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Chapter 1

Introduction

1.1 General Overview

German dialectology, i.e., the investigation of German varieties (which constitute a re-
gional stratification of linguistic differences), has a long and rich tradition. The systematic
research of dialects dates back to the large-scale investigation conducted by Wenker at
the end of the 19th century (e.g., Schmidt et al., 2011, p. 85 and Lameli, 2008b, p. 256).
Despite the restrictions of the time, Wenker’s coverage of the German-speaking area at
that time (i.e., the German Reich at the end of the 19th century) was an outstanding
achievement and his research remains an invaluable resource for the investigation of Ger-
man dialects. In order to achieve such wide-spread and geographically dense coverage of
the German-speaking area, Wenker sent out 2200 questionnaires, to local schools spread
over the German-speaking region, of which 1500 were filled out and sent back (Schmidt
et al., 2011, p. 101). Teachers were asked to (mostly orthographically) transcribe certain
sentences as they would pronounce it using their own respective vernacular or that of their
pupils if the teachers did not originate from the respective survey location. However, this
indirect gathering of data has been criticized, amongst other things, for the limited charac-
ter set available for transcription (Schmidt et al., 2011, pp. 71, 98–100, and 109; Barbour
et al., 1990, pp. 63–64).

The way in which data is collected for investigating regional variations has changed
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since then. It has evolved from an indirect written interrogation of informants (as, e.g.,
applied by Wenker), to a direct one, in which the interviewer transcribes what is being said
while listening to the informant, to a workflow in which informants are recorded during
an interview, which is then transcribed based on the recording. This separation of record-
ing and annotation was made possible by technological advancements in the information
technology field and, more specifically, recording devices.

The linguistic variation encountered is often visualized using maps. Technological ad-
vancements have also changed the way in which maps are generated, as today it is no longer
necessary to painstakingly draw maps by hand. So whereas, e.g., Wrede et al. (1927–1956)
had to spend vast amounts of time drawing maps manually, nowadays it is possible to use
specialized software such as REDE (Schmidt et al., 2008) or Gabmap (Nerbonne et al.,
2010) – allowing better visualization and easing potential changes. This, in turn, mad it
much easier to create dialectological maps (Goebl, 2010).

The regional difference of a certain linguistic variable is often visualized by a line
separating two differing regions on a map. This line is called an isogloss (Chambers et
al., 1998, p. 89). An example of a well-known isogloss is the Benrath line, which divides
Germany into areas where Low German and areas where High German is spoken (e.g.,
marking the regional position between the two pronunciation variants for the German
word <Apfel> as [Papf@l] or [Pap@l]).

Many classical dialectological studies, following the tradition of Wrede et al. (1927–
1956), rely solely on auditorily-based transcription of a speech signal. Unfortunately, each
transcription process, whether it be done while listening to the informant or based on the
recording, has two main problems that are hard to overcome. First, a transcriber, no
matter how well trained he or she is, will always perceive utterances subjectively and will
compensate for small and sudden variations in speech (e.g., compensation for coarticula-
tion, Johnson, 2011, pp. 120–145). This compensation effect is magnified by the fact that
field workers are often well-versed in certain dialects, or are even trained dialecticians and,
therefore, are inevitably biased. One example of a problem caused by the perception of
subjective annotators is an effect called field worker isoglosses (Mathussek, 2016). These
are apparent changes that occur between two sites. However, these changes do not stem
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from a systematic difference in the language, but are instead due to systematic errors in
field workers transcriptions (Mathussek, 2016). Second, depending on how detailed and
complete the transcription is (phones, words, or whole phrases), it can be an extremely
time consuming and, therefore, expensive task.

A field of research that combines (mostly) auditorily based transcriptions and infor-
mation technology is called dialectometry. It not only relies on computational methods
for visualization, but also uses them for an automatic grouping of dialects. The term di-
alectometry was coined by Séguy (1973) and dialectometric methods, as stated by Goebl
(2010), use numerical methods to evaluate and cartograph regional variation. Goebl (2010)
further distinguishes between three different schools of dialectometry: the Salzburg school,
the Groningen school, and the Athens (USA) school of dialectometry. All have in common
that they use some form of distance metric (e.g., Levenshtein distance as in Nerbonne et al.,
2013 or a relative similarity between available attributes as in Bauer, 2004) to characterize
the distance between dialects. These metrics are essential when it comes to transforming
a given transcript of words to continuous values describing different dialects. An impor-
tant basic assumption of most dialectometric studies is that linguistic atlases contain all
necessary information about geographic distribution of language variation (Goebl, 2010).

The majority of dialectometric studies is, as in traditional dialectology, based on man-
ually created auditory transcriptions. Nevertheless, some studies have additionally incor-
porated acoustic features, such as formants1 (Heeringa et al., 2003; Heeringa et al., 2009;
Grieve et al., 2013), bark-scaled filter-banks (Heeringa et al., 2003), and the Zero Crossing
Rate (ZCR; Heeringa et al., 2009). These acoustic features are insofar preferable as they
are objective measures and can be automatically extracted from a speech signal. They are
not only reproducible, i.e., extracting these features from the same speech signal several
times will always lead to identical feature values, but they are also able to capture tiny
differences that listeners may compensate for, e.g., fronted back vowels in fronting contexts
(e.g. nutzen) are still perceived as back vowels (Harrington et al., 2008). These features
are also reproducible even if obtained by an unreliable extraction method (i.e., one that

1Energy peaks in a specific frequency band depending on the resonances in the respective vocal tract
shape (e.g., through a certain tongue position).
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frequently produces errors), e.g., like for formants. A study relating a large set of acous-
tic features extracted from speech to regional variation has, to my knowledge, not been
conducted before.

The extraction of acoustic features, however, is also linked to a given phonetic tran-
scription, which may again be, if created manually, also subjective and time consuming.
Fortunately, alignment methods exist that are able to generate phonetic transcriptions
based on either an orthographic transcription or a standard pronunciation (cf. Oesch et al.,
2017 for an evaluation of several methods). Methods based on orthographic transcriptions
have the advantage that such an orthographic transcription, necessary for the alignment,
is easier to obtain, as at least for a language like Standard German, a widely accepted
orthographic standard exists. It can be assumed that if multiple transcribers work on the
same signal, these orthographic transcriptions will feature less variation, even if conducted
by untrained individuals, than narrow phonetic transcriptions do. A further advantage of
orthographic transcription compared to fine-phonetic transcription is that it is less time
consuming (based on experience, an orthographic transcription can be completed 10 to 20
times faster than a phonetic transcription Draxler et al., personal communication, 2016).

In the future, it will be even more important to reduce the time it takes to tran-
scribe a recording or a whole corpus, due to the widespread availability of Information
and Communication Technology, including the internet and recording devices. This means
that gathering, sharing, and access to speech material will become even easier. Two such
projects that use modern technology to collect dialect data by making recordings using
smartphones are Scherrer et al. (2012) and Leemann et al. (2018).

Dialect and regional varieties/variants/variation are used as synonyms in this thesis
and describe regional phonetic and phonological deviations to the standard (as defined
in the Duden Online 2018), as in contrast to, e.g., sociophonetic variation. This broad
and lax definition is sufficient for the studies presented in this thesis and adhering to this
definition enables the circumnavigation of trying to define a term for which a short and
precise definition has eluded researchers from the start. Barbour et al. (1990, pp. 55–57)
state that “In practice, a more pragmatic attitude [to the definition of dialects] tends to
be taken, which is that ‘a dialect is what the researcher wants it to be’[...]”. This describes
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the approach taken here. Generally, the definitions agree on the presence of some kind of
deviation from the standard correlating with geography. However, they are often not clear
on how much deviation, and what kind of deviation, is necessary to constitute a dialect (for
more elaborate definitions of dialects, e.g., cf. Barbour et al., 1990, pp. 136–146; Löffler,
2003, pp. 3–9; Schmidt et al., 2011, pp. 53–59).

This thesis proposes a workflow that allows the objective evaluation of regional variation
based on predictive models often applied in Machine Learning (ML) using acoustic features
extracted from speech signals.

This process consists of a pre-processing step executed during the automatic segmentation
and labeling (S&L) that spots erroneous segments and allows the dataset to be limited to
presumably correct parts, as well as an evaluation of the importance of acoustic features
by training a predictive model based on speech acoustics. The evaluations are based on
the German Today (GT) corpus (Brinckmann et al., 2008) in Chapters 2 and 3, and on the
Kiel (Kohler, 1996; John, 2012) and the PhonDat2 corpus (The ASR Consortium, 1995)
in Chapter 4.

1.2 Thesis Contributions and Structure

The contribution of this thesis is five-fold with regards to the above-mentioned steps for
pre-processing and evaluating regional language variation in speech. It addresses the fol-
lowing research questions:

• To what extent is automatic S&L suitable for research on regional variation (c.f.
Chapter 2)?
• Can the quality of an automatically generated S&L of speech be assessed automati-

cally (c.f. Chapter 4)?
• Is it possible to estimate a speaker’s origin based on a short speech sample based on

ML methods using only acoustic features (c.f. Chapter 3)?
• Can the acoustic features that enable such an estimation be related to well-known

regional characteristics based on output from ML methods (c.f. Chapter 3)?



6 1. Introduction

• Is it possible to efficiently visualize acoustic features which describe regional variation
in the geographic space (c.f. Chapter 3)?

In Chapter 2 the effect of manual correction of automatic S&L is evaluated by means
of a well-studied dialect phenomenon: the Central Bavarian Lenition. In order to test the
effect, an automatic S&L is carried out by the Munich AUtomatic Segmentation System
(MAUS), a method regularly applied to data in phonetic studies (recent examples are
Stevens et al., 2016; Reubold et al., 2017; Llompart et al., 2017; Montaño et al., 2017).
The usual workflow is to automatically align the canonic representation (generated from
the orthographic transcription) to the speech signal and afterward manually correct the
segments of particular interest. Due to the amount of time manual S&L requires, it is of
great interest to see how skipping such a manual correction influences the outcome of the
applied metrics.

Chapter 3 builds on the results of Chapter 2 with regards to the validity of the automatic
S&L. The experiments are concerned with the classification/regression of the speaker
position in the geographic space that is the German-speaking area. Therefore, it is a
predictive rather than a descriptive modeling task of regional variation. This kind of
estimation could be applied in, e.g., Automatic Speech Recognition (ASR) to improve
recognition by an automatic model-selection, one that switches to a model that fits the
speaker’s pronunciation better. To my knowledge, this study is the first to estimate a
speaker origin continuously in the geographic space, as opposed to assigning a categorical
dialect label. As the geolocalization is based on speech acoustics, the predictive approach
shows if and how much information about a speaker’s origin is contained in a speech
sample. Moreover, all three experiments in Chapter 3 attempt to connect the features
to dialect phenomena reported in the traditional dialectology literature. Additionally, as
well as providing estimates on speakers’ origins, a detailed analysis is performed on how
geographic space is divided by features based on an aggregated, high-information dataset.
This part resembles a dialectometric approach, only that in this thesis regional variation is
captured solely by the use of speech acoustics, rather than by auditorily-based transcripts
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(cf., e.g., Nerbonne et al., 2013) and due to the numeric character of acoustic features, no
distance measures have to be applied.

All automatic methods are likely to produce errors. Errors in S&L influence all sub-
sequent steps as a correct phoneme location within the speech signal is paramount for an
analysis that is based on acoustic features. However, human labelers, too, make errors
when creating orthographic transcriptions and, when transcribing dialects, use words that
do not fit the evidence in the signal well. Such an erroneous transcription is likely to lead
to a decrease in the quality of the automatic S&L process, due to a mismatch between
the phonemes to be aligned vs. the content of the speech signal. In Chapter 4, a method
is proposed that incorporates methods and features from the domain of ASR in order to
find exactly those segments that have been either wrongly transcribed or misaligned by
the automatic S&L process.

Chapter 5 summarizes the main findings of this thesis.

Prior to the experimental chapters, the next section introduces the tools used in all
three research chapters.

1.3 Introduction to Relevant Speech Technology

1.3.1 Overview

All three studies rely on two tools: BALLOON, proposed by Reichel (2012), and the Munich
AUtomatic Segmentation System (MAUS), described in Schiel (1999). With the help of
these tools, developed at the Institute of Phonetics and Speech Processing (IPS) at the
Ludwig Maximilian University (LMU) Munich, it is possible to produce an automatic S&L
based on a speech recording and its corresponding orthographic transcription. The first
tool, BALLOON, performs the Grapheme-to-Phoneme (G2P) conversion and the second
tool, MAUS, uses the canonic standard pronunciation form produced by BALLOON and
aligns it to the signal. For more convenient access, these two tools are available via web
interfaces and web services (Kisler et al., 2017). The whole S&L process is summarized
in Fig. 1.1. The way in which MAUS models the signal-text alignment closely resembles
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probability-based ASR models. For this reason, a short introduction to ASR will be given
before the alignment procedure is outlined.

1.3.2 Automatic Speech Recognition (ASR)

An ASR system tries to decode the true word sequence W that a speaker has uttered,
after the speaker has transformed the abstract representation in his or her mind to an
acoustic signal by using his or her vocal tract. This acoustic representation, in the form
of a speech signal, is presented to the ASR system (Jurafsky et al., 2009, pp. 319–417).
From this, certain acoustic features are extracted by the system which are then used to
create hypotheses of what the underlying, truly realized utterance W was. From these
hypotheses, finally, the most probable hypothesis is selected, by which the system tries to
find the word sequence Ŵ , which is identical to the originally uttered word sequence W
(Pfister et al., 2008, pp. 327–328).

More formally this means based on the feature vector sequence X = x1x2...xn the ASR
system attempts to find the most likely word sequence Ŵ = w1w2...wm from all existing
words from the available vocabulary V :

Ŵ = argmax
W∈V

P (W |X) (1.1)

This is called the Maximum a-posteriori (MAP) decision rule. Equation 1.1 can be
rewritten using Bayes Theorem2 to

Ŵ = argmax
W∈V

P (X|W ) · P (W )
P (X) (1.2)

in which P (X|W ) denotes the probability of the acoustic observation X assuming that
W is the underlying word sequence, P (W ) denotes the probability of the word sequenceW
according to the language model (meaning an utterance-independent a-priori information
about a certain language), and P (X) denotes the probability of the acoustic observation
X. As the term P (X) is constant across an utterance W (consisting of i words w) and,

2P (A|B) = P (B|A)P (A)
P (B)
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furthermore, can only be approximated, in many ASR systems this term is often dropped
without a change in recognition accuracy. This leads to

Ŵ = argmax
W∈V

P (X|W ) · P (W ) (1.3)

By dropping P (X) in Equation 1.3, it does not describe the a-posteriori probability
anymore, but rather the joint probability P (X,W ) of the acoustic observation X and the
word sequence W (Jurafsky et al., 2009, p. 374). Nonetheless, throughout this thesis, the
term a-posteriori probability is used, if not stated otherwise.

The acoustic observations X are often available in the form of a 39-dimensional feature
space, most often made up of the first 12 Mel-Frequency Cepstral Coefficients (MFCCs),
the signal energy, and their ∆ (velocity, slope) and ∆∆ (acceleration, curvature; e.g.,
Jurafsky et al., 2009, p. 336).

Using this information it is possible to generate a word lattice, a compact representation
of the alternative ASR hypotheses (Woodland et al., 1998). In turn the word lattice is used
by the Viterbi decoder (Viterbi, 1967) to estimate the most likely sequence of words Ŵ in
the signal.

1.3.3 Automatic Segmentation and Labeling

Grapheme-to-phoneme conversion with BALLOON

The first step in the alignment procedure is a Grapheme-to-Phoneme (G2P) conversion
achieved by using BALLOON (Reichel, 2012). BALLOON is trained using a large pro-
nunciation lexicon and learns how to transform the standard orthographic form of a given
language to its phonological, canonical (standard pronunciation) form (cf. the upper left
of Fig. 1.1). It learns how to transform differently sized contexts to achieve good trans-
formation accuracy for known or almost known grapheme sequences by C4.5 Decision
Trees (DTs) (Quinlan, 1993). When transforming an input sequence, it starts by testing
whether the word appears in the lexicon. If it can not be found, it tries to transform the
input while iteratively decrementing the phoneme context until a valid conversion can be
performed. By using this strategy unseen words can also be converted to a phonological
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form, which then is based on the statistical model for the selected language 3. This strategy
is equivalent to n-gram backoff modes in ASR systems. If the conversion is not possible
based on a phoneme context, the conversion is performed in single phoneme steps. This
ensures that a conversion is always possible.

As just mentioned, BALLOON is based on data from a language-specific pronunciation
lexicon. This means that the rules that are used to perform the conversion are data-driven.
Two examples of this type of conversion, taken from Kisler et al. (2019), are the conversion
of the two sequences <Abend> and <endba>. Based on the entry in the German lexicon,
<Abend> will be correctly transformed to /Pa:b@nt/. The non-word sequence <endba>,
however, does not have an entry in the German pronunciation lexicon. The conversion
is still possible by the aforementioned reduction in context and results in /PEntba/. In
this case, the phonological rules of the German language are sufficiently captured by the
material in the pronunciation lexicon (one example is the general realization of word-initial
vowels with a glottal stop). Therefore, the conversion of this logatome to its canonic form
results in a phoneme sequence that a German native speaker would expect.

Segmentation and Labeling with MAUS

The phonological transcript created by BALLOON is used in MAUS to generate a proba-
bility graph for all possible pronunciations, based on the information from a training corpus
(i.e., all variants that are present in the training data; cf. the upper right of Fig. 1.1). This
graph is subsequently enriched with the prior probabilities extracted from the same train-
ing corpus (Schiel, 2015; cf. the middle of Fig. 1.1). This phonotactic/phonological model
is the equivalent of an ASR systems word lattice.

MAUS’s acoustic model P(X) is based on the features signal energy and 12 MFCCs
coefficients (C1 – C13, i.e., leaving out the first coefficient C0) and their ∆ (slope) and
∆∆ (curvature) features. The above information is used together by the Viterbi decoder
(Viterbi, 1967) that produces the most likely S&L (cf. the bottom of Fig. 1.1). This is

3This means that BALLOON also outputs a standard pronunciation form for logatomes that resembles
the expected pronounciation of a native speaker of that language – if and only if the model is able to
capture all phonological rules.



1.3 Introduction to Relevant Speech Technology 11

performed using the Hidden Markov Model Toolkit (HTK) framework (Young et al., 2002;
for an exact description of the MAUS technique, cf. Schiel, 1999).
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Figure 1.1: Overview of the whole MAUS process aligning the German word “Abend” (evening)
to its corresponding speech signal. The two states start and end are omitted due to space
constraints. p∗ denotes the respective transition probability between the three states in the
HMM that are omitted as well. The forced-alignment (non-adaptive) is an alignment in which
the transition probabilities in the first row of the language model are 1.0 (and in all subsequent
steps).



Chapter 2

On the Validity of Automatically
Segmented Data: an Acoustic
Analysis of the Central Bavarian
Lenition in the German Today
Corpus

This chapter is a translation of the following work accepted for publication in German:

Thomas Kisler and Felicitas Kleber (2019). “Zur Validität automatisch segmentierter
Daten. Eine akustische Analyse der mittelbairischen Lenisierung im Deutsch

Heute-Korpus”. In: Germanistische Linguistik (Marburg). Ed. by Sebastian Kürschner,
Peter O. Müller, and Mechthild Habermann

2.1 Abstract

The main goal of this study was to evaluate the validity of semi-automatically segmented
speech data by analyzing acoustic features primarily related to Central Bavarian lenition
in a set of words taken from Bavarian and Austrian speakers’ map task recordings taken
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from the German Today (GT) corpus. A comparison between automatically segmented
and manually corrected segment boundaries in a subset of these data shows the same
distribution of diatopic and diachronic variation, although the manually corrected data,
unsurprisingly, exhibits better separation between, and less variance within, distributions.
Our data indicate that potential effects, if anything, tend to be masked rather than exag-
gerated. Acoustic analyses based on automatically segmented data prove to be a promising,
conservative method that promotes and improves the efficient processing of large linguistic
corpora.

2.2 Introduction

German dialectology has a long and rich tradition when it comes to creating linguistic
atlases of regional variation (e.g., the by now digitally available Wenker-Atlas by Schmidt
et al., 2001; Bayerischer Sprachatlas by Hinderling et al., 1996 – 2014, and many more) that
show the diversity of Germany’s regional varieties. Such dialectological projects are usually
long-term ones as they aim to comprehensively map dialects that diverge in small areas on
the one hand, whilst, on the other, provide a comprehensive linguistic description of these
dialects. To this end, the recording sites have to cover a wide area and be closely-meshed
over the dialect regions of interest. The recording and the subsequent preparation of the
collected data are time-consuming intermediate steps towards an intended data analysis
and the graphical visualization of the data in the form of atlases.

When describing phonological dialect characteristics, auditorily-based transcriptions
traditionally play an important role. In this type of transcription, each phoneme is tran-
scribed on the basis of a symbol inventory (e.g., International Phonetic Alphabet, Teuthon-
ista). This method is also time consuming and requires many annotators, not only to
process all the given data but, ideally, to have all of it labeled independently by several
annotators. This type of multi-person annotation is necessary when attempting to achieve
any kind of objective transcription. Every annotator is a person whose perception is sub-
jective, despite their having undergone phonetic training. Hence, it is possible that two
people, for example, due to different regional backgrounds, produce differing transcrip-
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tions of an identical speech signal (cf. Mathussek, 2016 regarding the problem of field
worker isoglosses). In particular, fine-grained phonetic differences, even if they might oc-
cur systematically, are not always auditorily perceivable and categorizable. However, in
verbal communication (e.g., in word recognition, cf. Hawkins, 2003) these play a linguis-
tically relevant role and are also regarded as a possible cause of diachronic sound change
(Beddor, 2009). Analyzing variation on the acoustic level in comparison to analyzing it
based on auditory transcription, promises greater objectivity. This is because acoustic
parameters are able to capture context-dependent variation for which listeners generally
compensate. However, this method generally cannot be used without the carrying out of
two pre-processing steps: a) an orthographic transcription, i.e., the representation of the
speech signal in standard orthography, and b) a segmentation and labeling (S&L) of the
speech signal, i.e., the dissection of the speech signal into single phonetic segments.

The current study has two goals. First, to show that it is possible to study diatopic
(and diachronic) variation using a strictly acoustic-based analysis. Second, to present
a semi-automatic S&L technique, and to evaluate this method on the basis of the just-
mentioned acoustic analysis. The study aims to show the potentials and limitations of this
time-saving and more replicable and, therefore, more objective, alternative method. In
order to do so, a part of the GT corpus, an already existing, big data collection, was semi-
automatically segmented and labeled. The resulting S&L is subsequently used to analyze
the phonological dialect feature of Central Bavarian lenition. This well studied dialect
feature can be described by the acoustic parameter of duration. Like no other parameter,
the duration depends on the segmentation of the signal and, therefore, is ideally suited for
the evaluation of an automatic S&L.

The remainder of this paper is organized as follows: Sec. 2.3 first describes the data
on which the analysis is based, followed by Sec. 2.4, which introduces the proposed semi-
automated pre-processing. Sec. 2.5 describes the dialect feature complementary length in
Central Bavaria and its measurable occurrence in the GT corpus in more detail. Sec. 2.6
compares the results of a subset of the data, for which an automatic S&L was obtained,
with one that has been manually corrected. Finally, in Sec. 2.7 the pros and cons, as well
as the possibilities and limitations of both methods, are discussed.
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2.3 The German Today Corpus

The GT corpus serves as the basis for the evaluation of the aforementioned phonological
dialect feature. This corpus was compiled as part of the project Gesprochenes Deutsch at
the Institut für deutsche Sprache (IDS) in Mannheim between 2006 and 2009 (Brinckmann
et al., 2008). The goal was a comprehensive survey of diatopic variation in spoken Stan-
dard German considering both read and semi-spontaneous speech. The corpus consists of
recordings of four speakers at over 160 recording sites, comparatively well-spread across
Germany, Austria, and the German-speaking part of Switzerland, as well as a few selected
sites in South Tirol, Liechtenstein, East Belgium, and Luxembourg. The speakers of the
map task (for an explanation see below) were all local secondary school students (Gymna-
sium), aged between 16 and 20. During the selection of informants, an attempt was made
to balance the groups in terms of gender, by recording two male and two female informants
at each recording site. The informants had to originate (i.e., have been born and raised)
from the region of recording, with the same stipulation applying to at least one of their
parents.

The majority of the collected map task data had already been orthographically tran-
scribed by the IDS. This transcription together with the speech signal was fed into the
WebMAUS1 system to create an automatic S&L, which was performed at the Institute of
Phonetics and Speech Processing (IPS) at the LMU Munich. At the point of writing, the
S&L process had been completed for recordings of 640 informants (328 female, 312 male)
from 165 recording sites.2

The analyses conducted in the name of the current study are based on the semi-
spontaneous map task recordings of 87 speakers from Bavaria and Austria. They can
be assigned to the following dialect regions: East Franconian (EF; 23 speakers), West
Central Bavarian (WCB; 22 speakers), and East Central Bavarian (ECB; 42 speakers; cf.
Wiesinger, 1990 for the separation between West and East Central Bavarian). Fig. 2.1

1For a more detailed description please cf. Sec. 2.4.
2Due to technical problems during the pre-processing using WebMAUS – such as, for example, broken

signal files or erroneous transcriptions – not all speakers who originally took part could be taken into
account.



2.3 The German Today Corpus 17

shows the distribution of the recording sites as well as the respective assignment to one
of the three dialect regions. In a map task (Anderson et al., 1991), two different speakers
enter into a dialog with one another without having visual contact. They are provided with
two similar maps that are mostly identical regarding the landmarks3 they feature. On one
of the two maps, a path is drawn from a start to an end point. The task of the speaker
in possession of the map containing the path, is to describe the course of the path to the
other speaker as exactly as possible. The other participant should draw the path on his
or her map (which has no path on it) as accurately as possible, based solely on the other
informant’s description. The speech material uttered in this setting is semi-spontaneous
and consists of multiple realizations, especially with regards to landmarks shown on the
map (in the case of the GT corpus, e.g. Motorrad – motorcycle, Metzger – butcher, Nüsse
– nuts), which part of the map an informant is referring to, and measurements (e.g. Ecke –
corner, Mitte – middle, Zentimeter – centimetre)4. Multiple realizations of the same words
are especially important for the acoustic analysis so as to be able to distinguish between
diatopic and idiosyncratic phonetic variation (for the selection of the target words cf. 2.5).

From this dataset, a subset was extracted that was then manually corrected. This subset
contained the same speech material, but only consisted of recordings of 56 speakers (16 East
Franconian (EF), 18 West Central Bavarian (WCB), and 22 East Central Bavarian (ECB),
cf. Fig. 2.1). A comparison of the automatically created and manually corrected segment
boundaries will be performed in Sec. 2.6.2.

3Landmarks in the GT corpus are pictures selected based on linguistic considerations, but do not have
to possess geographic meaning.

4The speech material is not perfectly suited to the evaluation, as it also includes compounds, which
are not ideal for comparison. A manual evaluation of stress has shown that this has no influence on the
results (for more details, c.f., Sec. 2.6.2). An argument in favor of using this corpus is the fact that it was
not specifically designed for the current study, which means that phenomena that can be observed in this
general purpose corpus seem to be stable phenomena in spontaneous speech.
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Figure 2.1: Recording sites of the speakers comprising the subcorpus including the assignment
to their respective dialect. Locations marked with * indicate that the phonemes’ segment
boundaries also exist in a manually corrected version.
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2.4 Automatic Processing of Speech Signals

Fig. 2.2 presents an overview of the proposed workflow. In the following, all necessary steps
that are required to obtain segment boundaries based on a semi-automatic S&L process
(in this context also called “labeling” or “annotation”) of a particular speech signal5 are
described in more detail. These steps are 1) the manual creation of an orthographic
transcription, 2) the automatic S&L using WebMAUS6, and 3) the acoustic analysis based
on the S&L in emuR (Winkelmann et al., 2017). Optionally, it is possible to correct the
automatically generated S&L in an intermediate step manually. This kind of correction is
described in Sec. 2.6 using the EMU-webApp (Winkelmann et al., 2017). We have omitted
this step for the data analysis described in Sec. 2.5.

The term semi-automatic is used, as step 1) the orthographic transcription, usually has
to be done manually when dealing with recordings of spontaneous speech. This manual
step is necessary, as to our knowledge at the time of writing, no sufficiently good, freely
available speech recognition system for German speech exists, especially with regards to
regional variants. The subsequent S&L process using WebMAUS, on the other hand, is
performed fully automatically (Kisler et al., 2017)7.

WebMAUS initially performs a Grapheme-to-Phoneme (G2P) conversion using the soft-
ware tool BALLOON (Reichel, 2012), in which a given orthographic transcription is trans-
lated into a SAM-PA8 transcript of the canonic form (standard pronunciation; cf. Fig. 2.3).
By using a digital pronunciation dictionary (here lexicon) and trained Decision Trees (DTs)

5Here a speech signal might be a recording of several speaking styles as, for example, read speech of
word lists or texts, as well as spontaneous speech.

6WebMAUS is the name of a web interface, that allows easy access to the two tools BALLOON
(grapheme to phoneme conversion) and the Munich AUtomatic Segmentation System (MAUS); both
will be explained in greater detail in the following section. The combination of BALLOON and MAUS
(together with other tools as, e.g., a syllabification) is also available as a part of the Pipeline service (cf.
Kisler et al., 2017).

7Therefore, in the context of the datasets based on a S&L created by WebMAUS we will use the term
automatic.

8The Speech Assessment Methods Phonetic Alphabet (SAM-PA) is a machine-readable phonetic al-
phabet (cf. Wells, 1997).
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Figure 2.2: Processing steps of the introduced method based on an existing speech signal
(white), divided into manual steps (yellow), automatic steps (green), and results of the respec-
tive step (gray). The optional step “correction” is outlined in dashes.
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(Quinlan, 1993) graphemes are converted to phonemes depending on their context. This
process starts by using a many-phonemes-covering context, which is successively reduced
if necessary (in case conversion is not possible in greater contexts) until a conversion can
be performed (Kisler et al., 2017). Therefore, this method also works with words that are
unknown to the system (e.g. logatomes). The implemented multi-level process performs
an initial check to see if a variant exists in the lexicon that can directly be used to perform
the conversion. If the current word is unknown, the system tries to perform the conversion
by successively shrinking the grapheme contexts (e.g., <e> in the logatome klaben will be
translated to /@/ based on its context). If the conversion cannot be performed using a
context (if there are phonemes that have not been observed in the current contexts before)
the conversion is performed in single phoneme steps. The rules for the conversion of these
types of sequences were extracted from the lexicon during training. Therefore, the rules
are data-driven.

Two examples of this process are the conversion of the two sequences of <Abend>
and <endba>. <Abend>, an existing German word, will be correctly transformed to
/Pa:b@nt/, based on an entry in the lexicon. The non-existing sequence <endba>, however,
does not have an entry in the lexicon. By reducing the context of the grapheme sequence,
the conversion is still possible and results in /PEntba/. This conversion is possible as the
phonological rules of the German language are sufficiently captured by the material in the
lexicon (e.g., word-initial vowels are generally realized with a glottal stop).

The transcription generated by BALLOON is then given to MAUS. By using the
transcript in combination with rules that have been extracted from a training corpus and
its manually segmented data (cf. Kipp et al., 1997), MAUS generates a graph containing all
possible alternative pronunciation variants. For the canonic form /Pa:b@nt/ the following
pronunciation variants are generated: /Pa:b@nt/, /Pa:mt/, /Pa:bmt/, and /Pa:bnt/. Using
the statistical information from training data, MAUS enriches the graph containing the
different pronunciation variants by the transition probabilities of the respective phoneme
sequence (cf. upper right in Fig. 2.3). This process is carried out as the most likely phone-
sequence does not always correspond to the canonic form (which is, however, true in the
current example).
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In the last step, the lexical-phonological information from the transcript is combined
with the acoustic features extracted from the speech signal. MAUS uses the Mel-Frequency
Cepstral Coefficients (MFCCs) and signal energy, features that are often applied in speech
technology (for more information on the feature extraction in MAUS, cf. Schiel, 1999). By
using the Viterbi algorithm (Viterbi, 1967), the posterior probabilities of the most likely
pronunciation variant and according segment boundaries can be estimated. In this step,
each phoneme is assigned a respective signal section (segmentation) and a SAM-PA symbol
that represents it (labeling). Based on the internal modeling of phonemes, the duration of
any segment is at least 30 ms and can only be incremented in 10 ms steps (Schiel, 1999).

The just described method is called the adaptive MAUS alignment, as the most likely
pronunciation variant uttered is aligned to the speech signal. In the case of the example
word <Abend> this could be, for example, pronounced as /Pa:mt/. However, it is possible
and sometimes beneficial to prevent MAUS from considering pronunciation variants. This
mode is called forced-alignment. When using this mode the S&L process is solely based
on the canonic form (i.e., in our example: /Pa:b@nt/), regardless of whether the evidence
in the speech signal supports a different pronunciation variant or not (cf. the bottom in
Fig. 2.3). The adaptive MAUS alignment generally improves the quality of the resulting
S&L9, since in spontaneous speech especially, pronunciation differs from the standard form.
These deviations from the norm often occur as reductions and assimilations (e.g., [ham]
instead of [ha:b@n]). In the case of a forced-alignment of the canonic form, each phoneme
present in this form needs to be assigned to a part of the signal, in which each phoneme
has a minimum duration as mentioned before. Forcing the segmentation of phonemes
that are not present in the signal, inevitably leads to a subsequent displacement of all
following segment boundaries (and hence a wrong alignment). For the automatic S&L
process of the semi-spontaneous data in the GT corpus, we therefore used the adaptive
MAUS alignment.10

9As an example, forced-alignment is more appropriate in laboratory speech where a tendency to hyper-
articulation can be observed and realizations closer to canonic forms are more likely.

10A comparison with an experimentally executed forced-alignment of the same data resulted in only
small differences in the S&L of the target words.
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Different S&L output formats can be selected in WebMAUS (e.g., TextGrid, emuDB,
etc.). The analyses of the current study are based on the emuDB format, which can be
processed by the EMU Speech Database Management System (EMU-SDMS, short EMU;
cf. Fig. 2.2). In this format phonemes and phoneme sequences, as well as their hierarchical
relationships are explicitly modeled11 and connected to the segment boundaries.

The EMU system allows complex queries of the S&L information (e.g., the combination
of a segmental and suprasegmental level) within a corpus to be performed. Such queries
are made available by a component of the EMU system, the emuR software package writ-
ten for the R programming environment12 called emuR. In this environment, a multitude
of acoustic analyses can be carried out over specified time intervals (i.e., phonemes and
phoneme sequences).

2.5 Complementary Length in the Varieties of Cen-

tral Bavaria

The phonological dialect feature that is used as a showcase in the current analyses is that
of Central Bavarian Lenition. In Standard German, both vowel length13 and consonant
strength (also voicing or fortis/lenis contrast) build phonemic oppositions and are freely

11Explicit modeling means that an unambiguous mapping of segments of different hierarchical levels is
created via links (in contrast to other formats such as Praat’s TextGrid, where this type of mapping can
only be done implicitly via timestamps). This means that, for example, the syllable [ha] in <haben> is
explicitly connected to the phonemes /h/ and /a/. For reasons of data consistency and from an information
theoretical point of view, including the fact that this explicit modeling results in the possibility to check
the well-formedness of the file format itself, this modeling deserves special attention and recognition.

12R is a free programming language that was originally developed for statistical analyses (R Core Team,
2017). Its functionality can be extended by packages that can be installed into the environment. This
leads to a vast package infrastructure that enables the user to perform a multitude of tasks within R,
including, but not limited, to speech database analyses.

13When investigating the phonetic parameter duration, we also use the term vowel length for phonological
opposition. This is especially important as the term quantity can, in many cases, be assumed to refer to
the primary feature (cf. Becker, 1998; Wiese, 2000).
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combinable14. Examples of this free combination are Mieder /mi:d5/, Mieter /mi:t5/,
Mitte /mIt@/, and Widder /vId5/. In Central Bavarian, not all combinations are possible,
as short vowels only occur in front of fortis plosives /p, t, k/ and long vowels only in
front of lenis plosives /b, d, g/. Many dialectologists (e.g., Wiesinger, 1990; Scheutz, 1983;
Kufner, 1964) regard vowel length to be allophonic as it can be predicted on the basis of the
underlying consonant strength of the following obstruent. Bannert (1976), on the other
hand, postulates that in Central Bavarian complementary length is a prosodic feature,
characterized by a specific vowel-consonant duration ratio.

Phonetic analyses support the model of a duration contrast in consonants in Cen-
tral Bavarian Dialects (regardless whether complementary length or phonemic consonant
length is being referred to, cf. Seiler, 2005), as Bavarian speakers generally lengthen their
consonants (i.e., not only plosives but also sonorants) after short vowels (Kleber, 2017).
That being said, in Standard German the actual segment duration contributes not only
to a distinction between short and long vowels (Ramers, 1988)15, but also significantly to
a fortis/lenis distinction. Lenis plosives have shorter closure phases and are not, or only
minimally, aspirated; fortis plosives, in turn, have longer closure phases and the follow-
ing aspiration additionally contributes to a longer total duration when compared to lenis
plosives.

According to Kohler (1979) however, it is not the consonant or closure length alone
that captures the Standard German fortis/lenis contrast, but rather a combination of
vowel and closure duration, which is called V/(V+C) ratio. V corresponds to the vowel
length, C to the closure duration of the postvocalic plosive, and V+C to the total duration.
The values of V+C are approximately the same regardless of the underlying consonant

14In this case they can only theoretically be combined without restrictions. Generally, a tendency can
be observed towards a complementary distribution of long vowels and lenis plosives on the one hand and
short vowels and fortis plosives on the other – especially in labial and velar plosives (e.g., cf. Kleber et al.,
2010).

15For the sake of completeness, syllable cut (Trubetzkoy, 1939; Vennemann, 1991) should also be men-
tioned here, in which vowel length is defined according to the coupling between vowel and succeeding
consonant. However, this only takes the underlying fortis/lenis opposition into account marginally, which
is the reason why we will not further consider this idea in this context.
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category (Kohler, 1977). In the case of nasally released plosives especially (e.g., in case
of Schwa elision in mieten [mi:tn

"
]) this is the most important acoustic cue. A V/(V+C)

ratio of approximately 80% corresponds to a long vowel preceding a lenis plosive and a
V/(V+C) ratio of approximately 60% to a short vowel preceeding a fortis plosive (Kohler,
1979, p. 332). This acoustic cue also separates short and long vowels in front of fortis
plosives (Braunschweiler, 1997). This cue is not only used in Standard German to produce
(and perceive) the phonological opposition, but also in certain Standard German varieties
(Saxonian, Central Bavarian; Kleber, 2017).

The goal of the analysis performed on the GT data was to investigate, whether the
dialect feature complementary length can be found in data that have been segmented and
labeled automatically. A second goal is to investigate whether this dialectal feature is not
as frequent in the speech of younger speakers as reported by Moosmüller et al. (2014) for
ECB and Kleber (2017) for WCB. This posited latter development might be due to an
ongoing sound change influenced by Standard German. In our analysis, the EF speaker
group corresponds to a study-internal reference group, as they are supposed to exhibit a
different pattern when compared to speakers of ECB and WCB. In this group, we expect,
on the one hand, the realization of the vowel length contrast by vowel duration and, on
the other hand, a general tendency to lenition, occurring independently of vowel length
(Rowley, 1990).

For all three speaker groups (ECB, WCB, and EF as described in Sec. 2.3) we selected
the following ten target words from the map task data for analysis for three vowel-consonant
combinations:

• Ecke /"Ek@/, Mitte /"mIt@/ – i.e., words with a short vowel (V) in front of a fortis
plosive (C:), here and hereafter VC: combinations
• Nägel /"nE:g@l/ – i.e., a long vowel (V:) in front of a lenis plosive (C), in the following

called V:C combinations
• Motorrad /"mo:to:5ra:t/ (sometimes also /mo"to:5ra:t/), and -meter /me:t5/ – i.e.,

V:C: combinations (only realized as part of compounds16 in the map task data Zen-

16Compounds are not ideal for comparison, because word stress in standard pronunciation does not
necessarily need to be on the syllables /me:/ respectively /mo:/ (in contrast to the clearly trochaic words
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timeter, Millimeter)

Each of these words was realized at least 200 times in the recordings selected for this
analysis. The many utterances of the target words promised a reasonably uniform dis-
tribution over the recording sites. Nevertheless, it can be seen in Table 2.1 that for the
selected words in the current study, regional differences exist regarding their frequencies in
the respective dialect areas.

