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Summary

Summary

The immune system is unique in its dynamic interplay, and highly specialized cell types
execute its diverse functions. A major goal of immunology research is to elucidate how the
context-dependent crosstalk between different cell types and the orchestration of their
functions enable protection against disease. Due to the plasticity of immune responses and
their context-dependent pathophysiological states, interpreting them is inherently challenging.
Thus, the immune system has been studied at various hierarchical levels - genomic,
transcriptional, translational, cellular signaling process, cell heterogeneity, spatial,
intercellular, and organismal - each of which forms its own specialized networks. The
advancement of large-scale omics-technologies and automated bioinformatic analysis
pipelines increased the number of high-throughput experiments, resulting in diverse datasets
suitable for studying the immune system from a network perspective. As such, the versatile
toolbox of mass spectrometry-based proteomics has become an integral part of modern
systems immunology research enabling the analysis of expression levels of thousands of
proteins within immune cells, their interaction partners, post-translational modifications, and
localization.

This thesis objectives were twofold: to advance the journey towards complete, accurate, and
ubiquitous cell proteomes and to identify novel network connections that contribute to the
understanding of immune responses.

This thesis demonstrates that proteomics can generate high-quality and comprehensive
proteome profiles not only form individual immune cell types but also from time-resolved
immune responses as well as multicellular immune systems derived from primary human
samples. The optimized quantitative shotgun proteomics workflow with three-hour gradients
achieved an average of 7,500 quantified proteins per measurement. In total, this thesis
provides over 200 immune cell proteomes, that collectively cover 70% of all immune-relevant
signaling molecules, including transcription factors, adaptor molecules, cell surface receptors,
and secreted molecules, making this the most comprehensive immune proteome resource to
date. From this data, I constructed three different immune networks - (1) a functional
intracellular transcriptome and proteome network of murine CD8 memory T cells, (2) an
intracellular and time-resolved proteome and metabolome network of the human CD4 T cell
immune response, and (3) an intra- and intercellular proteome and secretome network of the

human hematopoietic system. Cell surface markers from these networks resulted in a new
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functional classification of memory T cells that could potentially be used to evaluate
vaccination studies. Furthermore, the metabolome-proteome network identified L-arginine as
a critical metabolite during T cell activation, enhancing T cell survival and anti-tumor
activity. This discovery may be used to boost the efficacy of adoptive T cell therapies.
Finally, the hematopoietic cell-cell communication network revealed novel intercellular
connections and serves as a healthy state reference map for future studies aimed at identifying
activation and disease-specific extracellular signaling pathways that can be targeted by
immunotherapies.

Together, this thesis expanded the frontiers of quantitative mass spectrometry-based
proteomics from few immune cell proteomes to system-wide protein-centric immune cell
networks and provided the basis to understanding basic principles of intercellular signaling

and devising novel immunotherapeutic strategies.
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Introduction

1 Introduction

1.1  The immune system

1.1.1  Introduction to the immune system

Immunology emerged from medical microbiology in the last quarter of the nineteenth century
to a well established field in both basic and clinical research today'. Louis Pasteur’s germ
theory and Robert Koch’s studies on infectious diseases introduced a paradigm shift that
diseases not only arise from dysfunctional body cells but can also be caused by exogenous
pathogens. It took another two major discoveries that coined the birth of immunology. Elias
Metchnikoff found that white blood cells can engulf and destroy invading pathogens?, by a
process called phagocytosis (Nobel Prize in Physiology or Medicine 1908) and Emil von
Behring demonstrated that serum from infected animals can protect another animal from that
disease (Nobel Prize in Physiology or Medicine 1901). These findings laid the basis for innate
and acquired as well as cellular and humoral immunity, respectively. This two-class
separation of the immune system was soon relaxed by Jules Bordet’s work on the interaction
of complement and antibodies (Nobel Prize in Physiology or Medicine 1919), as well as the
experiments of Almroth Wright®, who observed that antibodies can specifically facilitate
phagocytosis of bacteria supporting the concept that the two arms of the immune system are
highly intertwined. Furthermore, Paul Ehrlich’s proposed ‘“horror autotoxicus” theory was
questioned, and it became clear that aberrant antibody responses could lead to
hypersensitivity reactions®, shown for example by Charles Richet’s research on anaphylaxis
(Nobel Prize in 1913). During that time, other clinical immunology contributions such as the
discovery of the ABO major blood group system® (Landsteiner Nobel Prize in 1930) as well
as immunochemistry discoveries such as the chemical structure of antibodies®’ (Rodney
Porter and Gerald Edelman Nobel Prize in 1972) lead to a deeper understanding of the
immune system. Then the area of immunobiology started with the discovery of antibody-
producing B lymphocytes and immune regulating T lymphocytes®, which soon became
established as responsible cells of acquired cellular and humoral immunity, respectively'. In
parallel, the major histocompatibility complex (MHC) was discovered to be accountable for
transplant rejections’ (Snell, Dausset and Benacerraf the Nobel Prize in 1980). These findings
converged with the demonstration by Doherty and Zinkernagel that MHC molecules, besides

transplant rejection, are also responsible for T-cell recognition of any type of antigen (Nobel
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Prize in 1996). Many more important discoveries were made during that period that still shape
our understanding of cellular immunity today. Besides cellular immunity, other eminent
immunological questions were answered. For instance, Frank Macarlane Burnet and Peter
Brian Medawar shed light on the immunological tolerance!®!! (Nobel Prize in 1960) and
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Figure 1: History of immunology form serum therapy to checkpoint control (adapted from").

lying the huge diversity of antibody specificities'? (the Nobel Prize in 1987). The acquired
immune response dominated immunobiology in the second half of the twentieth century, but
this changed with the discoveries of pattern recognition receptors'>!# (Bruce Beutler and Jules
Hoffmann Nobel Prize in 2011) and the major T cell instructor the dendritic cell'> (Ralph

Steinman Nobel Prize in 2011). Their work showed that innate immunity serves the immune
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Introduction

response from beginning to the end by first stimulating T cells through antigen presentation
and second acting as professional phagocytes to clear invading pathogens. The extensive
knowledge accumulated by basic immunology research was and is tightly linked to clinical
applications. This can be seen by the first Nobel Prize for serum therapy awarded to Emil
Behring, or by the production of monoclonal antibodies (Nobel Prize in 1984) that paved the
way for cytokine-blocking immunotherapies against chronic inflammatory diseases'¢, or by
the latest Nobel Prize in 2018 for the discovery of cancer therapy by inhibition of negative
immune regulation (Figure 1)

This short historical summary highlights some of the major findings in immunology and
furthermore illustrates the fast-paced environment and continuous discoveries that led to a
research area of computational and systems immunology. With the technical advancements in
omic technologies and machine learning algorithms it is now possible to study the immune
responses at multiple levels with the promise to move from descriptive to predictive models
of human diseases'®!?. This thesis is a descriptive systems immunology approach with the
primary objective of creating a protein landscape of the hematopoietic system. Secondary, the
proteomic toolbox was used to identify novel immune response mechanisms that enabled the
development of novel immunotherapeutic strategies.

The following section provides an overview of the immune system's major components, with
an emphasis on T lymphocytes. The final chapter highlights proteomic strategies for studying

the immune system and concludes with a summary of available immune networks.

Organs of the immune system

The network of immune organs facilitates a regulated immune response allowing the rapid
production of a large number of immune cells and molecules, which can penetrate almost any
tissue throughout the body*. Most immune cells arise from the bone marrow and then reside
in the blood or tissues. For example, T and B lymphocytes mature in the primary immune
organs (thymus or bone marrow, respectively), where they recombine their immune
receptors!. Afterwards they migrate to the secondary immune organs, including lymph nodes,
spleen, Peyer’s patches, the appendix, tonsils, adenoids, and other lymphatic tissue. Because
of that these cells are often referred to as lymphocytes?’.

Immune cells constantly scan the body for pathogens using the blood and lymphatic system as

means of transportation. The lymphatic system is a complex network dispersed throughout the
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whole body, including the central nervous systems®2. It consists of thin-walled lymph
capillaries, which lead to afferent lymph vessels, which in turn connect to the lymph nodes.
Its vessels are filled with lymph, a clear protein-containing fluid, which is passively moved
unidirectional by skeletal muscle contractions towards the heart and eventually reenters the
bloodstream at the junction of the internal jugular and subclavian veins at the base of the right
side of the neck?. Together with the blood system, the lymphatic system forms an important

meeting ground for immune cells to initialize an immune response?.

Cells of the immune system

The cells of the immune system can be roughly categorized into innate or adaptive immune
cells (Figure 2). While first react more quickly, latter can take a few days to fully develop an
immune response against an invading pathogen?’.

Mast cells, granulocytes, macrophages, monocytes, dendritic cells and natural killer cells
form the innate arm of the immune system?. Mast cells are involved in allergic reactions and
can release granules of histamine and heparin upon pathogen encounter. They also play an
important role in inflammation and wound healing. Granulocytes are divided into three
subgroups based on their granule content (neutrophils, basophils, and eosinophils). They are
relatively short lived and play an important role in the early defense against parasites and
extracellular bacteria. Their ability to phagocytose invading bacteria induces the release of
inflammatory cytokines, which causes adjacent blood vessels to dilate and other immune cells
to migrate towards the inflammation point. In particular, Neutrophils can undergo a suicidal
extrusion called neutrophil extracellular traps, which create a physical barrier preventing
pathogens from spreading®®. Macrophages (MQ) comprise another phagocytic cells type that
produce inflammatory cytokines, but unlike neutrophils reside in the tissue and are relatively
long-lived®’.

Denderitic cells (DCs) are also capable of phagocytosis, but more importantly like MQ can
activate cells of the adaptive immune system by presenting pathogen peptides on their cell
surface. Hence, DCs and MQ are called antigen presenting cells (APCs)?®. In detail, upon
encounter of a pathogen, APCs internalize the microbe or its debris and generate peptide
fragments via the proteasome. These fragments are then shuttled to the cell surface being
bound to a receptor complex called major histocompatibility complex II (MHC-II). APCs are
divided into two subclasses. DCs and MQ are professional APCs?°. They express co-

stimulatory molecules on their cell surface (e.g. CD80, CD86, and CD40) and, together with
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the MHC-II can activate naive T lymphocytes by forming an immunological synapse. Non-
professional APCs like fibroblasts or vascular endothelial cells lack those co-stimulatory
receptors and can only reactivate memory T lymphocytes™’.

Natural killer (NK) cells form another innate immune cell type but interestingly are more
closely related to the adaptive immune lymphocytes. Through their specialized receptors, they
scan the body for infected or tumor cells and once identified release cytotoxic granules that
kill the target cell. Recent evidence revealed that specific NK subsets can acquire long-lived
and highly specific memory of a variety of viral and hapten-based antigens?’, linking the

innate arm to the adaptive immune cells>'.

Innate immunity
(rapid response)

Adaptive immunity
(slow response)

Dendritic cell Mast cell

Macrophage

Basophil

Q0
Complement
protein :
% Eosinophil

killer T cell

Neutrophil

Figure 2: Innate and adaptive immune cell types. The rapid innate immune response consisting of soluble
factors (complement proteins) and cellular components (granulocytes, mast cells, macrophages, dendritic cells,
and natural killer cells) form the first line of defense against pathogens. In contrast the slower developing
adaptive immune response consists of antibodies, B cells, and CD4 and CD8 T lymphocytes. Natural killer T
cells and gamma-delta T cells straddle the interface of innate and adaptive immunity, as illustrated by the

overlap of the two circles (adapted from?®).

T and B lymphocytes form the adaptive arm of the immune system. T lymphocytes are
broadly classified based on their CD8 or CD4 receptor expression in two cytotoxic or helper
cells, respectively. Upon activation CD8 T lymphocytes secrete cytotoxic granules containing

granzymes and perforin which induce apoptosis in the target cell*?. In contrast, CD4 T
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lymphocytes upon activation release cytokines that either drive cell-mediated immunity by
MQs and CD8 T cells or humoral immunity by B lymphocytes. Thus, they are called T helper
(Th) cells and, depending on their secretory profile, are classified into four major subclasses
Thl (IFNg, TNFb), Th2 (IL-4, IL-5, IL-13), Th17 (IL-17), and regulatory T cells (IL-10).

B lymphocytes fight pathogens by secreting large amounts of antibodies after their activation.
For example, antibody opsonization, where antibodies mark pathogens by binding to a
specific antigen on their surface, mediates phagocytosis by MQ or neutrophils. Based on their
location and function, B cells are broadly classified in B1 and B2 lymphocytes. B1 cells are
the main producers of natural antibodies and can be found in the pleural and peritoneal
cavities. B2 cells are further divided into marginal zone B cells (MZ B) and conventional
follicular B cells (FO B)*. While MZ B cells are located in the marginal zone of the spleen
and take part in the innate immune response, FO B cells reside in the lymphoid follicles of
secondary lymph organs and play a role in the adaptive immune response’.

The diversity and hetrogeniety of immune cell subsets is constantly evolving, in particular due
to high-resolving and single cell technologies. Here, we briefly described only on the main
subsets, however, due to discoveries of novel secreted molecules or receptors and the use of
novel technologies the categorization of immune subsets will continue to grow in a dynamic

manner>>.

Cytokines

Immune cells use diverse molecules — and in particular cytokines — to communicate with each
other. They are important messengers involved in autocrine, paracrine, and endocrine
signaling. Classically, they act on cells by binding to their corresponding extracellular
receptor thereby regulating maturation, growth, and responsiveness of immune cells and their
surrounding tissue. Besides immune cells, cytokines can also be secreted by other cells of the
body like endothelial cells. Typically, cytokines are small proteins of 5-20 kDa in size and
can be divided into four structural families. First, the four-a-helix bundle family containing
the interleukin (IL) 2 subfamily, the interferon (IFN) subfamily, and IL-10 subfamily, second
the IL-1 family, third the IL-17 family, and last the cysteine-knot family?®.

Although the functional categorization of cytokines is challenging as new properties of known
cytokines are constantly being uncovered, they can be broadly grouped into ILs, lymphokines,
chemokines, IFNs, and tumor necrosis factor family members?’. ILs form the broadest and

biggest group of cytokines and as the name suggest contains cytokines that act between
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leukocytes. Lymphokines are produced by lymphocytes. Chemokines are involved in cell
trafficking and are responsible in attracting cells to the inflammation site. IFNs are classified
into two groups, type I (IFNa and IFNb) and type II (IFNg), and play a pivotal role in the
combat of a viral infection or cancer’’. Tumor necrosis factor family members are
transmembrane proteins that are released through proteolytic cleavage and can act as
cytokines. Their name originates from their ability to inhibit tumor genesis.

Taken together, cytokines control complex communication networks that play an important
role in orchestrating innate and adaptive immunity. Due to their potent nature they are
promising therapeutic targets and have been used in the treatment of cancer and

autoimmunity>®.

Inflammation and the Innate Response

The first line of defense against invading pathogens is the skin and mucosal membranes,
which form a physical barrier. In case a pathogen can pass this layer - for example through a
lesion - the innate immune response gets activated. Here, the complement system starts a
series of proteolytic cleavages when bound to the pathogen®. It thereby covers the pathogen
with complement proteins that form multimeric complexes, which in turn kills the pathogen
by disrupting their membrane.

In addition, innate immune cells such as MQ, DCs, and neutrophils contribute to the innate
immune response by continuously scanning their local environment for invading pathogen
and clearing them by phagocytosis. With their receptors, they can sense pathogen associated
molecular patterns (PAMPs), like lipopolysaccharide (LPS), single stranded RNA, or
unmethylated CpG?°. Upon binding to PAMPs innate immune cells get activated and start to
secrete proinflammatory cytokines and IFNs, which attracts more immune cells to the
inflammation site and also makes nearby cells more resistant to infections*’. Besides, PAMPs,
a second class of intracellular molecules called damage associated molecular patterns can
activated innate immune cells when released into the extracellular environment*!.
Sometimes pathogens are killed by the instant actions of the innate immune response,
however often the response is not strong enough to clear the invading pathogen. In order to
activate the adaptive immune response, APC transport phagocytosed pathogen debris to the
lymph node, where they present those pathogen fragments to T and B lymphocytes. Once an

antigen specific lymphocyte recognizes a specific antigen and receives additional signals
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through secreted molecules, they become activated and start to proliferate. This marks the

beginning of the slower but targeted adaptive immune response’’.

Immune Activation and the Acquired Response

While innate immune cells have a broad specificity towards pathogens, adaptive immune cells
are antigen specific - meaning that only a few cells are specific for any given pathogen
protein. In order to increase the chance of an APC to interact with its few antigen specific T
or B lymphocytes, these cells continuously circulate throughout the lymphoid organs. When
the antigen presenting cell and T cell interact and receive the correct co-stimulatory signals,
they form an immunological synapse?’.

As previously mentioned, APC break down phagocytosed debris into peptides, which they
present at their cell surface to T lymphocytes via MHC molecules. There are two different
types of MHC receptors. While intracellular pathogens are presented through MHC-I,
extracellular derived proteins will be bound to MHC-II receptors®’. DCs are considered the
most potent cell type for activating naive T and B cells, because they secret co-stimulatory
molecules and in addition migrate more efficiently through the lymphatic system. With their
T cell receptor (TCR), T cells scan the surface of APC. However, the majority of TCR/MHC
interactions will be of low affinity and will not lead to the activation of the T cell?°. Only
when the TCR-MHC complex forms a stable interaction, which is supported by co receptor-
ligand interactions as well as activation signals from inflammatory cytokines, T cells start
their activation program. This is marked by the rapid clonal proliferation as well as IL-2
secretion, which further promotes the proliferation process. As a next step, T cells undergo
differentiation and depending on which T cell subtype they belong to perform different
functions to enhance the immune response. CD8 T lymphocytes scan the periphery for
infected cells by interacting with MHC-I receptors. In case the peptide bound to the MHC-I
receptor causes a tight interaction with the TCR of the CD8 T cell, it will release cytolytic

granules that penetrate the target cell*?

. This strategy clears intracellular pathogens by killing
infected cells. CD4 T cells, also called helper cells, depending on their activation can
differentiate into different effector cells. Usually caused by intracellular infections such as
viruses, APC secrete cytokines like IL-12 and INFg, inducing a type-I T-helper (Thl) cell
specific response. These helper cells aid in the clearance of a pathogen by activation of CD8 T
cells. In the presence of IL-4, CD4 T cells activate B cells and induce type-11 T helper (Th2)

responses*’. B cells present antigens from digested pathogens at their surface through MHC-II
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receptors. Once the B cell forms a synapse with an activated CD4 T cell with its cognate T
cell receptor, it becomes activated and undergoes massive expansion and differentiation. At
the end the B cell will become a plasma cell that produces a large amount of antibodies that
are released into the blood stream where they can opsonize invading extracellular pathogens®.
B cell can further improve the affinity of their immune receptors through selection and
mutation. Those B cell that carry a BCR with higher affinity to their target pathogen will also
more efficiently recruit T helper cells and thus receive stronger activation signals. With
successive rounds of target binding, activation, and mutation, the B cells with higher affinity
will be selected**,

After pathogens are neutralized by activated lymphocytes, the majority of them will perish
and only a small proportion will form immunological memory. These memory cells reside
within in the lymph node and can survive there for many years. Once an infection reoccurs,
these memory cells react more quickly and can yield protective responses within few days®.
Due to its huge receptor diversity the adaptive immune system can in principle mount an
immune response to any possible chemical entity. Intrinsic (clonal deletion and anergy) and
extrinsic (competitive deletion, immunogenic costimuli) cellular strategy are in place to
control their activity against components of our own body. However, in few cases the tightly
regulated development of T and B lymphocytes can lead to self-reactive receptors that cause

uncontrolled and harmful immune responses known as autoimmune diseases*®*’.

1.1.2 T lymphocytes

T lymphocytes are required for the establishment and maintenance of immune response,
homeostasis, and memory. With their ability to recognize a wide variety of antigens form
pathogens, tumor, and the environment, they preserve immunological memory and self-
tolerance. They derive from bone marrow progenitors that move to the thymus for maturation,
selection, and finally circulate the body through the lymphatic system. They are broadly
classified into three subsets: naive T cells, which can respond to novel antigens, memory T
cells, which are generated through antigen encounter and maintain long-term immunity, and
regulatory T cells, which regulate self-tolerance*®. Understanding how immunological
memory is formed is not only important for vaccine development, but also relevant for the
treatment of many other infectious and autoimmune diseases* as well as cancer

immunotherapies®.
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1.1.2.1 Memory T lymphocytes

We are constantly exposed to pathogens. The skin and mucosae are the primary entry points
for pathogens. These either directly drain to local lymph nodes, where they are captured by
macrophages (MQs) or are taken up by dendritic cells (DCs) and then move to secondary
lymphoid organs>!. DCs activate T cells in secondary lymphoid organs through antigen
presentation, which triggers their proliferation and differentiation into pathogen dependent
effector cell populations. In the T cell zone, DCs from a close association with the stromal
cells of secondary lymphoid organs, such as fibroblastic reticular cells (FRCs)*2. FRC
promote the interaction of T cells with DCs by secreting CCL19 and CCL2%. In addition,
CCL3 and CCL4 produced by activated DCs aids in the attraction of antigen-specific T
cells®*. Once the interactions between DCs and T cells stabilize and T cells receive their
activating signals, T cells gradually alter their expression of various homing receptors that
promote the migration to inflamed tissue sites. After pathogen clearance, only an exceedingly
small fraction of the heterogenous pool of memory cells survives. These memory T cells are
classified into two distinct subsets - central memory T cells (TCM) expressing CCR7 and
CD62L, and effector memory T cells (TEM) lacking these molecules. TCM can produce 1L-2
and proliferate rapidly, while TEM are less proliferative and contain effector cytokines such
as IFNg*¢. TCM predominate in secondary lymphoid organs, while TEM reside preferentially
in peripheral compartments®’->%. Surface molecules further elucidate the functional
heterogeneity of the memory T cell subsets. For instance, with the chemokine receptors
CXCR6, CCR3, CRTh2, CXCR3, and CCR4 the TCM and TEM pool can be subdivided into
Th1 and Th2 cell characteristics®. Memory T cells also differ in their migratory or effector
functions. For instance, tissue resident memory T cells form another subset that describes
memory T cells that permanently reside in peripheral tissues after pathogen clearance®®S!. The
diversity of immune cells is important for orchestrating effective defense mechanisms.
Unconstrained memory T cell trafficking in the peripheral tissues is one important factor to
protect from reinfections. However, long lived memory T cells often fade over time and
understanding the mechanisms for protective T cell immunity remains important for better

vaccine development.

T cell priming and memory generation
During an infection, naive T cells rapidly proliferate, forming an enormous pool of antigen

and pathogen-specific cells®’. T cell expansion is often proportional to the initial frequency of
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naive T cell precursors®®. However, besides precursor frequency, multiple factors influence
the production of effector and memory T cells — pathogen type, recruiting of naive T cells®*, T
cell migration, T cell receptor stimulation® including antigens, enzymes, cytokines and
chemokines. These factors not only determine cell numbers but also regulate the generation of
effector versus memory cell populations®®’. For instance, chronic infections with high
antigen and inflammation levels favor short-lived effector cells than memory cells®®.

Interleukins, such as IL-12 and IL-2, have been shown to promote effector T cell

69,70 t71

production®"”, while IL-10 signaling facilitates memory development’'. Expression of
transcription factors T-bet and Blimp1 lead to an effector type, while Bcl6, Id2, and Id3 is
required for memory formation’?. In addition, metabolic pathways, and nutrient composition
influence the development of memory T cells (discussed in the next chapter). Together,
complex signaling networks decide the fate of T cells at different stages during the immune

response forming different pools of memory T cells.

T cell migration

T cells are actively migrating through the body. Both, naive T cells and TCM readily migrate
to lymph nodes searching for antigen before returning to circulation’®. Antigens, chemokines,
and adhesion molecules on high endothelial venules (HEVs), as well as DC-derived signals
facilitate effector and memory T cell entry into lymph nodes. The initial tethering and rolling
of cells on the lymph node endothelium is mediated by T cell receptors such as CD62L and
PSGL-1 binding to peripheral lymph node addressin and P-selectin, respectively>®.
Chemokines, such as CCL21 binding to the T cell receptor CCR7, direct the migration of T
cells through the endothelium. These interactions activate integrins and allows for firm arrest
and subsequent diapedesis through HEVs’*,

In non-lymphoid tissues, the vascular endothelium produces a diverse variety of adhesion
molecules and chemokines that primarily targets effector cells and TEM. Effector T cells can
migrate into inflamed tissues by downregulating CD62L and CCR7 and upregulating other
chemokine receptors and adhesion molecules. T cell recruitment to the skin is driven by
numerous chemokine receptors, including CCR4, CCR10, CCR6, and CCR8"°, and
upregulation of E-selectin ligands on T cells that promotes the binding to skin endothelium’®,
In mucosal tissues, such as the small intestine and Peyer's patches, T cells up upregulate
integrin alphadbeta7 that binds to mucosal addressin cell adhesion molecule-17". In the lung,

integrin VLA-1 and the chemokine receptors CXCR3 and CCRS play a critical role in T cell
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trafficking critical for lung’®. Many other chemokine receptors expressed on effector T cells
(e.g., CXCR6, CCR1, CCR2, and CCR3) probably also play critical roles in tissue-specific
homing and microenvironmental trafficking inside tissues’’. Nonetheless, more research is
needed to understand the complex network of chemokine receptor, integrin, and selectin

expression on memory T cells that determine the trafficking into specific tissues.

1.1.2.2 T lymphocyte metabolism

The availability of nutrients, growth factor cytokines, as well as key receptor signaling
pathways control metabolic reprogramming inside the cell. These metabolic pathways affect
cell differentiation and function®°. During development and quiescence, T cells cycle through
different metabolic states. For instance, activation of the receptor Notch1 maintains cell

survival and promotes linage commitment®!

, while T cells migrate from the bone marrow to
the lymph node, where they rearrange their antigen receptor gene loci to produce functional T
cell receptors®®. Together with CXCR4, phosphatidylinositol 3-kinase (PI3K) gets activated to
stimulate anabolic metabolism®. Later in the development stage, glucose transporter
expression increases and through the activation of the mechanistic target of rapamycin
(mTOR) via PI3K-Akt signaling, glycolytic metabolism is augmented that supports cell
growth and proliferation®*34, Furthermore, the cytokine IL-7 induces the expression of
antiapoptotic factor Bcl-2% and therefore also plays an important role in the maintenance of

survival and linage commitment®®

. To generate ATP, quiescent T cell primarily consume
pyruvate via oxidative phosphorylation (OXPHOS) or use fatty acid oxidation (FAO)¥’. All
these signals are essential to work in concert to sustain homeostatic proliferation of naive T

cells®®,

Metabolic reprogramming during the life cycle of T cells

Once naive T cell encounter their specific antigen and co-stimulatory signals are in place, they
get activated and proliferate in an explosive manner. To accumulate the required biomass,
their metabolic pathways switch to aerobic glycolysis (Figure 3). Although less efficient than
OXPHOS in generating ATP, it produces important metabolic intermediates for cell growth
and proliferation®®. For instance, pentose phosphate and serine biosynthesis pathways use
glucose-6-phosphate or 3-phosphoglycerate to produce precursors for nucleotide and amino
acid synthesis®®. This process is coordinated by several transcription factors and signaling

pathways. IL-2 and other growth factors promote the switch to glycolysis via nutrient
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transporter expression and activation of the key metabolic regulator mTOR®"2, In addition,
transcription factors, c-Myc, estrogen-regulated receptor alpha, and hypoxia inducible factor-
1 alpha induce the expression of genes involved in intermediary metabolism that stimulate the
clonal expansion of T lymphocytes® . Furthermore, different metabolic pathways also
promote the differentiation of CD4 T lymphocytes. For instance, suppression of mTOR
augments the production of Tregs upon activation®®. While Tregs depend more on the
oxidation of lipids, Th1, Th2, or Th17 exhibit a strong glycolytic profile via the mTOR
pathway®’. In addition, the two different mTOR complexes regulate the development Th1 and
Th2 subsets®®%,

Resting or memory Activated
lymphocyte lymphocyte
Glucose Glucose
Lipids Amino acids
(glutamine)
Glucose-6-phosphate Amino acids Glucose-6-phosphate
\ Antigen receptor \
P - - Pyruv.
UEE stimulation and yruveyy TCell growth
/ costimulation \ TProliferation
Glycolysis s \oa: € Glycol i WAZAND heed for
(WLAZAN ~ ycolysis (uag biosynthetic
\V72 Memory TLactate \‘--._7/‘@») precursors
TCA cycle TLipid synthesis ~ TCA
TATP TNucleotides cycle
TCOZ T Amino acids
Predominantly Predominantly
oxidative phosphorylation aerobic glycolysis
for energy for growth

Figure 3: T cell metabolic programs in resting and activated state. While resting T cells predominately rely
on oxidative phosphorylation for energy, activated T cells downregulate lipid oxidation and increase and
glycolysis to produce sufficient biomass for rapid cell growth and proliferation. After the immune response,

activated T cells metabolically revert and form a small pool of memory T cells (adapted from®?).

After pathogen clearance, effector T cells undergo apoptosis and form a small population of
long-lived memory T cells. This memory formation is also driven by different metabolic
mechanisms. For instance, metformin promotes the generation of memory T cells after
infection by activating adenosine monophosphate-activated protein kinase (AMPK)!'%.
AMPK suppresses mTOR and thereby promotes FAO!’! and the generation of memory T
cells. Also inhibiting mTOR directly with Rapamycin boots the memory development!?, A
second central characteristic of efficient memory formation is FAO!?. It has been shown that

the number of CD8 memory T cells increases when FAO is enhanced via carnitine
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palmitoyltransferase 1a'®. Together with IL-15 and IL-7, these signals support catabolic
metabolism and promote mitochondrial biogenesis, giving memory T cell a greater respiratory
capacity compared to naive or effector T cells. This bioenergetic surplus allows memory T
cells for a stronger response to secondary infections'%>!%. However, it remains not completely

understood what specific role FAO has in the development of memory T cells.

Key metabolic substrates

As mentioned before, glucose is an important metabolite for T cells®. It is a relevant energy
source for the generation of biomass and production of activation markers required for
proliferating T cells'®. T cells show impaired cell activation, clonal expansion, and survival

106 or when their glucose transporter Glut1 is deleted'®’.

when deprived from glucose
Amino acids are an alternative class of metabolic substrates. Depending on their metabolic
requirements, T cells harbor different amino acid concentration during their activation
cycle!%®1%  Many different amino acid transports as well as catabolizing enzymes are being
discovered that regulate T cell metabolism and function. For instance, the glutamine
transporter or the transporter Slc7a5, which transports neutral amino acids such as leucine,
play an important role in effector T cell generation''®!'!. On the molecular level, leucine can
activate mTOR via leucyl-tRNA synthetase and consequently, impaired uptake inhibits
mTOR!"2113_ Studies suggest that leucine deficiency has also additional effects on the
metabolic transcription factor c-Myc!'?. The importance of leucine in T cell activation was
further studied by manipulating the cytosolic branched chain aminotransferase, an enzyme
that can control intracellular leucine concentration''*. Furthermore, the alanine serine and
cysteine transporter system (ASCT2/Slc1a5), is another important glutamine carrier during T
cell activation. When depleted, glutamine levels are decreased, disbalancing the OXPHOS

and glucose metabolism''>

. Arginine metabolism has a well-established role in MQ
polarization'!'® and several studies support that extracellular arginine concentrations can also
influence T cell activation. For instance, depleting arginine impairs aerobic glycolysis'!’.
Since substrate availability has a great influence on T cell response, studies have shown that
antigen presenting cells can regulate extracellular concentrations of amino acids to control T
cell activation. For instance, DCs can either express multiple amino acid transporters to

deplete and impair T cell proliferation!'®, or can release amino acids to foster T cell

proliferation'!’.
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Lipids and fatty acids are other critical substrates in T cell growth, activation, and effector
function - vital for cell membrane synthesis, energy consumption, and cell signaling. After
activation, the cellular demand for fatty acids increases and FAO shifts to FAS!?’. As
described earlier, mTOR and c-Myc are key coordinators®®, but also liver X receptors (LXR)
and sterol regulatory element-binding proteins (SREBP) are critical to facilitating this

metabolic shift'?!

. After antigen stimulation, T cells decrease LXR activity and increase the
SREBPs!?2. This leads to reduced cholesterol efflux and increased de novo synthesis of fatty
acids and cholesterol!?}. Pharmacological interventions in the lipid and cholesterol
homeostasis of T cells can heavily influence their proliferation capacities'?"'?2. In addition,
lipid metabolism also plays an important role in T cell differentiation and effector function.
By inhibiting FAS via acetyl-CoA carboxylase 1, the generation of Th17 is reduced and Tregs
increased. Furthermore, this inhibition also impaired Th1 and Th2 development'?.

The connection between metabolism and gene regulation in T cells is overly complex'?*. As
indicated by the many studies mentioned above, the continuous increase in knowledge of
metabolic regulation in T cells holds the promise to conceptualize new therapeutic

approaches'?¢.

1.1.3  Cancer immunotherapy

127.128 and found its

The idea to exploit the immune system to treat cancer dates back decades
recent peak by the award of the Nobel Prize in 2018 for the discovery of cancer therapy by
inhibition of negative immune regulation. Cancer is characterized by dysregulation of cellular
processes and accumulation of genetic alterations. Such events can cause the expression of
mutated self-proteins, called neo-antigens, which in turn can lead to their presentation on the
surface of cancer cells. Thus, cancers can be recognized by the immune system as foreign and
be targeted by cytotoxic T cells. However, tumors have developed multiple resistance
mechanism to evade such T cell responses. The delicate balance between the recognition of

non-self and the prevention of autoimmunity is the current challenge in novel cancer

immunotherapy strategies'?.

The Cancer-Immunity cycle

The effective killing of tumor cells by the immune system requires distinct checkpoints'°.

First, antigen presenting cells like dendritic cells (DCs) capture neoantigens created by
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oncogenesis and present these through MHCI or MHCII receptor molecules on their surface.
To trigger an effective anticancer T cell response, secondary signals such as proinflammatory
cytokines must be released promoting the presentation of these foreign antigens. T cells get
activated when they encounter their corresponding cancer-specific antigen. Eventually,
activated effector T cells traffic and infiltrate the tumor bed and through their T cell receptor-
MHCI-antigen complex specifically recognize and kill cancer cells. This leads to the release
of more cancer antigens and increases the magnitude of the anti-cancer response in successive

cycles. In cancer patients, this cancer-immunity cycle is apprehended by different means.
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activation ~ Trafficking of CX3CL1
) (4 ) T cells to tumors  CXCL9
CD28/B7 .1 CXCL10
CD137/CD137L CCL5
OX40/QX40L
CD27/CDT0 3)
HVEM J
GITR
IL-2
IL-12 J\
. Infiltration of T cells
CTLA4/B7.1 '/5 ! into tumors
PD-L1/PD-1 & nto tumors
PD-L1/B7.1 LFAT/ICAM1
prostaglandins Iymph node Selecting
VEGF
Endothelin B receptor
Cancer antigen
presentation
I Recognition of
I_Nfrx \_2 / cancer cells by T cells
IFM-cx .:-6 T cell receptor
CDA0LICDA0 Reduced pMHC on cancer cells
CDN
ATP
HMGB1
TLR .
Killing of cancer cells
IL-10
IL-4 IFN-y
IL-13 _I ! T cell granule content
Release of PD-L1/PD-1  LAG-3
J,U' ol Antiaans PD-L1/B7.1  Arginase
o Siriaton fact cancer cell antigens DO MICAMICE
imutatory tactors Immunogenic cell death TGF-B B7-H4
W Inhibitors BTLA TIM-3/phospholipids

Tolergenic cell death VISTA

Figure 4: Stimulatory and Inhibitory Factors in the Cancer-Immunity Cycle. The different steps from
antigen release, antigen presentation, priming and activation, immune cell trafficking, tumor infiltration, cancer
cell recognition, and cancer cell killing are illustrated and for each step inhibitory (red) and stimulatory (green)

factors are highlighted (adapted from'3°).

Either antigens are not detected, antigens are tolerated, T cell do not traffic to the tumor, the

tumor is not accessible to T cells, or the tumor microenvironment suppresses the effector
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cells'!. Cancer immunotherapy’s main aim is to reinitiate a self-sustaining cycle of cancer
immunity, without triggering an autoimmune inflammatory response. Thus, it needs finetuned
treatment strategy to overcome the negative feedback mechanisms of the immune system.
Ideal treatment strategies are therefore patient-specific and identify the rate-limiting step to

selectively target the appropriate checkpoints in the cancer-immunity cycle (Figure 4).

Cancer Vaccines

Like traditional vaccines against viruses, it is possible to immunize patients against cancer via

132

tumor antigens °~. However, in contrast to vaccines against infectious agents, cancer vaccines

must, besides other challenges, also break immune tolerance acquired by the tumor to be

effective'*?

. Accordingly, several hurdles must be overcome to develop a cancer vaccine that
achieves a potent cytotoxic T cell response. First, appropriate tumor antigens need to be
identified. To avoid tolerance through antigenic drift, multivalent vaccines need to be
designed. Sequencing data from tumor tissues can identify mutations or translocation fusions
and thus predict potential antigens. However, patient and tumor heterogeneity and the
mechanism that only certain peptides are presented on the surface of DCs, makes such

t134, Affinity purification mass spectrometry techniques!* further improve

predictions difficul
the selection of antigen peptide targets, but even with the correct antigens in hand, the optimal
delivery to patients remains unknown. To bypass this hurdle, DCs can be targeted directly.
Because of their professional antigen presentation capabilities, they are also called nature’s

adjuvants'3®

and can effectively initiate a T cell immune response. In this strategy, DCs are
isolated from peripheral blood, loaded with tumor antigens, and then reinfused into the
patient'?%13%, These DC-based vaccines have shown initial promise for the treatment of
castration-resistant prostate cancer'®’. Even if the ideal vaccine can trigger the maturation of
DCs and promotes the production of tumor specific cytotoxic T cells, numerous mechanisms

of immune evasion by the tumor might compromise its effectiveness. Hence, cancer vaccines

might not be administered alone but in combination with other immunotherapy approaches.

Adoptive cell therapy

This type of immunotherapy is based on the antitumor properties of lymphocytes to eradicate
tumor cells. Briefly, lymphocytes are isolated from patient’s blood, lymph node, or tumor
tissue. Then they are expanded ex vivo and finally reinfused into the patient'?. This approach

produces a large amount of effector cells and thereby circumvents the initial steps in the
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cancer-immunity cycle. One version of this approach employs T cells only from resected
tumor tissue sites. This mixture of CD4 and CD8 positive T cells, also called tumor-
infiltrating lymphocytes, are tumor-specific and when expanded with a cocktail of cytokines

138 * A modification to this method

prior to reinfusion show an increased anti-tumor activity
depletes the host’s lymphocytes prior to the infusion of tumor-infiltrating lymphocytes. As a
result, immunosuppressive cells, such as Tregs and myeloid-derived suppressor cells, are
eliminated in the tumor microenvironment and homeostatic cytokine level increased'*®. This
approach has been very successful in the treatment of melanoma patients'*’. However,
adoptive cell therapies have obvious disadvantages. For instance, cultivation and expansion of

tumor-specific lymphocytes is time and cost intensive'#!

. Also, this approach has only shown
to be effective in the treatment of melanoma patients, explained by the high tumor mutation
burden in melanomas compared to other cancer types'*?. In addition, the treatment is
perceived with safety concerns. Although lymphodepletion enhances the efficacy, it can be
life-threatening and patient selection is not optimized'**. To overcome these limitation two
major genetic T cell engineering approaches have been developed. First, using viral vector-
based expression systems, T cells are transfected to express T cell receptors specific to tumor-
associated antigens. This approach profits from key improvements in gene transfer efficiency,
T cell receptor design, and target antigen identification selective for tumor cells'**. However,
the clinical use has been limited due to significant secondary destruction of healthy tissues
expressing the same target antigen. The second approach fuses an Ig variable domaintoa T
cell receptor constant domain'?’. These chimeric antigen receptors omit the need for tumor
cells to carry a specific antigen, as such engineered T cells can potentially target any surface
protein through their Ig antibody domain'4’. This approach is most developed in the treatment
of B cell malignancies, where the chimeric antigen receptor is targeting the B cell linage
marker, CD19!%®. New approaches are being developed to extended to other cancers than

hematologic malignancies and further to address the toxicity and safety issues.

