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1. List of abbreviations

This list of abbreviations is independent of abbreviation lists in the research articles.

AD

AD*

ALS
ALS2
ALS-bi
ALS-cbi
ALS-ci
ANG
ANXA11
AR
ATXN2
AB

cAMP
C9orf72
CCNF
CCTa
CHCHD10
CHMP2B
CHMP2B
CMA
cryo-ET

CSE1L/CAS

Alzheimer's disease

autosomal dominant

amyotrophic lateral sclerosis
amyotrophic lateral sclerosis 2

ALS with behavioral impairment

ALS with combined cognitive and behavioral impairment
ALS with cognitive impairment
angiogenin

Annexin-11

autosomal recessive

ataxin 2

amyloid- peptide

Cyclic adenosine monophosphate
chromosome 9 open reading frame 72
G2/Mitotic-Specific Cyclin-F
cytidylyltransferase
coiled-coil-helix-coiled-coil-helix domain containing protein 10
charged multivesicular body protein 2B
charged multivesicular body protein 2B
chaperone-mediated autophagy
cryo-electron tomography

chromosome Segregation 1 Like/cellular apoptosis susceptibility
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FTD
FTD-ALS
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GLT8D1
GP

GR

GRN

HD
hnRNPA1
hnRNPA2B1
hnRNPA3
HR23
HRE

Htt

IN

iPSCs

Deoxyribonucleic acid

dipeptide repeat proteins

DNA double-strand break

eukaryotic translation initiation factor 2A
Neuregulin-receptor tyrosine kinase

familial ALS

familial FTD

phosphoinositide 5-phosphatase
frontotemporal dementia

frontotemporal dementia-amyotrophic lateral sclerosis
fused in sarcoma

Ras GTPase-activating protein-binding protein 1
glycine (gly), alanine (ala)

4x guanine, 2x cytosine

Glycosyltransferase 8 Domain Containing 1
glycine (gly), proline (pro)

glycine (gly), arginine (arg)

granulin precursor

Huntington's disease

heterogeneous nuclear ribonucleoprotein A1
heterogeneous nuclear ribonucleoprotein A2/B1
heterogeneous nuclear ribonucleoprotein A3
Ubiquitin receptor RAD23

hexanucleotide repeat expansion

huntingtin

induced neuron

induced pluripotent stem cells
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NLS nuclear localization signal

NMDA N-methyl-D-aspartate

NPC nuclear pore complex
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NUP Nucleoporin

NUP54 Nucleoporin p54 kDa

NUP62 Nuclear pore glycoprotein p62 kDa

OPTN optineurin

P53 tumor protein p53

p62 nucleoporin 62
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Rab8a Ras-related protein Rab-8A
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2. Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two
fatal neurodegenerative disorders that share overlapping clinical and pathological features
(Kato, Hayashi et al. 1993, Lomen-Hoerth, Anderson et al. 2002). Although both diseases
occur mostly sporadically, several disease-associated mutations have been identified in >25
different genes, many of which are encoding RNA binding proteins (RBP), components of the
ubiquitin proteasome system (UPS), and the autophagy pathway (Kapeli, Martinez et al. 2017,
Bartoletti, Bosco et al. 2019). Cytoplasmic inclusions of the multifunctional RNA-binding
protein TDP-43 (TAR DNA-binding protein) that normally resides predominantly in the nucleus
are found in ~90% of ALS and ~45% of FTD cases. TDP-43 dyshomeostasis including
aberrations in its nucleocytoplasmic shuttling and aggregation has been shown to induce
toxicity, explaining a crucial role in the process of neurodegeneration (Araki, Minegishi et al.
2014, Leibiger, Deisel et al. 2018, Prasad, Bharathi et al. 2019).

The most common pathogenic mutation found in ~10% of ALS/FTLD patients is the massive
expansion of a hexanucleotide repeat (G4C>), in the first intron of C90rf72 gene (Dedesus-
Hernandez, Mackenzie et al. 2011, Renton, Majounie et al. 2011). C9orf72 patients show, in
addition to typical TDP-43 pathology, nuclear RNA foci containing the repeat RNA from both
sense and antisense transcripts (DeJesus-Hernandez, Mackenzie et al. 2011) and unique
inclusions of five different species of dipeptide repeat (DPR) proteins (poly-GA/-GP/-GR/-PA
and -PR). DPR inclusions are derived from an unconventional non-AUG translation of the
intronic repeat RNA in all reading frames (Ash, Bieniek et al. 2013, Gendron, Bieniek et al.
2013, Mori, Arzberger et al. 2013, Mori, Weng et al. 2013, Zu, Liu et al. 2013). Nearly all
inclusions are poly-GA positive and often contain also poly-GP/-GR and far less frequently
poly-PA/-PR. In vitro, poly-GA sequesters large amounts of stalled proteasomes suggesting a
deleterious effect on cellular proteostasis (Guo, Lehmer et al. 2018). DPR pathology has been
shown to precede TDP-43 pathology in patients, thereby considered as a major driver of
neurodegeneration associated with C9ORF72 expansion (Baborie et al. 2015; Mann 2015;
Mori, Arzberger, et al. 2013; Mori, Weng, et al. 2013; Proudfoot et al. 2014). How C9orf72-
specific pathology triggers TDP-43 pathology, despite not being spatially correlated in

human studies (Schludi et al. 2017), was the primary objective of my PhD studies.

When | started my PhD project, several groups reported impaired global nucleocytoplasmic
transport possibly through a direct effect on the nuclear pore complex (NPC) in different
C9orfr2 models and connected it to poly-GR/PR (Jovicic, Mertens et al. 2015), repeat RNA
(Zhang, Donnelly et al. 2015), or both (Freibaum, Lu et al. 2015), however in these studies
trafficking of TDP-43 itself was not analyzed. Furthermore, artificial aggregating B-sheet
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proteins were shown to inhibit nucleocytoplasmic transport related to sequestration of the
THOC complex and RNA binding proteins (Woerner, Frottin et al. 2016). Since GA1s peptides,
but not 15-mers of the other DPR species, form amyloid-like fibrils (Chang, Jeng et al. 2016),
| asked whether poly-GA may also impair nucleocytoplasmic transport. | therefore compared
the impact of individual expression of poly-GA, poly-GR and poly-PR on the nuclear import,
specifically of TDP-43 to understand the link between the C90rf72 mutation and TDP-43
pathology. | quantitatively analyzed cytoplasmic mislocalization of endogenous TDP-43 and of
a reporter containing the established bipartite classical nuclear localization signal (NLS) of
TDP-43. Interestingly, poly-GA blocked nuclear import of TDP-43 more robustly than poly-
GR/PR, while none of the DPR proteins affected the localization of a reporter containing a
transportin-dependent PY-NLS in our in vifro models arguing DPR proteins mainly impair
nuclear transport through the classical importin o/ pathway mediating TDP-43 import. In
addition, | found that overexpression of two NPC components (NUP54 and NUP62) can fully
rescue nuclear localization of the TDP-43 reporter. NUP54 and NUP62 were interestingly
shown to be essential for nuclear import of TDP-43 (Nishimura, Zupunski et al. 2010) and
NUP62 knockdown enhances (PR)zs toxicity in flies (Boeynaems, Bogaert et al. 2016). Thus,
inhibition of nuclear import of TDP-43 by poly-GA may link the C90rf72 mutation to TDP-
43 pathology in C9orf72 ALS/FTD cases.

Since poly-GA precedes symptom onset by many years (Vatsavayai, Yoon et al. 2016) and
rarely co-localize with TDP-43 inclusions, chronic toxicity and possibly non-cell-autonomous
effects were proposed (Edbauer and Haass 2016). For example, cell-to-cell transmission of
cytoplasmic Tau and a-synuclein aggregates results in stereotypic spreading during the
progression of Alzheimer's and Parkinson's disease, respectively (Jucker and Walker 2018).
Thus, | analyzed non-cell-autonomous effects of DPRs as a potential trigger of TDP-43
pathology using co-culture assays and antibody treatment experiments to inhibit poly-GA cell-
to-cell transmission. Importantly, | discovered that poly-GA transmission inhibits the
proteasome even in neighboring cells. Activating the proteasome pharmacologically (with the
PDE4 inhibitor rolipram) or genetically (using PSMD11 overexpression) rescues nuclear import
of the TDP-43 NLS reporter. Therefore, | hypothesized that poly-GA inclusions may block the
import of TDP-43 via ubiquitination directly within its NLS, which accumulate through impaired
proteostasis. | could show that mutagenizing lysine 95 in the NLS largely prevents
ubiquitination of TDP-43 and did not impair basal nuclear import, but completely prevented
poly-GA mediated inhibition of TDP-43 import. In contrast, mutation of lysine 84 severely
blocks interactions with nuclear import receptors such as importin-a5/KPNA1, independent of
poly-GA expression, which is in consistence with previous reports (Hans, Eckert et al. 2018).

Importantly, poly-GA antibodies reduce poly-GA transmission and cytoplasmic TDP-43
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mislocalization in HelLa cells and primary neurons, suggesting poly-GA antibodies could be
potentially used to treat C9orf72 ALS/FTD.

Taken together, my work shows that poly-GA promotes cytoplasmic mislocalization of
TDP-43 cell- and non-cell-autonomously due to impaired proteasomal clearance of TDP-
43 ubiquitinated within its NLS at lysine 95. My work also indicates that
pharmacologically boosting proteasome activity (e.g. by rolipram) or inhibiting poly-GA
transmission using antibodies are promising therapeutic approaches for C9orf72
ALS/FTD. Indeed, our group (Zhou, Mareljic et al. 2020) and others (Nguyen, Montrasio
et al. 2020) have reported promising results using anti-GA antibodies or vaccination in

mouse models confirming my data in vivo.
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3. Introduction

3.1. Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration

(FTLD) terminologies

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two
clinically distinct devastating neurodegenerative diseases with overlapping pathology and
genetics, that are now recognized as two extremes of a disease spectrum (Van Langenhove,
van der Zee et al. 2012, Ling, Polymenidou et al. 2013).

3.1.1. Clinical and pathological features of ALS, FTLD, and ALS/FTD
3111, ALS

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, and Charcot
disease, was first described in 1874 and is the most common form of motor neuron disease
(MND) (Ferraiuolo, Kirby et al. 2011). ALS is a fatal neuromuscular disorder caused by the
degeneration of both upper (UMNs) and lower (LMNs) motor neurons, which leads to
hyperreflexia, spasticity, fasciculations, and muscular atrophy and eventually death (Van
Langenhove, van der Zee et al. 2012, Babic Leko, Zupunski et al. 2019). Most cases of ALS
are considered ‘sporadic’ since they occur without a known cause or a family history. However,
about 5—-10% of cases are due to genetic mutations, typically with dominant inheritance (Brown
and Al-Chalabi 2017). The disease onset mostly occurs in the range of 54—-67 years of age
with a mean survival time of 3-5 years after diagnosis (Chio, Logroscino et al. 2013). The
incidence of ALS is about 1-2 cases per 100,000 per year (Rowland and Shneider 2001,
Worms 2001, Brown and Al-Chalabi 2017, Marin, Boumediene et al. 2017, Babic Leko,
Zupunski et al. 2019). Sixty-two percent of patients with familial ALS and 48.5% with sporadic
ALS show cognitive impairment (Wheaton, Salamone et al. 2007). According to the type and
severity of neuropsychological deficits, ALS patients can be divided into several subgroups:
pure ALS with no impairment, ALS with behavioral impairment (ALS-bi), ALS with cognitive
impairment (ALS-ci), ALS with combined cognitive and behavioral impairment (ALS-cbi), and
ALS/FTLD. (Strong, Abrahams et al. 2017).

3.1.1.2. FTLD

Frontotemporal lobar degeneration (FTLD), in patients younger than 65 years of age, is the
most common cause of dementia after Alzheimer’s disease (Onyike and Diehl-Schmid 2013,
Warren, Rohrer et al. 2013), accounting for about 10% of the cases (Irwin, Cairns et al. 2015,
Van Mossevelde, Engelborghs et al. 2018, Thathiah 2020). FTLD is characterized by

predominant degeneration of the frontal and anterior temporal lobes (Gorno-Tempini, Hillis et
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al. 2011, Rascovsky, Hodges et al. 2011), resulting in behavioral changes, apathy, dementia,
and loss of executive functions or deterioration of language functions during the later stages
of the disease (Ash, Moore et al. 2009, Knibb, Woollams et al. 2009, Wilson, Henry et al. 2010,
Thompson, Lukic et al. 2012). The prevalence of FTLD is about 15-22 cases per 100,000 per
year (Ratnavalli, Brayne et al. 2002, Knopman and Roberts 2011).The clinicopathological
spectrum of FTLD consists of frontotemporal dementia (FTD), FTD with motor neuron disease
(FTD-MND), progressive subcortical gliosis (PSG), primary progressive aphasia, cortico-basal
degeneration (CBD), semantic dementia, and progressive supranuclear palsy (PSP) (Bugiani
2007). In addition, FTLD has been subcategorized into specific proteinopathies based on the
major accumulated protein component, including 45% FTLD-tau (with inclusions of
hyperphosphorylated tau protein) (Mackenzie, Rademakers et al. 2010), 45% FTLD-TDP (with
inclusions of response (TAR) DNA-binding protein 43 (TDP-43)) (Neumann, Sampathu et al.
2006, Neumann, Kwong et al. 2007, Mackenzie, Neumann et al. 2009), 9% FTLD-FUS (with
inclusions of fused-in-sarcoma protein) (Mackenzie, Neumann et al. 2010), and a small
number of 1% FTLD-UPS (due to co-localization with markers of the ubiquitin proteasome
system) (Mackenzie, Neumann et al. 2009, Dickson 2011). It is important to highlight that the
term FTLD refers to pathological conditions that are commonly connected to clinical entities of
FTD, which characterized by degeneration of frontal and temporal lobes (Mackenzie,
Neumann et al. 2009).

3.1.1.3. ALS/FTD

ALS and FTD for a long time were considered distinct disease entities as ALS patients typically
show loss of voluntary motor function and FTD patients exhibit behavioral and speech
impairments. Strikingly, several recently identified pathogenic mutations (e.g. in C90rf72) can
cause ALS, FTD or a mixed disease (Lomen-Hoerth, Anderson et al. 2002, Ringholz, Appel et
al. 2005, Burrell, Kiernan et al. 2011, Guerreiro, Bras et al. 2015). These genetic findings
prompted clinical research in ALS and FTD cases: About 50% of ALS cases manifest cognitive
impairment similar to the type observed in FTD, with around 15% of ALS cases meeting
diagnostic criteria for FTD at the time ALS is diagnosed (Ringholz, Appel et al. 2005).
Furthermore, about 15% of FTD cases show clinically detectable motor symptoms (Ling,
Polymenidou et al. 2013). Ten percent of all ALS, and one third of all FTD cases, seem to have
a positive family history with at least one immediate family member showing the disease
(Neumann, Sampathu et al. 2006, Ling, Polymenidou et al. 2013). Currently, riluzole, which is
thought to inhibit tetrodotoxin (TTX)-sensitive sodium channels, kainate receptors and NMDA

receptors (Debono, Le Guern et al. 1993, Song, Huang et al. 1997, Bellingham 2011) and the
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antioxidant Edaravone are the only two ALS therapies available, but extend life only by a few
months (Moujalled and White 2016, Hardiman and van den Berg 2017, Writing and Edaravone
2017). In addition, riluzole is the only disease-modifying drug that has been approved for any
form of FTD in the USA (Tsai and Boxer 2016).

3.1.1. Genetics of ALS and FTD

Considerable efforts have been made in unraveling the genetics of ALS and FTD, and it is now

obvious that the genetics of these two neurodegenerative syndromes considerably overlap.

So far mutations in > 25 genes contributing to the etiology of both ALS (Table 1), FTD (Table
2) have been identified. Many of these identified genes encode proteins that function in
common biological pathways such as ubiquitin proteasome system (UPS), intracellular
trafficking, RNA processing, autophagy and unfolded protein responses. Interestingly,
mutations in most of these genes lead to similar pathology including TDP-43 aggregation and
neuroinflammation, emphasizing several mechanisms resulting in common downstream
implications and neuronal loss. Associated genes with amyotrophic lateral sclerosis and
frontotemporal dementia have been listed in Tables 1. and 2. respectively. (Rosen, Siddique
et al. 1993, Hadano, Hand et al. 2001, Yang, Hentati et al. 2001, Chen, Bennett et al. 2004,
Nishimura, Mitne-Neto et al. 2004, Greenway, Andersen et al. 2006, Parkinson, Ince et al.
2006, Watts, Thomasova et al. 2007, Seelaar, Kamphorst et al. 2008, Sreedharan, Blair et al.
2008, Chow, Landers et al. 2009, Kwiatkowski, Bosco et al. 2009, Vance, Rogelj et al. 2009,
Elden, Kim et al. 2010, Felbecker, Camu et al. 2010, Johnson, Mandrioli et al. 2010, Luty,
Kwok et al. 2010, Maruyama, Morino et al. 2010, Orlacchio, Babalini et al. 2010, Al-Saif, Al-
Mohanna et al. 2011, Chen-Plotkin, Martinez-Lage et al. 2011, DedJesus-Hernandez,
Mackenzie et al. 2011, Deng, Chen et al. 2011, Fecto, Yan et al. 2011, Mackenzie, Neumann
et al. 2011, Renton, Majounie et al. 2011, Rubino, Rainero et al. 2012, Wu, Fallini et al. 2012,
Kim, Kim et al. 2013, Le Ber, Camuzat et al. 2013, Miller, Pestronk et al. 2013, Takahashi,
Fukuda et al. 2013, Teyssou, Takeda et al. 2013, Bannwarth, Ait-EI-Mkadem et al. 2014,
Chaussenot, Le Ber et al. 2014, Johnson, Glynn et al. 2014, Muller, Andersen et al. 2014,
Smith, Ticozzi et al. 2014, van der Zee, Van Langenhove et al. 2014, Ajroud-Driss, Fecto et al.
2015, Cirulli, Lasseigne et al. 2015, Dols-Icardo, Nebot et al. 2015, Freischmidt, Wieland et al.
2015, Kurzwelly, Kruger et al. 2015, Ronchi, Riboldi et al. 2015, Zhang, Xi et al. 2015, Brenner,
Muller et al. 2016, Genin, Plutino et al. 2016, Nizzardo, Simone et al. 2016, Williams, Topp et
al. 2016, Che, Zhao et al. 2017, Perrone, Nguyen et al. 2017, Shen, He et al. 2017, Nicolas,
Kenna et al. 2018, Cooper-Knock, Moll et al. 2019).
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Most importantly C9orf72 is by far the biggest contributor explaining 40% of familial ALS (fALS)
and 10% of sporadic ALS (sALS) cases (DeJesus-Hernandez, Mackenzie et al. 2011, Renton,
Majounie et al. 2011, Wood 2011, Gijselinck, Van Langenhove et al. 2012, Majounie, Renton
etal. 2012, Cruts, Gijselinck et al. 2013, Webster, Smith et al. 2016, Nguyen, Van Broeckhoven
et al. 2018).



16 Introduction

Table 1. Overview of associated genes with amyotrophic lateral sclerosis (ALS).

ALS related genes | Chromosomal location mm

CI9ORF72 9p21.2 Adult

SQSTM1 5035.3 Adult

CHCHD10 22911.23 Adult

16p11.2 Adult AD (AR)

TBK1 12914.2 Adult

TUBA4A 2935 Adult

ALS2 2933.1 Juvenile

CHMP2B 3p11.2 Adult

9g34.13 Juvenile

SPG11 15921.1 Juvenile
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ERBB4 2q34 Adult AD
MATR3 5q31.2 Adult AD
ANXA11 10g22.2 Adult AD
SIGMAR1 9p13.3 Juvenile AD and AR
GLT8D1 3p21.1 Adult AD
NEK1 4933 Adult AD
KIF5A 12913.3 Adult AD
VAPB 20q913. 32 Adult AD
CCNF 16p13.3 Adult AD

Abbreviations: autosomal dominant (AD*), autosomal recessive (AR), X-linked inheritance (X-
LD), chromosome 9 open reading frame 72 (C9orf72), TAR DNA-binding protein 43
(TARDBP), sequestosome 1 (SQSTM1/p62), ubiquilin-2 (UBQLN2), coiled-coil-helix-coiled-
coil-helix domain containing protein 10 (CHCHD10), superoxide dismutase 1 (SOD1), fused in
sarcoma (FUS), optineurin (OPTN), TANK-Binding Kinase 1 (TBK1), heterogeneous nuclear
ribonucleoprotein A1 (hnRNPA1), tubulin, alpha 4A (TUBA4A), ataxin 2 (ATXN2),
Amyotrophic lateral sclerosis 2 (ALS2), valosin-containing protein (VCP), charged
multivesicular body protein 2B (CHMP2B), angiogenin (ANG), Senataxin (SETX),
phosphoinositide 5-phosphatase (FIG4), spatacsin (SPG11), profilin 1 (PFN1), Neuregulin-
receptor tyrosine kinase (ERBB4), Matrin 3 (MATR3), Annexin-11 (ANXA11), Sigma Non-
Opioid Intracellular Receptor 1 (SIGMAR1), Glycosyltransferase 8 Domain Containing 1
(GLT8D1), NIMA (Never In Mitosis Gene A)-Related Kinase 1 (NEK1), Kinesin Heavy Chain
Neuron-Specific 1 (KIF5A), VAMP (Vesicle-Associated Membrane Protein)-Associated
Protein B And C (VAPB), G2/Mitotic-Specific Cyclin-F (CCNF).
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Overview of associated genes with frontotemporal dementia (FTD).

C9ORF72 9p21.2 Adult AD
SQSTM1 5035.3 Adult AD
GRN 17921.31 Adult AD
VCP 9p13.3 Adult AD
CHMP2B 3p11.2 Adult AD
MAPT 17g21.2 Adult AD
TARDBP 1p36.22 Adult AD

TBP 627 Adult AD
TBK1 12914.2 Adult AD

FUS 16p11.2 Adult AD (AR)
CHCHD10 22q11.23 Adult AD
OPTN 10p13 Adult AD (AR)
TUBA4A 235 Adult AD
ATXN2 12924.12 Adult AD
CCNF 16p13.3 Adult AD
UBQLN2 Xp11.21 Adult X-LD

autosomal dominant (AD*), autosomal recessive (AR), X-linked inheritance (X-
LD), chromosome 9 open reading frame 72 (C90rf72), sequestosome 1 (SQSTM1/p62),
granulin precursor (GRN), valosin-containing protein (VCP), charged multivesicular body
protein 2B (CHMP2B), Microtubule Associated Protein Tau (MAPT), TAR DNA-binding protein
43 (TARDBP), TATA Sequence-Binding Protein (TBP), TANK-Binding Kinase 1 (TBK1), fused
in sarcoma (FUS), coiled-coil-helix-coiled-coil-helix domain containing protein 10 (CHCHD10),
optineurin (OPTN), tubulin, alpha 4A (TUBA4A), ataxin 2 (ATXN2), G2/Mitotic-Specific Cyclin-
F (CCNF), ubiquilin-2 (UBQLN2).
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3.2. TAR DNA binding protein (TARDBP) gene in ALS/FTD

TDP-43 was first identified in 1995 as an interactor of the transactive response (TAR) DNA
element in human immunodeficiency virus 1 (HIV-1), and therefore the gene encoding TDP-
43 was named TAR DNA Binding Protein (TARDBP) (Ou, Wu et al. 1995). The TARDBP gene
is comprised of six exons and is found on chromosome 1p36.22. TARDBP mRNA is widely
expressed in many different human tissues, particularly pancreas, brain and spinal cord
(Zhang, Xu et al. 2007, Wang, Wu et al. 2008).

