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Summary

Summary

The myelin sheath is an essential protecting layer around the axons of the nerve cells in
our brain. This insulation is necessary for a fast transmission of action potentials between
cells and enables proper motor function, sensory function and cognition in our body. A
proportion of patients with inflammatory diseases of the central nervous system harbour
antibodies (Abs), that attack the myelin oligodendrocyte glycoprotein (MOG), which is
expressed on the outermost surface of this insulating myelin layers. There is growing
consensus that patients with Abs against MOG constitute the separate disease entity MOG
Ab associated disorder (MOGAD).

In the first part of this thesis we aimed to elucidate the pathogenic mechanisms of MOG
Abs in transfer experiments (in collaboration with PD. Dr. Naoto Kawakami and Prof.
Dr. Hans Lassmann). Hereby, we selected two patients harbouring MOG Abs with a
cross-reactivity to rodent MOG. We successfully affinity-purified MOG Abs from these
patients, which recognized full-length MOG on transfected cells and showed a myelin
staining on tissue sections. Further, we demonstrated that these patient-derived MOG Abs
were pathogenic upon intrathecal injection in two different rat models. Together with
cognate MOG-specific T cells, these Abs enhanced T-cell infiltration; together with
myelin basic protein—specific T cells, which strongly breach the blood brain barrier, they
induced demyelination associated with complement deposition. These pathogenic
changes resembled a multiple sclerosis type II pathology, suggesting that these Abs are

similarly pathogenic in patients.

Second, we set out to identify MOG-specific B cells in blood of patients with MOG Abs.
Herby, we differentiated B cells from blood ex vivo into immunoglobulin-producing cells
and quantified the MOG recognition of the produced Abs. Thereby, we detected in most,
but not all patients MOG-specific B cells in the blood. These circulating MOG-specific
B cells did not show a correlation with anti-MOG Ab levels in serum, suggesting other
sources for MOG Abs in these patients. In addition, we were able to reveal an
intraindividual heterogeneity of the anti-MOG autoimmunity by analyzing the epitope

recognition of MOG Abs secreted from cultured blood cells.

Together, this thesis has two major findings. First, two pathogenic mechanisms of MOG
Abs from MOGAD-patients are uncovered, namely demyelination and enhancement of

cognate T cell activation. Second, patients with MOGAD differ in the presence of

10



Summary

circulating MOG-specific B cells; this could be useful in the future to stratify patients
with MOGAD for therapy optimization.
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Zusammenfassung

Zusammenfassung

Die Axone der Nervenzellen in unserem Gehirn sind grofitenteils von einer schiitzenden
Myelinschicht umgeben. Diese Isolierung ist notwendig fiir eine schnelle Ubertragung
von Aktionspotentialen zwischen den Zellen und ermdglicht unserem Korper eine
einwandfreie Funktion der Motorik, Sensorik und Wahrnehmung. Bei einem Teil der
Erkrankten mit entziindlichen Krankheiten des zentralen Nervensystems kommen
Antikdrper vor, die das Myelin-Oligodendrozyten-Glykoprotein (MOG) angreifen.
Dieses befindet sich auf der duflersten Oberflidche der isolierenden Myelinschicht. Seit
den letzten Jahren gibt es eine wachsende FEinigkeit dariiber, dass Erkrankte mit
Antikorpern gegen MOG die eigenstindige Krankheitsentitit MOGAD (aus dem
Englischen fiir MOG antibody associated disorder) bilden.

Der erste Teil dieser Arbeit hatte zum Ziel, die pathogenen Mechanismen von MOG
Antikdrpern in Transferexperimenten zu untersuchen (in Zusammenarbeit mit PD. Dr.
Naoto Kawakami und Prof. Dr. Hans Lassmann). Fiir diese Experimente haben wir zwei
Erkrankte ausgewdhlt, die kreuzreaktive Antikorper gegen MOG aus Nagetieren
aufweisen. Wir konnten erfolgreich affinititsgereinigte MOG Antikérper von diesen
Erkrankten isolieren, die das Vollldngenprotein von MOG auf transfizierten Zellen
erkannten und Myelin auf Gewebeschnitten farbten. Des Weiteren konnten wir zeigen,
dass diese humanen MOG Antikorper nach intrathekaler Injektion in zwei verschiedenen
Rattenmodellen pathogen waren. Zusammen mit kognitiven MOG-spezifischen T-Zellen
verstarkten diese Antikorper die T-Zell-Infiltration. Gemeinsam mit Basischen
Myelinprotein-spezifischen T-Zellen, die selbst in der Lage sind die Blut-Hirn-Schranke
zu durchbrechen, 18sten sie eine Demyelinisierung aus, die mit der Ablagerung von
Komplement einherging. Diese pathogenen Verdnderungen dhnelten einer Multiple-
Sklerose-Typ-II-Pathologie, was darauf schlieBen lédsst, dass diese Antikdrper bei den

Erkrankten @hnlich pathogen wirken.

Der zweite Teil dieser Arbeit hatte zum Ziel die MOG-spezifischen B-Zellen im Blut von
Erkrankten mit MOG Antikorpern zu untersuchen. Dazu differenzierten wir B-Zellen aus
Blut ex vivo zu Immunglobulin-produzierenden Zellen und quantifizierten die Reaktivitat
gegen MOG der freigesetzten Antikorper. Dabei konnten wir bei den meisten, aber nicht
allen Erkrankten, MOG-spezifische B-Zellen im Blut nachweisen. Diese zirkulierenden
MOG-spezifischen B-Zellen zeigten keine Korrelation mit dem Spiegel von MOG
Antikorpern im Serum, was auf andere Quellen fir MOG Antikdrper bei diesen

Erkrankten hindeutet. Dariiber hinaus konnten wir eine intraindividuelle Heterogenitét

12
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der anti-MOG-Autoimmunitit feststellen, indem wir die Epitoperkennung von MOG-

Antikdrpern der kultivierten Blutzellen analysierten.

Zusammengefasst trigt diese Arbeit zu zwei wesentlichen Erkenntnissen bei. Erstens
werden zwei pathogene Mechanismen von MOG Antikorpern aus Erkrankten mit
MOGAD aufgezeigt, nimlich Demyelinisierung und Verstarkung der kognitiven T-Zell-
Aktivierung. Zweitens unterscheiden sich Erkrankte mit MOGAD durch das
Vorhandensein von zirkulierenden MOG-spezifischen B-Zellen. Dies konnte in Zukunft

niitzlich sein, um Erkrankte mit MOGAD fiir die Therapieoptimierung zu stratifizieren.

13



Introduction

Introduction
1 Demyelinating autoimmunity of the central nervous system (CNS)

1.1 Myelin loss in the CNS

The myelin sheath is the protective layer that wraps around axons of nerve fibers (Figure
1). In our brain, optic nerve and spinal cord it is formed and maintained by
oligodendrocytes (Simons and Nave 2015). Myelin insulates the axon and increases the
resistance of the membrane. Voltage-gated sodium and potassium channels are mainly
located at the short unmyelinated parts of the axon, the nodes of Ranvier. This alternate
structure of myelinated and unmyelinated parts enables action potentials to rapidly
advance in the energy-efficient process of saltatory conduction. A damage of the myelin
sheath results in slower transmission of action potentials, prolonged latency and can also
lead to complete loss of nerve conduction (Cunniffe and Coles 2019, Lubetzki, Sol-

Foulon et al. 2020).

%ﬂ\}‘
I\
20\ e Unmyelinated axon
/) O e — Action potential continuous slow
VW/‘/*\‘ = conduction velocity _\
L A
SN 1 o
N AL Pre-myelinated axon with Nav clusters Z
c/f\«?l\?i> D T & o o o o
~ O - - - - - — Action potential conduction velocity, 8
A 4 3 . microsaltatory conduction? 3
7~ Vo > o . 5
N o ° 2
R\ ) D\ L
LA L2
AN \\7 Node of Ranvier s — Oligodendrocyte Myelinated axon

saltatory conduction

2N . N (-
— O )—; \q SR S - s T Action potential conduction velocity, <’ 7

Figure 1| Influence of myelination on action potential conduction velocity. With
increased myelination the conduction velocity is enhanced. Voltage-gated sodium (Nav)
and potassium channels (Kv) are indicated in the enlarged nodal structure. The
oligodendrocyte and myelin sheath are colored in green. PN: paranode. Modified and
with permission from (Lubetzki, Sol-Foulon et al. 2020).

Demyelination occurs in several diseases and can have different causes, such as viral
infection, loss of oxygen, toxic or metabolic reasons and inflammation (Love 2006).
Thereby, autoimmunity can be an inflammatory trigger. Usually, our immune system
protects us from invading pathogens. However, in about 7 —9 % of the human population,
it falsely recognizes self-antigens as foreign and attacks its own body (Theofilopoulos,

Kono et al. 2017). If the autoimmune reaction is directed against the CNS, it may lead to
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Introduction

myelin loss. These inflammatory demyelinating disorders contain a broad spectrum of
mechanistically and clinically heterogeneous diseases, which are explained in more detail
under the introductory part 2.3. Amongst those, multiple sclerosis (MS) is the most
common inflammatory demyelinating disease in young adults (Meinl, Derfuss et al. 2010,

Mayer and Meinl 2012).

1.2 Multiple sclerosis and the suspected role of B cells in this disease

MS is a chronic neuroinflammatory disease, which can affect the brain, spinal cord and
optic nerve. It is estimated that about 2.3 million people live with MS globally. The
average age of clinical onset is at around 30 years of age and the disease occurs about
three times more frequently in women than in men. Patients can suffer from sensory and
visual disturbance, motor impairment, fatigue, pain and cognitive deficits (Thompson,
Baranzini et al. 2018, Dobson and Giovannoni 2019). After a few decades of disease
progression, about 25% of patients require assistance for mobility such as the use of a
wheelchair (Sosnoff, Peterson et al. 2018). MS is a very heterogeneous disease that is
triggered by genetic risk factors, including the human leukocyte antigen haplotype
DRB1*15:01, and environmental risk factors, including low vitamin D levels, cigarette
smoking and obesity (Thompson, Baranzini et al. 2018). Different disease courses have
been described. The majority of patients with MS begin with a single neurological
demyelinating episode, termed as clinically isolated syndrome (CIS), that typically affects
the optic nerves, brainstem or spinal cord. Patients with CIS may recover over time from
the presenting episode. However, about 30 - 70% of patients with CIS progress in disease
course and develop MS with lesions that disseminate in space with multiple locations in
the CNS, and in time with repeated episodes (Miller, Barkhof et al. 2005). This most
common disease course of MS is kwon as relapsing-remitting MS (RRMS). Patients
experience an alternation between temporary episodes of relapses followed by recovery
phases of partial or complete remission. The majority of patients with RRMS develop
later on secondary progressive MS (SPMS) with a continuous worsening of symptoms.
A minority of MS patients are diagnosed with primary progressive MS (PPMS). This
form features a progressive worsening from the onset with no relapses or remissions.
Beside those three main disease courses, rare cases of other variants such as progressive-
relapsing MS are described (Dendrou, Fugger et al. 2015, Thompson, Baranzini et al.
2018, Dobson and Giovannoni 2019).
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The most characteristic pathological change in MS brains is the formation of multifocal
lesions in the forms of large confluent demyelinated plaques in the white and grey matter
(Lassmann 2013). However, the causes of inflammation and demyelination in MS are not
yet fully understood. There are different possible forms and patterns discussed. A large
cohort of pathological human tissue-samples of MS with actively demyelinating lesions
was analyzed and from these samples, four fundamentally different patterns were found.
Demyelination of MS type I and II patterns are proposed to be driven by autoimmune
encephalomyelitis. This inflammation is dominated by infiltration of T-lymphocytes and
macrophages. In addition, MS type II pathology features the involvement of antibodies
(Abs) and activation of the complement system. Pattern III and IV are suggested to have
a virus- or toxin-induced demyelination that leads to primary oligodendrocyte dystrophy

(Lucchinetti, Bruck et al. 2000).

Neuron

Figure 2| Proposed model of the immune responses in MS. T and B cells may get
activated in the periphery by antigens released from the CNS and presented by dendritic
cells, or may cross-react with foreign antigens. After expansion, the B and T cells may
infiltrate to the CNS. B cells encounter their neural antigen and differentiate into plasma
cells releasing antigen targeting Abs. Cytotoxic CD8+ T cells encounter and may target
directly glial or neuronal cells presenting their specific peptide ligand. CD4+ T cells get
reactivated by glial cells presenting their peptide ligand and attract other immune cells
by releasing cytokines. Invading macrophages contribute to the inflammation and may
attack the myelin sheath. With permission from (Hemmer, Archelos et al. 2002).
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While the underlying immune-pathological mechanisms and targeted antigens are
intensively studied in autoimmune animal models for MS, known as experimental
autoimmune encephalomyelitis (EAE), their corresponding counterparts in humans
remain largely undefined (Hohlfeld, Dornmair et al. 2016). Studies in these animal
models identified T lymphocytes as the main drivers of the disease. However, several
findings in human MS patients suggest that B cells and Abs also have a crucial role in the
disease pathogenesis. Obermeier et al. and von Biidingen et al. could show that the
characteristic feature of persisting oligoclonal immunoglobulin (Ig) G (IgG) in the
cerebrospinal fluid (CSF) of MS patients is produced by intrathecal B cells. These plasma
cells are clonally expanded, which indicates the existence of an antigen-driven B cell
response within the CNS (Obermeier, Mentele et al. 2008, von Budingen, Gulati et al.
2010). Additionally, the pathological implication of B cells and Abs is supported by
partial therapeutic benefits through Ig removal with plasma exchange or B cell depletion
with monoclonal Abs against clusters of differentiation 20 (CD20) (Keegan, Konig et al.
2005, Hauser, Waubant et al. 2008, Greenfield and Hauser 2018). This leads to the
proposed model (Figure 2) wherein both T and B cells contribute to the pathology of MS.
Autoreactive T cells, that recognize components of the myelin sheath as foreign, get
activated by antigen-presenting cells such as dendritic cells. Once activated, CNS-
reactive T cells can disrupt the blood brain barrier (BBB), penetrate into the CNS and

initiate a damaging and inflammatory response. After the BBB is breached, autoreactive

B cells can infiltrate into

the CNS and modify

Inflammatory cytokines
activate effector cells

G

2

IL-6, IL-12,
© TNFRLT

Antigen presentation

inflammation by secreting
pro-inflammatory and
regulatory cytokines.
Those B cells are either
activated in the periphery
or after infiltration in the
CNS compartment by self-

antigens. Once activated,
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Anti-inflammatory cytokines

Immunoglobulin secretion
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Figure 3| Proinflammatory (cytokine release, antigen
presentation, immunoglobulin secretion) and anti-
inflammatory (cytokine release) features of B cells. With
permission from (Krumbholz, Derfuss et al. 2012).

subsequently differentiate
into plasmablasts and
plasma cells that secrete

auto-Abs. These Abs can
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target components of the myelin sheath and initiate a demyelination through the Ab-
dependent cell-mediated cytotoxicity (ADCC), and through the complement dependent
cytotoxicity (CDC). In addition, B cells are efficient antigen-presenting cells and can
activate T lymphocytes by presenting their cognate CNS self-antigen via major
histocompatibility complex (MHC) class II molecules (Krumbholz, Derfuss et al. 2012,
Krumbholz and Meinl 2014, Hohlfeld, Dornmair et al. 2016, Hausser-Kinzel and Weber

2019). A summary of B cell function beyond Ig secretion is illustrated in Figure 3.

1.3  Specific autoantibodies as biomarkers

MS and associated diseases are part of a broad range of disorders, which often share
overlapping features, particularly at the beginning of the disease. Therefore, specific
biomarkers are required for a clear indication and treatment strategy. Classically, the
presence of persisting oligoclonal IgG, known as oligoclonal bands (OCB), has been used
as the prognostic biomarker. Those OCBs are only present in the CSF but not in the serum
of the patients. Commonly, MS is diagnosed by magnetic resonance imaging. Thereby,
disease activity can be visualized by gadolinium contrast agent to detect active lesions
(Baecher-Allan, Kaskow et al. 2018). However, more defined biomarkers are needed to
specify distinct disease-driving mechanisms. In the last years, several auto-Abs have

drawn the attention as important candidates for diagnosis and stratification of patients.

A meaningful achievement was the discovery of auto-Abs against the water channel
protein, aquaporin (AQP)4, on astrocytes (Lennon, Wingerchuk et al. 2004, Lennon,
Kryzer et al. 2005). These Abs, which are detected in about 80% of patients, are highly
disease-specific and enabled a clear separation of neuromyelitis optica (NMO) spectrum
disorders (NMOSD) from the former “core disease” MS. However, a subgroup of patients
with clinical features suggestive for NMOSD is seronegative for AQP4-IgG. About one
third of them harbor Abs in their blood against another auto-antigen: the myelin
oligodendrocyte glycoprotein (MOG). Patients with MOG-IgG are found in a broad
clinical spectrum of autoimmune diseases of the CNS. There is growing consensus that
these patients constitute a separate disease entity, recently termed as MOG Ab associated
disorder (MOGAD), which is the main focus of the present study (Hausser-Kinzel and
Weber 2019, Mader, Kumpfel et al. 2020).

