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Zusammenfassung
Distickstoffmonoxid (N2O) ist nach Kohlenstoffdioxid und Methan das drittwichtigste langlebige,
anthropogene Treibhausgas und heutzutage die dominante ozonabbauende Substanz in der Strato-
sphäre. Anthropogene Emissionen, vor allem auf Grund von Düngung landwirtschaftlicher Regionen,
haben dazu geführt, dass die atmosphärischen Konzentrationen seit dem Start der Industrialisierung
um über 20 % auf etwa 334 ppb angestiegen sind. Trotz seiner wichtigen Rolle, wird N2O kaum in
den Plänen zur Emissionsreduktion innerhalb des Pariser Abkommens berücksichtigt. Ein Grund
dafür ist die unzureichende Charakterisierung regionaler N2O Quellen auf Grund fehlender Mes-
sungen und Methodiken, welche für eine gründliche Analyse komplexer N2O Flächenquellen nötig
sind.

In dieser Arbeit wird die Hypothese untersucht, ob regionale flugzeuggetragene in situ Messungen
von N2O geeignet sind, um N2O Emissionen aus landwirtschaftlich intensiv genutzten Regionen zu
bestimmen und um neueste Bottom-up-Emissionsinventare zu evaluieren. Hierfür wird ein außerge-
wöhnlicher in situ N2O Datensatz verwendet, welcher im Zuge des Atmospheric Carbon and Trans-
port-America (ACT-America) Projekts bei fünf Flugzeugmesskampagnen in allen vier Jahreszeiten
von 2016 bis 2019 über dem östlichen Teil der USA zusammengetragen wurde. Der Datensatz besteht
aus hochpräzisen Luftproben und einzigartigen, kontinuierlichen Messungen mit einem Absorpti-
onsspektrometer (Quantum Cascade Laser Spectrometer (QCLS)), welches im Zuge dieser Arbeit
für N2O optimiert und bei zwei der fünf Flugzeugmesskampagnen erfolgreich eingesetzt wurde. In
Kombination mit WRF (Weather Research and Forecasting model) Simulationen und vorhandenen
atmosphärischen Dispersionsrechnungen, werden N2O Emissionen im Bottom-up-Inventar EDGAR
(Emissions Database for Global Atmospheric Research) skaliert, um so die Emissionen aus dem
mittleren Westen der USA (MW) – einer Region mit einer der intensivsten Landwirtschaften weltweit
– zu quantifizieren.

Mit den QCLS Messungen und WRF Simulationen sind die N2O Emissionen im MW im Okto-
ber 2017 (0.42 ± 0.28 nmol m−2 s−1) und im Juni/Juli 2019 (1.06 ± 0.57 nmol m−2 s−1) quantifiziert
worden. Die Luftproben, die für alle fünf ACT-America Kampagnen verfügbar sind, wurden ver-
wendet, um die Saisonalität der Emissionen zu untersuchen. Hauptsächlich auf Grund von Düngung,
hat diese Studie für den Frühling 75 % und für den Herbst 13 % höhere Emissionen ergeben als für
den Sommer. Emissionsabschätzungen für den Winter waren höchstwahrscheinlich auf Grund von
Frost/Tau Zyklen des Bodens sogar 230 % höher als für den Sommer. Die Ergebnisse sind konsistent
mit anderen bodengebundenen Top-down-Studien, jedoch sind weitere Studien nötig um die Kom-
plexität von N2O Emissionen komplett abbilden zu können. Vergleiche mit dem Bottom-up-Inventar
EDGAR haben gezeigt, dass EDGAR N2O Emissionen im MW deutlich (Faktoren zwischen zwei
und zehn) und in extremen Fällen sogar um Faktoren bis zu 20 unterschätzt. Monatliche Emissions-
abschätzungen für 2011–2015 mit dem prozessbasierten Modell DayCent (daily time-step version
of the CENTURY model) sind signifikant besser als EDGAR (Faktoren zwischen zwei und fünf), da
DayCent regionale Besonderheiten, wie Bodenbedingungen und Wetter, berücksichtigt. Eine Sen-
sitivitätsanalyse basierend auf den Luftproben und Dispersionsrechnungen deutet daraufhin, dass
die Heterogenität von N2O Bodenemissionen im MW im Sommer vorwiegend mit der Bodentem-
peratur und im Frühling und Herbst vorwiegend mit der Bodenfeuchte korreliert. Im Winter wird
das Bodenemissionsgeschehen durch Frost/Tau Zyklen bestimmt. Für eine umfassende quantitative
Analyse sind zusätzlich Simulationen mit einem prozessbasierten Modell nötig.

Diese Arbeit zeigt, dass flugzeuggetragene in situ N2O Messungen gut geeignet sind, um regionale
N2O Emissionen zu charakterisieren. Dies ist ein wertvoller Beitrag zum Bestreben ein nationales
N2O Monitoring System zu entwickeln, die Grundlage für Emissionsreduktionsstrategien, welche
dringend benötigt werden um die Ziele des Pariser Abkommens zu erreichen.





Abstract
Nitrous oxide (N2O) is, after carbon dioxide and methane, the third most important long-lived anthro-
pogenic greenhouse gas and nowadays the dominant ozone-depleting substance in the stratosphere.
Anthropogenic emissions, mainly released due to fertilization practices in agricultural regions, have
increased atmospheric concentrations by more than 20 % since the start of the industrialization
to about 334 ppb. Despite its important role, N2O is almost ignored in emission reduction plans
submitted to the Paris Agreement. One of the reasons for this is the insufficient characterization
of regional N2O sources due to the lack of measurements and methodologies required for thorough
analyses of complex N2O area sources.

This thesis investigates the hypothesis that regional-scale airborne in situ measurements of N2O
are well-suited to characterize N2O emissions from intensively cultivated agricultural regions and
to evaluate state-of-the-art bottom-up emission inventories. To this end, an exceptional in situ
N2O dataset is used, which has been collected in the course of the Atmospheric Carbon and
Transport-America (ACT-America) project (2016–2019) during five aircraft campaigns covering
all four seasons over the eastern part of the U.S. It consists of high-precision flask measurements
and unique continuous measurements with an absorption spectrometer (Quantum Cascade Laser
Spectrometer (QCLS)), which, in the course of this work, was optimized for N2O and successfully
deployed during two of the five aircraft campaigns. In combination with WRF (Weather Research and
Forecasting model) simulations and available atmospheric dispersion calculations, N2O emissions in
the bottom-up inventory EDGAR (Emissions Database for Global Atmospheric Research) are scaled
to quantify emissions from the U.S. Midwest – a region with one of the most intensive agriculture
in the world.

Using a combination of QCLS measurements and WRF simulations, N2O emissions in the Midwest
in October 2017 (0.42 ± 0.28 nmol m−2 s−1) and June/July 2019 (1.06 ± 0.57 nmol m−2 s−1) have
been quantified. Flask measurements, available for all five ACT-America deployments, were further
used to study the seasonality of emissions. Primarily due to fertilization, emissions in spring were
found to be 75 % higher than in summer, while in fall, they were observed to be 13 % higher than
in summer. In winter, estimated emissions even exceeded the summer estimates by 230 %, most
likely due to freezing/thawing processes of the soils. The results of this study are consistent with
other ground-based top-down studies. However, further studies are needed to be able to fully capture
the complexity of N2O emissions. Comparisons with the bottom-up inventory EDGAR show that
EDGAR underestimates Midwest N2O emissions significantly (factors between two and ten), for
exceptional cases even by factors up to 20. Monthly Midwest emission estimates for 2011–2015
calculated with the process-based model DayCent (daily time-step version of the CENTURY model)
are significantly closer to the results of this thesis than EDGAR (factors between two and five), since
DayCent considers regional characteristics like soil conditions and weather. A sensitivity analysis
using the flask measurements and dispersion calculations indicates that the heterogeneity of N2O
soil emissions in the Midwest mainly correlates with soil temperature in summer and soil moisture
in spring and fall. In winter, soil emissions are dominated by freezing/thawing processes. For a
thorough quantitative analysis, additional simulations with a process-based model are required.

This work shows that airborne in situ N2O measurements are suitable for characterizing regional
N2O emissions. This is a valuable contribution to the effort to establish a national N2O emission
monitoring system, the basis for emission reduction strategies, which are urgently needed to meet
the targets of the Paris Agreement.
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1 Introduction

Climate is changing. From preindustrial times (1850–1900) to 2020, the Global Mean Surface
Temperature (GMST) has risen by 1.2 ± 0.1 °C, with 2011–2020 being the warmest recorded
decade ever (WMO, 2021). The latest report of the World Meteorological Organization (WMO)
about the state of the climate in 2020 summarizes the implications of the prevailing global
warming (WMO, 2021): Melting of sea ice, shelf ice, and glaciers, thawing of permafrost,
rising of the sea level, and an enhanced frequency and severity of extreme weather events are
only some of the consequences mankind is facing. Consequences are severe and concern nature,
society, as well as economy around the world. They range from rising poverty and damaged
infrastructure to the collapse of entire ecosystems. For example, already from the 1980s to the
2010s the increased frequency and severity of weather extremes multiplied the yearly number
of billion dollar weather and climate disaster in the U.S. by four (NOAA, 2021). An ongoing
global warming is expected to dramatically exacerbate the consequences of climate change
(IPCC, 2013).

There is a consensus among the scientific community, that the man-made accumulation of
long-lived Greenhouse Gases (GHGs) in the atmosphere in the last two centuries is a main
driver of climate change (IPCC, 2013). Since the start of the industrialization, the world
population and economy have experienced an enormous growth going hand in hand with a
significant demand for food, energy, and other resources. The fulfillment of these needs comes
along with an ongoing increase of anthropogenic GHG emissions, mostly carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O) (e.g., Friedlingstein et al., 2020; Saunois et al., 2020;
Tian et al., 2020). The resulting rise in the atmospheric abundances of CO2, CH4, and N2O
have altered the Earth’s radiation budget which has been identified as one of the main drivers
of climate change (Myhre et al., 2013). To limit the impacts and risks of climate change,
196 nations have signed the Paris Agreement in 2016 within the United Nations Framework
Convention on Climate Change (UNFCCC, 2015). The overarching goal is to keep the rise of
the GMST well below 2 °C with respect to the preindustrial reference and to undertake serious
efforts to limit the global warming to 1.5 °C as this would significantly reduce the consequences
of climate change. The key step to achieve this goal is the substantial reduction of anthropogenic
GHG emissions. However, a special report by the Intergovernmental Panel on Climate Change
(IPCC, 2018) predicts that already between 2030 and 2052 the GMST will be 1.5 °C higher
than preindustrial levels if the current trend of GHG emission strengths persists, highlighting
the need of an instantaneous reduction of anthropogenic emissions.

N2O is one of the three main anthropogenically emitted GHGs contributing significantly to
global warming (Myhre et al., 2013) and is nowadays additionally recognized as the dominant
ozone depleting substance in the stratosphere (Ravishankara et al., 2009). Table 1.1 compares
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key characteristics of the three dominant anthropogenic GHGs. The global atmospheric N2O
abundance in February 2021 reached 334 ppb representing an increase of over 20 % since the
industrialization. Considering that N2O is a 298-times more effective GHG than CO2 and
that its atmospheric lifetime is 116 yr, this increase has altered the Earth’s radiation budget
significantly and persistently. Anthropogenic activities, and in particular agriculture with the
application of synthetic fertilizers, are predominantly responsible for rising atmospheric N2O
mole fractions (Ciais et al., 2013; Tian et al., 2018; Tian et al., 2020). Despite the crucial role of
nitrous oxide in the atmosphere, only one country, namely Uruguay, formulates clear targets for
N2O in its emission reduction plan submitted to the Paris Agreement. Recently, however, there
is rising effort initiated to change this to meet the 2 °C target (Kanter et al., 2020). Especially
since newest studies revealed that the recent increase of N2O emissions is larger than the least
optimistic emission projections of the IPCC (Thompson et al., 2019; Tian et al., 2020), the
urgent need to reduce N2O emissions becomes undeniable. Detailed knowledge about N2O
sources and sinks is a fundamental prerequisite for an effective emission reduction policy. In
this context, atmospheric measurements of N2O and accurate model simulations are the key to
validate national inventory systems which report and monitor N2O emissions and to evaluate
the impact of emission reduction efforts (Ogle et al., 2020).

N2O CO2 CH4

Global atmospheric mole frac-
tion in February 2021: 334 ppb 1 416 ppm 2 1889 ppb 3

Atmospheric abundance com-
pared to 1750 4: 123 % 148 % 260 %

Atmospheric lifetime: 116 yr 5 centuries to
thousands of years 6 9 yr 7

GWP100 (global warming po-
tential) 8, 9: 298 1 34

Contribution to anthropogenic
radiative forcing of well-
mixed GHGs 8, 10:

∼6 % ∼64 % ∼17 %

1 Dlugokencky (2021b) | 2 Dlugokencky and Tans (2021) | 3 Dlugokencky (2021a) | 4 WMO (2021) |
5 Prather et al. (2015) | 6 Archer et al. (2009) | 7 Prather et al. (2012) | 8 Myhre et al. (2013) | 9 with
inclusion of climate-carbon feedbacks | 10 global mean between 1750 and 2011

Table 1.1: Overview of the three main anthropogenically emitted GHGs. The global warming
potential on a 100 year horizon (GWP100) describes the amount of heat that is
absorbed by a GHG compared to the heat that is absorbed by the same mass of CO2.
The radiative forcing describes the change of the Earth’s radiation budget due to
natural or anthropogenic influences, like the increasing atmospheric concentrations
of GHGs since 1750. Values for CO2 and CH4 are for comparison only and are not
discussed in this thesis.

Although being desperately needed, accurate N2O emission estimates are rare. A few bottom-up
inventories exist which use emission factors to translate activity data to emission estimates.
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However, the underlying data often rely on basic assumptions and are not well evaluated using
independent measurements. Hence, uncertainties in such inventories are often large (Nisbet &
Weiss, 2010), especially regarding N2O. For example, in the widely used gridded Emissions
Database for Global Atmospheric Research (EDGAR, 2020) the uncertainty of N2O emission
estimates from agriculture, the main anthropogenic source, is higher than 300 % on a global
average (Solazzo et al., 2021). This is one to two orders of magnitude larger than the uncertainties
of emission estimates of the other two main anthropogenic GHGs, CO2 and CH4. On a regional
scale, N2O emission estimates are likely worse (e.g., Janssens-Maenhout et al., 2019; Solazzo
et al., 2021). The large uncertainties are caused by the nature of N2O emissions from soils.
Because different agricultural practices, weather, and soil conditions affect soil N2O emissions
directly, they are spatially and temporally highly heterogeneous (Stehfest & Bouwman, 2006)
and are therefore difficult to capture with a simple emission factor approach. More sophisticated
regional bottom-up estimates of N2O emissions are provided by biogeochemical models like
the daily time-step version of the CENTURY model (DayCent; Parton et al., 1998; Del Grosso
et al., 2001; Del Grosso et al., 2011). Such models simulate soil processes and thereof resulting
N2O emissions and, thus, are capable of capturing the large heterogeneity of soil N2O emissions
to a certain extent. However, such estimates are only available for a few regions and times,
because underlying processes are complex and simulating them requires a large set of detailed
spatio-temporal input data like soil conditions and agricultural activity. Overall, uncertainties of
N2O bottom-up estimates are large, making an explicit and independent validation mandatory.

The method of choice to validate bottom-up emission estimates are top-down approaches (Nis-
bet & Weiss, 2010). They use independent atmospheric measurements of GHGs in combination
with inverse modeling approaches to quantify emissions from local to global scales. In recent
years, top-down approaches based on ground-based, airborne and even satellite observations
were increasingly used and continuously improved, especially to study CH4 emissions from
point sources (e.g., Karion et al., 2013; Jacob et al., 2016; Luther et al., 2019). However, for
that accurate sensing of small GHG enhancements above large atmospheric background mole
fractions is required, making measurements challenging. This is particularly true for N2O,
whose typical enhancements in the atmosphere – even close to sources – are well below 1 %
of the atmospheric background. Compared to CO2 and CH4, whose anthropogenic sources are
typically point sources (power plants, oil & gas production, landfills), the dominating anthro-
pogenic source of N2O is agriculture. Hence, emissions are released over large areas leading to
smaller enhancements much more difficult to detect above the atmospheric background, even for
state-of-the-art measurement instruments. Despite the need of atmospheric N2O measurements
and top-down studies, they are rare and, thus, regional N2O emissions are still highly uncer-
tain (Reay et al., 2012). The German initiative to establish a national Integrated Greenhouse
Gas Monitoring System (ITMS) even lists agricultural N2O emissions as the first of the major
sources of uncertainty in German GHG emission reports emphasizing the urgent need for N2O
top-down studies, especially in intensively cultivated agricultural regions.

The U.S. Midwest illustrates the high uncertainty of regional N2O emission estimates. This
region is a global hotspot of anthropogenic N2O emissions (see Figure 1.1 and Miller et al.,
2012). It is one of the most intensively cultivated agricultural regions worldwide accounting
for around 25 % of world corn and soybean production in 2018 (FAO, 2020; USDA-NASS,
2020). Exceptionally large N2O emissions spread over a large area are the consequence. A few

https://www.dwd.de/EN/climate_environment/climatemonitoring/greenhousegas/greenhousegas_node.html
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top-down studies exist that quantify N2O emissions in this important source region based on
tall-tower measurements (Miller et al., 2012; Griffis et al., 2013; Chen et al., 2016; Fu et al.,
2017) and airborne flask measurements (Kort et al., 2008). They agree, that common bottom-up
estimates like EDGAR significantly underestimate anthropogenic emissions by factors between
roughly two and 30, but they strongly disagree in the magnitude of underestimation. Hence,
true emission amounts remain highly uncertain.
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20 °N
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
N2O emissions in nmol m−2 s−1

Figure 1.1: Anthropogenic N2O emissions worldwide and in the U.S. in 2015 following EDGAR
version 5.0 (Crippa et al., 2019; EDGAR5.0, 2019). The U.S. Midwest is encircled
by a thick black line. The ACT-America study region is encircled in white.

Motivated by the urgent need for accurate N2O emission estimates and the recent success in
studying CH4 point sources using airborne measurements, the present thesis investigates the
potential of a top-down approach based on airborne in situ measurements and atmospheric
transport model simulations to study regional N2O emissions. Since agriculture is the dominant
anthropogenic source of N2O and emissions thereof are expected to be highly uncertain, the
focus is on intensively cultivated agricultural regions. The following is hypothesized:

“Regional-scale airborne in situ measurements are well-suited to characterize
N2O emissions from area sources such as intensively cultivated agricultural
regions and to evaluate related bottom-up emission estimates.”

To test this hypothesis, the U.S. Midwest is investigated. This region is well-suited as it is
a paramount example for a globally relevant but insufficiently characterized agricultural N2O
source region. The following three research questions are formulated:
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RQ1: Can N2O emissions in the U.S. Midwest be quantified by using regional-scale
airborne in situ measurements in combination with atmospheric transport model
simulations?

RQ2: How do state-of-the-art bottom-up estimates of N2O emissions in the U.S.
Midwest compare to the airborne top-down emission estimates derived herein?

RQ3: Can dominant drivers of N2O emissions in the U.S. Midwest be identified using
regional-scale airborne in situ measurements and atmospheric transport model
simulations?

To answer these questions, a unique airborne in situ dataset of N2O mole fractions is investigated,
which was gathered during the Atmospheric Carbon and Transport-America (ACT-America)
project. This project covers five field campaigns in four seasons from 2016 to 2019 focusing
on the eastern half of the U.S. including the Midwest (see Figure 1.1). Within this thesis,
a Quantum Cascade Laser Spectrometer (QCLS) was optimized and successfully deployed
during two of the five field campaigns collecting continuous, high-resolution measurements of
N2O dry air mole fractions above the Midwest. To support this dataset, high-accuracy flask
measurements conducted during all five field campaigns were additionally used. Together with
model simulations, which were partly performed within this thesis and partly provided by the
ACT-America team, these measurements are used to quantify N2O emissions in the Midwest
and to constrain their seasonality (RQ1). Results are compared against two state-of-the-art
bottom-up estimates, EDGAR and DayCent (RQ2), and are used to investigate the dominant
emission drivers (RQ3). This work is an important contribution to the proposal to establish a
N2O inventory system for the U.S. which is essential for the development of an effective N2O
emission reduction strategy (Ogle et al., 2020). The findings additionally serve as a guideline
for the characterization of other N2O source regions around the world, thus paving the way for
national inventory systems like the German ITMS.

This thesis is structured as follows: Chapter 2 summarizes relevant background information for
the present thesis. This covers a description of the Earth’s atmosphere focusing on the role,
distribution, and transport of GHGs. Furthermore, atmospheric N2O and its sources and sinks
are presented in detail as well as possible methods to investigate GHGs in the atmosphere.
Chapter 3 describes the employed measurement instrument QCLS, models, and datasets. The
setup of the QCLS during the ACT-America deployment is presented in Chapter 4 together with
the processing of the measurement data, conducted laboratory experiments, and the assessment
of the instrument performance. Chapter 5, 6, and 7 contain the studies which answer the research
questions. In Chapter 5, the continuous N2O measurements conducted within this thesis are
used to quantify emissions for a total of ten case studies. In Chapter 6, flask measurements
available for five ACT-America campaigns are used to study the seasonality of N2O emissions.
Chapter 7 discusses the sensitivity of N2O emissions to driving parameters such as soil moisture
and soil temperature. Finally, the main findings of this thesis are summarized and concluded in
Chapter 8 followed by an outlook for future studies in Chapter 9.
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Within this study N2O emissions in the U.S. Midwest region are characterized to reduce
uncertainties present in current emission estimates. Therefore, airborne in situ observations
have been conducted within the ACT-America project. This chapter summarizes the theoretical
and conceptual fundamentals of this thesis. Section 2.1 addresses the Earth’s atmosphere,
including its radiation budget and the role of GHGs like N2O. Further, the vertical structure of
the atmosphere is depicted with special focus on the lowermost part, the Planetary Boundary
Layer (PBL), as it is directly influenced by surface emissions and, hence, of special interest for
this study. N2O, its sources and sinks, and drivers that control emissions are summarized in
Section 2.2. Section 2.3 concludes this chapter and describes methods to study atmospheric
GHGs. These encompass approaches to quantify emissions and the functionality of absorption
spectroscopy, a common principle to measure in situ atmospheric concentrations of chemical
compounds exploited for the observations conducted within this study.

2.1 The Earth’s Atmosphere

This section is based on Wallace and Hobbs (2006) and Seinfeld and Pandis (2016) if not
otherwise specified.

Up to an approximate altitude of 105 km the Earth’s atmosphere is a uniform mixture of gases
consisting of molecular nitrogen N2 (∼78 %), molecular oxygen O2 (∼21 %), and the noble
gas Argon (<1 %). The next most abundant component is water vapor (H2O) with highly
variable volume fractions ranging from ∼0.001 % up to ∼5 %, depending on altitude, season,
temperature, and other parameters. A vast zoo of trace gases, for example carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O), are the last component. Although their share is small,
they play a crucial role in the atmosphere as they alter the radiation budget (see Section 2.1.1)
and chemical properties of the atmosphere. It is common to report concentrations of single
components as mole fractions relative to dry air. Typical units are percent (1 % = 1 × 10−2),
parts per million (1 ppm = 1 × 10−6), parts per billion (1 ppb = 1 × 10−9), and parts per trillion
(1 ppt = 1 × 10−12). Overall, ambient air can be approximated as an ideal gas. An ideal gas is
defined as a mixture of gas particles that have no spatial extent and interact only through elastic
collisions among each other. Its properties are related by the ideal gas law:

𝑝 · 𝑉 = 𝑛 · 𝑅𝑢 · 𝑇 (2.1)

Where 𝑝 is the pressure,𝑉 the volume, 𝑛 the amount of substance (in mol), and𝑇 the temperature
of an air parcel. 𝑅𝑢 denotes the universal gas constant (𝑅𝑢 ≈ 8.314 J K−1 mol−1).
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In the following, Section 2.1.1 summarizes the radiation budget of the atmosphere and the role
of GHGs like N2O. The vertical structure of the atmosphere is addressed in Section 2.1.2. The
focus is on the lowest part of the atmosphere, the PBL, because in this layer the signature of
chemical compounds emitted at the surface, which is of interest for this study, is most prominent.

2.1.1 The Radiation Budget and Greenhouse Gases

Solar radiation enters the Earth system and is partly reflected and partly absorbed. The Earth
system itself emits thermal radiation. The spectra of the solar and thermal radiation (see
Figure 2.1) are defined by the temperature of their emitting bodies. The sun emits radiation at
a wavelength 𝜆 mainly between 200 nm and 4 µm, covering the ultraviolet (UV: 𝜆 ≲ 380 nm),
visible (VIS: 380 nm ≲ 𝜆 ≲ 780 nm), and near-infrared (NIR: 780 nm ≲ 𝜆 ≲ 4 µm) wavelength
regions. Thermal radiation is characterized by infrared wavelengths longer than roughly 4 µm

Figure 2.1: (Upper panel) Qualitative solar and thermal spectrum. The two curves have been
scaled, so that their areas match. The wavelength scale is logarithmic. Ultraviolet
(UV: 𝜆 ≲ 380 nm), visible (VIS: 380 nm ≲ 𝜆 ≲ 780 nm), and infrared (𝜆 ≳ 780 nm)
wavelength ranges are indicated. The infrared region is divided into the near-infrared
(NIR: 780 nm≲𝜆≲4 µm) region, which is dominated by solar radiation, and longer
infrared wavelengths (IR: 𝜆 ≳ 4 µm), which are dominated by terrestrial radiation.
(Lower panel) Spectrum of monochromatic absorptivity of the entire atmosphere.
(Figure adapted from Fu, 2006, p. 118)
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(IR). Hence, solar and thermal radiation can be clearly distinguished. Overall, at an effective
radiation temperature of the Earth system of 255 K there is a balance between incoming and
outgoing radiation. If the budget is positive (less outgoing than incoming radiation), the Earth
system warms, which increases the emitted thermal energy, until the equilibrium is restored. A
negative budget has the opposite effect and leads to a cooling of the Earth system. Radiative
forcing is a measure for the deviation from the radiation equilibrium.

Absorption and reflection of radiation occurs at the surface and in the atmosphere. In the
atmosphere, cloud droplets, solid particles, and molecules absorb and scatter radiation and hence
influence the Earth’s radiation budget. The lower panel in Figure 2.1 shows the absorptivity
of the entire atmosphere. Most of the UV radiation is absorbed by O2 and ozone (O3) in the
higher atmosphere (above the troposphere; see Section 2.1.2). In the VIS wavelength range,
where the energy density of the solar radiation is largest, just a small portion is absorbed.
The NIR and IR (i.e., thermal radiation) regions are characterized by strong absorption bands,
which are caused by GHGs. The most important are H2O, CO2, CH4, and N2O. This high
transparency of the atmosphere regarding solar radiation together with the strong absorption
of thermal radiation causes the greenhouse effect. Sunlight travels largely without interactions
through the atmosphere and heats the Earth’s surface which radiates thermally. GHGs absorb
characteristic parts of the radiation from the surface and heat the atmosphere inducing emission
of thermal radiation in all directions. The downward portion reduces the effective cooling
efficiency of the surface resulting in a higher equilibrium temperature. There is a consensus
among the scientific community that the significant accumulation of GHGs in the atmosphere
due to anthropogenic activity especially since the industrialization, has enhanced and is still
enhancing the greenhouse effect primarily causing the prevailing global warming (IPCC, 2013).

2.1.2 The Vertical Structure and the Planetary Boundary Layer

The atmosphere is assumed to be in a hydrostatic equilibrium denoting that an air parcel is
vertically balanced by the downward gravity force and the upward pressure gradient force
(pressure decreases with increasing altitude). This is described by the following hydrostatic
equation:

d𝑝
dℎ

= −𝜌𝑔 (2.2)

The change of pressure 𝑝 with altitude ℎ (pressure profile) is defined by the air density 𝜌 and
gravitational acceleration 𝑔. Solving this equation reveals an exponential decay of 𝑝 and 𝜌 with
altitude. At sea level 𝑝 is on average 1013.25 hPa. At an altitude of approximately 5.5 km 𝑝
is around 500 hPa. Hence, half of the mass of the Earth’s atmosphere is located below this
altitude.

A typical temperature profile for the midlatitudes is displayed in Figure 2.2. In the troposphere,
spanning from the surface up to the tropopause at roughly 12 km, the temperature decreases
linearly with altitude. The troposphere is the relevant layer for this thesis. Nevertheless,
for the sake of completeness, the remaining layers are shortly presented in the following. The
stratosphere extends from the tropopause to the stratopause at roughly 45 km and is characterized
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by an increase in temperature with altitude. This layer contains most of the atmospheric O3
(∼90 %; Dameris, 2010) which absorbs solar UV radiation leading to the photodissociation
of O3, thus protecting the troposphere from shortwave radiation (see Section 2.1.1). This
process heats the stratosphere and explains the increase in temperature with altitude. Above the
stratosphere, in the mesosphere, which spans up to approximately 90–100 km, the temperature
decreases with altitude again. In the thermosphere, solar radiation can lead to ionization of air
particles and also to the photodissociation of N2 and O2. Both processes heat the ambient air,
resulting in a positive upward temperature gradient.
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Figure 2.2: Yearly average temperature profile at 45°N, 0°E and at 12:00 UTC estimated with the
whole-atmosphere empirical model NRLMSIS 2.0 (Emmert et al., 2021, NRL stands
for the U.S. Naval Research Laboratory and MSIS stands for Mass Spectrometer
Incoherent Scatter radar).

The PBL is the lowest part of the troposphere and is most affected by the surface. Figure 2.3
shows typical vertical profiles of temperature 𝑇 , specific humidity 𝑞, and horizontal wind speed
𝑈 in a daytime PBL over land. The height of the PBL 𝑧𝑃𝐵𝐿 can range from tens of meters to
4 km and more and is highly variable in space and time. The lowermost, roughly 5 % of the PBL
is the surface layer (SL) which is directly influenced by the surface. Above the SL, friction and
heating at the surface induces turbulence and vertical movement creating a well-mixed layer
(ML). At this, thermal convection is a central process. The surface heats adjacent air parcels
(large vertical 𝑇 gradient in the SL) which lowers their density (see Equation 2.1) compared to
the surroundings and thus creates buoyancy. The warm air parcels ascend and cool because of
expansion (constant vertical 𝑇 gradient in ML) until their temperature equals the surroundings
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again. This leads to an inversion at 𝑧𝑃𝐵𝐿 that caps the PBL from the free atmosphere (FA). In
the transition or entrainment zone (EZ) some exchange between the PBL and FA occurs only
due to turbulence and inertia of rising air parcels. The horizontal wind profile is dominated by
surface friction. It decelerates𝑈 in the SL while generating turbulence which in turn propagates
upwards up to 𝑧𝑃𝐵𝐿 causing a relatively constant 𝑈 throughout the ML. The dominant source
of atmospheric water vapor is near-ground evaporation, explaining the 𝑞 profile. The SL is fed
with H2O which propagates upwards and is uniformly mixed up to 𝑧𝑃𝐵𝐿 through convection
and turbulence. Since the inversion caps the water vapor source (surface) from the FA, the FA
is dryer compared to the PBL.

Figure 2.3: Vertical profiles of temperature 𝑇 , specific humidity 𝑞, and wind speed 𝑈 in a
typical daytime PBL. The PBL spans from the surface to height 𝑧𝑃𝐵𝐿 . The layers
are divided into surface layer (SL; roughly 5 % of 𝑧𝑃𝐵𝐿), well-mixed layer (ML),
entrainment zone (EZ), and free atmosphere (FA). (Figure adapted from Stull, 2006,
p. 392)

Typical profiles of N2O and other anthropogenic GHGs are analogue to the 𝑞 profile, because
most of their emission sources are located at the surface (see Section 2.2.1). GHGs emitted
from such sources are distributed in the vertical and advected within the PBL. Thus, to sample
them with in situ airborne observations, measurements in a well-mixed PBL are required, and
should be conducted far enough downwind of the sources, so that their signature is uniformly
mixed up to 𝑧𝑃𝐵𝐿 . However, because the lowest possible flight altitude is limited, such airborne
measurements require a well-established/high enough PBL to be adequately sampled by aircraft.
The explanations in the previous paragraph imply that the dominant driver of the PBL is surface
heating due to radiation. Radiation is highest in the summer, while the surface temperature
typically peaks in the afternoon. During night the surface cools and the PBL collapses.
Furthermore, a solid surface exhibits a significantly lower heat capacity than water and hence
heats quicker, favoring the development of the PBL. However, weather patterns like low pressure
systems are able to suppress the development due to, for example, large-scale subsidence.
Overall, highest 𝑧𝑃𝐵𝐿 occurs during summer, in the afternoon, over land surface, and during
fair weather conditions constraining the optimal time for airborne in situ measurements to
study trace gas emissions. Therefore, measurement flights during ACT-America were mostly
performed in the afternoon to ensure an optimally developed PBL.
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2.2 The Greenhouse Gas Nitrous Oxide

N2O plays a crucial role in the atmosphere. Since the Montreal Protocol (1987) successfully
led to a reduction of chlorofluorocarbons, N2O is nowadays the dominant ozone-depleting
substance in the stratosphere (Ravishankara et al., 2009). Furthermore, it is a potent GHG with
a 265 times higher global warming potential on a 100-year horizon than CO2 (Myhre et al.,
2013). Accounting for around 6 % of the total anthropogenic radiative forcing of well-mixed
GHGs in 2011, N2O is, after CO2 and CH4, the third most important long-lived anthropogenic
GHG (Myhre et al., 2013) and exhibits an atmospheric lifetime of 116 ± 9 yr (Prather et al.,
2015). Figure 2.4 shows global atmospheric N2O dry air mole fractions since year 1 AD. In
the preindustrial era concentrations stayed relatively constant between 260 ppb and 280 ppb.
Since the 19th century the atmospheric N2O abundance has been rising due to anthropogenic
activity (Kroeze et al., 1999). Especially since the beginning of the 20th century a dramatic,
ongoing increase has been observed. The starting signal coincides with the development of the
Haber-Bosch process which enabled the industrial synthesis of reactive nitrogen (N) and thus
the production of affordable, synthetic N-fertilizer (Battye et al., 2017), the main anthropogenic
source of N2O (see Section 2.2.1). In January 2021, the average global N2O abundance was
334 ppb denoting a 20–30 % increase since the start of the industrialization.
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Figure 2.4: Global atmospheric N2O concentrations since year 1 AD, derived from ice core
measurements (1 AD–1977 AD: MacFarling Meure, 2004; MacFarling Meure et
al., 2006) and from the NOAA/ESRL Global Monitoring Division (1978–2021:
NOAA/ESRL, 2021a).

In the following, Section 2.2.1 summarizes sources and sinks of N2O and Section 2.2.2 intro-
duces the drivers that control N2O emissions from the dominant source, i.e. soils.
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2.2.1 The Global N2O Budget

This section is based on the study of Tian et al. (2020) if not otherwise specified.

A large variety of natural and anthropogenic sources exist. Figure 2.5 summarizes global N2O
sources in 2007–2016. Table A.1 in the appendix provides a more detailed itemization. Overall,
global N2O emissions in this decade were 17.0 (12.2–23.5) Tg N yr−1, consisting of 57 % natural
and 43 % anthropogenic emissions. Natural sources are dominated by emissions from soils under
natural vegetation and oceans (see Section 2.2.2 for a description of the underlying processes).
Just a small portion emerges from inland waters, estuaries, and coastal zones or is chemically
produced in the atmosphere, typically initiated by lightning. Anthropogenic sources can be
divided in four main categories:

1. Direct emissions from N additions to soils and water (agriculture)
2. Non-agricultural direct sources
3. Indirect emissions from anthropogenic N additions
4. Perturbed fluxes from climate/CO2/land cover change

Direct emissions from agriculture are the dominating anthropogenic source, accounting for over
22 % of global total N2O emissions. The application of N-fertilizers enhances fluxes from soils
into the atmosphere and contributes most to agricultural emissions, followed by manure left
on pasture, manure management, and aquaculture. Eleven percent of global N2O emissions
originate from other (non-agricultural) direct emissions, i.e. fossil fuel combustion and industry,
waste and waste water, and biomass burning. A special category are indirect emissions that
account for nearly 8 % of total emissions. Drainage and runoff transports N-compounds, added
to soils and water by human activity, to remote regions where they are transformed to N2O
and emitted to the atmosphere. Since agriculture is mainly responsible for anthropogenic
N additions (Battye et al., 2017), this category is assigned to agricultural emissions as well.
However, distinguishing indirect emissions from natural emissions is challenging and transitions
are fluent as it is difficult to constrain the runoff of N-compounds. Furthermore, because N2O
emissions from soils are highly sensitive to changes in numerous environmental conditions,
like temperature, soil moisture and vegetation (see Section 2.2.2), climate change as well as
changes in the land cover and atmospheric CO2 abundance perturb N2O fluxes. This effect is
responsible for roughly 1 % of global emissions in 2007–2016 and is expected to increase in the
future (Griffis et al., 2017).

The global N2O sink for the decade 2007–2016 is estimated to be 13.5 (12.4–14.6) Tg N yr−1.
At the surface, only a negligible amount of N2O is removed (0.01 (0.0–0.3) Tg N yr−1). In the
troposphere, N2O is chemically inert. The almost exclusive sink is stratospheric loss due to the
following reactions (Seinfeld & Pandis, 2016):

N2O + ℎ𝜈 −−−→ N2 + O(1D)
N2O + O(1D) −−−→ 2 NO (2.3)
N2O + O(1D) −−−→ N2 + O2

In the stratosphere UV radiation photodissociates N2O to N2 and excited oxygen O(1D). The
excited oxygen can react with N2O to produce nitric oxide NO, O2, and N2.
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Figure 2.5: Global N2O sources in 2007–2016 following Tian et al. (2020). Due to rounding
subtotals can be different to the sum of individual contributions. Sources are given
in Tg N yr−1 or percent of total sources, i.e. 17.0 (12.2–23.5) Tg N yr−1. The ranges
are minimum-maximum estimates.