TARDBP gene encodes a highly conserved 414-amino-acid-protein with the molecular weight
of 43 kDa, therefore is named TDP-43 (Ayala, Pantano et al. 2005, Buratti and Baralle 2008).
TDP-43 is composed of an N-terminus including a nuclear localization signal (NLS), nuclear
export signal (NES), two RNA recognition motifs (RRM1 and RRM2), with a C-terminus
containing a glutamine/asparagine-rich (Q/N) domain and a glycine-rich region (Ayala, Zago
et al. 2008).

The N-terminal domain has been extensively studied and shown to play an essential role in
the dimerization of TDP-43 (Chang, Wu et al. 2012, Afroz, Hock et al. 2017). TDP-43, in order
to function as a transcriptional repressor or activator, via mainly RRM1 domain (RRM1 playing
a predominant role while RRM2 has more of a supporting role) binds an RNA repeat with UG-
repeats (Ayala, Pantano et al. 2005, Forman, Trojanowski et al. 2007) and TG-rich DNA
sequences (Kuo, Doudeva et al. 2009, Lukavsky, Daujotyte et al. 2013, Kuo, Chiang et al.
2014). NLS and NES sequences permit TDP-43 to shuttle between the nucleus and the cytosol
(Buratti and Baralle 2008, Ederle, Funk et al. 2018), and play a role in interactions between
TDP-43 and members of hnRNP family (A1, A2/B1, and A3) (Buratti, Brindisi et al. 2005).

The C-terminus of TDP-43 is largely disordered, interacts with several RNA binding proteins
(RBPs) and promotes aggregation of the full length protein of proteolytically processed C-
terminal fragments (Johnson, Snead et al. 2009, Fuentealba, Udan et al. 2010). TDP-43 also
binds another RBP, Fragile X mental retardation protein (FMRP) to co-inhibit translation
(Majumder, Chu et al. 2016). It has been shown that TDP-43 via its C-terminus can also
interact with nucleic acids (i.e., ssDNA) in addition to membranes (Lim, Wei et al. 2016).
Moreover, TDP-43 associates with ubiquillin-2 via its C-terminal domain (Cassel, McDonnell
et al. 2012, Cassel and Reitz 2013).

TDP-43 is an RNA/DNA-binding protein that processes RNA predominantly in the nucleus,
therefore is mainly localized in the nucleus with low abundance in the cytosol. However, TDP-

43 regulates expression and splicing of >900 distinct genes, revealing an important role for
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TDP-43 in maintaining the RNA levels, including mRNAs that are essential for neuronal
function (Polymenidou, Lagier-Tourenne et al. 2011), some of which are decreased in human
diseases (Tollervey, Curk et al. 2011). Furthermore, patients with TARDBP mutations show
characteristic TDP-43 positive neuronal and glial inclusions together with motor neuron loss
and presence of so-called Bunina bodies. (Neumann 2009, Polymenidou, Lagier-Tourenne et
al. 2011, Colombrita, Onesto et al. 2012, Lagier-Tourenne, Polymenidou et al. 2012).
Cytoplasmic TDP-43 aggregation likely causes neurodegeneration through series of direct
aggregate toxicity and additional loss of function mechanisms due to striking nuclear clearance
of TDP-43 in aggregate-bearing cells (Gendron and Petrucelli 2011, Walker, Tripathy et al.
2015, Ederle and Dormann 2017, Prasad, Bharathi et al. 2019). How pathogenic mutations in
other genes, such as C9orf72 trigger TDP-43 pathology and their link to neurodegeneration

remains unclear.
3.3. Chromosome 9 open reading frame 72 gene (C90rf72) in ALS/FTD

The discovery of a noncoding hexanucleotide (G4C.), repeat expansion (HRE) mutation in 5’
of the open reading frame of C90rf72 in 2011 was a breakthrough in the field, because the
mutation explains up to 40% of fALS patients, 25% of familial FTD, and striking 88% of familial
patients with both ALS and FTD (Van Mossevelde, van der Zee et al. 2017). The C9orf72 gene
was first found in multiple multigenerational families with FTD-ALS and linked to chromosome
9p21 (Dedesus-Hernandez, Mackenzie et al. 2011, Renton, Majounie et al. 2011, Gijselinck,

Van Langenhove et al. 2012).
3.3.1. C9Y0rf72 link to ALS/FTD

C9orfr2-related ALS/FTD is inherited in an autosomal dominant manner, with age-dependent
penetrance. Repeat sizes of less than 25 (G4C;) are considered normal, while expansions to
more than 60 (G4C-) hexanucleotide repeats are considered pathogenic, (Majounie, Renton
et al. 2012, van der Zee, Gijselinck et al. 2013). However, the exact cut-off is still controversial
because most controls have 2-3 repeats and most patients harbor several hundred or
thousand repeats, while cases with intermediate repeat size are extremely rare (Cruts,
Engelborghs et al. 1993, Xi, Zinman et al. 2012).

3.3.2 C90rf72 disease mechanisms
In understanding C9orf72 mutations, three main non-exclusive pathological disease

mechanisms have been proposed:

Many studies have shown loss-of-function (LOF) and haploinsufficiency where (G4C2), repeat

expansion in C9orf72 promoter suppresses expression of the mutant allele, resulting in
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reduced mRNA and proteins levels (Figure 1a). This phenomenon had previously been seen
in fragile X syndrome and Friedrich’s ataxia (Tassone, Pan et al. 2008, Gijselinck, Van
Langenhove et al. 2012). Although this proposed mechanism has been under intense debate
(Donnelly, Zhang et al. 2013, Fratta, Poulter et al. 2013, Lagier-Tourenne, Baughn et al. 2013,
Sareen, O'Rourke et al. 2013), very recently in a mouse model expressing
a CY9orf72 transgene with 450 repeats (without producing C9ORF72 protein), suppression of
one or both C9orf72 allele(s) was reported to aggravate cognitive-related deficits potentially
via inhibiting autophagy (Zhu, Jiang et al. 2020). Moreover, cryo-electron microscopy revealed
the structure of the CSW complex consisting of C9orf72 protein together with Smith-Magenis
chromosome region 8 (SMCR8) and WD repeat-containing protein 41 (WDR41) . The CSW
complex regulates membrane trafficking by mediating the activity of Rab GTPases (Tang,
Sheng et al. 2020). In vitro, the CSW complex stimulates the exchange of GDP for GTP in
small GTP/GDP-binding proteins such as Ras-related protein Rab-8A (Rab8a) and Ras-
related protein Rab-39b (Rab39b) (Sellier, Campanari et al. 2016, Yang, Liang et al. 2016).

Furthermore, expanded sense and antisense RNA transcripts form toxic RNA foci that may
sequester essential RNA-binding proteins and inhibit the RNA processing machinery, similar
to myotonic dystrophy type 1 (Figure 1b) (Wheeler and Thornton 2007, DeJesus-Hernandez,
Mackenzie et al. 2011). However, at least in Drosophila the repeat RNA itself has little effect
on global RNA processing and neuronal survival (Mizielinska, Gronke et al. 2014, Tran,
Almeida et al. 2015).

Last but not least, unconventional repeat-associated non-AUG (RAN) translation of both sense
and anti-sense RNA transcripts in all three reading frames leads to 5 different species of
aggregating dipeptide repeat proteins (DPRs): poly-GA, poly-GP, poly-GR, poly-PA, and poly-
PR inclusions (Figure 1c) (Ash, Bieniek et al. 2013, Mori, Arzberger et al. 2013, Mori, Weng et
al. 2013, Zu, Liu et al. 2013, Edbauer and Haass 2016, Frick, Sellier et al. 2018, Saberi,
Stauffer et al. 2018). These inclusions are most abundant in the cerebellum, hippocampus,
and neocortex (Mori, Arzberger et al. 2013). In postmortem studies of C9orf72 FTD/ALS brains,
poly-GA and poly-GP inclusions are more abundant than poly-GR, while poly-PA and poly-PR
inclusions are rare (Mackenzie, Frick et al. 2014, Mackenzie, Frick et al. 2015).
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Figure 1. C90orf72 repeat expansion: three proposed pathomechanisms. The C9orf72
gene harbors a polymorphic hexanucleotide (G4C-), repeat in a non-coding region (depending
on the transcript either in the promoter region or in the first intron) of the gene. Large
expansions of this nucleotide repeat cause ALS, FTD or both. There are currently three major
hypotheses to explain pathological disease mechanisms. (a) (G4Cz), repeat expansion
reduces C9orf72 gene expression and could result in C9orf72 haploinsufficiency. (b) RNA
transcripts of expanded (G4C.), from both sense and anti-sense strands causing an
accumulation of toxic RNA foci. These RNA foci further sequester RNA-binding proteins
(RBPs), such as splicing factors, and result in impaired pre-mRNA splicing. (c) Dipeptide
repeat protein (DPR) inclusions are derived from non-AUG translation of sense and anti-sense
transcripts in all reading frames and are abundant in brain and rare in spinal cord of C9orf72
carriers.
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3.3.3 Dipeptide repeat (DPR) proteins pathology

Pathologically, C9orf72 mutation carriers exhibit aberrant, particular star-shaped or dot-like
TDP-43 negative, p62-positive cytoplasmic dipeptide repeat protein (DPRs) inclusions, that
are not found in other types of ALS/FTD (Al-Sarraj, King et al. 2011). Most importantly, among
all five species of DPRs in patients with C9orf72 HRE, only poly-GA overexpression in primary
neurons mimicked the p62-positive neuronal inclusions (Schludi et al. 2015). RAN-translation
was first reported for (CAG), repeats in spinocerebellar ataxia type 8 and myotonic dystrophy
(Zu, Gibbens et al. 2011). Several groups including us have reported C9orf72-derived DPRs
show differential toxicity in cell culture models (Zu, Liu et al. 2013, Kwon, Xiang et al. 2014,
May, Hornburg et al. 2014, Wen, Tan et al. 2014, Zhang, Jansen-West et al. 2014, Tao, Wang
et al. 2015, Yamakawa, Ito et al. 2015, Chang, Jeng et al. 2016, Kanekura, Yagi et al. 2016),
animal models including Drosophila (Mizielinska, Gronke et al. 2014, Wen, Tan et al. 2014,
Freibaum, Lu et al. 2015, Tran, Almeida et al. 2015, Yang, Abdallah et al. 2015, Boeynaems,
Bogaert et al. 2016, Lee, Zhang et al. 2016), zebrafish (Ohki, Wenninger-Weinzierl et al. 2017,
Swaminathan, Bouffard et al. 2018, Swinnen, Bento-Abreu et al. 2018), and mice (Zhang,
Gendron et al. 2016, Schludi, Becker et al. 2017). DPRs can cause neurodegeneration,
behavioral deficits and have been linked to impaired nucleocytoplasmic transport (Freibaum,
Lu et al. 2015, Jovicic, Mertens et al. 2015, Zhang, Donnelly et al. 2015, Zhang, Gendron et
al. 2016, Khosravi, Hartmann et al. 2017, Shi, Mori et al. 2017, Yin, Lopez-Gonzalez et al.
2017).

3.3.4. DPRs transmit between cells

For a long time, disease transmission due to misfolded proteins was considered a unique
property of the prion protein. However, several studies have shown underlying ‘prion-like’
mechanisms in pathological spreading of various neurodegenerative diseases (Aguzzi and
Rajendran 2009, Brundin, Melki et al. 2010). In fact, ‘non-prion’ protein aggregates, such as
tau in AD (Alzheimer's disease), a-synuclein in PD (Parkinson's disease), and Huntingtin in
HD (Huntington's disease) can transmit between cells and seed to recruit the endogenous
proteins into aggregates through various mechanisms, including phagocytosis, endocytosis,
and exocytosis (Kane, Lipinski et al. 2000, Meyer-Luehmann, Coomaraswamy et al. 2006,
Frost and Diamond 2009, Krammer, Schatzl et al. 2009, Angot, Steiner et al. 2010, Brundin,
Melki et al. 2010, Frost and Diamond 2010, Lee, Desplats et al. 2010, Guest, Silverman et al.
2011, Jucker and Walker 2011, Langer, Eisele et al. 2011, Moreno-Gonzalez and Soto 2011,
Dunning, Reyes et al. 2012, Hall and Patuto 2012, Morales, Duran-Aniotz et al. 2012, Costanzo
and Zurzolo 2013, Fritschi, Langer et al. 2014, Watts, Condello et al. 2014, Rasmussen, Mahler
et al. 2017, Jucker and Walker 2018, Ruiz-Riquelme, Lau et al. 2018).
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Cell-to-cell spreading of DPRs via exosome-dependent and exosome-independent pathways
has been shown in cell culture experiments, including spinal motor neurons derived from
induced pluripotent stem cells from C9orf72-ALS cases (Westergard et al. 2016). In addition,
(GA)15 forms ribbon-type fibrils and is taking up in neuroblastoma N2a cells (Chang, Jeng et
al. 2016). Our group also detected cell-to-cell transmission of all hydrophobic DPR species
(poly-GA, -GP, and -PA) using co-culture experiments in HEK293 cells. Using rat primary
neurons, poly-GA release was detected in conditioned media by immunoassay, in addition
poly-GA was shown to transmit between neurons (Zhou et al. 2017). Therefore, | asked how
DPR uptake affects neighboring cells, focusing on proteostasis and nucleocytoplasmic

transport.
3.3.5. DPRs impair nucleocytoplasmic transport

In eukaryotic cells, a double-membraned nuclear envelope (NE) separates the nucleus from
the cytoplasm. Molecules are transported between nucleus and cytoplasm via large gateways
called nuclear pore complexes (NPCs). The NPC is the largest macromolecular complex in
eukaryotic cells, comprising ~30 distinct proteins (Cronshaw and Matunis 2004). Small
molecules can passively cycle in and out of the nucleus through the NPC, while for larger
molecules like proteins larger than ~40 kDa, an active transport by recruiting receptors that
bind nuclear pore complex proteins (NUPs) is required. Protein import and export is mediated
by specific signals, termed nuclear localization sequence (NLS) and nuclear export signal
(NES) that are recognized by carrier protein importins and exportins, respectively (Steggerda
and Paschal 2002, Corbett and Krebber 2004, Mor, White et al. 2014). Furthermore,
compartmentalized distribution of Ran-GTP defines the directionality of nucleocytoplasmic
transport (Melchior, Paschal et al. 1993, Moore and Blobel 1993, Gorlich and Mattaj 1996,
Sweet and Gerace 1996, Weis, Dingwall et al. 1996, Goldfarb 1997, Gorlich 1997, Nigg 1997).
A genetic screen in Drosophila expressing (G4C>), repeats identified RAN GTPase activating
protein (RanGAP) (Drosophila orthologue of human RanGAP1) as an essential regulator of
nucleocytoplasmic transport (Zhang, Donnelly et al. 2015). However, RanGAP1 localization
with poly-GA inclusions in different mouse models is still under debate (Zhang, Gendron et al.
2016, Schludi, Becker et al. 2017). In addition, artificial aggregating -sheet proteins have been
shown to impair nucleocytoplasmic transport due to sequestration of RNA binding proteins
(Woerner, Frottin et al. 2016). Finally, several interactome studies have shown that poly-GR
and poly-PR inclusions engage with RNA binding proteins (RBPs) and influence the formation
of membrane-less organelles and their liquid-liquid phase separation (LLPS) dynamics
mediated by low complexity sequence domains (LCDs) (Lee, Zhang et al. 2016, Lin, Mori et
al. 2016, Zhang, Gendron et al. 2018, Moens, Niccoli et al. 2019). Moreover, selective

transportation of cargos through the nuclear pore is believed to be via liquid-liquid phase
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separation. Therefore, several studies have identified interactions between poly-GR and poly-
PR aggregates with RBPs that led to nucleocytoplasmic transport abnormalities (Jovicic,
Mertens et al. 2015, Boeynaems, Bogaert et al. 2016, Lee, Zhang et al. 2016). These
interactions have been reported to inhibit nucleocytoplasmic transport (Zhang, Donnelly et al.
2015).

3.3.6. DPRs and protein homeostasis

In a typical human cell about 10,000 different proteins are expressed and they must be
appropriately folded to exert their biological functions. The term "proteostasis" (protein
homeostasis) refers to a dynamic quality control network that maintains proteins in the correct
concentration, conformation, and subcellular location (Powers, Morimoto et al. 2009, Labbadia
and Morimoto 2015, Kulak, Geyer et al. 2017, Klaips, Jayaraj et al. 2018). During proteostasis,
cells are in a dynamic state between protein synthesis/folding and protein degradation.
Since proteins control almost every process in the cells, it is crucial to maintain and regulate
proteostasis in order for the cells to be functional and able to adapt to new environmental
challenges (Balch, Morimoto et al. 2008, Hartl, Bracher et al. 2011). Proteostasis dysfunction
fundamentally leads to disease pathogenesis, therefore in order for the cells to prevent protein
misfolding and aggregation, they use very efficient and largely sensitive protein quality control
mechanisms, involving degradation systems for damaged proteins. Two major intracellular

protein degradation pathways are the ubiquitin-proteasome system (UPS) and autophagy.

The ubiquitin-proteasome system (UPS) has been particularly studied in neurodegenerative
disorders since it functions as a key player in proteostasis in eukaryotic cells. UPS maintains
the cellular environment clear of non-functional, misfolded, and aggregated proteins that have
been shown to accumulate in various neurodegenerative disorders (Ciechanover and Brundin
2003, Dantuma and Bott 2014, Hipp, Park et al. 2014, Schmidt and Finley 2014). Degradation
of intracellular proteins by UPS is composed of two separate, following steps: ubiquitylation

and proteasomal degradation (Hershko and Ciechanover 1998, Kleiger and Mayor 2014).

Ubiquitylation usually results in the conjugation between its carboxy-terminal glycine (G76) and
the lysine (Lys) residue, and less frequently, free N-terminus of the substrate (Pickart 2001).
This reaction is catalyzed by a consecutive cascade of three enzymes: a ubiquitin activator
(E1) forming a thiol ester with the carboxyl group of G76 and activating it for nucleophilic attack,
a conjugating enzyme (E2) transferring the activated ubiquitin to the conjugation site as an E2-
ubiquitin thiol ester intermediate, and a ligase (E3) carrying activated ubiquitin to the
substrate’s lysine residue (Hershko, Heller et al. 1983, Pickart 2001, Goldberg 2003, Deshaies
and Joazeiro 2009, Schulman and Harper 2009, Ye and Rape 2009).
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Substrate proteins targeted for proteasomal degradation normally bind a poly-ubiquitin chain
that has been formed from several rounds of ubiquitylation, in which ubiquitins are linked by
lysine 48-glycine 76 (K48-G76) isopeptide bonds (Hershko and Ciechanover 1998).

Moreover, proteasomes are found in eukaryotes, archaea, and some bacteria. Eukaryotic 26S
proteasome is a large multi-subunit complex that is responsible for selected degradation of a
wide number of cell proteins (Hershko, Heller et al. 1983, Hegde, Goldberg et al. 1993,
Hershko and Ciechanover 1998, Walker and LeVine 2000, Pickart 2001, Sherman and
Goldberg 2001, Ciechanover and Brundin 2003, Goldberg 2003, Fonseca, Vabulas et al. 2006,
Hou, Antion et al. 2006, Karpova, Mikhaylova et al. 2006, Ortega, Diaz-Hernandez et al. 2007,
Kabashi, Valdmanis et al. 2008, Rutherford, Zhang et al. 2008, Tai and Schuman 2008,
Deshaies and Joazeiro 2009, Schulman and Harper 2009, Ye and Rape 2009, Hegde 2010,
van Eersel, Ke et al. 2011, Saeki and Tanaka 2012, Kleiger and Mayor 2014, McKinnon and
Tabrizi 2014, Ortega and Lucas 2014, Gupta, Lan et al. 2017, Opoku-Nsiah and Gestwicki
2018, McAlary, Plotkin et al. 2019, Thibaudeau and Smith 2019). It is comprised of a 20S core
particle and 19S regulatory particle at one or both ends, a key discriminator gateway for
targeted protein substrates (Saeki and Tanaka 2012). The 19S regulatory particle recognizes
and assists in deubiquitylation, unfolds and translocates protein substrates into the 20S core
particle. 20S particle forms a cavity where the proteolytic site of the proteasome is located,
therefore the substrate is degraded into short peptides that are eventually broken down to
amino acids by peptidases and can be reused by the cell (Zhang, Zhao et al. 2018).
Proteasome’s capacity to degrade ubiquitin conjugates and on protein substrate degradation
in cells can be modified by several ways, including pharmacological agents (rolipram by
increasing cAMP levels) and genetic manipulations (19S proteasome subunit PSMD11/RPN-
6) (Vilchez, Boyer et al. 2012, Lokireddy, Kukushkin et al. 2015). Rolipram treatment has been
studied in Alzheimer models and was shown to help with clearance of abnormal tau, thereby

improving cognition (Myeku, Clelland et al. 2016).

Although various neurodegenerative disorders such as Alzheimer’s disease (AD), Huntington’s
disease (HD), Parkinson’s disease (PD), and Amyotrophic lateral sclerosis (ALS) together with
frontotemporal dementia (FTD) manifest different clinical symptoms, they all have been shown
to be associated with accumulation of aggregating proteins (Walker and LeVine 2000,
Sherman and Goldberg 2001, Jellinger 2012, McAlary, Plotkin et al. 2019). In addition, neurons
like each post-mitotic cell are very sensitive to proteostasis imbalances because of their unique
metabolism and long lifespan (Tai and Schuman 2008). A vast growing range of studies have
linked neurodegeneration to mutations in UPS components (Ciechanover and Brundin 2003,
Ortega, Diaz-Hernandez et al. 2007, McKinnon and Tabrizi 2014, Ortega and Lucas 2014,

Thibaudeau and Smith 2019) and respective decline in proteostasis and
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proteasomal dysfunction (Dantuma and Bott 2014, Opoku-Nsiah and Gestwicki 2018).

In ALS research, our group and others reported that poly-GA expression leads to upregulation
of p62 and accumulation of ubiquitinated proteins, suggesting impaired UPS activity (May,
Hornburg et al. 2014, Zhang, Jansen-West et al. 2014, Yamakawa, Ito et al. 2015). We have
shown that poly-GA inclusions sequesters 26S proteasomes that are locked in an otherwise
rare substrate-processing state. This leads to impaired proteasome function that is essential
for proteostasis maintenance, and responsible for inducing ER stress (Zhang, Jansen-West et
al. 2014, Guo, Lehmer et al. 2018). Moreover, we and others have shown poly-GA interacts
with components of UPS-related proteins Unc119 and HR23 (May, Hornburg et al. 2014,
Zhang, Gendron et al. 2016). Significantly, poly-GA, poly-GP, and poly-GR aggregates were
shown to increase levels of TDP-43, a well-known substrate for UPS (Yamakawa, Ito et al.
2015). Furthermore, poly-PR inclusions have been shown to reduce UPS flux, thereby
impeding UPS function and induce cell toxicity (Gupta, Lan et al. 2017). Most importantly,
reduced proteasome activity has been shown to lead to decreased solubility and fragmentation
of TDP-43 (Kabashi, Valdmanis et al. 2008, Rutherford, Zhang et al. 2008), in addition to
chemically blocking proteasome activity resulting in induced cytoplasmic accumulation of TDP-
43 (van Eersel, Ke et al. 2011).

Since poly-GA inclusions impair proteasome and impaired proteasome leads to cytoplasmic
mislocalization of TDP-43, considering the fact that DPRs and TDP-43 inclusions are rarely
found in the same cell, | asked whether cell-to-cell transmission of poly-GA could cause TDP-
43 pathology (comparing to other DPRs) in neighboring cells, mainly by studying effects on
proteasome activity and nucleocytoplasmic transport. Moreover, | focused on proteasomal
activity manipulations (pharmacologically and genetically) to see whether impeded or induced

proteasome could affect poly-GA and TDP-43 pathology.

