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Summary 

The myelin sheath is an essential protecting layer around the axons of the nerve cells in 

our brain. This insulation is necessary for a fast transmission of action potentials between 

cells and enables proper motor function, sensory function and cognition in our body. A 

proportion of patients with inflammatory diseases of the central nervous system harbour 

antibodies (Abs), that attack the myelin oligodendrocyte glycoprotein (MOG), which is 

expressed on the outermost surface of this insulating myelin layers. There is growing 

consensus that patients with Abs against MOG constitute the separate disease entity MOG 

Ab associated disorder (MOGAD).  

In the first part of this thesis we aimed to elucidate the pathogenic mechanisms of MOG 

Abs in transfer experiments (in collaboration with PD. Dr. Naoto Kawakami and Prof. 

Dr. Hans Lassmann). Hereby, we selected two patients harbouring MOG Abs with a 

cross-reactivity to rodent MOG. We successfully affinity-purified MOG Abs from these 

patients, which recognized full-length MOG on transfected cells and showed a myelin 

staining on tissue sections. Further, we demonstrated that these patient-derived MOG Abs 

were pathogenic upon intrathecal injection in two different rat models. Together with 

cognate MOG-specific T cells, these Abs enhanced T-cell infiltration; together with 

myelin basic protein–specific T cells, which strongly breach the blood brain barrier, they 

induced demyelination associated with complement deposition. These pathogenic 

changes resembled a multiple sclerosis type II pathology, suggesting that these Abs are 

similarly pathogenic in patients. 

Second, we set out to identify MOG-specific B cells in blood of patients with MOG Abs. 

Herby, we differentiated B cells from blood ex vivo into immunoglobulin-producing cells 

and quantified the MOG recognition of the produced Abs. Thereby, we detected in most, 

but not all patients MOG-specific B cells in the blood. These circulating MOG-specific 

B cells did not show a correlation with anti-MOG Ab levels in serum, suggesting other 

sources for MOG Abs in these patients. In addition, we were able to reveal an 

intraindividual heterogeneity of the anti-MOG autoimmunity by analyzing the epitope 

recognition of MOG Abs secreted from cultured blood cells.  

Together, this thesis has two major findings. First, two pathogenic mechanisms of MOG 

Abs from MOGAD-patients are uncovered, namely demyelination and enhancement of 

cognate T cell activation. Second, patients with MOGAD differ in the presence of 
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circulating MOG-specific B cells; this could be useful in the future to stratify patients 

with MOGAD for therapy optimization.  
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Zusammenfassung 

Die Axone der Nervenzellen in unserem Gehirn sind größtenteils von einer schützenden 

Myelinschicht umgeben. Diese Isolierung ist notwendig für eine schnelle Übertragung 

von Aktionspotentialen zwischen den Zellen und ermöglicht unserem Körper eine 

einwandfreie Funktion der Motorik, Sensorik und Wahrnehmung. Bei einem Teil der 

Erkrankten mit entzündlichen Krankheiten des zentralen Nervensystems kommen 

Antikörper vor, die das Myelin-Oligodendrozyten-Glykoprotein (MOG) angreifen. 

Dieses befindet sich auf der äußersten Oberfläche der isolierenden Myelinschicht. Seit 

den letzten Jahren gibt es eine wachsende Einigkeit darüber, dass Erkrankte mit 

Antikörpern gegen MOG die eigenständige Krankheitsentität MOGAD (aus dem 

Englischen für MOG antibody associated disorder) bilden.  

Der erste Teil dieser Arbeit hatte zum Ziel, die pathogenen Mechanismen von MOG 

Antikörpern in Transferexperimenten zu untersuchen (in Zusammenarbeit mit PD. Dr. 

Naoto Kawakami und Prof. Dr. Hans Lassmann). Für diese Experimente haben wir zwei 

Erkrankte ausgewählt, die kreuzreaktive Antikörper gegen MOG aus Nagetieren 

aufweisen. Wir konnten erfolgreich affinitätsgereinigte MOG Antikörper von diesen 

Erkrankten isolieren, die das Volllängenprotein von MOG auf transfizierten Zellen 

erkannten und Myelin auf Gewebeschnitten färbten. Des Weiteren konnten wir zeigen, 

dass diese humanen MOG Antikörper nach intrathekaler Injektion in zwei verschiedenen 

Rattenmodellen pathogen waren. Zusammen mit kognitiven MOG-spezifischen T-Zellen 

verstärkten diese Antikörper die T-Zell-Infiltration. Gemeinsam mit Basischen 

Myelinprotein-spezifischen T-Zellen, die selbst in der Lage sind die Blut-Hirn-Schranke 

zu durchbrechen, lösten sie eine Demyelinisierung aus, die mit der Ablagerung von 

Komplement einherging. Diese pathogenen Veränderungen ähnelten einer Multiple-

Sklerose-Typ-II-Pathologie, was darauf schließen lässt, dass diese Antikörper bei den 

Erkrankten ähnlich pathogen wirken. 

Der zweite Teil dieser Arbeit hatte zum Ziel die MOG-spezifischen B-Zellen im Blut von 

Erkrankten mit MOG Antikörpern zu untersuchen. Dazu differenzierten wir B-Zellen aus 

Blut ex vivo zu Immunglobulin-produzierenden Zellen und quantifizierten die Reaktivität 

gegen MOG der freigesetzten Antikörper. Dabei konnten wir bei den meisten, aber nicht 

allen Erkrankten, MOG-spezifische B-Zellen im Blut nachweisen. Diese zirkulierenden 

MOG-spezifischen B-Zellen zeigten keine Korrelation mit dem Spiegel von MOG 

Antikörpern im Serum, was auf andere Quellen für MOG Antikörper bei diesen 

Erkrankten hindeutet. Darüber hinaus konnten wir eine intraindividuelle Heterogenität 
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der anti-MOG-Autoimmunität feststellen, indem wir die Epitoperkennung von MOG-

Antikörpern der kultivierten Blutzellen analysierten.  

Zusammengefasst trägt diese Arbeit zu zwei wesentlichen Erkenntnissen bei. Erstens 

werden zwei pathogene Mechanismen von MOG Antikörpern aus Erkrankten mit 

MOGAD aufgezeigt, nämlich Demyelinisierung und Verstärkung der kognitiven T-Zell-

Aktivierung. Zweitens unterscheiden sich Erkrankte mit MOGAD durch das 

Vorhandensein von zirkulierenden MOG-spezifischen B-Zellen. Dies könnte in Zukunft 

nützlich sein, um Erkrankte mit MOGAD für die Therapieoptimierung zu stratifizieren.  
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Introduction 

1 Demyelinating autoimmunity of the central nervous system (CNS) 

 Myelin loss in the CNS 

The myelin sheath is the protective layer that wraps around axons of nerve fibers (Figure 

1). In our brain, optic nerve and spinal cord it is formed and maintained by 

oligodendrocytes (Simons and Nave 2015). Myelin insulates the axon and increases the 

resistance of the membrane. Voltage-gated sodium and potassium channels are mainly 

located at the short unmyelinated parts of the axon, the nodes of Ranvier. This alternate 

structure of myelinated and unmyelinated parts enables action potentials to rapidly 

advance in the energy-efficient process of saltatory conduction. A damage of the myelin 

sheath results in slower transmission of action potentials, prolonged latency and can also 

lead to complete loss of nerve conduction (Cunniffe and Coles 2019, Lubetzki, Sol-

Foulon et al. 2020).  

Demyelination occurs in several diseases and can have different causes, such as viral 

infection, loss of oxygen, toxic or metabolic reasons and inflammation (Love 2006). 

Thereby, autoimmunity can be an inflammatory trigger. Usually, our immune system 

protects us from invading pathogens. However, in about 7 – 9 % of the human population, 

it falsely recognizes self-antigens as foreign and attacks its own body (Theofilopoulos, 

Kono et al. 2017). If the autoimmune reaction is directed against the CNS, it may lead to 

Figure 1| Influence of myelination on action potential conduction velocity. With 
increased myelination the conduction velocity is enhanced. Voltage-gated sodium (Nav) 
and potassium channels (Kv) are indicated in the enlarged nodal structure. The 
oligodendrocyte and myelin sheath are colored in green. PN: paranode. Modified and 
with permission from (Lubetzki, Sol-Foulon et al. 2020).  
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myelin loss. These inflammatory demyelinating disorders contain a broad spectrum of 

mechanistically and clinically heterogeneous diseases, which are explained in more detail 

under the introductory part 2.3. Amongst those, multiple sclerosis (MS) is the most 

common inflammatory demyelinating disease in young adults (Meinl, Derfuss et al. 2010, 

Mayer and Meinl 2012).  