Table 2.1: Distribution of the analyzed words with regards to the speakers’ origin sorted by
type of vowel-plosive combination (Comb.).

Comb. Word EF WCB ECB

V:C:
Millimeter 45 17 146
Motorrad 63 79 87
Zentimeter 247 229 423

VC:
Ecke 84 27 173
Mitte 47 79 132

V:C Nägel(n) 33 50 123

We calculated the aforementioned V/(V+C) ratio for the 2084 words. It is important to
note that in this calculation (and in the remainder of this article) C does not correspond to
the duration of the closure phase, as it has in studies conducted by Kohler, 1977 and Kohler,
197917, but the total plosive duration. The total duration includes both the closure phase
and the aspiration phase. The reason for this was the phoneme-level MAUS alignment, in
which the aspiration belongs to the plosive. This combination leads to a generally higher
portion of the consonant length in the V/(V+C) ratio in the current study when compared
to studies in which C only describes the closure phase.

Ecke, Mitte, and Nägel, especially in Austrian varieties next to /tsEnti"me:t5/ also /"tsEntime:t5/ is
possible). However, a manual evaluation of stress has shown that this has no influence on the results
(for more details, c.f., Sec. 2.6.2). Additionally, it is possible that a higher syllable count results in a
shortening of the vowel length (Klatt, 1973). This can, in turn, shorten the V/(V+C) ratio, although,
counter evidence has been presented elsewhere (e.g., cf. Crystal et al., 1990).

17In the studies carried out by Kohler (1977) and Kohler (1979), the closure length often corresponded
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Fig. 2.4 shows the V/(V+C) ratio for each of the three speaker groups and the vowel
plosive combinations separately. For the analysis described in this section, the leftmost
boxplot is of relevance (cf. Section 2.6 for a description of the boxplots in the middle and
on the right). This plot shows the V/(V+C) ratio based on the automatic S&L process,
for which three observations can be made.

First, a clear separation in at least two V-C length combinations based on the acoustic
parameter V/(V+C) ratio can be observed that are in keeping with expectations based on
previous studies: the proportional part of the vowel is generally considerably shorter in
words with an underlying short vowel when compared to combinations with phonological
long vowels in WCB and EF speakers (according to the literature, in ECB speakers these
categories collapse, compare for example, Seiler, 2005). This shortening becomes especially
apparent in cases in which a lenis plosive follows a long vowel.

Second, the distribution of the V/(V+C) ratios found in the data are shifted to the
left (over all speaker groups), when compared to the values found in the literature (cf. the
vertical lines in Fig. 2.4; the values for V:C: and V:C are taken from Kohler, 1979, the
value for VC: from Braunschweiler, 1997). This indicates that the portion of the vowel
in V-C combinations is generally smaller than reported in the literature, which can partly
be related to the fact that C corresponds to the total consonant length, not only to vowel
length duration. The differing results might stem from the fact that the informants are
not speakers of Standard German, but speakers from different dialect regions.

Third, the measured variation of the V/(V+C) ratio of up to 80% of the total duration
(which is visualized by the length of the whiskers of the boxplot) is relatively high. This
could be evidence of possible measurement errors based on erroneous segment boundaries.

As well as the separation into short and long vowels, a series of other observations can
be made based on the left boxplot in Fig. 2.4 that agree with findings in previous studies
(which still hold true despite the high level of variation the data exhibits):

• East Central Bavarian (ECB): the V/(V+C) ratio in words with V:C: combinations
overlap almost entirely with the ratios in words with VC: combinations. This means

to the total consonant duration, since the plosive was often released nasally and was not aspirated.
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that informants from this variety realize both combinations with the same vowel
portion. Together with the considerable longer vowel portion in V/(V+C) ratios,
this confirms the postulated complementary length for Bavarian speakers holds true
for ECB speakers, as long vowels only occur in front of lenis plosives.

Moreover, this data distribution supports models that assume an opposition in phone-
mic consonant length and allophonic vowel length in Bavarian. Phonetically long
fortis plosives, as in words like Motorrad, Zentimeter, and Millimeter, are realized as
such, while the Standard German long vowel is produced as a short vowel in ECB.

• West Central Bavarian (WCB): the data gathered from speakers originating from
WCB show a clear trend towards a contrast between VC: and V:C: combinations
(cf. the significant differences in Table 2.2). Whereas the distribution within ECB
speakers is consistent with the description of this dialect feature in the literature, the
distribution within WCB speakers indicates a change has taken place when it comes
to this feature: long vowels can occur in front of fortis plosives (cf. Moosmüller et al.,
2014; Kleber, 2017), as a three-way contrast between VC:, V:C:, and V:C is clearly
visible, although the vowel portions are generally smaller compared to standard Ger-
man. It is interesting that the V/(V+C) ratios in the emerging V:C: category clearly
lie in the area in which they would be expected for Standard German pronunciation
(as well as in the EF speaker data presented here), which is characteristic for VC:
combinations. This resemblance can be interpreted as a relic of the short vowel in
front of the fortis plosive. The V/(V+C) ratios based on VC: realizations by WCB
speakers, in turn, show shorter proportional vowel duration. These shortened vowel
durations cannot be solely explained by the above mentioned general trend towards
lower vowel proportion in the V/(V+C) ratio, but are instead a result of the suspected
phoneme splitting into long and short vowels (similar to Standard German).

• East Franconian (EF): the smaller short vowel proportions in V/(V+C) ratios com-
pared to the long vowels (which are however not significant, cf. Table 2.2) of the EF
speakers indicate a phonemic opposition regarding vowel length. However, the pro-
portional vowel duration does not differ depending on the postvocalic consonant as
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it does in Standard German (as well as in the data for ECB and WCB at hand). The
strong overlapping V/(V+C) ratios in words with fortis and lenis consonants instead
indicate a neutralization of the contrasts in that variety, which is documented in the
literature (e.g., cf. Rowley, 1990).

A mixed-model confirms the description of the results (random factors: speakers and
word). There are significant main effects for V-C combinations (χ2 = 10.65; p < .01) and
region (χ2 = 40.08; p < .001) as well as a significant interaction between the two main
factors (χ2 = 53.02; p < .001). Column 1 – 3 in Table 2.2 show the relevant post hoc
pairwise comparisons.

The results based on the automatic S&L show that the acoustic parameter of propor-
tional vowel length is an appropriate acoustic feature to use to highlight the existence of
phonological opposition (lenis vs. fortis, short vs. long vowel) and the Central Bavarian
(also Central German) lenition. This result alone can be taken as evidence for the validity
of the automatic S&L. The next section describes an explicit evaluation of this validity.

2.6 Evaluation of the Automatically Segmented and

Labeled Data

2.6.1 Comparison of Automatically and Manually Obtained Seg-

ment Boundaries

This section will compare the results of the automatic S&L process with a manual correction
one. Due to resource constraints, we decided to perform this time-intensive correction on
only a subset of the data that was used in the last experiment described in Sec. 2.5. We also
decided that this correction should be performed by only one person (instead of multiple
people). Using only one annotator to correct the boundaries seemed legitimate, as the goal
of this particular study was not to reveal possible annotation differences between multiple
human annotators, but between MAUS and manual correction.

However, using only one annotator potentially harbors the problem that the corrected
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boundaries are biased, and are either too much or too little in agreement with the MAUS
segmentation. Nevertheless, the risk that one annotator might produce incorrect bound-
aries/corrections is accepted in many studies, as boundary correction performed by only
one person is common practice in the processing of phonetic speech data. Using a trained
phonetician for this task, and one who receives clear instructions (listed in the second to
next paragraph) on where to set boundaries in the current case, reduces this risk consid-
erably in our opinion. Therefore, we assume that the boundaries are correctly set in the
following and any deviations are negligible from other annotators.

The subset, subject to correction, still contains all the words reported previously, how-
ever not from all recording sites. In detail this means that it contains a total of 1265 words
from 56 informants from 15 recording sites (cf. recording sites marked with * in Fig. 2.1).

The annotator was instructed to check and, if necessary, correct the segment boundaries
(i.e., beginning and end) of the above-mentioned vowels and postvocalic consonants using
the EMU-webApp. The important criteria on which the annotator should base decisions
were the following: first, the vowel had to start and end with a clearly visible second
formant (F2); second, the end of the vowel simultaneously marked the beginning of the
plosive, which in turn ended with the visible start of the vocal cord vibrations of the
succeeding segment. The annotator also labeled the closure and aspiration phase in all
words (to verify the observed left-shift in Sec. 2.5), and labeled the position of the primary
stress in all words ending in -meter and in Motorrad (based on the annotators auditory
assessment).

A correction of the segments labels was only considered necessary in five cases and only
for realizations of the word Mitte (these five cases are distributed over different speakers
from all three dialect regions). As the annotator made just a few changes we neither
calculated the Inter-labeler Agreement nor Cohens Kappa (Cohen, 1960), both standard
measures for the comparison of label differences in multi-person annotations, between
MAUS (which counted as one annotator in this case) and the human annotator as both of
them would result in high values due to few label differences.

For a comparison of phonetic segmentation, no such widely used measures exist, as
they do for the above-mentioned label comparison. Therefore, to compare the magnitude
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of the manual correction we used a metric called Overlap Ratio (Paulo et al., 2004). The
Overlap Ratio (OvR) specifies the degree to which segments overlap regarding their start
and end times and is independent of the length of the segments. Because of this, it seems to
be an adequate measure for quantifying the degree of displacement between the manually
corrected segment boundaries and the original automatic S&L. The OvR is calculated by:

or = tij
ti + tj − tij

(2.1)

where ti corresponds to the duration of the phoneme x as segmented by MAUS, tj the
duration of the same phoneme x after manual correction by the annotator, and tij the
duration of overlap between segments ti and tj between the MAUS generated segment and
the segment after manual correction (cf. Fig. 2.5). The OvR is 1 in case of a perfect overlap
(i.e., the automatically and manually obtained segment boundaries are identical)18 and 0
in case of the absence of any overlap19.

2.6.2 Comparison Between V/(V+C)-Ratio in Automatically Seg-

mented and Manual Corrected Data

The direct comparison of the V/(V+C) ratios calculated on the reduced dataset, based
on the segments from the automatically obtained S&L, and on the full dataset show a
similar distribution is shown in Fig. 2.4. This similarity is taken as evidence that the
reduced dataset comprises a representative subset (cf. the similar results of the pairwise
comparisons in columns 2 and 3 of Table 2.2, which back this hypothesis). All subsequent
comparisons refer exclusively to the reduced dataset once before (Fig. 2.4, center plot
“Subset – automatic” and Table 2.2, column 4), and once after the manual correction (Fig.
2.4, right plot “Subset – manual” and Table 2.2, column 5).

18In the current study an OvR of exactly 1 is accomplished in those cases when the annotator considered
a manual correction unnecessary.

19Technically the range of the OvR is defined from [−∞, 1]. Values smaller than 0 specify the size of
the gap between the segments. However, for the following experiments OvRs < 0 are set to 0, since the
size of the gap is of no interest.
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Figure 2.5: OvR of two segments as calculated by Equation 2.1 (Paulo et al., 2004; figure
adapted from Kisler et al., 2013a).

The comparison of the dataset before and after manual correction results in similar
combination-dependent distributions of the V/(V+C) ratios as reported in Sec. 2.5. The
reported results of the pairwise comparisons in column 4 and 5 of Table 2.2 confirm a
similar separation in the different linguistic category combinations (long vowel in front of
lenis plosive, etc.) by using an acoustic parameter. However, as expected, the separation
is clearer and, as seen by the more narrow quartiles in the boxplot in Fig. 2.4, the variation
is smaller within the categories in the manually corrected data.

Fig. 2.6 shows the frequency of the OvR per target phoneme between the original and
the corrected data. In this histogram, 80% of the phonemes OvRs are over 0.52 (marked by
the vertical line). That means 80% of the data have an OvR of more than 0.52. The average
of this 80% equates to an OvR of 0.7497. This shows that, in general, the target phoneme
was detected (and labeled) correctly by MAUS. However, the exact position of one or both
segment boundaries needed a slight correction, even if sometimes only minimally, by the
human annotator. In 13 (i.e. 1.06%) cases the OvR had a value of 1, i.e., none of the two
boundaries were corrected, and in 69 (i.e. 5.63%) cases only one of the two boundaries
was corrected. In 80 of 1227 segments (i.e. 6.52%), the OvR had a value of 0, indicating
no overlap between automatic and manual segmentation. In those cases the correct signal



36 2. On the Validity of Automatically Segmented Data

section could not be estimated even roughly. On average, all target phoneme boundaries
were shifted 35.40 ms to the left and 25.28 ms to the right. These means encompass all
values including outliers.
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Figure 2.6: Histogram of the OvR between the automatic set segment boundaries and the
manual correction. The vertical line marks the position above which 80% of the data lie.

The comparison between the resulting V/(V+C) ratios on the basis of the automatically
segmented subset, on the one hand, and the manually corrected subset, on the other, is
worth a more detailed analysis. Fig. 2.7 shows the correlation between the V/(V+C) ratios
estimated using the automatic segmentation (x-axis) and the V/(V+C) ratios estimated
based on the manually corrected segments (y-axis). In cases in which no manual correction
was performed (OvR equals 1) the data points lie on the bisecting line. The further
away a point is from this line, the bigger the change during the manual correction (and
therefore the bigger the resulting difference in the V/(V+C) ratio). The value of the
Pearson correlation coefficient of R = 0.58 describes a moderate correlation between the
V/(V+C) ratios extracted from the two datasets. The achieved correlation means that
higher V/(V+C) ratios based on the manually corrected dataset are in general higher for
the V/(V+C) ratios estimated for the uncorrected dataset. Moreover, it can be seen that
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the difference in the V/(V+C) ratios is not distributed symmetrically around the bisecting
line. The scatter plot of the V/(V+C) ratios is skewed towards higher values for the
V/(V+C) ratio based on the automatic segmentation.
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Figure 2.7: Comparison of the V/(V+C) ratios in the automatically segmented and manually
corrected data. In the case of perfect overlap, the points lie on the bisecting line. In the
lower right, the Pearson correlation coefficient between the V/(V+C) ratio extracted from the
automatic segmentation and the manual correction is shown.

The manual post-processing of the data in the EMU-webApp made two more anal-
yses possible that should be mentioned here briefly. First, the fact that the analysis is
based on the vowel-plus-total-consonant-length normalized vowel durations (instead of the
vowel-plus-closure-phase reported in the literature) showed no significantly different re-
sults regarding the distribution of the combination of the linguistic categories. In the
vowel-plus-total-consonant-length setting, the vowel proportion was generally smaller for
all three V-C combinations. The smaller values are a logical result of the shorter “vowel
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plus closure phase” sequence. Second, the manual labeling of stress and the explicit mod-
eling of the hierarchy allowed an investigation of stress patterns, which revealed that the
vowels /e:/ in -meter and /o:/ Motorrad do not often carry the primary stress. For /e:/
only 17% of the analyzed vowels (29 for EF, 9 for WCB, and 92 for ECB speakers) and for
/o:/ only 23% of the vowels (exclusively in the data on ECB speakers) carried the primary
stress. The fact that the majority of vowels, therefore, carried the secondary stress or were
unstressed could have led to shorter vowel durations, as, for example, in words like Meter
and Motor20. However, this does not significantly influence the distributions seen in Fig.
2.4.

2.7 Discussion and Conclusion

The present analysis has shown that the automatically segmented semi-spontaneous datasets
in the GT corpus are at least suitable for a first inspection of the data. These sets are
dialectologically relevant, as it is possible to use them to investigate diatopic variation in
spoken Standard German. It can be assumed that recordings capturing regional variation
achieve worse automatic segmentation compared to recordings based on Standard German
pronunciation as MAUS was trained using data obtained from North German standard
speakers from the Kiel Corpus of Spontaneous Speech (Kohler, 1996). However, the cur-
rent model is able to show regional variation in pronunciation, such as Central Bavarian
lenition, if it is present in the data. The present study is the first large-scale semi-automatic
acoustic analysis of these lenition phenomena among younger speakers with regional ac-
cents common in Bavaria and Austria. The results based on data obtained from WCB
speakers also support reports according to which the realization of the combination of long
vowels in front of fortis plosives seems to become possible in Central Bavarian dialects
(Moosmüller et al., 2014; Kleber, 2017).

The analysis of the lenition phenomenon (both in the speech of Central Bavarian speak-
ers and the EF comparison group) based on the respective phoneme durations, is a feature
that directly relies on segment boundaries. Therefore, it is especially well suited for the

20This means in words that are not part of a compound.
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comparison of the automatically obtained S&L and manual correction. Results based on
the automatically obtained duration are influenced by two different factors. On the one
hand, the minimal duration of 30 ms slightly stabilizes the results even in cases in which
the boundaries are set completely wrong, at least partially. Therefore, an error is limited in
that matter, as regardless of what happens to the length of a phoneme, it is never shorter
than 30 ms. On the other hand, the segmentation might be too coarse for fine phonetic
detail due to the discrete increase in phoneme duration in 10 ms steps. Both restrictions
that effect the granularity of the segmentation, result from technical details of the phoneme
modeling. However, the region and category dependent V/(V+C) ratios found in all three
datasets are taken as evidence for an appropriate validity of the automatic S&L process21.
The segment boundaries’ error resulting in a scattering around zero, based on boundaries
that are either erroneously shifted to the left or the right, compensates segmentation er-
rors. This is especially true, as the acoustic content of the segmented signal section does
not influence the duration feature.

In contrast to the duration feature, an extraction of formants in a “wrong” vowel (due to
erroneous segmentation) could lead to a greater misinterpretation of the data. An example
of that would be the interpretation of an open /E/ realization, due to the first formant
being extracted from an /a/ that was wrongly segmented and labeled as an /E/.

To verify whether formant data calculated based on an automatic S&L can be used for
analysis, the formants of the speakers of ECB andWCB described in Sec. 2.3 were extracted
for the words Mitte and Ecke using emuR. An inspection of this data indicates that the
resulting contours of this more sensitive acoustic feature also correspond to phenomena
reported in the literature. Fig. 2.8 shows the time-normalized contours of the first formant
(F1) based on the automatic S&L in /I/ and /E/ (in Hz). It can be seen that the F1

21In manually created and manually corrected segment boundaries a certain variation around real seg-
ment position, albeit a smaller one, is also expected. Hence, the positioning of the segment boundaries is
per se not exact. Additionally, the positioning heavily depends on the instructions given to the annotator
(e.g., the instruction to mark the segment start when the F2 frequency is clearly visible, as done in the
current study). They, in turn, are skewed in favor of the phoneme of interest (as e.g., the just mentioned
F2 criterion leads to a conservative vowel segmentation, however, potentially to a variable segmentation
of the neighboring segments).
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values lie in the typical frequency ranges for male and female speakers. Furthermore, F1 is
generally lower in Mitte than in Ecke, since /I/ is produced with a higher tongue position
and a more opened jaw. On average the F1 values for ECB speakers are lower than those
for WCB speakers. This confirms reports in the literature that short front vowels are
produced more tense and therefore with a higher tongue position in Austrian varieties
(Cunha et al., 2015).
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Figure 2.8: Time-normalized F1 contours in the automatic segmented /I/ und /E/ vowels in
the words Mitte and Ecke shown separately for ECB (green; dashed line) and WCB (blue;
solid line) for female (top) and male (bottom) speakers.

Analogous to the results of the parameter duration, the F1 contours support the validity
of the method proposed in this study using acoustic features extracted from the speech
signal based on an automatic S&L. However, as already mentioned, more noise is to be
expected. This noise is introduced by the extraction of acoustic features in erroneously
segmented signal sections. However, once again, the error should produce a scatter around
zero (e.g., formant extraction in a wrong signal section will sometimes lead to higher, and
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sometimes to lower, values than the ones to be expected).
An automatic S&L of data can be obtained with comparatively little effort, as it is based

on the orthographic transcription of a speech signal and not on a fine phonetic one. The
resulting broad phonetic transcription allows acoustic analyses to be performed which, in
turn allow conclusions to be drawn about differences in fine phonetic detail, for example,
about differences between regional varieties. The manual S&L in big corpora is only
obtainable by dedicating a lot of resources (time and effort). With the ever-growing size
of corpora, this problem will become even more problematic in the future. The automatic
S&L can not only be obtained much more quickly, it also has the benefit that the creation
of segment boundaries for all segments (not only the ones the researchers are currently
interested in) can help answer research questions that arise much later than the creation of
the S&L. By the quick and complete S&L of whole corpora (and not only specific target
words) a foundation is laid for those future, and at the time of pre-processing, unforeseen
studies using the same dataset.

Automatic segmentation errors are without a doubt more frequent and bigger than
those for manual segmentation. However, these errors are, in contrast to the errors in
manual methods, systematic and objective, as they can be reproduced arbitrarily often,
as each execution of the automatic S&L process will produce the exact same boundaries.
This objectivity allows for a better comparison of automatically segmented datasets of
different research groups, which is more complex for manually created S&L. Further,
the acoustic analyses based on automatic S&L are generally more conservative, since the
relevant differences are concealed rather than amplified for no reason. These advantages
transform the proposed combined method of acoustic analysis based on automatically
segmented data into a promising alternative, and this holds true for both linguistic and
dialectological questions.
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Chapter 3

Geolocalization of Speaker Origins

This chapter builds on the following previously published work:

Thomas Kisler and Florian Schiel (2018b). “Towards a Speaker Localization from
Spontaneous Speech: North-South Classification for Speakers of Contemporary German”.

In: Elektronische Sprachsignalverarbeitung (ESSV) 2018 - Tagungsband der 29.
Konferenz. Vol. 29. Ulm: TUDpress, pp. 200–207. isbn: 978-3-95908-128-3

3.1 Abstract

The aim of geographical regression analysis based on phonetic features is to locate a
speaker’s origin by relating phonetic features derived from a small speech sample to lon-
gitude/latitude coordinates. The following chapter contains three experiments to test
this type of localization using a large feature set extracted from speech utilizing Random
Forests (RFs), Support Vector Regression (SVR), and Decision Trees (DTs).

All experiments use map task data from the “German Today” corpus (Kleiner et al.,
2007; Brinckmann et al., 2008), consisting of native German speech. From this semi-
spontaneous speech material, an extensive set of 737 features per phoneme is extracted
using the openSMILE feature extractor (Eyben et al., 2010). Experiment 1 uses the full
feature set, while, based on findings from the first experiment, a reduced subset of 656
features per phoneme is used for experiments 2 and 3.
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In a preliminary step (experiment 1), a two-class classification task shows that features
extracted from a single /z/ phoneme can be used to correctly assign the origin of 70.37%
of the speakers to the North/South half of Germany. This performance can be attributed
to the well-known devoicing of phonological /z/ in southern varieties to [z

˚
] (e.g., Wängler,

1967, p. 143; König, 1989, p. 93–96; Barbour et al., 1990, p. 156). Based on these promising
results, a regression analysis was conducted (experiment 2), again using a single uttered
phoneme as input. Even for the best-performing phoneme /z/ the improvement over a
hypothetical, conservative baseline was only 9.45 km (6.24% of 151.44 km baseline error)
for the east-west and 26.69 km (12.65% of 210.89 km baseline error) for the north-south
direction.

A third study was conducted to evaluate how suitable the speech material and the
extracted features are, and to estimate the lower limit of the mean absolute error (MAE).
In this study, data of multiple phonemes occurring in multiple utterances was combined
by creating averages from multiple realizations of a single phoneme of each speaker. These
averaged vectors were then concatenated for all 33 phonemes that occurred at least once for
each speaker. Using a reduced feature set based on highly ranked features according to the
measure Variable Importance (VI), an SVR model was able to lower the MAE substantially
to 96.14 km in the east-west and to 96.94 km in the north-south direction.

This improvement confirms that the subset contains relevant information in relation to
regional variation in the German-speaking area of Central Europe. A binary DT is trained
in order to map the subset’s features within the geographic space of the German-speaking
area and to relate them to already known patterns of regional variation. This mapping
of features to a geographic space based on computational methods is somewhat similar
to dialectometric approaches (cf., e.g., Nerbonne et al., 2013). However, it differs in the
choice of techniques and features. Due to performance issues of the DT regarding the east-
west direction, only the north-south direction is analyzed more closely. In this dimension,
the division of the geographic space closely resembles traditional dialect boundaries. The
top nodes of the DT, again attributed to the devoicing of /z/, are already able to divide
the space into a North and South corpus area quite well. The resulting division of the
geographic space looks similar to maps based on the variation in linguistic variables in
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traditional dialectology. This is taken as evidence for the validity of the approach.

3.2 Introduction

It is commonly assumed that the linguistic features of speakers vary according to where they
spent their childhood and where they reside. In German dialectology, it has been shown
that the variation of certain linguistic features correlates with geographic distribution (e.g.,
Wrede et al., 1927–1956; Wiesinger, 1983; König, 1989; Barbour et al., 1990; König, 2005;
Brinckmann et al., 2008). The border between two different realizations of a variable (e.g.,
the different variants of the realization of <Apfel> in one region like [Papf@l] and like
[Pap@l] in another) can be visualized as a line on a map indicating the geographic form of
the change. This line, which separates two regions by a difference in a linguistic variable,
is called an isogloss. The distribution and accumulation of isoglosses allow dialect areas to
be defined.

However, dialect areas normally do not possess

Figure 3.1: Isoglosses from Fischer’s
atlas (1895) showing the Alemannic-
Swabian region (Lameli, 2013, p. 2).

the clear borders suggested by dialect maps. In
many cases, the exact geographic position of a di-
alect boundary is open for discussion (Wiesinger,
1983; Barbour et al., 1990, p. 85). For instance,
moving from one point in Germany to another, one
would expect to find places where sudden changes
in a single linguistic feature occur, but the overall
dialectal variation across the German-speaking area
changes semi-continuously along this path as differ-
ences of variants accumulate. This assumption is
supported, for example, by Haag (1929, p. 19), who
states that no two neighboring communities exist
that do not recognize differences in their language
(even if it is only a different intonation) and Barbour et al. (1990, p. 136), who state that
German comprises an enormous amount of varieties, including differences from village to
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village. Fig. 3.1 shows how many of such linguistic changes can exist in a small area (in this
case the Alemannic-Swabian region in 1895) and that those changes can exhibit a semi-
continuous character, which stems from the fact that many such single discrete changes
occur in close proximity to each other.

In the current study, it is assumed that acoustic features show a regional distribution
similar to the linguistic features shown in Fig. 3.1. Hence, it should be possible to exploit
these fine-grained changes distributed over a geographic space, to determine the origin of
speakers. The method used in the present study relies only on acoustic features extracted
from the speech signal and an automatically calculated alignment of phone classes. Ex-
cept for speaker sex, the system has no access to meta-data or higher-level features (e.g.,
linguistic or prosodic ones). This restriction is enforced to allow future applications of
the proposed method to work fully automatically, with only the speech signal as input.
Reducing the amount of subjective data necessary, i.e., avoiding the need for a manual
segmentation and labeling (S&L), in which the boundaries are subject to discussion, al-
lows the method to be more objective than other approaches.

It also circumvents the problem of the influence of human experts on the process. An
example of such a subjective influence is a field worker isogloss (Mathussek, 2016).

Within the just described paradigm two major questions will be addressed in this study:

1. Is it possible to predict the geographic coordinates (longitude and latitude) of a
speaker’s origin from a short speech sample, and what would be the average geo-
graphic accuracy of such a prediction?

2. Is it possible to automatically divide a large geographic area into regions in which
speakers display similar phonetic behavior based on a speech signal sampled from a
large and geographically distributed number of speakers?

When answering the second question, another point of interest is whether the resulting
division of the geographic space resembles traditional dialect areas and, if so, how these
divisions of the underlying features can be visualized effectively.

In the first experiment (cf. Sec. 3.8) a two-class classification was examined. The
reason behind taking this intermediate step was to see whether the underlying features
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generally carry sufficient information to allow for correct speaker localization, i.e., whether
they capture the regional variation sufficiently and which phonemes contribute most to
the localization. Two separate two-class classification models were trained to distinguish
between speakers from the northern and southern (first model) and the eastern or western
(second model) part of the corpus’s geographic space. Finally, the experiment aims to
identify features that do not have to be taken into account in future experiments.

The second and third experiment deal with (cf. Sec. 3.9 and Sec. 3.10) whether a re-
gression analysis of the speaker origin is possible, how accurate it is, and if it outperforms
a theoretical null model. The third experiment (cf. Sec. 3.10) will further try to answer
whether it is possible to interpret these features phonetically to explain their existence in
the model. In experiment 2 a prediction is made only using data from a single uttered
phone. In contrast to this, in experiment 3 the feature vectors of all realizations of a
phoneme are averaged, and all averaged vectors of all phonemes uttered by a speaker are
concatenated. The two experiments can therefore be viewed as one with sparse information
(experiment 2) and one with rich information (experiment 3). Furthermore, the mapping
to the geographic space achieved in experiment 3 resembles dialectometrical studies (which
also use information technology to map large-scale regional variation to geography auto-
matically).

The outline of the remaining chapter is as follows: the next section gives an overview
of the related work, and Sec. 3.4 discusses the approach adopted in this study. Sec. 3.5.1
describes the dataset derived from the corpus German Today (GT) provided by the Institut
für Deutsche Sprache, Mannheim, Germany, consisting of recordings of contemporary Ger-
man speech. In Sec. 3.5.2 the pre-processing of the corpus is discussed, Sec. 3.6 explains the
extracted features, and Sec. 3.7 gives an overview of the applied Machine Learning (ML)
techniques and related metrics. In Secs. 3.8, 3.9, and 3.10 the respective experiments are
explained, the results reported and discussed. Finally, in Sec. 3.11 the chapter is summa-
rized.
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3.3 Related Work

3.3.1 General Overview

Regression analysis of speaker origins based on speech signals has to my knowledge not been
investigated before. This probably has two reasons: a) sufficiently large corpora with well-
distributed recording sites have not been available and b) carrying out a regression analysis,
as compared to multi-label classification, is more complicated, as the given variation has
to be mapped to a continuous scale, not only into a few discrete classes. For the Central
European German-speaking countries, problem a) has been solved by the German Today
corpus becoming available, which includes over 160 recording sites that are well distributed
over that area (cf. Sec. 3.5.1).

An area of research that has a similar goal as the research presented here is dialect
classification. In this field, the target variable is not speaker position, but a class label. For
this, each speaker has to be assigned a predefined dialect class. Most studies in automatic
dialect classification are not concerned with the geographic distribution of features, but
with the correct assignment of a dialect label (an exception is, e.g., Woehrling et al., 2009).
The current study wants to analyze both, to the extent to which the position of a speaker
can be estimated automatically, as well as the geographic distribution of the features used
to carry out this estimation.

The field of dialect and accent classification using acoustic features from speech signals
has been studied extensively and many studies exist, for the English language in particular
(e.g., Huckvale, 2004; Huckvale, 2007; Shen et al., 2008; Bahari et al., 2013; Hanani et
al., 2013; Brown, 2015). In these studies, a label is assigned to each speaker based on
certain acoustic parameters, according to the speaker’s accent and the dialect he or she
speaks. Research on automatic classification of German-speakers, solely relying on acoustic
features, is sparse. The study performed by Stadtschnitzer et al. (2014) is an exception to
this. Kisler et al. (2018b) and the work presented here are further contributions.

The different approaches to dialect classification discussed in the following section are
categorized into four groups. This grouping results from the combination of speech material



3.3 Related Work 49

(read or spontaneous) and transcription dependence (transcription needed or not). The
following section will discuss the most relevant work to the current approach in each of
those four subareas.

A descendant of traditional dialectology called dialectometry deals with the efficient
and computer-assisted grouping and visualization of variation (Goebl, 2010; Nerbonne et
al., 2013). This variation is based mainly on written transcripts, and only a few studies
additionally employ acoustic features (such as formants). As the result of the last part of
experiment 3 resembles the outcome of dialectometric methods, these methods are briefly
outlined in Sec. 3.3.5.

3.3.2 Dialect Classification – Read Speech

Text-Dependent Approaches

Within this approach, the proposed methods extract features based on the transcription
of the underlying speech signals. In case the speech material only contains read speech,
the transcription is easy to create as it is ideally similar to the text read by the informant.

Huckvale (2004) proposes the Accent Characterisation by Comparison of Distances in
the Inter-segment Similarity Table (ACCDIST) metric, which uses the difference between
acoustic parameters between speakers uttering different vowels in British English dialects.
In his approach, spectral features are extracted from the first and second half of the avail-
able vowel segments describing the spectral envelope. The features are either based on
auditory filter banks with 19 filters (Huckvale, 2004) or 20 Mel-Frequency Cepstral Co-
efficients (MFCC; Huckvale, 2007). For each speaker, these features are used to describe
intra-speaker variability, by calculating the distances of the spectral features extracted from
the same vowel in different contexts. This method is based on the notion that in British
dialects different orthographically identical vowels are pronounced differently in specific
words in different regions. An example is the vowel /a/ in “after”, which is pronounced
more similar to “a” in “cat” in some regions, in others to “a” in “father”. Speakers are
then assigned to one of 14 dialect labels, using the correlations of distances. For the sys-
tem based on MFCCs, the best accuracy achieved in the “any sex” condition is 86.9%. A
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limitation of this method is that the same words have to be read in the same context each
time.

A variant of the ACCDIST system, called the York-ACCDIST (Y-ACCDIST) system,
was introduced by Brown (2015). She uses the 12 MFCCs along with a Support Vector
Machine (SVM) that has been trained using the “Accent and Identity on the Scottish
English Border” (AISEB) corpus (Watt et al., 2014). The corpus contains speech from
two English and two Scottish varieties located close to the English/Scottish border. The
Y-ACCDIST system achieves an accuracy of 86.7% when assigning accents labels. In
Brown’s study, the Y-ACCDIST system, as was the case for its predecessor the ACCDIST
system, the speech material had to be identical for all speakers.

Sinha et al. (2015) use 13 MFCCs, 13 Perceptual Linear Prediction (PLP) coefficients,
13 Mel frequency PLP (MF-PLP) coefficients1, duration, signal energy, and fundamental
frequency (F0) to train an auto-associative neural network. The training was carried out
using recordings of read speech by speakers belonging to one of the four main Hindi dialects.
Using spectral bottleneck features, they achieved an accuracy of 82% when assigning dialect
labels.

Text-Independent Approaches

In contrast to the text dependent approaches, this class of methods does not rely on
transcription. Being transcription-independent has the advantage that even if the recorded
speech deviates from the text, the system needs no manual input. The methods presented
in the following overcome the challenge of there being no transcription either by trying
to recognize the correct content of the signal or by modeling the variation over a longer
speech sample acoustically.

Hanani et al. (2013) compare different approaches that are based on acoustic and/or
phonotactic features, employing phone recognition followed by Language Modelling (PRLM),
originally applied to language identification by Zissman (1995). The data consist of read
speech from “The Accents of the British Isles” (ABI) corpus (D’Arcy et al., 2004) from

1MF-PLP is the combination of PLP and MFCC, in which the PLP coefficients are calculated based
on a mel-scaled spectrum.
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14 different dialect groups. The lengths of the input signal chunks vary between 30 s and
45 s. Acoustic features were the first 19 MFCCs (including C0) and the Shifted-Delta Cep-
stral (SDC) coefficients. The phone recognizer necessary for the PRLM approach uses the
signal energy plus 12 PLP features, plus their ∆ (slope) and ∆∆ (curvature) features. To
model the different accents acoustically, Gaussian Mixture Models (GMMs) are used. For
different combinations, employing either the phonotactic features alone, or in combination
with several acoustic features, an accuracy of 89.6% is achieved for the system that fuses all
available features. It is worth noting that this performance falls short of the one obtained
by an ACCDIST based system, proposed by Huckvale (2004), that was applied by Hanani
et al. (2013) to the same data and which achieved an accuracy of 95.18%.

Najafian et al. (2016) propose another text independent system that fuses the features
from acoustic accent modeling and phonotactic language modeling using PRLM, to achieve
better performance. 19 MFCCs and 49 SDCs are extracted from the speech signal. The
phone recognizer uses 12 MFCCs and the signal energy, along with their first and second
order derivatives. Here the evaluation is only based on 13 (of the 14 available) accents
that exist in the ABI corpus. The input signal lengths vary between 34.5 s and 85.0 s,
and the best fused system achieves an accuracy of 84.87%. This performance equals an
improvement of roughly 8% compared to the system using only acoustic features (76.76%).

In DeMarco et al. (2013) the authors also use a system based on long read passages
from the ABI corpus (presumably using all 14 accents present). They feed a 62-dimensional
feature vector, based on SDCs and a warped representation of MFCCs, in an i-vector
approach based on Linear Discriminant Analysis (LDA) classification, a nearest neighbors
classifier, and SVMs with a cosine kernel. Before the classification takes place, various
feature reduction methods are applied (e.g., LDA projection). The fused system achieves
an accuracy of 81.05% for 30 s long signal parts.
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3.3.3 Dialect Classification – Spontaneous Speech

Text-Dependent Approaches

Methods falling into this category are similar to the text dependent approaches of read
speech introduced in Sec. 3.3.2, with the difference that they neither rely on read passages
nor on matching content between different speakers.

Woehrling et al. (2009) conducted a dialect identification experiment on French dialect
regions. The study used both read (3 minutes) and spontaneous speech (10-15 minutes).
Aside from phonetic features such as formant frequencies and voicing, other linguistic
features were analyzed such as pronunciation variants (derived from an automatic phoneme
alignment), as well as several prosodic features mainly derived from duration measurements
and fundamental frequency contours. The best classification rate of 85% was reported for
classifying speakers into three major dialect regions using SVMs (82% for five classes).
This study is interesting due to three aspects. First, although SVMs yielded the best
results, the authors favored a DT for classification due to its interpretability regarding
the extracted features. Second, the performance for the tree decreases when more data is
added (i.e., more training data does not necessarily yield better results). And thirdly, the
performance varies for 3-class vs. 5-class classification over different datasets of read and
spontaneous speech, whereas the tasks with fewer classes do not necessarily perform better
(which would be expected probability-wise).

In Brown (2015) a variant of the aforementioned Y-ACCDIST system is applied to a
4-way dialect discrimination task based on read and spontaneous speech, again originating
from the English/Scottish border. A drop of about one third in classification accuracy
for spontaneous (52.5%) compared to read speech (86.7%) is reported. This supports the
notion that accent recognition for spontaneous speech is more challenging, than for read
speech. A slight increase in accuracy was found when the phoneme context was discarded,
probably because the number of observations for each class increased. The features used
in the system were the first 12 MFCCs extracted at the vowel midpoint.

The only study on German speech I know of, was conducted by Stadtschnitzer et al.
(2014) using the Regional Variants of German (RVG1) corpus (Burger et al., 1998). Using
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data from nine large German dialect areas, the authors attempted to predict the speak-
ers’ respective dialect membership. They used the speaker identification toolkit ALIZE2

(Larcher et al., 2013) and found that prediction accuracy was 11.9% when using only
acoustic features. Therefore, the achieved performance is just above the level of chance
for a 9-class task (11.11%). ALIZE extracts 50 acoustic features (19 MFCCs, 19 MFCC ∆
features, 11 MFCC ∆∆ features, and ∆ Energy). It is interesting to note that the authors
also tested a different approach based on a phonemic 4-gram model, which yielded results
well above the level of chance for the same dataset (19.2%). This improvement suggests
that ‘higher’ linguistic features (such as phonological, lexical) outperform phonetic features
when it comes to dialect classification.

Text-Independent Approaches

Shen et al. (2008) propose a PRLM approach to distinguish between two English and two
Mandarin dialects. By fusing the output of the PRLM system and a baseline GMMs system
using SDC features, they achieved recognition rates of 81.88% for English and 67.18% for
Mandarin using 30 s speech chunks.

Biadsy et al. (2010) propose a system that classifies four different variants of Arabic.
Using a sophisticated SVM technique, which exploits the phone context of the material
directly in the kernel, the authors reported an average equal error rate of 4.9% in binary
classifiers, i.e., four classifiers that discriminate between target dialect or non-target dialect.
It is worth noting that, in contrast to Brown, 2015, the authors stress the importance of
the phone context. Speech signals first undergo a phone recognition stage that allows the
later pairing of data from the same phone type in the discrimination task.

