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Abstract

In this dissertation we discuss several forms of proof interpretation based on exam-
ples in algebra and analysis. Our main goal is the construction of algorithms or
functions out of proofs – constructive proofs and classical proofs.

At the beginning of this dissertation the constructive handling of Zorn’s lemma
in proofs of algebra plays a main role. We consider maximal objects and their
approximations in various algebraic structures. The approximation is inspired by
Gödel’s functional interpretation and methods from proof mining. Proof mining is
a branch of mathematical logic which analyses classical existence statements to get
explicit bounds. We describe a recursive algorithm which constructs a sequence of
approximations until they become close enough. This algorithm will be applied to
Krull’s lemma and its generalisation: the universal Krull-Lindenbaum lemma. In
some case studies and applications like the theorem of Gauß-Joyal and Kronecker’s
theorem we show explicit uses of this algorithm.

By considering Zariski’s lemma we present how a manual construction of an algo-
rithm from a constructive proof works. We present a constructive proof of Zariski’s
lemma, and use this proof as inspiration to formulate an algorithm and a computa-
tional interpretation of Zariski’s lemma. Finally, we prove that the algorithm indeed
fulfils the computational interpretation. As an outlook we sketch how this algorithm
could be combined with our state-based algorithm from above which constructs ap-
proximations of maximal objects, to get an algorithm for Hilbert’s Nullstellensatz.

We then take a closer look at an example of an algorithm which is extracted out
of a constructive proof by using the proof assistant Minlog. We use coinductively
defined predicates to prove that the signed digit representation of real numbers is
closed under limits of convergent sequences. From a formal proof in Minlog, the
computer generates an algorithm, a soundness theorem and a proof of the sound-
ness theorem corresponding to the convergence theorem out of our formalisation.
The convergence theorem is applied to Heron’s method to get an algorithm which
computes the signed digit representation of the square root of a non-negative real
number out of its signed digit representation. Here we use the programming lan-
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guage Haskell to display the computational content. As second application we show
that the signed digit code is closed under multiplication and state the corresponding
algorithm.

The dissertation is concluded by an example of proof mining in analysis. We
consider one convergence lemma with a classical proof, use techniques of proof min-
ing to get a new lemma with a rate of convergence, and apply the new lemma to
various fixed-point theorems for asymptotically weakly contractive maps and their
variants. In the last step, beside extracting quantitative information – in our case
rates of convergence – from proofs, we also discuss the usage of proof mining to
generalise or combine theorems.



Zusammenfassung

In dieser Dissertation diskutieren wir verschiedene Formen der Beweisinterpretation
anhand von Beispielen aus der Algebra und Analysis. Unser Ziel ist dabei immer die
Konstruktion von Algorithmen oder Funktionen aus Beweisen – sowohl klassischen
wie auch konstruktiven Beweisen.

Am Anfang der Dissertation gehen wir auf eine konstruktive Behandlung von
Zorns Lemma in Beweisen der Algebra ein. Insbesondere betrachten wir maxi-
male Objekte und deren Approximationen in verschiedenen algebraischen Struk-
turen. Die Approximation ist dabei inspiriert durch Gödels Funktionalinterpretation
und Methoden des Proofminings. Proofmining ist ein Teilgebiet der mathematis-
chen Logik, welches klassische Existenzbeweise analysiert, um explizite Schranken
zu extrahieren. Wir geben einen rekursiven Algorithmus an, welcher eine Folge von
Approximationen konstruiert bis diese hinreichend genau sind. Dieser Algorithmus
wird anschließend auf Krulls Lemma und seine Verallgemeinerung angewandt: dem
universellen Krull-Lindenbaum-Lemma. In einigen Fallstudien und Beispielen wie
dem Satz von Gauß-Joyal und Kroneckers Lemma zeigen wir ganz explizite Anwen-
dungen des Algorithmus.

Anhand von Zariskis Lemma zeigen wir, wie man einen Algorithmus von Hand
ohne Computerhilfe aus einem konstruktiven Beweis extrahieren kann. Hierbei
geben wir zunächst einen konstruktiven Beweis von Zariskis Lemma an. Diesen
Beweis nutzen wir als Inspiration, um einen Algorithmus und eine rechnerische In-
terpretation von Zariskis Lemma zu formulieren. Abschließend beweisen wir, dass
der Algorithmus tatsächlich die rechnerische Interpretation erfüllt. Als Ausblick
skizzieren wir, wie dieser Algorithmus angewandt werden kann, um einen Algorith-
mus für Hilberts Nullstellensatz zu erhalten. Dabei verwenden wir auch den zuvor
entwickelten Algorithmus, welcher Approximationen von maximalen Objekten kon-
struiert.

Nach dieser manuellen Extraktion eines Algorithmus aus einem konstruktiven
Beweis kommen wir zu einem Beispiel automatischer Beweisextraktion mit Hilfe
von Computerunterstützung. In unserem Fall verwenden wir den Beweisassisten-
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ten Minlog. Unter Verwendung von coinduktiven Prädikaten zeigen wir, dass die
Binärdarstellung mit Vorzeichen abgeschlossen unter der Bildung von Grenzwerten
konvergenter Folgen ist. Nach der Formalisierung in Minlog erzeugt der Com-
puter einen Algorithmus, eine Korrektheitsaussage und einen Beweis dieser Aus-
sage für unser Konvergenztheorem. Dieses Konvergenztheorem wird anschließend
auf das Heron-Verfahren angewandt, um einen Algorithmus zu erhalten, welcher die
Binärdarstellung mit Vorzeichen einer nicht-negativen reeller Zahl zu der Binärdarstel-
lung mit Vorzeichen ihrer Wurzel transformiert. Um diesen Algorithmus anzuwen-
den, verwenden wir die Programmiersprache Haskell. Als zweite Anwendung zeigen
wir, dass die Binärdarstellung mit Vorzeichen abgeschlossen unter Multiplikation
ist, und geben dazu einen Algorithmus an.

Im letzten Kapitel diskutieren wir ein Beispiel von Proofmining in der Ana-
lysis. Hierbei betrachten wir ein Konvergenzlemma und verwenden Techniken des
Proofminings, um eine Konvergenzrate zu erhalten. Wir wenden das neue Lemma
auf verschiedene Fixpunktsätze für asymptotisch schwach kontraktive Abbildungen
und deren Varianten an. Bei dem letzten Schritt diskutieren wir nicht nur die Ex-
traktion von quantitativen Informationen – in unserem Fall Konvergenzraten – aus
Beweisen, sondern auch die Anwendung von Proofmining, um Sätze zu verallge-
meinern und zu kombinieren.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Who is this dissertation for

By using various techniques of proof interpretations, we have managed to get new
research results in the field of constructive algebra and analysis. We develop a good
many new algorithms and vitalize old theorems by adding computational content or
even generalizing them.

However, this thesis does not just present new research results. The author of
this thesis has chosen mathematical logic as specialty to explore the fine structure
of mathematics, and while writing he had in mind to share this insight with the
reader. In the following chapters we study structures of individual proofs. We see
that even non-constructive principles can become computationally relevant. We
even decompose some proofs and let them read by a computer program to generate
algorithms and new proofs. On the other hand, we also keep an eye on the big
picture by examining the connection between proofs with the goal to combine and
generalize them.

With this in mind, also mathematicians whose main subject is not mathematical
logic benefit from reading this thesis. The concepts we are presenting will be useful
for the reader while writing their own proofs.

1.2 Proof interpretations

In this dissertation, “proof interpretation” means a process which takes one or more
mathematical proofs together with their proven theorems as input and returns one or
more proofs with their proven theorems as output. This description is deliberately
vague. In other works like [128, Definition 1.1] “proof interpretation” is defined
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2 CHAPTER 1. INTRODUCTION

more formally, whereas in this thesis it is rather a heuristic notation. The reason for
this is that every mathematical example which interprets proofs in this thesis shall
answer the question “What can we learn from a mathematical proof?” by providing
an insight into the versatility of the work with proofs and their theorems. Despite
all the achievements in the last decades like all the tools of proof interpretation such
as Gödel’s functional interpretation [77], Friedman’s A-translation [74] or program
extraction from constructive proofs [160], to only name a few, there is still a strong
need for research.

Our main purpose of proof interpretations is the extraction of computational
content, which can be a term or an algorithm. The second purpose is the transfor-
mation of some given proofs to proofs of other theorems. This is familiar to every
mathematician who has tried to generalize a given theorem. Both aspects are cov-
ered in this thesis, albeit the attention is on the first aspect as it is characteristic
for constructive mathematics.

Proof interpretations are originally motivated by Hilbert’s program [72, 81, 106,
142, 165, 187] which was founded by David Hilbert in the early part of the 20th

century. His goal was to prove the consistency of the axiom systems in mathematics.
Although Kurt Gödel showed that Hilbert’s program is not generally realisable [76,
150], there are many examples in algebra where Hilbert’s program works [58]. By his
pioneering work on the unwinding of proofs [104, 105], it was Kreisel who founded
the field of proof interpretations in modern mathematics. There is a good many
applications of his program in e.g. algebra [62], combinatorics [18] and number theory
[118]. In the last decades, the application of proof interpretations has become a
major topic in proof theory, and today encompasses both proof mining [89, 90, 92],
which focuses on obtaining quantitative information primarily from proofs in areas
of mathematical analysis, and the mechanized synthesis of programs from proofs,
which has found many concrete applications in discrete mathematics and computer
science [24,25,159].

1.3 Constructive algebra

Constructive algebra is often defined as algebra done within intuitionistic logic
[44, 170]. In this work we will go a step further. Our aim is an algorithmic for-
mulation of existence statements. In particular, we describe algorithms and prove
that these algorithms fulfil certain properties. The proof itself can be done in the
context of classical logic. Our view is inspired by Ihsen Yengui’s book “Construc-
tive Commutative Algebra” [186] where constructive algebra is seen as an abstract
version of computer algebra. The other two important books on constructive al-
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gebra are “Commutative Algebra: Constructive Methods” by Henri Lombardi and
Claude Quitté [116] and “A Course in Constructive Algebra” by Ray Mines, Fred
Richman and Wim Ruitenburg [122]. These three books are the main references of
the material on constructive algebra in this thesis.

In classical algebra non-effective methods like the law of excluded middle, Zorn’s
lemma, the existence of maximal ideals or some other version of the axiom of
choice are used to prove concrete statements mainly in first order logic. Hence,
in constructive algebra one puts the emphasis more on structures which are defin-
able in first-order logic and one tries to replace those non-effective methods by
finite methods. There are many papers considering this issue written by Sami
Barhoumi, Thierry Coquand, Lionel Ducos, Stefan Neuwirth, Hervé Perdry, Marie-
Françoise Roy, Peter Schuster, Daniel Wessel and the persons mentioned above
[15–17,35,41–43,46–55,57,65,66,111,113–116,127,131,132,176,185].

Kreisel already discussed the use of proof theoretic techniques to extract quan-
titative information from proofs in abstract algebra [107], specifically Hilbert’s 17th

problem together with his Nullstellensatz. Today there are comparatively few formal
applications of proof interpretation in algebra, and the computational analysis of it
is largely done on a case by case basis. This typically involves replacing semantic
conservation theorems with appropriate syntactic counterparts both sufficient for
proofs of elementary statements and provable by elementary means. This method
has proved possible in numerous different settings [35, 36, 125, 126, 147, 177], and
in the context of commutative algebra the so-called dynamical method is especially
dominant [57,60,116,185,186]. In dynamical algebra one deals with a supposed ideal
object (such as maximal ideals) only by means of concrete, finitary approximations
(such as finitely generated ideals, or rather the finite set of generators), where the
latter provide partial but sufficiently complete information about the former.

The idea of replacing ideal objects with suitable finitary approximations is al-
ready implicit in Kreisel’s unwinding program and is captured by his famous no-
counterexample interpretation [104, 105]. In our cases, it is like Gödel’s functional
interpretation and corresponds to the notion of metastability [88,93,96], which has
been made popular by Tao [168] and has featured in higher order computability
theory [149]. Although metastability was originally introduced in the context of
analysis, in Chapter 3 we use this approach to define the notion of approximate
explicit maximal objects.

The algebraic results of Chapter 3 and 4 can also be seen in the context of the
proof mining program, which mainly focuses on the area of analysis, but in the last
few years some proof mining has become an interesting topic in algebra, too [164].
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1.4 Constructive analysis

Analogously to algebra, constructive analysis can also be defined as analysis done
within intuitionistic logic. In Chapter 5 we adopt this approach, which is even more
popular in analysis than in algebra. One reason for this is that in analysis we often
consider concrete objects like real and complex numbers whereas in algebra theo-
rems deal with abstract objects like fields, rings and groups. Two important book
which considers analysis in the context of intuitionistic logic are “Foundations of
constructive analysis” by Errett Bishop [29] and “Constructive Analysis” by Errett
Bishop and Douglas Bridges [30]. In particular, the representation of real numbers
plays a main role in analysis within intuitionistic logic. In the last twenty years
there have been written many papers on exact real arithmetic by Ulrich Berger,
Alberto Ciaffaglione, Pietro Di Gianantonio, Kenji Miyamoto, Monika Seisenberger,
Helmut Schwichtenberg and Hideki Tsuiki [21, 26, 38, 63, 124, 171]. In this case in-
tuitionistic logic is used to formalise and prove constructive existential statements,
and computer support is used to extract the computational content and prove its
soundness. However, we use this method also as heuristic to get algorithms out of
constructive proofs at the end of Chapter 5 and even in the context of algebra in
Chapter 4. Other very typical examples of analysis within intuitionistic logic are
the intermediate value theorem, the mean value theorem and the fundamental theo-
rem of algebra [79,84,153,156,157], which are existence statements of real numbers.
In these cases, a concrete constructive representation, for example of continuous or
differentiable functions, is important because, in contrast to classical analysis, con-
tinuity and differentiability are associated with a module. This is why this part of
constructive analysis is often called “analysis with witnesses”.

Closely related to this topic is the field of computable analysis. This is the study
of analysis in the context of computability theory, which goes back to the work of
Turing about computable numbers [172]. An introduction to computable analysis is
given in [175] by Klaus Weihrauch. In this dissertation computability theory works
mainly in the background, i.e. we state algorithms as program code or in natural
language. How this code is in detail implemented, for instance as a Turing machine,
is not an issue of this dissertation.

Apart from that, the computational meaning of non-constructive proofs in anal-
ysis lies also at the heart of mathematical logic. A typical concept in this direction
is the concept of proof mining, which is also based on Kreisel’s unwinding pro-
gram. The term “proof mining” goes back to Dana Scott. However, there is no
formal definition as proof mining is a quite enormous field. In Chapter 6 we use the
techniques of proof mining to extract rates of convergence in fixed point theorems.
Our approach is mostly inspired by some papers of Ulrich Kohlenbach, Laurenţiu
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Leuştean, Paulo Oliva, Thomas Powell and Andrei Sipoş [87, 94, 95, 98–101]. This
part of proof mining is motivated by new techniques like the monotone functional in-
terpretation [91] and the refinement of already existing proofs [22,27]. For a general
overview we refer to Kohlenbach’s book “Applied Proof Theory: Proof Interpreta-
tion and their Use in Mathematics” [90]. In contrast to other techniques of proof
interpretation, the end result of proof mining in analysis is again a purely math-
ematical theorem with a proof involving no notions of mathematical logic. Some
tools we use, e.g. Gödel’s functional interpretation or formal program extraction
from proofs, are only used as an inspiration.

1.5 Overview and results of the dissertation

In the following we give an outline of this dissertation chapter by chapter. The
new research results are emphasised by the typeface and we mark all collaborations
during the research process.

Chapter 2

In this chapter we give an overview of the theories we use in the dissertation. At this
point there are no new results presented and we mainly use [160] as source. The main
topics of this chapter are the theory of computable functionals, program extraction
from proofs and Gödel’s functional translation. For the last two we also state the
corresponding soundness theorems. As a short application of Gödel’s functional
translation and bridge to the next chapter we prove a theorem about metastability
in analysis, which is a special case of [95, Proposition 6.4].

Chapter 3

This chapter is an application of proof theory in commutative algebra. We introduce
the so-called coverings and use proof theoretic methods to give a computational in-
terpretation of a general maximality principle, which in particular is a generalisation
of the existence of maximal ideals in commutative rings. By using ideas of Gödel’s
functional interpretation and metastability we develop a notion of an approxima-
tion to explicit maximal objects in the countable case and describe a state based
algorithm, which computes such approximate explicit maximal objects. We apply
our theory to the universal Krull-Lindenbaum lemma – a generalisation of Krull’s
lemma – and formulate an algorithmic universal Krull-Lindenbaum lemma. In sev-
eral case studies the algorithmic universal Krull-Lindenbaum lemma is specialized to
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certain areas like radical ideals or filters in commutative rings, valuation rings, or-
dered fields, complete theories and distributive lattices. The specialization to radical
ideals in commutative rings leads to the proper Krull lemma, and the specialization
to complete theories leads to Lindenbaum’s lemma. In the case of radical ideals, we
give an algorithm for the theorem of Gauß-Joyal and an algorithm for a theorem of
nilpotent coefficients of invertible polynomials. In the case of valuation rings we get
an algorithm for Kronecker’s theorem and Dedekind’s Prague theorem. This is the
result of joint work with Peter Schuster and Thomas Powell, published in [137,138].

Chapter 4

On the basis of Zariski’s lemma we present a typical manual approach in constructive
mathematics to extract algorithms out of constructive proofs, which is quite similar
to the automatic program extraction from proofs presented in Chapter 2. We take
Zariski’s lemma and formulate a constructive proof of it. Using this proof as foun-
dation, we formulate an algorithm together with an algorithm version of Zariski’s
lemma. Afterwards we prove that the algorithm indeed fulfils the algorithmic version.
We conclude with an outlook in which we combine the results in this chapter with the
results in Chapter 3 to get a possible algorithmic version of Hilbert’s Nullstellensatz.
A part of the work in this chapter is published in [182].

Chapter 5

In contrast to the Chapter 4, this chapter deals with the automatic program ex-
traction from proofs and the exact representation of real numbers by signed digit
streams. The signed digit representation of real numbers is basically the binary
representation with the additional digit −1. The property of having a signed digit
representation is formalised by using a coinductively defined predicate, and gener-
ate an algorithm which takes a sequence of signed digit streams of real numbers with
modulus of convergence and returns a signed digit stream of the limit. Here we use
the proof assistant Minlog to extract a program from our constructive proof and the
programming language Haskell to display the extracted algorithm in a more read-
able way. As an application of the extracted algorithm we give an algorithm which
converts the signed digit representation of a non-negative real number to the signed
digit representation of its square root by using Heron’s method. The computational
part of the application is done manually without Minlog and displayed in Haskell
notation. As the result of a collaboration with Nils Köpp [183] we finally show how
the convergence theorem can be used to get a function which takes the signed digit
stream of two real numbers and returns the signed digit stream of their product.
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Chapter 6

We use typical tools of proof mining on existence theorems about fixed points of vari-
ants of asymptotically contractive maps on normed spaces. We study Krasnoselskii-
Mann sequences for approximating fixed points of asymptotically weakly contractive
maps on normed spaces. As starting point we analyse a convergence lemma with a
recursive inequality, generalise this lemma and extract a rate of convergence. The
analyzed lemma is contained in the proofs of the fixed point theorems, which we
consider in the remainder of this chapter. For this, we define a new notion of being
asymptotically weakly contractive with modulus. In several case studies we formu-
late a series of abstract convergence theorems which generalise, unify and quantify
known results from the literature. This chapter is a result of joint work with Thomas
Powell [139].

1.6 List of publications

The following publications contain some of the research reported in this dissertation

[137] Thomas Powell, Peter Schuster, and Franziskus Wiesnet. An algorithmic ap-
proach to the existence of ideal objects in commutative algebra. In R. Iemhoff,
M. Moortgat, and R. de Queiroz, editors, Logic, Language, Information and
Computation, volume 11541 of Lectures Notes in Computer Science. Springer-
Verlag, July 2019.

[138] Thomas Powell, Peter Schuster, and Franziskus Wiesnet. A universal al-
gorithm for Krull’s theorem. Information and Computation, page 104761,
2021.

[139] Thomas Powell and Franziskus Wiesnet. Rates of convergence for asymp-
totically weakly contractive mappings in normed spaces. arXiv preprint
arXiv:2104.14495, 2021.

[182] Franziskus Wiesnet. An algorithmic version of Zariski’s lemma. In Florin
Manea-David Fernández-Duque Liesbeth De Mol, Andreas Weiermann, editor,
Connecting with Computability, pages 469–482. Springer Nature Switzerland
AG, 2021.

[183] Franziskus Wiesnet and Nils Köpp. Limits of real numbers in the binary
signed digit representation. arXiv preprint arXiv:2103.15702, 2021. submit-
ted.
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Chapter 2

Logical background

Motivation 2.0.1. We start by introducing the tools of proof interpretation which
are used in this dissertation. These are the formal program extraction from proof,
the double-negation translation and Gödel’s functional interpretation. The first part
of this section is about the formal program extraction from proofs and presents the
theory of computable functional which will be the logical framework for program ex-
traction. We go shortly into Heyting and Peano arithmetic in all finite types because
Peano arithmetic in all finite types can be used as metatheory of this dissertation
except Chapter 5. The second section of this chapter deals with local operators,
of which double-negation translation is a special case, and Gödel’s functional in-
terpretation. At the end we give a proof about metastability in analysis where
the double-negation translation and Gödel’s functional interpretation are combined.
This is a preparation for the next chapter.

2.1 The theory of computable functionals

Motivation 2.1.1. For a formal program extraction from proofs, we need a logical
framework. As such a system we pick the theory of computable functionals TCF, a
version of constructive arithmetic in finite types where algebras are admitted as base
types. It is also used in the proof assistant Minlog as metatheory and one advantage
is that inductively and coinductively defined predicates are available, which we use
together with there computational content to prove statements about infinite data.

This section is mainly based on the newest research by Helmut Schwichtenberg
given in [158]. Other important sources are [160,180].

The partial continuous functionals in the sense of Scott [162] and Ershov [70]
are viewed as the intended (standard) model of TCF. As this is not relevant for us,

9
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we do not go into details about the model of TCF and just refer to the first part
of [158].

We want to emphasise the following: the theory in this section is very formal and
in Chapter 5 we see a typical application of it. But notions like program extraction,
reliability and soundness can also be seen as informal heuristic to develop algorithms
out of proofs. An example of this is given in Chapter 4.

2.1.1 Algebras and types

Motivation 2.1.2. This subsection is about the definition of types. In Definition
2.1.4 constructor types are defined by using types, and in Definition 2.1.6 we define
types by using constructor types. This seems to be circular argument but in fact it
is not as we formally use recursion over the syntactical structure of the types.

The definitions in this section should be seen syntactically, i.e. types are nothing
else than strings.

Notation 2.1.3. By α, β and ξ we denote type variables. We write ~α for
α0, . . . , αk−1 and some implicit k ∈ N.

Definition 2.1.4. We call a type κ a constructor type if it has the form

~α→ (~βi → ξ)i<n → ξ,

where the αi, βij are types (defined below) which do not contain ξ. The ~α are called

parameter types and the ~βi → ξ are called recursive types. If ~κ := κ0, . . . , κk−1 for
k > 0 are constructor types,

ι := µξ(~κ)

is an algebra.

Example 2.1.5. In the following we give some important algebras, where we
include the name of the constructors in the notion.

U := µξ(Dummy : ξ) (unit),

B := µξ(tt : ξ, ff : ξ) (booleans),

D := µξ(SdR : ξ, SdM : ξ, SdL : ξ) (signed digits, for 1, 0, -1),

S := µξ(C : D→ ξ → ξ) (siged digit streams),

N := µξ(0 : ξ, S : ξ → ξ) (natural numbers),

P := µξ(1 : ξ, S0 : ξ → ξ, S1 : ξ → ξ) (binary positive numbers),

Z := µξ(0 : Z, + : P→ ξ, − : P→ ξ) (integers).
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Positive numbers are also denoted by Z+. Algebras with type parameter are

α× β := µξ(〈., .〉 : α→ β → ξ) (type product),

α + β := µξ(in0 : α→ ξ, in1 : β → ξ) (type sum),

L(α) := µξ([] : ξ, Cons : α→ ξ → ξ) (lists of α).

The list type L(α) will also be denoted by α∗. The rational numbers Q are defined
by Q := Z× P.

Definition 2.1.6. We define types recursively as follows:

• Each type variable is a type.

• If κ0, . . . , κk−1 are of constructor types with k > 0, µξ(~κ) is a type.

• If τ and σ are types, τ → σ is a type.

2.1.2 Terms

Motivation 2.1.7. In TCF each term t comes together with its type τ . One can
write tτ to make the type explicit. Again, a term is also just a string (or a pair of
two strings to include the type).

Similar to the definition of terms, the definition of terms in TCF is done by
recursion over the syntactical structure of their type.

Definition 2.1.8. Let an algebra ι = µξ(~κ) with k constructor types ~κ :=
κ0(ξ), . . . , κk−1(ξ) for k > 0 be given. For each constructor type κi(ξ) we define
a constructor Ci with type κi(ι).

Definition 2.1.9. Terms are defined recursively and each term comes with a type.

• Each typed term variable is a term.

• Each constructor given in Definition 2.1.8 is a term with the type given in this
definition.

• If t is a term of type σ and x is a variable of type τ then λxt is a term of type
τ → σ.

• If t is a term of type τ → σ and s is a term of type τ then ts is a term of type
σ.
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• Each program constant (given in the next definition) is a term with the cor-
responding type.

If t is a term of type σ, s is a term of type τ and x is a variable of type τ , we identify
the terms (λxt(x))s and t(s). If furthermore r is a term of type τ → σ, we identify
λx(rx) and r.

Definition 2.1.10. A program constant D (also called defined constant) is given
by its type and a list of computational rules. For the formal definition of a program
constant we refer to [160, Section 6.2.4] and [180, Definiton 1.2.16] and [158]. For
each computational rule D~t := s, we identify the term D~t with the term s.

The program constants we mainly use in this dissertation are the following: For
each algebra ι there is the recursion operator Rτ

ι in a type τ , the destructor Dι and
the corecursion operator coRτ

ι from a type τ . Concrete definitions of these program
constants are given in [158, Section 2.1] and [160,180].

Example 2.1.11. For the algebra S of signed digit streams the recursion operator
Rτ
S is given by

Rτ
S : S→ (D→ S→ τ → τ)→ τ

Rτ
S(Cdv)f := fdv(Rτ

Svf).

Its destructor is given by

DS : S→ D× S
DS(Cdv) := 〈d, v〉.

Its corecursion operator is given by

coRτ
S : τ → (τ → D× (S + τ))→ S

coRτ
Sxf := C(π0(fx))([id, λy

coRτ
Syf ](π1(fx)))

where id := λxx is the identity function, πi : α0 × α1 → αi is the projection on the
i-th component with the computation rule πi〈a0, a1〉 := ai, and [F0, F1]iniT := FiT .

This example is used in Chapter 5.

2.1.3 Predicates and formulas

Definition 2.1.12. In TCF predicate are either (co)inductively defined predicates
(given below) or of the form {~x | A(~x)}, where A(~x) is a formula. We identify
{~x | A(~x)}~t with A(~t). Formulas are given by atomic formulas P~t, where P is a
predicate and ~t are well-typed terms, and given by ∀xA and A → B, where A and
B are already formulas.



2.1. THE THEORY OF COMPUTABLE FUNCTIONALS 13

Definition 2.1.13. An inductively defined predicate I is given by clauses of the
form

I+
i : ∀~xi((Aij(I))j<ni → I~ti),

for i ∈ {0, . . . , k − 1}, k > 0 and ni ≥ 0, where I only occurs strictly positive
in each Aij(I) and ~xi contains all free variables of Aij(I) and ~ti. The clauses are
the introduction axioms of I. Intuitively, an inductively defined predicate is the
smallest predicate w.r.t. ⊆, which fulfils its clauses. Formally, this is expressed by
its elimination axiom

I− : (∀~xi((Aij(I ∩X))j<ni → X~ti))i<k → I ⊆ X,

where X can be any predicate with the same arity as I. This axiom is also called
induction axiom.

Example 2.1.14. For each type τ we have the Leibniz equality ≡ given by the
single introduction rule ∀xx ≡ x. The elimination rule of the Leibniz equality is

∀x,y(x ≡ y → ∀x(Pxx)→ Pxy).

Given two formulas A and B, the formula A ∧ B is the inductively defined
predicate given by the clause ∧+ : A → B → A ∧ B and A ∨ B is the inductively
defined predicate given by the two clauses ∨+

0 : A → A ∨ B and ∨+
1 : B → A ∨ B.

Another important example is the existential quantifier ∃xA(x) which is given by
the clause ∃+ : ∀x(A(x) → ∃xA(x)). For these examples we have the following
elimination rules:

∧− : A ∧B → (A→ B → C)→ C

∨− : A ∨B → (A→ C)→ (B → C)→ C

∃xA : ∃xA→ ∀x(A→ B)→ B

Example 2.1.15. A further important class of predicates are the totality predicates.
For each type τ there exists the totality predicate Tτ . For a formal definition we
refer to [160, Section 7.1.6.] and [180, Definition 1.5.3] (There it is called “absolute
totality”). Here we just give the examples which we need in Chapter 5. The totality
predicate TN of the natural numbers has the following clauses:

(TN)+
0 : TN0

(TN)+
1 : ∀n(TNn→ TNSn)
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Note that the elimination axiom of the totality for natural numbers is exactly the
well-known induction axiom over natural numbers. The totality of the positive
binary numbers is defined similarly:

(TP)+
0 : TP0

(TP)+
1 : ∀p(TPp→ TPS0p)

(TP)+
2 : ∀p(TPp→ TPS1p)

As last example we give the clause for the totality of the function type P→ N:

(TP→N)+ : ∀f (∀p(TPp→ TNfp)→ TP→Nf)

Definition 2.1.16. To each inductively defined predicate I given by its clauses
(Ii)i<k, there exists the associated coinductively defined predicate coI. The elimina-
tion axiom coI−, also called closure axiom, of the coinductively defined predicate
says that if coI~x holds, it comes from one of the clauses:

coI− : ∀~x
(
coI~x→

∨
i<k

∃~xi
(∧
j<ni

Aij(
coI) ∧ ~x ≡ ~ti

))
.

Here ~a ≡ ~b is meant as a0 ≡ b0 ∧ · · · ∧ al−1 ≡ bl−1. In other words, if coI~x holds,
there is at least one clause I+

i whose premises (Aij(
coI))j<ni (with coI instead of I)

are fulfilled and whose conclusion is coI~x up to Leibniz equality. The introduction
axiom coI+ of coI says that coI is the greatest predicate, which fulfils this elimination
property:

coI+ : ∀~x
(
X~x→

∨
i<k

∃~xi
(∧
j<ni

Aij(
coI ∪X) ∧ ~x ≡ ~ti

))
→ X ⊆ coI

It is also called coinduction axiom or greatest-fixed-point axiom.

2.1.4 Computational content

Motivation 2.1.17. In TCF the computational content is expected to be a term
of a certain type. By introducing non-computational and computationally relevant
formulas, we determine for which formulas we compute a computational content.
The extracted term of a computational relevant formula is defined by recursion over
its proof and can be interpreted as the computational content.
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Definition 2.1.18. To each predicate variable X, inductively defined predicate
I and coinductively defined predicate coI we define the non-computational version
Xnc, Inc and coInc. The axioms of Inc and coInc are the same with the exception
that the competitor predicate in Inc− and coInc+ must be non-computational.

A formula is non-computational (n.c.) if its final conclusion is non-computational,
otherwise we call it computationally relevant (c.r.).

Definition 2.1.19. We define the type of a c.r. formula as follows:

The clauses of a c.r. inductively defined predicate I determine an algebra ιI by

ιI := µτ(I)(τ(I+
0 ), . . . , τ(I+

k−1)),

where I+
0 , . . . , I

+
k−1 are exactly the clauses of I. The notation µτ(I) means that we

replace each occurrence of τ(I) in the formal definition of the type of a formula by
the type variable ξ and after this we build the algebra over the variable ξ.

For a c.r. formula A built from atomic formulas by →, ∀ we define its type τ(A)
by

τ(P~t) := τ(P ),

τ(A→ B) :=

{
τ(A)→ τ(B) if A is c.r.

τ(B) if A is n.c.

τ(∀zA) := τ(A),

τ(I) := τ(coI) := ιI

To define τ(X) for a c.r. predicate variable X we need a type variable αX uniquely
associated to X. Then we define τ(X) := αX . Furthermore, we define τ({~x | A}) :=
τ(A).

Example 2.1.20. We continue Example 2.1.14:

The Leibniz equality is defined as non-computational.

Let A and B be c.r. formulas. The type of A ∧ B is the algebra given by the
constructor C : τ(A)→ τ(B)→ τ(A ∧B), which is the type product τ(A)× τ(B).

The type of A∨B is the algebra given by the constructors C0 : τ(A)→ τ(A∨B)
and C1 : τ(B) → τ(A ∨ B), which is the type sum τ(A) + τ(B). The constructors
are denoted by in0 and in1.

The type of ∃xA(x) is the algebra given by the constructor C : τ(A)→ τ(∃xA).
This algebra is the identity algebra of τ(A) and we identify it with τ(A) itself and
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the term Cx is identified with x. Altogether, we have

τ(A ∧B) = τ(A)× τ(B),

τ(A ∨B) = τ(A) + τ(B),

τ(∃xA) = τ(A)

for c.r. formulas A and B.

Example 2.1.21. For the totality predicate Tτ from Example 2.1.15 there are
the computational relevant version Tτ and the the non-computational version Tnc

τ .
The type of the computational relevant totality predicate is the underlying type,
i.e. τ(Tτ ) = τ . By using the computational relevant totality predicate, one can
transfer a variable to the extracted term. We use this method in the formulation of
Theorem 5.3.12.

Definition 2.1.22. Let M be a proof in TCF of a c.r. formula A. We define its
extracted term et(M) of type τ(A) as follows: To define et(uA) for an assumption u
of the formula A we need a variable zu of type τ(A) uniquely associated to u, then
et(uA) := zu. For the rule of ∀ and → we define the extracted term as follows:

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxM
A)∀xA) := et(M)

et((M∀xA(x)t)A(t)) := et(M).

It remains to define the extracted term for the axioms. Let I be a c.r. inductively
defined predicate. The extracted term et(I+

i ) of the i-th clause is the i-th constructor
Ci of the algebra ιI . The extracted term of I− is given by the recursion operator
Rτ(P )
ιI , where τ(P ) is the type of the competitor predicate. The extracted term of

coI− is the destructor DιI , and the extracted term of coI− is the corecursion operator
coRτ(P )

ιI
, where τ(P ) is the type of the competitor predicate.

2.1.5 Soundness of program extraction

Motivation 2.1.23. Using the definition above, we are able to extract program
(i.e. terms) from proofs in TCF. It remains to give a meaning to the extracted
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term. For this we use the realisability predicate and then we formulate the soundness
theorem, which says that the extracted term of a proof is indeed a realiser of the
proven formula. In this proof we need the invariance axiom.

Definition 2.1.24. To each c.r. predicate P there exists a realisability predicate
P r with the same arity plus an additional argument of type τ(P ). For a formal
definition of the realisability predicate we refer to [158, Section 4.1].

We call a formula r-free if it does not contain any realisability predicates, and
we call a proof r-free if it contains r-free formulas only.

Definition 2.1.25. For each c.r. formula A we define the following invariance
axiom

∃z(z r A)↔ A.

In particular, it says that a c.r. formula is true if and only if it can be realised.

Theorem 2.1.26 (Soundness theorem of program extraction). Let M be
an r-free proof of a formula A from assumptions (ui : Ci)i<n. Then{

et(M) r A if A is c.r.

A if A is n.c.

is derivable from the assumptions{
zui r Ci if Ci is c.r.

Ci if Ci is n.c.

for i < n and the invariance axiom.

Proof. We refer to [158, Theorem 4.10].

2.1.6 Heyting and Peano arithmetic in all finite types

Motivation 2.1.27. We have introduced the theory of computational functional
and in Chapter 5 we use it as meta theory. However, TCF is quite comprehensive
and therefore often not necessary. In this short section we introduce Heyting and
Peano arithmetic in all finite type, and in all the other chapters it suffices to consider
Peano arithmetic in finite types as meta theory.

We also use Heyting and Peano arithmetic in all finite types to define Gödel’s
functional interpretation in the next section, which operates on formulas of Heyting
arithmetic in all finite types (which are identical to the formulas of Peano arithmetic
in all finite types).
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Definition 2.1.28. The theory of Heyting arithmetic HAω in all finite type is a
fragment of TCF:

• The types in HAω are N, B, U, list types, product types, sum types and
function types.

• The predicates in HAω are totality, Leibniz equality, the existential quantifier,
the conjunction and the disjunction, where the last three predicates are seen
as logical operators.

Peano arithmetic PAω in all finite types is HAω plus the law of excluded middle,
i.e. A ∨ ¬A for all formulas A.

In Heyting and Peano arithmetic all objects are implicitly total. In particular,
case distinction of Boolean terms and induction over natural numbers are always
possible in HAω and PAω.

Definition 2.1.29. We define the degree of a type as follows:

deg(N) := deg(B) := deg(U) := 0

deg(τ ∗) := deg(τ)

deg(τ + ρ) := deg(τ × ρ) := max{deg(τ), deg(ρ)}
deg(τ → ρ) := max{deg(τ) + 1, deg(ρ)}

Recall that τ ∗ denotes the list type over τ . A type τ with deg(τ) = 0 is called base
type.

Remark 2.1.30. Note that a base type can be coded as natural number. In
particular, a type that can be embedded in the natural numbers is regarded as a
base type.

2.2 Tools of proof interpretation

Motivation 2.2.1. In Definition 2.1.22 we have introduced the extracted term
which is used to get constructive content out of proofs which are formulated in TCF.
In this section we introduce local operators and Gödel’s functional interpretation,
which are also tools to get more information out of proofs. In a nutshell, all of the
following chapters show how to use these tools (formally or informally) to extract
constructive content from several classes of proofs.

We want to compare our work with natural sciences: Whereas natural scientists
are studying the nature and extract information out of nature’s behaviour, in this
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thesis we are extracting information out of proofs occurring in mathematics. Here
we consider many types of proofs, even proofs with non-constructive moments like
Zorn’s lemma or the law of excluded middle.

In the last subsection we present a short example where the two new tools are
used to get quantitative information out of a classical theorem which is a foretaste
of the next chapter.

2.2.1 Local operators

Motivation 2.2.2. Inspired by [31] we define local operators and in particular the
double-negation translation, which are operating on the set of formulas in a given
language. Afterwards we prove some properties of local operators. To give a formal
proof, one has to fix a proof calculus like the calculus of natural deduction. To stay
more general and short, we do not introduce a certain proof calculus and instead
give informal proofs.

However, we use the notation Γ ` A for “A is derivable from finitely many
formulas of Γ”. For a formal definition in terms of the calculus of natural deduction
we refer to [160, Section 1.1]. We write Γ `c A for Γ∪Stab ` A, where Stab consists
of all formulas of the form ¬¬A→ A.

Definition 2.2.3. A local operator is a map ∇ between formulas with the following
properties

A→ ∇A,
∇(∇A)→ ∇A,

∇(A ∧B)↔ ∇A ∧∇B,
(A↔ B)→ (∇A↔ ∇B)

for all formulas A and B. Furthermore we require that ∇ does not change the
free variables and commutes with substitution, i.e. (∇A)[t/x] and ∇(A[t/x]) are the
same formulas, and FV (∇A) ⊆ FV (A).

Lemma 2.2.4. The map ∇ on formulas given by ∇A := ¬¬A is a local operator.

Proof. The first property follows trivially as ¬¬A := (A → ⊥) → ⊥. The second
property is a special case of ¬¬¬A→ ¬A.
For the third property we give an informal proof (note that a formal proof depends
on the underlying proof calculus):
→: Assume ¬¬(A ∧ B). Our goal is ¬¬A and ¬¬B. We show only ¬¬A as

¬¬B is analogously shown. Therefore, assume ¬A i.e. A → ⊥. This leads directly
to A ∧B → ⊥ and together with ¬¬(A ∧B) we have ⊥.
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←: From the assumptions ¬¬A, ¬¬B and ¬(A∧B) we have to prove ⊥: Assume
A and B, then ⊥ by ¬(A ∧ B). Therefore, ¬B under the assumption A. By ¬¬B,
it follows ⊥ under the assumption A. Therefore, ¬A, and by ¬¬A, we have ⊥.

The fourth property follows directly since each logical operator conserves equiv-
alence.
The two requirements are also obviously fulfilled.

Example 2.2.5. In addition to the double negation from the lemma above there
are of course many more examples. The trivial examples are∇A := A and∇A := >.
Another example is ∇A := B ∨A for a fixed closed formula B. Here it is simple to
verify the axioms of a local operator.

Definition 2.2.6. Let ∇ be a local operator. The ∇-translation A∇ of a formula
A is recursively defined as follows:

(P~t)∇ := ∇(P~t)

(A ◦B)∇ := (A∇ ◦B∇) for ◦ ∈ {∧,→}
(A ∨B)∇ := ∇(A∇ ∨B∇)

(∀xA)∇ := ∀xA∇

(∃xA)∇ := ∇(∃xA∇)

Here A,B are formulas, P is a predicate, x is a variable and ~t are terms. In the case
∇ = ¬¬ we call AG := A∇ the Gödel-Gentzen translation or the Double-negation
translation.

If ∇ = B∨ for some fix formula B, the ∇-translation can be called Friedman
translation as it goes back to Friedman [74].

If Γ is a set of formulas, we define Γ∇ := {A∇ | A ∈ Γ}

Lemma 2.2.7. Let ∇ be a local operator and A,B formulas. Then

(A→ B)→ (∇A→ ∇B)

and even
∇(A→ B)→ (∇A→ ∇B)

are derivable.

Proof. We use that (A → B) ↔ (A ∧ B ↔ A) is derivable. Therefore, the first
formula follows by using the third and the fourth property of local operators.
To prove the second formula, we assume ∇(A→ B) and ∇A. By the third property
we get ∇((A → B) ∧ A). As ((A → B) ∧ A) → B it follows ∇B by the first
formula.
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Lemma 2.2.8. Let ∇ be a local operator and A a formula, then ∇A∇ → A∇ is
derivable.

Proof. Induction over the formula A. In the case that A is an existential statement,
a disjunction or a prime formula the claim follows by the second property of a local
operator.

Let A = B ∧C. By the third axiom we have ∇(B∇ ∧C∇)↔ ∇B∇ ∧∇C∇, and
by using the induction hypothesis on B and C, we are done.

Let A = B → C. We assume ∇(B∇ → C∇) and B∇, and the goal is C∇. By
the induction hypothesis it is enough to show ∇C∇. From B∇ we get ∇B∇ by the
first property of a local operator, and by the third property we have

∇(B∇ → C∇) ∧∇B∇ ↔ ∇((B∇ → C∇) ∧B∇).

Furthermore, by Lemma 2.2.7 we have

∇((B∇ → C∇) ∧B∇ → C∇)→ ∇((B∇ → C∇) ∧B∇)→ ∇C∇.

As ∇((B∇ → C∇) ∧ B∇ → C∇) is true by the first property of a local operator, it
follows ∇C∇.

For the last case let A = ∀xB, so we have ∇A∇ := ∇(∀xB∇). Given a fixed
variable x we get ∇B∇ by Lemma 2.2.7. Using the induction hypothesis, this leads
to B∇. Since x was arbitrary, the proof is finished.

Theorem 2.2.9. Let A be a formula and Γ a set of formulas with Γ ` A. Further-
more, let ∇ be a local operator. Then

Γ∇ ` A∇.

Proof. From a derivation M of a formula A with assumption set Γ one has to
construct a derivation M ′ of the formula A∇ with assumption set Γ∇. This is done
by induction on the underlying proof calculus. We refer to [160, Section 1.1.9] where
the statement is proved in the case of the calculus of natural deduction and ∇ being
the double-negation translation. Since the proof uses the properties from Definition
2.2.3 only, it can be easily generalised for arbitrary ∇.

Corollary 2.2.10. Let A be a formula and Γ be a set of formulas with Γ `c A,
then ΓG ` AG.

Proof. By assumption we have Γ ∪ Stab ` A. By the theorem above, we get ΓG ∪
StabG ` AG. Using induction over formulas, one can prove that (¬¬A → A)G is
derivable in minimal logic. Therefore, it follows ΓG ` AG.
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Remark 2.2.11. This corollary provides a non-trivial way to transform classical
proofs into intuitionistic proofs. In particular, we are able to convert proofs in
Peano arithmetic into proofs in Heyting arithmetic. The next section shows how
some computational content can be obtained from a proof in Heyting arithmetic.
Therefore, by using the Gödel-Gentzen translation we even get some information
from a classical proof.

2.2.2 Gödel’s functional interpretation

Motivation 2.2.12. An important tool we will use is Gödel’s Dialectica interpre-
tation. It was introduced in [77]. We will use the formulation which is given in [160].
The Dialectica interpretation is a map which assigns a formula A to a formula of
the form ∃x∀yA0(x, y), where A0 is quantifier-free and therefore decidable. We will
see that the Dialectica interpretation of a formula is equivalent to the formula itself
under certain assumption, which are as non-constructive as possible. First, we start
with the type of the variables x and y in ∃x∀yA0(x, y), where τ+(A) shall be the
type of x and τ−(A) shall be the type of y:

Definition 2.2.13. To each formula A in HAω we define the positive type τ+(A)
and the negative type τ−(A) by recursion as follows:

τ+(P~t) := U τ−(P~t) := U
τ+(∀xρA) := ρ→ τ+(A) τ−(∀xρA) := ρ× τ−(A)

τ+(A ∧B) := τ+(A)× τ+(B) τ−(A ∧B) := τ−(A)× τ−(B)

τ+(A ∨B) := B×
(
τ+(A)× τ+(B)

)
τ−(A ∨B) := τ−(A)× τ−(B)

τ+(∃xρA) := ρ× τ+(A) τ−(∃xρA) := τ−(A)

τ+(A→ B) :=
(
τ+(A)→ τ+(B)

)
×
(
τ+(A)→ τ−(B)→ τ−(A)

)
τ−(A→ B) := τ+(A)× τ−(B)

Since U is the unit algebra with the only constructor Dummy : U, we identify U× τ ,
τ × U and U→ τ with τ , and we identify τ → U with U.

Example 2.2.14. We will often use the functional interpretation in combination
with the double-negation translation. Therefore, we take a look at the negation of
a formula A:

τ+(¬A) = τ+(A→ ⊥) =
(
τ+(A)→ τ+(⊥)

)
×
(
τ+(A)→ τ−(⊥)→ τ−(A)

)
= τ+(A)→ τ−(A)
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and

τ−(¬A) = τ+(A)× τ−(⊥) = τ+(A)

For the double negation we get

τ+(¬¬A) =
(
τ+(¬A)→ τ+(⊥)

)
×
(
τ+(¬A)→ τ−(⊥)→ τ−(¬A)

)
=
(
τ+(A)→ τ−(A)

)
→ τ+(A)

and

τ−(¬¬A) = τ+(¬A)× τ−(⊥) = τ+(A)→ τ−(A).

Definition 2.2.15. For each formula A and terms r : τ+(a), s : τ−(A) we define
the quantifier-free formula |A|rs by recursion as follows:

|P~t|rs := P~t

|∀xA(x)|rs := |A(s0)|r(s0)
s1

|A ∧B|rs := |A|r0s0 ∧ |B|
r1
s1

|A ∨B|rs :=
(
r0 = 0→ |A|r10s0

)
∧
(
r0 = 1→ |A|r11s1

)
|∃xA(x)|rs := |A(r0)|r1s
|A→ B|rs := |A|s0r1s0s1 → |B|

r0s0
s1

Here, for a term t of a product type τ × ρ, we denote the left component by t0 and
the right component by t1.

The formula AD := ∃x∀y|A|xy is called the Gödel translation or the functional
interpretation and the formula AD(x, y) := |A|xy is called the Gödel kernel of A.

Remark 2.2.16. We can describe this in a more readable way by writing terms of
a pair type in pair form:

|P~t|rs := P~t

|∀xA(x)|fy,z := |A(y)|fyz
|A ∧B|x,yu,v := |A|xu ∧ |B|yv
|A ∨B|b,x,yu,v := (b = 0→ |A|xu) ∧ (b = 1→ |A|yv)
|∃xA(x)|y,zs := |A(y)|zs
|A→ B|f,gu,v := |A|uguv → |B|fuv
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Remark 2.2.17. The functional interpretation transforms each formula in a Σ2-
formula. A well-known visualisation of a Σ2-formula ∃xX∀yYA0(x, y) is to see it as
a game between two players:
Player 1 picks an element x0 of X, then Player 2 picks an element y0 of Y . If
A0(x0, y0) holds, Player 1 wins. If A0(x0, y0) dose not hold, Player 2 wins. Hence,
the formula ∃xX∀yYA0(x, y) holds if Player 1 has a winning strategy and it does
not hold if Player 2 has a winning strategy. Of course, only in a classical setting
one can prove that one player has a winning strategy. For more game theoretic
interpretations of the functional interpretation we refer to [129].

Example 2.2.18. We continue Example 2.2.14: For an arbitrary formula A with
Gödel translation AD = ∃xX∀yY |A|xy , the Gödel translation of ¬¬A is given by

∃ε∀p¬¬
(
|A|εpp(εp)

)
with types ε : (X → Y )→ X and p : X → Y .
Using the visualisation from Remark 2.2.17 we can compare the Gödel translation of
A with the Gödel translation of ¬¬A as follows: In the game of AD, Player 2 picks a
y0 depending on the chosen x0 by Player 1. The strategy of Player 2 is represented
by the function p : X → Y . Hence, in the game of (¬¬A)D Player 1 can choose
an element of X depending on the strategy of Player 2, i.e. Player 1 can use the
information how Player 2 wants to find a counterexample. Therefore, the game of
(¬¬A)D is easier to win for Player 1 as the game of AD.

Let A := ∃x∀y(Py → Px) be a version of the drinker paradox for a decidable
predicate P . Here A is already in Σ2 form and therefore the Gödel interpretation of
A is again A. The classical way to give a witness of the existence would be

x :=

{
y for a y with Py

0 if such a y does not exists

But in intuitionistic logic this is not well-defined and A is not provable. However,
the double negation ¬¬A is provable and the Gödel translation is

∃ε∀p(P (p(εp))→ P (εp)).

Here it is able to give a witness: We define ε : (X → Y )→ X by

ε(p) :=

{
p0 if P (p0)

0 if ¬P (p0).