 

 Multiple sclerosis and the suspected role of B cells in this disease 

MS is a chronic neuroinflammatory disease, which can affect the brain, spinal cord and 

optic nerve. It is estimated that about 2.3 million people live with MS globally. The 

average age of clinical onset is at around 30 years of age and the disease occurs about 

three times more frequently in women than in men. Patients can suffer from sensory and 

visual disturbance, motor impairment, fatigue, pain and cognitive deficits (Thompson, 

Baranzini et al. 2018, Dobson and Giovannoni 2019). After a few decades of disease 

progression, about 25% of patients require assistance for mobility such as the use of a 

wheelchair (Sosnoff, Peterson et al. 2018). MS is a very heterogeneous disease that is 

triggered by genetic risk factors, including the human leukocyte antigen haplotype 

DRB1*15:01, and environmental risk factors, including low vitamin D levels, cigarette 

smoking and obesity (Thompson, Baranzini et al. 2018). Different disease courses have 

been described. The majority of patients with MS begin with a single neurological 

demyelinating episode, termed as clinically isolated syndrome (CIS), that typically affects 

the optic nerves, brainstem or spinal cord. Patients with CIS may recover over time from 

the presenting episode. However, about 30 - 70% of patients with CIS progress in disease 

course and develop MS with lesions that disseminate in space with multiple locations in 

the CNS, and in time with repeated episodes (Miller, Barkhof et al. 2005). This most 

common disease course of MS is kwon as relapsing-remitting MS (RRMS). Patients 

experience an alternation between temporary episodes of relapses followed by recovery 

phases of partial or complete remission. The majority of patients with RRMS develop 

later on secondary progressive MS (SPMS) with a continuous worsening of symptoms. 

A minority of MS patients are diagnosed with primary progressive MS (PPMS). This 

form features a progressive worsening from the onset with no relapses or remissions. 

Beside those three main disease courses, rare cases of other variants such as progressive-

relapsing MS are described (Dendrou, Fugger et al. 2015, Thompson, Baranzini et al. 

2018, Dobson and Giovannoni 2019).  
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The most characteristic pathological change in MS brains is the formation of multifocal 

lesions in the forms of large confluent demyelinated plaques in the white and grey matter 

(Lassmann 2013). However, the causes of inflammation and demyelination in MS are not 

yet fully understood. There are different possible forms and patterns discussed. A large 

cohort of pathological human tissue-samples of MS with actively demyelinating lesions 

was analyzed and from these samples, four fundamentally different patterns were found. 

Demyelination of MS type I and II patterns are proposed to be driven by autoimmune 

encephalomyelitis. This inflammation is dominated by infiltration of T-lymphocytes and 

macrophages. In addition, MS type II pathology features the involvement of antibodies 

(Abs) and activation of the complement system. Pattern III and IV are suggested to have 

a virus- or toxin-induced demyelination that leads to primary oligodendrocyte dystrophy 

(Lucchinetti, Bruck et al. 2000).  

Figure 2| Proposed model of the immune responses in MS. T and B cells may get 
activated in the periphery by antigens released from the CNS and presented by dendritic 
cells, or may cross-react with foreign antigens. After expansion, the B and T cells may 
infiltrate to the CNS. B cells encounter their neural antigen and differentiate into plasma 
cells releasing antigen targeting Abs. Cytotoxic CD8+ T cells encounter and may target 
directly glial or neuronal cells presenting their specific peptide ligand. CD4+ T cells get 
reactivated by glial cells presenting their peptide ligand and attract other immune cells 
by releasing cytokines. Invading macrophages contribute to the inflammation and may 
attack the myelin sheath. With permission from (Hemmer, Archelos et al. 2002).  
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While the underlying immune-pathological mechanisms and targeted antigens are 

intensively studied in autoimmune animal models for MS, known as experimental 

autoimmune encephalomyelitis (EAE), their corresponding counterparts in humans 

remain largely undefined (Hohlfeld, Dornmair et al. 2016). Studies in these animal 

models identified T lymphocytes as the main drivers of the disease. However, several 

findings in human MS patients suggest that B cells and Abs also have a crucial role in the 

disease pathogenesis. Obermeier et al. and von Büdingen et al. could show that the 

characteristic feature of persisting oligoclonal immunoglobulin (Ig) G (IgG) in the 

cerebrospinal fluid (CSF) of MS patients is produced by intrathecal B cells. These plasma 

cells are clonally expanded, which indicates the existence of an antigen-driven B cell 

response within the CNS (Obermeier, Mentele et al. 2008, von Budingen, Gulati et al. 

2010). Additionally, the pathological implication of B cells and Abs is supported by 

partial therapeutic benefits through Ig removal with plasma exchange or B cell depletion 

with monoclonal Abs against clusters of differentiation 20 (CD20) (Keegan, König et al. 

2005, Hauser, Waubant et al. 2008, Greenfield and Hauser 2018). This leads to the 

proposed model (Figure 2) wherein both T and B cells contribute to the pathology of MS. 

Autoreactive T cells, that recognize components of the myelin sheath as foreign, get 

activated by antigen-presenting cells such as dendritic cells. Once activated, CNS-

reactive T cells can disrupt the blood brain barrier (BBB), penetrate into the CNS and 

initiate a damaging and inflammatory response. After the BBB is breached, autoreactive 

B cells can infiltrate into 

the CNS and modify 

inflammation by secreting 

pro-inflammatory and 

regulatory cytokines. 

Those B cells are either 

activated in the periphery 

or after infiltration in the 

CNS compartment by self-

antigens. Once activated, 

B cells proliferate and 

subsequently differentiate 

into plasmablasts and 

plasma cells that secrete 

auto-Abs. These Abs can 

Figure 3| Proinflammatory (cytokine release, antigen 
presentation, immunoglobulin secretion) and anti-
inflammatory (cytokine release) features of B cells. With 
permission from (Krumbholz, Derfuss et al. 2012).  
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target components of the myelin sheath and initiate a demyelination through the Ab-

dependent cell-mediated cytotoxicity (ADCC), and through the complement dependent 

cytotoxicity (CDC). In addition, B cells are efficient antigen-presenting cells and can 

activate T lymphocytes by presenting their cognate CNS self-antigen via major 

histocompatibility complex (MHC) class II molecules (Krumbholz, Derfuss et al. 2012, 

Krumbholz and Meinl 2014, Hohlfeld, Dornmair et al. 2016, Hausser-Kinzel and Weber 

2019). A summary of B cell function beyond Ig secretion is illustrated in Figure 3. 

 

 Specific autoantibodies as biomarkers 

MS and associated diseases are part of a broad range of disorders, which often share 

overlapping features, particularly at the beginning of the disease. Therefore, specific 

biomarkers are required for a clear indication and treatment strategy. Classically, the 

presence of persisting oligoclonal IgG, known as oligoclonal bands (OCB), has been used 

as the prognostic biomarker. Those OCBs are only present in the CSF but not in the serum 

of the patients. Commonly, MS is diagnosed by magnetic resonance imaging. Thereby, 

disease activity can be visualized by gadolinium contrast agent to detect active lesions 

(Baecher-Allan, Kaskow et al. 2018). However, more defined biomarkers are needed to 

specify distinct disease-driving mechanisms. In the last years, several auto-Abs have 

drawn the attention as important candidates for diagnosis and stratification of patients.  

A meaningful achievement was the discovery of auto-Abs against the water channel 

protein, aquaporin (AQP)4, on astrocytes (Lennon, Wingerchuk et al. 2004, Lennon, 

Kryzer et al. 2005). These Abs, which are detected in about 80% of patients, are highly 

disease-specific and enabled a clear separation of neuromyelitis optica (NMO) spectrum 

disorders (NMOSD) from the former “core disease” MS. However, a subgroup of patients 

with clinical features suggestive for NMOSD is seronegative for AQP4-IgG. About one 

third of them harbor Abs in their blood against another auto-antigen: the myelin 

oligodendrocyte glycoprotein (MOG). Patients with MOG-IgG are found in a broad 

clinical spectrum of autoimmune diseases of the CNS. There is growing consensus that 

these patients constitute a separate disease entity, recently termed as MOG Ab associated 

disorder (MOGAD), which is the main focus of the present study (Hausser-Kinzel and 

Weber 2019, Mader, Kumpfel et al. 2020).  
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2 Myelin oligodendrocyte glycoprotein antibody associated disorders 

 The MOG protein 

MOG was identified 40 years ago by Lebar et. al. For their study, they used whole brain 

homogenate to induce EAE in guinea pigs and could show that MOG was a target of Abs, 

which mediated complement-dependent demyelination (Lebar, Boutry et al. 1976, Lebar, 

Lubetzki et al. 1986). In general, MOG is expressed exclusively in the CNS of mammals 

and is highly conserved between species (Delarasse, Della Gaspera et al. 2006). It is only 

a minor component of the myelin sheath, constituting less than 0.05% of all myelin 

proteins. However, MOG has an exposed position on the outermost surface of the myelin 

sheath expressed by oligodendrocyte processes (Brunner, Lassmann et al. 1989). This 

makes MOG easily accessible as a target for Abs compared to other more abundant 

myelin components, such as the myelin basic protein (MBP) (Mayer and Meinl 2012).  