In addition, autophagy is a largely conserved catabolic process contributing to maintaining
cellular homeostasis (Kaushik and Cuervo 2018, Mizushima 2018). Overwhelming evidence
has shown various autophagy receptors are linked to ALS/FTD (Maruyama, Morino et al. 2010,
Deng, Chen et al. 2011, Kachaner, Genin et al. 2012, Dillen, Van Langenhove et al. 2013,
Rea, Majcher et al. 2014, van der Zee, Van Langenhove et al. 2014).
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4. Goals of the study

Although TDP-43 cytoplasmic mislocalization and aggregation strongly correlates with
neurodegeneration in ALS and FTD, it is unclear what mechanisms trigger TDP-43 pathology.
Genetic forms of ALS/FTD provide an excellent opportunity to explore this outstanding
question at least in a subset of patients with the hope to identify mechanisms that are also
relevant for sporadic ALS/FTD. The pathogenic (G4C,)n repeat expansion upstream of the
coding region of C9orf72 is found in 5-10% of ALS and FTD cases and virtually all C9orf72
patients develop TDP-43 pathology (DeJesus-Hernandez, Mackenzie et al. 2011, Renton,
Majounie et al. 2011). C9orf72 patients express five unique species of dipeptide repeat (DPR)
proteins (poly-GA/-GP/-GR/-PA and -PR) derived from an unconventional non-AUG translation
of the repeat RNA in all reading frames (Ash, Bieniek et al. 2013, Gendron, Bieniek et al. 2013,
Mori, Arzberger et al. 2013, Mori, Weng et al. 2013, Zu, Liu et al. 2013). The five DPR species
co-aggregate and nearly all DPR inclusions are poly-GA positive and often contain also poly-
GP/-GR and far less frequently poly-PA/-PR. DPRs and TDP-43 co-aggregate only
occasionally and are not spatially correlated, but poly-GA has been shown to be transmitted
from cell to cell similar to aggregating proteins in other neurodegenerative diseases (Zhou,
Lehmer et al. 2017, Jucker and Walker 2018). Moreover, poly-GA forms amyloid-like fibrils
(Chang, Jeng et al. 2016) and artificial aggregating B-sheet proteins inhibit nucleocytoplasmic

transport (Woerner, Frottin et al. 2016).

Based on these findings, the first aim of my thesis was to study whether DPRs and in particular
poly-GA may impair nucleocytoplasmic transport of endogenous TDP-43 and fluorescent
reporters in cell lines and primary neurons in order to understand the link between the C9orf72

mutation and TDP-43 pathology.

| could indeed show that poly-GA inhibits the nuclear import of TDP-43 and colleagues in my
lab reported that poly-GA inclusions sequester large amounts of proteasomes (Guo, Lehmer
et al. 2018). Thus, my second goal was to test whether poly-GA mediated proteasome
inhibition impairs TDP-43 trafficking and whether chemical or genetic activation of proteasome

function would restore nuclear import of TDP-43.

Moreover, cytoplasmic Tau and a-synuclein inclusions found in Alzheimer's and Parkinson's
disease have been shown to cause stereotypic spreading (Jucker and Walker 2018).
Accordingly, the third goal of my thesis was to analyze whether non-cell-autonomous effects
of DPRs would contribute to TDP-43 pathology and whether this could be inhibited by

monoclonal anti-GA antibodies that may serve as future therapies.
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5. Research Articles

5.1. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in
C9orf72 ALS/FTLD

TDP-43 inclusion pathology correlates well with regional neurodegeneration in ALS and FTD
in sporadic and C9orf72 cases. However, the cause of TDP-43 aggregation in C9orf72
ALS/FTD has been largely unclear. The C9orf72 mutation has been linked to
nucleocytoplasmic transport deficits in cell and animal models (Freibaum, Lu et al. 2015,
Jovicic, Mertens et al. 2015, Zhang, Donnelly et al. 2015), but the relative contribution of the
(G4C2)n RNA and the different DPR species was debated and the effects on TDP-43 itself had
not been investigated. By using a reporter containing TDP-43 nuclear localization (NLS) signal,
I have shown that cytoplasmic poly-GA inclusions in vitro inhibit TDP-43 NLS to a greater
extent compared to poly-GR/-PR expression. Furthermore, since only cytosolic artificial (3-
sheet aggregates (Woerner, Frottin et al. 2016), but not the nuclear ones, had been shown to
inhibit nuclear import, we asked whether the localization of poly-GA inclusions plays a role in
their implications on TDP-43 import. By fusing poly-GA with the NLS, we could reroute
aggregate formation from the cytosol to the nucleus. Interestingly, HelLa cells and neurons with
nuclear poly-GA inclusions showed far less cytoplasmic mislocalization of TDP-43 compared

to cells with cytoplasmic poly-GA aggregates.

Moreover, | showed that DPRs affect the nuclear import mainly through the classical importin
o/f pathway. In contrast, a reporter construct containing the non-classical PY-NLS of
hnRNPA1 was not affected by DPRs. Finally, by overexpression importin-a (KPNA3, KPNA4)
and nuclear pore components (NUP54, NUP62), we were able to rescue nucleocytoplasmic
transport of TDP-43 NLS reporter.

My findings, for the first time, indicate a direct link between poly-GA, the predominant DPR
species in C9orf72 cases, and cytoplasmic TDP-43 pathology. In addition, our study underlines

the role of nucleocytoplasmic transport deficits in C9orf72 pathogenesis.

Author contribution: performed most cell biological and all biochemical experiments, image
acquisition, analyzed Hela cell experiment data, generated reagents, helped designing the

study, and writing parts of the manuscript (please see section 11 for further details).
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Abstract

A repeat expansion in the non-coding region of C9orf72 gene is the most common mutation causing frontotemporal lobar de-
generation (FTLD) and amyotrophic lateral sclerosis (ALS). Sense and antisense transcripts are translated into aggregating di-
peptide repeat (DPR) proteins in all reading frames (poly-GA,-GP,-GR,-PA and -PR) through an unconventional mechanism.
How these changes contribute to cytoplasmic mislocalization and aggregation of TDP-43 and thereby ultimately leading to
neuron loss remains unclear. The repeat RNA itself and poly-GR/PR have been linked to impaired nucleocytoplasmic trans-
port. Here, we show that compact cytoplasmic poly-GA aggregates impair nuclear import of a reporter containing the TDP-43
nuclear localization (NLS) signal. However, a reporter containing a non-classical PY-NLS was not affected. Moreover, poly-GA
expression prevents TNFo induced nuclear translocation of p65 suggesting that poly-GA predominantly impairs the impor-
tin-o/f-dependent pathway. In neurons, prolonged poly-GA expression induces partial mislocalization of TDP-43 into cyto-
plasmic granules. Rerouting poly-GA to the nucleus prevented TDP-43 mislocalization, suggesting a cytoplasmic mechanism.
In rescue experiments, expression of importin-« (KPNA3, KPNA4) or nucleoporins (NUP54, NUP62) restores the nuclear locali-
zation of the TDP reporter. Taken together, inhibition of nuclear import of TDP-43 by cytoplasmic poly-GA inclusions causally
links the two main aggregating proteins in C9orf72 ALS/FTLD pathogenesis.
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Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar
degeneration (FTLD) are two devastating neurodegenerative dis-
eases with overlapping pathology and genetics (1). The patho-
genic C90rf72 repeat expansion is the most common genetic
cause of ALS and FTLD. Upon autopsy, C9orf72 patients present
typical cytoplasmic TDP-43 aggregates that are also seen in
other familial and sporadic ALS/FTLD cases (2). Three potential
pathomechanisms leading to C9orf72 ALS/FTLD have been pro-
posed so far. Reduced expression from the mutant C9orf72 allele
may inhibit autophagy and promote neuroinflammation with-
out causing overt neurodegeneration by itself (3-5). The RNA
containing hundreds or thousands GGGGCC repeats rather than
2-30 repeats seen in healthy people is thought to sequester a
number of RNA-binding proteins in nuclear RNA foci (6).
Repeat-associated non-ATG translation (7) of the intronic repeat
in all reading frames gives rise to five dipeptide repeat (DPR)
proteins. The sense transcript-derived poly-GA, poly-GR and
poly-GP are much more abundant than poly-PA and poly-PR de-
rived from the antisense transcript (8-11). The DPR proteins
coaggregate in compact inclusions predominantly in the cyto-
plasm of neurons in the neocortex, cerebellum and thalamus.
In patients DPR inclusions likely appear several years prior to
TDP-43 pathology (12). TDP-43 pathology correlates better with
regional neurodegeneration than DPR pathology (13) and DPR
and TDP-43 inclusions appear mostly in distinct cells. If they oc-
cur in the same cell, TDP-43 seems to coat the poly-GA aggre-
gates (8). Intercellular spreading of both aggregated poly-GA
(14,15) and TDP-43 (16) has been reported.

The cause of TDP-43 aggregation in C9orf72 ALS/FTLD is still
largely unclear (17). We and others have found no obvious effect
on TDP-43 upon expression of individual DPR proteins in cell
lines (18-21). High level expression of (GGGGCC)gs using AAV re-
sults in significant TDP-43 aggregation and neurodegeneration,
although the TDP-43 inclusions are (unlike in patients) predom-
inantly found within the nucleus (22). Several BAC-transgenic
lines replicate DPR and RNA foci pathology (4,23,24), but
strangely only one such line additionally showed TDP-43 inclu-
sions and rapid neurodegeneration in a subset of female ani-
mals (25).

Recently, several groups have reported impaired nucleocyto-
plasmic transport in several C9orf72 models and attributed it to
the repeat RNA (26), poly-GR/PR (27) or both (28). The repeat
RNA or poly-GR/PR are thought to disrupt the nucleocytoplas-
mic Ran-GTP gradient that is crucial for correct sorting of most
proteins, but the mechanism remains unclear (29). Similarly, al-
tered RanGAP1 localization has been reported in mice with high
levels of poly-GA expression, but the functional consequences
have not been addressed (30). Recently, it was shown that artifi-
cial aggregating pB-sheet proteins impair nucleocytoplasmic
transport due to sequestration of the THOC complex and RNA
binding proteins (31). Since GA;s peptides also form typical am-
yloid fibrils (14) we speculated that poly-GA may also impair
nucleocytoplasmic transport.

Therefore, we tested whether poly-GA, poly-GR and poly-PR
affect the nuclear import of TDP-43, because cytoplasmic TDP-
43 aggregation may ultimately trigger neurodegeneration in
C9orf72 cases. We analysed cytoplasmic mislocalization of en-
dogenous TDP-43 and of a reporter containing the bipartite clas-
sical nuclear localization signal (NLS) of TDP-43. This signal has
been shown to mediate TDP-43 nuclear import of TDP-43 via the
importin-o/p pathway (32-34). To elucidate the mechanism of
impaired nuclear import of TDP-43, we redirected the
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cytoplasmic poly-GA aggregates into the nucleus and performed
rescue experiments using key components of the nuclear im-
port machinery.

Results

Poly-GA causes mislocalization of a TDP-43 NLS reporter

To test functional consequences of DPR expression on nucleocy-
toplasmic transport of TDP-43 in Hela cells, we generated a
fluorescence-based reporter containing RFP fused with the nu-
clear localization signal (NLS) of TDP-43, a well characterised bi-
partite NLS (33). Upon co-expression of RFP-NLStpp with GFP,
RFP-NLStpp almost exclusively localised to the nucleus in HeLa
cells in interphase, as expected (Fig. 1A first row). In contrast,
many cells with GA4o-GFP inclusions showed significant levels
of the RFP-reporter in the cytoplasm suggesting impaired nu-
clear import mediated by this classical NLS (Fig. 1A, second row,
arrows). Quantitative analysis using manual counting con-
firmed significant mislocalization of the reporter in ~40% of in-
clusion bearing cells compared to ~5% of GFP expressing cells
(Fig.1B). In contrast, only about 20% of cells with compact GFP-
GRq49 Or PRy75-GFP inclusions showed enhanced cytoplasmic
RFP-NLStpp localization (Fig. 1A, third and fourth row). While
GA140-GFP and GFP-GRy49 Were expressed at a similar level, the
weaker effect of poly-PR may be due to the lower expression of
PRy75-GFP (Supplementary Material, Fig. S1A). Using automated
image analysis with the Columbus Acapella system, we con-
firmed mislocalization of the RFP-NLStpp reporter in poly-GA
expressing cells by comparing the mean cytoplasmic RFP fluo-
rescence in double transfected cells (Fig. 1C). Moreover, we used
differential centrifugation to separate the cytosolic and nuclear
fraction of the RFP-NLStpp reporter in DPR expressing cells. As
expected, the majority of RFP-NLStpp was in the histone 3 posi-
tive nuclear fraction. However, the cytosolic fraction of RFP-
NLStpp Was increased in the GA14o-GFP cotransfected HelLa cells
(Fig. 2A and B). Immunostaining revealed no cytoplasmic mis-
localization of endogenous TDP-43 in GFP-DPR expressing HeLa
cells 2 days after transfection (data not shown).

While importin-o/p recognises the NLS of TDP-43, transpor-
tin (TNPO) binds to so-called PY-NLS motifs to initiate the nu-
clear import of other proteins, such as hnRNPA1 (29,35). To test
whether DPR proteins could also inhibit this import pathway,
we used a second reporter (RFP-NLSpy) containing the well char-
acterised PY-NLS of hnRNPA1 (Supplementary Material, Fig. S1B
and C). The nuclear localization of this reporter was not affected
by expression of poly-GA, -GR, or -PR. Thus, DPR proteins
mainly affect the nuclear import through the classical importin
o/B pathway. In particular, poly-GA inclusions inhibit nuclear
import of a TDP-43 NLS-containing reporter protein more se-
verely than poly-GR.

Poly-GA inhibits nuclear import of p65

To analyse the effect of poly-GA on the importin o/p-mediated
nuclear import on an endogenous protein, we investigated the
nuclear translocation of the transcription factor p65 (also
known as RelA or NFkB3) in response to TNFo stimulation in
HelLa cells. In ~90% of the unstimulated cells expressing GFP or
GA149-GFP, P65 is restricted to the cytoplasm (Fig. 3A first and
third row, quantification in Fig. 3B). Upon TNFa stimulation
(4ng/ml, 30min), p65 translocated into the nucleus of ~80% of
the cells expressing GFP (Fig. 3A, second row). In contrast, only
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Figure 1. poly-GA reduces the activity of the TDP-43 nuclear localization signal. HeLa cells were cotransfected with RFP fused to the nuclear localization signal of TDP-
43 and GFP or GFP-tagged DPR expression vectors. (A) Images show RFP and GFP fluorescence of cells stained with DAPI to visualise nuclei. Note that many cells with
compact poly-GA inclusions (arrows) show significant levels of RFP-NLStpp in the cytoplasm. (B) Manual quantification of the percentage of cells showing cytoplasmic
mislocalization of the RFP-NLSpp reporter in cells co-expressing GFP or DPR-GFP inclusions. n=4-5 biological replicates, each containing 38-344 double positive cells
from 3 to 6 tile scans each. Mean + SEM. One way ANOVA with Dunnett’s post-test, ** denotes P<0.001, * denotes P<0.05). Scale bar denotes 50 pm. (C) Automatic image
analysis of reporter localization in HeLa cells coexpressing GFP or GFP-tagged DPR. The mean level of cytoplasmic of RFP-NLStpp is shown. n =7-8 tiles scans containing
994-2009 cells per group from 5 independent experiments. Mean * SEM. One-way ANOVA with Dunnett’s post-test, ** denotes P<0.001.

46% of the cells with GA140-GFP inclusions show nuclear trans-
location of p65 (Fig. 3A, fourth row). Subcellular fractionation
corroborates impaired nuclear import of p65 upon TNFu stimu-
lation in poly-GA expressing cells on a biochemical level
(Supplementary Material, Fig. S2). Thus, poly-GA aggregation in
HelLa cells can directly inhibit nuclear import of p65 and possi-
bly other signalling factors which may affect the function and
survival of inclusion bearing neurons.

Poly-GA enhances TDP-43 localization into cytoplasmic
granules in neurons

Next, we analysed how DPR aggregates affect the nuclear im-
port in hippocampal neurons. Normally, TDP-43 is

predominantly nuclear, but a small fraction of TDP-43 is found
in cytoplasmic RNA transport granules (36). We expressed GFP-
tagged DPR proteins using lentivirus and analysed the localiza-
tion of endogenous TDP-43 in hippocampal neurons. Consistent
with previous reports, none of the DPR proteins led to dramatic
mislocalization or even aggregation of TDP-43 in the cytoplasm.
However, poly-GA expression consistently enhanced cytoplas-
mic TDP-43 granules (arrows in Fig. 4A). Such cytoplasmic TDP-
43 granules were present in about 80-90% of neurons expressing
poly-GA, compared to ~35% in the GFP control (Fig. 4B). While
poly-GR had no effect on TDP-43 localization in this assay, poly-
PR expression also promoted the formation of cytoplasmic
TDP-43 granules found in ~50% of the neurons. This finding
was confirmed by automated analysis of the ratio of cytoplas-
mic to nuclear TDP-43 (Fig. 4C).
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Figure 2. poly-GA induces cytoplasmic mislocalization of the RFP-NLStpp repor-
ter. HeLa cells cotransfected with RFP-NLStpp and GFP or GFP-tagged DPR ex-
pression vectors were subjected to subcellular fractionation. (A) Immunoblot of
cytoplasmic and nuclear fractions with the indicated antibodies. GAPDH and
histone 3 are used as markers for cytoplasm and nucleus, respectively. (B)
Quantification of cytoplasmic RFP-NLStpp from n=4 biological replicates. Mean
+ SEM. One way ANOVA with Dunnett’s post-test, ** denotes P<0.001.

We noticed no significant colocalization of any DPR species
with TDP-43. In order to determine the nature of the cytoplas-
mic TDP-43 granules in poly-GA-expressing neurons, we
analysed colocalization with stress granules and lysosomes.
Cytoplasmic TDP-43 partially localised in LAMP1-positive lyso-
somes, but not the stress granule marker TIAR (Supplementary
Material, Fig. S3).

Thus, poly-GA inhibits the nuclear localization of TDP-43 in
neurons consistent with the results using the RFP-NLStpp repor-
ter in HelLa cells.

Rerouting of poly-GA to the nucleus prevents
cytoplasmic TDP-43 mislocalization

As artificial pB-sheet proteins only inhibit nuclear import when
they aggregate in the cytosol, but not in the nucleus (31), we
asked whether the localization of poly-GA aggregates is critical
for their effects on TDP-43 import. Thus, we fused poly-GA with
the NLS of the SV40 large T antigen to shift aggregate formation
from the cytosol to the nucleus.

Indeed, in neurons about 40% of the GA;75-NLS inclusions
were found in the nucleus, although many cells still bore resid-
ual cytoplasmic inclusion indicating incomplete nuclear import
of GA475-NLS (Fig. 5A). While neurons with cytoplasmic GA;7s-
NLS aggregates often contain cytoplasmic TDP-43 granules, cells
with pure nuclear GA,;5-NLS aggregation showed lower level of
TDP-43 mislocalization comparable to controls (Fig. 5B).
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GA149-GFP-NLS expressing HeLa cells showed less often cyto-
plasmic mislocalization of the RFP-NLStpp reporter than GAj4o-
GFP expressing cells (Fig. 5C, compare Fig. 1). While 45% of cells
with residual cytoplasmic GA;49-GFP-NLS aggregates showed
cytoplasmic mislocalization of the RFP-NLStpp reporter, only
17% of cells with GA149-GFP-NLS inclusions restricted to the nu-
cleus showed cytoplasmic RFP-NLStpp fluorescence (Fig. 5D).
Thus, only cytoplasmic poly-GA aggregates disturb nuclear im-
port of TDP-43 similar to the findings with artificial p-sheet pro-
teins (31).

Overexpression of importin-« and nuclear pore
components restores nucleocytoplasmic transport in
poly-GA expressing cells

Since (GGGGCC),, RNA and poly-GR/PR toxicity has been rescued
by Ran and RanGAP1 overexpression in drosophila and yeast
(26-28,37), we asked whether it would also restore nuclear im-
port of TDP-43 in poly-GA expressing cells. However, co-
transfection of Ran or RanGAP1 did not affect poly-GA induced
cytoplasmic mislocalization of the RFP-NLStpp reporter
(Supplementary Material, Fig. S4) despite robust expression of
Ran and RanGAP1 in Hela cells (Supplementary Material, Fig.
S5A). In contrast to a previous report (30), we also found no spe-
cific colocalization of poly-GA aggregates with endogenous Ran
or RanGAP1 (Supplementary Material, Fig. S5B).

We therefore tested importin-o (isoforms KPNA3 and
KPNA4), the cytoplasmic receptor for the TDP-43 NLS (32), and
crucial factors for nuclear import of TDP-43, such as CSE1L/CAS
(which helps to recycle importin-o from the nucleus to the cyto-
plasm after releasing its cargo) and the nuclear pore complex
components NUP54 and NUP62 (32). KPNA4 and NUP62 have
also been linked to nucleocytoplasmic transport deficits in vari-
ous C9orf72 model systems (26-28,37). Co-expression of these
proteins in the GFP control cells partially reduced cytoplasmic
localization of the RFP-NLStpp reporter, however, without
reaching statistical significance (Fig. 6A and B). In contrast, co-
expression of these factors in GA14o-GFP transfected cells signif-
icantly reduced mislocalization of the reporter. Importantly, ex-
pression of KPNA3, NUP54 and NUP62 fully restored nuclear
localization of the RFP-NLStpp reporter to control levels. Thus,
our data suggest that poly-GA interferes with the nuclear trans-
port machinery without affecting the Ran-GTP gradient.

Discussion

The expanded C9orf72 repeat RNA and arginine-rich DPR pro-
teins poly-GR/PR have been previously linked to impaired nucle-
ocytoplasmic transport, but surprisingly poly-GA, the most
abundant DPR species, has not been analysed (26-28,37). Here
we show that cytoplasmic aggregates of poly-GA inhibit nuclear
import of TDP-43 to an even greater extent than poly-GR/PR.
This defect is rescued by overexpression of several nuclear
transport components. Our data point to a specific inhibition of
the import-o/f pathway by cytoplasmic poly-GA aggregates, be-
cause rerouting poly-GA aggregates to the nucleus also restored
nuclear import of TDP-43.

Poly-GA inhibits nuclear import of TDP-43

Since (GA);s but not 15-mers of the other DPR species adopt an
amyloid conformation (14) and synthetic pB-sheet proteins can
inhibit nuclear transport (31), we analysed the effect of poly-GA
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on nuclear import comparing it to poly-GR and poly-PR. In con-
trast to the previous studies, we focused on the nuclear import
of TDP-43, because the cytoplasmic mislocalization and aggre-
gation of this nuclear RNA binding protein seem to be a crucial
trigger of neurodegeneration in ALS/FTD (13,38). Poly-GA had a
more dramatic effect on nuclear import of TDP-43 than poly-
GR/PR in Hela cells and in primary neurons (Figs 1 and 3). 40%
of HeLa cells containing compact poly-GA inclusion showed re-
duced nuclear import of an RFP reporter containing the TDP-43
NLS. In primary neurons, even 80% of cells with poly-GA inclu-
sions showed cytoplasmic TDP-43 granules compared to 35% in
controls after one week of expression. While one group reported

partial colocalization of TDP-43 with cytoplasmic poly-GR and
poly-PR aggregates in HEK293 cells (39), no other publication
showed direct effects of the repeat RNA or individual DPR spe-
cies on TDP-43 localization, phosphorylation or aggregation in
cellular models (18-21). So far only two C9orf72 models repro-
duced significant TDP-43 pathology, however, without elucidat-
ing the mechanism. A subset of fast progressing BAC transgenic
mice showed TDP-43 aggregates in the areas of neurodegenera-
tion (25). In the AAV-based (GGGGCC)es expressing mouse
model TDP-43 aggregates were predominantly in neurons
showing co-aggregates of poly-GA and poly-GR at 6 months of
age (22). Therefore, the subtle TDP-43 mislocalization seen after
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Figure 4. poly-GA inclusions induce partial TDP-43 mislocalization. Primary hippocampal neurons were transduced with GFP or GFP-tagged DPR proteins (DIV6 +7) and
endogenous TDP-43 localization was analysed by immunofluorescence. (A) Immunostaining shows enhanced punctate staining in the cytoplasm of neurons expres-
sing cytoplasmic poly-GA inclusions and diffuse cytoplasmic TDP-43 mislocalization in poly-PR expressing cells. The TDP-43 panel is inverted to better visualise cyto-
plasmic TDP-43 granules (arrows). Scale bar denotes 15 pm. (B) Manual quantification of the fraction of neurons containing cytoplasmic TDP-43 granules in cells
containing DPR aggregates compared to GFP control. Note that quantification was done from TDP-43 images taken under identical settings. n=10 tile scans per condi-
tion with 12-51 cells per image. Mean + SEM. One way ANOVA with Dunnett’s post-test, ** denotes P<0.001, ** denotes P<0.01. (C) Automatic quantification of ratio of
cytoplasmic to nuclear TDP-43 in GFP or GFP-DPR transduced neurons. n=20-30 tile scans containing 32-80 neurons from 3 independent experiments. Mean + SEM.