Since P is decidable, ε is well-defined and fulfils ∀p(P (p(εp))→ P (εp)).
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Motivation 2.2.19. We first show that the Gödel interpretation of a formula
A is not so far away from the original formula. Meaning that if we assume some
constructively critical principles, A and AD are equivalent. The principles are the
following:

Definition 2.2.20. The Markov principle (MP) is the formula

(∀xP (x)→ A0)→ ∃x(P (x)→ A0).

for each decidable predicate P (x) and each decidable formula A0.
The axiom of choice1 (AC) is given by

∀x∃yA(x, y)→ ∃fX→Y ∀xA(x, fx)

for each arbitrary formula A(xX , yY ).
The axiom of the independence of the premise (IP) is given by the formula

(A→ ∃xB)→ ∃x(A→ B),

where A and B are arbitrary formulas with x /∈ FV (A) and τ+(A) = U.

Remark 2.2.21. The Markov principle could also be formulated as

¬∀xP (x)→ ∃x¬P (x).

In words this formula says that if Px does not hold for all x then there is a counter
example. In intuitionistic logic both formulations are equivalent, but we will use the
more general one.

Lemma 2.2.22. For a formula A in HAω we have

MP + AC + IP ` A↔ ∃x∀y|A|xy .

Proof. The proof is done by induction:
If A is an atomic formula, it is its own Dialectica interpretation and we have nothing
to show.
Let A = B ∧ C. By induction hypothesis this is equivalent to

∃x∀y|B|xy ∧ ∃u∀v|C|uv .
1Despite the fact that this axiom is called “axiom of choice”, it is not as inconstructive as the

axiom of choice in set theory.
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This is without any assumption equivalent to

∃x,u∀y,v(|B|xy ∧ |C|uv),

which is equivalent to AD by definition.
Let A = B ∨ C. By induction hypothesis we have the equivalent formula

∃x∀y|B|xy ∨ ∃u∀v|C|uv .

For an element b ∈ B we have b = 0∨b = 1, therefore we have the equivalent formula

∃b.
(
b = 0→ ∃x∀y|B|xy

)
∧ (b = 1→ ∃u∀v|C|uv)

By using IP, we get

∃b.∃x
(
b = 0→ ∀y|B|xy

)
∧ ∃u (b = 1→ ∀v|C|uv) .

This is with out any assumptions equivalent to

∃b,x,u∀y,v.
(
b = 0→ |B|xy

)
∧ (b = 1→ |C|uv) ,

which is AD by definition.
Let A = B → C. The following formulas are equivalent:

∃x∀y|B|xy → ∃u∀v|C|uv by induction hypothesis

∀x.∀y|B|xy → ∃u∀v|C|uv
∀x∃u.∀y|B|xy → ∀v|C|uv by IP

∀x∃u∀v.∀y|B|xy → |C|uv
∀x∃u∀v∃y.|B|xy → |C|uv by MP

∃f∀x,v∃y.|B|xy → |C|fxv by AC

∃f,g∀x,v.|B|xgvx → |C|fxv by AC

The last formula is equivalent to ∃f,g∀x,v|B → C|f,gx,v by definition.
The case A = ∃xB is trivial.
Let A = ∀xB(x). According to the induction hypothesis, we have that A is equiva-
lent to

∀x∃y∀z|B(x)|yz ,

and using the axiom of choice, we have

∃f∀x,z|B(x)|fxz .

By definition this is ∃f∀x,z|∀xB(x)|fx,z.
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Theorem 2.2.23 (Soundness of the functional interpretation). Assume we
have a derivation M of a formula A in HAω + AC + IP + MP with assumptions
(ui : Ci)i<n. Let xi : τ+(Ci) for each i and y : τ−(A) be variables. Then there are
terms et+(M) =: t of type τ+(A) and et−i (M) =: ri of type τ−(Ci) with y /∈ FV (t),
such that |A|ty is derivable in HAω with assumptions ui : |Ci|xiri .

Proof. The proof is done by induction on M . We refer to [160, Section 7.4.4].

2.2.3 Application: metastability

Motivation 2.2.24. n this section we give an example in which the Dialectica
interpretation, along with the double negation translation, is applied to a general
version of the statement that any non-negative and non-increasing sequence of real
numbers converges. This statement cannot be proven constructively, but the trans-
lated formula can. Our example is presented in [95, Proposition 6.4] in a more
general setting. Hence, this section is not new but it is a foretaste to the next
chapter, where we present metastability in the context of algebra.

At the end we want to prove the translated formula of being a Cauchy sequence.
A sequence (λn)n∈N of real numbers is a Cauchy sequence if

∀k∃n∀i,j≥n|λi − λj| ≤ 2−k.

Before we apply the Gödel-Gentzen translation followed by the functional interpre-
tation, we reformulate this statement. This is a standard method: the functional
interpretation with double-negation shift is applied to an equivalent version of the
starting formula. In our case the following formula is appropriate:

∀k∃n∀l∀i,j∈[n,n+l]|λi − λj| ≤ 2−k

The new formula may look more complex but the part ∀i,j∈[n,n+l]|λi − λj| ≤ 2−k

of the formula above can be seen as a decidable predicate (if we assume that the
inequality is decidable) as the quantifier is bounded.

The translation of this formula is now given by

∃Ψ∀k,p∀i,j∈[Ψ(p,k),Ψ(p,k)+p(Ψ(p,k))]|λi − λj| ≤ 2k,

where the types are Ψ : (N→ N)→ N→ N, p : N→ N and k : N. In the following
we prove an equivalent version of this statement under certain considerations. Note
that we do the proof by hand and do not use theorems like Corollary 2.2.10 and
Theorem 2.2.23 since it is easier to formulate a new proof instead of going through
the processes in these theorems.
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Lemma 2.2.25. Let (λn)n, (κn)n, (γn)n ∈ (R+
0 )N with

λn+1 ≤ (1 + κn)λn + γn (2.1)

for all n ∈ N. Furthermore, let K1, K2 ∈ N be given with
∑∞

i=1 κi ≤ K1 and∑∞
i=1 γi < K2 and we have two moduli of convergence r1, r2 : R+ → N such that

∀ε>0

∑∞
i=r1(ε) κi ≤ ε and ∀ε>0

∑∞
i=r2(ε) γi ≤ ε.

Then there is Φ : NN × N→ N such that

∀k∀g∃n≤Φ(g,k)|λn+g(n) − λn| < 2−k

Proof. By iterating the given inequality (2.1), we have

λn+1 ≤ e
∑∞
i=1 κi

(
λ1 +

∞∑
i=1

γi

)
≤ eK1(λ1 +K2) <∞,

and hence there is L ∈ N such that e
∑∞
i=1 κi(λ1 +

∑∞
i=1 γi) ≤ 2L. For all g : N → N

we define g̃ : N→ N by g̃(n) = g(n) + n and show

∀M∀k∀g∃i≤2k+L(λg̃i(M) − λg̃i+1(M) < 2−k). (2.2)

Assume that for some M,k and g

∀i≤2k+Lλg̃i(M) − λg̃i+1(M) ≥ 2−k.

Summation over 0 ≤ i ≤ 2k+L leads to

λM − λg̃2k+1(M)
≥ (2k+L + 1)2−k > 2L

which is a contradiction to the choice of L, therefore (2.2).
Using induction on (2.1) we get

λn+m ≤
n+m−1∏
j=m

(1 + κj)

(
λm +

n+m−1∑
j=m

γj

)
≤ e

∑n+m−1
j=m κj

(
λm +

n+m−1∑
j=m

γj

)
,

and hence

λn+m − λm ≤
(
e
∑∞
j=m κj − 1

)
2L + e

∑∞
j=m κj

∞∑
j=m

γj
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for all m,n ∈ N. We define R : N→ N by

R(k) := max{r1(ln(2)), r1(ln(1 + 2−k−L−1)), r2(2−k−2)},

where L is defined as above. Then for all k, i > R(k) and j > i we have

λj − λi ≤
(
e
∑∞
j=m κj − 1

)
2L + e

∑∞
j=m κj

∞∑
j=m

γj

≤ 2−k−L−12L + 2 · 2−k−2 ≤ 2−k. (2.3)

Then (2.2) and the property of R together with ∀mg̃i(m) ≥ m gives

∀k∀g∃i≤2k |λg̃i(R(k)) − λg̃i(R(k))+g(g̃i(R(k)))| < 2−k.

Hence, we define
Φ(g, k) := g̃2k(R(k)).

Theorem 2.2.26. In the situation of Lemma 2.2.25 we furthermore have

∀k∀g∃n≤Φ(g,k+2)∀i,j∈[n,n+g(n)]|λi − λj| ≤ 2−k.

Proof. Let k ∈ N and g : N→ N be given. By Lemma 2.2.25 there is n ≤ Φ(g, k+2)
with

|λn+g(n) − λn| ≤ 2−k−2

and, similar to (2.3) in the proof of this lemma,

∀i>n∀j>iλj − λi ≤ 2−k−2.

For given i, j ∈ [n, n+ g(n)] we assume w.l.o.g. i ≤ j and have λj − λi ≤ 2−k−2 and

λi − λj < λi − λj + λn+g(n) − λn + 2−k−2 = λi − λn + λn+g(n) − λj + 2−k−2 < 2−k,

hence |λi − λj| ≤ 2−k.

Remark 2.2.27. The notion “metastability” is used since the sequence above is
stable on the finite interval [n, n + g(n)], where the bound of this interval depends
on a given function g and given k. One can also say that this is an approxima-
tion to the property of being a Cauchy sequence. In Section 3.3 we approximate
maximal objects in algebra by using a similar process. Here we have an example
about metastability in analysis, hence Section 3.3 can be seen as an example of
metastability in algebra.
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CHAPTER 3. IDEAL OBJECTS IN COMMUTATIVE ALGEBRA

Chapter 3

Ideal objects in commutative
algebra

This chapter is based on [137,138] which is a result of a collaboration with Thomas
Powell and Peter Schuster. The content of both papers are combined. The case
studies in Section 3.7 and Section 3.8 are new and were not considered the two
papers.

Motivation 3.0.1. The existence of ideal objects, such as maximal ideals in non-
zero rings, plays a crucial role in commutative algebra. These are typically justified
by Zorn’s lemma, and thus pose a challenge from a computational point of view.
Giving a constructive meaning to ideal objects is a problem which dates back to
Hilbert’s program, and today it is still a central theme in the area of dynamical
algebra, which focuses on the elimination of ideal objects via syntactical methods.
In this chapter, we take an alternative approach based on Gödel’s interpretation
with double negation shift and sequential algorithms. First we give a computational
interpretation of an abstract maximality principle in the countable setting via an
intuitive, state based algorithm.

As a concrete application, we present the computational interpretation to a gen-
eral and abstract formulation of the so-called universal Krull-Lindebaum lemma as
in [145]. We give a number of concrete examples of this phenomenon, including the
prime ideal theorem and Kronecker’s theorem for valuation rings.

The novelty of our work lies in our use of Gödel’s functional interpretation and in
our description of its solution as a state based algorithm, by Thomas Powell’s recent
work [129, 130, 134–136], which focuses on the algorithmic meaning of extracted
programs. This form of presentation allows us to bridge the gap between the rigorous
extraction of programs from proof as terms in some formal calculus, and the more
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algorithmic style of dynamical algebra.
It also enables us to present our results in an entirely self-contained manner,

without needing to introduce any heavy proof theoretic machinery. Though behind
the scenes at least aspects of our work are influenced by Gödel’s functional intepre-
tation, given in Section 2.2.2, and Spector’s bar recursion [167]. However, neither
of these are necessary to understand the theory presented in this chapter.

3.1 General maximality

Motivation 3.1.1. We use a classical metatheory such as PAω and we globally
assume that for each set S and object x in our algorithms we can decide weather
x ∈ S or x /∈ S and that the equality is decidable, i.e. x = y or x 6= y for all x, y.
Hence, the power set of a given set X can be seen as the set of all boolean valued
functions on X, i.e. P(X) is identified with 2X . The underlying set in the algorithms
of this chapter will always be countable, and therefore this assumption is not a huge
restriction.

We begin by presenting our abstract maximality principle, which forms the main
subject of this chapter. This is achieved by abstracting ideals of commutative rings
to the context of coverings, and in Section 3.4 we abstract prime ideals by adding
binary operators. This is a move in the vein of formal topology [148, 151]. The
notion of a covering goes back to Tarski’s concept of consequent operator [169] and
also the axiom systems of Hertz [80].

Notation 3.1.2. Let X be an arbitrary set. We denote the set of all finite subsets
of X by Pfin(X). Variables in Pfin(X) will be typically denoted by A and B. A
subset B ⊆ Pfin(X)×X is called a covering on X. In the following a covering will
typically be denoted by B and treated as a binary relation with infix notation.

We say that the element x is generated by a finite set A if AB x and extend B
to arbitrary S ⊆ X by defining S B· x whenever there exists some finite A ⊆ S such
that AB x.

If it is clear from the context, we use the notations A, x and A,B for A ∪ {x}
and A ∪B, respectively.

Definition 3.1.3. A covering B on a set X is called reflexive if

{a}B a

for all a ∈ X, and it is called transitive, if

B B b ∧ A, bB a⇒ A,B B a
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for all a, b ∈ X and all finite A,B ⊆ X.

Remark 3.1.4. For the proof that Algorithm 3.3.6 indeed produces an approxi-
mate maximal object, we do not need reflexivity and transitivity of B. But after this
we will specialize this algorithm to an algorithm for the universal Krull-Lindenbaum
lemma. At that point we need reflexivity and transitivity.

Definition 3.1.5. Let B be a covering of a set X and S ⊆ X a subset. We define
the sequence (Si)i∈N by

S0 := S and Si+1 :=

{
x ∈ X

∣∣∣∣∣
i⋃

j=0

Sj B· x

}
.

With this sequence we define 〈S〉B :=
⋃
n∈N Si, the closure of S w.r.t. B. A subset

I ⊆ X with I = 〈I〉B is called a B-ideal.

Remark 3.1.6. The set 〈S〉B in the definition above is an B-ideal: one easily sees
that 〈S〉B B· x implies x ∈ 〈S〉B.

Lemma 3.1.7. If a covering B on a set X is reflexive and transitive then 〈S〉B =
{x ∈ X | S B· x} for all S ⊆ X.

Proof. By induction and transitivity we have Si = S1 for all i ≥ 1, and we have
S0 ⊆ S1 by reflexivity.

Notation 3.1.8. For a given covering B on a set X, S ⊆ X and x ∈ X, we denote
the closed extension of S with x by S ⊕ x := 〈S, x〉B.

If furthermore θ is a predicate on X, we write θB(S) for ∀x∈〈S〉Bθ(X) and θBF (S) :=
θB(F ∪ S).

Motivation 3.1.9. In the following definition we define general maximality. We
will use this definition as starting point for our studies about the approximation of
maximal objects.

Definition 3.1.10. Let B be a covering and θ a predicate on a set X. A subset
M ⊆ X is called maximal w.r.t. B and θ if

(i) M is closed w.r.t. B· (i.e. M B· x⇒ x ∈M),

(ii) θB(M),

(iii) ¬θB(M,x) for any x /∈M .
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Motivation 3.1.11. The following theorem shows the existence of such a maximal
object by using Zorn’s Lemma. Therefore, from the proof of this theorem one cannot
construct this maximal object. However, in the next section we analyse the notion
of maximality, use some tools to reformulate them and construct an algorithm which
provides an approximation to a maximal object.

Theorem 3.1.12. Let a covering B and a predicate θ on a set X be given. Suppose
that θB(F ) holds for some F ⊆ X. Then there exists some M ⊇ F which is maximal
w.r.t. B and θ.

Proof. We define S := {S ⊆ X | F ⊆ S = 〈S〉B ∧ θB(S)}. 〈F 〉B ∈ S follows from
θB(F ), and we show that S is chain complete:

Let ∅ 6= K ⊆ S be a chain w.r.t. the order ⊆. We define S :=
⋃
K. Then if

AB x for finite A ⊆ S and x ∈ X, we get P ∈ K with A ⊆ P because K is a chain.
Since P = 〈P 〉B, we have x ∈ P and therefore x ∈ S. Furthermore, we have θB(S)
because if x ∈ S = 〈S〉B then x ∈ P for some P ∈ K, and hence θ(x).

By Zorn’s lemma S has a maximal element M . M is closed and θB(M) holds as
M ∈ S. Given x ∈ X \M , we have M $ M ⊕ x and thus M ⊕ x /∈ S. But since
M ⊕ x is closed, ¬θB(M,x)

3.2 A logical analysis

Notation 3.2.1. In the following we often assume that X is countable. In that
case we say “Let X = {xn | n ∈ N} be countable.”, which means that there is a set
X and a sequence (xn)n∈N with values in X such that X = {xn | n ∈ N}.

For S ⊆ X, the initial segment of S of length n is defined by [S](n) := {xm | n <
m} ∩ S and we further define dom(S) := {n ∈ N | xn ∈ S}.

Motivation 3.2.2. The following theorem gives a criterion when a subset M ⊆ X
is maximal w.r.t. B and θ. This criterion is central for our investigations. We
adapt a well-known trick from reverse mathematics, see e.g. [166, Lemma III.5.4],
and a well-known trick to construct maximial objects, see e.g. [174, Lemma 1.5.7].
After some technical assumptions about the formulas, we will use this theorem as
motivation to define explicit maximal objects. It turns out that from a logical point
of view the defining formula of an explicit maximal object is more manageable than
the defining formula of a general maximal object. In particular, we can use the
double negation shift and Gödel’s functional interpretation to approximate explicit
maximal objects.



3.2. A LOGICAL ANALYSIS 35

Theorem 3.2.3. Let X = {xn | n ∈ N} be countable and F ⊆ X a subset.
Suppose θB(F ) and that M ⊆ X satisfies

xn ∈M ⇔ θBF ([M ](n), xn) (3.1)

for all n ∈ N. Then M is a maximal ideal w.r.t. B and θ with F ⊆M .

Proof. We abbreviate Mn := [M ](n) and Fn := [F ](n). First we show by induction
that θBF (Mn) and Fn ⊆Mn for all n ∈ N:

For n = 0 we have M0 = ∅ = F0 and the claims follow by the assumption θB(F ),
i.e. θBF (∅). Now we assume that θBF (Mn) and Fn ⊆ Mn hold for a given n ∈ N. We
have two cases: if θBF (Mn, xn) holds then xn ∈ M , and hence Mn+1 = Mn ∪ {xn}.
Furthermore, we have Fn+1 ⊆ Fn∪{xn} ⊆Mn+1. On the other hand, if ¬θBF (Mn, xn)
holds, then xn /∈ M and hence Mn+1 = Mn. Therefore, θBF (Mn+1) follows by the
induction hypothesis. To see Fn+1 ⊆ Mn+1 = Mn, we need to show xn /∈ F .
Assume xn ∈ F , then θBF (Mn, xn)⇔ θBF (Mn), and since the latter is true, this would
contradict the assumption ¬θBF (Mn, xn).

Now we prove the three properties of maximality. First we show that M is closed,
and therefore we assume that M B· xn but xn /∈ M for some given n ∈ N. Then
by definition ¬θBF (Mn, xn). Since M B· xn, we have Mk B· xn for some k ∈ N. First
assume k ≤ n. Then Mk ⊆ Mn and thus Mn B· xn, which implies xn ∈ 〈Mn〉B and
therefore

Mn ⊕ xn = 〈Mn〉B.

But then θBF (Mn) contradicts ¬θBF (Mn, xn). Now assume n < k. Then Mn ⊕ xn ⊆
Mk ⊕ xn and thus ¬θBF (Mn, xn) implies ¬θBF (Mk, xn). Because of Mk B· xn we have
Mk ⊕ xn = 〈Mk〉B ⊆ 〈Mk, F 〉B, and therefore ¬θBF (Mk), a contraction to θBF (Mk).

Next we show θB(M): Let xn ∈ M = 〈M〉B be given. Then xn ∈ Mn+1 ⊆ M
and thus θ(xn) follows from θB(Mn+1).

Finally, we show maximality: If xn /∈M then ¬θBF (Mn, xn), and since Mn⊕xn ⊆
M ⊕ xn, it follows ¬θBF (M,xn).

Definition 3.2.4. For a given set X, we call a covering B on X a Σ0
1-covering if for

all A ∈ Pfin(X) and x ∈ X the formula AB x is a Σ0
1-formula. In particular, there

is a decidable predicate which we will denote by B(.) such that A B x ⇔ ∃tA Bt x,
where t is a variable of a base type. We denote this base type by W and call it the
witness type. Variables of type W will be denoted by s and t.

Lemma 3.2.5. Let X = {xn | n ∈ N} be countable. Assume that B is a Σ0
1-

covering and θ is decidable. For F, S ⊆ X and x ∈ X we have:
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1. x ∈ 〈S〉B is a Σ0
1-Formula and

2. θB(S) and θBF (S) are Π0
1-Formulas.

Proof. For the first statement, we have x ∈ 〈A〉B if and only if there exists a finite
derivation tree whose root is x, whose leaves are elements of A and whose nodes
represent instances of B. Given that B can be encoded as a Σ0

1-formula, the existence
of a derivation tree can in turn be represented as Σ0

1-formula via some suitable
encoding.

For the second statement, we have θB(S) ⇔ ∀m(xm ∈ 〈S〉B ⇒ θ(xm)). By the
first part xm ∈ S is a Σ0

1-formula. Therefore, xm ∈ 〈S〉B ⇔ ∃rG(S, xm, r) for some
decidable G(S, xm, r). It follows:

θB(S)⇔ ∀m(∃rG(S, xm, r)⇒ θ(xm))⇔ ∀m,r(G(S, xm, r)⇒ θ(xm)) (3.2)

Therefore, θB(S) is a Π0
1-formula. Since θBF (S) is defined as θB(F ∪S), θBF (S) is also

a Π0
1-formula.

Remark 3.2.6. As in [137], Lemma 3.2.5 also works if we assume that θ(x) is a
Π0

1-formula. But from (3.2) we see that an all-quantified variable in θ(xm) can be
rewritten as an existence-quantified variable in S B xm, and hence we do not need
that θ(x) is a Π0

1-formula.

Notation 3.2.7. By Lemma 3.2.5 θB(S) and θBF (S) are Π0
1-formula if B is a Σ0

1-
covering and θ is decidable. In the following we use the notation θBF (A)⇔ ∀pRF

A(p),
where RF

A(p) is a decidable predicate and RA(p) := R∅
A(p). We denote the base type

for which RF
A is defined by G and variables of type G will be denoted by p and q.

Note that this notation ignores that RF
A(p) also depends on the covering B and the

predicate θ. But we will always denote these objects by B and θ. Hence, there will
not be any possibility of confusion.

Remark 3.2.8. In the situation of Lemma 3.2.5, if B is reflexive and transitive,
we have 〈S〉B = {x ∈ X | ∃A∈Pfin(S)AB x} by Lemma 3.1.7. Therefore

x ∈ 〈S〉B ⇔ ∃A,t(A ∈ Pfin(S) ∧ ABt x)

is a representation of x ∈ 〈S〉B as Σ0
1-formula and

θB(S)⇔ ∀A,t,x(A ∈ Pfin(S) ∧ ABt x⇒ θ(x))

is a representation of θB(S) as Π0
1-formula. Note that since there is a surjection from

N to X, there is also a surjection from N to Pfin(X) and therefore Pfin(X) can be
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seen as base type. In particular, in this case one can choose G = Pfin(X)×W ×X
and

RF
S (A, t, x)⇔ (F ∪ S ⊇ ABt x⇒ θ(x)).

We will use this later to develop an algorithm for the universal Krull-Lindenbaum
lemma.

Corollary 3.2.9. Let X = {xn | n ∈ N} be countable. Given a Σ0
1-covering B, a

decidable predicate θ on X and F ⊆ X, such that θB(F ) and M ⊆ X satisfies

xn ∈M ⇔ ∀pRF
[M ](n)∪{xn}(p) (3.3)

for all n ∈ N. Then M is maximal w.r.t. B, θ and F ⊆M .

Proof. This follows directly from Theorem 3.2.3 and Notation 3.2.7.

Motivation 3.2.10. By writing out the equivalence, the existence of some M
satisfying (3.3) unfolds to

∃M∀n.
(
xn ∈M ⇒ ∀pRF

[M ](n)∪{xn}(p)
)
∧
(
xn /∈M ⇒ ∃q¬RF

[M ](n)∪{xn}(q)
)
.

and in Skolem normal form

∃M,f∀n,p.
(
xn ∈M ⇒ RF

[M ](n)∪{xn}(p)
)
∧
(
xn /∈M ⇒ ¬RF

[M ](n)∪{xn}(f(n))
)
. (3.4)

This motivates our final version of maximality, which is now in a form where we can
directly apply Gödel’s functional interpretation together with the double-negation
shift.

Definition 3.2.11. Let X = {xn | n ∈ N} be countable. An explicit maximal
object w.r.t. a Σ0

1-covering B on X, a decidable predicate θ on X and F ⊆ X is a
set M ⊆ X together with a function f : dom(X \M)→ G such that

• xn ∈M ⇒ RF
[M ](n)∪{xn}(p)

• xn /∈M ⇒ ¬RF
[M ](n)∪{xn}(f(n))

for all n ∈ N and p ∈ G.

Remark 3.2.12. The idea here is that the function f provides concrete evidence
for why xn is excluded in the maximal structure M . In particular, it encodes a
derivation tree T such that the leaves of T are in [M ](n) ⊕ xn, the node of T are
B-rules and ¬θ(r), where r is the root of the tree T .
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3.3 An approximating algorithm for maximal ob-

jects

Motivation 3.3.1. In general, it is impossible to effectively compute a set M
together with an f satisfying Definition 3.2.11. However, we will demonstrate an
approximate, or metastable, formulation of maximality in the spirit of Gödel’s func-
tional interpretation with double negation shift, which can be directly witnessed via
an intuitive stateful procedure.

In Algorithm 3.3.6 we give a sequential algorithm (in the sense of Gurevich
[78, Definition 6.1]) whose states evolves step by step until they terminate in some
final state which represents the solution of the functional interpretation with double
negation shift of Theorem 3.2.3. Each step in this process represents an improvement
to our construction of an approximate ideal object, and hence can also be viewed as a
learning procedure in the style of [11,135]. In particular, we replace the maximality
principle in the countable setting by a form of update recursion, which has already
be studied in the context of open induction [19,40,141].

Formula (3.4) is already its Gödel translation. As in the first part of Example
2.2.18 we translate it by using the double negation shift to get an approximation
to an explicit maximal object. This can also be seen as a metastable version of an
explicit maximal object, as similar to Section 2.2.3 the property of being an explicit
maximal object is now restricted to a finite property where the bound depends on
the object itself.

Definition 3.3.2. Let X = {xn | n ∈ N} be countable. Given a Σ0
1-covering B

and a decidable predicate θ on X, let ω, φ be two functionals which take as input
M ∈ 2X and f : dom(X \M) → G and return an integer and an element in G,
respectively. An approximate explicit maximal object w.r.t. B, θ, F, ω and φ is a set
M ⊆ X together with a function f , such that

• xn ∈M ⇒ RF
[M ](n)∪{xn}(p)

• xn /∈M ⇒ ¬RF
[M ](n)∪{xn}(f(n))

for n ≤ ω(M, f) and p = φ(M, f).

Remark 3.3.3. Note that the definition above is slightly stronger than the func-
tional interpretation with double negation shift, because we require n ≤ ω(M, f)
instead of n = ω(M, f) and ω(M, f) can also be a negative integer. It turns out
that this is more comfortable. For instance, we use that M and f always form an
approximate explicit maximal object if ω(M, f) < 0.
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Definition 3.3.4. A state π is a function of type N → U + G. We denote
in0Dummy ∈ U + G by ε, and we identify elements of the form in1p ∈ U + G
with p ∈ G itself.

Furthermore, if a countable set X = {xn | n ∈ N} is given then for a state π, we
define the set M [π] ⊆ X as

M [π] := {xn ∈ X | π(n) = ε}

and the function f [π] : dom(X \M [π])→ G by

f [π](n) := π(n),

where π(n) ∈ G follows from the assumption that xn /∈M [π]. For the two functionals
ω and φ from Definition 3.3.2, we define

ω(π) := ω(M [π], f [π]) and φ(π) := φ(M [π], f [π]).

A state π is called approximate explicit maximal object if (M [π], f [π]) is an approx-
imate explicit maximal object.

Notation 3.3.5. For any function f which maps N into some arbitrary image set
(for example if f is a state) and any n ∈ N the n-th initial segment [f ](n) of f is
the list of the first n values of f , namely

[f ](n) := [f(0), . . . , f(n− 1)].

Algorithm 3.3.6. Let X = {xn | n ∈ N} be countable and F ⊆ X. For B, θ, ω
and φ as in Definition 3.3.2 we define a finite sequence (πi)i≤L for some L ∈ N or an
infinite sequence (πi)i∈N of states recursively as follows:
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Start with π0 := λnε.

Given πi, define
ni := ω(πi),
pi := φ(πi).

Check from below if
there is 0 ≤ n ≤ ni
with xn ∈ M [πi] and
¬RF

[M [πi]](n)∪{xn}(pi).

Define πi+1 :=
[πi](n) :: pi :: λkε.

Stop with end state πi.

yes

no

Here :: denotes the list concatenation. In particular,

M [πi+1] = [M [πi]](n) ∪ {xk ∈ X | k > n}.

Usually we just write (πi)i to include the finite and the infinite case.

Lemma 3.3.7. In the situation of Algorithm 3.3.6 let (πi)i be the output. Then
for each state πi and n ∈ N we have

xn /∈M [πi]⇒ ¬RF
[M [πi]](n)∪{xn}(f [πi](n)).

Informally spoken, if an element is excluded from the set of a state then the state
provides a concrete evidence why this element is excluded.

Proof. We use induction on i. We have M [π0] = X and therefore, the statement is
trivial for i = 0. For the induction step suppose that the statement is true for some i.
If πi is an end state, we are done. Otherwise, πi+1 exists and we assume xn /∈M [πi+1]
for some n ∈ N. Our goal is ¬RF

[M [πi+1]](n)∪{xn}(f [πi+1](n)). By Algorithm 3.3.6

πi+1 := [πi](n
′) :: pi :: λkε,

for some n′ ≤ ni = ω(πi) and pi = φ(πi) with

xn′ ∈M [πi] and ¬RF
[M [πi]](n′)∪{xn′}(pi).
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There are two possibilities: Either n < n′ then xn /∈ M [πi], and thus the result fol-
lows by the induction hypothesis since f [πi+1](n) = πi+1(n) = πi(n) = f [πi](n)
and [M [πi+1]](n) = [M [πi]](n), or n = n′, and thus f [πi+1](n) = pi = φ(πi)
which is defined to satisfy ¬RF

[M [πi]](n)∪{xn}(pi), and hence the result follows since

[M [πi+1]](n) = [M [πi]](n). Note that n > n′ is not possible due to xn /∈M [πi+1] for
n > n′.

Theorem 3.3.8. Let X = {xn | n ∈ N} be countable. Given a Σ0
1-covering B on

X, a decidable predicate θ on X, F ⊆ X and ω, φ as in Definition 3.3.2, assume
that Algorithm 3.3.6 terminates in an end state πk for some k ∈ N. Then πk is an
approximate explicit maximal object w.r.t. B, θ, ω and φ.

Proof. By Algorithm 3.3.6, πk is an end state if and only if xn ∈ M [πk] implies
RF

[M [πk]](n)∪{xn}(φ(πk)) for all n ≤ nk = ω(πk). Furthermore, by Lemma 3.3.7 if xn /∈
M [πk] then ¬RF

[M [πk]](n)∪{xn}(f [πk](n)). Therefore, both properties of an approximate
explicit maximal object are fulfilled.

Motivation 3.3.9. In the following we show that Algorithm 3.3.6 terminates
for pleasant input. For this we need an additional assumption, namely that the
functionals ω and φ are continuous in the following sense:

Definition 3.3.10. Let X = {xn | n ∈ N} be countable. We say that (ω, φ) as
in Definition 3.3.2 are continuous if for all states π : N → U + G there exists some
L ∈ N such that for any other input state π′, if [π](L) = [π′](L) then

(ω(π), φ(π)) = (ω(π′), φ(π′)).

Remark 3.3.11. Note that whenever ω and φ are instantiated by computable
functionals, they will automatically be continuous. Therefore, continuity is not a
restriction for the purposes of our applications.

Theorem 3.3.12. Let X = {xn | n ∈ N} be countable, F ⊆ X a subset, B a Σ0
1-

covering and θ a decidable predicate on X. Whenever Algorithm 3.3.6 is evaluated
on continuous input ω and φ, it will terminate.

Proof. By contradiction we assume that the algorithm does not terminate, and
hence the algorithm defines an infinite sequence (πi)i∈N. We recursively define an
increasing sequence (mi)i∈N satisfying

∀n∀i≥mn [πi](n) = [πmn ](n) (3.5)

as follows:
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For the start, we define m0 := 0. Now, assume that mn is already defined. We
have two cases: either there is some m ≥ mn such that xn /∈ M [πm], in which case
we define mn+1 as the minimum of {m ≥ mn | xn /∈ M [πm]}, or xn ∈ M [πm] for all
m ≥ mn, in this case we set mn+1 := mn.

We prove that this construction satisfies (3.5) using induction on n. The base
case is trivial. For the step case let n be fixed. By the induction hypothesis and
mn+1 ≥ mn we have [πi](n) = [πmn+1 ](n) for all i ≥ mn+1 and so we only need
to check πi(n) = πmn+1(n) for all i ≥ mn+1. Now, in the case xn ∈ M [πi] for all
i ≥ mn = mn+1 we are done because this means that πmn+1(n) = πi(n) = ε for all
i ≥ mn+1. In the other case, if xn /∈ M [πmn+1 ] then πmn+1(n) = p ∈ G. By the
structure of the algorithm, the only way that πi(n) 6= πmn+1(n) is possible for some
i > mn+1 is if there is some mn+1 ≤ k < i with πk+1 = [πk](n

′) :: φ(πk) :: λlε for
some n′ < n. But this contradicts the induction hypothesis, namely that [πk](n) =
[πk+1](n).

We now define π∞ by π∞(n) := πmn+1(n) for all n ∈ N. Since (ω, φ) are con-
tinuous, there is L ∈ N such that for all states π with [π](L) = [π∞](L) it follows
(ω(π), φ(π)) = (ω(π∞)), φ(π∞)). We define N := max{L, ω(π∞)+1} and claim that
πm = πm+1 for m ≥ mN :

Since [π∞](L) = [πm](L) it follows

ω(πm) = ω(π∞) < N.

Since Algorithm 3.3.6 does not terminate, there is some n ≤ ω(πm) with xn ∈M [πm]
but xn /∈M [πm+1]. But by definition of N and n < N we have xn ∈M [πm]⇒ xn ∈
M [πm+1], a contradiction.

3.4 The universal Krull-Lindenbaum lemma

Motivation 3.4.1. The following section is based on the work in [145]. We show
an application of the developed algorithm: The universal Krull-Lindenbaum lemma
is used in several parts of mathematics. The most known form of it is that the
intersection of all prime ideals in a commutative ring is the nilradical. The universal
Krull-Lindenbaum lemma is also considered in [146, 152, 154, 155] and a historical
view to it can be found in [127].

First, we will generalize the notion of a prime ideal to formalize the universal
Krull-Lindenbaum lemma. Then, we will develop a computational formulation and
use Algorithm 3.3.6 to get a realiser of this computational formulation. Finally, we
will consider the instantiations of the universal Krull-Lindenbaum lemma given in
Section 4 of [145] from the computational point of view.
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Definition 3.4.2. Let a set X and a covering B on X be given. A multiplication
operator (or just operator) w.r.t. the covering B is a binary function ◦ : X×X → X
which satisfies the following condition, which is called encoding :

A, aB c and B, bB c implies A ∪B, a ◦ bB c

for all a, b, c ∈ X and A,B ∈ Pfin(X).
We say that an B-ideal I ⊆ X is prime (or a prime B-ideal)1 if it satisfies

a ◦ b ∈ I ⇒ a ∈ I ∨ b ∈ I

for all a, b ∈ X.

Theorem 3.4.3 (Universal Krull-Lindenbaum lemma). Let X be a set,
F ⊆ X and assume that reflexivity, transitivity and encoding for a covering B and
an operator ◦ on X are fulfilled. Then⋂

{P ⊆ X | F ⊆ P and P is a prime B -ideal } ⊆ 〈F 〉B

Proof. We show that for any r /∈ 〈F 〉B, there is a prime B-ideal P ⊆ X with
F ⊆ P and r /∈ P . Therefore, we fix r ∈ X \ 〈F 〉B and apply Theorem 3.1.12 with
θ(x) := (x 6= r). Then there exists some ideal M ⊇ F with r /∈ M but r ∈ 〈M,a〉B
for all a ∈ X \M . We show that this M is prime:

Suppose a, b /∈ M and so r ∈ 〈M,a〉B ∩ 〈M, b〉B. Since B is reflexive and
transitive, we apply Lemma 3.1.7 and get A′ B r and B′ B r for some finite subsets
A′ ⊆ M,a and B′ ⊆ M, b. As C B r cannot be true for all finte C ⊆ M , we get
A,B ⊆ M with A, a = A′ and B, b = B′, i.e. A, aB r and B, bB r. By encoding it
follows A ∪ B, a ◦ bB r, and hence r ∈ 〈M,a ◦ b〉B. Therefore, a ◦ b /∈ M and so M
is prime.

Example 3.4.4. The best known version of the universal Krull-Lindenbaum lemma
is the following:

The intersection of all prime ideals P in a commutative ring R containing
a fixed subset F ⊆ R is the radical ideal

√
(F ) generated by the set F .

Here X is instantiated as the commutative ring R, B is given by

{a1, . . . , ak}B x⇔ ∃x1,...,xk∈R,e∈N(a1x1 + · · ·+ akxk = xe)

and ◦ is the ring multiplication. In Section 3.5 we will give a precise definition of
AB x and prove that reflexivity, transitivity and encoding are fulfilled.

1In contrast to the ordinary definition of prime ideals in commutative rings, with our definition
the whole set X is a prime ideal. Therefore, the intersection in the Krull-Lindenbaum lemma is
always well-defined.
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3.4.1 A computational formulation of the universal Krull-
Lindenbaum lemma

Motivation 3.4.5. For some fixed r ∈ X and F ⊆ X, the assumptions of the
universal Krull-Lindenbaum lemma are

– B is a covering and ◦ is an operator on X such that reflexivity, transitivity
and encoding are fulfilled.

– r is an element of each prime ideal P with F ⊆ P .

The conclusion of the universal Krull-Lindenbaum lemma is r ∈ 〈F 〉B. Assuming
that B is a Σ0

1-covering this says that there is a finite A ⊆ F and t ∈ W such that
ABt r.

The first assumption is that reflexivity, transitivity and encoding are fulfilled.
The conclusion of each of these properties has the form ABx. Hence, we need three
functions which give a witness t with A Bt x. We will call these three functions a
“cover structure”.

The second assumption has the following equivalent formulation:

∀P⊆X .F 6⊆ P ∨ r ∈ P ∨ (P is not an B -ideal) ∨ (P is not prime).

A computational interpretation of this formula is a functional ψ which takes a subset
P ⊆ X as input and returns an evidence that at least one of the disjuncts holds.
Further the four cases in the disjunction again need witnesses. In the first case, we
need some element a ∈ F with a /∈ P . The second case does not need any witness
since it just says r ∈ P , which is decidable. The third case needs as witness some
finite A ⊆ P , t ∈ W and x ∈ X such that A Bt x but x /∈ P . The fourth case
needs some a, b, c ∈ X with a ◦ b = c ∈ P but a, b /∈ P . Putting things together, our
functional ψ(P ) returns two things: a marker which informs which case holds, and
the corresponding evidence for this. We call such a function a “Krull functional”.

In the following two definitions we formalize the discussed concepts of a cover
structure and a Krull functional.

Definition 3.4.6 (Cover structure). Let X be a set, B a Σ0
1-covering and ◦ an

operator on X. A cover structure for B and ◦ is a triple of functions (ι, τ, η) with
values in the witness type W satisfying the following properties:

– ∀x∈X({x}Bι(x) x)

– ∀A,B∈Pfin(X)∀x,y∈X∀s,t∈W (ABs x ∧B, xBt y ⇒ A ∪B Bτ(A,B,x,y,s,t) y)
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– ∀A,B∈Pfin(X)∀x,y,z∈X∀s,t∈W (A, xBs z ∧B, xBt z ⇒ A∪B, a ◦ bBη(A,B,x,y,z,s,t) z)

In particular, the existence of a cover structure implies reflexivity, transitivity and
encoding for B and ◦.

In concrete case studies, if the functions ι, τ and η only depend on some of their
arguments, we simply drop arguments that are not needed.

Definition 3.4.7 (Krull functional). Let X = {xn | n ∈ N} be countable.
Fixing a Σ0

1-covering B, an operator ◦, F ⊆ X and r ∈ X, a Krull functional
ψ : 2X → {0, 1, 2, 3} × N is a function which for any input P ∈ 2X satisfies

ψ(P ) = (0, x)⇒ x ∈ F ∧ x /∈ P
ψ(P ) = (1, 0)⇒ r ∈ P
ψ(P ) = (2, JA, t, xK)⇒ A ⊆ P ∧ ABt x ∧ x /∈ P
ψ(P ) = (3, Jx, y, zK)⇒ x ◦ y = z ∈ P ∧ x, y /∈ P.

Here Jx1, . . . , xnK ∈ N denotes some coding of x1, . . . , xn as a single natural number
and we implicitly associate elements x, y, z ∈ X with induces representing their
encoding in N. Note that W is a base type and can therefore also be embedded into
N.

Motivation 3.4.8. The computational interpretation of the universal Krull-Lin-
denbaum lemma takes a cover structure and a Krull functional as input. Our aim
is to get A ⊆ F and t ∈ W (where W is the witness type) with A Bt r by using
Algorithm 3.3.6. Hence, we will convert the cover structure and the Krull functional
to some functionals ω and φ, which we then pass to Algorithm 3.3.6. The functional
defined in the next definition is the main step.

Notation 3.4.9. If an arbitrary function h maps into a product A0 × · · · × Ak−1,
we denote h combined with the i-th projection by hi. In particular, hi maps into
Ai. If h is of the form h = f [π] for some state π then fi[π] := hi.

Definition 3.4.10. Let X = {xn | n ∈ N} be countable. For a given Σ0
1-covering

B and a given operator ◦ on X let (ι, τ, η) be a cover structure and for given F ⊆ X
and r ∈ X let ψ be a Krull functional. We define the functional gι,τ,η,ψ with input
M ⊆ X and f : dom(X \M)→ Pfin(X)×W ×X and output in Pfin(X)×W as
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follows:

gι,τ,η,ψ(M, f) :=

(∅;w0) if ψ(M) = (0, a)

({r}; ι(r)) if ψ(M) = (1, 0)(
A ∪ (f0(i) \ {xi}); τ(A, f0(i) \ {xi}, xi, r, t, f1(i))

)
if ψ(M) = (2, JA, t, xiK)(

(f0(i) \ {xi}) ∪ (f0(j) \ {xj}) ∪ {z};
η (f0(i) \ {xi}, f0(j) \ {xj}, xi, xj, z, f1(i), f1(j))

) if ψ(M) = (3, Jxi, xj, zK)

where w0 ∈ W is some canonical element.
As gι,τ,η,ψ(M, f) does not depend on the last component of f , we also use the

definition above for f : dom(X \M)→ Pfin(X)×W .

Lemma 3.4.11. In the situation of Definition 3.4.10 let M ⊆ X and f : dom(X \
M)→ Pfin(X)×W ×X be given such that F ⊆M and

xn /∈M ⇒ F ∪ [M ](n) ∪ {xn} ⊇ f0(n) Bf1(n) r ∧ xn ∈ f0(n) (3.6)

for all n. We set (A, t) := gι,τ,η,ψ(M, f). Then M ⊇ ABt r.

Proof. As ψ is a Krull functional, we use case distinction on ψ(M). First note that
ψ(M) = (0, a) is not possible due to F ⊆M . Therefore, there are three cases left:

– If ψ(M) = (1, 0) then r ∈ M and (A, t) = ({r}, ι(r)), and indeed {r} Bι(r) r
by the property of ι.

– If ψ(M) = (2, JB, s, xiK) then we have B Bs xi for some finite B ⊆ M and
xi /∈ M . By (3.6) it follows F ∪ [M ](i) ∪ {xi} ⊇ f0(i) Bf1(i) r and xi ∈ f0(i).
Using the property of τ in the definition of a cover structure, we get

(f0(i) \ {xi}) ∪B Bτ(B,f0(i)\{xi},xi,r,s,f1(i)) r,

which is ABt r. Furthermore, (f0(i) \ {xi})∪B ⊆M holds because of f0(i) ⊆
F ∪ [M ](i) ∪ {xi}, F ⊆M and B ⊆M .

– If ψ(M) = (3, Jxi, xj, zK) then xi, xj /∈ M and xi ◦ xj = z ∈ M . By (3.6) we
have F ∪ [M ](i) ∪ {xi} ⊇ f0(i) Bf1(i) r, F ∪ [M ](j) ∪ {xj} ⊇ f0(j) Bf1(j) r and
xi ∈ f0(i), xj ∈ f0(j). Therefore, by encoding

(f0(i) \ {xi}) ∪ (f0(j) \ {xj}), z Bη(f0(i)\{xi},f0(j)\{xj},xi,xj ,z,f1(i),f1(j)) r,

which is ABtr in this case. That A ⊆M holds, follows from F∪[M ](i)∪{xi} ⊇
f0(i), F ∪ [M ](j) ∪ {xj} ⊇ f0(j), F ⊆M and z ∈M .
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This finishes the proof.

Lemma 3.4.12. In the situation of Definition 3.4.10 we define the two functionals
ω and φ for all S ⊆ X and h : dom(X \ S)→ Pfin(X)×W ×X by2

ω(S, h) :=

{
max {i ∈ N | xi ∈ A \ F} if A \ F 6= ∅
−1 else,

φ(S, h) := (A, t, r) ,

where A and t are given by

(A, t) := gι,τ,η,ψF,r(S, h).

Running Algorithm 3.3.6 with these ω and φ and θ(x) := (x 6= r) we get a sequence
(πk)k. Then for each k we have F ⊆M [πk] and

xn /∈M [πk]⇒ F ∪ [M [πk]](n) ∪ {xn} ⊇ f0[πk](n) Bf1[πk](n) r ∧ xn ∈ f0[πk](n)

for all n ∈ N.

Proof. Algorithm 3.3.6 updates a state by an output of the functional φ. Therefore,
f2[πk] is constantly r for all k since φ2 is constantly r. This together with Remark
3.2.8 and θ(x) := (x 6= r) gives that

∀k∀i.xi /∈M [πk]⇒ F ∪ [M [πk]](i) ∪ {xi} ⊇ f0[πk](i) Bf1[πk](i) r (3.7)

is an instance of Lemma 3.3.7. Therefore, it remains to show for all k ∈ N,

F ⊆M [πk] and ∀i(xi /∈M [πk]⇒ xi ∈ f0[πk](i)). (3.8)

We prove both assertions by induction on k. If k = 0, we have M [π0] = X and
there is nothing to show. For the induction step we assume that k fulfils (3.8). If
the algorithm stops with end state πk, we are done. Otherwise, we have

πk+1 = [πk](n) :: (A, t, r) :: λnε

for (A, t) := gι,τ,η,ψF,r(M [πk], f [πk]) and some n ∈ N, and

ω(πk) = max{i ∈ N | xi ∈ A \ F}.
2Note that A is finite and so A \ F = ∅ is decidable, and hence ω is computable.
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We claim that n = ω(πk), where A \ F 6= ∅ as πk is not an end state.3 Proof
of the claim: If this is not the case then n < ω(πk), since Algorithm 3.3.6 only
checks up to ω(πk). But then xω(πk) /∈ F ∪ [M [πk+1]](n) ∪ {xn} and therefore A 6⊆
F ∪ [M [πk+1]](n)∪ {xn}. By the already proven formula (3.7) and f0[πk+1](n) = A,
we must have xn ∈M [πk+1]. This is a contradiction to the choice of n and therefore
n = ω(πk) is proven.

From this claim and the induction hypothesis F ⊆M [πk], it follows directly that
F ⊆M [πk+1], because xω(πk) /∈ F by definition of ω.

Finally, Let i ∈ N with xi /∈ M [πk+1] be given. Then either i = n and by
definition xi = xω(πk) ∈ A = f0[πk+1](ω(πk)), or i < n, then f0[πk+1](i) = f0[πk](i)
and xi ∈ f0[πk](i) by the induction hypothesis.

Theorem 3.4.13. Assume we are in the situation of Definition 3.4.10 and ω, φ, θ
are defined as in Lemma 3.4.12. Let πK be the end state of Algorithm 3.3.6, which
exists by Theorem 3.3.12, and gι,τ,η,ψ(M [πK ], f [πK ]) = (A, t), then F ⊇ ABt r.

Proof. By Lemma 3.4.12 we have F ⊆M [πK ] and

xn /∈M [πK ]⇒ F ∪ [M [πK ]](n) ∪ {xn} ⊇ f0[πK ](n) Bf1[πK ](n) r ∧ xn ∈ f0[πK ](n)

for all n ∈ N. Using Lemma 3.4.11 it follows M [πK ] ⊇ ABtr, and it remains to show
A ⊆ F . By Theorem 3.3.8 the end state πK is an approximate explicit maximal
object. In particular,

xn ∈M [πK ]⇒ ¬(F ∪ [M [πK ]](n) ∪ {xn} ⊇ ABt r) (3.9)

for all n ≤ ω(πK). If A 6⊆ F then ω(πK) = max{i ∈ N | xi ∈ A \ F} ∈ N and since
ABt r and xω(πK) ∈ A ⊆M [πK ] together with (3.9) it follows

A 6⊆ F ∪ [M [πK ]](ω(πK)) ∪ {xω(πK)}.

But this contradicts A ⊆M [πK ] and ω(πK) = max{i ∈ N | xi ∈ A \ F}.

Algorithm 3.4.14. Let X = {xn | n ∈ N} be countable, F ⊆ X, r ∈ X, B be a
Σ0

1-covering on X and ◦ be an operator on X. Furthermore, we assume that (ι, τ, η)
is a cover structure for B and ◦, and ψ is a Krull functional w.r.t. B, ◦, F and r.
We define a finite or infinite sequence of states (πi)i with πi : N→ U+Pfin(X)×W
as follows:

3We will use this claim also in Theorem 3.4.15.
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Start with π0 := λnε.

Given πi, compute
gι,τ,η,ψ(πi) =: (A, t).

Check if A ⊆ F .

Define πi+1 :=
[πi](n) :: (A, t) :: λkε.

Stop with end state πi.

Define n :=
max{k ∈ N | xk ∈ A \ F}.

no

yes

Here gι,τ,η,ψ(πi) := gι,τ,η,ψ(M [πi], f [πi]) is defined as in Definition 3.4.10.

Theorem 3.4.15 (Algorithmic universal Krull-Lindenbaum lemma). In
the situation of Algorithm 3.4.14, the algorithm terminates in an end state πK such
that F ⊇ ABt r for gι,τ,η,ψ(M [πK ], f [πK ]) = (A, t).

