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Drittgutachter: Prof. Dr. Florian Michahelles

Tag der mündlichen Prüfung: 25. Juni 2021



iv



Abstract

Abstract

In an increasingly digital world, technological developments such as data-driven algorithms

and context-aware applications create opportunities for novel human-computer interaction

(HCI). We argue that these systems have the latent potential to stimulate users and encourage

personal growth. However, users increasingly rely on the intelligence of interactive systems.

Thus, it remains a challenge to design for proficiency awareness, essentially demanding

increased user attention whilst preserving user engagement. Designing and implementing

systems that allow users to become aware of their own proficiency and encourage them to

recognize learning benefits is the primary goal of this research.

In this thesis, we introduce the concept of proficiency-aware systems as one solution. In

our definition, proficiency-aware systems use estimates of the user’s proficiency to tailor

the interaction in a domain and facilitate a reflective understanding for this proficiency. We

envision that proficiency-aware systems leverage collected data for learning benefit. Here,

we see self-reflection as a key for users to become aware of necessary efforts to advance their

proficiency.

A key challenge for proficiency-aware systems is the fact that users often have a different

self-perception of their proficiency. The benefits of personal growth and advancing one’s

repertoire might not necessarily be apparent to users, alienating them, and possibly leading

to abandoning the system. To tackle this challenge, this work does not rely on learning

strategies but rather focuses on the capabilities of interactive systems to provide users with

the necessary means to reflect on their proficiency, such as showing calculated text difficulty

to a newspaper editor or visualizing muscle activity to a passionate sportsperson.

We first elaborate on how proficiency can be detected and quantified in the context of in-

teractive systems using physiological sensing technologies. Through developing interaction

scenarios, we demonstrate the feasibility of gaze- and electromyography-based proficiency-

aware systems by utilizing machine learning algorithms that can estimate users’ proficiency

levels for stationary vision-dominant tasks (reading, information intake) and dynamic man-

ual tasks (playing instruments, fitness exercises). Secondly, we show how to facilitate profi-

ciency awareness for users, including design challenges on when and how to communicate

proficiency. We complement this second part by highlighting the necessity of toolkits for

sensing modalities to enable the implementation of proficiency-aware systems for a wide

audience.

In this thesis, we contribute a definition of proficiency-aware systems, which we illustrate

by designing and implementing interactive systems. We derive technical requirements for

real-time, objective proficiency assessment and identify design qualities of communicat-

ing proficiency through user reflection. We summarize our findings in a set of design and

engineering guidelines for proficiency awareness in interactive systems, highlighting that

proficiency feedback makes performance interpretable for the user.
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Zusammenfassung

Zusammenfassung

In einer zunehmend digitalen Welt schaffen technologische Entwicklungen - wie datenge-

steuerte Algorithmen und kontextabhängige Anwendungen - neuartige Interaktionsmöglich-

keiten mit digitalen Geräten. Jedoch verlassen sich Nutzer oftmals auf die Intelligenz dieser

Systeme, ohne dabei selbst auf eine persönliche Weiterentwicklung hinzuwirken. Wird ein

solches Vorgehen angestrebt, verlangt dies seitens der Anwender eine erhöhte Aufmerk-

samkeit. Es ist daher herausfordernd, ein entsprechendes Design für Kompetenzbewusstsein
(Proficiency Awareness) zu etablieren. Das primäre Ziel dieser Arbeit ist es, eine Methodik

für das Design und die Implementierung von interaktiven Systemen aufzustellen, die Nut-

zer dabei unterstützen über ihre eigene Kompetenz zu reflektieren, um dadurch Lerneffekte

implizit wahrnehmen können.

Diese Arbeit stellt ein Konzept für fähigkeitsbewusste Systeme (proficiency-aware systems)

vor, welche die Fähigkeiten von Nutzern abschätzen, die Interaktion entsprechend anpas-

sen sowie das Bewusstsein der Nutzer über deren Fähigkeiten fördern. Hierzu sollten die

Systeme gesammelte Daten von Nutzern einsetzen, um Lerneffekte sichtbar zu machen. Die

Möglichkeit der Anwender zur Selbstreflexion ist hierbei als entscheidend anzusehen, um

als Motivation zur Verbesserung der eigenen Fähigkeiten zu dienen.

Eine zentrale Herausforderung solcher Systeme ist die Tatsache, dass Nutzer - im Vergleich

zur Abschätzung des Systems - oft eine divergierende Selbstwahrnehmung ihrer Kompetenz

haben. Im ersten Moment sind daher die Vorteile einer persönlichen Weiterentwicklung nicht

unbedingt ersichtlich. Daher baut diese Forschungsarbeit nicht darauf auf, Nutzer über vor-

gegebene Lernstrategien zu unterrichten, sondern sie bedient sich der Möglichkeiten inter-

aktiver Systeme, die Anwendern die notwendigen Hilfsmittel zur Verfügung stellen, damit

diese selbst über ihre Fähigkeiten reflektieren können. Einem Zeitungseditor könnte bei-

spielsweise die aktuelle Textschwierigkeit angezeigt werden, während einem passionierten

Sportler dessen Muskelaktivität veranschaulicht wird.

Zunächst wird herausgearbeitet, wie sich die Fähigkeiten der Nutzer mittels physiologischer

Sensortechnologien erkennen und quantifizieren lassen. Die Evaluation von Interaktionssze-

narien demonstriert die Umsetzbarkeit fähigkeitsbewusster Systeme, basierend auf der Ana-

lyse von Blickbewegungen und Muskelaktivität. Hierbei kommen Algorithmen des maschi-

nellen Lernens zum Einsatz, die das Leistungsniveau der Anwender für verschiedene Tätig-

keiten berechnen. Im Besonderen analysieren wir stationäre Aktivitäten, die hauptsächlich

den Sehsinn ansprechen (Lesen, Aufnahme von Informationen), sowie dynamische Betäti-

gungen, die die Motorik der Nutzer fordern (Spielen von Instrumenten, Fitnessübungen).

Der zweite Teil zeigt auf, wie Systeme das Bewusstsein der Anwender für deren eigene

Fähigkeiten fördern können, einschließlich der Designherausforderungen , wann und wie

das System erkannte Fähigkeiten kommunizieren sollte. Abschließend wird die Notwendig-

keit von Toolkits für Sensortechnologien hervorgehoben, um die Implementierung derartiger

Systeme für ein breites Publikum zu ermöglichen.
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Die Forschungsarbeit beinhaltet eine Definition für fähigkeitsbewusste Systeme und veran-

schaulicht dieses Konzept durch den Entwurf und die Implementierung interaktiver Syste-

me. Ferner werden technische Anforderungen objektiver Echtzeitabschätzung von Nutzer-

fähigkeiten erforscht und Designqualitäten für die Kommunikation dieser Abschätzungen

mittels Selbstreflexion identifiziert. Zusammengefasst sind die Erkenntnisse in einer Reihe

von Design- und Entwicklungsrichtlinien für derartige Systeme. Insbesondere die Kommu-

nikation, der vom System erkannten Kompetenz, hilft Anwendern, die eigene Leistung zu

interpretieren.
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Chapter1
Introduction

The ubiquity of interactive systems has substantially changed how we accomplish everyday

tasks. They perpetuate our daily routine and support us in performing necessary tasks. Often,

this change is displayed as an increase in comfort and efficiency. Machines take care of

laborious tasks for us, and users increasingly depend on the intelligence [119] of interactive

systems. There is no need for users to burden themselves with trifles, allowing us, in theory,

to take a more holistic approach to task solving.

This technological progress opens up the opportunity for users to acquire novel skills that

would otherwise be too cognitively demanding to develop. Here, interactive systems have

the potential to enable users to advance their own proficiency by guaranteeing sufficient

mastery of basic skills. Imagine an interactive system that supports a painter in perfecting

their stroke work by assessing its fidelity. Such a system is unlikely to help them become

a more creative painter but allows them to focus on the creative aspects rather than worry

about their technique. Similarly, a translation aid should encourage the user to further their

own language proficiency by calling their attention towards the smaller details of language

that make up different cultures, thus leading to a better overall understanding of the foreign

language.

However, this approach is challenging as users often have a different self-perception of their

own proficiency, especially if proficiency is low [172]. This skewed reality can potentially

be dangerous, e.g., "relying on Dr. Google" [2] and makes it all the more challenging for

systems to encourage personal growth in users. While designers of interactive systems only

have the best intentions in mind — providing pristine assistance to users — we argue that

highly customized and perfect systems are seldom employed for the users’ learning benefits.

Further, the benefits of personal growth and advancing one’s repertoire might not be apparent

to users, especially if there are already systems that can take care of tedious tasks. This is

unfortunate, as the collected user information could prove valuable in supporting the user to

reflect on their own proficiency.

For example, smartphones give us access to an egocentric map that adapts to our current envi-

ronment at any given time, dramatically boosting our ability to navigate and orient ourselves
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in foreign areas. While this "resurrection" [155] of maps provides new opportunities for

proficient users to develop their skills, less proficient users gladly accept the simplification

provided by GPS-enabled smartphones. For this user group, there is just no need anymore

to go through the painstaking process of acquiring this skill. In fact, the majority of young

adults in the UK under the age of 38 would struggle to orient themselves without their mo-

bile phone [129]. In response, there have been calls to teach basic navigation in schools [42],

highlighting that less proficient users are especially prone to so-called de-skilling.

Consequently, we need to rethink how interactive systems can encourage users to advance

their own proficiency. The challenge here lies in the fact that the system would need to

convince users that increasing their proficiency will pay off in the long run; a fine line to

walk between success and possible abandonment by the user. To address this challenge, this

thesis proposes the concept of proficiency-aware systems as one solution. By incorporating

proficiency awareness into their design, proficiency-aware systems are not only able to adapt

interaction based on the user’s proficiency but also allow users to reflect on their proficiency.

We highlight the challenge of designing for proficiency by (1) investigating technical aspects

to estimate user skill and expertise, and (2) providing guidelines on how to operationalize

proficiency in interactive systems. Ultimately, the goal is to provide users with the necessary

means to reflect on their own proficiency. In this aspect, proficiency-aware systems are

unique compared to other context-aware systems in that they may systematically withhold

better user support to encourage personal growth. It is thus essential that users become aware

of their own proficiency to realize the benefits of the additional effort [278].

In this thesis, we define proficiency awareness as an interactive system’s capability to iden-

tify and quantify a suitable proxy for the user’s proficiency in a given task. Often, proficiency

assessments involve lengthy tests that are not suitable for deployment in interactive systems.

Consequently, this work makes use of ubiquitous sensing technologies to infer the user’s

proficiency. Classifying user states — and proficiency — leveraging physiological sensing

is objective and allows real-time interaction with the system. Research has already shown

that physiological markers are powerful indicators of user proficiency for different modali-

ties [167, 338, 234].

Further, we identify design constraints of proficiency awareness. Users might easily get

annoyed by a system that purposefully does not support them as well as it potentially could.

Thus, it is vital that users understand this behavior and the system properly communicates

its intent. Doing so allows users to become aware of their proficiency and ultimately see

the benefits of investing in its advancement. As such, proficiency awareness is not just

an additional dimension of input for interactive systems but is actively governed by the

proficiency-aware system. A key goal of this thesis is to develop systems that allow for

engaging user experiences [250], whilst users still have the option to identify necessary

investments for their own personal growth. Here, we have identified the opportunity for

reflection and properly curated feedback on estimated proficiency as essential. Allowing

users to interpret their proficiency enables them to reflect on their skills and knowledge [278].
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1 Introduction

In the course of this research, we first identify suitable sensing modalities in detecting and

quantifying proficiency. We focus on gaze- and electromyography-related metrics concern-

ing their applicability for proficiency-aware systems. Gaze is a ubiquitous modality and

offers rich insights into user perception. Electromyography is the measurement of mus-

cle activity and allows distinctive insights into how users perform manual tasks. Here, we

provide machine learning algorithms that can estimate users’ proficiency levels in various

domains, including stationary vision-dominant tasks (reading, information intake) and dy-

namic manual tasks (playing instruments, fitness exercises) involving body movements. Se-

lected datasets and algorithms are publicly available. A set of engineering guidelines for

proficiency-aware systems serves as an entry point for future research. Secondly, we high-

light design constraints and opportunities of proficiency-aware systems through identifying

how to design for proficiency awareness in interactive systems. We conclude with a set

of design guidelines for future systems. This is complemented by our open-source toolkit

EMBody, that we contribute to facilitate the implementation and design of proficiency-aware

systems for a wider audience.

1.1 Research Methodology

This thesis presents the concept of proficiency-aware systems; interactive systems that adapt

based on the user’s estimated proficiency. We envision that proficiency-aware systems can

provide engaging experiences for users, which has not yet been a prominent design goal

for interactive systems that leverage context awareness. Consequently, we base this inves-

tigation on two main research pillars: Detecting and Quantifying Proficiency (Part I) and

Facilitating Proficiency Awareness (Part II). This section provides a short introduction to

the research methodology of both parts and how they are informed by existing research. A

more detailed analysis is later provided in Chapter 2. Our research is based on user-centered

design methods [177] and corresponding evaluations [80], offering empirical and artifact

contributions through a number of use cases (Chapters 3 to 6).

Proficiency in Interactive Systems

We position this research within the area of adaptive systems, heavily drawing from es-

tablished paradigms for user adaptation. This includes technical aspects as well as design

considerations. Thereof results our first main research pillar for this thesis: Detecting and
Quantifying Proficiency (Part I). During the course of this work, we identified new chal-

lenges and opportunities for interactive systems to detect and quantify proficiency.

For the purpose of this thesis, we divided typical user interaction into two classes: tasks that

are predominantly governed by (1) the cognitive ability of users and (2) physical tasks, i.e.,

tasks that require users to perform body movements. For cognitive tasks, choices of sens-

ing modalities include – among others – electroencephalography (EEG) [167], functional

near-infrared spectroscopy (fNIRS) [338] and gaze [68]. We opted for gaze in our research
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as setup costs are minimal, it is unobtrusive and provides sufficient insights into cognitive

processes.

For physical tasks, we opted to employ electromyography (EMG), measuring the elec-

tric field during muscular activity. EMG provides superior distinctiveness and is privacy-

sensitive in comparison to vision-based approaches [18] when detecting finer motor tasks. It

further allowed us, compared to inertial measurement units (IMUs) [279], to provide actual

insights of the muscle activity to users.

We acknowledge that this separation is theoretical, and most user interaction includes aspects

from both cognitive and physical tasks. While it is impossible to apply a clear separation,

this work also showcases that it is not necessary to do so. Proficiency-aware systems are

effective even when focusing on one class. Often, it is even beneficial to focus on physical

or cognitive aspects only, allowing precise feedback for the user. The choice of relevant

proxies for proficiency estimation (cf. Chapter 2) is far more critical.

A User-Driven Approach to Data Interpretation

The second main pillar of the research in this thesis is: Facilitating Proficiency Awareness
(Part II). Here, we investigate how proficiency-aware systems can facilitate the user’s un-

derstanding of their own proficiency. We envision that systems that foster personal growth

provide engaging experiences for users [250]. In our work, we exploit user reflection and

encourage awareness to enable user-driven interpretation of their own data. In other words, a

proficiency-aware system communicates feedback on the collected data, but the users them-

selves need to make the final interpretation. In two use cases, we show that this strategy

works for bodily signals (EMG) as well as for everyday computer work in a text production

task.

1.1.1 Research Questions

To further structure our investigation, we introduce two research questions for each of the

main pillars. RQ1 and RQ2 comprise the first part on Detecting and Quantifying Pro-
ficiency, while RQ3 and RQ4 provide guidance for Facilitating Proficiency Awareness.

Each research question is addressed in a chapter in this thesis as outlined in Table 1.1.

In the first pillar, RQ1 guides our investigation of gaze as a modality to estimate a user’s

proficiency, including different use case scenarios and interaction forms. These include ad

hoc systems, such as language proficiency detection, and proficiency-aware systems with

prolonged user interaction, such as detection of programming proficiency of students and

the proficiency of piano players. Analogously, RQ2 addresses technical challenges and

opportunities for EMG-based proficiency estimation of motor tasks. Here, we focus on the

technology’s capabilities in detecting fine motor tasks in a guitar tutoring and fitness exercise

scenario.
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1 Introduction

RQ Research Questions Chapter

Detecting and Quantifying Proficiency
RQ1 What are suitable metrics inferred from a user’s gaze for proficiency estimation? 3

RQ2 How accurately can we estimate proficiency from a user’s muscle activity? 4

Facilitating Proficiency Awareness
RQ3 What are design criteria for proficiency awareness in interactive systems? 5

RQ4 How can we support a wide audience in realizing proficiency-aware systems? 6

Table 1.1: Overview of the research questions that guided the work in this thesis.

In the second pillar, RQ3 guides establishing guidelines for designing proficiency awareness.

Here, we study an EMG-based feedback system and a system that provides proficiency feed-

back for a text production task. As an outlook, we probe the use of artificial proficiency for

music improvisation in a study with piano players, deriving findings on how to seamlessly

integrate proficiency enhancements. Complementing this part is RQ4, where we inquire

how to support a wider audience in implementing proficiency-aware systems.

1.1.2 Research Context

The work in this thesis was conducted over the course of about five years in the Human-

Computer Interaction and Cognitive Systems group at the University of Stuttgart and the

Human-Centered Ubiquitous Media group at the Ludwig Maximilian University of Munich.

Both groups are supervised by Prof. Albrecht Schmidt. During this time, several collab-

orations with project partners and researchers have shaped this thesis. A detailed list of

contributing publications, involved co-authors, and my contribution to each of these publi-

cations is provided in the appendix (Contributing Publications).

SFB TRR-161 - Quantitative Methods for Visual Computing

The first parts of this thesis were conducted within the Collaborative Research Center SFB-

TRR 161: Quantitative Methods for Visual Computing1, connecting 17 project teams of

the University of Stuttgart, University of Constance, and the Max-Planck Institute for Bi-

ological Cybernetics. Within the project C02: Physiologically Based Sensing and Adap-

tive Visualization, we researched new methods and techniques for cognition-aware vi-

sualizations. The collaboration within the research center resulted in joint publications

[145, 146, 183, 97, 147].

1 http://www.sfbtrr161.de/
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ERC Amplify - Digital Technologies for Amplifying Human Perception

The major part of the research in this thesis was conducted within the European Union’s

Horizon 2020 Programme under ERCEA grant no. 683008 AMPLIFY2 at the Ludwig

Maximilian University of Munich. The overall objective of this project is to systemati-

cally research, explore, and model new means for increasing the human intake of informa-

tion in order to lay the foundation for new and improved human senses enabled through

digital technologies and to enable artificial reflexes. The work resulted in several publica-

tions [143, 148, 168, 123, 224, 62, 149, 331, 159, 151, 144, 150].

1.2 Contributions to Human-Computer Interaction

Proficiency-aware systems support the user in recognizing their own proficiency or lack

thereof. While existing interactive systems readily adapt to a user’s context, possibly includ-

ing their proficiency, designing for the user’s awareness of their proficiency is usually not the

primary goal. This thesis investigates feasible proxies for estimating a user’s proficiency and

how these can be exploited to facilitate proficiency awareness in these systems. In the con-

text of this research, we explore related aspects of the grand challenges for human-computer

interaction (HCI) [292].

Calm Computing Contradicts Engaging Experiences

Ubiquitous technologies allow us to capture more and more user data. Context-aware ap-

plications leverage this information and provide tailored adaptation for the user [61]. Here,

interactive systems have the potential to be perfect assistants, seamlessly integrating them-

selves into everyday tasks [324]. However, is "calm technology" [325] something users want

and expect of future computing systems?

While perfect systems offer seamless interaction and maximize performance, we argue that

optimizing for performance is not always beneficial for the user. Involved stakeholders might

prefer the fastest, most efficient system operation, yet this goal is often dictated by short-

term success and profit. Long-term benefits for users are ignored, although they could easily

be realized with the collected data at hand. We believe that engaging experiences [250],

where users are challenged and ultimately advance their own skills and knowledge, are much

more rewarding. However, it is a fine line between motivating users through challenges

while simultaneously not demanding too much of them, as this could potentially lead to

abandonment.

Physiological Data Is Powerful but Complex

Leveraging physiological data from users in context-aware systems has the potential to in-

novate human-computer interaction. Through extending the available communication band-

2 https://amp.ubicomp.net/
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width between the user and the system, physiological computing allows for more natural

and implicit interaction with machines [75]. Physiological data enables us to determine user

states objectively and in real-time; no explicit response from the user is required [35]. Rather

than being directed by users, systems can learn from users shifting to a more symbiotic rela-

tionship where systems leverage user awareness in real-time [161].

However, there are still fundamental challenges that need to be fully addressed before phys-

iological computing can achieve its full potential, as identified by Fairclough [75]. Among

these are the complexity of the psychophysiological inference and the appropriate user state

representation. Especially in HCI research, the necessary expertise to develop such systems

is sparse, inhibiting the widespread use of physiological computing in HCI applications.

Yet, the potential of physiological data is most promising in the context of estimating users’

proficiency.

Thesis Contributions

To advance research in tackling these challenges, this thesis introduces the concept of

proficiency-aware systems. More specifically, we contribute:

1. A definition and presentation of proficiency-aware systems through a series of use

cases.

2. An analysis of technical requirements for real-time, objective proficiency assessment

for gaze- and EMG-based interactive systems.

3. Design guidelines for proficiency awareness in interactive systems, detailing when and

how to communicate proficiency.

4. A toolkit approach to implementing EMG-based interactive systems and correspond-

ing engineering guidelines for proficiency-aware systems.

1.3 Thesis Outline

The content of this thesis is distributed over seven chapters. Chapters 1 and 2 introduce

the topic of this work and the vision of proficiency-aware systems. The two main parts

of this thesis — Parts I and II — cover the two main research pillars in the context of

proficiency-aware systems: detecting and quantifying proficiency as well as facilitating pro-

ficiency awareness. Here, Part I focuses on technical aspects, highlighting algorithmic work

on gaze- and electromyography-based interactive systems. Part II complements this inves-

tigation by illustrating how proficiency awareness can be facilitated through design recom-

mendations and toolkit approaches. Within these two main parts, chapters introduce related

research and contain a number of use cases based on conducted research works. A sum-

mary highlights implications for each chapter. The thesis concludes with Chapter 7, which
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summarizes design and engineering guidelines for proficiency-aware systems and presents

opportunities for future work.

1.3.1 Introduction and Foundations

Chapter 1 – Introduction

The first chapter introduces the context, motivation and topic of this thesis. It further intro-

duces the vision of proficiency awareness in interactive systems and summarizes challenges

and resulting contributions of this research.

Chapter 2 – Towards Proficiency-Aware Systems

This chapter provides a detailed definition of proficiency-aware systems and how it is posi-

tioned within the research corpus of interactive systems. On the one hand, the chapter details

how the conducted research draws from knowledge of context-aware applications, ubiqui-

tous and physiological computing to address technical challenges of the presented vision.

On the other hand, connections to research about user reflection and feedback are outlined

to highlight their importance in creating engaging user experiences with proficiency-aware

systems.

1.3.2 Part I: Detecting and Quantifying Proficiency

Chapter 3 – Proficiency From Gaze

Gaze is presented and evaluated as a sensing modality for proficiency-aware systems. In this

chapter, we focus on interaction scenarios that predominantly include cognitive tasks. To do

so, we leverage gaze-based estimation of user proficiency and present technical requirements

and opportunities.

Chapter 4 – Proficiency From Electromyography

Contrary to Chapter 3, this chapter focuses on physical tasks involving motor skills and mus-

cle movements. In this area, we identified electromyography as a suitable sensing modality

and investigated technical limitations and challenges of proficiency estimation for fine motor

tasks.

1.3.3 Part II: Facilitating Proficiency Awareness

Chapter 5 – Designing Proficiency Awareness

Drawing from the findings in Part I, knowing that proficiency estimation is technically feasi-

ble, this chapter illustrates how to subsequently design for proficiency awareness. Here, we

10



1 Introduction

present three cases, concluding with design guidelines for EMG-based systems, everyday

computer work and artificial proficiency.

Chapter 6 – A Toolkit Approach to Implementing Proficiency-Aware Systems

Complementing the previous chapter, Chapter 6 introduces a toolkit approach to implement-

ing proficiency awareness. Having established that complexity of sensing modalities inhibits

their applicability in proficiency-aware systems, we present EMBody, a data-centric toolkit

for EMG-based interface prototyping and experimentation.

1.3.4 Conclusion and Future Work

Chapter 7 – Conclusion and Future Work

This chapter concludes the research conducted within this thesis. We summarize the findings

through a set of design and engineering guidelines for proficiency-aware systems, addressing

challenges that we identified at the outset of this work. Additionally, we discuss opportuni-

ties for future work and the further development of proficiency-aware systems.
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Chapter2
Towards Proficiency-Aware Systems

In everyday tasks, we are supported by interactive systems that adapt to our actions and

environment. While these systems are intended to make our lives easier, designers of such

systems tend to overlook how the observed context could be used to advance a user’s skill

and expertise. Allegedly, there are valid design reasons for doing so, such as (1) the inability

to provide meaningful information for the user, (2) the increased cognitive effort required of

the user, or (3) the absence of a suitable learning domain and established procedures.

In this thesis, we showcase that communicating proficiency to users is feasible and ben-

eficial, regardless of task complexity or domain. We also show the inherent potential of

interactive systems to support users in advancing their proficiency. The following definition

of proficiency-aware systems provides the framework for our investigation. It is informed by

research in the area of adaptive systems and context-aware applications, as well as research

on user reflection and feedback within the domain of human-computer interaction. The for-

mer provides us with valuable insights into how to measure and use proficiency as input for

proficiency awareness. The latter informs our research on how to communicate and leverage

proficiency for the user’s benefits. The duality of this approach is detailed in this chapter.

This chapter is based on the following publications.

Jakob Karolus, and Albrecht Schmidt. 2018. Proficiency-Aware Systems: Adapting

to the User’s Skills and Expertise. In Proceedings of the 7th ACM International Sym-
posium on Pervasive Displays (PerDis ’18). ACM, New York, NY, USA.

https://doi.org/10.1145/3205873.3210708

Jakob Karolus, and Paweł W. Woźniak. 2021. Proficiency-Aware Systems: Designing

for User Reflection in Context-Aware Systems. it - Information Technology.

https://doi.org/10.1515/ITIT-2020-0039
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2.1 A Definition of Proficiency-Aware Systems

The term proficiency is a multifaceted construct incorporating, among others, the user’s

inherent abilities, experience, knowledge, and acquired skill. The presented definition is

concerned with an operationalization of this construct and its role within proficiency-aware

systems. We first provide a clear definition of the term proficiency, which will form the basis

for the presented definition of proficiency-aware systems.

The Oxford English Dictionary [225] defines proficiency as:

a. The quality or fact of being proficient; the degree of competence attained;

adeptness, skill in a particular field.

b. A skill, a talent; (now frequently) a certain standard of skill acquired after a

period of education or training.

Note that proficiency is bound to a particular field of application. We represent this fact

in our definition by allowing proficiency to be an aggregation of skills in associated task

domains. For proficiency-aware systems, we define proficiency as:

Definition - Proficiency

Proficiency is the aggregated construct of any skills, knowledge, competence, or ex-

perience of a person relevant to the interaction between the person and a system (the

task domain).

If we define proficiency as an aggregated construct, it is easier to operationalize and quantify

proficiency. Specific tasks can be broken down and the associated skill levels can be obtained

with ease. For example, it might be challenging to create a metric to ascertain a user’s

proficiency in "write an essay about American history in plain English". However, it is

feasible to combine their skill in "write in plain English" and their competence in American

history.

Accordingly, we define proficiency awareness and proficiency-aware systems as:

Definition - Proficiency Awareness

Proficiency Awareness of (computing) systems is a functionality of estimating a

user’s proficiency in the associated task domain and facilitating its understanding for

the user.
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2 Towards Proficiency-Aware Systems

Definition - Proficiency-Aware Systems

Proficiency-Aware Systems are systems that use estimates of a user’s proficiency to

tailor the interaction in their associated task domain(s). A proficiency-aware system
is able to adapt content, presentation, and interaction to

1. support the user in accomplishing their task and

2. facilitate the user’s understanding of their own (lack of) proficiency.

Hence, the term proficiency-aware system refers to a dynamic interconnection between sys-

tem and user that continuously assesses the user’s ability to perform tasks using the system

and adapts accordingly. Such adaptations will enable a user experience tailored to the spe-

cific user’s proficiency. The proficiency hereby refers to the knowledge and skills relevant

for using the system, such as reading skills, background knowledge, motoric skills, and cog-

nitive abilities.

Notably, this definition allows us to draw parallels to context and context-aware systems

(cf. Section 2.2.3). At its core, a proficiency-aware system is a context-aware system that

focuses on the user’s proficiency. Challenging the user to improve their proficiency is a

novel aspect of proficiency-aware systems and contrasts to the striving for conformity of

other assistive systems. This potentially lets users reflect on their work — a vital design goal

in HCI [16] — facilitating an understanding of their own proficiency (cf. Section 2.3.1).

In our vision, a proficiency-aware system provides the means for users to become better

in the task domain. We envision that this creates engaging experiences [250], where users

can fully reflect on their proficiency and its progress. These proficiency metrics do not

necessarily have to be performance-oriented, as long as the user knows how to connect

them to the task. Instead of developing highly customized systems with delicate algorithms,

proficiency-aware systems rely on a user-driven interpretation of context, where the user is

included in the process and provides the final interpretation of available data.

An envisioned model of a proficiency-aware system is depicted in Figure 2.1. The sys-

tem is governed by a continuous cycle involving proficiency estimation on the one side and

appropriate adaption on the other side. Both sides mutually influence each other until an

equilibrium is reached. Relevant skills are inferred and supplied to the system. Here, the

system itself does not necessarily have to be responsible for estimating individual factors

contributing to a user’s proficiency but aggregates factors to a suitable proxy for adapta-

tion. Additionally, a proficiency-aware system facilitates a user’s understanding of their

proficiency through communicating the estimation back to the user.

2.1.1 Proficiency as an Aggregated Construct

In our conceptualization for proficiency-aware systems, proficiency is an aggregated con-

struct of relevant user skills, knowledge, experience, and competence that may be inferred
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Figure 2.1: Depiction of a proficiency-aware system. Relevant skills are inferred and supplied

to the system. Adaptation and estimation mutually influence each other until an equilibrium is

reached. Additionally, a proficiency-aware system communicates proficiency back to the user.

from measured metrics. The aggregation of relevant user skills contributes to an understand-

ing of the user’s proficiency in the actual task at hand. While overall proficiency is usually

difficult to measure accurately, individual contributing skill levels may be easier to estimate.

In practice, it is often sufficient to consider only relevant skills that might influence a per-

son’s proficiency for the given task. Identifying these proxies is a key design task when

building a proficiency-aware system.

We illustrate this with an example: a professional editor for a newspaper is given the task

to proofread an article about a breakthrough discovery in computer science. In this case,

we can assume a high skill level in writing, a skill inherent to this particular user. Though,

unless the editor has a computer science background, their competence about the topic is

limited. This means that the editor is already at a disadvantage, as their limited knowledge

about the topic impacts upon the proofreading task. Here, a proficiency-aware system might

offer explanations for unfamiliar terms or suggest articles to study to prepare for the task.

Further, let us consider two different contexts: a typical workday around 11 am and a stress-

ful day just before the end of work. The editor’s proofreading skill is unchanged, yet, the

editor will have a harder time with the task within the second context. This is a typical exam-

ple of a context-aware system and situational impairments [327]. Notice that we explicitly

did not include short-term impairment factors in our definition of proficiency. Such factors

should be modeled through context. Hence, a proficiency-aware system can make use of the

context by deciding to support the editor for the second context, focusing on task comple-

tion as the editor is probably not keen on sitting through an extended learning session. In

contrast, if the context allows, the proficiency-aware system points out ways to increase the

editor’s knowledge about computer science.

For some systems, this set of skills is readily available and straightforward to measure. How-

ever, it is often impossible to quantify the skill level to a degree necessary to provide effective
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2 Towards Proficiency-Aware Systems

adaptation. Consider this next example: you are tasked with writing a proposal for a broad

audience on how to make your city greener. This task requires skills in several areas, such as

writing in plain and understandable English, structuring one’s ideas concisely, and providing

convincing arguments. The latter two skills are inherently difficult to estimate. Yet, it may

not be necessary to model the complete proficiency to support the user. Here, measuring the

skill of being able to write in understandable English could already be sufficient. This puts

the writer in a better position to write the required proposal, not only for this specific topic

but also for other topics.

Part I of this thesis will focus on how we can detect and quantify users’ proficiency, address-

ing the technical challenges of proficiency-aware systems. To complement this research,

Part II will focus on how we can provide adequate proficiency support for the user and

facilitate an understanding of proficiency through feedback and reflection. The following

sections will depict relevant foundations in each research area.

2.2 The System Side

Proficiency-aware systems are inherently adaptive systems that react to user input during

runtime. More specifically, proficiency-aware systems are closely related to context-aware

applications and may base proficiency estimation on ubiquitous sensing modalities. This

section highlights necessary foundations in these areas and how they inform the design of

proficiency-aware systems.

2.2.1 Adaptive Systems

Addressing user variance through adaptive user interfaces that allow users to customize and

personalize the system to their needs has been in the focus of human-computer interaction for

decades [96]. Adapting to and predicting [116] user needs dates back to early user interfaces,

such as the command-line [174]. Common approaches focus on adding intelligence [22] and

user modeling [84].

Proficiency is closely related to a person’s inherent cognitive and physical abilities. While

there exists work that investigates "ability-based optimization" [264, 265], long-term or

permanent inhibitors of proficiency should be considered separately and modeled appropri-

ately. The main strengths of proficiency-aware systems lie in the adaptation during runtime.

Consequently, proficiency-aware systems are designated as adaptive systems, not adaptable

systems.

Interestingly, adapting user interfaces may not always be beneficial for the user. Predictabil-

ity and accuracy of adaptation play a vital role in user acceptance [88]. Users tend to be

reluctant to undergo customization, as it requires time and cognitive effort while immedi-

ate benefits are not visible [187, 176]: the "paradox of the active user" [36]. As outlined,

17



a proficiency-aware system should confer the benefits of undergoing a change of task ap-

proach and modality. The system needs to convince the user that increasing their proficiency

will pay off in the long run, a key design goal for proficiency-aware systems. Sometimes this

may even require withholding possible adaptations, contrarily to classical adaptive systems.

2.2.2 From Calm to Engaging Ubiquitous Computing

The omnipresence of interconnected systems, from computers to smartwatches, intelligent

wearables, and smallest computing units, marks the three parts of technology required for

ubiquitous computing as envisioned by Mark Weiser in 1991: accessible computing units

(with displays), appropriate software applications, and a network tying them together [324].

"The most profound technologies are those that disappear. They weave themselves into the
fabric of everyday life until they are indistinguishable from it."

Weiser [324]

Weiser believed that pushing computers into the background would allow us to become

more aware of the people on the other end, especially for computer-based communication;

an early take on the unhealthy impact of computerized workplaces. While contradictory at

first, his concept of "calm technology " [325] achieves its merits by providing us with more

information. The idea is to provide this additional information in a way that seamlessly inte-

grates into the workplace and everyday life: technology that is "tuned into what is happening

around us " [325].

While HCI research has made extensive progress towards adaptive mechanisms and systems,

it can be argued that calm technology might not necessarily be most beneficial for users of

adaptive systems, challenging Weiser’s original vision. Instead, supporting systems should

be visible and provide meaningful engagement [250]. This is a key goal for proficiency-

aware systems, so that users can fully reflect on their proficiency and use of the system.