An interesting approach from the field of language identification is Campbell et al.
(2006), as this approach employs an SVM using another specialized kernel. To classify
12 different languages, it fuses the results from the SVM and a GMM system, whereas
the distributions are modeled using 49 SDC features. For testing, they use 30 s chunks of
speech of all 12 languages and achieve an accuracy of 93.6% in the fused system.

2All speakers belonging to one dialect class were labeled as the same speaker.



54 3. Geolocalization of Speaker Origins

3.3.4 Human Performance in Dialect Classification

When considering automatic dialect classification and geolocalization, it seems important
to compare the machine performance to human performance. Therefore, a few studies
examining human performance are discussed in the following section.

Draxler et al. (1997) performed perception experiments with two experts3 and seven
non-expert listeners. All listeners were presented with digits from 11 different regions
in Germany (mostly according to federal states) from the SpeechDat (M) corpus (Speech-
Dat(M): EU-project LRE-63314 ). In this setup, the expert listeners achieved a recognition
rate of 24.82%, the non-expert listeners 35.55%. The performance of the listeners from dif-
ferent regions varies greatly, however Bavarian non-expert speakers are able to recognize
their Bavarian counterpart speakers 100% of the time. This excellent intra-group perfor-
mance could not be achieved by listeners from other regions. However, the intra-group
performance was generally high.

Woehrling et al. (2006) examined the human discrimination performance of six different
French regions. 50 participants listened to read and spontaneous speech. They recognized
the accent correctly 43.0% of the time, with minor differences between read (≈ 42.3%)
and spontaneous speech (≈ 43.7%). Contrary to minor differences in recognition accuracy
within different speaking registers, the recognition rate for different dialects again varies
greatly.

In Hanani et al. (2013) 24 subjects (aged between 21 and 78) were presented with 20
randomly selected recordings of 14 British accents from the ABI corpus. The length of
the chunk of the respective recording presented to the subjects varied between 30 s and
40 s. The subjects achieved 58.24% accuracy, which is significantly poorer than all the
automatic systems presented in Hanani et al. (2013).

Human performance in the presented studies is rather poor, and generally worse than
in most automatic systems discussed. This poor performance is interesting, as in many
domains human are used to set the gold standard (e.g., image understanding, speech recog-

3The qualification for expert status was not described in more detail, except that they originated from
Bavaria.
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nition). This human-made gold standard is then used for modeling systems and often
provides an upper limit against which systems have to compete. Setting a gold-standard
seems to be more complicated when it comes to regional variation of speech. One surprising
aspect of the aforementioned studies is the fact that in Draxler et al. (1997) the listeners
with an expert status performed worse than those with non-expert status.

3.3.5 Dialectometry

As mentioned in the introduction (cf. Sec. 1.1), a descendant of traditional dialectology
is dialectometry, which applies computational methods to traditional dialectological data.
Good overviews of previous research in dialectometry are Goebl (2010), Nerbonne et al.
(2013), and Wieling et al. (2015). Dialectometry shows that computational methods – e.g.,
Levenshtein distance or multi-dimensional scaling – can be successfully employed to relate
the resulting groups to traditional dialectological areas (e.g., Gooskens et al., 2004; Goebl,
2010; Nerbonne et al., 2013). For example, the Groningen4 school of Dialectometry often
uses the just mentioned Levenshtein distance to estimate the similarity between variants
of the same linguistic variable (e.g., the difference in transcripts between the pronunciation
of <afternoon> as [æft@nu:n] or [æft@rnu:n]).

As mentioned above, most dialectometric studies were concerned with written represen-
tations of the speech signal, which were mostly taken from atlases (e.g., Goebl, 2010). In
previous studies, only a few acoustic parameters were taken into account (e.g., formants by
Heeringa et al., 2009 and timing information by Kisler et al., 2013a). In contrast to many
studies based on distance measures, Pickl et al. (2012) moved away from this requirement
and, furthermore, postulated a bottom-up view on variation. This view is in line with the
work performed in the latter part of experiment 3 of the current study.

4For more information on the different schools, cf. (Goebl, 2010). A noteworthy essay describing and
criticizing different schools was written by William A. Kretzschmar (2006).
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3.4 Chosen Approach

The automatic dialect classification studies mentioned in Secs. 3.3.2 and 3.3.3 are all similar
in that they extract features from relatively large chunks of data to perform the classifica-
tion to achieve good performance. The ACCDIST variants used the realizations of many
phonemes in relation to each other, Woehrling et al. (2009) used features derived from a
few minutes of speech, and the text-independent systems relied on signal chunks of more
than 30 s of speech (that were cut out of longer recordings). In contrast to this, the current
study aims to explore whether speaker classification/localization is also possible based on
shorter speech samples. Using shorter samples would be beneficial for an application of the
findings, e.g., an Automatic Speech Recognition (ASR) system that selects different models
based on the speaker’s origin. The fact that a model selection improves the recognition in
ASR systems has been proved by, for example, by Najafian (2016) for English.

Aside to standard features, like MFCCs or formants, other non-standard features and
technology-driven features (those that are usually not used in dialectological/phonetic anal-
yses) are added to the feature set in this study. The advantage of many of these features is
that they can be extracted robustly, which is an issue for some widely applied features in
dialectological and phonetic studies, such as, for example formants. Additionally, the ex-
amined features are restricted to acoustic features, which can be extracted from the speech
signal without any other information and only an S&L is required for assigning the feature
values to the correct phoneme. Previous studies indicate that higher-level features such
as phonotactic or prosodic features improve results. However, using features that can be
extracted robustly from a short speech sample might improve applicability, for example,
for the aforementioned ASR model selection.

Therefore, in the classification (cf. Sec. 3.8) and regression (cf. Sec. 3.9) analysis only
the feature values averaged over the phoneme midpoint plus those 10% to the left and 10%
to the right are used. In a later step, the features of multiple phonemes are aggregated and
concatenated to form a “dense” feature vector (cf. Sec. 3.10; the density of the vector is
comparable to Huckvale, 2007 and Brown, 2015). Taking this approach allow two systems
to be compared using sparse information (experiment 2) vs. rich information (experiment
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3).

A DT is trained using this “dense” feature vector, and the geographic division resulting
from its splitting of the features is related to dialectological phenomena. This is done based
on the structure of the features and theoretical knowledge of regional variation. This part
of the study tries to replicate what dialectometrical methods achieve, a division of space
and a respective visualization of the results. The sole difference between the mentioned
dialectometric studies and the current approach is that the current approach only relies on
acoustic features. Manual confirmation of the connection between acoustic features (and
knowledge about variation in the underlying data) is only carried out for small, random
subsamples. Due to the sheer amount of data, it would be unfeasible for the current study
to confirm the suspected phenomena across all speakers systematically (e.g., deletion of
/ç/ in /Iç/, pronunciation of word-initial /ç/ as /k/ in words as <Chemie>, etc.).

Kisler et al. (2018b) and experiment 1 in this chapter both examine how accurate
speaker origins can be classified into northern and southern parts of the corpus area (cf.
Sec. 3.5.1). Both studies use RFs and the same features. The difference between the
two lies in the way in which they reach their final decision about which region a speaker
originates from. In Kisler et al. (2018b), all realizations of a certain phoneme were taken
into account, and the majority vote of those outputs led to the final classification decision.
In the current study, this decision is solely based on the RF’s output of one produced
phoneme, which leads to a less stable prediction. This is because the majority vote in the
previous study (Kisler et al., 2018b) also tags a speaker with the label “North” if he or
she produces slightly more than 50% of her /z/s voiced, which leads to a wrong decision
in many cases in the current study.

3.5 Data and Preprocessing

3.5.1 Corpus

Training and test data were taken from the German speech corpus GT (Kleiner et al., 2007;
Brinckmann et al., 2008), which is a valuable resource for the documentation of contem-
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porary German. The corpus was recorded in locations distributed over Germany, Austria,
Switzerland, and a few sites located in South Tirol, Liechtenstein, East Belgium, and Lux-
embourg. This area is denoted as the “corpus area” in the following. In each location, four
students (mostly two male and two female subjects) from the local secondary school (Ger-
man: Gymnasium) were recorded. All subjects had to have been born and raised in the
area, and at least one of their parents had to originate from the region of recording as well.
They were aged between 16 and 20 at the time of recording. All recordings were performed
using a headset microphone (for more information, c.f. Brinckmann et al., 2008).

In the material analyzed in this study, speakers performed a map task (cf. Anderson
et al., 1991) in pairs resulting in semi-spontaneous speech. In map task recordings certain
words occur more frequently than others, namely the objects on the map and distance
measures. Due to technical issues (e.g., broken signal files and missing transcriptions),
not all speakers who took part in the map task contained in the original corpus could
be included. Therefore, the current study was carried out on a subset consisting of 641
speakers (328 female, 313 male) from 165 locations (cf. Fig. 3.2). For those speakers, the
transcribed speech from the map-task data adds up to ≈ 67 h33 m.

Brinckmann et al. (2008) points out that no important traditionally defined dialect
area was left out, despite the grid of recording locations not being equally spread over
the corpus area. The average distance of the recording sites to their closest neighbor is
41.12 km, whereas the two closest sites are 16.76 km apart and the largest gap is 72.91 km.
The distances between sites have a standard deviation of 11.48 km. The GT corpus is the
largest available speech corpus with densely spaced recordings over the central European
German-speaking regions.

No preselection of phonemes based on words, contexts, or Part of Speech (POS) was
performed for the current study. This means that each phoneme class consists of many
items realized in various contexts. A preselection would have violated the bottom-up
approach. Furthermore, skipping the preselection leads to a higher amount of examples of
the available phonemes. which in turn has the chance to improve the models. However, this
also means that more noise is contained in the dataset compared to a set only containing
carefully preselected data.
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Figure 3.2: Corpus area: 165 recording sites in the GT corpus. At 156 sites four speakers were
available for analysis (circle), at eight locations only two speakers (square) and in one location
only one speaker (triangle); horizontal line: North and South division; vertical line: East and
West division. Black dots indicate reference cities.
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3.5.2 Phonetic Segmentation of Speech Material

All recordings in the dataset were transcribed by human annotators. This manually cre-
ated transcript was then passed to WebMAUS (Kisler et al., 2017) to segment and label
recordings into word and phoneme segments (cf. Sec. 1.3.3 for more information on the
S&L process). MAUS, the S&L system behind WebMAUS, was applied in the forced-
alignment mode to prevent it from changing the canonical transcript. This was done for
two reasons: a) the Munich AUtomatic Segmentation System (MAUS) was not trained
using dialect data, and therefore might not be suitable to model dialectal variations over
the whole corpus area equally well, and b) dialectal differences should be compared using
acoustic features alone, i.e., comparing phonetic differences of the same phoneme/phone
or evaluating phonological differences based on acoustic features. If MAUS is allowed to
change the phone-sequence during alignment, part b) is no longer guaranteed, since, for
example, a canonic /z/ might be changed to an /s/ because it is realized without voicing.

Chapter 2 showed that an S&L created by MAUS is a suitable choice when working
with regional variation. Further, it showed that applying an automatic S&L means that
regional variation is not enhanced. Therefore, it was assumed that no manual correction
of boundaries is necessary before feature extraction. Regarding the amount of material
available, this would not have been feasible within the limits of this study anyway and
would have contradicted the envisaged automatic approach to geolocalization.

The result of applying WebMAUS to the data was a collection of speaker/location
labeled segments of 42 different German phonemes. These constitute a subset of the
MAUS phoneme inventory for German, which is based on Wells (1997). All phonemes
available are listed in Table 3.1 as International Phonetic Alphabet (IPA) symbols.

3.6 Acoustic Features

3.6.1 Overview

In automatic dialect classification, among other linguistic features, several standard acous-
tic features have been employed frequently, such as
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/@/ /b/ /E:/ /I/ /o/ /s/ /v/
/5/ /ç/ /f/ /j/ /o:/ /S/ /w/
/a/ /d/ /g/ /k/ /ø:/ /t/ /x/
/a:/ /e/ /h/ /l/ /O/ /u/ /y:/
/aI/ /e:/ /i/ /m/ /p/ /u:/ /Y/
/aU/ /E/ /i:/ /N/ /r/ /U/ /z/

Table 3.1: Available phonemes (42) in the GT corpus represented as IPA symbols.

• MFCCs (e.g., Arslan et al., 1996; Wong et al., 2000; Hansen et al., 2004; Pedersen
et al., 2007; Huckvale, 2007; Hanani et al., 2013; Brown, 2015; Sinha et al., 2015)
• signal energy (e.g., Hillenbrand et al., 1993; Arslan et al., 1996; Kat et al., 1999;

Hanani et al., 2013; Sinha et al., 2015)
• PLP features (e.g., Hanani et al., 2013; Sinha et al., 2015; Biadsy, 2011)
• formants (e.g., Kat et al., 1999; Huckvale, 2004; Woehrling et al., 2009 )
• duration (e.g., Woehrling et al., 2009; Sinha et al., 2015)
• F0 (e.g., Hillenbrand et al., 1993; Kat et al., 1999; Sinha et al., 2015)
• voicing probability (e.g., Woehrling et al., 2009; Finkelstein et al., 2013)
All of these features are part of the feature set employed for geolocalization, including

some less used features that can also be extracted from the speech signal. Extracting
features that are less frequently used in dialect classification should allow unconventional
features to be considered for geolocalization as well. This approach is inspired by the large
feature sets used for para-linguistic challenges (e.g., Schuller et al., 2012 or Schuller et al.,
2013).

Given that Brown (2015) reported that adding the phoneme context slightly decreased
classification performance, no context-dependent features were added.

3.6.2 Overview of Extracted Features

All extracted features applied in the current study are listed in Table 3.2. They were
extracted using the openSMILE software package (Eyben et al., 2010) using a Hamming
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window (cf. Pfister et al., 2008, p. 65) with a step size of 10 ms and a window size of 20 ms.
The openSMILE configuration file that controls the feature extraction can be found in
App. A.5.

Mean, RMS, and log energy (3) Formants (7)
F05 (13) Line Spectral Pairs (LSP) (8)
Auditory Spectrum (AS) (26) Semi-Tone Spectrum (STS) (96)
AS Relative Spectral filtering (26) Arbitrary spectral band energies6 (4)
MFCCs (13) Spectral roll-off points7 (4)
Zero Crossing Rate (ZCR) (1) Spectral centroid and flux (2)
Mean Crossing Rate (MCR) Spectral Entropy (SE) (1)
Voicing Probabilities (VPs) (6) Spectral Variance (SV) (1)
(log) Harmonics-to-Noise Ratio (HNR) (2) Spectral maxpos and minpos (2)
Jitter8 and shimmer (4) Spectral slope, skewness, and kurtosis (3)
Chroma features (12) Spectral harmonicity (1)
Linear Predictive Coding (LPC) (8) Psychoacoustic sharpness (1)

Table 3.2: The base features that were used in the experiments. Additionally, the short-time
functionals slope (∆) and curvature (∆∆) based on the neighboring frames were used (Eyben
et al., 2010). The configuration file to create those features can be found in Appendix A.5.
The number of features the description comprises is listed in parentheses behind the name.

The resulting feature vectors were averaged over the 20% midpoint centered region of

5The fundamental frequency occurs in four different forms. Raw F0 without thresholding (setting it
to 0 if voicing probability τ is smaller than 0.55), F0 after thresholding, smoothed F0, and logarithm of
smoothed F0. Additionally, up to four F0 candidates are added (if less than 4 candidates are found, the
remaining F0 candidate frequencies are set to 0), the number of candidates found in the current speech
sample, and the candidate scores are saved.

6The frequency bands are 250 Hz− 649 Hz, 650 Hz− 999 Hz, 1000 Hz− 3999 Hz, and 4000 Hz− 8000 Hz.
7The roll-off points are 0.25, 0.50, 0.75, and 0.90, describing the frequency at which k percent of maximal

spectral energy can be found.
8Three different jitters are calculated: the local frame-to-frame jitter, the differential frame-to-frame

jitter, and the envelope of frame-to-frame jitter (for more information cf. Eyben et al., 2010).
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each phonetic segment (cf. Fig. 3.3) or the closest vector to the midpoint was selected (in
cases in which one feature vector already covered more than 20%).

Figure 3.3: The depiction of the extraction point of the features.

Additionally, to the listed features in Table 3.2 the short-time functionals ∆ (velocity,
slope) and ∆∆ (acceleration, curvature) were added as well. The current frame’s functional
∆ at time t is approximated by (Eyben et al., 2010):

∆t =
∑W
i=1 i · (vt+i − vt−i)

2 ·∑W
i=1 i

2 (3.1)

where vt−i and vt+i are the feature values of the frames at position t − i and t + i

respectively and W specifies half of the window size (in the current study W = 2). The
∆∆ features where estimated analogously, using the ∆ functionals of the two previous and
two next frames.

This resulted in a set with d = 735 openSMILE features for each phoneme. To this set
the phoneme duration and the speaker sex were added. Therefore, the total feature set
comprises d = 737 features.

The 20% midpoint translates to only a short time segment for most phonemes. For
example, for a phoneme with an average duration of 100 ms, on average two feature vectors
are combined to form the final vector. This adds up to 30 ms of speech (20 ms Frame 1
+ 20 ms Frame 2 – 10 ms overlap). The ∆ and ∆∆ features cover a larger time period,
as they are calculated using the feature values of the surrounding frames. Depending on
the duration of the phoneme, ∆ and ∆∆ feature values sometimes already use information
that is located in the transition area between phonemes.
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3.6.3 Most Prominent Features

The most important features are described in the following. More information about them
can be found in the relevant literature (e.g., Pfister et al., 2008; Jurafsky et al., 2009;
Schuller et al., 2014; Eyben et al., 2010).

Duration: Phoneme duration is extracted directly calculated from the S&L using MAUS.
For this feature no ∆ and ∆∆ features are available.

ZCR and MCR: The ZCR describes the rate at which a signal’s amplitude changes its
sign (from negative to positive and vice versa). The MCR describes, analogously, how often
the amplitude crosses the mean. For signals in which the mean is zero, ZCR and MCR
are equal. They both describe the periodicity in a speech signal. For both, smaller values
are expected in speech segments in which there is voicing (fewer changes). In articulation
the zero crossing coincides with the time of equilibrium of air pressure (neither raised nor
lowered pressure) around the vocal folds (Gussenhoven, 2004, p. 2).

Voicing Probabilities: An overall of six different voicing probabilities are extracted
from the speech signal. For each of the n F0 candidates a voicing probability is estimated
based on the subharmonic summation spectrum peak (Eyben et al., 2010, p. 107; in the
current study n = 4). The feature called Voicing Candidate (VC) in the following is the
voicing probability of the best F0 candidate.

Another voicing probability feature is Voicing Final Unclipped (VU) of the best F0
candidate. The term unclipped is used here to denote that the voicing probability is not
set to 0 when it falls below the voicing threshold τ . The “normal” voicing probability is set
to 0 for parts in which the voicing probability is below τ (in the current study τ = 0.55).

Spectral Variance and Entropy: Similar to the variance and the entropy of distribu-
tions, Spectral Variance (SV) and Spectral Entropy (SE) describe the respective measure
of the spectrum (for the calculation of both, cf. Eyben et al., 2010, p. 124 – 125).
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Auditory Spectrum (AS): The Auditory Spectrum (AS) is based on the critical band
powers of n overlapping mel-scaled triangular filters (in the current study n = 26). After
calculating the natural logarithm, the equal loudness curve and loudness compression are
applied to the spectrum.

For the closely related feature AS Relative Spectral (RASTA) filtering (Rfilt), addition-
ally, RASTA-filtering is applied to the critical band powers (before equal loudness curve
and loudness compression is applied). RASTA filtering tries to limit the spectrum to parts
containing speech. It does so by filtering changes in spectral band energies that are too
slow or too fast to originate from human articulators (for more information, cf. Hermansky
et al., 1994).

Semi-Tone Spectrum (STS): As in mel-scaled spectra, in semi-tone spectra the band-
width increases in higher frequencies. The range of the frequencies covered is 8 octaves,
ranging from the first note at 55 Hz to the last note at 14 080 Hz (Eyben et al., 2010). A
table that lists the bands can be found in App. A.1.

Mel-Frequency Cepstral Coefficient (MFCC): MFCCs are an efficient and compact
representation of a speech signal. They are generated by using the pre-emphasized and
windowed9 frame from which the Fast Fourier Transform (FFT) is calculated. From this
spectrum, n bands are extracted using n overlapping mel-scaled triangular filters (in the
current case n = 26). From each of the mel spectrum values, the logarithm is calculated.
Based on this spectral band representation, treating it like a usual discrete time series, a
Discrete Cosine Transform (DCT) calculates the decorrelated cepstral coefficients (in the
current case, the first 13 coefficients are used, including the first C0; for more information,
e.g., cf. Pfister et al., 2008, p. 296 or Jurafsky et al., 2009, pp. 329 – 336).

Linear Predictive Coding (LPC): LPC uses the notion that subsequent samples in
a (speech) signal are not statistically independent. Therefore, the current speech sample
s(n) can at least partially be approximated by the past k speech samples s(n−k), ..., n(−1)

9In this study a hamming window is used.
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(in the current study k = 8). This is done, for example, to reduce the amount of infor-
mation that has to be sent over a channel for transmitting speech (e.g., a telephone line).
Additionally, LPC allows estimating formant frequencies and bandwidth (Schuller et al.,
2014). After LPC analysis only the coefficients and the resulting error term need to be
transmitted, whereas the error term can be efficiently compressed (e.g., unvoiced speech
parts resemble white noise; for more information cf., e.g., Pfister et al., 2008, p. 81). This
leads to a considerable reduction in data size which benefits transmission.

Line Spectral Pairs (LSP): The linear predictor estimated during LPC analysis can be
decomposed into a symmetrical and an unsymmetrical part. The LSP coefficients are the
zeros of the two resulting polynomials. All zeros lie on the unit circle, the zeros alternate
between the symmetrical and unsymmetrical part, and appear in complex symmetrical
pairs (hence the name Line Spectral Pairs). As all coefficients have the same magnitude,
they are more robust against quantization noise than the original LPC coefficients (for
more information cf., e.g., Schuller et al., 2014).

3.7 Applied Machine Learning Algorithms and Tech-

niques

3.7.1 Algorithms

Three different widely used non-linear prediction algorithms are employed to combine the
advantages inherent to each of them:
• Random Forests (RFs) - predictive power, speed, and feature selection
• Support Vector Regression (SVR) - predictive power
• Decision Trees (DTs) - interpretability of the model

Random Forests

RFs, originally proposed by Breiman (2001), have three major advantages. First, they
can be trained quickly, as it is possible to grow the multiple (mostly in the hundreds)
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decorrelated DTs in parallel. Second, it is reported that the results of RFs are insensitive
to their hyperparameters10 (Breiman, 2001; Archer et al., 2008; Díaz-Uriarte et al., 2006).
And third, they output a feature importance, which allows particularly useful as well
as particularly useless features to be spotted (cf. Sec. 3.7.4). Another, albeit smaller,
advantage of RFs (this holds true for DTs) is the ability to handle datasets in which the
number of dimensions d is much larger than the number of observations n (d≫ n, like in
experiment 3 in the current study; James et al., 2014, p. 320).

RFs (like SVMs and DTs) support both classification and regression tasks through
minor changes to the algorithm. The first difference is the splitting criterion, which is the
Gini index for classification, a measure that estimates the impurity in a node (for more
information on the Gini index, e.g., cf. James et al., 2014) and the variable response for
regression tasks (Wright et al., 2015). The second is the way in which the response for each
node individually, and the forest overall (based on single tree predictions), is calculated.
In classification tasks, this is done by a majority vote. This means that whatever class
appears most often in the selected node is taken as its response. The same is true for the
overall prediction of the forest, in which the returned output is the mean of the prediction
of individual trees. In regression tasks, the mean of the respective values is used; again for
both individual node response and overall forest prediction (Wright et al., 2015).

Another argument for using RFs is that a comparative study on real-world classification
problems, revealed that RFs were in many cases the best classifier11, even outperforming
the more complex and slower SVM (Fernández-Delgado et al., 2014). Even though the
hyperparameters are reported to be insensitive to changes, the two most important hyper-
parameters were evaluated in experiments 1 and 2: the number of trees grown in a forest
(in the following abbreviated with ntree) and the number of features randomly considered
at each split (in the following abbreviated with mtry). Often dimensionality d is used to
define fitting values for mtry. For example

√
d is the default value for classification and

10The term hyperparameter refers to the different parameters used to tweak ML algorithms, for example,
how they react to misclassifications or how many trees to grow in an RF.

11Despite the “No free lunch theorem”, which postulates that no algorithm A is better on average on all
problems than any other algorithm B (Wolpert, 1996).
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d/3 for regression tasks for several implementations of the RF algorithm in the R pro-
gramming environment (R Core Team, 2018). One example is the original implementation
of Breiman’s algorithm (Liaw et al., 2002a). If the calculation does not result in whole
integers, they were rounded to the next smallest integer.

Fully grown trees were generated using the package Random Forest Generator” (ranger)
described in Wright et al. (2015) for the R programming environment. The outstanding
performance of ranger in comparison to other RF implementations in R is noteworthy (for
more information cf. Wright et al., 2015). The default values for minimal node size was
left unchanged, which was 1 for classification and 5 for regression.

Support Vector Machines and Support Vector Regression

Support Vector Machines (SVMs) were developed by Vapnik between 1965 and 1995 (Vap-
nik, 2006) and were originally designed for linear two-class classification. They were ex-
tended to non-linear tasks by Boser et al. (1992). For a feature vector with dimensionality
p, the SVM tries to find a separating p-dimensional hyperplane, to separate the two classes.
If this is not possible, it expands the dimensionality to p+ 1, in which such a separation is
always possible. To avoid the computational costs of this high-dimensional feature space,
the kernel trick is applied (Wang, 2005, p. 24–26). The trick is to compute the inner prod-
ucts not in the feature space (high dimensionality), but by using a kernel function in the
input feature space (low dimensionality). The SVM then tries to find the maximum-margin
separating hyperplane in the low-dimensional space. Using the notion that examples fur-
ther away from the hyperplane are less important for its shape, only a subset of training
vectors is used to define its shape (called support vectors). Support Vector Regression
(SVR; Drucker et al., 1997) is an extension of the SVM algorithm to predict continuous
variables. It also uses the kernel trick, analogously to the SVM, to find the best non-linear
approximation of the regression function.

In SVM/SVR models that employ a Radial Basis Function (RBF) kernel, two tun-
able hyperparameters influence the smoothness of the resulting function. These are C,
which controls the amount of penalization of deviations from the real values directly in
the SVM/SVR model, and γ, which controls the complexity of the projection in the RBF
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kernel. The RBF kernel takes the form:

k(u, v) = exp(−γ‖u− v‖2) (3.2)

For more information on SVM cf. for example Russell et al. (2010) and James et al.
(2014), and for SVR cf. for example Schuller et al. (2014).

In the current study, an SVR model is used in experiment 3 to validate the results of
a feature selection based on the output of an RF. The SVR was trained using the e1071
package (Meyer et al., 2015) of the R environment, which uses the libsvm library (Chang
et al., 2011) internally.

Decision Trees

Decision trees, when compared to the other two algorithms, commonly perform worse (e.g.,
Woehrling et al., 2009; Fernández-Delgado et al., 2014)12. However, they have the benefit
of the resulting models in that they are being easy to interpret. In the present study, the
trees were trained on features that were ranked highly by the RFs during the training step
and were then confirmed to possess predictive power by the SVR. Growing a DT allows
for a more straightforward phonetic interpretation of the features compared to RFs and
SVR (cf. e.g., Woehrling et al., 2009, p. 2184).

In the current study, a binary decision tree was trained. Binary means that each node
results in two alternative paths. The standard splitting criterion applied in the used R
package rpart is the Gini index (for more information on rpart cf. Therneau et al., 2018).
The final prediction of the tree in regression tasks, like in RFs, is calculated by the mean
of the instances residing in the final node.

12Hastie (2014) states that the algorithms usually perform in the following order: Boosting � Random
Forests � Bagging � Single Tree.
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3.7.2 Performance Metrics

Metrics for Classification

For the classification problem, the performance metrics reported are accuracy, precision,
and recall. They are defined as

Accuracy = tp + tn
tp + tn + fp + fn

(3.3)

Precision = tp
tp + fp

, (3.4)

Recall = tp
tp + fn

(3.5)

where tp denotes the true positives, fp the false positives, tn the true negatives, and fn
the false negatives.

Precision and recall are necessary as accuracy alone is not a good measure of the
classifier quality. This is true for cases in which the classifier output is skewed towards
predicting one class more often than another. This happens in cases in which the amount
of samples for the two-classes is skewed towards one class and the model only learns to
predict one class (i.e, overfits the data). In these types of cases, the accuracy will yield good
results despite only outputting one class due to the skewed class distributions. However,
this is probably not desired for most applications.

An example of a skewed distribution would be 9.900 observations for class A and 100
observations for class B. If a classifier always outputs class A, the classifier would achieve
a high accuracy of 0.99 (out of 1). In this example, 0.99 is called the No Information
Rate (NIR). It is defined as:

NIR = cmaj
tp + tn

(3.6)

where cmaj is the number of samples in the majority class (Kuhn et al., 2017). The
two other metrics circumvent this problem, by describing two ratios that take into account
how skewed a prediction is.
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Metrics for Regression

To estimate how well a regression model f is able to approximate the real output y by its
prediction ŷ, the correlation coefficient (Pearson) and the mean absolute error (MAE) are
reported. The Pearson correlation coefficient is defined by (Clauss et al., 1974, p. 117):

r =
∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(xi − ȳ)2
√∑n

i=1(yi − ¯̂y)2
(3.7)

where n is the amount of samples and¯denots the mean over either the known output
y or the predicted output ŷ. The MAE is defined by:

MAE = 1
n

n∑
i=1
|yi − ŷi| (3.8)

The MAE is reported instead of the root mean squared error (RMSE) because it is
easier to interpret and the error and its severance have a linear relationship in the current
case. This means a prediction error of 2 is only twice as bad as a prediction error of 1 (and
not worse). Therefore, the MAE is a more desirable metric for this study.

3.7.3 Data Partition – Testing Strategy

For all experiments a standard Leave-25%-speaker-out Cross Validation (CV) was applied
(to end up with multiple, different subsets as proposed, for example, in Guyon et al., 2003).
The four speakers recorded in each corpus location were randomly assigned to four groups,
balancing the locations in the different subsets. This splitting provides the model with
sufficient data (≈ 480 speakers per fold) and sufficient material describing the geographic
distribution of features. Furthermore, it allows the model’s generalization to be tested as
each speaker tested has not been encountered by the model before (Guyon et al., 2003).

Since the full set of four speakers did not exist for all locations, this resulted in slightly
unbalanced sets regarding the number of speakers.
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3.7.4 Evaluation of Features

As mentioned before, RFs and DTs are able to assess the quality of features, by using a
measure called Variable Importance (VI). The VI is a measure that evaluates the con-
tribution of a feature to the classification/regression problem in trees and, subsequently,
in forests (Breiman, 2001). The VI is based on the impurity measure used to split nodes
during the growth of the trees. An estimated VI is calculated by the resulting decrease
of impurity that each variable contributes to the tree (i.e., it is based on the Gini index
in classification and on the response variance in regression; Wright et al., 2015). The VI
has two general problems. These are that features that have a high VI “mask” correlated
features and in classification tasks the VI inherits the weakness of the Gini index, meaning
that it prefers features with many outcomes over ones with few (e.g., Louppe, 2014; Nem-
brini et al., 2018). Despite these problems, the VI is used to evaluate the importance of
features, for example, in Archer et al. (2008), Xue et al. (2006), and Liaw et al. (2002b). In
line with these studies, this metric will be used in the current study to assess the quality
of features and to perform a feature selection.

Two task-specific problems regarding the VI that are relevant for the current study will
be discussed in the following.

First, the masking of correlated features has two drawbacks. a) it may result in a high
ranking of hard-to-explain features even though easier-to-explain features would possess
exactly or almost the same predictive power. This masking is a problem when it comes
to interpretation. b) several highly correlated features might end up under the top-ranked
features. Therefore, by no means is a minimal set of features produced. This only poses a
problem for the size of the final set and not for its predictive power, as all important features
that have been used during the prediction in the RF are highly ranked (even though they
might be highly correlated and therefore redundant) and those features that have been
discarded (because they are masked) can be left out, as they would not contribute more
information than the higher ranked (correlated) features.

Second, the VI only asses the overall decrease in impurity in the tree, i.e., it is known
how important a feature is to the forest, but it is unknown how it was used to split the
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feature space. This missing information constitutes a problem if the features are supposed
to be mapped onto a geographic space, to see if these distributions coincide with known
dialectal boundaries. This drawback is ignored for experiment 1 and 2. In experiment
3, the VI is used to select the best features from a large feature set (consisting of a
combination of all features of all phonemes; cf. Sec. 3.10). A DT is then trained using this
subset, which allows a geographic visualization of features selected at various splits in the
tree. Additionally, the VI is used to discard those features that did not contribute to the
prediction model at all (cf. Sec. 3.8.6).

3.8 Experiment 1 – Binary Classification of Speakers

3.8.1 Experimental Design

Two two-class classification models are evaluated in this experiment to test the predictive
power of the extracted features per phoneme. This means, that for each phoneme an
individual model is trained, which tries to predict speaker origin based on a single uttered
phoneme (e.g., for a phoneme with a length of 100 ms, this translates to 30 ms of information
as mentioned in Sec. 3.6.2). In each direction, the corpus area is split into two halves and
for each direction, an RF model is trained to distinguish speakers from the respective half.
Therefore, the tasks are to assign speakers correctly to a) the North or South half of the
corpus area (first model) and b) the East or West half of the corpus area (second model).

This classification will show whether the extracted features reflect the presumed regional
variation contained in the speech sample and if this is sufficient to perform at least a rough
division of speaker origins. If such a fairly simple two-class classification is not possible
above the level of chance, the more challenging regression task is likely to fail as well.
Additionally, if the two-way classification works, but a continuous estimation of speaker
position does not, this could constitute a fallback, allowing at least a rough estimation of
the speaker position.

The experiment in this section involves the following steps:

1. Dividing up the speakers based on their origin and assigning an appropriate label
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(North/South and East/West13).
2. Performing a hyperparameter search on the RF for both directions separately.
3. Identifying phonemes and features that work well for each direction.
4. Detecting features that do not contribute to the prediction at all (noise features).

3.8.2 Division of Speakers

As stated above, two binary classifiers were trained. For this, the corpus was divided twice
into two halves, once in the east-west and once in the north-south direction. The labels are
created by splitting the corpus area at the midpoint. This point is defined by the center
of gravity of all 165 recording sites’ positions in the corpus (cf. horizontal and vertical line
in Fig. 3.2). The midpoint is located at14:

• East/West (longitude): 10.41484◦E
• North/South (latitude): 50.01903◦N

The division is carried out by using a bottom-up approach independent of any top-
down knowledge, this means for example, a dialectological-driven east-west and north-south
separation.

North/South division: All speakers originating below or at the same altitude as the
corpus midpoint were grouped in the “South” class and the remainder in the “North” class.

13In the remainder of this chapter, East/West and North/South are used to denote the classes of the
respective region in the corpus area. In contrast to that, east-west and north-south are used to describe
the respective direction (also in regression tasks).

14All geodetic datums in this thesis are WGS84 geodetic datums specified by longitude and latitude
(National Imagery and Mapping Agency, 2000). “Easting” (E) describes a position in the east-west
direction and is defined as a positive number that describes a position eastwards and a negative number
describing a position westwards from a north-south reference line. Accordingly, it defines “Northing” (N)
as a position on a north-south direction in which positive numbers describe a position northwards and a
negative number a position southwards from an east-west reference line. In the following, the Greenwich
meridian is used for Easting and the equator for Northing. Furthermore, if not otherwise stated, the
longitude is listed before the latitude. All coordinates will be specified in decimal degrees (for more
information, e.g., cf. Nilsson et al., 2004).
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This division resulted in 334 speakers (52.19%) in the “South” class (159 male, 175 female)
and 306 speakers (47.81%) in the “North” class (153 male, 153 female).

East/West division: Similarly, all speakers originating west of or at the same position
as the corpus midpoint were grouped in the “West” class and the remainder in the “East”
class. This split resulted in 340 speakers (53.125%) in the “West” class (164 male, 176
female) and 300 (46.875%) speakers in the “East” class (148 male, 152 female).

3.8.3 Results of the Random Forest Parametrizations

It has already been mentioned in Sec. 3.7 that the influence of the two main RF hyper-
parameters mtry and ntree on the prediction were tested. First, mtry was varied in three
steps 27 (≈

√
d), 100, and 245 (≈ d/3) with a fixed number of 100 trees. Second, ntree

was varied in three steps with 100, 150, and 250 trees with a fixed mtry = 27. A full grid
search with all combinations was not performed to save processing time.

For both hyperparameters, the resulting average accuracy over the individual phoneme
models was calculated. The mean accuracies for the three different mtry values

√
d, 100,

and d/3 (with ntree = 100) and the three values for ntree 100, 150, and 250 (with mtry =
√
d) can be seen in Table 3.3, where the values are presented separately for the division in

each direction. It can be seen that the RFs classification results are insensitive to changes
in these hyperparameters, which agrees with previous findings (e.g., Breiman, 2001; Díaz-
Uriarte et al., 2006; Archer et al., 2008).

The improvement in classification accuracy was, however, statistically significant for
both directions regarding higher values in ntree and for the North/South distinction also
for mtry 100. Significance was estimated based on Bonferroni-corrected paired one-sided
Wilcoxon-Mann-Whitney tests using the prediction accuracy of all 42 phonemes as input.
For mtry the combinations

√
d vs. 100 and 100 vs. d/3 , and for ntree the combinations

100 vs. 150 and 150 vs. 250 were tested. Tests with a significance level of d < .01 are
marked by “**”.

Based on the hyperparameter tuning, the results presented in the remainder of this
section describing experiment 1 are in the north-south direction for ntree 250 and mtry 100
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Table 3.3: Average accuracy over all 42 phonemes in the classification task for a) mtry values
√
d, 100, and d/3 for 100 trained trees and b) ntree values 100, 150, and 250 when trained

using mtry =
√
d. Statistically significant improvements over the next lower value is indicated

by two stars ** (p < 0.01).

Division mtry trees
√
d 100 d/3 100 150 250

North/South 0.6034 0.6054** 0.6053 0.6034 0.6074** 0.6112**
East/West 0.5358 0.5360 0.5365 0.5358 0.5382** 0.5400**

and in the east-west direction for ntree 250 and mtry 27 (
√
d).

3.8.4 Classification Results – North/South

Table 3.4: Classification accuracy, precision, recall, and NIR of the five top-ranking phonemes
for North/South classification; ordered by accuracy and rounded to four decimals for both
classification tasks.

Phoneme Accuracy Precision Recall NIR

/z/ 0.7037 0.6923 0.6466 0.5377
/ø:/ 0.6898 0.6696 0.5958 0.5557
/Y/ 0.6612 0.6384 0.3391 0.6028
/i/ 0.6474 0.6499 0.7043 0.5223
/aU/ 0.6455 0.6471 0.6867 0.5153

Table 3.4 shows the results for the five best phonemes, ranked by their accuracy. It
is worth mentioning that all phonemes (including the phonemes not shown in Table 3.4)
predict the correct geographic class above the level of chance. The worst accuracy of 0.5689
is achieved with the phoneme /o/.

Table 3.5 lists the best features for the phonemes /z/ and /ø:/. It can be seen that,
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Table 3.5: The top ten features for the best-performing phonemes /z/ and /ø:/, ranked by
VI. In the case that a feature is a vector, its index is given in parentheses, starting at 0. As a
reminder, a list of acronyms can be found at the beginning of this thesis.

/z/ /ø:/

VU MFCC (7)
VC (0) MFCC (8)
AS (13) AS (13)
AS (14) STS (61)
AS (2) MFCC (5)
ZCR MFCC (3)
SE AS Rfilt (10)
MCR AS (10)
MFCC (8) AS Rfilt (9)∆
AS (16) AS (10) ∆

apart from features describing the periodicity of a phoneme, like voicing, MCR, ZCR, and
SE, MFCC and AS features are the most prominent features.

