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Abstract: 

Background: Cancer stem cells are a small subpopulation of cancer cells, character-

ized by self-renewal, maintaining stemness properties, and are importantly responsible 

for developing therapeutic resistance in the field of chemotherapy and radiotherapy. 

Therefore, targeting cancer stem cells would be a new treatment strategy for therapy-

resistant cancer patients. Recently, the phytochemicals shikonin and berbamine have 

been caught the attention for their cytotoxic effects on cancer cells. The aim of this the-

sis is to investigate whether these two phytochemicals shikonin and berbamine have 

an anti-cancer effect on prostate cancer stem cells and cabazitaxel-resistant prostate 

cancer cells. 

Methods: To generate prostate cancer stem cells, the sphere formation assay was 

conducted. Also, to evaluate the anti-cancer effect of shikonin and berbamine, several 

techniques were performed including CellTiter-Blue cell viability assay, CellTiter 96 

AQueous One Solution cell proliferation assay, apoptosis assay, scratch wound healing 

assay, and cell invasion assay. The prostate cancer stem cell markers were detected 

and assessed by flow cytometry and qRT-PCR. A cabazitaxel-resistant prostate cancer 

cell line was generated by gradually increasing the concentration of cabazitaxel over at 

least eight months. Furthermore, the cytotoxic mechanism of shikonin was analyzed by 

staining for reactive oxygen species and mitochondrial membrane potential. A small 

RNA-sequencing technique was used to select differentially expressed microRNAs 

which berbamine regulated. Small interfering RNAs, mimics, and inhibitors were used 

to investigate the downstream pathways of berbamine. 

Results: Both shikonin and berbamine inhibited the cell viability, proliferation, invasion, 

migration, and enhanced the apoptosis rate of prostate cancer stem cells. Also, shikon-

in and berbamine augmented the anti-cancer effect of cabazitaxel. Shikonin triggered 

apoptosis via ROS production and disrupted the mitochondrial membrane potential. 

Furthermore, shikonin suppressed the level of ALDH3A1 and ABCG2 in prostate can-

cer stem cells, which are two drug resistance markers. Decreasing the expression level 

of ABCG2 and ALDH3A1 reversed the drug resistance of cabazitaxel-resistant prostate 

cancer cells to cabazitaxel. Berbamine suppressed the expression of ABCG2, CXCR4, 

and ALDH1A1. Inhibiting the expression of ABCG2 and CXCR4 reversed cabazitaxel 

resistance. RNA-sequencing identified that berbamine enhanced the expression of let-

7 family, miR-26a, and miR-26b. The individual miRCURY LNA miRNA PCR assay 

further verified that berbamine up-regulated let-7 family, miR-26a, and miR-26b. Ber-
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bamine inhibited the expression of IGF2BP1 and silencing of CXCR4, and mimics of 

the let-7 family also downregulated the expression of IGF2BP1.  In addition, berbamine 

inhibited p-STAT3 and silencing of ABCG2 and mimics of miR-26b also downregulated 

the expression of p-STAT3.  

Conclusion: Shikonin enhances the anti-cancer effect of cabazitaxel in prostate can-

cer stem cells and reverses the cabazitaxel resistance by inhibiting ALDH3A1 and 

ABCG2. Berbamine targets both prostate cancer cells and prostate cancer stem cells 

and reverses the cabazitaxel resistance through berbamine/CXCR4/let-7 fami-

ly/IGF2BP1 axis and berbamine/ABCG2/miR-26b/p-STAT3 axis. 
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1. Introduction 

1.1 Objectives of the study 

Prostate cancer (PCa) is the most frequent malignant disease and a leading cause of 

cancer death in the male population in the world in 2020. The incidence of prostate 

cancer ranks first among men in developed countries. A total of 1.4 million new cases 

and 375,000 PCa-related deaths were counted worldwide in 2020 [1]. Normally, PCa 

patients will be initially treated by prostatectomy, followed by treatment with Gonado-

tropin-releasing hormone (GnRH) analogs to repress the androgen receptor signaling 

pathway [2]. Unfortunately, with disease progression, patients develop resistance to 

GnRH analogs. Patients with castration-resistant prostate cancer (CRPC) were treated 

with chemotherapeutic drugs like docetaxel and cabazitaxel, or with other agents like 

abiraterone acetate and enzalutamide [3]. Nevertheless, most of the CRPC patients 

develop resistance to these drugs and nearly 60% of the patientsdeveloped metasta-

ses during the first five years [4]. Once CRPC patients obtain resistance to docetaxel, 

the second-line chemotherapeutic drug, cabazitaxel will be applied  [5] and is still active 

in CRPC patients even after treatment with ten cycles of docetaxel [6]. Therefore, it is 

crucial and meaningful to find new agents to target prostate cancer stem cells and re-

verse the drug resistance of cabazitaxel. 

The objective of this thesis was to identify novel phytochemicals from traditional herbs 

targeting prostate cancer stem cells, and to reverse the cabazitaxel-resistant state in 

prostate cancer. Various approaches were used for the selection of promising candi-

date phytochemicals, including viability, proliferation, migration, invasion, and apoptosis 

assays. Based on our preliminary research, we mainly focus on shikonin and ber-

bamine, since there are almost no data available about the role of shikonin and ber-

bamine in prostate cancer stem cells and reversal of cabazitaxel resistance. Also, po-

tential mechanisms of shikonin and berbamine involved in targeting prostate cancer 

stem cells and reversing the cabazitaxel resistant state were investigated. Additionally, 

genes related to cancer stem cells were analyzed in this study. Details of cancer stem 

cells, and other investigated cancer stem cell markers, and shikonin and berbamine 

were provided in the following sections.  
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1.2 Cancer stem cells 

Cancer stem cells (CSCs) are a small subpopulation of undifferentiated cancer cells, 

responsible for tumor progression, invasion, tumor spread, and therapeutic relapse. 

Those CSCs maintain self-renewal, stemness properties similar to other types of stem 

cells [7, 8]. Cancer relapse is the result of resistant CSCs existing in the primary tumor, 

and their abilities of sphere formation and self-renewal. Furthermore, those resistant 

CSCs can drive metastatic tumors through vessel spread ([9], Figure 1).  

 

Figure 1. Cancer stem cells drive drug resistance and distant metastasis. Heterogeneous 

tumors contain CSCs, that support tumor cell proliferation due to their ability of self-renewal. 

Then, tumor recurrence and metastases will appear (Figure created with BioRender.com). 

 Concept of CSCs 

For the concept of CSCs, it was initially detected in leukemia and myeloma. Among 

those cancer cells, just a small part of cancer cells hold the capacity of extensive prolif-

eration [10]. Merely 1 in 10000 to 1 in 100 myeloma cells can form colonies in vitro us-

ing colony formation assay. When injected those leukemia cells back in vivo, only 1-4% 

of the cells could form spleen colonies [10]. Those cancer cells with the principal prop-

erty of clonal tumor initiation ability and clonal long-term repopulation potential are 

called cancer stem cells. Different theories have shown that CSCs can be derived from 

normal stem cells induced by gene mutations or from tumor cells or dedifferentiated 

cells through abnormal genetic and epigenetic changes [11] (Figure 2).   
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Figure 2. The origin of CSCs in tumor development.  The CSCs can be derived from normal 

stem cells, progenitor cells, or differentiated cells through gene mutations. In addition, cancer 

cells can be transformed into CSCs through epithelial-mesenchymal transition (EMT) (Figure 

created with BioRender.com). 

 Mechanisms of CSCs related to drug resistance 

So far, several mechanisms of therapy resistance of CSCs have been revealed, includ-

ing cell cycle quiescence [12], overexpression of efflux pumps, like ABCG transporter 

proteins and detoxifying enzymes [13-16], or anti-apoptotic proteins, like Bcl-2, Bcl-X, 

and c-FLIP [13, 17, 18], forming a protective niche and repair DNA damage [13], boost-

ing the activity of aldehyde dehydrogenase (ALDH) [19], activating the prosurvival sig-

naling proteins such as NOTCH, Wnt/β-catenin, and NF-κB [19-21], enhancement in 

activities of PI3K/Akt/mTOR pathway and maternal embryonic leucine zipper kinase 

(MELK) [18, 22, 23]. The factors related to drug resistance in CSCs [11] are shown in 

Figure 3.  
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Figure 3. The factors contributing to drug resistance in CSCs. The factors, activation of cell 

cycle quiescence, cell prosurvival signaling pathways, PI3K/Akt/mTOR pathway, enhancement 

of efflux pumps, anti-apoptotic proteins, ALDH, MELK, and elevated DNA damage repair lead to 

CSC resistance (Created with BioRender.com). 

 Cancer stem cell markers correlate to drug resistance 

There are several prostate cancer stem cell markers involved in drug resistance. First 

of all, ATP-binding cassette G2 (ABGC2) is highly expressed in prostate cancer stem 

cells (PCSCs). ABCG2 obtains the energy produced by ATP hydrolysis to discharge 

the anti-tumor drugs out of the tumor cells [24], which makes cancer cell survival in a 

low concentration of drugs [25]. Elevated ABCG2 contributes to drug resistance against 

agents such as taxanes, tyrosine kinase inhibitors, doxorubicin, and mitoxantrone [26]. 

High expression of ABCG2 leads to drug resistance in a variety of cancers [27]. When 

inhibiting the expression of ABCG2, cancer cells gain sensitivity to therapeutic agents 

[28]. Several signaling pathways proved that regulating ABCG2 expression confers 

drug resistance.  Suppression of the PI3K/AKT signaling pathway counteracts the pro-

tective effects of ABCG2 against the chemotherapeutic agent in human multiple mye-

loma [29]. Inhibition of the PI3K/AKT and the MAPK/ERK signaling pathway downregu-

lates the ABCG2 expression in prostate cancer stem cells [30]. Also, 

SIRT1/CREB/ABCG2 pathway contributes to cisplatin resistance in gastric cancer stem 

cells [31]. Another cancer stem cell marker, aldehyde dehydrogenase (ALDH), has 

been reported that correlated to drug resistance [32]. The ALDH family includes several 
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subtypes of ALDH1, ALDH2, and ALDH3, which play an important role in maintaining 

the detoxification process by oxidizing aldehydes to corresponding carboxylic acids [33]. 

ALDH3A1 and ALDH1A1, also belonging to the ALDH family are markers of PCSCs, 

whose expression correlates with PCa progression [23, 34, 35]. Inhibition of the Wnt/ 

beta-catenin signaling pathway represses ALDH3A1 expression, and then reduces 

temozolomide resistance in glioblastoma [17]. Next, C-X-C Motif Chemokine Receptor 

4 (CXCR4) is another prostate cancer stem cell marker. High expression of CXCR4 

associates with an increased risk of distant metastasis and local recurrence in PCa 

[36]. Interestingly, inhibition of the expression of CXCR4 resensitizes prostate cancer 

cells to docetaxel [37]. 

 Signaling pathways in CSCs  

Several signaling pathways play an essential role in maintaining the stemness proper-

ties of CSCs, including Hedgehog, Wnt/β-catenin, Notch pathway, and TGFβ/BMP [11]. 

They are dysregulated in different kinds of cancers via epigenetic modifications [38]. 

These aberrant epigenetic changes in such signaling pathways enhance tumor pro-

gression, invasion, metastasis, and resistance through maintaining CSCs [39]. The 

signaling pathways regulated by epigenetic modifications [11] are shown in Figure 4. 

 

Figure 4. The major signaling pathways are regulated by epigenetic mechanisms in 

CSCs. Epigenetic dysregulation of signaling pathways in CSCs enables tumor cells to maintain 

self-renewal properties and stay in a drug-resistant state. The hedgehog signaling pathway is 
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activated via sonic hedgehog ligand (Shh) promoter hypomethylation, which is increased by the 

overexpression of histone deacetylases 1 (HDAC1), and decreased by the SWI/SNF chromatin-

remodeling complex subunit (SNF5). Wnt signaling pathway is enhanced by inhibiting the ex-

pression of Dickkopf-related protein 1 (DKK1) through promoter hypermethylation, which en-

hances the H3K27me3, reduces acetylation at H3K16. DKK1 is an antagonist of Dishevelled 

(DVL) which is a cytoplasmic scaffold protein working in the Wnt signaling pathway. The notch 

signaling pathway is activated by enhancing the expression of hairy and enhancer of split-1 

(HES1) and hairy and enhancer of split-5 (HES5) through promoter hypermethylation of 

STRAP. (Figure created with BioRender.com) 

 

The Hedgehog signaling pathway is mainly involved in tissue homeostasis, regenera-

tion of CSCs, embryonic development [40], and epithelial-to-mesenchymal transition of 

cells [41]. Hedgehog signaling is involved in the progression of different types of can-

cers, including basal cell carcinoma, gastrointestinal tumors, prostate cancer, breast 

cancer, glioblastoma, leukemia, and myeloma [42]. The Hedgehog network includes 

extracellular Hedgehog ligands, the transmembrane protein receptor PTCH (Patched 

1), the transmembrane protein SMO (Smoothened), intermediate transduction mole-

cules, and the downstream molecule GLI (Glioma-associated oncogene) [43]. The ab-

errant Hedgehog pathway plays an essential role in stem maintenance, self-renewal, 

and regeneration of CSCs for reasons that Hedgehog drives tumor growth and devel-

opment and supports residual cancer cells after treatment [44]. When the Hedgehog 

ligand binds to PTCH, then rescue the suppression of SMO, and this whole cascade 

contributes to the translocation of GLI into the nucleus. Furthermore, the GLI family 

regulates the target genes of Hedgehog [45]. Also, the Hedgehog signaling pathway 

regulates different types of cancer stem cell markers or transcription factors, which are 

crucial for stemness properties and drug resistance, such as Oct4, Bmil, Sox2, ALDH1, 

Twist1, Wnt2, CCND1, CD44, SNAI1 (snail family zinc finger 1), CXCR4, C-MYC, 

ABCG2, C-MET, ABCB1, and Jagged 1 [44, 46, 47]. The Hedgehog pathway also 

regulates Nanog, which is a crucial transcription factor for CSCs to maintain stemness 

properties, self-renewal, and differentiation [48].  Activation of Hedgehog signaling 

pathway drives the CSCs in hepatocellular carcinoma [49], glioblastoma [50, 51], 

breast cancer [52, 53], colorectal adenocarcinoma [54], pancreatic cancer [55], and 

lung cancer [56].  

Wnt/β-catenin signaling pathway plays a crucial role in the maintenance, expansion, 

and epithelial-mesenchymal transition of CSCs [57, 58]. The process that Wnt ligands 

bind to the co-receptors Frizzled and LRP 5/6 at the cell surface, stabilizes the cyto-

plasmic accumulation of β-catenin. The β-catenin then is transported into the nucleus, 
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activating the Wnt target genes, such as DKK1, Axin2, c-myc, cyclin D1, c-jun, which 

are important for the CSCs survival [59, 60]. Furthermore, Wnt signaling targets cancer 

stem cell markers, like CD44, CD24, EpCAM, and LGR5/GPR49 [59]. SOX2 regulates 

the activation of Wnt/β-catenin in CSCs, which promotes CSCs’ dedifferentiation and 

drug resistance [61]. Enhancer of Zeste 2 (EZH2) also targets Wnt/β-catenin signaling 

and maintains the stemness of CSCs in glioblastoma [62]. 

Notch signaling pathway represents a kind of communication between cells that is es-

sential for the regulation of stem cell proliferation, apoptosis, and cell fate during em-

bryonic development [63] and is also crucial for proliferation, survival, self-renewal, 

differentiation, angiogenesis, and migration of CSCs [64-66]. Notch is a transmem-

brane receptor, including four types classified as Notch 1, Notch 2, Notch 3, and Notch 

4. Activation of the receptors through binding to Notch ligands (Delta-like 1,3,4 and 

Jagged 1,2) releases the Notch intracellular domain into the nucleus and then influ-

ences the downstream genes [63]. Notch signaling pathway mediates the biological 

behaviors of CSCs such as self-renewal, differentiation, invasion, drug-sensitivity, and 

migration in hepatocellular carcinoma, colorectal carcinoma, pancreatic cancer, esoph-

ageal adenocarcinoma, and glioblastoma [63]. 

Transforming growth factor-beta (TGF-β) also has an active effect on forming CSCs 

and developing chemotherapeutic resistance [61]. TGF-β family ligands were activated 

by the assembly of a receptor complex with type I (main signal propagators) receptor 

components, and type II (activators) components. Receptor-phosphorylated SMAD 

proteins abbreviated R-SMAD can establish the transcriptional complexes, which are 

paired with other context-dependent transcription factors to regulate many different 

target genes [67]. TGF-β maintains CSCs' properties through enhanced cancer stem 

cell markers, such as CD133 in hepatocellular carcinoma [68, 69], and CD87 in lung 

cancer [70]. TGF-β pathway also influences the EMT progression through downregulat-

ing E-cadherin, and overregulating the levels of mesenchymal markers, like vimentin, 

N-cadherin, slug, fibronectin, and snail [70]. Keyvani-Ghamsari et al summarize the 

TGF-β/BMP signaling pathway in CSCs (Figure 5). 
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Figure 5. TGF-β/BMP pathway in CSCs. BMP (bone morphogenetic protein) signaling path-

way mediates the CSCs differentiation. The TGF-β/Activin/Nodal signaling pathway plays a role 

in CSCs reduction, expansion, and self-renewal. (Figure created with BioRender.com) 

 MicroRNAs in CSCs 

MicroRNAs (miRNAs), located in intergenic regions or introns of protein-coding genes, 

are non-coding RNAs that regulate genes through binding to the specific mRNAs [13].  

For nuclear processing, first, primary miRNA transcripts (pri-miRNAs) are generated 

from miRNA genes with the assistance of RNA polymerase II. Then, the enzyme 

Drosha cleaves the stem-loop of the pri-miRNAs. DGCR8 (DiGeorge syndrome critical 

region gene 8) contains an RNA-binding domain and is thought to stabilize the pri-

miRNAs by binding. Both Drosha and DGCR8 are building the microprocessor complex 

by which the precursor miRNAs (pre-miRNAs) are produced [71]. After that, pre-

miRNAs are transported into the cytoplasm by Exportin 5, where pre-miRNAs are fur-
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ther processed by the RNase III enzyme Dicer coupled to TRBP (transactivation re-

sponse element RNA-binding protein). The terminal loop is removed to produce miRNA 

duplex molecules (miRNA/miRNA*). The 5p strand of a mature miRNA derives from the 

5‘end of the pre-miRNA, and the 3p strand miRNA derives from the 3‘end of the pre-

miRNA. In the end, either miRNA or miRNA* can be loaded into the Argonaut protein 

complex 1-4 (Ago1-4), the catalytic component of the miRISC (miRNA-induced silenc-

ing) complex. The miRNAs can target mRNAs through binding to the 3’UTRs or the 

open reading frames of the miRNAs [71]. There are two mechanisms by which miRNAs 

downregulate the target mRNA expression. One is to inhibit the translation of mRNAs 

to proteins. The other one is the degradation of the target mRNA through destabiliza-

tion by decapping. Asadzadeh et. al has summarized the biogenesis and functions of 

miRNAs as shown in Figure 6 [71]. 