Immune checkpoint blockade

As briefly mentioned before, tumors can induce immune tolerance through the expression of
ligands in the tumor microenvironment that bind to T cells and thereby inhibit their function.
In general, targeting negative T cell regulators is another immunotherapy approach'’. For
instance, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a receptor expressed on T

cells that down-regulates initial stages of T cell activation when interacting with its ligands
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B7.1 and B7.2 expressed on DCs'*. Ipilimumab, an antibody against CTLA-4 blocks this
interaction leading to an increased pool of activated T cells. This approach had been approved

149

by the FDA as first-line therapy for melanoma patients with metastatic disease ™. However,

the lack of selectivity regulating T cell activation led to a high percentage of immune related

adverse events in treated patients'>°

. Nevertheless, this initial success in clinical response
coined the way to new targets, such as programmed cell death protein 1 (PD-1) signaling'®'.
Once PD-1 expressed on T cells interacts with its ligand, programmed death-ligand 1 (PD-
L1), expressed on tumor cells, it inhibits the antitumor response of antigen stimulated T cells
by blocking the secretion or production of proinflammatory proteins, such as IFNg!>2.
Inhibiting the interaction of PD-1 and PD-L1 with antibodies enhanced the T cell response
and mediated anti-tumor activity'>*. This approach generated promising results in a variety of
cancer types'>*. This suggest, that for many cancers the cancer-immunity cycle is intact until
the step seven of killing cancer cells. The inhibition by PD-1 seems to be rapidly reversible,
allowing preexisting anticancer T cells to regain their effector function. In comparison to non-
specific activation of the immune system by CTLA-4, PD-1 inhibition shows favorable
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toxicity and safety profiles'*® with significant response rates'*¢. Unfortunately, only a

minority of patients do respond to PD-1 inhibitors, pointing to multiple other mechanism of

immunosuppression'>”15%,

Combination therapies

As outlined above the cancer-immunity cycle can be inhibited or stimulated at different steps.
However, single therapy approaches are not as effective as combination therapies that also
take the patient’s cancer immunological state into account!>1%°. For instance, disabling the
immune inhibition in the tumor microenvironment, e.g. using an PD-L1 inhibitor, could
benefit vaccines that target earlier stages in the cancer-immunity cycle. However, PD-L1
inhibition might not be the right therapy approach for patients with immune deserted

tumors'¢!

. Approaches that show promising results combine CTLA-4 with PD-1 inhibitors.
While CTLA-4 enhances the priming and activation of T cells, blocking PD-1 removes the
inhibition of cancer killing T cells inside the tumor. This two-step approach showed rapid and
deep response in melanoma patients '%2. Furthermore, anti-PD-1 in combination with

vaccination'3164

or with agents enhancing T cell trafficking and infiltration into the tumor
bed"*!"1%% emerge as promising strategies for the treatment of cancer. Furthermore,

conventional therapies such as chemotherapy or radiotherapy, although harmful to the
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immune system, also benefit antitumor responses by releasing multiple tumor neoantigens'®¢,
Cyclophosphamide know to deplete Tregs'¢’ or paclitaxel know to eliminate MDSCs'®,

counter immunosuppressive activities.

Biomarkers

Although immunotherapy has greatly improved therapy options for certain cancer types and
its development is progressing at an enormous pace, not all patients respond to these novel
strategies. Patient selection based on molecular tumor characterization is crucial for treatment
benefit and to avoid treatment-related toxicity. Therefore reliable biomarkers that are able to
predict the clinical benefit are needed'®’. For instance, the mutational tumor frequency
correlates with the clinical response to anti-CTLA-4 therapy in melanoma'!”® or to PD-1
inhibitor in NSCLC!”! and colon cancer!'’2. In general, it is hypothesized that high mutational
burden is associated with positive response to immune check point inhibitors for certain
cancers'*>!73, In addition, the expression levels of PD-L1 on tumor cells serves as a useful

biomarker to identify patients that could benefit from such targeted therapies'>

. However,
this biomarker is controversially discussed in the literature. It has been shown that patients
with low PD-L1 expression might still benefit from anti-PD-L1 antibodies'®?, while patients
with high PD-L1 expression do not 74, Furthermore, other biomarkers are explored that could
predict the treatment response to immunotherapy, e.g. tumor infiltrating lymphocytes'’>, T
cell exhaustion markers!®’, or genetic profiles of the tumor microenvironment!’®. Overall,
more data from human tumors are necessary to further understand the cancer-immunity cycle

and to improve cancer therapy response rates. More specific biomarkers will improve clinical

decisions on treatment strategies allowing to lower the immune-related toxicities.
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1.2 Immunoproteomics

1.2.1  Proteomic strategies to study the immune system

Studying the immune system on the level of proteins, requires the measurement of many
proteins at the same time. Omics-technologies such as mass spectrometry (MS)-based
proteomics not only allows the characterization of the expression levels of thousands of
proteins inside immune cells, but also their interaction partners, post-translational
modifications, and localization'””. This versatile toolbox has become an essential part of
modern systems immunology research and has contributed to many novel mechanisms of the
immune system!’8,

Affinity purification combined with quantitative mass spectrometry-based proteomics (AP-
MS) is a widely used strategy to study protein complexes of signaling pathways or to create

179 Usually, the protein of interest

protein interaction maps of complete cellular proteomes
serves as bait and through immunoprecipitation interaction partner are retrieved!’. This
strategy has been applied to many immunological research questions. To highlight a few, with
AP-MS novel components and regulators of inflammasomes have been discovered. For

7'82 were identified as an important

instance, gasderminD'®! or NIMA-related kinase
mediators in NLRP3 activation. Furthermore, post translational modifications play a pivotal
role in cellular signaling pathways. Phospho-peptide enrichment methods, such as titanium
dioxide or immobilized metal ion affinity chromatography, together with tailored peptide
identification and quantification methods have allowed immunologist to study
phosphorylation sites on thousands of proteins from small sample amounts'®*34. One of the
most unique affinity MS-based strategy in immunology is the characterization of peptides
bound to MHC molecules. In this two-step approach, MHC-peptide complexes are isolated
via immunoaffinity purification and then the bound peptides are eluted for mass spectrometer
(MS) analysis'®>!36, This approach has increased the understanding of the immunopeptidome
dramatically by identifying neoepitopes from primary tumor material'®’, post translational
modifications'®, and proteasome-generated spliced peptides'®.

MS-based imaging strategies allow the study of cell and protein localizations in complex
tissue samples. Different imaging methods have been developed that differ in labelling, scan
mode, and resolution'®®. While matrix-assisted laser desorption ionization mass spectrometry
imaging (MALDI-MSI) does not require any antibodies for detection it has the lowest
resolution compared to other used methods!®!. Imaging mass cytometry (IMC) analyses

metal-conjugated antibody-stained tissue samples'®2. This technique measures up to 50
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antibodies simultaneously by raster scanning the tissue at 1 pm? spatial resolution'**. The
third and newest methods, multiplexed ion beam imaging (MIBI), also uses antibodies for
protein quantification, but due to its novel ion beam can scan the tissue samples multiple
times with a resolution of 10 nm'**. These imaging strategies have been applied to many
different clinical tissue samples and created astonishing pictures of the heterogeneity of the

t'2. As imaging is mainly based on static tissue samples, it does not capture

tumor environmen
protein localization dynamics. In addition, image-free proteomics approach have been
developed to create organellar maps, which can characterize the protein composition of all
major organelles and can study translocation events of proteins after stimulation'®>,
Subcellular proteome analysis is a another commonly used proteomics strategy to study the
immune system. For instance, intercellular immune cell communication pathways have been
studied with traditional antibody-based methods such as ELISA focusing on few secreted
proteins. In contrast, with MS-based proteomic approaches unbiased global secretion patterns
can be analyzed. This strategy allows the time-resolved investigation of hundreds of secreted
proteins from primary immune cells!*®. Furthermore, unconventionally protein section
through extracellular vesicles, including exosomes, are another subcellular structure ideal for
proteomic analysis'®’. These protein-cargo structures are typically isolated via centrifugation,
affinity purification or filtration-based methods. Using proteomics many different EVs have
been characterized'® and new protein biomarkers discovered'®’.

Cellular and tissue proteomics has been extensively applied to primary immune cells as well
as diverse cancer tissue samples. Many different methodologies to analyze complete cell
lysates have matured over the last decades and the common shotgun workflow is discussed in
the next section. This quantitative proteomic strategy has revealed subset specific pattern
recognition pathways in mouse dendritic cells (DCs)**. In human DCs, proteome profiling
found that plasmacytoid DCs only express inflammatory-related proteins at low levels, thus
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unable to secrete pro-inflammatory cytokines"'. Not only innate, but also adaptive immune

cells have been characterized with this strategy. For instance, proteomic analysis revealed

202 and the metabolic

cytotoxic protein abundance difference in human CD4 T cell subsets
mTOR signaling pathways have been studied in cytotoxic T cells under different inhibitory
conditions at a depth of almost 7,000 proteins®®. Besides cell type resolved complete
proteome analysis, this workflow has also been successfully applied to cancer tissues for
biomarker discovery?%+2%3,

Together, these proteomic strategies have made major contrition to our understanding of the

immune system. Novel proteomic technologies are on the horizon that will generate more
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detailed insights of immune cell subsets and their functional difference. However, seamless
integration with other omic-technologies will play a crucial role to generate even more
comprehensive pictures of the complex interplay of the different immune cells in time, spatial

and context-specific manner>*®

1.2.2  Quantitative shotgun proteomics workflow

Quantitative shotgun or bottom-up proteomics describes the quantification of proteins from
their proteolytic digested peptides. The workflow is divided in several steps from protein
extraction, digestion, peptide purification, peptide ionization, peptide mass analysis through

fragmentation, peptide identification and protein quantification (Figure 5).
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Figure 5: The quantitative shotgun proteomics workflow. a) The different steps from protein extraction,
digestion, peptide purification, peptide ionization, and peptide mass analysis are displayed. b-c) The peptide and

subsequent protein identification process is illustrated. d) Quantitative protein abundances derived from peptide
207)'

intensity spectra are used for different data analysis pipelines (adapted from
First, proteins are extracted using a lysis buffer that typically contains detergents, followed by
mechanical breakdowns steps such as sonification. Protease inhibitors are added to protect
from unspecific proteolysis and cysteine oxidation is avoided by reducing and subsequent
alkylating substances. The proteins are then digested using proteases with specific cleavage
motifs. Most commonly, Trypsin and LysC are used for this step, resulting in peptides with
terminal arginine or lysine amino acids. Finally, the peptide mixtures are cleaned for the
subsequent MS analysis. Therefore, detergents and other MS interfering substances are often

removed via filter aided devices**®?. When digesting complex samples such as immune
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cells, the resulting peptide mixtures are too complex to be directly analyzed by MS.

210 With reverse-

Proteomes from these cells can contain more than 100,000 unique peptides
phase ultrahigh-pressure liquid chromatography the peptides are gradually eluted from the
hydrophobic column thereby reducing the complexity of the sample. The chromatographic
resolution is a key element in the shotgun workflow and many parameters, such as column
material, length, diameter, and temperature, have been optimized to achieve robust and
reproducible elution profiles?'!"2!%. Next, the eluting peptides are ionized and thereby sprayed
into the mass analyzer via the soft ionization method - electrospray ionization?'*. This method
applies high voltage between the column tip and the inlet of the MS, leading to the
evaporation of the solvent and subsequent release of charged peptide ions into the gas
phase?!®. These ions are then analyzed by the mass analyzer. The different analyzers can be
broadly classified into trap (lon traps, linear ion trap quadrupole, Fourier transform ion
cyclotrons, Orbitrap) and beam-based mass analyzer (triple quadrupole, time of flight (TOF)).
Each of them has their different strengths and weaknesses based on mass resolution, mass
accuracy, dynamic range, and scan speed>!¢ '8, Continuous improvements have made the
Orbitrap, first introduced in 2000?'°, a common mass analyzer for analyzing complex peptides
mixtures from cell lysates??* 22, Jons are injected off-center and trapped around a cone
shaped electrode. By circulating around the central electrode on stable trajectories and
oscillating along the z-axis, the trapped ions induce an alternating image current that is
deconvoluted by Fourier transformation to obtain peptide mass spectra®?>?*, In order to
clearly identify the different peptide sequences, the peptides are further fragmented. Peptide
dissociation is induced by collision with an inert gas, which eventually breaks the peptide
bond. To ensure the efficient fragmentation of the different eluting peptides the collisional
energy is optimized for a specific peptide charges and mass ranges. In the shotgun proteomic
workflow two different fragmentation methods are frequently used, higher energy C-trap
dissociation and collision-induced dissociation, generating addition sequence information of
the peptide??>?*6. While many peptides with different amino acid sequence have the same
MSI1 mass, they generate sequence specific MS2 spectra. With the combined information of
the parent-ion mass (MS1) and its mass fragments (MS2), peptides from complex protein
mixtures can be accurately identified®?’. Although current mass spectrometers have an
extremely high scan speed, the selection and fragmentation of all eluting peptides at a given
time point is not possible. Therefore, different data acquisition strategies have been developed
to maximize peptide identification rates®*%. Single or multi reaction monitoring analyses a pre-

selected specific set of precursor ions. Usually run on triple quadrupole instrument, this
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targeted approach has a high sensitivity, but is not suitable for complete proteome analysis?*’.
Data independent acquisition methods, such as SWATH MS, cycle through the total mass
range with a specific small mass window and fragmentation all precursor ions. In this
approach, the direct link between the precursor ion and its fragment ions is lost. The resulting
complex MS2 spectra are deconvoluted with sample specific peptide fragmentation libraries.
This approach requires extremely fast scan speeds and therefore is often applied with
quadrupole TOF instruments?*°. In contrast, data dependent acquisition (DDA) methods first
select precursor ions in a survey scan and then select the most abundant peptides for
fragmentation. Therefore, extensive peptide fragment libraries are not needed, as each
precursor ion is clearly linked to it MS2 spectra. However, in complex samples not every
peptide will be selected for fragmentation, leading to higher missing peptide quantifications
as compared to DDA methods. In the Q Exactive HF, a typical acquisition cycle of one MS1
and 10 MS2 scans takes only one second??!. As the average peptide elution time is greater

than one second, this approach allows the fragmentation of most peptides.

Protein identification

One central aspect of the computational proteomics workflow is the identification of proteins
from the acquired peptide mass spectra. Ideally in DDA, each precursor ion can be precisely
selected without interference of similar peptides and each fragmentation spectrum is
sufficiently complete to allow the determination of the exact peptide sequence. In practice,
however, the interpretation of the mass spectra can be challenging, due to contamination from
co-isolating precursors or incomplete fragmentation spectra. These challenges are ameliorated
by statistical algorithms. First, recorded MS2 spectra are matched against theoretical spectra
derived from a sequence data base of in-silico digested proteins. For instance, the search
engine Andromeda evaluates the match results with a probability-based scoring model. It
calculates a probability that the observed number of matches between the calculated and
measured fragment masses could have occurred by chance?*!. Although, the matching
performance depends on robust and high-resolution mass analyzers, computational
approaches can help to improve the peptide identification rate. To avoid high numbers of false
positive hits, usually a false discovery rate of 1% is applied that is derived from reversed
amino acid sequences®*2. In the final step of protein identification, the peptides are mapped to
protein sequences. Because of protein splice variants or related protein sequences, some

identified peptides can be assigned to multiple proteins. One commonly used approach
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addresses this issue by assigning ambiguous peptides to proteins with the most evidence.
Furthermore, based on the identified peptides certain proteins cannot be distinguished and are
therefore grouped. As peptide identification, protein identification typically is also controlled

by a 1% false discovery rate?3%2%3,

Protein quantification

To determine the concentration of proteins expressed in the cell, they first need to be
identified and then quantified. In proteomics different relative and absolute quantification
methods have been developed. While the former compares protein abundances across
samples, absolute quantification allows comparisons of protein abundances within a given
sample. All methods have their strengths and weaknesses?**. In the following, label-free
relative quantification and copy number quantification strategies are further discussed®*.
Relative quantification methods come in two flavors labeled or label-free. For instance,
labeling approaches incorporate stable-isotope versions of essential amino acids in reference
cell populations. While not changing the chemical structure or elution profile of peptides, it
causes a mass shift that can be detected by the mass analyzer. Common labelling approaches

236

include, stable amino acid labeling in cell culture?*®, isotope-coded affinity tags**’, and

tandem mass tags?*®

. Although, such approaches are usually more accurate, label free
approaches can be applied to any sample and do not suffer from increased sample
complexity*®. In the beginning, label-free approaches made use of the correlation between
number of detected mass spectra and protein abundance. For instance, spectral counting
estimates the abundance of a given protein by the number of recorded MS2 spectra®®.
Another approach uses the number of identified unique peptides, normalized by the

theoretical observable peptides*

. While these methods are relatively easy to implement their
accuracy does not reach the same level of labeled approaches. More recent label-free
approaches utilize the high resolution MS1 spectra and consider the intensities profiles of all
identified peptides to quantify the proteins in a sample. For example, the MaxLFQ algorithms
overcome many challenges of label free quantification. By introducing “delayed
normalization” and by extracting the maximum ratio information from peptide signals, these
algorithms archive protein quantification accuracies comparable to labeled approaches®*!.
Absolute quantification approaches offer protein estimates to the level of copy numbers per
cell. This accurate quantification is often achieve using isotopically labeled spike-in standards

with known quantities>*>2**, As these approaches are very cost and labor intensive, other less
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accurate methods have been developed. For example, the total protein abundance approach
(TPA) does not require any spike-in standard but estimates protein copy numbers only based

on peptide intensities, the molecular mass, and the protein amount of the cell>*.

1.2.3  Networks of the immune system

The immune systems can be studied on many different hierarchical levels — genomic,
transcriptional, translational, cellular signaling process, cell heterogeneity, spatial,
intercellular, and organismal - each of which forms their own networks. These networks can
be classified by their types of macromolecules and nature of interactions into genetic, gene
regulatory, protein-protein interaction, metabolic, and signaling networks. Advances in large-
scale omics-technologies and automated bioinformatic analysis pipelines increased the
number of high-throughput experiments, creating a wide variety of dataset suitable for

246 As described in the first chapter,

studying the immune system from a network perspective
depending on the disease context the immune response triggers a dynamic and complex set of
networks from different hierarchies involving hundreds to thousands different molecular
players. Although, these networks can be analyzed in increasing detail, deriving biological

functional conclusions form such large-scale networks remains challenging?*’.

Intracellular signaling networks

Transcriptional networks, generated from yeast one-hybrid assays, chromatin
immunoprecipitation experiments, or transcriptomic measurements, are typically analyzed to
identify new transcription factors or to predict potential target genes?*®**_ In the
immunological context they have been widely applied to decipher the transcriptional circuits
of innate immune sensors and their ligands. In particular, microarray-based transcriptome
studies identified ATF3 as a negative regulator in TLR-4-stimulated MQs>*° or created time-
resolved functional modules in blood leukocytes during systemic inflammation®>!,
Furthermore, by means of RNAi knockdowns, a time-resolved transcriptional network
revealed the function of 125 transcription factors and divided the pathogen response of DCs
into inflammatory and antiviral programs®>2. In addition, gene regulatory networks have been
used to characterized cell fate and diversity. Network analysis showed that the transcription

factors, PU.1 and Gfil, orchestrate innate and adaptive immune cell fates>>3

and the variety of
existing macrophage (MQ) activation states, illustrated by more than 200 transcriptome

profiles, challenged the M1/M2 polarization model®**. Together, network analysis of
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transcriptional and chromatin immunoprecipitation data has identified many fundamental
gene-regulatory networks that orchestrate the immune response. Signaling networks in
immune systems typically represent the information flow from an extracellular receptor down
to its transcription factor or gene target. Besides proteins, also small chemical compounds can
transmit signals along signaling cascade. Therefore, their network analysis requires the
integration of multiple molecular networks, such as gene-regulatory and protein-protein
interaction networks as well as their perturbations. Often signaling networks are analyzed by
overlaying experimental perturbation data on existing global molecular networks, identifying
active or suppressed nodes in the network?*’. MS-based proteomics has emerged as an ideal
method for studying signaling networks, as it allows to quantify protein abundances, their
post-translational modifications, interactions partners, and translation rates'”’. Integrative
approaches, combing transcriptomics and proteomics as well as functional perturbation
assays, have created diverse immune cell signaling networks, from TLR signaling in
DCs?%2% to viral DNA sensing®’, providing immunologist with rich resources for further
discovery projects. Spatial networks investigate the dynamic relocation of proteins during
signal transduction. Many innate sensors, such as NLRP3, move to specific compartments
inside the cell to assemble to new complexes or to bind to effector molecules®*®*. Organellar
structure as well as protein movement adds another important level to the complex network of
immune responses. Most described networks so far have analyzed immune cells in response
to single or few purified receptor ligands. However, functional networks try to capture the
crosstalk between multiple signaling pathways, that are activated during a natural infection.
For instance, synergistic inflammatory responses have been discovered in TLR ligand-
stimulated human innate immune cells*. Furthermore, sequential triggering of signaling

pathways, such as LPS priming for inflammasome activation in MQs*®

, provides the immune
system with additional layers of immune regulation . These examples illustrate the importance

to incorporate multiple levels into immune network analytics.

Intercellular networks

Effective pathogen eradication requires several different immune cell types to act in concert,
including cells from other parts of the body. Rather than being isolated entities, immune cells
maintain a continuous exchange with their surrounding environment, using paracrine and
endocrine signaling pathways?®!'. These highly coordinated and dynamic intercellular immune

cell networks add another level of complexity to the numerous intracellular networks of the
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immune system. Although new single-cell technologies, such as single cell transcriptomics®®?,

263 264

mass cytometry”™ or live cell imaging®*, have created maps of immune cell plasticity at
exceptional depth, the integrated analysis of inter- and intracellular networks monitoring cells
and their expressed proteins remains challenging and usually focus only on a few network
levels and cell types. For instance, the immune-body cytokine network, derived from publicly
available databases, identified a greater interconnectivity between immune cells as compared
to non-immune cells and linked its three-cell cytokine motif architecture to those of social

265 Using curated receptor-ligand databases combined with transcriptomic data, a

networks
cell-cell communication map containing 144 human primary cells underlined the highly
connected and redundant ligand-receptor paths and revealed novel interacting cell type

266 As with protein localization in intracellular networks, the spatial location of cells in

pairs
intercellular networks promotes effective immune responses. Using sophisticated live cell
imaging methods to explore the cellular positioning and local intercellular communication
within murine lymph nodes, identified diverse lymphoid cells in close proximity to MQs

267 ' A subclass of intercellular networks

allowing for a rapid antimicrobial immune response
form host-pathogen interaction networks. Several such interaction networks have been created
and collected in diverse databases?*®2%, Those networks have shown that both bacteria and
viruses preferentially target host networks nodes with high connectivity and centrality
involved in immune defense mechanisms?’’,

While we are still a long way from developing detailed multi-layered predictive network
models of the immune response to complex perturbations such as pathogens, the described
examples illustrate the great potential systems immunology holds for disease understanding?’!

as well as identification of novel actionable drug targets®’2,
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2 Results

2.1 Social network architecture of human immune

cells unveiled by quantitative proteomics

2.1.1  Summary

The immune system is unique in its dynamic interplay and its diverse functions are executed
by highly specialized cell types. A major goal of immunology research is to understand how
the context-dependent crosstalk of different cell types and the orchestration of their functions
enable protection against disease?*’261-273274 The interpretation of immune responses is
inherently challenging due to its plasticity and its context dependent pathophysiological states
(Figure 6). At the molecular level, intercellular signals are mostly communicated through
proteins produced by sending cells that act on receptors of receiving cells. Current approaches
mainly focused on the characterization of interactions between individual cell types or
cytokines, which neglect a systemic view of the immune response and hence architecture and
syntax by which biological messages are exchanged between sometimes distant and mobile
cell types remain incompletely understood?6>27>,

In this study, high-resolution mass-spectrometry- based proteomics was used to characterize
28 primary human hematopoietic cell populations in steady and activated states at a depth of
>10,000 proteins in total. This unbiases rich proteome resource recapitulates many well-
known immune cell type functions, but also points to novel cell surface markers that could be
used for staining and flow sorting. Together with selected secretome measurements and a
newly developed bioinformatic framework, fundamental intercellular communication
structures and previously unknown connections between immune cell types were discovered.
For example, less related lineages tend to have more interactions, than close related lineages
or antigen presenting cells increased their ligand repertoire once activated moving to the top
of the intercellular signaling cascade. Together, the findings define a social network
architecture of immune cells and provide a systems biology reference framework of
intercellular signaling. The quantitative, high-resolution proteomics immune cell
compendium, including protein copy numbers, assignments of cell-type-resolved functions,
intercellular communication structures and pairwise cell- type comparisons, is available via

MaxQB?’® and an interactive online database (http://www.immprot.org/).
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Figure 6. The immune system as a multi-layered social network. Immune cells need to fulfill many different
functions within the body. To successful coordinate their abilities, they need to interacted not only with each
other but also with any other tissue type of the body. This complex interplay resembles in many ways a social
network. Novel omic-technologies provide new understandings into the basic architecture of these sophisticated

communication networks among immune cells (adapted from?77).

2.1.2

In this collaborative study with the research group of Prof. Lanzavecchia, I performed the

Contribution

immune cell type purification as well as the in vitro assays. David Jarrosay conducted the
flow sorting of the different cell types. I conducted the mass spectrometry analysis of their
proteomes and secretomes. I completed the RNA extraction and transcriptome analysis. The
bioinformatic scripts and analysis were written and run by me. The online R shiny application
was developed by Daniel Hornburg. The manuscript was written by Felix Meissner, Matthias
Mann, and me. I prepared all figures and tables for the manuscript, except supplementary

figure 1.

2.1.3

This work was published in the journal Nature Immunology in 2017.

Publication

Social network architecture of human immune cells unveiled by quantitative proteomics
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Social network architecture of human immune cells
unveiled by quantitative proteomics

Jan C Rieckmann!, Roger Geiger>*, Daniel Hornburg!, Tobias Wolf2-?, Ksenya Kveler*, David Jarrossay?,
Federica Sallusto?, Shai § Shen-Orr?, Antonio Lanzavecchia®?, Matthias Mann® & Felix Meissner!

The immune system is unique in its dynamic interplay between numerous cell types. However, a system-wide view of how immune
cells communicate to protect against disease has not yet been established. We applied high-resolution mass-spectrometry-

based proteomics to characterize 28 primary human hematopoietic cell populations in steady and activated states at a depth of
>10,000 proteins in total. Protein copy numbers revealed a specialization of immune cells for ligand and receptor expression,
thereby connecting distinct immune functions. By integrating total and secreted proteomes, we discovered fundamental
intercellular communication structures and previously unknown connections between cell types. Our publicly accessible
(hitkp:/fwww.immprot.org/) proteomic resource provides a framework for the orchestration of cellular interplay and a reference

for altered communication associated with pathology.

Distinct immune functions are executed by highly specialized cell
types. The coordinated action of the immune system resembles a
social network, which enables complex immunological tasks beyond
the sum of the functions of individual isolated cell types. A major goal
ofimmunclogy research is to understand how the context-dependent
crosstalk of different cell types and the orchestration of their func-
tions enable protection against disease!-4. However, the architecture
and syntax by which biological messages, such as cytolines with
pleiotropic functions, are exchanged between sometimes distant
and mobile cell types is a central feature of the immune system that
remains incompletely understood®®. Moreover, the functions of
transmitted messages vary depending on the cellular sender, receiver
and pathophysiological state, making the interpretation of immune
responses inherently challenging.

At the molecular level, intercellular signals are mostly cornmuni-
cated through proteins produced by sending cells that act on receptors
of receiving cells. Current approaches focus on the characterization of
interactions between individual cell types or cytokines, but new pro-
teomics technologies promise to capture the complexity of intercel lu-
lar communication comprehensively at the protein level. However, this
promise has been challenging to fulfil because of the scarcity of cer-
tain subtypes of immune cells, the large dynamic range of the cellular
proteorne (=6 orders of magnitude) and the low concentration of
secreted factors. Important insights into immune cell type composi-
tion and intracellular signaling netwarks have been gained by system-
wide transcriptional approaches and antibody-based technologies™ 11,
Although relative measurements of transcripts can be very compre-
hensive, the correlation between mRMNA and protein copy numbers can

vary widely!'®13, especially for proteins with roles in intercellular
crosstalk'®. Quantitative, high-resolution mass spectrometry {M5)-
based proteomics has developed rapidly and has now matured into
a powerful technology that provides a unique opportunity for the
system-wide characterization of cellular senders and receivers as well
as the accurate quantification of transmitted messages!3-17,

To unravel the complex interactions between immune cells at the
protein level, we combined advanced MS approaches developed in
our laboratories and characterized 28 hematopoietic cell types that we
sorted by flow cytometry from human donors. We accommodated the
limited amount of rare immune cells by employing a single-run MS
analysis approach'® while keeping the greatest possible proteome depth.
To interpret the dynamic cellular proteomes and secretomes, we devel-
oped a bioinformatics framework to assign cell-type-resolved immune
functions and connect these via transmitted biological messages. This
yielded a network topology from which we could deduce the inter-
cellular information exchange in the immune system. By comparing
with the current literature, we discovered systematically understudied
intercellular connections and biological messages. Our results highlipht
different communication structures for myeloid and lymphoid immune
cells, as well as on the level of individual proteins for messages with
distinct paracrine functions. Exemplified by the cell-type- and context-
dependent secretion of innate imrmune cells, our results provide a holis-
tic picture of unique and shared biclogical messages with their associ-
ated inter- and intracellular information flow. Together, our findings
define the social network architecture of immune cells and provide a
systems biology reference framework of intercellular signaling. The
quantitative, high-resolution proteornics immune cell compendium,
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including protein copy numbers, assignments of cell-type-resolved
functions, intercellular communication structures and pairwise cell-
type comparisons, is freely available via MaxQB'? and an interactive
online database (hittp:/fwww.immprot.org/).

RESULTS

Proteome atlas of 28 distinct human hematopoietic cell types

We sorted 28 distinct human hematopoietic cell types from periph-
eral blood of healthy donors by flow cytometry (Supplementary
Fig. 1 and Supplementary Table 1). These comprised cells from seven
major lineages, including granulocytes (GN), monocytes (MO), den-
dritic cells (DC), natural killer (NK), B cells (B), CD4 (T4) and CD8
(T8) lymphocytes, as well as erythrocytes and platelets. The two latter
cell types were excluded from further analysis, as their proteomes dif-
fered markedly from all other proteomes because of their very special-
ized functions and lack of a nucleus (Fig. 1a and Online Methods).
We analyzed the cellular proteomes in their steady state and for a
subset (17 cell types) in activated states (Supplementary Table 2)
in single runs by high-resolution MS using a quadrupole Orbitrap
instrument®” (Online Methods). Each proteome state was measured
from three to four donors, generating a total of 175 immune cell pro-
teomes. Ata peptide and protein false discovery rate (FDR) of 1%,
we identified more than 10,000 different proteins with an average of
7,500 proteins per measurement and 8,700 proteins per quadrupli-
cate. For each major immune cell lineage, we identified an average of
9,500 proteins (Fig. 1b, Supplementary Fig. 2a,band Supplementary
Table 3). We performed quantification in a label-free format using
the MaxCuant algorithms and the resulting intensity values served as
the basis for relative and absolute proteome determination?’22, This
demonstrated high inter-donor correlation for cell types (© > 0.97)
{Supplementary Fig. 2c).

Gene ontology (GO) category analysis revealed »80% cover-
age of proteins with known immune-related functions (Fig. 1c and
Supplementary Flg. 2d). In comparison, two previous large-scale
human immune cell type cataloguing efforts only covered about 60%
of immune annotated and identified approximately 8,000 proteins or
genes in total®2* (Fig, 1c.d and Supplementary Fig. 2d). Furthermare,
the global proteome profiles are consistent with established cellular
functional relationships?4 (Supplementary Fig. 2e). All marker pro-
teins used for cell sorting were identified, except for the chemokine
{C-C motif) receptor 4 (CCR4), and showed the expected expression
profiles (Supplementary Fig. 2f).

Immune-cell-type-resolved protein expression patterns
Principal component analysis (PCA) to compare the proteomes of
the different immune cell types found a clear distinction between
lymphoid and myeloid immune cell functions in the first principal
component (PC1) (Fig. 2a). Bioinformatic enrichment analysis of
functional GO terms along this axis® revealed that this separation
could be attributed to “T-cell regulation’ versus early defense mecha-
nisms’ (Supplementary Table 4 and Cnline Methods). The second
dimension (PC2) differentiates ‘microbial defense mechanisms versus
‘humeral immunity’

T lymphocytesand NK cells formed a dense cluster, clearly revealing
their close functional relationship. An independent PCA of T and NE
cell types (Fig. 2a) resolved the effector classes from helper to cytotoxic
in PC1 and lineage differentiation from naive to central ar effector mem-
ory in PC2. Thus, the closest neighbors of NK cells are CD8 T effector
memory (Tpy) cells, which both target virus-infected cell s2627,

We selected the top differentially expressed proteins using the
seven major lineages described above as labels in a supervised
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Figure 1 Comprahensive prateome atlas of 28 hematopoietic cell types by
single shot LC-M3/MS analysis. (a) Schematic of exparimental design and
proteomics workflow. GNs, MOs, DCs, NK cells, B cells, and T4 and T8
lymphocytas were isolated by flow cytomatry and analyzed by LC-M3/MS
in steady and activated states. Numbers in brackets indicate the quantity
of individual cell types of the indicated cellular lineage (for example, NK:
CD&6EE and CDGREAM MK calls). ERY, erythrocytes; PLT, platalets.

{b) Number of identified protein groups for each major cell linsage.
MS/M 3 -basad identifications and those transferred by ‘match-batween
runs' are indicated in dark and light gray, respectively. c,d) Comparison
to proteomaZ? and microarray data®. (c) Relative coverage of protains with
knawn immuna function. (d) Comparison of the number of protein and
gene identifications.

clustering analysis, which confirmed known lineage-specific marker
proteins (Flg. 2b). These signature proteins were enriched for
biological processes according to the functional attributes of the
lineages, as expected (Supplementary Table 5), with some of these
proteins being expressed more than 100-fold higher in particular
cell types, such as CD38 in T cells, CD794 in B cells and Toll-like
receptor 2 (TLR2) in monocytes (Supplementary Flg. 3a—c). We
used the fixed ratio between the total histone signal and cellular
DNA to calculate protein copy numbers for the identified proteins?®
(Supplementary Table 6). Housekeeping proteins such as GAPDH
or ACTE are present at between 10-50 million copies in immune
cells, at the top of the ranked expression order (Fig. 2c). Lineage
markers such as CD'14 in classical monocytes or FCGR3B in neu-
trophils also reach high expression levels of 1-5 million copies.
Other important lineage receptors, such as CD4 (T4), CD34A (T8)
and CD79A (B cells), have copy numbers between 200,000 and 1 mil-
lion (Fig. 2c.d). Although we found that some transcription factors
were present in less than a 100 copies per cell, transcription factors as
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awhole had a median of 10,000 copies. At the top of the distribution,
IRF7 and IRFS, key transcriptional regulators of type I interferons,
were quantified in plasmacytoid DCs (pDiCs) with 200,000 and 1
million copies, respectively.
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Cell types are commonly defined by exclusive or combinatorial
expression of cell surface markers. We applied Lasso regression analy-
5529 to investigate previousty unknown cell surface receptor combina-
tions for cell lineages as well as for individual cell types. Thisrevealed
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Figure 2 Imrmune cell relationships are defined by lineaga-spacific signature pmteins. {a) Principal component analysis (PCA) of median protein
abundances (ANOVA, Benjamini-Hochberg (BH) P < .01, dfl = 25, df2 = 78) for different immune cell types. Inset, PCA of T lymphocytes (T4 and T&)
and MK cells. Different cell types are indicated by colors in the legend. (b) Heat map with the top 100 significantly differentially expressed proteins for
each cell lineaga (T4, T, NK, B, MO, DC and GN) (two-tailed Welch's ftest, FDR < 1%, Sg= 1, n=4 from independent donors). Rows were clustered
using complete linkage with Euclidean distance and columns wer ordered by lineage as shown in the legend. Protein names are examples of proteins
presant in the indicated clusters. (e} Dynamic ranga of the proteomes of measured cell lineages, based on median estimated copy numbers. (d) Copy
number profiles of reprasantative lineage marker proteins. Box-plot alements: center point, madian: box limits, first to third quartile (Q1 to G3);

whiskars, from Q1-1.5 x interquartile range (IQR) to @2+1.5 = IQR.
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the chemokine receptor CX3CR1, identified on T cells with low prolif-
eration, but high cytotoxic capacity™, tobe an lineage receptor for CD8
CD45RA* effector memory (T pypa) cells (Supplementary Fig. 3d).
For rare cell populations, exclusive markers are advantageous for
staining and sorting; we identified plasmalemma vesicle-associated
protein (PLVAP) and multiple epidermal growth factor-like domains
protein 10 (MEGF10) to be such unique cell surface markers for B
cell plasma blasts (Supplementary Fig, 3d), and confirmed PLIVAP
expression by flow cytometry (Supplementary Fig. Je).
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Functional modules of the immune system

We defined cell-type-resolved functions of the immune system in
an unbiased clustering approach® by grouping proteins with corre-
lating expression patterns and assigning their functional properties
by GO enrichment analysis (Fig. 3a.b and Supplementary Table 7).
Among the 47 resulting functional modules (ME), module ME27
contains the TLR proteins TLR1, TLR6 and TLRS and is enriched for
‘inflammatory response’ and ‘pattern recognition receptors signal-
ing pathway” These properties are characteristic of monocytes and
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Figure 4 Communication network of immune cells. (a) Number of detected transcription factors (T), adaptor molecules (A), receptors (R) and ligands (L)
per call type. (b) Expression variances of all immune cell types according to the categories in a in steady state compared with cell-type-resolved brain
and liver proteomas3E.23, The variance for each pmotain was calculated from expression values across all cell types. Activated immune call states as wall
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{c) Outgoing connections in our study compared with Textbook and ImmuneXprsso (Online Mathods). The pie chart reprasants all outgoing
connections from our study with connections already capturad by the two different data sets indicated in slices. (d) Understudied cell types and
cytokines from outgoing connections. Significantly enriched cell types and cytokines in our study compared to Textbook and ImmunaXpresso identified
by Fisher's exact test with BH FOR < 5%. {e) Number of intercellular connections betwean cells of each lineage with all other lineages. (f) Immune

cell lineage connactivity netwaork. PCA of immune call lineages proteomes fittered for receptors and ligands. Connecting line strength indic ates the
number of intercellular connections betwean lineages. (gl Pearson comelation coefficient of cell type median expression values and relative number

of intarcellular connections of cell type pairs in steady state. The number of interactions between each cell type pair was normalized by the number

of receptor and ligand expressad on both cell types. Cell type pairs of the same lineage were excluded. Linear fit (solid ling) and Pearson correlation

(r) are shown (top right). Box-plot elements: center line, median; box limits, first to third quartile (Q1 to G3); whiskers, from Q1-1.5 % IQR to Q341.5 =

IGR; points, outliers.
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dendritic cells, which specialize in sensing microbial- and danger-
associated molecular patterns™.

Other important modules include ME17, which is described by
“T cell receptor signaling pathway” and includes T-cell-specific pro-
teins such as CD3¢ and THEMIS. The specialized function of Blym-
phocytes, DCsand monocytes to present antigens to T lymphocytes is
captured in ME23, which is highly enriched for MHC class II proteins.
Module ME29 contains proteins that are highly abundant in NE, CD8
T effector memory { Tgy): Tryps and CD4 Tryp , cells. Cytolytic pro-
teins, such as granzyme B and perforin, are enriched in this module,
stggesting that cytotoxic CD4 T cells belong to the CCR7-CD45RA*
memory compartment of CD4 T lymphocytes (Supplementary
Fig. 4a). Low expression of CD27 and CD28 protein, characteristic
of the CD4 T cell cytotoxic phenotype®, support this finding. The
transcription factors TBX21, EOMES, and HOPX are also present
in ME29. Although the first two have been reported to be essential
for the development of N cells***, the latter—already linked to T
cell effector memory formation®-" —might also be involved in NK
development or cytolytic immune function. Taken together, our pro-
teome resource and assignment of proteins to functional modules
recapitulates many known relationships of the immune system and
holds the potential for the generation of new hypotheses.

