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Summary

Emerging single cell genomics technologies such as single cell RNA-seq (scRNA-seq) and
single cell ATAC-seq provide new opportunities for discovery of previously unknown cell
types, facilitating the study of biological processes such as tumor progression, and delineating
molecular mechanism differences between species. Due to the high dimensionality of the data
produced by the technologies, computation and mathematics have been the cornerstone in
decoding meaningful information from the data. Computational models have been challenged
by the exponential growth of the data thanks to the continuing decrease in sequencing costs
and growth of large-scale genomic projects such as the Human Cell Atlas. In addition, recent
single-cell technologies have enabled us to measure multiple modalities such as transcriptome,
protome, and epigenome in the same cell. This requires us to establish new computational
methods which can cope with multiple layers of the data. To address these challenges, the
main goal of this thesis was to develop computational methods and mathematical models for
analyzing large-scale scRNA-seq and multimodal omics data. In particular, I have focused
on fundamental single-cell analysis such as clustering and visualization.

The most common task in scRNA-seq data analysis is the identification of cell types. Nu-
merous methods have been proposed for this problem with a current focus on methods for the
analysis of large scale scRNA-seq data. I developed Specter, a computational method that
utilizes recent algorithmic advances in fast spectral clustering and ensemble learning. Specter
achieves a substantial improvement in accuracy over existing methods and identifies rare cell
types with high sensitivity. Specter allows us to process a dataset comprising 2 million cells
in just 26 minutes. Moreover, the analysis of CITE-seq data, that simultaneously provides
gene expression and protein levels, showed that Specter is able to incorporate multimodal
omics measurements to resolve subtle transcriptomic differences between subpopulations of
cells.

We have effectively handled big data for clustering analysis using Specter. The question is
how to cope with the big data for other downstream analyses such as trajectory inference and
data integration. The most simple scheme is to shrink the data by selecting a subset of cells
(the sketch) that best represents the full data set. Therefore I developed an algorithm called
Sphetcher that makes use of the thresholding technique to efficiently pick representative cells
that evenly cover the transcriptomic space occupied by the original data set. I showed that
the sketch computed by Sphetcher constitutes a more accurate presentation of the original
transcriptomic landscape than existing methods, which leads to a more balanced composition
of cell types and a large fraction of rare cell types in the sketch. Sphetcher bridges the gap
between the scalability of computational methods and the volume of the data. Moreover, I
demonstrated that Sphetcher can incorporate prior information (e.g. cell labels) to inform
the inference of the trajectory of human skeletal muscle myoblast differentiation.

The biological processes such as development, differentiation, and cell cycle can be mon-
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itored by performing single cell sequencing at different time points, each corresponding to a
snapshot of the process. A class of computational methods called trajectory inference aims to
reconstruct the developmental trajectories from these snapshots. Trajectory inference (TI)
methods such as Monocle, can computationally infer a pseudotime variable which serves as a
proxy for developmental time. In order to compare two trajectories inferred by TI methods,
we need to align the pseudotime between two trajectories. Current methods for aligning
trajectories are based on the concept of dynamic time warping, which is limited to simple
linear trajectories. Since complex trajectories are common in developmental processes, I
adopted arboreal matchings to compare and align complex trajectories with multiple branch
points diverting cells into alternative fates. Arboreal matchings were originally proposed in
the context of phylogenetic trees and I theoretically linked them to dynamic time warping.
A suite of exact and heuristic algorithms for aligning complex trajectories was implemented
in a software Trajan. When aligning single-cell trajectories describing human muscle differ-
entiation and myogenic reprogramming, Trajan automatically identifies the core paths from
which we are able to reproduce recently reported barriers to reprogramming. In a pertur-
bation experiment, I showed that Trajan correctly maps identical cells in a global view of
trajectories, as opposed to a pairwise application of dynamic time warping.

Visualization using dimensionality reduction techniques such as t-SNE and UMAP is
a fundamental step in the analysis of high-dimensional data. Visualization has played a
pivotal role in discovering the dynamic trends in single cell genomics data. I developed
j-SNE and j-UMAP as their generalizations to the joint visualization of multimodal omics
data, e.g., CITE-seq data. The approach automatically learns the relative importance of
each modality in order to obtain a concise representation of the data. When comparing
with the conventional approaches, I demonstrated that j-SNE and j-UMAP produce unified
embeddings that better agree with known cell types and that harmonize RNA and protein
velocity landscapes.



Chapter 1

Introduction

The cell is the basic unit of all living organisms. Cells provide structure for the body, take
and convert the nutrients from food to energy, and carry out specialized functions. The
cells in humans and in many other organisms come in many different shapes and sizes that
we can categorize into different types which carry different functions. For example, muscle
cells form muscle tissue enable all bodily movement. Nerve cells are the basic unit of the
nervous system, which send signals between the brain and other body organs. Despite
their differences, they all have the same genome (DNA) which contains the information
needed to build the entire body. A DNA molecule is divided up into functional units called
genes, which are templates to make proteins through a process “central dogma of molecular
biology”. Proteins make up body structures as well as control chemical reactions and carry
signals between cells.

The central dogma of molecular biology involves two steps: transcription and translation.
In transcription, the DNA sequence of a gene is copied into an RNA molecule. In eukaryotes,
this pre-messenger RNA (mRNA) will be further processed into a mature RNA, which is in
turn translated into amino-acid sequences. This process of going from a gene to a functional
product is known as gene expression (Crick, 1970). A gene can therefore be considered “on”
if it is transcribed into RNA and only a subset of the genes in a cell are turned on at any one
time. The variety of gene expression profiles seems to be the most relevant answers to the
question of cell types and development. In fact, as the body develops, different sets of cells
within these organisms turn specific combinations of genes on and off. Such developmental
patterns are responsible for the variety of cell types in the mature organism.

Measuring gene expression level is an important problem in molecular biology. Different
techniques are used to quantify gene expression level. In the past, traditional hybridization-
based approaches such as microarrays allowed to measure gene expression of a single tran-
script at a time. More recently, high throughput methods such as bulk RNA-seq can measure
tens of thousands of expressed genes and allow unbiased study of gene expression in a tissue.
A fundamental research aim in many RNA-seq studies is to identify differentially expressed
genes between different groups or conditions. Additionally, gene expression profiling enables
us to detect allele specific expression and gene fusion events (Conesa et al., 2016).

Since bulk RNA-seq only measures the average expression level for each gene across a
large population of cells in the tissue, it is not sufficient for studying heterogeneous sys-
tems such as complex tissues like the brain. To overcome the limitations of bulk RNA-seq,
single-cell RNA sequencing (scRNA-seq) was developed to measure transcriptomic profiles of
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the individual cell, which provides a powerful tool in decoding the heterogeneity in complex
tissues as well as reconstruction of developmental processes. For example, scRNA-seq was
applied to understand the complex subpopulations in healthy tissues such as lung (Treutlein
et al., 2014) and brain (Pollen et al., 2014) as well as in human diseases such as breast can-
cer (Nguyen et al., 2018) and lung cancer (Guo et al., 2018; Stewart et al., 2020). In addition,
other studies have used scRNA-seq to reconstruct novel dynamics in developmental processes
within embryogenesis (Yan et al., 2013; Biase et al., 2014), hematopoiesis (Nestorowa et al.,
2016) and neurogenesis (La Manno et al., 2016). Importantly, scRNA-seq also provides
mechanistic insights in gene regulatory network inference (Aibar et al., 2017) and cell to cell
interactions (Armingol et al., 2021).

1.1 Computational analysis of single-cell sequencing data

To enable transcriptomic profiling at a single-cell resolution, a number of high-throughput
single-cell RNA-sequencing (scRNA-seq) protocols and technologies have been developed. In
brief, a typical scRNA-seq experimental workflow begins with the dissociation of cells from
a tissue and the isolation of single-cells with specific devices. The isolation step is performed
differently depending on the protocol; the main approaches include isolation of cells on a
plate, or capturing each cell in the microfluidic droplet. In the next step, mRNAs are
captured for reverse transcription to generate complementary DNA (cDNA). Finally, cDNA
will be amplified and undergo library preparation for sequencing. The data generated by a
sequencing machine are processed to obtain an expression matrix, which further undergoes
preprocessing steps such as quality control and normalization to obtain a final expression
matrix. For more details we refer the reader to the papers (Svensson et al., 2017; Ziegenhain
et al., 2017).

The computational analysis of scRNA-seq typically starts with an expression matrix.
Conventionally, each row of the matrix corresponds to a gene and each column represents a
cell. Each entry in the expression matrix represents the expression level of a gene in a given
cell. The exact nature of scRNA-seq analysis depends on the biological questions at hand
when performing the experiments. Despite these differences, there are a number of common
downstream computational analyses that can be applied (see Figure 1.1). Here, we highlight
core computational data analyses present in most of single-cell studies. For in depth review
of scRNA-seq data analysis, we refer the readers to Luecken and Theis (2019).

Clustering

The most fundamental step in the scRNA-seq data analysis is to assign cell types to the cells
because cell type information is not captured in scRNA-seq data. The process of labeling
the data is typically done by clustering the cells based on a gene expression matrix and
annotating clusters by the identity of upregulated genes associated with each cluster. The
problem of grouping data into similar patterns has been studied in anthropology (Driver
and Kroeber, 1932) and psychology (Zubin, 1938) almost a century ago and since then this
so-called cluster analysis has become one of the most well-studied problems in unsupervised
machine learning. In scRNA-seq data, we identify groups of cells based on the similarities of
the gene expression profiles without knowing the prior labels. Expression profile similarity
is determined via distance metrics, which often take dimensionality reduced representations



1.1 Computational analysis of single-cell sequencing data 3
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Figure 1.1: Common workflow in scRNA-seq data analysis. The workflow starts with an expression
matrix, followed by preprocessing steps, which include the selection and filtration of cells based
on quality control metrics, data normalization, and the selection of highly variable genes. The
processed data then undergoes downstream analysis. The core analyses are the identification of cell
types using clustering; reconstruction of cellular dynamic process using trajectory inference and
RNA velocity; and visualization of cells in 2D using t-SNE and UMAP.

as input. The clustering algorithm which produces a partition of the data plays the most
important role in success of cell type annotation. Various methods have been developed to
perform clustering of scRNA-seq data, among them Seurat (Satija et al., 2015) is the most
widely used. Single-cell clustering has been used in characterizing cell types in complex
tissues such as the brain (Zeisel et al., 2018) as well as identification of new cell types (Cao
et al., 2017; Fincher et al., 2018).

The gene signatures associated with each group are called marker genes. Marker genes
are often found by performing differential expression tests between two groups: the target
group and the remaining cells in the data set. Typically we are interested in genes that are
upregulated in the cluster of interest. The Wilcoxon rank sum or the t-test are commonly
used to rank genes based on the difference between the two groups. Clusters can be labeled
by prior knowledge of the genes which determine the cell type or by comparing marker genes
from the query data set and marker genes from a reference data set. The latter approach is
possible thanks to many recent projects which aim to create reference single-cell atlas, e.g.,
the Human Cell Atlas (Regev et al., 2017).

Trajectory analysis and RNA velocity analysis

One area where scRNA-seq has been very successful is in the study of cellular dynamic pro-
cesses such as development, differentiation, and cell cycle. The human body develops from
a single cell, the fertilized egg, into a complex multicellular organism over time. During de-
velopment cells differentiate into more specialized cell types. This process of differentiation
can be monitored by taking snapshots of gene expression profiles at different time points.
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a b

Figure 1.2: Trajectory inference (a) and RNA velocity (b) of the same process. Cells are colored
by cell types.

The class of methods, which aims to capture transitions between cell types and cell lineages,
is known as trajectory inference (TI). TI first identifies a trajectory which represents the
underlying cellular dynamic process. Depending on the biological process, the constructed
trajectories can be linear, bifurcating or complex structures such as trees and cycles (see
Figure 1.2-a for an example). The order of cells along these trajectories is called a pseu-
dotime variable, which is interpreted as a proxy for developmental time. TI provides a
powerful tool in delineation of a differentiation tree as well as studying the changes of gene
expression during a process. For example, Monocle (Trapnell et al., 2014; Qiu et al., 2017;
Cao et al., 2019), the most widely used TI method, has been used to investigate a large
variety of biological processes, including investigation of gene expression dynamics occurring
during progenitor maturation towards an oligodendrocyte fate (Qiu et al., 2017), transcrip-
tional dynamics of mouse organogenesis (Cao et al., 2019), the development of the human
prefrontal cortex (Zhong et al., 2018), and the differentiation trajectory of breast cancer T
cells (Savas et al., 2018). Besides Monocle, there are more than 70 computational methods
for trajectory inference from single-cell transcriptomics. Among them 45 methods have been
evaluated in a benchmarking paper by Saelens et al. (2019). Based on the benchmark results,
they concluded that Slingshot (Street et al., 2018), TSCAN (Ji and Ji, 2016) and Monocle
DDRTree (Qiu et al., 2017) are the top performing methods.

RNA velocity provides an alternative way to model dynamic process of cells (La Manno
et al., 2018; Bergen et al., 2020). Instead of constructing a trajectory for the process, RNA
velocity - the time derivative of the gene expression state - infers the future state of cells, i.e.,
predicts gene expression of individual cells on a timescale of hours. From this we can visualize
the kinetic state of all cells in low-dimensional representations of the cell populations (see
Figure 1.2-b). RNA velocity has been used to identify various branching lineages of the
developing mouse hippocampus and to study the kinetics of transcription in the human
embryonic brain. Furthermore, directionality from the RNA velocity has allowed for the
identification of the root of the lineage tree of the hippocampus (La Manno et al., 2018).
RNA velocity can infer putative driver genes of the dynamic process, providing an alternative
to the standard differential expression analysis (Bergen et al., 2020). Although TI and RNA
velocity provide complementary approaches to study single-cell dynamics, Zhang and Zhang
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(2021) proposed CellPath, a trajectory inference method that infers a trajectory from the
RNA velocity.

Visualization

The dimensionality of scRNA-seq data is large with typically at least 20,000 features (vari-
ables). Since humans are visual learners, we are interested in presenting the data in 2D
or 3D plots that can capture both the overall shape and the fine granular structure of the
data. Currently, t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten and
Hinton, 2008) and UMAP (McInnes et al., 2018) have become standard tools for single-cell
visualization since they preserve structure of data well and often produce embeddings which
are consistent with cell type labels. t-SNE and UMAP aim to preserve the similarities be-
tween cells in the low embedding. In other words, if two cells are close in the original space,
they must be also close in the low dimensional embedding, and vice versa. t-SNE and UMAP
have become a cornerstone of scRNA-seq analysis. For example, the low dimensional plot is
often colored by the expression levels of a gene of interest, which is useful in exploring the
gene expression pattern over cell populations (e.g., found by clustering). Besides, RNA ve-
locity overlays the vector field (direction of cell to its future state) on the 2D plots computed
by t-SNE or UMAP, which allows us to discover the dynamic trends in single-cell data.

1.2 Thesis overview and contributions

Thanks to the continuing decrease in sequencing costs and growth of large-scale genomic
projects such as the Human Cell Atlas, many scRNA-seq datasets have been generated with
a recent dataset measuring the gene expression of over 4 million single-cells (Cao et al.,
2020). Hence, current computational methods designed to handle hundreds to thousands of
cells will need to scale to millions to match the pace of data generation. The exponential
growth in the data is one of the biggest challenges in single-cell data analysis (Svensson et al.,
2018). Moreover, we are able to generate scRNA-seq data sets of many different processes
in the same individuals as well as in different species. This allows us to do comparative
analysis between two data sets to pinpoint the differences and similarities between the two.
For example, comparison between two single-cell trajectories computed by Monocle revealed
molecular determinants of myogenic reprogramming outcome (Cacchiarelli et al., 2018). Cur-
rently, developed methods for the comparison of trajectories are restricted to simple, linear
trajectories. A new approach needs to be developed to deal with a more realistic scenario,
i.e., complex trajectories containing branching points that divert cells into different fates.
Finally, along with improving throughput in single-cell experiments, recent technological
innovations allow us to simultaneously measure different modalities (e.g., mRNA, protein
level, chromatin accessibility) in the same cell (Cao et al., 2018; Stoeckius et al., 2017; Zhu
et al., 2020). Many computational methods developed for unimodal single-cell data (e.g.,
scRNA-seq) are not applicable to multimodal data. Therefore, a new set of methods and
techniques need to be developed to cope with multiple facets of the data. It is worth to men-
tion that the aforementioned analyses (clustering, trajectory inference, visualization) are also
fundamental for the analysis of other unimodal single cell genomics data (e.g., scATAC-seq)
as well as multimodal omics data. This thesis aims to address some of these challenges in
several major computational analyses including clustering and visualization.
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Clustering of ultra-large scRNA-seq and multimodal data using Specter

One of the most fundamental computational tasks in the context of scRNA-seq analysis is
the identification of groups of cells that are similar in their expression patterns, i.e. their
transcriptomes, and which are at the same time distinct from other cells. Numerous methods
have been proposed for clustering scRNA-seq data sets (Duò et al., 2018; Tian et al., 2019),
with Seurat (Satija et al., 2015) and its underlying Louvain clustering algorithm (Blondel
et al., 2008) being arguably the most widely used one. More recently, attempts have been
made to design algorithms for the analysis of ultra-large scRNA-seq data sets, owing to
the ever-increasing throughput of droplet-based sequencing technologies that allow to pro-
file genome-wide expression for hundreds of thousands of cells at once. To address these
challenges, we introduce Specter, a clustering method that adopts and extends recent al-
gorithmic advances in fast spectral clustering. We adopt the idea of landmarks that are
used to create a sparse representation of the full data from which a spectral embedding can
then be computed in linear time. We exploit Specter’s speed in a cluster ensemble scheme
that achieves a substantial improvement in accuracy over existing methods and that is sen-
sitive to rare cell types. Its linear time complexity allows Specter to scale to millions of
cells and leads to fast computation times in practice. Furthermore, on CITE-seq data that
simultaneously measures gene and protein marker expression we demonstrate that Specter is
able to utilize multimodal omics measurements to resolve subtle transcriptomic differences
between subpopulations of cells. The details are presented in Chapter 2, which is based on
the publication: Van Hoan Do, Francisca Rojas Ringeling, and Stefan Canzar. Linear-time
cluster ensembles of large-scale single-cell RNA-seq and multimodal data. Genome Research,
31(4):677-688, 2021.

Data summarization using Sphetcher

Sampling provides a more general framework to deal with big data. Although sampling might
overlook parts of the data, this problem can be alleviated if a subset of cells is carefully cho-
sen. The most common subsampling strategy is random sampling, however, it ignores the
gene expression patterns of single-cells and thus risks overlooking rare cell states. Spatial
random sampling (SRS) (Rahmani and Atia, 2017) and k-means++ (Arthur and Vassilvit-
skii, 2007) on the other hand, take into account the structure of the data when sampling
the data. Experiments performed in Hie et al. (2019b), however, demonstrated that these
data-dependent methods do not scale efficiently to large datasets and provide unbalanced
samples that hamper downstream analyses. Hie et al. (2019b) introduced geometric sketch-
ing as an alternative approach that efficiently samples cells evenly across gene expression
space rather than proportional to the abundance of cells that are in a similar state. For
purely computational reasons, however, Hie et al. (2019b) approximate the transcriptomic
space of single-cells by equal-sized boxes rather than spheres, within which cells are randomly
selected as representatives into the sketch. Here, we propose an algorithm Sphetcher that
makes use of the thresholding technique originally proposed for the design of approximation
algorithms for bottleneck problems to efficiently pick representative cells within spheres of a
fixed size into a spherical sketch of different metric spaces. We provide theoretical guarantees
for the spherical sketch computed by Sphetcher and demonstrate through experiments on 6
single-cell datasets that these theoretical guarantees are indeed reflected in a more accurate
representation of the original transcriptomic space which in turn benefits downstream anal-
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yses such as clustering, and which allowed us to detect a rare population of inflammatory
macrophages. Furthermore, our optimization scheme naturally allows to include fairness
aspects that require to include cells of each pre-defined category which can encode prior bio-
logical or experimental knowledge such as cell type or collection time point. We demonstrate
how our fairness-inspired model can help to incorporate the collection time point of cells in
a time series experiment into the reconstruction of their developmental trajectory. Carefully
combined with a prior grid sampling strategy that is orders of magnitude faster than geomet-
ric sketching, Sphetcher requires only 16 minutes to compute a sketch for a mouse embryonic
dataset comprising 2 million cells. The details are presented in Chapter 3. The contents
of this chapter are based on the publication: Van Hoan Do, Khaled Elbassioni, and Stefan
Canzar. Sphetcher: Spherical thresholding improves sketching of single-cell transcriptomic
heterogeneity. iScience, 23(6):101126, 2020.

Alignment of single-cell trajectories using Trajan

Single-cell RNA-seq has enabled the reconstruction of cellular lineages of biological processes
such as differentiation, development and cell reprogramming. The trajectory may be used
to infer the dynamic changes in gene expression along a pseudotime axis. Much can be
learned from the comparative analysis of single-cell trajectories. Comparing gene expression
dynamics along trajectories from two conditions can aid in elucidating the key differences
between them and the regulatory programs underpinning the process. For example, com-
paring the trajectories underlying a given differentiation process in two species would shed
light onto the evolutionary differences between these organisms. Recently, methods have
been developed for this purpose, which make use of dynamic time warping (dtw). Dynamic
time warping is a class of algorithms for comparing two time series that advance at different
speeds. Similar to a pairwise sequence alignment that allows for insertions and deletions,
dtw finds a mapping (warping) between similar elements in the two sequences to overcome
locally stretched and compressed sections. In single-cell trajectories, cells are ordered along
pseudo-time and can be aligned based on the expression values of (a subset of) their genes
to establish a common pseudotime axis along which expression kinetics become comparable
between different conditions.

Dynamic time warping can only compare two time series at a time, and thus current
methods for comparing single-cell trajectories are limited to linear trajectories or rely on
picking the correct path from a complex trajectory. Complex cell trajectories are common in
developmental processes and also arise in response to genetic perturbations (Qiu et al., 2017).
In these cases, prior information such as a set of defined markers would be necessary to pick
the most relevant path, but this information is often not available. Another potential caveat
of dtw is that it ignores cells that lie on alternative paths and could potentially amplify the
signal used to infer the mapping between trajectories.

We present Trajan, a novel method to compare and align complex trajectories with mul-
tiple branch points diverting cells into alternative fates. Trajan automatically identifies
the correspondence between biological processes in two trajectories and aligns all of them
simultaneously, taking into account their overlap. Given that cells that are diverted into
different fates share a common ancestry, they cannot be treated as independent from each
other. Trajan adopts arboreal matchings (Böcker et al., 2013) to capture globally consis-
tent similarities between trajectories. Arboreal matchings were originally proposed in the
context of phylogenetic trees and here we theoretically link them to dynamic time warping.
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When aligning single-cell trajectories describing human muscle differentiation and myogenic
reprogramming, Trajan automatically identifies the core paths from which we are able to
reproduce recently reported barriers to reprogramming. In a perturbation experiment, Tra-
jan correctly maps identical cells in a global view of trajectories, as opposed to a pairwise
application of dtw. The details are presented in Chapter 4. Our manuscript was presented at
RECOMB 2019: Van Hoan Do, Mislav Blažević, Pablo Monteagudo, Luka Borozan, Khaled
Elbassioni, Soeren Laue, Francisca Rojas Ringeling, Domagoj Matijevic and Stefan Canzar.
Dynamic pseudo-time warping of complex single-cell trajectories. RECOMB 2019. Lecture
Notes in Computer Science, 2019.

Visualization of multimodal omics data using Jvis

Emerging single-cell technologies assay multiple modalities such as transcriptome, genome,
epigenome, and proteome at the same time (Cao et al., 2018; Stoeckius et al., 2017; Zhu et al.,
2020). The joint analysis of multiple modalities has allowed to resolve subpopulations of cells
at higher resolution (Do et al., 2021; Kim et al., 2020), has helped to infer the “acceleration”
of RNA dynamics (Gorin et al., 2020) and to extend time periods over which cell states can
be predicted (Qiu et al., 2019), and has linked dynamic changes in chromatin accessibility to
transcription during cell-fate determination (Argelaguet et al., 2019). A fundamental step in
the analysis of high dimensional single-cell data is their visualization in two dimensions. Ar-
guably the most widely used nonlinear dimensionality reduction techniques are t-distributed
stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008) and uniform
manifold approximation and projection (UMAP) (McInnes et al., 2018). Currently, these
techniques are applied to each modality one at a time (Cao et al., 2018; Argelaguet et al.,
2019; Chen et al., 2019), and separate views of the data need to be reconciled by manual
inspection. Here, we generalize t-SNE and UMAP to the joint visualization of multimodal
single-cell measurements. While t-SNE and UMAP seek a low-dimensional embedding of
cells that preserves similarities in the original (e.g. gene expression) space as well as pos-
sible, we propose j-SNE and j-UMAP that simultaneously preserve similarities across all
modalities. Through Python package JVis they will combine different views of the data
into a unified embedding that can help to uncover previously hidden relationships among
them. At the same time, our joint embedding schemes learn the relative importance of each
modality from the data to reveal a concise representation of cellular identity. The details
are presented in Chapter 5, which is based on the publication: Van Hoan Do and Stefan
Canzar. A generalization of t-SNE and UMAP to single-cell multimodal omics. Genome
Biology, 22(1):130, 2021.

In summary, my contributions to the field of single-cell genomics data analysis are sum-
marized in Figure 1.3.

1.3 List of peer-reviewed articles

• Van Hoan Do and Stefan Canzar. A generalization of t-SNE and UMAP to single-cell
multimodal omics. Genome Biology, 22(1):130, 2021.

• Van Hoan Do, Francisca Rojas Ringeling, and Stefan Canzar. Linear-time cluster
ensembles of large-scale single-cell RNA-seq and multimodal data. Genome Research,
31(4):677-688, 2021.
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Figure 1.3: Contributed computational methods in single-cell genomics field. Contributed tools in
this thesis are highlighted in green boxes. Sphetcher: geometric subsampling of big data; Specter:
clustering of large-scale single cell genomics data; Trajan: alignment of single-cell trajectories; JVis:
dimensionality reduction and visualization for multimodal omics data.

• Van Hoan Do, Khaled Elbassioni, and Stefan Canzar. Sphetcher: Spherical threshold-
ing improves sketching of single-cell transcriptomic heterogeneity. iScience, 23(6):101126,
2020.