18



Introduction

2 Myelin oligodendrocyte glycoprotein antibody associated disorders

2.1 The MOG protein

MOG was identified 40 years ago by Lebar et. al. For their study, they used whole brain
homogenate to induce EAE in guinea pigs and could show that MOG was a target of Abs,
which mediated complement-dependent demyelination (Lebar, Boutry et al. 1976, Lebar,
Lubetzki et al. 1986). In general, MOG is expressed exclusively in the CNS of mammals
and is highly conserved between species (Delarasse, Della Gaspera et al. 2006). It is only
a minor component of the myelin sheath, constituting less than 0.05% of all myelin
proteins. However, MOG has an exposed position on the outermost surface of the myelin
sheath expressed by oligodendrocyte processes (Brunner, Lassmann et al. 1989). This
makes MOG easily accessible as a target for Abs compared to other more abundant

myelin components, such as the myelin basic protein (MBP) (Mayer and Meinl 2012).
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Figure 4| Detailed structure of MOG (left) and the myelin sheath (middle): MOG, with
its extracellular domain, two hydrophobic domains, the cytoplasmic loop and tail.
Oligodendrocytes wrap multiple layers of compacted cell membrane around the axons
of neurons. MOG is expressed on the membrane of the outer tongue of the sheath. Right,
astrocytes interact with the nodes of Ranvier, the unmyelinated parts of the axons.
Modified and with permission from (Weissert, Kuhle et al. 2002, Fields and Dutta 2019).

MOG is a single-span transmembrane protein and belongs to the Ig superfamily (Figure
4). It contains one extracellular Ig variable domain at the N-terminus with a single
glycosylation site at asparagine 31, a disulfide bond between the two cysteines at position
24 and 98, two hydrophobic domains (one transmembrane and one membrane-
associated), one cytoplasmic loop, and a C-terminal cytoplasmic tail (della Gaspera,
Pham-Dinh et al. 1998). In humans, 15 different alternatively spliced isoforms of MOG
are described (Delarasse, Della Gaspera et al. 2006). Two of them are full-length variants:
al (218 amino acids (AA); molecular mass 25.1 kilodalton (kDa)) and B1 (223 AA;
molecular mass 25.6 kDa), which differ in their amino acids at the C-terminus. In the
present study, the major investigated full-length variant ol is used with arginine,
asparagine, proline and phenylalanine as C-terminal amino acids from exon 10a (Boyle,

Traherne et al. 2007, Reindl and Waters 2019).
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So far, the biological role of MOG and its isoforms is not yet fully understood. Knockout
mice with MOG deficiency revealed no clinical or histological abnormalities (Delarasse,
Daubas et al. 2003). However, there are several studies that link MOG with different
possible functional mechanisms. Hereby, MOG could act as an adhesion molecule by
gluing neighboring CNS myelin fibers together and could be involved in microtubule
stability of oligodendrocytes (Johns and Bernard 1999, Clements, Reid et al. 2003). In
addition, the extracellular Ig domain of MOG has been shown to interact with different
binding partners: with the complement component C1q and thereby potentially regulating
the classical complement system (Johns and Bernard 1999); with the nerve growth factor
(NGF) and thus potentially modulating central axon growth and survival (von Budingen,
Mei et al. 2015); with the rubella virus as potential host cell receptor and thereby possibly
making cells permissive for virus entry (Cong, Jiang et al. 2011). Furthermore, when
MOG is correctly glycosylated, it may interact with the c-type lectin receptor DC-SIGN,
a dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin that is
expressed on the surface of dendritic cells and macrophages, and possibly keeps those
antigen presenting cells (APC) in an immature and tolerogenic state; thus preventing
autoimmunity (Garcia-Vallejo, Ilarregui et al. 2014). In contrast, autoimmunity could be
caused by molecular mimicry. MOG is highly homologous to the milk protein
butyrophilin (BTN) and shares sequential and structural similarities which may trigger a

cross-reactive immunological response (Guggenmos, Schubart et al. 2004).

2.2 Detection methods of MOG antibodies

Immunoblotting and enzyme-linked immunosorbent assays (ELISA) were applied in
early studies to detect Abs against MOG. These assays used the linear or refolded
recombinantly produced extracellular domain of the MOG protein (usually AA 1-125) as
substrate. However, these methods led to controversial results in initial investigations.
Some studies showed a high proportion of Abs against MOG in MS, whereas others were
not able to reproduce those findings. Further studies revealed that these assays detect
MOG-specific Abs against non-native MOG, which do not cause disease and can occur
frequently in the general population. Therefore, immunoblotting and ELISAs cannot be

used as reliable detection methods for MOG Abs (Reindl and Waters 2019).

Radioimmunoprecipitation assays (RIA) were then developed and permitted the clinical
association of MOG Abs with a demyelinating phenotype that was not MS. One of the

pioneers in this field was Kevin O’Connor. For the RIA, he used self-assembling
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radiolabeled tetramers, which show a high sensitivity and specificity. To provide the
native folding environment for the extracellular domain of human MOG, an in vitro
translation system is applied with endoplasmic reticulum microsomes isolated from a
mouse hybridoma cell line. The extracellular domain of human MOG is connected to a
monomer of streptavidin via a flexible linker, which allows a spontaneous assembly into
a tetrameric structure. The RIA enables the detection of conformation-sensitive MOG
Abs and can distinguish them from conformation-independent Abs (O'Connor,

McLaughlin et al. 2007).

Cell- based assays (CBA) are now widely used for the detection of MOG Abs in research
and clinic, and are considered as the current gold standard. Thereby, mammalian cells are
transiently or stably transfected with plasmids that encode for full-length human MOG.
These immortal cell lines, such as the cervix carcinoma cells from Henrietta Lacks
(HeLa), human embryonic kidney cells (HEK293) or Chinese hamster ovary cells (CHO),
transcribe MOG from the plasmid and express it in a native state on the cell surface. Auto-
Abs against MOG from samples can bind to the expressed MOG protein and are usually
detected via a specific secondary anti-human IgG Abs that is fluorescently labeled. The
binding can be quantified by using visual scoring of a sample titration with a fluorescent

microscope or by flow cytometry (Adey, Burton et al. 2013, Reindl and Waters 2019).

In the present study, a CBA is applied for detecting MOG Abs in serum, plasma, CSF or
cell culture supernatants. HeLa cells are transiently transfected either with a plasmid
encoding human full-length MOG C-terminally fused to an enhanced green fluorescent
protein (EGFP), or with a plasmid encoding the EGFP alone as a control. The EGFP
signal determines the level of transfected cells. Quantitative analysis is performed by flow
cytometry as previously described (Spadaro and Meinl 2016). In addition, mouse or rat
MOG and several mutated variants of human MOG are used to investigate different
binding patterns of auto-Abs (Figure 5 A and B). In rodents, MOG-specific Abs, such as
the from Linington et. al isolated mouse monoclonal Ab against MOG named 8-18CS5,
mainly recognize the FG loop of MOG (Linnington, Webb et al. 1984, Breithaupt, Schafer
et al. 2008), whereas patients with Abs to MOG recognize different loops of MOG.
Recently, a study has shown that over 75% of paediatric and adult MOG Abs target the
CC’ loop around the amino acid proline 42 (Tea, Lopez et al. 2019). In addition, the
majority of human Abs against MOG does not recognize rodent MOG (Mayer, Breithaupt
et al. 2013).
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Figure 5| Three-dimensional structure of murine MOG, A shows the AA’, FG and CC’
loop. B displays the different epitopes with the mutated sites of variants of MOG that
are recognized by MOG Abs and that were used in this study, the single mutations
asparagine (Asn) at position 31 to aspartic acid (Asp), arginine (Arg) at position 86 to
glutamine (GIn) and proline (Pro) at position 42 to serine (Ser), and the double mutations
Arg at position 9 to glycine (Gly) / histidine (His) at position 10 to tyrosine (Tyr) and
His at position 103 to alanine (Ala) / Ser at position 104 to glutamic acid (Glu). With
permission from (Mayer, Breithaupt et al. 2013).

2.3 Clinical spectrum and pathology of MOG antibody associated disorders

As described in the section above, initial studies detected Abs against MOG with
recombinantly produced domains or peptides of MOG. This led to controversial results
regarding the value of those Abs as prognostic biomarkers, especially in MS. More recent
studies that used conformationally intact MOG have enabled the investigation of MOG-
IgG in a broad range of CNS diseases. While high levels of MOG-IgG are rarely found
in patients with classical MS (more details on MS in the first part of the introduction),
those Abs occur in a proportion of predominantly pediatric cases. Amongst those are
patients with acute disseminated encephalomyelitis (ADEM), AQP4-IgG seronegative
NMOSD, optic neuritis (ON), transverse myelitis (TM), or anti—-N-methyl-D-aspartate
receptor (NMDAR) encephalitis.

ADEM is characterized by multifocal demyelination due to inflammation in the brain and
spinal cord. It often occurs after infection, such as measles, and is considered as a
monophasic disease with highest incidence in early childhood. In rare occasions,
multiphasic ADEM is described with two episodes, which are separated by at least three
months. ADEM may be followed by ON, NMOSD or MS if further demyelinating events
occur in the respective target areas. Since there is no prognostic biomarker defined for

ADEM, a diagnosis depends greatly on exclusions of other diseases. Clinical features

22



Introduction

may include fever, headache, somnolence, irritability, nausea and vomiting (Pohl, Alper

et al. 2016).

NMOSD was formerly known as Devic disease or NMO. It is an inflammatory disorder
of the CNS characterized by severe demyelination and can be monophasic or recurrent.
When optic nerves are targeted, it leads to ON, when the spinal cord is targeted, it leads
to myelitis, and if this extends over three vertebral segments, it is considered as
longitudinally extensive transverse myelitis (LETM). As indicated in the first section of
the introduction, the majority of patients with NMOSD can be stratified by serological
tests for the presence of the pathogenic auto-Abs against the water channel protein AQP4,
while a subgroup remains seronegative for AQP4-IgG. Clinical features may include
those described below from ON or TM. In addition, with the development of an area
postrema clinical syndrome, it can lead to intractable hiccups or nausea and vomiting

(Wingerchuk, Banwell et al. 2015).

ON is an inflammation of the optic nerve and the most common optic neuropathy
affecting young adults. It is divided into typical and atypical forms. In its typical form,
ON is generally associated with MS or is considered as a demyelinating CIS at risk of
conversion to MS. About 25% of MS cases present ON as the first symptom and about
70% develop ON during the disease progression, usually in the relapsing-remitting phase.
The atypical form of ON is mainly associated with NMOSD. Clinical features of ON may
include visual loss with diffuse blurring or fogging of vision, pain during eye movement

and swelling of the optic disc (Toosy, Mason et al. 2014).

TM is an etiologically heterogeneous inflammation of the spinal cord. Half of the patients
develop TM after an infection, while for up to 30% of patients the cause remains unknown
and is termed as idiopathic. A distinct group of patients develop TM due to an acquired
demyelinating disease such as MS or NMOSD. Hereby, the presence of brain lesions in
patients with partial TM bears an 80% risk of transition to MS within the upcoming 5
years. An acute or subacute spinal cord dysfunction may result in clinical features such
as pain, muscle weakness, paralysis, sensory problems, or bladder, bowel and sexual

impairment (Beh, Greenberg et al. 2013).

Anti-NMDAR encephalitis is an inflammation of the brain associated with auto-Abs
against the GluN1 subunit of the NMDAR. The disorder predominantly affects children
and young adults, occurs with or without tumor association, and can relapse. The

syndrome develops in several stages. About 70% of patients have early clinical features
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consisting of headache, fever, nausea, vomiting, diarrhea, or upper respiratory-tract
symptoms. Within less than two weeks, patients usually develop psychiatric symptoms
with clinical features such as anxiety, insomnia, fear, mania, paranoia or short-term
memory loss (Dalmau, Lancaster et al. 2011). In rare cases, anti-NMDAR encephalitis
can coexist with an overlapping demyelinating syndrome (Titulaer, Hoftberger et al.

2014).

MOG-IgG are present in a larger proportion of pediatric patients compared to adults, and
more females are affected than males with a 2 — 3 : 1 female to male ratio. Thereby, the
clinical feature changes with age. Young children show an ADEM-like phenotype,
whereas children older than nine years and adults have an opticospinal phenotype (Reindl
and Waters 2019). About 20% of children with ADEM harbor Abs against MOG, while
in pediatric or adult MS, it is rare with less than 5% of cases (Hohlfeld, Dornmair et al.
2016, Spadaro, Gerdes et al. 2016, Cobo-Calvo, d'Indy et al. 2020). Children diagnosed
with ADEM tend to have transient MOG-IgG levels that disappear over time (Probstel,
Dornmair et al. 2011). Those who have persistent levels are at high risk of relapses that
often leads to ON or NMOSD (Reindl and Waters 2019). As initially mentioned, a
subgroup of about 20% of patients with NMOSD are seronegative for AQP4-IgG and
about one third of them harbor Abs against MOG (Hausser-Kinzel and Weber 2019,
Mader, Kumpfel et al. 2020). Further, MOG-IgG occur in about 20% of patients with ON
or myelitis such as TM or LETM (Weber, Derfuss et al. 2018). As a recent study shows,
MOG-IgG may also exist concurrently with Abs against NMDAR. These cases are rare
with a frequency of about 2% (Martinez-Hernandez, Guasp et al. 2020). Moreover,
several reports describe the pathology of patients with MOG-IgG as MS pattern type I,
characterized by active demyelination along with deposition of complement products in
the brain (Di Pauli, Hoftberger et al. 2015, Spadaro, Gerdes et al. 2015, Jarius, Metz et
al. 2016). Only in rare cases, intrathecal MOG-IgG production is observed (Kortvelyessy,
Breu et al. 2017, Yanagida, lizuka et al. 2017), whereas in the majority of patients, MOG-
IgG is mainly present in the serum at high levels and not in the CSF, suggesting that these
Abs have a peripheral origin (Mader, Kumpfel et al. 2020).

MOGAD - a separate disease entity: in the past few years, the above described broad
spectrum of clinical features associated with MOG-IgG has evolved into a new
inflammatory disease entity of the CNS. There is great consensus that MOGAD is distinct
from classical MS and AQP4-IgG seropositive NMOSD. Autoimmune astrocytopathy is
used to describe AQP4-IgG seropositive NMOSD since astrocytes are targeted by the
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AQP4-IgG. On the other hand, autoimmune oligodendrocytopathy is used to describe
MOGAD as it is the oligodendrocytes that are targeted by the MOG-IgG (Figure 6).
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Figure 6] AQP4 Ab associated disorders (red) and MOG Ab associated disorders
(MOGAD, blue). In the first disorder, Abs target AQP4, of which expression is focused
on the endfeet of astrocytes surrounding blood vessels. In MOGAD, Abs target MOG,
which is a component of the myelin sheath that is formed by oligodendrocytes. Modified
and with kind permission from © Dr. Simone Mader, Else Kroner-Fresenius-Stiftung.

The prevalence of MOGAD is similar to AQP4-IgG seropositive NMOSD with 1 — 4 per
100,000 people but much lower than for MS, which has a prevalence of 80 — 300 per
100,000 people. The occurrence of new cases for MOGAD is 0.2 — 1.4 per 100,000 people
per year, while the incidence of AQP4-1gG seropositive NMOSD is about 0.5 and for MS
about 5 per 100,000 people per year (Zamvil and Slavin 2015, Jurynczyk, Jacob et al.
2019, Hegen and Reindl 2020, Mader, Kumpfel et al. 2020).

The pathology of MOGAD is characterized by an ADEM-like demyelination mostly
around small venules, which can form confluent white matter lesions. In contrast to
typical MS, intracortical rather than leukocortical demyelinated lesions predominate.
Further, these lesions do not show a radially expansion of smoldering plaques in the white
matter as seen in MS. Additionally, in MOGAD the inflammatory reaction is dominated
by CD4 positive T cells with an infiltration of granulocytes, whereas in MS inflammatory
infiltrates are mainly composed of CD8 positive T cells. Moreover, in MOGAD
intrathecal MOG Ab production and OCBs are rarely observed, which suggests that
pathogenic MOG Abs access the CNS from the blood as described for AQP4 Abs in
AQP4-1gG seropositive NMOSD. However, in MOGAD less complement deposition
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occurs than in AQP4-IgG seropositive NMOSD and the expression of AQP4 is preserved
(Hoftberger, Guo et al. 2020, Takai, Misu et al. 2020). Overall, these pathological features
of MOGAD enable a distinction from typical MS and from AQP4-IgG seropositive
NMOSD.

2.4 Treatment options
As listed above, MOGAD comprises a broad phenotypic spectrum of disorders with
different disease courses. This makes it difficult to conduct randomized trials to

investigate treatment strategies (Mader, Kumpfel et al. 2020).