 

Figure 6. The biological origin and functions of miRNAs. The miRNA genes are transcribed 

by RNA polymerase II to form pri-miRNAs. The pri-miRNAs are then cleaved via the micropro-

cessor complex (DGCR8 and Drosha) into stem-loop structure pre-miRNAs. Then those pre-

miRNAs are exported to the cytoplasm with the assistance of Exportin 5. Furthermore, the pre-

miRNAs are cleaved into mature miRNA through RNase III enzyme Dicer, which forms a com-

plex with TRBP. The mature miRNA targeting mRNA is regulated by the RISC complex. The 

miRNAs regulate the specific genes by translation inhibition or degrading the mRNAs. DGCR8: 

DiGeorge syndrome critical region gene 8; miRNA: microRNA; mRNA: messenger RNA, pri-
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miRNA: primary miRNA, pre-miRNA: precursor miRNA, RISC: miRNA-induced silencing com-

plex, TRBP: transactivation response element RNA-binding protein. (Figure created with Bio-

Render.com) 

 

The miRNAs are released through apoptotic bodies when apoptosis happens in the 

extracellular space. MicroRNAs can be released through exosomes, AGO proteins, 

microvesicles, and high-density lipoproteins (HDL). Sohel et. al summarize the release 

mechanisms of circulating miRNAs [72] in Figure 7. 

 

Figure 7. Release mechanisms of circulating miRNAs. First, miRNAs can be sorted and 

transported via exosomes through membrane invaginates. Second, the Ago proteins can pro-

cess miRNAs by forming the miRISC complex, which can be released out of the cells. Third, 

healthy cells can generate microvesicles, which can convey miRNAs outside the cell through 

exocytosis. Fourth, the mature miRNAs can attach to high-density lipoproteins (HDL) to as-

semble a miRNA-HDL complex, which can be secreted out of the cells through exocytosis. 

(Figure created with BioRender.com). 

 

It has been reported that CSCs enrich miRNAs with oncogenic features. Some 

miRNAs, are oncogenic miRNAs such as miR-10b, miR-20a, miR-21, miR-27, miR-29, 

miR-155, others are tumor suppressor miRNAs like miR-7, miR-34, miR-142, miR-145, 
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miR-200, miR-214, miR-448. They are related to the stemness properties of CSCs, 

tumor progression, or drug resistance [71, 73]. The oncogenic miRNAs, like miR-9, 

miR-215, are highly expressed and related to tumorigenesis, and drug resistance in 

CSCs. On the opposite, the tumor suppressor miRNAs, like let-7, miR-218, miR-16, 

miR-122, miR-34, and miR-152 are mainly downregulated in CSCs [71, 73]. 

MicroRNAs can regulate the CSCs signaling pathways, such as Notch, Wnt/β-catenin, 

and Hedgehog pathways, which are discussed in 1.2.4. The signaling pathways influ-

enced by miRNAs [71] are shown in Figure 8.  

 

 

 

Figure 8. MicroRNAs involved in CSCs signaling pathways.  The miRNAs miR-26a and 

miR-141 can regulate the Notch signaling pathway through targeting JAG1. Also, miR-34a and 

miR-199-5p target Notch1 and Hes1. The Wnt/β-catenin signaling pathway can be influenced by 

miR-92a, -217, -543-3p, -600, -410, -1246, -92a, -19, -320 via targeting DKK, WIF1, SCD1, 

GSK-3β, and β-catenin. In addition, miR‐324 and miR‐326 regulate the Hedgehog signaling by 

directly targeting Gli1 and smoothened mRNAs. (JAG1: Jagged1; Hes1: hairy and enhancer of 

split-1;   NICD: Notch intracellular domain; DKK: dickkopf; WIF1: WNT Inhibitory Factor 1; DVL: 

Dishevelled; GSK3β: glycogen synthase kinase 3β; Tcf/Lef: T-cell factor/lymphoid enhancer 

factor; Gli1: glioma-associated oncogene homolog 1; miRNA: microRNA; mRNA: messenger 
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RNA; SCD1: stearoyl desaturase 1. (Figure created with BioRender.com)  

1.3 Phytochemicals 

 Shikonin 

Shikonin is one of the traditional Chinese medicines, which is derived from the roots of 

lithospermum erythrorhizon [74] and has anti-oxidant, anti-inflammatory, anti-

thrombotic, and anti-cancer effects [75-77].          

The chemical structure of shikonin is obtained from the PubChem database 

(https://pubchem.ncbi.nlm.nih.gov/compound/Shikonin) and shown in Figure 9. 

 

Figure 9. The structure of shikonin in 2-Dimensions and 3-Dimensions. The left graph 

shows the 2-dimensional structure of shikonin, the right graph shows the 3-dimensional struc-

ture. 

 

Increasing evidence proves that shikonin induces autophagy by suppressing the AKT 

signaling pathway [78, 79], and impedes the growth of prostate cancer cells through 

modulating the androgen receptor [80]. Importantly, shikonin suppresses the viability 

[81] and proliferation of glioblastoma stem cells in a dose- and time-dependent manner, 

induces cell cycle arrest in G0/G1 and S phases, and promotes apoptosis [82]. Fur-

thermore, an 18-months study shows that shikonin does not induce chemoresistance 

[83]. Taken together, we would like to investigate whether shikonin has anti-tumor ef-

fects on prostate cancer stem cells and whether shikonin is capable of reversing the 

drug resistance in our study. 

 Berbamine  

Berbamine is a natural compound derived from the roots and barks of Berberis vulgaris 



INTRODUCTION 

21 

 

[84]. The chemical structure is from PubChem database  

(https://pubchem.ncbi.nlm.nih.gov/compound/275182) and shown in Figure 10. 

 

Figure 10. The structure of berbamine in 2-Dimensions and 3-Dimensions. The left graph 

shows the 2-dimensional structure of berbamine, the right graph shows the 3-dimensional struc-

ture. 

 

Berbamine has anti-cancer activities in different types of cancers, such as chronic mye-

loid leukemia [85], breast cancer [86], and melanoma [87]. Promisingly berbamine can 

target the CSCs in glioblastoma [88]. Berbamine efficiently triggers apoptosis of leuke-

mia stem cells through inhibiting phosphorylation of CaMKII γ [89]. The role of ber-

bamine in prostate cancer stem cells and drug resistance will be investigated in this 

study. 

 

https://pubchem.ncbi.nlm.nih.gov/compound/275182
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2. Material and Methods 

Parts of this chapter were already published in American Journal of Cancer Research 

[90]: Wang L, Stadlbauer B, Lyu C, Buchner A, Pohla H: Shikonin enhances the anti-

tumor effect of cabazitaxel in prostate cancer stem cells and reverses cabazitaxel re-

sistance by inhibiting ABCG2 and ALDH3A1. Am J Cancer Res 2020, 10:3784-3800. 

2.1 Materials  

 Cell lines 

The prostate cancer cell lines DU145, derived from a metastatic brain lesion and PC-3, 

derived from a metastatic bone marrow lesion, were used throughout the project. They 

were purchased from the DSMZ German Collection of Microorganisms and Cell Culture 

GmbH. The DU145 cancer stem cells (DU145 CSCs) and PC-3 cancer stem cells (PC-

3 CSCs) were generated by the sphere formation assay as described in section 2.2.2. 

 Antibodies 

Table 1. Antibody list 

Antibodies Clone Company 

• APC-Annexin V   - • BD Biosciences, Heidelberg, 

Germany 

• Goat anti-mouse IgG H&L (Alexa Fluor® 

488) 

- • Abcam, Cambridge, UK 

• Goat anti-mouse IgG H&L (FITC) - • Dianova, Hamburg, Germany 

• Goat anti-rabbit IgG H&L (Alexa Fluor® 

647) 

- • Abcam, Cambridge, UK 

• Goat anti-rabbit lgG H&L (Alexa Fluor® 

488) 

- • Invitrogen, Waltham, USA 

• Goat pAb to Rb lgG (HRP) - • Abcam, Cambridge, UK 

• Mouse monoclonal ABCG2 BXP-21 • Abcam, Cambridge, UK 
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• Mouse monoclonal ABCG2antibody 

(APC) 

5D3 • BD Biosciences, Heidelberg, 

Germany 

• Mouse monoclonal CXCR4 monoclonal 

(PE) 

12G5 • BD Biosciences, Heidelberg, 

Germany 

Mouse 23hosphor-Stat3 (Tyr705)  

•  

3E2 • Cell Signaling Technology, 

Massachusetts, USA 

• Mouse Stat3 124H6 • Cell Signaling Technology, 

Massachusetts, USA 

• Rabbit monoclonal Calnexin lgG • EPR3633(2) • Abcam, Cambridge, UK 

• Rabbit monoclonal CD9 lgG • EPR2949 • Abcam, Cambridge, UK 

• Rabbit monoclonal HSP70 lgG • EPR16892 • Abcam, Cambridge, UK 

• Rabbit monoclonal TSG101 lgG • EPR7130(B) • Abcam, Cambridge, UK 

• Rabbit monoclonal LIN28B lgG  • EPR18717 • Abcam, Cambridge, UK 

• Rabbit polyclonal ALDH3A1  - • Abcam, Cambridge, UK  

 Reagents and materials 

Table 2. Reagent list 

Reagents  Company 

7-aminoactinomycin D BD Biosciences, Heidelberg, Germany 

A37 (ALDH1A1 inhibitor) TOCRIS Bioscience, UK 

ALDEFLUORTM Kit StemCell Technologies, Grenoble, France 

AMD3100 (CXCR4 inhibitor) Merck-Millipore, USA 

B-27  Life Technology Grand Island, NY, USA 

Berbamine Selleckchem, Houston, Texas, USA 

BoltTM Antioxidant Life technologies, Carlsbad, USA 

BoltTM LDS Sample Buffer (4x) Life technologies, Carlsbad, USA 
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BoltTM Sample Reducing Agent (10x) Life technologies, Carlsbad, USA 

BoltTM MES SDS Running Buffer (20x) Life technologies, Carlsbad, USA 

BSA Sigma, St. Louis, USA 

BTYNB IMP1 Inhibitor (IGF2BP1 inhibitor) Cayman CHEMICAL, ANN ARBOR, USA 

Cabazitaxel Selleckchem, Houston, Texas, USA 

CB29 (ALDH3A1 inhibitor) Sigma Aldrich, St. Louis, USA 

CellTiter 96 Aqueous One Solution Cell 

Proliferation Assay  

Promega, Madison, USA 

CellTiter-Blue Cell Viability Assay Promega, Madison, USA 

Cryptotanshinone (CPT, p-STAT3 inhibitor) Selleckchem, Houston, Texas, USA 

Cytofix/ CytopermTM Kit BD Biosciences, Heidelberg, Germany 

DCFDA Cellular ROS Detection Assay Kit  Abcam, Cambridge, UK 

DMEM Life Technologies Europe, Bleiswijk, The 

Netherlands 

EDTA Ambion, USA 

Epidermal growth factor (EGF) Sigma Aldrich, St. Louis, USA 

ExoQuick-TCTM Tissue Culture Media Exo-

some Precipitation Solution 

System Biosciences, Palo Alto, CA, USA 

FastStart Essential DNA Green Master kit Roche, Penzberg, Germany 

Fetal calf serum Bio&Sell,GmbH, Feucht, Germany 

Growth factor reduced Matrigel Basement 

Matrix  

Corning, NY, USA 

Human recombinant basic fibroblast growth 

factor (bFGF) 

Sigma Aldrich, St. Louis, USA 

Ibidi mounting medium Ibidi, Martinsried, Germany 

JC-1 mitochondrial membrane potential kit  Abcam, Cambridge, UK 
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Ko143 (ABCG2 inhibitor) Tocris Biosciences, Bio-Techne GmbH, 

Wiesbaden-Neuenstadt, Germany 

L-glutamine Invitrogen, Life Technologies, Eugene 

Oregon, USA 

Lipofectamine RNAiMAX Reagent  Invitrogen, Life Technologies, Eugene 

Oregon, USA 

LIVE/DEAD® Fixable Blue Dead Cell Stain 

Kit  

Invitrogen, Life Technologies, Eugene 

Oregon, USA 

Minimal essential medium (MEM) Invitrogen, Life Technologies, Eugene 

Oregon, USA 

miRCURY® LNA® miRNA SYBR® Green 

PCR 

Qiagen, Hilden, Germany 

miRCURY® LNA® RT Kit Qiagen, Hilden, Germany 

miRCURY® Exosome Cell/Urine/CSF Kit Qiagen, Hilden, Germany 

miRNeasy Micro Kit Qiagen, Hilden, Germany 

miRNeasy Tissue/Cells Advanced Mini Kit Qiagen, Hilden, Germany 

mirVana miRNA mimic Negative Control Ambion, USA  

Molecular Probes® NucBlue® Fixed Cell 

Stain ReadyProbes® reagent (DAPI special 

formulation,) 

Thermo Fisher Scientific, Waltham, USA 

NCT-501(ALDH1A1 inhibitor) Selleckchem, Houston, Texas, USA 

OPTI-MEM reduced serum medium Life Technologies, Paisley, UK 

PBS  Invitrogen, Darmstadt, Germany 

Phosphatase Inhibitor Cocktail 1-3 Sigma Aldrich, St. Louis, USA 

PierceTM BCA Protein Assay Kit Thermo Fisher Scientific, Rockford, IL, USA 

Reverse transcription system Promega, Madison, USA 

RIPA lysis buffer Thermo Fisher Scientific, Waltham, USA 

RNeasy Mini-Kit  Qiagen, Hilden, Germany 
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RPMI 1640 medium Invitrogen, Darmstadt, Germany 

SeeBlue® Plus2 Pre-Stained Protein Stand-

ard 

Life Technologies, Thermo Fisher Scientific  

Shikonin Selleckchem, Houston, Texas, USA 

Silencer® Select GAPDH positive control Ambion, USA 

Silencer® Select negative control  Ambion, USA 

SNORD48 Qiagen, Maryland, USA 

Sodium pyruvate Invitrogen, Life Technologies, Eugene 

Oregon, USA 

StemPro® Accutase® Life Technologies, Thermo Fisher Scientific 

SuperSignalTM West Pico PLUS Chemilu-

minescent Substrate 

Thermo Scientific, Rockford, IL, USA 

Triton X-100 Sigma Aldrich, St. Louis, USA 

WZ811(CXCR4 inhibitor) Selleckchem, Houston, Texas, USA 

 

Table 3. Material list 

Materials Company 

Blot Development Folders Advansta, San Jose, CA, USA 

BoltTM 4-12% Bis-Tris Plus Thermo Fisher Scientific, Carlsbad, CA, USA 

Cryo Tube Vitals  Thermo Fisher Scientific, Roskilde, Denmark 

FALCON 75 cm2 Flasks Corning, NY, USA 

FALCON 25 cm2 Flasks Corning, NY, USA 

iBind® 2 PVDF Regular Stacks Thermo Fisher Scientific, Kiryat Shmona, 

Israel 

IBindTM Flex Card Thermo Fisher Scientific, Kiryat Shmona, 

Israel 

iBindTM Flex Solution Kit  Thermo Fisher Scientific, Carlsbad, CA, USA 

Ultra-Low Attachment 75 cm2 flasks Corning, Kennebunk, ME, USA 

16-well chambered coverslips Thermo Fisher Scientific, NY, USA 

40 µM nylon mesh  BD Biosciences, Heidelberg, Germany 
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Silicone inserts for migration assay ibidi GmbH, Martinsried, Germany 

The transwell inserts in 24-well plates (8.0 

µm pores) for invasion assay 

Falcon, Corning, NY, USA 

Tissue Culture Plate, 6 Well Corning, NY, USA 

Tissue Culture Testplate 24 TPP, Switzerland 

Tissue Culture TestPlate 96F TPP, Switzerland 

 Primers 

The primers for miRCURY LNA miRNAs of let-7a, let-7b, let-7d, let-7f, let-7g, let-7i, 

miR-98, miR-26a, miR-26b were designed and synthesized from Qiagen (Maryland, 

USA). The primers for our target genes were listed in Table 4. 

    Table 4. Primers list 

Gene Forward primer Reverse primer 

ABCG2 CAT CAA CTT TCC GGG GGT GA CAC TGG TTG GTC GTC AGG AA 

ACTB CTG CCC TGA GGC ACT C GTG CCA GGG CAG TGA T 

ALDH1A1 TGT TAG CTG ATG CCG ACT TG TTC TTA GCC CGC TCA ACA CT 

ALDH3A1 GCA GAC CTG CAC AAG AAT GA TGT AGA GCT CGT CCT GCT GA 

CXCR4 TGG GTG GTT GTG TTC CAG TTT ATG CAA TAG CAG GAC AGG ATG 

GAPDH CAT GGG TGT GAA CCA TGA TGT CAT GGA TGA CCT TGG 

HMGA1 CCA AGG GGC AGA CCC AAA AA GCA AAG CTG TCC AGT CCCA 

HMGA2 CAG GAA GCA GCA GCA AGA AC GCC TCT TGG CCG TTT TTC TC 

IGF2BP1 TGA CGA GGT TCC CCT GAA GA GCA ACA ATT CTC GAT GGC CC 

LIN28B AAAGCACATTAGACCATGCGAG CCCTCAGCTCCAAACTCGTG 

PTEN ATT CCC AGT CAG AGG CGC TA CAC CTT TAG CTG GCA GAC CA 

STARD13 CTG TCT CAG AAG GTC GGA CG GCT TGT TGG ACA TGG AGT GC 

STAT3 AGC AGC ACC TTC AGG ATG TC GCA TCT TCT GCC TGG TCA CT 
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 miRCURY LNA miRNA Mimics and Power Inhibitors  

Table 5. miRCURY LNA miRNA Mimics and Power Inhibitors 

microRNAs Sequence 5‘-3‘ 

Let-7 Power inhibitor C*A*A*C*C*T*M*C*T*A*C*C*T*C 

A*C*A*A*C*T*T*A*C*T*A*C*C*T*C 

A*C*A*A*W*C*T*A*C*T*A*C*C*T*C 

Let-7a mimics UGA GGU AGU AGG UUG UAU AGU U 

Let-7b mimics UGA GGU AGU AGG UUG UGU GGU U 

Let-7i mimics UGA GGU AGU AGU UUG UGC UGU U 

miR-26 Power inhibitor A*T*C*C*T*G*R*A*T*T*A*C*T*T*G*A 

miR-26a mimics UUC AAG UAA UCC AGG AUA GGC U 

MiR-26b mimics UUC AAG UAA UUC AGG AUA GGU 

Note: All the mimics and inhibitors are designed and synthesized from Qiagen (Maryland, USA). 