Proof. Algorithm 3.4.14 is an almost rewritten form of Algorithm 3.3.6 in the situa-
tion of Theorem 3.4.13. There are two difference: The first difference is that a state
π maps into U+Pfin(X)×W instead of U+Pfin(X)×W ×X. As we have already
observed in the proof of Lemma 3.4.12, the last component is always r, therefore
we can drop it. The second difference is that if ω(πi) ≥ 0 (i.e. A 6⊆ F ), we directly
define n := max{k | xk ∈ A \ F} =: ω(πi) and do not search for n ≤ ω(πi) with
M [πi] ⊇ A Bt r. That n = ω(πi) has this property follows by Lemma 3.4.11 and
n < ω(πi) is not possible, which can be proven similar to what we have seen in the
proof of Lemma 3.4.12. Therefore, we can directly define n := ω(πi). Putting things
together, the statement follows by Theorem 3.4.13.

Motivation 3.4.16. In the next sections we discuss several versions of the universal
Krull-Lindenbaum lemma from [145, Section 4]. Some of them also appear in [146,
Section 4.2]. In Example 3.4.4 we have already given the best known version of the
universal Krull-Lindebaum lemma.

We obtain the various versions by specifying the set X, the covering B and the
operator ◦, which we have also done in Example 3.4.4. From a computational point
of view this corresponds to the construction of a cover structure.

In each case study we first develop a special version of the universal Krull-
Lindenbaum lemma. Then we will define a covering, together with its witness type
and an operator, and finally we show that this covering is indeed a Σ0

1-covering and
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there is a computable cover structure for this covering and operator. This gives
us an algorithmic version of this specialisation of the universal Krull-Lindenbaum
lemma. At that point we do not have to define a concrete Krull functional.

The construction of a Krull functional is needed when we use such a version of
the Krull-Lindenbaum lemma to prove another statement. We will also give some
examples for this.

3.5 Case study: radical ideals in commutative rings

Motivation 3.5.1. The following theorem is the best known version of the uni-
versal Krull-Lindenbaum lemma. It is given in many algebra books like Proposition
1.8 of [12]. This version is often called Krull’s lemma. There are already many con-
structive considerations of Krull’s lemma done by Peter Schuster, Davide Rinaldi
and Daniel Wessel [146,152].

Here, we are in the setting of commutative rings and we assume that the reader
knows the fundamental definition of the theory of commutative rings. Hence, we
start directly by formulating the theorem and give a classical proof:

Theorem 3.5.2. Let R be a commutative ring and F ⊆ R, then⋂
{P ⊆ R | F ⊆ P and P is a prime ideal} ⊆

√
(F ).

Here “P is a prime ideal” is meant in the sense of commutative rings, with the
exception that R itself shall be a prime ideal, and furthermore

√
(F ) is the radical

ideal generated by F .

Proof. This is a special case of Theorem 3.4.3: The covering B is given by AB x as
x ∈

√
(A) and ◦ as the ring multiplication. That reflexivity holds is trivial.

For transitivity let x ∈
√

(A, y) and y ∈
√

(B) be given. Then there are e1, e2 ∈
N and r0, . . . , rn, r

′
1, . . . , r

′
m ∈ R, a1, . . . , an ∈ A and b1, . . . , bm ∈ B with

xe1 = r0y + r1a1 + · · ·+ rnan and ye2 = r′1b1 + · · ·+ r′mbm.

It follows xe1e2 = re20 y
e2 +α, where α is a linear combination of the a1, . . . , an. Using

ye2 = r′1b1+· · ·+r′mbm we get that xe1e2 is a linear combination of a1, . . . , an, b1, . . . , bm,
and hence x ∈

√
(A ∪B).

For encoding, we assume z ∈
√

(A, x) ∩
√

(B, y). Then there is e1, e2 ∈ N
and r0, . . . , rn, r

′
0, . . . , r

′
m ∈ R, a1, . . . , an ∈ A and b1, . . . , bm ∈ B such that ze1 =
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r0x+ r1a1 + · · ·+ rnan and ze2 = r′0y + r′1b1 + · · ·+ r′mbm. Therefore, it follows

ze1+e2 =(r0x+ r1a1 + · · ·+ rnan)(r′0y + r′1b1 + · · ·+ r′mbm)

=(r0x+ r1a1 + · · ·+ rnan)(r′1b1 + · · ·+ r′mbm)

+ (r1a1 + · · ·+ rnan)r′0y + r0r
′
0xy,

and thus ze1+e2 is a linear combination of the a1, . . . , an and b1, . . . , bm and xy and
hence z ∈

√
(A ∪B, xy).

Motivation 3.5.3. We will now use the proof as an inspiration to get a cover
structure and thereby a computational version of the theorem above.

Definition 3.5.4. Let R be a countable commutative ring whose ring operators
can be represented by computable functions.

In this section we define the witness type W by

W := R∗ ×R∗ × N.

To make it clear, we write ~a,~b for lists in R∗, components of a list ~a will be denoted
by ai, and |~a| denotes the length of ~a. In particular, ~a = [a0, . . . , a|~a|−1]. We define
the covering B by

AB(~a,~p,e) x :⇔ (|~a| = |~p| ∧ ~a ∈ A∗ ∧ ~p · ~a = xe) ,

where ~p · ~a :=
∑|~a|−1

i=0 piai (with pi := 0 for i ≥ |~p|). Furthermore, we define the
operator ◦ as the ring multiplication in R.

Definition 3.5.5. Let x ∈ R and ~a, ~p ∈ R∗. We define a computable function
σ(x,~a, ~p) as follows:

Let ~b ∈ R∗ be the list which is build from the list ~a by removing exactly those
components which are equal to x. Let ~q be the list which is build from ~p by removing
all the components which have been removed in ~a to get ~b, i.e. if we have removed
the n-th component from ~a to get ~b, we now remove the n-th component from ~p to
get ~q. Furthermore, let s be the sum of all components which are removed from ~p
to get ~q. Then ~p · ~a = ~q ·~b+ sx and we define

σ(x,~a, ~p) := (~b, ~q, s).

Lemma 3.5.6. In the situation of Definition 3.5.4, the relation B is a Σ0
1-covering

and has together with ◦ a computable cover structure (ι, τ, η).
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Proof. It is obvious that W is a base type and therefore B is a Σ0
1-covering. To show

the existence of a computable cover structure, we deal with each property in turn:

– Since x1X = x1 we have {x}Bι(x) x for ι(x) = ([x], [1X ], 1).4

– Assume AB(~a,~p,e1)x and B, aB~b,~q,e2 y and let (~b′, ~q′, s) := σ(x,~b, ~p), in particular

~a ∈ A∗ and ~b′ ∈ B∗. We define n = |~a|, m = |~b′|, q′m := s and b′m := x, then

n−1∑
i=0

piai = xe1 and
m∑
i=0

q′ib
′
i = ye2 .

Using the multinomial theorem and multinomial coefficients we get

ye1e2 =

(
m∑
i=0

q′ib
′
i

)e1

=
∑

k0+···+km=e1

(
e1

k0, . . . , km

) m∏
i=0

b′
ki
i q
′ki
i

=
m∑
j=0

∑
kj+···+km=e1

kj 6=0
k0=···=kj−1=0

(
e1

k0, . . . , km

) m∏
i=j

b′
ki
i q
′ki
i

=
m−1∑
j=0


∑

kj+···+km=e1
kj 6=0

k0=···=kj−1=0

(
e1

k0, . . . , km

)
b′
kj−1
j q′

kj
j

m∏
i=j+1

b′
ki
i q
′ki
i

 b′j + xe1se1

=
m−1∑
j=0


∑

kj+···+km=e1
kj 6=0

k0=···=kj−1=0

(
e1

k0, . . . , km

)
b′
kj−1
j q′

kj
j

m∏
i=j+1

b′
ki
i q
′ki
i

 b′j +
n−1∑
i=0

pis
e1ai

Therefore, we set

τ(x, (~a, ~p, e1), (~b, ~q, e2)) := (~a :: ~b′, ~l1 :: ~l2, e1e2),

4Here 1X denotes the unit element in X.
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where

~l1 := (pis
e1)i<|~a|

~l2 :=


∑

kj+···+k|~b′|=e1
kj 6=0

k0=···=kj−1=0

(
e1

k0, . . . , k|~b′|

)
b′
kj−1
j q′

kj
j

|~b′|∏
i=j+1

b′
ki
i q
′ki
i


j<|~b′|

(~b′, ~q′, q′|~b′|) := σ(x,~b, ~p) and b′|~b′| := x.

– Assume that A, xB(~a,~p,e1)z and B, yB(~b,~q,e2)z. We define (~a′, ~p′, s1) := σ(x,~a, ~p)

and (~b′, ~q′, s2) := σ(y,~b, ~q). Defining n := |~a′| and m := |~b′|, we have

n−1∑
i=0

p′ia
′
i + s1x = ze1 and

m−1∑
i=0

q′ib
′
i + s2y = ze2 .

Therefore, it follows

ze1+e2 =

(
n−1∑
i=0

p′ia
′
i + s1x

)(
m−1∑
j=0

q′jb
′
j + s2y

)

=
n−1∑
i=0

p′i

(
m−1∑
j=0

q′jb
′
j + s2y

)
a′i +

m−1∑
i=0

q′is1xb
′
i + s1s2xy.

Hence, we set

η(x, y, (~a, ~p, e1), (~b, ~q, e2)) = (~a′ :: ~b′ :: xy, ~l1 :: ~l2 :: s1s2, e1 + e2),

where

(~a′, ~p′, s1) := σ(x,~a, ~p)

(~b′, ~q′, s2) := σ(y,~b, ~q)

~l1 :=

|b′|−1∑
j=0

p′iq
′
jb
′
j + p′is2y


i<|~a′|

~l2 := (q′is1x)i<|~b′| .
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This finishes the proof.

Corollary 3.5.7. Assume we are in the situation of Definition 3.5.4. Furthermore,
suppose that for any F ⊆ X and r ∈ X there is a computable Krull functional
ψ w.r.t. B and ◦. Then instantiating Algorithm 3.4.14 on the cover structure of
Lemma 3.5.6 and the Krull functional ψ, the algorithm terminates in some state πk.
Let gι,τ,η,ψ(πk) = (A, (l, e)) then A ⊆ F , |A| = |l| and A · l = re.

Proof. Follows directly from Theorem 3.4.15 and Lemma 3.5.6.

3.5.1 Nilpotent coefficients of invertible polynomials

Motivation 3.5.8. The first example is very typical and was already studied
in [133,144,152] and more subtly in [184]. We first give the classical proof following
[152], then we show how this proof can be converted into an algorithm describing a
Krull functional.

Proposition 3.5.9. Let R be a commutative ring and f =
∑n

i=0 aiX
i be an unit

in R[X]. Then each ai with i > 0 is nilpotent.

Proof. Let g =
∑m

j=0 bjX
j be the inverse of f , in particular 1 = fg =

∑n+m
k=0 ckX

k

for ck =
∑

i+j=k ajbk−j. Fixing some i > 0, our goal is to show that ai is nilpotent.
By using Theorem 3.5.2 with F = ∅, we show that r := ai ∈ P for each prime ideal
P ⊆ R (which are also prime B-ideals). Hence, we assume that ai /∈ P for some
fixed prime ideal P . Our goal is a contradiction.

We have 0 = ci =
∑i−1

j=0 ajbi−j + aib0. Since 1 = c0 = b0a0, we get

ai = −a0

i−1∑
j=0

ajbi−j. (3.10)

As P is a prime ideal and ai /∈ P , there must be 1 ≤ j ≤ i with bj /∈ P . Therefore,
we may take 1 ≤ k ≤ n and 1 ≤ l ≤ m maximal such that ak, bl /∈ P and consider

0 = ck+l = akbl +
∑

p+q=k+l
p>k

apbq +
∑

p+q=k+l
q>l

apbq. (3.11)

Since P is a prime ideal and ak, bl /∈ P , we have akbl /∈ P . But, by the choice of k
and l, we have ap ∈ P for all p > k and bq ∈ P for all q > l, and therefore

akbl =
∑

p+q=k+l
p>k

(−ap)bq +
∑

p+q=k+l
q>l

(−ap)bq ∈ P, (3.12)

a contradiction.
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Algorithm 3.5.10. Let R be a countable ring whose ring operations can be
represented by computable functions. Let furthermore f =

∑n
i=0 aiX

i ∈ R[X] and
g =

∑m
j=0 bjX

j ∈ R[X] with fg =
∑n+m

k=0 ck = 1 be given. For given ai with i > 0, we

define a function ψ with takes any P ∈ 2R and returns an element in {0, 1, 2, 3}×N.
For simplicity, we use the countability of R to consider an element x in R as an
element in N.

1. Check if 0R ∈ P . If not, return (2, J∅, ([], [], 1), 0K).

2. Check if ai ∈ P . If not, return (1, 0).

3. Check if b1, . . . , bi ∈ P . If yes, return

(2, J{b1, . . . , bi}, ([b1, . . . , bi], [ai−1, . . . , a0], ai), 1K)

4. Otherwise, take k, l maximal with ak /∈ P and bl /∈ P , and check if akbl ∈ P .
If yes, return (3, Jak, bl, akblK).

5. Else, return(
2, J{~d}, ([~d], [−bl−1, . . . ,−b0,−ak−1, . . . ,−a0], 1), akblK

)
,

where ~d is a syntactical abbreviation for ak+1, . . . , ak+l, bl+1, . . . , bl+k.

Lemma 3.5.11. In the situation of Algorithm 3.5.10 and B and ◦ are given as in
Definition 3.5.4, the defined function ψ is a Krull functional for ai ∈ R and ∅ ⊆ R.

Proof. This is a straightforward case distinction, checking the definition of a Krull
functional and following the second part of the proof of Proposition 3.5.9. The first
and the second case are clear. For the first case, note that the empty sum is equal
to zero by definition. For the third case note that (analogously to the proof of
Proposition 3.5.9) we get (3.10) and so if b1, . . . , bi ∈ P but (by the second case)
ai /∈ P , P is not a prime ideal and the output in this case indeed gives the concrete
evidence. The fourth case follows directly since ak, bl /∈ P and akbl ∈ P are evidence
that P is not prime. The fifth case corresponds to the Formula 3.12 in the proof
of Proposition 3.5.9. Note that ak+1, . . . , ak+l, bl+1, . . . , bl+k ∈ P by maximality of k
and l.

Corollary 3.5.12. Let R be a countable commutative ring. Suppose that f =∑n
i=0 aiX

i ∈ R[X] has an inverse g =
∑m

i=0 biX
i ∈ R[X] and take i > 0. Let Algo-

rithm 3.4.14 be instantiated on the cover structure (ι, τ, η) from Lemma 3.5.6 and
the Krull functional ψ defined in Algorithm 3.5.10. Then the algorithm terminates
in some state πK and for gι,τ,η,ψ(πK) = (∅, ([], [], e)) and aei = 0R.
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Proof. This follows directly by Corollary 3.5.7 and Lemma 3.5.11.

Remark 3.5.13. In the corollary above, if R is an arbitrary (not necessarily
countable) ring, we can consider the ring which is generated by a1, . . . , an, b1, . . . , bm.
Therefore, we can apply the corollary above to this ring if it is countable, which is
at least true in classical logic. Hence, countability is not a major restriction.

3.5.2 The theorem of Gauß-Joyal

Motivation 3.5.14. We consider a second construction, this time arising from
the following result, commonly called the Gauss-Joyal theorem. The constructive
meaning of it was already considered in many papers like [8, 14, 43, 45, 71, 121]. We
proceed similarly to the last section.

Proposition 3.5.15 (Theorem of Gauß-Joyal). Let R be a commutative
ring and f =

∑n
i=0 aiX

i and g =
∑m

i=0 biX
i two polynomials in R[X] with fg =∑n+m

i=0 ciX
i. Then

aibj ∈
√

(c0, . . . , ci+j)

for all i ∈ {0, . . . , n} and j = {0, . . . ,m}.

Proof. Let i ∈ {0, . . . , n} and j = {0, . . . ,m} be given and define F := {c0, . . . , ci+j}.
Using Theorem 3.5.2 we show that aibj ∈ P for each prime ideal P with F ⊆ P .
Therefore, we assume aibj /∈ P for such P . Since P is prime and aibj /∈ P , we get
ai, bj /∈ P , and hence we define k, l to be minimal such that ak, bl /∈ P . Then also
akbl /∈ P since P is prime. We have

ck+l =
∑

i+j=k+l

aibj = akbl +
∑

i+j=k+l
i<k

aibj +
∑

i+j=k+l
j<l

aibj (3.13)

and k+ l ≤ i+ j and so ck+l ∈ F . Therefore, by minimality k, l we have that ai ∈ P
for i < k and bj ∈ P for j < l. By (3.13) it follows akbl ∈ P , a contradiction.

Algorithm 3.5.16. Let R be a countable commutative ring. Suppose that f =∑n
i=0 aiX

i and g =
∑m

i=0 biX
i are polynomials and fg =

∑n+m
i=0 ciX

i. Furthermore,
let i ∈ {0, . . . , n} and j ∈ {0, . . . ,m} be given. We define a function ψ which takes
P ∈ 2R and returns an element in {0, 1, 2, 3} × N. As before, for simplicity we use
the countability of R to consider an element in R as an element in N.

1. Check if ck /∈ P for some k ∈ {0, . . . , i+ j}. If yes, return (0, ck).
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2. Check if aibj ∈ P . If yes, return (1, 0).

3. Check if either ai ∈ P or bj ∈ P . If yes, return (2, [{ai}, ([ai], [bj], 1), aibj]) or
(2, [{bj}, ([bj], [ai], 1), aibj]), respectively.

4. Compute k, l minimal with ak, bl /∈ P and check if akbl ∈ P . If yes, return
(3, [ak, bl, akbl]).

5. Else, return (2, [{~d}, ([~d], [1S,−bk+l, . . . ,−bl+1,−ak+1, . . . ,−ak+l], 1), akbl]) where
~d is a syntactical abbreviation for ck+l, a0, . . . , ak−1, bl−1, . . . , b0.

Lemma 3.5.17. In the situation of Algorithm 3.5.16 and B, ◦ given as in Definition
3.5.4, the defined function ψ is a Krull functional for ai ∈ R and F = {c0, . . . , ci+j}.

Proof. This follows straightforward by using case distinction and the definition of
a Krull functional. The first four cases are clear and for the last case note that
{ck+l, a0, . . . , ak−1, bl−1, . . . , b0} ⊆ P follows by minimality of k and l and the fact
that k+l ≤ i+j and the failure of the first case. Note that the fifth case corresponds
to Formula (3.13) in the proof of Proposition 3.5.9.

Corollary 3.5.18 (Algorithmic version of the theorem of Gauß-Joyal). Let
R be a countable commutative ring and let f =

∑n
i=0 aiX

i and g =
∑m

i=0 biX
i

in R[X] with fg =
∑n+m

i=0 ciX
i be given and assume 0 ≤ i ≤ n and 0 ≤ j ≤

m. Suppose that Algorithm 3.4.14 is instantiated on the cover structure (ι, τ, η)
from Lemma 3.5.6 and the Krull functional defined in Algorithm 3.5.16. Then the
algorithm terminates in some state πK and for gι,τ,η,ψ(πK) = (A, (~a, ~p, e)) we have
{~a} ⊆ A ⊆ {c0, . . . , ci+j} and ~a · ~p = (aibj)

e

Proof. Follows by Corollary 3.5.7 and Lemma 3.5.17.

Remark 3.5.19. Similar to the remark after Corollary 3.5.12, it suffices to consider
the ring which is generated by a1, . . . , an, b1, . . . , bm, and apply the corollary above
to this ring. Therefore, the assumption that R is countable can be reduced to the
assumption that the generated ring is countable.

3.6 Case study: valuation rings and integral clo-

sures

Motivation 3.6.1. The next example is a well-known statement of commutative
algebra. It was considered constructively in [56] and [112], which we mainly use as
source of this section.
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Definition 3.6.2. Let a ring K and a subring R ⊆ K be given. An element x ∈ K
is called integral over R if there is n ∈ N and a0, . . . , an−1 ∈ R with

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

In other word: there is a monic polynomial p ∈ R[X] such that p(x) = 0.
The integral closure of the ring R w.r.t. the field K is the set of all x ∈ K which

are integral over R and is denoted by R. If R = R, we say the R is integrally closed.

Lemma 3.6.3. Let a ring K and a subring R ⊆ K be given. The integral closure
of R is a subring of K.

Proof. Corollary 5.3 of [12].

Definition 3.6.4. Let K be a field. A subring R ⊆ K is called a valuation ring if
for each x ∈ K \ {0} either x ∈ R or x−1 ∈ R.

Lemma 3.6.5. Let K be a field and R ⊆ K be a valuation ring of K. Then R is
integrally closed.

Proof. Let x ∈ K be integral over R. Then there are n ∈ N and an−1, . . . , a0 ∈ R
with

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

If x = 0, we directly have x ∈ R. Hence, we assume x 6= 0, and therefore n ≥ 1.
Since R is a valuation ring, either x ∈ R or x−1 ∈ R. In the first case we are done.
In the second case we multiply the equation above with x−(n−1) and compute

x = −an−1 − · · ·+ a1x
−n+2 − a0x

−n+1 ∈ R.

Theorem 3.6.6. Let K be a field, R ⊆ K be a subring, then⋂
{S ⊆ K | R ⊆ S and S is a valuation ring of K} ⊆ R.

Proof. We use Theorem 3.4.3 with B and ◦ defined as follows: ABx iff x is integral
over R[A], and x◦y := xy. It remains to show reflexivity, transitivity and encoding.
The proofs of the three properties are quite similar to the proof of Lemma 3.6.12.
Hence, we do not give details here.

Notation 3.6.7. Let R be any ring, ~x ∈ K∗ and I ∈ N be given with |I| = |~x| =: n.

We set ~xI := xI00 . . . x
In−1

n−1 and ‖I‖ := max{I0, . . . , In−1}.
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Definition 3.6.8. Let K be a countable field whose field operators are computable
and let E ⊆ K be a subring of K. We define the witness type by

W := K∗ × (N× EN∗)∗

and the covering by

AB~a,((n0,f0),...,(nl−1,fl−1)) x :⇔ ~a ∈ A∗ ∧ xl +
l−1∑
i=0

xi
∑
I∈N∗
|I|=|~a|
‖I‖≤ni

fi,I~a
I = 0

Furthermore, we define the operator ◦ as the multiplication in K

Remark 3.6.9. The definition above is very formal. For simplicity, given

~a, [(n0, f0), . . . , (nl−1, fl−1)] ∈ K × (N× EN∗)∗,

we consider the list [(n0, f0), . . . , (nl−1, fl−1)] as a monic polynomial p ∈ E[~a][X] by

p := X l +
l−1∑
i=0

X i
∑
I∈N∗
|I|=|~a|
‖I‖≤ni

fi,I~a
I .

Hence, we write AB~a,p x if ~a ∈ A∗, p ∈ E[~a][X], p is monic and p(x) = 0. Note that
the arithmetic operations on E[~a][X] can be coded as operations on (N× EN∗)∗.

Proposition 3.6.10. Assume we are in the situation of Definition 3.6.8 and let
U ⊆ K be any set, then 〈U〉B = E[U ]. In particular, the B-ideals are exactly the
integrally closed subrings of K which contain E. Furthermore, the prime B-ideals
are exactly the valuation rings of K which contain E.

Proof. We have x ∈ E[U ] if and only if there are a0, . . . , an−1 ∈ E[U ] such that
xn + an−1x

n−1 + · · ·+ a1x− a0 = 0. Since ri ∈ E[U ] for each i, there are ui1, . . . , uiki
and f ∈ E[X1, . . . , Xki ] with ai = f(ui1, . . . , uiki). Therefore, we have ai ∈ E[A] for

A := {uij | i ∈ {0, . . . , n− 1}, j ∈ {1, . . . , ki}}.

Hence, we conclude x ∈ E[U ] if and only if x ∈ E[A] for some finite A ⊆ U ,
i.e. a ∈ 〈U〉B.

It remains to show that the valuation rings are exactly the prime B-ideals. By
Lemma 3.6.5 and the first part of this lemma, it follows that a valuation ring is a
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B-ideal. Therefore, it suffices to show that a B-ideal P ⊆ K is a valuation ring
if and only if it fulfils the prime property. Assume that P is a valuation ring and
let a, b ∈ K with a ◦ b = ab ∈ K be given. If a /∈ P then a 6= 0 and a−1 ∈ P .
Since P is a subring of K, it follows b = aba−1 ∈ P . Hence, a ∈ P or b ∈ P . That
each prime B-ideal P is a valuation follows directly by 1 ∈ P and 1 = aa−1 for all
a ∈ K \ {0}.

Notation 3.6.11. Let ~a be any list and S be any set. With ~a \ S we denote the
list which is computed from ~a by removing each component which is in S. Formally,
we set

[] \ S := [],

(~a :: y) \ S :=

{
~a \ S if y ∈ S
(~a \ S) :: y else.

Lemma 3.6.12. Assume we are in the situation of Definition 3.6.8, then the
relation B is a Σ0

1-covering, and together with the operator ◦ it has a computable
cover structure (ι, τ, η).

Proof. Since W in Definition 3.6.8 is a base type, B is indeed a Σ0
1-covering. For the

proof that there exists a computable cover structure, we deal with each property in
turn and we use the simplification from Remark 3.6.9.

– We obviously have {x} B[x],p x for p = X − x ∈ E[x]. Hence, we define
ι(x) := ([x], X − x).

– Let AB~a,p x and B, xB~b,q y be given. We define n := deg(p) and m := deg(q).
Then we have

p(x) = xn + pn−1x
n−1 + · · ·+ p1x+ p0 = 0,

where each pi ∈ E[~a]. Let ~b′ := ~b \ {x}, from q we can compute some l ∈ N
and q0, . . . , ql ∈ E[~b′][X] with deg(qi) < m for all i such that

P2(x) := ql(y)xl + · · ·+ q1(y)x+ ym + q0(y) = 0,

where P2 ∈ E[~b′, y][X] is a polynomial with deg(P2) = l (i.e. we choose l such
that ql(y) 6= 0). Then the resultant res(p, P2) = 0 because p and P2 have the
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common zero x (Follows from [32, Satz 6 on page 175]). As defined in [32],
the resultant is the determinant of the Sylvester matrix:

1 pn−1 . . . p0 0
. . . . . . . . .

0 1 pn−1 . . . p0

ql(y) . . . q1(y) ym + q0(y) 0
. . . . . . . . .

0 ql(y) ql−1(y) . . . ym + q0(y)



 l rows

n rows

Considering the resultant as a polynomial in y, we obtain a polynomial Q ∈
E[~a,~b′][X] with Q(y) = 0. To see that this polynomial is monic, observe that
each non-zero summand of the determinant of the Sylvester matrix selects
l elements from {1, pn−1, . . . , p0} and n elements from {ql(y), . . . , q1(y), ym +
q0(y)}. The pi are constant in y and the degree of the qi is smaller then m. So
each non-zero summand has degree smaller than mn, except for the product
of the diagonal entries which is given by 1l(ym + q0(y))n. Since deg(q0) < m,
this is a monic polynomial in y, and therefore Q is monic. Hence,

τ(A,B, (~a, p), (~b, q), x, y) := (~a :: (~b \ {x}), Q)

for Q given as above.

– Suppose that A, x B~a,p z and B, y B~b,q z. We set ~a′ := ~a \ {x} , ~b′ := ~b \ {y},
n := deg(p) and m := deg(q). Hence, from p we can compute some k ∈ N and
p0, . . . , pk ∈ E[~a′][X] such that

pk(z)xk + · · ·+ p1(z)x+ zn + p0(z) = 0

and deg(pi) < n for all i. Similarly, from q we can compute some l ∈ N and

q0, . . . , ql ∈ E[~b′] such that

P2(y) := ql(z)yl + · · ·+ q1(z)y + zn + q0(z) = 0

Now, we multiply the first equation with yk and define pi(z) := pi(z)(xy)i for
i ∈ {1, . . . , k}, where pi ∈ E[~a′, xy][X] with deg(pi) < n, to obtain

P1(y) := (zn + p0(z))yk + p1(z)yk−1 + · · ·+ pk−1(z)y + pk(z) = 0.

Since P1(y) = P2(y) = 0, the resultant res(P1, P2) ∈ E[~a′,~b′, xy][z] is equal to

zero. From this resultant we can compute a polynomial Q ∈ E[~a′,~b′, xy][X]
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with Q(z) = 0. It remains to show that Q is monic: the Sylvester matrix is
given by

zn + p0(z) p1(z) . . . pk(z) 0
. . . . . . . . .

0 zn + p0(z) p1(z) . . . pk(z)
ql(z) . . . q1(z) zm + q0(z) 0

. . . . . . . . .

0 ql(z) . . . q1(z) zm + q0(z)


Each non-zero summand of the determinant of this matrix involves the mul-
tiplication of l elements in {zn + p0(z), p1(z), . . . , pk(z)} and k elements in
{ql(z), . . . , q1(z), zm + q0(z)}, and thus the degree in z for each summand is
bounded by nl + mk. But since deg(pi) < n and deg(qj) < m for all i and
j, this degree is actually smaller than nl + mk, except for the product of the
diagonal entries which is given by

(zn + p0(z))l(zm + q0(z))k.

This is monic because deg(p0) < n and deg(q0) < m. Therefore, we define

η(A,B, x, y, z, (~a, p), (~b, q)) := ((~a \ {x}) :: (~b \ {y}), Q),

where Q is given as above.

This finishes the proof.

Corollary 3.6.13. Assume we are in the situation of Definition 3.6.8 and suppose
that for F ⊆ K and r ∈ K we have a Krull functional ψ w.r.t. B and ◦. Then
instantiating Algorithm 3.4.14 on the cover structure of Lemma 3.6.12 and the Krull
functional ψ, the algorithm terminates in some state πk. Let gι,τ,η,ψ(πk) = (A, (~a, p)),
then A ⊆ F , ~a ∈ A∗, p can be seen as monic polynomial in E[~a][X] and p(x) = 0.

Proof. Follows directly from Theorem 3.4.15 and Lemma 3.6.12.

3.6.1 Kronecker’s theorem

Motivation 3.6.14. In this section we show how we can derive a Krull functional
from a proof of Kronecker’s theorem, which can classically be proven by using The-
orem 3.6.6. We first give a lemma and then the proof of Kronecker’s theorem, where



3.6. CASE STUDY: VALUATION RINGS AND INTEGRAL CLOSURES 63

we follow the proofs given in [56,112]. Kronecker’s theorem and Dedekind’s Prague
theorem, which is a special case, are also considered constructively in [68, 110]. We
use the classical proof as starting point to define a computable Krull functional in
three steps. Hence, at the end we will get an algorithmic version of Kronecker’s
theorem.

The names “Kronecker’s theorem” and “Dedekind’s Prague theorem” have dif-
ferent meanings in the literature. We use the same names as in the sources above,
i.e. Kronecker’s theorem is the statement in Proposition 3.6.16, and Dedekind’s
Prague theorem is the special case of Kronecker’s theorem where E := Z and K is
the algebraic closure of Q.

Lemma 3.6.15. Let a field K and a valuation ring P of K be given. Then for any
u1, . . . , un ∈ K with (u1 + · · ·+ un)−1 ∈ P there exists at least one i with u−1

i ∈ P .5

Proof. We use induction over n: for n = 0 we have by definition u1 + · · · + un = 0
and therefore the premise is always false. For the induction step suppose that
w := (u1 + · · ·+un+1)−1 ∈ P . If un+1 = 0, we are done by the induction hypothesis.
Otherwise, un+1 is invertible and we have (u1 + · · ·+ un)w + un+1w = 1 and thus

u−1
n+1w

−1 = u−1
n+1v + 1,

where v := u1 + · · · + un. If v = 0, we directly have u−1
n+1 = w ∈ P . If v 6= 0 then

v−1w−1 − 1 = v−1un+1, and thus

(v−1w−1 − 1)(u−1
n+1w

−1 − 1) = v−1w−1 − v−1un+1 = 1 ∈ P.

Since P is a valuation ring, either (v−1w−1 − 1) ∈ P , and thus v−1 ∈ P , and we are
done by the induction hypothesis, or (u−1

n+1w
−1 − 1) ∈ P and thus un+1 ∈ P .

Proposition 3.6.16 (Kronecker’s Theorem). Let E be a subring of a field K
and a0, . . . , am, b0, . . . , bn ∈ K \{0} and ck :=

∑
i+j=k aibj. Then aibj is integral over

E[c1, . . . , cm+n] for any i, j.

Proof. Let akbl be given. We use Theorem 3.6.6 with R = E[c0, . . . , cm+n]. There-
fore, it suffices to show that akbl ∈ P for any valuation ring of K which contains E
and c0, . . . , cn+m. We define the relation ≤P on K \ {0} by

x ≤P y :⇔ x−1y ∈ P.
5When we use the inverse of some element x, we implicitly assume that x is invertible. In

particular, we write x−1 ∈ P as an abbreviation for x 6= 0 ∧ x−1 ∈ P .
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Since P is a subring, the relation ≤P is reflexive and transitive, i.e. a preorder. It
is even a total preorder, i.e. x ≤ y or y ≤ x for all x, y ∈ K \ {0}, because P is a
valuation ring and therefore either x−1y ∈ P or xy−1 ∈ P for all x, y ∈ K \ {0}.

Using reflexivity, transitivity and totality, it follows that there are i0 and j0 with
ai0 ≤P ai and bj0 ≤P bj for all i, j. We take i0 and j0 maximal with this property.
As x ≤P y and x′ ≤P y′ imply xx′ ≤P yy′, we have ai0bj0 ≤ akbl. As akbl ∈ P
follows from ai0bj0 ∈ P , it suffices to show ai0bj0 ∈ P : By the definition of ci0+j0 we
have

ai0bj0 = ci0+j0 −
∑

i+j=i0+j0
i 6=i0

aibj.

Since ai0bj0 6= 0, it follows

ci0+j0a
−1
i0
b−1
j0
−

∑
i+j=i0+j0

i>i0

aibja
−1
i0
b−1
j0
−

∑
i+j=i0+j0

j>j0

aibja
−1
i0
b−1
j0

= 1

In particular, also the inverse of the sum above is equal 1, and therefore in P . By
Lemma 3.6.15 we have three cases:

– If c−1
i0+j0

ai0bj0 ∈ P then ai0bj0 ∈ P and we are done.

– If a−1
i b−1

j ai0bj0 ∈ P for some i > i0 then by bj0 ≤P bj we have ai ≤P ai0 but
this is not possible by the maximality of i0 and the transitivity of ≤P .

– If a−1
i b−1

j ai0bj0 ∈ P for some j > j0 then by ai0 ≤P ai we have bj ≤P bj0 but
this is not possible by the maximality of j0 and the transitivity of ≤P .

This finishes the proof.

Definition 3.6.17. In the situation of Definition 3.4.7, where a Krull functional
is defined, a partial Krull functional has the same properties as a Krull functional
with the exception that it is defined on a subset of 2X .

Algorithm 3.6.18. Let a countable field K and [u1, . . . , un] ∈ K∗ be given. We
define a function φ1

[u1,...,un](P ) on all P ∈ 2K with 1 ∈ P , (u1 + · · ·+ un)−1 ∈ P and

u−1
i /∈ P for all i as follows by recursion:

1. If un = 0, return φ1
[u1,...,un−1](P ).

2. Define w := (u1 + · · · + un)−1 and v = u1 + · · · + un−1 and note that v 6= 0
because otherwise P 3 w = u−1

n /∈ P . Hence, check if u−1
n w−1 − 1 ∈ P. If yes,

return

(2, J{u−1
n w−1 − 1, w}, ([u−1

n w−1 − 1, w], X − (u−1
n w−1 − 1)w − w), u−1

n K).
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3. Check if v−1w−1 − 1 ∈ P . If yes, consider two cases:

(a) If v−1 /∈ P , return

(2, J{v−1w−1 − 1, w}, ([v−1w−1 − 1, w], X − (v−1w−1 − 1)w − w), v−1K).

(b) If v−1 ∈ P , return φ1
[u1,...,un−1](P ).

4. Else, return (3, Jv−1w−1 − 1, u−1
n w−1 − 1, 1K).

Lemma 3.6.19. In the situation of Algorithm 3.6.18, the function φ1
[u1,...,un] is a

partial Krull functional (w.r.t. any F ⊆ K and r ∈ K) defined on all P with 1 ∈ P ,
(u1 + · · ·+ un)−1 ∈ P and u−1

i /∈ P for all i.

Proof. The proof is done by induction over n and checking each case in the algorithm.
Let P be given and assume 1 ∈ P , (u1 + · · · + un)−1 ∈ P and ui /∈ P for all i. We
have to check that φ1

[u1,...,un](P ) fulfils the properties in Definition 3.4.7. By Step
1 and the induction hypothesis, we may assume un 6= 0. As mentioned in Step 2
we can assume that n ≥ 2 since if n = 1, we would have v = 0, and n = 0 is not
possible because u1 + · · ·+ un is invertible by assumption. If u−1

n w−1 − 1 ∈ P then
{u−1

n w−1− 1, w} ⊆ P and X − (u−1
n w−1− 1)w+w = X − u−1

n and so the out put is
justified. Analogously, the output in Case 3a is justified. In Step 3b we can directly
use the induction hypothesis. Finally, in Step 4 we have

(u−1
n w−1 − 1)(u−1w−1 − 1) = 1

as in the proof of Lemma 3.6.15 and 1 ∈ P by assumption. But, by the failure of
Step 2 and 3, none of the factors are in P . Therefore, in this case φ1

[u1,...,un] also
fulfils the property of a partial Krull functional.

Definition 3.6.20. Let K be a countable field. For given P ⊆ 2K we define the
binary relation ≤P on K \ {0} by x ≤P y :⇔ x−1y ∈ P .

Algorithm 3.6.21. Let K be a countable field and [u1, . . . , un] ∈ (K \ {0})∗. We
define the function φ2

[u1,...,un](P ) ∈ {0, 1, 2, 3} ×N for all P ⊆ K with 1 ∈ P and the
property ∀i∃jui 6≤P uj:

1. Search for some i ≤ n such that ui ≤P uj for all j < n. If such an i does not
exists, return φ2

[u1,...,un−1](P ). Otherwise, fix this i.

2. Check if un 6≤P ui. If yes, return (3, Juiu−1
n , unu

−1
i , 1K).
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3. Else, take k with un 6≤P uk and return

(2, J{uiu−1
n , uku

−1
i }, ([uiu−1

n , uku
−1
i ], X − uku−1

i uiu
−1
n ), uku

−1
n K)

Lemma 3.6.22. Assume we are in the situation of Algorithm 3.6.21, then the
function φ2

[u1,...,un] is a partial Krull functional (w.r.t. any F ⊆ K and r ∈ K)
defined on all P with 1 ∈ P and ∀i≤n∃j≤nui 6≤P uj.

Proof. Let u1, . . . , un and P be given as above. We show that the property of a Krull
functional for P is fulfilled. The proof is done by induction over n and following the
steps of Algorithm 3.6.21. If the property of Step 1 is fulfilled, we directly use the
induction hypothesis. Note that P is in the domain of φ2

[u1,...,un−1] by Step 1. For
the next steps let i be given with ui ≤P uj for all j < n. By the property of P we
must have ui 6≤P un. If un 6≤P ui in Step 2 then neither uiu

−1
n ∈ P nor u−1

i un ∈ P .
But by assumption 1 ∈ P and so P is not prime and the output in this case is an
evidence of this fact. In Step 3 we may assume un ≤P ui. Note that k with un 6≤P uk
exists by the property of P . By 1 ∈ P we have un ≤P un and hence k < n. By the
property of i in Step 1, it follows ui ≤P uk. Together, uku

−1
i ∈ P , uiu

−1
n ∈ P but

uku
−1
n /∈ P . Therefore, P is not a B-ideal and the output also fulfils the property of

a Krull functional.

Algorithm 3.6.23. Let K be a countable field, E ⊆ K be a subring, a1, . . . , am,
b1, . . . , bn ∈ K \ {0} and ck :=

∑
i+j=k aibj for all k. For fixed 0 ≤ k ≤ m and

0 ≤ l ≤ n we define a function φ[a1,...,am],[b1,...,bn](P ) for P ∈ 2K as follows:

1. Check if ci /∈ P for some i ∈ {0, . . . ,m+ n}. If yes, return (0, ck).

2. Check if 1 /∈ P . If yes, return (2, J∅, ([], X − 1), 1K).

3. Check if akbl ∈ P . If yes, return (1, 0).

4. Search for the maximal i0 such that ai0 ≤P ai for all i. If such an i0 does not
exists, return φ2

[a0,...,am](P ).

5. Search for the maximal j0 such that bj0 ≤P bj for all j. If such a j0 does not
exist, return φ2

[b0,...,bn](P ).

6. Check if ai0bj0 ∈ P . If yes, check if a−1
i0
b−1
j0
akbl ∈ P .

(a) If yes, return

(2, J{a−1
i0
b−1
j0
akbl, ai0bj0}, ([a−1

i0
b−1
j0
akbl, ai0bj0 ], X − akbl), akblK).
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(b) Otherwise, return

(2, J{aka−1
i0
, blb

−1
j0
}, ([aka−1

i0
, blb

−1
j0

], X − a−1
i0
b−1
j0
akbl), a

−1
i0
b−1
j0
akblK).

7. Check if ci0+j0 6= 0 and ai0bj0c
−1
i0+j0

∈ P . If yes, return

(2, J{ci0+j0 , ai0bj0c
−1
i0+j0
}, ([ci0+j0 , ai0bj0c

−1
i0+j0

], X − ai0bj0), ai0bj0K).

8. Check if −ai0bj0a−1
i b−1

j ∈ P for some i, j with i+ j = i0 + j0 and either i > i0
or j > j0. If yes, make the following case distinction:

(a) If i > i0, take i′ with ai 6≤P ai′ (which exists by Step 4) and return

(2, J{~α}, ([~α], X − ai′a−1
i ), ai′a

−1
i K),

where ~α is a syntactical abbreviation for −ai0bj0a−1
i b−1

j , ai′a
−1
i0
, bjb

−1
j0

.

(b) If j > j0, take j′ with bj 6≤P bj′ (which exists by Step 5) and return

(2, J{~β}, ([~β], X − bj′b−1
j ), bj′b

−1
j K),

where ~β is a syntactical abbreviation for −ai0bj0a−1
i b−1

j , aia
−1
i0
, bj′b

−1
j0

.

9. Return φ1
s(P ) where s is a list with contains exactly the elements ci0+j0a

−1
i0
b−1
j0

and −aibja−1
i0
b−1
j0

with either i > i0 or j > j0 in any order.

Lemma 3.6.24. In the situation of Algorithm 3.6.23 the function ψF,r(P ) :=
φ[a1,...,am],[b1,...,bn](P ) is a Krull functional w.r.t. F := {c0, . . . , cn+m} and r := akbl.

Proof. We check each step in turn. The first three cases are clear. For Step 4 and
Step 5 we use Lemma 3.6.22. That P is in the domain of φ2

[a0,...,am] and φ2
[b0,...,bn],

respectively, follows by the failure of Step 2 (i.e. 1 ∈ P ) and because the non-
existence of a maximal i0 means that there is no i with ai ≤P aj for all j, and
similarly for j0. From Step 6 onwards, we take i0 and j0 with the property that
ai0 ≤P ai for all i and for i > i0 we have ai 6≤P a′i for some i′, and similarly for j0.

The two cases of Step 6 follow directly by definition, since for (b) we have
{aka−1

i0
, blb

−1
j0
} ⊆ P by the property of i0 and j0. Step 7 is also straightforward.

Hence, from now on we have ai0bj0 /∈ P . For Step 8, in both cases, we use the
maximality of i0 and j0 as well as that ai0 ≤P ai′ and bj0 ≤P bj.

For Step 9, we have

ci0+j0a
−1
i0
b−1
j0
−

∑
i+j=i0+j0

i>i0

aibja
−1
i0
b−1
j0
−

∑
i+j=i0+j0

j>j0

aibja
−1
i0
b−1
j0

= 1

as in the proof of Proposition 3.6.16. Hence, we use Lemma 3.6.19, where P is in
the domain of φ1

s because of the failure of Step 2, Step 7 and Step 8.
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Corollary 3.6.25 (Algorithmic version of Kronecker’s Theorem). Let K
be a countable field and E ⊆ K be a subring. We take a0, . . . , am, b0, . . . , bn ∈
K \ {0} and define ck :=

∑
i+j=k aibj for all k ∈ {0, . . . ,m + n}. We fix some

k ∈ {0, . . . ,m} and l ∈ {0, . . . , n}. Suppose that Algorithm 3.4.14 is instantiated
on the cover structure (ι, τ, η) from Lemma 3.6.12 and the Krull functional ψF,r(P )
with F := {c0, . . . , cn+m} and r := akbl defined in Algorithm 3.6.23. Then the
algorithm terminates in some state πK and for gι,τ,η,ψF,r(πK) = (A, (~a, p)) we have
{~a} ⊆ A ⊆ {c0, . . . , cn+m}, p ∈ E[~a][X] and p(akbl) = 0.

Proof. This follows directly by Corollary 3.6.13 and Lemma 3.6.24.

Remark 3.6.26. As mentioned at the beginning of this section, our approach is
quite similar to [56] and indeed this is the main source of this application. Proposi-
tion 3.6.16 is similar to Theorem 6 of [56], where the proof of this theorem is made
constructive by using entailment relations instead of valuation rings and after the
proof of Theorem 6 it is shown how to derive an algorithm from the proof. In [56]
the assumption that the underlining K is countable is not used. But if K is an
arbitrary field and a1, . . . , am, b1, . . . , bn ∈ K \ {0} are given, we can w.l.o.g. assume
that K is the field which is generated by the elements a1, . . . , am, b1, . . . , bn. At
least classically this field is countable and therefore we can apply Corollary 3.6.25.
However, our algorithm always depends on some coding of the corresponding ring
whereas the algorithm in [56] does not.

3.7 Case study: ordered fields

Motivation 3.7.1. The version of Theorem 3.4.3 in this section, is known as
Theorem of Artin-Schreier and categorised into constructive real algebra. A version
of it was formulated by Artin and Schreier [10], and Artin used it to prove Hilbert’s
17th problem [9]. Our approach in this chapter is based on [145].

Definition 3.7.2. Let K be a field with char(K) 6= 2. A preorder of K is a subset
S ⊆ K which contains all squares and is closed under addition and multiplication,
i.e.

{x2 | x ∈ K} ⊆ S, S + S ⊆ S, S · S ⊆ S.

In particular, the set of all sums of squares is the smallest preorder of K. We denote
this set by

∑
K2 := {x2

1 + · · ·+ x2
n | n ∈ N, x1, . . . , xn ∈ K, x ∈ N}.

A preorder S is a linear order (or just order) if in addition either x ∈ S or
−x ∈ S for all x ∈ K.
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Notation 3.7.3. Let K be a field and S ⊆ K be a preorder. We define the relation
≤S by

x ≤S y :⇔ y − x ∈ S.
If S is clear from the context we also write ≤.

Lemma 3.7.4. A subset S ⊆ K of a field K with char(K) 6= 2 is a preorder if and
only if the relation ≤S is a preorder (i.e. reflexive and transitive) on K and satisfies

x ≤S y ⇒ x+ z ≤S y + z, x ≤S y ∧ 0 ≤S x⇒ ax ≤S bx.
A preorder S is an order if and only if ≤S is total.

Proof. Trivial.

Definition 3.7.5. For any preorder S on a field K with char(K) 6= 2 and subset
U ⊆ K, the set S〈U〉 is the preorder generated by U and consist of all elements in
x ∈ K for which there is a finite U0 ⊆ S such that

x =
∑
V⊆U0

λV
∏

V,

where
∏
{v1, . . . , vl} :=

∏l
i=1 vi and λV ∈ S.

Notation 3.7.6. Let A,B be sets. We denote A M B := (A ∪ B) \ (A ∩ B) and
for any x we define

χA(x) :=

{
1 if x ∈ A
0 else.

Lemma 3.7.7. In the situation of Definition 3.7.5, S〈U〉 is indeed a preorder.

Proof. Since
∏

∅ = 1, we have x2 = x2
∏

∅ ∈ S〈U〉 for all x ∈ K.
Let x =

∑
V⊆U0

λV
∏
V and y =

∑
V⊆U0

σV
∏
V . Then

x+ y =
∑

V⊆U0∪U1

(
λV χP(U0)(V ) + σV χP(U1)(V )

)∏
V ∈ S〈U〉

and

xy =
∑
V⊆U0

∑
W⊆U1

λV σW
∏

V
∏

W

=
∑
V⊆U0

∑
W⊆U1

λV σW

(∏
V ∩W

)2∏
(V M W )

=
∑

X⊆U0∪U1

 ∑
V⊆U0,W⊆U1
V MW=X

λV σW

(∏
V ∩W

)2

∏X ∈ S〈U〉.
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Theorem 3.7.8 (Artin-Schreier). Let K be a field with char(K) 6= 2, S ⊆ K
be a preorder and F ⊆ K. Then⋂

{U ⊆ K | S ⊆ U, F ⊆ U and U is an order of K} ⊆ S〈F 〉.

Proof. We define the covering B on K by U B x :⇔ x ∈ S〈U〉 and the operator ◦
by the addition in K and use Theorem 3.4.3. Reflexivity, transitivity and encoding
follows similar to the proof of Lemma 3.7.12. Therefore, we do not give the details.
A proof without the computational consideration can be found in [145, Section 4.6]
or [86, Kapitel I].

Motivation 3.7.9. We start with an algorithmic formulation of the theorem above
by defining the covering and by proving the constructive existence of a cover struc-
ture.

Definition 3.7.10. Let K be a countable field with char(K) 6= 2 and S ⊆ K
be a preorder on K which is countable. In this section we define the witness type
by S(Pfin(K)), which is the set of the families (λV )V ∈Pfin(K) with λV = 0 for all but

finitely many V ∈ Pfin(K). For A ∈ Pfin(K), (λV )V ∈ S(Pfin(K)) and x ∈ K we
define the covering B by

AB(λV )V x :⇔
∑
U⊆A

λU
∏

U = x.

Furthermore, we define the operator ◦ on K by the addition in K.

Proposition 3.7.11. In the situation of Definition 3.7.10 the B-ideals are exactly
the preorders of K which contain S, and the prime B-ideals are exactly the linear
orders of K which contain S.

Proof. First, let I be an B-ideal with S ⊆ I. We show that I is a preorder: If x ∈ K
then x2 ∈ S, and therefore ∅B(σU )U x

2 for σU = x2χ{∅}(U). Since I is an B-ideal, it
follows x2 ∈ I. Now, let x, y ∈ I be given. Then we have AB(σU )U x and BB(λU )U y
for some finite A,B ⊆ I and (σU)U , (λU)U ∈ S(Pfin(K)). In particular, we have

x =
∑
U⊆A

σU
∏

U, y =
∑
U⊆B

λU
∏

U.