• Van Hoan Do∗, Mislav Blažević∗, Pablo Monteagudo, Luka Borozan, Khaled Elbas-
sioni, Soeren Laue, Francisca Rojas Ringeling, Domagoj Matijevic and Stefan Canzar.
Dynamic pseudo-time warping of complex single-cell trajectories. RECOMB 2019. Lec-
ture Notes in Computer Science, 2019.

*indicates equal contribution.
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Chapter 2

Clustering of large-scale single-cell
genomics data

This chapter is adapted from the publication: Van Hoan Do, Francisca Rojas Ringeling,
and Stefan Canzar. Linear-time cluster ensembles of large-scale single-cell RNA-seq and
multimodal data. Genome Research, 31(4):677-688, 2021.

One of the most fundamental computational tasks in the context of scRNA-seq analysis
is the identification of groups of cells that are similar in their expression patterns, i.e. their
transcriptomes, and which are at the same time distinct from other cells. Numerous methods
have been proposed for clustering scRNA-seq data sets (Duò et al., 2018; Tian et al., 2019),
with Seurat (Satija et al., 2015) and its underlying Louvain clustering algorithm (Blondel
et al., 2008) being arguably the most widely used one. More recently, attempts have been
made to design algorithms for the analysis of ultra-large scRNA-seq data sets, owing to
the ever-increasing throughput of droplet-based sequencing technologies that allow to profile
genome-wide expression for hundreds of thousands of cells at once. At the heart of such
methods often lies a sampling technique that reduces the size of the data analyzed by a clus-
tering algorithm. Cluster labels of cells in this so-called sketch are subsequently transferred
to the remaining cells using, e.g., a nearest neighbor algorithm. dropClust (Sinha et al.,
2018), for example, includes a structure preserving sampling step, but initially picks a small
set of cells simply at random. Similarly, Seurat applies random subsampling prior to its
nearest neighbor search.

The quality of the final clustering, however, strongly depends on how well the data sketch
represents the overall cluster structure and how accurate the cluster labels of cells in the
sketch can be inferred from incomplete data. Inaccurate labels of subsampled cells will likely
lead to an inaccurate labeling of the full data. In addition, sampling cells proportional to their
abundance might render rare cell types invisible to the algorithm. Geometric sketching was
therefore recently proposed as an alternative sampling method that selects cells according
to the transcriptomic space they occupy rather than their abundance. Nevertheless, labels
need to be inferred from partial data.

Spectral methods for clustering have been applied with great success in many areas such
as computer vision, robotics, and bioinformatics. They make few assumptions on cluster
shapes and are able to detect clusters that form non-convex regions. On a variety of data
types, this flexibility has allowed spectral clustering methods to produce more accurate clus-
terings than competing methods (Shi and Malik, 2000). The high computational complexity,
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however, renders its application to large-scale problems infeasible. For n data points, spectral
clustering computes eigenvectors of a n × n affinity matrix, which incurs a computational
cost of O(n3). For scRNA-seq data sets with n in the order of ten thousands up to the
millions this presents a prohibitive cost which has thus prevented the application of spectral
clustering to large-scale single-cell data sets.

Furthermore, spectral clustering methods are sensitive to the right choice of parameters
used to model the similarity between data points (von Luxburg, 2007), i.e. RNA expression
measurements of single cells. Data sets derived from different biological samples exhibiting
different cell population structures obtained using different sequencing technologies typically
require a different set of parameter values to achieve accurate clustering results. We introduce
a new method, Specter, which addresses the challenges of computational complexity and
parameter sensitivity to allow a tailored version of spectral clustering to be utilized in the
analysis of large scRNA-seq data sets.

2.1 Preliminaries

We begin this chapter with an overview on clustering methods and evaluation metrics. Clus-
ter analysis aims to group data points (cells) based on the similarity/distance among data
points. The goal is that the points in the same group are more similar to each other than
the points in the other groups. A group of similar points is called a cluster and a collection
of all clusters is called a clustering. In addition, the goal is sometimes to put the clusters
into a hierarchy by successively grouping the clusters so that at each level of the hierarchy,
clusters in the same branch are more similar to each other than those in different branches.

There are numerous methods for performing cluster analysis, each method differs signifi-
cantly in assumptions of what constitutes a cluster and how to find them. Notably, k-means,
hierarchical clustering, and spectral clustering are the most popular methods. In this section
we review the three clustering methods and then we introduce several metrics for evaluation
of a clustering.

2.1.1 Clustering methods

k-means

We begin with a discussion of k-means, which is one of the most well-studied clustering
methods due to its simplicity and scalability to large data sets. The idea of k-means is
to partition the data into k groups and represent each group (cluster) by a cluster center
(centroid). We measure the distortion of a clustering by the sum of the squares of the
distances of each data point to its cluster center. The goal is to find a partition of points
such that the distortion is minimum. Formally, given n data points x1, x2, . . . , xn ∈ Rm, we
define a cost function (distortion measure) of k clusters C1, C2, . . . , Ck as follows

k∑
i=1

∑
x∈Ci

‖x− µi‖2, (2.1)

where µi is the center of cluster Ci, that is, µi =
∑

x∈Ci
x/|Ci|. The k-means algorithm

aims to find a partition C1, C2, . . . , Ck of the data such that the distortion measure (2.1) is
minimum. Unfortunately, the problem of minimizing the k-means distortion is NP-hard. In
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Figure 2.1: Illustrations of the three clustering methods. (a) Illustration of k-means on five data
points with k = 2. The algorithm first selects two points (here 2 and 4) as initial centroids (marked
by x), next every point is assigned to its closest centroid, resulting in two clusters C1 = {1, 2}, C2 =
{3, 4, 5} (top). Next the algorithm recomputes the cluster centers and assigns each point to its
closest centroid (bottom). The algorithm terminates since the clustering is unchanged. (b) A
dendrogram produced by hierarchical clustering of five data points in (a). (c) Spectral clustering
first constructs a graph of five vertices, the weights of the graph representing the similarity between
two vertices are indicated by the width of the corresponding edge. The thicker an edge, the more
similarity two points are. The exact spectral clustering seeks for a partition of vertices (e.g.,
V = V1 ∪ V2, V1 ∩ V2 = ∅) which minimizes a graph cut described by one of the three objective
functions (2.2)−(2.4). An example of the three cuts between V1 and V2 of the graph (top) is given in
the bottom, where |V1| = 2, |V2| = 3, vol(V1) = w12 +w14 +w21 +w24 = 2w12 +w14 +w24, vol(V2) =
2w34 + 2w35 + 2w45 + w14 + w24. Here wij denotes the similarity between vertex i and vertex j.

practice, k-means is solved by an iterative procedure: (1) pick an initial set of k points (e.g.,
at random) as cluster centers, (2) assign each point xi to its closest center, (3) change the
cluster center to the average of its assigned points. The algorithm iterates between (2) and
(3) until convergence (see Figure 2.1-a for an illustration). This algorithm is also referred
to as Lloyd’s algorithm. It can be shown that the algorithm will converge but it is not
guaranteed to converge to the global minimum (Hartigan and Wong, 1979). Moreover, the
quality of the k-means clustering strongly depends on the initialization of cluster centers
in the step (1). Various schemes have been proposed for initializing the cluster centers in
k-means (Celebi et al., 2013). Another challenging problem of k-means is how to determine
the number of clusters k. The choice for the number of clusters depends on the goal of
analysis. For single cell analysis k is usually defined as the number of cell types or subtypes
in a sample, which is often unknown and in practice one has to try several k and picks one
which fits well with prior biological knowledge, e.g., when clustering a scRNA-seq data set
of blood tissues, we know roughly what cell types are and how many in the sample.

Solving k-means clustering problem is NP-hard, thus heuristic algorithms are generally
used. Among them Floyd’s algorithm is still the most widely used and its computational
complexity is O(nkmi), where i is the number of iterations (Hartigan and Wong, 1979).

Hierarchical clustering

Hierarchical clustering is another popular clustering method. It does not necessarily require
to provide the number of clusters as k-means. Hierarchical clustering can be divided into
two paradigms: agglomerative (bottom-up) and divisive (top-down). Agglomerative strategy
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starts with many clusters and iteratively merges a selected pair of clusters into a single cluster.
Divisive paradigm on the other hand starts with a single cluster and breaks it down into
smaller clusters. The hierarchy of the clusters is represented as a dendrogram (see Figure
2.1-b for an example). Here we focus on agglomerative clustering because it is more common
than its counterpart. The agglomerative clustering starts with each data point as a separate
cluster, it then successively merges the two most similar clusters. This process stops when
all clusters merge together or it reaches the number of predefined clusters k. The pair of
groups chosen for merging is the one with the smallest distance. There are several ways to
measure distance between two clusters and they are called linkage methods. Some of the
common linkage methods are given below.

Single linkage. The distance between two clusters is the shortest distance between two points
in each cluster, i.e., d(A,B) = minx∈A,y∈B d(x, y), where A,B are two clusters.
Complete linkage. The distance is defined by the largest distance between two points in each
cluster, d(A,B) = maxx∈A,y∈B d(x, y).
Average linkage. The distance is defined by the average distance between two points in each
clusters, d(A,B) =

∑
x∈A,y∈B d(x, y)/(|A| · |B|).

Centroid linkage. The distance between clusters A and B is ‖µA − µB‖2, where µA, µB are
centroids of clusters A and B, respectively.

The overall complexity of the agglomerative clustering is O(n3). However, optimal effi-
cient agglomerative methods for single linkage and complete linkage is O(n2) (Sibson, 1973;
Defays, 1977).

Spectral clustering

Traditional clustering methods such as k-means often produce clusters, each of them having
spherical or elliptical shape. Hence they will not work well when the shape of the clusters
are non-convex, which is often the case in genomics data. Spectral clustering is designed
for these situations. Spectral clustering uses eigenvectors of a matrix derived from the
distance between points as a low-dimensional representation of the original data, which
it then partitions using a method such as k-means. More precisely, given n data points
x1, x2, . . . , xn ∈ Rm and a similarity matrix (affinity matrix) W = (wij)n×n, where wij
measures the similarity between points xi and xj, the graph Laplacian is defined as L = D−
W (unnormalized Laplacian) or L = I −D−1/2WD−1/2 in case of a (symmetric) normalized
Laplacian. Here, D is a diagonal matrix whose entries are column sums (equivalently row
sums) of W . Spectral clustering then uses the top k eigenvectors of L to partition the data
into k clusters using the k-means algorithm. Why spectral clustering works is not clear at
first, von Luxburg (2007) provided a justification of spectral clustering via graph partitioning.
We briefly review it below and refer readers to the paper for details.

We encode the data in the form of a graph G = (V,E), where V is the set of vertices
(cells) and E is the set of edges. A vertex vi in V represents the data point xi and two
vertices are connected by an edge if the similarity wij between the data points xi and xj is
positive or larger than a certain threshold. The edge between vi and vj is weighted by the
similarity wij. A common choice of the similarity between xi and xj is the Gaussian kernel
wij = exp(−‖xi − xj‖2/σ2) for a user-defined parameter σ. We want to partition V into k
groups V1, V2, . . . , Vk. A good clustering should favor strongly connected nodes to end up in
the same group, and nodes that are far apart (or disconnected) should be placed in different
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groups (see Figure 2.1-c). This intuition can be modeled as a graph cut problem in which
we minimize the cut defined as follows

cut(V1, V2, · · · , Vk) =
1

2

k∑
i=1

w(Vi, V \Vi), (2.2)

where w(Vi, V \Vi) =
∑

s∈Vi,t∈V \Vi wst is the total weight one needs to cut in order to discon-
nect Vi from the remaining vertices of the graph. In other words we favor the clustering with
few edges between clusters. The cut objective function (2.2) often produces imbalanced clus-
tering in which one cluster contains most of the data points and some clusters contain just
a single vertex. This problem can be alleviated by using alternative objective functions: the
ratio cut (Hagen and Kahng, 1992) and normalized cut (Shi and Malik, 2000) cost functions,
which are respectively defined as:

rcut(V1, V2, · · · , Vk) =
1

2

k∑
i=1

w(Vi, V \Vi)
|Vi|

, (2.3)

and

ncut(V1, V2, · · · , Vk) =
1

2

k∑
i=1

w(Vi, V \Vi)
vol(Vi)

, (2.4)

where |Vi| is the number of vertices in Vi and vol(Vi) =
∑

s∈Vi

∑
t∈V w(s, t) is the volume of Vi.

An example of the three cuts are given in Figure 2.1-c. The problems of finding a clustering
(partition) with the minimum ratio cut and normalized cut are NP-hard. The relaxed version
of the two problems lead to spectral clustering of unnormalized and normalized Laplacian
we introduced above (von Luxburg, 2007).

Due to computational burden of spectral clustering in the eigendecomposition step (O(n3)),
several methods have been proposed to accelerate the spectral clustering algorithm (Fowlkes
et al., 2004; Shinnou and Sasaki, 2008; Cai and Chen, 2011). In particular, Landmark-based
Spectral Clustering (LSC) has been shown to perform well in terms of efficiency and effective-
ness compared to state-of-the-art methods across a large number of data sets (Cai and Chen,
2011). In short, LSC picks a small set of p representative data points u1, u2, . . . , up ∈ Rm,
i.e. the landmarks, which it then uses to create a representation matrix Z ∈ Rp×n whose
columns represent the original data with respect to the landmarks according to X ≈ UZ.
Here, columns i of U ∈ Rm×p contain landmarks ui and columns i of X contain the original in-
put points xi. Let the Gaussian kernel K(x, y) = exp(−‖x−y‖2/2σ2) measure the similarity
between two points x and y, then matrix Z = (zji)p×n is computed using Nadaraya-Watson
kernel regression (Härdle, 1990) as

zji =

{ K(xi,uj)∑
j′∈U〈i〉

K(xi,uj′ )
if j ∈ U〈i〉

0 otherwise,
(2.5)

where U〈i〉 is the set of r nearest landmarks of xi. That is, zji is set to zero if uj is not among
the r nearest neighbors of xi, which naturally leads to a sparse representation of the data.
Motivated by non-negative matrix factorization that uses k (i.e. number of clusters) basis
vectors to represent each data point (Xu et al., 2003). Then each original point xi can be
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approximated by

x̂i =

p∑
j=1

zjiuj.

From this landmark-based representation of the complete data it computes the Laplacian
matrix L = ẐT Ẑ, where Ẑ = D−1/2Z and D is the diagonal matrix whose (i, i)-entry equals
the sum of the ith row of Z. Then, this graph Laplacian L admits a fast eigendecomposition
in time O(n) as oppose to O(n3) in the general case, which is described in more detail in
Cai and Chen (2011). The LSC algorithm is summarized in Algorithm 1.

Algorithm 1: LSC

1 Input: Cells x1, . . . , xn; number of clusters k
2 Compute p landmarks using random selection or k-means.
3 Construct a sparse similarity matrix Z ∈ Rp×n between data points and landmarks as in

(2.5).
4 Compute the first k eigenvectors b1, b2, . . . , bk of the Laplacian L = ẐT Ẑ where Ẑ = D−1/2Z

and let B = [b1, b2, . . . , bk].
5 Apply k-means on B to obtain k clusters.

2.1.2 Clustering evaluation

In this section we introduce several popular metrics for evaluation of a clustering. We begin
with the most widely used metric in scRNA-seq clustering analysis.

Given a set of n data points X = {x1, x2, . . . , xn}, and let A = {A1, A2, . . . , Ar} and
B = {B1, B2, . . . , Bs} be two clusterings of X. Here A often represents the ground truth
labels and B is a clustering produced by a particular clustering method. Sometimes A and
B correspond to outcomes of different clustering methods/runs. In this case we want to
measure the similarity between the two clusterings. Note that the number of clusters in A
and B can be different.

The overlap between A and B is summarized in a contingency table nij where each entry
nij denotes the number of common objects between Ai and Bj, i.e., nij = |Ai ∩ Bj|. Then
the Adjusted rand index (ARI) (Hubert and Arabie, 1985) between A and B is defined as

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2
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i

(
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2

)
+
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j

(
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2

)]
−
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/
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)
where ai =

∑
` ni`, and bj =

∑
` n`j. ARI is the corrected-for-chance version of the Rand

index, which is computed based on the number of pairs of data points on which two cluster-
ings agree or disagree. ARI ranges between -1 and 1 and it yields a value 0 if the clusterings
A and B are completely independent and 1 if they are identical.

Normalized mutual information (NMI) (Studholme et al., 1999) is another measure of
the similarity between two clusterings, which quantifies the statistical information shared
between two distributions. The NMI between two clusterings A and B is defined as

NMI =

∑r
i=1

∑s
j=1 nij log

nijn

|Ai||Bj |√[∑r
i=1 |Ai| log |Ai|

n

][∑s
j=1 |Bj| log

|Bj |
n

] .
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The range of NMI is from 0 to 1 and the larger the NMI the more agreement between the
two clusterings. Similar to ARI, NMI = 0 indicates that the two clustering are independent
and NMI = 1 if they are identical.

The ARI and NMI require a ground truth or they are used to compare two clusterings,
the Silhouette score on the other hand relies only on the clustering itself and the data. The
Silhouette score (Rousseeuw, 1987) ranges between -1 and 1 and it measures how much
overlapping clusters (score 0) and how well separated (score 1) they are. Given a clustering
C = {C1, C2, . . . , Ck}, for each data point x ∈ Ci, let

a(x) =
1

|Ci| − 1

∑
y∈Ci,y 6=x

d(x, y)

be the average distance between x and all data points in the same cluster as x, where d(x, y) is
the distance between x and y. Here a(x) represents how well x is assigned to its own cluster.
Small a(x) indicates that x lies in middle of its cluster. Next we define the dissimilarity of
x to other clusters as follows

b(x) = min
j 6=i

1

|Cj|
∑
y∈Cj

d(x, y).

Here b(x) is the smallest average distance of x to all points in any other clusters which do
not contain x. Then the Silhouette of x is given by

s(x) =
b(x)− a(x)

max{(a(x), b(x)}
, if |Ci| > 1,

and s(x) = 0, if |Ci| = 1. The Silhouette score is the average Silhouette over all data points,
that is,

∑
x∈X s(x)/n.

2.2 Methods

In this section we describe our clustering algorithm Specter. We begin with an overview of
the method.

2.2.1 Overview of Specter

We adopt the idea of landmark-based spectral clustering described in the previous section,
where a sample of cells are selected to create a sparse representation of the full data from
which a spectral embedding can then be computed in O(n). Since the LSC algorithm is sensi-
tive to the choice of parameters (the number of landmarks p and the Gaussian bandwidth σ),
we run different choices of parameters and reconcile the resulting clustering components into
a single (consensus) clustering, this is also known in literature as cluster ensembles (Strehl
and Ghosh, 2003). In addition to combining clusterings from different runs of the algo-
rithm on the same data, consensus clustering can also be used to reconcile clusterings of
cells based on different modalities, for example, gene expression and surface protein levels
produced by CITE-seq (Stoeckius et al., 2017). Specter’s consensus clustering paradigm can
resolve subpopulations of cells that cannot accurately be distinguished based on transcrip-
tomic differences alone. We combine consensus clustering with a novel selective sampling
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Landmark-based clustering

Clustering ensemble Sampling & ensembles based extrapolation

Figure 2.2: Overview of Specter. Illustrations are based on t-SNE visualizations of a random
subsample of scRNA-seq data by Grün et al. (2016). (a) Standard spectral clustering constructs
an affinity matrix that captures (transcriptional) similarities between all pairs of cells (left) which
renders its eigen decomposition prohibitively expensive for large data sets. In contrast (right),
describing each cell (small circles) with respect to its nearby landmarks (big circles) that were
initially selected as the means computed by k-means clustering, creates a sparse representation
of the full data that dramatically speeds up the computation of a spectral embedding. Cell are
colored to distinguish sorted hematopoetic stem cells (blue) from other mouse bone marrow cells
(red) assayed by Grün et al. (2016). (b) Specter does not rely on a single set of parameters, but
performs multiple runs of landmark-based clustering using different sets of landmarks of different
size and different measures of similarities between cells (parameterized by σ). Three clusterings
closely resemble the true labeling shown in (a), while one differs substantially. (c) Specter reconciles
all individual clusterings into a consensus clustering. It clusters a carefully selected subset of cells
(marked by circled stars) based on their co-association across all individual clusterings in (b),
indicated by the width of the corresponding edge. The thicker an edge, the more often its two
endpoints were placed in the same cluster. Here, the 4 red stars and the 2 blue stars correctly form
2 groups of cell, whose labels are finally propagated to the remaining cells using 1-nearest neighbor
classification. The final clustering shown in (c) closely resembles the true clustering in (a).

strategy that makes use of clustering information obtained from the full data set to achieve
overall linear time complexity. Finally, we transfer cluster labels to the remaining cells using
k-nearest neighbors classification. We provide an overview of the approach in Figure 2.2.
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2.2.2 Landmark-based spectral clustering of single cells

In the following description of our algorithm we assume a given number of clusters k. In
Specter we determine the number of clusters based on the Silhouette index (Rousseeuw,
1987), which performed particularly well in recent benchmark studies (Arbelaitz et al., 2013;
Chouikhi et al., 2015).

We tailor the idea of landmark-based spectral clustering described in the previous section
to the characteristics and scale of modern scRNA-seq data sets. In particular, the choice
of bandwidth σ used in the (Gaussian) kernel to smooth the measure of similarity between
pairs of data points heavily depends on the type of data and can have a strong impact on
the final clustering. In the original approach, parameter σ is set to the average Euclidean
distance between data points and their K-nearest landmarks, i.e. to the average value of
all elements in matrix Z. We empirically find that replacing the average by the maximum
value, i.e. by setting σ = γ×mean(max(Z)), where max(Z) denotes a vector of maximum
values for each row in Z and γ a randomly chosen parameter between 0 and 1, is able to
better capture the transcriptional similarity between single cells and yields more accurate
clusterings of cells. We set the parameter r in LSC algorithm to be equal to k in Specter
(and in all experiments).

Furthermore, we pair the theoretical reduction in time complexity from O(n3) to O(n)
with a practical speed-up of the LSC algorithm by applying a hybrid strategy when selecting
the landmarks. The choice of representative data points, here single cells, plays a crucial
role in the quality of the final clustering. Random selection or k-means clustering were
originally proposed as procedures for picking landmarks (Cai and Chen, 2011). Random
selection of representative cells is very efficient but often yields random sets of cells that do
not represent the full data well and thus lead to poor clustering results. k-means, on the
other hand, better takes into account the structure of the data when selecting landmark cells
but its higher computational cost makes it impractical for large scRNA-seq data sets where
it accounts for around 90% of the overall running time in our experiments. Our hybrid
strategy seeks to balance the efficiency of random sampling and the accuracy of k-means
based landmark selection. It first picks a set of p′ candidate landmarks uniformly at random
with p′ � n (by default, p′ = 10p), from which it subsequently selects p < p′ final landmark
cells using the k-means algorithm. Note that despite the initial random sampling, the full
data are represented by the final set of landmarks.

Finally, for data sets that contain a small number of clusters, we adjust the spectral
embedding based on which the original data is clustered using k-means in the last step of
spectral clustering. For a small number of clusters (e.g. k ≤ 4), the top k eigenvectors used
in the original approach typically do not contain enough information to represent the full
data well. In this case, we therefore use the top k + 2 eigenvectors to compute the spectral
embedding.

2.2.3 Clustering ensembles across parameters and modalities

Different data types require a different choice of parameter values and there is no general rule
how to select the best one. To address this issue, we employ consensus clustering, also known
in literature as cluster ensembles (Strehl and Ghosh, 2003), in the same way as ensemble
learning is used in supervised learning. In particular, we generate a series of component
clusterings by varying the number of selected landmarks p and the kernel bandwidth. We
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randomly select parameter γ which controls the bandwidth of the Gaussian kernel from
interval [0.1, 0.2] and choose p from interval

[min(8k log(k), dn/3e),min(10k log(k), dn/2e)] .

This choice of p is motivated by a result by Tremblay et al. (2016) who used sampling theory
of bandlimited graph-signal developed in Puy et al. (2016) to prove that clustering a random
subset of size O(k log(k)) is sufficient to accurately infer the cluster labels of all elements.
To avoid sampling too many landmarks for small data sets (i.e. small number of cells n),
we additionally set upper bounds dn/3e and dn/2e for the left and right boundaries of the
interval, respectively. All clusterings produced by the different runs of our tailored LSC
algorithm are then summarized in a co-association matrix H (Fred and Jain, 2005) in which
entry (i, j) counts the number of runs that placed cells i and j in the same cluster. We
compute the final clustering through a hierarchical clustering of matrix H. Our LSC-based
consensus clustering approach is summarized in Algorithm 2.

Different parameter choices (e.g. kernel bandwidths) provide different interpretations of
the same data. In the same way as clustering ensembles can help unifying these different
views on a single modality, they can help reconcile the measurements of multiple modalities,
such as transcriptome and proteome, of the same cell. More specifically, Specter produces
an identical number of clusterings for each modality in step 2 of Algorithm 2 which it then
combines through the same co-association approach (steps 3 and 4).

Algorithm 2: LSC ensemble

1 Input: Cells x1, . . . , xn; number of clusters k
2 Run the tailored LSC algorithm for different kernel bandwidths and varying numbers of

landmarks.
3 Summarize all clusterings in a co-association matrix H.
4 Apply the single linkage hierarchical clustering algorithm to H to obtain the final k clusters.

Time complexity The time complexity of the tailored LSC algorithm is O(n), and single
linkage hierarchical clustering requires O(n2) time, yielding an overall complexity of O(n2)
for Algorithm 2, assuming k is small enough to be considered a constant.

2.2.4 Selective sampling-based clustering ensemble

With a running time that scales quadratically with the number of cells, the application of
Algorithm 2 to large-scale scRNA-seq data sets becomes infeasible. We therefore apply step
3 of our clustering ensemble approach (Algorithm 2) to a carefully selected sketch of the
data. Note, however, that the co-association matrix H built in step 3 of the algorithm is
based on cluster labels that were learned from the full data in step 2 using our tailored LSC
algorithm. In addition, we propose a simple sampling technique that uses all clusterings
computed in step 2 to guide the selection of cells.

Selective Sampling Sampling cells uniformly at random is naturally fast, since the decision
to include a given cell into a sketch does not depend on any other cell. At the same time,
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these independent decisions ignore the global structure of the data such as the abundance
of different cell types and may thus lead to a loss of rare cell types (Hie et al., 2019b). We
therefore propose a sampling approach that utilizes the clusterings of the data computed
in step 2 of Algorithm 2 to inform the (fast) selection of cells. More specifically, Let Π =
{π1, π2, . . . , πm}, where πi = (πi1, πi2, . . . , πik) is the ith clustering returned in step 2 of
Algorithm 2, i = 1, 2, . . . ,m. We select a sketch S of size min{[10k log(k)], [k

√
n]} that

contains roughly the same number of cells in each cluster πij, for all i and j. This selective
sampling procedure iterates through all clusters contained in all clusterings from which it
randomly picks a cell not already contained in the sketch, until the size of the sketch reaches
min{[10k log(k)], [k

√
n]} (see Algorithm 3).