MOG is a single-span transmembrane protein and belongs to the Ig superfamily (Figure 

4). It contains one extracellular Ig variable domain at the N-terminus with a single 

glycosylation site at asparagine 31, a disulfide bond between the two cysteines at position 

24 and 98, two hydrophobic domains (one transmembrane and one membrane-

associated), one cytoplasmic loop, and a C-terminal cytoplasmic tail (della Gaspera, 

Pham-Dinh et al. 1998). In humans, 15 different alternatively spliced isoforms of MOG 

are described (Delarasse, Della Gaspera et al. 2006). Two of them are full-length variants: 

α1 (218 amino acids (AA); molecular mass 25.1 kilodalton (kDa)) and β1 (223 AA; 

molecular mass 25.6 kDa), which differ in their amino acids at the C-terminus. In the 

present study, the major investigated full-length variant α1 is used with arginine, 

asparagine, proline and phenylalanine as C-terminal amino acids from exon 10a (Boyle, 

Traherne et al. 2007, Reindl and Waters 2019).  

Figure 4| Detailed structure of MOG (left) and the myelin sheath (middle): MOG, with 
its extracellular domain, two hydrophobic domains, the cytoplasmic loop and tail. 
Oligodendrocytes wrap multiple layers of compacted cell membrane around the axons 
of neurons. MOG is expressed on the membrane of the outer tongue of the sheath. Right, 
astrocytes interact with the nodes of Ranvier, the unmyelinated parts of the axons. 
Modified and with permission from (Weissert, Kuhle et al. 2002, Fields and Dutta 2019). 



Introduction 

20 

So far, the biological role of MOG and its isoforms is not yet fully understood. Knockout 

mice with MOG deficiency revealed no clinical or histological abnormalities (Delarasse, 

Daubas et al. 2003). However, there are several studies that link MOG with different 

possible functional mechanisms. Hereby, MOG could act as an adhesion molecule by 

gluing neighboring CNS myelin fibers together and could be involved in microtubule 

stability of oligodendrocytes (Johns and Bernard 1999, Clements, Reid et al. 2003). In 

addition, the extracellular Ig domain of MOG has been shown to interact with different 

binding partners: with the complement component C1q and thereby potentially regulating 

the classical complement system (Johns and Bernard 1999); with the nerve growth factor 

(NGF) and thus potentially modulating central axon growth and survival (von Budingen, 

Mei et al. 2015); with the rubella virus as potential host cell receptor and thereby possibly 

making cells permissive for virus entry (Cong, Jiang et al. 2011). Furthermore, when 

MOG is correctly glycosylated, it may interact with the c-type lectin receptor DC-SIGN, 

a dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin that is 

expressed on the surface of dendritic cells and macrophages, and possibly keeps those 

antigen presenting cells (APC) in an immature and tolerogenic state; thus preventing 

autoimmunity (Garcia-Vallejo, Ilarregui et al. 2014). In contrast, autoimmunity could be 

caused by molecular mimicry. MOG is highly homologous to the milk protein 

butyrophilin (BTN) and shares sequential and structural similarities which may trigger a 

cross-reactive immunological response (Guggenmos, Schubart et al. 2004).  

 

 Detection methods of MOG antibodies 

Immunoblotting and enzyme-linked immunosorbent assays (ELISA) were applied in 

early studies to detect Abs against MOG. These assays used the linear or refolded 

recombinantly produced extracellular domain of the MOG protein (usually AA 1–125) as 

substrate. However, these methods led to controversial results in initial investigations. 

Some studies showed a high proportion of Abs against MOG in MS, whereas others were 

not able to reproduce those findings. Further studies revealed that these assays detect 

MOG-specific Abs against non-native MOG, which do not cause disease and can occur 

frequently in the general population. Therefore, immunoblotting and ELISAs cannot be 

used as reliable detection methods for MOG Abs (Reindl and Waters 2019). 

Radioimmunoprecipitation assays (RIA) were then developed and permitted the clinical 

association of MOG Abs with a demyelinating phenotype that was not MS. One of the 

pioneers in this field was Kevin O’Connor. For the RIA, he used self-assembling 
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radiolabeled tetramers, which show a high sensitivity and specificity. To provide the 

native folding environment for the extracellular domain of human MOG, an in vitro 

translation system is applied with endoplasmic reticulum microsomes isolated from a 

mouse hybridoma cell line. The extracellular domain of human MOG is connected to a 

monomer of streptavidin via a flexible linker, which allows a spontaneous assembly into 

a tetrameric structure. The RIA enables the detection of conformation-sensitive MOG 

Abs and can distinguish them from conformation-independent Abs (O'Connor, 

McLaughlin et al. 2007).  

Cell- based assays (CBA) are now widely used for the detection of MOG Abs in research 

and clinic, and are considered as the current gold standard. Thereby, mammalian cells are 

transiently or stably transfected with plasmids that encode for full-length human MOG. 

These immortal cell lines, such as the cervix carcinoma cells from Henrietta Lacks 

(HeLa), human embryonic kidney cells (HEK293) or Chinese hamster ovary cells (CHO), 

transcribe MOG from the plasmid and express it in a native state on the cell surface. Auto-

Abs against MOG from samples can bind to the expressed MOG protein and are usually 

detected via a specific secondary anti-human IgG Abs that is fluorescently labeled. The 

binding can be quantified by using visual scoring of a sample titration with a fluorescent 

microscope or by flow cytometry (Adey, Burton et al. 2013, Reindl and Waters 2019).  

In the present study, a CBA is applied for detecting MOG Abs in serum, plasma, CSF or 

cell culture supernatants. HeLa cells are transiently transfected either with a plasmid 

encoding human full-length MOG C-terminally fused to an enhanced green fluorescent 

protein (EGFP), or with a plasmid encoding the EGFP alone as a control. The EGFP 

signal determines the level of transfected cells. Quantitative analysis is performed by flow 

cytometry as previously described (Spadaro and Meinl 2016). In addition, mouse or rat 

MOG and several mutated variants of human MOG are used to investigate different 

binding patterns of auto-Abs (Figure 5 A and B). In rodents, MOG‐specific Abs, such as 

the from Linington et. al isolated mouse monoclonal Ab against MOG named 8-18C5, 

mainly recognize the FG loop of MOG (Linnington, Webb et al. 1984, Breithaupt, Schafer 

et al. 2008), whereas patients with Abs to MOG recognize different loops of MOG. 

Recently, a study has shown that over 75% of paediatric and adult MOG Abs target the 

CC′ loop around the amino acid proline 42 (Tea, Lopez et al. 2019). In addition, the 

majority of human Abs against MOG does not recognize rodent MOG (Mayer, Breithaupt 

et al. 2013).  
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 Clinical spectrum and pathology of MOG antibody associated disorders 

As described in the section above, initial studies detected Abs against MOG with 

recombinantly produced domains or peptides of MOG. This led to controversial results 

regarding the value of those Abs as prognostic biomarkers, especially in MS. More recent 

studies that used conformationally intact MOG have enabled the investigation of MOG-

IgG in a broad range of CNS diseases. While high levels of MOG-IgG are rarely found 

in patients with classical MS (more details on MS in the first part of the introduction), 

those Abs occur in a proportion of predominantly pediatric cases. Amongst those are 

patients with acute disseminated encephalomyelitis (ADEM), AQP4-IgG seronegative 

NMOSD, optic neuritis (ON), transverse myelitis (TM), or anti–N‐methyl‐D‐aspartate 

receptor (NMDAR) encephalitis.  