Then

x+ y =
∑

U⊆A∪B

(
σUχP(A)(U) + λUχP(B)(U)

)∏
U
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and

xy =
∑

W⊆A∪B

 ∑
U⊆A,V⊆B
UMV=W

λUσV

(∏
U ∩ V

)2

∏W.

Therefore, A∪BBx+y and A∪BBxy. Since I is an B-ideal, we have a+ b, ab ∈ I
and I is a preorder. If furthermore I is a prime ideal, we have x + (−x) = 0 ∈ I.
Therefore, either x ∈ I or −x ∈ I and I is an order.

For the other direction, let I be a preorder with S ⊆ I and assume A B(σU )U x
for some finite A ⊆ I, (σU)U ∈ S(Pfin(K)) and x ∈ K, then

x =
∑
U⊆A

σU
∏

U.

Since A ⊆ I, S ⊆ I and I is a preorder, all σU
∏
U for U ⊆ A are in I and so x ∈ I.

Hence, I is an ideal. Furthermore, if I is an order and x+ y ∈ I for some x, y ∈ K
then either x ∈ I or −x ∈ I. In the last case we have y ∈ I because of x + y ∈ I.
Thus, either x ∈ I or y ∈ I, which means that I is prime.

Lemma 3.7.12. In the situation of Definition 3.7.10, the relation B is a Σ0
1-covering

and together with ◦ it has a computable cover structure (ι, τ, η).

Proof. Since S and K are countable, also S(Pfin(K)) is countable and can therefore
be coded as base type.

It remains to deal with reflexivity, transitivity and encoding:

– Obviously {x}B(χ{{x}}(V ))
V

x. Therefore, ι is given by ι(x) :=
(
χ{{x}}(V )

)
V

– For transitivity, we assume AB(σV )V x and B, xB(λV )V y, in particular

x =
∑
U⊆A

σU
∏

U and y =
∑

V⊆B∪{x}

λV
∏

V.
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We calculate:

y =
∑

V⊆B\{x}

λV
∏

V +
∑

V⊆B\{x}

λV ∪{x}x
∏

V

=
∑

V⊆B\{x}

λV
∏

V +
∑

V⊆B\{x}

λV ∪{x}
∑
U⊆A

σU
∏

U
∏

V

=
∑

V⊆B\{x}

λV
∏

V +
∑

V⊆B\{x}
U⊆A

λV ∪{x}σU

(∏
U ∩ V

)2∏
U M V

=
∑

W⊆A∪(B\{x})

λWχP(B\{x})(W ) +
∑

U⊆A,V⊆B\{x}
UMV=W

λV ∪{x}σU

(∏
U ∩ V

)2

∏W

Therefore, τ is given by

τ(A,B, x, y, (σV )V , (λU)U) := (κW )W ,

where

κW := λWχP(B\{x})(W ) +
∑

U⊆A,V⊆B\{x}
UMV=W

λV ∪{x}σU(
∏

U ∩ V )2

for W ⊆ A ∪ (B \ {x}) and κW := 0 else.

– It remains to consider encoding: Let A, xB(σU )U z and B, yB(λV )V z be given.
Our goal is to compute (κW )W with A∪B, x+yB(κW )W z. We define C := A∪B.
By modifying (σU)U and (λV )V we may assume σU = 0 for U 6⊆ A ∪ {x} and
λV = 0 for V 6⊆ B ∪ {y}. Furthermore, we assume x, y /∈ C because otherwise
it is trivial. Then because of our assumptions it follows

z =
∑
U⊆C

σU
∏

U +
∑
U⊆C

σU∪{x}x
∏

U

=
∑
U⊆C

λU
∏

U +
∑
U⊆C

λU∪{y}y
∏

U.

We define

Γ :=
∑
U⊆C

(
σU∪{x} + λU∪{y}

)∏
U
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and first consider the case Γ 6= 0. Hence, we compute

Γz =
∑
U⊆C

σU∪{x}
∏

U

(∑
V⊆C

λV
∏

V +
∑
V⊆C

λV ∪{y}y
∏

V

)
+

∑
U⊆C

λU∪{y}
∏

U

(∑
V⊆C

σV
∏

V +
∑
V⊆C

σV ∪{x}x
∏

V

)
=
∑
U,V⊆C

(
σU∪{x}λV + σUλV ∪{y} + (x+ y)σU∪{x}λV ∪{y}

)∏
U
∏

V,

and therefore

z =
∑

U,V,W⊆C

µU,V,W
∏

U
∏

V
∏

W

+
∑

U,V,W⊆C

νU,V,W (x+ y)
∏

U
∏

V
∏

W,

where

µU,V,W := Γ−2
(
σW∪{x} + λW∪{y}

) (
σU∪{x}λV + σUλV ∪{y}

)
,

νU,V,W := Γ−2
(
σW∪{x} + λW∪{y}

)
σU∪{x}λV ∪{y}.

We further obtain

z =
∑
X⊆C

 ∑
U,V,W⊆C
UMV MW=X

µU,V,W (g(U, V,W ))2

∏X+

∑
X⊆C

 ∑
U,V,W⊆C
UMV MW=X

νU,V,W (g(U, V,W ))2

 (x+ y)
∏

X,

where

g(U, V,W ) :=∏
((U ∪ V ) \W )

∏
((U ∪W ) \ V )

∏
((V ∪ U) \W )

∏
(U ∩ V ∩W ).
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In order to cover the case x+ y ∈ C, we continue with our calculation

z =
∑

X⊆C\{x+y}

∑
U,V,W⊆C
UMV MW=X

µU,V,W (g(U, V,W ))2
∏

X+

∑
X⊆C\{x+y}

∑
U,V,W⊆C

UMV MW=X∪{x+y}

µU,V,W (g(U, V,W ))2(x+ y)
∏

X+

∑
X⊆C\{x+y}

∑
U,V,W⊆C
UMV MW=X

νU,V,W (g(U, V,W ))2(x+ y)
∏

X+

∑
X⊆C\{x+y}

∑
U,V,W⊆C

UMV MW=X∪{x+y}

νU,V,W (g(U, V,W ))2(x+ y)2
∏

X

=
∑

X⊆C\{x+y}

( ∑
U,V,W⊆C
UMV MW=X

µU,V,W (g(U, V,W ))2+

∑
U,V,W⊆C

UMV MW=X∪{x+y}

νU,V,W (g(U, V,W ))2(x+ y)2

)∏
X+

∑
X⊆C\{x+y}

( ∑
U,V,W⊆C

UMV MW=X∪{x+y}

µU,V,W (g(U, V,W ))2+

∑
U,V,W⊆C
UMV MW=X

νU,V,W (g(U, V,W ))2

)
(x+ y)

∏
X.

From this equation we get (κX)X with C, x+ y B(κX)X z in the case Γ 6= 0.

It remains to consider the case Γ = 0, i.e.∑
U⊆C

(
σU∪{x} + λU∪{y}

)∏
U = 0.

We again consider two cases: If

∆ :=
∑
U⊆C

σU∪{x}
∏

U = 0
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then

z =
∑
U⊆C

σU
∏

U

and this case is completed. Hence, we consider the case ∆ 6= 0. Here we have

0 6= −∆ =
∑
U⊆C

λU∪{y}
∏

U

which implies

−1 =∆−2
∑
U⊆C

σU∪{x}
∏

U
∑
U⊆C

λU∪{y}
∏

U

∑
W⊆C

∑
U,V⊆C
UMV=W

∆−2σU∪{x}λV ∪{y}

(∏
U ∩ V

)2∏
W.

Together with char(K) 6= 2 we have

z =

(
z + 1

2

)2

+ (−1)

(
z − 1

2

)2

=
∑
W⊆C

(
z + 1

2

)2

χ{∅}(W )
∏

W+

∑
W⊆C

∑
U,V⊆C
UMV=W

∆−2σU∪{x}λV ∪{y}

(
z − 1

2

)2 (∏
U ∩ V

)2∏
W.

Therefore, we are done in this case.

Corollary 3.7.13. In the situation of Definition 3.7.10, suppose that for F ⊆ K
and r ∈ K we have a Krull functional ψ w.r.t. B and ◦. Instantiating Algorithm
3.4.14 on the cover structure of Lemma 3.7.12 and the Krull functional ψ, the
algorithm terminates in some state πk. Let gι,τ,η,ψ(πk) = (A, (λU)U). Then A ⊆ F ,
(λU)U ∈ S(Pfin(K)) and ∑

U⊆A

λU
∏

U = r.

In particular, (λU)U is a witness for r ∈ S〈F 〉.
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Proof. Follows directly from Theorem 3.4.15 and Lemma 3.7.12.

Remark 3.7.14. The version of the universal Krull-Lindenbaum lemma in this
section was used by Artin to prove Hilbert’s 17th problem [9]. Actually Hilbert’s
17th problem could be an example of this case study. Unfortunately, turning Artin’s
proof into a Krull functional similar to what we have done in the examples of the last
two sections, is highly complex as the proof uses constructions like the real closure
of an ordered field. However, it is presumably possible. A possible initial point
could be backtracking the proofs in [117] together with Artin’s proof of Hilbert’s
17th problem [9]. In Section 4.5 there is an outlook how things can get complex
when applying Algorithm 3.3.6, and we assume that a transformation of Artin’s
proof into a Krull functional is even more complicated. Therefore, we conclude this
section without an example. If the reader is interested in a constructive version of
Hilbert’s 17th problem, we refer to [61].

3.8 Minor case studies

Motivation 3.8.1. We conclude with a section about three shorter case studies
from [145]. In the first two case studies the proofs are short, and therefore also
the corresponding cover structures are quite simple. This is due to the fact that
the structures in the two case studied are too simple. Hence, we assume that the
deduced version of the universal Krull-Lindenbaum lemma is not very useful for fur-
ther applications as one can just replace the usage of the universal Krull-Lindenbaum
lemma by the respective proofs. However, these case studies reveal the many di-
verse applications of the theory in this chapter. The last case study about filters in
commutative rings is probably more useful.

3.8.1 Complete theories

Motivation 3.8.2. The following example is a version of Lindenbaum’s lemma6,
known from model theory. It was also considered in [39] by Francesco Ciraulo, Da-
vide Rinaldi and Peter Schuster and revisited in [73] by Giulio Fellin, Peter Schuster
and Daniel Wessel. However, it is well-known that Lindenbaum’s lemma can be
proven constructively if the underlying language is countable. As countability is a
necessary assumption in our case, we do not really get a new result in this section.

6As Lindenbaum’s lemma is a special case, “Lindenbaum” is part of the name “universal Krull-
Lindenbaum lemma”.
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Definition 3.8.3. We fix some language L of first order logic and a proof calculus
like Genzen’s calculus of natural deduction. Let S be the set of all sentences in the
language L. By ` we denote the derivability in classical logic. For A ⊆ S and φ ∈ S
we define A B φ by A ` φ. In particular, A B φ means that there is some proof
tree t with assumptions in A and root φ. The operator ◦ on S is the disjunction ∨,
i.e. φ ◦ ψ := φ ∨ ψ for all φ, ψ ∈ S.

A subset Γ ⊆ S is called theory if it is closed under derivability (i.e. if it is an
B-ideal). The theory Γ is called complete if

φ ∈ Γ or ¬φ ∈ Γ

for all φ ∈ S.

Remark 3.8.4. Note that we have not fixed the proof calculus since any of the
popular proof calculi can be used. However, the concrete definition of the cover
structure does depend on the proof calculus. Therefore, in this case we use the
calculus of natural deduction and to shorten the notation, we will use proof terms
or also called derivation terms. The calculus of natural deduction and proof terms
are defined in Section 1.1 and 1.2 of [160].

Lemma 3.8.5. In the situation of Definition 3.8.3, the complete theories are
exactly the prime B-ideals.

Proof. Let Γ be a complete theory and φ ∨ ψ ∈ Γ. Because of completeness, either
φ ∈ Γ or ¬φ ∈ Γ. In the first case we are done. In the second case, we have
φ ∨ ψ,¬φ ` ψ and therefore ψ ∈ Γ.

For the other direction, assume that Γ is a prime B-ideal and let φ ∈ S be given.
Γ is a theorie and ∅ ` φ ∨ ¬φ, and so φ ∨ ¬φ ∈ Γ. Since Γ is prime, we have φ ∈ Γ
or ¬φ ∈ Γ.

Theorem 3.8.6. In the situation of Definition 3.8.3. Let F ⊆ S be given. With
F we denote the `-closure of F , in particular F := {φ ∈ S | F ` φ}. Then⋂

{Γ ⊆ S | F ⊆ Γ and Γ is a complete theory} ⊆ F

Proof. This follows from Theorem 3.4.3. The proof of reflexivity, transitivity and
encoding is quite similar to the proof of the next lemma. But it is also given
in [73, Proposition 2] .

Lemma 3.8.7. In the situation of Definition 3.8.3 we additionally assume that L
and hence S is countable. Then B is a Σ0

1-covering, and together with ◦ it has a
computable cover structure (ι, τ, η).
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Proof. As proof calculus we use Genzen’s calculus of natural deduction but one
could also use an equivalent proof calculus and define the cover structure with it.

ABφ holds if there is a proof tree t with assumptions in A and root φ. Therefore,
B is a Σ0

1-covering. We define the cover structure step by step:

– For φ ∈ S the proof which only consists of the assumption φ is a witness for
{φ}B φ. In the notation of proof terms we have ι(φ) := uφ, where u is a new
assumption variable.

– Assume ABs φ and B, φBt ψ. To get a proof tree which witnesses A∪BBψ,
we take the proof tree t and replace each assumption of the formula φ by
the proof tree s. In the notation of proof terms: Let t = t(uφ1 , . . . , u

φ
l ) where

u1, . . . , ul are exactly the assumption variable in t with type φ, and define
τ(A,B, φ, ψ, s, t) := t(s, . . . , s). To avoid variable collisions we may have to
rename some variables before the substitution.

– Assume A, φ Bs χ and B,ψ Bt χ. Using the implication introduction we get
proof trees s1 and t1 with ABs1φ→ χ and BBt1ψ → χ. After assuming A∨B
and using the disjunction elimination rule we get a proof tree of A∪B, φ∨ψBχ.
To make things clear, we use the notation of proof terms: let s = s(uφ1 , . . . , u

φ
l )

where u1, . . . , ul are exactly the assumption variables in s of the formula φ.
We define s̃ := s̃(u) := s(u, . . . , u) where uφ is a new assumption variable of
the formula φ. We define analogously t̃ := t̃(v), where v is a new assumption
variable of formula ψ. Furthermore, we denote the disjunction elimination rule
by ∨−. Then η(A,B, φ, ψ, χ, s, t) := λw(∨−wφ∨ψ(λus̃)(λv t̃)), where w is a new
assumption variable of the formula φ ∨ ψ.

Corollary 3.8.8. In the situation of Definition 3.8.3 with countable L, suppose
for Γ ⊆ S and φ ∈ S a Krull functional Ψ w.r.t. B and ◦ is given. Instantiating
Algorithm 3.4.14 on the cover structure of Lemma 3.7.12 and the Krull functional
Ψ, the algorithm terminates in some state πk. Let gι,τ,η,Ψ(πk) = (A, t). Then A ⊆ Γ
and t is a proof of φ with assumptions in A.

Proof. Follows directly from Theorem 3.4.15 and Lemma 3.8.7.

3.8.2 Distributive lattices

Motivation 3.8.9. Distributive lattices are algebraic objects which have a quite
simple structure. They were also considered in [146, Section 4.2.3]. In our case, one
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could even say that they have too much structure to be interesting, but construc-
tively they are very interesting like in the context of entailment relations [35,50].

The theorems we consider in this section are a variant of the prime filter theorem
or the prime ideal theorem for bounded distributive lattices, respectively.

Definition 3.8.10. A distributive lattice is given by a set L and two associative
and commutative operators ∧ and ∨ on L such that

a ∨ (a ∧ b) = a = a ∧ (a ∨ b)
a ∨ a = a = a ∧ a

(a ∨ b) ∧ c = a ∧ c ∨ b ∧ c
a ∧ b ∨ c = (a ∨ c) ∧ (b ∨ c)

for all a, b, c ∈ L hold, where ∧ binds more strongly then ∨. We define a ≤ b by
a = a ∧ b.

Since ∧ and ∨ are commutative, we define
∧
A and

∨
A for A ∈ Pfin(L) \ {∅}

in the canonical way.

Lemma 3.8.11. Assume we are in the situation of Definition 3.8.10, then a ≤ b is
equivalent to b = a ∨ b and ≤ is a partial order on L.

Proof. Trivial.

Notation 3.8.12. If there exists a least element of the partial order in the lemma
above, we denote it by 0, and if there exists a greatest element, we denote it by 1.
In particular, 0 ≤ a ≤ 1 for all a ∈ L.

Definition 3.8.13. Let L be a distributive lattice and U ⊆ L be a subset of L.
The ideal (U) of a distributive lattice generated by U consists of all elements a ∈ for
which there are u1, . . . , uk ∈ U such that a ≤ u1 ∨ · · · ∨ uk. If L has a least element
0, the ideal generated by the empty set is {0}, and we define

∨
∅ := 0. If U = (U),

we call U an ideal of the distributive lattices L. An ideal P is called prime ideal if
a ∧ b ∈ P implies a ∈ P or b ∈ P .

The filter 〈U〉 generated by U consists of all elements a ∈ L for which there are
u1, . . . , uk ∈ U such that u1 ∧ · · · ∧ uk ≤ a. If L has a greatest element 1, the filter
generated by the empty set is {1}, and we define

∧
∅ := 1. If U = 〈U〉, we call U

a filter of the distributive lattices L. A filter P is called prime filter if a ∨ b ∈ P
implies a ∈ P or b ∈ P .

Theorem 3.8.14. Let L be a distributive latices with 0 and 1 and F ⊆ L. Then⋂
{P ⊆ L | F ⊆ P and P is prime ideal} =(F ) and⋂
{P ⊆ L | F ⊆ P and P is prime filter} =〈F 〉.
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Proof. Follows from Theorem 3.4.3. B, ◦, reflexivity, transitivity and encoding are
similar as given in Definition 3.8.16 and Lemma 3.8.19. Therefore, we do not give
the details here.

Motivation 3.8.15. As we see, the notion of filters and ideals in distributive
lattices are dual to each other. Therefore, in the following computational considera-
tion, we restrict ourself to filters. Of course, the analogous statements also hold for
ideals instead of filters.

Definition 3.8.16. Let L be a countable distributive lattice with minimal element
0. For finite A ⊆ L and a ∈ L we define the covering B by A B a :⇔ a ∈ (A) and
the operator ◦ by ∧.

Remark 3.8.17. Assume we are in the situation of Definition 3.8.16. Then for
each finite A, we have A B a if and only if a ≤

∨
A. If the operator ∧,∨ and =

(as a boolean valued function) are computable, this statement does not need any
evidence. Thus, the witness type is a singleton {ε}, where A Bε a just says that
a ≤

∨
A. Therefore, the functions ι, τ, η are trivial, and we only have to check the

properties.
Of course, we could assume that the equality needs some witness, i.e. x = y ⇔

∃tx =t y for some decidable relation =(·). In this case the witness type would not be
trivial, but then we also need some evidence for the properties in Definition 3.8.10,
which makes things more complicate. Here we assume that everything is decidable
to have a case study where the witness type is trivial.

Proposition 3.8.18. In the situation of Definition 3.8.16, the B-ideals are exactly
the filters of L, and the prime B-ideals are exactly the prime filters of L.

Proof. Trivial.

Lemma 3.8.19. In the situation of Definition 3.8.16 let ∧,∨ and = be computable,
then B is a Σ0

1-covering and (ε, ε, ε) is a cover structure for B and ◦, where ε denotes
the constant function with value ε.

Proof. That B is a Σ0
1-covering was noted in the remark above. It remains to check

the three properties.

– a ≤ a =
∨
{a} for all a ∈ L is trivial.

– Let A B a and B, a B b be given. Then a = a ∧
∨
A and b = b ∧ (a ∨

∨
B).

Hence, it follows

b =b ∧
((
a ∧

∨
A
)
∨
∨

B
)

= b ∧
(
a ∨

∨
A
)
∧
∨

(A ∪B)

=b ∧
∨

(A ∪B) .
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– Let A, aBc and B, bBc be given. Then c = c∧(a ∨
∨
A) and c = c∧(b ∨

∨
B).

By the first axiom of distributive lattices we have

a ∨
∨

A =
(
a ∨

∨
A
)
∧
(
a ∨

∨
(A ∪B)

)
and analogous for B and b instead of A and a. Hence, it follows

c =c ∧
(
a ∨

∨
A
)

= c ∧
(
a ∨

∨
A
)
∧
(
a ∨

∨
(A ∪B)

)
=c ∧

(
a ∨

∨
(A ∪B)

)
= c ∧

(
a ∨

∨
(A ∪B)

)
∧
(
b ∨
∨

(A ∪B)
)

=c ∧
(
a ∧ b ∨

∨
(A ∪B)

)
,

which implies c ≤ a ∧ b ∨
∨

(A ∪B).

Corollary 3.8.20. Assume we are in the situation of Definition 3.8.16 with com-
putable ∧ and ∨, and suppose that for F ⊆ L and r ∈ L a Krull functional ψ w.r.t. B
is given. Instantiating Algorithm 3.4.14 on the cover structure (ε, ε, ε) and the Krull
functional ψ, the algorithm terminates in some state πk. Let gε,ε,ε,ψ(πk) = (A, t),
then A ⊆ F , t = ε and r ≤

∨
A.

Proof. Follows directly from Theorem 3.4.15 and Lemma 3.8.19.

3.8.3 Filters in commutative rings

Motivation 3.8.21. As last case study we consider filters in commutative rings.
This version of the universal Krull-Lindenbaum lemma is often called the prime
filter theorem for commutative rings.

Definition 3.8.22. Let a commutative ring R be given. A subset F ⊆ R is called
a filter if 1 ∈ F and ∀a,b∈R(a, b ∈ F ⇔ ab ∈ F ). For a subset U ⊆ R we define the
filter generated by U as follows:

〈U〉 =

{
x ∈ R

∣∣∣∣∣ ∃c∈R∃u1,...,uk∈Uxc =
k∏
i=1

ui

}
.

A filter F is called a prime filter if a+ b ∈ F implies a ∈ F or b ∈ F .

Lemma 3.8.23. In the situation of the definition above 〈U〉 is the smallest filter
which contains U .
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Proof. Trivial.

Theorem 3.8.24. Let R be a commutative ring and U ⊆ R be given, then⋂
{P ⊆ R | U ⊆ P and P is a prime filter of R} = 〈U〉.

Proof. We use Theorem 3.4.3 with U B x :⇔ x ∈ 〈U〉 and ◦ := +. The proof of
reflexivity, transitivity and encoding is similar to the proof of Lemma 3.8.28 by using
Lemma 3.8.23. There is also a proof in [145, Section 4.1.2].

Notation 3.8.25. For a given ring R and [a1, . . . , ak] = ~a ∈ R∗ we define
∏
~a :=∏k

i=1 ai. For n ∈ N, we define n ∗ ~a recursively by

0 ∗ ~a := [], (n+ 1) ∗ ~a := ~a :: (n ∗ ~a),

where :: is the concatenation of lists, i.e.
∏

(n ∗ ~a) = (
∏
~a)n.

Definition 3.8.26. Let a countable ring R be given. We define a covering B on
R by A B x :⇔ ∃c∈R∃~a∈R∗ (~a ∈ A∗ ∧ xc =

∏
~a) and the operator ◦ is given by the

addition + on R. The witness type is given by R × R∗ and A B(c,~a) x :⇔ ~a ∈
A∗ ∧ xc =

∏
~a.

Proposition 3.8.27. In the situation of the definition above, the filters of R are
exactly the B-ideals, and the prime filters are exactly the prime B-ideals.

Proof. Let F be a filter, and assume A B(c,~a) x for some A ⊆ F , then ~a ∈ F ∗ and
ac =

∏
~a ∈ F . It follows a ∈ F by the second filter property.

In the other direction, assume that F is an B-ideal. 1 ∈ F follows from ∅B(1,[]) 1.
For the second property we first assume a, b ∈ F then ab ∈ F follows by a, bB(1,[a,b])

ab, and if ab ∈ F , we have a ∈ F and b ∈ F by abB(b,[ab]) a and abB(a,[ab]) b.

The second part of the lemma is now tautological because ◦ is exactly +.

Lemma 3.8.28. In the situation of Definition 3.8.26 the covering B is a Σ0
1-

covering, and together with ◦ it has a computable cover structure (ι, τ, η).

Proof. Since R is countable, R×R∗ can be considered as a base type, and therefore
B is a Σ0

1-covering. It remains to consider the three properties of a cover structure:

– Obviously x1 = x and therefore ι(x) := (1, [x]) does the trick.
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– Let AB(c,~a)x and B, xB(d,~b)y be given. Then ~a ∈ A∗, xc =
∏
~a, ~b ∈ (B∪{x})∗

and yd =
∏~b. Let~b′ be the list which comes from~b by erasing each component

with entry x and k be the number of components with entry x in ~b. In
particular, ~b′ ∈ B∗ and

∏~b = xk
∏ ~b′. It follows

ydck = xkck
∏

~b′ =
(∏

~a
)k∏

~b′ =
∏(

(k ∗ ~a) :: ~b′
)
,

and therefore

τ(x, (c,~a), (d,~b)) :=
(
ckd, (k ∗ ~a) :: ~b′

)
with k and ~b′ as defined above does the trick.

– Let A, x B(c,~a) z and B, y B(d,~b) z be given. Then ~a ∈ (A ∪ {x})∗, zc =
∏
~a,

~b ∈ (B ∪ {y})∗ and zd =
∏~b. We define ~a′ as the list which comes from ~a

by deleting each component with entry x and k be the number of components
with entry x in ~a. Analogously, we define ~b′ and l with ~b and y instead of ~a
and x. Hence,

zc = xk
∏

~a′, ~a′ ∈ A∗,

zd = yl
∏

~b′, ~b′ ∈ B∗.

If k = 0 or l = 0, we are already done. Therefore, we assume k, l ≥ 1 and we
define

c′ :=
(∏

~a′
)k−1 (∏

~b′
)k

and d′ :=
(∏

~a′
)l (∏

~b′
)l−1

,

and this gives

zc′ =
(
x
∏

(~a′ :: ~b′)
)k

and zd′ =
(
y
∏

(~a′ :: ~b′)
)l
.

With the abbreviation Ω :=
∏

(~a′ :: ~b′) we calculate∏(
(k + l) ∗ (~a′ :: ~b′ :: x+ y)

)
= (xΩ + yΩ)k+l

=
k∑
i=0

(
k + l

i

)
(xΩ)i(yΩ)k+l−i +

l∑
i=1

(
k + l

i+ k

)
(xΩ)i+k(yΩ)l−i

= zd′
k∑
i=0

(
k + l

i

)
(xΩ)i(yΩ)k−i + zc′

l∑
i=1

(
k + l

i+ k

)
(xΩ)i(yΩ)l−i.
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Therefore, we define

η(x, y, (c,~a), (d,~b))

:=

(
d′

k∑
i=0

(
k + l

i

)
(xΩ)i(yΩ)k−i + c′

l∑
i=1

(
k + l

i+ k

)
(xΩ)i(yΩ)l−i,

(k + l) ∗ (~a′ :: ~b′ :: x+ y)

)
,

where ~a′,~b′, c′, d′ and Ω are defined as above.

Corollary 3.8.29. Assume we are in the situation of Definition 3.8.26, and suppose
that for U ⊆ R and r ∈ R a Krull functional ψ w.r.t. B and ◦ is given. Instantiating
Algorithm 3.4.14 on the cover structure (ι, τ, η) of Lemma 3.8.28 and the Krull
functional ψ, the algorithm terminates in some state πk. Let gι,τ,η,ψ(πk) = (A, (c,~a)),
then A ⊆ U , ~a ∈ A∗ and rc =

∏
~a.

Proof. Follows directly from Theorem 3.4.15 and Lemma 3.8.28.

Remark 3.8.30. One can easily check that for a ring R a subset F ⊆ R is a proper
prime filter if and only if R \ F is a (ring theoretical) prime ideal. Furthermore
each filter is a multiplicative closed subset, and the ring can be localized on each
filter. Therefore, there might be applications of the version of the universal Krull-
Lindenbaum lemma in this section. A possible starting point could be [109].
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Chapter 4

An algorithmic version of Zariski’s
lemma

This chapter is based on the paper [182].

Motivation 4.0.1. In this chapter we provide an elementary and constructive
proof of Zariski’s lemma. It claims the following:

Let K be a field and R be an algebra over K which is a field. Suppose
that R = K[x1, . . . , xn] for some x1, . . . , xn ∈ R. Then x1, . . . , xn are
algebraic over K.

Our proof will only use some basics of integral ring extensions and the consideration
that R is discrete (in the sense of Definition 4.1.3).

After giving a constructive proof we take a look at the computational side: First,
we formulate a computational interpretation of Zariski’s lemma, we call it the al-
gorithmic version of Zariski’s lemma, and subsequently we use our constructive
proof to develop an algorithm which shall realise the computational interpretation.
At the end we prove that this algorithm indeed is a realiser of the computational
interpretation.

This shows a typical approach in constructive mathematics. Analysing a theorem
constructively often goes the following way:

• Formulate a quite constructive proof of the theorem.

• Formulate an algorithmic interpretation of the theorem.

• Inspired by the constructive proof, formulate an algorithm which shall realise
the algorithmic interpretation.

85
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• Prove that the algorithm is indeed a realiser of the algorithmic interpretation.

This chapter serves as an example where all these steps are carried out manually on
paper and where the formulation of the quite constructive proof is only necessary
to get an inspiration for the other steps. If we were an omniscient magician, we
could drop the first step. On the other hand, if we used computer support (as we
do in Chapter 5), we would get the other three steps automatically. However, since
neither of the two conditions is met, we do all fourth steps.

However, in Chapter 5 we see an example where only the quite constructive
proof is formulated manually and the other steps are done by the computer. Note
that we have written “quite constructive” because sometimes one can bypass a non-
constructive moment or the non-constructive moment can be included as assumption
in the algorithmic version. We also see an example of this here: Since our proof uses
case distinction on x = 0 for every x in an algebraic structure, we assume that this
structure is discrete.

At the end, we show an application of the algorithm and give an outlook how
one can possibly use it together with the theory in Chapter 3 to get an algorithm
for Hilbert’s Nullstellensatz.

4.1 Background and basic definitions

Motivation 4.1.1. Presumably the first time Zariski’s lemma appeared was
in [188], where Oscar Zariskis used it to prove Hilbert’s Nullstellensatz. In 1976,
John McCabe gave an interesting but non-constructive proof [119], which relies on
the existence of maximal ideals. In 2020, Daniel Wessel avoided this maximality
argument by using Jacobson radicals [178]. However, the proof still contains a non-
constructive moment. To wit, if R is an algebra over a field K and S ⊆ R is a
finite subset then there exists S0 ⊆ S maximal such that all elements in S0 are
algebraically independent over K. To avoid this, one could use the Noether normal-
isation theorem:

Let K be a field and R be an algebra over K with R = K[x1, . . . , xn]
for some x1, . . . , xn ∈ R. Then there are z1, . . . , zn ∈ R and m ≤ n such
that K[z1, . . . , zn] = R is integral over K[z1, . . . , zm] and z1, . . . , zm are
algebraically independent over K.

A constructive proof of Noether normalisation is given in [83, Theorem 1.18], [122,
Theorem 2.4] and [143, Section 3.13], and Zariski’s lemma is a corollary of it, see
for example [82, Theorem 1.15] and [143, Section 3.15].
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Some proofs as in [12,13,163,188] are non-constructive but instead of a maximal
algebraically independent subset they use induction on the number of generators
of the algebra. This will also be part of our constructive proof. The proof in this
chapter is a direct and constructive proof of Zariski’s lemma. To get this proof, we
have analysed the proofs in the sources above and have combined them together
with some new ideas.

To formulate a constructive proof of Zariski’s lemma, we assume that the def-
initions of rings, fields and algebras is already known. Before we formulate the
algorithmic version, we give a concrete definition of these objects and even refine
them. Therefore, if the reader is not familiar with these notions, they can look at
Definition 4.3.2 before reading on. In our case all rings are commutative.

Notation 4.1.2. In the following we often say “K[x1, . . . , xn] is a K-algebra” and
mean that we have a K-algebra R and x1, . . . , xn ∈ R with R = K[x1, . . . , xn]. Note
that we use small letters for elements in an algebra, whereas we use capital letters
for the indeterminates of a polynomial ring.1

To shorten our formulas we will use the following syntactical abbreviations: ~X :=
X1, . . . , Xn; ~x := x1, . . . , xn; ~Y := Y1, . . . , Ym and ~y := y1, . . . , ym. Furthermore, for
n ∈ N and any I ∈ Nn we define ~xI :=

∏n
i=1 x

Ii
i and ~XI :=

∏n
i=1X

Ii
i

Definition 4.1.3. We call a ring R discrete if =, +, − and · are computable. Here
= is considered as a boolean valued function. A field K is called discrete if it is
discrete as ring and a−1 is computable. In this chapter “computable” means that
the equality is decidable and we can use the operators freely in our algorithms. In
particular, we can distinguish a = b and a 6= b for all a, b in the given ring or field
even if a and b are terms which contain +,−, · and −1.

Remark 4.1.4. Note that in the textbooks like [116, 122, 186] a field or ring is
discrete if the equality is decidable, i.e. a = b ∨ a 6= b for all a, b in the discrete
structure.

In discrete fields, we have x = 0 ∨ ∃yxy = 1 for all x in the field.

Lemma 4.1.5. Let R be a discrete field, then all subrings of R and R[X1, . . . , Xn]
are discrete. For f ∈ R[X1, . . . , Xn] we can decide if f ∈ R or f /∈ R, and if
f ∈ R[X], we can compute the degree of f by deg(f) := max{n ∈ N | fn 6= 0},
where we set max∅ := −1.

Proof. Trivial.

1At this point want to emphasize that statements like R = K[x1, . . . , xn] are constructively
critical. Therefore, in the algorithmic part of this chapter we use the notion K[x1, . . . , xn] only as
a way of speaking.
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Definition 4.1.6. Let R ⊆ S be a ring extension. We call an element x ∈ S
integral over R if there are n ∈ N and an−1, . . . , a0 ∈ R with

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

In other words, an element x ∈ R is integral if there is a monic polynomial P ∈ R[X]
with P (x) = 0.

A ring extension R ⊆ S is integral if each x ∈ S is integral over R.

4.2 A constructive proof

Motivation 4.2.1. We now provide a constructive proof of Zariski’s lemma. The
proof does not use any non-constructive principles (except for assuming that the
rings are discrete) as the law of excluded middle, Zorn’s lemma or any other version
of the axiom of choice. Since we do not formulate the algorithm in this section,
we will not assume explicitly that each ring is discrete. As explained at the be-
ginning of this chapter, the idea is not to formulate a totally constructive proof
(whatever a “totally constructive proof” shall be), but to extract an algorithm out
of a “sufficiently” constructive proof.

We will first need two lemmas from the theory of integral ring extensions. Despite
the fact that the proofs are given in many textbooks of algebra such as [12, Chapter
5], we also carry out the proofs here since in the next section we use them later to
establish an algorithm for the computational interpretation.

Lemma 4.2.2. Let R ⊆ S be a ring extension and ~x ∈ S be integral over R, then
R ⊆ R[~x] is an integral ring extension.

Proof. Since x1, . . . , xn are integral over R, for each i ∈ {1, . . . , n} there are ki ∈ N
and a

(i)
kn−1, . . . , a

(i)
0 ∈ R with

xkii + a
(i)
kn−1x

kn−1
i + · · ·+ a

(i)
1 xi + a

(i)
0 = 0 (4.1)

We define I := {I ∈ Nn | I1 < k1, . . . , In < kn}, then (~xI)I∈I is a generator of
R[x1, . . . , xn] as R-module because of the equations from (4.1).

Let y ∈ R[~x] be given. Then for all I ∈ I there is (bIJ)J∈I ∈ RI such that

y~xI =
∑
J∈I

bIJ~x
J .

Therefore, the multiplication by y has the transformation matrix (bIJ)I,J∈I w.r.t. the
generator (~xI)I∈I of the R-module R[x1, . . . , xn]. Let P ∈ R[X] be the characteristic
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polynomial of this matrix. By the theorem of Cayley-Hamilton [69, Theorem 4.3]
we have P (y) = 0 and P is monic because it is a characteristic polynomial. Hence,
y is integral over R.

Lemma 4.2.3. Let R ⊆ S be an integral ring extension. If S is a field then so is
R.

Proof. Let x ∈ S with x 6= 0 be given.2 Since S is a field there exists x−1 ∈ S, and
since R ⊆ S is integral, there are an−1, . . . , a0 ∈ R such that

x−n + an−1x
−n+1 + · · ·+ a1x

−1 + a0 = 0.

By multiplying this equation by xn−1 and isolating x−1 we get

x−1 = −an−1 − · · · − a1x
n−2 − a0x

n−1 ∈ R.

Therefore, R is a field.

Motivation 4.2.4. Our proof of Zariski’s lemma uses induction on the number n
of generators and reduction to the case n = 2. Therefore, we first consider the cases
n = 1 and n = 2 in the next two lemmas.

Lemma 4.2.5. Let K be a field and R be an algebra over K, which is a field.
Suppose that R = K[x] for some x ∈ R. Then x is algebraic over K.

Proof. If x = 0, it is obvious that x is algebraic over K. If x 6= 0, there is p ∈ K[X]
with xp(x) = 1 because R = K[x] and R is a field. We set q := Xp − 1 ∈ K[X].
Then q 6= 0 because p 6= 0 and deg(Xp − 1) > 0, and so q(x) = 0 is an algebraic
equation for x.

Lemma 4.2.6. Let K be a field and R be an algebra over K, which is a field.
Suppose that R = K[x1, x2] for some x1, x2 ∈ R. Then x1, x2 are algebraic over K.

Proof. We show that x1 is algebraic. The argument for x2 is analogous. If x2 = 0 we
are done by Lemma 4.2.5. Otherwise, we have p ∈ K[X1, X2] with p(x1, x2)x2 = 1.
Therefore, q := Xp(x1, X) − 1 is a polynomial in K[x1][X] with q(x2) = 0 and
q 6= 0 as its constant coefficient is −1. Let y ∈ K[x1] be the leading coefficient
of q, which is non-zero by definition. Then K[x1, y

−1] ⊆ K[x1, x2] is an integral
ring extension by Lemma 4.2.2 because x2 is integral over K[x1, y

−1] witnessed by
y−1q ∈ K[x1, y

−1][X]. Thus, K[x1, y
−1] is a field by Lemma 4.2.3.

2Note that x 6= 0 is an assumption. Therefore, we do not need that R is discrete in the
computational interpretation of this lemma, i.e. in Lemma 4.3.12.
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With this preparation we are now able to construct a non-zero polynomial with
root x1. By y ∈ K[x1], there is f ∈ K[X] such that f(x1) = y. If f ∈ K then
K[x1, y

−1] = K[x1] and we are done by Lemma 4.2.5. We assume f ∈ K[X] \ K.
If 1 − f(x1) = 0 then x1 is algebraic over K. Otherwise, 1 − f(x1) is invertible3

in K[x1, y
−1], and therefore there is h ∈ K[X] and N ∈ N with (1 − f(x1))−1 =

h(x1)y−N = h(x1)f(x1)−N . Consequently, we have

f(x1)N − h(x1)(1− f(x1)) = 0.

It remains to show that fN −h(1− f) 6= 0 in K[X]. By the binomial theorem there
is a g ∈ K[X] with fN = 1 + (1− f)g, hence

fN − h(1− f) = 1 + (1− f)(g − h).

Since f in non-constant, also 1−f is non-constant. Now assume that fN−h(1−f) =
0 then g − h = 0 as otherwise deg((1− f)(g − h)) > 0 and 1 + (1− f)(g − h) 6= 0.
But then 0 = 1, a contradiction.

Theorem 4.2.7 (Zariski’s lemma). Let K be a field and R be an algebra over
K, which is a field. Suppose that R = K[~x] for some ~x ∈ R. Then ~x are algebraic
over K.

Proof. If n = 0, there is nothing to show, and if n = 1, the statement follows by
Lemma 4.2.5.

For n ≥ 2, we use induction over n. The base case n = 2 is done in Lemma 4.2.6.
For the induction step, we assume n ≥ 3. Let L := K(x1) := Quot(K[x1]). Since R
is a field, we have L ⊆ R and thus L[x2, . . . , xn] = R. By induction xi is algebraic
over L for all i ∈ {2, . . . , n} . Therefore, there are a monic polynomials fi ∈ L[X]
with fi(xi) = 0 for all i ∈ {2, . . . , n}. Let vi be the product of the denominator of
all coefficients in fi and v :=

∏n
i=2 vi. Then, v is invertible as product of non-zero

elements, and all xi are integral over K[x1, v
−1]. In particular, K[x1, v

−1] ⊆ K[~x]
is an integral ring extension by Lemma 4.2.2, and K[x1, v

−1] is a field by Lemma
4.2.3. Hence, x1 is algebraic over K by Lemma 4.2.6.

3The idea to take 1−f(x1) is based on a note by Daniel Wessel [178] and a personal conversation
with Henri Lombardi. Inspired by [163], the author’s first approach was to take g(x1) for some
irreducible g ∈ K[X] with g - f . This is also possible if one can give a construction for such a g.
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4.3 Computational interpretation

4.3.1 Preliminary

Motivation 4.3.1. In this section, we develop the algorithmic version of Zariski’s
lemma. For each lemma in the last section, we state a “sub”-algorithm and after
this algorithm we give a lemma or theorem which describes the properties of this
algorithm. This can be seen as the computational interpretation of the original
statement.

Before formulating the entire algorithm and the computational interpretation, we
first have to make clear on which objects this algorithm operates. More specifically:
if we state an algorithm about a field, we do not use the field axioms in the algorithm
but we will use the field structure like +, ·, 0, 1 and so on. Therefore, we will first
define the underlying structures precisely.

Definition 4.3.2. In the setting of this chapter a ring structure (R,+, ·, 0, 1,−,=)
is a set R equipped with an addition operator + : R × R → R, a multiplication
operator · : R × R → R, a zero element 0 ∈ R, an unit element 1 ∈ R, an additive
inverse function − : R → R and an equality = ⊆ R × R. If furthermore = is an
equivalence relation and compatible with +, ·,− (i.e. = is a congruence relation on
(R,+, ·, 0, 1,−)) and the other ring axioms are fulfilled (w.r.t. the equality =), R is
a ring. In our case a ring is always commutative. We call (K,+, ·, 0, 1,−, −1,=) a
field structure if (K,+, ·, 0, 1,−,=) is a ring structure and −1 : K → K is a map. If
K is a ring such that xx−1 = 1 ∨ x = 0 for all x ∈ K and 0 6= 1, we call K a field.

The notions discrete ring structure and discrete field structure are analogously
defined as discrete rings and discrete fields, respectively. In particular, if a structure
is discrete, we can freely use their operators in the algorithms.

Since the notation of +, ·, 0, 1,−,−1 and = will not change, we do not mention it
and just say that R is a ring (structure) or K is a field (structure). A homomorphism
φ : R → S between two ring structures R and S is a map on the underlying sets
which preserves the structure in the canonical way.

For a ring structure R we define the ring structure of polynomials R[X] with
coefficients in R by the well-known construction. Formally, the underlying set of
R[X] is the set R∗ of all finite sequences in R. For n ∈ N we have also the polynomial
ring structure in n variables denoted by R[X1, . . . , Xn]. It consists of all sums∑

I∈I aI
∏ ~XI where I ∈ Pfin(Nn) and aI ∈ R.

An algebra structure R over a field structure K, or short K-algebra structure,
is a ring structure together with a map K → R. If R is a ring, K is a field and
the map K → R is a homomorphism, we call it K-algebra. For a K-algebra R and
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x1, . . . , xn ∈ R we get an extension K[X1, . . . , Xn] → R of the homomorphism by
Xi 7→ xi. We denote the image by K[x1, . . . , xn], where an element is in the image
of a homomorphism if it is equal (w.r.t. =) to a value of the homomorphism.

Remark 4.3.3. It can be easily observed that Lemma 4.1.5 is also valid if R is just
a discrete ring structure instead of a discrete ring, and if R is discrete, so is R[ ~X].

In terms of model theory, a ring structure is a structure in the language of rings,
and a ring is a model of the theory of (commutative) rings, and analogously for
fields and algebras.

Motivation 4.3.4. In Zariski’s lemma a K-algebra K[~x] is given. In particular,

there is a surjective homomorphism from K[ ~X] to K[~x]. It is well-known that the
existence of a right-inverse of a surjection is only implied by the axiom of choice.
Hence, instead of using the right inverse of this homomorphism computationally,
we are working on the level of the polynomial rings. In particular, we need a
computational interpretation of K[~y] ⊆ K[~x] being a ring extension and of K[~x]
being a field on the level of polynomials.

Definition 4.3.5. Let K be a field, R a K-algebra and ~x, ~y ∈ R. We say that
K[~y] ⊆ K[~x] is a ring extension of K-algebras witnessed by ~h := h1, . . . , hm ∈ K[ ~X]

if hi(~x) = yi for all i ∈ {1, . . . ,m}. In short notation we write ~h(~x) = ~y.

Definition 4.3.6. Let a field K, a K-algebra R and elements ~x ∈ R be given. A
function ι : K[ ~X]→ K[ ~X] is called algebraic inverse function on K[~x] if

(ι(f))(~x)f(~x) = 1

for all f ∈ K[ ~X] with f(~x) 6= 0.

Remark 4.3.7. Note that an algebraic inverse function on K[~x] does not have to

be compatible with the equality relation on the ring structure K[ ~X].

From an algebraic inverse function on K[~x] and a right inverse of the surjection

K[ ~X]→ K[~x] we get thatK[~x] is a field. However, in our constructive considerations
we use terms like K[~x] only as mode of speaking like in the two definitions above.
In particular, we avoid terms like R = K[~x] or a ∈ K[~x] since constructively this in
general not decidable.

In the light of this definition: an algorithm which realises Zariski’s lemma, takes
an algebraic inverse function on K[~x] as input and returns non-constant polynomials
f1, . . . , fn ∈ K[X] with fi(xi) = 0 for all i ∈ {1, . . . , n}.
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4.3.2 Some algorithms for integral extensions of algebras

Motivation 4.3.8. In this and the next section we transform the statements of
Section 4.2 into algorithms and prove their correctness. Here we use the notions of
Definition 4.3.2, 4.3.5 and 4.3.6 and the proof of the respective statement. In this
section we start with the statements about integral extension, i.e. Lemma 4.2.2 and
Lemma 4.2.3.

Algorithm 4.3.9. Given a field structureK, f ∈ K[ ~X] and ki ∈ N; g
(i)
ki−1, . . . , g

(i)
0 ∈

K[~Y ] for each i ∈ {1, . . . , n}. We compute k ∈ N and gk−1, . . . , g0 ∈ K[~Y ] as follows:

1. Define I := {I ∈ Nn|I1 < ki, . . . , In < kn} and for each I ∈ I compute the

finite sum f ~XI =
∑

J∈Nn fIJ
~XJ with fIJ ∈ K.

2. For each I ∈ I and i ∈ {1, . . . , n} replace each Xki
i by−g(i)

ki−1X
ki−1−· · ·−g(i)

0 in∑
J∈Nn fIJ

~XJ one by one until we obtain a polynomial of the form
∑

J∈I gIJ
~XJ

with gIJ ∈ K[~Y ].4

3. Compute the characteristic polynomial P ∈ K[~Y ][X] of the matrix (gIJ)I,J∈I
as the determinant of the matrix (δIJX−gIJ)I,J∈I , where δIJX := X if I = J ,
and δIJX := 0 if I 6= J .

4. Let P =
∑l

i=0 giX
i for some l ∈ N and gi ∈ K[~Y ]. Return k :=

∏n
i=1 ki and

the first k coefficients gk−1, . . . , g0 of P , where gi := 0 if i > l.

Lemma 4.3.10. In the situation of Algorithm 4.3.9 we assume that K is a field,
R is a K-algebra and ~x, ~y ∈ R with

xkii + g
(i)
ki−1(~y)xki−1

i + · · ·+ g
(i)
0 (~y) = 0 (4.2)

for all i ∈ {1, . . . , n}. Then

(f(~x))k + gk−1(~y)(f(~x))k−1 + · · ·+ g0(~y) = 0.

Proof. We define the K[~Y ]-module M := K[~Y ][ ~X]/〈G1, . . . , Gn〉 where Gi := Xki +

g
(i)
ki−1X

ki−1 + · · ·+g
(i)
0 for all i, and go through the steps of Algorithm 4.3.9. Because

of the notation in Step 1 and the process in Step 2, we have∑
J∈Nn

fIJ ~X
J =

∑
J∈I

gIJ(~Y ) ~XJ

4Note that we do not determine an order in which these replacement has to take place. There-
fore, the result is not unique without any further assumptions. However, this is not necessary and
Lemma 4.3.10 holds independently of the chosen order.
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in M or in other words∑
J∈Nn

fIJ ~X
J −

∑
J∈I

gIJ(~Y ) ~XJ ∈ 〈G1, . . . , Gn〉

considered in K[~Y ][ ~X]. Note that ( ~XI)I∈I is a set of generators of M and multi-
plication with f corresponds to the matrix (gIJ)I,J∈I . Let P be the characteristic
polynomial as in Step 3. By the theorem of Cayley-Hamilton, P (f) = 0 in M , hence

P (f) ∈ 〈G1, . . . , Gn〉 in K[~Y ][ ~X]. By Formula 4.3.10, we have Gi(~y, ~x) = 0 for all
i, and hence 0 = P (f)(~y, ~x) = (f(~x))k + gk−1(~y)(f(~x))k−1 + · · · + g0(~y). Here we
have used the definition of the gi in the last step, and deg(P ) = k because k is the
number of elements in I, which is also the cardinality of the generator (xI)I∈I .

Algorithm 4.3.11. Let a field structure K, ~h := h1, . . . , hm ∈ K[ ~X], ι : K[ ~X] →
K[ ~X] and ki ∈ N, g

(i)
ki−1, . . . , g

(i)
0 ∈ K[~Y ] for each i ∈ {1, . . . , n} be given. We define

a map ι̃ : K[~Y ]→ K[~Y ] as follows:

1. Given an input f ∈ K[~Y ], compute p := ι(f(~h)) ∈ K[ ~X].

2. Apply Algorithm 4.3.9 to K, p and ki, g
(i)
ki−1, . . . , g

(i)
0 for each i ∈ {1, . . . , n} to

get k ∈ N and gk−1, . . . , g0 ∈ K[~Y ].

3. Return −gk−1 − gk−2f − · · · − g0f
k−1.

Lemma 4.3.12. In the situation of Algorithm 4.3.11 we assume that K is a field,
R is a K-algebra and ~x, ~y ∈ R such that K[~y] ⊆ K[~x] is an extension of K-algebras

witnessed by ~h, ι is an algebraic inverse function and

xkii + g
(i)
ki−1(~y)xki−1

i + · · ·+ g
(i)
0 (~y) = 0

for all i ∈ {1, . . . , n}. Then ι̃ is an algebraic inverse function on K[~y].

