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1 Introduction  

1.1 The pituitary gland 

The pituitary gland is an endocrine organ that holds an essential role in the 

regulation of the hormonal balance in humans. It is a superordinate hormonal 

gland and important neuroendocrine interface between the central nervous 

system (CNS) and the peripheral endocrine system. Therefore, the pituitary gland 

acts as final common path for central neuronal modulation processes of the 

endocrine system, regulating a vast number of important homeostatic 

mechanisms such as metabolism, growth and reproduction (Pape, Kurtz, & 

Silbernagl, 2014). 

Those two characteristics are reflected in its anatomical structure as well as in its 

integration into the hierarchical structured regulatory circuits of the hormonal 

system. A unique anatomical composition is needed to ensure morphologic and 

functional interlinkage between nervous and hormonal mechanisms (Frotscher & 

Kahle, 2013). 

 

1.1.1 Anatomy and physiology 

The pituitary gland is an approximately hazelnut-sized organ that rests upon the 

so-called sella turcica of the sphenoid bone and is located immediately adjacent 

to the hypothalamus. Based on its embryonic origin, it can be subdivided into two 

functionally different parts, the adenohypophysis (anterior pituitary) and the 

neurohypophysis (posterior pituitary). 

The anterior pituitary derives from the Rathke’s pouch during embryological 

development and comprises about three quarters of the total pituitary gland (Asa 

& Kovacs, 1984). It is a typical hormonal gland consisting of reticular tissue, 

ramified strands of adenocytes (gland cells) and numerous sinusoids that are 

connected to the portal system. 

The adenohypophysis produces four glandotropic hormones (ACTH, TSH, FSH 

and LH) and two non-glandotropic hormones (GH and prolactin). Each hormone 

is produced by a different cell type. 
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The posterior pituitary has a neural origin. It does not synthesise hormones by 

itself, but they are produced in the hypothalamus. The supraoptic nucleus of the 

hypothalamus is responsible for the production of the antidiuretic hormone (ADH) 

and the paraventricular nucleus for the production of oxytocin. The secretion of 

both of these hormones is initiated by action potentials that trigger exocytosis and 

therefore the release of hormones from the posterior pituitary into the blood 

(Welsch, Deller, & Kummer, 2014a). 

 

1.1.2 Pituitary tumours 

Pituitary tumours are among the most common intracranial neoplasms in adults 

(McNeill, 2016). A distinction is made between pituitary adenomas und 

carcinomas. While the term “pituitary adenoma” describes a slowly growing entity, 

the term “pituitary carcinoma” is merely used when cerebrospinal and/or systemic 

metastases are detected. Compared to pituitary adenomas, primary pituitary 

carcinomas are very rare, representing only 0.2% in surgical series 

(Kontogeorgos, 2005). Recently some authors have recommended the generic 

term “pituitary tumour” to highlight the fact that many of those lesions have 

devastating short and long-term consequences for the patient due to an active 

hormone secretion and, in some cases, to invasive features and a lack of 

response to treatments, which leads to a high disease burden and a substantially 

diminished quality of life (Asa et al., 2017; Ho et al., 2019). 

As revealed by epidemiologic studies based on histologic examinations of 

autopsy specimens and imaging techniques, pituitary adenomas are frequently 

encountered, mostly benign, intracranial neoplasms and the most common cause 

of pituitary hormone hypersecretion and hyposecretion syndromes (functioning 

tumours), even though most of them are silent and clinically irrelevant (non-

functioning tumours) (Ezzat et al., 2004). The 2017 WHO classification classifies 

pituitary tumours based on their adenohypophyseal cell lineage (Lopes, 2017). 

Moreover, a distinction can be made between hormonally active pituitary tumours 

and hormonally inactive ones, so-called incidentalomas (Paschou, Vryonidou, & 

Goulis, 2016; Scangas & Laws, 2014). Hormonally active pituitary tumours are 

characterized by an autonomous hormone secretion and the overstimulation of 

the peripheral target organ (Melmed, 2011). Functioning pituitary tumours arise 
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from one of the five cell types of the anterior pituitary. Accordingly, there are 

tumours arising from corticotroph (ACTH), lactotroph (PRL), somatotroph (GH), 

thyrotroph (TSH) or gonadotroph (LH, FSH) cells that hypersecrete their 

respective hormones. The clinical phenotype depends on the cell type from which 

they are derived. Additionally, plurihormonal tumours that express combinations 

of ACTH, PRL, GH and/or TSH can be found (Mete & Lopes, 2017; Saeger et al., 

2007). 

Clinical manifestations stretch from signs caused by excessive hormone 

secretion to symptoms related to tumour mass expansion, which results in the 

compression and decreased function of surrounding structures, such as the 

normal pituitary gland, the optic chiasm or cranial nerves (Arafah & Nasrallah, 

2001). 

According to their maximal diameter size, pituitary tumours are traditionally 

classified as microadenomas (<10 mm) and macroadenomas (≥10 mm). Despite 

the fact that the size cut-off is arbitrary, microadenomas do not extend beyond 

the sella turcica, while macroadenomas are often associated with extrasellar 

extension and a worse disease outcome. Such tumours frequently extend into 

the sphenoid sinus or into the suprasellar space, compressing the optic chiasm, 

or grow laterally into the cavernous sinuses on either side (Asa & Ezzat, 2002; 

Ezzat et al., 2004; Gsponer et al., 1999).  

 

1.1.3 The hypothalamic–pituitary–adrenal (HPA) axis 

The HPA axis is a complex set of feedback loops regulating the secretion of 

hormones among three endocrine glands: the hypothalamus, the pituitary gland 

and the adrenal glands. Three hormones act as the primary signals of the HPA 

axis: corticotropin releasing hormone (CRH), adrenocorticotropic hormone 

(ACTH) and the glucocorticoid hormone cortisol. A functioning HPA axis is the 

foundation of an adequate and dynamic regulation of the stress hormone cortisol, 

which plays an important role in a number of metabolic processes and also in 

states of stress, such as physical work, emotional distress or illness (Bonfiglio et 

al., 2011; S. M. Smith & Vale, 2006; Spencer & Deak, 2017; Tsigos & Chrousos, 

2002).  
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The HPA axis is a modular, closed-loop circuit with a negative feedback effect 

exerted by cortisol blood levels [Figure 1] (J. P. Herman, McKlveen, Solomon, 

Carvalho-Netto, & Myers, 2012; M. Keller-Wood, 2015; Watts, 2005).  

 

 

Figure 1. Regulation of the hypothalamic-pituitary-adrenal axis (Eckstein, 
Haas, Hass, & Pfeifer, 2014). 
CRH – corticotropin-releasing hormone; ACTH – adrenocorticotropic hormone;  
 

The paraventricular nucleus of the hypothalamus comprises neuroendocrine 

neurons. These neuroendocrine neurons synthesize corticotropin-releasing 

hormone (CRH) and vasopressin (Vale, Spiess, Rivier, & Rivier, 1981). When 

secreted from neurosecretory nerve terminals, CRH is transported to the anterior 

pituitary through the portal blood vessel system of the hypophyseal stalk while 

vasopressin is conveyed to the posterior pituitary by axonal transport. At pituitary 

level, CRH and vasopressin have a synergistic effect (Antoni, 1993; Rivier & Vale, 

1983; Whitnall, 1993) and stimulate the secretion of the precursor hormone of 

ACTH, pro-opiomelanocortin (POMC), and also have a direct influence on its 

synthesis by activating the POMC gene (Jenks, 2009). The POMC peptide is 

cleaved to give rise to multiple peptide hormones including ACTH (Raffin-

Sanson, de Keyzer, & Bertagna, 2003). In the anterior pituitary, POMC is 

processed to ACTH by the prohormone convertase 1 and is stored in secretory 

Hypothalamus

Pituitary gland

Adrenal cortex

CRH

ACTH

Cortisol

Glucocorticoid
receptor
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granules until secretion, once stimulated by CRH and vasopressin (Stevens & 

White, 2010). ACTH then reaches the cortex of the adrenal gland via blood where 

it directly stimulates the biosynthesis of corticosteroids such as cortisol from 

cholesterol (Arnett, Muglia, Laryea, & Muglia, 2016; Simpson & Waterman, 

1988). Glucocorticoids cannot be pre-synthesized and stored in the adrenal 

glands because of their lipophilic nature. Thus, they have to be rapidly 

synthesized upon ACTH stimulation (Ramamoorthy & Cidlowski, 2016).  

To inhibit further release of CRH and vasopressin and reduce the cleavage of 

POMC into ACTH, the feed-forward mechanism within the HPA axis is balanced 

by negative feedback of glucocorticoids acting at both, the anterior pituitary and 

the hypothalamus [Figure 1] (J. P. Herman et al., 2012; M. E. Keller-Wood & 

Dallman, 1984). In addition to the classic genomic effects, rapid, non-genomic 

feedback inhibition of hypothalamic hormone secretion can be mediated by 

glucocorticoids (Di, Malcher-Lopes, Halmos, & Tasker, 2003). Furthermore, 

modelling results suggest that a rapid autoregulation of glucocorticoid synthesis 

may exist within the adrenal gland itself (Spiga et al., 2017; Walker et al., 2015). 

As a rule, concentrations of glucocorticoids in the nanomolar range lead to 

genomic effects within a time frame of hours or days, while significantly higher 

concentration ranges provoke non-genomic effects, that occur within seconds or 

minutes (Stahn & Buttgereit, 2008; Stahn, Lowenberg, Hommes, & Buttgereit, 

2007). 

Under standard conditions, the secretion of cortisol follows a stable, circadian 

rhythm. In humans, serum cortisol concentrations peak during the morning hours, 

anticipating wakening and the activity cycle (Krieger, Allen, Rizzo, & Krieger, 

1971; Lightman et al., 2000; Weitzman et al., 1971). Circadian rhythm is 

coordinated by outputs of a central clock in the suprachiasmatic nucleus of the 

hypothalamus (Maywood, O'Neill, Chesham, & Hastings, 2007; Reppert & 

Weaver, 2002). This rhythm overlays a more dynamic ultradian, pulsatile pattern 

for both ACTH and glucocorticoid secretion (Spiga, Walker, Terry, & Lightman, 

2014). Ultradian rhythmicity originates in the interaction between an intrinsically 

oscillating pituitary-adrenal network and the release of hypothalamic hormones 

in a dynamic fashion. Thus, a pattern of pulses is created. These pulses vary in 

amplitude during the course of the day. The release of glucocorticoids into the 

blood in that highly dynamic fashion allows humans to anticipate regular daily 
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changes in their environment (Dickmeis, Weger, & Weger, 2013; Walker et al., 

2012).  

 

1.2 The glucocorticoid cortisol 

The adrenal cortex comprises three functionally different zones that can be 

appreciated at microscopic level. Each zone can be distinguished from one 

another based on its structural and histological characteristics. The zona 

glomerulosa is the main site for the production of mineralocorticoids (mostly 

aldosterone), the zona fasciculata is responsible for the production of 

glucocorticoids (in humans primarily cortisol) and in the zona reticularis the 

production of androgens takes place (Welsch, Deller, & Kummer, 2014b). 

The ACTH receptor (MC2R) is primarily found in the zona fasciculata. Binding of 

the MC2R by ACTH stimulates the production of glucocorticoids (Fridmanis, 

Roga, & Klovins, 2017). Glucocorticoids are derived from cholesterol. The 

process of converting cholesterol into biologically active steroid hormones is 

called steroidogenesis and requires many complex and tightly regulated steps 

that are catalysed by various enzymes and cofactors. Progestogens are the 

precursors of glucocorticoids and therefore cholesterol must first be converted 

into pregnenolone. This conversion is the rate-limiting step of steroid synthesis 

and takes place in mitochondria (John & Buckingham, 2003; Miller & Auchus, 

2011). 

Only approximately 5% of systemic glucocorticoids are free and bioactive. The 

other 95% of circulating glucocorticoids are bound either to corticosteroid binding 

globulin (80 – 90%) or to albumin (5 – 15%) and therefore remain inactive 

(Breuner & Orchinik, 2002; Ramamoorthy & Cidlowski, 2016). 

The inability of humans to survive without glucocorticoids indicates the 

importance of glucocorticoids in physiology. Cortisol is a systemic regulator due 

to the wide expression of the glucocorticoid receptor (Bamberger, Schulte, & 

Chrousos, 1996; Gustafsson et al., 1987; Munck, Guyre, & Holbrook, 1984). It 

influences the metabolisms of lipids, carbohydrates and proteins and regulates 

diverse cellular functions including homeostasis, development and growth, 

cardiovascular function, immune function, inflammation and functions within 
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reproductive physiology and neurobiology (Charmandari, Tsigos, & Chrousos, 

2005; McEwen, 2008; McEwen et al., 1997; Ramamoorthy & Cidlowski, 2016; 

Sapolsky, Romero, & Munck, 2000). Cortisol stimulates gluconeogenesis in the 

liver and the inhibition of glucose transport and glucose utilisation (Munck et al., 

1984), which lead to elevated blood sugar levels and therefore may trigger 

diabetes. Furthermore, cortisol triggers catabolic processes of the muscles, the 

lymphatic tissue, the skin and the bones (Bodine & Furlow, 2015; Pufall, 2015; 

Schoepe, Schacke, May, & Asadullah, 2006; Warriner & Saag, 2013). The amino 

acids thus released are used for gluconeogenesis in the liver. Fatty acids are 

released through the lipolytic activity of cortisol while it also inhibits lipogenesis 

by blocking the incorporation of glucose into fat cells (Gathercole et al., 2011; 

Geer, Islam, & Buettner, 2014).  

