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Abstract 

The vestibular system is a sensory system that monitors active and passive head 

movements while at the same time permanently sensing gravity. Vestibular information is 

important for maintaining balance and stabilisation of vision and ultimately for general 

orientation in space. A distributed set of cortical vestibular regions process vestibular 

sensory information, together with other sensory and motor signals. How these brain 

regions are influenced by or interact with each other, and how this depends on the context 

in which the system is acting is not well understood.  

 

In my research I investigated the whole brain consequences of different vestibular sensory 

contexts by means of structural and functional magnetic resonance (MR) imaging on three 

different time scales (long-term, short-term, and medium-term). For the long-term time 

scale, I investigated functional brain connectivity in individuals experiencing a type of 

chronic dizziness that cannot be explained by structural damage within the nervous 

system. These patients exhibit chronic or long-term alterations in their processing of 

vestibular information, which leads to dizziness and vertigo. I found altered sensory and 

cerebellar network connectivity when they experience a dizziness-provoking stimulus. 

These two networks contain, but are not limited to, vestibular processing regions, 

demonstrating the importance of a whole-brain approach. The alterations correspond the 

notion that these patients have dysfunctional stimulus expectations.  

 

The short-term vestibular processing I investigated was the effect of artificial vestibular 

stimulation, which is frequently used in vestibular research and treatment. For this, I 

analysed functional network connectivity in healthy participants. I found that short-term 

vestibular stimulation does not cause a cortical functional reorganisation, although a 

nociceptive stimulus, which was matched for the somatosensory component of this 

stimulation, led to a reorganisation. The fact that cortical reorganisation does not occur 

during exclusively vestibular stimulation may reflect subconscious nature of vestibular 

processing in that it does not induce a different internal brain state.  

 

On the medium-term time scale, I investigated whole-brain structural changes as a result 

of gravity. Astronauts that travel to space for extended periods of time experience several 

physiological symptoms also affecting the fluid exchange of the brain. To characterise if 

these fluid exchanges also affect size of the spaces around brain blood vessels (perivascular 

spaces), I developed a semi-automatic detection pipeline which requires only one type of 
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structural MR image. I found that space travellers have enlarged perivascular spaces even 

before their mission, when compared to a control population. These spaces were to a small 

extend further increased shortly after a long duration space flight of 6 months. Astronaut 

training thus contributes to structural changes in the whole brain in combination with 

long-duration space flight. This further suggests that additional contextual factors such as 

sleep quality should be considered in the future.  

 

Overall, in my thesis I show that investigating the whole brain during different vestibular 

modulations provides additional and novel insights about the underlying neural processes. 

I found that long-term vestibular states have an impact on functional networks, whilst 

short-term vestibular modulations do not seem to impact functional network organisation. 

In addition, I quantified the structural impact of microgravity and astronaut training in 

the whole brain using a new analysis pipeline. In the future, I expect that new 

advancements in the field of neuroimaging analysis, such as high sampling of individuals 

and dynamic network analysis will advance the field. This will potentially also provide new 

means to monitor disease progression or intervention success.  
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 General Introduction  

 Perception in Context 

In his essay on the topic of dizziness at the beginning of the 19th century, the Czech 

physiologist Jan Purkyně (better known today as Johann Purkinje, the discoverer of the 

large Purkinje cells of the cerebellum) described an observation which was later termed 

the ‘motion aftereffect’. He reported that, after watching a directed motion continuously 

for a longer period of time, one perceives still objects to move in the opposite direction for 

a short amount of time (Anstis, Verstraten, & Mather, 1998; Purkinje, 1820). One way to 

experience this effect in nature is to look at a rock within a waterfall for a prolonged time 

and then to move the gaze quickly to the river bank, where the water will now seem to flow 

upwards (Anstis et al., 1998). Over a hundred years after Purkyně’s description of the 

motion aftereffect, Barlow and Hill (1963) reported that activity of ganglion cells in the 

rabbit retina was closely related to the mentioned motion aftereffect phenomenon. They 

proposed a mechanism in which the perceived aftereffect results from a temporary 

imbalance of activity in cells which are responsive to motion in opposite directions. When 

motion stops, the activity of the responsive cell falls below baseline, the activity of the 

opposite cell thus becomes relatively stronger, which creates the perception of motion in 

the opposite direction.  

 

Studying perceptual phenomena in isolation has provided an in depth knowledge of the 

principles of brain function, but studying sensory information in different contexts yields 

a more realistic understanding. Context here can be defined as internal or external state 

changes of the organism which persist for a certain duration (ranging from temporary to 

long-lasting). Internal state differences were for example found to influence the perception 

of the motion aftereffect: in patients who are suffering from chronic dizziness, perceived 

duration of the motion aftereffect was found to be longer when compared to healthy 

controls, and also brain activity differed between the two groups (Popp et al., 2017). 

Studying the neural basis of perception in context often requires going beyond 

investigating isolated brain structures. Using the example of the motion aftereffect, 

increased activity in the macaque cortical area middle temporal area (MT) (Van Wezel & 

Britten, 2002) and in the homologous area V5 of the occipital cortex in humans (Culham 

et al., 1999) was found to be related to the perceived motion aftereffect. However, a recent 

study by Rühl, Bauermann, Dieterich, and zu Eulenburg (2018) described that the motion 

aftereffect was also related to more complex whole brain activation and deactivation 

patterns.  
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Investigating the neural basis of vestibular perception in context is somewhat more 

difficult than studying the neural basis of visual illusions such as the motion aftereffect. A 

unique feature of the vestibular sense is that vestibular information is so ubiquitous: 

gravity for example is constantly sensed by the otolith organs, thus providing a stable 

vertical reference (Angelaki & Cullen, 2008). We cannot simply pause or modulate 

vestibular perception. Healthy humans also lack a distinct conscious quality (or ‘qualia’) 

about vestibular input. This is in contrast to other sensory modalities such as vision or 

audition, where we know what it means to see or to hear and we can pause or minimise 

sensory input by closing our eyes or plug our ears. Instead, if we become aware of 

vestibular stimulation it is mostly because a type of modulation in vestibular information 

processing. In this thesis, I will give examples of such changes of varying duration and 

discuss their contributions to our understanding of the involved neural processes in 

humans. 

  The Human Vestibular System 

1.2.1 Peripheral vestibular processing 

The vestibular labyrinth in the inner ear contains five sensory organs for detecting 

vestibular information: two otolith organs and three semicircular canals (see Figure 1.1). 

These sensory organs are endolymph-filled, interconnected chamber structures in which 

the mechanical energy originating from head movement is detected by hair cells. Hair cells 

contain mechanically gated ion channels, thus allowing the transduction of mechanical 

signal to neural signals which are then further propagated to the brain via the vestibular 

nerve, a branch of the eight cranial nerve (Bear, Connors, & Paradiso, 2007).  

 

The semicircular canals detect angular rotations in three orthogonal planes. The sensory 

epithelium is contained in a bulge of each canal called the ampulla at one of its 

conjunctions with the utricle, the ampulla (Goldberg et al., 2012). The ampulla contains 

hair cells which are clustered, with the cilia projecting into the gelatinous cupula. 

Therefore, during rotation of the canal, the endolymph lags behind and applies force to the 

cupula, thus bending the cilia on the hair cells (Bear et al., 2007). Each functional pair of 

the semicircular canals has opposite discharge properties – i.e. rotation will cause an 

increase of activity in hair cells in the canal on one side and decrease of activity in hair cells 

located on the other side (Goldberg et al., 2012). This difference allows to compute the 

rotation direction.  
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The otolith organs consist of the saccule and the utricle. They detect the gravitational force 

vector and linear head translations. In the otolith organs, the macula is the actual sensory 

epithelium containing the hair cells. In an upright position, the macula is oriented 

vertically within the saccule, and horizontally within the utricle. The hair cell cilia are 

embedded in a gelatinous cap, which contains small calcium carbonate crystals called 

otoliths. When tilting the head, gravity creates a pulling force on the otoliths, which in turn 

deforms the gelatinous cap and thus causes the hair cell cilia to bend (Bear et al., 2007). 

 

There are two types of primary vestibular sensor afferent neurons that carry the signals to 

the brain stem: those with regular and those with irregular resting discharge properties. 

These neurons differ in terms of their physiology, response dynamics and sensitivity to 

applied forces and electrical stimulation (Goldberg et al., 2012). Less is known about the 

efferents reaching the vestibular labyrinth, which arise from the brain stem. Evidence 

suggests a modulatory role, in that afferent discharge is modified by efferent activity 

(Goldberg et al., 2012).  

 

1.1.1 Central vestibular processing pathways 

The vestibular portion of the eighth cranial nerve terminates on ipsilateral secondary 

neurons in the vestibular complex of the brain stem. The vestibular complex of the brain 

stem consists of four main nuclei (medial, superior, lateral and descending/inferior 

nucleus), with no clear segregation of the inputs from afferents. In many species, inputs to 

Figure 1.1 The vestibular organ.  
Middle: The vestibular organ in the inner ear with sensory epithelium shown in purple. Left: Ampulla of 
the semicircular canals. Upon rotation of the head, the displacement of the cupula causes the hair cells to 
bend. Right: Otolith organs. Upon tilting of the head, the force of gravity pulls on the otoliths which deform 
the gelatinous cap, ultimately bending the embedded hair cells. Image created with BioRender.com. 
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the vestibular complex originate in the brain stem, spinal cord, cerebellum and cerebral 

cortex (Goldberg et al., 2012). This demonstrates the multimodal nature of vestibular 

signal processing already at this first central processing stage. 

 

The vestibular complex also projects to the brain stem, the spinal cord, the cerebellum and 

to the thalamus (Goldberg et al., 2012). The connections to the brain stem and the spinal 

cord are important for gaze and postural stabilisation respectively. The cerebellum 

receives connections from the vestibular complex to its anterior lobe, nodulus, ventral 

uvula, and also to the loculus and ventral para-flocculus (Goldberg et al., 2012). Each of 

these areas make a different contribution to vestibular processing such as posture, eye 

movements and multisensory integration (Barmack, 2003). Projections to the thalamus 

are further relayed to a wide range of cortical areas (Goldberg et al., 2012). Further 

integration with other sensory modalities occurs at these intermediate levels of processing. 

 

At least two parallel ascending vestibular pathways send vestibular signals from the 

thalamus to the cortex: the anterior thalamocortical pathway and the posterior 

thalamocortical pathway (Cullen & Taube, 2017). The anterior pathway is important for 

the generation of the head direction signal, which is necessary for successful navigation 

and spatial memory (Yoder & Taube, 2014). Projections go to the retrosplenial and 

entorhinal cortical areas via the pre- and parasubiculum (Yoder & Taube, 2014). The 

posterior thalamocortical pathway is considered to be important for the perception and 

detection of self-motion and includes several cortical regions across all lobes, with partially 

overlapping functions in head motion detection (Smith, Greenlee, DeAngelis, & Angelaki, 

2017). These cortical processing areas will be introduced in the following section.  

 

1.1.2  Cortical vestibular processing 

In contrast to other senses such as vision and audition, the identification of cortical areas 

in humans is somewhat complicated by methodological and technological restrictions. 

Most of our knowledge of cortical vestibular processing comes from single-cell recordings 

in the behaving monkey, which has revealed a widely distributed network of cortical 

regions that process different aspects of vestibular information. A combination of 

functional magnetic resonance imaging (fMRI) and artificial vestibular stimulation 

methods such as galvanic vestibular stimulation (see Section 1.3.2) have complimented 

our understanding of cortical vestibular processing in humans (see Figure 1.2). 
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The key region for cortical vestibular processing in the monkey is the parieto-insular 

vestibular cortex (PIVC), which contains a large amount of neurons responding to 

translational and rotational self-motion in the absence of visual input (i.e. in darkness) 

(Chen, DeAngelis, & Angelaki, 2010; Guldin & Grüsser, 1998). The human equivalent of 

this area was suggested to be located in the parietal opercular area OP2. This region is 

consistently activated in humans in response to various types of artificial vestibular 

stimulation (zu Eulenburg, Caspers, Roski, & Eickhoff, 2012).  

 

Monkey PIVC is reciprocally interconnected with two areas: 2v at the tip of the 

intraparietal sulcus (Büttner & Buettner, 1978) and 3aV in the central sulcus. These 

connections were termed the ‘inner cortical vestibular circuit’ and have been suggested to 

be important for proprioceptive signal processing (Guldin, Akbarian, & Grüsser, 1992). In 

humans, area 3aV also shows a strong coupling with OP2 (zu Eulenburg et al., 2012).  

 

Medial superior temporal area (MST) in the temporal lobe of the monkey contains neurons 

encoding both visual and vestibular stimuli (with a higher importance on the visual input) 

Figure 1.2 The vestibular cortical regions 
Top: superior view with labelled regions. Bottom: rotation from superior to anterior view. CSV = cingulate 
sulcus visual area; VIP = Ventral intraparietal area; OP2 = parietal opercular area OP2 ; PF =Inferior Parietal 
Lobule cytoarchitectonic area PF; PFcm/VPS = Inferior Parietal Lobule cytoarchitectonic area PFcm/visual 
posterior sylvian area; SMA = supplementary motor area ; MST = medial superior temporal area. Figure 
created using MRIcroGL (Rorden, 2020). The regions shown are based on the atlas from zu Eulenburg et al. 
(2020).  
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(Smith et al., 2017). In human studies, the homologue brain region is thought to be located 

in the lateral occipital cortex, adjacent to the middle temporal area MT, also termed V5 

(Smith et al., 2017). This region responds to both artificial vestibular stimulation as well 

as to visual motion stimuli (Smith, Wall, & Thilo, 2012). 

The visual posterior sylvian area (VPS) at posterior tip of the sylvian sulcus receives input 

from MST and has known interconnections with PIVC in the macaque. It was also found 

to be responsive to both optic flow and vestibular stimuli (Chen, DeAngelis, & Angelaki, 

2011). In contrast to MST, vestibular signalling dominates when both stimuli are presented 

together (Chen et al., 2011). In humans, cytoarchitectonic area PFcm of the inferior parietal 

lobule is suggested to be the homologue of VPS (zu Eulenburg, Stephan, Dieterich, & 

Ruehl, 2020).  

In the macaque, area 7 in the inferior parietal lobule (a subdivision of the posterior parietal 

cortex) is important for encoding spatial relationships of objects in an allocentric 

coordinate system (Chafee, Averbeck, & Crowe, 2007). Area 7 is a heterogeneous region 

which is often separated into the area 7a and 7b, although other, more refined separations 

have been proposed on the basis of cytoarchitecture (Borra & Luppino, 2017; Rozzi et al., 

2005; Scheperjans et al., 2007). These subregions have distinct connections and functions, 

some of which partially overlap with properties of PFcm in humans or VPS in monkeys 

(Rozzi et al., 2005). Other subregions of area 7 resemble connectivity and functional 

properties of cytoarchitectonic area PF of the inferior parietal lobule in humans (zu 

Eulenburg et al., 2020). Another cortical area in the parietal lobe of both macaque and 

human is the ventral intraparietal area (VIP). It is a highly multisensory region and was 

found to be involved in general multisensory integration (also in the absence of vestibular 

stimulation) (Smith et al., 2017). 

 

In the frontal areas, area 6 and periarcuate cortex are involved in motor and oculomotor 

functions in the monkey (Ebata et al., 2004) and may be homologous to the human 

premotor cortex (Lopez & Blanke, 2011; zu Eulenburg et al., 2012) and supplementary 

motor area (SMA) respectively (zu Eulenburg et al., 2020).  

 

The only vestibular cortical region that was first identified in humans is the cingulate 

sulcus visual area (CSv). This area responds to both artificial vestibular stimulation (Smith 

et al., 2012) and to optic flow stimulation indicative of egomotion (Wall & Smith, 2008). 

Using the same optic flow stimulus, Cottereau et al. (2017) located the corresponding 

region in macaque as being area 23c (or 23cv, see Shinder and Taube (2010)) in the 

posterior cingulate gyrus. 
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Considering these numerous regions located across the brain, one obvious question is: 

Why are so there so many cortical vestibular regions distributed across the brain? One 

explanation provided by Klingner, Axer, Brodoehl, and Witte (2016) is that these regions 

are brain regions of very different functioning which use information about head 

movement as an additional information for their respective tasks. Indeed, vestibular 

regions can often be differentiated in terms of the dominance of other (mostly visual) 

senses (Smith et al., 2017). Complementary to this notion, vestibular signalling was 

suggested to contribute to a range of cognitive processes, which also requires participation 

of distributed brain areas. Recent findings indicate a role not only in spatial navigation, 

but also in memory, object recognition and bodily self-consciousness (Hitier, Besnard, & 

Smith, 2014). 

 

To summarise, cortical vestibular processing is very complex and involves many regions 

distributed across the brain, rather than one dedicated primary sensory cortex. In contrast 

to other senses, all of these regions are, at least to some extent, processing multisensory 

signals. It has been proposed that these regions participate in numerous, partially 

overlapping pathways (Hitier et al., 2014). It is not well understood how these brain 

regions are influenced by and interact with each other during different types of (or lack of) 

vestibular sensory input.  

 

 Probing the Vestibular System 

Human neuroimaging and analysis methods allow the investigation of the full human 

brain and have been developed immensely in the last years. However, human vestibular 

research is made difficult by the fact that one of the most popular human neuroimaging 

methods, magnetic resonance imaging (MRI) requires the participants to lie still in a very 

narrow scanner bore, thus restricting the type of experiments being conducted. One way 

to circumvent this problem is to study groups of individuals who experience atypical 

vestibular input or processing, or to use artificial vestibular stimulation.  