Proof. Let f ∈ K[~Y ] with f(~y) 6= 0 be given. Since ~h is a witness that K[~y] ⊆ K[~x]

is an extension of K-algebras, we have f(~h(~x)) = f(~y) 6= 0. Let p be given as in Step
1. Then p(~x)f(~y) = 1 since ι is an algebraic inverse function. By Lemma 4.3.10 we
have

(p(~x))k + gk−1(~y)(p(~x))k−1 + · · ·+ g0(~y) = 0.

Multiplying this with (f(~y))k−1 and isolating p(~x) leads to

p(~x) = (−gk−1 − gk−2f − · · · − g0f
k−1)(~y) = ι̃(f)(~y).
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Remark 4.3.13. We have not defined a computational interpretation of K[~y] ⊆
K[~x] being an integral extension. The reason is that we only need an integral
equation on the level of polynomials for ~x as in Algorithm 4.3.9 and Lemma 4.3.10.
Using this algorithm and this lemma we get an integral equation of any f(~x) on
the level of polynomials, hence we do not need to define the notion of an integral
extension of K-algebras explicitly.

4.3.3 An algorithm for Zariski’s lemma

Algorithm 4.3.14. Given a discrete field structure K, a discrete K-algebra struc-
ture R, x ∈ R and ι : K[X]→ K[X], we compute an element f ∈ K[X] as follows:

1. If x = 0, return X.

2. If x 6= 0, return Xι(X)− 1.

Lemma 4.3.15. In the situation of Algorithm 4.3.14 we assume that K is a field,
R is a K-algebra, x ∈ R and ι is an algebraic inverse function on K[x]. Then f is
non-constant and f(x) = 0, i.e. x is algebraic over K.

Proof. The case distinction is allowed since R is discrete. If x = 0, it is trivial. If
x 6= 0 then f = Xι(X) − 1 is obviously not constant zero and f(x) = 0 by the
definition of an algebraic inverse function.

Algorithm 4.3.16. Let a discrete field structure K, a discrete K-algebra structure
R, two elements x1, x2 ∈ R and ι : K[X1, X2] → K[X1, X2] be given. We compute
f1, f2 ∈ K[X] as follows starting with f1:

1. If x2 = 0, we use Algorithm 4.3.14 with input K, R, x1 ∈ R and ι′ : K[X]→
K[X] defined by ι′(p) := ι(p(X1))(X, 0) and return the output as f1.

2. Otherwise, compute ι(X2) and define g as the polynomial which comes from
X2ι(X2)−1 ∈ K[X1, X2] by dropping each coefficient p ∈ K[X1] with p(x1) = 0
and let h ∈ K[X1] be the leading coefficient of g (and 1 if g = 0).

3. Apply Algorithm 4.3.11 to the input K, ~h := (X1, ι(h)), ι, g
(1)
0 = Y1 and

g
(2)
k2−1, . . . , g

(2)
0 ∈ K[Y1, Y2], where g

(2)
k2−1, . . . , g

(2)
0 are the coefficients of Y2g(Y1, X)

except the leading coefficient. Let ι̃ : K[Y1, Y2] → K[Y1, Y2] be the output of
this algorithm.

4. If deg(h) = 0, i.e. h = h0 for some h0 ∈ K, apply Algorithm 4.3.14 to K, R,
x1 ∈ R and ι′ : K[X] → K[X] given by ι′(p) := ι̃(p(Y1))(X, h−1

0 ) and return
the output of this algorithm as f1.



96 CHAPTER 4. AN ALGORITHMIC VERSION OF ZARISKI’S LEMMA

5. Otherwise, check if 1− h(x1) = 0. If yes, return f1 := 1− h(X).

6. If no, compute ι̃(1− h(Y1)) =
∑N

i=0 aiY
i

2 with ai ∈ K[Y1] and aN 6= 0; define

q :=
N∑
i=0

ai(h(Y1))N−i ∈ K[Y1]

and return f1 := h(X)N − (1− h(X))q(X).

Exchange x1 and x2 and repeat the steps above to compute f2 ∈ K[X].

Lemma 4.3.17. In the situation of Algorithm 4.3.16 we assume that K is a field,
R is a K-algebra, x1, x2 ∈ R and ι is an algebraic inverse function on K[x1, x2].
Then f1(x1) = f2(x2) = 0 and f1, f2 are non-constant.

Proof. It suffices to consider f1 since the statement with f2 is proven analogously.
We follow the algorithm step by step. If x2 = 0 in Step 1, we use Lemma 4.3.14.
That ι′ is an algebraic inverse function on K[x1] follows from

(ι(p(X1)))(x1, 0)p(x1) = (ι(p(X1))p(X1))(x1, x2) = 1

for all p ∈ K[X] with p(x1) 6= 0.
In Step 2 note that g(x1, x2) = x2ι(X2)(x1, x2)−1 = 0 and the constant coefficient

of g (as polynomial in X2) is equal to −1.
In Step 3 it is obvious that X1, ι(h) is a witness of K[x1, ι(h)(x1, x2)] ⊆ K[x1, x2]

being an extension of K-algebras and x1 − g
(1)
0 (x1, ι(h)(x1, x2)) = x1 − x1 = 0.

Furthermore, let g =
∑k2

i=0 giX
i
2 for some gi ∈ K[X1] with gk2 6= 0. Then h = gk2 ,

g
(2)
i (Y1, Y2) = gi(Y1)Y2 for all i < k2, and therefore

0 = ι(h)(x1, x2)g(x1, x2) = xk22 +

k2−1∑
i=0

gi(x1)ι(h)(x1, x2)xi2

= xk22 +

k2−1∑
i=0

g
(2)
i (x1, ι(h)(x1, x2))xi2.

Hence, ι̃ is an algebraic inverse function on K[x1, ι(h)(x1, x2)] by Lemma 4.3.12.
If deg(h) = 0 in Step 4, we have h = h0 for some h0 ∈ K and h0 6= 0 because h is

a leading coefficient. Therefore, it follows ι(h)(x1, x2) = h−1
0 and we apply Lemma

4.3.15 to K[x1] = K[x1, h
−1
0 ]. In order to apply this lemma it remains to show that

ι′ is an algebraic inverse function. If p ∈ K[X] with p(x1) 6= 0 then

(ι′(p))(x1)p(x1) = (ι̃(p(Y1)))(x1, h
−1
0 )p(x1) = (ι̃(p(Y1))p(Y1))(x1, h

−1
0 ) = 1.
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Hence, in the following we may assume deg(h) 6= 0.
In the case of Step 5 f1 is non-constant since deg(h) 6= 0, and f(x1) = 0 by the

case assumption.
In Step 6 we have 1− h(x1) 6= 0 and

q(x1)(ι(h)(x1, x2))N = ι̃(1− h(Y1))(x1, ι(h)(x1, x2)).

Since ι and ι̃ are algebraic inverse functions and h 6= 0 and 1− h 6= 0, it follows

q(x1)(1− h(x1)) = (h(x1))N .

Hence, for f1 := h(X)N − (1− h(X))q(X) we have f1(x1) = 0 and f1 6= 0 similar to
the end of the proof of Lemma 4.2.6.

Algorithm 4.3.18. Let a discrete field structure K, a discrete K-algebra structure
R, n > 0 and ~x ∈ R be given. We define a field structure as follows:

L :=

{
f

g

∣∣∣∣ f, g ∈ K[X], g(x1) 6= 0 ∨ 0 = 1

}
,

f1

g1

=
f2

g2

:⇔ f1(x1)g2(x1) = f2(x1)g1(x1),

f1

g1

+
f2

g2

:=

{
f1g2+f2g1

g1g2
if (g1g2)(x1) 6= 0

0
1

else
,

f1

g1

f2

g2

:=

{
f1f2
g1g2

if (g1g2)(x1) 6= 0
0
1

else
,

0 :=
0

1
, 1 :=

1

1
,

−f
g

:=
−f
g
,

(
f

g

)−1

:=

{
g
f

if f(x1) 6= 0
0
1

else

For a given map ι : K[ ~X]→ K[ ~X] we define a map φ : L→ R, f
g
7→ f(x1)(ι(g))(x1),

which turnsR into an L-algebra structure. Furthermore, we define ι̃ : L[X2, . . . , Xn]→
L[X2, . . . , Xn] as follows:

1. Given an input p ∈ L[X2, . . . , Xn]. It has the presentation

p =
∑
i2,...,in

fi2...in
gi2...in

X i2
2 · · ·X in

n ,

for finitely many fi2...in , gi2...in ∈ K[X].
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2. Let a ∈ K[X] be the product of all these gi2...in , and for j2, . . . , jn let hj2...jn
be the product of all these gi2...in except gj2...jn .

3. Define f̃i2...in := fi2...inhi2...in and p̃ :=
∑

i2,...,in
f̃i2...in(X1)X i2

2 · · ·X in
n and set

ι̃(p) := (a(X1)ι(p̃))

(
X

1
, X2, . . . , Xn

)
,

where we consider b ∈ K also as the element b
1
∈ L.

Remark 4.3.19. In the algorithm above the definition of L and the operators are
more complicated than one might expect. This is the case because we do not have
any axioms available but we have to define the algorithm in each case.

As already mentioned, we can not define L as
{
a
b
| a, b ∈ K[x1], b 6= 0 ∨ 0 = 1

}
,

which is the field of fractions of K[x1] if it is an integral domain, as we want to avoid
terms like a ∈ K[x1], which are constructively delicate. In particular, there is in
general no map which takes a ∈ K[x1] and returns f ∈ K[X] with f(x1) = a without
using the axiom of choice. Therefore, we operate on the level of polynomials.

Lemma 4.3.20. In the situation of Algorithm 4.3.18 we assume that K is a field,
R is a ring, ~x ∈ R and ι is an algebraic inverse function on K[~x]. Then L is indeed
a discrete field. Given ι, the map L → K[~x], f

g
7→ f(x1)(ι(g))(x1) turns R into an

L-algebra and ι̃ is an algebraic inverse function on L[x2, . . . , xn].

Proof. L is a discrete field because in the definition of L and its operators we only
use the operators of K and K[ ~X].

By using the property of an algebraic inverse function, it is also straightforward
to check that the map φ is a homomorphism.

It remains to prove that ι̃ is an algebraic inverse function on L[x2, . . . , xn]. For
this let p ∈ L[X2, . . . , Xn] with p(x2, . . . , xn) 6= 0 be given. We take the representa-
tion of p as in Step 1 of the algorithm, a be defined as in Step 2 and f̃i2...in and p̃ as
in Step 3. We calculate

p(x2 . . . , xn)a(x1) =
∑
i2,...,in

φ

(
f̃i2...in

1

)
xi22 · · ·xinn

=
∑
i2,...,in

f̃i2...in(x1)xi22 · · ·xinn = p̃(x1, . . . , xn).

We have a(x1) 6= 0 as it is a product of non-zero factors. Hence, if p(x2, . . . , xn) 6= 0,
also p̃(x1, . . . xn) 6= 0. Since additionally ι is an algebraic inverse function,

ι(p̃)(x1, . . . , xn) = (p̃(x1, . . . , xn))−1,
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and therefore

(p(x2, . . . , xn))−1 = a(x1)(p̃(x1, . . . , xn))−1 = a(x1)(ι(p̃))(x1, . . . , xn)

= (a(X1)ι(p̃))

(
X

1
, x2, . . . , xn

)
.

Algorithm 4.3.21. Let K be a discrete field structure, R be a discrete K-algebra
structure, ι : K[ ~X]→ K[ ~X] be a map and x1, . . . , xn ∈ R. We compute f1, . . . , fn ∈
K[X] by recursion over n as follows:

1. If n = 0, return the empty list. If n = 1, use Algorithm 4.3.14 with input K,
R, x1 and ι, and return the output f1. If n = 2, use Algorithm 4.3.16 with
input K; R; x1, x2 ∈ R and ι, and return the output f1, f2.

2. Apply Algorithm 4.3.18 to K, R, n, ~x and ι, and let the field structure L and
the map ι′ : L[X2, . . . , Xn]→ L[X2, . . . , Xn] be the output.

3. By recursion apply the algorithm to L, the L-algebra structure R, ι′ and
x2, . . . , xn ∈ R to get F̃2, . . . , F̃n ∈ L[X].

4. For each i we define Fi as F̃i divided by its leading coefficient and replacing
the leading coefficient by 1 (or Fi := 1 if F̃i = 0).5 In particular,

Fi = Xni +

ni−1∑
j=0

aij
bij
Xj

for some aij, bij ∈ K[X].

5. Let v :=
∏

(k,l) bkl ∈ K[X], b̃ij :=
∏

(k,l)6=(i,j) bkl, and ãij := b̃ijaij. Define

Gi :=

ni∑
j=0

ãij(Y1)Y2X
j ∈ K[Y1, Y2, X].

6. Use Algorithm 4.3.11 with input K, ~h := (X1, ι(v)), ι, k1 := 1, g
(1)
0 := Y1 and

for i ∈ {2, . . . , n} take ki := ni and g
(i)
ni−1, . . . , g

(i)
0 , which be the non-leading

coefficients of Gi. Let ι̃ be the output.

5This replacement is necessary as the field axioms do not have to be fulfilled.
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7. Apply Algorithm 4.3.16 to the input K, R, x1, ι(v)(x1) ∈ R and ι̃, and define
f1 ∈ K[X] as the first polynomial of the output.

8. For each i ∈ {2, . . . , n} exchange x1 with xi and repeat the processes starting
at Step 2 to get fi instead of f1. Then return f1, . . . , fn.

Theorem 4.3.22 (Algorithmic version of Zariski’s lemma). In the situation
of Algorithm 4.3.21 we assume that K is a field, R is a K-algebra and ι is an
algebraic inverse function on K[x1, . . . , xn]. Then f1(x1) = · · · = fn(xn) = 0 and
f1, . . . , fn are non-constant.

Proof. We use induction on n and consider the algorithm step by step. If n = 0,
there is nothing to show. If n = 1, the statement follows by Lemma 4.3.15. If n = 2,
the statement follows by Lemma 4.3.17.

In Step 2 we use Lemma 4.3.20 to obtain that L is a field, R is an L-algebra and
ι′ is an algebraic inverse function on L[x2, . . . , xn].

In Step 3 and 4 we have F2(x2) = · · · = Fn(xn) = 0 by the induction hypothesis.
Note that Fi is indeed F̃i divided by its leading coefficient since L is a field.

In Step 5 we have Fi = Gi(x1, v
−1, X) as a polynomial in R[X], and therefore

0 = Fi(xi) = Gi(x1, (v(x1))−1, xi). Thus, the non-leading coefficients of Gi (as poly-
nomials in X) witness that xi is integral over K[x1, ι(v)(x1)] for each i ∈ {2, . . . , n}.

In Step 6 we use Lemma 4.3.12. The requirements of this lemma are fulfilled by
the notes to Step 5. Hence, ι̃ is an algebraic inverse function on K[x1, ι(v)(x1)].

In Step 7 we get f1(x1) = 0 and f1 is non-constant by Lemma 4.3.17.
In Step 8 fi(xi) = 0 and fi 6= 0 for i ∈ {2, . . . , n} follows analogous to the case

i = 1.

4.4 Application: representation of maximal ideals

in polynomial rings over algebraically closed

fields

Motivation 4.4.1. In this section we consider the theorem that each maximal
ideal in K[ ~X] for an algebraically closed field K has the form 〈X1−x1, . . . , Xn−xn〉
for some x1, . . . , xn ∈ K. This theorem is proven by using Zariski’s lemma, and we
use the same approach as for the proof of Zariski’s lemma described in Motivation
4.0.1.

However, being a maximal ideal is constructively a highly strong assumption.
Hence, from an constructive point of view this theorem is not very valuable, but in
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the next section we illustrate how one could use the results in this section together
with the results in Chapter 3 to get an algorithm for Hilbert’s Nullstellensatz.

As before, we start by giving a constructive proof of the statement:

Proposition 4.4.2. Let K be an algebraically closed field and M ⊆ K[ ~X] be a
maximal ideal, then there are y1, . . . , yn ∈ K such that M = 〈X1− y1, . . . , Xn− yn〉.

Proof. We consider the ring R := K[ ~X]/M . Obviously R = K[Xi + M, . . . , Xi +
M ]. Since M is maximal, R is a field. By Zariski’s lemma there are non-constant
polynomials f1, . . . , fn ∈ K[X] with fi(Xi + M) = 0, i.e. fi(Xi) ∈ M . Since K is
algebraically closed, fi = ai

∏
j(Xi−xij) for some ai, xij ∈ K and ai 6= 0. Due to the

fact thatM is maximal and ai 6= 0, for each i there is ji withXi−xiji ∈M . We define

xi := xiji . Now, let f ∈ M be given, then there are g1, . . . , gn ∈ K[ ~X] such that
f = f(x1, . . . , xm) +

∑n
i=1 gi(Xi − xi), which are constructed in the remark below.

Since X1 − x1, . . . , Xn − xn ∈ M , also f(x1, . . . , xm) ∈ M . But M is maximal and
f(x1, . . . , xm) ∈ K, therefore f(x1, . . . , xm) = 0 and f ∈ 〈X1−x1, . . . , Xn−xn〉.

Remark 4.4.3. Given elements x1, . . . , xn ∈ K and f ∈ K[ ~X] one can compute

g1, . . . , gn ∈ K[ ~X] with f = f(y1, . . . , yn) +
∑n

i=1 gi(Xi − yi) by recursion on n as
follows: For n = 0, there is nothing to show. For n > 0, let f =

∑m
i=0 aiX

i
n with

ai ∈ K[X1, . . . , Xn−1]. Then we have

f =
m∑
i=0

ai(Xn − xn + xn)i =
m∑
i=0

ai

i∑
j=0

(
i

j

)
(Xn − xn)jxi−jn

=(Xn − xn)
m∑
i=0

ai

i∑
j=1

(
i

j

)
(Xn − xn)j−1yi−jn +

m∑
i=0

aix
i
n

=(Xn − xn)
m∑
i=0

ai

i∑
j=1

(
i

j

)
(Xn − xn)j−1xi−jn + f(X1, . . . , Xn−1, xn),

and finalize by using recursion on f(X1, . . . , Xn−1, xn) ∈ K[X1, . . . , Xn−1].
Therefore, the computational challenge of Proposition 4.4.2 is basically to find

the elements x1, . . . , xn ∈ K. We continue by defining the structure on which the
algorithm shall operate.

Definition 4.4.4. Let (R,+, ·, 0, 1,−,=) be a ring structure and M ⊆ R be a
decidable subset of M , i.e. we decide whether x ∈ M or x /∈ M in our algorithms.
We define a new ring structure R/M by R/M := (R,+, ·, 0, 1,−,=′), where the set
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and all operators stay the same, except the equality, which is defined by a =′ b ⇔
a− b ∈M .

To avoid any confusion, we often use the notation x+M for x ∈ R if we want to
make clear that we are considering the ring structure R/M . In particular, we write
a+M = b+M for a− b ∈M .

Motivation 4.4.5. The next two definitions are the computational interpretation
of a maximal ideal and an algebraically closed field. In both cases, the computational
content consists out of the corresponding object and a witness function. In the case
of a maximal object, the witness function provides evidence why an element is not
in the maximal ideal. This is similar to the notion of an explicit maximal object in
Definition 3.2.11. In the case of an algebraically closed field, the witness function
allocates its zeros to each non-zero polynomial.

Definition 4.4.6. Let R be a discrete ring. We call a decidable subset M ⊆ R
together with a function ν : R→ R an explicit maximal ideal if M is a proper ideal
and xν(x)− 1 ∈M for all x ∈ R \M .

Definition 4.4.7. We call a discrete field K together with a function Γ : K[X]→
K∗ an explicit algebraically closed field if f = a

∏n
i=1(X−xn) for each 0 6= f ∈ K[X]

and Γ(f) = [x1, . . . , xn], where a is the leading coefficient of f .

Algorithm 4.4.8. Let a discrete field structure K, a map Γ : K[X] → K∗, a

decidable subset M ⊆ K[ ~X] and a map ν : K[ ~X] → K[ ~X] be given. We compute
x1, . . . , xn ∈ K as follows:

1. We apply Algorithm 4.3.21 to the field structure K, the K-algebra structure
K[X]/M , the map ν : K[ ~X] → K[ ~X] and X1 + M, . . . , Xn + M ∈ K[ ~X]/M .
Let f1, . . . , fn ∈ K[X] be the output.

2. For each i compute Γ(fi) = [xi1, . . . , ximi ] and check if there is xij with Xi −
xij ∈M . If yes, define xi := xij. If not, define xi := 0.

3. Return the list x1, . . . , xn.

Theorem 4.4.9. In the situation of Algorithm 4.4.8 we assume that K,Γ is an
explicit algebraically closed field and M, ν is an explicit maximal ideal. Then M =
〈X1 − x1, . . . , Xn − xn〉, i.e. for a given f ∈ M there are g1, . . . , gn ∈ K[ ~X] with
f =

∑n
i=1 gi(Xi − xi).
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Proof. One can easily check that ν is an algebraic inverse function on K[X1 +
M, . . . , Xn + M ]. By Theorem 4.3.22 we have fi(Xi + M) = 0 for all i. Therefore,
Xi +M must be equal to one of the zeros in the list [xi1 +M, . . . , ximi +M ] by the
property of an explicit algebraically closed field, and thus Xi − xij ∈ M for some
j. Similar to Remark 4.4.3 and the end of the proof of Proposition 4.4.2, it follows
〈X1 − x1, . . . , Xn − xn〉 ⊆M .

4.5 Outlook: an algorithm for Hilbert’s Nullstel-

lensatz

Motivation 4.5.1. We conclude this chapter by an outlook on how to use the
constructed algorithms in conjunction with Algorithm 3.3.6 of Chapter 3 to get an
algorithm for Hilbert’s Nullstellensatz. In a nutshell, we use a kind of backtracking
for the algorithms which we have developed above in this chapter.

However, this process is highly tedious and can not be carried out on paper in
detail since the time and space for this dissertation is limited. Hence, in the following
subsection we will just sketch how the approach works. Therefore, this section is
marked as an outlook and we do not claim that everything in this section is proven
in detail and without any doubt correct.

We want to compare this with the following situation: In a chess game, if black
starts without its queen, everyone (who is familiar with chess) would be convinced
that white (who still has its queen) must have a winning strategy. However, a
proof of this is way to complex since there are more possible positions in chess than
elementary particles in the visible universe. In contrast to this, we are convinced
that our approach can be formalised without using each elementary particle in the
visible universe and even in lifetime, maybe by using computer support.

Our result is similar to [57]. In Section 2 of this paper Coste, Lombardi and Roy
developed an algorithm for Hilbert’s Nullstellensatz. A constructive proof can also
be found in [122, Section 3 of Chapter VIII]. We start our outlook by formulating
a version of Hilbert’s Nullstellensatz and providing the classical proof which comes
from Oskar Zariski [188]. We first consider the weak version of Hilbert’s Nullstellen-
satz because the strong version is a corollary of the weak version, where the standard
proof is already constructive as we see in Corollary 4.5.23.

Theorem 4.5.2 (Hilbert’s Nullstellensatz). Let K be an algebraically closed

field and f1, . . . , fm ∈ K[ ~X] be given. Then either there are g1, . . . , gm ∈ K[ ~X] such
that g1f1 + · · ·+ gmfm = 1 or there are ~x ∈ K with f1(~x) = · · · = fm(~x) = 0.
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Proof. Assume g1f1 + · · ·+gmfm 6= 1 for any g1, . . . , gm ∈ K[ ~X], then 〈f1, . . . , fm〉 ⊆
K[ ~X] is a proper ideal, and hence there is a maximal ideal M which contains

f1, . . . , fm. Then K[ ~X]/M is a field and a finitely generated K-algebra. By Zariski’s

lemma, each Xi + M ∈ K[ ~X]/M is algebraic over K. Hence, there are monic
h1, . . . , hn ∈ K[X] with hi(Xi + M) = 0. Since K is algebraically closed, hi =∏

j(X − yij) for all i and finitely many yij ∈ K. Therefore, for each i there is an ji
with Xi + M − yiji = 0, i.e. Xi − yi ∈ M for yi := yiji . Since also f1, . . . , fm ∈ M ,
it follows fi(y1, . . . , yn) = 0 for all i similar to the proof of Proposition 4.4.2 and
Remark 4.4.3.

Remark 4.5.3. One sees that this proof is an extension of the proof of Proposition
4.4.2. The difference is that in this proof the maximal ideal is not already given and
therefore we need transfinite methods. However, we only need maximal ideals in
the proof of Hilbert’s Nullstellstsatz but not in its statement. This is quite similar
to the universal Krull-Lindenbaum lemma given in Section 3.4.

4.5.1 The material interpretation of Zariski’s lemma

Motivation 4.5.4. The algorithmic version of Zariski’s lemma has the following
form: If some axioms about the structures in the algorithm (like the field axioms,
algebra axioms and the property of an algebraic inverse functions) are fulfilled then
the computed f1, . . . , fn are non-constant and fi(xi) = 0 for all i.

In order to use Algorithm 3.3.6 to approximate the maximal ideal which we
need in the proof of Hilbert’s Nullstellensatz, we have to make a so-called material
interpretation of the algorithmic version. In particular, instead of proving A ⇒ B
we prove a strong version of ¬A ∨ B. From a computational point of view, the
second statement is stronger, since we at least have to decide which side of the
disjunction holds. In our case we take a stronger form of the negation ¬A as we need
computational information also in this case. For example, one of the assumption is
that a field structure K is indeed a field. The field axioms are universal statements.
Hence, the constructive interpretation of not being a field is a marker with the
number of the axiom which is not fulfilled and a list of elements which provide
the counterexample. For instance, a counterexample to the axiom of multiplicative
commutativity in a ring R is a list [a, b] of two elements in R such that ab 6= ba.
Of course, there is also the field axiom 1 6= 0. A counterexample to this axiom is
simple the empty list.

The notion “material interpretation” comes from the material implication which
is defined as a truth function by using truth tables [120].
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Definition 4.5.5. Here and in the rest of this chapter let a numeration of the field
axioms, ring axioms and algebra axioms be given.

For a field structure K we say that there is an evidence that K is not a field
if there is a concrete counterexample that one of the field axioms is not fulfilled.
Such a counterexample consists of the number i of the not fulfilled axiom and a list
of elements in K with constitute this counterexample. Analogously, we define the
notion that there is an evidence that R is not a ring for a given ring structure and
that there is an evidence that R is not a K-algebra for a given field structure K, a
given ring structure R and a map from K to R (i.e. a K-algebra structure R).

For a given field structure K, ~x ∈ K and a map ι : K[ ~X] → K[ ~X], an evidence

that ι is not an algebraic inverse function on K[~x] is an f ∈ K[ ~X] such that f(~x) 6= 0
and f(~x)(ι(f))(~x)− 1 6= 0.

Remark 4.5.6. Note that an evidence that R is not a K-algebra can also be a
concrete counterexample that the map fromK to R is not a homomorphism although
this map is omitted in the notation.

Motivation 4.5.7. Using the notions from Definition 4.5.5, we are now able to
formulate the material interpretation of the lemmas in this chapter. After each
reformulated lemma, we give an approach for a possible proof which contains also
several comments. If the proof of the reformulated lemma or theorem is not com-
plete, we just call them “claim” or “conjecture”, respectively. We start with Lemma
4.3.15 since this lemma is the most simple one in this chapter and we can even give
a proper proof of it. However, one sees that even for this simple lemma, the proof
of the material interpretation becomes astonishing long.

Lemma 4.5.8. In the situation of Algorithm 4.3.14 let f = 0 or f(x) 6= 0. Then
one of the following statements holds:

• There is evidence that K is not a field.

• There is evidence that R is not a K-algebra.

• There is evidence that ι is not an algebraic inverse function on K[x].

Proof. As in Algorithm 4.3.14 we consider the cases x = 0 and x 6= 0:
In the first case f = X, which is an abbreviation for 1X, and therefore if f = 0

it follows 1 = 0 in K which gives an evidence that K is not a field. If f(x) 6= 0
then 1 · 0 6= 0 in R. But this provides a counterexample to the axiom that 1 is the
neutral element of the multiplication.
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In the second case f := Xι(X) − 1. First we assume f = 0 and consider the
constant coefficients of this polynomial equation and receive −1 = 0 in K. It follows
that either −1 + 1 = 0 − 1 or we have a counterexample that the equality is not
compatible with the addition. Hence, either we have a counterexample to the axiom
that − is the additive inverse function and we are done, or −1 + 1 = 0, and hence
either we have a counterexample that to the axiom that 0 is the neutral element
of the addition or 0 − 1 = 0. Together, either we have a counterexample that the
equality is not transitive, or 0 = 1. Finally, either there is a counterexample to
the symmetry axiom of the equality or 1 = 0 and we have a counterexample to the
axiom 1 6= 0.

In the second case we have f(x) 6= 0, and it follows either f(x) := (Xι(X) −
1)(x) = xι(X)(x)−1 or we get a counterexample to one of the ring axioms. (Details
are left to the reader.) In the last case we are done. In the first case we have either
xι(X)(x) − 1 = 0 and get an counterexample to the transitivity of the equality or
there is evidence that ι is not an algebraic inverse function.

Claim 4.5.9. In the situation of Algorithm 4.3.9 let a K-algebra structure R and
~x, ~y ∈ R be given. Assume

(f(~x))k + gk−1(~y)(f(~x))k−1 + · · ·+ g0(~y) 6= 0,

then one of the following statements holds:

• There is evidence that K is not a field.

• There is evidence that R is not a K-algebra.

• There is an i with xkii + g
(i)
ki−1(~y)xki−1

i + · · ·+ g
(i)
0 (~y) 6= 0

Proof attempt. This lemma is the material interpretation of Lemma 4.3.10. It can
be proven by backtracking the proof of that lemma and Algorithm 4.3.9. Since we
deal with modules, one has to define the concepts of a module structure and an
evidence that a module structure is not a module or at least use them implicitly.

A relevant moment here is that the proof of this lemma uses the theorem of
Cayley-Hamilton. Hence, one also has to backtrack a proof of this theorem. The
proof given in [69, Theorem 4.3] is constructive and can be specialised to our case.

Claim 4.5.10. In the situation of Algorithm 4.3.11 let R be a ring structure and
assume there is evidence that ι̃ is not an algebraic inverse function on K[~y], then
one of the following statements holds:
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• There is evidence that K is not a field.

• There is evidence that ι is not an algebraic inverse function on K[~x]

• There is an i with hi(~x) 6= yi.

• There is an i with xkii + g
(i)
ki−1(~y)xki−1

i + · · ·+ g
(i)
0 (~y) 6= 0.

Proof attempt. This lemma is the material interpretation of Lemma 4.3.12. There-
fore, it can be proven by using backtracking of that lemma and Algorithm 4.3.11
and Claim 4.5.9.

Claim 4.5.11. In the situation of Algorithm 4.3.16 we assume that f1 = 0, f1(x1) 6=
0, f2 = 0 or f2(x2) 6= 0. Then one of the following statements holds:

• There is evidence that K is not a field.

• There is evidence that R is not a K-algebra.

• There is evidence that ι is not an algebraic inverse function on K[x1, x2].

Proof attempt. This lemma is the material interpretation of Lemma 4.3.17. The
proof in done by backtracking the proof of this lemma and Algorithm 4.3.16 and by
using Lemma 4.5.8 and Claim 4.5.10.

Claim 4.5.12. In the situation of Algorithm 4.3.18 we assume that one of the
following assumptions holds:

• There is evidence that L is not a field.

• There is evidence that R is not an L-algebra.

• There is evidence that ι̃ is not an algebraic inverse function on L[x2, . . . , xn].

Then one of the following statements holds:

• There is evidence that K is not a field.

• There is evidence that R is not a K-algebra.

• There is evidence that ι is not an algebraic inverse function on K[~x].

Proof attempt. This lemma is the material interpretation of Lemma 4.3.20. One
needs case distinction on the several cases of the assumption. Each field axiom and
each algebra axiom results in an own case. For the proof one uses backtracking of
Algorithm 4.3.18 and the proof of Lemma 4.3.20.
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Conjecture 4.5.13 (Material interpretation of Zariski’s lemma). In the
situation of Algorithm 4.3.21 we assume that there is an i with fi = 0 or fi(xi) 6= 0.
Then one of the following statements holds:

• There is evidence that K is not a field.

• There is evidence that R is not a K-algebra.

• There is evidence that ι is not an algebraic inverse function on K[~x].

Proof attempt. This lemma is the material interpretation of Theorem 4.3.22. The
proof uses backtracking of Algorithm 4.3.21 and the proof of Theorem 4.3.22 as well
as Claim 4.5.10, Lemma 4.5.8, Claim 4.5.11 and Claim 4.5.12.

Conjecture 4.5.14. Let an explicit algebraically closed field K,Γ, a decidable
subset M ⊆ K[ ~X], a map ν : K[ ~X] → K[ ~X] and polynomials f1, . . . , fm ∈ M be
given. We apply these objects to Algorithm 4.4.8 and ~x be the output. Then either
f1(~x) = · · · = fm(~x) = 0 or we have evidence that M, ν is not an explicit maximal
ideal. In particular, either 1 ∈ M , or there is an f /∈ M with fν(f) − 1 /∈ M ,

or there are a finite subset A ⊆ M , a1, . . . , ak ∈ A and λ1, . . . , λk ∈ K[ ~X] with
λ1a1 + · · ·+ λkak /∈M .

Proof attempt. One part of Theorem 4.4.9 is the following statement:

In the situation of Algorithm 4.4.8 we assume that K,Γ is an explicit
algebraically closed field and M, ν is an explicit maximal ideal, then
X1 − x1, . . . , Xn − xn ∈M .

A semi-material6 interpretation of this theorem is the following:

In the situation of Algorithm 4.4.8 we assume that K,Γ is an explicit
algebraically closed field. Then if Xi − xi /∈ M for one i ∈ {1, . . . , n},
there is evidence that M, ν is not an explicit maximal object.

This can be proven by backtracking (the first part of) the proof of Theorem 4.4.9
and Algorithm 4.4.8 and using Conjecture 4.5.13. Out of the construction in Remark
4.4.3 we get the following statement:

6Here we say “semi-material” since we still assume that K,Γ is an explicit algebraically closed
field.
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Let K be a field, ~x ∈ K, M ⊆ K[ ~X] and f1, . . . , fm ∈ M . Then either
f1(~x) = · · · = fm(~x) = 0, or there is i ∈ {1, . . . , n} with Xi− xi /∈M , or
there is evidence that M is not a proper ideal, i.e. 1 ∈M or there are a
finite A ⊆M , a1, . . . , ak ∈ A, λ1, . . . , λk ∈ K[ ~X] with λ1a1 + · · ·+λkak /∈
M .

The theorem follows by combining these two statements.

4.5.2 Approximate maximal objects in Hilbert’s Nullstel-
lensatz

Motivation 4.5.15. In this subsection we show how the result of the last section
combined with the state algorithm of Section 3.3 can be used to find an algorithm
for Hilbert’s Nullstellensatz if the field is discrete and the corresponding polynomial
ring is countable. Note that in Chapter 3 we assumed globally that the underlying
sets in the algorithms are decidable but here we make such assumptions explicit.

From here on we are able to prove everything in detail. To be absolutely precise,
we consider Conjecture 4.5.14 as a global assumption of this section.
Hence, the reader can ignore everything else in the last section.

We start by applying the theory in Chapter 3 to the case here.

Definition 4.5.16. In the following for a given ring R we define the covering
B ⊆ Pfin(R)×R by

AB x :⇔ ∃~a,~b∈R∗
(
~a ∈ A∗ ∧ ~a ·~b = x

)
,

where ~a ·~b :=
∑|~a|−1

i=0 aibi and bi = 0 for i ≥ |~b|.
Furthermore, we define the predicate θ on R by θ(x) := (x 6= 1).

Remark 4.5.17. For a given ring R the B-ideals are exactly the (ring theoretic)
ideals of R.

The witness type of this covering is W := R∗ ×R∗ and we write

AB~a,~b x for ~a ∈ A∗ ∧ ~a ·~b = x.

Hence, if R is countable and discrete, B is a Σ0
1-covering.

In Section 3.5 we gave a similar cover structure on a ring R with the difference
that instead of ~a ·~b = x, we had ~a ·~b = xe, where e is a natural number. Then the
ideals in Section 3.5 are the radical ideals of R. In that case we were able to prove
encoding, where the operator ◦ is the ring multiplication, and by using encoding
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we have proved Krull’s lemma. In the current case, it can be proven easily that B
is reflexive and transitive, but encoding for B and the ring multiplication does not
hold. For example, in R = Z we have 2 B 2 but not 4 B 2.

As observed in Remark 3.2.8, in our case the predicate RF
A given in Notation

3.2.7 is classified by

RF
S (A, (~a,~λ), g)⇔

(
A ⊆ F ∪ S ∧ ~a ∈ A∗ ∧ ~λ · ~a = g ⇒ g 6= 1

)
.

In particular, the type G from Notation 3.2.7 is given by

G = Pfin(R)× (R∗ ×R∗)×R.

In the other direction, we have

¬RF
S (A, (~a,~λ), g)⇔ A ⊆ F ∪ S ∧ ~a ∈ A∗ ∧ ~λ · ~a = g ∧ g = 1.

Motivation 4.5.18. Our goal is to develop an algorithmic version of Hilbert’s
Nullstellensatz by using Algorithm 3.3.6. Therefore, we have to define the functions
ω and φ in a pleasant way out of an explicit algebraically closed field and polynomials
f1, . . . , fm ∈ K[ ~X]. This construction is given in the next algorithm. Our approach
is quite similar to the approach in Section 3.4. In particular, in Definition 3.4.10 and
Lemma 3.4.12, we have defined the functions ω and φ in the context of the universal
Krull-Lindenbaum Lemma.

Algorithm 4.5.19. Let K,Γ be an explicit algebraically closed field, K[ ~X] :=

{rn | n ∈ N} an enumeration of K[ ~X] and f1, . . . , fm ∈ K[ ~X]. For a given decidable

subset M ⊆ K[ ~X] and a map

F : dom(K[ ~X]/M)→ Pfin(K[ ~X])× (K[ ~X]∗ ×K[ ~X]∗)×K[ ~X],

we define

ω(M,F ) ∈ Z and φ(M,F ) ∈ Pfin(K[ ~X])× (K[ ~X]∗ ×K[ ~X]∗)×K[ ~X]

as follows:

1. We define ν : K[ ~X]→ K[ ~X] for given h ∈ K[ ~X] as follows:

• If h ∈M , define ν(h) := 0

• If h /∈ M , take n with h = rn and compute (A, (~a,~λ), g) := F (n). Let I
be the set of exactly those i < |~a| with ai = h and define ν(h) :=

∑
i∈I λi,

where λi := 0 for i ≥ |~λ|.
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2. Apply Algorithm 4.4.8 to K, Γ, M and ν, and let ~x be the output.

3. If f1(~x) = · · · = fm(~x) = 0, define ω(M,F ) := −1 and φ(M,F ) := (∅, [], [], 1).

4. Otherwise, by Conjecture 4.5.14 we have three cases:

• If there is 1 ∈M , let k ∈ N be given such that rk = 1. Then φ(M,F ) :=
({1}, (1, 1), 1), and if 1 ∈ {f1, . . . , fm}, define ω(M,F ) := −1, otherwise
ω(M,F ) := k.

• If there is an f /∈ M with fν(f) − 1 /∈ M , we take k such that rk = f

and compute (B1, (~b
(1), ~σ(1)), g) := F (k). Define the sets B′1 := B1 \ {f}

and I :=
{
i ≤ |~b(1)|

∣∣∣ b(1)
i = f

}
. Erase all b

(1)
i from ~b(1) and all σ

(1)
i from

~σ(1) with i ∈ I to get the lists ~b(3) and ~σ(3). Furthermore, take l such
that rl = fν(f) − 1 and compute (B2, (~b

(2), ~σ(2)), h) := F (l). Define

B′2 := B2 \ {fν(f) − 1} and J :=
{
j ≤ |~b(2)|

∣∣∣ b(2)
j = fν(f)− 1

}
. Erase

b
(2)
j from ~b(2) for all j ∈ J to get the new list ~b(4), and expand ~b(4) by the

list ~b(3) to get a new list ~b′. Then erase σ
(2)
j from the list ~σ(2) for all j ∈ J

to get the new list ~σ(4) and expand ~σ(4) by the list
(
−
∑

j∈J σ
(2)
j

)
~σ(3),

where the multiplication is meant to be componentwise, to get the new
list ~σ′. Then define

ω(M,F ) := max{i ∈ N | ri ∈ (B′1 ∪B′2) \ {f1, . . . , fm}}

and

φ(M,F ) := (B′1 ∪B′2, (~b′, ~σ′), 1).

• If there is B1 ⊆M and a linear combination σ
(1)
1 b

(1)
1 + · · ·+ σ

(1)
k b

(1)
k /∈M

with b
(1)
i ∈ B1 and σ

(1)
i ∈ K[ ~X] for all i ≤ k, let l be given such that

rl = σ
(1)
1 b

(1)
1 + · · · + σ

(1)
k b

(1)
k . We compute (B2, (~b

(2), ~σ(2)), g) := F (l). Let

B′2 := B2 \ {rl} and I := {i ≤ k | b(2)
i = rl}. Replace all b

(2)
i with i ∈ I in

~b(2) by b
(1)
1 , . . . , b

(1)
k and all σ

(2)
i with i ∈ I in ~σ(2) by σ

(2)
i σ

(1)
1 , . . . , σ

(2)
i σ

(1)
k

to get the new lists ~b′ and ~σ′, respectively. Define

ω(M,F ) := max{i ∈ N | ri ∈ (B1 ∪B′2) \ {f1, . . . , fn}}

and

φ(M,F ) := (B1 ∪B′2, (~b′, ~σ′), 1).
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Theorem 4.5.20 (Algorithmic version of Hilbert’s Nullstellensatz). Let

an explicit algebraically closed field K,Γ be given such that K[ ~X] = {rn | n ∈ N}
is countable. Furthermore, let f1, . . . , fm ∈ K[ ~X] be given. Then either there are
computable ~x ∈ K with f1(~x) = fm(~x) = 0 or there are computable g1, . . . , gm ∈
K[ ~X] with

∑m
i=1 gifi = 1.

Proof. We apply Algorithm 3.3.6 to the set K[ ~X], the subset {f1, . . . , fm} the cov-
ering and predicate B, θ given in Definition 4.5.16 and the functions ω, φ given in
Algorithm 4.5.19. By Theorem 3.3.12 this algorithm terminates in an end state πL
and we define M := M [πL] and F := f [πL]. Furthermore, let

Ω := ω(M,F ) and (A, (~a,~λ), g) := φ(M,F ).

By Theorem 3.3.8 (M,F ) is an approximate explicit maximal object. Therefore, for
each k ≤ Ω we have

rk ∈M ⇒
(
A ⊆ [M ](k) ∪ {rk, f1, . . . , fm} ∧ ~a ∈ A∗ ∧ ~a · ~λ = g ⇒ g 6= 1

)
and

rk /∈M ⇒ B ⊆ [M ](k) ∪ {rk, f1, . . . , fm} ∧~b ∈ B∗ ∧~b · ~σ = h ∧ h = 1,

where (B, (~b, ~σ), h) := F (k), and by Lemma 3.3.7 the last formula even holds for all
k ∈ N.

Following Algorithm 4.5.19 one sees that the last component of φ is constantly
1. Hence, by the construction of M,F in Algorithm 3.3.6 the last component of F is
also constantly 1. Therefore, the two formulas above are equivalent to the following
formulas:

rk ∈M ⇒ ¬
(
A ⊆ [M ](k) ∪ {rk, f1, . . . , fm} ∧ ~a ∈ A∗ ∧ ~a · ~λ = 1

)
(4.3)

for all k ≤ Ω, and

rk /∈M ⇒ B ⊆ [M ](k) ∪ {rk, f1, . . . , fm} ∧~b ∈ B∗ ∧~b · ~σ = 1 (4.4)

for all k ∈ N and (B, (~b, ~σ), h) := F (k). Furthermore, looking at Algorithm 4.5.19
we see that if the second component of F constantly consists of two lists of the same
length then also the second component of φ constantly consists of two list of the
same length. Hence, by induction on the construction in Algorithm 3.3.6, the second
component of each F (k) and φ(M,F ) consists of two lists of the same length. In
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the following, we will assume this tacitly. To prove the statement, we consider the
cases in Algorithm 4.5.19, i.e. in the definition of ω(M,F ) and φ(M,F ).

We define ν analogously as in the first step of Algorithm 4.5.19 and apply Algo-
rithm 4.4.8 to K, Γ, M and ν and let ~x be the output. If f1(~x) = · · · = fm(~x) = 0,
there is nothing to show. Otherwise, we apply Conjecture 4.5.14 and consider the
three cases one by one:

• If 1 ∈ M , we have φ(M,F ) = ({1}, ([1], [1]), 1). Then either 1 ∈ {f1, . . . , fm}
and there are obviously g1, . . . , gm with

∑m
i=1 figi = 1, or 1 /∈ {f1, . . . , fm} and

ω(M,F ) = k for rk = 1. However, the last case cannot occur since it would
contradict to (4.3) as one can check easily.

• If there is an f ∈ K[ ~X] with f /∈ M and fν(f) − 1 /∈ M . We take k, l ∈
N with rk = f and rl = fν(f) − 1 and define (B1, (~b

(1), ~σ(1)), 1) := F (k),

(B2, (~b
(2), ~σ(2)), 1) := F (l). By (4.4) we obtain

B1 ⊆M ∪ {f, f1, . . . , fm} ∧~b(1) ∈ B∗1 ∧~b(1) · ~σ(1) = 1 and (4.5)

B2 ⊆M ∪ {fν(f)− 1, f1, . . . , fm} ∧~b(2) ∈ B∗2 ∧~b(2) · ~σ(2) = 1. (4.6)

We follow the construction of the second case in Step 4 of Algorithm 4.5.19
and use the same notation. By ~b(1) · ~σ(1) = 1 and the construction of ~b(3), ~σ(3)

and ν, we have
~b(3) · ~σ(3) + fν(f) = 1,

and by ~b(2) · ~σ(2) = 1 and the constructions ~b(4), ~σ(4) and J we have

~b(4) · ~σ(4) +

(∑
j∈J

σ
(2)
j

)
(fν(f)− 1) = 1.

Together with the formula before it follows

~b(4) · ~σ(4) +

(∑
j∈J

σ
(2)
j

)
(−~b(3) · ~σ(3)) = 1.

By the construction of ~b′ and ~σ′ this is exactly ~b′ ·~σ′ = 1. Furthermore, by the
construction of ω, φ, B′1 and B′2 and by (4.5) and (4.6) it follows

A = B′1 ∪B′2 ⊆M ∪ {f1, . . . , fm} ∧ ~a = ~b′ ∈ A∗.
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Hence, it suffices to show A ⊆ {f1, . . . , fm}: If not, Ω = max{i ∈ N | ri ∈
(A \ {f1, . . . , fm})} ≥ 0. Using (4.3) and noting ~λ = ~σ′, we have rΩ /∈ M .
But rΩ ∈ B′1 ∪ B′2 ⊆ M ∪ {f1, . . . , fm} and rΩ /∈ {f1, . . . , fm}, and therefore
rΩ ∈M , a contradiction.

• If there is B1 ⊆ M and a linear combination σ
(1)
1 b

(1)
1 + · · · + σ

(1)
k b

(1)
k /∈ M

with b
(1)
i ∈ B1 and σ

(1)
i ∈ K[ ~X] for all i ≤ k, we take l ∈ N with rl =

σ
(1)
1 b

(1)
1 + · · ·+σ

(1)
k b

(1)
k and (B2, (~b

(2), ~σ(2)), 1) := F (l). Then by Formula 4.4 we
get

B2 ⊆ [M ](l) ∪ {rl, f1, . . . , fm} ∧~b(2) ∈ B∗2 ∧~b(2) · ~σ(2) = 1.

We follow the construction in the third case in Step 4 of Algorithm 4.5.19 and
use the same notation. By rl = σ

(1)
1 b

(1)
1 + · · · + σ

(1)
k b

(1)
k ,~b(2) · ~σ(2) = 1 and the

constriction of φ(M,F ),~b′, ~σ′ and B′2 we get ~a · ~λ = ~b′ · ~σ′ = 1,A = B1 ∪ B′2 ⊆
M ∪ {f1, . . . , fm} and ~a ∈ A∗. Hence, it suffices to show A ⊆ {f1, . . . , fm}:
If not, Ω = ω(M,F ) ≥ 0 and rΩ /∈ M by (4.3) and the definition of ω. But
by definition rΩ ∈ (B1 ∪ B′2) \ {f1, . . . , fm} ⊆ M \ {f1, . . . , fm}, which is a
contradiction.

Remark 4.5.21. By using Algorithm 3.3.6 we have managed to avoid the usage
of maximals ideals in our proof, although we still need a constructively quite strong
assumption, namely the existence of an explicit algebraically closed field. However,
in [122, Theorem 3.5] it is shown that to each countable discrete field (e.g. Q and all
finite fields) there exists a discrete algebraic closure. Following the proofs of [122,
Theorem 3.5] and the corresponding lemmas, we get a construction of an explicit
algebraically closed field. Therefore, the remaining assumption in the algorithmic
version of the theorem above is constructively attainable.

Motivation 4.5.22. Similar to what Zariski has done in [188], we even obtain
an algorithm for the strong version of Hilbert’s Nullstellensatz. Here, the standard
proof which uses the Rabinowitsch trick [140] is already constructive and in this way
we get an algorithmic version of Hilbert’s strong Nullstellensatz:

Corollary 4.5.23 (Algorithmic version of Hilbert’s strong Nullstellensatz).

Let an explicit algebraically closed field K,Γ be given such that K[ ~X, Y ] = {rn |
n ∈ N} is countable. Furthermore, let f1, . . . , fm, f ∈ K[ ~X] be given. Then either
there are computable ~x ∈ K with f1(~x) = · · · = fm(~x) = 0 but f(~x) 6= 0, or there

are computable g1, . . . , gm ∈ K[ ~X] and r ∈ N such that
∑m

i=1 gifi = f r.
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Proof. We apply Theorem 4.5.20 to f1, . . . , fm, 1− Y f and have two cases:
In the first case, there are computable ~x, y ∈ K with f1(~x) = · · · = fm(~x) =

1− yf(~x) = 0. In particular, f1(~x) = · · · = fm(~x) = 0 and 1 = yf(~x), and therefore
f(~x) 6= 0.

In the second case there are computable g′1, . . . , g
′
m, g

′ ∈ K[ ~X, Y ] with

m∑
i=1

g′ifi + g′(1− Y f) = 1.

We consider the homomorphism K[ ~X, Y ] → K( ~X) given by Xi 7→ Xi for all i,
Y 7→ 1

f
and a 7→ a for all a ∈ K. Applying this homomorphism to the equation

above leads to

m∑
i=1

g′i

(
~X,

1

f

)
fi + g′

(
1− 1

f
f

)
= 1.