Glucocorticoids repress a number of immune processes. Not only do they lead to 

a reduction in thymus and lymph node tissue but also reduce the number of 

lymphocytes and are required for immunological fitness (J. J. Cohen, 1992; 

Mittelstadt, Monteiro, & Ashwell, 2012; Pufall, 2015; L. K. Smith & Cidlowski, 

2010). Moreover, glucocorticoids inhibit the release and effects of most cytokines, 

regulate granulocyte apoptosis and therefore also play a major role in the 

inhibition of inflammatory processes (Caramori & Adcock, 2005; Heasman et al., 

2003; Rhen & Cidlowski, 2005). 

Glucocorticoids also have effects on the CNS that exceed their part in the 

feedback mechanism of the neuroendocrine system. In addition they increase the 

effects of some endogenous signalling molecules, which is called ‚permissive 

effect’ (Joels & Baram, 2009; Sapolsky et al., 2000). 

 

1.3 Hypercortisolism – Cushing’s syndrome 

1.3.1 Definition 

The term Cushing’s syndrome refers to a collection of clinical signs and 

symptoms due to prolonged exposure to excessive concentrations of circulating 

free cortisol. One distinguishes between exogenous and endogenous Cushing’s 

syndrome. Exogenous Cushing’s syndrome is the most common form and is 

caused by lengthy and extensive therapeutic administration of glucocorticoids. 
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Endogenous Cushing’s syndrome, however, results from an aberrant function of 

the HPA axis and can once again be divided into ACTH-dependent and ACTH-

independent Cushing’s syndrome (Heinrich M. Schulte & Kamphausen, 2010). 

 

1.3.2 Endogenous causes of hypercortisolism 

Endogenous Cushing’s syndrome is considered a rare disorder with population-

based studies showing an incidence between 0.2 – 5.0 cases per million people 

per year and an overall prevalence of 39 – 79 per million (Ambrosi, Bochicchio, 

Ferrario, Colombo, & Faglia, 1990; Bolland et al., 2011; Etxabe & Vazquez, 1994; 

Lindholm et al., 2001; Steffensen, Bak, Rubeck, & Jorgensen, 2010; Valassi et 

al., 2011). The causes of endogenous Cushing's syndrome can be either ACTH-

dependent or ACTH-independent [Table 1]. 

ACTH-dependent causes account for 70 – 80% of cases, the vast majority of 

them caused by pituitary tumours (Cushing’s disease), outnumbering ectopic 

ACTH syndrome by about seven-to-one (Arnaldi et al., 2003; Biller et al., 2008; 

Lacroix, Feelders, Stratakis, & Nieman, 2015; Newell-Price, Bertagna, 

Grossman, & Nieman, 2006). Ectopic ACTH secretion is produced by a variety of 

endocrine and non-endocrine tumours that are located outside the pituitary gland, 

most commonly small-cell lung cancer tumours or bronchial carcinoids (Isidori et 

al., 2006; Lacroix et al., 2015; Newell-Price et al., 2006). Rarely, an excess of 

ACTH secretion by the pituitary gland is caused by tumours that are able to 

produce CRH ectopically (Arnaldi et al., 2003; Biller et al., 2008; Lacroix et al., 

2015; Newell-Price et al., 2006). 

About 20 – 30% of Cushing’s syndrome cases are ACTH-independent, most of 

them caused by a unilateral tumour: 60% of these cases are adrenal adenomas 

and 40% are adrenal carcinomas. Very rare causes of corticotropin-independent 

Cushing’s syndrome include McCune-Albright syndrome, primary bilateral 

macronodular adrenal hyperplasia and primary bilateral micronodular adrenal 

hyperplasia, like primary pigmented nodular adrenocortical disease (Lacroix, 

2009; Newell-Price et al., 2006; Stratakis, 2008). 

Endogenous Cushing’s syndrome is more frequent in women than in men, except 

for the ectopic ACTH syndrome, which is equally distributed between both sexes 
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(Lacroix et al., 2015; Lindholm et al., 2001; Newell-Price et al., 2006; Steffensen 

et al., 2010). However, the sex ratio of children suffering from Cushing’s disease 

is equal, with a male preponderance under the age of ten (Libuit et al., 2015; Storr 

et al., 2004) contrasting with a female preponderance during the adolescence, 

which becomes even more considerable in adulthood (Lonser et al., 2013; Storr 

et al., 2011). 

 

Aetiology Proportion 

(%) 

Female:male 

ratio 

ACTH-dependent 

Cushing’s disease 

Ectopic corticotropin syndrome 

Unknown source of ACTH* 

Ectopic CRH 

70 – 80 

60 – 70 

5 – 10 

5 

Very rare 

 

3 – 5 : 1 

0.6 – 1 : 1 

5 : 1 

– 

ACTH-independent 

Unilateral adrenal adenoma 

Unilateral adrenal carcinoma 

Bilateral macronodular adrenal hyperplasia 

Bilateral micronodular adrenal hyperplasia 

McCune-Albright syndrome 

Bilateral adenomas or carcinomas 

20 – 30 

10 – 22 

5 – 7 

<2 

<2 

Rare 

Rare 

 

4 – 8 : 1 

1.5 – 3 : 1 

2 – 3 : 1 

0.5 – 2 : 1 

1 : 1 

2 – 4 : 1 

Table 1. Aetiology of Cushing’s syndrome. 
Adapted from (Lacroix et al., 2015; Newell-Price et al., 2006). 
*Patients might ultimately prove to have Cushing’s disease 
 

1.3.3 Clinical features and comorbidities  

Uncontrolled hypercortisolaemia is associated with metabolic, cognitive, 

psychological and cardiovascular alterations. Manifestations vary among patients 

and range from subclinical or mild to rapid onset, severe variants. Symptoms may 

also fluctuate, making Cushing’s syndrome difficult to diagnose in many cases 
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(Arnaldi et al., 2003; Biller et al., 2008; Newell-Price et al., 2006; Nieman et al., 

2008; Pappachan, Hariman, Edavalath, Waldron, & Hanna, 2017). 

There are no pathognomonic signs, but the most reliable ones for distinguishing 

Cushing’s syndrome from simple obesity are those of protein wasting – proximal 

myopathy, wide purple striae distensae, thin skin and easy bruising (Newell-

Price, 2008; Nieman, 2015; Nieman et al., 2008). However, as Cushing’s 

syndrome tends to progress over time, these signs might not be noted early on. 

As relevant features accumulate over time, diagnosis might be established more 

easily in advanced cases (Nieman, 2015). 

Symptoms are caused by the metabolic effects of hypersecreted cortisol on the 

body. Table 2 summarises the most important clinical features of Cushing’s 

syndrome. The most common symptoms and clinical signs are (in decreasing 

number of frequency): truncal obesity, moon face, decreased libido, facial 

plethora, thin skin, menstrual disorders, hirsutism, hypertension, lethargy and 

psychic changes, ecchymotic haemorrhages, striae rubrae distensae and 

proximal muscle weakness (Newell-Price, 2008; Nieman, 2015). Less common 

clinical symptoms include ECG abnormalities or atherosclerosis, dorsal fat pad, 

ankle oedemas, abnormal glucose tolerance/diabetes, osteopenia or bone 

fractures, kidney stones, headache, backache, recurrent infections, abdominal 

pain, acne, female balding, polyuria and polydipsia (Faggiano et al., 2003; 

Nieman, 2015). 

Weight gain mostly affects only the trunk, while extremities often stay slim 

because of muscular atrophy (Nieman, 2015).  

As glucocorticoids have a suppressive effect on the immune system, patients 

may suffer from frequent infections (Aucott, 1994; McEwen et al., 1997). 

Furthermore, hypercortisolism predisposes to abnormalities like hypertension, 

glucose intolerance/diabetes and other manifestations that lead to an adverse 

metabolic profile, putting patients at a higher cardiovascular risk, which might not 

fully return to normal after remission (De Leo et al., 2010; Isidori et al., 2015; 

Mancini, Kola, Mantero, Boscaro, & Arnaldi, 2004; Pivonello et al., 2016; Terzolo 

et al., 2014). Cushing’s syndrome is not only associated with an increased 

prevalence of cardiovascular events, but also with a hypercoagulable state, 
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reflected in an increased incidence of venous thromboembolisms, including 

ischemic strokes (van der Pas, Leebeek, Hofland, de Herder, & Feelders, 2013). 

 

Table 2. Clinical features of Cushing’s syndrome. 
Adapted from (Faggiano et al., 2003; Newell-Price, 2008; Pecori Giraldi, Moro, & 
Cavagnini, 2003; Savage, Lienhardt, et al., 2001). 
The most discriminating features are presented in italics. 
 

Neuropsychiatric manifestations have long been recognized as important 

symptoms of Cushing’s syndrome (Starkman & Schteingart, 1981), with labile 

mood, irritability, depression, mania, anxiety and neurocognitive impairment 

being the most important clinical abnormalities. Deficits in short-term memory and 

cognition are common and reverse only slowly after correction of 

Clinical feature Proportion (%) 

Obesity or weight gain 95 (100 in children) 

Facial plethora 90 

Rounded face 90 

Decreased libido 90 

Thin skin 85 

Decreased linear growth in children 70 – 80  

Menstrual irregularity 80 

Hypertension 75 

Hirsutism 75 

Depression/emotional lability 70 

Easy bruising 65 

Glucose intolerance 60 

Proximal myopathy 60 

Osteopenia or fracture 50 

Nephrolithiasis 50 
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hypercortisolaemia, due to the loss of brain volume that at least partially persists 

(Bourdeau et al., 2005; Forget, Lacroix, & Cohen, 2002; Pivonello, Simeoli, et al., 

2015). 

Clinical features differ in children, with obesity and decreased linear growth being 

especially evident (Davies et al., 2005; Magiakou et al., 1994; Savage, Lebrethon, 

et al., 2001; Savage, Lienhardt, et al., 2001; Stratakis, 2012). A difference in 

clinical presentation can also be seen between sexes. While muscle atrophy, 

purple striae distensae, osteoporosis and kidney stones are more frequent in 

men, no single symptom seems to be more common in female patients (Pecori 

Giraldi et al., 2003). Gonadal dysfunction is common in men as well as in women 

(Newell-Price et al., 2006). 

The comorbidities associated with Cushing’s syndrome contribute to impaired 

quality of life, which only partially resolves after treatment (Heald et al., 2004; 

Lindsay, Nansel, Baid, Gumowski, & Nieman, 2006; van Aken et al., 2005). 

Mortality is increased in Cushing's syndrome, with cardiovascular events being 

the most common cause of death, followed by infection/sepsis (Bolland et al., 

2011; Clayton, Raskauskiene, Reulen, & Jones, 2011; Dekkers et al., 2013; 

Graversen, Vestergaard, Stochholm, Gravholt, & Jorgensen, 2012; Hassan-

Smith et al., 2012; Lindholm et al., 2001; Ntali et al., 2013). Several studies 

indicate that early diagnosis, treatment that involves aggressive management of 

comorbidities in a multidisciplinary setting, and long-term follow-up are important 

to reduce morbidity and mortality (Hammer et al., 2004; Sharma, Nieman, & 

Feelders, 2015; Swearingen et al., 1999). Patients with persistent Cushing's 

disease after pituitary surgery, however, are associated with an even higher 

standard mortality rate (Bolland et al., 2011; Dekkers et al., 2013; Graversen et 

al., 2012; Lindholm et al., 2001). 

 

1.3.4 The diagnosis and treatment of Cushing’s disease 

Cushing’s disease is the ACTH dependent form of Cushing’s syndrome caused 

by pituitary corticotroph tumours hypersecreting ACTH. Corticotroph tumours 

account for 4 – 8% of hormonally active tumours of the anterior pituitary 

(Pivonello, De Leo, Cozzolino, & Colao, 2015). Cushing’s disease was first 
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described in 1932 by the neurosurgeon Harvey Cushing (Cushing, 1994; Ellis, 

2012). 

Due to variability in clinical presentation, establishing the diagnosis and treatment 

of Cushing’s disease is frequently a complex process, that needs the cross-

sectoral cooperation of general practitioners, endocrinologists, chemical 

pathologists, radiologists and surgeons (Arnaldi et al., 2003; Biller et al., 2008; 

Loriaux, 2017; Nieman et al., 2008; Yorke, Atiase, Akpalu, & Sarfo-Kantanka, 

2017). A set of hormonal tests are required for a definitive diagnosis. Given a 

clinical suspicion, a set of hormonal tests need to be performed to establish the 

diagnosis of hypercortisolaemia. For establishing the diagnosis of 

hypercortisolaemia four tests are in common use: the low-dose dexamethasone-

suppression testing, the 24-hour urinary free cortisol, the midnight plasma cortisol 

and the late-night salivary cortisol. There are two different ways of performing the 

low-dose dexamethasone-suppression test. Firstly, the overnight 

dexamethasone-suppression test in which 1 mg of dexamethasone is 

administered at 11 p.m. and serum cortisol measured the next day at 8 – 9 a.m. 