Once again, it is worth noting: the voicing probability that can be linked to a devoicing
of /z/ in southern varieties does not necessarily mean that the voicing probability extracted
from the speech signal only captures strongly voiced speech segments. Due to the large
amount of data available, as stated before, a manual auditory validation of the assumed
connection between extracted acoustic features and signal was not performed.

Interestingly, only two short-time functionals are listed for /ø:/: the ∆ of AS coefficient
(10) and the ∆ of RASTA-filtered AS coefficient (9). This trend is continued within the
top 50 features, where for /z/ only ten (20%) and for /ø:/ only 13 features (26%) are ∆ or
∆∆ features. When taking all phonemes into account, only around ≈ 33% of the top 50
features of all phonemes are ∆ and ∆∆ features. This might be due to three reasons: a)
these features do not model regional variation well, b) they are masked by other features
that are ranked higher, or c) the ∆ and ∆∆ features are more influenced by context due
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to coarticulation, which does not generalize well.

The features VU and VC (0) of phoneme /z/ are a good example of the masking effect
of the VI mentioned earlier. According to the VI, they are the best and second best feature
for prediction. However, they are almost perfectly correlated with R = 0.9999997 and both
are identical except for 17 realized /z/ (17 differences for 46566 realized /z/; the absolute
differences in those 17 cases cumulate to 6.85 · 10−5).

Phoneme /z/: The best features reported are VC, VU, measures of the periodicity of
the signal (like ZCR and MCR), and a measure of the periodicity of the spectrum in case
of SE (cf. Table 3.5, left column). These can be linked to the often reported devoicing of
German standard non-final /z/ in southern varieties of German (e.g., König, 1989, p. 93;
Barbour et al., 1990, p. 156; Wängler, 1967, p. 143) in many positions15. [z

˚
] substitutes an

/s/-like sound that is pronounced more weakly, instead of the stronger pronunciation of
the actual /s/; the aforementioned literature agrees that the lenis character of /z/ is still
present in the pronunciation of the devoiced form in the southern varieties.

A good separation can be achieved between northern and southern speakers of the
corpus area using the feature VU of phoneme /z/ alone. The distribution over the corpus
area of this feature is shown in Fig. 3.4, in which a clear separation can be seen between
the North and the South. In the plot, each value is the average over multiple realizations
of /z/ for a speaker and has then been normalized to a range between 0 and 1 using the
5% and 95% quantiles (so as to make them more robust against outliers). The colors are
taken from a perceptually balanced color-scale (Moreland, 2009).

The AS features describe the frequency bands 139.62 Hz−312.76 Hz (AS (2)), 1644.00 Hz−
2127.37 Hz (AS (13)), 1873.31 Hz−2403.96 Hz (AS (14)), 2401.42 Hz−3040.97 Hz (AS (16)),
and 2704.83 Hz−3406.94 Hz (AS (17)). The lower band of AS (2) especially, is a location in
the spectrum, where a large difference between [z] and [z

˚
] is to be expected. In this band,

the voice bar of voiced /z/ should lead to higher energies in northern speakers, which is

15Phoneme /z/ is voiced in standard German word-initial in front of a vowel, intervocalic, between /m,

n, N, l, r/ and vowel, and after /p, b, d, t, g, k/ in epentheses and in suffixes -sam, -sal, and -sel (König,
1989, p. 93)
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Figure 3.4: A map showing the distribution of feature VU for the phoneme /z/. The values
are averaged over all realizations of a speaker and then normalized to the range between 0
and 1 using the 5% and 95% quantiles so as to be more robust against outliers. Blue colored
circles indicate low values for the voicing probability (close to 0), red colored circles indicate
high values for voicing probability (close to 1), and gray colored circles indicate values in the
middle of the scale (around 0.5).
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indeed the case (cf. Fig. A.1). As expected, in the other three bands, more energy can be
found in the southern speakers due to more frication in [z

˚
] (cf. Fig. A.1).

MFCC (8) translates to a cross-correlation of a cosine with 31
2 cycles over the spectrum.

Having this many peaks and troughs, this feature is a bit more difficult to explain. Espe-
cially because the spectral envelop looks similar for both northern and southern speakers
(cf. Fig. A.2). However, the majority of the northern speakers start the first cycle below
0, the majority of the southern speakers above 0. As the feature values are closer to 0 for
the southern speakers, the spectrum is flatter for them. The peak of the first cycle is at
around 250 Hz for the northern speakers. This correlation could be once again interpreted
as an indicator of the voice bar. The rest of the peaks over the spectrum cannot be fully
explained (cf. Fig. A.2).

Phoneme /ø:/: The second best phoneme for distinguishing the North from the South
is /ø:/ (cf. Table 3.5, right column). One reason for this could be the realization of /ø:/ as
an [ø:]-like sound in the North of the corpus area, although the realization is more [e:]-like
in Bavarian and Swiss varieties (Landesbibliothek, 2013; Kleber, personal communication,
2018). This assumption is supported by the fact that many features occupy spectral bands
that are normally occupied by the second formant of vowels (cf. Fig. 3.5b).

The second formant (F2) describes the change of the horizontal tongue position and
lip rounding (vocal tract shape changes are not independent, cf. Formantverschieber16 in
Tillmann et al., 1980, p. 262). Assuming the formant values describe a difference between
[ø:]-like and [e:]-like realizations, the decrease in F2 mostly describes the presence of more
lip rounding in the vowel /ø:/. It could also describe a difference in the retraction of the
tongue. Features that characterize the energy present in those bands appear in different
forms, with or without Rfilt.

The top features describe the following frequency bands: 913.70 Hz − 1246.46 Hz (AS
Rfilt (9)), 1071.56 Hz − 1436.88 Hz (AS (10), AS Rfilt (10), and AS Rfilt (10) ∆), and
1644.00 Hz−2127.37 Hz (AS (13)). This is supported by the fact that the northern speakers
have more energy in the lower bands AS (9) and AS (10), and the southern speakers more

16Formantverschieber roughly translates to “formant shifter”.
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in the upper band AS (13). This could mean that southern speakers move the F2 closer
to an /e:/-like target (cf. Fig. 3.5b; cf. boxplots of feature values in Fig. A.3).

The feature STS (61) has a similar frequency range to AS (13). It describes the spec-
trum between 1812.33 Hz and 1920.095 Hz, which is the band around the center frequency
of AS (13) at 1885.69 Hz. Therefore, it could describe the energy in the second formant of
[e:], where one would expect to be more energy present for the southern speakers, which is
the case (cf. boxplots of feature values in Fig. A.3).

A resynthesis of the MFCC (5) can be seen in Fig. 3.5a. Vertical lines are plotted at
the points distinguishing /ø:/ from /e:/ at 800 Hz (solid line), 1500 Hz (left dashed line),
2500 Hz (right dashed line), 2000 Hz (left dotted line), and 3000 Hz (right dotted line).
Between the solid and the left dashed line, less energy for the southern speakers would be
expected due to the [e:]-like pronunciation. Between the two dashed lines more energy for
the northern speakers ([ø:]), and between the two dotted lines more energy for the southern
speakers ([e:]) is to be expected.

The first and third assumption hold true for MFCC (5). The second assumption lies
close to the turning point of the cosine wave, where it has only little influence on the ampli-
tude of the cosine wave. When looking at MFCC (2) – not in the top ten list – describing
the curvature of the spectrum, it can be seen that the spectral envelope of the northern
speakers is flatter across the spectrum than for southern speakers. This would agree with
an /e:/-like pronunciation of the southern speakers, since in these sounds the change in
energy across the spectrum is supposed to be greater than for [ø:]-like pronunciations (cf.
3.5b)

Another problem that arises when interpreting MFCCs is that they do not only describe
frequencies of interest in the current phoneme-class (in the current case vowels for which the
range between 0 Hz− 4000 Hz is of special interest) but the whole spectrum. Nevertheless,
MFCCs have often been shown to model all kinds of speaker variability and para-linguistic
traits, such as emotion recognition (e.g., Sato et al., 2007; Schuller et al., 2009), speaker
recognition (e.g., Murty et al., 2006; Tiwari, 2010), and dialect classification (cf. Sec. 3.3).
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(a) Resynthesis of the coefficient MFCC (5) for phoneme /ø:/ with

lines at 800 Hz (solid line), 1500 Hz (left dashed line), 2500 Hz (right

dashed line), 2000 Hz (left dotted line), and 3000 Hz (right dotted

line). The lines indicate resynthesized spectral envelopes of speakers

from the North (plotted in red) and the South (plotted in blue). The

two thick lines are the resynthesis of the averaged MFCC over all

speakers for the respective group.

(b) Example spec-

trogram of [e] vs. [ø]

(Machelett, 1996).

Figure 3.5: Resynthesis of the MFCC coefficient five (left) for North/South classification and
the spectrogram of an example of the two phonemes it might distinguish (right).
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3.8.5 Classification Results – East-West

The results of classification accuracy, precision, recall, and NIR are summarized in Table
3.6 for the top five phonemes in the east-west direction. It can be seen that even the five
best phonemes do not perform well above the level of chance. Overall, the classification
accuracies of all shown phonemes lie close together and no phoneme reaches an accuracy
above 58%.

Table 3.6: Classification accuracy, precision, recall, and NIR of the five top-ranking phonemes
for East/West classification; ranked by accuracy and rounded to four decimal places for both
classification tasks.

Phoneme Accuracy Precision Recall NIR

/ø:/ 0.5791 0.5891 0.7498 0.5443
/z/ 0.5754 0.5829 0.6929 0.5287
/E:/ 0.5718 0.5768 0.7007 0.5264
/u/ 0.5667 0.5675 0.5700 0.5013
/ç/ 0.5593 0.5663 0.7228 0.5306

The best features for the once again best phonemes /ø:/ and /z/ are shown in Table 3.7.
Not even one short-time functional is present under the top ten features for both phonemes.
This is a trend that continues, for phoneme /ø:/ only eleven ∆ and ∆∆ features are under
the top 50 features and for phoneme /z/ there are only four ∆∆ features present.

Phoneme /ø:/: The features of /ø:/ are partially identical to the North/South distinc-
tion case (cf. 3.7, left column). The fact that the used features are mostly the same might
stem from the fact that the straight vertical line used for separating East and West does
not reflect the dialectological reality and no better distinction between “East” and “West”
can be made using other features from different phonemes.

The reappearing features are MFCC (3), MFCC (7), MFCC (8), AS (10) (1071.56 Hz−
1436.88 Hz), AS (13) (1644.00 Hz− 2127.37 Hz), and STS (61) (1812.33 Hz− 1920.095 Hz).
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Table 3.7: The top ten features for the best-performing phonemes /ø:/ and /z/, ranked by
VI for the East/West classification. If a feature is a vector its index is given in parentheses
starting at 0.

/ø:/ /z/
MFCC (8) MFCC (8)
MFCC (3) AS (20)
MFCC (10) LSP (0)
AS (13) AS (17)
STS (88) AS (18)
STS (87) STS (76)
AS (10) MFCC (3)
MFCC (7) AS (19)
SV MFCC (1)
STS (61) STS (75)

That the separation is partially an artifact of the crude East/West separation is supported
by the actual feature values. In them, the East appears to behave similarly to the South
and the North similar to the West (cf. boxplots of feature values in Fig. A.5).

The other features do not show a clear east-west distinction when their averages are
plotted over a German map. STS (87) (8137.08 Hz− 8620.93 Hz), STS (88) (8620.93 Hz−
9133.56 Hz), and SV only distinguish particular parts on the map. This suggests that the
values overlap to a great extent, which is the case (cf. feature values in Fig. A.6). The fact
that no clear East/West separation can be observed in the plotted feature values is taken
as evidence that distinguishing East from West is not as trivial as North from South when
using only a single phoneme.

Phoneme /z/: That the phoneme /z/ is known to be devoiced in the southern German
varieties was already mentioned in Sec. 3.8.4. Based on the data-driven axis-parallel divi-
sion of the corpus area the method uses a straight line for North/South separation. This
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separation is unlikely to reflect the dialectological reality. A more realistic separating line
would be a diagonal, curved one. This mismatch could be the reason why Eastern speakers
behave like speakers from the South and Western speakers like ones from the North. There-
fore, similar features based on the same variation are used to distinguish the (data-driven)
East and West halves of Germany. One feature that supports this hypothesis is MFCC
(8) (cf. 3.7, right column) as it appears under the top ten features in the North/South
distinction as well. Even though this feature is hard to explain, the existence in both top
ten feature lists means that it can be assumed that the same information is used.

The feature values for AS (17) (2704.83 Hz − 3406.94 Hz), AS (18) (3037.91 Hz −
3808.71 Hz), AS (19) (3403.58 Hz − 4249.79 Hz), and AS (20) (3805.03 Hz − 4734.02 Hz)
further support this claim. Like for the southern speakers in the North/South distinction,
the feature values are higher in this band for speakers originating from the East. This
behavior is expected for a devoiced /z/.

Additional evidence is given by the resynthesis of the feature MFCC (1) as speakers
from the West of the corpus area tend to devoice more. In the resynthesis, it can be seen
that the slope for the speakers from the East rises (more energy in higher bands), whereas
the speakers from the West of the corpus area have a flatter envelope (cf. Fig. A.8).

The LSP (0) is an interesting feature as it did not appear in the North/South distinction
(cf. Secs. 3.6.3 and 3.6.3). LSP (0) has lower values for North and West, which might be
an indicator of the existence of a voice bar since the energy in the envelope would need to
be reconstructed there. The fact that this difference is due to the voice bar being present
or not, is supported by higher values for the East German speakers, just like the higher
ones for the southern speakers. (cf. Fig. A.9).

3.8.6 Noise Features

During the experiment, 81 features showed a VI of 0.0 in all phonemes. Those features are
(vector index in parentheses starting at 0):

• Linear Predictive Coding (LPC) (3,4,5,6,7) (five features)
• Semi-Tone Spectrum (STS) (0-7,9-11,13,14,16,18,19,21,23,26,30,94,95) (22 features)
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including the respective ∆ and ∆∆ features (54 features). Due to the fact that they
do not contribute to the prediction, these features will be excluded from the feature sets
of the subsequent experiments to save processing time.

3.8.7 Discussion

It could be shown that many phonemes can be used to distinguish speakers from different
parts of Germany. All phoneme types available in the corpus can be used to classify
North/South above the level of chance, and 31 (of 42) phonemes can be used to classify
East/West above the level of chance.

The best performance achieved in any direction was 70.37% for the phoneme /z/. The
achieved accuracy is around 11% worse than in the previous experiment reported in Kisler
et al. (2018b). This is because for all speakers the majority vote of the predictions for all of
his/her realized phonemes was used to decide on the final prediction in Kisler et al. (2018b),
whereas in the current study only a single uttered phoneme was used. This changes the
results for two reasons. First, not every single uttered phoneme /z/ is devoiced, not even
in the southern varieties. This is because, depending on the context, not every /z/ is
supposed to be devoiced (even though those cases are in the absolute minority). Second,
due to intra-speaker variability in spontaneous speech, not all speakers always fully devoice
all /z/.

Another reason affecting the performance negatively is the division of the respective
halves using a straight line, something that also negatively influenced the results in Kisler et
al. (2018b). This shape does not reflect dialectological reality, where a diagonal, curved line
would more accurately portray reality. Using a dialectological motivated line to separate
the two halves would improve the results, though would contradict the pursued bottom-up
approach.

The results from the current study suggest that even a small subset of phoneme types
could be sufficient for a regression analysis. Only relying on a few phonemes might en-
able applications, for example, in an ASR system to be able to estimate a speaker’s origin
from his or her first few spoken words. Furthermore, good estimation performance based
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on a small number of phonemes seems to be more likely for North/South than for East-
/West. This is because the accuracy for the East/West distinction was worse than for
the North/South distinction. One would expect classification schemes based on linguistic
features such as dialectal word forms or phonemic n-grams (Stadtschnitzer et al., 2014)
are expected to require much more input data from the target speaker then used in the
current case.

Next to only using a few phonemes, it seems that it might be possible to base the
localization on only a few features for the North/South classification. Using only a few
different features seems questionable for the east-west direction as a) the results are much
worse and b) the VI is more equally spread over the features (cf. Fig. A.10(17)). The low
VI might indicate that more features need to be combined to achieve a result that still
does not reach the performance of the North/South distinction.

Fig. 3.6 shows the relationship between the accuracy achieved in the North/South
and the East/West classification task for each phoneme. It is interesting to see a strong
correlation between the accuracy in both directions (R = 0.6112). This correlation could
be partially due to the above mentioned artifact caused by the crude separation of the
respective halves with two straight, axis parallel lines. However, different features are used
for the two different directions, which might be an indicator that the entire performance
is not a result of only this artifact.

When regarding the VI of features, it is important to keep in mind that features are
always combined with other features and, by definition of the RF, features are combined
in multiple different ways due to random selection at each split. Nevertheless, the steep
decrease in importance in the north-south dimension is evidence for features that much
better model variation than others (cf. Fig. A.10).

A total of 81 (≈ 11% of the set of 737) features in the openSMILE feature set were
found unsuitable for the classification task. In further tests these features can be omitted
to save processing time.

17For comparability of the VI values they are compared to forests grown with the same mtry value
(mtry = 100) as this parameter controls the models’ complexity; in all other results for the east-west
dimension mtry was set to

√
d.
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Figure 3.6: A plot of phoneme-wise accuracy for both directions (east-west on the x-axis,
north-south on the y-axis). For the North/South classification all phonemes were above NIR.
These phonemes that were above NIR in the East/West classification are drawn in black, those
below NIR in orange.
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3.9 Experiment 2 – Regression of Speaker Location

3.9.1 Experimental Design

The previous experiment showed that extracted features contain information that relates
to geographic variation and therefore enables the prediction of a speakers’ origin above
the level of chance. The experiment in the following section builds on the results of the
intermediate step that was experiment 1 and answers the questions: Is it possible to con-
tinuously estimate speaker origin in a geographic space based on a single phoneme extracted
from a speech sample? And if so: How exact is this localization?.

The experiment will be performed in an analogous fashion to experiment 1, the differ-
ence being that the RF predicts continuous positions instead of class membership. For the
current experiment, the original dataset introduced in Sec. 3.6 will be used, minus the 81
noise features listed in Sec. 3.8.6. Removing the noise features leads to a feature vector of
dimensionality d = 656.

Conducting the experiment involves the following steps:

1. Select a baseline for comparison.
2. Performing a hyperparameter search on the RF for both directions separately.
3. Identifying phonemes and features that work well for each direction.

3.9.2 Selection of a Baseline

As mentioned before, to my knowledge regression analysis of speaker positions has not been
previously examined. Missing previous research, in turn, means that no baseline exists to
which a model can be compared. To circumvent this problem in the following experiments,
a null model is used instead. This model has no predictors and only returns the mean of
the respective variable (James et al., 2014, p. 205).

Two possible null models are described in the following, one of which is a geometric
and one a data-driven null model. The geometric null model uses the center of gravity of
the desired speech area and returns this as a prediction. The data-driven null model, on
the other hand, returns the center of gravity of the recording sites. Both of these models
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are conservative and, intuitively, will not result in good predictions of speaker origins.

The difference in the resulting baseline error between the two models is small (east-
west: 5.03 km; north-south: 1.00 km). Furthermore, the basic assumption is (and has to be
for any corpus analysis) that the corpus is in fact a good representation of the real world
regarding the phenomena of interest. This means in the current case that a) the material is
sufficiently spread over the German-speaking area and that b) it captures relevant regional
variation necessary for a speaker localization. Therefore, it seems more consistent to use
the data-driven null model in the current case.

The corpus midpoint was already used in the classification experiments so as to be able
to group speakers into the four classes “North”, “South”, “East”, and “West” (east-west:
50.01903◦E; north-south: 10.41484◦N ; cf. Sec. 3.8.2), and is shown as a black cross in Fig.
3.7. The null model results in an error of 151.44 km (2.1191◦) for longitude and 210.89 km
(1.8960◦) for latitude. To visualize this error in the German-speaking geographic space,
the error is shown as an ellipse in Fig. 3.7. This ellipse describes the average uncertainty
that has to be taken into account when any point is predicted. It is worth noting that this
is a hypothetical error, as the null model only returns a single point.

Figure 3.7: The midpoint of the GT corpus plotted on a German map (black cross) together
with the baseline error for the null model (black dashed ellipse).
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3.9.3 Results RF Parametrization

As in the previous experiments, different RF parametrizations were tested. The results can
be seen in Table 3.8. For mtry the values 27 ≈

√
d, 100, and 218 ≈ d/3 were tested for a

fixed number of 100 trees and for ntree the values 100, 150, and 250 were, once again tested,
for a fixed mtry of d/3. Statistical significance was estimated using Bonferroni-corrected
paired one-sided Wilcoxon-Mann-Whitney tests that used the prediction accuracy of all 42
phonemes as input. For mtry the combinations

√
d vs. 100 and 100 vs. d/3 were tested.

For ntree 100 vs. 150 and 150 vs. 250 were tested. The significant tests are marked by
“**”, where the significance level in those cases was d < 0.01. A full grid search with all
possible combinations was again not performed to save processing time.

Similar to the results in the classification experiment, certain combinations of values
had a significantly better result, even though the differences were marginal. Statistically
significant results were achieved for higher settings of mtry in the north-south direction,
where the values 100 and d/3 were significantly better than the two other values. Similarly,
in both dimensions more trees resulted in significantly better results as well. Therefore,
the hyperparameters of the best result will be used in the remainder of this section. This
means for longitude the hyperparameters mtry =

√
d and ntree = 250 and for latitude

mtry = d/3 and ntree = 250.

Table 3.8: MAE for different parametrizations of the RF. The mtry values tested were
√
d,

100, and d/3 (for a fixed number of 100 trees) and the ntree values 100, 150, and 250 (for a
fixed number of mtry

√
d). The results that are significantly better than the neighboring lower

value are marked by two stars ** (p < 0.01). The unit for all values is kilometers (km).

Direction mtry trees
√
d 100 d/3 100 150 250

North-south (Latitude) 206.53 205.86** 205.61** 205.61 205.36** 205.17**
East-west (Longitude) 147.85 147.98 148.05 148.05 147.82** 147.64**
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3.9.4 Regression Results – North-South Direction

The five best-performing phonemes are listed in Table 3.9, ranked according to their MAE.
As in the classification experiment, the best prediction was possible for the phonemes /z/
and /ø:/. Altogether, for 34 phonemes a prediction was possible that is better than the
baseline defined in Sec. 3.9.2. The correlation turns out to be weak to moderate. Together
with a small improvement over the baseline, this means the prediction generally points in
the right direction, but the model does only predict positions that are close to the midpoint.

Table 3.9: MAE and Correlation (Cor) of prediction and real values for the five best-performing
phonemes’ in the north-south direction.

Phoneme MAE Cor

/z/ 183.70 km 0.4593
/ø:/ 189.22 km 0.4261
/Y/ 190.46 km 0.3054
/ç/ 197.52 km 0.3134
/x/ 198.80 km 0.3012

An example of this is the moderate correlation of R = 0.4535 for the prediction of the
best phoneme /z/. Despite this correlation, the improvement of the prediction over the
null model is only 26.69 km (0.2399◦). This translates to a relative improvement over the
baseline of ≈ 12.65%.

For eight phonemes the predicted values show a worse MAE than the baseline. This
is somewhat surprising as in experiment 1 all phonemes could be used to estimate the
North/South half above the level of chance. The phonemes that resulted in an MAE worse
than the baseline are, in ascending order of their MAE, /aI, f, h, j, m, o, p, v/. The worst
MAE was achieved by phoneme /v/ with 213.94 km (1.9235◦) and the worst correlation
was achieved by phoneme /m/ with R = 0.1592.

The ten best features are shown in Table 3.10 for the two best-performing phonemes
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/z/ and /ø:/. It is interesting to note that nine of the ten features are already present in
the top ten features for North/South classification (cf. 3.8.4). Furthermore, the features for
both phonemes appear in almost the same order as in the classification task, when ranked
according to the achieved VI.

Table 3.10: The top ten features for the best-performing phonemes /z/ and /ø:/, ranked by
VI for the north-south direction. If the feature is a vector, the index is given in parentheses
starting at 0.

/z/ /ø:/

VU MFCC (7)
VC (0) MFCC (8)
AS (14) AS (13)
AS (13) STS (61)
SE MFCC (5)
AS (16) AS (10)
AS (2) AS Rfilt (10)
MCR MFCC (3)
AS (15) AS (10) ∆
ZCR AS Rfilt (11)

Phoneme /z/: AS (15) is the only feature that appears in the top ten in the regression
task exclusively, i.e., was not present in the classification task. This feature describes the
energy in the band between 2125.05 Hz and 2707.61 Hz. In this region more spectral energy
would be expected in [z

˚
]-like than in [z]-like realizations, due to more frication. Therefore,

since there is more energy in realizations of southern speakers, this might mean that it once
again describes devoicing (cf. Fig. A.11). It replaces the nearly uncorrelated (R = 0.02663)
MFCC (8) in the top ten.
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Phoneme /ø:/: AS Rfilt(11) is the only feature for phoneme /ø:/ that appears under the
top ten features of the regression task that had not been present in the classification task.
It describes the energy in the frequency band between 1244.87 Hz and 1645.92 Hz, where,
according to Fig. 3.5b, less energy is expected for [e:]-like realizations. This holds true for
the southern speakers (cf. Fig. A.12). It replaces the strongly correlated (R = 0.6121) AS
Rfilt (9).

3.9.5 Regression Results – East-West

The five best phonemes in the east-west direction are listed in Table 3.11, sorted according
to their MAE. For 41 phonemes a prediction was possible that surpassed the baseline
defined in Sec. 3.9.2. Only the model built for phoneme /S/ outputs a prediction worse
than the baseline, with an MAE of 154.65 km (2.1360◦).

Table 3.11: MAE and Correlation (Cor) of prediction and real values for the five best-
performing phonemes in the east-west direction.

Phoneme MAE Cor

/z/ 141.99 km 0.1997
/E:/ 143.11 km 0.2092
/u/ 143.22 km 0.1187
/ø:/ 143.28 km 0.1849
/x/ 144.20 km 0.0863

That so many phonemes can be used to predict the east-west position of the speaker
origin above the baseline is surprising. Especially, regarding the weak correlation achieved
by the top five phonemes and the fact that fewer phonemes were suitable to predict the
East/West classes correctly above the level of chance in experiment 1. For example, the
phoneme /x/ only shows a weak correlation of R = 0.0863. And even the best phoneme
under the top five only achieved a correlation of R = 0.2092. The worst correlation
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R = 0.0002 was achieved by the phoneme /v/.
The achieved improvement of the MAE over the baseline with the best-performing

phoneme /z/ is only 9.45 km (0.132284◦). This is a relative improvement of ≈ 6.24%,
which is around half of the improvement of the regression in a north-south direction.

The top features according to their VI can be seen in Table 3.12, where once again no
∆ or ∆∆ features are present.

Table 3.12: The top ten features for the best-performing phonemes /z/ and /E:/, ranked by
VI. If a feature is a vector, its index is given in parentheses starting at 0.

/z/ /E:/

MFCC (1) MFCC (3)
LSP (0) AS (9)
LSP (4) MFCC (6)
MFCC (8) AS (10)
AS Rfilt (25) LSP (1)
AS Rfilt (22) AS (8)
AS (18) MFCC (4)
AS (19) MFCC (7)
AS Rfilt (23) Duration
AS Rfilt (20) MFCC (5)

Phoneme /z/: Here six of the ten top features of to the East/West classification in
experiment 1 reappear: MFCC (1), MFCC (8), LSP (0), AS (18), AS (19) and AS (20),
where the last feature did appear in its RASTA-filtered variant in the current regression
experiment.

Two features that do not reappear are STS (75) (4068.54 Hz−4310.47 Hz) and STS (76)
(4310.47 Hz − 4566.78 Hz). However, they have a similar frequency range as feature AS
Rfilt (20) (3805.03 Hz−4734.02 Hz), which was already present in the non-RASTA-filtered
version before. It is possible that they have been dropped as they cannot provide more



96 3. Geolocalization of Speaker Origins

information in the regression task as they describe the same change in frequency in the
east-west direction. When looking at the feature values of both STS features, it is apparent
that they show a similar distribution with regards to their change from East to West as
AS Rfilt (20) (cf. Fig. A.13 and cf. Fig. A.14).

The fact that similar features are chosen when compared to the East/West classification
is taken as evidence that a similar variation is modeled. In the East/West classification,
it was assumed that the straight-line separating the two classes was the reason why the
phoneme /z/ was chosen (as regional variation does not occur axis-parallel). Therefore, a
change happening in the north-south direction might also be able to predict speaker origins
in the east-west direction.

The energy band of AS Rfilt (20) would also be influenced by devoicing due to more
frication (expected to be higher for devoiced phones in that band). When plotting these
features (averaged over multiple realizations for one speaker) no clear east-west distinction
can be seen (cf. Fig. 3.8). The change seems to happen mostly in the South and South/East
area and is generally not as widespread as, for example, shown in Fig. 3.4. Furthermore,
it can be seen that many single speakers behave differently compared to speakers from the
same region and recording site.

The newly added features AS Rfilt (22) (4729.57 Hz − 5849.21 Hz), AS Rfilt (23)
(5260.73 Hz− 6489.91 Hz), and AS Rfilt (25) (6484.03 Hz− 7965.46 Hz) describe the upper
end of the frequency spectrum. In these bands, more energy would be expected in speakers
who realize /z/ as [z

˚
]. When looking at the actual feature values, it can be seen that the

further East, the more energy is present in those bands (cf. Fig. A.14). This is taken as
evidence that these features capture the devoicing of /z/ in southern speakers.

Features that only show a local regional variation (e.g., only in the south-east area
in Austria) might be the reason why more features need to be combined in the east-west
direction to make a prediction. This is supported by the lower and more equally spread VI
in the top features (behaving similarly to the VI in the classification task, cf. Sec. 3.8.7).

Phoneme /E:/: It is believed that northern speakers produce the /E:/ like [e:] (Wängler,
1967, p. 100), while southern speakers produce it as a more open vowel (Wängler, 1967, p.
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Figure 3.8: A map showing the distribution of feature AS Rfilt (20) (3805.03 Hz− 4734.02 Hz)
for the phoneme /z/. The values are averaged over all realizations of a speaker and then
normalized between 0 and 1 using the 5% and 95% quantiles to be more robust against outliers.
Blue colored circles indicate low values for the energy band, red colored circles indicate high
values for the band, and gray colored circles indicate values in the middle of the scale.
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99), leading to [æ:]-like and [a:]-like realizations. Once again, assuming that the variation
carries over to the east-west direction, due to the non-axis parallel nature of variation,
speakers from the East are supposed to behave like speakers from the South and speakers
from the West, like speakers from the North.

In the energy bands AS (8) (769.90 Hz− 1073.01 Hz), AS (9) (913.70 Hz− 1246.46 Hz)
and AS (10) (1071.56 Hz− 1436.88 Hz) more energy would be expected in those bands in
[E:] compared to [e:] (rising F1 and sinking F2 for /E:/); and even more energy would be
expected in those bands in realizations closer to [a:] when compared to [E:] (rising F1 and
sinking F2 for /a:/). All three features describe the area where these front vowels have
differences in F1 and F2 (Machelett, 1996). Based on this tripartite variation, the further
East a speaker originates from, the more energy would be expected in those bands. When
grouping speakers into five bins along the longitude axis, this general trend can be observed
in the data. However, the westmost group shows values that are even higher than those in
the eastmost group, which would suggest a /a:/-like realization (cf. Fig. A.15).

A feature that does not appear in other contexts is duration. Here the duration of the
phoneme /E:/ is generally longer in the West than in the East. However, in the current
case the speakers originating in the second westmost group, exhibit a longer duration than
the speakers from the westmost group (cf. Fig. A.16).

Unfortunately, /E:/ is also part of the canonic form of the only used hesitation marker
<äh> (for the transcription conventions, cf. Projekt Deutsch heute Orthografische Ver-
schriftlichung gesprochener Sprache (Interviews und Map Tasks) KONVENTIONEN 2015).
That is, even if a hesitation is pronounced differently to its canonic form [E:h], it is tran-
scribed as <äh>. Ergo, many examples can be found in which it marks parts of the speech
signal pronounced like [a:m, [hm], [E:], etc. Hence, this phoneme contains a lot of noise with
regards to its realizations. Despite this problem, based on the Leave-25%-Speaker-out CV
testing strategy, each model is assessed using unseen speakers (mutually exclusive train-
ing and test set). Therefore, a model can only perform well if it indeed models regional
variation. It would, however, be possible for hesitation markers to be used systematically
differently across the corpus area.
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3.9.6 Discussion of Regression Results

The phoneme /z/ has the smallest MAE in both directions. Even though different features
were used to calculate the predictions for the two different directions (east-west and north-
south), this is somewhat surprising, as a clear trend in differing feature values can only
be seen for the north-south direction, and the trend is far less visible for the east-west
direction. To visualize how well a speaker’s position is predicted, all predictions are plotted
on a map of Germany in Fig. 3.9a. The RF predictions are not spread across the map,
but are instead located in the middle (blue points). This is especially true for the spread
of predictions in the east-west direction. These distributions raise the question: do the
trained RFs predict values close to the maximum/minimum values, i.e., close to the border
of the German-speaking area?

To answer this question, Fig. 3.9b shows the predictions of the individual trees as
gray dots. In order to plot the predictions in the x- and y-dimensions simultaneously, the
predictions of the trees with the same number in the east-west (x) and the north-south
direction (y) are combined (the first tree for longitude is combined with the first tree for
latitude, the second tree for longitude is combined with the second tree for latitude, etc.).
This arbitrary combination of predictions is calculated as varying the dots along both axes
at the same time improves visualization. Otherwise, all values would have to be plotted
on a line. As the predictions are spread over the complete corpus area, this arbitrary
combination was sufficient to show that predictions cover the whole geographic space of
the corpus area. It can be seen that the German-speaking area is well covered when it
comes to individual predictions from trees. This means that single trees do, in fact, predict
values close to the borders. This, in turn, means that different trees in the forest yield
predictions on the other side of the geographic space, which finally leads to predictions in
only a narrow part of Germany. The dots plotted in Fig. 3.9b possess an opacity of only
10%. This is done to keep the borders of the map visible and to recognize accumulations
of predictions since some positions will be predicted more than once.

In general, a prediction can be calculated above the baseline for each direction. How-
ever, the improvement over the baseline in experiment 2 was low. It amounts to roughly
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(a) The final RF predictions for each /z/ avail-

able in the corpus (blue points; 45,869 obser-

vations).

(b) Individual prediction of each tree in a for-

est plotted as a gray dot (with arbitrarily com-

bined longitude and latitude coordinates from

two models).

Figure 3.9: Visualization of the distribution for the prediction of the speaker positions based
on the phoneme /z/.
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10 km for longitude and roughly 26 km for latitude. How this reduction relates to the ge-
ography of Germany, can be seen in Fig. 3.10. The low improvement over the baseline is
somewhat surprising, especially if one takes the good correlation between prediction and
real values in the north-south direction into account.

Figure 3.10: Midpoint of the GT corpus (black cross), the null model error (black dashed
ellipse), and the error that resulted from predicting speaker positions with the RFs (blue
dashed-dotted ellipse).

When compared to the classification, the regression uses similar information. This
holds true for both phonemes and features and, for the north-south direction in particular,
the selected features in phoneme /z/ are almost identical. The fact that the same phoneme
performs best might be taken as evidence for the regression suffering from variation not
happening in an axis-parallel fashion. Other explanations are that variation in the east-
west cannot be modeled without considering the north-south distinction as well, or that
variation in the east-west direction is not modeled sufficiently by the current feature set.

Fig. 3.11 illustrates the MAE in both a north-south and an east-west direction for
all phonemes. The phonemes with a prediction above the baseline in both directions are
plotted in black. Phonemes performing worse than the baseline in the east-west direction
are plotted in orange and worse in the north-south direction in blue. It is interesting
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that eight phonemes led to predictions that are worse than the baseline in the north-south
direction, as in the North/South classification task all phonemes allowed a prediction above
NIR.

Fig. 3.11 also shows a moderate correlation between the MAE in both directions
(0.5014). This means that a phoneme that works well for longitude is likely to also work
well for latitude and vice versa. As mentioned before, this might be an artifact of regional
variation not being axis-parallel.
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Figure 3.11: The phoneme-wise MAE plotted for both directions (east-west on the x-axis,
north-south on the y-axis; lower values are better). The baseline using the null model is
marked as a black circle. Phonemes that performed better than the baseline in both directions
are black, phonemes worse in longitude are orange, and phonemes worse in latitude are blue.
Please note, the x- and y-axes are scaled differently.

The bad improvement over the baseline is taken as evidence that the current method
is not suitable to sufficiently model regional variation over the corpus area in a continuous
fashion. The fact that more than one phoneme is necessary for an exact prediction would
be in line with the semi-continuous changes of certain pronunciation variants, where many
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changes occur across Germany in different linguistic variables and their pronunciation
(representing different phonemes).

3.10 Experiment 3 – Combination of Features of Mul-

tiple Phonemes

3.10.1 Experimental Design

In the previous experiments it was shown that many phonemes can be used to predict 1) the
North/South and East/West class above the level of chance and 2) a continuous position
slightly above a chosen baseline along the longitude and latitude direction in the German-
speaking area. These studies only used features of a single phoneme to model the regional
variation over the corpus area. The following study will use much more information by
combining all phonemes uttered by each speaker.

The data on different phonemes can be combined, for example, on a word- or a turn-
level. Unfortunately, for both combinations, it is unlikely that 30+ different phonemes will
be realized within them. Assuming that a level could be found on which all phonemes
always occur, the second question arises, as to on how to combine multiple realizations.
Combining the feature vectors of every uttered phoneme with any other uttered phoneme
would lead to a tremendous amount of combinations. Moreover, adding the same feature
vectors thousands of times in different combinations does not increase the information (i.e.,
the regional variation captured in the features vectors).

One solution circumventing both problems is to average out all realizations of a phoneme
uttered by a certain speaker separately and then combine all these phoneme-feature vectors
to form a single fixed length feature vector per phoneme. The following section will use
this approach. For the material from the GT corpus, this results in the combination of
656 features of 33 phonemes. The resulting feature vector has a length of 21,648 and one
vector is present for each of the 641 speakers in the corpus. The following 33 phonemes
were combined: /@, 5, a, a:, aI, b, ç, d, e:, E, E:, f, g, h, i:, I, j, k, l, m, n, N, o:, O, r, s, S, t,

u:, U, v, x, z/. This procedure combines an average of 3751 phoneme realizations for each
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speaker of these 33 phonemes.

This single fixed feature vector per speaker can be thought of as the “speaker-identifying”
feature vector, as it combines all information on a certain speaker present in the corpus
for all 33 phonemes uttered by every speaker. This identifying vector, therefore, con-
tains information about the speakers individual characteristics, idiosyncrasies, sociopho-
netic variation, regional variation, etc. Using this information, the ML algorithm will then
try to extract the information most relevant to model the variation along the respective
geographic dimension.

The following experiment involves three steps:

1. Reducing the large initial feature set, based on the VI of a RF, to include only those
features of those phonemes that are relevant for a prediction (for each direction)

2. Confirming that the resulting feature set for each direction a) is one that contains in-
formation about regional variation and, therefore, can be used to estimate a speaker’s
origin and b) is not an ML algorithm specific set, by evaluating the prediction ac-
curacy of the subset by applying an independent learning algorithm (in this case an
SVR).

3. Training a binary DT using the subset to see which features were relevant for which
part of the prediction and, therefore, enabling an interpretation of the generated
feature set. Additionally, the output of the DT is used to relate the features available
to phonetic/dialectal phenomena in the German-speaking corpus area.

To some extent, this approach is inspired by Woehrling et al. (2009). In this study
SVMs and DTs are compared regarding their performance. This study used a DT to relate
the features to dialectal variation, despite the SVM yielding better results for more data.

3.10.2 RF – Results and Feature Selection

The previous experiments have shown that the choice of hyperparameters in the RFs only
resulted in marginal differences. Therefore, no hyperparameter tuning is performed in
this experiment. Instead, the parametrization most beneficial for the feature selection and
the following explanation of the resulting feature set is chosen. In the current case, this
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is a model that often reuses features that are (ever so slightly) better than others and,
therefore, a model using only a limited set of different features.

The parameter influencing model complexity is mtry. For high values of mtry, more
features are taken into account randomly at each split. Therefore, for higher mtry values
the chance increases that a feature is selected multiple times in different trees and splits.
Hence, high mtry values allow fewer features to be used in the RF, if there are features
present that explain the regional variation better than others. Therefore, this parameter
was set to d/3 (d is the dimensionality of the input feature set), which takes many features
into account at each split and is the standard setting for regression.