2.2.3 Context-Aware Computing Applications

With a multitude of devices comes the significant challenge of interconnection and cooperat-

ing on the user’s behalf, especially in constantly changing environments. In a seminal work

from 1994, Schilit et al. [272] already formulated this challenge, but also saw an opportunity

in it:
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"One challenge of mobile distributed computing is to exploit the changing environment with a
new class of applications that are aware of the context in which they are run."

Schilit et al. [272]

Technological advances have developed the original definition of context-aware applications

and the four categories as proposed by Schilit. While the user’s location: "where you are,

who you are with, and what resources are nearby" [272] played a vital role in early systems

and Schilit’s definition, other sources of information have become equally important.

A more recent definition by Anind K. Dey provides a slight generalization to the definition

of context:

"Context is any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves."

Dey [60]

In this thesis, we draw from this definition for our own definition of proficiency-aware sys-

tems (cf. Section 2.1). In essence, proficiency can be modeled as context as it characterizes

the situation of the user. Consequently, proficiency awareness is based on context awareness:

"A system is context-aware if it uses context to provide relevant information and/or services to
the user, where relevancy depends on the user’s task."

Dey [60]

This aspect is reflected in the first part of our definition of proficiency-aware systems: "sup-

port the user in accomplishing their task". However, while Dey’s definition above already

considers user skill as relevant information, we argue that this is rarely employed for the

user’s benefit besides supporting task completion. Given that proficiency assessment is tech-

nically feasible, it remains a challenge to investigate how being aware of one’s proficiency

affects everyday tasks and how systems can effectively communicate proficiency metrics to

assure an optimal work experience.

While system adaptation and change of context go hand in hand, there is more to this recip-

rocal relationship:
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"A change in the application will inevitably lead to a change in the context (...)"

Schmidt [273]

We believe that explicitly communicating proficiency in addition to implicit system adapta-

tion is worthwhile to investigate. In essence, this thesis focuses not only on how the system’s

adaptation influences the current context but also how communicating this proficiency esti-

mation can benefit the user apart from the current task at hand.

Consequently, there are unexplored opportunities in understanding the user’s skill level and

using that information to improve the user experience of everyday computer work. In

this thesis, we highlight proficiency as an underexplored aspect of the context in context-

aware systems. Understanding how we can leverage proficiency to assist users in their pri-

mary tasks and support users in understanding their own proficiency is a crucial aspect of

proficiency-aware systems.

Yet, this form of implicit interaction is inherently flawed if users question and disagree with

the system’s decisions. This issue is especially prominent for creative tasks, art, or ludic

interaction. By simply providing means for proficiency advancement, e.g. a stroke analysis

for a painter, we envision that proficiency-aware systems are able to support creative tasks.

Here, users have full control in deciding whether those means are important for them.

2.2.4 Physiological Sensing

Being able to assess user states objectively alleviates the need for explicit customization and

prevents subjective user bias. A specific method within this paradigm is physiological com-

puting [75], which aims for real-time adaptation through measuring psychophysiological

user parameters.

"Physiological computing has the potential to render human–machine dialogue as dynamic,
collaborative, spontaneous and effortless."

Fairclough [75]

Physiological sensing offers opportunities for interactive systems, yet there are fundamental

challenges that inhibit this potential [75]. Among others, the complexity of the psychophysi-

ological inference and the appropriate user state representation often require extensive exper-

tise, posing a high entry barrier for use in HCI applications. However, with the proliferation

of ubiquitous sensing technologies, the setup of sensors and associated algorithms are be-

coming more accessible [30, 156].
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In this thesis, we look at two specific modalities: gaze and electromyography in the context

of physiological sensing and their applicability for proficiency-aware systems. Gaze is an

unobtrusive sensing modality that provides insights into cognitive processes of users, while

electromyography exhibits high distinctiveness for recognizing motor task (cf. Section 1.1).

Besides looking at their capabilities in distinguishing proficiency levels, we investigate how

these technologies can be made accessible to less technically adept users by pursuing a

toolkit approach.

2.3 The User Side

The other key design goal of proficiency-aware systems is to facilitate a user’s understanding

of their own proficiency. Rather than employing a user modeling approach, proficiency-

aware systems offer means for reflection and learning through context awareness. Thus, we

need to investigate where, when, and how to facilitate this understanding.

2.3.1 Reflection and Feedback

Reflection has been a recurring theme in HCI. Schön’s [278] work on the nature of reflec-

tion has been particularly influential [16]. He distinguishes between reflection-in-action and

reflection-on-action. Reflection-in-action happens when performing a task and noticing un-

expected outcomes. Reflection-on-action is retrospective. While most systems focus on

reflection in a holistic interpretation, focused on daily life patterns [253], wellbeing [11] or

crowdsourced tasks [66], this thesis uses a more atomistic approach to reflection. The con-

cept of proficiency-aware systems supports reflection-in-action through making the conse-

quences of users’ actions easily visible, exploring ways to foster reflection through interface

elements.

While many explorations have been conducted, it remains a challenge to understand the

design qualities that may foster personal reflection in interactive systems [15]. Pointers

from related research, such as design dimension of personal visualizations [126] and self-

reflection with ubicomp technologies [182], guide the research in this thesis (cf. Chapter 5).

Notably, this thesis draws from related work to guide the design of task-oriented reflection,

i.e., systems enable users to reflect on how they accomplish a task, rather than systems

encouraging personal self-reflection.

2.3.2 Learning and Skill Acquisition

Learning is the process of acquiring new knowledge and skills, either through experience

or by being taught. There are many theories about how we acquire and consolidate new

knowledge, such as Sweller’s cognitive workload theory [301]. This theory explains which
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cognitive factors can inhibit or foster learning. Out of the three components (intrinsic, ex-

traneous, and germane), germane workload is associated with the user’s effort to recognize

patterns and structure within the task, which might foster learning [302]. However, this sep-

aration of workload components is highly disputed [277] and challenging to operationalize

for interactive systems.

Analogously to the acquisition of cognitive skills, the exact mechanisms of consolidation

for physical skills — so-called motor memory — are not entirely understood either [171].

To learn new motor tasks, we rely on mimicking movements to get a sensation of how the

movements feel, relying on proprioception to orient ourselves in physical spaces [238].

Consequently, the work in this thesis focuses on how we can facilitate insights for users into

their proficiency, in contrast to providing an optimal learning strategy for the given tasks.

As learning strategies are highly person-dependent, a more abstract approach is favored in

this investigation by providing users with the means to engage in reflection but not with a

dictated method on how to do so.

2.3.3 Explainabilty and Interpretability

This aforementioned approach is also favorable in light of recent advances in machine learn-

ing. Powerful deep learning applications significantly advanced this research area. Yet, the

complexity of these algorithms comes at a price. The so-called black-box algorithms often

fail to explain their decision-making sufficiently. This is not only a problem for the devel-

oper (cf. algorithmic bias), but also for the user, especially if decisions are unpredictable and

questionable [37, 92]. The consequence is a loss of user trust.

As mentioned earlier, this work takes a different approach by (1) leveraging established

machine learning applications that allow for sufficient data transparency (Part I) and (2) by

investigating an approach for user-driven data interpretation (Part II), allowing the user to

make sense of the collected data.

2.4 Challenges and Dimensions of Proficiency-
Aware Systems

Proficiency-aware systems can be found everywhere and rely on a variety of sensors. They

can range from very simple to highly complex systems. Yet, developers rarely explicitly

consider designing for proficiency and the associated user benefits.

We identified a number of related challenges for the design and implementation of

proficiency-aware systems, which inspire the research parts of this thesis. The following

section highlights the challenges and how we addressed those in the presented research. We

note that this set is not exhaustive and only highlights particular dimensions identified by the

work in this thesis.
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2 Towards Proficiency-Aware Systems

2.4.1 Interaction Duration and Frequency

A proficiency-aware system might be used once for a short duration or be employed for a

longer duration, such as a student learning system [63]. Consequently, the interaction dura-

tion of a user with a proficiency-aware system is often predetermined by its usage scenario

and cannot be altered. A short duration must rely on local adaptation based on ad hoc con-

text, while prolonged interaction allows for a much more customized user experience, as

systems potentially have access to an extensive history of data.

In this thesis, we investigated systems that employ short-term and ad hoc user interaction

(Section 3.2). We identified that especially gaze as a modality is suited for this form of

interaction. Other gaze-related use cases (Sections 3.3 and 3.4) investigated prolonged inter-

action.

For electromyography (Chapter 4), we identified prolonged and multiple use of a

proficiency-aware system as more beneficial, as the data collected through this modality

is highly person-dependent. By allowing for sufficient observation time or even continuous

observation, precise proficiency assessments are possible.

Ultimately, this thesis reports on the feasibility of modality choices with regard to

proficiency-aware systems and highlights favorable interaction forms.

2.4.2 Adaptation Control and Agency

When interacting with a system, users perceive a sense of control when they feel that actions

of the system are evoked by them [209]. Similarly, a proficiency-aware systems can present

its users with a choice of adaptations by providing a recommendation, giving full control to

the user. However, this method requires an explicit action by the user. In contrast, implicit

adaptation allows for a seamless user experience while potentially leaving the user with a

feeling of a loss of control.

If the system has full control over the adaptation, users may perceive a loss of agency. Here,

adaptation frequency and noticeability of changes are crucial [38]. Our research is guided by

related works in this area, noticeably in the area of physiological computing. BACh [338] is

a system that automatically adjusts the playing difficulty of piano pieces based on the user’s

cognitive workload. Here, players reported more efficient learning with BACh, although

they had to relinquish control over how they approach learning the piece. Research by Ewing

et al. [74] takes this to the extreme by implementing a biocybernetic loop that feeds EEG

measures directly to the system allowing continuous adaption of the difficulty in a Tetris

game.

Consequently, it can be beneficial to restrict user control if the task can be divided into

ordered levels of proficiency. We include aspects of this approach throughout our use cases,

where the user relinquishes control to the system for some parts of the task (Sections 3.4,

4.2 and 4.3).
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In contrast, full user control requires explicit intervention. In Section 4.2, we evaluated both

approaches’ pros and cons by comparing automatic to manual adaptation in a guitar tutoring

system. The system only suggested a new difficulty level in the form of tempo adjustments.

The user was free to adhere to this recommendation or to choose their own tempo. Players

reported that the suggested tempi provided a good challenge and trusted the system’s as-

sessment. This showcases that especially beginner and amateur players appreciate a helping

hand in curating their learning process.

2.4.3 Task Complexity And Domain

To deliver effective feedback, it is often essential to incorporate task domain knowledge. In-

formed feedback tailored to the task domain can provide a more efficient learning experience

and show users how to improve. Yet, this knowledge might not be available.

In this thesis, we demonstrate that the concept of proficiency awareness is not limited to

complex systems but can be applied for everyday tasks (cf. writing task in Section 5.2).

Even if the task domain is complex (learning an instrument), there exist feedback choices

that are beneficial for the user (cf. Sections 3.4 and 4.2). One of the main goals of this work

is to depict that even simple metrics can often stimulate reflection in users. This strategy

potentially allows proficiency-aware systems to scale better than highly customized adaptive

systems.

2.4.4 Feedback Types and Communicating Proficiency

It remains a challenge how to properly convey motivation and avoid judgment. For users,

it might not be evident that the provided feedback is task-oriented, reducing its effective-

ness. Similar to most interactive systems, proficiency-aware systems suffer from a lack of

transparency during the decision-making process [37]. Automated analysis of complex sig-

nals is often challenging to understand for laymen. Hence, users view those decisions with

skepticism. Developers and engineers find sensing modalities too complex [75]. It should

be evident to the user what and why data is collected and, most importantly, for what it is

being used. Consequently, transparency of communicated proficiency should be carefully

considered to gain the user’s trust in the proficiency estimation.

This thesis addresses this challenge in two ways. First, we investigate different dimensions of

feedback that communicate proficiency back to the user for a variety of use cases (cf. FitBack

use case in Sections 4.3 and 5.1 as an example). Secondly, we believe that familiarity with

sensing modalities is essential for their acceptance. Chapter 6 directly addresses this issue

by proposing a toolkit for EMG-based interactive systems.
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Chapter3
Proficiency From Gaze

Seminal works by Buswell [33] and Yarbus [334] have first investigated a relationship be-

tween high-level cognitive processes and gaze behavior, indicating a top-down approach of

viewers in gaze-related tasks. More importantly, Yarbus [334] showcased that even when

confronted with the same stimulus, the eye movements of viewers were task-specific, i.e.,

they exhibited distinctive gaze behavior during free viewing vs. when given tasks related to

the stimulus, such as searching for an object.

Consequently, our eye movements and gaze behavior convey a lot of information about our

mental processes, including perception and cognition. As outlined in Section 1.1, this the-

sis leverages gaze as a ubiquitous sensing modality for user proficiency in tasks that are

predominantly of cognitive nature. This chapter explores how user interfaces can use in-

formation, such as its users’ gaze, to recognize the users’ proficiency. We contribute to the

understanding of human gaze properties to build interfaces in proficiency-aware systems.

The investigation in this chapter is strongly informed by existing research in connecting

eye movements and gaze patterns to user activities, skills, and knowledge. Seminal works

include Rayner’s [245] work on eye movements and reading, as well as Jacob and Karn’s

[134] review on eye-tracking metrics in HCI. We research the applicability of established

gaze metrics for proficiency-aware systems with a focus on specific challenges as outlined

in Section 2.4 in three use cases, guided by RQ1:

RQ1

What are suitable metrics inferred from a user’s gaze for proficiency estimation?

Language Proficiency

In this use case, we focus on interaction duration and frequency. Since detecting language

proficiency is a solved problem if enough gaze data is available (cf. Section 3.1), we look at

specific task requirements for ad hoc systems that only have limited access to a user’s gaze

data. This covers our dimension of ad hoc proficiency-aware system (cf. Section 2.4). In
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particular, the experimental study focuses on a task with low complexity (the visual stimulus

is simple) and already established metrics.

Programming Proficiency

Contrary to the first use case, estimating users’ programming proficiency is complex as the

teaching background greatly influences the user’s task-solving strategy. In this experimental

study, we opted for a longer interaction duration with the system. Consequently, we analyzed

top-down task-solving strategies of users and evaluated whether proficiency influences these

strategies.

Proficiency of Piano Play

In this last use case, we again opted for a complex task scenario (cf. Section 2.4). Like

the previous two use cases, we looked at established gaze metrics and extracted patterns

prominent for piano play. This use case additionally focuses on the user’s gaze metrics in

a continuous tutoring scenario. The system has detailed access to the user’s history of gaze

data, complementing our dimension of interaction duration (cf. Section 2.4).

This chapter is based on the following publications.

Jakob Karolus, Paweł W. Woźniak, Lewis L. Chuang, and Albrecht Schmidt. 2017.

Robust Gaze Features for Enabling Language Proficiency Awareness. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’17). ACM,

New York, NY, USA.

https://doi.org/10.1145/3025453.3025601

Calvin Liang, Jakob Karolus, Thomas Kosch, and Albrecht Schmidt. 2018. On the

Suitability of Real-Time Assessment of Programming Proficiency using Gaze Proper-

ties. In Proceedings of the 7th ACM International Symposium on Pervasive Displays
(PerDis ’18). ACM, New York, NY, USA.

https://doi.org/10.1145/3205873.3210702

Submitted for review.

Jakob Karolus, Johannes Sylupp, Albrecht Schmidt, and Paweł W. Woźniak.

EyePiano: Leveraging Gaze for Data-Driven Piano Tutoring.

3.1 Related Research

Gaze has played a major rule, both as input modality and evaluation tool in HCI. The

following section summarizes relevant research in this area. For an extensive overview of

gaze metrics in HCI and gaze-based interaction, we refer the reader to works by Jacob and

Karn [134] and Duchowski [69].
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3 Proficiency From Gaze

Explicit Gaze Input in HCI

A user’s gaze can be used as an explicit input to computing interfaces, albeit to varying lev-

els of effectiveness. Most prominently, gaze has been used as a substitute or supplement for

manual cursor control [288, 255], e.g. in MAGIC-Pointing [339] and typing [189]. Inter-

faces have also been developed that respond to distinctive and contrived gaze gestures [67]

as a form of explicit interaction.

Context-Awareness Through Gaze Data

Besides this, gaze can also serve as an implicit input for context-aware applications, such

as activity recognition [31] while wearing custom-made electrooculography (EOG)-glasses

[30]. iTourist [241] successfully plans city trips based on recorded gaze patterns. Gaze

contingent displays [70] use the gaze point of the user to define a region of interest. The

information is used to highlight specific elements in the user’s view [6] or to selectively

render foveated regions at high resolution in order to save computing costs [100, 201].

Gaze Cues in Conversations

Our daily communications afford us interpersonal cues that allow us to moderate our lan-

guage and responses to our conversation partners. Telltale facial expressions and body lan-

guage can indicate the interest and engagement levels of our conversation partners. Gaze

can readily indicate whether they are focused on the conversation or distracted by some-

thing else, such as looking at their phone or recognizing another person in the background

[86, 118]. As humans, we are readily able to interpret these implicit signals and adapt our

conversation strategy by changing the topic or requesting attention.

Other work in the domain of implicit interaction focuses on human-like interaction in virtual

environments, e.g. for conversational agents [293, 318]. It has been shown that gaze direc-

tional cues can serve as a predictor for conversational attention. Moreover, virtual agents

that respond to users’ gaze have been shown to increase their users’ emotional response and

allocated attention [197]. This suggests that gaze-responsive systems are perceived as being

more human-like in their interactions and, hence, elicit more user-attention.

Gaze and Reading

The connection between eye movements and reading has already been researched thoroughly

[245, 247]. There exist psychologically plausible models that describe many phenomena in

reading [141, 248]. Hence, computer systems can also rely on gaze inputs to assist users

in accomplishing their task. In tutoring systems, the user’s gaze information can be relied

on by the system to determine when it is necessary to provide feedback and guidance to the

user [63]. For example, patterns in gaze behavior could reveal that the user is confused by a

given topic [3], which prompts the system to provide further guidance [221]. Learning new

topics often involves reading provided material, such as a book, a document or even a simple

time-table of a bus station.
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Gaze as an Indicator of Personal Interest

Yet, representing information in textual form is inherently limited in terms of data dimen-

sionality and scalability. Walber et al. [321] have identified factors in gaze data that are con-

nected to our personal interests and used it to create a personalized photo collection without

the need for manual interaction. Furthermore, work from Santella et al. [260] showcased

that this idea can even be applied to single images by identifying interesting image parts and

thus realizing an automatic photo cropping algorithm.

Gaze and Language

In recent years, researchers built upon these findings to examine language proficiency [199,

335], as well as develop systems that have educational purposes. These include e.g. real-

time annotations [41, 23, 157] or translations during reading [310]. In this scenario the

users’ eye movements provide contextual information about what they are reading, how fast

[173] or even how much they understand [131, 257] and provide assistance accordingly

[287, 132]. These systems showcase the capabilities of gaze-assisted language detection

and/or translation. A vital part of real-time assistive systems is the exact point in time when

to assist.

3.2 Use Case I: Robust Gaze Features for Enabling
Language Proficiency Awareness

In an increasingly globalized world, users are constantly exposed to unfamiliar cultures and

languages. Concurrently, our lives are increasing reliant on digital technology as our envi-

ronments - in public, at work or at home - are pervaded by digital artifacts such as public

displays and shared mobile devices. When visiting foreign countries, especially those that

are multilingual, users are often faced with the challenge of navigating an interface in an un-

familiar language. While alternative language versions are often available, accessing them

(usually through a poorly visible button or a submenu) tend to be cumbersome. The problem

is compounded by screen space limitations.

Consequently, we are often confronted with information interfaces designed in an unfamil-

iar language, where the language barrier inhibits interaction with the system. In this use

case, we look at how a user’s gaze properties can be used to detect whether the interface is

presented in a language they understand, in other words, whether they are proficient in the

given language. We examined users’ gaze properties (gathered through an embedded eye

tracker) when reading short sentences in multiple languages. Afterwards, we evaluated how

gaze properties can be interpreted to detect if the interface is presented in a language that the

user understands.

We evaluate the feasibility of language awareness in proficiency-aware systems leveraging

short time gaze data. First, we identified that users exhibited shorter average fixation duration
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3 Proficiency From Gaze

as well as longer average and summed blink duration, when presented with languages that

they were proficient in. Based on these results, this use case outlines a classification strategy

and provides some technical guidelines to facilitate real-time language proficiency detection.

3.2.1 Methodology

Eye-tracking is widely used in the domain of reading analysis [245]. However, existing ap-

proaches have usually focused on one specific language and are used for posthoc analysis

[199, 335]. We propose an approach that relies on characteristic gaze properties to infer a

user’s requirement for real-time assistance. The goal is to recognize a user’s likelihood of

comprehending displayed text, given limited gaze data based on reading a short sentence in

a given language. We anticipate that users are unlikely to persist in using a system beyond a

single sentence in a language that they lack proficiency in. In this regard, the current work

contrasts with eye movement research based on reading entire documents. When working

with eye gaze interaction, prior calibration often is a hindrance for readily available inter-

action. We will discuss this limitation and analyze its impact on user experience given our

approach.

For our study design, we considered previous research findings on eye movements and read-

ing to identify gaze characteristics that could be viable candidates for inferring language

proficiency in our application context. Research reports an average duration for fixations

of about 200ms to 250ms and an average saccade length of 7 to 9 letters, but fixation du-

ration can range from 50ms to 500ms depending on the context of the task and user state.

Pertinently, the fixation duration increase with conceptually more difficult text, leading us

to hypothesize that fixation duration should vary with a user’s language proficiency. In ad-

dition, text difficulty is reported to correlate with saccade length as well as the frequency of

saccade regressions1 and refixations. Hence, difficult languages should exhibit lower sac-

cade length and a higher frequency2 of regressions and refixations. [245, 94]

Moreover, blink rate and pupil diameters have been reported to be associated with cognitive

load and human information processing. For example, Siegle et al. [289] demonstrated a

phasic increase of blinks prior and pursuant to the anticipation of an increase in the load of

information processing, which was manipulated with basic psychological tests (i.e., Stroop

task, digit-sorting task). Pupil dilation, on the other hand, reflected sustained information

processing over longer periods, making this metrics less suitable for our inquiry [289].

On the basis of RQ1 as reiterated below, we formulate two related research questions tailored

towards this use case:

1 Saccades opposite to the reading direction
2 Standard frequency is about 10 to 15%.
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RQ1

What are suitable metrics inferred from a user’s gaze for proficiency estimation?

RQ1a: Can we determine whether a user is able to use the interface in a given language

from gaze properties?

To realize near real-time proficiency estimation, it is vital that the system is able to tell a

user’s proficiency in the display language in a mere seconds. This implies that the users

should only be presented with at most a few sentences of an unknown language before the

system decides on the respective proficiency. This is the basis for the second research ques-

tion:

RQ1b: What are technical requirments when determining whether a user understands the

current interface language?

Based on these questions, we investigate the following hypotheses in our study:

H1: Increased language proficiency level will result in a lower average gaze fixation du-

ration.

H2: Increased language proficiency level will decrease the number of refixations in a

given time period.

Lower average gaze fixation duration as well as lower refixation ratio is connected to text

difficulty when reading [245]. In our study we aim to vary text difficulty by changing the

display language, hence creating several different text difficulty levels. Participants should

therefore find it easier to answer questions in their proficient languages.

H3: Increased language proficiency level will increase the average blink duration.

H4: Increased language proficiency level will increase the total blink ratio.

Proficient users of a language should experience lower cognitive load during reading than

non-proficient users. We assume that this increases blink duration and total blink ratio when

presented with a language in which the user is proficient. During unknown languages cog-

nitive load increases as the user is trying to figure out the question, hence blinks are less

frequent.

If we reflect on one primary scenario – public displays in commuting areas – the user usu-

ally looks for predefined information (e.g. bus departure, flight details). The method of

presenting this information is often ordered and predictable, such as a time-table, and does
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3 Proficiency From Gaze

Language Example questions

English How many days are within a week? What is the first letter of your first name?

French Combien de jours y a-t-il dans une semaine? Quelle est la première lettre de votre prénom?

Danish Hvor mange dage er der i en uge? Hvad er det første bogstav i dit fornavn?

Finnish Kuinka monta päivää on viikossa? Mikä on etunimesi ensimmäinen kirjain?

Table 3.1: Example questions used in our study in four different languages.

not change across languages. Yet this is of no help for the user if he cannot locate the name

of his destination or instructions for the payment process.

Information like this is expressed in simple sentences as well as simple language, to ensure

readability. Hence, we chose our questions to be of “Basic User” ([51], p. 23) level with

regard to the Common European Framework of Reference for Languages (CEFR) [51]. This

framework defines six levels of foreign language proficiency: basic (A1, A2), independent

(B1, B2) and proficient user (C1, C2) [51]. For our study we added an extra non-proficient

level (X).

We collected questions in 13 different languages (15 questions each). By choosing to display

simple questions to the participants, we provide an engaging task [120] as reading the text

is required to answer correctly. The respective translations were provided by either native

or highly proficient users of that language. Table 3.1 shows a few example questions. Most

are part of the Indo-European language family [59], yet we included some outliers such as

Finnish and Hungarian as well as languages not using the Latin alphabet (Greek, Arabic).

See Table 3.2 for a complete overview on the used languages and the respective proficiency

levels exhibited by our participants.

3.2.2 Evaluation

We conducted an experimental study following a within-subject design for the factor of

language proficiency. This section first describes the study procedure and measures as well

as later highlights results including classification performance for language proficiency.

Apparatus

Our setup consisted of a 22 inch LCD display (resolution: 1680x1050) and a remote eye

tracker (SMI RED 250; 250 Hz sampling frequency) that was positioned below the display.

Our participants were seated at a distance that felt comfortable for them and well within the

reliable tracking range of the system (0.5m−0.7m) in an enclosed cubicle. Figure 3.1 shows

a picture of the apparatus.
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Language Proficiencies of participants

English B2, C1, C2

German X, B2, C1, C2

Danish X

Dutch X, A1

Finnish X

French X, A1, A2, B1, B2

Greek X, A1, C1

Romanian X

Spanish X, A1, A2, B1, C2

Turkish X

Slovenian X

Arabic X, A1

Hungarian X

Table 3.2: Languages used in this study and respective proficiencies present in our participant

base.

Figure 3.1: Apparatus showing LCD monitor with attached eye-tracking device (left) and par-

ticipant during the study (right).

Participants

We recruited twenty-nine participants from the University of Stuttgart and the Stuttgart

Media University via mailing lists. The data of 21 participants (12 female, 9 male; Age:

x̄ = 24.9y, s = 3.9y) were used for further analysis. The eye-tracking data of three par-

ticipants were removed because glasses and make-up interfered with the reliability of eye-

movement recording. We excluded the data of five more participants, as the recording was

not stable enough during the whole study3. Two participants had prior experience with eye-

tracking studies. Out of the 21 participants, 17 were native German readers, two were native

3 Participants started to move more towards the end of the study.
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3 Proficiency From Gaze

English readers as well as one native Spanish and Indonesian participant. All participants

had normal or corrected-to-normal vision. Each participant was paid an allowance of 10 Eu-

ros.

Procedure

After introducing the prospective participants to our study, we handed them a detailed study

description. It stated to follow on-screen instructions worded as simple questions, that each

require a single key-press to answer. The study description sheet additionally contained an

example question. Prospective participants were made aware to expect these questions in

different languages and to answer to the best of their knowledge, yet favoring correctness

over speed. The respective answer could be given in any preferred language4. If a question

was impossible to answer, prospective participants were made aware not to press anything

and wait for the next question. Timings between each question (10 s) and the overall study

time (two session of 12.5min each) were provided on the information sheet. The available

answer time of ten seconds per question was conservatively chosen, preventing unnecessary

pressure due to lack of time. After providing informed consent, the participants were asked

to complete a demographic questionnaire, polling sex, age, work field, highest educational

qualification, their native language and their eyesight. They also rated their reading level

for specific languages based on the provided CEFR’s self-assessment test5 ([51], pp. 26-27).

Additionally, the participants were asked to provide their proficiency level for languages that

were not listed. The experimenter was present to answer any questions that might arise.

Before starting the experiment, the eye-tracking device was calibrated using a five-point

calibration. We only accepted calibration accuracy below one degree of visual angle. During

the experiment, we sequentially displayed 150 questions to the participants, in random order.

Each question was visible for exactly ten seconds and could be answered by a single key

press, such as one letter or one number (see Table 3.1). Participant keystrokes were collected

during this period. The experiment was conducted in two sessions of 12.5 minutes with

an intervening rest period. It was possible to ask questions during the experiment, which

occurred two times. The respective experiment question was hence marked for deletion.

Before resuming with session two, another calibration analog to the start of the experiment

was performed. Ethical approval for this study was obtained from the Ethics Committee at

the University of Constance.

Post-Processing

We applied the following post processing steps to the obtained eye-tracking data including

event detection using a velocity-based fixation algorithm [256] with a velocity threshold of

35 degrees of visual angle per second and blink detection based on pupil diameter change.

Eye movement events were allocated to the respective question and any data after the point

4 E.g. answering in one’s native language or in English.
5 If needed. Most participants were familiar with the framework and provided information based on language

tests.
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in time when the participants provided an answer for the respective question, as indicated by

the recorded keystrokes, was discarded. Note that we did not distinguish between wrong and

correct answers, since language proficiency as stated by the participants was used as ground

truth. We observed a mean answer time for all participants of x̄ = 4.9 s with a standard

deviation of s = 0.2 s. Thus, we conservatively limited the overall observation time for each

question to a maximum of 4.5 s. Additionally, we discarded fixations with a duration of less

than 50ms and more than 600ms, that were outside the range of reported values in reading

research [245, 247, 283].

Measures

All measures were collected on a per question basis. We derived the following metrics from

the eye-tracking data. For fixations, we examined the average fixation duration. We also

recorded refixations that occurred when the user’s gaze revisited the location of a previous

fixation. This area was bounded by a 30 pixel radius6 around the previous fixation’s location.

The chosen radius is a conservative interpretation of the distance of consecutive fixations

during reading [245]. The amount of refixations was normalized by the total fixation count

for the respective question, yielding the refixation ratio. For blinks, we calculated average

duration as well. Total blink ratio relates the total blink duration to the respective answer

time of each question. All the measures were grouped by the reported language proficiency

based on the CEFR [51]. Hence, we end up with a total of seven groups: non-proficient (X),

basic user (A1, A2), independent user (B1, B2) and proficient user (C1, C2).

Statistical Results

As mentioned before, we looked at data available after having interacted with the screen for

a maximum of 4.5 s or the user’s respective answer time, whichever was shorter. Sample size

did vary for different metrics, e.g. if the user did not blink during one particular question.

Average Fixation Duration (AFD)

The grand mean of average fixation duration (AFD) was x̄ = 239.86ms (s = 53.22ms). Par-

ticipants with C2 proficiency in the tested language exhibited the shortest average fixation

duration (x̄ = 194.02ms, s = 37.24ms) while no knowledge of a given language produced

the longest fixations (x̄ = 249.19ms, s = 53.04ms). As all metrics in our experiment are un-

evenly distributed in terms of proficiencies (participants have varying levels of proficiency in

different languages), we decided to compute the slope coefficient for each of the participants

using ordinal logistic regression. We then conducted a t-test comparing the obtained slope

coefficients with a constant function. The test shows that language proficiency has a signif-

icant effect on AFD, t(20) = −3.78, p < 0.01. Figure 3.2 shows the distribution for average

fixation duration.

6 Covers roughly 1-2 letters.
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Refixation Ratio (RFR)

The grand mean of refixation ratio RFR was x̄ = 0.24 (s = 0.15). Participants with C2 pro-

ficiency in the tested language exhibited the lowest refixation ratio (x̄ = 0.15, s = 0.13)

while participants who did not know the given language had the highest ratio (x̄ = 0.26,

s = 0.15). Analogously to AFD, slope coefficients were computed and compared with y = 0

using a t-test. The test showed that language proficiency had a significant effect on RFR,

t(20) = −2.48, p < 0.05. Figure 3.3 shows the distribution for refixation ratio.

Average Blink Duration (ABD)

The grand mean of average blink duration (ABD) was x̄ = 413.47ms (s = 395.52ms). Par-

ticipants with C2 proficiency in the tested language exhibited the longest average blink time

(x̄ = 752.05ms, s = 391.00ms) while participants who did not know the given language

blinked the shortest (x̄ = 306.41ms, s = 332.29ms). Again, we calculated slope coeffi-

cients for each participant and used a t-test to compare with no slope yielding a result of

t(20) = 2.71, p < 0.05. Figure 3.4 shows the distribution for average blink duration.

Total Blink Ratio (TBR)

The grand mean of total blink ratio (TBR) was x̄ = 0.15 (s = 0.14). Participants with C2

proficiency in the tested language exhibited the highest total blink ratio (x̄ = 0.30, s = 0.14)

while participants who did not know the given language had the lowest ratio (x̄ = 0.11,

s = 0.11). Using a method analogous to the previous metrics, we obtained t(20) = 2.75,

p < 0.05. Figure 3.5 shows the distribution for total blink ratio.
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Figure 3.2: Violin plots (width normalized per group) showing the distribution of the average

fixation duration (AFD) grouped by proficiency according to CEFR [51]. Density plots depict

the sample distribution over the proficiency groups.
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Figure 3.3: Violin plots (width normalized per group) showing the distribution of the refixation

ratio (RFR) grouped by proficiency according to CEFR [51]. Density plots depict the sample

distribution over the proficiency groups.
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Figure 3.4: Violin plots (width normalized per group) showing the distribution of the average

blink duration (ABD) grouped by proficiency according to CEFR [51]. Density plots depict the

sample distribution over the proficiency groups.
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Figure 3.5: Violin plots (width normalized per group) showing the distribution of the total blink

ratio (TBR) grouped by proficiency according to CEFR [51]. Density plots depict the sample

distribution over the proficiency groups.
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Result Interpretation and Implications

Statistics on average fixation duration and refixation ratio showed a significant effect of lan-

guage proficiency. We conclude that increased language proficiency levels will result in a

lower AFD and a lower RFR (as t-scores are negative). This confirms H1 and H2. Analo-

gously, our results indicate that language proficiency has a significant effect on average blink

duration and total blink ratio as well, confirming H3 and H4. However, standard deviation

was quite high for these blink-related metrics, which can possibly hinder proficiency esti-

mation by an interactive system. Especially for proficient levels (A to C), blink duration is

quite high compared to values found in literature [120]. This could be due to participants

“relaxing” during easy questions, which relates to longer blink duration [120]. Nevertheless,

simple blink detection (e.g. via a RGB camera) could be an alternative for systems where

eye-tracking is not feasible.

Our statistical analysis indicates that we can provide a positive answer to RQ1a. Language

proficiency showed a significant effect for all metrics, suggesting the feasibility to employ

these metrics in interactive systems to detect language proficiency. In other words, our

experiment shows that the eye gaze metrics we chose do carry information about language

comprehension.

We further investigated the discriminatory strength of those metrics for interactive systems,

tailoring to RQ1b. Here, we determined technical requirements for proficiency-aware sys-

tems, by implementing classifiers for language proficiency detection based on the analyzed

gaze metrics.

Classifying Language Proficiency

In the previous section, we evaluated the statistic relevance of certain metrics extracted from

our eye-tracking data. AFD, ABD, TBR and RFR showed promising results in discerning

proficiency levels. Yet, to realize systems that support real-time detection of language pro-

ficiency it is necessary to find a discriminative feature set that defines certain proficiency

levels. Ideally, we want the margin between neighboring levels as large as possible and

choose these levels based on the application scenario. In this section, we provide answers

to our second research question (RQ1b) and evaluate the needed technical requirements for

detecting language proficiency in proficiency-aware systems.