Secondly, the 48-hour test in which 0.5 mg dexamethasone is administered every 

six hours for two days in a row, at 9 a.m., 3 p.m., 9 p.m. and 3 a.m. with 

measurements of serum cortisol at 9 a.m. at the beginning and the end of the 

test. Following either test, the serum cortisol levels should be below 50 nmol/l to 

exclude Cushing’s syndrome (Newell-Price, Trainer, Besser, & Grossman, 1998). 

Noteworthy are the 3 – 8% of patients with Cushing’s disease that show a false 

negative result with suppression of serum cortisol to below 50 nmol/l (Findling, 

Raff, & Aron, 2004; Isidori et al., 2003). 24-hour urinary free cortisol (UFC) is the 

least sensitive test. Three 24-hour collections are needed in order to avoid 

missing mild or cyclical forms of disease. Values four-fold greater than the upper 

limit of normal hint at Cushing’s syndrome, but can also be due to other causes 

of hypercortisolaemia. An incomplete collection or renal impairment can lead to 

falsely low values of UFC (Arnaldi et al., 2003; Newell-Price et al., 2006). The 

normal circadian rhythm of cortisol secretion is impaired in patients with 

Cushing’s syndrome. A single sleeping midnight plasma cortisol below 50 nmol/l 

excludes Cushing’s syndrome (Newell-Price et al., 1995), while an awake 

midnight plasma cortisol of over 207 nmol/l is consistent with Cushing’s 

syndrome, but may miss 7% of mild forms of disease (Papanicolaou, Yanovski, 
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Cutler, Chrousos, & Nieman, 1998). Salivary cortisol reflects free circulating 

cortisol and elevated levels of late-night salivary cortisol point to Cushing’s 

syndrome (Findling & Raff, 2005). In case of continuously high clinical suspicion, 

repeated tests and further investigations are in order. Once the diagnosis of 

hypercortisolaemia is established, the cause of Cushing’s syndrome needs to be 

determined. The first step is to measure plasma ACTH. Plasma ACTH levels 

consistently below 5 pg/ml point to ACTH-independent Cushing’s syndrome while 

ACTH levels persistently above 15 pg/ml indicate ACTH-dependent Cushing’s 

syndrome. If ACTH-independent Cushing’s syndrome is suspected, adrenal 

imaging with computed tomography is required to differentiate between the 

different causes of ACTH-independent Cushing’s syndrome (Newell-Price, 

2008). If ACTH-dependent Cushing’s syndrome is suspected, magnetic 

resonance imaging of the pituitary needs to be performed for, however, the 

pituitary is normal in 40% of patients with Cushing’s disease and 10% of the 

general population were found to have pituitary incidentalomas. Therefore, to 

differentiate between pituitary and non-pituitary sources, biochemical evaluation 

is crucial (Newell-Price et al., 1998). The high-dose dexamethasone-suppression 

test has a low sensitivity for the diagnosis of Cushing’s disease and is therefore 

no longer recommended in centres where bilateral inferior petrosal sinus 

sampling (BIPSS) is available. For BIPSS catheters are placed in both inferior 

petrosal sinuses to achieve a corticotropin gradient sample. A basal central to 

peripheral ratio of over 2:1, or a ratio of above 3:1 when CRH is administered, is 

indicative of Cushing’s disease. BIPSS has a high sensitivity and specificity of 

94% and has been the gold standard for distinguishing between Cushing's 

disease and ectopic corticotropin syndrome (Lindsay & Nieman, 2005; Newell-

Price et al., 2006). 

In order to prevent the development and/or worsening of the manifold 

comorbidities and clinical complications, prompt and effective treatment is crucial, 

as they are the cause for increased mortality (Pivonello, De Leo, et al., 2015). 

First line therapy for Cushing’s disease is selective transsphenoidal surgery 

(Biller et al., 2008; Lacroix et al., 2015; Nieman et al., 2015; Pivonello, De Leo, et 

al., 2015). Effective surgery by a trained neurosurgeon results in an approximate 

remission rate of 80% (Honegger & Grimm, 2018). Remission is characterized by 

a gradual resolution of the signs derived from hypercortisolism and a slow 
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recovery of the hypothalamic-pituitary-adrenal axis function over the period of 

one year or more (Lacroix et al., 2015). The review of literature shows broad 

ranges of remission between 42.0 and 96.6% and recurrence rates as high as 

47.4% (Dimopoulou et al., 2014; Petersenn et al., 2015). 

Second line therapy is required to minimize the harmful consequences of 

hypercortisolism whenever Cushing’s disease persists or recurs after surgery 

(Bertagna & Guignat, 2013; Nieman et al., 2015; Pivonello, De Leo, et al., 2015). 

Second pituitary surgery has proven to be favourable when the residual tumour 

is visible and resectable or to debulk if surrounding structures are compressed 

(Arnaldi et al., 2003; Bertagna & Guignat, 2013; Biller et al., 2008; Tritos, Biller, 

& Swearingen, 2011). When pituitary surgery is not recommended or has 

definitely failed, radiotherapy, medical therapy or bilateral adrenalectomy (BA) 

may be used to lower cortisol levels (Bertagna & Guignat, 2013). Firstly, 

persisting hypercortisolism can be treated with pituitary radiotherapy. The major 

side effect of pituitary radiotherapy is hypopituitarism, which means the deficiency 

of one or more hormones (Darzy & Shalet, 2009; Feigl, Bonelli, Berghold, & 

Mokry, 2002; Feigl, Pistracher, Berghold, & Mokry, 2010; Minniti & Brada, 2007). 

Secondly, medical therapy is used to lower cortisol levels. There are three 

classes of drugs available for medical treatment: anticorticotroph drugs 

(pasireotide, cabergoline), antiadrenocortical drugs (ketoconazole, metyrapone, 

mitotane or in rare cases etomidate or lysodren) and the antiglucocorticoid 

mifepristone (Bertagna & Guignat, 2013; Cuevas-Ramos, Lim, & Fleseriu, 2016; 

Pivonello, De Leo, et al., 2015). A combination of drugs might be necessary to 

reach eucortisolism (Kamenicky et al., 2011). Medical therapy is rarely a good 

long-term solution and is mainly used as adjunctive treatment to other modalities 

such as surgery and pituitary radiotherapy or as first-line treatment in patients 

with surgical contraindications (Cuevas-Ramos et al., 2016; Pivonello, De Leo, et 

al., 2015). Indications for medical treatment also include acute complications of 

hypercortisolism, such as infection and psychosis (Lacroix et al., 2015). BA is the 

definitive treatment for Cushing's syndrome and may be required to achieve 

adequate control of cortisol levels when other therapies have failed or when rapid 

eucortisolism is crucial (Lacroix et al., 2015; Ritzel et al., 2013; Thompson et al., 

2007). Due to the many severe consequences of BA, like live-long adrenal 

insufficiency with mandatory hormone replacement, the consequent risk of 
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adrenal crisis and the development of Nelson’s syndrome, it is used as an ultima 

ratio. It is only conducted as an emergency treatment in patients with very severe, 

life-threatening ACTH-dependent disease that cannot be promptly and 

sufficiently controlled by other medical measures (Reincke, Ritzel, et al., 2015). 

Patients undergoing BA have a significant risk of developing the so-called 

Nelson's syndrome (hyperpigmentation and macroscopic (>1 cm) enlargement of 

the tumour), as the primary corticotroph adenoma remains in situ after 

adrenalectomy. Therefore a regular evaluation for corticotroph tumour 

progression using ACTH levels and pituitary magnetic resonance imaging in 

patients with Cushing’s disease is crucial (Nieman et al., 2015).  

 

1.4 The genetics of Cushing’s disease 

1.4.1 The long road to decoding the genetic basis of Cushing’s disease 

In humans, most pituitary tumours originate from the sporadic clonal expansion 

of a single cell containing one or few mutations that give them particular adaptive 

advantages and are considered overwhelmingly non-familial and benign (Biller et 

al., 1992; Gicquel, Le Bouc, Luton, Girard, & Bertagna, 1992; Heaney, 2011; V. 

Herman, Fagin, Gonsky, Kovacs, & Melmed, 1990; Melmed, 2011; H. M. Schulte 

et al., 1991). Only rarely Cushing’s disease can be observed as a manifestation 

in the context of genetic tumour syndromes, such as multiple endocrine neoplasia 

type 1 or type 4, familial isolated pituitary adenoma, McCune-Albright syndrome, 

Carney complex and tuberous sclerosis complex (Dahia et al., 1998; Georgitsi, 

Raitila, Karhu, Tuppurainen, et al., 2007; Georgitsi, Raitila, Karhu, van der Luijt, 

et al., 2007; Hernandez-Ramirez et al., 2017; Igreja et al., 2009; Kasturi et al., 

2017; Kiefer et al., 2017; Melmed, 2011; Nandagopal, Vortmeyer, Oldfield, Keil, 

& Stratakis, 2007; Naziat et al., 2013; Riminucci et al., 2002; Simonds, Varghese, 

Marx, & Nieman, 2012; Stratakis et al., 2010; Thakker et al., 2012; Tigas et al., 

2005; Verges et al., 2002; Williamson, Ince, Harrison, Kendall-Taylor, & Harris, 

1995). Screening for known mutations associated with other endocrine 

pathologies that predispose individuals to familial pituitary tumours has been 

useful in identifying uncommon germline mutations, such as AIP, MEN1, 

PRKAR1A and x chromosome microduplications. Very rarely germline mutations 

where found in DICER1, CDKN1B and SDH (Gadelha, Trivellin, Hernandez 



_____________________________________________________________________________ 

 17 

Ramirez, & Korbonits, 2013; Lecoq, Kamenicky, Guiochon-Mantel, & Chanson, 

2015; Stratakis et al., 2010). AIP germline mutations could also be found in 

isolated, sporadic variants of Cushing’s disease without familial history (Cazabat 

et al., 2012; Stratakis et al., 2010). Somatic mutations could be identified in the 

GNAS1 gene in somatotroph tumours that account for McCune-Albright 

syndrome (Landis et al., 1989; Weinstein et al., 1991), however, the identification 

of recurrent, somatic mutations in corticotroph tumours was largely unsuccessful 

for a long time (Dworakowska & Grossman, 2012).  

Multiple efforts have been made to identify mutations causing ACTH-producing 

corticotroph tumours. Previous studies have shown different gene expression 

patterns and dysregulated methylation in different types of pituitary tumours 

(Melmed, 2011), but the search for somatic mutations in candidate genes 

remained largely unsuccessful. Despite the fact that CRHR1 and the vasopressin 

receptor V1B or V3R are expressed abundantly in corticotroph tumours, no 

mutations in the respective coding regions have been reported (Dahia et al., 

1996; de Keyzer, Rene, Beldjord, Lenne, & Bertagna, 1998; Luque et al., 2013).  

 

Thanks to next-generation sequencing technologies like whole-exome 

sequencing, Reincke and co-workers were the first to identify recurrent somatic 

mutations in the gene encoding the ubiquitin-specific protease 8 (USP8) in six out 

of seventeen patients (35 %) (Reincke, Sbiera, et al., 2015).  

 

1.4.2 The ubiquitin-specific protease 8 (USP8) and its role in the recycling 

of the epidermal growth factor receptor (EGFR) 

The ubiquitin-specific protease 8 (USP8) gene codes for an enzyme of ~130 kDa 

with deubiquitinase (DUB) activity, i.e., it cleaves ubiquitin peptides from target 

proteins, many of them membrane receptors that control cell growth and 

proliferation (Naviglio et al., 1998). In most cases, ubiquitin is related to proteolytic 

cleavage by either the proteasome or lysosomes and therefore USP8 action 

reduces the degradation and increases the recycling rate of its target protein 

(Hochstrasser, 1995; Komada, 2008). 
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USP8 activity is tightly regulated. USP8 remains catalytically inactive through its 

interaction with members of the 14-3-3 family of proteins, a class of small (25 – 

30 kDa) adapter proteins, composed of seven isoforms in humans (Mhawech, 

2005). The interaction is mediated by a specific sequence, the 14-3-3 binding 

motif (RSXpS/TXP, RSYpS(718)SP in USP8), which is recognized by 14-3-3 

proteins when the Ser718 is phosphorylated (Mizuno, Kitamura, & Komada, 

2007; Yaffe et al., 1997). USP8 mutations found by Reincke et al. in corticotroph 

tumours target the 14-3-3 binding motif and thus drastically reduce the interaction 

and specific regulation of USP8 by 14-3-3. Therefore, mutant USP8 remains 

constitutively active in the cell (Reincke, Sbiera, et al., 2015). 