ADEM is characterized by multifocal demyelination due to inflammation in the brain and 

spinal cord. It often occurs after infection, such as measles, and is considered as a 

monophasic disease with highest incidence in early childhood. In rare occasions, 

multiphasic ADEM is described with two episodes, which are separated by at least three 

months. ADEM may be followed by ON, NMOSD or MS if further demyelinating events 

occur in the respective target areas. Since there is no prognostic biomarker defined for 

ADEM, a diagnosis depends greatly on exclusions of other diseases. Clinical features 

Figure 5| Three-dimensional structure of murine MOG, A shows the AA’, FG and CC’ 
loop. B displays the different epitopes with the mutated sites of variants of MOG that 
are recognized by MOG Abs and that were used in this study, the single mutations 
asparagine (Asn) at position 31 to aspartic acid (Asp), arginine (Arg) at position 86 to 
glutamine (Gln) and proline (Pro) at position 42 to serine (Ser), and the double mutations 
Arg at position 9 to glycine (Gly) / histidine (His) at position 10 to tyrosine (Tyr) and 
His at position 103 to alanine (Ala) / Ser at position 104 to glutamic acid (Glu). With 
permission from (Mayer, Breithaupt et al. 2013). 
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may include fever, headache, somnolence, irritability, nausea and vomiting (Pohl, Alper 

et al. 2016).  

NMOSD was formerly known as Devic disease or NMO. It is an inflammatory disorder 

of the CNS characterized by severe demyelination and can be monophasic or recurrent. 

When optic nerves are targeted, it leads to ON, when the spinal cord is targeted, it leads 

to myelitis, and if this extends over three vertebral segments, it is considered as 

longitudinally extensive transverse myelitis (LETM). As indicated in the first section of 

the introduction, the majority of patients with NMOSD can be stratified by serological 

tests for the presence of the pathogenic auto-Abs against the water channel protein AQP4, 

while a subgroup remains seronegative for AQP4-IgG. Clinical features may include 

those described below from ON or TM. In addition, with the development of an area 

postrema clinical syndrome, it can lead to intractable hiccups or nausea and vomiting 

(Wingerchuk, Banwell et al. 2015).  

ON is an inflammation of the optic nerve and the most common optic neuropathy 

affecting young adults. It is divided into typical and atypical forms. In its typical form, 

ON is generally associated with MS or is considered as a demyelinating CIS at risk of 

conversion to MS. About 25% of MS cases present ON as the first symptom and about 

70% develop ON during the disease progression, usually in the relapsing-remitting phase. 

The atypical form of ON is mainly associated with NMOSD. Clinical features of ON may 

include visual loss with diffuse blurring or fogging of vision, pain during eye movement 

and swelling of the optic disc (Toosy, Mason et al. 2014).  

TM is an etiologically heterogeneous inflammation of the spinal cord. Half of the patients 

develop TM after an infection, while for up to 30% of patients the cause remains unknown 

and is termed as idiopathic. A distinct group of patients develop TM due to an acquired 

demyelinating disease such as MS or NMOSD. Hereby, the presence of brain lesions in 

patients with partial TM bears an 80% risk of transition to MS within the upcoming 5 

years. An acute or subacute spinal cord dysfunction may result in clinical features such 

as pain, muscle weakness, paralysis, sensory problems, or bladder, bowel and sexual 

impairment (Beh, Greenberg et al. 2013).  

Anti-NMDAR encephalitis is an inflammation of the brain associated with auto-Abs 

against the GluN1 subunit of the NMDAR. The disorder predominantly affects children 

and young adults, occurs with or without tumor association, and can relapse. The 

syndrome develops in several stages. About 70% of patients have early clinical features 
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consisting of headache, fever, nausea, vomiting, diarrhea, or upper respiratory-tract 

symptoms. Within less than two weeks, patients usually develop psychiatric symptoms 

with clinical features such as anxiety, insomnia, fear, mania, paranoia or short-term 

memory loss (Dalmau, Lancaster et al. 2011). In rare cases, anti-NMDAR encephalitis 

can coexist with an overlapping demyelinating syndrome (Titulaer, Hoftberger et al. 

2014).  

MOG-IgG are present in a larger proportion of pediatric patients compared to adults, and 

more females are affected than males with a 2 – 3 : 1 female to male ratio. Thereby, the 

clinical feature changes with age. Young children show an ADEM-like phenotype, 

whereas children older than nine years and adults have an opticospinal phenotype (Reindl 

and Waters 2019). About 20% of children with ADEM harbor Abs against MOG, while 

in pediatric or adult MS, it is rare with less than 5% of cases (Hohlfeld, Dornmair et al. 

2016, Spadaro, Gerdes et al. 2016, Cobo-Calvo, d'Indy et al. 2020). Children diagnosed 

with ADEM tend to have transient MOG-IgG levels that disappear over time (Probstel, 

Dornmair et al. 2011). Those who have persistent levels are at high risk of relapses that 

often leads to ON or NMOSD (Reindl and Waters 2019). As initially mentioned, a 

subgroup of about 20% of patients with NMOSD are seronegative for AQP4-IgG and 

about one third of them harbor Abs against MOG (Hausser-Kinzel and Weber 2019, 

Mader, Kumpfel et al. 2020). Further, MOG-IgG occur in about 20% of patients with ON 

or myelitis such as TM or LETM (Weber, Derfuss et al. 2018). As a recent study shows, 

MOG-IgG may also exist concurrently with Abs against NMDAR. These cases are rare 

with a frequency of about 2% (Martinez-Hernandez, Guasp et al. 2020). Moreover, 

several reports describe the pathology of patients with MOG-IgG as MS pattern type II, 

characterized by active demyelination along with deposition of complement products in 

the brain (Di Pauli, Hoftberger et al. 2015, Spadaro, Gerdes et al. 2015, Jarius, Metz et 

al. 2016). Only in rare cases, intrathecal MOG-IgG production is observed (Kortvelyessy, 

Breu et al. 2017, Yanagida, Iizuka et al. 2017), whereas in the majority of patients, MOG-

IgG is mainly present in the serum at high levels and not in the CSF, suggesting that these 

Abs have a peripheral origin (Mader, Kumpfel et al. 2020).  

MOGAD – a separate disease entity: in the past few years, the above described broad 

spectrum of clinical features associated with MOG-IgG has evolved into a new 

inflammatory disease entity of the CNS. There is great consensus that MOGAD is distinct 

from classical MS and AQP4-IgG seropositive NMOSD. Autoimmune astrocytopathy is 

used to describe AQP4-IgG seropositive NMOSD since astrocytes are targeted by the 
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AQP4-IgG. On the other hand, autoimmune oligodendrocytopathy is used to describe 

MOGAD as it is the oligodendrocytes that are targeted by the MOG-IgG (Figure 6).  

The prevalence of MOGAD is similar to AQP4-IgG seropositive NMOSD with 1 – 4 per 

100,000 people but much lower than for MS, which has a prevalence of 80 – 300 per 

100,000 people. The occurrence of new cases for MOGAD is 0.2 – 1.4 per 100,000 people 

per year, while the incidence of AQP4-IgG seropositive NMOSD is about 0.5 and for MS 

about 5 per 100,000 people per year (Zamvil and Slavin 2015, Jurynczyk, Jacob et al. 

2019, Hegen and Reindl 2020, Mader, Kumpfel et al. 2020).  

The pathology of MOGAD is characterized by an ADEM-like demyelination mostly 

around small venules, which can form confluent white matter lesions. In contrast to 

typical MS, intracortical rather than leukocortical demyelinated lesions predominate. 

Further, these lesions do not show a radially expansion of smoldering plaques in the white 

matter as seen in MS. Additionally, in MOGAD the inflammatory reaction is dominated 

by CD4 positive T cells with an infiltration of granulocytes, whereas in MS inflammatory 

infiltrates are mainly composed of CD8 positive T cells. Moreover, in MOGAD 

intrathecal MOG Ab production and OCBs are rarely observed, which suggests that 

pathogenic MOG Abs access the CNS from the blood as described for AQP4 Abs in 

AQP4-IgG seropositive NMOSD. However, in MOGAD less complement deposition 

Figure 6| AQP4 Ab associated disorders (red) and MOG Ab associated disorders 
(MOGAD, blue). In the first disorder, Abs target AQP4, of which expression is focused 
on the endfeet of astrocytes surrounding blood vessels. In MOGAD, Abs target MOG, 
which is a component of the myelin sheath that is formed by oligodendrocytes. Modified 
and with kind permission from © Dr. Simone Mader, Else Kröner-Fresenius-Stiftung.  
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occurs than in AQP4-IgG seropositive NMOSD and the expression of AQP4 is preserved 

(Hoftberger, Guo et al. 2020, Takai, Misu et al. 2020). Overall, these pathological features 

of MOGAD enable a distinction from typical MS and from AQP4-IgG seropositive 

NMOSD.  

 

 Treatment options 

As listed above, MOGAD comprises a broad phenotypic spectrum of disorders with 

different disease courses. This makes it difficult to conduct randomized trials to 

investigate treatment strategies (Mader, Kumpfel et al. 2020).  

