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 Zusammenfassung (Deutsch) 

Die Parkinson-Krankheit (PD) ist die häufigste neurodegenerative Bewegungsstörung, 

die durch den fortschreitenden Verlust dopaminerger Neuronen in der Substantia nigra 

pars compacta (SNc) gekennzeichnet ist. Der neuronale Zelltod bei PD ist mit dem 

allmählichen Auftreten von neuronalen Proteinaggregaten verbunden, die als Lewy-

Körper (LBs) bezeichnet werden und aus vesikulären Membranstrukturen und 

dysmorphen Organellen in Verbindung mit dem Protein Alpha-Synuclein (α-Syn) 

bestehen. Obwohl der genaue Mechanismus der neuronalen Aggregatbildung und des 

Unterganges von Neuronen bislang nicht bekannt ist, deuten neuere Forschungen auf 

α-Syn-vermittelte Veränderungen des lysosomalen Abbaus von aggregierten Proteinen 

und Organellen hin -- ein Prozess, der als Autophagie bezeichnet wird. In der 

vorliegenden Arbeit verwendeten wir eine Kombination aus Molekularbiologie und 

Immuncytochemie, um die Wirkung von α-Syn auf den Autophagieumsatz in kultivierten 

menschlichen dopaminergen Neuronen und in menschlichem postmortalem Hirngewebe 

zu untersuchen.  

Wir fanden heraus, dass eine Überexpression von α-Syn den Autophagie-Umsatz 

verringert, indem die Fusion von Autophagosomen mit Lysosomen beeinträchtigt wird, 

was zu einer Verringerung der Bildung von Autophagolysosomen führt. In 

Übereinstimmung mit einem kompensatorischen Anstieg der Plasmamembranfusion von 

Autophagosomen erhöhte α-Syn die Anzahl der extrazellulären Vesikel (EV) und die 

Häufigkeit von Autophagie-assoziierten Proteinen in diesen EVs. Mechanistisch 

interagierte α-Syn mit dem v-SNARE-Protein SNAP29, einem Mitglied des SNARE-

Komplexes, der die Autophagolysosomen-Fusion vermittelt, und verringerte dessen 

Proteinexpression. In Übereinstimmung damit ahmte der Knockdown von SNAP29 

mittels RNAi die Wirkung von α-Syn auf die Autophagie nach, während die SNAP29-

Coexpression die α-Syn-induzierten Veränderungen beim Autophagie-Umsatz und der 
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EV-Freisetzung umkehrte und den Zelltod reduzierte. In Übereinstimmung mit unseren 

Ergebnissen aus kultivierten Neuronen fanden wir eine Stadien-abhängige Reduktion 

von SNAP29 in Neuromelanin-positiven SNc Neuronen aus menschlichem 

postmortalem Hirngewebe von Fällen mit Lewy-Körperpathologie (LBP). 

Zusammenfassend zeigen unsere Ergebnisse somit eine bisher unbekannte Wirkung 

von α-Syn auf intrazelluläre Autophagie-assoziierte SNARE-Proteine und infolgedessen 

eine verringerte Autophagolysosomenfusion. Daher werden unsere Ergebnisse die 

Untersuchung Autophagie-assoziierter pathologischer Veränderungen der Parkinson-

Krankheit unterstützen. 
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Abstract (English) 

Parkinson's disease (PD) is the most common neurodegenerative movement disorder 

characterized by the progressive loss of dopaminergic (DAergic) neurons in the substan-

tia nigra pars compacta (SNc). DAergic neuronal death in PD is associated with the grad-

ual appearance of neuronal protein aggregates termed Lewy bodies (LBs) that are com-

prised of vesicular membrane structures and dysmorphic organelles in conjunction with 

the protein alpha-Synuclein (α-Syn). Although the exact mechanism of neuronal aggre-

gate formation and death remains elusive, recent research suggests α-Syn-mediated 

alterations in the lysosomal degradation of aggregated proteins and organelles -- a pro-

cess termed autophagy. Here, we used a combination of molecular biology and immu-

nochemistry to investigate the effect of α-Syn on autophagy turnover in cultured human 

DAergic neurons and in human postmortem brain tissue.  

We found α-Syn overexpression to reduce autophagy turnover by compromising the fu-

sion of autophagosomes with lysosomes, thus leading to a decrease in the formation of 

autophagolysosomes. In accord with a compensatory increase in the plasma membrane 

fusion of autophagosomes, α-Syn enhanced the number of extracellular vesicles (EV) 

and the abundance of autophagy-associated proteins in these EVs. Mechanistically, α-

Syn interacted with and decreased the abundance of the v-SNARE protein SNAP29, a 

member of the SNARE complex mediating autophagolysosome fusion. In line, SNAP29 

knockdown mimicked the effect of α-Syn on autophagy whereas SNAP29 co-expression 

reversed the α-Syn-induced changes on autophagy turnover and EV release and ame-

liorated DAergic neuronal cell death. In accord with our results from cultured neurons, 

we found a stage-dependent reduction of SNAP29 in SNc DAergic neurons from human 

postmortem brain tissue of Lewy body pathology (LBP) cases. In summary, our results 

thus demonstrate a previously unknown effect of α-Syn on intracellular autophagy-asso-

ciated SNARE proteins and, as a consequence, a reduced autophagolysosome fusion. 
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As such, our findings will therefore support the investigation of autophagy-associated 

pathological changes in PD.  
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1. Introduction 

1.1 Parkinson’s disease 

1.1.1 Clinical characterization 

Parkinson’s disease (PD), first described in 1817 by the English physician and pharma-

cist James Parkinson (1755-1824) in his “Essay on the Shaking Palsy”, is the most com-

mon movement disorder and second most prevalent neurodegenerative diseases [1]. 

The prevalence of PD in the elderly aged over 65 years was 1.8%, which increased to 

up to 2.4% in those aged 65 – 69 and to 4.4% in those over 85 [2]. When it comes to 

young-onset PD, which affects 5–10% of patients, initial symptoms sometimes may arise 

between the age 21 and 40 (sometimes 50) years [3, 4]. 

The clinical features of PD can be divided into motor symptoms and non-motor symp-

toms [5]. The typical motor symptoms include resting tremor, muscular rigidity, bradyki-

nesia, and postural instability [1], which are the result of dopaminergic (DAergic) neuron 

degeneration in the substantia nigra pars compacta (SNc). Among them, resting tremor 

is the most common symptom. Besides, some patients may suffer from other motor 

symptoms, such as gait and posture disturbance, reduced arm swing, hypomimia (facial 

masking), micrographia (cramped handwriting), and dystonia (sustained muscle contrac-

tions). On the other hand, PD patients also show a wide range of non-motor symptoms 

that contributes significantly to PD morbidity, especially in advanced stages of the dis-

ease. Mood disturbance is the most common non-motor symptom. A systematic review 

and meta-analysis including 21 studies found more than 20% of PD patients suffering 

from depression [6]. As the disease progresses, some patients develop cognitive dys-

function and eventually become demented. Whereas the diagnosis of PD is predomi-

nantly made clinically, functional neuroimaging of the nigrostriatal dopaminergic pathway 
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by positron emission tomography (PET, DaT Scan) may be helpful in uncertain cases or 

early during the disease course [7-9]. 

Since dopamine deficiency is the pathophysiological hallmark of PD’s motor symptoms, 

the major treatment for PD are dopamine replacement therapies aiming at either tempo-

rarily replenishing dopamine or mimicking the action of dopamine. Dopamine replace-

ment medication includes precursor levodopa, dopamine agonists, as well as medica-

tions interfering with different enzymatic steps of dopamine metabolism, nerve terminal 

release and re-uptake [10]. These current medications generally help alleviate muscle 

rigidity, ameliorate speed and coordination of movement, and reduce tremor, although 

their efficiency decreased over time, and none of them halts or retards the degeneration 

of DAergic neurons. In addition, when medical treatment options have been exhausted 

for tremor or the patient suffered profound motor fluctuations with standard medical treat-

ment, deep brain stimulation (DBS) surgery may help to control the debilitating symptoms. 

However, similar to the abovementioned medication, DBS does not slow PD progression 

either. Therefore, a further understanding of the molecular and biochemical pathogene-

sis of PD is critical for the development of novel neuroprotective (to prevent cell death) 

or neuro-restorative (to repair neurons) therapies [11]. 

Like other neurodegenerative diseases, most PD cases occur sporadically. Most people 

(up to 90%) with PD do not have a family history of PD [12]. Except for the few patients 

who were exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or have a 

known gene mutation, the cause of this disorder is unknown. Multiple factors likely con-

tribute to PD, which include genetic susceptibility, environmental agents, and aging. For 

familial PD, the first gene found to link to familial disease is PARK1 (HUGO-approved 

name SNCA) which codes the α-Syn protein. Thereafter, several autosomal dominant or 

recessive Parkinsonism related genetic loci have been successfully discovered (Table 
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1). The identification of these loci associated with the heritable forms of PD was a break-

through for the comprehensive understanding of the molecular mechanisms of this dis-

ease and the discovery of ways to treat and prevent PD. 

 

Locus Gene 
Inher-
itance 

On
set 

Location Variants Function 

PARK1/4 SNCA 
Dominant 
Risk factor 

EO 
4q21.3-
q22 

5 point-mutations, 
multiplications Rep1 
risk variant in the 
promoter 

Synaptic  
vesicles  
trafficking 

PARK2 PARKIN Recessive EO 
6q25.2-
q27 

>250 point-muta-
tions, ins/de and 
exon rearrange-
ments 

Mitophagy 

PARK3 Unknown Dominant LO 2p13 ? ? 

PARK5 UCHL1 Dominant LO 4p13 
1 missense variant 
in one sibling pair 

Proteasome 

PARK6 PINK1 Recessive EO 1p36.12 

>100 point-muta-
tions, ins/del and 
exon rearrange-
ments 

Mitophagy 

PARK7 DJ-1 Recessive EO 1p36.23 
>20 point-mutations 
and deletions 

Mitophagy 

PARK8 LRRK2 
Dominant 
Risk factor 

LO 12q12 

7 point-mutations, 
risk variants 
p.R1628P and 
p.G2385R 

Autophagy? 

PARK9 ATP13A2 Recessive EO 1p36 >20 point-mutations Lysosomes 

PARK10 Unknown Risk factor ? 1p32 ? ? 

PARK11 GIGYF2 Recessive EO 2q36-7 
7 missense  
variants 

Insulin-like 
growth fac-
tors (IGFs) 
signaling 

PARK12 Unknown Risk factor ? 
Xq21-
q22 

? ? 

PARK13 HTRA2 Dominant ? 2p13.1 1 missense variant Mitophagy, 

PARK14 PLA2G6 Recessive EO 22q13.1 
>18 missense 
variants 

Lipids  
metabolism 

PARK15 FBXO7 Recessive EO 22q12.3 4 point-mutations Mitophagy 

PARK16 Unknown Risk factor ? 1q32 ? ? 

PARK17 VPS35 Dominant LO 16q12 2 point-mutations Endosomes 

PARK18 EIF4G1 Dominant LO 3q27.1 1 missense variant 
Protein  
translation 

PARK19 DNAJC6 Recessive EO 1p31.3 9 missense variants Endosomes 
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Locus Gene 
Inher-
itance 

On
set 

Location Variants Function 

PARK20 SYNJ1 Recessive EC 21q22.11 3 missense variants Endosomes 

PARK21 DNAJC13 Dominant LO 3q22.1 1 missense variant Endosomes 

PARK22 CHCHD2 Dominant 
LO/
EO 

7p11.2 
1 missense variant, 
1 truncation 

Mitochondria-
mediated 
apoptosis 
and metabo-
lism? 

PARK23 VPS13C Recessive EO 15q22.2 
2 missense variants, 
1 truncation 

Mitophagy 

– GBA 
AD, AR in 
GD Risk 
factor 

LO lq22 
>10 missense  
variants 

Lysosomes 

– MAPT 
Sporadic 
Risk factor 

  17q21.31 
H1 haplotype  
increase PD risk and 
disease severity 

Microtubules 

Table 1 Genes and mutations implicated in heritable forms of PD. (From Del Rey et 

al., Front Neuroanat 2018 [13]) 

 

1.1.2 Neuropathological characteristics and the role of a-Syn in PD 

Pathologically, PD is characterized by the demise of dopaminergic neurons in the SNc 

and the loss of nigrostriatal dopamine projections to the putamen, resulting in a striatal 

DA deficit (Figure 1). Apart from dopaminergic neurons, neuronal degeneration likewise 

occurs in the cholinergic, noradrenergic, and serotonergic systems of the brain. In addi-

tion, neuronal degeneration affects the olfactory bulb, cerebral cortex, and autonomic 

nervous system as well [14].  
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Figure 1 Schematic representation of nigrostriatal pathway and neuropathology of 

PD. A Normal nigrostriatal pathway is demonstrated in the red line. The photograph 

shows the normal pigmentation produced by neuromelanin within the dopaminergic neu-

rons in SNpc. B The diseased pathway is demonstrated in the dashed red line. The 

photograph shows significantly reduced pigment neuromelanin due to degeneration of 

dopaminergic neurons. (From Dauer and Przedborski, Neuron 2003 [14]) 

Apart from the neuronal degeneration in PD, another specific neuropathological feature 

of PD is the concomitant existence of intracytoplasmic inclusion bodies. In 1912, Frie-

drich Heinrich Lewy first discovered these microscopic particles in PD brains, which were 

therefore later named “Lewy bodies” [15]. Lewy bodies (LBs) and Lewy neurites are the 

defining neuropathological characteristics of PD and dementia with Lewy bodies (DLB) 

[16, 17]. In PD, LBs are found in a wide variety of brain regions, including the substantia 

nigra, hypothalamus, nucleus basalis, locus ceruleus, cranial nerve motor nuclei, and 

cerebral cortex, as well as the central and peripheral autonomic nervous system[1, 18].  
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After the characterization of LBs in DA neurons, it took almost a whole century until al-

pha-Synuclein (α-Syn) was identified as one of the main protein components of LBs [16] 

(Figure 2). Human α-Syn is encoded by the SNCA gene located on Chr 4: 89.7 - 89.84 

Mb. α-Syn is a 140-amino acids protein that is highly evolutionarily conserved and abun-

dantly expressed in the nervous system of vertebrates, and predominantly localized at 

pre-synaptic terminals of neurons [19]. It is predominantly a neuronal protein expressed 

in the neocortex, substantia nigra, hippocampus, thalamus, and cerebellum, but can also 

be found in the neuroglial cells [20, 21]. Although this highly abundant presynaptic protein 

is involved in many biological processes [22], its exact function and mechanism of medi-

ating toxicity remains unclear [23]. 