During relapses, high-dose steroids and plasma exchange/immunoadsorption (PLEX/IA)
have been described to be effective (Mader, Kumpfel et al. 2020). Thereby, steroids
decrease the inflammation and reduce the activity of the immune system (Coutinho and
Chapman 2011). Furthermore, PLEX and IA constitute two possibilities to eliminate
circulating Abs from patients' plasma. During PLEX, the treated plasma is replaced by a
human albumin solution or fresh frozen plasma from healthy donors. Conversely, during
IA, the patients’ plasma is passed more selectively through an adsorber column to remove
immunoglobulins and immune complexes, and the remaining part is re-infused into the

patients’ blood circuit (Heine, Ly et al. 2016).

For a long-term therapy, usually intravenous Ig (IVIG), classical immunosuppressants
such as mycophenolate mofetil, azathioprine and methotrexate, or monoclonal Abs such
as rituximab are used (Jurynczyk, Jacob et al. 2019, Mader, Kumpfel et al. 2020). IVIG
is a pooled preparation of normal human immunoglobulins obtained from several
thousand healthy donors. The mechanisms of an IVIG therapy are complex and not fully
elucidated. Its therapeutic benefit might be due to the modulating effects on soluble
mediators and cellular components of the immune system (Galeotti, Kaveri et al. 2017).
Mycophenolate mofetil inhibits the enzyme needed for the de novo synthesis of guanosine
nucleotides, which is required for DNA replication in lymphocytes more than in other
cell types (Allison and Eugui 2000). Azathioprine also affects B and T cells by blocking
the DNA replication. It becomes incorporated into replicating-DNA as a purine analog
and can also inhibit the de novo pathway of purine synthesis (Maltzman and Koretzky
2003). Methotrexate, another immunosuppressive therapy, may have different
mechanisms of function, including involvement in the inhibition of purine synthesis

leading to cell cycle arrest (Friedman and Cronstein 2019). Further, monoclonal Abs are
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used to target specific cell types of the immune system. Rituximab is a chimeric
mouse/human monoclonal Ab and specifically targets cells expressing CD20. Thereby,
mainly B cells but also a minor subset of T cells are depleted (Krumbholz and Meinl
2014, Schuh, Berer et al. 2016, Sabatino, Wilson et al. 2019).

The optimal therapy for patients with MOGAD is unknown. Different maintenance
treatment options have been described to reduce relapse rates when compared to their
baseline. Recent studies revealed that [IVIG may have a favorable result on annual relapse
rates while the treatment effects with rituximab appear to be heterogeneous. Here, only a
proportion of patients with MOGAD benefited from B cell depleting therapies (Chen,
Flanagan et al. 2020, Mader, Kumpfel et al. 2020, Whittam, Cobo-Calvo et al. 2020).

3 Pathogenicity of MOG antibodies

3.1 Lessons from animal models

In the past four decades, MOG was intensively studied in several autoimmune animal
models such as EAE in guinea pigs, mice, rats or primates. These animal models enable
investigation of chronic inflammatory demyelinating diseases and reflect the spectrum of
MS and associated disorders. Initial experiments with chronic relapsing EAE in guinea
pigs had shown that increased levels of Abs against MOG in the sera correlated with a
demyelinating activity when injecting the sera of those guinea pigs into the subarachnoid
space of normal rats (Linington and Lassmann 1987). Further studies elucidated that
using MOG for active immunization together with Freund’s adjuvant can trigger two
different autoimmune responses: first, inflammation in the CNS due to induced
encephalitogenic MOG-specific T cells, and second, demyelination due to production of
Abs against MOG (Mayer and Meinl 2012). Importantly, the immune response depends
on the species and the chosen strain. An immunization with rat MOG in Dark Agouti rats
resulted in an acute/subacute disease with prominent T cell induced inflammation, but
spared demyelination. In contrary, Brown Norway rats responded with a chronic disease
featuring very pronounced Ab-mediated demyelination while remaining relatively
resistant to induction of classical T-cell mediated EAE (Storch, Stefferl et al. 1998). In
Lewis rats, immunization with the N-terminal extracellular domain (AA 1-125) of murine
MOG led to an acute inflammatory demyelinating variant of EAE with a dominant MOG-
specific Ab response, but poor induction of encephalitogenic T cells (Adelmann, Wood

etal. 1995). An immunization with the extracellular domain of rat MOG in different mice
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strains revealed an EAE in SJL/J mice with the formation of pathogenic auto-Abs against
MOG but showed no production of those Abs in C57B1/6 mice. Differences in the genes
encoded within the major histocompatibility complex between the two strains might be
the cause of this effect (Bourquin, Schubart et al. 2003). Further studies elucidated that
using human MOG instead of rat MOG for immunization can also induce a pathogenic
MOG-specific auto-Abs response in C57Bl/6 mice (Marta, Oliver et al. 2005). An
immunization of Balb/c mice with rat cerebellar glycoproteins enabled the isolation and
production of the widely used monoclonal mouse Ab against MOG named 8-18C5
(Linnington, Webb et al. 1984). The heavy chain of this pathogenic monoclonal Ab 8-
18C5 was later used for generating transgenic knock-in C57B1/6 mice. About 30% of all
B cells were autoreactive against MOG and those animals harbored high levels of MOG-
specific Abs. Interestingly, these mice exhibited benign phenotypes and did not develop
spontaneous EAE. However, this changed when activated myelin-specific T lymphocytes
were transferred to these animals by an intravenous injection. This led to an opening of
the BBB and triggered an inflammatory cascade in the CNS. MOG-specific Abs were
therefore able to access the brain and initiate demyelination (Litzenburger, Fassler et al.
1998). Moreover, another study revealed that only a proportion of monoclonal Abs
against MOG were able to induce demyelination in a rodent EAE model. Hereby, the
pathogenic potential is related to the ability of Abs to trigger CDC (Figure 7). Therefore,
the Ab isotype can be suggestive for determining the Ab effector functions (Piddlesden,

Lassmann et al. 1993). Further studies in marmoset monkeys also showed an EAE

Effector Cells Complement
i

Fc I’ECED'EOI' Cascade activation
_// T
-

|
r'

Membrane
Attack Complex

CDC

Figure 7| Scheme of ADCC and CDC. Left, Ab-dependent cell-mediated cytotoxicity
(ADCC), including effector cells such as natural killer cells or phagocytic cells such as
macrophages, recognizing the Fc part of the Ab via their Fc receptor. Targeted cells will
be killed by the release of cytotoxic mediators or phagocytosis. Right, complement
dependent cytotoxicity (CDC), including the components of the complement system.
The bound Ab to its targeted antigen is recognized by the complement resulting in the
formation of a membrane attack complex, that leads to cell lysis. Modified and with
permission from (Kasi, Tawbi et al. 2012).
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induced inflammation and complement dependent demyelination upon immunization

with MOG for non-human-primate models (von Budingen, Hauser et al. 2004).

Taken together these findings from animal models show that the MOG protein is
encephalitogenic in many different species, the correctly folded extracellular domain of
MOG is responsible for the formation of demyelinating auto-Abs, and the proposed two-
hit model is reflected by the associated pathology: breakdown of BBB due to
encephalitogenic T cells (first hit) and access of complement-fixing MOG-specific Abs
to the CNS to mediate demyelination (second hit) (Mayer and Meinl 2012, Reindl and
Waters 2019).

3.2 Previous attempts to analyze pathogenicity of human MOG antibodies

Some former studies tried to elucidate the potential pathogenic activity of human Abs
against MOG by using patient-derived materials. /n vitro experiments with serum showed
that these auto-Abs are primarily of the IgG1 subtype and can activate the complement
cascade, resulting in the formation of the terminal complement complex on living human
full length MOG transfected HEK-293A cells upon addition of human complement
(Mader, Gredler et al. 2011). Furthermore, total IgG obtained from anti-MOG Ab positive
patients can induce ADCC (Figure 7) by natural killer cell-mediated destruction of native
MOG-expressing cells in culture (Brilot, Dale et al. 2009), and can produce complement-
mediated myelin loss in ex vivo cultured organotypic brain slices from mice (Peschl,
Schanda et al. 2017). When affinity-purified IgG against MOG is incubated with
oligodendrocytes, this can lead to a loss of organization of the thin filaments and the
microtubule cytoskeleton of those glial cells in vitro (Dale, Tantsis et al. 2014). In
addition, purified total IgG from patients can mediate the uptake of human MOG protein
by bone marrow-derived macrophages from mice. Thereby, the presence of MOG-
specific Abs enables those myeloid cells to recognize, internalize, process and present the
MOG antigen at very low concentrations in a fragment crystallizable (Fc)-dependent
manner. When these APCs are co-cultured with naive MOG-specific T cells, they can
activate the T cells to differentiate in an encephalitogenic manner (Kinzel, Lehmann-Horn
et al. 2016). In vivo experiments with peripheral injected concentrated serum from MS
patients showed a slight enhanced demyelination in rats with EAE and axonal damage in
the inflammatory lesions (Zhou, Srivastava et al. 2006). In another study, purified and
pooled total IgG preparations from five MOG Abs seropositive NMO patients were

injected in mouse brains intracerebrally. This caused myelin changes and altered the
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expression of axonal proteins which was not associated with inflammation and largely
independent of complement (Saadoun, Waters et al. 2014). Further, an investigation with
an intrathecal injection of purified IgG from a patient with Abs against MOG accelerated
EAE in mice but the auto-Abs did not induce demyelination. The authors proposed that
MOG-specific Abs can instead foster T-cell activation by efficiently targeting and
concentrating the MOG antigen to presentation-competent cells such as macrophages
(Flach, Litke et al. 2016). Moreover, total IgG derived from MS patients with MOG-
specific Abs was injected peripherally into a humanized mouse model that transgenically
expresses human Fc-gamma receptors and could exacerbate EAE. This exacerbation was

dependent on MOG recognition by the human-derived Abs (Khare, Challa et al. 2018).

Overall, there is evidence that human Abs against MOG are pathogenic. Some studies
propose a demyelinating effect with complement involvement, whereas others consider
more a T-cell activation due to APCs that were efficiently triggered by Ab-antigen
complexes. Mainly serum or total IgG preparations are used for the in vitro studies or
transfer experiments in vivo. These patient-derived materials may also comprise of
additional auto-Abs or disease-modulating components, making a distinct interpretation

difficult.

4 Potential sources of human antibodies against MOG

The production of Abs can last for a lifetime and different studies in animal models and
human subjects have elaborated how long-lasting IgGs can be generated. First, Abs
against MOG could be produced by circulating short-lived plasma cells and second,

niched long-lived plasma cells may constantly release MOG Abs.

5 IgM, IgA, 1gG or IgE

IgM IgM IgD  IgM IgD

A I |
0060& 600 66D
Large Small
Pro-B  Pre-B-l Pre-B-lI Immature Transitional Naive Centroblast Centrocyte Memory Plasmablast Plasma cell

Increasing development

Figure 8| Overview of the different stages in B cell development. The initial phase from
pro-B cells to immature B cells takes place in the bone marrow. During the transition,
mature naive B cells migrate via the bloodstream to secondary lymphoid organs and may
undergo germinal-center reactions and class-switch recombination. They form memory
B cells and antibody-secreting cells, which are plasmablasts or plasma cells. Modified
and with permission from (Krumbholz, Derfuss et al. 2012)

Usually, antigen-specific naive B lymphocytes are stimulated by antigen recognition via

the B cell receptor followed by CD40 ligand signal from cognate T helper cells which
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triggers the B cell proliferation and differentiation into memory B cells, plasmablasts and
plasma cells (Figure 8). Plasmablasts are precursors from plasma cells, which still
proliferate and already start to produce Abs at low levels; however, their lifespan is very
short. In contrast to memory B cells and plasmablasts, plasma cells are terminally
differentiated and do not divide but secrete Abs at high levels. Plasma cells and
plasmablasts also differ in the expression of certain surface markers, cf. Table 1. During
the primary immune response, memory B cells are formed within germinal centers and
survive in secondary lymphoid organs in the absence of their cognate antigen. In the
secondary immune response, persisting or cross-reactive antigens may continuously
stimulate memory B cells. In this antigen-dependent manner, memory B cells undergo a
massive expansion and differentiation towards circulating short-lived plasma cells. In
addition, some long-lived plasma cells are generated that migrate to survival niches such
as the bone marrow where they continuously release Abs at high rates without further
stimulation. The lifespan of plasma cells has been proposed to range from several days
(short-lived) to several months (long-lived). In contrast, an antigen-independent mode
without the need for triggering the B cell receptor has also been described. Thereby, at a
lower rate, all memory B cells are activated by cytokines or Toll-like receptor (TLR)
ligands and undergo continuous proliferation and differentiation. In this way, a constant
level of short-lived plasma cells and serum Abs could theoretically be kept throughout a
human’s life-span. Since this mechanism is non-selective, it maintains the broad spectrum
of specific Abs by polyclonal activation of all memory B cells (Bernasconi, Traggiai et
al. 2002, Traggiai, Puzone et al. 2003, Radbruch, Muehlinghaus et al. 2006).

Table 1| Comparison between plasma cell and plasmablast in terms of localization,
survival duration, expression of different surface markers as the B cell markers CD19 and
CD20, proliferation capacity, secretion of Ig, expression of surface bound Ig and of MHC
class II. - = no, +/- = low, + = moderate, ++ = high (Bernasconi, Traggiai et al. 2002,

Traggiai, Puzone et al. 2003, Radbruch, Muehlinghaus et al. 2006, Krumbholz, Derfuss
et al. 2012, Kometani and Kurosaki 2015).

Features Plasma cell Plasmablast
. In survival niches in bone marrow | In lymphatic organs; also
Localization . . . L .
and spleen; in inflammatory tissue. | circulating in body fluids.
Survival Years to decades Days

CD19 expression +/- +
CD20 expression - +
Proliferation - +
Secretion of Ig ++ ++
Surface Ig +/- ++
MHC class 11 +/- ++
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Aims of the thesis
Aims of the thesis

This thesis comprises three parts. First, the minor part, wherein we aimed to explore the
pathogenic mechanism of human-derived Abs against MOG; second and third, the major
part, wherein our aims were to investigate the source of these MOG-specific Abs and to

analyze the antigen recognition:

e Pathogenic mechanisms of patient-derived MOG Abs
e Identification of circulating MOG-specific B cells

e Deeper insight into details of antigen recognition of MOG Abs
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Objective: Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) occur in a proportion of patients with
inflammatory demyelinating diseases of the central nervous system (CNS). We analyzed their pathogenic activity by
affinity-purifying these antibodies (Abs) from patients and transferring them to experimental animals.

Methods: Patients with Abs to MOG were identified by cell-based assay. We determined the cross-reactivity to rodent
MOG and the recognized MOG epitopes. We produced the correctly folded extracellular domain of MOG and affinity-
purified MOG-specific Abs from the blood of patients. These purified Abs were used to stain CNS tissue and transferred
in 2 models of experimental autoimmune encephalomyelitis. Animals were analyzed histopathologically.

Results: We identified 17 patients with MOG Abs from our outpatient clinic and selected 2 with a cross-reactivity to
rodent MOG; both had recurrent optic neuritis. Affinity-purified Abs recognized MOG on transfected cells and stained
myelin in tissue sections. The Abs from the 2 patients recognized different epitopes on MOG, the CC' and the FG
loop. In both patients, these Abs persisted during our observation period of 2 to 3 years. The anti-MOG Abs from both
patients were pathogenic upon intrathecal injection in 2 different rat models. Together with cognate MOG-specific
T cells, these Abs enhanced T-cell infiltration; together with myelin basic protein-specific T cells, they induced demye-
lination associated with deposition of C9neo, resembling a multiple sclerosis type Il pathology.

Interpretation: MOG-specific Abs affinity purified from patients with inflammatory demyelinating disease induce path-
ological changes in vivo upon cotransfer with myelin-reactive T cells, suggesting that these Abs are similarly pathogenic
in patients. ANN NEUROL 2018;00:000-000

ANN NEUROL 2018

High levels of antibodies (Abs) to conformationally have initially been detected in pediatric patients,’ then
intact myelin oligodendrocyte glycoprotein (MOG) also in a proportion of patients with different
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demyelinating diseases such as optic neuritis, myelitis,
encephalomyelitis, brainstem encephalitis, acute dissemi-
nated encephalomyelitis (ADEM), and anti-N-methyl-D-
aspartate receptor (NMDAR) encephalitis, and in a few
patients with multple sclerosis (MS).>® Patients with
autoantibodies to MOG have distinct brain magnetic reso-
nance imaging (MRI) characteristics.”® It is debated
whether anti-MOG disease constitutes a separate entity.”