To select the most important features and reduce the feature set under analysis con-
siderably, an arbitrary cutoff point was defined as 1% of the maximal VI in the current
experiment. That cutoff point was used to keep features in the subset if they have at least
1% of the best features’ VI. Similar to previous experiments the RFs were validated using
a Leave-25%-Speaker-out CV.

East-west direction: For longitude, the RF was able to predict the 641 speaker loca-
tions with an MAE of 120.47 km (1.6857◦) and a strong correlation of R = 0.6344. The
aforementioned feature selection method resulted in 408 different features, including fea-
tures of 32 phonemes (out of 33). This means that only for the phoneme /i:/ no feature
had a VI higher than 1% of the maximum VI.

It is noteworthy that of the 408 features used, 299 were ∆ (153) and ∆∆ (146) features.
The existence of many highly ranked ∆ and ∆∆ features is surprising, as in previous
experiments based on features of single phonemes, they were ranked lower.

North-south direction: For the latitude direction, the proposed method for feature
selection resulted in 63 features from nine different phonemes. These were /ç/, /e:/, /E:/,
/I/, /n/, /r/, /s/, /v/, /z/. For this direction the MAE was 111.14 km (0.9992◦) and the
correlation was strong at R = 0.8218.

Of the 63 features used in this direction, 32 were ∆ and ∆∆ features. These findings
once again deviate from the findings for the top features in the single phoneme prediction
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experiments.

Interim conclusion: As expected, averaging over multiple realizations of the same
phonemes per speaker and combining the features of multiple phonemes, improves results
compared to using the features of only one single phoneme.

Based on the arbitrary cutoff point of 1% of the maximal VI, a much smaller subset can
be created. For longitude, 408 (1.8847%) of the original d = 21,648 features were kept in
the reduced feature set, for latitude only 63 (0.2910%). It is interesting to see that in this
experiment the ∆ and ∆∆ features are selected more often than in previous experiments.
After averaging over multiple realizations, it seems that the ∆ and ∆∆ features can be
used to describe regional variation. This is interesting insofar as the ∆∆ features especially
account for the transition parts of phonemes, which should not generalize well to different
contexts due to coarticulation.

3.10.3 SVR – Results

Training SVR models using the resulting feature subsets should ensure that the sets de-
scribe regional variation in German speech, which can be exploited for speaker localization.
This additionally will show whether the subsets are algorithm specific. The SVR used an
RBF kernel and, untypically for SVR models, no hyperparameter search was performed.
The tuning of hyperparameters seemed unnecessary as the performance of the SVR with
the standard parameters already resulted in good performance. The achieved performance
is sufficient to prove the selected features were a valid subset. Parameters used for training
were C = 1 and γ = 1/d, where d is the number of features in the respective set (longitude:
408; latitude 64).

East-west direction: The SVR was able to predict the speaker locations with an MAE
of 96.14 km (1.3452◦) and a strong correlation of R = 0.7613. This is an improvement of
55.3 km over the baseline and 45.85 km over the best-performing single phoneme model.
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North-south direction: For the north-south direction an MAE of only 96.94 km (0.8716◦)
and a strong correlation of R = 0.8477 was obtained. This corresponds to an improvement
of 113.95 km over the baseline (cf. Sec. 3.9.2) and 87.26 km over the best-performing single
phoneme model (cf. Sec. 3.9.4).

Interim conclusion: The SVR outperforms the RF in both directions, based on the
features that were selected with the help of the VI. This is taken as proof that the feature
selection indeed resulted in valid subsets containing sufficient evidence about the speakers’
origin. This feature set will be used in Sec. 3.10.4, to train a DT which will hopefully shed
some light on the relationships between the selected features. The resulting reduction in
prediction error can be seen in Fig. 3.12.

Figure 3.12: Midpoint of the GT corpus (black cross), the null model error (black dashed
ellipse), the error of the regression for one single phoneme for the best phoneme /z/ with the
RFs (blue dashed-dotted ellipse), and the error resulting from the SVR models based on the
reduced, combined feature set (purple dotted ellipse).
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3.10.4 Decision Tree – Results

Predictions based on the combined feature set lead to an improvement of results for both
algorithms, i.e., the RF, using the full feature set, and the SVR, using the reduced feature
set. Unfortunately, both these methods have drawbacks when it comes to the interpretation
of the results.

Generally, the results of the RF are interpretable by the use of the VI, even if the VI
has drawbacks as mentioned earlier. On the positive side, it should be noted again that
the VI is a good indicator of important features. This was shown by selecting features
based on the importance assessment of the VI and using the resulting feature subset to
successfully predict speaker origins. Unfortunately, it only shows the overall importance
of a feature, but not how it was used to divide up geographic space.

However, exactly the latter would be interesting for two reasons. First, to see how
geographic space is actually divided by the features. That is: do features separate large
areas that can directly be used for a rough estimation of the speaker origin, or is it necessary
to put together the prediction based on small “islands”. Second, to map those splits to
already known dialect boundaries and variation. To overcome this particular shortcoming
of SVR and RF, a DT is trained using the reduced feature set obtained in Sec. 3.10.2. The
splits in the generated tree enable a direct interpretation of features within the geographic
space that they occupy.

As stated in Sec. 3.7, a binary DT was used, and one model was trained for each
direction. As with the RFs and the SVR models, the DT was trained to predict the
longitude and latitude of the speakers’ origins. The results of the two models are:

East-west direction: For longitude, an MAE of 142.06 km (1.9878◦) and a correlation
of R = 0.3886 was achieved with the DT. This is much worse than the prediction based
on the same dataset with RF and SVR.

North-south direction: For latitude, the prediction results in an MAE of 126.39 km
(1.1363◦) and a strong correlation of R = 0.7317. The resulting DT generated is shown in
Fig. 3.13.
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Interim discussion: The bad performance of the model for the east-west direction might
stem from the fact that for this direction the differences are not the same for the North as
for the South half of Germany. A DT would be unable to model this efficiently, as features
that do not reduce impurity on their own, will not be used for a split at a high level. This
does not mean it is impossible that another feature is selected high in the tree’s hierarchy,
for example, due to a lack of better features, and is then later refined by such a feature.
However, this will not always happen. The SVR using an RBF kernel, on the other hand,
would be less influenced by this, as the decision boundary could be modeled to possess
arbitrary shapes in any subspace.

To verify the hypothesis that it is easier to predict the east-west direction separately in
the North and in the South half of the corpus area, two separate models for each half were
trained for all three algorithms (RF, SVR, and DT). The results of those models can be
found in App. A.4. In summary, the correlation rises to R = 0.4950 and R = 0.5333 and
the MAE decreases to 123.02 km (1.7214◦) and 127.22 km (1.7801◦) in the North half and
South half respectively. This is taken as evidence for the validity of this hypothesis.

Due to the bad performance of the unified longitude model, it is unclear whether the
generated DT sufficiently models the existing variation in the east-west direction. There-
fore, a further analysis of the resulting model is omitted.

For the north-south direction, the prediction works better than for the east-west direc-
tion. The top feature used for the initial split VC (0) can be found among the top features
in all three experiments in this chapter (cf. Fig. 3.13). It, therefore, seems to be a stable
feature across experiments and settings.

3.10.5 Phonetic Interpretation of the Decision Trees

General Notice: The following section attempts to phonetically interpret some of the
features that have been selected during the training of the DT. This is done based on
the properties of the features and previous studies on regional variation in Germany. An
auditory, manual check on whether the interpretation can be validated by the inspection of
the visualized signal and based on human perception was performed only on small, random
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Figure 3.14: Visualization of how the geographic space is divided based on a DT. The split
variables and values can be found next to the according map. Values below the threshold are
blue, values above the threshold are red. Values used for splitting are rounded to two decimal
places for better readability (for the original values cf. App. A.3). For each split, the feature
name is shown. The letters a) to g) are used for reference.
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subsamples of the dataset. Taking the amount of data into account, it would be unfeasible
for the current study to manually confirm the suspected phenomena across all speakers
systematically.

/z/ VC (0): The initial split in the north-south direction is done using the VC (0) in
phoneme /z/ as seen in Figs. 3.13 and 3.14. This feature alone already results in a good
division of a northern and southern part of the corpus area, which is likely due to the
devoicing of /z/ in southern varieties (cf. Sec. 3.8.4 and boxplots of feature values in Fig.
A.17). How this feature divides the geographic space can be seen in Fig. 3.14a (for a more
detailed visualization of the same phenomenon cf. Fig. 3.4).

/ç/ VC (0): The southern speakers are then further split based on the VC (0) of phoneme
/ç/, which is visualized in Fig. 3.14b, which shows that this feature results in a good division
between speakers originating from the Middle/North of the corpus area, as well as those
speakers that have a low voicing probability and originate from the South (cf. boxplots of
feature values in Fig. A.18).

Barbour et al. (1990, p. 154) report that /ç/ is produced in a more velar fashion in
the South (as, e.g., in <durch> which is pronounced in its canonic form in the North
like /dU5ç/, whereas it might be pronounced as [dU5x] in the South), leading to a [x]-
like pronunciation. When comparing the realizations of the phonemes /ç/ und /x/ for all
speakers, the feature VC (0) seems to be higher for /x/18 (cf. boxplots of the values for
both phonemes in Fig. A.19). This would, therefore, agree with the southern informants
producing a more velar sound.

Additionally, on randomly inspecting a few examples of /ç/ above and below the split
point, it appears that two factors add to this effect. First, the elision of /ç/, which results
in a wrong segmentation and, in turn, measuring the voicing of an adjacent vowel instead
of /ç/ (e.g., /Iç/ → /I/). As a reminder, the automatic S&L was performed in forced-

18Ignoring the fact that the phoneme class /ç/ might also contain [x]-like realizations. It, once again,
seems worth noting that the features extracted from the speech signal might behave differently than
expected. For example the phoneme /x/ is not considered to be voiced. Nevertheless, it shows a higher
VC (0) than /ç/. As long as this effect is systematic, this does not pose a problem in the current study.
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alignment mode, i.e., no adaption of the canonic form as output by G2P was performed.
Second, the realization of [k] and [kç] instead of [ç], where the aspiration of the plosive
produces a rather high value in VC (0). This is somewhat surprising as aspiration is not
voiced. An example of this is the word-initial Standard German /ç/, as in <Chemie>,
which might be pronounced as [k] or [kç] in the South (e.g., Brinckmann et al., 2008;
König, 1989, p. 97-98).

/n/ AS ∆ (3): The speakers in the subset with a VC (0) higher than 0.44 (extracted in
a phoneme /ç/), are split based on the AS ∆ (3) (221.76 Hz− 411.84 Hz) of phoneme /n/
as seen in Fig. 3.14c. This is slightly above the frequency range for which the F1 of nasals
is expected (roughly at 200 Hz, Machelett, 1996). The split results in a subset of speakers
that are predicted to originate from the middle of the corpus area and a southern part
that will be split further. The ∆ of the AS (3) is a bit less steep in the negative direction
for speakers from the middle of the corpus area (even though never equal to 0 or positive;
cf. boxplots of feature values in Fig. A.20). That means that the decrease of energy in
this band is smaller for speakers from the middle of the corpus area, than for those from
the South. At the time of writing, no phonetic interpretation could be found that would
explain this phenomenon.

/v/ LSP ∆∆ (2): On the side of the tree seen in Fig. 3.13, where speakers possess a
high voicing probability on the phoneme /z/, the speakers are divided by the curvature
(∆∆) of the LSP (2) of phoneme /v/, which is visualized in Fig. 3.14e. For speakers that
originate further North, the frequency range described by LSP (2) is between 1709.15 Hz
and 2460.42 Hz and for the southern speakers the frequency is between 1680.40 Hz and
2309.77 Hz. This is the region that lies around or above the frequencies for which a second
formant in /v/ would be expected. The short-time functional ∆∆ might describe a change
in the energy present in this part of the spectrum. Evidence for this can be found in the
correlation of the feature with the log energy ∆∆ at R = −0.63527 and with SV ∆∆ at
R = 0.6671 (where it is assumed that the SV ∆∆ is smaller if the energy stays constant
in the current and neighboring frames).
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This might be linked to a more or less voiced /v/. König (1989, p. 91) reports that
northern speakers, in general, produce a clearer labiodental /v/ than southern speak-
ers. Furthermore, he notes that his observations suggest that the more labiodentally the
phoneme is realized, the more voiced it is. In this case, however, the energy present in the
phonemes would suggest instead that speakers belonging to the southern group (red/blue
in Fig. 3.14e) produce even more voiced consonants than the northern speakers. This
might be due to the fact that this speaker group behaves differently than the literature
would suggest, i.e. produce a more voiced /v/. This assumption is based on the fact that
the speakers shown in Fig. 3.14e do not devoice their /z/ either. It might be possible that
those speakers use more voicing in general.

This would agree with the feature LSP ∆∆ (2) and the reconstruction of the spectrum
in a higher frequency range for northern speakers (as the reconstruction starts at higher
frequencies due to a missing voice bar). This means that for the northern speakers, the
reconstruction at higher frequencies would lead to higher values for LSP (2), which would
explain the downward open parabola that is described by the ∆∆ feature. König (1989, p.
91) reports that not all varieties in the North produce the /v/s voiced 100% of the time.
Some of the locations described do not even produce voiced /v/s 20% of the time. On
the other hand, the ∆∆ of LSP (2) would stay more constant for voiced /v/, leading to
smaller ∆∆ values (for the southern speakers), as the second formant appears around the
same range a formant of vowels would be expected.

/ç/ AS Rfilt ∆∆ (20): The speakers that are placed in the group located in the Mid-
dle/South of the corpus area based on the split of the feature LSP ∆∆ (2) are split using
the feature AS Rfilt (20) ∆∆ of phoneme /ç/, as seen in Fig. 3.14f. This feature describes
the curvature at frequencies between 3805.03 Hz − 4734.02 Hz. At this frequency range,
more energy would be expected in [ç]-like or [S]-like realizations due to frication, compared
to phones like [k]. Again the ∆∆ feature possibly describes a more or less voiced phone
(the correlation between the “normal” voicing probability and AS Rfilt (20) is strong at
R = 0.60). This agrees with using voicing probability in the same phoneme, even though
none of the above segments are supposed to be voiced.
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Additionally, the duration of the phones uttered by the southern speakers is shorter
(between the features AS Rfilt ∆∆ (20) and duration a moderate negative correlation of
R = −0.53 exists), meaning the more downward curved a value, the shorter it is. The
shorter a phoneme is, the fewer feature vectors are averaged over the 20% midpoint. This
means that if only one feature vector is used for the midpoint, small and irregular changes
can stay in the final feature vector. For longer phonemes this is less likely, as more vectors
are averaged and the chance is higher that local changes are canceled out by the following
change in the opposite direction (cf. boxplots of feature values in Fig. A.23).

The feature AS Rfilt ∆∆ (20) could combine the two different phenomena, voicing and
duration, into one feature, which better explains the target than the two separate features
voicing probability and duration alone.

/e:/ MFCC ∆∆ (3): The speakers that are placed into the northern subset are split at
the MFCC (3) ∆∆ feature in phoneme /e:/ which can be seen in Fig. 3.14g. The speakers
in the North of the corpus area again have a more negative curvature than the group in the
middle of the corpus area. In this case, the feature used for splitting does not correlate well
with either duration (0.035) or voicing probability (0.18). The latter is especially supposed
to be equally strong for both groups.

It can be seen that the speakers originating from the North part of the corpus area
have a lower F1 (median 371 Hz) and a higher F2 (median 1780 Hz) than the speakers
belonging to the subset located more in the middle of the corpus area (F1 median: 393 Hz;
F2 median: 1749 Hz). This means that the latter group produces a more open /e:/ than
the northern speakers (a more /E:/-like sound). On random inspection of some examples,
it can be seen that in many examples of northern /e:/, as would be expected, less energy
is present in the area between the first and second formant. However, it is unclear why the
∆∆ feature is chosen at this point and not the base feature (MFCC ∆∆ (3); cf. boxplots
of feature values in Fig. A.24).
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3.10.6 Prediction Error in Both Dimensions

In the following, the prediction error per recording site and per modeled dimension (lon-
gitude/latitude) is examined more closely. This is done based on the SVR as it resulted
in the lowest MAE. Fig. 3.15 shows a) the individual predictions for all speakers, b) the
prediction error per location, and c) the standard deviation of the prediction error at a
location.

Individual predictions are shown in small pink dots on the map in Fig. 3.15. In the
outer corners of the corpus area no such dots appear, as one would expect. In particular,
in the South-East, the North, and the North-East, large areas emerge where almost no
predictions were made.

In Figs. 3.15a and 3.15b each location is plotted with a circle, where both the size and
the color indicate the size of the prediction error. The prediction error is the mean of the
prediction errors of all speakers from the respective recording site. A larger size/a darker
color indicates a larger error. The site label is printed in cases in which the error is higher
than 30% of the maximum error for all sites.

In order to distinguish between large errors that result from an inhomogeneous group
in a location, and large errors over all speakers in a location, the standard deviation is
shown in Figs. 3.15c and 3.15d. As in Figs. 3.15a and 3.15b, size and color is an indicator
of the size of the standard deviation. Labels are printed if the standard deviation exceeds
1.

As is to be expected, especially in areas where no individual predictions are made,
large errors occur. This is the case near the minimal and maximal values of the prediction
intervals. In those areas, wrong prediction errors lead to large errors and are, therefore,
avoided by the algorithm.

However, it can be seen that large errors also occur in the middle of the map. An error
in such a location is more likely to belong to a speaker or a set of speakers that were hard
to recognize based on differing regional variation. For big errors in the middle of the corpus
area, two possibilities exist.

First, in some locations, the errors in the site are quite large, and the standard devi-
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ation is comparatively small. A small standard deviation indicates that all speakers were
predicted with roughly the same accuracy. In these locations the prediction was difficult,
likely due to regional variation that was not modeled correctly or variation that deviates
from those of the surrounding sites.

Second, there exist sites in which inhomogeneous predictions were made across individ-
ual speakers. Those sites possess a large prediction error and a large standard deviation
between speakers. Hence, one or several speakers were more difficult or easier to localize
than others in the same location.

An example of a speaker location that was hard to predict for all speakers in the east-
west direction was “NDH” (Nordhausen). At this site, the average error was comparatively
large, as it is located in the middle of Germany, but the standard deviation is low. This
means that all speakers were recognized equally poorly. An example in the north-south
direction is “ZIT” (Zittau) in the very east of Germany. “ZIT” is located in quite a central
position when it comes to latitude, but still exhibits a large error, while the standard
deviation is small.

3.10.7 Discussion of Experiment 3

For all three applied machine algorithms, good prediction results could be achieved by
combining the available features for multiple phonemes. For the DT however, this only
holds true for the north-south direction. This and the previous results, in which the relative
improvement of the east-west always falls behind the north-south direction, confirms the
assumption that the east-west direction is harder to predict than the north-south.

This finding is reflected in traditional dialectology, in which the hierarchical grouping
of dialects is initially performed in the north-south direction into two large groups: Low
German (Niederdeutsch) and High German (Hochdeutsch) based on the Benrath Line,
which describes whether the High German sound shift took place or not (Barbour et
al., 1990, pp. 33–35 and 76). Often, the High German area is split up further into the
groups: Central German (Mitteldeutsch), and Upper German (Oberdeutsch), based on the
mitteldeutsch/hochdeutsche Sprachscheide (MHS; free English translation: Middle Ger-
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man/High German Language Boundary; Lameli, 2008a19). These large groups are then
further divided into various levels of granularity, mostly in the east-west direction. Bar-
bour et al. (1990, p. 85) also mention that the isoglosses separating East from West are
not as clear-cut as those between North and South. An explanation for this might be that
along the north-south axis not only dialectal, but also political and economic variations
occur (Barbour et al., 1990, p. 81). This is even more true for dialects that span certain
countries (e.g., Bavarian which is spoken in Germany and Austria, Auer et al., 1996, p.
15).

Taking this into account, the SVR was still able to make a good prediction in the east-
west direction. This is probably due to the SVR being able to benefit from structuring
features and the use of an RBF kernel that allows it to model arbitrarily shaped regression
functions. An example of this kind of a structuring feature would be speaker sex. This
feature is not directly usable for DTs, as it does not directly explain the target variable
(therefore the decrease in impurity is small). This unfortunately holds true even if it,
for example, could be used to differentiate between F0s of men and women. But, if the
original feature is not suitable for predicting the target sufficiently on its own, it will not
be selected early in the splits. Further down the tree, where it could be successfully used
for splitting variables, the structure of the problem is a different one (as splits are carried
out based on residual impurity). The SVR, on the other hand, can take information like
this directly into account in its decision boundary (dimensionality expansion).

The ∆∆ features that are used in this experiment seem to correlate well with two
different effects. First, the duration of the phoneme. By averaging fewer feature vectors in
shorter phonemes, small changes that are only taking place at a local level are less likely to
be canceled out than in longer phonemes. Second, the difference between a voiced vs. an
unvoiced realization of a consonantal phoneme. In phonemes that are realized unvoiced,
the change in curvature is a different one, when compared to phonemes that are realized

19The MHS can also be seen in Wiesinger (1983) as the division between the Middle German dialects
– Franconian, Hessian, Thuringian, and Saxonian – from the High German Dialects – Alemannic, East
Franconian, and Bavarian. Barbour et al. (1990, p. 79) calls it the Germersheim Line. In the following
MHS will be used.
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voiced. This is based on the energy distribution in the spectrum (e.g., the lower parts
where a voice bar exists for voiced consonants).

A DT was generated so that features could be related to the geographic space of the
German-speaking corpus area. To visualize this in an intuitive way, the splits into speaker
subsets were plotted on different maps. In these visualizations, it can be seen that acoustic
features possess a geographic distribution that is similar to linguistic variables in traditional
dialectology (e.g., Wrede et al., 1927–1956; Wiesinger, 1983; König, 1989). However, the
boundary for the contrast of voiced vs. devoiced /z/ between the North and the South of
the corpus area is located further south than reported in the literature by König (1989).

Nevertheless, the splits result in a geographic division of speakers that resembles a
traditional isogloss. In Fig. 3.16 it can be seen that the north-south boundary from the
current study, coincides with the MHS (for a definition cf. 3.10.7), i.e., the border between
Upper and Middle German. This separation can also be found when looking at the split
for phoneme /v/ in Fig. 3.14. It should, however, be noted that the DT bases its splits
on the maximal decrease in impurity. The splitting point in the feature VC (0) could,
therefore, be placed at a feature value that separates the corpus area well in two equal
parts. Dialectologically, this splitting point is somewhat arbitrary. Nevertheless, it is
interesting for two reasons: firstly, it is taken as evidence that the proposed method (only
relying on acoustic features) is capable of modeling dialectal variation and, secondly, it
can be seen that young speakers from the first decade of 2000 behave similarly (at least to
some extent) to those in previously reported studies.

3.11 Discussion of Speaker Origin Estimation

It has been shown that RFs can be used to roughly assign speakers to the two halves of
the corpus area, from which they originate. Localization works better for North/South
classes (70.37% accuracy for the best-performing phoneme /z/) than it does for East/West
(57.91% for the best-performing phoneme /ø:/).

The classification approach from experiment 1 performs poorly when compared to the
results of previous studies (cf. Sec. 3.3). This has several reasons and will be discussed
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Figure 3.16: Overlay of a rough approximation of the MHS (according to Lameli, 2008a) and
the initial split of the corpus area in the current study based on the DT (cf. Fig. 3.14a).
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more thoroughly in the next few paragraphs, as the previously mentioned methods are not
directly comparable.

First, only the methods based on spontaneous speech can be compared, as studies have
shown that spontaneous speech is harder to classify than read material (e.g., Brown, 2015).
The studies using read speech have the advantage of clearer pronunciation, which in turn
makes the processing and detection of phenomena easier.

Second, no further preselection of words, contexts, or POS was performed on the
phonemes before feature extraction. This is likely to result in more noise in the data
than a careful selection of target words. This was done in the current study to adhere to
the bottom-up approach.

Third, the previous studies presented in Sec. 3.3 all use material with distinct dialect
or accent labels. Speech that is supposed to represent a certain dialect region is likely to
be recorded at the center of a certain dialect area in which the desired dialect is spoken
(e.g., in the ABI corpus; D’Arcy et al., 2004), and informants are selected that represent
that dialect (although this is a subjective categorization made by the corpus creators).
This, by definition, results in larger differences between speakers, than having recording
sites spread out well over the recording area (which are located in close proximity to each
other).

That being said, special corpora exist that try to model the variation in a small region
and do not possess the just mentioned deficiency. An example for this kind of corpus
is the AISEB corpus (Watt et al., 2014) that captures variation at the English/Scottish
border. The AISEB corpus possesses good local resolution, but unfortunately only covers a
small region. In the GT corpus the recordings sites possess both, good resolution over the
corpus area and coverage of a large area. Furthermore, the subjects only had to fulfill a few
criteria (their education, the origin of their parents), but other than that no preselection
was performed based on, for example, how strong their vernacular is.

Fourth, in the current study shorter speech samples were used when compared to pre-
vious studies, to make the distinction between the dialect labels in experiment 1 and to
predict a speaker’s origin in the regression case in experiment 2. In the first two experi-
ments, the time span of a sample used to make a prediction (being equal to a fraction of
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one phoneme) was several orders of magnitude smaller than previous approaches (roughly
30 s − 45 s for text-independent methods and 3 m − 13 m for text-dependent approaches;
cf. Sec. 3.3).

And finally, using the method in this chapter permits explaining phonetic/dialectal
phenomena underlying the predictions. This is not possible with most other approaches.
Comparable approaches to experiment 1 are, for example, Brown (2015) obtaining 52.5%
accuracy on a 4-way classification task and Woehrling et al. (2009) achieving 85% in a
3-way classification task. Relative to these results, the current performance moves to a
more acceptable range, at least for North/South classification.

Based on the promising results in the classification experiment, the reduction achieved
in experiment 2 over a conservative baseline using RFs is disillusioning. The improvement
equals 9.45 km (6.24%) for longitude and 26.69 km (12.65%) for latitude. For both, the
classification and the regression task, similar features appear within the top ten features.
As the tasks are inherently different, this is somewhat surprising. However, as the semi-
continuous changes of certain pronunciation variants that do not all occur in the same
phoneme, it is not surprising that single phonemes are not suitable to correctly estimate
a speaker’s origin. The small decrease in error compared to the baseline make it unlikely
that this method can be successfully employed to improve ASR performance.

One way to improve localization performance could be the use of dynamic instead of
static features. In many phonemes, for example stops, the change of the speech sound over
the course of their duration could be captured more adequately using dynamic features
(Reichel, personal communication, 2012–2018). This could, for example, be achieved by
taking the first n coefficients of a DCT that is applied to the features throughout the
duration of a phoneme. One drawback of this would be the drastic increase of the amount
of features by n (for each feature, n new features would be created).

When it comes to the pure performance in estimating the speaker origins, “black-box”
approaches could also be considered. These methods come with better internal modeling
capabilities at the cost of explaining variation. Examples of these are, for example, Deep
Neural Networks (DNNs) (Lopez-Moreno et al., 2014) or i-vector approaches (DeMarco
et al., 2013). Lopez-Moreno et al. (2014) report that 10 h of speech are necessary for their
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DNN to outperform an i-vector approach. The map task recordings of the GT corpus
comprise roughly 67 h (cf. Sec. 3.5.1), which, therefore, could be sufficient to train a DNN.

Another aspect that influences the performance is intra-speaker variability. The fact
that speakers are unable to reproduce a speech sound in exactly the same way, contributes
to wrong classifications and estimations. However, that informants from the same or
proximate regions do not always behave equally, and that informants themselves do not
always produce variation to the same degree, is a problem that all studies on regional
variation face (e.g., cf. the differences of pronunciation in many regions in the maps of
König, 1989).

Experiment 3 evaluated how the combination of the data from multiple phonemes
changes the results. It was found that localization based on a large feature set leads to a
considerable improvement in the results. The best performance could be achieved using
SVR on the reduced feature set with an MAE of 96.14 km in the east-west direction and
96.94 km in the north-south direction. However, in a real-world application (e.g., voice
commands to control a smartphone, dictation of e-mails, etc.) it is unlikely that the
required amount of speech material for this approach is available.

The feature selection performed in experiment 3 resulted in a subset containing sufficient
information to allow for speaker localization. The SVR model based on this set even
outperformed the RF using the full feature set. This can be attributed to the method
itself, as it is able to model more complex regression functions. The selection itself, by
retaining the features that have at least 1% of the maximal VI output by the RF, resulted,
therefore, in a valid subset. However, for the two directions (north-south and east-west)
it resulted in different sized subsets. It is interesting to see that the initial feature set
of 21,648 was reduced drastically to only 408 features for longitude (1.8847% of features
retained) and only 63 for latitude (only 0.2910% of features retained). This can be taken
as further evidence that the east-west direction is more complicated to predict.

The drop in VI in the east-west direction is less steep than in the north-south direction
(cf. Fig. A.10). This, and the generally worse results of the prediction, can be taken as
evidence that the east-west distinction is harder to predict as more features have to be
combined to predict this direction. This is in agreement with traditional dialectology, as
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dialects are categorized hierarchically first in the north-south direction into two groups
(Low German and High German) or three groups (Low German, Central German, and
High German), which are then split up further in the east-west direction (e.g., Wiesinger,
1983; Barbour et al., 1990, p. 79).

In experiments 1 and 2, in which only single phonemes were analyzed, not many ∆
and ∆∆ features appear in the top ten ranked features; a trend that is continued in the
top 50 features as well. However, in experiment 3 many ∆ and ∆∆ features were ranked
highly. Possible reasons are: a) the ∆ and ∆∆ capture more dynamics and are generally
favorable, but are more influenced by phoneme context. This is a problem in case in
which single phonemes are used for prediction, but this problem can be eliminated when
these phonemes are averaged over multiple realizations. And b) the structure of splits
is completely different, as the tree can choose from different features of more phonemes
compared to previous experiments.

Based on the feature subset, a DT was generated so that features could be related to the
geographic space of the German-speaking corpus area. The resulting splits were visualized
on a map showing that the features indeed possess a geographic distribution similar to
linguistic variables in traditional dialectology. Successfully employing a feature set that
contains standard features (e.g. formants), but also non-standard and technology-driven
features (such as MFCCs or PLPs), has shown that many of these features can be used
to capture regional variation. A further advantage of these features is the robustness with
which they can be extracted from a speech signal. However, this comes with a penalty
regarding how complicated it is to relate these features to phonetic phenomena.

The shape of the geographic regions based on the splits in the DT, raises the question
of how well clustering algorithms would perform. This was already outlined in Kisler et al.
(2014). Regarding the splits based on a small number of features, clustering algorithms like
k-means could already result in interesting patterns. Nevertheless, the high-dimensional
clustering techniques mentioned in Kisler et al. (2014) would also be a good basis for an
interesting study.

The splits resulted not only in regions where certain phonetic features are prevalent, but
also resemble the geographic division of speakers into traditional dialectological regions.



126 3. Geolocalization of Speaker Origins

Fig. 3.16 shows that the traditional dialect boundary dividing the Upper and the Central
German dialects coincides with a division of speakers based on a DT split. At first sight,
this might indicate a change compared to König (1989, p. 93–96), as in his examination the
change between voiced and unvoiced variants occurs further North. He describes recording
sites that pronounce /z/ with “strong voicing 10%” and “weak voicing 10%” of the time.
That being said, the value used for the split in the DT is somewhat arbitrary and is chosen
to best separate the North from the South of the corpus area, to minimize error during
training. It is not known how the informants in the GT corpus would be categorized
according to this classification, missing the manual auditive validation of the voicing in
/z/. Indeed, voicing has a strong north-south variation, and young speakers from the early
2000s seem to use this feature, which is in line with the behavior reported in the literature.
The close resemblance of distributions from traditional dialectology, mostly working on
written transcripts of informants’ speech, and the strict bottom-up approach pursued in
the current study, based only on acoustic signals, is taken as validation for both approaches
with respect to each other.



Chapter 4

Measure of Confidence for Corpus
Analysis (MOCCA)

This chapter builds on the following previously published work:

Thomas Kisler and Florian Schiel (2018a). “MOCCA: Measure of Confidence for Corpus
Analysis - Automatic Reliability Check of Transcript and Automatic Segmentation”. In:

Proc. LREC. ed. by Nicoletta Calzolari (Conference chair), Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara,
Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk,

Stelios Piperidis, and Takenobu Tokunaga. Miyazaki, Japan: European Language
Resources Association (ELRA)

4.1 Abstract

Automatic Speech Recognition (ASR) systems estimate the quality of their recognition
results using methods called Confidence Measures (CMs). The present study examines
the applicability of these CMs for automatic corpus analyses on the transcription and
segmentation level. In order to do so, Machine Learning (ML) algorithms and features
that have been proven to work in ASR CM are examined with regard to their performance
in predicting two quality measures: the correctness of the transcript and the quality of the
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subsequent alignment. It is shown that the used methods are applicable to the automatic
evaluation of transcripts of speech corpora, with an accuracy of 78% for detecting words
labelled incorrectly, and, to a lesser extent, to assess the quality of an automatic MAUS
segmentation and labeling (S&L) with a correlation coefficient of R = 0.60. The proposed
method introduces an S&L post-processing step based on Support Vector Machines (SVMs)
for both tasks, whereas the applicability of Random Forests (RFs) is also studied. Different
parametrizations for both algorithms are analyzed based on 10-fold Cross Validation (CV)
using a corpus of spontaneous speech in German and are evaluated against a second,
independent corpus.

4.2 Introduction and Motivation

The creation of a new speech corpus typically involves three major steps: (1) the record-
ing of a speech signal, (2) the orthographic transcription of the recordings, and (3) the
alignment of a phonetic transcription to the recorded signal. Step (3) is referred to as seg-
mentation and labeling (S&L). The quality of these three pre-processing steps has a big
impact on the usefulness of the resulting speech resource. Step (2), the transcription of a
speech recording, can be done either manually or via Automatic Speech Recognition (ASR).
In both cases, the transcription will most likely contain errors in the form of deviations be-
tween the transcribed and the actually spoken words. Step (3), the S&L, can also be done
either manually or automatically, based on the transcript created in step (2). Manual S&L
is even more time consuming than the manual transcription process. Based on experience,
it is around 20 to 100 times slower (Draxler et al., personal communication, 2016). This
step is often done in two parts: initially, an automatic alignment, for example, using a
forced-alignment or a similar technique, is executed and the boundaries and labels of this
automatic alignment are then manually corrected afterward. In both cases, the manual
correction of the transcript and the manual correction of the S&L, the auditory check of
all recorded speech signals by a human transcriber is an expensive, time-consuming, and
error-prone task. This leads to corpora often not being checked and corrected by a second
human expert.
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Therefore, quality measures that automatically detect parts in which potentially ’some-
thing went wrong’ are of interest for tasks 2) and 3). This kind of automatic method could
reduce time and effort considerably by automatically detecting erroneous parts, as the
manual correction process would benefit greatly from an automatic way to find erroneous
segments.

The two problems examined in this study are strongly related to estimating the cor-
rectness of a hypothesized word sequence Ŵ in an ASR system. Measures that can make
a statement about the correctness of recognition hypotheses are called “Measure of Confi-
dence”, “Confidence Measure”, or “Confidence Estimation” (Seigel, 2013; Jiang, 2005). In
the following, the term Confidence Measure (CM) will be used. CMs can either be pro-
duced during or after the recognition stage, depending on how the CM is implemented (i.e.,
integrated into the decoding process or in a post-processing step). Research on confidence
measures for ASR has attracted significant attention in the past (e.g., Schaaf et al., 1997;
Weintraub et al., 1997; Kemp et al., 1997; Zavareh et al., 2013; Jiang, 2005; Pellegrini
et al., 2010; Parada et al., 2010; Chen et al., 2013; Seigel, 2013; Ghannay et al., 2015).
CMs are mainly used to detect recognition errors and to my knowledge, only a single study
has been conducted so far that applies methods used in ASR CM to assess the quality of
an automatic S&L (Paulo et al., 2004), which will be discussed in Sec. 4.3.6.

This leads to the following general research question for the current study: Can methods
that have been successfully applied to estimate the quality of the recognition hypothesis
of ASR systems and the quality of phoneme-level S&L be used for an automatic quality
assessment of the transcription of speech and automatic S&L on word-level?

The remainder of this chapter is organized as follows: the next section provides an
overview of work done in the field of confidence measures and some relevant work for the
present study is discussed in depth. Sec. 4.4 explains in detail how the CM estimation was
implemented in the current study (which features were used, which ML algorithms were
applied, and which data was used for training and testing). In Sec. 4.5 the experiments
are explained and their results discussed. Finally, Sec. 4.6 discusses and concludes the
findings of the current study and Sec. 4.7 gives some directions for future research and
system improvements.
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4.3 Confidence Measures

4.3.1 Introduction to Confidence Measures

As stated before, CMs try to estimate the quality of an ASR output, namely the hypoth-
esized word sequence Ŵ . Two different types of CMs exist that are distinguished based
on the output they produce: discrete and continuous. Discrete CMs output a class label
(L) that indicates whether a word is correctly recognized (in the following Lcor is used to
indicate the label for a correct hypothesis; Linc to indicate an incorrect one). In the con-
tinuous case, the CM is a value ranging between 0 and 1 and is a measure of the quality of
the underlying token (i.e., how confident is a speech recognizer that a word is hypothesized
correctly). Table 4.1 shows an example of both CMs based on a hypothetically uttered
sequence of words W and a possible recognizer output Ŵ . For example, the word “quick”
was incorrectly recognized and because of that should be assigned the label Linc or a low
CM value in the continuous case. The CM can then, for example, be used to detect this
error and the ASR system re-evaluates the output hypotheses, or the user is asked for
clarification.

Real utt.: The quick brown fox jumps over the lazy dog

Class CM: Lcor Linc Lcor Lcor Lcor Linc Lcor Linc Lcor

Continuous CM: 0.87 0.11 0.92 0.99 0.87 0.04 0.63 0.46 0.85

Recognized utt.: The slow brown fox jumps under the crazy dog

Table 4.1: A hypothetical example to illustrate how CMs identify correct and incorrect parts
of a speech recognizer. It shows the hypothetical truly uttered sequence of words W , the
hypothetical recognizer output Ŵ , and the output of both types of CM, class-based and
continuous. The mismatched words are underlined. Utterance is abbreviated “utt.”.

Jiang (2005) and Seigel (2013) provide good overviews of previous studies in the area
of CMs. Both classify the CMs into the following three categories:
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1) Utterance Verification (UV): this approach treats the problem of confidence estima-
tion as a statistical hypothesis testing problem (using Likelihood Ratio Tests), where
n which an approximation of the alternate hypothesis is needed for a reliable decision
(cf. Sec. 4.3.2).

2) Posterior probability approach: this approach tries to calculate the true posterior
probabilities by approximating the probability function that is normally dropped
during the recognition process in the Maximum a-posteriori (MAP) rule (cf. Sec.
4.3.3).

3) Classification approach: here a statistical model is trained to estimate the CM in a
post-processing step (cf. Sec. 4.3.4).

Each of the three approaches will be explained in more detail in the following sections.

4.3.2 Utterance Verification

Overview

In the UV approach, the CMs are estimated within the framework of statistical hypothesis
testing, using the Likelihood Ratio Test (LRT). It answers whether the currently recog-
nized word w, based on the acoustic observation O, has been recognized correctly and
should be accepted as a valid hypothesis or recognized incorrectly and should be rejected.
The two hypotheses are defined by (Seigel, 2013) as:

H0: “w was correctly recognized and is generated by model λW ”
H1: “w was misrecognized and is generated by model λA”

where λW and λA denote the model for the null (H0) and alternate (H1) hypothesis
respectively. Based on the definition of the null and alternative hypothesis, the LRT is
defined as:

LRT (O, λW , λA) = P (O|λW )
P (O|λA)

H0
≶
H1
τ (4.1)
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where τ denotes a threshold parameter to adjust the decision whether the null hypoth-
esis is accepted or rejected. For simple, known probability functions of H0 and H1, under
the Neyman-Pearson lemma (Neyman et al., 1933), the LRT is the most powerful test to
decide which hypothesis is correct.