We highlight specific factors that need to be considered when implementing such an adap-

tive system. From an HCI perspective, we want to maximize the user experience when in-

teracting with the system such as providing assistance when needed and only when needed.

Furthermore, an interactive system should be able to provide feedback in a reasonable time

span. Ideally, it should not take longer than a few seconds for the system to make a decision.

From a technical standpoint, we might need to consider limitations that may arise with the

application scenario, such as low-cost hardware that will result in noisy data. As such we

tested our findings on an artificially downsampled dataset.
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Baseline Classifier

Based on our previous results, we decided to train a binary classifier that predicts whether

people are not proficient or proficient (levels A to C) in the displayed languages. This choice

conforms with our aspired application scenario in two ways. Firstly, public displays such

as timetables exhibits “predictable information” [51] that can be read by a basic language

user (A level proficiency). Thus, the choice to include all proficiency levels into one class is

reasonable. Secondly, overeager and unpredictable assistance systems tend to be rejected by

the users [88]. To achieve a good user experience, minimizing false proficiency classification

for proficient users should therefore be a primary goal.

We constructed a dataset containing the following features from our eye-tracking data as

described in the previous sections: average fixation duration (AFD), refixation ratio (RFR),

average blink duration (ABD) and total blink ratio (TBR). We used the same maximum

observation time as before (4.5 s). After balancing the class distribution7, we evaluated the

dataset using 10-fold cross validation on four different common classifiers8. All classifiers

were executed with standard parameters. An overview on achieved accuracy is given in

Table 3.3.

J48 SVM NN BayesNet

Accuracy 78.3% 64.9% 78.8% 77.6%

F-Measure 78.3% 64.3% 78.8% 77.6%

Table 3.3: Accuracies and F-Measures for selected classifiers.

While most classifiers exhibited a similar average accuracy, it is vital in our case to report the

false positive rate (FPR) of each class. As mentioned before, our primary goal was to keep

the ratio of falsely classifying proficient users (classified as non-proficient) to a minimum,

while our secondary goal was to maximize true positive rate (TPR) of either class. Table 3.4

shows more detailed descriptive statistics on the decision tree J48, including false and true

positive rate for both classes. This allows us to spot irregularities that may arise between

classification accuracy of the two classes.

True positive rate was higher for the class of proficient language users (class P), yet this

came with a higher false positive rate as well. In other words, in 24.6% of cases we wrongly

classify a non-proficient user (class NP) as being proficient. Of course this is inconvenient

for the user as he will not be provided with the needed assistance. However, our primary

7 Assuming equal amounts of non-proficient and proficient users.
8 J48: Java derivative of C4.5 [240]

SVM: LibLINEAR package. L2-loss (dual form) [77]

Neural network: MultiLayer Perceptron [104]

BayesNet: Bayesian network [104]
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Class TPR FPR Precision Recall

NP 75.4% 18.8% 80.0% 75.4%

P 81.2% 24.6% 76.8% 81.2%

Table 3.4: Classifier statistics on J48 given proficient users (class P) and non-proficient users

(class NP).

goal was to keep the false positive rate of the class of non-proficient users to a minimum. In

the standard configuration J48 misclassified 18.8% of all instances as non-proficient when

they were in fact instances of proficient users. Hence, the system would attempt to provide

assistance although the user would be able to read the given language, which is undesirable

and has a negative impact on user experience.

Figure 3.6 illustrates the top three levels of the resulting tree model9. Average blink duration

is used as a first separation step. After just two tests (on ABD and AFD) almost 32%10

of instances are correctly assigned to the non-proficient class (3.6% are wrongly classified

in this step). The built tree exhibits several of these heavy leaves that carry most of the

instances. This indicates that pruning may be a meaningful strategy.

ABD

AFD

TBR

≤ 207

0 (845/95)

> 207

≤ 277

RFR

AFD

≤ 0.32

AFD

> 0.32

> 277

Figure 3.6: Top three levels of the built decision tree using J48 with standard parameters. ABD

and AFD are given in milliseconds; TBR and RFR are given as ratios. Leaf nodes (rectan-

gles) indicate predicted class (0 for NP; 1 for P) and show (correctly classified/misclassified)

instances. Values are rounded for visual clarity.

A more heavily pruned tree is shown in Figure 3.7, basing its decision on only three remain-

ing features (ABD, RFR and AFD), while still achieving 77.64% accuracy. Additionally,

true and false positive rate of each class do not change by more than two percentage points,

indicating that heavy pruning is indeed a valid option. This avoids overfitting to the training

set and may generalize better for unseen data.

9 Using J48 and standard parameters.
10 845 out of a total of 2643 instances.
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ABD

0 (1120/194)

≤ 277

RFR

1 (1233/263)

≤ 0.32

AFD

1 (71/12)

≤ 182

0 (220/99)

> 182

> 0.32

> 277

Figure 3.7: Complete decision tree using J48 and heavy pruning. ABD and AFD are given in

milliseconds; RFR is given as ratio. Leaf nodes (rectangles) indicate predicted class (0 for NP;

1 for P) and show (correctly classified/misclassified) instances. Values are rounded for visual

clarity.

Cost-Sensitive Classifier

To further reduce the false positive rate of the non-proficient class, we introduced a different

cost function for the classifier. We penalized classifying proficient users as non-proficient

more severely. This is a compromise between maximizing overall classification accuracy

(results shown in Table 3.3 and Table 3.4) and minimizing the false positive rate of one

class. We decided that not more than one out of ten users should be wrongly classified as

non-proficient. To achieve this goal, misclassifying a proficient user had to be three times

more expensive than misclassifying a non-proficient user. Table 3.5 shows the results after

applying such a function.

Class TPR FPR Precision Recall

NP 58.9% 9.90% 85.6% 58.9%

P 90.1% 41.1% 77.1% 74.5%

Table 3.5: Classifier statistics on cost-sensitive J48 (standard parameters) given proficient users

(class P) and non-proficient users (class NP).

Overall accuracy dropped only slightly to 74.5%, yet the gap between the true positive rate

of both classes increased. While TPR of the proficient class increased, the TPR of the non-

proficient class decreased to 58.9%. It was now more expensive to classify as non-proficient,

hence it was safer to classify as proficient. The same applied for the false positive rates.

We successfully pushed the FPR of the non-proficient class to below 10%, yet this also
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meant that the FPR of the proficient class increased and fewer users were to get the needed

assistance.

Class Distribution

Generally, it is important to adjust the cost function based on the scenario and think about

how to penalize wrong classifications. Besides the cost function, the distribution of instances

into respective classes is vital. In a different scenario, such as displaying advertisements

on public displays, it is more favorable to emphasize highly proficient users. Since using

puns in advertisements to spark the interest of potential customers is a common technique,

aiming for a binary classifier that separates C-level language users from other users is more

beneficial. If the users do not understand the display pun due to their proficiency level

being too low, it seems reasonable to combine them with the non-proficient users. Table 3.6

shows classification results for a grouping into the classes highly-proficient HP (C1 and C2)

and less-proficient LP (X, A1, A2, B1 and B2). Overall accuracy was 79.3%. The false

positive rate for both classes was approximately 21%. Again, we can ask ourselves whether

misclassifying one class is more severe than the other and adjust a cost function as we see

fit.

Class TPR FPR Precision Recall

LP 79.2% 20.6% 79.3% 79.2%

HP 79.4% 20.8% 79.2% 79.4%

Table 3.6: Classifier statistics on J48 with different class distribution: highly-proficient (class

HP: C1 and C2) and less-proficient (class LP: X, A1, A2, B1 and B2) users. Levels according

to [51].

Recording Duration

As outlined previously, fast responsiveness and interactivity are vital for an adaptive informa-

tion display. Hence, we evaluated a minimum recording duration that allowed for a sensible

classification of non-proficient users. For this purpose, we limited the maximum observation

time for our dataset in one second intervals from one to five seconds11. Figure 3.8 shows

accuracy as well as true and false positive rate over time.

The classifier metrics did not change much when reducing the maximum observation time to

only three seconds. After that, we saw a strong increase in the false positive rate of class NP.

Further investigation revealed that the classes exhibit a strong overlap, thus making accurate

classification difficult. We believe that this is due to the reduced sample size, hence allowing

noise in the recording to have a larger influence.

11 Before then our dataset used a maximum observation time of 4.5 seconds.
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Figure 3.8: Accuracy, true and false positive rate of proficient (class P: A1 to C2) and non-

proficient (class NP: X) class given different maximum observation times of recorded gaze data.

Sampling Rate

In this study, we used a high-quality eye-tracking device with a sampling rate of 250 Hz.

However, eye-trackers for commercial product integration can be expected to have lower

sampling rates. To evaluate the viability of our approach for its stated purpose, we down-

sampled12 our recording data to the following sampling rates 125 Hz, 62.5 Hz and 31.25 Hz,

which approximated the sampling rates of low-cost eye-tracking devices.

Reducing sampling rate introduces noise in the event (e.g. fixation, saccades) detection of

eye-movement behavior. Here, we showed the effects for the average fixation duration. A

classification accuracy of 64.7% was achieved from the original sampled data (i.e., 250 Hz).

Figure 3.9 illustrates how classification accuracy, as well as true and false positive rate for

each class, varied when decreasing the sampling rate.

Sampling at a rate of 125 Hz had only minor influence on the classification results. Further

downsampling drastically reduced true positive rate of class NP (FPR of class P increases),

yet the false positive rate of the non-proficient class stayed constant. Hence, at a sampling

rate of 62.5 Hz detecting a non-proficient speaker correctly was less likely. For the lowest

sampling rate 31.25 Hz, FPR for the non-proficient class strongly increased. At this rate,

a sample was obtained every 32ms, which was about the mean difference that we found

between the two classes (NP and P) at high sampling rates. Thus, temporal downsampling

12 By omitting every n-th sample.
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Figure 3.9: Accuracy, true and false positive rate of proficient (class P: A1 to C2) and non-

proficient (class NP: X) class given different sampling rates of the underlying gaze dataset (log-

arithmic scale).

rendered information between categories less discriminable and sensible classification was

not possible at this resolution.

3.2.3 Discussion

Through the initial statistical analysis and our investigation of how to build classifiers using

our data set, we have shown that rapid automated detection of language comprehension is

possible. The data we extracted from the user’s gaze enables us to reliably predict their

proficiency in a given language. It needs to be noted that our proposed classifiers operate on

a coarse level. Their primary purpose is to determine whether the user is able to understand

the interface presented in a given language. More sophisticated methods and larger gaze

pattern samples are still required to estimate exact proficiency levels, as shown in previous

work [199, 335].

We can conclude that the answer to RQ1b is positive — it is possible to build a reliable

automated system that will promptly detect whether a user is able to comprehend the content

presented in a given interface. An emergent question is how these systems can be used in

practice and what technical prerequisites are needed for deployment. Below, we further

elaborate on RQ1b by providing a set of technical guidelines for implementing proficiency-

aware systems that want to make use of gaze data.
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Adhere to Required Granularity Levels of Proficiency

Adaptation and proper specification of provided and expected proficiency levels is essential,

as outlined in Chapter 2. In this analysis, we depicted how to tailor to the needs of different

application scenarios by adapting the cost function of the classifier as well as changing the

class distribution. The application scenario highly influences the classification strategy, as

we have shown when grouping different proficiency levels for binary classification. Fine-

grained detection down to the proficiency levels of the CEFR [51] did not deliver satisfying

accuracy. Cost functions can be introduced to better fit the use case scenario. Here, a com-

promise has to be made between a more eager assistance system and a more rigorous one.

Depending on the application scenario, one might opt for either direction. Besides adjusting

the cost function, changing the class distribution is also a possibility, e.g. when considering

advertisement banners instead of public displays in an airport. Hence, determining whether

a user is able to use an interface in a given language from gaze properties is entirely possi-

ble. Achievable accuracy depends on the application scenario and the selected proficiency

levels. If fine-grained detection and high accuracy is needed, e.g. in an language educa-

tion software that observes the learning process of a student, other sources of context should

be used in conjunction, while eye-tracking can provide an auxiliary input. Consequently,

a proficiency-aware system should consider additional probabilistic priors. In this regard,

we feel that modifications to our current classification approach (e.g., by adding a "location

prior"13) holds promise for subsequent work.

Consider Temporality of Proficiency Detection

For ad hoc, gaze-based proficiency-aware systems that require fast and immediate detection

without relying on past gaze data from the user (cf. Section 2.4), we recommend a minimum

interaction period of three seconds and a sampling rate not less than 100 Hz, while lower rates

might still be applicable for specific scenarios. In our study, we evaluated how long and how

often a system should record eye movements of interacting users. Higher resolution or longer

recording duration only slightly improved classification results. These findings confirm the

feasibility for ad hoc proficiency-aware systems based on gaze metrics, as "detection time" is

short enough for user interaction and sampling rate is not too high for low-cost eye-tracking

devices.

Robust Gaze Features for Proficiency-Aware Systems

While more sophisticated algorithms (e.g, scanpath analysis) could potentially results in a

higher detection accuracy for proficiency level, this use case present robust gaze features

based on metrics derived from fixation and blink data. Making use of exact gaze position

would require a per-user calibrated eye-tracking device. Here, new methods on implicit cal-

ibration relying on predicted gaze targets [152] or smooth pursuit as shown in TextPursuits

13 Emphasizing predominant languages at the system’s deployment location.
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[158] are applicable. If access to fully calibrated gaze data is available, more elaborate com-

paring methods are possible, such as directly comparing scanpaths [79, 136] or clustering

approaches [259].

Detecting blinks and fixations — as used in our metrics — is feasible using only relative gaze

data, thus omitting a per-user calibration of the eye tracker. Further, the low sample size

of collected gaze data during user interaction favors simple machine learning algorithms.

Moreover, if gaze behavior is predictable based on screen content, constraints on calibration

accuracy are less severe. Hence, it is well suited to be used in public displays where "walk-

up" interaction is required [211]. Additionally, it enables the usage of less accurate and

cheap eye-tracking devices as exact gaze position is not necessary.

Limitations

In our study, we used a set of languages that reflected the possible linguistic abilities of our

participant base. We mostly selected languages that are spoken in Europe. However, we be-

lieve that as long as reading direction and alphabet are kept the same, the results of our study

are reproducible with other languages. Even reading direction might have only a minor influ-

ence [245]. Statistics on whether the alphabet was a confounding factor (e.g. Arabic, Greek)

have shown that there was no significant difference on the four metrics discussed previously.

Nevertheless, this was a subjective result based on the subset of our used languages.

Another limiting factor was the uneven distribution of proficiency levels. Naturally, we had

a lot of data samples for non-proficient users, but missed out on proficient levels. B1-level

proficiency was especially rare among the participants.

Based on the application scenario, participants might react differently. For example, when

on a stressful trip figuring out their next connection on an information display versus reading

questions during a calm lab study. This will likely introduce another noise factor that influ-

ences the resulting data. The nature of this noise and its impact in an in-the-wild system is to

be evaluated. Consequently, before deployment, extensive pre-testing needs to be conducted

for a particular interface to determine what comprehension levels are required in a given in-

teraction scenario. Here, proficiency-aware systems can make use of the user’s context (e.g.,

location priors) as outlined previously.

3.2.4 Conclusion

In this use case, we examined the perception of different languages and their influence on

a person’s eye movements. Contrary to common approaches in reading comprehension,

which focused on post-hoc evaluations, we evaluated the feasibility of real-time language

proficiency detection suitable for language-aware interfaces.

In our study, we presented 150 questions in different languages to our participants and an-

alyzed the effect of language proficiency on certain gaze characteristics. We found that

proficiency had a significant effect on the average fixation duration and refixation ratio as
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well as average blink duration and total blink ratio measured over a maximum timespan of

4.5 seconds. To effectively utilize these results in real-time adaptive information displays,

we proposed a classification scheme that realizes language proficiency detection and rec-

ommended technical guidelines on recording duration and sampling rate of the eye-tracking

device, contributing to RQ1.

While this use case focused on an ad hoc user interaction and relatively simple visual stimuli,

our next two use cases will focus on prolonged interaction and complex tasks.

3.3 Use Case II: Assessment of Programming Profi-
ciency using Gaze Properties

Due to the increasing demand for coding skills in academia and industry, evaluating the pro-

gramming proficiency of a possible employee or student is a vital step towards acceptance.

Yet, objective models to evaluate programming proficiency have scarcely been explored. In

academic settings, we rely on assessment scores as an indicator of an individual’s ability

to code. In this use case, we describe a study using eye-tracking to measure programming

proficiency while considering typical constraints that such a setup induces. This includes the

necessity of a readily available setup that is robust and reliable regardless of the environment.

The application of using eye-tracking to evaluate programming proficiency in school settings

has broad implications. Through this, teachers can develop an insightful understanding of

each student’s progress. This enables educators to foster specific learning modules, provide

additional support, or modify teaching plans according to the overall progress. Moreover,

eye gaze data can be recorded in a non-intrusive way, obviating the need for body-worn

devices. Eye-tracking can, therefore, be conducted pervasively by deploying a remote eye

tracker together with a display. The continuous retrieval and processing of eye gaze can be

evaluated more frequently during the exercises themselves rather than having single exams

at the end of courses. Furthermore, user interfaces can provide implicit assistance by using

proficiency as a metric. Individual abilities can then be specifically fostered to expand the

skill set of the user.

In this use case, we investigate source code as an intermediate textual representation. Com-

pared to the previous use case, understanding the structure and the sequence of text elements

is now of importance. Consequently, the complex task makes it harder to accurately assess

proficiency (cf. Section 2.4).

3.3.1 Methodology

Research has identified self-reported scores [78, 162] and past performance [5, 34] as the

best indicators of programming proficiency. In this use case, we introduce eye movements
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as an additional factor. An extensive overview of eye-tracking usage in the domain of com-

puter programming is provided by Obaidellah et al. [219]. In terms of programming pro-

ficiency, researchers have, for example, leveraged eye tracking in combination with cus-

tomized source code visualizations to test programming proficiency [19] and investigated

gaze pattern during a programming task [220].

In this work, we have opted to evaluate participants’ program comprehension. Again, we

favor robust gaze metrics in our analysis as they are well-suited for proficiency-aware sys-

tems. We further investigate occurring gaze patterns and their relation to the participants’

programming proficiency. Based on RQ1 as reiterated below, we formulate one related re-

search question tailored towards this use case:

RQ1

What are suitable metrics inferred from a user’s gaze for proficiency estimation?

RQ1c: Can we determine a user’s programming proficiency from gaze properties?

For the study, we adapted twelve programs from online beginner courses and lectures14. We

chose to focus on Java as a programming language as it is widespread and commonly learned

by programming beginners15. To determine the difficulty of our programs, five experts with

an academic background in computer science16 rated each program on a three-point scale.

The average score determined the program’s difficulty. An overview of the used programs

depicted by a short description in ascending difficulty order can be seen in Table 3.7.

Procedure

Participants first signed a consent form and provided their demographic data. After cali-

brating the eye tracker (SMI Red 250), participants were shown a simple training task (sum

calculation) to familiarize themselves with the task procedure. The actual experiment con-

sisted of twelve programs (cf. Table 3.7) of varying difficulty with a break in the middle.

The order of the programs was randomized for each study. Participants were asked to enter

the behavior of each program on the following screen. The sequence for each trial was a

blank screen, the program itself, and a text entry box. Only the eye-tracking data for view-

ing the program was submitted for analysis. Each study lasted a maximum of 60 minutes.

Participants were compensated with 10 Euros. Ethical approval for this study was obtained

from the Ethics Committee at the University of Constance.

14https://www.tu-chemnitz.de/informatik/ST/research/material/fMRI/index.php

15www.tiobe.com/tiobe-index/

16 Academic researchers holding a degree in computer science.
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Program description Difficulty

Faculty calculation 1.2

Element-wise array comparison 1.4

Element-wise counting of equal characters 1.4

Checking for containing substring 1.4

Doubling and square root calculation 1.4

Calculation of the powers of two 1.4

Extraction of unique elements 1.6

Array reversal 1.6

Prefix sum calculation 1.8

Binary search 2.0

Greatest common divisor 2.4

Exponential calculation 2.6

Table 3.7: Example programs used in the study given the calculated difficulty.

Participants

We recruited 20 participants from the University of Stuttgart through mailing lists for our

study. All participants were students and reported different programming abilities. The data

of 14 participants (4 female, 10 male; Age: x̄ = 21.4y, s = 1.93y) was submitted for further

analysis.

3.3.2 Results

We measured the assessed performance by grading the participants’ answers by three ex-

perts16 using a three-point scale: wrong (0 points), small errors (0.5 points), correct (1

point). A small error was counted when the answer pointed towards the correct one but

lacked explanation details. Hence, a maximum of 12 points could be achieved. Our data

contained scores between 5 and 11 points (x̄ = 8.0, s = 1.7).

We analyzed eye movements related to fixations and saccades described in past work [134].

However, we were unable to relate these measurements to programming proficiency. This

proves the connection to programming proficiency to be more intricate, hence, difficult to

grasp using a linear relationship.

The assessed performance showed no significant differences given program difficulty, which

we aggregated into two levels based on the score: easy (below 1.5) and hard (above 1.5).

Further, for each trial, we averaged fixation duration up to a maximum of two minutes17.

We have investigated the average fixation duration during the easy and difficult tasks for

17 Average answer time was normally distributed with x̄ = 126 s, s = 67 s.
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Figure 3.10: The heatmaps of two exemplary participants showcasing different eye movement

patterns when solving the same programming task. The choice for a heatmap visualization and

omission of AOIs boxes was done for visual clarity.

statistical significance. A one-way ANOVA showed no significant difference between the

easy and difficult programming task complexities.

We examined several areas of interest (AOIs), such as method declarations, loops, main

classes, and method bodies. However, we did not find a significant relationship between

our eye-tracking metrics and the respective AOIs. We also reviewed participants’ strategies

when looking through each program. Here, we examined their eye movement sequence

using the AOIs for each program and found that people of different skill levels used a variety

of strategies. In other words, there was no distinct strategy — in terms of eye movements

— when solving the task for highly proficient participants. Participants tended to either use

a holistic approach by getting an overview first and then looking at individual methods and

code fragments. The other main strategy that we identified revolves around on-demand gazes

at specific methods without scanning the whole program first. An example of this can be seen

in Figure 3.10, where two participants showcase different eye movement patterns solving the

same programming task. The pattern is not correlated to their reported proficiency.

3.3.3 Conclusion

In this use case, we evaluated the suitability of eye movement metrics as an indicator of pro-

gramming proficiency (RQ1c). Our investigation has shown several difficulties in deciding

on an objective measurement for programming language proficiency that is consistent across
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all users. Visualizing the eye-tracking data can help to identify weak problem-solving strate-

gies that may not be obvious based on the participants’ answers. In this case, eye-tracking is

used as an auxiliary modality within the evaluation process.

Our results also show that common eye-tracking metrics are not suitable to reliably identify

a person’s programming proficiency. The same strategy used for analyzing reading patterns

(cf. [245, 247]) is not suitable for evaluating more complex text visualization, such as struc-

tured source code. Moreover, we could not identify distinct problem-solving strategies for

either proficient or less proficient participants. The employed strategy is not driven by one’s

proficiency but rather by personal preferences and experience. However, we believe this

provides a vital aspect of education. By visualizing solving strategies, educators are able to

identify mistakes — and their source — more efficiently and provide tailored feedback. Even

during the instruction process, optimal strategies can be visualized and conveyed. As such,

proficiency-aware systems tailored for programming proficiency can play to their strength

when employed for the teacher rather than the student.

Through this use case, it is clear that further exploration into measuring programming pro-

ficiency is necessary and that there is great potential in this area. An objective and readily-

available assessment of one’s abilities is essential for quality education. We will pick up this

direction in the next use case in the form of a tutoring system for piano players. In contrast

to this use case, proficiency estimation is done on a user-dependent basis, warranting more

accurate results.

3.4 Use Case III: Gaze as a Predictor for the Profi-
ciency of Piano Players

Playing the piano is a challenging task and mastering new pieces requires extensive practice.

Sight-reading score notation is a complex transcription task including aspects of perceptual,

cognitive, and motoric processes. Consequently, the user’s gaze plays a vital role in assess-

ing the information provided. Gaze-based proficiency-aware systems can utilize this gaze

information to provide user-tailored estimations of proficiency accordingly.

We complete our investigation of gaze metrics for proficiency-aware systems with this third

use case. We combine insights from the previous use cases in a person-dependent piano

tutoring system. Additionally, this task introduces physical task elements and combines

them with the cognitive effort necessary to read score notation. Here, we focus on a long-

term adaptation towards the user in a complex task domain (cf. Section 2.4).

3.4.1 Methodology

Reading music scores is generally more complex and thus more demanding than text read-

ing [246]. The complex notation, the cognitive transfer to motor commands, and the player’s
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necessary movements make this a highly complex task [246, 291]. While there is a dictated

pattern when reading score notation [188, 323], occasional refixations on already examined

parts are possible [239]. Yet, similar to eye movements during text reading, familiarity with

the given score notation results in fewer and shorter fixations [188, 227].

Based on RQ1 as reiterated below, we formulate one related research question tailored to-

wards this use case:

RQ1

What are suitable metrics inferred from a user’s gaze for proficiency estimation?

RQ1d: Can we determine the proficiency of piano players from gaze properties?

To allow for a tractable investigation of piano proficiency, we opted to associate playing

difficulties (as reported by the participants) as a measure of proficiency. In other words, this

work aims to predict difficult passages during piano play by leveraging recorded gaze data.

Procedure

After providing informed consent and calibrating the eye tracker, participants played through

three music pieces (counter-balanced) for a total of two repetitions. The pieces were cho-

sen from three intermediate difficulty levels18. To gather ground truth data, participants

self-reported difficult passages by highlighting them on the screen immediately after play-

through. The study lasted approximately 60 minutes and participants were compensated

with 10 Euros per hour. Ethical approval for this study was obtained from the Ethics Com-

mittee at the University of Constance. The setup of the study, including a MIDI keyboard

(Doepfer LMK2+), a remote Tobii 4C eye tracker, and monitor with score notation, can be

seen in Figure 3.11.

Participants

We recruited six participants (4 female, 2 male; Age: x̄ = 29y, s = 14y) through personal

contacts and participation in related studies. All participants were advanced pianists with,

on average, x̄ = 20y (s = 16y) of experience.

3.4.2 Results and Conclusion

After eye event detection based on an I-DT algorithm [256], we further processed the gaze

events with a line detection algorithm. This step ensured that fixations were robustly mapped

to their corresponding bar. Its main idea is based on including a "carriage return" detection

18 Based on PianoBookGuide [192], IMSLP Music Library [237], and Wolters [330].
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Figure 3.11: Study setup including keyboard, loudspeaker, and monitor with attached eye

tracker.

Dependent variable df t V p

Average fixation count 32 -9.05 < 0.001
Average saccade (X-Dim.) 32 5.11 < 0.001
Average refixation count 8 < 0.001
Average fixation duration 153 < 0.05
Average dwell duration 10 < 0.001

Table 3.8: Statistical results of paired t-tests and Wilcoxon signed-rank tests (bold: significant).

of the collected gaze data. Finally, a mapping of fixations to bars in the score notation was

realized through constraining positional and temporal location19 of each fixation.

Again we have evaluated common gaze metrics and tested whether there is a significant

difference for difficult passages. All features are aggregated and normalized based on sliding

epochs. Based on the normality of data, we either conducted a paired t-test or a Wilcoxon

signed-rank test. Results are given in Table 3.8 for a selection of gaze metrics.

Our final classification algorithm combined these features in a user-dependent machine

learning algorithm with a simple outlier detection based on bar dwell time. This allowed

us to simulate different sensitivity levels for the algorithm. The confusion matrices for each

of the three levels are depicted in Figure 3.12.

Here the lowest sensitivity level (far right in Figure 3.12) is optimized for few false posi-

tives20. However, this setting misses a considerable number of difficult parts; only 29% are

19 A fixation might be assigned a different bar than its x/y coordinates based on its temporal data.
20 Classifying a passage as difficult when it is not.
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Figure 3.12: Confusion matrices depicting the accuracy of the final prediction algorithm for

difficult passages grouped by three sensitivity levels (from left to right: highest to lowest). There

is a total of N = 1230 samples with 386 difficult parts.

recognized correctly. A higher sensitivity level (far left in Figure 3.12) can classify up to

78% of difficult passages correctly, although this level also increases the false positive rate

to 26%.

Our findings have shown that gaze can be a suitable predictor of difficult passages during

piano play (RQ1d). Difficult regions exhibited significantly different gaze metrics such as

higher fixation count and dwell duration. Similar to our first use case (cf. Section 3.2), the

performance of a classifier is strongly dependent on the chosen sensitivity level. Never-

theless, a simple algorithm can already detect most piano players’ difficulties, making it a

valuable tool in piano tutoring systems.

3.5 Chapter Summary

In this chapter, we have looked at three use cases that varied in task complexity and inter-

action duration with the user; two of the main dimensions of proficiency-aware systems as

outlined in Section 2.4. Our findings have contributed to RQ1 through technical guidelines,

task specifications, and feasibility evaluations. Ultimately, gaze can be a powerful tool for

proficiency-aware systems to estimate proficiency but is subject to task constraints that need

to be carefully considered.

Achievable accuracy highly depends on the application scenario and the selected proficiency

levels. Suppose fine-grained detection and high accuracy are needed, for example, in lan-

guage education software that observes the learning process. In that case, other sources of

context should be used in conjunction, while eye-tracking can provide an auxiliary input.

For coarse-grained detection, gaze can provide robust proficiency estimation across users.

Even a short interaction duration allows for at least binary estimation, which might be suffi-

cient for some use case scenarios. Complex tasks, i.e., complex visual stimuli or additional

involvement of motoric aspects, justify person-dependent algorithms for accurate proficiency

estimation. When a user’s gaze is not solely occupied with information intake for cognitive

processes, domain-specific optimizations need to be made (cf. piano play).
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Personal strategies and teaching background can potentially govern the top-down analysis

of visual stimuli. Here, estimation of proficiency is challenging but identified task-solving

strategies could be exploited by domain experts to identify teaching methods (cf. program-

ming proficiency).

Some domains might not offer a straight-forward definition of proficiency, e.g., there is no

gold standard or tests usually require extensive examination. However, the research in this

chapter has illustrated that there is often a suitable proxy that can be communicated to the

user. Ultimately, the user decides how to interpret the given data, a concept that we will pick

up again in Part II of this thesis.

In the next chapter, we will focus our attention on another physiological sensing modality:

electromyography. Measuring muscle activity can potentially give unique insights for users

about their own movements and how to improve the execution of physical tasks.
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Chapter4
Proficiency From Electromyography

When we interact with the physical world, we predominately use our hands to manipulate

objects and tools at our disposal. Consequently, proficiency-aware systems should be able

to recognize, assess and support manual motor tasks, covering a wide range of application

areas from everyday handiwork over fitness exercises to playing an instrument.

This aspect of proficiency-aware systems is not novel. The idea of sensor-based assistance

systems to monitor the correct execution of fine motor tasks is prevalent in many areas.

Such systems evaluate task execution and can provide assistance if necessary. Essential for

any automatic feedback is the correct task recognition by the sensor-based assistance sys-

tem. For fine motor tasks, a camera-based object segmentation seems natural, as applied by

Johnson et al. [138], detecting faulty hand posture during piano play. Yet major drawbacks

of camera-based systems are occlusion and privacy; especially for fine motor tasks, self-

occlusion occurs frequently. Furthermore, users might also be hesitant when having their

training recorded by cameras.

Another modality to monitor body movements is electromyography, which measures the

muscle activity of a user. Individual motor tasks exhibit distinct electrical patterns triggered

by muscle contractions that can be detected and analyzed [206]. As such, EMG provides

deep insights into the working mechanism of motor tasks and allows informed feedback for

users.

This characteristic makes EMG a prime candidate for proficiency estimation in scenarios

where motor tasks are prevalent, such as activity recognition. In this domain, other promi-

nent modalities are inertial measurement units (IMUs) [279], capacitive sensing [98], and

camera-based approaches [18]. As outlined, camera-based systems suffer from privacy is-

sues and occlusion, especially in dynamic scenarios of finer motor tasks. IMUs, capacitive

sensing, and EMG all provide high accuracy and distinctiveness, with IMUs usually requir-

ing the least amount of setup time. Here, capacitive sensing requires object modification,

and EMG requires applying electrodes. Yet, IMUs struggle to offer additional bodily in-

sights that are not visible by an observer, such as a supervisor. In this regard, both capacitive
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sensing and EMG can provide unique insights — for example, applied pressure — that fa-

cilitate an understanding of the user of their own performance and ultimately proficiency.

Additionally, EMG inherently focuses explicitly on "user alteration", enabling interaction

across devices and objects. We believe this to be an important design requirement to enable

seamless integration for proficiency-aware systems.

Consequently, we chose EMG as a sensing modality for physical tasks (cf. Section 1.1) and

evaluate its feasibility to detect motor tasks in proficiency-aware systems in this chapter. In

particular, we leverage EMG to detect muscle activity that occurs naturally during manual

interaction. In two use cases, we investigate technical and task requirements of EMG-based

interactive systems, guided by RQ2 as outlined below. In Part II, we will have a closer look

at how we can design appropriate feedback for users to gain bodily insights (Section 5.1).

RQ2

How accurately can we estimate proficiency from a user’s muscle activity?

Recognizing Guitar Chords

In this first use case, we focus on fine-grained motor tasks by drawing on a guitar tutoring

scenario. Here, we leverage EMG to recognize guitar chords played by the participants. An

automated system ascertains whether a currently played chord is correct and estimates the

user’s proficiency. Similar to our research in Chapter 3 (Proficiency From Gaze), we focus

on technical requirements of the employed modality. Additionally, we have a closer look at

who (system or user) controls the adaptation (cf. Section 2.4).

Assessing Exercise Form

While our first use case investigates static hand postures and their recognition via EMG,

this second use case focuses on assessing a user’s exercise form during physical activity.

Additionally, we evaluate the validity of low-cost mobile EMG devices. While the first use

case makes use of a high-grade medical device to record electromyograms, we envision

EMG to become more and more ubiquitous in the future.
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This chapter is based on the following publications.

Jakob Karolus, Hendrik Schuff, Thomas Kosch, Paweł W. Woźniak, and Albrecht

Schmidt. 2018. EMGuitar: Assisting Guitar Playing with Electromyography. In

Proceedings of the 2018 Designing Interactive Systems Conference (DIS ’18). ACM,

New York, NY, USA.

https://doi.org/10.1145/3196709.3196803

Jakob Karolus, Annika Kilian, Thomas Kosch, Albrecht Schmidt and Paweł W. Woź-

niak. 2020. Hit the Thumb Jack! Using Electromyography to Augment the Piano

Keyboard. In Proceedings of the 2020 Designing Interactive Systems Conference
(DIS ’20). ACM, New York, NY, USA.

https://doi.org/10.1145/3357236.3395500

Jakob Karolus, Felix Bachmann, Thomas Kosch, Albrecht Schmidt and Paweł

W. Woźniak. 2021. Facilitating Bodily Insights Using Electromyography-Based

Biofeedback during Physical Activity. In Proceedings of the 23rd International Con-
ference on Mobile Human-Computer Interaction (MobileHCI ’21). ACM, New York,

NY, USA.

https://doi.org/10.1145/3447526.3472027

4.1 Related Research and Background

Research on the relationship between neural activity and muscle contraction dates back to

the early 20th century, where Adrian and Bronk [1] utilized needle electrodes to measure

muscle activation. In more recent research, EMG has predominately been used in clinical

applications such as prosthetic control [117, 230] and detecting muscle diseases [14]. Due

to the availability of affordable recording equipment, HCI has taken an interest in EMG as

an input modality in the last decade, mainly focusing on auxiliary input methods relying on

specific hand and limb gestures to trigger muscle activity. In this section, we will introduce

the physical background for EMG recording necessary throughout this thesis and highlight

research projects conducted in recent years.