During relapses, high-dose steroids and plasma exchange/immunoadsorption (PLEX/IA) 

have been described to be effective (Mader, Kumpfel et al. 2020). Thereby, steroids 

decrease the inflammation and reduce the activity of the immune system (Coutinho and 

Chapman 2011). Furthermore, PLEX and IA constitute two possibilities to eliminate 

circulating Abs from patients' plasma. During PLEX, the treated plasma is replaced by a 

human albumin solution or fresh frozen plasma from healthy donors. Conversely, during 

IA, the patients’ plasma is passed more selectively through an adsorber column to remove 

immunoglobulins and immune complexes, and the remaining part is re-infused into the 

patients’ blood circuit (Heine, Ly et al. 2016).  

For a long-term therapy, usually intravenous Ig (IVIG), classical immunosuppressants 

such as mycophenolate mofetil, azathioprine and methotrexate, or monoclonal Abs such 

as rituximab are used (Jurynczyk, Jacob et al. 2019, Mader, Kumpfel et al. 2020). IVIG 

is a pooled preparation of normal human immunoglobulins obtained from several 

thousand healthy donors. The mechanisms of an IVIG therapy are complex and not fully 

elucidated. Its therapeutic benefit might be due to the modulating effects on soluble 

mediators and cellular components of the immune system (Galeotti, Kaveri et al. 2017). 

Mycophenolate mofetil inhibits the enzyme needed for the de novo synthesis of guanosine 

nucleotides, which is required for DNA replication in lymphocytes more than in other 

cell types (Allison and Eugui 2000). Azathioprine also affects B and T cells by blocking 

the DNA replication. It becomes incorporated into replicating-DNA as a purine analog 

and can also inhibit the de novo pathway of purine synthesis (Maltzman and Koretzky 

2003). Methotrexate, another immunosuppressive therapy, may have different 

mechanisms of function, including involvement in the inhibition of purine synthesis 

leading to cell cycle arrest (Friedman and Cronstein 2019). Further, monoclonal Abs are 
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used to target specific cell types of the immune system. Rituximab is a chimeric 

mouse/human monoclonal Ab and specifically targets cells expressing CD20. Thereby, 

mainly B cells but also a minor subset of T cells are depleted (Krumbholz and Meinl 

2014, Schuh, Berer et al. 2016, Sabatino, Wilson et al. 2019).  

The optimal therapy for patients with MOGAD is unknown. Different maintenance 

treatment options have been described to reduce relapse rates when compared to their 

baseline. Recent studies revealed that IVIG may have a favorable result on annual relapse 

rates while the treatment effects with rituximab appear to be heterogeneous. Here, only a 

proportion of patients with MOGAD benefited from B cell depleting therapies (Chen, 

Flanagan et al. 2020, Mader, Kumpfel et al. 2020, Whittam, Cobo-Calvo et al. 2020).  

 

3 Pathogenicity of MOG antibodies 

 Lessons from animal models 

In the past four decades, MOG was intensively studied in several autoimmune animal 

models such as EAE in guinea pigs, mice, rats or primates. These animal models enable 

investigation of chronic inflammatory demyelinating diseases and reflect the spectrum of 

MS and associated disorders. Initial experiments with chronic relapsing EAE in guinea 

pigs had shown that increased levels of Abs against MOG in the sera correlated with a 

demyelinating activity when injecting the sera of those guinea pigs into the subarachnoid 

space of normal rats (Linington and Lassmann 1987). Further studies elucidated that 

using MOG for active immunization together with Freund’s adjuvant can trigger two 

different autoimmune responses: first, inflammation in the CNS due to induced 

encephalitogenic MOG-specific T cells, and second, demyelination due to production of 

Abs against MOG (Mayer and Meinl 2012). Importantly, the immune response depends 

on the species and the chosen strain. An immunization with rat MOG in Dark Agouti rats 

resulted in an acute/subacute disease with prominent T cell induced inflammation, but 

spared demyelination. In contrary, Brown Norway rats responded with a chronic disease 

featuring very pronounced Ab-mediated demyelination while remaining relatively 

resistant to induction of classical T-cell mediated EAE (Storch, Stefferl et al. 1998). In 

Lewis rats, immunization with the N-terminal extracellular domain (AA 1–125) of murine 

MOG led to an acute inflammatory demyelinating variant of EAE with a dominant MOG-

specific Ab response, but poor induction of encephalitogenic T cells (Adelmann, Wood 

et al. 1995). An immunization with the extracellular domain of rat MOG in different mice 
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strains revealed an EAE in SJL/J mice with the formation of pathogenic auto-Abs against 

MOG but showed no production of those Abs in C57Bl/6 mice. Differences in the genes 

encoded within the major histocompatibility complex between the two strains might be 

the cause of this effect (Bourquin, Schubart et al. 2003). Further studies elucidated that 

using human MOG instead of rat MOG for immunization can also induce a pathogenic 

MOG-specific auto-Abs response in C57Bl/6 mice (Marta, Oliver et al. 2005). An 

immunization of Balb/c mice with rat cerebellar glycoproteins enabled the isolation and 

production of the widely used monoclonal mouse Ab against MOG named 8-18C5 

(Linnington, Webb et al. 1984). The heavy chain of this pathogenic monoclonal Ab 8-

18C5 was later used for generating transgenic knock-in C57Bl/6 mice. About 30% of all 

B cells were autoreactive against MOG and those animals harbored high levels of MOG-

specific Abs. Interestingly, these mice exhibited benign phenotypes and did not develop 

spontaneous EAE. However, this changed when activated myelin-specific T lymphocytes 

were transferred to these animals by an intravenous injection. This led to an opening of 

the BBB and triggered an inflammatory cascade in the CNS. MOG-specific Abs were 

therefore able to access the brain and initiate demyelination (Litzenburger, Fassler et al. 

1998). Moreover, another study revealed that only a proportion of monoclonal Abs 

against MOG were able to induce demyelination in a rodent EAE model. Hereby, the 

pathogenic potential is related to the ability of Abs to trigger CDC (Figure 7). Therefore, 

the Ab isotype can be suggestive for determining the Ab effector functions (Piddlesden, 

Lassmann et al. 1993). Further studies in marmoset monkeys also showed an EAE 

Figure 7| Scheme of ADCC and CDC. Left, Ab-dependent cell-mediated cytotoxicity 
(ADCC), including effector cells such as natural killer cells or phagocytic cells such as 
macrophages, recognizing the Fc part of the Ab via their Fc receptor. Targeted cells will 
be killed by the release of cytotoxic mediators or phagocytosis. Right, complement 
dependent cytotoxicity (CDC), including the components of the complement system. 
The bound Ab to its targeted antigen is recognized by the complement resulting in the 
formation of a membrane attack complex, that leads to cell lysis. Modified and with 
permission from (Kasi, Tawbi et al. 2012). 
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induced inflammation and complement dependent demyelination upon immunization 

with MOG for non-human-primate models (von Budingen, Hauser et al. 2004).  

Taken together these findings from animal models show that the MOG protein is 

encephalitogenic in many different species, the correctly folded extracellular domain of 

MOG is responsible for the formation of demyelinating auto-Abs, and the proposed two-

hit model is reflected by the associated pathology: breakdown of BBB due to 

encephalitogenic T cells (first hit) and access of complement-fixing MOG-specific Abs 

to the CNS to mediate demyelination (second hit) (Mayer and Meinl 2012, Reindl and 

Waters 2019).  