The total global N2O sink is significantly smaller than the source. This imbalance is consistent
with the observed growth in global atmospheric N2O concentrations. Since the 1980s natural
N2O emissions have not changed, whereas anthropogenic emissions increased by 30 %, mainly
because of increased direct agricultural emissions. Hence, the observed growth in the atmo-
spheric abundance of N2O is largely assigned to agriculture. Analyses of interannual variations
and long-term trends in the isotopic composition of N2O confirm this (Park et al., 2012). In
recent years, global N2O emissions have grown at a faster rate than expected (Thompson et
al., 2019) and exceeded highest emission scenarios (Gidden et al., 2019; Tian et al., 2020),
indicating that the growth rate of atmospheric N2O concentrations is increasing more than
expected.

An important source region of anthropogenic N2O emissions is the U.S. From 1970 to 2015,
yearly emissions stayed relatively constant at 1 Tg (see Figure 2.6a). This is mainly because
cropland emissions leveled in the second half of the 20th century (Tian et al., 2018), which
is in turn caused by a leveling of the fertilizer consumption (Battye et al., 2017). In contrast,
global anthropogenic N2O emissions increased from roughly 5.5 Tg in 1970 to 8.5 Tg in 2015.
Rapidly rising cropland emissions in China, South Asia, and Southeast Asia (Tian et al.,
2018) contribute largely to this trend. Nevertheless, in 2015 the U.S. is still responsible for
over 10 % of global anthropogenic N2O emissions and, hence, is an important source region.
Over 80 % of anthropogenic U.S. emissions are attributed to agriculture (see Figure 2.6b),
implying that the densely farmed Midwest is an emission hotspot. This region is one of the
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most intensively cultivated agricultural regions worldwide accounting for ∼25 % of world corn
and soybean production in 2018 (FAO, 2020; USDA-NASS, 2020). As a result, the Midwest
contributes significantly to global anthropogenic N2O emissions (Miller et al., 2012) underlining
the importance of the research objectives pursued herein.
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Figure 2.6: Global and U.S. anthropogenic N2O emissions. (a) Yearly emissions from 1970 to
2015 in the bottom-up inventory EDGAR version 5.0 (see Section 2.3.1; Crippa
et al., 2019; EDGAR5.0, 2019). (b) Sector-wise U.S. emissions in 2018 (EPA,
2020).

2.2.2 The Drivers of N2O Soil Emissions

Approximately 2/3 of global N2O emissions originate from soils (see Section 2.2.1). The
“hole-in-the-pipe” model introduced by Firestone and Davidson (1989) conceptually describes
N2O emissions from soils and is shown in Figure 2.7. Basically, two microbial processes control
soil emissions, nitrification and denitrification. These cover numerous, complex transformations
of reactive N-compounds (e.g., ammonium NH4

+ and nitrate NO3
– ) by bacteria and fungi.

Nitrification describes the oxidation of NH4
+ to NO3

– and denitrification the transformation
of NO3

– to N2. During both, N2O and NO can be produced as a byproduct and released.
Overall, the formation of N2O is controlled by two factors. The first factor is the availability of
reactive N-compounds. Natural processes, like the consumption of atmospheric N2 by plants,
add reactive nitrogen to soils. However, also anthropogenic activity adds N-compounds (mainly
in the form of synthetic fertilizer and manure) boosting the formation of N2O. The second
factor controlling the formation of N2O is the soil condition. Environmental drivers like soil
temperature, soil moisture, and soil texture, influence nitrification and denitrification. Thus, soil
N2O emissions are characterized by a high spatio-temporal variability (Butterbach-Bahl et al.,
2013). In the following the main environmental drivers are outlined. For a detailed description
of the underlying physical, chemical, and biological mechanisms the interested reader is referred
to Ussiri and Lal (2013).
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Figure 2.7: “Hole-in-the-pipe” model describing soil N2O emissions following Firestone and
Davidson (1989). Nitrification transforms ammonium NH4

+ to nitrate NO3
– while

N2O and nitric oxide NO is released. Denitrification transforms NO3
– to N2 while

N2O and NO is released.

Frequent changes in soil moisture (e.g., due to precipitation) and soil temperature are the
dominant drivers of soil N2O emissions. They are responsible for up to 95 % of the temporal
variations (Kitzler et al., 2006). Soil moisture controls the production of N2O by regulating
the oxygen supply of the microbes. Based on the “hole-in-the-pipe” model, Davidson (1991)
provides a model of the relationship between soil N2O fluxes and soil moisture (see Figure 2.8).
Maximum emissions of N2O occur in soils with a water-filled pore space (WFPS) of 70–80 %
depending on the soil type. In drier soils mainly NO is produced, whereas in wetter soils N2
emissions dominate. Davidson et al. (2000) evaluated this model against field measurements
and have found good agreement on the regional and global scale but less accuracy on finer scales.
Other measurements however indicate that most soils exhibit the maximum of N2O emissions
at higher WFPS than 80 % (e.g., Schindlbacher et al., 2004; Schaufler et al., 2010). The same
studies also show that higher soil temperatures favor the microbial production of N2O resulting
in a nonlinear increase of emissions with increasing temperature. Soil temperatures around 0 °C
play a special role, since freezing/thawing occurs while many microbes are still active inducing
strong N2O emission events (Butterbach-Bahl et al., 2013). Such events potentially account
for more than half of the annual N2O fluxes of croplands (Wagner-Riddle et al., 2007) and for
17–28 % of global agricultural N2O emissions (Wagner-Riddle et al., 2017).

Vegetation has been identified as another control mechanism of soil N2O emissions. Niklaus
et al. (2016) concluded, that unless fertilizer is applied, a greater plant diversity is capable
of reducing emissions. However, there is also evidence that the plant types/composition is
more important than the species richness itself (Niklaus et al., 2006; Abalos et al., 2013).
So-called N-fixing plants like legumes (e.g., soybeans, alfalfa, or lentils) are of special interest.
They transform atmospheric N2 to reactive N-compounds which are made available to the soil
enhancing the N cycling processes and hence N2O emissions (Niklaus et al., 2006; Niklaus
et al., 2016). Since the second half of the 20th century, the cultivation of N-fixing plants, mainly
soybeans, has increased enormously accounting for roughly 20 % of anthropogenic reactive N
sources nowadays (Battye et al., 2017). Beside the drivers discussed above, the soil organic
carbon content, pH-value, bulk density, and drainage affect N2O emissions from soils under
natural vegetation (Stehfest & Bouwman, 2006), however less significant. As such, they are
less relevant for this study and, hence, are not further examined here. Detailed explications can
be found in, for example, Ussiri and Lal (2013).

Altogether, N2O emissions from soils are highly complex. Predicting their response to environ-
mental changes like global warming is hence challenging. While the influence of single drivers
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Figure 2.8: Model of N2O, NO, and N2 soil emissions dependence on soil moisture (i.e., WFPS)
following Davidson (1991). Nitrification and denitrification regimes are indicated.
Highest N2O fluxes are between 70–80 % WFPS depending on soil properties.
(Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, Nature, “Nitrogen oxides and tropical agriculture”, Bouwman,
©1998)

is well known (Leuzinger et al., 2011), the impact of multiple drivers is much more difficult
to estimate as processes are typically nonlinear and interact synergistically or antagonistically
among each other (Larsen et al., 2010). However, there are indications that aspects of climate
change (e.g., higher soil temperature or increased CO2 availability for plants) will increase future
soil N2O emissions (positive feedback) (Del Grosso & Parton, 2012). For example, Griffis et al.
(2017) projects a strong positive feedback of agricultural soils to warmer and wetter conditions
under current trends in climate and anthropogenic N use. A recent modeling study by Xu
et al. (2020) concluded that already from 1961–2014 warming and an increased CO2 abundance
continuously accelerated N2O emissions from cropland underlining the future importance of
climate change feedbacks. Within this work, in Chapter 7, the effect of soil moisture and
temperature as well as precipitation on Midwest N2O emissions is analyzed explicitly.

2.3 Studying Greenhouse Gas Emissions

To fully understand GHG emissions, to make reliable future projections, and to develop efficient
mitigation procedures, sources and sinks must be quantified. Two basic approaches exist,
bottom-up and top-down. Bottom-up approaches use statistical activity data, whereas top-down
approaches are based on independent GHG measurements in the atmosphere. Section 2.3.1
presents both approaches and summarizes their advantages and disadvantages.

Atmospheric measurements of GHGs, the basis of top-down emission estimates, are challenging
since enhancements are typically small relative to the background concentrations. For example,
N2O enhancements are mostly less than 1 % of the background abundance highlighting the
need of precise and accurate instruments. For this study, aircraft-based in situ measurements

https://www.springernature.com
https://www.nature.com/
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have been conducted sampling the U.S. Midwest. However, such measurements are especially
challenging. They require a fast response time, a high precision, and must be stable against
rapid and intense environmental changes to ensure measurements with high spatial resolution
(Fried et al., 2008). Several successful field deployments prove that absorption spectroscopy
instruments are capable of fulfilling these requirements (e.g., Santoni et al., 2014; Kooijmans
et al., 2016; Pitt et al., 2016; Catoire et al., 2017; Gvakharia et al., 2018; Kostinek et al., 2019).
Section 2.3.2 describes the concept of such instruments.

2.3.1 Top-Down vs. Bottom-Up Emission Estimates

Most bottom-up estimates use statistical activity data (e.g., maps of N-fertilizer application
rates) multiplied with emission factors (e.g., N2O emissions per amount of applied N-fertilizer)
to estimate emissions. The big advantage of this approach is that it allows for compiling
global gridded inventories divided into different emission sectors. However, the quality of such
estimates depends on the quality of the input data. In reality, the drivers of emissions are often
spatially and temporally highly variable. This heterogeneity is rarely or never caught by the
available statistical activity data which are often based on strong simplifications introducing
uncertainties (e.g., Griffis et al., 2013). For example, it is common to use proxy data like maps
of cropland combined with a constant emission factor to distribute country emission totals in
a gridded emission map (e.g., Janssens-Maenhout et al., 2013). Regional characteristics such
as soil type or vegetation are not considered leading to large local uncertainties. Additionally,
the emission factors are often more complex than presumed. For example, Thompson et al.
(2019) found indications that in regions with high N-input the response of N2O emissions
to an increasing N-fertilizer application is probably nonlinear. Furthermore, the quality of
the provided activity data may also depend on the reporting country/organization leading to
nationwide inconsistencies.
Following IPCC (2006), bottom-up approaches are classified in three so-called Tiers which
differ in the quantity of the underlying information and the complexity of the underlying
analysis. Tier 1 and Tier 2 estimates are both based on the emission factor approach described
above. While Tier 1 uses default emission factors defined by the IPCC (available from the
emission factor database: https://www.ipcc-nggip.iges.or.jp/EFDB/main.php), Tier 2 employs
country-specific emission factors and other parameters. Tier 3 provides the most sophisticated
bottom-up emission estimates, derived with higher-order methods. Typically, models are used
to simulate physical processes that provoke emissions. Driven by spatially and temporally
resolved data, like soil characteristics or weather data, such models estimate sources and sinks
tailored to a specific region and time. The downside of such process-based models is that their
application is complex and requires a large amount of input data.

Contrary to the bottom-up approach, the top-down approach is based on independent measure-
ments of trace gas concentrations in the atmosphere. Typically, inverse modeling is used to
constrain sources and sinks with the observations (e.g., Hirsch et al., 2006; Corazza et al., 2011;
Thompson et al., 2019), providing estimates of emission fluxes that do not (exclusively) rely on
activity data. However, there are three limitations. First, attributing such estimates to emission
sectors is challenging since sources are often collocated. Second, the transport of emitted GHGs

https://www.ipcc-nggip.iges.or.jp/EFDB/main.php
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through the atmosphere must be known to be able to relate the measurements to the source re-
gion. Atmospheric transport models are capable of simulating the transport but they are not
perfect introducing uncertainties to top-down estimates. Third, atmospheric observations of
GHGs are limited in their spatial and temporal coverage. Ground-based observation networks
like the National Oceanic and Atmospheric Administration (NOAA)/Earth System Research
Laboratories (ESRL)/Global Monitoring Laboratory (GML) Cooperative Air Sampling Net-
work (https://www.esrl.noaa.gov/gmd/ccgg/flask.html) collect long-term time series around the
world, but measurement sites are sparse hindering to study specific point or regional sources
which are far off the measurements sites. Airborne measurements are suitable to sample such
sources but provide only snapshots. Satellite measurements exhibit a great temporal and spatial
coverage but are more complex in their interpretation and suffer from higher measurement
uncertainties and lower spatial resolution. Nevertheless, studies have shown that the top-down
method is a valuable tool to evaluate bottom-up estimates (Nisbet & Weiss, 2010).

Overall, for N2O the data situation is especially poor compared to CO2 and CH4. To my best
knowledge, the Emissions Database for Global Atmospheric Research (EDGAR) is the only
gridded bottom-up inventory with a global coverage, providing emission estimates (Tier 1–2)
for all relevant N2O emission sectors after 2010. Section 3.4.1 presents the two most recent
EDGAR versions, namely version 4.3.2 and 5.0, since both are further examined within this
study. Beside EDGAR, some biogeochemical models exist allowing for Tier 3 soil emission
estimates. Such models are typically used on a regional or national scale. The daily time-step
version of the CENTURY model (DayCent) is a prevalent example for this and its product is
discussed within this thesis (see Section 3.4.2).
Atmospheric N2O measurements or top-down emission estimates are rare as well. Some studies
exist which quantify N2O emissions in the U.S. Midwest based on ground-based measurements
(e.g., Miller et al., 2012; Griffis et al., 2013; Chen et al., 2016; Fu et al., 2017). Only very
few analyses have been found that use airborne N2O measurements benefiting from the high
spatial resolution of such observations (Kort et al., 2008; Xiang et al., 2013; Gvakharia et al.,
2020). However, none of them quantifies the U.S. Midwest but other regions in the U.S., except
Kort et al. (2008), who have estimated N2O emissions in central North America covering the
Midwest using airborne flask measurements. Overall, all studies agree that common bottom-up
inventories underestimate Midwest N2O emissions to a large degree, but they significantly differ
in the amount ranging from factors between approximately two and 30, highlighting the need
of further studies to constrain Midwest emissions.

2.3.2 In Situ Observations With Absorption Spectroscopy

GHGs exhibit strong molecular absorption features in the IR. Using laser absorption spec-
troscopy enables to exploit these features to assess the concentration of the absorbing GHGs.
This technique greatly benefits from the latest advancements in interband cascade lasers (ICLs)
and quantum cascade lasers (QCLs) operating in the mid-IR wavelength region under ambient
temperature (e.g., Beck et al., 2002; Capasso, 2010; Vurgaftman et al., 2011; Kim et al., 2015).
As a result, in the last two decades numerous absorption spectrometers measuring atmospheric
GHG abundances have been developed and deployed (e.g., Tittel et al., 2006; Dyroff et al.,

https://www.esrl.noaa.gov/gmd/ccgg/flask.html
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2010; McManus et al., 2011; McManus et al., 2015).

The basic concept of such instruments is depicted in Figure 2.9. A QCL/ICL scans over a certain
wavelength range Δ𝜆. The emitted radiation is directed through a sample cell containing a gas
mixture including the species of interest. Δ𝜆 is chosen so that absorption lines of the species of
interest are covered. A detector collects the outgoing radiation or absorption spectrum of the
sample air which can be used to derive the concentrations of the absorbing constituents. The
absorption occurring in the sample cell at wavelength𝜆 is described by Bouguer-Lambert-Beer’s
law (Wallace & Hobbs, 2006):

𝐼𝜆 = 𝐼0, 𝜆 · 𝑒−𝜏𝜆 (2.4)

Where 𝐼𝜆 is the intensity of the outgoing radiation (laser beam after the sample cell; absorption
spectrum) and 𝐼0, 𝜆 is the intensity of the incoming light (emitted by the laser; spectral baseline).
𝜏𝜆 is the absorption optical depth of the sample air. It describes the absorption and is defined
by:

𝜏𝜆 =
∫ 𝑑

0
𝑘𝜆 (𝑝𝑐𝑒𝑙𝑙 , 𝑇𝑐𝑒𝑙𝑙) 𝜂 d𝑧 (2.5)

Here, 𝑘𝜆 is the absorption cross section of the sample air describing the wavelength specific
absorption of the medium. 𝑘𝜆 also includes the information about the absorption behavior of
the species of interest and depends on the pressure (𝑝𝑐𝑒𝑙𝑙) and temperature (𝑇𝑐𝑒𝑙𝑙) in the sample
cell. 𝜂 is the number density of the sample air and 𝑑 the length of the sample cell. Thus, the

Figure 2.9: Schematics of an absorption spectroscopy instrument. A QCL/ICL scans over the
wavelength range Δ𝜆 around the center wavelength 𝜆. The emitted radiation is
directed into a sample cell of length 𝑑 containing an absorbing medium. The
outgoing absorption spectrum is collected by a detector. 𝐼0 and 𝐼 are the intensity
of the incoming (emitted by the laser) and outgoing radiation, respectively. The
absorbing medium or sample air has the temperature 𝑇𝑐𝑒𝑙𝑙 , pressure 𝑝𝑐𝑒𝑙𝑙 , and
medium-specific absorption cross section 𝑘𝑐𝑒𝑙𝑙 . The two plots qualitatively show
the incoming (left) and outgoing (right) spectrum.
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absorption in the sample cell depends on the concentrations of absorbing constituents enabling
their quantification. An example absorption spectrum is shown in Figure 2.9 in the lower right
corner.

To derive mole fractions from absorption spectra, databases are needed containing the spec-
troscopic parameters of the absorbers, like the commonly used high-resolution transmission
molecular absorption database (HITRAN; https://hitran.org/). They provide absorption cross
sections (𝑘𝜆) for various molecules enabling to fit the absorption spectrum. By calculating
the difference between spectral baseline/incoming radiation and absorption spectrum/outgoing
radiation (area of absorption line) the abundance of the absorber can be retrieved (see Equa-
tion 2.4 and 2.5). As already mentioned, 𝑘𝜆 or the shape of the absorption line depends, not
exclusively but mainly, on the temperature and pressure of the absorbing medium. Higher tem-
peratures lead to broader absorption lines as each emitted photon is shifted to shorter or longer
wavelengths by the Doppler effect depending on the velocity of the molecule relative to the
detector. Furthermore, higher pressure also leads to broader absorption lines due to collisions
of the molecules. Thus, for the operational use of absorption spectrometers, stable 𝑝𝑐𝑒𝑙𝑙 and
𝑇𝑐𝑒𝑙𝑙 are desired to diminish potential error sources.

https://hitran.org/
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To answer the research questions, airborne in situ N2O measurements over the U.S. Midwest
have been conducted enabling the execution of top-down studies with atmospheric transport
models. For the measurements, the Quantum Cascade Laser Spectrometer (QCLS) of the
Deutsches Zentrum für Luft- und Raumfahrt (DLR) has been selected. This instrument allows
for precise, high frequency measurements of GHGs including N2O and was recently successfully
deployed on different research aircraft (e.g., Kostinek et al., 2019; Kostinek, 2019; Fiehn et
al., 2020; Klausner et al., 2020). During the fall 2017 and summer 2019 field campaigns of
the Atmospheric Carbon and Transport-America (ACT-America) project, a unique airborne
N2O dataset over the eastern half of the U.S. has been gathered with the QCLS, enabling the
studies presented herein. To assign observed N2O enhancements to different source regions
and to calculate respective emission rates, two state-of-the-art atmospheric transport models
are used, the Weather Research and Forecasting model (WRF; Skamarock et al., 2019) and the
Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT; Draxler & Hess,
1997). Thereof resulting top-down emission estimates are compared to two recent bottom-up
N2O emission inventories, the Tier 1–2 inventory EDGAR and Tier 3 estimates produced with
DayCent (see Section 2.3.1).

In this chapter, Section 3.1 provides a detailed description of the QCLS, followed by a presen-
tation of the ACT-America project in Section 3.2. Next, the two well established atmospheric
transport models, WRF and HYSPLIT, are described in Section 3.3. Finally, Section 3.4 depicts
the two considered emission inventories, EDGAR and DayCent.

3.1 Quantum Cascade Laser Spectrometer

The spectrometer used in this study is based on the commercial Dual Laser Trace Gas Monitor
available from Aerodyne Research Inc. (Billerica, USA). It is a tunable IR laser direct absorption
spectrometer (see Section 2.3.2) and fully described in McManus et al. (2011). This commercial
instrument has been modified and is optimized for airborne measurements (Kostinek et al., 2019;
Kostinek, 2019). A general description of the instrument is given in Section 3.1.1, followed by
a description of the sample flow in Section 3.1.2 and of the calibration system in Section 3.1.3.
Finally, in Section 3.1.4 the data retrieval is addressed. The following is based on Kostinek
et al. (2019) and Kostinek (2019) if not otherwise specified.
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3.1.1 Instrument Description

The QCLS consists of six components: The optics compartment, the electronics compartment,
the monitor module, the cooling/heating module, the scroll pump, and the power supply (see
Figure 3.1a).

(a) Front view of the QCLS (b) Top view of the optics compartment

Figure 3.1: (a) Front view of the rack-mounted QCLS aboard NASA’s C-130 during the
ACT-America fall 2017 field deployment (see Section 3.2). (b) Top view of the
optics compartment (Figure adapted from Kostinek et al., 2019). The main compo-
nents are labeled. The laser path through the guiding optics is indicated as well as
the entrance and exit of the sample flow.

The electronics and optics compartment are the core elements of the QCLS. The electronics
compartment contains an embedded computing system which is responsible for data acquisition
and the regulation of, for example, pressure and temperature controllers. The optics compart-
ment primarily includes lasers, guiding optics, the sample cell and detectors (see Figure 3.1b).
Two lasers are implemented, a continuous wave ICL (Laser #1; nanoplus GmbH, Gerbrunn,
Germany) and a QCL (Laser #2; Alpes Lasers SA, St-Blaise, Switzerland). Their emitting
center wavelength can be set by adjusting their operating temperature with Peltier elements.
To both lasers a linear current ramp is applied to modulate their wavelength between a certain
range around the configured center wavelength. At an operating temperature of 4.7 °C and
1.5 °C, Laser #1 and Laser #2 are modulated sequentially between 2988.520–2990.625 cm−1

and 2227.550–2228.000 cm−1, respectively. Located in the scanned range of Laser #1 there are
absorption lines of CH4, ethane C2H6, and H2O. Laser #2 sees distinct absorption lines of N2O,
CO2, and carbon monoxide CO (see Figure 3.4). From these absorption lines, mole fractions
of the respective trace gas can be retrieved (see Section 3.1.4).
The guiding optics directs the laser beams into the sample cell. Since this approximately 1.6 m
long path is not sealed (hereafter referred to as “open path”), the laser beams are influenced by
the cabin pressure, temperature, and humidity before entering the sample cell. This is consid-
ered during the data retrieval by employing measurements of the cabin environment recorded
by sensors within the optics compartment (see Section 3.1.4). The sample cell is an astigmatic
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Herriott cell with an effective path length of 204 m and a net volume of approximately 2.1 l.
Sample air constantly flows through the cell and is analyzed. An upstream pressure controller
(P-502C-350A-AGD-39-V from Bronkhorst High-Tech B.V., Ruurlo, Netherlands) keeps the
cell pressure constant. The cell is ideally operated at a cell pressure between 25 mbar and
80 mbar. The sample flow is further described in Section 3.1.2. After the sample cell, the laser
beams are directed to one of two detectors. An auxiliary laser path is directed onto the second
detector through a sealed reference cell containing pure CH4 and N2O. During startup this
measurement is used for spectral referencing.
The spectrum of each laser is assigned to 450 spectral points. The frequency at which spectra
are recorded can be adjusted while the wavelength modulation of the lasers occurs at a fixed
frequency of 1.5 kHz. The acquired spectra are co-added until the desired output frequency is
reached. During the ACT-America deployment, the output frequency was set to 2 Hz and, thus,
each recorded spectrum consisted of 750 acquired spectra.

The liquid cooling/heating rack is used to keep the temperature in the optics compartment
stable and to remove excess heat from the Peltier elements that control the temperatures of the
lasers. For that the temperature of the cooling fluid (i.e., distilled water) is stabilized within
±0.05 K. The attached scroll pump pulls air from the inlet through chemically inert, flexible
Polytetrafluoroethylene (PTFE) tubes into the sample cell and exhales into the aircraft cabin
(see Section 3.1.2). The monitor module is used to control and supervise the instrument and
data acquisition during research flights. Additionally, a module has been built that regulates
the power supply of all QCLS components. It has been designed for an incoming voltage of
28 VDC which is typically required for aircraft deployment. After transforming to the required
voltage, the power supply allots the power to the modules. Circuit breakers protect the aircraft
and the QCLS from excess current. Model designation and manufacturer of the components
are provided in Table 3.1.

Component: Model: Manufacturer:

Cooling/heating
rack: Thermorack 401 Solid State Cooling Systems, New

York, U.S.A.

Scroll pump: ISP 500C Anest Iwata USA Inc., Cincinnati,
U.S.A.

– motor: DSE1-045-MB-161541 Baumüller Nürnberg GmbH,
Nürnberg, Germany– motor controller: bmaXX2430

Power inverter: ACMaster 24/300 Mastervolt, Vierkirchen, Germany

Table 3.1: List of selected QCLS components with their model designation and manufacturer.
More detailed information are provided in Kostinek et al. (2019).
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3.1.2 Sample Flow

The sample flow is a crucial aspect of airborne in situ measurements because it determines the
temporal and thus spatial resolution of observations. Figure 3.2 qualitatively depicts the sample
flow through the QCLS including the calibration system (green-shaded part), which is described
in Section 3.1.3. The scroll pump pulls sample air through the inlet, an industry-standard
PTFE particle filter, the pressure controller, and the sample cell and exhausts into the aircraft.
Components are connected via PTFE tubes with an inner diameter of 3/8 ′′.

Figure 3.2: Schematic of the sample flow through the QCLS together with the integrated cali-
bration system (green-shaded). All components between the calibration system and
scroll pump (right top) are located inside the optics compartment (see Figure 3.1b).
The scroll pump pulls the air from the inlet through PTFE tubes into the sample cell
(see Section 3.1.2). The inner diameter of the PTFE tubes (Ø) is indicated. The
calibration system is placed between the particle filter and optics compartment and
enables the measurement of two different calibration gases (see Section 3.1.3).

High flow rates are desired to quickly exchange the air in the sample cell enabling a high temporal
and thus spatial resolution. The scroll pump translates air with a nominal value of 500 l min−1

at standard conditions (i.e., standard pressure 𝑝0 = 1 bar and temperature 𝑇0 = 273.15 K).
Setting the cell pressure with the upstream pressure controller to 50 mbar, which is well within
the optimal cell pressure range (25–80 mbar; see Section 3.1.1), results in a net flow rate of
approximately 25 l min−1 at standard conditions. The time it takes to fully exchange the gas
in the sample cell (hereafter referred to as “response time”) limits the maximum achievable
temporal resolution. Employing the ideal gas law (see Equation 2.1) allows for estimating
the response time. Considering mass conservation and isothermal conditions, the volume of
ambient air under standard conditions 𝑉0 times the standard pressure 𝑝0 equals the sample cell
volume 𝑉𝑐𝑒𝑙𝑙 times the sample cell pressure 𝑝𝑐𝑒𝑙𝑙 . Dividing 𝑉0 by the volumetric net flow rate
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of the QCLS 𝑄 delivers the theoretical system response time 𝜏𝑟 :

𝜏𝑟 =
𝑝𝑐𝑒𝑙𝑙 · 𝑉𝑐𝑒𝑙𝑙

𝑝0︸        ︷︷        ︸
=𝑉0

· 1
𝑄

(3.1)

With the given conditions (𝑝0 = 1 bar, 𝑉𝑐𝑒𝑙𝑙 = 2.1 l, 𝑝𝑐𝑒𝑙𝑙 = 50 mbar, and 𝑄 = 25 l min−1

at standard conditions) the response time is 𝜏𝑟 = 0.25 s. Hence, with this setup a temporal
resolution of 2 Hz, like during the ACT-America deployment, is possible.

The inlet, the particle filter, and the PTFE tubing cause pressure drops, thus counteracting the
scroll pump. These pressure drops should affect the flow rate as little as possible to sustain a
maximal throughput and hence high temporal resolution. Increasing the pump power and thus
the flow rate to compensate the pressure drops is not an option since then too much power would
be consumed (for aircraft deployment the power consumption of the entire system is limited to
50 A at 28 VDC). The inlet is a PTFE tube in a stainless steel housing mounted at the hull of the
aircraft. It is rear facing, thus preventing large particles, water droplets, and ice from entering
the system. At aircraft cruise speeds (>70 m s−1), turbulence induced pressure drops at the inlet
are likely. To minimize them, a PTFE tube with a relative large inner diameter of 1/2 ′′ is chosen.
Downstream of the inlet, the particle filter is placed. It prevents the contamination of the system
by aerosol particles which are larger than the pore size of the filter. However, the smaller the
pore size the larger the pressure drop; 2 µm has been found to be a good compromise between
protection and pressure drop.

During research flights the instrument faces quickly and strongly changing environmental con-
ditions. Especially the ambient pressure influences the sample flow. For accurate absorption
spectroscopy, the sample cell pressure and hence the net flow rate should be kept constant
(see Section 2.3.2). The pressure controller is capable of compensating pressure variations of
the sampled air. However, during airborne deployment the ambient pressure varies strongly
between ∼1000 hPa at mean sea level (MSL) and ∼250 hPa at a flight altitude of 10 km or even
less if flying higher. This enormous range cannot be fully handled by the employed pressure
controller. At certain altitude/pressure level (∼4 km above MSL) the pressure controller is fully
open and not able to regulate anymore. Ascending further results in dropping cell pressure and
flow rate (see Section 4.3). To elevate the altitude up to which the cell pressure can be regulated,
a bypass of the pressure controller has been implemented. The bypass provides a basis sample
flow into the cell, thus extending the dynamic range of the pressure controller. The flow through
the bypass is adjustable by means of the needle valve, so that at the ground (highest ambient
pressure) the pressure controller operates at the lower end of its dynamic range. This increases
the altitude up to which the pressure controller is able to regulate to ∼5 km above MSL (see
Section 4.3).

3.1.3 Calibration System

Absorption spectrometers like the QCLS are highly sensitive to changes in environmental
conditions (see Section 2.3.2), which can be extreme during airborne operation. Especially (but
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not exclusively) when the aircraft climbs or descends, the instrument faces rapid temperature
and pressure changes which affect the measurement. Additionally, hardware effects, like often
observed wavelength drifts of lasers over time, influence the measurements. Regular in-flight
calibrations are necessary to correct for such effects. The calibration system is set up for
two-point calibrations which turned out to be an effective approach for the QCLS and similar
measurements systems (e.g., Gvakharia et al., 2018).

The calibration system of the QCLS is qualitatively depicted in the green-shaded part in Fig-
ure 3.2. It is based on two gas cylinders containing dry synthetic air which is mixed with a
specific partitioning of the species measured by the QCLS. Both cylinders are attached to the
sample line between the particle filter and the optics compartment via 1/4 ′′ PTFE tubes. Each
calibration standard is regulated with a pressure reducer and a mass flow controller (MFC;
F-201CV-20K-RGD-33-V from Bronkhorst High-Tech B.V., Ruurlo, Netherlands). The pres-
sure reducer allows for monitoring the fill level of the gas cylinder and adjusts the upstream
pressure of the MFC. The MFCs are controlled with the monitor module and regulate the injec-
tion of calibration gas into the sample cell. Attached to the inlet and upstream of the pressure
controller valve, a mass flow meter (MFM; F-102E-RGD-33-V from Bronkhorst High-Tech
B.V., Ruurlo, Netherlands) records the mass flow into the sample cell. When measuring air
from a gas cylinder the respective MFC is regulated such that the mass flow from the gas
cylinder is slightly higher than the sample flow recorded with the MFM measuring ambient air.
Since the scroll pump preserves a constant mass flow through the system, this overflow leads
to calibration gas being blown out of the inlet and blocks ambient air from entering the system,
thus ensuring that only calibration gas is measured.

The two-point calibration is based on the assumption that the QCLS responds linearly to a linear
increase of the abundance of an observed chemical compound. Figure 3.3 depicts the basic
concept of a two-point calibration. The measured dry air mole fraction 𝑥𝑚 can be calibrated 𝑥𝑐
via the following calibration curve:

𝑥𝑐 = 𝑚 · 𝑥𝑚 + 𝑏 (3.2)

The slope 𝑚 and y-intercept 𝑏 can be determined by measuring two calibration standards, a
high 𝐻 and a low 𝐿 standard with given “true” mole fractions 𝐻𝑡 and 𝐿𝑡 , respectively:

𝑚 =
𝐻𝑡 − 𝐿𝑡

𝐻𝑚 − 𝐿𝑚

𝑏 = 𝐻𝑡 − 𝑚 · 𝐻𝑚 = 𝐿𝑡 − 𝑚 · 𝐿𝑚

(3.3)

Where 𝐻𝑚/𝐿𝑚 is the measured mole fraction of the high/low standard.

3.1.4 Data Retrieval

To derive dry air mole fractions from raw absorption spectra recorded with the QCLS a retrieval
software is necessary. Aerodyne provides TDLWintel. Additionally, for the QCLS a custom
retrieval software, JFIT, has been developed (Kostinek et al., 2019; Kostinek, 2019), to double
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Figure 3.3: Schematics of a two-point calibration. The x-axis shows the measured mole fraction
(𝑥𝑚), the y-axis the “true” (𝑥𝑡) or “calibrated” value (𝑥𝑐), and the blue line the
calibration curve. A high 𝐻 and a low 𝐿 calibration standard is used with given mole
fractions 𝐻𝑡 and 𝐿𝑡 , respectively. By combining these “true” values with instrument
measurements of the two standards (𝐻𝑚 and 𝐿𝑚) the slope and y-intercept of the
calibration curve can be defined (see Equation 3.3).

check the TDLWintel output, to learn about possible error sources, and to allow for more
flexibility. In the following, a short overview about both software is given. For a detailed
description of JFIT and for a comparison of both software the reader is referred to Kostinek
(2019).

Figure 3.4 shows a typical raw spectrum recorded by the QCLS measuring ambient air. Ab-
sorption lines of N2O, H2O, CH4, and CO2 are clearly visible. Between the lines no absorption
occurs spanning the spectral baseline. TDLWintel and JFIT use the same approach to derive dry
air mole fractions from such raw spectra. By fitting Voigt profiles to the absorption lines, a syn-
thetic spectrum using tabulated absorption cross sections from the HITRAN database is created,
whereby the abundance of the absorbing molecules is the unknown (see Equations 2.4 and 2.5).
By minimizing the difference between the measured and synthetic spectrum the abundance
is retrieved. Both software differ in how the absorption lines of the synthetic and measured
spectrum are aligned and how the open path (see Section 3.1.1) is handled. In TDLWintel the
user defines regions in the spectra of both lasers where no absorption occurs. According to
these regions the spectral baseline is fitted. For the fit of the absorption lines, the user marks
spectral regions where one or more species absorb. The influence of the open path is considered,
but only for a static ambient/cabin pressure which is often not the case during flights. JFIT
also splits the spectrum in smaller regions, but baseline and absorption lines are fitted simul-
taneously without needing user-defined markers. JFIT also uses measurements of the cabin
pressure, temperature, and humidity measured by sensors inside of the optics compartment (see
Section 3.1.1) to account for H2O absorption along the open path.

In the setup presented herein, sample air is not dried before being measured in the sample
cell. Hence, during the retrieval process the influence of water vapor, i.e. dilution and water
broadening, has to be considered to derive dry air mole fractions. The water broadening
describes the effect that spectral absorption lines are broadened due to collisions of water vapor
and air molecules (see pressure broadening in Section 2.3.2). TDLWintel as well as JFIT
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Figure 3.4: Typical raw spectrum of the QCLS measuring ambient air at a cell pressure of
46 mbar and a cell temperature of 298 K. The absorption lines of N2O, H2O, CH4,
C2H6, CO2, and CO are marked with arrows. Zooming is required to properly see
the absorption lines of C2H6 and CO. The signal strength is given in analog digital
unit (ADU). It is a proxy for the detected light intensity.

account for this effect and correct it. Dilution describes the effect that the mole fraction of a
constituent relative to moist air (i.e., dry air diluted with water vapor) is smaller than relative
to dry air. Following Harazono et al. (2015), this effect can be corrected with the following
equation:

𝑐𝑥 =
𝑐𝑚𝑥

1 − 𝑐H2O
(3.4)

Where 𝑐𝑥 is the desired dry air mole fraction and 𝑐𝑚𝑥 the moist air mole fraction of species 𝑥.
𝑐H2O is the mole fraction of the water vapor. While TDLWintel already accounts for dilution
and reports dry air mole fractions, JFIT does not and its output has to be manually corrected
using Equation 3.4.