In animal models, some monoclonal Abs (mAbs) to
MOG induce demyelination provided the blood-brain
barrier is breached giving the Abs access to the CNS
(reviewed in Hohlfeld et al,> Mayer and Meinl'®). Only a
proportion of anti-MOG Abs are able to induce demyelin-
ation in vivo, related to complement activation'' and
recognition of conformationally correct MOG.'*"? In
rodents, pathogenic MOG-specific Abs mainly recognize
the FG loop of MOG as the prototype mAb 8-18C5,'
whereas patients with Abs to MOG recognize different
loops of MOG, most frequently the CC' loop around the
amino acid P42."°

Previous experiments to test the potential pathogenic
activity of human anti-MOG Abs in vitro reported
that sera of patients with Abs to MOG activated
complement,16 stimulated natural killer cell mediated
toxicity,'” induced cytoskeletal changes in oligodendroglial
cells,'® mediated myelin destruction in slice cultures, "’
and facilitated MOG uptake by macrophages.”® Peripheral
injection of concentrated serum from MS patients in rats
with experimental autoimmune encephalomyelitis (EAE)
slightly enhanced demyelination and axonal loss.”' Total
IgG preparations pooled from 5 neuromyelitis optica
(NMO) patients were injected intracerebrally and induced
myelin changes independent of complement, but no
inflammation.”” Intrathecal injection of IgG from a
patient with MOG Abs accelerated EAE in mice.”
Peripheral injection of IgG from MS patients with Abs to
MOG exacerbated EAE in mice.>* Thus, there is evidence
that human Abs to MOG are pathogenic, but one has to
consider that patients with neuroinflammation may have

multiple autoantibodies,>> ™’

which complicates the inter-
pretation of transfer experiments with whole IgG prepara-
tions. Transfer experiments with human affinity-purified
Abs to MOG have not yet been done, and therefore
detailed pathogenic mechanisms of human Abs to MOG
remain to be elaborated.

Patients with Abs to MOG have a pathology

described as MS pattern I1,57!

characterized by active
demyelination along with deposition of C9neo, suggesting
an Ab-mediated demyelination.** Transfer experiments
with autoantibodies to MOG from these patients were
hampered because only a proportion of MOG Abs from

patients cross-react with rodent MOG'>?5; therefore, the

linkage of human MOG Abs to a certain neuropathology
is still speculative.

The aim of this study was to analyze which human
Abs to MOG are pathogenic, to identify recognized
epitopes of pathogenic autoantibodies, to test whether
they can mediate MS type II pathology, and to explore
their pathogenic mechanisms. To this end, we combined
affinity purification of Abs that recognize cell-based
MOG, epitope identification with mutants of MOG,
staining of tissue sections, and transfer experiments in
2 EAE models. This showed that Abs to MOG were path-
ogenic by 2 mechanisms; in synergy with myelin basic
protein (MBP)-specific T cells they mediate MS type 1I
pathology, and together with MOG-specific T cells they

enhance T-cell infiltration.

Patients and Methods

Standard Protocol Approvals, Registrations, and
Patient Consents

We analyzed sera from 260 patients with inflammatory
CNS diseases for anti-MOG reactivity. The clinical char-
acteristics of patients who scored positive in our cell-based
assay detecting Abs to MOG are summarized in the
Table. Al MOG Ab-—positive patients were followed
longitudinally. Informed consent was obtained from each
donor according to the Declaration of Helsinki and the
ethical committee of the medical faculty of Ludwig-
Maximilians-Universitit Miinchen approved this study.

Determination of anti-MOG Reactivity and
Epitope Recognition

Patients positive for Abs to MOG were identified with a
cell-based flow cytometry assay using viable cells and a
serum dilution of 1:50, as described.”®** Isotype-specific
secondary Abs were obtained from Southern Biotech
(Birmingham, AL). To identify the recognized epitopes,
mutant variants of MOG were applied and the percentage
binding compared to human MOG was calculated as
described.'® In some experiments, we used a recombinant
variant of the mAb 8-18C5 (designated r8-18C5),
which has the same antigen recognition site, but a human
IgG1 Fc part.”®

Production and Validation of Recombinant
Human MOG

We aimed to produce a recombinant version of the extra-
cellular domain (ECD) of human MOG that comes as
close as possible to the conformation of MOG displayed
in transfected cells. To this end, we produced the ECD of
human MOG in HEK293-EBNA cells and added at the
C-terminus instead of the first transmembranous region a

HisTag and an AviTag using the pTT5 vector.”® MOG
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was biotinylated by using the BirA biotin ligase Kit
(Avidity, Aurora, CO). Folding of the purified protein
(0.2mg/ml) was analyzed by circular dichroism using a
Jasco ]-810 spectropolarimeter (JASCO Corporation,
Tokyo, Japan). To further validate the anti-MOG binding
activity of our recombinant MOG, we tested whether this
MOG was bound by B cells from mice with a knock-in of
the heavy chain of the anti-MOG 8-18C5.%” To this end,
we formed MOG tetramers with our biotinylated MOG
and fluorescently labeled streptavidin (Jackson ImmunoR-
esearch, West Grove, PA).

Affinity Purification of Anti-MOG Abs

Biotinylated MOG was bound to a HiTrap Streptavidin
HP column (GE Healthcare, Munich, Germany). Ig from
plasma (obtained from ethylenediaminetetraacetic acid
[EDTA]-blood) was first enriched by ammonium sulfate
precipitation and then loaded on this column. Bound Ig
was eluted (100mM glycin, 150mM NaCl, pH 2.5) and
immediately neutralized with 1M Tris-HCI, pH 8.8. The
cluates from both patients were separated by reducing and
nonreducing sodium dodecyl sulfate gel electrophoresis
and stained by Coomassie. The excised gel bands were in-
gel digested essentially as described.’® Peptides were ana-
lyzed by matrix-assisted laser desorption/ionization time of
flight/time of flight using a 4800 Analyzer (Applied Bio-
systems, Foster City, CA). The eluates were tested by
enzyme-linked immunosorbent assay (ELISA) for strepta-
vidin reactivity using streptavidin-coated plates.

Staining of Tissue with Patient Abs

Rat brains were fixed in 4% paraformaldehyde (PFA) for
1 hour, cryoprotected with 40% sucrose, and snap frozen.
Seven-micrometer-thick sagittal sections were incubated with
0.3% hydrogen peroxide for 20 minutes and with 10% don-
key serum in phosphate-buffered saline (PBS) for 1 hour,
and then labeled with the Abs at 4°C overnight. The next
day, sections were labeled with a donkey—antihuman IgG
(H+L) secondary Ab (Jackson ImmunoResearch) and visual-

ized with an avidin—biotin—diaminobenzidine reaction.

Transfer EAE and Rat T-Cell Lines

Antigen specific T cells were established from Lewis rats
immunized with antigen emulsified in complete Freund
adjuvant as described previously.*® The following antigens
were used: recombinant MOG (amino acid 1-125), MBP
purified from guinea pig brain, and ovalbumin (OVA)
purchased from Sigma-Aldrich (St Louis, MO). To induce
mild EAE, freshly restimulated 15 x 10° MOG-specific T
cells or 1.2 x 10° MBP-specific T cells were injected
intravenously in Lewis rats. Clinical scores were evaluated

as follows: 0 = normal; 0.5 = loss of tail tonus; 1 = tail
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paralysis; 2 = gait disturbance; 3 = hindlimb paralysis.
Two days after injection of T cells, 100 pg of the indi-
cated Ab preparations was injected intrathecally into the
cisterna magna to animals anesthetized by fentanyl/mida-
zolam/medetomidine. For the monitoring of clinical score,
animals were followed until full recovery and were then
sacrificed. For histopathological analysis, 72 hours after
Ab injection, animals were perfused with PBS and 4%
PFA in PBS under terminal anesthesia with fentanyl/mid-
azolam/medetomidine; the spinal cord and brain were
then postfixed with 4% PFA in PBS at 4°C. The proce-
dures are approved by the government of Upper Bavaria.

Histological Examination of the EAE Rats

Brain, spinal cord, and optic nerves were dissected and
embedded in paraffin. Serial sections of all tissues were
stained with hematoxylin/eosin, Luxol fast blue (LFB) mye-
lin stain, and Bielschowsky silver impregnation for axons.
Immunocytochemistry was performed on paraffin sections
after antigen retrieval in a food steamer with EDTA buffer,
pH 8.5. Primary Abs against the following targets were used
in the following dilutions: CD3 (T cells; rabbit monoclonal;
Neomarkers, Fremont, CA; RM-9107-5; 1:2,000), ED1
(phagocytic macrophages and microglia; mouse monoclonal;
Serotec, Raleigh, NC; MCA341R, 1:10,000), Iba 1 (pan
microglia and macrophages; rabbit polyclonal; Wako, Osaka,
Japan; 019-19741; 1:3,000), cydlic nucleotide phosphodies-
terase (oligodendrocytes; mouse monoclonal; Sternberger
Monoclonals, Lutherville, MD/BioLegend, San Diego, CA;
SMI 91; 1:2,000), glial fibrillary acidic protein (astrocytes;
rabbit polyclonal; Dako, Santa Clara, CA; Z0334; 1:3,000),
human Ig (biotinylated species specific antihuman Ig; don-
key polyclonal, Jackson ImmunoResearch, 709-065-149;
1:1,000) and activated complement (C9neo antigen, rabbit
polyclonal; 1:2,000)."" Bound primary Abs were visualized
with a biotin/avidin/peroxidase system. To quantify the
inflammation, CD3" T cells/mm” were counted in a zone of
200 pm spanning from the ventral subpial surface into the
tissue of the pons. To quantify demyelination, the distance
of subpial demyelination from the ventral surface of the pons
was measured. To this end, macrophages were stained with
ED1 and the distance from the pial surface on which could
be seen classical macrophages with degradation products was
measured. This also represents the area of macrophages in
LFB staining that contain myelin degradation products.

Results

Anti-MOG Reactivity in Patients with
Inflammatory CNS Diseases and Cross-Reactivity
to Rodent MOG

We tested sera from 260 patients with different inflamma-
tory CNS diseases; 17 of them had autoantibodies to



Results

ANNALS of Neurology

MOG (clinical details in the Table). The highest anti-
MOG reactivity was seen in patients with relapsing optic
neuritis and NMO phenotype. The vast majority of
patients with MS do not have Abs to MOG, but Abs to
MOG are detected in special cases with MS>* The
5 patients with MOG Abs included in the Table fulfill the
diagnostic criteria of MS, including MS-typical cerebrospi-
nal fluid (CSF) and radiological features, but had a clinical
phenotype that overlaps with NMO (severe myelitis, brain-
stem involvement, and optic neuritis). These patients did
not have Abs to NMDAR or AQP4. Details of their clini-
cal picture, their MRI, and their anti-MOG reactivity have
been described in a previous paper.>* We determined the
cross-reactivity to rodent MOG of these patients. Further
analysis of the pathogenic features of Abs to MOG was per-
formed with Patients 7 and 5, who showed a high reactivity
toward MOG and cross-reactivity to rodent MOG (Fig 1).
Both patients had a recurrent optic neuritis, one of the dis-
eases associated with MOG Abs.>*# These patients were
followed for periods of about 26 and 35 months and kept
recognizing MOG. Their anti-MOG reactivity was so high
that a reactivity could still be detected at serum dilutions of
1:3,000 to 1:10,000. Both patients had anti-MOG of iso-
type IgG1. Patient 5 had in addition to IgG also persisting
IgM to MOG.

The applications of mutant variants of MOG showed
that the 2 patients recognized different epitopes on MOG
(see Fig 1C, D). The binding to MOG of Patient 5 was
reduced by the mutation P42S, indicating that this patient’s
Abs recognize the CC' loop on MOG; the MOG Abs of
IgG and IgM isotype showed similar reactivity to MOG
mutants. Patient 7 showed a stronger reactivity to mouse
MOG than to human MOG. Such a feature we had previ-
ously noted in 12 of 111 patients analyzed."> Consistent
with the better recognition of mouse MOG, this patient
also showed a stronger reactivity to the MOG mutant
P42S, in which the serine present in murine MOG replaces
the proline of human MOG. Another mutation at the EF
loop (H103A, S104E) greatly reduces the MOG binding of
this patient. MOG residues important for binding of Abs
from Patients 5 and 7 are visualized in Figure 1E.

From Patient 5, we could also analyze CSF and this
showed that anti-MOG IgG were present in this compart-
ment, but there was no evidence that the anti-MOG IgG
present in the CSF was produced intrathecally; after
adjustment to equal IgG concentrations, similar anti-
MOG reactivity was seen in CSF and serum (see Fig 1F).

Specificity of Affinity-Purified Abs to MOG

We produced the ECD of human MOG in HEK cells with an
AviTag at the C-terminus replacing the transmembranous and
intracellular part. Then MOG was enzymatically biotinylated

at the AviTag and bound to a streptavidin column, which puts
the extracellular part of MOG on the beads in the same orien-
tation as in the membrane. The confirmation with beta-sheet
formation was seen by circular dichroism (Fig 2A). To further
validate this MOG preparation, we formed MOG tetramers
and tested the binding to B cells from mice with a knock-in of
the heavy chain of the anti-MOG mAb 8-18C5 and found
that this stained about one-third of the B cells from these mice,
which is in line with their published MOG-binding activity
(data not shown).” With this protein, we could affinity purify
MOG-specific Abs from both patients (see Fig 2). Starting
from > 600ml blood, we eluted from the MOG-column
471 pg of IgG and 55 pg of IgM from Patient 5 and 571 pg
IgG but no IgM from Patient 7. Mass spectrometry showed
that the eluates from Patient 5 contained IgG, IgM, a-2 mac-
roglobulin, fibrinogen, and albumin, and from Patient 7 IgG
and fibrinogen. Importantly, no MOG was detected in the elu-
ates. The eluates did not bind to streptavidin as seen by ELISA
using streptavidin-coated plates. We could not obtain Abs that
recognize MOG on transfected cells from donors who did not
have a strong ant-MOG reactivity in their blood. This
excludes that the anti-MOG reactivity we observed in the puri-
fied fraction is an artifact due to the purification procedure.

These affinity-purified Abs showed a highly enriched
reactivity to human MOG in a cell-based assay; when
plasma and affinity-purified Abs were adjusted to the same
concentration of 12 pg/ml, we noted the following mean
channel fluorescence (MCF) ratios, which were calculated as
described above: Patient 5: plasma 14.9, purified 190.3,
flow through 8.1; Patient 7: plasma 8.6, purified 207.5,
flow through 3.5 (see Fig 2). We noted that in both patients
the reactivity to our mutated variants was the same in the
anti-MOG Abs from the starting material and the eluates.
We also compared the affinity-purified MOG Abs from
both patients with the prototype anti-MOG 8-18C5. For
this comparison we used a recombinant variant of 8-18C5
with a human Fc-IgGl, so the same detection Ab could be
used. Our dose responses show that these purified MOG
Abs recognized MOG in a cell-based assay still in the ng/ml
range and came quite close to the intensity of MOG bind-
ing of the 8-18C5. The isotype of the anti-MOG response
of the affinity-purified Abs of both patients was IgG1. We
also analyzed the cross-reactivity of the patient-derived
MOG Abs to rat MOG, because their pathogenicity will be
tested in a rat model (see below). We noted that Patient
7 recognized rat MOG more strongly than human MOG,
which is consistent with our observation that this patient
also recognizes mouse MOG more strongly than human
MOG (see Fig 1D); mouse and rat MOG are very similar
although not identical.