 

1.3.1 Disorders of the vestibular system 

The most common impact of any perturbation to the vestibular system is dizziness (i.e. the 

sensation of feeling unsteady or faint) or vertigo (the sensation of spinning). Vertigo is 

commonly the result of a mismatch or conflict between the sensory systems encoding 

motion, i.e. the vestibular, visual an somatosensory systems (Brandt, 2013). Clinically, 

vertigo is defined as a combination of phenomena which include perceptual, ocular motor, 

postural and autonomic symptoms (Brandt, 2013). Ocular motor symptoms include ocular 
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deviations or nystagmus (i.e. involuntary eye movements), postural symptoms include 

abnormalities in posture or gait and autonomic symptoms include nausea, vomiting and 

anxiety (Brandt, 2013). Vestibular disorders are typically associated with vertigo, which 

can have extremely debilitating effect on daily functioning (Brandt & Dieterich, 2017). 

 

One of the most obvious causes of vestibular system disorders is physical damage to the 

underlying structure. Damage can occur at any point of the vestibular processing pathway 

and can thus affect the peripheral vestibular system or the central vestibular system. The 

duration of symptoms can also be categorised into acute, episodic and chronic. The most 

frequent cause for vestibular symptoms is benign paroxysmal vertigo. This is a common 

condition of the peripheral vestibular system, where loosened otoliths move to the 

semicircular canals, thus causing episodes of strong rotatory vertigo (Brandt & Dieterich, 

2017; Furman & Cass, 1999). Once the freely moving otoliths are moved to the ampulla of 

the vestibular organs, vertigo terminates (Furman & Cass, 1999). In some cases, recovery 

of vestibular function can also occur in cases of permanent damage to the vestibular 

pathway due to the bilateral organisation of the vestibular system. In unilateral peripheral 

vestibulopathy for example, the peripheral damage on one side can be compensated by 

central structures and can thus lead to recovery of vestibular function after appropriate 

therapy (Brandt & Dieterich, 2017). Bilateral vestibulopathy on the other hand is a chronic 

condition characterised by bilateral reduction or absence of function, with very poor 

recovery rates (Brandt et al., 2010). 

 

Not all cases of episodic and chronic dizziness can be explained by structural damage 

though. In fact, one of the most common diagnoses in specialised neurological clinics is 

functional dizziness. Symptoms include chronic dizziness (i.e. feelings of unsteadiness and 

faintness) with no structural origin, thus suggesting a somatoform origin (Dieterich & 

Staab, 2017). The symptoms can be triggered by certain situations or visual stimulation 

(Dieterich & Staab, 2017). Despite the lack of physical origin, chronic dizziness does have 

an impact on behaviour and on central nervous system functioning. For example, postural 

performance is abnormal during simple standing, but normalises when a distraction task 

is presented (Querner, Krafczyk, Dieterich, & Brandt, 2000; Schniepp et al., 2014; Wuehr, 

Brandt, & Schniepp, 2017). Moreover, grey matter volume changes in distributed sets of 

brain regions (the thalamus, the prefrontal gyrus and the cerebellum, amongst others) 

were found to correlate with disease markers, suggesting neural reorganisation. Using 

fMRI task activation studies, a distributed pattern of brain activation was found in 

previous studies, suggesting differences in anterior cingulate cortex activations (Indovina 

et al., 2015; Popp et al., 2017), but also insula and hippocampus (Indovina et al., 2015). 
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1.3.2 Artificial vestibular stimulation 

A few artificial vestibular stimulation techniques exist that are very useful for furthering 

the understanding of the neural processing of vestibular information, since they allow for 

within-participant controls and testing in controlled environments. Examples of these 

techniques include caloric irrigation, vestibular evoked myogenic potentials (VEMPs) and 

galvanic vestibular stimulation. 

 

Galvanic vestibular stimulation (GVS) directly activates the vestibular nerve by means of 

electrical current. Electrodes are placed on the two mastoid processes and a weak direct 

current (typically not stronger than 5 mA (Curthoys & MacDougall, 2012)) is passed 

through the electrodes. This depolarises the vestibular primary afferents on the side on the 

cathode, while it hyperpolarises the vestibular afferent on the side of the anode (Goldberg, 

Smith, & Fernandez, 1984). The result is a strong perception of head and partial upper 

body movements towards the anode (Fitzpatrick & Day, 2004). Evidence that indeed the 

peripheral vestibular system is being stimulated comes from postural and oculomotor 

responses to GVS (Forbes et al., 2016; Nashner & Wolfson, 1974; Schneider, Glasauer, & 

Dieterich, 2002; Zink et al., 1998). 

 

The precise mechanism of GVS has been the subject of several scientific enquiries. 

Behavioural responses in humans have been inconclusive, with some studies suggesting 

that GVS preferably stimulates the otoliths at low currents (Zink et al., 1998), although 

other studies propose equal contributions of otoliths and semicircular canals (Fitzpatrick 

& Day, 2004). Recently, vestibular afferents were recorded during sinusoidal GVS in the 

behaving primate (Kwan et al., 2019). They found that both otoliths and semicircular 

canals are stimulated by GVS. Whilst there was no difference in terms of vestibular organ 

activation, Kwan et al. (2019) found that irregular afferents of both organs were more 

responsive to GVS compared to the regular afferents. Still, these afferents transferred 

equivalent levels of information to the central vestibular pathways (Kwan et al., 2019). 

Interestingly, GVS has been successfully used in treating clinical disorders such as 

vestibulopathy (Schniepp et al., 2018) and even Parkinson’s disease (Samoudi, Jivegård, 

Mulavara, & Bergquist, 2015) and stroke (Wilkinson et al., 2014). Application of GVS was 

further found to influence higher cognitive functions (for example Hilliard et al., 2019; 

Wilkinson et al., 2008). This further corroborates the notion that vestibular information 

is processed in higher-order brain regions.  

 

GVS has been frequently used in vestibular research since it provides the possibility to 

deliver a customisable, consistent and bilateral stimulus. Other types of artificial vestibular 
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stimulation also exist, but these mostly only activate portions of the vestibular organs. 

Sound induced vestibular stimulation is provided by means of clicks or short tone bursts, 

which trigger VEMPs, reflecting the activation of the sacculus (Schlindwein et al., 2008). 

Caloric vestibular stimulation is performed by injection of cold or warm water, which 

mostly activates the horizontal semicircular canals, with a weaker contribution of the 

vertical canals (Lopez, Blanke, & Mast, 2012).  

 

1.3.3 Microgravity 

In the more unusual case, perturbations to vestibular signal processing can also occur due 

to different gravitational environments, such as during spaceflight. In space, gravity is 

reduced to 10-6 of the gravity experienced on earth, a condition called microgravity. This 

leads to a substantial change in the input to the vestibular organ, but it also has a range of 

effects on general physiology. In the following, I will discuss these physiological effects of 

temporarily reduced exposure to gravity on the brain. 

 

Microgravity has wide ranging effects which may also persist after exposure. In terms of 

specific changes to the vestibular system, otolith organ function (but not semicircular canal 

function) seems to be temporarily affected by exposure to microgravity (Clément et al., 

2020; Tanaka, Nishimura, & Kawai, 2017). In particular, ocular counter-rolling, an otolith-

driven reflex, is decreased when astronauts return from a space mission of 6 months, but 

normalises after 9 days (Hallgren et al., 2016). Other temporary effects not directly related 

to vestibular functioning, but impacting general physiology included sleep deprivation 

(Barger et al., 2014) and bone and muscle loss (Tanaka et al., 2017), nausea, changes in 

spatial orientation, sensorimotor coordination and cardiovascular dynamic (Clément et 

al., 2020; Morita, Kaji, Ueta, & Abe, 2020). Notable long lasting effects of prolonged 

exposure to microgravity are visual acuity changes (Mader et al., 2011), and increased 

ventricle volume in the brain (Van Ombergen et al., 2019). Current theories suggest that 

these changes are related to circulatory changes in brain fluids induced by the lack of 

gravity. 

 

Such cephalic fluid shift has been suggested as a driving component of changes in the 

central nervous system. In healthy humans, the force of hydrostatic pressure drives 

circulation of body fluids and the body’s alignment to the gravitational field will change 

fluid circulation (Hinghofer-Szalkay, 2011). The lack of the gravitational force removes this 

pressure, thus resulting in fluid movement to the head (Lathers et al., 1989; Nelson, 

Mulugeta, & Myers, 2014). Due to this cephalic fluid shift, the resorption of the 



General Introduction 

11 

cerebrospinal fluid into the venous cranial vasculature and hence the interstitial tissue flow 

of the brain may be disturbed, causing changes across the entire brain.  

 

This system responsible for fluid exchange in the brain was termed glymphatic (glial-

lymphatic) system. It is an astrocyte-mediated cerebrospinal fluid (CSF) and interstitial 

fluid (ISF) system which clears the brain from metabolic waste (Abbott et al., 2018; Mestre, 

Mori, & Nedergaard, 2020). In the healthy organism, this is accomplished by bulk flow of 

CSF into arterial perivascular spaces (the spaces that surround small blood vessels, also 

known as Virchow-Robin spaces). Astrocytes connect to these perivascular spaces, 

promoting the fluid to flow through the neural tissue. Here, CSF mixes with IST and 

subsequently exits through venous perivascular spaces (Mestre, Kostrikov, Mehta, & 

Nedergaard, 2017). Egress pathways include the cribriform plate around the olfactory 

nerve, the cranial nerves, meninges and the spinal nerves. The specific contribution of 

these sites in humans is not known (Rasmussen, Mestre, & Nedergaard, 2018). 

Interestingly, body posture was found to influence brain glymphatic transport. In sleeping 

rats it was found that CSF – ISF exchange and metabolite clearance was higher in the 

lateral, natural sleeping position, when compared to prone or supine positioning (Lee et 

al., 2015). Whilst several physiological reasons may underlie this effect, gravity modulating 

CSF drainage may also play a role. 

 

 The Brain as a Network  

Human neuroscience research spent a number of years ascribing functions to individual 

brain regions, based on task-based fMRI to evaluate which brain regions, for each data 

point or voxel separately, exhibit increased / decreased blood-oxygen-level dependent 

(BOLD) signal changes in relation to a specific cognitive or behavioural task. Brain regions 

do not work in isolation though. Instead, they interact by means of connections, forming 

networks. The complete set of connections between the elements of the nervous system is 

also known as the connectome (Bullmore & Sporns, 2009; Sporns, Tononi, & Kötter, 

2005). The connections can be studied structurally connected by examining the 

anatomical tracts or functionally by measuring the statistical associations of brain signals. 

Using MRI, structural connectivity usually involves studying white matter tracts by means 

of diffusion weighted imaging, whilst functional connectivity is studied by means of 

statistical associations of the BOLD signal. Research on the human connectome does not 

only reveal general principles and properties of brain architecture and computation, but 

also provides means to quantify differences between patients and control groups. 
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Both model-dependent and model-free methods can be used to examine connectivity (van 

den Heuvel & Hulshoff Pol, 2010). With the model-dependent (also seed-based) approach, 

brain regions of interest (ROIs, also termed ‘seeds’) are defined a priori and examined in 

respect to their connections to other ROIs or the whole remaining brain. The advantage of 

these analyses is that they are simple to execute and can provide clear answers to simple, 

specific research questions. On the other hand, by using the model-dependent approach, 

relevant network changes in the remaining brain may be overlooked. 

 

In contrast, model-free approaches are not restricted to predefined regions but instead 

consider regions across the whole brain (see Figure 1.3). Owing to the increasing 

availability of large imaging data sets and the computational power, developments in 

whole brain network analysis have been rapid in the recent years. Currently, one of the 

most popular methods for studying networks is graph theory (Bassett & Sporns, 2017; 

Rubinov & Sporns, 2010). Here, a network is represented as a graph, which is defined as a 

set of nodes (vertices) and the links (edges) between them. A network can be described by 

means of adjacency matrices, where nodes are represented by the rows and columns, and 

the presence of edges are represented with a numerical value in the matrix elements. The 

representation of a graph in a matrix allows a range of mathematical operations and 

quantification of the network. 

 

The definition of both nodes and edges are subject to wide discussion in the field of 

network neuroscience and a wide range of methods have been discussed and developed to 

define both entities. Node definition depends on a meaningful spatial partition of brain 

regions, which has been achieved via several approaches (Eickhoff, Yeo, & Genon, 2018). 

Edge definition in functional networks, depends on reducing the contributions of non-

neuronal fluctuations in order to make the results biologically meaningful (Caballero-

Gaudes & Reynolds, 2017). 

 

Likewise, the underlying cognitive state of the participant is important. Intrinsic network 

organisation of the brain is typically determined from resting-state paradigms where no 

dedicated task is presented and participants are only required to lie in the scanner (Biswal, 

Kylen, & Hyde, 1997; van den Heuvel & Hulshoff Pol, 2010). Functional connectivity is 

then computed on the basis of spontaneous, mostly low-frequency BOLD (<0.1 Hz) signal 

fluctuations. Recently, researchers have also started studying network architecture during 

task states (Cole et al., 2014). Such task-state (also task-induced or task-derived) 

functional connectivity changes are connectivity measures derived from signal changes 
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occurring during one or several cognitive or perceptual tasks. Increasing evidence suggests 

that task-state network organisation provide more information than resting-state (Bolt, 

Nomi, Rubinov, & Uddin, 2017) or task-activations alone (Di & Biswal, 2019; Greene et al., 

2020), although the added informational value may be small in magnitude and may vary 

substantially across individuals (Cole et al., 2014; Gratton et al., 2018).  

 

 Aims of Thesis 

In summary, vestibular information is ubiquitous in our daily lives, with gravity for 

example being processed continuously. Vestibular information is conveyed to brain areas 

distributed across the cortex, however to what extent these areas interact with eachother 

and with the remaining brain is not well understood. Studying the whole brain network 

Figure 1.3 Schematic showing the computation of functional networks .  
1: A parcellation atlas is used for defining regions of interest (ROIs) (in this example the 
parcellation by Schaefer et al. (2018) is shown). 2: The atlas is used to partition the brain into 
meaningful entities from which the BOLD time series are extracted. 3: Statistical associations 
are calculated between each time series (most commonly, Pearson’s correlation is used). It is 
assumed that the strength of statistical association corresponds to a strength in functional 
connectivity. 4: A square adjacency matrix is created, where each brain region corresponds to 
one row and one column (the rows and columns for ROI 1 (blue) and ROI 2 (green) regions are 
highlighted). The elements of the matrix consist of the numerical value of the functional 
connection between the two respective regions (in this example, the Pearson’s correlation 
coefficient r). In the case of functional connectivity, the matrix is symmetrical since we cannot 
deduce the direction of the connection (i.e. we cannot say if ROI 1 is connected to ROI 2 or vice 
versa, the value of the connection will be the same in both elements of the matrix). 5: The 
matrix can also be depicted as a graph or network, with brain regions represented as nodes 
(also vertices), and the functional connection between them as links (also edges). A functional 
network is initially fully connected. 6: Only once weak connections are removed (e.g. after 
thresholding), the network will become sparse. In this example, the connection between ROI 1 
and ROI 2 survives the thresholding. Summarising brain activity in such a way allows for the 
calculation of a wide range of metrics from the network. This makes quantitative description 
and statistical comparisons possible (see Rubinov & Sporns (2010) for an introduction to 
network measures). Figure was created after Baggio et al (2015) using MRIcroGL (Rorden, 
2020), Gephi (Bastian et al., 2014) and Matlab 2019b (MathWorks Inc.).  
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can provide an insight to such interactions. In my thesis I used perturbations and 

modulations of the vestibular system as different vestibular sensory contexts to gain a 

deeper understanding into the neural underpinnings of this sense. I investigated 

perturbations on three different time scales: long-term, short-term, and medium-term. To 

study the whole brain effects of these vestibular modulations I used structural and 

functional MRI, as well as current image and network analysis methods. 

 

In terms of long-term perturbations, I investigated network changes in individuals 

suffering from  functional dizziness. As discussed in Section 1.3.1, symptoms in this chronic 

condition occur in the absence of structural damage. It is therefore possible that functional 

network changes may underlie this condition instead. Previous studies have found some, 

partially contradictory differences in functional connectivity in these patients, when 

compared to healthy participants. These studies either used a resting-state fMRI approach, 

thus not taking into account the often stimulus-dependent onset of dizziness in these 

patients (Van Ombergen et al., 2017), or used model-based approaches thus potentially 

overlooking relevant effects in the remaining brain (Popp et al., 2017). Since symptoms of 

functional dizziness in patients are often task-dependent, I investigated functional 

connectivity during episodes in which dizziness is triggered using a model free graph-

theoretical approach.  

 

In terms of short-term perturbations, a wide range of task-activation studies have used 

artificial vestibular stimulation to determine cortical areas related to vestibular processing 

(as discussed in Section 1.1.2 and Section 1.3.2). However, whole brain functional network 

effects of artificial galvanic stimulation on the are not well understood. The few studies 

conducted have not aimed at determining the general processes occurring in healthy 

participants, but instead focused on individuals with vestibular symptoms (Helmchen et 

al., 2020; Toschi et al., 2017). In order to deepen the understandings of the principle effects 

that artificial vestibular stimulation has on network architecture, I studied healthy 

participants. To delineate property changes uniquely associated with vestibular 

processing, I compared network changes during vestibular stimulation to network changes 

during non-vestibular painful stimulation. 