3.2 Atmospheric Carbon and Transport-America Project

ACT-America is a Earth Venture Suborbital-2 mission sponsored by the National Aeronautics
and Space Administration (NASA) and led by the Pennsylvania State University (Davis et al.,
2021). This project comprises five six-week airborne field campaigns between 2016 and 2019
which cover all four seasons (summer twice; 2016 and 2019). Two NASA aircraft were deployed,
the C-130 (see Figure 3.5b) and B-200 (see Figure 3.5c), carrying state-of-the-art instruments,
that measure GHGs and meteorological parameters such as temperature, wind, and humidity.
During these deployments a rich dataset of in situ and remote sensing GHG measurements has
been collected in the lower and middle troposphere over three regions, the East Coast, the Gulf
Coast, and the Midwest of the U.S. (Wei et al., 2021). Figure 3.5a displays the flight tracks
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Figure 3.5: (a) Flight tracks of NASA’s C-130 conducted during the fall 2017 and summer 2019
ACT-America field deployments. In the upper left corner there is the ACT-America
logo obtained from https://airbornescience.nasa.gov/content/Atmospheric_Carbon_
and_Transport_ACT-America. The three deployment sites are marked. These are
the Wallops Flight Facility, Virginia (WFF), Shreveport, Louisiana (SHV), and
Lincoln, Nebraska (LNK). (b) NASA’s C-130 on the runway at WFF during the fall
2017 campaign. (c) NASA’s B-200 at the airport in LNK during the summer 2019
campaign.

of NASA’s C-130 during the fall 2017 and summer 2019 campaigns indicating the spatial
coverage of the campaign. Each of the three regions was probed for two weeks during each field
deployment. The marked deployment sites correspond to the three probed regions.

During the fall 2017 (10 Oct–13 Nov) and summer 2019 (17 Jun–27 Jul) field deployment
the QCLS was mounted onboard the C-130 collecting, among others, continuous N2O dry air
mole fractions with a temporal resolution of 2 Hz and an uncertainty of ±0.8 ppb (Kostinek
et al., 2019). Figure 3.5a displays the corresponding flight tracks. With over 200 flight hours
of the C-130 an unprecedented dataset of continuous in situ N2O measurements over large
parts of the U.S. has been collected. As more direct observations of N2O are urgently needed
(Reay et al., 2012), these data are a valuable contribution to the effort of better understanding

https://airbornescience.nasa.gov/content/Atmospheric_Carbon_and_Transport_ACT-America
https://airbornescience.nasa.gov/content/Atmospheric_Carbon_and_Transport_ACT-America
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N2O sources. In addition to the continuous QCLS measurements of N2O onboard the C-130,
NOAA/GML collected whole-air flask samples (hereafter referred to as “Programmable Flask
Package (PFP)”) onboard of both aircraft which where measured for numerous trace gases
including N2O with an uncertainty of ±0.4 ppb (Sweeney et al., 2015; Sweeney et al., 2018;
Baier et al., 2020). Taking 6–12 samples during each flight, onboard of each aircraft, and during
each of the five field deployments, allowed for the compilation of an enormous, high-precision
database of in situ N2O point measurements in the troposphere. Together with the continuous
QCLS measurements, these PFP samples are a valuable contribution to the community and
enable extensive N2O studies.

3.3 Atmospheric Transport Models

Atmospheric transport models are used to relate the aircraft-based in situ measurements con-
ducted during ACT-America to surface N2O sources. Two basic model concepts exist, the
Eulerian and the Lagrangian approach. An Eulerian model describes the atmosphere on a
discrete grid. At each grid point atmospheric properties like temperature, humidity, or N2O
mole fractions are simulated. In contrast, a Lagrangian model follows an air parcel backward or
forward in time through the atmosphere enabling the determination of the origin of the respec-
tive air parcel. Both approaches are employed for this study to optimally answer the research
questions. The Eulerian model WRF is presented in Section 3.3.1. Section 3.3.2 introduces the
Lagrangian model HYSPLIT.

3.3.1 The Eulerian Model WRF

For this study a mesoscale model is needed that simulates the weather, the emission of N2O from
emission inventories, and the propagation of the emitted N2O through the atmosphere by the
simulated weather. Therefore, the state-of-the-art Numerical Weather Prediction (NWP) model
Advanced Research WRF (ARW) version 4.0.2 (Skamarock et al., 2019) has been selected.
This community model, which is officially supervised by the National Center for Atmospheric
Research (NCAR), provides a fully-compressible, Eulerian non-hydrostatic equations solver and
is steadily developed. Being thoroughly tested and highly accessible, and containing a large set
of numerical and physical options and schemes, WRF is widely used for numerous applications
in atmospheric research and forecasting (Powers et al., 2017). Using the WRF model coupled
to Chemistry extension (WRF-Chem; Grell et al., 2005) enables to simulate the emission of
N2O from gridded inventories and the propagation of the emitted N2O through the atmosphere.
Since N2O exhibits a long atmospheric lifetime of over 100 yr (see Section 2.2), it is assumed
that chemically induced concentration changes can be neglected for model runs simulating only
several days and, thus, N2O is treated as a passive tracer. The detailed model setup is further
elaborated in Section 5.2.
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3.3.2 The Lagrangian Model HYSPLIT

HYSPLIT is one of the most widely used atmospheric transport and dispersion models (Stein
et al., 2015). Originally developed to calculate air parcel trajectories, it has been extended to
simulate complex dispersion with chemical interactions and deposition. HYSPLIT is mostly
used to estimate the origin of air masses and to simulate the transport and dispersion of trace
gases and particles like dust and allergens. A detailed description of the model can be found
in Draxler and Hess (1997) and Stein et al. (2015). For this thesis, HYSPLIT’s capability of
calculating so-called footprints to estimate sources of N2O is utilized. At a certain position
and time in the atmosphere (receptor) a defined amount of particles is released and propagated
backward in time. During the backward advection, dispersion occurs spreading the particles.
By considering the spatial distribution of the particles, the contribution of surface emission
areas to changes in the receptor concentration can be estimated. This contribution defines the
footprint. A mathematical description is provided in Lin et al. (2003).

Bianca C. Baier (Cooperative Institute for Research in Environmental Sciences, University
of Colorado-Boulder, Boulder, CO, USA and NOAA GML, Boulder, CO, USA) calculated
HYSPLIT footprints for each PFP measurement conducted during all five ACT-America field
deployments. 500 particles are released at the approximate position and time of each PFP
sample. Every 15 min footprints are derived for ten days backward in time. High resolution
WRF simulations, produced by the Pennsylvania State University for the ACT-America cam-
paigns, serve as meteorological driver. Figure 3.6 shows an example footprint of a single PFP
measurement.
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Figure 3.6: Example HYSPLIT footprint of a single PFP sample (blue cross) summed over ten
days. The PFP has been collected onboard NASA’s C-130 at 2237 m above MSL
during the ACT-America campaign in fall 2017 on the Oct 10.
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3.4 Emission Inventories

In this thesis two state-of-the-art N2O bottom-up emission inventories are employed and evalu-
ated against the top-down estimate of U.S. Midwest N2O emissions. The first one is the widely
used Tier 1–2 inventory EDGAR (see Section 3.4.1). Here, the two most recent versions of
EDGAR are used, version 4.3.2 (EDGAR4.3.2, 2017; Janssens-Maenhout et al., 2019) and
version 5.0 (Crippa et al., 2019; EDGAR5.0, 2019). The second employed inventory is a Tier 3
inventory, estimated with the biogeochemical model DayCent (Parton et al., 1998; Del Grosso
et al., 2001; Del Grosso et al., 2011), provided by Stephen M. Ogle (Natural Resource Ecology
Laboratory, Colorado State University, Fort Collins, CO, USA) (see Section 3.4.2). A descrip-
tion of the concepts of Tier 1, 2, and 3 inventories and of their advantages and disadvantages is
provided in Section 2.3.1 in the previous chapter.

3.4.1 Emissions Database for Global Atmospheric Research – EDGAR

EDGAR4.3.2 and EDGAR5.0 provides monthly resolved global N2O fluxes from anthropogenic
sources on a 0.1°×0.1° grid for 2012 and 2015, respectively. Estimates for the different emission
sectors are mostly based on Tier 1 emission factors while some, which are less relevant for this
work (e.g., the sectors “solvents and products use” or “chemical processes”), are based on Tier 2
emission factors (see Janssens-Maenhout et al., 2019). For this thesis, the different sectors
in EDGAR are merged into three main sectors: Agricultural emissions 𝐸𝐴𝐺𝑅, anthropogenic
non-agricultural emissions 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, and natural emissions 𝐸𝑁 . Table 3.2 lists all the available
EDGAR sectors with their corresponding IPCC (2006b) sector code and how they are assigned
to the three main sectors. 𝐸𝐴𝐺𝑅 covers N2O fluxes from agricultural soils, manure management,
agricultural waste burning, and indirect emissions from agriculture. 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 includes, among
others, emissions from fossil fuel combustion, industry, and waste. Since EDGAR4.3.2 as well
as EDGAR5.0 provide only anthropogenic emissions, i.e. 𝐸𝐴𝐺𝑅 and 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, both versions
are supplemented with yearly natural N2O emissions on a global 1° × 1° grid from EDGAR
version 2.0 (EDGAR2; Olivier et al., 1996; Olivier et al., 1999). This version contains N2O
fluxes from soils under natural vegetation and oceans forming 𝐸𝑁 . All N2O fluxes are assumed
to emerge from the surface. This is valid except for aviation related emissions. Since those
account for less than 0.3 % of yearly total Midwest N2O emissions in EDGAR, they are omitted
from 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 without affecting results significantly. Furthermore, it is assumed that the here
presented main sectors 𝐸𝐴𝐺𝑅, 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, and 𝐸𝑁 cover all N2O fluxes which are relevant in the
Midwest.

3.4.2 Daily Time-Step Version of the CENTURY Model – DayCent

With the process-based, biogeochemical model DayCent direct soil N2O emissions from crop-
and grassland are estimated on a 0.5° × 0.5° grid in the Midwest on a daily basis from 2011 to
2015, which were aggregated to a monthly time step (Section 5.5.3 discusses the applicability to
the ACT-America period, i.e. 2016–2019). The model simulates fluxes of carbon and nitrogen

https://www.ipcc-nggip.iges.or.jp/EFDB/find_ef.php
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Custom
merge: EDGAR sector: IPCC (2006b) code:

𝐸𝐴𝐺𝑅 Manure management 3A2
Agricultural waste burning 3C1b
Agricultural soils 3C2+3C3+3C4+3C7
Indirect N2O emissions from agriculture 3C5+3C6

𝐸𝑛𝑜𝑛𝐴𝐺𝑅 Power industry 1A1a

Oil refineries and transformation industry 1A1b+1A1ci+1A1cii+1A5biii+
1B1b+1B2aiii6+1B2biii3+1B1c

Combustion for manufacturing 1A2
Road transportation 1A3b
Railways, pipelines, off-road transport 1A3c+1A3e
Shipping 1A3d
Energy for buildings 1A4+1A5

Fuel exploitation 1B1a+1B2aiii2+1B2aiii3+1B2bi
+1B2bii

Chemical processes 2B
Solvents and products use 2D3+2E+2F+2G
Solid waste landfills 4A+4B
Solid waste incineration 4C
Waste water handling 4D
Indirect emissions from NOx and NH3 5A
Fossil fuel fires 5B

𝐸𝑁 Natural soils (only EDGAR2) –
Oceans (only EDGAR2) –

omitted Aviation climbing and descent 1A3a_CDS
Aviation cruise 1A3a_CRS
Aviation landing and takeoff 1A3a_LTO
Aviation supersonic 1A3a_SPS

Table 3.2: All emission sectors in EDGAR4.3.2, EDGAR5.0, and EDGAR2 (only natural)
together with their IPCC (2006b) sector code (https://www.ipcc-nggip.iges.or.jp/
EFDB/find_ef.php) and their assignment to the three main sectors 𝐸𝐴𝐺𝑅, 𝐸𝑛𝑜𝑛𝐴𝐺𝑅,
and 𝐸𝑁 (see Section 3.4.1). If not otherwise specified, sectors are included in
EDGAR4.3.2 and EDGAR5.0. (Table adapted from Eckl et al., 2021)

between the atmosphere, vegetation, and soil thus deriving N2O emissions (see Figure 3.7).
Incorporating several environmental drivers, including weather patterns, agricultural practices
like fertilization, soil characteristics, and crop features, this approach provides a more sophisti-
cated estimate of soil emissions than the emission factor based EDGAR inventory. The GHG
inventory of the United States Environmental Protection Agency (EPA, 2020) uses DayCent
estimates of direct soil emissions for emissions reporting of agricultural soil N2O to the UN
Framework Convention on Climate Change. DayCent does not calculate emissions from ma-

https://www.ipcc-nggip.iges.or.jp/EFDB/find_ef.php
https://www.ipcc-nggip.iges.or.jp/EFDB/find_ef.php
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nure management, agricultural waste burning, indirect soil emissions, and those associated with
minor crops such as vegetables. The EPA inventory quantifies these sources and subsources
with an emission factor approach. Here, their contribution is estimated by employing the yearly
estimates from EPA, calculating their relative fraction of the EPA direct soil emissions, and
adding them to our monthly estimates. As a result, the DayCent inventory properly accounts
for the total agricultural emissions, but not the spatial distribution of agricultural sources which
are not estimated by DayCent.

Figure 3.7: DayCent model flow diagram illustrating the simulated processes. (Figure adopted
from EPA, 2021, p. A-390)



4 N2O Measurements Using the Quantum
Cascade Laser Spectrometer

Measuring atmospheric N2O enhancements to study emissions is challenging. One reason is
that the most important source types of N2O, including agriculture, are area sources. Such
sources can emit a large amount of GHGs in total, but emissions are distributed over a large
area and, hence, related enhancements in the atmosphere are typically small. In the PBL,
these enhancements are usually well below 1 % of the atmospheric background mole fraction
of currently around 330 ppb. Thus, the accuracy and precision of in situ N2O instruments
are especially important to be able to distinguish such pollution signatures from the relatively
high background. The DLR QCLS was already deployed for the measurement of N2O (see
Section 3.1; Kostinek et al., 2019; Kostinek, 2019). To enhance its detectable range of N2O
enhancements and, thus, its application range, within this study special effort has been put into
further optimizing the QCLS N2O product. The optimization includes laboratory work as well
as the analysis of data collected during ACT-America onboard NASA’s C-130 aircraft (see
Section 3.2).

Frequent and regular in-flight calibrations are the basis for accurate measurements. These are
described in Section 4.1. Furthermore, calibration standards have been obtained from NOAA.
These standards are traceable to WMO calibration scales, enabling the comparison of QCLS data
products with other instruments. Section 4.2 presents the calibrations with the NOAA standards.
During the ACT-America 2019 field deployment it has been found that pressure variations in
the sample cell and inconsistencies in the H2O retrieval (needed to determine dry air mole
fractions; see Section 3.1.4) introduce uncertainties to the N2O datasets. Corrections therefore
have been derived and are presented in Section 4.3 (cell pressure) and Section 4.4 (H2O). To
assess their benefit, the well-established, high-precision PFP samples (see Section 3.2), which
have been collected onboard the C-130, are used as a reference. Finally, Section 4.5 discusses
and summarizes the quality of the QCLS N2O measurements gathered during the ACT-America
deployment.

Although the QCLS is capable of additionally measuring CH4, C2H6, CO2, and CO, in the
following only the calibration procedure for N2O is described as it is the species of interest in the
present thesis. However, the other chemical compounds were equally processed. Furthermore,
in the following only Kostinek et al., 2019 is cited in place of additionally referring to Kostinek,
2019 since both publications contain the characterization of the DLR QCLS.
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4.1 In-Flight Calibrations

During the campaigns so-called secondary calibration standards obtained from Air Liquide
were used for in-flight calibrations. Such standards are relatively inexpensive and, hence, are
attractive for the operational use, especially for the QCLS which consumes lots of calibration
gas due to its high flow rate of ∼25 l min−1 at standard conditions (see Section 3.1.2). However,
the reported composition of these secondary standards exhibits high uncertainties. For N2O the
stated uncertainty is ±10 % or ±33 ppb (considering an ambient N2O abundance of 330 ppb),
which is much larger than expected atmospheric N2O enhancements. Therefore, these standards
are suited to correct for any instrument drifts and dependencies, but they are not suited to calibrate
the retrieved absolute dry air mole fraction. For that, two so-called primary calibration standards
from NOAA/GML were obtained and used to cross-calibrate the Air Liquide standards after
the field campaigns in the laboratory, thus making the performed measurements comparable to
other instruments (see Section 4.2).

To develop a workable calibration strategy for the airborne operation of the QCLS, three aspects
must be considered. First, rapidly changing environmental conditions and potential instrument
drifts during a flight make frequent and extensive in-flight calibrations necessary. Second,
it is aimed to obtain the optimal spatial and temporal coverage with the measurements, but
each calibration reduces the duty cycle and hence limits atmospheric data availability. Third,
weight and space constraints onboard the aircraft limit the amount of available calibration gas.
Together with the high flow rate of the QCLS and research flights that last several hours, the
maximum possible number of calibrations is restricted. For the ACT-America field campaign,
a calibration strategy was developed, comparable to the one proposed by Kostinek et al., 2019
for the DLR QCLS, and by Gvakharia et al., 2018 for a similar airborne in situ instrument.
The strategy consists of regular two-point in-flight calibrations using the calibration system
described in Section 3.1.3. Every 5 min a calibration is performed, where each calibration
standard of two different N2O mole fractions is measured for approximately 10 s. The T90 time,
defined as the time period until 90 % of the signal is reached, was ∼0.9 s during the summer
2019 research flights. Thus, measuring a calibration standard for 10 s is sufficient for an accurate
calibration. With this calibration frequency environmental changes and instrument drifts can
be caught decently while preserving a high duty cycle of over 90 % during a research flight.

For the two-point calibration a high and a low calibration standard is needed. Dry synthetic
air (20.9 ± 0.2 % O2 in N2) (hereafter referred to as “zero air”) was used as the low calibra-
tion standard. Air Liquide provides no value for the potential N2O contamination of the zero
air. Since there is no significant absorption in the QCLS spectra when measuring zero air,
the contamination with N2O is assumed to be insignificant. Measuring zero air enables the
determination of the spectral baseline which is mandatory for an accurate retrieval (see Sec-
tion 2.3.2). For the high standard, calibration gas containing a target N2O mole fraction of
328 ± 33 ppb in dry synthetic air was used. Figure 4.1 displays an example in-flight calibra-
tion cycle during ACT-America. Zero air is measured first, followed by calibration gas. For
each of these calibration cycles the slope and y-intercept of the calibration curve is determined
(see Equation 3.3). Between the cycles these coefficients are linearly interpolated and used to
calibrate the measurements of ambient air.
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Figure 4.1: Example in-flight calibration cycle during ACT-America. The vertical lines indi-
cate the switch-over from measuring ambient air to measuring zero air (𝑡 + 10 s),
calibration gas (𝑡 + 20 s), and sample air again (𝑡 + 30 s).

The employed calibration cylinders have to supply enough calibration gas for the above described
calibration strategy. Since NASA’s C-130 is comparatively spacious, 10 l gas cylinders could be
used for both standards containing 200 bar (zero air)/150 bar (calibration standard). Employing
the ideal gas law (Equation 2.1), considering mass conservation, and assuming an isothermal
expansion, the volume of zero air/calibration gas of a cylinder at normal pressure (𝑝0 =
1013.25 mbar) 𝑉0 can be estimated via:

𝑝𝑔 · 𝑉𝑔 = 𝑝0 · 𝑉0 → 𝑉0 =
𝑝𝑔 · 𝑉𝑔

𝑝0
(4.1)

𝑝𝑔 and 𝑉𝑔 are the pressure and volume of a gas cylinder. Hence, for the low and high standards
𝑉0 is approximately 1974 l and 1480 l, respectively. With a QCLS flow rate of 25 l min−1 at
standard conditions (see Section 3.1.2) the endurance of a zero air/calibration standard gas
cylinder is approximately 79 min/59 min. For longest ACT-America research flights (<10 h) a
calibration standard has to provide calibration gas for 20 min to supply enough gas for the above
described calibration strategy. Hence, the proposed calibration gas cylinders are suitable.

4.2 NOAA Calibration

After the field campaigns, the employed secondary standards obtained from Air Liquide are
cross-calibrated against primary standards obtained from NOAA/GML. These standards contain
compressed and dried air with ambient concentrations of N2O, CH4, C2H6, and CO2. They are
much pricier than the secondary standards, but NOAA assures a substantially higher accuracy
for N2O (±0.4 ppb) than Air Liquide (approx. ±33 ppb) and their standards are, related to
N2O, traceable to the WMO-N2O_X2006 calibration scale (Hall et al., 2007). Thus, the
cross-calibration makes the QCLS N2O measurements comparable to the measurements of
other instruments which also use calibration standards that are traceable to the WMO scale.
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Section 4.5 provides a comparison of the QCLS and PFP N2O measurements conducted during
ACT-America.

For the cross-calibration of a secondary standard in the laboratory, three calibration standards are
attached to the in-flight calibration system described in Section 3.1.3. These three standards are
two primary standards and the secondary standard to be calibrated. The remaining QCLS setup
is the same as during airborne operation. The calibration sequence includes the measurement
of the two primary standards, followed by the measurement of the secondary standard and a
repeated measurement of the two primary standards. Each gas cylinder is thereby measured
for 30 s. The respective calibration curves (see Equation 3.2) are determined for both primary
standards measured at the beginning and at the end of each calibration sequence. In between, the
calibration curve is linearly interpolated to enable the correction of any instrument drifts during
the cross-calibration. Finally, the interpolation is applied to calibrate the secondary standard. In
Figure 4.2, the calibrated values of the secondary standards is displayed. The shown calibration
curve is the average over all calibration curves derived during the cross-calibration of the ten
secondary standards. With a slope of 𝑚 = 1.002 ± 0.002 and a y-intercept of 𝑏 = 4.655 ± 0.591
variations among them are small. Table 4.1 summarizes the primary and secondary standards
along with their reported and cross-calibrated N2O abundances and uncertainties.
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Figure 4.2: NOAA calibration of secondary calibration standards. Before and after each sec-
ondary standard (triangles), both primary (NOAA) standards are measured and a
calibration curve is determined. Here, the average of all calibration curves is dis-
played (red dashed line; 𝑥𝑚 and 𝑥𝑐 is the measured and calibrated dry air mole
fraction, respectively). Uncertainties are too small to be visible, but they are pro-
vided in Table 4.1. Cylinders which are only used in the laboratory and not for
in-flight calibrations are underlined.
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Calibration standard: Reported N2O in ppb: Calibrated N2O in ppb:

Primary (NOAA)
CC726922 325.77 ± 0.40 ∗ –
CC720371 340.25 ± 0.40 ∗ –

Secondary (Air Liquide)
D2NWWWF 270 ± 27 342.0 ± 0.9
D3FGWMF 330 ± 33 330.3 ± 0.9
D3T1C49 265 ± 27 338.0 ± 0.9
D24L6F7 312 ± 31 321.1 ± 0.9
D4A8LHG 335 ± 34 331.7 ± 0.9
D5AA6X2 373 ± 37 311.0 ± 0.9
D5A888C 307 ± 31 304.9 ± 0.9
D0REFDM 340 ± 34 331.0 ± 0.9
D1H11U8 329 ± 33 322.7 ± 0.9
∗ NOAA reports expanded or total uncertainties with a ∼95 % confidence level

Table 4.1: Employed primary (NOAA) and secondary calibration standards (Air Liquide) with
their N2O abundance. The first column lists the gas cylinder number. Standards which
are only used in the laboratory and not for in-flight calibrations are underlined. The
second column lists the N2O mole fractions with their 1𝜎 uncertainties stated by Air
Liquide and NOAA (calibration certificate numbers CC726922-A and CC720371-A;
NOAA reports expanded uncertainties). All secondary standards were ordered with a
target N2O abundance of 328 ± 33 ppb. The third column lists the NOAA-calibrated
N2O abundance of the secondary standards after cross-calibration. The primary
standards are assumed as the “truth”.

4.3 Cell Pressure Correction

Above a certain altitude the QCLS cannot sustain the cell pressure (𝑝𝑐𝑒𝑙𝑙) since the ambient
pressure at the inlet becomes too low. This is visualized in Figure 4.3, which shows the cell
pressure of the QCLS during the ACT-America research flight on 27 Jul 2019. The cell pressure
is regulated to 𝑝𝑠𝑒𝑡 = 45 mbar. As long as the C-130 stays below approximately ℎ𝑝 = 4.8 km
above MSL the cell pressure is maintained. If the aircraft climbs further, the cell pressure drops
constantly, reaching values of 15 mbar at highest C-130 flight altitudes of approximately 9 km
above MSL. During the regular in-flight calibrations, 𝑝𝑠𝑒𝑡 sets up again since more sample or
calibration air is in the system. Thus, in high altitudes calibration gas is measured at different
conditions than ambient air, which introduces errors in the calibration procedure and in the final
absolute mole fractions. With a laboratory experiment a correction for this error is derived.
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Figure 4.3: Part of the QCLS cell pressure 𝑝𝑐𝑒𝑙𝑙 time series of the research flight at 27 Jun 2019.
The cell pressure is regulated to 𝑝𝑠𝑒𝑡 = 45 mbar. Above an approximate altitude of
ℎ𝑝 = 4.8 km above MSL the cell pressure drops when measuring ambient air while
during calibration (orange-shaded) the cell pressure remains stable at 45 mbar.

In the laboratory experiment the influence of cell pressure variations between 50 mbar and
13 mbar on the retrieved N2O dry air mole fraction is analyzed to derive a pressure correction.
This cell pressure range covers the range experienced during ACT-America. The QCLS is
set up as during field deployment (see Section 3.1), with one secondary standard and no zero
air attached to the calibration system (see Section 3.1.3). The calibration gas is measured for
approximately 20 s at a cell pressure of 50 mbar. Then, 𝑝𝑐𝑒𝑙𝑙 is subsequently reduced by 5 mbar
until a cell pressure of 13 mbar is reached (the last step is only 2 mbar). At each interval the
calibration gas is again measured for 20 s. This enables to quantify the response of the N2O
retrieval on a varying cell pressure. Afterwards, the calibration gas is measured again at 𝑝𝑠𝑒𝑡
(i.e., 45 mbar) to correct the instrument drift during the experiment assuming a linear drift.
However, the influence of the drift is one order of magnitude smaller than the effect due to cell
pressure variations.

The above described experiment has been performed with eight different calibration standards
(listed in Table 4.1). The results are displayed in Figure 4.4. The retrieved N2O dry air
mole fraction of all gas cylinders increases with a decreasing cell pressure (see Figure 4.4a).
From highest to lowest 𝑝𝑐𝑒𝑙𝑙 , the difference in measured N2O mole fractions is on average
approximately 2 ppb, which is significant when it comes to typical ambient N2O enhancements.
By considering the deviation of the retrieved mole fraction relative to the retrieval at the setpoint
cell pressure 𝑝𝑠𝑒𝑡 = 45 mbar (𝑃(𝑝𝑐𝑒𝑙𝑙 , 𝑝𝑠𝑒𝑡)), the different gas cylinders can be compared (see
Figure 4.4b). In all eight experiments a similar, non-linear cell pressure dependency is observed.
Two characteristics stand out: First, between a cell pressure of 40 mbar and 35 mbar there is
a plateau. Second, there is a significant spread in the strength of deviation among the gas
cylinders. At a cell pressure of 13 mbar the deviations range between 0.5 % and 0.8 %. No
reason for these two features could be found. All experiments were conducted with the same
setup and under the same conditions. There is also neither a dependency on the order of the
conducted experiments nor on the total N2O abundance in the gas cylinders. For the correction
of the field measurements, the discrete average curve 𝑃(𝑝𝑐𝑒𝑙𝑙 , 𝑝𝑠𝑒𝑡) is used. Intermediate cell
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pressures are interpolated linearly. Let 𝑐(𝑝𝑐𝑒𝑙𝑙) be the retrieved N2O dry air mole fraction
measured at 𝑝𝑐𝑒𝑙𝑙 , then the retrieval is corrected to 𝑝𝑠𝑒𝑡 via:

𝑐(𝑝𝑠𝑒𝑡) = 𝑐(𝑝𝑐𝑒𝑙𝑙)
𝑃(𝑝𝑐𝑒𝑙𝑙 , 𝑝𝑠𝑒𝑡) + 100 %

(4.2)

This correction is applied to the whole ACT-America 2019 dataset before calibration.
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Figure 4.4: Cell pressure dependence of retrieved N2O dry air mole fraction. With the QCLS
eight calibration standards have been measured at different cell pressures 𝑝𝑐𝑒𝑙𝑙 . (a)
Retrieved N2O dry air mole fraction vs. 𝑝𝑐𝑒𝑙𝑙 . (b) Deviation of the retrieved mole
fraction relative to the retrieval at a cell pressure of 𝑝𝑠𝑒𝑡 = 45 mbar (𝑃(𝑝𝑐𝑒𝑙𝑙 , 𝑝𝑠𝑒𝑡)).
The average over the eight calibration standards 𝑃(𝑝𝑐𝑒𝑙𝑙 , 𝑝𝑠𝑒𝑡) is used to correct the
cell pressure dependency (see Equation 4.2).

To evaluate the quality of the presented correction, N2O measurements of the QCLS are com-
pared to 120 PFP samples which have been collected onboard the C-130 during the ACT-Amer-
ica field deployments. Although the PFP samples are not perfect (uncertainty of N2O is
±0.4 ppb), they provide the best available measurements of trace gas mole fractions. The root-
mean-square error (RMSE) is used as a measure for the discrepancy between both datasets. Let
𝑐𝑖PFP be the 𝑖th of 𝑁 PFP N2O measurements, and let 𝑐𝑖 be the corresponding calibrated QCLS
dry air mole fraction averaged over the sampling duration of the PFP sample, then the RMSE is
defined as:

RMSE =

√︄∑𝑁
𝑖=1(𝑐𝑖 − 𝑐𝑖PFP)2

𝑁
(4.3)

With the cell pressure correction, the RMSE is reduced from 2.1 ppb to 1.9 ppb (see Table 4.2
and Figure 4.6a for a scatter plot between 𝑐𝑖 and 𝑐𝑖PFP). The remaining RMSE is mostly caused
by uncertainties in the QCLS H2O retrieval, which is used to determine dry air mole fractions
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of N2O. This is further examined in the next Section 4.4. However, the RMSE cannot become
zero due to two reasons. First, PFP measurements are not perfect as mentioned above. Second,
the comparison between both instruments is not perfect. A PFP collects sample air for several
seconds or a minute and, hence, sees a N2O abundance averaged over this timeframe. This
average is compared to the corresponding average of the higher-frequent QCLS measurements.
If the time axes of both datasets are not perfectly aligned due to, for example, different inlet
line lengths, the QCLS and PFP measurements describe different air mixtures. The analyzed
air mixture might also differ among both instruments if there are gaps in the averaged QCLS
data due to, for example, calibration. Furthermore, if the PFP samples are stored over a long
period before they are analyzed, the composition of the sampled air might change leading also
to a discrepancy between QCLS and PFP measurements.

4.4 Water Vapor Correction

Since the QCLS does not dry the sample air, the water vapor abundance must be known,
to confidently report N2O dry air mole fractions (see Section 3.1.4). However, the QCLS
water vapor measurement is not in-flight calibrated. Hence, calculating the water dilution
(Equation 3.4) might introduce additional uncertainties to the final N2O retrieval. By comparing
QCLS water vapor measurements with other instruments the influence of this uncertainty
source can be estimated. During ACT-America onboard NASA’s C-130 two more instruments
measuring H2O were deployed; an in situ infrared cavity ring-down spectroscopy PICARRO
G2301-m and an Edgetech Vigilant 137 hygrometer (Wei et al., 2021). Their inlets were next to
the inlet of the QCLS and, thus, it can be assumed that all three H2O analyzers saw the same air
masses. Figure 4.5 shows their water vapor time series during the research flight on 04 Jul 2019.
Overall, the measurements show the same signals. However, for H2O mole fractions lower than
roughly 1.5 % the QCLS and PICARRO are close to each other but both are significantly lower
than the hygrometer. On the contrary, at higher water vapor abundances than 1.5 %, the QCLS
is close to the hygrometer but both are significantly higher than the PICARRO. For example,
at around 20:00 UTC the PICARRO states a H2O mole fraction of around 2.4 %, whereas the
QCLS and hygrometer report around 2.8 %. If the lower PICARRO value and not the QCLS
value would be used to calculate the water dilution (Equation 3.4), the resulting N2O dry air
mole fraction would be lower. For a N2O abundance of 330 ppb in moist air, the difference
would be 1.4 ppb, which is significant when it comes to typical ambient N2O enhancements.
The QCLS as well as the PICARRO are not optimized for H2O measurements, whereas the
hygrometer is. However, the hygrometer experienced issues during its field deployment (as
communicated at instrument status reports during the ACT-America field campaigns). For that
reason, it is difficult to judge which H2O time series is the most trustworthy one and, hence,
whether or to what extent the QCLS H2O mole fractions have to be corrected. Therefore, PFP
N2O measurements have been utilized to minimize errors in N2O caused by uncertainties in
H2O. This is described in the following.
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Figure 4.5: H2O measurements of the QCLS, PICARRO, and hygrometer onboard NASA’s
C-130 during the research flight on 04 Jul 2019.

The approach is to multiply the calibrated N2O dry air mole fraction retrieved with the QCLS
𝑐 by a factor 𝑊 (𝑐H2O), which depends on the QCLS water vapor measurement 𝑐H2O, to get a
corrected N2O mole fraction 𝑐∗:

𝑐∗ = 𝑐 ·𝑊 (𝑐H2O) (4.4)

By minimizing the RMSE between PFP and QCLS N2O mole fractions (see Equation 4.3),
𝑊 (𝑐H2O) is determined. The minimization is performed with 𝑊 (𝑐H2O) being a first to third
degree polynomial. Additionally, each minimization is executed with and without the cell
pressure correction described in Section 4.3 to investigate whether there are synergies that
worsen the results. The resulting RMSE are listed in Table 4.2. The cell pressure correction
always reduces the RMSE in the order of 0.1 ppb. The water vapor correction leads to a further
significant reduction. With the following linear 𝑊 (𝑐H2O) the lowest RMSE is achieved:

𝑊 (𝑐H2O) = 1.0 − 0.3365 · 𝑐H2O (4.5)

Overall, by applying the cell pressure and water vapor correction, the RMSE is significantly
lowered from 2.1 ppb to 0.7 ppb. It is important to note here that the water vapor correction relies
on imperfect PFP measurements and also the comparison between QCLS and PFP datasets is not
perfect limiting the gain of the correction (see Section 4.3). It is planned to examine the water
vapor correction experimentally in the laboratory, independently of the PFP measurements.
However, due to the tight schedule of the QCLS and changes in the hardware configuration, this
has not been possible, yet.
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RMSE in ppb Cell pressure correction:
with without

H2O correction
(polynomial degree
of 𝑊 (𝑐H2O)):

without 1.9 2.1
linear 0.7 0.8
quadratic 0.8 1.3
cubic 1.0 1.4

Table 4.2: RMSE between PFP and QCLS N2O measurements conducted onboard NASA’s
C-130 during the ACT-America 2019 campaign (Equation 4.3). The RMSE has been
calculated for cell pressure (see Section 4.3) and H2O corrected (see Section 4.4)
QCLS data, as well as for unmodified data. In the course of the water vapor correction,
for the underlying function of 𝑊 (𝑐H2O) (Equation 4.4) a linear, quadratic, and cubic
polynomial is considered.

4.5 Data Quality

The quality of the QCLS N2O data during ACT-America is assessed against PFP samples since
those provide the best available in situ GHG measurements. In total, 120 PFP datapoints are
used. Figure 4.6a displays PFP N2O mole fractions against the corresponding QCLS mole
fractions averaged over the PFP sampling times. The linear regression between QCLS and PFP
datapoints yields a slope of 0.99 and y-intercept of 3.03, showing a strong agreement between
both datasets. There is some discrepancy because the comparison between both datasets is not
perfect since both instruments might describe slightly different air mixtures (see Section 4.3).
A histogram of the residuals of both datasets is depicted in Figure 4.6b. The average residuum is
𝜇 = 0.1 ppb with a standard deviation of 𝜎 = 0.7 ppb. The distribution appears to be Gaussian
(orange curve) indicating that the residuals are driven by random processes or noise. The (near)
zero 𝜇 is expected because in the course of the water vapor correction in Section 4.4, the distance
between QCLS and PFP has been minimized. Kostinek et al., 2019 report a 𝜎 of 1.1 ppb for the
residuals of five research flights conducted during the ACT-America field deployment in fall
2017. Reprocessing these five flights with the here presented approach results in a significantly
lower 𝜎 of 0.5 ppb. It has to be noted here that for the fall 2017 campaign no primary/NOAA
standards were available to cross-calibrate N2O in the secondary standards, which were used
for in-flight calibrations. Hence, the N2O abundance in the secondary standards has been
corrected so that after the calibration the offset between QCLS and PFP N2O measurements
becomes minimal. Overall, the proposed data processing approach significantly increases the
compatibility of the N2O products of both instruments.

As shown in the previous Sections 4.3 and 4.4, the QCLS N2O retrieval is influenced by
cell pressure variations during in-flight calibrations and uncertainties in the H2O retrieval.
Correcting these two error sources significantly improves the N2O retrieval. However, there are
further potential error sources. Pressure, temperature, and water vapor directly influence the
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Figure 4.6: (a) QCLS vs. PFP N2O dry air mole fraction measured during ACT-America 2019.
(b) Histogram of the residuals between QCLS and PFP measurements. The displayed
normal distribution (orange) is defined by the mean (𝜇 = 0.1 ppb) and standard
deviation (𝜎 = 0.7 ppb) of the residuals. In total, 120 PFP N2O samples are used.

line shapes in the absorption spectrum (see Section 2.3.2) and, thus, changes in these variables
might affect the N2O retrieval leading to uncertainties. To investigate these potential error
sources, the water vapor correction approach (see Section 4.4) is employed to correct the QCLS
N2O retrieval for further variables than the H2O retrieval. Temperature in the sample cell as
well as temperature, pressure, and H2O in the open path (see Section 3.1.1) are considered.
With none of these variables a significant improvement of the N2O retrieval could be achieved.
Also linear combinations of these variables have been tested without a benefit. Thus, the QCLS
N2O retrieval is insensitive to changes of environmental conditions in the open path and to
variations of temperature in the sample cell.