The flow through of the column used for affinity puri-
fication of MOG Abs from these 2 patients still contained

37



Results

Spadaro et al: MOG Antibody Pathogenicity

A B
( )§103— ( )3350-
g 300
w w
§,102_ i\'\./\ S 250
o 8 2001
1] @< i U B
210 = bl £ 100
= =
& £ 50
= = f
800 s 0 : : T |
0 3 5 8 14 18 21 23 26 29 35 105 10+ 103 102 10
Months after first sample collection Serum dilution
©), (D)
0120—
s
SOl .
= N N
el a4
© S01HN Nc AN N 1
g N BN BN BN N BN BN
e “IININ RN I N 1N IR
8 «J/EN BN BN BN m& BN BN BN
o 4oAN EN BN BN BN BN BN BN
2 N BN BN BN BN BN BN BN
I ININRRRRRR
S ,IENEN BN BN BN BN BN BN
®
O 0 0 & 9 0O & &
O O N B o F K
(S‘\ @ V\QO\Q‘ -
& &

(F) Serum CSF

anti-human IgG —

FIGURE 1: Anti-myelin oligodendrocyte glycoprotein (MOG) reactivity in the 2 patients selected for transfer experiments. The
anti-MOG reactivity in serum and plasma of Patient 5 (blue) and Patient 7 (red) was determined with transfected cells as
described in Patients and Methods. (A) Longitudinal analysis. Solid lines indicate anti-MOG IgG; the dotted bluish line shows
persisting anti-MOG IgM in Patient 5. The solid black line shows the cutoff for anti-MOG IgG, the dotted black line the cutoff for
anti-MOG IgM. (B) Anti-MOG reactivity in serum dilutions. (C, D) Reactivity to human MOG (hMOG), mouse MOG (mMOG), and
the indicated mutations of MOG. The IgG responses are indicated in solid bars, the anti-MOG IgM response from Patient 5 in
hatched bars. (E) The structure of the human MOG model'® is shown as a ribbon representation with residues influencing
antibody binding depicted as stick models. In addition, residues that differ between mouse and human MOG are colored pink
(Pro 42), light violet (2 conservatively mutated interior 13-strand residues), and violet (remaining nonidentical residues). N and C
indicate the N-terminal and C-terminal part of the extracellular domain of MOG. (F) Anti-MOG in cerebrospinal fluid (CSF) of
Patient 5. CSF (IgG 0.022g/l) was used undiluted and serum was diluted 1:377 to obtain the same IgG concentration as in the
CSF. The calculated mean fluorescence intensity (MFI) ratio (MOG-enhanced green fluorescent protein [EGFP)/EGFP) of the CSF
was 72.44, whereas that of the serum sample was 86.34. Control EGFP transfectants are shown in gray, the MOG-EGFP
transfectants in blue. Error bars indicate the standard error of the mean of 2 to 3 experiments.

anti-MOG reactivity as seen with MOG transfectants. This patient (Patient 14), we could obtain only a small amount
was not due to a limited capacity of the column, as it could of anti-MOG IgG with this column and the flow through
still bind the mAb 8-18C5. Along this line, from another still contained a similar reactivity to MOG as the starting
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FIGURE 2: Affinity-purified antibodies (Abs) to myelin oligodendrocyte glycoprotein (MOG). (A) Circular dichroism spectrum of
MOG (0.2mg/ml). The beta-sheet formation is indicated by the negative band at 213nm. (B-E) Comparative analysis of plasma
and affinity-purified MOG Abs to cells transfected with MOG of Patient 5 (blue) and Patient 7 (red). Plasma and purified Abs
were used at an IgG concentration of 12 pg/ml. Closed graphs indicate the recognition of enhanced green fluorescent protein
(EGFP)-transfected cells, open graphs of MOG-EGFP transfectants. (F, G) MOG recognition of the affinity-purified Abs from
Patients 5 (blue) and 7 (red) in comparison with the recombinant humanized mAb 8-18C5 (black) on transfected cells. Error bars
indicate standard error of the mean of 2 to 3 experiments. MFI = mean fluorescence intensity.

material. Thus, the ECD of human MOG produced in
HEK cells binds only a fraction of Abs to MOG.

Staining of Brain Tissue with Affinity-Purified
Abs to MOG

The affinity-purified Abs from both patients bound to myelin
in tissue sections from the rat; r8-18C5 was used as a positive
control (Fig 3). We noted a stronger binding of the Abs from
Patient 7 (see Fig 3C, D) than from Patient 5, which is consis-
tent with the dose response of these preparations to rat MOG
on the surface of rat transfectants (see Fig 2G). Because the
MOG reactivity of these patients was established by using
native cells, while the tissue was fixed with PFA, we compared
the recognition of live and PFA-fixed cells after MOG transfec-
ton. This showed that Patients 5 and 7 recognized MOG also
after PFA fixation of the transfected cells, but the background
was much higher with fixed cells (data not shown).

Pathogenicity and Histopathological Changes
Induced by Patient-Derived Abs to MOG

We analyzed the pathogenic potential of patient-derived
MOG-specific Abs in 2 models of T-cell-mediated EAE
in the Lewis rat. In both models, we injected the MOG
Abs intrathecally 2 days after the injection of either
MOG-specific T cells or MBP-specific T cells. Because

the amount of purified Abs from patients was limited, we
first established the details of the transfer models with
8-18C5 and the humanized r8-18C5. These experiments
showed that EAE can be enhanced, when 8-18C5 or
18-18C5 were injected 2 days later than the T cells. Under
these conditions, the peak of disease was reached at day 5;
the animals recovered largely until day 10. Therefore, we
sacrificed the EAE rats after injection with the patient-
derived Abs at day 5.

The MOG-specific T cells alone did not induce a
clinical effect in our Lewis rat model. However, when
affinity-purified Abs from both Patients 5 and 7 were
injected, a clinical disease was induced (Fig 4). As control,
we used human ivlg and Ig obtained from a protein G
column. This control human Ig did not induce disease,
whereas the positive control 8-18C5 enhanced disease. In
contrast to the MOG-specific T cells, the MBP-specific T
cells induced a clinical disease on their own in the absence
of any added Ab, consistent with previous observations
with MBP-specific T cells in this rat model.*' One day
after injection of r8-18C5 and the Abs from Patient 7 the
clinical disease was enhanced.

All animals shown in Figure 4 were perfused at day
5 and analyzed by histopathology. A quantitative analysis
of the T-cell infiltration and of demyelination in all
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FIGURE 3: Myelin staining of affinity-purified myelin oligodendrocyte glycoprotein (MOG)-specific antibodies (Abs). Samples
were stained on sagittal rat brain sections. The humanized r8-18C5 was used as positive control (A) and showed a specific
myelin staining throughout the cerebrum and cerebellum (B; rectangle in A enlarged). The affinity-purified MOG-specific Ab
from Patient 7 (C, D) showed a strong binding to myelin; a recombinant human IgG that does not bind MOG on transfected
cells (r#7_D7) was negative (E, F). All Abs were used at a concentration of 3 pg/ml. Scale bars = 2mm (A, C, E), 300 pm

(B, D, F).

17 animals revealed the following. The patient-derived
MOG-specific Abs massively enhanced the T-cell infiltra-
tion in the subpial area of the pons when given together
with cognate MOG-specific T cells, but not together with
MBP-specific T cells (see Fig 4). Pathological analysis of
animals injected with MOG-specific T cells alone or
together with control Abs displayed a moderate inflamma-
tory reaction in the spinal cord and less obviously in the
brain and optic nerve, consisting of T-cell infiltrates in the
meninges and CNS tissue and of ED1" macrophages,
being restricted to the meninges (Fig 5, middle panels).

In combination with the injection of the MOG-
specific Abs from Patients 5 and 7, a massively enhanced T-
cell and macrophage infiltration in the meninges and the
subpial CNS tissue was observed, and this was similar to the
pathology observed after injection of the 8-18C5 Ab (see
Figs 4 and 5). The enormous enhancement of the infiltra-
tion of T cells is already visible at a low magnification dis-
playing cross sections of the whole spinal cord (see Fig 5,
first and third rows). Human immunoglobulin reactivity was
seen on subpial myelin, but only traces of activated comple-
ment (C9neo antigen) and a slight perivascular demyelin-
ation were present (data not shown).

Following transfer of MBP-specific T cells alone
(which induced with the applied cell number a mild EAE
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on their own) or in combination with control Abs, a dif-
ferent pathology was seen. It consisted of mild to moder-
ate T-cell infiltration together with the dispersion of
ED1" macrophages throughout the tissue (Fig 6). In com-
bination with patient-derived MOG-specific Abs, human
Ig was also seen on subpial myelin, but this was associated
with complement C9neo activation. This was accompa-
nied by subpial demyelination (see Fig 4D), which was
seen by LFB staining and by immunostaining for cyclic
nucleotide phosphodiesterase. Demyelination and comple-
ment activation were massive with the Abs from Patient
7, less intense but detectable with the Abs from Patient
5, and absent after control Ab injection (see Figs 4D and
6). Due to injection into the cisterna cerebelli magna, the
Abs hardly reached the optic nerve.

Thus, in this model, we see an impressive effect of
the MOG Abs on the histopathology, but only a slight
enhancement of the clinical disease. There are 2 reasons
for this. First, the sensitivity to detect an enhanced clinical
disease is lower if the control group is already sick (see Fig
4B) as compared to a model in which the control group is
not sick at all (see Fig 4A). Second, the clinical score in
this EAE model detects only motor functions. We have
quantified the amount of lipopolysaccharide (LPS) in the
samples used for in vivo experiments and found that the
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FIGURE 4: Pathogenicity of affinity-purified patient-derived myelin oligodendrocyte glycoprotein (MOG)-specific antibodies
(Abs). Lewis rats were injected with MOG-specific (A) or myelin basic protein (MBP)-specific T cells (B). Two days later, 100 pg of
affinity-purified MOG-specific Abs from Patient 5 (blue), Patient 7 (red), control IgG (purple), or 8-18C5 (black) were injected
intrathecally (i.t.) into the spinal fluid (cisterna magna). (A) Three animals received human control IgG, 2 Abs from Patient 7 and
2 from Patient 5. Because the animals with the control IgG did not show any clinical disease, the induction of the clinical EAE
with MOG-specific Abs from patients (data from the patients pooled) reached statistical significance at day 4 (p < 0.05) and day
5 (p = 0.005) using the unpaired 2-tailed t test. (B) Together with MBP-specific T cells, 1 animal received Abs from Patient 5, 2
animals Abs from Patient 7, 5 control IgG. As positive controls, r8-18C5 (A, B) and 8-18C5 (A) were used. Error bars indicate
standard error of the mean. All animals were perfused at the end of the observation period and analyzed for histopathology. (C,
D) Quantification of inflammation and demyelination of animals shown in A and B. (C) The T-cell infiltrates in the subpial region at
the basis of the pons were counted with a 40 x objective, and the number of CD3* T cells/mm? was calculated. (D) The distance
of subpial demyelination at the basis of the pons was measured. (C, D) We performed analysis of variance testing followed by

Tukey honest significant difference test. * < 0.05; ** < 0.01; *** < 0.001.

contaminating amount of LPS was similar in control Ig
and patient preparations; < 10ng were injected per animal.
The same Ig preparations had different effects depending
on the antigen specificity of the coinjected T cells; the
patient Abs enhanced microglia activation and T-cell infil-
tration only together with MOG-specific T cells, but not
in the context of MBP-specific T cells; a strong activation
of terminal complement complex C9neo, conversely, was
seen in the context of MBP-specific T cells, but little acti-
vation was seen in the context of MOG-specific T cells.
We conclude from all this that the effects we describe were
induced by the patient-derived Ig and not by LPS.

In this project, we had tested 3 different human Ig
control preparations, namely ivlg, human IgG not specific
for MOG obtained from a protein G column, and recombi-
nant IgG with human Fc part. None of these human Ig var-
iants recognized MOG, and none of them had any effect on
enhancement of the disease. As a further control experiment,
we injected OVA-specific T cells in the absence or presence

of an intrathecal injection of r8-18C5. In this context, no

induction of clinical disease and no demyelination or com-
plement activation was present (data not shown).

Discussion

Our study shows that Abs to MOG affinity-purified from
the blood of patients with inflammatory demyelination are
pathogenic in transfer experiments to rodents. We found
that these patient-derived MOG-specific Abs mediate
damage to the CNS by different mechanisms. In synergy
with T cells that induce clinical EAE, associated with pro-
found blood-brain barrier damage and activation of mac-
rophages (MBP-specific T cells in the Lewis rat in our
model), human Abs to MOG mediate MS type II-like
pathology, characterized by active demyelination (phago-
cytes containing myelin in the lesion) and local activation
of the terminal complement complex, visible as deposition
of C9neo.”>** We show here that these features are induced
by the patient-derived MOG-specific Abs. This suggests that
in patients with MOG Abs and MS type 11 pathology,mf31
MOG Abs are responsible for this part of the pathology.
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8-18C5
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promote microglia activation in the subpial parenchyma together with MOG-specific T cells. Spinal cord pathology is shown
following passive cotransfer of MOG-specific T-cells with control IgG or anti-MOG Abs. Experimental autoimmune
encephalomyelitis after injection of control Abs is characterized by T-cell infiltration in the meninges and diffusely in the spinal
cord parenchyma, but ED1* macrophages are largely restricted to the meningeal space (middle panels). After injection of Patient
7 Ab (left panels) or 8-18C5 (right panels), there is a massive enhancement of subpial T-cell infiltration and ED1* macrophages
pass the astrocytic glia limitans and infiltrate the central nervous system parenchyma. Scale bars = 100 pm.

Remarkably, most patients with MOG Abs and an MS type
IT pathology described so far do not have a typical MS,* but
rather an encephalomyelitis overlapping with MS and NMO
spectrum disorder. It is discussed whether this should be
grouped as MOG Ab disease. Conversely, most patients with
clinical MS and an MS type II pathology do not have Abs
to MOG,*** suggesting that these patients recognize other
not yet identified autoantigens.

In our second model, in synergy with cognate
MOG-specific T cells, which by themselves do not induce
clinical disease, but only mild, predominantly meningeal
inflammation in our rat model, the same affinity-purified
Ab preparations induced clinical disease with other patho-
logical features, namely a massively enhanced T-cell infil-
tration. An enhancement of T-cell activation by mAbs to
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MOG has been shown in 2 recent studies and suggested
to be mediated by opsonization of the antigen.”** We
found that the patient-derived anti-MOG Abs not only
enhanced T-cell infiltration induced by MOG-specific T
cells, but also stimulated microglia/macrophage infiltration
in the subpial gray matter. This indicates that human
anti-MOG Abs in the CSF might also participate in the
development of gray matter pathology together with
MOG-specific T cells. MOG-specific T cells have been
observed in patients with demyelination, and their recog-
nized epitopes were identified.”> Further studies are
needed to analyze MOG-specific T cells in patients with
Abs to MOG.

Our 2 EAE transfer models show that the human
Abs to MOG mediate tissue destruction via 2 different
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FIGURE 6: Affinity-purified antibodies (Abs) to myelin oligodendrocyte glycoprotein (MOG) induce complement activation and
demyelination together with myelin basic protein (MBP)-specific T cells. Experimental autoimmune encephalomyelitis was
induced with MBP-specific T cells. After 2 days, either MOG-specific affinity-purified Abs from Patient 7 (upper panels) or human
control Ig (lower panels) was injected. When human control Ig was injected, there is a diffuse infiltration of the tissue by CD3* T
cells and ED1* macrophages, but there is no deposition of human IgG on myelin or activation of complement (C9neo; lower
panels). However, when anti-MOG Ig from Patient 7 was cotransferred, inflammation is massively enhanced and ED1*
macrophages are concentrated at sites of active myelin destruction, associated with immunoglobulin deposition on myelin and
complement activation (C9neo antigen deposition; lower left of upper panels). Scale bars = 100 pm. CNP, cyclic nucleotide
phosphodiesterase; H&E = hematoxylin and eosin; LFB = Luxol fast blue.
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TABLE 1. Features of Patients with Anti-MOG Reactivity
Age at First MOG" Reactivity to Human Reactivity to Mouse

ID Current Diagnosis Gender Sample, yr MOG, MFI Ratio MOG, MFI Ratio

5 Relapsing bilateral ON F 42 220.7 2129

14 Relapsing bilateral ON M 54 44.9 20.6

8 NMOSD M 37 385 3.0

7 Relapsing unilateral ON M 46 34.7 216.8

16 NMOSD M 30 18.6 5.6

17 Relapsing bilateral ON F 31 18.2 2.1

6 Monophasic encephalitis F 31 17.7 2.3

10 RRMS F 37 11.9 8.3

13 Relapsing encephalomyelitis M 34 8.6 5.5

1 NMOSD M 40 6.1 1.7

3 Relapsing encephalomyelitis M 26 5.4 1.8

4 RRMS F 55 4.6 7.1

11 RRMS F 50 4.1 1.5

2 Relapsing encephalomyelitis F 66 4.0 0.9

9 RRMS M 32 3.9 3.1

12 RRMS F 23 29 3.9

21 NMOSD E 33 2.7 1.8
Details about Patients 4, 9, 10, 11, and 12 are reported in Spadaro et al.>* and about Patient 2 in Spadaro et al.2® Patients with MOG antibodies
might constitute a condition called MOG antibody disease. The cutoff for recognition of human MOG was 2.27 (mean + 3 standard deviation of con-
trols). The MFI ratio was calculated as the mean of 2 to 5 experiments.
F = female; M = male; MFI = mean fluorescence intensity; MOG = myelin oligodendrocyte glycoprotein; NMOSD = neuromyelitis optica spectrum
disorders; ON = optic neuritis; RRMS = relapsing-remitting multiple sclerosis.

mechanisms. This could be revealed because in our
models the 2 different T-cell lines showed different inten-
sities of T-cell reactivation in the CNS.“"*# In the model
with MBP-specific T cells, strong T-cell activation in the
CNS was associated with blood—brain barrier disruption
and the diffuse infiltration of the CNS tissue by recruited
ED1" macrophages. Therefore, the incoming Abs find a
good environment to mediate demyelination via Ab-
dependent cell-mediated cytotoxicity and complement
activation, which results in a pathology similar to MS type
IL. In the model with MOG-specific T cells, T-cell activa-
tion in the CNS is not optimal and recruitment of ED1*
macrophages is sparse and largely restricted to the menin-
ges. Here, the entering MOG-specific Abs massively
enhance the T-cell recruitment and activation, because
they recognize the same antigen; this then promotes infil-
tration of ED1" macrophages, which is associated with
clinical disease but may be too low to effectively induce
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demyelination. Our observation that the patient-derived
Abs perform tissue destruction by 2 different mechanisms,
demyelination and enhanced inflammation, is consistent
with a previous study transferring sera from immunized
nonhuman primates.®

Our EAE experiments indicate further that the anti-
MOG Abs are not pathogenic on their own, as together
with irrelevant T cells no pathology was induced. This is
consistent with previous observations in other EAE
models” or after intrathecal injection of the 8-18C5 Ab*°
and supports the concept that the anti-MOG Abs perform
a second hit to enhance pathology. Thus, human MOG
Abs are pathogenic, but the precise pathological effects
depend on their interactions with T cells; the human anti-
MOG Abs can mediate MS type II pathology and gray
matter injury upon transfer.