Algorithm 3: Selective sampling

1 Input: Component clusterings Π = {π1, π2, . . . , πm}, number of clusters k.
2 Initialization: S = ∅.
3 while |S| < min{[10k log(k)], [k

√
n]} do

4 for i = 1 to m do
5 for j = 1 to k do
6 Randomly select a cell s from πij\S
7 S = S ∪ {s}
8 end

9 end

10 end

Inference Given a selectively sampled sketch S, we apply steps 3 and 4 in Algorithm 2 to
cells in S, using labels obtained from the full data in step 2. That is, we construct a co-
association matrix whose entries count the number of times the two corresponding cells in S
were placed in the same cluster by a run of the LSC algorithm in step 2. From this matrix, we
compute a consensus clustering of S using hierarchical clustering and finally transfer cluster
labels to the remaining cells using supervised k-nearest neighbors classification. That is, we
assign each cell not in S to the cluster that the majority of its k nearest neighbors were
placed in by the preceding consensus clustering of S. Our selective sampling-based cluster
ensemble approach is summarized in Algorithm 4.

Algorithm 4: Selective sampling-based clustering ensemble

1 Input: Cells x1, . . . , xn; number of clusters k
2 Run the tailored LSC algorithm for a varying number of landmarks and different kernel

bandwidths. Let Π = {π1, π2, . . . , πm} be the set of m clusterings.
3 Run selective sampling (Algorithm 3) on Π to obtain a sketch S of size
|S| = min{10k log(k), [k

√
n]}.

4 Summarize all clusterings of cells in S computed in step 2 in a co-association matrix HS .
5 Apply single linkage hierarchical clustering to HS to obtain k clusters for S.
6 Transfer labels to full data using k-nearest neighbors classification
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Time complexity Landmark-based spectral clustering performed in step 2 of Algorithm 4
takes O(n), see above. Since we selectively sample a sketch of size |S| = O(

√
n) in step 3,

the complexity of steps 4 and 5 now reduces to O(n). Together with the k-NN classification
that runs in O(n) in step 6, our selective sampling based cluster ensemble scheme scales
linearly with the number of cells n.

2.3 Results

We implemented Algorithm 2− 4 in software tool Specter. We show results for Specter when
using 20 ensemble members (Specter20E ) and 50 ensemble members (Specter50E ), which we
motivate below through experiments addressing the dependence of Specter’s accuracy on the
number of ensemble members. The results for these two variants are nearly identical and we
therefore simply refer to them as Specter unless we explicitly distinguish these two settings.
Due to our clustering ensemble scheme, no additional tuning of parameters is required to
apply Specter to the data sets.

2.3.1 Specter is more accurate than competing methods

We compared the performance of Specter to representative scRNA-seq clustering meth-
ods SC3 (v1.10.1) (Kiselev et al., 2017), Seurat (v2.3.4) (Satija et al., 2015), dropClust
(v2.1.0) (Sinha et al., 2018), RCA (v2.0) (Li et al., 2017), TSCAN (v1.24.0) (Ji and Ji, 2016),
RaceID3 (v0.2.1) (Herman et al., 2018), CIDR (v0.1.5) (Lin et al., 2017), RtsneKmeans (Duò
et al., 2018) as well as to a geometric sketching based clustering approach (Hie et al., 2019b).
SC3 and Seurat consistently demonstrated superior performance over competing methods in
several clustering benchmarks (Duò et al., 2018; Tian et al., 2019) and are routinely used
in scRNA-seq based cell type analyses. The graph-based Louvain clustering approach used
by Seurat has an additional speed advantage over SC3, which applies a consensus clustering
scheme to obtain particularly accurate clusterings. dropClust was recently proposed for the
analysis of ultra-large scRNA-seq data sets and follows a strategy outlined above. It first
reduces the size of the data to a maximum of 20,000 cells using random sampling. After a
second sampling step based on Louvain clusters, it applies average-linkage hierarchical clus-
tering on the sampled cells. Cluster labels are then transferred to the remaining cells using
a Locality Sensitive Hashing forest (Bawa et al., 2005) for approximate nearest neighbor
searches. In contrast, the geometric sketching algorithm proposed in Hie et al. (2019b) sam-
ples cells evenly across the transcriptional space rather than proportional to the abundance
of cell types as uniform sampling schemes do. Experiments in Hie et al. (2019b) demon-
strated that clustering a geometric sketch using the graph-based Louvain algorithm followed
by propagating labels to the remaining cells via k-nearest-neighbor classification accelerates
clustering analysis and yields more accurate results than uniform sampling strategies. We
include the same geometric sketching based clustering method in our benchmark and refer
to it simply as geometric sketching throughout the text. We further included methods RCA,
TSCAN, RaceID3, and CIDR to cover a diverse set of algorithms commonly used to cluster
scRNA-seq data (see recent benchmarks (Duò et al., 2018; Tian et al., 2019; Freytag et al.,
2018)), from nearest neighbor based graph clustering to hierarchical clustering to k-medoids
to model-based clustering. Finally, we included general-purpose K-means clustering (Rt-
sneKmeans) as a baseline that performed surprisingly well in Duò et al. (2018) compared to
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methods specifically developed for clustering scRNA-seq data.

Data sets and evaluation

We evaluated Specter and competing methods on 21 public scRNA-seq data sets and 24
simulated data sets (Table 2.1, Supplemental Table S1). The former includes 16 data sets
for which cell type labels were inferred in the original publication from clusterings of scRNA-
seq measurements which typically underwent manual refinement and annotation as well as
all but one real data sets that were used in Duò et al. (2018) to benchmark clustering
methods based on cell phenotypes defined independently of scRNA-seq. Identically to Duò
et al. (2018), we used “true” cell types annotated by FACS sorting in the Koh data set,
and partitioned cells by genetic perturbation and growth medium in the Kumar data set.
In data sets Zhengmix4eq and Zhengmix4uneq the authors of Duò et al. (2018) randomly
mixed equal and unequal proportions, respectively, of pre-sorted B-cells, CD14 monocytes,
naive cytotoxic T cells and regulatory T cells. Data set Zhengmix8eq additionally contained
roughly equal proportions of CD56 NK cells, memory T cells, CD4 T helper cells, and
naive T cells. Again, annotated cell types were used as reference partitioning of cells in the
evaluation. We excluded a single data set from Duò et al. (2018) in which ground truth labels
correspond to collection time points which all methods tested in Duò et al. (2018) failed to
reconstruct. Data sets vary in size and number of cell populations and are described in
Table 2.1. We used Splatter (Zappia et al., 2017) to simulate 24 data sets that varied in the
relative abundance of cell types that were either all equal (Geq), unequal (Gneq), or based
on cell type abundances among peripheral blood mononuclear cells (PBMCs) in healthy
individuals (Gpbmc), in number of cells (N1k, N2k, N5k), and in the probability of a gene
being differentially expressed in a group, which was either 0.01 (DE1 ), 0.02 (DE2 ), 0.05
(DE5 ), or differed between groups (DEneq). Following Zappia et al. (2020), we set the
number of genes to 1, 000 or 10, 000 (D10k). Supplemental Table S1 lists the characteristics
of all simulated data sets.

We apply standard and uniform preprocessing (Duò et al., 2018) on all real and simulated
data sets, including natural log-transformation of gene counts after adding a pseudo-count of
1, selection of top 2,000 most variable genes (omitted for simulated data sets with less than
2,000 genes), followed by dimensionality reduction to 100 principle components (Vijayan,
2020). The geometric sketching based Louvain clustering is provided with the same pre-
processed data as Specter, all other methods are run with their built-in data preprocessing.
Consistent with the original publication (Hie et al., 2019b), geometric sketches ranging from
2% to 10% of the original number of cells were computed and clustered as described above.
All methods were provided the correct number of clusters or corresponding parameters were
tuned accordingly. All experiments were run on a Intel Xeon CPU @2.30GHz with 320 GB
memory. Methods SC3, RCA, RaceID3, and CIDR failed to run on the three largest data sets
that included more than 450, 000 cells (Table 2.1) due to insufficient memory. In fact, with
a running time that grows cubic with the number of cells, SC3 is not designed for large data
sets. On data set chen, for example, it takes SC3 five hours to cluster 14,000 cells. Similarly,
on the three largest data sets we replaced the R implementation of the Louvain clustering
algorithm called in the Seurat clustering pipeline by a more efficient python implementation
of the same algorithm in the scanpy package (v1.4.6) (Wolf et al., 2018). scanpy was
specifically designed for the analysis of large-scale gene expression data sets and was used
originally (Cao et al., 2019) to identify cell types in data set trapnell comprising more than
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Table 2.1: Overview of the real data sets used in this study. Names listed in the left-most column
are used throughout the text. A line separates data sets in which cell type labels were inferred
from scRNA-seq measurements from data set were labels are based on cell phenotypes defined
independently of scRNA-seq. k: number of populations.

Data set # Cells k Description Reference

grun 1502 2 mouse stem cells Grün et al. (2016)
xin 1600 8 human islet cells Xin et al. (2016)
baron 1886 13 human and mouse pancreas Baron et al. (2016)
biase 56 4 mouse embryo devel Biase et al. (2014)
deng-1 268 6 mouse embryo devel (RPKMs) Deng et al. (2014)
deng-2 268 6 mouse embryo devel (Reads) Deng et al. (2014)
goolam 114 5 mouse embryo Goolam et al. (2016)
muraro 2126 10 human pancreas Muraro et al. (2016)
patel 430 5 human glioblastoma Patel et al. (2014)
pollen 301 11 human developing cortex Pollen et al. (2014)
klein 2717 4 mouse embryo stem cells Klein et al. (2015)
zeisel 3005 9 cortex and hippocampus Zeisel et al. (2015)
chen 14,437 45 mouse brain Chen et al. (2017)
CNS 465,281 7 mouse central nervous system Zeisel et al. (2018)
saunders 665,858 11 adult mouse brain Saunders et al. (2018)
trapnell 2,058,652 38 mouse organogenesis cell atlas Cao et al. (2019)
Koh 531 9 human embryonic stem cells Koh et al. (2016)
Kumar 246 3 mouse embryonic stem cells Kumar et al. (2014)
Zhengmix4eq 3,994 4 mixture of purified PBMCs Zheng et al. (2017)
Zhengmix4uneq 6,498 4 mixture of purified PBMCs Zheng et al. (2017)
Zhengmix8eq 3,994 8 mixture of purified PBMCs Zheng et al. (2017)

2 million cells.
Consistent with other benchmarks (see, e.g., (Duò et al., 2018; Sinha et al., 2018; Freytag

et al., 2018)), we used the Adjusted Rand index (ARI) (Hubert and Arabie, 1985) to measure
the similarity between the inferred clusterings and the ground truth clustering that is based
on the biological cell types annotated or pre-sorted in the original study or was provided
by the simulator. We additionally applied routinely used (Freytag et al., 2018) clustering
metrics Normalized Mutual Information (NMI) (Studholme et al., 1999) and a homogeneity
score (Rosenberg and Hirschberg, 2007) to provide a more detailed analysis of clustering
performance.

Evaluation on real data

Consistent with previous benchmarks, SC3 and Seurat overall outperform existing methods,
with RCA showing a competitive performance especially with respect to homogeneity scores
(Figure 2.3 and Supplemental Figures S1, S2). Specter, however, improves mean clustering
accuracy over both methods, in all three metrics. The biggest improvement can be observed
with respect to ARI and homogeneity scores, whose mean values (excluding the three largest
data sets where SC3 failed to run) achieved by Specter (Specter50E ) are 0.88 and 0.89,
respectively, compared to 0.69 and 0.76 for Seurat and 0.78 and 0.84 for SC3. Overall,
most methods achieved higher scores in NMI than in the other two metrics. On 17 out
of 21 real data sets, Specter obtained more accurate clusterings in all three metrics than
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Figure 2.3: Clustering performance measured in ARI of Specter and competing methods on real
and synthetic scRNA-seq data sets. Methods are ordered by mean ARI score across data sets
decreasing from top to bottom. In the calculation of mean scores we excluded for each method the
data sets where the method did not run successfully. For the rightmost 5 real data sets ground truth
labels are based on cell phenotypes defined independently of scRNA-seq (see Table 2.1). Synthetic
data sets are ordered from left to right by increasing mean ARI over all methods. SC3, RCA,
RaceID3, and CIDR failed to run on the three largest data sets CNS, saunders, and trapnell due
to insufficient memory. TSCAN failed to run on data sets chen and skin for unknown reasons.
Geometric sketching refers to the Louvain clustering of 10% of the cells sampled using geometric
sketching. Results for different sketch sizes are shown in Supplemental Figures S3.

Seurat and without exception achieved higher ARI scores than sampling based methods
dropClust and geometric sketching, even when sampling as many as 10% of cells in the
latter approach. Results for smaller sketch sizes are shown in Supplemental Figure S3. A
similar preeminence can be observed when applying metrics NMI and homogeneity score. On
many instances, the improvement was substantial. In fact, on average methods dropClust
and geometric sketching achieved slightly lower scores with respect to all three metrics than
baseline algorithm RtsneKmeans that simply applies standard k-means clustering on t-SNE
projected cells. Note that the ground truth labeling of cell types in data sets trapnell, CNS,
and saunders was obtained in the original publication using Seurat or its underlying Louvain
clustering algorithm. Despite the additional manual refinement applied in (Zeisel et al., 2018;
Cao et al., 2019; Saunders et al., 2018), this might positively impact the evaluation results of
Seurat and the geometric sketching based Louvain clustering. On several instances, Specter
achieved considerably higher ARI scores than SC3, while on others their performance was
similar (within less than 10% difference in ARI). Note, however, that SC3 is not designed
to cluster large data sets and had to be excluded from the comparison on the three largest
data sets for computational reasons.

Evaluation on simulated data

As expected, simulated data sets Gpbmc that reflect the unbalanced cell type composition
among PBMCs pose the biggest challenge to clustering algorithms, while uniform cell type
abundances (Geq) or a larger number of marker genes (DEneq*D10k or DE5 ) facilitate the
detection of transcriptionally distinct groups of cells (Figure 2.3, Supplemental Figures S1
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Specter SeuratGround truth

Figure 2.4: t-SNE visualization of single cells of the CNS data set. Cells in the ground truth
representation (left) are colored by cell type specified by the legend. The visualization of Specter
(middle) and Seurat (right) clusterings use the same 2D embedding as the ground truth, but cells
are colored according to clusters inferred by the two methods; colors do not directly reflect cell types
specified by the legend. As expected by the higher ARI (0.89 vs 0.67) (and higher homogeneity
scores of 0.81 vs 0.71 and NMI of 0.84 vs 0.78), Specter makes fewer mistakes. In contrast to
Specter, Seurat wrongly splits neurons into 2 populations, is not able to distinguish astrocytes
from immune cells, and is similarly not able to distinguish a subpopulation of vascular cells from
astrocytes.

and S2). Consistent with results on real data sets, Specter achieved highest accuracy in terms
of mean ARI, NMI, and homogeneity score across 24 simulated data sets, with scores in NMI
being generally higher for most methods than in the other two metrics. Again, SC3 performs
best among remaining methods in terms of mean ARI and mean homogeneity score which
may be attributed to a consensus clustering scheme that it applies similarly to Specter. With
respect to NMI, Seurat and TSCAN achieved slightly higher mean scores than SC3, mainly
due to the two presumably most difficult instances where SC3 returned clusterings with a
score of 0 (in all 3 metrics) and is thus no better than a random partition of cells. Seurat
performed well on data sets with equal cell type proportions (Geq) and on data sets where
groups are identified by a large number of marker genes (DE5 ) whereas a substantial drop
in ARI and homogeneity score can be observed on the remaining data sets. Seurat’s NMI
scores exhibit a similar but less pronounced pattern. Geometric sketching, which uses the
same Louvain clustering algorithm as Seurat, behaves similarly. TSCAN performed better
on synthetic than on real data sets (in all 3 metrics), while the opposite is true for RCA.
The baseline algorithm RtsneKmeans yields remarkably accurate clusterings, especially on
data sets with balanced cell type composition. On more difficult data sets, however, its
accuracy drops significantly compared to several methods tailored to scRNA-seq analysis,
especially in terms of ARI and homogeneity score. dropClust, on the other hand, achieved
mean accuracy scores on synthetic data sets which are close to the baseline algorithm’s ones
(ARI 0.63 vs 0.57, homogeneity score 0.65 vs 0.63, NMI 0.67 vs 0.71).

Finally, we illustrate in Figure 2.4 how higher performance scores translate into a more
meaningful representation of cell types.
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2.3.2 Specter facilitates robust landmark-based clustering of single cells

In addition, we compared Specter to the original implementation of the landmark-based spec-
tral clustering (LSC) algorithm and dissect the relative contribution of our hybrid landmark
selection strategy, the clustering ensemble approach and the novel selective sampling scheme
(see the “Methods” section) to the overall improvement in performance by Specter (using 50
ensemble members). We show results for three variants of Specter in which we either replace
the k-means based landmark selection or the selective sampling approach by standard ran-
dom sampling, or in which we omit the clustering ensemble step altogether. Figures 2.5 and
2.6 demonstrate the effectiveness of our adoptions and extensions of the original algorithm
to the analysis of scRNA-seq data. Across all 24 simulated data sets, Specter achieved a
higher ARI (mean ARI 0.89) than LSC (mean ARI 0.59) (Figure 2.5). In fact, even without
the benefit of a clustering ensemble, further algorithmic adjustments implemented in Specter
such as a modified bandwidth of the Gaussian kernel yielded an improvement over LSC on
19 out of 24 data sets. When disabling the clustering ensemble approach in Specter, how-
ever, its performance decreased consistently, on several data sets the decrease in ARI was
substantial. Similarly, on 21 out of 24 data sets the selective sampling in Specter was more
effective in terms of ARI than random sampling. On two instances with unbalanced cell
type compositions (pbmc), the score more than doubled. Remarkably, coupled with random
sampling (instead of selective sampling), the consensus clustering obtained from a clustering
ensemble was often even less accurate than a single clustering.

The hybrid k-means based landmark selection led to an improvement in ARI on all but
one data sets (Figure 2.6). In many cases this improvement was substantial, especially on
difficult instances with unbalanced cell type compositions (pbmc, Gneq).

In Supplemental Figure S4 we further addressed the dependence of Specter’s accuracy
on the number of ensemble members from which Specter computes a consensus clustering.
Consistent with our observation in Figure 2.5, the clustering ensemble approach yielded on
average more accurate results on the 24 simulated data sets than relying on a single clustering
for each data set. Even a small number of ensemble members (e.g. 10) improved clustering
accuracy substantially, while only minor improvements were achieved when increasing their
number further to more than 20 ensemble members. Nevertheless, a clustering ensemble of
size 200 yielded highest mean ARI with lowest score variance.

Finally, we demonstrate robustness of Specter to the choice of parameter γ that controls
the bandwidth of the Gaussian kernel that is set differently in Specter compared to LSC
(see the “Methods” section). Even though this parameter is randomly selected from interval
[0.1, 0.2] consistently across all 45 data sets in this benchmark, Supplemental Figure S5 shows
that with very few exceptions choosing γ from different intervals would yield nearly identical
results.

2.3.3 Specter is sensitive to rare cell populations

In this section, we evaluate Specter’s sensitivity to rare cell populations. We devised three
simulation experiments with increasing degree of difficulty. First, we repeated the experiment
performed by Sinha et al. (2018) and randomly sampled a rare population of cells that
comprise between 1% and 10% of total cells. More specifically, starting from two (equal
size) groups of 2000 cells each that were simulated using Splatter (data set RareCellExp1 in
Supplemental Table S1), we randomly downsample one group to comprise 1−10% of the total
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Figure 2.5: Improvements in Specter over LSC. The clustering accuracy of Specter using 50 ensem-
ble members (ensemble & selective s.) is compared to the accuracy of the original implementation
of the landmark-based spectral clustering algorithm (LSC) and two variants of Specter in which
we either disable consensus clustering in Specter (no ensemble) or in which we replace the novel
selective sampling in Specter (Algorithm 2) by random sampling. When no clustering ensemble is
used (no ensemble), we set parameters to the median values of intervals probed by the ensemble
scheme (γ = 0.15, p = 9k log(k)).

number of cells. We repeat the experiment five times for each group and similar to Sinha
et al. (2018) report the average F1 score over the 10 runs in Figure 2.7 (top). The F1 score
denotes the harmonic mean of the recall and precision, which we define identically to Sinha
et al. (2018) with respect to the predicted cluster with the largest number of rare cells. While
several methods performed well on a sample of 10% of cells (SC3 being a notable exception),
only Specter and Seurat are able to accurately detect a cell population that is composed of
only 1% of cells. Additionally, we performed an experiment in which we randomly sampled
cells from a group that is initially smaller (1,000 cells) than the second group (9,000 cells)
(data set RareCellExp2 in Supplemental Table S1). Compared to the previous experiment,
the rare population of cells will then occupy a smaller transcriptional space relative to the
larger group, which may represent a more realistic, but also a more challenging scenario for
clustering methods. Note that the smaller group initially consists of 10% of total cells and
was therefore downsampled to comprise 1 − 5% of cells. Again, each sampling experiment
was repeated 10 times and average F1 scores are shown in Figure 2.7 (bottom). Here, several
methods obtained an F1 score of close to 0 even when sampling 5% of cells, underlining the
added difficulty of clustering unbalanced cell types. After further reducing the abundance
of the rare cell type to 1%, only Specter achieved an almost perfect F1 score (0.96), followed
again by Seurat with an F1 score of 0.78. In the most challenging scenario, we randomly
downsampled naive cytotoxic or regulatory T cells that partly overlap in the Zhengmix4eq
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Figure 2.6: Comparison of landmark selection strategies. The clustering accuracy of Specter using
our hybrid k-means based landmark selection strategy (K-means landmark) is compared to a
variant of Specter in which we select landmarks uniformly at random.

data set (see Supplemental Figure S6) to comprise 1%-10% of the total number of cells and
repeated this experiment five times for each group. Average F1 scores are shown over the
10 runs in Supplemental Figure S7. Even though Specter consistently demonstrates highest
accuracy among all methods, its F1 score monotonically decreases from close to 1 for 10%,
to 0.26 for just 1% of cells, highlighting the intrinsic difficulty of detecting rare cell types
that are transcriptionally similar to more abundant cell populations.

Finally, we confirmed Specter’s sensitivity to rare cell types on a rare population of
inflammatory macrophages that was reported and experimentally validated by Hie et al.
(2019b). In Hie et al. (2019b), the authors applied Louvain clustering to a geometric sketch
of 20,000 cells sampled from a data set of 254,941 umbilical cord blood cells. In their
experiments the authors observed that this rare subtype is invisible to Louvain clustering,
the algorithm used by Seurat, unless cells are initially sampled evenly across transcriptional
space to better balance the abundance of common and rare cell types. In contrast, Specter
reveals a similar population of inflammatory macrophages characterized by the same set
of marker genes CD74, HLA-DRA, B2M and JUNB (AUROC > 0.9) without any prior
preprocessing (Figure 2.8).

2.3.4 Specter utilizes multi-modal data to resolve subtle transcriptomic differences

In this Section, we demonstrate the ability of Specter to utilize complementary information
provided by multi-modal data to refine the clustering of single cells. More specifically, we
re-analyzed two public data sets of 4,292 healthy human peripheral blood mononuclear cells
(PBMC) (Mimitou et al., 2019) and 8,617 cord blood mononuclear cells (CBMC) (Stoeckius
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Figure 2.7: top: Sensitivity to rare cell types with equal starting abundances. 4000 cells from two
equal size groups (2000 cells each) were simulated using Splatter. We randomly downsampled one
group to comprise 1%, 2.5%, 5%, and 10% of the total number of cells. We repeated this experiment
five times for each group and show the average F1 score over the 10 runs. For geometric sketching,
the average F1 score was taken over 10 random trials with a sketch size of 10% of the full data.
bottom: Sensitivity to rare cell types in initially smaller group. Cells were randomly sampled from
the smaller of two simulated groups (1,000 and 9,000 cells) to comprise 1%, 2.5%, and 5% of the
total number of cells. We show the average F1 score over 10 runs of this experiment. For geometric
sketching, the average F1 score was taken over 10 random trials with a sketch size of 10% of the
full data.

et al., 2017), for which both mRNA and protein marker expressions (ADT, antibody-derived
tags) were measured simultaneously using CITE-seq (Stoeckius et al., 2017). In these ex-
periments, the authors used 49 and 13 antibodies, respectively, that recognize cell-surface
proteins used to classify different types of immune cells.

Consistent with previous analyses of CITE-seq data (Satija, 2019; Kim et al., 2020),
we used the Seurat R package (Butler et al., 2018) to preprocess RNA and ADT counts.
We normalized ADT expression using centered log-ratio (CLR) transformation and log-
transformed RNA counts after adding a pseudocount of 1. After selecting the top 2,000
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Figure 2.8: Clustering of 254,941 umbilical cord blood cell by Specter. Among macrophages defined
by CD14 and CD68 marker gene expression, Specter detects a rare subpopulation of inflammatory
macrophages that was recently discovered (Hie et al., 2019b) (left). This rare subtype can be
distinguished in Specter‘s clustering by the expression of the same set of inflammatory marker gene
expression (B2M, CD74, HLA-DRA, and JUNB) used for its identification in Hie et al. (2019b).

most variable genes, the expression of each gene was scaled to have mean expression 0 and
variance 1, followed by dimensionality reduction to 20 principal components.

Doublets in the PBMC data set were removed using the same cell hashing-based approach
with identical parameters as in Kim et al. (2020). Similar to the analysis in Stoeckius et al.
(2017), a putative cluster of doublets coexpressing different RNA and protein lineage marker
were removed from further analysis. On the CBMC data we relied on the doublet removal
of Seurat performed in a prior analysis (Satija, 2019) of this data set.

We annotate clusters based on differential expression of marker genes (Wilcoxon rank-sum
test) for immune cell types listed in Table 2.2. The analysis of both data sets is documented
at https://github.com/canzarlab/Specter.