Among other functions, USP8 is involved in the lysosomal trafficking of the 

epidermal growth factor receptor (EGFR) (Komada, 2008). The EGFR belongs to 

the family of receptor tyrosine kinases, that consists of 20 functionally similar but 

structurally different forms. Four closely related receptors are comprised by the 

epidermal growth factor subfamily: EGFR (or HER1 or ErbB1), HER2 (or 

ErbB2/neu), HER3 (or ErbB3) and HER4 (or ErbB4) (Hackel, Zwick, Prenzel, & 

Ullrich, 1999). EGFR is overexpressed in a wide range of tumours and therefore 

poses a target for cancer treatment (Kanematsu, Yano, Uehara, Bando, & Sone, 

2003; Klijn, Berns, Schmitz, & Foekens, 1992; Sugawa, Ekstrand, James, & 

Collins, 1990; Tang, Gong, Moscatello, Wong, & Lippman, 2000; Xu, Richert, Ito, 

Merlino, & Pastan, 1984), including corticotroph tumours. In normal pituitary 

tissue, EGFR is ubiquitously expressed, although at low levels (Kontogeorgos, 

Stefaneanu, Kovacs, & Cheng, 1996; LeRiche, Asa, & Ezzat, 1996; Onguru et 

al., 2004; Theodoropoulou et al., 2004). Its expression is not restricted to any 

specific tumour type (LeRiche et al., 1996; Onguru et al., 2004; Theodoropoulou 

et al., 2004). Theodoropoulou et al. demonstrated that EGFR expression is more 

common in the hormonally active pituitary tumours than in the non-functional 

ones and is the highest in corticotroph tumours (Theodoropoulou et al., 2004). 

Earlier studies suggest that EGFR expression was higher in non-functional than 

in hormonally active pituitary tumours (LeRiche et al., 1996; Onguru et al., 2004), 

however, a much larger number of non-functional pituitary tumours was used for 

immunohistochemical analysis by Theodoropoulou et al.  

EGFR expression has also been reported to correlate with tumour invasiveness 

(Jaffrain-Rea et al., 1998; LeRiche et al., 1996). 
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Fukuoka et al. were able to show that EGFR plays an important role in pituitary 

tumours. They demonstrated that the activation of EGFR induces POMC 

transcription via mitogen-activated protein kinase (MAPK) dependent pathways 

and therefore induces the secretion of ACTH. Furthermore, they showed that 

blocking EGFR activity in corticotroph tumours with gefitinib, an EGFR tyrosine 

kinase inhibitor, attenuated the expression of POMC, the precursor of ACTH, 

inhibited the proliferation of corticotroph tumour cells and induced apoptosis 

(Fukuoka et al., 2011). 

Under normal conditions, USP8 interacts with polyubiquitinated EGFR. Ubiquitin 

cleavage prevents the lysosomal degradation of the EGFR and enables EGFR 

recycling back to the plasma membrane (Mizuno et al., 2005; Naviglio et al., 

1998). The current mechanism proposed for Cushing’s disease implies a 

constitutive activity of USP8 that reduces EGFR degradation and therefore leads 

to higher EGFR stability, which enhances EGFR-induced POMC transcription 

and therefore ACTH secretion in corticotroph cells (Reincke, Sbiera, et al., 2015). 

Figure 2 shows the mechanism how USP8 modulates EGFR signalling and 

therefore the secretion of ACTH in a normal corticotroph cell. EGFR signalling is 

stimulated by EGFR ligands, such as EGF, that promote Erk1/2-mediated 

activation of transcription factors and subsequently lead to the transcription of 

POMC. Afterwards, EGFR is linked to ubiquitin chains. The ubiquitination marks 

the receptor for lysosomal degradation. USP8 regulates EGFR turnover by 

removing the ubiquitin chains from the receptor. Deubiquitinated EGFR gets 

recycled and therefore is moved back to the plasma membrane, where it again 

activates signalling cascades, such as the Erk1/2-pathway. USP8 activity is 

strictly controlled by 14-3-3 proteins, that withhold USP8 in an inactive state that 

is reversible (Theodoropoulou, Reincke, Fassnacht, & Komada, 2015). 
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Figure 2. Schematic representation of how USP8 regulates EGFR trafficking 
and signalling and therefore ACTH secretion in a normal corticotroph cell. 
Adapted from (Reincke, Sbiera, et al., 2015). 
 

Figure 3 illustrates the impact USP8 mutations have on the binding of USP8 to 

14-3-3 and therefore on EGFR trafficking and signalling. The cleaved catalytic 

domain of the USP8 mutants provokes the constitutive activation of USP8 

proteins. With its higher DUB activity USP8 mutants effectively deubiquitinate 

EGFR and consequently impair EGFR degradation. Thus, EGFR accumulates in 

the plasma membrane and increases Erk 1/2-mediated transcription of POMC 

and therefore leads to a rise of plasma ACTH levels. Hence, USP8 mutants act 

concomitantly via the EGFR on a substantial increase in ACTH secretion as well 

as on corticotroph tumorigenesis (Reincke, Sbiera, et al., 2015). 
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Figure 3. Schematic representation of the impact of USP8 mutations on 
EGFR trafficking and signalling and therefore on ACTH secretion in 
corticotroph tumour cells. 
Adapted from (Reincke, Sbiera, et al., 2015). 
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2 Objectives of this study 

After numerous studies trying to gain a deeper insight into the development of 

Cushing’s disease and its underlying molecular mechanisms, Reincke et al. 

succeeded in identifying recurrent somatic mutations in the USP8 gene. These 

mutations induce hypersecretion of ACTH via deregulation of EGFR signalling 

and may lead to different clinical phenotypes, i.e. different clinical presentation. 

However, only a small number of cases was analysed (Reincke, Sbiera, et al., 

2015). This study aims to analyse the USP8 status in a large series of 145 ACTH-

positive pituitary tumours. 

 

This study has two major objectives: 

- To determine the prevalence of USP8 mutations in a representative 

multicentric cohort of patients diagnosed with Cushing’s disease. 

- To investigate the genotype-phenotype correlation between the USP8 

mutational status of the tumour and different clinical features and 

biochemical test results.  

These experiments could not only clarify the prevalence of somatic mutations in 

the USP8 gene in patients suffering from Cushing’s disease, but could also 

potentially reveal the clinical relevance of those genetic variants. 
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3 Material and Methods 

3.1 Patient cohort and samples 

During 1998 – 2013, patients with pituitary tumours were recruited through seven 

different centres from Europe and America, more precisely through the different 

departments of endocrinology presented in Table 3.  

The number and proportion of patients recruited by each centre and their 

proportion of the total cohort can be retraced in Figure 4. 

 

Figure 4. Distribution of patients diagnosed with Cushing’s disease 
according to their centre of origin (n=134). 
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Origin No. of 
patients 

Brazil 

Universidade Federal do Rio de Janeiro 

 

9 

France 

Department of Endocrinology of the CHU Paris Centre-Hôpital 

Cochin 

 

5 

Germany 

Department of Endocrinology, Max Planck Institute of 

Psychiatry (MPI), Munich 

 

28 

Germany 

Department of Neurosurgery of the University Hospital 

Tübingen 

 

14 

Serbia 

Neuroendocrine Department, Pituitary Tumours and 

Endocrine Diseases of the University of Belgrade 

 

2 

United Kingdom 

William Harvey Research Institute, Barts and The London, 

Queen Mary’s School of Medicine and Dentistry, London 

 

57 

United States of America 

Section on Endocrinology & Genetics, Program on 

Developmental Endocrinology & Genetics, Eunice Kennedy 

Shriver National Institute of Child Health and Human 

Development, National Institutes of Health, Bethesda, 

Maryland 

 

 

19* 

Table 3. Overview of the seven participating centres.  
* paediatric patients only 

 

In this work, 145 patients with corticotroph tumours were included. 134 of these 

were diagnosed with Cushing’s disease, 105 adults (≥18 years old) and 29 
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children. 11 adult patients with silent corticotroph macroadenomas were included. 

In all cases, the diagnosis was histologically confirmed by an expert after surgical 

resection. Written informed consent was obtained from all patients or – whenever 

needed – from their respective surrogates. The study was approved by the ethics 

committee of each individual institution. All clinical investigations were conducted 

according to the ethical standards laid down in the ‚Declaration of Helsinki’. 

 

3.2 Clinical data and diagnosis 

The diagnosis of ACTH-dependent Cushing’s syndrome was based on the 

combination of typical clinical signs and symptoms of hypercortisolism (recent 

weight gain, truncal obesity, buffalo hump, moon face, muscle weakness, striae 

rubrae distensae, easy bruising, parchment skin, hirsutism, acne, easy bruising, 

low-impact bone fractures, irregular menstruation, loss of libido, infertility, 

impotency and mood changes) and biochemical hallmarks of hypercortisolism, 

such as increased late-night salivary or serum cortisol levels, elevated urinary 

excretion of free cortisol and non-suppressible serum cortisol after 1 mg overnight 

or 2 mg per day (48 hours) dexamethasone test (>1,8 µg/dl; >50 nmol/l). In 

addition, the patients showed inadequately high or elevated plasma ACTH levels. 

ACTH dependency was confirmed through levels of basal plasma ACTH            

>2.2 pmol/l (10 pg/mg), >50% suppression of serum cortisol during high-dose     

(8 mg) dexamethasone tests and through cortisol response to corticotropin 

releasing hormone. Moreover, patients underwent additional procedures, such as 

magnetic resonance imaging of the pituitary and inferior petrosal sinus 

catheterization to confirm the pituitary dependent Cushing’s syndrome.  

All patients underwent transsphenoidal surgery. The presence of an ACTH-

producing pituitary tumour was confirmed histologically by experts after resection. 

Fresh tumour tissue was frozen immediately using liquid nitrogen. Data collected 

at the time of surgery included the actual tumour size, postoperative ACTH levels, 

serum cortisol levels and 24-hour urinary free cortisol. 

Adrenal insufficiency was determined as concentrations of morning serum 

cortisol <5 μg/dl (138 nmol/l).  
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Silent ACTH tumours were defined as clinically non-functioning pituitary tumours 

with positive immunoreactivity for ACTH on histological examination. 

The clinical data requested for each patient included in this study can be found in 

Table 4. Collection of relevant clinical data, including clinical signs and 

biochemical hallmarks of hypercortisolism, was performed by means of a 

preconceived Excel sheet provided by us. Not available data could be marked as 

‘unknown’ by the participating centres.  
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Collected clinical data 

Sex 

Age at diagnosis (years) 

Clinical diagnosis (Cushing’s disease or silent ACTH tumour) 

Maximum tumour size (mm) 

Microadenoma (smaller than 10 mm) 

Macroadenoma (exceeding 10 mm) 

Clinical catabolic signs (yes/no) 

Hypertension (yes/no) 

Diabetes (yes/no) 

BMI (kg/m2) 

Preoperative variables 

Basal plasma ACTH (pg/ml) 

Basal serum cortisol (μg/dl) 

Urinary free cortisol (μg/24 h) 

Late-night salivary cortisol (ng/ml) 

Serum cortisol after 1 or 2 mg (low dose) DMX (μg/dl) 

Serum cortisol after 8 mg (high dose) DMX (μg/dl) 

Basal cortisol during CRH testing (µg/dl) 

Peak cortisol during CRH testing (µg/dl) 

Basal ACTH during CRH testing (pg/ml) 

Peak ACTH during CRH testing (pg/ml) 
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Postoperative variables 

Basal levels of plasma ACTH after surgery (pg/ml) 

Minimum serum cortisol after surgery (μg/dl) 

Urinary free cortisol after surgery (μg/24 h) 

Late-night salivary cortisol after surgery (ng/ml) 

Serum cortisol after 1 or 2 mg (low dose) DMX after surgery (μg/dl) 

Adrenal insufficiency (yes/no) 

Prior treatments (yes/no) 

Kind of prior treatments 

Number of pituitary surgeries to date 

Clinical remission of Cushing’s syndrome 

Table 4. Overview of clinical data attempted to obtain from every patient 
participating in this study.  
Units or response options shown in brackets as appropriate. Clinical data could 
be entered freely unless stated otherwise in brackets. 
 

3.3 DNA extraction, PCR amplification and Sanger sequencing 

Genomic DNA was extracted from 122 fresh frozen tumours using the Maxwell 

16 Instrument (Promega) with the Maxwell Tissue DNA Purification Kit 

(Promega). DNA from peripheral blood leukocytes of 54 patients (25 adults and 

29 paediatric patients) was prepared with the same instrument and the Maxwell 

Blood DNA Purification Kit. RNA was extracted from 23 fresh frozen tumours by 

means of the RNeasy Mini Kit (Qiagen) and converted to cDNA using the M-MLV 

reverse transcriptase (Invitrogen). 