Recording Muscle Activity via EMG

The contraction of individual muscles allows us to direct our extremities and move our bod-

ies. The basic element for this process is the motor unit, consisting of the motor neurons

and their associated muscle fibers. To control muscles, the brain sends electric signals to the

motor neurons in the spinal chord. These are responsible for innervating the fixed set of their

muscle fibers by sending action potentials, activating the fibers via depolarization and thus

contracting the muscle. The electric signals originating from depolarization along the muscle

fiber generate an electric field which can be measured via Electromyography. [186, 206]
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Yet, since each motor unit controls a varying number of muscle fibers, the measured mo-

tor unit action potential (MUAP) is a spatial-temporal superposition of the contributions of

individual action potentials [186]. This becomes particularly obvious when working with

surface EMG (sEMG), where sensor electrodes are placed on the participant’s skin. The

generated electric signal from a specific muscle fiber needs to penetrate several layers of

tissue to reach the sensor electrodes, degrading and blurring - similar to a low-pass filtering

effect [186] - the signal in the process. Hence, it is difficult to pinpoint single muscle ac-

tivity, yet this technique is far more suitable for HCI than invasive needle EMG, where the

electrodes are injected directly into the muscle. [206]

EMG signals are measured as the potential between a ground electrode and a sensing elec-

trode. Signal properties are influenced - among others - by anatomy such as the size of the

muscle fiber, the distance to the recording site as well as recording equipment. Amplitude

values range from 50μV to 5mV [29] warranting sensitive equipment. Yet, this makes EMG

inherently noisy as the electrodes pick up electrical activity from other sources, e.g. sec-

ondary muscle movement, skin movement and environmental sources such as power line

noise. Hence, the raw signal needs to be cleaned beforehand. We will discuss the details of

applied filters and preprocessing steps in the respective use cases. [186, 206]

EMG in human-computer interaction

For usage in HCI, it is important to be able to distinguish between different signal signatures.

In 1988, Hefftner et al. [113, 114] explored autoregressive modelling to recognize EMG

signatures. In their work, they mention common shortcomings and issues when working

with EMG that hold true today, for example subject dependency and the need for training

the muscle movements required for activation.

Facial electromyography

Approaches to implicit recognition examine the detection of emotions by recording facial

muscles. Vrana already showed significant differences for EMG signals (and heart rate)

in different emotional states such as joy, anger and disgust [320]. In a more recent work,

Mandryk et al. [191] utilized EMG among galvanic skin response (GSR) and heart rate

to objectively evaluate the emotional state of the user in play environments. Similarly,

Perusquía-Hernández et al. [232] have shown that EMG provides deeper insights into fa-

cial movements than computer vision, revealing covert behavior. Facial EMG has been used

for direct input as well. In TongueSee [341], Zhang et al. have shown the detection of six

tongue gestures recorded by electrodes on chin and throat with 94% accuracy. Furthermore,

Bourland et al. showed that it is possible to recognize different spoken words using facial

electrodes [27]. These can even be silently mouthed, allowing for targeted verbal communi-

cation using beamforming speakers.
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Intimate Interaction

Costanza et al. exploited an important property of isometric muscle activation, that is con-

tinuous activation but no visible movement. Due to the discreet nature of the interaction,

participants were able to navigate an audio menu using muscle contraction of the biceps.

Observers were not able to detect any movements when the participants were wearing short

and long sleeves [49, 50].

Gesture Recognition

When using a limited number of electrodes the produced EMG signal can be quite ambigu-

ous due to multiple muscle fibers contributing to the signal. Hence, research has been using

different approaches to counteract this issue. One solution is employing multi-modal ap-

proaches combining EMG and other sensors, such as force sensors [203] as well as inertial

sensors [109, 228] available in the commercial Myo-Armband1.

To reliably detect a reasonably sized set of gestures, numerous EMG sensing channels need

to be deployed. In their work, Saponas et al. [261] employed a circular array of 10 electrodes

(yielding 8 channels) around the forearm to distinguish gestures in four different sets with up

to 95% accuracy. Yet they also report a high variance in detection accuracy for the different

gesture sets and across participants. Given the casually placed sensors and usage of off-the-

shelf machine learning, they conclude the huge potential for muCIs (muscle-computer inter-

faces) with purpose-built hardware and more sophisticated machine learning methods [261].

In their follow-up work [262], they additionally evaluated the approach in a more natural en-

vironment, demonstrating gesture classification even when the hand was already occupied,

e.g. while carrying a bag or a mug.

A more extreme approach - regarding the number of sensing channels - was applied by

Amma et al. [7]. They managed to distinguish 27 gestures using a high-density grid of

192 electrodes attached around the forearm with up to 90% within-session accuracy. After

compensating for electrode shift, the authors reported 75% cross-session accuracy. Their

method essentially detected characteristic areas of muscle activity (low or high) and shifted

the recorded data, although the technique might be difficult to apply on an inter-person

level [7].

An inherent challenge of EMG-based interfaces is engineering user-independent classifica-

tion algorithms. Works by Kerber et al. [156] and Huang et al. [127] showcased possible

solutions to this issue. While the first one relied on a robust classification approach, the

latter work leveraged implicit calibration to collect data samples without interrupting the

user. Consequently, advances for electromyographic sensing with low-cost, mobile devices

are essential, such as follow-up work from Saponas et al. [263] and most recently printable

electrodes for rapid fabrication of on-skin interfaces [217].

1 https://www.myo.com/. Product has been discontinued
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EMG in Musician-Instrument Interaction

For music creation, biosignal characteristics are used to map music characteristics such as

pitch and volume. In a work from 1990, Knapp and Lusted introduced Biomuse [163] a

MIDI-controller for musical composition using biosignals. Arslan et al. showed a similar

system with bio-orchestra [10].

Since music composition involves many different parameters, researchers have adopted the

multimodal approach to enrich interaction. Tanaka and Knapp presented a method to control

music devices using EMG and relative positioning as complementary input channels [303],

while Donnarumma et al. showcased the combination of EMG and mechanomyogra-

phy2 (MMG), enabling continuous activation through isometric muscle contraction recorded

by EMG and triggers through MMG on contraction onset and outset [64].

4.2 Use Case I: EMGuitar - Recognizing Fine-Grained
Motor Tasks

Mastering fine motor tasks takes years of time-consuming practice. Commonly, expensive

guidance by experts is essential for success. Current computer-based training aids usually

use vision-based assistance systems, which suffer from occlusion when monitoring manual

tasks. In the domain of music education, researchers have already experimented with dif-

ferent modalities for feedback and assistance. In guitAR [185], Löchtefeld et al. showed an

augmented reality approach to depict correct finger position on a guitar fretboard, while Mu-

sicJacket [139] employed a vibrotactile jacket to inform users of bad posture during violin

play.

The scope of this use case focuses on the feasibility of using EMG to detect fine motor tasks

and thus evaluate necessary hardware requirements in an exemplary guitar tutor scenario. We

report person-dependent classification of seven guitar chords utilizing a ring of electrodes

around the forearm (eight channels) with an F1 score of up to 89%. Based on these results,

we present the proficiency-aware system EMGuitar, an interactive guitar tutoring system,

which we have evaluated in a study for user acceptance and recognition accuracy.

Regarding the presented dimension of proficiency-aware systems (cf. Section 2.4), we look

at the frequency of interaction between user and system as well as the aspect of agency by

evaluating the system in an automatic and user-controlled condition. We further contribute

technical constraints regarding electrode count and calibration methods and define the do-

main of tasks suitable for EMG-based proficiency-aware systems.

2 The sound produced by the oscillation of the muscle tissue when it extends and contracts [64].
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4.2.1 Methodology

Previous research has shown that finger movements and specific gestures can be detected

effectively using EMG under different recording scenarios (10 electrodes setup [261] vs

high-density grid with 192 electrodes [7]). We investigate if EMG is not only feasible as an

explicit input method by invoking defined gestures, but can be used implicitly as well. More

specifically, if EMG can be leveraged to recognize domain-specific movements and augment

a system’s understanding of the user’s actions, ultimately leading to an estimation of their

proficiency. In this scenario, users do not have to learn the intermediate representation to

interact with the system. They are free to execute their main task and the system is able to

provide assistance and evaluate their work.

Our investigation in this use case is two-fold, addressing (1) technical feasibility as well as

(2) technical and task requirements of EMG-enabled proficiency-aware systems. This allows

us not only to report on the suitability of EMG as a proficiency proxy for physical tasks, but

also identify limitations with regard to the task context. We operationalize this investigation

with two research questions derived from RQ2:

RQ2

How accurately can we estimate proficiency from a user’s muscle activity?

RQ2a: Can a system distinguish between a given set of complex hand and finger postures

using EMG?

We investigate the feasibility of EMG to detect domain-specific motion on a fine-grained

level, i.e. individual finger movements and hand postures. For this purpose, we draw on

musician-instrument interaction and aim to recognize played chords during a guitar playing

session. We believe that playing chords on the guitar is a representative case for many fine

motor tasks, because it mainly consists of isometric muscle activation - continuous muscle

activity without visible movement - which is recognizable with EMG [206, 303]. Individual

finger movement is the result of multiple muscles working together [271], hence, we utilize a

ring of electrodes around the forearm to capture the majority of the involved muscle activity.

The change between two chords often results in a complete re-positioning of hand and fin-

gers. As such, different postures do not have a common axis of change, possibly limiting

application areas for EMG-based proficiency-aware systems. To address this challenge, we

formulate our second research question:

RQ2b: What are technical and task requirements to recognize complex hand and finger

postures with EMG?

To this end, we evaluate the requirements of the proficiency-aware system, including neces-

sary detection accuracy and electrode configuration for reliable feedback and task require-

ments when interacting with the system.
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For the purpose of addressing our research questions, we first evaluate the recognition of

guitar chords in a constrained setup and apply the lessons learned to our guitar tutoring

system EMGuitar before evaluating its performance in a tutoring scenario.

4.2.2 Feasibility Study - Recognizing Guitar Chords via EMG

In a preliminary study, we first evaluated different feature combinations and algorithmic

parameters often used in related literature. We tasked participants to play a sequence of

guitar chords while we were recording their muscle activity.

Apparatus

We used the BrainVision actiCHamp EEG recorder3 with active surface electrodes to per-

form EMG sensing. In total, we applied ten electrodes around the participants’ left upper

forearms. This included one ground (GND) and one reference (REF) electrode, minimizing

noise levels. Furthermore, active shielding reduced interference to electrical effects and ar-

tifacts due to cable movement. The remaining eight data channels were sampled at 500 Hz,

as related work [207] states that most power of the signal is within 5 Hz and 250 Hz. While

the actiCHamp system is mainly used for electroencephalography, it can be used to record

the electric signals from muscle activity as well.

The electrodes were attached in a ring-like fashion around the arm using adhesive foil rings

as shown in Figure 4.1. Each ring contains five electrodes (four data electrodes plus either

GND or REF), GND and REF where placed on the inner side of the forearm respectively.

Afterwards, each electrode was injected with conductive gel and checked for impedance.

While early research suggests placing the electrodes on the muscle belly for best and robust

recordings, we follow the approach depicted in the work from Saponas et al. [261]. Contrary

to their setup we spaced the electrodes equally around the whole forearm, since it will not

rest on a table when pressing down guitar chords. This setup allows to implicitly capture the

relative electrode location and helps to pinpoint local muscle activity. Prior to the start of the

experiment, electrodes were injected with conductive gel and their impedance was checked.

The recorded data was transmitted via USB to the Recording PC (cf. Figure 4.2) and redi-

rected as a data stream into the local network. On the other side, the Stimulus PC (cf.

Figure 4.2) was presenting chord patterns on a 27 inch LCD monitor, while simultaneously

sending a marker stream into the network. Both streams were locally time synchronized on

the Stimulus PC using the lab streaming layer (LSL) [170] framework and saved to its hard

drive. A schematic depiction of the complete setup is shown in Figure 4.2.

3 http://brainvision.com/actichamp.html
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Figure 4.1: Electrode configuration with two rings around the forearm each consisting of five

electrodes.

Figure 4.2: Schematic depiction of our apparatus.

Participants

We collected data of three male participants with a mean age of x̄ = 23.3y (s = 2.1y) from

the University of Stuttgart through word of mouth. All participants had previously played

the guitar as a hobby on a regular basis and were able to play the sequence without flaws.

Procedure

We introduced the prospective participants to our study and gave them time to familiarize

themselves with the provided guitar. After providing informed consent, we attached the

electrode rings as described in the previous section and fixated the electrode cables with

tape if necessary. Subsequently, we asked the participants to play the following sequence
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of chords: -4, Am, C, -, G, D, -, Em, F, -, Fm at a speed of 100 beats per minute (BPM) until

they felt comfortable playing it. Each chord was played for one bar (four beat strumming pat-

tern). This selection allows a player to play a wide variety of songs. We played a 100 BPM
metronome throughout the study to help the participants stay in rhythm. Recording time

was five minutes for each subject and total study time did not exceed 20 minutes including

setup time. Ethical approval for this study was obtained from the Ethics Committee at the

University of Constance.

Data Preparation and Feature Generation

We applied the following filtering steps to clean the signal and remove environmental

noise [206, 261]:

1. A fifth-order butterworth bandpass filter between 2 Hz and 100 Hz. This step is impor-

tant to attenuate long-term drifts, the DC offset and high-frequency noise.

2. A fifth-order butterworth bandstop filter to attenuate frequencies between 49 Hz and

51 Hz in order to remove power line interference.

A common analysis for time-series data is the segmentation into epochs [206], therefore

we divided the EMG signal into windows of fixed size for feature generation. Hop size

was set equal to window size. We expected participants to change chords at the end of

each bar distorting the signal due to the muscular activity during the chord changes, so that

the new chord would already be pressed down when the following bar started. Hence, we

discarded a portion of the signal at the end of each bar. A depiction of this process can be

seen in Figure 4.3. Overall, we discarded approximately 500ms to 750ms depending on the

used window size, leaving us around 1.65 s to 1.9 s of signal that we submitted for feature

generation. The total bar length was 2.4 s.

Figure 4.3: Depiction of used and discarded (red) signal parts. One box corresponds to one bar

whereas each dotted line marks a new window.

4 No chord played.
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Based on related work [206, 261, 236], we evaluated the following groups of features:

Root Mean Square (RMS)

The root mean square (RMS) is a commonly leveraged feature when analyzing windowed

time-series. For a series x = {x1, x2, ..., xn}, RMS is defined as

RMS (x) =

√
1

n
(x2

1
+ x2

2
+ ...+ x2

n).

The RMS can be seen as a proxy for the intensity of muscle activity as the amplitude of the

EMG signal increases when the muscular activity increases [206]. We computed the RMS

for each channel as a separate feature. In addition, we computed the pair-wise ratios between

all channels (RMS ratio), yielding a total of 36 values for every window (8 channels plus 28

pair-wise ratios.).

Frequency Energy

A change in muscular activity may not only be reflected in an increased amplitude, but may

be present in the signal’s spectrum as well. This effect can be attributed to the increased firing

rate of the motor units. One possibility to measure this is to take the Fourier-transformed

signal and sum up the frequency energy in different bins of frequencies. We divided the

spectrum between 0 Hz and 100 Hz into 10 Hz sized bins and use the resulting energy sums

as features for each channel (10 in total).

Phase Coherence

Phase coherence indicates the synchronization of motor units. In other words, whether firing

happens synchronously (same phase) or asynchronously (different phase). We extracted the

mean coherence of a window as well as use pair-wise ratios again, yielding a dimensionality

of 36.

Results

We tested multiple combinations of feature sets and will discuss the respective performances

in the following.

Train and Test Data Split

We split the derived data set into 80% training data and 20% test data. Since subsequent

windows of the EMG signal are correlated (in a probabilistic sense) [206], we did not shuffle

the data set before the train test split, as this would have artificially boosted the classification

performance [108]. This also matches the real-world approach of calibrating the system

before using it. Prior to training our classifier, we normalized (zero mean and unit variance)

the data by estimating the mean and standard deviation on the training set. We applied the

same transformation to the test set, using mean and standard deviation from the training set.
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Feature group F1 score

Root mean square 0.83

Root mean square ratios 0.83

Frequency bins 0.41

Phase coherences 0.59

RMS and RMS ratios 0.87

Table 4.1: Weighted class-averaged F1 score for given feature groups (averaged over all partic-

ipants).

Normalization is important as it scales feature values and reduces rounding errors due to

limited precision.

Model

We used the training data to train an support vector machine (SVM). To estimate the hy-

perparameters, we performed a group k-fold cross validation. This type of cross validation

matches our data’s constraints as it ensures that in each iteration of the CV, instances of one

group, i.e. one bar/ chord, stay together during the k-fold, hence not artificially boosting

the classifier’s performance [108]. Throughout our analysis, we used k = 3 as higher values

induced unacceptably high computation times for fitting the model.

Feature Performance

We analyzed the model’s performance with regard to prediction accuracy and necessary

computation time. First, we show how well the model performs using different sets of fea-

tures. For this analysis, a fixed window size of 250ms was used. The results are shown in

Table 4.1. We only report F1 scores for visual clarity. Measured precision and recall did not

show outliers for any set.

Our results show that the combination of RMS and RMS ratio features outperformed all

other tested combinations of features in terms of recognition. We additionally evaluated

other feature groups found in related work such as ARIMA and Wavelet transform coeffi-

cients [242]. However, those did not yield sufficient F1 scores. For clarity, we omitted these

from further analysis.

To get an overview over the strengths and weaknesses of our classifier regarding specific

chords, we report the confusion matrices of the models for each participant in Figure 4.4.

Feature Computation Time

In order to find out how well the classification could be embedded into a real-time setting,

we measured the processing time of each feature group (averaged over the participants) on

70



4 Proficiency From Electromyography

Figure 4.4: Confusion matrices with respect to the classifier’s performance on the test-data.

The total number of instances per class varies over the three participants because of the random

starting position in the pattern and the train-test split.

Feature group Averaged processor time

Root mean square 1.32 s
Root mean square ratios 1.38 s
Frequency bins 1.73 s
Phase coherences 7.20 s

Table 4.2: Averaged processor time required to compute the respective feature groups for a five

minute recording on a MacBookPro5.

a MacBookPro5 for a five minute recording. The results are shown in Table 4.2. All tested

feature groups can be computed fast enough and utilized for real-time applications.

Window Size

Furthermore, we evaluated the trade-off between classification performance and latency,

which depends on the chosen window size. We chose to use the RMS and RMS ratios feature

groups, as they reached the highest performance in our test with a windows size of 250ms.

The relationship between window size and average F1 score is depicted in Figure 4.5.

Inter-Person Performance

Next, we assess inter-person recognition. We apply a leave-one-subject-out validation on

our data. The respective results are listed in Table 4.3.

Number of Electrodes

In this study, we used a total of eight sensing channels to construct features. To evaluate the

viability of EMG-sensing devices with a limited number of channels, we composed different

subsets with fewer channels and tested the recognition accuracy. We additionally tested six

5 i7, 2Ghz, 8GB RAM.

71



0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

0.61

0.890.87

Window size in ms

A
v
er

ag
e

F
1

sc
o
re

Figure 4.5: Average F1 scores of the classifier given window size. All values are calculated

using the RMS and RMS ratios feature groups.

Test set Accuracy Precision Recall F1 score

Subject 1 0.23 0.14 0.23 0.17

Subject 2 0.18 0.39 0.18 0.12

Subject 3 0.39 0.40 0.39 0.36

Table 4.3: Inter-person classifier performance using the RMS and RMS ratios feature groups.

Training was done on the other two subjects’ data.

four-channel, ten two-channel and eight one-channel setups. In Figure 4.6, we report the

maximum average F1 score of each subset, respectively.

Additionally, we found that evenly spaced electrodes around the forearm in the four-channel

setup performed best. This explain the rapid accuracy decrease for the two- and one-channel

setup, as they are not capable of encircling the entire forearm.

Summary

Our investigation has shown that recognizing a set of complex hand and finger postures such

as guitar chords, using a ring of ten electrodes around the forearm is possible with high

accuracy. It needs to be noted that we deliberately chose a simple classification scheme

and did not account for accurate electrode positioning. We believe that this gives a lower

boundary on recognition accuracy and can be improved upon.

Consequently, we can provide a positive answer to RQ2a. We have further identified con-

tributions to RQ2b regarding technical requirements. We found that the feature groups of

RMS and their pairwise ratios provide good recognition accuracy while being feasible

for a real-time scenario regarding computation time (RQ2b).
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Figure 4.6: Maximum average F1 score for different EMG channel configurations. Features

include RMS and their ratios with a 250ms window size.

We found that increasing the window size increases recognition performance up to an F1

score of 0.89 using a 500ms window. However, this induces a trade-off between the response

time of the system and detection accuracy. Our results indicate that choosing a window size
of 250ms is a good trade-off between latency and accuracy (RQ2b). Furthermore, we do

not recommend using fewer than eight electrode channels for detecting fine motor tasks, as

recognition accuracy drops for lower numbers. An evenly spaced electrode configuration is

to be preferred (RQ2b).

When evaluating individual confusion matrices of the participants, we found that the classi-

fier struggled to distinguish between the very similar chords Am and C. Hence, we suggest to

evaluate feature performance for each class separately. Lastly, we observed that inter-
person classification is difficult if electrode positioning is not fixed and training data is

limited. These task constraints and requirements should be considered for proficiency-aware

systems leveraging EMG (RQ2b).

4.2.3 Main Study - Evaluating a Guitar Tutoring System

A guitar tutoring system should be able to assess the student’s play accuracy in real-time

and respond accordingly. If this is technically feasible, how can we deliver adequate feed-

back that supports the learning process? What are technical and task limitations for such

a system? In this study, we want to answer the question whether such a system is able to

provide automatic tempo adjustment during the learning phase or if manual adjustment is to

be preferred.

To adequately learn a new procedure, e.g., playing a new song, it is essential to first exe-

cute the individual steps slowly yet correctly and gradually increase speed when execution
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is flawless. We pick up on this paradigm and apply it in a guitar tutoring system. Further-

more, we evaluate the user experience of EMG-based tutoring after we have shown that it is

technically feasible.

Scenario

Based on the results from our preliminary study, we developed EMGuitar, a guitar tutoring

system that provides tempo adjustment for song playback. EMGuitar decides on a new

tempo based on the measured player’s proficiency.

Contrary to audio-based systems, EMG-based systems are able to detect how someone is

playing. While two performances might sound the same, one player might use a different

hand posture resulting in effortless play. Especially when learning the guitar, bad hand

postures can lead to hand pain diminishing the joy of playing. Hence, the system can advise

the player which chords and chord changes need practice.

Our tutoring system detects the player’s proficiency by evaluating how accurately a given

chord progression was executed. If the player is comfortable with the current song tempo,

chord accuracy will be high and the system increases the tempo. If the chosen tempo is

too fast, the player will struggle to finger the chords correctly, hence accuracy will diminish.

The system reacts by slowing the tempo for the next iteration. During the study, we analyzed

how the musicians interact with EMGuitar and which requirements and problems arose when

they used the system.

Design

We employed a within-subject design with two conditions; the first with manual tempo ad-

justments by the participants, the second with the tempo adjusted by the system. We used

the same apparatus as in the preliminary study. Preprocessing and feature extraction were

identical. As our previous evaluation has shown that the RMS and RMS ratios feature groups

performed best, we used these groups with a window size of 250ms.

Since the system is aimed at beginner guitarists, we reduced the set of chords to C, F, Am and

G. This set of chords forms the I-V-vi-IV-progression, which is heavily used in pop music.

By including the barre chord F, we introduced a challenging chord for beginners as well.

To counteract learning effects due to repetitive chord changes, we created two chord se-

quence patterns (A and B) out of all possible permutations of the above chords. Each chord

appeared 12 times in each pattern, while their duration was randomly assigned from one to

three beats. A pattern consisted of 20 bars; each containing four beats. For calibration, we

tasked the participants to play two bars of each chord twice.

The tempo adjustments were made between 40 BPM and 90 BPM. Tempi lower than

40 BPM were hardly playable, while 90 BPM was challenging if chords changed as often

as every beat. Based on test runs, we chose the following mapping for the new tempo:

Tnew =min(90,max(40,Told + (Accplayer −0.5) ·100)),
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where Told is the previous tempo and Accplayer the estimated chord accuracy of the player.

Since chord changes might happen every beat, we chose to only neglect one epoch (250ms)

at the end of each chord change. Re-evaluation on our previous data set has shown that accu-

racy only decreased slightly, average F1 score dropped from 0.87 to 0.84. To further coun-

teract noise due to chord-change artefacts, we set up a majority voting as a post-processing

step.

Participants

We recruited eight participants from the University of Stuttgart through mailing lists. The

data of seven (1 female, x̄ = 22.6y, s = 2.3y) were used for further analysis6. All participants

were beginners on the guitar and reported normal sight and hearing. They were able to play

the four chords. After the experiment, each participant was paid an allowance of 10 Euros.

Procedure

After introducing the prospective participants to our study, we handed them a detailed study

description, stating that they were to play a given chord sequence with the guitar during

several iterations. Playback, provided by a metronome, would be adjusted either manually by

the participants or automatically by the system. Participants were made aware that adhesive

electrodes would be placed on their forearm and their muscle activity would be recorded.

After providing informed consent, the participants were asked to complete a demographic

questionnaire, polling sex, age, work field, highest educational qualification, their eyesight

and general health. The experimenter was present to answer any questions.

Before the actual experiment was started, the experimenter placed electrodes on participants’

forearms. They were then given time to familiarize themselves with the provided guitar.

Subsequently, we conducted a first calibration at 40 BPM followed by a first run consisting

of five repetitions of either pattern A or B and intermediate tempo adjustments between

repetitions. Adjustment were either made manually or automatically. The last repetition

was always executed at 90 BPM, ensuring the same end tempo for each participant. After a

short break, another calibration was conducted followed by five repetitions using the other

experiment condition. A complete overview is depicted in Figure 4.7.

At the end of the experiment, we asked the participants to fill out two identical question-

naires, one targeting the manual condition and one for the automatic condition. The ques-

tionnaires contained questions based on the work of Yuksel et al. [338] and their piano

tutoring system. These questions were aimed at the learning process and mastery of the

piece, as given in Table 4.4. Another questionnaire was specifically tailored to the automatic

condition where we asked the participants the questions listed in Table 4.5.

6 We believe this to be a meaningful sample size for our formative evaluation since all participant are familiar

with the instrument [130].
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Figure 4.7: Study procedure for the evaluation of EMGuitar.

Learning process and mastery of the piece

Q1 How well did you feel mastering the piece?

Q2 How correct did you feel you played?

Q3 How easy was it to learn the piece?

Q4 How enjoyable was it to learn the piece?

Table 4.4: Questionnaire (7-point Likert) for both conditions (automatic, manual) adapted from

Yuksel et al. [338].

The whole study including setup and electrode placement did not exceed 60 minutes. Eth-

ical approval for this study was obtained from the Ethics Committee at the University of

Constance.

Results and Discussion

In this section, we will discuss the results from our questionnaires and their implications.

We will also revisit challenges that we identified in our preliminary study.

Questionnaires

We compared the answers for the automatic and manual conditions from the first two ques-

tionnaires (cf. Table 4.4). A Wilcoxon Signed-ranks test showed that the reported Likert
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User experience of EMGuitar

Please rate your perceived accuracy of the system in evaluating your performance.

How did you perceive the tempo adjustments the system made?

How challenging were the system’s tempo choices?

Did the electrodes limit you in playing the guitar?

Would you use the system to learn to play guitar? Why or why not?

Imagine the system/electrodes could be integrated into your garments. How does this

change your perceived usability of the system?

Further comments

Table 4.5: Questionnaire (5-point Likert and free text) exclusively for the automatic condition.

scores for all four questions were not significantly affected by the condition the subjects

were using. The results are illustrated in Figure 4.8.

However, the results of the first two questionnaires (cf. Figure 4.8), indicate that the partici-

pants were comfortable with either tempo adjustment. We believe that the automatic system

gave the participants a feeling of security as it relieved them from having to choose a new

tempo, which was lower on average for the automatic condition7. However, answers for

"How enjoyable was it to learn the piece?" suggest that the manual condition was more en-

joyable for the subjects. We believe, that this can be explained by the low accuracy reported

by the system and might have irritated the subjects. Nevertheless, participants stated that the

electrodes did not limit them during their guitar play in the third questionnaire.

We analyzed the textual feedback provided by the users in the third questionnaire (cf. Ta-

ble 4.5) using affinity diagramming with two researchers identifying themes in the qualitative

data. We found that users perceived an increase in playing accuracy:

The given tempi helped to challenge me in play more quickly but still accurately.
(P7)

Further, users were able to realize, reflect upon and rectify possible flaws in their playing

style:

Yes, because my own adjustment was probably too high, the system probably is more
realistic. (P2)

EMGuitar was also perceived as offering a playful experience and the opportunity to practice

alone while still receiving feedback was welcomed by the users:

Yes because it’s fun and it has the self-learning aspect into it without having a
teacher to keep telling me what to do. (P3)

7 Automatic: x̄ = 57, s = 18; Manual: x̄ = 66, s = 12.
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Figure 4.8: Boxplots illustrating the results of the first two questionnaires.

Figure 4.9: Possible feedback visualization for chord grips and chord changes. Colors range

from green (flawless play) to red (faulty play).

In the free text comments, the subjects asked for more sophisticated feedback like chord

and chord-change highlighting. This matches with our vision of the system and encourages

further development. Figure 4.9 shows a possible visual feedback.

Intra-Person Performance

To assess person-dependent performance during the experiment, we utilized the recorded

calibration data. We report F1 scores for training and testing on either calibration, respec-

tively, yielding an average F1 score of 0.89. To evaluate the degradation of accuracy due to

electrode location shift and sweating, we additionally trained on the first calibration set and
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tested on the second, conducted approximately 20 minutes later, only reaching an F1 score

of 0.59 (min = 0.25, max = 0.72).

We have shown that detection accuracy is high when calibrating just before the evaluation.

Yet it is also evident that performance can degrade quite fast after half an hour of playing

time. Investigating the individual confusion matrices of the participants, we identified the

following structural errors:

Electrode location shift and impedance change Over time the electrodes start to shift

their location and pick up different signal characteristics. Despite fixating them with tape,

even small shifts can lead to a drastic signal change. Furthermore, increased sweat produc-

tion, e.g. due to nervousness, changes the electrode impedance and the resulting signal as

well.

Similar postures Especially between Am and C, we have observed more misclassifica-

tions. As both chords are rather similar, this is not surprising. Hence, it can be difficult to

distinguish motor tasks that bear close resemblance.

Estimated chord accuracy when playing either pattern A or B ranges between 30% and 70%.

While this can be attributed to the player proficiency, quick chord changes at high tempi

introduce artefacts in the signal chain. We believe that detecting chord changes can remedy

this problem and also provide feedback on flawed changes (as explained in Figure 4.9). For

scenarios where this issue is problematic, a possible solution could be to introduce a temporal

dependency between consecutive chords, e.g. by using hidden Markov model (HMM) as

depicted in Figure 4.10.

Figure 4.10: Schematic depiction of a second-order hidden Markov model (HMM) for chord

estimates. The most-likely sequence is calculated based on the estimated transition and obser-

vation probabilities.

Inter-Person Performance

Inter-person performance was evaluated using the same leave-one-subject-out (LOSO) ap-

proach. Furthermore, we applied a principal component analysis (PCA) before learning.
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The PCA reduces the dimensions of the feature-vector while preserving the maximal possi-

ble variance. This technique can help to compensate inaccurate electrode placement across

participants and has been applied to EMG signals before [340]. Despite relying on only a

maximum of nine principal dimension, the PCA-version performed as well as the original

classifier relying on a feature-vector of 36 dimension. While we cannot report any signif-

icant improvements regarding classification performance across participants, these findings

suggest that dimensionality reduction techniques are effective and suitable for EMG-based

detection. We additionally tested the PCA with whitening transform ensuring uncorrelated

components. However, this did not increase the performance for any of the participants.

4.2.4 Requirements and Limitations

We have presented EMGuitar as an exemplary tutoring system that recognizes fine motor

tasks. Our results show that a high classification accuracy can be achieved using an electrode

ring around the forearm. However, performance across participants is not yet satisfactory.

To foster further research for EMG-based proficiency-aware systems and provide an answer

to our second research question RQ2b, we enlist technical constraints and task requirements

based on our findings with EMGuitar.

Multiple Sensing Channels Are Essential

We recommend a minimum number of eight sensing channels for the detection of fine

motor tasks. Best results can be achieved when the electrodes are spaced evenly along the

observed extremities. More channels can be beneficial to estimate electrode shift and achieve

better cross-session accuracy as demonstrated by Amma et al. [7].

User-Dependent Calibration Is Still Required

We advise for user-dependent calibration during the training phase of the system. Our

results showed that cross-session accuracy quickly deteriorated under environmental influ-

ences. Hence, it is vital to perform prior calibration of the system requiring the need for a

human supervisor. A multi-modal approach can remedy this limitation. Other modalities,

such as sound for our guitar scenario or camera vision, can help to calibrate for EMG auto-

matically. Iterative approaches to calibration have already been researched [140], concluding

that complete re-calibration is preferable. Independent component analysis (ICA), as shown

by Naik et al. [212], might be a method to tackle this challenge, revealing the contribution of

specific muscle fibers and applying automatic re-calibration, but is subject to preconditions,

such as sufficient number of EMG channels.

Accurate User Feedback Needs To Model Transitions

Especially for fine motor tasks comprising temporal sequences, we advise to model the
transitions as well. We found, that users lacked the appropriate feedback when changing
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between chords, such as depicted in Figure 4.9. Similarly, modeling transitions between

each motor task makes detection more robust, but tends to be problematic for EMG-based

systems, as isotonic8 muscle activation occurs. Here, we motivated possible solutions using

hidden Markov models as shown in Figure 4.10.

Beneficial Task Characteristics For EMG

The results of our studies as well as related work [262] suggest, that recognizing isometric

muscle activity9 works best for EMG-based sensing. This means that motor tasks involving
static hand postures combined with constant pressure, for example, pressing down guitar

chords, are suitable as we have shown in our work. Related work suggests that isotonic

muscle activity8 is more difficult to recognize using EMG [303].

A multi-modal approach to recognize transitions between repetitive isometric states can rem-

edy this limitation, thus allowing recognition of various movements during prolonged activ-

ities such as repetitive motions in sports or following a procedure in assembly work. Even

playful interaction with controllers for games or musical instruments are conceivable like

YouHero [54] utilizing the GuitarHero controller or the Air-Guitar Hero scenario already

illustrated by Saponas et al. [262].

Consequently, this makes EMG-based recognition inherently unsuitable to detect creative

movements, e.g. during improvised dancing, as appropriate training data cannot be gener-

ated. However, a more general model could be researched in the future detecting only distinct

signal characteristics of certain movements and rely on the user to provide interpretation as

we showcase in Section 5.1.