 

 Previous attempts to analyze pathogenicity of human MOG antibodies 

Some former studies tried to elucidate the potential pathogenic activity of human Abs 

against MOG by using patient-derived materials. In vitro experiments with serum showed 

that these auto-Abs are primarily of the IgG1 subtype and can activate the complement 

cascade, resulting in the formation of the terminal complement complex on living human 

full length MOG transfected HEK-293A cells upon addition of human complement 

(Mader, Gredler et al. 2011). Furthermore, total IgG obtained from anti-MOG Ab positive 

patients can induce ADCC (Figure 7) by natural killer cell-mediated destruction of native 

MOG-expressing cells in culture (Brilot, Dale et al. 2009), and can produce complement-

mediated myelin loss in ex vivo cultured organotypic brain slices from mice (Peschl, 

Schanda et al. 2017). When affinity-purified IgG against MOG is incubated with 

oligodendrocytes, this can lead to a loss of organization of the thin filaments and the 

microtubule cytoskeleton of those glial cells in vitro (Dale, Tantsis et al. 2014). In 

addition, purified total IgG from patients can mediate the uptake of human MOG protein 

by bone marrow-derived macrophages from mice. Thereby, the presence of MOG-

specific Abs enables those myeloid cells to recognize, internalize, process and present the 

MOG antigen at very low concentrations in a fragment crystallizable (Fc)-dependent 

manner. When these APCs are co-cultured with naïve MOG-specific T cells, they can 

activate the T cells to differentiate in an encephalitogenic manner (Kinzel, Lehmann-Horn 

et al. 2016). In vivo experiments with peripheral injected concentrated serum from MS 

patients showed a slight enhanced demyelination in rats with EAE and axonal damage in 

the inflammatory lesions (Zhou, Srivastava et al. 2006). In another study, purified and 

pooled total IgG preparations from five MOG Abs seropositive NMO patients were 

injected in mouse brains intracerebrally. This caused myelin changes and altered the 
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expression of axonal proteins which was not associated with inflammation and largely 

independent of complement (Saadoun, Waters et al. 2014). Further, an investigation with 

an intrathecal injection of purified IgG from a patient with Abs against MOG accelerated 

EAE in mice but the auto-Abs did not induce demyelination. The authors proposed that 

MOG-specific Abs can instead foster T-cell activation by efficiently targeting and 

concentrating the MOG antigen to presentation-competent cells such as macrophages 

(Flach, Litke et al. 2016). Moreover, total IgG derived from MS patients with MOG-

specific Abs was injected peripherally into a humanized mouse model that transgenically 

expresses human Fc-gamma receptors and could exacerbate EAE. This exacerbation was 

dependent on MOG recognition by the human-derived Abs (Khare, Challa et al. 2018).  

Overall, there is evidence that human Abs against MOG are pathogenic. Some studies 

propose a demyelinating effect with complement involvement, whereas others consider 

more a T-cell activation due to APCs that were efficiently triggered by Ab-antigen 

complexes. Mainly serum or total IgG preparations are used for the in vitro studies or 

transfer experiments in vivo. These patient-derived materials may also comprise of 

additional auto-Abs or disease-modulating components, making a distinct interpretation 

difficult.  

 

4 Potential sources of human antibodies against MOG 

The production of Abs can last for a lifetime and different studies in animal models and 

human subjects have elaborated how long-lasting IgGs can be generated. First, Abs 

against MOG could be produced by circulating short-lived plasma cells and second, 

niched long-lived plasma cells may constantly release MOG Abs.  

Usually, antigen-specific naïve B lymphocytes are stimulated by antigen recognition via 

the B cell receptor followed by CD40 ligand signal from cognate T helper cells which 

Figure 8| Overview of the different stages in B cell development. The initial phase from 
pro-B cells to immature B cells takes place in the bone marrow. During the transition, 
mature naïve B cells migrate via the bloodstream to secondary lymphoid organs and may 
undergo germinal-center reactions and class-switch recombination. They form memory 
B cells and antibody-secreting cells, which are plasmablasts or plasma cells. Modified 
and with permission from (Krumbholz, Derfuss et al. 2012) 
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triggers the B cell proliferation and differentiation into memory B cells, plasmablasts and 

plasma cells (Figure 8). Plasmablasts are precursors from plasma cells, which still 

proliferate and already start to produce Abs at low levels; however, their lifespan is very 

short. In contrast to memory B cells and plasmablasts, plasma cells are terminally 

differentiated and do not divide but secrete Abs at high levels. Plasma cells and 

plasmablasts also differ in the expression of certain surface markers, cf. Table 1. During 

the primary immune response, memory B cells are formed within germinal centers and 

survive in secondary lymphoid organs in the absence of their cognate antigen. In the 

secondary immune response, persisting or cross-reactive antigens may continuously 

stimulate memory B cells. In this antigen-dependent manner, memory B cells undergo a 

massive expansion and differentiation towards circulating short-lived plasma cells. In 

addition, some long-lived plasma cells are generated that migrate to survival niches such 

as the bone marrow where they continuously release Abs at high rates without further 

stimulation. The lifespan of plasma cells has been proposed to range from several days 

(short-lived) to several months (long-lived). In contrast, an antigen-independent mode 

without the need for triggering the B cell receptor has also been described. Thereby, at a 

lower rate, all memory B cells are activated by cytokines or Toll-like receptor (TLR) 

ligands and undergo continuous proliferation and differentiation. In this way, a constant 

level of short-lived plasma cells and serum Abs could theoretically be kept throughout a 

human’s life-span. Since this mechanism is non-selective, it maintains the broad spectrum 

of specific Abs by polyclonal activation of all memory B cells (Bernasconi, Traggiai et 

al. 2002, Traggiai, Puzone et al. 2003, Radbruch, Muehlinghaus et al. 2006).  

Table 1| Comparison between plasma cell and plasmablast in terms of localization, 
survival duration, expression of different surface markers as the B cell markers CD19 and 
CD20, proliferation capacity, secretion of Ig, expression of surface bound Ig and of MHC 
class II. - = no, +/- = low, + = moderate, ++ = high (Bernasconi, Traggiai et al. 2002, 
Traggiai, Puzone et al. 2003, Radbruch, Muehlinghaus et al. 2006, Krumbholz, Derfuss 
et al. 2012, Kometani and Kurosaki 2015).  

Features Plasma cell Plasmablast 

Localization 
In survival niches in bone marrow 
and spleen; in inflammatory tissue. 

In lymphatic organs; also 
circulating in body fluids. 

Survival Years to decades Days 
CD19 expression +/- + 
CD20 expression - + 

Proliferation - + 
Secretion of Ig ++ ++ 

Surface Ig +/- ++ 
MHC class II +/- ++ 
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Aims of the thesis  

This thesis comprises three parts. First, the minor part, wherein we aimed to explore the 

pathogenic mechanism of human-derived Abs against MOG; second and third, the major 

part, wherein our aims were to investigate the source of these MOG-specific Abs and to 

analyze the antigen recognition: 

• Pathogenic mechanisms of patient-derived MOG Abs 

• Identification of circulating MOG-specific B cells 

• Deeper insight into details of antigen recognition of MOG Abs 
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Discussion 

This thesis contributed to the demonstration of the pathogenic activity of human MOG 

Abs in two pathomechanisms (Spadaro, Winklmeier et al. 2018). Further, in this thesis 

MOG-specific B cells could be identified, and a deeper insight into antigen recognition 

of MOG Abs could be obtained (Winklmeier, Schluter et al. 2019).  

1 Pathogenic mechanism of MOG Abs 

Abs against MOG define MOGAD, a clinical manifestation of a subset of patients with 

an inflammatory demyelinating disease of the CNS. Previous studies suggest that these 

Abs have a pathogenic potential. However, mainly serum or total IgG preparations were 

used in the in vitro and in vivo experiments. Thereby, patients may harbor multiple auto-

Abs which makes an interpretation difficult. In addition, only a proportion of human-

derived MOG-Ig cross-reacts with rodent MOG which limits the studies in these animals. 

Figure 9| Strategy used to demonstrate the pathogenic mechanisms of patient-derived 
MOG Abs. Blood was withdrawn from patients with MOGAD, that showed a cross-
reactivity to rodent MOG. MOG Abs were affinity-purified from patients’ plasma and 
then intrathecally injected into the Lewis rats with EAE, where they enhanced the 
disorder by two different mechanisms. First, together with MBP-specific T cells, that 
were able to breach the BBB on their own, the patient-derived Abs resembled an MS 
type II pathology by inducing demyelination (luxol fast blue (LFB) staining) and 
complement activation (C9neo). Second, together with cognate MOG-specific T cells, 
the patient-derived Abs led to an enhanced inflammation by CD3 positive T cell 
recruitment and activation. With permission from (Mader, Kumpfel et al. 2020). 
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Therefore, we selected for the present study patients that have MOG Abs cross-reactive 

to rodent MOG. Further, we affinity-purified MOG-Ig from patients’ plasma which was 

then injected into the Lewis rats intrathecally. In close collaboration with PD. Dr. Naoto 

Kawakami and Prof. Dr. Hans Lassmann, we elaborated the pathogenic mechanism of 

human MOG Abs in two different EAE models (Figure 9).  

In our first model, the adoptive transfer of MBP-specific T cells induced a clinical EAE 

on its own, which is consistent with previous observations. These encephalitogenic T cells 

were strongly activated in the CNS which is associated with a BBB breach and 

recruitment of activated ED1 positive macrophages (Kawakami, Lassmann et al. 2004). 

Thereby, the injected human affinity-purified MOG Abs could act in synergy with the 

well-established inflammatory environment from the T cells. These patient-derived Abs 

induced demyelination via ADCC and complement activation. We revealed here that 

phagocytes contained myelin in the lesion area and that the terminal complement complex 

was formed, detected as deposition of the complement component 9 neo-antigen (C9neo). 