On both data sets, both Seurat and Specter fail to accurately distinguish naive CD4
T cells and CD8 T cells based on transcriptomic data alone (Figures 2.9; Supplemental
Figure S8). Many CD4-/CD8+ T cells identified by protein measurements (ADT) in the
CBMC data set are wrongly grouped together with CD4 T cells by Seurat and Specter.
Similarly, CD4 and CD8 T cells are mixed in the PBMC data set by both methods.

On the other hand, dendritic cells and megakaryocytes cannot be identified in the CBMC
data set based on protein marker expression, see analysis using Seurat (Satija, 2019). Simi-
larly, Figure 2.10 shows that ADT-based clustering by Specter is not able to separate CD14+
from FCGR3A+ Monocytes nor megakaryocytes from other cell types in the PBMC data
set. This can be analogously observed in the clustering by Seurat (Supplemental Figure S8).

We therefore aimed to correct and improve the individual clusterings of RNA and surface
marker protein measurements by combining the two distinct species through our clustering
ensemble approach. In particular, Specter first produces an identical number of clusterings
(here 200) for each modality. It then combines the transcriptome-based clusterings and the
protein-based clusterings through a co-association approach (see the “Methods” section).

The joint clustering of RNA and protein expression by Specter profits from both modal-
ities, yet differs from both unimodal analyses: On the PBMC data set, an ARI score of 0.78

https://github.com/canzarlab/Specter
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Table 2.2: Markers used in the annotation of clusters in the CBMC and PBMC data sets. P-
values indicate significance of differential expression according to a Wilcoxon rank-sum test between
clusters inferred by Specter from the joint analysis of mRNA and surface protein expression.

Cell-type Data set Markers

CD8+CD27- PBMC CD8A (p = 3.1e-15), CD8B (p = 4.3e-6), low CD27 ADT
CD8+CD27+ PBMC CD8B (p = 3.2e-4), high CD27 ADT
Naive CD4+ T PBMC SELL (Haining et al., 2008) (p = 2.6e-9)
CD4+CD27+ PBMC IL7R (Colpitts et al., 2009) (p = 9.4e-11), high CD27 ADT
CD4+CD27-DR+ PBMC IL7R (Colpitts et al., 2009) (p = 4.4e-7), NKG7 (Fonseka et al.

2018)(p = 1.2e-3), GZMA (Fonseka et al., 2018) (p = 2.0e-4)
CD4+CD27-DR- PBMC IL7R (Colpitts et al., 2009) (p = 1.4e-6), low expression of

NKG7 and GZMA; low CD27 ADT.
CD14+ Mono PBMC LYZ (p = 7.5e-34), CST3 (p = 1.4e-32)
FCGR3A+ Mono PBMC FCGR3A (p = 1.0e-9)
Megakaryocytes PBMC PF4 (Lambert et al., 2016) (p = 1.2e-3)
NK PBMC GNLY (Ogawa et al., 2003) (p = 7.7e-21),

NKG7 (Turman et al., 1993)(p = 1.1e-15)

Dendritic cells CBMC CST3 (Hruz et al., 2008) (p = 4.7e-29),
CD1C ((Collin et al., 2013; Merad et al., 2013)) (p = 1.1e-27),
and FCER1A (Hruz et al., 2008) (p = 1.3e-27)

Megakaryocytes CBMC PF4 (Lambert et al., 2014) (p = 1.6e-25),
PPBP (Sakurai et al., 2016) (p = 5.8e-24)
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Figure 2.9: Comparison of unimodal and joint clustering by Specter. CBMCs (left box) and
PBMCs (right box) with coordinates of protein expression (ADT) along CD4 and CD8 axis. Cells
are clustered by Specter into CD4 T cells (blue) and CD8 T cells (red) either based on mRNA
expression alone (a, c) or jointly from mRNA and surface protein expression (b, d). The mixing of
CD4 T cells and CD8 T cells in the mRNA based clustering is corrected through the co-association
of both modalities by Specter.

comparing multimodal and RNA-based clustering and a score of 0.72 between multimodal
and ADT-based clustering indicate complementary aspects of cellular identity utilized in
their joint clustering. On the CBMC data set, higher ARI scores of 0.87 and 0.91 between
the multimodal clustering and RNA and ADT-based clusterings, respectively, reflect a higher
agreement between the two modalities.

More specifically, the joint clustering of RNA and protein expression of CBM and PBM
cells allows Specter to more accurately separate CD4 T cells and CD8 T cells compared
to a simple transcriptome-based clustering (Figure 2.9). In contrast to ADT expression
based clustering of PBM cells, the joint clustering of RNA and surface protein expression by
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Figure 2.10: t-SNE visualization of clusters identified by Specter. Clusters of PBM cells were
inferred from protein expression (ADT) alone (left) or from combined mRNA and protein expression
(middle). In contrast to the joint clustering of both modalities, ADT-based clustering cannot
discriminate CD14+ and FCGR3A+ Monocytes, does not detect megakaryocytes (red) and does
not allow to discriminate between CD27-DR+ and CD27-DR- subpopulations of CD4+ T cells. The
simultaneous clustering of RNA and protein expresssion in CBM cells (right) additionally reveals
a rare population of megakaryocytes (red).

Specter correctly identifies megakaryocytes, CD14+, and FCGR3A+ Monocytes (Table 2.2
and Figure 2.10). In addition, only the combined clustering of ADT and RNA allows Specter
to discriminate between CD27- DR+ and CD27- DR- subpopulations of CD4+ memory T
cells. In contrast to the clustering of protein data of CBM cells, Specter also correctly detects
dendritic cells and megakaryocytes based on the markers listed in Table 2.2 (see Figure 2.10).

We compare the joint clustering by Specter to the results of CiteFuse (v0.99.10) (Kim
et al., 2020), a method that was recently proposed specifically for the computational analysis
of single cell multimodal profiling data. As proposed initially for the combination of (bulk)
genome-wide measurements across, e.g., patients (Wang et al., 2014), CiteFuse applies the
similarity network fusion algorithm to combine RNA and ADT expression of single cells
and then clusters the fused similarity matrix using spectral clustering. We ran CiteFuse as
originally described in Kim et al. (2020) including the removal of doublets and the (internal)
selection of highly variable genes.

Overall, the clusters of CBM and PBM cells as computed by Specter and CiteFuse are
highly similar, as indicated by a high ARI score of 0.94 and 0.86 for the two data sets (Sup-
plemental Figures S9 and S10). In both data sets, however, only Specter is able to identify
a rare population of megakaryocytes (Table 2.2). Furthermore, in contrast to the analysis
performed in Kim et al. (2020), CiteFuse was not able to discriminate between CD27- DR+
and CD27- DR- subpopulations of CD4+ memory T cells in the PBMC data set, neither
when using identical parameters as in (Kim et al., 2020) nor when applying more conserva-
tive parameters in the doublet removal (parameters taken from CiteFuse tutorial (Lin and
Kim, 2020)) (Supplemental Figure S11). The authors of Kim et al. (2020) attribute this
discrepancy to a different selection of highly variable genes applied in an earlier version of
the software used to produce the results in Kim et al. (2020).

The major advantage of Specter over CiteFuse is its speed and scalability. CiteFuse
requires 15 minutes and nearly 2 hours to jointly cluster the 3,880 PBM cells and 7,895
CBM cells (after doublet removal), respectively, and is thus not expected to scale well on
larger data sets due to the computational expensive fusion of networks. In contrast, Specter
returns a high resolution clustering of the two data sets in just 20 and 50 seconds, respectively.
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Figure 2.11: Runtime and peak memory usage as a function of sample size. Seurat was run with a
call to the more efficient SCANPY implementation of the Louvain clustering algorithm. Running
times exclude preprocessing for all methods except TSCAN and dropClust, whose implementation
did not allow to isolate the core algorithm. Memory usage of Specter, Seurat, and geometric
sketching are nearly identical and cannot be distinguished in this plot. For ease of visualization we
show runtime results of method RtsneKmeans in Supplemental Figure S16.

2.3.5 Scalability

Here, we demonstrate the scalability of Specter to large single-cell data sets. To experimen-
tally confirm the theoretical linear-time complexity of our algorithm, we devised different
size simulated data set containing between 1,000 and 1 million cells (with characteristics
DE1Geq, see Supplemental Table S1.). As expected (Cai and Chen, 2011), the landmark-
based sparse representation of the data allows to compute a spectral embedding in linear
time (see Supplemental Figure S12). Furthermore, the experiment confirms that our novel
selective sampling strategy reduces the quadratic complexity of the hierarchical clustering
step that reconciles multiple ensemble members (see the “Methods” section) to an overall
linear dependence on the number of cells. As expected, the rate of increase in running time,
i.e. the slope of the lines shown in Supplemental Figure S12, is larger when Specter includes
multiple clusterings (here 20) in the ensemble scheme. More precisely, we observed a linear
increase in running time with the size of the clustering ensemble, that is, with the number
of independent runs of the core algorithm (Supplemental Figure S13). However, as shown in
our experiments assessing the importance of individual algorithmic components in Specter,
a relatively small number of runs is sufficient to improve accuracy of the resulting consensus
clustering substantially. Even more, the independent computation of individual clusterings
in an ensemble lend themselves to parallel processing. In Supplemental Figure S14 we there-
fore explored how the use of multiple threads can speed-up the clustering ensemble approach
and thus counterbalance the inclusion of an increasing number of ensemble members. With
just 4 threads, the time required to compute a consensus clustering from 50 individual clus-
terings of 100, 000 cells reduced from around 92 seconds to just 34 seconds. Increasing the
number of threads further has a decreasing effect on total running time, reaching 15 seconds
total computation time using 20 threads. Again, we observed a roughly linear increase in
running time with increasing sample size for fixed number of threads (Supplemental Fig-
ure S15), where 4 threads reduced the running time of 50 runs in the clustering ensemble
to a time that is nearly identical to the time a single threads needs to compute a consensus
clustering from 20 ensemble members.
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In Figure 2.11 we compared Specter’s running time to all methods that ran successfully
on the three largest real data sets. For all methods except TSCAN and dropClust we mea-
sured the running time of the core algorithm and exclude preprocessing. The time Specter
required to preprocess the data (using a single thread), including log-transformation, the
selection of highly variable genes, and principle component analysis, is negligible (Supple-
mental Tables S2). Seurat was run with a call to the more efficient scanpy implementation
of the Louvain clustering algorithm. Even in single-threaded mode, Specter’s running time
that included 20 individual clusterings of 1 million cells is with 7.6 min considerably faster
than Seurat which required 23 min for a single Louvain-based clustering of the same set of
cells (Supplemental Table S2). Note that 20 ensemble members were used by Specter in Fig-
ure 2.3 (and Supplemental Figures S1, S2) to achieve overall more accurate clusterings than
competing methods. With just 4 threads Specter’s running time further drops to 3.2 min
(Supplemental Figure S15), whereas Seurat’s clustering algorithm cannot be run with multi-
ple threads. dropClust required 6.8 minutes to preprocess and cluster 1 million cells, but is
not able to make use of multiple threads. The running time of geometric sketching increases
the fastest while RtsneKmeans is as expected the slowest method (Supplemental Figure S16).

Finally, Supplemental Table S3 gives the CPU times in minutes on the three largest real
data sets used in this study. Again, we excluded preprocessing for all methods except TSCAN
and dropClust. We additionally report the total running time of Specter including all prior
preprocessing. In this analysis of real data sets, we exploited the full performance potential
of Specter and used 20 threads to compute consensus clusterings from 50 individual runs,
which outperformed all other methods in terms of accuracy in Figure 2.3 and Supplemental
Figures S1, S2. In this setting, Specter required around 15 min to cluster 2 million cells
(23 min including single-threaded preprocessing) and was 5-10 times faster than Seurat that
is not able to utilize multiple threads. On the largest data set, dropClust was with just
12 minutes of total computation time using just a single thread the fastest method. In
contrast to Specter, however, dropClust considers only around 1% of the data (20,000 cells)
and its simplified model comes at the cost of a substantial loss in accuracy (see Figure 2.3
and Supplemental Figures S1, S2). Again, RtsneKmeans is the slowest among methods that
terminate successfully on these large data sets.

Furthermore, Figure 2.11 shows peak memory usage as a function of number of cells on
the same simulated data sets used to evaluate runtime performance. Together with Seurat
and geometric sketching, Specter required the least amount of memory (less than 7 GB for 1
million cells), while memory usage of methods TSCAN and dropClust increased rapidly for
data sets containing more than 200,000 cells.

2.3.6 Publicly available data used in this study

The original publication of data sets used in this study to assess the accuracy of Specter
in comparison to existing methods are listed in Table 2.1. The real data sets in Duò
et al. (2018) were downloaded from https://github.com/markrobinsonuzh/scRNAseq_

clustering_comparison. All other real data sets smaller than 15,000 cells were down-
loaded from https://hemberg-lab.github.io/scRNA.seq.datasets, the 3 largest data
sets from http://mousebrain.org (CNS ), http://dropviz.org (saunders), and https://

oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads (trap-
nell). The umbilical cord blood cell data (Hie et al., 2019b) were downloaded from http:

//cb.csail.mit.edu/cb/geosketch.

https://github.com/markrobinsonuzh/scRNAseq_clustering_comparison
https://github.com/markrobinsonuzh/scRNAseq_clustering_comparison
https://hemberg-lab.github.io/scRNA.seq.datasets
http://mousebrain.org
http://dropviz.org
https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads
https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads
http://cb.csail.mit.edu/cb/geosketch
http://cb.csail.mit.edu/cb/geosketch
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The Specter software is available at https://github.com/canzarlab/Specter and as
Supplemental Code under the open source MIT license. The Specter repository also includes
all code necessary to reproduce the results of this manuscript as well as a step-by-step
documentation of the analysis of the PBMC and CBMC CITE-seq data sets (Stoeckius
et al., 2017; Mimitou et al., 2019) as described in this study.

2.4 Conclusions

We have introduced Specter, a novel method that identifies transcriptionally distinct sets of
cells with substantially higher accuracy than existing methods. We adopt and extend algo-
rithmic innovations from spectral clustering, to make this powerful methodology accessible
to the analysis of modern single-cell RNA-seq data sets.

We have demonstrated the superior performance of Specter across a comprehensive set of
public and simulated scRNA-seq data sets and illustrated that an overall higher accuracy also
implicates an increased sensitivity towards rare cell types. At the same time, its linear time
complexity and practical efficiency makes Specter particularly well-suited for the analysis
of large scRNA-seq data sets. Besides technological advances, the integration of cells from
multiple experiments spanning different tissues or diseases may yield data sets with massive
numbers of cells. Coupled with data integration methods such as Scanorama (Hie et al.,
2019a) or Harmony (Korsunsky et al., 2019) that can remove, e.g., tissue-specific differences,
Specter can help to leverage such reference data sets to reveal hidden cell types or states.
When combining different samples from the same experiment, simpler linear methods such as
ComBat (Johnson et al., 2006) might be preferable (Luecken and Theis, 2019) to correct for
batch effects between samples prior to identifying groups of cell with distinct gene expression
profiles using Specter.

Furthermore, we have illustrated how the flexibility of its underlying optimization model
allows Specter to harness multimodal omics measurements of single cells to resolve subtle
transcriptomic differences between subpopulations of cells. The application of our cluster
ensemble scheme to the joint analysis of multimodal CITE-seq data sets yielded a slightly
more fine-grained distinction of cell (sub-)populations compared to the recently proposed
multimodal clustering method CiteFuse. More importantly, in contrast to CiteFuse whose
running time increased ≈ 8 fold after doubling the number of cells, Specter will scale well
to much larger data sets produced by droplet-based approaches that can measure multiple
modalities of up to millions of cells together. While the consensus clustering approach applied
by Specter can in principle integrate the ensemble of clusterings generated from various
molecular features, this work has focused on the combination of mRNA and protein marker
expression as measured by CITE-seq or REAP-seq (Peterson et al., 2017). The practical
suitability and potential limitations as well as necessary refinements of this strategy when
applied to other assays that simultaneously measure, for example, accessible chromatin and
gene expression (Cao et al., 2018), or more than two modalities at the same time (Clark
et al., 2018), will need to be addressed in future experiments. Taken together, we believe
that Specter will be useful in transforming massive amounts of (multiple) measurements of
molecular information in individual cells to a better understanding of cellular identity and
function in health and disease.

https://github.com/canzarlab/Specter


Chapter 3

Spherical sketching of large single-cell
datasets

In the previous chapter we proposed an algorithm to handle big data for clustering. In
this chapter we provide a general scheme to deal with big data. This chapter is adapted
with minimal modification from: Van Hoan Do, Khaled Elbassioni, and Stefan Canzar.
Sphetcher: Spherical thresholding improves sketching of single-cell transcriptomic hetero-
geneity. iScience, 23(6):101126, 2020.

In practice, methods are often run on a smaller subset of the data to bridge the gap
between the scalability of the algorithm and the volume of the data (Hie et al., 2019b).
Recently, geometric sketching was introduced as an alternative to uniform subsampling. It
selects a subset of cells (the sketch) that evenly cover the transcriptomic space occupied by
the original dataset, to accelerate downstream analyses and highlight rare cell types. Here,
we propose algorithm Sphetcher that makes use of the thresholding technique to efficiently
pick representative cells within spheres (as opposed to the typically used equal-sized boxes)
that cover the entire transcriptomic space. We show that the spherical sketch computed
by Sphetcher constitutes a more accurate representation of the original transcriptomic land-
scape. Our optimization scheme allows to include fairness aspects that can encode prior
biological or experimental knowledge. We show how a fair sampling can inform the inference
of the trajectory of human skeletal muscle myoblast differentiation. Sphetcher requires only
16 minutes to compute a sketch for a mouse embryonic dataset comprising 2 million cells.

3.1 Methods

3.1.1 Overview of our spherical sketching algorithm

Given a large scRNA-seq dataset, we seek to select a subset of cells, a so-called sketch (Hie
et al., 2019b), that evenly represents the geometry of the transcriptional space occupied by
the original data. As originally proposed in Hie et al. (2019b), we intuitively aim at capturing
the transcriptional heterogeneity of single cells by removing predominantly cells that show
similar expression patterns to other cells while preserving rare cell states. A sketch of a given
size represents the full data well if every original cell is close to a cell in the sketch, according
to some measure of distance between two cells. In other words, spheres of a small radius
centered at each cell in the sketch must contain, or cover, every cell in the full dataset. The
smaller the radius, the better the sketch represents the original transcriptional space.
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Large-scale scRNA-seq data Spherical covering Sketch

Figure 3.1: Overview of Sphetcher. For a (large) scRNA-seq dataset (left), Sphetcher uses a disk-
friendly greedy algorithm to compute a smallest size set of spheres of a fixed radius that cover all
cells (middle). It guesses the smallest possible radius such that a given number of spheres of that
radius suffice to cover all cells. One representative cell (the center) from each sphere is selected
into the final spherical sketch (right).

Our algorithm implemented in software tool Sphetcher guesses the smallest possible radius
for which a sketch of a given size exists that covers all remaining cells with spheres of this
radius (Figure 3.1). For each guess, it computes the smallest size sketch that covers all cells
and tries a smaller or larger radius in the next iteration if the resulting sketch contains too
few or too many cells, respectively. It computes the smallest sketch that covers all cells
using a greedy set cover approach: In each iteration, it adds the cell to the sketch that
contains the largest number of yet uncovered cells within the given distance. We employ
the disk-friendly greedy (DFG) algorithm developed in Cormode et al. (2010) that scales to
very large scRNA-seq datasets. For very large datasets, the spherical sketching approach is
combined with a prior grid sampling that we show increases the radius of covering spheres
by only a small factor.

In addition, our greedy algorithm can incorporate prior categorical information on, e.g.,
biological cell types or collection time point of cells. In a fairness-inspired model it selects
at least a given number of representatives from each class into the sketch. We provided a
theoretical analysis that shows that if we are willing to include slightly more cells in the
sketch, our greedy algorithm is guaranteed to find the covering of cells with spheres with
optimal, that is, with smallest possible radius. Furthermore, we gave theoretical justification
for the practical performance of our greedy set cover approach and its robustness to noise
present in scRNA-seq data.

3.1.2 Sketching scRNA-seq as k-center problem

Given a large scRNA-seq dataset, we seek to select a subset of cells, a so-called sketch (Hie
et al., 2019b), that evenly represents the geometry of the transcriptional space occupied by
the original data. As originally proposed in Hie et al. (2019b), we use the Hausdorff dis-
tance to measure how well the sketch captures the transcriptional heterogeneity in the data.
Given n data points X = {x1, x2, . . . , xn} representing the m-dimensional gene expression
measurements xi ∈ Rm of n individual cells, and a metric d that measures the dissimilarity
between pairs of cells, the Hausdorff distances between a sketch XS ⊆ X and the full dataset
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is given by:

dH(XS, X) = max
x∈X

{
min
y∈XS

d(x, y)
}

(3.1)

A sketch achieves a small Hausdorff distance if it includes for every cell in the original
dataset a cell that is close to it in gene expression space. Finding a best sketch of size k, i.e.
a sketch that minimizes the Hausdorff distance is known as the metric k-center problem in
the combinatorial optimization literature. It is known to be NP -hard but a solution with
Hausdorff distance at most 2 times the optimal distance can be found by a simple greedy
strategy: In each iteration, pick the point farthest away from the current set of centers and
add it as a new center. Although this greedy approach has time complexity O(nk), it does
not scale efficiently to large scRNA-seq datasets that require a larger number of cells k to
be accurately represented.

3.1.3 A thresholding algorithm

To find a sketch of size k with small Hausdorff distance (3.1) to a single-cell dataset, we
employ the thresholding technique that was originally proposed for the design of approxima-
tion algorithms for bottleneck problems (Hochbaum and Shmoys, 1986). In essence, we are
guessing the optimal distance in (3.1) and for every guess L try to find a feasible solution,
that is, a subset of cells of cardinality at most k such that spheres of radius L centered at
cells in the subset cover all remaining cells. Then the smallest L∗ for which such a feasible
sketch exists denotes the optimal solution. We model the problem of finding the smallest
set of cells such that the maximal distances from any other cell to the subset is at most a
given threshold L as a set cover problem, SetCoverX(L): Given a universe U = X of n
data points, we build a collection S = {S1, S2, . . . , Sn} of n subsets of U by including in each
set Si all points that lie within distance of L from xi, i.e. Si = {xj | d(xi, xj) ≤ L}. Then
the minimum number of sets in S that cover every element of the universe corresponds to a
smallest subset of points covering all remaining points with spheres of radius L.

A widely used algorithm for the set cover problem is based on a greedy strategy (Johnson,
1974): Starting from an empty set, in each iteration pick the set in S that covers the largest
number of elements yet uncovered and add it to the solution. The greedy algorithm is
guaranteed to find a cover which is within a logarithmic factor of the optimal solution
(Johnson, 1974). Moreover, it has been observed across a wide range of instances that
the greedy algorithm produces solutions close to the optimum. A direct implementation
of the greedy algorithm, however, scales poorly to large scRNA-seq datasets. We therefore
employ the disk-friendly greedy (DFG) algorithm developed in Cormode et al. (2010) for
very large datasets. It achieves a dramatic performance improvement over the standard
greedy algorithm by applying a geometric scale bucketing approximation. Furthermore, the
DFG algorithm runs in linear time with respect to the total size of candidate sets, i.e in
O(
∑

i |Si|), while guaranteeing to output a set cover which is within a logarithmic factor of
the optimum. More precisely, the algorithm allows to choose a parameter p that represents
a trade-off between the running time (which is O((1 + 1

p−1)
∑

i |Si|)) and the approximation

ratio (which is 1 + p lnn). The complete algorithm is summarized in Algorithm 5. Let us
denote by Greedy(L) the set cover returned by the greedy algorithm when applied to sets

Si = {xj | d(xi, xj) ≤ L}, and let L̃(k) := min{L | Greedy(L) has size at most k} which
can be found by a logarithmic number of calls to the greedy algorithm via binary search: If
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Greedy(L) is at most k, we decrease the threshold, otherwise we increase it (halving the
length of the search interval in both cases), until the radius L lies in an interval of size at
most ε.

Algorithm 5: Sphetcher

1 Input: Dataset X = {x1, . . . , xn} ⊂ Rm, size of the sketch k, and precision ε.
2 Initialization: Lmin = 0, Lmax = maxi,j d(xi, xj).
3 while Lmax − Lmin > ε do
4 L← (Lmin + Lmax)/2

5 Solve SETCOVERX(L) using the DFG algorithm.
6 if |Greedy(L)| ≤ k then
7 Lmax ← L
8 else
9 Lmin ← L

10 end

11 end
12 Output: XS = {xi|Si ∈ Greedy(L)}.

If we are willing to increase the size of XS by a logarithmic factor, Algorithm 5 is guar-
anteed to return a sketch with optimal Hausdorff distance.

Theorem 1. Let L∗ be the optimal distance in (3.1) for |XS| = k. If we run the thresholding
approach for |XS| = k ln(n), then the solution we obtain has Hausdorff distance at most L∗.

In other words, L̃(k ln(n)) ≤ L∗.

Proof. By definition of L∗, SetCoverX(L∗) has size at most k. Thus, by the known ap-
proximation factor of the greedy algorithm, Greedy(L∗) has size at most k ln(n), which

implies by the definition of L̃(k ln(n)) that L̃(k ln(n)) ≤ L∗.

3.1.4 Grid sampling with guarantees

For datasets much larger than 100,000 cells, we apply a hybrid strategy to reduce the compu-
tational cost of determining the neighborhood of each point in Algorithm 5. To this end, we
divide the space into equal-sized boxes from which we pick one point at random. In contrast
to geometric sketching, we do not attempt to optimally define boxes in each dimension, but
leave it to the subsequent thresholding algorithm to properly cover the space by spheres. In
fact, we show that if we carefully choose the applied threshold taking into account the size of
the grid, our hybrid sampling strategy increases the Hausdorff distance by at most a factor
of (1 + ε), where ε > 0 controls the size of the grid.