DNA was amplified with the aid of a GoTaq DNA polymerase (Promega) and 

specifically designed primers. The list of primers used for the amplification by 

polymerase chain reaction (PCR) and for sequencing are listed in Table 5 (only 

the USP8 hotspot sequence) and Table 6 (the whole coding sequence of USP8) 

respectively. 
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Orientation Function  Sequence 

Forward PCR 5'-GCAGAATACTTTGGAGTGATTTCTT-3'  

Reverse PCR 5'-TCCAACTCCCTGACACTAACA-3'  

Forward PCR 5'-CTTGACCCAATCACTGGAAC-3'  

Reverse PCR 5'-CAGCACATTATTTTAGTTCTAGGAGTT-3' 

Table 5. List of primers used for amplification of the USP8 hotspot 
sequence. 
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Orientiation Function Sequence 

Forward 2 5’-TCACTTGTTTTATTGTGAATGAGGA-3’ 

Reverse 2 5’-TCATCTAACTTTAATATGGAAACGAA-3’ 

Forward 3 5’-GCCGTGAACCAGTACCAATC-3’ 

Reverse 3 5’-TCATGCTGCATATAATTTGAGCTAC-3’ 

Forward 4 5’-AAGCACCATGATTTTAATGATTTTA-3’  

Reverse 4 5’-CGCGAGACTCTGTCTCAAAA-3’ 

Forward 5 5’-TGGTGGAGGGAGAAAGCATA-3’ 

Reverse 5 5’-TCATCCTTGTTGCCTAAAAGAAC-3’ 

Forward 6 5’-AAAAGGCCAGTACTCTGCAC-3’ 

Reverse 6 5’-AAACCTGATGCTTATTCTGATTAAAAG-3’ 

Forward 7 5’-TGGAGTAGTAAATATGTGGCATCC-3’ 

Reverse 7 5’-CCACCACCCACACACATAAA-3’ 

Forward 8 5’-TGGTGTGGTAAAGACTGTGGA-3’ 

Reverse 8 5’-AACATGCCTTTCTAACAACCAGA-3’ 

Forward 9-10* 5’-TTTTGTCCTTAAGGGAACAACTTT-3’ 

Reverse 9-10* 5’-GATTACAGGCGTGAGGCACT-3’ 

Forward 11 5’-GATGTTGTCTCCACAAAGTGACA-3’ 

Reverse 11 5’-ATGGAATGCCACTGGTGTTT-3’ 

Forward 12 5’-TCTCATAGATTCGGTTGTGTTAGC-3’ 

Reverse 12 5’-GCAACGATCCCCTTACACTG-3’ 

Forward 13-14* 5’-AAATATGAAGGGCAGCCAAG-3’ 

Reverse 13-14* 5’-CCATCCACAGAAATTTCCAA-3’ 

Forward 14 ⁜ 5’-CTTGACCCAATCACTGGAAC-3’ 
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Reverse 14 ⁜ 5’-TTACTGTTGGCTTCCTCTTCTC-3’ 

Forward 15 5’-TGCTACAGTTTGCTGCCATT-3’ 

Reverse 15 5’-GCAGCAGAAAACTAATGGACTAAG-3’ 

Forward 16 5’-GGTGGTGAGCCTGCAAATAA-3’ 

Reverse 16 5’-AAACAAGCACTGAACTATCACCAA-3’ 

Forward 17 5’-TGTTTGTATTCACTTTTATTCTTTCAA-3’ 

Reverse 17 5’-GACCAGAAATTTACATCTCTATATCCA-3’ 

Forward 18 5’-GGTGCTCTCTGACATTATTGAAG-3’ 

Reverse 18 5’-TGGCAGGCAGTACAACAAGT-3’ 

Forward 19-20* 5’-CTGGCTGTTTGACCTTAGGC-3’ 

Reverse 19-20* 5’-CACAGCTCCCACTGTCCTAGA-3’ 

Table 6. List of primers used for amplification and sequencing of the coding 
region of human USP8.  
*Exons where amplified and sequenced together. 
⁜Exon 14 was sequenced with specific primers. 
 

PCR quality and performance were evaluated on agarose gel electrophoresis. 

PCR products were cleaned up from salts, proteins and primers using the Wizard 

SV Gel and PCR Clean-up System (Promega). Purified DNA was quantified by 

means of a Nanodrop (ThermoScientific). Sanger sequencing of PCR products 

was performed using the ABI Prism Big Dye Terminator v3.1 Cycle Sequencing 

Kit (Applied Biosystems) on an ABI Prism 3700 DNA Analyzer (Applied 

Biosystems). 

 

3.4 Statistical analysis 

Continuous variables were compared between paired groups using the 

parametric Student’s t-test or the non-parametric Mann-Whitney U. Multiple 

comparisons were performed using ANOVA or Kruskal-Wallis tests, and P-values 

were corrected as applicable and appropriate. Categorical variables were 
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compared using the Fisher’s exact test. Binary logistic regression in a backward-

stepwise fashion was used for multivariate analysis.  

Measurements are documented as means with their respective standard 

deviations (SD) or medians with their respective interquartile ranges (IQR). An 

exact, two-tailed significance level of p<0.05 was considered the threshold to 

being statistically significant. The software package SPSS, version 25.0 (IBM 

SPSS Statistics) was used for statistical analysis. 
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4 Outcome 

4.1 Overview over the data collected 

This retrospective multicentric study included 134 patients diagnosed with 

Cushing’s disease, 105 adults (>18 years old) and 29 paediatric cases. 

Furthermore, 11 adults with silent corticotroph macroadenomas were considered 

in this analysis. All 145 patients were recruited from the seven participating 

European and American centres (see section 3.1). 

Clinical and hormonal data of the study population are summarised in Table 7. 

 

 Cushing’s disease 
tumours (n=134)  

Silent ACTH  
tumours (n=11)  

Age at diagnosis, years (range), n 34 (7-76), 134 45 (27-66), 11 

Sex, n (%) 

Male  

Female 

 

36 (26.9) 

98 (73.1) 

 

6 (54.5) 

5 (45.5) 

Maximum tumour size in mm, n  12.2, 110 19.3, 6 

Tumour size, n (%) 

Microadenoma 

Macroadenoma 

 

69 (51.5) 

65 (48.5) 

 

– 

11 (100) 

Body Mass Index in kg/m², n 31.1, 106 25.1, 2 

Clinical catabolic signs, n (%) 

No 

Yes 

 

16 (28.1) 

82 (71.9) 

 

3 (60.0) 

2 (40.0) 

Diabetes, n (%)  

No 

Yes 

 

71 (65.7) 

37 (34.3) 

 

– 

4 (100) 
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Basal levels of plasma ACTH in 
pg/ml, n  

 
112.4, 108 

 
– 

Basal levels of plasma ACTH in 

pg/ml, n  

 
25.5, 100 

 
– 

24-hour urinary free cortisol in     

μg/24 h, n 

 
539.7, 49 

 
– 

Serum cortisol after 1/2 mg 

dexamethasone test in μg/dl, n  

 
18.6, 76 

 
– 

Serum cortisol after 8 mg 

dexamethasone test in μg/dl, n  

 
8.4, 51 

 
– 

Postoperative levels of ACTH in 

pg/ml, n  

 
24.9, 56 

 
– 

Postoperative minimal cortisol levels 
in μg/dl, n  

 
6.9, 77 

 
– 

Postoperative levels of 24-hour 

urinary free cortisol in μg/24 h, n  

 
56.5, 30 

 
– 

Postoperative levels of cortisol after 

1/2 mg dexamethasone test in μg/dl, 

n 

 
 
5.3, 42 

 
 
– 

Prior treatments, n (%)  

No  

Yes 

 

39 (58.2) 

28 (41.8)  

 

– 

– 

Postoperative adrenal insufficiency, 

n (%) 

No 

Yes 

 

 

40 (37.7)  

66 (62.3)  

 

 

– 

– 

Table 7. Clinical features of the study cohort (n=145). 
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As broadly reported for Cushing’s disease (Lacroix et al., 2015; Newell-Price et 

al., 2006), females were more represented than males (98 vs. 36 cases, 

respectively). A quite similar number of macro- and microadenomas were 

included into this study (65 and 69, respectively). 

 

4.2 Mutations in USP8 are common in pituitary tumours 
causing Cushing’s disease 

We analysed the complete coding region of USP8 in tumour samples of 19 

patients and the hotspot region identified by Reincke et al. in the exon 14 of USP8 

(Reincke, Sbiera, et al., 2015) in another 126 samples, including the 11 silent 

corticotroph tumours. 

In this study USP8 variants in a total of 48 corticotroph tumours (35.8%) were 

identified. All variants appeared in heterozygosity and clustered into a hotspot 

region overlapping with the 14-3-3 binding motif of USP8 [Figure 5]. None of them 

were present in the paired blood samples of 54 patients, indicating that they had 

a somatic origin. In addition, no somatic variant was detected in any other exon 

of USP8. 
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Figure 5. Diagram summarising the location of the different somatic 
mutations in USP8. 
All the mutations found in corticotroph tumours are clustered into the region of 
USP8 coding for the 14-3-3 binding motif. This hotspot region is shown in the 
context of the complete protein. DUB – deubiquitinase catalytic domain; MIT – 
microtubule-interacting and trafficking domain; RHOD – rhodanese-like domain; 
SBM – SH3-binding motif. On the right the overall mutation frequency is shown 
(prevalence = x/48). 
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Figure 6. Mutations identified in corticotroph tumours causing Cushing’s 
disease. 
Chromatograms showing the different mutations identified in this study. The wild 
type nucleotide sequence is shown on top, the mutated sequences (point 
mutations and deletions) are shown below. The red boxes indicate the deleted 
residues. 
 

In addition to mutations discovered before by Reincke et al. – Ser718Pro 

(S718P), Pro720Arg (P720R) and Ser718del (S718del) (Reincke, Sbiera, et al., 

2015) – five new mutations could be identified [Figure 5 and Figure 6, Table 8]: 

The substitution Pro720Gln (P720Q) in two unrelated patients and four short in-
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frame deletions of 6 – 18 nucleotides (affecting either two, five or six amino acids) 

in four different patients (referred to as Del1 – Del4). 

Regarding the relative prevalence of mutations [Table 8], 52% of all mutations 

found affected the residue of Ser718, while 48% targeted the residue of Pro720. 

More precisely, concerning the residue of Ser718, 29% of all mutations identified 

where missense mutations and 22% where deletions of a single amino acid. As 

regards the residue of Pro720, 40% of all mutations discovered were missense 

mutations, while 8% accounted for in-frame deletions.  

 

Mutations n (%) 

Mutations in Ser718  

c.2152T>C (p.718Ser>Pro) [S718P] 

c.2155_2157delTCC (Ser718del) [S718del] 

25  

14  

11 

(52.1)  

(28.6)  

(22.4)  

Mutations in Pro720  

Missense mutations 

c.2159C>G (p.720Pro>Arg) [P720R] 

c.2159C>A (p.720Pro>Gln) [P720Q] 

Deletions 

c.2157_2162delCCCAGA (Pro720_Asp721del) [Del1] 

c.2154_2159delCTCCCC (Ser719_Pro720del) [Del2] 

c.2155_2169delTCCCCAGATATAACC 
(Ser719_Thr723del) [Del3]  

c.2154_2172delCTCCCCAGATATAACCCA 
(Ser719_Gln724del) [Del4] 

23  

19  

17  

2  

4 

1 

1 

1 
 
1 

(47.9)  

(39.6)  

(35.4)  

(4.1)  

(8.2) 

(2.1) 

(2.1) 

(2.1) 
 
(2.1) 

Table 8. Type and frequency of the mutations identified in corticotroph 
tumours from patients with Cushing’s disease. 
 

Figure 7 features the mutation status and gives an overview over type and 

frequency of all mutations identified in this study. The most common mutation 

found in this study was the substitution P720R (35%), followed by the substitution 

S718P (29%) and the deletion S718del (22%). The substitution P720Q and the 
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different short in-frame deletions (Del1 – Del4) were less common (4% and 2% 

each, respectively). 

 

 

Figure 7. Mutation status and different types of mutations in proportion to 
all mutations found in this study. 
 

In the different series of different origins, distinct mutation rates could be detected 

[Figure 8]. The highest mutation rate was found in the series from Brazil (5/9 

cases, 56%), while the lowest mutation rate of 0% was found in the series from 

Serbia, though only two samples from Serbia were studied. 

A low mutation rate of 11% could also be identified in the series from the United 

States of America, but these samples solely included paediatric cases. 

Importantly, alterations in the USP8 gene were not detected in any of the silent 

corticotroph tumours. 
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Figure 8. Mutation rates in series according to origin.  
Pie charts showing the different proportions of wild type (blue) and mutated (red) 
USP8 according to origin. Size of the different series: Brazil – n=9, France – n=5, 
Germany (Munich) – n=28, Serbia – n=2, Germany (Tübingen) – n=14,                 
UK – n=57; USA – n=19 (only paediatric cases). 
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4.3 Sex and age distribution 

In a total of 19 cases we searched for somatic mutations in the complete coding 

region of USP8 and analysed the exon 14 of USP8 in another 126 samples, 

including the 11 silent corticotroph tumours. 

