-4D 5.513 13× 10−5 −3.296 35× 10−4 −1.895 42× 10−6 5.766 42× 10−6

2S-3D 1.244 99× 10−3 2.038 59× 10−2 −2.641 00× 10−2 6.122 09× 10−3

2S-4D 1.641 64× 10−3 −9.483 44× 10−3 1.561 98× 10−3 −2.009 10× 10−4

2S-5D 2.024 50× 10−3 −6.778 24× 10−3 1.960 43× 10−4 2.326 76× 10−4

2S-6D 2.362 14× 10−3 −5.903 79× 10−3 −1.012 21× 10−5 2.009 71× 10−4

2S-7D 2.647 76× 10−3 −5.494 76× 10−3 −4.724 59× 10−5 1.492 97× 10−4

2S-8D 2.884 51× 10−3 −5.264 86× 10−3 −4.901 52× 10−5 1.101 76× 10−4

2S-9D 3.079 12× 10−3 −5.120 65× 10−3 −4.296 99× 10−5 8.259 88× 10−5

2S-10D 3.238 84× 10−3 −5.023 32× 10−3 −3.595 84× 10−5 6.313 19× 10−5

2S-11D 3.370 27× 10−3 −4.954 10× 10−3 −2.971 58× 10−5 4.916 07× 10−5

2S-12D 3.478 96× 10−3 −4.902 87× 10−3 −2.455 86× 10−5 3.893 73× 10−5

Likewise, the coupling of J with the nuclear spin I to F = J+I results in hyperfine structure
(HFS) levels |n, l, J, F 〉. J and I also commute, giving

〈n, l, J, F ||Q(k,±)||n, l, J, F 〉 = (−1)J+I+F+k〈n, l, J ||Q(k,±)||n, l, J〉(2F + 1)
{
J F I
F J k

}
.

(C.19)

Finally, we can give an expression of the ac-Stark shift coefficient βac,q(φ̃) of the HFS level
|φ̃〉 = |n, l, J, F,mF 〉 and for laser polarization q as

βac,q(φ̃) =
∑
k

(−1)l+S+2J+I+2F+2k−mF (2J + 1)(2F + 1)

×
(

F k F
−mF 0 mF

){
l J S
J l k

}{
J F I
F J k

}
× a(k)(q) β̃(k)

ac (nl),

(C.20)

where we have defined in analogy to Eq. (C.14)

β̃(k)
ac (nl) =

{
〈n, l||Q(k,−)||n, l〉+ 〈n, l||Q(k,+)||n, l〉 k = 0, 2
〈n, l||Q(k,−)||n, l〉 − 〈n, l||Q(k,+)||n, l〉 k = 1. (C.21)

Note that for atomic S levels (l = 0), β̃(k)
ac (nl) is nonzero only for k = 0.
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To facilitate the comparison of our results, e.g. with [56], the values given for β̃(k)
ac (n, l)

here correspond to the case of an infinitely heavy nucleus. To take the finite nucleus mass
mN into account, the coefficients β̃(k)

ac (n, l) have to be multiplied by a factor(
mN +me
mN

)3

, (C.22)

where me is the electron mass. For atomic hydrogen [45], this factor is equal to 1.001 63.
In Table C.1 we give numerical values of β̃(k)

ac (nl) for the one-photon 2S-nP transitions
considered in this work. Results for the two-photon 1S-nS, 1S-nD, and 2S-nD transitions is
also given in Table C.2, extending the results of [56] for arbitrary laser polarizations. Note
that the ac-Stark shift coefficients β(k)

ac (nl) given in [56] already include the laser polarization
factor a(k)(q) for linear polarization (q = 0), i.e. β(k)

ac (nl) = a(k)(0)β̃(k)
ac (nl).

C.1.6 ac-Stark shift for counter-propagating laser beams
So far, we have only considered the interaction with a light field with constant intensity Iloc.
An important special case is the interaction with the superposition of two counter-propagating
light beams with identical frequencies.