To sum up, a unique high resolution airborne in situ N2O dataset over the U.S. has been produced
suitable for extensive top-down studies. Frequent in-flight calibrations and calibration standards
traceable to the WMO scale have enabled accurate measurements which are comparable to other
instruments. By correcting the influence of cell pressure variations and uncertainties in the H2O
measurements on the N2O retrieval, the robustness of the QCLS N2O dataset could be increased
significantly.





5 Quantifying U.S. Midwest N2O
Emissions

Parts of the text reproduced here has been published in Eckl et al. (2021) (see p. ix).

In this chapter, we quantify N2O emissions for several flights conducted in parts of the U.S.
Midwest in October 2017 and June/July 2019 with a top-down approach (RQ1). Unlike previous
studies which have relied on observations with limited spatial coverage (e.g., Kort et al., 2008;
Miller et al., 2012; Fu et al., 2017), this study uses continuous airborne in situ measurements of
N2O. By combining these observations with forward model simulations, we optimize agricul-
tural fluxes from EDGAR4.3.2 and EDGAR5.0 (see Section 3.4.1) to quantify Midwest N2O
emissions. The employed method was already successfully applied in several CH4 top-down
studies (e.g., Barkley et al., 2017; Barkley et al., 2019a; Barkley et al., 2019b). The derived
emission rates are finally compared to flux estimates of direct soil emissions produced with
EDGAR and DayCent (see Section 3.4.2) (RQ2).

In the following, Section 5.1 describes the observations which are used for this study. The model
setup and optimization strategy are depicted in Section 5.2 and 5.3, respectively. Section 5.4
provides a comparison of EDGAR and DayCent N2O flux estimates. Next, in Section 5.5 the
results of this study are presented and discussed. Finally, Section 5.6 summarizes this chapter.

5.1 Observations in Fall 2017 and Summer 2019

Continuous in situ N2O measurements conducted with the QCLS onboard NASA’s C-130
during the ACT-America fall 2017 and summer 2019 field campaigns are the data basis for this
study (see Section 3.2). As the QCLS time series exhibit some data gaps due to calibration
and minor instrument issues, PFP samples are merged into the continuous dataset to minimize
them. N2O plumes from surface sources are primarily found and transported in the PBL (see
Section 2.1.2). Hence, to quantify U.S. Midwest emissions, N2O measurements from transects
within the PBL, above the study region are necessary. Additionally, these transects should last at
least several minutes, so that a comparison between model output and observations is possible.

Ten flights have been selected that fulfill these requirements, four flights from 2017 (October)
and six flights from 2019 (June/July). For each flight, the C-130 flew transects well within
the PBL (at ∼1000 ft above ground level (AGL)) for at least 45 min during which air above
the Midwest was sampled. Figure 5.1a shows the selected transects, color-coded with the
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Figure 5.1: Selected PBL transects (at ∼1000 ft AGL) of the ACT-America campaigns in 2017
and 2019, color-coded with observed N2O dry air mole fractions. The Midwest
region used for emission estimation in the model is encircled by a thick black line.
(b) Ten day HYSPLIT footprints of all PFP samples collected within the transects
presented in (a). (c) Time series of N2O dry air mole fraction of the flight on
07 Jul 2019 with error bars indicating ±0.8 ppb and coincident PFP measurements
of N2O (±0.4 ppb). The corresponding transect in (a) is encircled in red and was
flown in direction of the red arrow. (Figure (a) and (c) are adapted from Eckl et al.,
2021)
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observed N2O dry air mole fractions. Most of the Midwest is covered by these flights. Broad
plumes spanning up to hundreds of kilometers have been caught. For example, during the
transect on July 07, 2019 (see Figure 5.1c) extraordinary N2O mole fractions up to 341 ppb
have been measured while crossing Kentucky and nearly whole Missouri from east to west.
HYSPLIT footprints quantitatively describe how surface emissions affect measurements (see
Section 3.3.2) and help to constrain the region which is investigated within this study. The
summed ten day footprints of all PFPs which were collected during the PBL transects are
displayed in Figure 5.1b. While the origin of some measured air is south of the Midwest,
the predominant portion originates from the study region, mainly from the center. Thus, this
dataset is well qualified for the intended study. We are not aware of comparable continuous
N2O measurements spanning most of the Midwest across two seasons, highlighting the unique
opportunity to quantify Midwest emissions with these data.

5.2 Model Data

The goal is to model the observed N2O time series which were presented in Section 5.1.
Therefore, WRF-Chem (see Section 3.3.1) is used to propagate N2O enhancements emitted from
emission inventories through the atmosphere. Each transect is simulated twice with different soil
N2O fluxes obtained from EDGAR4.3.2/EDGAR2 and EDGAR5.0/EDGAR2 (anthropogenic
emissions, i.e. agricultural 𝐸𝐴𝐺𝑅 and non-agricultural 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, from v4.3.2/v5.0 and natural
emissions 𝐸𝑁 from v2; see Section 3.4.1). Initial N2O concentrations and the inflow at the
boundaries of the model domain are set to zero. Thus, we simulate only enhancements caused by
emissions within the model domain during the time of the simulation. This additionally implies
the assumption that all relevant N2O sources are included in 𝐸𝐴𝐺𝑅, 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, and 𝐸𝑁 . Due to
N2O’s long atmospheric lifetime of over 100 yr (see Section 2.2), we can neglect all chemically
induced concentration changes in our simulations and, hence, treat N2O as a passive tracer. Each
simulation is performed with three different meteorological initial and boundary conditions:
First, the 5th generation atmospheric reanalysis data (ERA5, 2017; Hersbach et al., 2020).
It is a product of the European Centre for Medium-Range Weather Forecasts (ECMWF) and
provides hourly global data on a 30 km horizontal grid. Second, the Global Data Assimilation
System Final analysis (GDAS-FNL, 2015) of the National Centers for Environmental Prediction
(NCEP). It also exhibits a global coverage with a horizontal resolution of 0.25° and is prepared
every six hours. Third, NCEP’s North American Regional Reanalysis (NARR, 2005). NARR
covers North America with a horizontal resolution of 32 km and a temporal resolution of 3 h.
As in Barkley et al. (2019a), we use these different simulations to estimate model transport
errors (Díaz-Isaac et al., 2018) (see Section 5.3.2). The employed model physics configuration
is summarized in Table 5.1.

The model domain consists of an outer (D01) and inner domain (D02) with a horizontal
resolution of 15 km × 15 km and 3 km × 3 km, respectively. Figure 5.2 demonstrates the setup.
The outer domain, centered over the Midwest, covers nearly the whole continental U.S., northern
Mexico and southern Canada, whereas the extent and position of the inner domain is separately
chosen for each flight so that the PBL transects are spaciously encapsulated. Figure 5.2 gives
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Physical process: Used scheme: Reference:

Cloud microphysics Thompson Thompson et al. (2008)
Longwave radiation RRTMG Iacono et al. (2008)
Shortwave radiation RRTMG Iacono et al. (2008)
Cumulus parameterization Kain-Fritsch (just D01) Kain (2004)
PBL MYNN 2.5 level TKE Nakanishi and Niino (2006)
Land surface Noah land-surface model Chen and Dudhia (2001)
Surface layer MYNN Nakanishi and Niino (2006)

Table 5.1: Employed WRF physics configuration. For not listed physical processes, the WRF
defaults were used. The cumulus parameterization was only applied in the outer
domain (D01) and switched off in the inner domain. Detailed explanations of each
scheme can be found in the given references and in the WRF user guide (https:
//www2.mmm.ucar.edu/wrf/users/).

an example for the setup of D02 for the flight conducted on Oct 10, 2017. Vertically, both
domains consist of 50 terrain-following layers, extending up to a pressure level of 100 hPa
(∼16 km above MSL). From the surface up to roughly 800 hPa (∼2 km above MSL) the vertical
layers are denser to optimally resolve mainly the PBL (see Section 2.1.2), where the observed
N2O plumes are located. Two-way nesting enables the propagation of information between both
domains. Output is generated every 5 min.

To ensure the optimal meteorological model solution and with it the optimal N2O transport
the WRF Four-Dimensional Data Assimilation (FDDA) (Deng et al., 2009) feature is applied.
FDDA allows for observation and analysis nudging. In regular intervals temperature, horizontal
wind, and water vapor fields in the model simulation are nudged towards the “truth” (obser-
vations) and the “best guess of the state of the atmosphere” (analysis fields) to reduce model
errors. Here, the same nudging strategy as in Rogers et al. (2013) and Barkley et al. (2017) is
used. While observation as well as analysis nudging is employed in the outer domain, in the
inner domain only observations are nudged. Meteorological observations are obtained from
global datasets provided by NCEP (NCEP, 2004a, 2004b). A detailed listing of the employed
FDDA configuration and remaining WRF settings is provided in Section A.4 in the appendix.

5.3 Model Optimization Approach (Method 1)

The goal of the model optimization in this study is to minimize the difference between the obser-
vational and model data by modifying the N2O surface fluxes which are employed in the course
of the simulations, thus quantifying Midwest emissions. Therefore, we use an approach similar
to the optimization described in Barkley et al. (2017). The underlying methodology is presented
in Section 5.3.1, followed by a description of the uncertainty assessment in Section 5.3.2.

https://www2.mmm.ucar.edu/wrf/users/
https://www2.mmm.ucar.edu/wrf/users/
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Figure 5.2: WRF domain setup. The outer domain (D01, blue) is the same for each simulation.
The inner domain (D02, red) is separately chosen for each model run. The displayed
D02 corresponds to the simulation performed for the flight on Oct 10, 2017. The
low level leg of the flight is indicated in orange. The U.S. Midwest is encircled
in white. Two-way nesting enables the propagation of information between both
domains.

5.3.1 Methodology

The output of the model simulations is sampled along each research flight by extracting data at
the grid points which are temporally and spatially closest to the measurements. This delivers
modeled N2O enhancements along the transects 𝑐𝑒𝑛ℎ𝑚𝑜𝑑 which are caused be the incorporated
emission inventories. To be able to directly compare them to the observed absolute N2O dry
air mole fractions 𝑐𝑜𝑏𝑠, we first calculate the observed enhancements 𝑐𝑒𝑛ℎ𝑜𝑏𝑠 by subtracting a
background mole fraction 𝑐

𝑏𝑔
𝑜𝑏𝑠 from 𝑐𝑜𝑏𝑠:

𝑐𝑒𝑛ℎ𝑜𝑏𝑠 = 𝑐𝑜𝑏𝑠 − 𝑐
𝑏𝑔
𝑜𝑏𝑠 (5.1)

We derive one background for each campaign by taking the 2nd percentile of all PBL transects
of the entire campaign (see Figure 5.3). This results in 329.9 ppb and 331.3 ppb for the fall 2017
and summer 2019 field deployment, respectively. The background is defined campaign-wise
rather than transect-wise because during some transects we were not able to measure background
mole fractions as we started a transect within a plume and did not exit the plume inside of the
PBL (see Figure 5.1c).

We then compare modeled N2O enhancements from our prior emissions (𝐸𝐴𝐺𝑅+𝐸𝑛𝑜𝑛𝐴𝐺𝑅+𝐸𝑁 )
to the observed enhancements. Differences between both are minimized for each flight by scaling
agricultural emissions 𝐸𝐴𝐺𝑅 with a factor 𝐹𝐴𝐺𝑅, thus quantifying emissions. This process relies
on the assumption that the discrepancy between model and observation is primarily driven by
errors in 𝐸𝐴𝐺𝑅. Since agricultural emissions are the dominant N2O source in our flights,
we assume that errors in 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 and 𝐸𝑁 are inconsequential to the overall solution. The
complexity of soil N2O emissions suggests that 𝐸𝐴𝐺𝑅 exhibits a much higher uncertainty than
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Figure 5.3: Percentiles of QCLS N2O measurements conducted during the ACT-America fall
2017 and summer 2019 field campaigns. Low level leg data (at ∼1000 ft AGL) of all
conducted flights were merged and the corresponding percentiles were calculated.
The 2nd percentile defines the observed N2O background mole fraction. (Figure
adapted from Eckl et al., 2021)

other sources (see Section 2.2.2 and Butterbach-Bahl et al., 2013), supporting the presented
approach.

As an equation, this optimization technique is described by calculating 𝐹𝐴𝐺𝑅 through the
minimization of the following cost function:

𝐽 (𝐹𝐴𝐺𝑅) = |𝐴𝑜𝑏𝑠 − (𝐹𝐴𝐺𝑅 · 𝐴𝐴𝐺𝑅 + 𝐴𝑛𝑜𝑛𝐴𝐺𝑅 + 𝐴𝑁 )︸                                    ︷︷                                    ︸
=𝐴𝑚𝑜𝑑 (𝐹𝐴𝐺𝑅)

| (5.2)

𝐴𝑜𝑏𝑠 and 𝐴𝑚𝑜𝑑 is the time integral along a transect of observed and modeled enhancements,
respectively, and are calculated via:

𝐴𝑚𝑜𝑑/𝑜𝑏𝑠 =
∫ 𝑡𝑒𝑛𝑑

𝑡0

d𝑡 𝑐𝑒𝑛ℎ𝑚𝑜𝑑/𝑜𝑏𝑠 (5.3)

Here, 𝑡0 denotes the start time and 𝑡𝑒𝑛𝑑 the end time of the transect. 𝐴𝑚𝑜𝑑 consists of an agri-
cultural portion 𝐴𝐴𝐺𝑅 scaleable with 𝐹𝐴𝐺𝑅, a non-agricultural anthropogenic portion 𝐴𝑛𝑜𝑛𝐴𝐺𝑅,
and a natural portion 𝐴𝑁 . The integrals 𝐴𝐴𝐺𝑅, 𝐴𝑛𝑜𝑛𝐴𝐺𝑅, and 𝐴𝑁 are calculated analogously
to 𝐴𝑜𝑏𝑠 and 𝐴𝑚𝑜𝑑 following Equation 5.3. We compare integrals rather than enhancements
because we are interested in the amount of N2O emitted to the atmosphere. Neither the model
transport nor the inventory is perfect and even small uncertainties in either of them could cause
a shift or deformation in the alignment of the modeled plume relative to the observed plume. By
minimizing the difference in the total N2O enhancements rather than the point-by-point absolute
error, we preserve the capability to solve for total N2O emissions even when the modeled and
observed plumes do not align. Overall, as all components of the cost function are scalars,
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𝐽 (𝐹𝐴𝐺𝑅) is minimal when equal to zero resulting in:

𝐹𝐴𝐺𝑅 =
𝐴𝑜𝑏𝑠 − 𝐴𝑛𝑜𝑛𝐴𝐺𝑅 − 𝐴𝑁

𝐴𝐴𝐺𝑅
(5.4)

However, a such derived agricultural scaling factor𝐹𝐴𝐺𝑅 is determined by enhancement integrals
and, hence, might not be directly relatable to the gridded surface fluxes 𝐸𝐴𝐺𝑅 if there is a
nonlinear relationship between emissions and atmospheric N2O enhancements. To derive the
relationship between 𝐴𝐴𝐺𝑅 and 𝐸𝐴𝐺𝑅 we simulate each of the ten flights with a 𝐸𝐴𝐺𝑅 multiplied
by 10, 20, and 30 (𝐹𝐸

𝐴𝐺𝑅) and compare these factors with the resulting magnitude of enlargement
in 𝐴𝐴𝐺𝑅 (i.e., 𝐹𝐴𝐺𝑅). A linear regression between 𝐹𝐸

𝐴𝐺𝑅 and 𝐹𝐴𝐺𝑅 exhibits negligible residuals
and a slope and y-intercept which differs insignificantly from one and zero, respectively, proving
the equivalence of 𝐹𝐸

𝐴𝐺𝑅 and 𝐹𝐴𝐺𝑅 (see Table 5.2). Thus, due to the linearity between 𝐴𝐴𝐺𝑅

and 𝐸𝐴𝐺𝑅, a 𝐹𝐴𝐺𝑅 derived with Equation 5.4 denotes a 𝐹𝐴𝐺𝑅-folded 𝐸𝐴𝐺𝑅.

EDGAR Slope− 1.0 y-intercept Residual 𝑅 − 1.0
version:

v4.3.2 −0.05 × 10−3 −0.47 × 10−3 0.02 × 10−3 −0.02 × 10−7

v5.0 1.28 × 10−3 −1.26 × 10−3 3.39 × 10−3 −3.59 × 10−7

Table 5.2: Results of a linear regression between 𝐹𝐸
𝐴𝐺𝑅 and 𝐹𝐴𝐺𝑅 and their correlation 𝑅. Each

of the ten flights is simulated with 𝐸𝐴𝐺𝑅 multiplied by 10, 20, and 30 (𝐹𝐸
𝐴𝐺𝑅). 𝐹𝐴𝐺𝑅

describes the corresponding magnitude of enlargement in 𝐴𝐴𝐺𝑅. The regression
is performed via a least squares polynomial fit. The residual is the squared Eu-
clidean 2-norm. (Table adapted from Eckl et al., 2021)

5.3.2 Uncertainty Assessment

We adopted the method of Barkley et al. (2019a) to assess uncertainties in our solutions. 𝐹𝐴𝐺𝑅

is affected by uncertainties in the following variables:

1. Observed background mole fraction 𝑐
𝑏𝑔
𝑜𝑏𝑠

2. Integral of anthropogenic non-agricultural emissions 𝐴𝑛𝑜𝑛𝐴𝐺𝑅

3. Integral of natural emissions 𝐴𝑁

4. Model transport
5. Model wind speed and PBL height
6. Spatial distribution in EDGAR emissions

We quantify the influence of uncertainties 1 to 4 with a Monte Carlo approach. For each flight we
repeat the optimization 10 000 times with a perturbed background mole fraction, 𝐴𝑛𝑜𝑛𝐴𝐺𝑅, and
𝐴𝑁 . For the background we add a normal random number with 𝜇 = 0 ppb and 𝜎 = ±0.5 ppb for
2017 and 𝜎 = ±0.9 ppb for 2019 to the observation derived value. These uncertainties are the
standard deviation of the 2nd percentiles of all PBL transects of a whole campaign. Actually, the
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background uncertainties are dominated by large scale circulations and long term variability,
such as seasons, and are probably not normally distributed. However, too few observations
prevent the determination of the actual distribution. Here, we assume that a normal distribution
is the best first order guess. 𝐴𝑛𝑜𝑛𝐴𝐺𝑅 and 𝐴𝑁 are independently multiplied by a factor drawn
from a normal distribution with 𝜇 = 1.0 and 𝜎 = ±0.21 and 𝜎 = ±0.42, respectively. Janssens-
Maenhout et al. (2019) states the relative 1𝜎 uncertainty of total EDGAR4.3.2 N2O emissions
in the U.S. to be 21 %. No sector-specific uncertainty is provided. Hence, we use this value
as a rough estimate for the uncertainty of only non-agricultural emissions. As we could not
find uncertainty estimates for EDGAR5.0 and EDGAR2 we assume them to be the same and
twice as in EDGAR4.3.2, respectively. For days with large agricultural scaling factors, 𝐹𝐴𝐺𝑅

the uncertainties of 𝐴𝑛𝑜𝑛𝐴𝐺𝑅 and 𝐴𝑁 affect the results only marginally. Hence, this uncertainty
analysis is implicitly based on the assumption that 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 and 𝐸𝑁 are well represented in the
inventories compared to 𝐸𝐴𝐺𝑅. Following Butterbach-Bahl et al. (2013), mainly N2O emissions
from soils account for the uncertainty in N2O budgets on regional and national scales, which
supports our assumption. To account for the model transport error, we randomly select one
of the three model runs with different meteorological initial and boundary conditions, creating
variability in the plume shape. The resulting spread in 𝐹𝐴𝐺𝑅 is used as its uncertainty.

The modeled wind speed and PBL height uncertainty (source 5) cannot be covered by the
Monte Carlo simulation. The higher these variables, the more diluted the atmospheric N2O
enhancements. Thus, errors in the modeled wind speed and PBL height cause lower or higher
simulated enhancements, thus producing biases. Following Barkley et al. (2017) we correct
for those biases by applying a scaling factor based on the differences between the modeled and
observed wind speed and PBL height:

𝑐∗𝑚𝑜𝑑 = 𝑐𝑒𝑛ℎ𝑚𝑜𝑑 ·
𝑈𝑚𝑜𝑑 · 𝑍𝑚𝑜𝑑

𝑈𝑜𝑏𝑠 · 𝑍𝑜𝑏𝑠
(5.5)

Here, 𝑐𝑒𝑛ℎ𝑚𝑜𝑑 is the modeled N2O enhancement along a transect and 𝑐∗𝑚𝑜𝑑 the corresponding bias
corrected one, which is further used for the model optimization. 𝑈𝑚𝑜𝑑/𝑈𝑜𝑏𝑠 is the modeled/ob-
served wind speed averaged along the transect. For the observed PBL height 𝑍𝑜𝑏𝑠 we use in situ
soundings conducted with the C-130 at the beginning, the end, and during PBL transects. For
each flown sounding the PBL height is determined as the lowest (regarding altitude) significant
maximum of the observed virtual potential temperature (see Appendix A.2) lapse rate profile
(Dai et al., 2014). The average of all determined PBL heights defines 𝑍𝑜𝑏𝑠 of the transect. For
the modeled PBL height 𝑍𝑚𝑜𝑑 we use the modeled profiles at the grid point closest the the flown
soundings and perform the same calculations as for 𝑍𝑜𝑏𝑠. However, there is a caveat here. We
correct for model errors at the position of the aircraft at a certain time but we are simulating
large areas for several days. The model error varies over space and time, thus, limiting the
benefit of the posed bias correction. Table 5.3 summarizes the effect of the bias correction. On
average, the modeled wind speed and PBL height is 8 % and 3 % higher than the observations,
respectively. As shown in the following Section 5.5, the impact of this correction on our results
is insignificant.

Our final source of uncertainty relates to errors in the spatial distribution of the N2O fluxes in
the prior inventory and is difficult to quantify. However, the mapping of emissions in EDGAR
is based on several high-resolution proxy data sets (Janssens-Maenhout et al., 2019). For this
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Day: 𝑈𝑜𝑏𝑠 𝑈𝑚𝑜𝑑 𝑈𝑚𝑜𝑑

𝑈𝑜𝑏𝑠

𝑍𝑜𝑏𝑠 𝑍𝑚𝑜𝑑 𝑍𝑜𝑏𝑠
𝑍𝑚𝑜𝑑

𝑈𝑚𝑜𝑑 ·𝑍𝑚𝑜𝑑

𝑈𝑜𝑏𝑠 ·𝑍𝑜𝑏𝑠in m s−1 in m s−1 in m in m

5.2 1.5 1134 1.1 1.6
10 Oct 2017 3.5 3.0 0.9 1067 1319 1.2 1.1

3.7 1.1 1325 1.2 1.3

12.9 1.2 1106 0.8 0.9
18 Oct 2017 10.6 12.9 1.2 1417 1307 0.9 1.1

12.8 1.2 1116 0.8 1.0

17.9 1.4 963 0.8 1.0
20 Oct 2017 13.1 17.3 1.3 1273 1013 0.8 1.1

17.2 1.3 1084 0.9 1.1

15.9 1.0 1565 1.0 1.0
24 Oct 2017 15.7 15.9 1.0 1603 1716 1.1 1.1

15.5 1.0 1668 1.0 1.0

9.1 1.3 1024 0.7 0.9
20 Jun 2019 7.1 9.0 1.3 1480 1188 0.8 1.0

8.4 1.2 1094 0.7 0.9

5.1 1.0 1784 1.1 1.1
04 Jul 2019 4.9 4.3 0.9 1684 1944 1.2 1.0

3.5 0.7 2080 1.2 0.9

4.6 1.1 2417 1.3 1.4
07 Jul 2019 4.3 3.7 0.9 1889 2420 1.3 1.1

3.5 0.8 2246 1.2 1.0

10.2 1.1 1955 1.1 1.3
08 Jul 2019 9.0 10.1 1.1 1718 2055 1.2 1.3

9.3 1.0 1994 1.2 1.2

10.2 1.0 1956 1.1 1.1
10 Jul 2019 10.4 10.9 1.0 1767 1893 1.1 1.1

10.2 1.0 2014 1.1 1.1

7.3 1.1 1861 1.1 1.2
11 Jul 2019 6.7 5.8 0.9 1659 1638 1.0 0.9

6.6 1.0 1608 1.0 1.0

Table 5.3: Modeled vs. observed average wind speed (𝑈𝑚𝑜𝑑/𝑈𝑜𝑏𝑠) and PBL height (𝑍𝑚𝑜𝑑/𝑍𝑜𝑏𝑠)
during PBL transects. More detailed descriptions of 𝑈 and 𝑍 are provided in
Section 5.3.2. The listed factors describe the bias correction due to discrepancies
between modeled and observed values (see Equation 5.5). In the model columns the
first value belongs to the ERA5, the second to the GDAS-FNL, and the third to the
NARR simulation. (Table adopted from Eckl et al., 2021)
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reason, we assume its spatial errors to be small. Given the insignificant difference between
modeled and observed wind speeds and PBL heights, the good agreement between modeled
and measured plume structures support this assumption. Furthermore, since we quantify large
areas and not point sources, slight misplacement in the inventory would only marginally affect
our results. At the same time, missing or strongly misplaced fluxes would produce errors that
are not considered in this study.

5.4 Emission Inventory Comparison

The simulations in this study incorporate EDGAR N2O fluxes (see Section 5.2). EDGAR is a
Tier 1–2 inventory providing sector-specific fluxes with a global coverage (see Section 3.4.1).
However, the available DayCent products provide Tier 3 estimates of Midwest soil N2O emis-
sions and are supposed to be a more sophisticated than EDGAR (see Section 3.4.2). The reason
for using EDGAR rather than DayCent in our simulations is that our DayCent products cover
only the Midwest. This would introduce underestimations since we have sampled mainly but
no exclusively Midwest air during the research flights (see Section 5.1). Additionally, DayCent
estimates are only available for 2011–2015. Thus, by using them for the simulations we would
give up the advantage of DayCent providing time- and location-specific estimates. EDGAR
uses a more climatological average emissions dataset, which is better suited for the intended
study.

The spatial distribution of agricultural Midwest N2O emissions in EDGAR and DayCent is
similar. Figure 5.4 shows prior July N2O emissions in the outermost model domain from
(a) agricultural (𝐸𝐴𝐺𝑅) and (b) non-agricultural EDGAR5.0 sources (𝐸𝑛𝑜𝑛𝐴𝐺𝑅). Compared to
EDGAR4.3.2 no significant differences in the spatial distribution of emissions is seen, both
versions just differ in the strength of the surface fluxes. Agricultural emissions are concentrated
in the Midwest, coinciding with the densely farmed Corn Belt. Non-agricultural emissions
emerge mainly from urban areas while emissions from rural areas are low. Figure 5.4c shows
natural EDGAR2 emissions (𝐸𝑁 ) which are used to supplement the anthropogenic EDGAR4.3.2
and EDGAR5.0 emissions. 𝐸𝑁 is uniformly distributed within the model domain and slightly
increases towards the Gulf Coast. Overall, the Midwest is a hotspot of N2O emissions because
of its intensive agriculture.
DayCent estimates of direct soil N2O emissions in July 2015 are displayed in Figure 5.4d.
Similar to EDGAR, the Midwest is a prominent source of N2O. We are not able to perform
a detailed comparison of the spatial distributions in EDGAR and DayCent since both do not
cover the same set of sources. However, in terms of the overall magnitude, DayCent estimates
much higher surface fluxes compared to EDGAR, despite containing fewer sources (gridded
total agricultural DayCent emissions are not available; see Section 3.4.2).

Monthly Midwest N2O emissions in EDGAR are lower than DayCent estimates. Figure 5.5
displays the monthly evolution of 𝐸𝐴𝐺𝑅, 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, and 𝐸𝑁 averaged over the Midwest. Both
EDGAR versions have an annual average 𝐸𝐴𝐺𝑅 of approximately 0.10 nmol m−2 s−1. However,
unlike EDGAR5.0, EDGAR4.3.2 exhibits a seasonal cycle ranging from 0.05 nmol m−2 s−1 in
winter up to 0.24 nmol m−2 s−1 in spring. In spring, when most N-fertilizer is applied, the
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(a) EDGAR5.0: 𝐸𝐴𝐺𝑅 (b) EDGAR5.0: 𝐸𝑛𝑜𝑛𝐴𝐺𝑅

(c) EDGAR2: 𝐸𝑁 (d) DayCent

Figure 5.4: Gridded Midwest N2O emissions in EDGAR and estimated with DayCent. (a)
EDGAR5.0 agricultural (𝐸𝐴𝐺𝑅) and (b) non-agricultural (𝐸𝑛𝑜𝑛𝐴𝐺𝑅) N2O emissions
within the model domain (gray box) in July 2015. The U.S. Midwest is encircled
in white. (c) EDGAR2 natural N2O emissions (𝐸𝑁 ) in 1990. (d) Direct soil N2O
emissions in the U.S. Midwest in July 2015 estimated with DayCent. (Panel (d)
adapted from Eckl et al., 2021)

amount peaks, followed by a plateau during summer at 0.09 nmol m−2 s−1. The harvest season
in fall features a local peak at 0.11 nmol m−2 s−1. A future update of EDGAR5.0 will contain
a seasonal cycle for some crop related emissions (Crippa et al., 2020). 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 shows no
significant change over the year and is on average 0.04 nmol m−2 s−1 in both versions. Natural
emissions account for 0.02 nmol m−2 s−1 per month.
From 2011 to 2015 DayCent emissions in the Midwest range between 0.23–0.35 nmol m−2 s−1,
0.12–0.21 nmol m−2 s−1, and 0.06–0.08 nmol m−2 s−1 in June, July, and October, respectively
(see Figure 5.5 and Table 5.4). June and July emissions are significantly larger than in EDGAR,
despite excluding manure management, indirect soil, and agricultural waste burning emissions.
DayCent’s October emissions are within the magnitude of agricultural EDGAR emissions.
We estimate total agricultural Midwest emissions from 2011 to 2015 by combining DayCent
direct soil emissions and the EPA GHG inventory (see Section 3.4.2), resulting in 0.32–
0.48 nmol m−2 s−1, 0.16–0.30 nmol m−2 s−1, and 0.08–0.11 nmol m−2 s−1 in June, July, and
October, respectively (see Table 5.4). Direct DayCent emissions account for 70–75 % of total
agricultural Midwest emissions. Roughly 10 % originate from direct emissions from minor
crops such as vegetables that are not covered by DayCent. Indirect emissions and fluxes from
manure management are responsible for around 13 % and 5 %, respectively. The contribution
of agricultural waste burning is negligible.
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Figure 5.5: Monthly Midwest N2O emissions in EDGAR and estimated with DayCent. EDGAR
emissions are split into agricultural 𝐸𝐴𝐺𝑅, non-agricultural 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, and natural
fluxes 𝐸𝑁 (see Section 3.4.1). 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 in EDGAR4.3.2 is almost identical to
EDGAR5.0 and, hence, not drawn here. Total agricultural DayCent emissions are
estimated utilizing the EPA GHG inventory (see Section 3.4.2). (Figure adapted
from Eckl et al., 2021)

Overall, in June/July total agricultural Midwest emissions are on average over four/two times
larger than EDGAR’s 𝐸𝐴𝐺𝑅. The 2012 emissions are significantly lower than in the other years
causing the large range across years in the summer months. During this year, the most extensive
drought since the 1930s occurred across a large swath of the U.S., including most of the Midwest,
which lead to widespread harvest failure (NOAA/NCEI, 2020). This event might explain the
low values and indicates that during an average climatological year DayCent emissions are at
the upper end of the range. Furthermore, in contrast to EDGAR4.3.2 which states constant
emissions in June and July, DayCent emissions are much higher in June than in July. Sweeney
et al. (2015) derived annual N2O climatologies at Midwest sites from NOAA/ESRL Aircraft
Network measurements and found highest N2O mole fractions in June, which is consistent with
our DayCent estimates.

5.5 Quantifying Agricultural Emissions

In the following, an example of the model optimization process for Oct 10, 2017 is presented
in Section 5.5.1. Optimization results for the remaining days are provided in the appendix (see
Figure A.1 and A.2). The results of optimizing EDGAR for the ten investigated research flights
is presented in Section 5.5.2 and are finally discussed in Section 5.5.3.
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Emission sectors: June: July: October:

Direct DayCent emissions: 0.23–0.35 0.12–0.21 0.06–0.08
Direct Tier 1 emissions: 0.04–0.05 0.02–0.03 ∼0.01
Indirect emissions: 0.04–0.06 0.02–0.04 ∼0.01
Manure Management: ∼0.02 ∼0.01 0.0–0.1
Agricultural waste burning: ∼0.0 ∼0.0 ∼0.0

Total: 0.32–0.48 0.16–0.30 0.08–0.11

N2O emissions averaged over the U.S. Midwest region in nmol m−2 s−1 in 2011–2015

Table 5.4: Total agricultural N2O emissions in the U.S. Midwest in 2011–2015 based on Day-
Cent estimates and the EPA GHG inventory (EPA, 2020). Direct Tier 1 emissions are
N2O fluxes from minor crops such as vegetables that are not covered by the DayCent
estimates of direct emissions. The calculation of the different fluxes is described in
Section 3.4.2. Ranges are the minimum and maximum of the monthly estimates in
2011–2015.

5.5.1 Case Study: 10 October 2017

On Oct 10, 2017 a PBL transect was flown in the eastern part of the Midwest, south of lake Erie
(see Figure 5.2 and 5.6b). The observed N2O enhancement time series during the PBL transect
is depicted in Figure 5.6a. Around 12:00 local standard time (LST) the C-130 descended from
roughly 7 km AGL to approximately 300 m AGL and stayed there for over 45 min. When the
C-130 dived from the free troposphere into the PBL at around 12:15 LST, N2O enhancements of
∼3 ppb were observed. During the transect, peak enhancements up to 7 ppb were measured. To
the end of the transect, the signal flattened out. The below background values at the beginning of
the time series occurred prior to the PBL transect in the free troposphere. Free tropospheric air
might have a different history and hence different background which can lead to negative values
if we subtract the PBL background. During the transect, two flask samples were collected.
Their summed 10-day HYSPLIT footprints are shown in Figure 5.6b constraining the region
which is quantified in the course of the optimization. Emissions originate mostly from Ohio and
partly from Michigan and Indiana. There, EDGAR as well as DayCent estimates large fluxes
from soils (see Figure 5.4) indicating that the observed plume is dominated by agricultural
emissions. Simulating N2O enhancements along the transect with EDGAR5.0 (plus natural
EDGAR2 emissions) and NARR meteorological initial and boundary conditions confirms that
agricultural emissions dominate (see Figure 5.6a). However, there is a large discrepancy
between model and observations. Only enhancements up to 1 ppb are simulated. By applying a
scaling factor 𝐹𝐴𝐺𝑅 of 8.3 the model is able to reproduce our measurements. The calculation of
the uncertainties is presented below. Maps of simulated total N2O enhancements (emitted from
𝐸𝐴𝐺𝑅 + 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 + 𝐸𝑁 ) at approximately the transect altitude (i.e., 300 m AGL) are provided in
Figure 5.6c and 5.6d for prior and optimized agricultural emissions, respectively. Additionally,
the PBL transect is shown, color-coded with the observed enhancements. For the non-optimized
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Figure 5.6: Example model optimization for 10 Oct 2017 with EDGAR5.0 (plus EDGAR2
𝐸𝑁 ) and NARR meteorological initial and boundary conditions. (a) Prior (𝐹𝐴𝐺𝑅 =
1.0) and optimized (𝐹𝐴𝐺𝑅 = 8.3) simulated N2O enhancements along the flight
track together with observed enhancements. Modeled enhancements consist of an
agricultural 𝐴𝐴𝐺𝑅 (or optimized agricultural 𝐴𝑜𝑝𝑡

𝐴𝐺𝑅), non-agricultural 𝐴𝑛𝑜𝑛𝐴𝐺𝑅, and
natural portion 𝐴𝑁 . The PFP uncertainty is 𝜎 = ±0.4 ppb. The time is given in
UTC and LST. (b) Summed 10-day HYSPLIT footprint of the two PFPs collected
during the PBL transect. The thick black line encircles the U.S. Midwest. The
states Ohio (OH), Michigan (MI), and Indiana (IN) are labeled. (c) Map of total,
non-optimized simulated N2O enhancements (emitted from 𝐸𝐴𝐺𝑅 + 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 + 𝐸𝑁 )
at 300 m AGL and at 12:30 LST. The PBL transect is color-coded with the observed
N2O enhancements. (d) As (c) but with optimized 𝐸𝐴𝐺𝑅. (Panels (a) and (d) adapted
from Eckl et al., 2021)
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case, the significant underestimation of the observations by the simulations is again prominent.
After the optimization, there is a good agreement between measurements and model. This good
agreement supports the assumption that errors in EDGAR’s spatial distribution are small and
suggests that the atmospheric transport is well simulated.