4.2.5 Conclusion

In this use case, we have showcased the feasibility of detecting domain-specific, fine-grained

hand and finger postures using Electromyography in a guitar playing scenario. Contrary to

recent approaches to forearm EMG, we did not aim to recognize a pre-defined set of gestures

that need to be executed by the user. Instead, we explore EMG as an implicit sensing modal-

ity for proficiency-aware systems. This enabled us to recognize domain-specific movements

and postures such as guitar chords to support users in learning, and allows for natural inter-

action with the instrument [316].

In two studies, we evaluated the accuracy of an electrode ring around the forearm to detect

different guitar chords and showed that the commonly used root-mean-square (RMS) feature

of signal segments and its ratio between sensing channels is still reliable in our scenario. In

EMGuitar, we applied these results and implemented a tutoring system that automatically

adjusts playback speed of a song to match the player’s proficiency. Our system was received

8 Elongating and shortening of muscles including visible movement.
9 Continuous muscle activity without muscle movement, e.g. when pressing against a wall.
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well; neither diminishing ease of use nor being disruptive for the participants. Yet, as we

intentionally did not account for highly accurate sensor placements, only within-session

classification achieved high accuracy.

Based on our results, we propose technical requirements for EMG-based fine motor task

detection including preferable electrode count and the necessity for supervised calibration.

We believe that our approach is suitable for a number of physical tasks that follow certain

characteristics as outlined in the requirement section.

We envision the use of electrode bands as a natural sensing modality for fine motor task

training in proficiency-aware systems, especially since sensing electrodes can be easily in-

tegrated in garments and wearables. Non-contact electrodes relying on electric field sensing

[311] are even less obtrusive. Such systems will be able to ascertain a user’s proficiency in

the main domain task and provide assistance accordingly. Consequently, it is vital to inves-

tigate the accuracy of low-cost and mobile devices for EMG. The following use case covers

this scenario.

4.3 Use Case II: FitBack - Recognizing Exercise Form

Physical activity is an increasingly important part of our lives. The number of people exer-

cising regularly is on the rise [73, 8], as is the number of interactive systems that accompany

exercise every day. However, while regular physical exercise offers mental and physical

health benefits, these come at the price of the hard work needed to master the forms and

techniques required for a given sport.

As humans, we rely on proprioception for orientation in physical spaces [238]. This sense

of relative body orientation allows us to effectively position our body and extremities. When

learning new body poses, we try to mimic movements to get a sensation of “how the move-

ments feels” which allows us to create a motor memory [171]. The efficiency of this tech-

nique highly depends on the task and the individual. Even today, the exact mechanism of

consolidation of motor memory and possible distractors is not completely understood [171].

While EMG carries much information about our body physiology, understanding the signal

is challenging. To that end, this use case investigates user performance when interacting

with muscle activity data. In this lab study, we examine the performance of amateur users

when supported via EMG-based biofeedback through our mobile prototype FitBack while

performing bicep curls.

4.3.1 Methodology

This use case will focus on the technical aspects of FitBack, such as feasibility of low-cost

mobile EMG prototypes in the context of RQ2. The work also includes an investigation of

design qualities of EMG-based biofeedback that will be discussed in Section 5.1.
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4 Proficiency From Electromyography

We chose an exploratory approach by first building a mobile prototype capable of recording

electromyograms via adhesive electrodes. We used this system to explore necessary re-

quirements and resulting technical constraints in a user study with 18 novice to experienced

participants.

With regard to RQ2, we define a related research question for this use case:

RQ2

How accurately can we estimate proficiency from a user’s muscle activity?

RQ2c: Can we effectively use EMG-based biofeedback to support users during physical

activity with a low-cost device?

This research question investigates user requirements in the context of technical constraints

that arise from mobile electromyograms. Existing research [263] has already demonstrated

the feasibility of EMG for recognizing body movements. In this work, we provide a technical

evaluation of the signal accuracy and distinctiveness with regard to recognizing the correct

form of fitness exercises using a mobile, low-cost EMG device. We believe that a low entry

barrier is essential to advance EMG-supported physical activity. This research question is ex-

plored in the experimental investigation, where we assess the technical feasibility of FitBack

by comparing it with expert and coach reviews. We also assess user experience, perceived

workload, and flow experience during the exercises when interacting with FitBack.

This use case focuses exclusively on the technical aspect with regard to RQ2c as outlined

above, hence only depicting necessary study details. A complete introduction into the study

design and rationale is given in Section 5.1.

4.3.2 FitBack

FitBack is an integrated system that records and processes EMG data. The system was de-

veloped with requirements for physical exercises in mind, such as mobility, allowing users to

freely move around. Different feedback modalities and granularities allow FitBack to cater

to a broad audience of users, while a simple but robust detection algorithm is used to recog-

nize exercise repetitions. The following section provides an overview of the implementation

of FitBack. Note that FitBack uses the hardware base of EMBody (Section 6.2), but employs

a different detection algorithm.

Hardware
FitBack’s hardware is based on an ESP32 microcontroller10, which is a low-cost and low-

power system on a chip with integrated WiFi. We measure EMG using a bipolar measure-

ment technique [206] including a reference electrode and two sensing electrodes to minimize

10https://www.espressif.com/en/products/socs/esp32
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noise artifacts. Amplification is realized through an existing design11 that we adapted for our

purposes. The amplified signal for each channel gets processed by the ESP’s Analog Dig-

ital Converter (ADC) yielding a 12 bit resolution. Measurements are broadcasted over the

network via UDP at a sampling rate of 200 Hz, which is sufficient for the following filtering

steps. The whole hardware system (see Figure 4.11) can be powered by a powerbank and

fits in a 3D-printed case allowing it to be carried around by the user.

Figure 4.11: FitBack: Hardware prototype to record EMG data.

Software

To process incoming EMG data, FitBack includes an accompanying software application

that receives the data samples to generate biofeedback. First, a bandpass filter between 2 Hz
and 100 Hz is applied [261], reducing long-term drifts and high-frequency noise. A follow-

up bandstop filter between 49 Hz and 51 Hz removes interference from power line noise.

Secondly, FitBack calculates epoched root mean square (RMS) features with a window size

of 40 samples12. RMS values can be seen as a proxy for the amplitude of the EMG signal,

hence increasing when muscular activity increases [206]. A Savitzky-Golay filter [269] was

used to counteract fluctuations that might be confusing to users. After these processing steps,

the signal is visualized.

To detect individual exercises, FitBack further cross-correlates the RMS signal with a target

signal which is acquired for each participant during the calibration phase before the experi-

ment. A large correlation coefficient indicates an alignment between the target signal and the

incoming signal during the experiment. The correlation value is used to determine whether

individual trials were correctly performed by aggregating the values for all measured muscle

groups.

11www.github.com/BigCorvus/2-Channel-Biopotential-Amp

12 Corresponds to 200ms; a hop size of 0.5 times the window size was used. Parameters are based on prelimi-

nary tests.
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4 Proficiency From Electromyography

4.3.3 Lab Study

In this study, participants were asked to perform biceps curls, a simple, yet challenging ex-

ercise to perform accurately. It involves few muscles making it easy to place electrodes. In

a mixed deign, users were provided with a total of three different visualizations (see Fig-

ure 4.12) as within-subject factor. Additionally, a between-subject factor was introduced in

the form of auditory cues. Please refer to Section 5.1 for a detailed rationale of the study

design and conditions.

Figure 4.12: FitBack visualizations showing the same EMG data. Abstract representations Bars
(left) and Circles (middle), and the detailed representation Lines (right).

Measures

For our data collection, we focused on the following aspects in relation with our research

question: (1) system accuracy for performance assessment of the executed bicep curls, (2)

usability and perceived workload when exercising with FitBack.

System accuracy

During the experiment, we collected performance assessments by the experiment instructor

(a sports professional) who judged each execution as correct or incorrect. Additionally,

we logged FitBacks’ assessments of the trial. Here, preliminary tests have showed that

a correlation value of greater than 0.5 for both the bicep and the deltoid signal indicated

correct execution of the exercise. To gather objective ground truth, we conducted three expert

reviews of the collected EMG data. The experts are researchers that use EMG-based systems

on a daily basis and are familiar with the fitness exercise. They rated each execution of every

participant in the study on a 7-item Likert scale. Correct execution was rated highest, while

points were deducted for bad form, such as lifting with momentum or using excessive deltoid

activation.

Usability and Perceived Workload

We measured the Usability Metric for User Experience (UMUX) [83] to identify FitBack’s

user experience and detect potential flaws when exercising with it. To assess perceived

workload during the exercise, we employed the NASA Task Load Index (NASA-TLX) [111]
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in its raw form without the weighting process [110]. We further used the flow experience

questionnaire [280] to measure the participants’ engagement in the training exercises.

Participants

We recruited 18 participants (four female, 14 male) with a mean age of x̄ = 25.6y (s = 3.24y)

from university mailing lists. The average self-reported general fitness experience13 was

x̄= 59.3 (s= 22.77) and x̄= 42.3 (s= 29.81) for experience in weight training13. Participants

trained x̄ = 3.2h per week on average (s = 1.54h). Each participant was compensated with

10 Euros.

Procedure

The experimenter welcomed each participant and explained the intention of the study. After

providing informed consent, participants stated their fitness background and demographic

data. Next, they received an introduction on how to perform a correct bicep curl and were

made aware of common mistakes. Electrodes were placed on the participant’s dominant arm

on the bicep and deltoid muscles (see Figure 4.13). The experimenter then picked weights

that were appropriate to the participant’s fitness level. Afterward, the calibration started in

which a visualization dictated the rhythm for the bicep curl repetitions. The experimenter

verified the correctness of the bicep curls during the calibration phase, both visually and

via the EMG data. After successfully calibrating a target signal (cf. Section 4.3.2) for the

participant, the experiment started. Participants were given some time to familiarize them-

selves with each visual condition before starting ten bicep curl repetitions for each condi-

tion, yielding a total of 30 repetitions per participant. Note that sound cues were used as

a between-subject variable, hence each participant either saw all three visualizations with

sound cues or completely without sound cues. Participants filled out the questionnaires for

each condition during short breaks. Additionally, the experimenter (acting as coach) silently

noted incorrect and correct bicep curls for each repetition. The experiment was concluded

by removing the electrodes and conducting the short interview (cf. Section 5.1). In total the

experiment lasted approximately one hour. Ethical approval for this study was obtained from

the Ethics Committee at the University of Constance.

Results

We report on the statistical analysis of measured usability measures. For each measure, we

conducted two-way (visualization and sound) mixed ANOVAs. If the data deviated from

normality, we first aligned rank transformed [328] it. Further, we present an analysis of

FitBack’s accuracy in detecting correct exercise form.

13 Measured on a visual analog scale (VAS): 0 to 100.
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4 Proficiency From Electromyography

Figure 4.13: Electrode placement on biceps (left) and deltoid (middle) muscles. Reference

electrodes can be seen close to the scapula. On the right side: participant during the study.
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Figure 4.14: Confusion matrices (associated truth labels on the y axis) between coach—system

(left), experts—coach (middle), experts—system (right). Note that percentages are based on

within-class instances (per row), as class distribution is highly skewed.

System Accuracy

We first investigated the inter-rater agreement of the three experts using the rWG(J) agreement

index [135]. A value of rWG(J) > .99 confirmed high agreement. We subsequently trans-

formed the averaged expert rating into a binary scale by categorizing all executions rated

4 and higher as correct. Similarly, we transformed the system’s correlation scores into the

same binary scale, by aggregating consecutive scores14 for one execution using the respec-

tive maxima, ensuring robust detection. If this maxima was greater than 0.5 the execution

was registered as correct. Ultimately, this allowed us to compare all three assessments from

the experts, the coach (the experiment instructor) and the system. An overview is provided

in Figure 4.14.

On the left side (Figure 4.14), the confusion matrix between the coach’s assessment and

the system’s assessment shows a good degree of consensus. It is noteworthy that the class

distribution is unbalanced: the good class contains 519 samples, while the bad class only

14 A correlation score is computed every 72ms.
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Figure 4.15: Expert ratings given the shown visualization and sound feedback. Significant

differences are marked with *.

contains 2115. However, both the trainer and the system failed to accurately detect bad

executions as showcased in the middle and on the right side (Figure 4.14). Using the experts’

ratings as truth labels (469 good samples, 71 bad samples), we compared the coach’s and

the system’s assessment predictions. While the system detected approximately half of the

bad executions, the coach only recognized 13% of them. Thus, having access to the actual

EMG data (as did the experts), improves judgment of exercise form. While the current

algorithm of FitBack is able to detect exercise form to a degree similar to that of a coach,

more sophisticated methods, e.g. modeling the EMG curve instead of approximating it with

one scalar, are required for accurate automatic assessment.

Exercise Performance

We further tested the performance of the participant with regard to correct exercise form

as judged by the experts. Expert ratings given visualization and sound can be seen in Fig-

ure 4.15. We found a significant effect of visualization (F(2,518) = 3.93, p < .05) and a

two-way interaction effect of visualization and sound (F(2,518) = 3.80, p < .05). Post-hoc

pairwise comparison using tukey-adjusted p-values showed a significant difference between

the visualization Bars and Lines as well as between Bars and Circles. We found one signifi-

cant two-way interaction effect between Lines and Circles for the factor sound (No - Yes).

Usability and Perceived Workload

We did not observe any significant differences for either the NASA-TLX, the UMUX nor

the flow experience questionnaire. Descriptive statistics for each condition are provided in

Table 4.6.

15 In other words: the coach has rated 519 executions as good and 21 as bad.
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4 Proficiency From Electromyography

Visualization Sound NASA-TLX UMUX Flow experience
x̄ s x̄ s x̄ s

Bars No 38.6 17.8 80.1 18.1 44.6 6.06

Bars Yes 47.3 14.8 81.5 17.3 42.7 4.12

Circles No 41.3 12.2 80.6 18.0 43.7 4.92

Circles Yes 47.9 12.0 82.9 12.7 43.1 7.11

Lines No 43.8 14.4 78.2 21.4 43.4 6.52

Lines Yes 45.6 14.9 81.9 11.8 42.2 3.19

Table 4.6: NASA-TLX, UMUX and flow experience score per condition.

4.3.4 Conclusion

While usability and perceived workload metrics showed no significant differences for feed-

back type, our experimental investigation with FitBack demonstrated that low-cost EMG

sensing devices are suitable to monitor exercise form. Our quantitative analysis in the study

showed that FitBack could perform on a par with a supervising coach in terms of recog-

nizing exercise form (RQ2c), though both automatic prediction and the coach perform less

accurately than reviews by experts who have access to the EMG data, highlighting its dis-

tinctiveness.

As of now, FitBack’s post-hoc analysis is based on correlation coefficients of the respective

muscle groups. We believe a more elaborated classification approach, e.g., using multi-

ple features to describe relevant characteristics of the EMG curve, allows one to identify

execution more accurately. However, this results in a trade-off between the amount of
customization needed for a specific exercise (e.g., training the model to detect common er-

rors of biceps curls) and the capability to generalize feedback for a wide array of fitness
exercises (RQ2c).

In this use case, we intentionally refrained from building a sophisticated data processing

model to keep the amount of required domain knowledge that informs the model training

process to a bare minimum. Building a fully automatic system to supervise specific fitness

exercises is outside of the scope of this work. We already know from related work that it

is feasible to build accurate detection systems using EMG [261, 7]. In contrast, FitBack

is designed to be an aid for amateurs and coaches alike by presenting data about muscle
activity in a comprehensible manner and letting the user reflect on their data, thus

contributing to their own body awareness, as we will highlight in Section 5.1.

4.4 Chapter Summary

In this chapter, we have looked at two use cases that leverage EMG as a modality to estimate

a user’s proficiency. Our findings have contributed to RQ2, elaborating on technical require-
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ments and limitations as well as suitable task domains for EMG-based proficiency-aware

systems. We showed that EMG could detect fine-grained motor tasks but requires person-

dependent calibration and suffers from high setup costs, such as multi-channel recording

systems. While low-cost devices are available, their signal quality only allows recognizing

coarse motor tasks.

Most importantly, EMG currently suffers from a lack of interpretability. The signal is com-

plex, and users are unfamiliar with its implications. Consequently, interactive systems suffer

from limited user trust in their adaptations (cf. EMGuitar). It is thus essential to introduce

users to this — for them — novel technique. Users should become aware of their own mus-

cle activation. Doing so allows for user-driven interpretation of collected EMG data, thus

tasking the user with making the connection of their movements to the presented data. We

envision that this approach can facilitate a more profound learning process than an "out-of-

body" interaction, where a system assesses the user’s proficiency.

This leads us to the question of how to design for this kind of proficiency awareness. Espe-

cially for complex physiological sensing, there exists a multitude of plausible visualizations.

Consequently, the next part of this thesis will introduce and evaluate concepts to facilitate

proficiency awareness in interactive systems.
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Facilitating Proficiency Awareness
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Chapter5
Designing Proficiency Awareness

“What is to be sought in designs for the display of information is the clear portrayal of
complexity. Not the complication of the simple; rather . . . the revelation of the complex.”

Edward R. Tufte

Making users aware of their proficiency can potentially be a challenging task. Especially

unskilled users tend to overestimate their own expertise [172]. Making matters worse, this

user group is generally not aware of their own lack of proficiency. Allowing the system to

challenge this belief can potentially lead to abandonment by the user. Consequently, there

are open challenges in how to design proficiency awareness in a way that users feel motivated

for personal growth while, on the other side, not feel dictated by the system.

The investigation in this chapter focuses on designing proficiency awareness for EMG-based

systems as well as in everyday computer-based work. EMG allows for unique bodily insights

for users, while our second use case will demonstrate that proficiency awareness can also be

realized with simple linguistic metrics in a text production task. We conclude this investi-

gation with an outlook on artificial proficiency and how it can provide added motivation for

users. Consequently, the research in this chapter is guided by RQ3:

RQ3

What are design criteria for proficiency awareness in interactive systems?

Facilitating Bodily Insights

We first continue our investigation of FitBack, elaborating on the impact of the different

visualizations and additionally evaluate the system with sports coaches. Here, we focus

our attention on the dimension of feedback types and how to communicate proficiency in a

complex task scenario that allows full user control (cf. Section 2.4).
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Reflective Feedback in Text Production

Having observed that often simple metrics are sufficient to estimate proficiency, we introduce

this use case, where we evaluate opportunities for proficiency feedback in everyday computer

work in a simple text production task. Making use of a text readability metric, we investigate

the impact of reflective feedback on the users’ performance and task approach. While the

users are free to act, this system nudges users by judging their work, taking away control

(cf. Section 2.4).

A Take on Artificial Proficiency

Finally, we provide a short outlook on EMPiano, an EMG-based system that allows users

to utilize musical effects on the piano keyboard regardless of their play proficiency. We

highlight how a sneak peek of increasing one’s proficiency can be a vital motivator in this

transition phase. This use case is unique in a way that it does not communicate the current

proficiency of users (cf. Section 2.4), but rather allows users to experience the potential of a

higher proficiency by themselves.

This chapter is based on parts of the following publications.

Jakob Karolus, Annika Kilian, Thomas Kosch, Albrecht Schmidt and Paweł W. Woź-

niak. 2020. Hit the Thumb Jack! Using Electromyography to Augment the Piano

Keyboard. In Proceedings of the 2020 ACM Designing Interactive Systems Confer-
ence (DIS ’20). ACM, New York, NY, USA.

https://doi.org/10.1145/3357236.3395500

Annika Kilian, Jakob Karolus, Thomas Kosch, Albrecht Schmidt and Paweł W. Woź-

niak. 2021. EMPiano: Electromyographic Pitch Control on the Piano Keyboard. In

CHI Conference on Human Factors in Computing Systems Extended Abstracts (CHI

’21 Extended Abstracts). ACM, New York, NY, USA.

https://doi.org/10.1145/3411763.3451556

EMPiano is openly available on github: https://github.com/HCUM/empiano

Jakob Karolus, Felix Bachmann, Thomas Kosch, Albrecht Schmidt and Paweł

W. Woźniak. 2021. Facilitating Bodily Insights Using Electromyography-Based

Biofeedback during Physical Activity. In Proceedings of the 23rd International Con-
ference on Mobile Human-Computer Interaction (MobileHCI ’21). ACM, New York,

NY, USA.

https://doi.org/10.1145/3447526.3472027

Submitted for review.

Jakob Karolus, Sebastian S. Feger, Albrecht Schmidt and Paweł W. Woźniak. 2021.

Designing Proficiency Awareness: Leveraging Reflective Feedback in Text Produc-

tion.
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5 Designing Proficiency Awareness

5.1 Use Case I: Facilitating Bodily Insights Us-
ing Electromyography-Based Biofeedback dur-
ing Physical Activity

Learning how to perform new exercises or mastering different forms of movement tests our

abilities in controlling our bodies. Some poses are challenging and the difficulties in reach-

ing the required body awareness to achieve the desired proficiency may lead to dissatisfac-

tion and even abandonment, reducing or losing the accrued health benefits [275] altogether.

While coaching experts are widely available, physically active users cannot be constantly ac-

companied while exercising. Past research in Human-Computer Interaction (HCI) showed

that interactive technologies can effectively build body awareness for certain exercise sce-

narios [314, 160]. Yet, it remains a challenge to develop methods that would enable generic,

exercise-agnostic methods of better understanding one’s body when exercising. Thus, there

is a need for developing ways in which users can monitor their bodies to better understand

their sports practice.

Technology has the potential to bridge the gap between how we would like to move and how

we can control our bodies. While professional sportspeople use a wide array of sensors to

improve their performance [20], these technologies are too complex for everyday users. In

this use case, we continue our evaluation of FitBack (Section 4.3) and explore the means for

users to become more aware of their muscle activity through electromyography. EMG offers

additional insight into muscle physiology to facilitate motor memory consolidation. Users

desire a better insight into their bodies [55]. Yet, it remains a challenge to understand how

complex physiological data streams, such as EMG, can be effectively used to foster insight.

5.1.1 Related Research

Complementing related work introduced in Chapter 4, this section highlights relevant works

in the domain of biofeedback.

Biofeedback

Biofeedback is a type of physiological-driven feedback, where physiological responses of

a user are voluntarily measured and communicated with the user at the same time to cre-

ate a feedback loop [44]. Biofeedback has recently been extensively used in rehabilitation

and treatment of disorders such as stroke rehabilitation [52], anxiety [210], or substance

abuse [281]. A typical biofeedback session exposes the user to a visualization of a physio-

logical signal that is correlated to a disorder. Users are instructed to proactively act towards

a desired signal, where the physiological signal is usually visualized in a simplified form. In

contrast to raw signals such as brain activity [165, 57] or heart rate variability [336], simpler

visualizations are easier to understand by laymen. Results from previous work showed that
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biofeedback has a strong influence over physiological functions and offers users several ad-

vantages over traditional treatments, including a visible metric for reflection, progress, and

ongoing involvement of the treatment process [231]. For example, biofeedback has been

successfully employed for stroke rehabilitation [52], posture corrections [226], treatment

of neurological impairments [298], and substance abuse [205]. Apart from medical treat-

ments, biofeedback has shown potential to improve training efficiency, as highlighted in the

following section.

In the form of biofeedback, EMG has proven to be effective for behavioral change and reha-

bilitation [206, 4, 121] as well as strength acquisition [90, 53]. Work by Toader et al. [307]

showed that users adapted their exercise form after receiving visual EMG-based biofeedback

compared to a control group with no feedback.We extend their work and investigate the in-

fluence of different feedback modalities on performance and the users’ perceived awareness

of their body posture and movements.

Fitness and Feedback

The HCI field has recognized possibilities for interactive artifacts to build increased body

awareness and thus contribute to a better experience and skill development in sports. Being

more aware of the relative position of one’s body has been shown to benefit those practicing

yoga [313] or swimming [160]. However, gym exercises, perhaps due to their static nature,

received more extensive attention. A number of projects proposed using different sensing

modalities for recognizing exercise execution such as inertial measurements [317], pressure

sensors [299, 71] or depth cameras [40]. Also, the now discontinued Myo1 armband could

effectively differentiate between various gym exercises [169]. While these systems offered

effective ways to count execution or assess the correctness of the motion, they did not enable

the user to determine if the correct muscles were used in their exercise. Our work examines

the possibilities of direct muscle monitoring and investigates the opportunities of the user

possessing that knowledge.

Another strain of HCI work recognized the benefits of helping users understand their own

bodies through additional feedback. Turmo Vidal et al. [314] built wearable lights that could

be customized to enhance the perception of relative body position, improve exercise tech-

nique and facilitate instruction [312]. They showed that additional insight during activi-

ties can lead to skill development. Earlier, Hämäläinen [105] suggested using the mirror

metaphor, which is particularly suited to gym exercises as fitness clubs usually feature mir-

rors. Anderson et al. [9] developed an Augmented Reality (AR) mirror system which tutored

users in gym exercises. Past work shows many opportunities for possible interventions at the

gym and a need for users to understand their bodies better in order to train better. However,

it remains an open question what sensing and feedback offers the most benefits to users and

how it can be adopted into exercise environments. Our work is different from past research

as it specifically investigates what happens when users are aware of their muscle activity and

how they can benefit from this knowledge.

1 https://support.getmyo.com/hc/en-us
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On the consumer market, readily available products which use EMG-based biofeedback

for physical activity, such as Athos2, Myontec3, and Mpower4 are primarily aimed at sports

professionals and competitive athletes. Athos relies on post-hoc reports and Myontec reports

on exertion over the course of the whole training session. In FitBack (Section 4.3.2), we rely

on displaying live muscle activity allowing users to grasp timings of exercise forms, similar

to the activation curves provided in Mpower. All commercial systems rely on pre-configured

smart clothing and tailored algorithms, limiting the set of exercises that can be monitored.

Lastly, these devices provide very specific feedback, designed for professional athletes and

post-exercise analysis with professional coaches. While the technology is available, albeit,

for a high price, it remains to be investigated how everyday users can benefit from detailed

biofeedback. With FitBack, we use a modular approach where users are able to customize

their exercise monitoring to their needs. While this means that it is more difficult to provide

specific exercise feedback, our work focuses on user-driven interpretation of the data with the

aim to provide deeper bodily insight. Consequently, this work examines if and how EMG-

based biofeedback can foster reflection on exercise form to further the users’ understanding

of their body physiology.

5.1.2 Methodology

EMG in current commercial products offers highly customized feedback about muscle strain,

exertion, and training effect. These parameters are primarily relevant to professional athletes.

In contrast, this use case investigates if and how EMG data can provide insight into one’s own

body physiology and how to provide an encouraging—yet challenging—way for users to

access knowledge about their muscles. As muscle activity differs significantly among users,

no algorithm can offer an effective automated interpretation of the signals that considers

the individual context of the exercise. Ultimately, it is the user who interprets signals from

their body. Our work explores how interactive technology can facilitate that process of

interpretation.

While EMG carries much information about our body physiology, understanding the sig-

nal is challenging. In this use case, we report on a mixed-method inquiry concerning first

impressions and user attitudes of EMG-based biofeedback, complementing the work men-

tioned in Section 4.3, where we focused on technical aspects of FitBack.

We take another look at the conducted lab study, focusing on user impressions through ques-

tionnaires and interviews. This evaluation is intended to provide a comparison to existing

EMG-based feedback systems, providing an abstract visualization of muscle activity. Addi-

tionally, users were provided with live data of their muscle activity to see if and how real-

time visualization led to insights. To further investigate how to design for rich physiological

2 https://www.liveathos.com/

3 https://www.myontec.com/

4 http://www.mpower-bestrong.com/index.html
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feedback in the context of coaching and supervision, we conducted a set of interviews with

experienced professional sportspeople and coaches, during which they experimented with

the detailed view of FitBack and considered its possible use in their practice.

Our investigation is informed by the previous research, including technical and design re-

quirements. Commercial systems and research probes established that EMG is an effec-

tive method to support fitness exercises. In this work, we evaluate if the access to detailed

muscle activity can facilitate an improved understanding of one’s own body physiology.

With increased insight into how their body reacts to exercise, users will experience more

health benefits [198] and develop expertise [175]. To explore this, we replicated existing

feedback methods as a baseline but opted for a low-cost mobile prototype, which makes

EMG-supported sports exercises accessible for amateurs. We ask how feedback should be

conveyed, what is the optimal temporality, and what user audience can benefit from such

a system. For the latter, we identified two main audiences, namely novice to experienced

self-paced users that engage with the feedback directly, and fitness coaches to gain deeper

insights into their student’s exercise form.

To this end, we employed a mixed-method inquiry consisting of a user study with 18 novice

to experienced participants and interviews with sports professionals and coaches. This al-

lowed us to capture opportunities, requirements, and constraints for using interactive muscle

sensing and biofeedback during physical activity.

With regard to RQ3, we define a related research question for this use case:

RQ3

What are design criteria for proficiency awareness in interactive systems?

RQ3a: How can we design EMG-based biofeedback to facilitate bodily insights during

physical activity?

Here, we look at different feedback modalities (visual and auditory) and granularities for a

broader audience (amateurs and coaches). The system should provide easy access to bodily

insights both for novices and more experienced practitioners while providing necessary de-

tails for experts and coaches to find the perfect form. We compare existing designs with de-

tailed EMG feedback through rankings and evaluate opportunities in our first user study. We

additionally conducted semi-structured interviews to gain further insights into how partici-

pants in this first study perceived their body awareness. In our second study, we conducted

interviews with sports coaches to finalize a suitable design. We focus our analysis on the

collected qualitative data and derived themes from the interviews for this research question.
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5.1.3 Study I - Experimental Investigation of Biofeedback Modal-
ities

In this first evaluation, we focus on one particular fitness exercise and test different feedback

types and granularities using FitBack. Please refer to Section 4.3.2 for a detailed descrip-

tion of the prototype. This section reports on the employed study design, used measures,

procedure and participants.

Design

We chose the bicep curl as a reference fitness exercise. This simple exercise is suitable for

beginners as well as popular among experienced practitioners [26]. Additionally, it involves

only a few selected muscle groups (biceps and deltoid) allowing for easy electrode place-

ment [56]. Despite its simplicity, the bicep curl still leaves a certain margin for error, such as

performing curls too fast or using the deltoid to aid in lifting the weight. This significantly

reduces the training effect and can lead to injuries [56, 26]. Figure 5.1 shows two examples

from filtered EMG signals including the bicep as well as the deltoid. The left side illustrates

a correct execution involving exclusively bicep activation, while the right side shows a bad

example using the deltoid during the repetition. Focusing on a simple exercise with a clear

sequence allowed us to evaluate the suitability of EMG-based biofeedback with a special

focus on different needs from a diverse audience (novices vs experienced sportspeople).

Figure 5.1: Example EMG data for a correct (left) and incorrect (right) bicep curl. The incorrect

example clearly shows excessive deltoid use (orange) compared to bicep use (blue). Time (in

samples) on the x-axis; muscle activation (as RMS values) on the y-axis.

Design decisions for feedback modality and granularity are informed by past work on EMG-

based biofeedback [206], self-reflection [182] and by the design space of personal visual-

izations [126]: Data, Insight, Context, Interaction. Visual feedback enables detailed and

concise feedback and allows users to observe different muscles [181] or different muscle

regions [121]. Varying temporal granularity additionally enables users to capture the timing

of their muscle activation [4]. However, visual feedback can be problematic where users
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are required to visually observe and control their actions. Hence, we introduce auditory

feedback as another modality. For both modalities, we implement the most commonly used

indices [206]: EMG amplitude and timing of muscle activation as detailed in the following

sections. We employed a mixed design that used the visualizations as within-subject and the

sound cues as between-subject factor. All participants were instructed to exercise with each

visualization while the presence of the sound cues was varied per participant. We note, that

the employed modalities and indices are predominantly used in the introduced commercial

products as well. While there are other viable feedback modalities (e.g. vibrotactile), the in-

vestigation of this work is primarily focused on visual feedback, due to the high bandwidth

constraints of conveying rich EMG data.

Visual Feedback

FitBack implements three different feedback visualizations that change according to the

measured muscle activity: Bars, Circles, and Lines as illustrated in Figure 5.2. Bars and

Circles present an abstracted EMG signal to the user based on the EMG amplitude (cf. Sta-
tus [182]). For Bars the height of each bar grows linearly, while Circles realizes linear

growth of each circle’s radius, resulting in quadratic growth of the respective area. Both are

inspired by a metaphoric approach [76].

In contrast, the Lines visualization shows a smoothed version (cf. Section 4.3.2) of the raw

EMG signal to the user over time (cf. History [182]), similar to one of Mpower’s visualiza-

tions. Here, we hypothesize that abstract visualizations can increase the understanding of

laymen of the complex signal [47]. Direct representations of the signal, such as the Lines
representation, provide deeper insights into the training efficiency (cf. Context [182]), of-

fering a finer granularity for amplitude and timing. While this visualization is potentially

more difficult to understand for novices, it offers most details and the biggest potential for

user-driven interpretation.

All visual representations provide a target zone that needs to be reached during the execution

of an exercise (cf. Goals [182]), such as high bicep activation marked by an orange area

at the far end of the respective visualization. An avoid zone (cf. Discrepancies [182]) is

implemented for the deltoid in analog fashion.

Figure 5.2: FitBack visualizations showing the same EMG data. Abstract representations Bars
(left) and Circles (middle), and the detailed representation Lines (right).
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Auditory Feedback

In addition to visual feedback, FitBack utilizes auditory feedback to communicate correctly

executed repetitions of an exercise. Apart from their use in biofeedback [206], auditory

cues have been verified as a suitable modality for successful actions [91], warnings [93],

or errors [166] in various research projects. FitBack plays a positive auditory cue when a

repetition has been executed correctly (cf. Goals [182]), while faulty exercise form (cf. Dis-
crepancies [182]) is reported by a negative cue. In our case, the respective sound is played

when the measured signal reaches the target or avoid zone.

Measures

For our data collection, we focused on the the impact of feedback type on exercise form

through rankings, questionnaires and interviews.

Custom Questionnaire

We asked custom questions which addressed feedback ranking and perception. We asked

participants to rate their agreement with the respective statements listed in Table 5.1. All

ratings were measured using a visual analog scale (VAS) from 0 to 100.

Ranking and perception of feedback

Q1 Please rank the feedback.

Q2 The feedback dictated how I performed the exercise.

Q3 I did take notice about the feedback while exercising.

Q4 I used the feedback to improve my exercise performance.

Q5 The feedback did affect my exercise form.

Table 5.1: Additional questions after each feedback type. Q1 from extremely confusing to easy
to understand; Q2-Q5 from not at all to very much; all visual analog scale (0 to 100).

Interviews

We conducted semi-structured post-hoc interviews with all participants. Interviews took

approximately 10 minutes each. We made sure to cover relevant topics including techni-

cal elements such as influence of electrodes and perceived latency of the shown feedback.

Additionally, we inquired about their perceived confidence in the feedback and had them

enumerate some of the advantages and disadvantages of different feedback types from their

view, including auditory feedback if applicable. Lastly, we investigated possible application

scenarios with FitBack.
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Figure 5.3: Mean scores for Questions Q1-Q5; assessing ranking and perception of feedback

(see Table 5.1).

Participants and Procedure

Participants information and procedure of the experiment are given in Section 4.3.3. We

kindly ask the reader to refer to this section for more details.

For our first study, we recruited 18 participants (four female, 14 male) with a mean age of

x̄ = 25.6y (s = 3.24y). After attaching electrodes, participants were tasked with repeating

the bicep curl exercise with the support of the three visualizations.

Results

We report on the statistical analysis of feedback ranking and perception. For each mea-

sure, we conducted two-way (visualization and sound) mixed ANOVAs. If the data deviated

from normality, we first aligned rank transformed [328] it. Further, we include a qualitative

analysis based on the interviews.