 

In terms of medium-term perturbations, microgravity has wide-ranging effects on brain 

physiology, particularly impacting the movement of brain fluids (as discussed in Section 

1.3.3). Therefore, I aimed at examining whether microgravity also influences size of 

perivascular spaces in space travellers. For this I also  developed an easy to use detection 

pipeline which quantifies these spaces across the whole brain.  
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Appendices  

Appendix A: Supplementary Figures 

 

  

Supplementary Figure A.1  Within-participant changes of degree centrality for 
six functional networks.   
A) Healthy controls (HC) during the static condition B) HC during the motion condition C) 
Patients (PPV) during the static condition D) PPV during the motion condition  

 

Supplementary Figure A.2 Within-participant changes of clustering coefficient 
for six functional networks.   
A) Healthy controls (HC) during the static condition B) HC during the motion condition C) 
Patients (PPV) during the static condition d) PPV during the motion condition  
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Supplementary Figure A.4. Within-participant changes of eccentricity for six 
functional networks.  
 A) Healthy controls (HC) during the static condition B) HC during the motion condition C) 
Patients (PPV) during the static condition D) PPV during the motion condition  

 

Supplementary Figure A.3 Boxplots comparing mean area under curve (AUC) for 
eccentricity (ECC) between healthy controls (HC) and patients (PPV) both in static 
and motion conditions, for each of the six functional brain networks g iven by 
Dosenbach (2010).  White crosses indicate mean values, outliers are marked with a black 
cross. A) Mean shortest eccentricity during static conditions B) Eccentricity during motion 
conditions 
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Supplementary Figure A.5 Boxplots showing eccentricity (ΔECC) across tasks (i.e. graph 
values during the static condition subtracted from motion) for six functional networks of 
the Dosenbach atlas, healthy controls (HC) and patients (PPV) . 
Values above zero indicated nodes in the respective network had a higher AUC during motion on average, 
whereas values below zero mean nodes in the network had a higher AUC value during the static condition 
on average. White cross indicates mean values, outliers are marked with a black cross.  
 

Supplementary Figure A.6 Boxplot showing how degree centrality during the static 
condition differs between groups (healthy controls (HC) and patients (PPV)) if 
calculated within the same network (CER-CER or SM-SM), to the other network 
(CER-SM / SM – CER) or the remaining brain (CER-other or SM-other.   
A) degree centrality of cerebellar and B) somatosensory networks. White cross indicates mean 
values, outliers are marked with a black cross. 
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Appendix B: Supplementary Information 

 

Analysis 1: Correcting for excessive motion 

Method: To ensure motion did not influence results, outlier scan identification was 

performed, as implemented in CONN using a conservative threshold of z-score > 3 and FD 

> 0.2 mm (with a window size of 2). The frames which exceeded these criteria were 

included in a subject-specific nuisance regressor for regressing out the signal related to 

these timepoints. This was preferred over deleting time points to avoid interpolation. 

Subsequent measures were calculated as described previously. Overall, there was little 

difference to the results. Only significant main effects and interactions will be reported.  

 

Connectivity group effects during static and motion condition: For the static condition, 

the interaction between group and network effects was significant again (Pillai’s 

trace=0.204, F(15,465) = 2.267, p=0.004), as well as the factor networks (Pillai’s 

trace=0.655, F(15, 465)=8.665, p<0.001). No other interactions and main effects were 

found. Again, three separate mixed-design ANCOVAs were performed for degree 

centrality, clustering coefficient and eccentricity during the static condition. 

  

Supplementary Figure A.7 Boxplot showing how degree centrality change (motion-static, 
ΔDC) differs between groups (healthy controls (HC) and patients (PPV)) if calculated 
within the same network (CER-CER or SM-SM), to the other network (CER-SM / SM – CER) 
or the remaining brain (CER-other or SM-other).  
A) degree centrality of cerebellar and B) somatosensory networks. White cross indicates mean values, 
outliers are marked with a black cross. 
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For degree centrality, again a significant interaction (F(5, 160)=3.370, p=0.006) as well a 

significant network effect was found (F(5,160)=16.495, p<0.001). Because of the significant 

interaction, post-hoc t-tests were performed using Tukey’s method. Degree centrality of 

cerebellar network (T(163.3)=-2.215, p=0.028) and default mode network nodes 

(T(163.3)=-2.060, p=0.041) remained significantly higher in PPV compared to HC. 

Sensorimotor remained significantly lower in PPV, when compared to HC 

(F(163.3)=2.640, p=0.009). No significant effect was found in the occipital nodes anymore 

(F(163.3)=1.737, p=0.084), suggesting that the effect in the occipital network is either not 

stable and possibly caused by excessive movement (Figure B.1A) 

 

For clustering coefficient, again a significant interaction was found (F(3.41,109.12)=3.2046, 

p=0.021, after adjusting degrees of freedom using Greenhouse Geisser estimates of 

sphericity (ε=0. 682), since Mauchly’s test indicated that the assumption of sphericity was 

violated (W(14)=0.298, p=0.001). The factor of network also remained significant 

(F(3.41,109.12)= 22.492, p<0.001). As in the main analysis, there was a significant effect of age 

Supplementary Figure B.1 Boxplots comparing degree centrality mean area under the curve 
(AUC) and clustering coefficient AUC between healthy controls (HC) and patients (PPV) both in 
static and motion, for each of the six functional brain networks given by Dosenbach (2010) after 
correcting for excessive motion.  
A) Degree centrality during static conditions B) Degree centrality during motion conditions C) Clustering 
coefficient during static conditions D) Clustering coefficient during visual motion conditions. White crosses 
indicate means, stars indicate a significant (p<0.05) group effect outliers are marked with a black cross. 

 



Network Changes in Patients with Phobic Postural Vertigo 

36 

(F(1,32)=4.370, p=0.045). Because of the significant interaction, post-hoc t-tests were 

performed using Tukey’s method to determine in which networks clustering coefficient 

significantly differed between HC and PPV. Indeed, the only significant effect was again 

found in the sensorimotor network (t(103.2)=3.669, p=0.009), with HC showing higher 

clustering coefficient in the sensorimotor network (Figure B. 2C) 

 

For eccentricity, again no significant interaction or main group effect was found during the 

static condition. 

 

During the visual motion condition, only the factor of age was found to be significant using 

MANCOVA (Pillai’s trace = 0.350, F(3,29)= 5.205, p= 0.005). No subsequent ANCOVAs 

were thus performed (Figure B. 3B, Figure B. 3D) 

 

Change of graph measures between conditions: Again the interaction of network and 

group was significant (Pillai’s trace = 0.189, F(15, 465)=2.088, p=0.010). The main effect for 

group effect also remained significant (Pillai’s trace = 0.439, F(3,29) = 7.577, p= 0.001). No 

other main effects were significant. To determine the specific effects on each graph 

measures, mixed-design ANCOVAs were performed for ΔDC, ΔCC and ΔECC. 

 

For ΔDC a significant interaction between group and network (F(5,160)=4.534, p=0.001) was 

found again. In terms of main effects, the factor of group (F(1,32) =12.700, p= 0.001) and 

network remained significant (F(5,160)=3.860, p=0.002). Subsequent t-tests using Tukey’s 

method revealed that the difference between groups remained significant for the nodes in 

the cerebellar network (t(162.89)=2.800, p= 0.006) and the nodes in the sensorimotor network 

(t(162.89)=-3.966, p=0.0001). While the cerebellar network displayed significant increased 

ΔDC in HC, the sensorimotor network displayed significant increased ΔDC in PPV (see 

Figure B.2A). 

 

For ΔCC, only a significant interaction between group and network (F(5,160)=3.969, p= 

0.002) was found. Because of the significant interaction, post-hoc t-tests were performed. 

In the sensorimotor network a significant difference of ΔCC between groups was found 

(t(171.63)=-4.469, p<0.001). The PPV group displayed a significantly increased ΔCC 

compared to HC (see Figure B.2B).  

 

For ΔECC no significant interaction or main group effect was found. 
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Analysis 2: Normalisation to random networks 

 

Method: For each participant and each threshold, adjacency matrices were randomised 

using the randmio_und function from the BCT, with a rewiring parameter of 100. 

Clustering coefficient and eccentricity were calculated for these random matrices, AUC 

was used to summarise the values. Clustering coefficient and eccentricity were normalised 

by dividing the AUC values determined from the real data by the AUC values of the 

randomised matrices. Difference values were calculated by simply subtracting normalised 

graph measures during the REST condition from the normalised graph measures during 

the TASK conditions.  

 

ANCOVAS were calculated for clustering coefficient and eccentricity separately. Group of 

participants and six functional networks were included as independent variables. Age was 

added as a covariate. 

 

Supplementary Figure B.2 Boxplots showing A) change in degree centrality (ΔDC) and B) 
clustering coefficient (ΔCC) across tasks (i.e. graph values during static subtracted from 
motion condition) for six functional networks of the Dosenbach atlas for healthy controls (HC) 
and patients (PPV) after correcting for excessive motion. 
 Values above zero indicated nodes in the respective network had an AUC value during motion on average, 
whereas values below zero mean nodes in the network had a higher AUC value on average during the static 
condition. White cross indicates mean, stars indicate a significant (p<0.05) group effect, outliers are marked 
with a black cross. 
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Connectivity group effects during static and motion condition: During the static 

condition, for clustering coefficient, a significant interaction of group and network was 

found (F(3.56, 113,76)=2.6522, p=0.043 after adjusting degrees of freedom using Greenhouse 

Geisser estimates of sphericity (ε=0.711) due to violations of the assumption of sphericity 

as determined by Mauchly’s test (W(14)=0.375, p=0.009). A main effect of network (F(3.56, 

113,76)=24.7726, p<0.001 after the same adjustments to degrees of freedom) and age 

(F(1,32)=4.158, p=0.050) was also found. Due to the significant interaction, post-hoc t-tests 

were conducted. Indeed, the clustering coefficient of the nodes in the sensorimotor 

network was significantly lower in the PPV group, when compared to HC (t(105.3)=2.829, 

p=0.006) (Figure B.3A).  

 

For eccentricity, only a significant main effect of network was found in the static condition 

(F(3.375,108)=16.060, p<0.001 after adjusting degrees of freedom using Greenhouse Geisser 

estimates of sphericity (ε=0.675) due to violations of the assumption of sphericity as 

determined by Mauchly’s test (W(14)=0.356, p= 0.003) (see Figure B.3C) 

Figure B.3 Boxplots comparing degree centrality mean area under the curve (AUC) and 
clustering coefficient AUC between healthy controls (HC) and patients (PPV) both in static and 
motion, for each of the six functional brain networks given by Dosenbach (2010) after 
normalising to random networks.  
White crosses indicate means, stars indicate a significant (p<0.05) group effect, outliers are marked with a 
black cross. A) Clustering coefficient during static conditions B) Clustering coefficient during motion 
conditions C) Eccentricity during static conditions D) Eccentricity during visual motion conditions. 
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During the motion condition, for the clustering coefficient only main effects of age 

(F(1,32)=10.686, p=0.003) and network were found (F(3.805,121.76)=18.4284 p< 0.001 after 

adjusting degrees of freedom using Greenhouse Geisser estimates of sphericity (ε=0.761) 

due to violations of the assumption of sphericity as determined by Mauchly’s test W(14)=0. 

392, p= 0.014) (see Figure B.3B).  

For eccentricity, only a significant effect of network was found in the motion condition 

(F(3.96,126.72)=18.660, p<0.001 after adjusting degrees of freedom using Greenhouse Geisser 

estimates of sphericity (ε=0.792) due to violations of the assumption of sphericity as 

determined by Mauchly’s test (W(14)=0.452, p= 0.047) (Figure B. 3D) 

 

Change of graph measures between conditions: For ΔCC, a significant interaction of 

network and group was found (F(5,160)= 3.2083, p= 0.009) as well as a significant effect of 

network (F(5,160)=3.930, p=0.002). No other significant main effects or interactions were 

found. Post-hoc t-tests again revealed a significant difference between groups in the 

sensorimotor network, with PPV showing significantly increased clustering coefficient 

compared to the HC group (t(123.38)=-3.124, p=0.002) (Figure B. 4A). 

 

In contrast to the previous results, for ΔECC a significant interaction of network and group 

was found (F(3.59,114,88)=2.357, p=0.064 after adjusting degrees of freedom using 

Greenhouse Geisser estimates of sphericity (ε=0.718) due to violations of the assumption 

of sphericity as determined by Mauchly’s test (W(14)=0.356, p= 0.003). No other 

interactions of main effects were found. Because of the significant interaction, post-hoc t-

tests were performed using Tukey’s method to determine in which networks eccentricity 

significantly differed between HC and PPV. A significant difference between groups was 

only found in the sensorimotor network, with PPV showing significantly increased 

eccentricity compared to the HC group (t(63.51)=-2.217, p=0.030). (Figure B. 4B) 
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Figure B.4 Boxplots showing A) change in clustering coefficient (ΔCC) and B) eccentricity 
(ΔECC) across tasks (i.e. graph values during static subtracted from motion condition) for six 
functional networks of the Dosenbach atlas for healthy controls (HC) and patients (PPV) after 
normalisation to random networks.  
Values above zero indicated nodes in the respective network had an AUC value during motion on average, 
whereas values below zero mean nodes in the network had a higher AUC value on average during the static 
condition. White cross indicates mean, stars indicate a significant (p<0.05) group effect, outliers are marked 
with a black cross. 
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Abstract 

Vestibular information is ubiquitous and often processed jointly with visual and 

proproceptive information. Several cortical brain regions have been associated with 

human vestibular processing, but to what extent they uniquely contribute to vestibular 

perception or whether they are mostly related to general somatosensory processing is not 

clear. Furthermore, it is not known if and how the interaction of the cortical vestibular 

network changes during vestibular stimulation. In the present study, we therefore aimed 

to characterise vestibular processing in terms of task activity and functional network 

architecture. We disentangled vestibular from general somatosensory information 

processing by analysing data from two experiments, which uniquely differed in their 

sensory target of stimulation: vestibular (GVS) and nociceptive (GNS) stimulation. 

Comparing GVS directly with GNS should reveal exclusive vestibular processes or distinct 

nociceptive processing. In the task-based analysis we confirmed several dedicated regions 

in vestibular processing, such as the parietal opercular area OP2 and the bilateral cingulate 

sulcus visual (CSv). In the conjunction analysis for detecting activated regions by both 

modalities we delineated vestibular regions associated with more general spatial and 

somatosensory processing, notably the ventral intraparietal area (VIP). We found no 

distinct regions involved exclusively in cortical nociceptive processing. Surprisingly, we 

did not find network evidence for a functional cortical reorganisation during vestibular 

stimulation. Here, we found only network changes during nociceptive stimulation. We 

hypothesise that vestibular stimulation is not sufficient to change synchronisation of brain 

regions. This may also be reflected by the fact that vestibular processing mostly occurs 

subconsciously. 
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 Introduction 

The vestibular system monitors active and passive head movements in all translational and 

rotational directions while at the same time sensing gravity. The interaction of human 

brain areas that compute this information from vestibular input is still not fully 

understood. Several notable aspects about the vestibular sense contribute to the 

complexity of human vestibular research. Under normal circumstances, vestibular 

information is accompanied by separate congruent sensory information such as vision or 

proprioception, and vestibular processing does not seem to involve conscious awareness 

in healthy subjects. Probing vestibular properties of brain areas whilst controlling for the 

confounding effects of other sensations therefore represents a hurdle in the efforts to 

understand the neural underpinnings of the vestibular system. These efforts are 

additionally complicated by the immobility necessitated by most non-invasive human 

brain activity measurements, such as functional magnetic resonance imaging. Therefore, 

our understanding of the vestibular system in humans is still primarily based on single-

unit recordings during real movement in non-human primates.  

These electrophysiological recordings have implicated a distributed set of cortical brain 

regions for processing different types of vestibular information. The posterior 

thalamocortical pathway appears to process self-motion perception (Cullen & Taube, 

2017). Vestibular information is transmitted from the posterior thalamic vestibular nuclei 

to the somatosensory cortex and to the parieto-insular vestibular cortex (PIVC). The PIVC 

is considered by some to be the primary vestibular cortex because of the large amount of 

neurons that respond to vestibular input (Guldin & Grüsser, 1998) even in the absence of 

visual input in darkness (Chen, DeAngelis, & Angelaki, 2010). In the macaque, PIVC is 

located in the lateral sulcus adjacent to the insula. Another region in the parietal lobe 

targeted by the posterior thalamocortical vestibular pathway is the ventral intraparietal 

cortex (VIP). Neurons in this region are important for visual-vestibular integration and 

representation of object location in near extra-personal space (Bremmer, Schlack, 

Kaminiarz, & Hoffmann, 2013; Cullen, 2019; A. T. Smith, Greenlee, DeAngelis, & Angelaki, 

2017). Neurons the medial superior temporal area (MST) also integrate visual-vestibular 

information, but with more weight given to the visual input (A. T. Smith, Greenlee, et al., 

2017). Human equivalents of these areas have been found using functional magnetic 

resonance (fMRI) during artificial vestibular stimulation. These include caloric irrigation, 

in which one ear is irrigated with warm or cold water (Lopez, Blanke, & Mast, 2012), and 

galvanic vestibular stimulation (GVS), where electrodes are attached to the mastoid and 

small electrical currents stimulate the primary vestibular afferents (Kwan, Forbes, 
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Mitchell, Blouin, & Cullen, 2019). Both result in a strong perception of being moved, but 

GVS is more consistent, bilateral and more feasible experimentally, which has made it a 

more common stimulation method in human experiments.  

The parietal opercular area OP2 was consistently activated in multiple fMRI experiments 

using vestibular stimulation suggesting that it is the human homologue of PIVC (zu 

Eulenburg, Caspers, Roski, & Eickhoff, 2012). Studies from human VIP, located along the 

intraparietal sulcus, have been inconclusive as to the convergence of multisensory and 

vestibular information in this area, like that seen in the macaque (A. T. Smith, Greenlee, 

et al., 2017). The VIP responds to visual stimulation consistent with egomotion (Wall & 

Smith, 2008), but does not respond strongly to GVS (A. T. Smith, Wall, & Thilo, 2012). The 

human MST located in lateral occipital cortex, is not very selective for egomotion (Wall & 

Smith, 2008), but is activated by GVS, even when controlling for the somatosensory 

components of the stimulation (A. T. Smith et al., 2012).  