One way ANOVA with Dunnett’s post-test, ™ denotes P<0.001.

1 week in our cellular poly-GA model might be a precursor for
further aggregation. In primary neurons, only poly-GA and poly-
PR, but not poly-GR affected TDP-43 localization, which is con-
sistent with the weaker toxicity of poly-GR compared to poly-PR
(20,27). A potential confound is the weaker expression of poly-
PR compared to poly-GA in our system. However, since poly-GA
aggregates are over 100-fold more abundant than poly-PR aggre-
gates we favour a crucial role of poly-GA in patients (40).

While none of the DPR proteins affected the localization of a
reporter containing a transportin-dependent PY-NLS
(Supplementary Material, Fig. S1), poly-GA also inhibited TNFa
induced nuclear import of endogenous p65 in HeLa cells sug-
gesting a broad effect on importin o/p dependent nuclear import
(Fig. 2 and Supplementary Material, Fig. S2). Impaired NF-«B sig-
nalling in neurons may affect neurogenesis and synaptic plas-
ticity (41,42). Thus, impaired nucleocytoplasmic transport due
to poly-GA cytoplasmic inclusions may have implications for
C9orf72 ALS/FTD pathogenesis beyond contributing to TDP-43
pathology.

How do DPRs affect nucleocytoplasmic transport?

Several mechanisms for impaired nucleocytoplasmic transport
in C9orf72 models have been proposed. GGGGCC RNA expressed
as an exon and poly-GR/PR have been reported to disturb the
Ran-GTP gradient presumably through direct binding of
RanGAP1 (26). In the repeat RNA expressing flies these effects
were rescued by overexpression of Ran, RanGAP1 and

importin-a (26) or components of the nuclear pore complex (28).
In contrast, intronic expression of the repeat RNA as in patients
causes no toxicity in flies (43). In yeast and flies, poly-PR toxicity
can be rescued by promoting formation of the nucleocytoplas-
mic Ran-GTP gradient and overexpression of several importins
(27,37), but the primary cause of the effect remains unknown.
We found no evidence for altered Ran localization and coag-
gregation of RanGAP1 with poly-GA in our cellular models
(Supplementary Material, Fig. S5), while others had reported
partial colocalization of poly-GA and RanGAP1 in mice (19). In
line with these findings, overexpression of Ran or RanGAP1 did
not restore the impaired import of the RFP-NLS reporter in our
system (Supplementary Material, Fig. S4). However, overexpres-
sion of importin-o (KPNA3), the receptor for the classical NLS of
both TDP-43 and p65 (32,44), restored nuclear import mediated
by the TDP-43 NLS. Moreover, overexpression of two nuclear
pore components (NUP54 and NUP62) fully rescued nuclear lo-
calization of the reporter. Interestingly, NUP54 and NUP62 were
previously shown to be essential for nuclear import of TDP-43
(32) and NUP62 knockdown enhances (PR),s toxicity in flies (37).
In patients, about 10% of poly-GA inclusions are intranuclear
and their pathological relevance has been unclear (40). We
show that rerouting poly-GA aggregation into the nucleus by
adding an NLS prevents the toxic effects on nuclear import sug-
gesting that the factors responsible for the nuclear transport
deficit are mainly localised in the cytoplasm. Our data are in
line with the findings on synthetic B-sheet proteins (31), al-
though their interactome is vastly different from the poly-GA
interactome (18). Cytoplasmic poly-Q aggregates inhibit nuclear


http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw432/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw432/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw432/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw432/-/DC1

796 | Human Molecular Genetics, 2017, Vol. 26, No. 4

A GFP/GA TDP-43

&

merge

GFP

GA,;smyc
O

GA,;smyc-
NLS-nucl

GA,;smyc-
NLS-cyto

(9]

GA-GFP DAPI

GA ,,4GFP-
NLS

RFP-NLSpp

B *kk
1001 el ok ke
08
& 8 601
o O
%;3 401
o\°% 201
|_
O_
GFP GA GA GA
NLS NLS
nuc cyt
60- *kk
Q 4 *kk
g e 401 —
=9
8
P TRRA
o\oﬂf
0
GFP GA GA GA
NLS NLS
nuc cyt
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(A) Immunostaining of representative cells shows partial cytoplasmic TDP-43 mislocalization (arrows). The TDP-43 panel is inverted to better visualise cytoplasmic
TDP-43 granules. Scale bar denotes 15 um. (B) Quantification of neurons showing cytoplasmic TDP-43 granules. GA;75-NLS transduced cells were separated according to
the localization of poly-GA inclusions in the nucleus or cytoplasm (n=10 tile scans per condition with 19-50 cells per image. Mean + SEM, one way ANOVA with
Dunnett’s post-test, ** denotes P<0.001). (C,D) HeLa cells were transfected with RFP-NLS together with GA,4o-GFP-NLS as in Figure 1. Data was pooled from four experi-
ments together. (C) Immunofluorescence showing RFP-NLS mislocalization in cells with cytoplasmic poly-GA aggregates (arrows) and reduced mislocalization in cells
with nuclear poly-GA aggregates (arrowheads). Scale bar denotes 50 um. (D) Quantification of RFP-NLS mislocalization from the groups in Figure 4C (n =4 experiments,
27-252 double positive cells per replicate from 2 to 4 images. Mean + SEM. One way ANOVA with Dunnett’s post-test, *** denotes P<0.001).

degradation of misfolded cytoplasmic proteins by sequestration
of chaperones in yeast (45), suggesting that intranuclear DPR ag-
gregates found in patients might also be targeted for degrada-
tion, while cytoplasmic aggregates inhibit nuclear import of
TDP-43 and other proteins (31).

Implications for C9orf72 ALS/FTLD

Although gain-of-function mechanisms clearly trigger TDP-43
pathology and neurodegeneration in model systems (4,22,25),
neither RNA foci nor any of the DPR species correlates strongly
with TDP-43 pathology in patients (13,40). These data argue for
synergistic effects of repeat RNA and different DPR species on
TDP-43 aggregation possibly involving non-cell-autonomous ef-
fects. Two recent studies suggest that poly-GA may be transmit-
ted between cells similar to tau and p-synuclein (14,15,46,47).
These non-cell-autonomous effects may explain the slow tran-
sition from a prodromal DPR-only stage to the clinical stage of

ALS/FTD with additional TDP-43 pathology (2). Our data show
for the first time a direct link between poly-GA, the main aggre-
gating protein in C9orf72 patients, and TDP-43 mislocalization
and further highlights the role of nucleocytoplasmic transport
in C9orf72 pathogenesis.

Materials and Methods

Antibodies and reagents

TDP-43 (CAC-TIP-TD-P09, Cosmo bio Tokyo, Japan), myc (9E10,
Santa Cruz Biotechnology, Dallas, TX, USA), HA (3F10, Sigma),
NF-kB p65 (D14E12, Cell Signaling Technology, Danvers, MA,
USA), Ran (ab53775, Abcam, Cambridge, UK), RanGAP1 (ab92360,
Abcam), Anti-Histone H3 (ab10799, Abcam), LAMP1 (Ly1C6, Enzo
life sciences, Farmingdale, NY, USA), TIAR (BD life sciences,
Durham, NC, USA), Tumor Necrosis Factor alpha, human re-
combinant (rHuTNFa, 50435.50, Biomol, Hamburg, Germany),
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Figure 6. Overexpression of importin-« and nucleoporins restores nuclear import in poly-GA expressing HeLa cells. HeLa cells were cotransfected with RFP fused to the
nuclear localization signal of TDP-43 together with GFP or GA149-GFP and the indicated expression constructs or an empty vector control. (A) Images show RFP and GFP
fluorescence of cells stained with DAPI to visualise nuclei. In the control GFP fluorescence is not depicted to allow better view of the cytoplasmic RFP- NLStpp reporter
in the merge. Note that cells overexpressing nucleoporins show RFP-NLStpp less frequently in the cytoplasm compared to controls. (B) Quantification of the fraction of
cells showing cytoplasmic mislocalization of the RFP-NLStpp reporter for cells co-expressing GFP or GA449-GFP. Co-expression of the indicated proteins had no signifi-
cant effect in GFP-expressing cells, but significantly reduced cytoplasmic mislocalization in GA149-GFP expressing cells compared to the respective controls (n=7 exper-
iments, counting 13-152 double positive cells from 2 to 3 images, Mean * SEM. One way ANOVA with Tukey post-test, *** denotes p < 0.001). Scale bar denotes 20 pm.

GAPDH (AM4300, ThermoFisher Scientific, Waltham, MA, USA).
Anti-GFP (N86/8, UC Davis/NeuroMab Facility, UC Davis, CA,
USA), Anti-tRFP antibody (AB233, Evrogen, Russian Federation).

Plasmids, transfection and viral packaging

Synthetic DPR constructs containing an ATG start codon for len-
tiviral expression (synapsin promoter) and transient transfec-
tion (EF1 promoter) were described before (18,40). Additionally,
we generated tagRFP and iRFP670 tagged variants to allow
multi-channel imaging. The NLS of human TDP-43

(PKDNKRKMDETDASSAVKVKRA, position 78-99) or hnRNP A1l
(60 C-terminal amino acids from human) were fused to the
tagRFP C-terminus. To reroute poly-GA to the nucleus, the SV40
Large T-antigen (PKKKRKV) was fused to the C-terminus of
GA175-myc and GAj4o-GFP. Rescue experiments were performed
using HA-tagged KPNA3, KNPA4, CSE1L, NUP54 and NUP62, Ran
and RanGAP1 (cloned from human cDNA) driven by the human
Ubiquitin promoter. HeLa cells were transfected with
Lipofectamine 2000 (Life Technologies) for immunostaining and
immunoblotting. Lentivirus was packaged in HEK293FT cells us-
ing the VSV-G/pSPAX2 system as described before (18).
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Neuron culture, immunostaining and quantification

Primary hippocampal neurons were cultured from embryonic
day 19 rats and infected with lentivirus as described previously
(18). Transduction of the primary neurons with specified
lentiviruses was performed at day 6 or 7 in vitro (DIV6/DIV7).
7 days after transduction the neurons were fixed with 4% para-
formaldehyde, permeabilised (0.2% Triton X-100, 50 mM NH,4Cl
in PBS) and blocked for 30 min (2% fetal bovine serum, 2% serum
albumin, 0.2% fish gelatin in PBS). After 1h incubation in pri-
mary antibody solution (diluted in blocking buffer) at room tem-
perature, coverslips were washed and finally incubated in
Alexa-coupled secondary antibody solution. Heat shock was
performed for 1h at 44°C at 5% CO..

Fractionation

Subcellular fractionation of p65 was performed as described (48).
To analyse the cytoplasmic fraction of RFP-NLStpp reporter we ho-
mogenised HelLa cells in hypotonic buffer (10mM MOPS, pH 7.0,
10mM KCl, with protease inhibitors) using a tight fitting homoge-
nizer (30 strokes). The nuclear fraction was pelleted by centrifuga-
tion (1,000 g for 15 min at 4 °C). Other membranous compartments
were cleared from the supernatant by further centrifugation
(100,000g for 1h at 4°C) to yield the cytoplasmic fraction.

Microscopy and image analysis

Images were taken at the confocal laser scanning microscope
LSM710 from Zeiss with a Plan Apochromat oil immersion ob-
jective (40x, NA 1.4). If possible images were taken blind to the
experimental condition. Most images were taken as tile scans to
avoid bias for the area selection for quantification. For each ex-
periment, data from several images were averaged. The RFP-
NLS reporters and TDP-43 were imaged using identical settings
for all groups. Images were manually analysed using
Metamorph Software and Image] (version 1.49g) without inten-
sity or size thresholding. Statistical analysis was done in
GraphPad Prism (version 7.01) using one way ANOVA.

Automatic image analysis was executed with Columbus
Acapella version 2.4.1 (PerkinElmer). Nucleus candidate objects
were detected on the basis of the DNA stain by using “Find
Nuclei C” (Area > 30 um?, Split Factor: 7.0, Individual Threshold
0.4, Contrast > 0.45). Dead and mitotic nuclei were rejected by
applying a linear classifier with the “Select Population” function.
The classification was based on following nucleus features:
Area, Roundness, Haralick Homogeneity, Haralick Correlation.
The training set consisted of ~60 manually selected nuclei
across all populations. For all selected nuclei, cell region was de-
fined by growing the nucleus region for 6 ym with morphologi-
cal dilation. We selected GFP and GFP-DPR positive cells by
setting a threshold on the mean intensity in the nucleus region.
From this selection, RFP positive cells were selected by a second
threshold on the basis of the RFP channel. We defined different
thresholds for HelLa and neuronal cells. However, thresholds
were kept constantly across all sub populations. For HeLa cells,
we analysed the mean RFP-NLSpp intensity in cytoplasm. For
neurons, we quantified the mean cytoplasmic and nuclear TDP-
43 intensity and determined the cytoplasmic/nuclear TDP-43 ra-
tio for each cell. Averaged results from one image were treated
as n=1 for the statistical analysis.

Supplementary Material

Supplementary Material is available at HMG online.
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Figure S1: DPR proteins have no effect on the localization of a PY-NLS

(A) HeLa cells transfected with the GFP or GFP-DPR fusion proteins were analyzed by immunoblotting
with the indicated antibodies to show comparable expression levels of GA75-GFP and GFP-GR 4. By
immunoblotting PR,75-GFP expression seems weaker, although the fluorescence intensity is similar (same
settings for poly-GR and poly-PR in Fig. 1A and S1B). (B,C) HeLa cells were cotransfected with RFP-
fused to the PY nuclear localization signal of hnRNPA1 and GFP or GFP-tagged DPR expression vectors.
(B) Images show RFP and GFP fluorescence of cells stained with DAPI to visualize nuclei. Note that DPR
expression does not alter localization of RFP-NLSpy. Scale bar denotes 20 um. (C) Quantification of
cytoplasmic mislocalization of the RFP-NLSpy reporter for cells co-expressing GFP or DPR-GFP
inclusions. n=6 replicates counting 37-192 double positive cells from 2-3 images. Mean = SEM. One
way ANOVA shows no significant differences).
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Figure S2: poly-GA inhibits nuclear import of p65

HeLa cells transfected with GFP or GA49-GFP expression vectors were treated with TNFa (4 ng/ml) for
30 min to induce nuclear import of p65/RelA as in Fig. 2. (A) Immunoblotting of subcellular fractions
with the indicated antibodies. (B) Quantification of the nuclear fraction of p65 relative to the total cellular
levels. n=3 replicates, mean = SEM, one way ANOVA with Dunnett’s post-test, * denotes p<0.05.
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Figure S3: Cytoplasmic TDP-43 granules partially colocalize with LAMP1

Primary neurons were transduced with GA-iRFP expressing lentivirus (DIV7+7). Immunostaining shows
partial co-staining of cytoplasmic TDP-43 granules with the lysosomal marker LAMP1 (arrow), but not
with the stress granule marker TIAR in poly-GA expressing neurons (with or without 1 h 44°C heat
shock). Single confocal planes are shown. Markers are stained in green, TDP-43 is stained in red.
DAPI stains nuclei. Scale bar denotes 15 pum.
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Figure S4: Ran and RanGAP1 have no effect on nuclear import in poly-GA expressing HeLa cells

HeLa cells were cotransfected with RFP fused to the nuclear localization signal of TDP-43, GFP or GA 149-
GFP and HA-Ran, HA-RanGAP1 or control vector. (A) Images show RFP and GFP fluorescence of cells
stained with DAPI to visualize nuclei. (B) Quantification of cytoplasmic mislocalization of the RFP-
NLSpp reporter in GFP-positive cells. n=4 experiments, counting 27-427 double positive cells from
3-5 images. Mean + SEM. One way ANOVA with Tukey post-test, *** denotes p<0.001, * denotes
p<0.05). Scale bar denotes 20 um.
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Figure S5: poly-GA has no effect on Ran and RanGAP1 localization

(A) HeLa cells were transfected with HA-tagged KPNA3, KPNA4, CSE1L, NUP54, NUP62, Ran,
RanGAP1 or vector control. Immunoblotting shows comparable expression levels of the rescue constructs.
(B) Immunostaining shows similar expression pattern of endogenous Ran and RanGAP1 in HeLa cells
expressing GA149-GFP or GFP control. Images show a single confocal plane. DAPI stains nuclei. Scale
bar denotes 50 um.
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5.2. Cell-to-cell transmission of C90rf72 poly-(Gly-Ala) triggers key features of
ALS/FTD

In 5.1. | have shown that poly-GA inhibits nuclear import of TDP-43, but in patients poly-GA
and TDP-43 pathology mostly occur in different cells. Identifying the molecular mechanisms

might help to develop effective therapeutic approaches.

Cell-to-cell transmission of tau in AD, a-syn in PD, and Htt in HD have been shown through
different cellular mechanisms (Costanzo and Zurzolo 2013, Jucker and Walker 2018).
Spreading of DPRs between cells has been shown by three groups, including us in vitro
(Chang, Jeng et al. 2016, Westergard, Jensen et al. 2016, Zhou, Lehmer et al. 2017). Thus, in
Research Article 2, | tested the hypothesis that non-cell-autonomous effects of DPRs could
cause TDP-43 pathology in neighboring cells. To dissect the molecular mechanisms |
investigated effects of transmitted poly-GA on ubiquitin proteasome system and

nucleocytoplasmic transport.

My data showed poly-GA inclusions triggered cytoplasmic TDP-43 mislocalization non-cell-
autonomously. This effect was mitigated by anti-GA antibodies that block poly-GA transmission
between cells. In addition, | showed poly-GA can affect TDP-43 pathology by impairing
proteasomal function in receiver cells. Boosting proteasomal function using rolipram
administration or overexpression of PSMD11 partially rescued the effects of poly-GA on TDP-
43.

Overall, these findings suggest a significant role for proteasomal inhibition caused by poly-GA
which could eventually trigger TDP-43 pathology in C9orf72 ALS/FTD and highlights the
therapeutic potential of proteasome activation and antibody therapy.

Author contribution: performed most cell biological and biochemical experiments, image
acquisition, analyzed most data from the experiments, generated reagents, contributed to
designing the study, and writing parts of the manuscript (please see section 11 for further
details).
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Abstract

The C9orf72 repeat expansion causes amyotrophic lateral sclerosis
and frontotemporal dementia, but the poor correlation between
CY9orf72-specific pathology and TDP-43 pathology linked to
neurodegeneration hinders targeted therapeutic development.
Here, we addressed the role of the aggregating dipeptide repeat
proteins resulting from unconventional translation of the repeat in
all reading frames. Poly-GA promoted cytoplasmic mislocalization
and aggregation of TDP-43 non-cell-autonomously, and anti-GA
antibodies ameliorated TDP-43 mislocalization in both donor and
receiver cells. Cell-to-cell transmission of poly-GA inhibited protea-
some function in neighboring cells. Importantly, proteasome inhi-
bition led to the accumulation of TDP-43 ubiquitinated within the
nuclear localization signal (NLS) at lysine 95. Mutagenesis of this
ubiquitination site completely blocked poly-GA-dependent mislo-
calization of TDP-43. Boosting proteasome function with rolipram
reduced both poly-GA and TDP-43 aggregation. Our data from cell
lines, primary neurons, transgenic mice, and patient tissue suggest
that poly-GA promotes TDP-43 aggregation by inhibiting the
proteasome cell-autonomously and non-cell-autonomously, which
can be prevented by inhibiting poly-GA transmission with antibod-
ies or boosting proteasome activity with rolipram.

Keywords antibody therapy; C9orf72; neurodegeneration; nucleocytoplasmic
transport; proteasome
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Introduction

Neuronal cytoplasmic aggregates of the nuclear RNA-binding protein
TDP-43 are the key feature of sporadic amyotrophic lateral sclerosis
(ALS) and define a large subgroup of frontotemporal dementia (FTD)
neuropathologically (Geser et al, 2009; Ling et al, 2013; Scotter et al,
2015; Prasad et al, 2019). TDP-43 undergoes constitutive nucleocyto-
plasmic shuttling mediated by a bipartite nuclear localization signal
(NLS) and diffusion-driven nuclear egress (Winton et al, 2008; Ederle
et al, 2018) and active export (Aksu et al, 2018; Archbold et al, 2018).
Normally, TDP-43 is located predominantly in the nucleus and regu-
lates expression, splicing, and polyadenylation of hundreds of target
genes (Polymenidou et al, 2011; Tollervey et al, 2011). In ALS/FTD,
cytoplasmic TDP-43 aggregates are strongly correlated with neurode-
generation and contain ubiquitinated C-terminal fragments (CTFs)
that show characteristic hyperphosphorylation (Neumann et al, 2006;
Geser et al, 2009; Igaz et al, 2009; Zhang et al, 2009). Cytoplasmic
TDP-43 aggregation most likely causes neurodegeneration through a
combination of direct toxicity and loss of function due to nuclear clear-
ance of TDP-43 in affected cells (Gendron & Petrucelli, 2011; Walker
et al, 2015; Ederle & Dormann, 2017; Prasad et al, 2019). The discov-
ery of genetic mutations that cause familial ALS and/or FTD with
TDP-43 pathology similar to sporadic cases has highlighted the role of
the ubiquitin—proteasome system (e.g., UBQLN2, VCP, SQSTM1) and
the autophagy pathway (e.g., C9orf72, TBK1, OPTN) in pathogenesis
(Ling et al, 2013; Scotter et al, 2015; Gotzl et al, 2016; Gao et al,
2017). However, apart from rare aggregation-enhancing mutations
directly in the TDP-43 encoding gene, the cause of the pathological
TDP-43 mislocalization and aggregation in familial and sporadic cases
remains elusive (Ederle & Dormann, 2017; Prasad et al, 2019).

The most common pathogenic mutation found in about 10% of
all ALS/FTD patients is a massive (GGGGCC),, repeat expansion in
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the first intron of C9orf72 (DeJesus-Hernandez et al, 2011; Renton
et al, 2011). In addition to the typical TDP-43 inclusion pathology,
C9o0rf72 cases show nuclear foci of sense and antisense repeat RNA
transcripts and unique aggregates of dipeptide repeat (DPR) proteins
resulting from unconventional non-ATG translation of the expanded
repeat into poly-GA/-GP/-GR/-PA and poly-PR (Edbauer & Haass,
2016). Moreover, C9orf72 protein expression from the mutant allele
is reduced (Frick et al, 2018; Saberi et al, 2018). Multiple down-
stream effects of these three proposed pathomechanisms have been
reported, but none of the C9orf72-specific pathologies correlates
reproducibly with TDP-43 pathology and neurodegeneration in end-
stage tissue (Mackenzie et al, 2013, 2015; DeJesus-Hernandez et al,
2017). Since all of the mutation-specific effects occur many years or
even decades prior to disease onset (Vatsavayai et al, 2016), chronic
and possibly non-cell-autonomous effects that synergistically trigger
disease once compensatory mechanisms fail seem the most likely
explanation (Edbauer & Haass, 2016). We and others have reported
cell-to-cell transmission of DPRs suggesting they may have non-cell-
autonomous effects (Westergard et al, 2016; Zhou et al, 2017). In
C9orf72 animal models, the most robust TDP-43 pathology has so far
been reported upon viral expression of the (GGGGCC),, repeat at high
levels (Chew et al, 2015) and to a lesser extent in one of the BAC
transgenic C9orf72 mouse lines (Liu et al, 2016) suggesting gain-of-
function mechanisms are most important. Modest TDP-43 pathology
has been observed in transgenic poly-GA mouse models (Zhang
et al, 2016; Schludi et al, 2017). In cellular systems, poly-GA expres-
sion has been linked to subtle TDP-43 mislocalization (Khosravi
et al, 2017) and phosphorylation (Nonaka et al, 2018). Using cryo-
electron tomography, we have shown that poly-GA inclusions
consist of amyloid-like twisted ribbons that sequester large amounts
of proteasomes stalled in an otherwise rare transition state (Guo
et al, 2018b). Proteasome inhibitors promote TDP-43 pathology
in vitro (van Eersel et al, 2011), but DPR and TDP-43 inclusions
rarely occur within the same cell in patients (Mori et al, 2013).