C.1.6.1 Counter-propagating beams with parallel linear polarizations

We first consider the case where the two light beams are both linearly polarized along the
same axis, here taken to be the z-axis and thus corresponding to q = 0. Assuming both beams
have the same electric field amplitude Ẽ0, the combined electric field is given by

Ẽlin‖lin(t, x) = Ẽ0ẑ (cos(ωLt−KLx) + cos(ωLt+KLx))
= 2Ẽ0ẑ cos(ωLt) cos(KLx), (C.23)

where KL is the wavenumber of the laser beams, and the beams are taken to propagate
along the x-axis. The resulting total intensity is Ilin‖lin(x) = 4I cos2(KLx), with the intensity
I = cε0Ẽ

2
0/2 of each of the beams. Thus, the total intensity Ilin‖lin(x) is spatially modulated,

with the two beams forming an intensity standing wave. Both the excitations of the 1S-
2S transition and the 2S-nP transition take place in such a configuration in the experiments
described in this work.

Since the position and time dependence of the electric field Ẽlin‖lin(t, x) can be separated
and QLS

q does not act on the atom’s position, the ac-Stark shift at position x is then described
by using Iloc = Ilin‖lin(x) and q = 0 in Eq. (C.4).

While Eq. (C.4) describes the ac-Stark shift of the atomic levels at any position and time,
in the experiment we obtain an integrated signal of many atoms, traveling with a range of
velocities vx along the intensity standing wave. We are interested in the ac-Stark shift of
the observed transition frequency, derived from this signal. In many cases, the modulation
of the ac-Stark shift due to intensity modulations will then average out1, e.g. by the atoms
moving through many modulations as the signal is collected or probing a range of intensities
simultaneously. To describe the ac-Stark shift of the signal, it is advantageous to work in the

1Note that intensity modulations on a larger spatial case, such as from the intensity profile of the Gaussian
laser beams, typically cannot be averaged over and are taken into account explicitly in this work.
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atom’s reference frame, where the two beams have their frequencies Doppler-shifted by the
equal and opposite amount, ∆νD = ±KLvx/2π, from the frequency in the laboratory frame.

For the excitation of the 1S-2S transition, this situation has been discussed in [56] for
very similar experimental parameters as used in this work. It is found that in the case where
the Doppler shift is much larger than any other characteristic frequencies such as the Rabi
frequency and the linewidth (see Eq. (19) of [56]), applicable here, the problem can be treated
as if there is a constant ac-Stark shift from each of the beams. The total ac-Stark shift of
the signal is then just given by setting Iloc = 2I. Put another way, for averaging to occur,
the time scale of the intensity modulation, given by π/vxKL = π/∆νD, must be much shorter
than the excitation time scale, given by the Rabi frequency and the linewidth.

When probing the 2S-nP transitions in this work, on the other hand, the Doppler shift
can be much smaller than these characteristic frequencies, since the standing wave is oriented
perpendicular to the atomic beam. For a complete picture, Eq. (C.4) then needs to be in-
cluded in the optical Bloch equations derived in Chapters 2 and 3. However, the intensity
modulations are still expected to average out to a great extend, since we observe the signal
from many atoms, all sampling different trajectories through the standing light wave1. Fur-
thermore, as discussed in Chapter 3, the atoms are partially delocalized over the standing
wave. Finally, the non-resonant ac-Stark shift is orders of magnitude below the measurement
uncertainty, and thus we here can set Iloc = 2I to estimate its contribution.

C.1.6.2 Counter-propagating beams with orthogonal circular polarizations

Another configuration of interest is the superposition of two counter-propagating light beams
with orthogonal circular polarizations, i.e. with their fields rotating in the opposite sense in the
laboratory frame. This configuration is e.g. used in the spectroscopy of the 1S-3S transition
in atomic hydrogen in [135]. Taking the beam with σ+ (σ−) polarization, corresponding to
q = +1 (q = −1), and electric field amplitude Ẽσ+ (Ẽσ−) to be propagating in the positive
(negative) direction along the z-axis, the combined electric field reads (see Eq. (C.2))

Ẽσ+,σ−(t, z) =
Ẽσ+

2
(
−e−iωLt+iKLzr̂+ + eiωLt−iKLzr̂−

)
+
Ẽσ−

2
(
e−iωLt−iKLzr̂− − e

iωLt+iKLzr̂+

)
,

(C.24)

where KL is the wavenumber of the laser beams. The total intensity Iσ+,σ− = Iσ+ +Iσ− of this
configuration is simply the sum of the individual intensities of the two beams, Iσ± = cε0Ẽ

2
σ±/2,

and thus there is no spatial modulation as in the case of parallel linear polarizations.
To calculate the resulting ac-Stark shift from such a field, we evaluate the effect of the

perturbation V = −erẼ
σ+,σ−(t, x) within second-order time-dependent perturbation theory.