In addition to human vestibular brain regions with non-human primate homologues, a 

brain region was found to respond to vestibular stimulation in humans. The cingulate 

sulcus visual area (CSv), located in the posterior part of the mid-cingulate sulcus responds 

to visual egomotion stimuli (Wall & Smith, 2008) as well as to GVS (A. T. Smith et al., 

2012). Evidence from both structural and functional connectivity suggest that it is 

connected with VIP and the parietal operculum (A. T. Smith, Beer, Furlan, and Mars 

(2017)). A non-human primate homolog to the human CSv has only recently been 

suggested to correspond to area 23c in the macaque (Cottereau et al., 2017). A discussion 

of other cortical and subcortical regions that process aspects of vestibular information in 

primates can be found in a number of excellent reviews (Cullen, 2019; Hitier, Besnard, & 

Smith, 2014; A. T. Smith, Greenlee, et al., 2017). 

Although galvanic vestibular stimulation is still the most successful and widely used form 

of artificial vestibular stimulation, it has a few pitfalls that have not always been sufficiently 

addressed in neuroimaging studies. GVS over the mastoid bone is not an exclusive 

vestibular stimulation paradigm; it can also result in a tickling sensation underneath the 

cathode and induce the percept of a metallic taste via arousal of the chorda tympani (Lobel, 

Kleine, Bihan, Leroy-Willig, & Berthoz, 1998; A. T. Smith et al., 2012; Stephan et al., 2005). 

Using larger electrodes can reduce the tactile sensation but it does not eliminate it (Lobel 

et al., 1998). This is particularly lamentable as the regions of interest for vestibular 

research are per definition multi-sensory and also receive somatosensory input. Another 

difficulty common to most human neuroimaging studies is the choice of an appropriate 

baseline. Ambiguous baselines, such as a general “rest period” can reduce or change the 
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sign of task-based BOLD signal change, due to the cognitive activity during the baseline 

condition (Stark & Squire, 2001). Alternative comparisons involve performing an 

additional non-vestibular galvanic stimulation task to control for somatosensory 

responses (A. T. Smith et al., 2012).  

Additional important information can be gained from investigating the coordination of the 

BOLD signal across the brain during artificial vestibular stimulation. Such task-state 

functional connectivity provides information about regional interactions during tasks and 

reconfigurations of functional networks (Gonzalez-Castillo & Bandettini, 2018) and does 

not depend on the choice of baseline. Hence, the aim of the following study was two-fold: 

1) to determine the brain areas uniquely associated with vestibular stimulation, while 

minimising and accounting for the confounding effect of salient somatosensation from the 

scalp and 2) to investigate changes in the network architecture using task-state functional 

connectivity of the entire cortical network during stimulation uniquely associated with 

vestibular perception. 

To achieve this, we compared galvanic vestibular (GVS) to galvanic nociceptive stimulation 

(GNS) using an identical setup and stimulation protocol in two experiments during 

functional magnetic resonance imaging (fMRI). We compared task activations and 

functional network architecture between GVS and GNS. For task activation results, we 

hypothesized that previously described vestibular regions would be more active during 

GVS than GNS, and that the insular cortex would show common activity across both 

experiments. To our knowledge, whole-brain functional network changes during 

vestibular stimulation were not investigated so far, we thus followed a hypothesis-free 

approach. Importantly, we corrected the fMRI signal for activation-induced connectivity 

estimate inflation (Cole et al., 2019). We first investigated all effects within-subject on a 

group of subjects that participated in both experiments, and then confirmed our results on 

a larger between-subject cohort analysis. 

 Methods 

3.2.1 Participants 

Participants underwent one or both of two separate GVS fMRI experiments with either 

bilateral vestibular stimulation (GVS), or with galvanic nociceptive stimulation (GNS). 

Participants were recruited via campus-based advertisement. The inclusion criteria were 

general and neuro-otological health for both experiments. Left-handed participants were 

excluded as defined by a score below +60 for right-sided dominance using the Edinburgh 

handedness assessment. Participants gave their informed consent and were monetarily 

compensated for their participation. Ethical approval was given by the local ethical board 
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of the University Hospital of Ludwig-Maximilians-Universität München in accordance 

with the 2008 revision of the Declaration of Helsinki. 

 

Overall, 26 (thirteen female, mean age 28.6 years, age range 19-44) participants consented 

and completed the GNS experiment, 80 participants completed the GVS experiment. For 

the between-subject analysis, all these participants were preprocessed and analysed. For 

the within-subject analysis, data from the subset of eighteen participants who completed 

both experiments was selected. Due to insufficient data quality in either of the two 

experiments for the quality criteria for functional connectivity analysis (see Section 

3.2.5.2) three participants were excluded from all the within-participant data analyses. 

Hence, 15 participants remained for the final within-subject cohort (eight female, mean 

age 27.1 years, age range 19-44).  

 

3.2.2 Procedure & Design 

For both experiments, carbon electrodes were attached on the mastoid bone of the 

participants lateral to the hair line before entering the scanner. For the unilateral GNS 

experiment, one electrode was placed on the mastoid, and one two centimeters inferior to 

it on the ipsilateral neck. The GNS experiment was repeated in separate sessions for each 

side of the head. This electrode positioning eliminates vestibular stimulation, while 

sustaining the galvanic-induced somatosensory sensations. For the GVS experiment, both 

electrodes were placed on the mastoid. Forty-five Minutes before the GVS experiment, 3g 

lidocaine creme anaesthetic crème (Emla, Aspen Germany GmbH, Bad Oldesloe, 

Germany) was applied to the skin above the mastoid process behind each ear. All 

participants received ear plugs and a gel capsule was attached on their right temple to 

ensure correct identification of side after preprocessing. During the experiment, 

participants were lying in the scanner in supine position, the head carefully fixed using an 

air-based cushion (Crania adult cap from Pearl Technology AG, Schlieren, Switzerland) to 

minimise head motion during the experiments).  

 

Both experiments included (in the given order) a head scout sequence, a resting-state 

session with eyes open (roughly 7 minutes), a structural T1-weighed acquisition and the 

stimulation session(s), each lasting almost 12 minutes (see Section 3.2.4 for the image 

acquisition parameters). The GVS experiment consisted of one stimulation session, the 

GNS experiment consisted of two stimulation sessions (GNS on left side and GNS on right 

side, conditions were pseudo-randomised). The instructions for all participants were the 

same for both the GVS and the GNS experiment: to passively experience the stimulation, 

but to keep their eyes opened and to look straight ahead at a white cross on a laminated 
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black board on the scanner tunnel ceiling. In addition to neuroimaging, high-resolution 

video-oculography was performed for during the stimulation sessions, and a debriefing 

immediately following the stimulation sessions with scale pain ratings (reaching from 1 to 

10) and a debriefing with respect to the trajectories and body movements during vestibular 

stimulation. 

 

3.2.3 Stimulation  

Stimulation was performed using custom-made stimulator as detailed in Stephan et al. 

(2005). The stimulation conditions were conducted in a block-design approach and 

consisted of identical stimulation protocols. Three types of stimulations were delivered for 

seven seconds: 1) stimulation with a sinusoidal waveform of 0.875 Hz 2) stimulation with 

a step waveform (1 second upward, 4 second plateau and 2 second down), with the current 

going from cathode to anode 3) stimulation with a step waveform with the current going 

from the anode to the cathode, resulting in a sway to the opposite side. The GVS stimulus 

was delivered with 3mA, the strength of the GNS stimulus was adjusted based upon the 

participants’ individual pain thresholds between 2.5 mA and 4.5 mA (mean stimulation 

strength across participants and sessions was 4mA). The stimulation strength here was 

adjusted by stepwise increase of the stimulation according to a pain rating or feedback 

from participants. The rest period between simulations was variable and lasted between 

9.1 and 16.1 seconds. 

 

3.2.4 MR acquisition 

Data was collected with a 3 Tesla Siemens Magnetom Skyra scanner using a 64-channel 

head/neck coil. A T1 structural image was acquired using a MPRAGE Grappa sequence 

(TR=2060 ms, TE=2.17 ms, FA= 12°, voxel size: 0.8 mm isotropic, 256 slices). The rs-fMRI 

and stimulation conditions were acquired using a GE-EPI sequence (TR= 700ms, 

TE=33ms, FA=45°, multi-band factor = 6 with interleaved multi-band slice package order, 

voxel size = 2.5 mm isotropic, 54 slices, prescan normalised) 

 

3.2.5 Preprocessing 

After data quality control assessment via MRIQC (Oscar Esteban et al., 2017) to detect 

banding artefacts from multi-band imaging and excessive head movements, the functional 

imaging preprocessing differed for the two types of analyses performed.  

 

3.2.5.1 Task-activation (GLM) preprocessing  

Preprocessing for task-activation was performed predominantly in SPM12 (7487). 

Functional images were field-map corrected for distortions, realigned to the first image of 
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each session and normalised to MNI-space with DARTEL and geodesic shooting including 

minimal smoothing (4mm). The first 13 images (10 seconds) of each session were removed 

to account for T1-equilibration effects that go beyond the initial dummy scans removed by 

Siemens for fast fMRI protocols. 

 

3.2.5.2 Functional connectivity preprocessing 

Preprocessing for functional connectivity analysis was performed using fMRIPprep 1.2.5 

(O. Esteban et al., 2019), based on Nipype 1.1.6 (Gorgolewski et al., 2011). T1 images were 

bias field corrected and skull stripped. Spatial normalisation was performed to the ICBM 

152 Nonlinear Asymmetrical template version 2009c (Fonov, Evans, McKinstry, Almli, & 

Collins, 2009) using nonlinear registration (see specifics in the appendix) and brain tissue 

was segmented into cerebrospinal fluid, white matter and grey matter. BOLD images were 

registered to the normalised T1 image . Head motions parameters were estimated with six 

rotation and translation parameters. No slice timing correction was performed. BOLD 

times-series were resampled, corrected for head-motion and susceptibility distortions, and 

normalised to MNI152NLin2009cAsym space. Framewise displacement (FD) and DVARS 

were calculated and three region-wise global signals were extracted within the CSF, the 

WM, and the whole-brain masks. For detailed methods, see Appendix.  

 

Fmriprep and MRIQC summary outputs were also used for quality control. Because 

functional connectivity data are particularly susceptible for motion, we used a strict 

inclusion criterion of a mean framewise displacement of FD > 0.2 as an output in MRQC 

in any run performed, or BOLD signal extinction in cortical brain areas after fmriprep 

preprocessing. In the GVS group, five participants were excluded according to these 

criteria. In the GNS group, one participant was excluded. For the within-group 

comparison, this resulted in a dataset of fifteen participants who participated in both 

experiments. 

 

For further signal extraction and correction, CONN 18.b was used (Whitfield-Gabrieli & 

Nieto-Castanon, 2012). Extraction was performed separately for the GVS and GNS data, 

however the same parameters were used. The reoriented and normalised functional data 

were used for signal extraction from 100 ROIs (7 Network parcellation), as defined by 

Schaefer et al. (2017). Data were despiked, detrended and filtered with a band-pass filter 

of 0.008-1 Hz to obtain a signal in the standard frequency range used for resting-state 

analysis. After filtering, regression was performed. For the stimulation sessions, we used 

a finite impulse response regressor to control for the influence of the mean event responses 

on functional connectivity values, as suggested by Cole et al. (2019). Further regressors 
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(for all sessions) included motion (six dimensions), CSF and WM signal as determined by 

fmriprep (raw signal as well as first-order derivative). High motion frames were also 

accounted for by creating a scrubbing regressor, which included all frames (including the 

directly neighbouring frames) with a framewise displacement above 0.9 mm or BOLD 

signal changes above five standard deviations. Pearson correlation was calculated for the 

extracted and denoised signals and adjacency matrices were created for each participant 

and each condition. This means that each participant contributed to the analysis with five 

adjacency matrices in total: two from the GVS experiments (resting-state and GVS 

stimulation) and three from the GNS experiment (resting state, GNS stimulation left and 

GNS stimulation right). All further analysis steps were based on these correlation matrices. 

 

3.2.6 Analysis  

We evaluated the mean activation from both the left and the right GNS experiments so that 

the activity was not lateralized – for readability, this averaged condition will be referred to 

as mGNS.  

 

3.2.6.1 General Linear Model (GLM) Analysis 

To determine the task effects of GVS and GNS stimulation, SPM12 Version 7487 

(https://www.fil.ion.ucl.ac.uk/spm/) and the SPM toolbox TFCE (r201 from 2020-04-21) 

in Matlab R2018a (9.4.0.949201 Update 6, MathWorks Inc., Natick, Massachusetts) was 

used to perform the GLM analysis. TFCE was used because it allows greater sensitivity 

compared to cluster-based thresholding whilst robustly controlling for false positives (S. 

M. Smith & Nichols, 2009). On the first level, smoothed and normalised data from the 

stimulation conditions were included. Six motion parameters were included as regressors. 

Three conditions were modelled: sinus, ramp exciting the left side and ramps exciting the 

left side. Sinus stimulations were modelled as blocks with a duration of 9.5 TRs, ramps 

with a duration of 7 TRs. Although both stimulation patterns were modelled, the ramp 

stimulation led to more consistent activity patterns, so we used the ramp stimulation for 

the group-level analyses. To analyse differences in activations during ramp stimulations in 

general, we defined the contrast to including the main effects for ramps left and right.  

In the group analyses a one-way Analysis of Variance (ANOVA) was used for the within-

participant group-level design (n=15). The contrast images for the ramp stimuli of 1) the 

GVS, 2) the GNS right and 3) the GNS left conditions were included in the analysis. For 

the between participant design, a t-test was performed between the averaged contrast 

images for the GNS conditions (mGNS). In both designs, the contrasts GVS > mGNS and 

mGNS > GVS were statistically tested. Furthermore, we conducted a conjunction analysis 

to test for areas significantly activated by both mGSN and GVS. Statistical significance was 
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determined using TFCE, with the default parameters after 10000 permutations using a 

threshold of p<0.05 corrected for multiple comparisons via false discovery rate (FDR). 

Regions were determined using the Juelich Histology Atlas, cerebellar atlases or the 

Harvard-Oxford Cortical Structure Atlas (if others did not show any result), as 

implemented in FSLeyes (McCarthy, 2020). Visualisations were also made in FSLeyes 

using the MNI152 template with an isotropic resolution of 1mm. 

 

3.2.6.2 Functional network analysis 

We determined general whole brain network changes associated with vestibular 

stimulation using a within-participant design. For this, we made use of the stimulation 

sessions (GVS and GNS) that were acquired in each of the experiments as well as the 

resting-state sessions from the two different experiments. By comparing the resting-state 

sessions from the different experiments (but from the same participant) we wanted to 

determine effects merely related to the different experimental sessions. In other words, 

considering that resting-state sessions were from the same participants, no changes in 

network architecture were expected there. 

 

We performed two types of functional network analyses. The first analysis was performed 

using network-based statistics (NBS), which focuses on differences in individual 

connections within the network. The second analysis was focused on differences in 

modularity of the network, i.e. whether functionally related regions (i.e. groups of nodes) 

maintain or change their affiliation during different conditions.  

 

Changes in network connectivity: we first wanted to test whether connectivity changed at 

the level of graph connections. For this, the NBS toolbox by Zalesky, Fornito, and Bullmore 

(2010) was used to determine changes at the level of graph connections. In NBS, statistical 

tests are performed at every connection – only connections surpassing a primary threshold 

are further used to identify topological clusters. Considering the arbitrary nature of 

selecting the primary threshold, we used a range of primary thresholds (from 2-3.5 in steps 

of 0.3). For each component a FWER-corrected p value is determined with permutation 

testing at 10 000 permutations using the method of Freedman and Lane (1983). We only 

considered a component to be significant, if the p-value was below 0.1 consistently across 

all primary thresholds tested. Both component extent and component intensity were 

investigated (weak effects that include many connections tend to become significant with 

component extent, whereas testing for component intensity is better for detecting strong, 

focal connections).  
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Changes in network modularity: we wanted to determine how nodes differ in terms of 

their functional network participation during the GVS and the GNS sessions, i.e. whether 

nodes interacted with the same nodes throughout the conditions or whether they changed 

in terms of their interactions. For this we conducted a consensus modularity analysis as 

described in Castrillon et al. (2020); & Dwyer et al. (2014) using custom made Matlab and 

R scripts (4.0.2 within RStudio 1.3.1056). The analysis was only marginally modified from 

Castrillon et al. (2020). For each participant in each of the four conditions, classification 

was performed using the Louvain algorithm with a gamma of 1.3 (i.e. larger than the 

default value of 1 to detect smaller modules) and no pre-defined module affiliation. The 

parameter for consensus modularity analysis was left at tau = 0.4 (Castrillon et al., 2020; 

Lancichinetti & Fortunato, 2012). The result of this analysis was the classification 

consistency (z) and diversity (h) for each node in each of the four conditions (i.e. both 

resting-state sessions and both stimulation sessions (GVS and GNS). Classification 

consistency was based on the within-module degree z-score (a within-module version of 

degree centrality (Rubinov & Sporns, 2010)), classification diversity was based on 

participation coefficient, a measure of diversity of intermodular connections of individual 

nodes. Functions from the Brain Connectivity Toolbox (Bullmore & Sporns, 2009; 

Rubinov & Sporns, 2010) were used to calculate these graph measures. To determine 

significant differences in classification consistency and diversity between the four 

conditions, Kruskal-Wallis tests were performed. 

 Results 

3.3.1 Behavioural results 

The median pain rating given by the participants during the GNS condition was 4 (IQR = 

2.25). During the GVS condition; participants expectedly reported egomotion. However, 

also during GNS eleven out of fifteen participants reported light to modest swinging 

motion during the sinusoidal stimulation. We therefore decided to focus our analysis on 

the ramp stimulation only to avoid potential vestibular side effects of the unilateral 

mastoid stimulation during GNS. 