Let r := max{degY g
′
1, . . . , degY g

′
m}. Then one can compute g1, . . . , gm ∈ K[ ~X]

such that g′i

(
~X, 1

f

)
= gi

fr
for all i. Together with the equation above we obtain

m∑
i=1

gifi = f r.
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CHAPTER 5. LIMITS WITH SIGNED DIGIT STREAMS

Chapter 5

Limits with signed digit streams

Motivation 5.0.1. We work on the signed digit representation of abstract real
numbers, which is roughly the binary representation enriched by the additional
digit -1. The main object of this chapter is the formalisation of a constructive proof
that the signed digit representation of real numbers between −1 and 1 is closed
under limits of converging sequences. The approach is quite similar to the approach
in Chapter 4 where we formulate an algorithmic version of Zariski’s lemma. Again,
we start by formulating a constructive proof. However, in contrast to Chapter 4 we
formalise the proof in the proof assistant Minlog. Here the other steps, which were
done by hand in Chapter 4, are conducted automatically by Minlog. In particular,
Minlog formulates a computational version of our theorem using the reliability predi-
cate, and Minlog computes an algorithm out of the constructive proof: the extracted
term. Finally, Minlog automatically proves that the extracted term fulfils the real-
isability predicate, this is called the soundness proof. The tools of this process are
described in Section 2.1.

The constructive proof uses a coinductive definition of the signed digit represen-
tation. Coinductive definitions are one of Minlog’s speciality as Minlog is based on
the theory of computational functional TCF which is introduced in Section 2.1.

To apply the extracted terms, the programming language Haskell is useful.
Therefore, after each proof we show a notation of the extracted term, which can
be rewritten as a definition in Haskell.

Minlog can be downloaded at [123]. On this web page it is also demonstrated
how to install Minlog. After installing Minlog a tutorial for Minlog is given in
doc/tutor.pdf of the installed file. Another introduction to Minlog is presented
in [180,181].

The convergence theorem, which is the main theorem of this chapter, is imple-
mented in sdlim.scm in the folder examples/analysis of the Minlog file. We use

117
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Minlog’s automatic program extraction to develop the computational content out of
the implemented proofs.

As a first application of the extracted term we use the algorithm together with
Heron’s method to build up an algorithm which converts the signed digit repre-
sentation of a non-negative real number into the signed digit representation of its
square root. This section is not formalised in Minlog but we use the proofs in this
section together with the extracted term of the convergence theorem to develop a
Haskell program by hand. This Haskell program is added to the appendix and it is
an expansion of the Haskell program in [180]. As a second application we construct
an algorithm which takes the signed digit code of two real numbers and returns a
signed digit code of their product.

5.1 Preliminaries

5.1.1 Historical notes and sources

Motivation 5.1.1. One of the first paper where signed digits are used to represent
real numbers was published by Edwin Wiedmer in 1980 [179]. Based on a paper
by Pietro Di Gianantonio [63] from 1999, in 2006 signed digit streams to represent
real numbers were revisited by Alberto Ciaffaglione and Pietro Di Gianantonio [38].
This paper already uses coninductive definitions, which were revisited by Ulrich
Berger and Tie Hou [23]. The idea to use coinductively defined predicates together
with the soundness theorem in this context is due to Ulrich Berger and Monika
Seisenberger [25]. The implementation of signed digit streams in Minlog was addi-
tionally considered by Kenji Miyamoto, Helmut Schwichtenberg, Nils Köpp and Till
Überrück Fries [102,124,173]. The notions we use as the definition of coI are mainly
taken from [124].

5.1.2 Notations

Motivation 5.1.2. As we want to do program extraction from proofs, we are
using the theory of computable functionals as metatheory, which was introduced in
Section 2.1. Each variable in TCF comes with a type. The types we use are given
in Example 2.1.5 plus the type of real numbers R. As we do not want to declare the
type of each variable in this chapter one by one, we use the following convention:

Notation 5.1.3. In this chapter we define the following assignment of variables to
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types.

m,n : N a, b : Q M,N : Z+ → N
d, e, k : Z x, y : R f, g : N→ R
p, q : Z+ v, u : S F : N→ S

These variables can be equipped with indices or other attachments. For example,
n0 and n′ have also type N.

There are canonical inclusion maps Z+ ↪→ N ↪→ Z ↪→ Q ↪→ R. Using these
inclusion maps implicitly we will do calculations between objects of all these types.
In particular, an expression like d+x

2
is a well-defined term of type R.

Remark 5.1.4. There are several ways to define constructive real numbers. One of
the best-known methods is to define them as Cauchy sequences of rational numbers
with a Cauchy modulus. In the appendix we give a construction of real numbers. In
our case, rather than we are not interested in a specific definition of real numbers,
we are interested in their signed digit representation (SD code). Hence, we consider
real numbers as abstract objects.

In the following we often use the real equality = between two objects of type
R. The real equality is an equivalence relation and compatible with the arithmetic
functions on R and the predicate ≤. As usual, in this chapter the real equality and
the predicate ≤ are non-computational.

5.1.3 Binary code vs. signed digit code

Motivation 5.1.5. The SD code of reals is similar to the binary code of reals but
in addition to the digits 0 and 1, the SD code has the digit −1, which we also denote
by 1. Since every real x can be represented as x = k + x′, where k is an integer
and −1 ≤ x′ ≤ 1 (this follows from Lemma B.17 in the appendix), we work on the
interval [−1, 1]. A binary representation of a real number x in [−1, 1] is given by a
sequence of the form sd1d2d3 . . . such that

x = s

∞∑
i=1

di2
−i,

where s ∈ {−1, 1} and di ∈ {0, 1} for all i. Reading the digits of the binary
representation of a concrete real number one after the other, the interval where the
real number is located, is halved in each step. Thus, from the binary code one can
determine the real number arbitrarily exactly.
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Figure 5.1: Visualization of the binary code

However, it is not always possible to compute the binary representation of a given
real number or even to compute the binary representation of x+y

2
out of the binary

representations of x and y. Here “compute” means to get an algorithm which takes
the binary streams of x and y and gives back the digits of the binary stream x+y

2

one by one in a finite amount of steps for each digit. In particular, the algorithm
can only use finitely many binary digits of x and y to generate finitely many digits
of x+y

2
. This is not possible due to the “gaps” in the binary representation. They

are illustrated in Figure 5.1 at 0, ±1
2
, ±1

4
, ±3

4
and so on. From the first digit (i.e. +

or −) of a real x one can decide 0 ≤ x or x ≤ 0, which in general cannot be done
for constructive reals (similar to Remark B.9).

The signed digit code fills these gaps. For a real number x ∈ [−1, 1] it is given
by a sequence d1d2d3 . . . such that

x =
∞∑
i=0

di2
−i,

where di ∈ {1, 0, 1} for every i.

As the illustration in Figure 5.2 shows, to compute the first signed digit of a real
number x ∈ [−1, 1] one has to decide which of the cases x ≤ 0, −1

2
≤ 0 ≤ 1

2
or 0 ≤ x

holds. That this is possible, follows by the comparability theorem (Lemma B.17 in
the appendix), which says that for reals x, y and z with x < y one has z ≤ y∨x ≤ y.

Figure 5.2 also demonstrates that the SD code of a real number except −1 and 1
is not unique, whereas the binary code is “almost” everywhere unique. This means,
only the binary codes t011 . . . and t100 . . . represent the same real number, where
t can be any initial list of binary numbers.
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Figure 5.2: Visualization of the signed digit code

5.2 Formalisation

Motivation 5.2.1. In Chapter 4 our starting point was Zariski’s lemma. From a
constructive proof we managed to develop an algorithmic version of Zariski’s lemma.
In that case it was not a priori clear how the developed algorithm operates and even
on which objects the algorithm operates. Of course, how it operates is a priori
also not clear in this case, however it is clear on which objects this algorithm shall
operate. Out of a sequence of signed digit codes and some modulus, the algorithm
shall generate a new signed digit code. Furthermore, the starting theorem from
which we do program extraction is not given. Therefore, our aim is first to formulate
a suitable theorem. Since program extraction is an automatized process, this is
indeed the crucial point of this chapter. First of all, we need a predicate on real
numbers whose computational content is a signed digit code of the corresponding
real number. A signed digit code is an infinite list of signed digits, and therefore we
have to use coinductively defined predicates, which we have introduced as are part
of TCF in Section 2.1. In particular, the whole theory in this chapter is based on
TCF.
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5.2.1 The predicate coI

Motivation 5.2.2. To formalise the signed digit code, we use coinductively de-
fined predicates, which we have already given in Definition 2.1.16. Briefly speaking,
whereas an inductively defined predicate can be seen as the least fixpoint of its
clauses, a coinductively defined predicate can be seen as the greatest fixpoint of the
clauses. We see this in the next definition.

Definition 5.2.3. We define the predicate I by the single clause

I+ : ∀d,x,x′
(

Sd d→ Ix′ → |x| ≤ 1→ x =
d+ x′

2
→ Ix

)
.

Here, the predicate Sd is defined on the integers by the clauses Sd − 1, Sd 0 and
Sd 1.

The predicate coI is the coinductively defined predicate corresponding to I.

Remark 5.2.4. In the axiom I+ in Minlog instead of |x| ≤ 1 there is |x′| ≤ 1
required. This is equivalent and does not affect the computational content.

The algebra corresponding to Sd is D from Example 2.1.5, and the real equality
and inequality are non-computational. Therefore, the type of coIx is

S := τ(coI) = µτ(X)(D→ τ(X)→ τ(X)) = µξ(D→ ξ → ξ).

In Minlog this algebra is denoted by ai.
Another possibility to define a predicate which says that a real number x has a

signed digit code could be

∃t∈TN→D∀n

∣∣∣∣∣
n∑
i=1

t(i)

2i
− x

∣∣∣∣∣ ≤ 2i,

where TN→D is the totality predicate on N → D, which is considered in Example
2.1.15 and add a computational meaning to the predicate. The type of this predicate
is N → D, i.e. a sequence of signed digit. Presumably, the theory in this chapter
would also work with this predicate. However, the approach we use has the advan-
tage that S is an algebra, and therefore a base type, whereas N → D is a function
type.

Notation 5.2.5. We denote the only constructor of S by C. In another notation
S can be defined by

S ::= C D S.
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In the following we identify Sd with D, i.e. we write 1 for SdL, 0 for SdM, and 1 for
SdR.

In this notation one easily sees that an element Cdv can be interpreted as an SD
code with the first digit d and the tail v. We sometimes abbreviate Cdv by dv and
use this notation also for reals, i.e. if we write something as dx for a real number x
and a signed digit d we mean d+x

2
.

Remark 5.2.6. The predicate coI is given by its two axioms.
The axiom coI− is called elimination rule. Expressed in elementary formulas it is

coI− : ∀x.coIx→ ∃d,x′
(

Sd d ∧ coIx′ ∧ |x| ≤ 1 ∧ x =
d+ x′

2

)
.

The type of this axiom is τ(coI−) = S → D × S and a realiser is given by the
destructor D := DS with its computation rule

D : S→ D× S
D(Cdv) := 〈d, v〉.

The destructor takes a stream and returns a pair consisting of its first digit and its
tail. By using the projectors π0 and π1 one can obtain the first digit and the tail,
respectively.

The axiom coI+ is called the introduction axiom of coI and says that coI is the
greatest fixpoint of its clause in a strong sense. We use the following version:

coI+ : ∀x.Xx→

∀x
(
Xx→ ∃d,x′

(
Sd d ∧ (coI ∪X)x′ ∧ |x| ≤ 1 ∧ x =

d+ x′

2

))
→ coIx

The type of this axiom depends on the type of the predicate variable X:

τ(coI+) = τ(X)→ (τ(X)→ D× (S + τ(X)))→ S

A realiser of coI+ is the corecursion operator coR := coRτ(X)
S . As in Example 2.1.11

it is given by the computation rule

coR : τ(X)→ (τ(X)→ D× (S + τ(X)))→ S,
coRtf := C(π0(ft))[id, λt′

coRt′f ]π1(ft),
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where [F0, F1]iniT := FiT for i ∈ {0, 1}. Here in0 and in1 are the two constructors
of the type sum S+ τ(X). If π1(ft) has the form in0v, the corecursion stops and we
have C(π0(ft))v as signed digit representation. If it has the form in1t

′, the corecur-
sion goes further with the new argument t′. In both cases we have obtained at least
the first digit of the stream. Iteration of the corecursion, if necessary, generates each
digit of the stream one by one.

5.2.2 Basic lemmas

Motivation 5.2.7. We start by formulating two basic lemmas about the predicate
coI. The first lemma says that coI is compatible with the real equality. On a com-
putational level this states: if x = y then an SD code of x can be converted into an
SD code of y. We will observe that the signed digit representation of y is the same
as the signed digit representation of x.

The second lemma states: if d is a signed digit and x has a signed digit repre-
sentation then so has d+x

2
. Here we will see that the signed digit representation of

d+x
2

is just the signed digit representation of x and d put at the beginning.

Lemma 5.2.8 (CoICompat). The predicate coI is compatible with the real equality,
i.e.

∀x,y.coIx→ x = y → coIy.

Proof. We apply coI+ to the predicate Px := ∃y(coIy ∧ x = y):

∀x.∃y(coIy ∧ x = y)→

∀x
(
Px→ ∃d,x′

(
Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =

d+ x′

2

))
→ coIx

It is sufficient to prove the second premise. Therefore, we show

∀x
(
∃y(coIy ∧ x = y)→ ∃d,x′

(
Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =

d+ x′

2

))
.

Let x, y with coIy and x = y be given. Using coIy with coI− we get e ∈ Sd and
y′ ∈ coI with |y| ≤ 1 and y = e+y′

2
. Hence, d := e and x′ := y′ have the desired

property.
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Remark 5.2.9. In the following proofs this lemma is used tacitly. In Minlog it
has the name CoICompat. The extracted term is given by

[u0]

(CoRec sd yprod ai=>ai)DesYprod u0

([su1]clft su1 pair(InL ai (sd yprod ai))crht su1)

Note that in Minlog S is denoted by ai. After using the computation rule of the
corecursion operator once, we get

[u0]C clft DesYprod u0 crht DesYprod u0

which is λu.C(π0(Du))(π1(Du)) in standard notation. For streams of the form Cdv
this term is the identity function. Since we deal with such streams only, we drop
this term hereafter.

Lemma 5.2.10 (CoIClosureInv).

∀x,d.Sd d→ coIx→ coI
d+ x

2

Proof. We apply coI+ to the predicate

Px := ∃d,x′
(

Sd d ∧ coIx′ ∧ x =
d+ x′

2

)
.

This leads to the formula

∀x.∃d,x′
(

Sd d ∧ coIx′ ∧ x =
d+ x′

2

)
→

∀x
(
Px→ ∃d,x′

(
Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =

d+ x′

2

))
→ coIx.

To prove the goal formula, it suffices to prove the second premise. Therefore, the
new goal formula is

∀x.∃d,x′
(

Sd d ∧ coIx′ ∧ x =
d+ x′

2

)
→

∃d,x′
(

Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =
d+ x′

2

)
.

This is almost a tautology. The only part one has to consider is |x| ≤ 1. From Sd d
and coIx′ we get |d|, |x′| ≤ 1, and therefore |x| =

∣∣d+x′

2

∣∣ ≤ 1.
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Remark 5.2.11. In Minlog this lemma has the name CoIClosureInv and its
extracted term is given by.

[s0,u1]

(CoRec sd yprod ai=>ai)(s0 pair u1)

([su2]clft su2 pair(InL ai (sd yprod ai))crht su2)

After using the computation rule of coR once, we get

[s0,u1]C clft(s0 pair u1)crht(s0 pair u1)

This is the Minlog notation for the term λdλu.Cdu, which can be identified with
C itself. Therefore, the constructor C is in fact the computational content of this
lemma.

5.3 Convergence theorem

Motivation 5.3.1. The aim of this chapter is to prove the convergence theorem
for the SD code. It states that the limit of each convergent sequence in coI is also
in coI. In Minlog this theorem has the additional assumption that the convergent
sequence is a Cauchy sequence. Since each convergent sequence is a Cauchy se-
quence, this assumption is obsolete if one only considers the truth content of the
statement. However, there is a small difference in the computational content. With
the additional assumption and the proof in Minlog, the Cauchy modulus appears in
the extracted term. Therefore, we will also define the notion of a Cauchy sequence
of real and discuss the difference. As extracted term we expect a function which
takes a sequence of signed digit streams (i.e. a term of type N→ S) and its modulus
of convergence, and returns a signed digit stream.

We conduct the proof step by step, and therefore we first prove a few lemmas.
The next two lemmas were already considered in [161,180].

Lemma 5.3.2 (CoINegToCoIPlusOne, CoIPosToCoIMinusOne).

∀x.coIx→ x ≤ 0→ coI(x+ 1)

∀x.coIx→ 0 ≤ x→ coI(x− 1)

Proof. Since both formulas are shown analogously, we only prove the first one. The
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introduction axiom of coI is given by

∀x.Px→

∀x
(
Px→ ∃d,x′

(
Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =

d+ x′

2

))
→ coIx.

For Px we insert ∃y (coIy ∧ y ≤ 0 ∧ y + 1 = x). Hence, it is sufficient to prove the
second premise. Let x, y, coIy, y ≤ 0 and y + 1 = x be given. Our goal is

∃d,x′
(

Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =
d+ x′

2

)
.

From coIy we get e and y′ with Sd e, coIy′, |y| ≤ 1 and y = e+y′

2
. Independently from

the choice of d and x′ we always get |x| ≤ 1 out of |y| ≤ 1, y ≤ 0 and x = y + 1. In
order to prove the remaining part of the formula, we use case distinction on Sd e:

If e = −1, we define d := 1 and x′ := y′. Here Sd d and coIx′ follow directly and
we also have

x = y + 1 =
−1 + y′

2
+ 1 =

1 + y′

2
=
d+ x′

2
.

If e = 0, we define d := 1 and x′ := y′ + 1. Hence, Sd d is clear and in this case
we prove Px′. Hence we show coIy′, y′ ≤ 0 and x′ = y′ + 1. coIy′ and x′ = y′ + 1 are
already given and y′ ≤ 0 follows directly from y ≤ 0 and y = 0+y′

2
.

The last case is e = 1. Because of y ≤ 0, y = −1+y′

2
and |y′| ≤ 1, this is

only possible if y is equal to 0, and therefore x = 1. Hence we define d := 1 and
x′ := 1. Then Sd d and x = d+x′

2
are obviously true and coI 1 is true because

1 has the SD representation 111 . . . . (Formally, coI 1 must be proven by coinduc-
tion. For details we refer to the Minlog implementation of the theorem CoIOne in
examples/analysis/sddiv.scm.)

Remark 5.3.3. A realiser of the first formula in this lemma is a function f which
takes a signed digit stream of a real number x and returns a signed digit stream of
x+ 1 if x ≤ 0.
In Minlog the normalized extracted term is displayed by

[u]

(CoRec ai=>ai)u

([u0]

[case (cCoIClosure u0)

(s pair u1 ->
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[case s

(SdR -> SdR pair InL cCoIOne)

(SdM -> SdR pair InR u1)

(SdL -> SdR pair InL u1)])])

In standard notation we have

f := λu.
coRu

(
λv.[〈1, in0(π1(Dv))〉, 〈1, in1(π1(Dv))〉, 〈1, in0

~1〉]π0(Dv)
)
,

where [F1, F0, F1]d := Fd for d ∈ Sd and ~1 is the infinite list with each entry equal
to 1.
Another way to characterise this function f is to give its computation rules:

f(C1v) := C1v

f(C0v) := C1(fv)

f(C1v) := [1, 1, . . . ]

Analogously, the extracted term of the second statement of this lemma is a function
g : Str→ Str which is characterised by the rules

g(C1v) := [1, 1, . . . ]

g(C0v) := C1(gv)

g(C1v) := C1v.

It takes a signed digit stream of a real x and returns a signed digit stream of x− 1
if 0 ≤ x.

Using this lemma we are now able to prove the following lemma:

Lemma 5.3.4 (CoIToCoIDouble).

∀x.coIx→ |x| ≤
1

2
→ coI(2x)

Proof. From coIx we get d, x′ with Sd d, coIx′, |x| ≤ 1 and x = d+x′

2
. We distinguish

cases on Sd d:
d = 1: Here 2x = 1+x′ and with |x| ≤ 1

2
it follows x′ ≤ 0. By the first statement

of Lemma 5.3.2 we have coI(2x).
d = −1: The proof in this case is done analogously but with the second statement

of Lemma 5.3.2.
d = 0: In this case 2x = x′ and coIx′ is already given.
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Remark 5.3.5. If we keep the definition of the functions f and g from Remark
5.3.3, the computational content D : Str→ Str of this lemma is given by

D = λu.[g(π1(Du)), π1(Du), f(π1(Du))]π0(Du).

Again we give a more readable characterisation of D by the computation rules

D(C1u) := gu

D(C0u) := u

D(C1u) := fu.

At this point we want to mention a general observation: Even if the lemmas
above only works for real numbers with a certain property, the extracted term is
defined for all SD codes. This is similar to the defined algorithms in Chapter 4.
There, we had to define the algorithms without assuming any axiom. It is the same
case here as the algorithm cannot check whether an assumption is fulfilled or not.

Motivation 5.3.6. The following lemma is not implemented in Minlog because it
is a special case of the theorem ∀x,y.coIx→ coIy → coI

(
x+y

2

)
which is implemented as

the theorem CoIAverage in examples/analysis/sdavaux.scm of Minlog and was
considered in [28, 124]. However, here we give a direct proof since it is instructive
and elementary.

Lemma 5.3.7 (Spezial case of CoIAverage).

∀x.coIx→ coI

(
x

2
± 1

4

)
Proof. coIx gives x′ ∈ coI and d ∈ Sd with x = d+x′

2
. We show only coI

(
x
2

+ 1
4

)
because coI

(
x
2
− 1

4

)
is proven analogously. Case distinction on Sd d leads to the

following three cases:

d = 1 gives x
2

+ 1
4

= 2+x′

4
=

1+x′
2

2
,

d = 0 gives x
2

+ 1
4

= 1+x′

4
=

1+x′
2

2
and

d = −1 gives x
2

+ 1
4

= x′

4
=

x′
2

2
.

In each case we get coI
(
x
2

+ 1
4

)
by using Lemma 5.2.10 twice.

Remark 5.3.8. We denote the extracted term of the proven statement by q+.
From the proof and the fact that the extracted term of Lemma 5.2.10 is given by C,
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one easily sees that q+ has the following computation rules:

q+(1u) := 00u

q+(0u) := 01u

q+(1u) := 10u

Analogously, the extracted term q− of the statement ∀x.coIx → coI
(
x
2
− 1

4

)
is char-

acterised by

q−(1u) := 10u

q−(0u) := 01u

q−(1u) := 00u.

Definition 5.3.9. Let a real number x, a sequence f : N→ R of real numbers and
a modulus M : Z+ → N be given. f convergences to x with modulus M if

∀p∈TZ+
∀n≥M(p)|f(n)− x| ≤ 2−p,

where TZ+ is the totality predicate on positive integer from Example 2.1.15. In
Motivation 5.3.10 we see why this is necessary. We also assume that the variable n
in the formula above is total. This is hidden in the predicate ≤.

Furthermore, f is a Cauchy sequence with modulus M if

∀p∈TZ+
∀n,m≥M(p)|f(m)− f(n)| ≤ 2−p.

Motivation 5.3.10. In the following we give a version of the convergence theorem
and a proof of it. A possible formulation could be

∀x∀f∀M .∀ncoIf(n) ∧ ∀p∀n≥M(p)|f(n)− x| ≤ 2−p → coIx.

The type of this formula is S → S as the computational moments are only in
the formulas coIf(n) and coIx. However, as extracted term we expect a function
which takes a sequence of signed digit streams and a modulus of convergences and
returns a new signed digit stream. Therefore, the premises of the formula appear
unsatisfactory and erroneous. To see this, we consider the formula ∀ncoIf(n). To
prove this formula, we have to take an arbitrary n of type N and prove coIf(n).
The fact that we do not know anything about n is problematic. Note that in TCF
we do not require that a natural number n has the form n = 0 or n = Sn′. In
particular, we can not use induction or case distinction. Hence, a proof of coIf(n)
is only possible if the signed digit code of f(n) is independent of n and therefore
constant.
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To solve this problem, we have to weaken the premises. As we have seen, more
information about the variables is needed. Therefore, we use the totality predicate.
We have introduced the totality predicate in Example 2.1.15. The totality predicate
allows us to prove a formula like ∀n∈TN

coIf(n) by induction on n. In the next section
we use this to the Heron sequence.

A similar challenge appears for the premise ∀p∀n≥M(p)|f(n)− x| ≤ 2−p and it is
even not clear how e.g. 2−p is defined if p is not total. Therefore, we replace this
premise by the formula ∀p∈TZ+

∀n≥M(p)|f(n)− x| ≤ 2−p. The totality of the variable
n shall be hidden in n ≥ M(p). In particular, we require that ≤ is only defined for
total objects.

To prove the theorem with the new premises, we have to assume that the given
modulus M is also total. We see in the proof why this assumption is necessary. By
assuming that M is total, we obtain that the computational content depends on the
modulus of convergence.

In the proof of the convergence theorem we just sketch the totality arguments as
the details are simple but blow up the proof. In particular, one just have to write
out the definitions. For an implementation of totality in Minlog we refer to Section
5 of [181].

Notation 5.3.11. In the following we write T for the totality predicate of Z+ → N,
N and Z+ as it is apparent from the context which totality predicate is meant.

Theorem 5.3.12 (SdLim). Let f : N → R be a sequence of reals in coI which
converges to a real x with a modulus M , then also x is in coI.
Expressed in a formula:

∀x∀f∀M∈T.∀n∈TcoIf(n) ∧ ∀p∈T∀n≥M(p)|f(n)− x| ≤ 2−p → coIx

Proof. We show the equivalent formula

∀x.∃f∃M∈T
(
∀n∈TcoIf(n) ∧ ∀p∈T∀n≥M(p)|f(n)− x| ≤ 2−p

)
→ coIx

by applying the axiom coI+ to the predicate

Px := ∃f∃M∈T
(
∀n∈TcoIf(n) ∧ ∀p∈T∀n≥M(p)|f(n)− x| ≤ 2−p

)
.

Again we need to show the second premise:

∀x.∃f∃M∈T
(
∀n∈TcoIf(n) ∧ ∀p∈T∀n≥M(p)|f(n)− x| ≤ 2−p

)
→

∃d,x′
(

Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =
d+ x′

2

)
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Let x, f , M ∈ T, ∀n∈TcoIf(n) and ∀p∈T∀n≥M(p)|f(n)−x| ≤ 2−p be given. It suffices
to prove

∃d,x′ .Sd d ∧ ∃g∃N∈T
(
∀n∈TcoIg(n) ∧ ∀p∈T∀n≥N(p)|g(n)− x′| ≤ 2−p

)
∧

|x| ≤ 1 ∧ x =
d+ x′

2
.

Regardless of the choice of d and x′ we get ∀n∈T|f(n)| ≤ 1 from ∀n∈TcoIf(n). This
and ∀p∈T∀n≥M(p)|f(n) − x| ≤ 2−p lead to |x| ≤ 1 . Therefore, in each case we
consider |x| ≤ 1 as proven.

As M and 4 are total, M(4) is total as well. Hence, specializing ∀n∈TcoIf(n)
to M(4) leads to coIf(M(4)). Triple application of coI− gives d1, d2, d3 ∈ Sd and
y′ ∈ coI such that f(M(4)) = 4d1+2d2+d3+y′

8
or in short notation

f(M(4)) = d1d2d3y
′.

Now we distinguish between the various representations of f(M(4)):
If f(M(4)) has one of the forms 11d3y

′, 10d3y
′, 111y′, 110y′ 011y′ or 010y′, it

follows that 1
8
≤ f(M(4)). In this case we choose

d := 1 and x′ := 2x− 1,

then Sd d and x = d+x′

2
follow directly. Furthermore, we define

g(n) := 2f(M(4) t n)− 1

for all n ∈ N, where m t l := max{m, l}, and

N(p) := M(p+ 1)

for all p ∈ Z+. SinceM is total, N is total, too. The formula ∀p∈T∀n≥N(p)|g(n)−x′| ≤
2−p is a direct consequence of ∀p∈T∀n≥M(p)|f(n)− x| ≤ 2−p and it remains to show
∀n∈TcoIg(n). We calculate

g(n) = 2f(M(4) t n)− 1 = 4

(
f(M(4) t n)

2
− 1

4

)
.

As n and M(4) are total, also M(4) t n is total (details in Minlog), and hence

f(M(4)tn) ∈ coI, and by Lemma 5.3.7 we obtain coI
(
f(M(4)tn)

2
− 1

4

)
. Furthermore,

we have f(M(4)) ≥ 1
8

and ∀n≥M(4)|f(n)− x| ≤ 1
16

, and therefore

f(M(4) t n) = (f(M(4) t n)− x) + (x− f(M(4))) + f(M(4))

≥ − 1

16
− 1

16
+

1

8
= 0.
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Hence, 0 ≤ f(M(4)t n) ≤ 1, which implies
∣∣∣f(M(4)tn)

2
− 1

4

∣∣∣ ≤ 1
4
. By double applica-

tion of Lemma 5.3.4 we finally get coIg(n).
If f(M(4)) has one of the forms 11d3y

′, 10d3y
′, 111y′, 110y′ 011y′ or 010y′, it

follows f(M(4)) ≤ −1
8
. Here, we define

d := −1, x′ := 2x+ 1, g := λn(2f(M(4) t n) + 1) and N := λpM(p+ 1).

The proof in this case is analogous to the proof of the first case.
It remains to consider the case that f(M(4)) has one of the forms 00d3y

′, 111y′,
111y′, 011y′ or 011y′. Here we have −1

4
≤ f(M(4)) ≤ 1

4
and define

d := 0 and x′ := 2x.

The formulas Sd d and x = d+x′

2
are obvious. In order to prove

∃g∃N∈T
(
∀n∈TcoIg(n) ∧ ∀p∈T∀n≥N(p)|g(n)− x′| ≤ 2−p

)
,

we define
g := λn2f(M(4) t n) and N := λpM(p+ 1).

Again, N is total because M is. The right-hand side of the formula follows from the
assumption ∀p∈T∀n≥M(p)|f(n)−x| ≤ 2−p. Finally, for n ∈ T we have M(4)tn ∈ T,
and so f(M(4) t n) ∈ coI. Furthermore,

|f(M(4) t n)| ≤ |f(M(4) t n)− x|+ |x− f(M(4))|+ |f(M(4))|

≤ 1

16
+

1

16
+

1

4
≤ 1

2
,

which implies coIg(n) by Lemma 5.3.4.

Remark 5.3.13. We denote the extracted term by Lim. It has the type

Lim : (Z+ → N)→ (N→ S)→ S,

and takes the modulus of convergence and the sequence of streams and returns the
stream of the limit value. In order to give an at most readable characterisation of
Lim, we define the following sets:

R := {11v, 10v, 111v, 110v, 011v, 010v | v : S}
M := {00v, 111v, 111v, 011v, 011v | v : S}
L := {11v, 10v, 111v, 110v, 011v, 010v | v : S}
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These three sets correspond to the three cases in the proof, and therefore we have
the following rule for Lim:

Lim M F :=


C 1 (Lim λpM(p+ 1) λn(DDq−F (M(4) t n))) if F (M(4)) ∈ R

C 0 (Lim λpM(p+ 1) λn(DF (M(4) t n))) if F (M(4)) ∈M

C 1 (Lim λpM(p+ 1) λn(DDq+F (M(4) t n))) if F (M(4)) ∈ L

The functions D, q+ and q− are the computational content of the lemmas above.
Note that the definition of the new sequence is not unique. For reasons of

efficiency one should be flexible with the choice of the new sequence, which is called
g in the proof above. For example one can replace M(4) t n by M(4) + n. The
efficiency depends on the concrete sequence. In the self-provided Haskell file we have
chosen M(4)tn since in the next section we define the Heron sequence and apply it
to Lim. In this case the definition with M(4)tn is most efficient. In the Minlog file
we have chosen M(3) +n. Here we can take M(3) instead of M(4) as in the Minlog
file M is also required to be a Cauchy modulus of f . That is the only difference if
one assumes that f is a Cauchy sequence. Of course, one can also choose M(3) t n
instead of M(3) + n.

We give an example for an implementation as a Haskell program. First, the sets
R and L are realised as Boolean functions:

rAux :: Str -> Bool

rAux (SdR :~: SdR :~: v) = True

rAux (SdR :~: SdM :~: v) = True

rAux (SdR :~: SdL :~: SdR :~: v) = True

rAux (SdR :~: SdL :~: SdM :~: v) = True

rAux (SdM :~: SdR :~: SdR :~: v) = True

rAux (SdM :~: SdR :~: SdM :~: v) = True

rAux v = False

lAux :: Str -> Bool

lAux (SdL :~: SdL :~: v) = True

lAux (SdL :~: SdM :~: v) = True

lAux (SdL :~: SdR :~: SdL :~: v) = True

lAux (SdL :~: SdR :~: SdM :~: v) = True

lAux (SdM :~: SdL :~: SdL :~: v) = True

lAux (SdM :~: SdL :~: SdM :~: v) = True

lAux v = False

Then one can define cCoILim by case distinction:
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cCoILim :: (Int -> Int) -> (Int -> Str) -> Str

cCoILim m f

| rAux (f (m 4)) = SdR :~: (cCoILim n (funcR m f))

| lAux (f (m 4)) = SdL :~: (cCoILim n (funcL m f))

| otherwise = SdM :~: (cCoILim n (funcM m f))

where n = \p -> (m (p+1))

In this implementation the constructor C is denoted by :~: and written as an infix.
The tree elements in Sd are given by SdR, SdM and SdL and shall be interpreted
by 1, 0 and 1, respectively. The functions funcR, funcL and funcM are the corre-
sponds to the functions in the definition of Lim above, i.e. funcR corresponds to
the λn(DDq−F (M(4)tn))), funcL corresponds to λn(DDq+F (M(4)tn))) and funcM

corresponds to λn(DF (M(4) t n))).
The proof in Minlog of this theorem is quite straightforward and direct, however
it reveals to be a lengthy procedure, as we have to consider each of the cases one
by one. In the handwritten part above they are divided into three classes, which
shortens the proof.

5.4 Application: Heron’s method

Motivation 5.4.1. In this chapter we apply the convergent theorem to Heron’s
method and get an algorithm which computes the SD code of the square root of
a non-negative real number. This chapter is currently not implemented in Minlog,
but we present the extracted terms in Haskell notation.

We do not specify how the square root is defined. This depends on the model of
the real numbers. We just need that

√
x exists for all x ≥ 0 and has the properties√

x ≥ 0,
√
x

2
= x and x ≤ y implies

√
x ≤ √y.

The following statements about the Heron sequences are well-known and similar
statements can be found in many textbooks.

Definition 5.4.2. We define H : R→ N→ R by the computation rules

H(x, 0) := 1,

H(x, n+ 1) :=
1

2

(
H(x, n) +

x

H(x, n)

)
.

For all non-negative x the sequence λnH(x, n) =: H(x) : N→ R is the sequence, we
get from Heron’s method with start value 1.
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Remark 5.4.3. Note that H is well-defined for non-negative x since one can
easily prove H(x, n) ≥ 2−n by induction. This is especially important for a possible
implementation in Minlog as division in Minlog needs a witness of positivity.

Lemma 5.4.4. For all x ∈ [0, 1] the sequence H(x) converges to
√
x with modulus

ι : Z+ → N which is the inclusion from Z+ to N. Furthermore, we have ∀n∈T
√
x ≤

H(x, n).1

Proof. Let x ∈ [0, 1] be given. For each total n we define ∆(x, n) := H(x, n)−
√
x.

A short calculation gives

∆(x, n+ 1) =
1

2

(
H(x, n) +

x

H(x, n)

)
−
√
x =

(H(n, x))2 − 2H(x, n)
√
x+ x

2H(x, n)

=
(∆(x, n))2

2H(x, n)
.

By induction on n we immediately get 0 < H(x, n) and therefore 0 ≥ ∆(x, n + 1).
Since in addition ∆(x, 0) = 1−

√
x ≥ 0, we have ∀n∈T

√
x ≤ H(x, n).

Furthermore, we calculate

∆(x, n+ 1) =
(∆(x, n))2

2H(x, n)
=

1

2
∆(x, n)

∆(x, n)

H(x, n)
=

1

2
∆(x, n)

(
1−

√
x

H(x, n)

)
≤ 1

2
∆(x, n).

Therefore, by induction we have |H(x, n) −
√
x| = ∆(x, n) ≤ 2−n and this implies

∀p∈T∀n≥p|H(x, n)−
√
x| ≤ 2−p, i.e. H(x) converges to

√
x with modulus ι.

Remark 5.4.5. This lemma does not have any computational content, but it states
that ι is a modulus of convergence of Hx to

√
x from above. In some special cases

we can even improve the modulus:

Proposition 5.4.6. If x ∈ [1
4
, 1] then poslog : Z+ → N is a modulus of the

converges from H(x) to
√
x. For a positive integer p we define poslog(p) as the

least natural number n with p ≤ 2n.

Proof. Let x ∈ [1
4
, 1] be given. From Lemma 5.4.4 we know ∀n∈T

√
x ≤ H(x, n) and

therefore ∀n∈T 1
2
≤ H(x, n). In the proof of Lemma 5.4.4 the formula

∆(x, n+ 1) =
(∆(x, n))2

2H(x, n)

1Similar to the discussion in Motivation 5.3.10, we quantify over total objects as the proof uses
induction over n.
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is proven. This implies ∆(x, n + 1) ≤ (∆(x, n))2. By using induction an ∆(x, 0) =
1−
√
x ≤ 1

2
we get

∆(x, n) ≤ 2−2n

for each total n. Hence, for given p and n ≥ poslog(p) we get p ≤ 2n and therefore∣∣H(x, n)−
√
x
∣∣ = ∆(x, n) ≤ 2−2n ≤ 2−p

Remark 5.4.7. One possibility to implement the function poslog is to define an
auxiliary function auxlog : Z+ → N→ N with the computation rules

auxlog p n :=

{
n if p ≤ 2n

auxlog p (n+ 1) otherwise,

and then set poslog(p) := auxlog p 0.
We do not use this proposition and the function poslog in the main theorem, but
for concrete calculations we use it to reduce their runtime.

Lemma 5.4.8. For all x ∈ coI with 1
16
≤ x we have ∀n∈TcoI(H(x, n)). Expressed

as a formula:

∀x.coIx→
1

16
≤ x→ ∀n∈TcoI(H(x, n))

Proof. We use the results of [124], [161] and of Section 3.3 from [180]. In the first
script the statement

∀x,y.coIx→ coIy → coI
x+ y

2
(5.1)

is proven. In Minlog this theorem is implemented in sdavaux.scm in the folder
examples/analysis and has the name CoIAverage. In the last two scripts, the
theorem

∀x,y.coIx→ coIy → |x| ≤ y → 1

4
≤ y → coI

x

y
(5.2)

is proven. In Minlog this theorem is implemented in sddiv.scm in the folder
examples/analysis and has the name CoIDiv. Using these formulas the proof
of this lemma is done by induction on n:
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For n = 0 it is easy since H(x, 0) = 1 and coI 1.
For any total n we have

H(x, n+ 1) =
1

2

(
H(x, n) +

x

H(x, n)

)
.

By Lemma 5.4.4 we get
√
x ≤ H(n, x), and therefore√

1

16
=

1

4
≤ H(x, n) and x ≤

√
x ≤ H(x, n).

Additionally, by the induction hypothesis coI(H(x, n)). By (5.2) we have coI x
H(x,n)

,

so with (5.1) we get coI(H(x, n+ 1)).

Remark 5.4.9. We denote the computational content of (5.1) and (5.2) by
cCoIAverage and cCoIDiv, respectively. Each of these terms takes two streams
of reals and returns a stream of their average and their quotient, respectively.

As we have used induction over n to prove the lemma, the extracted term Heron

is defined by recursion:

Heron v 0 := [1, 1, . . . ]

Heron v (n+ 1) := cCoIAverage(Heron v n)(cCoIDiv v (Heron v n))

This is Definition 5.4.2 in the notation of streams.

Theorem 5.4.10.

∀x.coIx→ 0 ≤ x→ coI
√
x

Proof. Recall the introduction axiom of coI+:

∀x.∃y (coIy ∧ 0 ≤ y ∧√y = x)→

∀x
(
Px→ ∃d,x′

(
Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =

d+ x′

2

))
→ coIx

We apply it to the predicate

Px := ∃y (coIy ∧ 0 ≤ y ∧√y = x) .
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To show the goal formula, we show the second premise:

∀x.∃y (coIy ∧ 0 ≤ y ∧√y = x)→

∃d,x′
(

Sd d ∧ (coI ∪ P )x′ ∧ |x| ≤ 1 ∧ x =
d+ x′

2

)
Let x, y with coIy, 0 ≤ y and

√
y = x be given. |x| ≤ 1 follows directly from

0 ≤ y ≤ 1 and y =
√
x. From coIy and triple application of coI− we get d1, d2, d3 ∈ Sd

and y′ ∈ coI with y = d1d2d3y
′. We distinguish three different cases:

If y has one of the forms 1d2d3y
′, 01d3y

′ or 001y′, it follows y ≤ 0, and therefore

x =
√
y = 0. Hence, we define d := 0 and x′ := 0, then Sd d, coIx′ and x =

d+ x′

2
are obvious.

If y has one of the forms 000y′, 001y′, 011y′ or 111y′, we can rewrite y = 00ey′

for an e ∈ {0, 1}. Here we define d := 0 and x′ :=
√

e+y′

2
, then Sd d and

x =
√
y =

√
e+ y′

8
=

√
e+y

2

2
=
d+ x′

2
.

Furthermore, coI
(
e+y′

2

)
by Lemma 5.2.10, and 0 ≤ e+y′

2
since 0 ≤ y = e+y′

8
. Alto-

gether we get Px′.
The remaining case is that y has one of the forms 010y′, 011y′, 111y′, 110y′,

10d3y
′ or 11d3y

′. Here it follows 1
8
≤ y. Hence, ∀n∈TcoI(H(y, n)) by Lemma 5.4.8.

Furthermore, by Lemma 5.4.4 we know that H(y) converges to
√
y with modulus

ι : Z+ → N. Thus, we use Theorem 5.3.12 to get coIx, and applying coI− leads to

∃d,x′
(

Sd d ∧ coIx′ ∧ |x| ≤ 1 ∧ x =
d+ x′

2

)
,

which proves the goal formula.

Remark 5.4.11. By the definitions of Lim as the extracted term of Theorem 5.3.12
and Heron as the extracted term of Lemma 5.4.8 we have the following rules for the
computational content sqrt : Str→ Str of this theorem:

sqrt(1u) := [0, 0, . . . ]

sqrt(01u) := [0, 0, . . . ]

sqrt(00u) := 0 sqrt u

sqrt(011u) := 0 sqrt 1u

sqrt(111u) := 0 sqrt 1u

sqrt u := Lim ι (heron u)
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The last rule shall only be applied if the other rules do not fit.
This algorithm has an inefficient runtime, which comes from the recursive def-

inition of Heron. In each step the function cCoIDiv is used twice and it has al-
ready a quadratic runtime. Therefore, Heron has an at least exponential runtime
and Haskell already takes quite a few minutes to compute even the first digit of
Heron [1, 0, 0, . . . ] 10. By using poslog from Lemma 5.4.6 instead of ι we get a bit

more digits of
√

1
2
. If we enter

cCoILim poslog (heron phalf)

in Haskell and wait about one minute, we get

+1 +1 0 -1 +1 -1 +1 -1 0 0 0 0 +1 -1 +1 -1 0 0 -1 +1 +1 -1 -1 +1 +1

-1 -1 +1 +1

as output. These are the first 29 digits of
√

1
2

=
√

2
2

. One can check that this

result is indeed valid. Since each element of the sequence (H(1
2
, n))n is a rational

number, the real number
√

2 has the representation
((
H(1

2
, n)
)
n
, poslog

)
as a pair

of a Cauchy sequence of rational numbers and a Cauchy modulus. However, by
this example we can check that our algorithm provides indeed valid results. But we
also want to compute the square root of irrational numbers. A possible approach to
generate some irrational numbers is the general form of the Liouville number to the
base 2. It is given by

L =
∞∑
i=1

2−f(i),

where f : N→ N is strictly monotonically increasing. If f(n) = n! for all n, we have
the proper Liouville number to the base 2 and this number is even transcendent as
Liouville showed in [108]. Because of its representation one can easily implement its
signed digit code in Haskell:

liouvilleAux :: (Int -> Int) -> Int -> Int -> Str

liouvilleAux f m n = if (f(m) == n)

then (SdR :~: liouvilleAux f (m+1) (n+1))

else (SdM :~: liouvilleAux f m (n+1))

liouville f = liouvilleAux f 1 1

Again we can use poslog as modulus, and therefore we enter

cCoILim poslog (heron (liouville facul))
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where facul is the factorial function. When we wait about one minute, the output
is

+1 +1 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 -1 0 +1 -1 0 +1

-1 0 +1 -1

5.5 Application: multiplication

Motivation 5.5.1. The application we show in this section is the result of a
collaboration with Nils Köpp. It is motivated by Helmut Schwichtenberg and the
Minlog file exaples/analysis/sdmult.scm. In this file it is proven that coIx and
coIy implies coI(xy). In the following we use Theorem 5.3.12 to develop another
proof of this statement. Our proof uses that coIx implies that x is the limit of a
sequence of the form (

n∑
i=1

d
(n)
i

2i

)
n

,

where each d
(n)
i is a signed digit. Multiplication by each number in this sequence

can be divided into repeated multiplication by a signed digit and application of
CoIAverage (which was already mentioned in proof of Lemma 5.4.8).

This section is rather informal as we formulate the extracted term by hand.

Notation 5.5.2. In this section the variable l has type L(Z) and the variable L has
type L(D), where L is the list type from Example 2.1.5. We denote the constructor
Cons also by :: as infix notation and we also use :: to denote the attachment from
right, i.e. for a list l = [d1, . . . , dn], we have

d0 :: [d1, . . . , dn] = [d0, . . . , dn] and [d1, . . . , dn] :: dn+1 = [d1, . . . , dn+1].

The totality T for objects of type L(Z) is inductively defined by the rules [] ∈ T
and ∀d,l(l ∈ T→ d :: l ∈ T).

For a list l, lh(l) denotes the length of l and for i ≤ lh(l) we denote the i-th entry
by l(i). In this section we start the enumeration by 1, i.e. l = [l(1), . . . , l(lh(l))] and
(d :: l)(1) = d for all l ∈ T and d.

Remark 5.5.3. Note that :: from right is formally defined by the rules [] :: d :=
d :: [] and (e :: l) :: d := e :: (l :: d).

The totality of lists we use in this chapter is also called structural totality [160,
Section 7.1.6]. The elimination axiom of l ∈ T can be seen as induction over the
length of l. E.g. using the induction axiom one can easily prove ∀d,l(l ∈ T → l ::
d ∈ T).
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Lemma 5.5.4.

∀x.coIx→ ∀l∈T

∀i≤lh(l)Sd l(i)→ coI

x lh(l)∑
i=1

l(i)

2i


Proof. In this proof we use the theorems CoIAverage (i.e. ∀x,y.coIx→ coIy → coIx+y

2
)

and CoISdTimes (i.e. ∀x,d.coIx → Sd d → coI(dx)), which are implemented in
sdavaux.scm and sdmult.scm, respectively.

Let x with coIx be given. We use induction over l ∈ T. If l = [] then x
∑lh(l)

i=1
di
2i

=
0 and we are done as 0 has the infinite list of 0 as signed digit code.

For the induction step we assume

∀i≤lh(l)Sd l(i)→ coI

x lh(l)∑
i=1

l(i)

2i


and our goal is

∀i≤lh(d::l)Sd (d :: l)(i)→ coI

x lh(d::l)∑
i=1

(d :: l)(i)

2i


for some given d. From ∀i≤lh(d::l)Sd (d :: l)(i) is follows Sd d and ∀i≤lh(l)Sd l(i), and
therefore by the induction hypothesis

coI

x lh(l)∑
i=1

l(i)

2i

 .

Furthermore, we calculate

x

lh(d::l)∑
i=1

di
2i

=
1

2

xd+ x

lh(l)∑
i=1

l(i)

2i


and apply CoISdTimes to get coI(xd). Hence, CoIAverage finishes the proof.

Remark 5.5.5. From the proof we obtain that the computational content of this
lemma is a function f : S→ L(D)→ S given by the following rules:

f u [] := [0, 0, . . . ]

f u (d :: L) := cCoIAverage(f u L)(cCoISdTimes d u)
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The functions cCoIAverage : S → S → S and cCoISdTimes : D → S → S are
the computational content of CoIAverage and CoISdTimes, respectively. f takes a
signed digit code of a real number x and a list l of signed digits and returns a signed
digit code of x

∑lh(l)
i=1

l(i)
2i

.

Lemma 5.5.6.

∀n∈T∀x.coIx→ ∃l∈T,y

(
∀i≤lh(l)Sd l(i) ∧ lh(l) = n ∧ coIy ∧ x =

n∑
i=1

l(i)

2i
+

y

2n

)

Proof. We use induction on n ∈ T. If n = 0, we choose y = x and l = []. For the
induction step we assume

∀x.coIx→ ∃l∈T,y

(
∀i≤lh(l)Sd l(i) ∧ lh(l) = n ∧ coIy ∧ x =

n∑
i=1

l(i)

2i
+

y

2n

)
,

and for given x with coIx we have to show

∃l′∈T,y′
(
∀i≤lh(l′)Sd l′(i) ∧ lh(l′) = n+ 1 ∧ coIy′ ∧ x =

n+1∑
i=0

l′(i)

2i
+

y′

2n+1

)
.

From coIx and coI− we get d and x′ with Sd d, coIx′ and x = x′+d
2

. We apply the
induction hypothesis to x′ and get l ∈ T and y with

∀i≤lh(l)Sd l(i) ∧ lh(l) = n ∧ coIy ∧ x′ =
n∑
i=1

l(i)

2i
+

y

2n
.

To prove our goal, we define l′ := d :: l and y′ := y. Then ∀i≤lh(l′)Sd l′(i), lh(l′) =
n+ 1 and coIy′ are obvious and

x =
1

2
(d+ x′) =

1

2

(
d+

n∑
i=1

l(i)

2i
+

y

2n

)
=

n+1∑
i=1

(d :: l)(i)

2i
+

y

2n+1
.

Remark 5.5.7. The computational content is a function g : N → S → L(D) × S
given by the rules

g 0 u := 〈[], u〉
g (n+ 1) (Cdu) := 〈d :: (π0(g n u)), π1(g n u)〉.
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For input n and u the function returns a list of the first n elements of u and the
remainder of u.

By using the axiom of choice2, i.e.