The general challenge in LRT is to formulate an exact representation of the alternate
hypothesis in the denominator. Hence, for UV in ASR, the challenge is to build a reliable
model λA that produces the desired distribution. For the estimation of model λA, different
possibilities have been proposed. Rose et al. (1995) trained an anti-keyword model for each
keyword of a twenty keyword recognition task. Sukkar et al. (1997) propose the combi-
nation of a non-keyword speech model and an anti-keyword model (misrecognitions) for a
10-digit recognition task. And as a last example, Rahim et al. (1997) use a combination of
non-keyword (speech, background noise, silence) and an anti-keyword model for a 10-digit
recognition task.

Applicability of UV

As stated above, the big challenge in UV is modeling the probability function of the
alternate hypothesis λA. The exact estimation of this model is impossible in open and
large-vocabulary speech recognition. Therefore, UV is only applied to closed-vocabulary
problems like spoken digit or keyword recognition.

In the case of the Munich AUtomatic Segmentation System (MAUS), the UV approach
could be considered if the phoneme domain was chosen for the prediction. In this domain,
the phonotactic model that is generated by MAUS would correspond to the null hypothesis,
and a combination of anti-keyword and background-noise models could be applied to model
the alternate hypothesis.

In the current study however, the assessment should be performed on a word-, and not
a phoneme-level. To implement this, language and acoustic models for Large Vocabulary
Continuous Speech Recognition (LVCSR) would be needed. This is a problem for two
reasons: first, in the MAUS framework, no such models are available and, second, building
a reliable alternate hypothesis based on these would not be possible anyway (as mentioned
at the beginning of this section). Therefore, the UV approach is not applicable to the
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present study and in general to MAUS.

4.3.3 Posterior Probability Approach

Overview

In general, the posterior probability of Equation 1.2 would serve as a good metric to be
used for a CM. Unfortunately, by dropping the normalizing term p(X), the resulting
posterior probability is not comparable across utterances and can not directly be used as
a CM (the result of Equation 1.3 is not the real posterior probability P (W |X), but more
precisely the joint distribution of P (O,W ), cf. Sec. 1.3.2). As mentioned earlier in Sec.
1.3.2, p(X) is impossible to calculate exactly and even hard to approximate, due to the
many alternatives that have to be taken into account. Formally, it would be computed by
(Jiang, 2005):

p(X) =
∑
H

p(X,H) =
∑
H

p(H)p(X|H) (4.2)

where H denotes any possible hypotheses for the acoustic observations X. As the sum-
mation has to be done over all possible hypotheses, this would mean that all combinations
of speech sounds (words, phonemes, hesitations, etc.) and non-speech sounds (noises,
coughs, etc.) would have to be explicitly modeled (in most traditional ASR systems in
a 39-dimensional continuous feature space). Therefore, this is computationally unfeasible
(Jiang, 2005; Seigel, 2013; Pfister et al., 2008, p. 328).

CMs in the posterior probabilities class try to circumvent this problem by approxi-
mating the true posterior probability based on an approximation of the distribution of
p(X). The two most popular techniques for estimating p(X) are the filler-based and the
lattice-based approach.

The filler-based approach tries to estimate the desired normalizing distribution p(X)
by employing general filler or background models. An example of this is the use of an all-
phone recognition, in which the score of an all-phone-recognition model, only constrained
by the bigram probabilities of the language model, is subtracted from the score of the word
recognition (Young, 1994). A second example would be the use of a catch-all model, as



134 4. MOCCA

done by Kamppari et al. (2000), in which the term p(X) is estimated by summing over all
available diphone model probabilities of a reduced diphone model. To create the reduced
diphone model, the Gaussians are merged in a bottom-up clustering in which the two most
similar Gaussians are merged until the model is small enough to be efficiently computable
during recognition. A further example of a filler-based method is normalization based on
the highest Viterbi word score output by the recognizer (Cox et al., 1996).

The lattice-based approach, as the name suggests, uses the compact representation of a
high number of alternative hypotheses in a combinatorial way, as it is done in lattices. One
example uses the sum over the probabilities of all possible hypotheses in the lattice as a
normalization factor. A confusion network1, a timeless, even more compact representation
of the alternate hypotheses of a word sequence Ŵ than lattices, is then used to find the
final best hypothesis for Ŵ (Mangu et al., 2000). As Mangu et al. (2000), Evermann
et al. (2000) use the sum over the probabilities of all possible hypotheses in the lattice as
a normalization factor and, additionally, modify the MAP term to include the product of
the posterior probabilities of the current path. This acts as a local consistency measure to
reward the connections that are supported by high-scoring alternatives. In another study,
carried out by Rueber (1997), the author uses the recognizer probabilities from an N-Best
list directly, after applying a re-normalization to the N-Best list so the probabilities sum
up to 1. As a final example, Wessel et al. (2001) use a word-graph (that closely resembles
a lattice in this particular case) to calculate the final posterior probability for word [w; τ, t]
(τ is the start time and t is the end time of the current word) based on the maximum
posterior probability between time τ and t of all alternative, overlapping hypotheses of the
same word at a certain time point.

1A confusion network is based on two clustering steps: an intra-word step, where all words Wi that are
identical and are overlapping are merged, and an inter-word step, where all words that have a phonetic
similarity are clustered. Due to the structure of a confusion network, all initial hypotheses are retained.
However, by only looking at the confusion network and following its different paths through the network,
it is possible to create sentence hypotheses that were not present in the lattice representation (Mangu
et al., 2000; Jurafsky et al., 2009, p. 374).
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Applicability of Posterior Probability Approach

The filler-based approach as proposed by Young (1994) would technically be possible within
the MAUS framework. This is because MAUS does provide free phoneme recognition.
However, MAUS’s free phoneme recognition does not result in good recognition in most
languages (an exception being, e.g., Italian). It is not clear whether the performance is
sufficient to achieve good normalization. An additional problem would be the alignment
of the phoneme sequences, detected by MINNI, to the phoneme sequences that are output
by Grapheme-to-Phoneme (G2P) conversion (and are used in MAUS). For this non-trivial
task an alignment strategy would have to be found, which is likely to produce errors and
would add noise to the data (an example for a tool that could provide this alignment is
called TextAlign2; Reichel, 2012).

The approaches of Kamppari et al. (2000) and Wessel et al. (2001) and other lattice-
based approaches are based on a high number of alternative paths. They are based on
some combinatorial representation of many different paths that are orders of magnitudes
higher, than those available in MAUS. The number of alternative paths in the MAUS
lattice of mostly result from different start and end times of phonemes. This means that
measures based on posterior probability are not applicable when used in combination with
MAUS in its current form, as the lattice representation is different.

4.3.4 Classification Approach

General Overview

Classification-based approaches determine the confidence measure CM by learning a map-
ping function g based on a feature vector F containing n features {f1, f2, ..., fn} to output
a label L(F ). Depending on the approach, the features are mapped directly into the
according classes (correct – Lcor vs. incorrect – Linc) by gcla:

L(F ) = gcla(F ), L(F ) ∈ {Lcor, Linc} (4.3)
2This tool is also available as a web interface and service via http://hdl.handle.net/11858/

00-1779-0000-0028-421B-4

http://hdl.handle.net/11858/00-1779-0000-0028-421B-4
http://hdl.handle.net/11858/00-1779-0000-0028-421B-4
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Another possibility is to predict the probabilities of the respective class, which means
that a value between 0.0 and 1.0 is output. This value then has to be interpreted. This can
sometimes be done as easily as, for example, using a threshold τ to map the continuous
values to the same labels as in the classification. Formally, a function greg is learned that
maps the features F to the respective class label by using the threshold τ :

L(F ) = greg(F )
Linc

≶
Lcor

τ, L(F ) ∈ {Lcor, Linc} (4.4)

Classification approaches differ mainly in:

• type of ML algorithm (C4.5 tree, Artificial Neural Network (ANN), SVM, etc.)

• features used (decoder-based features, prosodic features, etc.)

In the following, both are described in more detail, followed by a discussion of the most
relevant studies for the chosen approach.

Related Work – Machine Learning Algorithms

Many different algorithms have been used to estimate confidence measures (categorical or
continuous). Find below a non-exhaustive list of examples of these methods used:
• Naïve Bayes classification (Zavareh et al., 2013)
• Decision trees (Schaaf et al., 1997; Kemp et al., 1997; Zavareh et al., 2013)
• Boosted decision trees (Stoyanchev et al., 2012)
• Linear Discriminant Analysis (LDA) (Schaaf et al., 1997)
• ANNs with

– 3 layers; one node in the hidden layer and shortcut connections (Schaaf et al.,
1997; Kemp et al., 1997)

– 3 layers; 6 or 8 nodes in the hidden layer depending on the language (Tam et al.,
2014)

– 3 layers; 50 nodes in the hidden layer (Zhang et al., 2001)
– 4 layers; 50 nodes in each of the two hidden layers (Weintraub et al., 1997)
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• Conditional Random Fields (Pellegrini et al., 2010; Parada et al., 2010; Chen et al.,
2013; Seigel, 2013; Ghannay et al., 2015)
• SVMs with

– Radial Basis Function (RBF) kernel (Zhang et al., 2001; Xue et al., 2006),
– linear kernel (Zhang et al., 2001; Zhou et al., 2004; Zhou et al., 2006)
– dot, polynomial, sigmoid, and ANOVA kernel (Zhang et al., 2001)

• RFs (Xue et al., 2006).

Related Work – Features

The predominant class from which features have been proposed in the literature are
decoder-based features. These features are either a by-product of the speech recogni-
tion process, for example, Viterbi decoding (Viterbi, 1967), or are designed based on the
information available to the decoder. Popular examples of such features are the different
parts of the reduced MAP decision rule (cf. equation 1.3), such as the language model
score for a certain word wi (Weintraub et al., 1997; Gillick et al., 1997; Xue et al., 2006),
the acoustic model score for word wi (Schaaf et al., 1997; Pellegrini et al., 2010; Xue et al.,
2006), or the posteriors (or more precisely the joint probability P (O,W )) of the recognizer
itself (Kemp et al., 1997; Gillick et al., 1997; Pellegrini et al., 2010; Stoyanchev et al., 2012;
Zavareh et al., 2013; Tam et al., 2014).

In the past, different ways to normalize the three parts of the MAP rule have been
proposed. For the two input components (language model and acoustic model), of the
MAP equation, examples of such modifications are the maximum language model score in
the N-best list (Zhou et al., 2004; Zhou et al., 2006), the acoustic model score normalized
by a phone-only decoding3 (Zhang et al., 2001), or the range and the minimum of the
acoustic score of a word in an N-best list (Zhou et al., 2004; Zhou et al., 2006).

Similarly, several normalizations and modifications of the posteriors have been pro-
posed. Examples of these kinds of features are the posterior score of the word divided
by the prior (language model) probability of the word (Schaaf et al., 1997), the posterior

3The normalization is performed in a similar way to Young (1994).
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score of the word divided by an approximation of p(X) (approximation to the real posterior
probability like in Sec. 4.3.3; Zhou et al., 2006; Weintraub et al., 1997), calculating the
word posterior scores based on lattices (Chen et al., 2013), calculating the word posterior
score based on confusion networks (Xue et al., 2006), and adding the scores of the previous
and next word to make a prediction (Tam et al., 2014).

The list of examples of proposed decoder-based features is long. Some of them are
acoustic stability, which is the number of times a word occurs in the word sequence hy-
pothesis with different settings of the language and acoustic model weights (Schaaf et al.,
1997; Kemp et al., 1997), the number of times a language model-backoff to a lower n-gram
occurred (Schaaf et al., 1997; Zhang et al., 2001), and the order of the n-gram used (Wein-
traub et al., 1997). Further ones are the number of active final words states during the time
segment TW of the word (Schaaf et al., 1997; Pellegrini et al., 2010; Gillick et al., 1997),
the hypothesis density that reflects the number of alternative links at different points in
the word (beginning, end, and average over the complete segment) in the lattice (Kemp
et al., 1997), and the N-best homogeneity, which equals the ratio between the best score
in the N-best list and the total of the path scores of the N-best list (Zhang et al., 2001).

Besides the big group of decoder-based features, there are two smaller groups: syntactic
and prosodic features. Examples of syntactic features are Part of Speech (POS) tags for
the current word (Zavareh et al., 2013; Ghannay et al., 2015; Chen et al., 2013; Stoyanchev
et al., 2012) and a binary feature that indicates whether the current word is common or
not4 (Zavareh et al., 2013). Examples of prosodic features are word duration as used in
Schaaf et al. (1997) and Gillick et al. (1997) and speaking rate as in Schaaf et al. (1997).

Another often used feature is some version of word length. Examples of these are
the number of phonemes in a word (Weintraub et al., 1997; Pellegrini et al., 2010), the
logarithm of the number of phonemes in a word (Schaaf et al., 1997), or the number of
letters in a word (Ghannay et al., 2015). Using length related features is based on the
notion that shorter words are more difficult to recognize, than longer words (Weintraub

4Based on a list of “stop words”, which are filtered out, for example, by search engines as they are too
common to presumably be relevant in a search query. Examples of those words are “an”, “by”, “is”, “it”,
“one”, and “we” (for a complete list cf. Zavareh et al., 2013).
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et al., 1997; Young, 1994).
Apart from the already mentioned features, a number of other features have been

proposed that have not found widespread acceptance but are still worth mentioning. A
few examples are the signal-to-noise ratio (Schaaf et al., 1997), the parsing mode, which
indicates whether a word conveys semantic information (Zhang et al., 2001), the slot backoff
mode for the semantic parser of a dialog system (similar to a language-model backoff; Zhang
et al., 2001), the number of alternative candidates in a confusion network slot (Tam et al.,
2014; Chen et al., 2013), and the edit distance between the hypothesized outputs of both
an ASR system and a sub-word ASR system (Chen et al., 2013). Two further interesting
examples are a heuristic bigram hit feature that reflects the number of hits a bigram gets
in a search engine (exact search for the specified bigram; Pellegrini et al., 2010) and a topic
feature based on the notion that erroneously hypothesized words do not fit the overall topic
of a hypothesized sentence (or across utterances; Pellegrini et al., 2010).

Applicability of the Classification Approach

Some of the decoder-based features are available in MAUS. For example, the language
model and the acoustic model probabilities, whereas other features that are based on
lattices and confusion networks can, unfortunately, not be used, as their generation would
drastically increase the modeling and execution effort.

An advantage of classification-based measures is that they allow the granularity of the
decision to be changed. This means, even though features are based on the phone-level,
the decision can be made on the word-level, and if the features are based on the word-level,
the decision can be made on the sentence-level, etc. (as, e.g., done in Zhou et al., 2004;
Zhou et al., 2006).

When assessing transcription quality, it is worth noting that MAUS has an advantage
over an ASR system. In an ASR system, the same features are used for the estimation of
the original word hypothesis and the estimation of the quality of this hypothesis. This is
somewhat circular, as if these features were to strongly indicate a wrong ASR hypothesis,
this might already have led to the recognizer outputting something different. In MAUS’s
alignment scenario, the transcription that is to be aligned with the speech signal is gener-



140 4. MOCCA

ated by human transcribers (or by an ASR system that most likely uses a different type
of modeling). This means that the orthographic input into MAUS can be seen as a semi-
independent knowledge source. It is only semi-independent as the transcription produced
by the human labeler or an ASR system, is still dependent on what is being said in the
input speech signal and on how well the input signal can be processed, for example, this
might be difficult in cases in which the signal quality is bad. It is interesting to see that,
after all, in ASR systems an estimation of the quality of the word hypotheses may use ex-
actly the same features that are used for the original decision and still predict the quality
of this decision in a reliable manner.

4.3.5 Classification Approaches: Relevant Work

Given the broad overview in the last part of this section, a small selection of studies, which
are directly relevant to the current study, are explained in more detail in the following
section.

Schaaf et al. (1997) pursue an approach that uses features that are extracted from the
decoder. Examples of these are acoustic stability, which measures how often words occur
when changing the weighting balance between language model and acoustic model, lan-
guage model backoff, which describes the number of times the language model has to switch
to a lower n-gram model, and the normalized word score, which is the word score calcu-
lated by the Viterbi decoder divided by the prior word probability. Schaaf et al. (1997) use
two methods to classify words into the groups correct and incorrect: LDA and an ANN
(3-layers with one single unit in the hidden layer and shortcut connections). In a follow-up
study, Kemp et al. (1997) examine the use of lattice-based features in a classification ap-
proach (where the features are computed by the forward-backward algorithm, for example,
hypothesis density describing the number of competing branches in the lattice, and once
again acoustic stability). In this study, an ANN and a C4.5 decision tree are trained (the
ANN has the same topology as the one previously used in Schaaf et al., 1997).

Zhang et al. (2001) use two kinds of features: decoder-based and parser-based features.
An example of a used decoder-based feature is the normalized acoustic score, which is the
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ratio of the word score, obtained by a language-model based recognizer, divided by the score
of a phone-only decoding similar to Young (1994). Further examples include the language
model backoff described above, N-Best-Homogeneity, which is the ratio between the score
containing the hypothesized word and the sum of the scores of all paths in the list. As the
ASR system used in this study is integrated into a dialog system, the researchers had access
to parser-based features, such as whether a word conveys semantic information, and the
slot backoff-mode on a two-word window (similar to a language-model backoff). A decision
tree was then applied (the splitting criterion is information gain or Word Error Rate), as
well as a neural network with one hidden layer (50 nodes), and SVMs using different kernels
(Dot, Polynomial, RBF, Sigmoid, and ANOVA). In regard to classification accuracy, SVMs
using an RBF and an ANOVA kernel are reported to achieve the best performance.

Xue et al. (2006) also used decoder-based features (such as acoustic and language model
score), as well as confusion network-based features, such as their proposed entropy measure.
They employed Decision Trees (DTs), SVMs with RBF kernels and RFs to predict class
labels. To assess the different features, they used the Variable Importance (VI) output of
the RF, which, however, is not unproblematic (cf. Sec. 3.7.4). They reported that the RF
outperforms the accuracy achieved by the decision tree, as well as that achieved by the
SVM.

4.3.6 Confidence Measures in Corpus Analysis

Paulo et al. (2004) examined how ASR based confidence measures can be used to assess the
quality of automatic segmentation of spontaneous speech. Alignment is carried out using
a hybrid approach between a more robust classical Hidden Markov Model (HMM) aligner,
which is, however, speaker-adapted, and a more accurate Dynamic Time Warping (DTW)
aligner based on speech synthesis, which is speaker-independent. They employ a two-step
process, in which a rough alignment is performed initially employing the HMM aligner,
and then refined for the final alignment by the DTW aligner.

The features used for Paulo et al. (2004) are based on the distances of the internal
representation of the alignment procedure. Two of these features, for example, are “the
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variance of the mean distance between the features of the recorded signal frames and the
synthesized speech signal over the alignment path for a given phone” (DTW) and the “mean
distance between the features of the recorded signal frames and the phone model”(HMM;
for more information on the features cf. Paulo et al., 2004).

To distinguish between good and bad alignment, a threshold is employed at an Overlap
Ratio (OvR) of 75% (cf. Sec. 2.6.1 for more details on the OvR). An OvR that is bigger
than 75% is classified as a good alignment and an OvR that is smaller or equal to 75% is
classified as a bad alignment. By doing so the continuous regression problem is transformed
into a two-way classification task.

Three different classification algorithms were examined: a regression tree, an ANN, and
an HMM. For the HMM classifier, two distinct models were trained, one for aligned and
one for misaligned speech. For this, the best achieved performance, which is averaged over
all phoneme classes (including silence) was 0.7324 for precision and 0.7117 for recall.

Paulo et al. (2004) showed that confidence measures can be used to detect misaligned
phones after forced-alignment. One drawback of the method is using a speaker-adapted
HMM aligner. Due to this, it is unclear whether the applied features could be successfully
used when not adapted to the speaker. Another obstacle hindering the use of this approach
in the current study is that MAUS does not provide a DTW aligner, which accounts for
50% of the features.

4.4 Measure of Confidence for Corpus Analysis

(MOCCA) – Chosen Approach

4.4.1 Overview

As previously mentioned, in order to prepare a speech corpus so it can effectively be used
in research, some time-intensive, highly repetitive, and error-prone pre-processing steps
(annotation, manual/automatic alignment) are necessary. Fortunately, the aforementioned
studies suggest that these errors can be detected automatically. The present study wants
to contribute to this body of work by trying to tackle two different problems:
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1) find errors in the transcription process that were either produced by a human or an
ASR (experiment 1)

2) find errors in the subsequent automatic S&L (experiment 2)

Two aspects are worth noting explicitly in this context. First, the granularity of the
prediction. In the current study, the prediction of the quality of the transcription and the
subsequent alignment is performed at the word-level (in contrast to, e.g., the phoneme-
level). Second, the two predictions (transcription/quality of alignment) are, to some extent,
related, as it is assumed that wrong/bad transcripts will lead to worse S&L. However,
this relationship is ignored in the following study, and the two problems will be analyzed
independently in two different experiments. The granularity for both experiments is at the
word-level.

4.4.2 Features

From the aforementioned features, the ones were selected that can be extracted from the
MAUS process without further modeling. This means, all features based on the decoder
and features directly built on top of the input data of the alignment process. These features
comprise a subset of features that have successfully been used in Schaaf et al. (1997):

logLM: the log prior language model probability, logP (W )
logAP: the log posterior probability as produced by the Viterbi decoder of HTK (Young

et al., 2002), log[p(X|W ) · P (W )]
logAPNorm: the log posterior probability normalized by log prior probability:

logAPNorm = logAP − logLM
Duration: the segmented word duration
SpkRate: the local speaking rate, calculated as the ratio of mean word length in the

training data MeanDur and Duration: SpkRate = MeanDur/Duration

logNPhones: the logarithm of the number of phonemes in the target word according to
the S&L
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The MAUS system models phones, not words (cf. Sec. 1.3.3). As words wi have a
variable number of phones n, it is apparent that for each word w, n different feature values
logLM, logAP, and logAPNorm are produced. To circumvent this problem of variable
length feature vectors, functionals of these features are used. This ensures a fixed length
feature vector and, depending on the functionals, allows the resulting features to represent
the dynamic of the feature values over the evaluated phone-sequence. The used functionals
are (always calculated over the feature vectors of all phones):

Sum: sum(x) =
n∑
i=1

xi

Mean: x = 1
n

n∑
i=1

xi

Median: med(x) =


xn+1

2
n odd

1
2

(
xn

2
+ xn+1

2

)
n even

Range: range(x) = max(x)−min(x)

Variance: V ar(x) = 1
n−1

n∑
i=1

(xi − x)2

Standard Deviation: σ(x) =
√
V ar(x)

DCT coefficients 1-3: Ck(x) =
n∑
i=1

xi cos [π
n
(i+ 1

2)k], for k = 1, 2, 3

where n is the number of phones, xi is the feature value of the i − th phoneme of a
given feature, and max(x) and min(x) are the maximl and minimal value of the features
over all phones respectively for all the functionals above. This yields a feature vector of
constant dimensionality d = 30 for each word.

4.4.3 Training and Test Data

Training and Test Strategy

MOCCA was trained and tested on recordings from two different corpora. For training and
parameter tuning with a 10-fold CV, a subset of the Kiel Corpus (Kohler, 1996; John, 2012)
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was used. In each fold, a certain speaker was either part of the test or part of the training
set. All generated folds are approximately equal with regards to training set and test set
size (stratification). For testing the best performing parametrization, the PhonDat2 (PD2)
corpus was used. This corpus is a completely independent test corpus, as neither speakers,
nor recording setting and environment was identical.

Performing the training of MOCCA on one corpus and the evaluation of the perfor-
mance against an unseen speech corpus, recorded under different conditions, ensures that
the results can be used across corpora. Therefore, the method will be applicable to other
speech resources as well.

Data

Kiel Corpus (training set): The used subset of the Kiel corpus consists of 30 speakers
who produce a total of 2225 utterances of semi-spontaneous speech in the appointment
scheduling domain as well as map task recordings (Kohler, 1995; John, 2012).

In the scheduling domain, two subjects made a series of appointments. To ensure that
the subjects engage in conversation, the task was made more difficult by providing a cal-
endar already containing other appointments. An example of the appointment scheduling
task is

“ich kann ab vierzehn Uhr”5

as an answer to whether an appointment at that time would be possible. This allows
for a controlled environment while the elicitation mode is semi-spontaneous.

In the map task, two subjects had to talk about two maps that are different in some
way. This leads to discussions about the contents, in which again semi-spontaneous speech
is produced (for more information, cf. Sec. 3.5.1 and Anderson et al., 1991). An example
is:

“dann gehst du jetzt von der Eisenbahnlinie weg”6

5English (translation): “I am available after 2 PM”
6English (translation): “move away from the railroad”.
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In both recording modes, scheduling and map task, the subjects engage in semi-
spontaneous speech, while solving the task together. However, the content of the utterances
is task-specific.

PhonDat2 (PD2) (test set): The subset taken from the PD2 corpus (The ASR Con-
sortium, 1995) consists of read speech of 16 speakers producing 64 utterances each, which
adds up to a total of 1024 utterances. The domain of the recording is a train information
query task, in which subjects were asked to read texts that represent dialogs that could
appear in a train information system. An example of a prompt the subjects were asked to
read is:

“geht heute noch ein Zug nach Hannover”7

Notes on the corpora used: First, both corpora have a manually corrected ortho-
graphic tier, and a manual S&L which was produced by trained phoneticians and both
contain German utterances produced by native German speakers. Further, the manual
S&L was corrected by a second annotator.

Second, as mentioned above, both corpora contain task-specific speech of the partici-
pating subjects. Performing training and hyperparameter optimization, and final testing
in different recording modes will show whether a model is heavily optimized towards a task
(as it will not perform well on the independent test set if this is the case).

4.4.4 Machine Learning Algorithms

Overview: For both experiments, two different algorithms were tested. For experiment
1 SVMs and RFs were used and Support Vector Regression (SVR) and RFs were used for
experiment 2.

SVM: SVMs were already introduced and used in the last experiment (cf. Sec. 3.7.1).
As stated before, SVMs are able to fit non-linearly separating hyperplanes in the low

7English (translation): “is there another train to Hannover today”
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dimensional feature space using the kernel trick. The generated maximally separating
hyperplane can be controlled by the penalty set for misclassified instances (soft-margin
classifier). To do so, the cost parameter C is used to control this penalty. The lower the
cost, i.e., when misclassifications are penalized less, the smoother the resulting hyperplane.

The two best SVM kernels reported in Zhang et al. (2001) are a Gaussian RBF8 kernel
of the form:

k(u, v) = exp(−γ‖u− v‖2) (4.5)

and the ANOVA RBF kernel of the form:

k(u, v) =
n∑
k=1

exp(−σ(uk − vk)2)d (4.6)

As the training of the ANOVA RBF kernel is quite time-expensive and Karatzoglou et
al. (2006) report that ANOVA RBF kernels generally perform well in regression problems,
it is only applied for the regression task in experiment 2. Hence, the Gaussian RBF kernel
was applied in experiment 1 and 2; the ANOVA RBF kernel only in experiment 2.

As the SVM is sensitive to its hyperparameters, they were tuned by performing a
standard grid search: in case of the Gaussian RBF kernel the parameters for cost C (values
tested: C = 0.001, 0.01, 0.1, 1, 10, 100) and γ (values tested: γ = 0.001, 0.01, 0.1, 1, 10,
100) were tuned. In case of the ANOVA RBF kernel the parameters C (values tested:
C = 0.1, 1, 10), σ (values tested: σ = 0.1, 1, 10), and degree d (values tested: d = 1, 2, 3)
were tuned.

For training the SVM with the Gaussian RBF, the package e1071 (Meyer et al., 2015)
of the R Programming Language (R) was used, which itself utilizes the LibSVM library
(Chang et al., 2011), a parallelizable implementation of SVMs. For training the SVM
with the ANOVA RBF kernel, the package kernlab (Karatzoglou et al., 2004) was used.
Two different packages were used, as e1071 does not support ANOVA kernels, but can be
parallelized and training is, therefore, much faster, whereas kernlab does support ANOVA
and Gaussian RBF kernels, but processing is only single threaded.

8Gaussian Radial Basis Function will be abbreviated with RBF in the following.
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Random Forest: RFs were also already introduced in Sec. 3.7.1. Despite the fact that
they are reported to be insensitive to their hyperparameters, the two most important ones
were tuned. These are the number of trees to grow (ntree = 50, 100, 200, 500) and the
number of random features to consider at each split in the tree (mtry = 5 ≈

√
d, 8,

10 = d
3 ; the values for mtry were rounded to the next whole integer). The Random Forest

Generator” (ranger) package of R was used for training, as ranger was the best performing
RF implementation available in R at the time of writing (Wright et al., 2015).

Class Probabilities in Classification: Both classification algorithms can output class
probabilities p, instead of only a binary label. The class probability is a measure of how
confident the classification algorithm is about its decision. The output values range from
0 (representing 100% confidence about class A) to 1 (representing 100% confidence about
class B).

The class probability can be used to distinguish between those cases in which the
classifier was certain about the decision, or edge-cases in which the classifier had problems
making a distinction (around p = 0.5). The final decision about the label label(xi) is
achieved by applying a threshold τ . Values xi below the threshold are labeled as ’bad’,
above or equal to the threshold are labeled as ’good’. The default value is τ = 0.5. The
final decision is therefore defined as:

label(xi) =


′bad′ pi < 0.5
′good′ pi >= 0.5

(4.7)

where pi is the probability of the predicted class of feature vector fi and (pi,bad+pi,good =
1) for all observations.

In the following, this information is used to screen out cases, in which the classifier
could not distinguish clearly between the two classes. The possibility to select between
instances in which the classifier could make clear distinctions, and where it could not, is a
useful parameter to provide a user of the method with.

More details about how output class probabilities are estimated in SVMs can be found
in Chang et al. (2011) and, for RFs, in Malley et al. (2012).
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4.4.5 Receiver Operating Characteristic

The class probabilities output by the classifier can be used to a) skew the distribution to
one side or the other (i.e., by lowering the threshold more instances are classified as good
or vice versa) and b) to drop the instances which could not be clearly put in to one class
or the other (e.g., discarding instances with 0.4 < pi < 0.6).

A receiver operating characteristic (ROC) curve is used (cf. Hastie et al., 2013, p. 316)
to visualize how classifier accuracy is influenced, if instances close to pi = 0.5 are left
out of the decision in experiment 1 (cf. 4.5.2). The axes of the plot are the true positive
rate (TPR) and the false positive rate (FPR). The TPR is also called sensitivity or recall
and was introduced in Equation 3.5. The FPR is defined as

FPR = fp
fp + tn

(4.8)

where fp denotes the number of false positives and tn is the number of true negatives.

4.4.6 Resampling of Feature Vectors

Various methods, to improve classification by generating more training samples in unbal-
anced datasets exist (for an overview of different algorithms, e.g., cf. More, 2016). One
popular method is the Synthetic Minority Over-sampling Technique (SMOTE) proposed
by Chawla et al. (2002) and involves the following steps:

1. Select a random example of the minority class9 and select its k nearest neighbors
from the dataset (e.g., k = 5, as in Chawla et al., 2002).

2. Select one of the k nearest neighbors at random and randomly select a position in
the feature space between these two points.

3. Add this point together with the minority class label to the dataset.
Chawla et al. (2002) not only show that this oversampling strategy improves results

during classification, but also that results improve further in case the oversampling of the
minority class is combined with an undersampling of the majority class.

9In the following the class with fewer examples is called minority class and the class with more examples
is called majority class.
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In the current study, a resampling for regression, not a classification task is necessary.
Torgo et al. (2013) have extended the SMOTE algorithm to handle regression tasks and call
it the Synthetic Minority Over-sampling Technique for Regression (SMOTER). Assigning
a synthetic output in the regression case is not as trivial as in the original classification-
based SMOTE. This is because, by definition, in the classification case the newly created
samples always lie within the area that has already been occupied by the minority class (as a
point is chosen in between two existing samples). Hence, assigning the class label is trivial.
However, in the regression case, the continuous target variable has to be approximated.

SMOTER is similar to SMOTE with regards to selecting the two feature vectors that
should be used to generate a synthetic sample (i.e., randomly selecting one of the k nearest
neighbors of a randomly selected sample). To assign a target value to this new sample,
Torgo et al. (2013) propose using the weighted mean of the two samples and propose the
inverse distance to the training samples acts as the weight. They show that using this
strategy improves results for their example dataset.

This algorithm will be used in the current study to generate more samples in regions
that are occupied by too few training samples to allow a prediction of equal error across
the range of values.

4.5 Experiments and Results

4.5.1 Overview of the Experiments

The general setup of the experiments was as follows: test data consisting of the speech
signal and the corresponding transcript were automatically processed by the S&L system
MAUS. During this process, the features explained in Sec. 4.4.2 are extracted from the
decoder and the input data. Based on these feature vectors, MOCCA estimated two
measures assessing the quality of the process: a) it tagged each word of the input transcript
whether it matched the speech signal or not (experiment 1) and b) it estimated the degree
of overlap of each word via the OvR between the calculated segmentation and the ground
truth (manual) segmentation (experiment 2).
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Despite common practice, the input features values were not standardized (i.e., to have a
mean 0 and a variance 1) before being fed into the SVM with an RBF kernel. Standardizing
the features was tested, but led to slightly worse results than for the unscaled data.

4.5.2 Experiment 1: Correctness of Transcription

In experiment 1, estimating whether a word label in the transcription is correct is treated
as a two-class classification task. Two different classifiers were tested, an SVM with an
RBF kernel and an RF.

According to the related work in Sec. 4.3.4 and 4.3.6, decoder information is a sufficient
knowledge source to determine the quality of an ASR and an automatic S&L process on
the phone-level. Therefore, the current experiment should answer the research question:
Do the features described in section 4.4.2 carry enough information to classify each word
in the input transcription into the classes ’correct transcript’ versus ’incorrect transcript’
at a level above that of chance after performing an automatic S&L using MAUS?

As mentioned in Sec. 4.4.3, the corpora are hand-labeled and manually corrected by
two people. It is assumed that no transcription errors exist in the corpus or if they do, they
exist to such a small degree as to be negligible. Since examples of the incorrect class are
needed for training, the following replacement strategy was applied to every test recording
to artificially introduce this kind of error.

Transcription Errors: First, an automatic S&L using MAUS was performed on the
test recording, and the features were extracted from the decoder output for all words. For
all words that have an OvR of more than 90% between the MAUS S&L and the ground
truth segmentation, the MAUS S&L was repeated, however the selected word was replaced
by another, wrong word in the transcript and features were extracted from the decoder
output for the replaced word.

The replacement word wr was a randomly selected word from the corpus. To be con-
sidered as a valid replacement, it had to fulfill the following two constraints:
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• the length, of the canonic representation of the word, of the replacement word wr

needed to be length(wr) = length(wo)± 1
• the word-length normalized Levenshtein distance (Levenshtein, 1966) had to be at

least 75%

If no word could be found in the range ±1, it was incrementally increased until a
replacement was found. The length constraint was necessary, as it would have otherwise
not always been possible to execute the alignment procedure. Due to a minimal length of
30 ms for each phoneme, constellations exist in which an arbitrarily selected phone-sequence
cannot be put into a specific time segment. This leads to an error during the MAUS
alignment. To circumvent this problem and allow a transparent replacement strategy, the
length constraint was introduced.

An example of a rejected replacement would be “train” and “rain”, as it only fulfills
the length requirement, but not the Levenshtein requirement. A valid substitution would
be the replacement of “train” by “wash”. The “Levenshtein distance based replacement”
constraint was introduced, as it was assumed that a wrong word which is (phonetically)
similar, like “train” to “rain”, is easier to align to the speech signal. This similarity, in
turn, means that the feature values will not differ significantly and are, therefore, harder
to detect. Additionally, an error like this would probably lead to fewer problems in the
subsequent processing than a word that has no similarity at all (subsequent misalignments).

Employing a strategy like this has two benefits: first, many training examples can be
generated automatically and, second, the training set is balanced with regard to the output
classes (each relevant part in the speech signal is analyzed twice – once with a correct and
once with a wrong transcript). This leads to a total of 26,649 training examples.

Results: Table 4.2 summarizes the results of the two-way classification, based on a hy-
perparameter search with the aforementioned 10-fold CV. The metrics accuracy, precision,
and recall are reported for the models’ hyperparametrization, yielding the best accuracy
(cf. Sec. 3.7.2). The exact hyperparameter values are given in the caption of Table 4.2.
The upper-half of Table 4.2 shows the results of the 10-fold CV; the lower half shows the
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results when testing the best parametrization against the independent test set PD2.

Corpus Class. Accuracy Precision Recall

Kiel SVM 0.7822 0.7897 0.7672
RF 0.7908 0.7862 0.7968

PD2 SVM 0.7876 0.7785 0.7868
RF 0.7526 0.6923 0.7794

Table 4.2: Performance of the SVM and the RF classifiers and according metrics. The SVM
was built with hyperparameters C = 100 and γ = 0.1. The RF was built with ntree = 500,
mtry = 8. For both SVM and RF a decision threshold of τ = 0.5 was used.

It can be seen that the SVM and the RF classifier both achieve a similar performance
in the 10-fold CV. The RF has a slightly better accuracy than the SVM, which agrees
with the findings put forward by Fernández-Delgado et al. (2014).

When testing against the independent test set, the accuracy obtained for the SVM is
close to the level of accuracy for the original dataset. It seems to generalize better in
this case than the RF does. The RF, furthermore, shows a skewed distribution towards
predicting more fn (in the current case labeling more ’good’ instances as ’bad’), which
leads to a decrease in precision by more than 10%.

The ROC curves of the two best parametrizations of the SVM and the RF can be seen
in Fig. 4.1. When looking at Fig. 4.1, it can be observed that the RF outperforms the SVM
in the CV training across the range. When applied to the test set, the SVM outperforms
the RF at all thresholds and it even performs slightly better on the test set than during
the CV evaluation.

As mentioned in paragraph 4.4.4, both classification algorithms are able to output class
probabilities. When observations, in which the probabilities indicate that the decision is
not clear (values around 0.5, meaning that both classes are equally likely), are left out, the
performance of the classifier improves. This can be seen in the respective ROC curve in
Fig. 4.2. This could, for example, be used to only output instances, in which the classifier
could make a clear decision (i.e., to filter out instances that are unclear, in case enough
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Figure 4.1: The four ROC curves of the best parametrization for the SVM and the RF when
being applied to the training and the test set with varying threshold τ from Equation 4.4 (SVM
CV: green; SVM test: blue; RF CV: red; RF test: orange).



4.5 Experiments and Results 155

input data is available). Five different gaps are examined which are 0.0 (original setting
which is also shown in Fig. 4.1), 0.2, 0.4, 0.6, and 0.8. As an example, having a gap of 0.2
means that values that are predicted with a probability between 0.4 and 0.6, are left out
of the evaluation (no output in those cases).
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Figure 4.2: Four ROC curves showing the resulting performance of the SVM for a) varying
thresholds τ from Equation 4.4 and b) leaving out instances predicted with certain class proba-
bilities around the instances predicted with pi = 0.5. For a gap of 0.2 this means that the label
’bad’ is output for probabilities pi = 0.0...0.4 and the label ’good’ for probabilities between
pi = 0.6...1.0. Five different gaps are evaluated 0.0, 0.2, 0.4, 0.6, and 0.8.

Summary - Experiment 1: The results of experiment 1 are promising, when it comes
to detecting transcription errors in speech signals. One problem though is the skewed
distribution of errors and how they occur in speech corpus preparation. Unlike in the
experiment, correct and incorrect words do not occur with a ratio of 1:1. It is assumed
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that the incorrect:correct ratio is in the range between 50:1 and 500:1. In the experiment
roughly 22% of words were labeled incorrectly. In an assumed case of a correct:incorrect
ratio of 250:1, this means to detect 8 out of 10 errors in 2500 words, around 550 correct
instances (that were falsely labeled “correct”) have to be checked as well. Having to check
around 550 words is, of course, better than checking all 2500 words, but still represents a
high number of tokens for manual validation.

If a corpus is big enough, leaving out the cases in which the classifier is not certain
about its decision, would increase the performance of the classification algorithm. This, in
turn, would lead to less manual work when trying to find the remaining errors, but also
means that some of the input data has to be discarded in further processing.