All of the modules clustered in four groups, reflecting their func-
tional lineage relationships (Supplementary Fig. 4b). T and NK cell
modules, s well as monocyte and dendritic cell modules, overlapped,
indicating shared functionalities; however, each lineage has its unique
modules. Anti-correlated modules point toward unique and mutu-
ally exclusive cellular functions. For instance, ME20 in neutrophils
and ME33 in plasma blasts are clusters that are not shared with any
other cell type that are enriched for proteins in ‘defense response
to bacterium’ or growth factor binding’ respectively (Fig. 3c).
The highest anti-correlating modules are ME17, representing proteins
with adaptive immune functions enriched for *T cell receptor sign-
aling pathway’ and Tymphocyte differentiation’ versus ME19, with
proteins involved in innate immune functions such as ‘phagocytosis’
or ‘response to fungus’ (Supplementary Fig. 4c.d). These two arms of
the immune system are also captured in ME25 versus ME7. Module-
level anticorrelation could further be resolved at the protein lewel,
and this showed near mutual exclusivity of cellular receptors (CD3e
versis CYBB), adaptors (LCK versus SYK) and transcription factors
(STAT4 versus SPI1) (ME19and ME17; Fig. 3d).

Architecture of intercellular communication
To assess which level of cellular signal transduction contributes most
to cell-type specificity, we categorized proteins as transcription fac-
tors, adaptor molecules, receptors and secreted molecules and inves-
tigated how their expression differed between cell types (Fig. 4a and
Supplementary Fig. 5a). The averape expression variances of recep-
tors and secreted ligands were nearly twice those of adaptors and tran-
scription factors. These findings indicate that immune cells are more
specialized intercellularly than intracellularly. This appears to be a
special feature of the immune system, as we did not observe itin the
cell-type-resolved proteomes of the brain and the liver®-# (Fig. 4b).
To further characterize the architecture of intercellular crosstalk,
we compared the number of connections established by receptor-
receptor or ligand-receptor interactions between cell types. Potential
interactions recorded in the STRING database®® are not cell-type
resolved and would be compatible with a network of more than
4 % 107 connections between the 460 receptors and 300 secreted lip-
ands identified in our study, counting interactions as different if they
occurred between different cell types. On the basis of the proteomics
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data, we prioritized intercellular connections formed by proteins with
high and reproducibly measured expression in the respective cell
types. We further considered *Textboold knowledge® derived froma
sophisticated analysis of currentliterature (Online Methods) to reduce
our communication network to the 180,000 most confident connec-
tions of protein pairsin different cell types (Supplementary Fig, 5b.c
and Online Methods). This analysis revealed a plethora of previously
unknown cell-type-specific interactions for major cytokines (Fig, 4¢
and Supplementary Fig. 5d), as compared with those reported in
1.3 million published PubMed abstracts (ImmuneXpresso, Online
Methods). Overrepresented in our communication network were out-
going connections in which NK and naive B cells function as send-
ers as well as those involving tumor necrosis factor {TNE) family
members TNFSF14 and TNFSF7 (CD70) and macrophage migration
inhibitory factor (MIF) (Fig. 4d and Supplementary Fig. 5e). We
validated one out-going and one in-going intercellular connection
that are not described in the currentliterature. First, we found Resistin

ADVANCE ONLINE PUBLICATION NATURE IMMUNOLOGY

46



Results

© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.

a 2.0+ o E,E 150 4 Seady s\ d|._ i8]
. 100 =7
25 E’E ek g’E 0.0
o 3%
. 504 8
gs.o- ° EF 0l Y
E - §§15{J- &
L - 200
15 0.5
g @ ] EHEq EE:“:‘; Actvaed %“
E
1.0
SE™ §§
- - Xk :
L = g_gwu
£ o
5 EE ol Eppeo

T A R L

RESOURCE
foo1oq
ic‘
B
I g 05
B
&E'
agespzacsazas
015 010 005 0 005 9‘“’“055055““”

Hierarchy halght
{steany stats)

Figure 6 Dynamics of sanders and receivers of biclogical information. (a) Absolute median f test expression differences for transcription factors (T),
adaptor molecules (A), receptors (R) and ligands (L) between cells in steady and activated states. (b) Receptor and ligand count for the indicated call
types in steady state. (¢) Recaptor and ligand count for the indicated cell types in activated state. (d) Activation induced change of cellular sending
and receiving capacity. Ratio of RfL (act., activated state) to R/L (s.5., steady state) are displayed. (&) In-out degres hierarchy height (h =(0 -1}/

{0 + 13 of immune cell lineages in steady and activated state. (f) Numbser of cellular senders and raceivers for all quantified chemokine recaptors.

The total numbers are divided by the maximum sender or receiver numbser, respactively. (g.h) Interellular communication structures for chemokine
receptors (CCRs) and their ligands (CCLs): CCR7-CCL1G (g) and CCR3-CCLA/CCLA (h). Outer circle, call types; middla circle, receptor and ligand gana
names; inner circle, expression levels. Connecting lines indicate biological information flow with the line color cormsponding to the cellular sender.
Box-plot elernents: canter line, median; box limits, first to third quartile (@1 to G3); whiskars, from Q1-1.5 x 1QR to Q3+ 1.5 x 1QR; points, outliers.

(RETN), which is known to be secreted by monocytes, to also be
secreted by activated memory B cells and confirmed this finding by
ELISA (Supplementary Fig. 5f). Second, we found that the receptor
CSF1R, which is known to be expressed on CD4 T cells, was also
activated by IL-34 on CD4 memory T cells (Supplementary Fig. 5g).
In comparison with RN Aseq (Supplementary Table 8) and microar-
ray data, we observed median correlation of approximately 0.5 for
matched cell types and protein profiles (Supplementary Fig. 6a-d
and Supplementary Table 9). Notably, proteomne - and transcriptome-
based intercellular communication networks were similar in size, but

MNATURE IMMUNOLOGY ADVANCE ONLINE PUBLICATION

only shared 50% of their connections (Supplementary Fig. 6e). We
conclude that the current knowledge on immune cell interplay is still
incomplete, and our analysis revealed systematically understudied
intercellular immune cell signaling paths.

Focusing on the major cell lineages (T4, T8, NK, B, MO, DC,
GN), we observed that myeloid immune cells had more connections
than lymphoid immune cells (Fig. 4ef). Monocytes establish on
average 300 connections with other immune cells, compared with
T lymphocytes, which on average establish only 200 connections.
Analyzing all cell types in this way established the general trend that
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less-related cell types (as determined by proteome correlation), such
as neutrophils to naive B cells, are more highly connected (Fig, 4f.g).
Thus, the immune system links distinct cell-type-resolved functions
via strong communication structures.

To further elucidate how immune cells connect with organs and
tissues, we expanded our network using an atlas of 32 different human
organs and tissues*?, focusing only on receptor-receptor intercellular
interactions (Online Methods). Immune cells had significantly more
connections to tissues related to the immune system (for example,
lyrnph node, spleen, tonsil, and appendix) than to non-lymphoid tis-
stes (P < 10-15; Fig. 5a,b). Furthermore, myeloid immune cells estab-
lished more connections with non-immune tissues than lymphoid
immune cells (Fig. 5¢). This presumably reflects cellular preference
for tissue residence as phagocytic cells, which scan almost the entire
body for foreign or altered self and T lymphocytes, reside primarily
in the lymphatic system.

Dynamics of senders and receivers of biological information
Biological messages are dynamic and depend on cell type as well as
context, and this is captured in our data set by the dynamic changes of
immune cell proteomes foll owing activation. We observed dominant
changes at the level of receptors and ligands, which is the level that
determines context-dependent adaptation of cellular communication
behavior (Fig. 6a and Online Methods). To systematically evaluate
cellular sender or receiver roles, we assessed the expression and secre-
tion of protein lipands (out degree, O) as well as the expression of
the corresponding receptors (in degree, I), respectively. Our analysis
highlights the degree to which myeloid cells engage in intercel-
lular communication, as these cells expressed more receptors and
ligands than lymphoid cells (Fig. 6b.c). Following activation, MO
and DCs showed an increase in their ligand-receptor ratio (L/R),
whereas the ratio for cytolytic cell types (NK, T8) decreased (Fig. 6d).
Thus, immune cells seem to employ distinct communication strate-
pies: antigen-presenting cells (MO and DC) changed both quantity
and diversity of their ligands and reduce their receptor diversity,
whereas cytolytic cell types changed only the quantity of their lig-
andsand increased their receptor diversity (Fig. 6a—d). We compared
the hierarchy height (h = (O - I) / (O + I))*? of intercellular signal
transduction before and after activation, where senders have h > 0
and receivers h < 0 (Fig. 6€). Following activation, antipen-present-
ing cells increased their hierarchy height. In particular, MO showed
the most prominent change by being at the bottom in steady state,
but then move to the top of the hierarchy after activation. Together
with the functional module analysis described above, our proteomic
analysis sheds light on the dynamic cellular properties of antigen-
presenting cells that enable them to alert surrounding cells after sens-
ing microbes or danger.

Apart from the global analysis of communication networks, our
data allow the deduction of sender and receiver patterns with different
biological functions. Using the established framework at the level of
individual proteins, we observed two general types of communica-
tion structures for chemokine receptors and their lipands. Broadly
expressed receptors, such as CCR7, received information from few
sending cells, whereas receptors with cell-type-specific expression
patterns, such as CCR3, received information from many cell types
(Fig. 6f-h). These opposing communication structures are associ-
ated with different paracrine functions of transmitted messages. For
example, diverse recipient cells expressing CCR7 are attracted to
lymph nodes*, whereas receptor ligation of CCR3 exclusively recruits
polymorphonuclear phagocytes to inflamed areas®S. Thus, our analy-
sis establishes on a global scale that chemokines require specificity
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either on the sending or receiving end, a principle of directed
asymmetric information exchange.

Cell-type- and context-resolved communication structures

To learn more about the syntax of intercellular communication, we
compared cell-type- and context-dependent innate immune responses
employing in depth and quantitative secretome measurements'?. We
analyzed the outcome of the biological messages by tracing the para-
crine intercellular information flow of the secreted proteins. Using
dendritic cells as an example for cell-type specificity, we found that, fol-
lowing broad TLR activation, myeloid DCs (mDCs) secreted many dif-
ferent inflammatory cytokines, whereas pDCs secreted primarily type
I interferons ( Fig. 7a.b, Supplementary Fig. 7a,b and Supplementary
Table 10). Using our communication framework, we established that
mDCs target numerous receptors and form an intercellular connection
network with multiple channels to diverse recipient cells (Fig. 7e.d).
Intracellularly, the targeted signaling pathways in recipient cells ampli-
fied the primary pro-inflammatory signature originating from mDCs
by intracellular signal integration and converted it into a defined sec-
ondary signature by employing distinct JAK-STAT signaling pathmways
(Supplementary Fig. 7c). By contrast, pD'Cs fostered a defined single-
layer antiviral response in recipient cells by engaging mainly with the
interferon alpha receptor (Fig. 7c.d and Supplementary Fig. 7c).

To dissect context-dependent paracrine responses, we further
compared responses of classical monocytes (cMOs, CD14"CD167)
to challenges that require distinct actions, such as fungal (zymosan,
ZYM) versus bacterial (lipopolysaccharide, LPS) encounters. Key
cytokines secreted following ZYM exposure included members of
the colony-stimulating factor (CSF) and the anti-inflammatory IL-10
families that connect cMOs with myeloid cells, stimulating a strong
intracellular NF-kB signature (Fig. 7e.f, Supplementary Fig. 7d.e and
Supplementary Table 11). Conversely, LPS activation released serine
protease inhibitors associated with tissue remodeling as well as cell-
matrix interactions (Fig. 7e.f). Both activation events elicited a strang
shared secretory program comprising almost 20 pro-inflammatory
proteins, including interleukins, chemokines and THF family members
such as IL-6, CXCLS or TNF (Fig. 7e.f). Based on the tarpeted receptors
and their cell-type-specific expression, the shared pro-inflammatory
program conveyed immune instructions directed toward multiple cel-
lular recipients (Fig. 7g.h). It converged intracellularly with pleiotropic
properties ranging from pro-inflammatory over chemoattractant to
cell-death-inducing functions (Supplementary Fig. 7f).

DISCUSSION

Intercellular communication between diverse cell types orchestrates a
plethora of physiological functions. However, a system-wide view of
how cells exchange information had not been established because of
technological limitations. We attempted to globally assess the dynamic
communication structures of the immune system. We successfully
measured the proteomes of all major human immune cell types
present in the blood in steady and selected activation states at great
sensitivity and quantitative depths. With more than 80% coverage of
immune-system-annotated proteins and around 70% coverage for
immune-relevant signaling molecules such as transcription factors,
adaptor molecules, cell surface receptors and secreted molecules, we
provide the most comprehensive cell-type-resolved human proteome
resource to date. Some of the remaining proteins appear to be con-
fined to non-circulating immune cells or to immune states that were
not sampled. The immune system displays an almost infinite diversity
in cell types and activation states, and achieving completeness in both
dimensions is particularly challenging for human cells*.
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By combining total proteome with secretome measurements and a
bicinformatics framework, we constructed a social network of human
immune cells and deduced the logic of immune cell interplay. This
enabled the discovery of potential new cell type markers, protein
associations to functional modules and intercellular connections. As
a result of the imperfect correlation of proteome to transcriptome,
communication networks constructed from RNA data may insuf-
ficiently capture intercellular signaling on the level of proteins. Our
proteomics-based analysis revealed that the immune cell communi-
cation network is more complex than what is captured by the cur-
rent literature. Commeon messages are used between many more cell
types, highlighting promising research directions, such as NK cells,
which appear to have additional functions in orchestrating immune
responses. As examples for the discovery potential of our analysis,
we validated one previously unknown outgeing connection (B cells
— RETN) and one ingoing connection (IL-34 — T4 memory cells).
However, as a result of the automated extraction of intercellular con-
nections from the current literature (Online Methods) and its map-
ping to our proteomics communication network, inaccuracies in total
as well as individual understudied connections can be expected. Given
that connections in our network are defined by annotated evidence
{Online Methods), individual pairwise interactions may not be cap-
tured correctly. Although false positives may derive from incorrect
or outdated annotations, false negatives may derive from not discov-
ered or not deposited interactions as well as by undetected proteins.
To avoid overestimation, we discarded 50% of the possible interac-
tions of the communication network and report only those with high
confidence using “Textbook” knowledge as reference. To evaluate the
probability of individual intercellular connections, however, further
information on cell type abundance and tissue distributions could be
considered in the future.

Our results demonstrate that immune cell signaling is more
diverse inter- than intracellularly in comparison with other organs
stich as brain and liver. To adapt to extracellular cues, intercellu-
lar immune signaling is further specifically tuned by the regulation
of ligand and receptor expression. Thus, proteomics highlight how
immune cell diversity and plasticity together shape protective immu-
nity. We found that antigen-presenting cells increased their capacity
to send information in response to changing conditions, forming
the top of the intercellular signaling hierarchy. In contrast, cells with
cytotoxic functions decreased their hierarchy height. Dependent on
the biological messages that are sent, however, different communica-
tion structures are employed: as a general underlying principle, we
found that communication was restricted to a limited number of
sending or receiving cell types for any given cytokine, presumably to
achieve specificity in intercellular signal transduction at a minimum
cost of resources. On the level of individual cells, intercellular com-
munication structures may differ from those obtained from sorted
cell populations. Single-cell technologies to study cell-to-cell cross-
talk on the protein level may further increase our understanding of
communication diversity and heterogeneity in the future.

According to our data and analysis, the current classification of
immune cell identity based on expression of lineage markers, mainly
transcription factors and cell surface receptors, would gain resolu-
tion by including secreted ligands and corresponding intercellular
connections. Moreover, the interpretation of biclogical messages
transmitted during disease, that is, cocktails of cytokines in case of
complex immune responses, could be improved by integrating infor-
mation on targeted cell types and their activated intracellular signal-
ing programs. Current experimental approaches are largely focused
on a single or a few different proteins, which makes it challenging

10

to dissect the logic of inflammatory programs in redundant versus
cooperative immunological signals. By contrast, the proteomics
approach naturally deals with these challenges and provides a sys-
tems-wide, interconnected network of healthy immune functions,
representing a reference to identify deviating communication patterns
associated with pathology.

The immune systeny’s diversity of cellular components and com-
plementation of cell-type-resolved competences comprises features
immanent to social communities. Considering heterogeneity, plastic-
ity and networking of cell types, the immune system is tremendously
complex. Given the mobility of the cellular players, it presents an
ideal example for studying how physiological functions are orches-
trated by intercellular communication. Owur analysis reveals some of
the concepts that are shared between the immune system and other
types of social networks. These include communication structures
between individual players with defined hierarchy and logic aimed
at achieving complex tasks.

Our study should be considered a starting point for the investi-
gation of intercellular information exchange at higher cellular and
contextual resolution. An expansion of the communication network
to tissue resident immune cells and their direct interactions would be
particularly exciting, although accessibility and the number of cells
obtainable from healthy human donors remain a challenge. Future
studies should evaluate whether the sender-receiver principles of
cellular communication deduced here can be extended to other organs
and multicellular organisms. The availability of further system-wide
information that can also be gained by proteomics, suchas extracellu-
lar protein-protein interactions or post-translational modifications in
intracellular signaling networks, could further refine the architecture
of our communication network.

In conclusion, our findings establish a social immune cell network
on the level of proteins and providesan experimental and conceptual
framework to deduce fundamental communications structures and
interpret context and cell-type-dependent immune dynamics.

METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.

Note: Any Supplementary Information and Sovrce Data files are mvailable in the
onlineg version of the paper.
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ONLINE METHODS

Blood samples and cell sorting. Blood from healthy donars (~450 ml) was
obtained from the Swiss Blood Donation Center of Basel and Lugano, and used
in compliance with the Federal Office of Public Health (Authorization no.
ADD0197/2 to ES.). Peripheral blood monomuclear cells (FEMC) were isolated
using Ficoll-Plaque Plus (GE Healthcare) sedimentation. Cells were positively
selected using magnetic microbeads (Miltenyi Biotec ). Sorting was parformed
with a FACSAria flow cytometer (BD Biosciences) and cell types were sorted
to »08% purity { Supplementary Fig. 1 and Supplementary Tables 1 and 12).
Cells were either collected in complete medinm or for protecme measurernent
washed in PBS, snap frozen and stored at —80 °C. Erythrocytes were isolated
by removing the fraction with lower density as previously described®”. The
erythrocyte packed phase at the bottom after the density centrifugation was
washed twice with ice cold PBS, snap frozen and then stored at —80 °C until
further use. Platelets were isclated by Opti Prep density gradient purification 3,
3 ml whole blood was layered over 5 ml of the density solution (5 ml of
L1320 g/ml 6096 iodixanol stock solution; OptiPrep density gradient medium,
Sigma-Aldrich) and mixed with 22 m] diluent (0.85% NaCl, 20 mM HEPES-
NaOH, pH 7.4, 1 mM EDTA). The sample was centrifuged at 350 g for 15
min at 20 °C in a swinging bucket rotor with the brake switched off. Platelets
were harvested from the broad turbid band below the interface. Platelets were
washed twice with PES and stored at —80 °C until further use.

In vitro activation assays. Flow sorted cells were cultured in RFMI- 1640
medium supplemented with 2 mM glutamine, non-essential amino acids (0.1
mM of each amino acid), 1 mM sodium pyruvate, penicillin {50 Ujml), strepto-
mycin (50 jgiml; all from Invitrogen ) and 5% (v/v) human serum (Swiss Blood
Center]. T lymphocytes were stimulated for 48h with plate-bound anti-CD3
(5pg/ml, clone TRE6) and anti-CD28 (1pgiml CD28.2, BD Biosciences) and
expanded for 48 hwith IL-2 (500 Ufml). NK cells were stimulated with the NK
Cell Activation/Expansion Kit, according to the manufacturers instructions
(130094483, Miltenyi). In brief, NK cells were co-cultured in the presents of
CD2and CD355 (NKp46) coated beads together with IL-2 (500 U/ml) for up
to 14 d. B cells were stimulated using a cocktail of Goat F{ah’)2 anti-humen
Lambda/Fappa (each 2 lgjml}, F(ab")2 Goat anti-mouse IgG Fc (3 ug/ml),
CpG (100ng/ml), anti-CD40 (6ug'ml), for 96h. Monocytes and dendritic cells
were stimulated with the TLR4 agonist lipopolysaccharide (LPS, 100ng/ml)
and TLE7/8 agonist Resiquimod (R848, 2.5 [ig/ml) for 12 hiactivation condi-
tions are surmarized in Supplementary Table 2). After stimulation, cells were
washed with PBS and shock frozen until further use. For secretome measure-
mients, cells were cultured as described above, with the adjustment of exchang-
ing the complete medium after 2 h of priming with medium lacking serum
and phenol red. Our data show that with this strategy we also capture proteins
that are released early (such as many chemokines or TNF) while maintaining
optimal cell viability. Cells were pelleted at 3,000 rpm for 5 min. Supernatants
were removed carefully while leaving % culture medivm surplus to reduce
cell contamination. Cell debris were remowved by an additional centrifugation
step at full speed for 10 min. Supernatants were shock frozen and stored at
~80 °C until further use.

Cytokine analysis. Secretion of resistin (RETN) was measured in culture
supernatants using the human resistin ELISA kit from Sigma Aldrich.

CD4 T cell activation with IL-34. Total CD4 memaory T cells were flow sorted
(CD4HCTDERA+) and activated as described abowe with the alteration that IL-34
‘was added to the culture medium (1, 10, 100 ng/ml). After 96 hcells were washed
twice with PBS, shock frozen and subjected to total proteome analysis.

Sample preparation for M5 analysis. Cell pellets and supernatants were lysed
in & M urea and 2 M urea, respectively, 10 mM HEPES (pH &), 10 mM DTT
and sonicated at 4 *C for 15 min (level 5, Bioruptor, Diagenode). Alkylation
of reduced cysteines was performed in the dark for 30 min with 55 mM ioda-
cetamide (IAA) followed by a two-step proteolytic digestion. Samples were
digested at 21-24 °C with LysC {1:50, w/w, Wako) for 3 h. Cell lysates were
adjusted to 2 M Urea with 50 mM ammeniumbicarbonate and then both cell
lysates and supernatants were digested with trypsin (1:50, w/w, Promega)
at 21-24 °C overnight. The resulting peptide mixtures were acidified and
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Ioaded on C18 StageTips (EmporeTM, IVA-Analysentechnik ). Peptides were
eluted with 80% acetonitrile (ACN), dried using a SpeedVac centrifuge, and
resuspended in 2% ACM, 0.1% trifluoroacetic acid (TFA), and 0.5% acetic
acid. For MACS enrtiched cell pellets lysis was performed in 4% SDS, 10
mM HEPES (pH 8, Biomol), 10 mM DTT. Cells were heated at 95 °C for
10 min and sonicated at 4 *C for 15 min (level 5, Bioruptor, Diagenode).
Proteins were precipitated with acetone at - 205C overnight and resuspended
the next day in 8 M urea, 10mM Hepes (pH 8). Proteclytic digestion was car-
ried out as described above. Chemicals were purchased from Sigma-Aldrich
unless stated other wise,

LC-MS/MS. Peptides were separated on an EASY-nLC 1000 HPLC system
(Thermo Fisher Scientific) coupled online to the () Exactive HF mass spec-
trometer via a nanoelectrospray source (Thermo Fisher Scientific)®, Peptides
were loaded in buffer A (0.5% formic acid) on in house packed columns
(75-1tm inner diameter, 50 cm length, and 1.9 [tm C18 particles from Dr. Maisch
GmbH, Germany). Peptides were eluted with a nonlinear 180-min gradient
of 5-60% buffer B (80% ACH, 0.5% formic acid) at a flow rate of 250 nl/min
and a column temperature of 55 °C. Operational parameters were real-time
maonitored by the SprayQC software®®. The Q) Exactive HF was operated in a
data dependent mode with a survey scan range of 300-1,650 m/z and a resolu-
tion of 60,000 to 120,000 at m/z 200. Up to the ten most abundant isotope pat-
terns with a charge »1 were isolated with a 1.8 Thomson (Th) isolation window
and subjected to higher-energy collision al dissociation (HCD) fragmentation
at a normalized collision energy of 26, Fragmentation spectra were acquired
with a resolution of 15,000 at m/z 200, Dynamic exclusion of sequenced pep-
tides was set to 30 s to reduce repeated peptide sequencing. Thresholds forion
injection time and ion target values were set to 20 ms and 3E& for the survey
scans and 55 ms and 1 EG for the MS/MS scans, respectively. Data were acquired
using the Xcalibur software (Thermo Scientific).

LC-MS/MS data analysis. MaxQuant software (version 1.5.3.2) was used
to analyze MS raw files™. MS/MS spectra were searched against the human
Uniprot FASTA database ( Version May 2013, 90,507 entries) and a common
contaminants database (247 entries) by the Andrmomeda search engine®?
Cysteine carbamidomethylation was applied as fixed and M-terminal acetyla-
tion, deamidation at MQ), and methionine oxidation as variable modifications.
Enzyme specificity was set to trypsin with a maximum of 2 missed cleavages
and aminimum peptide length of 7 amino acids. A false discovery rate (FDR)
of 1% was applied at the peptide and protein level. Peptide identification was
performed with an allowed initial precursor mass deviation of up to 7 ppm
and an allowed fragment mass deviation of 20 ppm. Nonlinear retention time
alignment of all measured samples was performed in MaxQuant. Peptide iden-
tifi cations were matched across all samples within a time window of 1 min of
the aligned retention times™. A library for ‘match between runs’ in MaxCuant
was built from duplicate and additional single shot M8 runs from MACS
enriched cell types. Protein identification required at least 1 ‘razor peptide’ in
MaxCuant. A minimum ratio count of 1 was required for valid quantification
events via MaxQuant’s Label Free Quantification algorithm (MaxLFQ)2, We
enabled FastLF() with a minimum of three and an average of six neighbors.
Data were filtered for common contaminants and peptides only identified by
side modification were exclided from further analysis. We observed lower
identification rates for plasma blasts and neutrophils compared to all other
cell types. Inthe case of plasma blasts the lower identification rate derives from
the low cell count. Neutrophil identification rates are below average because
1] neutrophils contain many proteases and as a result peptides are cleaved at
different positions than arginine or lysine (the expected residues from tryptic
digestions) and 2) have high abundant proteins that result in wnmsually broad
peptide peak widths, interfering with the detection of other ions.

Transcription profiling. Total RMA was isclated from flow sorted cell types
(as described in Blood samples and cell sorting) using the RMeasy Plus Mini
Kit from Qiagen. RMA samples from four donors were pooled. RNA was ana-
Iyzed using an Agilent 2100 Bicanalyzer system (Agilent Biotechnologies).
Only samples with RIN = 8 were subjected to sequencing at the Genomics
Care Facility (GeneCore), Heidelberg using an Illumina Hiseq2000 sequencer.
Processed reads were mapped to the human genome (GRCh37) using the
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PERSELTS software (v. 1.5.5.5). RPEM values were calculated by normalizing
to the maximum gene length. A cutoff value of 1| RPEM was used as a limit
for detection.

Data filtering, imputation of miszing values and copy number estimation.
Data analysis and visualization was performed using the Perseus software®?
and the R statistical fram ework™*%, Before imputing missing values, protein
identifications were required to have more than 50% valid values in at least one
group of replicates. The remaining missing values were imputed by a normal
distribution with a s.d. of 30% in comparison to the deviation of the measured
wvalues and a down-shift of the mean by 2.2 5.d. to simulate the distribution
of low abundant proteins. Copy mumb ers were estimated using the proteomic
ruler approach by using the fixed ratio between the total histone signal and
cellular DNA mass?®,

Comparison to proteome and microarray data. Microarray data were
retrieved from http:// www broadinstitute.org/dmap/home®. We employed the
R Bioconductor package ‘mygene’ to match Uniprot identifier to the provided
Entrez identifier™. Raw files from®? were processed with MaxQuant apply-
ing identical cut offs for protein identifications as stated above. Only MACS
enriched immune cell protein identifications were used for comparison. Thetotal
number of identifications and coverage of immune system relevant annotations
was determined by matching all three data sets to a human reference genome
(20,591 entries, Perseus v1.5.2.12) based on Uniprot identifiers (Fig. Lc,d).

Lineage-specific protein signatures and cell-type marker selection.
Proteomes were compared by three different groupings: (1) pairwise, (2] cell
lineage (T4, T8, NE, B, MO, DC, and GN) versus rest, (3) and ndividual
cell types versus all other proteomes. Proteomes of activated cell types were
excluded from cell lineage comparisons and platel ets and erythrocytes from
all comparisons. Proteins that significantly differed in abundance were identi-
fied by a parametric two-tailed Welch's ¢-test with a permutation-based false
discovery rate (FDR) of 5% and a S, parameter of 1 (ref. 56), if not stated
otherwise (Fig. 2b). In addition, we employed Lasso regression analysis® to
identify cell-type-specific marers for cell sorting ( Supplementary Fig. 3d).
The pool of proteins was reduced to cell surface receptors.

Assignment of functional modules, Proteins were clustered to functional
modules using weighted gene co-expression network analysis (WGCNA PL The
proteome data was reduced to proteomes of cell types in their steady state and
selected for proteinswith a significantly different abundance pattern between cell
types (ANOVA, Benjamini-Hochberg (BHIFDR P <5 x 10-5, dfl =25,df2 =78).
Standard parameters were changed to a power of 14, signed” networls, average
clustering, and a minimum module size of 20. The algorithm assigned the
6,982 proteins to 47 modules containing 23-725 proteins.

Anmnotation enrichment analysis. Protein modules, cell type signatures as well
as selected principal components were functionally characterized by annota-
tiom enrichment analysis. Far all three cases we used proteins annotations
form the Gene Ontology (GO, KEGG®, and Uniprot Eeywords® datahases.
For the first two cases, enrichment scores were determined using Fisher exact
test and in the latter 1D annotation enrichment analysis was performed?s.
Both tests we corrected for multiple hypotheses using a Benjamini-Hochberg
false discovery rate of 5%, if not stated otherwise,

Categorization of intracellular signaling levels. Based on protein annotations
combinations, we defined four levels of signal transduction: transcription fac-
tor (T}, adaptor molecule (A}, receptor (R) and secreted molecules ligands (L).
‘T were characterized by being localized in the nucleus (GOCC: nucleus,
‘muclear part’), DNA binders (GOMEF: 'DNA binding’) and transcription reg-
ulators (GOME: “transcription regulatory region DMNA binding, sequence-
specific DMA binding transcription factor activity’), but at the same time were
not involved in DNA repair (GOMF: ‘damaged DNA binding'; GOEP DNA
repair’). ‘A’ were required to interact with at least one receptor (StringDB
score > 0.4). In addition, they had to be localized in the cytoplasm (GOCC:
(‘cytoplasm, tytosol’ ‘cytoplasmic part’) and involved in cell signaling (GOBR:
‘signaling) signal transduction’). ‘B’ were defined solely by UniProt sequence

dioi: 10.1028/ni. 2693

features. Proteins were required to have either an’ extracellular’ or ‘GPI-anchor
topology domain. "L were required to be secreted (Keywords: Secreted,
“Signal’) or interact with a receptor (StringDB score > 0.4) and be localized in
the extracellular region (GOCC: ‘extracellular space’ ‘extracellular region’).
Furthermore, for ‘R such as THF, we define aspecific category. 'R’ with cytokine
activity (GOMEF: cytokine activity’, ‘chemakine activity, ‘growth factor activity’,
‘hormome activity’; UniProt Keywords: ‘Cytoldne; "Hormone, ‘Growthfactor’)
were assigned "L

Intercellular interaction metwork. To define intercellular connections we
retrieved protein interaction data from the String database®”. From the dif-
ferent score levels available we selected omly interactions with experimental
evidence and a score greater than 0.4. In addition, we established a twofold
ranking for pairerise intercellular protein interactions using our proteome data.
First, individual protein expressions were divided by their maximum expres-
sion level in order to weigh protein expression across all cell types independent
of their abundance. Second, we computed a significance score by counting how
often a protein was significantly (FDR 5%) more abundant in one cell type
compared to all other cell types and normalized it by the maximum count.
The product of normalized expreszsion and normalized significan ce was used
to compute connection ranks for all proteins. The final intercellular connec-
tion score between protein pairs was calculated as the mean of the individual
comnection ranks of the two proteins. We excluded self-loops as well as L-L
interactions. To avoid intercellular connection between proteins of the same
receptor complex, we annotated receptor complexes using GOCC terms and the
protein complex database PCDq®® and merged proteins of the same complex to
one entity. This resulted in a network of about 4 x 10¥ possible receptor-ligand
or receptor-receptor comnection between the 26 different cell types in their
steady and activated states. We evaluated our intercellular connection scores
by comparing their distribution to a manually annotated immmune cell-cytokine
connection network “Texthook” thttp« fwwwimmun expresso.org/, see below).
‘We observed that with increasing intercellular connection score the number of
connections covered by the textbook fits a sigmoid curve and set intercellnlar
interaction score cutoff atthe inflection point (0.47) (Supplementary Fig, Sh.c).
Together, this resulted in a high confidence immune cell communication
network comprising approcimately 180,000 interactions, containing roughly
80,000 B-R and 100,000 R-L interactions. The networks were visualized with
the R package irclize'®!, Furthermore, we extend our interaction network by
applying the described interaction fram ework features to body tissues*2. For
the transcriptomes, we applied the same scoring but restricted the network to
receptor-receptor interactions.

Transcriptome-proteome correlation and module analysis. Data sets were
filtered for cell types present in both data sets (T4.naive - TCELLAS, T4.CM -
TCELLAS, T4.EM - TCELLA?, T8.naive - TCELLA2, T&.CM - TCELLA4,
T8.EM - TCELLA3S, T8.EMEA - TCELLAL, NKIJD'.E]‘H - NEAZ, NEK.dim -
MEA3, B.memory - BCELLAZ, Bnaive - BCELLAL, MO.classical - MONOZ,
mDC - DENDAZ, pDC - DENDA 1, Meutrophil - GRAN3, Eosinophil - EOS2,
Basophil - BASO1). We calculated Pearson correlation coefficients for protein
profiles across all matched cell types. WGCMA was performed with ANOWVA
significant proteins { Benjamini-Hochberg (BH) FDR P <5 x 10-5). Standard
parameters were changed to a power of 14, ‘signed network, average clustering,
and a minimum module zsize of 20, Highly correlating modules were merged
at a cutHeight of 0.2 or 0.3 for the microarray and proteome data set, respec-
tively. This assigned the 5,782 genes of the microarray data set to 18 modules
and 5,974 proteins of the protecme data set to also 18 modules. Module simi-
larity was determined by two measures: Pearson correlation of the module
Eigengenes and relative gene overlap between the modules. Intercellular com-
munication network for both data set were constructed as described abowe but
restricting the networks to shared cell types only.

Comparison to Texthook and ImmuneXpresso. To identify novel connec-
tions between immune cell pairs, we compared our intercellular interaction
networktoa comprehensive literature-based interaction network (hitp://www.
immun exxpresso.org/ ). This literature-based network consists of two data sets
“Textbook” (1) and “ImmuneXpresso’ (2). The “Textbook’ contains semi-man-
ual ennotated cell-cytokine or cytokine-cell interactions retrieved from*!,
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‘ImmuneXpresso’ has an identical data structure, but the interactions are
automatically extracted from PubMed abstracts by a Natural Language
Processing engine. For comparisons, the data sets were matched by gene
names and cell types. In case cell types were not identical, the parent cell
types were matched.

Intracellular interaction network. We used the bisinformatics framework
described above in ‘Intercellular interaction network to construct intracelhalar
protein signaling networks for each immune cell type. To this end, we assigned
to each receptor the closest adaptors (path length = 1, degree > 10) and the
closest transcription factors (path length < 3, degree > 5). We grouped recep-
tors according to their downstream signaling molacules to identify at which
layer of signal transduction input signals from ligands present in secretomes
canverge (Supplementary Fig. 7c.f).

Secretome analysis. iBAQ) intensity values!? were median normalized and
missing values imputed as described in ‘Data filtering, imputation of missing
values and copy number estimation Significant secreted proteins were identi-
fied by two-tailed Welch's ¢ test comparing stimulated with unstimulated cells
with a permutation -based false discovery rate (FDR) of 1% and a §; parameter
of 1 for monocytes (Supplementary Fig. 7d.e). For mDC the FDR was setto
5% and for pDC to 15% (Supplementary Fig. 7ab). To compare the context
depended activations, significant secreted proteins were ranked to account for
abundance biases due to different agonists or cell types. For example, THF is
one of the most abundant proteins secreted from monocytes after Z¥M and
LPS stimulation. However, ZYM treated monocytes secrete significantly more
TNF than LPS treated monocytes. However, this abundance difference might
be minar at different time points or LPS concentrations. Therefore, secretome
results are presented as rank-based secretion (Fig. 7a.b.e.f)

Data availability. All data generated during this study are included in this
published article and deposited online (ProteomeXchange Consortium, data
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Supplementary Figure 1

Representative flow cytometry scatter plots of the sorting panels for each immune cell population measured by LC-MS/MS.
Total CD4 T cells, Tregs, Tu1, Th2 and Tu17 were enriched with anti-CD4 coated magnetic beads; CD8 T cells with anti-CD8 coated

beads, dendritic cells with anti-CD1c and anti-CD304 coated beads, B cells with anti-CD19 coated beads and NK cells with anti-CD56
coated beads.
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Supplementary Figure 2

Quality measures of proteome data set.

(a) Left: Number of identified protein groups for each cell type. Total identification is displayed in black, solely MS/MS based

identification is displayed in grey (NOT: steady state, ACT: activated). Right: Percent transferred identifications from other MS/MS
measurements.

(b) Sequence coverage, unique peptides and protein score for all identified protein group.
(c) Pearson correlation coefficients between cell types replicates.
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(d) Comparison of protein identifications for individual cell lineages and relative coverage of relevant immune processes. Reference
datasets are indicated.

(e) Pearson correlation coefficients of all total proteome measurements. Samples are arranged according to their lineage relationship.
(f) Heat map of protein markers used for cell sorting. Gene names are indicated in parentheses.
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Proteome differences and marker proteins.

(a) Proteome comparison of naive CD4 with naive CD8 T cells (Welch'’s t-test, FDR<5%, Sy=1). Significant proteins are marked in blue
containing the lineage markers CD4 and CD8A.

(b) Proteome comparison of naive CD4 with classical monocytes, respectively (Welch's t-test, FDR<5%, S¢=1). Significant proteins are
marked in blue and the top 50 differentially abundant proteins are named.

(c) Number of significantly (Welch's t-test, FDR<5%, S¢=1) different proteins by pairwise proteome comparison (NOT: steady state,
ACT: activated).

(d) Expression comparison (z-scored MaxLFQ values) of marker proteins for B cell plasma blasts (top) and for CD8 Temgra cells
(bottom). Potential unique marker proteins are indicated below the grey horizontal line. For clarity z-score values of other cell lineages
were removed except for cell lineage markers (CD19, CD8B) and potential exclusive cell type markers. The isoforms of CD45 could not
be resolved from the proteome analysis, therefore CD45R0O and CD45RA are not included in the plot.

(e) Median fluorescence intensity (MFI) of PLVAP (intracellular staining) in B cells determined by flow cytometry and normalized by
isotype control MFI (n=2, two independent donors, left). Representative histograms of fluorescence intensities of isotype control and
PLVAP (right).
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Supplementary Figure 4

Module relationship, annotation enrichment maps and CD4 Teura Cytotoxicity.

(a) PCA of proteins in module 29 and its representative cell types. Projections and loadings are displayed. Cell types are color-coded as
in Fig. 1. Cytolytic proteins shared between CD4 Temra, NK and CD8 T cells are labelled in red. Expression profile of GZMB is
displayed as an example.

(b) Heat map of module correlation coefficients.

(c) Enrichment map of module 17. Nodes are annotation terms, edges represent gene overlap between terms. Node size represent
annotation enrichment, fill color indicates adjusted p value.

(d) Enrichment map of module 19. Labels as in panel B.
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Supplementary Figure 5

Communication network assembly and validation of novel connections.

(a) Relative coverage of immune annotated transcription factors (T), adaptor molecules (A), receptors (R), and ligands (L).
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(b) Histogram of intercellular interaction scores. Intercellular interaction scores of our study were reduced to cell types and cytokines
identified in the textbook (light grey). Intercellular interaction scores covered by the textbook are displayed in (dark grey).

(c) Intercellular interaction score cutoff (Online Methods).

(d) Percentage of ingoing connections for cytokines in our study compared to ‘Textbook’ and ‘ImmuneXpresso’.

(e) Understudied cell types and cytokines from ingoing connections. Significantly enriched cell types and cytokines in our study
compared to ‘Textbook’ and ‘ImmuneXpresso’ were identified by Fisher's exact test with BH FDR of 5%.