The miRCURY LNA miRNA Power Inhibitors contain phosphorothioate bonds indicated by “*”. 

The inhibitors contain mixed DNA bases, which are indicated within the sequence (K = G, T; M 

= A, C; R = A, G; S = C, G; W = A, T; Y = C, T). 

 

 siRNAs 

Table 6. Silencer ® Select siRNAs (ThermoFisher Scientific) 

Target gene   

symbol 

Sense strand (5'-3') Anti-sense strand (5'-3') 

ABCG2 CUCUGACGGUGAGAGAAAAtt UUUUCUCUCACCGUCAGAGtg 

ALDH3A1 GGAACUCAGUGGUCCUCAAtt UUGAGGACCACUGAGUUCCct 

CXCR4 CCUGUUUCCGUGAAGAAAAtt UUUUCUUCACGGAAACAGGgt 

 Apparatus and software 

Table 7. Apparatus and software 
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Apparatus and software Company 

BD CellQuest software (version 4.0.2) BD Biosciences, Heidelberg, Germany 

Confocol microscope SP5  Leica, Munich, Germany 

Electrophoresis Power Supply-EPS 301 Amersham Biosciences, Sweden 

Emax precision microplate reader MWG Biotech, Ebersberg, Germany 

FACSCalibur  Becton Dickinson, San Jose, CA, USA 

Fiji ImageJ software  Homepage:https://imagej.net/software/fiji/ 

(Reference: [91]) 

FlowJo software (version 9.9.5). Tree Star Inc., Ashland, OR, USA 

Fluor-STM Multilmager BIO-RAD, USA 

FLUOstar OPTIMA microplate reader BMG LABTECH, Ortenberg, Germany 

High-speed Centrifuge  Eppendorf, Hamburg, Germany 

iBind® Flex Western Device Thermo Fisher Scientific, Israel 

iBlot® 2 Cell Transfer Device Thermo Fisher Scientific, Kiryat Shmona, Is-

rael 

Light Cycler® 96  Roche, Penzberg, Germany 

Lightcycler® 96 software (1.1 version) Roche, Penzberg, Germany 

LSRII flow cytometer  BD Biosciences, Ebersberg, Germany 

NanoDrop 2000  Thermo Fisher Scientific, NY, USA 

OPTIMA software version 2.0 BMG LABTECH 

SPSS version 25.0  IBM, Armonk, NY, USA 

Web-based Automated Cellular Analysis 

System  

ACAS, MetaVì Labs, Bottrop, Germany 

XCell SureLockTM Electrophoresis Cell Invitrogen, USA 

2.2 Methods 

 Cell culture 

DU145 and PC-3 were grown in RPMI1640 supplemented with 10% fetal calf serum 
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(FCS), 1% minimal essential medium, 1 mM sodium pyruvate, and 2 mM L-glutamine 

under the condition of  5% CO2  at 37 ℃. The PCSCs were generated using CSC me-

dium containing DMEM/F12 medium supplemented with 2% B-27, 10 ng/ml epidermal 

growth factor (EGF), and 10 ng/ml basic fibroblast growth factor (bFGF). 

 Sphere-forming assay 

All the PCSCs were generated by the sphere-forming assay in CSC specific medium 

as described in 2.2.1. Initially, PCa cells (DU145 and PC-3) were harvested using 3-5 

ml Accutase cell detach solution and incubated for 8-10 minutes at 37 ℃. Collected 

cells were counted using a hemocytometer. Then, around 3-10 × 105 cells were seeded 

in a 75 cm2 low-attachment flask and cultured with 10 ml CSC specific medium for 7 

days. Spheric PCSCs were harvested using Accutase cell detach solution. After disso-

ciation, PCSC cells were filtered through a 40 µm nylon mesh, counted, and used for 

the different assays. For CSC enrichment, dissociated spheres were used for a second 

round of sphere formation.  

 Drug sensitivity assay 

To evaluate the viability of PCa cells and PCSCs treated by different phytochemicals 

and drugs, the drug sensitivity assay was conducted using the CellTiter Blue Kit. Initial-

ly, cells were dissociated using Trypsin/EDTA for PCa cells or Accutase cell detach 

medium for PCSCs. After that, a total of 1-5 × 105 cells per well were seeded in 96-well 

plates and incubated overnight at 37 ℃ and 5% CO2. The next day, the cell culture 

medium was discarded and exchanged with culture medium containing different con-

centrations of phytochemicals or other agents. The wells containing culture medium 

without cells were set up as background control, and the wells with cells but without 

phytochemicals or other agents were considered as the control group. Then, after 24 

hours and 48 hours, 20 µl CellTiter Blue solution were added and the plate was incu-

bated for one hour at 37 ℃ with 5% CO2. Fluorescence was measured using the FLU-

Ostar OPTIMA microplate reader at 560 (20) nm excitation and at 590 (10) nm emis-

sion. The data were collected and evaluated using the OPTIMA software version 2.0. of 

The logit regression model was used to calculate the half-maximal inhibitory concentra-

tion abbreviated as IC50. 

 Development of cabazitaxel-resistant DU145 cell line  
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To investigate the effect of phytochemicals or other agents on cabazitaxel-resistant 

PCa cells, we established a cabazitaxel-resistant DU145 cell line. At the beginning, a 

total of 1 × 106 DU145 cells were seeded in a 75 cm2 flask with cabazitaxel at a con-

centration of 1 nM and 2 × 105 cells were seeded without cabazitaxel as a control. At 

confluency of the control cells, all cells were harvested and then seeded again. Once 

the DU145 cells gained resistance to 1 nM cabazitaxel, the cells were cultured with 

stepwise increasing cabazitaxel concentrations. The DU145 cells were cultured with 

cabazitaxel for at least eight months until a concentration of 6 nM cabazitaxel was 

reached. The cell viability assay was conducted to judge the resistance degree com-

pared to the control cells cultured in parallel. 

 Cell proliferation assay 

To determine the proliferative ability of PCa cells and PCSCs treated by phytochemi-

cals or other agents, the cell proliferation assay was carried out using the CellTiter 96 

Aqueous One Solution Kit. A total of 1-5 × 103 cells per well were seeded in 96-well 

plates and incubated overnight at 37 ℃ and 5% CO2. The next day, the culture medium 

was exchanged with or without phytochemicals or other agents. The wells without cells 

were again used as background controls, while the wells with cells but without treat-

ment were the control group. The proliferation would be assessed after 24 hours, 48 

hours, or 72 hours with separate plates for different time points. A volume of 20 µl 

CellTiter 96 Aqueous One Solution was added to each well, and the plates were incu-

bated for three hours at 37 ℃ and 5% CO2. Finally, the data were collected using the 

Emax microplate reader at 490 nm for absorbance.  

 Apoptosis assay 

To analyze the apoptosis rate of PCa cells and PCSCs caused by phytochemicals or 

other agents, the apoptosis assay was executed by flow cytometry. A total of 2-4 × 105 

cells were seeded in 25 cm2 flasks and incubated overnight at 37 ℃ and 5% CO2. On 

the next day, the culture medium was exchanged with or without phytochemicals or 

other agents. After 5 days of incubation, the cells were harvested using 500 µl of Tryp-

sin/EDTA for five minutes at 37 ℃ and 5% CO2. Then, a volume of 100 µl Annexin V 

binding buffer was added to the cells. Afterwards 5 l APC-conjugated Annexin V and 

7-aminoactinomycin D (7-AAD) were added and the cells were incubated for 15 

minutes at room temperature. Then, 100 µl Annexin V binding buffer was added again, 

the cells were put on ice, and measured using the FACSCalibur within one hour. For 
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each sample, a minimum of 1×104 cells was recorded. Data acquisition was done using 

BD CellQuest software and analyzed using FlowJo version 9.9.5. The Annexin V posi-

tive cells were considered as apoptotic cells. 

 Scratch wound healing assay 

To evaluate the migration ability of PCa cells and PCSCs influenced by phytochemicals 

or other agents, the scratch wound healing assay was done using special 24-well µ-

plates containing small 2-well silicone inserts per well. Those special inserts form a 

cell-free gap of 500 m as space for the cells to migrate. The protective foil attached to 

the bottom of the µ-plate was removed by hand. Then, 70 l of a cell suspension of 4 x 

105 cells/ml culture medium were added to each small insert. The cells were incubated 

at 37 ℃ and 5% CO2 for at least 24 hours until a confluent cell monolayer was 

achieved. The 2-well inserts were taken out with sterile tweezers and the cell layer was 

washed with PBS to remove cell debris and non-attached cells. Next, new culture me-

dium with or without the phytochemicals at different concentrations was added to the 

cells. Pictures were taken at several time points like 0 h, 3 h, 6 h, 9 h, 21 h, 24 h, 27 h, 

and 30 h. The percent of covered area of the gap was assessed and analyzed by the 

Automated Cellular Analysis System based on the FastTrack AI image analysis algo-

rithms. 

 Invasion assay 

To investigate the invasiveness of PCa cells and PCSCs influenced by the phytochem-

icals or other agents, the invasion assay was done using the Boyden Chamber system 

with transwell inserts in 24-well plates coated with growth factor reduced Matrigel 

Basement Matrix (30 g/100 l/insert). The plates were incubated for at least four 

hours at 37 ℃ and 5% CO2. The cells were harvested using Trypsin/EDTA, washed 

once with PBS, and resuspended in DMEM medium without FCS to reach a cell con-

centration of 4 × 105/ml. Before seeding the cells onto the Matrigel, the residual liquid 

should be discarded carefully from the Matrigel. A volume of 125 µl cells was seeded in 

the inserts, and another 125 µl FCS-free medium with or without phytochemicals were 

added. In the lower chamber, a volume of 750 µl medium containing 10% FCS was 

added. The plates were incubated for two days. Afterwards, the liquid in the inserts was 

pipetted out, and the Matrigel on the upper surface of the membrane was carefully 

wiped using pre-wetted cotton swabs to remove not migrated cells. Next, the inserts 
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were put into a 24-well plate containing 4% paraformaldehyde and incubated for 5 

minutes to fix the cells, which had moved through the Matrigel to the lower surface of 

the membrane. Then, the inserts were stained in 1% crystal violet for 1 minute, washed 

with water, and dried on a paper towel at room temperature. The pictures were taken 

by a digital camera (three fields per insert) and the cells were counted using the Fiji 

Image J software. The number of cells in one picture was considered as invaded cell 

number. 

 Measurement of aldehyde dehydrogenase (ALDH) 

To measure the ALDH expression influenced by phytochemicals in PCa cells and 

PCSCs, the ALDEFLUOR™ kit was used. At first, 3 × 105 cells were seeded in 25 cm2 

ultra-low attachment flasks with or without phytochemicals at different concentrations 

and cultured for 24 hours. After 24 hours, cells were dissociated using Accutase and 

washed once with PBS. To exclude dead cells, 5 µl 7-AAD was added and the cells 

were incubated for 15 minutes at room temperature. After being washed once with 

PBS, the cells were mixed with 400 µl ALDEFLUOR™ Buffer and transferred into flow 

cytometry tubes. Diethylaminobenzaldehyde (DEAB), a specific ALDH inhibitor was 

used as the control for background fluorescence and therefore, 1 l DEAB reagent was 

added into an empty control tube and recapped immediately. One microliter activated 

ALDEFLUOR™ reagent (BODIPY-aminoacetaldehyde, BAAA) was added to the cells 

in the test tube. After being mixed well, 200 l of the test samples were transferred im-

mediately into the control tubes. The test and control samples were incubated for 45 

minutes at 37 ℃ and 5% CO2 and centrifuged for 5 minutes at 250 g. The supernatant 

was removed and the cells were resuspended in the 200 µl ALDEFLUOR™ Buffer, 

stored on ice, and measured using the FACSCalibur. Activated ALDEFUOR™ reagent 

(BAAA) is a fluorescent substrate for ALDH and diffuses into the cells. In the presence 

of ALDH BAAA will be converted into BODIPY-aminoacetate (BAA), which retains in-

side the cells and leads to increased fluorescence. The data were collected using BD 

CellQuest software and evaluated by FlowJo version 9.9.5. 

 Flow cytometry for protein detection 

To characterize the PCSCs, the cancer stem cell markers were tested using flow cy-

tometry. PCSCs were seeded in a 6-well ultra-low attachment plate, incubated using 

the specific CSC medium containing phytochemicals or other agents at different con-

centrations for 24 hours at 37 ℃ and 5% CO2. Then, the cells were harvested, fixed, 
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and permeabilized using the Fixation/Permeabilization Solution Kit (Cy-

tofix/Cytoperm™). Afterwards, cells were stained with APC-conjugated ABCG2 mouse 

monoclonal antibody, or PE-conjugated CXCR4 mouse monoclonal antibody, unconju-

gated STAT3 mouse monoclonal antibody, unconjugated mouse monoclonal phosphor-

STAT3 antibody (Tyr705), and unconjugated LIN28B rabbit monoclonal antibody. The 

FITC-conjugated goat anti-mouse lgG + IgM (H+L) antibody and the Alexa Fluor 488-

conjugated goat anti-rabbit lgG H&L antibody were used as secondary antibodies. To 

keep out the dead cells or debris, cells were stained with LIVE/DEAD® Fixable Blue 

Dead Cell Stain reagent. After that, at least 1 × 104 cells were measured using the LSR 

II or the FACSCalibur. Data processing was done with FlowJo version 9.9.5. 

 Quantitative real-time polymerase chain reaction (qRT-

PCR) 

RNA was isolated using the QIAGEN RNeasy® Mini Kit.  A maximum of 5 x 106 cells 

were lysed with 350 µl RLT Buffer and centrifuged at 14,000 rpm for two minutes in a 

QIAshredder spin column placed in a 2 ml collection tube. To the lysate 350 µl 70% 

ethanol were added, mixed well, transferred to the RNeasy spin column in a 2 ml col-

lection tube, and centrifuged at 10,000 rpm for 15 seconds. Flow-through was discard-

ed. Then, 350 µl RW1 Buffer was added, the column was centrifuged again at 10,000 

rpm for 15 seconds, and the flow-through was discarded. A volume of 80 µl DNase 

solution (10 µl DNase plus 70 µl RDD Buffer) was added into the column, incubated for 

15 minutes at room temperature. Afterwards, 350 µl RW1 buffer was added, the col-

umn was centrifuged again, the flow-through discarded, 500 µl RPE Buffer was added, 

the column centrifuged again at 10,000 rpm for 15 seconds, and the flow-through dis-

carded. Another 500 µl RPE Buffer was added, the column centrifuged at 10,000 rpm 

for 2 minutes, and the flow-through was discarded. Finally, the spin column was care-

fully removed from the collection tube, placed in a new 2 ml tube, centrifuged again, 

and transferred to a new 1.5 ml tube. A volume of 20-50 µl RNase-free water was add-

ed and the column was centrifuged at 10,000 rpm for 1 minute. The concentration of 

the eluted RNA was measured using the NanoDrop 2000. 

A total of 1 g RNA was used for the reverse transcription system. At first, the RNA 

was incubated at 70 °C for 10 minutes. The 20 µl reaction mix contains 4 µl 25 mM 

MgCl2, 2 µl Reverse transcription 10× Buffer, 2 µl 10 mM dNTP, 0.5 µl Recombinant 

RNasin® Ribonuclease Inhibitor, 15 U AMV Reverse Transcriptase, 0.5 g oligo(dT) 

primer, 1 µg RNA template, and PCR-grade water. The reaction mix was incubated at 



MATERIAL AND METHODS 

35 

 

42 ℃ for 15 minutes, at 95 ℃ for 5 minutes, and then for at least 5 minutes at 4℃. The 

cDNA was diluted and stored at -20 ℃ for further experiments. 

The real-time PCR procedure was performed using the LightCycler® 96 and the 

FastStart Essential DNA Green Master kit. A 10 µl reaction mix containing 5 µl 

FastStart Essential DNA Green Master, 1 µl nuclease-free water, 1 l of each forward 

and reverse primer at 5 pmol respectively, and 2 µl diluted cDNA template was set up. 

The parameters were as follows:  a hot start with 95 °C for 10 minutes, then 40 cycles 

beginning with a denaturation step at 95 ℃ for 10 seconds, followed by annealing at 60 

°C for 10 seconds, and final extension at 72 °C for 10 seconds. Then, a melting pro-

cess was set up at 95 °C for 10 seconds, followed by 65 °C for 1 minute, and 97 °C for 

1 second. Data were analyzed using the LightCycler® 96 software SW 1.1. The relative 

expression was estimated using the 2-ΔΔCt method. Normalization was done using the 

internal controls GAPDH and ACTB. The primer list was provided in Table 4. 

 Confocal immunofluorescence microscopy 

To detect the correlation of cancer stem cell markers, confocal fluorescence microsco-

py was performed using the confocal Leica SP5 and 365 nm wavelength for excitation 

and 420 nm wavelength for emission. First, a total of 2 × 104 cells were seeded in a 16-

well chambered coverslip and incubated for 24 hours. The next day, the cells were 

fixed, permeabilized, and blocked using 4% formaldehyde for 10 minutes, 0.1% Triton 

X-100 for 5 minutes, and 3% BSA for 1 hour at room temperature, respectively. Then, 

the cells were incubated with the primary rabbit polyclonal antibody ALDH3A1 at 5 

µg/ml and the mouse monoclonal antibody ABCG2 at a dilution of 1:50 at 4 ℃ over-

night. Afterwards, the cells were washed three times with PBS and incubated with the 

secondary antibodies (goat anti-rabbit IgG (H+L) conjugated with Alexa Fluor 647 for 

ALDH3A1 and goat anti-mouse IgG (H+L) conjugated with Alexa Fluor 488 for ABCG2) 

in a dilution of 1:200 for 1 hour at room temperature in the dark. After a further washing 

step with PBS for three times, 200 l NucBlue® Fixed Cell Stain ReadyProbes® solution 

(DAPI) was added per well for 20 minutes at room temperature in the dark for bright 

nuclear staining. Then the Ibidi Mounting Medium solution was used to cover the cells, 

followed by the coverslip. A negative control was set up with only the secondary anti-

bodies. 