Repeating the optimization 10 000 times with randomly perturbed error sources (see Sec-
tion 5.3.2) delivers a distribution of agricultural scaling factors 𝐹𝐴𝐺𝑅 for this particular transect.
The outcome of this Monte Carlo simulation is shown in Figure 5.7. The average 𝐹𝐴𝐺𝑅 is
𝜇 = 6.8 with a standard deviation of 𝜎 = 2.3 and, hence, smaller than considering only the
above simulation, but still significant. It must be noted that the produced distribution is not
normal, but consists of two normal distributions with scaling factor averages of approximately
four and eight. The model transport error is responsible for this. It is considered by picking
randomly one of three simulations with different meteorological initial and boundary condi-
tions. However, especially in complex meteorological situations three samples are not enough to
account for this error. Thus, non-normal distributions may occur if the transport differs strongly
among the three simulations. On 10 Oct 2017, NARR and GDAS-FNL simulations produce the
normal distribution on the right hand side (green) and ERA5 simulations are responsible for the
normal distribution on the left hand side (blue). A comparison between wind measurements
onboard the C-130 and the three model runs indicates that the wind speed in the ERA5 simu-
lations exhibits much larger errors (50 %) than in the NARR or GDAS-FNL simulations which
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Figure 5.7: Histogram of the Monte Carlo simulation for EDGAR5.0 for 10 Oct 2017. Fol-
lowing Section 5.3.2, 10 000 model optimizations are performed where potential
error sources are randomly perturbed. The arithmetic mean (𝜇) of the resulting
distribution is the overall agricultural scaling factor 𝐹𝐴𝐺𝑅 for this transect and the
standard deviation (𝜎) is the uncertainty. The corresponding normal distribution
(N(𝜇, 𝜎2)) is displayed in orange. It is distinguished between optimizations based
on ERA5 and NARR/GDAS-FNL simulations.
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are close to the observations (errors in the order of 10 %) (see Table 5.3). This might explain
the final non-normal distribution, which is only found for this particular flight. Monte Carlo
simulations for the nine remaining transects are characterized by normal distributed 𝐹𝐴𝐺𝑅.

5.5.2 Results

The optimization presented in the previous Section 5.5.1 is executed for all ten research flights
and for both EDGAR versions. Figure 5.8 shows the resulting averages and standard deviations
for the agricultural scaling factors 𝐹𝐴𝐺𝑅 of the Monte Carlo simulations. As both invento-
ries have a comparable spatial distribution, factors vary due to differences in total emissions.
EDGAR4.3.2 scaling factors are considerably higher for October 2017 and slightly higher for
June/July 2019 than EDGAR5.0. In 2017, the average 𝐹𝐴𝐺𝑅 is 6.3 ± 4.6 for EDGAR4.3.2 and
3.5 ± 2.7 for EDGAR5.0. Scaling factors for 2019 are significantly higher than for 2017 reach-
ing values of over 20 and are on average 11.4 ± 6.6 (EDGAR4.3.2) and 9.9 ± 5.7 (EDGAR5.0).
Figure 5.8 also shows scaling factors which are bias corrected for differences between simulated
and observed wind speeds and PBL heights (see Equation 5.5). According to Table 5.3, the
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Figure 5.8: Mean and standard deviation (𝜎) of agricultural scaling factors 𝐹𝐴𝐺𝑅 for the inves-
tigated research flights resulting from Monte Carlo simulations. The bias corrected
values are corrected for differences between simulated and observed wind speed and
PBL height following Equation 5.5. For reasons of clarity their uncertainties are
not displayed. They are similar to the non-bias-corrected uncertainties. Averages
are only given for the four flights in fall 2017 and six flights in summer 2019 for the
non-bias-corrected values. (Figure adapted from Eckl et al., 2021)
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simulated values are mostly higher than the observed values. Thus, the bias correction mostly
causes an increase of the simulated N2O enhancements and hence a decrease of 𝐹𝐴𝐺𝑅. In
total, however, the impact of the bias correction on 𝐹𝐴𝐺𝑅 is insignificant and hence not further
considered in the following. Table A.3 in the appendix provides a detailed listing of all derived
agricultural scaling factors.

Applying the agricultural scaling factors to the EDGAR inventories and averaging them over
the Midwest area delivers Midwest N2O emissions for the ten investigated research flights.
Figure 5.9 displays EDGAR5.0 emissions of this region with non-optimized and optimized
agricultural emissions. EDGAR4.3.2 fluxes are not displayed since optimizing them results in
(nearly) the same, because both versions differ (nearly) only in their strength of 𝐸𝐴𝐺𝑅 which
is adjusted in the course of the optimization. In EDGAR5.0, non-optimized Midwest N2O
fluxes are 0.16 nmol m−2 s−1, consisting of 62 % agricultural, 25 % non-agricultural, and 13 %
natural emissions. In contrast, EDGAR4.3.2 estimates 0.11–0.12 nmol m−2 s−1 for October and
0.15 nmol m−2 s−1 for June/July due to the seasonal cycle of 𝐸𝐴𝐺𝑅 (see Section 5.4). Optimizing
October 2017 results in average total emissions of 0.42 ± 0.57 nmol m−2 s−1. During our
June/July 2019 flights N2O emissions are larger with an average of 1.06 ± 0.57 nmol m−2 s−1.
Table A.4 and A.5 in the appendix provide a more explicit listing of optimized Midwest N2O
emissions.
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Figure 5.9: EDGAR5.0 Midwest N2O emissions with prior (𝐸𝐴𝐺𝑅) and optimized agricultural
emissions (𝐸𝑜𝑝𝑡

𝐴𝐺𝑅). Beside the agricultural emissions, non-agricultural (𝐸𝑛𝑜𝑛𝐴𝐺𝑅)
and natural emissions (𝐸𝑁 ; from EDGAR2) are shown. Horizontal lines are 2017
and 2019 averages of total emissions (𝐸 (𝑜𝑝𝑡)

𝐴𝐺𝑅 +𝐸𝑛𝑜𝑛𝐴𝐺𝑅 +𝐸𝑁 ). (Figure adapted from
Eckl et al., 2021)
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5.5.3 Discussion

Altogether, both EDGAR versions exhibit a significant underestimation of agricultural emis-
sions. Seasonal differences are likely one cause for the difference in scaling factors and
Midwest emissions between 2017 and 2019. Additionally, during the 2019 aircraft campaign an
extreme flooding event occurred that likely influenced our results (discussed below). Although
EDGAR4.3.2 exhibits a seasonal cycle, its agricultural scaling factor also varies considerably
between 2017 and 2019. Hence, the Midwest seasonality is not captured in the EDGAR
inventory, which appears to be caused by the flooding.

Optimized emissions for June/July 2019 are two to three times higher compared to DayCent
emissions (2011–2015). Despite this, DayCent emissions are closer to our optimized emissions
compared to EDGAR during the same period. In contrast, DayCent and EDGAR emissions are
both too low by a similar magnitude in October compared to our optimized results. It is important
to note here that no DayCent simulations for the campaign years were available. Regional
characteristics like soil type, climate, and agricultural practice are most likely comparable
between the DayCent simulation years and the campaign years. Hence, as DayCent considers
these regional characteristics, it performs much better on the regional scale in the summer than
the emission factor approach that is used in EDGAR. However, regional conditions like soil
conditions, weather, and N-fertilizer application rates and timing probably differ between the
simulation and campaign years, preventing a more quantitative evaluation of DayCent. For that
flux calculations for 2017 and 2019 incorporating the corresponding regional conditions would
be necessary. DayCent has not been applied to estimate emissions specific to 2017 and 2019 so
it is not clear if the model would underestimate the values for these years although this may be
the case given the historical data from 2011–2015.

Fu et al. (2017), who also used an Eulerian approach to solve for N2O, reported emissions of
3.00–4.38 nmol m−2 s−1 during June 1–20, 2010 for the Corn Belt, which is significantly higher
than our estimates for June/July 2019. Griffis et al. (2013) estimated the Corn Belt emissions
to be around 2 nmol m−2 s−1 and 1 nmol m−2 s−1 in June/July 2010 and 2011, respectively,
which is consistent with our findings. Kort et al. (2008) and Miller et al. (2012) derived
scaling factors for the central U.S. To be able to compare their results to ours, we estimated the
corresponding flux densities for the Midwest region using their scaling factors for the respective
EDGAR versions. Kort et al. (2008) derived 0.54 nmol m−2 s−1 for May/June 2003 and Miller
et al. (2012) 0.57/0.25 nmol m−2 s−1 and 0.94/0.53 nmol m−2 s−1 for June/July 2004 and 2008,
respectively. Both studies show lower values than our estimate. Miller et al. (2012) stated that
maximum emissions occurred in June. Our DayCent calculations are also highest in June. This
could partly explain our lower estimates compared to Fu et al. (2017) as we report for the end of
June/beginning of July after the expected emission peak. Moreover, Fu et al. (2017) only scaled
Corn Belt emissions and kept other regions unmodified which could lead to higher estimates, if
they sampled other regions with lower emission rates than the Corn Belt. Overall, our estimates
are in the range of previous top-down studies. However, the spread among the studies is large.

The nature of soil N2O fluxes leads to significant temporal variability in the emissions that is not
represented in EDGAR. DayCent is capable of representing those variations to a certain extent.
For instance, precipitation events may enhance soil N2O emissions (see Section 2.2.2). DayCent
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has the potential to simulate such events since it considers meteorology. Within 24 h previous to
some of the here investigated research flights, precipitation occurred close to the PBL transect
(see Figure A.3), which might have influenced our derived agricultural scaling factors for these
flights. As we cannot see a clear correlation between the strength of the scaling factor for a flight
and the presence of rain in the proximity of the transect, our results are probably not dominated
by precipitation induced emission pulses. Within seven days before each flight (nearly) the
whole Midwest experienced precipitation (see Figure 2.2.2), which probably influenced our
optimization result because soils were regularly moisturized. Overall, in the Corn Belt the
October 2017 and June/July 2019 precipitation amount was approximately 100 % and more
than 10 % larger than the 1901–2000 mean, respectively (NOAA, 2020a). Hence, Midwest
soil N2O emissions are likely enhanced in these two periods due to above-average precipitation
amounts. Chapter 7 analyzes the influence of precipitation and soil moisture on the results
presented herein in greater detail.

Top-down studies based on ground-based measurements (Turner et al., 2015) and tall tower
measurements (Griffis et al., 2013; Griffis et al., 2017) show the important role of indirect soil
N2O emissions from nitrogen leaching and volatilization processes in the Midwest. Character-
ized by a high temporal and spatial variability, these emissions could account for about half of
the total emissions on a yearly basis (Griffis et al., 2017). In this study, the spatial and tem-
poral heterogeneity of indirect emissions could lead to higher/lower optimization results if we
measure during times or in areas with above/below-average N2O indirect emissions. However,
we are not able to distinguish between direct and indirect N2O emissions in this study and
hence cannot quantify this. Considering the different agricultural sectors in EDGAR (direct soil
emissions, indirect emissions, manure management, and agricultural waste burning) separately
in our model runs resulted in simulated N2O enhancements along the transects consisting of
N2O from mainly direct and indirect emissions. Since the spatial distributions of direct and
indirect emissions in EDGAR are similar in the Midwest, the corresponding simulated plumes
exhibited similar shapes. Hence, we could not tell whether we should scale direct or indirect
emissions. For that reason, we decided to consider agricultural emissions in total rather than
its individual components in this study. By averaging over the optimization results of several
transects during which we measured in different areas and at different times, we try to minimize
the effect of the heterogeneity of N2O emissions.

Especially in 2019, weather conditions in the study domain were unusually extreme. During
the campaign, the U.S. was experiencing its wettest period in 125 years, with severe flooding in
the Midwest (NOAA, 2020b) forcing the farmers to significantly delay planting in the affected
regions (USDA, 2020) and postponing the peak emission period. Depending on whether the
zenith is shifted closer to or further away from our investigated period this event may have either
amplified or lowered our emission estimates. Additionally, the above-average humidity might
have enhanced soil N2O emissions leading to higher estimates (see Section 2.2.2). As indirect
N2O emissions play an important role in the Midwest, flooding-induced emissions pulses of
indirect emissions from streams and rivers probably also boosted soil N2O fluxes. The influence
of this flooding event cannot be quantified within this study, as this would require more data
over longer periods spanning the whole event. However, in a follow-up study we plan to use
DayCent simulations driven with those flooding conditions to gain insights on how soil N2O
emissions were affected.
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5.6 Summary

Unique continuous in situ airborne N2O measurements of ten research flights were used to
quantify N2O emissions in the U.S. Midwest using a top-down approach. In October 2017
average emissions are 0.42 nmol m−2 s−1. The agricultural portion is on average 6.3 times higher
than in EDGAR4.3.2 and 3.5 times higher than in EDGAR5.0. June/July 2019 emissions are
on average 1.06 nmol m−2 s−1. For that, agricultural EDGAR4.3.2 fluxes have to be scaled by
an average factor of 11.4. EDGAR5.0 performs better again, but still requires an agricultural
scaling factor of 9.9. Uncertainties of scaling factors and Midwest N2O emission estimates are
on the order of 50 %. Our 2019 estimates are most likely influenced by an extreme flooding
event, which is difficult to capture in EDGAR as the inventory uses a climatological average
emissions dataset. Agricultural soil emissions estimated with DayCent in 2011–2015 are
0.32–0.48, 0.16–0.30, and 0.08–0.11 nmol m−2 s−1 in June, July, and October, respectively.
These historical emission estimates are higher than non-optimized EDGAR emissions, but still
significantly lower than our optimized fluxes. Our findings are in the range of previous top-down
estimates for the Corn Belt and central U.S. However, a quantitative comparison of those studies
shows that the range of derived N2O surface fluxes is large, likely due to the temporal complexity
of soil N2O emissions.



6 Studying the Seasonality of U.S.
Midwest N2O Emissions

Soil N2O emissions exhibit a pronounced seasonality (see Section 2.2.2, Chapter 5, and
Butterbach-Bahl et al., 2013). In this chapter, seasonal variations of observed N2O emis-
sions in the U.S. Midwest are analyzed (RQ1) and evaluated against state-of-the-art bottom-up
estimates (RQ2). To this end, PFP measurements of N2O available from five ACT-America
campaigns covering all four seasons (see Section 3.2) are used. During each research flight, up
to twelve air mass samples have been collected evenly distributed along constant altitude tran-
sects without the intention of catching or missing GHG enhancements. These measurements
are combined with dedicated HYSPLIT simulations, which relate observed N2O enhancements
to emissions from surface sources (see Section 3.3.2). Similar to the approach presented in
the previous Chapter 5 (hereafter referred to as “Method 1”), discrepancies between measured
and simulated N2O enhancements are minimized by scaling agricultural EDGAR4.3.2 and
EDGAR5.0 bottom-up fluxes, thus allowing to quantify N2O emissions of the U.S. Midwest.
However, there are two fundamental differences between Method 1 and the approach used for
the analysis in the present chapter (hereafter referred to as “Method 2”). First, the available PFP
measurements are discrete samples and do not provide continuous measurements like the QCLS
dataset. Second, Method 1 is based on dedicated WRF-Chem forward simulations requiring
a high amount of computational resources. In contrast, Method 2 makes use of HYSPLIT
backward simulations already available within the framework of the ACT-America project (B.
C. Baier, University of Colorado-Boulder and NOAA/GML). Therefore, a comparison of the
results of both approaches is given in this chapter. The derived emission rates for all seasons
are finally used to evaluate EDGAR and DayCent estimates of direct soil emissions.

In the following, the relevant observational data is presented in Section 6.1, followed by a
description of the methodology in Section 6.2. Section 6.3 gives an overview of all PFP
measurements. Results are presented and discussed in Section 6.4. Finally, Section 6.5
summarizes and concludes this chapter.

6.1 Observational Data

In the course of all five ACT-America campaigns, PFP samples have been collected onboard of
both deployed aircraft, NASA’s C-130 and B-200, and have been analyzed for N2O dry air mole
fractions (see Section 3.2). The covered seasons and years are visualized in Figure 6.1. While
the winter 2017 campaign sampled the second half of winter and early spring (mid-January
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until mid-March), fall 2017 and spring 2018 field deployments roughly took place in mid-fall
(early October until mid-November) and mid-spring (mid-April until mid-May), respectively.
Measurements in 2016 cover the second half of summer (mid-July until end of August), while
in 2019 early/mid-summer (mid-June until end of July) is sampled, with an overlap in July. All
four seasons were studied enabling to investigate seasonal differences of soil N2O emissions.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
spring summer fall winterwinter

Figure 6.1: Seasons and years covered during the five ACT-America campaigns. Campaigns
including the DLR QCLS deployment are marked with a star. Indicated time periods
of each field deployment span from the first to the last conducted research flight.
The meteorological seasons are given as well.

During each ACT-America field deployment approximately 250–300 PFPs were collected (see
Table 6.1), which in total sums up to nearly 1400 air samples taken above the Midwest, East
Coast, and Gulf Coast of the U.S.
This thesis focuses on regional N2O emissions; therefore, only PFPs collected within the PBL
are considered for the following analysis. In the PBL, N2O enhancements predominantly
originate from the surrounding area, while enhancements in the free troposphere might also
originate from remote N2O emissions (see Section 2.1.2). According to the tagging included in
the ACT-America data merge (Davis et al., 2018), approximately 50 % of all PFPs have been
collected within the PBL. Around 140–170 data points remain per campaign, summing up to
nearly 800 PFP samples.
Furthermore, since this analysis focuses on N2O emissions from soils, only PFPs dominated by
soil N2O emissions have been selected. To this end, simulated N2O enhancements based on
the EDGAR inventory are used (see Section 6.2.1). PFPs which, according to the simulated
enhancements, were impacted by at least two-thirds by agricultural emissions and emissions
originating from soils under natural vegetation, are chosen for further analysis. Selected PFPs
are listed in Table 6.1. Please note that depending on the choice of the two different EDGAR
inventory versions used as a filter, a different amount of samples remains for the subsequent
analysis. This is the result of the difference in monthly amounts of agricultural emissions in both
inventories; agricultural emissions in EDGAR4.3.2 exhibit a seasonality while in EDGAR5.0
they are constant throughout the year (see Section 5.4).

The HYSPLIT footprint summarized over all selected PFPs (collected within PBL and domi-
nated by soil N2O emissions according to EDGAR5.0) for all five ACT-America campaigns is
depicted in Figure 6.2. Mainly N2O emissions originating from the central U.S. Midwest and
the Gulf Coast contribute to the observed N2O enhancements, constraining the region which is
characterized in the following.
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Campaign:
# of PFPs:

total in PBL in PBL & soil filter
EDGAR4.3.2 EDGAR5.0

Summer 2016 274 163 79 72
Winter 2017 295 150 129 55
Fall 2017 272 158 32 64
Spring 2018 294 173 112 95
Summer 2019 241 136 72 68

Total: 1376 780 424 354

Table 6.1: Number of PFPs collected during the five ACT-America field deployments onboard
NASA’s C-130 and B-200. Tags in the in situ data merge of the campaigns (Davis
et al., 2018) enable to distinguish between PFPs collected inside and outside of the
PBL. The soil filter (see Section 6.1) allows only PFPs whose footprint enhancements
consist of minimum two-thirds agricultural enhancements and enhancements from
soils under natural vegetation.

6.2 The HYSPLIT Footprint Approach (Method 2)

The goal is to quantify N2O emissions in the U.S. Midwest (and the southerly region, see
Figure 6.2) using PFP measurements and specific HYSPLIT backward simulations. By com-
bining the backward simulations with EDGAR emissions, N2O enhancements at the time and
location of the PFP samples are simulated (see Section 6.2.1). Discrepancies between observed
and modeled enhancements are then minimized by scaling agricultural EDGAR emissions to
quantify Midwest N2O emissions (see Section 6.2.2). This approach (Method 2) is based on a
similar concept but includes some important differences to the approach used in the previous
Chapter 5 (Method 1), outlined in Section 6.2.3.

6.2.1 Simulated Footprint Enhancement

To simulate N2O enhancements, ten-day HYSPLIT footprints, available for each single PFP
sample, are used (see Section 3.3.2). Footprints are a quantitative description of the sensitivity
of a receptor to a source region. Here, the receptor is the N2O enhancement at the time and
location of a PFP sample and the source is the emission of N2O. Thus, the footprint of a PFP
sample describes from where and to what extent N2O emissions influence the measurement. In
other words, N2O fluxes (e.g., in nmol m−2 s−1) are translated into mole fraction enhancements
expected at the time and location of the corresponding PFP (e.g., in ppb). The unit of a
footprint is ppb/(nmol m−2 s−1). HYSPLIT footprints are provided as hourly data on a regular
latitude-longitude grid. To allow for a combination with other gridded datasets like monthly
EDGAR emissions (having e.g. a different temporal resolution), they are re-projected so that
grids coincide. This enables a grid cell-wise comparison with footprint sensitivities. Let 𝑛𝑡 ,
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Figure 6.2: Total sum of HYSPLIT PFP footprints for all five ACT-America campaigns. Only
PFPs are considered if collected within the PBL and dominated by soil N2O emis-
sions following EDGAR5.0 footprint enhancements (see Section 6.1). The U.S.
Midwest is encircled in black.

𝑛𝑙𝑎𝑡 , and 𝑛𝑙𝑜𝑛 be the length of the time, latitude, and longitude dimension of the shared grid,
respectively. For simplicity, in the following footprints (and other three-dimensional data) are
considered as one-dimensional arrays H of length 𝑛 𝑓 = 𝑛𝑡 · 𝑛𝑙𝑎𝑡 · 𝑛𝑙𝑜𝑛, where ℎ𝑖 is the 𝑖th

component.

Simulated N2O enhancements for all PFPs are calculated by adding up the product of HYSPLIT
footprints and EDGAR4.3.2 as well as EDGAR5.0 emission estimates. Both inventory versions
provide gridded agricultural 𝐸𝐴𝐺𝑅, non-agricultural 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, and natural 𝐸𝑁 (from EDGAR2)
N2O emissions (see Section 3.4.1). Let E 𝑓 be the N2O fluxes of one of the three emission
sectors on the same grid as the footprint H, where 𝑒

𝑓
𝑖 is the 𝑖th of 𝑛 𝑓 components. Then, the

N2O enhancement at the receptor 𝑐𝑒𝑛ℎ𝑓 (hereafter referred to as “footprint enhancement”) due to
emissions from E 𝑓 is calculated via the dot product of H and E 𝑓 :

𝑐𝑒𝑛ℎ𝑓 = H · E 𝑓 =
𝑛 𝑓∑︁
𝑖=1

ℎ𝑖 · 𝑒 𝑓
𝑖 (6.1)

This approach is comparable to Method 1, whereby N2O enhancements emitted from EDGAR
are propagated forward in time through the atmosphere. In contrast, here the air mass sampled
by the PFP is followed backward in time through the atmosphere to estimate the contribution of
EDGAR fluxes on the measurement.
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6.2.2 Footprint Scaling Factor

N2O emissions are quantified by minimizing the difference between simulated/footprint (𝑐𝑒𝑛ℎ𝑓 )
and observed enhancements (𝑐𝑒𝑛ℎ𝑜𝑏𝑠). Following Equation 5.1 in the previous chapter, 𝑐𝑒𝑛ℎ𝑜𝑏𝑠
is estimated by subtracting a background mole fraction from the PFP mole fraction. Here,
for each campaign the 5th percentile of all PFPs collected within the PBL is used as the
background (see Figure 6.3). Background values range from 329.1 ppb to 331.8 ppb during
the five ACT-America field deployments. The fall 2017 and summer 2019 values are within
the uncertainty of the backgrounds estimated using the high-resolution QCLS dataset, i.e.
329.9 ± 0.8 ppb and 331.3 ± 0.8 ppb, respectively (see Section 5.3.1). The increase of derived
background values from summer 2016 to summer 2019 reflects the growth rate of the global
atmospheric N2O abundance of around 1 ppb yr−1 (NOAA/ESRL, 2021b).
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Figure 6.3: Percentiles of PFP N2O dry air mole fractions calculated for all five ACT-America
field deployments. Only PFPs collected within the PBL are considered. The
5th percentile defines the observed N2O background mole fraction. Campaigns
including the DLR QCLS deployment are underlined.

In Method 1, discrepancies between modeled and observed N2O enhancements are minimized
by scaling agricultural emissions by a certain factor 𝐹𝐴𝐺𝑅. Adapting this methodology, which
is described in Section 5.3.1, allows to derive an agricultural scaling factor for each single PFP
sample 𝐹

𝑓
𝐴𝐺𝑅. Analogue to Equation 5.4, 𝐹 𝑓

𝐴𝐺𝑅 is defined as:

𝐹
𝑓
𝐴𝐺𝑅 =

𝑐𝑒𝑛ℎ𝑜𝑏𝑠 − 𝑐𝑒𝑛ℎ𝑓 , 𝑛𝑜𝑛𝐴𝐺𝑅 − 𝑐𝑒𝑛ℎ𝑓 , 𝑁

𝑐𝑒𝑛ℎ𝑓 , 𝐴𝐺𝑅

(6.2)

Where 𝑐𝑒𝑛ℎ𝑓 , 𝐴𝐺𝑅, 𝑐𝑒𝑛ℎ𝑓 , 𝑛𝑜𝑛𝐴𝐺𝑅, and 𝑐𝑒𝑛ℎ𝑓 , 𝑁 is the footprint enhancement due to agricultural, non-agri-
cultural, and natural EDGAR emissions. Here it is important to recapitulate that this approach
assumes that 𝐸𝐴𝐺𝑅, 𝐸𝑛𝑜𝑛𝐴𝐺𝑅, and 𝐸𝑁 cover all relevant N2O emissions and that discrepancies
between observation and simulation are only due to underestimated agricultural emissions.
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6.2.3 Comparison of Method 1 and Method 2

Method 1 as well as Method 2 are used to quantify N2O emissions by minimizing discrepan-
cies between observed and simulated N2O enhancements via scaling of agricultural EDGAR
emissions with corresponding scaling factors. Due to the similarity of both approaches, the
sources of uncertainties affecting the agricultural scaling factors and their contributions are of
similar nature. A detailed description of the uncertainty assessment is provided in Section 5.3.2.
According to Chapter 5, footprint scaling factors exhibit an uncertainty of approximately 50 %.
However, there are two essential differences between both approaches:

1. For Method 2, the model transport of N2O enhancements through the atmosphere is realized
via HYSPLIT backward simulations rather than WRF forward simulations as for Method 1.
HYSPLIT uses meteorological input generated with the WRF model. Hence, the uncer-
tainty of 𝐹

𝑓
𝐴𝐺𝑅 due to the model transport of N2O through the atmosphere is composed

of uncertainties in both, the WRF transport and the HYSPLIT dispersion calculation. The
WRF related transport error is assumed to be similar to Method 1, because in both cases
WRF is driven by ERA5 initial and boundary conditions and analysis nudging is applied
(see Section 5.2). Compared to the WRF related transport error, the HYSPLIT uncertainty
is assumed to be insignificant. This assumption is based on Hegarty et al. (2013), who eval-
uated HYSPLIT and two other state-of-the-art dispersion models with measurements from
controlled tracer releases. They found differences among the underlying meteorological
models to be larger than differences among the dispersion models, indicating that uncertain-
ties most likely arise from the meteorological models. Thus, the backward approach results
in insignificantly larger uncertainties than the forward approach.

2. For Method 2, discrete PFP measurements of N2O are used rather than continuous QCLS
measurements as for Method 1. This only allows for a point-wise determination of footprint
scaling factors for each single PFP (six to twelve in total for each flight) while continuous
measurements enable a scaling of the integrated measurement along a whole PBL transect.
Footprint scaling factors derived from discrete samples therefore might be strongly biased
in either direction if modeled and observed enhancements are spatially misaligned, e.g. due
to uncertainties in the model transport or due to misplacement of N2O emissions in the
EDGAR inventory. Furthermore, non-continuous measurements have the inherent risk to
miss smaller-scale enhancements, depending on sampling strategy and frequency. To allow
for a statistically large enough sample size, the following discussion focuses on the analysis
of the distribution of footprint scaling factors on a campaign basis. This does not allow for
an exact quantification of Midwest N2O emissions but still for discussing seasonal effects
of emissions for the ACT-America field campaign periods and sites.

6.3 Overview of Four Seasons of N2O Measurements

To understand seasonal features of N2O abundances above the eastern half of the U.S., this
section compares nearly 1400 PFP samples collected in the course of ACT-America (see
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Table 6.1) on a campaign basis. Figure 6.4 provides an overview of this dataset. Roughly three
years lie between the first and the last measurement. Hence, trends in the global atmospheric N2O
abundance have to be considered to enable a fair comparison of measurements taken during
the different campaigns. NOAA/ESRL (2021a) provides precise measurements of monthly
northern hemispheric N2O mole fractions based on long-term measurements at several ground
sites around the world. At the beginning of the first ACT-America campaign in summer 2016,
concentrations were 329.5 ± 0.3 ppb and increased steadily until the end of the summer 2019
campaign by 2.7 ± 0.4 ppb to 332.2 ± 0.2 ppb. In the plots in Figure 6.4, this increase since
summer 2016 is subtracted.
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Figure 6.4: Overview of all PFP N2O measurements collected during all five ACT-America
field deployments. Trends in the N2O abundance in the Northern Hemisphere be-
tween summer 2016 and summer 2019 (NOAA/ESRL, 2021a) have been subtracted.
Campaigns including the DLR QCLS deployment are underlined. (a) PFP measure-
ments vs. altitude above MSL. (b) Percentiles of PFP measurements.

Figure 6.4a shows the vertical distribution of all de-trended PFP N2O measurements. Mole
fractions above 4 km reflect the average northern hemispheric N2O abundance following
NOAA/ESRL (i.e., 329.5 ± 0.3 ppb). Below 4 km, mole fractions slightly increase towards
lower altitudes. Within the PBL, highest N2O mole fractions up to 345 ppb are observed.
This vertical distribution is expected, since most N2O sources are located at the surface (see
Section 2.2.1). Overall, the vertical structure of the profiles of the different campaigns is com-
parable. However, two features are prominent: First, in summer 2019 enhanced N2O mole
fractions over 335 ppb are observed and, second, measurements during winter 2017 show even
more extreme values up to 345 ppb. Please note that in reality these dry air mole fractions are
up to 2.7 ppb larger since they have been corrected for trends in the northern hemispheric N2O
abundance. As discussed in the previous chapter, the large values in summer 2019 might be
caused by the extreme Midwest flooding occurring before and during the campaign period. The
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extreme winter 2017 values might be affected by the typically lower PBL height compared to
other seasons (see Section 2.1.2). N2O emissions released at the surface are distributed within a
smaller vertical layer (i.e., PBL), resulting in larger N2O dry air mole fractions. Another reason
for the large winter 2017 mole fractions might be freezing/thawing processes in soils which are
capable of inducing strong N2O emission pulses (see Section 2.2.2). Both prominent features
are further investigated below.

The percentiles of all PFP N2O measurements are displayed in Figure 6.4b. Similar to Fig-
ure 6.4a, winter 2017 and summer 2019 are prominent since during both campaigns significantly
larger N2O mole fractions have been sampled compared to observations from the other cam-
paigns. Moreover, 20 % of the measurements in 2019 show values larger than 331 ppb, while
during the other campaigns this is only the case for 1–6 % of the samples. The shape of the
percentile curves indicates the character of the underlying emission drivers. The few very high
mole fractions in winter 2017 probably are caused by spatially and temporarily constrained
emission pulses due to freezing/thawing. However, summer 2019 measurements suggest a driv-
ing parameter that enhances N2O emissions over a large area and over a long period, as e.g. the
flooding event. Furthermore, there is an obvious difference between results from the summer
2016 and summer 2019 measurements, which is another indicator for the impact of the 2019
flooding on N2O emissions. It is worth noting that the 2019 measurements (June/July) were
closer to the main growing season in spring than the summer 2016 measurements (July/August),
probably leading to larger N2O emissions released during the 2019 campaign. However, even
the spring 2018 curve is significantly exceeded by the summer 2019 curve, indicating the large
impact of the flooding. Beside these two features, discussed in more detail in the following
sections, differences in the percentiles among the campaigns are mostly less than 0.4 ppb. These
differences are regarded as insignificant, mainly because the monthly N2O dry air mole fraction
from the NOAA/ESRL dataset, used to correct for trends in the N2O abundance, itself exhibits
uncertainties from ±0.2 ppb to ±0.4 ppb. Hence, variations of the N2O dry air mole fraction in
the free troposphere above the Midwest appears to reflect variations of the northern hemispheric
atmospheric N2O abundance.

6.4 Results and Discussion

In this section, N2O emission fluxes in the U.S. Midwest and the corresponding seasonality
is analyzed. As most anthropogenic N2O emissions originate from agriculture and as only
N2O emissions from soils are expected to exhibit a strong seasonality, this section focuses on
the seasonality of agricultural N2O emissions. Therefore, footprint agricultural scaling factors
𝐹

𝑓
𝐴𝐺𝑅 are derived for all selected PFPs (see Section 6.1). Like in Method 1, these scaling factors

are multiplied with agricultural EDGAR emissions (𝐸𝐴𝐺𝑅). Total Midwest N2O emissions are
then estimated by averaging the sum of scaled 𝐸𝐴𝐺𝑅, non-agricultural (𝐸𝑛𝑜𝑛𝐴𝐺𝑅), and natural
(𝐸𝑁 ) EDGAR emissions over the Midwest region. There is no need to distinguish between
EDGAR4.3.2 and EDGAR5.0 because the scaled fluxes are equivalent. Both inventories have
the same spatial distribution of emissions and only differ in the magnitude of the monthly N2O
emissions, which is adjusted when scaling emissions (see Section 6.2.1).
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A comparison of the scaled Midwest N2O emissions for all ACT-America campaigns allows to
discuss the seasonality of emissions. Figure 6.5 displays the mean, median, and interquartile
range (IQR; distance between lower and upper quartile, which spans the box) of the scaled
emissions as derived for all selected PFPs from all five campaigns. In winter 2017, Midwest
emissions are largest. Lowest fluxes are estimated for summer 2016, followed by fall 2017 and
spring 2018. Summer 2019 emissions exceed the estimates from all other campaigns except the
winter campaign. Table A.8 in the appendix gives the detailed values for the scaled Midwest
fluxes for all campaigns.

In the following, Section 6.4.1 analyzes N2O emissions during the course of the growing season
– from spring to fall. The prominent winter 2017 emissions are investigated in Section 6.4.2.
Summer 2019 results are separately discussed in Section 6.4.3, since the extreme flooding event
most likely influenced N2O emissions. Finally, in Section 6.4.4, the scaled Midwest emissions
are compared to the results of Method 1, discussed in the previous Chapter 5, and other top-down
studies.
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Figure 6.5: Scaled Midwest N2O emissions calculated for all ACT-America campaigns. For
each campaign, N2O fluxes using the mean and median scaling factor are given.
The extension in y-direction defines the lower and upper quartile. The width
of each bar is constrained by the first and last research flight of the respective
campaign. Meteorological seasons are indicated. Campaigns including the DLR
QCLS deployment are underlined.



78 6 Studying the Seasonality of U.S. Midwest N2O Emissions

6.4.1 N2O Emissions During the Growing Season: Spring to Fall

Variations of Midwest N2O emissions in the course of the growing season – from spring to fall
– are investigated by comparing the results of the spring 2018, summer 2016, and fall 2017
field deployments. Overall, the averages of the scaled emissions in spring and fall are roughly
75 % and 13 % larger than in summer, respectively (see Figure 6.5). Mean and median of the
three campaigns are close to each other indicating that emissions are not dominated by extreme
emission events. Agricultural emissions and the fertilization practice plays an important role for
variations of N2O emissions in the growing season. In the following, agricultural emissions are
considered in greater detail and are compared to EDGAR. Additionally, the role of fertilization
is discussed.

Agricultural Emissions – EDGAR Bottom-Up vs. Observational Top-Down:

Footprint scaling factors (𝐹 𝑓
𝐴𝐺𝑅) for the spring 2018, the summer 2016, and the fall 2017

field campaign describe the variations of agricultural N2O emissions in the study region over
the course of the growing season. Figure 6.6 (lower panels) displays the distributions of
𝐹

𝑓
𝐴𝐺𝑅 of all ACT-America campaigns as boxplots using anthropogenic N2O emissions from

EDGAR4.3.2 (Figure 6.6a) and EDGAR5.0 (Figure 6.6b) (Table A.6 and A.7 in the appendix
lists explicit values, respectively). The upper panels show monthly unmodified agricultural
emissions (𝐸𝐴𝐺𝑅) averaged over the Midwest and for the two EDGAR versions. As discussed
in Section 5.4, the spatial distribution as well as the yearly emission total of 𝐸𝐴𝐺𝑅 are equal
in both inventories. However, EDGAR4.3.2 agricultural emissions exhibit a seasonality while
in EDGAR5.0 emissions are evenly distributed over the course of the year. According to
EDGAR4.3.2, N2O fluxes are lowest in winter (Nov–Jan), highest in March and relatively
constant in summer, followed by a smaller increase in September. A more detailed description
of unmodified EDGAR N2O fluxes is provided in Section 5.4.

Overall, both EDGAR versions seem to underestimate agricultural N2O emission fluxes sig-
nificantly. For spring 2018, summer 2016, and fall 2017 observations, scaling factors be-
tween approximately two and five are derived. A comparison between EDGAR4.3.2 and
EDGAR5.0 shows that EDGAR4.3.2 performs better in spring (∼50 % lower scaling factor)
while EDGAR5.0 performs better in fall (∼65 % lower scaling factor). For summer, scaling
factors are similar for both inventory versions. The differences in spring and fall are caused
by the inherent seasonality in EDGAR4.3.2. However, EDGAR4.3.2 does not perfectly capture
the entire seasonal variability in the study region, because there is a difference between the
resulting scaling factors for the three campaigns.