(f) Resistin (RETN) secretion of B cells. B cells were stimulated with a cocktail (Goat F(ab’)2 anti-human Lambda/Kappa, F(ab')2 Goat
anti-mouse IgG Fc, CpG, anti-CD40) or LPS and anti-CD40 for 4 days and the resistin concentration in the supernatant was determined
by ELISA (n=4, cell culture replicates from 2 independent donors).

(g) T4 memory cells respond to IL-34 by total proteome changes. T4 memory cells were activated with aCD3/aCD28 for 2 days and
then cultured for another 2 days with IL-2 in the presence of different amounts of IL-34 (0, 1, 10, or 100 ng/ml). The volcano plot (top)
shows the protein differences between T4 memory cells treated with 0 ng/ml and 100 ng/ml IL-34 (significantly changed proteins are
shown in blue, Sp=1, FDR < 5%, n=4, cell culture replicates from 2 independent donors). Examples for significantly shifted Keyword
annotations (determined by 1D annotation enrichment, BH FDR < 1%) are highlighted in violet (calcium transport) or green
(immunglobulinVregion). Density distribution (bottom) show the shift of the Keyword annotations in dependency of IL-34 concentration.
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Supplementary Figure 6

Transcriptome to proteome comparison.

(a) Pearson correlation coefficients of comparable cell types from RNAseq (columns) and proteome (rows) measurements. Correlation
coefficients were computed from RPKM and iBAQ values (s.s.: steady state, act: activated).

(b) Pearson correlation coefficients (RNAseq vs Proteome) of only matched cell type pairs.

(c) Pearson correlation coefficients (Microarray vs Proteome) of protein-gene expression profiles.

(d) Comparison of WGCNA modules from microarray and proteome data. Modules were matched by Pearson correlation of their
module eigengenes and the best two correlating microarray (R) modules for each proteome (P) module are displayed and plotted
against their gene overlap. The gene overlap represents the percentage of genes in the proteome module covered by the
corresponding microarray module.

(e) Comparison of intercellular receptor-ligand connections in proteome (blue) and microarray (green) data. For this comparison the
intercellular signaling networks were constructed by only shared cell types.
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Supplementary Figure 7

Differential protein secretion patterns and intracellular signaling networks.

(a, b) Volcano plots of secreted proteins from mDCs (a) and pDCs (b). Significantly secreted proteins are colored in blue (FDR 0.05,
So=1, n=4 from independent donors). Known cytokines are labelled in green.

(c) Intracellular signaling adaptors and transcription factors (columns) for each cell type (rows) that propagate intercellular signals upon
receptor ligation by proteins secreted by mDCs and pDCs.

(d, e) Volcano plots of secreted proteins from classical monocytes activated with lipopolysaccharide (LPS) (d) or zymosan (ZYM) (e).
Significantly secreted proteins are colored in blue (FDR 0.01, So=1, n=5 from independent donors). Known cytokines are labelled in
green.

(f) Intracellular signaling adaptors and transcription factors (columns) for each cell type (rows) that propagate intercellular signals upon
receptor ligation by proteins secreted by cMO.
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Supplementary Table 1 Cell type sorting panels.

Cell type Sorting panel Antibody colors Cells
[Mio/Buffy]
T4 naive CD4*CCR7'CD45RA" anti-CD4 beads, CCR7-PB, CD45RA-PE, CD4-APC, 3.0
CD8/CD25/CD19-FITC
T4 Tem CD4"CCR7'CD45RA" anti-CD4 beads, CCR7-PB, CD45RA-PE, CD4-APC, 3.5
CD8/CD25/CD19-FITC
T4 Tem CD4*CCR7-CD45RA- anti-CD4 beads, CCR7-PB, CD45RA-PE, CD4-APC, 17
CD8/CD25/CD19-FITC
T4 Temra CD4'CCR7'CD45RA" anti-CD4 beads, CCR7-PB, CD45RA-PE, CD4-APC, 0.2
CD8/CD25/CD19-FITC
Treg naive CD4" CCR7'CD45RA" CD4beads, CD4-APC, CD25-PE, CD45RA-PC7, CCR7- 04
CD25*CDI127 BV421, CDI127-FITC
Tree MEMOTY CD4" CCR7'CD45RA" CD4beads, CD4-APC, CD25-PE, CD45RA-PC7, CCR7- 1.1
CD25'CD127 BV421, CD127-FITC
T4 Tul CD4'CCR7'CD45RA- anti-CD4 beads, CCR7-BV, CCR6-PE, CCR4-PECy7, 24
CCR6CCR4CXCR3* CXCR3-APC, CD45RA-PECy5, CD8/CD25-FITC
T4 T2 CD4*CCR7'CD45RA" anti-CD4 beads, CCR7-BV, CCR6-PE, CCR4-PECy7, 1.5
CCR6CCR4'CXCR3” CXCR3-APC. CD45RA-PECy5. CD8/CD25-FITC
T4 Tyl? CD4'CCR7'CD45RA" anti-CD4 beads, CCR7-BV. CCR6-PE, CCR4-PECy7. 1.4
CCR6"CCR4"CXCR3" CXCR3-APC. CD45RA-PECy3, CD8/CD25-FITC
T8 naive CD8*CCR7'CD45RA* CDS8 beads, CD8-APC. CCR7-PB, CD45RA-PE, 245
CD25/CD4-FITC
T8 Tem CD8*CCR7'CD45RA" CD8 beads. CD8-APC. CCR7-PB. CD45RA-PE, 20l
CD25/CD4-FITC
T8 Tem CD8'CCR7-CD45RA" CD8 beads, CD8-APC, CCR7-PB, CD45RA-PE, 23
CD25/CD4-FITC
T8 Temra CD8"CCR7CD45RA™ CD8 beads, CD8-APC, CCR7-PB, CD45RA-PE, 1.6
CD25/CD4-FITC
NK CD356bright CD56briECD 16 CD56-PE, anti-PE beads, CD16-FITC, CD3-PC3 1.6
NK CD56%m CD56%"CD16* CD56-PE, anti-PE beads, CD16-FITC, CD3-PC5 23
B naive CD19"MitroTrackerGreen~  anti-CD19 beads, MitoTrackerGreen, CD38-APC, CD27- 2.4
CD27- PE. CD19-PECy7
B memory CD19*MitroTrackerGreen*  anti-CD19 beads, MitoTrackerGreen, CD38-APC, CD27- 2.0
CD27* CD38" PE. CD19-PECy7
B plasma CD19*MitroTrackerGreen®  anti-CD19 beads, MitoTrackerGreen, CD38-APC, CD27- 0.03
CD27'CD38' PE. CD19-PECy7
MO classical CD14'CDI16" negative selection kit (19058, Stem Cell), CD14-APC, 833
CD16-FITC
MO non- CD149mCD16* negative selection kit (19058, Stem Cell), CD14-APC, 1.1
classical CD16-FITC
MO CDI14*CD16" negative selection kit (19058, Stem Cell), CD14-APC, 0.5
intermediate CD16-FITC
DCCDlc CD1c'CD304°CD19-CD14-  CD304-PE. CD1¢-FITC. anti-PE/anti-FITC beads. 0.3
CD3" CD14/CD19/CD3-PC5
DC CD304 CDI1c’CD304*'CD19CD14- CD304-PE. CD1c-FITC, anti-PE/anti-FITC beads. T
CD3" CD14/CD19/CD3-PC5
Neutrophils SSChs'CD16'CD 123" SSChigh, CD16-FITC, CD62L-PE-Cy5(PC5), CD123- 4.0
CD62L" biotin/strep-PB
Eosinophils SSChihCD164mCD123* SSChigh, CD16-FITC, CD62L-PE-Cy5(PC5), CD123- 0.8
biotin/strcp-PB
Basophil SSChishCD203c* 97A6-PE. PE-beads 1.0
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Supplementary Table 2 [ vitro activation conditions

Cell tvpe Stimulus Concentration Time [h]
T4 and T8 cell activation  anit-CD3 and anti-CD28, plate bound 5 pg/ml and 1pg/ml 48
T4 and T8 cell expansion  IL-2 500 U/ml 48
NK cells CD2 and CD355 coated beads, IL-2 1 bead per 2 cells, 500 U/ml 96
B cells Goat F(ab")2 anti-human (1) Lambda and (1) and (2) 2pg/ml. (3) 3pg/ml, 96

(2) Kappa, (4) 100 ng/ml, (5) 6pg/ml

(3) F(ab™)2 Goat anti-mouse 1gG Fc, (4)

CpG. (5) anti-CD40
Monocytes LPS 100 ng/ml 12
Monocytes ZYM 2 pg/ml 12
Dendritic cells LPS and R848 100 ng/ml and 2.5 pg/ml 12
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Supplementary Table 12 Antibodies used for cell sorting.

Name Conjugate/Tag Clone Cat# Company

anti-hCCR7 150503 MAB197 R&D Systems

CCR4 PE Cy7 1G1 557864 BD

CCR6 PE 11A9 559562 BD

CCR7 BV421 G043H7 353208 BioLcgend

CD123 Biotin 9F5 33332D BD

CD127 FITC HIL-7R-M21 560549 BD

CD14 APC RMO52 IM2580 Beckman Coulter

CD14 PC5 RMO52 A07765 Beckman Coulter

CD16 FITC 3G8 IMO0814U Beckman Coulter

CD19 FITC HIB19 555412 BD

CD19 PE Cy7 8J25C1 25-0198-42 eBioscience

CD19 PC5 J3-119 A07771 Beckman Coulter

CDlc FITC ADS-8E7 130-090-507 Miltenyi

CD203c PE 97A6 IM3575 Beckman Coulter

CD25 FITC B1.49.9 IM0478U Beckman Coulter

CD25 PC5 B1.49.9 M2646 Beckman Coulter

CD25 PE M-A251 555432 BD

CD27 PE L128 340425 BD

CD3 PC35 UCHT1 A07749 Beckman Coulter

CD304 PE AD3-17F6 130-090-533 Miltenyi

CD38 APC HIT2 555462 BD

CD4 FITC 13B8.2 A07750 Beckman Coulter

CD4 APC 13B8.2 M2468 Beckman Coulter

CD45RA PE ALBI11 IMI1834U Beckman Coulter

CD45RA QD655 MEM-36 Q10069 Invitrogen

CD45RA PE Cy5 HI100 555490 BD

CD45RA PE Cy7 HI100 25-0458-41 eBioscience

CD36 PE N901 A07788 Beckman Coulter

CD62L PC5 DREGS56 IM2655U Beckman Coulter

CD8 APC B9.11 IM2469 Beckman Coulter

CD8 FITC B9.11 A07756 Beckman Coulter

CXCR3 APC 1C6 550967 BD

IgG2a Biolin Biotin 1080-08 SouthernBiotech

Mito Tracker Green FM M-7514 Invitrogen

Streptavidin PB S11222 Invitrogen
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Supplementary Note 1

Supplementary table descriptions

Supplementary Table 3: Quantitative proteomics data of total proteomes.
List of protein identifications, including Intensity, iBAQ, LFQ, and imputed values as well as
annotations, module assignment, unique peptides, sequence coverage, protein score, gene names,

rotein names, and protein ids.

Column Name Description

1 Majority Protcin IDs UniProt identificr scparated by scmicolon.

2 Gene names Gene names

3 Protein names Copy number for each measurement
(CopyNumber CelltypeX ReplicateX steady-state/activated).

4 WGCNA module Module numbers of the WGCNA

5 Signal catcgory Proteins assigned to the following catcgorics: Transcription factor
(T), Adaptor (A), Receptor (R), Ligand (L)

6-180 Intensity values Intensity values are summed up peptide intensities for each
protein.

181-355 IBAQ value iBAQ (intensity based absolute quantification); Intensity valucs
are normalized by the number of theoretically observable peptides
of the protein.

356-530 LFQ intensity values LFQ (label-free quantification) intensily values.

531-705 LFQ intensity imputed LFQ (label-free quantification) intensity values. Missing values
are imputed. For more information see supplementary information
section ‘Data filtering, imputation of missing values and copy
number estimation”.

706 GOBP name Gene Ontology Biological Process

707 GOMF name Gene Ontology Molecular Function

708 GOCC name Gene Ontology Cellular Component

709 KEGG name Kyoto Encyclopedia of Genes and Genomes

710 Keywords Uniprot Keywords

711 Unique peptides The total number of unique peptides associated with the
protein group (i.e. these peptides are not shared with another
prolein group).

712 Sequence coverage [%] Percentage of the sequence that is covered by the identified
peptides of the best protein sequence contained in the protein
group.

713 Score Andromeda score for the best identified among the associated
MS/MS spectra.

Supplementary Table 4: Annotation enrichment analysis of principal components.
1D annotation enrichment analysis of the principal components shown in Fig. 2.

Column Name Description

1 Principal component Number of principal component

2 Reference Reference annotation (e.g. KEGG)

3 Annotation Specific annotation name (c.g. DNA cxcision)

4 Size Number of proteins with this annotation

5 Score Normalized score from -1 to 1 indicating the shift of the annotation
along the distribution axis.

6 p-value P-value

7 BH adj. p-value Benjamini-Hochberg corrected p-valuc

Nature Immunology: doi:10.1038/ni.3693
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Supplementary Table 5: Annotation enrichment analysis of lineage signature genes.

Column Name Description

1 Cell lincage Cell lincage

2 Reference Reference annotation (¢.g. KEGG)

3 Annotation Specific annotation name (e.g. DNA excision)

4 Total size Total number of proteins in the data set

5 Sclection size Top 100 proteins sig. cell lincage specific protcins
6 Category size Number of proteins with this annotation

i Intersection size Number of proteins in this module with this annotation
8 Enrichment Fisher enrichment

9 p-value P-value

10 BH adj. p-valuc Benjamini-Hochberg corrected p-value

Supplementary Table 6: Protein ¢

opy numbers of immune cell types.

Column Name Description

1 Majority Protein IDs UniProt identifier separated by semicolon.
2 Gene names Gene names

3-169 CopyNumber Copy number for each measurement

(CopyNumber_CelltypeX ReplicateX_steady-state/activated).

Supplementary Table 7: Annotation enrichment analysis of WGCNA modules.

Column Name Description

1 WGCNA module Module numbers of the WGCNA

2 Reference Reference annotation (e.g. KEGG)

3 Annotation Specific annotation name (¢.g. DNA ¢xcision)
4 Total size Total number of proteins in the data set

5 Selection size Number of proteins in this module

6 Category size Number of proteins with this annotation

7 Intersection size Number of proteins in this module with this annotation
8 Enrichment Fisher enrichment

9 p-value P-value

10 BH adj. p-value Benjamini-Hochberg corrected p-value

Supplementary Table 8: RNAseq

data of immune cell types.

Column Name Description

1 Gene names Gene names

2-9 RPKM valucs RPKM valucs of diffcrent immunc cells

10 Gene id Gene id

11 Transcripl(Prolein) ids Transcript(Protein) ids

12 Ensembl Gene ID Ensembl Gene ID

13 UniProt/SwissProt UniProt/SwissProt Accession
Accession

Supplementary Table 9: Annotation enrichement analysis of WGCNA modules microarray vs

proteome,
Column Name Description
i Datasct Either Microarray or protcome
2 WGCNA module Module numbers of the WGCNA
3 Reference Reference annotation (e.g. KEGG)
4 Annotation Specific annotation name (e.g. DNA excision)
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) Enrichment Fisher enrichment

6 p-value P-valuc

T BH adj. p-value Benjamini-Hochberg corrected p-value

8 Total size Tolal number of proteins in the data set

9 Selection size Number of proteins in this module

10 Category size Number of proteins with this annotation

11 Intersection size Number of protcins in this module with this annotation

Supplementary Table 10: Quantitative proteomics data of dendritic cell secreteomes.

Colimn Name Description

1 Majority Protein IDs UniProt identifier separated by semicolon.

2 Gene names Gene names

3 Protcin names Copy number for cach mecasurcment
(CopyNumber CelltypeX RcplicateX stcady-statc/activated).

4-19 iBAQ value iBAQ (intensity based absolute quantification): Intensity values
are normalized by the number of theoretically observable peplides
of the protein.

20-35 LFQ intensity values LFQ (label-free quantification) intensity values.

36 GOBP name Gene Ontology Biological Process

37 GOMF namc Gene Ontology Molecular Function

38 GOCC name Gene Ontology Cellular Component

39 KEGG name Kyoto Encyclopedia of Genes and Genomes

40 Keywords Uniprot Keywords

41 Signal category Proteins assigned to the following categorics: Transcription factor

(T). Adaptor (A), Receptor (R), Ligand (L)

Supplementary Table 11: Quantitative proteomics data of classical monocyte secreteomes.

Column Name Description

1 Majority Protein IDs UniProt identifier separated by semicolon.

2 Gene names Gene names

3 Protcin names Copy number for cach measurement
(CopyNumber_CelltypeX_ReplicateX_steady-state/activated).

4-18 iBAQ value iBAQ (intensily based absolute quantification): Intensity values
are normalized by the number of theoretically observable peptides
of the profein.

19-33 LFQ intensity values LFQ (label-free quantification) intensity values.

34 GOBP name Gene Ontology Biological Process

35 GOMF name Gene Ontology Molecular Function

36 GOCC name Gene Ontology Cellular Component

37 KEGG name Kyolo Encyclopedia of Genes and Genomes

38 Keywords Uniprot Keywords

39 Signal category Proteins assigned to the following categorics: Transcription factor
(T). Adaptor (A). Receptor (R), Ligand (L)

Nature Immunology: doi:10.1038/ni.3693
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2.2  L-arginine modulates T cell metabolism and

enhances survival and anti-tumor activity

2.2.1  Summary

In light of the successful application of T cell-mediated anticancer therapies, the metabolic
profiles of the heterogeneous T cell subpopulations have been linked to linage stability and
functionality?’®. For instance, moderate glycolysis with increased usage of mitochondrial
oxidative metabolism promotes cell longevity and supports effective T cell responses against
pathogens and tumors, whereas T cells with heavy glycolytic metabolism show reduced
longevity and decreased antitumor response?’®?*. In addition, nutrient composition can
greatly influence the behavior of immune cells. In the tumor microenvironment, myeloid-
derived suppressor cells can impair T cell responsiveness by degrading L-arginine?®!. In
general, arginine metabolism is important for protein synthesis and produces precursors for
many metabolites, such as polyamines and nitric oxide, which have strong
immunomodulatory properties®?.

In this study, the metabolic and proteomic changes of activated naive CD4 T cells over a
period of 4 days was investigated with a multi-omic approach. The measurements showed that
after T cell activation the intracellular L-arginine levels decreased while other downstream
metabolites like ornithine were increased. When adding L-arginine to the culture medium the
metabolic regulation of T cells changed, indicated by decreased expression of glycolytic
enzymes and increased levels of TCA and serine biosynthesis pathway proteins (Figure 7).
This metabolic shift was further observed through reduced glucose consumption rate and
increased mitochondrial oxidative phosphorylation. In addition, the effector characteristics of
T cells in L-arginine rich medium changed indicated by decreased INFg secretion and
elevated expression of the lymph node homing factor receptor CCR7. Most striking, T cells in
L-arginine rich medium showed increased survival rate in an IL-2 withdraw assay.
Mechanistically, these changes were in part mediated by the nuclear proteins, BAZ1B, PSIP1,
and TSN, as their deletion abrogated some of the arginine induced effects. These proteins
could function as arginine sensors through conformational changes, however their functional
role remained unclear. In a translational approach, tumor control and overall survival could be
improved by transferring T cells cultured in medium supplemented with additional L-

arginine. Moreover, oral administration of L-arginine enhanced T cell-mediated antitumor
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activity. These findings indicated that L-arginine plays a pivotal role in T cell regulation and
when available in access, promotes a central memory phenotype with increases T cell
persistence. These characteristics showed beneficial in adoptive T cell therapy approaches.
Together this study highlights the importance of metabolic pathways and illustrates that

boosting T cell metabolism presents a great opportunity to increase effectiveness of antitumor

therapies.
.
Glucose
Arginine g CPQQ
Uptake Terminal effector differentiation
a%c:_ s \ » Short lifespan
o S « Poor sustained function

» Limited self-renewal
* Poor anti-tumor efficacy

Mitochondrial | ™
oxidation 7

Memory phenotype differentiation
» Persistence
* Survival

Figure 7. L-arginine promotes memory T cell formation and antitumor activity. Elevated arginine levels in

T cells inhibit glucose uptake and promote mitochondrial oxidative metabolism. This metabolic change shifts the

T cell differentiation towards a memory phenotype with higher survival and anti-tumor activity?*.

2.2.2  Contribution

In this collaborative study with the research group of Prof. Lanzavecchia, I performed the
time series proteomic measurements and analysis of human CD4 T cells. I contributed to the
analysis workflow with R programming scripts, e.g. enrichment analysis, protein copy

number estimation, and differential expression analysis. In particular, Figure 1b, 2c,
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Supplementary Figure 1a-d, and proteomic method sections. In addition, I performed
measurements of proteomes of mouse CD4 T cell, proteomes of CD4 T cells without arginine
and affinity purification mass spectrometry experiments which are not included in this

manuscript.

2.2.3  Publication
This work was published in the journal Cell in 2016.

L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity
Roger Geiger, Jan C Rieckmann, Tobias Wolf, Camilla Basso, Yuehan Feng, Tobias Fuhrer,

Maria Kogadeeva, Paola Picotti, Felix Meissner, Matthias Mann, Nicola Zamboni, Federica

Sallusto, Antonio Lanzavecchia

Cell. 2016 Oct 20;167(3):829-842.e13. doi: 10.1016/j.cell.2016.09.031. Epub 2016 Oct 13.
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SUMMARY

Metabolic activity is intimately linked to T cell fate
and function. Using high-resolution mass spectrom-
etry, we generated dynamic metabolome and prote-
ome profiles of human primary naive T cells following
activation. We discovered critical changes in the
arginine metabolism that led to a drop in intracellular
L-arginine concentration. Elevating L-arginine levels
induced global metabolic changes including a shift
from glycolysis to oxidative phosphorylation in acti-
vated T cells and promoted the generation of central
memory-like cells endowed with higher survival ca-
pacity and, in a mouse model, anti-tumor activity.
Proteome-wide probing of structural alterations, vali-
dated by the analysis of knockout T cell clones, iden-
tified three transcriptional regulators (BAZ1B, PSIP1,
and TSN) that sensed L-arginine levels and promoted
T cell survival. Thus, intracellular L-arginine concen-
trations directly impact the metabolic fitness and
survival capacity of T cells that are crucial for anti-
tumor responses.

INTRODUCTION

Upon antigenic stimulation, antigen-specific naive T cells prolif-
erate extensively and acquire different types of effector func-
tions. To support cell growth and proliferation, activated T cells
adapt their metabolism to ensure the generaticn of sufficient
biomass and energy (Fox et al., 2005). Unlike quiescent T cells,
which require little nutrients and mostly use oxidative phosphor-
ylation (OXPHOS) for their energy supply, activated T cells
consume large amounts of glucose, amino acids, and fatty acids
and adjust their metabolic pathways toward increased glycolytic
and glutaminolytic activity (Blagih et al., 2015; Rolf et al., 2013;
Sinclair et al., 2013; Wang et al., 2011).

At the end of the immune response, most T cells undergo
apoptosis, while a few survive as memory T cells that confer

(W) oo

long-term protection (Kaech and Cui, 2012; Sallusto et al,,
2010). T cell survival is regulated by extrinsic and intrinsic
factors. Prolonged or strong stimulation of the T cell receptor
(TCR) of CD4* and CD8" T cells promotes “fitness” by
enhancing survival and responsiveness to the homeostatic cyto-
kines IL-7 and IL-15, which in tum sustain expression of anti-
apoptotic proteins (Gett et al., 2003; Schluns and Lefrangois,
2003; Surh et al., 2006). Metabolic activity is alse critical to deter-
mine T cell fate and memory formation (Maclver et al., 2013;
Pearcs et al., 2013; Wang and Green, 2012). For instancs, tri-
glyceride synthesis is central in IL-7-mediated survival of mem-
ory CD8* T cells (Cui et al., 2015), while increased mitochondrial
capacity endows T cells with a bioenergetic advantage for
survival and recall responses (van der Windt et al., 2012). Mito-
chondrial fatty acid oxidation is reguired for the generation of
memory T cells (Pearce et al., 2009), while the mammalian target
of rapamycin (MTOR), a central regulator of cell metabelism, has
been shown to control T cell memory formation (Araki et al.,
2009).

Metabolic fitness and T cell survival are particularly crucial in
anti-tumor responses because nutrients are often scarce in the
tumor microenvirenment leading to T cell dysfunction (Chang
et al., 2015; Ho et al., 2015), stress, and apoptosis (Alves et al.,
2006; Maciver et al., 2008; Siska and Rathmell, 2015). Depletion
of glucose may decrease production of interferon (IFN)-y (Chang
et al., 2013) and modulate the differentiation of regulatory T cells
(De Rosa et al., 2015). In addition, degradation of L-arginine by
myeloid-derived supprsssor cells leads to reduced expression
of the CD3¢ chain, resulting in impaired T cell responsiveness
(Bronte and Zanovello, 2005; Rodriguez et al., 2007). L-arginine
is a versatile amino acid that serves as a building block for pro-
tein synthesis and as a precursor for multiple metabolites,
including, polyamines, and nitric oxide (NO) that have strong
immunomodulatory properties (Grohmann and Bronte, 2010).

In this study, we took advantage of recent developments
in mass spectrometry (Bensimon et al.,, 2012; Meissner and
Mann, 2014; Zamboni et al., 2015) to cbtain dynamic prote-
ome and metabolome profiles of human primary naive T cells
following activation and found several changes in metabolic
pathways. In particular, we found that L-arginine controls

Cell 167, 829-842, October 20, 2016 © 2016 The Author(s). Published by Elsevier Inc. 829
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Metabolic and Proteomic
Profiling Reveals Distinct Changes in
L-Arginine Metabolism in Activated Hu-
man T Cells

{A) Schematic view of the experimental approach.
{B) Comparison of protein abundances be-
tween 72-hr-activated (CD3 + CD28 anti-
bodies) and freshly isolated non-activated hu-
man naive CD4" T cells. Closed circles indicate
proteins that changed significantly (FDR = 0.05,
Sg = 1). Colored dots are enzymes of the argi-
nine and proline metabolism that changed
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glycolysis and mitochondrial activity and enhances T cell survival
by interaction with transcriptional regulaters. Moreover, L-argi-
nine enhanced the generation of central memory-like T (Tcm)
cells with enhanced anti-tumor activity in a mouse model.

RESULTS

Proteomic and Metabolomic Changes following
Activation of Human Naive CD4" T Cells
Te investigate the metabolic adaptations underlying T cell acti-
vation, we analyzed the cellular proteome and metabolome of
human primary naive T cells using high-resolution mass spec-
trometry. Naive CD45RA™ CCR7* CD4™ T cells were sorted up
to >98% purity from bloed of healthy denoers (Figure S1A) and
either analyzed immediately after sorting or at different time
points following activation with antibodies to CD3 and CD28.
After cell lysis, proteins were digested and analyzed by liguid
chromatography-coupled mass spactrometry (LC-MS) (Meiss-
ner and Mann, 2014; Nagaraj et al,, 2011). In parallel, polar
metabolites were extracted from cells at each time point and
analyzed by non-targeted flow-injection metabolomics, a semi-
quantitative method that allows rapid and deep profiling of me-
tabolites, with the limitations that isobaric compounds cannot
be discriminated and of possible in-scurce degradation (Fuhrer
et al., 2011) (Figure 1A).

We identified a total of 9,718 proteins, quantified the abun-
dance of 7,816 at each time point, and estimated their absolute

830 Cell 167, 829-842, October 20, 2016
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significantly.

{C) Comparison of metabolite abundances in
72 hr-activated and freshly isolated non-activated
human naive CD4* T cells. Closed circles indi-
cate metabolites that changed significantly
{|lLeg2 fe| > 1, p < 0.01). Colored dots are me-
tabolites of the arginine and proline metabolism
that changed significantly. Similar changes were
observed when 72 hr-activated CD4™ T cells
were compared with naive CD4" T cells cultured
overnight in the absence of TCR stimulation.
See also Figure 81 and Tables S1, S2, and S3.

. .
Proline
copy numbers. Expression profiles of

T characteristic T cell proteins were in
agreement with the literature and copy
numbers of stable protein complexes
had correct ratios (Figures S1B-S1G;
Table S1). Non-targeted metabolomics
led to the identification of 429 distinct
ion species, which were putatively mapped to human metabo-
lites (Table S2).

A comparative analysis of the proteome and metabolome
of 72 hr activated and non-activated naive T cells identified
2,824 proteins whose relative expression changed significantly
(Welch-test, false discovery rate [FDR] = 0.05, Sg = 1), reflecting
the fundamental morphological and functional alterations that
T cells underge upon activation (Figure 1B; Table S3). Upregu-
lated proteins were enriched in enzymes of several metabolic
pathways, including nucleotide synthesis, folate-mediated one-
carbon metabolism, as well as arginine and proline metabolism.
Out of 429 metabolites, 49 increased significantly (Log2 fold
change [fc] > 1; p < 0.01), but only 14 were less abundant in acti-
vated T cells, of which three, arginine, ornithine, and N-acetylor-
nithine, belonged to the same metabelic pathway (Figure 1C).
Collectively, these data provide a comprehensive resource on
the dynamics occurring in the proteome and metabolome of
activated human primary naive CD4™ T cells.

Intracellular L-Arginine Is Rapidly Metabolized in
Activated T Cells

Based on the data obtained, we inspected the changes in the
arginine metabolism more closely. The decrease in intracsllular
arginine occurred abruptly between 24 and 48 hr after T cell acti-
vation (Figure 2A). This finding was surprising in view of the high
concentration of L-arginine in the medium (1 mM) and of the high
uptake rate of 3H—L—arginine in activated T cells, which exceeded
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the requirement for protein synthesis by more than 2-fold (Fig-

ures 2C and 2B).

To gain insights into the metabolic fate of L-arginine, we
analyzed the activation-induced changes in metabolites and
proteins of the surrounding metabolic network (Figure 2D). While
metabolites around the urea cycle were decreased, the arginine
transporter cationic amino acid transporter 1 (CAT-1) and the

13¢ Putrescine

13¢ Spermidine

13C Agmatine

3C Proline

I I Logz2 fold change

Figure 2. L-Arginine Is Rapidly Metabolized
upon Activation

{A) Intracellular abundance of L-arginine in non-
activated {non-act) and activated naive CD4~
T cells {CD3 + CD28 antibodies). Boxplot, n = 30
from three donors, each in a different color.

(B} Kinetics of ®H-L-arginine uptake during a
15-min pulse. Box plet, n = 5 from three donors.
(C) Uptake, proteome incorporation and intracel-
lular abundance of the indicated amino acids.
Barplot (left): 5 x 10* cells were activated for
4 days and consumption of amino acids from me-
dium was analyzed. Essential amino acids are in
gray; n = 4 from four donors, error bars represent
SEM. Barplot (center): proteome incorporation of
amino acids estimated from the copy numbers of
each protein. Heat map {right): intracellular amino
acid abundance relative to naive T cells over time
as determined by mass spectrometry (MS) n = 30
from three donors. Leucine and isoleucine could
not be distinguished as they have the same mass.
{D) Changes in the abundance of metabolites and
proteins of the arginine and proline metabelism
between non-activated and 72 hr-activated CD4~
T cells. Log2 fold changes of proteins and metab-
olites are color-coded. Significant changes are in
beld (FDR = 0.05, Sy = 1 for proteins: and p < 0.05
[two-tailed unpaired Student’s t test], |Log2 fc| > 1
for metabolites). Black dots are metabolites that
were not detected by MS. Only enzymes that were
detected by MS are shown.

(E) Metabolic tracing of L-arginine. Ninety-six hour-
activated T cells were pulsed with '®Cg-L-arginine
and the metabolic fate was analyzed by LC-MS/
MS at different time points. AFL, apparent frac-
tional labeling; n = 4 from two donors. '3C Citrulline
was not detected. Error bars represent SEM.

For {A) and (B}, upper whisker = min{max(x), Q_3 +
1.5 " IQR) and lower whisker = max{min(. Q_1 -
1.5 *1QR).

enzymes arginase 2 (ARG2), ornithine
aminotransferase (OAT), and spermidine
synthase (SRM), which are required for
the conversion of L-arginine into ornithine,
L-proline, and spermidine, respectively,
were upregulated. These findings suggest
that L-arginine was rapidly converted into
downstream metabolites. Indeed, oGk
arginine tracing experiments showed an
immediate and strong accumulation of
'3C in omithine, putrescine, agmatine,
and, to a lower extent, in spermidine
and proline (Figure 2E). Addition of the

arginase inhibitor norNOHA did not affect the conversion of
L-arginine into agmatine, but markedly reduced the conversion
into ornithine, putrescine, spermidine, and proline (Figure 2E).
This indicated that in T cells L-arginine is mainly catabolized
threugh arginase, likely through mitochondrial ARG2, because
the cytosolic enzyme arginase 1 (ARG1) was not detected in

T cells.

Cell 167, 820842, October 20, 2016 831
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Collectively, these data show that L-arginine is avidly taken up
by activated T cells in amounts exceeding the requirements for
protein synthesis and can be rapidly converted by metabolic
enzymes into downstream metabolites.

Elevated L-Arginine Levels Regulate Several Metabolic
Pathways

Because activated T cells showed a drop in their intracellular
arginine concentration—while all other amino acids either re-
mained steady or increased—we assessed the consequences
of increasing L-arginine availability on metabolism. We first per-
formed a kinetic metabolome analysis of naive T cslls activated
in standard medium (containing 1 mM L-arginine) orin mediumin
which the concentration of L-arginine was increased 4-fold.
Intracellular arginine and ornithine levels were increased 1.5- to
2.5-fold at all time points in T cells activated in L-arginine-sup-
plemented medium as compared te controls (Figure 3A), while
nitric oxide, which is generated from L-arginine by nitric oxide
synthase (NOS), did not increase (Figure S2A). Notably, at late
time points after activation (72—-120 hr), several other mstabo-
lites, including intermediates of the urea cycle, nucleotides,
sugar derivatives, and amino acids were increased (Figure 3A).
In contrast, an increased availability of L-arginine’s downstream
metabolites L-ornithine or L-citrulline (added to the culture
medium at the same concentration as L-arginine) only had minor
effects on metabolism (Figures 3A and S2B). These findings sug-
gest that L-arginine directly regulates several metabolic path-
ways in activated T cells.

A proteome analysis showed that the expression of 202 out of
7,243 proteins was significantly different in T cells activated in
L-arginine-supplemented medium (Table S4, ANOVA, FDR =
0.005, Sy = 5, |Log2 fc| > 1), indicating that T cells were reprog-
rammed under the influence of increased intracellular L-arginine
levels. In particular, PC, PCK2, and FBP1, which promote glucc-
neogenesis, were increased, while glucose transporters and
glycolytic enzymes were decreased (Figure 3B). Indeed, these
T cells consumed less glucose (Figure 3C), indicating that the
glycolytic flux was diminished by L-arginine supplementation.
Moreover, the serine biosynthesis pathway that branches from
glycolysis and several intermediates of the mitochondrial tricar-
boxylic acid (TCA) cycle were upregulated (Figure 3B). Consis-
tent with the fact that the TCA cycle fuels OXPHOS, L-arginine
supplementation increased oxygen consumption 1.7-fold and
augmented the mitochondrial spare respiratory capacity (SRC)

(Figures 3D-3F). Collectively, these data demonstrate that an
increase in intracellular L-arginine levels skewed the meta-
bolism in activated T cells from glycolysis toward mitochondrial
OXPHOS.

L-Arginine Influences Human T Cell Proliferation,
Differentiation, and Survival

Naive T cells start to divide after an initial period of growth that
lasts 24-40 hr. Subsequently, they divide rapidly and differen-
tiate into effector T cells that produce inflammatory cytokines,
such as IFN-vy, and inte memory T cells that survive through ho-
meostatic mechanisms (Schluns and Lefrangois, 2003; Surh
et al., 2006). We therefore asked whether elevated intracellular
L-arginine concentrations affect the fate of activated T cells.
Naive CD4* T cells activated in L-arginine-supplemented me-
dium showed a slightly delayed onset of proliferation, but once
proliferation started, doubling rates were comparable to controls
(Figures S3A and S3B). The onset of proliferation was not
affected by D-arginine or by additicn of L-lysine (a competitive
inhibitor of L-arginine uptake; Figure S3A) to L-arginine-supple-
mented cultures (Figure S3C). Importantly, T cells activated in
L-arginine-supplemented medium secreted much less IFN-v
than T cells cultured in control medium (Figure 4A). However,
when these cells were re-activated, they were able to secrete
IFN-¥ in comparable amounts (Figure 4B), indicating that
T cells primed in the presence of high L-arginine concentrations
retained the capacity to differentiate into Th1 effector cells upon
secondary stimulation. Because low production of cytokines is
characteristic of CCR7* lymph node-homing Tem cells (Sallusto
et al., 1999), we analyzed the expression of CCR7 on day 10 after
activation and found a higher fraction of proliferating CCR7*
T cells in L-arginine supplemented cultures than in control cul-
tures (Figure 4C). Collectively, these data indicate that increased
intracellular L-arginine levels limit T cell differentiation and main-
tain cells in a Tem-like state.

To test whether L-arginine affects T cell survival, we activated
hurman naive CD4* and CD8* T cells, expanded them in the pres-
ence of IL-2 or IL-15, and measured their viability upon cytokine
withdrawal. Strikingly, L-arginine supplementation significantly
increased the survival of activated CD4" and CD8" T cells
when cultured in the absence of exogenous cytokines (Figures
4D and 4E). L-arginine was most effective when added during
the first 48 hr following T cell activation (Figure 4F). Conversely,
L-lysine or D-arginine, which both inhibit L-arginine uptake

Figure 3. L-Arginine Globally Influences Metabolism of Activated Human T Cells

(A) Human naive CD4™ T cells were activated in control medium {Ctrl) or in medium supplemented with 3 mM L-arginine (L-Arg) or 3 mM L-ornithine (L-Orn) and
harvested at different time points. The heat map shows the difference between the abundance of metabaolites in T cells cultured in L-Arg or L-Orn-medium and
controls. Shown are only metabolites with a Log2 fc > 1 and an adjusted p value of < 0.05; n = 12 from two doners.

(B) Differential analysis of the glycolytic pathway between naive CD4™ T cells cultured in L-Arg medium or Ctrl medium, 96 hr after activation. Log2 fold changes
of proteins and metabolites are color-coded. Proteins or metabolites whose abundance changed significantly are in bold {for proteins FDR = 0.005, Sy = 5,
|Log2 fc| > 1 and for metabolites p < 0.05 (Student’s ttest), |Log2 fe| > 1). 3-P-glycerate and 2-P-glycerate could not be distinguished as they have the same mass.
(C) Seventy-two hour-activated T cells were plated in fresh medium and glucose consumption was determined enzymatically after 24 hr; n = 9 from three donors.
Error bars represent SEM.

(D) Seahorse experiment performed with activated {96 hr) T cells from one donor. Oligemycin was injected after 56 min, FCCP after 96 min, and antimycin {to
inhibit the respiratory chain} after 136 min. Data are representative of five independent experiments with different donors; n = 4. Error bars represent SEM.

(E and F) Relative oxygen consumption rate (OCR) (E) and relative spare respiratory capacity (SRC) {F) of activated {96 hr) T cells; n = 12 from three donors. “***p <
0.0001 {Student’s t test). Error bars represent SEM.

See also Figure 52 and Table S4.
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Figure 4. L-Arginine Limits Human T Cell
Differentiation and Endows Cells with a
High Survival Capacity In Vitro

{A and B) Human naive CD4* T cells were activated
in L-Arg medium or Ctrl medium inthe presence of
10 ng/mL IL-12. IFN-y was quantified in culture
supernatants after 5 days (A) or after re-activation
for 5 hr with PMA/ionomycin {B); n = 9 from three
donors.

{C) Naive CD4™ T cells were labeled with GellTrace
Viclet (CTV) and activated in L-Arg medium or
Ctrl medium. On day 10, proliferating CTV° T cells
were stained with an antibody to CCR7 and
analyzed by flow cytometry;, n = 15 from three
donors.

{D) Naive CD4" T cells were activated for 5 days in
L-Arg or Ctrl medium in the presence of exoge-
nous IL-2, washed extensively, and cultured in Ctrl
medium in the absence of IL-2. Shown is the per-
centage of living T cells as determined by Annexin
V staining at different time points after IL-2 with-
drawal. One representative experiment out of
three performed.

{E) Same experiment as in {D). Shown is the dif-
ference of living activated CD4* and CD8™ T cells
5 days after withdrawal of IL-2; n = 46, from 16
donors {CD4* T cells); n = 13, from four donors
(CD8* T cells).