∀n∈T∃tτA(n, t)→ ∃hN→τ∀n∈TA(n, h(n)), (5.3)

we can reformulate the lemma above to

∀x.coIx→

∃l(·),y(·)∀n∈T

(
ln ∈ T ∧ ∀i≤lh(ln)Sd ln(i) ∧ lh(ln) = n ∧ coIyn ∧ x =

n∑
i=1

ln(i)

2i
+
yn
2n

)
.

(5.4)

A realiser of Formula (5.3) is given by the identity on N → τ(A). This can easily
be checked by using the definition of the reliability predicate in [158]. Therefore a
realiser g′ : S→ N→ L(D)× S of (5.4) can be characterised by

g′ u n = g n u.

Probably (5.4) is also probable without the axiom of choice by using the recursion
operator and the computational content of ApproxSplit (Lemma B.17), but we are
mainly interested in the computational content and the axiom of choice makes it
considerably simpler.

Lemma 5.5.8. Assuming (5.3), we have

∀x,y.coIx→ coIy →

∃l(·)

(
∀n∈TcoI

(
x

n∑
i=1

ln(i)

2i

)
∧ ∀p∈T∀n≥p

∣∣∣∣∣x
n∑
i=1

ln(i)

2i
− xy

∣∣∣∣∣ ≤ 2−p

)
.

Proof. Let x, y with coIx and coIy be given. We apply Lemma 5.5.6 and Remark
5.5.7 to y and coIy. Then we get sequences l(·) and y(·) such that

∀n∈T

(
ln ∈ T ∧ ∀i≤lh(ln)Sd ln(i) ∧ lh(ln) = n ∧ coIyn ∧ y =

n∑
i=1

ln(i)

2i
+
yn
2n

)
.

2Despite the name “axiom of choice”, (5.3) is a constructive principle as it can be realized and
the existence quantifier are constructively strong.
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Hence, for given n ∈ T we have coI
(
x
∑n

i=1
ln(i)

2i

)
by Lemma 5.5.4. Furthermore,

for p ∈ T and n ≥ p we calculate∣∣∣∣∣x
n∑
i=1

ln(i)

2i
− xy

∣∣∣∣∣ = |x|

∣∣∣∣∣
n∑
i=1

ln(i)

2i
−

(
n∑
i=1

ln(i)

2i
+
yn
2n

)∣∣∣∣∣ = |x| |yn|
2n
≤ 2−p,

where we have used |x|, |yn| ≤ 1, which follows from coIx and coIyn.

Remark 5.5.9. The second part of the lemma above states that
(
x
∑n

i=1
ln(i)

2i

)
n

converges to xy with modulus ι. Therefore, the computational content of this lemma
is only contained in the first part. It is a function h : S→ S→ N→ S which takes
the signed digit streams of x and y and a natural number n and returns a signed
digit stream of x

∑n
i=1

ln(i)
2i

. It can be characterised by

h u v n := f u (π0(gnv)),

where f and g are defined in Remark 5.5.5 and 5.5.7, respectively.

Theorem 5.5.10. If (5.3) then

∀x,y.coIx→ coIy → coI(xy).

Proof. Let x, y with coIx and coIy be given. Applying this to Lemma 5.5.8 we receive
a sequence f : N→ R of real numbers such that ∀n∈TcoIf(n) and f converges to xy
with modulus ι. Therefore, coI(xy) follows by Theorem 5.3.12.

Remark 5.5.11. Using the computational content h from Remark 5.5.9, the ex-
tracted term of this Theorem is a function mult : S→ S→ S given by

mult u v = Lim ι (h u v)

5.6 Outlook and future work

Remark 5.6.1. It is possible to generalise the Heron sequence for roots of higher
order. For a positive integer n and x ∈ [0, 1] we define

G n x 0 := 1

G n x (k + 1) :=
1

n

(
(n− 1)(G n x k) +

x

(G n x k)n−1

)
.
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This sequence originates from Newton’s method applied to the function y 7→ yn−x.
Obviously, G 2 = H. By this formula and the modulus from Newton’s method one
could prove a general version of Theorem 5.4.10:

∀x.coIx→ 0 ≤ x→ coI n
√
x

A difference of this generalisation is that one has to take a look at the first n + 1
digits of the radicand to compute the first digit of the root. Another problem which
increases the duration for higher roots is that in the definition of G one divides by
(G n x k)n−1. If (G n x k) is small, (G n x k)n−1 is even smaller for large n, and
the smaller the divisor the longer the duration of the division.

A generalisation of this is given in the context of functions with can be defined
as power series. The main examples here are the trigonometric functions sin and
cos. To prove that all real numbers in these sequences are in coI, one can use the
formulas (5.1) and (5.2) and Lemma 5.3.4.

As an even larger generalisation one could pose the question: How can we use
Theorem 5.3.12 to get an algorithm which takes a continuous function f from [−1, 1]
to [−1, 1] and returns a computable function which takes a signed digit stream of a
real x and returns a signed digit stream of f(x)? Constructive continuous functions
are for example defined in [30, Section 2.4]. Uniformly continuous functions on
signed digit stream were already considered by Ulrich Beger in [20]. Connected with
this is the intermediate value theorem and the fundamental theorem of algebra.
Both theorems are constructively considered in [153] by Peter Schuster and Helmut
Schwichtenberg. Of course, the fundamental theorem of algebra needs complex
numbers but they can be seen as pairs of real numbers.

Another direction in which one could extend this work is to replace the signed
digit code by the Gray code. Similar to the signed digit code, the Gray code is
suitable to represent real numbers [171]. In contrast to the signed digit code, the
Gray code has the property that a small change in the value of a real number
effects only a small change in the Gray code of this real number. To implement the
Gray code, one needs simultaneously defined types and simultaneously coinductively
defined predicates. In [161] there are proofs of the analogous statements to Lemma
5.3.2 and Lemma 5.3.4 and the analogous statements to (5.1) and (5.2).
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Chapter 6

Rates of convergence for
asymptotically weakly contrative
maps in normed spaces

The results we present in this chapter are based on a collaboration with Thomas
Powell [139].

Motivation 6.0.1. This chapter is about a typical usage of proof mining in analy-
sis. We apply ideas and techniques from logic to classical proofs with the aim to get
some quantitative information out of the proofs and generalise the proven theorems.
In Chapter 3 we have seen an example of proof mining in algebra, and there are also
applications of proof mining in number theory [118] and combinatorics [18]. How-
ever, analysis is the main field where proof mining is applied. [90] presents this in
great detail and [92] shows the recent results of proof mining in non-linear analysis.
However, we do not require any knowledge about proof mining and only require
some basics of analysis.

In Chapter 5 we have already discussed the computational content of proofs in
analysis. In contrast to that chapter we now use classical logic (e.g. PAω) and at
some points also a slightly different notation. For instants, in this chapter we use
the notion “rate of convergence” instead of “modulus of convergence” as the first
one is more typical in the field of proof mining.

147
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6.1 Introduction

Motivation 6.1.1. Let (X, d) be a complete metric space. A map T : X → X is
a contraction if there is some k ∈ [0, 1) such that

∀x,y∈Xd(Tx, Ty) ≤ kd(x, y).

Banach’s fixed point theorem tells us that there exists a unique fixed point q ∈ X
of T and the Picard iteration xn+1 := Txn for any arbitrary starting point x0 ∈ X
converges to q such that

d(xn, q) ≤
kn

1− k
d(x0, q)

for all n ∈ N.
The aim of this chapter is to develop more theorems in this form by applying

typical techniques of proof mining. Our approach is inspired by [100,103]. Instead of
the Picard iteration, we consider the Krasnoselski-Mann iteration (Definition 6.2.7),
and instead of contractions in metric spaces we consider variants of contractive
maps in normed space, which were studied by Albert, Chidume, Guerre-Delabriere,
Reich, Yao and Zegeye [2, 3, 6, 37] just to mention a few. We present these variants
in Section 6.3. All these fixed point theorems use a certain convergence lemma. In
Section 6.4 we take a classical proof of this lemma as starting point and extract a
rate of convergence from this proof and reformulate this into a quantitative version
of the convergence lemma. After this we present some case studies. In each case
study we use the convergence lemma to prove a fixed point theorem which contains
a rate of convergence, and we present some corollaries of this fixed point theorem,
which are quantitative versions of some theorems in [2,3,37]. In particular, the main
theorem in each case study is a generalisation of the theorem in our sources.

6.2 Basic definition

6.2.1 Rate of convergence and divergence

Motivation 6.2.1. The following notions are just quantitative versions of con-
vergence and divergence. Note that they are quite different to the modulus of
convergence from Chapter 5.

Definition 6.2.2. Let X be a metric space (with distance function d) and let (µn)n
be a sequence in X and q ∈ X. A rate of convergence for (µn)n to q is a function



6.2. BASIC DEFINITION 149

f : R+ → N such that

∀ε>0∀n≥f(ε)d(µn, q) ≤ ε.

Definition 6.2.3. Let (αn)n be a sequence of non-negative real numbers. We say
that r : N× R+ → N is a rate of divergence for (

∑n
i=0 αi)n if

∀n∈N,x∈R+

r(n,x)∑
i=n

αi > x.

Example 6.2.4. For the constant sequence (1)n a rate of divergence of
∑∞

i=0 1 is
given by

r(n, x) := dxe+ n.

6.2.2 Iterative sequences

Motivation 6.2.5. The class of iterative sequences which we consider in our
case studies are the so-called Krasnoselski-Mann sequences [2]. Krasnoselski-Mann
sequences are general versions of the Picarde sequences from Motivation 6.1.1. By
using non-expansive retractions we even get a general form of Krasnoselski-Mann
sequences which we use in the second case study.

Definition 6.2.6. Let X be a normed space and E ⊆ X be a subset. A map
P : X → E is called retraction if P |E = idE. It is called non-expansive retraction if
additionally

∀x,y∈X‖Px− Py‖ ≤ ‖x− y‖.

Definition 6.2.7. Let a normed space X, a subset E ⊆ X, a sequence (An : E →
E)n of maps and a sequence (αn)n of non-negative real numbers be given. We say
that a sequence (xn)n in E is a Krasnoselski-Mann sequence w.r.t. (An)n and (αn)n
if

xn+1 = (1− αn)xn + αnAnxn

for all n ∈ N.
For a non-expansive retraction P we say that (xn)n is a P -Krasnoselski-Mann

sequence w.r.t. (An)n and (αn)n if

xn+1 = P ((1− αn)xn + αnAnxn)

for all n ∈ N.
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6.3 Notions of contractivity

Motivation 6.3.1. Most of the maps explored in this chapter can be viewed as
generalisation of the concept of contractivity in the sense of Edelstein [67]. In this
section we present several version of contractivity. We also discuss the connection
between them.

6.3.1 Contractive and weakly contractive maps

Motivation 6.3.2. We start by defining contractivity and a modulus of uniformly
contractivity. Such a modulus is discussed in [98], where it is later used to formulate
a general rate of convergence for a variant of Edelstein’s fixed point theorem for
contractive maps.

Definition 6.3.3. Let X be a normed space, E ⊆ X and suppose that T : E → E
is a map. We say that T is contractive if for all x, y ∈ E,

x 6= y ⇒ ‖Tx− Ty‖ < ‖x− y‖.

A function τ : R+ → R+ which satisfies

∀x,y∈E∀ε>0.‖x− y‖ ≥ ε⇒ ‖Tx− Ty‖+ τ(ε) ≤ ‖x− y‖

is called a modulus of (uniform) contractivity.

Motivation 6.3.4. A more restrictive notion of contractivity was introduced and
studied by Alber and Guerre-Delabriere [3]. It is the so-called weak contractivity,
which we present in the following definition. There the modulus of contractivity is
given by a function ψ with certain properties.

Definition 6.3.5. Let X be a normed space, E ⊆ X and suppose that T : E → E
is a map. T is called ψ-weakly contractive for some continuous and non-decreasing
function ψ : R+

0 → R+
0 which is positive on R+ if for all x, y ∈ E,

‖Tx− Ty‖ ≤ ‖x− y‖ − ψ(‖x− y‖).

Remark 6.3.6. From the definitions above we directly see that if T is ψ-weakly
contractive, it is also contractive with modulus ψ, and if T is contractive with any
modulus, it is also contractive. The other directions do not hold without further
assumptions:
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We can reformulate contractivity in Definition 6.3.3 as follows:

∀x,y∈E∀ε>0∃δ>0.‖x− y‖ ≥ ε⇒ ‖Tx− Ty‖+ δ ≤ ‖x− y‖.

For τ(ε) instead of δ this is similar to the definition of contractivity with modulus
τ . However, δ can also depend on x and y whereas τ(ε) cannot. Thus a contractive
map with a modulus is contractive in a uniform way. In [98, Section 4.3] it is even
shown that if E is compact, a modulus of contractivity can be characterised as the
so-called monotone functional interpretation of the statement that T is contractive
and in [98, Section 5.1] such a modulus is used to formulate a rate of convergence
for Edelstein’s fixed point theorem given in [67]. A special case of contractive maps
with modulus are the almost uniformly contractive maps which are introduced in [33,
Section 4].

In the case that T is contractive with modulus τ , we define

ψ(ε) := inf{τ(µ) | ε ≤ µ}

for all ε > 0 and ψ(0) := 0. Obviously, ψ is non-decreasing. If furthermore ψ is
positive on R+, T is ψ-weakly contractive. This assumption is not very strong, and
in the most cases τ is already non-decreasing. Therefore, uniform contractivity with
modulus and weak contractivity are closely connected.

In the next section we discuss a more general version of these notions.

6.3.2 Asymptotically weakly contractive maps

Motivation 6.3.7. Classes of asymptotically weakly contractive maps have been
studied in several places, particularly by Albert and Guerre-Delabriere in [3, 4] and
then subsequently by Chidume, Zegeye and Aneke in [37]. For a simple example,
an asymptotic variant of Definition 6.3.5, i.e. of being ψ-weakly contractive, is given
by the condition

‖T nx− T ny‖ ≤ (1 + an)‖x− y‖ − ψ(‖x− y‖), (6.1)

where now (an)n is some sequence of non-negative reals satisfying an → 0 for n→∞.
Another example is given by

‖T nx− T ny‖ ≤ ‖x− y‖ − ψ(‖x− y‖) + ln,

where (ln)n is a sequence which converges to 0 for n→∞. In both cases we consider
a sequence of maps which becomes weakly contractive in the limit. This leads to
our central definition of asymptotically weakly contractive maps.
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Definition 6.3.8. Let X be a normed space, E ⊆ X, (κn)n ∈ (R+
0 )N, (An : E →

E)n be a sequence of maps and ψ : R+
0 → R+

0 . We say that (An)n is asymptotically
ψ-weakly contractive w.r.t. (κn)n and modulus σ : R+×R+ → R+ if for all x, y ∈ E
and δ,K > 0 we have

∀n≥σ(δ,K).‖x− y‖ ≤ K ⇒ ‖Anx− Any‖ ≤ (1 + κn)‖x− y‖ − ψ(‖x− y‖) + δ.

For a given point q ∈ X we say that (An)n is quasi asymptotically ψ-weakly contrac-
tive w.r.t. (κn)n and q and modulus σ if for all x ∈ E and δ,K > 0 we have

∀n≥σ(δ,K).‖x− q‖ ≤ K ⇒ ‖Anx− q‖ ≤ (1 + κn)‖x− q‖ − ψ(‖x− q‖) + δ.

If we do not mention (κn)n explicitly, it is by default the zero sequence.

Remark 6.3.9. The definition above is divided into two parts as in many of the
results we prove later it is sufficient that the map is quasi asymptotically ψ-weakly
contractive instead of asymptotically ψ-weakly contractive. Note that in our cases
q will be a fixed point of the An’s and therefore asymptotic ψ-weak contractivity
implies quasi asymptotic ψ-weak contractivity.

In the same way that the weakly contractive maps are generalised by the class
of (uniformly) contractive maps with modulus, for any asymptotically weakly con-
tractive map T , as in Motivation 6.3.7, the sequence (T n)n is asymptotically weakly
contractive in our new sense of Defintion 6.3.8. To see this, note that if f : R+ → R+

is a rate of convergence for an → 0 then it is clear that for any T satisfying (6.1),
σ(δ,K) := f(δ/K) forms a modulus of asymptotic contractivity for (T n)n.

However, as we shall see later, a number of more general notions of asympototic
weak contractiveness are captured by Definition 6.3.8. For instant the following
example comes from [37] and we will discuss some theorems containing it in Section
6.5.

Definition 6.3.10. Let X be a normed space, E ⊆ X a subset, φ, ψ : R+
0 → R+

0

two non-decreasing functions both positive on R+ and (kn)n, (ln)n two sequences
which both converge to 0. A sequence of maps (An : E → X)n is called totally
asymptotically weakly contractive if

‖Anx− Any‖ ≤ ‖x− y‖+ knφ(‖x− y‖)− ψ(‖x− y‖) + ln

for all x, y ∈ E and n ∈ N.
We say that a map T : E → E is totally asymptotically weakly contractive if the

sequence (T n)n is.
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Lemma 6.3.11. In the situation of Definition 6.3.10 let f, g be the rates of conver-
gence of (kn)n and (ln)n, respectively. Then the sequence (An)n is ψ-asymptotically
contractive with modulus

σ(δ,K) := max

{
f

(
δ

2φ(K)

)
, g

(
δ

2

)}
.

Proof. Since (An)n is totally asymptotically weakly contractive, we have

‖Anx− Any‖ ≤ ‖x− y‖+ knφ(‖x− y‖)− ψ(‖x− y‖) + ln

for all x, y ∈ E and n ∈ N. As φ is non-decreasing, it follows

‖x− y‖ ≤ K ⇒ ‖Anx− Any‖ ≤ ‖x− y‖ − ψ(‖x− y‖) + knφ(K) + ln

for all x, y ∈ E, n ∈ N and K > 0. Hence, (An)n is ψ-asymptotically contractive
with the modulus σ as above.

Remark 6.3.12. A related notion of being asymptotically contractive in the setting
of arbitrary complete metric spaces (X, d) is given by Kirk [85], where a convergence
result for Picard iterates is proven. This has been analysed from a proof theoretic
standpoint first by Gerhardy [75] and then Briseid [34], both of whom develop
quantitative notions of being asymptotically contractive (see [75, Definition 2] and
[34, Definition 3.10]) similar in spirit to Definition 6.3.8 in this chapter. However,
we are interested in the rates of convergence of the Krasnoselski-Mann iteration in
normed spaces, and the proofs that we analyse have a very different character.

6.3.3 d-weakly contractive maps

Motivation 6.3.13. Another version of weakly contractive maps can be formulated
by using the normalized duality map. These are particularly interesting for us, as the
associated convergence results often rely on geometric properties of the underlying
space, such as uniform smoothness, allowing us to produce rates of convergence in
terms of the corresponding moduli as we see in Section 6.6.

Definition 6.3.14. Let X be a normed space. We denote its dual space by X∗.1

The normalized duality map J : X → 2X
∗

is defined by

Jx := {j ∈ X∗ | 〈x, j〉 = ‖x‖2 = ‖j‖2},

where 〈x, j〉 := j(x) denotes the duality pairing.

1In this chapter there is no list type. Therefore, X∗ always denotes the dual space.
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Motivation 6.3.15. Following [4], a map T : E → E is called d-weakly contractive
w.r.t. some non-decreasing ψ : R+

0 → R+
0 positive on R+ if for all x, y ∈ E there

exists some j ∈ J(x− y) such that

|〈Tx− Ty, j〉| ≤ ‖x− y‖2 − ψ(‖x− y‖2).

The following definition introduces a class of asymptotically d-weakly contractive
maps analogously to Definition 6.3.8.

Definition 6.3.16. Let X be a normed space and J be the normalized duality
map and let E ⊆ X be a subset. A sequence (An : E → X) of maps is called
asymptotically d-weakly contractive with modulus σ : R+×R+ → R+ if there exists
some non-decreasing ψ : R+

0 → R+
0 which is positive on R+ such that for all x, y ∈ E

there exists j ∈ J(x− y) with

∀b,δ>0∀n≥σ(δ,b).‖x− y‖ ≤ b⇒ |〈Anx− Any, j〉| ≤ ‖x− y‖2 − ψ(‖x− y‖) + δ.

We say that (An)n is quasi asymptotically d-weakly contractive w.r.t. q if for all
x ∈ E there exists j ∈ J(x− y) with

∀b,δ>0∀n≥σ(δ,b).‖x− q‖ ≤ b⇒ |〈Anx− q, j〉| ≤ ‖x− q‖2 − ψ(‖x− q‖) + δ.

Remark 6.3.17. Similar to Definition 6.3.8 one could replace ‖x − y‖2 by (1 +
κn)|‖x− y‖2 for some non negative sequence (κn)n. However, we will not need this
in our case studies. But if one adds (1+κn) in Definition 6.3.16, it is a generalisation
of Definition 6.3.8:

Given any asymptotically ψ-weakly contractive sequence of maps (An)n w.r.t.
(κn)n and modulus σ, for x, y ∈ E with ‖x − y‖ < K there exists j ∈ J(x − y)
by the Hahn–Banach theorem. For δ,K > 0, n ≥ σ(δ/K,K) and x, y ∈ E with
‖x− y‖ ≤ K we have

|〈Anx− Any, j〉|+ ‖x− y‖ψ(‖x− y‖) ≤ ‖Anx− Any‖‖x− y‖+ ‖x− y‖ψ(‖x− y‖)
≤ ‖x− y‖(‖Anx− Any‖+ ψ(‖x− y‖))

≤ ‖x− y‖
(

(1 + κn)‖x− y‖+
δ

K

)
≤ (1 + κn)‖x− y‖2 + δ.

Thus (An)n is asymptotically d-weakly contractive (in the general sense) w.r.t. χ(ε) :=
εψ(ε) and modulus ρ(δ,K) := σ(δ/K,K).
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6.4 Quantitative recursive inequalities

Motivation 6.4.1. We want to extract rates of convergence from generalisations
of a number of convergence proofs, which all involve variants of contractive maps
as discussed on Section 6.3. These proofs utilise an abstract theory of recursive
inequalities, a quantitative analysis of which is not only crucial in obtaining our
rates of convergence, but forms a unifying scheme which, together with the abstract
notions of contractivity discussed above, allows us to bring together several distinct
convergence results from the literature. For illustrative purposes and to motivate
the results in this section, we start with an example:

Example 6.4.2. Let X be a normed space, E ⊆ X a subset and T : E → E a
map satisfying

∀x,y∈E‖T nx− T ny‖ ≤ ‖x− y‖ − ψ(‖x− y‖) + ln

for some ψ : R+
0 → R+

0 which is positive on R+ and some non-negative sequence
(ln)n which converges to 0. Suppose that T has some fixed point q ∈ E and let a
sequence (xn)n in E be given such that

xn+1 = (1− αn)xn + αnT
nxn

for some sequence (αn)n in (0, 1] satisfying
∑∞

n=0 αn =∞ (i.e. (xn)n is a Krasnoselski-
Mann sequence). We observe

‖xn+1 − q‖ ≤ (1− αn)‖xn − q‖+ αn‖T nxn − T nq‖
≤ (1− αn)‖xn − q‖+ αn(‖xn − q‖ − ψ(‖xn − q‖) + ln)

≤ ‖xn − q‖ − αnψ(‖xn − q‖) + αnln

and therefore the sequence (µn)n := (‖xn − q‖)n satisfies the following recursive
inequality:

µn+1 ≤ µn − αnψ(µn) + αnln

From a general theory of recursive inequalities of this kind given in [1, 5] it follows
that µn → 0 for n → ∞. A more specific treatment of this recursive inequality is
given in [7, Lemma 2.5].

Many convergence theorems about variants of weakly contractive maps use this
inequality in their proofs. Therefore, we start with an quantitative analysis of this
recursive inequality.
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6.4.1 Main quantitative lemmas

Motivation 6.4.3. The following lemma about the recursive inequality from Ex-
ample 6.4.2 is the basis of this chapter. Here we see the strength of proof mining.
We first present a standard proof which is inspired by [7]. In particular, it is a
special case of Lemma 2.5 and mentioned in Remark 2.6 of [7]. After formulating
this proof, we show how one can extract some quantitative information out of it,
and even how to generalise the lemma.

In [100, Lemma 3.4] and [103, Lemma 1] the similar (but not identical) recursive
inequality

µn+1 ≤ µn − αnψ(µn+1) + αnln

is considered. However, the respective proofs that µn → 0 are different, and therefore
the results which follow are new.

Lemma 6.4.4. Let (µn)n, (αn)n and (γn)n be sequences of non-negative real num-
bers and ψ : R+

0 → R+
0 be a non-decreasing function which is positive on R+ and

ψ(0) = 0 such that (αn)n is positive and bounded,
∑∞

n=0 αn = ∞, γn
αn
→ 0 for

n→∞ and

µn+1 ≤ µn − αnψ(µn) + γn (6.2)

for all n ∈ N. Then µn → 0 for n→∞.

Proof. First, we show that there is a subsequence (µkn)n which converges to 0. We
assume that this is not the case. Then there are ε > 0 and M ∈ N such that µn ≥ ε

for all n ≥ M , and therefore ψ(µn) ≥ ψ(ε) for all n ≥ M . Since
(
γn
αn

)
n

converges

to 0, we take N ≥M such that γn
αn
< ψ(ε)

2
for all n ≥ N . By iterating (6.2) we have

µn+1 ≤ µN −
n∑

i=N

αi

(
ψ(µi)−

γi
αi

)
≤ µN −

n∑
i=N

αi

(
ψ(ε)− ψ(ε)

2

)
≤ µN −

ψ(ε)

2

n∑
i=N

αi

for all n ≥ N . But (
∑n

i=N αi)n converges to ∞ and therefore µN − ψ(ε)
2

∑n
i=N αi be-

comes finally negative, which is a contradiction as (µn)n is a sequence of non-negative
real numbers. Therefore, there must be a subsequence (µkn)n which converges to 0.

Now, we show that (µn)n convergence to 0. Hence, let ε > 0 be given. Since

(µkn)n and
(
γn
αn

)
n

both converge to 0 and (αn)n bounded, we take kn sufficiently
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large such that µkn ≤ ε
2
, γm ≤ ε

2
and γm

αm
≤ ψ(ε/2)

2
for all m ≥ kn. We show µm < ε

for all m ≥ kn by induction. For kn this is obvious true. For the induction step
assume µm < ε for some m ≥ kn. We first consider the case µm ≥ ε

2
, then

µm+1 ≤ µm − αm
(
ψ(µm)− γm

αm

)
≤ µm − αm

(
ψ
(ε

2

)
− ψ(ε/2)

2

)
< µm < ε.

Now we consider the case µm < ε
2
. Here we have

µm+1 ≤ µm − αmψ
(ε

2

)
+
ε

2
< ε.

Hence, in both cases we have µm+1 ≤ ε.

Remark 6.4.5. First, we see that the conclusion of the lemma above is that the
sequence (µn)n converges to 0. Therefore, in a quantitative version we expect a rate
of convergence of the sequence (µn)n to 0.

As input we expect a rate of convergence for
(
γn
αn

)
n
, a bound α > 0 for (αn)n

and a rate of divergence of
∑∞

i=0 αi.
Considering the proof, we see that the first part of the proof is not constructive

as it is proven by contradiction: We assume that there is no adequate subsequence
and the contradiction comes from

µn+1 ≤ µN −
ψ(ε)

2

n∑
i=N

αi,

∑∞
i=0 αi = ∞ and (µn)n ∈ (R+

0 )N. But to get a contradiction, we do not need all
members of the sequences (µn)n and (αn)n. We only need them up to an l such that

µN − ψ(ε)
2

∑l
i=N αi is negative. Then the assumption µi ≥ ε can not be true for all

i ∈ [N, l] and we have the upper bound l for the next member of the subsequence.
In particular, provided that ≤ is decidable, we have a strong existence proof of the
formula

∀ε>0,M∈N∃n≥Mµn < ε.

This corresponds to a function F : R+ → N→ N with µF (ε,M) < ε and F (ε,M) ≥M
for all M ∈ N and ε > 0.

In contrast to the first part, the second part of the proof is already constructive
and we just need the given rates of convergences and divergences, respectively, and
the function F from above.
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Furthermore, looking at the proof one sees that it is sufficient if Formula (6.2)

holds for sufficiently large n and the sequence
(
γn
αn

)
n

can be seen as an error which

becomes arbitrary small for large n. These two considerations can be combined as
we will see in the following lemma.

Lemma 6.4.6. Let (µn)n and (αn)n be two sequences of non-negative real numbers,
and ψ : R+

0 → R+
0 be a non-decreasing function which is positive on R+. Suppose

that there are α > 0, r : R+ → R+ → N and N : R+ → N such that

• αn ∈ (0, α] for all n ∈ N,

• r is a rate of divergence for
∑∞

n=0 αn,

and

µn+1 ≤ µn − αn(ψ(µn)− δ) (6.3)

for all δ > 0 and n ≥ N(δ). Then µn → 0 for n→∞ with the rate of convergence

Φψ,(µn)n,α,N(ε) := r

(
Mψ,α(ε), 2

∫ µMψ,α(ε)

ε
2

dt

ψ(t)

)
+ 1,

where

Mψ,α(ε) := N

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

})
.

Proof. We first show that for any given ζ > 0,

N0(ζ) := N

(
min

{
ψ(ζ)

2
,
ζ

α

})
and

l := r

(
N0(ζ), 2

∫ µN0(ζ)

ζ

dt

ψ(t)

)
there is a natural number m ∈ [N0(ζ), l + 1] with µm < ζ: By (6.3) we have both

µn+1 ≤ µn − αn
(
ψ(µn)− ψ(ζ)

2

)
(6.4)

and (using that αn ≤ α)

µn+1 ≤ µn − αnψ(µn) + ζ (6.5)
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for all n ≥ N0(ζ). Now suppose that ζ ≤ µn for all N0(ζ) ≤ n ≤ l + 1. Then by
monotonicity of ψ we have 0 < ψ(ζ) ≤ ψ(µn), and thus by (6.4) it follows

µn+1 ≤ µn − αn
(
ψ(µn)− ψ(µn)

2

)
= µn − αn

ψ(µn)

2
.

Therefore, we obtain

1

2

l∑
n=N0(ζ)

αn ≤
l∑

n=N0(ζ)

µn − µn+1

ψ(µn)
≤

l∑
n=N0(ζ)

∫ µn

µn+1

dt

ψ(t)
=

∫ µN0(ζ)

µl+1

dt

ψ(t)
,

where for the second inequality we observe that for N0(ζ) ≤ n ≤ l we have 0 <
µn+1 < µn and thus the function t 7→ 1

ψ(t)
is well-defined, positive valued and

monotonically decreasing on [µn+1, µn], and hence integrable with

µn − µn+1

ψ(µn)
≤
∫ µn

µn+1

dt

ψ(t)
.

Finally, since ζ ≤ µl+1 < µN0(ζ) we have

l∑
n=N0(ζ)

αn ≤ 2

∫ µN0(ζ)

ζ

dt

ψ(t)

which is a contraction to the definition of l and the assumption that r is the rate of
divergence of

∑∞
n=0 αn. Therefore, our claim is proven.

Now, we show that Φψ,(µn)n,α,N is a rate of convergence. Let ε > 0 be given.

By the claim above, there is m ≤ r
(
N0

(
ε
2

)
+ 1, 2

∫ µN0( ε2 )
ε
2

dt
ψ(t)

)
with µm < ε

2
and

m ≥ N0(ε/2). We now claim, that µk < ε for all k ≥ m. This is shown by induction,
where the base case is trivial. For the induction step we deal with two cases: Firstly,
if ε

2
≤ µk < ε then since k ≥ m ≥ N0(ε/2) and ψ(ε/2) ≤ ψ(µk), it follows from (6.4)

that

µk+1 ≤ µk − αk
(
ψ(µk)−

ψ(ε/2)

2

)
≤ µk − αk

ψ(ε/2)

2
< µk < ε.

On the other hand, if µk <
ε
2

then from (6.5) we have

µk+1 ≤ µk − αkψ(µk) +
ε

2
≤ µk +

ε

2
< ε.
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This proves the claim, and thus it follows that µk ≤ ε for all

k ≥ r

(
N0

(ε
2

)
, 2

∫ µN0( ε2 )

ε
2

dt

ψ(t)

)
+ 1.

Writing out N0

(
ε
2

)
in full gives us the rate of convergence as above.

Remark 6.4.7. If the sequence (µn)n from the lemma above is uniformly bounded
by some c > 0, we can replace µMφ,α(ε) in the rate of convergence by c. In this way,
the rate of convergence can be formulated independently of the sequence (µn)n as
follows:

Φψ,c,α,N(ε) := r

(
N

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

})
, 2

∫ c

ε
2

dt

ψ(t)

)
+ 1,

Lemma 6.4.8. Let (µn)n, (αn)n and (βn)n be sequences of non-negative real
numbers and ψ : R+

0 → R+
0 be a non-decreasing function which is positive on R+.

Suppose that there are α > 0, d ≥ 1, r : N→ R+ → N and N : R+ → N such that

• αn ∈ (0, α] for all n ∈ N,

•
∏n

i=0(1 + βi) ≤ d for all n ∈ N,

• r is a rate of divergence for
∑∞

n=0 αn,

and

µn+1 ≤ (1 + βn)µn − αn(ψ(µn)− δ)

for all δ > 0 and n ≥ N(δ). Then µn → 0 for n→∞ with the rate of convergence

Φψ,(µn)n,α,d,r,N(ε) := r

(
Mψ,α,d(ε), 2d

∫ µMψ,α,d(ε)

ε
2

dt

ψ(t)

)
+ 1,

where

Mψ,α,d(ε) := N

(
1

2
min

{
ψ(ε/2)

d
,
ε

α

})
.

Proof. We define λn := µn∏n−1
i=0 (1+βi)

for all n ∈ N. Then for any δ > 0 and all n ≥ N(δ)

is follows

λn+1 ≤ λn −
αnψ(µn)∏n
i=0(1 + βi)

+
αnδ∏n

i=0(1 + βi)
≤ λn − αnd−1ψ(µn) + αnδ,
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where we have used 1 ≤
∏n

i=0(1+βi) ≤ d. Moreover, since µn = λn
∏n−1

i=0 (1+βi) ≥ λn
for all n ∈ N, by monotonicity of ψ we have ψ(µn) ≥ ψ(λn) and thus

λn+1 ≤ λn − αn(φ(λn)− δ) (6.6)

for φ(t) := d−1ψ(t), which is clearly non-decreasing and positive on R+. Observing
finally that λMψ,α,d(ε) ≤ µMψ,α,d(ε) and applying Lemma 6.4.6, we obtain the stated
rate of convergence.

Remark 6.4.9. Similar to Lemma 6.4.6, if there is a uniform bound c > 0 of
the sequence (µn)n, it is also a uniform bound of (λn)n. Hence, in this case we can
formulate the rate of convergence in the lemma above independently of the sequence
(µn)n by

Φψ,c,α,d,r,N(ε) := r

(
N

(
1

2
min

{
ψ(ε/2)

d
,
ε

α

})
, 2d

∫ c

ε
2

dt

ψ(t)

)
+ 1.

6.4.2 Reformulation in terms of traditional rates of conver-
gence

Motivation 6.4.10. We now give a rough translation of our main quantitative
result phrased in terms of direct rates of convergence, where we seek some explicit
function f : N → R+ with limn→∞ f(n) = 0 such that µn ≤ f(n) for all n ∈ N.
Being able to provide an elegant version of this kind typically requires additional
assumptions, such as the existence of inverse functions, and thus we prefer our
formulation above. However, the translation we provide in the following proposition
is comparable with known convergence rates in the literature. In particular, [3]
provides several theorems in this form.

Proposition 6.4.11. In the situation of Lemma 6.4.8 we additionally assume that
there is no n such that µi = 0 for all i ≥ n, there is an upper bound c > 0 for (µn)n,
Ψ : R+ → R is an antiderivative of 1

ψ
, and N : R+ → N is non-increasing. Let

Ñ : R+ → R+ be a non-increasing and continuous map such that ∀t>0N(t) ≤ Ñ(t).
We define F : R+ → R by

F (t) := 2dΨ(t/2)− αÑ
(

1

2
min

{
ψ(t/2)

d
,
t

α

})
.

Then F is strictly decreasing with range (−∞, L), where L := limt→∞ F (t) ∈ R ∪
{∞}.
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Furthermore, let F−1 : (−∞, L)→ R+ be the inverse function of F , then for all
n ≥ r(0, 2dΨ(c)− L) + 2, we have

µn ≤ F−1

(
2dΨ(c)−

n−2∑
i=0

αi

)
.

Proof. As 1
ψ

is positive on R+, its antiderivative Ψ is strictly increasing. Further-

more, −Ñ is non-decreasing, and thus F is strictly increasing. Therefore L =
limt→∞ F (t) exists in R ∪ {∞}.

Next we show limt→0 F (t) = −∞. As Ψ is strictly increasing, it suffices to show
limt→0 Ñ(t) = ∞. Thus, we consider the case that this in not true. As Ñ is non-
increasing, there must be some k ∈ N such that Ñ(t) ≤ k and thus N(t) ≤ k for all
t ∈ R+. Defining λn as in the proof of Lemma 6.4.8, then by the property of N and
(6.6) it follows

λn+1 ≤ λn − αnd−1ψ(λn)

for all n ≥ k. Hence, if there is an n ≥ k with λn = 0, we have λi = 0 for all i ≥ n,
but this is a contraction to the assumption. Therefore λn 6= 0, and thus ψ(λn) 6= 0
for all n ≥ k, and we obtain

αnd
−1 ≤ λn − λn+1

ψ(λn)
≤
∫ λn

λn+1

dt

ψ(t)
.

Using this inequality, for arbitrary m > k we have

Ψ(λk)−Ψ(λm) =
m−1∑
n=k

∫ λn

λn+1

dt

ψ(t)
≥ d−1

m−1∑
n=k

αn →∞

for m → ∞ and thus Ψ(λm) → −∞. Therefore, also in this case F (t) → −∞ for
t→ 0.

As F is strictly increasing and continuous, limt→∞ F (t) = L and limt→−∞ F (t) =
−∞, the range of F is (−∞, L) and F−1 : (−∞, L)→ R+ exists.

Now let n ≥ r(0, 2dΨ(c) − L) + 2 be given. By the definition of r, we have
2dΨ(c) −

∑n−2
i=0 αi < L, and therefore F−1

(
2dΨ(c)−

∑n−2
i=0 αi

)
is well-defined. We

define εn := F−1
(
2dΨ(c)−

∑n−2
i=0 αi

)
and we have to show that µn ≤ εn. By Lemma

6.4.8 and Remark 6.4.9, we have µm ≤ εn for all m ≥ Φψ,c,α,d,r′,N(εn), where r′ is any
rate of divergence for

∑∞
i=0 αi. Hence, it suffices to show that n ≥ Φψ,c,α,d,r′,N(εn),

or in other words

n ≥ r′

(
N

(
1

2
min

{
ψ(εn/2)

d
,
εn
α

})
, 2d

∫ c

εn
2

dt

ψ(t)

)
+ 1 (6.7)
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for any rate of divergence r′. Suppose therefore that r′ is given by

r′(m,x) := min

{
k ∈ N

∣∣∣∣∣
k∑

i=m

αi > x

}
.

This is well-defined as r(m,x) ∈
{
k ∈ N

∣∣∣ ∑k
i=m αi > x

}
, and n ≥ r′(m,x) is equiv-

alent to
∑n

i=m αi > x. Hence, (6.7) is equivalent to

n−1∑
i=N0

αi > 2d

∫ c

εn
2

dt

ψ(t)
= 2d(Ψ(c)−Ψ(εn/2))

for N0 := N
(

1
2

min
{
ψ(εn/2)

d
, εn
α

})
. This can be reformulated as

2dΨ(εn/2)−
N0−1∑
i=0

αi > 2dΨ(c)−
n−1∑
i=0

αi.

We establish this inequality as follows:

2dΨ(c)−
n−1∑
i=0

αi < 2dΨ(c)−
n−2∑
i=0

αi

= F (εn)

= 2dΨ(εn/2)− αÑ
(

1

2
min

{
ψ(εn/2)

d
,
εn
α

})
≤ 2dΨ(εn/2)− αN0

≤ 2dΨ(εn/2)−
N0−1∑
i=0

αi

6.4.3 Weakly contractive maps: a simple case study

Motivation 6.4.12. We conclude this section by demonstrating that a quantitative
convergence result for weakly contractive maps already established in [3] falls out as
a simple case of our framework. In particular, we formulate a proposition which is
inspired by [3, Theorem 3.1] and afterwards we compare it with the original source.
In the next sections we consider more complex case studies.
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Proposition 6.4.13. Let X be a normed space, E ⊆ X a subset and T : E → X
a map which satisfies

∀x,y∈E.‖Tx− Ty‖ ≤ ‖x− y‖ − ψ(‖x− y‖) (6.8)

for some non-decreasing function ψ : R+
0 → R+

0 which is positive on R+. Let q ∈ E
be a fixed point of T , and suppose that (xn)n is a sequence in E such that xn+1 = Txn
for all n ∈ N. Then ‖xn − q‖ → 0 for n→∞ with rate

Φx0,q,ψ(ε) :=

⌈
2

∫ ‖x0−q‖
ε
2

dt

ψ(t)

⌉
+ 1.

Furthermore, if Ψ : R+ → R is an antiderivation of 1
ψ

, either ‖xn − q‖ = 0 for all
but finitely many n ∈ N, or

‖xn − q‖ ≤ 2Ψ−1

(
Ψ(‖x0 − q‖)−

n− 1

2

)
for all n ≥ 2.

Proof. For all n ∈ N we have

‖xn+1 − q‖ = ‖Txn − q‖ ≤ ‖xn − q‖ − ψ(‖xn − q‖). (6.9)

Therefore, we can apply Lemma 6.4.6 together with Remark 6.4.7, where αn = 1,
N(δ) = 0, r(n, x) = n + dxe, and ‖x0 − q‖ is an upper bound for (‖xn − q‖)n by
induction and (6.9).

For the second part of the statement we assume that there is no n ∈ N such that
‖xi − q‖ = 0 for all i ≥ n. Then the inequality follows from Proposition 6.4.11: We
have

‖xn − q‖ ≤ F−1

(
2Ψ(‖x0 − q‖)−

n−2∑
i=0

αi

)

for all n ≥ d2Ψ(c)− limt→∞ 2Ψ(t)e+ 2, where F (t) := 2Ψ
(
t
2

)
and

∑n−2
i=0 αi = n− 1.

As Ψ is strictly increasing, we have that n ≥ d2Ψ(c)− limt→∞ 2Ψ(t)e+ 2 hold for all
n ≥ 2, and by F (t) = 2Ψ

(
t
2

)
it follows F−1(t) = 2Ψ−1( t

2
). Putting things together

yields the inequality from above.

Remark 6.4.14. In contrast to Theorem 3.1 of [3] we have assumed that the fixed
point q already exists as we are mainly interested in the rate of convergence. Because
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of this we are able to omit certain assumptions of T which are only necessary to
prove the existence of a fixed point. For example we do not need that ψ is continuous
or limt→∞ ψ(t) =∞.

Similar, we have assumed that the sequence (xn)n already exists and has the
property xn+1 = Txn for all n ∈ N, rather then demanding any additional properties
of T and E which would ensure that the Picard iteration can be generated from any
initial point x0.

Other properties can be inferred from our assumptions. For instance, ψ(0) = 0
follows directly from (6.8), ψ(0) ≥ 0 and the existence of q ∈ E:

0 = ‖Tq − Tq‖ ≤ ‖q − q‖ − ψ(‖q − q‖) = −ψ(0) ≤ 0.

Furthermore, we have given a rate of convergence in the sense of Definition 6.2.6.
Such a rate of convergence is typically simpler as we do not have to prove µn ≤ f(n)
and limt→∞ f(t) = 0 for some function f : R+ → R+. However, Proposition 6.4.11
provides a translation between our rate of convergence into the traditional one. For
example, the inequality given in our case matches up well with that in [3, Theorem
3.1]:

‖xn − q‖ ≤ Ψ−1(Ψ(‖x0 − q‖)− n+ 1).

This similarity for this simple case suggests that our abstract quantitative result
provides good rates of convergence.

6.5 Case study: quasi asymptotically ψ-weakly

contractive maps

Motivation 6.5.1. In this case study we consider four theorems of [2, Section 4]
by Alber, Chidume and Zegeye and two theorems of [3, Section 3] by Alber and
Guerre-Delabriere. In all these theorems a special case of an asymptotically ψ-
weakly contractive map is given, and it is proven that under certain conditions a
variant of the Krasnoselski-Mann iteration converges to a fixed point of this map.
In the proof of these theorems Lemma 6.4.6 or Lemma 6.4.8 were used.

The following theorem is a quantitative and generalised version of all these theo-
rems, and after proving this theorem we formulate and prove a quantitative version
for each of these theorems.

Theorem 6.5.2. Let X be a normed space, E ⊆ X a subset, (An : E → X)n a
sequence of maps, q ∈ X and ψ : R+

0 → R+
0 some non-decreasing function which is
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positive on R+. Suppose that (kn)n is some sequence in R+
0 and σ : R+×R+ → N is a

modulus such that (An)n is quasi asymptotically weakly contractive in the following
sense:

∀x∈E∀b,δ>0∀n≥σ(δ,b).‖x− q‖ ≤ b⇒ ‖Anx− q‖ ≤ (1 + kn)‖x− q‖ − ψ(‖x− q‖) + δ

Furthermore, let α > 0 and (αn)n ∈ (0, α]N be given such that
∑∞

i=0 αi =∞ with rate
of divergence r, and let (xn)n ∈ EN be a Krasnoselski-Mann sequence w.r.t. (αn)n
and (An)n. Finally, let d > 0 be given such that

∏n
i=0(1 + αnkn) ≤ d for all n ∈ N.

Then:

1. If σ is independent of the second argument (and we consider σ as unary map),
(‖xn − q‖)n converges to 0 with rate

Φψ,(‖xn−q‖)n,α,d,r,σ(ε) := r

(
Mψ,α,d(ε), 2d

∫ ‖xMψ,α,d(ε)−q‖
ε
2

dt

ψ(t)

)
+ 1,

where

Mψ,α,d(ε) := σ

(
1

2
min

{
ψ(ε/2)

d
,
ε

α

})
.

2. If there is c > 0 with ∀n∈N‖xn − q‖ ≤ c, (‖xn − q‖)n converges to 0 with rate

Φψ,c,α,d,r,σ(ε) := r

(
σ

(
1

2
min

{
ψ(ε/2)

d
,
ε

α

}
, c

)
, 2d

∫ c

ε
2

dt

ψ(t)

)
+ 1.

Proof. For δ > 0 we have

‖xn+1 − q‖ ≤ (1− αn)‖xn − q‖+ αn‖Anxn − q‖
≤ (1− αnkn)‖xn − q‖ − αn(ψ(‖xn − q‖)− δ)

in the first case for all n ≥ σ(δ) and in the second case for all n ≥ σ(δ, c). In the
first case we apply Lemma 6.4.8 where µn := (‖xn − q‖)n, βn := αnkn and N := σ.
In the second case we apply Lemma 6.4.8, where µn := (‖xn− q‖)n, βn := αnkn and
N := σ(., c), together with Remark 6.4.9.
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6.5.1 Totally asymptotically weakly contractive maps

Motivation 6.5.3. As a first application of Theorem 6.5.2 we give a quantitative
version of four theorems in [2, Section 4], which consider totally asymptotically
weakly contractive maps. The first two corollaries uses the second part of Theorem
6.5.2. In these cases we have provided some bound of the sequence (‖xn−q‖)n. The
third and fourth corollary use the first part of Theorem 6.5.2.

Corollary 6.5.4 (Quantitative version of Theorem 4.1 in [2]). Let a normed
space X, a subset E ⊆ X and a totally asymptotically weakly contractive map T :
E → E be given. In particular, there are non-decreasing functions ψ, φ : R+

0 → R+
0

both positive on R+ together with two sequences (kn)n, (ln)n of non-negative reals
such that kn, ln → 0 for n→∞ with rate f and g, respectively, and for all x, y ∈ E
and n ∈ N we have

‖T nx− T ny‖ ≤ ‖x− y‖+ knφ(‖x− y‖)− ψ(‖x− y‖) + ln.

Suppose that there is a fixed point q ∈ E of T and that (xn)n is a Krasnoselski-Mann
sequence in E w.r.t. (T n)n and (αn)n, where (αn)n is some sequence in (0, α] such
that

∑∞
n=0 αn =∞ with rate r.

Finally, suppose that there are bounds d1, d2 > 0 for (kn)n and (ln)n, respectively,
and the equation φ(µ) = d1ψ(µ) + d2 has a unique root µ∗.

Then for any c > 0 with max{‖x0−q‖, µ∗+d1φ(µ∗)+d2} ≤ c we have ‖xn−q‖ → 0
with rate

Φψ,φ,f,g,α,r,c(ε) := r

(
σφ,f,g

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

}
, c

)
, 2

∫ c

ε
2

dt

ψ(t)

)
+ 1,

where

σφ,f,g(δ, b) := max

{
f

(
δ

2φ(b)

)
, g

(
δ

2

)}
.

Proof. By Lemma 6.3.11, the sequence (T n)n is asymptotically ψ-weakly contractive
with modulus σφ,f,g. It is proven in [2, Lemma 3.4 and Theorem 4.1] that the
existence of a root µ∗ implies that ‖xn − q‖ ≤ c for any c ≥ max{‖x0 − q‖, µ∗ +
d1φ(µ∗) + d2}, and therefore the second part of Theorem 6.5.2 applies directly.

Lemma 6.5.5. Let (λn)n, (κn)n and (γn)n be sequences of non-negative real num-
bers such that

∑∞
n=0 κn is bounded by K1 > 0 and

∑∞
n=0 γn is bounded by K2 > 0

and for all n ∈ N

λn+1 ≤ (1 + κn)λn + γn.

Then (λn)n is bounded by eK1(λ0 +K2).
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Proof. By induction, we have

λn+1 ≤
n∏
i=0

(1 + κi)

(
λ0 +

n∑
i=0

γi

)

and
n∏
i=0

(1 + κi) ≤ e
∑n
i=0 κi .

Putting things together gives the desired bound.

Remark 6.5.6. The lemma above is inspired by [2, Lemma 3.1] as that lemma
is used in the proof of [2, Theorem 4.4]. However, [2, Lemma 3.1] says that (λn)n
even converges. But it is not possible to compute a rate of convergence, as we have
already discussed in Section 2.2.3. However, only boundedness is really used in that
proof.

Corollary 6.5.7 (Quantitative version of Theorem 4.4 in [2]). Let a normed
space X, a subset E ⊆ X and a totally asymptotically weakly contractive map T :
E → E be given. In particular, there are non-decreasing functions ψ, φ : R+

0 → R+
0

both positive on R+ together with two sequences (kn)n, (ln)n of non-negative reals
such that kn → 0 with rate f and ln → 0 with rate g, and for all x, y ∈ E and n ∈ N
we have

‖T nx− T ny‖ ≤ ‖x− y‖+ knφ(‖x− y‖)− ψ(‖x− y‖) + ln.