 Assessment of reactive oxygen species (ROS)  
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To determine ROS generation of PCa cells and PCSCs treated with phytochemicals or 

other agents, the Cellular ROS Assay Kit was used. The cell permeant reagent 2’,7’ –

dichlorofluorescein diacetate (DCFDA) enters the cells, is then deacetylated by cellular 

esterases to a non-fluorescent substance, which is later oxidized by ROS into 2’, 7’ –

dichlorofluorescein (DCF), a highly fluorescent substance. At first, a total of 3-4 × 106 

cells were cultured and obtained on the day before the experiment. Then, cells were 

harvested using Trypsin/EDTA, seeded in a clear bottom 96-well plate with 2.5 × 104 

per well, and incubated overnight at 37 ℃ and 5% CO2. On the following day, cells 

were washed once with 1× Buffer (provided in the kit),100 µl 25 M DCFDA solution 

was added, and the cell suspension was incubated in the dark for 45 minutes at 37 ℃ 

and 5% CO2. After washing three times with 1× Buffer, cells were treated with the phy-

tochemicals for 6 hours. ROS was measured using the FLUOstar OPTIMA microplate 

reader immediately at 485 nm for excitation and 535 nm for emission. The antioxidant 

N-acetyl-L-cysteine (NAC) was used as ROS inhibitor at a concentration of 1 mM in a 

4-hour pre-treatment step. 

 Evaluation of the mitochondrial membrane potential 

To further evaluate the apoptosis mechanism induced by phytochemicals in PCa cells 

and PCSCs, the mitochondrial membrane potential was measured using the JC-1 mi-

tochondrial membrane potential kit. A total of 1.5 × 104 cells were seeded in a 96-well 

plate and incubated overnight at 37 ℃ and 5% CO2. The next day, cells were washed 

once with PBS, and cultured with normal medium containing non-phenol red RPMI 

1640 and the phytochemicals in different concentrations for 48 hours at 37 ℃ and 5% 

CO2. Afterwards, cells were stained with 20 µM JC-1 solution for 10 minutes at 37 ℃ 

and 5% CO2 and measured using the FLUOstar OPTIMA microplate reader at 530±15 

nm for the monomeric form showing a green fluorescence and 590±17.5 nm for the 

aggregate form showing a red fluorescence. The monomeric form represents the in-

jured mitochondria with low membrane potential, and the aggregate form represents 

the normal mitochondrial potential. The data were analyzed and presented by the ratio 

of monomer form to aggregate form. 

 Downregulation of cancer stem cell markers 

To downregulate the cancer stem cell markers, inhibitors and small interfering RNAs 

(siRNAs) were used. Ko143 was an inhibitor of ABCG2 and used at a concentration of 

1 µM. CB29 was an inhibitor of ALDH3A1 and used at 32 µM. Two inhibitors of CXCR4 
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were applied namely AMD3100 at 10 µM and WZ811 at 5 µM. For ALDH1A1, also two 

inhibitors were applied, NCT-501 at 10 µM and A37 at 10 µM. Moreover, the Silencer® 

Select siRNAs were designed and synthesized to silence ABCG2, ALDH3A1, and 

CXCR4 shown in Table 6.  Silencer® Select negative control and Silencer® Select 

GAPDH positive control were used as controls. Cells were transfected using the 

Lipofectamine RNAiMAX Reagent. 

 Small RNA-sequencing  

A total of 36 samples were prepared to analyze the expression of different miRNAs, 

including the control group, berbamine group, cabazitaxel group, and berbamine plus 

cabazitaxel group in DU145 cells, caba-DU145 cells, and DU145 CSCs with repeating 

three times. Small RNA-sequencing was done by IMGM Laboratories GmbH. 

The total RNAs including small RNAs were isolated using the miRNeasy Mini Kit. A 

DNAse digestion step was included and the RNA was eluted in 40 µl RNase-free wa-

ter. Then, an aliquot of each total RNA sample was used to calculate the RNA concen-

tration and purity using NanoDrop. The total RNA samples were analyzed on the 2100 

Bioanalyzer using RNA 6000 Nano LabChip Kits (Agilent Technologies). 

Next, Library preparation was conducted with the NEBNext® small RNA Library Prep 

Kit for Illumina. Before normalization, the quality and quantity of each small RNA library 

sample were evaluated as an intermediate control step. For this purpose, the High 

Sensitivity DNA LabChip Kit on the 2100 Bioanalyzer (Agilent Technologies) was used 

to analyze the quality of the libraries. Furthermore, all libraries were quantified using 

the highly sensitive fluorescent dye-based Qubit® ds DNA HS Assay Kit. The single 

small RNA libraries were pooled into a sequencing library pool. An equal amount of 

DNA was used per sample. The sequencing library pool was purified by gel electropho-

resis to remove adapter dimers. The purified sequencing library pool was quantified 

using the highly sensitive fluorescent dye-based Qubit® ds DNA HS Assay Kit (Thermo 

Fisher Scientific). Furthermore, it was quality controlled using the High Sensitivity DNA 

LabChip Kit on the 2100 Bioanalyzer. After quantification, the final sequencing library 

pool was diluted to 2.25 nM, followed by denaturation with NaOH. This ensures the 

presence of single-stranded DNA fragments for cluster generation. The final sequenc-

ing library pool consists of single-stranded fragments with sequencing adapters, se-

quencing primer binding sites, and indices.  

The next-generation sequencing was performed as follows. The complete sequencing 

library pool was initially sequenced on a NextSeq® 500 high output (HO) flowcell. Clus-
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tering of the library pool was performed at a final concentration of 1.8 pM and with a 

1% PhiX v3 control library spike-in on the NextSeq® 500 sequencing system (Illumina). 

Cartridge loading was conducted following the manufacture’s recommendations for 

NovaSeq® 6000 according to the standard workflow using an SP flowcell. Template 

amplification and clustering were performed onboard the NovaSeq® 6000 applying the 

exclusion amplification (ExAmp) chemistry. The ExAmp workflow is an Illumina proprie-

tary method and ensures that only single DNA templates are bound within single wells 

of the patterned NovaSeq® flow cells and are almost instantaneously amplified. There-

by, evenly spaced monoclonal clusters are generated on the flow cell. For cluster gen-

eration and subsequent sequencing of the subpool, one single-read 75 cycles (75bp 

SR) run was performed using an SP flow cell. Cluster generation and sequencing were 

operated under the control of the NovaSeq® Control Software (NVCS) v1.6.0. After 

cluster generation, sequencing primers hybridize to the adapter sequences at the end 

of the fragments and sequencing was performed. 

Primary image processing on the NextSeq® 500 instrument was performed using Real 

Time Analysis 2.4.11 Software (RTA), while on the NovaSeq® 6000 instrument Real 

Time Analysis 3.4.4 Software (RTA) was used. For both sequencers, primary data 

analysis was performed using the bcl2fastq 2.20.0.422 software package. The Illumina 

Sequence Analysis Viewer (SAV) 2.4.7 was applied for imaging and evaluation of the 

sequencing run performance. 

The CLC Genomics Workbench 12.0.3 was applied for in-depth analysis of differential 

expression and annotation of reads. Excel 2010 was utilized for filtering differentially 

expressed small RNAs.  

Read data were imported into the CLC Genomics Workbench. Failed reads are indi-

cated by a flag within the quality score header information inside the fastq file, specify-

ing if a read has passed the sequencer-inherited quality filters or not. These were re-

moved from the data set during data import. Read counts and quality for each sample 

were evaluated with the CLC Genomics Workbench “QC for Sequencing Reads” tool. 

The similarity between different samples based on global expression profiles was as-

sessed by projection analysis. A principal component analysis was carried out within 

the CLC Genomics Workbench and results were visualized. Small RNAs were extract-

ed and counted by the CLC Genomics Workbench tool. Two small RNA databases, 

miRbase Release 22 and Homo_sapiens. GRCh38.ncrna were used to annotating and 

merging the small RNAs. 

Baggerly’s test was applied to calculate the significant differential expression of small 
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RNAs. The CLC Genomics Workbench tool “Proportion-based Statistical Analysis” 

was used to analyze the statistically significant expression of small RNAs. A small RNA 

is classified as induced in a specific comparison if its FDR-corrected p-value is < 0.01 

and if it has a Weighted proportions FC value ≥ 2.0. Analogously, a small RNA is clas-

sified as repressed if its corrected p-value is < 0.01 and its Weighted proportions FC is 

≤ -2.0. 

Venn diagrams were prepared to show the overall number of differentially expressed 

small RNAs in all pairwise comparisons and their overlaps between the different cell 

lines (DU145, Caba-DU145, and DU145 CSCs). Thereby, all differentially expressed 

small RNAs were detected in any pairwise comparisons and any of the biological repli-

cates were included. 

 Individual miRCURY LNA miRNA PCR assay 

RNAs were extracted using the miRNeasy advanced Mini kit. At first, a total of 2×105 

cells were seeded in a 6-well plate overnight. After incubation with or without drugs for 

48 hours, RNAs were extracted. A volume of 260 µl RLT buffer was mixed with the 

cells, and transferred to a QIAshredder Mini Spin Column, centrifuged at 14,000 rpm 

for 2 minutes. Then, a volume of 80 µl AL buffer was added and the suspension was 

incubated for 3 minutes at room temperature, transferred to gDNA Eliminator Spin, 

centrifuged at 10,000 rpm for 30 seconds, and flow-through was saved. Next, a volume 

of 340 µl isopropanol was added and mixed by pipetting, transferred to the RNeasy 

Mini column, centrifuged for 15 seconds at 10,000 rpm, and the flow-through was dis-

carded. The reagents were added one by one as follows: 700 µl RWT buffer for 15 

seconds at 10,000 rpm, 500 µl RPE buffer for 15 seconds at 10,000 rpm, 500 µl 80% 

Ethanol for 2 minutes for 10,000 rpm. The RNeasy Mini spin columns were placed in 

new 2-ml collection tubes and centrifuged at 14,000 rpm for 1 minute. Finally, the RNe-

asy Mini spin columns were placed in new 1.5 ml collection tubes, and 30 µl RNase-

free water was directly added to the center of the spin column membrane, incubated for 

1 minute, and centrifuged for 1 minute at 14,000 rpm.  

For cDNA synthesis, the miRCURY LNA RT kit was applied. The reverse transcription 

master mix was prepared on ice as follows: 2 µl 5× miRCURY SYBR Green RT Reac-

tion Buffer, 4.5 µl RNase-free water, 1 µl 10× miRCURY RT Enzyme Mix, 0.5 µl Syn-

thetic RNA spike-in, 2 µl template RNA at 5 ng/ µl. Incubation was done for 60 minutes 

at 42 ℃, 5 minutes at 95 ℃, and then immediately cooled to 4 ℃. 
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For the PCR procedure, the miRCURY LNA miRNA PCR assay was performed based 

on the instructions of QIAGEN, and its mechanism is shown in Figure 11. 

 

Figure 11. The mechanism of miRCURY® LNA® miRNA PCR System. A. The whole process 

of miRCURY LNA miRNA PCR assay. Step 1: cDNA synthesis using a poly(T) primer with a 3’ 

degenerate anchor and a 5’ universal tag. Step 2: Real-time PCR amplification. As shown in 

Step 2, the cDNA template is amplified by two miRNA-specific, LNA-enhanced forward and 

reverse primers. B. The structure of locked nucleic acids (LNA). LNA is a  high-affinity RNA 

analog in which the ribose ring is "locked" in the ideal conformation for Watson-Crick binding. 
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When hybridized to complementary DNA or RNA strands, LNA oligonucleotides display unusual 

thermal stability. The melting temperature (Tm) of the duplex augments by 2 to 8 °C for each 

incorporated LNA monomer. In addition, LNA oligonucleotides can be designed shorter than 

normal DNA or RNA oligonucleotides and still retain a high Tm, which is essential for detecting 

small or highly similar targets (Figure created with BioRender.com). 

 

For the miRCURY LNA miRNA PCR assay, the cDNA was diluted 60 times by adding 

590 µl RNase-free water to the 10 µl RT reaction mix. Then, 5 µl 2× miRCURY SYBR 

Green Master Mix, 1 µl resuspended PCR primer mix, 3 µl cDNA template, 1 µl RNase-

free water were added, mixed thoroughly, centrifuged briefly, and measured using the 

LightCycler®96 instrument using the following cycling program: 95 ℃ for 2 minutes, 

and two-step cycling of 45 cycles: 95 ℃ for 10 seconds, followed by 56 ℃ for 60 sec-

onds. Data were analyzed using the LightCycler® 96 software SW 1.1 and the relative 

expression was calculated using the 2-ΔΔCt method. SNORD48 was used as an internal 

control. 

 Cell transfection  

Mimics of let-7a, let-7b, let-7i, miR-26a, miR-26b, inhibitors of let-7, miR-26, and mimic 

negative control were synthesized and purchased from Qiagen (Table 5). The struc-

tures and applications of miRCURY LNA miRNA mimics and inhibitors were described 

by Qiagen and Hum et al. [92] shown in Figure 12 and Figure 13. The miRCURY LNA 

miRNA mimics are designed as triple-RNA strand and ensures specific mimicry without 

off-target miRNA activity. miRCURY LNA miRNA inhibitors are antisense oligonucleo-

tides with a perfect sequence match to their targets. In the experiments, the so-called 

miRCURY LNA power inhibitors were used. These inhibitors have a phosphorthioate 

modified backbone and are therefore highly resistant to enzymatic degradation and 

more stable. The second advantage is, that these inhibitors can be taken up without a 

transfection reagent. Inhibitors were used to identify and validate miRNA targets. The 

Silencer® select siRNAs for ABCG2, ALDH3A1, CXCR4 were synthesized and pur-

chased from Ambion. Silencer® Select GAPDH positive control and Silencer® Select 

negative control were used as controls.  
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Figure 12. The structure of mimics. A. miRCURY LNA miRNA mimics are made of three RNA 

strands, including an unmodified miRNA (guide) strand which exactly matches the miRBase 

annotation and two LNA-modified RNAs strands which match the miRNA strand (passenger). B. 

Only the miRNA (guide) strand is integrated by the RNA-induced silencing complex (RISC). The 

two passenger strands are rapidly degraded after displacement from the miRNA strand. (Figure 

created with BioRender.com). 
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Figure 13. Function of the miRNA inhibitor. The miRNA inhibitor integrates into the RISC 

complex and perfectly matches the specific miRNA. The miRNA loses its ability to inhibit the 

translation of the target mRNA. (Figure created with BioRender.com) 

Cell transfection was performed using lipofectamine RNAiMAX reagent as the manu-

facturer’s protocol described. Briefly, a total of 1 × 105 cells were seeded in the 24-well 

plate with a duplicate well for each group. After reaching 70-80 % confluence, the cells 

were transfected. First, 3 µl lipofectamine RNAiMAX reagent was mixed in 50 µl OPTI-

MEM medium as lipofectamine reagent. Second, 1 µl mimics at 30 µM, inhibitors at 30 

µM, or siRNAs at 10 µM was mixed with 50 µl OPTI-MEM as target reagent. Third, the 

mixture of lipofectamine reagent and target reagent was vortexed and incubated for 5 

minutes at room temperature. A volume of 50 µl was taken out from the mixture and 

added to the cells in one well. After 48 h incubation, cells were collected and used for 

further experiments. 
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 Extraction of exosomes 

The exosomes were extracted using the ExoQuick-TC Kit as described by the manu-

facturer’s instructions. Briefly, supernatant derived from DU145 cells, caba-DU145 

cells, and DU145 CSCs was collected and centrifuged at the speed of 3000 g for 15 

minutes to remove cells and cell debris. Then, the supernatant was transferred to ster-

ile vessels and was added to ExoQuick-TC in the ratio supernatant: ExoQuick-TC = 

5:1, mixed well, and refrigerated overnight at 4 ℃. The tubes should not be rotated 

during incubation and should stay upright. The next day, ExoQuick-TC/supernatant 

mixture was centrifuged at 1500 g for 30 minutes. Afterwards, the supernatant was 

discarded and centrifuged again at 1500 g for 5 minutes. All traces of fluid were re-

moved by aspiration. The exosomal pellet was resuspended in 100-200 µl RIPA lysis 

buffer (1 ml RIPA mixed with 10 µl Phosphatase Inhibitor Cocktail 2, 10 µl Phosphatase 

Inhibitor Cocktail 3, and 10 µl Protease Inhibitor Cocktail 1), incubated for 15 minutes 

on ice, followed by centrifugation at 14,000 rpm for 15 minutes. The supernatant con-

taining the proteins was transferred into a new tube. The protein concentration was 

determined using the PierceTM BCA Protein Assay Kit. Then, the samples were used for 

western blotting to validate the exosomal markers. 

 Western blot analysis 

Exosomal proteins obtained from 2.2.19, were validated by Western Blot analysis using 

BoltTM 4-12% Bis-Tris Plus gels and XCell SureLockTM Electrophoresis (Invitrogen). For 

sample preparation, a total of 60 µg proteins were was given to 5 l BoltTM LDS Sample 

Buffer (4×), 2 µl, BoltTM Reducing Agent (10×), and deionized water up to a total vol-

ume of 20 µl. Then, the samples were heated at 70 ℃ for 10 minutes. Next, the gel 

tank was filled with 1× BoltTM MES SDS running buffer. Samples were added into Bolt 

Mini Gels in a volume of 20 µl per well containing 60 µg proteins. The SeeBlue Plus2 

Pre-Stained Protein Standard was used as a marker. A volume of 400 µl BoltTM Antiox-

idant was added to the cathode chamber. The electrophoresis was run at 180 V for 40 

minutes.  

The iBlotTM 2 Dry Blotting System was used to transfer the proteins onto the PVDF 

membrane as the manufacturer's introductions. Briefly, the iBlot 2 Transfer Stacks with 

gels containing proteins were assembled onto the iBlot 2 Gel Transfer Device. Then, 

the P0 protocol (20 V for 1 minute, 23 V for 4 minutes, and 25 V for 3 minutes) was 

started to transfer the proteins onto the PVDF membrane.  
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Furthermore, the iBindTM Flex Western System was applied for antibody binding. First, 

the 1× iBind Flex Solution was prepared with 500 µl 100× Additive, 10 ml iBind Flex 5× 

Buffer, and 39.5 ml distilled water. Second, the iBindTM Flex Card was placed on the 

stage and 10 ml of 1 × iBindTM Flex solution was applied across the Flow Region. The 

membrane was situated on top of the pooled solution with the protein-side down, and 

the low molecular weight region closest to the stack. With the Blotting Roller, any air 

bubbles were removed. The lid of the iBindTM Flex device was closed and the latch 

handle lowered to lock the lid. The following solutions were added sequentially to each 

well: 0.7 ml of the primary antibody in the first line, 2 ml iBindTM Flex Solution in the 

second line, 0.7 ml of the secondary antibody in the third line, and 6 ml iBindTM Flex 

Solution in the fourth line. The well cover was closed and the reaction was incubated 

overnight at 4 ℃. Afterwards, the membrane was rinsed in water and proceeded to the 

immunodetection protocol. 