{F) Difference of living activated CD4™ T cells
5 days after IL-2 withdrawal. Naive CD4* T cells
were activated and L-Arg {3 mM) was added to the
culture medium at the indicated time points;n=12
from four donars.

{G) Difference of living activated CD4™ T cells
5 days after IL-2 withdrawal. Naive CD4* T cells
were activated in Ctrl medium or medium supple-
mented with the indicated metabolites (3 mM,
except for spermidine 0.1 mM). Ctrl, n=21; D-Arg,
n=9: L-lysine, n = 18; L-Arg-HCI, n = 10; L-Arg +
L-Lys, n = 12; L-Om, n = 20; L-Cit, L-Pro, n = 12;
urea, creatine, agmatine, n = 6; putrescine, n = 18;
spermidine, n = 8, from at least three donors.

{H) Difference of living activated CD4™ T cells
5 days after IL-2 withdrawal. Naive CD4* T cells
were activated in the presence or absence of
nitric oxide synthase inhibitors dimethylarginine
{DiMeArg) or L-NG-nitroarginine methyl ester
{L-NAME}, both used at 1 mM. Ctrl and L-Arg,
n = 26; DiMeArg and L-NAME, n = 16; DIMeArg +
L-Arg and L-NAME + L-Arg, n = 12, from at least
three donors.

{l) Difference of living activated CD4™ T cells 5 days
after IL-2 withdrawal. Naive CD4* T cells were
activated in absence (Ctrl) or presence of
the arginase inhibitors N*-Hydroxy-nor-L-arginine
(norNOHA, 300 uM) or S-(2-boronocethyl)-L-
cysteine {BEC, 300 uM); n = 21, from seven
donors.

{J) Same as in {l) but cultures were performed in
medium containing 150 pM L-arginine.

{K) Effect of nortNOHA and BEC on proliferation of
CTV-labeled naive T cells measured 72 hr after
activation. *p < 0.05, *p < 0.01, **p < 0.001,
' < 0.0001 {Student’s 1 test).

{A—J) Error bars represent SEM throughout.

See also Figures S3 and S4.
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Figure 5. Increased Intracellular L-Arginine
* Levels Endow Mouse T Gells with a High
o Survival Capacity In Vitro and In Vivo
(A) BALB/c CD90.1* CD4* TCR transgenic T cells
specific for the influenza HA 15 119 peptide were
adoptively transferred into CD90.2" host mice that
were then immunized subcutaneously {s.c.) with
HA+19-119 in complete Freund’s adjuvant (CFA).
Mice were fed with L-arginine-HCI {1.5 mg/g body
weight) or PBS, administrated daily starting 1 day
before immunization. Fifteen days later, the
amount of CD44" CDS0.1* CD4* TCR transgenic

o

CD80.1* CD4* CD44N T cells (x107)

T cells in draining lymph nodes was measured by
fluorescence-activated cell sorting (FACS) anal-
ysis; n =9 from two independent experiments

g

H2ZKb/OVA* CD8* CD44M T cells (x10%)

&
(B and C) In vitro T cell survival experiment with
C57BL/6 wild-type (WT) or Arg2 ’ T cells. Naive
CD62L" CD44° CD4* T cells and CD8* T cells
were activated for 4 days in L-Arg or Gtrl medium

in the absence or presence of the arginase inhibitor norNOHA {500 uM). On day 2 exogenous |L-2 was added to the cultures, on day 4 cells were washed
extensively and cultured in medium without IL-2. Shown is the difference in the percentage of living CD4™ {B) and CD8" (C) T cells relative to WT T cells as
determined by Annexin V staining 2 days after IL-2 withdrawal. WT, n = 6-19; WT norNOHA, n = 6-8; Arg2™"", n = 4-6; Arg2”~ norNOHA, n = 4.

(D) Equal numbers of CD45.1* WT and CD45.2% CD90.2* Arg2™ naive CD8™ T cells were transferred into GD45.2* CDY0.1* host mice. Mice were immunized with
the OVAss7 2s4 peptide in CFA. Fifteen days afterimmunization, the amount of OVAss7 »s4-specific CD44™ CD8* T cells was measured in draining lymph nodes by
flow cytometry using OVAss7_254/H-2Kb multimers; n = 4. One representative experiment out of two performed. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

(Student’s t test),
Error bars represent SEM throughout.
See also Figure S5,

(Figure S3C), decreased T cell survival significantly (Figure 4G),
indicating that reduced availability of intracellular L-arginine
negatively affects T cell survival. L-arginine’s downstream
metabolites ornithine, citrulline, proline, urea, and creatine, as
well as nitric oxide, had no effect, while agmatine, putrescine,
or spermidine decreased T cell survival (Figure 4G and 4H).
L-arginine-HCI enhanced T cell survival to a similar extent
than free base L-arginine, ruling out a possible influence of
pH. The increased T cell survival induced by elevated intracel-
lular L-arginine concentration was independent of mTOR
signaling (Araki et al., 2009), based on the finding that L-argi-
nine supplementaticn did not change phosphorylation levels
of two targets of mTOR (p70 S6K1 and 4E-BP) and inhibition
of mTOR by rapamycin, although enhancing T cell survival,
affected metabolism in an entirely different way than L-arginine
(Figures S4A-S4D).

To further support the notion that L-arginine regulates T cell
survival, we inhibited arginase (that converts L-arginine into
L-omnithine) with norNOHA or BEG, which increase intracellular
L-arginine levels (Monticelli et al., 2018). Inhibition of arginase
significantly increased the survival capacity of activated CD4*
T cells, even in medium containing physiological levels of L-argi-
nine (150 uM) (Figures 41 and 4J). Inhibition of arginase did not
affect proliteration (Figure 4K), indicating that polyamines can
be synthesized from other sources than L-arginine, i.e., from
L-glutamate (Wang et al., 2011), a finding that is consistent
with the experiments showing that polyamine synthesis only
partially depends on L-arginine (Figure 2E).

Collectively, these data indicate that elevated intracellular
L-arginine levels directly induced metabolic changes and
longevity of human CD4* and CD8* T cells, independently of
mTOR signaling or downstream metabolites.

L-Arginine Influences Mouse T Cell Survival In Vivo

To address the impact of changes in intracellular L-arginine
levels in vive, we performed experiments in mice. Naive TCR
transgenic CD4" T cells specific for a hemagglutinin peptide
(HA110-110) were adoptively transferred into BALB/¢ mice that
received daily supplements of L-arginine (1.5 mg/g body weight)
or PBS as a control. This amount of arginine deubled the daily
dietary intake present in chow. Mice were immunized with
HA;1¢ 119 in CFA and the amount of transgenic T cells in draining
lymph nodes was measured 15 days later. Three times more
CD44" CD4* TCR transgenic T cells were recovered in mice
fed with L-arginine compared to control mice (Figure 5A). In
control experiments, we found that 30 min after oral administra-
tion, L-arginine levels in the serum increased from ~160 uM
to 700 uM (Figure S5A) and intracellular L-arginine levels of
CD44"-activated T cells increased ~2-fold (Figure $5B).

We then analyzed CD4* and CD8* T cells from Arg2-deficient
mice. When compared to wild-type T cells, ArgZ”’ T cells
showed 20% higher baseline intracellular L-arginine levels (Fig-
ure S5C) and when stimulated in vitro with antibodies to CD3
and CD28, they survived significantly lenger than wild-type
T cells after IL-2 withdrawal (Figures 5B and 5C). Moreover, acti-
vation in the presence of the arginase inhibitor norNOHA, while
increasing the survival of wild-type T cells, did not affect survival
of Arg2™" T cells (Figures 5B and 5C), indicating that in mouse
T cells L-arginine degradation occurred mainly through ARG2.
Finally, equal numbers of congenically marked wild-type and
Arg2™~ CD8" T cells were co-transferred into wild-type mice
that were immunized with the ovalbumin-peptide SIINFEKL
(OVA,s, 2e4) in CFA. Fifteen days afterimmunization, the number
of MHC- H-2K® haplotype (Kb)-restricted OVAgs; ses-specific
CD44" CD8" T cells was measured in lymph nodes by multimer
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Figure 6. BAZ1B, PSIP1, and TSN Mediate the L-Arginine-Dependent Reprogramming of T Cells toward Increased Survival Capacity

(A) Scheme of the limited proteolysis workflow.

(B) Proteins that experience astructural change in response to 1 mM L-arginine but not to 1 mM D-arginine or L-omithine. Transcriptional regulators are in orange,
proteins are grouped according to their functions. Known interactions are indicated based on hitp://string-cb.org/ and htta://www._genemania.org/.

(C) Survival experiment with human CD4" T cell clenes devoid of the indicated proteins. Control {Ctrl), n = 39; Cas9-transduced control (Cas9 Ctrl),
n = 45; BAZ1B-KO, PSIP1-KO, and PTPN6-KO, n = 46, n = 9, and n = 29, respectively. Each T cell clone was analyzed in triplicate. Bars represent the
mean + SEM.

(D) Same as in (C). Cas9 Ctrl, n = 20; TSN-KO and B2M-KOQ, n = 23 and n = 3, respectively.

(B) Percentage of living cells after IL-2 withdrawal of T cells cultured in Ctrl medium. Ctrl, n = 39; Cas9 Ctrl, n = 45; BAZ1B-KO, PSIP1-KQO, and TSN-KO, n = 46,
n=29, and n = 29, respectively.

{fegend continued on next page)
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staining. As shown in Figure 5D, OVA-specific Arg2”™ T cells
were more numerous than OVA-specific wild-type T cells. Taken
together, these findings provide evidence that intracellular
L-arginine concentrations, which can be elevated by dietary
supplementation, ¢an increase the survival capacity of antigen-
activated T cells in vivo.

Global Analysis of Structural Changes ldentifies
Putative L-Arginine Sensors

To elucidate the mechanism by which L-arginine promotes
T cell survival, we first examined the list of differentially ex-
pressed proteins (Table S4) and found among the top hits Sir-
tuin-1, a histone deacetylase, which is known to increase the
lifespan of different organisms (Tissenbaum and Guarente,
2001). However, a role for Sirtuin-1 was excluded based on
the findings that human naive T cells activated in the presence
of the Sirtuin-1 inhibitor Ex-527 and Sirtuin-1-deficient T cells
generated using the CRISPR/Cas9 technology displayed a
L-arginine-mediated increase in survival comparable to con-
trols (Figure S6).

Given that L-arginine directly promotes T cell survival, we set
out to identify putative protein interactors that may be modified
by binding of L-arginine and initiate the pro-survival program.
For this, we probed structural changes across the T cell prote-
ome that occur in response to L-arginine following a recently
developed workflow (Feng et al., 2014) (Figure 8A). T cells
were homogenized and incubated in the absence or presence
of 1 mM L-arginine, D-arginine, or L-ornithine. Subsequently,
samples were subjected to limited proteolysis (LiP) with protsin-
ase K, which preferentially cleaves flexible regions of a protein.
After denaturation and trypsin digestion, peptide mixtures were
analyzed by LC-MS. Because trypsin cleaves polypeptides
specifically after lysine or arginine, cleavages after other amino
acids were introduced by proteinase K, leading to half-tryptic
peptides. Significant changes in the abundances of half-tryptic
peptides (fc > 5, p < 0.05, > 2 peptides per protein) were used
as readout for structural changes induced by the addition of
metabolites.

Because L-arginine, but not D-arginine or L-ornithine, pro-
moted T cell survival, we searched for proteins that were exclu-
sively affected by L-arginine and were cleaved by protsinase K
at identical sites in all samples from six donors. Out of 5,856
identified proteins, only 20 candidates fulfilled these stringent
criteria (Figure 6B). These proteins differed widely in molecular
weight and abundance (Table S5), excluding a bias toward
large or abundant proteins. Most candidates were assigned
to four functional greups: mRNA splicing, DNA repair, regula-
tion of the cytoskeleton, and the ribcsome, while seven were
transcripticnal regulators (in orange in Figure 6B). Thus, our
global approach revealed several proteins with various func-
tions that structurally respond to selevated intracellular L-argi-
nine levels.

BAZ1B, PSIP1, and TSN Are Required for the L-Arginine-
Mediated Effect on T Cell Survival

To test whether selected candidates identified through the
structural analysis were involved in the L-arginine-mediated sur-
vival benefit, we generated gene knockout human T cell clones
using the CRISPR/Cas9 system that were screened for loss of
the corresponding protein by western blot or flow cytometry.
Knockout of PTPN6E (Shp-1) or B2M did not alter the effect of
L-arginine on T cell survival (Figures 6C and 6D}, while no viable
clones were obtained after knockout of XRCC6E, ACINT, and
SSB (not shown). Strikingly, knockout of the transcriptional reg-
ulators BAZ1B, PSIP1, and TSN significantly reduced L-argi-
nine’s beneficial effect on T cell survival (Figures 6C, 6D, and
6F-6J). Importantly, when cultured in contrel medium prior to
the IL-2 withdrawal, T cell clones lacking these transcripticnal
regulators proliferated and survived like controls (Figure 6E),
indicating that their viability was unaffected but they were un-
able to sense increased L-arginine levels and to induce the
pro-survival program. Taken together, these data provide evi-
dence that BAZ1B, PSIP1, and TSN interact with L-arginine
and play a role in the reprograming of T cells toward increased
survival capacity.

L-Arginine Improves Anti-tumor T Cell Response In YVivo
Because L-arginine increased the survival capacity of human
and mouse T cells and favered the formation of Tem-like cells
that have been shown to be superior than effector memory
T cells (Tem) in eradicating tumors in mouse models (Klebanoff
et al., 2005), we reasoned that increased intracellular L-arginine
levels might positively affect anti-tumor T cell responses in vivo.
We stimulated naive TCR transgenic CD8" OT-I T cells specific
for the OVAzsr 264 peptide in control or L-arginine-supple-
mented medium for 4 days and measured their survival in vitro
following IL-2 withdrawal and in vive after adoptive transfer
into lymphopenic Cd3s™ mice. Gonsistent with our previous
data, L-arginine endowed OT-I T cells with a higher survival ca-
pacity both in vitro and in vivo (Figures 7A and 7B). Moreover,
these T cells maintained a Tcm-like state and secreted less
IFN-v than controls after in vitre priming but upon reactivation,
they produced even more IFN-v than controls (Figures 7C-
7E). Remarkably, when adoptively transferred into wild-type
mice bearing B16 melanoma tumors expressing the OVA anti-
gen, L-arginine-treated OT-1 T cells mounted a superior anti-
tumor response, as measured by the reduction of tumor size
and by the increased survival of mice (Figures 7F and 7G). Naive
OT-I T cells primed in vivo by OVA + Alum immunization of
tumor-bearing mice that were fed with L-arginine were also
superior in mediating an anti-tumor response compared to
OT-I T cells primed in mice fed with PBS (Figure 7H). Collec-
tively, these data demonstrate that elevated L-arginine levels
increased the survival capacity of CD8" T cells and their anti-
tumor activity in vivo.

(F-1) Westem blots or FACS analysis of T cell clones showing deletion of target proteins. G refers to Gas9 Ctrl clones. Unspecific bands are marked with asterisk.
An antibody to tubulin (Tub) was used as a loading control. B2M-KO was verified by staining cells with an antibody against MHG-I. *p < 0.05, **p < 0.01, *'p <

0.001, ****p < 0.0001 (Student's t test).
(C-E) Error bars represent SEM throughout.
See also Figure 56 and Table S5.
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Figure 7. CD8" T Cells with Increased L-Arginine Levels Display Improved Anti-tumor Activity In Vivo

(A) Survival of activated mouse CD8* OT-l T cells {4 days) after IL-2 withdrawal. Data points represent the difference between the percentage of living T cells from
cultures performed in L-Arg medium or Ctrl medium; n = 11.

(B) CD90.1* CD45.1/2* and CD90.1* CD45.1* naive CD8” OT-1 T cells were activated for 4 days in Ctrl medium or L-Arg medium, respectively. Equal numbers of
the congenically marked activated OT-| cells were co-transferred into Cd3e™~ mouse and the number of living T cells was measured in pooled spleen and lymph
nodes at the indicated time points; n = 3 at each time point.

(C) Naive CD8™ OTl T cells were activated with CD3 + CD28 antibodies in L-Arg medium or Ctrl medium. Five days after activation, the percentage of Tem-like
cells {CD44", CD62L") was measured by flow cytometry; n = 15.

(D) Naive OT-1 CD8™ T cells were activated in L-Arg medium or Ctrl medium and IFN-y was quantified in culture supernatants after 5 days; n= 15.

(E) Same as in (D) but T cells were re-activated on day 5 day with PMA/lonomycin; n = 15.

(F and G) B16.OVA melanoma cells were injected into C57BL/6 mice and tumors were allowed to grow for 10 days. Naive OT-1 CD8™ T cells were activated in vitro
inL-Arg medium or Ctrl medium and injected into tumor bearing mice. Tumor burden {F} and survival (G) were assessed over time. Data are representative of three
independent experiments, each performed with seven to nine mice per group.

(H) B16.OVA melanoma cells were injected into C57BL/6 mice and tumors were allowed to grow for 6 days. At day 6, naive GD8" OT-I T cells were transferred into
tumar bearing mice and at day 7 mice were immunized with OVA peptide. Starting one day before the T cell transfer, PBS or L-arginine (1.5 mg/g body weight) was
orally administered daily; n = 19 from three independent experiments. Bars represent the SEM. o < 0.05, "*p < 0.01, *"p <0.001, ""™p < 0.0001 (Student’s t test).
In {G), *p < 0.05 as determined by log-rank test comparison between curves.

Error bars represent SEM throughout.

DISCUSSION 2009), While the mechanism by which L-arginine induces the

broad metabolic changes remains elusive, a possible explanation

Using protecmics, metabelomics, and functional approaches,
we have shown that increased L-arginine levels can exert pleio-
tropic effects on T cell activation, differentiaticn, and function,
ranging from increased bioenergetics and survival to in vive
anti-tumor activity.

We found that activated T cells heavily consume L-arginine and
rapidly convert it into downstream metabolites, which lead to a
marked decrease in intracellular levels after activation. Addition
of exogenous L-arginine to the culture medium increased intra-
cellular levels of free L-arginine and of several other metabolites
and induced a metabolic switch from glycolysis to OXPHOS,
thus counteracting the Warburg effect (Vander Heiden et al.,

838 Cell 167, 829-842, October 20, 2016

forthe switch toward OXPHOS is that increased L-arginine levels
upregulate the serine biosynthesis pathway, which has been
shown to fuel the TCA cycle and consequently OXPHOS (Posse-
mato et al., 2011). Suggestive evidence for a link between L-argi-
nine and the functicnality of mitochondria has been provided by
earlier observations; L-arginine improves mitochondrial function
and reduces apoptosis of bronchial epithelial cells after injury
induced by allergic airway inflammation (Mabalirajan et al.,
2010) and had a beneficial effect for the treatment of patients
with a mitochondrial disorder (Koga et al., 2010).

A striking finding is that a 2-fold increase in intracellular L-argi-
nine cencentrations induces human and mouse T cells to acquire
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a Tem-like phenotype with high expression of CCR7 and CD62L
and a decreased production of IFN-v. This may be a conse-
quence of decreased glycolysis induced by L-arginine, as previ-
ous studies demonstrated that glycolytic activity supports IFN-v
mRNA translation (Chang et al., 2013). Although we observed a
delayed onset of cell proliferation, L-arginine-treated T cells pro-
gressed through cell division in a way cemparable to centrols
and readily proliferated and differentiated to effector cells upon
secondary stimulation. Furthermore, inhibition of arginases in
human T cells or deletion of ARG2 in mouse T cells did not affect
cell proliferation, suggesting that the downstream fate of L-argi-
nine is less impertant in T cells than the levels of free L-arginine,
L-arginine may induce some of its pleiotropic effects through
interfering with arginine methyltransferases, which can affect
the functions of various proteins (Geoghegan et al., 2015).

Improved T cell survival is another striking effect induced by
elevated intracellular L-arginine levels. Having excluded a role
for L-arginine-derived nitric oxide and for the metabolic regulator
Sirtuin-1 that has been shown to increase lifespan of lower eu-
karyotes (Tissenbaum and Guarente, 2001) and reduce glyco-
Iytic activity (Rodgers et al., 2005), which in T cells may enhance
memory T cell formation and anti-tumor responses (Sukumar
et al.,, 2013), we considered a direct effect of L-arginine on
protein functions. Metabolite-protein interactions are more
frequent than previously appreciated (Li et al., 2010), and in
some cases, such interactions may have functional conse-
quences. Ferinstance, cholesterol binds te ~250 proteins (Hulce
etal,, 2013) and succinate, an intermediate of the TCA cycle, sta-
bilizes HIF-12 in macrophages, leading te increased secretion of
IL-1B (Tannahill et al., 2013). We took advantage of a novel
method that allows proteome-wide probing of metabolite-pro-
tein interactions without modifying metabolites (Feng et al.,
2014) and identified several proteins that changed their structure
in the presence of L-arginine, which were likely sensors required
to mediate the metabolic and functional response. We provide
evidence that three nuclear proteins (BAZ1B, PSIP1, and TSN)
were required in T cells for mediating L-arginine’s effect on sur-
vival. BAZ1B is a transcriptional regulator containing a PHD
domain that supposedly binds to methylated histones. PSIP1
is a transcriptional co-activator implicated in protection from
apoptosis (Ganapathy et al., 2003). Interestingly, the structural
changes induced by L-arginine affect the PHD domain of
BAZ1B and the AT-hook DNA-binding domain of PSIP1, which
may affect DNA binding and lead to the inducticn of the pro-sur-
vival program. Finally, TSN, a small DNA and RNA binding pro-
tein, has been implicated in DNA repair, regulation of mRNA
expression, and BNAi (Jaendling and McFarlane, 2010) and
can thus influence the cellular phenotype in various ways. The
conclusion that these thres proteins ars involved in the pro-sur-
vival effect mediated by L-arginine is based on the analysis of
several different knockout T cell clonas, Yet, there was variability
in the response to L-arginine, which may suggest compensa-
tory mechanisms. This would be consistent with our finding
that several independent proteins can sense L-arginine and
contribute to the improved survival capacity. Future studies are
needed to clarify the mechanism of how L-arginine affects the
structure and functions of the identified sensors in vivo and
how this translates into increased survival.

While in this study we addressed the response to elevated
L-arginine levels, it is well established that T cells alse sense
L-arginine depletion, as it may occur in tumor microenviron-
ments or when myeloid suppressor cells degrade L-arginine
through ARG1 (Bronte and Zanovello, 2005). We have shown
that moderately reduced uptake of L-arginine has a negative
impact on T cell survival without affecting proliferation. However,
when L-arginine was completely deplsted from the culture me-
dium, T cells no longer proliferated (data not shown and Rodri-
guez et al.,, 2007). Lack of L-arginine in T cells can be sensed
by GCN2, leading to an amino acid starvation response (Rodri-
guez et al,, 2007) and by SLC38A9, leading to inhibition of
mTOR (Rebsamen et al., 2015; Wang et al.,, 2015), which in
turn inhibits T cell growth and proliferation.

Qur findings that T cells with increased L-arginine levels
display improved anti-tumor activity may be due to a combina-
tion of phenotypic changes, including improved survival capac-
ity, metabolic adaptations, and maintenance of a Temn-like
phenotype. L-arginine may alse impact on other cell typesin vivo,
e.g., oral administration of L-arginine to healthy volunteers has
been shown to enhance the numbers and activity of natural killer
cells (Park et al., 1991). Future work is needed to address the
exact mechanism by which L-arginine acts in vivo and favors
memory T cell formation and anti-tumor responses.

Generally, metabolite levels can be influenced without genetic
manipulations, offering the possibility for therapeutic applica-
tions. The beneficial effect of L-arginine cn T cell survival and
anti-tumor functicnality may be exploited therapeutically, for
instance to improve adoptive T cell therapies. Additionally, our
dataset on the dynamics of the proteome and metabolome dur-
ing the T cell response constitute a framework for future studies
addressing the complex interplay between metaboelism and
cellular functions.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Human CD4-APC (clone 13B8.2)

Human CD45RA-PE (clone ALB11}

Human CCR7-BV421 (clone G043H7)
Human CCR7 (clone 15053}

Human CD25-FITC (clone B1.49.9)

Human CD8-FITC (clone B9.11)

Human CD3 (clone TRE6)

Human €028 {clone CD28.2)

Human BAZ1B (WSTF) polyclonal

Human PSIP1 (LEDGF/p75) polyclonal
Human TSN polyclonal

Human PTPN6 {SH-PTP1, SHP-1) polyclonal
Human MHGC-I (HLA-ABC) FITC (clone W6/32)

Beckman Coulter
Beckman Coulter
BioLegend

R&D Systems
Beckman Coulter
Beckman Coulter
In house

BD Biosciences
Abcam

Bethyl laboratories

Atlas antibodies/Sigma

Santa Cruz
eBiosciences

Cat#IM2468; RRID: AB_130781
Cat#IM1834U

Cat#353208; RRID: AB_11203894
Cat#MAB197

Cat#IM0478U; RRID: AB_130985
Cat#A07756; RRID: AB_1575981
Lanzavecchia and Scheidegger, 1987
Cat#555725; RRID: AB_396068
Cat#AB50850; RRID: AB_870595
Cat#A300-848A

Cat#HPA059561

Cat#sc-287; RRID: AB_2173829
Cat#11-9983-42

Human p70 $6 Kinase Cell Signaling Cat#9202; RRID: AB_331676
Human Phospho-p70 $6 Kinase (Thr383) Cell Signaling Cat#9205; RRID: AB_330044
Human 4E-BP1 Cell Signaling Cat#9644; RRID: AB_2097841
Human Phospho-4EBP1 (Thr37/46) Cell Signaling Cat#2855; RRID: AB_560835
Anti-mouse CD4, Pacific Orange (clone RM4-5) Invitrogen Cat#MCD0430

Anti-mouse CD8a, Pacific Blue (clone 53-6.7) Biolegend Cat#100725; RRID: AB_493425
Anti-mouse/human CD44, APC/Cy7 {clone IM7) Biolegend Cat#103028; RRID: AB_830785
Anti-mouse/human CD44, FITG (clone IM7) Biolegend Cat#103022; RRID: AB_493685
Anti-mouse/human CD44, APC (clone IM7) Biolegend Cat#103012; RRID: AB_312963
Anti-mouse CD62L, PE/CyT (clone MEL-14) Biolegend Cat#104418; RRID: AB_313103
Anti-mouse 90.1, APC/Cy7 (clone OX-7) Biolegend Cat#202520; RRID: AB_2303153
LEAF purified anti-mouse CD3e (clone 145-2C11) Biolegend Cat#100331; RRID: AB_1877073
Purified hamster anti-mouse CD28 (clone37.51) BD Biosciences Cat#553295; RRID: AB_394764
Chemicals, Peptides, and Recombinant Proteins

L-arginine Sigma Cat#A5006

L-arginine monohydrochloride Sigma Cat#A4599

D-arginine Sigma Cat#A2646

L-Arginine-13C8é hydrochloride Sigma Cat#643440
L-[2,3,4-*H]-arginine-monohydrochloride Perkin Elmer Cat#NET1123001MC
Annexin-V-FITC Biolegend Cat#640906

Cell-Tak BD Biosciences Cat#354240

Oligomyein Sigma Cat#75351

Carbonyl cyanide-4-(trifluoromethoxy) Sigma Cat#C2920

phenylhydrazone (FCCP)

Antimycin Sigma Cat#A8674

Recombinant human interleukin-2 BD Biosciences Cat#554603

Recombinant human interleukin-12 Biolegend Cat#573002

Human recombinant interleukin-2 (transtected J588L In house N/A

cell supernatant}

FlowCytomix basic kit eBioscience Cat#BMS8420FF

Flow Cytomix human Th1/Th2/Th9/Th17/Th22 13plex  eBioscience Cat#BMS817FF

{Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Phorbol 12-myristate 13-acetate (PIMA} Sigma Cat#P1585

lonomycin Sigma Cat#l0634

Rapamycin Sigma Cat#R8781

Proteinase K Sigma Cat#P2308

Critical Commercial Assays

Glucose (GO) Assay Kit Sigma Cat#GAGO20-1KT

Experimental Models: Cell Lines

Human: primary T lymphocytes This paper N/A

Mouse: primary T lymphocytes This paper N/A

HEK293T/17 ATCC Cat#CRL-11268

B16.OVA Matteo Bellone Bellone et al., 2000

Experimental Models: Organisms/Strains

Mouse: C57BL/6: (C57BL/6JOlaHsd) Harlan Cat#57

Mouse: BALB/c: (BALB/cOlaHsd) Harlan Cat#162

Mouse: Cd3e™~ C57BL/6 Malissen et al., 1995 N/A

Mouse: OT-I: (C57BL/6-Tg{TcraTcrb)1100Mjb/J) The Jackson Laboratory Cat#JAX003831

Mouse: Rag1™": (B6.129S7-Rag1™!Mom/jy The Jackson Laboratory Cat#JAX002216

Mouse: Arg2™": C57BL/6 (Arg2"""¥*°/) The Jackson Laboratory Cat#JAX020286

Mouse: Hemagglutinin (HA) TCR-transgenic (6.5) Kirberg et al,, 1984 N/A

BALB/c

Recombinant DNA

lentiCRISPR v2 Addgene Cat#52961

psPAX Addgene Cat#12260

pMD2.G Addgene Cat#12259

Sequence-Based Reagents

Short guide RNAs, see Table S6 This paper N/A

Software and Algorithms

MaxQuant Cox and Mann, 2008 http://www.coxdocs.org/doku.php?
id=maxquant:start

Perseus Cox and Mann, 2012 http://www.coxdocs.org/doku.php?id=perseus:start

Progenesis-Q| Version 2.0 Nonlinear Dynamics, Waters  http://www.nonlinear.com/progenesis/qgi/

Proteome Discoverer 1.4 (SEQUEST HT search Thermo Fisher https://www.thermofisher. com/order/catalog/

engine} product/IQLAAEGABSFAKJMAUH

R environment for statistical computing N/A hitps://www.r-project.org/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the correspending author Antonio Lanza-
vecchia (lanzavecchia@irb.usi.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Primary T Cells

Blood from healthy male or female donors was obtained from the Swiss Blood Donation Center of Basel and Lugano, and used in
compliance with the Federal Office of Public Health (autherization no. A000197/2 to F.S).

Mice

Wild-type (WT) C57BL/6J and BALB/c mice were obtained from Harlan (ltaly). Cd3e ™~ C57BL/6 mice, which lack all T cells but exhibit
organized lymphoid organ structures and normal B cell development, have been described previously (Malissen et al., 1995). OT-I
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(JAX 003831) mice were bred and maintained on a Rag? "~ (JAX 002216) background. WT C57BL/8 mice with different CD45 and
CD90 alleles were bred in our facility, and crossed with Rag? © OT-l transgenic mice, to perform adoptive transfer experiments.
ArgZ~~ C57BL/6 (JAX 020286) mice were kindly provided by W. Reith, Hemagglutinin (HA) TCR-transgenic (6.5) BALB/c mice (Kir-
berg et al., 1994) specific for peptide 111-119 from influenza HA were kindly provided by J. Kirberg and bred in our facility. All mice
were bred and maintained under specific pathogen-free conditions. Animals were treated in accordance with guidelines of the Swiss
Federal Veterinary Office and experiments were approved by the Dipartimento della Sanita e Socialita of Canton Ticino.

METHOD DETAILS

Isolation of Human T Cells

Peripheral blood mononuclear cells (FBMCs) were isolated by Ficoll gradient centrifugation. CD4* T cells were enriched with mag-
netic microbeads (Miltenyi Biotec). Naive CD4" T cells were sorted as CD4" CCR7* CD45RA* CD25~ CD8™ on a FACS Aria lll cell
sorter (BD Biosciences). For cell staining, the following antibodies were used: anti-CD4-APC (allophycocyanin), clene 13B8.2;
anti-CD8-APC, clone B9.11; anti-CD8-FITC (fluorescein isothiocyanate), clone B9.11; anti-CD4-FITC, clone 13B8.2; anti-
CD45RA-PE (phycoerythrin), clene alb11; anti-CD25-FITC, clene B1.49.9 (all from Beckman Coulter); anti-CCR7-Brilliant Violet
421, clone G043H7 (Biolegend).

Cell Culture

Cells were cultured in RPMI-1640 medium supplemented with 2mM glutamine, 1% (v/v) non-essential amine acids, 1% (v/v) sedium
pyruvate, penicillin (50 U mi~"), streptomycin (50 ug mi~"; all from Invitrogen), and 5% (v/v) human serum (Swiss Blood Center). Hu-
man T cells were activated with plate beund anti-CD3 (b pg/ ml, clene TRE6) and anti-CD28 (1 ng/ml, clone CD28.2, BD Bicsciences)
for 48 hr. Then, cells were cultured in |L-2 containing media (500 U/ml).

Metabolomics

Naive CD4™* T cells were either analyzed directly after isolation or at different time points after activation with CD3 and CD28 anti-
bodies. Cells were washed twice in 26-well plates with 75 mM ammenium carbonate at pH 7.4 and snap frozen in liquid nitrogen.
Metabolites were extracted three times with hot (> 70°C) 70% ethanol. Extracts were analyzed by flow injection — time of flight
mass spectrometry on an Agilent 8550 QTOF instrument operated in the negative mode, as described previously (Fuhrer et al,,
2011). Typically 5,000-12,000 iocns with distinct mass-to-charge (m/z) ratic could be identified in each batch of samples. lons
were putatively annotated by matching their measured mass to that of the compounds listed by the KEGG database for Homo sa-
piens, allowing a tolerance of 0.001 Da. Only deprotenated ions (without adducts) were considered in the analysis. In case of multiple
matching, such as in the case of structural iscmers, all candidates were retained.

Metabolic Flux Experiments

Naive CD4™ T cells were activated and 4 days later extensively washed and pulsed with L-arginine free RPMI medium containing
1 mM [U-"3C]-L-Arginine hydrochloride (Sigmay). After increasing pulse-times, cells were washed and snap frozen in liquid nitrogen.
Metabolites were extracted and analyzed by HILIC LC-MS/MS.

Detection of Amino Acids and Polyamines by HILIC LC-MS/MS

Supematants from extraction were dried at 0.12 mbar to complete dryness in a rotaticnal vacuum concentrator setup (Christ, Oster-
ode am Harz, Germany) and dried metabolite extracts were stored at —80°C. Dry metabolite extracts were resuspended in 100 ul
water and 5 pl were injected on an Agilent HILIC Plus RRHD column (100 x 2.1mm x 1.8 um; Agilent, Santa Clara, CA, USA).
A gradient of mobile phase A (10 mM ammonium foermate and 0.1% formic acid) and mobile phase B (acetonitrile with 0.1% formic
acid) was used as described previously (Link et al., 2015). Flow rate was held constant at 400 pl/min and metabeolites were detected
on a 5500 QTRAP triple quadrupele mass spectrometer in positive MRM scan mode (SCIEX, Framingham, MA, USA).

Sample Preparation for Proteome MS Analysis

Samples were processed as described by (Homburg et al., 2014). In brief, cell pellets were washed with PBS and lysed in 4% SDS,
10 MM HEPES (pH 8), 10 mM DTT. Cell pellets were heat-treated at 95°C for 10 min and senicated at 4°C for 15 min (level 5, Biorupter,
Diagenods). Alkylation was performed in the dark for 30 min by adding 55 mM iodoacetamide (IAA). Proteins were precipitated over-
night with acetone at —20°C and resuspended the next day in 8 M Ursa, 10 mM HEPES (pH 8). A two-step proteolytic digestion was
performed. First, samples were digested at room temperature (RT) with LysC (1:50, w/w) for 3h. Then, they were diluted 1:5 with
50 mM ammoniumbicarbonate (pH 8) and digested with trypsin (1:50, w/w) at RT overnight. The resulting peptide mixtures were
acidified and loaded on C18 StageTips (Rappsilber et al., 2007). Peptides were eluted with 80% acetonitrile (ACN), dried using a
SpeedVac centrifuge (Eppendorf, Concentrator plus, 5305 000.304), and resuspended in 2% ACN, 0.1% trifluoroacetic acid
(TFA), and 0.5% acetic acid. For deeper proteome analysis a peptide library was built. For this, peptides from naive and activated
T cells were separated according to their isoelectric point on dried gel strips with an immaobilized pH gradient (SERVA IPG BlueStrips,
3-10/ 11 cm) into 12 fractions as described by Hubner et al., 2008 (Hubner et al., 2008).
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LC-MS/MS for Analysis of Proteome

Peptides were separated on an EASY-nLC 1000 HPLC system (Thermo Fisher Scientific, Odense) coupled eonline to a Q Exactive
mass spectrometer via a nanoelectrospray source (Thermo Fisher Scientific)(Michalski et al., 2011). Peptides were loaded in buffer
A (0.5% formic acid) on in house packed columns (75 um inner diameter, 50 ¢m length, and 1.9 pm C18 particles from Dr. Maisch
GmbH). Peptides were eluted with a non-linear 270 min gradient of 5%-60% buffer B (80% ACN, 0.5% formic acid) at a flow rate of
250 nl/min and a column temperature of 50°C. Operational parameters were real-time monitored by the SprayQC software (Schel-
terma and Mann, 2012). The Q Exactive was operated in a data dependent mede with a survey scan range of 300-1750 m/z and a
resolution of 70’000 at m/z 200. Up to 5 most abundant isotope pattems with a charge > 2 were isolated with a 2.2 Th wide isolation
window and subjected to higher-energy C-trap disseciation (HCD) fragmentation at a normalized collision energy of 25 (Olsen et al.,
2007). Fragmentation spectra were acquired with a resolution of 17,500 at m/z 200. Dynamic exclusion of sequenced peptides was
setto 45 s to reduce the number of repeated seguences. Thresholds for the ion injection time and ion target values were sette 20 ms
and 3EB for the survey scans and 120 ms and 1E5 for the MS/MS scans, respectively, Data were acquired using the Xcalibur software
(Thermo Scientific).

Analysis of Proteomics Data

MaxQuant software (version 1.3.10.18) was used to analyze MS raw files (Cox and Mann, 2008). MS/MS spectra were searched
against the human Uniprot FASTA database (Version May 2013, 88’847 entries) and a common contaminants database (247 entries)
by the Andromeda search engine (Cox et al., 2011). Cysteine carbamidomethylation was applied as fixed and N-terminal acetylation
and methionine exidaticn as variable modification. Enzyme specificity was set to trypsin with a maximum of 2 missed cleavages and a
minimum peptide length of 7 amino acids. A false discovery rate (FDR) of 1% was required for peptides and proteins. Peptide iden-
tification was performed with an allowed initial precursor mass deviation of up to 7 ppm and an allowed fragment mass deviation of 20
ppm. Nonlinear retention time alignment of all measured samples was performed in MaxQuant. Peptide identifications were matched
across different replicates within atime window of 1 min of the aligned retention times. Alibrary for ‘match between runs’ in MaxQuant
was built from additional single shot analysis at various time points as well as from OFF gel fractionated peptides of naive and memory
CD4 T cells. Protein identification required at least 1 razor peptide. A minimum ratio count of 1 was required for valid quantification
events via MaxQuant’s Label Free Quantification algorithm (MaxLFQ)(Cox and Mann, 2008; Luber et al., 2010). Data were filtered for
commen contaminants and peptides only identified by side moedification were excluded from further analysis. In addition, it was
required to have a minimum of two valid quantifications values in at least one group of replicates. Copy numbers were estimated
based on the protein mass of cells (Wigniewski et al., 2012). We set the protein mass of a naive T cell to 25 pg and of an activated
T cell to 75 pg.

Limited Proteolysis and Mass Spectrometry

Naive CD4* T cells were washed twice with PBS and homogenized on ice under non-denaturing conditions (20 mM HEPES, 150 mM
KCl and 10 mM MgCl; [pH 7.5]) using a tissue grinder (Wheaton, Millville, NJ, NSA). Homogenates were further passed several times
through a syringe (0.45x12mm) on ice. Next, cell debris was removed by centrifugation and protein concentration of supernatants
was determined by BCA assay (BCA Protein Assay Kit, Thermo Scientific, Rockford, IL, USA). L-arginine, D-arginine or L-ornithine
was added to homogenates to a final concentration of 1 nmol per pg total protein, and incubated for 5 min at room temperature. As a
control, samples without added metabgclites were processed in parallel. Then, proteinase K from Tritirachium album (Sigma) was
added at an enzyme to substrate ratio of 1:100, followed by an incubation of 5 min at room temperature. The digestion was stopped
by boiling the reaction mixture for 3 min. Proteins were denatured by adding 10% sodium deoxycholate (DOC) solutien (1:1, v/v) tothe
reaction mixture, followed by a second boiling step of 3 min. Disulfide bridges were reduced with 5 mM Tris(2-carbexyethyl)phos-
phine hydrochloride (Thermo Scientific) at 37°C for 30 min and subsequently free cysteines were alkylated with 40 mM IAA at
25°C for 30 min in the dark. DOC concentration of the mixture was diluted to 1% with 0.1 M ammenium bicarbonate (AmBiC) prior
to a stepwise protein digestion with LysC (1:100, w/w) for 4 hr at 37°C and trypsin (1:100, w/w) cvernight at 37°C. The resulting pep-
tide mixture was acidified to pH < 2, loaded onto Sep-Pak tC18 cartridges (Waters, Milford, MA, USA), desalted and eluted with 80%
acetonitrile. Peptide samples were dried using a vacuum centrifuge and resuspended in 0.1% formic acid for analysis by mass
spectrometry.