Since EDGAR5.0 exhibits no seasonal cycle, variations of EDGAR5.0 scaling factors for the
spring 2018, summer 2016, and fall 2017 campaign indicate the seasonality of agricultural N2O
emissions in the study region: Emissions (or scaling factors) are 90 % larger in spring and 10 %
larger in fall than in summer. In contrast, according to the EDGAR4.3.2 seasonality, agricultural
emissions during the spring campaign exceed emissions during the summer campaign by 40 %
while emissions during the fall campaign are 40 % lower. However, if not the campaign
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months are considered but largest EDGAR4.3.2 fluxes in spring (March) and fall (September)
are compared to summer (July), emissions are 170 % and 30 % larger, respectively. These
seasonal differences qualitatively coincide with the seasonal differences of the EDGAR5.0
scaling factors, which are significantly larger in spring and slightly larger in fall than in summer
as well. Quantitatively, differences in the EDGAR5.0 scaling factors are two to three times lower
than in the EDGAR4.3.2 seasonality. If the EDGAR4.3.2 seasonality was delayed by roughly
one month, the observed seasonal cycle in EDGAR5.0 scaling factors would be captured.
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Figure 6.6: PFP agricultural scaling factors (𝐹 𝑓
𝐴𝐺𝑅) derived for all five ACT-America campaigns

for the EDGAR4.3.2 (a) and EDGAR5.0 (b) N2O emission inventories (lower pan-
els). The width of each boxplot is constrained by the first and last research flight
of the respective campaign. The lower and upper quartiles span the height of each
box. The whiskers are defined as 1.5 times the IQR. Outliers are not displayed.
Campaigns including the DLR QCLS deployment are underlined. The upper panels
show the unmodified agricultural emissions in EDGAR (𝐸𝐴𝐺𝑅) averaged over the
Midwest.
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Role of Fertilization Activity:

The application of N-fertilizer affects the seasonality of agricultural N2O emissions. Figure 6.7
summarizes the fertilization practice for corn and soybeans in the U.S. This can be used as a
proxy for the total fertilization practice in the Midwest because both crops together account for
roughly 75 % of the harvested area there (NASS, 2021). Over 96 % of corn fields are fertilized,
while for soybeans it is less than 28 % since they are N-fixing crops capable of absorbing
nitrogen from atmospheric N2 (see Section 2.2.2). Although the exact timing of the fertilizer
application is vague, the data enables to roughly estimate the seasonality of the fertilization
practice. Corn is mainly treated with N in spring before planting (>60 %). Only roughly 25 % is
fertilized in fall. For soybeans it is vice versa, 35 % of the fertilized area is treated in spring and
45 % in fall. As both crops are planted in spring (USDA, 2020), the fertilization “at planting”
occurs in spring, while the fertilization “after planting” occurs in either late spring or summer.
In winter, no fertilizer at all is applied (omitted in Figure 6.7). Overall, both crops are mainly
fertilized in spring and fall, while in summer application rates are low. Since much more corn
than soybean fields are fertilized (see above), application rates in spring are higher than in fall.
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Figure 6.7: U.S. N-fertilizer application practice for corn and soybeans in 2010 and
2012, respectively. Due to multiple fertilization in a year the sum of the
shares exceeds 100 %. Data are obtained from USDA’s Agricultural Resource
Management Survey (ARMS, 2015). The survey is based on information
from farms in the contiguous U.S. See https://www.ers.usda.gov/data-products/
arms-farm-financial-and-crop-production-practices/documentation/ for more de-
tails. The planted areas cover all farms participating in the survey. Given un-
certainties are the standard errors.

This fertilization practice is in line with the EDGAR5.0 scaling factors for the spring, summer,
and fall field deployments, i.e. factors are largest in spring, followed by fall and are lowest
in summer (EDGAR4.3.2 scaling factors are not considered here since they are influenced by
the seasonality of the inventory). Thus, fertilization appears to induce the seasonality and
variability of agricultural N2O emissions in the study region. This statement is also supported

https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/documentation/
https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/documentation/
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by the IQR of EDGAR4.3.2 and EDGAR5.0 scaling factors, which is larger in spring and fall
than in summer, because the agricultural N2O emissions are more variable in spring and fall
caused by the temporally and spatially highly variable application rates of fertilizers. However,
beside the fertilizer application, soil conditions and precipitation, which strongly drive soil N2O
emissions, also vary from season to season influencing the seasonality of emissions. This is
further investigated in the next Chapter 7.

6.4.2 N2O Emissions During Winter 2017: Freezing/Thawing Events

Scaled Midwest N2O emissions for the winter 2017 field deployment show the largest variability
and highest values compared to all other ACT-America campaigns (see Figure 6.5). Average
emission estimates exceed the summer 2016 estimates by approximately 230 %. The mean
emission flux is significantly larger than the median emission flux, meaning that a few extreme
emission events dominate the winter N2O fluxes. These events cause the unusual N2O dry air
mole fractions of larger than 340 ppb observed during the winter deployment. According to
Section 6.3, a shallow PBL, typically observed in winter, might also result in unusual large N2O
mole fractions leading to positively biased top-down emission estimates. However, N2O fluxes
presented herein are most likely not affected by this effect since results are based on model
simulations which account for the PBL height. The next Chapter 7 shows that freezing/thawing
is most likely responsible for the extreme emission events. Globally, this process accounts for
up to 28 % of yearly cropland N2O emissions (Wagner-Riddle et al., 2017). The prominence of
scaled winter emissions suggests that freezing/thawing significantly contributes to the Midwest
N2O budget as well.

EDGAR’s agricultural N2O emissions do not capture the high winter emissions in the study
region. Scaling factors for EDGAR5.0 reach values of over 30 demonstrating the large mag-
nitude of freezing/thawing induced emission pulses (see Figure 6.6). EDGAR4.3.2 scaling
factors are less prominent due to the incorporated seasonality of agricultural emissions, which
states largest emissions in March. The seasonality is solely based on agricultural activity and
not soil processes (Janssens-Maenhout et al., 2019). Theoretically, assuming that EDGAR4.3.2
emissions are accurate, the derived scaling factors could be used to quantify the contribution
of freezing/thawing induced emissions to the Midwest N2O budget. However, uncertainties
are high and as concluded in the previous Section 6.4.1, the EDGAR4.3.2 seasonality may
be delayed by one month (compared to the observations in this study). This would lead to a
significant increase of EDGAR4.3.2 scaling factors for winter 2017, highlighting the need to
implement freezing/thawing induced N2O emissions in the inventory.

6.4.3 N2O Emissions During Summer 2019: The Extreme Flooding Event

Top-down emission estimates derived for summer 2019 are larger than for all other campaigns
except the winter campaign (see Figure 6.5). Compared to summer 2016, average emissions are
twice as high, while spring 2018 emissions are exceeded by roughly 14 %. Like in winter, the
median is considerably lower than the mean indicating that a few, large N2O emission events
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significantly contribute to average emissions of the investigated period and region. In contrast,
mean and median of all other campaigns (except winter) are close to each other indicating
that emissions are dominated by more average conditions. Two reasons for the prominent
2019 emission estimates are identified: First, the summer 2019 campaign took place roughly
one month earlier than the 2016 campaign and, hence, closer to the main fertilization activity
in spring. Second, the extreme flooding event, resulting in a delay of the growing season
(USDA, 2020), strongly impacted soil N2O emissions in the Midwest (see also next Chapter 7).
Since both reasons mainly affect agricultural N2O emissions, their influence is discussed using
agricultural scaling factors.

Agricultural scaling factors for summer 2019 are on average 120–140 % larger than for summer
2016 (see Figure 6.6). As described above, 2019 measurements (conducted in June/July) oc-
curred roughly one month earlier than in 2016 (July/August). According to DayCent estimates
of agricultural N2O emissions in the Midwest calculated for the years 2011–2015 (see Sec-
tion 5.4), emissions in June are on average 70 % larger than in July. Hence, a large part of the
discrepancy between the scaling factors derived for the two summer campaigns can probably be
traced back to the different sampling months. The remaining uncertainty might be attributed to
the extreme flooding event. However, this relies on two assumptions: First, small interannual
variability (and hence representativity of both measurement periods) and, second, no general
trend in emissions between the campaign years 2016 to 2019.

1. The interannual variability of summer N2O emissions is evaluated using DayCent 2011–
2015 simulations of agricultural N2O emissions in the Midwest. The relative standard
deviation of emissions in these five years is 14 % and 17 % in June and July, respectively.
Although five years are not sufficient to accurately determine the interannual variability,
the relative standard deviations strongly indicate that the interannual variability of summer
N2O emissions in the Midwest is lower than the potential impact of the flooding but not
negligible.

2. The general trend in average Midwest emissions from 2016 to 2019 is evaluated using a
study of Tian et al. (2018) who estimate global fluxes of soil N2O emissions since the
preindustrial era with an ensemble of terrestrial biosphere models. The authors report that
emissions in the entire U.S. stayed constant at 0.8 ± 0.3 Tg N2O-N yr−1 from the 1990s to
2007–2016. Hence, it is plausible that average agricultural emissions in the study region
might have stayed constant between 2016 and 2019 as well. In contrast, it has to be noted that
the crop diversity in the Midwest has declined while the fertilizer consumption increased
over the course of the last decades (see Appendix A.11). Both factors would favor N2O
emissions, indicating that average agricultural emissions in the study region might be larger
in 2019 than in 2016.

As a conclusion, the flooding event might have enhanced agricultural emissions in June/July
2019 by roughly 70 %, resulting in an approximate Midwest N2O flux of 0.18 nmol m−2 s−1.
However, a detailed and accurate quantification of this event is not possible with the available
data. To allow for a thorough analysis, a process-based model is required, which should be
driven by the specific 2019 flooding conditions. This is planned for a follow-up study using the
DayCent model. Alternatively, a well characterized seasonality of agricultural N2O emissions
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including year-to-year variability in the study region would enable a quantification using the
ACT-America N2O dataset.

6.4.4 Comparison With Other Studies

Top-down studies quantifying N2O emissions in the U.S. Midwest are rare. Figure 6.8 presents
the results of this thesis in the context of other top-down studies focusing on N2O emissions
in the Midwest and surrounding regions. The results of this chapter (Method 2) are first
compared to the results of Method 1, followed by a comparison to the DayCent estimated fluxes
of agricultural Midwest emissions for the years 2011–2015 (see Section 3.4.2) and, finally, to
other top-down results reported in the literature.

Comparison of Results of Method 1 and Method 2:

Section 6.2.3 gives a detailed description of the differences between both methods. A compar-
ison of the results of Method 1 and Method 2 shows that, in principle, both approaches deliver
consistent results. Fluxes derived with Method 2 are within the uncertainty of Method 1 but
tend to be at the lower end. This can be traced back to two reasons:

1. Method 2 is based on PFP samples taken over the course of five campaigns in total and,
hence, the spatial coverage is larger than of Method 1. While Method 1 uses measurements
focused on the central Midwest (see Figure 5.1b), Method 2 includes observations related to
sample locations in adjacent regions (see Figure 6.2). In the latter case, N2O emissions are
expected to be lower than in the densely farmed Midwest, leading to lower emission values
on average.

2. The temporal resolution of Method 1 (based on continuous measurement) is larger than of
Method 2 (based on discrete samples). In Method 1, derived N2O fluxes are based on contin-
uous N2O measurements along a transect. Hence, also small-scale features are completely
accounted for. In contrast, during each research flight maximum twelve PFP samples were
collected evenly distributed along the transect. These might miss plume enhancements,
resulting in a low bias in N2O fluxes derived with Method 2 (see Section 6.2.1). EDGAR5.0
scaling factors for the C-130 flight on the 04 Jul 2019 demonstrate this: Average scaling
factors (±𝜎) are significantly lower when using Method 2 (6.7 ± 3.4; five PFPs) rather than
Method 1 (10.3 ± 3.4). Thus, for a single research flight Method 1 delivers a more robust
result than Method 2. Analyzing the PFPs on a campaign basis reduces the consequences
of undersampling but the sample size is likely still not sufficient to completely eliminate the
bias.

Overall, lower estimates for PFP deduced emissions are mainly caused by a larger footprint and
likely a low bias due to undersampling.
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Figure 6.8: Comparison of N2O emission estimates for the U.S. Midwest. For each study, the
central color describes emission averages and the colors above and below indicate
the uncertainty range. The range of results for Method 2 is spanned by the lower
and upper quartile of estimates. Minimum and maximum DayCent estimates for
the years 2011 to 2015 are given. Fu et al. (2017) only provides minimum and
maximum estimates as well. Please see text for more details.

Comparison to Results From the DayCent Model:

The process-based model DayCent, introduced in Section 3.4.2, provides more sophisticated
bottom-up estimates of soil N2O emissions than EDGAR. Figure 6.8 displays minimum and
maximum DayCent estimates of total agricultural N2O emissions in the Midwest for June, July,
and October from 2011 to 2015. As discussed in the previous Chapter 5, even though the
DayCent estimates do not reflect the campaign years itself, they agree better with the scaled
emissions, with a very good agreement for summer 2016. A larger discrepancy is found for
the comparison with the scaled fluxes for fall 2017, maybe due to unusually much rain in this
period (twice as much as on average; see Section 5.5.3). The largest discrepancy is found
for the summer 2019 campaign, which can be attributed to the flooding event. Upcoming
dedicated DayCent simulations for the campaign periods will be used for further analysis of
these assumptions.
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Comparison to Other Top-Down Studies:

Finally, the results of this study are compared to available top-down studies quantifying N2O
emissions in the U.S. Midwest and adjacent regions, i.e. Fu et al. (2017), Miller et al. (2012), and
Kort et al. (2008). These studies are described in detail in Chapter 5. In short, Kort et al. (2008)
and Miller et al. (2012) quantify N2O emissions by combining airborne flask measurements
and tall tower measurements, respectively, with EDGAR emissions using a Bayesian approach.
Miller et al. (2012) estimates for the year 2004 are based on continuous measurements while
estimates for the year 2008 are based on flask samples taken on a daily basis. Similar to
this study, both studies report scaling factors for the EDGAR inventory. The fluxes shown
in Figure 6.8 are derived by scaling the respective EDGAR versions (32FT2000 and 4.0) and
represent average values for the U.S. Midwest. In contrast, Fu et al. (2017) focuses on estimating
N2O emissions of the Corn Belt using tall tower measurements (continuous as well as daily
flask samples) and a forward model approach.

Winter N2O emission estimates derived herein are significantly larger compared to the results
of Miller et al. (2012). For January to February 2008, Miller et al. (2012) estimated N2O flux
densities of less than 0.2 nmol m−2 s−1, while Method 2 emission estimates for winter 2017
are higher (0.3–1.6 nmol m−2 s−1). This can most probably be attributed to the occurrence
of freezing/thawing processes: In Jan–Feb 2017 average temperatures in the central U.S.
were significantly higher (271.4 K) than in Jan–Feb 2008 (267.2 K) (NOAA, 2020a). Hence,
during the period of the winter 2017 measurements, N2O emission pulses due to thawing were
much more likely than during the measurements in winter 2008. Another reason for the large
discrepancy between both studies might be due to the nature of N2O emission events during
freezing/thawing, which are short but intense (a few hours to days; Teepe et al., 2001; Müller
et al., 2003). There is an inherent risk that these are missed using the Miller et al. (2012)
approach. The low spatial (four tall tower sites) and temporal resolution (daily flask samples) of
the measurements therefore might cause a low bias. In contrast, airborne measurements exhibit
a higher spatial and temporal resolution and, hence, are better suited to catch such events. In
turn, freezing/thawing events may be under- or overrepresented due to a lower temporal coverage
compared to tall tower measurements leading to a low or high bias. Overall, a combination of
both measurement approaches would be ideal to quantify N2O emissions which are dominated
by freezing/thawing induced N2O emission pulses.

In spring, summer, and fall, a comparison of all top-down studies generally delivers more consis-
tent results. Average Midwest N2O emission estimates for the ACT-America field deployments
are in line with Kort et al. (2008) and Miller et al. (2012). In spring and early summer average
flux densities are largest while in the second half of summer and in fall average estimates are
approximately half as large. However, following Miller et al. (2012) fall emissions tend to be
lower than summer emissions which is opposite to the results presented here. The flooding
influenced summer 2019 emissions are on average 0.2–0.4 nmol m−2 s−1 larger than Kort et al.
(2008) or Miller et al. (2012) 2004 estimates, which is in line with the above estimated effect
of the flooding (i.e., 0.18 nmol m−2 s−1). However, June 2008 estimates by Miller et al. (2012)
are prominent. With average fluxes within 0.8–1.0 nmol m−2 s−1 they significantly exceed all
other studies (except Fu et al., 2017). They do not provide any explanation for the large June
emissions. Estimates provided by Fu et al. (2017) significantly exceed all other studies with
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maximum fluxes of over 4 nmol m−2 s−1 in June. This is most likely because Fu et al. (2017)
quantifies only the most densely farmed part of the Midwest, the Corn Belt, where N2O fluxes
are largest. The other studies sample, similar to the present study, most of the Midwest plus
adjacent regions and fluxes are then averaged over the whole Midwest. Thus, areas with less
agriculture and, hence, less N2O emissions contribute to average emissions leading to lower
total estimates.

6.5 Concluding Remarks

A unique and extensive airborne flask measurement dataset sampled above the eastern half of
the U.S. and spanning four seasons was used to investigate the seasonality of N2O emissions
in the U.S. Midwest. Using a top-down approach, average emissions in spring 2018 and fall
2017 are found to be approximately 75 % and 13 % larger than in summer 2016, respectively.
This is plausible since it follows the seasonality of the fertilization practice. Interestingly,
largest emissions are observed during winter measurements in 2017 (roughly 230 % larger than
in summer 2016), which can be attributed to freezing/thawing induced N2O emission pulses,
contributing significantly to the Midwest N2O budget. Agricultural N2O emissions are also
found to be enhanced (by roughly 70 %) during the summer 2019 measurements (compared to
summer 2016), most probably due to an unusual strong flooding event in 2019. A comparison
between EDGAR bottom-up and top-down estimates shows that, overall, agricultural EDGAR
emissions from spring to fall have to be scaled by factors between two and five while winter
emissions have to be scaled by factors up to 30, since EDGAR4.3.2 obviously misses the
large freezing/thawing induced winter emissions. While EDGAR5.0 N2O emissions exhibit
no seasonality at all, this study further shows that agricultural emissions in EDGAR4.3.2
would reproduce the top-down derived seasonality from spring to fall if shifted by one month.
Historical DayCent estimates of total agricultural N2O emissions in the U.S. Midwest are closer
to the scaled emissions than EDGAR but still tend to underestimates emissions. Other top-down
studies which quantify Midwest N2O emissions are rare. Results presented here are consistent
with the few previous top-down estimates but uncertainties are large highlighting the need of
further studies to fully characterize the seasonality of Midwest N2O emissions.

The Method 2 approach employed here is a straightforward adaption of Method 1 to exploit
results from discrete airborne measurements. A comparison shows that both approaches deliver
consistent results for fall 2017 and summer 2019. However, due to the low temporal resolution
of PFP measurements, Method 2 is more sensitive to even small errors in the model transport or
in the spatial distribution of EDGAR N2O emissions (see Section 6.2.3). Thus, the derived flux
densities inhibit larger uncertainties, nevertheless providing a unique dataset to characterize
Midwest N2O emissions. To allow for a more thorough evaluation of Method 2 and a more
accurate quantification of Midwest N2O emissions, a follow-up study is planned. The envisaged
approach will quantify emissions by combining PFP measurements, HYSPLIT footprints, and
EDGAR emissions via a more elaborate but well-established Bayesian approach (e.g., Kort
et al., 2008; Miller et al., 2012; Thompson & Stohl, 2014; Ganesan et al., 2015; Petrescu et al.,
2021).



7 Sensitivity Analysis of the Drivers of
U.S. Midwest N2O Emissions

The results discussed in Chapter 5 and 6 reveal that there is a strong day-to-day and seasonal
variability in the N2O emission strength. This is somewhat expected since the process of
soil N2O emissions is highly complex and depends on a large number of interacting driving
parameters (hereafter referred to as “drivers”), which include soil characteristics, weather
conditions, and agricultural practices like fertilization (see Section 2.2.2). The two dominant
meteorological drivers are soil moisture and soil temperature (Butterbach-Bahl et al., 2013).
Motivated by the extraordinary strong emissions observed in winter 2017 (cold temperatures)
and summer 2019 (flooding event), this chapter investigates whether a clear correlation can be
found between one of the important drivers and the U.S. Midwest soil N2O emission amounts.
Additionally, the importance of precipitation-induced N2O emission events for the Midwest
budget is investigated (RQ3).

Similar to the approach presented in the previous Chapter 6, HYSPLIT footprint simulations are
used, which are available for all PFP samples collected in the course of the five ACT-America
field campaigns. In this case, footprints are combined with ERA5 reanalyses (ERA5, 2017;
Hersbach et al., 2020) to analyze the soil conditions and precipitation that may have influenced
the results of the PFP measurements. The correlation of footprint soil conditions and precipita-
tion with Midwest N2O emission estimates based on the results of Chapter 5 (Method 1) and 6
(Method 2) is used to investigate the possible influence of the soil emission drivers. While
results of the fall 2017 and summer 2019 campaign (see Method 1 in Chapter 5) are used to
discuss the influence on the day-to-day variability of emissions, results based on the PFP dataset
(see Method 2 in Chapter 6) are the basis to examine the impact of meteorological drivers in
different seasons.

In the following, the approach is presented in Section 7.1. The sensitivity of soil N2O emissions
on the emission drivers is analyzed in Section 7.2 (day-to-day basis) and 7.3 (seasonal basis).
Finally, Section 7.4 summarizes and concludes this chapter.

7.1 Footprint Parameter Approach

The goal is to analyze the sensitivity of U.S. Midwest N2O emissions to soil moisture, soil
temperature, and precipitation. To this end, correlations between the Midwest N2O emissions
derived with Method 1 and Method 2 and the drivers at the source region of the emissions
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(hereafter referred to as “footprint parameters”) are examined. Footprint parameters are con-
strained by combining HYSPLIT simulations and ERA5 reanalyses. Both datasets are shortly
presented in the following Section 7.1.1. The calculation of footprint parameters from these
data is described in Section 7.1.2.

7.1.1 Data Basis

HYSPLIT footprints quantitatively describe the sensitivity of a receptor (i.e., PFP sample) to a
source region (see Figure 7.1a for an example) and, thus, enable to relate ERA5 fields of soil
moisture, soil temperature, and precipitation to the PFP measurements. Since correlations to
the results of Chapter 5 and 6 are investigated, the footprints are filtered in the same manner
as the PFPs in Method 2: Only footprints remain whose corresponding PFP samples have
been collected within the PBL and were dominated by N2O emissions from soils, ensuring
that predominantly soil emissions from the U.S. Midwest and adjacent regions are analyzed
(see Section 6.1 for more detailed explanations). As a result, for each ACT-America campaign
roughly 50–100 footprints are available, constraining the study region of this analysis, i.e. mostly
the central U.S. Midwest and the Gulf Coast (see Figure 6.2 in previous chapter). Analogue
to Method 2, the temporally and spatially resolved footprints are in the following considered
as one-dimensional arrays H of length 𝑛 𝑓 = 𝑛𝑡 · 𝑛𝑙𝑎𝑡 · 𝑛𝑙𝑜𝑛, where ℎ𝑖 is the 𝑖th component and
𝑛𝑡 , 𝑛𝑙𝑎𝑡 , and 𝑛𝑙𝑜𝑛 is the length of the time, latitude, and longitude dimension, respectively (see
Section 6.2.1 for more detailed explanations).
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Figure 7.1: (a) Summed HYSPLIT footprint of all PFPs which have been collected within the
PBL between 17:00 and 23:00 UTC on the 17 Feb 2017. (b) ERA5 soil temperature
in the uppermost soil layer (from the surface down to 7 cm) at 17:00 UTC on the
17 Feb 2017. The U.S. Midwest in encircled in white.

ERA5 provides hourly gridded fields of soil moisture, soil temperature, and accumulated
precipitation with a horizontal resolution of 30 km×30 km. The soil quantities are available for
four different soil layers down to a depth of 289 cm. Several experimental studies exist which
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investigate the response of N2O emissions on varying soil conditions (e.g., Schmidt et al., 2000;
Parkin & Kaspar, 2006; Castellano et al., 2010; Kroon et al., 2010; Keane et al., 2018). In these
studies, typically soil moisture and temperature in depths down to 30 cm are measured. Thus,
here only ERA5 soil parameters in the two uppermost layers are considered, ranging from the
surface down to 7 cm and from 7 cm down to 28 cm. Figure 7.1b displays an example ERA5
soil temperature field.
The ERA5 soil moisture is reported as volumetric soil water content Θ. Usually the water-filled
pore space (WFPS) is considered to discuss the sensitivity of N2O emissions to soil moisture
and, hence, Θ is converted to WFPS. If Θ𝑠𝑎𝑡 is the water content at which all pores are filled
(i.e., the soil is saturated), then WFPS is defined as:

WFPS =
Θ

Θ𝑠𝑎𝑡
(7.1)

Θ𝑠𝑎𝑡 depends on the soil type. In the soil parameterization of ERA5 (ECMWF, 2016) it is
distinguished between seven different soil textures with specific Θ𝑠𝑎𝑡 following van Genuchten
(1980) and Clapp and Hornberger (1978). These are used for the conversion.

7.1.2 Methodology

ERA5 reanalysis data of soil temperature, soil moisture, and hourly accumulated precipitation
are combined with the HYSPLIT footprints to estimate their influence on the observed N2O dry
air mole fraction. Let M𝑠𝑜𝑖𝑙 , T𝑠𝑜𝑖𝑙 , and P be the ERA5 fields of soil moisture, soil temperature,
and hourly accumulated precipitation on the same grid as the footprint H, where 𝜇𝑠𝑜𝑖𝑙𝑖 , 𝜗𝑠𝑜𝑖𝑙

𝑖 ,
and 𝑝𝑖 is the 𝑖th of 𝑛 𝑓 components, respectively. Averaging M𝑠𝑜𝑖𝑙 weighted with H, delivers a
scalar value 𝑀 𝑠𝑜𝑖𝑙

𝑓 that constrains the soil moisture at the footprint of a PFP sample (hereafter
referred to as “footprint moisture”):

𝑀 𝑠𝑜𝑖𝑙
𝑓 =

∑𝑛 𝑓

𝑖=1 ℎ𝑖 𝜇
𝑠𝑜𝑖𝑙
𝑖∑𝑛 𝑓

𝑖=1 ℎ𝑖
(7.2)

T𝑠𝑜𝑖𝑙 and P are analogously averaged to estimate the footprint temperature 𝑇 𝑠𝑜𝑖𝑙
𝑓 and footprint

precipitation 𝑃 𝑓 . These quantities together with 𝑀 𝑠𝑜𝑖𝑙
𝑓 constrain the average soil conditions or

precipitation at the source region of a PFP measurement. Using the uppermost ERA5 soil layer
(0–7 cm depth) and the next deeper one (7–28 cm depth) to calculate 𝑀 𝑠𝑜𝑖𝑙

𝑓 and 𝑇 𝑠𝑜𝑖𝑙
𝑓 delivers

similar results. Thus, in the following only footprint soil conditions based on the uppermost
ERA5 soil layer are considered. It has to be noted that since footprints for each single PFP
typically span large areas and cover ten days, the weighted averages are characterized by different
soil conditions and weather situations. Hence, this approach allows for a qualitative analysis of
the sensitivity to different parameters, rather than for a specific, quantitative analysis.

The uncertainty of 𝑀 𝑠𝑜𝑖𝑙
𝑓 , 𝑇 𝑠𝑜𝑖𝑙

𝑓 , and 𝑃 𝑓 is affected by errors in the HYSPLIT footprint as well
as by errors in the ERA5 fields. For the footprint soil moisture, uncertainties are additionally
introduced by the conversion of volumetric water content to WFPS (see Equation 7.1). These
error sources are difficult to quantify. However, it is assumed that due to averaging over a large
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area and long time period (ten days), errors statistically average out to a certain extent (if they
are not systematic). Hence, the final uncertainties of the footprint quantities are assumed to be
small enough for a general evaluation of the driving effect of soil conditions and precipitation
on N2O emissions. This assumption is supported by Li et al. (2020), who evaluated the soil
moisture and soil temperature in ERA5 and four other widely used reanalysis datasets against
observations. Good agreement between model and observations was found with the ERA5
model exhibiting the highest skill.

7.2 Drivers of Daily Emission Variations

To investigate the influence of soil moisture, soil temperature, and precipitation on daily vari-
ations of soil N2O emissions in the U.S. Midwest, the results of Method 1 (see Chapter 5) are
compared to the corresponding footprint parameters. Using Method 1, Midwest N2O emis-
sions were quantified for four flights in fall 2017 and six flights in summer 2019 by scaling
agricultural EDGAR emissions. Resulting average Midwest N2O emissions are within 0.16–
1.77 nmol m−2 s−1. Correlations among these top-down derived emissions and the footprint
parameters are expected to indicate whether or to what extent the different drivers affect the
amount of N2O emissions and, hence, to study their day-to-day variations. Figure 7.2 displays
the top-down derived Midwest N2O fluxes against the footprint soil moisture 𝑀 𝑠𝑜𝑖𝑙

𝑓 (left panel),
the footprint soil temperature 𝑇 𝑠𝑜𝑖𝑙

𝑓 (central panel), and the footprint precipitation 𝑃 𝑓 (right
panel) of the ten PBL transects. For each of the transects, the average PFP footprint quantity is
displayed with the error bars indicating minimum and maximum values.

According to the correlation, the influence of the soil moisture on the N2O emissions is small.
The average 𝑀 𝑠𝑜𝑖𝑙

𝑓 (see left panel of Figure 7.2) during all transects ranges between 50 % and
70 % WFPS. Theoretically, the N2O soil emissivity is maximal for a WFPS of 70–80 % (see
Section 2.2.2) and, thus, in the observed WFPS range a positive correlation between 𝑀 𝑠𝑜𝑖𝑙

𝑓 and
the Midwest N2O emissions is expected. However, there is no obvious or a negative correlation,
also if 2017 and 2019 results are treated separately, indicating that the soil moisture does not
have a strong impact on the emissions of the ten investigated days.
In contrast, the soil temperature shows a somewhat clearer positive correlation with N2O
emissions (𝑅 = 0.59), which is expected since increasing soil temperatures favor soil N2O
emissions (see Section 2.2.2). For soil temperatures between 285 K and 295 K, Midwest fluxes
increase moderately with temperature and for temperatures around 295 K emissions increase
strongly. The only exception in the correlation are the results of the flight on Jun 20, 2019.
Highest Midwest N2O fluxes are calculated, while corresponding soil temperatures are moderate
(292 K). In this particular case, other drivers or a combination with other drivers, like the
comparatively high soil moisture (left panel), might have a stronger impact. Another important
factor is the application of N-fertilizer, which is known to boost emissions. However, detailed
data about time and location of fertilizing activities are not available. The negative correlation
between soil moisture and temperature is prominent. The heat capacity of soils increases with
the soil moisture (Ochsner, 2019), which explains why wet/dry soils tend to be cooler/warmer.
This is further considered in the following Sections 7.3.1 and 7.3.3.
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Figure 7.2: Footprint soil conditions vs. U.S. Midwest N2O emissions derived with Method 1
(see Chapter 5). Displayed are the footprint WFPS 𝑀 𝑠𝑜𝑖𝑙

𝑓 (left panel), soil temper-
ature 𝑇 𝑠𝑜𝑖𝑙

𝑓 (center panel), and hourly accumulated precipitation 𝑃 𝑓 (right panel),
averaged over all PFPs which were collected during the ten analyzed PBL transects.
The ranges indicate the minimum and maximum PFP footprint quantity of the re-
spective transect. 𝑀 𝑠𝑜𝑖𝑙

𝑓 and 𝑇 𝑠𝑜𝑖𝑙
𝑓 are based on ERA5 data in the uppermost soil

layer (0–7 cm depth).

Another parameter well known to induce soil N2O emissions is the moistening of soils by
precipitation (see Section 2.2.2). This effect also influences the results of the top-down study
as indicated by the positive correlation between footprint precipitation and Midwest N2O fluxes
(𝑅 = 0.42; see right panel in Figure 7.2). However, the exact relationship between 𝑃 𝑓 and N2O
fluxes is not clear. Overall, more precipitation appears to favor soil N2O emissions but other
drivers probably play a more dominant role regarding the variations among top-down derived
Midwest fluxes of the ten transects. Following the discussion above, soil temperature is the
most dominant of the three investigated drivers.

In summary, the day-to-day variations in the top-down derived Midwest N2O fluxes seem to
be driven by soil temperature, while soil moisture probably plays only a minor role since
otherwise a positive correlation between emission estimates and 𝑀 𝑠𝑜𝑖𝑙

𝑓 would be observed (see
previous paragraph). Additionally, precipitation events may enhance daily emission estimates
like expected from other studies (e.g., Nakayama et al., 2020). The observed non-linear
relationship between N2O emissions and soil temperature is in line with other experimental
studies (see Section 2.2.2; Schindlbacher et al., 2004; Schaufler et al., 2010). However, a
detailed comparison is difficult, since the relationship strongly depends on various parameters
like soil type and vegetation.
Overall, it has to be pointed out that this sensitivity analysis is a strongly simplified consideration.
Although soil moisture and temperature are generally assumed to be the most important drivers
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of soil N2O fluxes, it cannot be ruled out that other drivers like the planted crop type or
soil pH-value also contribute to the observed day-to-day variations of Midwest N2O fluxes.
Furthermore, the driving effect of soil moisture, soil temperature, and precipitation also depends
on the soil type, preceding soil conditions, reactive N availability, crop type, and much more
(see Section 2.2.2). Additionally, synergies and asynergies among the drivers exist and, thus,
they are spatially and temporally highly heterogeneous. The employed footprints which are
used to relate N2O emissions to soil conditions cover large areas and, hence, a wide variety
of soil conditions and properties. Averaging them enables to detect the dominant drivers on
a regional scale, while locally the situation might be completely different. However, with
the available data neither can the individual contributions of the drivers be quantified nor can
their heterogeneity be investigated. Therefore, a process-based model like DayCent is required
enabling the simulation of the full complexity of soil N2O emissions and thus the contributions
of different drivers.

7.3 Dominance of Drivers in Different Seasons

To study the dominant drivers of soil N2O emissions during different seasons, a similar analysis
as in the previous Section 7.2 is utilized, based on all ACT-America field data. Footprint soil
conditions (𝑀 𝑠𝑜𝑖𝑙

𝑓 and 𝑇 𝑠𝑜𝑖𝑙
𝑓 ) and precipitation (𝑃 𝑓 ) are compared to the corresponding Midwest

N2O emissions derived with Method 2 for each collected PFP sample. While in the previous
Chapter 6 the average of the top-down derived emissions on a campaign basis is discussed, in
this section the variability is considered reflecting the heterogeneity of N2O emissions which is
caused by the influence of the drivers. Hence, studying the relationship between 𝑀 𝑠𝑜𝑖𝑙

𝑓 , 𝑇 𝑠𝑜𝑖𝑙
𝑓 ,

and 𝑃 𝑓 and the top-down derived Midwest emissions of individual PFPs allows to investigate
their possible influence.

Correlations between footprint driver quantities and N2O emissions are used to detect the dom-
inant drivers during all campaigns. Figure 7.3 displays the footprint soil moisture (left column),
footprint soil temperature (center column), and footprint precipitation (right column) of all PFPs
(collected within PBL and dominated by soil N2O emissions; see Section 7.1.1) against their
top-down derived N2O emissions. The five ACT-America campaigns are considered separately
(rows). Lowest Midwest N2O emissions are derived for summer 2016, followed by fall 2017,
and spring 2018. Summer 2019 emissions are larger, probably due to the extreme flooding
event in this year. Winter 2017 fluxes are dominated by a few extreme emission events which
significantly exceed the estimates for the other campaigns. 𝑀 𝑠𝑜𝑖𝑙

𝑓 and 𝑃 𝑓 are comparable among
the five campaigns while 𝑇 𝑠𝑜𝑖𝑙

𝑓 , like expected, tends to be higher in summer, followed by spring
and fall, and is lowest in winter.
Overall, correlations between N2O emissions and soil moisture, soil temperature, and precipita-
tion are weak. Each campaign spans six weeks and covers large areas and, hence, significantly
different soil properties and conditions were sampled. As a result, the contributions of different
emission drivers to each PFP sample can be highly variable weakening the correlations, unless
a single driver dominates significantly. However, the present analysis enables to study whether
the most important driver for each season can be identified and to investigate the dominant
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Figure 7.3: Footprint soil moisture 𝑀 𝑠𝑜𝑖𝑙
𝑓 (left column), soil temperature 𝑇 𝑠𝑜𝑖𝑙

𝑓 (center column),
and precipitation 𝑃 𝑓 (right column) vs. U.S. Midwest N2O emissions derived with
Method 2 (see Chapter 6) for all five ACT-America campaigns (rows). Respective
correlation coefficients 𝑅 are indicated. Only footprint quantities of PFPs collected
within the PBL and dominated by soil emissions are shown (see Section 6.1). 𝑀 𝑠𝑜𝑖𝑙

𝑓
and 𝑇 𝑠𝑜𝑖𝑙

𝑓 are based on ERA5 data in the uppermost soil layer (0–7 cm depth). In
winter 2017 (second row), one PFP sample is highlighted (magenta border). This
measurement is further considered in Section 7.3.2.
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drivers for exceptional emissions events.
The large heterogeneity of N2O emissions as well as of the emission drivers and the resulting
low correlation between emission estimates and 𝑀 𝑠𝑜𝑖𝑙

𝑓 , 𝑇 𝑠𝑜𝑖𝑙
𝑓 , and 𝑃 𝑓 also explains the difference

in correlations presented here compared to correlations discussed in the previous Section 7.2.
In the previous section, ten days are analyzed and, hence, soil conditions and properties are
most likely more comparable during the measurement periods than if measurements spanning
several weeks and a larger area are considered. As a result, correlations observed in the previous
section are not/less visible in Figure 7.3.