Feedback Ranking and Perception

Our analysis did not show any significant differences for Q1-Q5. Results on our cus-

tom questionnaire polling feedback ranking and perception for individual visualizations are

shown in Figure 5.3. Please refer to Table 5.1 for the respective question identifier.

Interviews

All interviews (1:39 hrs of recording) were transcribed verbatim. We opted to conduct a

focused analysis based on the pragmatic approach by Blandford et al. [24]. To do so, three

researchers open coded a representative 17% of the material. In a discussion, the researchers

agreed on an initial coding tree. The rest of the material was evenly split between the three

coders and coded separately. A concluding discussion refined the coding tree and surfaced
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a code hierarchy with four themes: Feedback Type and Granularity, Cognitive Effort,

Gaining Insights and User Acceptance. The following section presents the content of each

theme and associated quotes.

Feedback Type and Granularity Participants commented extensively on advantages and

disadvantages of the different feedback types and granularities. All visualizations were un-

derstandable for the participants, but there were clear favorites in terms of when and how to

use them. For example, the abstract visualizations (Bars, Circles) were perceived as straight-

forward and easy to interpret:

It was evident what needed to be done. When the [deltoid] was red, one had to
correct one’s shoulder movement. (P3)

The detailed Lines feedback allowed for a more detailed analysis of the executed exercise.

Additionally, participants remarked that Lines provided them with a more profound tem-

poral component, as it displayed a history of values that was not present for the abstract

visualizations:

If you used the Lines, the feedback was more differentiated. (...) If you wanted to
have it very detailed, then you would use the Lines. (P7)

The Lines had a temporal component; one could see the progress until the opti-
mum was reached, even for a longer period. The other two only provided a snap-
shot. (P14)

Our users expressed the wish to have access to both visualization types (abstract and detailed)

as both provide merit in different contexts, such as using abstract feedback for daily workouts

but detailed feedback to improve exercise form:

For the daily workout, I would prefer the [abstract visualization], but would switch
to Lines occasionally to see what I can improve. (P16)

When asked about the sound feedback, participants commented that they felt it was more

discreet than the visualizations allowing them to focus on the exercise. Interestingly, the

additional sound feedback provided some participants with a feeling of accomplishment

whenever they perceived positive sound feedback:

(...) you really focus on the execution and do not have to look [at the feedback], but
you can just perceive the sound, okay, I made it. (P11)

It was a short feeling of accomplishment. That motivated me. (...) that could be
integrated well into one’s training. (P17)

However, the effectiveness of sound feedback highly depended on the learner type, as some

participants preferred the visual feedback, only regarding the sound feedback as a nice addi-

tion:
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I have not paid attention to it. (...) I have not perceived it consciously. I have only
observed the visual feedback. (P9)

Cognitive Effort Participants reported that the level of cognitive effort they needed to invest

into understanding and interpreting the feedback varied. Abstract visualizations (Bars, Cir-
cles) are less cognitively demanding, while the detailed Lines feedback was more demanding

and required additional concentration, occasionally interfering with exercise execution:

To just do one exercise; the lower fidelity is more pleasant and less cognitively
demanding. (P13)

The Lines feedback was more difficult. (...) It was more complex, because there were
all those spikes and I did not know exactly what to do without influencing it. (P3)

Interestingly, participants also reported that the feeling of being watched by the system made

them concentrate more on the execution of the exercise:

I have concentrated more, because I knew that I was being watched. (P13)

Gaining Insights Participants commented on how FitBack helped them to understand their

muscle activity during the exercise and supported them in finding mistakes and incorrect

form. It helped them to establish an understanding of their own exertion:

If you are not that familiar with muscles, then the system shows this quite well and
you get better awareness for specific muscles, especially those that one has not
used. (P15)

By doing so, FitBack facilitated their learning process, making them aware of their move-

ments and supporting correct exercise execution. Participants remarked that it was straight-

forward to map their movements to feedback provided by FitBack.

Sometimes I would maybe get to the top and I would be at the point where I would
normally have started like the second phase, started descending exercise but it
hadn’t beeped yet so I would have to squeeze for longer. (P1)

FitBack also provided participants with an incentive to focus on their fitness goals. Achiev-

ing perfect form is motivating and trackable through the system. Here, participants remarked

that FitBack can support users in learning new forms and perfecting them:

If you want to learn a new exercise, or you want to train a specific muscle group that
you want to improve. (P10)
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User Acceptance A final theme that we identified is user acceptance. One aspect of this

theme is trust. The user needs to have trust in the system, believing that it is capable of

accurately identifying exercise form. Most participants reported that they trust the accuracy

of the system to a high degree. The supervision by the system was regarded as trustworthy,

making users more aware of their exercise form. This aspect was especially beneficial dur-

ing continued workout, where participants lost focus and got tired. The feedback from the

system reminded them to stay alert:

As soon as you get tired, it was nice to get a [positive sound feedback] if you have
done it correctly or a [negative sound feedback] if not. (P17)

Participants relied on the feedback from the system when correcting their exercise form.

They appreciated that mistakes were transparent for them and could be rectified immediately:

If I know that I do something wrong and that this is visualized, I can clearly imagine
how to get rid of it. (P9)

On a more technical side, we also investigated whether the induced latency for the abstract

feedback posed any issue for participants. Most participants were able to recognize a slight

delay, but reported that it did not influence their exercise rhythm.

I only perceived it when I was paying attention to it and tried out when it actually
arrives. (...) but it was not perceivable for me during the exercise. (P16)

Given the nature of our system, it is worth investigating to what degree the required setup

and placement of electrodes has affected user acceptance. Here, participants reported that

the electrodes did not obstruct them. It was noted however, that the required setup needed to

be kept minimal for FitBack to be feasible in a daily workout:

I have barely noticed them and they did not restrict me. (P6)

The difficult bit is the placement of the electrodes. I do not know if this effort is
worth it. (P11)

However, if the workout is longer or benefits from close monitoring are more evident, e.g.

when learning a new exercise, participants were less reluctant to spend the effort required to

set up the system:

By all means, a workout is like longer than an hour, and if [you set up the system] it
minimizes the risk of injury. (P3)

Another idea mentioned by the interviewees was the integration of electrodes into wearables

such as sport shirts and trousers. This would minimize setup time and would make FitBack

much more accessible for short daily workouts, also reducing social stigma as remarked by

a few participants:
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If there could be a wearable that includes the device and cables, e.g. a shirt with
electrodes inside, that you can just wear, that would be different. Then you would
just need to wear the shirt. (P6)

Summary

Our questionnaire indicated that Bars was ranked highest by participants. In our follow-up

interviews we found that detailed feedback was more favored by experienced practitioners

and in situations where the user wants to perfect exercise form. Abstract feedback, such as

Bars, was preferred by less experienced users and for daily workout scenarios. In general,

all forms of feedback were noticed by the participants and used to adapt their exercise form

to a large degree as confirmed by our custom questionnaire, highlighting the viability of

EMG-based feedback to facilitate bodily insights.

Interviewees reported that Lines required higher cognitive effort, mostly to understand the

complex signal. This might have been masked by the fact that users were always monitored

by the system, hence implicitly forcing them to concentrate more as stated in the interviews.

5.1.4 Study II - Interviews With Coaches

Our initial study confirmed the feasibility of building an EMG-based exercise assistance

system and showed the breadth of the design space. In order to further understand the re-

quirements and constraints involved in using EMG systems for physical activity, we con-

ducted a series of interviews with sports professionals in which participants used FitBack in

an open-ended exercise session.

Participants

We recruited four experts who were career sports coaches with different backgrounds and

varying levels of experience, see Table 5.2. We recruited the experts through contacts at

sports clubs whose members had participated in previous studies conducted by the research

team. None of the participants had used EMG systems before, but they had all tried electrical

muscle stimulation (EMS) as part of their profession. The interviews took place at locations

chosen by the participants. We provided shopping vouchers for the equivalent of 10 Euros

for participating in the study.

Procedure

The interview session began by obtaining written consent for participation and recording.

Next, the researcher prepared the FitBack system in a location chosen by the participant.

A voice recorder and a video camera were used to record the session. We then conducted

the initial part of the interview, which concerned the participant’s background and expe-

rience with EMG/EMS. Afterwards, we asked them to choose a movement form that was

particularly difficult for their students and indicate which key muscles were involved in that
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Participant ID Age Gender Expertise Experience

P1 32 M Personal trainer 8 y

P2 27 F Yoga 4 y

P3 36 M Martial arts 15 y

P4 33 M Martial arts 15 y

Table 5.2: Information about the participants in our study. The sports professionals specialized

in different sports and had different levels of experience.

Figure 5.4: Participants during the exploration phase performing different exercises.

movement. Upon choosing the exercise, the researcher attached electrodes to the key mus-

cles. FitBack was started and muscle activity was visible. We then asked the participant to

perform the motion correctly and incorrectly. We encouraged them to explore different pos-

sible mistakes and to examine how FitBack reacted to changes in movement (see Figure 5.4).

We also answered any questions the participant may have had while exploring the system.

When they indicated that they were done experimenting with the motion, we conducted the

next interview part. These questions explored the participant’s interpretation of the EMG

signal, differences between signals from different muscles, the suitability of the feedback for

everyday coaching and identifying mistakes in movement. We then allowed the participant

time to rest and repeated the same procedure for another type of motion. Finally, we con-

ducted an interview where we inquired about the differences in feedback between the two

exercises, the possible target user groups for EMG systems, the use of EMG for professional

development and requirements for everyday integration. The entire session was recorded on

video, and additional voice recording was used when asking interview questions. We also

recorded the FitBack screen.

Data analysis

All interviews (2:16 hrs of recording) were transcribed verbatim. Given the volume of the

data, we again followed the pragmatic approach to qualitative analysis as recommended by
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Blandford et al. [24]. In an initial analysis step, two researchers open-coded one interview

to identify key concepts. We then conducted a discussion, which resulted in an initial coding

tree. The remaining material was then evenly split between the researchers. Afterwards,

all authors refined the coding tree in iterative discussions, finally creating a code hierarchy

with four themes. These themes represent the key aspects of using EMG in sport coaching

practice discussed by the experts.

Findings

Here, we present the results of the interviews with the sports professionals. We identi-

fied four themes in the accounts of using EMG provided by the experts: Assessment, Body

Awareness, Exercise Form and Interpretability. Quotes from the interviews are accompa-

nied by the participant ID and, if applicable, the exercise which they were describing.

Assessment This theme describes how the coaches used EMG feedback to assess the cor-

rectness of a given body position and how they identified issues with posture. We observed

that the experts quickly reflected on EMG data and related the reading to their current move-

ment. Interestingly, low EMG signal was as interesting as high muscle activation, because

some exercises required relaxing muscles:

This is very easy to apply when I’m in a static position, which I want to hold. When
I’m doing this correctly, I am more or less relaxed. (P4, cadeira)

The experts also described another way to effectively use EMG to assess correctness which

was to determine if the right muscles were active during a specific movement. P1 explicitly

addressed how specific muscles should work during push-ups.

I can see if I’m activating the deltoid when moving up, as I should. [FitBack] tells
me if I’m beginning the movement by raising my shoulder and using the descending
part of the trapezius. This tells me if I’m doing it wrong. (P1, push-ups)

Finally, he also reflected on the impact that being able to objectively assess an exercise would

have on fitness instruction. Being able to confirm one’s professional opinion with objective

data was seen as an opportunity for proving the coach’s credibility:

If I tell someone that they’re using the wrong muscle, but they haven’t learnt to
control it yet, they will think I’m overdoing it or looking for a problem to solve for
the next 20, paid, classes. (...) This gives them the possibility to see I’m right. (P1)

Body Awareness We also observed that the experts remarked extensively on how using

EMG potentially led to additional insight about one’s body. EMG was perceived as a way

to see beyond what they could perceive using their professional insight. P2 remarked that

FitBack could be used to determine what muscles were targeted in new exercises, previously
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unknown to the coach and their students. One could even verify if publicly available new

exercises targeted the muscles which they claimed to target:

You often see those things online: “100 best planks” etc... but you never fully know
what these exercises do. With [FitBack], you can see what’s inside, check if [the
muscle] is even contracting. (P2)

The form in which the EMG signal was presented affected the experts’ perceptions of their

bodies when using FitBack. While our system featured graphs with an adaptive scale on the

Y axis, the experts were still curious about the maximum values. Concurrently, they also

expressed the need for effective comparisons between exercises:

I’m wondering what would happen if I contracted this at 100%. Would this explode?
I would like to zoom this out to see if my deltoid is more active in arm raises or
press-ups. (P4)

EMG also allowed the experts to better understand the transitions between different body

postures and movement forms. While they knew what muscles were to be active (or inactive)

during defined exercises, EMG allowed investigation into what happened in the intermediate

stages of the movement. P3 analyzed how his body worked while adjusting his posture in a

complicated handstand:

When I changed the alignment of my body, moved my legs, you could ideally see
where I contracted the muscle very hard and where it was weaker. (P3, queda de
rins)

Exercise Form This theme describes how EMG was used to reflect different exercise styles

and different ways of understanding physical activity by coaches and their students. The

coaches were eager to speculate on how different types of their class attendees may have

perceived the feedback. In contrast to assessment, here, the experts described implicit, less

defined qualities that can be inferred from EMG data. The need to place EMG electrodes

implicitly required reflecting about the key muscles involved in the exercise. This, in turn,

made the coaches wonder what other muscles, not explicitly targeted by the exercise, were

involved:

Figuring out where to place the electrodes is interesting by itself. If I were to do this
myself, I would experiment with this, stick it somewhere, check it out. (P4)

The additional information provided by FitBack facilitated exercising while being aware of

the benefits of the exercise. P1 commented extensively on how past philosophies of train-

ing promoted maximum exertion, while more modern methods preferred targeting specific

muscles and avoiding injury. He saw EMG as a way to facilitate this transition from simple

exertion to informed practice:
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All the way, just to get super tired and feel pain. If you can’t push through the pain,
then you’re weak. (...) If you make all the exercises from the exercise book, you will
exercise all your muscles. But, the modern school of training is not about lifting
very heavy bars. You’re supposed to slowly learn how to activate specific muscles.
I think that most people appreciate that in the long run. (P1)

The coaches provided many comments on the temporal aspect of EMG data. They reflected

that timing was differently important in various exercises and requested more control over the

time scale. This was most apparent in the comments provided by the martial arts specialists,

P3 and P4. They remarked that a change of tempo and thus change of the speed of muscle

activation was a key aspect of their practice. P3 asked for more flexibility in the time scale

to be able to analyze more dynamic exercises:

It can be used for all the static exercises. I imagined that for dynamic things, it might
be different. Capoeira has the full spectrum of exercises and thus paying attention
to relaxing muscles is important. (P3)

Interpretability The coaches commented extensively on how they interpreted the output

produced by FitBack. They wondered about the form and timing of the feedback and an-

ticipated possible deployment in their exercise classes. The experts anticipated how their

students would understand EMG data and how FitBack could benefit the training process.

The coaches remarked that EMG in the form presented by FitBack would be too difficult to

monitor for larger fitness classes:

It would be tough for classes where we have a lot of people. One coach won’t be
able to interpret the muscle behavior of many people. But, for personal training,
this would be very suitable. (P3)

The experts remarked that EMG had the potential for changing achieving proper form in

exercises from a vague pursuit of correctness to a tangible goal. P4 reflected on how a

well-known exercise was a challenge when FitBack provided detailed feedback:

It was very stimulating because I was trying to do the exercise better so that it was
more visible on the screen, (...) because I like tangible challenges. (P4, primera)

Our experts underlined the importance of associating specific EMG responses with proprio-

ceptive perception, i.e. ‘how a movement felt’. As most fitness classes focused on mastering

specific forms and limiting the use of incorrect forms, quantifying how far one was from an

ideal movement was key to interpreting the EMG data and one’s body. One participant saw

FitBack as a tool for iteratively developing more precise movements and fine-tuning one’s

performance. EMG data enabled minuscule changes to posture which would be visible in

the measurement data, but hard to perceive with one’s senses.
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In functional training, where the key goal is developing correct movement patterns,
the basic movements are key. Here, [FitBack] can be very useful, guiding you to find
the ideal ratio, the perfect movement. You can then copy the movement and master
its execution. (P3)

5.1.5 Discussion

Our investigation showed the potential of EMG-based biofeedback to facilitate bodily in-

sights during physical activity (RQ3a). In this section, we draw implications and present

opportunities for future systems. We conclude with a list of guidelines for designing for

EMG-based biofeedback exercises that allows users to increase their own body awareness.

Access to Detail is Beneficial for Practitioners and Coaches Alike

In our analysis, the detailed feedback was favored mostly by experienced sportspeople. Our

interviews with professionals revealed that the additional temporal component allowed them

to analyze their movements in greater depth and supported them in perfecting their exer-

cise form. Often, minuscule improvements where only visible in the EMG data, allowing

coaches to monitor otherwise invisible muscle activity and curate an appropriate train-
ing response.

Additionally, both studies highlighted that the detailed temporal feedback was especially

useful for dynamic exercises where the correct sequencing of muscle movements is crucial.

Accordingly, an EMG-based biofeedback system should always provide a feedback view

that allows to examine historic data. Future systems can improve the interaction with this

view, by providing exercise markers within the view and even a corresponding recording

functionality.

Required Setup for EMG-Based Biofeedback Needs to be Minimal

To record electromyograms, FitBack requires the user to attach electrodes on respective mus-

cle groups. This is a major limitation of not only our system but every EMG-based system.

While participants reported that the attached electrodes and cables did not hinder their ex-

ercise execution, the required time for setting up the system was deemed acceptable only

for continued workouts or when one wanted to gain additional insights. For daily workouts,

the required effort was rarely deemed acceptable. In this work, we explicitly focused on

user requirements and constraints with regard to the suitability of EMG-based biofeedback

to increase body awareness during physical activity. We envision that more biofeedback
systems will be integrated into affordable wearable artifacts and clothing in the near

future, enabling easy and fast setup routines as is already possible with commercial products

for professionals.
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Design Guidelines for EMG-Based Biofeedback
During our work, we identified opportunities, requirements, and constraints of EMG-based

biofeedback for physical activity. In this section, we provide a list of design guidelines for

EMG-based biofeedback systems to inspire and aid in the design of future EMG systems for

sports.

Offer Feedback Customization

The different user groups in our study had differing requirements in terms of feedback.

FitBack offers two different feedback modalities (visual and auditory) as well as abstract

and detailed representations of the visual feedback. In our evaluation, we found that while

the Bars visualization was most preferred, our interviews have also shown that access to mul-

tiple types allows the system to tailor to a broad audience. There was no feedback form that

would not affect exercise form or was ignored by the participants. Novice users preferred

abstract feedback that was less cognitively demanding and easy to interpret, cf. Cognitive

Effort. On the other hand, switching to more detailed feedback should always be possible

for more experienced sportspeople. In the interviews with coaches, we observed that the

understanding of feedback can be different for different movements within the same sport.

Thus, an EMG feedback system for physical activity must offer output that dynamically
changes based on the current activity.

Users exhibited varying preferences with regard to audio feedback. While some participants

reported that it helped them keep their focus during a continued workout without having to

look at the visual feedback, others strongly preferred visual cues, cf. Feedback Type and

Granularity. Thus, multi-modal feedback systems should provide a choice for the user
to prevent sensory overload.

Allow for Temporal Control

While our experimental study used only immediate feedback, the interviews with profes-

sionals revealed that EMG data was meaningful for understanding motion in different time

horizons. The experts commented on their need to experiment and establish thresholds of

correctness for different exercises, cf. Exercise Form. They also wanted to establish base-

lines and be able to review past exercises to draw comparisons, similarly to existing commer-

cial products. They recognized the benefits of EMG data both in intantaneous use and over

entire exercise session. As a consequence, future EMG systems for exercise should offer
a high degree of control in terms of the time intervals used to aggregate and display
EMG data.

Design for Social Context

Both of our studies showed that participants were eager to consider using FitBack in con-

texts associated with everyday exercise. What became apparent in the interviews was that

these contexts were primarily social and possible social interaction impacted possible inter-

pretations of EMG data. As we observed in the Interpretability theme, experts reported
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that feedback modalities for individual sessions should be very different from the feedback

in group fitness classes. Further, they also noted that the use of EMG could be dependent on

a certain fitness philosophy or mental approaches to a given exercise. Participants in both

studies reported that they often changed the social contexts of their physical activity. Thus,

we recommend that the granularity of EMG feedback be adjusted to allow for adequate
interpretation. Producing detailed EMG feedback in a context where it cannot be effec-

tively interpreted is likely to cause frustration. Future systems should offer detailed data

for individual classes and self-monitoring and ambient and/or summary feedback that would

enable coaches in group exercises to monitor the activity of multiple users.

5.1.6 Conclusion

In this use case, we investigated how EMG-based biofeedback can facilitate bodily insight

during physical activity. Our two-fold evaluation consisting of a lab study with amateur

users and interview sessions with sports coaches highlights the feasibility of this approach.

We present implications and design guidelines for future EMG-based proficiency-aware sys-

tems, allowing users to gain deeper insights into their own physiology by leveraging user-

driven interpretation of bodily signals. When used in a specific exercise context, FitBack

can provide data, which help users gain more insight into their exercise. Our work showed

that feedback about one’s muscle activity and exertion is beneficial for a broad audience,

from novices to fitness professionals. FitBack offered insights for all target audiences by

providing different views of the recorded EMG data, facilitating proficiency awareness.

As we have observed that it is often sufficient to provide simple feedback of collected data

to the user to support proficiency awareness, we investigate these implications for everyday

computer work. In the next use case, we utilize a common text production task to evaluate

if feedback on the text’s readability makes users reconsider their task approach.

5.2 Use Case II: Leveraging Reflective Feedback in
Text Production

In this use case, we illustrate the concept of proficiency-aware systems with regard to ev-

eryday computing work. To do so, we selected a text production task, which we used to

conduct two online studies. In Study I, we establish if feedback on proficiency can improve

performance, reflection and user experience in a text production task. Having observed

that proficiency feedback offered benefits, we investigate how to design better feedback in

Study II.

Our results showed that proficiency feedback enabled users to fulfill task requirements more

precisely. While continuous assessment showed the largest improvement in performance,

users also reported that this type of feedback interrupted and distracted them during the
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text production task. A revision-based feedback approach was perceived as less distract-

ing while still achieving better-than-baseline task performance. We also found that users

adapted their approach in solving the task based on the feedback presented, which indicates

that they were aware of their proficiency. Adding gamification elements only marginally in-

fluenced performance and user experience. The results suggest that subtle interface elements

such as progress bars are most suited for proficiency communication when interacting with

proficiency-aware systems.

5.2.1 Related Research

We first give an overview of related works on novices to experts transition and how this

research area informs our investigation. Additionally, we have a closer look at the impact of

user interruptions and reflection as well as requirements and opportunities of gamification in

user interface design.

Novice to Expert Transition

An active research area looks at novices to expert transition [45] with regard to alternative

expert interfacing options, such as hotkey usage. Blur [270] is a system that realizes this

switch using subtle notifications, hence making users aware of an alternative interfacing

method. However, to have a better outreach, Stuerzlinger et al. [296] argue that adaption

needs to be available everywhere. It needs to become ubiquitous and not limited to individual

applications. Hence, it is vital to understand what aspects drive the user to customize [12] or

wanting to adapt the interface [81]. This implies that we need to investigate when the user

chooses to adapt their current strategy and what makes them rethink their current approach.

For our work, we consequently investigate different types of proficiency feedback that vary

in temporality and noticeability.

A Take on Feedback: Interruptions and Reflection

While research has actively investigated how to construct fruitful [215, 48] and expert-

level [337, 184] feedback, the scope of this current work addresses if feedback on task

performance metrics can elicit an understanding for the user of their own proficiency in

the given task. In this regard, previous research advocates to make the transition to high

proficiency easy and fast [202]. A dilemma arises in that interruptions of the user’s task,

especially if frequent [254], are detrimental [133], yet research argues that without inter-

ruptions and associated focus shifts [25], there can be no opening for learning, hence no

opportunity to improve proficiency. Malacria et al. [190] have highlighted a similar situa-

tion in their work Skillometers, where feedback needed to be visible to catch the user’s eye

while simultaneously being subtle to minimize disruption. Our work expands on this con-

cept by following their solution (manipulating locus of control) and providing proficiency

feedback via an ambient display element. Additionally, we purposely interrupt the user

(revision-based method) after finishing their task to reflect on their current performance.

114



5 Designing Proficiency Awareness

Consequently, we conducted a structured exploration of the design constraints involved in

building proficiency-aware systems for everyday computer work.

Gamification: Requirements and Opportunities

Recognizing challenges and opportunities around proficiency feedback, distraction, and

learning, we explored uses and impacts of game design elements in supporting proficiency

feedback communication. Gamification, "the use of game design elements in non-game

contexts" [58], has proven to motivate and support learning in formal [297, 13] and informal

settings [218]. Gamification is further used to create motivation, engagement, and joy across

a wide range of applications, ranging from sports [164] to work environments [222]. Badges,

points, and leaderboards are the most common game design elements [107, 282] that can help

turn routine and boring tasks into enjoyable experiences [87]. However, recent gamification

research emphasizes the need to review and consider game elements beyond those standard

ones. The mapping of different game elements and their effects to applications and users has

gained increasing attention [309, 223]. This reflects our evolved understanding, according

to which applying standard game elements only to drive business goals risks losing positive

effects and even alienates users [216].

In order to understand why gamification promises to play a key role in proficiency feedback,

it is important to understand key mechanisms and theories as well as differences between

the various game design elements. Flow [213, 208] is both a process and theory used to

inform gamification design. A person finding themselves in a flow state is fully immersed

in an activity which they consider enjoyable and fulfilling. Up to nine dimensions are com-

monly described which contribute to a flow experience [106, 208]. Of those dimensions,

challenge-skill-balance, clear goals, and feedback are naturally compatible with proficiency

feedback. Self-Determination Theory (SDT) [251] is another theory that is concerned with

the interplay between extrinsic motivation (e.g. rewards, evaluations, fear of punishment)

and intrinsic motivation, i.e. motivation created and sustained within the self by curios-

ity, interest, or identified values. SDT and its mini-theories have been extensively used to

theorize and develop gamification research and applications. In particular, the Basic Psycho-

logical Needs Theory (BPNT), one of the six SDT mini theories, has been used to explain

and develop gamification designs [315]. The BPNT focuses on three basic psychological

needs: competence, autonomy, and relatedness. Environments and applications supporting

those needs promote psychological wellbeing and intrinsic motivation.

In contrast, the Organismic Integration Theory (OIT) is concerned with various forms of

extrinsic motivation. OIT “recognizes that some behavioral regulations are experienced as

relatively alien to the self, or imposed and heteronomous, whereas others can be very much

being autonomous and self-endorsed” [252]. OIT refers to a spectrum of internalization of

values represented by a task or environment and distinguishes along this continuum between

external regulation (i.e. the least self-determined form), introjected regulation, identified

regulation, and integrated regulation (i.e. the most self-determined form of extrinsic moti-

vation). We describe in the context of Study II, how we based our selection of game design

elements and evaluation metrics closely on the BPNT and OIT.
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5.2.2 Methodology

In our research, we want to investigate the impact of proficiency feedback on the user’s

performance and experience. Ultimately, we ask what are the design criteria for proficiency

awareness in interactive systems.

RQ3

What are design criteria for proficiency awareness in interactive systems?

To operationalize these concepts, we formulated three related research questions tailored

towards this use case. In short, these questions ask if, when and how proficiency feedback

can be effective. We elaborate on the questions in detail below.

RQ3b: Can proficiency feedback facilitate an understanding of one’s own proficiency in a

writing task?

A proficiency-aware system should assist the user in improving their skill level to facilitate an

understanding for proficiency, e.g. feedback on improvements, reasons for failure. It would

not directly address task performance, but rather assess the underlying skill set necessary to

complete this task.

While input error handling happens to protect the system from wrong input, proficiency

feedback would enable users to prevent wrong input in the first place, much like teaching

someone how to play a guitar rather than altering the guitar to fit their play style and skill

level. We address this research question by analyzing whether users change their task solving

strategy after being presented with feedback.

Additionally, we investigate how to appropriately communicate proficiency feedback to the

user. Research has postulated that the willingness to customize or adapt one’s strategy during

task solving might be linked to task proficiency [193], as in power users adapting more

willingly because they can grasp its benefits. For this reason, we selected an everyday task

of expressing an argument in a submitted proposal to limit the impact of prior proficiency

levels.

RQ3c: When should proficiency feedback be presented to users for optimal performance

and user experience?

We implemented a continuous feedback option that is updated whenever the user changes

the text. While this increases the user’s awareness of the functionality, it might distract

them from the primary task, yet conversely, breakdowns and associated focus shifts "can be

openings for learning" [25]. To strike a balance, we additionally implemented a revision-

based method that presented the user with a proficiency evaluation upon completing their

initial proposal and let them reflect on their current performance.

116



5 Designing Proficiency Awareness

RQ3d: Can gamification support proficiency feedback?

Feedback can distract or even annoy users. This is unfortunate, as proficiency feedback

should really be perceived as a supportive and useful resource that helps users improve and

reach a target goal on their own with confidence and competence. Given the potential of

gamification to communicate information, status, and achievements in an enjoyable and mo-

tivating manner, we explored the spectrum of game design elements and chose to implement

game elements in our work: progress bars, social comparison, and emojis. Our evaluation

focused not only on assessing the text production task, but included impact on components

of intrinsic and extrinsic motivation, as well as perceived distraction.

Method

We based our investigation on two studies as listed in Table 5.3. The full 3 x3 design looks

at the independent variables Feedback Type and Gamification Type, both of which have three

levels. Study I first looks at the impact of Feedback Type in isolation, while Study II focuses

additionally on the gamification part.

No Gamification Progress Bar Emoji
No Feedback Study I N/A N/A

Revision Study I and II Study II Study II

Continuous Study I and II Study II Study II

Table 5.3: Study designs and respective conditions.

We based our scenario in the domain of everyday computing tasks. Participants were asked

to express an argument in a proposal using a submission form on a web page. As mentioned

above, adapting one’s strategy during task solving might be linked to task proficiency [193],

thus we have chosen a simple text production task to limit the impact of prior proficiency

levels. Filling out forms on the web is a mundane task and users are familiar with the envi-

ronment. Further, producing text to express our opinion happens daily, be it in emails, essays

or articles. Improving the user experience and secondary benefits (increasing proficiency)

for these tasks can thus be contributory on a large scale. Ultimately, broad adoption can

foster data-driven algorithms enabling sophisticated recommender systems [200].

We want to highlight that such a proficiency-aware system does not directly provide feed-
back on task performance — writing a good proposal — but rather assesses and commu-
nicates the necessary skill — here: writing in plain English — of the user to complete the

primary task in the first place. Consequently, the system is also not limited to specific texts,

but can be employed for any text production task. In our two-study evaluation, we first fo-

cus on the temporality of proficiency feedback (RQ3b, RQ3c) in Study I, before exploring

gamification (RQ3d) as a means to make feedback more enjoyable and usable in Study II.

For this purpose, we implemented a system that assesses a user’s submitted text proposal in

term of readability. Proficiency feedback is provided as an additional display element next

117



to the form (see Figure 5.5 for an example). To do so, we leverage the Flesch reading-ease

score (FRES) [85] which indicates how difficult it is to understand a given text. It is based

on average-sentence length (ASL) and average number of syllables per word (ASW). The

resulting Flesch reading-ease score can be computed as follows:

FRES (AS L,AS W) = 206.835−1.015∗ (AS L)−84.6∗ (AS W) (5.1)

A score between 60 and 70 is interpreted as plain English. Texts with higher scores are easier

to read but can be too simplistic. A lower score indicates a more difficult text. The score

is widely used for evaluating a text’s readability, e.g. the state of Florida requires insurance

policies to have a FRES of at least 45 [305].

Figure 5.5: Example view of our proficiency-aware web form, showing the progress bar and

ranking condition.

In our investigation, the user is tasked with writing a proposal to make the neighborhood

more green in plain English (FRES between 60 and 70), which will be presented to the

city council; a task taken from a preparation course for the Cambridge English Advanced

exam [101]. Participants will be judged by their ability to write a concise proposal in plain

English. The complete task description is as follows:

You see this announcement on the notice board of your local council. The Envi-
ronmental Planning Committee is organising a campaign to make our town more
‘green’. You are invited to submit a proposal related to your neighborhood, which
will be presented to the city council. Present some factual information about the
area, pointing out any relevant environmental issues, and suggest practical mea-
sures which individuals and families could take to make the neighborhood more
green. Write your proposal in 220–260 words in plain English. Your proposal
should be readable by a broad audience.
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For both studies, task and procedure remained consistent apart from adapted questionnaires.

The following sections detail conditions and measures for Study I and II.

5.2.3 Study I - Temporal Granularity of Proficiency Feedback

In this first evaluation, we addressed the temporal granularity of the provided proficiency

feedback (cf. Table 5.3). We specifically looked at Revision-based and Continuous feedback

methods. Together with a No Feedback condition, this one-factorial design resulted in three

levels.

Revision-Based

After submitting the proposal once, the user was informed about their last readability score.

Upon resubmission, the user was able to make changes to achieve a better result if they

deemed this necessary. During this revision process, the last score was always visible. Par-

ticipants were instructed accordingly:

Your proposal will be automatically scored in terms of reading difficulty after sub-
mission. You will have the option to revise your proposal afterwards once. You
should aim for a score between 60 and 70. Higher scores indicate a too simplistic
proposal, while lower scores indicate low readability.

Continuous

In this condition, participants’ readability scores were calculated at fixed time intervals (2

seconds) and displayed. The score was always visible next to the text entry field. Figure 5.5

shows the Continuous feedback for a gamified condition (cf. Section 5.2.4). Again, partici-

pants were instructed accordingly:

Your proposal will be continuously scored in terms of reading difficulty. You should
aim for a score between 60 and 70. Higher scores indicate a too simplistic proposal,
while lower scores indicate low readability.

No Feedback

As a baseline we added a No Feedback condition, where users were not given any feedback

on their readability score throughout the whole writing process. Consequently, no additions

to the task description were made.

Hypotheses

Based on results from related work, we formulated three hypotheses:

H1a: Continuous proficiency feedback leads to increased task performance.
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We hypothesize that the more users are confronted with feedback about their proficiency,

the better they can solve a given task. In our case, performance was measured two-fold: (1)

being able to submit an adequate proposal and (2) getting one’s readability score close to the

target zone. We analyzed final readability scores of valid proposals and looked at the change

of readability over time.

H2a: Revision-based feedback is less distracting.

We know from related work that constant feedback can be detrimental (cf. Section 5.2.1).

Hence, we hypothesize that more subtle and less constant feedback is less distracting for

users. We measured this with tailored questions.

H3a: Proficiency feedback alters the task approach of users.

As outlined in Section 5.2.2, a proficiency-aware system should incentivize users to improve

their inherent skill set. It is thus important to investigate if users alter their task solving

approach to adhere to task constraints. We analyzed this aspect with tailored questions as

well as investigating changes in writing behavior (readability over time).

Participants

We recruited a total of N = 70 participants5 over the Amazon Mechanical Turk Service

(MTurk). Participants were reimbursed with 2$ and promised a 1$ bonus for an acceptable

proposal text6. This rate was approved by the institution of the first author (equivalent of

10€/hour). Out of these participants, 19 resided in the European Economic Area, 18 in

Canada and 33 in the USA. All participants were informed that study participation was

voluntary, that the study could be aborted at any point and that the data would be collected

in anonymized form. It took approximately 20 minutes to complete the survey, including

writing the proposal text. The average age of the participants was x̄ = 35.4y (s = 8.9y)

with 29% identifying as female, 71% as male. Additionally we asked all participants to

provide their self-assessed writing skills [46] (see Table 5.4). After the final submission of

the proposal text, we again asked them to evaluate their writing quality based on an adapted

scale [137] (see Table 5.5).