Cell-to-cell transmission of cytoplasmic Tau and o-synuclein
aggregates drives stereotypic spreading of these pathologies during
the progression of Alzheimer’s and Parkinson’s disease, respectively
(Jucker & Walker, 2018). Therefore, we asked whether non-cell-
autonomous effects of DPRs could trigger TDP-43 pathology in
neighboring cells focusing on effects on the proteasome and nucleo-
cytoplasmic transport. Using co-culture assays and antibody treat-
ment to inhibit cell-to-cell transmission, we discovered that poly-GA
inhibits the proteasome non-cell-autonomously. Although the
proteasome shows high constitutive activity that is largely limited by
substrate availability in most cell types, activity can be boosted by
rolipram through the cAMP/protein kinase A-depended phosphoryla-
tion of PSMD11 (Lokireddy et al, 2015). We show that chemical and
genetic proteasomal activation rescues poly-GA-induced mislocaliza-
tion of TDP-43 caused by ubiquitination within the TDP-43 NLS.

Results

Cell-to-cell transmission of poly-GA causes cytoplasmic
mislocalization of TDP-43

Among the DPR proteins, poly-GA has been most robustly linked to
TDP-43 aggregation in vitro, although the mechanism is still
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unknown (Schludi et al, 2015; Khosravi et al, 2017; Lee et al, 2017;
Nonaka et al, 2018; Solomon et al, 2018). We co-expressed all DPRs
with the aggregation-prone CTF of TDP-43 tagged with RFP. CTFs of
TDP-43 constitute the major aggregating TDP-43 species in patient
tissue and are generated by caspase cleavage (Neumann et al, 2006;
Igaz et al, 2009; Zhang et al, 2009). Co-expression of GA,75-GFP but
not the other GFP-tagged DPR species increased aggregation of TDP-
CTF (Appendix Fig S1A-D) without affecting turn-over of TDP-43-
CTF (Appendix Fig S1E and F) similar to the previous reports
(Nonaka et al, 2018). In addition, we quantified mislocalization of
endogenous TDP-43 in anterior horn motor neurons of our trans-
genic mice expressing GA;40-CFP (Fig EV1A and B). Consistent with
the increased phosphorylation of TDP-43 at the disease-associated
residue S409/410 (Schludi et al, 2017), we detected enhanced levels
of cytoplasmic TDP-43 in the spinal cord of poly-GA transgenic mice
without detectable proteolytic cleavage (Fig EV1A-C). In this mouse
model, TDP-43 mislocalization is mostly seen in ChAT-positive
motor neurons where poly-GA expression is most prominent, while
the posterior horn shows no overt changes (Fig EV1D). A fully auto-
mated analysis pipeline revealed that poly-GA-positive neurons in
the frontal cortex of C9orf72 FTLD cases show higher frequency of
cytoplasmic mislocalization of TDP-43 than neurons without poly-
GA aggregates (Fig EV1E and F).

Since TDP-43 and poly-GA only occasionally co-aggregate in
patient tissue, we investigated potential non-cell-autonomous
effects of poly-GA in a neuronal co-culture system. We transduced
primary rat hippocampal neurons growing on coverslips with either
GFP or GA;75-GFP (“donor cells”). Four days later, we transferred
the coverslips with extensively washed donor cells into a new well
containing untreated primary neurons (“receiver cells”) separated
by ~ 1-mm spacers (Fig 1A) and co-cultured donor and receiver
cells for another 4 days. Immunofluorescence of the donor cells
showed enhanced cytoplasmic localization of TDP-43 in GA;,5-GFP-
transduced compared with GFP-transduced donor cells (Fig 1B and
C and Appendix Fig S2A) as we had reported previously (Khosravi
et al, 2017). Automated quantification of the number of poly-GA
aggregates per cell (2.23 £ 0.18 [mean + SD] in the donor
compartment vs 0.70 + 0.22 in the receiver compartment) showed
robust transmission of GA;,;5-GFP aggregates between neurons
consistent with previous results (Westergard et al, 2016; Zhou et al,
2017). Using automated image analysis of single confocal sections,
we compared cytoplasmic TDP-43 in GFP-positive and GFP-negative
cells (Khosravi et al, 2017). Strikingly, cytoplasmic TDP-43 expres-
sion was not only enhanced in cells taking up visible GA;;5-GFP
aggregates but also enhanced in neurons without obvious GA;5-GFP,
both on donor and receiver coverslips (Fig 1B and Appendix Fig
S2A red arrows, and Fig 1C). Thus, poly-GA release from trans-
duced neurons leads to TDP-43 mislocalization in neighboring
neurons presumably even by uptake of small amounts of soluble or
aggregated poly-GA. At the time scale of our experiments, no large
TDP-43 aggregates or proteolytic processing was detected (Fig 1B
and Appendix Fig S2B). To exclude unspecific effects due to DPR
toxicity, we repeated the experiment with expression of
arginine-rich DPR proteins poly-GR and poly-PR that show
stronger acute toxicity in most model systems (Wen et al, 2014).
However, expression of poly-GR/PR did not alter TDP-43 localiza-
tion in either the donor or receiver compartment (Appendix Fig S2C
and D).

© 2020 The Authors
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Figure 1. Cell-to-cell transmission of poly-GA causes cytoplasmic mislocalization of TDP-43.

A-C

D-G

Primary hippocampal neurons were transduced with GFP or GA;,5s-GFP (DIV4 + 4) and co-cultured with naive primary neurons for 4 days. Endogenous TDP-43
and poly-GA aggregates in donor and receiver coverslips were analyzed by immunofluorescence. (A) Schematic representation of co-culture experiments. (B)
Cytoplasmic TDP-43 immunostaining is elevated not only in poly-GA-transduced neurons, but also in the non-transduced receiver cells. White and red arrows
indicate cells with cytoplasmic TDP-43 in GFP-positive and GFP-negative cells, respectively. (C) Automated quantification of cells with cytoplasmic TDP-43 in GFP-
or GA;75-GFP-transduced (donor) and non-transduced (receiver) neurons. Cells with and without GFP signal were counted separately (indicated by +/—). Two
groups (GFP-negative donor and GFP-positive receiver) were excluded due to very high GFP transduction rate and very low GFP transmission rate. n = 4 biological
replicates. In total, 283 donor GFP, 273 donor GA,75-GFP, 284 receiver GFP, and 266 receiver GA;75-GFP cells were analyzed. Scatter plot with bar graphs of

mean £ SD. One-way ANOVA with Tukey’s multiple comparisons test. ***P < 0.001.

Co-culture model in Hela cells transfected with iRFP or GA;,5-iRFP in the donor compartment and TDP-43,y.s-GFP in donor and receiver compartments. (D)
Immunofluorescence staining and (E) automatic quantification of TDP-43,y.s aggregate number per cell, (F) in addition to filter trap assay of SDS-insoluble TDP-
43,n15-GFP aggregates compared in iRFP- or GA;,s-iRFP-transfected cells. In (E) n = 3 biological replicates with 368 donor iRFP, 251 donor GA;,5-iRFP, 430 receiver
iRFP, and 328 GA,,5-iRFP cells were analyzed. Cells with and without GFP signal were analyzed separately (indicated by +/—). White and red arrows indicate cells
with cytoplasmic TDP-43 in GFP-positive and GFP-negative cells, respectively. Scatter plot with bar graphs of mean + SD. One-way ANOVA with Tukey’s multiple
comparisons test. (G) GFP mRNA expression levels were measured by gPCR. RNA levels were normalized to GAPDH, B-actin, and B2-microglobulin mRNA. Bar
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graphs of mean + SD. Unpaired two-tailed t-test with Welch’s correction. *P < 0.05, and **P < 0.01.

Data information: Scale bars denote 20 pum. Additional larger fields of view for Fig 1B and D are shown in Appendix Fig S2A and E.

Source data are available online for this figure.

To differentiate the effect of poly-GA on nucleocytoplasmic
transport and aggregation of TDP-43, we analyzed receiver cells
expressing GFP-tagged TDP-43 lacking the nuclear localization
signal (ANLS). Since TDP-43n1s is highly toxic to primary neurons
as shown in mouse models (Walker et al, 2015), we conducted
these co-culture experiments in HeLa cells. Donor cells were co-
transfected with TDP-43,n15-GFP and either iRFP or GA,,5-iRFP,
while receiver cells were transfected only with GFP-tagged TDP-
43 n1s. Twenty-four hours after separate transfection, the washed
coverslips were co-cultured for another 24 h before analysis of
poly-GA and TDP-43 fluorescence. Strikingly, both co-expression of
poly-GA and co-culture with poly-GA-expressing cells resulted in
partial cytoplasmic aggregation of TDP-43,n1s-GFP suggesting poly-
GA has profound cell-autonomous and non-cell-autonomous effects
on TDP-43 solubility even in cells without detectable poly-GA
inclusions (Fig 1D and E, Appendix Fig S2E). About 10-20% of
poly-GA inclusions also contained TDP-43-ANLS. In addition, we
confirmed that poly-GA induced GFP-TDP-43,n1s aggregation using
a filter trap assay of cell extracts from the donor and receiver cells
(Fig 1F). These effects are not caused by enhanced mRNA expres-
sion (Fig 1G). Thus, transmission of small amounts of poly-GA
may trigger TDP-43 mislocalization in cells without obvious DPR
pathology.

Anti-GA antibodies block the non-cell-autonomous effects of
poly-GA on TDP-43

Cell-to-cell transmission of aggregating proteins is a potential target
for therapeutic antibodies, and we have previously shown that
monoclonal antibodies can inhibit transmission of poly-GA (Zhou
et al, 2017). We asked whether anti-GA antibodies would also
inhibit poly-GA-dependent TDP-43 mislocalization. Thus, we added
an anti-GA antibody (clone 5F2) or purified mouse IgG as control to
the co-culture model from Fig 1A and analyzed TDP-43 localization
in the poly-GA-transduced donor compartment and the non-trans-
duced receiver compartment (Fig EV2). Importantly, anti-GA treat-
ment reduced cytoplasmic TDP-43 levels in 5F2 treated neurons in
both the donor and receiver compartments (Fig EV2A and B).
Immunoblotting confirmed reduction in poly-GA in both compart-
ments (Fig EV2C).
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To exclude potential indirect effects due to unknown factors
secreted from the donor cells in response to poly-GA expression
beyond mere toxicity (compare Appendix Fig S2C and D), we
repeated the experiments using anti-GA immunodepletion of
conditioned medium from poly-GA expressing neurons (Fig 2).
Consistent with the co-culture experiments, supernatant of
GA,,5-GFP-transduced cells induced TDP-43 mislocalization in
receiver cells compared with GFP supernatant (Fig 2A and B).
Moreover, immunodepletion with anti-GA (clone 5F2) prevented
poly-GA uptake in receiver cells and strongly reduced TDP-43
mislocalization compared to depletion with control IgG, suggest-
ing that the effects on TDP-43 are directly mediated by poly-GA
released from donor cells into the conditioned media. Poly-GA
immunoblotting and immunoassays confirmed successful precipi-
tation and nearly complete clearance of poly-GA (and anti-GA
antibodies) from the conditioned supernatant using 5F2 antibody
(Fig 2C and D).

Taken together, anti-GA antibodies reduce poly-GA aggregation
and transmission as well as cytoplasmic mislocalization of TDP-43.
Immunodepletion corroborates the direct effects of transmitted poly-
GA on TDP-43 in receiver cells.

Poly-GA inhibits the proteasome cell-autonomously and
non-cell-autonomously

To investigate the mechanism of poly-GA on TDP-43 mislocalization
and aggregation, we investigated the effects of poly-GA on the
proteasome. Cryo-electron tomography has revealed that poly-GA
inclusions sequester large amounts of stalled proteasomes (Guo
et al, 2018b). Here, we confirmed enrichment of the proteasome
subunit PSMC4 by immunofluorescence in GA;4o-CFP transgenic
mice and C9orf72 ALS/FTD patients (Fig 3A and B) as well as in
poly-GA-expressing HeLa cells and primary neurons (Fig EV3A and
B). Moreover, only expression of poly-GA, but not the other DPR
species, promoted accumulation of high-molecular weight ubiquitin
species in HEK293 cells (Fig EV3C and D). To address non-cell-
autonomous effects, we interrogated proteasome function in donor
and receiver cells using the Ubgey-GFP reporter, which accumu-
lates upon proteasome inhibition (Dantuma et al, 2000). Thus, we
co-transfected HeLa cells with Ubgsey-GFP and the donor

© 2020 The Authors
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Figure 2. Anti-GA immunodepletion in conditioned media prevents the non-cell-autonomous effects of poly-GA on TDP-43.

Rat primary hippocampal neurons were transduced with GFP or GA;75-GFP. Two days after transduction, neurons were washed three times every 2 h with conditioned media
and then incubated for another 2 days. Cell supernatant was collected 2 days later and immunodepleted with either control IgG or anti-GA antibody-coupled beads. The
immunodepleted supernatants were then collected, equilibrated to 37°C, and finally put on receiver cells for 4 days.

A Confocal imaging showed anti-GA antibody treatment reduces poly-GA aggregates and TDP-43 mislocalization in hippocampal neurons. White and red arrows show
cells with cytoplasmic TDP-43 in GFP-positive and GFP-negative cells, respectively. Scale bar denotes 30 um.

B Automated quantification of cells with cytoplasmic TDP-43 in GFP- or GA;,5-GFP-transduced (donor) and non-transduced (receiver) neurons. Four groups were
excluded due to very high GFP transduction rate (GFP-negative donor) and very low GFP transmission rate (GFP-positive receiver with IgG and anti-GA) and complete
prevention of GA-RFP transmission of anti-GA immunodepletion (GA-GFP receiver with anti-GA). n = 3 biological replicates. In total, 280 donor GFP, 284 receiver GFP
with 1gG, 317 receiver GFP with anti-GA, 277 donor GA;,5-GFP, 294 receiver GA;75-GFP with IgG, and 311 receiver GA;,5-GFP with anti-GA cells were analyzed. Scatter
plot with bar graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons test. ***P < 0.001.

C Immunoblotting of poly-GA immunoprecipitated from conditioned media using antibody-coupled beads and antibody leftover pre- and post-immunoprecipitation in

the conditioned media.

D Poly-GA levels in conditioned media before and after immunodepletion with control IgG and anti-GA antibody were determined by immunoassay. n = 3 biological
replicates. Scatter plot with bar graphs of mean 4 SD. One-way ANOVA with Tukey’s multiple comparisons test. **P < 0.01, and ***P < 0.001.

Source data are available online for this figure.

compartment additionally with iRFP or GA;,s-iRFP. Strikingly, poly-
GA expression strongly increased Ubgzey-GFP levels in both the
GA75-iRFP-transduced donor cells and the receiver cells as
measured by Western blot without affecting mRNA expression of
the reporter (Fig 3C-E). Flow cytometry using a HEK293 reporter
line stably expressing Ubg,ey-GFP confirmed that the mean Ubgygy-
GFP fluorescence was significantly increased in cells co-cultured
with GA;;5-RFP-expressing cells, compared to cells co-cultured with
RFP alone (Fig EV3E-G). Uptake of GA;,5-RFP was detectable in
over 10% of receiving cells compared to < 1% uptake in receiving

© 2020 The Authors

cells co-cultured with RFP (Fig EV3E-G), which is consistent with
previous reports (Westergard et al, 2016; Zhou et al, 2017). Dif-
ferential analysis of GA;,s-RFP-positive vs GA,;;s-RFP-negative
receiver cells showed that Ubg,6y-GFP levels were much higher in
the cells with clear GA;;5-RFP uptake than RFP-negative receiver
cells (Fig EV3H). Importantly, conditioned media from GA,;s-RFP-
transduced cells also mediated poly-GA transmission and induced
Ubg76v-GFP levels in receiver cells, which was completely rescued
by immunodepletion of poly-GA with our monoclonal antibody
(Fig 3F and G, compare Fig 2).
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Figure 3. Poly-GA inhibits the proteasome cell-autonomously and non-cell-autonomously.

A, B Double immunofluorescence of the proteasome subunit PSMC4 and poly-GA inclusions in spinal cord of GA;49-CFP transgenic mouse and cortex of a C9orf72

patient compared with controls. Scale bar denotes 20 pum.

C,D Co-culture model of Hela cells transfected with iRFP or GA;,5-iRFP in the donor compartment and an Ubg,6,-GFP proteostasis reporter in donor and receiver
compartments (48 h). (C) Separate analysis of both compartments by immunoblot and (D) immunoblot quantification. For quantitative analysis of immunoblots,
Ubczev-GFP was normalized to calnexin. n = 3 biological replicates. Scatter plot with mean £ SD. One-way ANOVA with Tukey’s multiple comparisons test. Red

dashed line indicates the control’s expression level. *P < 0.05, ***P < 0.001.

E GFP mRNA expression levels were measured by qPCR. RNA levels were normalized to GAPDH, B-actin, and B2-microglobulin mRNA. Bar graphs of mean + SD.

n = 3 biological replicates. Unpaired two-tailed t-test with Welch’s correction.

F, G Flow cytometry analysis of a Ubgse,-GFP reporter cell line incubated 48 h with conditioned media from RFP or GA;75-RFP-transfected cells upon immunodepletion
of poly-GA or control depletion using unspecific IgG. n = 3 biological replicates. Scatter plot with bar graphs of mean + SD. One-way ANOVA with Tukey’s multiple
comparisons test. *P < 0.05. (G) Comparisons of the corresponding histograms for compensated RFP and Ubge,-GFP fluorescence from one representative
experiment that shows specific transmission of GA,75-RFP associated with accumulation of Ubg;e,-GFP in cells incubated with GA;75-RFP conditioned media. For

flow cytometry analysis of co-culture experiments, see Fig EV3E—H.

Source data are available online for this figure.

Taken together, this suggests that cell-to-cell transmission of
small amounts of poly-GA is sufficient to induce significant protea-
some inhibition in neighboring cells within a short time frame.

Rolipram rescues poly-GA-dependent TDP-43 mislocalization and
aggregation by boosting proteasome activity

To test whether proteasome inhibition triggers TDP-43 mislocaliza-
tion to the cytoplasm upon poly-GA expression, we transduced rat
primary hippocampal neurons with GFP or GA,;5s-GFP and addition-
ally inhibited the proteasome using MG132 or stimulated proteaso-
mal activity using rolipram (Fig 4A). Automated image analysis
revealed that MG132 treatment (10 uM, 16 h) significantly
increased cytoplasmic TDP-43 levels compared with the vehicle
control in both GFP and GA;;5-GFP expressing neurons. Strikingly,
rolipram treatment (30 pM, 16 h) reduced cytoplasmic TDP-43
levels in the GA;,5-GFP-transduced neurons (Fig 4A and B).
Immunoblotting confirmed that MG132 and rolipram treatment
had little effect on the GFP control, but increased or decreased
GA,75-GFP levels, respectively (Fig 4C). In addition, we used a filter
trap assay to quantify the levels of SDS-insoluble poly-GA aggre-
gates upon proteasome manipulation in primary neurons relative to
control (Fig 4D and E). While MG132 significantly enhanced GA;s-
GFP aggregation, rolipram reduced poly-GA aggregates. Immunoflu-
orescence confirmed that MGI132 and rolipram also affected
aggregate number accordingly (Appendix Fig S3A and B). In HeLa
cells, poly-GA expression also increased the levels of high-molecular
weight species of co-expressed HA-ubiquitin similar to proteasome
inhibition using MG132, which was rescued by rolipram
(Appendix Fig S3C and D). Moreover, the Ubg7y-GFP reporter con-
firmed that overall proteostasis was improved upon rolipram treat-
ment (Appendix Fig S3E and F). To test whether proteasomal
activation with rolipram can also rescue poly-GA-induced TDP-43
aggregation, we co-transfected HeLa cells with RFP-TDP-CTF and
GFP or GA,;5-GFP, treated them with MG132 or rolipram, and
analyzed protein aggregation by filter trap (Fig 4F and G). Both
proteasome inhibition by MG132 and expression of GA;;5-GFP
significantly increased the amount of TDP-CTF inclusions compared
with the GFP control (Fig 4G). In contrast, rolipram strongly
reduced poly-GA-dependent RFP-TDP-CTF aggregation. Similarly,
rolipram also reduced poly-GA-induced aggregation of TDP-43-
ANLS in a filter trap assay (Fig 4H and I). Thus, proteasome

© 2020 The Authors

activation prevents the formation or promotes the clearance of poly-
GA aggregates and reduces the cytoplasmic mislocalization and
aggregation of TDP-43 in cells with residual poly-GA aggregates.

Boosting proteasomal activity prevents poly-GA-induced
cytoplasmic accumulation of TDP-43

We speculated that poly-GA-induced proteasomal inhibition might
directly contribute to the cytoplasmic mislocalization of TDP-43. To
test the effects of poly-GA on TDP-43 localization independent of
aggregation, we used RFP fused to the NLS of TDP-43 as a nuclear
import reporter in HeLa cells (Khosravi et al, 2017). Co-transfection
of the RFP-TDP-43-NLS reporter with GA;,5-GFP increased cytoplas-
mic reporter levels in inclusion-bearing cells compared with the GFP
control as measured by automated quantification (Fig SA-C). Roli-
pram (30 uM, 16 h) did not affect localization of the RFP-TDP-43
NLS in GFP-transfected cells, but largely prevented poly-GA-induced
cytoplasmic mislocalization of the reporter (Fig SA and B). This
effect was phenocopied by overexpression of PSMD11 (Fig 5D-F),
which is known to enhance proteasome assembly and activity and
is the direct target of rolipram (Vilchez et al, 2012; Lokireddy et al,
2015). Similar to primary neurons (Appendix Fig S3A and B), roli-
pram also reduced the number of GA;,5-GFP inclusions in HeLa
cells consistent with stimulated proteasomal degradation of poly-GA
(Fig 5G-I). Neither rolipram treatment nor PSMDI11 transfection
altered the mRNA levels of the RFP-TDP-43-NLS reporter (Fig 5C, F
and I). To test whether the effects of proteasome activation result
from improved clearance of cytoplasmic TDP-43 or improved
nuclear import, we added rolipram (30 uM) to reporter cells treated
with 10 uM ivermectin, an inhibitor of the importin-o/f pathway
(Wagstaff et al, 2011). Rolipram reduced reporter mislocalization
even under these conditions suggesting that it mainly enhances
degradation of cytoplasmic TDP-43 (Appendix Fig S4). Together,
these findings suggest that proteasome inhibition by poly-GA
promotes cytoplasmic mislocalization of TDP-43 by affecting the
NLS of TDP-43, which can be prevented by proteasome activation.