7.3.1 Summer 2016 and 2019: Influence of the Extreme Flooding Event

Compared to other seasons, maximum soil N2O fluxes are small in summer 2016. This can
certainly be traced back to the limited availability of reactive N-compounds in soils, which is low
in summer compared to spring and fall because less fertilizer is applied (see Section 6.4.1). As
shown in the first row of Figure 7.3, the effect of soil moisture, soil temperature, and precipitation
on soil N2O emissions in the study region is ambiguous. Only the footprint soil temperature
is weakly positive correlated to the emissions, indicating that this is the most dominant of the
three drivers considered.
For a more differentiated analysis, Figure 7.4 shows a zoomed excerpt of the soil temperature
against the N2O emissions derived for summer 2016 (left panel) and summer 2019 (right panel),
color-coded with the soil moisture. Overall, colder soils tend to be wetter while warmer soils
tend to be dryer. Hence, the driving effect of soil temperature appears to be counteracted by
the soil moisture and vice versa which might cause the generally weak correlations between
footprint soil conditions and emissions. However, for temperatures higher than 295 K the
driving effect of soil temperature is visible, probably because of the nonlinear response of soil
N2O fluxes to increasing soil temperatures (see Section 2.2.2 and Schaufler et al., 2010). In
contrast, for temperatures below 295 K, the driving effect of soil moisture seems to be more
important, since relatively wet soils (𝑀 𝑠𝑜𝑖𝑙

𝑓 around 70 % WFPS) appear to induce the variability
in the derived flux densities. However, 𝑇 𝑠𝑜𝑖𝑙

𝑓 is mostly higher than 295 K and, hence, in general
soil temperature probably plays a more important role in summer 2016 than soil moisture.

The results for the summer 2019 campaign (last row in Figure 7.3) indicate that also the soil
temperature is the dominant of the three N2O emission drivers considered, since only 𝑇 𝑠𝑜𝑖𝑙

𝑓
is weakly positive correlated to the emissions. For temperatures above 295 K, the correlation
between 𝑇 𝑠𝑜𝑖𝑙

𝑓 and the emissions is positive (see Figure 7.4 right panel). Soil temperatures of
300 K seem to explain the large emissions for a low soil moisture around 30 % WFPS. However,
although in general warming of soils favors N2O fluxes, below 295 K emissions decrease for
increasing soil temperatures. The soil moisture is most likely not responsible for that since 𝑀 𝑠𝑜𝑖𝑙

𝑓
is relatively constant. Overall, no reason for this negative correlation between soil temperature
and emissions could be found.

Differences between both summer campaigns can partly be attributed to the different timing of
observations. Measurements in 2019 occurred approximately one month earlier than in 2016
(see Section 6.1). Thus, average soil temperatures are slightly lower in 2019 (𝑇 𝑠𝑜𝑖𝑙

𝑓 = 297 K)
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Figure 7.4: Zoom in footprint soil temperature 𝑇 𝑠𝑜𝑖𝑙
𝑓 vs. U.S. Midwest N2O emissions derived

with Method 2 for the summer 2016 (left panel) and summer 2019 (right panel)
campaign, color-coded with the footprint soil moisture 𝑀 𝑠𝑜𝑖𝑙

𝑓 .

than in 2016 (𝑇 𝑠𝑜𝑖𝑙
𝑓 = 299 K) and, hence, the driving effect of soil temperature is probably

less pronounced. Additionally, in 2019 more reactive nitrogen might be available because the
campaign is closer to the main fertilization activities in spring (see Section 6.4.1) leading to
larger emission events.
Another obvious explanation for the differences between the two summer campaigns is the
exceptional flooding in 2019. Due to this event, conditions in the Midwest were extreme and
as outlined in Chapter 5, the planting season was significantly delayed. Hence, in June/July
2019 probably more fertilizer is applied than usual in this time of the year, probably leading
to unusually large direct N2O emissions. Indirect emissions are most likely enhanced as well,
because flooding presumably boosts runoff (see Section 5.5.3). Interestingly, unlike expected
due to the flooding, the soil moisture in general does not significantly differ in the study region
between 2016 (𝑀 𝑠𝑜𝑖𝑙

𝑓 = 48 % WFPS) and 2019 (𝑀 𝑠𝑜𝑖𝑙
𝑓 = 46 % WFPS). However, at specific

times and in specific regions of the Midwest, the flooding enhanced the soil moisture. Figure 7.5
shows the ERA5 soil moisture in May and June averaged over the U.S. Midwest region. In June
2019, soils were not unusually wet compared to the 2000–2020 average while in May 2019, soils
were wetter than usual in this time of the year. On the one hand, this might lead to enhanced
soil emissions in May but, on the other hand, might dampened N2O fluxes if soils were water
saturated (see Section 2.2.2). However, emissions presented here appear to be not influenced by
flooding induced wetter than average conditions. As a conclusion, the delayed growing season
and fertilization activity seems to be the main reason for the large N2O emissions during the
2019 field deployment.
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Figure 7.5: ERA5 soil moisture (Muñoz Sabater, 2019) in May and June in the uppermost soil
layer (0–7 cm depth) averaged over the U.S. Midwest region. (a) Time series of the
soil moisture in May and June. The 2012 drought (see Section 5.4) and the 2019
flooding is indicated. (b) Map of the deviation of the soil moisture in May 2019
from the 2000–2020 average for May. The U.S. Midwest is encircled in black.

7.3.2 Winter 2017: Influence of Freezing/Thawing Events

Winter 2017 (second row in Figure 7.3) is characterized by exceptional large N2O emissions in
the study region (up to nearly 6 nmol m−2 s−1). A strong impact of precipitation induced emission
pulses of N2O can be excluded, since largest emissions are found for lowest values of 𝑃 𝑓 in
combination with a negative correlation towards higher 𝑃 𝑓 . Furthermore, the observed range
of 𝑃 𝑓 is similar (or even less pronounced) compared to the other ACT-America deployments,
indicating that precipitation does not explain the large deviation. The large emissions come
along with a footprint soil moisture of around 70 % WFPS which is mostly favorable for the
release of soil N2O emissions. However, during the other ACT-America deployments, similar
𝑀 𝑠𝑜𝑖𝑙

𝑓 values are observed together with much lower emissions (<3 nmol m−2 s−1), indicating
that the soil moisture is not predominantly responsible for the large winter emissions.

However, the observed soil temperatures are, as expected from a winter deployment, generally
lower compared to the other campaign periods. Figure 7.6a displays the probability density
of 𝑇 𝑠𝑜𝑖𝑙

𝑓 during the winter deployment. Footprint soil temperatures are mainly around the
freezing point (265–280 K), indicating that freezing/thawing processes (see Section 2.2.2 and
Butterbach-Bahl et al., 2013) are predominantly responsible for the extreme emissions in winter
2017. A footprint is typically distributed over a large area and, thus, an average footprint
soil temperature of 265 K to 280 K may also cover regions where the soil freezes and thaws.
Figure 7.6b, which shows the distribution of soil temperatures yielding 𝑇 𝑠𝑜𝑖𝑙

𝑓 of a single PFP
measurement, demonstrates this. While 𝑇 𝑠𝑜𝑖𝑙

𝑓 is 277 K for this PFP sample, a significant part
of the footprint area exhibits soil temperatures around the freezing point which potentially
induces N2O emission bursts. Teepe et al. (2004) investigated the influence of freezing duration
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and soil moisture on thawing induced N2O emissions for different soil types in a laboratory
experiment. They found that an increased freezing duration significantly increases emissions on
thawing. The influence of soil moisture is important as well, with largest emissions occurring
for a WFPS of 64 %. Thus, the encountered footprint soil moisture (60–75 % WFPS) is an
important prerequisite for the freezing/thawing induced large N2O emissions. Since winter
2017 measurements predominantly occurred at the end of winter, it is also likely that long
freezing periods preceded the thawing events contributing to the large emissions.
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Figure 7.6: (a) Probability density of footprint soil temperature 𝑇 𝑠𝑜𝑖𝑙
𝑓 during the ACT-America

deployment in winter 2017. (b) Probability density of ERA5 soil temperature
yielding 𝑇 𝑠𝑜𝑖𝑙

𝑓 of a single PFP measurement. The corresponding PFP sample is
highlighted in Figure 7.3.

In summary, the results of this sensitivity study suggest that N2O emissions in the study region
in winter 2017 are governed by freezing/thawing processes. However, to study the effect of
freezing/thawing induced N2O emissions, a more detailed analysis is needed including dedicated
measurements and simulations of the underlying processes with a process-based model.

7.3.3 Spring 2018 and Fall 2017

Distributions of footprint soil moisture, soil temperature, and precipitation are similar in fall
2017 and spring 2018 (third and fourth row in Figure 7.3, respectively). However, typically
more reactive N-compounds are available in spring due to the application of a higher amount
of fertilizer (see Section 6.4.1) leading to generally higher emissions compared to fall. In both
seasons precipitation induced N2O emission events are not the dominant reason for the observed
N2O enhancements as indicated by the weak correlations between 𝑃 𝑓 and Midwest emissions.
Neglecting very dry soils with a WFPS of less than 25 %, the correlations of the soil moisture
are slightly positive while correlations of the soil temperature are near zero or negative. Thus,
in spring 2018 as well as in fall 2017 the driving effect of soil moisture seems to slightly
dominate with largest N2O fluxes around 70 % WFPS. However, results are ambiguous because
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soil moisture and temperature are correlated. Figure 7.7 shows 𝑀 𝑠𝑜𝑖𝑙
𝑓 against 𝑇 𝑠𝑜𝑖𝑙

𝑓 for the fall
2017 (left panel) and spring 2018 (right panel) field campaigns. The correlations between
soil moisture and temperature are negative. Hence, like in summer 2016 (see Section 7.3.1),
the driving effect of soil moisture appears to counteract the driving effect of soil temperature,
resulting in weak correlations with the N2O emissions.
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Figure 7.7: Footprint soil moisture 𝑀 𝑠𝑜𝑖𝑙
𝑓 vs. footprint soil temperature 𝑇 𝑠𝑜𝑖𝑙

𝑓 for the ACT-Amer-
ica field deployments in fall 2017 (left panel) and spring 2018 (right panel). Only
footprint quantities of PFPs collected within the PBL and dominated by soil emis-
sions are shown (see Section 6.1).

Freezing/thawing processes might also influence spring and fall N2O emissions in the study
region. Figure 7.8 displays the climatological first and last 0 °C freeze in the U.S. In the
northern half of the Midwest, freezing starts in September and in the southern half in October
(see Figure 7.8a). Farther south the first freeze occurs in November and at the Gulf Coast in
December. The last day with temperatures below 0 °C is in May/April in the Midwest and
in March farther south (see Figure 7.8b). Thus, during the fall 2017 (October/November) as
well as during the spring 2018 campaign (April/May), frost and hence also freezing/thawing
induced N2O fluxes are likely. However, the magnitude of such emissions is expected to be
much lower than in winter 2017 due to two reasons. First, the soil temperature in spring and
fall is generally higher than in winter. Although parts of the footprints may experience soil
frost, the share is most likely smaller than during winter 2017 and, hence, also the sampled N2O
enhancements emitted on thawing. Second, N2O fluxes on thawing increase with the preceding
freezing duration (see Section 7.3.2). In spring and fall short freezing periods of, e.g. only one
night are common, leading to much less thawing induced N2O emissions compared to winter,
where typically long-term freezing periods prevail.

7.4 Concluding Remarks

HYSPLIT footprints, available for all PFP samples collected in the course of five ACT-America
campaigns in four seasons, were used to investigate correlations between U.S. Midwest soil
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Figure 7.8: Climatology of first (a) and last (b) 0 °C freeze in the U.S. In total, 1350 stations
across the country recorded freezing days from 1980 to 2009. Here, for each
station the median of the period of record is shown gridded via nearest neighbor
interpolation. The U.S. Midwest is encircled by a thick black line. Data obtained
from the Vegetation Impact Program by the Midwestern Regional Climate Center
(VIP-MRCC, 2021).

N2O emissions and their dominant meteorological drivers, i.e. soil moisture, soil temperature,
and precipitation. By combining the footprints with ERA5 reanalyses, the soil conditions and
precipitation that may influence the measurements were estimated. Correlations between these
footprint parameters and Midwest N2O emissions derived with Method 1 and Method 2 were
then used to analyze the most dominant drivers of soil emissions.

The comparison of footprint parameters and the results of Method 1 shows that soil temperature
appears to significantly drive day-to-day variations in the top-down derived Midwest N2O
emissions while soil moisture seems to only play a minor role. Furthermore, precipitation likely
enhances daily emission.
The comparison of footprint parameters and the results of Method 2 shows that, overall, in soils
which are warmer than 295 K, the soil temperature seems to be the dominant driver of U.S.
Midwest N2O emissions while in cooler soils, the soil moisture seems to be more dominant.
Hence, summer emissions tend to be temperature-driven while spring and fall emissions tend to
be moisture-driven. Additionally, in spring and fall freezing/thawing induced emissions pulses
are possible. In winter 2017, extreme emission events are observed which are induced by
freezing/thawing processes. The flooding event in 2019 and the resulting delay of the planting
season most likely enhances N2O emissions in June, probably because (shortly preceding)
fertilizer application rates are larger than usual in this time of the year. Despite the flooding,
soil conditions and precipitation are found to not differ significantly between the two summer
campaigns, indicating that these drivers are not responsible for the large summer 2019 emissions.
For a comparison with the results presented herein, no other studies which investigate drivers
of N2O emissions on a seasonal and regional scale were found.

With the available data and methods, the most important drivers of soil N2O emissions can
be constrained and the drivers for exceptional emission events can be investigated. However,
for a more explicit and quantitative analysis of soil N2O emission drivers in the U.S. Midwest,
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more dedicated measurements are needed to capture the large heterogeneity of soil emissions.
Airborne measurements are well-suited therefore as they provide a large spatial coverage.
Additional simulations with a process-based model could provide further valuable insights into
soil N2O emissions and might enable a quantification of the contributions of the underlying
emission drivers.
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N2O is an important anthropogenically emitted long-lived GHG and the dominant ozone deplet-
ing substance in the stratosphere. Despite its crucial role in the atmosphere, N2O is (nearly) not
considered in national emission reduction plans which have been submitted to the Paris Agree-
ment. Since more vigorous efforts are necessary to meet the target of the Paris Agreement, the
need to reduce anthropogenic N2O emissions becomes undeniable. The urgency of this matter
is underlined by an unexpected strong increase of N2O emissions in recent years. To develop
efficient mitigation strategies, detailed knowledge about sources and sinks of N2O is essential.
However, due to the absence of direct atmospheric N2O measurements and the complexity of
processes that drive N2O emissions, emission estimates are rare and the few existing estimates
exhibit large uncertainties, especially on a regional scale. A hotspot of N2O emissions is the
U.S. Midwest. The agriculture in this region is one of the most productive in the world but also
causes large N2O emissions which are of global relevance. Although being an important N2O
source region, emissions in the Midwest are only insufficiently characterized.

This thesis aims at demonstrating the ability of the chosen top-down approach to evaluate bot-
tom-up estimates of regional N2O emissions and, thus, to pave the way for the development of
emission reduction strategies. It is hypothesized (see Chapter 1) that airborne in situ measure-
ments are well-suited to characterize N2O emissions in an intensively cultivated agricultural
region and to evaluate bottom-up inventories. To test this hypothesis, N2O emissions in the
U.S. Midwest have been characterized using high-resolution airborne in situ measurements and
model simulations. To this end, a QCLS has been optimized for N2O measurements and was suc-
cessfully deployed during two of five ACT-America campaigns gathering a unique continuous
in situ N2O dataset above the Midwest. Together with nearly 1400 PFP measurements, which
were collected during all five ACT-America campaigns, an exceptional N2O dataset covering
four seasons was available to characterize Midwest N2O emissions. Resulting top-down emis-
sion estimates were compared to two state-of-the-art bottom-up inventories, namely EDGAR
and DayCent. The following three research questions were answered to test the hypothesis:

RQ1: Can N2O emissions in the U.S. Midwest be quantified by using regional-scale air-
borne in situ measurements in combination with atmospheric transport model simula-
tions?

Regional-scale airborne in situ measurements of N2O together with atmospheric transport
model simulations are well-suited to quantify N2O emissions from an intensively cultivated
agricultural region. Two different top-down approaches were used to constrain N2O emissions
in the U.S. Midwest:
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Method 1: Continuous N2O measurements of ten research flights above the U.S. Midwest
were used to quantify emissions in October 2017 and June/July 2019. With regional
WRF-Chem forward simulations, N2O enhancements emitted from the EDGAR inventory
were propagated through the atmosphere and compared to the observations. Discrepancies
were minimized by scaling agricultural emissions in EDGAR, thus quantifying emissions.
While this approach is already established to constrain CH4 emissions, it is novel for
N2O. Resulting Midwest N2O emissions for October 2017 and June/July 2019 are
0.42 nmol m−2 s−1 and 1.06 nmol m−2 s−1, respectively (see Figure 5.9). The uncertainty,
evaluated by a Monte Carlo approach, is on the order of 50 % due to errors in the model
simulations and uncertainties in the observed N2O background mole fraction. Daily
variations are observed to be large, as expected from the high spatio-temporal variability
of soil N2O emissions. It is shown that an extreme flooding event in 2019 most likely
enhanced emissions.

Method 2: PFP N2O measurements of all five ACT-America field campaigns were used to
analyze the seasonality of Midwest N2O emissions. Up to twelve air mass samples
have been collected during each research flight, summing up to 50–100 datapoints per
campaign which were used to analyze soil N2O emissions from the Midwest. Such dis-
crete measurements have the inherent risk of undersampling by missing smaller-scale
structures. Hence, results were summarized for each, individual campaign dataset and
discussed on a campaign-basis to allow for a statistically large enough sample size.
With dedicated HYSPLIT footprints already available within the ACT-America frame-
work, N2O enhancements emitted from the EDGAR inventory were simulated. As in
the previous top-down approach, agricultural EDGAR emissions were scaled to min-
imize the discrepancy between observation and simulation. Resulting Midwest N2O
emissions are largest in winter 2017 (0.29–1.60 nmol m−2 s−1), followed by spring 2018
(0.36–0.82 nmol m−2 s−1), fall 2017 (0.20–0.48 nmol m−2 s−1), and summer 2016 (0.20–
0.43 nmol m−2 s−1) (see Figure 6.5). Mainly due to fertilization activity, emissions in
spring and fall are about 75 % and 13 % larger than in summer, respectively. Average
winter estimates exceed the summer estimates by roughly 230 % due to extreme soil
N2O emission events induced by freezing/thawing processes (see answer to RQ3). The
exceptional flooding event in 2019 caused a delay of the growing season in the Midwest,
leading to roughly 70 % larger agricultural emissions than usual in this time of the year.

Challenging for regional top-down studies is the large spatio-temporal heterogeneity of soil N2O
emissions which is especially relevant in intensively cultivated agricultural regions. Airborne
measurements with their great spatial coverage on several days are well-suited to capture this
heterogeneity. Using continuous (Method 1) instead of point measurements (Method 2) enables
to analyze N2O emissions of individual transects or flights rather than on a campaign basis
and, thus, enables a more specific quantification of a region. A prerequisite for both top-down
approaches is that the spatial distribution of N2O emissions is well known. While Method 1
is relatively insensitive to errors in the spatial distribution, Method 2 is sensitive because
simulations and observations are compared point-wise. Interpreting the PFP measurements and
HYSPLIT footprints with a Bayesian approach is expected to deliver more robust results and
is planned in the near future (see Chapter 9). However, a comparison between both top-down
approaches shows that results agree within their uncertainties. Results are also in the range of
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previous, ground-based top-down studies, which focus on specific locations of the Midwest,
giving confidence in the emission estimates presented herein.

RQ2: How do state-of-the-art bottom-up estimates of N2O emissions in the U.S. Midwest
compare to the airborne top-down emission estimates derived herein?

Monthly Tier 1–2 estimates of the two most recent EDGAR versions (4.3.2 and 5.0) were con-
sidered as well as historical DayCent Tier 3 estimates of soil N2O emissions for June, July, and
October 2011–2015. The emission factor-based EDGAR inventory significantly underestimates
N2O emissions in the U.S. Midwest, while emissions estimated with the biogeochemical model
DayCent are closer to the herein derived top-down estimates.

Agricultural EDGAR emissions have to be scaled by average factors between five and ten
to meet the top-down emission estimates for October 2017 and June/July 2019, respectively
(Method 1). On a daily basis, scaling factors up to even 20 (20 Jun 2019) are derived. For
summer 2016, spring 2018, and winter 2017, EDGAR emissions have to be scaled by factors
between two and ten to obtain the best agreement between bottom-up and top-down estimates
(Method 2). Scaling factors differ between the two EDGAR versions evaluated herein, because
only version 4.3.2 includes a seasonal cycle. This seasonality is consistent with the top-down
derived seasonal variations in the Midwest from spring to fall, but EDGAR’s growing season
starts roughly one month earlier. Furthermore, the EDGAR seasonality lacks the large winter
emissions in the Midwest (see answer to RQ1). Overall, EDGAR significantly underestimates
Midwest N2O emissions because the emission factors do not capture the regional characteristics
of the Midwest (e.g., agricultural practice, soil characteristics, meteorology), which strongly
influence N2O emissions. Especially when conditions are unusual, differences between EDGAR
and the top-down estimates are large. A prominent example of this is demonstrated by the case
studies analyzed during the flooding in 2019 – scaling factors of up to 20 are derived.

DayCent estimates of direct soil N2O emissions were available for the Midwest on a monthly
basis from 2011 to 2015. Although these estimates do not cover the ACT-America measurement
years (2016–2019), the comparison with N2O fluxes derived herein allows to evaluate the
potential of such Tier 3 emission estimates. DayCent estimates for summer are two to three
times lower than the top-down estimates for June/July 2019 and, hence, perform significantly
better than EDGAR (factor around ten). Contrary, DayCent October estimates are similar to
EDGAR, i.e. by a factor of approximately five lower than the top-down estimates for October
2017. DayCent simulations which are driven by the specific conditions during the measurements
are expected to be closer to the top-down estimates. Overall, it is shown that, as expected,
DayCent is better suited to quantify regional N2O emissions than EDGAR, since DayCent
considers regional characteristics such as soil conditions and weather. However, due to the
complexity of the processes parameterized in the model and large inaccuracies in the input data
(e.g., fertilization application rates) top-down studies as the one presented here are absolutely
necessary to evaluate the model.
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RQ3: Can dominant drivers of N2O emissions in the U.S. Midwest be identified using
regional-scale airborne in situ measurements and atmospheric transport model simula-
tions?

Airborne flask measurements and atmospheric transport model simulations are a useful tool to
constrain the dominant drivers of N2O emissions in the U.S. Midwest but they have limitations
regarding quantifying their influence. Earlier studies have shown that Midwest N2O emissions
are dominated by soil emissions which are predominantly driven by soil moisture, soil temper-
ature, and precipitation. Hence, averages of these three drivers at the source region of each PFP
measurement were estimated via HYSPLIT footprints. Correlations between average footprint
soil conditions/precipitation and Midwest N2O emissions were used to investigate the dominant
drivers.

Results of this study indicate that if soils are warmer than 295 K – which is mostly the case in
summer – the soil temperature predominantly drives Midwest N2O emissions. In cooler soils
– which is mostly the case in spring and fall – the soil moisture is found to be more important.
Precipitation events are able to boost daily N2O emissions but, based on the current dataset, this
driving effect is less prominent on a seasonal scale. Freezing/thawing induced N2O emissions
are most likely responsible for the high top-down emission estimates in winter 2017 and, thus, it
is concluded that this effect contributes considerably to the Midwest N2O budget. Interestingly,
N2O emission estimates in the flooding year 2019 are most likely not enhanced because of
unusual soil conditions but because of the delay of the growing season and enhanced indirect
N2O emission due to an increased runoff. However, it has to be noted that the influence of
emission drivers cannot be quantified with the employed approach alone, because the available
dataset is not sufficient to describe the full complexity of soil N2O emissions. To quantify the
influence of emission drivers, a process-based model, which simulates the full complexity of
soil processes, and more extensive, dedicated measurements are required.

To conclude, the hypothesis of this thesis that regional-scale airborne in situ measurements
are well-suited to characterize N2O emissions from area sources such as intensively cul-
tivated agricultural regions and to evaluate related bottom-up emission estimates is con-
firmed with certain limitations.
Airborne in situ measurements are well-suited to quantify N2O emissions in the U.S. Midwest
and thus likely in other intensively cultivated agricultural regions as well. The most dominant
driving parameters of soil N2O emissions can also be identified, while for a precise quantifica-
tion more dedicated studies are needed. However, for both, the emission quantification as well
as for the driver identification, measurement instruments with a high accuracy and precision
are mandatory, because atmospheric N2O enhancements are typically less than 1 % of the N2O
background. Furthermore, the spatial and temporal coverage of the observations and hence the
flight strategy is crucial. Due to the large spatio-temporal heterogeneity of soil N2O emissions,
the whole target region has to be sampled (e.g., via PBL transects across the region) on several
days over a longer period. The actual required number of flights probably depends on the region
and season, while less research flights are needed if continuous and not discrete measurements
are available. In addition to the demanding measurement requirements, the spatial distribution
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of N2O emissions has to be well known to allow for a proper source attribution.
The complexity of soil N2O emissions, like the dependence on soil conditions or fertilization,
challenges bottom-up estimates. An emission factor-based approach is not able to capture the
large heterogeneity of N2O emissions in intensively cultivated agricultural regions. In the case
of the U.S. Midwest, this results in a large underestimation of emissions. I would like to note
that in other agricultural regions, the magnitude of the underestimation might be different or
EDGAR might even overestimate emissions. However, overall the emission factor approach is
only suitable to a limited extent to quantify regional N2O emissions. Defining region-specific
emission factors based on measurements might improve bottom-up estimates significantly. In
regions with little agriculture, emission factor-based bottom-up estimates might perform better
as the complexity of soil N2O emissions is less relevant. Contrary, a process-based model is
well-suited to quantify regional N2O emissions in an intensively cultivated agricultural region.
Furthermore, such models enable to quantify the influence of soil emission drivers and the
consequences of unusual conditions like due to flooding. The downside is, that process-based
models are complex and require a large variety of input data which are, for example in the case of
fertilizer application rates, often difficult to compile and highly uncertain. Thus, measurements
become important to constrain the model and to adjust input parameters for a certain region.

This work is an important contribution to the endeavor to meet the target of the Paris Agreement.
The analyses presented herein quantify a globally relevant N2O source region and provide a
guideline for the characterization of N2O emissions in other regions around the world, aiding the
effort to establish a national N2O inventory system, like the proposed German initiative ITMS.
Such inventory systems are the basis for the development of efficient N2O emission reduction
strategies and, hence, to mitigate global warming.
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The present thesis demonstrates the great potential of and the urgent need for regional-scale
airborne in situ measurements within the PBL to better understand and quantify N2O emissions
in intensively cultivated agricultural regions. However, the heterogeneity of soil N2O emissions
poses a major challenge for both, bottom-up as well as top-down estimates, which hampered a full
characterization of N2O emissions in the U.S. Midwest. To further enhance the understanding
of N2O emissions, the following follow-up studies are planned using the unique N2O dataset
gathered within the ACT-America project:

1. The seasonality of N2O emissions in the U.S. Midwest during the ACT-America project
will be quantified via a Bayesian approach using PFP measurements and HYSPLIT
simulations. This study is complementary to Chapter 6, where a more straightforward
but less established emission factor approach is used (Method 2). The goal is to evaluate
Method 2 and to allow for a better understanding of the seasonality and dependencies of
Midwest N2O emission drivers.

2. In collaboration with Stephen M. Ogle (Natural Resource Ecology Laboratory, Colorado
State University, Fort Collins, CO, USA) DayCent simulations driven by the specific
ACT-America conditions are planned, enabling the investigation of the following research
questions:

• How do dedicated DayCent Tier 3 N2O emission estimates for the U.S. Midwest
compare to the top-down estimates derived herein?

• Can the general seasonality of N2O emissions in the U.S. Midwest be quantified
using DayCent simulations and top-down estimates derived herein?

• Does the DayCent model adequately reflect the influence of soil N2O emission
drivers – including freezing/thawing processes – in the U.S. Midwest?

• How and to what extent altered the 2019 flooding event soil N2O emissions in the
U.S. Midwest?

Although the present thesis is, to my best knowledge, the most extensive analysis of N2O
emissions in the U.S. Midwest, more top-down studies are necessary for a comprehensive
analysis of the drivers of Midwest N2O emissions and to evaluate state-of-the-art methods to
estimate emission patterns. To cover the high temporal variability on various scales, long term
projects with regular airborne measurements spanning wide areas of the Midwest are necessary.
Combining a process-based model like DayCent capable of simulating the temporal and spatial
variability of N2O emissions, with extensive airborne and tall tower top-down studies at selected
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spots and times, could be a cost effective approach that would limit the number of flights needed
to produce accurate estimates for the region and improve national reporting of emissions (Ogle
et al., 2020).
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Figure 9.1: Anthropogenic N2O emissions worldwide in 2015 following EDGAR5.0. Some
N2O emission hotspot regions are encircled in white.

The U.S. Midwest is only one among several N2O emission hotspot worldwide (see Figure 9.1),
which are all insufficiently characterized. Example regions are the pampas in South America,
India, China, and parts of Europe – especially Benelux. Since N2O emission reduction is
an important building block on the way to meet the target of the Paris Agreement, emission
monitoring systems for these hotspot regions but also minor N2O source regions are essential,
because they constitute the science basis for policy makers to develop effective emission reduc-
tion strategies. This work provides valuable guidance for the characterization of source regions
which is a crucial prerequisite for the development of a national N2O monitoring system, such
as the German initiative ITMS. Overall, based on the results presented herein, the following
two main aspects have to be addressed for the development of national inventory systems:

1. More airborne as well as ground-based N2O measurements with large spatial and tem-
poral coverage are needed to quantify source regions. As shown in this study, airborne
in situ measurements along regional-scale PBL transects are well-suited for that. Com-
plementary measurements with remote sensing instruments which measure at the surface,
aboard aircraft, or from satellites would enable more extensive top-down studies. Satellite
measurements are especially desirable because of their large spatial and temporal cover-
age. However, a lot of effort has to be put into the development and optimization of N2O
instruments to fulfill the high requirements of N2O measurements, especially regarding
accuracy and precision.
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2. The development and evaluation of Tier 3 N2O emission estimates has to be encouraged.
For that, top-down studies are the prerequisite to evaluate and set up the underlying
process-based model for a certain region. Additionally, the monitoring of anthropogenic
activities, which influence N2O emissions and, hence, are needed for process-based model
simulations, has to be improved. For example, as shown in this study, temporally resolved
maps of fertilizer application rates are rare causing errors in Tier 3 emission estimates
because assumptions about fertilization activity have to be made.
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A.2 Meteorological Quantities

The following definitions of the potential temperature 𝜃 (1) and virtual potential temperature
𝜃𝑣 (2) are taken from the Glossary of Meteorology of the American Meteorological Society
(AMS; https://glossary.ametsoc.org/wiki/Welcome):

1. The potential temperature 𝜃 is “the [theoretical] temperature that an unsaturated parcel
of dry air would have if brought adiabatically and reversibly from its initial state to a
standard pressure, 𝑝0, typically 100 kPa” (AMS, 2021a):

𝜃 = 𝑇

(
𝑝0
𝑝

) 𝑅𝑎
𝑐𝑝

(A.1)

Where 𝑇 is the absolute temperature of the air parcel in K, 𝑝 is the pressure of the air
parcel in Pa, 𝑅𝑎 is the the gas constant of air in J K−1 kg−1, and 𝑐𝑝 is the specific heat
capacity at a constant pressure in J K−1 kg−1. The unit of 𝜃 is K.

2. The virtual potential temperature 𝜃𝑣 is “the theoretical potential temperature of dry air
that would have the same density as moist air” (AMS, 2021b):

𝜃𝑣 = 𝜃 (1 + 0.61 𝑟 − 𝑟𝐿) (A.2)

Where 𝜃 is the potential temperature in K, 𝑟 is the mixing ratio of water vapor in kg kg−1,
and 𝑟𝐿 is the mixing ratio of liquid water in kg kg−1. The unit of 𝜃𝑣 is K.

https://glossary.ametsoc.org/wiki/Welcome
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A.3 Global N2O Sources in 2007–2016

Source: Emissions in Tg N yr−1

Natural
Natural soils 5.6 (4.9–6.5)
Oceans 3.4 (2.5–4.3)
Inland waters, estuaries, coastal zones 0.3 (0.3–0.4)
Lightning and atmospheric production 0.4 (0.2–1.2)
Natural total 9.7 (8.0–12.0)

Anthropogenic

Agriculture
(direct emissions
from N additions)

Direct soil emissions 2.3 (1.4–3.8)
Manure left on pasture 1.2 (0.9–1.3)
Manure management 0.3 (0.2–0.5)
Aquaculture 0.1 (0.0–0.2)
Subtotal 3.8 (2.5–5.8)

Other direct
sources

Fossil fuels and industry 1.0 (0.8–1.1)
Waste and waste water 0.3 (0.2–0.5)
Biomass burning 0.6 (0.5–0.8)
Subtotal 1.9 (1.6–2.3)

Indirect emissions
from anthropogenic
N additions

Inland waters, estuaries, coastal zones 0.5 (0.2–0.7)
Atmospheric N deposition 0.9 (0.5–1.6)
Subtotal 1.3 (0.7–2.2)

Perturbed fluxes from climate/CO2/land cover change 0.2 (−0.6–1.1)

Anthropogenic total 7.3 (4.2–11.4)

Total 17.0 (12.2–23.5)

Table A.1: Global N2O sources of 2007–2016 following Tian et al. (2020). Due to rounding
given totals/subtotals can be different to the sum of individual contributions. Sources
are given in Tg N yr−1. The ranges are minimum-maximum estimates.
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A.4 Configuration of WRF Simulations

This section presents the configuration of the WRF simulations used for the study in Chapter 5
to analyze ten research flights (Method 1). The center of the outer domain (D01) is located
at 41.827 °N and 92.364 °W (see Figure 5.1). The inner domains (D02) are different in the
simulations for the ten research flights. Table A.2 presents the different setups of the inner
domains. For more information about WRF parameter names, the reader is referred to the WRF
user guide (https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/contents.html).

Day: i_parent

_start

j_parent

_start
s_we e_we s_sn e_sn

Fall 2017
10 Oct 153 100 1 446 1 281

18 Oct 89 93 1 441 1 341

20 Oct 89 100 1 441 1 306

24 Oct 85 102 1 386 1 296

Summer 2019
20 Jun 116 23 1 321 1 476

04 Jul 70 107 1 396 1 476

07 Jul 92 77 1 466 1 311

08 Jul 71 106 1 411 1 261

10 Jul 71 95 1 411 1 326

11 Jul 94 90 1 431 1 316

Table A.2: Inner domain setups of the WRF simulations used to analyze ten research flights
with Method 1 (see Chapter 5).