For the immunodetection, the SuperSignal West Pico Chemiluminescent substrate was 

prepared with a 1:1 ratio of enhancer to peroxide. The membrane was incubated in the 

substrate solution for 5 minutes. Membranes were put into the Blot Development Fold-

ers and the signals were detected using the Fluor-STM Multilmager (120 seconds expo-

sure under the module of Blotting/High Resolution). 

 Detection of exosomal microRNAs 

The exosomes were extracted using miRCURY® Exosome Cell/Urine/CSF Kit. First of 

all, the supernatant was collected from the cell culture, centrifuged at 3,000 g for 10 

minutes to remove the cells and debris. For a 1 ml sample, a volume of 400 µl Precipi-

tation Buffer was added, vortexed to mix thoroughly, and incubated for 60 minutes at 4 

℃. Then, the samples were centrifuged at 10,000 g for 30 minutes at 20 ℃. The su-

pernatant was removed, centrifuged for 5 seconds at 10,000 g, and the supernatant 

removed again. A volume of 100 µl Resuspension Buffer was added to the pellet, vor-

texed for 15 seconds. To minimize the risk of RNase contamination, the exosomes 

were directly proceeded to the miRNeasy Micro Kit to purify the total RNA.  

A volume of 700 µl QIAzol Lysis Reagent was added to the exosomes, transferred into 

the QIAshredder homogenizers, centrifuged at 14,000 rpm for 2 minutes, and incubat-

ed for 5 minutes at room temperature. A volume of 140 µl chloroform was added to the 

samples, mixed thoroughly for 15 seconds, incubated for 3 minutes at room tempera-

ture, and centrifuged at 12,000 g for 15 minutes at 4 ℃. The upper aqueous phase was 

transferred to a new collection tube then 1.5 volumes of 100% ethanol was added, 
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mixed thoroughly by pipetting. A volume of 700 µl sample was then added into the 

RNeasy MinElute spin column in a 2 ml collection tube, and centrifuged at 9,000 g for 

15 seconds at room temperature, followed by discarding the flow-through. Then, 700 µl 

RWT Buffer was added onto the RNeasy MinElute spin column and centrifuged for 15 

seconds at 9,000 g. The flow-through was discarded. Next, 500 µl RPE Buffer was 

added, centrifuged for 15 seconds at 9,000 g, and the flow-through was discarded 

again. Furthermore, 500 µl of 80% ethanol was added, centrifuged for 2 minutes at 

9,000 g, and the flow-through was discarded. The spin column was placed into a new 

collection tube, centrifuged again at 14,000 rpm, for 5 minutes, the flow-through was 

discarded, and the spin column was placed in a new 1.5 ml collection tube, 14 µl 

RNase-free water was added to the center of the spin column membrane, and the col-

umn centrifuged for 1 minute at 14,000 rpm to elute the RNA. 

The miRCURY LNA RT kit was used for cDNA synthesis, and the individual miRCURY 

LNA miRNA PCR assay was performed for the PCR procedure as described in 2.2.17. 

 Statistics 

The experiments were independently repeated three times, and the numerical data 

were stored and analyzed using Microsoft Excel. The statistical difference was calcu-

lated using IBM SPSS Statistics 25. Figures were generated using GraphPad Prism 7 

and the data expressed as mean plus SEM (standard error of the mean). The values 

from two different groups were calculated using the statistical method of the Mann-

Whitney U test. The correlation between the cancer stem cell markers in the confocal 

microscopy experiment was determined using the Pearson product-moment correlation 

coefficient. The two-sided p-value less than 0.05 was considered as significant. 
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3. Results 

3.1 The influence of shikonin on cancer stem cells 

Note: This part was already published in the American Journal of Cancer Research [90]: Wang 

L, Stadlbauer B, Lyu C, Buchner A, Pohla H: Shikonin enhances the antitumor effect of caba-

zitaxel in prostate cancer stem cells and reverses cabazitaxel resistance by inhibiting ABCG2 

and ALDH3A1. Am J Cancer Res 2020, 10:3784-3800. 

 Shikonin inhibits cell viability and proliferative ability in PCa cells 

and PCSCs 

To obtain the PCSCs, the sphere-forming assay was carried out as described in 2.2.2. 

The differentiated non-stem-like cells do not form spheres in serum-free medium under 

low-adherent conditions and die, while the CSCs could form spheres showing self-

renewal properties [93]. Figure 14 shows the development of CSC spheres within ten 

days.  

 

Figure 14. Sphere forming assay. DU145 cells and PC-3 cells were cultured in specific CSC 

medium for ten days. The photos were taken with a digital microscope camera at 100x magnifi-

cation (Figure adapted from Wang et al. [90]). 

 

Several experiments were carried out to explore the influence of shikonin on the PCa 

cells and PCSCs. First of all the CellTiter Blue Cell Viability assay was performed as 

described in 2.2.3. DU145 and PC-3, and their corresponding sphere cells were treated 

with different concentrations of shikonin for 24 and 48 hours. The results demonstrated 

that shikonin inhibited cell viability in a dose-dependent manner (Figure 15A-B). The 

IC50 concentrations of shikonin were calculated using the statistical method of the logit 

regression model, which were 0.75 µM for DU145 cells, 4 µM for DU145 CSCs, 5 µM 

for PC-3 cells, 7 µM for PC-3 CSCs. 
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Figure 15. Shikonin represses cell viability in PCa cells and PCSCs.  A. CellTiter-Blue Cell 

Viability Assay for DU145 cells and PC-3 shown for 24 hours and 48 hours, and PCSCs for 24 

hours. Shikonin repressed the cell viability of DU145 cells, PC-3 cells, DU145 CSCs and PC-3 

CSCs. B. CellTiter-Blue Cell Viability Assay demonstrated that DU145 CSCs and PC-3 CSCs 

were more resistant to shikonin than DU145 cells and PC-3 cells. The data were acquired from 

three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 

0.001. (Figure adapted from Wang et al. [90])   

 

An inhibitory influence of shikonin on the proliferation rate was noticed as well using 

different concentrations of shikonin (0.5× IC50, 1x IC50, 2× IC50, Figure 16A-B). Re-

sults showed that DU145 CSCs and PC-3 CSCs were more resistant to shikonin than 

DU145 cells and PC-3 cells (Figure 15B and Figure 16B), which suggested that those 
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spheric CSCs were similar to drug-resistant cells. 
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Figure 16. Shikonin suppresses the proliferative ability in PCa cells and PCSCs. A. Prolif-

eration assay showed that shikonin repressed the proliferation of DU145 cells, PC-3 cells, 

DU145 CSCs, and PC-3 CSCs. B. Proliferation assay showed that DU145 CSCs and PC-3 

CSCs were more resistant to shikonin compared to DU145 cells and PC-3 cells. The data were 

acquired from three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 

0.01; ***p < 0.001. (Figure adapted from Wang et al. [90]) 

 Shikonin inhibits the migration and invasive ability in PCa 

cells and PCSCs 

The influence of shikonin on migration and invasion of PCa cells and PCSCs was also 

tested. Migration was done using the wound healing assay as described in 2.2.7. Dur-

ing treatment with different concentrations of shikonin, microscope photos were cap-

tured 6-7 times within 33 hours. The results showed that shikonin suppressed the mi-

gration ability of DU145 cells, PC-3 cells, DU145 CSCs, and PC-3 CSCs (Figure 17A-

C).  
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Figure 17. Shikonin inhibits the migration ability in PCa cells and PCSCs. A and B. 

Scratch wound healing assays showed that shikonin inhibited the migration of DU145 at 0.188 

µM, DU145 CSCs at 1 µM, PC-3 cells at 1.25 µM, PC-3 CSCs at 1.75 µM. Pictures were cap-

tured by a digital microscope camera at 40x magnification. The percent of covered areas of the 

gap was assessed and analyzed by the Automated Cellular Analysis System based on the 

FastTrack AI image analysis algorithms. C. The graphs show the percentage of the covered 

area of the scratch wound at different time points of culture with and without shikonin (Figure 

adapted from Wang et al. [90]). 

 

The invasion assay demonstrated that the number of invaded cells was decreased sig-
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nificantly in the group with higher concentrations of shikonin both in the adherent cells 

and cancer stem cells (Figure 18A-B), indicating that shikonin can inhibit invasion re-

markably in PCa cells and PCSCs. 

 

Figure 18. Shikonin inhibits the invasion of PCa cells and PCSCs. A. Invasion assay: shi-

konin inhibited the invasiveness of DU145 cells, PC-3 cells, and their corresponding CSCs. 

From every transwell insert pictures were taken with the digital microscope camera at 40x mag-

nification (three fields per insert) and cells were counted using the Fiji Image J software. B. The 

bar charts demonstrate the number of invaded cells, calculated as means ± SEM The data were 

acquired from three separate experiments. *p < 0.05; **p < 0.01; ***p < 0.001 (Figure adapted 

from Wang et al. [90]). 

 Shikonin augments the anti-cancer effect of cabazitaxel 

Afterwards, the viability, proliferation, apoptosis, and invasion assays were carried out 

again to examine whether shikonin could enhance the anti-cancer effect of cabazitaxel. 

We determined the IC50 of cabazitaxel for 48 hours, which was 3 nM using the method 

of the logit regression model (Figure 19). 
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Figure 19. Cabazitaxel inhibits the viability of DU145 cells. CellTiter-Blue Cell Viability Assay 

demonstrated that cabazitaxel inhibited the cell viability in a dose-dependent manner in DU145 

cells treated for 48 hours. The IC50 was calculated using the logit regression model (= 3 nM) 

(Figure adapted from Wang et al. [90]). 

 

DU145 cells and DU145 CSCs were cultured with shikonin at a concentration of 0.75 

µM combined with cabazitaxel at different concentrations (0.375 nM, 0.75 nM, 1.5 nM, 

and 3 nM) for 48 hours. The combination of shikonin and cabazitaxel contributed to a 

notable decline in viability (Figure 20) and proliferation (Figure 21) of DU145 cells and 

DU145 CSCs in contrast to cabazitaxel alone. As also shown shikonin alone repeatedly 

demonstrated a significant decrease in viability and proliferation. 
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Figure 20. Shikonin promotes the anti-tumor effect of cabazitaxel in the viability assay. 

Shikonin (0.75 µM) combined with different concentrations of cabazitaxel enhanced the cytotox-

ic effect of cabazitaxel in contrast to the single-agent group. The viability was measured after 48 

h treatment. The data were acquired from three separate experiments and calculated as means 

± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (Figure adapted from Wang et al.[90]. 

 

 

Figure 21. Shikonin enhances the anti-tumor effect of cabazitaxel in the proliferation as-

say. Shikonin (0.75 µM) combined with different concentrations of cabazitaxel enhanced the 

anti-proliferative effect in contrast to the single-agent group. The proliferation was determined 

after 48 h treatment. The data were acquired from three separate experiments and calculated 

as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (Figure adapted from Wang et al. [90]. 
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Similarly, the apoptosis assay demonstrated that shikonin plus cabazitaxel induced 

more apoptotic events than in the single-agent group as we anticipated. (Figure 22). 

Also, in the invasion assay a notably higher inhibition was seen in the combination 

treatment (Figure 23).  

 

Figure 22. Shikonin augments the anti-tumor effect of cabazitaxel in the apoptosis assay. 

Shikonin (0.75 µM) plus cabazitaxel (1.5 nM) induced a higher apoptosis rate in contrast to the 

single-agent group. Apoptosis was measured as described in 2.2.6. The percentage of Annexin 

V positive cells was considered as apoptotic cells. (Figure adapted from Wang et al. [90]). 
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Figure 23. Shikonin augments the anti-tumor effect of cabazitaxel in the invasion assay. 

Shikonin (0.75 µM) plus cabazitaxel (1.5 nM) enhanced the inhibitory effect in DU145 cells and 

DU145 CSCs to a greater extent than in the single-agent group. From every transwell insert 

photos were taken with the digital microscope camera at 40x magnification (three fields per 

insert) and were analyzed using the Fiji Image J software. The bar charts demonstrate the 

number of invaded cells, calculated as means ± SEM. The data were acquired from three sepa-

rate experiments. *p < 0.05; **p < 0.01; ***p < 0.001 (Figure adapted from Wang et al. [90]. 

 Shikonin generates ROS and dysregulates mitochondria 

membrane potential 

To show the influence of shikonin alone on the apoptosis rate, apoptosis assays were 

done with both cell lines and their corresponding PCSCs. Results indicated that shikon-

in significantly induced apoptosis in DU145, DU145-CSC, PC-3, and PC-3 CSC (Fig-

ure 24).  
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Figure 24. Shikonin induces apoptosis in PCa cells and PCSCs. The apoptosis assay re-

vealed that shikonin induced apoptosis in DU145 cell line, DU-145 CSC, PC-3 cell line, and PC-

3 CSC. The Annexin V positive cells were considered as apoptotic cells (Figure adapted from 

Wang et al. [90]). 

Next, to investigate the mechanisms of apoptosis induced by shikonin, we performed 

the ROS assay. The generation of ROS was reported to be an essential mechanism of 

apoptosis progression in different types of cancers [94-97] and was conducted as de-

scribed in 2.2.13. The ROS assay indicated that shikonin extremely enhanced the ROS 

production (Figure 25).  
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Figure 25. Shikonin generates ROS in PCa cells and PCSCs. Shikonin induced ROS pro-

duction in a concentration dependent manner during 6 hours incubation. The data were ac-

quired from three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; 

***p < 0.001 (Figure adapted from Wang et al. [90]).  

 

The effect of ROS generation can be reversed by pre-treatment with N-acetyl-L-

cysteine (NAC), which is an inhibitor of ROS as described in 2.2.13.  NAC decreased 

the effect of shikonin on cell viability as we anticipated (Figure 26), which suggested 

that shikonin targeted cell viability through ROS generation.  

 

Figure 26. NAC decreased the shikonin-induced anti-cancer effect in PCa cells and 

PCSCs. CellTiter-Blue Cell Viability Assay showed that pretreatment with the ROS scavenger 

NAC at 1 mM for 4 hours reduced the cell viability. The data were acquired from three separate 

experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (Figure 

adapted from Wang et al. [90]) 
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Furthermore, the JC-1 mitochondrial membrane potential assay was conducted to see 

whether shikonin could dysregulate mitochondrial membrane potential based on the 

fact that ROS influences the mitochondrial functions as described in 2.2.14. The results 

showed that shikonin greatly diminished the JC-1 aggregate monomer ratio, which 

meant the mitochondrial membrane potential was disrupted. Pre-treatment with NAC 

reversed the dysregulation of the membrane potential and verified the conclusion that 

shikonin dysregulated the mitochondrial function through ROS generation (Figure 27).  

 

Figure 27. Shikonin causes mitochondrial dysfunction in PCa cells and PCSCs. JC-1 mi-

tochondrial membrane potential assay demonstrated that shikonin disrupted the mitochondrial 

membrane potential along with higher concentration. Pre-treatment with NAC inhibits this 

dysregulation. The data were acquired from three separate experiments and calculated as 

means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (Figure adapted from Wang et al. [90]). 

 Shikonin suppresses the expression of ABCG2 and 

ALDH3A1 in PCSCs 

Drug-resistance can be driven by different CSC markers for example ALDH and 

ABCG2. To measure these markers the ALDEFLUOR kit, flow cytometry, and qRT-

PCR were conducted as described in 2.2.9, 2.2.10, and 2.2.11. The ALDEFLUOR as-

say demonstrated that shikonin inhibited the expression level of ALDH in PCSCs (Fig-

ure 28). Also, the expression level of ABCG2 was inhibited shown by flow cytometry 

using APC-conjugated ABCG2 antibody (Figure 29A). Similarly, in the qRT-PCR assay 

it was shown that shikonin inhibited ABCG2 and ALDH3A1 in PCSCs (Figure 29B).  
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Figure 28. Shikonin inhibits the expression of ALDH. Using the ALDEFLUOR kit it was ob-

served that ALDH expression was decreased by shikonin in DU145 CSCs and PC-3 CSCs. 

DEAB, the ALDH inhibitor, was applied as a control. The data were acquired from three sepa-

rate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (Figure 

adapted from Wang et al. [90]). 

 

 

Figure 29. Shikonin inhibits the expression of ABCG2 and ALDH3A1 in PCSCs. A. Results 

from flow cytometry showed that ABCG2 expression was decreased by shikonin. B. Results 

from qRT-PCR indicated that shikonin also suppressed ABCG2 and ALDH3A1. The data were 

acquired from three separate experiments and calculated as means ± SEM.  *p < 0.05; **p < 

0.01; ***p < 0.001 (Figure adapted from Wang et al. [90]). 

 

To investigate a possible correlation between the two CSC markers, ALDH3A1 and 

ABCG2, regulated by shikonin, confocal fluorescence microscopy, and siRNAs experi-

ments were performed. The siRNA experiments demonstrated that downregulation of 

ALDH3A1 could not influence the expression level of ABCG2 (Figure 30B), while 
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downregulation of ABCG2 significantly decreased the expression level of ALDH3A1 

(Figure 30C). The confocal microscopy experiment verified the co-existence of ABCG2 

and ALDH3A1. Both the Pearson correlation coefficient and the overlap coefficient 

were around 0.9 (Figure 30A). In general, the results suggested that ABCG2 and 

ALDH3A1 were at least co-expressed in DU-145 CSCs and that shikonin can inhibit the 

expression of ALDH3A1 by downregulating ABCG2.  

 

Figure 30. The correlation between ABCG2 and ALDH3A1 in DU145 CSCs. A. Confocal 

microscopy indicated the co-existence of ALDH3A1 and ABCG2. Pearson correlation coefficient 

and overlap coefficient were calculated using the colocalization finder module from the Image J 

software and were mounted around 9.2 and 9.3, respectively. B. DU145 CSCs were transfected 

with siRNA for ALDH3A1 and cultured for 48 hours. qRT-PCR showed no influence on the ex-

pression of ABCG2. The GAPDH siRNA was applied as a positive control. C. In contrast, silenc-

ing of ABCG2 led to downregulation of ALDH3A1. The data were acquired from three separate 

experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (Figure 

adapted from Wang et al. [90]). 