 

Figure 2 Immunohistochemical labeling of Lewy bodies in a SNpc dopaminergic 

neuron. Left: immunostaining with an α-Syn antibody; right: immunostaining using an 

antibody against ubiquitin. (From Dauer and Przedborski, Neuron 2003 [14]) 

α-Syn is composed of an amphipathic N-terminus, an acidic C-terminus, and a hydro-

phobic central domain which was reported to be responsible for its oligomerization and 

fibrillization. Natively, α-Syn is an unfolded protein that is soluble[24]. In vitro, α-Syn has 

an intrinsic propensity to self-assemble into aggregates. Small aggregates (oligomers) 

of α-Syn are demonstrated to cause cell toxicity in several ways, fundamentally including 

binding to lipid vesicles and affecting the electrophysiological properties of lipid bilayers, 

as well as interacting with membrane bound proteins [25, 26]. Several factors render α-
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Syn more prone to misfolding and aggregation according to literature. The factors include 

duplication and triplication of the locus, as well as missense mutations (e.g., A53T, A30P, 

E46K, and H50Q) [27-30]. Notably, all these factors have been reported as contributors 

to PD development [18, 31-33]. This connection between genetics and pathology sug-

gests that the altered α-Syn proteins in PD patients with genetic abnormalities may pro-

mote PD pathological processes, including α-Syn aggregation, LBs formation, and neu-

rotoxicity [16, 18, 34]. Besides, the post-translational modification of α-Syn phosphoryla-

tion, which occurs predominantly at serine residues S129 [35], was reported to play a 

role in α-Syn aggregation. For instance, in dementia with DLB brains, approximately 90% 

of insoluble α-Syn is phosphorylated at S129, while the percentage for soluble cytosolic 

α-Syn is only 4% [36]. Because of the limitation of appropriate model systems [37], the 

exact mechanism of LBs formation has not yet been comprehensively investigated. Baba 

et al. reported that the metabolisms that render a-Syn insoluble and prone to aggregate 

may lead to the selective incorporation of a-Syn into LBs [38]. These aggregates cause 

neuronal function disruption and result in the death of affected neurons as a long-term 

consequence [38]. 

1.1.3 The development of PD and a-Syn propagating hypothesis 

As mentioned above, PD is a progressive disease with continuously deteriorating motor 

symptoms. Braak et al. found the pathology process in an ascending course with little 

interindividual variation by analyzing post mortem brain tissue from pre-symptomatic per-

sons (possible exception: loss of smell) with LBs and PD patients at different stages.[39]. 

In stages 1 and 2, LBs are mainly restricted to the dorsal IX/X motor nucleus and/or 

intermediate reticular zone (stage 1), and additionally to the gigantocellular reticular nu-

cleus, caudal raphe nuclei, and coeruleus–subcoeruleus complex (stage 2). In accord, 

Braak stage 1 and 2 is characterized by non-motor symptoms, such as loss of olfaction. 

In stage 3 and 4, pathology progresses to the lower and upper brain stem including the 
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SNc (stage 3) or with initial affection of the anteromedial temporal mesocortex (stage 4). 

Usually, the motor dysfunction is barely noticeable in stage 3 and begins to appear from 

stage 4. In stage 5 and 6, these changes become more pronounced as the previously 

mentioned damage in subcortical and mesocortical structures becomes more severe 

(Figure 3). In addition, several key neocortical areas are involved in the final two stages, 

therefore patients frequently display impaired cognition [40].  

 

Figure 3 Progression of PD-related intraneuronal pathology. co, coeruleus–sub-

coeruleus complex; dm, dorsal motor nucleus of the glossopharyngeal and vagal nerves; 

fc, first order sensory association areas, premotor areas, as well as primary sensory and 

motor fields; hc, high order sensory association areas and prefrontal fields; mc, antero-

medial temporal mesocortex; sn, substantia nigra. (a from Doty et al. Nat Rev Neurol 

2012 [41], b from Braak et al., Neurobiol Aging 2003 [39].) 

The ascending distribution of a-Syn in patient brains has been interpreted as a result of 

a-Syn propagating (‘spreading’) across connected brain regions. The spreading pattern 

of pathology following the disease progression was supported by the identification of LBs 

in transplanted midbrain neurons [42-44]. 

Besides, studies also found the earliest sporadic PD-related lesions within the nervous 

system in the enteric nervous system (ENS) [45]. Thus, α-Syn aggregates are thought 

to be retrogradely transported to the preganglionic visceromotor neurons of the dorsal 
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motor nucleus from the intramural plexus of the ENS along the vagal nerve. The hypoth-

esis is supported by results showing PD pathology spread from the gastrointestinal tract 

to the brain in animals, while vagotomy, on the other hand, halted the progression [46, 

47]. Furthermore, an epidemiologic study showed individuals who had full truncal vagot-

omy have a significantly lower risk of developing sporadic PD than the general population, 

while the risk in persons with selective vagotomy, however, was not reduced [48].  

All these results from previous studies suggest the transneuronal transmission of a-Syn 

between vulnerable nerve cells to be a crucial factor in the development of PD, thus 

emphasizing the need to further understand the molecular mechanism of a-Syn trans-

mission for the development of effective therapy that halts disease progression. 

1.2 Autophagy 

1.2.1 The initiation and regulation of autophagy 

Cells need to adapt to continuously changing environmental conditions, and respond to 

endogenous as well as a variety of exogenous stress, requiring a continuous remodeling 

and recycling of intracellular proteins and organelles. Eukaryotic cells, therefore, apply 

two major degradation systems, the lysosome, and the proteasome. Autophagy is a 

transport pathway, which delivers cellular components to the lysosome for degradation. 

Autophagy, coming from the ancient Greek “auto”-on self and “phagy”-to eat, was first 

discovered by Christian De Duve who also invented the term in the 1960s [49]. Autoph-

agy is crucial for cell survival since it maintains cellular homeostasis and helps to get rid 

of toxic protein aggregates and pathogens. Thus, autophagy defects are associated with 

a wide variety of diseases, including cancer, metabolic diseases, neurodegenerative dis-

eases, etc. [50]. Three kinds of autophagy have been described to date: macroautoph-

agy, microautophagy, and chaperone-mediated autophagy (Figure 4).  Macroautophagy, 
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the best-characterized form of autophagy, is an evolutionarily conserved process for cy-

tosolic proteins degradation, in which the double membrane sequestered vesicles are 

delivered to lysosomes. In this research, the focus was placed on macroautophagy and 

hereafter referred to as autophagy. 

 

Figure 4 Main types of autophagy. (From Mizushima and Komatsu, Cell 2011 [51]) 

Autophagy occurs at a low basal level in almost all cell types under inhibition of autoph-

agy regulators to maintain cellular homeostasis [52]. Upon induction of autophagy, small 

autophagy-specific vesicles (Atg9 positive membrane vesicles) fuse at the site of autoph-

agosome biogenesis. Once the first small vesicles are fused at the phagophore assem-

bly site (PAS) to form a phagophore, this cup-shaped membrane elongates and engulfs 
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cytoplasmic constituents including organelles and aggregated proteins to form an au-

tophagosome. At last, the autophagosome will close up and fuse with the lysosome to 

deliver the inner membrane sac and the cargo for degradation.  

The fusion process is controlled by small GTPases of the Ras-related protein in brain 

(Rab) family and other co-factors including membrane-tethering factors (HOPS, ATG14) 

and regulatory molecules (RILP, TECPR1, BRUCE, PLEKHM1, Pacer) [53-56]. Like any 

membrane fusion event, the fusion of the outer membrane of the matured autophago-

some with the lysosome needs the mediation of soluble N-ethylmaleimide sensitive fac-

tor attachment protein receptors (SNAREs). SNARE proteins drive the two opposing 

membranes to fuse by a zipper-like mechanism, which involves the formation of a four-

helix bundle of a Qa-, Qb, Qc, and R-SNARE. Previous studies reported the SNARE 

syntaxin17 (STX17) to be recruited to the autophagosome by direct interaction with 

Atg14 homo-oligomers [57]. The SNARE STX17 and SNAP-29 on the autophagosome, 

then interact with the R-SNARE VAMP8 on the lysosomal membrane to mediate the 

fusion [58]. Upon the fusion of autophagosome and lysosome, the contents and the inner 

membrane are degraded rapidly by lysosomal proteases. 

1.2.2 Autophagy as a hub for protein degradation and secretion 

From the outside, cells take up soluble molecules, receptor-associated ligands, and 

membrane components, which is called endocytosis. Initially, vesicles containing extra-

cellular material or plasma membrane proteins form at the plasma membrane. The bud-

ding endocytic vesicles first merge together to form an early endosome, and the cargo 

is immediately sorted out either for recycling or to be degraded. Thereafter, the early 

endosomes are transported towards the cell center, accompanied by a replacement of 

Rab5 by Rab7 as the key regulatory protein, and matured to become late endosomes. 

Late endosomal membranes invaginate and produce intraluminal vesicles, therefore also 
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called multivesicular bodies (MVBs). The MVBs are either delivered to lysosomes for 

cargo degradation or fuse with the plasma membrane for content release. 

Notably, complete autophagosomes were found to fuse either directly with lysosomes or 

first with early/late endosomes to form amphisomes. Conventionally, amphisomes are 

degraded upon fusion with lysosomes.  Interestingly, in contrast to degradative autoph-

agy, the autophagic machinery may lead to a secretion of the intraluminal vesicles as 

extracellular vesicles (EVs) instead of their degradation. The mechanism and biological 

functions are different, but cells may dispose of cytoplasmic materials either way. The 

autophagosome-lysosome system thus connects endosomal, secretory, and lysosomal 

pathways [59, 60]. In this way, it acts as a major hub for cargo recycling, secretion, or 

degradation  [61-64], although the mechanism of how autophagosomes interact with the 

endosomal system is still to be investigated. 

Since impaired autophagy is associated with PD pathology, and evidence shows EVs 

might mediate the transmission of α-Syn and thus promote PD progression (see 1.3.2), 

further investigation aiming at elucidating the effect of impaired autophagy on EVs re-

lease and the underlying molecular mechanism will contribute to antagonize the progres-

sion of the PD. 

1.2.3 The connection between autophagy defects and PD pathology 

Autophagy is known to be involved in the change of cellular homeostasis of the aging 

organism. One characteristic of aging is the accumulation of ubiquitinated protein aggre-

gates. As mentioned above, the histological hallmark of PD are LBs, mainly composed 

of aggregated α-Syn. In addition, comprehensive analyses of protein elements in LBs 

showed that, LBs consist of molecules implicated in the autophagy, indicating autophagy 
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defects to play a role in disease progression[65, 66]. Consistently, a wide variety of fa-

milial forms of PD are related with a broad range of gene mutations, most of which are 

associated with autophagy-lysosome pathway (Table 1).  

Furthermore, evidence suggests α-Syn to impair autophagic protein degradation in PD. 

For instance, α-Syn was found to interact with autophagy related factors, while autoph-

agy defects could be corrected by normalization of affected factors or signaling pathway 

[64, 67, 68]. Furthermore, several studies showed restoration of impaired autophagy res-

cues neurons from experimental synucleinopathies [69-71]. Conversely, the effect of de-

ficiency in autophagy in turn exacerbates α-Syn pathology thus forming a bidirectional 

pathogenic loop [62, 72-75].  Taken together, these results functionally connect impaired 

autophagy and PD pathology, and investigating the effect of α-Syn on the autophagy will 

therefore support the understanding of cell death and disease progression in PD. 

1.3 Extracellular vesicles 

1.3.1 The biogenesis and biochemical composition of EVs 

EVs are small globular particles encircled by a lipid bilayer with different diameters (from 

40 nm to a few μm), released by almost all cells ranging from prokaryotes to eukaryotes. 

They are widely distributed and can be detected in a wide variety of body fluids. Among 

the different types of EVs, there are the exosomes (40-120 nm) that are generated via 

the endo-lysosomal pathway and are released upon the fusion of MVBs with the plasma 

membrane, microvesicles (0.1-1 µm) formed by outward blebbing of the plasma mem-

brane, and apoptotic bodies (1-3 µm) released by cells undergoing apoptosis.  In addition, 

evidence showed some cancer cells can generate 1–10 μm EVs which are termed on-

cosomes (Figure 5). The collective term “extracellular vesicles” is recommended for this 
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cell released vesicle population, as the current EV isolation methods are not able to sep-

arate these subpopulations distinctly. 