Peptides were separated using an online EASY-nLC 1000 HPLC system (Thermo Fisher Scientific) operated with a 50 cm long in
heuse packed reversed-phase analytical column (Reprosil Pur C18 Aq, Dr. Maisch, 1.9 um) (Reprosil Pur C18 Aq, Dr. Maisch, 1.9 pm)
before being measured on a Q-Exactive Plus (QE+) mass spectrometer. A linear gradient from 5%-25% acetonitrile in 240 min at a
flowrate of 300 nl/min was used to elute the peptides from the celumn. Precursor ion scans were measurad at a resolution of 70,000 at
200 m/z and 20 MS/MS spectra were acquired after higher-energy collision induced dissociation (HCD) in the Orbitrap at a resolution
of 17,500 at 200 m/z per scan. The ion count threshold was set at 1,00 to trigger MS/MS, with a dynamic exclusion of 25 s. Raw data
were searched against the H. sapiens Uniprot database using SEQUEST embedded in the Proteome Discoverer software (both
Thermo Fisher Scientific). Digestion enzyme was set to trypsin, allowing up to two missed cleavages, one non-tryptic terminus
and no cleavages at KP (lysine-proline) and RP (arginine-proline) sites. Precursor and fragment mass tolerance was set at 10 ppm
and 0.02 Da, respectively. Carbamidomethylation of cysteines (+57.021 Da) was set as static modification whereas oxidation
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(+15.995 Da) of methionine was set as dynamic modification. False discovery rate (FDR) was estimated by the Percolator (embedded
in Proteome Discoveret) and the filtering threshold was set to 1%.

Label-free guantitation was performed using the Progenesis-Ql Software (Nonlinear Dynamics, Waters). Raw data files were im-
ported directly into Progenesis for analysis. MS1 feature identification was achieved by importing the filtered search results (as
described above) from Proteome Discoverer into Progenesis to map the corresponding peptides based on their m/z and retention
times. Annotated peptides were then guantified using the areas under their extracted ion chromatograms. Pairwise comparisons
were performed with the untreated (no metabolite added) sample as a reference and peptide fold changes were calculated using
three biological replicates per condition whers the statistical significance was assessed with a two-tailed hetercscedastic Student’s
t test. A fold change was considered significant with an absolute change > 5 and a corresponding p value < 0.05. Only proteins with
two or more peptides changing significantly (according to the aforementioned criteria) were taken into consideration.

Quantitative Amino Acid Uptake and Calculation of Proteome Incorporation

150,000 freshly isclated naive CD4* T cells were activated with plate bound CD3 and CD28 antibodies and cultured in the same me-
dium for four days. As a control, medium without cells was co-cultured. Then cell supernatants and control media were analyzed by
quantitative aminoe acid analysis (MassTrak, Waters) at the Functional Genomic Center in Zurich. Amino acid uptake was calculated
as the difference between control media and cell supernatants. At the time of the measurement, we counted on average 1 Mio cells.
We then calculated how much of each amine acid is incorporated inte the proteome of 850,000 cells based on the amine acid
seqguences and copy numbers of each protein. Average copy numbers from the time point 72 hr were used.

®H-Arginine Uptake Assay

Arginine uptake was measured as previously described for glutamine uptake (Carr et al., 2010). Briefly, resting or activated T cells
were resuspended at a concentration of 1.5x107 cells/ml in serum-free RPMI 1640 lacking L-arginine. 50 ul 8% sucrose/20%
perchloric acid were layered to the bottom of a 0.5 ml Eppendorf tube and 200 ul 1-bromododecane on top of it (middle layer), fol-
lowed by 50 pl L-arginine-free medium containing 1.5 mCi L-[2,3,4-2H]-arginine-monohydrochloride (Perkin Elmer). Then, 100 pl cell
suspension was added to the top layer and cells were allowed to take up radiolabeled L-arginine for 15 min at room temperature.
Cells were then spun through the bromododecane into the acid/sucrose. This stops the reaction and separates cells from unincor-
porated *H-L-arginine. The bottom layer containing the cells was carefully removed and analyzed by liquid scintillation. As controls
cell-free media were used.

OCR Measurements

Measurements were performed using a Seahorse XF-24 extracellular flux analyzer (Seahorse Bioscience). Naive CD4* T cells were
sorted and activated with plate-bound CD3 and CD28 antibodies in complete medium or medium supplemented with 3 mM L-argi-
nine. Four days later (in the moming), cells were pooled, carefully count and plated (7 x 10° cells/well) in serum-free unbuffered RPMI-
1640 medium (Sigma) onto Seahorse cell plates coated with Cell-Tak (BD Bioscience). The serum-free unbuffered medium was not
supplemented with L-arginine. Oligomycin (1.4 uM, Sigma), Carbonyl cyanide-4-(triflucromethoxy)phenylhydrazone (FCCP, 0.6 pM,
Sigma) and antimycin (1.4 pM, Sigma) were injected.

IL-2 Withdrawal Assay

Naive CD4 T cells were activated with plate-bound CD3 and CD28 antibodies. 48 hr after activation IL-2 was added to culture media
(500 Uml™"). After a further 3 days of culturing, cells were washed, counted, and equal cell numbers were plated in medium devoid of
IL-2. The withdrawal medium was no longer supplemented with e.g., L-arginine. Cell viability was assessed with annexin V.

Cytokine Analysis

10° naive T cells were stimulated with plate bound anti-CD3 (Sug/ml ") and anti-CD28 (1ug/ml ') in the presence of IL-12
(10 ng/ml, R&D Systems) to polarize cells toward a Th1 phenotype. After 48 hr, cells were transferred into U-bottom plates and
IL-2 (10 ng/ml, R&D Systems) was added. Three days later, supernatants were collected and interferon-y was quantified using
FlowCytomix assays (eBioscience), Samples were analyzed on a BD LSR Fortessa FACS instrument and quantification was per-
formed with the FlowCytomix Pro 3.0 software. For re-stimulation, cells were cultured for 5 hr in the presence of 0.2 pM phorbaol
12-myristate 13-acetate (PMA) and 1 pg/ml ionomycin (both from Sigma).

Glucose Consumption Assay
The amount of glucose in media was determined using the Glucose (GO) Assay Kit from Sigma. Consumption was calculated as the
difference between glucose content in reference medium (co-incubated medium without cells) and cell supematants.

Analysis of Phosphorylation Levels of 4E-BP and S6K1

Naive CD4™ T cells were activated with plate-bound antibodies to CD3 and CD28. Four days after activation, cells were lysed and
analyzed by western blot with the following antibodies obtained from Cell Signaling Technology. Phospho-p70 S6K(Thr389)
#9205; p70 S6 Kinase #9202; Phospho-4E-BP1 (Thr37/46) #2855; 4E-BP1 #9644. Rapamycin (Sigma) was used at 100 nM.
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CRISPR/Cas9-Mediated Gene Disruption

Two to four short guide RNAs (sgRNAs) per gene (Table S6) were designed using the online tool provided by the Zhang laboratory
(http://tools.genome-engineering.org). Oligonucleotide pairs with BsmBl-compatible overhangs were annealed and cloned into the
lentiviral vector lentiCRISPR v2 (Addgene plasmid # 52961) (Sanjana et al., 2014). For virus production, HEK293T/17 cells were trans-
fected with lentiCRISPR v2, psPAX2 (Addgene # 12260) and pMD2.G (Addgene plasmid # 12259) at a 8:4:1 ratio using polyethyle-
nimine and cultured in Dulbscco’s modified Eagle medium supplemented with 10% fetal bovine serum (FBS), 1% sodium pyruvate,
1% non-essential amino acids, 1% kanamycin, 50 units/ml penicilin/streptomycin and 50 uM B-mercaptoethanol. The medium was
replaced 12 hr after transfection and after a further 48 hr virus was harvested from supernatant. Cell debris was removed by centri-
fugation (10 min at 2000 rpm followed) followed by ultra-centrifugation (2.5 hr at 24’000 rpm) through a sucrose cushion.

Freshly isolated naive CD4* T cells were lentivirally transduced and activated with plate-bound CD3 and CD28 antibodies. 48 hr
after activation IL-2 was added to culture media (500 U/mI~"). 6 days after activation, cells were cultured for 2 days in medium sup-
plemented with 1 ug/ml puromycin to select for cells expressing the lentiCRISPR v2 vector. Subsequently, cells were cultured in
nermal medium fellowed by additional two days in medium containing puremycin for a second selection step. Then, single cell clones
were generated by limiting dilution as described in (Messi et al., 2003).

To screen for clones with disrupted target genes, individual clones were lysed with sample buffer containing 80 mM Tris (pH 6.8),
10.5% glycerol, 2% SDS and 0.00004% Bromophenol blue. Lysate of 100’000 cells was separated by SDS-PAGE followed, blotted
onto PVDF membranes and analyzed with antibodies to target proteins, Baz1B (Abcam, ab50850), PSIP1 (Bethyl, A300-848A),
DDX17 (Abcam, ab180190), PTPNG (Santa Cruz, sc-287) or TSN (Sigma, HPA059561). As loading control membranes were reprobed
with an antibody to beta-tubulin (Sigma, T6074). To screen for clones with disrupted B2M, single cell clones were stained with an
antibody to MHC-| (eBioscience, HLA-ABC-FITC) and analyzed by flow cytometry.

Isolation and Culturing of Mouse CD8" T Cells

Naive CD8* OT-I cells were isolated from FfagT/' OT-I transgenic mice. Lymph nodes and spleens were harvested and homogenized
using the rubber end of a syringe and cell suspensions were filtered through a fine mesh. Cells were first enriched with anti-CD8 mag-
netic microbeads (CD8a, Ly-2 microbeads, mouse, Miltenyi Bictec) and then sorted on a FACSAria Ill Cell Sorter (BD Biosciences) to
obtain cells with a CD44'"° CD82L™ CD8* phenotype. OT-I cells (CD90.1%) were cultured for 2 days in xCD3/2CD28 (2ug/ml) beund to
NUNC 96 well MicroWell MaxiSorp plates (Sigma-Aldrich M9410) in the presence or absence of 3 mM L-arginine in the culture
medium. On day 2 cells were transferred to U-bottom plates and cultured for 2 additional days in the presence of IL-2 (500 U/m).

Adoptive T Cell Transfers and Survival Experiments

CD90.1* CD45.1/2* OT-I T cells were activated with plate-bound antibodies to CD3 and CD28 in control medium. OT-1 cells with a
different congenic marker (CD90.1* CD45.1%) were activated in L-arginine-supplemented medium. At day 4, equal cell numbers
were injected into the tail vein of Cd3e™ host mice. To study the expansion of OT-| effector cells, host mice were sacrificed after
1, 3, 6, and 10 days post transfer and CD90.1" OT-I T cells from lymphoid organs (spleen and lymph nodes) were enriched with
anti-CD90.1 microbeads (Miltenyi Biotec), stained and analyzed by FACS. The following menoclonal antibodies were used
o-CD8u (53-6.7), »-CD44 (IM7), x-CDB2L (MEL-14), x-CD90.1 (OX-7), x-CD90.2 (30-H12), #-CD45.1 (A20), 2-CD45.2 (104).

Tumor Experiments: In Vitro Activation of T Cells

B16-OVA melanoma cells were cultured in RPMI 1640 plus 10% FCS, 1% penicillin/streptomycin and 2 mM glutamine. Before injec-
tion into mice, cells were trypsinized and washed twice in PBS. Then, 5x10° cells were subcutaneously injected in the dorsal region of
WT C57BL/6 mice. Ten days postinjection, 5x1 0° OT-I cells, that have been activated in vitro as described above, were injected into
the tail vein of tumor-bearing mice. The size of tumors was measured in a blinded fashion using calipers.

Tumor Experiments: In Vivo Priming of T Cells

B16-OVA melanoma cells were cultured and injected into WT C57BL/6 mice as described above. Five days post injection, when
tumors were very small, mice were y-irradiated (5 Gy) and 24 hr later they received 4x10° OT-I cells intravenously (i.v.). The day after
mice were immunized intraperitonsally (i.p.) with SIINFEKL peptide (OVAzs/264) in Imject Alum Adjuvant (Thermo Fisher Scientific),
L-Arg (1.5 g/Kg body weight) or PBS, as control, was daily orally administrated, starting one day before T cell transfer and until the end
of the experiment. The size of tumers was measured in a blinded fashion using calipers.

Experiments with Arg2~~ Mouse T Cells

For in vitro experiments, 5x10* FACS-sorted naive T cells were activated with plate-bound antibodies to CD3 (2 pg/ml) and CD28
(2 pg/ml). Two days after activation, T cells were transferred into U-bottorn plates and IL-2 was added to culture media. Four
days after activation, cells were washed extensively and plated in medium devoid of IL-2. Cell viability was measured two days after
IL-2 withdrawal by Annexin V staining. For in vivo experiments, 106 FACS-sorted WT CD8* naive T cells (CD45.1*) were transferred
together with 10 FACS-sorted Arg2™~ CD8* naive T cells (CD45.2*, CD90.2%, into slightly y-iradiated (3 Gy) WT mice (CD45.2™,
CD90.1%). The day after, host mice were immunized subcutaneously (s.¢.) with MHG class-| binding peptide SIINFEKL (Chicken Oval-
bumin, OVA, amino acids 257-264, 15 ng/mouse) emulsified in Complete Freund's Adjuvant, CFA. CFA was prepared by adding
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4 mg/ml of M. tubercuiosis H37RA (Difco) to Incomplete Freund’s Adjuvant, IFA (BD Biosciences). SIINFEKL peptide (OVA2s; 2g4) Was
obtained from Servei de Protedmica, Pompeu Fabra University, Barcelona, Spain. On day 15 pest immunization, mice were eutha-
nized and draining lymph nodes were collected and analyzed by flow cytometry. Cells were counted according to the expression
of congenic markers and by gating on live CD44™ H-2Kb/OVAzs7_26. multimer, CD8* cells. The H-2Kb/OVAzs7 054 multimers
were purchased from TCMetrix.

Mouse Experiments with Dietary L-Arginine

2x10° CDY0.1* CD4* HA TCR-transgenic T cells, on a BALB/c background, were adoptively transferred in WT CD90.2* BALB/c mice.
The day after, host mice were immunized s.c. with influenza HA4 4 11o peptide (purchased from Anaspec) emulsified in CFA. L-Arg
(1.5 g/kg bedy weight) or PBS, as control, was daily crally administrated, starting 1 day before T cell transfer and until the end of the
experiment. Draining lymph nodes were analyzed on day 15 post immunization for the presence of transferred transgenic memory
CD44" CD90.1* CD4™ T cells, Sera were collected 30 min after oral L-arginine administration to mice and L-arginine and L-threcnine
concentrations in sera were measured on a MassTrak (Waters) instrument at the functional gencmics center in Zurich. To determine
intracellular L-arginine levels, activated T cells were isolated from draining lymph nodes 60 hr after activation and 30 min after the
daily L-arginine administration. Metabolites were extracted with hot 70% ethanol and analyzed by HILIC LC-MS/MS.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters including the exact value of n, the definition of center, dispersion and precision measures (mean + SEM) and
statistical significance are reported in the Figures and Figure Legends. Data were judged to be statistically significant when p < 0.05
by two-tailed Student’s t test. In figures, asterisks denote statistical significance as calculated by Student’s ttest (*, p < 0.05; ™, p <
0.01; =%, p < 0.001; ***, p < 0.0001). Survival significance in adoptive cell transfer studies was dstermined by a Log-rank test. Sta-
tistical analysis was performed in R or GraphPad PRISM 6.

Proteome Data

Data analysis was performed using the Perseus software and the R statistical computing environment. Missing values were imputed
with a normal distribution of 30% in comparison to the SD of measured values and a 1.8 SD down-shift of the mean to simulate the
distribution of low signal values (Hubner et al., 2010). Statistical significance between time points was evaluated by one-way ANOVA
for each proteinGroup using a FDR of 0.1% and Sg of 2 (Sg sets a threshold for minimum fold changs), unless otherwise noted (Tusher
et al., 2001). For pairwise comparison, t test statistic was applied with a permutation based FDR of 5% and S of 1.

Enrichment Analysis

Univariate test was performed on either all proteins or metabolites by t test with unequal variance (Welch Test). The resulting P-values
were adjusted using the Benjamini-Hochberg procedure. Enrichment analysis was performed as suggested by Subramanian et al.
(Subramanian et al., 2005). Both for metabolomics and proteomics data, we applied a permissive filtering with adj. p value less or
equal than 0.1 and absolute log2(fold-change) larger or equal than 0.5. Enrichment P-values were calculated by the Fisher’s exact
test for all incremental subsets of filtered features ranked by the p value. For the 261 pathways defined by KEGG, the lowest P-value
was retained as a reflection of the best possible enrichment given by the data independently of hard cut-offs. Eventually, enrichment
P-values were corrected for multiple testing by the Benjamini-Hochberg methed. In general, enrichments with an adjusted P-value <
0.05 were considered significant. Pathway enrichments were calculated indspendently for proteomics and metabclomics data. For
metabolome-based enrichments, structural isomers in pathway were condensed and counted only once to account for the fact that
the employed technology cannot distinguish between metabolite with identical molecular weight.

DATA AND SOFTWARE AVAILABILITY

The metabolomics and proteomics data are available in Tables $1 and $2. All software is freely or commercially available and is listed
in the STAR Methods,
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Figure S1. Quality Control of the Proteome Dataset, Related to Figure 1

(A) Sorting of human naive CD4* T cells. Shown are FACS plots of cells after enrichment with anti-CD4 magnetic beads. Cells were sorted as CD4™ CCR7”
CD45RA* and CD8CD25™.

(B) Expression kinetics of indicated marker proteins. Bars represent the SEM of data from different donors, n = 7 {for resting cells), n = 3 {for 12h, 72h), n = 2 {for
96h, 48h), n = 1 (for 24h). CD25 and CD8 were not identified in resting cells. After activation, expression of CD25 increased whereas CD8 was never detected.
(C) Identified protein groups per condition. Taking all conditions together, a total of 9,718 proteins were identified. Per condition two numbers are indicated; the
higher number indicates the total identifications and the lower number the mean of the single shots. Samples in blue were measured on adifferent instrument than
samples in black. L-arg refers to 3 mM L-arginine.

(D) Relative protein abundance cver time shown as a heat map. Log2 fold changes {FC) are relative to naive resting T cells. The marker for proliferating cells Ki-67
increased abruptly after 48h, when cells started to proliferate. CD40L expression increased immediately after activation and then decreased to initial levels. A
similar expression pattern was observed for CD69, which inhibits egress from lymph nodes (Shiow et al., 2006). The expression ofintegrins o4 and 37 increased at
later time points.

(E) Copy numbers of individual subunits of well-characterized protein complexes were plotted against each other. As the Sec23 subfamily includes Sec23A and
Sec23B, their copy numbers were added up. The same was done for the subfamily members of Sec24 (A-D).

(F} Copy humbers of components of the nuclear pore complex (NPC). The stoichiometry of subunits measured using targeted quantitative proteomics (Ori et al.,
2013) is indicated on the graph in red. Shown are copy numbers measured in naive resting T cells from seven donors.

(G) Same as in (F) but shown are copy numbers measured from activated cells (72h}). n = 3 from three donors. Note that the numbers of Nup107 increased from
11,464 + 1620 to 53,091 + 1471. (A and E-G) Error bars represent SEM throughout.
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Figure 82. Impact of L-citrulline on Metabolism, Related to Figure 3

(A) Human naive CD4™ T cells were activated in normal medium or in L-Arg medium. Nitric oxide formation was measured using DAF-FM diacetate at different time
points.

(B) T cells were activated in control medium (Ctrl, containing 1mM L-arginine), or in medium supplemented with 3mM L-arginine (L-Arg) or 3mM L-citrulline {L-Git)
and harvested at different time points. The heat map shows the difference in the abundance of metabolites in T cells cultured in L-Arg- or L-Cit-medium compared
to controls. Shown are only metabolites with a log2 fold change > 1 and an adjusted p value of < 0.05. n = 6 from one denor.
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Figure $3. L-Arginine Delays the Onset of Proliferation, Related to Figure 4

(A) Kinetics of T cell proliferation. Human naive GD4™ T cells were labeled with CellTraceViolet {CTV) and activated in Ctrl medium or in L-Arg medium or In medium
supplemented with 3 mM D-arginine ar 3 mM L-arginine together with 3 mM L-lysine. Cell divisions were monitored at 48h and 72h by flow cytometry.
(ByCTV-labeled CD4* T cells were activated in normal medium or L-Arg medium and the dilution of CTV was measured over time by flow cytometry. n = 5 from two
donors.

(C) 3H-L—aw'girﬂne uptake by 3 day-activated GD4™ T cells during a 15 min pulse. Where indicated, 3 mM L-arginine. D-arginine or L-lysine was added to the culture
medium as a competitive uptake inhibitor. n = 7 for control, n = 9 for L-Arg, n = 5 for D-Arg, and n = 9 for L-Lys. Error bars represent SEM throughout.
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Figure $4. L-Arginine Increases the Survival of Activated T Cells Independent of mTOR Signaling, Related to Figure 4

(A) Human naive CD4™ T cells were activated for 4 days, lysed and the phosphorylation levels of S6K1 {pThr388) and 4E-BP {pThr37/46) were analyzed by western
blot. Rapamycin inhibited the phosphorylaticn of the mTOR targets, while DMSO or supplementation of the culture medium with 3 mM L-arginine had no effect.
T cells hardly proliferated upon activation in culture medium containing ne or 20 uM L-lysine and therefore phosphorylation of the target proteins could not be
assessed.

(B) Tcell survival experiment. Human naive CD4* T cells were activated in Ctrl medium or in medium containing 100 nM rapamycin. On day 5, cells were washed to
withdraw IL-2 and cell survival was measured at different time points.

(C) Same as in {B) but cell survival was only measured 5 days after IL-2 withdrawal. n = 7 from seven donors. Boxplot. Same as in Figures 2A and 2B.

(D) Metabolic profiling of GCD4* T cells activated in medium containing 100 nM rapamycin. The heat map shows the difference of metabolite abundances between
rapamycin-treated cells and controls. n = 10 from two donors.
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Figure $5. Oral Administration of L-Arginine Increases L-Arginine Levels in Mouse Sera and T Cells, Related to Figure 5

(A) BALB/c mice were administered L-arginine (1.5 mg/g body weight) and sera were collected after 30 min. L-arginine and, as a control, L-threonine con-
centrations were analyzed on a MassTrak amino acid analyzer. n = 4.

(B) BALB/c mice were immunized with ovalbumin in CFA. Sixty hours later, activated T cells from draining lymph nodes were enriched using magnetic beads
coated with antibadies to CD44. Metabolites were extracted using hot 70% ethanol and L-arginine and L-glutamine levels {as an internal standard) were
measured using LG-MS/MS. Shown is the ratio between L-arginine and L-glutamine intensities. n = 14.

(C)Intracellular L-arginine levels of wild-type and Arg2™~ CD4* and CD8* T cells 4 days after activation. n = 3. For statistical tests, a two-tailed unpaired Student’s
t test was used throughout, n.s. non significant; *p < 0.05; "p < 0.005; **'p < 0.0005; ****p < 0.0001. Error bars represent SEM throughout.
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Figure S6. L-arginine Upregulates Sirtuin-1, Related to Figure 6

(A) Copy numbers of Sirtuin-1 {(SIRT1) as determined by quantitative MS in human naive CD4" T cells activated in normal medium or L-Arg-medium. n = 3 from
three donors.

(B) T cell survival experiment. The Sirtuin-1 inhibitor Ex-527 was added at the time point of activation at a concentration of 5 yM. n = 16 from four donors.

(C) T cell survival experiments with clones expressing Cas9 only, or clones devoid of Sirtuin-1. n = 16 from 6 clones. Right panel: western blot of two different
Sirtuin-1 knockout clones generated with different sgRNAs. * unspecific band. For statistical tests, a two-tailed unpaired Student’s t test was used throughout,
n.s. non significant; *p < 0.05; *'p < 0.005; ***p < 0.0005; ****p < 0.0001. (B and C) Error bars represent SEM throughout.
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2.3 Functional classification of memory CD8(+) T
cells by CX3CRI1 expression

2.3.1 Summary

CD8 T lymphocytes play a pivotal role in the clearance of intracellular microorganisms such
as viruses and intracellular bacteria. To provide the host with long term protection against

d?**. Depending on

reinfections of the same pathogen, memory T lymphocytes are generate
their functional, proliferative and trafficking characteristics, initially, memory T cell
subpopulations were classified into central and effector memory T cells based on their
lymphoid homing receptors (CD62L and CCR7) and their cytotoxic effector functions®.
However, this view has been extended with tissue resident memory T cells that do not
recirculate to the lymph node but possess both effector function and the capacity of self-
renewal®®. In addition, T cells with effector function are also required in the lymphoid tissue

267 leading to the question whether functionally

to protect for invading bacteria or viruses
distinct memory T-cell populations exist among CD62L+ central memory T cells in lymph
nodes.

In this study, the fractalkine receptor CX3CR1 was identify as a surface marker that
differentiates CD8+ T lymphocytes with cytotoxic effector function from those with
proliferative potential both in human and mice. Using transcriptome and proteome-profiling a
core gene and protein signature led to the identification of a CX3CR1+CD62Lhi memory T
cell population with direct effector function. Furthermore, this population resides in the lymph
node and locates to the subcapsular area where pathogens enter. In patients suffering from
chronic viral infections, the number of CX3CR1+ memory T lymphocytes correlates with
control of infection and response to immune therapy. CX3CR1-based functional classification

of memory CD8+ T lymphocytes will help to resolve the principles of protective T-cell

memory.

2.3.2  Contribution

In this collaborative effort our main contact partners were Percy Knolle, Jan Béttchner and
Marc Beyer from the University in Bonn. I performed the proteomic measurements and
analysis of four different CD8 T lymphocyte subpopulations. Together with Marc Beyer and

Felix Meissner, I contributed to the integrative analysis of the RNASeq and proteomic data
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sets. In particular, Figure 5 b-d, Supplementary Figure 5 a-b, and the proteomic method

sections.

2.3.3  Publication

This work was published in the journal Nature Communications in 2015.

Functional classification of memory CD8(+) T cells by CX3CR1 expression

Jan P Bottcher , Marc Beyer , Felix Meissner , Zeinab Abdullah, Jil Sander, Bastian Hochst,
Sarah Eickhoff, Jan C Rieckmann, Caroline Russo, Tanja Bauer, Tobias Flecken, Dominik

Giesen, Daniel Engel, Steffen Jung, Dirk H Busch, Ulrike Protzer, Robert Thimme, Matthias
Mann, Christian Kurts, Joachim L Schultze, Wolfgang Kastenmidiller, Percy A Knolle

Nat Commun. 2015 Sep 25;6:8306. doi: 10.1038/ncomms9306.
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by CX3CR1 expression
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Localization of memory CD87 T cells to lymphoid or peripheral tissues is believed to
correlate with proliferative capacity or effector function. Here we demonstrate that the
fractalkine-receptor/CX5CR1 distinguishes memory CD8 T T cells with cytotoxic effector
function from those with proliferative capacity, independent of tissue-homing properties.
CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory
CD87 T cells with effector function. We find CD62L'"C)<3CR1Jr memory T cells that reside
within lymph nodes. This population shows distinct migration patterns and positioning in
proximity to pathogen entry sites. Virus-specific CX;CR1T memory CD8 1 Teells are scarce
during chronic infection in humans and mice but increase when infection is controlled
spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will
help to resolve the principles of protective CD8%1 T-cell memory.
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| pon challenge with infectious intracellular microorgan-
isms such as viruses and intracellular bacteria, the
we’ immune systems mounts a rapid and commensurate
response characterized by an eatly innale infllammaltory response
that is followed by generation of pathogen-specific CD8 ™ T-cell
immunily. Such CD8 ™ T-cell immunily is imporlant o eliminale
or at least contain infection with intracellular pathogens'2, Memory
CD8T T cells generated in response to the initial pathogen
encounter survive in the absence of further antigen-specific
stimulation® but also survive during chronic infection and
continuous antigen challenge*. Memory CD8™ T cells provide
protection againsl re-infection with the same pathogen but may also
contribute to long-term control of infection if the pathogen cannot
be completely eliminated, such as during infection with herpes
viruses or hepalilis viruses. Initially, two discrele memory cpgt
T-cell populations were characterized by their distinct tissue
localization that are believed to be linked to their functionality:
central memory T cells (TCM) with proliferative potential that
localize to lymphoid tissues and effector memory T cells (TEM) with
direct cyloloxic effector funclions that reside in peripheral lissues”.
Consequently, TCM were distingnished from TEM by differential
expression of the lymphoid-tissue homing receptors CD62L and
CCR7 (ref. 5). Proliferation of memory T cells is required to
generate sufficient numbers of effector T cells to control infection,
whereas memory T cells with direct cytotoxic effector function are
important to provide immediate protection in infected tissues®.

However, this strict correlation between memory CD8™ T-cell
function and their localization was challenged by the finding that
T cells with effector functions in the memory T-cell population
directly mediate protective immunity® and the discovery of tissue-
resident memory T cells (TRM) that possess effector function and
have the capacity for self-renewal yet do not recirculate to lymphoid
tissues”. Furthermore, invasion of lymphoid tissues by bacteria and
vituses indicated the necessity of T cells with effector function to be
present in lymphoid tissues®, which cannot be explained by our
current understanding. Rather than looking at bulk T-cell
populations that localize Lo parlicular Lissues, more sophisticaled
distinction via surface markers is necessary to better understand the
mechanisms determining T-cell immunity. Attempts have been
made to establish phenolypic markers that predict the functional
properties of memory T cells®. Although distinct memory T-cell
populations that differ in their functional, proliferative and
traflicking characlerislics have been recognized!®!, il has not
been investigated whether functionally distinct memory T-cell
populations exist among CD62L ™ TCM in lymph nodes.

Here we report that the expression of the fractalkine receptor
CX;CR1 discriminates memory CD8T T cells with cytotoxic
effector function from those with proliferative potential both in
humans and mice. Using CX;CR1 together with CD62L as
markers, we determine a core gene and protein signature of
memory CD8*' T cells with cylotoxic effector functions. This
allowed us to identify a CX,CR1TCD62LM memory T-cell
population with direct effector function. This population is
stationary in the lymph node and locates to the subcapsular area
where pathogens enter. We find low numbers of CX;CRI™
memory CD8 T T cells with effector function in patients suffering
from chronic viral infection and high numbers in patients who
recovered from viral infection. Also in preclinical models of chronic
viral infection, that is, lymphocylic chotiomeningitis virus (LCMV)
clone 13 infection, numbers of CX;CR1 ™ memory CD8 ™ T cells
correlate with control of infection and response to immune therapy.

Results
CX;CR1 expression on memory CD8T T cells. We have
previously reported a unique murine memory CD§ T T-cell

2

population with proliferalive potential that is distinct from
TCM and is induced by non-professional antigen-presenting cells
in the liver but not lymphoid tissues'>. We reassessed our
previously published sel of whole-genome (ranscriptome dala
utilizing an analysis of variance (ANOVA) model to detect
differentially expressed genes as well as sell-organizing-map
analysis of gene expression profiles to identify genes specific for
memory T cells'. We found the fractalkine receptor CX;CR1
among genes coding for cell surface receptors that were most
upregulated within a memory-specific cluster of genes (Fig. la
and Supplementary Fig. 1A). CX;CR1 has been reported to define
subsels of myeloid cells, including monocyles and dendrilic cells,
in the blood and different tissues, such as the gut and lymph
nodes'3-15. So far, CX,CR1 expression on a protein level was
detecled on CD47 T cells residing in the lung or skinl®17,
However, Lo dale, this was not analysed in detail for memory
CD87 T cells, although published transcriptome analysis in
memory CD87 T cells indicated the expression of the Cxscr?
gene!®™ and CX,3CR1 was detected on terminally differentiated
cyloloxic effector T cells’’. To analyse the expression pallern
of CX;CRI1 in CD8T T cells during the course of infection
and memory formation, we used CX,CR1 HIGEE reporter micel3,
in which GFP expression correlated with CX;CRI1 protein
expression (Supplementary Fig. 1B).

In healthy mice, we observed GFP (CX;CR1) expression on
some antigen-experienced CD44 ™ but not naive CD44°% CD§ ~
T cells (Fig. 1b). The frequency of CX,CRI-expressing
T cells among total CD8T T cells increased after adenoviral
infection (d60) (Fig. 1b.c). Among CD44~ T cells, CX;CR1
cxpression was most prominent in CD87 T cells (Fig. 1d),
prompting us to study CX;CRI1 expression on antigen-specific
memory CD87 T cells in response to infection. After infection
with a recombinant adenovirus coding for luciferase and
ovalbumin (OVA), which results in hepatocyte infection that
can be monitored by iz vive bioluminescence measurement?!,
inn vivo activation of ovalbumin-specific QT-IS¥3CRI-GFP T ¢l
was observed al 2 days post infection (d.p.i.) as demonstrated by
increased CD44 expression. GFP (CX3CR1) expression, however,
was not detected before 5 d.p.i. when control over viral infection
had been achieved (Fig. le), as determined by reduction of it vivo
bioluminescence (Fig. 1f). The total numbers of GFP™
(CXsCR1F) T cells were highest at 5 d.p.i. and then gradually
decreased parallel Lo the tolal numbers of anligen-specific CD8 ™
T cells (Supplementary Fig. 1C) consistent with contraction.
Anligen-specific GFPT (CX,;CR1T) and GFP™¥ (CX;CR1™8)
CD87 T cells were found in the lymphoid lissue like in the
spleen but also in the blood and liver after viral infection
(Supplementary Fig. 1D). The GFP (CX;CR1) expression level
per CD8T T cell increased during this time by one log (Fig. le
and Supplementary Fig. 1E). These findings were corroborated
studying CX;CR1 expression on antigen-specific CD8 ™ T cells
generated from the endogenous T-cell repertoire. CX;CRI™
expression was observed after infection with adenovirus
(AdOVA) or Listeria monocytogenes (L.m.-OVA) on
OV A-specific memory CD8 7 T cells and after LCMV infection
on LCMV-gp33-specific memory CD8 " T cells (Supplementary
Fig. 1F). At 60 d.p.i. of CX,CR1 7/GFF reporter mice, the majority
of CD8 ™ T cells in the blood and spleen, which were specific for
OVA (afler AJOVA or Lm.-OVA inlection) or LCMV-gp33,
showed GFP (CX;CR1) expression (Fig. 1g and Supplementary
Fig. 1G). A similar separation in CX,CR171 and CX,;CRI™¥
populations was observed in memory CD87 T cells ﬁenemted
from 500 adoptively transferred naive OT-TWGCRI-GRP cpg~+
T cells (Supplementary Fig. 11I). Even >200 days after
AJOVA infection, antigen-specific GFPT (CX;CR1*1) and
GFP™8 (CX;CR1™E) memory CD87 T cells were found
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Figure 1| CX3CR1 expression on antigen-experienced memory T cells in mice and man. (a} Quantification of Cxscr! mRNA levels on CDA4%% najve OT-1
Tcells (n=5) and CD44+ memory OT-I T cells (n=3) at »>d45 post L.m.-OVA infection. **"P<0.001, unpaired t-test. (b-d) Frequencies of GFP~
Tcells in untreated or AJOVA i.v infected CX5CR1+/6 reporter mice (n=7) at 60 d.p.i. isolated from the spleen (b.c} and the blood (d). **P<0.01,
unpaired t-test. (@) C57BL/6 mice that had received 3 x 10° naive CDA4'™ CDAS.1+ OT-I3CRIGFP T colls 1 day before were infected with AdOVALUC
at day O and analysed for GFP(CX5CR1)/CD44 expression in OVA-specific CD45.17 OT-I%3CRIGFP T ¢alis at indicated time points. (F) In vivo
bioluminescence activity of mice (n = 7) from (&} demonstrating cfficient OVA-specific T-cell immunity against virus-infected hepatocytes. C57BL/6 mice
without adoptive T-cell transfer served as control. "P<0.05 and ***P<0.001, two-way ANOVA. (g) CX5CR1 /5P mice were infected with AdOVA
(n=10), Lm.-OVA (n=19) or LCMV WE (n=10). Frequencies of GFPT {CX3CR17) and GFP"®2 (CX3CR1"E) cells at 45-60 d.p.i. among splenic OVA-
specific CD44 1 CD8 ' Tcells (AJOVA and L.m.-OVA Infection) or gp33-specific CD44 ' CD8 ' Tcells (LCMV infection) identified by Dextramer staining.
(h) Frequencies of GFP and GFP™®8 CD45.1" cells at = 200 days post AJOVA infection of C57BL/6 wild-type mice (n = 5) that had received 103 naive
CDABA+ OT-ISX3CRVGH? colis bofore infection. (i} CX3CR1 expression in human CDASRO T CD3+ T cells isolated from the blood and (j} frequency of
CX5CR1Y and CX4CR1ME cells among human CD45RO+ CD8* Tcells (n=8). In scatter plots, each circle represents one mouse or patient, fluorescence-
activated cell sorting (FACS) plots show representative analysis for one mouse or patient per group. Data are representative for two or three independent
experiments (b,d-f, mean and s.d.) or have been pooled from two independent experiments (¢ f-hj, mean and s.c.m.). In scatter plots, cach circle
represents one mouse or a different human donor, FACS plots show representative analysis for one mouse or human donor per group.
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(Fig. 1h) arguing that both memory T-cell populations are long
lived. Importantly, we confirmed CX;CRI1 expression on T cells
in healthy human volunteers. Ilere, CX;CR1 expression was
also most prominenl on anligen-experienced CD45ROT
CD87 T cells with numbers varying among healthy individuals
(Fig. 1i,j and Supplementary Fig. 11). Taken logether, these dala
indicated that CX;CRI is expressed in a population of murine
and human memory CD87 T cells.

CX;CR1 expression identifies cytotoxic memory CD8 ™+ T cells.
As GFP (CX;CRI1) expression separales memory CD&™ T cells
into two populations (Fig. 1), we addressed the question whether
antigen-specific GFP ™~ (CX; CR1") and GFP™# (CX,CRI™¥)
memory CD8 T T cells generaled afler viral or baclerial infections
in CX,CR1 T/GF reporter mice had distinct functional proper-
ties. The ability Lo produce the cylokine interleukin-2 (IL-2) is
considered a hallmark of those memory T cells thal have
the potential to proliferate and generate T-cell progeny®®. We
found that GEP™8 (CX5CR1™%) memory CD8 T T cells were the
main producers of TL-2 upon re-stimulation, whereas GFPT
(CX;CRI1 ™) memory CD8 * T cells failed to produce significant

amounts of this cytokine (Fig. 2a and Supplementary Fig. 2A). To
directly test the proliferative capacity of GFPT (CX5CR17)
versus GFP"® (CX3CR1™E) memory CD8 ™ T cells in vivo, we
adoptively transferred both populations and analysed (heir
numbers after viral or bacterial infections. Transferred GFP"¢#
(CX5CR17%¥) memory CD8T T cells showed vigorous and
antigen-specific proliferation upon pathogen challenge, whereas
GEPT (CX5CR1™) memory CD8™ T cells showed much less
proliferative capacity (Fig. 2b). Similar results were obtained
using transgenic OT- 1653 k1 GFP_derived memory CD8 T T cells
after re-challenge with AdOVA infection (Supplementary
Fig, 2B).