Both features are reflected by the MS type II pathology (Lucchinetti, Bruck et al. 2000) 

and suggest that these MOG Abs are responsible for this part of the pathology in those 

patients, which is in line with the reported phenotype of MOGAD in several studies (Di 

Pauli, Hoftberger et al. 2015, Spadaro, Gerdes et al. 2015, Jarius, Metz et al. 2016). 

Notably, MOG-IgG is detected in a proportion of patients with pattern II MS and the 

majority of these patients harbor auto-Abs that are not yet identified (Spadaro, Gerdes et 

al. 2016, Kortvelyessy, Breu et al. 2017).  

In our second model, the adoptively transferred MOG-specific T cells were not able to 

induce an EAE in the Lewis rats on their own. The T cell activation in the CNS was not 

optimal. These T cells alone caused only mild inflammation and sparse recruitment of 

ED1 positive macrophages, which was predominantly restricted to the meninges. 

However, upon the additional injection of the human affinity-purified MOG Abs, the rats 

developed a clinical disease. Here, the MOG-specific Abs recognize the same antigen as 

the transferred cognate T cells. This leads to a massive enhancement of T cell recruitment 

and activation, which is in line with previous studies, that could show a boost of myelin-

specific T cell activation and expansion due to myelin-specific Abs. Hereby, mouse MOG 

Abs, that recognized intact MOG, were internalized by APCs in an Fc-dependent manner, 

and stimulated the cognate T cells by presenting the antigen (Flach, Litke et al. 2016, 

Kinzel, Lehmann-Horn et al. 2016). Further, we found macrophages infiltrated into the 

subpial gray matter, indicating a potential synergistically participation of MOG-specific 
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Abs and T cells in the development of this pathology. Compared to the first model with 

MBP-specific T cells, we only observed little demyelination in the second model because 

there was only slight breaching of the BBB. While the epitope recognition was identified 

for AQP4-specific T cells in AQP4 Abs seropositive NMOSD (Hofer, Ramberger et al. 

2020) and for MOG-specific T cells in MS patients (Varrin-Doyer, Shetty et al. 2014), so 

far, no disease-relevant MOG peptide could be found in patients with MOGAD (Hofer, 

Ramberger et al. 2020). Therefore, further studies with larger cohorts may be required. In 

addition, anti-MOG Abs did not act pathogenically on their own in our EAE transfer 

experiments if irrelevant T cells were injected. Previous studies using a transgenic knock-

in mouse model of the monoclonal Ab 8-18C5 heavy chain or injecting the 8-18C5 

intrathecally have revealed similar results (Vass, Heininger et al. 1992, Litzenburger, 

Fassler et al. 1998). In contrast, circulating anti-AQP4 Abs were able to induce 

pathogenicity in animal models on their own when given at high concentrations over a 

period of time (Hillebrand, Schanda et al. 2019). Taken together, we could show that 

human-derived MOG Abs are pathogenic by two mechanisms. They synergize with 

encephalitogenic T cells, performing a second hit. In addition, when the BBB is strongly 

breached, the MOG-Abs induce demyelination; together with cognate T cells, they 

enhance T cell infiltration.  In the two animal models we used, the interaction of cognate 

T cells with human MOG Abs can induce MS type II pathology and grey matter injury as 

a second hit in both mechanisms.   

 

2 Identification of circulating MOG-specific B cells 

In several studies, it was reported that patients with MOGAD respond differently to B 

cell depleting therapies (Chen, Flanagan et al. 2020, Whittam, Cobo-Calvo et al. 2020). 

This raised the question, if patients with MOGAD also have different MOG-specific B 

cell frequencies and if we are able to detect them. The identification of antigen specific 

autoreactive T cells can be challenging. Similarly, B cells that require a native antigen 

structure for recognition, such as MOG-specific B cells, cannot be detected by simply 

using the extracellular part of the antigen. Therefore, we applied in the present study an 

alternative approach that has been described previously for quantification of highly 

abundant antigen-specific B cells after infection and vaccination (Pinna, Corti et al. 2009). 

Even though the frequency of autoreactive B cells is much lower, we were able to detect 

MOG-specific B cells in the peripheral blood. To this end, we differentiated human 

memory B cells in peripheral blood mononuclear cells (PBMCs) from MOGAD patients 
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and healthy controls ex vivo into Ig-secreting cells by stimulating them with resiquimod, 

a TLR 7/8 ligand, and the cytokine interleukin-2 (IL-2). Resiquimod stimulates directly 

memory B cells that express TLR 7. In addition, it binds to TLR 8 on myeloid cells and 

promotes cytokine secretion, which further supports B cell proliferation and 

differentiation. IL-2 is not only a growth factor for T cells and natural killer (NK) cells, 

but also for activated B cells (Pinna, Corti et al. 2009). The reactivity against MOG of the 

secreted Abs was then quantified with our cell-based assay (Figure 10).  

Here, we found that the anti-MOG reactivity from stimulated PBMCs was significantly 

higher from patients with MOGAD compared to healthy donors, while the total IgG 

production was similar between the two groups. A closer look revealed two subsets in our 

patient cohort; mainly, subjects with and without MOG-specific B cells. In the majority 

of MOG Abs seropositive patients, about 60%, we were able to detect MOG-specific B 

cells in their peripheral blood. To determine the frequency of antigen-specific B cells, we 

performed limiting dilution assays and calculated the frequency according to the Poisson 

distribution (Pinna, Corti et al. 2009). Thereby, we could show that the abundance of 

circulating MOG-specific B cells was much lower than for the recall antigen tetanus 

toxoid (TT). In contrast, other autoreactive B cells are described to be more frequent such 

as for the intracellular target-antigen glutamic acid decarboxylase (GAD)65 in GAD65 

Figure 10| Strategy used to investigate MOG-specific B cells. PBMCs from MOGAD 
patients and healthy controls were differentiated to Ig-secreting cells by stimulating 
them for 7 to 11 days with the cytokine IL-2 and the TLR 7/8 ligand resiquimod (left). 
Secreted Abs in the cell culture supernatants were tested for reactivity against MOG by 
using a cell-based assay with full-length MOG transfected HeLa cells (right). Bound 
MOG Abs were detected with a biotinylated secondary Ab against human IgG and a 
fluorochrome-conjugated streptavidin in flow cytometry. Transfection efficiency of 
MOG was verified by the expression level of the fusion protein EGFP at the C-terminus 
of MOG. More details about this assay can be found in the introductory chapter 2.2. 
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Abs-associated neurological disorders. There, GAD65-specific B cells occurred with a 

comparable frequency as the recall antigen TT (Thaler, Thaller et al. 2019).  

To our experience, the in vitro differentiation assay, used in the present study, is the first 

choice to detect conformationally dependent autoreactive B cells. In general, the 

stimulation of TLR 7/8 in this assay induces proliferation of all human memory B cells 

independent from their B-cell receptor signaling. This was also the case for MOG-specific 

B cells in the PBMCs of our patients with MOGAD. It is described that the genetic 

information of viruses and bacteria serve as a danger signal associated with infection for 

our immune system and are recognized by different TLRs on immune cells. Viral single-

stranded RNA can bind to TLR 7/8, whereas DNA from invading pathogens is a potential 

ligand of TLR 9 (Diebold, Kaisho et al. 2004, Heil, Hemmi et al. 2004). Different studies 

suggest that autoimmunity can be induced by cross-reactive Abs that occur after an 

infection (Rojas, Restrepo-Jimenez et al. 2018). In terms of patients with MOGAD, Jarius 

et al. described in a multicenter study that attacks were preceded by an infection in at 

least 40% of 37 patients with MOG Abs (Jarius, Ruprecht et al. 2016). Especially, patients 

with ADEM or ON were frequently observed to have an infectious prodrome 

(Ramanathan, Reddel et al. 2014, Koelman and Mateen 2015). Additionally, further case 

reports connect the occurrence of MOG Abs with several bacterial or viral infections, 

such as Mycoplasma pneumonia (Bonagiri, Park et al. 2020), the Epstein-Barr virus 

(Kakalacheva, Regenass et al. 2016, Nakamura, Nakajima et al. 2017), the Zika virus 

(Neri, Xavier et al. 2018), the influenza A virus (Amano, Miyamoto et al. 2014), or the 

genital herpes simplex virus (Nakamura, Iwasaki et al. 2017). Aside from the patient 

cohort, 4/26 donors in our control group also developed MOG Abs after in vitro 

stimulation. Autoreactive immune cells do not lead necessarily to autoimmunity. They 

may occur as part of our healthy immune repertoire, and can also be related to a previous 

infection (Cohen 2014). Taken together, the clinical observations and our results indicate 

that MOG Abs can arise after TLR stimulation.  