 

Figure 5 Different types of EVs can be distinguished by their mechanism of gen-

eration and size. (From Zaborowski et al., Bioscience 2015 [76]) 

The content of EVs includes lipids, DNA, RNA, and proteins. While the EVs composition 

is associated with the mode of biogenesis and donor cell type, studies on EV-carried 

proteins revealed a set of conserved proteins in most cell types, which including proteins 

involved in the formation of MVBs (e.g., TSG101 and Alix), endosome-related proteins 

(e.g., Rab GTPases, flotillin, and SNAREs), and tetraspanins (e.g., CD9, CD63, and 

CD81) [77, 78]. The conserved expression of these proteins permits their use as markers 

for the quantification of EVs. A breakthrough in EV research was, apart from proteins, 

EVs carry nucleic acids. Most RNA transported by EVs is less than 200 nucleotides [nt], 

which is shorter than the average cellular fraction [79, 80]. Sequencing of total RNA from 

serum-derived EVs detected both coding and non-coding RNA, among which mi-

croRNAs (miRNAs) were the most abundant. Evidence showed EVs carried miRNAs 

may regulate the translation of target mRNAs in recipient cells [81], which later was con-

firmed also in vivo [82]. 
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For a long time, EVs were considered to be cellular “garbage bags” helping cells to dis-

card unnecessary protein until evidence showed they play an important role in mediating 

cell-to-cell communication [83, 84].  

Today the features of EVs still need further investigation, but there is no doubt that they 

act as important messengers in intercellular communication, mediating a wide variety of 

biological effects in neurodegenerative disease, immune response, and tumor growth 

and metastasis, etc. The presence of EVs in cerebrospinal fluid (CSF) further under-

scores their implication in the central nervous system (CNS) [85]. For example, evidence 

suggested EVs support neuronal survival under ischemic stress [86-88], and play a role 

in neuroinflammation and under conditions of brain injury [89, 90]. 

1.3.2 Aggregated α-Syn transmission may be mediated by EVs 

Aggregated α-Syn likely contributes to the demise of DAergic neurons [18, 31, 32, 91, 

92], and the cell-to-cell transmission of aggregated α-Syn (“spreading”) is assumed to 

promote the progression of pathology throughout the nervous system in PD [93-96]. Ev-

idence showed stress conditions or degenerating processes enable neurons to release 

α-Syn toxic species, which contribute to the spreading of the pathology [97, 98]. In line 

with the prion-like spreading hypothesis [99], their implication in the cell-to-cell transmis-

sion of aggregated α-Syn in PD is increasingly being recognized. 

The ability of EVs to carry misfolded or aggregated proteins might promote the progres-

sion of neurodegenerative diseases. Similar to other neurodegenerative conditions [100-

103], aggregated α-Syn transmission may be mediated by small EVs including exo-

somes [104]. According to a previous study, α-Syn is related to the MVB compartment 

at an ultrastructural level [105]. And MVB resident protein ATPase13A2 was found to 

regulate α-Syn EV release [106]. Besides, α-Syn was identified in exosomes in vitro α-
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Syn overexpression models [107-109], and particularly noteworthy, in human cerebro-

spinal fluid (CSF) [107, 110]. A study on DLB revealed a correlated α-Syn level in CSF 

with the severity of cognitive impairment [110]. Furthermore, evidence showed exo-

somes in PD- and DLB-derived CSF induce oligomerized forms of a-Syn in a reporter 

cell line [110]. Further understanding of EVs mediated aggregated α-Syn transmission 

will not only help to establish an efficient biomarker for early diagnosis or prognosis of a-

Syn-related neurodegenerative disorders but also will provide further insight into the pre-

vention of disease development. 

1.4 Aim of the study 

Autophagy is a critical process as it maintains cellular homeostasis and recycles dam-

aged organelles. The perturbation of the the autophagolysosomal system has been im-

plemented in the onset and progression of neurodegenerative diseases. Autophagy-re-

lated molecules are associated with PD pathology, and deficiency in autophagic degra-

dation exacerbates α-Syn pathology. Conversely, accumulated α-Syn aggregates were 

shown to defect autophagy and thus forms a bidirectional pathogenic loop. Taken to-

gether, these findings functionally link autophagy and PD pathology. Therefore, the mo-

tivation of my study was to investigate how α-Syn affects autophagy mechanistically and 

in which way it influences disease progression in PD, which will help to understand cell 

death and disease progression in PD . 

The first aim of this study was to identify which specific steps of autophagy are affected 

by α-Syn in dopaminergic neurons.  

The second aim addressed how EV release changes upon α-Syn impaired autophagy 

in DA neurons mechanistically.  
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The third aim of the study was to investigate whether the above results have a disease-

relevant implication and are replicated in SNc DAergic neurons from human postmortem 

brain tissue of LBP cases.  

Taken together, a more nuanced understanding of α-Syn impaired autophagy and the 

knowledge of the connection between autophagy and EVs release will contribute to the 

development of future therapy against the progression of PD.
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2. Methods 

2.1 Cell biology 

To study the effect of α-Syn overexpression in autophagy and EV release, we used the 

Lund human mesencephalic (LUHMES) cell line which is derived and immortalized from 

embryonic human mesencephalon. Adenoviruses were used to achieve α-Syn overex-

pression, while adenovirus-associated viruses and small interfering RNAs (siRNA) were 

applied to modulate SNAP29. We performed lactate dehydrogenase (LDH) assay and 

5-diphenyltetrazolium bromide (MTT) assay to evaluate cell viability, and carried out 

LC3B-GFP-RFP autophagy reporter assay to address the autophagosome-lysosome 

fusing process. 

2.1.1 Cell culture 

Proliferating LUHMES cells were maintained in Thermo Scientific™ Nunc™ 

EasYFlask™ Cell Culture Flasks, while differentiated LUHMES cells were plated in 

Thermo Scientific™ Nunc™ Cell-Culture Dishes/Multidishes (Thermo Fisher Scientific). 

Proliferating and differentiated LUHMES cells were cultured at 37 °C with 5 % CO2 and 

water-saturated air. 

Before plating the cells for proliferating and differentiation, tissue culture vessels were 

coated with 0.1 mg/mL poly-L-ornithine solution (PLO, Sigma-Aldrich) at 37 °C for 24 

hours, followed by three times washing with Dulbecco's phosphate-buffered saline 

(DPBS, Sigma-Aldrich). As for cell differentiation, cell culture vessels were further coated 

with 5 µg/ml bovine fibronectin (Sigma-Aldrich) at 37°C for 24h in addition. 
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The proliferation medium consisted of Dulbecco’s modified Eagle’s medium/nutrient mix-

ture F-12 Ham (DMEM/F-12, Sigma-Aldrich) with 1% N-2 supplement (Life Technologies) 

and 0.04 µg/ml recombinant human FGF-basic (Peprotech). The differentiation medium 

consisted of DMEM/F-12 supplemented with 1% N-2 supplement, 1 µg/ml tetracycline 

(Sigma-Aldrich), 0.5 µg/ml N6,2’-O-Dibutyryladenosine 3’,5’-cyclic monophosphate so-

dium salt (Dibutyryl cyclic-AMP, Sigma-Aldrich), and 2 ng/mL recombinant human GDNF 

(Bio-Techne). 

For differentiation, unless stated otherwise, the cells were seeded at a density of 100,000 

cells/cm2 to achieve a final confluence of ~ 50%, and differentiated for 6 days in differ-

entiation medium into post-mitotic neurons with a dopaminergic phenotype [111, 112]. 

In order to achieve viral overexpression of α-Syn or GFP as a control, adenoviruses 

serotype 5 (AV5)-α-Syn or AV5-GFP at a multiplicity of infection (MOI) of 2.15 were 

added to the cell culture medium 24 h after plating as described previously [12]. As for 

SNAP29 overexpressing experiments, adenovirus-associated viruses serotype DJ/8 

(AAVDJ/8)-SNAP29 or AAVDJ/8-GFP at an MOI of 4000 were added 6 h after AV5-α-

Syn application. After the virus application, the cells were incubated for 24 h. Thereafter, 

virus medium was removed and cells were washed three times with DPBS before fresh 

differentiation medium was added. 

Cell culture medium was changed 24 h before harvesting on day 6 of differentiation. For 

rapamycin or bafilomycin A1 (both Sigma-Aldrich) treatment, the compound was dis-

solved in DMSO and added to cells at a final concentration of 100nM after the medium 

change. The same volume of DMSO was added to cells as a control. The final concen-

tration of DMSO < 0.1% (v/v). 



2 Methods 34 

2.1.2 Small interfering RNA transfection 

LUHMES cells were knocked-down for SNAP29 by using siRNA. For that, a magnetic 

nanoparticle transfection kit (NeuroMag Starting Kit, OZ Biosciences) and Silencer Se-

lect siRNAs™ targeting SNAP29 (siRNA ID: s17859, Thermo Fisher Scientific) was used 

according to the manufacturer’s instructions. In brief, SNAP29 siRNA or Silencer™ Se-

lect Negative Control No. 1 siRNA (# 4390843) was incubated with NeuroMag regent in 

Optimum medium (Thermo Fisher Scientific) for 15 min at room temperature before the 

mixture was added to the cells. Thereafter, cell culture vessels were put back in the 

incubator, and placed on a magnetic plate for 30 min to allow transfection.  

2.1.3 LDH assay and MTT assay 

Cell death in cultured dopaminergic neurons was quantified using LDH assay and MTT 

assay on day 6 of differentiation. LUHMES cells were seeded in 300 µL differentiation 

medium per well in 48-well plates, followed by virus transduction and/or rapamycin treat-

ment as described above. 

For LDH assay, 30 µL of medium of each well was transferred to a 96 well plate and 70 

µL of 80 mM Tris/HCl / 200 mM NaCl (pH 7.2) buffer containing 10 mM NADH and 100 

mM pyruvate (Sigma-Aldrich) was added. The absorption of NADH at 340 nm was mon-

itored with a reference measurement at 420 nm using a microplate reader (ClarioStar, 

BMG labtech, Ortenburg, Germany). For the positive control, cells were lysed using Tri-

ton™ X-100 (Sigma-Aldrich) for maximal LDH release. The percentage of LDH release 

was calculated by taking the ratio of LDH released into the supernatant to the total LDH 

in the supernatant and the cell lysate. 

For MTT assay, 30 µL MTT (5 mg/ml in sterile DPBS) was added to each well and incu-

bated back in the incubator for 1 h. After careful removal of the medium, the plate was 
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frozen at -80 °C for 1 h. Thereafter, 300µL of DMSO was added to each well and the 

plate was put on a plate shaker to homogenize. After the violet crystals are dissolved, 

the absorption at 590 nm was monitored with a reference measurement at 630 nm using 

a microplate reader (ClarioStar, BMG labtech, Ortenburg, Germany).  

2.1.4 LC3B-GFP-RFP autophagy reporter assay 

The RFP-GFP-LC3B fusion protein was expressed in LUHMES cells using BacMam 2.0 

RFP-GFP-LC3B reagent from Premo™ Autophagy Tandem Sensor RFP-GFP-LC3B Kit 

(Thermo Fisher Scientific). This tandem RFP-GFP sensor capitalizes on the pH differ-

ence between the acidic autolysosome and the neutral autophagosome, and the exhib-

ited green/red (yellow) or red fluorescence enables the visualization of the autophago-

some to autolysosome progression. 

LUHMES cells were plated and grown on PLO and fibronectin-coated µ-Slide 8-Well Ibidi 

chambers (Ibidi) and were transduced and treated as described above. Baculoviral in-

fection was performed on day 4 of differentiation according to the manufacturer’s instruc-

tions. The cells were fixed using 4% formaldehyde for 20 min at room temperature on 

day 6 of differentiation. Pictures were captured under a Leica SP5 confocal microscope 

(Leica, Wetzlar, Germany). Images were processed and GFP or RFP dots counts were 

carried out using the open-source image analysis platform FIJI (http://fiji.sc/Fiji). More 

than 25 cells were analyzed for each condition. The average number of GFP or RFP 

dots per cell was determined. 



2 Methods 36 

2.2 Molecular biology 

To investigate the transcriptional level of SNAP29 upon α-Syn overexpression, total RNA 

was extracted from cells and reverse transcription was performed. cDNAs were thereaf-

ter subjected to real-time PCR to determine mRNA expression. 

2.2.1 RNA extraction and reverse transcription 

For total RNA extraction, an RNeasy Plus Kit was used according to the manufacturer`s 

protocol (Qiagen). In brief, the cell culture medium was removed and cells were washed 

with DPBS before 350 µL of Buffer RLT Plus were added to the cells. The cell lysate was 

transferred into a microcentrifuge tube and homogenized by vortexing for 30 s, followed 

by centrifugation for 30 s at 8000 x g in a gDNA Eliminator spin column. The flow-through 

was mixed with 350 µL of 70% ethanol, transferred to an RNeasy spin column, and cen-

trifuged for 15 s at 8000 x g. Thereafter, the column was washed by adding 700 µL of 

Buffer RW1 to the column, followed by another centrifugation for 15 s at 8000 x g. Sub-

sequently, the column was washed twice with 500 µL of Buffer RPE by centrifugation at 

8000 x g, for 15 s and 2 min, respectively. The RNeasy spin column was placed in a new 

2 ml collection tube and the membrane was dried by centrifugation at full speed for 1 

min. After supplying a new 1.5 mL collection tube, RNA was eluted by adding 30 µL of 

RNase-free water directly to the spin column membrane and centrifugation for 1 min at 

8000 x g. Total RNA concentration was quantified using a Nanodrop 2000 spectropho-

tometer (NanoDrop). 

Reverse transcription was performed using an iScript™ cDNA Synthesis Kit (Bio-Rad 

Laboratories). For each reverse transcription extraction, 1 µg extracted RNA, 10 µL iS-

cript Reaction Mix, and 2ul iScript Reverse Transcriptase were used. The reaction was 



2 Methods 37 

performed using the following protocol: 5 min at 25 °C, 20 min at 46 °C, and 1 min at 

95 °C. 