 Downregulation of ABCG2 and ALDH3A1 re-sensitizes 

caba-DU145 cells to cabazitaxel 

Based on our above results, we hypothesized that shikonin can re-sensitize drug-

resistant cells by regulating the expression level of ABCG2 and ALDH3A1. To verify 

this, a cabazitaxel-resistant PCa cell line (caba-DU145) was established as described 

in 2.2.4. Figure 31 showed that caba-DU145 cells were more resistant than DU145 
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cells. 

 

Figure 31. The generation of cabazitaxel-resistant DU145 cell line. Viability assay: the cab-

azitaxel-resistant DU145 cell line showed significantly higher viability than the parental DU145 

cell line. The data were acquired from three separate experiments and calculated as means ± 

SEM. *p < 0.05; **p < 0.01; ***p < 0.001. (Figure adapted from Wang et al. [90]). 

 

Then, caba-DU145 cells were pretreated with 1 M ABCG2 inhibitor Ko143 or 32 M 

ALDH3A1 inhibitor CB29 for five days. Afterwards, cell viability and proliferation were 

assessed following treatment with cabazitaxel. When suppressing ABCG2 and 

ALDH3A2 caba-DU145 cells became more sensitive to cabazitaxel as shown for both 

the viability (Figure 32A and Figure 33A), and the proliferation (Figure 32B and Fig-

ure 33B).  

 

Figure 32. Inhibition of ABCG2 sensitizes caba-DU145 cells to cabazitaxel. Viability assay 

(A) and proliferation assay (B) demonstrated that inhibition of ABCG2 following pre-treatment 

with Ko143 strengthened the anti-cancer effect of cabazitaxel. The data were acquired from 

three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 

(Figure adapted from Wang et al. [90]). 
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Figure 33. Inhibition of ALDH3A1 sensitizes caba-DU145 cells to cabazitaxel. Viability as-

say(A) and proliferation assay (B) demonstrated that inhibition of ALDH3A1 following pre-

treatment with CB29 strengthened the anti-cancer effect of cabazitaxel. The data were acquired 

from three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 

0.001 (Figure adapted from Wang et al. [90]). 

 

Moreover, in the apoptosis assay it could be demonstrated that inhibition of ALDH3A1 

and ABCG2 increased the rate of apoptosis as we expected (Figure 34).  

 

Figure 34. Downregulation of ABCG2 and ALDH3A1 sensitizes caba-DU145 cells to caba-

zitaxel as shown in the apoptosis assay. Inhibition of ABCG2 and ALDH3A1 following pre-

treatment with Ko143 and CB29 led to an enhanced apoptosis rate in caba-DU145 cells. The 

Annexin V positive cells were considered as apoptotic cells. The data were acquired from three 

separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (Fig-

ure adapted from Wang et al. [90]). 

 

To confirm the re-sensitizing effect of shikonin to cabazitaxel in caba-DU145 cells, we 

combined shikonin with cabazitaxel. Even at a low concentration of shikonin (0.375 

µM), an increased apoptosis rate was observed in caba-DU145 cells compared to 

treatment with cabazitaxel alone (Figure 35).  
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Figure 35. Shikonin re-sensitizes caba-DU145 cells to cabazitaxel. The apoptosis assay 

showed that shikonin at 0.375 µM re-sensitized the caba-DU145 cells to cabazitaxel (3 nM). 

The Annexin V positive cells were considered as apoptotic cells The data were acquired from 

three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 

(Figure adapted from Wang et al. [90]). 

 

Taken together, shikonin shows an anti-cancer effect on PCa cells and PCSCs via me-

diating ROS generation and dysregulating the mitochondria membrane potential. Fur-

thermore, shikonin re-sensitizes cabazitaxel-resistant PCa cells to cabazitaxel through 

inhibiting the expression of ABCG2 and ALDH3A1. It seems that the combination of 

cabazitaxel and shikonin shows a synergistic effect. Therefore, shikonin is a highly 

promising phytochemical to treat not only PCa in general but also CRPC patients re-

sistant to cabazitaxel. 

3.2 The influence of berbamine on cancer stem cells 

 Berbamine has anti-tumor effects on PCSCs 

We generated prostate cancer stem cells (PCSCs) using the sphere-forming assay as 

shown in Figure 14.  PCa cells (DU145 and PC-3) and PCSCs (DU145 CSC and PC-3 

CSC) were treated with berbamine in different concentrations for 24 hours and 48 

hours.  CellTiter Blue Cell Viability Assay showed that berbamine repressed the cell 

viability of PCa cells and PCSCs in a dose-dependent manner (Figure 36A-B). The 

IC50 concentrations of berbamine were calculated using the statistical method of the 

logit regression model, which were 23 µM in DU145 cells, 9 µM in DU145 CSCs, 40 µM 

in PC-3 cells, 12 µM in PC-3 CSCs.  
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Figure 36. Berbamine inhibits the viability in PCa cells and PCSCs.  A. CellTiter-Blue Cell 

Viability Assay for DU145 and PC-3 shown for 24 and 48 hours, and PCSCs for 24 hours. Ber-

bamine repressed the viability of DU145 cells, PC-3 cells, DU145 CSCs and PC-3 CSCs in a 

dose-dependent manner. B. CellTiter-Blue Cell Viability Assay: PC-3 CSCs were much more 

resistant to berbamine than PC-3 cells, while there was no difference between DU145 CSCs 

and adherent DU145. The data were acquired from three separate experiments and calculated 

as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001, NS: not significant.      

 

An inhibiting influence of berbamine on the proliferation rate was noticed as well using 

different concentrations of berbamine (0.5× IC50, 1x IC50, 2× IC50, Figure 37A-B). 

Results showed that PC-3 CSCs were much more resistant to berbamine than PC-3 

cells. However, there was no difference between DU145 CSCs and adherent DU145 

cells (Figure 36B and Figure 37B).  
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Figure 37. Berbamine inhibits the proliferation of PCa cells and PCSCs.  A. Proliferation 

assay showed that berbamine repressed the proliferation of DU145 cells, PC-3 cells, DU145 

CSCs and PC-3 CSCs. B. Proliferation assay showed that PC-3 CSCs were much more re-

sistant to berbamine than PC-3 cells, while there was no difference between DU145 CSCs and 

DU145 cells. The data were acquired from three separate experiments and calculated as 

means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001, NS: not significant.      



RESULTS 

67 

 

We also evaluated the influence of berbamine on migration and invasion.  Migration 

was evaluated again using the assay described in section 2.2.7. After treatment with 

berbamine in different concentrations, pictures were taken at different time points. Ber-

bamine inhibited the ability to migrate of DU145 cells, PC-3 cells, DU145 CSCs, and 

PC-3 CSCs to the center of the gap (Figure 38A-B).   

 

Figure 38. Berbamine inhibits migration ability in PCa cells and PCSCs.  A. The scratch 

wound healing assay showed that berbamine inhibited the migration of DU145 cells (at 2.9 µM, 

5.8 µM, and 11.5 µM), DU145 CSCs (at 1.13 µM, 2.25 µM, 4.5 µM), PC-3 cells (at 5 µM, 10 µM, 
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20 µM), PC-3 CSCs (at 1.5 µM, 3 µM, 6 µM). Pictures were captured with a digital microscope 

camera at 40x magnification at different time points. The percentage of the covered area of the 

gap was calculated using the Automated Cellular Analysis System based on the FastTrack AI 

image analysis algorithms. B. The graphs show the percentage of the covered area of the 

scratch wound at different time points of culture with or without berbamine. 

  

The invasion assay demonstrated that the number of invaded cells was decreased sig-

nificantly in the group with higher concentrations of berbamine both in the adherent 

cells and cancer stem cells (Figure 39A-B), indicating that berbamine can inhibit inva-

sion remarkably in PCa cells and PCSCs. 

 

Figure 39. Berbamine inhibits invasiveness in PCa cells and PCSCs. A. Invasion assay: 

berbamine inhibited the invasiveness of DU145 cells, PC-3 cells, DU145 CSCs, and PC-3 

CSCs. Pictures were taken from every insert by the digital microscope camera at 40x magnifica-

tion (three fields per insert). Then, cells were counted using the Fiji Image J software. The num-

ber of cells in one picture was considered as invaded cell number. B. The bar charts show the 

number of invaded cells. The data were acquired from three separate experiments and calcu-

lated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001, NS: not significant.  
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Cell apoptosis analysis showed that berbamine induced a higher rate of apoptosis 

along with higher concentrations compared to the untreated group (Figure 40). 

 

Figure 40. Berbamine induces apoptosis in PCa cells and PCSCs.  Apoptosis assay 

showed that berbamine induced the apoptosis of DU145 cells, PC-3 cells, DU145 CSCs, and 

PC-3 cells. Annexin V positive cells were considered as apoptotic cells. The experiment was 

repeated independently three times. 

 Berbamine enhances the toxicity of cabazitaxel on PCa 

and PCSCs 

The viability, proliferation, invasion, and apoptosis assays were carried out again to 

examine whether berbamine could augment the anti-cancer effect of cabazitaxel. We 

determined the IC50 concentration of cabazitaxel, which was 3 nM using the method of 

the logit regression model (Figure 19). Afterwards, DU145 cells and DU145 CSCs 

were treated with berbamine at the concentration of 23 µM combined with different 

concentrations of cabazitaxel for 48 hours. The combination of berbamine and caba-

zitaxel resulted in a remarkable decrease both in viability (Figure 41) and proliferation 

(Figure 42) compared to cabazitaxel alone in DU145 cells and DU145 CSCs.  
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Figure 41. Berbamine enhances the anti-tumor effect of cabazitaxel in the viability assay. 

CellTiter-Blue Cell Viability Assay: the combination of berbamine (23 µM) and different concen-

trations of cabazitaxel enhanced the cytotoxic effect compared to cabazitaxel alone. The viabil-

ity assay was measured after 48 hours. The data were acquired from three separate experi-

ments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.      
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Figure 42. Berbamine enhances the anti-tumor effect of cabazitaxel in the proliferation 

assay. The proliferation assay demonstrated that the combination of berbamine (23 µM) with 

different concentrations of cabazitaxel decreased proliferation compared to cabazitaxel alone. 

The proliferation was determined after 48 hours. The data were acquired from three separate 

experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.    

   

Also, a notably higher inhibition was observed within the combination group in the inva-

sion assay (Figure 43).  
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Figure 43. Berbamine enhances the anti-tumor effect of cabazitaxel in the invasion assay. 

In the treatment group berbamine plus cabazitaxel the invasiveness of DU145 cells and DU145 

CSCs was reduced compared to cabazitaxel alone. The pictures were taken by the digital mi-

croscope camera at 40x magnification (three fields per insert) and analyzed using the Fiji Image 

J software. The bar graphs demonstrate the number of invaded cells. The data were acquired 

from three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 

0.001.   

    

Even the apoptosis assay demonstrated that the percentage of apoptotic cells was 

higher after treatment with berbamine plus cabazitaxel compared to cabazitaxel and 

berbamine alone (Figure 44). Altogether, berbamine increased the cytotoxic effect of 

cabazitaxel in PCa cells and PCSCs. 
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Figure 44. Berbamine enhances the anti-tumor effect of cabazitaxel in the apoptosis as-

say. The results of the flow cytometry experiment demonstrated that berbamine plus cabazitax-

el enhanced the apoptosis rate. Annexin V positive cells were considered as the percentage of 

apoptotic cells.  

 Berbamine reverses the cabazitaxel-resistant state by 

downregulating ABCG2 and CXCR4 

The prostate cancer stem cell markers have the capacity of driving drug resistance, 

and cancer relapse [23]. Therefore, we want to know if berbamine can influence the 

expression of some known cancer stem cell markers. Flow cytometry showed that ber-

bamine inhibited the expression of the cancer stem cell marker ALDH (Figure 45), 

ABCG2 (Figure 46A), and CXCR4 (Figure 46A) in DU145 CSCs and PC-3 CSCs. 

Importantly, elevated levels of ALDH, ABCG2, and CXCR4 were observed in DU145 

CSCs compared to DU145 as we expected. The qRT-PCR demonstrated similar re-

sults that berbamine inhibited the expression of ALDH1A1, ABCG2, and CXCR4. Also, 

DU145 CSCs expressed higher levels of ALDH1A1, ABCG2, and CXCR4 than DU145 

cells (Figure 46B).  
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Figure 45. Berbamine downregulates the levels of ALDH. A. The ALDEFLUOR kit was used 

to demonstrate that berbamine suppresses the expression of ALDH in DU145 CSCs and PC-3 

CSCs. The ALDH inhibitor DEAB was used as a control. B. The bar charts summarize the ex-

pression level of ALDH for the different concentrations of berbamine in PCSCs and adherent 

PCa cells. The data were acquired from three separate experiments and calculated as means ± 

SEM. *p < 0.05; **p < 0.01; ***p < 0.001.      
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Figure 46. Berbamine downregulates ABCG2, CXCR4, and ALDH1A1. A. Flow cytometry: 

berbamine inhibited the expression of ABCG2 and CXCR4 in DU145 CSCs and PC-3 CSCs. 

PCSCs expressed more ABCG2 and CXCR4 than adherent cells. B. qRT-PCR analysis: ber-

bamine inhibited the expression of ABCG2, CXCR4, and ALDH1A1 mRNA as observed on the 

protein level by flow cytometry. DU145 CSCs expressed higher levels of ABCG2, CXCR4, than 

DU145 cells. The data were acquired from three separate experiments and calculated as 

means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.  

     

Next, to explore if blocking the expression of ALDH1A1, ABCG2, and CXCR4 could 

sensitize to cabazitaxel in cabazitaxel-resistant DU145 cells, the caba-DU145 cell line 

was generated as described in 2.2.4 (Figure 31). Caba-DU145 cells were treated with 

cabazitaxel combined with the ABCG2 inhibitor Ko143 at the concentration of 1 µM, 

with the CXCR4 inhibitors WZ811 and AMD3100 (5 µM and10 µM, respectively), or 

with the ALDH1A1 inhibitors A37 at 10 µM and NCT-501 at 5 µM. The results show 

that suppression of ABCG2 and CXCR4 decreased the rate of apoptosis in caba-

DU145 cells as expected. However, there was no influence of NCT-501 (ALDH1A1 

inhibitor) on caba-DU145 cells, and A37 (another ALDH1A1 inhibitor) slightly enhanced 

the apoptosis rate of caba-DU145 cells (Figure 34 and Figure 47). Therefore, we only 

considered ABCG2 and CXCR4 in the following experiments. Our results suggested 

that berbamine could reverse the cabazitaxel resistance via downregulating the ex-

pression of ABCG2 and CXCR4. 
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Figure 47. Inhibition of ABCG2 and CXCR4 sensitizes caba-DU145 cells to cabazitaxel. A. 

The flow cytometry results showed that an enhanced rate of apoptosis was observed following 

treatment with cabazitaxel and AMD3100 (CXCR4 inhibitor, 10 µM) or WZ811 (CXCR4 inhibitor, 

5 µM) compared to cabazitaxel (3 nM) alone. NCT-501 (ALDH1A1 inhibitor, 5 µM) did not influ-

ence the apoptosis rate in caba-DU145. Another ALDH1A1 inhibitor (A37, 10 µM) slightly en-

hanced the apoptosis rate in caba-DU145. B. The bar charts summarize the results. Annexin V 

positivity was considered as the percentage of apoptotic cells. The data were acquired from 

three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; ***p < 

0.001.      

 Berbamine enhances the expression of the let-7 family 

and miR-26 

To investigate the microRNAs involved in berbamine targeting the PCSCs, small RNA-
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sequencing was performed. Venn diagrams were generated to visualize the overlap of 

differentially expressed small RNAs between different comparisons. Each Venn dia-

gram showed the overlaps between small RNAs that were called differential in any of 

the cell line comparisons Figure 48A shows the overlap of significantly differentially 

expressed small RNAs for berbamine versus control treatment between the replicates 

for DU145, caba-DU145, and DU145 CSCs. Figure 48B shows the overlap of signifi-

cantly differentially expressed small RNAs for berbamine plus cabazitaxel versus caba-

zitaxel treatment between the replicates for DU145, caba-DU145, and DU145 CSCs. 

Figure 48C shows the overlap of significantly differentially expressed small RNAs for 

cabazitaxel versus control treatment between the replicates for DU145, caba-DU145, 

and DU145 CSCs. 

 

Figure 48. Venn diagrams visualize the overlap of differentially expressed small RNAs 

between different cell lines. A. Venn diagram showing the overlap of small RNAs differentially 

expressed between biological replicates of three different cell lines for berbamine versus control 

treatment. All small RNAs with an FDR < 0.01 and a fold change ≥ 2 in any of the comparisons 

were included. B. Venn diagram showing the overlap of small RNAs differentially expressed 

between biological replicates of three different cell lines for berbamine plus cabazitaxel versus 

cabazitaxel treatment. All small RNAs with an FDR < 0.01 and a fold change ≥ 2 in any of the 

comparisons were included. C. Venn diagram showing the overlap of small RNAs differentially 

expressed between biological replicates of three different cell lines for cabazitaxel versus con-

trol treatment. All small RNAs with an FDR < 0.01 and a fold change ≥ 2 in any of the compari-

sons were included. V.S. means versus. 

 

Based on the RNA-sequencing results, we found that berbamine enhanced the expres-

sion of the let-7 miRNA family members, miR-26a, and miR-26b (Figure 49) both in 

caba-DU145 cells and DU145 CSCs.  
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Figure 49. Berbamine enhances the expression of the let-7 family members, miR-26a and 

miR-26b. Heatmap of small RNA-sequencing results: berbamine enhanced the expression of 

the let-7 family members, miR-26a, and miR-26b in caba-DU145 cells and DU145 CSCs. Green 

represented 1, and red represented fold change of levels of miRNAs compared to 1. 

 

Individual miRCURY LNA miRNA PCR assays further verified that berbamine upregu-

lated the expression of the let-7 family members, miR-26a-5p, and miR-26b-5p in caba-

DU145 cells (Figure 50) and in DU145 CSCs (Figure 51). Furthermore, berbamine 

plus cabazitaxel enhanced dramatically the expression level of the let-7 family mem-

bers, miR-26a-5p, and miR-26b-5p in DU145 CSCs (Figure 51).  

 

Figure 50. Berbamine enhances the expression level of let-7 family members, miR-26a 

and miR-26b in caba-DU145 cells. Individual miRCURY LNA miRNA PCR assays: berbamine 
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enhanced the expression of let-7 family members, miR-26a, and miR-26b in caba-DU145 cells. 