Lysine 95 is critical for the inhibition of nuclear import of TDP-43
by poly-GA

Since proteasomal activation rescues nuclear import of the TDP-43
NLS reporter, we speculated that poly-GA expression might inhibit
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import via ubiquitination within the TDP-43 NLS. Indeed, several
previous proteome-wide mass spectrometry studies had identified
ubiquitination sites within the TDP-43 NLS at lysine 84 and lysine
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95 (Fig 6A) (Kim et al, 2011; Lumpkin et al, 2017; Akimov et al,
2018). To test the role of both residues in nuclear import of TDP-43,
we generated RFP-based reporters containing lysine-to-alanine and
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Figure 4. Rolipram rescues poly-GA-dependent TDP-43 mislocalization and aggregation by boosting proteasome activity.

A-E Primary hippocampal neurons were transduced with GFP or GA;,5-GFP after 4 days in vitro, incubated for 7 days (DIV 4 + 7), and treated with vehicle (DMSO),
MG132 (10 pM), or rolipram (30 uM) for 16 h. (A) Immunofluorescence reveals enhanced cytoplasmic TDP-43 levels in neurons with poly-GA aggregates or treated
with MG132. Arrows mark punctate TDP-43 staining. Rolipram treatment reduced cytoplasmic TDP-43 in GA;,5-GFP neurons. Scale bar denotes 20 um. (B)
Automated quantification of cells with cytoplasmic TDP-43 in GFP- or GA,75-GFP-transduced neurons. n = 4 biological replicates. In total, 462 GFP and 371 GA;s-
GFP cells treated with vehicle, and 386 GFP and 529 GA;,5-GFP cells treated with MG132, and 513 GFP and 434 GA;,5-GFP cells treated with rolipram were
analyzed. Scatter plot with bar graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons test. (C) Immunoblot to show effects of MG132 and
rolipram on GA;75-GFP and GFP expression. (D and E) Filter trap assay with quantification of SDS-insoluble aggregated GA;,5-GFP. n = 5 biological replicates.
Scatter plot with mean £ SD. One-way ANOVA with Tukey’s multiple comparisons test.

F, G Hela cells were co-transfected with RFP-TDP-CTF and GFP or GA;75-GFP for 2 days. For the final 16 h, cells were treated with rolipram (30 M) or MG132 (10 uM).
Filter trap assay of SDS-insoluble TDP-CTF aggregates quantified by densitometry. n = 4 biological replicates. Scatter dot plot, mean + SD. One-way ANOVA with

Tukey’s multiple comparisons test. See also Appendix Fig S3.

H, | HelLa cells were co-transfected with TDP-43,y.s-GFP and iRFP or GA;75-iRFP for 2 days. For the final 16 h, cells were treated with either vehicle or rolipram
(30 uM). Filter trap assay of SDS-insoluble TDP-43,y,s-GFP aggregates quantified by densitometry. n = 3 biological replicates. Scatter dot plot, mean + SD. One-

way ANOVA with Tukey’s multiple comparisons test.

Data information: **P < 0.01, and ***P < 0.001. Red dashed line indicates the control’s expression level.

Source data are available online for this figure.

lysine-to-arginine mutations at these sites to block ubiquitination
while either removing or maintaining the positive charge. All
constructs were expressed at comparable levels (Fig 6B) and
showed cycloheximide experiment
(Appendix Fig SS5A and B). Next, we assessed the nuclear import
efficacy of the mutant NLS reporters in HeLa cells co-transfected
with GA;;5-GFP or GFP control. Compared to the wild-type, K84A
and K84R mutations largely prevented nuclear import of the RFP
reporter even in the absence of poly-GA indicating K84 is crucial for
the function of the TDP-43 NLS, which precludes the analysis of
poly-GA-specific effects on K84 in this assay (Fig 6C and D).
However, both K95A and K95R mutants were imported to the
nucleus as efficiently as the wild-type NLS in cells co-transfected
with GFP (Fig 6C and D), suggesting a positive charge at this posi-
tion is not required for NLS activity. In striking contrast to the wild-
type NLS, the K95A and K95R reporters remained largely nuclear
even in inclusion-bearing cells (Fig 6C and D), indicating that lack
of this putative ubiquitination site protects the TDP-43 NLS from the
inhibitory effect of poly-GA. MG132 treatment phenocopied the
effects of poly-GA on wild-type and mutant reporters, suggesting
that proteasome inhibition is a main driver of reporter mislocaliza-
tion. Importantly, K95 mutations also prevented poly-GA-dependent
cytoplasmic mislocalization of full-length TDP-43 without affecting
overall TDP-43 clearance (Appendix Fig SSC-F).

The TDP-43 NLS acts via the classical nuclear import receptor
importin-o. (Winton et al, 2008; Nishimura et al, 2010). To test how
poly-GA interferes with this pathway, we performed co-immunopre-
cipitation of the GFP-NLS reporter constructs with endogenous
importin-a5/KPNA1 in HeLa cells co-expressing iRFP or GA;5-iRFP
(Fig 6E and F). The wild-type GFP-NLS and the K95A mutant co-
immunoprecipitated KPNA1 under control conditions, whereas the
K84A mutation severely impaired binding to the import receptor
independent of poly-GA consistent with poor nuclear import. More-
over, poly-GA co-expression reduced KPNA1 binding to the wild-
type GFP-NLS but not to the K95A construct that was resistant to
poly-GA induced mislocalization (compare Fig 6C and D). Similarly,
poly-GA reduced binding of full-length TDP-43 to importin-o5/
KPNA1, which was blocked by the K95A mutation (Fig EV4). Taken
together, poly-GA-induced ubiquitination or other post-translational
modifications at K95 are likely inhibiting the nuclear import of
TDP-43.

similar turn-over in a

© 2020 The Authors

Poly-GA induced poly-ubiquitination of TDP-43 within the
NLS at lysine 95

To test whether poly-GA induced ubiquitination within the TDP-43
NLS, we co-transfected HeLa cells with the GFP-NLStpp reporters,
poly-GA and HA-ubiquitin, and analyzed the amount of ubiquitin
chains in GFP-NLStpp immunoprecipitates (Fig 7). HA immunoblot-
ting clearly showed poly-ubiquitination of the wild-type GFP-NLS
reporter compared to control immunoprecipitates from cells without
HA-ubiquitin expression (Fig 7A). Importantly, poly-ubiquitination
of the wild-type NLS reporter increased upon poly-GA expression.
In contrast, basal ubiquitination of the K95A reporter was much
lower than wild-type and did not increase upon poly-GA co-expres-
sion suggesting that K95 (and not K84) is the main ubiquitination
site within the TDP-43 NLS. The proteasome inhibitor MG132
induced accumulation of poly-ubiquitinated wild-type but not K9SA
reporter (Fig 7A and B). In contrast, rolipram reduced basal ubiqui-
tination of the wild-type reporters to the level of the K95A mutant.
Finally, introducing the K95A mutation into full-length TDP-43
largely prevented the poly-GA-induced accumulation of
ubiquitinated TDP-43 (Fig EVS). Together, these data indicate that
poly-GA-mediated proteasome inhibition leads to the cytoplasmic
accumulation of TDP-43 NLS ubiquitinated predominantly at K95,
and this mislocalized TDP-43 can be effectively cleared by boosting
proteasome activity.

Discussion

Dysfunction of the ubiquitin—proteasome system has been reported
for many neurodegenerative diseases, but actual sequestration and
proteasome stalling has so far been detected only for poly-GA (Guo
et al, 2018b). Here, we show in a co-culture model that poly-GA
inhibits the proteasome and promotes TDP-43 mislocalization and
aggregation even in neighboring cells that uptake only small
amounts of poly-GA. TDP-43 mislocalization by poly-GA is medi-
ated by ubiquitination at lysine 95 within the NLS, which inhibits
binding to importin-o. We show that inhibiting poly-GA transmis-
sion with antibodies and chemically activating the proteasome with
rolipram ameliorate both poly-GA and TDP-43 pathology and may
thus break the pathogenic cascade in C9orf72 patients.
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Figure 5. Boosting proteasomal activity prevents poly-GA-induced cytoplasmic accumulation of TDP-43.

A-C Hela cells were co-transfected with an RFP-based TDP-NLS reporter and GFP or GA;75-GFP. Twenty-four hours after transfection, cells were treated with rolipram
(30 uM) for 16 h. In the immunofluorescence, GFP is not shown because diffuse GFP expression would hide the cytoplasmic RFP reporter. White arrows indicate
cells with cytoplasmic TDP-43. (B) Automated quantification of cells with cytoplasmic TDP-NLS reporter in GFP- and GA;,5s-GFP-positive cells. n = 4 biological
replicates. In total, 345 GFP and 386 GA;,5-GFP cells treated with vehicle, and 371 GFP and 404 GA;,5-GFP cells treated with rolipram were analyzed. Scatter plot
with bar graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons test. (C) RFP-NLStpp,: MRNA expression levels were measured by qPCR. n = 3
biological replicates. Bar graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons test.

D-F Hela cells were co-transfected with the RFP-based TDP-NLS reporter, GFP or GA;,5-GFP, and PSMD11 or empty vector. Image analysis as in (A). n = 4 biological
replicates. Scatter plot with bar graphs of mean 4 SD. One-way ANOVA with Tukey’s multiple comparisons test. 354 GFP and 330 GA;5-GFP cells with vector, and
367 GFP and 369 GA,,5-GFP cells with PSMD11 in total were analyzed. (F) RFP-NLStpp.: MRNA expression levels were measured by gPCR. n = 3 biological
replicates. Bar graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons test.

G-I Immunofluorescence of Hela cells transfected with GFP or GA;,5-GFP showing reduced poly-GA aggregation upon rolipram treatment (30 pM, 16 h). (H)
Automated quantification of poly-GA aggregate number per cell. n = 3 biological replicates. In total, 223 cells treated with vehicle and 286 cells treated with
rolipram were analyzed. Scatter plot with bar graphs of mean £ SD. Unpaired two-tailed t-test with Welch’s correction. (I) GA-GFP mRNA expression levels were
measured by gPCR. n = 3 biological replicates. Bar graphs of mean + SD. Unpaired two-tailed t-test with Welch’s correction.

Data information: Scale bars in immunofluorescent figures denote 20 um. **P < 0.01, ***P < 0.001.
Source data are available online for this figure.
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Figure 6. Lysine 95 is critical for the inhibition of nuclear import of TDP-43 by poly-GA.

A Domain structure of TDP-43 and location of the bipartite NLS at positions 78-99 (Winton et al, 2008). Known ubiquitination sites listed on www.phosphosite.org at

K84 and K95 are highlighted.

B Immunoblot of Hela cells transfected with RFP-based TDP-NLS wild type (WT) or mutants (K84A, K84R, K95A, K95R).

C, D Hela cells were co-transfected with the indicated TDP-NLS reporters as well as GFP or GA;75-GFP, and treated with MG132 (10 uM) or vehicle for 16 h. (D)
Automated quantification of RFP-NLS reporters in GFP-positive cells. Note that K84A and K84R block overall import, while K95A and K95R allow import but are
resistant to inhibition by poly-GA. n = 4 biological replicates. The total number of cells analyzed per group was (from left to right) 667, 581, 789, 783, 809, 708, 628,
721, 938, 557, 857, 861, 886, 699,789, 539, 636, 577, 638, and 870. Scatter plot with bar graphs of mean £ SD. One-way ANOVA with Tukey’s multiple comparisons

test. ***P < 0.001. Scale bar denotes 20 um.

E, F Hela cells were co-transfected with the indicated GFP-TDP-NLS reporters and iRFP or GA;5-iRFP. Cell lysates were immunoprecipitated with anti-GFP and
immunoblotted with indicated antibodies to detect co-immunoprecipitation of the TDP-43 NLS with importin-a5/KPNAL nuclear import receptor. (F) Quantification
of KPNAL levels normalized to total GFP-NLSpp reporter levels in anti-GFP immunoprecipitates. n = 3 biological replicates. Scatter plot with mean + SD. One-way
ANOVA with Tukey’s multiple comparisons test. ***P < 0.001. See also Fig EV4. Red dashed line indicates the control’s expression level.

Source data are available online for this figure.

Proteasome activation reduces poly-GA and TDP-43
aggregate formation

Proteasome inhibition is known to promote TDP-43 aggregation
in vitro (Igaz et al, 2009), but it is unclear whether this mechanism
occurs in patients and how it would be triggered only in motoneu-
rons and/or the frontotemporal cortex. Here, we analyzed cell-
autonomous and non-cell-autonomous effects of poly-GA on the
proteasome. We show that poly-GA aggregates partially sequester

© 2020 The Authors

the proteasome in C9orf72 ALS/FTD patients and a GA;75-CFP
expressing mouse model, which confirms our in vitro data (Guo
et al, 2018b). Moreover, poly-GA expression promotes cytoplasmic
mislocalization of endogenous TDP-43 in our mouse model. In
primary neurons, MG132 treatment or poly-GA expression acutely
triggers cytoplasmic mislocalization of endogenous TDP-43 and an
RFP-NLStpp reporter, suggesting that proteasome impairment is suf-
ficient to inhibit nuclear import of TDP-43. Consistent with previous
reports, only poly-GA but not the other DPR species promoted
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Figure 7. Poly-GA induces poly-ubiquitination of TDP-43 within the NLS at lysine 95.

Hela cells were co-transfected with wild-type or K95A GFP-TDP-NLS, HA-ubiquitin, and iRFP or GA;75-iRFP. Twenty-four hours after transfection, cells were treated with
rolipram (30 uM), MG132 (10 uM), or DMSO (vehicle) for 16 h. Lysates were immunoprecipitated with Protein G beads coupled with anti-GFP antibody.

A Immunoblotting of input (left panels) and anti-GFP immunoprecipitates (right panels) to show GFP reporter levels and poly-ubiquitination.
B Quantification of HA-ubiquitin levels normalized to total GFP-NLSpp reporter levels in anti-GFP immunoprecipitates. n = 3 biological replicates. Scatter plot,
mean £ SD. One-way ANOVA with Tukey’s multiple comparisons test. *P < 0.05, and ***P < 0.001. Red dashed line indicates the control’s expression level.

Source data are available online for this figure.

aggregation of a C-terminal TDP-43 fragment (Khosravi et al, 2017;
Nonaka et al, 2018). Recent data from a primate model of TDP-43
pathology suggest that rodent caspases cleave TDP-43 less effi-
ciently to generate aggregation-prone CTFs, which may explain the
absence of large TDP-43 aggregates in mouse models and primary
neurons (Yin et al, 2019).

We tested the activation of the proteasome chemically using
rolipram or genetically by overexpressing PSMD11 to ameliorate
poly-GA toxicity. The PDE4 inhibitor rolipram leads to PSMDI11
activation via serine-14 phosphorylation by PKA, which boosts
proteasome assembly (Lokireddy et al, 2015). In addition, protea-
somes from rolipram-treated cells have a higher ATPase activity,
suggesting that substrate processing is enhanced (Lokireddy et al,
2015). The short side chains of poly-GA may impair translocation
into the catalytic subunit of the proteasome as has been shown for
glycine/alanine-rich sequences of EBNA1 (Levitskaya et al, 1997;
Kraut, 2013). PSMD11 phosphorylation may promote translocation
efficacy to allow degradation of poly-GA. Moreover, enhanced
degradation of soluble poly-GA forms may reduce aggregate forma-
tion. In other disease contexts, activating the proteasome in a
transgenic Tau mouse model reduced Tau levels and improved
cognition (Myeku et al, 2016). Proteasome activation was shown
to promote degradation of full-length TDP-43, SOD1 and FUS
in vitro (Lokireddy et al, 2015). In our experiments, rolipram treat-
ment had no effect on basal TDP-43 localization but prevented
cytoplasmic mislocalization in poly-GA-expressing cells. In addi-
tion, rolipram reduced the aggregation of poly-GA and TDP-43
CTFs. Therefore, we analyzed the effects of rolipram in all
immunofluorescence assays only in cells containing visible poly-
GA inclusions to exclude confounding effects. Our findings are
most consistent with the model that rolipram activates both poly-
GA and TDP-43 degradation and additionally inhibits poly-GA-
dependent effects on TDP-43.

Non-cell-autonomous effects of poly-GA on TDP-43

Most neuropathological studies in end-stage tissue found no corre-
lation between reduced C9orf72 expression, RNA foci or the five
DPR species and neurodegeneration (Mackenzie et al, 2013, 2015;
Schludi et al, 2015; DeJesus-Hernandez et al, 2017). We and
others reported cell-to-cell transmission of DPRs (Westergard et al,
2016; Zhou et al, 2017) and uptake of synthetic poly-GA aggre-
gates is neurotoxic (Chang et al, 2016; Flores et al, 2016), but
downstream effects were unknown. DPR inclusions were reported
to cluster within human tissue which may support paracrine
effects (Zu et al, 2013).

Here, we show by using fluorescent reporters that poly-GA
affects proteasome function as well as TDP-43 localization and
aggregation even in neighboring cells that do not contain obvious

© 2020 The Authors

poly-GA aggregates, which may explain the poor regional overlap
of DPRs and TDP-43 pathology in patients. We propose that some
neuron populations (e.g., in cerebellum) are very efficient at non-
canonical translation of the expanded C9orf72 repeat, without
being overly susceptible to their toxicity (e.g., due to higher basal
proteasome activity), while motoneurons express only low levels
of DPRs, but may be highly susceptible to proteasomal inhibition
(Tashiro et al, 2012) by uptake of soluble or aggregated poly-GA.
Our data show that anti-GA antibodies can break this cascade at
least in cultured cells by blocking transmission of DPRs. Immuno-
depletion of poly-GA from conditioned media completely prevented
mislocalization of TDP-43 in receiver cells, suggesting that in vitro
the effects are mainly driven by released poly-GA. We cannot
exclude that poly-GA expression triggers additional indirect effects
in vivo, for example by directly releasing other molecules that
promote TDP-43 aggregation in neighboring cells or triggering
release of such factors from glial cells. Our findings provide mech-
anistic insights into very recent active and passive antibody ther-
apy approaches in C9orf72 mouse models by us and others
(Nguyen et al, 2020; Zhou et al, 2020). Nguyen et al (2020) also
reported that anti-GA antibodies partially restore proteasome func-
tion in poly-GA-expressing cells and show that antibodies clear
poly-GA via the proteasome and autophagy pathway depending on
the intracellular Fc-receptor TRIM21. Moreover, boosting protea-
some function in donor and receiver cells with small molecules
such as rolipram may overcome poly-GA-induced proteasome
impairment and lead to clearance of ubiquitinated substrates such
as TDP-43.

TDP-43 ubiquitination regulates nuclear import

Driving TDP-43 to the cytoplasm promotes its aggregation and is
highly toxic, potentially through both gain- and loss-of-function
mechanisms (Ederle & Dormann, 2017; Prasad et al, 2019). We
provide ample evidence that ubiquitination at K95 inhibits its NLS
function, possibly through steric hindrance of importin-o. binding.
Surprisingly, mutagenizing K95 of the bipartite NLS to alanine or
arginine preserves activity but prevents ubiquitination and poly-
GA-mediated inhibition of nuclear import. In addition, we confirm
reduced binding of wild-type but not K95A to importin-o. upon
poly-GA expression. Consistent with the data by Hans et al
(2018), K84 mutants completely block NLS activity even in the
absence of poly-GA, and it is conceivable that ubiquitination at
K84 may also inhibit nuclear import (Kim et al, 2011; Lumpkin
et al, 2017; Akimov et al, 2018). However, removing K95 largely
prevented ubiquitination in our assays, suggesting that K95 is the
main ubiquitination site within the TDP-43 NLS. Interestingly, a
recent study linked K95 ubiquitination to pathological phosphory-
lation at S409/410 (Hans et al, 2018). Boosting proteasome
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activity in poly-GA-expressing cells may allow more efficient
degradation of TDP-43 ubiquitinated at K95 (and other sites) and
thus prevent accumulation of cytoplasmic TDP-43. A similar inhi-
bition of nuclear transport by ubiquitination within an NLS has
been described for p53 (Marchenko et al, 2010) and CCTa (Chen
& Mallampalli, 2009), suggesting that this may be a common
regulatory mechanism. Since poly-GA also promotes TDP-43-ANLS
and TDP-CTF accumulation, ubiquitination or other post-transla-
tional modification at additional sites may also favor aggregation
or liquid-liquid phase separation (Ederle & Dormann, 2017;
Prasad et al, 2019).

So far, nucleocytoplasmic transport defects in C9orf72 ALS/
FTD have been mostly attributed to a direct effect of the repeat
RNA and/or poly-GR/PR on the nuclear pore involving phase
separation, but clear or even preferential effects on nuclear
import of TDP-43 have not been reported (Freibaum et al, 2015;
Jovicic et al, 2015; Zhang et al, 2015; Boeynaems et al, 2016).
Moreover, poly-PR expression promotes recruitment of TDP-43 in
stress granules upon arsenite treatment, but is ~ 100-fold less
abundant than poly-GA in patients (Mackenzie et al, 2015; Boey-
naems et al, 2017). Cytoplasmic TDP-43 aggregates further inhibit
nucleocytoplasmic transport, which may trigger a vicious cycle
(Chou et al, 2018; Solomon et al, 2018). We speculate that the
combined effect of proteasome inhibition by poly-GA specifically
on the TDP-43 NLS and a (subtle) general transport deficit caused
by ubiquitous low-level expression of the repeat RNA and rare
poly-PR cause the preferential mislocalization and aggregation of
TDP-43 in C9orf72 ALS/FTD patients. Recent findings on the role
of TNPO1 as a chaperone for FUS (Guo et al, 2018a; Hofweber
et al, 2018) suggest that the proteins affected by dysfunction of
multiple pathways may be most sensitive to impairment of nucle-
ocytoplasmic transport, when most other cargos are still trafficked
normally.

Summary

Together, this work links the UPS dysfunction due to poly-GA aggre-
gation with the deficits in nucleocytoplasmic transport recently
reported in C9orf72 FTD/ALS and other neurodegenerative diseases.
Among the DPR proteins, poly-GA is the key driver of TDP-43
pathology in C9orf72 disease, although it is not sufficient to trigger
full pathology by itself in mouse models, which may be explained
by additional impact of other DPR species, the repeat RNA itself,
haploinsufficiency, or poor caspase cleavage of TDP-43 in rodents
(Yin et al, 2019). Our work indicates that boosting proteasome
activity or targeting poly-GA with antibodies may be a promising
therapeutic strategy because it reduces not only poly-GA aggregation
but also TDP-43 mislocalization and aggregation.

Materials and Methods
Plasmids, transfection, and viral packaging

Synthetic expression constructs containing an ATG start codon in
pEF6 backbone (EF1 promoter) for transient transfection or in
FhSynW backbone (human synapsin promoter) for lentiviral
expression were described before (May et al, 2014; Schludi et al,
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2015). Here, we additionally generated variants tagged with
iRFP670 (Shcherbakova & Verkhusha, 2013).

We fused the NLS of human TDP-43 (PKDNKRKMDETDAS
SAVKVKRA, position 78-99) to the C-terminus of GFP or tagRFP-T2
(abbreviated as RFP throughout the manuscript; gift from Michael
Davidson) in FUW2 backbone as described previously (Khosravi
et al, 2017). Similar constructs containing mutations of lysine 84
(K84) or lysine 95 (K95) to alanine or arginine were cloned using
synthetic oligonucleotides. Human TDP-43 C-terminal (amino acids
220-414, CTF) fragments were generated by PCR and fused to the
C-terminus of tagRFP-T2 in FUW2 backbone.

The Ubgz6v-GFP reporter for the ubiquitin—proteasome system
(Dantuma et al, 2000) was subcloned into the FUW2 vector. Full-length
TDP-43 and ANLS (K95A/K97A/R98A as described before (Winton
et al, 2008)) were fused to the C-terminus of GFP in the FUW2 vector.

Lentivirus was packaged in HEK293FT cells (Life Technologies)
as previously described (Guo et al, 2018b).