The writing assessment tests helped us to assess whether participants exhibited the neces-

sary skills to complete the writing task. We found that participants rated themselves highly

proficient in this writing task: x̄ = 13.4(s = 1.8) for the writing self assessment (max score:

15) and x̄ = 65.4(s = 11.0) for the writing quality (max score: 80) of their proposal. This

confirms that all participants were sufficiently proficient to execute the given writing task.

Additionally, the experimenter evaluated each proposal for correctness and adequacy.

5 Final number of participants, after rejecting obvious outliers in terms of proposal quality and questionnaire

responses.
6 Verified post-hoc by the experimenter.
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Please rate your skills in writing in the following areas:

Use of Proper Grammar

Correct Spelling and Punctuation

Ability to Organize Ideas

Table 5.4: Writing self-assessment questions (adapted from [46]). Five-item Likert scale from

incompetent to very competent.

Please rate your agreement with the following statements:

My proposal correctly follows writing conventions (spelling, punctuation and grammar).

My proposal is enjoyable and interesting to read.

My proposal is enjoyable and interesting to read.

My proposal is organized well (structure, introduction, and conclusion).

My proposal is persuasive and convincing.

My proposal demonstrates effective sentence fluency (rhythm, flow, and variety).

My proposal demonstrates a clear voice (personality and sense of audience).

My proposal uses effective word choice (precise and vivid wording).

Table 5.5: Writing quality assessment by participants for their proposal text (adapted from

[137]). Ten-item Likert scale from very strongly disagree to very strongly agree.

Procedure

After providing informed consent, participants were asked to provide demographics and as-

sess their writing skills. They were then randomly assigned to one of the three conditions

and were given the task to write a proposal for the city council in which they explained their

ideas to make the city greener. Depending on condition, they were provided with No Feed-
back, Revision-based or Continuous feedback of their current readability score. Participants

were made aware of these conditions, by telling them that their proposal would be scored

and how often this would be the case.

After completing their proposal, participants were asked to fill a raw NASA-TLX [110],

assess their writing quality and asked custom questions tailored at their perception of the

scoring system, including accuracy and perceived disruptiveness (see Table 5.6). Note that

the custom questions were only present for conditions Revision and Continuous.

Results

For the final dataset, conditions were distributed as follows: No Feedback: 24, Revision: 24

and Continuous: 22 entries. We report our analysis on the following metrics as collected

in Study I: task completion time (TCT), NASA-TLX, the final Flesch reading-ease score

(FRES) and its deviation from the target zone (60 to 70). Additionally, we take a look at

the FRES over time for each condition and analyze in particular whether the Revision-based

method has prompted participants to alter their proposal. Lastly, our custom questions gave
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Perception of the scoring system

Q1a I felt that my performance was accurately assessed.

Q2a I felt pressured by the scoring system.

Q3a I performed better using the scoring system.

Q4a The system interrupted me during the task.

Q5a I could have done the task without the scoring system.

Table 5.6: Additional questions for conditions Revision and Continuous; from strongly disagree
to strongly agree; all visual analog scale (0 to 100).

insights into the disruptiveness of each feedback method. If not stated otherwise, we con-

ducted one-way ANOVAs to analyze the data. If normality was violated, we first aligned

rank transformed [328] the data. All tests (if necessary) were adjusted for multiple compar-

ison using the Tukey method. Effect sizes are given using η2 (Partial Eta Squared): small

(> .01), medium (> .06), large (> .14).

Task Completion Time, NASA-TLX and Final Readability Score

We did not observe any significant difference between the conditions (No Feedback, Revi-
sion, Continuous) for task completion time, nor for the NASA-TLX score or the final FRES.

Deviation from the target zone (measured in absolute deviation from 65) was also not sig-

nificant. An overview is provided in Table 5.7.

Condition TCT in s NASA-TLX Final FRES Final FRES deviation
x̄ s x̄ s x̄ s x̄ s

No Feedback 903 746 65.3 21.0 48.8 15.5 12.8 9.0

Revision 973 572 66.2 23.0 50.3 13.0 12.4 9.3

Continuous 1002 761 62.3 19.1 55.6 11.8 7.0 6.4

Table 5.7: TCT, NASA-TLX, final FRES and its deviation from the target zone (60 to 70).

Influence on Readability Score

To further evaluate the influence of the feedback methods on the participants’ readability

scores, we compared the temporal course of each condition. Since task completion times

varied across participants, we rescaled all trials to the median task completion time of 758 s.

This allowed us to visually compare the different trials at once and draw conclusions based

on the mean and the standard deviation of the readability score over time. An overview

of this analysis is shown in Figure 5.6. For each condition, valid7 trials are plotted as thin

blue lines showing the participant’s readability score over time. Further, a red line marks

7 A researcher cross-referenced each submitted proposal with the respective time series for the readability

score. Trials were omitted if it was evident that the submitted text was just copied into the form.

122



5 Designing Proficiency Awareness

the average (at any given point in time) over all participants, while the red corridor marks

the standard deviation, analogously. Additionally, for Revision, black vertical lines show the

point in time when the participants started the revision of their text (mean plotted thick).

Note that the FRES is highly volatile for short texts during creation. Hence, we omitted the

first 100 seconds for these plots.

Figure 5.6 illustrates that participants in the Continuous condition narrowed down faster on

the target zone. The No Feedback condition was worst in this regard. The final deviation

over all participants per condition was lowest for Continuous. Revision and No Feedback
conditions exhibited the highest variances for the final readability score.
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Figure 5.6: Deviation of readability score over time. The red-shaded corridor shows standard

deviation over the filtered data (red line). Condition Revision (middle) additionally shows tim-

ings for the revision prompt (black vertical lines; thick line being the mean). Note that all trials

have been rescaled to the median answer time and start at t = 100 s.

We additionally evaluated whether the revision prompt in the condition Revision had an

impact on participants’ writing behavior. To do so, we fitted a linear model for the collected

FRES data after the revision prompt. We fitted the model with the averaged data after the

mean revision prompt time (cf. thick black line in Figure 5.6). We then tested against a null

model that simulated no change in writing behavior, in other words: no incline. We found a

significant difference (F(1,41.7)= 346.0, p< .001,η2 = .52) between the models with a large

effect size. This indicates that participants did indeed try to improve their readability score

after the first revision.

Custom Questions

The analysis of our custom questions (see Table 5.6) revealed a significant difference (large

effect) for Q4a: "The system interrupted me during the task.": F(1,44) = 9.92, p < .01,
η2 = .18. All other questions showed no significant differences. Note that for this analysis

only the conditions Revision and Continuous are present. An overview is provided in Fig-

ure 5.7, additionally showing slightly higher ratings for Q5a and average ratings for Q3a,

indicating that participants believed that they had performed adequately even without the

system. Q2a shows that users felt more pressured in the Continuous condition, while both

conditions were rated as sufficiently accurate (Q1a).
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Figure 5.7: Ratings for questions Q1a-Q5a (see Table 5.6). Significant differences are marked

with *.

Summary

Our initial evaluation of different proficiency feedback methods has raised some noteworthy

facets of proficiency-aware systems. The following summary discusses these first results and

highlights aspects that informed the design of Study II.

When users were confronted with a system that continuously assesses their proficiency, it

allowed them to reach a target with higher precision, partly confirming H1a. This effect was

not only present for the final readability score, but also allowed them to narrow down on the

target zone more quickly compared to other assessment types (H3a). This advantage in per-

formance did not impair task completion times, as there was no significant difference over

the different assessment types. Interestingly though, participants in the Revision condition

tended to narrow down on the target zone as quickly without having had access to their read-

ability score yet. Thus, it remains to be investigated why users in the No Feedback condition

converged less quickly and were less accurate. One possible effect could be increased extrin-

sic motivation by participants in Revision. Here, participants were informed that they were

being assessed by a scoring system. Conversely, participants in No Feedback were unaware

of this fact and were not put under pressure. Once participants started to revise in Revision, a

definitive effort by participants could be observed to close in on the target zone, confirming

H3a.

While participants reported no differences in perceived workload, it was evident from our

custom questions that the Continuous feedback method caused significantly more disrup-

tions (cf. Q1a) than the Revision-based method, confirming H2a, though both conditions

pressured users to a fair degree (cf. Q2a). The Revision-based feedback seemed to cause

split reactions from participants in this regard.
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Ultimately, Continuous feedback offered the best performance in terms of hitting a target

readability score at the cost of pressuring users into the need to perform (H1a). Here, a

revision-based system can produce relief if precision is not essential (H2a).

Recognizing that proficiency feedback increases perceived stress and interruption, we aimed

to further explore feedback modalities that might remedy those issues. In Study II, we inves-

tigated whether gamification elements could make an impact through enjoyable game design

components.

5.2.4 Study II - Designing Better Proficiency Feedback Through
Gamification

Based on the findings of Study I, we further investigated effects and perceptions around

different forms of continuous and revision-based proficiency assessment and feedback. In

Study II, we explored feedback modalities in which we expected to mitigate perceived pres-

sure and interruption reported by participants in Study I. In particular, we designed and

evaluated contrasting gamification components for both continuous and revision feedback.

Knowledge of gamification mechanisms and theories is key in designing systems that use

gamification elements effectively. Often, gamification designs focus only on most common

game design elements, including badges, points, and leaderboards [107, 282]. However, a

much wider set of game elements has been studied and systematically assessed. Tondello

et al. [309] described 49 gameful design elements, classified into eight groups according

to users’ self-reported preferences. Their systematic characterization emphasizes the value

of choosing game elements that are suitable to tasks and users, in order to create sustained

engagement.

Given the potential of gamification in creating engagement through different types of feed-

back, and the design constraints, we based our additional designs and conditions in Study II

on an extensive reflection of gamification mechanisms. The taxonomy of gamification ele-

ments, described by Robinson and Bellotti [249], provided a good reference. They presented

42 gamification elements coded according to their minimum level (i.e. low, medium, high,

and variable) of engagement required. The authors further categorized those elements into

six top level categories. We chose to focus on two categories. First, "Feedback and Status
Information" provided a highly relevant overview of game elements that directly support the

purpose of our study. To contrast those rather rational and subtle game design elements, we

further chose to explore the design elements which support "Intrinsic Motivation", as we

wanted to understand the impact of joyful and interesting gamification elements on users’

perceptions of additional feedback information. In the end, we implemented two gamifica-

tion views, shown in Figure 5.8: Emoji and Progress Bar. Together with a No Gamifica-
tion condition as baseline, this resulted in a two-factorial design including the factors Feed-
back Type (Revision, Continuous) and Gamification Type, yielding a total of six conditions

(cf. Section 5.2.2). We note that those feedback modalities do not represent a full systematic
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exploration of applicable gameful components. Rather, they are designed to contribute an

early exploration of how different metaphors impact performance.

Emojis

The left side of Figure 5.8 shows the Emoji implementation that indicates compliance with

the text production task through five unicode emojis, ranging from sad to happy. This design

and implementation is reflected in the Entertainment element ("Simple elements can work

very quickly in low commitment settings"), as described in the Intrinsic Motivation group

by Robinson and Bellotti [249].

Progress Bar

The second gamification implementation, shown on right side of Figure 5.8, relates to the

element Graphical Indicators ("Easy to design, and in fact critical for all gamification."), as

described by Robinson and Bellotti in the Feedback and Status Information group [249]. We

chose to implement a progress bar with a center target range (green zone), as it represents

an easy-to-understand visualization of the tasks and provides a form of progress feedback,

which Tondello et al. [309] referred to as a gameful design element. Having a sense of

progress is important in stimulating the basic psychological need competence. In addition,

we added a statement that places the users’ current proposal quality into context with propos-

als written "in similar tasks". This statement is simulated and based on the current readability

score. For example, at a readability score of 49, the statement indicates that "26% of texts

in similar tasks fulfil the requirements better because your text is too difficult to read.",

while at a score of 63, the message is more positive: "Only 5% of texts in similar tasks

fulfil the requirements better". The purpose of this ranking, or text-based leaderboard, is to

create a form of perceived competition, also referred to as gameful design element "social

comparison" by Tondello et al. [309], nudging participants into better performance, which

should work even in those situations where they already hit the inner edges of the green tar-

get range on the progress bar. For consistency and simplicity, we refer to this gamified view

as Progress Bar view.

Hypotheses

We reused our hypotheses from Study I and explicitly describe our hypothesis regarding the

use of gamification elements in proficiency feedback (H4).

H1b: Continuous feedback leads to increased task performance.

H2b: Revision-based feedback is less distracting.

H3b: Proficiency feedback alters the task approach of users.

H4: Gamification elements alleviate feedback distraction.
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5 Designing Proficiency Awareness

Figure 5.8: Gamification implementation of our proficiency-aware web form. The view on top

shows the emoji condition. The bottom view shows the progress bar and social comparison

statement. Both gamification views depict the continuous condition.

We know from Study I that proficiency feedback is perceived as pressuring and distracting.

We hypothesize that the joyful nature of gamified applications can turn proficiency feedback

into an enjoyable experience that is perceived as an enrichment, rather than a distraction. To

this end, we implemented two gamified proficiency-aware web views for both the Revision-

based and Continuous feedback conditions, added custom questions to the evaluation, and

used several subscales of the Situational Motivation Scale (SIMS) [99] and the Intrinsic

Motivation Inventory (IMI) [39], to assess impact on intrinsic motivation and different forms

of extrinsic regulation.

Participants

Again, we recruited participants (N = 147)8 over the Amazon Mechanical Turk Service

(MTurk). Reimbursement and information provided to prospective participants was iden-

tical to Study I. Out of these participants, 40 resided in the European Economic Area, 42 in

Canada, 3 in Australia, 1 in Asia and 61 in the USA. It took approximately 20 minutes to

complete the survey, including writing the proposal text. The average age of participants was

8 Final number of participants, after rejecting obvious outliers in terms of proposal quality and questionnaire

responses.
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x̄ = 35.9y (s = 9.85y) with 46% identifying as female, 54% as male. Additionally, we asked

all participants to provide their self-assessed writing skills [46] again. We decided to omit

the self-assessed writing quality of their proposal in Study II, to streamline the procedure.

Similarly to Study I, we found that participants rated themselves highly proficient in this

writing task: x̄ = 13.5 (s = 1.6) for the writing self assessment9, again confirming that all

participants were sufficiently proficient to execute the given writing task. Additionally, the

experimenter evaluated each proposal for correctness and adequacy.

Procedure

Following the procedure of Study I, participants were asked to provide their demographics

and to assess their writing skills after providing informed consent. They were then randomly

assigned to one of the six conditions and were again given the same writing task as in Study I

(cf. Section 5.2.3) and likewise informed about their condition.

After completing the writing task, participants completed the SIMS [99] and IMI scales [39].

We included all subscales of SIMS: Instrinsic motivation, Identified regulation, External

regulation and Amotivation. For IMI we included three subscales10: Perceived competence,

Effort/Importance and Pressure/Tension. Each subscale was scored on a 7-item Likert scale

and included four to six items that were averaged. Note that we omitted the NASA-TLX in

Study II as it did not elicit any significant results in Study I. We again concluded with a set

of custom questions. Although similar to those in the first study, we focused more on the

aspects of interruptions and distractions by the scoring system. We also explicitly tailored to

a change in task approach. Table 5.8 shows the final set of questions.

Table 5.8: Additional questions for all conditions; from strongly disagree to strongly agree; all

visual analog scale (0 to 100).

Perception of the scoring system

Q1b I felt pressured by the system.

Q2b I felt that my performance was accurately assessed by the system.

Q3b I adapted my approach in solving the task due to the system.

Q4b The system enabled me to complete the task accurately.

Q5b The system interrupted me during the task.

Q6b The system helped me to see how well I was doing.

Q7b The system distracted me during the task.

Results

We report our analysis on the following metrics as collected in Study II: task completion

time (TCT), the final Flesch reading-ease score (FRES) and scores from the IMI and SIMS

9 Maximum score: 15.
10 The other subscale were redundant with SIMS or not of interest for this study.
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scales. Additionally, we again take a look at the FRES over time for each condition and

analyze in particular whether the Revision-based methods has prompted participants to alter

their proposal. Lastly, our custom questions give insights into the perception of the scoring

system with regard to each feedback method. Inferential statistics are conducted analogously

to Study I. The distribution of data entries over conditions is given in Table 5.9.

Table 5.9: Distribution of collected data entries over all conditions in Study II.

No Gamification Progress Bar Emoji
Revision 25 20 22

Continuous 23 31 26

Task Completion Time and Final Readability Score

We did not observe any significant difference between the conditions for task completion

time (TCT) in Study II. TCT was highest for Continuous x No Gamification at x̄ = 1280 s
(s = 787 s) and lowest for Revision x No Gamification at x̄ = 810 s (s = 496 s). For the

final readability score, we found significant differences with a large effect size for the factor

Feedback Type (F(1,141) = 30.0, p < .001,η2 = .17). Figure 5.9 shows the final scores for

the two factors.
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Figure 5.9: Final readability scores given both factors: Feedback Type and Gamification Type.

Scores for Feedback Type (Revision - Continuous) are significantly different. The shaded green

area marks the target zone for the readability score (60 to 70).

IMI and SIMS Scales

For IMI [39] and SIMS [99] scales we found significant differences (medium effect) for

intrinsic motivation (F(2,141) = 5.36, p < .01,η2 = .07) for Gamification Type. Post-hoc

pairwise comparison showed a significantly lower score for intrinsic motivation for Emoji
compared to No Gamification and Progress Bar. Further, we found significant differences
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(small effect) for identified regulation (F(2,141) = 4.05, p < .05,η2 = .05) for Gamification
Type. Again, post-hoc tests showed a significantly lower score for identified regulation for

Emoji compared to No Gamification. We did not find any significant differences for external

regulation and amotivation as well as for any of the IMI subscales (Perceived competence,

Effort/Importance, Pressure/Tension) that we employed. An overview categorized by Gami-
fication Type can be seen in Figure 5.10.
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Figure 5.10: SIMS (left) and IMI (right) subscale ratings categorized by Gamification Type.

Significant differences are marked with *.

Influence on Readability Score

Similar to Study I, we additionally analyzed the readability scores over time. We applied

the same data transformation (cf. Section 5.2.3), but adapted the median task completion

time to 927 s. An overview of this analysis is shown in Figure 5.11. It illustrates again

that participants in the Continuous conditions narrowed down faster on the target zone and

also exhibited less variance during this process and at the end (cf. Figure 5.9). Compared

to Study I, the difference to Revision-based conditions is more pronounced. Participants in

the Progress Bar conditions also narrowed down on the target zone in a more linear fashion.

The other conditions exhibited a more ad-hoc adaption.

We could additionally confirm the same effect for Revision-based feedback conditions as

in Study I. Participants did again try to improve their readability score after the first revi-

sion. We performed the same statistical analysis for each revision-based condition and could

confirm statistical significance. Further, we fitted a model with aggregated data over all Re-
vision-based conditions. Tests against the null model confirmed a significant difference with

a large effect size (F(1,74.7) = 8298.9, p < .001,η2 = .97).

Additional Questions

Our analysis revealed significant differences for Feedback Type for Q3b: "I adapted my ap-

proach in solving the task due to the system." (F(1,141) = 5.24, p < .05,η2 = .04), Q5b: "The

system interrupted me during the task." (F(1,141) = 13.38, p < .001,η2 = .09), Q6b: "The

system helped me to see how well I was doing." (F(1,141) = 10.74, p < .01,η2 = .07),

Q7b: "The system distracted me during the task." (F(1,141) = 26.75, p < .001,η2 = .16) with

varying effect sizes. For Q7b we additionally found a significant effect of Gamification Type,
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Revision-Based Feedback
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Figure 5.11: Deviation of readability score over time. Red-shaded corridor shows standard

deviation over the filtered data (red line). Conditions based on revision feedback (top row)

additionally show timings for the revision prompt (black vertical lines; thick line being the

mean). Note that all trials have been rescaled to the median answer time and start at t = 100 s.

though no post-hoc significances between levels were present. All other questions showed

no significant differences. An overview is provided in Figure 5.12 showing high rating (more

prominent for Continuous) for Q3b, Q4b and Q6b polling the interaction between the par-

ticipants’ task approach and the assistance offered by the system. Scores on Q1b, Q5b and

Q7b (pressure and interruptiveness) are more split between the conditions, while Q2b scores

just above the midpoint range, polling accuracy of the scoring system.

Summary

Extending our summary from Study I, we further elaborate on additional findings based on

the results of Study II.

Similarly to the results of Study I, we observed that Continuous feedback allowed partici-

pants to reach the target zone with higher precision. The bigger sample size of Study II con-

firmed that this effect was significant compared to Revision-based methods, fully confirming

H1b. Additionally, Study II provides evidence that Continuous methods allowed users to

narrow down on the target zone more quickly (H3b), showcasing that users adapted their

task solving approach in the presence of the scoring system. For Revision-based method, we

once again confirmed that once participants started their revision, a definitive effort could be

observed to close in on the target zone, confirming H3b.

Our updated custom questions allowed us to take a closer look at the disruptiveness of the

system and how users perceived its assistance. Here, we could confirm that Continuous
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Figure 5.12: Ratings for questions Q1b-Q7b (see Table 5.6). Q3b, Q5b, Q6b and Q7b are

significant for Feedback Type. Q7b is additionally significant for Gamification Type; marked

with *.

methods were significantly more distracting and interrupted the user (H2b). While both

feedback method prompted users to adapt their task solving approach, the impact from the

Revision-based method was significantly lower (H3b).

Our results confirmed, in the Continuous feedback conditions, that gamification can alleviate

feedback distraction (H4). While the participants felt strongly distracted in the Continuous
x No Gamification condition, they reported less distraction in the Continuous x Emoji condi-

tion, and even less in Continuous x Progress Bar. This shows a valuable benefit of gamified

feedback modalities. However, our results related to SIMS and IMI subscale responses in-

dicated that the choice of game design elements significantly impacted users’ motivation.

Asked about their intrinsic motivation, participants indicated a significantly lower intrinsic

motivation for the Emoji views, as compared to the Progress Bar views and to No Gamifica-
tion. Reasons might include that users felt personally attacked by sad or disappointed emojis

and might have seen little interest or value in feedback that was based on metaphors that they

are commonly subjected to in social interactions. An additional indication of this was the

significant difference in identified regulation between No Gamification and the Emoji views.

5.2.5 Discussion

Here we reflect on the results of our inquiry and discuss how different forms of feedback

affect performance and user experience when interacting with proficiency-aware systems.
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5 Designing Proficiency Awareness

Proficiency Feedback Provides Tangible Benefits in Performance

Our investigation showed that users who could use the proficiency-aware features of the web

forms were able to fulfill the secondary task requirements (write in plain English) to a higher

degree than those who did not receive any feedback. This suggests that proficiency aware-

ness is an effective method in helping users achieve a desired task outcome (RQ3b). Inter-

estingly, Revision-based methods were almost as accurate as Continuous feedback methods

in Study I. We hypothesize that this can be attributed to the participants’ awareness that they

would be rated by a scoring system [66] and the lower sample size. Study II confirmed that

Continuous was superior in terms of the quality of the generated text (RQ3c). Hence, choos-
ing feedback types is a trade-off between primary task performance and awareness of
proficiency [82]. Further, providing proficiency feedback has not significantly slowed down

primary task completion, nor has it increased the perceived workload of users. These re-

sults show that proficiency feedback can lead to tangible benefits in performance quality
without negatively affecting effort or speed (RQ3c).

Revision-Based Proficiency Feedback Exhibits Low Interruption Cost

While both feedback methods were able to support users in their task, Revision-based meth-

ods were perceived by the users as less disruptive. For Continuous methods, users reported

that they felt interrupted and distracted by the scoring system to a higher degree. Thus, it is

important for future designers to recognize the possible negative implications of providing

proficiency feedback. Providing feedback at sparser intervals is likely to reduce dis-
ruption (RQ3c). Consequently, when designing a proficiency-aware system, the designer

is faced with the challenge of finding the optimal balance for a given task. Frequent or

continuous feedback will increase quality, but may frustrate users [133].

Proficiency Feedback Facilitates an Understanding of One’s Own Proficiency

Our results suggest that users not only managed to perform better when using proficiency

feedback, but they also gained an understanding of their proficiency. We observed that users

changed their behavior in reaction to being informed about their proficiency [25]. Addi-

tionally, users stated that they had consciously adapted their task solving strategy and that

the system helped them in doing so (RQ3b), a clear indication of reflection-in-action [278].

Users were aware of their own approach to complete the task and could recognize opportuni-

ties to improve their strategy. This fact presents a design opportunity for future proficiency-

aware systems, counteracting the "paradox of the active user" [36]. If proficiency can be

effectively recognized, systems can guide users to selecting task completion strategies
which are optimized for a given user’s proficiency level.

Proficiency-Related Feedback Promotes Consistency

Further, we observed that proficiency feedback led to less variability in user performance.

Participants who used proficiency feedback reached an optimal performance level faster and

were able to maintain it with a greater consistency. This effect is more prominent for the
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Continuous feedback methods. Users reported that the scoring system helped them to accu-

rately complete the given task. This is especially evident in Study I, where the No Feedback
group exhibited a large variance for their final readability score. Consequently, we can con-

clude that continuous assessment can help to promote and realize consistency among
similar tasks (RQ3b). Future systems can use this fact to effectively communicate to the

user what level of performance is expected and helping the user perform at the desired levels.

However, the task in our study was one where the user was asked to perform at a certain,

mid-range level. In tasks where exceptional performance would be beneficial, proficiency

feedback may guide users to do just enough to obtain a positive assessment [115] and thus

potentially hamper excellence.

Gamified Feedback Can Be Effective, but It Is Subject to Design Constraints

Our investigation of gamified feedback elements showcased essential considerations for

proficiency-aware systems. While the gamified feedback was not more beneficial in terms

of conveying proficiency to users, both gamification elements helped reduce the perceived

interruption of the scoring system (RQ3d). Compared to Emoji, Progress Bar provided a

less distracting experience, which was almost on the level of Revision-based methods. We

attribute this to the much more ambient appearance of the Progress Bar. The additional in-

formation regarding distance to the target zone and overall progress provided a tangible way

to keep track of one’s progress towards the target zone. This shows that gameful elements

can help mitigate the disruptive effect of continuous proficiency assessment. Consequently,

future systems that want to avoid disruptiveness without jeopardizing performance,
can explore gamified feedback instead of reducing feedback frequency. At the same

time, meaningful social comparison elements that appeal to the users are likely to stimulate

extra effort that goes beyond merely reaching the target zone. A transparent communica-

tion of such information across co-workers and peers is likely to impact one’s feeling of

relatedness; one of the basic psychological needs [285].

Further, using the Emoji resulted in a significantly lower intrinsic motivation than the

Progress Bar and the No Gamification condition. In conjunction with the lower score for

identified regulation as well as perceived competence, we hypothesize that participants as-

sociated the Emoji with a form of childish, frivolous feedback. This was an impression that

may have contrasted with the serious writing task [286]. Consequently, if gamified elements
are to be used for feedback in proficiency-aware systems, it is a key design consider-
ation to align the feedback form with the content of the task at hand (RQ3d). Still, it

would be worth to further explore gameful design elements for proficiency feedback that

increase intrinsic motivation through interest, curiosity, and play. In this context, it should

be noted that recent gamification research focused on mapping the suitability of game design

elements to player types [223, 308]. Future work should further explore the impact of player

types and the selection of game elements on motivation in proficiency feedback.
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Limitations

While proficiency is generally difficult to measure accurately, contributing factors can usu-

ally be obtained with ease. Thus, we used a text production task and an associated, estab-

lished task performance metric (FRES) to illustrate the concept of proficiency-aware sys-

tems. Our current work shows that communicating relevant task metrics in a text production

task facilitates proficiency awareness. It remains to be seen whether these findings can be

replicated for similar tasks. A complete proficiency-aware system should additionally con-

sider more elaborate metrics, such as proposal quality, structure and tone, consequently sup-

porting the user in achieving their task. Work by Kaur et al. [154] can serve as a glimpse into

the future where proficiency-aware systems may create action plans for the user. While the

scope of the current work addresses the influence of proficiency feedback on user experience

and their performance, we firmly believe that providing this framework for the concept of

proficiency-aware systems helps identify necessary requirements and constraints to advance

further research.

We also recognize that our participant recruitment options were limited due to the epidemic

situation at the time of writing. While MTurk allowed us to recruit a large sample of users,

it also limited our possibilities in obtaining more information about their experience, e.g.

through qualitative post-task assessment. To ensure data quality, we carefully screened

submitted results. Further, the dynamics of motivation in crowdwork is a debated topic,

e.g. [28, 153]. While our results on motivation presented here may be specific to an MTurk

setting, we do note that the scope of this work is not limited to an analysis of motivational

aspects only.

5.2.6 Conclusion

In this use case, our investigation focused on different feedback types to communicate pro-

ficiency assessments to the user in everyday computer work. We found that being aware of

one’s proficiency benefits primary task performance and facilitates an understanding of their

own expertise for the user. Consequently, users can adjust their approach towards the task

and increase their proficiency.

While communicating proficiency is beneficial for task performance and user experience,

we also found that feedback needs to be balanced to moderate potential interference with the

primary task. We suggest a revision-based approach if precise performance is not essential,

as it is less distracting for the user. Similarly, subtle gamification elements like progress bars

and associated social comparison complement this method by lowering perceived disruption.

We summarized these findings in a set of design implications applicable to proficiency-

aware applications, such as choice of feedback type and inclusion of gamification elements

in everyday computer-based work environments.

This use case contributes to the understanding of how people reflect on their own skill assess-

ments and, more importantly, how this reflection can be used to encourage users to improve
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their proficiency further. In the next use case, we pursue a slightly different approach by

introducing the idea of artificial proficiency. We use an EMG-based system to allow piano

player to add expressiveness to their play without having to go through lengthy training.

Thus, users can get a sneak peek at possible benefits of proficiency improvements.

5.3 Use Case III: EMPiano - A Take on Artificial Profi-
ciency

When interacting with artifacts, we are often limited by the given range of possible inter-

actions provided by the respective interface. Well-designed interfaces clearly communicate

desired interactions and rely on expected movements. An example of such an interface is

the piano keyboard, which is a well-established interface between the musician and the in-

strument. However, mastering the piano keyboard requires extensive skill development. Be-

ginner and intermediate players are often limited to basic melodies and there is little room

for improvisation. Accessing this aspect of musical play can be challenging as it is usually

associated with increased costs, such as higher user workload.

In this use case, we envision the use of artificial proficiency to demonstrate benefits of pro-

ficiency increase to user in a tangible way. To so do, we look at expressive capabilities of

interaction modalities, such as EMG, that subtly extend the range of interactions, hence al-

lowing for seamless integration. The proposed system EMPiano integrates seamlessly into

normal play by allowing musicians to modulate sound pitch using their thumb, supporting

musical flow. The system’s capabilities allowed users to foster their play creativity without

having to worry about limitations of their own play proficiency.

5.3.1 Methodology

Our goal is to leverage electromyography as a secondary input channel, thus increasing the

interaction range when playing the piano, providing users with a sense of artificial profi-

ciency. To verify the applicability of EMG in this scenario, we created a prototype that

allows the pianist to modulate pitch during play by measuring their muscle activity. We im-

plemented this experience by allowing the user to alter the pitch via a vibrato effect using

a thumb wiggle gesture. Based on RQ3, as reiterated below, we formulate the following

research question RQ3e for this use case:

RQ3

What are design criteria for proficiency awareness in interactive systems?

RQ3e: How can we design for artificial proficiency which integrates seamlessly into exist-

ing tasks for EMG-based systems?
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We ask whether such a gesture can integrate seamlessly into the playing process. It has thus

to be within the same domain of muscle movements, but have little overlap with the actual

playing motion to prevent false positives. In other words: we wanted to design a gesture

that the user would expect, but also one that can be sensed [21]. McPherson et al. [204]

investigated possible modulation gestures during piano play that had no to little overlap

with existing techniques during play. The so-called space between the note [204] is of vital

importance as it can be used to create new musical artifacts.

We research the feasibility of "task language", i.e. finger motions that define the intended

interaction11 — in contrast to the position of the fingers on the keys — to allow for player-

specific interaction. In other words, we focus on applying EMG to sense the aspects of

an object that allow for providing contextual clues for extended interaction. This paradigm

has been researched in other areas as well, such as PickRing [329] and work by Theiss

et al. [306]. Analogously to the work by McPherson et al. [204], we extend on-the-move

interaction through EMG, but do not limit the concept to specific objects, that need to be

modified.

5.3.2 EMPiano

In EMPiano, we implemented a thumb wiggle gesture as effect trigger: the user applies force

on the piano key while simultaneously tilting his thumb back and forth. This motion then

triggers a vibrato-effect (on or off) during play. Tilting direction and applied pressure are

determined in a calibration phase and depend on individual preference and playing style.

We allowed a variety of slightly different motions across our participants, as preliminary

tests found no negative impact on detection accuracy. These tests also showed that using the

thumb was most accurate and aligned well with occasions when one might want to add a

vibrato effect12.

EMPiano closely follows the recording steps of EMGuitar. For detailed information on

recording protocols and data preprocessing steps, please refer to Section 4.2. Specifically

for EMPiano, we set the window size to 150ms13. Hop size was set to half the window size.

Additionally, we submit RMS (including RMS ratio) features for the last and second-to-last

window. Thus, for classifying the current state of the system, we look at a total of 300ms
worth of EMG samples. Note that classification is performed every 75ms (hop size) using

a support vector machine with a radial basis function kernel14. We found that this method

ensured stable classification while also maintaining decent latency. No participant reported

any perceived activation latency when asked about it in the interviews.

11 E.g. playing an octave requires stretching of fingers.
12 For example: ending a series of notes with a low key.
13 Corresponds to 75 samples.
14C = 1.0, γ = scale as evaluated a priori. Also see sckit-learn (https://scikit-learn.org/stable/index.html).
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A computer was connected to an electronic piano keyboard via MIDI providing piano sound

output via Ableton Live15 through external speakers in all conditions. Additionally, this

computer connected to the available EMG stream for classification purposes. In our Elec-
tromyography condition, sound throughput was altered using MIDI signals to emulate a

vibrato effect. The audio processing pipeline exhibits a latency of only a few milliseconds.

5.3.3 Evaluation

We evaluated EMPiano in an experiment consisting of two different tasks. The first task

Notesheet required the user to play a simple piece from notes and modulate at priorly de-

fined positions, introducing the participants to our system and its operating principles. The

second task Improvisation then allowed the participants to fully explore the prototype and

incorporate its features into their own playing style. They were free to improvise at will or

play pieces from memory or from notes.

To allow for comparison, we introduced an auditory baseline that offered the same expressive

range albeit using a different modality. Hence, we employed a within-subject design with

one independent variable Modality for each task. The two conditions differed in their way

of triggering the modulation. The Pitch Wheel (PW) condition required the participants to

modulate pitch via the pitch wheel, manually creating a vibrato effect. The pitch wheel

represents a standard control mechanism. The second condition, Electromyography (EMG),

relied on the calibrated trigger gesture to activate an automatic vibrato effect. Conditions

were counter-balanced within each task.

We constructed a set of questions about the perceived accuracy and intuitiveness of the acti-

vation movements and the respective sound modulation as shown in Table 5.10. All answers

were recorded on a visual analog scale ranging from 0 to 100. This questionnaire was admin-

istered for both conditions and both tasks. In a concluding interview, we asked the partici-

pants about their experience when using the two different conditions for sound modulation.