There are different sources possible, that may produce MOG-Ig in patients with MOGAD. 

Long-lasting levels of MOG Abs could be generated in different ways. First, memory B 

cells that recognize MOG could be stimulated by their cognate antigen to proliferate and 

differentiate into short-lived plasma cells, or by cytokines and TLR ligands in an antigen-

independent manner. Second, long-lived plasma cells may constantly release MOG Abs 

in survival niches such as the bone marrow. Since the main source of Abs against MOG 

is largely unexplored, we compared the amount of MOG Abs secreted in our in vitro assay 
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with the MOG-IgG level in corresponding serum samples within the patient cohort. Here, 

we could not recognize a linkage, assuming that circulating memory B cells are not the 

main source for MOG Abs in the sera from our patient group. To exclude that an 

immunosuppressive treatment may alter our interpretation, we selectively repeated the 

analysis with 8 samples from 6 donors, who were untreated at the time point of blood 

withdrawal. These results were similar and confirmed our previous observation that 

MOG-specific B cells do not correlate with MOG Ab titers in serum. This is comparable 

to the autoimmunity against GAD65, where the source of GAD Abs is also not linked to 

circulating GAD-specific memory B cells. Further, Thaler et al. could show that plasma 

cells niched in the bone marrow were responsible for the production of GAD Abs (Thaler, 

Thaller et al. 2019). In terms of MOGAD, we suggest that long-lived plasma cells may 

also be present in survival niches such as the bone marrow. In contrast, serum levels of 

Abs against AQP4 or NMDAR are directly linked to the amount of Abs produced by 

stimulated B cells in peripheral blood (Makuch, Wilson et al. 2018, Wilson, Makuch et 

al. 2018).  

 

3 Deeper insight into details of antigen recognition 

Previous studies showed that a correctly folded native structure of MOG is essential to 

detect pathogenic Abs, that can induce demyelination in animal models, and to distinguish 

them from non-demyelinating ones. Methods that used the extracellular domain of MOG 

or a non-native version were only able to measure non-pathogenic Abs (Brehm, 

Piddlesden et al. 1999). The immunoglobulin-like fold of the MOG protein forms a 

sandwich structure consisting of two antiparallel beta-sheets (Breithaupt, Schubart et al. 

2003). While the binding specificity of demyelinating Abs against MOG derived from 

animals were studied intensively, little is known for epitope recognition of pathogenic 

human Abs. In our first study, we were able to affinity-purify MOG-specific Ig from two 

patients’ plasma which induced the previously described pathogenic phenotype in our 

animal models. Here, patient 5 required the CC’ epitope, as the binding signal was 

reduced, if the amino acid proline was substituted by serine at position 42 (P42S). The 

CC’ epitope of MOG is the most frequently recognized loop from patients with Abs to 

MOG (Mayer, Breithaupt et al. 2013). Further, patient 5 still recognized mouse MOG, 

even though it contains the P42S substitution. This binding characteristic was seen in 

about 5% of analyzed sera from patients with MOGAD in a previous study (Mayer, 

Breithaupt et al. 2013). In contrast, the recognition pattern for patient 7 was completely 
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different. The affinity-purified MOG Abs from this patient required the FG epitope for 

binding. Here, the double mutation of MOG at position 103 by substituting histidine with 

alanine (H103A) and at position 104 by substituting serine with glutamic acid (S104E) 

reduced the recognition completely. This resembles the typical recognition pattern of 

pathogenic MOG Abs in rodents, which recognize mainly the FG loop of MOG, as it is 

for the monoclonal Ab 8-18C5 (Breithaupt, Schubart et al. 2003). A more detailed 

analysis however revealed that the recognition pattern of patient 7 was distinct from the 

binding pattern of 8-18C5. Apart from the FG epitope the affinity-purified MOG Abs 

from patient 7 had an enhanced binding to MOG variants with an amino acid substitution 

at position 42 and 31.  

Besides MOG-IgG patient 5 also harbored MOG-IgM, which is rarely found in MOGAD. 

The epitope specificity did not differ between the two isotypes. It has been reported that 

MOG-IgM can co-occur with MOG-IgG in children with ADEM or adults with ON in 

less than 16 % (Brilot, Dale et al. 2009, Pedreno, Sepulveda et al. 2019). Further, we have 

observed a persisting MOG-IgM level which can be explained by the presence of IgM 

memory B cells (Weill and Reynaud 2020). So far, there is no clinical relevance described 

for MOG-IgM in the pathogenesis of MOGAD (Pedreno, Sepulveda et al. 2019). MOG-

IgG also persisted on a long-term basis in our two patients during the observation period 

of two to three years.  

In our second study, we were able to investigate how diverse the anti-MOG response 

appears in individual patients. The common analysis of serum for epitope specificity does 

not allow to display the heterogeneity of the containing MOG Abs. Our strategy, as 

described earlier, of stimulating PBMCs from MOGAD patients overcomes this 

limitation of the serum. The secreted MOG Abs in the in vitro differentiated cell culture 

supernatants from different wells revealed an intraindividual diversity of the anti-MOG 

autoimmune response. Taken together, these findings of the different epitope specificity 

of our two pathogenic affinity-purified MOG-Ig, the persisting reactivity of MOG-IgG 

and MOG-IgM, and the deeper insight into the intraindividual heterogeneity of MOG-

IgG extends our understanding of the MOG Abs repertoire in humans.  

 

4 Conclusions and implications 

In the first part of this thesis, the pathogenic mechanism of patient-derived MOG Abs 

was investigated with two different animal models. We could demonstrate that human 
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MOG Abs recognize different epitopes on MOG and that these Abs act synergistically 

together with T cells in Lewis rats initiating an MS type II pathology when the BBB was 

breached and enhancing an infiltration of cognate MOG-specific T cells. Our first study 

was limited in the amount of patient-derived affinity-purified MOG Abs. Therefore, we 

injected the MOG Abs intrathecally instead of intravenously, which enabled us to reduce 

the needed Ab amount per animal. Further, the used number of animals was restricted due 

to the limited amount of affinity-purified MOG Abs. Previous experiments with the 

monoclonal MOG Ab 8-18C5 have given similar results for peripheral or intrathecal 

injection. Our decision for an intrathecal injection was also supported by the circumstance 

that MOG Abs were present in the CSF of patient 5. Additionally, patient-derived Abs 

reflect more the in vivo situation in humans than monoclonal Abs. Since we investigated 

the pathogenicity in Lewis rats our observations were limited to cross-reactive human 

MOG Abs towards the rodent variant of MOG. Future studies are required to address this 

concern. It may be needed to use knock-in animals with human MOG or even transfer 

experiments with primates.  

In the second part, we extend the understanding of the anti-MOG immune response by 

studying the MOG-specific B cell compartment. Here, we could reveal that the majority 

of patients with MOGAD have circulating MOG-specific memory B cells in their blood 

and that the serum MOG-IgG level is not linked to these circulating B cells. In addition, 

we showed that patients with MOGAD may harbor an intraindividal heterogeneity of 

MOG Abs. Our second study was limited in the number of participating patients in terms 

of their clinical phenotype or treatment. Further, some patients of our cohort were under 

immunosuppressive therapy when blood was withdrawn. However, we were also able to 

investigate a proportion of samples taken at a time point before a treatment was started. 

The results of these samples reflect and support our overall findings regarding MOG-

specific B cell abundance and source of MOG-IgG serum levels.  

The optimal therapy for patients with MOGAD is unknown. Recent findings revealed that 

only a proportion of these patients benefit from B cell depleting therapies such as 

rituximab. Our data indicate that there are mainly two groups of patients with MOGAD. 

One group with and one group without circulating MOG-specific B cells. Although no 

correlation between serum MOG-IgG levels and circulating MOG-specific B cells could 

be detected, it still may be beneficial for the subset of patients with MOG-specific B cells 

to be treated with a B cell depleting therapy. Besides the role of Abs production, B cells 

are highly potent antigen-presenting cells for activating T cells and important drivers of 
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the immune response (Lanzavecchia 1985). In addition, independent to their humoral 

function, MOG-specific B cells have been shown to play a critical role as antigen 

presenters for T cell response in an EAE mouse model (Molnarfi, Schulze-Topphoff et 

al. 2013). Therefore, multicenter studies with larger cohorts are required to assess the 

question of whether MOG-specific B cells could serve as a biomarker to stratify patients 

with MOGAD for a B cell depleting therapy.  
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