Antibodies

TDP-43 (Cosmo Bio Co, TIP-TD-P09), TDP-43 (Proteintech, 10782-2-
AP), TDP-43 phospho-S409/410 (Cosmo Bio Co., Ltd, TIP-PTD-P02),
TDP-43 (C-terminal; Proteintech, 12892-1-AP), ChAT (Merck,
AB144P), GFP (UC Davis/NIH NeuroMab Facility, N86/8 and N86/
38), PSMC4 (Bethyl Laboratories, A303-850A and A303-849A), tagRFP
(Thermo Fisher Scientific, R10367), KPNA1 clone 114-E12 (Thermo
Fisher Scientific, 37-0800), calnexin (Enzo Life Sciences, ADI-SPA-860-
F), HA 3F10 (Merck, 11867423001), GA 5F2 (Mackenzie et al, 2013),
control IgG from mouse serum (Merck, 15381), and HCS CellMask™
Deep Red Stain (Thermo Fisher Scientific, H32721) were used.

Primary neuron culture and immunofluorescence

Primary hippocampal neuron cultures were prepared from embry-
onic day 19 rats as described previously (Guo et al, 2018b). Primary
neurons were then plated on sterilized poly-p-lysine-coated cover-
slips. For co-culture experiments, three 1- to 2-mm dots of melted
paraffin were spotted on the coverslips as a spacer. Then, primary
neurons transduced on separate coverslips (DIV4 + 4) were exten-
sively washed with media and put face to face for another 4 days of
incubation in fresh media. For antibody treatment in neuronal co-
cultures, primary neurons on coverslips were transduced (DIV4 + 4)
and washed with media and incubated face to face with non-trans-
duced cells for 4 days, followed by 7 days of treatment with IgG
control and anti-GA antibody.

Hela cell culture and transfection

HeLa cells were cultured in DMEM, high glucose, GlutaMAX ™
Supplement containing 10% FCS and 1% penicillin/streptomycin
together with MEM Non-Essential Amino Acids Solution at 37°C
with 5% CO,. HeLa cells were transfected using Lipofectamine 2000
(Thermo Scientific) according to the manufacturer’s instructions,
followed by 24- to 48-h incubation at 37°C with 5% CO,. For co-
culture experiments, HeLa cells were transfected separately on two
sets of coverslips with paraffin spacers for 24 h. After extensive
washing with media, both coverslips were placed face to face and
incubated for another 24 h.
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C9orf72 patients

We selected nine C9orf72 cases from the Brain Bank Miinchen
Regina Feederle and stained frontal cortex sections for GA (Helm-
holtz Zentrum, 1A12) and TDP-43 (Proteintech, 10782-2-AP). One
case was excluded from analysis due to extremely poor DAPI stain-
ing that precluded quantification of the frequency of poly-GA and
cytoplasmic TDP-43.

Transgenic mice

Generation and characterization of Thyl-GA,49-CFP (abbreviated as
GA-CFP) mice was reported previously (Schludi et al, 2017). Expres-
sion of GA;40-CFP was driven by Thyl.2 promoter. GA-CFP trans-
genic mice were kept in the C57BL/6N background. Animal
handling was performed in accordance with animal law of the
Government of Upper Bavaria, Germany. Animals were housed in
standard cages with ad libitum access to food and water in
pathogen-free facility on a 12-h day/night cycle. Six transgenic (four
male and two female) mice and three littermates (two male and one
female) were analyzed. Manual image analysis was performed
blinded to the genotype.

Immunofluorescence and confocal imaging

For immunofluorescence analysis, cells were fixed with 4%
paraformaldehyde and 4% sucrose for 10 min at RT and incubated
with the indicated antibodies in GDB buffer (0.1% gelatin, 0.3%
Triton X-100, 450 mM NaCl, 16 mM sodium phosphate pH 7.4) and
washed with PBS. All antibodies are listed in the key resources
table.

For endogenous TDP-43 staining, primary hippocampal neurons
(DIV4 + 7) were fixed with 4% paraformaldehyde, then permeabi-
lized (0.2% Triton X-100, 50 mM NH,4CI in PBS), and blocked for
30 min (2% fetal bovine serum, 2% serum albumin, 0.2% fish
gelatin in PBS) and incubated with antibodies in the same buffer. In
both protocols, the primary antibodies were incubated overnight at
4°C and the secondary antibodies for 1 h at room temperature.

For mouse experiments, 8- to 12-month-old mice were eutha-
nized with CO, followed by cervical dislocation. Postmortem spinal
cord was formalin fixated for 24 h, decalcificated with 5% formic
acid for 48 h, and embedded in paraffin. Immunofluorescence stain-
ing was performed on 5-um-thick paraffin sections as described
previously (Schludi et al, 2017).

LSM710 confocal laser scanning system (Carl Zeiss) with Plan-
APOCHROMAT 10X/NA 0.45 (420640-9900) or oil immersion
40x/NA 1.4 (420762-9900) objectives equipped with the ZEN 2011
software package (black edition, Zeiss) was used for acquiring
images. For all analyses, at least three images per group were taken
blind to the experimental condition at 1,024 x 1,024 pixel resolu-
tion. For z-stacked imaging, images were taken with z-step size of
0.8 pm at 5-7 um thickness.

Automated image analysis
To quantify the fraction of cells with cytoplasmic signaling of

endogenous TDP-43 staining in neurons, or RFP-NLStpp in HelLa,
together with TDP-CTF intensity in HeLa cells, Columbus Acapella
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version 2.6.0 (PerkinElmer) was used as described before (Khosravi
et al, 2017). Nucleus objects were detected based on DNA staining
“Find Nuclei” (area > 30 pm?, common threshold 0.10, split factor
7.0, individual threshold 0.4, contrast 0.45). In order to reject dead
and mitotic nuclei, intensity properties were calculated at a standard
method (mean and coefficient variance selected at quantile fraction
50%) by linear classification with the “select Population” function.
Morphology of the nuclei was calculated by area, roundness, and
Haralick features (including Haralick contrast, Haralick correlation,
Haralick sum variance, Haralick homogeneity selected). The train-
ing set composed of ~ 60 manually selected nuclei across all popu-
lations. For all selected nuclei, cell region was determined by
expanding the nucleus region for 6 um with morphological dilation.
We selected the GFP/GFP-DPR-positive cells by laying a threshold
on the mean intensity in the nucleus region. From this selection, we
selected RFP-positive cells by setting a second threshold based on
the RFP channel. We determined different thresholds for HeLa cells
and primary neurons, while thresholds were maintained constant
for all subpopulations. We analyzed the mean of cytoplasmic and
nuclear HA-TDP-43/RFP-TDP-NLS intensities, and cytoplasmic-to-
nuclear ratio and finally determined percentage of GFP-positive cells
with cytoplasmic TDP-43/RFP-TDP-NLS. Average results from two
tile images per experiment were treated as n = 1 for the statistical
analysis.

The aggregate/cell ratio was quantified using Image J (version
1.52i). The Otsu image threshold was determined automatically,
followed by binary water shedding. Finally, particles with 2-18 um
diameter were counted. For DAPI channel, particles > 30 pm with
circularity factor 0.7-1.00 were identified as nuclei to determine the
cell number.

For TDP-43 analysis from patient brains, we used a Leica fluores-
cent microscope (LAS X software) and imaged 50 fields of view per
case in the gray matter, in manually determined grid patterns sepa-
rated by 1 mm in each direction. Using CellProfiler (3.0.0), we iden-
tified DAPI-stained nuclei, cytoplasmic TDP-43 signal, bright TDP-
43 inclusions, and GA aggregates. We removed the majority of glial
nuclei from analysis using thresholds that identified the brightest,
smallest nuclei. We summed the total nuclei, GA, and TDP-43
signals for all images per case and calculated the % GA-positive and
GA-negative cells with cytoplasmic TDP-43 signal.

Western blot and filter trap assays

For Western blot analysis, cells were lysed on ice in RIPA buffer
(150 mM NaCl, 10 mM Tris, pH 7.2, 0.1% SDS, 1.0% Triton
X-100, 1% deoxycholate, 5 mM EDTA) supplemented with
0.2 mg/ml DNase in PBS and protease and phosphatase inhibi-
tors. Lysates were then centrifuged at 1,000 g for 10 min at 4°C
or 15 min at 18,000 g 4°C depending on experiments. Protein
concentration was adjusted according to measurements using a
BCA assay (Interchim). After adding 4x Laemmli buffer (Bio-Rad)
containing 2-mercaptoethanol, samples were denatured at 95°C
for 10 min and loaded on Novex 10-20% Tris-Tricine gels (Life
Technologies).

For filter tap, cells were lysed on ice in Triton buffer (1% Triton
X-100, 15 mM MgCl, in PBS) supplemented with 0.2 mg/ml DNase
and protease inhibitor (Mori et al, 2013). Lysates were centrifuged
at 13,000 rpm 4°C 30 min. Pellets were resuspended in SDS buffer
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(2% SDS in 100 mM Tris pH 7) and incubated for 2 h at RT.
Samples were then filtered through a nitrocellulose membrane
(0.2 um pore). Membranes were then blocked with 2% I-Block
(Thermo Scientific) according to the manufacturer’s instructions
and detected with antibodies as indicated. Immunoblots were
analyzed by using Fiji software. Immunoblot lanes were first
detected by rectangle tool and then plotted, followed by peak
labeling.

Immunoprecipitation assay

HelLa cells were lysed in 2% Triton X-100, 0.75 M NaCl, 1 mM
KH,POQ,, and 3 mM Na,HPO, supplemented with Benzonase Nucle-
ase (6.7 U/ml) and protease inhibitors. 40 pl Protein G Sepharose
beads were coupled with 3.96 mg/ml anti-GFP antibody for 1 h at
4°C. Lysed samples were cleared by centrifugation (1,000 g for
5 min), and 10% of the supernatant was taken out as input. The
remainder was incubated with GFP-coupled beads overnight at 4°C,
followed by extensive washing (50 mM Tris-HCI pH 7.5, 150 mM
NaCl, 5% glycerol).

Anti-GA immunodepletion and immunoassay

For immunodepletion experiments, 50 pl Protein G Dynabeads were
coupled with 10 pg anti-GA (5F2) or control IgG antibodies for 1 h
at RT followed by three washing steps with PBS. Cell supernatant
was incubated with antibody-coupled beads for 3 h at RT. Super-
natant was then collected, equilibrated to 37°C, and added to
receiver cells for 96 h. To confirm immunodepletion, washed beads
(50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5% glycerol) were
analyzed by immunoblotting and aliquots of the supernatant were
analyzed by immunoassay on the Meso Scale platform (MSD) as
described (Zhou et al, 2017). Briefly, streptavidin plates (MSD Gold
96-well streptavidin) were coated with biotinylated 5F2 antibody
(capture antibody, 1:1,000) in PBS overnight. After washing and
blocking, the plates were then incubated with media for 2 h at RT
on a shaking platform. Plates were washed three times and incu-
bated with MSD sulfo-tag-labeled 5F2 antibody (detection antibody,
1:1,000) for 2 h at RT on a shaking platform followed by three final
washing steps. The plates were measured shortly after adding
100 ul MSD Read Buffer T. MESO QuickPlex SQ 120 instrument was
used to detect the electrochemical signal. Data are shown in arbi-
trary units after background correction.

Flow cytometry

HEK293 cells stably expressing Ubg;y-GFP (Dantuma et al, 2000;
De Smet et al, 2017) were transfected with the indicated constructs
for co-culture assays or incubated with conditioned media from
GA,75-RFP- or RFP-expressing cells for 48 h. Subsequently, receiver
cells were harvested and analyzed by flow cytometry for GFP and
RFP fluorescence using an Attune NxT Cytometric Analyser
(Thermo Fisher) at the Imaging Facility of the Max Planck Institute
of Biochemistry, Martinsried. Fluorescence was detected using the
following settings: GFP Ex 488 nm, Em 530/30 nm, tagRFP Ex
561 nm, and Em 586/15 nm. At least 500,000 cells were analyzed
per sample. Fluorescence intensities were corrected for spectral
overlap using HEK293 cells expressing single fluorophores, and
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compensated flow cytometry data were further analyzed using
FlowJo software (version 9.9; Tree Star).

RNA isolation and quantitative RT-PCR

HeLa cells were transfected and incubated for 48 h. Next, RNA
isolation was performed using the QIAshredder and RNeasy Mini
Kit (Qiagen) according to manufacturer’s instructions. To generate
cDNA, the TagMan MicroRNA Reverse Transcription Kit (Applied
Biosystems) was used with random hexamer primers. CFX384
Touch Real-Time PCR Detection System (Bio-Rad Laboratories) was
used to perform RT-qPCR. The following primers were used: EGFP
(Mr04097229_mr, Thermo Fisher Scientific), ACTB (Hs01060665_g1,
Thermo Fisher Scientific), B2M (4326319E, Thermo Fisher Scien-
tific), GAPDH (Hs02758991_gl1, Thermo Fisher Scientific), and
tagRFP (PrimerQuest Tool and Supply, Integrated DNA Technolo-
gies). Signals were normalized to ACTB, GAPDH, and B2M with the
Bio-Rad CFX Manager Software (Bio-Rad Laboratories) by using the
AACT method.

Statistical analyses

Statistical analysis was done in GraphPad Prism (version 7.01) using
one-way ANOVA with Tukey’s multiple comparisons test. Family-
wise significance and confidence level were set at 0.05 (95% confi-
dence interval). For experiments with only two groups, unpaired
two-tailed t-test with 95% confidence level was performed. For
comparison of cytoplasmic TDP-43 in poly-GA-positive vs poly-GA-
negative cells within patients, a paired two-tailed t-test was used.

Data availability
Source data are provided with the manuscript.
Expanded View for this article is available online.
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Expanded View Figures

Figure EV1. Poly-GA induces cytoplasmic TDP-43 mislocalization.

A, B Immunofluorescence analysis of endogenous TDP-43 in the anterior horn of the spinal cord of GA149-CFP transgenic mice 8-12 months of age (Schludi et al, 2017).
Single confocal sections are shown in (A). Arrow indicates neuron with cytoplasmic TDP-43 punctae. (B) Manual quantification of neurons with cytoplasmic TDP-43
in the anterior horn. To allow blinded quantification, poly-GA expression was not taken into account. Scatter plot with bar graphs of mean + SD. Statistical
analysis using unpaired t-test and Welch’s correction (three wild-type and six transgenic animals).

C Immunoblotting of three wild-type and three GA;49-CFP transgenic mice spinal cord 8 months of age. Immunoblotting of one wild-type and one GA;49-CFP
transgenic mouse spinal cord is shown. Proteolytic processing of TDP-43 was not detected in both genotypes.

D Immunofluorescence analysis of endogenous TDP-43 in large ChAT-positive motoneurons in the anterior and posterior horns of the spinal cord of GA;49-CFP
transgenic mice 8-12 months of age (Schludi et al, 2017). Maximum intensity projections are shown. Arrow indicates neurons with cytoplasmic TDP-43 punctae.

E, F Automated analysis of cytoplasmic mislocalization of TDP-43 in frontal cortex of C9orf72 FTLD patients. Representative raw image and the resulting CellProfiler
mask (see Materials and Methods for details). Poly-GA-positive neurons were significantly more likely to have detectable cytoplasmic TDP-43 than neighboring
poly-GA-negative neurons (paired t-test t (7) = 558, partial n?> = 0.816, mean =+ SD).

Data information: **P < 0.01, ***P < 0.001. Scale bars: 50 pm.
Source data are available online for this figure.
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Figure EV2. Anti-GA antibodies block the non-cell-autonomous effects of poly-GA on TDP-43 in a co-culture assay.

78 -

Primary hippocampal neurons were transduced with GFP or GA;,5-GFP (DIV4 + 4) and treated with 1gG control and anti-GA (5F2) antibody.

A

@

Confocal imaging revealed that anti-GA antibody treatment reduces Poly-GA-induced cytoplasmic mislocalization of TDP-43 in hippocampal neurons. White and red
arrows show cells with cytoplasmic TDP-43 in GFP-positive and GFP-negative cells, respectively. Scale bar denotes 20 pm.
Automated quantification of cells with cytoplasmic TDP-43 in GFP or GA;,5-GFP-transduced cells. Cells with and without GFP signal were analyzed separately
(indicated by +/—). As in Fig 1C, GFP-negative donor and GFP-positive receiver cells were excluded due to high transduction and low transmission rate of GFP. n = 4
biological replicates. Scatter plot with bar graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons test. *P < 0.05, and ***P < 0.001.
Immunoblotting shows reduced poly-GA expression upon anti-GA antibody treatment.

Source data are available online for this figure.
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Figure EV3. Poly-GA inclusions sequester the proteasome.

A, B Immunofluorescence of the proteasome subunit PSMC4 and poly-GA inclusions in GA;7s-GFP-transfected Hela cells and GA;,s-GFP-transduced rat primary
neurons. To confirm cell viability, the cytoplasm of Hela cells was stained with HCS CellMask™ Deep Red Stain and neuronal dendrites were labeled with MAP2.
Scale bar denotes 20 um.

C,D Immunoblots of Hela cells that were co-transfected with HA-ubiquitin and GFP, GA;,5-GFP, GFP-GR149, PR175-GFP, GFP-GP,4,, and PA;,5-GFP and incubated for 48 h
and analyzed by densitometry. Scatter plot, mean £ SD. One-way ANOVA with Tukey’s multiple comparisons test. **P < 0.01.

E-H Flow cytometry analysis of non-cell-autonomous proteasome inhibition using HEK293 Ubg,6,-GFP reporter cells co-cultured for 48 h with GA;75-RFP- or RFP-
transfected cells. (E) Two-color scatter plots, presented as pseudo-color density plots, with compensated RFP fluorescence plotted on the x-axis and compensated
GFP fluorescence on the y-axis. A representative experiment out of three independent repeats is shown. (F) Comparisons of the corresponding histograms for
compensated RFP and Ubg,e,-GFP fluorescence from one representative experiment that shows specific transmission of GA;,5-RFP associated with accumulation
of Ubgzey-GFP in cells co-cultured with GA;,5-RFP. (G) Accumulation of Ubg;6y-GFP signal in non-transfected receiver cells that were co-incubated for 48 h with
GA175-RFP-transfected donor cells compared with RFP control. n = 3 biological replicates. Scatter plot with bar graphs of mean + SD. Unpaired two-tailed t-test
with Welch’s correction. **P < 0.01. (H) Histograms for Ubg6y-GFP intensity showing separate analysis of RFP-positive and RFP-negative receiver cells for the
GA175-RFP condition. RFP gating as indicated in (F).

Source data are available online for this figure.
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Figure EV4. Poly-GA reduces KPNA1 binding of full-length TDP-43.

A Hela cells were co-transfected with either full-length GFP-TDP-43 (wild type, K84A, K95A) or GFP-NLStpp (wild type, K84A, K95A) as well as iRFP or GA;75-iRFP and
incubated for 48 h. Lysates were immunoprecipitated with anti-GFP and immunoblotted with an anti-importin-a5/KPNA1 antibody to detect binding of the
nuclear import receptor. Protein expression in the input is also shown.

B, C Quantification of KPNA1L levels normalized to total GFP-TDP-43 and GFP-NLSpp reporter levels in anti-GFP immunoprecipitates. n = 3 biological replicates. Scatter
plot with mean + SD. One-way ANOVA with Tukey’s multiple comparisons test. **P < 0.01, ***P < 0.001. Red dashed line indicates the control’s expression level.

Source data are available online for this figure.
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Figure EV5. Poly-GA induces poly-ubiquitination of TDP-43 at lysine 95.

A-C Hela cells were co-transfected with either full-length GFP-TDP-43 (wild type, K84A, K95A) or GFP-NLSpp (wild type, K84A, K95A) as well as HA-ubiquitin and iRFP or
GA175-iRFP, and incubated for 48 h. Lysates were immunoprecipitated with anti-GFP antibody. Immunoblotting of input (left panels) and anti-GFP
immunoprecipitates (right panels) to show TDP-43 bait levels and poly-ubiquitination. (B, C) Quantification of HA-ubiquitin levels normalized to total GFP-TDP-43
and GFP-NLSypp reporter levels in anti-GFP immunoprecipitates. n = 3 biological replicates. Scatter plot, mean £ SD. One-way ANOVA with Tukey’s multiple
comparisons test. *P < 0.05, and ***P < 0.001. Red dashed line indicates the control’s expression level.

Source data are available online for this figure.
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Appendix Figure S1. Poly-GA promotes TDP-43-CTF aggregation.

(A-C) Hela cells were co-transfected with GFP or GFP-tagged DPR species and the RFP-tagged TDP-43 C-
terminal fragment (TDP-CTF, amino acids 220-414) and analyzed for TDP-CTF aggregation. GAi7s-GFP,
GFP-GRu49, PR175-GFP, GFP-GP47 and PA17s-GFP were used. (A) Immunofluorescence shows enhanced
TDP-CTF aggregation upon poly-GA expression. (B) Automated quantification of aggregate number per



cell and (C) aggregate average area in um?. n=4 biological replicates. In total 395 GFP, 412 GA175-GFP, 385
GFP-GR149, 387 PR175-GFP, 381 GFP-GP47, and 414 PA175-GFP cells with TDP-CTF aggregates were
analyzed. Scatter plot with bar-graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons
test. ** denotes p<0.01. (D) Immunoblotting of HelLa cells co-transfected with GFP-DPRs and RFP-TDP-
CTF or RFP control. Note that GA175-GFP co-expression results in TDP-43 accumulation and high-
molecular weight aggregation at the top of the gel. Control cells were co-transfected with GFP-DPRs and
RFP. (E-F) Hela cells were co-transfected with RFP-TDP-CTF and GFP or GA175-GFP. 24h after
transfection, cells were treated with vehicle or 150 pg/ml cycloheximide (+CHX) for 0, 4, 8, and 24h.
Protein turn-over was measured by immunoblotting of cell lysates. (F) Quantification of RFP-TDP-CTF
protein levels normalized to calnexin. n=4 biological replicates. Scatter plot with bar-graphs of mean +
SD. One-way ANOVA with Tukey’s multiple comparisons test.
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Appendix Figure S2. Cell-to-cell transmission of poly-GA causes cytoplasmic mislocalization of TDP-43.

(A) Additional images with larger fields of view from the experiments in Fig. 1B. Primary hippocampal
neurons were transduced with GFP or GA17s-GFP (DIV4+4) and co-cultured with naive primary neurons
for 4 days. Endogenous TDP-43 and poly-GA aggregates in donor and receiver coverslips were analyzed
by immunofluorescence. Cytoplasmic TDP-43 immunostaining is elevated not only in poly-GA transduced
neurons, but also in the non-transduced receiver cells. White and red arrows indicate cells with



cytoplasmic TDP-43 in GFP positive and negative cells, respectively. In (B) HelLa cells were transfected
with GFP or GA17s-GFP for 48h and immunoblotted for TDP-43. Note that there is no TDP-43 cleavage in
GA175-GFP expressing cells.

(C) Primary hippocampal neurons were transduced with GFP, GA175-GFP, GFP-GR149, and PR17s-GFP
(DIV4+4) and co-cultured with naive primary neurons for 4 days. Endogenous TDP-43 and poly-GA,-GR,-
PR aggregates in donor and receiver coverslips were analyzed by immunofluorescence. (D) Automated
quantification of cells with cytoplasmic TDP-43 in GFP or GA175-GFP, GFP-GR149, PR175-GFP, transduced
(donor), non-transduced (receiver) neurons. n=4 biological replicates. In total 334 donor GFP, 300 donor
GA175-GFP, 315 donor GFP-GRu4g, 307 donor PR175-GFP,322 receiver GFP and 302 receiver GA7s-GFP, 319
receiver GFP-GR149, 294 receiver PR175-GFP cells were analyzed. Scatter plot with bar-graphs of mean
SD. One-way ANOVA with Tukey’s multiple comparisons test. *** denotes p<0.001.