Next, we investigated effector fanctions in GFP T (CX3CR1 ™)
and GFP™¥ (CX;CRI™8) memory CD8 1 T cells. In contrast to
IL-2 expression, only GFP* (CX;CR1T) memory CD8 7 T cells
at 60 d.p.i. (L.m.-OVA) constitutively expressed GzmB (Fig. 2¢
and Supplementary Fig. 2C), which is a hallmark of T cells with
cytotoxic effector _function®®.  Consequently, only GFP™
(CX,CR1H) OT-ICCCRIGIE ooy T cells showed potent
cyloloxic effector function directly ex vivo (Fig. 2d). After
a.doptlvc transfer, GFP T (CX,CR1 ™) OT-IV SX3C T” GFP memory
T cells but not GFP™¢ (CX,CR1™€) T cells conferred immediate

b
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Figure 2 | CX3CR1 expression separates memory CD8 = T cells with distinct functions. (ab) CXsCR1 +/GFP mice were infected with AdOVA (n=3),
L.m.-OVA (n=4) or LCMV WE (n=3). At 45-60 d.p.i, spleen-derived GFP~ (CX,CR1T) and GFP™E (CX,CR1"*E) memory T cells specific for OVA (after
AdOVA and L.m.-OVA infection) or for LCMV gp33 were obtained by FACSorting. (@) Ex vivo IL-2 production after stimulation with PMA/ionomycin.
7P 0.001, unpaired t-test. {b) Adoptive transfer of sorted OVA-specific or LCMV-specific CD8 ™ Tcells (2 x 10%) into €D901~ mice (n=4)
subsequently infected with AJOVA or LCMV. Determination of CD90.2 7 T-cell numbers at 8 d.p.i. in the spleen. *P<0.05 and **P< 0.01, unpaired t-test.
(c-e) Adoptive transfer of FACSsorted naive CD45.1 +CD44lew OT-|CR3CRTGFP T )15 (5 x 102) into CD45.2 " mice followed by L.m.-OVA infection. (e} At
45-60 d.p.i, CD45.17 Memory OT-IZSCRIGE T o5 from the spleen were analysed for intracellular GzmB expression (n=6}. **P < 0.01, unpaired t-test.
(d) OVA-specific cytotoxicity of sorted GFP ' and GFP"2 memory OT-I%3CRI-GFP T calls directly ex vivo. *P<0.05, ANOVA. (e) Adoptive transfer of
3% 10° sorted GFP* or GFP™2 memory OT-IS3CRIGFP T cells into mice (n=86) that were infected with AdOVALUC 4h before. In viva bioluminescence
activity was determined to measure T-cell effector function against virus-infected luciferase-expressing hepatocytes over time. AJOVALUC-infected mice
that did not receive T cells served as controls (n = 6). Data are representative for —two or three independent experiments. *P<0.05, two-way ANOVA. (f)
Challenge of mice harbouring CD45.17 Memory OT-I*3CR1 GFP T cells with AJGFP or AJOVA and 6 h later determination of GzmB expression in splenic
GFP ™ and GFP"®& memory OT-ICK3CRI-GFP T a5, Data are representative for two independent experiments (a,b,d,e, mean and s.d.) or have been pooled
from two independent experiments (cf mean and s.e.m.). In scatter plots of a-¢, each dot represents data from one mouse. Fluorescence-activated cell
sorting plots shown in d are representative for one mouse of a group of three or four mice per experiment.
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m vivo protection by rapid control of hepatocyle infection
with AdOVALUC (Fig. 2e). In contrast, GFP™2 (CX;CR1™%)
T cells did not control infection (Fig. 2e), which is consistent
with their lack of cytoloxic functions. Uj%un pathogen
re-challenge, GFP+ (CX,CR1t) OT-I®XCRIGER pemory T
cells showed further rapid (6h) increase of GzmB expression.
Interestingly, GzmB expression was also triggered by AdGFP
infection lacking the cognate antigen but was more pronounced
upon AAOVA infection (Fig. 2f), indicating that antigen-specific
restimulation was superior to virus-induced inflammation in
augmenting GzmB expression. Strikingly, GFP™¢ T cells
remained GzmB negative under such conditions (Fig. 20),
providing a rationale for the failure of this population to confer
protective immunity upon transfer (Fig. 2e). Interestingly, no
difference in expression of interferon (IFN)-v was observed
between GFP"8 and GFPT T cells (Supplementary Fig. 2D}.
Iaving established the functional segregation of memory CD8*+
T cells based on CX;CR1 expression, we next reconciled our data
with previous work that employed the homing-related molecules
CD62L and CCR7 to separale memory CD8T T cells inlo
functionally distinct populations.

CX;CR1 and CD62L identify four memory CD8% T-cell
populations. Memory T cells have been divided into two
populations based on the expression of CD62L and CCR7 that
allows CD62IMCCR7+ TCM to localize to lymphoid tissues,
whereas CD62LI°WCCR7™E TEM remain in the blood and
peripheral tissues®. Although tissue localization correlates
with expression of these markers, the separation of functional
properties between TCM to generate T-cell progeny and TEM
to show cytotoxic effector functions is less stringent®*12,
This led us to analyse GFP (CX;CR1) expression in
CD62LhCD127 T KLRG1 Mg TCM, CDe2LovCD127 T
KLRG1™® TEM and KLRGl1TCD87™ T cells derived from
naive OT-TCCRI-GEP T cells at 60 days after AdOVA infection.
AL this lime poinl, all KLRG1T effector-like CD8T T cells
showed high GFP (CX3CR1) expression (Fig. 3a). However, 25%
of TEM did not show GFP (CX;CR1) expression (Fig. 3a) and
30% of TCM showed GFP (CX;CR1) expression (Fig. 3a). Based
on this data we reasoned that CX;CR1 in combination with
CD62L might enable a highly specific discrimination of memory
T-cell subsels with distinct [unctional properties.

Indeed, using CD62L and CX5CR1 in combination, four distinct
populations of memory CD8 " T cells could be discriminaled in
mice and healthy humans (Fig. 3b,g). At 60 days after AdOVA
infection in mice, GzmB expression was exclusively found in
GFP~ (CX;CR1T) memory OT-ICF3CRIGEP T cig irrespective
of their CD62L expression level (Fig. 3c). In contrast, TL-2
production after restimulation was restricted to GFP™3
(CX5CR1™E) memory OT-ICX3CRI-GFE T colls again irrespective
of their CD62L expression levels (Fig. 3d). Along this line, only
GEP™¥ (CX,CRI1™8) CD62LM and GFP™E (CX,CRI™E)CDE2LY
memory QT-TSCCRIGEP T colls proliferated after adoplive
transfer and AdOVA infection (Fig. 3e). Of note, progeny
CD8 7 T cells were comprised of both, GFP™ (CX;CRI ) and
GFP™E (CX;CR1"8) T cells (Fig. 3f), indicating that CX;CR1-
expressing CD87 T cells can arise from GFP"8 (CX;CR1")
memory CD8 T T cells during recall responses afler viral infection,

Also in the polyclonal repertoire of human CD45R0O TCD8*
T cells, staining for CD62L and CX;CR1 identified four
cell populations (Fig. 3g). CCR7 expression was observed in
all CD62LM memory T cells and thus did not discriminate
CX;CR1™  from CX;CRI™® memory CD8T T cells
(Supplementary Fig. 3A). The relative frequencies of these four
populations varied between the 18 healthy individuals studied

(Supplementary Fig. 3B,C). Only CX;CRI D621 and
CX;CR1TCD621M human memory CD8™ T cells expressed
GzmB (Fig. 3h.,i). Accordingly, CD62L expression levels did not
idenlify GzmB-posilive cells among CD45RO* or CD45RA ™
CD87 T cells, whereas all GzmB-positive CD8 ™ T cells stained
posilive for CX3CR1 (Supplemenlary Fig. 3D). Furthermore, IL-2
production following restimulation was only observed in
CX3CR1"E memory CD8 7 T cells, although we observed more
prominent IL-2 production in CX3CR1M‘5CD62T}“ compared
with CX,;CRIMECDE2LIW CD8 ™ T cells (Fig. 3i). In mice,
several markers, such as CD27, CD28, CD127, and the activation-
associated isoform of CD43 (1B11) have been reported lo
correlate with CD8 T T-cell functionality®. As the expression
of these markers has not been investigated within CD62L + TCM,
especially nol in humans, we evalualed their expression in
comparison with our CX;CRl-based separation on human
memory T cells. In human memory T cells, CD43 expression
was rather high in CX;CR1™ CD8 T T cells, whereas CD27
showed higher expression on CX;CRI™2 CD8T T cells
(Supplementary Fig. 3EF) indicaling that the cofre;;',ulation of
CD43 and CD27 on human memory CD8 ™ T cells®* does not
allow for clear cut separation with regard to functionality as
CX;CR1-based separation. CD127 expression levels were slightly
higher in CX;CR1"8 T cells independent of CD62L expression
levels (Supplementary Fig. 3E,F) consistent with previous rcPons
on CD127 expression on long-lived central memory T cells* %,
Also, CD28 expression was slightly increased on CX;CR1™#
T cells (Supplementary Fig. 3EF) conlirming the increased
expression found previously on TCM®?!, Overall, beyond the
resolution achieved by CD62L or other T-cell surface markers,
CX;CRl expression precisely classifies memory CD8™
T cells into two distinct populations in mice and humans
independent of their tissue-homing properties, one with cytotoxic
effector function but little proliferative capacity, the other
with proliferative capacity but no cytotoxic function. To
address this notion in an unbiased manner, we decided
lo apply transcriptomic and proleomic analyses of human
memory CD81 T cells.

Core signature of human CX;CR1" memory CD8™ T cells.
To further understand whether CX;CR1 expression identifies
distinet populations of CD8*1 T cells, we performed mRNA-
sequencing of human naive CDE2LMCD4SRA TCDE T T cells,
CX,CRItCD62LM  CD45ROTCDE* T cells, CX,CR1™
CD62LY  CD45ROTCD8T T cells, CX;CR1MECD62LN
CD45ROTCD8 ™ T cells and CX,;CRl"EgCD62L]"WCD4SRO7
CD87 T cells, and assessed variable genes by an ANOVA model
(Fig. 4a). Principal component analysis of variable genes within
the data set clearly revealed one distinct population of
CX3CR1TCD8™ T cells irrespective of their CD62L expression
(Fig. 4b). Only in the CX;CRI™ECD45RO™CD8™ T cell
populations, CD62L discriminated two separate populations,
albeil they were more closely related to each other than to naive
CD62LM CD45RATCD8T T cells and the CX;CR1™
CD45RO T CD8 ™ T-cell populations. Ilierarchical clustering of
variable genes shown as a heat map (Fig. 4c) confirmed these
findings as naive CD45RATCD8 ™ T cells showed the most
significant difference Lo the other four CD45RO ™ T-cell popu-
lations. CX,CRIM™SCD62LMCD8 T T cells and CX;CR1M€8
CD62L1*YCD8 T T cells had distinct gene expression patterns,
whereas gene expression patterns of CX;CR1 T CD62LMCD8 + T
cells and CX;,CRl_CDSZLI“WCDS*' T cells were almost iden-
tical. Consistent with these results and with the uvsefulness of
CX;CR1 as marker for functionally distinct T-cell populations, we
found that CX;CR1 expression was similar to CD43 expression,
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CD45.1+ OT-I-derived KLRG1+ T cells, CD62L1°WCD127~ CD44 + memory T cells (TEM) and cDe2LhcD127+CD44 + memory T cells (TCM} isolated
from the spleen. (b) Representative analysis of CD62L and GFP (CX5CR1) expression in CD127 ~ CD44 F memory OT-ICR3CRI-GFP T a5 from a. (e, d) Four
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population (empty circles) served as control. n— 3 or 4 for each group: *P < 0.05, **P < 0.07, ANOVA. (e.f) Adoptive transfer of identical numbers (2 x 103
cells) of FACSorted CD45.1 " cells from the four populations of memory T cells into CD45.2 7 mice (n=4) that were subsequently infected with AdOVA.

(e) At 8 d.p.i., total numbers of CD45.1% T cells and (f) frequencies of CX,

CR17 cells amang CD45.1+ T-cell progeny was determined in the spleen.

7P< 0,05, ""P<0.001, ANOVA. (g) Representative analysis showing CD62L and CX5CR1 expression in human CD45RCTCD3 T CD8 T PBMCs. (h,i} Flow
cytometric determination of expression of GzmB in the four cell populations stratified by CD62L and CX;CR1 expression. ***P< 0.001, ANOVA. (§) IL-2
expression In FACSorted cells from these four T-cell populations subjected to PMA/ionomycine stimulation for Sh., *P<0.01 and ***P <0.001, ANOVA,
Fluorescence-activated cell sorting (FACS) plots are representative for three {a-€) or five (g.h) independent experiments. Data from one of three
independent experiments are show in e-f each dot represents T cells from one mouse. (ij) Pooled data for T cells from n=6 individual donors.

whereas other markers for memory T cells, such as CD27, CD28
or CD127, were downregulated in CX3CR1™ CD8F T cells
independent of their CD62L expression (Supplementary Fig. 3G).
Focusing on differentially expressed genes as determined by the
ANOVA model on present genes directly comparing CD62L "
CX3CRL™ CD8™ T cells or CD62L~ CX3CRL ™ CD8 T T cells
to naive T cells and visualizing the results by ratio/ratio plots,
further confirmed that CX;CR17CD8T T cells had almost
identical expression pallerns irrespective of CD62L expression
levels (Fig. 4d and Supplementary Data 1). In contrast, CD62LM
and CD62L1% CD8 T T cells lacking CX;CR1 showed differential
expression of a subset of genes (Fig. 4e and Supplementary Data
1). To determine a core signature for the CX;CR1 7~ CD45RO ™
CD87 T cells, we performed an analytical approach combining
the results of the ANOVA model with either co-regulation ana-
lysis or weighted network analysis and subtracted genes also

6

enriched in CX3CR1 ™ T cells to identify differentially expressed
genes (Fig. 4f). This approach revealed a set of 363 signature
genes (Supplementary Data 2) with high expression in CX3CRI1 ™
memory T cells, intermediale to low expression in CX3CR1~
memory T cells and low to absent expression in naive CD8 ™ T
cells (Supplementary Fig, 4). We visualized genes of this CX;CRI1-
associated core signature belonging to functional categories
including T-cell cytotoxicity markers, NK-cell markers, T-cell
aclivation-associated molecules, adhesion molecules and
transcriplion faclors as heal maps of z-lransformed expression
values (Fig. 4g). This signature included known cytotoxic
effector molecules such as FAS-L, perforin and GzmA/B/H, or
transcription factors associated with effector function, such as
TBX21, BATF, RUNX3 and EOMES, but also other molecules
whose relation lo CD8 * T-cell effector has not been studied yel
(Fig. 4g and Supplementary Data 2). Moreover, to better
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Figure 4 | Transcriptome analysis reveals a core signature of human CX;CR1-expressing memory CD8 ™ T cells with effector function. (a) Scheme
describing the workflow for RNA-seq data preprocessing and filtering. (b} Principal component analysis (PCA) based on present and variable genes.
(¢) Heat map showing the z-transformed expression values of present and variable genes, coloured from blue to red. (d) Ratio-ratic plot of logl0-
transformed mean ratios of genes that are differentially expressed (fold change (FC) < — 2 or >2; FDR-corrected P-value <0.05) comparing CD62L ™
CX3CR1™ Teells versus naive Tcells (x axis) or CD62L~ CX3CR1 T cells versus naive T cells (y axis). (e) Ratio-ratio plot of log10-transformed mean
ratios of genes being differentially expressed FC < — 2 or >2; FDR-corrected P-value <0.05) comparing CD&2L T CX3CR1~ Tcells versus naive Tcells {x
axis) or CD62L~ CX3CR1~ Tcells versus naive T cells (v axis). (f) Schema describing the workflow for generating the transcriptome core signature for
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z-transformed for visualization and are coloured from blue to red. (h) Network visualization of Gene Ontology Enrichment Analysis based on the 363 core
signature genes using BINGO and EnrichmentMap. Enriched GO terms are depicted by red nodes, where colour and size represent the corresponding
FDR-adjusted enrichment P-value (g-value). Overlap of genes between nodes is indicated by edge thickness.
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understand which biological processes might be linked Lo the core
signature of CX;CR1 ™ CD45RO TCD8 ™ T cells, we performed
Gene Ontology Enrichment Analysis (GOEA) followed by net-
work visualization (Fig. 4h). The major clusters ol biological
processes we obtained are compatible with an activated immune
cell including Gene Onlology (GO) Llerms associaled with
immune cell activation, immune response, defense response,
cytolysis, adhesion, response to stress, but also regulation of cell
death and cell death/apoptosis. Taken together, the genome-wide
analysis of gene expression defined a common gene signature that
is shared by human CX;CRI1 TCD45ROTCD8™ T cells
irrespective of their CD62L expression thal have cytoloxic effec-
tor function.

Next, we performed proteome analysis of these T-cell
populations Lo establish a global protein profile of the CX3CR1*
memory CD87 T cells (Supplementary Data 3 and
Supplementary Fig. 5A). Using the identical bioinformatical
approach for data analysis (Fig. 5a), we observed a strong
similarity ~ between  CX;CR1 +eD62LM  and  CX,CRIT
CD62L1°CD45ROTCD8 ' T-cell populations by principal
component analysis, with CX;CR1"® CD62L1%" T cells being
most closely related, whereas CX,CRI™$CD62LM and naive
CD8 ™ T-cell populations were more distinct (Fig. 5b). This was
reflected by hierarchical clustering of variable proteins as both
CX;3CR17CD8 ™ T-cell populations showed close similarities,
whereas CX;CR1"8 CD62L1 and naive CD8 ™ T cells had clearly
different gene expression patterns and CX;CR1™E CD62[1%
T cells revealed a pattern in-between both (Fig. 5¢). Visualization
of changes in gene or prolein expression by volcano plols
substantiated that separation of memory CD8T T cells into
CX,CR1 ™ and CX,CRI1™¢ cells is more powerful than separation
into CD62LM and CD62LY cells to identify genetically distinet
populations (Supplementary Fig. 5B). We next investigated to
which extent candidate molecules from the genome-wide
transcriptome core signature were also present in the proteome.
Similar to previous findings in other cell types, concordance
of expression increased wilh elevaled expression of mRNA
and protein®® (Fig. 5d). Of the 363 genes being part of the
mRNA core signature, 189 were detected by proteome analysis
(Supplementary Data 4). Using only those mRNA core signature
genes and plotting fold-changes between CX3CR1 ™ and naive
CD8T T cells on mRNA and protein levels revealed that the
majority of these cell-lype characlerizing genes demonstraled
concordant gene regulation (Fig. 5e).

To [urther validate these f(indings, we nexl generaled a
proteome-based signature for CX3CR1* CD8 " T cells following
the approach visualized in Fig. 4a, which resulted in 165 proteins
(Supplementary Data 5). We then used these proteins to annotate
the corresponding mRNA data for plotting fold-changes between
CX3CRL ™ and naive CD8 ™ T cells on protein and mRNA levels
(Fig. 5f). Again, except for seven genes, we found concordant
gene regulation between proteome and transcriptome suggesting
that post-transcriptional regulation is not highly relevant for
these core signature genes in CX3CR17™ T cells, Next, we
determined the overlap of both approaches to reveal a set of 65
signature genes to be highly upregulated in CX3CR1 ™" T cells
both on mRNA and protein level (Supplementary Data 6).
Functionally, these genes are best described by GOEA with the
lerms immune cell aclivalion, immune response, delense
response, cylolysis, cell adhesion and chemolaxis reminiscent
with an activated immune cell (Fig. 5g). Taken together, this
mathematical modelling of gene and prolein expression demon-
strates the value of CX;CR1 as a marker to identify distinct
populations of memory CD87 T cells that correlate with their
functional properties. Furthermore, we establish a core gene and
protein signature that identifies memory CD87 T cells with

8

cylotoxic effector functions. Finally, we idenltify a close similarity
between CX;CR1-expressing memory T cells irrespective of their
CD62L expression.

CX,CR1™ CD621Y CD8T T cells are a resident effector
memory population in lymph nodes. CX;CR1 ™ CD62LMCDS *
memory T cells closely resembled CX;CR1TCD62L°"CD8 ™
memor;‘yr T cells but were clearly distinct from CX;CR1%#
CD62L"CD8 ™ memory T cells in [unclional assays (Fig. 2) and
transcriptome/proteome analyses (Figs 4 and 5). As indicated by
their CD62L expression, we investigated whether CX;CR17™
CD8" memory T cells were present in lymph nodes of
CX;CR1 /9P reporter mice. Sixty days after viral or bacterial
infection, GEP = (CX;CRI ™) CD62LMCD8* T cells constituted
about 20-40% of antigen-specific memory CD87 T cells in
lymph nodes (Fig. 6a,b and Supplementary Fig. 6A). Similarly, we
delecled GFP* (CX;CR1 ™) memory CD8 ' T cells in the while
pulp of the spleen (Supplementary Fig. 6B). Although little is
known about the heterogeneity of memory T cells present within
lymph nodes, two distinct positioning and migration patterns
have been described®. Therefore, we investigated whether
CX;CR1T and CX,CR1™8 CD8~ memory T cells differed in
their positioning within the lymph node. Confirming our
previous results®, we found that CD8™ memory T cells were
nol localed in the deep paracorlex as naive T cells, bul instead
were f[ound at the peripheral paracortex and the subcapsular sinus
area. This differential positioning of memory versus naive CD§ ™
T cells was even further pronounced for CX,CRLT memory
CD8 ™ T cells (Fig. 6c,d). CX;CR17CD8 1 memory T cells had a
lower velocity and scanned their environment more slowly than
CX;CR1"E CD8 ™ memory T cells, as analysed by intravital two-
photon microscopy (Fig. 6¢ and Supplementary Movie 1). We did
not observe CX;CR1™CD8 T memory T cells exiting the lymph
node, which prompted us to investigate the transit time of
memory T-cell populations in the lymph node. We therefore
blocked T-cell entry into lymph nodes by anti-CD62L-antibody
application (Supplementary Fig. 6B,C). As a result, the numbers
of naive CD8T T cells and to a lesser extent of GFP™8
(CX5CR1"¥) memory CD81 T cells declined in lymph nodes
(Fig. 6Lg and Supplemenlary Fig. 6C,D). The numbers of GFP ™
(CX,CR1H) memory CD8%' T cells, however, remained
unaltered over a period of 6 days (Fig. 6[,g and Supplementary
Fig. 6B,C). Taken together, CX;CR1 T memory CD62LMCDS ~
T cells represent a so far unrecognized lymph node-resident
T-cell population positioned in vicinity of CD169 ™ macrophages
at the subcapsular sinus in anticipation of pathogens that
invade via the lymphatic system. Having established CX;CRI
as a marker thal idenlifies memory CD8% T cells wilh
cytotoxic function across tissues, we next aimed to analyse the
abundance of such cells in the context of resolved and chronic
viral infections.

Infection control correlates with CX;CR17™CD8 ™ T-cells. We
investigated the frequencies of virus-specific CX;CR1TCD§ ™ T
cells in patients suffering from chronic viral infection, such as
chronic Hepatitis B and chronic Hepatitis C. As expected, we
could only rarely detect virus-specific CX;CR1 1T CD8F T cells in
the blood of these patients (Fig. 7a), in conlrast (o cytomegalo-
virus (CMV)-specilic CD87 T cells from (he same donors
(Fig. 7a). In some but not all chronic Hepatitis C patients, we
found few hepatitis C virus (HCV)-specific CD8 T T cells that
expressed CX;CR1 and also co-expressed GzmB as well as per-
forin (Fig. 7b,c and Supplementary Fig. 7A), whereas CX;CR1"8
[ICV-specific CD8' T cells did nol show GzmB or perforin
expression (Fig. 7b,c). We did not detect GzmB or perforin
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Figure 5 | Proteome signature of human CX3CR11 memory CD8 ' T cells with effector function. (a} Scheme describing the workflow for analysis of
proteome data. (b) Principal component analysis (PCA) based on present and variable proteins. (€) Heat map showing the z-transformed expression values of
present and variable proteins, coloured from blue to red. (d) Histogram of normalized RNA-seq expression values of present genes subdivided according to the
corresponding log2-transtormed protein expression. Violet bars illustrate expression values and amounts of all present transcripts, whereas green-shaded bars
represent expression values and amounts of transcripts matched to proteins. (e) Fold change rank plot of RNA-seq signature genes (red) with overlay of ranks of
the corresponding proteins (black). Proteins having a log2-fold change lower than O are marked in blue. {f) Fold change rank plot of protein signature genes {red)
with overlay of ranks of the corresponding RNA-seq genes (black). Genes having a log2-fold change lower than O are marked in blue. (g) Network visualization of
Gene Ontology Enrichment Analysis using BINGO and EnrichmentMap based on the 65 genes overlapping between the transcriptome and proteome signatures
Enriched GO terms are depicted by red nodes, where colour and size represent the corresponding FDR-adjusted enrichment P-value (g-value) <0.025.
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Figure 6 | CX5CR1 identifies a distinct population of CD8 ™ memory T cells in lymph nodes. (a) Quantification of GFP~ and GFP"™® memory
OT-ICX3CRIGH T calls within lymph nodes =45 d.p.i. with AdOVA (n=7) or L.m.-OVA (n=3). (b} Representative flow cytometric analysis of GFP and
CD62L expression in memory OT-IZBRIGFP T alis jsplated from lymph nodes. (€} Confocal immunofluorescence images of popliteal lymph nodes from a
mouse harbouring CXsCR1™8 and CXzCR1T memory OT-ICX3CRIGFP T calls. Scale bar, 200 pm; zoom 100 pm). (d) Relative distance of CX3CR1™*2 and
CXsCR1F memory CD8 ™ T eells from CD169+ M within popliteal lymph nodes. ***P < 0.001, t-test. (e) Track length and average speed comparing
CX3CR1™2 and CX5CR1T memory CD8T Tcells in the steady state in the interfollicular area over Th. ***P < 0.001, t-test. (f.g) At 60 days after adoptive
transfer of naive CD45.1™ OT-|FGCRIGFP T gl (1% 10%) and AJOVA infection, mice were Injected daily with anti-CD&2L neutralizing antibody

(100 pg per mouse 1.p.) or PBS over a period of 6 days (n=3 per group). (f) Quantification of total numbers of endogenous naive Ch44vcpg
Tcells, GFP8CD44 | memory OT-IBRIGRP T callg and GFP I CD44 ' memory OT-IZ3CRIGFP T calls in inguinal lymph nodes. *P<0.05, ***P<0.001
t-test. (g) Confocal immunofluorescence images of popliteal lymph nodes at 6 day after anti-CD62L antibody treatment. Scale bar, 200 pum. Data from one
of at least two independent experiments are shown.
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Figure 7 | Presence of CX;CR1™ CD8 ™ T cells during acute resolved and chronic viral infection in man and mouse. (a-e) CD8 ™ Tcells isolated from
the blood of human patients chronically infected with HBV or chronically infected with HCV were analysed for virus-specific CD8 ™ T cells identified by
tetramer staining. CMV-specific CD8 T Tcells from the same patients served as control. (a) Frequency of virus-specific CX;CR1T CD8 T Teells. *P< 0.05,
**P< (.01, t-test. (b) Flow cytometric analysis of intracellular GzmB expression in CXsCR1 T and CX3CR1™E virus-specific CD8 ™ Tcells. **P < 0.0, t-test.
(e.d) Representative fluorescence-activated cell sorting (FACS) plots showing intracellular GzmB and perforin (Prfl) expression in (€} HCV-specific CD8 ™+
Tcells and (d) CMV-specific CD8* Tcells. (&) Flow cytometric analysis of PD-1 expression in CX3CR1T and CXsCR1™2 virus-specific CD8 T Tcells. (f-h)
Analysis of LCMV gp33-specific CD8™ Tcells from CXSCR'\_/GFP mice 40 days after acute LCMV infection (WE strain; n = 6) or chronic LCMV infection
(Clone 13 strain, n=7). () Quantification of total gp33-specific CD8 ' Tcells in the liver and spleen. *“P< 0.01, t-test. (g) Frequency of GFP ' (CX3CR11)
and GFP"®2 (CX3CR1"®2) cells among gp33-specific CD8T T cells. *P<0.05, "*P < 0.01, t-test. {h) Frequency of splenic GFPT (CX3CR17) and GFP"#2
(CX5CRI"®8) gp33-specific CD8™ Tcells in response to anti-IL10R antibody treatment. *P<0.05, ***P<0.001, ANOVA. a,b,e show data for at least five
individual patients in each group, ¢.d show representative FACS plots for individual patients. Data in f-h is pooled from fwo to three independent
experiments, error bars depict s.e.m.

expression in hepatilis B virus (HBV)-specific CD8 T cells in the
blood of patients chronically infected with HBV (Fig. 7b). In
contrast, we found many CMV-specific CD87T T cells from the
same donors who co-expressed CX5CR1 T and GzmB and per-
forin (Fig. 7b,d). These results corroborated our findings that
CX;CR1™ T cells have cytotoxic function and directly control
viral infections. Of note, PD1 was similarly expressed in
CX,CR1™ and CX;CRI™ virus-specific CD8 T T cells in

| 6:8306 | DOI: 10.1038/ncomms9306 | www. nalure.com/nalurecammunicalions

chronically infected patients (Fig. 7e), indicaling that CX;CR1
mighl more accuralely reflect T-cell functionality than PD1
expression. These analyses revealed that virus-specific CX;CR1 ™
GemB™ CD87 T cells are found in controlled CMV infection
and at low abundance during chronic viral infection in humans.

We next studied CX;CR1 expression on virus-specific CD8 ™
T cells during experimental infection with different LCMV clones
in mice that is either resolved after acute infection (LCMV WE)
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or develops into chronic infection (LCMV clone 13;
Supplementary Fig. 7D). At 40 d.p.i, we detected significantly
more LCMV-gp33-specific CD8T T cells in WE-infected
compared with Clone 13-infected CX5CR1 /G reporter mice
in both the spleen and the liver (Fig. 7f). Among those, the
frequency of GFP™ (CX;CR17) CD8 ™ T cells was significantly
increased in mice that successfully cleared acute LCMV WE
infection compared with clone 13-infected mice (Fig. 7g). In
chronically infected mice, GFP™5 (CX;CR1"%) CD8T T cells
were abundant among LCMV-specific T cells at 40 d.p.i. (Fig. 7g).
Next, we analysed whether successful therapeutic intervention
would correlate with re-emergence of cytotoxic CX;CR1 TCD8 ™
T cells. To this end, we treated LCMV Clonel3-infected mice
with anti-IL-10 receptor antibodies. In line with published
data®® (his treatment led Lo a two-log reduction in viral load
(Supplementary Fig. 7E) and to an increase in the total numbers
of LCMV-specific CD8 7 T cells (Supplementary Fig. 7F). This
increase in LCMV-specific CD8 T T cells was followed by an
augmented frequency of GFPT (CX,CR1T) LCMV-specific
CD8T T cells (Fig. 7h). Together, these results indicale that
virus-specific CX,CR1 T memory T cells are also present during
chronic viral infections albeit at much lower numbers than in
resolved infection and that their numbers increase during
successful therapeutic intervention.

Discussion

Discrete memory T-cell populations with complementary
functions, execuled in distinct anatomic locations, cooperate (o
mediate immune protection from repeated infection with
intracellular pathogens. Lymphoid tissue homing receptors such
as CD62L and CCR7 have been employed to distinguish between
CD62IMCCR7 T TCM that home to lymphoid tissues where they
proliferate upon re-challenge and CD62LIYCCR7™E TEM that
remain in the circulation and peripheral tissues where they
mount immediate cytotoxic effector function®. We identify
CX;CR1 as Lhe marker thal differentiales memory CD8T
T cells with direct cytotoxic effector function generated in
response to viral or bacterial infections. CX;CRl expression
allows their discrimination from memory T cells with
proliferative potential. Using CX3CR1 together with CD62L as
markers, it is possible to stratify memory CD8 ™ T cells in man
and mouse into four populations. Genome-wide lranscriplome
and in-depth proteome analyses provided independent evidence
that CX;CR1 separales [unclionally distinct memory CD8T
T-cell populations and allowed us to establish for the first time
a core gene and protein signature of memory CD8 ™ T cells with
cytotoxic effector function. Based on these results, we identify a so
far unrecognized memory CX;CRI Tcpe2tt CD8 T T-cell
population with cytotoxic effector function that localizes to the
subcapsular sinus of lymph nodes.

Human and mouse CX;CR1T CD8™ T cells co-expressed
cytotoxic effector molecules (GzmB and perforin) and showed
polent cytotoxicity but had no proliferative capacity. Expression
of CX3CR1 on virus-specific CD8 ™ T cells appeared shortly after
clearance of experimental infection, then steadily increased to
reach a plateau 2 weeks and was still found up to 200 days after
infection. This suggests that early effector T cells, which are
generated during the initial phases of the pathogen-specific
immune response®®, do nol express CX;CR1. However, CX;CR1
is expressed shortly thereafter, presumably on both effector
T cells and early memory T cells.

After clearance of infection, only long-lived memory CD8 ™
T cells with immediate cytotoxic effector function expressed
CX3CR1. Some but not all CX;CR1' memory T cells also
showed expression of KLRGI, consistent with the reported
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expression  of KRLGl on some memory T cells®.
CX;CR1TCD8 T T cells found 60 days after infection showed
a heterogeneous expression pattern of CD127, indicating that
these cells may not exclusively depend on homeostalic survival
signals delivered through the IL-7 receptor?’. Instead CX;CRI
ilsell may promotle survival of memory CD8 ™ T cells, similar Lo
the dependence of survival myeloid cells on CX;CRI
expression®®.  Expression of CX3CR1 has been reported
previously for mgeloid cells, such as monocyles, macrophages
and 1'1*|icmgliaj7’j , but also for CD4 T helper T cells that cause
persistent airway inflammation’” and for terminally differentiated
effector CD8 T T cells®»*. Furthermore, CX;CRI is important
for leukocyte migration and adhesion®® and recruitment of
cytotoxic T cells to sites of inflaimmation is achieved through
CX;CL1-expressing cells?®¥. We did not find evidence for
changes in the functional phenotype of CX,CR1-deficient
memory CD8%1 T cells, indicating that CX,CR1-mediated
signals are not the cause of direct cytotoxic effector functions in
memory T cells.

Nolwithstanding, CX;CR1 expression accuralely dislinguished
human and mouse memory T cells with direct cytotoxic
effector functions from those with proliferative potential.
Together with CD62L expression levels, four CD45ROT CD8 ™
T-cell populations can be separated: CX;CR1"# CD62LMCDg ™,
CX;CRI™ECD62L'Y, CX,CR1FCD62LM  and  CX;CR1™
CD62L1°Y CD8* T cells. Transcriptome and proteome analysis
of these cell populations revealed that CX;CR1 was superior to
CD62L Lo dassily distinet memory CD8™ T-cell populations
based on [unctional properties. This allowed us Lo establish a core
signature shared by memory CD8%1 T cells with cytotoxic
function independent of their tissue localization. This core
signature consists of 363 genes and contains granzymes, perforin,
FASL and IFN-y. The list further entails genes coding for
transctiption factors associated with effector function such as
Tbx21, Batf, Nfat, Runx3 (refs 41-43) and surface molecules
found on NK cells such as CD57 (B3GATL1), CDI160, killer cell
lectin receplors and NKG7 (ref. 44) or signalling molecules such
as SLAM genes that participate in NK cell function and T -ell
differentiation?®. Many of the core signature genes are also
present in the proleome. Some proleins in the core signalure,
however, are not found in the gene signature such as s100
proteins, which exert alarm functions upon further oxidative
modificalions®®, Although expression of these molecules known
to be related to cytotoxic effector functions confirms the
CX;CRI1-based core signature, this list will help lo reline
human immune moniloring lo guide immune therapies and
initiate research into molecular pathways not yet associated with
cytotoxic memory T-cell function.

CX;CR1 expression was found on CDE210% a5 well as
CD62LM memory CD8™ T cells and transcriptome and
proteome profiles of these two cell populations were almost
identical. Based on these analyses both CX;CR1 ™ CD62!°% T cells
and CX_ECRI"'C,D62hi memory T cells are best described as
memory T cells with effector function. High CD62L expression
suggested that some CX;CR1Tmemory T cells with effector
function could localize to lymph nodes. Indeed, CX;CR1™
memory CD8 T T cells were found in lymph nodes more than
60 days after viral and bacterial infection. These CX;CR17CD8 ™
T cells localized to the subcapsular sinus and showed prolonged
and conlinuous inleractions with CD16S T macrophages, thus
taking a strategic position where pathogens entering lymphoid
lissues via afferent lymphaltics are in first contact with immune
cells®. Tt is possible that CX;CR1T CD8™ T cells in the lymph
node may contribute to pathogen-specific immunity through
immediate production of IFN-y, that is required for rapid
initiation of immune responses®!”, after recognizing subcapsular
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macrophages (cross)presenting microbial antigens. Such rapid
induction of IFN-y may initiate CXCL9-mediated recrnitment of
CXCR3-expressing memory T cells with proliferative potential®®
thereby causing limely induction of T-cell expansion upon local
pathogen encounter in lymph nodes. They may further help to
conlain pathogens within this analomic compartment through
killing of infected macrophages®. CX;CR1TCDe2LM ¢Dg™
T cells may therefore complement innate lymphoid cells to
rapidly mount immune responses in the lymph node®. Of note,
CX;CR1™ CD8 ™ T-cell numbers in lymph nodes did not decline
despite blockade of lymphocyte re-entry with function-blocking
CD62L antibodies, which suggesled that these cells remained in
lymph nodes for long periods of time. Alternatively, CX;CR1 ™+
CD8 T T cells might be superior to CX;CR1™# CD8 T T cells in
their ability to enter lymph nodes via alternative, CD62L-
independent routes. The mechanisms determining positioning
and retention of CX3CR1™ CD87 T cells in lymph nodes and
the role of CX;CR1T CD8T T cells in lymphoid tissues for
induction of pathogen-specific immunity might be assisted by the
CX,C chemokine interface® bul require further investigation.
Another memory T-cell population (TRM) with effector
function is resident in epithelial tissues like the skin, gut and
lung after local infection®®%!, TRM develops locally through
signalling by TL-15 and transforming growth factor-p from
KLRG1"8 T cells and are identified by expression of CD103 and
CD69 (ref. 52). Both markers are absent from the core signature
for memory CD8™ T cells with direct cytotoxic function.
Furthermore, the core signature of TRM>? is distinct [rom the
core signature of CX;CR1™ CD8™ T cells. This suggests (hat
TRM and CX;CR1T memory CD8T T cells with cytotoxic
effector function develop via separate pathways, which is
supported by the expression in CX;CR1T CD8™ T cells of
SMAD?7 that regulates transforming growth factor-p-induced
signalling®. Our finding of CX;CRIMECD62LIOVCDS T T cells,
however, as memory T cells with proliferative potential that do
not recirculate to lymphoid tissues and lack KLRGI1 expression,
may indicale thal these cells are a source for TRM in epithelial
tissues. As CX;CR1™BCD62LM memory CD81 T cells in
lymphoid tissue give rise to CX3CR1T T cells with cytotoxic
function, it is possible that CX;CRI™ECDE211WCDE T T cells in
response to local cues in epithelial tissues give rise to TRM, which
provide local tissue protection independently from cytotoxicity b‘zr
IEN-y-medialed induction of anti-bacterial and anli-viral genes™*.
Chronic wviral infection develops because of the immune
syslem’s inability to eliminale or conlrol acule viral infeclion.
Among the many faclors contribuling Llo such failure
of immunity, deletion of virus-specific T cells and development
of dysfunctional T cells with high expression of co-inhibitory
receptors, such as PDI, TIM3 or CTLA4, leading to a
dysregulated pattern of gene expression>, are believed lo be
key for chronicity of viral infection®*%, In palients with chronic
HCV infection, we found low numbers of circulating virus-
specific CX;CR1TCD8™ T cells that co-expressed GzmB and
perforin, Only few virus-specific CX;CR1TCD8 ™ T cells, which
lacked GzmB expression, were detected in patients with chronic
IIBV infection, whereas high numbers of GzmB-expressing
CX;CR17CD8™ T cells were found in CMV-specific CD8™
T cells. PD1 expression was similar on both, CX3CR1 ™ and
CX3CR1™8 virus-specific CD8 T T cells, indicaling that CX5CR1
expression may help lo dilferentiale belween PD1 as marker for
recently activated T cells or as marker for dysfunctional T cells.
Experimental LCMV infection studies in mice revealed a high
ratio of virus-specific CX3CR1 7 to CX;CR1™E CD8™ T cells in
resolved infection, whereas an inverted ratio was observed during
chronic LCMV infection. It remains to be determined whether
conversion from CX;CRI T to CX,CR1™8 CD8T T cells can
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occur and causes the observed decrease in CX;CR17CDS8™
T cells in chronic infection. Tn contrast to the almost identical
transcriptome and proteome profiles of CD62LMOCX,CR1~
CD8 7™ T cells, the profiles of CX;CR1 MeECD62LIY CD8 + T cells
and CX;CRl“"gCDSZLI“ CD8T T cells were distinct. It is
possible (hat CX;CR1™ECD621X¥CD8 ™ T cells comprise a
heterogeneous population of cells that contain T cells with
proliferative potential that do not relocate to lymphoid tissues but
also T cells that were previously CX;CR1 *. Blockade of TL-10
signalling, which is known to strengthen anti-viral immunity
during chronic infection®, re-invigorated numbers of
virus-specific CX;CR11TCD8 ™ T cells and consequently lead Lo
a two-log reduction in viral load, suggesting that
CX;CRIFTCD8 Y T cells might be sensitive to IL-10-mediated
regulation in vivo.