 
 Wild type  Mutated  p value  

Patients, n (%) 

Pediatric cases 

Adult cases 

86 (64.2) 

24 (82.8) 

62 (59.0) 

48 (35.8) 

5 (17.2) 

43 (41.0) 

 

0.03  

Age at diagnosis, years (mean, SD) 

Age of pediatric cases 

Age of adult cases 

35.7, 17.4 

14.6, 2.2 

43.8, 13.3 

33.75, 1.7 

15.2, 2.6 

35.9, 10.3 

0.49 

0.62 

0.001 

Sex, n (%) 

Males 

Females 

 

30 (83.3) 

56 (57.1) 

 

6 (16.7) 

42 (42.9) 

 

0.005  

Max. tumour size, mm (median, IQR)  8.5, 12.0 10.0, 8.0 0.32  

Microadenomas, n (%)  

Size, mm (median, IQR)  

46 (65.2) 

6.0, 3.0 

23 (34.8) 

8.0, 3.0 

 

0.01 

Macroadenomas, n (%)  

Size, mm (median, IQR)  

40 (61.5) 

18.0, 13.0 

25 (38.5) 

16.0, 9 

 

0.09 

Body mass index, kg/m² (mean, SD)  30, 6.6 32.7, 6.6 0.04  

Table 9. Clinical features in patients with wild type versus USP8 mutated 
tumours. 
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Figure 9. Prevalence of mutations in the USP8 gene in different cohorts. 
Pie charts showing the different proportions of wild type (blue) and mutated (red) 
USP8 in different cohorts. Top left – prevalence of USP8 mutations in the total 
cohort (n=134); top right – prevalence of USP8 mutations in adults (n=105); 
bottom left – prevalence of USP8 mutations in females (n=98); bottom right – 
prevalence of USP8 mutations in female adults (n=82). 
 

The prevalence of mutations in the entire cohort was 35.8%, but varied depending 

on age and sex [Table 9, Figure 9], being much more frequent in adults than in 

paediatric cases (41% vs. 17%; p=0.027) and more common in females than in 

males (43% vs. 17%; p=0.005). Considering only the cohort of adult patients, 

patients with USP8 mutant tumours were associated with a younger age at 

diagnosis compared to those with wild type tumours (36 ± 10 years of age vs. 44 

± 13 years of age; p=0.001).  
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Figure 10. Age at diagnosis as influenced by USP8 mutations in male 
versus female patients.  
The histograms represent the distribution of cases with either wild type (blue) or 
mutated (red) USP8 in males and females at different ages at diagnosis. Each 
bar represents five years. The dashed line is drawn at the age of 18, meaning 
that the bars above that line represent adult patients while the bars below that 
line represent paediatric patients.  
 

Sex specific prevalence was also linked to age [Figure 10, Figure 11]. While 

USP8 mutations were rather seldom in female paediatric patients (2/16 cases, 

13%), they were indeed commonly detected in adult women (40/82 cases, 49%). 

These adult women were also found to be younger than those with wild type 

tumours (36 ±10 vs. 42 ±14 years old; p=0.01; Figure 11). While most mutations 

in female patients were found between the ages of 25 – 44 years, tumours in 

children as well as tumours diagnosed in adults >50 years of age were usually 

wild type. Concerning the male patients, tumours with an USP8 mutation were 

predominantly found in teenagers between 15 – 19 years of age.  
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Figure 11. Prevalence of USP8 mutations in patients diagnosed with CD at 
different ages.  
Distribution of cases according to age at diagnosis. Data are represented in 5-
year intervals and as percent of cases diagnosed in each age category.              
Top graph – female patients; bottom graph– male patients. 
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4.4 Differences in size 

The maximum tumour size was not significantly different between tumours with a 

mutant USP8 gene and those with a wild type sequence. The maximum tumour 

size median for USP8 mutated tumours was 10 mm while it was 8.5 mm for wild 

type tumours (IQR 8 vs. 12 respectively) [Table 9]. Over 50% of USP8 mutated 

tumours had a size ranging between 8 and 16 mm. When analysing 

microadenomas separately, tumours with mutant USP8 turned out to be 

significantly larger (p=0.013). Whereas when analysing macroadenomas 

independently, mutated macroadenomas tended to be smaller, although the 

difference was not statistically significant (p=0.089). In female patients, tumours 

with USP8 mutations were found to be slightly larger than wild type tumours 

(median maximum diameter of 10 vs. 8 mm, respectively; IQR 7 vs. 9, 

respectively; p=0.048). No significant difference could be shown between male 

patients with and without USP8 mutations, as the median maximum diameter for 

both was 12 mm (IQR 17 vs. 20 respectively) [Figure 12]. 
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Figure 12. Distribution of tumour size in female versus male patients 
without and with USP8 mutations.  
The dot plots represent the distribution of tumour size in female (top graph) and 
male (bottom graph) patients without and with USP8 mutations. The bars mark 
the first, second (the median tumour size) and third quartiles as weighted 
averages and therefore define the middle 50% of tumour sizes studied, the 
interquartile range. The difference in tumour size in females with wild type versus 
mutant USP8 reached significance (p<0.05). 
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4.5 Differences in hormonal status 

 Wild type Mutant P value 

Preoperative variables  

Basal plasma ACTH, pg/ml 

(median, IQR)  

Basal serum cortisol, μg/dl 

(median, IQR)  

Urinary free cortisol, μg/24 h 

(median, IQR)  

Serum cortisol after 1/2 mg 

DMX, μg/dl (median, IQR)  

Serum cortisol after 8 mg DMX, 

μg/dl (median, IQR)  

 

 
74.0, 67.7 

 
24.1, 14.8 

 

379.6, 415.0 

 

14.7, 14.1 

 
5.2, 6.8 

 

 
67.0, 57.0 

 
21.6, 9.2 

 

370.0, 490.1 

 

17.2, 16.1 

 
2.5, 2.5 

 

 
0.76  

 
0.41  

 

0.62  

 

0.60  

 
0.01  

Postoperative variables 

Basal levels of plasma ACTH 

after OP, pg/ml (median, IQR)  

Minimum serum cortisol after 

OP, μg/dl (median, IQR)  

Urinary free cortisol after OP, 

μg/24 h (median, IQR)  

Adrenal insufficiency, n (%)  

No  

Yes  

 

 

8.3, 12.3 

 
2.5, 7.0 

 

2.5, 6.0 

 

19 (29.2) 

46 (70.8) 

 

 

14.0, 30.0 

 
3.3, 7.9 

 

22.5, 241.3 

 

21 (51.2) 

20 (48.8) 

 

 

0.12  

 
0.72  

 

0.007  

 

 

0.03 

Table 10. Hormonal status in patients with wild type versus USP8 mutated 
tumours. 
 

Regarding preoperative hormonal parameters, levels of cortisol after the high-

dose (8 mg) dexamethasone test were significantly lower in patients with USP8 

mutations (p=0.01). Differences in basal plasma ACTH, basal serum cortisol,    

24-hour urinary free cortisol, and cortisol levels after 1 mg overnight and low dose 



_____________________________________________________________________________ 

 49 

(2 mg) dexamethasone test did not reach significance. Patients with wild type 

tumours were significantly more likely to develop adrenal insufficiency post-

operatively than those with USP8 mutations (71% vs. 49%,  respectively; 

p=0.026), independently of other factors (p=0.028 corrected for age and tumour 

size). These differences in adrenal insufficiency were even more distinct in 

patients of a younger age (below the age of 36, 82% vs. 49%; p=0.014).  

In addition, postoperative 24-hour urinary free cortisol levels were significantly 

higher in patients with USP8 mutant tumours (p=0.007), but the number of cases 

with available data regarding the postoperative urinary free cortisol levels was 

limited (n=30). Other differences in postoperative hormonal parameters, like in 

basal levels of plasma ACTH or minimum serum cortisol, did not reach statistical 

significance. 

All recorded differences in hormonal status are listed in Table 10. 
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5 Discussion 

5.1 Summary of aims and findings 

ACTH-secreting pituitary tumours are sporadic tumours of monoclonal origin, 

whose tumourigenesis has been presumed to originate from a genetic cause 

(Biller et al., 1992; V. Herman et al., 1990). Even though several hypothesis-

driven studies have tried to gain a deeper insight into the development of 

Cushing’s disease and its underlying molecular mechanisms, the genetic basis 

underlying Cushing’s disease has remained unclear until recently. Thanks to 

next-generation sequencing technologies, recurrent mutations were reported in 

the gene encoding the ubiquitin-specific protease 8 (USP8), but only in a small 

cohort of patients suffering from Cushing’s disease (Reincke, Sbiera, et al., 

2015). This gene codes for a protein with deubiquitinase activity that modulates 

the lysosomal turnover of the EGF-receptor among other proteins (Komada, 

2008; Naviglio et al., 1998).  

The objectives of this study were to determine the prevalence of USP8 mutations 

in a representative cohort and also to explore the genotype-phenotype correlation 

in a large series of patients diagnosed with Cushing’s disease. With these 

purposes we have retrospectively analysed the USP8 status in a multicentric 

cohort of 134 functioning and 11 silent corticotroph tumours by means of Sanger 

sequencing and investigated possible associations with different biochemical and 

clinical features. 

In brief, mutations in the USP8 gene were identified in 36% of functional sporadic 

corticotroph tumours causing Cushing’s disease, but in none of the silent 

corticotroph tumours. These mutations were found mostly in female adult 

patients. The patients harbouring a USP8 mutation were diagnosed at an earlier 

age than those with wild type lesions (36 vs. 44 years of age). USP8 mutations 

were predominantly found in tumours measuring 10 ± 7 mm. Their presence was 

inversely associated with the development of postoperative adrenal insufficiency. 

All the mutations found in the USP8 gene in this study affected the residues 

Ser718 or Pro720, including all five newly identified mutations.  
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5.2 Strengths and weaknesses of a retrospective, multicentric 
study 

Unlike very clearly defined study designs that are used in prospective, controlled, 

clinical studies, in which all relevant information can be gathered within the 

framework of specific, clearly structured, standardised questionnaires, only the 

data collected during time of diagnosis and treatment can be used in a 

retrospective setting. The lack of uniformity of diagnostic protocols and 

postoperative management poses another limitation of a multicentric study. As 

different protocols were used in each of the seven participating centres and 

diagnostics as well as postoperative management were not conducted 

considering a certain scientific interest, an inconsistent and non-uniform 

approach needs to be factored in. Moreover, the number of different researchers 

involved in documentation in each participating centre needs to be considered. 

Additionally, many patients were not diagnosed and treated in the same centre, 

as cross-sectoral cooperation of different medical specialties is crucial for the 

diagnosis and treatment of Cushing’s disease. Furthermore, the time span 

between collection of data and begin of this study was up to 16 years. All in all, 

this leads to heterogeneous and in some cases even incomplete documentation.  

Results of diagnostic testing for hypercortisolism were only sparsely documented 

[Table 11]. Especially postoperative values of hormone tests and results of late-

night serum cortisol measurement were not completed thoroughly.  
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 Valid  Missing  

Preoperative variables 

Basal plasma ACTH, n (%) 

Basal serum cortisol, n (%)  

24-hour urinary free cortisol, n (%) 

Late-night salivary cortisol, n (%) 

Serum cortisol after low dose DMX, n (%) 

Serum cortisol after high dose DMX, n (%) 

Basal cortisol during CRH testing, n (%) 

Peak cortisol during CRH testing, n (%) 

Basal ACTH during CRH testing, n (%) 

Peak ACTH during CRH testing, n (%) 

 

108 (81) 

100 (75) 

49 (37) 

11 (8) 

76 (57) 

51 (38) 

40 (30) 

39 (29) 

44 (33) 

43 (32) 

 

26 (19) 

34 (25) 

85 (63) 

123 (92) 

58 (43) 

83 (62) 

94 (70) 

95 (71) 

90 (67) 

91 (68) 

Postoperative variables 

Basal levels of plasma ACTH after surgery, n (%) 

Minimum serum cortisol after surgery, n (%) 

24-hour urinary free cortisol after surgery, n (%) 

Late-night salivary cortisol after surgery, n (%) 

Serum cortisol after low dose DMX after surgery,       

n (%) 

 

56 (42) 

77 (57) 

30 (22) 

6 (4) 

 
42 (31) 

 

78 (58) 

57 (43) 

104 (78) 

128 (96) 

 
96 (69) 

Table 11. Frequency of data available to different biochemical tests of 
hypercortisolism, pre- and postoperatively. 
 

Another problem is the use of different assays for the different hormone tests. But 

not only the assays were different, also the methods of testing were sometimes 

different. For example, the test for suppression of serum cortisol was carried out 

using different quantities for the low dose dexamethasone test (1 mg vs. 2 mg) 

as well as the high dose dexamethasone test (8 mg vs. 16 mg), making the 

comparison of outcomes even more challenging.  
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Advantages of retrospective studies include the fact, that no additional efforts 

need to be shouldered by patients. Furthermore, these studies can be conducted 

at comparatively low financial expense. Diagnostic testing and therapy are 

already completed and only the findings need to be collected, which can be 

realised at relatively low cost. Retrospective studies also mostly do not raise any 

ethical concerns. 