Let SetCoverX(L,Z) denote an optimal set covering all the points in X with spheres
of radius L whose centers are chosen from Z ⊆ X. Let Greedy(L,Z) denote the set
obtained by the greedy algorithm described above covering all the points in X with spheres
of radius L whose centers are chosen from Z ⊆ X. We know that |Greedy(L,Z)| ≤
|SetCoverX(L,Z)| ln(n), where n = |X|. Let Lmin be the minimum distance between
two points in X and Lmax be the maximum distance between two points in X. Let I be the
smallest integer such that (1+ε)ILmin ≥ Lmax. Our hybrid algorithm that carefully combines
grid sampling with the thresholding approach is given in Algorithm 6 (Sphetcher-H).
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Algorithm 6: Sphetcher-H

1 Input: Dataset X = {x1, . . . , xn} ⊂ Rm, size of the sketch k, and ε > 0.
2 Initialization: Lmin = mini,j d(xi, xj), an integer I as defined before.
3 for i = 0,. . . , I do
4 L← (1 + ε)iLmin

5 Partition the space into a uniform grid G(L) of size εL/
√
m

6 Let Z(L) ⊆ X be the set obtained by choosing one point in each non-empty cell
7 Y (L)← Greedy

((
1 + (1 + ε)ε

)
L,Z(L)

)
8 end

9 Output: Y (L̂(k)), where L̂(k) = min{L : |Y (L)| ≤ k}.

The following theorem limits the increase in Hausdorff distance through Sphetcher-H by at
most a factor of (1 + ε).

Theorem 2. Let L∗ be the Hausdorff distance dH(XS, X) between X and an optimal set XS

of size k, then dH(Y (L̂(k ln(n))), X) ≤ (1 + ε)L∗.

Proof. Let L be the distance set in the for loop (Algorithm 6: steps 3 to 7) such that
L∗ ≤ L < (1 + ε)L∗. By definition of L∗, we know that |SetCoverX(L∗, X)| ≤ k. So, let
us write SetCoverX(L∗, X) = XS := {x1, ..., xk}. Let X ′S = {x′1, ..., x′k} ⊆ Z(L) be chosen
such that x′i lies in the same cell of the grid G(L) as xi. Hence, dH(xi, x

′
i) ≤ εL implies that

dH(XS, X
′
S) ≤ εL < (1 + ε)εL∗.

Thus for any point x ∈ X, we have

dH(x,X ′S) ≤ dH(x,XS) + dH(XS, X
′
S) ≤ (1 + (1 + ε)ε)L∗ ≤ (1 + (1 + ε)ε)L.

It follows that |SetCoverX((1 + (1 + ε)ε)L,Z(L))| ≤ k and hence,

|Greedy((1 + (1 + ε)ε)L,Z(L))| ≤ k ln(n),

that is, |Y (L)| ≤ k ln(n). By definition of L̂, we have L̂ ≤ L < (1 + ε)L∗.

3.1.5 Fair sampling

One of the advantages of our model is its flexibility to incorporate fairness aspects. For
example, assume we have prior knowledge of (some) of the cell types present in the sam-
ple. Cells might have been pre-sorted, and some cell types such as T cell subtypes are well
characterized and can be identified based on known markers, without relying on an unsuper-
vised clustering of the data. Furthermore, when reusing scRNA-seq datasets shared through
repositories or data archives, the annotation of cell types, i.e. their labels, are typically
provided as part of the original study. Similarly, in time series studies of gene expression,
cells are collected at different time points which can supervise the sketching algorithm to
preferentially select cells for which collection time point and transcriptomic state agree.

Our goal is to use prior categorical information on, e.g., biological cell types or collection
time point to guide the selection of cells into a representative sketch, without fully relying
on the correctness of cell type labels nor their synchronous progression through biological
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processes. We incorporate prior categorical information as covering constraints into our
model: We seek to select a subset of cells that represent the geometric space of the original
data according to (3.1) but at the same time contain at least a given number of representatives
from each class. More formally, let X1, X2, . . . , Xm ⊆ X denote known clusters that do not
necessarily partition the whole dataset X, we want to sample k cells that contain at least
li ∈ N+ cells from each Xi, for all i = 1, 2, . . . ,m, while minimizing the Hausdorff distance
of the sketch to the original dataset. This generalization of the k-center problem is similar
to the colorful k-center problem, which does not require to include class members into the
sketch but instead a certain number of elements from each class need to be covered by
spheres around selected centers. For the colorful k-center problem a constant approximation
in the Euclidean plane was recently introduced (Bandyapadhyay et al., 2019). In Anegg
et al. (2020), the authors study a variant of this problem in which classes are allowed to
overlap. Neither of the proposed algorithms is directly applicable to scRNA-seq data, due
to low-dimensionality assumptions or the use of the ellipsoid method, respectively.

If li = 1, for all i = 1, . . . ,m, we have hitting set constraints XS ∩Xi 6= ∅, i = 1, . . . ,m,
which can be modeled as m additional elements in the universe of our set cover formulation
of the problem. Given a threshold L, the corresponding set cover problem (U ,S) is U =
{x1, . . . , xn, X1, . . . , Xm} and S = {S1, S2, . . . , Sn} with Si = [xi] ∪ {Xj | xi ∈ Xj}. Here
[xi] contains xi and its neighbors within distance L. Picking a set Si into our set cover
solution now does not only cover all cells within distance L of xi, but xi also hits all clusters
{Xj | xi ∈ Xj}. Having cast the constrained sampling problem as an instance of our
thresholding framework, we solve it by the same algorithm (Algorithm 5). For general
li ∈ N+, we simply partition Xi into li parts and apply the above approach, which however
is no longer guaranteed to obtain the optimal Hausdorff distance.

3.1.6 Set cover under perturbation

This section provides the theoretical insight for the practical performance of the greedy set
cover approach and its robustness to noise present in, e.g., scRNA-seq data. In step 5 of
Algorithm 5 we need to construct the neighborhood for every point xi that contains all
points within a given distance threshold. Due to noise, the true distances will be slightly
perturbed and yield imprecise estimates of neighborhoods. Since an instance to our set cover
formulation contains a set for the neighborhood of each point, error-prone neighborhoods will
affect our (greedy) search for the set with the largest number of uncovered elements. Here,
we show that as long as we are able to pick a set with large enough number of uncovered
elements, we can essentially preserve the approximation guarantee. More precisely, denote
by Ct the set of elements covered after t iterations of greedy (C0 = ∅). Assume that in each
iteration t, errors in the distances prevent us from finding the set S∗t with the maximum
value of |Si\Ct−1|, but instead we select a set St such that E(|St\Ct−1|) ≥ cmaxi |Si\Ct−1|
for some constant c, where E(X) denotes the expected value of random variable X. We show
that with high probability, we will find a set cover within 2 ln(n)/c the size of an optimal
solution, which differs only by a constant factor from the approximation guarantee of the
(precise) greedy algorithm. Note that inapproximability results (Slav́ık, 1997) show that the
greedy algorithm is essentially the best-possible polynomial time approximation algorithm
for set cover up to lower order terms. Let U be the whole set of elements of size n. We have
the following theorem.
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Theorem 3. If an iterative algorithm always chooses a set St to add to the current solution
with

E(|St\Ct−1|
∣∣Ct−1) ≥ cmax

i
|Si\Ct−1|,

for c ≤ 1, then with (high) probability 1 − 1
n

it returns a set cover that is larger than the
optimum set cover by a factor of at most 2 ln(n)/c.

Proof. Let the number of sets in the optimal solution be σ. We know that at each iteration
there is some set that covers at least |U\Ct|/σ new elements. It follows that

E(|U\Ct+1|
∣∣Ct) = |U\Ct| − E(|St+1\Ct|

∣∣Ct) ≤ |U\Ct| − cmax
i
|Si\Ct| ≤

(
1− c

σ

)
|U\Ct|.

Now taking the expectation over all possibilities for Ct we get

E(|U\Ct+1|) ≤
(

1− c

σ

)
E(|U\Ct|),

and iterating we end up with

E(|U\Ct|) ≤ |U|
(

1− c

δ

)t
≤ ne−tc/σ.

Setting t = 2σ ln(n)/c implies that E(|U\Ct|) ≤ 1
n
, and hence by Markov’s Inequality:

Pr(|U\Ct| ≥ 1) ≤ E(|U\Ct|) ≤
1

n
.

Thus, with probability at least 1− 1
n
, the sets we selected form a set cover.

3.2 Results

We have implemented Algorithms 5 and 6 along with a fair sampling option in software
tool Sphetcher in C++. Only on datasets zeiselCNS and saunders we apply our hybrid
strategy Sphetcher-H (Algorithm 6) but refer to it simply as Sphetcher throughout the main
text. Unless stated otherwise, Sphetcher uses Pearson correlation as distance metric d, and
we set the precision ε = 10−4 in Algorithm 5. Note that throughout this work, the size
of our spherical sketch denotes the actual number of cells rather than their logarithmic
approximation in Theorem 1.

Data and evaluation

All data were uniformly preprocessed by natural log-transformation of gene counts (after
adding a pseudo-count of 1) followed by projection to 100 principle components.

We measure how well a sketch represents the original transcriptomic space by the robust
Hausdorff distance. Compared to the classical definition of the Hausdorff distance, the robust
variant of the distance between a sketch XS ⊆ X and the full dataset is less sensitive to
outliers (Huttenlocher et al., 1993):

dHK(XS, X) = Kth
x∈X

{
min
y∈XS

d(x, y)
}
, (3.2)

where Kth
x∈X denotes the Kth largest distance to an element in X.
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Figure 3.2: Comparison of Hausdorff distances. The spherical sketch computed by Sphetcher ex-
hibits consistently smaller Hausdorff distances to the full dataset than geometric sketching, across
datasets and sketch sizes. For each sketch size, the results of 10 random trials are shown. Sup-
plemental Figure S18 shows Hausdorff distances achieved by our näıve grid sampling strategy on
datasets zeiselCNS and saunders.

3.2.1 Sphetcher more accurately sketches the transcriptomic space

To evaluate how well the spherical sketch computed by our method Sphetcher represents the
original transcriptomic space, we use the same robust Hausdorff distance measure as Hie
et al. (2019b). Intuitively, a small Hausdorff distance between a sketch and a full dataset
indicates an accurate representation that contains for every cell in the original data a close
cell in the sketch. We compare our sketch to the geometric sketch computed by Hie et al.
(2019b), which the authors demonstrated to consistently achieve smaller Hausdorff distances
than uniform sampling and data-dependent sampling methods SRS and k-means++. The
geometric sketch computed in Hie et al. (2019b) seeks to minimize the same objective function
but simplifies the approximation of the geometric space by equal-sized boxes rather than
spheres. We benchmark Sphetcher on 6 public single-cell datasets from mouse and human
that vary in size and number of cell populations: human pancreas (muraro) (Muraro et al.,
2016) with 2126 cells, 10 populations; mouse embryonic stem cells (klein) (Klein et al., 2015)
with 2717 cells, 4 populations; mouse cortex and hippocampus (zeisel) (Zeisel et al., 2015)
with 3005 cells, 9 populations; mouse hypothalamus (chen) (Chen et al., 2017) with 14,437
cells, 47 populations; mouse nervous system (zeiselCNS ) (Zeisel et al., 2018) with 465,281
cells, 7 populations; and adult mouse brain (saunders) (Saunders et al., 2018) with 665,858
cells and 11 populations. Figure 3.2 shows the Hausdorff distances of 10 random trials on
sketch sizes ranging from 1% to 10% of the full dataset. Values reported here can deviate
slightly from the original publication (Hie et al., 2019b) due to different preprocessing. Our
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sampling approach based on spheres results in sketches that consistently lead to smaller
Hausdorff distances, across datasets and sketch sizes. As expected, larger sketches yield
smaller Hausdorff distances, but across all datasets the geometric sketch based on 10% of the
data does not represent the full data as well as our spherical sketch with just 1% of the data.
In addition, sketches computed by Sphetcher exhibit a considerably smaller variability over
the random trials (Supplemental Figure S17). While the geometric sketch randomly picks
a cell in each box, Sphetcher’s only random decision is in breaking ties between equal-sized
sets during the greedy set cover computation. Remarkably, our näıve grid sampling strategy
alone, which is part of our hybrid alternative for very large datasets, achieves competitive
Hausdorff distances on datasets zeiselCNS and saunders, especially for small sketch sizes
(Supplemental Figure S18).

3.2.2 Clustering of spherical sketches facilitates cell type identification

A common goal in scRNA-seq data analysis is to discover and characterise cell types, typically
through clustering methods. The quality of the clustering therefore plays a critical role in
biological discovery. The compact size of a geometric or spherical sketch that accurately
summarizes the transcriptional heterogeneity in the full data facilitates such downstream
analyses. Furthermore, Hie et al. (2019b) observed that a more balanced composition of
abundant and rare cell types in a geometric sketch allows to better distinguish between cell
types compared to a uniform sampling approach. Here, we apply a similar strategy as in Hie
et al. (2019b) to evaluate the capability of a standard clustering algorithm to distinguish cell
types based on our spherical sketch as compared to the geometric sketch. We first cluster the
sketches using the graph-based Louvain algorithm (Blondel et al., 2008) and then propagate
the labels to the remaining cells by k-nearest neighbor classification. We use the Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985) to measure the similarity between the inferred
clusterings and the ground truth clustering which is based on the biological cell types taken
from the original study. Hie et al. (2019b) demonstrated that unsupervised clustering of
geometric sketches consistently outperform clusterings of uniformly sampled cells, while data-
dependent methods k-means++ and SRS provide competitive results on only a few instances.
In Figure 3.3 we show that the more even sampling of the transcriptional landscape by our
spherical sketch facilitates the detection of biological cell types. Across datasets and sampling
sizes, the clustering of our spherical sketches achieves better or comparable separation of cell
types than the clustering of the corresponding geometric sketch. In only 3 out of 36 instances,
geometric sketching yielded slightly better median ARI scores. Remarkably, in several cases
the clustering of sketches better agrees with the true biological cell types than the clustering
based on the full data. This observation is consistent with the assumption of a more balanced
composition of cell types in a sketch, but an artifact of the clustering algorithm cannot be
excluded, especially in light of the impossibility theorem for clustering (Kleinberg, 2003).
Note that despite a small variability in Hausdorff distance, the non-deterministic behavior
of the Louvain algorithm contributes to the different ARI scores observed in the repeated
clustering of spherical sketches.

3.2.3 Impact of distance metrics

Downstream analysis of scRNA-seq such as clustering and trajectory inference relies on a
metric that measures the distance between cells in gene expression space. Distance metrics
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Figure 3.3: Comparison of sketch based clustering accuracy. Louvain clustering of spherical sketches
computed by Sphetcher yields more accurate cell clusterings as measured by Adjusted Rand Index
(ARI) than geometric sketching based clustering. In both cases, labels assigned to cells in the
sketch are propagated to the remaining cells using k-nearest neighbor classification. The dotted
line indicates the ARI score achieved by clustering the full data using the same Louvain algorithm.

such as Euclidean distance, correlation-based distance, and cosine similarity (adapted as dis-
tance) have been proposed as adequate measures of dissimilarity, and its specific choice might
depend on assumptions made by computational analysis methods, properties of datasets, and
the specific task at hand (Kim et al., 2018; Jaskowiak et al., 2014). While the Hausdorff
distance is defined based on a given metric, geometric sketching ignores the metric space and
considers absolute differences in each dimension independently.

Here, we illustrate the flexibility of Sphetcher in optimizing the Hausdorff distance under
different distance metrics and demonstrate that the choice of metric can impact downstream
clustering analysis of scRNA-seq data. To this end, we sample a subset of cells from a medium
size dataset with complex population structure (chen) using Sphetcher with four different
metrics: Euclidean, Manhattan, cosine, and Pearson correlation distance. We cluster the four
resulting sketches using the same approach as in Section 3.2.2, and compare the quality of the
clusterings to the one obtained from a geometric sketch. Note that the geometric sketching
approach proposed in Hie et al. (2019b) cannot distinguish different distance metrics. Figure
3.4 shows that spherical sketches computed by Sphetcher using Euclidean distance as metric
in the objective function yield most accurate clusterings of this dataset. While cosine and
Pearson distances have a slightly negative effect on the quality of the clustering, Manhattan
distance and geometric sketching yield substantially less accurate clusterings, especially for
small sketch sizes.

On dataset muraro, geometric sketching again achieves overall lower ARI scores than
Sphetcher using different metrics (Figure 3.4). In contrast to dataset chen, however, Eu-
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Figure 3.4: Impact of distance metrics on clustering performance. While clustering based on
spherical sketches computed by Sphetcher using Euclidean distance yields most accurate results on
dataset chen, alternative metrics used by Sphetcher lead to higher ARI scores on dataset muraro,
illustrating the importance of Sphetcher’s flexible optimization scheme. In contrast, geometric
sketching does not distinguish different distance metrics and yields overall less accurate clusterings.

clidean distance based sampling does not show any improvement over alternative metrics,
illustrating the benefit of Sphetcher’s unique ability to take into account different metrics
suitable for different tasks.

3.2.4 Sphetcher detects rare population of inflammatory macrophages

Hie et al. (2019b) report and experimentally validated the discovery of a rare population
of inflammatory macrophages by clustering a geometric sketch of 20,000 cells sampled from
a dataset of 254,941 umbilical cord blood cells. In contrast, clustering the full dataset
or a uniform subsample did not reveal this rare population of cells, presumably due to
their limited visibility among the more abundant inactive macrophages. We repeated the
experiment by clustering our spherical sketch of same size (20,000 cells) obtained after prior
grid sampling (Sphetcher-H) using the Louvain community detection algorithm. As expected,
we were also able to discover a similar cluster of inflammatory macrophages based on the
same set of marker genes CD74, HLA-DRA, B2M, and JUNB (AUROC> 0.88).

3.2.5 Fairness incorporates time points in trajectory reconstruction

In time series studies of gene expression, single cells are typically collected at different
(known) time points. In this section, we illustrate how fairness aspects can be used to incor-
porate this additional information into the construction of a spherical sketch. To compare
the gene expression dynamics of human skeletal muscle myoblast (HSMM) differentiation
to the reprogramming of fibroblasts to myotubes, in Cacchiarelli et al. (2018), single cells
were sampled every 24 hours post induction of myoblast differentiation, between 0 and 72
hours. Consistent with the original publication, we reconstruct the single-cell trajectory of
HSMM differentiation using Monocle 2 (Qiu et al., 2017), ignoring the information on the
collection time point of cells. Figure 3.5 (left) shows the resulting trajectory, in which cells
are initially in a cycling state and either fully progress to contractile myotubes or fail to
differentiate. Cells are colored by the 4 different time points. For marked cells (black circle)
the inferred pseudotime, i.e. their level of progression through differentiation, and the actual
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Figure 3.5: Single cell trajectories of HSMM differentiation. Single-cell trajectories of HSMM
differentiation as reconstructed by Monocle 2 from the full data (left) and from Sphetcher’s spherical
sketch with fairness constraints (right) consistently describe progression through differentiation.
Cells for which inferred pseudotime and collection time point disagree are marked with a black circle
and were automatically removed as ’outlier’ cells by Sphetcher. See also Supplemental Figures S19-
S21.

time they were collected, disagree. Even though cells do not always progress through the
process of differentiation in a synchronous manner, the presence of fully differentiated cells
at time point 0, for example, is most likely an artifact caused by noise in the single cell
measurements.

We sought to automatically detect and remove cells for which the collection time point
disagrees with their transcriptomic state through a constrained sketching approach. Instead
of imposing a hard constraint that removes “outlier” cells, we let our sketching algorithm
decide if cells at different time points are necessary to evenly represent the global transcrip-
tional space. Since our fairness-inspired model imposes covering constraints that require a
certain number of cells to be sampled from each time point, a fair sampling of cells will
implicitly discourage the selection of outlier cells that lie close to cells in a similar state but
which have been collected at different time points.

We compare the trajectories computed by Monocle 2 from the geometric sketch, our
(unconstrained) spherical sketch, and our fairness-inspired spherical sketch that picks at least
four cells from each time point. On all sketches, the overall structure of the inferred trajectory
agrees with the trajectory computed from the full data (Figure 3.5 (right) and Supplemental
Figures S19-S21). However, while outlier cells are included in both the geometric sketch
(8 out of 8 trials, Supplemental Figure S20) and the unconstrained spherical sketch (2 out
of 8 trials, Supplemental Figure S21), Sphetcher under fairness constraints decides to not
use outlier cells to represent the transcriptional space. Fairness encourages Sphetcher, for
example, to not include fully differentiated cells from time point 0 into the sketch (Figure
3.5 (right) and Supplemental Figure S19). Even more, while constrained Sphetcher includes
at least one cell collected at time point 72 in the final state (Full) in Figure 3.5 and in all
trials in Supplemental Figure S19, unconstrained sketches do not retain any such cell in any
but a single trial (Supplemental Figures S20 and S21).

In addition, we construct gene expression kinetics plots using Monocle 2 for a set of
genes assessed in Cacchiarelli et al. (2018). The expression dynamics inferred from our fair
spherical sketch appear smoother than those obtained from the full data, and cells in our



3.3 Conclusions 49

Table 3.1: Comparison of CPU time (in seconds) of geometric sketching and Sphetcher-H. Running
times are reported separately for the prior grid sampling, the calculation of pairwise distances, and
the computation of a covering of all cells with spheres using a greedy set cover approach.

Dataset # cells
Sphetcher-H

Geometric sketching
Grid Distances Set Cover

Cord blood 254,941 1.0 43.0 88.0 23.0
ZeiselCNS 464,713 3.0 153.0 116.0 120.0
Saunders 665,385 5.0 318.0 200.0 201.0
Cao 2,026,641 10.0 600.0 400.0 1869.0

sketch better fit the interpolated expression (Supplemental Figure S22).

3.2.6 Scalability

Here, we demonstrate scalability of our hybrid strategy Sphetcher-H that combines grid
sampling with subsequent spherical sketching to large single-cell datasets. In Table 3.1
we compare the running time of Sphetcher-H to the construction of a geometric sketch (Hie
et al., 2019b) on the zeiselCNS, saunders, and umbilical cord blood datasets used in previous
benchmarks as well as on a dataset (cao) comprising 2 million cells (Cao et al., 2019). On the
latter dataset, geometric sketching and Sphetcher-H require in total around 30 minutes and
16 minutes of computation, respectively. Remarkably, our näıve grid sampling strategy alone
is orders of magnitude faster than geometric sketching but achieves competitive Hausdorff
distances on the zeiselCNS and saunders datasets (Supplemental Figure S18).

3.2.7 Data and Software Availability

Sphetcher is available at https://github.com/canzarlab/Sphetcher, where we also make
spherical sketches of public, large scRNA-seq dataset available for download.

3.3 Conclusions

We have introduced Sphetcher, a novel method that computes a small sketch of single-cell
datasets that accurately summarizes its transcriptional heterogeneity. Sphetcher utilizes the
thresholding technique to efficiently pick representative cells within spheres that better ap-
proximate the global geometry than boxes. Furthermore, we provide theoretical justification
for its robust performance in practice. Sphetcher is able to accelerate scRNA-seq analyses
such as the detection of cell types through clustering or the reconstruction of developmental
trajectories. At the same time, it has the ability to shift the focus from a “more data, less
algorithm” regime to a “less (but accurate) data, more algorithm” approach. In addition,
Sphetcher is sensitive to rare cell types, is flexible in its use of different distance metrics, and
allows to use prior categorical information on, e.g., biological cell types or collection time
point to guide the selection of cells into a representative sketch.

https://github.com/canzarlab/Sphetcher
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Chapter 4

Dynamic pseudo-time warping of
complex trajectories

Single cell RNA sequencing enables the reconstruction of cellular lineages underlying biolog-
ical processes such as cell development and differentiation. scRNA-seq can take a snapshot
of cells at a time and has enabled the ordering of single cells using a number of trajec-
tory inference methods. The comparison of single cell trajectories between two processes
can illuminate the differences and similarities between the two and thus be a powerful tool.
Current methods for the comparison of trajectories rely on the concept of dynamic time
warping (dtw), which was used for the comparison of two time series. Consequently, these
methods are restricted to simple, linear trajectories. Here we adopt a concept of arboreal
matchings (Böcker et al., 2013) and propose an algorithm to compare and align complex tra-
jectories that more realistically contain branching points that divert cells into different fates.
Moreover, we provided theoretical link between dtw and arboreal matchings via our lower
bound and upper bound theorems. We implement a suite of exact and heuristic algorithms
in our tool Trajan. Trajan workflow is given in Figure 4.1. Trajan automatically pairs similar
biological processes between conditions and aligns them in a globally consistent manner. In
an alignment of single cell trajectories describing human muscle differentiation and myogenic
reprogramming, Trajan identifies and aligns the core paths without prior information. From
Trajan’s alignment, we are able to reproduce recently reported barriers to reprogramming.
In a perturbation experiment, we demonstrate the benefits in terms of robustness and ac-
curacy of our model which compares entire trajectories at once, as opposed to a pairwise
application of dtw. This chapter is adapted from: Van Hoan Do, Mislav Blažević, Pablo
Monteagudo, Luka Borozan, Khaled Elbassioni, Soeren Laue, Francisca Rojas Ringeling,
Domagoj Matijevic and Stefan Canzar. Dynamic pseudo-time warping of complex single-cell
trajectories. bioXiv, 2019. The results were presented at RECOMB 2019.
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Figure 4.1: Trajan workflow. 1. Complex trajectories are reconstructed from single-cell RNA
measurements using, e.g., Monocle 2. After smoothing and scaling (2.), Trajan aligns entire trajec-
tories by computing an arboreal matching using a branch-and-cut approach (3.), which transforms
(warps) the individual pseudo-time scales into a shared one along which expression kinetics can be
compared (4.). For simplicity, only the alignment between one pair of paths is shown.

4.1 Methods

Dynamic time warping is the algorithmic workhorse underlying current methods that com-
pare linear single-cell trajectories. In the next section we briefly review the concept of
dynamic time warping and show that an attempt to generalize dtw to complex trajectories
naturally leads to arboreal matchings between trees, which were introduced previously in
the context of phylogenetic trees (Böcker et al., 2013).

4.1.1 DTW versus arboreal matching

As in classical sequence alignment, dtw matches similar elements in two sequences while
preserving their order. To account for different speeds at which the two sequences advance,
however, each element of one sequence can be mapped to multiple elements in the other
sequence (Figure 4.2 left). More formally, given two time series (xi)

n
i=1, (yj)

m
j=1, and a distance

or similarity measure d(xi, yj) ≥ 0 between the time points xi and yj, a warping is a sequence
p = (p1, . . . , pL) with p` = (n`,m`) ∈ [1 : n] × [1 : m] for ` ∈ [1 : L] that satisfies the
following three conditions: (i) Boundary : p1 = (1, 1) and pL = (n,m). (ii) Monotonicity :
n1 ≤ n2 ≤ · · · ≤ nL andm1 ≤ m2 ≤ · · · ≤ mL. (iii) Step size: p`+1−p` ∈ {(1, 0), (0, 1), (1, 1)}
for ` ∈ [1 : L − 1]. Note that the example warping in Figure 4.2 (left) contains no pair of
crossing edges and thus preservers the order of the two sequences.