4.5.3 Experiment 2: Segmentation Quality

Overview

The experiments described in the following section investigate the prediction of the OvR
between manually and automatically created S&L (cf. Fig. 4.3). As the OvR is a continuous
value its prediction is a regression task. For those experiments, the algorithms used were
again RFs (as in the last experiment) and SVR (cf. Sec. 3.7.1) with an RBF kernel. Zhang
et al. (2001) report that the ANOVA Radial Basis Function (ARBF) kernel achieves good
performance as well. This could not be confirmed in a 10-fold CV, as the predictions
are only weakly negatively correlated to the actual values. Because of this and the long
training times of the ARBF kernel, this was not further investigated and more detailed
results will not be reported here.

As the literature suggests, it is possible to use decoder-based features to do an estima-
tion of the quality of the automatic S&L process (Paulo et al., 2004). Even though it has
previously only been done on the phoneme level, there is no evidence that this should be
different for a quality estimation on a word-level. The ground truth for the OvR, which
is used for training, is calculated between the segment boundaries of an automatic S&L
produced by the MAUS system and a manually obtained S&L created by human transcrip-
tion on the aforementioned corpora (Kiel corpus and PD2 corpus). Estimating this OvR
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Figure 4.3: A real example of phoneme strings and their alignment: an automatic S&L (top),
a manual S&L (bottom), and the resulting OvR values (middle). Additionally, the time index
in samples is shown as extracted from the signal (zeroed at the first relevant sample), where
the numbers belong to the boundary on the right side of it.

value during the segmentation process (where no human ground truth is available) would
allow possible transcription errors to be pointed out right after processing and would save
time in correcting erroneous S&L. This leads to the following research question for the
current experiment: Do the features described in section 4.4.2 carry enough information
to approximate the OvR between an automatic S&L and a manual S&L?

It is worth noting that an alignment between two segments, in which the end time of
the one segment is equal to the start time of the other segment, is as bad as it would be if
there was no gap between the two segments. As the OvR can have smaller values than 0
(cf. Sec. 2.6.1), all values that are smaller than 0 are set to 0.

Analogous to experiment 1, only the results based on the parametrization that achieved
the best performance with regard to the correlation coefficient (Pearson) are reported.
Reported are therefore: the hyperparameters tuned and the two measurements correlation
coefficient (Pearson) and mean absolute error (MAE) for the best parametrization (for the
metric definitions, cf. 3.7.2).

The original distribution of the OvR can be seen in Fig. 4.4 (gray). It can be seen that
the ground truth OvR values are not equally distributed. The dense regions around an
OvR of 1 might lead to an overfitting of the regression algorithm in that area and, therefore,
resampling strategies were investigated. This lead to three different experiments:

a) Training the regression algorithm using the full dataset, including dense regions (ex-
periment 2a),

b) Training using a dataset resulting from an undersampling of the bins with many



158 4. MOCCA

observations (experiment 2b)
c) Training using a dataset resulting from both oversampling of the bins with only a few

observations and undersampling of the bins with lots of observations (experiment 2c)
The histograms of the distribution of the OvR values in the three experiments 2a, 2b,

and 2c can be seen in Fig. 4.4.
An undersampling strategy was used in two of the experiments. In these experiments,

a subset of the original dataset was used to build a model that predicted the OvR with a
more equal accuracy across the range of possible values. For this, the OvR range of [0, 1]
was divided into 20 equally sized bins all of which had a width of 0.05. Bins that contain
more observations than 1890 observations (the mean number of observations calculated
over all bins) are called “majority bins” (e.g., the interval 0.9 − 0.95 in Fig. 4.4), bins
that contain fewer observations than 1890 are called “minority bins” (e.g., the interval
0.10− 0.15 in Fig. 4.4) in the following. Those names agree with the definition of minority
and majority classes in class-based SMOTE (Chawla et al., 2002).

A 4th experiment deals with the different ways in which two time segments can overlap.
The different types of overlays possibly make the estimation more difficult, as it changes the
dynamic shape that the features have to capture. To test whether this makes a difference
to the prediction performance, an experiment is conducted in which this information is
fed into the SVR. This is an experiment, to see whether this information can be used
to improve the prediction. However, it can not easily be used in a real application, as
this feature is not available and would have to be estimated as well. The results for this
experiment can be found in App. B.1.

Estimating the OvR – Experiment 2a

In this experiment, the unaltered, complete dataset was used during the training phase.
This means that for the 10-fold CV a total of 55,515 observations from the Kiel corpus
were used.

The results are summarized in Table 4.3. It can be seen that the RF slightly outperforms
the SVR. However, both algorithms are comparable performance-wise. As mentioned
before, Fernández-Delgado et al. (2014) report that RFs and SVMs often perform similarly
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Figure 4.4: Histogram showing the original distribution of the overlap ratio (light gray), the
undersampled dataset (blue), and the dataset that was oversampled in the minority classes and
undersampled in the majority classes (yellow). In the undersampled dataset, each bin contains
the average number of observations calculated over all bins of the original dataset (1890). In
the over-/undersampled dataset each majority class contains 1.5 times the average number of
observations calculated over all bins (2835) and minority classes are oversampled by 300% (but
are not allowed to contain more than 1.5 times the average of observations).
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in classification tasks, which seems to also hold true for regression tasks in the current case.

When applied to the independent test set, the RF predicts values with a higher correla-
tion between real and predicted values when compared to the SVR. The best parametriza-
tions based on the grid search were for the SVR C = 1 and γ = 0.1, and for the RF
mtry = 1

d
and ntree = 500.

Moreover, it can be seen that the correlation coefficient decreases and so does the
MAE. This seems counter-intuitive, but there are cases in which the correlation coefficient
decreases when the prediction occurs more frequently in a different direction than the real
values, the deviation to the real values, however, is smaller than before.

Corpus Class. CorCoeff MAE

Kiel SVR RBF 0.7337 0.0918
RF 0.7487 0.0949

PD2 SVR RBF 0.6558 0.0783
RF 0.6622 0.0809

Table 4.3: Results of the best parametrizations according to the Pearson correlation coefficient
(CorCoeff) of the two classifiers (Class.) SVR with Gaussian RBF (RBF) kernel and the RF.
The RBF SVR was built with parameters C = 1 and γ = 0.1; the RF was built with parameters
ntree = 500 and mtry = d

3 .

Fig. 4.5 shows the distribution of the predicted values versus the original values for the
best SVR parametrization. For this visualization, the results of the SVR are used, as it
outperforms the RF in the following experiments and making the plots more comparable
across experiments. The plots for the best RF look similar. It can be seen that the
prediction is more accurate close to OvR 1, compared to OvR 0. This is because the OvR
is not equally distributed over the possible range of values.

As can be seen in Fig. 4.4, there are many values close to 1 (light gray bars), indicating
an almost total overlap between automatically estimated word segments and the ground
truth segmentation, and few values < 0.5, indicating a small overlap. While this is the
desired behavior, as this means the MAUS S&L is mostly correct, it makes it difficult to
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train a model that works equally well over the complete range of values. The half-violin
plots10 in Fig. 4.5 suggest that the error for the OvR prediction is heteroscedastic (bigger
close to 0 and smaller close to 1).

In the context of MOCCA especially, a prediction that has an equal error distribution
over the complete range of predicted OvR values is of high importance. This becomes even
more important when badly aligned segments are of special interest. Currently, the badly
aligned segments cannot be predicted reliably.

Undersampling of Majority Bins – Experiment 2b

In this experiment, the majority classes (cf. Sec. 4.5.3) are undersampled to prevent the
regression algorithm from favoring dense regions with many measurements during the train-
ing phase (as happened in experiment 2a). The undersampling strategy limits the number
of observations in each majority bin to an arbitrary number of observations, which is the
mean amount of observations calculated over all bins in the current case. This limit is
1890 observations. Therefore, if more than 1890 observations fall into a bin, the correct
amount of observations is randomly selected from the available measurements. This equals
an undersampling strategy, in which the classes with a higher number of observations are
undersampled to a greater extent than the bins with fewer observations. This strategy
results in a total of 22,552 training observations in the Kiel corpus (of the original 55,515
samples; this equals a loss of 60% of the data).

Table 4.4 summarizes the results of the hyperparameter search for the SVR and the RF.
It once again can be seen that the results look similar when comparing the SVR and RF
regression. Analogous to experiment 2a, in which the model is applied to the independent
test set, the correlation decreases for both classifiers, an indicator that the models do not
generalize well. In the current study, the SVR generalizes better than the RF. Overall,
the results are slightly worse than in experiment 2a. This was to be expected, as the

10Half-violin plots are used, as boxplots do not show the distribution of values over the range. Using
half-violin plots should save space and avoid graphical problems in visually parsing the distribution by the
symmetry in violin plots as suggested by Irizarry, 2017. By marking the positions of the 25%, 50%, and
75% quartiles it combines the advantages of both violin plots and boxplot.
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Figure 4.5: Visualization of the original and the predicted OvR values for the best SVR
parametrization for the original/unbinned dataset. The half-violin plots show the variation
within each bin. The number of observations in each bin is plotted above each plot. ’[’ and
’]’ on the x-axis indicate that the boundary value is part of the interval, ’(’ and ’)’ indicate
that the value is not part of the interval. The black horizontal lines in the half-violin plots (-)
indicate the 25% and 75% quartile; the • the median.
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test set also contains more OvR values close to 1. By training the model in a way that
predicts the OvR across the range of values better, many values close to 1, that benefitted
from the skewed prediction before, lead to a decrease in overall performance. Considering
the amount of data that was removed from the upper bins for training, the result is still
promising.

Corpus Class. CorCoeff MAE

Kiel SVR RBF 0.7367 0.0918
RF 0.7430 0.1290

PD2 SVR RBF 0.6415 0.0946
RF 0.5955 0.1143

Table 4.4: Results of experiment 2b for the best parametrizations according to the Pearson
correlation coefficient (CorCoeff) of the two classifiers (Class.) SVR with Gaussian RBF kernel
and the RF. The RBF SVR was built with parameters C = 10 and γ = 0.1; the RF was built
with parameters ntree = 500 and mtry = d

3 .

The half-violin plots show (cf. Fig. 4.6) that the bins close to 0 lose some of their
variability and bins close to 1 gain some. Additionally, the predicted values close to 0
have a lower median, which means that the prediction in these bins moved closer to the
actual ground truth OvR values, with the first bin posing an exception. This bin not
only contains the values between 0.00 and 0.05, but, due to setting all OvRs < 0 to 0,
all originally negative OvRs as well. This might be the reason why the values in this bin
were difficult to predict. Furthermore, it can be seen that the OvR values in the majority
bins close to 1 lose some of their accuracy when predicting. Overall, it seems that the
prediction performs better over the range of values with the undersampling strategy.

Oversampling/Undersampling Experiment 2c

In this experiment, the previous experiment 2b is extended by an oversampling of the
minority bins (cf. Sec. 4.5.3). This should allow the model to take more information into
account from majority bins close to an OvR of 1 (which were undersampled massively in
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Figure 4.6: Visualization of the original and the predicted OvR values for the best SVR
parametrization for the undersampled dataset. The original values are put into bins of the size
0.05 between 0 and 1. The half-violin plots show the variation within each bin. The number
of observations in each bin is plotted above each plot. ’[’ and ’]’ on the x-axis indicate that
the boundary value is part of the interval, ’(’ and ’)’ indicate that the value is not part of
the interval. The black horizontal lines in the half-violin plots (-) indicate the 25% and 75%
quartile; the • the median.



4.5 Experiments and Results 165

the previous experiment).

In order to do so, the minority bins were oversampled by 300%, which is a common
value for SMOTER (cf. Torgo et al., 2013), to increase the number of examples in these
bins. Additionally, analogous to before, an undersampling of the majority classes was
performed. In the current experiment, the majority bins were allowed to contain 1.5 times
(arbitrarily chosen with the restriction that it has to be higher than in experiment 2b) the
mean of observations calculated over all bins. This is possible, as the oversampling of the
minority bins allows balancing the dataset by adding more instances in the lower bins and
still keeping a balanced dataset.

To prevent bins in the minority classes having more instances after oversampling than
undersampled majority bins, they are limited to contain 1.5 times the mean of the ob-
servations over all bins as well. This is required for all bins that fall into the minority
bin category and contain more than 1

3 · mean observations, for example, bins 0.50, 0.55,
and 0.65 (cf. Fig. 4.6). This strategy results in a total of 49,020 training observations (of
the original 55,515 samples from the Kiel corpus, 28,368 were kept, which equals a loss of
around 49% of the data compared to the original experiment 2a, but a gain of 10% when
compared to experiment 2b; 20,652 observations were generated for the minority bins by
SMOTER).

Table 4.5 shows that the performance of the RF improves more when applied to the
training set than the SVR when compared to experiment 2b. It seems the RF makes better
use of the larger amount of training observations. On the other hand, it also seems that the
RF overfits the data in the training phase, similarly to experiment 2b, and the performance
regarding the correlation coefficient on the test set decreases more than is the case for the
SVR.

Similar to experiment 2b) it can be seen in Fig. 4.7 that the variation in minority bins
close to an OvR of 0 is once again reduced and that the values move closer towards their
original ground-truth values. This goes along with an expected increase in variation in the
majority bins close to 1. Moreover, as was the case in experiment 2b, it can be seen that
the variation in the first bin is still high.
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Figure 4.7: Visualization of the original OvR values and the predicted ones for the best SVR
parametrization for the over- and undersampled dataset. The half-violin plots show the vari-
ation within each bin. The number of observations in each bin is plotted above each plot. ’[’
and ’]’ on the x-axis indicate that the boundary value is part of the interval, ’(’ and ’)’ indicate
that the value is not part of the interval. The black horizontal lines in the half-violin plots (-)
indicate the 25% and 75% quartile; the • the median.
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Corpus Class. CorCoeff MAE

Kiel SVR RBF 0.7416 0.1259
RF 0.7732 0.1183

PD2 SVR RBF 0.6006 0.1161
RF 0.5992 0.1175

Table 4.5: Results of the best parametrizations according to the Pearson correlation coefficient
(CorCoeff) of the two classifiers (Class.) SVR with Gaussian RBF kernel and the RF. The
RBF SVR was built with parameters C = 1 and γ = 0.1; the RF was built with parameters
ntree = 500 and mtry = d

3 .

OvR prediction error against word length: As stated in Weintraub et al. (1997)
and Young (1994), the CM is harder to estimate for shorter than for longer words. In Fig.
4.8 the MAE of individual predictions of the OvR in experiment 2c is plotted against word
length (based on the number of phones in the canonic form of the word). It can be seen
that this finding can be reproduced using the current dataset.

Summary – Experiment 2

Experiments 2a to 2c examined whether the OvR can be reliably predicted. It was found
that the OvR can be predicted with a moderate correlation in the independent test set. By
applying an undersampling and an undersampling/oversampling strategy the correlation
coefficient slightly decreases. However, this leads to an increase in prediction accuracy,
especially for bins close to 0.

The MAE of the OvR prediction, grouped by the bins of the three experiments 2a - 2c,
is summarized in Fig. 4.9 (yellow: experiment 2a; blue: experiment 2b; green: experiment
2c). It can be seen that the error gets smaller in the lower bins for the undersampling and
the undersampling/oversampling strategy, but slightly increases in the upper bins. The
reason for this is the large number of instances in the bins close to 1. However, the error is
more similar across the range of values. In the case of MOCCA especially, where errors in
the automatic S&L should be detected, it is paramount to be able to detect values close to
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Figure 4.8: Overlap prediction error plotted against word length. The number on top of each
boxplot indicates the number of observations in that bin, as does the color of the box. The
yellow line is a linear regression line fitted to the data and indicates a downward trend, meaning
that longer words are generally easier to predict than shorter ones.
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0 in a reliable fashion. This means that the model with the undersampling/oversampling
strategy is best suited for the current task.
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Figure 4.9: Each line shows the MAE of the prediction of the OvR in each bin between 0
and 1 (yellow: experiment 2a - unbinned/original data; blue: experiment 2b - undersampling
strategy; green: experiment 2c - combined undersampling and oversampling strategy).

The advantage of the oversampling strategy is that the center of gravity of the histogram
of OvR values can be shifted towards the center, even when using more data from the
original dataset. This allows adding more information to the upper bins without skewing
the predictive model towards the dense regions of the target variable.

4.6 Summary and Discussion

The outcome of experiment 1 shows that erroneous words in a transcript can be detected
at a level above chance from the features extracted from the MAUS S&L alignment pro-
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cess. The best model prediction accuracy is about 78% and produces roughly equal error
types (i.e., false negatives and false positives are equally likely). The SVM is better at
generalizing using the training data and outperforms the RF when applied to data from
another corpus. This is an important aspect in real-world applications. Therefore, this
should be taken into consideration if MOCCA is implemented as a web service as planned.

As mentioned earlier, the classification process implemented here has an advantage
when compared to confidence measure estimation in ASR systems. The advantage is that
two different, mostly independent knowledge sources are combined. Namely, information
from the transcriber (be it a human or an independently modeled ASR system) and infor-
mation extracted from the MAUS alignment process.

Experiment 2 demonstrated that the model best suited for a real-world application
predicts OvR values with a strong correlation of about R = 0.60 when tested against an
independent dataset. The correlation coefficient drops for both regression algorithms, but
more so for the RF. It remains to be seen whether this prediction is good enough to be
applied in a practical corpus correction scheme.

The problem that experiment 2 tries to tackle however, is equivalent to confidence
measure estimation in ASR in that the same features are used for producing the automatic
S&L and a quality estimation of the very same S&L. This might be partly responsible for
the worse results (compared to the results for experiment 1).

Experiments 2b and 2c are an extension of experiment 2a. These experiments have
shown that it is possible to create models based on resampling strategies that predict
values with an error that is more equal across the range and have a smaller prediction error,
especially in the bins close to 0. However, this comes with an increase in the prediction
error in bins close to 1 and an overall decrease in the correlation coefficient. A problem
with the metrics used is that they all prefer models that perform well for densely populated
regions (in the current case those with OvR values close to 1).

An interesting point to take into consideration is the large variation in the first bin (0.0
to 0.05). This bin contains two different types of values: a) the predictions that really have
been predicted with a value between 0.0 and 0.05 and b) the values that were predicted
with an OvR smaller than 0.0 (and were set to 0.0). The dynamic of the features extracted
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when segments neither overlap nor touch, might be different than those that result from
an overlap from 0 to 0.05. This might be an explanation as to why there is bigger variation
than in neighboring bins.

4.7 Conclusion and Future Work

The prediction of transcription word errors as described here seems a promising method
making the process of speech corpus annotation more efficient. The presented method
based on a SVM will be implemented and made available as a web interface and as a service
within the CLARIN infrastructure of the Bavarian Archive for Speech Signals (BAS)11.
Predicting of the automatic S&L time-alignment errors turns out to be more challenging.
Therefore, it remains to be evaluated whether the method can successfully be applied in
corpus correction. Some additional features and modifications that could improve MOCCA
are listed in the following.

A possible feature, which is inspired by the lattice-based posterior probability ap-
proaches (cf. Sec. 4.3.3), would be defined as:

fnBestRatio = #N-Best Hypothesis
#possible N-Best Hypothesis (4.9)

where # stands for “number”. This would calculate the ratio of the number of alter-
native hypotheses the decoder outputs, divided by the number of n-best hypotheses that
are possible, based on all possible paths through the restricted phonotactic model (cf. Sec.
1.3.3). This ratio can be greater than one, as the number of alternate hypotheses can be
high in the lattice due to different starting and end times of segments, compared to the ones
that are possible. The normalization of these values based on the lattice of the language
model seems like a good opportunity to make these values comparable across utterances
and, therefore, add valuable information to the predictor.

A possible feature generally available in ASR systems is a complete language model
(usually based on n-grams). With the aid of a language model, it would be possible to

11Accessible under http://hdl.handle.net/11858/00-1779-0000-0028-421B-4).

http://hdl.handle.net/11858/00-1779-0000-0028-421B-4
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check the grammatical correctness of a word, based on its context. This should improve
the recognition rate as it is assumed that errors are often ungrammatical (Ghannay et al.,
2015).

Another possible feature to detect ungrammatical errors would be to incorporate POS
tags of the words that are about to be evaluated. POS tags are available via services (e.g.,
in Hinrichs et al., 2010), and could therefore be comparatively easily integrated.

An improvement that has nothing to do with features or feature engineering is the
oversampling present in experiment 2. It is possible that higher oversampling could be
used to balance the prediction accuracy across the range of the OvR even further. Torgo
et al. (2013) use oversampling percentages of up to 500%. With higher oversampling in
the minority bins, it would be possible to add even more information available for the bins
close to 1.



Chapter 5

Summary and Conclusion

5.1 Overall Summary

The studies in the last three chapters have shown that automatic methods can benefit
the investigation of regional variation in large speech corpora. Two studies have been
conducted relating to the pre-processing of data, one on the validity of an automatically
obtained segmentation and labeling (S&L) (cf. Chapter 2) and another on error detection
in transcripts and S&L. The latter enables the automatic removal of data that is likely
to be wrong (cf. Chapter 4). The third study dealt with the geolocalization of speakers,
ultimately based on the speech acoustics of regional variation, and with ways to effectively
visualize this variation (cf. Chapter 3).

5.2 The Validity of Automatic Segmentation and La-

beling for Duration Studies

In Chapter 2, the validation of an automatic S&L was performed. To do so, a subset
was created, consisting of the three dialect groups West Central Bavarian (WCB), East
Central Bavarian (ECB), and East Franconian (EF). The latter group was treated as a
study-internal reference group, which was reported to behave differently than WCB and
ECB. This dataset was then processed by the tool WebMAUS to achieve the alignment
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needed for testing. Two experiments were conducted on the resulting data to validate the
automatic alignment.

First, a well-known dialect phenomenon – in this case, the Central Bavarian lenition –
was investigated based on the automatically processed data (cf. Sec. 2.5). The feature used
to demonstrate the validity of the automatic S&L was the phonological dialect feature of
the complementary vowel length in Central Bavarian dialects which can be characterized
by an acoustic feature called the V/(V+C) ratio (cf. Sec. 2.5). In Standard German,
long and short vowels, and lenis and fortis consonants are, in general, freely combinable.
Examples of this free combination are, e.g., Mieder /mi:d5/, Mieter /mi:t5/, Mitte /mIt@/,
and Widder /vId5/. In Central Bavarian, not all combinations are possible, as short vowels
only occur in front of the fortis plosives /p, t, k/ and long vowels only in front of the lenis
plosives /b, d, g/.

Evaluating the V/(V+C) ratios in Sec. 2.5 using the automatically obtained S&L data,
shows that the results generally comply with descriptions in previous studies. This means,
that the complementary vowel length can be observed for ECB speakers, to a lesser extent
for WCB speakers, and not at all for EF speakers. This is taken as first evidence that the
automatically obtained S&L is a valid basis for evaluation. However, the values for the
V/(V+C) ratios were scattered across the range of values, which suggested the existence
of noise within the data introduced by the automatic S&L process.

Second, an experiment was conducted to assess the noise emerging from an automatic
S&L process and to explicitly compare how a manual correction changes the results in
comparison to an automatic one (cf. Sec. 2.6). For this, a subset of the data used in the
first study was created, which was manually corrected by a human annotator. Here, it
could be seen that the feature values from this subset before manual correction behaved
similarly for the presented groups as in the full dataset. After manual correction, the
three described dialectal regions became more distinct and the overall range of the values
became smaller. Nevertheless, the basic structure of the distributions exhibited the same
characteristics before and after correction.

These two experiments shed light on two main aspects. First, the automatic S&L
using WebMAUS can be successfully employed for dialectological and variational linguistic
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research. This holds true, even if the distributions differ from a manual correction since it
was possible to draw the same conclusions from both datasets. Second, young speakers in
the German Today (GT) corpus still produce the reported dialect feature of complementary
vowel length. However, there is evidence that in WCB a sound change is happening, as
long vowels can also occur in front of fortis plosives. This category is not present in the
speech of ECB speakers.

5.3 Geolocalization of Speaker Origins

In Chapter 3 of this thesis, a geolocalization based on acoustic features from regionally
varied speech was investigated. In all experiments in this study, a strict bottom-up ap-
proach was pursued. Bottom-up in this case means that the system was not provided with
any dialectological or linguistic knowledge. For these experiments, the full set of map task
recordings of 641 speakers (328 female, 313 male) from the GT corpus was used, which
had already been automatically segmented and labeled.

By pursuing a predictive approach, rather than a descriptive one, the method has an
objective measure of success (an improvement over the baseline) and, additionally, has the
potential to be applied in, e.g., improving Automatic Speech Recognition (ASR) systems.
This could be beneficial as it has been reported that having a model selection positively
impacts ASR performance (e.g., Najafian, 2016).

The first experiment aimed to test the feasibility of the approach in a binary decision
task using information from only a very short signal part of one phoneme (equivalent to
roughly 30 ms − 100 ms). It could be shown that the North/South distinction was easier
to perform than the East/West, which is in agreement with the traditional grouping of
German dialects. The East/West distinction could be predicted best by the phoneme
/ø:/, with an accuracy of 0.5791, and the North/South distinction by the best phoneme
/z/, with an accuracy of 0.7037. Compared to previous dialect classification attempts this
performance, at the first glance, falls short. Nevertheless, the proposed method, based on
Random Forests (RFs), has a few major advantages. First, the amount of used information
(only one phoneme) to make a prediction is considerably shorter than in earlier approaches.
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Second, no dialect corpus with distinct classes was used, but a data-driven separation
underlies the prediction. And third, the proposed approach enables to relate the extracted
features to be related to dialectological and phonetic variation reported in the literature,
something that most other approaches do not allow.

The goal of the second experiment was to investigate a continuous estimation of speaker
origins. To my knowledge, this is the first study to examine this kind of geolocalization.
It was found that the proposed method predicting a continuous speaker origin using only
a small speech sample, as in experiment 1 of this study, improves the prediction over a
conservative baseline in an east-west direction by only 6.24% and for north-south by 12.65%
for the best performing phoneme /z/. Therefore, it is likely that the proposed approach
does not perform well enough to be applicable in ASR model selection. It seems that
this can be attributed to several reasons: the limited speech information available, that
static features do not capture the nature of speech sounds well enough for a regression task
(i.e., a dynamic representation over longer stretches of the complete phoneme segment are
necessary), that the intra-speaker variability in producing regional variation conflicts with
a reliable prediction based on only a single phoneme, and that the chosen Machine Learning
(ML) algorithms are not powerful enough to model the available variation sufficiently. The
choice of the ML methods was motivated by an attempt to explain the phonetic variation
underlying the prediction. If this requirement is left out, other, presumably more powerful
approaches already applied to dialect classification could be considered, such as, e.g., i-
vector approaches (e.g., DeMarco et al., 2013) or Deep Neural Networks (DNNs) (e.g.,
Lopez-Moreno et al., 2014).

After the data from multiple realizations of the phonemes uttered by one speaker
were combined, geolocalization performance improved considerably above the proposed
conservative baseline. Based on the testing method (Leave-25%-Speaker-out Cross Val-
idation (CV)), every speaker tested was unknown to the system during modeling. This
supports the two hypotheses from the last paragraph that intra-speaker variability and the
sparse information contained in a single phoneme had an influence on prediction accuracy.
Furthermore, this is taken as evidence that regional variation is captured by the recordings
in the corpus, that acoustic features alone are able to capture this variation, and that
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static features and short-time functionals extracted around the phoneme midpoint carry
sufficient information.

Moreover, by training a Decision Tree (DT) using the aggregated data, the division of
the geographic space could be explained (in large parts) by already known regional variation
and visualized in a way that resembles traditional dialect geography (e.g., Schmidt et al.,
2001; Bayerischer Sprachatlas by Hinderling et al., 1996 – 2014) and dialectometric studies
(e.g., Goebl, 2010; Nerbonne et al., 2013). The division of the geographic space by the
phoneme /z/ in the current study resembles the division reported by König (1989, p. 93–
96) strongly, even though, in the current study, the division takes place further south
than previously reported. Nevertheless, the separating line between the northern and the
southern part of the corpus area coincides closely with the isogloss that separates High and
Low German dialects. This is taken as evidence for the validity of this separation, which
was generated by a strict bottom-up approach in the current approach.

The current approach differs in three main aspects compared to dialectometric studies,
even though both use information theoretic methods for the study of language variation.
First, dialectometry is, to a large part and often solely) based on auditory transcripts of
regional variation that can be found in atlases: the study performed in Chapter 3 uses only
measurable acoustic features. Second, by using a transcript, a mapping of this categorical
representation of variation to a distance measure is necessary. For example, the Groningen
school of dialectometry often does this by using the Levenshtein distance. The already
numeric and continuous character of acoustic features renders this unnecessary for the
proposed approach, which means that the values can directly be used to visualize and
calculate the similarity between sites. Third, the colors used for the visualization of results
are different. In the current study, perceptually balanced color gradients (Moreland, 2009)
are used to visualize the acoustic feature values on the map. This seems important, as
many authors argue that the rainbow colormap is not a good choice for the visualization
of continuous variables (Rogowitz et al., 1996; Rogowitz et al., 1998; Borland et al., 2007;
Moreland, 2009; Niccoli, 2012). However, using a rainbow colormap also has advantages,
as the colors which are drawn from it, which are hard to relate to continuous changes, lead
to a more separated-looking map, than does, e.g., a perceptually balanced color scale.
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5.4 Confidence Measures in Automatic Segmentation

and Labeling

In Chapter 4, an additional pre-processing step called Measure of Confidence for Corpus
Analysis (MOCCA) was proposed. This borrows ideas relating to Confidence Measure
(CM) in ASR to evaluate the quality of a recognition hypothesis. When creating a speech
corpus that can be used for phonetic research, a series of steps have to be performed. Two
error-prone steps are orthographic transcription (performed either manually by a human
transcriber or automatically by an ASR system) and phonetic S&L. MOCCA attempts to
find errors in both. This should lead to an improved quality of the achieved alignment and
a reduction of the manual labor required to do so.

The quality estimation of the manually created orthographic transcription was per-
formed at a word-level, which is similar to CMs in ASR regarding granularity. This is
because the word-level is often chosen for the decision in ASR CM as well. To make a
prediction, the study performed in Chapter 4 evaluates the usefulness of decoder-based
features and achieves an accuracy of 78% in distinguishing correctly from incorrectly tran-
scribed words. Based on the distribution that can be assumed for transcriptions errors,
i.e., errors that occur only sporadically, this good level of accuracy still leads to many
false negatives that have to be checked. Nevertheless, the current method leads to a great
reduction in the number of words that have to be manually reviewed, but will also miss
around 22% of transcription errors.

Moreover, the algorithms do output a class probability for each word, instead of only
a categorial variable (specifying the correctness of a word). Using this probability, it is
possible to exclude those cases from the result, in which the classifier was not sure about
its own decision. This can be important in cases in which enough data is available for
evaluation. Excluding a portion of the data that is likely to be erroneous would further
reduce the dataset in a way that benefits the results, as well as it would decrease the
amount of manual work involved in the process.

To estimate the quality of the automatically obtained S&L, the Overlap Ratio (OvR)
is used, which describes the amount of relative overlap of two segments. In unseen data,
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this value can be regarded as the error of a generated S&L. It gives an estimate of the
difference between automatically obtained segment boundaries and segment boundaries
hypothetically produced by a human labeler. The OvR is predicted by regression algo-
rithms, in the current case RFs and Support Vector Regression (SVR). It can be seen that
the correlation between the prediction on an independent test set is strong with R = 0.60.
This means, even though the same features are used that originally lead to the S&L it is
possible to estimate the S&L’s quality with them. This circularity is also present in many
CMs in ASR.

The prediction accuracy of the OvR across the range could be improved using resam-
pling strategies. In the current study, oversampling was carried out using the Synthetic
Minority Over-sampling Technique for Regression (SMOTER). By applying both over-
and undersampling, the final model resulted in a more homoscedastic prediction error over
the range of values.

This extra effort to equalize the error across the range of values was necessary, as it is
important to predict not only values close to a good overlap reliably, but also, and maybe
even more importantly, those values close to a missing overlap.

5.5 Conclusion

It has been demonstrated that automatic methods can be applied to benefit the research
of regional language variation. The performed validation in Chapter 2 and the spotting
of erroneous transcripts and falsely set segment boundaries in Chapter 4 are valuable pre-
processing steps for corpus creation. The approach in Chapter 3 allows the description and
modeling of regional variation without manual labor.

The findings from this thesis could lead to the use of more acoustic features from large
speech corpora in research of regional variation, as even large speech corpora can be pro-
cessed and then used by individual researchers. That is, because the huge effort needed
for a phonetic annotation is reduced by the need to only create a, much more manage-
able, orthographic transcription and the S&L is executed automatically. Performing an
orthographic transcription is still a time-consuming task. However, to efficiently work
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with signal files, an orthographic transcription of a part or the complete signal is often
performed. This is done, as otherwise it becomes very cumbersome to find the correct
files. In those cases in which an orthographic transcript already exists, the corpus at hand
can be enriched by an automatic phonetic S&L, with only little additional human effort.
It has further been shown that this automatic S&L is sufficient for analyzing the corpus,
even though the orthographic transcription used as input does often not reflect regional
variants and the automatic S&L process leads to more noise than a manual S&L process.
However, by using more data, the conclusions that can be drawn remain the same, and an
existing automatic S&L can later still be refined if deemed necessary and affordable.

The method proposed in Chapter 3 takes this one step further and uses ML techniques
to model regional variation with the goal of predicting a speaker’s origin. Depending on the
algorithms, this has the advantage that the model trained using data containing regional
variation can be used to describe a dialect, but also to predict a speaker origin. It has
been shown that predictive models, in combination with features that can be extracted
automatically from the speech signal, are suitable to generate insights into the given data.

By employing a DT, the connection between the applied acoustic features and the ge-
ographic space was unveiled and visualized on a map. These visualizations resemble the
output of dialectometric studies regarding connection of variation and geographic space.
Taking acoustic features into consideration might allow the re-evaluation of already ex-
isting dialectal knowledge based on a manual, auditory transcript by a method that is
more objective, data-driven, and bottom-up. The fact that the approach proposed in this
thesis and traditional dialect geography produce similar distributions not only on different
datasets, but also employ inherently different methods of capturing the variation present
in speech, is taken as a mutual validation of both approaches with respect to each other.



Appendix A

First Appendix



182 A. First Appendix

A.1 Bands of Semi-Tone Spectrum (STS) feature

# frequency # frequency # frequency # frequency
0 55.000 25 233.082 49 932.328 73 3729.310
1 58.270 26 246.942 50 987.767 74 3951.066
2 61.735 27 261.626 51 1046.502 75 4186.009
3 65.406 28 277.183 52 1108.731 76 4434.922
4 69.296 29 293.665 53 1174.659 77 4698.636
5 73.416 30 311.127 54 1244.508 78 4978.032
6 77.782 31 329.628 55 1318.510 79 5274.041
7 82.407 32 349.228 56 1396.913 80 5587.652
8 87.307 33 369.994 57 1479.978 81 5919.911
9 92.499 34 391.995 58 1567.982 82 6271.927
10 97.999 35 415.305 59 1661.219 83 6644.875
11 103.826 36 440.000 60 1760.000 84 7040.000
12 110.000 37 466.164 61 1864.655 85 7458.620
13 116.541 38 493.883 62 1975.533 86 7902.133
14 123.471 39 523.251 63 2093.005 87 8372.018
15 130.813 40 554.365 64 2217.461 88 8869.844
16 138.591 41 587.330 65 2349.318 89 9397.273
17 146.832 42 622.254 66 2489.016 90 9956.063
18 155.563 43 659.255 67 2637.020 91 10548.082
19 164.814 44 698.456 68 2793.826 92 11175.303
20 174.614 45 739.989 69 2959.955 93 11839.822
21 184.997 46 783.991 70 3135.963 94 12543.854
22 195.998 47 830.609 71 3322.438 95 13289.750
23 207.652 48 880.000 72 3520.000 96 14080.000
24 220.000

Table A.1: The indices and frequencies (in Hz) of the STS features (index of feature denoted
by ’#’). The frequencies are calculated with the formula 12

√
2(n−36) · 440 Hz, where n denotes

the feature index.
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A.2 Boxplots of Feature Values

A.2.1 Binary North/South Classification
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Figure A.1: Boxplots of the feature value AS (2), AS (13), AS (14), and AS (16) of 46,566
produced /z/ from the GT corpus. Groups ’n’ (North) and ’s’ (South) are based on the
North/South separating line defined in Sec. 3.8.2. For more information cf. Sec. 3.8.4.
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Figure A.2: Resynthesis of feature values MFCC (8) of 46,566 produced /z/ from the GT
corpus. Each line corresponds to the resynthesis of the average of a speaker’s MFCC coef-
ficients. Lines plotted in red belong to the North group and lines plotted in in blue to the
South group based on the North/South separating line defined in Sec. 3.8.2. The two thick
lines represent the resynthesis of the averaged values for each group. The vertical line plotted
at 250 Hz indicates the center of a possible voice bar. For more information cf. Sec. 3.8.4.
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Figure A.3: Boxplots of the feature value AS (9), AS (10), AS (13), and STS (61) of 5764
produced /ø:/ from the GT corpus. Groups ’n’ (North) and ’s’ (South) are based on the
North/South separating line defined in Sec. 3.8.2. For more information cf. Sec. 3.8.4.
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Figure A.4: Boxplots of the feature value MFCC (2), MFCC (3), MFCC (7), and MFCC (8)
of 5764 produced /ø:/ from the GT corpus. Groups ’n’ (North) and ’s’ (South) are based on
the North/South separating line defined in Sec. 3.8.2. For more information cf. Sec. 3.8.4.
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A.2.2 Binary East/West Classification
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Figure A.5: Boxplots of the feature values AS (10), AS (13), and STS (61) of 5764 produced
/ø:/ from the GT corpus. Groups ’e’ (East) and ’w’ (West) are based on the East/West
separating line defined in Sec. 3.8.2. For more information cf. Sec. 3.8.5.
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Figure A.6: Boxplots of the feature values of STS (87), and STS (88) of 5531 produced /ø:/
from the GT corpus. Groups ’e’ (East) and ’w’ (West) are based on the East/West separating
line defined in Sec. 3.8.2. The y-axis is manually limited to a range between 0 and 0.025 to
allow for a better spread of the quantiles (this means that 233 of the furthest outliers are not
shown). For more information cf. Sec. 3.8.5.
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Figure A.7: Boxplots of the feature values for AS (17), AS (18), AS (19), and AS (20) of
46,566 produced /z/ from the GT corpus. Groups ’e’ (East) and ’w’ (West) are based on the
East/West separating line defined in Sec. 3.8.2. For more information cf. Sec. 3.8.5.