Again neglecting terms oscillating at twice the optical frequency, the only remaining terms
proportional to Ẽσ+Ẽσ− , corresponding to a virtual absorption of a photon from one beam and
a virtual emission of a photon into the other beam (and vice versa), contain the combination
of dipole matrix elements

〈φ|r±q|u〉〈u|r±q|φ〉. (C.25)
1One caveat is that atoms experiencing a greater ac-Stark shift because of larger local intensity generally

tend to contribute more to the detected signal, and thus the ac-Stark shift of the averaged signal does not
necessarily equal the intensity-averaged ac-Stark shift.
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Table C.3: Numerical values of photoionization coefficients β̃(k)
ac for the 2S-nP transitions, with the

laser frequency chosen such that one-photon excitation is resonant, analogous to the the ac-Stark shift
coefficients given in Table C.1.

2S-nP β̃
(0)
ioni(nP) β̃

(1)
ioni(nP) β̃

(2)
ioni(nP)

(Hz/(W/m2)) (Hz/(W/m2)) (Hz/(W/m2))
2S-3P −2.356 55× 10−3 1.710 15× 10−3 −7.830 85× 10−4

2S-4P −3.153 85× 10−4 2.159 28× 10−4 −1.148 32× 10−4

2S-5P −1.039 75× 10−4 6.947 13× 10−5 −3.918 58× 10−5

2S-6P −4.824 30× 10−5 3.182 99× 10−5 −1.849 45× 10−5

2S-7P −2.673 68× 10−5 1.751 05× 10−5 −1.035 06× 10−5

2S-8P −1.652 02× 10−5 1.076 85× 10−5 −6.434 87× 10−6

2S-9P −1.098 67× 10−5 7.138 67× 10−6 −4.297 22× 10−6

2S-10P −7.706 17× 10−6 4.995 77× 10−6 −3.022 91× 10−6

These terms however give no contribution, since 〈u|r±q|φ〉 implies mu = mφ ± 1, while
〈φ|r±q|u〉 implies mu = mφ ∓ 1, corresponding to an unphysical situation. Thus, the ex-
pression for the ac-Stark shift only contains terms proportional to Ẽσ+Ẽσ+ or Ẽσ−Ẽσ− , but
not to Ẽσ+Ẽσ− .

In other words, when absorbing a photon with polarization q = ±1, leading to an exci-
tation of a virtual level |u〉 with mu = mφ ± 1, the stimulated emission leading back to the
initial level must correspond to the emission of a photon with polarization q = ±1 such that
mφ = mu ∓ 1. This is only possible if both photons are from the same beam.

Thus, in this case the total ac-Stark shift ∆νac(φ̃) of the atomic levels |φ̃〉 is the sum of
the ac-Stark shifts from each of the beams as given in Eq. (C.4), i.e.

∆νac(φ̃) = βac,+1(φ̃)Iσ+ + βac,−1(φ̃)Iσ− (C.26)

with the coefficients βac,±(φ̃) as given in Eq. (C.20). In the special case where |φ̃〉 is an atomic
S level, βac,−1(φ̃) = βac,1(φ̃) = βac,0(φ̃), since β̃(k)

ac (nl) = 0 for k 6= 0.