 

3.3.2 Activity changes related to vestibular stimulation  

The main results for task-based activity come from the within-subject GLM analysis and 

are therefore presented first. The larger between-subject cohort is then presented as a 

confirmatory analysis. Significant positive blood oxygen level-dependent (BOLD) signal 

activity was found during GVS compared to mGNS (Figure 3.1, Table 3.1) and in the 

conjunction analysis (positive activity during GVS & mGNS) (Figure 3.2, Table 3.2). The 

mGNS conditions did not show any significantly active voxels compared to GVS. 
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GVS > mGNS: During GVS, the cerebellum showed unique activation patterns in the 

nodulus (Vermis X). In the primary somatosensory cortex, bilateral BA3b was selectively 

more active during GVS. Portions of the left secondary somatosensory cortex also showed 

an increased signal, covering OP1 and OP2, the latter considered as the putative human 

vestibular cortex. In the parietal lobe, bilateral inferior parietal lobule displayed 

significantly higher signal than during GNS with peak activation in subregion PF. Left 

posterior supramarginal gyrus showed significantly stronger signal in the GVS experiment 

only. A large cluster covering big parts of the occipital cortex was found to have a 

significant stronger BOLD response during GVS stimulation. This cluster extends over V5 

into temporal areas which have been previously suggested to contain motion area MT and 

MST. In the frontal lobe, bilateral cingulate sulcus visual (CSV) areas (premotor cortex 

areas BA6) were activated only in the GVS sessions. This region has been shown to be 

selectively process either visual or vestibular cues of self-motion and may important in 

guiding locomotion (Caspers et al., 2012). In the inferior frontal gyrus, bilateral Brodmann 

areas (BA) 44 (pars opercularis) and 45 (pars triangularis) were active in both 

experiments, with a significant stronger activation during GVS in the left hemisphere. 

Furthermore, right primary motor cortex BA4p was significantly more active in the GVS 

session.  

Conjunction: GVS and mGNS both activated a bigger extent of the lateral cerebellum, only 

small portions of the central cerebellum (Vermix IX) showed significant signal increase in 

both sessions. The right putamen (part of the basal ganglia and involved in motion control) 

had an increased signal in both sessions. In the primary somatosensory cortex, right BA2 

was jointly activated in both GVS and GNS. In the secondary somatosensory cortex, the 

left parietal operculum OP4 and right parietal operculum OP3 (approximately 

corresponding to BA43) was activated in both tasks, areas corresponding to the 

somatosensensory field around ears. Joint activations were detected in the parietal 

lobules. Left anterior intra-parietal sulcus (subregions hlp1 and hlp3) are notable since 

they also covered the presumed vestibular region VIP (ventral intraparietal area). Large 

portions of the right superior parietal lobule and also of the bilateral inferior parietal 

lobules responded in both experiments, with peaks identified in subregions PFt and PFop, 

and extending over region PFcm. Increased signal in the bilateral insular cortex regions 

were only found in the conjunction analysis of GVS and GNS. Regions consisted mostly of 

dysgranular areas in the midinsular/posterior insular cortex (Kurth et al., 2009), which 

are thought to process and mediate multisensory information (Benarroch, 2019, Uddin 

(2015)).  
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Between-subject analysis: the results were largely confirmed by the larger between-

participant analysis. Overall, TFCE clusters were more extensive in the between 

participant analysis for both comparisons, GVS > GNS (see Supplementary Table 1 for all 

significant clusters) and the conjunction analysis (see Supplementary Table 2 for all 

significant clusters). The group analysis did not reveal any meaningful significant clusters 

during mGNS, when compared to GVS.  

 

The additional clusters of activity found in the between-participant analysis for vestibular 

stimulation were in the left premotor cortex, with the cluster extending to the inferior 

frontal gyrus (BA44 and 45) and primary somatosensory area BA3. The left cerebellar 

cluster was rather located in area VIIIb, and not in Crus I. In the conjunction analysis, 

portions of the premotor cortex (BA6) were additionally activated, but these were located 

closer to the cingulate gyrus than in the GVS condition (and not on the lateral portions of 

the cortex). Small additional clusters in the occipital cortex were found in the between-

subject design. 
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Figure 3.1 Regions with a significantly stronger response to vestibular stimulation (GVS) than 
to nociceptive stimulation (GNS).  
Three slices are depicted in all planes, centered over the cerebellum (top row), the somatosensory cortex 
(middle row) and insular cortex and ventral visual areas (bottom row). Regions were determined using TFCE 
with an uncorrected threshold of p<0.001. 1:Crus I; 2:Crus II; 3:Vermis VI; 4:Vermis VIIb; 5:Vermis IX; 
6:Vermis X; 7:Primary somatosensory cortex Ba3a; 8:Secondary somatosensory cortex OP1; 9:OP2 10:OP3 
11:OP4; 12:Anterior intra-parietal sulcus / VIP; 13:Inferior parietal lobule; 14:Superior parietal lobule; 
15:Supramarginal gyrus; 16:Insula; 17:Premotor cortex BA6 / CSV; 18:Broca’s Area BA44; 19:Broca’s area 
BA45, 20:Motor cortex Ba4a, 21:Temporal occipital fusiform gyrus; 22:MST/ V5, 23:V4; 24:V2; 25:V1 
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Brain region 
Cluster 
size 

TFCE Z Coordinates Name of region 

    x y z   

Cerebellum 

110 2216.22 3.16 -39 -52 -35 L Crus I 

39 1758.27 3.35 -1 -49 -31 Vermis X 

317 2632.08 3.24 1 -53 -39 Vermis IX 

Primary 
Somatosensory 
cortex 

941 2827.95 3.19 -23 -36 68 
L Primary somatosens. 
cortex BA3b 

 2739.38 3.54 -26 -36 59 
L Primary somatosens. 
cortex BA3b 

 2679.88 3.19 -35 -34 53 
L Primary somatosens. 
cortex BA3b 

129 2637.74 3.12 42 -11 48 
R Primary somatosens. 
cortex BA3b 

Secondary 
Somatosensory 
cortex 

22 1584.96 3.16 -36 -31 23 
L Secondary somatosens. 
cortex, Parietal operculum 
OP1/OP 2 

Parietal lobe 

204 1643.44 3.12 -62 -45 12 
L Supramarginal gyrus, 
(posterior) 

 1555.04 3.16 -51 -43 11 
L Supramarginal gyrus 
(posterior) 

47 2561.32 3.12 56 -39 40 R Inferior parietal lobule PF 
 1767.52 3.16 63 -36 43 R Inferior parietal lobule PF 

24 2545.72 3.12 59 -30 32 R Inferior parietal lobule PF 

Frontal lobe 

2385 3446.58 3.54 41 3 35 R Broca’s area ba44 
 2888.17 3.54 48 2 46 R Premotor cortex BA6 
 2738.81 3.54 36 11 25 R Broca’s BA44 

738 3053.85 3.29 25 -9 51 R Premotor cortex BA6 
 2792.57 3.29 31 -4 44 R Premotor cortex BA6 
 2541.2 3.24 23 0 50 R Premotor cortex BA6 

56 2479.55 3.29 34 -16 40 
R Primary motor cortex 
BA4p 

30 2573.19 3.12 29 -32 64 
R Primary motor cortex 
BA4p 

26 2021.33 3.16 15 4 58 R Premotor cortex BA6 

Occipital cortex 

140236 12045.23 3.72 -14 -73 26 L Superior lobule 7A 
 11409.36 3.72 21 -75 37 R Occipital cortex 
 11213.52 3.72 11 -84 27 R Visual cortex v2 

77 2164.35 3.19 -12 -87 -8 L Visual cortex V3V 

17 2342.32 3.35 9 -96 16 R Visual cortex V2 

16 2340.44 3.35 -41 -66 -15 L Occipital fusiform gyrus 

35 2396.4 3.16 42 -40 -22 R Occipital fusiform cortex 
        

 

  

Table 3.1 Peak activations for contrast GVS > mGNS using TFCE. Only clusters in grey matter with a 
minimum of 10 voxels reported. 
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Figure 3.2 Regions responding to both vestibular stimulation (GVS) and nociceptive 
stimulation (GNS) (within-subject design).  
Insular and frontal regions are active during both stimulation conditions. Three slices are depicted in all 
planes, centered over the cerebellum (top row), the somatosensory cortex (middle row) and insular cortex 
and ventral visual areas (bottom row) (uncorrected threshold p<0.001). 1:Crus I; 2:Crus II; 3:Vermis VI; 
4:Vermis VIIb; 5:Vermis IX; 6:Vermis X; 7:Primary somatosensory cortex Ba3a; 8:Secondary 
somatosensory cortex OP1; 9:OP2 10:OP3 11:OP4; 12:Anterior intra-parietal sulcus / VIP; 13:Inferior 
parietal lobule; 14:Superior parietal lobule; 15:Supramarginal gyrus; 16:Insula; 17:Premotor cortex 
BA6/CSV; 18:Broca’s Area BA44; 19:Broca’s area BA45; 26:frontal pole 
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Brain region 
Cluster 
size 

Z Coordinates Name of region 

    x y z   

Cerebellum 

6313 5.91 -12 -74 -29 L Crus I 
 5.47 -22 -73 -45 L Crus I 

  5.32 -13 -73 -50 L Crus I 

84 3.58 -35 -73 -25 L Crus I 

  3.25 -39 -66 -29 L Crus I  

11 3.25 -39 -62 -53 L Vermis VIIb 

11 3.32 -38 -46 -48 L Vermis VIIb 

7 3.31 37 -70 -23 R Crus I 

11 3.18 9 -75 -31 R Crus II 

13 3.38 5 -79 -42 R Crus II 

138 3.7 21 -65 -28 R Vermis VI 

  3.6 31 -64 -24 R Vermis VI 

1940 4.74 8 -74 -46 R Vermis VIIb 
 4.45 23 -66 -47 R Vermis VIIIb 

  4.18 18 -74 -50 R Vermis VIIb 

15 3.62 -3 -53 -34 L Vermis IX 

Striatum  
70 3.84 17 9 0 R Putamen 

26 3.59 22 5 -7 R Putamen 

Primary Somatosensory 
cortices 

152 3.8 45 -38 56 R Primary Somatosens. cortex BA2 

Secondary Somatosensory 
Cortices 

15263 6.64 42 -2 -4 
R Secondary somatosens. cortex / 
Parietal operculum OP3 

 6.06 53 -23 19 
R Secondary somatosens. cortex / 
parietal operculum OP1 

  5.79 61 -18 26 R Inferior parietal lobule PFop/PFt 

Parietal lobe regions 

76 3.35 -36 -51 47 L Anterior intra-parietal sulcus hlP1 

10 3.27 -29 -59 46 L Anterior intra-parietal sulcus hlp3 

36 3.52 -49 -22 36 L Inferior parietal lobule PFt 

12 3.4 58 -25 44 R Inferior parietal lobule PFt 

64 3.6 7 -72 48 R Superior parietal lobule 7M 

Insular cortex 

12068 6.24 -39 -4 -5 L Insula (Id1) 
 5.73 -59 -21 23 L Inferior parietal lobule PFop 

  5.67 -56 -10 10 
L Secondary somatosens. ctx. / 
Parietal operculum OP4 

15 3.58 38 -10 -5 R Insula Id1 

Temporal cortex 11 3.46 -46 -36 -19 L Inferior temporal gyrus (posterior) 

Frontal lobe 

239 4.3 -32 24 7 L Broca's area BA45 

61 3.96 -60 8 29 L Premotor cortex BA6 

161 3.83 -53 9 16 L Broca's Area BA44 

141 3.77 -36 35 17 L Broca's Area BA45 

74 3.67 -44 45 15 L Broca's Area BA45 

1152 4.88 43 42 7 R Frontal Pole 

59 4.2 60 8 31 R Broca's area BA44 

413 4.13 45 7 36 R Broca's area BA44 

  3.47 41 7 27 R Broca's area BA44 

284 4.09 43 31 23 R Broca's area BA45 

29 3.37 38 30 17 R Broca's Area BA45 

26 3.36 54 11 36 R Broca's Area BA44 

10 3.27 4 25 39 R Paracingulate gyrus 

Occipital lobe 20 3.46 15 -78 -20 R V1 / BA17 

  

Table 3.2 Peak activations for the conjuction analysis GVS & mGNS (p<0.001 uncorrected). Only clusters 
in grey matter with a minimum of 10 voxels reported. 
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3.3.3 Functional network changes related to vestibular stimulation  

We analysed functional connectivity differences within participants to determine a set of 

nodes (=component) with changes in functional connectivity associated with vestibular 

stimulation. For this, we made use of the stimulation sessions (GVS and GNS) that were 

acquired in each of the experiments as well as the resting-state sessions from the two 

different experiments. By comparing the resting-state sessions from the different 

experiments (but from the same participant) we could disentangle effects merely related 

to the different session.  

 

3.3.3.1 Changes in network connectivity 

To determine the connections which are associated with the change in experimental 

condition, the networks during GVS, GNS and rest were tested with network-based 

statistics. Seven primary thresholds were used for the NBS analysis. We only considered 

the contrast to be significant if the overall probability value was consistently below 0.1 

across all thresholds tested. We tested for differences between the two stimulation 

datasets, the two rest datasets, and each stimulation dataset with its respective resting-

state dataset. In each case, both extent and intensity were examined (see 3.2 Methods). A 

summary of what comparisons are significant can be found in Table 3.3. 

 

In the comparison between GVS and GNS stimulation, we consistently identified a 

significant component associated with experimental condition. Specifically, we found that 

vestibular stimulation was associated with a significant decrease of connectivity in a 

number of nodes located in regions which were found to be associated with GVS in the 

task-based analysis (Figure 3.3). Nodes were located both in regions uniquely activated by 

GVS (also including OP2 and CSV) as well as regions conjointly activated by both GVS and 

GNS. No other comparison resulted in significantly different components when testing for 

significant extent. The results were confirmed when testing for intensity instead of extent. 

 

Importantly, there were no differences found between the two rs-fMRI sessions, 

confirming that the two imaging experiments did not change connections of the network. 

Session effects were thus ruled out. When testing for significant intensity, additional 

significant differences were found between GNS and its corresponding resting-state 

session. As we were not interested in the GNS condition per se, we did not follow up on 

these differences. Notably, no differences were found between GVS and rest. Overall, this 

suggests, that changes in individual connections between nodes were driven by 

nociception and that vestibular stimulation had only a small effect on brain network 

architecture.  
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3.3.3.2 Changes in network modularity 

The NBS analysis showed that sets of connections are affected by the stimulation 

condition, with regions associated with vestibular processing being significantly less 

connected during GVS, when compared to GNS. To get a better understanding about the 

general network changes involved during the stimulation, we performed a modularity 

analysis (see Methods). Both classification consistency and classification diversity were 

calculated for each node in each condition. Classification consistency measures the extent 

of functional specialisation – a high value means that the node is consistently classified as 

belonging to the same module. Conversely, classification diversity measures the 

proportion of nodes being classified into different modules and hence indicates that the 

node is well integrated into the network functionally. Low classification diversity means 

Comparison 
Significant contrast 

(extent) 
Significant contrast 

(intensity) 

stim-GVS vs. stim-mGNS 
 

GVS<mGNS 
 

GVS < mGNS 
 

rs-GVS vs. rs-GNS 
 

- - 

stim-GVS vs. rs-GVS 
 

- - 

stim-GNS vs. rs-GNS - 
stim-GNS > rs-GNS 
rs-GNS > stim-GNS 

Table 3.3 Overview of significant results from NBS analysis.  

Figure 3.3 Significant component for three incremental primary thresholds of the contrast 
GNS > GVS (left: T=2.9; middle: T=3.2; right: T.3.5).  
Nodes were coloured according to the findings of the task-based analysis, i.e. yellow if nodes within regions 
which were uniquely activated during GVS and are thus associated with vestibular sensation, green if nodes 
were located within regions jointly activated by GVS and GSN and grey if they were located in other regions. 
Labels (only presented in middle and right threshold for readability) are shortened after Schaefer et al. (2017), 
but names of vestibular regions have been added when appropriate. D=Default, Vis = Visual, DA=Dorsal 
Attentional, L=Limbic, SM=Somatomotor, SVA=Salience Ventral Attention, Cont = Control. analysis. 
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that a node is usually classified as belonging to the same module. Connectivity of such 

nodes is less dispersed across modules, while high classification diversity values suggest 

high dispersion of connectivity (Dwyer et al., 2014). Across all conditions, a significant 

difference was only found in classification diversity (Kruskal-Wallis chi-squared = 29.172, 

df = 3, p-value < .001) but not in classification consistency (Kruskal-Wallis chi-squared = 

.060, df =3, p-value=.996) (see Figure 3.4A). This suggests that nodes within the brain 

were classified to variable modules across participants.  

 

To determine the specific differences, Mann-Whitney-Wilcoxon tests were performed 

between all possible combinations using a Bonferroni correction (α = 0.5 / 6, adjusted p-

values are reported in the following). Classification diversity was significantly lower during 

GNS stimulation, when compared to the GVS stimulation (U=6429, p=.003). Similarly, 

while classification diversity was significantly lower during GNS stimulation (median = 

0.463), compared to the resting-state condition in the same scanning session (median = 

0.661; U = 6570, p=0.001), no difference was found when comparing the GVS stimulation 

(median = 0.637) to its corresponding resting-state condition (median=0.606; U=5830 , 

p=0.256). No session effect was found when comparing the two resting-state datasets from 

the two experiments (U = 5608, p = 0.828) (see Figure 3.4A). These results suggest that 

cortical nodes become more selective in their interaction during nociceptive stimulation, 

whilst no reorganisation occurs during vestibular stimulation. To determine the 

contribution of different nodes to the differences in the stimulation conditions, we 

conducted two more post-hoc analyses.  

 

First we split the nodes into three groups, depending on whether they were located in 

regions that were activated uniquely by vestibular stimulation (“vestibular nodes”), jointly 

by vestibular and nociceptive stimulation (“joint nodes”) and all remaining nodes (“other 

nodes”). Indeed, both vestibular nodes (W=356, p=.020) and joint nodes (W=231, p=.010 

had a higher classification diversity in the GVS condition. The remaining nodes did not 

differ in terms of their classification diversity (W=478, p=.077) after Bonferroni correction 

(α=0.5 / 3) (see Figure 3.4B). Nodes located in regions associated with the stimulation 

conditions thus contributed to the changes in classification diversity more than the 

remaining nodes.  