The data were acquired from three separate experiments and calculated as means ± SEM. *p < 

0.05; **p < 0.01; ***p < 0.001.      

 

Figure 51. Berbamine enhances the expression of let-7 family members, miR-26a and 

miR-26b in DU145 CSCs. Individual miRCURY LNA miRNA PCR assays: berbamine en-

hanced the expression of let-7 family members, miR-26a, and miR-26b in caba-DU145 cells. 

The combination of berbamine and cabazitaxel significantly upregulated the expression of let-7, 

and miR-26. The data were acquired from three separate experiments and calculated as means 

± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. NS: not significant.     

 Berbamine targets CXCR4/ let-7/ IGF2BP1 axis and 

ABCG2/ miR-26b/ p-STAT3 axis 

To investigate the downstream pathways that berbamine is involved in, the online da-

tabase of miRDB (http://mirdb.org/mirdb/index.html) was used. The results showed that 

the let-7 family can target the genes of STARD13, IGF2BP1, LIN28, and so forth (Ta-

ble 8).  

Table 8. The targets of let-7 miRNA family  

Gene Symbol 
Target 

Score 
Gene Description 

STARD13  100 StAR related lipid transfer domain containing 13 

HMGA2  100 high mobility group AT-hook 2 

IGDCC3  100 immunoglobulin superfamily DCC subclass member 3 

http://mirdb.org/mirdb/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=90627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=8091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=9543
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IGF2BP1  100 insulin like growth factor 2 mRNA binding protein 1 

FIGNL2  100 fidgetin like 2 

PRTG  100 protogenin 

NR6A1  100 nuclear receptor subfamily 6 group A member 1 

LIN28B  100 lin-28 homolog B 

ARID3B  100 AT-rich interaction domain 3B 

C14orf28  100 chromosome 14 open reading frame 28 

TRIM71  100 tripartite motif containing 71 

Note: table was adapted from the miRDB database. 

 

Furthermore, we were also interested in PTEN, a target of miR-26, which is important 

for miR-26b-induced CSCs properties, migration, and invasion [98]. Quantitative RT-

PCR experiments showed that berbamine could not influence the expression of PTEN 

and STARD13 (Figure 52A). However, berbamine could decrease the expression of 

IGF2BP1, and STAT3 (Figure 52B), which were relevant to maintaining the CSCs' 

properties [99, 100] and drug resistance [101, 102]. 

 

Figure 52. Berbamine downregulates ABCG2, CXCR4, IGF2BP1, and STAT3. A. qRT-PCR: 

berbamine could not influence the expression of PTEN and STARD13. B. qRT-PCR: berbamine 

downregulated the expression of IGF2BP1 and STAT3. Silencing ABCG2 using siRNAs also 

decreased the expression of STAT3, and downregulating CXCR4 also repressed the IGF2BP1. 

The Silencer® Select negative and GAPDH positive control were utilized as controls. The qRT-

PCR showed that CXCR4 siRNA and ABCG2 siRNA dramatically silence CXCR4 and ABCG2 

respectively. The data were acquired from three separate experiments and calculated as means 

± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.     

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=10642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=401720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=283659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=2649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=389421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=10620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=122525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=131405
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Flow cytometry showed that berbamine inhibited the expression of LIN28B in caba-

DU145 cells (Figure 53), which is a microRNA regulator and stem cell reprogramming 

factor. Overexpression of LIN28B enhances tumorigenicity and associates with cancer 

progression and CSCs [103]. 

 

Figure 53. Berbamine slightly downregulates the expression of LIN28B. Flow cytometry: 

berbamine slightly inhibited the expression of LIN28B in caba-DU145 cells. The data were ac-

quired from three separate experiments and calculated as means ± SEM. **p < 0.01.   

    

Likewise, silencing of CXCR4 downregulated IGF2BP1 and silencing of ABCG2 down-

regulated STAT3 (Figure 52B). Berbamine and ABCG2 inhibitor, Ko143, decreased 

phosphorylated-STAT3 (p-STAT3) and upregulated STAT3 expression as shown by 

the results of flow cytometry (Figure 54). The results suggested that berbamine target-

ed PCSCs through CXCR4/IGF2BP1 and ABCG2/p-STAT3 pathways.  
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Figure 54. Inhibition of ABCG2 targets p-STAT3. Flow cytometry: berbamine and Ko143, an 

inhibitor of ABCG2, inhibited the p-STAT3 expression and enhanced the STAT3 expression. 

The data were acquired from three separate experiments and calculated as means ± SEM. **p 

< 0.01.  

     

Afterwards, qRT-PCR indicated that mimics of let-7a, let-7b, let-7i repressed the ex-

pression of IGF2BP1 both in caba-DU145 cells and DU145 CSCs (Figure 55). The 

inhibitors of let-7 reversed the repression of IGF2BP1 (Figure 55).  

 

Figure 55. Enhancement of let-7 family decreases the expression of IGF2BP1. A. qRT-

PCR: upregulation of let-7 family by mimics significantly repressed IGF2BP1 expression in 

caba-DU145 cells. B. qRT-PCR: upregulation of let-7 family by mimics significantly repressed 

IGF2BP1 expression in DU145 CSCs. The let-7 inhibitor reversed the effect of the miRNA mim-
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ics. The data were acquired from three separate experiments and calculated as means ± SEM. 

**p < 0.01; ***p < 0.001.   

   

The fact that the let-7 family targeted IGF2BP1 was consistent with the results of Tar-

getScan (http://www.targetscan.org/vert_72/), which indicated that all members of the 

let-7 family targeted the 3’UTR of IGF2BP1 (Table 9). 

Table 9. Let-7 miRNA family targeted the 3’UTR of IGF2BP1 

miRNAs 
Position 

in the 
3‘UTR 

Seed 
match 

Context++ 
score 

Context++ 
score 

percentile 

Weighted 
context++ 

score 

Conserved 
branch 
length 

Pct 

hsa-let-7d-5p 1632-1639 8mer -0.43 96 -0.35 7.14 0.96 

hsa-let-7i-5p 1632-1639 8mer -0.4 95 -0.33 7.14 0.96 

hsa-let-7b-5p 1632-1639 8mer -0.4 95 -0.33 7.14 0.96 

hsa-let-7e-5p 1632-1639 8mer -0.4 95 -0.33 7.14 0.96 

hsa-miR-98-5p 1632-1639 8mer -0.4 95 -0.33 7.14 0.96 

hsa-let-7f-5p 1632-1639 8mer -0.4 95 -0.33 7.14 0.96 

hsa-let-7g-5p 1632-1639 8mer -0.4 95 -0.33 7.14 0.96 

hsa-let-7a-5p 1632-1639 8mer -0.4 95 -0.33 7.14 0.96 

hsa-let-7c-5p 1632-1639 8mer -0.4 95 -0.33 7.14 0.96 

hsa-let-7g-5p 1651-1657 7mer-1A -0.17 69 -0.14 7.14 0.95 

hsa-let-7d-5p 1651-1657 7mer-1A -0.18 69 -0.15 7.14 0.95 

hsa-let-7e-5p 1651-1657 7mer-1A -0.16 67 -0.13 7.14 0.95 

hsa-miR-98-5p 1651-1657 7mer-1A -0.16 67 -0.13 7.14 0.95 

hsa-let-7a-5p 1651-1657 7mer-1A -0.16 67 -0.13 7.14 0.95 

hsa-let-7c-5p 1651-1657 7mer-1A -0.16 67 -0.13 7.14 0.95 

hsa-let-7b-5p 1651-1657 7mer-1A -0.16 67 -0.13 7.14 0.95 

hsa-let-7i-5p 1651-1657 7mer-1A -0.16 67 -0.13 7.14 0.95 

hsa-let-7f-5p 1651-1657 7mer-1A -0.16 66 -0.13 7.14 0.95 

hsa-let-7d-5p 4269-4276 8mer -0.23 78 -0.14 4.934 0.95 

hsa-let-7i-5p 4269-4276 8mer -0.21 77 -0.13 4.934 0.95 

hsa-let-7b-5p 4269-4276 8mer -0.19 73 -0.12 4.934 0.95 

hsa-let-7e-5p 4269-4276 8mer -0.19 72 -0.12 4.934 0.95 

hsa-let-7a-5p 4269-4276 8mer -0.19 72 -0.12 4.934 0.95 

hsa-let-7f-5p 4269-4276 8mer -0.19 72 -0.12 4.934 0.95 

hsa-let-7c-5p 4269-4276 8mer -0.19 72 -0.12 4.934 0.95 

hsa-let-7g-5p 4269-4276 8mer -0.19 72 -0.12 4.934 0.95 

hsa-miR-98-5p 4269-4276 8mer -0.19 72 -0.12 4.934 0.95 

hsa-let-7d-5p 4923-4930 8mer -0.33 91 -0.21 6.346 0.96 

hsa-let-7e-5p 4923-4930 8mer -0.31 90 -0.2 6.346 0.96 

hsa-miR-4500 4923-4930 8mer -0.31 90 -0.2 6.346 0.96 

hsa-let-7f-5p 4923-4930 8mer -0.31 90 -0.2 6.346 0.96 

hsa-let-7a-5p 4923-4930 8mer -0.31 90 -0.2 6.346 0.96 

hsa-let-7i-5p 4923-4930 8mer -0.3 89 -0.19 6.346 0.96 

http://www.targetscan.org/vert_72/
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hsa-miR-98-5p 4923-4930 8mer -0.31 89 -0.19 6.346 0.96 

hsa-let-7b-5p 4923-4930 8mer -0.3 89 -0.19 6.346 0.96 

hsa-let-7c-5p 4923-4930 8mer -0.31 89 -0.19 6.346 0.96 

hsa-let-7g-5p 4923-4930 8mer -0.3 88 -0.19 6.346 0.96 

hsa-let-7f-5p 5568-5574 7mer-m8 -0.32 90 -0.2 6.486 > 0.99 

hsa-miR-98-5p 5568-5574 7mer-m8 -0.32 90 -0.2 6.486 > 0.99 

hsa-let-7a-5p 5568-5574 7mer-m8 -0.32 90 -0.2 6.486 > 0.99 

hsa-let-7g-5p 5568-5574 7mer-m8 -0.32 90 -0.2 6.486 > 0.99 

hsa-let-7e-5p 5568-5574 7mer-m8 -0.32 90 -0.2 6.486 > 0.99 

hsa-let-7d-5p 5568-5574 7mer-m8 -0.31 89 -0.19 6.486 > 0.99 

hsa-let-7i-5p 5568-5574 7mer-m8 -0.31 89 -0.19 6.486 > 0.99 

hsa-let-7b-5p 5568-5574 7mer-m8 -0.31 89 -0.19 6.486 > 0.99 

hsa-let-7c-5p 5568-5574 7mer-m8 -0.31 89 -0.19 6.486 > 0.99 

Note: table was adapted from the TargetScan database. 

 

Mimics of miR-26b inhibited the expression of p-STAT3 (Figure 56A), not STAT3 (Fig-

ure 56B). Inhibitor of miR-26 counteracted the downregulation of p-STAT3 (Figure 

56A). It seems that miR-26a mimics could not decrease the expression of p-STAT3. 

However, the combination of miR-26a mimics and miR-26b mimics also downregulated 

p-STAT3 (Figure 56A). The results suggested that berbamine targets caba-DU145 

cells through CXCR4/let-7/IGF2BP1 axis and ABCG2/miR-26b/p-STAT3 axis.  

 

Figure 56. Enhancement of miR-26b decreases the expression of p-STAT3. Flow cytome-

try: upregulation of miR-26b by mimics significantly repressed the p-STAT3 expression (A) and 

enhanced the STAT3 expression (B). The combination of miR-26a mimics and miR-26b mimics 

also inhibited p-STAT3. The miR-26 inhibitor reversed the effect of mimics. The data were ac-

quired from three separate experiments and calculated as means ± SEM. **p < 0.01; *** < 
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0.001. 

 

Next, to see whether inhibition of IGF2BP1 and p-STAT3 could reverse the cabazitax-

el-resistant state, the inhibitors of IGF2BP1 (BTYNB IMP1 inhibitor at 2.5 µM, BTYNB) 

and p-STAT3 (Cryptotanshinone, CPT, at 4.6 µM) were used. The apoptosis assay 

showed that both the IGF2BP1 inhibitor and the p-STAT3 inhibitor enhanced the apop-

tosis rates compared to the cabazitaxel alone group (Figure 57), which indicates that 

the suppression of IGF2BP1 and p-STAT3 surely reversed the cabazitaxel resistant 

state as we expected. Taken together, berbamine reversed the cabazitaxel-resistant 

state through CXCR4/let-7/IGF2BP1 axis and ABCG2/miR-26b/p-STAT3 axis. 

 

Figure 57. Suppression of p-STAT3 and IGF2BP1 sensitizes caba-DU145 cells to caba-

zitaxel. Apoptosis assay: inhibition of p-STAT3 and IGF2BP1 using the inhibitors Crypto-

tanshinone (CPT) and BTYNB IMP1 inhibitor (BTYNB), respectively combined with cabazitaxel 

enhanced the apoptosis rates compared to cabazitaxel alone. The data were acquired from 

three separate experiments and calculated as means ± SEM. *p < 0.05; **p < 0.01; *** < 0.001. 

 

In summary, our results reveal for the first time that berbamine has an anti-tumor effect 

on PCSCs. Berbamine reverses the cabazitaxel-resistant state by CXCR4/let-

7/IGF2BP1 axis and ABCG2/miR-26b/p-STAT3 axis. Berbamine is a potential promis-

ing phytochemical which augments the anti-cancer effect of cabazitaxel in PCa cells 

and PCSCs.  

 Berbamine enhanced the expression of exosomal let-7 and miR-26b 

To investigate the exosomes’ function in the process that berbamine regulated let-7 

family and miR-26b, several exosome related experiments were conducted. Exosomes 
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were isolated using the ExoQuick-TC kit from the cell culture supernatant. The exist-

ence of exosomes was confirmed by the validation of exosomal markers (CD9, 

TSG101, HSP70) in the western blot (Figure 58A). Calnexin was used as a negative 

control marker, which is expressed in cell samples, not in exosomes (Figure 58B). 

 

Figure 58. PCSCs and PCa cells secret exosomes. A. Western blot: exosomes which were 

extracted from the supernatant of DU145, caba-DU145 cells, and DU145 CSCs, expressed the 

exosomal markers CD9, TSG101, and HSP70. B. Western blot: the exosomal negative control 

marker, calnexin (90 kDα), was not detected. The experiments were repeated independently 

three times. 

 

Furthermore, to investigate the expression level of let-7 and miR-26b influenced by 

berbamine in exosomes, the miRCURY LNA miRNA PCR assay was performed. Fig-

ure 59 showed that berbamine enhanced the levels of let-7, miR-26b in the exosomes, 

which suggested that berbamine might also influence the expression of let-7 and miR-

26b through exosome delivery. 



RESULTS 

87 

 

 

Figure 59. Berbamine enhances the expression of exosomal let-7 miRNA family and miR-

26b. Exosomes were extracted from the cell culture supernatant of DU145 CSCs and caba-

DU145 cells with or without treatment of berbamine at 23 µM for 4 days. After extracting the 

total RNAs from exosomes using miRNeasy Micro kit, cDNA synthesis, and miRCURY LNA 

miRNA PCR assay was conducted: berbamine augmented the levels of exosomal let-7a, let-7b, 

let-7i, and miR-26b. The data were acquired from three separate experiments and calculated as 

means ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.  (Caba-DU145 EXOs: exosomes isolated 

from the cell culture supernatant of caba-DU145 cells; DU145 CSCs EXOs: exosomes isolated 

from the cell culture supernatant of DU145 CSCs). 
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4. Discussion 

4.1 The influence of shikonin on PCSCs 

Note: This part was already published in the American Journal of Cancer Research [90]: Wang 

L, Stadlbauer B, Lyu C, Buchner A, Pohla H: Shikonin enhances the anti-tumor effect of caba-

zitaxel in prostate cancer stem cells and reverses cabazitaxel resistance by inhibiting ABCG2 

and ALDH3A1. Am J Cancer Res 2020, 10:3784-3800. 

Our results implied that shikonin re-sensitizes the cabazitaxel resistance by downregu-

lating the expression of ABCG2 and ALDH3A1. In addition, shikonin induces apoptosis 

through ROS/mitochondria dysfunction apoptosis pathway in PCSCs and PCa cells.  

Initially, we found that shikonin repressed the viability, proliferation, migration, and in-

vasion of PCSCs and PCa cells. Furthermore, shikonin augmented the anti-cancer 

effects of cabazitaxel both in PCSCs and PCa cells. Then, shikonin induced apoptosis 

through the ROS/mitochondria dysfunction pathway. What’s more, shikonin downregu-

lated the expression levels of the CSC marker ABCG2 and ALDH3A1 measured using 

qRT-PCR, flow cytometry, confocal microscopy, and siRNA technology. Last but not 

least, shikonin resensitized the cabazitaxel-resistant PCa cells to cabazitaxel by down-

regulating ABCG2 and ALDH3A1, and ALDH3A1 was targeted by inhibiting ABCG2. 

 The roles of ABCG2 and ALDH3A1 in cancer progression and drug 

resistance 

It was demonstrated that shikonin targets glioblastoma cells  [81] and PCa cells  [78, 

80, 104]. We found that shikonin has anti-cancer effects on PCa cells and PCSCs. 

Those CSCs can drive chemotherapeutic resistance [7] as we introduced in 1.2. We 

found that shikonin downregulated the levels of ABCG2 and ALDH3A1, which are two 

PCSCs markers [23]. In addition, blocking of ABCG2 reduced ALDH3A1 expression 

and can regulate those pathways reversing the resistant state as the literature reported 

that ABCG2 [105, 106] and ALDH3A1 [107, 108] are in charge of drug resistance. 

Suppression of ABCG2 enhanced drug sensitivity in breast cancer [109], and ovarian 

cancer [110]. ALDH is also considered as a CSC marker, that enhances tumor pro-

gression, and maintains stemness properties like self-renewal and other features [111]. 

ALDH3A1 belongs to the ALDH family and is related to prostate cancer progression 

[112]. A high level of ALDH3A1 was observed in DU145-derived metastases in a xeno-

graft tumor model [112]. Furthermore, inhibition of ALDH3A1 re-sensitizes different 
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types of cancer cells to drugs, such as glioblastoma cells [113] and head and neck 

squamous cell carcinoma cells [114]. We found that shikonin re-sensitized the PCa 

cells to cabazitaxel via blocking the expression of ABCG2 and ALDH3A1. 