2.2.2 Real time PCR 

Gene expression of SNAP29 was validated using semi-quantitative real-time PCR (qRT-

PCR) in a Step One Plus instrument (Thermo Fisher Scientific). For qRT-PCR analysis, 

SYBR™ Select Master Mix (Thermo Fisher Scientific), 2.5 ng complementary DNA from 

total RNA, and 0.2 µM forward and reverse primers were used. The PCR primer se-

quences are listed in Appendix B. The reaction was performed according to the follow-

ing protocol: 2 min at 50 °C, 2 min at 95 °C, and 40 cycles of 15 seconds at 95 °C and 

60 seconds at 60 °C. The melting curves were recorded, and the cycle threshold (CT) 

values were set within the exponential phase of the PCR. Four housekeeping genes 

(ACTB, GAPDH, GPBP1, and RPL22) were tested in total, and two of them (GPBP1 and 

RPL22) was used for data normalization according to geNorm analysis. Comparative 

normalized relative quantities (CNRQ) were used to calculate the relative expression 

levels using qBase Plus software (Biogazelle). Gene expression was statistically evalu-

ated by two-tailed Student’s t-test on the assumption of equal variances.  

2.3 Protein biochemistry 

The expression of target proteins was studied using Western blot (WB) and florescent 

immunohistochemistry. Co-immunoprecipitation (Co-IP) experiment was conducted to 

study the physical protein-protein interaction between α-Syn and SNAP29. Before WB 

and Co-IP, total protein extraction and BCA Assay was performed. 
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2.3.1 Protein extraction 

For total protein extraction from LUHMES cells or EVs enriched medium pellets, bio-

material was lysed in pre-chilled RIPA buffer freshly supplemented with protease and 

phosphatase inhibitors (Complete™ Protease Inhibitor Cocktail, PhosStop™ Phospha-

tase Inhibitor Cocktail, both Roche). The lysates were incubated for 30 min on ice and 

centrifuged at 13000 x g for 15 min at 4 °C. The supernatants were obtained and sub-

jected to the following experiments. 

2.3.2 BCA assay 

BCA Assay was performed to evaluate total protein concentration by using a Pierce™ 

BCA Protein Assay Kit (Thermo Fisher Scientific) according to the manufacturer’s in-

structions. Briefly, a BCA working solution was prepared by mixing 50 volume of Reagent 

A and 1 volume of Reagent B together. Thereafter, the BCA working solution was thor-

oughly mixed with a sample and incubated for 30 min at 60°C. The optical density was 

measured at 562 nm using a Nanodrop 2000 spectrophotometer (NanoDrop).  

2.3.3 Western blot 

Total protein concentration was normalized according to BCA assay prior to WB unless 

stated otherwise. Thereafter, samples were denatured by heating to 95 °C for 5 min in 

Laemmli sample buffer containing 10 % β-mercaptoethanol, and run on AnykD™ Crite-

rion™ TGX™ precast gels (Bio-Rad Laboratories) with tris-glycine-based running buffer. 

Proteins were transferred from polyacrylamide gels onto polyvinylidene difluoride (PVDF) 

membranes using a semi-dry transfer system (Trans-Blot® Turbo™ System, Bio-Rad). 

Non-specific binding sites were blocked with 5 % (w/v) skimmed milk in Tris-buffered 

saline with 0.05 % (v/v) Tween20 (TBST) for 1 h and the membrane was incubated at 

4 °C overnight under gentle shaking with the primary antibody in TBST with 5 % (w/v) 
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BSA (Cell Signaling Technology). The membrane was washed and incubated with the 

respective HRP-conjugated secondary antibody (Vector Labs) in TBST for 2 h at room 

temperature. 

The protein bands were detected by using Clarity™ Western ECL Substrate Kit (Bio-Rad 

Laboratories) or ECL Prime™ (GE Healthcare), and LI-COR Odyssey® Fc Imaging sys-

tem (LI-COR Biosciences). Band intensities were quantified using Image Studio™ soft-

ware (LI-COR Biosciences). For proteins of interest, band intensities were normalized to 

the housekeeping protein GAPDH. All antibodies used for Western blot are listed in Ap-

pendix C. 

2.3.4 Co-Immunoprecipitation 

Co-IP assays were performed using a Pierce™ Co-Immunoprecipitation Kit (Thermo Sci-

entific) following the manufacturer’s instructions with subtle modifications. 

Formaldehyde in-cell crosslinking was performed prior to co-immunoprecipitation. For-

maldehyde is a mild and reversible crosslinker with a very short spacer length (2.3–2.7 Å) 

and cross-links only closely associated proteins[113]. Cells were washed once with 

DPBS before incubated with 1% (w/v) formaldehyde in DPBS for 20 min at room tem-

perature. Thereafter, 1/10 volume of 1.25M glycine was added to quench cross-linking 

for 5 min. The cells were washed twice with Modified Dulbecco’s PBS (0.008M sodium 

phosphate, 0.002M potassium phosphate, 0.14M sodium chloride, and 0.01M KCl; pH 7) 

and subsequentially lysed with pre-chilled IP Lysis/Wash Buffer (0.025M Tris, 0.15M 

NaCl, 0.001M EDTA, 1% NP-40, 5% glycerol; pH 7.4) freshly supplemented with prote-

ase and phosphatase inhibitors (Complete™ Protease Inhibitor Cocktail, PhosStop™ 

Phosphatase Inhibitor Cocktail, both Roche). The lysates were incubated for 30 min on 

ice and centrifuged at 13000 x g for 15 min at 4 °C, and supernatants were obtained and 

the total protein concentrations were normalized according to BCA assay. 
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For each sample, 50 µL AminoLink Plus Coupling Resin slurry was transferred to Pierce 

Spin Columns and incubated with 10 µL of anti-SNAP29 antibody (Abcam) for 2.5 h on a 

rotator at room temperature for antibody immobilization. For the negative control, Pierce 

Control Agarose Resin was used in the same conditions. After antibody immobilization, 

500 µg of the lysate’s proteins were diluted with IP Lysis/Wash Buffer to a final volume 

of 500 µL per column and incubated with the resins on a rotator for 6 h at 4 °C. The resin 

was washed with Modified Dulbecco’s PBS according to the manufacturer’s instructions. 

Thereafter, 40 µL of the elution buffer was passed through each resin to elute SNAP29 

together with its associated-proteins. For protein denaturalization, the 5X sample buffer 

containing 10 % β-mercaptoethanol was added to eluted fractions which were subse-

quently heated at 95 °C for 5 min. Finally, Co-IP fractions as well as the input fractions 

were subjected to Western blot analysis for SNAP29 and a-Syn detection. 

2.3.5 Florescent immunohistochemistry 

Human brain slices were provided with approval from Ludwig Maximilian University eth-

ics commission by the Munich Brain Bank, Department of Neuropathology, Ludwig Max-

imilian University Munich. The selected cases were staged by a trained neuropathologist 

according to the presence of LBs in the dorsal motor nucleus of the vagus nerve (DMV), 

locus coeruleus, the SN and the cortex. 

Human SNc sections were deparaffinized in xylene and rehydrated in graded ethanol 

series. Antigen retrieval was performed by incubating the slices with 10 µg/ml proteinase 

K (Qiagen) in TE buffer (pH = 8) for 15 min at 37 °C. The sections were subsequentially 

blocked in 5 % normal serum (Vector Laboratories) for 1 h at room temperature, followed 

by incubating with anti-SNAP29 primary antibody (R&D Systems) overnight at 4 °C in a 

humidified chamber. Thereafter, tissue sections were washed with PBS and incubated 

with anti-mouse biotinylated secondary antibodies (Vector Laboratories) for 2 h at room 
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temperature. After washing with PBS, the sections were incubated with AB solution (ABC 

kit, Vector) for 1 h, and subsequentially with 10 µM biotinylated tyramide containing 

0.005 % Hydrogen peroxide for 20 min for signal amplification[114]. The sections were 

subsequentially incubated with Alexa Fluor™ 488-conjugated streptavidin (Invitrogen) 

for 2 h. Finally, nuclei were stained with DAPI for 10 min followed by washing and mount-

ing with Fluoroshield™ mounting medium (Sigma-Aldrich).  

All images were captured using a Leica SP5 confocal microscope with the same setting 

and analyzed using the open-source image analysis platform FIJI (http://fiji.sc/Fiji). Re-

gions of interest (ROI) of neuromelanin-positive cells were selected manually based on 

both the brightfield channel and green channel, and the mean SNAP29 fluorescent in-

tensity was quantified. The background fluorescent intensity of SNAP29 in each field was 

acquired and subtracted from corresponding cell fluorescent intensity for normalization. 

At least three fields or 30 cells were used for analysis for each case. The average 

SNAP29 intensity per case was determined. All antibodies used are listed in Appendix 

C. 

2.4 Extracellular vesicle isolation 

To prepare EV-enriched pellets from cell culture medium, the medium was changed at 

day 5 of differentiation and was harvested after 24 h. EVs were isolated by differential 

ultracentrifugation. The cell culture medium was first centrifuged at 300 x g for 10 min at 

4 °C to pellet cells. The supernatant was then centrifuged at 2000 x g for 10mins and at 

10000 x g for 30mins. The supernatant was subsequentially transferred to ultracentrifuge 

tubes and centrifuged twice in a TLA-55 rotor (Beckman) at 100000 x g for 90 min at 

4 °C. The supernatant was removed and the pellet was resuspended with DPBS between 

the two ultra-centrifugations. After centrifugation, the supernatant was discarded, and 

the pellet was lysed in an equal volume of pre-chilled RIPA buffer supplemented with 
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protease inhibitors for further Western blot analysis. For autophagy markers blots, the 

total protein concentration of the lysates was normalized according to BCA assay, while 

for EV quantification, the lysates were directly subjected to EV markers blots. 

2.5 Nanoparticle tracking analysis 

For EV size distribution profiles and EV quantification, nanoparticle tracking analysis 

(NTA) was carried out using a NanoSight LM10 system (Malvern), which analyses parti-

cle size based on Brownian motion. Cell culture medium was changed at day 5 of differ-

entiation and was harvested after 24 h. For each sample, three 60-second videos were 

recorded. Replicate histograms were generated from the videos, using the NanoSight 

software 3.0 (Malvern), representing mean and confidence intervals of the three record-

ings for each sample. 

2.6 Bioinformatics analysis 

2.6.1 Three-dimensional structure prediction and validation 

To simulate the protein interaction between SNAP29 with α-Syn, the three-dimensional 

structure model of a-Syn was obtained from the Protein Data Bank (PDB) database (DOI: 

10.2210/pdb1XQ8/pdb [115], accessed on 03/08/2020). 

The complete protein structure of the SNAP29 protein was not available in the PDB, thus 

the structure model of SNAP29 was computationally modeled using Robetta webserver 

[116] (http://robetta.bakerlab.org), which predicted protein structure using the Rosetta ab 

initio and homology comparative modeling structure prediction methods [117, 118]. The 

sequence of SNAP29 used for the computation was retrieved from UniProt online data-

base (https://www.uniprot.org/uniprot/O95721, accessed on 03/08/2020). 
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The predicted SNAP29 models were further optimized using PyRosetta FastRelax [119-

123], and the returned full-atom relaxed structures were evaluated for protein geometry 

using PROCHECK (Ramachandran plot) [124], VERIFY 3D [125], and ERRAT [126] on 

the Structure Analysis and Verification Server (SAVES, https://ser-

vicesn.mbi.ucla.edu/SAVES), and ProSA-web [127, 128] (https://prosa.ser-

vices.came.sbg.ac.at/prosa.php). The best SNAP29 model was selected based on the 

results of the abovementioned evaluations. 

2.6.2 Protein docking simulation 

Protein docking simulations were performed using the protein docking prediction server 

SwarmDock [129-131] (https://bmm.crick.ac.uk/~svc-bmm-swarmdock/index.html), 

which performed flexible modeling of SNAP29-a-Syn complexes using the SwarmDock 

algorithm which incorporates a normal modes approach. Properties and inference on 

probable SNAP29-a-Syn complexes assemblies were evaluated using jsPISA [132, 133] 

(http://www.ccp4.ac.uk/pisa). The structural figures were produced with an open-source 

version of Pymol (https://github.com/schrodinger/pymol-open-source). 

2.7 Statistical analysis 

Prism 7 (GraphPad Software) was used for statistical analysis and for creating line and 

bar graphs. Two datasets were compared by t-tests. When there were more than two 

datasets, assays with one variable with were compared by one-way ANOVAs with 

Tukey’s or LSD post hoc test. Data are shown as mean ± SEM. P < 0.05 was considered 

to be significant.  



3 Results 44 

3. Results 

3.1 α-Syn overexpression inhibits autophagy initiation and 

defects autophagy turnover 

3.1.1 α-Syn overexpression inhibits autophagy initiation in an mTOR-

dependent manner 

To investigate the role of α-Syn overexpression in autophagy, the effect of α-Syn over-

expression on autophagy initiation was first examined. mTORC1 and AMPK are the two 

main signaling molecules conversely regulating autophagy initiation. mTORC1 phos-

phorylates ULK1 at Ser757 and suppress autophagy initiation, while AMPK phosphory-

lates ULK1 at Ser317, Ser555, and Ser777 to activate this process [134-136]. Differen-

tiated LUHMES cells, a human DAergic cell line that acquires a neuronal phenotype upon 

differentiation, was used for investigating the effect of α-Syn overexpression on autoph-

agy [112].  Upon α-Syn overexpression, the phosphorylation level of the mTOR-activat-

ing protein kinase B (PKB, Akt) and ribosomal protein S6 kinase (S6K1) was increased 

in LUHMES cells (Figure 6). The latter results are in accord with previous results from 

our lab, which demonstrated a stimulatory effect of α-Syn overexpression on the mTOR 

signaling pathway [12].   



3 Results 45 

 

Figure 6 α-Syn overexpression activates mTOR associated signaling molecules. 

Western blot (a) and bar graphs (b) illustrating the abundance and phosphorylation of 

mTOR associated signaling molecules (Akt and S6) in response to α-Syn overexpression 

and in response to treatment with rapamycin (100 nM; 24 hrs) (n = 3/condition). For 

comparison of the means, a two-tailed unpaired t-test was used in panel b. **P < 0.01, 

*P < 0.05. Data are shown as means ± SEM.  

p62, also called sequestosome 1 (SQSTM1), is a receptor for cargo that is destined to 

be degraded by autophagy. It targets the ubiquitinated proteins to autophagosomes by 

binding to both ubiquitin and LC3, thus facilitates the clearance. p62 decreases when 

autophagy is activated, whereas an increased p62 level can be observed upon autoph-

agy suppression. Therefore, p62 is often used as a marker to study autophagic flux [137]. 