Experiences with mAbs in animals have shown
that recognition of conformational MOG is required for
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pathogenicity.'>'¥ The secondary structure of MOG is
characterized by 2 antiparallel beta-sheets that form an
immunoglobulinlike beta-sandwich fold.”” In rodents,
pathogenic MOG-specific Abs mainly recognize the FG
loop of MOG as the prototype mAb 8-18C5.' Although
the epitope specificity of human anti-MOG Abs was pre-
viously dissected by ELISA*® and transfection of mutated
variants of MOG," epitope specificity of pathogenic Abs
from patients was unknown. The pathogenic MOG-
specific autoantibodies from the 2 patients recognize dif-
ferent epitopes, and both are different from the one recog-
nized by 8-18C5. Patient 5 recognized the CC' loop, as
its binding was reduced by the mutation P42S; this is the
most frequently recognized part of human MOG." This
patient nevertheless strongly recognized mouse MOG,
although the mouse MOG contains P42S. These 2 charac-
teristics of MOG recognition (reduced reactivity to P42,
but strong recognition of mouse MOG) we had observed
before in 5 of 111 patients."® Patient 7 recognized the FG
loop of MOG, as its binding was completely abrogated by
the mutation H103A+S104E. This resembles the recogni-
tion of 8-18C5, which is also abrogated by the double
mutation H103A+S104E. A closer look at the reactivity
of Patient 7 to other mutants of MOG points to epitopes
that are discontinuous like the one recognized by the
mAb 8-18C5,”” but that differ from the 8-18C5 epitope
as they are influenced by P42 positioned in the CC’ loop
and/or the glycosylation site at N31 in addition to bind-
ing to the FG loop. The observed binding pattern of
Patient 7 would therefore be consistent with the recogni-
tion of an ensemble of epitopes that include the FG loop
and are located at the top, membrane-distal part and/or at
the 5-stranded front p-sheet of MOG (see Fig 1E).

Together, this part of our analysis shows that patho-
genic MOG Abs from patients recognize different loops
on MOG.

The anti-MOG response of the patients with recurrent
optic neuritis persisted for the observation periods of 26 and
35 months. This extends our knowledge of kinetic of MOG
Abs. In children with ADEM, the Abs to MOG appeared
only transiently and were rapidly lost, whereas in children
with MS the MOG Abs persisted for years.”” One of our
analyzed patients had the unusual feature of having both an
ant-MOG IgG and an ant-MOG IgM response. Both reac-
tivities were directed against the same epitope of MOG. The
co-occurrence of anti-IgG and anti-IgM to MOG is rare but
was noted in a previous study in 3 of 19 children with
ADEM and Abs to MOG." The long-term persistence of
an anti-MOG IgM response might be surprising, but it is
consistent with recently described human IgM memory B
cells that have passed the germinal center.”® Our study shows
that rarely an IgM response to MOG may also persist.

Our study has the following limitations. First, we
injected the patient-derived Abs intrathecally, not systemi-
cally, although MOG Abs are typically detected in the
blood. In pilot experiments with mAbs, we noted that
EAE can be enhanced both by peripheral and by intrathe-
cal injection, but that higher amounts of Abs were needed
when the Abs were injected systemically. Because the
amount of patient-derived Abs was limited, we chose
intrathecal injection. We feel this is justified, as we found
MOG Abs also in the CSF. From Patient 5, we could
analyze CSF and found strong anti-MOG reactivity with-
out evidence for intrathecal production of Abs to MOG.
Second, we analyzed the pathology only at 1 time point
after injection because we could inject only a limited
number of animals with precious patient-derived Ig mate-
rial. Compared to recombinant Abs, however, patient-
derived Abs more closely reflect the human in vivo situa-
tion. This is important when evaluating the pathogenic
potential of the MOG Abs present in the blood of
patients, as the effector function of IgG is regulated by its
glycosylation®" and there is evidence that IgG glycosyla-
tion is altered in MS paticnts.52 Third, we show that
human MOG Abs identified in a cell-based assay include
pathogenic Abs, but it remains unclear whether all of the
MOG Abs are pathogenic and which features of the
human Abs would allow predicting their pathogenicity.
Our approach displaying the correctly folded extracellular
part of MOG on a column purified only a proportion of
MOG Abs. To affinity-purify and subsequently test the
pathogenic activity of the other MOG Abs, MOG might
have to be displayed in a membrane-bound environment.
Our observation that the extracellular part of MOG
purifies only part of the MOG Abs is consistent with the
previous observation that in a cell-based assay a short con-
struct of MOG lacking the intracellular part is less sensi-
tive to detect anti-MOG Abs than full-length MOG.>?
Possible reasons for the differential reactivity to the
2 MOG variants with the same ECD include oligomeriza-
tion or yet unidentified effects of the intracellular part of
MOG on the conformation of the extracellular part. Fur-
thermore, human MOG Abs are heterogeneous with
respect to cross-reactivity to rodents. To address the path-
ogenicity of MOG Abs not cross-reactive with rodent
MOG, mice with a knock-in of human MOG or even
transfers to nonhuman primates might have to be used.

Together, we show here that Abs to MOG, which
were affinity purified from the blood of patients and rec-
ognize different epitopes on MOG, synergize with T cells
in transfer experiments to rodents; they induce MS type II
pathology and trigger T-cell infiltration with microglia/
macrophage activation in the subpial parenchyma. We
conclude that MOG Abs contribute to the pathology of
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patients with inflammatory demyelinating diseases by
these mechanisms.
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Abstract

Objective

To identify circulating myelin oligodendrocyte glycoprotein (MOG)-specific B cells in the
blood of patients with MOG antibodies (Abs) and to determine whether circulating MOG-
specific B cells are linked to levels and epitope specificity of serum anti-MOG-Abs.

Methods

We compared peripheral blood from 21 patients with MOG-Abs and 26 controls for the
presence of MOG-specific B cells. We differentiated blood-derived B cells in vitro in separate
culture wells to Ab-producing cells via engagement of Toll-like receptors 7 and 8. We quantified
the anti-MOG reactivity with a live cell-based assay by flow cytometry. We determined the
recognition of MOG epitopes with a panel of mutated variants of MOG.

Results

MOG-Ab-positive patients had a higher frequency of MOG-specific B cells in blood than
controls, but MOG-specific B cells were only detected in about 60% of these patients. MOG-
specific B cells in blood showed no correlation with anti-MOG Ab levels in serum, neither in the
whole group nor in the untreated patients. Epitope analysis of MOG-Abs secreted from MOG-
specific B cells cultured in different wells revealed an intraindividual heterogeneity of the anti-
MOG autoimmunity.

Conclusions

This study shows that patients with MOG-Abs greatly differ in the abundance of circulating
MOG-specific B cells, which are not linked to levels of MOG-Abs in serum suggesting different
sources of MOG-Abs. Identification of MOG-specific B cells in blood could be of future
relevance for selecting patients with MOG-Abs for B cell-directed therapy.
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Glossary

Ab = antibody; ADEM = acute disseminated encephalomyelitis; EGFP = enhanced green fluorescent protein; Ig = immunoglobulin;
IL = interleukin; MFI = mean fluorescence intensity; MOG = myelin oligodendrocyte glycoprotein; PBMCs = peripheral blood
mononuclear cells; TLR = Toll-like receptor; TT = tetanus toxoid.

Antibodies (Abs) against myelin oligodendrocyte glyco-
protein (MOG) are detected in a proportion of patients with
inflammatory CNS diseases,' * and there is growing con-
sensus that these patients constitute a separate disease
entity.™® Abs against MOG are assumed to be pathogenic,
based on in vitro experiments showing oligodendrocyte
damage’ and demyelination in slice cultures'® and on in vivo
transfer experiments with affinity-purified MOG-Abs from
patients.“

The source of MOG-Abs is largely unexplored. Studies in
animal models and human subjects have elaborated different
ways to generate long-lasting immunoglobulin (Ig) G pro-
duction. First, memory B cells could continuously generate
short-lived plasma cells on antigen stimulation or via cyto-
kines and Toll-like receptor (TLR) ligands.'>'® Second,
plasma cells might persist for many years in survival niches,
e.g, in the bone marrow and continuously release Abs
without further stimulation.'* The optimal therapy for
patients with anti-MOG disease is unknown. Current evi-
dence indicates that only a proportion of anti-MOG-
positive patients benefits from rituximab.">™'” This might
indicate different pathogenic mechanisms and different
sources of MOG-Abs in these patients.

Here, we set out to identify MOG-specific B cells in blood of
patients with MOG-Abs and controls by differentiating
them ex vivo into Ig-producing cells and quantifying the
MOG recognition of the produced IgG. Thereby, we aimed
to analyze the abundance of circulating MOG-specific
B cells in individual patients and to test whether there is
a linkage to serum levels of MOG-Abs. Furthermore, our
approach combining in vitro differentiation of B cells in
separate wells with determination of epitope recognition
allowed identifying intraindividual heterogeneity of anti-
MOG autoimmunity.

Methods

Population

We analyzed 21 MOG-Ab-positive patients (52% female;
mean age +SD = 40 + 12 years, range 15-60 years; table) and
26 age- and sex-matched healthy donors (62% female; mean
age +SD = 35 + 13 years, range 20-61 years).

Differentiation of PBMCs into Ig-secreting cells
Briefly, 6 x 10° peripheral blood mononuclear cells (PBMCs)
were seeded in 24-well plates in 1 mL/well RPMI medium
containing 10% fetal bovine serum. TLR7/8 ligand R848

Neurology: Neuroimmunology & Neuroinflammation
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(2.5 pg/mL; Sigma-Aldrich, St Louis, MO) and interleukin
(IL)-2 (1,000 IU/mL; R&D Systems, Minneapolis, MN)
were added, and cells were cultured for 7-11 days. This
combination of TLR7/8 ligation and IL-2 differentiates
CD19"CD27" memory B cells into Ig-producing cells,
which have different requirements for activation and dif-
ferentiation than naive B cells.® The in vitro stimulation we
use in this study induces the production of IgG, IgA, and
IgM.lg'lg For limiting dilution assays, PBMCs were dis-
tributed from 10 to 10° cells/well in 200 pL and stimulated
for 11 days. The frequency of antigen-specific B cells was
calculated according to the Poisson distribution.'®' Total
B-cell frequency was determined by flow cytometry using
the anti-human CD19-PerCP-CyS.S Ab (SJ25C1; eBio-
science, San Diego, CA).

Flow cytometry for B-cell

differentiation markers

Cells were stained using anti-human CD3-Alexa Fluor 700
(OKT3; eBioscience), CD19-APC/Fire 750 (HIB19; BioL-
egend, San Diego, CA), CD27-Brilliant Violet 605 (0323;
BioLegend), CD38-eFluor 450 (HB7; eBioscience), CD138-
PE (MilS; STEMCELL Technologies, Vancouver, Canada),
FcR blocking reagent (Miltenyi Biotec, Bergisch Gladbach,
Germany), and TO-PRO-3 (Invitrogen, Eugene, OR).

Enzyme-linked immunosorbent assays

IgG was measured with the human IgG ELISA development
kit (Mabtech, Nacka Strand, Sweden). Abs against tetanus
toxoid (TT) were determined by coating TT (1 pg/mL;
Merck Millipore, Burlington, MA) or bovine serum albumin
(BSA, 1 pg/mL; Sigma-Aldrich) and detected by anti-human
IgG horseradish peroxidase (Jackson ImmunoResearch, West
Grove, PA; 109-036-003).

Detection of MOG-Abs

MOG-Abs were detected in a live cell assay, as describe
Briefly, HeLa cells were transiently transfected with human full-
length MOG fused C-terminally to enhanced green fluorescent
protein (EGFP)-N1 (Clontech Laboratories, Mountain View,
CA) or with EGFP alone (control cells). As secondary reagents,
biotin-SP-conjugated goat anti-human IgG (Jackson Immu-
noResearch, West Grove, PA) and Alexa Fluor 647—conjugated
streptavidin (Jackson ImmunoResearch, West Grove, PA) were
applied. For the determination of anti-MOG reactivity, we gated
on cells with an FITC fluorescence intensity above 500 and
determined their mean fluorescence intensity (MFI) in the
allophycocyanin channel. For serum (diluted 1:50), we calcu-
lated the MFI ratio between MOG-EGFP-transfected cells and
cells transfected with EGFP alone. For cell culture supernatants
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Table Features of patients with anti-MOG reactivity

Age at Reactivity to MOG in serum  Treatment at Duration of Duration of last
ID Initial diagnosis Sex sampling (y) (MFI ratio)® pling (y) di (y) treatment (y)
4 MS F 57 34 Glatiramer acetate 20 13
7a CRION M 47 47.4 Azathioprine 25 1
7b 50 329 Azathioprine 53 3.8
13 ON M 38 20.5 None 4.8 —
14 Relapsing M 54 45.4 Azathioprine 28 0.5
bilateral ON
16 NMOSD M 30 58.0 Cortisone 0.2 0.1
17 Relapsing F 33 54.4 Azathioprine 6.1 0.8
bilateral ON
22a ON M 37 7.4 Cortisone 0.1 0.1
22b 38 6.2 Azathioprine 1.2 0.3
23 Relapsing M 15 111.0 None 6 —
bilateral ON
24 ADEM F 20 35 None 0.3 —
25 MS F 59 4.5 Teriflunomide 4 0.8
26a MS F 47 66.3 Teriflunomide 16 5
26b 47 63.9 Rituximab 16.2 0
26¢ 47 62.0 Rituximab 16.5 0.3
26d 47 731 Rituximab 16.8 0.7
28a ADEM F 34 25.5 None 0.3 -
28b 34 19.4 None 0.6 -
31a  Autoimmune F 44 38.0 None 0.5 —
encephalitis
31b 44 40.1 None 0.7 —
37 ON F 60 21.0 None 0.1 0.1
38 Relapsing ON F 34 199.7 Rituximab 9 0.1
39 Relapsing ON M 43 213.9 Rituximab 8 1.3
40 NMOSD F 4 75 Eculizumab 4 3
M ON M 37 24.8 Azathioprine 33 3.2
42 NMOSD M 35 271 Azathioprine 20 2.2
43 Bilateral ON F 35 325 Azathioprine 3 0.7
44 NMOSD M 32 26.1 Cyclophosphamide 0.1 0.1

Abbreviations: ADEM = acute disseminated encephalomyelitis; CRION = chronic relapsing inflammatory optic neuropathy; MFI = mean fluorescence intensity;
MOG = myelin oligodendrocyte glycoprotein; NMOSD = neuromyelitis optica spectrum disorder; ON = optic neuritis.
2The cutoff for recognition of human MOG was 2.27 (mean +3 SD of controls).'2° The MFI ratio was calculated as the mean of 2-4 experiments.

(used undiluted), the MOG reactivity was determined as delta
MFI (reactivity to MOG-transfected cells—reactivity to control
transfected cells) because the reactivity to control cells of the cell
culture supernatant was close to zero. Negative delta MFI was
considered as zero. Threshold was set to mean +3 SD of the
values from controls. Values beyond mean +5 SDs were not
included in the threshold calculation. The recognition of

Neurology.org/NN
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epitopes on MOG was determined with a panel of mutated
variants of MOG essentially as described.”!

Statistical analysis

For Mann-Whitney U test, the nonparametric, unpaired, and
2-tailed test statistics were performed using GraphPad Prism
7 (GraphPad Software Inc., La Jolla, CA).

November 2019

51



Results

52

Data availability
Data presented in this study are available upon reasonable
request.

Ethics statement

This study was approved by ethical committees of the
Ludwig-Maximilians-Universitit Munich and Hacettepe
University Ankara. Informed consent was obtained from
each donor according to the Declaration of Helsinki.

Results

Differentiation of human B cells in vitro into Ig-
secreting cells

We differentiated B cells into antibody-secreting cells and
noted a strong IgG production at day 7, which further

increased until day 11 (figure 1A), accompanied by de-
velopment of plasmablasts (CD3"CD19°CD27""CD38"")
(figure 1, B-F) that made up about 20% of all cells at day 7.
At later time points, plasmablasts declined, whereas CD3"
T cells prevailed (figure 1F and data not shown). About 10%
of the plasmablasts (day 7) coexpressed CD138 (data not
shown).