 The potential pathways shikonin influences 

In our studies, shikonin attacks PCa cells and PCSCs by suppressing proliferation, 

migration, and invasion, and also by enhancing the rate of apoptosis. It was further 

demonstrated that apoptosis was activated through the ROS/ mitochondria dysfunction 

pathway. 

Furthermore, there are reports suggesting that the anti-cancer effect of shikonin was 

activated via blocking the PI3K/AKT pathway [115]. Furthermore, suppressing the ac-

tivity of the PI3K/AKT pathway re-sensitizes cancer cells to anti-cancer drugs [29, 116]. 

Probably shikonin re-sensitizes the cabazitaxel-resistant PCa cells to cabazitaxel via 

modulating the PI3K/AKT pathways as well. 

 Our new insight  

This is the first time to demonstrate that shikonin targeted PCSCs. Furthermore, shi-

konin can re-sensitize cabazitaxel-resistant PCa cells to cabazitaxel through targeting 

ABCG2 and ALDH3A1. The mechanism of shikonin on the induction of apoptosis and 

reversing cabazitaxel-related resistance is shown in Figure 60. 

 

Figure 60. The potential mechanism of shikonin on anti-cancer effect and drug-resistance 
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rescue.  On one hand, shikonin induces apoptosis through ROS/mitochondria dysregulation 

apoptotic pathway. On the other hand, shikonin rescues cabazitaxel resistance by downregulat-

ing ABCG2 and ALDH3A1. Meanwhile, inhibition of ABCG2 decreases the level of ALDH3A1 

(Figure adapted from Wang et al. [90]). 

 Limitations  

In our studies, several limitations exist. First, only in vitro experiments were performed, 

in other words, the function and side effects of shikonin in vivo are unclear. Second, 

much more preclinical studies or clinical trials should be done to evaluate other promis-

ing inhibitors of ALDH3A1 and ABCG2 for the treatment of those patients who suffer 

from drug resistance. 

4.2  The influence of berbamine on PCSCs 

Our results indicated that berbamine reverses the cabazitaxel-resistant state via target-

ing the CXCR4/let-7/IGF2BP1 axis, and the ABCG2/miR-26/p-STAT3 axis.  

First of all, the results showed that berbamine attacks PCSCs and adherent prostate 

cancer cells by blocking viability, proliferation, migration, invasion, and enhancing 

apoptosis. Second, berbamine enhanced the toxicity of cabazitaxel on prostate cancer 

cells and PCSCs. Then, we found that berbamine inhibited the expression of the can-

cer stem cell markers ABCG2, CXCR4, and ALDH1A1 using flow cytometry and qRT-

PCR. More importantly, downregulation of ABCG2 and CXCR4 using the inhibitors 

sensitized the cabazitaxel effect, except ALDH1A1. Furthermore, small RNA-

sequencing revealed that berbamine enhanced the expression of let-7 family members, 

miR-26a and miR-26b. Mimics of let-7 decreased the expression of IGF2BP1, and 

mimics of miR26b decreased the expression of p-STAT3. Berbamine suppressed the 

expression of IGF2BP1 by inhibiting CXCR4, and berbamine also suppressed p-STAT3 

by inhibiting ABCG2. Last but not least, suppression of IGF2BP1 and p-STAT3 sensi-

tized the cabazitaxel-resistant DU145 cells to cabazitaxel verified by the apoptosis as-

say.  

 ABCG2 and CXCR4, two important cancer stem cell markers are 

related to drug resistance 

ABCG2 is a cancer stem cell marker, belonging to the ABC transporters, which pro-

motes cell resistance through drug efflux  [27]. ABCG2 is one of the prostate cancer 

stem cell markers, which is related to drug resistance and prostate relapse [23]. Inhibi-
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tion of ABCG2 reverses the multidrug resistance in breast cancer [117], hepatocellular 

carcinoma [118], lung cancer [119-121], and colorectal cancer [106, 122, 123]. It was 

consistent with our results that as described for shikonin berbamine also reverses the 

cabazitaxel resistance by inhibiting ABCG2. 

CXCR4 is another prostate cancer stem cell marker, which is associated with an in-

creased risk of distant metastases and local recurrence in PCa [36].  Reports show that 

inhibition of CXCR4 resensitizes prostate cancer cells to docetaxel [37], colon cancer 

cells against paclitaxel therapy [124], chronic myelogenous leukemia cells to imatinib 

[125], hepatocellular carcinoma cells to sorafenib [126], neuroblastoma cells to cisplatin 

[127], non-small cell lung cancer cells to cisplatin [128]. Our results showed that ber-

bamine resensitizes the prostate cancer cells to cabazitaxel through downregulating 

CXCR4 as we expected.  

 The role of IGF2BP1 in carcinogenesis and drug-resistance 

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) plays an important role 

in carcinogenesis and drug-resistance in cancer therapy [101]. The stemness proper-

ties are highly correlated to drug resistance or cancer recurrence [11]. IGF2BP1 is re-

ported to maintain the mesenchymal cell properties or stem cell properties [99, 129, 

130]. IGF2BP1 maintains the stemness of breast cancer stem cells by influencing 

downstream regulators of the c-Myc axis [131, 132]. Additionally, IGF2BP1 maintains 

leukemia stem cell properties through targeting the expression of HOXB4, MYB, and 

ALDH1A1 [99]. Suppression of IGF2BP1 negatively influences cancer cell viability and 

migration ability, and stemness properties like self-renewal [133]. 

Our results showed that berbamine targeted PCSCs by downregulating IGF2BP1 and 

then PCSCs lose the stem cell properties. Furthermore, our results showed that inhibi-

tion of IGF2BP1 resensitized cabazitaxel-resistant prostate cancer cells to cabazitaxel. 

 Functions of let-7 miRNA family in cancer stem cells and drug-

resistance  

Recently, it has been reported that multiple microRNAs play vital roles in regulating 

CSCs. MicroRNAs are defined as small non-coding RNAs containing 21-25 nucleotides, 

which can regulate the specific target genes by mRNA degradation or inhibition of 

translation by binding to the 3’-untranslated regions (3’UTR) of mRNAs [13]. Increasing 

pieces of evidence show that let-7 microRNA decreases the stemness of CSCs [134]. 

Let-7b inhibits the self-renewal of non-small cell lung cancer stem cells and resensitiz-
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es 5-FU resistance through downregulating CCND1 [135]. Let-7 miRNA/PD-L1 axis 

mediates drug resistance, cell growth, mobility, and stemness properties in non-small 

cell lung cancer cells [136]. Let-7 promotes self-renewal and drives the gefitinib re-

sistance in non-small cell lung cancer [137]. The loss of let-7 being an important com-

ponent of the cancer stem cell phenotype in ovarian carcinoma [134]. Also, the let-7 

miRNA family decreases the self-renewal and migration of neuroblastoma cells [138]. 

Regulation of the LIN28A/let-7 pathway [139], the LIN28B/let-7/HMGA2 axis, or the 

LIN28B/let-7/Wnt pathway [140, 141] suppresses the self-renewal in breast cancer 

stem cells. Let-7c reduces the ratio of CSCs, decreases the capability of tumor for-

mation, enhances the effect of tamoxifen, and inhibits Wnt signaling in breast cancer 

cells [142]. Let-7b sensitizes the stem cells to agents through inhibiting the Wnt path-

way in esophageal cancer [143]. Let-7 also suppresses the stemness properties like 

self-renewal in hepatocellular cancer stem cells via EMT and Wnt/β-catenin pathway 

[144]. Importantly, one report verifies that activation of LIN28/let-7 axis promotes the 

CSCs properties in prostate cancer [145], which indicates that let-7 miRNA perhaps 

plays a critical role in PCSCs. 

The let-7 family is a vital expression modulator for IGF2BP1 in tumor cells through 3’ 

UTR regulation, and IGF2BP1 mRNA is a major target of the let-7 family [133]. Fur-

thermore, low expression of let‑7 miRNA increases the level of MYC, then contributes 

to maintaining the undifferentiated status, which is a stem cell-like characteristic and 

resulted in gefitinib resistance [137]. Lack of let-7 family expression also contributed to 

gemcitabine resistance in pancreatic cancer [146]. Elevated expression of let-7 eases 

the cisplatin resistance in gastric cancer [147], sensitizes epithelial ovarian cancer cells 

to cisplatin [148], and sensitizes hepatocellular carcinoma cells to cetuximab [149].  

 The role of STAT3 in CSCs and drug-resistance  

As mentioned in 4.2.2, the stemness properties are highly correlated to drug resistance 

or cancer recurrence [11]. Signal transducer and activator of transcription 3 (STAT3) is 

reported to be related to stem cell properties. Blocking the Wnt/β-catenin/STAT3 axis 

inhibits the stem cell-like properties in oral squamous cell carcinoma [100]. Also, regu-

lation of the JAK/ STAT3 signaling pathway suppresses the stem cell-like properties in 

glioblastoma [150], breast cancer [151], myxoid liposarcoma [152], non-small cell lung 

cancer stem cells [153], oral cancer [154], anaplastic thyroid cancer [155], and in pros-

tate cancer [156]. Inhibition of IL-6/STAT3 signaling pathway suppresses cancer stem-

ness properties in oral carcinomas [157], and gastric cancer [158]. The target of the 



DISCUSSION 

93 

 

CXCR4/STAT3 axis inhibits the stemness of esophageal squamous cell carcinoma 

cells [159].  

Previous research has focused on p-STAT3, which is a transcription factor and signal-

ing molecule, related to drug resistance [102]. Blocking p-STAT3 overcomes tamoxifen 

resistance in breast cancer [160], docetaxel resistance in triple-negative breast cancer 

cells [102], castration resistance in prostate cancer cells [161], radioresistance in naso-

pharyngeal carcinoma [162], adriamycin resistance in nasal NK/T-cell lymphoma [163], 

sorafenib resistance in hepatocellular carcinoma [164], EGFR inhibitor resistance in 

colorectal cancer cells [165], temozolomide resistance in glioblastoma cells [166], cis-

platin resistance in cervical cancer cells [167], BRAF inhibitor resistance in melanoma 

[168], taxol resistance in nasopharyngeal carcinoma cells [169], cisplatin resistance in 

esophageal squamous cell carcinoma cells [170], gefitinib resistance in non-small cell 

lung cancer [171], and adriamycin resistance in breast cancer cells [172]. Diminishing 

or inactivating the level of p-STAT3 reversed the resistance to different chemothera-

peutic drugs in a variety of cancers similar to our results. In our study, we found that 

inhibiting the expression of p-STAT3 resensitized resistant prostate cancer cells to 

cabazitaxel.  

 The role of miR-26b in cancer progression 

It has been verified that miR-26b takes part in the cancer progression of different can-

cer types [173, 174] through targeting its downstream genes [175]. Elevated expres-

sion of miR-26b represses cell proliferation and induces the apoptosis of CSCs by 

downregulating PTEN through the means of 3’ UTR binding [176]. MiR-26b elevates 

the sensitivity to doxorubicin through USP9X-dependent p53 degradation and autoph-

agy regulation [175], enhances the doxorubicin sensitivity through targeting TAK1 and 

TAB3 in hepatocellular carcinoma cells [177], reverses the cisplatin resistance by tar-

geting Tafazzin in non-small cell lung cancer [178] and reverses temozolomide re-

sistance through targeting Wee1 in glioma cells [179]. Also, miR-26b-5p maintains the 

CSCs properties in hepatocellular carcinoma [180]. 

 Our results showed that mimics of miR-26b suppress the expression of p-STAT3, and 

the inhibition of p-STAT3 could reverse the cabazitaxel resistance in prostate cancer 

cells.  

 Berbamine shows anti-tumor effects in different types of cancer 

Mounting research has also focused on berbamine, which is a natural herb derived 
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from the root of Berberis amurensis. The combination of berbamine and aspirin signifi-

cantly inhibited the viability of hepatocellular carcinoma cells in vitro and in vivo [181]. 

The combination of detoxified pneumolysin derivative ΔA146Ply with berbamine signifi-

cantly inhibited breast cancer cells verified in the aspects of proliferation, apoptosis, 

cell-cycle arrest, migration, and invasion [182]. Berbamine also enhanced the efficacy 

of gefitinib in pancreatic cancer cells via suppressing the STAT3 signaling pathway 

[183]. Berbamine contributes to cancer progression in different types of cancer. It sup-

pressed the cancer progression in bladder cancer through ROS/NF-kappaB axis [184], 

in osteosarcoma through targeting NF- kappaB, ERK, and AKT pathway [185], in colo-

rectal cancer via the p53-dependent apoptotic pathway [186], in prostate cancer via 

triggering intrinsic apoptosis pathway [187], in melanoma cells through inhibiting 

Jak2/STAT3 signaling pathway [87], and in breast cancer [86]. In our study, the results 

suggest that berbamine might suppress cancer progression through the IGF2BP1axis 

and the p-STAT3 axis.  

 Exosomal microRNAs in CSCs 

Exosomes are small vesicles with 40-100 nm, which are delivered by many cells and 

are also secreted by tumor cells [188]. Exosomes constitute a lipid bilayer containing 

transmembrane proteins. They can cargo proteins, mRNA, non-coding RNA, and DNA 

[189]. Mechanistically, exosomes are secreted from cells and facilitate intercellular 

communication by straight cellular internalization through receptors in the receiver cell 

[190]. CSCs derived exosomes (CSC-EXO) are considered to be powerful tumor mi-

croenvironment mediators, maintain tumor heterogeneity, and change the tumor pro-

gression. The CSC-EXO can increase angiogenesis in glioblastoma, renal, and liver 

cancer stem cells [190]. The microRNAs can be delivered by exosomes and influence 

the downstream signaling pathways [190]. Our results showed that berbamine enhanc-

es the expression of exosomal let-7 miRNA family members, and miR-26b, which sug-

gested that the let-7 miRNA family members and miR-26b could be delivered via exo-

somes to facilitate intercellular communication, and further influence the downstream 

targets IGF2BP1 and p-STAT3.  

 Our new insight  

It is the first time we report that berbamine attacks both PCSCs and PCa cells. Also, 

berbamine enhances the anti-tumor effect of cabazitaxel in both PCSCs and PCa cells. 

Furthermore, berbamine reverses the cabazitaxel resistance through CXCR4/let-7 

family/IGF2BP1 axis, and ABCG2/miR-26b/ p-STAT3 axis. The potential mechanism of 
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berbamine in inducing anti-tumor activity and reversing cabazitaxel resistance is shown 

in Figure 61. 

 

Figure 61. The potential mechanisms of berbamine involved in the process of anti-tumor 

activity and reversing cabazitaxel resistance. On one hand, berbamine suppresses the func-

tion of ABCG2 to decrease the efflux of cabazitaxel. On the other hand, berbamine plays a role 

in the anti-tumor activity and drug resistance through CXCR4/let-7 miRNA/IGF2BP1 axis and 

ABCG2/miR-26b/p-STAT3 axis. First, berbamine enhances the expression of the let-7 miRNA 

family members, and miR-26b, which decrease the activation or expression of IGF2BP1 and p-

STAT3 respectively, as we verified that downregulation of IGF2BP1 and p-STAT3 could reverse 

the cabazitaxel resistance. The let-7 and miR-26b could be delivered by exosomes as we found 

that berbamine enhanced the expression of the exosomal let-7 family and miR-26b. Further-

more, inhibition of ABCG2 downregulates the p-STAT3 expression, and inhibition of CXCR4 

could downregulate the IGF2BP1 expression. (BER: berbamine, red line: increasing effects, 

green and dotted line: decreasing effects.) 

 Limitations  

As discussed for shikonin more studies related to berbamine in vivo should be con-

ducted to prove our results. Besides, further work is needed to find out whether ber-

bamine and other promising inhibitors of ABCG2, CXCR4, IGF2BP1, and p-STAT3 can 

be utilized for those patients who are resistant to chemotherapeutic drugs. 
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5. Summary  

We found that shikonin targeted PCSCs and PCa cells verified by the viability, prolif-

eration, migration, invasion, and apoptosis assays. Furthermore, the combination of 

shikonin and cabazitaxel enhanced the anti-tumor effect much more than cabazitaxel 

alone verified again by the viability, proliferation, invasion, and apoptosis assays. Im-

portantly, shikonin downregulated the two cancer stem cell markers ABCG2 and 

ALDH3A1, which were in charge of drug resistance. Inhibitors of ABCG2 and 

ALDH3A1 reversed the cabazitaxel-resistant state. Last but not least, shikonin induced 

apoptosis mainly through the ROS-mitochondria membrane potential apoptosis path-

way. In summary, shikonin targets PCSCs and PCa cells, enhances the anti-cancer 

effect of cabazitaxel, and reverses cabazitaxel-related resistance. 

As shikonin also berbamine targeted PCSCs and PCa cells, enhanced the cabazitaxel 

effect when combined with cabazitaxel. Compared to shikonin, berbamine inhibited the 

expression of the three cancer stem cell markers ABCG2, CXCR4, and ALDH1A1, in-

stead of ALDH3A1. Inhibitors of ABCG2 and CXCR4 resensitized resistant PCa cells to 

cabazitaxel. One of the ALDH1A1 inhibitors slightly reversed the cabazitaxel re-

sistance, while the other showed no effect on caba-DU145 cells. Therefore, we focused 

on the two cancer stem cell markers ABCG2 and CXCR4 as targets of berbamine in 

the following experiments. Afterwards, we found that berbamine significantly enhanced 

the let-7 miRNA family members, miR-26a, and miR-26b by small RNA-sequencing 

technique. For further verification, individual miRCURY LNA miRNA PCR assays were 

conducted and showed that berbamine upregulated the let-7 family members, miR-26a, 

and miR-26b. Next, we found that berbamine downregulated IGF2BP1 through silenc-

ing CXCR4. Likewise, enhancement of the let-7 family members using mimics also 

decreased the expression of IGF2BP1. Another downstream regulator of berbamine 

and ABCG2 was p-STAT3. We found that berbamine downregulated p-STAT3 through 

silencing ABCG2. Upregulating miR-26b using mimics also repressed p-STAT3. Taken 

together, we conclude that berbamine targets PCSC, PCa cells, and reverses the cab-

azitaxel resistance through berbamine/CXCR4/let-7 family/IGF2BP1 axis, and ber-

bamine/ABCG2/miR-26b/p-STAT3 axis. 

In addition to shikonin and berbamine there are many other phytochemicals, like ber-

berine, curcumin, quercetin, resveratrol and so forth, showing an anti-tumor effect on 

CSCs [13] and they are also worth to be tested in clinical studies.   
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