 

We also used a different categorisation and for this we split the nodes according to their 

membership of the significant NBS component found in the previous analysis. We thus 

tested whether the significantly decreased connections of these nodes during GVS (as 

found using the NBS analysis) is related with an increased classification diversity. For this, 
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38 nodes from the significant network found in the NBS analysis (using a threshold of T = 

3.2, i.e. the nodes seen in the middle panel of Figure 3.3) were included in the ‘NBS nodes’ 

groups, the remaining 62 nodes were included in the ‘Other’ group. As apparent in Figure 

3.4C, classification diversity significantly differed between the two stimulation periods but 

in both NBS nodes (W=463, p=.014) as well as in all remaining nodes (W=1447, p=.035) 

(adjusted p values after Bonferroni correction with α=0.5/2). In this analysis, nodes thus 

contributed to the main finding, regardless whether they were part of the NBS component 

or not.  

 

  

Figure 3.4 Results from modularity analysis 
A) Classification diversity and classification consistency for all sessions and conditions B) classification 
consistency of node categories derived from task-based analysis (Vestibular = nodes in regions significantly 
stronger activated by GVS, Joint = nodes in regions conjointly active during GVS and GNS, Other = all 
remaining nodes) C) classification consistency of node categories derived from NBS analysis (NBS Nodes 
= 38 nodes from the significant network found in the NBS analysis (using a threshold of T = 3.2, Other = 
remaining 62 nodes) 
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 Discussion  

In the present study, we aimed to characterise vestibular processing in terms of task 

activity and functional network architecture. Importantly, we wanted to disentangle the 

processing of vestibular from other somatosensory information. For this, participants 

underwent two experiments, differing only in the type of stimulation delivered: vestibular 

(GVS) or nociceptive (GNS) stimulation. The underlying assumption for the comparison 

of these experiments is that our customised GVS approach using local anaesthesia elicits 

mostly vestibular and little other somatosensory sensations, whereas GNS induces salient 

nociceptive arousal in addition to local somatosensory sensations. Comparing GVS directly 

with GNS should thus reveal uniquely vestibular processes and/or uniquely (salient) 

nociceptive processing. Joint analysis aimed to reveal the common somatosensory trunk 

of the two conditions.  

 

3.4.1 Task-based analysis 

In the task-based analysis we confirm the existence of distinct regions in vestibular and 

somatosensory processing. Previously described vestibular processing regions were also 

found with our experimental design. The, parietal operculum OP2 was more active during 

GVS than GNS, thus confirming it’s central role in vestibular processing as proposed by zu 

Eulenburg et al. (2012). The cingulate sulcus visual (CSv) area and portions of MST were 

more strongly active during GVS. Bilateral inferior parietal lobules PF was also found to 

be involved uniquely during GVS, which may correspond to macaque area 7: 

 

Extensive visual cortex activation was found during the GVS experiment, which was most 

likely due to the task demands. Participants were asked to fixate a fixation cross, which is 

not typically done in GVS experiments. Indeed, in paradigms using GVS where 

participants had their eyes closed, BOLD signal decreases in visual cortex were observed 

(Bense, Stephan, Yousry, Brandt, & Dieterich, 2001). Vestibular stimulation causes 

nystagmus that are then supressed during fixation (Curthoys & MacDougall, 2012; 

Helmchen, Rother, Spliethoff, & Sprenger, 2019). GNS, on the other hand, does not lead 

to any reflexive eye movements. We therefore believe that the enhanced activity in the 

visual cortex during GVS reflects the suppression of a torsional nystagmus. Another 

explanation for activation of visual cortex is the recent finding, that both active and passive 

head movements in light increase V1 activity in rodents (Bouvier, Senzai, & Scanziani, 

2020; Guitchounts, Masís, Wolff, & Cox, 2020). This response persisted even after 

abolishing eye movements (Bouvier et al., 2020). 
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Beside cortical activation, parts of the cerebellum were more active during GVS than GNS. 

Cerebellum receives input from the vestibular nerve and from vestibular nuclei (Goldberg, 

Wilson, Angelaki, Cullen, & Fukushima, 2012). Notably, the nodulus (i.e. vermis X), whose 

purkinje cells receive direct input from vestibular afferents (Cullen, 2019; Goldberg et al., 

2012; Laurens, Meng, & Angelaki, 2013; Yakusheva, Blazquez, & Angelaki, 2010), was also 

more active during vestibular stimulation. In contrast to the nodulus, small clusters of the 

vermis IX were jointly active in both conditions, suggesting that general somatosensation 

is also processed there.  

 

Although the ventral intraparietal region (VIP) receives vestibular information in non-

human primates, we did not see any additional activity in the VIP for vestibular 

stimulation. Instead, this area was jointly active for both stimulation types, suggesting a 

role in somatosensory processing. The VIP was previously found to be involved in 

representing body schema and surrounding space on a multisensory level (Bremmer et al., 

2013), which would also explain our results, encoding a type of spatial reference frame 

function. Thus, our finding also corresponds to the notion that VIP may me more 

important for general bodily self-consciousness than PIVC and MST, as suggested by 

Blanke (2012). The parietal operculum OP3 and OP4 (BA43/40) were also jointly active 

during both stimulation modalities and are likely related to the common somatosensory 

experience of both stimulations. OP4 is related to attention, stimulus discrimination and 

sensory-motor integration and OP3 is thought to encode the somatosensory 

representation of ear (Job et al., 2016; Job, Paucod, O'Beirne, & Delon-Martin, 2011). 

Large portions of the bilateral inferior frontal gyrus were also found conjointly active. A 

various set functions have been ascribed to this region ranging from action to cognition 

related processing and only recently a functional organisation along the posterior-to 

anterior as well as the dorsal-to ventral axis of the right inferior frontal gyrus was described 

(Hartwigsen, Neef, Camilleri, Margulies, & Eickhoff, 2019). 

 

Whilst not the initial focus of the study, it is interesting that no unique areas were activated 

during nociceptive stimulation in the within-participant comparison. The posterior insula 

and parts of operculum were the only regions active in our study that have previously been 

found to result in pain upon cortical stimulation (Mazzola, Isnard, Peyron, & Mauguière, 

2011). These regions were conjointly activated in both GVS and GNS. Taken together, 

whilst vestibular stimuli consistently activate dedicated brain regions, our nociceptive 

stimulation does not result in a specific brain response. It is possible that brain regions 

previously ascribed to the “pain-matrix” may rather encode processes related to 

somatosensation, salience or aspects of awareness.  
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3.4.2 Functional network analysis 

Vestibular stimulation does not have a large impact on whole brain functional network 

connectivity. Despite the clear unique regional activation patterns associated with 

vestibular stimulation detected using a classic general linear model approach, the opposite 

was true when examining functional connectivity. We found that vestibular stimulation 

does not induce a change in cortical network architecture: no significant differences in 

individual connections was found and modularity remained unchanged, when compared 

to the resting state. Nociceptive stimulation on the other hand was associated with network 

changes, and when compared directly to vestibular stimulation, it was associated with 

increased connectivity of regions which are associated with somatosensory stimulation, as 

determined in the task-based analysis. This finding corresponds to the proposal by 

Klingner et al (2016), who suggested that the amount of vestibular information delivered 

to cortical areas is relatively low compared to other (sensory) information transmitted. 

 

Overall, network organisation and hence synchronisation of the brain regions did not seem 

to be changed at all by vestibular stimulation. Considering that changes in awareness or 

arousal seem to be one main underlying factor for modulation of brain synchronisation 

(Lurie et al., 2019), this finding is remarkable considering that the stimulation induces a 

strong vestibular sensation and elicits a distinct brain activity pattern. It is particularly 

noteworthy, that even when comparing classification diversity and consistency of the 

resting-state condition with the stimulation condition, no differences were found. This 

stability of brain synchronisation during vestibular sensation possibly reflects that 

vestibular processing mostly occurs subconsciously and that synchronisation effects 

during vestibular stimulation may be more subtle compared to nociceptive stimulation.  

 

3.4.3 Limitations and open questions 

In the present study we focused on cortical activations and connectivity. In the future it 

would be interesting to perform a closer investigation of subcortical and cerebellar 

involvement during vestibular stimulation. Specifically, it would be interesting to 

investigate the task-related connectivity of different cerebellar regions, with a specific 

focus on the nodulus. Furthermore, it would be interesting to see whether individual 

differences influence results.  

 

3.4.4 Conclusion 

Overall, we differentiated regions involved in vestibular processing and compared the full 

brain network during states of vestibular stimulation and nociceptive stimulation. We 

found distinct activation patterns during vestibular stimulation, which matched with 
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previous reported areas. Surprisingly, we found that only nociceptive stimulation 

modulated the functional network, but that vestibular stimulation was seemingly not 

sufficient for cortical nodes to change their global network properties. These seemingly 

contradictory results may reflect the unique features of the vestibular system, namely that 

vestibular processing mostly occurs subconsciously As a next step, the contribution of 

subcortical regions should be analysed to determine whether the observed lack of network 

modulation is limited to cortical regions.   
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Appendices 

Appendix A: Supplementary Methods 

For anatomical data preprocessing, the T1-weighted (T1w) image was corrected for 

intensity non-uniformity (INU) using N4BiasFieldCorrection (Tustison et al. 2010, ANTs 

2.2.0), and used as T1w-reference throughout the workflow. The T1w-reference was then 

skull-stripped using antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as target template. 

Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, 

Dale, Fischl, and Sereno 1999), and the brain mask estimated previously was refined with 

a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et al. 

2017). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 

2009c (Fonov et al. 2009, RRID:SCR_008796) was performed through nonlinear 

registration with antsRegistration (ANTs 2.2.0, RRID:SCR_004757, Avants et al. 2008), 

using brain-extracted versions of both T1w volume and template. Brain tissue 

segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 

performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, 

Brady, and Smith 2001). 

 

For each of the BOLD runs found per subject (across all tasks and sessions), the following 

functional preprocessing was performed. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. A deformation field to 

correct for susceptibility distortions was estimated based on fMRIPrep’s 2019s fieldmap-

less approach. The deformation field is that resulting from co-registering the BOLD 

reference to the same-subject T1w-reference with its intensity inverted (Wang et al. 2017; 

Huntenburg 2014). Registration is performed with antsRegistration (ANTs 2.2.0), and the 

process regularized by constraining deformation to be nonzero only along the phase-

encoding direction, and modulated with an average fieldmap template (Treiber et al. 

2016). Based on the estimated susceptibility distortion, an unwarped BOLD reference was 

calculated for a more accurate co-registration with the anatomical reference. The BOLD 

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 

implements boundary-based registration (Greve and Fischl 2009). Co-registration was 

configured with nine degrees of freedom to account for distortions remaining in the BOLD 

reference. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) are estimated before 

any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). The BOLD 

time-series, were resampled to surfaces on the following spaces: fsaverage. The BOLD 
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time-series were resampled onto their original, native space by applying a single, 

composite transform to correct for head-motion and susceptibility distortions. These 

resampled BOLD time-series will be referred to as preprocessed BOLD in original space, 

or just preprocessed BOLD. The BOLD time-series were resampled to 

MNI152NLin2009cAsym standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), 

DVARS and three region-wise global signals. FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by 

Power et al. 2014). The three global signals are extracted within the CSF, the WM, and the 

whole-brain masks. Additionally, a set of physiological regressors were extracted to allow 

for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 

components are estimated after high-pass filtering the preprocessed BOLD time-series 

(using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). Six tCompCor components are then calculated 

from the top 5% variable voxels within a mask covering the subcortical regions. This 

subcortical mask is obtained by heavily eroding the brain mask, which ensures it does not 

include cortical GM regions. For aCompCor, six components are calculated within the 

intersection of the aforementioned mask and the union of CSF and WM masks calculated 

in T1w space, after their projection to the native space of each functional run (using the 

inverse BOLD-to-T1w transformation). The head-motion estimates calculated in the 

correction step were also placed within the corresponding confounds file. All resamplings 

can be performed with a single interpolation step by composing all the pertinent 

transformations (i.e. head-motion transform matrices, susceptibility distortion correction 

when available, and co-registrations to anatomical and template spaces). Gridded 

(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured 

with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 

1964). Non-gridded (surface) resamplings were performed using mri_vol2surf 

(FreeSurfer). 

 

Many internal operations of fMRIPrep use Nilearn 0.5.0 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details 

of the pipeline, see the section corresponding to workflows in fMRIPrep\u2019s 

documentation. 
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Appendix B: Supplementary Results 

Brain region 
Cluster 
size 

T 
 

Z Coordinates Name of region 

     x y z  

Cerebellum 

12261 8.48  7.39 -13 -71 -47 L Vermis VIIb 

 7.24  6.51 -28 -68 -22 L Vermis VI  

 6.12  5.65 -10 -76 -32 L Vermis Crus II 

489 4.6  4.38 -36 -48 -47 L Vermis VIIb 

22 3.79  3.66 -26 -57 -43 L Vermis VIIIa 

37 3.53  3.42 -31 -63 -46 L Vermis VIIb 

14 3.35  3.26 -33 -43 -36 L Vermis VI  

18 3.56  3.45 -24 -44 -48 L Vermis VIIIb 

3722 5.72  5.33 23 -69 -22 R Vermis VI  

 5.3  4.98 15 -72 -18 R Vermis VI  

 5.29  4.97 31 -60 -24 R Vermis VI  

3052 10.01  Inf 18 -70 -46 R Vermis VIIb 

 5.38  5.04 24 -64 -49 R Vermis VIIIa 

 4.97  4.7 6 -77 -31 R Crus II 

190 4.29  4.11 3 -53 -32 R Vermis IX 

18 3.67  3.55 37 -48 -29 R Vermis VI 

33 3.53  3.42 6 -70 -24 R Vermis VI 

39 3.51  3.41 50 -59 -29 R Crus I 

10 3.38  3.29 0 -70 -13 Vermis VI 

Limbic 
System 

209 4.87  4.61 -23 2 -13 L Amygdala 

18 3.43  3.33 -11 -18 -3 L Thalamus 

Primary 
Somato-
sensory 
cortex 

164 3.7  3.58 -51 -35 53 L Primary somatosens. cortex BA2 

34 3.55 
 

3.44 -25 -34 61 
L Primary somatosens. cortex 
BA3b 

74 3.56  3.45 59 -24 49 R Primary somatosens. cortex BA2 

335 4.27 
 

4.1 24 -33 61 
R Primary somatosens. cortex 
BA3b (VA = Area 3aV) 

Secondary 
Somato-
sensory 
cortex 

46667 12.32  Inf 38 2 -11 R Insular cortex 

 12.03 
 

Inf 40 -2 -2 
R Secondary somatosens. cortex . 
OP3 

 11.5 
 

Inf 52 -1 7 
R Secondary somatosens. cortex / 
Parietal operculum OP4 

46667 12.32  Inf 38 2 -11 R Insular cortex 

 12.03 
 

Inf 40 -2 -2 
R Secondary somatosens. cortex 
OP3 

 11.5 
 

Inf 52 -1 7 
R Secondary somatosens. cortex / 
Parietal operculum OP4 

15 3.64 
 

3.52 -40 -21 28 
L Secondary somatosens. cortex 
OP1 

Insular 
cortex 

30917 12.57  Inf -40 -2 -4 L Insular cortex 

 9.6 
 

Inf -57 -1 6 
L Secondary Somatosens. cortex 
OP 4 

 9.6  Inf -33 2 13 L Insular cortex 

Parietal 
lobe 

248 4.18  4.01 -6 -72 36 L superior parietal lobule 7P 

 3.48  3.38 -7 -73 44 L superior parietal lobule 7P 

452 3.89  3.75 -33 -50 44 L Anterior intra-parietal sulcus hlP3 

30 3.64  3.52 -28 -62 48 L Anterior intra-parietal sulcus hlP3 

623 4.6  4.38 36 -48 43 R Anterior intra-parietal sulcus hIP3 

 3.47  3.37 40 -51 51 R Anterior intra-parietal sulcus hlP3 

288 4.33  4.14 2 10 60 R premotor cortex BA6 

Frontal lobe 

1017 4.38  4.19 -41 38 12 L broca’s area BA45 

 4.07  3.92 -47 34 18 L broca’s area BA45 

103 3.89  3.75 -41 7 30 L Broca’s Area BA44 

52 3.83 
 

3.7 55 3 37 
R Premotor cortex BA6 (VA = area 
6) 

13 3.57  3.46 24 42 -10 R Frontal pole  

Supplementary Table B.1Peak activations for contrast GVS > GNS (TFCE, p< 0.001 unc.) for between-
group comparison (n=108). Only clusters in grey matter with a minimum of 10 voxels reported. 
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1992 5  4.72 3 13 34 WM 

 4.29  4.11 0 -3 39 WM 

 4.25  4.07 2 7 42 R Premotor cortex BA6 

Occipital 
lobe 

24 3.68  3.57 24 -83 -1 R Visual cortex V2 BA18  

27 3.67  3.55 -23 -88 -3 L Visual cortex V2V  

35 3.59  3.48 -25 -85 -9 L visual cortex V4 

41 4.49  4.29 -34 -79 -4 L Visual cortex V4  
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Abstract 

Perivascular spaces (PVS) are the spaces surrounding blood vessels which function as flow 

pathways for cerebrospinal (CSF) and interstitial fluid (ISF). Enlarged PVS indicate 

impaired brain fluid clearance (Wardlaw et al., 2020). Since spending prolonged time in 

microgravity causes brain changes related to the perturbation of the cephalic fluid 

movement (Jillings et al., 2020; Van Ombergen et al., 2019), we wanted to characterise 

PVS load in space travellers before and after they travelled to space and hypothesised 

increased PVS volume in this population. By developing a semi-automatic detection 

pipeline using the open source software Slicer (Fedorov et al., 2012), we were able to 

determine PVS volume across the full brain using only T1 weighted images acquired by 

means of magnetic resonance imaging. We compared PVS volume from 12 Russian 

cosmonauts and 4 European astronauts before going to space with age-matched controls. 