Western blot results showed the abundance of p62 to be increased upon α-Syn overex-

pression, indicating that autophagy initiation was inhibited under these conditions. Taken 
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the above results together, this suggests that α-Syn overexpression inhibits autophagy 

initiation in an mTOR-dependent manner. 

3.1.2 The abundance of the autophagy marker LC3B-II is increased in α-

Syn transduced LUHMES cells 

The next step was to investigate the effect of α-Syn overexpression on autophagy turn-

over and therefore assess the abundance of LC3B-I and II in cultured DAergic neurons 

in response to α-Syn overexpression.  In the autophagy pathway, LC3B is a key protein 

participating in autophagosome biogenesis and substrate selection, and it is the most 

widely used marker of autophagosomes, used to quantify their abundance [138]. As is 

shown in Figure 7 the abundance of LC3B-II increased when α-Syn was overexpressed 

in LUHMES cells. Since LC3B-I is cytosolic and LC3B-II is membrane-bound, the in-

creased LC3B-II abundance indicates an increased accumulation of autophagosomes in 

response to α-Syn. 
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Figure 7 α-Syn overexpression impairs autophagy initiation and turnover. Western 

blot (a) and bar graphs (b) illustrating the abundance of LC3B-I and -II in response to α-

Syn overexpression and in response to treatment with rapamycin (100 nM; 24 hrs) (n = 

10/condition). For comparison of the means, one-way ANOVA with Tukey’s post hoc test 

was used in panel b. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05. Data are shown 

as means ± SEM. 
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α-Syn overexpression blocks autophagosome-lysosome fusion The above results 

showed that α-Syn overexpression leads to an increased abundance of LC3B-II, but at 

the same time attenuated mTOR-mediated autophagy initiation, as illustrated by an in-

creased p62 abundance. We thus hypothesized that α-Syn overexpression caused 

LC3B-II accumulation by impairing autophagy turnover downstream of the autophago-

some. In order to test this hypothesis, a fusion protein GFP-RFP-LC3B [138] was ex-

pressed in LUHMES cells together with α-Syn or Luciferase. This fluorescence-based 

assay allows to examine the different stages of autophagy flux by quantifying the abun-

dance of autophagosomes and autophagolysosomes separately. In according with our 

Western blot data, we found an increased amount of both GFP and RFP positive au-

tophagosomes in response to α-Syn overexpression, whereas the abundance of RFP-

positive autophagolysosomes was decreased. Bafilomycin A1 (100 nM, 24 hrs), which 

inhibits autophagolysosome fusion by blocking the vacuolar H+-ATPase-mediated lyso-

some acidification, was used as a reference. In bafilomycin A1 treated cells, the fusion 

between autophagosomes and lysosomes was inhibited and likewise led to an accumu-

lation of autophagosomes (Figure 8). Taken together, these results thus suggest that α-

Syn overexpression impairs autophagosome-to-lysosome fusion, and as a consequence, 

leads to the accumulation of autophagosomes and a decreased abundance of autoph-

agolysosomes.   
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Figure 8 α-Syn overexpression attenuates autophagy turnover. a Photomicrographs 

from confocal microscopy of neurons transduced with GFP-RFP-LC3B and either co-

transfected with vehicle (VEH), α-Syn or treated with bafilomycin A1 (Baf; 100 nM; 24 

hrs) (for VEH n = 25 cells, for α-Syn n = 26 cells, for Baf n = 5 cells) b Bar graphs 

illustrating the count of fluorescence positive particles. α-Syn overexpression and Baf 

both lead to a significant increase in GFP/RFP fluorescence positive particles (left graph), 

whereas RFP-fluorescence positive particles was decreased (middle graph). The ratio 

of GFP/RFP double-positive autophagosomes to RFP-positive autophagolysosomes is 

decreased in response to α-Syn overexpression and Baf (right graph). For comparison 

of the means, a one-way ANOVA with Tukey’s post hoc test was used in panel b. ****P 

< 0.0001, **P < 0.01. Data are shown as means ± SEM.  
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3.2 EVs release is changed in response to attenuating 

autophagy flux  

3.2.1 Rapamycin treatment increases autophagy by inhibiting AKT-mTOR 

signaling pathway 

As descripted above, mTORC1 regulates autophagy by inhibiting the ULK complex. We 

next studied the effect of the mTOR inhibitor rapamycin on autophagy in our cell model.  

As expected, treatment with rapamycin (100 nM, 24 hrs) led to a decreased phosphory-

lation of the mTOR-associated signaling molecules (Figure 6). In addition, rapamycin 

treatment decreased the abundance of p62, suggesting an enhanced autophagy initia-

tion. Co-application of rapamycin together with α-Syn overexpression further increased 

the abundance of LC3B-II. Because α-Syn, at the same time, inhibited autophagy turno-

ver (Figure 7), these results suggest that α-Syn overexpression and rapamycin act on 

different distinct stages of autophagy, with α-Syn overexpression inhibiting both autoph-

agy initiation and turnover. 

3.2.2 α-Syn overexpression and rapamycin treatment increase EV release 

form cultured neurons.  

The abundance of EVs released to the cell culture medium were investigated by Western 

blot and nanoparticle tracking analysis. EVs were isolated from cell culture medium by 

ultracentrifuge, and subjected to Western blot for EV marker. As shown in Figure 9, the 

abundance of the EV-associated proteins Alix/AIP1, Flotillin-1, and CD81 increased 

upon α-Syn overexpression. In addition, co-application of rapamycin further potentiated 

this effect, mirroring the effect of α-Syn overexpression and rapamycin on LC3B-II. In 

according with our Western blot results, the extracellular particle concentration increased 

in α-Syn transduced cell medium as measured by NTA, and rapamycin co-application 
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further potentiated the increase, thus further confirming a stimulatory effect of α-Syn 

overexpression and rapamycin on EV release. 

 

Figure 9 Both α-Syn overexpression and rapamycin treatment increase EVs re-

lease. a,b Western blot (a) and bar graphs (b) illustrating the abundance of the EV-

associated proteins Alix/AIP1, Flotillin-1 and CD81 in EV-enriched medium pellets from 

cultured cells in response to α-Syn overexpression and in response to treatment with 

rapamycin (100 nM; 24 hrs) (n = 9/condition). c Results from Nanoparticle Tracking Anal-

ysis (NTA) illustrating an increased amount of EVs in response to α-Syn overexpression 
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or to treatment with rapamycin (100 nM; 24 hrs) (n = 9/condition). For comparison of the 

means, one-way ANOVA with Tukey’s post hoc test was used in panels b and c. ****P < 

0.0001, **P < 0.01, *P < 0.05. Data are shown as means ± SEM. 

3.2.3 Bafilomycin blocks autophagosome-lysosome fusion and inhibits 

autophagy 

As shown by the RFP-GFP-LC3B autophagy reporter assay, bafilomycin A1 treatment 

led to an increased amount of both GFP and RFP positive autophagosomes, whereas 

decreased the abundance of RFP-positive autophagolysosomes (Figure 8). For bafilo-

mycin A1 treatment, cell lysates were further analyzed by Western blot. The results 

showed an increase in LC3B-II abundance in bafilomycin treated cell lysates (Figure 10), 

indicating accumulated autophagosomes upon bafilomycin A1 treatment. Taken together, 

these results suggested that bafilomycin A1 blocks autophagosome-lysosome fusion 

and inhibits autophagy turnover. 

 

Figure 10 Blocking autophagosome-lysosome fusion impairs autophagy turnover. 

Western blot (a) and bar graphs (b) illustrating the increased abundance of LC3B-II in 

response to bafilomycin (100 nM; 24 hrs) (n = 7/condition). For comparison of the means, 

a two-tailed unpaired t-test was used in panel b. ****P < 0.0001. Data are shown as 

means ± SEM.  
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3.2.4 Bafilomycin treatment increases EVs release 

Similar to α-Syn, bafilomycin A1 treatment resulted in an increased abundance of the 

EV-associated proteins Alix/AIP1, Flotillin-1 and CD81 in EV-enriched medium pellets. 

Consistent with our Western blot results, NTA analysis showed an increased extracellu-

lar particle concentration in bafilomycin A1 treated cell medium (Figure 11). Notably, in 

both Western blot and NTA results, the effect of bafilomycin A1 treatment in increasing 

EVs release was mirroring the effect of α-Syn overexpression comparing to GFP-trans-

duced cells. 

3.2.5 Both bafilomycin treatment and α-Syn overexpression increase the 

abundance of autophagy-associated markers in EV-enriched pellets 

from cell culture medium 

In addition to investigating EV abundance, we further investigated the protein composi-

tion of EVs. The results showed that EVs from α-Syn-transduced or bafilomycin A1 

treated neurons carried an increased amount of the autophagy-associated proteins 

LC3B-II and p62, thus suggesting their origin from the autophagy pathway (Figure 12).  

Based on these results, we concluded that α-Syn overexpression impairs autophagy 

turnover by blocking autophagolysosome fusion, leading to a compensatory increase in 

the release of neuronal EVs that carry the molecular signature of autophagy-derived or-

ganelles.  

  



3 Results 54 

 

Figure 11 Blocking autophagosome-lysosome fusion increases EVs release. a,b 

Western blot (a) and bar graphs (b) illustrating the increased abundance of the EV-as-

sociated proteins Alix/AIP1, Flotillin-1 and CD81 in EV-enriched medium pellets from 

cells in response to α-Syn overexpression and in response to treatment with bafilomycin 

(Baf; 100 nM; 24 hrs) (n = 3/condition). c Results from NTA illustrating an increased 

amount of EVs in response to α-Syn overexpression or to treatment with Baf (100 nM; 

24 hrs) (n = 9/condition). For comparison of the means, one-way ANOVA with Tukey’s 

post hoc test was used in panels b and c. ****P < 0.0001, **P < 0.01, *P < 0.05. Data are 

shown as means ± SEM.  
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Figure 12 EVs from α-Syn-transduced or bafilomycin A1 treated neurons carried 

an increased amount of the autophagy-associated proteins. Western blot (a) and 

bar graphs (b) illustrating the increased abundance of LC3B-II and p62 in EV-enriched 

medium pellets from α-Syn-transduced and bafilomycin (Baf) treated cells. Note that a 

similar amount of total protein (i.e., a comparable total number of EVs) has been loaded 

on each lane. The result thus represents the relative content of LC3B-II and p62 per 

vesicle.  For comparison of the means, one-way ANOVA with Tukey’s post hoc test was 

used in panel b. ****P < 0.0001, ***P < 0.001, **P < 0.01. Data are shown as means ± 

SEM.  
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3.3 The effect of α-Syn overexpression on autophagolysosome 

fusion depends on SNAP29 

3.3.1 α-Syn overexpression leads to a decreased expression of SNAP29 

in transduced LUHMES cells 

In principal, the fusion of autophagosomes and lysosomes depends on a set of specific 

SNARE molecules, where the autophagic Qa-SNARE STX17 forms a SNARE core com-

plex with the cytosolic Qbc-SNARE SNAP29 and the lysosomal R-SNARE VAMP8 or 

YKT6 [57, 58, 139-142].Because α-Syn is well known to interact with synaptic SNARE 

proteins [143, 144], we therefore hypothesized that α-Syn overexpression may impair 

autophagosome-to-lysosome fusion by affecting one or more of these SNARE molecules. 

When we examined the abundance of the autophagy-associated SNARE molecules in 

cultured neurons in response to α-Syn overexpression, we found indeed a significant 

decrease of the SNAP25 SNARE family members SNAP23 and SNAP29 in α-Syn-trans-

duced cells. On the other hand, the abundance of VAMP8, STX17 and YKT6 remained 

unchanged, suggesting a family-specific effect of α-Syn. Interestingly, α-Syn overexpres-

sion had no effect on SNAP29 gene expression as measured by qRT-PCR, suggesting 

a posttranscriptional effect of α-Syn overexpression on SNAP29 abundance (Figure 13).  
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Figure 13 α-Syn overexpression reduces the abundance of SNAP29 in cultured 

human DA neurons. a,b Western blot (a) and bar graphs (b and left of c) illustrating the 

SNARE proteins STX17, YKT6, VAMP8, SNAP29 and SNAP23 in α-Syn- and GFP-

transduced neurons. α-Syn overexpression specifically leads to a decreased protein 

abundance of the SNAP25 family members SNAP23 and SNAP29, whereas the other 

SNARE proteins remain unchanged (n = 6/condition, n = 11 for SNAP29). c Bar graph 

showing a decreased protein level but similar mRNA expression levels for SNAP29 in α-

Syn-transduced neurons as compared to GFP-transduced cells (n = 3/condition). For 

comparison of the means, an unpaired t-test was used in panels b and c; ****P < 0.0001; 

Data are shown as means ± SEM.  
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3.3.2 The abundance of LC3B-II is increased in SNAP29-deficient cells.  

Based on the above results, it would be conceivable that α-Syn overexpression impairs 

autophagosome-to-lysosome fusion by affecting SNAP29, and as a consequence the 

functional integrity of the autophagolysosomal SNARE complex. In order to test this hy-

pothesis, the effect of knocking-down SNAP29 on autophagy turnover was investigated. 

Consistent with what has been reported about the role of SNAP29 in autophagolysosome 

fusion [58], our Western blot results showed an increased abundance of LC3B-II upon 

SNAP29 knockdown in cultured DAergic neurons (Figure 14). 