On the whole, given the relatively low prevalence of Cushing’s disease (Ambrosi 

et al., 1990; Bolland et al., 2011; Etxabe & Vazquez, 1994; Lindholm et al., 2001; 

Steffensen et al., 2010; Valassi et al., 2011), retrospective, multicentric studies 

are the only realistically feasible study design, even if the exact impact of USP8 

status on the outcome of Cushing’s disease is difficult to assess and quantify.  

 

5.3 Discussion of findings 

5.3.1 The prevalence of mutations in the USP8 gene in ACTH-producing 

tumours 

In this study, the prevalence of USP8 mutations can be reported in a 

representative cohort of patients suffering from Cushing’s disease. In the overall 

cohort, a prevalence of 36% was found, but it varied significantly depending on 

age and sex. Viewed on its own, the adults show a prevalence of 41% and when 

considering the female adults only, the prevalence rose to as high as 49%. In 

their initial report Reincke et al. reported a prevalence of 35% (6/17 corticotroph 

tumours) (Reincke, Sbiera, et al., 2015). In an analysis of a total of 120 patients 

suffering from Cushing’s disease Ma et al. reported a higher prevalence of USP8 

mutations in Cushing’s disease cases (75/120 corticotroph tumours; 62%) (Ma et 

al., 2015). Unlike the patients in this study, Ma et al. examined a cohort of 

primarily Chinese patients, and therefore ethnic diversity in the genetic 

background could pose as an explanation for the difference in prevalence. 

Interestingly enough, the highest mutation rate in our series was found in the 

samples from Brazil (5/9 cases, 56%). This finding could stress the theory of 

different mutation rates in different ethnicities. Thus, more research needs to be 

done to discover possible ethnic diversities in the prevalence of USP8 mutations 

in corticotroph tumours.  
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All in all, subsequent multicentric studies showed a prevalence of USP8 

mutations between 31 – 40%, in line with the prevalence discovered in this study 

(Faucz et al., 2017; Hayashi et al., 2016; Ma et al., 2015; Reincke, Sbiera, et al., 

2015; Song et al., 2016). Like Ma et al., also Song et al. showed a higher 

prevalence rate (55%) in a primarily Chinese cohort, albeit the cohort of Song et 

al. overlapped in parts with Ma and co-workers’ cohort (Song et al., 2016). In 

contrast, Ballman et al. and Losa et al. both reported lower prevalence rates with 

21.4% and 23.9% respectively (Ballmann et al., 2018; Losa et al., 2019). The 

lower overall USP8 mutation frequency could be due to the fact that a high 

number of very small tumours were included (38% ≤ 5 mm in size) in the study 

conducted by Ballman and co-workers.  

In general, a difference in ethnic background and the handling of diagnostics and 

inclusion criteria cannot be ruled out. Only further, larger studies with more varied 

series of patients suffering from Cushing’s disease will be able to shed light on 

this apparent discrepancy.  

 

5.3.2 Different types of USP8 mutations 

All the mutations in the USP8 gene identified in this study were heterozygous and 

clustered into a hotspot region overlapping with the 14-3-3 binding motif. Eight 

different mutation types were found, none of them in the germline. To date, only 

one patient with a de novo germline USP8 mutation has been reported. Cohen et 

al. described the case of a 16-year-old female with recurrent Cushing’s disease 

besides multiple other severe medical problems, including developmental delay, 

hyperglycemia, dilated cardiomyopathy with congestive heart failure, chronic lung 

disease, chronic kidney disease, dysmorphic features, ichthyosiform 

hyperkeratosis and a previous history of hyperinsulinism and partial GH 

deficiency (M. Cohen et al., 2019). USP8 knockout has been found to result in 

embryonic lethality. Conditional knockout adult mice die from liver failure, 

resulting from a major reduction or the absence of several growth factor tyrosine 

kinases, like the epidermal growth factor receptor (Niendorf et al., 2007). These 

findings hint towards a yet to be discovered multitude of signalling events that 

USP8 is involved in and emphasise the important role USP8 plays in EGFR 

signalling.  
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All of the mutations found in this study targeted either the Ser718 or the Pro720. 

Three highly prevalent mutations could be identified (the substitutions Pro720Arg 

and Ser718Pro as well as the deletion Ser718del), which account for the vast 

majority of mutated cases (87,5 %) [Figure 5]. Taking together the data from all 

studies focusing on USP8 mutations in corticotroph adenomas, all USP8 

mutations so far described were somatic, heterozygous single point mutations, 

clustered in the mutational hotspot that is located in exon 14, with the only 

exception of the paediatric case with a germline mutation described by Cohen 

and co-workers (M. Cohen et al., 2019). It wards USP8 off 14-3-3 proteins that 

prevent the cleavage to a highly active C-terminal fragment (Reincke, Sbiera, et 

al., 2015). The substitutions Pro720Arg and Ser718Pro together with the deletion 

Ser718del accounted for the majority of all mutations. These data clearly identify 

the scope of USP8 mutations. 

USP8-mediated deubiquitination prevents EGFR from lysosomal degradation by 

cleaving ubiquitin peptides from it and directing it back to the plasma membrane, 

where it can again play a role in signal transduction (Mizuno et al., 2005). 

Overexpression or mutation of USP8 can lead to its hyperactivation, which 

reduces the ubiquitination level of EGFR and delays its degradation and therefore 

negatively regulates the rate of its down-regulation (Mizuno et al., 2005). EGFR 

is plentifully present in corticotroph tumours and as a major mitogenic factor, it is 

of special significance in corticotroph pathophysiology (Theodoropoulou et al., 

2015). Interestingly, in vitro and in vivo studies showed that small molecule 

inhibitors displayed strong antisecretory and antiproliferative action and therefore 

mitigated Cushing’s disease in animal models (Fukuoka et al., 2011; 

Kontogeorgos et al., 1996; Theodoropoulou et al., 2004). Thus, the development 

of Cushing’s disease is the obvious corollary of prolonged EGFR activation and 

the consequential ACTH production as a result of activating USP8 mutations in 

corticotroph cells. Corticotroph tumours harbouring a USP8 mutation showed 

higher POMC transcription levels compared to their wild type counterparts 

(Hayashi et al., 2016). It is still an issue of controversy if USP8 mutated 

corticotroph tumours also display higher EGFR levels (Hayashi et al., 2016; Ma 

et al., 2015).  
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Notwithstanding, functional assays have provided strong evidence on how the 

development of Cushing’s disease can be traced back to mutations in the USP8 

gene (Ma et al., 2015; Perez-Rivas et al., 2015; Reincke, Sbiera, et al., 2015). 

 

5.3.3 Age- and sex-related distribution of USP8 mutations 

In consensus with the initial report (Reincke, Sbiera, et al., 2015), mutations were 

predominantly found in female patients and, within the adult population, patients 

with USP8 mutant tumours were younger than those with wild type lesions. 

Subsequent studies on USP8 mutations in adrenocorticotropic pituitary tumours 

report a higher prevalence of USP8 mutations in female patients suffering from 

Cushing’s disease (Ballmann et al., 2018; Hayashi et al., 2016; Losa et al., 2019). 

The study conducted by Ma et al., that studied the prevalence of USP8 mutations 

in different pituitary tumours in a primarily Chinese cohort (n of corticotroph 

ACTH-secreting tumours = 108), came to a similar conclusion (Ma et al., 2015). 

Although the difference in age between patients with and without USP8 mutations 

did not reach significance in their study, a trend could be made out towards 

patients with USP8 mutations being diagnosed at a younger age than patients 

with wild type tumours (36 vs. 40 years of age, respectively; p=0.08).  

Even though purely speculative, a potentially growth-stimulating effect of 

oestrogens on USP8 mutant corticotroph cells in the development of Cushing’s 

disease could pose as an explanation for these observations (Zilio et al., 2014). 

The potential influence of sex steroids in the development of the disease is further 

implied by the different epidemiology of the pathology in children. A balanced sex 

ratio has been reported in unselected paediatric patients (Libuit et al., 2015), 

whereas a higher prevalence of Cushing’s disease is reported among prepubertal 

male patients under the age of 10 years (Storr et al., 2004), while the percentage 

of female patients gradually increases during adolescence (Lonser et al., 2013; 

Storr et al., 2011), reaching a preponderance in post pubertal age. This may be 

seen in line with hormonal change, as females produce increasingly more 

oestrogens during and after puberty. Interestingly enough, ACTH producing 

tumours express oestrogen receptors (Chaidarun, Swearingen, & Alexander, 

1998; Manoranjan et al., 2010). Furthermore, at least in vitro, oestradiol can 
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stimulate corticotroph proliferation, an effect which is conveyed by EGFR 

signalling (Oomizu et al., 2000).  

The outcome of this study suggests a possibly lower frequency of USP8 

mutations in paediatric patients (17%). However, Faucz et al. enlarged the 

paediatric cohort, including a subgroup of twenty-four subjects that were part of 

the cohort of this study. In this larger paediatric cohort a frequency of somatic 

mutations in the USP8 gene of 31% was identified and is therefore similar to the 

frequency shown in the adult population. Paediatric patients harbouring somatic 

USP8 mutations were older at diagnosis and had a lower BMI compared to those 

without wild type USP8. Interestingly, recurrence of disease occurred only in 

patients harbouring USP8 mutations (Faucz et al., 2017). 

Nevertheless, further efforts need to be undertaken to properly identify the factors 

causing the sex- and age-related dispersal of USP8 mutations in patients 

suffering from Cushing’s disease. 

 

5.3.4 USP8 mutations and tumour size 

Commonly, tumour size is associated with clinical remission. Patients with 

microadenomas are generally more likely to go into remission than those with 

macroadenomas (Cannavo et al., 2003; Colao, Boscaro, Ferone, & Casanueva, 

2014; Dimopoulou et al., 2014; Esposito et al., 2006; Valassi et al., 2010). On the 

other hand, however, patients presenting with clinically and biochemically 

confirmed Cushing’s disease with no visible lesion in preoperative magnetic 

resonance imaging, have lower remission rates than patients with visible 

microadenomas (Alexandraki et al., 2013; Esposito et al., 2006; Yamada et al., 

2012).  

In this series, histologically confirmed corticotroph tumours that were not visible 

in preoperative imaging and also large macroadenomas were both mostly wild 

type. Over 50% of tumours with mutations in the USP8 gene had a size ranging 

between 8 and 16 mm. The tumours in female patients with USP8 mutations 

tended to be larger than their wild type counterparts (8 vs. 10 mm, respectively). 

However, when compared to the other series conducted, average tumour size 

differed in each series and no tendency can be seen whether tumours with 
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mutations in the USP8 gene are smaller or larger than the wild type ones. In 

contrast to this series, Ma et al. discovered a predominance of mutations in 

smaller tumours (<5 mm) (Ma et al., 2015). However, in line with this series, Ma 

et al. showed that in large tumours (>20 mm) wild type adenomas prevailed the 

USP8 mutated tumours. Also the tumours harbouring USP8 mutations 

discovered by Song and co-workers were significantly smaller in size than those 

with wild type USP8 (Song et al., 2016). Similar to these primarily Chinese 

cohorts, Hayashi et al. showed that USP8 mutated tumours were significantly 

smaller than wild type tumours in a primarily Japanese cohort (Hayashi et al., 

2016). Therefore, the ethnic differences of the subjects may once again be a 

reason for the conflicting data on tumour size. In paediatric patients with varied 

ethnicity, but primarily Caucasian ethnicity, the tumour size in the two groups was 

similar. However, the results may have been biased, as the available samples 

were usually from larger tumours (Faucz et al., 2017). 

All in all, these findings indicate that tumour growth is not affected by mutations 

in the USP8 gene. This is in line with the findings of Reincke at al., who observed 

no further enhancement of the proliferative effects of USP8 in AtT-20 mouse cells 

when the USP8 gene was mutated (Reincke, Sbiera, et al., 2015).  

 

5.3.5 USP8 mutations and biochemical hallmarks of hypercortisolism 

As differences in preoperative hormonal parameters mostly did not reach 

significance, the focus is on the impact USP8 mutations seem to have on the 

postoperative outcomes. In the small number of cases with available data (n = 

30), the 24-hour urinary cortisol levels were postoperatively higher in patients 

harbouring a USP8 mutation. In accordance with this finding, an inverse 

association between the development of adrenal insufficiency and the presence 

of USP8 mutations could be observed, that was even more evident in younger 

patients. Postoperative hypocortisolism is a known indicator for long-term 

remission (Dimopoulou et al., 2014; Lodish, Dunn, Sinaii, Keil, & Stratakis, 2012; 

Pereira et al., 2003), although long-term biochemical and clinical follow-up is 

needed to detect late recurrences after initially successful transsphenoidal 

surgery (Patil et al., 2008; Yap, Turner, Adams, & Wass, 2002). These data may 

hint towards a worse outcome of transsphenoidal surgery in patients with USP8 
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mutant tumours compared to patients with wild type tumours, as patients with 

USP8 mutant tumours could run a higher risk of recurrence. In line with these 

findings, Faucz et al. reported higher recurrence rates in paediatric USP8 variant 

carriers, although the follow up was considerably short (median 17 months) 

(Faucz et al., 2017). Also in line with our findings, Albani et al. showed a 

significantly higher risk of recurrence after initial remission in USP8 mutants (58% 

vs. 18 %) and a significantly earlier recurrence in this group (months 70, 44-97 

95% CI vs. 102, 86-119 95% CI; P = 0.019) (Albani et al., 2018). Another study 

suggested a shorter mean recurrence period in USP8 variant carriers (29 vs. 48 

months) in a subset of patients suffering from Cushing’s disease that suffered a 

recurrence. However, patients with only very short follow-up were included (Ma 

et al., 2015).  