Figure 4.2: An example of a warping (left) and an arboreal matching (right) between two time
series.
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The classic dtw aims to find a warping p minimizing the total distance between mapped
elements:

cp(x, y) :=
L∑
`=1

d(xn`
, ym`

).

The optimal warping can be computed by a dynamic program that solves:

D(i, j) = d(xi, yj) + min{D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)}. (4.1)

There are various extensions of the classic dtw described above that can be mainly classi-
fied as 1) restricting the range of the mapping to a certain window; 2) assigning different
weights to different types of steps; and 3) using different step patterns, e.g. p`+1 − p` ∈
{(1, 1), (1, 2), (2, 1)} in (iii). In the following, we consider the widely used classic dtw which
is also the default scheme for computing dtw (Zhao and Itti, 2018). Since state-of-the-
art methods like Monocle 2 (Qiu et al., 2017) and DPT (Haghverdi et al., 2016) aim to
construct smooth trajectories, the classic dtw provides the necessary flexibility for most
single-cell alignment tasks.

Here, we propose a generalization of classic dtw from paths, i.e., linear trajectories, to
trees, i.e., complex trajectories: We want to align each path in tree T1 to at most one path
in T2 and vice versa and, similar to dtw, preserve the order of nodes along the paths, i.e.,
no crossing edges. In addition, we require all alignments to be consistent, that is, every
node must be matched to the same node in all pairwise alignments it is part of. Böcker
et al. (2013) introduced arboreal matchings that formalize such a consistent path-by-path
alignment of trees: An arboreal matching is a matching M , i.e., one-to-one correspondence
between nodes in trees T1 and T2 such that for any (u1, v1), (u2, v2) ∈M , u2 is a descendant
of u1 iff v2 is a descendant of v1.

In contrast to dtw, an arboreal matching M matches each node (cell) to at most one
similar node (cell) in the other tree (trajectory). It is not required to cover all nodes between
each pair of paths, but we can flexibly penalize nodes that remain unmatched by M in the
objective function:

c(M) :=
∑

(u,v)∈M

d(u, v) +
∑
u∈V1

u unmatched

d(u,−) +
∑
v∈V2

v unmatched

d(−, v), (4.2)

where the cost of leaving node u (v) unmatched is d(u,−) > 0 (d(−, v) > 0). In fact,
the arboreal matching of minimum cost (4.2) between two paths P = (x1, . . . , xn) and
Q = (y1, . . . , ym) can be solved by a very similar dynamic program as in dtw (4.1):

D(i, j) = min{D(i− 1, j − 1) + d(xi, yj), D(i− 1, j) + d(i,−), D(i, j − 1) + d(−, j)}. (4.3)

An example arboreal matching between two paths is shown in Figure 4.2 (right). Again,
the non-crossing edges align the two time-series to reveal similarities and unmatched nodes
indicate compressed or stretched sections. This makes arboreal matchings as flexible as
dtw in the comparison of two trajectories. More specifically, we will show that by choosing
an appropriate penalty for unmatched vertices, the optimal dtw and the optimal arboreal
matching yield similar measures of similarity or distance of the compared trajectories. Denote
by ddtw and dM the optimal value of the classic dtw and the arboreal matching between two
paths P and Q, respectively. The following theorem provides an upper bound on ddtw.



54 4. Dynamic pseudo-time warping of complex trajectories

Theorem 4. Let D = max
i,j

d(xi, yj). If d(x,−) = max
y∈Q

d(x, y) and d(−, y) = max
x∈P

d(x, y),

then
ddtw ≤ dM ≤ ddtw + kD,

where k is the minimum number of edges that need to be removed to transform the optimal
warping to an arboreal matching.

Proof of Theorem 4. The first inequality is proven by induction on i+ j.
Let p∗ be the optimal warping and k the minimum number of edges that need to be

removed to transform p∗ to a feasible arboreal matching M . Since M has k unmatched
vertices, we have

c(M) ≤ cp∗(x, y) + kD.

This implies that dM ≤ ddtw + kD, which also completes the proof of the theorem.

Next, we develop a lower bound theorem for the classic dtw. An edge (x, y) in the warping
p is called redundant if both vertices x and y are covered by at least two edges in p.

Lemma 1. There exists an optimal warping of the classic dtw without redundant edges.

Proof of Lemma 1. Conversely, let p∗ be an optimal warping such that (xi, yj) ∈ p∗ and both
xi and yj are covered by at least two edges in p∗. From the coverage property of the warping
we must have (xi, yj−1) ∈ p∗ or (xi, yj+1) ∈ p∗. If (xi, yj−1) ∈ p∗, we get (xi+1, yj) ∈ p∗ since
yj is covered by at least two edges in p∗ and by the warping conditions. As a results, D(i, j) =
D(i, j−1)+d(xi, yj) and D(i+1, j) = D(i, j)+d(xi+1, yj) = D(i, j−1)+d(xi, yj)+d(xi+1, yj).
From (4.1), we obtain D(i+ 1, j) ≤ D(i, j − 1) + d(xi+1, yj). This implies that d(xi, yj) ≤ 0.
Since d(xi, yi) ≥ 0 we must have d(xi, yj) = 0. As a consequence, we can remove (xi, yj)
from p∗ without violating the warping conditions. The case (xi, yj+1) ∈ p∗ is proven in an
analogous manner.

Given an optimal warping p∗, we assign penalties to unmatched vertices such that dM ≤
ddtw. Let p∗ be an optimal warping without redundant edges, define

L1(p
∗) := {x ∈ P |x is covered by at least two edges from p∗},

L2(p
∗) := {y ∈ Q|y is covered by at least two edges from p∗}.

Then, we impose penalties

d(−, y) =

{
d(x, y) if ∃x ∈ L1(p

∗) and (x, y) ∈ p∗,
max

x∈L1(p∗)
d(x, y) otherwise. (4.4)

We define penalties d(x,−), x ∈ P , analogously. Since p∗ has no redundant edges, d(−, y) is
uniquely defined. Conversely, if there exist x1, x2 ∈ L1(p

∗) such that (x1, y) ∈ p∗, (x2, y) ∈ p∗,
the non-redundancy of p∗ is violated. We have the following lower bound theorem.

Theorem 5. If d(x,−), d(−, y) are defined as in (4.4), then dM ≤ ddtw.

Proof of Theorem 5. Let p∗ be a non-redundant optimal warping. For every vertex x ∈
L1(p

∗) and y ∈ L2(p
∗) we delete all incident edges but one, which results in an arboreal

matching of the same cost as dtw p∗. Hence, it implies that dM ≤ ddtw.

In Section 4.2.1 we illustrate how closely the optimal arboreal matchings based on lower
and upper bound penalty scheme follow the optimal dtw path.
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4.1.2 Limitations of the näıve ILP formulation

Finding the matching minimizing (4.2) can be phrased as a maximum matching problem that
explicitly forbids the two possible types of ancestry violations: Two edges can be crossing, or
two nodes on the same root-to-leaf path are matched to nodes on different root-to-leaf paths
(Figure 4.3). The former constraint is equally imposed by dtw, the latter is a consequence
of the simultaneous comparison of multiple paths and prevents arbitrary jumps between
biological processes in the comparison. In the proof-of-concept study by Böcker et al.

≤ 1 ≤ 1

Figure 4.3: Pair of crossing edges (blue) extended to a clique of crossing edges (left) and pair of
semi-independent edges (blue) extended to a clique of semi-independent edges (right).

(2013), they described feasible arboreal matchings between two rooted trees T1 = (V1, E1),
T2 = (V2, E2), by the following simple ILP:

max
∑|V1|

i=1

∑|V2|

j=1
w(i, j)xi,j (P)

s. t.
∑|V2|

j=1
xi,j ≤ 1 ∀i = 1 . . . |V1|, (4.5)∑|V1|

i=1
xi,j ≤ 1 ∀j = 1 . . . |V2|, (4.6)

xi,j + xk,l ≤ 1 ∀{(i, j), (k, l)} ∈ I, (4.7)

xi,j ∈ {0, 1}, (4.8)

where indicator variables xi,j denote the presence or absence of an edge (i, j), weights
w(i, j) := d(i,−) + d(−, j) − d(i, j). Pairs of edges (i, j) and (k, l) are compatible if it
holds that k is a descendant of i in T1 iff l is a descendant of j in T2. Set I contains
pairs of edges {(i, j), (k, l)} that are incompatible, i.e., they are either crossing or one-sided
independent (Figure 4.3).

As our experiments in Section 4.2.3 show, this ILP formulation does not allow to prac-
tically align trajectories comprising as few as 100 single cells. In the following theorem, we
identify its weak LP-relaxation as a theoretical explanation for this empirical performance,
since the search space that needs to be explicitly explored by an ILP solver depends on the
strength of the LP relaxation. Let OPT denote an optimal solution to the above ILP and
let w(OPT) be its optimal score. Let |V1| = n, |V2| = m, and w.l.o.g we assume n ≤ m.

Theorem 6. The integrality gap of the linear programming relaxation of (P) is n− o(1).

Proof of Theorem 6. Let K = max
i,j

w(i, j), hence K is bounded above by w(OPT). Moreover,

for any feasible solution x to the relaxation, we have

|V1|∑
i=1

|V2|∑
j=1

w(i, j)xi,j ≤
|V1|∑
i=1

|V2|∑
j=1

Kxi,j ≤
|V1|∑
i=1

K(

|V2|∑
j=1

xi,j) ≤
|V1|∑
i=1

K = Kn.
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Therefore, the optimal value of the LP relaxation is at most n times w(OPT). Our bad
instance consists of the two rooted trees shown in Figure 4.4, with w(red/blue edges) = 1
and w(·) = 0 otherwise. Any pair of nonzero weight edges are incompatible, so the maximum
cost matching is 1. Let x(red edges) = 1

n−1 , xn,1 = 1 − 1
n−1 , xn,m = 1

n−11n 6=m, and x(·) = 0
otherwise, where 1n6=m is a binary number such that 1n6=m = 1 iff n 6= m. Hence, x is a
feasible solution with cost of (n − 1)2/(n − 1) + 1 = n if n 6= m and n − 1

n−1 if n = m.
Therefore, the optimal value of the LP relaxation at least n− o(1).

n

3

2

1

T1

2 3
. . .

n
. . .

m

1

T2

Figure 4.4: The integrality gap of the LP relaxation of (P) is n.

Do et al. (2019) provided an alternative formulation of the näıve ILP formulation and
solved it using a branch and cut algorithm. Its main ingredients are (i) cuts that trim
the LP relaxation closer to the convex hull of feasible arboreal matchings, (ii) polynomial-
time algorithms that can find these cuts on demand, (iii) a branch-and- bound scheme that
makes use of modern CPU architectures, and (iv) an in-house developed, non-commercial,
non-linear solver that we use for all continuous optimization problems. For details we refer
the reader to the paper (Do et al., 2019).

4.2 Results

We have implemented the branch-and-cut algorithm described above and have bundled it
with our non-linear solver (Do et al., 2019) in our novel trajectory alignment tool Trajan.
Trajan adopts a strategy similar to Cacchiarelli et al. (2018) to prepare the output of Monocle
2 (or similar trajectory reconstruction methods) for a meaningful alignment, including the
smoothing and scaling of expression curves.

4.2.1 Lower and upper bounds on dtw

Here, we illustrate the practical relevance of the upper bound (UB, Theorem 4) and lower
bound (LB, Theorem 5) that the optimal arboreal matching between two paths can provide
on the optimal dtw. We align two simple trajectories constructed from scRNA-seq data on
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Figure 4.5: The optimal dtw path and two optimal paths computed by Trajan with lower bound
(LB) and upper bound (UB) penalty scheme. The optimal dtw path and Trajan’s LB path co-
incide (left). Alignment of myogenic reprogramming and differentiation dynamics (right). Trajan
discovers the core branches of similar cell fates.

dendritic cells stimulated under two conditions (LPS and PAM) collected at 4 time points
after stimulation (Shalek et al., 2014). The two linear trajectories and the dissimilarity
matrix were obtained from a recent study that introduced cellAlign (Alpert et al., 2018), a
method that aligns two simple trajectories based on dtw. The optimal solutions computed by
cellAlign using dtw and by Trajan using the LB penalty scheme are equivalent (Figure 4.5).
When using the UB penalty scheme, Trajan’s optimal path through the dissimilarity matrix
roughly follows the dtw path and represents a solution with almost 2 times larger score.

4.2.2 Trajan reproduces barriers in myogenic reprogramming

Here, we re-analyzed two public single-cell datasets: human skeletal muscle myoblast (HSMM)
differentiation and human fibroblasts undergoing MYOD-mediated myogenic reprogramming
(hFib-MyoD). These datasets were previously analyzed in Cacchiarelli et al. (2018), where
the authors set out to compare these related processes in order to identify molecular barriers
that hinder the efficient reprogramming of fibroblasts to myotubes. The authors used known
myoblast differentiation markers (CDK1, ENO3, MYOG) to identify the core path within
the complex trajectory constructed from hFib-MyoD, and they aligned this path to the core
path in normal muscle development (HSMM) using dtw. The authors pointed out that the
combined trajectory constructed from cells in both conditions did not intermix cells and
thus did not allow to assess critical commonalities and differences in expression dynamics.
We repeated the single-cell data analysis described in Cacchiarelli et al. (2018) to obtain the
corresponding trajectories from Monocle 2 (Figure 4.6).

We then sought to align these complex trajectories using our algorithm. We show that
Trajan is able to align the core paths of each complex trajectory, without any previous
knowledge or path picking, using the same distance measure (correlation) as in the original
publication. The global dynamics alignment of HSMM and hFib-MyoD are shown in Figure
4.5 (right). Interestingly, our approach not only aligns the core trajectories, but it also
aligns the branches corresponding to failure of reprogramming, which are characterized in
both processes by cells that exited the cell cycle, yet failed to proceed toward differentiation
(Cacchiarelli et al., 2018; Qiu et al., 2017).

After performing the trajectory alignment with Trajan, we constructed gene expression
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Figure 4.6: Trajectories of myogenic reprogramming (left) and differentiation (right). Cycling:
undifferentiated, actively proliferating cells; Exited: cells lacking expression of cell cycle and muscle
contraction genes; Exit failure: cells expressing genes of early myoblast differentiation yet still
proliferating; Failure: cells lacking expression of cell cycle genes as well as of muscle contraction
genes; Partial: cells expressing MYOG and multiple muscle contraction genes and lacking expression
of cell cycle genes; Full: full progression to contractile myotubes.
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Figure 4.7: Gene expression dynamics after trajectory alignment with Trajan.

kinetics plots for a set of genes that were assessed in Cacchiarelli et al. (2018) to investigate
whether our alignment was able to reproduce their reported findings regarding similarities
and differences between these two processes. Indeed, we were able to reproduce their key
findings: Proliferation marker CDK1 is downregulated both in HSMM and hFib-MyoD;
Muscle transcriptional regulators (MEF2C, MYOG) are upregulated later and to a lesser
extent in hFib-MyoD compared to HSMM; BMP4 is only expressed in hFib-MyoD and ID
family proteins (ID1, ID3) which lie downstream of BMP signaling fail to be downregulated
in hFib-MyoD; IGF pathway genes (IGF2, IGF1R) are expressed at higher levels in HSMM
(Figure 4.7).

We evaluated Trajan using penalty schemes that assign the maximum and average weight
of incident edges as well as the minimum cost implied by the lower bound Theorem 5 over
all pairs of paths (lb). While the maximum scheme (max ) is a direct generalization of
the cost scheme applied by Theorem 4, the averaging scheme (avg) tries to capture the
expected cost of leaving a vertex unmatched and is the default scheme applied by Trajan.
All schemes correctly picked the correct core paths in the two trajectories and are robust
under subsampling (Figure 4.8).
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Figure 4.8: Alignment of myogenic reprogramming and differentiation dynamics using three differ-
ent penalty schemes, from left to right: avg, max, lb. The bottom row shows results for random
subsamples of input cells and ordering genes.

4.2.3 Accuracy of Trajan

Here, we compare the accuracy of Trajan in matching ”correct” cells between complex trajec-
tories to the path-wise alignment by dtw. To this end, we perturb the hFib-MyoD trajectory
output by Monocle 2 by randomly subsampling 80% of the input cells and 80% of the genes
used for ordering them along pseudo-time. We align isomorphic trajectories (trees) compris-
ing a variable number of nodes (parameter ncenter in Monocle 2), measuring the difference
between nodes by Euclidean distance. Since we know the true correspondence of nodes be-
tween different perturbed trees, we can count false positive and false negative alignments as
a measure of accuracy. In Table 4.1 we report the number of false positive (FP) and false
negative (FN) alignments of the classic dtw run on each true pair of paths, and Trajan using
different penalty schemes (avg, max, lb). Trajan takes the entire trees as input, it is not
given the correct path-to-path correspondence. Nevertheless, Trajan almost always finds the
true correspondence between cells, compared to the path-wise dtw scheme, that introduced
both FP and FN alignments.

Table 4.1: Average number of false positive (+) and false negative(−) alignments of Trajan and
path-wise dtw. The average is taken over a variable number of instances comprising a total # of
nodes in the two input trees.

# of nodes
# of

instances
Trajan DTW

avg+ avg− max+ max− lb+ lb− FP FN

80 435 0.0 0.2 0.0 0.0 12.8 17.7 35.0 32.1
100 435 0.0 0.0 0.0 0.1 12.9 17.6 54.6 50.5
140 190 0.0 0.0 0.0 0.0 18.6 30.0 54.5 50.7
180 190 0.0 0.0 0.0 0.2 31.8 38.9 83.9 76.0
210 45 0.0 0.0 0.0 0.0 33.9 43.9 76.6 70.3
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Table 4.2 reports the running times of the näıve ILP using the commercial solver IBM ILOG
CPLEX 12.7 and Trajan coupled with our in-house non-linear solver on a random subset of
the instances introduced above. On a 2.30GHz Linux system using up to 15 threads, Trajan
is at least 13 times faster than the näıve ILP using CPLEX. CPLEX was not able to solve
instances with more than 200 nodes since it exceeded the memory limit of 320 GB.

Table 4.2: Average runtime in seconds of Trajan vs CPLEX

# of nodes
# of

instances
Trajan CPLEX

avg max dtw avg max lb

80 435 3.0 3.2 1.0 41.6 41.3 32.8
140 190 23.2 26.3 6.6 405.8 416.5 185.8
180 45 69.6 73.0 23.7 1381.8 1585.2 1041.0
210 45 120.9 147.4 47.6 - - -

4.3 Conclusions

We have introduced Trajan, a novel method that allows for the first time the alignment of
complex (non-linear) single-cell trajectories. Originally introduced to compare phylogenetic
trees, in Trajan we adopt arboreal matchings to perform an unbiased alignment enabling
the meaningful comparison of gene expression dynamics along a common pseudo-time scale.
Trajan does not make any assumptions concerning the algorithm used to reconstruct the
trajectory and can in principle be coupled with any available reconstruction method. In a
future algorithm, an arboreal matching between cells might prove useful in guiding a joint
learning of trajectories for two biological processes.



Chapter 5

Visualization of single-cell multimodal
omics

In this chapter we generalize t-SNE and UMAP to the joint visualization of multimodal
single-cell measurements. While t-SNE and UMAP seek a low-dimensional embedding of
cells that preserves similarities in the original (e.g. gene expression) space as well as possible,
we propose j-SNE and j-UMAP that simultaneously preserve similarities across all modalities
(Figure 5.1). Through Python package JVis they will allow to combine different views of
the data into a unified embedding that can help to uncover previously hidden relationships
among them. Our approach automatically learns the relative contribution of each modality
to a concise representation of cellular identity that promotes discriminative features but
suppresses noise. On eight real datasets, j-SNE and j-UMAP produce unified embeddings
that better agree with known cell types and that harmonize RNA and protein velocity
landscapes. This chapter is based on the following publication: Van Hoan Do and Stefan
Canzar. A generalization of t-SNE and UMAP to single-cell multimodal omics. Genome
Biology, 22(1):130, 2021.

5.1 Methods

5.1.1 Overview of method

In j-SNE we want to learn a joint embedding E of cells for each of which we have mea-
sured multiple modalities. Analog to t-SNE (van der Maaten and Hinton, 2008), we want
to arrange cells in low-dimensional space such that similarities observed between points in
high-dimensional space are preserved, but in all modalities at the same time. Generalizing
the objective of t-SNE, we aim to minimize the convex combination of KL divergences of sim-
ilarities in the original high-dimensional (distribution P ) and similarities in the embedding
low-dimensional space (distribution Q) for each modality k:

C(E) =
∑
k

αkKL(P (k)||Q) + λ
∑
k

αk logαk, (5.1)

where coefficients α of the convex combination represent the importance of individual modal-
ities towards the final location of points in the embedding. We add a regularization term
(with regularization parameter λ) that prevents the joint embedding from being biased to-
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Figure 5.1: Overview of the joint embedding in JVis. Metrics d (left) and d′ (right) measure the
dissimilarity of different cellular phenotypes of individual cells, such as the expression of surface
proteins (left) and mRNA (right). t-SNE and UMAP learn a low-dimensional embedding of cells
that preserves the distribution of similarities that are quantified based on d or d′ alone, which
renders certain cell types indistinguishable to either modality. In this example, blue and red cells
cannot be distinguished based on their measured surface proteins, and green and black cells overlap
in transcriptomic space. In JVis we generalize t-SNE and UMAP to learn a joint embedding that
preserves similarities in all modalities at the same time. We integrate d and d′ in a convex combina-
tion of KL divergences (j-SNE) or cross entropies (j-UMAP) between corresponding similarities in
low and high-dimensional space. An arrangement of cells that minimizes this convex combination
with simultaneously learned weights takes into account similarities and differences in both mRNA
and surface protein expression to more accurately represent cellular identity (middle).

wards individual modalities. In j-UMAP we generalize UMAP to multimodal data analo-
gously, minimizing a convex combination of cross entropies instead of KL divergences. We
jointly optimize the location of points in the embedding and the importance coefficients α
of modalities through an alternating optimization scheme: We fix coefficients α and find the
best point locations by gradient descent, and in turn find optimal coefficients α for fixed
locations by solving a convex optimization problem.

5.1.2 Generalizing t-SNE to multimodal data

Given n data points X = {x1, x2, . . . , xn}, t-SNE is a nonlinear dimensionality reduction
technique that aims to learn an embedding E = {y1, y2, . . . , yn} in a low-dimensional space
that preserves the distribution of point similarities. Based on a given metric d that measures
the dissimilarity between pairs of points, t-SNE first computes joint probabilities pij that
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quantify the similarity between xi and xj:

pj|i =
exp(−d(xi, xj)

2/2σ2
i )∑

k 6=i exp(−d(xi, xk)2/2σ2
i )
, pi|i = 0, (5.2)

pij =
pj|i + pi|j

2n
, (5.3)

where σi is the bandwidth of the Gaussion kernels centered at data point xi. Given a
predefined perplexity u, bandwidths σi are chosen such that the perplexity of conditional
distributions Pi equal to u. The perplexity is often set to a value in the range between 5 and
50 (van der Maaten and Hinton, 2008). t-SNE uses the normalized Student-t kernel with a
single degree of freedom to measure similarities qij in the embedding E :

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yl − yk‖2)−1

, qii = 0. (5.4)

To determine the location of points in the embedding E that preserve the original similarities
pij as well as possible, t-SNE seeks to minimize the Kullback-Leibler (KL) divergence of
distribution P = (pij) from distribution Q = (qij).

C(E) = KL(P ||Q) =
∑
i 6=j

pij log
pij
qij
. (5.5)

The minimization of equation (5.5) is performed using a gradient descent algorithm. The
gradient is given by

∂C

∂yi
= 4

∑
j 6=i

(pij − qij)qijZ(yi − yj), (5.6)

where Z =
∑

k 6=l(1 + ‖yk − yl‖2)−1. While a naive implementation of t-SNE has runtime

complexity O(n2), the algorithm proposed in van der Maaten (2014) uses the Barnes-Hut
algorithm (Barnes and Hut, 1986) and a sparse approximation of point similarities to reduce
its complexity to O(n log n) which allows it to scale to data sets comprising hundreds of
thousands of cells.

We generalize t-SNE to the joint dimensionality reduction of multimodal data in j-SNE

as follows. Given K-modal data points X = {x(k)1 , x
(k)
2 , . . . , x

(k)
n }, k = 1, 2, . . . , K, we want

to learn a joint embedding E = {y1, y2, . . . , yn} that preserves similarities between points in
X, analog to t-SNE, but in all modalities at the same time. Here, probability pkij measures

the similarity of points xki and xkj with respect to modality k. Generalizing the objective

of t-SNE, in j-SNE we aim to minimize the KL divergence of distributions P (k) for each
modality k from distribution Q:

C(E) =
∑
k

αkKL(P (k)||Q) + λ
∑
k

αk logαk (5.7)

=
∑
k

∑
i 6=j

αkp
(k)
ij log

p
(k)
ij

qij
+ λ

∑
k

αk logαk, (5.8)
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where αk ≥ 0,
∑

k αk = 1, and λ > 0 is a regularization parameter. The first term of
(5.7) denotes a convex combination of KL(P (k)||Q), k = 1, 2, . . . , K, in which coefficients αk
represents the importance (contribution) of modality k to the joint embedding. That is,
the larger αk, the stronger the influence of modality k on the final location of points in the
embedding. The second term of the objective function is a regularization term that prevents
the joint embedding from being biased towards individual modalities.

Optimization algorithm

We use an alternating optimization scheme to minimize (5.8) jointly over the location of
points yi and the weighting of modalities α. In each iteration, we first fix α and use t-SNE
to find points y in the joint embedding, after which we find the best (according to (5.8))
weighting α for fixed points y.

Initialization of α. We initially give uniform weights α to all modalities, i.e.,

αk = 1/K, for all k = 1, 2, . . . , K. (5.9)

Step 1: Fix α and optimize over y. Similar to conventional t-SNE, in j-SNE we employ
the gradient descent algorithm to minimize (5.8). The gradient is given by:

∂C

∂yi
= 4

∑
k

∑
j 6=i

αk(p
(k)
ij − qij)qijZ(yi − yj) = 4

∑
j 6=i

(∑
k

αkp
(k)
ij − qij

)
qijZ(yi − yj). (5.10)

Comparing gradient (5.10) to the original gradient (5.6), the former can be obtained by
replacing distribution P used in (5.6) by the convex combination of distributions P (k), i.e.,
P =

∑
k αkP

(k). In other words j-SNE, the joint t-SNE of multiple modalities, can be com-
puted by applying conventional (unimodal) t-SNE to the convex combination of distributions
P (k) for all modalities k.