 

Figure 14 Knocking down SNAP29 mimics the effect of α-Syn overexpression on 

autophagy turnover. Western blot (a) and bar graphs (b) illustrating an increased abun-

dance of LC3B-II in response to transfection with SNAP29 siRNAs (30 nM) (n = 4/condi-

tion). For comparison of the means, an unpaired t-test was used; ***P < 0.001. Data are 

shown as means ± SEM.  
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3.3.3 SNAP29 knockdown impairs autophagosome-lysosome fusion 

To further confirm the effect of SNAP29 knockdown on autophagy turnover, we carried 

out an RFP-GFP-LC3B autophagy reporter assay. Similar to α-Syn overexpression, 

SNAP29 knockdown likewise decreased the abundance of autophagolysosomes which 

are only RFP positive, thus increasing the ratio of autophagolysosomes to autophago-

somes (Figure 15). Taken together, these results confirmed SNAP29 to play a key role 

in the fusion between autophagosomes and lysosomes in our model system. 

3.3.4 Loss of SNAP29 increases the abundance of EVs in cell medium 

To investigate the effect of SNAP29 knockdown on EV release in LUHMES cells, EV 

abundance was measured by Western blot and NTA. Western blot showed an increased 

abundance of EV markers in EV-enriched medium pellets from SNAP29 siRNA treated 

neurons, and nano-particle tracking analysis confirmed the increased particle concentra-

tion. Both results suggest an increased abundance of EVs in the culture medium due to 

the loss of SNAP29 (Figure 16). In summary, these results thus demonstrate SNAP29 

knockdown to mimic the effect of α-Syn overexpression on autophagy turnover, further 

implicating SNAP29 in α-Syn-associated autophagy changes. 
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Figure 15 Knocking down SNAP29 mimics the effect of α-Syn overexpression on 

autophagosome-lysosome fusion. a Photomicrographs from confocal microscopy of 

neurons transduced with GFP-RFP-LC3B and either co-transfected with SNAP29 or 

negative control (CON) siRNAs (for CON siRNA n = 41 cells, for SNAP29 siRNA n = 42 

cells). b Bar graphs illustrating the count of fluorescence positive particles. SNAP29 

siRNA led to a significant decrease in RFP fluorescence positive particles (middle graph), 

whereas GFP/RFP-fluorescence positive particles remained unchanged (left graph). The 

ratio of GFP/RFP double-positive autophagosomes to RFP-positive autophagolyso-

somes is decreased in response to SNAP29 siRNA transfection. For comparison of the 

means, an unpaired t-test was used; ****P < 0.0001. Data are shown as means ± SEM. 
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Figure 16 Knocking down SNAP29 mimics the effect of α-Syn overexpression on 

EVs release. a,b Western blot (a) and bar graphs (b) illustrating the increased abun-

dance of the EV-associated proteins Alix/AIP1, Flotillin-1 and CD81 in EV-enriched me-

dium pellets from cells in response to SNAP29 knock-down (n = 9/condition). g Results 

from NTA illustrating an increased amount of EVs in response to transfecting cells with 

SNAP29 siRNAs (n = 9/condition). For comparison of the means, an unpaired t-test was 

used; ****P < 0.0001, **P < 0.01, *P < 0.05. Data are shown as means ± SEM. 
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3.4 Co-expressing SNAP29 attenuates autophagy defects and 

cell death in α-Syn-transduced LUHMES cells 

3.4.1 Co-expressing SNAP29 attenuates the increased LC3B-II abundance 

in α-Syn transduced LUHMES cells 

In order to further establish the functional interplay between SNAP29 and α-Syn, the 

effect of SNAP29 co-expression in α-Syn transduced neurons was investigated. Con-

sistent with our previous results, co-expression of SNAP29 attenuated the α-Syn-medi-

ated increase in LC3B-II, thus indicating a restored autophagy flux upon SNAP29 co-

expression (Figure 17). 

 

Figure 17 SNAP29 co-expression rescues the α-Syn-induced impairment of au-

tophagy turnover. a,b Western blot and bar graphs illustrating a decreased abundance 

of LC3B-II in α-Syn overexpressing cells in response to transfection with SNAP29 (n = 

9/condition). For comparison of the means, an unpaired t-test was used; **P < 0.01. Data 

are shown as means ± SEM.  
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3.4.2 Co-expressing SNAP29 rescues the defected autophagy turnover in 

α-Syn transduced LUHMES cells 

Likewise, the result of the RFP-GFP-LC3B autophagy reporter assay showed a de-

creased number of GFP-positive dots in SNAP29 co-expressing α-Syn transduced neu-

rons, suggesting that SNAP29 co-expression partially attenuated the α-Syn-mediated 

increase in autophagosomes and normalized the ratio between autophagosomes and 

autophagolysosomes (Figure 18). 

 

Figure 18 SNAP29 co-expression rescues the α-Syn-induced impairment of au-

tophagosome-lysosome fusion. c Photomicrographs from confocal microscopy of 

neurons transduced with GFP-RFP-LC3B, α-Syn and either with SNAP29 or vehicle 

(VEH). d Bar graphs illustrating the count of fluorescence positive particles. SNAP29 co-

expression led to a significant decrease in GFP/RFP fluorescence positive particles (left 
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graph), whereas RFP-fluorescence positive particles remained unchanged (middle 

graph). The ratio of GFP/RFP double-positive autophagosomes to RFP-positive autoph-

agolysosomes is increased in response to SNAP29 transduction (for α-Syn n = 25 cells, 

for α-Syn+SNAP29 n = 28 cells). For comparison of the means, an unpaired t-test was 

used; **P < 0.01. Data are shown as means ± SEM. 

3.4.3 Co-expressing SNAP29 attenuates the cytotoxicity of α-Syn 

overexpression 

Consistent with previous result of our lab, α-Syn-transduced cells release more LDH to 

the cell culture medium than GFP-transduced cells, indicating α-Syn overexpression to 

induce cell death in LUHMES cells. Besides, rapamycin treatment potentiated α-Syn-

induced cell death in LUHMES cells, similar to its effect on autophagosome accumulation 

and EV release, as demonstrated by an increased LDH release and decreased MTT 

signal in these neurons (Figure 19). 

 

Figure 19 α-Syn overexpression induces cell death. Bar graphs illustrating the quan-

tification of LDH in the culture medium (left) and the MTT signal (right) in response to α-

Syn overexpression or to treatment with rapamycin (100 nM; 24 hrs) (n = 4/condition). 

For comparison of the means, one-way ANOVA with Tukey’s post hoc test was used. 

****P < 0.0001, ***P < 0.001, *P < 0.05. Data are shown as means ± SEM. 
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Notably, co-expressing SNAP29 in α-Syn transduced neurons decreased LDH release 

and enhanced the MTT signal, suggesting that re-introducing SNAP29 attenuates cellu-

lar death (Figure 20). These results illustrate that the loss of SNAP29 in α-Syn-trans-

duced neurons contributes to α-Syn-associated neuronal death. 

 

Figure 20 co-expressing SNAP29 in α-Syn transduced neurons attenuated cellular 

death. Bar graphs illustrating the quantification of LDH in the culture medium (left) and 

the MTT signal (right) in response to α-Syn and SNAP29 expression (n = 8/condition). 

For comparison of the means, one-way ANOVA with Tukey’s post hoc test was used. 

****P < 0.0001, **P < 0.01. Data are shown as means ± SEM. 
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3.4.4 Co-expressing SNAP29 attenuates the abundance of EVs in α-Syn-

transduced LUHMES cell medium 

Western blot results showed co-expressing SNAP29 in α-Syn-transduced neurons like-

wise normalized the α-Syn-mediated increase of EV markers Alix/AIP1, Flotillin-1 and 

CD81 in EV-enriched medium pellets. And nano-particle tracking analysis showed a de-

creased particle concentration in SNAP29 co-expressing cell medium (Figure 21). 

In summary, our results thus suggest that α-Syn overexpression affected autophagy 

turnover by impairing SNAP29-mediated autophagolysosome fusion, and that the loss 

of SNAP29 in α-Syn-transduced cells led to increased EV release as well as cell death 

in cultured DAergic neurons. 
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Figure 21 SNAP29 co-expression attenuated α-Syn-induced increase on EVs re-

lease. e,f Western blot and bar graphs illustrating the decreased abundance of the EV-

associated proteins Alix/AIP1, Flotillin-1 and CD81 in EV-enriched medium pellets from 

cells in response to SNAP29 co-expression (n = 9/condition). g Results from NTA illus-

trating a decreased amount of EVs in response to transducing cells with SNAP29 (n = 

9/condition). For comparison of the means, one-way ANOVA with Tukey’s post hoc test 

was used in panel b; a two-tailed unpaired t-test was used in panel c. ****P < 0.0001, 

***P < 0.001, **P < 0.01, *P < 0.05. Data are shown as means ± SEM.  
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3.5 α-Syn directly interacts with SNAP29 

3.5.1 SNAP29 three-dimensional structure was predicted with good quality 

Because our results demonstrated a decrease of SNAP29 in response to α-Syn overex-

pression and since α-Syn has been suggested to directly interact with SNARE complex 

proteins at presynaptic sites [144], we hypothesized SNAP29 likewise to interact with α-

Syn. In order to examine such a protein-protein interaction and since the complete ter-

tiary structure of SNAP29 has not been established before, we first generated a compu-

tationally modelled structure of SNAP29. Using the Rosetta protein structure prediction 

algorithm, SNAP29 domains were first predicted as independent folding units. Units that 

had homologous structures were modeled with Rosetta comparative modeling, while Ro-

setta ab initio modelling was used where no homologous structures were found by se-

quence homology. Thereafter, the units were assembled into full chain models, and a 

total of 5 top-scored structure models were returned, which were next optimized by Py-

Rosetta FastRelax. The Rosetta scores and protein structure geometry evaluation 

scores (see below) of all the five models increased after FastRelax optimization (Table 

2).  
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Model # Rosetta Score VERIFY* ERRAT** PROCHECK*** 

#1 
original -652.90  70.54 98.34  92.10  
relaxed -733.38  60.47 97.19  93.40  

#2 
original -563.17  79.84 91.32  90.30  
relaxed -685.85  85.27 92.15  90.30  

#3 
original -625.03  77.91 98.00  93.00  
relaxed -695.10  79.07 99.20  92.50  

#4 
original -640.56  79.07 93.95  96.00  
relaxed -689.68  93.41 95.95  95.20  

#5 
original -672.05  79.46 90.36  93.00  
relaxed -748.22  86.05 91.57  93.40  

Table 2 Rosetta scores and protein structure geometry evaluation scores of the 

SNAP29 models. * percentage of the residues have averaged 3D-1D score >= 0.2; ** 

Overall quality factor; *** percentage of the residues in most favored regions. 

To validate the reliability of the predicted models, protein structure geometry evaluations 

were performed. Among the five SNAP29 models, model #4 showed a good 

PROCHECK (Ramachandran plot: 95.2% most favored), Verify 3D (93.41% residues 

were in allowed regions), ERRAT (95.95), and ProSA analysis result (z-score: -6.49). 

These results confirmed the quality of our predicted model of SNAP29. Thus, we select 

model #4 for the subsequent docking analysis (Figure 22).   

 

Figure 22 The computationally modelled tertiary structure of SNAP29 and α-Syn. 
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3.5.2 Protein-protein docking simulations indicates sufficiently strong 

binding between a-Syn and SNAP29 

Given that SNAP29 and a-Syn may interact with each other, we performed a flexible 

protein-protein docking analysis using the protein docking prediction server SwarmDock. 

A total of 492 docking complexes were identified, and representative docking complexes 

were evaluated using jsPISA. The analysis showed a low binding energy for all six rep-

resentative possible docking poses (Figure 23, Table 3), These bioinformatical results 

support a sufficiently strong binding between SNAP29 and a-Syn, and in principle sup-

port a potential PPI between the two molecules. 

3.5.3 Co-IP indicated a direct binding between α-Syn and SNAP29 

In order to further validate our bioinformatic analysis with experimental evidence, we 

conducted a co-immunoprecipitation with SNAP29 as a bait in neurons that were trans-

duced with α-Syn or GFP (Figure 24). In order to better preserve weak or transient PPIs, 

the cells were treated with formaldehyde, a mild and reversible crosslinker with a very 

short spacer length (2.3–2.7 Å) that selectively cross-links closely associated proteins 

[113]. Western blot confirmed a pulldown of α-Syn with SNAP29, thus demonstrating a 

physical binding of α-Syn and SNAP29 in cultured DAergic neurons. In summary, these 

results further support a relevant PPI between α-Syn and SNAP29. 

 

 



3 Results 71 

 

Figure 23 Potential biding sites and complexes between SNAP29 and α-Syn. 

 

Complex 
# 

Interface 
area (Å²) 

Solvation 
Energy 

(kcal/mol) 

Total 
Binding 
Energy 

(kcal/mol) 

Hydro-
phobic 
P-value 

Hydrogen 
Bonds 

Salt 
Bridges 

Disulphide 
Bonds 

# 12b 986.5 -7633 -12.6 0.6641 7 5 0 

# 38a 1389 -15.05 -20.17 0.6599 4 9 0 

# 58a 1243 -18.92 -21.88 0.4065 5 2 0 

# 79a 1303 -16.09 -22.84 0.472 11 5 0 

# 114d 1310 -16.55 -21.88 0.5421 12 0 0 

# 68c 1582 -16.94 -23.39 0.6159 12 3 0 

Table 3 The bioenergetic and biophysical characteristics of the indicated com-

plexes between SNAP29 and α-Syn. All complexes exhibit a low total binding energy, 

thus demonstrating an energetically favorable binding between SNAP29 and α-Syn.