Conversely, compared to the late surgical outcome, the early surgical outcome 

seems to be similar in wild type and mutant USP8 carriers or even more 

favourable in USP8 variant carriers. Together with other multicentre studies, this 

study shows superimposable remission rates in the two groups (Albani et al., 

2018; Ma et al., 2015). Losa et al. as well as Hayashi et al. even reported a higher 

likelihood of surgical remission in USP8 variant carriers (Hayashi et al., 2016; 

Losa et al., 2019).  

It is still uncertain in which way the USP8 mutational status may have an effect 

on tumour recurrence. Higher postoperative 24-hour urinary cortisol levels and 

higher ACTH levels observed by Ma et al. in USP8 variant tumours could be the 

reason for a more clinical overt syndrome and could lead to a quicker diagnosis 

of Cushing’s disease (Ma et al., 2015). Indeed, results of in vitro studies indicated 

that USP8 mutants trigger POMC transcription and therefore ACTH secretion 

more strongly than the wild type forms (Reincke, Sbiera, et al., 2015). Moreover, 

human corticotroph tumours harbouring USP8 mutations showed higher levels of 

POMC transcription (Ma et al., 2015). The hypothesis of a more blatant clinical 

presentation is also consistent with the fact that a trend could be made out 

towards USP8 mutated patients being diagnosed at a younger age than patients 

with wild type tumours (36 vs. 40 years of age, respectively; p=0.08). Also, Albani 

and co-workers found that patients with USP8 variant corticotroph tumours were 

diagnosed significantly earlier (mean ± SD 46 ± 10 years vs. 53 ± 11 years; 

p=0.028). A subgroup (n=9) of the patients studied by Albani at al. (n=48), 
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however, were already included in this study (Albani et al., 2018). This supports 

the hypothesis that due to activating USP8 mutations the tumours are more 

hormonally active and therefore remnant tumour tissue after transphenoidal 

surgery regains its hypersecretory function earlier than wild type USP8 tumour 

remnants.  

Taking these findings into account, it would be of crucial importance to monitor 

patients with USP8 mutant tumours more closely during the first years after 

transphenoidal surgery in order to detect recurrences as early as possible. 

 

5.3.6 Mutations in the USP8 gene – a specific trait of ACTH-secreting 

tumours? 

In this study, mutations in the USP8 gene were found in 36% of the ACTH-

secreting tumours, but were absent in the 11 silent (non-secreting) corticotroph 

tumours. No mutations in the USP8 gene could be found in 2 Nelson’s tumours, 

14 somatotroph tumours, 10 lactotroph and 10 non-functioning tumours studied 

by Reincke at al. (Reincke, Sbiera, et al., 2015) and also Ma et al. did only find 

mutations in the USP8 gene in ACTH-secreting pituitary tumours and none in 50 

somatotroph, 50 lactotroph and 50 non-functioning pituitary tumours (Ma et al., 

2015). Interestingly, Perez-Rivas et al. reported a similar prevalence of USP8 

mutations in Nelson’s tumours (Perez-Rivas et al., 2018). Another study 

conducted by Perez-Rivas et al. shows that in contrary to the pituitary ACTH-

secreting tumours, USP8 mutations do not occur in ectopic ACTH-secreting 

tumours (Perez-Rivas et al., 2017). However, a recent study suggests that 

mutations in the USP8 gene are not a specific trait of ACTH-secreting tumours, 

as Bujko and co-workers show that USP8 mutations do not only occur in 

functioning but also in silent corticotroph tumours, albeit with low frequency 

(Bujko et al., 2019). These findings highlight the pleiotropic effects of USP8, as it 

is involved in a variety of molecular processes and not only in EGFR signalling 

(Dar, Wu, Lee, Shibata, & Dutta, 2014; Kim et al., 2018; Mukai et al., 2010; G. A. 

Smith et al., 2016; Wu, Yen, Irwin, Sweeney, & Carraway, 2004; Xia, Jia, Fan, 

Liu, & Jia, 2012). 

Besides, mutations in genes formerly identified in the context of adrenal 

Cushing’s syndrome were not described in any study focusing on USP8 
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mutations in pituitary ACTH-secreting tumours and so far, apart from mutated 

USP8, no other recurring mutations could be detected in corticotroph tumours 

(Song et al., 2016; Uzilov et al., 2017; Xiong & Ge, 2016).  

Of note, mutations in the USP8 gene seem to be a primate-specific trait of ACTH-

secreting tumours, as USP8 mutations could not be detected in tumours from a 

large cohort of dogs suffering from Cushing’s disease (Sbiera et al., 2016). 

All in all, these observations strongly suggest that USP8 plays a starring role in 

the development of Cushing’s disease.  

 

5.3.7 USP8 mutations and their clinical and pathological implications 

As surgery alone often does not fully cure Cushing’s disease, new therapeutic 

concepts are needed to specifically target the ACTH-secreting tumours and 

suppress ACTH production (Biller et al., 2008; Colao et al., 2014). The findings 

in this study together with the findings of Ma et al. clearly suggest that inhibiting 

the catalytic activity of USP8 might be a promising therapeutic approach for 

patients with Cushing’s disease harbouring USP8 mutations. This might be 

especially relevant for patients suffering from either residual or recurrent tumours. 

Even before USP8 mutations were discovered in ACTH-producing pituitary 

tumours, EGFR-targeted therapies were tested as a treatment for Cushing’s 

disease. In 2011, Fukuoka et al. speculated that the EGFR could be a new target 

for the therapy of Cushing’s disease, and consequently tested EGFR signalling 

in ACTH-secreting pituitary tumours. Gefitinib, a drug that is also effective in other 

cancers that overexpress EGFR, like pulmonary adenocarcinoma, is a tyrosine 

kinase inhibitor targeting the EGFR. In their study, Fukuoka et al. show, that 

treatment with gefitinib decreased both tumour size and corticosterone levels and 

therefore concluded that inhibiting EGFR signalling might be a novel strategy for 

treating Cushing’s disease (Fukuoka et al., 2011). As there is strong evidence 

that mutations in the USP8 gene lead to Cushing’s disease through activation of 

EGFR signalling (Reincke, Sbiera, et al., 2015), anti-EGFR therapy poses a 

potential therapeutic approach for the treatment of Cushing’s disease. Ma et al. 

succeeded in demonstrating that treatment with gefitinib significantly reduces 

ACTH secretion in primary USP8 mutated corticotroph tumour cells, but not in 
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wild type cells (Ma et al., 2015) and therefore prove that the inhibition of USP8 

and EGFR are promising therapeutic strategies for treating patients with 

Cushing’s disease, harbouring a USP8 mutation. 

Deubiquitinase inhibitors are in early development. Jian et al. presented a small 

molecule USP8 inhibitor that displayed anti-secretory and anti-proliferative action 

and even induced apoptosis in immortalized murine corticotroph cells (Jian et al., 

2016). USP8 inhibitor DUBs-IN-2 (9-oxo-9H-indeno[1,2-b]pyrazine-2,3- 

dicarbonitrile) was found to have potent effects on ACTH production and cell 

proliferation in mouse corticotroph tumour cells (Kageyama, Asari, Sugimoto, 

Niioka, & Daimon, 2020). These findings emphasise that USP8 could pose as a 

novel, promising pharmaceutical target. 

Somatostatin receptor 5 (SSTR5) and dopamine receptor D2 (DRD2) can be 

found in the majority of corticotroph tumours. Treatment with dopamine agonists 

and somatostatin analogues decreases ACTH secretion in vitro (de Bruin et al., 

2009; Hofland et al., 2005; Pivonello et al., 2004). Another auspicious observation 

is that USP8 mutant corticotroph tumours displayed higher levels of SSTR5 and 

O6-methylguanine DNA methyltransferase (MGMT) (Hayashi et al., 2016). This 

could also yield potential therapeutic implications, as these tumours could 

respond favourably to SSTR5- targeting somatostatin analogues and 

temozolomide. Treatment with the somatostatin analogue pasireotide alone or in 

combination with the DRD2 agonist cabergoline led to reduced cortisol levels and 

is already approved for the treatment of Cushing’s disease (Feelders et al., 2010). 

Collectively, these data will contribute to the development of innovative, new 

therapies for Cushing’s disease. Therapeutic strategies targeting USP8 and/or 

EGFR might even become the new first-line treatment for USP8 mutated ACTH-

producing tumours, particularly for the ones that remain clinically active despite 

surgical therapy or for disease recurrences.  



_____________________________________________________________________________ 

 63 

6 Abstract 

6.1 Abstract in English 

Context: Somatic mutations in the ubiquitin-specific protease USP8 gene have 

recently been reported in a small series of tumours of patients with Cushing’s 

disease (Reincke, Sbiera, et al., 2015). 

Objective: To identify not only the prevalence of USP8 mutations, but also the 

genotype-phenotype correlation in an extensive series of patients diagnosed with 

Cushing’s disease. 

Design: A multicentric, retrospective, genetic analysis of 134 functioning and 11 

silent corticotroph tumours was conducted by means of Sanger sequencing. 

Clinical and biochemical features were gathered and analysed within the context 

of the mutation status of USP8. 

Patient cohort: 145 patients who underwent transsphenoidal surgery for an 

ACTH-producing or a silent pituitary tumour. 

Results: Somatic mutations in the USP8 gene were discovered in 48 (36%) of 

the pituitary tumours of patients with Cushing’s disease, but in none of the 11 

silent corticotroph tumours. The prevalence in adults was higher than in paediatric 

cases (41% vs. 17%) and likewise higher in females than in males (43% vs. 17%). 

Adults with USP8-mutated tumours were diagnosed at an earlier age than those 

with wild type lesions (36 vs. 44 years). Mutations were particularly found in 

tumours of 10 ±7 mm in size and were inversely associated with the development 

of postoperative adrenal insufficiency. All of the mutations detected, affected the 

residues Ser718 or Pro720, including five newly discovered alterations.  

Conclusions: Mutations in the USP8 gene can be frequently found in pituitary 

tumours causing Cushing’s disease, in particular in those of female adult patients 

diagnosed at a younger age.  
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6.2 Abstract in German  

Kontext: Unlängst wurden somatische Mutationen im Ubiquitin-spezifischen 

Protease (USP8)-Gen in corticotropen Hypophysentumoren entdeckt. Jedoch 

war nur eine kleine Anzahl an Patienten mit Morbus Cushing untersucht worden 

(Reincke, Sbiera, et al., 2015). 

Zielsetzung: In einer umfangreicheren Kohorte von Patienten mit Morbus 

Cushing soll nicht nur die Prävalenz von USP8-Mutationen ermittelt, sondern 

auch die Genotyp-Phänotyp-Korrelation näher untersucht werden. 

Studiendesign: Es wurde eine multizentrische, retrospektive, genetische 

Analyse von 134 hormonaktiven und 11 hormoninaktiven corticotropen Tumoren 

mittels Sanger–Sequenzierung durchgeführt. Informationen über klinische und 

biochemische Merkmale wurden zusammengetragen und im Kontext des 

Mutationsstatus von USP8 analysiert.  

Patientenkohorte: 145 Patienten, die sich einer transsphenoidalen Operation 

wegen eines ACTH-produzierenden oder endokrin inaktiven Hypophysentumors 

unterzogen hatten. 

Ergebnisse: Somatische Mutationen im USP8-Gen wurden bei 48 (36%) der 

Hypophysentumoren von Patienten mit Morbus Cushing entdeckt, jedoch bei 

keinem der 11 hormoninaktiven corticotropen Tumoren. Die Prävalenz bei 

Erwachsenen war höher als bei pädiatrischen Fällen (41% gegenüber 17%) und 

bei Frauen höher als bei Männern (43% gegenüber 17%). Morbus Cushing wurde 

bei Erwachsenen mit USP8-mutierten Tumoren in einem jüngeren Alter 

diagnostiziert als bei Erwachsenen mit Wildtyp-Läsionen (36 gegenüber 44 

Jahre). Mutationen wurden insbesondere bei Tumoren mit einer Größe von 10 ± 

7 mm gefunden und stehen in einem umgekehrten Zusammenhang mit der 

Entwicklung einer postoperativen Nebenniereninsuffizienz. Alle nachgewiesenen 

Mutationen, einschließlich fünf neu entdeckter Mutationen, betrafen Ser718 oder 

Pro720. 

Schlussfolgerung: Mutationen im USP8-Gen finden sich häufig bei 

Hypophysentumoren, die Morbus Cushing verursachen, insbesondere bei 

erwachsenen Patientinnen, bei denen diese Diagnose in einem jüngeren Alter 

gestellt wurde.  
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