C.2 Photoionization

Photoionization is the ionization of the atom through absorption of a photon of sufficient
energy, resulting in a free electron and an ionized atom. This effect is contained in the light
shift operator defined in the previous section (Eq. (C.1)) and manifests itself through an
imaginary part in the dynamic polarizability PωL,q

(Eq. (C.3)) [56, 62]. The rate γioni(φ) at
which the level |φ〉 is ionized is then given by

γioni(φ) = − e2

~ε0c
Iloc Im

[
PωL,q

(φ)
]

= 2πβioni(φ)Iloc. (C.27)

In analogy to the ac-Stark shift coefficient βac,q(φ), βioni(φ) is the (real-valued) ionization
coefficient, given in units of Hz/(W/m2).
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Table C.4: Numerical values of photoionization coefficients β̃(k)
ac for 1S-nS, 1S-nD, and 2S-nD transi-

tions, with the laser frequency chosen such that two-photon excitation is resonant, analogous to the
the ac-Stark shift coefficients given in Table C.2.

1S/2S-nl β̃
(0)
ioni(nl) β̃

(1)
ioni(nl) β̃

(2)
ioni(nl)

(Hz/(W/m2)) (Hz/(W/m2)) (Hz/(W/m2))
1S-2S −2.082 06× 10−4 — —
1S-3S −3.502 91× 10−5 — —
1S-4S −1.231 12× 10−5 — —
1S-3D −6.364 11× 10−6 5.874 56× 10−6 −2.590 44× 10−6

1S-4D −2.411 19× 10−6 2.193 84× 10−6 −9.934 92× 10−7

2S-4D −3.318 77× 10−3 3.056 57× 10−3 −1.353 48× 10−3

2S-5D −1.012 77× 10−3 9.129 92× 10−4 −4.205 07× 10−4

2S-6D −4.550 79× 10−4 4.057 29× 10−4 −1.906 56× 10−4

2S-7D −2.479 88× 10−4 2.196 75× 10−4 −1.044 32× 10−4

2S-8D −1.516 84× 10−4 1.338 18× 10−4 −6.408 42× 10−5

2S-9D −1.002 15× 10−4 8.816 71× 10−5 −4.243 13× 10−5

2S-10D −6.997 25× 10−5 6.144 02× 10−5 −2.967 20× 10−5

2S-11D −5.093 60× 10−5 4.466 09× 10−5 −2.162 38× 10−5

2S-12D −3.830 86× 10−5 3.355 27× 10−5 −1.627 69× 10−5

The evaluation of the integrals giving the imaginary part of PωL,q
is not always straight-

forward. Instead, we here directly calculate the photoionization coefficient using first-order
time-dependent perturbation theory1, which can be shown to be formally equivalent to the
former approach in this case [56, 62]. This approach gives

βioni(φ) = πe2

hε0c

∑∫
u

|〈u|rq|φ〉|2. (C.28)

The sum is over all continuum levels |u〉 = |nu, lu,mu〉 with energy Eu = Eφ + ~ωL and a
nonzero dipole matrix element 〈φ|rq|u〉, as determined by the dipole selection rules (e.g. a
P level is connected to S and D continuum levels).

Since the structure of the underlying operator is identical for both the ac-Stark shift and
photoionization, the photoionization coefficient βioni(φ̃) of any HFS level |φ̃〉 can also be given
as a combination of the coefficients β̃(k)

ioni(nl). βioni(φ̃) can then be calculated using Eq. (C.20)
by substituting β̃(k)

ac (nl) with β̃(k)
ioni(nl). Note that since only the “−” in Eq. (C.1) contributes

to photoionization, β̃(k)
ioni(nl) = 〈n, l||Q(k,−)||n, l〉, as opposed to the corresponding definition of

β̃
(k)
ac (nl) in Eq. (C.21). The correction factor given in Eq. (C.22) and the discussion regarding

intensity modulations also apply. Numerical values of β̃(k)
ioni(nl) are given in Table C.3 for

the one-photon 2S-nP transitions, and in Table C.4 for the two-photon 1S-nS, 1S-nD, and
2S-nD transitions, again extending the results of [56] for arbitrary laser polarizations.

1Note that in first-order perturbation theory, the amplitude of the photoionized level |u〉 perturbing the
atomic level |φ〉 is proportional to 〈u|rq|φ〉, but the probability to find the system in |u〉 is proportional to
|〈u|rq|φ〉|2.
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