We also evaluated changes in PVS shortly after space flight as well as half a year after the 

mission. Overall, we found that PVS volume were significantly increased in space travellers 

at baseline when compared to controls and was further affected by exposure to 

microgravity. We speculate that astronaut training in combination with actual long-

duration space flight contribute to the high load of PVS observed in our conservative 

approach. 
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 Introduction  

Spending prolonged time in microgravity causes physiological changes in humans, 

including brain changes such as increased ventricles and CSF volume (Van Ombergen et 

al., 2019), increased mean brain volumes and pituitary gland deformations (Kramer et al., 

2020). These changes were suggested to arise from a circulatory perturbation (or cephalic 

fluid shift) induced by microgravity. 

 

The mechanisms by which fluid movement allows waste clearance from the brain has been 

recently described as the glia-lymphatic (or glymphatic) pathway. In this pathway, brain 

fluids move along vessels through perivascular spaces (PVS, also known as Virchow-Robin 

spaces) (Abbott, Pizzo, Preston, Janigro, & Thorne, 2018; Wardlaw et al., 2020). 

Specifically, cerebrospinal fluid (CSF) is driven into arterial PVS, from where it further 

flows into the brain parenchyma. Here, CSF mixes with interstitial fluid (ISF) and 

dissipates through the venous PVS and perineural spaces, finally exiting through one of 

several drainage routes (Rasmussen, Mestre, & Nedergaard, 2018). Body posture, but also 

sleep-wake cycles were found to influence CSF-ISF exchange (Lee et al., 2015; Xie et al., 

2013). Considering the impact of microgravity on lowering cephalic fluid circulation, we 

wanted to investigate whether related brain changes in the form of enlargement of PVS 

occurs in after travelling to space. 

 

PVS have been found visible in a high number of healthy participants by means of high-

resolution MR imaging techniques (Groeschel, Chong, Surtees, & Hanefeld, 2006). They 

appear as well defined, symmetrical shapes and are tubular when parallel with image plane 

and round when perpendicular with the image plane (Benjamin et al., 2018; Wardlaw et 

al., 2020). Evidence is mixed as to whether a higher visibility or enlarged perivascular 

spaces are associated with neurological conditions such as stroke and dementia, but they 

seem to be associated with risk factors such as age and hypertension (Wardlaw et al., 

2020). In general, enlarged PVS are suspected to be caused by a decrease in perivascular 

fluid circulation (Abbott et al., 2018; Mestre, Kostrikov, Mehta, & Nedergaard, 2017). 

 

Qualitative rating scores have been mostly used to estimate PVS in humans, typically using 

T2-weighted MR images (Laveskog, Wang, Bronge, Wahlund, & Qiu, 2018; Potter, 

Chappell, Morris, & Wardlaw, 2015). The advantage of these rating methods is that they 

are reasonably fast and robust. However, whilst these methods are good in indicating the 

approximate amount of enlarged PVS, it does not allow for an observer-independent 

quantification of PVS volume (such as volume, size, etc.). More advanced automatic 
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quantification methods have been developed using computational methods, these usually 

require more than one image modality though (e.g. both T1 and T2) (Ballerini et al., 2018). 

 

For this endeavour, astronaut and cosmonaut MRI data from a single modality (T1-

weighted images) were available, requiring manual segmentation of PVS. In order to 

compare changes in PVS in space travellers before and after their mission to space, we 

decided to manually label PVS within a white matter segmentation mask and applied 

stringent, predefined segmentation criteria for selecting elongated, non-round structures. 

We were interested, if space travellers display increased PVS volume compared to control 

participants in general, and if they display changes in PVS volume at dedicated timepoints 

before, after and during follow-up of a space mission. Specifically, we hypothesised that 

astronauts will display increased PVS volume after the space mission.  

 

 Methods 

4.2.1 Participants 

Overall, data from 12 male ROSCOSMOS cosmonauts and four ESA astronauts were 

imaged for this study (average age 42.3 ±4.9 years). 16 male controls (average age 41.6 

±6.2 years) matched in terms of age, gender, and education level also participated in the 

same imaging protocol. These control participants did not undergo any astronaut training. 

 

4.2.2 Acquisition 

Space travellers were scanned with a repeated T1w sequence in two different sessions on 

three different timepoints: once prior to launch (‘preflight’, n=15), once shortly after re-

entry (‘postflight’, n=16) and once at long-term follow-up (‘follow-up’, n=12). The 

ROSCOSMOS cosmonauts (average age 45.45 ±4.9 years) and their respective control 

subjects (n=12, average age 43 ±5.8 years) were assessed on a clinical scanner 3T MRI 

(Discovery 750; GE Healthcare, USA) located at the Federal Center for Treatment and 

Rehabilitation in Moscow, Russia, using a 16-channel head and neck array coil. For each 

time point, two high-resolution sagittal T1-weighted 3D fast spoiled gradient echo 

(FSPGR) images were acquired approximately one hour apart (time of repetition (TR) 7.90 

ms; echo time (TE) 3.06 ms; inversion time (TI) 450 ms; voxel size 1×1×1 mm; flip angle 

12°; field of view (FOV) 240 mm, 180 slices; bandwidth 31.25 Hz/px). Four ESA astronauts 

(average age = 40.8±2.1 years) and their respective control subjects (n=4, average age = 

33.5 years ±1.6) were assessed on a dedicated research scanner 3T MRI (Siemens 

Biograph, Erlangen, Germany) located at the ENVIHAB facility in Cologne, Germany using 

a 20-channel head and neck array coil. For each time point, two high-resolution sagittal 
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T1-weighted 3D magnetization prepared rapid gradient echo (MPRAGE) images were 

acquired approximately one hour apart (TR 1900 ms; TE 2.43 ms; TI 900 ms; voxel size 

1×1×1 mm; flip angle 9°; field of view (FOV) 256 mm, 176 slices; bandwidth 180 Hz/Px).For 

the subsequent analysis, T1 data from only one session were used in the space traveller 

group. Only the baseline time-point was used for the control group. 

 

4.2.3 Processing 

T1-weighted images were used to create a tissue probability map in native space via 

segmentation using the CAT 12 toolbox (Gaser & Dahnke, 2016). The original T1 images 

were bias field corrected and denoised using a spatial adaptive non-local means (SANLM) 

denoising filter, as implemented in the CAT 12 toolbox. 

 

4.2.4 Labelling  

Identification and labelling of PVS was performed by one author (J.H.) who was blinded 

regarding time point acquired of astronauts and cosmonauts. Slicer 4.11.0 (Fedorov et al., 

2012) was used for identifying and labelling PVS. PVS were defined as elongated 

hypointensities surrounded by white matter. Hence, for labelling, first a white matter mask 

was created for each participant. The white matter mask was determined from the tissue 

probability map by thresholding to a relatively conservative range of 2.7 – 3 (i.e. 70% 

probability of white matter). Using the three-dimensional ‘sphere brush’ tool in the 

Segment Editor module, suspected PVS were labelled in regions not covered by the white 

matter mask. Care was taken not to label regions, where sulci were just about to form (thus 

causing similar hypointensities in some sections). Furthermore, hypointensities were not 

labelled if they were not surrounded by white matter. See Figure 4.1 for a flow diagram of 

the PVS labelling method. See Figure 4.2A for examples of PVS.  

 

After labelling all putative PVS regions, only segments with a minimum size of 5 voxels 

were selected. Parameters were extracted using the module Segment Statistics using the 

T1 image as scalar volume. The following segment parameters were used, as calculated via 

the software: volume (mm3), roundness (ratio of the area of the hypersphere by the actual 

area), elongation (square root of the ratio of the second largest principal moment by the 

second smallest). These criteria were chosen due to previously described visual 

characteristics of PVS, i.e structures along perforating vessels appearing tubular when 

parallel with image plane and round when perpendicular with the image plane. 
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2.1.1 Analysis procedure 

For analysis, only marked segments were selected which had an elongation value below 1.5 

and a roundness value below 0.9 or above 1.1. The total PVS volume was calculated for 

each brain volume using a custom-made MATLAB (R2019b) script (The MathWorks, 

Inc., United States). For statistical analysis, R 3.6.1 was used with the packages 

afex_0.25-1, dplyr_0.8.3 and rstatix_0.4.0. 

 

 Results 

4.3.1 Included Data 

Total PVS volume was calculated for each T1 scan. We pooled data of four European and 

twelve Russian astronauts for three timepoints: pre-flight, shortly after return (post-flight, 

average 8.7 ±3.2 days) and approximately half a year after return to earth (follow-up, 

average 210.4 ± 39.7 days). Outlier detection was performed for each time point of 

astronauts and for the control group. Outliers were defined as values below/above the 

first/third quartile +/- 3x inter-quartile range (IQR). One extreme value within the control 

group was excluded according to these criteria (PVS = 1444.92 μl). No other values had to 

be excluded (see Table 4.1 for descriptive statistics). Since we had a directed hypothesis 

and hypothesised that PVS volume will be increased in astronauts, for all subsequent 

analyses we considered p-values below as 0.1 as significant. 

  

Figure 4.1 Image processing flow and perivascular space (PVS) labelling.  
Raw T1 images were bias corrected and a partial tissue probability map was created which was used to create 
a partial volume white matter (WM) mask (shown here in green). Only large, elongated segments were used 
for subsequent analysis.  
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Figure 4.2 Perivascular spaces found in space travellers.  
A) Examples of PVS in different regions of the brain B) Proportion of astronauts & cosmonauts with PVS found 
before (pre-flight), shortly after return to earth (post-flight) and 180 days after return to earth (follow-up) for 
different regions of the brain (green/top left border = frontal lobe, purple/top right border = parietal lobe, 
orange/bottom left = basal ganglia, blue/bottom left = other brain regions, including the cerebellum) 

A 

B 
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Group n Days in space 

(previous missions) 

Days in space 

(current mission) 

Total PVS (μl) Shapiro 

Wilk 

Shapiro Wilk 

(transf. data) 

  Mean 

(SD) 

Med. 

(IQR) 

Mean 

(SD) 

Med. 

(IQR) 

Mean 

(SD) 

Med. 

(IQR) 

W p W. p 

Controls 15 0 0 0 0 
84.24 

(57.04) 

80 

(76.85) 
.97 .78 - - 

Pre-

flight 
15 

147.47 

(188.17) 

 

159 

(165) 

176.8 

(65.84) 

173 

(27.5) 

214.34 

(193.14) 

154.69 

(263.51) 
.90 .08 .91 .15 

Post- 

flight 
16 

148.63 

(181.85) 

 

162 

(165.25) 

174.44 

(64.31) 

173 

(28) 

234.43 

(189.57) 

174.02 

(263.41) 
.88 .03 .97 .79 

Follow-

up 
12 

171.17 

(201.22) 

165 

(168.25) 

193.32 

(49.67) 

184 

(27.25) 

204.25 

(181.99) 

154.55 

(197.70) 
.87 .06 .97 .86 

 

4.3.2 Comparison of pooled dataset (pre-flight) with controls 

In general, PVS were found in almost all space travellers in frontal and parietal cortices. 

In some, PVS were also found in basal ganglia, cerebellum and parietal lobes (see Figure 

4.2B for distribution of PVS). We determined if controls differed in terms of their total PVS 

volume compared to all astronauts and cosmonauts before going to space. Using a t-test, 

we found that that PVS volume of the pooled data set pre-flight was indeed higher on 

average when compared to controls (t(16.43)=2.50, p=0.02). The effect was large, as 

suggested using Cohen’ D with Hedges correction for small samples (r = 0.89) (Figure 

4.3A).The non-parametric equivalent (Wilcoxon rank sum test) resulted in W=159, 

p=0.056. No obvious relationship between previous experience in space and PVS volume 

was found upon visual exploration of data (raw data not shown to protect the identity of 

astronauts and cosmonauts). 

 

4.3.3 Short term and long term effects of microgravity 

Based on previous research, we hypothesised that microgravity will increase PVS volume, 

when compared to the baseline value before flight. To test this hypothesis, a linear model 

was calculated with scanning time-point as a fixed factor (three levels: (pre-flight, post-

flight, follow-up) and included random effect intercepts for each participant (PVS volume 

~ scan time-point + (1|participant ID)). Since PVS volume data were not normally 

distributed at each timepoint, a logarithmic transformation was performed (see Table 4.1 

for for Shapiro-Wilk normality test statistics).  

Table 4.1 Summary table for all astronaut & cosmonauts and control participants. 
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The levels of the fixed effects were significant for the condition pre vs. post1, with an 

estimate of b=0.37 (t(24.88)=1.97, p=0.06), corresponding to an average increase of 1.45 μl 

(after taking the exponential e0.37), or an average 0.6% increase from the mean baseline 

PVS volume pre-flight. PVS volume did not significantly increase when compared to the 

followup session (t(25.35)=0.25, p = 0.81, b= 0.19), suggesting a ‘normalisation’ of PVS 

volume back to baseline (i.e. to pre-flight) (Figure 4.3B). Probability values were estimated 

via t-tests using the Satterthwaite approximations to degrees of freedom. 

 

4.3.4  Pituitary gland deformations 

Similarly to Kramer et al. (2020) we observed a flattening of the pituitary gland dome in 

cosmonauts and astronauts after return to earth (see Figure 4.4 for examples)  

 

Figure 4.3 Comparison of perivascular spaces (PVS) in space travellers and controls.  
A) PVS volume in controls and merged astronaut and cosmonaut data set (before their mission) B) PVS volume 
before (pre-flight), shortly after return to earth (post-flight) and approximately 180 days after return to earth 
(follow-up). Sample means and 95% confidence intervals shown in black.  

A B 

Figure 4.4 Examples of pituitary gland flattening in cosmonauts. 
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 Discussion 

In the present study we were interested in characterising PVS in astronauts and 

cosmonauts before and after they travelled to space. For this we established a semi-

automatic procedure to determine PVS volume from T1 images using the openly accessible 

software Slicer. We compared PVS volume of T1 images from individuals before going to 

space to age-matched controls, to evaluate a general effect of microgravity and/or training. 

We additionally evaluated whether PVS volume increases after space flight and whether 

these effects are detectable in the short- or long term. Overall we found a higher PVS 

volume in space travellers before their mission, when compared to controls and only found 

a small influence of microgravity on PVS volume. We suggest that inter-individual 

differences, scanner effects and biological preflight status may affect initial PVS load 

considerably. 

 

Our findings suggest that PVS are larger in astronauts & cosmonauts on average, when 

compared to controls. Only a very small (but significant) short-term effect of average PVS 

volume increase was also found in space travellers. It is noteworthy, that PVS volume 

varied substantially across astronauts and cosmonauts. Upon exploration of the data, this 

variation could not be explained by previous experience in space. We hypothesise that 

individual factors during cosmonaut training or previous missions may contribute to this 

variance. One possible factor could be the individual sleep architecture: Barger et al. (2014) 

have shown that crew members obtain significantly less sleep per night before and during 

spaceflight, when compared to sleep shortly after their mission. Sleep disturbances have 

been further found to be related to an increase in PVS: in sleep apnea, PVS load is increased 

(Song et al., 2017) and poor sleep quality was found to be related to increased PVS in the 

basal ganglia (other regions were not considered) in a study by Del Brutto, Mera, Del 

Brutto, and Castillo (2019). In future it would be interesting to further evaluate the effect 

of inter-individual factors (such as amount of sleep) on MRI-visible PVS. Furthermore, 

amount of sleep may be an important factor to consider when selecting participants for the 

control group in future studies. 

  

It is important to mention that due to our very cautious and conservative analysis we likely 

underestimated the actual volume of PVS detected. This is because firstly, detecting PVS 

from T1 contrast is less straightforward than from detecting them from T2 contrasts, where 

PVS appear as hyperintensities. Secondly, we decided to only label PVS with the help of a 

white matter mask with a conservative threshold, meaning that some PVS may have been 

misidentified as white matter. Furthermore, hypointensities lying outside of white matter 
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were not considered in the analysis at all, thus likely explaining the low number of PVS 

determined in the basal ganglia. 

 

We made the notable observation of a flattened pituitary glands (i.e. an increase in 

concavity and volume) in some of the individuals who have been subjected to microgravity. 

This observation was just previously also published in astronauts (Kramer et al., 2020) 

and in individuals with idiopathic intracranial hypertension (Hoffmann et al., 2013; Yuh 

et al., 2000), a condition characterised by elevated intracranial pressure. Indeed, it was 

suggested previously that expansion of CSF may result in increased intracranial pressure 

(Kramer et al., 2020; Van Ombergen et al., 2019) which in turn would cause the observed 

changes in pituitary gland morphology. We also made the observation of perivascular 

spaces in cerebellum, a phenomenon which, to our knowledge, has not been reported yet 

to co-occur in combination with the increased intracranial pressure. 

 

Overall, we believe it is important to further evaluate the effect of microgravity and 

astronaut training on PVS and the glymphatic system in general. Disturbances have been 

found to be related to several a number of neurological conditions (Rasmussen et al., 2018; 

Wardlaw et al., 2020), it is thus important to understand the extent and longevity of brain 

changes occurring during microgravity. A better understanding will not only allow for 

appropriate interventions, but will also help towards a better understanding of the 

principles of glymphatic system in general. We suggest to that particularly the interaction 

of sleep and microgravity on perivascular space volume should be investigated.  
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 General Discussion 

 Summary 

By studying the effect of vestibular modulations on whole brain structure and function, I 

have shown new perspectives to vestibular system research in health and disease. In 

summary, in Chapter 2 I described altered sensory and cerebellar network connectivity in 

individuals suffering from functional dizziness, in Chapter 3 I characterised whole brain 

activity patterns and network changes occurring during artificial stimulation and in 

Chapter 4 I determined the impact of microgravity on the occurrence of enlarged 

perivascular spaces across the brain. In the following, I will put my results into context 

with previous research, highlight open questions and possible future approaches. I will 

first discuss clinical relevance of the findings, subsequently I will evaluate the methodology 

used and review the role of the cerebellum. After that, I will critically evaluate technological 

approaches for studying vestibular perception.  