Step 2: Fix y and optimize over α. Given a joint embedding of points y, problem (5.8)
is a special case of the following problem:

min
w

aiαi + λ
∑
k

αk logαk

subject to
∑
k

αk = 1,

αk ≥ 0, k = 1, 2, . . . , K.

(5.11)

This problem has a convex objective and linear constraints. We derive a closed form solution
using the Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian function corresponding
to the constrained optimization problem (5.11) is given by

L(α, u, v) = aiαi + λ
∑
k

αk logαk + u
(∑

k

αk − 1
)
−
∑
k

vkαk.
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The KKT conditions are given by
∂L(α,u,v)
∂αk

= ak + λ(1 + logαk) + u− vk = 0,

vkαk = 0,∑
k αk = 1, αk ≥ 0,

vk ≥ 0,

for all k = 1, 2, . . . , K. Assuming non-zero contributions of each modality, i.e. strictly
positive values for α, we have vk = 0 for all k and αk = exp{(−ai − u)/λ − 1}. Together
with the constraint

∑
k αk = 1, we obtain

αk =
mk∑
kmk

,

where mk = exp{−ai/λ− 1}.
We alternate iteratively between steps 1 and 2 until the improvement in the objective

value falls below a predefined error threshold ε or until a maximum number maxIter of
iterations has been reached. Here later iterations of j-SNE are faster than the first one
because the distributions P (k) do not need to be recomputed.

Note that when λ = 0, the optimal value of problem (5.11) is mini{bi}, and an optimal
solution is αi∗ = 1, αj = 0 for all j 6= i∗, where bi∗ = mini{bi}. This solution is unique
if bi∗ = mini{bi} is unique. In this case, the optimal joint embedding will converge to the
optimal embedding of a single modality.

5.1.3 Generalizing UMAP to multimodal data

UMAP uses different definitions of high and low-dimensional similarities pij and qij, respec-
tively. In particular, UMAP similarities pj|i are defined and symmetrized to give pij as
follows:

pj|i = exp[(−d(xi, xj)− ρi)/σi)], pi|i = 0,

pij = pj|i + pi|j − pj|ipi|j,

where ρi is the distance to the nearest neighbor of xi, and σi is the normalizing factor which
is found through binary search using a criteria similar to the perplexity-based selection of
bandwidth in t-SNE. The low-dimensional similarities are defined as:

qij =
(
1 + a ‖yi − yj‖2b2

)−1
,

where a and b are user-defined parameters with default values a ≈ 1.929 and b ≈ 0.7915.
Note that setting a = b = 1 gives the Student t-distribution used to define low-dimensional
similarities in t-SNE (equation (5.4)). In contrast to t-SNE, however, pij and qij are not
further normalized. UMAP determines the low dimensional embedding by minimizing the
cross entropy:

C(E) = CE(P,Q) =
∑
i 6=j

pij log
(pij
qij

)
+ (1− pij) log

(1− pij
1− qij

)
, (5.12)
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which is equivalent to the following objective function (ignoring constant terms):

C(E) =
∑
i 6=j

−pij log qij − (1− pij) log(1− qij). (5.13)

Objective (5.13) can be minimized by stochastic gradient descent. Note, however, that
UMAP uses negative sampling when trying to optimize (5.13) which can have a large effect
on the final embedding (Böhm et al., 2020).

The generalization of UMAP to multimodal data is analogous to that of t-SNE. In par-
ticular, we minimize the cross entropy between distributions P (k) for each modality k and
distribution Q:

C(E) =
∑
k

αkCE(P (k)||Q) + λ
∑
k

αk logαk, (5.14)

where, as in the joint t-SNE objective (5.7), the first term denotes a convex combination
with coefficients αi and the second regularization term is weighted with parameter λ > 0.

Similar to j-SNE, we use an alternating optimization approach to minimize objective
(5.14). In contrast to t-SNE, UMAP does not normalize distributions P and Q (compare
equations (5.2)-(5.4)). To be able to set λ to an identical value across experiments, we
therefore normalize coefficients in the first term of (5.14) by their maximum value computed
in the first iteration. Specifically, we optimize function 10

c

∑
k

αkCE(P (k)||Q) +λ
∑
k

αk logαk,

where c = maxk{CE(P (k)||Q)} is a constant computed in the first iteration.

5.2 Results

In all experiments, we set the maximal number of iterations in our alternating optimization
approach to 10 (maxIter=10). Guided by the results of our simulation study and by visual
inspection of known cell types, we set the regularization parameter λ to 3 for j-SNE and to
1 for j-UMAP in all experiments.

Following best practice in Luecken and Theis (2019), we used standard preprocessing of
the input data including log-transformation of the expression matrix followed by principal
component analysis (PCA) and applied j-SNE and j-UMAP as well as their conventional
counterparts to 20 or 50 principle components. In all protein velocity experiments, prepro-
cessed data was taken from Gorin et al. (2020), no further preprocessing was performed. We
computed protein acceleration using the protaccel Python package introduced in Gorin et al.
(2020).

5.2.1 Proof of concept

As proof of concept, we first demonstrate the ability of JVis to integrate modalities with
different signal strengths. scRNA-seq, for example, often allows a finer mapping of cell
states than single-cell ATAC-seq (Stuart et al., 2019). We used JVis to compute a joint
embedding of accessible chromatin and gene expression measured simultaneously by SNARE-
seq (Chen et al., 2019) in 1,047 single cells from cultured human cell lines BJ, H1, K562,
and GM12878. Similar to the conventional t-SNE and UMAP embeddings of transcriptomes
or chromatin state alone, our joint j-SNE and j-UMAP embeddings clearly separate cells
into four distinct clusters (Supplemental Figure S23). Even when randomly shuffling gene
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Table 5.1: Overview of the simulated data sets used in this study. Data sets were simulated using
Splatter and vary in number of cells (#Cells), number of genes (#Genes), number of antibodies
(#Ab), number of clusters (k), and the relative abundance of cell types that were either equal,
or based on cell type abundances among peripheral blood mononuclear cells (PBMCs) in healthy
individuals.

Name
#Cells

(N)
#Genes

(D)
#Ab k

Relative abundances
(G)

GeqN1k
GeqN5k
GeqN1kD1k
GeqN5kD1k

1,000
5,000
1,000
5,000

33,538
33,538
1,000
1,000

49
49
49
49

5
5
5
5

(0.2, 0.2, 0.2, 0.2, 0.2)

GpbmcN1k
GpbmcN5k
GpbmcN1kD1k
GpbmcN5kD1k

1,000
5,000
1,000
5,000

33,538
33,538
1,000
1,000

49
49
49
49

5
5
5
5

PBMCs: DC: 0.02,
NK: 0.2, B: 0.1

Mono: 0.08, T: 0.6

expression measurements between cell lines BJ and H1 in a toy experiment, JVis employs
chromatin accessibility to disentangle mixed mRNA measurements and separate all four cell
lines (Figures 5.2).

5.2.2 JVis is more accurate than conventional t-SNE and UMAP

We compared the performance of JVis to conventional t-SNE and UMAP applied to the
concatenation of modalities that were normalized by dividing them by the Frobenius norm
of the count matrix and to the embedding obtained when assigning (fixed) uniform weights
to each modality (αi = 1/3 in (5.1)).

Data sets and evaluation scores

To examine the effectiveness of the joint optimization scheme underlying JVis, we devise a
simulation study following a similar strategy as Wang et al. (2020). We used Splatter (Zappia
et al., 2017) to simulate joint gene and ADT counts based on model parameters estimated
from a real CITE-seq data set (Mimitou et al., 2019) in which mRNA and surface protein
(ADT) expression were measured in human peripheral blood mononuclear cells (PBMC).
In particular, the same number of genes and antibodies were used, and ADT counts were
simulated based on estimated dropout rate, library size, expression outlier, and dispersion
across features. We added a third modality by duplicating gene expression measurements
and randomly permuting expression vectors between a variable size random subset of cell.
The larger the subset of cells, the larger the artificially introduced level of noise in this
third modality. We generated eight synthetic multimodal data sets that vary in the relative
abundance of (five) cell types, number of cells, and in the number of genes (Table 5.1).

We measured the accuracy of an embedding using two different metrics. We introduce
the k-nearest neighbor index (KNI), which denotes the fraction of k-nearest neighbors in the
embedding that are of the same type. A high KNI value indicates homogeneous neighbor-
hoods of cell types, while a random mixing of cells would cause low KNI values. We used
k = 10 if not specified otherwise and computed the average across all points. In addition,
we used the Silhouette score (Rousseeuw, 1987) that ranges between −1 and 1 to measure
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Figure 5.2: Visualization of perturbed SNARE-seq measurements. Accessible chromatin (ChrAcc)
and gene expression was measured simultaneously in single cell from human cell lines BJ, H1, K562,
and GM12878. Gene expression measurements were randomly shuffled between cell lines BJ and
H1 (MixRNA). (a) Conventional t-SNE embedding of cells based on shuffled gene expression alone.
(b) j-SNE visualization of shuffled gene expression and (unchanged) chromatin accessibility. (c)
Conventional UMAP embedding of cells based on shuffled gene expression alone. (d) j-UMAP
visualization of shuffled gene expression and (unchanged) chromatin accessibility.

how much cell types overlap (score 0) or how well separated (score 1) they are. We used the
Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) to measure the agreement between
RNA and protein based clusterings.

Evaluation of JVis

In contrast to its conventional counterparts, j-SNE and j-UMAP learn weights for each
modality from the data that reflect their relevance to the final embedding. Figures 5.3
and 5.4 show that these weights distinguish informative from noisy modalities. With an
increasing amount of perturbation of the third modality, i.e. an increasing number of cells
with shuffled gene expression, JVis assigns a lower weight to the corresponding modality.
The rate of weight decrease (and the simultaneous increase mostly in ADT weight) is higher
for data sets with a larger number of cells and, as expected, depends on the regularization
coefficient λ. For λ close to 0, weights essentially include a single most informative modality
(here ADT, see Table 5.2) (Supplemental Figure S24). Higher penalties associated with non-
uniform weights result in a weaker adjustment of weights by the joint optimization scheme.
The absolute adjustment of weights associated with cross entropy terms in j-UMAP is less
pronounced than the adjustment of weights associated with KL divergences in j-SNE.

Figures 5.5, 5.6 demonstrate the benefit of borrowing information across modalities by
the joint optimization scheme implemented in JVis. Compared to the normalized concate-
nation and the (uniform) averaging approach, the distinction between meaningful and noisy
modalities in j-SNE and j-UMAP yields more accurate embeddings with respect to KNI
score, across various noise levels. For data sets containing 5000 cells the separation of cell
types in the embeddings obtained with (fixed) uniform weights continuously decreased with
increasing noise levels. In contrast, the joint optimization scheme in j-SNE was able to retain
a high accuracy on these data sets (Figure 5.5), especially for smaller penalties assigned to
non-uniform weights, i.e. small values of λ. This is consistent with the sharper drop in the
weight associated with the noise modality observed for data sets containing 5000 cells and
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Figure 5.3: j-SNE modality weights for eight simulated data sets as function of noise. Weights (α)
for modalities ADT (left), RNA (middle), and NoiseRNA (right) were computed using different
regularization coefficients λ. Each data set is shown in one row.
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Figure 5.4: j-UMAP modality weights for eight simulated data sets as function of noise. Weights
(α) for modalities ADT (left), RNA (middle), and NoiseRNA (right) were computed using different
regularization coefficients λ. Each data set is shown in one row.
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Figure 5.5: KNI values of embeddings computed by j-SNE and alternative methods on eight sim-
ulated data sets. Values are shown as a function of noise for different regularization coefficient λ
used in j-SNE. Conventional t-SNE is run for uniform weights assigned to each modality (αi = 1/3)
(t-SNE (average)), or on concatenated modalities (Concat) that are optionally normalized by the
Frobenius norm (Concat (F norm)).
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Figure 5.6: KNI values of embeddings computed by j-UMAP and alternative methods on eight
simulated data sets. Values are shown as a function of noise for different regularization coefficient
λ used in j-UMAP. Conventional UMAP is run for uniform weights assigned to each modality (αi =
1/3) (UMAP (average)), or on concatenated modalities (Concat) that are optionally normalized by
the Frobenius norm (Concat (F norm)).
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small values of λ (Figure 5.3). For j-UMAP, on the other hand, computed weights were
close to uniform (for λ ≥ 0.5) on data sets GpbmcN5k and GpbmcN5kD1k (Figure 5.4)
and thus yielded embeddings with similar accuracy as the uniform weighting scheme on
these data sets (Figure 5.6). The normalized concatenation approach works reasonably well
on data sets with 1000 cells and large number of genes (N1k), but its performance varies
substantially between different data sets and is even less accurate than its unnormalized
version on data sets with 5000 cells. On most data sets, concatenation-based approaches
show a sharp initial drop in accuracy for small levels of noise. Similarity, an evaluation of
JVis using the Silhouette score provides consistent results as KNI (Supplemental Figures S25,
S26). Together, they imply that JVis produces more accurate low-dimensional embedding
of cells than the conventional methods.

5.2.3 JVis utilizes multi-modal data to resolve subtle transcriptomic difference

t-SNE and UMAP often produce embeddings that are in good agreement with known cell
types or cell types computed by unsupervised clustering (Blondel et al., 2008; Kiselev et al.,
2017) of high-dimensional molecular measurements such as mRNA expression. The simulta-
neous measurement of multiple types of molecules such as RNA and protein can refine cell
types and JVis seeks to capture this refinement in their low-dimensional embedding. We
compared unimodal and multimodal embeddings of mRNA and surface protein (ADT) ex-
pression measured in 4,292 healthy human PBMCs (Mimitou et al., 2019) and in 8,617 cord
blood mononuclear cells (CBMC) (Stoeckius et al., 2017) using CITE-seq (Stoeckius et al.,
2017). Cell type labels were inferred by methods Specter (Do et al., 2021) or CiteFuse (Kim
et al., 2020), which have recently been introduced for the joint clustering of CITE-seq data.

Consistent with observations in Do et al. (2021); Kim et al. (2020), t-SNE and UMAP
visualizations of transcriptomic data alone does not show a clear distinction of CD4+ T
cells and CD8+ T cells in the CBMC data set, while the embedding of protein expression
mixes dendritic cells with CD14+ cells (Figure 5.7, Supplemental Figure S27). In contrast,
JVis makes use of both modalities to compute a joint embedding that accurately separates
CD4+ and CD8+ T cells as well as dendritic and CD14+ cells. Again, we confirm the
visual interpretation quantitatively using the same metrics as above (Table 5.2). The joint
embedding of mRNA and ADT by JVis yields substantially larger Silhouette scores than the
two unimodal t-SNE and UMAP embeddings.

Similarly, the joint embeddings of cells in the PBMC data set by JVis separate näıve
and memory CD4+ T cell that are mixed in the ADT based t-SNE and UMAP embed-
dings as well as CD4+ and CD8+ T cells that are mixed in the mRNA based embeddings
(Supplemental Figures S28, S29). Again, joint embeddings are more accurate in terms of
Silhouette scores than unimodal embeddings (Table 5.2), even though overall the additional
information provided by RNA measurements is limited relative to ADT counts on this data
set.

5.2.4 JVis improves the visualization of joint velocity landscapes of protein and RNA

RNA velocity (La Manno et al., 2018) describes the rate of change of mRNA abundance
estimated from the ratio of mature and pre-mRNA. While RNA velocity points to the future
state of a cell, the recently introduced protein velocity (Gorin et al., 2020) extends this
concept and utilizes the joint measurement of RNA and protein abundance to infer the
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Figure 5.7: Visualizations of CBM cells. Cluster labels were identified by Specter. First row:
t-SNE/j-SNE embeddings were computed from RNA measurements alone (a), protein expression
(ADT) alone (b), or jointly from both (c). Second row: UMAP/j-UMAP embeddings were com-
puted from RNA measurements alone (d), protein expression (ADT) alone (e), or jointly from both
(f).

Table 5.2: Comparison of joint and unimodal embeddings on the PBMC and CBMC data sets. KNI
denotes the fraction on k-nearest neighbors in the embedding that are of the same type, averaged
over all cells. Larger Silhouette scores indicate a better separation of cell types. Only cells assigned
identical labels based on joint clusterings by CiteFuse and Specter are considered in the evaluation.

CBMC PBMC

Method KNI Silhouette KNI Silhouette

j-SNE 0.998 0.432 0.985 0.383
RNA based t-SNE 0.978 0.343 0.960 0.196
ADT based t-SNE 0.989 0.270 0.949 0.366

j-UMAP 0.998 0.578 0.985 0.525
RNA based UMAP 0.980 0.487 0.960 0.111
ADT based UMAP 0.982 0.468 0.948 0.511

past, present, and future state of a cell. In Gorin et al. (2020), the authors used PCA and
t-SNE to visualize RNA and protein velocity as well as the resulting protein acceleration
in six PBMC data sets that were generated using four different technologies: CITE-seq,
REAP-seq (Peterson et al., 2017), ECCITE-seq (Mimitou et al., 2019) (data sets “CTCL”, a
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Figure 5.8: Protein acceleration in ECCITE-seq (ctrl) data set projected into transcriptome-based
t-SNE (a), and joint mRNA and surface protein based embeddings j-SNE (b) and j-UMAP (c).

cutaneous T cell lymphoma patient, and “ctrl”, a healthy control), and 10X Genomics (data
sets 1k and 10k). The authors observed strong velocity signals offered by the CITE-seq and
10x Genomics technologies, while REAP-seq and ECCITE-seq yielded noisier acceleration
landscapes. Both RNA and protein velocity, however, were projected into the same t-SNE
embedding of transcriptomic measurements alone, rendering their interpretation difficult.
We therefore repeated the analysis of the six different data sets but projected velocities into
the joint embedding of both modalities computed by JVis. The noisy acceleration landscapes
observed in Gorin et al. (2020) in the ECCITE-seq and REAP-seq data sets become aligned
across cell types in their joint embeddings by JVis (Figures 5.8 and Supplemental Figures S30,
S31). Consistent with the improved distinction of transcriptionally similar CD4 and CD8 T
cells in the joint embeddings above, acceleration landscapes in all six data sets are projected
onto an embedding that more clearly separates CD4 and CD8 T cells compared to the original
ones proposed in Gorin et al. (2020) (Figure 5.8 and Supplemental Figures S30-S34).

The noisy acceleration landscapes reported in Gorin et al. (2020) for the REAP-seq and
ECCITE-seq data sets might be a result of the larger number of measured surface proteins
(44 and 49 antibodies versus 13 and 17 antibodies in CITE-seq and 10X, respectively) that
provide a finer distinction of subpopulations of cells. In fact, we observed lower agreement
between RNA and protein based clusterings for the ECCITE-seq data set shown in Figure 5.8
(ARI 0.21), compared to the clusterings obtained from the two modalities in the CITE-seq
data set that agree well (ARI 0.82). Here clusterings of cells were computed using the
Louvain algorithm (Blondel et al., 2008) where the resolution parameter is tuned to match
the number of annotated cell types. Since protein acceleration is computed from both RNA
and protein abundances, their joint embedding can help to reduce visualization artifacts
that arise when protein velocities are projected into a purely transcriptome based t-SNE
embedding as in Gorin et al. (2020).

5.2.5 Scalability

The complexity of Barnes-Hut based t-SNE is O(n log n), where n is the number of in-
put cells (van der Maaten, 2014). Although no theoretical complexity bounds have been
established for UMAP, its empirical complexity is O(n1.14) (McInnes et al., 2018). Since
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Figure 5.9: CPU times of j-SNE and j-UMAP as a function of the number of cells. Different size
data sets were subsampled from the CBMC CITE-seq data set. Running time are shown using 5 or
10 iterations in both methods (controlled by parameter maxIter), on data sets containing K=2 and
K=4 modalities. Two additional modalities were generated by duplicating and randomly shuffling
the original two modalities. Note that the switching from exact to approximate nearest neighbor
search in UMAP for data sets with more than 3, 000 cells slowed the increase in running time of
UMAP, or even decreased it, from 2, 000 and 4, 000 cells.

in addition the alternating minimization in j-SNE and j-UMAP requires only a few itera-
tions of (conventional) t-SNE and UMAP calculations to converge to its final estimation of
modality weights (Supplemental Figure S35), JVis is expected to scale well to large data
sets. For example, it took JVis less than 5 minutes to compute an embedding of the 10,000
cells contained in the largest data set used in this study (10x 10k). Here all experiments
were performed on an Intel Xeon CPU at 2.30 GHz with 320 GB memory. Running time
of j-SNE and j-UMAP shown in Figure 5.9 as a function of number of cells with 2 and 4
simulated modalities demonstrate practicability of both approaches in the analysis of larger
and more complex multimodal data sets. The scalability of our approach to large data
sets can be further improved by combining it with the recently proposed FFT-accelerated
Interpolation-based t-SNE method (Linderman et al., 2019).
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5.2.6 Availability of data and materials

The SNARE-seq and CBMC CITE-seq data sets were downloaded from Gene Expression
Omnibus with accession codes GSE126074 and GSE126310, respectively. The six data sets
used in the protein acceleration experiments were from Gorin et al. (2020). The implemen-
tations of j-SNE and j-UMAP are based on the scikit-learn v0.23.1 library (Pedregosa et al.,
2011) and the UMAP v0.4.5 Python package (McInnes et al., 2018), respectively. The JVis
Python package can be installed through PyPi and its open-source code is maintained at
https://github.com/canzarlab/JVis-learn. Python scripts to reproduce all results in
this paper are available at https://github.com/canzarlab/JVis_paper.

5.3 Conclusions

t-SNE and UMAP are routinely used to explore high-dimensional measurements of single
cells in low-dimensional space. We have introduced method JVis that generalizes t-SNE and
UMAP to the joint visualization of single-cell multimodal omics data. We have demonstrated
that JVis combines multiple omics measurements of single cells into a unified embedding that
exploits relationships among them that are not visible when applying conventional t-SNE
or UMAP to each modality separately. Higher expected levels of noise in the measurements
can be counteracted by smaller regularization coefficients λ that allow to downweight noisy
modalities. Not surprisingly, projecting RNA and protein velocities into the joint embedding
of both modalities yielded less noisy acceleration landscapes compared to embeddings of
mRNA measurements alone. We therefore anticipate that JVis will aid in the meaningful
visual interpretation of data generated by emerging multimodal omics technologies such as
CITE-seq (Stoeckius et al., 2017) and SHARE-seq (Ma et al., 2020), the latter allowing to
combine RNA velocity with chromatin potential.

https://github.com/canzarlab/JVis-learn
https://github.com/canzarlab/JVis_paper
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Chapter 6

Conclusion and outlook

6.1 Conclusion

In this thesis, we developed diverse computational methods for scRNA-seq and multimodal
omics data. In Chapter 2 we presented Specter for clustering ultra-large scRNA-seq and mul-
timodal omics data. We showed the superior performance of Specter across comprehensive
benchmarks on 45 real and simulated data sets. Specter facilitates the identification of rare
cell types and resolves subtle transcriptomic differences in multimodal data. In Chapter 3
we proposed Sphetcher, a mathematical method that efficiently picks the representative cells
and highlights the presence of rare cell types in the data. Sphetcher enables the shift from
a “more data, less algorithm” paradigm to a “less (but accurate) data, more algorithm”
regime. We then introduced Trajan in Chapter 4, a method allows for the first time the
alignment of complex single-cell trajectories. Trajan automatically identifies and aligns core
paths without prior information as used in the previous approach. Finally, in Chapter 5
we proposed j-SNE and j-UMAP as the natural generalizations to the joint visualization of
multimodal omics data. On comprehensive benchmarks, we showed that j-SNE and j-UMAP
produce unified embeddings that better agree with cell types and harmonize RNA velocity
and protein acceleration landscapes than the conventional approaches.

6.2 Outlook

Extend Sphetcher for multimodal omics data

In Chapter 3 we introduced Sphetcher for downsampling large data sets. Given n data points
X = {x1, x2, . . . , xn} and a metric d that measures the dissimilarity between pairs of cells,
Sphetcher finds a sketch XS ⊆ X that minimizes the Hausdorff distances between the sketch
and the full dataset defined as:

dH(XS, X) = max
x∈X

{
min
y∈XS

d(x, y)
}
.

Sphetcher is applicable to a broad range of data including scRNA-seq and scATAC-seq as
long as we can define a distance between two points. However the use of Sphetcher for
multimodal data is not obvious because it is not very clear how to compute the distance
between two points in multimodal data. One way to do it is to concatenate the feature (with
or without normalization) across all modalities to create a single feature vector for each cell.
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But we already pointed out that the concatenation strategy might not work well because
this approach might be biased to the modality of large dimension and scale or it is not clear
which normalized concatenation strategies should be selected. Another approach is to use the
convex combination of distances, that is, we define the distance between two points x and y
as d(x, y) =

∑
k αkd(x(k), y(k)), where αk ≥ 0,

∑
k αk = 1, and x(k) and y(k) are k-th modality

of x and y, respectively. It is easy to show that the convex combination of metrics is also a
metric. However in this case it is not clear how to choose the parameters αk. One way to solve
this issue is to cast it as the convex combination problem as we did in the generalization of
visualization methods to multimodal data. We then find the sketch and parameters jointly
through an alternative optimization scheme. Finally one could also adopt the concept of
metric learning from multi-view data, for example, Singh et al. (2021) proposed a version
of metric learning adapted for multimodal omics data. We can see that there are numerous
ways to generalize Sphetcher to multimodal data and it remains to effectively evaluate these
approaches. This can be done similarly to the validation of Sphetcher with computational
methods used for unimodal data being replaced by multimodal methods. We anticipate a
method for downsampling multimodal omics data is worthwhile due to the growth of large-
scale multimodal projects with a recent data set measuring more than 200k cells (Hao et al.,
2021).

Outlook for Trajan

In Chapter 4 we introduced Trajan and showed a practical use of Trajan in an alignment
of trajectories describing human muscle differentiation and myogenic reprogramming. In
the future we explore the usefulness of Trajan. Note that Trajan can be used as a metric
to measure the similarity/dissimilarity between two trajectories. From this we can align
the trajectories computed by two methods and we can point out the similarities/differences
between the trajectories computed by the two. In addition, we can compare the same method
with different sets of parameters used in the method (e.g., parameter ncenter in Monocle 2)
to assess the stability and parameter sensitivity of the model.