Taken together, the use of CX;CR1 as marker for identification
of memory CD8% T cells with cytotoxic function will help to
further our understanding of the principles of T-cell memory and
immune protection. Detection of virus-specific CX;CR1 ™
GzmB T CD8T T cells in patients with chronic viral infections
suggests ongoing yet attenuated anti-viral immunityt.
Identification of memory CD8T T cells with immediate
cytotoxic function through the core signature defined here will
foster the establishment of refined immune monitoring that will
allow for improved guidance of immune therapies.

Methods

Mice. C57BL/6, CD90.1 T C57BL/G, CX3CR1 T /S (obtained from the Jung Lab),
OT-1CX3CRL ijll {CX3CR TGP x T_cell receptor transgenic OT-1), tdTomato
OT-1SRCREGET 304 €451 7 QI-IEX3CREGET e svere bred under specific
pathogen-free conditions in the central animal facility of the University Hospital
Bonn. Mice were kept under specific pathogen-free conditions and i vive
experiments were approved by the Local Animal Care Commission of Northrhein
‘Woestphalia. Experiments were conducted with sex-matched female or male mice,
aged 8-12 weeks at the start of each experiment.

Generation and analysis of murine memory €D8 ' T cells. To generate
OT-I-derived memory T cells, low numbers (5 x 107 cells) of FACSorted naive
CD44lW GFPME CD45.1 1 OT-ISX3CRIGER 1 cel|s were adoptively transferred
into sex-matched CD45.2 7 recipient mice. Four hours later, mice were either
infected with 5 x 10° colony-forming units L.m.-OVA by i.p. injection or infected
with 5 % 10° plaque-forming units (PFUs) AJOVA. Memory OT-1 cells were
identified by the expression of the congenic marker CD45.1 in conjunction with a
CD8 " CD44~ CD127 phenotype. TCM (CD6211) and TEM (CD62LI9W) were
distinguished by CD62L expression. For functional analysis or adoptive transfer
experiments, CD8 * T cells were isolated from the spleen by enrichment with
autoMACS (untouched CD8 + T cell isclation kit, Miltenyi) followed by sorting for
the respective markers on a BD Aria III. Experiments were performed with
€44 CD127 T memory CD8T T cells taken from the spleen at 45-70 d.p.i. if
not indicated otherwise.

Infection models and in vive bicluminescence imaging. Lisieria infeciion. Mice
were infected i.p. with Listeria monocpiogenes-expressing OVA (Lan- OVA)
acquired from log phase of growth in BHI medium. 5 x 10 colony-forming units
were used to generate memory T cells.

Adenovirus infection. Recombinant adenovirus expressing either OVA
(AdOVA), GFP (AdGFP) or OVA and luciferase as fusion protein (AdOVALUC)
were produced in 293 cells and purified by Cs-chlorid gradient ultracentrifugation
as described previously?!, Mice were infected with 5 x 10° PFU AdOVA by
intravenous injection (iv) for generation of memory T cells. 1 x 107 PFU of
AdOVA or AAGFP were used in re-challenge experiments to assess GzmB
upregulation by memory T cells. Mcasurement of bioluminescence in livers of
C57BL/6 mice was performed as described previously?l. In brief, in vivo
bioluminescence was analysed after intravenous infection with 1 x 107 PFU
AdOVALUC using an VIS 200 system (Caliper Li nces) 5min after i.p.
injection of Luciferin (50 mM in PBS, Caliper LifeSciences). Data analysis was
performed with Living Image 2.50.1 software (Caliper LifeSciences).

LCMV infection. To generate gp-33-specific memory T cells, CX3CR1 '
mice were infected intravenously (iv.) with 2 x 10* PFU of lymphocytic
choriomeningitis virus WE-strain (LCMV WE). Mice were infected intravenously
with 2 x 10° PFU of LCMV Clonel3 or with 2 x 10* PFU of LCMV WE. Titres of
virus were determined by plaque assay on Vero cells.

IGFP
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Isolation of human CD8 ™ T cells. Peripheral bload mononuclear cells (PBMCs)
were obtained from patients chronically infected with HBV, HCV, and healthy
donors visiting the outpatient clinic of the University Hospital Freiburg. All denors
gave written informed consent according to the local ethic committee’s of the
University hospital Freiburg ruling, federal laws and the Declaration of Helsinki.
PBMCs were isolated using density-gradient centrifugation (Pancoll; PAN Biotech,
Aidenbach, Germany).

For some experiments, CD8 I cells were isolated by autoMACS separation
(Miltenyi) using anti-human CD8 Microbeads (Miltenyi). Virus-specific CD8+
T cells were analysed using the following APC-labelled MHC class I-tetrameric
complexes: HLA-A*02/HBV corel8-27 (FLPSDFFPSV), HLA- A*02/HBV
pol455-463 (GLSRYVARL), HLA-A*02/HCV NS31073-1081 (CINGVCWTV),
HLA-A*02/HCV NS31406-1415 (KLVALGINAV), HLA-A*02/HCV NS5B2594-
2602 (ALYDVVTKL), HLA-B*27/HCV NS5B2841-2849 (ARMILMTHEF),
HLA-A*02/CMY pp65495-503 (NLVPMVA'I'V). PBMCs were stained with
tetramer for 15 min at 37 °C and blocked with murine 1gG1 before further staining
for surface markers or intracellular cytotoxic proteins.

Analysis of memory T-cell functions and regulation of T-cell function in vivo.
To analyse cytokine production, restimulation of FACSorted memory T cells was
performed with phorbol myristate acetate (PMA) (5ngml L Sigma-Aldrich) and
Tonomycin (200 ngml ~ L Sigma) for 4.5h in the presence of Brefeldin A and
Monensin {eBioscience). Restimulation of murine memory T cells from

CX3CR1 /6 mice (CD90.2 ) was performed in co-culture with CD90.1 sple-
nocytes as feeder cells. Determination of antigen-specific cytotoxicity against
peptide-loaded target cells was determined in vitro as described®. Analysis of
intracellular GzmB expression was performed directly after isolation of memory
T cells ex vivo without further stimulation.

Blockade of memory T-cell recirculation in vivo. To block access of circulating
CD62L " memory T cells to lymph nodes, mice were injected with 100 pg of anti-
CD62L antibody (clone MEL14) or PBS as control i.p. over a period of 6 days
before analysis.

In vivo IL-10R blockade during chronic LCMYV infection. Mice received i.p. five
times 250 ug per mouse of IL-10R-specific antibody (clone 1B1.3a; Bio X Cell) or
rat IgG isotype control antibody (clone KM1.GL113 Bio X Cell) each third day
beginning at 25 d.p.i.

Flow cytometry and fluorescence-activated cell sorting. Flow cytometric ana-
lyses and assessment of mean fluorescence intensity were conducted with a LSR
Fortessa (BD Biosciences). Data were analysed using FlowJo software (Tree Star).
LIVE/DEAD Fixable Stain kit (Invitrogen) was used to exclude dead cells in all
experiments with murine cells, anti-CD16/32 antibody (2.4G2) was used to block
unspecific antibody binding via Fe receptors. Human cells were stained in PBS. The
following antibodies (purchased from BioLegend or eBioscience) were used for
murine samples: CD3 (17A2, dilution 1:200), CD8« (clone 53-6.7, 1:200), CD44
(IM7, 1:300), CD45.1 (420, 1:200), CD62L (MEL-14, 1:300), CD90.1 (HIS51),
1:400, CD90.2 (111551, 1:400), CD127 (ebioSB/199, 1:200), IL-2 (JES6-5114, 1:200)
and IFN-y (XMG1.2, 1:200). 'The following antibodies were used for hum
samples: CD3 (HIT3a, 1:50), CD8 (RPA-T8, 1:10), CD45RA (HI100, 1:25)
CD45R0O (UCHLI, 1:50}, CD62L (DREG-56, 1:50), PD-1 (EH12.2H7, 1:25),
CX3CR1 (2A49-1, 1:25), CCR7 (1B12, 1:25) and Perforin (dG9, 1:50). For intra-
cellular staining of cytokines, cells were fixed in 4% PFA and intracellular staining
by anti-IFN- or anti-[1.-2 was performed in Permeabilization Buffer (eBioscience)
for 30 min. Staining of Granzyme B (anti-human, cross-reactive with mouse, clone
GB11, 1:100) was performed using the Foxp3/I'ranscription factor staining buffer
set from eBioscience, All intracellular stainings in murine cells were done in
combination with polyclonal anti-GFP antibody (Life Technologies, Invitrogen;
dilution 1:500). Quantification of cell numbers was done with fluorochreme-
labelled microbeads (CountBright absolute counting beads, Life Technologies,
Invitrogen). Fluorescence-activated cell sorting of splenic naive (CD441°*GFP<8)
or memaory (CD44™CD127 1) CD8 T T cells was performed with an Aria 111 cell
sorter (BD)). Staining with the corresponding isotype antibody served as control.
Antigen-specific endogenous memory T cells in mice were identified by staining
with fluorochrome-conjugated H—ZK'“S"\FF'W dextramers (AdOVA and L.m.-
OVA infection; Immudex) or H-2 bRAVYNFATC jovtramers (LCMV infection;
Immudex) according to the manufacturer’s protocol.

ence s Lymph node and spleens were harvested and fixed
using PLP buffer {0.05 M phosphate buffer containing 0.1 M 1-lysine (pH 7.4),

2mgml ! NalO, and 10mgml ! paraformaldehyde) for 12h, then dehydrated
in 30% sucrose before embedding in OCT freezing media (Sakura Finetek). Thirty-
micrometre sections were cut on a CM3050S cryostat {Leica), adhered to Superfrost
Plus slides {(VWR), stained, mounted with Fluormount G (Southern Biotech) and
acquired on a 710 confocal microscope (Carl Zeiss Microimaging). Frozen sections
were permeabilized and blocked in 0.1 M Tris (AppliChem) containing 0.3% Triton
X-100 (GERBU Biotechnik), 1% FCS (Biochrom AG), 1% GCWTS (Sigma Aldrich)
and 1% normal mouse serum (Life Technologies). Serial lymph node sections were
prepared, each section was visually inspected using epifluorescent light microscopy,
and several representative sections from different lymph node (LN} areas were
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acquired using confocal microscopy for detailed analysis. The following antibodies
were used for staining: anti-CD8 (5H10; Invitrogen), anti-CD169 (c3D6.112;
AbDSerotec), ER-TR7 (Santa Cruz Biotechnology), anti-B220 (RA3-6B2; Life
Technologies), anti-F4/80 (BM8; BioLegend), anti-CD45.1 {A20; eBioscience).
Unconjugated primary antibodies were stained with AF-conjugated secondary
antibodies (Life Technologies). For CX,CR1 detection, staining with a secondary
rabbit anti-GFP (Life Technologies) was used to increase the signal. Primary
antibodies were used at a concentration of 1:200, secondary antibodies at a
concentration of 1:1,000.

Intravital two-photon imaging. Mice were anaesthetized with isoflurane (Abbott,
Wieshaden; 2.5% for induction, 1-1.5% far maintenance, vapourized in an 80:20
mixture of O, and air), popliteal LNs were exposed and intravital microscopy was
performed using a protocol modified from a previous rspnr{b', For imaging of
td-Tomato and GFP (CX;CR1)-transgenic CD8 © T cells, we used a Zeiss 780
microscope equipped with a Chameleon laser (Coherent) tuned to 930nm and a
% 20 water dipping lens (numerical aperture = 1.0, Zeiss, Jena). The microscope
was enclosed in an environmental chamber, in which anaesthetized mice were
warmed by heated air, and the surgically exposed lymph nade was kept at 36-37 °C.
with warmed PBS. For dynamic imaging, we recorded a z-stack of 57 um using

3 pm step size in the interfollicular area and acquired every 40s. Raw imaging data
were processed and analysed with Imaris software (Bitplane).

Analysis of microarray-based gene expression profiling data. We used a
previously generated data set to identify genes associated with memory T cells
(GSE63118). Genome Studio (Illumina) was used to prefile the raw expression
data, where probesets having missing bead types were excluded from the analysis
Processed data of 23 samples were imported into Partek Genomics Suite (PGS)
software (vé.6; Partek Inc., log2-transformed and normalized using quantile nor-
malization. Using a background log2-intensity of 6.7886, probesets showing a mean
expression lower than this threshold in all five investigated groups were excluded,
resulting in 20,515 defined present genes. Their expression values were standar-
dized to a mean of zero and standard deviation of one, and the genes were clustered
into 25 groups by using 20,000 training iterations to obtain a self-organizing map
For each condition, the clusters were visualized as heat map based on their
cigenvalues, where increased values are shown in red, decreased values in blue and
mtermediate values in green.

RNA isolation and purification for RNA-seq analysis. Total RNA was extracted
with QIAzol Lysis Reagent (Qiagen) and then purified using the miRNeasy Mini
Kit (Qiagen) according to the manufacturers’ recommendations. The RNA integ-
rity (RNA Integrity Score >6.8) and quantity were determined on the Agilent 2100
Bicanalyzer (Agilent) per the manufacturer's recommendation and subjected to
cDNA synthesis.

cDNA library preparation and RNA sequencing. To generate ¢<DNA libraries,
1,000 pg total RNA were amplified and converted to cDNA using NuGEN's
Ovation RNA-Seq kit V2. In brief, the mRNA was reverse transcribed to synthesize
the first-strand cDNA by using a combination of random hexamers and a poly-T
chimeric primer. Double-stranded DNA is generated by fragmentation of the
mRNA template strand using RNA-dependent DNA polymerase. The double-
stranded DNA was purified using Agencourt RNAClean XP beads. The DNA is
amplified linearly using a SPIA process in which RNase H degrades RNA in DNA/
RNA heteroduplex at the 5-end of the double-stranded ¢cDNA, after which the
SPIA primer binds to the cDNA and the polymerase starts replication at the 3'-end
of the primer by displacement of the existing forward strand. Finally, random
hexamers were used to amplify the second-strand cDNA linearly. Following
amplification, 5.0 pg cDNA was fragmented to ~Z200bp using the Covaris $2 and
the fragmentation parameters described in the Encore SP Rapid DR Multiplex
library preparation protocel (NuGEN). The remainder of the library preparation
followed the manufacturer’s protocol as described in Encore SP Rapid DR Mul-
tiplex System. Paired-end sequencing of bar-coded ¢DNA libraries at 101 cycles
(100 bases cach end) was carried out on a HiSeq 1000. The raw sequence data have
been deposited to GEO with accession number GSE63147.

Sample preparation for MS analysis. Cell pellets were washed in PBS and lysed
in 6 M Guanidinium chloride {(GdmCl), 10 mM HEPES (pH 8) and 10mM
dithiothreitol. Cells were heated for 10 min at 95°C and sonicated for 15 min at
4°C (level 5, Bioruptor, Diagenode). Cysteine residues were alkylated in the dark
for 30 min with 55 mM indacetamide. Lysates were diluted 1:3 with 50 mM
ammoniumbicarbonate for a proteolytic digest with LysC (1:50, wiw, Wako) for
3 h. Samples were further diluted to 0.6 M GdmCl and digested with trypsin (1:50,
wiw, Promega) at room temperature overnight. Buffer exchange was performed on
C18 material (Empore, IVA- Analysetechnik). Peptide mixtures were eluted in 80%
acteonitrile {ACN) and the organic solvent was removed by centrifugal evapora-
tion. Cleaned peptides were resuspended in 2% ACN, 0.1% trifluoroacetic acid and
0.5% acetic acid.

|16:8306 | DOL: 10.1038/ncomms9306 | www.nalure comy/nalurecommunicalions

© 2015 Macmillan Publishers Limited. All rights reserved.

119



Results

ARTICLE

LC-MS/MS. Peptides were separated on an EASY-nLC 1000 HPLC system
(Thermo Fisher Scientific) coupled online to the Q Exactive mass spectrometer via a
nanoclectrospray source (Thermo Fisher Scientific). Peptides were loaded in buffer A
(0.5% formic acid) on in house packed columns (75 um inner diameter, 50 cm length
and 1.9 um €18 particles from Dr Maisch GmbII). Peptides were cluted with a
nonlinear 240 min gradient of 5-60% buffer B (80% ACN, 0.5% formic acid) at

a flow rate of 250 nlmin~ " and a column temperature of 50 °C. Operational
parameters were real-time monitored by the SprayQC software. 'The (@ Exactive was
operated in a data-dependent acquisition mode with a survey scan range of
300-1,700 m/z and a resolution of 70,000 at m/z 200. Up to the five most abundant
isotope patterns with a charge =2 were isolated with a 2.2 Thomsen (Th) isolation
window and subjected to higher-energy collisional dissociation fragmentation at a
normalized collision energy of 25. Fragmentation spectra were acquired with a
resolution of 17,500 at m/z 200, Dynamic exclusion of sequenced peptides was set to
45s. Thresholds for ion injection time and ion target values were set to 20 ms and
3E6 for the survey scans and 120 ms and 1E5 for the MS/MS scans, respectively. Data
were acquired using the Xealibur software (Thermo Scientific).

MS data analysis. MaxQuant software (version 1.3.10.18) was used to analyse MS
raw files®2, MS/MS spectra were scarched against the human Uniprot FASTA
database {Version May 2013, 88’847 entries) and a common contaminants
database (247 entries) by the Andromeda search engine. Cysteine
carbamidomethylation was applied as fixed and N-terminal acetylation and
methionine oxidation as variable modification. Enzyme specificity was set to
trypsin with a maximum of two missed cleavages and a minimum peptide length of
seven amino acids. A false discovery rate (FDR) of 1% was applied on peptide and
protein level. Peptide identification was performed with an allowed initial
precursor mass deviation of up to 7 p.p.m. and an allowed fragment mass deviation
of 20 p.p.m. Nenlinear retention time alignment of all measured samples was
performed in MaxQuant. Peptide identifications were matched across different
replicates within a time window of 1 min of the aligned retention times. In
addition, single shot runs were match against a T-cell peptide library built from
single shot MS measurements of primary human T cells at various activation
stages. Protein identification required at least 1 razor peptide. A minimum ratio
count of 1 was required for valid quantification events via MaxQuant’s Label Free
Quantification algorithm (MaxLFQ). Data were filtered for commoen contaminants
and peptides only identified by side modification were excluded from further
analysis. In addition, a minimum of three valid quantifications in at least one group
of biological replicates was required. Remaining missing values were imputed with
random numbers from a normal distribution (mean-shift = 1.8; width = 0.3), to
simulate low abundance values below the noise level.

Bicinformatics of RNA-seq data. RN A-Seq reads were aligned against the human
reference genome hgl9 using TopHat v2.0.11. T'o obtain transcript and gene
information, the aligned reads were mapped against the hgl9 RefSeq database
Release 66 (ref. 63} using Partek Genomics Suite (PGS) software (v6.6; Partek Inc.}.
Annotated data were normalized using the DESeq2 package within the statistical
software R version 3.0.2. In addition, normalized read counts lower than 1 were set
equal to 1 to avoid spurious fold changes later on. The genes were filtered to those
being present within the data set, defined as having a mean normalized read count
larger than 10 in at least ane of the investigated groups. Of those, the genes being
variable (P-0.05) across the data set were visualized via principal component
analysis and via a heat map based on z-transformed data using PGS. The list of
present genes was then further analysed by three different methods to obtain a core
signature for CX3CR1 ™ CD8 1 T cells. Genes commonly and significantly
upregulated in CD62L CX3CR1 ~ and CD62L CX3CRI ' T cells were
identified by using an ANOVA model (FC =2, FDR-corrected P-value<0.05).
Ratio/ratio plots were used to compare different cell populations on the single-gene
level. Clusters of co-regulated genes were determined blg) applying the Markov
Clustering (MCL} algorithm within BioLayout Express™ version 3.2 (ref. 64) with
standard criteria on those genes showing a Pearson correlation of at least 0.85.
Weighted correlation network analysis was performed in R using a power of 7, a
minModuleSize of 30 and a MEDissThres of 0.3 resulting in 20 clusters. For the last
two methods, the one cluster representing genes being highly expressed in
CX3CR17T and only moderately expressed in CX3CR1 ™ and naive I cells were
chosen. Each of these clusters was then intersected with the list of significantly
upregulated genes, and the union of the two intersection lists containing 455 genes
was considered as a pre-signature. To refine this signature, genes showing a fold
change lower than 1.5 as well as an absolute expression value difference lower than
50 between CX3CR1 ' and CX3CR1  cells were removed. After finally excluding
known polymorph MICII genes, a signature of 363 genes remained. The
distribution of expression values of those genes was displayed separately for all
five conditions via boxplots. Sixty-five specific genes were visualized in form of a
heat map based on z-transformed data. Finally, all 363 signature genes were linked
to prior knowledge by performing GOEA using the Cytoscape®® plug-in

BiNGO {v2.44) with an FDR threshold of 0.05 to include only significant results.
The Cytoscape plugins Enrichment Map (v1.1) with a Jaccard coefficient of 0.25
and an FDR Q-value cutoff of 0.025 as well as Word Cloud were used to visualize
the GO network.
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Bioinformatics of proteome data. Proteins being variable (P« 0.05) across the
data set were visualized via principal component analysis and via a heat map based
on z-transformed data using PGS, To link the RNA-seq expression data to the
protein data, the data sets were matched by using the UniProt database. The
distribution of normalized RNA-seq expression values of present genes was
visualized in the form of a histogram splitted into different protein expression
classes. To obtain a core signature for CX;CR1~ CD8™F T cells based on protein
data, the same approach as used for the RNA-seq data was applied, harbouring
only a few changes in terms of the used parameters. The MCL algorithm in
BioLayout Express D was applied on proteins showing a Pearson correlation of at
least 0.8. For weighted correlation network analysis, a power of 18 and a MED-
issThres of 0.5 were used. Collating the intersections of cach CXaCR1™ cell
representing cluster with the significantly and commonly upregulated proteins
resulted in a pre-signature of 192 proteins. After excluding proteins encoded by
known polymorph MHCII genes as wells as thase proteins having an absolute
expression difference of < le + 06 between CX;CR1 ™ and CX;CRL ™~ cells, a
refined signature of 165 proteins remained. Fold change rank plots were used to
map their change of expression to their corresponding change in the RNA-seq
data set, as well as the same vice versa for the defined RNA-seq signature.
Overlapping the transcriptome and proteome signatures resulted in 65

CX3CR1 ™ -associated proteins, which generated a clearly refined GO network
based on the same enrichment parameters as used for the transcriptome-based
signature network.

Statistical analysis. The two-tailed Student’s i-test was used for the statistical
analysis of differences between two groups. Comparison of multiple groups was
done using two-way ANOVA.
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Supplementary Figure 1
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Supplementary Figure 1 CX;CR1 expression on CD8* T cells in man and mouse

(A) Self-Organizing Map (SOM) clustering based on present genes obtained from gene expression data from
memory, naive as well as LSEC-, DC-, and in vivo LSEC-primed CD8+* T cells (1) was used to identify genes specific
for memory CD8+ T cells. The gene cluster containing CX:CR1 is marked with a frame. (B) GFP+CD8+ T cells from
CX3CR1 reporter mice were analyzed for CXsCR1 protein expression using CX3;CL1-Fc detected with a secondary
antibody. (C-E) C57BL/6 mice, that had received 3x105 naive CD44wCD45.1+ QT-IcX3¢R1-GFP were infected with
AdOVALUC (see Fig. 1 H, 1). Time kinetics for (C) total numbers of GFP+ and GFPnes CD45.1+ OT-1cX3¢R1-GFP T cells in
spleen, (D) frequencies of GFP* and GFPreg T cells among CD45.1+ OT-[¢X3CR1-GFP cells in spleen, liver and blood and
(E) Mean fluorescence intensity (MFI) of the GFP signal in GFP+ CD45.1+ OT-I¢*3CR1-GFP T cells. (F) Time Kinetics
after infection of CX3CR1+/GFP mice with AdOVA, L.m.-OVA or LCMV (WE strain) for numbers of total and OVA-
specific GFP+CD44+ CD8+ T cells (after AdOVA and L.m.-OVA infection) or LCMV gp33-specific CD44+ CD8+ T cells
isolated from blood. OVA-specific or gp33-specific T cells were identified by Dextramer-staining. Uninfected
CX3CR1+/6*? mice served as control. (G) Flow cytometric analysis of CX3CR1 expression in splenic OVA-specific
CD44+CD8* T cells from CX3CR1+/GF* mice at d60 after AAOVA infection. OVA-specific T cells were identified by
staining with H2-Kb:SINFEKL Dextramers (S8-Dextramer). (H) C57BL/6 mice were infected with AAOVA or L.m.-OVA
after adoptive transfer of 500 FACSsorted naive CD44lowCD8+ OT-[CX3CRI-GFF T cells into CD45.2+ mice. After >45 days,
determination of the frequencies of GFP+ and GFPree cells among CD45.1+ OT-I¢X3CR1-GFP ce]ls in blood and spleen. (1)
Flow cytometric analysis of CX3CR1 expression in CD3+*CD45R0+CD8* PBMCs from blood of 6 healthy humans.
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Supplementary Figure 2
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Supplementary Figure 2 CX3CR1 expression separates CD8+ T cells with effector function from T cells with
proliferative capacity

(A) Representative analysis of intracellular IL-2 expression in GFP+ and GFPn¢: gp33-specific memory T cells isolated
from spleen of CXzCR1+/6!* mice that were infected with LCMV 60 days before. (B) 5x102 GFP+ or GFPree memory OT-
[CX3CR1-GFP T cells (CD90.2+) were adoptively transferred into CD90.1 mice followed by infection with AdOVA.
Determination of numbers of CD90.2+ T cells at d8 p.i. in the spleen. **p<0.01, t-test. (C) Quantification of GzmB
expression in (CX3CR1+) and GFPnee (CX3CR1neg) OVA-specific memory T cells from spleen of CX3CR1+/G* mice that
were infected with L.m.-OVA >45 days before. ***p<0.001, t-test. (D) CX3CR1+/¢** mice were infected with AAOVA,
L.m.-OVA or LCMV (WE strain). 45-60 days later, IFNy production by GFP+ (CX3CR1+) and GFPreg (CX3CR1"¢€) memory
CD8* T cells specific for OVA (after AOVA and L.m.-OVA infection) or LCMV gp33 was determined after
PMA/lonomycin stimulation ex vivo.
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Supplementary Figure 3
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Supplementary Figure 3 Four populations
of human CD45R0+CD8+ memory T cells
identified by CX3;CR1 and CD621.

(A) CCR7 and CD62L surface expression on
human CD45R0+ CD8* memory T cells
separated into CX3CR1* and CX3CR1ree cells.
(B, C) Frequencies of CXsCR1+CD62Lb,
CX3CR1resCD62LN, CX3CR1+CD62Lw  and
CX3CR1neeCD62LIew populations within
human CD45R0O+CD8+*memory T cells. Data
are shown for (B) each individual patient
and (C) pooled for all patients with SEM.
(D) Flow cytometric analysis of human
PBMCs showing the power of CD62L and
GzmB to identify GzmB+ cells in CD45R0O+*
CD8+* T cellsand CD45RA+CD8+ T cells. (E,
F) Flow cytometric analysis CD43, CD27,
CD28, and CD127 in combination with
CX3CR1 and CD62L expression on
CD3+CD45R0O+CD8* PBMCs from blood of a
single individual (E) or as cumulative data
for 4 healthy human donors (F). (G) RNA-
seq data for CD43, CD27, CD28, and CD127
in  CX3CR1+CD62LM,  CX3CR1rnesCD62LM,
CX3CR1+CD62Lw and CX3CR1neeCD62LIew
human CD45R0+CD8+*memory T cells. Data
in (A) and (D) are representative for two
independent analyses with at least 4
human patient samples each.
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Supplementary Figure 4
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Supplementary Figure 4 Identification of a core signature for human cytotoxic T cells

Boxplots representing the distribution of correlation values for each CD8* T cell subpopulation of the
Biolayout cluster used in combination with the ANOVA model to identify the core signature of CX3CR1+
CD8+ T cells.
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Supplementary Figure 5
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Supplementary Figure 5 Proteomics identification measures and volcano plot analysis of differences in
transcriptome and proteome between memory CD8* T cell populations

(A) Quality measures of protein group identifications. Numbers of unique peptides per identified protein group,
numbers of razor and unique peptides per identified protein group and protein posterior error probability (PEP)
for each protein group are shown. Boxplots show median with 5%-95% percentile. All numbers derive from the
complete proteome data set including the peptide library. (B) Volcano plots displaying log2-fold-change against -
log10-p-value of the comparisons of the different CD8+ memory T-cell populations as indicated. Upper row: RNA-
seq data, Lower row: proteome data
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Supplementary Figure 6 Localization of CX;CR1 expressing memory CD8* T cells to lymphoid tissue

(A) CX3CR1+/6F* mice were infected with AdOVA, L.m.-OVA or LCMV (WE strain). At d45-60 p.i, the
frequency of GFP+ (CX3CR1+) and GFPneg (CX3CR1mee) cells was determined among OVA-specific CD44+ CD8+ T
cells (after AOVA and L.m.-OVA infection) or gp33-specific CD44+ CD8B+* T cells (after LCMV infection)
identified by Dextramer staining in pooled lymph nodes. (B) Detection GFP+ (CX3CR1+) CD45.1+ T cells in
spleen. (C, D) Mice harboring CD45.1* memory OT-ICX3CR1-GFP T cells were injected daily with anti-CD62L
neutralizing antibody (100pg/mouse i.p.) or PBS over a period of 6 days. (C) Frequency of endogenous
(CD45.1 negative) polyclonal naive CD44'ow CD8* T cells, CD44+CD8+*T cells and CD45.1* memory OT-]¢X3CR1-
GFP T cells in inguinal lymph nodes and spleen. (D) Frequency of GFP+ and GFPreg cells among CD45.1+
memory OT-[CX3CR1-GEP T cells in inguinal lymph nodes. Data is representative for three independent
experiments with 3 mice per group
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Supplementary Figure 7. CX;CR1 identifies cytotoxic virus-specific CD8* T cells in chronic viral infection
(A) Analysis of Perforin (Perfl) expression among CXsCR1+ and CX3CR1#e virus-specific CD8* T cells
isolated from blood of patients chronically infected with HBV or HCV (see Figure 7A, B). CMV-specific
CD8+ T cells from the same donors served as control. **p<0.01, t-test. (B) Determination of viral titers in
liver and spleen of CX3CR1+/6F? mice 40 days after infection with either LCMV WE or LCMV Clone 13.
*p<0.05, **p<0.01, t-test. (C) Effect of anti-IL10R treatment on viral titers of LCMV Clone 13-infected
CXsCR1+/6¥* mice 40 days after infection. ***p<0.001, ANOVA. (D) Quantification of splenic gp33-specific
CD8+ T cells of CXsCR1+/6:P mice 40 days p.i. with LCMV WE, LCMV Clone 13 or after infection with LCMV
Clone 13 followed by treatment with anti-IL10R antibody. Each dot represents T cells from one mouse.
*p<0.05, **¥p<0.01¥**p<0.001, ANOVA.
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3  Conclusion

3.1  Towards single cell immune proteomes

Mass spectrometry (MS)-based proteomics has evolved to a high-throughput technology to
study complex biological systems!””-?%¢. Due to its continuous improvements, it is now
possible to measure the complete proteome of model organisms such as yeast in just one
hour?®’. Especially, improved sample handing accompanied with the use of high-pressure
high-performance liquid chromatography considerable improved reproducibility and peptide

288 New hardware components of mass spectrometers increased their

identification rates
speed, accuracy, and sensitivity*'¢. For instance, new orbitrap analyzer can acquire a survey
mass spectrum followed by ten fragment spectra in less than one second at a resolution of
15,000 at m/z 200%*"*?7, In addition, sophisticated bioinformatic programs**? and

quantification strategies®*!, laid the foundation for analyzing complete mammalian

2 290

proteomes>® such as those from human immune cells
This thesis extends the journey of complete, accurate and ubiquitous cell proteomes to the
immune system®!. It demonstrates that proteomics can deliver high quality and deep
proteome profiles not only form individual immune cells, but also from time-resolved
immune responses as well as multicellular immune systems. The quantitative shotgun
proteomics workflow was applied to identify functional difference in CD8 T cell subsets*-.
Furthermore, the human CD4 T cell response was investigated, shedding new light on the
morphological and functional alterations that occur during the first four days of T cell
activation. More than 30% of all measured proteins significantly change after 3 days,
including proteins involved in arginine and proline metabolism®”. Finally, this thesis provides
a proteome atlas containing proteome profiles of 28 distinct human hematopoietic cell types
at a depth of >10,000 proteins, covering 80% of immune related proteins. A new version of
the orbitrap mass analyzer provided the last puzzle piece to execute a single shot strategy??!,
which reached average protein quantification rates of 7,500 proteins from primary human
immune cells using 3h gradient single shot measurements®*,

When viewed in the context of large research consortia such as ImmGen?®® or the Human Cell
Atlas®, which primarily characterize cell types at the gene and transcript level, this thesis and

296297 create a desire for these consortia to also develop roadmaps for measuring

other studies
complete proteomes of all human immune cell types. This idea is not unfeasible since new

technology developments have enabled the first comprehensive datasets of single cell
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proteome measurements?**2%°, On the one hand, MS-based imaging technologies can analyze
single cells on protein level already at high throughput, but rely on labelled antibodies and
usually are limited to only a few proteins that can be measured in parallel*?’. On the other
hand, single-shot MS-based proteomics, has the promise to quantify all proteins in a cell. To
this end three different approaches are being followed. First, Single-Cell ProtEomics by Mass
Spectrometry (SCoPE-MS)**! and Improved Boosting to Amplify Signal with Isobaric
Labeling (iBASIL)**? use isobaric tags to create booster channels to overcome peptide
detection limits and sample loss. With this approach the proteome heterogeneity of monocyte
and macrophages cell lines was analyzed covering more than 1,000 single cells at a depth of
3,000 proteins®”!. Second, nanoliter-scale oil-air-droplet (OAD) chip®®* or nanodroplet

)3%4 use advanced microfluidic devices to

processing in one pot for trace samples (nanoPOTS
reduce sample loss and when coupled to a mass spectrometer can reach single cell resolution.
Third, the true single cell proteome (T-SCP) pipeline uses a novel trapped ion mobility mass
spectrometer combined with new acquisition methods and miniaturized sample preparation,
which allowed the quantification of more than 1,000 proteins in single HeLa cells>®.
Although, these new technologies are in their infancy, they already display great potential to
capture the vast variety of cellular immune networks at the protein level.

It is evident that proteomics is a versatile “omic” technology that offers the study of
biological systems from different angles'’” and will continue to push its technological
boundaries to increase our knowledge of biological systems that ultimately translate to better

disease management.

3.2  Multi-dimensional immune networks for

personalized medicine

This thesis constructed three different immune networks - (1) a functional intracellular
transcriptome and proteome murine CD8 memory T cell network>%, (2) an intracellular and
time-resolved proteome and metabolome network of the human CD4 T cell immune
response’?’, and (3) an intra- and intercellular proteome and secretome network of the human
hematopoietic system?*.

In the first network, transcriptome and proteome analysis identified a novel protein marker

that functionally differentiates distinct memory T cell populations. Together with protein
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cluster enrichment analysis, this new marker distinguishes four functionally different memory
T cell subsets based on migration and cytotoxic potential, leading to a new memory T cell
population with effector functions and the ability to migrate to the subcapsular sinus of lymph
nodes. In the second network, the proteomic and metabolic changes during T cell activation
were investigated. Integrative metabolic network analysis revealed that T cells heavily
consume L-arginine and convert it to downstream metabolites. Perturbation of the metabolic
network by providing additional L-arginine resulted in a shift from glycolysis to OXPHOS
and an increased numbers of T cells with a central memory phenotype. Global protein-
metabolite interaction network analysis was conducted to further elucidate L-arginine
mediated functional changes in T cells. Moreover, this network study discovered that T cells
with elevated L-arginine levels exhibit enhanced survival and anti-tumor activity. The third
network aimed to conduct a global assessment of the immune system by measuring the
proteomes of all major human hematopoietic immune cells in their native and selected
activated states. It reached 70% coverage for all immune-relevant signaling molecules
including transcription factors, adaptor molecules, cell surface receptors, and secreted
molecules, making it the most comprehensive immune proteome resource to date. Together
with selected secretome data and bioinformatic algorithms, an immune cell network based on
receptor-ligand and receptor-receptor interaction data was constructed. Containing more than
150,000 edges, this cell communication network exceeded the scientific literature knowledge
network obtained from natural language processing and discovered previously unknown
outgoing and ingoing connections. In addition, the network architecture revealed that immune
cell signaling is more diverse inter- than intracellularly in comparison with other organs and
that antigen-presenting cells increase, while cytotoxic cells decrease their hierarchy height
upon activation. Furthermore, the network was extended to other organs and tissues of the
body and found that myeloid immune cells establish more connections with non-immune
tissues than lymphoid immune cells. Together, this cell-cell network highlights the different
communication structures between myeloid and lymphoid immune cells on the level of
proteins and provides a snapshot of cell-type and context-dependent secretion patterns of
innate immune cells.

These described networks contribute to the greater picture of network medicine. For instance,
understanding functional differences of T memory sub populations will enhance our
understanding of immune protection and enable improved immunotherapies such as vaccines.
Manipulating T cell fitness by metabolic perturbation can be beneficial for adaptive T cell

therapies. Finally, global networks such as the hematopoietic proteome network can serve as a
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reference map for future perturbation studies to identify disease specific network nodes or
edges that can be targeted by established immune therapies. In general, diverse network
medicine techniques have led to some central biological findings. The human disease network
constructed from publicly available disease repositories provided a global view of the
relationship between disorders and their disease genes®*®. This approach allowed to study all
human disease at ones and highlights that most disease genes are non-essential genes and

constitute nodes at the network periphery?>’!

. Using protein-protein interactions maps and
mathematical algorithms diseases relationships could be explained by overlapping disease
network modules®?’. Furthermore, disease-gene networks extended to disease-drug networks
allowed the prediction of adverse events and therapeutic effects for drug repurposing using
network proximity measures>'°.

While personalized medicine is most advanced in the field of oncology, it still faces many

challenges to be universally applied in clinical practice!!

. One puzzle piece includes the
interpretation of large “omic” data sets and the development of algorithms that can stratify
patient groups based on biomarkers and are able to recommend treatment strategies from such

130 it is evident

multi-layered networks?%. Based on the success stories of immunotherapies
that the immune system plays a fundamental role in many diseases and disorders. Thus,
systems-immunology approaches, such as those discussed in this thesis, are only beginning to
improve the main immunological metrics used in medicine®!?. It will be fascinating to see
how the many areas of expertise - from unique human tissue models*!® to innovative data

privacy approaches®!* - evolve in order to make personalized medicine become standard of

carc.
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4  Abbreviations

AMPK adenosine monophosphate-activated protein kinase
APC antigen presenting cell
AP-MS affinity purification followed by mass spectrometry

CTLA-4 cytotoxic T-lymphocyte-associated protein 4
DC dendritic cell

DDA data dependent acquisition

FAO fatty acid oxidation

FOB follicular B cells

FRC fibroblastic reticular cells

HEV high endothelial venules

IFN interferon

IL interleukin

LPS lipopolysaccharide

LXR liver X receptors

MALDI matrix-assisted laser desorption ionization
MHC histocompatibility complex

MQ macrophage

MS mass spectrometry/mass spectrometer
mTOR mechanistic target of rapamycin

MZ B marginal zone B cells

NK natural killer

OXPHOS  oxidative phosphorylation

PAMP pathogen associated molecular pattern
PD-1 programmed cell death protein 1

PD-L1 programmed death-ligand 1

PI3K phosphatidylinositol 3-kinase

SREBP sterol regulatory element-binding proteins
TCM central memory T cells

TCR T cell receptor

TEM effector memory T cells

Th T-helper
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TNF tumor necrosis factor
TOF time of flight
TPA total protein abundance approach
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