 

  Clinical Relevance 

A thorough understanding of neural underpinnings of vestibular information processing 

in both health and disease is relevant for clinical practice, both in terms of improving 

therapy as well as for developing appropriate preventive measures. In the case of 

somatoform or functional dizziness such as phobic postural vertigo (PPV), the functional 

network changes found in Chapter 2 may be related to previously reported experimental 

evidence that sensory expectation does not fit with the sensory input in these patients 

(Lehnen et al., 2019). Indeed, one resting state fMRI study in individuals suffering from 

other types of somatic symptoms also revealed a change in sensorimotor networks (Kim, 

Hong, Min, & Han, 2019). In the future we should determine whether functional network 

changes are related to symptoms of perceived dizziness, or whether the observed network 

changes are rather a marker for increased vulnerability for somatoform illnesses in 

general. Functional dizziness can occur as a secondary disorder after a structural vestibular 

syndrome (Dieterich & Staab, 2017). Hence, understanding the vulnerability factors would 

allow clinicians to recognise the need for prevention measures or to optimise therapy. 

Standardised clinical/psychological measures have been already been found to be 

predictive: increased neuroticism was for example shown to be a risk factor for 

somatoform dizziness (Dieterich & Staab, 2017). The advantage of using such standardised 

questionnaires is that they are often cheap and easy to analyse. Considering that functional 
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neuroimaging requires extensive resources in terms of time, costs and expertise, I am 

therefore not suggesting that fMRI measures should be included into general clinical 

practice. Instead, further clinical research involving fMRI will help us to understand 

disease mechanisms and follow treatment success in somatoform dizziness. Recent 

developments in measuring of individual differences in functional networks (see Section 

5.4) may advance this field in the near future. 

 

Artificial vestibular stimulation has become a popular treatment in a variety of clinical 

disorders. It was shown to improve postural performance in patients with vestibular 

disorders such as vestibulopathy (Iwasaki et al., 2014), other neurological disorders (e.g. 

Parkinson’s (Samoudi et al., 2015)) and even in healthy participants (Hilliard et al., 2019; 

Wuehr et al., 2018). In Chapter 3 I show that no whole brain functional network changes 

occur during GVS. The therapeutic benefit of GVS is thus probably not related to network 

changes (at least not in healthy participants). It should be noted however, that in most 

cases, noisy GVS was used in these clinical studies and thus differs from the stimulus used 

in Chapter 3. Noisy GVS (also termed stochastic GVS) is a stimulation with randomly 

fluctuating currents with an overall mean of zero (Hilliard et al., 2019) that is usually 

presented at current strengths below the individuals’ perceptual threshold. Stochastic 

resonance is the proposed mechanism for the therapeutic effect of noisy GVS. Stochastic 

resonance is a phenomenon in signal detection by which a signal that is too weak to be 

detected can be increased by adding randomly fluctuating low-level noise. By introducing 

an optimal amount of noise to a non-linear system the signal variance is increased and 

signal transmission or detection performance is improved, instead of impaired (Garrett, 

Kovacevic, McIntosh, & Grady, 2011; McDonnell & Abbott, 2009). Evidence for stochastic 

resonance in the brain has been found at the neuronal level (McDonnell & Abbott, 2009), 

and interestingly, also at the network level, where noise induced (neural) signal 

synchronisation can allow for rapid establishment and dissolvement of coherence (Avena-

Koenigsberger, Misic, & Sporns, 2017). Considering these findings, noisy GVS may cause 

a change in functional network organization, unlike the lack of network reconfiguration 

found in in Chapter 3. This would correspond to the behavioural findings reported by 

Wilkinson et al. (2008), who found improvements in visual memory recall only after noisy 

GVS, but not after GVS with a constant amplitude in healthy participants. The results 

presented in Chapter 3 would provide a relevant baseline in healthy participants if such a 

study were to be executed. 

 

Understanding the physiological effects of microgravity is important to conduct safe 

missions and for appropriate interventions to avoid long-term adverse effects or accidents. 
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For example, a simple vibrotactile feedback device improved performance of tilt 

perception in astronauts, which is deteriorated temporarily after return to earth (Clément, 

Reschke, & Wood, 2018). This device provides a potential means to help astronauts during 

landing (Clément et al., 2018). In terms of whole brain structural changes, significant shifts 

in CSF and expansion of ventricles were reported in astronauts shortly after return to 

earth, but with trends towards improvements or compensation at follow-up scans (Jillings 

et al., 2020; Van Ombergen et al., 2019). In Chapter 4 I presented the additional finding 

that a small, but significant increase of MR visible perivascular spaces in astronauts occurs 

shortly after the return from space, but that this effect normalises in the follow up scans. 

Altogether this suggest that the connective tissue properties in the interstitial circulation 

of the brain adapts in response to space travel. The lack of gravity thus results in 

accumulation of fluid in the brain which further causes a swelling of the perivascular 

spaces. Although these changes do not appear to have a long-term negative impact on the 

brain, it is not clear whether there is accumulation effect from multiple space missions or 

how the duration of space travel impacts physiology.  This is particularly important since 

the National Aeronautics and Space Administration (NASA) and other space agencies are 

considering Mars missions which may last up to 3 years. Furthermore, considering that 

structural changes found in Chapter 4 were highly variable across astronauts even before 

their mission, it is important to consider individual factors such as amount of training and 

sleep quality in future analyses. 

 

In summary, advances in vestibular neuroimaging research not only provide an 

understanding of how vestibular perception is modulated by different contexts but it can 

also be relevant for clinical practice. It provides support for specific treatments, by 

pointing towards possibilities for interventions and provides measures for monitoring 

treatment success or severity of the underlying condition. To be of significance for clinical 

practice though, clear benchmark values still need to be determined. This can be achieved 

by increasing our understanding of individual factors impacting vestibular perception. 

Additionally, we will need to move the focus of our research from descriptive to predictive 

markers derived from neuroimaging studies. Possible approaches will be discussed in the 

next two sections. 

 

 Network neuroscience methodology 

One problematic aspect of network neuroscience is the correlative or descriptive nature of 

most studies. The goal should instead be to develop and test theories about the brain’s 

information processing (Bassett et al., 2020; Bertolero & Bassett, 2020). Advanced 
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neuroimaging analysis techniques have been developed which go beyond simple brain 

mapping and aim at understanding the underlying mechanisms. Specifically, two (not 

mutually exclusive) analysis methods have been of particular interest recently: 1) task-

based functional connectivity and 2) time-varying functional connectivity. 

 

The former approach compares and contrasts functional networks different states (such 

as tasks). In Chapter 2 and Chapter 3 I analysed functional network properties during task 

paradigms, as well as in task-free states and by this could derive additional information 

about perceptual processing. Recent studies differ in their verdict regarding the added 

informational value from such task-based connectivity studies. Whilst some suggest 

functional connectivity derived from task-based study designs provides additional 

information (Di & Biswal, 2019) and can help to predict phenotypes (Greene et al., 2020), 

other studies suggest that task-states contribute little to explaining the variance in 

functional connectivity, arguing that the most important organisational features in the 

brain are explained by stable individual factors (Gratton et al., 2018). Despite the 

potentially small contributions, I found meaningful task-related network changes in both 

Chapter 2 and Chapter 3 and would thus argue that task-based functional connectivity is 

relevant for deepening our understanding about the brain.  

 

Either way, brain dynamics are not limited to a distinct small number of states such as task 

and rest. Instead, the acquired BOLD time-series can be resolved further to smaller time-

scales (ranging from several seconds up to few minutes). For each of the smaller time-

windows network properties can be computed, thus allowing to investigate dynamic 

network changes. Such time-varying functional connectivity analyses have revealed that 

network organisation in resting-state paradigms is highly dynamic and that 

interindividual differences in these dynamics are indicative of traits as well as psychiatric 

and neurological conditions (Lurie et al., 2019). The number of studies using time-varying 

functional connectivity has increased significantly in recent years, providing a wide 

number of methodological approaches and considerations (Lurie et al., 2019). For 

example, several networks can be represented by means of  a multi-layer network. This 

approach also allows the direct comparison of networks determined with different imaging 

modalities, such as structural and functional MRI for example (Sizemore & Bassett, 2018). 

Additional informational value can also be extracted by using algebra-topological 

methods, which allow going beyond the description of links to the descriptions of higher-

order network shapes (Sizemore, Phillips-Cremins, Ghrist, & Bassett, 2019). Exploring 

network organisation in this time-resolved manner may thus provide more information 

about healthy and dysfunctional vestibular processing. 
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 Interindividual differences 

It is common practice in neuroscience, and particularly in fMRI research, to collect data 

from a large sample size, which is then normalised to a group averaged brain in order to 

allow for generalisation. Using this method, potentially meaningful individual differences 

can be overlooked. An impression of just how much the added value of an individualised 

data analysis can be was provided by Gordon et al. (2017). In an innovative data set, they 

collected over 10 hours of functional and multiple structural MRI data from overall ten 

participants which allowed to thoroughly study spatial and functional network variability. 

Indeed, using these data from highly sampled individuals, previously unknown individual 

differences could be described. In terms of regions involved in vestibular perception, 

Gordon et al. (2017) for example revealed that V5/MT+ was part of the lateral visual 

network in seven participants and not strongly connected to the dorsal attentional network 

in these subjects, contrary to previous studies suggesting an important role in the 

attentional networks. This approach was also found to be informative for understanding 

the contribution of the cerebellum to higher-order vestibular information processing 

(further discussed in Section 5.5). In order to advance our understanding of the vestibular 

system it would be thus important to determine both functional and structural 

heterogeneity by using an individualistic approach by analysing data from highly-sampled 

individuals. Highly sampling of patients may also be useful for individualised diagnosis, 

for example for biomarkers or surgical planning (Gratton et al., 2018). Despite the amount 

of time necessary for data acquisition, fMRI does not bear risks of radiation and is non-

invasive (in contrast to positron emission tomography and X-ray computed tomography) 

(Gordon et al., 2017), making MRI a safe tool for such surgical planning.  

 

Interindividual differences also contribute to performance in astronauts (Clément et al., 

2020). It would be important to understand relevant factors to select suitable candidates 

for space missions or to set appropriate interventions in case anomalies are detected. In 

Chapter 4 the astronauts tested showed a high variance of enlarged perivascular spaces 

even before they go to space. Since there was no clear association with previous mission 

experience, the reason for this could be that some individuals were better than others in 

terms of coping with astronaut training, or space travel, or both. For instance the 

individual responses and vulnerabilities to sleep deprivation are of particular relevance for 

the perivascular changes found in Chapter 4. Lymphatic clearance in the brain occurs 

mainly during sleep (Bakker et al., 2016), the lack of which can lead to increased 

perivascular spaces. Sleep deficiency is prevalent not only during space missions but also 

during the training before the mission (Barger et al., 2014). Those astronauts with 
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particularly low sleep levels in pre-mission training may show smaller effects during space 

flight than those that slept better.  

 

  The role of the cerebellum  

The cerebellum has been often ignored in human neuroimaging studies or considered as 

one homogenous structure, although it contains four times the amount of cells in the 

cerebral cortex (Andersen, Korbo, & Pakkenberg, 1992). The cerebellum is not only a key 

structure that integrates vestibular information for motor function and self-motion 

perception, but it is also involved in a wide range of cognitive and behavioural functions 

(Baumann et al., 2015; Buckner, 2013; King et al., 2019). Considering this diversity of 

functions, the cerebellum is thought to be a structure generally important for predicting 

events and subsequently for modulating neural signals (Baumann et al., 2015; Marek et 

al., 2018).  

 

In Chapter 2 I showed that cerebellar connectivity is strongly decreased during a symptom-

provoking stimulus in patients with functional dizziness. Cerebellar connectivity is also 

weakened in a number of other conditions which are characterised by impairments in 

sensory processing such as schizophrenia (Chen et al., 2013; Ding et al., 2019), attention-

deficit disorder and autism (Sathyanesan et al., 2019). This corroborates the notion that a 

dysfunction of cerebellum is related to deficient sensory processing and dysfunctional 

behavioural modulation. In future it will be important to differentiate between the 

subregions of the cerebellum in order to get a better understanding of the involved 

mechanisms.  

 

In the task activation analysis in Chapter 3, I confirmed the long-held notion that nodulus 

and uvula are uniquely involved in the processing self-motion. Since only cortical 

connectivity was the focus of the study and infratentorial signal-to-noise ratio was 

insufficient, functional connectivity of the cerebellum was not explored further. In 

addition, the amount of both resting-state and task data would have probably not sufficed 

to achieve reliable results: in a resting-state fMRI study using high sampling of individuals, 

Marek et al. (2018) found that for reliable quantification of functional connectivity in the 

cerebellum, double the quantity of cortical data are necessary. This means, longer fMRI 

sessions are needed to quantify connectivity of the cerebellum. The same study also 

revealed that the network representation was highly variable amongst individuals. Hence, 

future studies investigating cerebellar connectivity during vestibular processing should 

also consider highly sampling individual participants to obtain stable results. Using 
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optimised fMRI sequences achieving high temporal signal to noise ration across the whole 

brain would be also an option, if high sampling is not possible. 

 

The cerebellum was also structurally and functionally affected by microgravity. An upward 

cerebellar shift, in addition to the whole brain displacement was proposed by Jillings et al. 

(2020): they found a decrease in the space along the cerebellar tentorium (the dura mater 

between the cerebellum and the inferior portion of the occipital lobes). A similar effect was 

also found by Roberts et al. (2017), who describe a decrease of the supravermian cistern in 

astronauts (i.e. a decrease of the subarachnoid space above the cerebellar vermis). I made 

the unique observation of enlarged perivascular spaces in the cerebellum of some space 

travellers, further strengthening the notion that fluid accumulates in this portion of the 

brain as well.  

 

 Technological advances to study vestibular system 

In order to gain a full understanding of the underlying neural processes involved in 

vestibular perception, imaging the brain during physical motion would be necessary to 

gather a realistic account of all the involved proprioceptive, visual and motor signals. 

Although GVS causes subjective motion perception, it is important to note that this 

vestibular stimulation activates all of the otolith organ and all of the semi-circular canal 

afferents on one side, while simultaneously inhibiting activation of all the vestibular 

organs on the contralateral side. As Kwan et al. (2019) rightly notes, this type of activation 

pattern (i.e. the simultaneous activation of otolith and semi-circular canal afferents) does 

not have a physiological motion equivalent and is thus indeed artificial. Furthermore, the 

neuronal response of the afferents differs to their responses to natural motion, possibly 

because GVS bypasses the mechanotransduction of the vestibular organs (Kwan et al., 

2019).  

 

Unfortunately, exposure to virtual environments without active motion is also not ideal for 

understanding self-motion. It has been shown, that motor signals generated during 

voluntary behaviour influence sensory processing at the level of the vestibular nuclei 

neurons (Cullen & Taube, 2017). In animal studies it has also been shown that neuronal 

firing differs in central brain structures involved with navigation, depending on whether 

movement was passive or active (Winter, Mehlman, Clark, & Taube, 2015). It can be thus 

expected that brain function in humans will to a certain extend also differ during active 

motion. 
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Whilst active motion is currently not possible during MR acquisition, it is possible during 

electroencephalography (EEG), which only provides low spatial resolution however. 

Technological advances in the more distanced future may be developed. For example, Boto 

et al. (2018) recently reported the development of a wearable magnetoencephalography 

(MEG) device, making it possible to perform more naturalistic tasks whilst brain activity 

is recorded. In contrast to MRI, which only allows the recording of a neurophysiological 

proxy of neuronal activity, MEG is a direct measure of neural currents (although only 

signals from dendrites located on the surface of the brain and at right angles to the walls 

of the sulci can be detected (Baars & Gage, 2013)).  In contrast to EEG, MEG has better 

spatial resolution. This method would thus allow unconstrained head movement, more 

naturalistic paradigms involving realistic input from the vestibular system would thus be 

possible. Naturalistic locomotion would not be possible (yet) with this method however. 

So far, human vestibular research is thus restricted to use methods which approximate 

naturalistic self-motion and combine the results with experimental evidence from animal 

studies.  

 

 Conclusion  

The processing of vestibular information is ubiquitous in our daily lives, in all movement 

as well as at rest, when the vestibular system recognizes gravity. Under most 

circumstances, we are not consciously aware of our vestibular processing, however there 

are a number of contexts, both artificial and natural that demonstrate how important our 

vestibular sense is by throwing us literally out of balance when the system is out of accord. 

In this thesis I have shown that a whole-brain approach is insightful for studying vestibular 

perception. By applying network neuroscience approaches to chronic vestibular patients 

and during artificial vestibular stimulation, I explored brain function during long and 

short-term state changes vestibular perception. I found functional network differences in 

individuals experiencing chronic dizziness without structural origin which fit to the notion 

that this condition is of somatoform origin. I also characterised functional brain changes 

during artificial vestibular stimulation in healthy participants and surprisingly found no 

cortical reorganisation, possibly reflecting the subconscious nature of vestibular 

processing. In addition, I showed that medium-term exposure to microgravity also affects 

the brain’s structure supporting the notion of a cephalic fluid shift during microgravity. 

This finding contributes towards a better understanding of the effect microgravity has on 

the brain, which is important for designing safe missions to space. Overall, exploring whole 

brain network organisation and the change of thereof during vestibular perception in 

different context provides novel insights about the underlying neural processes. 
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