Complex_12b Complex_38a

Complex_58a Complex_79a

Complex_114d Complex_68c
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Figure 24 α-Syn physically interacts with SNAP29 in cultured neurons. Western blot 

illustrating the result of a Co-IP with SNAP29 as a bait. Reacting the membrane with an 

antibody against α-Syn revealed a clearly visible band in α-Syn-transduced neurons at 

around 15 kDa. The left lane represents a negative control (no SNAP29 antibody during 

IP). Representative result from 3 independent experiments. 
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3.6 SNAP29 is lost from neuromelanin-positive neurons of the 

human SNc in LBP cases 

In addition to experiments in cultured DAergic neurons, we finally investigated the abun-

dance of SNAP29 in SNc DAergic neurons in post-mortem human brain tissue from 

eleven patients with LBP at different stages and six control cases. Based on the Braak 

staging and recommendations of Brain Net Europe [93, 145], all cases were checked 

and staged for LBP by an experienced neuropathologist (Appendix E).  Next, for 

SNAP29 quantification, midbrain sections from each case were randomly selected and 

SNAP29 fluorescent intensity in the cytoplasm of neuromelanin-positive neurons was 

quantified. For LBP cases, neuromelanin-positive cells in SNc showed a stage-depend-

ent decrease of SNAP29, whereas robust SNAP29 staining was observed in almost all 

neuromelanin-positive cells in control cases. In addition to the overall reduction, we ob-

served the decreased abundance of SNAP29 to be already present at Braak stage 1, 

where LBs are per definition restricted to the dorsal motor nucleus of the vagus nerve 

(DMV). There’s no difference in the fixation time of the tissues between the control and 

LBP group (Figure 25). These results imply that the decrease of SNAP29 is an early 

pathological event during the progression of Lewy pathology in PD that may precede and 

enhance the appearance of LBs in SNc neurons. Taken together, our results from inves-

tigating post-mortem brain tissue demonstrate the validity of our results from cultured 

cells in patient-derived material. 
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Figure 25 The abundance of SNAP29 is stage-dependently decreased in neuro-

melanin-positive neurons from LBP cases. a Representative photomicrograph from 

immunohistochemical staining of SNc post-mortem brain tissue. Tissue sections were 

stained with an antibody against SNAP29 (green), revealing a cytoplasmic staining pat-

tern for SNAP29 in neuromelanin-positive neurons. Upper row: Pictures from a PD case 
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at Braak Stage 6; lower row: pictures from a control case which had no LBP. Insert: 2.5 

x magnification. b High magnification merged photomicrographs from a control case (left 

panel), a Braak stage 1 case (middle panel), and a braak stage 6 PD patient (right panel) 

and. Note the absence of cytoplasmic SNAP29 fluorescence in PD (arrow), whereas 

control neurons show a clear cytoplasmic SNAP29 fluorescence signal (arrowhead). The 

signal of stage 1 case is weaker than that of the control one. c Bar graph illustrating a 

stage-dependent decline of SNAP29 in LBP cases. d Bar graph illustrating the fixation 

time of tissue in control and LBP group. For comparison of the means, a one-way ANOVA 

with Tukey’s post hoc test was used. ****P < 0.0001, ns: no significance; Data are shown 

as means ± SEM. 
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4. Discussion  

4.1 α-Syn overexpression induces a complex modulation of 

autophagy 

Our results show that α-Syn overexpression impairs autophagy flux by attenuating au-

tophagolysosome fusion and by inhibiting autophagy initiation. Overexpression of α-Syn 

induced a reduced abundance of the v-SNARE protein SNAP29 (Figure 13), thus result-

ing in a SNARE-mediated autophagolysosome fusion defect (Figure 7, Figure 8). On 

the other hand, α-Syn overexpression activated mTOR complex-associated signaling 

cascades (Figure 6) [12], therefore inhibiting autophagy initiation. In addition, the α-Syn 

overexpression related autophagolysosome fusion defect resulted in increased release 

of EVs. These results suggest a complex modulation of autophagy by α-Syn overexpres-

sion, building on and confirming numerous previous reports, which collectively demon-

strate an inhibitory effect of α-Syn overexpression on autophagy through a number of 

distinct mechanisms. For example, α-Syn overexpression damaged autophagy in mam-

malian cell lines and transgenic mice by inhibiting RAB1A, and resulted in a mislocaliza-

tion of the early autophagy protein ATG9 and decreased formation of omegasomes, 

which could be rescued by RAB1A overexpression [146, 147]. A significant increase of 

autophagic vesicular structures was observed in rat PC12 cell lines expressing the α-

Syn A53T mutant. Besides, α-Syn aggregates compromised the retrograde transport of 

autophagosomes [148, 149] and disrupted the activity of the lysosomal aspartyl protease 

cathepsin D (CTSD) and the autophagic degradation process [64, 150, 151]. A more 

recent study using PC12 cells demonstrated that overexpressed α-Syn bound to both 

cytosolic and nuclear high mobility group box 1 (HMGB1), impaired the cytosolic trans-

location of HMGB1, blocked HMGB1-Beclin 1 (BECN1) binding while strengthened 

BECN1-BCL2 binding. α-Syn overexpression was reported in a more recent study to 
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impair the cytosolic translocation of high mobility group box 1 (HMGB1), thereby affects 

the binding between HMGB1 and Beclin 1 (BECN1) and promotes BECN1-BCL2 binding. 

Deregulation of these molecular events by α-Syn overexpression inhibited autophagy, 

which was restored by BECN1 overexpression and HMGB1 knockdown [70], although 

this mechanism remains a matter of debate [152, 153].  

Moreover, previous research demonstrated an additional role of mTOR not only in au-

tophagy initiation but also for autophagolysosome fusion. UV radiation resistance asso-

ciated gene (UVRAG) and Rubicon (RUBCN) are two components of the PI3K complex, 

which acts upstream of mTOR. UVRAG and RUBCN are reported to be involved in au-

tophagolysosome fusion through Rab7 [53, 154, 155], although they appear to have op-

posite effects: UVRAG promotes autophagolysosome fusion, whereas RUBCN inhibits 

it [156, 157]. These findings add another layer of complexity to α-Syn-mediated autoph-

agy manipulation. In summary, the α-Syn overexpression mediated activation of mTOR-

associated pathways would therefore additively contribute to impairing the autophagoly-

sosome fusion but through a mechanism distinct from affecting SNAP29. However, be-

cause co-expressing SNAP29 partially rescued the effect of α-Syn, we favor a mecha-

nism where the impairment of SNARE-dependent autophagolysosome fusion predomi-

nates. Future research should address the specific effect of α-Syn overexpression on 

the different steps of autophagy flux to dissect the specific consequences.  

However, these results should be interpreted with caution, since they are obtained from 

an artificial cell model. Furthermore, although α-Syn aggregation is a common feature of 

both sporadic and familial PD and α-Syn overexpression leads to aggregation, the α-Syn 

overexpression model may not be capable of representing features of sporadic PD. As 

PD is a complex heterogeneous disease, whether these mechanisms act as a main fac-

tor for the initiation or promotion of PD patients remains to be established. 
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4.2 Impaired autophagy and α-Syn accumulation form a 

bidirectional pathogenic loop in synucleinopathies 

As described above, our results show an impairment of autophagy upon α-Syn overex-

pression. A study of aggregated α-Syn demonstrated a similar result of impaired lysoso-

mal function, and analysis of autophagy-related protein markers suggested a decreased 

autophagosome clearance [64]. Intriguingly, numerous studies indicated that α-Syn is 

degraded by autophagy [158-161] and autophagolysosome inhibition conversely blocked 

α-Syn degradation and potentiated its toxicity [62], exacerbated α-Syn pathology, thus 

forming a bidirectional pathogenic loop. 

For instance, evidence showed the autophagy gene ATG7 deletion in mice midbrain 

DAergic neurons resulted in p62 and Ub-labeled inclusions and DAergic neuron impair-

ments [72, 75, 162]. In CNS-specific ATG7 knockout mice, α-Syn was found to accumu-

late in presynaptic terminals [162]. The conditional knockout of ATG7 in mice DAergic 

neurons led to locomotor disorders, although the autophagy defect may lead to a com-

pensatory increase in dopamine release [73]. Different from these studies, a recent re-

port by Fussi et al. reported a protective effect of ATG5 knockdown in cultured DAergic 

neurons [163]. These studies indicate an association between autophagy deficiency or 

blockade of autophagy flux and α-Syn pathology, therefore supporting a bidirectional 

functional interplay between overexpressed α-Syn and autophagy. 

Additional evidence from investigating post-mortem patient-derived tissue likewise sup-

port an important role of autophagy for PD, suggesting that the aggregation of α-Syn 

may be a consequence of impaired autophagy turnover. In two recent large meta-anal-

yses of genome-wide association studies (GWAS), PD candidate loci were strongly en-

riched for lysosomal and autophagy functions [164, 165]. In accord, autophagic degen-

eration was observed in DAergic neurons in the SNc of PD patients [166]. In addition to 
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α-Syn, lots of autophagy-related proteins were identified in LBs [167, 168], and a recent 

post-mortem study of PD brains reported organelles and lipid membranes which remi-

niscent of autophagosomes and lysosomes [169]. Furthermore, in PD the majority of LBs 

in the SNc were found to be immunoreactive for the autophagy-related protein LC3 [65, 

170], and LC3-II levels were also significantly increased in the SNc [166].  

In accord with these previous neuropathological results, our own data demonstrate a 

stage-dependent decline of SNAP29 in post-mortem brain tissue from LBP cases (Fig-

ure 25). In addition to the overall reduction, we found less SNAP29 at Braak stage 1 as 

compared to cases that had no LBP. Interestingly, LBs are by definition restricted to 

neurons of the medulla oblongata such as the dorsal motor nucleus of the vagus nerve 

at Braak stage 1. Because we found a decline of SNAP29 to be evident at Braak stage 

1, these results imply that the decrease of SNAP29 is an early pathological event during 

the progression of LBP in PD that may precede and enhance the appearance of LBs in 

SNc neurons. Our results thus add specific insights into the early pathological changes 

in PD.  

According to literature, impairments at various stages of this system result in accumula-

tion and toxicity of α-Syn. For further studies, it needs more emphasis to find the origin 

of this vicious cycle, and to address whether cells with α-Syn accumulation benefit from 

stimulated autophagy. Our own results from cultured DAergic neurons demonstrated that 

increasing the generation of LC3B-II-positive autophagosomes, for instance by applica-

tion of rapamycin, results in incremental cell death in α-Syn transduced cells (Figure 19). 

Conversely, enhancing autophagy turnover by SNAP29 overexpression decreased α-

Syn overexpression induced cell death (Figure 20). Our results thus are consistent with 

the model where overexpressed α-Syn augments DAergic neuron cell death by inhibiting 

autophagosome turnover. These mechanistic insights will support the development of 
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novel molecular targets to modulate α-Syn-associated autophagy changes and eventu-

ally attenuate cell death in PD.   

4.3 The potential role of SNAP29 in α-Syn overexpression 

related autophagy defects 

In the macroautophagy process, autophagosomes ultimately fuse with late endosomes 

or lysosomes to form amphisomes or autolysosomes, respectively. In accord, experi-

mental research demonstrated that autophagosome-to-lysosomes fusion is vital for neu-

ronal integrity [171]. During the maturation process, autophagosomes will obtain the re-

quired molecular machinery to be able to fuse with specific vesicles. In principle, the 

homotypic fusion is driven by SNARE-complexes. Autophagosome-lysosome fusion is 

known to be mediated by specific SNARE molecules including STX17, VAMP7/8, 

SNAP29, STX17, and YKT6 [58, 141, 142]. Notably, previous reports identified two dis-

tinct SNARE complexes to mediate autophagosome/lysosome fusion: STX17–SNAP29–

VAMP7/8 [58, 171] and YKT6–SNAP29–STX7 [142], thus identifying SNAP29 as a ubiq-

uitarian SNARE protein implicated in different pathways of autophagosome/lysosome 

fusion.  

SNAP29 is a member of the Qb/Qc subfamily of SNARE proteins. In vertebrates, this 

sub-family includes SNAP-23, SNAP-25, SNAP-29, and SNAP-47. Whereas SNAP-23 

and SNAP-25 participate in regulated exocytosis, SNAP-29 mediates the autophago-

some-lysosome fusion [172]. Our results from investigating the abundance of SNAP23 

and SNAP29 demonstrated a reduction for both in α-Syn-transduced neurons, thus sug-

gesting a family-specific effect of α-Syn overexpression (Figure 13). Future research 

should address the particular impact of the structural organization of SNAP25 family 

members for their vulnerability against α-Syn.  
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Because qRT-PCR showed gene expression of SNAP29 to be unaffected in α-Syn-trans-

duced cells (Figure 13), our results exclude a transcriptional regulation and instead favor 

a posttranscriptional effect. Since α-Syn has been shown to physically interact with syn-

aptic SNARE proteins chaperoning their assembly [144], a possible scenario would be 

that α-Syn physically interacts with SNAP29 to facilitate its degradation. Indeed, our pro-

tein-protein docking stimulations and Co-IP experiments all suggest α-Syn to physically 

interact and bind to SNAP29 in cultured neurons (Figure 23, Figure 24). However, the 

specific intermolecular interaction between both molecules and the consequences of 

such an interaction for the abundance of SNAP29 are yet to be elucidated and warrant 

further investigation. Future studies should examine if the binding is required for the ef-

fect of α-Syn overexpression on SNAP29 protein abundance and the molecular and 

structural requirements of such a protein-protein interaction, where the particular molec-

ular domains of SNAP25 family members with dual Qb and Qc SNARE motifs may pro-

vide a structural basis for specific binding. 

4.4 The “crosstalk” between α-Syn-related autophagy defects 

and increased release of EVs 

Our results demonstrate an increased release of EVs in α-Syn-transduced neurons (Fig-

ure 9). Notably, α-Syn-mediated EV release was functionally connected to autophagy 

turnover in cultured neurons, as autophagy induction by rapamycin further increased EV 

release, mirroring to the effect of blocking autophagy turnover by bafilomycin A1 (Figure 

11) or SNAP29 knockdown (Figure 16). Conversely, enhancing autophagy flux by 

SNAP29 overexpression led to a reduced abundance of EVs. Taken these results to-

gether, they suggest that EV release may compensate for the accumulation of autopha-
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gosomes in α-Syn-transduced cells. In accord, α-Syn-induced EVs carried increased au-

tophagy-related molecules (Figure 12), thus suggesting their generation from amphi-

somes (MVB/autophagosome hybrid organelles). 