The remaining configuration is independent of the simulated day. An example WRF configura-
tion file (“namelist.input”) for the flight on the 10 Oct 2017 is presented below:

1 &time_control
2 run_days = 2,
3 run_hours = 0,
4 run_minutes = 0,
5 run_seconds = 0,
6 start_year = 2017, 2017,
7 start_month = 10, 10,
8 start_day = 09, 09,
9 start_hour = 00, 00,

10 start_minute = 00, 00,
11 start_second = 00, 00,
12 end_year = 2017, 2017,
13 end_month = 10, 10,
14 end_day = 11, 11,
15 end_hour = 00, 00,
16 end_minute = 00, 00,

https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/contents.html
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17 end_second = 00, 00,
18 interval_seconds = 3600,
19 input_from_file = .true., .true.,
20 fine_input_stream = 0, 0,
21 history_interval = 60, 5,
22 frames_per_outfile = 12, 12,
23 restart = .false.,
24 restart_interval = 360,
25 io_form_history = 2,
26 io_form_restart = 2,
27 io_form_input = 2,
28 io_form_boundary = 2,
29 debug_level = 0,
30 auxinput4_inname = "wrflowinp_d <domain>",
31 auxinput4_interval = 60, 60,
32 io_form_auxinput4 = 2,
33 history_outname = "wrfout_d<domain>_<date>",
34 rst_outname = "wrfrst_d<domain>_<date>",
35 auxinput1_inname = "metoa_em.d<domain >.<date>"
36 auxinput11_end_h = 48, 48,
37 auxinput11_interval = 1, 1,
38 io_form_auxinput5 = 2,
39 auxinput5_interval_m = 60,
40 auxinput5_inname = "wrfchemi_d <domain>_<date>"
41 frames_per_auxinput5 = 1,
42 force_use_old_data = T,
43 iofields_filename = "iofields.txt","iofields.txt",
44 ignore_iofields_warning = .true.,
45 /
46

47 &domains
48 time_step = 60,
49 time_step_fract_num = 0,
50 time_step_fract_den = 1,
51 max_dom = 2,
52 use_adaptive_time_step = .false.,
53 s_we = 1, 1,
54 e_we = 278, 446,
55 s_sn = 1, 1,
56 e_sn = 253, 281,
57 s_vert = 1, 1,
58 e_vert = 51, 51,
59 dx = 15000, 3000,
60 dy = 15000, 3000,
61 grid_id = 1, 2,
62 parent_id = 0, 1,
63 i_parent_start = 1, 153,
64 j_parent_start = 1, 100,
65 parent_grid_ratio = 1, 5,
66 parent_time_step_ratio = 1, 5,
67 p_top_requested = 10000,
68 feedback = 1,
69 smooth_option = 1,
70 num_metgrid_soil_levels = 4,
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71 num_metgrid_levels = 38,
72 interp_type = 2,
73 lagrange_order = 1,
74 zap_close_levels = 500,
75 use_surface = .true.,
76 lowest_lev_from_sfc = .false.,
77 force_sfc_in_vinterp = 1,
78 max_ts_locs = 0,
79 eta_levels = 1.0000,0.9975,0.9937,0.9884,0.9821,
80 0.9758,0.9695,0.9632,0.9568,0.9505,0.9442,0.9368,0.9295,
81 0.9221,0.9147,0.9074,0.9000,0.8926,0.8853,0.8779,0.8705,
82 0.8632,0.8558,0.8474,0.8389,0.8263,0.8084,0.7895,0.7684,
83 0.7474,0.7211,0.6947,0.6579,0.6211,0.5842,0.5474,0.5105,
84 0.4737,0.4337,0.3895,0.3463,0.3053,0.2674,0.2326,0.2000,
85 0.1684,0.1389,0.1105,0.0758,0.0368,0.0000
86 /
87

88 &physics
89 mp_physics = 8, 8,
90 ra_lw_physics = 4, 4,
91 ra_sw_physics = 4, 4,
92 radt = 5, 5,
93 swint_opt = 1,
94 slope_rad = 0, 0,
95 topo_shading = 0, 0,
96 sf_sfclay_physics = 5, 5,
97 sf_surface_physics = 2, 2,
98 sf_urban_physics = 0, 0,
99 bl_pbl_physics = 5, 5,

100 bldt = 0, 0,
101 cu_physics = 1, 0,
102 shcu_physics = 0, 0,
103 cudt = 0, 0,
104 ishallow = 0,
105 isfflx = 1,
106 ifsnow = 0,
107 icloud = 1,
108 surface_input_source = 1,
109 num_soil_layers = 4,
110 num_land_cat = 21,
111 mp_zero_out = 2,
112 mp_zero_out_thresh = 1.e-8,
113 maxiens = 1,
114 maxens = 3,
115 maxens2 = 3,
116 maxens3 = 16,
117 ensdim = 144,
118 sst_update = 1,
119 seaice_threshold = 271,
120 /
121

122 &fdda
123 grid_fdda = 1, 0,
124 grid_sfdda = 1, 0,
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125 gfdda_inname = "wrffdda_d <domain>",
126 sgfdda_inname = "wrfsfdda_d <domain>",
127 gfdda_end_h = 48, 0,
128 sgfdda_end_h = 48, 0,
129 gfdda_interval_m = 60, 0,
130 sgfdda_interval_m = 60, 0,
131 fgdt = 0, 0,
132 if_no_pbl_nudging_uv = 0, 0,
133 if_no_pbl_nudging_t = 1, 1,
134 if_no_pbl_nudging_q = 1, 1,
135 if_zfac_uv = 0, 0,
136 k_zfac_uv = 10, 10,
137 if_zfac_t = 0, 0,
138 k_zfac_t = 10, 10,
139 if_zfac_q = 0, 0,
140 k_zfac_q = 10, 10,
141 guv = 0.0003, 0.0001,
142 guv_sfc = 0.0003, 0.0001,
143 gt = 0.0003, 0.0001,
144 gt_sfc = 0.0, 0.0,
145 gq = 0.0003, 0.0001,
146 gq_sfc = 0.0, 0.0,
147 if_ramping = 1,
148 dtramp_min = 60.0,
149 rinblw = 250.0,
150 io_form_gfdda = 2,
151 io_form_sgfdda = 2,
152 obs_nudge_opt = 1, 1,
153 max_obs = 150000,
154 fdda_start = 0.0, 0.0,
155 fdda_end = 2880, 2880,
156 obs_nudge_wind = 1, 1,
157 obs_coef_wind = 4.0E-4, 4.0E-4,
158 obs_nudge_temp = 1, 1,
159 obs_coef_temp = 4.0E-4, 4.0E-4,
160 obs_nudge_mois = 1, 1,
161 obs_coef_mois = 4.0E-4, 4.0E-4,
162 obs_nudge_pstr = 0, 0,
163 obs_coef_pstr = 4.0E-4, 4.0E-4,
164 obs_rinxy = 100, 100,
165 obs_no_pbl_nudge_uv = 0, 0,
166 obs_no_pbl_nudge_t = 1, 1,
167 obs_no_pbl_nudge_q = 1, 1,
168 obs_sfc_scheme_horiz = 1,
169 obs_sfc_scheme_vert = 0,
170 obs_dpsmx = 7.5,
171 obs_nudgezfullr1_uv = 50,
172 obs_nudgezrampr1_uv = 50,
173 obs_nudgezfullr2_uv = 50,
174 obs_nudgezrampr2_uv = 50,
175 obs_nudgezfullr4_uv = -5000,
176 obs_nudgezrampr4_uv = 50,
177 obs_nudgezfullr1_t = 50,
178 obs_nudgezrampr1_t = 50,
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179 obs_nudgezfullr2_t = 50,
180 obs_nudgezrampr2_t = 50,
181 obs_nudgezfullr4_t = -5000,
182 obs_nudgezrampr4_q = 50,
183 obs_nudgezfullr1_q = 50,
184 obs_nudgezrampr1_q = 50,
185 obs_nudgezfullr2_q = 50,
186 obs_nudgezrampr2_q = 50,
187 obs_nudgezfullr4_q = -5000,
188 obs_nudgezrampr4_q = 50,
189 obs_nudgezfullmin = 50,
190 obs_nudgezrampmin = 50,
191 obs_nudgezmax = 3000,
192 obs_max_sndng_gap = 20,
193 obs_sfcfact = 0.5,
194 obs_sfcfacr = 0.67,
195 obs_rinsig = 0.1,
196 obs_twindo = 2.0, 2.0,
197 obs_npfi = 200,
198 obs_ionf = 2, 2,
199 obs_idynin = 1,
200 obs_dtramp = 60.0,
201 obs_prt_freq = 10, 10,
202 obs_prt_max = 10,
203 obs_ipf_errob = .true.,
204 obs_ipf_nudob = .true.,
205 obs_ipf_in4dob = .true.,
206 obs_ipf_init = .true.,
207 obs_scl_neg_qv_innov = 1,
208 /
209

210 &dynamics
211 w_damping = 1,
212 diff_opt = 1, 1,
213 diff_6th_opt = 0, 0,
214 diff_6th_factor = 0.12, 0.12,
215 km_opt = 4, 4,
216 damp_opt = 3,
217 dampcoef = 0.2, 0.2,
218 time_step_sound = 8, 8,
219 epssm = 0.1, 0.1,
220 mix_full_fields = .false., .false.,
221 zdamp = 5000., 5000.,
222 base_temp = 290.,
223 khdif = 0., 0.,
224 kvdif = 0., 0.,
225 non_hydrostatic = .true., .true.,
226 chem_adv_opt = 2, 2,
227 moist_adv_opt = 2, 2,
228 scalar_adv_opt = 2, 2,
229 tke_adv_opt = 2, 2,
230 do_avgflx_em = 1, 1,
231 do_avgflx_cugd = 0, 0,
232 /
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233

234 &bdy_control
235 spec_bdy_width = 7,
236 spec_zone = 1,
237 relax_zone = 6,
238 spec_exp = 0.0,
239 specified = .true., .false.,
240 nested = .false., .true.,
241 /
242

243 &namelist_quilt
244 nio_tasks_per_group = 0,
245 nio_groups = 1,
246 /
247

248 &chem
249 chem_opt = 15, 15,
250 kemit = 10,
251 emi_inname = "wrfchemi_d <domain>_<date>",
252 input_chem_inname = "wrfchemi_d <domain>_<date>",
253 chemdt = 0.033, 0.033,
254 emiss_inpt_opt = 1, 1,
255 emiss_opt = 22, 22,
256 io_style_emissions = 2,
257 chem_conv_tr = 0, 0,
258 chem_in_opt = 0, 0,
259 bio_emiss_opt = 0, 0,
260 gaschem_onoff = 0, 0,
261 biomass_burn_opt = 0, 0,
262 have_bcs_chem = .true., .false.,
263 /
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A.5 Agricultural Scaling Factors Derived With Method 1

Day:
EDGAR4.3.2 EDGAR5.0

unmodified bias corrected unmodified bias corrected

Fall 2017
10 Oct 11.2 ± 3.8 8.8 ± 4.1 6.7 ± 2.3 5.3 ± 2.4
18 Oct 2.8 ± 1.5 2.9 ± 1.5 1.5 ± 0.8 1.6 ± 0.8
20 Oct 7.6 ± 2.7 7.0 ± 2.5 4.0 ± 1.4 3.7 ± 1.3
24 Oct 3.5 ± 3.9 3.4 ± 3.8 1.8 ± 2.0 1.7 ± 1.9
Average: 6.3 ± 4.6 5.5 ± 4.0 3.5 ± 2.7 3.1 ± 2.3

Summer 2019
20 Jun 20.3 ± 6.5 22.1 ± 7.3 17.4 ± 5.6 19.0 ± 6.3
04 Jul 11.9 ± 4.0 12.2 ± 4.7 10.3 ± 3.4 10.5 ± 4.0
07 Jul 14.8 ± 4.1 12.9 ± 3.3 13.0 ± 3.6 11.3 ± 2.9
08 Jul 9.9 ± 2.6 7.7 ± 2.1 8.7 ± 2.3 6.8 ± 1.8
10 Jul 5.8 ± 4.0 5.3 ± 3.6 5.2 ± 3.5 4.7 ± 3.2
11 Jul 5.4 ± 2.1 5.4 ± 1.9 4.9 ± 1.9 4.8 ± 1.7
Average: 11.4 ± 6.6 10.9 ± 7.2 9.9 ± 5.7 9.5 ± 6.2

Table A.3: Mean and standard deviation of agricultural scaling factors 𝐹𝐴𝐺𝑅 for the ten inves-
tigated research flights from Monte Carlo simulations. The bias corrected values
are corrected for differences between simulated and observed wind speed and PBL
height following Equation 5.5.
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A.6 U.S. Midwest N2O Emissions Derived With Method 1

N2O emissions in the U.S. Midwest consist of agricultural 𝐸𝐴𝐺𝑅, non-agricultural 𝐸𝑛𝑜𝑛𝐴𝐺𝑅,
and natural emissions 𝐸𝑁 . For the model optimization in Chapter 5, anthropogenic emissions
are obtained from EDGAR4.3.2 and EDGAR5.0, and natural emissions are obtained from
EDGAR2. Averaged over the U.S. Midwest, non-agricultural emissions are 0.04 nmol m−2 s−1

and natural emissions are 0.02 nmol m−2 s−1. The agricultural emissions are optimized using
Method 1 delivering 𝐸

𝑜𝑝𝑡
𝐴𝐺𝑅. Prior as well as optimized agricultural emissions for EDGAR4.3.2

and EDGAR5.0 are listed in Table A.4 and Table A.5, respectively.

Day:
Prior Optimized Optimized & bias corrected

AGR total AGR total AGR total

Fall 2017
10 Oct 0.06 0.12 0.67 ± 0.23 0.74 ± 0.23 0.53 ± 0.24 0.59 ± 0.24
18 Oct 0.06 0.12 0.16 ± 0.08 0.22 ± 0.08 0.16 ± 0.08 0.22 ± 0.08
20 Oct 0.05 0.12 0.41 ± 0.15 0.47 ± 0.15 0.38 ± 0.13 0.44 ± 0.13
24 Oct 0.05 0.12 0.18 ± 0.20 0.24 ± 0.20 0.18 ± 0.19 0.24 ± 0.19
Average: 0.06 0.12 0.35 ± 0.27 0.42 ± 0.27 0.31 ± 0.23 0.37 ± 0.23

Summer 2019
20 Jun 0.09 0.15 1.75 ± 0.56 1.82 ± 0.56 1.91 ± 0.63 1.97 ± 0.63
04 Jul 0.09 0.15 1.03 ± 0.34 1.09 ± 0.34 1.06 ± 0.41 1.12 ± 0.41
07 Jul 0.09 0.15 1.31 ± 0.36 1.37 ± 0.36 1.14 ± 0.29 1.20 ± 0.29
08 Jul 0.09 0.15 0.88 ± 0.23 0.94 ± 0.23 0.69 ± 0.18 0.75 ± 0.18
10 Jul 0.09 0.15 0.52 ± 0.36 0.58 ± 0.36 0.47 ± 0.32 0.53 ± 0.32
11 Jul 0.09 0.15 0.49 ± 0.19 0.55 ± 0.19 0.49 ± 0.17 0.55 ± 0.17
Average: 0.09 0.15 1.00 ± 0.57 1.06 ± 0.57 0.96 ± 0.62 1.02 ± 0.62

All values are N2O emission flux densities in nmol m−2 s−1.

Table A.4: EDGAR4.3.2 prior and optimized agricultural (AGR) N2O emissions averaged
over the U.S. Midwest. Total emissions consist of prior/optimized agricultural
(𝐸𝐴𝐺𝑅/𝐸𝑜𝑝𝑡

𝐴𝐺𝑅), non-agricultural (𝐸𝑛𝑜𝑛𝐴𝐺𝑅), and natural emissions (𝐸𝑁 ). The bias
corrected values are corrected for differences between simulated and observed wind
speed and PBL height following Equation 5.5. Due to rounding, the sum of agricul-
tural, non-agricultural, and natural emissions might differ from the given totals.
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Day:
Prior Optimized Optimized & bias corrected

AGR total AGR total AGR total

Fall 2017
10 Oct 0.10 0.17 0.68 ± 0.23 0.75 ± 0.23 0.53 ± 0.25 0.60 ± 0.25
18 Oct 0.10 0.17 0.16 ± 0.08 0.22 ± 0.08 0.16 ± 0.08 0.22 ± 0.08
20 Oct 0.10 0.17 0.41 ± 0.15 0.48 ± 0.15 0.38 ± 0.14 0.44 ± 0.14
24 Oct 0.10 0.17 0.18 ± 0.20 0.25 ± 0.20 0.18 ± 0.20 0.24 ± 0.20
Average: 0.10 0.17 0.36 ± 0.28 0.42 ± 0.28 0.31 ± 0.23 0.38 ± 0.23

Summer 2019
20 Jun 0.10 0.16 1.77 ± 0.56 1.83 ± 0.56 1.93 ± 0.64 1.99 ± 0.64
04 Jul 0.10 0.16 1.03 ± 0.34 1.09 ± 0.34 1.06 ± 0.41 1.12 ± 0.41
07 Jul 0.10 0.16 1.30 ± 0.36 1.37 ± 0.36 1.13 ± 0.29 1.20 ± 0.29
08 Jul 0.10 0.16 0.87 ± 0.23 0.93 ± 0.23 0.68 ± 0.18 0.74 ± 0.18
10 Jul 0.10 0.16 0.52 ± 0.35 0.58 ± 0.35 0.47 ± 0.32 0.53 ± 0.32
11 Jul 0.10 0.16 0.49 ± 0.19 0.55 ± 0.19 0.49 ± 0.17 0.55 ± 0.17
Average: 0.10 0.16 1.00 ± 0.57 1.06 ± 0.57 0.96 ± 0.63 1.02 ± 0.63

All values are N2O emission flux densities in nmol m−2 s−1.

Table A.5: As Table A.4 but for EDGAR5.0 N2O emissions. Optimized emissions are (nearly)
equal to optimized EDGAR4.3.2 emissions. Section 5.5 provides an explanation for
that.
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A.7 U.S. Midwest N2O Emissions on a Daily Basis Derived
With Method 1
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Figure A.1: Observed vs. simulated N2O enhancements (emitted from EDGAR4.3.2/EDGAR2
𝐸𝐴𝐺𝑅 + 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 + 𝐸𝑁 ) for each of the ten research flights analyzed with Method 1.
For an easier visual comparison the 5 min-moving average of the observation is
shown. The simulated enhancements are the average of the three model runs with
different initial and boundary meteorological conditions (ERA5, GDAS-FNL, and
NARR) on the closest grid points in space and time to each observation. (Figure
adopted from Eckl et al., 2021)
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Figure A.2: As Figure A.1 but simulated N2O enhancement emitted from EDGAR5.0/EDGAR2
𝐸𝐴𝐺𝑅 + 𝐸𝑛𝑜𝑛𝐴𝐺𝑅 + 𝐸𝑁 . (Figure adopted from Eckl et al., 2021)
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A.8 Precipitation During the Flight Transects Analyzed With
Method 1
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Figure A.3: Accumulated precipitation from ERA5 reanalysis data for the ten research flights
analyzed with Method 1. The accumulation period encompasses 24 h before takeoff
plus the whole flight. The U.S. Midwest is encircled in black. The PBL transects
of the research flights are indicated in pink. (Figure adapted from Eckl et al., 2021)



A.8 Precipitation During the Flight Transects Analyzed With Method 1 127

0

20

40

60

80

100

ac
cu

m
ul
at
ed

pr
ec

ip
ita

tio
n
in

m
m

Figure A.4: As Figure A.3 but with an accumulation period spanning from 7 days before takeoff
to touchdown. (Figure adapted from Eckl et al., 2021)
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A.9 Agricultural Scaling Factors Derived With Method 2

Campaign: Mean: Median: Lower
quartile:

Upper
quartile:

Summer 2016 2.8 2.5 1.4 4.0
Winter 2017 4.4 2.2 1.4 4.1
Fall 2017 4.8 4.7 2.2 6.5
Spring 2018 3.3 3.0 1.5 5.3
Summer 2019 6.7 5.6 4.3 9.8

Table A.6: EDGAR4.3.2 agricultural scaling factors derived with Method 2 for the five
ACT-America campaigns. The mean, median, lower quartile, and upper quar-
tile of the distribution of the scaling factors derived for each PFP sample (𝐹 𝑓

𝐴𝐺𝑅) is
displayed.

Campaign: Mean: Median: Lower
quartile:

Upper
quartile:

Summer 2016 2.6 2.3 1.4 3.7
Winter 2017 9.5 4.8 2.1 14.5
Fall 2017 2.9 2.9 1.2 4.1
Spring 2018 4.9 4.6 2.9 7.5
Summer 2019 5.7 4.7 3.8 8.2

Table A.7: As Table A.6 but for EDGAR5.0 agricultural scaling factors derived with Method 2.
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A.10 U.S. Midwest N2O Emissions Derived With Method 2

Campaign: Mean: Median: Lower
quartile:

Upper
quartile:

Summer 2016 0.32 0.30 0.20 0.43
Winter 2017 1.08 0.58 0.29 1.60
Fall 2017 0.36 0.36 0.19 0.48
Spring 2018 0.56 0.53 0.36 0.82
Summer 2019 0.64 0.54 0.45 0.90

All values are N2O emission flux densities in nmol m−2 s−1.

Table A.8: U.S. Midwest N2O emissions derived with Method 2 for the five ACT-America
campaigns. The mean, median, lower quartile, and upper quartile of the distribution
of the Midwest emissions derived for each PFP sample is displayed, consisting of
scaled agricultural (𝐸𝑜𝑝𝑡

𝐴𝐺𝑅), non-agricultural (𝐸𝑛𝑜𝑛𝐴𝐺𝑅), and natural N2O emissions
(𝐸𝑁 ).
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A.11 Agricultural Practice and Trends of N2O Emissions in
the U.S. Midwest

The possible amount of soil N2O emissions depends on the availability of reactive N-compounds
in soils (see Section 2.2.2). In regions with intensive agriculture, like the U.S. Midwest, the
addition of such N-compounds occurs mainly due to field crops and fertilization. In the fol-
lowing, long-term trends of agricultural N2O emission amounts and seasonality in the Midwest
are investigated and evaluated considering these two aspects (crop diversity and fertilization).
Here it is important to highlight, that the following analysis focuses only on emissions from
agriculture in the Midwest. Trends from this area show a different result (as described below)
compared to the constant trend of total N2O emissions in the whole U.S. since the 1990s (Tian
et al., 2018).
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Figure A.5: Yearly total harvested area in the U.S. Midwest (upper panel) and the share of
major crops (lower panel). These crops together account for 94–96 % of the total
harvested area. Data obtained from NASS (2021).

A reduced crop diversity as well as the presence of legumes like soybeans favors soil N2O
emissions (see Section 2.2.2). Figure A.5 displays the yearly harvested area in the U.S. Midwest
(upper panel) and the share of major crops (lower panel) from 1993 to 2020. On average,
roughly 40 % of the whole Midwest region are harvested. Interannual variations are relatively
small in this timeframe with a relative standard deviation of 2.2 %. Crop failure in 2019 due
to the flooding lead to a significant drop by 7.3 % compared to the previous year. Corn and
soybeans are the dominant crops in the Midwest. Their fractions have increased steadily from
around 32 % and 24 % in 1993 to 39 % and 36 % in 2020, respectively. In contrast, the share
of wheat and hay has decreased constantly to roughly 10 % each. Oats and barley only play
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a minor role in the Midwest. Overall, about 95 % of the total harvested area is planted with
corn, soybeans, wheat, and hay. The decline of crop diversity and increase of legumes/soybean
planted area from 1993–2020 most likely enhanced Midwest N2O emissions. Extrapolating
both trends suggests that emissions will enhance further in the near future. Moreover, if the share
of soybeans increases at the expense of corn, the seasonality of soil N2O emissions will change.
Corn is mainly fertilized in spring and soybeans mainly in fall (see Section 6.4.1) and, thus,
spring emissions might decline while fall emissions increase. However, soybeans are fertilized
less intensely than corn leading to overall less fertilization and, hence, lower emissions. In
contrast legumes like soybeans themselves favor N2O fluxes resulting in larger emissions if the
soybean cultivation increases. Overall, quantifying the impact of a changing crop diversity on
soil N2O emissions is challenging because underlying processes are complex and the relevant
factors interact. Therefore, a process-based model is required with detailed knowledge about
crop distribution and condition.
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Figure A.6: N-fertilizer application in the contiguous U.S. in 1970–2015. (a) Time series of
yearly application. (b) Gridded application rates in 2015. The Midwest is encircled
by a thick black line. Data obtained from Cao et al. (2017).

The application of N-based synthetic fertilizer directly influences N2O emissions from soils (see
Section 2.2.2). Figure A.6a displays a times series of fertilizer application in the contiguous
U.S. in 1970–2015. A detailed description of the underlying data of Figure A.6 is provided
by Cao et al. (2018). From 1970 to 1980 the fertilizer application increased in the U.S. as
well as in the Midwest by roughly 50 %. From 1980 to 2015, there is a slight increase in both
domains of around 20–25 %. Overall, approximately half of the country’s N-fertilizer is applied
in the Midwest indicating the importance of this region regarding the N2O budget of the U.S.
Considering the map of fertilizer application rates in 2015 (see Figure A.6b), the Midwest is
prominent. Large application rates of over 5 g N m−2 yr−1 in nearly the whole region highlights
it as a hotspot of agricultural N2O emissions. The increasing trend of N fertilizer application
from 1970 to 2015 leads to an increase of agricultural N2O emission in the U.S. and particularly
in the Midwest. Extrapolating this trend suggests that U.S. and Midwest soil N2O emissions
will increase further. Assuming that the timing of the fertilizer application (mostly in spring
followed by fall) does not change, variations of soil fluxes among spring, summer, and fall
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will become larger. However, data are too sparse to quantify this. Investigating the impact of
fertilizer application trends with a process-based model is challenging as well. For regional
studies, highly resolved spatial-temporal data of fertilizer application rates are needed but those
are rare. Furthermore, none of the datasets provide a higher temporal resolution than one year,
which hampers the quantification of seasonal or daily variations of soil N2O emissions because
assumptions must be made about the timing of fertilization. Overall, more effort must be put in
a detailed monitoring of the fertilization practice as this is a basic prerequisite for the simulation
of agricultural N2O emissions.



B List of Symbols and Abbreviations

B.1 Symbols

Symbol: Unit: Description:

N(𝜇, 𝜎2) – normal distribution with mean 𝜇 and variance 𝜎2

𝜂 m−3 number density of sample air
Θ m3 m−3 volumetric soil water content
Θ𝑠𝑎𝑡 m3 m−3 Θ at which the soil is saturated
𝜃 K potential temperature (see Appendix A.2)
𝜃𝑣 K virtual potential temperature (see Appendix A.2)
𝜆 m wavelength of electromagnetic radiation
𝜇 – arithmetic mean
𝜌 kg m−3 density of air
𝜎 – standard deviation
𝜏𝑟 s instrument response time
𝜏𝜆 – spectral optical depth (in wavelength 𝜆)

𝐴𝑜𝑏𝑠 (mol mol−1) s integral of 𝑐𝑒𝑛ℎ𝑜𝑏𝑠 along a transect
𝐴𝑚𝑜𝑑 (mol mol−1) s integral of 𝑐𝑒𝑛ℎ𝑚𝑜𝑑 along a transect
𝐴𝐴𝐺𝑅 (mol mol−1) s agricultural portion of 𝐴𝑚𝑜𝑑

𝐴
𝑜𝑝𝑡
𝐴𝐺𝑅 (mol mol−1) s agricultural portion of 𝐴𝑚𝑜𝑑 based on 𝐸

𝑜𝑝𝑡
𝐴𝐺𝑅

𝐴𝑛𝑜𝑛𝐴𝐺𝑅 (mol mol−1) s non-agricultural, anthropogenic portion of 𝐴𝑚𝑜𝑑

𝐴𝑁 (mol mol−1) s natural portion of 𝐴𝑚𝑜𝑑

𝑏 mol mol−1 y-intercept of calibration curve

𝑐𝑝 J K−1 kg−1 specific heat capacity at constant pressure

Continued on next page . . .
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Symbol: Unit: Description:

𝑐 mol mol−1 N2O dry air mole fraction
𝑐∗ mol mol−1 dilution corrected 𝑐 (see Section 4.4)
𝑐(𝑝𝑐𝑒𝑙𝑙) mol mol−1 𝑐 retrieved at 𝑝𝑐𝑒𝑙𝑙
𝑐(𝑝𝑠𝑒𝑡) mol mol−1 𝑐 retrieved at 𝑝𝑠𝑒𝑡
𝑐𝑥 mol mol−1 dry air mole fraction of species 𝑥
𝑐𝑚𝑥 mol mol−1 mole fraction of species 𝑥 in moist air
𝑐H2O mol mol−1 mole fraction of H2O
𝑐𝑜𝑏𝑠 mol mol−1 observed N2O dry air mole fraction
𝑐
𝑏𝑔
𝑜𝑏𝑠 mol mol−1 observed N2O background mole fraction
𝑐𝑒𝑛ℎ𝑜𝑏𝑠 mol mol−1 observed N2O enhancement
𝑐𝑒𝑛ℎ𝑚𝑜𝑑 mol mol−1 simulated N2O enhancement along transect
𝑐∗𝑚𝑜𝑑 mol mol−1 bias corrected 𝑐𝑒𝑛ℎ𝑚𝑜𝑑 (see Section 5.3.2)
𝑐𝑒𝑛ℎ𝑓 mol mol−1 simulated footprint N2O enhancement
𝑐𝑒𝑛ℎ𝑓 , 𝐴𝐺𝑅 mol mol−1 agricultural portion of 𝑐𝑒𝑛ℎ𝑓

𝑐𝑒𝑛ℎ𝑓 , 𝑛𝑜𝑛𝐴𝐺𝑅 mol mol−1 non-agricultural, anthropogenic portion of 𝑐𝑒𝑛ℎ𝑓

𝑐𝑒𝑛ℎ𝑓 , 𝑁 mol mol−1 natural portion of 𝑐𝑒𝑛ℎ𝑓

𝑐𝑖 mol mol−1 QCLS N2O measurement corresponding to 𝑐𝑖PFP

𝑐𝑖PFP mol mol−1 𝑖th of 𝑁 PFP N2O measurements

𝑑 m length of the sample cell

𝐸𝐴𝐺𝑅 mol m−2 s−1 agricultural EDGAR N2O emissions
𝐸
𝑜𝑝𝑡
𝐴𝐺𝑅 mol m−2 s−1 scaled agricultural EDGAR N2O emissions

𝐸𝑛𝑜𝑛𝐴𝐺𝑅 mol m−2 s−1 non-agricultural EDGAR N2O emissions
𝐸𝑁 mol m−2 s−1 natural EDGAR N2O emissions
E 𝑓 mol m−2 s−1 EDGAR N2O emissions on the H-grid
𝑒
𝑓
𝑖 mol m−2 s−1 𝑖th of 𝑛 𝑓 components of E 𝑓

𝐹𝐴𝐺𝑅 – agricultural scaling factor
𝐹𝐸
𝐴𝐺𝑅 – multiplication factor for 𝐸𝐴𝐺𝑅 (see Section 5.3.1)

𝐹
𝑓
𝐴𝐺𝑅 – footprint agricultural scaling factor

Continued on next page . . .
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Symbol: Unit: Description:

GWP100 – GWP on a 100 year horizon
𝑔 m s−2 gravitational acceleration (𝑔 ≈ 9.81 m s−2)

H (mol m−2 s−1)−1 one-dimensional HYSPLIT footprint of length 𝑛 𝑓

ℎ𝑖 (mol m−2 s−1)−1 𝑖th of 𝑛 𝑓 components of H
𝐻𝑚 mol mol−1 𝑥𝑚 of high calibration standard
𝐻𝑡 mol mol−1 𝑥𝑡 of high calibration standard
ℎ m altitude
ℎ𝑝 m altitude above MSL up to which 𝑝𝑐𝑒𝑙𝑙 is regulated

𝐼0 W m−2 intensity of incoming radiation
𝐼0, 𝜆 W m−2 intensity of incoming radiation of wavelength 𝜆

𝐼 W m−2 intensity of outgoing radiation
𝐼𝜆 W m−2 intensity of outgoing radiation of wavelength 𝜆

𝐽 (𝐹𝐴𝐺𝑅) – cost function

𝑘𝑐𝑒𝑙𝑙 m2 absorption cross section of air in the sample cell
𝑘𝜆 m2 spectral absorption cross section (in wavelength 𝜆)

𝐿𝑚 mol mol−1 𝑥𝑚 of low calibration standard
𝐿𝑡 mol mol−1 𝑥𝑡 of low calibration standard

M𝑠𝑜𝑖𝑙 % WFPS ERA5 soil moisture field on the H-grid
𝜇𝑠𝑜𝑖𝑙𝑖 % WFPS 𝑖th of 𝑛 𝑓 components of M𝑠𝑜𝑖𝑙

𝑀 𝑠𝑜𝑖𝑙
𝑓 % WFPS footprint soil moisture

𝑀
𝑠𝑜𝑖𝑙
𝑓 % WFPS campaign-average of 𝑀 𝑠𝑜𝑖𝑙

𝑓

𝑚 mol mol−1 slope of calibration curve

𝑁 – total number of collected PFP samples
𝑛 mol amount of substance
𝑛𝑡 – length of time dimension of HYSPLIT footprint

Continued on next page . . .
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Symbol: Unit: Description:

𝑛𝑙𝑜𝑛 – length of longitude (𝑥) dimension of H
𝑛𝑙𝑎𝑡 – length of latitude (𝑦) dimension of H
𝑛 𝑓 – product of 𝑛𝑡 , 𝑛𝑙𝑜𝑛, and 𝑛𝑙𝑎𝑡 (length of H)

𝑃(𝑝𝑐𝑒𝑙𝑙 , 𝑝𝑠𝑒𝑡) – relative deviation of 𝑐(𝑝𝑐𝑒𝑙𝑙) to 𝑐(𝑝𝑠𝑒𝑡)
𝑃(𝑝𝑐𝑒𝑙𝑙 , 𝑝𝑠𝑒𝑡) – average over all 𝑃(𝑝𝑐𝑒𝑙𝑙 , 𝑝𝑠𝑒𝑡) (see Section 4.3)
P m ERA5 hourly precipitation field on the H-grid
𝑝𝑖 m 𝑖th of 𝑛 𝑓 components of P
𝑃 𝑓 m footprint precipitation (hourly accumulated)
𝑝 Pa pressure
𝑝0 Pa standard pressure (𝑝0 = 1000 hPa = 1 bar)
𝑝𝑔 Pa pressure of a gas cylinder
𝑝𝑐𝑒𝑙𝑙 Pa pressure in the QCLS sample cell
𝑝𝑠𝑒𝑡 Pa set pressure in the QCLS sample cell

𝑄 m3 s−1 volumetric flow rate
𝑞 kg kg−1 specific humidity

𝑅 – correlation coefficient
𝑅𝑎 J K−1 kg−1 gas constant of air (𝑅𝑎 ≈ 287 J K−1 kg−1 for dry air)
𝑅𝑢 J K−1 mol−1 universal gas constant (𝑅𝑢 ≈ 8.314 J K−1 mol−1)
𝑟 kg kg−1 mass mixing ratio of water vapor
𝑟𝐿 kg kg−1 mass mixing ratio of liquid water

𝑇 K absolute temperature
𝑇0 K standard temperature (𝑇0 = 273.15 K)
𝑇𝑐𝑒𝑙𝑙 K temperature in the QCLS sample cell
T𝑠𝑜𝑖𝑙 K ERA5 soil temperature field on the H-grid
𝜗𝑠𝑜𝑖𝑙
𝑖 K 𝑖th of 𝑛 𝑓 components of T𝑠𝑜𝑖𝑙

𝑇 𝑠𝑜𝑖𝑙
𝑓 K footprint soil temperature

𝑇
𝑠𝑜𝑖𝑙
𝑓 K campaign-average of 𝑇 𝑠𝑜𝑖𝑙

𝑓

𝑡0 UTC start time of PBL transect

Continued on next page . . .
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Symbol: Unit: Description:

𝑡𝑒𝑛𝑑 UTC end time of PBL transect

𝑈 m s−1 horizontal wind speed
𝑈𝑜𝑏𝑠 m s−1 observed wind speed averaged along transect
𝑈𝑚𝑜𝑑 m s−1 modeled wind speed averaged along transect

𝑉 m3 volume
𝑉0 m3 volume of air at 𝑇0 and 𝑝0

𝑉𝑐𝑒𝑙𝑙 m3 volume of the QCLS sample cell
𝑉𝑔 m3 volume of a gas cylinder

𝑊 (𝑐H2O) – QCLS dilution correction of 𝑐 (see Section 4.4)

𝑥𝑐 mol mol−1 calibrated dry air mole fraction of any species
𝑥𝑚 mol mol−1 measured dry air mole fraction of any species
𝑥𝑡 mol mol−1 true dry air mole fraction of any species

𝑍𝑜𝑏𝑠 m observed PBL height averaged along transect
𝑍𝑚𝑜𝑑 m modeled PBL height averaged along transect
𝑧𝑃𝐵𝐿 m height of the PBL (AGL)

B.2 Abbreviations

Chemical formulas:

CO carbon monoxide
CO2 carbon dioxide (German: Kohlenstoffdioxid)
CH4 methane (German: Methan)
C2H6 ethane
H2O water vapor
N nitrogen
NO nitric oxide
NO3

– nitrate
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NOx generic term for nitrogen oxides
NH3 ammonia
NH4

+ ammonium
N2 molecular nitrogen
N2O nitrous oxide (German: Distickstoffmonoxid)
O(1D) excited oxygen
O2 molecular oxygen
O3 ozone

Acronyms:

ACT-America Atmospheric Carbon and Transport-America
AGL above ground level
AMS American Meteorological Society
ARMS USDA’s Agricultural Resource Management Survey
ARW Advanced Research WRF
DayCent daily time-step version of the CENTURY model
DLR Deutsches Zentrum für Luft- und Raumfahrt
ECMWF European Centre for Medium-Range Weather Forecasts
EDGAR Emissions Database for Global Atmospheric Research
EDGAR2 EDGAR version 2.0
EDGAR4.3.2 EDGAR version 4.3.2
EDGAR5.0 EDGAR version 5.0
EPA Environmental Protection Agency
ERA5 5th generation atmospheric reanalysis data
ESRL Earth System Research Laboratories
EZ entrainment zone
FA free atmosphere
FDDA WRF Four-Dimensional Data Assimilation
GDAS-FNL Global Data Assimilation System Final analysis
GHG Greenhouse Gas
GML Global Monitoring Laboratory
GMST Global Mean Surface Temperature
GWP global warming potential
HITRAN high-resolution transmission molecular absorption database
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HYSPLIT Hybrid Single Particle Lagrangian Integrated Trajectory model
ICL interband cascade laser
IN Indiana
IPCC Intergovernmental Panel on Climate Change
IQR interquartile range (distance between lower and upper quartile)
IR terrestrial infrared radiation (𝜆 ≳ 4 µm)
ITMS Integrated Greenhouse Gas Monitoring System for Germany
LST local standard time
MFC mass flow controller
MFM mass flow meter
MI Michigan
ML well-mixed layer
MSL mean sea level
MW der mittlere Westen der USA (in German abstract)
NARR North American Regional Reanalysis
NASA National Aeronautics and Space Administration
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NIR near-infrared radiation (780 nm ≲ 𝜆 ≲ 4 µm)
NOAA National Oceanic and Atmospheric Administration
NWP Numerical Weather Prediction
OH Ohio
PBL Planetary Boundary Layer
PFP Programmable Flask Package
PTFE Polytetrafluoroethylene
QCL quantum cascade laser
QCLS Quantum Cascade Laser Spectrometer
RMSE root-mean-square error
RRTMG rapid radiative transfer method for general circulation models
SL surface layer
UN United Nations
UNFCCC United Nations Framework Convention on Climate Change
USDA U.S. Department of Agriculture
UTC Universal Time Coordinated
UV ultraviolet radiation (10 nm ≲ 𝜆 ≲ 380 nm)
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VIS visible radiation (380 nm ≲ 𝜆 ≲ 780 nm)
WFPS water-filled pore space
WMO World Meteorological Organization
WRF Weather Research and Forecasting model
WRF-Chem WRF model coupled to Chemistry
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