(E) Additional images with larger fields of view from the experiments in Fig. 1D. Immunofluorescence of
co-culture model in Hela cells transfected with iRFP or GA175-iRFP in the donor compartment and TDP-
43ans-GFP in donor and receiver compartment. White and red arrows indicate cells with cytoplasmic
TDP-43 in GFP positive and negative cells, respectively.
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Appendix Figure S3. Rolipram reduces poly-GA aggregate number and enhances proteasomal activity.

(A) Immunofluorescence of primary hippocampal neurons transduced with GFP or GAi7s-GFP and treated
with MG132 (10 uM), rolipram (30 uM) or vehicle control for 16h. (B) Automated analysis of ratio of
poly-GA aggregate number to cell number. n=5 biological replicates. In total 261 cells treated with
vehicle, 302 cells with MG132 and 351 cells with rolipram treatments were analyzed. Scatter plot with



bar-graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons test. * denotes p<0.05,
and *** denotes p<0.001. Scale bar denotes 20 um. (C, D) Immunoblots of Hela cells that were co-
transfected with HA-Ubiquitin and GFP or GA17s-GFP and treated as above, and furthermore analyzed by
densitometry. Scatter dot plot, mean + SD. One-way ANOVA with Tukey’s multiple comparisons test. **
denotes p<0.01, and *** denotes p<0.001. (E,F) Hela cells were co-transfected with Ubgzey-GFP reporter
and iRFP or GA175-IRFP and treated as above. (D) Immunoblots of n=3 biological replicates were (E)
quantified by densitometry. Scatter dot plot, mean + SD. One-way ANOVA with Tukey’s multiple
comparisons test. ** denotes p<0.01, and *** denotes p<0.001.
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Appendix Figure S4. Rolipram treatment promotes degradation of cytoplasmic TDP-43 RFP-NLS
reporter.

(A) Hela cells were co-transfected with RFP-NLStoe reporter and GFP or GAi7s-GFP. 24h after
transfection, cells were treated with nuclear import inhibitor ivermectin (10 uM), proteasome activator
rolipram (30 uM), or both, and analyzed by immunofluorescence. (B) Automated quantification shows
cytoplasmic mislocalization of RFP-NLS reporter upon ivermectin treatment that is partially rescued by
additional rolipram treatment. n=4 biological replicates. In total 337 GFP and 361 GA175-GFP cells treated
with vehicle, 383 GFP and 328 GA17s-GFP cells treated with rolipram, 337 GFP and 329 GAai7s-GFP cells
treated with ivermectin, 331 GFP and 340 GA17s-GFP cells treated with rolipram and ivermectin were
analyzed. Scatter plot with bar-graphs of mean + SD. One-way ANOVA with Tukey’s multiple comparisons
test. ** denotes p<0.01, and *** denotes p<0.001.
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Appendix Figure S5. TDP-43 K95 mutation blocks poly-GA induced cytoplasmic mislocalization of full
length TDP-43 without affecting overall TDP-43 turnover.

(A, B) HelLa cells were transfected with RFP-NLSme wild-type, K95A or K95R. 24h after transfection, cells
were treated with vehicle or 150 pg/ml cycloheximide (+CHX) for 0, 4, 8, and 24h. Protein stability was
measured by immunoblotting of cell lysates. (B) Quantification of RFP-NLSroe protein levels normalized to
calnexin. n=4 biological replicates. Scatter plot with bar-graphs of mean + SD. One-way ANOVA with
Tukey’s multiple comparisons test.

(C) Hela cells were co-transfected with HA-tagged full-length TDP-43 wild-type, K95A or K95R together
with GFP or GA175-GFP and analyzed by immunofluorescence. (D) Automated quantification of cells with
cytoplasmic HA-TDP-43 in GFP or GA175-GFP transfected Hela cells. n=4 biological replicates. In total 322
GFP and 314 GA175-GFP cells with TDP-43 WT, 291 GFP and 310 GA17s-GFP cells with TDP-43 K95A, 363
GFP and 328 GA-GFP cells with TDP-43 K95R were analyzed. Scatter plot with bar-graphs of mean + SD.



One-way ANOVA with Tukey’s multiple comparisons test. *** denotes p<0.001. Scale bar denotes 20
pm.

(E, F) HeLa cells were transfected with full length TDP-43 wild-type, K95A or K95R. 24h after transfection,
cells were treated with vehicle or 150 pug/ml cycloheximide (+CHX) for 0, 4, 8, and 24h. Protein stability
was measured by immunoblotting of cell lysates. (F) Full length TDP-43 protein levels were quantified
and normalized to calnexin. n=4 biological replicates. Scatter plot with bar-graphs of mean £ SD. One-

way ANOVA with Tukey’s multiple comparisons test.
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6. Discussion

My work for the first time indicates that cytoplasmic poly-GA inclusions, not the nuclear poly-
GA aggregates, disrupt the classical nuclear import pathway of TDP-43 via the importin-a/@3
pathway leading to cytoplasmic accumulation of TDP-43. In addition, not only poly-GA impairs
the proteasome, thereby promoting TDP-43 cytoplasmic mislocalization in the cells expressing
poly-GA, but also in neighboring cells that uptake small amounts of soluble or aggregated poly-
GA.

The expanded C9orf72 hexanucleotide repeat has been so far shown to inhibit several cellular
and molecular pathways, including impairment of nucleocytoplasmic shuttling, proteasome
sequestration and stalling. Moreover, accumulation of cytoplasmic TDP-43, a well-known
substrate for UPS, in diseased neurons is the other major pathological hallmark in ALS and
FTD. How DPRs link to cytoplasmic TDP-43 aggregation and eventually causing
neurodegeneration has been a question for many years. Addressing this question will help us
in finding efficacious medicine to prevent or even stop the disease progression. Here | focus
on the role of dipeptide repeat proteins, and provide cellular and molecular mechanisms on
how poly-GA pathology among all other DPRs contributes the most to TDP-43 pathology in
ALS/FTD.

6.1. Poly-GA impairs nuclear import of TDP-43

Among all five species of DPRs, poly-GA is the most abundant DPR in C9orf72 ALS/FTD
patients (Freibaum, Lu et al. 2015, Jovicic, Mertens et al. 2015, Zhang, Donnelly et al. 2015,
Boeynaems, Bogaert et al. 2016). In cell and animal models, poly-GA rapidly forms cytoplasmic
inclusions (Zu, Liu et al. 2013, May, Hornburg et al. 2014, Wen, Tan et al. 2014, Zhang,
Jansen-West et al. 2014, Yamakawa, Ito et al. 2015). (GA)1s but not 15-mers of the other DPR
species, aggregates promptly in vitro and forms fibrils that are labeled with amyloid dyes (e.g.
thioflavin T) and show characteristic cross-B sheet structure in synchrotron experiments
(Chang, Jeng et al. 2016). Moreover, cytoplasmic inclusions of artificial B-sheet proteins and
disease-associated proteins result in severe impairment of nucleocytoplasmic shuttling
(Woerner, Frottin et al. 2016). In addition, cytosolic inclusions of TDP-43 in motor neurons has
been identified as the pathological protein in vast majority of ALS and FTD cases (Neumann,
Sampathu et al. 2006, Cairns, Neumann et al. 2007, DeJesus-Hernandez, Mackenzie et al.
2011, Murray, Dedesus-Hernandez et al. 2011, Boeve, Boylan et al. 2012, Cooper-Knock,
Hewitt et al. 2012, Gijselinck, Van Langenhove et al. 2012, Hsiung, DeJesus-Hernandez et al.
2012, Mahoney, Beck et al. 2012, Simon-Sanchez, Dopper et al. 2012, Snowden, Rollinson et
al. 2012, Stewart, Rutherford et al. 2012, Troakes, Maekawa et al. 2012). In other words, a

significant positive correlation has been shown between the amount of TDP-43 pathology and
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the degree of neurodegeneration in crucial anatomical regions, including motor cortex, frontal
cortex, and spinal cord (Mackenzie, Arzberger et al. 2013) suggesting TDP-43 is a crucial

trigger of neurodegeneration (Walker, Spiller et al. 2015).

Therefore, in Research Article 1, | analyzed poly-GA (as the most abundant DPR observed
in patients and most aggregation-prone DPR in cells) (Zu, Liu et al. 2013, May, Hornburg et al.
2014, Wen, Tan et al. 2014, Zhang, Jansen-West et al. 2014, Jovicic, Mertens et al. 2015,
Yamakawa, Ito et al. 2015, Zhang, Donnelly et al. 2015, Boeynaems, Bogaert et al. 2016), -
GR, and -PR (reported as two most toxic DPRs in living cells (Kwon, Xiang et al. 2014,
Mizielinska, Gronke et al. 2014, Wen, Tan et al. 2014, Freibaum, Lu et al. 2015, Lee, Zhang
et al. 2016)) implications on nuclear import of TDP-43. Poly-GR and -PR are shown to be
highly polar. Charge-charge interactions are very important for interaction with other low
complexity domains (LCDs) that allow biomolecular liquid-liquid phase separation (LLPS) (Li,
Banjade et al. 2012, Kwon, Xiang et al. 2014, Mizielinska, Gronke et al. 2014, Wen, Tan et al.
2014, Freibaum, Lu et al. 2015, Jovicic, Mertens et al. 2015, Tao, Wang et al. 2015, Lee, Zhang
et al. 2016, Lin, Mori et al. 2016, Liu, Pattamatta et al. 2016, Mitrea and Kriwacki 2016, Banani,
Lee et al. 2017, Gupta, Lan et al. 2017, Shi, Mori et al. 2017). But most importantly the link
between DPRs and TDP-43 has not been shown before. Poly-GR/-PR induce stress granule
(SG) assembly and engage with RNA binding proteins (RBPs) which is dependent on
phosphorylation of eukaryotic translation initiation factor 2A (elF2a) together with the presence
of Ras GTPase-activating protein-binding protein 1 (G3BP) proteins (Figure 2a) (Boeynaems,
Bogaert et al. 2017).

| discovered that poly-GA, compared to poly-GR/PR, had a more significant impact on TDP-
43 nucleocytoplasmic transport in HeLa cells and in primary neurons. Furthermore, | showed
DPR inclusions affect importin a/B-dependent protein import. While poly-GA and to a lesser
extent poly-GR inhibit the import of TDP-43 NLS through classical importin o/f pathway, they
had no effect on hnRNPA1 NLS which is imported to the nucleus via PY-NLS mediated by
transportin (TNPO).

Hence, defects in nucleocytoplasmic transport caused by cytoplasmic poly-GA inclusions may
play a role in implications for C9or72 ALS/FTD pathogenesis beyond correlations with TDP-43
pathology.
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6.2. Insights into how DPRs are linked to nucleocytoplasmic transport

Several C9orf72 models with deficits in nucleocytoplasmic transport have been studied so far,
suggesting nucleocytoplasmic transport defects may be a fundamental pathway for ALS and
FTD. It is important to highlight that the contribution of amyloid-like protein aggregates to
neurodegenerative disorders may be through a common mechanism, such as impairment of
nucleocytoplasmic shuttling. Notably, a recent study has shown cytoplasmic mislocalization of
TDP-43 in motor neurons prevents DNA double-strand break (DSB) repair, and therefore
contributes to neurodegeneration in sporadic ALS (Mitra, Guerrero et al. 2019). Moreover,
recent evidence suggests impaired nucleocytoplasmic transport in other neurodegenerative
diseases, such as Alzheimer's disease (caused by pathological Tau) (Eftekharzadeh, Daigle
et al. 2018) and Huntington’s disease (caused by mutant Huntingtin (mHTT82Q) or HD RAN
translation proteins) (Grima, Daigle et al. 2017).

Unbiased genetic screenings in Drosophila expressing poly-PR (Boeynaems, Bogaert et al.
2016), yeast (Saccharomyces cerevisiae) (Jovicic, Mertens et al. 2015) and human cells
together with primary neurons expressing poly-GR and poly-PR (Kramer, Haney et al. 2018)
revealed several interactors in the nucleocytoplasmic transport machinery to alleviate or
exacerbate the disease phenotypes. In addition, poly-GA in mice has been shown to sequester
nucleocytoplasmic proteins, thereby leading to abnormal distribution of proteins (Zhang,
Gendron et al. 2016), although this was not confirmed in our poly-GA mouse model (Schiudi,
Becker et al. 2017). These studies have shown sequestered and impaired nucleoporins that
form nuclear pore complexes (NPCs), most importantly in regulators of Ran-GTP cycle, that
provides the energy driving nuclear transport, such as RanGAP1 (Jovicic, Mertens et al. 2015,
Zhang, Donnelly et al. 2015). RanGAP1, an essential regulator of nucleocytoplasmic shuttling,
was shown to bind to the (G4C2), RNA and presumably poly-GR, and formed intranuclear
inclusions in HRE-expressing Drosophila, neurons from C9orf72 ALS patient-derived induced
pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS case post-mortem brains
(Zhang, Donnelly et al. 2015). Importantly, in mice expressing high levels of poly-GA, nuclear
and cytoplasmic puncta of mislocalized RanGAP1 was shown to co-localize with poly-GA
inclusions (Zhang, Gendron et al. 2016). However in consistence with studies in GA149-CFP
mice (Schludi, Becker et al. 2017), C9orf72 patients (Saberi, Stauffer et al. 2018), and C9orf72-
patient neurons (Jovicic, Mertens et al. 2015), | did not observe any differences in RanGAP1
cellular localization between controls and GA expressing HelLa cells. These data suggest that
proteasome inhibition by poly-GA is more important for TDP-43 mislocalization than direct

effects on the NPC machinery.
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These genetic screens were used to identify toxicity modifiers, such as aggregation-prone
proteins like TDP-43 in neurodegenerative diseases. TDP-43 has been described to form
cytoplasmic and nuclear inclusions that are found in the majority of ALS and FTD cases
(Neumann, Sampathu et al. 2006). TDP-43 is primarily nuclear, however a small fraction of
TDP-43 is found in the cytoplasm and has been shown to bind numerous target mRNAs
(Tollervey, Curk et al. 2011). Moreover, in mice expressing high levels of poly-GAso, rare TDP-
43 inclusions have been observed due to impairment of nucleocytoplasmic transport proteins
(Zhang, Gendron et al. 2016). Particularly, the cytoplasmic accumulation of mutant TDP-43
has been shown to be due to differential cleavage patterns through species. Mouse Caspase-
11, unlike the primate homologue caspase-4, has been discovered to be unable to cleave TDP-
43 NLS and cause cytoplasmic distribution of fragmented TDP-43 (Yin, Guo et al. 2019). | have
shown in primary hippocampal neurons expressing GFP-tagged DPR proteins by using
lentivirus, poly-GA expression leads to increased cytoplasmic TDP-43 granules compared to
poly-GR and poly-PR. Cytoplasmic TDP-43 granules that | observed in primary neurons are
indeed far smaller than aggregates seen in patients, therefore we suggest slight poly-GA

dependent TDP-43 mislocalization could serve as a precursor for further aggregation.

Since the cytoplasmic receptor for TDP-43 is importin a, | therefore tested overexpression of
members of karyopherin-a family (KPNA3, and 4) and essential factors of nuclear pore
components (CSE1L/CAS, NUP54, NUP64) in HelLa cells and observed reduced cytoplasmic
TDP-43 mislocalization (Khosravi, Hartmann et al. 2017). Moreover, a study in sporadic
C9orfr2 ALS/FTD cases reported nuclear depletion and cytosolic accumulation of KPNA4, a
member of importin a family, that is a cytoplasmic receptor for TDP-43 (Solomon, Stepto et al.
2018).

Taken altogether, there is strong evidence indicating nucleocytoplasmic transport is impaired
in CY9orfr2 ALS/FTD, leading to the sequestration of transport machinery and altered
cytoplasmic RBP accumulation and aggregation, including TDP-43.
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6.3. Non-cell-autonomous effects of poly-GA via UPS dysfunction may explain

poor regional correlation between DPRs and TDP-43 pathology in patients

Previous studies from our group and others have addressed differences in DPR species
attributions to clinicopathological subtypes of C9orf72 cases (van Blitterswijk, DeJesus-
Hernandez et al. 2013, Schludi, May et al. 2015). Schludi et al. has found poly-GA inclusions
were more abundant in cerebellar granular cell layer, while poly-PR inclusions, despite being
rare throughout the brain, were significantly more abundant in the hippocampus. These data
suggest a differential translation, together with the possible role of spreading and seeding of
DPRs which could play a role in neurodegeneration. Furthermore, several other studies have
shown that poly-GR aggregates are correlated with neurodegeneration (Saberi, Stauffer et al.
2018, Sakae, Bieniek et al. 2018, Gittings, Boeynaems et al. 2020). In addition, only poly-GA
aggregates have been observed to rarely co-accumulate with TDP-43 inclusions within the
same cell (Mackenzie, Arzberger et al. 2013, Mori, Weng et al. 2013). Moreover, spreading of
DPRs between cells, like tau, a-syn, and Htt (Costanzo and Zurzolo 2013, Jucker and Walker
2018), has been shown in several in vitro studies (Chang, Jeng et al. 2016, Westergard,
Jensen et al. 2016, Zhou, Lehmer et al. 2017). Therefore, in Research Article 2, | tested the
hypothesis that non-cell-autonomous effects of DPRs could play a role in TDP-43 pathology
while studying implications on ubiquitin proteasome system (UPS) and nucleocytoplasmic

transport.

I show that poly-GA inclusions partly sequester the proteasome function, which is in
consistence with our work in vitro (Guo, Lehmer et al. 2018). Induced poly-GA dependent
proteasome dysfunction furthermore affects TDP-43 localization in cells with and without
visible poly-GA aggregates (Figure 2b). In addition, inhibiting or activating proteasomal activity
by chemicals such as MG132 (benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal), and rolipram
(Figure 2c) led to induced and reduced cytoplasmic mislocalization of endogenous TDP-43 or
a reporter including TDP-NLS, respectively. Previously, in primary hippocampal and cortical
neurons, as well as an immortalized motor neuron cell line NSC-34, chemically inhibiting the
proteasome by MG-132 and lactacystin was also shown to significantly result in inducing
cytoplasmic accumulation and aggregation of TDP-43 (van Eersel, Ke et al. 2011). Moreover,
rolipram has been shown to attenuate taupathy by clearance of tau aggregates and improve
cognition in early-stage taupathy in a mouse model (Myeku, Clelland et al. 2016). It is important
to mention that rolipram, by inhibiting phosphodiesterase 4 (PDE4), increases cAMP levels
and therefore activates cCAMP-dependent protein kinase (PKA) which leads to phosphorylation
of Rpn6/PSMD11, a subunit of the 19S regulatory complex. This eventually increases
peptidase activity of 26S proteasome to further promote the degradation of short peptide

substrates, ubiquitinated, and aggregation-prone proteins (Lokireddy, Kukushkin et al. 2015).
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In addition, | showed genetic manipulations in order to further activate proteasome by
overexpressing 26S proteasome non-ATPase regulatory subunit D11 (PSMD11), resulted in

prevention of cytoplasmic TDP-43 mislocalization, too.

Overall, my data indicate poly-GA inclusions result in impairing proteasome activity and
therefore trigger further TDP-43 pathology. This effect can be rescued by chemically or
genetically activating proteasome. In addition, hindering poly-GA transmission by use of

antibodies in vitro prevents cytoplasmic TDP-43 mislocalization (Figure 2d).
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Figure2. Non-AUG translation of C9orf72 RNA transcripts forms five different speciesof
proteotoxic dipeptide repeat proteins (DPRs). DPRs accumulate in the brain and spinal
cord and have been shown to contribute to disease pathogenesis. (a) Poly-GR and poly-PR
promote phase-separation of RNA binding proteins (RBPs) and induce stress granule (SG)
assembly depending on phosphorylation of eukaryotic translation initiation factor 2A (elF2a)
together with the presence of Ras GTPase-activating protein-binding protein 1 (G3BP)
proteins. (b) Poly-GA promotes cytoplasmic mislocalization of TDP-43 via non-cell
autonomous impairment of proteasome and ubiquitylation of TDP-43 within its nuclear
localization signal (NLS). This results in accumulation and aggregation of cytoplasmic TDP-
43. (c) Proteasome activation by chemicals such as rolipram leads to clearing poly-GA and
TDP-43 pathology. (d) Anti-GA antibodies can block poly-GA transmission between cells and
therefore result in diminished TDP-43 mislocalization.
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6.4. Poly-GA-induced ubiquitination leads to inhibition of TDP-43 nuclear
import

To answer the question on how proteasomal activation rescues nuclear import of TDP-43, |
decided to investigate whether poly-GA expression inhibits import via ubiquitination within
TDP-43 NLS. Previous proteome-wide mass spectrometry profiling studies have revealed
lysine 84 and lysine 95 as ubiquitination sites within TDP-43 NLS (Kim, Bennett et al. 2011,
Lumpkin, Gu et al. 2017, Akimov, Barrio-Hernandez et al. 2018).

| have shown that poly-GA leads to accumulation of TDP-43 poly-ubiquitinated within the
bipartite NLS at lysine 95 (K95). Furthermore, | have shown that poly-ubiquitination likely
inhibits importin-a binding, and mislocalized TDP-43 can be largely cleared by boosting
proteasome activity. K95 mutations to alanine or arginine revealed reduced poly-GA
dependent ubiquitination and rescued import deficits. Interestingly, | confirmed that poly-GA
expression causes diminished binding of wild-type NLS but not K95A mutant to importin-a.
Others have shown that the K95A mutant within TDP-43 NLS dramatically decreased Ser-
409/410 phosphorylation, connecting TDP-43 ubiquitinylation and pathological
phosphorylation (Hans, Eckert et al. 2018). Moreover, | have shown K95 mutations in both
TDP-43 NLS reporter and full length TDP-43 prevent poly-GA dependent mislocalization of
TDP-43 without affecting TDP-43 clearance. A similar impairment of nucleocytoplasmic
transport by ubiquitination of NLS has been reported for tumor protein p53 (Marchenko, Hanel
et al. 2010), and cytidylyltransferase (CCTa) (Chen and Mallampalli 2009).

Overall, my data suggest that proteasome inhibition leading to cytoplasmic accumulation of
TDP-43 predominantly occurs at K95 within TDP-43 NLS.

6.5. Potential future therapies

My data from immunodepletion experiments indicated that anti-GA antibodies at least in vitro
prevent the non-cell-autonomous effects of poly-GA on TDP-43 mislocalization by blocking
poly-GA transmission. We cannot exclude the fact that poly-GA toxicity triggers additional
effects such as secretion of other molecules that promote TDP-43 aggregation in neighboring
cells or resulting in the release of such factors from glial cells. However, recent in vivo data
from our group and others show that active and passive antibody therapy is beneficial in
C9orf72 mouse models (Nguyen, Montrasio et al. 2020, Zhou, Mareljic et al. 2020).

Our group has recently shown a safe active poly-GA vaccination with ovalbumin-(GA)4o that

can significantly decrease poly-GA inclusions together with improving motor function in a
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C9orf72 mouse model. Importantly, immunized mice have shown lowered levels of cytoplasmic
TDP-43 pathology (Zhou, Mareljic et al. 2020).

Moreover, human recombinant a-GA; antibody treatment extend survival of C9orf72 BAC
transgenic mice and reduced co-aggregation of proteasome and autophagy proteins to GA
aggregates (Nguyen, Montrasio et al. 2020). These effects depend on the cytosolic Fc receptor
tripartite motif 21 (TRIM21). Nguyen et al. showed that anti-GA antibodies are unable to clear
poly-GA in heterozygous knockout TRIM21 cells (TRIM21*-), while in wild-type TRIM21 cells
(TRIM21**) anti-GA antibodies result in ~ 50% reduction of poly-GA and PSMC4, the 26S

proteasome subunit ATPase 4/regulatory subunit 6B, co-localized inclusions.

In conclusion, this thesis project has provided mechanistic insights on how poly-GA causes
TDP-43 pathology via proteasome inhibition and cell-to-cell transmission. | have shown that
blocking poly-GA transmission by antibody treatment or chemically boosting proteasome
function with rolipram alleviate poly-GA and TDP-43 pathology and may lead to future
therapies for C9orf72 patients.
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