Identification of MOG-specific B cells in blood
in a proportion of patients

We determined the anti-MOG reactivity of IgG secreted from
in vitro differentiated B cells and thereby obtained information
on the presence and frequency of MOG-specific B cells in
blood. We compared 21 anti-MOG-positive patients with 26
controls (figure 2, A-C). Patient versus control group showed
a highly significant difference in anti-MOG reactivity of the in

Figure 1 Differentiation of human B cells in vitro into Ig-secreting cells
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PBMCs of healthy controls were stimulated with IL-2 and R848 for the indicated periods. (A) IgG levels of cell culture supernatants were measured by ELISA.
Each dot represents the mean of in total 2 stimulated wells from 2 different individuals. Error bars represent SEM. (B-F) Flow cytometry panels are displayed
from 1 representative donor. For each time point, PBMCs were pregated on live and singlet cells. Gates Q1 (CD3"CD19"; black rectangles) of left panels were
used for further gating on CD27 and CD38 in right panels. Plasmablast formation (CD3"CD19"CD27"*CD38") is shown in Q2 of right panels and peaked at day
7 (D). Ig = immunoglobulin; IL = interleukin; PBMCs = peripheral blood mononuclear cells.
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Figure 2 Identification of MOG-specific B cells in blood of patients with MOG-Abs in serum
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(A and B) PBMCs from MOG-Ab-positive patients (n = 21) and healthy donors (n = 26) were stimulated with IL-2 and R848. Anti-MOG reactivity in cc SNs was
determined. Each dot represents 1 stimulated well. The number of stimulated wells is enclosed directly under the x-axis. (B and C) Each symbol represents the
mean of all stimulated wells in 1 donor. Horizontal lines indicate the mean of all donors. (B) MOG-Ab production was significantly higher in patients than in
controls (Mann-Whitney U test). (C) IgG levels of cc SNs were not significantly different between the 2 groups (Mann-Whitney U test). (D) Comparison of MOG-
Ab levels in serum of patients and cc SNs of stimulated PBMCs. The mean anti-MOG reactivity of the stimulated PBMCs did not correlate with MOG-Ab serum
levels in the respective patients (Spearman correlation; r,; = -0.07). Open circles indicate samples from patients with no treatment at time point of blood
withdrawal (Funreatea = =0.12). (E-F) Limiting dilution analysis with PBMCs from anti-MOG-positive patient 24. PBMCs were seeded at concentrations of 10%(17
wells), 10%(17 wells), 5 x 10%(17 wells), and 10° (27 wells) cells/well and cultured for 11 days in the presence of IL-2 and R848. (E) TT production was assessed by
ELISA. Dotted line indicates applied cutoff calculated as mean + 3 SD of negative wells. (F) MOG-Abs in cell culture supernatants were analyzed by flow
cytometry with transfected cells. Dotted line indicates applied cutoff calculated as mean +4 SD of negative wells. According to the Poisson distribution in whole
PBMCs, the frequency of MOG-specific B cells in patient 24 is calculated as 1:224,000 and for TT 1:68,000. **p < 0.01. Ab = antibody; BSA = bovine serum
albumin; cc SN = cell culture supernatant; Ig = immunoglobulin; IL = interleukin; MFI = mean fluorescence intensity; MOG = myelin oligodendrocyte
glycoprotein; ns = not significant; OD = optical density; PBMCs = peripheral blood mononuclear cells; TT = tetanus toxoid.

vitro differentiated B cells (figure 2B), while similar amounts of
total IgG were produced (figure 2C).

A closer look at the patient group revealed a striking het-
erogeneity. In some patients, MOG-specific B cells were

Neurology.org/NN
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present in each well, in others in the majority of wells, and
yet in others, no anti-MOG reactivity was detected in the
secreted IgG. In 13/21 (about 60%) of anti-MOG-positive
patients, we noted anti-MOG reactivity in at least 1 cul-
tured well (figure 2A). The total amount of IgG produced
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in vitro was similar in the samples from patients with (mean
IgG =6.82 pg/mL, n = 13) or without MOG-specific B cells
(mean IgG = 8.82 pg/mL, n = 8) in their blood (data not
shown).

From § patients, we could analyze samples obtained at dif-
ferent time points, and this showed the stability of our ap-
proach: From patient 7, 2 samples with a time interval of 3 years
were negative. Likewise, both samples of patient 22 obtained
with an interval of 1 year were negative. For patients 28a/
b (interval of 4 months) and 31a/b (interval of 1 month), we
could detect a positive signal for both time points. Patient 26
(no treatment for a/b; rituximab for c/d; all within 1 year) only
showed a marginal positive signal in 1 well for the first blood
sampling and was completely negative for samples b-d (figure
2A and table). We noted that in 4/26 healthy donors, a re-
activity toward MOG was seen in at least 1 well (figure 2A).

We set out to determine the frequency of MOG-specific B cells
in those patients where our first round of analysis indicated the
presence of circulating MOG-specific B cells and where further
samples were available. We performed a limiting dilution assay
with samples from patients 24, 28, and 31. We calculated
a frequency of about 1 MOG-specific B cell in 4.5 x 10* B cells
and about 1 TT-specific B cell in 1.4 x 10* B cells for patient 24
(figure 2, E, F). Patient 28 had about 1 MOG-specific B cell in
1.4 x 10° B cells and about 1 TT-specific B cell in 8.3 x 10*
B cells; patient 31 had about 1 MOG-specific B cell in 8.8 x 10*
B cells and about 1 TT-specific B cell in 3.9 x 10° B cells.

MOG-specific B cells in blood and anti-MOG
levels in serum did not correlate

Within the patient group, the amount of anti-MOG IgG
produced after in vitro stimulation was not linked to the level
of anti-MOG reactivity in serum (r = =0.07; figure 2D). We
selectively analyzed the 8 samples we obtained from 6 patients
who were untreated at the time of blood sampling. Also, in
these samples, no correlation between circulating anti-MOG
B cells and serum anti-MOG level was observed (open circles
in figure 2D; r = =0.12).

Intraindividual heterogeneity of the anti-
MOG response

We combined the B-cell differentiation in separate wells with
the analysis of epitope reactivity. This was performed with
samples from 6 patients. We show original data from selected
wells of 2 patients (figure 3A) and the summary of all analyzed
wells (figure 3B). The in vitro differentiated B-cell cultures
reflected the fine specificity of the serum in 27/37 wells.
Looking at individuals, this analysis revealed an intra-
individual heterogeneity of the anti-MOG response in 4 of 6
patients that was not detectable when analyzing only serum.

Discussion

Here, we describe circulating MOG-specific B cells in a pro-
portion of patients with MOG-Abs. Although it is frequently

Neurology: Neuroimmunology & Neuroinflammation
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a challenge to identify antigen-specific autoreactive T cells in
patients with autoimmune diseases, the method we apply here is
useful to quantify not only highly abundant antigen-specific
B cells after infection and vaccination'® but also autoreactive
B cells such as MOG-specific B cells, which occur at much lower
frequency. We have identified MOG-specific B cells by differ-
entiating them into plasmablasts and then determining the in
vitro development of MOG-Abs with a cell-based assay. An
alternative method to enumerate antigen-specific B cells is the
usage of a purified and labeled antigen.”” The extracellular
domain of recombinant MOG, however, does not completely
mirror MOG in transfected cells.'' We had used the recombi-
nant extracellular part of MOG to form a tetramer, sorted
B cells binding this MOG and produced their Ig in a recombi-
nant way; we then found that these recombinant MOG-Abs
bound MOG by ELISA, but did not bind to MOG on trans-
fected cells (unpublished observation). Thus, the method we
applied in this article is the first choice to identify and quantify
MOG-specific B cells. The quantity of MOG-specific B cells was
much lower than for the recall antigen TT. This reveals a dif-
ference to GADG6S autoimmunity, where GADG65-specific
B cells were as abundant as B cells specific for recall antigens."?

The differentiation of B cells into antibody-secreting cells after
TLR stimulation is a general feature of human memory
B cells.'® TLR7/8 stimulation, as applied in this study,
induced MOG-Ab production provided the patient had pre-
existing MOG-specific B cells. TLR7/8 recognize single-
stranded RNA viruses such as influenza virus; TLR9, which
recognizes unmethylated CpG dinucleotide motifs located in
bacterial and viral DNA, also mediates plasma cell differentia-
tion.'® Children with acute disseminated encephalomyelitis
(ADEM)" and adult patients with optic neuritis and MOG-Abs
frequently had an infectious prodrome.”® The development of
MOG-Abs after genital herpes has been described.** Attacks
were preceded by infection in about 40% of anti-MOG-
positive patients as seen in a multicentre study with 50
patients."® These clinical observations and our in vitro studies
suggest that MOG-Abs can be induced on TLR stimulation.
We noted that in 4/26 control donors, B cells could also be
differentiated into MO G-Ab-producing cells in vitro. This is in
line with the concept that autoreactive immune cells are part of
the normal repertoire.”® This is not necessarily linked to au-
toimmune pathology, but may reflect the susceptibility to de-
velop autoantibodies, in the context of infections.

The extent of diversity of the individual anti-MOG response
has been unknown. Our previous work with mutated variants
of MOG has shown that individual patients respond to
mutations at different loops of MOG; but this does not allow
for conclusions about the heterogeneity of the anti-MOG
response because MOG is so small that the maximal dimen-
sions of a single Ab epitope (2.1 x 2.8 nm)? spana great area
of the surface of MOG.>” The approach we use here—
differentiating B cells in separate wells and combining this
with epitope analysis—allows identifying intraindividual
heterogeneity of the anti-MOG autoimmunity.
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Figure 3 Analysis of the intraindividual heterogeneity of the B-cell response to MOG
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oligodendrocyte glycoprotein.

We found a highly significant difference in the frequency of
MOG-specific B cells between patients and controls; but
a closer look at the group with MOG-Abs revealed 2 subsets;
in our study, about 60% of patients with MOG-Abs in serum
had MOG-specific B cells in blood. This stratification of
patients with MOG-Abs is not related to the intensity of the
anti-MOG response in serum. In this respect, the autoim-
munity against MOG is different to autoimmunity against

AQP4 and NMDA-R, where a close correlation between se-
rum levels of autoantibodies and circulating autoreactive
B cells has been described.***

One limitation of our study is that some patients were under
immunosuppressive treatment at the time of blood withdrawal;
also, the number of patients with the same clinical phenotype
and the same therapy is limited. However, despite
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immunosuppressive treatment, patients had circulating MOG-
Abs and also MOG-specific B cells in blood, consistent with
other studies examining B cells of treated patients with other
autoantibodies.'*?*?° Furthermore, we had the chance to an-
alyze blood cells from 6 patients with MOG-Abs before the
onset of treatment, and these patients are very similar to the
total cohort of patients in terms of abundance of MOG-specific
B cells and lack of correlation between serum anti-MOG and
circulating MOG-specific B cells.

The lack of linkage between autoantibodies to MOG and
circulating MOG-specific B cells indicates different sources of
the anti-MOG-Abs. Two sources have to be considered: long-
lived plasma cells, which are negative for CD20, and CD20"
memory B cells that are readily differentiated into anti-MOG-
secreting cells.">”'* MOG-Abs are transient in patients with
an ADEM:-like phenotype, whereas they persist for many

. 11,2027,30
years in others. =

The function of B cells extends beyond antibody production.
B cells are extremely potent presenters of antigens that bind to
their surface Igs; they selectively internalize their antigen and
present it to T cells at concentrations 10°- to 10*-fold lower
than required for presentation by nonspecific B cells or
monocytes.>! In animal models, MOG-specific B cells were
essential as antigen-presenting cells to drive activation of
MOG-specific T cells and encephalitis,*> and in addition,
MOG-specific Abs enhanced activation of cognate MOG-
specific T cells.'**** Furthermore, B cells produce proin-
flammatory cytokines such as GM-CSE.>

The rationale for anti-CD20 therapy in patients with MOG-
Abs is twofold: reduction of autoantibodies and elimination
of B cells as central drivers of the immune response. The
effect of rituximab on autoantibody levels is particularly
strong in autoimmune diseases driven by IgG4 autoanti-
bodies.** MOG-Abs are typically IgG1,>” and previous
results obtained with small cohorts showed that MOG-Abs
may persist after rituximab,””*® but larger longitudinal
studies are still pending. Clinically, only a proportion of
patients with MOG-Abs respond to B-cell depletion,">™"”
and there is no biomarker for predicting the therapeutic
response to anti-CD20: Treatment with the B cell-
depleting Ab rituximab led to a decrease in the relapse rate
in only 3/9 patients.'® An international consortium ana-
lyzed the response to rituximab in 98 patients and reported
that the overall response was weaker than in anti—-AQP4-
positive patients, and only a proportion of anti-MOG-
positive patients benefited from rituximab.'® In an
Austral-Asian study, 1/6 patients failed to respond to ritux-
imab."” The different responses to anti-CD20 might indicate
different pathogenic mechanisms and different sources of
MOG-Abs in these patients. Our study shows that MOG-Ab
positive differ in the abundance of circulating MOG-specific
B cells. Whether anti-MOG-positive patients with MOG-
specific B cells in blood are preferred candidates for B cell
depleting therapy needs to be assessed in future studies.
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Longitudinal observations from a decent number of patients
are needed to analyze effects of therapies on circulating
MOG-specific B cells. Our study shows that such examina-
tions could be performed with frozen PBMCs, so a central
analysis could be performed of PBMCs collected within
a consortium.

Together, we show that circulating MOG-specific B cells are
present in a proportion of patients with MOG-Abs and that
their abundance is not linked to anti-MOG levels in serum.
Our approach of differentiating B cells in separate wells and
testing then the epitope specificity of the MOG-specific
B cells gives insight into the intraindividual heterogeneity of
the anti-MOG autoimmunity.
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CORRECTION

Identification of circulating MOG-specific B cells in patients with
MOG antibodies

Neurol Neuroimmunol Neuroinflamm 2020;7:e647. doi:10.1212/NX1.0000000000000647

In the article “Identification of circulating MOG-specific B cells in patients with MOG anti-
bodies” by Winklmeier et al.," first published online October 14,2019, on the right side panel in
figure 2a, the labelling of patient 15 should not have been included while the labelling of patient
26b should have been included. The corrected figure appears below. The publisher and the
authors regret the error.
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CORRECTION

Identification of circulating MOG-specific B cells in patients with
MOG antibodies

Neurol Neuroimmunol Neuroinflamm 2021;8:¢938. doi:10.1212/NX1.0000000000000938

In the article “Identification of circulating MOG-specific B cells in patients with MOG anti-
bodies” by Winklmeier et al.," there is an error in figure 1. The left Q3 panel in part D of figure 1
should read 56.2. The editorial staff regrets the error.

Reference
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Neuroimmunol Neuroinflamm 2019;6:e625. doi:10.1212/NXI1.0000000000000625.
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Discussion

This thesis contributed to the demonstration of the pathogenic activity of human MOG
Abs in two pathomechanisms (Spadaro, Winklmeier et al. 2018). Further, in this thesis
MOG-specific B cells could be identified, and a deeper insight into antigen recognition
of MOG Abs could be obtained (Winklmeier, Schluter et al. 2019).

1 Pathogenic mechanism of MOG Abs

Patient with MOG—.IgG Purification of MOG-IgG
& CNS inflammation

= X Ty
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Figure 9| Strategy used to demonstrate the pathogenic mechanisms of patient-derived
MOG Abs. Blood was withdrawn from patients with MOGAD, that showed a cross-
reactivity to rodent MOG. MOG Abs were affinity-purified from patients’ plasma and
then intrathecally injected into the Lewis rats with EAE, where they enhanced the
disorder by two different mechanisms. First, together with MBP-specific T cells, that
were able to breach the BBB on their own, the patient-derived Abs resembled an MS
type II pathology by inducing demyelination (luxol fast blue (LFB) staining) and
complement activation (C9neo). Second, together with cognate MOG-specific T cells,
the patient-derived Abs led to an enhanced inflammation by CD3 positive T cell
recruitment and activation. With permission from (Mader, Kumpfel et al. 2020).

Abs against MOG define MOGAD, a clinical manifestation of a subset of patients with
an inflammatory demyelinating disease of the CNS. Previous studies suggest that these
Abs have a pathogenic potential. However, mainly serum or total IgG preparations were
used in the in vitro and in vivo experiments. Thereby, patients may harbor multiple auto-
Abs which makes an interpretation difficult. In addition, only a proportion of human-

derived MOG-Ig cross-reacts with rodent MOG which limits the studies in these animals.
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Therefore, we selected for the present study patients that have MOG Abs cross-reactive
to rodent MOG. Further, we affinity-purified MOG-Ig from patients’ plasma which was
then injected into the Lewis rats intrathecally. In close collaboration with PD. Dr. Naoto
Kawakami and Prof. Dr. Hans Lassmann, we elaborated the pathogenic mechanism of

human MOG Abs in two different EAE models (Figure 9).