Suppose that there is a fixed point q ∈ E of T and that (xn)n is a sequence in E
satisfying

xn+1 = (1− αn)xn + αnT
nxn

for all n ∈ N, where (αn)n is some sequence in (0, α] such that
∑∞

n=0 αn = ∞ with
rate r.

Let
∑∞

n=1 αnkn and
∑∞

n=1 αnln be bounded by K and L, respectively, and we
assume that there exist M,M0 ∈ R+ with ∀λ≥Mφ(λ) ≤ m−1ψ(λ) + M0λ, for some
m > 0 with m ≥ sup{kn | n ∈ N}. Then ‖xn − q‖ → 0 for n→∞ with rate

ΦK,L,M0,M,x0,q,ψ,φ,α,(ε) :=

r

(
σφ,f,g

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

}
, CK,L,M0,M,x0,q,φ

)
, 2

∫ CK,L,M0,M,x0,q,φ

ε
2

dt

ψ(t)

)
+ 1
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where

CK,L,M0,M,x0,q,φ := eM0L(‖x0 − q‖+ φ(M)K + L)

and

σφ,f,g(δ, b) := max

{
f

(
δ

2φ(b)

)
, g

(
δ

2

)}
.

Proof. Since φ(λ) ≤ m−1ψ(λ) +M0λ for all λ ≥M , we have

knφ(λ)− ψ(λ) ≤ kn(m−1ψ(λ) +M0λ+ φ(M))− ψ(λ)

≤ knφ(M) +M0knλ

for all λ ∈ R and n ∈ N. It follows

‖xn+1 − q‖ ≤ (1− αn)‖xn − q‖+ αn‖T nxn − T nq‖
≤ (1− αn)‖xn − q‖+
αn (‖xn − q‖+ knφ(‖xn − q‖)− ψ(‖xn − q‖) + ln)

≤ ‖xn − q‖+ αn (knφ(‖xn − q‖)− ψ(‖xn − q‖)) + αnln

≤ ‖xn − q‖+ αn(knφ(M)−M0kn‖xn − q‖) + αnln

≤ (1 +M0αnkn)‖xn − q‖+ αnknφ(M) + αnln.

Using Lemma 6.5.5, (‖xn − q‖)n is bounded by CK,L,M0,M,x0,q,φ. By Lemma 6.3.11,
(T n)n is asymptotically weakly contractive with modulus σφ,f,g. Hence, the second
part of Theorem 6.5.2 gives the rate of convergence as above.

Corollary 6.5.8 (Quantitative version of Theorem 4.2 in [2]). Let a normed
space X, a subset E ⊆ X and a totally asymptotically weakly contractive map T
be given. In particular, there are non-decreasing functions ψ, φ : R+

0 → R+
0 both

positive on R+ together with two sequences (kn)n, (ln)n of non-negative reals such
that kn, ln → 0 for n→∞ with rate f and g, respectively, and for all x, y ∈ E and
n ∈ N we have

‖T nx− T ny‖ ≤ ‖x− y‖+ knφ(‖x− y‖)− ψ(‖x− y‖) + ln.

Suppose that there is a fixed point q ∈ E of T , and let a Krasnoselski-Mann sequence
(xn)n in E w.r.t (T n)n and (αn)n be given, where (αn)n is some sequence in (0, α]
such that

∑∞
n=0 αn =∞ with rate r.
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Suppose that (kn)n is bounded by some k ∈ [0, 1), and there exists M > 0 such
that φ(λ) ≤ ψ(λ) for all λ ≥M . Then ‖xn − q‖ → 0 for n→∞ with rate

Φψ,φ,f,g,α,r,k,(xn)n,q(ε) :=

r

(
σf,g,h,ψ(δα,ψ,k(ε)),

2

1− k

∫ ∥∥∥xσf,g,h,ψ(δα,ψ,k(ε))
−q
∥∥∥

ε
2

dt

ψ(t)

)
+ 1,

where

σf,g,φ(δ) := max

{
f

(
δ

2φ(M)

)
, g

(
δ

2

)}
and

δα,ψ,k(ε) :=
1

2
min

{
(1− k)ψ

(ε
2

)
,
ε

α

}
.

Proof. As φ(λ) ≤ ψ(λ) for all λ ≥M , it follows

φ(λ) ≤ φ(M) + ψ(λ)

for all λ ∈ R+
0 . Therefore, for all x ∈ E, δ > 0 and n ≥ σf,g,φ(δ) we have

‖T nx− q‖ ≤ ‖x− q‖+ kn(φ(M) + ψ(‖x− q‖))− ψ(‖x− q‖) + ln

≤ ‖x− q‖ − (1− k)ψ(‖x− q‖) + knφ(M) + ln

≤ ‖x− q‖ − (1− k)ψ(‖x− q‖) + δ.

Hence, T n is quasi asymptotically (1− k)ψ-weakly contractive with unary modulus
σf,g,φ. By the first part of Theorem 6.5.2, ‖xn − q‖ → 0 for n → ∞ with modulus
Φψ,φ,f,g,α,r,k,(xn)n,q

Corollary 6.5.9 (Quantitative version of Theorem 4.3 in [2]). Let a normed
space X, a subset E ⊆ X and a totally asymptotically weakly contractive map T :
E → E be given. In particular, there are non-decreasing functions ψ, φ : R+

0 → R+
0

both positive an R+ together with two sequences (kn)n, (ln)n of non-negative reals
such that kn, ln → 0 for n→∞ with rate f and g, respectively, and for all x, y ∈ E
and n ∈ N we have

‖T nx− T ny‖ ≤ ‖x− y‖+ knφ(‖x− y‖)− ψ(‖x− y‖) + ln.

Suppose that there is a fixed point q ∈ E of T , and let a Krasnoselski-Mann sequence
(xn)n in E w.r.t (T n)n and (αn)n be given, where (αn)n is some sequence in (0, α]
such that

∑∞
n=0 αn =∞ with rate r.
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Finally we assume that there exist M,M0 ∈ R+ with ∀λ≥Mφ(λ) ≤ M0λ, and
that

∑∞
i=0 αnkn is bounded by K ≥ 0. Then ‖xn − q‖ → 0 for n→∞ with rate

Φf,g,M,M0,K,φ,ψ,α,(xn)n,q(ε) :=

r

(
σf,g,h,M,φ (δM0,K,ψ,α(ε)) , 2eM0K

∫ ∥∥∥xσf,g,h,M,φ(δM0,K,ψ,α
(ε))−q

∥∥∥
ε
2

dt

ψ(t)

)
+ 1,

where

σf,g,h,M,φ(δ) := max

{
f

(
δ

2φ(M)

)
, g

(
δ

2

)}
and

δM0,K,ψ,α(ε) :=
1

2
min

{
e−M0Kψ

(ε
2

)
,
ε

α

}
.

Proof. As φ(λ) ≤M0λ for all λ ≥M0 and φ is non-decreasing, it follows

φ(λ) ≤M0λ+ φ(M)

for all λ ∈ R+
0 . Therefore, for all x ∈ E, δ > 0 and n ≥ σf,g,h,M,φ(δ) we have

‖T nx− q‖ ≤ ‖x− q‖+ knφ(‖x− q‖)− ψ(‖x− q‖) + ln

≤ (1 +M0kn)‖x− q‖ − ψ(‖x− q‖) + knφ(M) + ln

≤ (1 +M0kn)‖x− q‖ − ψ(‖x− q‖) + δ.

Hence, (T n)n is quasi asymptotically ψ-weakly contractive w.r.t. q and (M0kn)n and
unary modulus σf,g,M,φ. Furthermore is

n∏
i=0

(1 +M0ki) ≤ e
∑n
i=0 ln(1+M0ki) ≤ e

∑n
i=0M0ki ≤ eM0K

for all n. By the first part of Theorem 6.5.2 it follows ‖xn− q‖ → 0 for n→∞ with
modulus Φf,g,M,M0,K,φ,ψ,α,(xn)n,q.

6.5.2 Approximate weakly contractive maps

Motivation 6.5.10. The next two corollaries are a computational version of two
theorems in [3, Section 3], which consider sequences (An)n of operators which are
weakly contracive in the limit. It turns out that those theorems are simple applica-
tions of Theorem 6.5.2.
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Corollary 6.5.11 (Quantitative version of Theorem 3.4 of [3]). Let X be
a normed space, E ⊆ X a subset and A : E → E a map with a fixed point q ∈ E.
Suppose that there are sequences of positive numbers (hn)n, (δn)n, (µn)n and (νn)n
converging to 0 with rates f1, f2, f3 and f4 respectively, another sequence (βn)n of
positive numbers with

∑∞
i=0 βi bounded by K, a function g : R+

0 → R+
0 , a sequence

of functions (ψn : R+
0 → R+

0 )n, a non-decreasing function ψ : R+
0 → R+

0 positive on
R+ and a sequence (An : E → E)n of maps such that for all x, y ∈ E, n ∈ N and
t ≥ 0,

‖Anx− Any‖ ≤ (1 + βn)‖x− y‖ − ψn(‖x− y‖) + µn,

‖Anx− Ax‖ ≤ hng(‖x‖) + δn

|ψn(t)− ψ(t)| ≤ νn.

Finally, let (xn)n be a sequence in E such that xn+1 = Anxn for all n ∈ N, and
we assume that

∑∞
n=0 βn is bounded by K > 0. Then ‖xn − q‖ converges to 0 for

n→∞ with rate

Φψ,f1,f2,f3,f4,g,K,(xn)n,q(ε) :=

σf1,f2,f3,f4,g,q(δψ,K(ε)) +

⌈
2eK

∫ ∥∥∥xσf1,f2,f3,f4,g,q(δψ,K (ε))−q
∥∥∥

ε
2

dt

ψ(t)

⌉
+ 1,

where

σf1,f2,f3,f4,g,q(δ) := max

{
f1

(
δ

4g(‖q‖)

)
, f2

(
δ

4

)
, f3

(
δ

4

)
, f4

(
δ

4

)}
and

δψ,K(ε) :=
1

2
min

{
e−Kψ

(ε
2

)
, ε
}
.

Proof. Using the three inequalities we have

‖Anx− q‖ ≤ ‖Anx− Anq‖+ ‖Anq − q‖
≤ (1 + βn)‖x− q‖ − ψn(‖x− q‖) + µn + hng(‖q‖) + δn

≤ (1 + βn)‖x− q‖ − ψ(‖x− q‖) + νn + µn + hng(‖q‖) + δn

≤ (1 + βn)‖x− q‖ − ψ(‖x− q‖) + δ

for all x ∈ E, δ > 0 and n ≥ σf1,f2,f3,f4,g,q(δ). Therefore, (An)n is quasi asymp-
totically ψ-weakly contractive w.r.t. q and (βn)n and unary modulus σf1,f2,f3,f4,g,q.
Furthermore, (xn)n is a Krasnoselski-Mann sequence w.r.t. (1)n and (An)n and a
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rate of divergence for
∑∞

i=0 1 is given by r(n, x) := n + dxe. Finally, a bound of∏∞
n=0(1 + βn) is given by eK (proven similar as in the proof of the last corollary).

Hence, we apply Theorem 6.5.2 and get that ‖xn − q‖ → 0 for n → ∞ with rate
Φψ,f1,f2,f3,f4,g,K,(xn)n,q.

Corollary 6.5.12 (Quantitative version of Theorem 3.6 of [3]). Let X be a
normed space, E ⊆ X be a subset and A : E → E be a weakly contractive map, i.e.
there is a non-decreasing map ψ : R+

0 → R+
0 which is positive on R+ such that

∀x,y∈E‖Ax− Ay‖ ≤ ‖x− y‖ − ψ(‖x− y‖).

Furthermore, let q ∈ E be a fixed point of A, (An : E → E)n be a sequence of maps
and (xn)n be a sequence in E with xn+1 = Anxn for all n ∈ N. We assume that
there exists a non-decreasing map g : R+

0 → R+
0 and two sequences (δn)n and (hn)n,

which converge to 0 with moduli f1 and f2, repetitively, such that

‖Anx− Ax‖ ≤ hng(‖x‖) + δn.

Then:

1. If the sequence (‖xn − q‖)n is bounded by some c > 0, it converges to 0 with
rate

Φψ,c,f1,f2,g,q(ε) := σf1,f2,g,q

(
1

2
min

{
ψ
(ε

2

)
,
ε

α

}
, c

)
+

⌈
2

∫ c

ε/2

dt

ψ(t)

⌉
+ 1,

where

σf1,f2,g,q(δ, b) := max

{
f1

(
δ

2

)
, f2

(
δ

2g(b+ ‖q‖)

)}
.

2. If hn = 0 for all n, the sequence (‖xn − q‖)n converges to 0 with rate

Φψ,(xn)n,q,f1(ε) := f1(δψ(ε)) +

⌈
2

∫ ‖xf1(δψ(ε))−q‖

ε/2

dt

ψ(t)

⌉
+ 1,

where

δψ(ε) :=
1

2
min

{
ψ
(ε

2

)
, ε
}
.
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Proof. First we observe that (xn)n is a Krasnoselski-Mann sequence w.r.t. (1)n and
(An)n and a rate of divergence for

∑∞
i=0 1 is given by r(n, x) := n+dxe. Furthermore,

for all n ∈ N and x ∈ E we have

‖Anx− q‖ ≤ ‖Anx− Ax‖+ ‖Ax− Aq‖
≤ hng(‖x‖) + δn + ‖x− q‖ − ψ(‖x− q‖).

We now consider the first case and assume that (‖xn−q‖)n is bounded by c. For
all x ∈ E, b, δ > 0 and n ≥ σf1,f2,g,q(δ, b) with ‖x− q‖ ≤ b we have

‖Anx− q‖ ≤ hng(‖x‖) + δn + ‖x− q‖ − ψ(‖x− q‖)
≤ ‖x− q‖ − ψ(‖x− q‖) + hng(b+ ‖q‖) + δn

≤ ‖x− q‖ − ψ(‖x− q‖) + δ,

and the first part is proven by the second part of Theorem 6.5.2.
In the second case we have

‖Anx− q‖ ≤ δn + ‖x− q‖ − ψ(‖x− q‖)
≤ ‖x− q‖ − ψ(‖x− q‖) + δ,

for all x ∈ E, δ > 0 and n ≥ f1(δ), and the statement follows by the first part of
Theorem 6.5.2.

6.6 Case study: asymptotically d-weakly contrac-

tive maps

6.6.1 Duality selection maps

Motivation 6.6.1. The following definition is a generalisation of the normalised
duality map in Definition 6.3.14 and goes back to [97].

Definition 6.6.2. Let X be a normed space and J : X → X∗. J is called duality
selection map if

∀x∈X〈x, Jx〉 = ‖x‖2 = ‖Jx‖2.

Furthermore, we say that J is uniformly continuous (on bounded sets) with mod-
ulus ω : R+ × R+ → R+ if

∀x,y∈E∀d,ε>0.‖x‖, ‖y‖ ≤ d ∧ ‖x− y‖ ≤ ω(d, e)⇒ ‖Jx− Jy‖ ≤ ε.

Note that ‖ · ‖ denotes both the norm in X and the induced norm in X∗.
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Lemma 6.6.3 (Lemma 3.5 of [97]). Let X be a normed space and J : X → X∗

be a duality selection map. Then

∀x,y∈X‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉.

Proof. This follows from

‖x+ y‖2 = 〈x, J(x+ y)〉+ 〈y, J(x+ y)〉 ≤ ‖x‖‖x+ y‖+ 〈y, J(x+ y)〉

≤ 1

2
(‖x‖2 + ‖x+ y‖2) + 〈y, J(x+ y)〉.

Motivation 6.6.4. Using Definition 6.6.2 we are able to generalise the notion of
being asymptotically d-weakly contractive, i.e. Definition 6.3.16.

Definition 6.6.5. Let X be a normed space, J : X → X∗ be a duality selection
map, and E ⊆ X be a subset. A sequence (An : E → X)n of maps is called
asymptotically d-weakly contractive with modulus σ : R+×R+ → R+ if there exists
some non-decreasing ψ : R+

0 → R+
0 which is positive on R+ such that for all x, y ∈ E,

b, δ > 0 and n ≥ σ(δ, b)

‖x− y‖ ≤ b⇒ |〈Anx− Any, J(x− y)〉| ≤ ‖x− y‖2 − ψ(‖x− y‖) + δ.

We say that (An)n is quasi asymptotically d-weakly contractive w.r.t. q ∈ X if for
all x ∈ E, b, δ > 0 and n ≥ σ(δ, b)

‖x− q‖ ≤ b⇒ |〈Anx− q, J(x− q)〉| ≤ ‖x− q‖2 − ψ(‖x− q‖) + δ.

6.6.2 Convergence theorem in spaces with uniformly con-
tinuous selction map

Theorem 6.6.6. Let X be a normed space and J be a uniformly continuous
duality selection map with modulus ω. Let (An : E → X)n be a sequence of maps,
q ∈ X and ψ : R+

0 → R+
0 some non-decreasing function positive on R+. Suppose

that (An)n is quasi asymptotically d-weakly contractive w.r.t. q, and let (xn)n be a
P -Krasnoselski-Mann sequence w.r.t. (An)n and some (αn)n, where P : X → E is
a non-expansive retraction and (αn)n is a sequence in (0, α] such that αn → 0 with
rate f and

∑n
i=0 αn divergent with rate r. Finally, let c1, c2, c3 > 0 be given such
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that ‖xn− q‖ ≤ c1 and ‖Anxn−xn‖ ≤ c2 for all n and ‖q‖ ≤ c3. Then ‖xn− q‖ → 0
for n→∞ with rate

Φω,c1,c2,c3,α,f,r,σ(ε) := r

(
Nω,c1,c2,c3,f,σ

(
min

{
ψ

(
ε√
2

)
,
ε2

2α

})
, 2

∫ c1

ε√
2

udu

ψ(u)

)
+ 1,

where

Nω,c1,c2,c3,f,σ(δ) := max

{
σ

(
δ

4
, c1

)
, f

(
1

c2

ω

(
c1 + c3,

δ

4c2

))}
.

Proof. As (‖xn − q‖)n is bounded by c1 we have for all δ > 0 and n ≥ σ
(
δ
4
, c1

)
:

〈Anxn − q, J(xn − q)〉 ≤ ‖xn − q‖2 − ψ(‖xn − q‖) +
δ

4

= 〈xn − q, J(xn − q)〉 − ψ(‖xn − q‖) +
δ

4

and therefore

〈Axn − xn, J(xn − q)〉 ≤ −ψ(‖xn − q‖) +
δ

4
. (6.10)

Independently of this, we define

yn+1 := (1− αn)xn − αnAnxn

and observe that

‖yn+1 − xn‖ = ‖αn(Anxn − xn)‖ ≤ αnc2.

Hence, since ‖xn‖ ≤ ‖xn − q‖ + ‖q‖ ≤ c1 + c3, for all n ≥ f
(

1
c2
ω
(
c1 + c3,

δ
4c2

))
it

follows

‖yn+1 − xn‖ ≤ ω

(
c1 + c3,

δ

4c2

)
and therefore

‖J(yn+1 − q)− J(xn − q)‖ ≤
δ

4c2

.

Using this we get

〈Axx − xn, J(yn+1 − q)− J(xn − q)〉 ≤ ‖Axn − xn‖‖J(yn+1 − q)− J(xn − q)‖
≤ c2‖J(yn+1 − q)− J(xn − q)‖

≤ δ

4
(6.11)
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for all n ≥ f
(

1
c2
ω
(
c1 + c3,

δ
4c2

))
.

Putting (6.10) and (6.11) together leads to

〈Anxn − xn, J(yn+1 − q)〉
≤ 〈Anxn − xn, J(xn − q)〉+ 〈Anxn − xn, J(yn+1 − q)− J(xn − q)〉

≤ −ψ(‖xn − q‖) +
δ

2

for all δ > 0 and n ≥ Nω,c1,c2,c3,f,σ(δ). Thus for all these δ and n we have

‖xn+1 − q‖2 = ‖P ((1− αn)xn + αnAnxn)− Pq‖2

≤ ‖xn − q + αn(Anxn − xn)‖2

≤ ‖xn − q‖2 + 2αn〈Anxn − xn, J(xn+1 − q)〉
≤ ‖xn − q‖2 − 2αnψ(‖xn − q‖) + αnδ,

where the second inequality follows from Lemma 6.6.3. In particular, µn := ‖xn−q‖2

satisfies

µn+1 ≤ µn − αn(ψ(µn) + δ),

where ψ := 2ψ(
√
·), for all δ > 0 and n ≥ Nω,c1,c2,c3,f,σ(δ). Thus, by Lemma 6.4.6

‖xn − q‖2 → 0 for n→∞ with rate

Φω,c1,c2,c3,α,f,r,σ(ε) := r

(
Nω,c1,c2,c3,f,σ

(
min

{
ψ

(√
ε√
2

)
,
ε

2α

})
, 2

∫ c21

ε
2

dt

2ψ(
√
t)

)
+ 1

Therefore, ‖xn − q‖ → 0 for n→∞ with rate

Φω,c1,c2,c3,α,f,r,σ(ε) := r

(
Nω,c1,c2,c3,f,σ

(
min

{
ψ

(
ε√
2

)
,
ε2

2α

})
,

∫ c21

ε2

2

dt

ψ(
√
t)

)
+ 1.

By the substitution rule we obtain∫ c21

ε2

2

dt

ψ(
√
t)

=

∫ c1

ε√
2

2udu

ψ(u)

which leeds to the rate stated in the theorem.
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6.6.3 d-weakly contractive maps in uniformly smooth spaces

Motivation 6.6.7. As an application of Theorem 6.6.6 we consider d-weakly con-
tractive maps (as in Motivation 6.3.15) in uniformly smooth spaces (defined below).
It turns out that uniformly smooth spaces are special cases of normed spaces with
uniformly continuous duality selection map (see Lemma 6.6.9). Furthermore, T be-
ing d-weakly contracive implies that T is quasi asymptotically d-weakly contractive
w.r.t. any point q and modulus σ(δ) = 0. In fact, we get a simple corollary, which
forms a computational version of Theorem 3.1 of [37].

Definition 6.6.8. Let X be a Banach space. X is called uniformly smooth if

∀ε>0∃δ>0∀x,y∈X .‖x‖ = 1 ∧ ‖y‖ ≤ δ ⇒ ‖x+ y‖+ ‖x− y‖ ≤ 2 + ε‖y‖

A function τ : R+ → R+ is called modulus of uniform smoothness if

∀ε>0∀x,y∈X .‖x‖ = 1 ∧ ‖y‖ ≤ τ(ε)⇒ ‖x+ y‖+ ‖x− y‖ ≤ 2 + ε‖y‖.

Lemma 6.6.9. Let X be a uniformly smooth space with modulus τ . Then the
normalised duality map J : X → 2X

∗
from Definition 6.3.14 is single-valued and

we consider J as a map from X to X∗. Furthermore, J is uniformly continuous on
bounded sets with modulus ωτ : R+ × R+ → R+ given by

ωτ (d, ε) :=


ε2

12d
τ
(
ε
2d

)
if ε ∈ (0, 2], d ≥ 1,

ε2

12
τ
(
ε
2

)
if ε ∈ (0, 2], d < 1,

1
3d
τ
(

1
d

)
if ε > 2, d ≥ 1,

1
3
τ (1) if ε > 2, d < 1.

Proof. By [64, Theorem 1] uniformly smoothness of X implies uniform convexity of
X∗, and by [59, Proposition 12.3b] uniform convexity of X∗ implies that J is single-
valued. That ωτ is a modulus of uniform continuity follows from [97, Proposition
2.5].

Corollary 6.6.10 (Quantitative version of Theorem 3.1 of [37]). Let X be
a uniformly smooth space with modulus τ , E ⊆ X be a subset of X and T : E → X
be a d-weakly contractive map, i.e. there is a non-decreasing ψ : R+

0 → R+
0 positive

on R+ such that

∀x,y∈E|〈Tx− Ty, J(x− y)〉| ≤ ‖x− y‖2 − ψ(‖x− y‖2). (6.12)
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We suppose that (xn)n is a sequence in X satisfying

xn+1 = P ((1− αn)xn + αnTxn) (6.13)

where P : X → E is some non-expansive retraction and (αn)n is some sequence in
(0, α] such that αn → 0 with rate of convergence f and

∑∞
n=0 αn = ∞ with rate r.

Then whenever c1, c2, c3 > 0 are such that ‖xn − q‖ ≤ c1, ‖Txn − xn‖ ≤ c2 for all
n ∈ N and ‖q‖ ≤ c3, we have ‖xn − q‖ → 0 with rate

Φτ,c1,c2,c3,α,f,r(ε) := r

(
Nτ,c1,c2,c3,f

(
min

{
ψ

(
ε√
2

)
,
ε2

2α

})
, 2

∫ c1

ε√
2

udu

ψ(u)

)
+ 1.

where

Nτ,c1,c2,c3,f (δ) := f

(
1

c2

ωτ

(
c1 + c3,

δ

4c2

))
and ωτ is given as in Lemma 6.6.9.

Proof. By Lemma 6.6.9, ωτ is a modulus of uniform continuity of the normalised
duality map J . Furthermore, because of (6.12) the constant sequence (T )n is asymp-
totically d-weakly contractive with modulus σ(δ) = 0, and by (6.13) the sequence
(xn)n is a P -Krasnoselski-Mann sequence w.r.t. (T )n and (αn)n. Hence, Theorem
6.6.6 leads to the desired rate of convergence.

Remark 6.6.11. In the corollary above we have assumed that the bounds c1 and
c2 exists, whereas in Theorem 3.1 of [37] it is proven that these bounds exists, e.g. it
is shown that c1 can be replaced by ‖x1 − q‖. It is more complex (if it is even
possible) to construct the bound c2 out of the proof in [37] and could be the topic
of a new work. However, for our purpose it sufficient to assume that these bounds
exist.
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APPENDIX A. HASKELL PROGRAM Appendix

Appendix A

Haskell program

{-# LANGUAGE FlexibleInstances, TupleSections #-}

-- The following part is from ’Konstruktive Analysis mit

-- exakten reellen Zahlen’:

-- Authors: Quirin F. Schroll and Franziskus Wiesnet

import Data.Ratio

-- | For elegant display of infinite objects

display :: Show a => Int -> a -> IO ()

display n = putStrLn . take n . show

data Sd = SdL | SdM | SdR

deriving (Eq, Ord)

instance Enum Sd where

fromEnum SdL = (-1)

fromEnum SdM = 0

fromEnum SdR = 1

toEnum (-1) = SdL

toEnum 0 = SdM

toEnum 1 = SdR

toEnum n = error $ "cannot cast " ++ show n ++ " to enum"

181
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instance Show Sd where

show SdL = "-1"

show SdM = "0"

show SdR = "+1"

infixr 5 :~:

data Str = Sd :~: Str

instance Show Str where

show (x :~: xs) = show x ++ " " ++ show xs

strCoRec :: t -> (t -> (Sd, Either Str t)) -> Str

strCoRec t f = let (d, strt) = f t in d :~: case strt of

Left str -> str

Right t0 -> strCoRec t0 f

mOne = SdL :~: mOne

zero = SdM :~: zero

pOne = SdR :~: pOne

phalf = SdR :~: zero

mhalf = SdL :~: zero

third = SdM :~: SdR :~: third

sixth = SdM :~: third

ninth = SdM :~: SdM :~: SdM :~: SdR :~: SdR :~: SdR :~: ninth

twoThird = SdR :~: third

cCoINegToCoIPlusOne, cCoIPosToCoIMinusOne :: Str -> Str

cCoINegToCoIPlusOne (SdR :~: u) = pOne

cCoINegToCoIPlusOne (SdM :~: u) = SdR :~: cCoINegToCoIPlusOne u

cCoINegToCoIPlusOne (SdL :~: u) = SdR :~: u

cCoIPosToCoIMinusOne (SdR :~: u) = SdL :~: u

cCoIPosToCoIMinusOne (SdM :~: u) = SdL :~: cCoIPosToCoIMinusOne u

cCoIPosToCoIMinusOne (SdL :~: u) = mOne

cCoIToCoIDouble :: Str -> Str

cCoIToCoIDouble (SdR :~: u) = cCoINegToCoIPlusOne u

cCoIToCoIDouble (SdM :~: u) = u
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cCoIToCoIDouble (SdL :~: u) = cCoIPosToCoIMinusOne u

cCoIToCoIQuad :: Str -> Str

cCoIToCoIQuad = cCoIToCoIDouble . cCoIToCoIDouble

k n | n > 2 = 1

| n < -2 = -1

| otherwise = 0

j 6 = 2

j 5 = 1

j 4 = 0

j 3 = -1

j 2 = 2

j 1 = 1

j 0 = 0

j (-1) = -1

j (-2) = -2

j (-3) = 1

j (-4) = 0

j (-5) = -1

j (-6) = -2

cCoIAverage :: Str -> Str -> Str

cCoIAverage (d :~: u) (e :~: v) =

strCoRec (fromEnum d + fromEnum e, u, v) step where

step :: (Int, Str, Str) -> (Sd, Either Str (Int, Str, Str))

step (t, d :~: u, e :~: v) =

(toEnum (k num), Right (j num, u, v)) where

num = fromEnum d + fromEnum e + 2*t

cCoIUMinus :: Str -> Str

cCoIUMinus (SdL :~: s) = SdR :~: cCoIUMinus s

cCoIUMinus (SdM :~: s) = SdM :~: cCoIUMinus s

cCoIUMinus (SdR :~: s) = SdL :~: cCoIUMinus s

cCoIDivSatCoIClAux1 u0 u1 =

cCoIToCoIQuad $ cCoIAverage u0 (SdM :~: cCoIUMinus u1)

cCoIDivSatCoIClAux4 u0 u1 =
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cCoIToCoIQuad $ cCoIAverage u0 (SdM :~: u1)

cCoIDiv u@(SdR :~: _) v =

SdR :~: cCoIDiv (cCoIDivSatCoIClAux1 u v) v

cCoIDiv u@(SdM :~: SdR :~: _) v =

SdR :~: cCoIDiv (cCoIDivSatCoIClAux1 u v) v

cCoIDiv u@(SdM :~: SdM :~: SdR :~: _) v =

SdR :~: cCoIDiv (cCoIDivSatCoIClAux1 u v) v

cCoIDiv u@(SdM :~: SdM :~: SdM :~: _) v =

SdM :~: cCoIDiv (cCoIToCoIDouble u) v

cCoIDiv u@(SdL :~: _) v =

SdL :~: cCoIDiv (cCoIDivSatCoIClAux4 u v) v

cCoIDiv u@(SdM :~: SdL :~: _) v =

SdL :~: cCoIDiv (cCoIDivSatCoIClAux4 u v) v

cCoIDiv u@(SdM :~: SdM :~: SdL :~: _) v =

SdL :~: cCoIDiv (cCoIDivSatCoIClAux4 u v) v

{-

cCoIDiv u0 u1 = strCoRec u0 func where

func u2@(d :~: e :~: f :~: _) =

case d of

SdR -> (SdR, Right (cCoIDivSatCoIClAux1 u2 u1))

SdL -> (SdL, Right (cCoIDivSatCoIClAux4 u2 u1))

SdM -> case e of

SdR -> (SdR, Right (cCoIDivSatCoIClAux1 u2 u1))

SdL -> (SdL, Right (cCoIDivSatCoIClAux4 u2 u1))

SdM -> case f of

SdR -> (SdR, Right (cCoIDivSatCoIClAux1 u2 u1))

SdL -> (SdL, Right (cCoIDivSatCoIClAux4 u2 u1))

SdM -> (SdM, Right (cCoIToCoIDouble u2))

-}

divide :: Str -> Str -> Str

divide u v@(SdM :~: _ ) =

divide (cCoIToCoIDouble u) (cCoIToCoIDouble v)

divide u v@(SdL :~: _ ) =

divide (cCoIUMinus u) (cCoIUMinus v)

divide u v@(SdR :~: SdL :~: _) =
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divide (cCoIToCoIDouble u) (cCoIToCoIDouble v)

divide u v = cCoIDiv u v

infix 4 :+:

data SdReal = [Sd] :+: Str

instance Show SdReal where

show ([] :+: v) = "(0) | " ++ show v

show (l :+: v) = showAux (reverse l) v

where

showAux [] v = "| " ++ show v

showAux (d:ds) v = show d ++ " " ++ showAux ds v

sdToInt :: [Sd] -> Integer

sdToInt = sdToIntAux 0 0 where

sdToIntAux acc i [] = acc

sdToIntAux acc i (d:ds) =

sdToIntAux (acc + toInteger (fromEnum d) * 2^i) (i + 1) ds

-- shift (k + v) i == (k + v) * 2 ^^ i

shift :: SdReal -> Int -> SdReal

shift x 0 = x

shift x i | i > 0 = shl x i where

shl x 0 = x

shl ([] :+: SdM :~: u) i = shl ([ ] :+: u) (i - 1)

shl (l :+: d :~: u) i = shl (d:l :+: u) (i - 1)

shift x i | i < 0 = shr x i where

shr x 0 = x

shr ([] :+: u) i = shr ([] :+: SdM :~: u) (i + 1)

shr (d:ds :+: u) i = shr (ds :+: d :~: u) (i + 1)

instance Num [Sd] where

fromInteger 0 = []

fromInteger n | n < 0 = negate (fromInteger (abs n))

fromInteger n = case r of

0 -> SdM : fromInteger q
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1 -> d : fromInteger q

where

(q, r) = divMod n 2

d = if n < 0 then SdL else SdR

signum = fromInteger . signum . sdToInt

negate = map negateSd where

negateSd SdL = SdR

negateSd SdM = SdM

negateSd SdR = SdL

ds + es = fromInteger (sdToInt ds + sdToInt es)

ds * es = fromInteger (sdToInt ds * sdToInt es)

abs = undefined

instance Enum [Sd] where

fromEnum = fromEnum . toInteger

toEnum = toEnum . fromEnum . toInteger

instance Real [Sd] where

toRational = toRational . toInteger

instance Integral [Sd] where

toInteger = toIntegerAux 0 0 where

toIntegerAux acc i [] = acc

toIntegerAux acc i (d:ds) =

toIntegerAux (acc + toInteger (fromEnum d) * 2^i) (i + 1) ds

quotRem = error "Not implemented"

instance Num SdReal where

fromInteger k = fromInteger k :+: zero

negate (l :+: u) = negate l :+: cCoIUMinus u

abs = undefined

signum = undefined

(k :+: v) + (l :+: w) = k + l + [d] :+: u where

(d :~: u) = cCoIAverage v w

x * y = undefined

-- intInvToStr :: Sd -> Integer -> Str
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-- intInvToStr d x = intInvToStrAux $ 1 / toRational x where

infixl 7 //

(//) :: Integer -> Integer -> SdReal

x // y = fromRational (x % y)

instance Fractional SdReal where

fromRational rat

| rat == 0 = 0 :+: zero

| rat < 0 = fromInteger w :+: intInvToStr SdL r

| otherwise = fromInteger w :+: intInvToStr SdR r

where

(w, r) = wholeRest rat

wholeRest :: Rational -> (Integer, Rational)

wholeRest rat = let (q, r) =

(numerator rat) ‘divMod‘ (denominator rat) in

(q, r % denominator rat)

intInvToStr :: Sd -> Rational -> Str

intInvToStr d r

| rest == 0 = d :~: zero

| whole > 0 = d :~: intInvToStr d rest

| otherwise = SdM :~: intInvToStr d rest

where

(whole, rest) = wholeRest (2 * r)

-- w > 1/4

sdDiv :: Str -> Str -> SdReal

sdDiv v w = shift ([] :+: divide (SdM :~: SdM :~: v) w) 2

sdMultSdReal :: [Sd] -> SdReal -> SdReal

sdMultSdReal = sdMultAux 0 0 where

sdMultAux acc i [] x = acc

sdMultAux acc i (SdL:ds) x =

sdMultAux (acc - shift x i) (i + 1) ds x

sdMultAux acc i (SdR:ds) x =
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sdMultAux (acc + shift x i) (i + 1) ds x

sdMultAux acc i (SdM:ds) x =

sdMultAux acc (i + 1) ds x

sdRealDivSd :: SdReal -> Str -> SdReal

sdRealDivSd v w@(SdM :~: _ ) =

sdRealDivSd (shift v 1) (cCoIToCoIDouble w)

sdRealDivSd v w@(SdL :~: _ ) =

sdRealDivSd (-v) (cCoIUMinus w)

sdRealDivSd v w@(SdR :~: SdL :~: _) =

sdRealDivSd (shift v 1) (cCoIToCoIDouble w)

sdRealDivSd (k :+: v) w =

sdMultSdReal k (sdDiv pOne w) + sdDiv v w

sdRealDiv :: SdReal -> SdReal -> SdReal

sdRealDiv x y@(l :+: _) | ([] :+: w) <- shift y (-(length l)) =

shift x (-(length l)) ‘sdRealDivSd‘ w

----------------------------------------------------------------

-- Here starts the new part of the work:

rAux :: Str -> Bool

rAux (SdR :~: SdR :~: v) = True

rAux (SdR :~: SdM :~: v) = True

rAux (SdR :~: SdL :~: SdR :~: v) = True

rAux (SdR :~: SdL :~: SdM :~: v) = True

rAux (SdM :~: SdR :~: SdR :~: v) = True

rAux (SdM :~: SdR :~: SdM :~: v) = True

rAux v = False

lAux :: Str -> Bool

lAux (SdL :~: SdL :~: v) = True

lAux (SdL :~: SdM :~: v) = True

lAux (SdL :~: SdR :~: SdL :~: v) = True

lAux (SdL :~: SdR :~: SdM :~: v) = True
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lAux (SdM :~: SdL :~: SdL :~: v) = True

lAux (SdM :~: SdL :~: SdM :~: v) = True

lAux v = False

qplus :: Str -> Str

qplus(SdL :~: s) = SdM :~: SdM :~: s

qplus(SdM :~: s) = SdM :~: SdR :~: s

qplus(SdR :~: s) = SdR :~: SdM :~: s

qminus :: Str -> Str

qminus(SdL :~: s) = SdL :~: SdM :~: s

qminus(SdM :~: s) = SdM :~: SdL :~: s

qminus(SdR :~: s) = SdM :~: SdM :~: s

funcR :: (Int -> Int) -> (Int -> Str) -> Int -> Str

funcR m f n = cCoIToCoIQuad (qminus ( f (max (m 4) n)))

funcL :: (Int -> Int) -> (Int -> Str) -> Int -> Str

funcL m f n = cCoIToCoIQuad (qplus ( f (max (m 4) n)))

funcM :: (Int -> Int) -> (Int -> Str) -> Int -> Str

funcM m f n = cCoIToCoIDouble $ f (max (m 4) n)

cCoILim :: (Int -> Int) -> (Int -> Str) -> Str

cCoILim m f

| rAux (f (m 4)) = SdR :~: (cCoILim n (funcR m f))

| lAux (f (m 4)) = SdL :~: (cCoILim n (funcL m f))

| otherwise = SdM :~: (cCoILim n (funcM m f))

where n = \p -> (m (p+1))

heron :: Str-> Int -> Str

heron s 0 = pOne

heron s n = cCoIAverage (heron s (n-1)) (cCoIDiv s (heron s (n-1)))

auxlog :: Int -> Int -> Int

auxlog p n = if (p <= 2^n) then n else auxlog p (n+1)

poslog p = auxlog p 0
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{-

cCoILim poslog (heron phalf)

+1 +1 0 -1 +1 -1 +1 -1 0 0 0 0 +1 -1 +1 -1 0 0 -1 +1 +1 -1 -1 +1

+1 -1 -1 +1 +1 Interrupted.

-}

cCoIsqrt :: Str -> Str

cCoIsqrt (SdL :~: u) = zero

cCoIsqrt (SdM :~: SdL :~: u) = zero

cCoIsqrt (SdM :~: SdM :~: u) = SdM :~: (cCoIsqrt u)

cCoIsqrt (SdM :~: SdR :~: SdL :~: u) =

SdM :~: (cCoIsqrt (SdR :~: u))

cCoIsqrt (SdR :~: SdL :~: SdL :~: u) =

SdM :~: (cCoIsqrt (SdR :~: u))

cCoIsqrt u = cCoILim id (heron u)

facul :: Int -> Int

facul n = faculacc n 1

where faculacc n accu =

if (n == 0) then accu else faculacc (n-1) (n*accu)

liouvilleAux :: (Int -> Int) -> Int -> Int -> Str

liouvilleAux f m n = if (f(m) == n)

then (SdR :~: liouvilleAux f (m+1) (n+1))

else (SdM :~: liouvilleAux f m (n+1))

liouville f = liouvilleAux f 1 1

{-

cCoILim poslog (heron (liouville facul))

+1 +1 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 -1 0 +1 -1 0

+1 -1 0 +1 -1 Interrupted.

-}
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Appendix B

Real numbers

Motivation B.1. There are many alternatives to define real numbers and even
various ways to define real numbers as Cauchy sequences like [30, Chapter 2]. We
present a definition from [156] which is also the definition of real numbers in Minlog.
This definition can be done in TCF as well as in HAω and PAω. For TCF note
that all objects we consider here are by default total.

In this chapter we do not give any proofs but we state the Minlog name of each
theorem and definition. Therefore, the reader can look the proof up in the Minlog
file lib/rea.scm.

In this dissertation, real numbers are used in Chapter 5 and Chapter 6. In both
chapters real numbers can be seen as abstract objects which fulfil certain properties.
Therefore, this excursion about the definition of real numbers in not necessary to
understand the theory in this dissertation.

Definition B.2. A pair x := ((an)n,M) ∈ (N→ Q)× (Z+ → N) is a real number
if

∀p∀n,m≥M(p)|an − am| ≤ 2−p

and M is non-decreasing. In Minlog this is formulated as a predicate denoted by
Real of arity (N→ Q)× (Z+ → N).

Remark B.3. The definitions of the positive integers Z+, the integers Z and Q in
TCF are already known from Example 2.1.5. Here and in the following we assume
that the standard functions like +,−, ·, /, . . . on the natural numbers, the (positive)
integers and the rational numbers are already known. For our purpose an intuitive
understanding is sufficient. Concrete definitions can be found in the corresponding
library files of Minlog.
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In TCF positive integers are binary numbers which simplifies the calculation
with these numbers and should therefore be preferred. However, in HAω and PAω

we need another definition of (positive) integers. In this case Z+ can be identified
with N, where a natural number n is interpreted as the positive number n+1. Then
define Z := Z+ + U + Z+ and Q := Z× Z+.

Lemma B.4 (RealBdProp). Let x := ((an)n,M) be a real number. Then there is
a positive integer px such that ∀n|an| ≤ 2px . In Minlog px is denoted by RealBd as

M.

Definition B.5. Let x := ((an)n,M) and y := ((bn)n, N) be real numbers. We say
that x is smaller or equal than y and write x ≤ y if

∀paM(p+1) ≤ bN(p+1) + 2−p.

In Minlog this relation is denoted by RealLe or as infix by <<=.

Lemma B.6 (RealLeRefl, RealLeAntiSym, RealLeTrans). The relation ≤ on
the real numbers is reflexive, antisymmetric and transitive.

Definition B.7. Let x := ((an)n,M) and y := ((bn)n, N) be real numbers. We say
that x and y are equal, and write x = y if

x ≤ y ∧ y ≤ x.

In Minlog the real equality is denoted by RealEq or as infix by ===.

Lemma B.8 (RealEqRefl, RealEqSym, RealEqTrans). The relation = on the real
numbers is reflexive, symmetric and transitive.

Remark B.9. The real equality is in general not decidable in a constructive setting
like TCF and HAω. To see this, we fix an arbitrary Turing machine TM and define
the real number xTM := ((an)n,M) as follows

an :=

{
0 if TM does not terminate in at most n steps

2−k if TM terminates in k ≤ n steps

and M(p) := p + 1. One can easily check that xTM is a real numbers, and xTM is
equal to 0 if and only if TM terminates. Hence, if (xTM = 0) ∨ (xTM 6= 0) were
constructively provable for all Turing machines TM, we would get a solution to the
Halting problem.
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Definition B.10. Let x := ((an)n,M) be a real number and p be a positive
number, then x is called p-positive if

2p ≤ aM(p+1).

In this case we write x ∈p R+. We write x ∈ R+ if there exists a p with x ∈p R+.
In Minlog x ∈p R+ is denoted by RealPos x p.

Lemma B.11 (RealLeCompat). The relation ≤ is compatible with the real equal-
ity.

Definition B.12. Let x := ((an)n,M) and y := ((bn)n, N) be real numbers. For
each arithmetic function, we define a new real number z := ((cn)n, L) as follows:

z cn L(p) Minlog name
|x| |an| M(p) RealAbs

x+ y an + bn max{M(p+ 1), N(p+ 1)} RealPlus

−x −an M(p) RealUMinus

xy anbn max{M(p+ py + 1), N(p+ px + 1)} RealTimes

1
x

{
1
an

if an 6= 0

0 else
M(2q + 2 + p) RealUDiv

Here, px and py are defined as in Lemma B.4. Note that the definition of 1
x

depends
on a given positive integer q which is suppressed in the notation. If we want to
point out the dependence, we write

(
1
x

)
q
. Of course, in Minlog q is always explicit

by writing RealUDiv x q.

Lemma B.13 (RealAbsReal, RealPlusReal, RealUMinusReal, RealTimesReal,
RealUDivReal). Let x := ((an)n,M) and y := ((bn)n, N) be real numbers. Then
|x|, x + y, −x, xy are real numbers. If |x| ∈q R+ for some positive integer q then
also

(
1
x

)
q

is a real number.

Lemma B.14. Let x, y, z, z0 be real numbers, then the following statements hold.
Note that this is just a selection of the most used properties.

RealPlusAssoc x+ (y + z) = (x+ y) + z
RealPlusComm x+ y = y + x
RealPlusZero x+ 1 = x

RealPlusMinusZero x+ (−x) = 0
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RealTimesAssoc x(yz) = (xy)z
RealTimesComm xy = yx
RealTimesOne x1 = x

RealTimesZero x0 = 0
RealTimesUDivR x ∈p R+ → x 1

x
= 1

RealTimesPlusDistr x(y + z) = xy + xz
RealAbsTimes |xy| = |x||y|

RealAbsAbs ||x|| = |x|
RealAbsUMinus | − x| = |x|
RealLeMonPlus x ≤ y → z ≤ z0 → x+ z ≤ y + z0

RealLeMonTimesR 0 ≤ x→ y ≤ z → xy ≤ xz
RealLeAbsPlus |x+ y| ≤ |x|+ |y|

RealLeIdAbs x ≤ |x|
RealPosMonPlus x ∈ R+ → y ∈ R+ → x+ y ∈ R+

RealLeMonTimesTwo 0 ≤ x ≤ y → 0 ≤ z ≤ z0 → xz ≤ yz0

RealPosLe x ≤ y → x ∈p R+ → y ∈p+2 R+

Lemma B.15 (RealAbsCompat, RealPlusCompat, RealUMinusCompat,
RealTimesCompat, RealUDivCompat). The arithmetic functions from Definition
B.12 are compatible with the real equality. In particular, for the division we have:
if |x| is p-positive, |y| is q-positive and x = y then

(
1
x

)
p

=
(

1
y

)
q
.

Motivation B.16. In the constructive setting we have a weaker version of decid-
ability of ≤, which suffices in many cases.

Lemma B.17 (ApproxSplit). Let x, y, z be real numbers with x < y, i.e. y− x ∈
R+, then x ≤ z or z ≤ y.
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l’enseignement Supérieur, 113(3):25–39, 2003.

[46] Thierry Coquand, Lionel Ducos, Henri Lombardi, and Claude Quitté. Con-
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1996.

[110] Henri Lombardi. Platitude, localisation et anneaux de Prüfer: une approche
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[132] Hervé Perdry. Lazy bases: a minimalist constructive theory of Noetherian
rings. Mathematical Logic Quarterly, 54(1):70–82, 2008.

[133] Henrik Persson. An application of the constructive spectrum of a ring. In
Type Theory and the Integrated Logic of Programs. Chalmers University and
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theorem of Gauß-Joyal, 56

algorithmic version, 57
theory, 76

complete, 76
theory of computable functionals, 9
totality predicate, 13
type, 10, 11

base, 18
negative, 22
of a formula, 15
positive, 22



214 INDEX

uniformly smooth, 178
with modulus, 178

universal Krull-Lindenbaum lemma, 43
algorithmic version, 49

valuation ring, 58

witness type, 35

Zariski’s lemma, 90
algorithmic version, 100
material interpretation, 108


	Introduction
	Who is this dissertation for
	Proof interpretations
	Constructive algebra
	Constructive analysis
	Overview and results of the dissertation
	List of publications

	Logical background
	The theory of computable functionals
	Algebras and types
	Terms
	Predicates and formulas
	Computational content
	Soundness of program extraction
	Heyting and Peano arithmetic in all finite types

	Tools of proof interpretation
	Local operators
	Gödel's functional interpretation
	Application: metastability


	Ideal objects in commutative algebra
	General maximality
	A logical analysis
	An approximating algorithm for maximal objects
	The universal Krull-Lindenbaum lemma
	A computational formulation of the universal Krull-Lindenbaum lemma

	Case study: radical ideals in commutative rings
	Nilpotent coefficients of invertible polynomials
	The theorem of Gauß-Joyal

	Case study: valuation rings and integral closures
	Kronecker's theorem

	Case study: ordered fields
	Minor case studies
	Complete theories
	Distributive lattices
	Filters in commutative rings


	An algorithmic version of Zariski's lemma
	Background and basic definitions
	A constructive proof
	Computational interpretation
	Preliminary
	Some algorithms for integral extensions of algebras
	An algorithm for Zariski's lemma

	Application: maximal ideals in polynomial rings
	Outlook: Hilbert's Nullstellensatz
	The material interpretation of Zariski's lemma
	Approximate maximal objects in Hilbert's Nullstellensatz


	Limits with signed digit streams
	Preliminaries
	Historical notes and sources
	Notations
	Binary code vs. signed digit code

	Formalisation
	The predicate coI
	Basic lemmas

	Convergence theorem
	Application: Heron's method
	Application: multiplication
	Outlook and future work

	Rates of convergence for asymptotically weakly contrative maps in normed spaces
	Introduction
	Basic definition
	Rate of convergence and divergence
	Iterative sequences

	Notions of contractivity
	Contractive and weakly contractive maps
	Asymptotically weakly contractive maps
	d-weakly contractive maps

	Quantitative recursive inequalities
	Main quantitative lemmas
	Reformulation in terms of traditional rates of convergence
	Weakly contractive maps: a simple case study

	Case study: quasi asymptotically -weakly contractive maps
	Totally asymptotically weakly contractive maps
	Approximate weakly contractive maps

	Case study: asymptotically d-weakly contractive maps
	Duality selection maps
	Convergence theorem in spaces with uniformly continuous selction map
	d-weakly contractive maps in uniformly smooth spaces


	Haskell program
	Real numbers
	Bibliography
	Index