Several studies demonstrated a link between the autophagy-lysosome pathway and EV 

release. For instance, evidence from both mammalian cell and mouse models revealed 

the conjugation of the ubiquitin-like protein ISG15 to enhance protein degradation, ac-

companied by reduced MVBs within the cells and exosome release. Conversely, preven-

tion of endosome–lysosome fusion rescued exosome release [173]. Another recent 

study in the CD63 knockout model showed autophagy to degrade aberrant endocytic 

vacuoles associated with the loss of CD63, whereas blockage of autophagy degradation 

partially normalizes CD63 knockout-related exosome biogenesis decrease [174]. Taken 

together, these and several other reports [175, 176] suggest a model, where autopha-

gosomes fuse with MVBs to produce amphisomes, which can either be degraded by 

fusing with lysosomes or result in EV release by fusing with the plasma membrane [177].  

In addition, the ATPase ion pump ATP13A2 has been shown to maintain the balance 

between the EVs release of α-Syn and its autophagic degradation in several neuronal 

cell lines. On one hand, ATP13A2 loss defects lysosomal function and impairs α-Syn 

degradation by downregulation of SYT11, whereas ATP13A2 upregulation reduces α-

Syn overexpression related toxicity [178]. On the other hand, ATP13A2 regulates intralu-

minal zinc ion levels in MVBs, mediating α-Syn externalization by EVs release [179].  

Evidence showed that EV release may be a compensatory manner for proteotoxic stress 

alleviation when autophagy or lysosomal function is impaired. For example, studies 

demonstrated autophagy-dependent α-Syn release to be enhanced when autophago-

some maturation was inhibited by tubulin polymerization-promoting protein (p25α, or 
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TPPP) overexpression [180]. Whereas the elevation of α-Syn secretion through EVs reg-

ulated by secretory membrane carrier protein 5 (SCAMP5) overexpression reduced au-

tophagosome–lysosome fusion and lysosomal degradation of α-Syn [181]. Consistent 

with our own data (Figure 11), evidence showed lysosomal inhibition with bafilomycin 

A1 to increases EV released α-Syn in both α-Syn overexpressing cell and animal model 

[74, 182]. A more recent study showed an increased number of amphisomes in the cells 

and increased levels of autophagy-associated proteins in EVs upon lysosomal inhibition 

[183]. This evidence further supports EV secretion to be utilized as a compensatory man-

ner for cellular waste disposal. Ironically, cellular waste disposed of in such a manner 

may be taken up by neighbouring neurons, therefore contributing to the propagation of 

the disease phenotype. Future research should thus specifically address the relevance 

of the autophagolysosomal SNARE protein SNAP29 for cell-to-cell transmission of α-

Syn aggregates.  

In summary, these observations indicate a “crosstalk” between the autophagy-lysosome 

pathway and EV release. Nevertheless, because of the complexity of the secretion pro-

cess, additional considerations need to be aware of when applying this model. For in-

stance, when it comes to IL-1β secretion, evidence indicated LC3B-positive IL-1β carrier 

vesicles may directly fuse with the plasma membrane, since functional MVBs are needed 

in this process [184], but the autophagosome–lysosome fusion is dispensable [185]. Fur-

ther in-depth studies are therefore required, in particular in the context of α-Syn-associ-

ated neurodegenerative conditions, where autophagy and EV release appear to be like-

wise intimately linked.  
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5. Summary 

In the present work, we investigated the effect of α-Syn overexpression on autophagy in 

cultured human dopaminergic neurons. We found α-Syn overexpression to impair au-

tophagy turnover by attenuating the fusion of autophagosomes with lysosomes in these 

cells. Mechanistically, α-Syn overexpression inhibited autophagolysosome fusion by in-

teracting with and by decreasing the abundance of SNAP29, a key member of the 

SNARE complex that mediates the fusion of intracellular vesicular compartments. Be-

sides, we found that normalizing SNAP29 attenuates the autophagy defect and rescues 

cells from α-Syn toxicity. Furthermore, our results suggest a cross talk between impaired 

autophagy turnover and increased EVs release, suggesting a possible mode that accu-

mulated α-Syn promotes the trans-neuronal spreading of its toxic species, which may be 

involved in the progression of PD. 

In addition to investigating cultured cells, we studied SNAP29 protein levels in postmor-

tem brain tissue from cases with different stages of PD. Notably, we found SNAP29 to 

be likewise lost in neuromelanin-positive SNc neurons of postmortem brain tissue from 

cases that had LBP, thus demonstrating the validity of our findings in the diseased hu-

man CNS. In summary, we therefore believe that our results reveal a novel and previ-

ously unknown interaction between α-Syn and intracellular SNARE proteins and charac-

terize the consequences of such an interaction for autophagy in dopaminergic neurons. 
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Appendix A: Cell Culture Materials and Regents 

Material Cat. Num. Supplier 

Thermo Scientific™ Nunc™ EasYFlask™ Cell Culture Flasks 
Thermo Fisher 

Scientific 
Nunc EasYFlask 75cm2 10364131 

Nunc EasYFlask 25cm2 12034917 

Thermo Scientific™ Nunc™ Cell-Culture Treated Multidishes  

Thermo Fisher 
Scientific 

6-Well Cell Culture Dish 10119831 

12-Well Cell Culture Dish 10098870 

24-Well Cell Culture Dish 10604903 

48-Well Cell Culture Dish 10644901 

100mm Cell Culture Dish 10508921 

Stericup Quick Release-GP Sterile Vacuum Filtration System 

Millipore Stericup-GP 250mL S2GPU02RE 

Stericup-GP 500mL S2GPU05RE 

Poly-L-ornithine solution P4957 Sigma-Aldrich 

Bovine fibronectin 1030-FN Bio-Techne 

Dulbecco’s Modified Eagle’s Medium/Nutrient  
Mixture F-12 Ham (DMEM/F-12) 

D8062 Sigma-Aldrich 

N-2 Supplement (100X) 17502048 
Thermo Fisher 

Scientific 

Recombinant Human FGF-basic (154 a.a.) 100-18B PeproTech 

Tetracycline hydrochloride T7660 Sigma-Aldrich 

N6,2′-O-Dibutyryladenosine 3′,5′-cyclic monophos-
phate sodium salt (Dibutyryl cyclic-AMP) 

D0627 Sigma-Aldrich 

Recombinant Human GDNF Protein 212-GD Bio-Techne 

Dulbecco's phosphate-buffered saline (DPBS),  
no calcium, no magnesium 

14190169 
Thermo Fisher 

Scientific 

Fetal Bovine Serum (FBS/FCS) F9665 Sigma-Aldrich 

Trypsin-EDTA solution T3924 Sigma-Aldrich 

Trypan Blue solution T8154 Sigma-Aldrich 

Bafilomycin A1 B1793 Sigma-Aldrich 

Rapamycin R0395 Sigma-Aldrich 

Premo™ Autophagy Tandem Sensor  
RFP-GFP-LC3B Kit 

P36239 
Thermo Fisher 

Scientific 
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Appendix B: Buffers and Solutions 

Buffer Components Supplier (Cat. Num) 

RIPA Buffer 

25 mM Tris Roth (4855.2) 

150 mM NaCl Sigma (S9888) 

0.1% (w/v) SDS Roth (2326.2) 

0.5% (w/v) sodium deoxycholate Sigma (D6750) 

1% (v/v) Triton X-100 Sigma (93443) 

pH 7.4   

Tris-Glycine Run-
ning Buffer 

25 mM Tris Roth (4855.2) 

192 mM Glycine Roth (3908.3) 

0.1% (w/v) SDS Roth (2326.2) 

pH 8.3   

Transfer Buffer 

25 mM Tris Roth (4855.2) 

192 mM Glycine Roth (3908.3) 

pH 8.3   

Tris-buffered sa-
line with Tween 
20 (TBS-T) 

10 mM Tris Roth (4855.2) 

137 mM NaCl Sigma (S9888) 

0.05% (v/v) Tween-20 Sigma (P1379) 

pH 7.3   

Stripping Buffer 

62.5 mM Tris-HCL Sigma (T3253) 

2% (w/v) SDS Roth (2326.2) 

pH 6.8  

Add 0.8% (v/v) ß-mercaptoethanol 
before use 

Sigma (M6250) 

Phosphate buff-
ered saline (PBS) 

8mM Na2HPO4  Roth (P030.2) 

1.5mM KH2PO4  Roth (3904.1) 

137mM NaCl   Sigma (S9888) 

2.7mM KCl   Roth (6781.1) 

pH 7.4   

TE Buffer 

50 mM Tris Roth (4855.2) 

1 mM EDTA Roth (8040.1) 

0.5% (v/v) Triton X-100 Sigma (93443) 

pH 8.0   

Formaldehyde 
solution 

4% (w/v) Paraformaldehyde (For 
autophagy reporter assay) 

Roth (0335.4) 

1% (w/v) Paraformaldehyde (For 
co-IP assay) 

Roth (0335.4) 

Dissolve in DPBS Thermo Fisher (14190169) 
pH 6.9   

Glycine solution 
1.25M Glycine Roth (3908.3) 

Filter sterilize (0.22 µm)   
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Appendix C: Antibodies 

Antibody Cat. No. Application Dilution Supplier 

AKT 9272S WB 1:1000 Cell Signaling Technology 

Alix (E6P9B) 92880S WB 1:500 Cell Signaling Technology 

Alpha-synuclein (14H2L1) 701085 
WB for co-

IP 
1:500 Thermo Fisher Scientific 

Alpha-synuclein (C-20) sc-7011-R WB 1:1000 Santa Cruz 

CD81 (B-11) sc-166029 WB 1:500 Santa Cruz 

Flotillin-1 (D2V7J) 18634S WB 1:500 Cell Signaling Technology 

GAPDH (6C5) sc-32233 WB 1:1000 Santa Cruz 

LC3B (D11) 3868S WB 1:1000 Cell Signaling Technology 

Phospho-Akt (Ser473) 9271S WB 1:1000 Cell Signaling Technology 

Phospho-S6 Ribosomal 
Protein Ser240/244 

2215S WB 1:1000 Cell Signaling Technology 

S6 Ribosomal Protein 
(5G10) 

2217S WB 1:1000 Cell Signaling Technology 

SNAP29 MAB7869 WB 1:250 R&D Systems 

SNAP29 MAB7869 IHC 1:50 R&D Systems 

SNAP29 [EPR9198(2)] ab181151 co-IP 1:50 Abcam 

SQSTM1/p62 (D5L7G) 88588S WB 1:500 Cell Signaling Technology 

Syntaxin 17 (D3D7H) 31261S WB 1:1000 Cell Signaling Technology 

VAMP8 13060S WB 1:1000 Cell Signaling Technology 

YKT6 PA5-56565 WB 1:1000 Thermo Fisher Scientific 

Horse Anti-Mouse IgG An-
tibody (H+L), Biotinylated 

Provided in 
PK-4002 

IHC 1:200 Vector 

Peroxidase Labeled Goat 
anti-Mouse IgG H+L 

PI-2000 WB 1:5000 Vector 

Peroxidase Labeled Goat 
anti-Rabbit IgG H&L 

PI-1000 WB 1:5000 Vector 
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Appendix D: PCR Primers 

Gene Primer Sequence 5' to 3' 

SNAP29 
Synaptosomal-asso-

ciated protein, 
29kDa 

Forward Primer TCATGTACGAGTCCGAGAAGG 

Reverse Primer CCCAAACACGCTCTTAATGCTAT 

RPL22 
Ribosomal protein 

L22 

Forward Primer CACGAAGGAGGAGTGACTGG 

Reverse Primer TGTGGCACACCACTGACATT 

GPBP1 
GC-rich promotor 
binding protein 1 

Forward Primer ATCATTCGGTCTTCAACCTTCC 

Reverse Primer ATCCTCAGTTAAGGGAGCACA 

GAPDH 
Glyceraldehyde-3-

phosphate dehydro-
genase 

Forward Primer TCGGAGTCAACGGATTTGGT 

Reverse Primer CCTGGAAGATGGTGATGGGA 

ACTB Actin beta 
Forward Primer TCACCAACTGGGACGACATG 

Reverse Primer GAGGCGTACAGGGATAGCAC 
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Appendix E: Information of Human Brain Samples 

  
Case 

# 
Braak 
Stage 

Age at Dis-
ease Onset 

(yrs.) 

Clinical 
Symp-
toms 

Age at 
Death 
(yrs.) 

Sex 

Tissue 
Fixation 

Time 
(days) 

LBD 

1 5 unknown 
PD, D, 

Dep 
82 f 83 

3 6 unknown PD 86 f 71 

4 3 n.a. - 54 m 83 

5 3 unknown PD 58 m 103 

7 6 65 PD 82 m 42 

8 6 49 PD, D 69 m 68 

10 6 
54 (PD),  
69 (D) 

PD, D 74 m 100 

11 6 73 PD 82 f 113 

32 1 n.a. RLS 90 f 377 

33 1 n.a. RLS 95 f 352 

34 1 n.a. - 65 f 14 

Control 

14 0 n.a. - 70 m 68 

15 0 n.a. - 60 f 47 

16 0 n.a. - 59 f 110 

18 0 n.a. - 60 m 30 

19 0 n.a. - 82 m 63 

20 0 n.a. - 73 f 111 

 
PD: Parkinson's disease; D: Dementia; Dep: Depression; RLS: Restless Legs Syn-
drome, -: no neurological or psychiatric symptoms; n.a. = not applicable.  
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