190 A. First Appendix

0 2000 4000 6000 8000

−
40

−
20

0
20

40

Frequency (Hz)

A
m

pl
itu

de

0 2000 4000 6000 8000

−
40

−
20

0
20

40

Figure A.8: Resynthesis of the feature value MFCC (1) of 46,566 produced /z/ from the GT
corpus. Each line corresponds to the resynthesis of the average of a speakers MFCC coefficients.
Lines plotted in red belong to the North group and lines plotted in blue to the South group,
based on the North/South separating line defined in Sec. 3.8.2. The two thick lines represent
the resynthesis of the averaged values for each group. For more information cf. Sec. 3.8.5.
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Figure A.9: Boxplots of the feature value LSP (0) of 46,566 produced /z/ from the GT corpus.
Groups ’e’ (East), ’w’ (West), ’n’ (North), and ’s’ (South) are based on the East/West and
North/South separating line defined in Sec. 3.8.2. For more information cf. Sec. 3.8.5.
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A.2.3 Binary Classification Variable Importance (VI) Compari-
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Figure A.10: Scatterplot of the VI of the best performing phonemes for each direction for non-
zero VIs. Contrary to all other results reported in Sec. 3.8, the VI is reported for mtry = 100.
This is necessary as mtry influences the model’s complexity, and otherwise, the values for the
VI are not comparable. For more information cf. Sec. 3.8.7.
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A.2.4 Regression North-South Dimension
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Figure A.11: Boxplots of the feature value AS (15) of 46,566 produced /z/ from the GT corpus.
Latitude is binned in 5 equal spaced intervals between 46.30◦ (most south) and 54.70◦ (most
north). For more information cf. Sec. 3.9.4.
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Figure A.12: Boxplots of the feature value AS Rfilt (11) of 5764 produced /ø:/ from the GT
corpus. Latitude is binned in 5 equal spaced intervals between 46.30◦ (most south) and 54.70◦

(most north) For more information cf. Sec. 3.9.4.
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A.2.5 Regression East-West Dimension
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Figure A.13: Boxplots of the feature value STS (75) and STS (76) of 46,566 produced /z/
from the GT corpus. Longitude is binned in 5 equal spaced intervals between 5.9◦ (westmost
interval) and 16.6◦ (eastmost interval) The y-axis is manually limited to a range between 0 and
0.5 to allow for a better spread of the quantiles (this means that 552 of the furthest outliers
are not shown). For more information cf. Sec. 3.9.5.
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Figure A.15: Boxplots of the feature value AS (8), AS (9), and AS (10), of 28,693 produced /E:/
from the GT corpus. Longitude is binned in 5 equal spaced intervals between 5.9◦ (westmost
interval) and 16.6◦ (most East). For more information cf. Sec. 3.9.5.
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Figure A.16: Boxplots of values of feature duration of 28,693 produced /E:/ from the GT
corpus. Longitude is binned in 5 equal spaced intervals between 5.9◦ (westmost interval) and
16.6◦ (eastmost interval). For more information cf. Sec. 3.9.5.
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A.2.6 Phonetic Interpretation of the Decision Trees
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Figure A.17: Boxplots of the feature value VC (0) for /z/ for 641 speakers. Based on the value
selected for the according split in the DT (cf. Fig. 3.14), speakers belong to either the blue
(< 0.4550677) or the red group (≥ 0.4550677).
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Figure A.18: Boxplots of the feature value VC (0) for /ç/ for 326 speakers. Based on the value
selected for the according split in the DT (cf. Fig. 3.14), the speakers belong to either the blue
(< 0.4402981) or the red group (≥ 0.4402981).
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Figure A.19: Boxplots of the feature value VC (0) for /ç/ (49,738 realizations) and /x/ (31,084
realizations) for all 641 speakers.
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Figure A.20: Boxplots of the feature value AS ∆ (3) for /n/ for 231 speakers. Based on the
value selected for the according split in the DT (cf. Fig. 3.14), the speakers belong to either
the blue (< −0.03360892) or the red group (≥ −0.03360892).
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Figure A.21: Boxplots of the feature value MFCC ∆∆ (2) for /z/ for 95 speakers. Based on
the value selected for the according split in the DT (cf. Fig. 3.14), the speakers belong to either
the blue (< −0.4201756) or the red group (≥ −0.4201756).
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Figure A.22: Boxplots of the feature value LSP ∆∆ (2) for /v/ for 315 speakers. Based on the
value selected for the according split in the DT (cf. Fig. 3.14), the speakers belong to either
the blue (< −0.008655971) or the red group (≥ −0.008655971).
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Figure A.23: Boxplots of the feature value AS Rfilt ∆∆ (20) for /ç/ for 58 speakers. Based
on the value selected for the according split in the DT (cf. Fig. 3.14), the speakers belong to
either the blue (< −0.003853369) or the red group (≥ −0.003853369).
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Figure A.24: Boxplots of the feature value MFCC ∆∆ (3) for /e:/ for 257 speakers. Based
on the value selected for the according split in the DT (cf. Fig. 3.14), the speakers belong to
either the blue (< −0.1889846) or the red group (≥ −0.1889846).
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A.3 Estimation of Speaker position - Experiment 3 -

Decision Tree Model

The following shows a textual representation of the model of the decision tree based on
the reduced feature set from Sec. 3.10.4 as output by the R Programming Language (R)
implementation. Each line represents a node, using the following format:

node ) , s p l i t , n , deviance , yval
∗ denotes te rmina l node

in which node is the node number, split is the variable1 used for splitting and the value
at which the split is performed, n is the number of speakers in that group, deviance an
estimation of the goodness of fit (for more detail cf. Therneau et al., 2018) and yval the
average of all elements in this node/leaf.

1) root 641 3141.75500 50.01710
2) candVoicing . 0 . _z< 0.4550677 326 842.22830 48.62966

4) candVoicing . 0 ._C>=0.4402981 231 400.43640 48.08485
8) audSpec_de . 3 ._n< −0.03360892 184 218.17590 47.78054
16) audSpec_Rfilt_de_de . 1 1 . _I>=−0.03390794 142 85.02359 47.50972 ∗
17) audSpec_Rfilt_de_de . 1 1 . _I< −0.03390794 42 87.52399 48.69619 ∗

9) audSpec_de . 3 ._n>=−0.03360892 47 98.51711 49.27617 ∗
5) candVoicing . 0 ._C< 0.4402981 95 206.50230 49.95442
10) pcm_fftMag_mfcc_de_de . 2 . _z>=−0.4201756 31 21.47871 48.84645 ∗
11) pcm_fftMag_mfcc_de_de . 2 . _z< −0.4201756 64 128.53500 50.49109

22) audSpec_Rfi lt . 7 ._E_t>=1.271268 46 55.44759 50.02152 ∗
23) audSpec_Rfi lt . 7 ._E_t< 1.271268 18 37.02378 51.69111 ∗

3) candVoicing . 0 . _z>=0.4550677 315 1022.52700 51.45298
6) lspFreq_de_de . 2 ._v>=−0.008655971 58 132.65730 49.74052
12) audSpec_Rfilt_de_de . 2 0 ._C>=−0.003853369 16 17.19759 48.04562 ∗
13) audSpec_Rfilt_de_de . 2 0 ._C< −0.003853369 42 51.98759 50.38619 ∗

7) lspFreq_de_de . 2 ._v< −0.008655971 257 681.39690 51.83946
14) pcm_fftMag_mfcc_de_de . 3 . _e_t>=−0.1889846 76 176.13310 50.97895

1With the structure being the feature as output by openSMILE, followed by an underscore and the
phoneme in Speech Assessment Methods Phonetic Alphabet (SAM-PA).
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28) lspFreq_de_de . 1 ._v>=−0.003868417 18 38.23025 49.67167 ∗
29) lspFreq_de_de . 1 ._v< −0.003868417 58 97.59444 51.38466 ∗

15) pcm_fftMag_mfcc_de_de . 3 . _e_t< −0.1889846 181 425.35810 52.20077
30) l p cCoe f f . 1 ._C>=1.629062 61 134.08960 51.48639

60) pcm_fftMag_mfcc . 1 . _s>=−6.37478 19 25.31127 50.40526 ∗
61) pcm_fftMag_mfcc . 1 . _s< −6.37478 42 76.52384 51.97548 ∗

31) l p cCoe f f . 1 ._C< 1.629062 120 244.31310 52.56392 ∗

A.4 Estimation of Speaker position - Experiment 3 -

Split Models for North and South Half

A.4.1 Differences in Experimental Design to Original Experi-

ment

The experiment in 3.10 was partially repeated due to bad performance for the longitudinal
direction. To overcome this problem two models, one for the northern and one for the
southern half of the corpus area were trained separately. These two different models were
expected to perform better than a single model.

A.4.2 RF - Results and Feature Selection

The model for the northern half yields a mean absolute error (MAE) of 1.6232 (116.00km)
with a correlation of 0.6452; the model for the southern half yields an MAE of 1.5832
(113.14km) with a correlation of 0.7383.

Using only features that had at least 1% of the maximum VI, resulted in 216 features
for the northern half (with 184 ∆ and ∆∆ features) and 243 features for the southern half
(with 177 ∆ and ∆∆ features).
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A.4.3 SVR - Results

Using the same parameters as reported in 3.10, the SVR was able to predict the speaker
locations with an MAE of 1.1932◦ (85.27 km) and a correlation of 0.7899 for the northern
half. For the southern part of the corpus area the MAE was 1.1544◦ (82.50 km) with a
correlation of 0.8380. This is an improvement of around 10% compared to the prediction
made of the east-west direction using a single model.

A.4.4 Decision Tree

When the east-west dimension is predicted separately for the north and south half of the
corpus area, the correlation rises to R = 0.4950 and R = 0.5333 and the MAE decreases
to 123.02 km (1.7214◦) and 127.22 km (1.7801◦) in the northern and southern half of the
corpus area, respectively.

Fig. A.25 shows the decision tree that was trained to predict the longitude in the east-
west direction for the northern speakers of the corpus area. As the tree was trained on the
complete corpus area, it also contains many ∆ and ∆∆ features high up in its hierarchy.
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A.5 openSMILE Configuration

[ componentInstances : cComponentManager ]
i n s t ance [mydm] . type=cDataMemory
in s t ance [ waveIn ] . type=cWaveSource
i n s t ance [ f r 1 ] . type=cFramer
in s t ance [w1 ] . type=cWindower
in s t ance [ f f t 1 ] . type=cTransformFFT
in s tance [ f ftmp1 ] . type=cFFTmagphase
in s t ance [ s p e c t r a l ] . type=cSpec t r a l
i n s t ance [ s p e c t r a l d e l t a 1 ] . type=cDe l taRegres s ion
in s t ance [ s p e c t r a l d e l t a 2 ] . type=cDe l taRegres s ion
in s t ance [ mspec ] . type=cMelspec
in s t ance [ audspec ] . type=cPlp
in s t ance [ audspecRasta ] . type=cPlp
in s t ance [ audspecde l ta1 ] . type=cDe l taRegres s ion
in s t ance [ audspecde l ta2 ] . type=cDe l taRegres s ion
in s t ance [ audspecRastade lta1 ] . type=cDe l taRegres s ion
in s t ance [ audspecRastade lta2 ] . type=cDe l taRegres s ion
in s t ance [ s c a l e ] . type=cSpecSca le
i n s t ance [ shs ] . type=cPitchShs
in s t ance [ sh sde l t a1 ] . type=cDe l taRegres s ion
in s t ance [ sh sde l t a2 ] . type=cDe l taRegres s ion
in s t ance [ pitchSmooth ] . type=cPitchSmootherViterb i
i n s t ance [ pitchSmoothdelta1 ] . type=cDe l taRegres s ion
in s t ance [ pitchSmoothdelta2 ] . type=cDe l taRegres s ion
in s t ance [ pitchSmooth2 ] . type=cPitchSmoother
i n s t ance [ harmonics ] . type = cHarmonics
i n s t ance [ harmonicsde l ta1 ] . type=cDe l taRegres s ion
in s t ance [ harmonicsde l ta2 ] . type=cDe l taRegres s ion
in s t ance [ energy ] . type=cEnergy
in s t ance [ ene rgyde l ta1 ] . type=cDe l taRegres s ion
in s t ance [ ene rgyde l ta2 ] . type=cDe l taRegres s ion
in s t ance [ mzcr ] . type=cMZcr
in s t ance [ mzcrdelta1 ] . type=cDe l taRegres s ion
in s t ance [ mzcrdelta2 ] . type=cDe l taRegres s ion
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i n s t ance [ a c f ] . type=cAcf
i n s t ance [ cepstrum ] . type=cAcf
i n s t ance [ pitchACF ] . type=cPitchACF
in s tance [ pitchACFdelta1 ] . type=cDe l taRegres s ion
in s t ance [ pitchACFdelta2 ] . type=cDe l taRegres s ion
in s t ance [ mfcc ] . type=cMfcc
in s t ance [ mfccde l ta1 ] . type=cDe l taRegres s ion
in s t ance [ mfccde l ta2 ] . type=cDe l taRegres s ion
in s t ance [ tone ] . type=cTonespec
in s t ance [ tonede l ta1 ] . type=cDe l taRegres s ion
in s t ance [ tonede l ta2 ] . type=cDe l taRegres s ion
in s t ance [ chroma ] . type=cChroma
in s t ance [ chromadelta1 ] . type=cDe l taRegres s ion
in s t ance [ chromadelta2 ] . type=cDe l taRegres s ion
in s t ance [ lpc ] . type=cLpc
in s t ance [ l p cd e l t a 1 ] . type=cDe l taRegres s ion
in s t ance [ l p cd e l t a 2 ] . type=cDe l taRegres s ion
in s t ance [ formantLpc ] . type=cFormantLpc
in s t ance [ formantLpcdelta1 ] . type=cDe l taRegres s ion
in s t ance [ formantLpcdelta2 ] . type=cDe l taRegres s ion
in s t ance [ l s p ] . type=cLsp
in s t ance [ l s pd e l t a 1 ] . type=cDe l taRegres s ion
in s t ance [ l s pd e l t a 2 ] . type=cDe l taRegres s ion
in s t ance [ i n t e n s i t y ] . type=c I n t e n s i t y
in s t ance [ i n t e n s i t y d e l t a 1 ] . type=cDe l taRegres s ion
in s t ance [ i n t e n s i t y d e l t a 2 ] . type=cDe l taRegres s ion
in s t ance [ p i t c h J i t t e r ] . type=cP i t c h J i t t e r
i n s t ance [ p i t c h J i t t e r d e l t a 1 ] . type=cDe l taRegres s ion
in s t ance [ p i t c h J i t t e r d e l t a 2 ] . type=cDe l taRegres s ion
in s t ance [ csvSink ] . type = cCsvSink

[ waveIn : cWaveSource ]
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=wave
; f i l ename=t e s t / greatCut . wav
; o ld : f i l ename = \cm[ f i l ename (F) { t e s t /wind . wav} : name o f input f i l e ]
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f i l ename = \cm[ i n p u t f i l e ( I ) : f i l e name o f the input wave f i l e ]
; f i l ename=t e s t /wind . wav
b u f f e r s i z e =160000
monoMixdown=1
sampleRate=16000

[ f r 1 : cFramer ]
r eader . dmInstance=mydm
reader . dmLevel=wave
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=output
f rameSize = 0.025
frameStep = 0.010
f rameCenterSpec ia l=mid

[w1 : cWindower ]
r eader . dmInstance=mydm
reader . dmLevel=output
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=winoutput
winFunc = ham
gain = 1 .0

[ f f t 1 : cTransformFFT ]
reader . dmInstance=mydm
reader . dmLevel=winoutput
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=f f t c 1

[ f ftmp1 : cFFTmagphase ]
r eader . dmInstance=mydm
reader . dmLevel=f f t c 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=f f t 1

[ s p e c t r a l : cSpe c t r a l ]
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reader . dmInstance=mydm
reader . dmLevel=f f t 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=sp e c t r a l
bands [0]=250−649
bands [1]=650−999
bands [2]=1000−3999
bands [3]=4000−8000
r o l l O f f [ 0 ] = 0 .25
r o l l O f f [ 1 ] = 0 .50
r o l l O f f [ 2 ] = 0 .75
r o l l O f f [ 3 ] = 0 .90
f l u x=1
cen t ro id=1
maxPos=1
minPos=1
entropy=1
var iance=1
skewness=1
ku r t o s i s=1
s l ope=1
harmonic i ty=1
sharpness=1

[ s p e c t r a l d e l t a 1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=sp e c t r a l
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=sp e c t r a l d e l t a 1

[ s p e c t r a l d e l t a 2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=sp e c t r a l d e l t a 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=sp e c t r a l d e l t a 2
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[ mspec : cMelspec ]
r eader . dmInstance=mydm
reader . dmLevel=f f t 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=mspec1
htkcompatible = 0
l o f r e q = 0
h i f r e q = 8000
showFbank = 1

; perform audi tory weight ing o f spectrum
[ audspec : cPlp ]
r eader . dmInstance=mydm
reader . dmLevel=mspec1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=audspec
f i r s tCC = 0
lpOrder = 5
c epL i f t e r = 0
compress ion = 0.33
htkcompatible = 0
doIDFT = 0
doLpToCeps = 0
doLP = 0
doInvLog = 0
doAud = 1
doLog = 0
newRASTA=0
RASTA=0

; perform RASTA s t y l e f i l t e r i n g o f aud i tory spec t ra
[ audspecRasta : cPlp ]
r eader . dmInstance=mydm
reader . dmLevel=mspec1
wr i t e r . dmInstance=mydm
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wr i t e r . dmLevel=audspecRasta
nameAppend = R f i l t
f i r s tCC = 0
lpOrder = 5
c epL i f t e r = 0
compress ion = 0.33
htkcompatible = 0
doIDFT = 0
doLpToCeps = 0
doLP = 0
doInvLog = 0
doAud = 1
doLog = 0
newRASTA=1
RASTA=0

[ audspecde l ta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=audspec
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=audspecde l ta1

[ audspecde l ta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=audspecde l ta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=audspecde l ta2

[ audspecRastade lta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=audspecRasta
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=audspecRastade lta1

[ audspecRastade lta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
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reader . dmLevel=audspecRastadelta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=audspecRastade lta2

[ s c a l e : cSpecSca le ]
r eader . dmInstance=mydm
reader . dmLevel=f f t 1
wr i t e r . l e v e l c o n f . nT = 3
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=hps
// nameAppend =
copyInputName = 1
proce s sAr rayF i e ld s = 0
s c a l e=octave
sou r c eSca l e = l i n
// f i r s tNo t e = 55
interpMethod = sp l i n e
minF = 25
maxF = −1
nPointsTarget = 0
specSmooth = 1
specEnhance = 1
auditoryWeight ing = 1

[ shs : cPitchShs ]
r eader . dmInstance=mydm
reader . dmLevel=hps
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=pitchShs
// nameAppend =
copyInputName = 1
proce s sAr rayF i e ld s = 0
maxPitch = 620
minPitch = 52
nCandidates = 4
s c o r e s = 1
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vo i c i ng = 1
F0C1 = 0
voic ingC1 = 0
F0raw = 1
vo i c i ngC l i p = 0
vo i c i ngCuto f f = 0.700000
greedyPeakAlgo = 1
inputF ie ldSearch = Mag_octScale
oc taveCorrec t i on = 0
nHarmonics = 15
compress ionFactor = 0.850000
l fCut = 0

[ sh sde l t a1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=pitchShs
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=p i t chShsde l t a1

[ sh sde l t a2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=p i t chShsde l t a1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=p i t chShsde l t a2

[ pitchSmooth : cPitchSmootherViterb i ]
r eader . dmInstance=mydm
reader2 . dmInstance=mydm
reader . dmLevel=pitchShs
reader2 . dmLevel=pitchShs
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=pitchG60
copyInputName = 1
buf fe rLength=90
F0 f i na l = 1
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F0f ina lLog = 1
F0finalEnv = 0
vo i c ingF ina lC l ipped = 0
vo i c ingF ina lUnc l ipped = 1
F0raw = 0
voic ingC1 = 0
vo i c i ngC l i p = 0
wTvv =10.0
wTvvd= 5 .0
wTvuv=10.0
wThr = 4 .0
wTuu = 0 .0
wLocal=2.0
wRange=1.0

[ pitchSmoothdelta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=pitchG60
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=pitchG60de lta1

[ pitchSmoothdelta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=pitchG60delta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=pitchG60de lta2

; ; ; ; ; ; ; ; ; ; ; ; NEW HNR
[ harmonics : cHarmonics ]
r eader . dmInstance=mydm
reader . dmLevel = f f t 1 ; pitchG60
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel = harmonics
wr i t e r . l e v e l c o n f . growDyn = 0
wr i t e r . l e v e l c o n f . isRb = 1
; This must be > than b u f f e r s i z e o f v i t e r b i smoother
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wr i t e r . l e v e l c o n f . nT = 200
nHarmonics = 10
f0ElementName = F0 f i na l
magSpecFieldName = pcm_fftMag
computeAcfHnrLogdB = 1

[ harmonicsde l ta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=harmonics
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=harmonicsde l ta1

[ harmonicsde l ta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=harmonicsde l ta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=harmonicsde l ta2

[ energy : cEnergy ]
reader . dmInstance=mydm
reader . dmLevel=winoutput
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=energy

[ ene rgyde l ta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=energy
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=energyde l ta1

[ ene rgyde l ta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=energyde l ta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=energyde l ta2
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[ mzcr : cMZcr ]
r eader . dmInstance=mydm
reader . dmLevel=output
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=mzcr
zc r = 1
mcr = 1
amax = 0
maxmin = 0

[ mzcrdelta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=mzcr
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=mzcrdelta1

[ mzcrdelta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=mzcrdelta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=mzcrdelta2

[ a c f : cAcf ]
r eader . dmInstance=mydm
reader . dmLevel=f f t 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=ac f

[ cepstrum : cAcf ]
r eader . dmInstance=mydm
reader . dmLevel=f f t 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=cepstrum

[ pitchACF : cPitchACF ]
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reader . dmInstance=mydm
reader . dmLevel=ac f ; cepstrum
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=pitchACF
proce s sAr rayF i e ld s = 0
voiceProb = 1
HNR = 1
F0 = 1
maxPitch = 500

[ pitchACFdelta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=pitchACF
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=pitchACFdelta1

[ pitchACFdelta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=pitchACFdelta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=pitchACFdelta2

[ mfcc : cMfcc ]
r eader . dmInstance=mydm
reader . dmLevel=mspec1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=mfcc1
f i r s tM f c c = 0
las tMfcc = 12
; the f o l l ow i ng i s super important , o therw i se the 0 th c o e f f i c i e n t i s at the

end ( without the names changed acco rd ing ly )
htkcompatible = 0

[ mfccde l ta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=mfcc1



224 A. First Appendix

wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=mfccde l ta1

[ mfccde l ta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=mfccde l ta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=mfccde l ta2

[ tone : cTonespec ]
r eader . dmInstance=mydm
reader . dmLevel=f f t 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=tonespec
nOctaves = 8 .0

[ t onede l ta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=tonespec
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=tone specde l t a1

[ tonede l ta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=tone specde l t a1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=tone specde l t a2

[ chroma : cChroma ]
reader . dmInstance=mydm
reader . dmLevel=tonespec
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=chroma

[ chromadelta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
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reader . dmLevel=chroma
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=chromadelta1

[ chromadelta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=chromadelta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=chromadelta2

[ lpc : cLpc ]
r eader . dmInstance=mydm
reader . dmLevel=output
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=lpc

[ l p cd e l t a 1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=lpc
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=lp cd e l t a 1

[ l p cd e l t a 2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=lp cd e l t a 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=lp cd e l t a 2

[ formantLpc : cFormantLpc ]
reader . dmInstance=mydm
reader . dmLevel=lpc
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=formantLpc
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[ formantLpcdelta1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=formantLpc
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=formantLpcdelta1

[ formantLpcdelta2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=formantLpcdelta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=formantLpcdelta2

[ l s p : cLsp ]
reader . dmInstance=mydm
reader . dmLevel=lpc
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=l sp

[ l s pd e l t a 1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=l sp
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=l s pd e l t a 1

[ l s pd e l t a 2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=l s pd e l t a 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=l s pd e l t a 2

[ i n t e n s i t y : c I n t e n s i t y ]
r eader . dmInstance=mydm
reader . dmLevel=output
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=i n t e n s i t y
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[ i n t e n s i t y d e l t a 1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=i n t e n s i t y
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=i n t e n s i t y d e l t a 1

[ i n t e n s i t y d e l t a 2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=i n t e n s i t y d e l t a 1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=i n t e n s i t y d e l t a 2

; ; ; ; ; ; ; ; ; ; ; ; taken from con f i g f i l e IS11_speaker_state . conf , needed f o r the
; ; ; ; ; ; ; ; ; ; ; ; f o l l ow i ng j i t t e r sh immer
[ pitchSmooth2 : cPitchSmoother ]
r eader . dmInstance=mydm
reader . dmLevel=pitchShs
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=pitchF
F0raw = 0
F0 f i na l = 1
F0f inalEnv = 1
vo i c ingF ina lUnc l ipped = 1
medianFi l te r0 = 0
postSmoothingMethod = simple
oc taveCorrec t i on = 0

[ p i t c h J i t t e r : cP i t c h J i t t e r ]
r eader . dmInstance=mydm
reader . dmLevel = wave
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel = j i t te rSh immer
// nameAppend =
copyInputName = 1
F0reader . dmInstance=mydm
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F0reader . dmLevel = pitchF
F0 f i e l d = F0 f i na l
searchRangeRel = 0.250
j i t t e r L o c a l = 1
jitterDDP = 1
j i t t e rLoca lEnv = 1
jitterDDPEnv = 0
shimmerLocal = 1
shimmerLocalEnv = 0
onlyVoiced = 0

[ p i t c h J i t t e r d e l t a 1 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=j i t te rSh immer
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=j i t t e rSh immerde l ta1

[ p i t c h J i t t e r d e l t a 2 : cDe l taRegres s ion ]
r eader . dmInstance=mydm
reader . dmLevel=j i t t e rSh immerde l ta1
wr i t e r . dmInstance=mydm
wr i t e r . dmLevel=j i t t e rSh immerde l ta2

; ; ; ; d e f au l t ( template ) c on f i gu r a t i on s e c t i o n f o r component ’ cCsvSink ’ ; ; ; ;
[ c svSink : cCsvSink ]
reader . dmInstance=mydm
reader . dmLevel=energy ; energyde l ta1 ; ene rgyde l ta2 ; mzcr ; mzcrdelta1 ; mzcrdelta2 ;

pitchACF ; pitchACFdelta1 ; pitchACFdelta2 ; mfcc1 ; mfccde l ta1 ; mfccde l ta2 ; chroma
; chromadelta1 ; chromadelta2 ; p i tchShs ; p i t chShsde l t a1 ; p i t chShsde l t a2 ;
pitchG60 ; p itchG60delta1 ; p i tchG60delta2 ; harmonics ; harmonicsde l ta1 ;
harmonicsde l ta2 ; j i t te rSh immer ; j i t t e rSh immerde l ta1 ; j i t t e rSh immerde l ta2 ;
audspec ; audspecde l ta1 ; audspecde l ta2 ; audspecRasta ; audspecRastade lta1 ;
audspecRastade lta2 ; s p e c t r a l ; s p e c t r a l d e l t a 1 ; s p e c t r a l d e l t a 2 ; lpc ; l p cd e l t a 1 ;
l p cd e l t a 2 ; formantLpc ; formantLpcdelta1 ; formantLpcdelta2 ; l s p ; l s pd e l t a 1 ;
l s pd e l t a 2 ; i n t e n s i t y ; i n t e n s i t y d e l t a 1 ; i n t e n s i t y d e l t a 2 ; tonespec ;
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t one specde l t a1 ; t one specde l t a2
; errorOnNoOutput = 0
f i l ename = \cm[ o u t pu t f i l e (O) : f i l e name o f the output CSV f i l e ]
delimChar = ;
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Appendix B

Second Appendix

B.1 MOCCA - Influence of Overlap Classes in the

Evaluation of Automatic S&L - Experiment 2d

This experiment was conducted as an extension of the experiments in Sec. 4.5. It did
not change the contents of the chapter. However, it seemed an interesting additional
experiment.

When predicting the OvR, the regression algorithm has to correctly predict the OvR for
feature values that represent different ways in which two segments overlap (but possess the
same OvR value). The fact that two segments can overlap in different ways presumably
makes this task more complicated. The different ways segments can overlap are called
“overlap classes” in the following. Four different kinds of overlap classes are possible.
These four different types of overlaps are shown in Figure B.1.

The reason this is likely to make the task more difficult for the regression algorithm,
is the assumption that the dynamic shape of the feature values in different overlap classes
is different. To test how big the influence on the result is, a simple “cheating experiment”
was conducted, in which the correct overlap type is fed into the learning algorithm. The
term “cheating experiment” is used, as the overlap class is not available in a real world
application and it would be necessary to estimate this class before the classification (and
the accuracy is unlikely to be 100%).
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Experiment 2d was conducted only for the Support Vector Machine (SVM) with a
Radial Basis Function (RBF) kernel. The best parametrization was, analogous to Experi-
ment 2a, found to be C = 1 and γ = 0.1.

Adding the correct overlap classes 1-4 as a feature leads to a small increase in the
correlation coefficient. It increased from 73.36% to 74.64% (similar precision and recall).
As stated before, this is likely to be less in a real world application, as this class would
need to be predicted from the data and would not achieve 100% classification accuracy.

Figure B.1: The four different overlap classes for two time segments ti and tj .
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Zusammenfassung

Zusammenfassung auf Deutsch

Nachfolgend werden die drei großen Experimente, die in den Hauptkapiteln dieser Disser-
tation beschrieben werden, in deutscher Sprache zusammengefasst.

Zur Validität automatisch segmentierter Daten

In dieser Untersuchung wurde das dialektale Merkmal der komplementären Länge im Bai-
rischen herangezogen, um eine Aussage über die Validität der automatisch segmentierten
Daten zu treffen. Dieses dialektale Merkmal lässt sich durch das Verhältnis der Länge des
Vokals zur Länge des Vokals plus des Konsonanten, dem V/(V+K)-Verhältnis (Kohler,
1979), beschreiben.

Die automatische S&E, die überprüft werden sollte, wurde mithilfe von WebMAUS
(Kisler et al., 2017) erzeugt. Die Analyse basiert auf einem Teil der Maptask-Daten (vgl.
Anderson et al., 1991) des Deutsch Heute Korpus (Brinckmann et al., 2008). Der verwendete
Teil umfasst insgesamt 87 Sprecher des Korpus, davon 42 ost- und 22 westmittelbairische
Sprecher (unterteilt nach Wiesinger (1990)) und 23 ostfränkische Sprecher.

Es wurde gezeigt, dass mit den automatisch segmentierten Daten eine valide Analyse
möglich ist. Die Verteilung der Ausprägungen des V/(V+K)-Verhältnisses zeigt, wie erwar-
tet, eine komplementäre Verteilung der Länge in den mittelbairischen Sprechern und eine
relative freie Kombinierbarkeit der Lang-/Kurzvokale und der Lenis-/Fortiskonsonanten
in den OF Sprechern. Zudem deuten die Verteilungen des V/(V+K)-Verhältnisses in den
WMB Sprechern tatsächlich auf einen vermeintlichen Wandel hin, da dort auch Langvokale
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vor Fortisplosiven auftauchen können (wie z.B. berichtet in Kleber, 2017). Die Ausdehnung
der Verteilung des V/(V+K)-Verhältnisses über einen großen Teil des Wertebereichs lässt
auf ein gewisses Rauschen bei der automatischen S&E schließen.

In einem zweiten Experiment wurde ein Subset von 56 Sprechern aller Gebiete manuell
nachkorrigiert, um das vom automatischen Alignment eingeführte Rauschen zu überprü-
fen. Basierend auf den Segmentgrenzen des korrigierten Subkorpus urde gezeigt, dass a)
die Ausdehnung der Verteilung des V/(V+K)-Verhältnisses über den Wertebereich kleiner
wird und b) sich die verschiedenen Kategorien innerhalb einer Gruppe besser gegeneinander
abgrenzen lassen. Die Ergebnisse des unkorrigierten Datensatzes korrelieren mit R = 0.58
mit den Ergebnissen basierend auf dem korrigierten Datensatz. Dies bedeutet, dass die ur-
sprüngliche automatische S&E somit zur Untersuchung von Dialektmerkmalen geeignet ist,
durch eine manuelle Nachkorrektur aber noch feinere Unterschiede herausgestellt werden
können.

Geolokalisierung der Sprecherherkunft

In der Dialektologie des Deutschen geht man von einer semi-kontinuierlichen Veränderung
der Dialektmerkmale aus (vgl. z.B. Haag, 1929, S. 19, Barbour et al., 1990, S. 136). Dieses
Experiment hatte zum Ziel diese Veränderung über das gesamte deutschsprachige Gebiet
anhand von akustischen Features und vorhersagebasierten Modellen zu analysieren.

Für die Modellierung wurden die gesamten Maptask-Aufnahmen des Deutsch Heute
Korpus verwendet, die automatisch von WebMAUS verarbeitet werden konnten. Dies ent-
spricht dem Material von 641 Gewährspersonen (313 männlich, 328 weiblich) und ungefähr
67 h Sprache, wobei die folgenden 41 Phoneme im Korpus nach automatischer S&E auftre-
ten: /@, a, 5, a:, aI, aU, b, ç, d, e, e:, E, E:, f, g, h, i, i:, I, j, k, l, m, N, o, o:, O, p, r, s, S, t, u,
u:, U, v, w, x, y:, Y, z/.

Von diesem Sprachmaterial wurden mithilfe von openSMILE (Eyben et al., 2010) ins-
gesamt 731 Features extrahiert, wobei das Featureset auch ∆- und ∆∆-Features enthält.
Die Features wurden zum Phonemmittelpunkt extrahiert und über die 20% Region (Mit-
telpunkt ±10%) gemittelt. Auf diesem Datensatz wurden drei Experimente durchgeführt,
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wobei allen Experimenten ein Cross Validation (CV) Testverfahren zugrundeliegt, das si-
cherstellt, dass jeder Sprecher, der zum Test dient, dem System bis dahin unbekannt war.

Das erste Experiment basiert auf Random Forests (RFs), die auf Basis der extrahierten
Features eine Vorhersage machen aus welcher Hälfte Deutschlands ein bestimmter Sprecher
stammt. Für jedes vorhandene Phonem und beide Richtungen (Ost/West und Nord/Süd)
wird ein Vorhersagemodell trainiert. Für die Ost/West Erkennung ist die Vorhersage mit
einer Accuracy von 0.5791 auf dem Phonem /ø:/ möglich (für 31 Phoneme ist eine Vorher-
sage über dem Zufall möglich) und für Nord/Süd eine Erkennung mit einer Accuracy von
0.7037 auf Phonem /z/ (für alle Phoneme ist eine Vorhersage über dem Zufall möglich). Es
wurden für beide Hälften die Phoneme, für die die besten Resultate erzielt werden konnten,
mit bereits bekannten Dialektmerkmalen in Verbindung gebracht.

Das zweite Experiment ist eine Wiederholung des ersten Experiments mit dem Un-
terschied, dass keine kategoriale Variable vorhergesagt wird sondern ein kontinuierlicher
Wert. Die Vorhersage erfolgte ebenfalls wieder getrennt für beide Richtungen – Ost/West
und Nord/Süd. Da eine solche kontinuierliche Vorhersage noch nie durchgeführt wurde,
musste ein Vergleichswert gefunden werden, um ein nützliches1 Modell von einem nutz-
losen zu unterscheiden. Dafür wurde ein Nullmodel (James et al., 2014, S. 205) definiert,
das für jeden Sprecher den Mittelpunkt der Aufnahmeorte des verwendeten Deutsch Heu-
te Korpus als Vorhersage zurückgibt. Durch die Vorhersage mit RFs ist für 40 Phoneme
in Ost/West und 31 Phonemen in Nord/Süd eine Vorhersage möglich, die besser ist als
der Vergleichswert. Jedoch erreicht auch das beste Phonem /z/ in Nord/Süd-Richtung nur
eine verbesserte Vorhersage von 26.69 km gegenüber dem konservativ gewählten Vergleichs-
wert. Basierend auf den guten Ergebnissen der Klassifikation ist das überraschend. Für die
Ost/West-Richtung ist es nur eine Verbesserung um 9.45 km.

Im dritten Experiment wurde untersucht, wie sich die Aggregation von mehreren Rea-
lisierungen eines Phonems pro Sprecher und darüber hinaus mehrerer Phoneme auf die
Erkennungsleistung auswirkt und wie sich der geografische Raum damit aufteilen lässt.
Für dieses Experiment wurde ein sehr großes Featureset erzeugt, in dem zuerst über alle
Phoneme eines Sprechers gemittelt wird und anschließend die Features aller 33 Phoneme,

1Hier wird Nutzen mit einer Verbesserung der Vorhersageleistung in jeglicher Form definiert.
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die von allen Sprechern geäußert wurden, konkateniert werden. Durch eine anschließen-
de Featureselektion und die Verwendung eines Support Vector Regression (SVR) Modells
konnte die Lokalisierung erheblich gesteigert werden. In Ost/West-Richtung um 55.3 km
in Nord/Süd-Richtung um 113.95 km gegenüber dem Nullmodel. Zusätzlich wurde in die-
sem Experiment gezeigt, dass sich die Interpretation der Features im geografischen Raum
basierend auf einer Vorhersage mit RFs, besonders in Nord-Süd-Richtung, lohnen kann.
Das ist der Fall, da sich die meisten Aufteilungen, die auf verschiedenen akustischen Fea-
tures von verschiedenen Phonemen basieren, zumindest theoretisch – also ohne manuelle
ohrenphonetische Validierung aller realisierten Phoneme aller Sprecher – mit dialektalem
Wissen in Verbindung bringen lassen.

Measure of Confidence for Corpus Analysis (MOCCA)

In der Erstellung von Korpora für die phonetische Forschung gibt es einige Teilschritte
die oft mit Fehlern oder großen Abweichungen verbunden sind. Im Einzelnen sind das die
orthografische Transkription und die automatische S&E. Es wurde ein System entwickelt,
dass diese Schritte unterstützt, das auf Verfahren basiert, die bei der Qualitätsbestimmung
von automatischer Spracherkennung bereits ihren Nutzen bewiesen haben.

Als Datenbasis dienten die semi-spontansprachlichen Aufnahmen des Kiel-Corpus (Koh-
ler, 1996; John, 2012) von 30 Sprechern (2225 Äußerungen) und die gelesene Sprache des
PhonDat 2 Corpus (The ASR Consortium, 1995) von 16 Sprechern (1024 Äußerungen). Da-
bei diente der Kiel-Corpus als Trainingskorpus zur Hyperparametersuche und der PhonDat
2 Korpus als unabhängiges Testkorpus, wobei beide eine manuelle S&E besitzen.

Die Vorhersage basiert auf einem Subset der Features aus Schaaf et al. (1997) und waren
diejenigen, die im Rahmen des MAUS Systems ohne zusätzlichen Modellierungsaufwand
zur Verfügung standen. Da in MAUS die Modellierung auf Phonebene stattfindet, sorgt das
bei einer Vorhersage auf Wortebene zu variablen Featurevektorlängen. Um dieses Problem
zu umgehen, wurden Maße der Basisfeatures herangezogen, die die Lage und Dynamik der
Werte beschreiben. Das waren im Einzelnen die Summe, der Mittelwert, der Median, die
Spannweite, die Varianz, die Standardabweichung und die ersten drei Koeffizienten einer
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diskreten Kosinustransformation. Dadurch konnte eine konstante Featurevektorlänge von
d = 30 erreicht werden. Diese Featurevektoren wurden zusammen mit RFs und SVR für
die Vorhersage benutzt.

Das erste Experiment konzentrierte sich auf die Auffindung von falsch transkribierten
Wörtern (oder Wörtern, die nicht zum Signal passen, z.B. aufgrund von einer orthogra-
fischen Verschriftung von dialektal stark gefärbtem Material). Da im Korpus keine Ver-
schriftungsfehler bekannt sind, wurde eine Ersetzungsstrategie angewandt, um so künstli-
che Fehler an bekannten Positionen zu erzeugen, damit das Training durchgeführt werden
konnte. Es wurde gezeigt, dass es mit einem SVR-Modell möglich ist falsch transkribierte
Wörter im unabhängigen Testset mit einer Accuracy von 0.7876 zu bestimmen. Die Ausga-
be des Systems ist dabei ein kontinuierlicher Wert, der aussagt wie hoch der Klassifikator
die Klassenzugehörigkeitswahrscheinlichkeit des momentanen Wortes einschätzt. Mithilfe
eines Schwellwerts wurde dieser Wert auf einen kategorialen Wert abgebildet, der dann
schließlich signalisiert, ob es sich um ein korrekt oder falsch transkribiertes Wort handelt.

Das zweite Experiment hatte zum Ziel, diejenigen Stellen zu identifizieren, die durch das
automatische Alignment nicht oder nur unzureichend genau festgestellt werden konnten.
Dazu wurde für jedes Wort im Trainingskorpus das Überlappungsverhältnis zwischen au-
tomatisch generierter und manuell erzeugter phonetischer Transkription berechnet. Dieses
Überlappungsverhältnis war der Wert, den das System vorhersagen sollte. Da die Anzahl
der Messungen über den Wertebereich sehr unterschiedlich war (heteroskedastischer Feh-
ler), wurde eine kombinierte Unter- und Übersamplingstrategie an den entsprechenden
Stellen im Wertebereich des Überlappungsverhältnisses angewandt. Durch diese Strate-
gie konnte ein gleichmäßigerer (homoskedastischerer) Fehler über den Wertebereich erzielt
werden. Mit dem SVR-Modell war eine Vorhersage auf dem unabhängien Testset möglich,
die mit den tatsächlichen Werten mit R = 0.60 korreliert.

Insgesamt liegen die Erkennungsraten für falsch transkribierte Wörter und stark ab-
weichende automatische S&E in einem Bereich, in dem sie einen sinnvollen Beitrag zur
Auffindung von Fehlern in großen Korpora leisten können. Hier ist davon aus zugehen,
dass die Größe von Korpora in der Zukunft eher noch steigen wird und damit die Notwen-
digkeit von automatischer Fehlererkennung.
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