Based on the comprehensive benchmark on 45 TI methods (Saelens et al., 2019), there
is no best method and it is not obvious which method should be used for a specific data
set. Hence, another application of Trajan is to select a method for a given data. Here we
assume that a reference trajectory is given and it can be taken from a public trajectory
database or constructed from the Human Cell Atlas. Then we can compute trajectories by
various TI methods and compare them to the reference trajectory, and then select the one
which matches well with the reference. In addition, Trajan can be used for integration of
time-resolved data based on the alignment between cells in two data sets. Data integration
across different conditions and technologies is one of the most important and challenging
problems in single-cell genomics data.

Develop more accessible and integrated bioinformatics toolkit

The Specter software is written in Matlab, which might pose some challenges for the broad
community especially for biologists without much computation background or access to Mat-
lab. Therefore it is important to implement the package in programming languages such as
R or Python, which are widely used in the single cell genomics community. Moreover, it is
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also easier to integrate Specter with popular single-cell libraries such as Seurat (in R) and
Scanpy (in Python).

Currently j-SNE is implemented based on the scikit-learn Python package. We are plan-
ning to integrate j-SNE and j-UMAP with Scanpy and explore compatibility with faster
implementations of t-SNE such as openTSNE and Fit-SNE. Finally we want to integrate
all packages in a toolkit which allows users to perform various single-cell analysis tasks
ranging from preprocessing (Sphetcher) to downstream tasks such as clustering (Specter),
visualization (j-SNE, j-UMAP), and alignment of single-cell trajectories (Trajan).
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Appendix A

Supplementary Figures

A.1 Supplemental Figures: Specter
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Figure S1: Clustering performance measured by homogeneity score of Specter and competing meth-
ods on real and synthetic data. Methods are ordered by mean homogeneity score across data sets
decreasing from top to bottom. In the calculation of mean scores we excluded for each method the
data sets where the method did not run successfully. Synthetic data sets are ordered from left to
right by increasing mean homogeneity score over all methods. SC3 , RCA, RaceID3, and CIDR
failed to run on the three largest data sets CNS, saunders, and trapnell due to insufficient memory.
TSCAN failed to run on data sets chen and skin for unknown reasons. Geometric sketching refers
to the Louvain clustering of 10% of the cells sampled using geometric sketching.
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Figure S2: Clustering performance measured by NMI of Specter and competing methods on real and
synthetic data. Methods are ordered by mean NMI across data sets decreasing from top to bottom.
In the calculation of mean scores we excluded for each method the data sets where the method did
not run successfully. Restricted to the same set of data sets as SC3, Specter20E was with a mean
ARI of 0.87 marginally better than SC3 (mean ARI 0.85). Synthetic data sets are ordered from
left to right by increasing mean NMI over all methods. SC3 , RCA, RaceID3, and CIDR failed to
run on the three largest data sets CNS, saunders, and trapnell due to insufficient memory. TSCAN
failed to run on data sets chen and skin for unknown reasons. Geometric sketching refers to the
Louvain clustering of 10% of the cells sampled using geometric sketching.
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Figure S3: Accuracy (in ARI) of geometric sketching based Louvain clustering for varying sketch
sizes. For each sketch size, the results of 10 random trials are shown. “Specter %” uses the same
number of cells in the geometric sketch as Specter uses landmarks or cells in the selective sampling
step (see the “Methods” section), whichever one is larger.
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Figure S4: Accuracy of Specter vs. number of ensemble members. For each number of ensemble
members, the box plot shows minimum, maximum, median, and first and third quartiles of ARI
scores achieved by Specter on the 24 simulated data sets.
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Figure S5: Robustness of Specter to choice of parameter γ. Across 24 synthetic data sets, Specter
computed 50 ensemble members using different ranges for parameter γ. By default, Specter selects
a γ ∈ [0.1, 0.2] for each ensemble member.
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Figure S6: t-SNE visualization of the Zhengmix4eq dataset. Naive cytotoxic T cells and regulatory
T cells partly overlap.
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Figure S7: Sensitivity to rare population of overlapping cell types. Naive cytotoxic T cells and
regulatory T cells taken from the Zhengmix4eq data set overlap in the t-SNE projection shown in
Figure S6. We randomly downsampled naive cytotoxic and regulatory T cells to comprise 1%, 2.5%,
5%, and 10% of the total number of cells and repeated this experiment five times for each group.
Average F1 scores are shown over the 10 runs, with adjusted F1 score ranges for each subsample
size. For geometric sketching, the average F1 score was taken over 10 random trials with a sketch
size of 10% of the full data.
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Figure S8: Seurat unimodal clustering. left: CBMCs (top) and PBMCs (bottom) with coordinates
of protein expression (ADT) along CD4 and CD8 axis. Colors denote clusters computed by Seurat
based on mRNA expression which contain a mix of CD4 T cells and CD8 T cells. right: t-SNE
visualization of clusters identified by Seurat from protein expression (ADT) of PBM cells. CD14+

and FCGR3A+ monocytes cannot be discriminated, megakaryocytes are not detected.
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Figure S9: Comparison of multimodal clusterings of CBM cells as computed by Specter (top) and
CiteFuse (bottom). Despite an overall high agreement between the two clusterings (ARI 0.94), only
Specter detects a rare population of megakaryocytes (red).
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Figure S10: Comparison of multimodal clusterings of PBM cells as computed by Specter (top) and
CiteFuse (bottom). Despite an overall high agreement between the two clusterings (ARI 0.86), only
Specter detects a rare population of megakaryocytes and can discriminate between CD27−DR+ and
CD27−DR− subpopulations of CD4+ memory T cells.
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Figure S11: Comparison of multimodal clusterings of PBM cells. Here, Specter (top) and CiteFuse
(bottom) use slightly more conservative parameters in the doublet removal (eps = 190, minPts =
10). Again, only Specter is able to discriminate between CD27−DR+ and CD27−DR− subpopula-
tions of CD4+ memory T cells and detects a rare population of megakaryocytes.
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Figure S12: Linear-time complexity of Specter. CPU times in seconds (single threaded) are shown
for the core algorithm of Specter (no ensemble) and Specter using a clustering ensemble of size 20.
Different size data set were simulated using Splatter containing 1k, 10k, 100k, 200k, 500k, and 1
million cells.
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Figure S13: Linear increase in running time with number of ensemble members. CPU times in
seconds (single threaded) are shown for Specter using an increasing number of ensemble members
on a simulated data set containing 100,000 cells.
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Figure S14: Specter speed-up with number of threads. CPU times in seconds are shown for Specter
using an increasing number of threads on a simulated data set containing 100,000 cells. 20 or 50
clustering ensemble members were used.

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

0

2

4

6

8

0 250000 500000 750000 1000000
# Cells

T
im

e 
(M

in
ut

es
) Method

●

●

●

Specter20E (1 thread)

Specter20E (4 threads)

Specter50E (4 threads)

Figure S15: Increase in running time for fixed number of threads. CPU times in minutes are shown
for Specter using 20 or 50 clustering ensemble members and 1 or 4 threads.
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Figure S16: Runtime comparison between methods as a function of sample size. CPU times are
shown in minutes on different numbers of cells sampled from a simulated data set containing 1
million cells. Seurat was run with a call to the more efficient SCANPY implementation of the
Louvain clustering algorithm. *Running times exclude preprocessing for all methods except TSCAN
and dropClust, whose implementation did not allow to isolate the core algorithm.
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A.2 Supplemental Figures: Sphetcher
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Figure S17: Comparison of Jaccard index. We compare the composition of the sketches computed
in different random trials. The Jaccard index is computed for all pairs of random trials and the
average is taken over all pairs for a given sketch size. The Jaccard index measures the similarity of
two sketches by dividing the number of cells that they have in common by the total number of cells
contained in either of the sketches. The Jaccard index ranges from 0 to 1, where 0 indicates that the
two sketches have no cells in common, while 1 indicates identical sketches. Sphetcher returns highly
similar sketches in different random trials, while the set of cells contained in geometric sketches
can vary considerably between runs. In addition, these different geometric sketches differ in the
quality of representation of the original transcriptomic space. Note that the similarity of geometric
sketches returned in different runs slowly increases with larger sample size, since the algorithm has
fewer choices to pick a cell in smaller boxes. In contrast, Sphetcher’s random tie breaking between
equal-sized sets does not depend on the sample size and thus provides highly stable sketches even
for small numbers of cells.
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Figure S18: Comparison of Hausdorff distances. The näıve grid sampling strategy alone, which is
part of our hybrid alternative for very large datasets, achieves competitive Hausdorff distances to
geometric sketching on datasets zeiselCNS and saunders, especially for small sketch sizes. For each
sketch size, the results of 10 random trials are shown.
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Figure S19: HSMM differentiation trajectories reconstructed by Monocole 2 from Sphetcher’s sketch
with fairness constraints. In 8 trials, Sphetcher did not include ’outlier’ cells when its fairness model
requires to include at least 4 cells from each time point. For outlier cells inferred pseudotime and
actual collection time disagree. At the same time, cells collected at time point 72 in the final state
are consistently retained.
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Figure S20: HSMM differentiation trajectories reconstructed by Monocole 2 from geometric
sketches. In each of 8 trials, geometric sketches included outlier cells (black circles) for which
inferred pseudotime and actual collection time disagree. At the same time, in only a single case a
cell in final state collected at time point 72 is retained.
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Figure S21: HSMM differentiation trajectories reconstructed by Monocole 2 from Sphetcher’s sketch
without fairness constraints. In 2 out of 8 trials, spherical sketches included outlier cells (black
circles) for which inferred pseudotime and actual collection time disagree. At the same time, cells
in final state collected at time point 72 are lost in each trial.
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Figure S22: Gene expression dynamics. Expression dynamics along pseudotime were computed by
Monocle 2 from full data (left) and from the sketch produced by Sphetcher with fairness constraints
(right) for genes ID3, IGF1R, MYH3, and MYOG.
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Figure S23: Unimodal and multimodal visualization of SNARE-seq measurements. Accessible
chromatin (ChrAcc) and gene expression was measured simultaneously in single cell from human
cell lines BJ, H1, K562, and GM12878. First row: Comparison of t-SNE and j-SNE. Conventional
t-SNE embedding of measurements of (a) RNA or (b) accessible chromatin. (c) Joint embedding of
both modalities (RNA and chromatin accessibility) by j-SNE. Second row: Comparison of UMAP
and j-UMAP. Conventional UMAP of (d) RNA or (e) accessible chromatin. (f) Joint embedding
of both modalities by j-UMAP.
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Figure S24: Weights of modalities ADT, RNA, and NoiseRNA computed in j-SNE (top) and j-
UMAP (bottom) as a function of regularization coefficient λ ranging from 0.2− 5. The noise level
in the four simulated data sets is held constant at 0.4.
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Figure S25: Silhouette scores of embeddings computed by j-SNE and alternative methods on eight
simulated data sets. Values are shown as a function of noise for different regularization coefficient λ
used in j-SNE. Conventional t-SNE is run for uniform weights assigned to each modality (αi = 1/3)
(t-SNE (average)), or on concatenated modalities (Concat) that are optionally normalized by the
Frobenius norm (Concat (F norm)).
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Figure S26: Silhouette scores of embeddings computed by j-UMAP and alternative methods on
eight simulated data sets. Values are shown as a function of noise for different regularization
coefficient λ used in j-UMAP. Conventional UMAP is run for uniform weights assigned to each
modality (αi = 1/3) (UMAP (average)), or on concatenated modalities (Concat) that are optionally
normalized by the Frobenius norm (Concat (F norm)).
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Figure S27: t-SNE/j-SNE (top row) and UMAP/j-UMAP (bottom row) visualizations of CBM cells.
Cluster labels were identified by CiteFuse. Embeddings were computed from mRNA measurements
alone (left), protein expression (ADT) alone (middle), or jointly from both (right).
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Figure S28: t-SNE/j-SNE visualizations of PBM cells. Cluster labels were identified by Specter
(top row) or CiteFuse (bottom row). Embeddings were computed from RNA measurements alone
(left), protein expression (ADT) alone (middle), or jointly from both (right).
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Figure S29: UMAP/j-UMAP visualization of PBM cells. Cluster labels were identified by Specter
(top row) or CiteFuse (bottom row). Embeddings were computed from RNA measurements alone
(left), protein expression (ADT) alone (middle), or jointly from both (right).
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Figure S30: Protein acceleration in ECCITE-seq data set CTCL projected into transcriptome-based
t-SNE (a), j-SNE (b), and j-UMAP (c) embeddings.
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Figure S31: Protein acceleration in REAP-seq data set projected into transcriptome-based t-SNE
(a), j-SNE (b), and j-UMAP (c) embeddings.
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Figure S32: Protein acceleration in 10X 1k data set projected into transcriptome-based t-SNE (a),
j-SNE (b), and j-UMAP (c) embeddings.
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Figure S33: Protein acceleration in 10X 10k data set projected into transcriptome-based t-SNE
(a), j-SNE (b), and j-UMAP (c) embeddings.
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Figure S34: Protein acceleration in CITE-seq data set projected into transcriptome-based t-SNE
(a), j-SNE (b), and j-UMAP (c) embeddings.
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Figure S35: Change in loss function across iterations in j-SNE and j-UMAP on 2 real data set and
one simulated data set.
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Appendix B

Supplementary Tables

Table S1: Overview of the simulated data sets used in this study. Names listed in the left-most
column are used throughout the text. Data sets were simulated using Splatter (Zappia et al.,
2017) and vary in number of cells (#Cells), number of genes (#Genes), number of clusters (k),
the probability with which a given gene is differentially expressed in one of the cell types (marker
genes), and the relative abundance of cell types that were either equal, unequal, or based on cell
type abundances among peripheral blood mononuclear cells (PBMCs) in healthy individuals.

Name
# Cells

(N)
# Genes

(D)
k

Probabilities
of gene DE

Relative
abundances (G)

DE1GeqN1k
DE1GeqN2k
DE1GeqN5k

1,000
2,000
5,000

1,000
1,000
1,000

5
5
5

(0.01, 0.01
0.01, 0.01, 0.01)

(0.2, 0.2,
0.2, 0.2, 0.2)

DEneqGneqN1k
DEneqGneqN2k
DEneqGneqN5k

1,000
2,000
5,000

1,000
1,000
1,000

5
5
5

(0.01, 0.01
0.02, 0.02, 0.05)

(0.01, 0.05,
0.14, 0.3, 0.5)

DEneqGneqN1kD10k
DEneqGneqN2kD10k
DEneqGneqN5kD10k

1,000
2,000
5,000

10,000
10,000
10,000

5
5
5

(0.01, 0.01
0.02, 0.02, 0.05)

(0.01, 0.05,
0.14, 0.3, 0.5)

DE1GneqN1k
DE1GneqN2k
DE1GneqN5k

1,000
2,000
5,000

1,000
1,000
1,000

5
5
5

(0.01, 0.01
0.01, 0.01, 0.01)

(0.01, 0.05,
0.14, 0.3, 0.5)

DE1GneqN1kD10k
DE1GneqN2kD10k
DE1GneqN5kD10k

1,000
2,000
5,000

10,000
10,000
10,000

5
5
5

(0.01, 0.01
0.01, 0.01, 0.01)

(0.01, 0.05,
0.14, 0.3, 0.5)

DE2GneqN1k
DE2GneqN2k
DE2GneqN5k

1,000
2,000
5,000

1,000
1,000
1,000

5
5
5

(0.02, 0.02
0.02, 0.02, 0.02)

(0.01, 0.05,
0.14, 0.3, 0.5)

DE5GneqN1k
DE5GneqN2k
DE5GneqN5k

1,000
2,000
5,000

1,000
1,000
1,000

5
5
5

(0.05, 0.05
0.05, 0.05, 0.05)

(0.01, 0.05,
0.14, 0.3, 0.5)

DE1GpbmcN1k
DE1GpbmcN2k
DE1GpbmcN5k

1,000
2,000
5,000

1,000
1,000
1,000

5
5
5

(0.01, 0.01
0.01, 0.01, 0.01)

PBMCs: DC: 0.02,
NK: 0.2, B: 0.1

Mono: 0.08, T: 0.6
RareCellExp1 4,000 1,000 2 (0.01, 0.01) (0.5, 0.5)
RareCellExp2 10,000 1,000 2 (0.01, 0.01) (0.9, 0.1)
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Table S2: Comparison of running times in minutes on simulated data. Data sets of different
size were simulated using Splatter. *Running times exclude preprocessing for all methods except
TSCAN and dropClust, whose implementation did not allow to isolate the core algorithm. Specter
used 20 ensemble members and was run with a single thread (as all other methods). The last
column (Specter+Pre) shows the total running time of Specter and all its preprocessing steps,
including log-transformation, selection of highly variable genes (500), and PCA.

#Cells Specter Seurat dropClust* Geosketch RtsneKmeans TSCAN* Specter+Pre

1k 0.02 0.04 0.04 0.10 0.14 0.06 0.02
10k 0.1 0.15 0.24 0.02 0.88 0.20 0.1

100k 0.58 1.00 1.01 1.38 17.61 1.23 0.61
200k 1.36 3.27 1.89 1.75 49.31 2.79 1.40
500k 3.15 11.80 3.14 8.81 139.69 7.39 3.25

1m 7.59 23.00 6.83 44.29 655.95 16.61 7.77

Table S3: Comparison of running times on three largest real data sets. Running times of Specter,
Seurat, dropClust, the geometric sketching (Gsketch) based Louvain clustering, TSCAN, and Rt-
seKmeans are reported in minutes (rounded) on the 3 largest real data sets used in this study.
*Running times exclude preprocessing for all methods except TSCAN and dropClust, whose imple-
mentation did not allow to isolate the core algorithm. Specter used 50 ensemble members and was
run with 20 threads. The last column (Specter+Pre) shows the total running time of Specter and
all its preprocessing steps, including log-transformation, selection of highly variable genes (2000),
and PCA.

Data set #Cells Specter Seurat dropClust* Gsketch TSCAN* RtsneKmeans Specter+Pre

CNS 464,713 1 11 2 7 3 89 3
saunders 665,385 2 18 3 19 8 193 4
trapnell 2,026,641 15 79 12 400 100 1225 23
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Van Hoan Do, Mislav Blažević, Pablo Monteagudo, Luka Borozan, Khaled Elbassioni, Sören
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Farmer, Lars Fugger, Berthold Göttgens, Nir Hacohen, Muzlifah Haniffa, Martin Hem-
berg, Seung Kim, Paul Klenerman, Arnold Kriegstein, Ed Lein, Sten Linnarsson, Emma
Lundberg, Joakim Lundeberg, Partha Majumder, John C Marioni, Miriam Merad, Musa
Mhlanga, Martijn Nawijn, Mihai Netea, Garry Nolan, Dana Pe’er, Anthony Phillipakis,
Chris P Ponting, Stephen Quake, Wolf Reik, Orit Rozenblatt-Rosen, Joshua Sanes, Rahul
Satija, Ton N Schumacher, Alex Shalek, Ehud Shapiro, Padmanee Sharma, Jay W Shin,
Oliver Stegle, Michael Stratton, Michael J T Stubbington, Fabian J Theis, Matthias Uhlen,
Alexander van Oudenaarden, Allon Wagner, Fiona Watt, Jonathan Weissman, Barbara
Wold, Ramnik Xavier, Nir Yosef, and Human Cell Atlas Meeting Participants. Science
forum: The human cell atlas. eLife, 6:e27041, 2017. doi: 10.7554/eLife.27041.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external
cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 410–420, Prague, Czech Republic, 2007. Association for Com-
putational Linguistics.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987. doi:
10.1016/0377-0427(87)90125-7.

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of
single-cell trajectory inference methods. Nature Biotechnology, 37(5):547–554, 2019. doi:
10.1038/s41587-019-0071-9.

Kazuki Sakurai, Tohru Fujiwara, Shin Hasegawa, Yoko Okitsu, Noriko Fukuhara, Ya-
sushi Onishi, Minami Yamada-Fujiwara, Ryo Ichinohasama, and Hideo Harigae. Inhi-
bition of human primary megakaryocyte differentiation by anagrelide: a gene expres-
sion profiling analysis. International Journal of Hematology, 104(2):190–199, 2016. doi:
10.1007/s12185-016-2006-2.

Rahul Satija. Using seurat with multi-modal data, 2019. https://satijalab.org/seurat/
v3.1/multimodal_vignette.html. Accessed 15 December 2019.

Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, and Aviv Regev. Spatial
reconstruction of single-cell gene expression data. Nature Biotechnology, 33(5):495–502,
2015. doi: 10.1038/nbt.3192.

Arpiar Saunders, Evan Z. Macosko, Alec Wysoker, Melissa Goldman, Fenna M. Krienen,
Heather de Rivera, Elizabeth Bien, Matthew Baum, Laura Bortolin, Shuyu Wang, Alek-
sandrina Goeva, James Nemesh, Nolan Kamitaki, Sara Brumbaugh, David Kulp, and
Steven A. McCarroll. Molecular diversity and specializations among the cells of the adult
mouse brain. Cell, 174(4):1015–1030.e16, 2018. doi: 10.1016/j.cell.2018.07.028.

Peter Savas, Balaji Virassamy, Chengzhong Ye, Agus Salim, Christopher P. Mintoff, Franco
Caramia, Roberto Salgado, David J. Byrne, Zhi L. Teo, Sathana Dushyanthen, Ann

https://satijalab.org/seurat/v3.1/multimodal_vignette.html
https://satijalab.org/seurat/v3.1/multimodal_vignette.html


BIBLIOGRAPHY 127

Byrne, Lironne Wein, Stephen J. Luen, Catherine Poliness, Sophie S. Nightingale, Anita S.
Skandarajah, David E. Gyorki, Chantel M. Thornton, Paul A. Beavis, Stephen B. Fox,
Phillip K. Darcy, Terence P. Speed, Laura K. Mackay, Paul J. Neeson, Sherene Loi,
and Kathleen Cuningham Foundation Consortium for Research into Familial Breast Can-
cer (kConFab). Single-cell profiling of breast cancer t cells reveals a tissue-resident memory
subset associated with improved prognosis. Nature Medicine, 24(7):986–993, 2018. doi:
10.1038/s41591-018-0078-7.

Alex K. Shalek, Rahul Satija, John J. Trombetta Joe Shuga, Dave Gennert, Diana Lu, Peilin
Chen, Rona S. Gertner, Jellert T. Gaublomme, Nir Yosef, Schraga Schwartz, Brian Fowler,
Suzanne Weaver, Jing Wang, Xiaohui Wang, Ruihua Ding, Raktima Raychowdhury, Nir
Friedman, Nir Hacohen, Hongkun Park, Andrew P. May, and Aviv Regev. Single-cell
rna-seq reveals dynamic paracrine control of cellular variation. Nature, 498(510):363–369,
2014. doi: 10.1038/nature13437.

Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. doi: 10.1109/34.868688.

Hiroyuki Shinnou and Minoru Sasaki. Spectral clustering for a large data set by reducing
the similarity matrix size. Proceedings of the Sixth International Language Resources and
Evaluation, 2008.

R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster method. The
Computer Journal, 16(1):30–34, January 1973. doi: 10.1093/comjnl/16.1.30.

Rohit Singh, Brian L. Hie, Ashwin Narayan, and Bonnie Berger. Schema: metric learning
enables interpretable synthesis of heterogeneous single-cell modalities. Genome Biology,
22(1):131, 2021. doi: 10.1186/s13059-021-02313-2.

Debajyoti Sinha, Akhilesh Kumar, Himanshu Kumar, Sanghamitra Bandyopadhyay, and
Debarka Sengupta. dropClust: efficient clustering of ultra-large scRNA-seq data. Nucleic
Acids Research, 46(6):e36–e36, 2018. doi: 10.1093/nar/gky007.

Petr Slav́ık. A tight analysis of the greedy algorithm for set cover. J. Algorithms, 25(2):
237–254, 1997. doi: 10.1006/jagm.1997.0887.

C. Allison Stewart, Carl M. Gay, Yuanxin Xi, Santhosh Sivajothi, V. Sivakamasundari,
Junya Fujimoto, Mohan Bolisetty, Patrice M. Hartsfield, Veerakumar Balasubramaniyan,
Milind D. Chalishazar, Cesar Moran, Neda Kalhor, John Stewart, Hai Tran, Stephen G.
Swisher, Jack A. Roth, Jianjun Zhang, John de Groot, Bonnie Glisson, Trudy G. Oliver,
John V. Heymach, Ignacio Wistuba, Paul Robson, Jing Wang, and Lauren Averett Byers.
Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy
resistance in small-cell lung cancer. Nature Cancer, 1(4):423–436, 2020. doi: 10.1038/
s43018-019-0020-z.

Marlon Stoeckius, Christoph Hafemeister, William Stephenson, Brian Houck-Loomis,
Pratip K Chattopadhyay, Harold Swerdlow, Rahul Satija, and Peter Smibert. Simul-
taneous epitope and transcriptome measurement in single cells. Nature Methods, 14(9):
865–868, 2017. doi: 10.1038/nmeth.4380.



128 BIBLIOGRAPHY

Kelly Street, Davide Risso, Russell B. Fletcher, Diya Das, John Ngai, Nir Yosef, Elizabeth
Purdom, and Sandrine Dudoit. Slingshot: cell lineage and pseudotime inference for single-
cell transcriptomics. BMC Genomics, 19(1):477, 2018. doi: 10.1186/s12864-018-4772-0.

Alexander Strehl and Joydeep Ghosh. Cluster ensembles – a knowledge reuse framework for
combining multiple partitions. J. Mach. Learn. Res., 3:583–617, 2003.

Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi,
William M Mauck III, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija.
Comprehensive Integration of Single-Cell Data. Cell, 177(7):1888–1902.e21, 2019.

C. Studholme, D.L.G. Hill, and D.J. Hawkes. An overlap invariant entropy measure of
3d medical image alignment. Pattern Recognition, 32(1):71–86, 1999. doi: 10.1016/
S0031-3203(98)00091-0.

Valentine Svensson, Kedar Nath Natarajan, Lam-Ha Ly, Ricardo J Miragaia, Charlotte
Labalette, Iain C Macaulay, Ana Cvejic, and Sarah A Teichmann. Power analysis of
single-cell rna-sequencing experiments. Nature Methods, 14(4):381–387, 2017. doi: 10.
1038/nmeth.4220.

Valentine Svensson, Roser Vento-Tormo, and Sarah A Teichmann. Exponential scaling of
single-cell rna-seq in the past decade. Nature Protocols, 13(4):599–604, 2018. doi: 10.
1038/nprot.2017.149.

Luyi Tian, Xueyi Dong, Saskia Freytag, Kim-Anh Lê Cao, Shian Su, Abolfazl JalalAbadi,
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