In our first model, the adoptive transfer of MBP-specific T cells induced a clinical EAE
on its own, which is consistent with previous observations. These encephalitogenic T cells
were strongly activated in the CNS which is associated with a BBB breach and
recruitment of activated ED1 positive macrophages (Kawakami, Lassmann et al. 2004).
Thereby, the injected human affinity-purified MOG Abs could act in synergy with the
well-established inflammatory environment from the T cells. These patient-derived Abs
induced demyelination via ADCC and complement activation. We revealed here that
phagocytes contained myelin in the lesion area and that the terminal complement complex
was formed, detected as deposition of the complement component 9 neo-antigen (C9neo).
Both features are reflected by the MS type II pathology (Lucchinetti, Bruck et al. 2000)
and suggest that these MOG Abs are responsible for this part of the pathology in those
patients, which is in line with the reported phenotype of MOGAD in several studies (Di
Pauli, Hoftberger et al. 2015, Spadaro, Gerdes et al. 2015, Jarius, Metz et al. 2016).
Notably, MOG-IgG is detected in a proportion of patients with pattern II MS and the
majority of these patients harbor auto-Abs that are not yet identified (Spadaro, Gerdes et
al. 2016, Kortvelyessy, Breu et al. 2017).

In our second model, the adoptively transferred MOG-specific T cells were not able to
induce an EAE in the Lewis rats on their own. The T cell activation in the CNS was not
optimal. These T cells alone caused only mild inflammation and sparse recruitment of
ED1 positive macrophages, which was predominantly restricted to the meninges.
However, upon the additional injection of the human affinity-purified MOG Abs, the rats
developed a clinical disease. Here, the MOG-specific Abs recognize the same antigen as
the transferred cognate T cells. This leads to a massive enhancement of T cell recruitment
and activation, which is in line with previous studies, that could show a boost of myelin-
specific T cell activation and expansion due to myelin-specific Abs. Hereby, mouse MOG
Abs, that recognized intact MOG, were internalized by APCs in an Fc-dependent manner,
and stimulated the cognate T cells by presenting the antigen (Flach, Litke et al. 2016,
Kinzel, Lehmann-Horn et al. 2016). Further, we found macrophages infiltrated into the

subpial gray matter, indicating a potential synergistically participation of MOG-specific
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Abs and T cells in the development of this pathology. Compared to the first model with
MBP-specific T cells, we only observed little demyelination in the second model because
there was only slight breaching of the BBB. While the epitope recognition was identified
for AQP4-specific T cells in AQP4 Abs seropositive NMOSD (Hofer, Ramberger et al.
2020) and for MOG-specific T cells in MS patients (Varrin-Doyer, Shetty et al. 2014), so
far, no disease-relevant MOG peptide could be found in patients with MOGAD (Hofer,
Ramberger et al. 2020). Therefore, further studies with larger cohorts may be required. In
addition, anti-MOG Abs did not act pathogenically on their own in our EAE transfer
experiments if irrelevant T cells were injected. Previous studies using a transgenic knock-
in mouse model of the monoclonal Ab 8-18C5 heavy chain or injecting the 8-18C5
intrathecally have revealed similar results (Vass, Heininger et al. 1992, Litzenburger,
Fassler et al. 1998). In contrast, circulating anti-AQP4 Abs were able to induce
pathogenicity in animal models on their own when given at high concentrations over a
period of time (Hillebrand, Schanda et al. 2019). Taken together, we could show that
human-derived MOG Abs are pathogenic by two mechanisms. They synergize with
encephalitogenic T cells, performing a second hit. In addition, when the BBB is strongly
breached, the MOG-Abs induce demyelination; together with cognate T cells, they
enhance T cell infiltration. In the two animal models we used, the interaction of cognate
T cells with human MOG Abs can induce MS type Il pathology and grey matter injury as

a second hit in both mechanisms.

2 Identification of circulating MOG-specific B cells

In several studies, it was reported that patients with MOGAD respond differently to B
cell depleting therapies (Chen, Flanagan et al. 2020, Whittam, Cobo-Calvo et al. 2020).
This raised the question, if patients with MOGAD also have different MOG-specific B
cell frequencies and if we are able to detect them. The identification of antigen specific
autoreactive T cells can be challenging. Similarly, B cells that require a native antigen
structure for recognition, such as MOG-specific B cells, cannot be detected by simply
using the extracellular part of the antigen. Therefore, we applied in the present study an
alternative approach that has been described previously for quantification of highly
abundant antigen-specific B cells after infection and vaccination (Pinna, Corti et al. 2009).
Even though the frequency of autoreactive B cells is much lower, we were able to detect
MOG-specific B cells in the peripheral blood. To this end, we differentiated human
memory B cells in peripheral blood mononuclear cells (PBMCs) from MOGAD patients
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and healthy controls ex vivo into Ig-secreting cells by stimulating them with resiquimod,
a TLR 7/8 ligand, and the cytokine interleukin-2 (IL-2). Resiquimod stimulates directly
memory B cells that express TLR 7. In addition, it binds to TLR 8 on myeloid cells and
promotes cytokine secretion, which further supports B cell proliferation and
differentiation. IL-2 is not only a growth factor for T cells and natural killer (NK) cells,
but also for activated B cells (Pinna, Corti et al. 2009). The reactivity against MOG of the

PBMCs from AlexaFluor® 647-conjugated
MOGAD patients or controls streptavidin
P @
7-11 days stimulation anti-human IgG Ab 0
+1L-2 biotinylated
+ Resiquimod A

Y«{)\ \?\ MOG

N —
/’ Testing supernatants for
)/ A MOG-specific Abs

Expansion and differentiation
to Ig-secreting plasmablasts Hela cell

Figure 10| Strategy used to investigate MOG-specific B cells. PBMCs from MOGAD
patients and healthy controls were differentiated to Ig-secreting cells by stimulating
them for 7 to 11 days with the cytokine IL-2 and the TLR 7/8 ligand resiquimod (left).
Secreted Abs in the cell culture supernatants were tested for reactivity against MOG by
using a cell-based assay with full-length MOG transfected HeLa cells (right). Bound
MOG Abs were detected with a biotinylated secondary Ab against human IgG and a
fluorochrome-conjugated streptavidin in flow cytometry. Transfection efficiency of
MOG was verified by the expression level of the fusion protein EGFP at the C-terminus
of MOG. More details about this assay can be found in the introductory chapter 2.2.

secreted Abs was then quantified with our cell-based assay (Figure 10).

Here, we found that the anti-MOG reactivity from stimulated PBMCs was significantly
higher from patients with MOGAD compared to healthy donors, while the total IgG
production was similar between the two groups. A closer look revealed two subsets in our
patient cohort; mainly, subjects with and without MOG-specific B cells. In the majority
of MOG Abs seropositive patients, about 60%, we were able to detect MOG-specific B
cells in their peripheral blood. To determine the frequency of antigen-specific B cells, we
performed limiting dilution assays and calculated the frequency according to the Poisson
distribution (Pinna, Corti et al. 2009). Thereby, we could show that the abundance of
circulating MOG-specific B cells was much lower than for the recall antigen tetanus
toxoid (TT). In contrast, other autoreactive B cells are described to be more frequent such

as for the intracellular target-antigen glutamic acid decarboxylase (GAD)65 in GAD65
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Abs-associated neurological disorders. There, GAD65-specific B cells occurred with a

comparable frequency as the recall antigen TT (Thaler, Thaller et al. 2019).

To our experience, the in vitro differentiation assay, used in the present study, is the first
choice to detect conformationally dependent autoreactive B cells. In general, the
stimulation of TLR 7/8 in this assay induces proliferation of all human memory B cells
independent from their B-cell receptor signaling. This was also the case for MOG-specific
B cells in the PBMCs of our patients with MOGAD. It is described that the genetic
information of viruses and bacteria serve as a danger signal associated with infection for
our immune system and are recognized by different TLRs on immune cells. Viral single-
stranded RNA can bind to TLR 7/8, whereas DNA from invading pathogens is a potential
ligand of TLR 9 (Diebold, Kaisho et al. 2004, Heil, Hemmi et al. 2004). Different studies
suggest that autoimmunity can be induced by cross-reactive Abs that occur after an
infection (Rojas, Restrepo-Jimenez et al. 2018). In terms of patients with MOGAD, Jarius
et al. described in a multicenter study that attacks were preceded by an infection in at
least 40% of 37 patients with MOG Abs (Jarius, Ruprecht et al. 2016). Especially, patients
with ADEM or ON were frequently observed to have an infectious prodrome
(Ramanathan, Reddel et al. 2014, Koelman and Mateen 2015). Additionally, further case
reports connect the occurrence of MOG Abs with several bacterial or viral infections,
such as Mycoplasma pneumonia (Bonagiri, Park et al. 2020), the Epstein-Barr virus
(Kakalacheva, Regenass et al. 2016, Nakamura, Nakajima et al. 2017), the Zika virus
(Neri, Xavier et al. 2018), the influenza A virus (Amano, Miyamoto et al. 2014), or the
genital herpes simplex virus (Nakamura, Iwasaki et al. 2017). Aside from the patient
cohort, 4/26 donors in our control group also developed MOG Abs after in vitro
stimulation. Autoreactive immune cells do not lead necessarily to autoimmunity. They
may occur as part of our healthy immune repertoire, and can also be related to a previous
infection (Cohen 2014). Taken together, the clinical observations and our results indicate

that MOG Abs can arise after TLR stimulation.

There are different sources possible, that may produce MOG-Ig in patients with MOGAD.
Long-lasting levels of MOG Abs could be generated in different ways. First, memory B
cells that recognize MOG could be stimulated by their cognate antigen to proliferate and
differentiate into short-lived plasma cells, or by cytokines and TLR ligands in an antigen-
independent manner. Second, long-lived plasma cells may constantly release MOG Abs
in survival niches such as the bone marrow. Since the main source of Abs against MOG

is largely unexplored, we compared the amount of MOG Abs secreted in our in vitro assay
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with the MOG-IgG level in corresponding serum samples within the patient cohort. Here,
we could not recognize a linkage, assuming that circulating memory B cells are not the
main source for MOG Abs in the sera from our patient group. To exclude that an
immunosuppressive treatment may alter our interpretation, we selectively repeated the
analysis with 8 samples from 6 donors, who were untreated at the time point of blood
withdrawal. These results were similar and confirmed our previous observation that
MOG-specific B cells do not correlate with MOG Ab titers in serum. This is comparable
to the autoimmunity against GADG65, where the source of GAD Abs is also not linked to
circulating GAD-specific memory B cells. Further, Thaler et al. could show that plasma
cells niched in the bone marrow were responsible for the production of GAD Abs (Thaler,
Thaller et al. 2019). In terms of MOGAD, we suggest that long-lived plasma cells may
also be present in survival niches such as the bone marrow. In contrast, serum levels of
Abs against AQP4 or NMDAR are directly linked to the amount of Abs produced by
stimulated B cells in peripheral blood (Makuch, Wilson et al. 2018, Wilson, Makuch et
al. 2018).

3 Deeper insight into details of antigen recognition

Previous studies showed that a correctly folded native structure of MOG is essential to
detect pathogenic Abs, that can induce demyelination in animal models, and to distinguish
them from non-demyelinating ones. Methods that used the extracellular domain of MOG
or a non-native version were only able to measure non-pathogenic Abs (Brehm,
Piddlesden et al. 1999). The immunoglobulin-like fold of the MOG protein forms a
sandwich structure consisting of two antiparallel beta-sheets (Breithaupt, Schubart et al.
2003). While the binding specificity of demyelinating Abs against MOG derived from
animals were studied intensively, little is known for epitope recognition of pathogenic
human Abs. In our first study, we were able to affinity-purify MOG-specific Ig from two
patients’ plasma which induced the previously described pathogenic phenotype in our
animal models. Here, patient 5 required the CC’ epitope, as the binding signal was
reduced, if the amino acid proline was substituted by serine at position 42 (P42S). The
CC’ epitope of MOG is the most frequently recognized loop from patients with Abs to
MOG (Mayer, Breithaupt et al. 2013). Further, patient 5 still recognized mouse MOG,
even though it contains the P42S substitution. This binding characteristic was seen in
about 5% of analyzed sera from patients with MOGAD in a previous study (Mayer,

Breithaupt et al. 2013). In contrast, the recognition pattern for patient 7 was completely
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different. The affinity-purified MOG Abs from this patient required the FG epitope for
binding. Here, the double mutation of MOG at position 103 by substituting histidine with
alanine (H103A) and at position 104 by substituting serine with glutamic acid (S104E)
reduced the recognition completely. This resembles the typical recognition pattern of
pathogenic MOG Abs in rodents, which recognize mainly the FG loop of MOG, as it is
for the monoclonal Ab 8-18C5 (Breithaupt, Schubart et al. 2003). A more detailed
analysis however revealed that the recognition pattern of patient 7 was distinct from the
binding pattern of 8-18CS5. Apart from the FG epitope the affinity-purified MOG Abs
from patient 7 had an enhanced binding to MOG variants with an amino acid substitution

at position 42 and 31.

Besides MOG-IgG patient 5 also harbored MOG-IgM, which is rarely found in MOGAD.
The epitope specificity did not differ between the two isotypes. It has been reported that
MOG-IgM can co-occur with MOG-IgG in children with ADEM or adults with ON in
less than 16 % (Brilot, Dale et al. 2009, Pedreno, Sepulveda et al. 2019). Further, we have
observed a persisting MOG-IgM level which can be explained by the presence of IgM
memory B cells (Weill and Reynaud 2020). So far, there is no clinical relevance described
for MOG-IgM in the pathogenesis of MOGAD (Pedreno, Sepulveda et al. 2019). MOG-
IgG also persisted on a long-term basis in our two patients during the observation period

of two to three years.

In our second study, we were able to investigate how diverse the anti-MOG response
appears in individual patients. The common analysis of serum for epitope specificity does
not allow to display the heterogeneity of the containing MOG Abs. Our strategy, as
described earlier, of stimulating PBMCs from MOGAD patients overcomes this
limitation of the serum. The secreted MOG Abs in the in vitro differentiated cell culture
supernatants from different wells revealed an intraindividual diversity of the anti-MOG
autoimmune response. Taken together, these findings of the different epitope specificity
of our two pathogenic affinity-purified MOG-Ig, the persisting reactivity of MOG-IgG
and MOG-IgM, and the deeper insight into the intraindividual heterogeneity of MOG-
IgG extends our understanding of the MOG Abs repertoire in humans.

4 Conclusions and implications

In the first part of this thesis, the pathogenic mechanism of patient-derived MOG Abs

was investigated with two different animal models. We could demonstrate that human
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MOG Abs recognize different epitopes on MOG and that these Abs act synergistically
together with T cells in Lewis rats initiating an MS type II pathology when the BBB was
breached and enhancing an infiltration of cognate MOG-specific T cells. Our first study
was limited in the amount of patient-derived affinity-purified MOG Abs. Therefore, we
injected the MOG Abs intrathecally instead of intravenously, which enabled us to reduce
the needed Ab amount per animal. Further, the used number of animals was restricted due
to the limited amount of affinity-purified MOG Abs. Previous experiments with the
monoclonal MOG Ab 8-18C5 have given similar results for peripheral or intrathecal
injection. Our decision for an intrathecal injection was also supported by the circumstance
that MOG Abs were present in the CSF of patient 5. Additionally, patient-derived Abs
reflect more the in vivo situation in humans than monoclonal Abs. Since we investigated
the pathogenicity in Lewis rats our observations were limited to cross-reactive human
MOG Abs towards the rodent variant of MOG. Future studies are required to address this
concern. It may be needed to use knock-in animals with human MOG or even transfer

experiments with primates.

In the second part, we extend the understanding of the anti-MOG immune response by
studying the MOG-specific B cell compartment. Here, we could reveal that the majority
of patients with MOGAD have circulating MOG-specific memory B cells in their blood
and that the serum MOG-IgG level is not linked to these circulating B cells. In addition,
we showed that patients with MOGAD may harbor an intraindividal heterogeneity of
MOG Abs. Our second study was limited in the number of participating patients in terms
of their clinical phenotype or treatment. Further, some patients of our cohort were under
immunosuppressive therapy when blood was withdrawn. However, we were also able to
investigate a proportion of samples taken at a time point before a treatment was started.
The results of these samples reflect and support our overall findings regarding MOG-

specific B cell abundance and source of MOG-IgG serum levels.

The optimal therapy for patients with MOGAD is unknown. Recent findings revealed that
only a proportion of these patients benefit from B cell depleting therapies such as
rituximab. Our data indicate that there are mainly two groups of patients with MOGAD.
One group with and one group without circulating MOG-specific B cells. Although no
correlation between serum MOG-IgG levels and circulating MOG-specific B cells could
be detected, it still may be beneficial for the subset of patients with MOG-specific B cells
to be treated with a B cell depleting therapy. Besides the role of Abs production, B cells

are highly potent antigen-presenting cells for activating T cells and important drivers of
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the immune response (Lanzavecchia 1985). In addition, independent to their humoral
function, MOG-specific B cells have been shown to play a critical role as antigen
presenters for T cell response in an EAE mouse model (Molnarfi, Schulze-Topphoff et
al. 2013). Therefore, multicenter studies with larger cohorts are required to assess the
question of whether MOG-specific B cells could serve as a biomarker to stratify patients

with MOGAD for a B cell depleting therapy.
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