Specifically, we asked them to contrast the feeling of integration for both conditions and how

either had impacted their play style when improvising. Each interview took approximately

10 minutes.

Participants

We recruited twelve participants (9 male, 3 female; Age x̄ = 23.2y, s = 3.0y) from the Uni-

versity of Munich via mailing lists. Although subjective play proficiency varied (x̄ = 32.0,

s = 19.6y)16, all participants were able to play a piece from the written notes and reported

an average of x̄ = 11.2h/month (s = 11.2h/month) spent playing the piano. After the study,

each participant was reimbursed with 10 euros.

15https://www.ableton.com/en/

16 Visual analog scale from 0 to 100.
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5 Designing Proficiency Awareness

Questions assessing perceived accuracy and intuitiveness

A1. Please rate your perceived accuracy of the system in recognizing your augmentation.

A2. How intuitive was the gesture movement?

A3. How intuitive was the sound modulation?

A4. How intuitive was the combination between the gesture movement and the sound modula-

tion?

Table 5.10: Additional questions for both conditions (PW, EMG) and both tasks (Notesheet,
Improvisation); all visual analog scale (0 to 100).

Procedure

After providing informed consent, the participants completed a demographics questionnaire

and the experimenter placed the electrodes on the right forearm. The first task Notesheet
required participants to play a piece from a sheet of music. The songs included marked notes

throughout the piece where the player was required to use a vibrato effect. As required by

the EMG condition, calibration for the trigger gestures was done directly while playing the

chosen song twice in different registers, lasting no more than two minutes. This calibration

was always executed first. Depending on condition order, the vibrato effect had to be applied

using the pitch wheel or the EMG-based trigger gesture. Each condition was completed by

filling our custom questionnaire (Questions A1-A4).

Task Improvisation allowed the participant to experiment with both conditions during a free

improvisation session. Participants were given approximately five minutes per condition.

The semi-structured interview concluded the experiment. The whole experiment, including

electrode placement, did not exceed one hour. Ethical approval for this study was obtained

from the Ethics Committee at the University of Constance.

5.3.4 Results

We report on the quantitative analysis of our custom questionnaire and the qualitative anal-

ysis of the interviews.

Custom questionnaire

Results on gesture movement and sound modulation are illustrated in Figure 5.13 on a visual

analog scale (0 to 100). Please refer to Table 5.10 for the respective question identifier.

After confirming normality of the data, a paired sample t-test showed a significant effect of

Modality for Question 3 ("How intuitive was the sound modulation?") and Question 4 ("How

intuitive was the combination between the gesture movement and the sound modulation?"):

t(8) = 3.00, p < .05,r = .72 and t(8) = 3.01, p < .05,r = .73, respectively.
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Figure 5.13: Mean scores for Question A1-A4; assessing perceived accuracy and intuitiveness

of both conditions (see Table 5.10). Error bars show standard error. Significant differences

between conditions are marked with *.

Interviews

All interviews were recorded (total duration 1 : 41h) and transcribed verbatim. We opted

for the pragmatic approach to thematic analysis as described by Blandford et al. [24]. Our

analysis resulted in four themes: Comfort, Control, Creativity and Immersion. In the

context of this use case, we will only focus on Control and Immersion.

Control

Another important aspect for participants was the perceived control over the modulation. For

most participants using the pitch wheel, modulation felt cumbersome and it was difficult to

achieve a desirable vibrato effect:

On the other hand, it [pitch wheel] is also difficult. Especially that light vibrato is
not that easy to achieve. Reproducing this, I experienced it as much more taxing
than using the gesture [EMG]. (P8)

While using our system enabled players to stay in control, they also reported on the lack of

fine-grained control when needed:

Using EMG, what I really like is that I could be focused on what I was doing, and
because this [referring to the pitch wheel] will be very far from when I’m hitting the
piano. I could focus on what I was playing. I could just do some kind of thing on
the vibrato like you said, but I wasn’t able to precisely control the modulation. (P2)

Being aware of the nature of the EMG-based modulation, participants formulated new ideas

on how to control the interaction with the piano keyboard using muscle activation:
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5 Designing Proficiency Awareness

For example, when I wiggle my ears, I can trigger an arpeggio. (P9)

Relating to the previous theme Comfort, the participants associated being able to use more

fingers for activating the modulation with increased control:

Yes, I think it would help me because there are a lot of tracks in which you may want
to use modulation on a specific note, but on this note you’re not supposed to use
your thumb. Yes, I think it would be great to be able to do it with other fingers. (P2)

Immersion

The last theme resulting from our analysis is Immersion. Being immersed is one of the main

drivers for getting into a flow state during play. Participants reported a limited and disturbed

feeling of immersion when using the pitch wheel:

My left hand was always occupied with that thing [the pitch wheel]. I do not know
of any pieces that would allow me to switch in between. (P6)

Using the EMG-based modulation supported many players in achieving a flow-like state and

immersing themselves in their improvisation:

For sure. I had the feeling to get into a flow state very quickly, because the other
method [pitch wheel] interrupted me motion-wise. That always pulled me out of the
flow. I also had the feeling that I struggled to stay on tempo and that pulled me
out. With the other system [EMG], I did not have this feeling. I experienced a more
flow-like feeling. (P8)

Participants commented how flow could be achieved. Firstly, the EMG-based system al-

lowed for an immediate and non-disruptive integration into the participants’ play style:

It was simply very intuitive. If I wanted to use it, it just worked. (P11)

Secondly, due to the seamless integration, the EMG-based system enabled participants to

play freely:

And I think, when I incorporated it into my play style, it enabled me to play freely.
This method was much better than the other one [pitch wheel], because it was much
more effort for me to reach. (P8)

5.3.5 Conclusion

With regard to RQ3e, we looked at design requirements that need to be fulfilled to achieve

seamless integration of artificial proficiency for EMG-based systems. One important advan-

tage compared to the pitch wheel modulation is the fact that the utilized gesture activation
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was rated much higher by players in terms of intuitiveness. For them, the connection be-

tween the movement and the resulting sound modulation was straightforward and immediate

to apply, facilitating seamless integration.

Further, the increased range is realized without added complexity through seamless inte-

gration allowing for good control using already established "task language". This is addi-

tionally supported by the increased feeling of immersion that participants reported for the

EMG-based system. This was evident when looking at the pitch wheel condition, which was

often criticized for its high complexity. Yet, more advanced players appreciated the greater

control over the sound modulation when using the pitch wheel. Our observations in this

experiment provide an extensive answer for RQ3e. Thus, design for EMG-based interaction

should balance the amount of control offered to the user.

This use case aimed at validating whether EMG can support seamless integration into ex-

isting systems to extend the range of interaction, facilitating a sense of artificial proficiency.

Our successful integration of EMG as a secondary modality into an already well-established

motor task showed that EMG does have the potential to enable additional interactions with

tangible artifacts without altering the existing artifact or introducing new ones.

5.4 Chapter Summary

Designing proficiency awareness is challenging if there is no agreed-upon definition of profi-

ciency in the associated task domain (RQ3). Nevertheless, in this chapter, we have illustrated

that there are always proxies available that can be used to support users and make them aware

of their own proficiency.

In particular, this chapter has shown that users are able to make elaborate connections to their

own data, be it physiological signals (cf. Section 5.1) or linguistic metrics (cf. Section 5.2).

This highlights an important advantage in terms of scaling for proficiency-aware systems.

Often it is sufficient to allow for some information to communicate back to the user (RQ3).

There is no need for complicated algorithms that assist users in reaching maximum task

performance. Merely making the "invisible" visible (cf. EMG) is often sufficient.

Further, this implicitly allows user to make their own decision — whether to invest resources

or not — ensuring a sense of agency for users. Here, our second use case (cf. Section 5.2) has

shown that continuous feedback can potentially rob users of this agency for computer-based

work.

In our final use case, we additionally looked at an approach that would tease a higher profi-

ciency to users. By foreshadowing what investments in proficiency improvement can offer

to users, we highlighted how proficiency-aware systems could make use of artificial profi-

ciency as an additional motivator for users (RQ3). Interestingly, this support could readily

be available to users until they themselves a high enough proficiency level.
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5 Designing Proficiency Awareness

While this chapter has provided insights into how to design proficiency awareness in selected

task domains, we argue that, especially for proficiency-aware systems that want to use phys-

iological sensing, high entry barriers often hinder further research and development. We

will address this issue in the next chapter complementing Part II: "Facilitating Proficiency

Awareness" of this thesis with a toolkit approach to implementing proficiency-aware sys-

tems.
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Chapter6
A Toolkit Approach to Implementing

Proficiency-Aware Systems

User interfaces which use physiological phenomena as input are an established topic in HCI.

Given the amount of measurable biological signals [274] which we emit, there is still poten-

tial for new interfaces. Yet, the possibilities for non-experts to explore user input modalities

for interactive systems are limited. Most often, expensive equipment and prior training is

required to operate systems correctly. Hence, accessing physiological input technologies

is often cumbersome and requires expert knowledge. Universally available hardware and

toolkits are a first step in this direction, as they allow non-experts to familiarize themselves

with the technology and explore its capabilities without having to commit to expensive hard-

ware and training.

Especially in the domain of physiological computing, reducing the need for extensive ex-

pertise is essential. Fairclough [75] called for easy data acquisition and abstraction from

technical details. As a consequence, such toolkits need to be mobile and effectively support

the creative process. Last but not least, toolkits are to "empower new audience" [179]. In this

chapter, we explicitly focus on how to include a wide range of professions as potential user

groups to advance research for proficiency-aware systems. Consequently, our work is guided

by an initial set of requirements motivated by Ledo et al. [179]’s definition of a toolkit:

"[Toolkits are] generative platforms designed to create new interactive artifacts,
provide easy access to complex algorithms, enable fast prototyping of software and
hardware interfaces, and/or enable creative exploration of design spaces." [179]

Consequently, this chapter focuses on how we can support a wide audience in creating

proficiency-aware systems. It is essential for the acceptance of novel modalities, such as

EMG, that not only trained professionals are able to exploit these, but that we also make

them accessible for engineers, developers, designer, and laymen.
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We first introduce EMBody, a data-centric toolkit for EMG-based prototyping and experi-

mentation. While this thesis has investigated gaze as a modality as well, we identified the

available support by manufacturers of eye trackers to be already on a very accessible level

for newcomers1. Thus, we decided to focus on creating a toolkit that allows a wide audience

to experiment with EMG and prototype EMG-based interactive systems.

The research in this chapter is guided by RQ4:

RQ4

How can we support a wide audience in realizing proficiency-aware systems?

This chapter is based on the following publication.

Jakob Karolus, Francisco Kiss, Caroline Eckerth, Nicolas Viot, Felix Bachmann, Al-

brecht Schmidt, and Paweł W. Woźniak. 2021. EMBody: A Data-Centric Toolkit for

EMG-Based Interface Prototyping and Experimentation. In Proceedings of the ACM
on Human-Computer Interaction, 5(EICS). ACM, New York, NY, USA.

https://doi.org/10.1145/3457142

EMBody is openly available on github: https://github.com/HCUM/embody

6.1 Related Research

The increasing availability of toolkits allows users to rapidly prototype interaction ideas.

Most commonly, toolkits help ease certain steps during this process [179], from ideation and

interaction design to signal acquisition and processing to higher level output generation, e.g.

by means of machine learning. In the following, we reflect on prominent toolkits within

the HCI domain, their purposes and architecture and take a closer look at physiological

computing toolkits and electromyographic sensing.

6.1.1 Toolkits

Toolkits lower the entrance barrier for specific stages during the creation process of applica-

tions and artifacts [179]. Specialized toolkits, such as Makers’ Marks [268], Sauron [267],

Pineal [178], ShapeMe [326] and RetroFab [244] support technical users in working with

aesthetics and form factors. The aforementioned tools allow novice users to create 3D forms

or enclosures, which is a process which usually involves extensive knowledge and iterations

using 3D software. By abstracting from this process, e.g. through shortcuts like embed-

ding smartwatches as computation unit [178] or automated processes that convert physical

1 E.g., Tobii Eye Tracker 5: https://gaming.tobii.com/product/eye-tracker-5/.
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6 A Toolkit Approach to Implementing Proficiency-Aware Systems

changes to digital representations [326], these toolkits enable users to focus on designing

applications and benefit from advances in sensor technology and 3D modeling.

Other toolkits specifically address these engineering challenges, such as making sense of

data (EagleSense [332], SoD-Toolkit [284]) assisting less technically adept users to interpret

sensor data and high-level input for their applications. Taking care of data synchronization

and filtering is cumbersome and often requires expertise, especially as environments con-

tain more and more sensors every day. A designer for a location-aware application is only

interested in a person’s exact location and orientation (within a room). How this informa-

tion is calculated is secondary and not relevant for the application. Here, toolkits such as

EagleSense [332] abstract from the technical complexity allowing fast prototyping.

Developing ubiquitous artifacts often involves devices that are interconnected, e.g. a sensor

and an actuator. Cross-device communication can be cumbersome and is often abstracted

with the help of protocols and toolkits. Examples include toolkits for web-based applications

(XDStudio [214], Panelrama [333]), tangible artifacts (Calder [180], ToyVision [194], reac-

TIVision [142]) or most commonly: wearable devices (WatchConnect [124], Weave [43],

Interactex [103], WDK [102]). These toolkits showcase the importance of cross-device

compatibility and properly defined interfaces to allow for robust communication among the

devices.

6.1.2 Pipeline Architectures

A common approach to toolkit architecture is the use of a pipeline-based structure. This pro-

vides a conceptual workflow for diverse user groups and clearly communicates the toolkit’s

application domain. Toolkits might only provide one — but integral — step of this pipeline,

such as enabling laymen to work with electric muscle stimulation [233], paper electron-

ics [243], fostering data engagement [125] or simply enabling rapid prototyping of electron-

ics [322].

This concept of separating individual steps of the creation process allows for a data-centric

view during development. Steps can be parallelized to increase efficiency and enable out-

sourcing of complex processing to domain experts. Not being endemic to the prototyping

and toolkit domain, the concept of pipelining can be found in other areas as well, such as

visualizations [89], fabrication [276], debugging [294] and media [290].

6.1.3 Physical Computing Toolkits

Past work contributed tools for interaction designers who were not familiar with the em-

ployed sensing technologies. These toolkits [266, 128, 98, 304, 295] enable designers to

realize their ideas by abstracting underlying sensor complexities and reducing the need for

extensive expertise, which is often the most significant barrier to entry in using physiological

computing [75].
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Other toolkits [95, 195, 196, 319, 102] focus on a more developer-centered approach, e.g.

by providing access to low-level hardware using high-level programming languages. A

key aspect that unites all these past efforts is the focus on an iterative, design-centered ap-

proach [112] to create interactive systems.

6.2 EMBody - A Data-Centric Toolkit for EMG-Based
Interface Prototyping and Experimentation

At the end of the previous century, Paul Dourish envisioned how physically and socially

enacted encounters with technology will transform our everyday lives [65]. Later, Dag

Svanæs [300] proposed expanding the concept of embodiment to, inter alia, embedded per-

ception, i.e., extending one’s senses and awareness through technology. Embodied interac-

tion involves movement—a process where users implicitly contract and relax their muscles

to move their bodies in particular patterns. In this section, we investigate the means of easily

allowing HCI researchers to understand our muscles in more detail in order to design for

embodied interaction.

However, building EMG systems from scratch is difficult and requires expertise from nu-

merous domains such as sensing technology, signal processing, machine learning and inter-

action design. Here, off-the-shelf electrical sensors, e.g. shields2 and sensors (MyoWare3,

BioVolt4) for microcontrollers, can only provide the first step of this process. Users need to

take care of data processing, calibration and model training. Hence, a significant amount of

time needs to be invested, adversely affecting work on designing for EMG-Based interfaces.

This constitutes an obstacle for a broader application of EMG-based interaction. Conse-

quently, there is a need for new EMG tools for HCI prototyping. An EMG toolkit for HCI

should offer opportunities for interaction designers, researchers, and engineers to engage

with EMG-based sensing on different levels of technical complexity.

Based on RQ4, we thus formulate the research question RQ4a that specifically addresses

requirements for EMG-related toolkits:

RQ4

How can we support a wide audience in realizing proficiency-aware systems?

RQ4a: What are design requirements of a toolkit for EMG-based prototyping?

2 https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/open-source-hardware

3 http://www.advancertechnologies.com/p/myoware.html

4 https://infusionsystems.com/catalog/product_info.php/products_id/198
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We draw our initial design goals from past toolkit research and take especially physiological

sensing into account (Section 6.1). Based on those past works, we derive four require-

ments for EMG-based prototyping and experimentation. In this work, we iteratively refined,

addressed and evaluated the requirements in two workshops (Section 6.2.7), through devel-

oping sample applications and conducting expert interviews (Section 6.2.8).

The following section describes the final set of requirements for EMG-based prototyping and

experimentation. We detail the corresponding exploration-centered workflow of EMBody

as well its software and hardware components, highlighting possible extension points for

technically skilled users. All resources needed to build, use and modify EMBody are open-

source and are available on github5. Finally, a closer look at the different workflows possible

with EMBody is provided through two exemplary use case scenarios in Section 6.2.6.

6.2.1 Requirements

Throughout the development process of EMBody, we identified four main requirements for

EMG-based prototyping and experimentation. We specifically address the needs of a wider

range of professions, who could potentially use EMG, for our toolkit.

Mobility

Mobility is a key aspect to facilitate prototyping and exploration not only in constrained

lab environment, but to allow for in-the-field exploration. EMBody offers a low-power and

light-weight apparatus which is mobile and can be carried by the user. This property enables

straightforward in-situ exploration of interaction scenarios ensuring high external validity.

The need for highly mobile EMG-based interfaces was exemplified by past work in HCI,

which advocated using EMG for interactions on the go [50].

Data Acquisition

Data Acquisition often produces technical difficulties. Off-the-shelf sensor products rarely

provide an abstraction layer for this process. Most commonly data has to be directly read

via the analog port of a microcontroller. To facilitate rapid prototyping, data acquisition

needs to be reliable and possible from a variety of devices. In the final version of EMBody,

data acquisition is moderated using the UDP protocol over an existing WiFi connection. This

allows experts to use custom hardware to communicate with EMBody’s software application,

by adhering to the protocol (Section 6.2.3). The standard hardware already provides a walk-

through for users to connect to existing WiFi connections for initial setup. As such, EMBody

provides a clear interface between its hardware and software components (see Section 6.2.3

and Section 6.2.4) as well as the user’s application. The software component connects to

the UDP stream of the EMG hardware (or any off-the-shelf electrical potential sensor on the

5 https://github.com/HCUM/embody.

149



market), processes and interprets the EMG data and provides a high-level gesture stream via

UDP for the user’s application.

EMBody’s hardware provides up to six sensing channels without further modifications. Off-

the-shelf products often need to be extended, requiring additional electronics development6.

For EMBody, selecting individual channels is handled by the software application.

Abstraction Layer

To tailor for novices in EMG sensing, the toolkit needs to protect this user group from

unnecessary technical details including signal processing and data interpretation. For this

purpose, EMBody realizes an exploration-centered workflow (Section 6.2.2) that guides the

user through a total of four steps from an initial idea to a final working prototype. Apart

from deciding on the electrode configuration (location and channels), which is supported

through a manual7, the user does not need to have any expertise in signal processing and

data interpretation.

EMBody features a predefined data processing pipeline including a set of filters and algo-

rithms that take care of data interpretation, allowing the user to focus on exploration and

interaction design. By providing abstraction were required but allowing for customization

were needed, EMBody facilitates a design-centered approach [112] to create interactive sys-

tems. If desired, users of EMBody can prototype EMG-based applications in proficiency-

aware systems without the need to ever know anything about EMG but that it measures

muscle activity.

Modular Structure

Experts want to have a fine level of control over the data processing pipeline. Consequently,

EMBody offers gradual levels of fidelity through its modular structure. Every part of the

workflow (Section 6.2.2) can be customized and adjusted to the user’s needs. For an elab-

orate experiment, researchers might want to adjust the data pipeline by interchanging the

classification algorithm or calculating different features. The accompanying software of-

fers convenient extension points for this purpose, exposing various stages throughout the

processing pipeline.

EMBody employs this concept and defines an exploration-centered workflow for novice

and amateur users when designing for EMG-based interaction. Its modular data processing

pipeline allows the expert user to customize EMBody to a high degree while maintaining a

low entry threshold for novices.

6 E.g. stacking multiple shields for the Olimex board or connecting multiple MyoWare sensors.
7 Available at https://github.com/HCUM/embody/tree/master/manual.
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Connect electrodes
and select channels

Define gestures
and calibrate

Train model and
start live classifier

Connect to
UDP stream

Figure 6.1: Workflow when designing with EMBody.

Figure 6.2: EMBody works with a variety of electrodes. Here, they are affixed with straps to

the forearm. First, the ground electrode is placed (left) on a location with little muscle fiber, e.g.

close to the elbow. Afterwards, the sensing electrodes are placed on the muscle belly (right).

6.2.2 An Exploration-Centered Workflow

EMBody uses an exploration-centered workflow (Figure 6.1) guiding users from a first idea

to a final prototype. This allows users to readily start exploring suitable interaction scenarios

without the need for further configuration. The data-centric pipeline provides different views

of the same EMG data, such as raw and filtered data, as well as generated features and final

predictions. The following section introduces this workflow in detail while highlighting

extension points for expert users.

Connect Electrodes and Select Channels

The standard firmware on EMBody’s hardware offers a captive portal when connecting to

its Wi-Fi network. The portal allows users to configure their preferred connection settings.

Once configured, the prototype readily sends recorded data via the network. The system

can be powered by any portable power source, such as a small powerbank, allowing con-

tinuous operation for multiple days.8 Data is transmitted wirelessly without the need for

additional cables apart from the electrode connections. Setting up the prototype and placing

electrodes (Figure 6.2) is described in the enclosed manual7.

8 See Section 6.2.3 for performance details.
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Figure 6.3: Checking the EMG signal in the live view using different views of the EMG data.

Filtered signal on the left; generated RMS features on the right. See Section 6.2.4 for algorithm

details.

Our toolkit allows recording up to six channels with a standard sampling rate of 250 Hz
and provides sensing and recognition data via a UDP stream broadcast over the network.

This enables users to track several muscles (groups) at once and recognize complex motor

tasks. For technically skilled users, the firmware can be adjusted to their needs, offering

a much higher sampling rate. Network capabilities are the bounding factor. Additionally,

the software implements sanity checks on the received data, such as estimating sampling

rate and tracking package loss during critical operations and informs the user about possible

ways to solve these issues.

The EMBody live view (Figure 6.3) allows simultaneous tracking of up to six channels and

helps the user identify faulty connections. This also allows refining electrode placement

when signal quality is low. The manual provides a set of guidelines on how to place elec-

trodes to minimize noise. This first step helps users familiarize themselves with the EMG

signal and discover how it reacts to their movements.

Define Gestures and Calibrate

Once electrode placement is completed, users provide a set of movements that they wish to

recognize. EMBody will guide the user through this calibration process by instructing the

user to perform the respective movements while collecting sample data for each movement

(Figure 6.4). Additionally, EMBody verifies that the sampling rate is sufficient for further

filtering steps and monitors potential package loss. If irregularities are detected, the user is

advised to repeat the calibration, check for connection issues or redo the electrode setup.

During calibration, EMBody synchronizes the specified movements (the calibration la-

bels) and incoming EMG data samples. EMBody collects more data samples for the

NULL_CLASS, allowing the user to present motions that should not be recognized. This

increases the robustness of the classifier. After completion, the recorded data is filtered and

saved. An updated overview over all collected calibration data (duration per label) is dis-

played. For post-hoc analysis, EMBody offers an export function.
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Figure 6.4: EMBody calibrating for a gesture labeled LEFT. Corresponding gesture by the user

(left arm) on the right.

Train Model and Start Live Classifier

After completing a full calibration, the user is able to train a classification model using the

provided discriminative method using a support vector machine (SVM). Internally, EMBody

calculates Root-mean-square-based (RMS) features after filtering the data (cf. Chapter 4).

Depending on the selected amount of channels, pair-wise ratios between channels are cal-

culated. This approach provides an indication of relative locality for the classifier. After

generating the appropriate features, the software trains an SVM and evaluates the model

using 10-fold cross validation on the calibration data.

While the significance of this metric is limited to the recorded calibration data, it supports

the user in assessing whether the calibration movements are sufficiently distinct with respect

to their recorded muscular activity. Low values9 indicate that the chosen gestures are too

similar. Thus, the user is advised to modify their gestures (backtrack in the workflow) or

to provide additional sensing channels which may help distinguish the gestures (restart with

electrode setup). This way, impractical electrode configurations and gesture sets can be

identified quickly.

The standard feature generation and classification method of EMBody works well for short

explicit EMG-based input. To recognize longer movements10, other machine learning ap-

proaches, e.g. regression or correlation-based methods might be better suited. The modular

structure of EMBody allows users to substitute and extend the classification module, pro-

viding their own training and prediction routines. If the user decides to use the method as

implemented, no knowledge about classifying EMG data is needed to use EMBody.

After starting live classification, EMBody switches to the live view (Figure 6.5) and contin-

uously processes the incoming EMG data, generates respective features and provides a new

prediction11 every 80ms.

9 Values lower than 80% might already be impractical for some applications.
10 More than several seconds.
11 Based on the provided gesture set.
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UDP stream

Figure 6.5: Live view with live classification. Note that the classification is also streamed via

UDP.

In the context of proficiency-aware systems, this abstraction allows user to experiment with

EMG as a proxy for proficiency. For example, using the standard workflow to first calibrate

guitar chords (cf. Section 4.2) and then use the resulting predictions in a tutoring systems or

using correlation-based methods for sustained movements (cf. Section 4.3).

Connect to UDP Stream

Live classification is displayed within the software and additionally provided as a network

stream (UDP or LSL [170]). Whenever a new prediction is available, EMBody broadcasts

the appropriate gesture label onto the network, which can then be accessed by any other

application in the network.

6.2.3 Hardware

Our toolkit includes a versatile hardware system, capable of measuring up to six EMG sig-

nals in parallel and delivering them wirelessly over WiFi (Figure 6.6). The device senses the

muscular activity primarily using dry electrodes, but is capable of working with other elec-

trode types. Compatible electrodes must facilitate a bipolar measurement technique: apart

from one reference electrode, two sensing electrodes are used to minimize the impact of

noise artifacts. These electrical signals are individually processed by an analog instrumental

amplifier and quantified by an Analog-Digital Converter (ADC). Finally, a microcontroller

packages the data into UDP packets and transmits them using a WiFi antenna.

We based our design on existing circuits, aiming for compactness, wearability, and flexibil-

ity, while ensuring low noise levels and adequate data output. The instrumental amplifiers

are an adaptation of an existing design12, based on the INA232113, a low-power and low-cost

12https://github.com/BigCorvus/2-Channel-Biopotential-Amp

13http://www.ti.com/product/INA2321
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Figure 6.6: Diagram of the EMG system: The system senses muscular activity with electrodes.

These signals are amplified and sent in UDP packets over WiFi.

CMOS amplifier. We used a board based on the ESP32 microcontroller, which is a low-cost

and low-power system on a chip with integrated WiFi. Given the pin layout and the usage of

WiFi, the ESP32 offers a total of six remaining ADC channels with a 12 bit resolution each,

thus converting the output signals of the instrumental amplifiers to integer values from zero

to 4095. Power consumption for the ESP32 with active radio transmission is approximately

240mA14, given maximum signal strength. Using a 5200mAh powerbank yields up to 22h
of continuous operation (the power consumption of the amplifier is negligible).

During operation, the microcontroller polls all six channels and packs the measurements into

frames of six values including a timestamp and broadcasts them to the connected network15.

For EMG purposes, a sampling rate of 250 Hz is sufficient in most cases16. We provide all

firmware files on github17, allowing users to customize it to their needs.

To ensure portability and versatility, the system is mounted in a 3D-printed case with a

wallet-like form factor and powered via the ESP32’s USB port. Both powering the device

and connecting it to a computer can be done with a micro-USB cable. Further, the inputs

of the instrumental amplifiers are connected to 3.5mm stereo audio jacks. This simplifies

the management of the electrode cables and allows to adapt their number to specific require-

ments. Figure 6.7 depicts the hardware inside the case.

The complete system can be built from our custom circuit design schematics and layouts

which are available via the github repository. Additionally, we provide assembly instruc-

tions, including a parts list. The available firmware and 3D design files complement the

hardware resources.

14https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

15 Communication protocol: "timestamp;CH_x;CH_x;..."
16 Proposed filters by related work [261] make higher sampling rates unnecessary when using the standard

pipeline of EMBody (see Section 6.2.4 for details).
17https://github.com/HCUM/embody
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Figure 6.7: EMBody’s hardware prototype showing the six audio jacks on the front to connect

electrodes and the microcontroller in the middle. The three amplifiers (each supporting two

channels) are placed underneath the microcontroller. A lid (removed in this picture) is also

provided.

6.2.4 Software

The EMBody software is a PC application developed in Python on Windows. It does not

use native libraries, allowing it to be run on macOS and Linux as well. It follows a modular

structure governed by EMBody’s workflow. While it has been developed to be used with

EMBody’s hardware prototype in mind, the software can be used with any kind of sensor

that uses the communication protocol15. New research probes such as PhysioSkin [217] and

PolySense [122] are promising alternatives that are potentially compatible with our system.

The complete source code is open-source and can be readily extended, both in terms of

additional GUI elements (making use of EMBody’s stream handling) and logic components

(extending the data processing pipeline). The following section describes key components

and highlights possibilities for extensions.

Data Processing Pipeline

Data filtering, processing and feature generation is encapsulated in EMBody’s

ClassificationManager. The following methods are of particular interest. Figure 6.8

shows the call hierarchy and information flow during the calibration and live classification

phases.

onRawCalibrationDataAvailable

After EMBody finishes a calibration run, it calls the method

onRawCalibrationDataAvailable and passes all recorded samples and associated

labels (see the source code for details). This method implements preprocessing steps (using

preprocessData) and populates the internal data structure.
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ClassificationManager

calibrationData
onRawCalibrationDataAvailable

1. filters recorded EMG data

2. populates internal data structure

classifier

trainClassifierModel

1. generates RMS features

2. fits SVM classifier model

live EMG data

raw calibration data

makePrediction

1. filters live EMG data

2. generates RMS features for live data

3. predicts movements based on classifier

preprocessData

applies filter to recorded data

Calibration

Live
Classification

Figure 6.8: Classification pipeline within ClassificationManager. Note the different flows

for the calibration and live classification phases.

preprocessData

Closely following related work [206, 261], this method applies a bandpass filter between

2 Hz and 100 Hz, attenuating long-term drifts, the DC offset and high-frequency noise as well

as a bandstop filter between 49 Hz and 51 Hz in order to remove power line interference. The

method returns a dataframe linking data samples to their respective class, i.e. the calibration

labels. Additionally, data is grouped per calibration run18.

trainClassifierModel

Implementing standard EMG features (cf. Chapter 4) for HCI applications, this method pro-

vides epoched RMS features and their pair-wise ratios between channels. These values can

be interpreted as a proxy for the intensity of muscle activity as the amplitude of the EMG

signal increases when the muscular activity increases [206]. RMS is calculated using a con-

volutional approach and defined as

xRMS =

√
1

n
(x2

1
+ x2

2
+ ...+ x2

n).

One important parameter for calculating RMS-based features is the window size n. It repre-

sents a trade-off between classification accuracy and latency, i.e. the time between acquiring

EMG data and its prediction. Small windows allow for little latency, but are problematic

when recognizing longer-lasting movements. Preliminary experiments confirmed that set-

ting the window size to n = 20 yielded a good trade-off. Given a standard sampling rate of

18 The NULL_CASS may be recorded multiple times during calibration. Grouping ensures that those samples

are processed separately.
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250 Hz, this corresponds to a classification latency of 80ms. These are the standard values

in EMBody which can be modified when required.

EMBody implements a support vector classification with a radial basis function kernel19 us-

ing scikit-learn 20. Features are scaled to unit variance and zero mean before fitting a model.

A subsequent 10-fold cross validation provides a first indication of the model accuracy.

Overwriting the trainClassifierModel method allows the user to specify their own fea-

ture generation pipeline (cf. [236] for an overview). They can provide custom classification

methods. When using sckit-learn, the user may still make use of the live prediction meth-

ods. Implementing other libraries, e.g. a correlation analysis, requires the user to also adapt

makePrediction.

makePrediction

During live classification, the previously trained model is used to predict calibration labels

for incoming data. Whenever a new prediction is requested21, this method performs the pre-

processing and feature generation steps and provides the respective predictions. A voting

(mode-based) ensures a robust prediction, hence yielding one prediction per call. Alterna-

tively, a list of predictions is also provided. Users may choose to work on the raw prediction

data directly, or accumulate incoming data, e.g. for activity recognition, by overwriting

this method. Listing 6.1 provides an excerpt highlighting key steps and possible extensions

points.

def makePrediction(self, data):
...
#applying filtering steps (Data is in df), change here for individual filters
apply_bandpass_filter(df, 2.0, self.currentSamplingRate / 2.0 - 1.0, self.currentSamplingRate)
apply_bandstop_filter(df, 49.0, 51.0, self.currentSamplingRate)

#constructing data matrix
X = pd.DataFrame()
for column in df.columns:
#add custom features here
X[’rms’ + str(column)] = rms_convolution(df[column], self.windowSize)

#automatically add pairwise ratios of all features
addPairwiseRatios(X)

#predict based on generated features in X using pre-trained classifier clf
try:
X = self.scaler.transform(X[X.columns])
prediction = self.clf.predict(X)

#EMBody uses voted predictions by default (over 80ms of data)
#return prediction to get a result for each sample within data
voted_prediction = mode(prediction)[0][0]
self.currentPrediction = str(voted_prediction)
return self.currentPrediction , prediction

except ValueError:
self.currentPrediction = None
return None, []

Listing 6.1: Excerpt of makePrediction highlighting key steps.

19C = 1.0, γ = scale
20https://scikit-learn.org/stable/index.html

21 By default, every window size (80ms).
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Stream Handling

In EMBody, the class StreamHandler handles the incoming UDP stream from the EMG

device as well as the outgoing stream of predictions. Together with the GUI elements,

this class implements an observer pattern to inform and update the GUI elements. To

that end, StreamHandler implements StreamEventCreator, allowing it to trigger stream

events when required to inform appropriate views. Users who extend this class, or

StreamEventCreator, are encouraged to deliver GUI updates by notifying their observers.

GUI Elements

Similarly, existing GUI elements receive updates by listening to incoming stream events,

by implementing StreamEventListener. EMBody provides the following functional

views 22:

• Setup: Connecting to the prototype, checking sampling rate and selecting channels.

• Calibration: Specifying (save/load) calibration labels, running calibrations and train-

ing classifier models; exporting complete calibration data (filtered).

• Live view: Live feed of incoming EMG data grouped by channel, additional live

predictions if classifier is available.

A possible extension is including a new view, showing a live auto-correlation of the signal

for different lag sizes. For this purpose, one would want to connect to the live feed of EMG

data (Live view) and subclass StreamHandler accordingly to provide custom stream events,

after processing the incoming data. A new view may listen for events and plot data when

prompted. A view-less listener may simply save processed data to a file.

6.2.5 Technical Limitations

EMBodyis custom-built and tailored for prototyping purposes. As such, it has not been de-

signed as a precise measuring unit, but to support EMG-based interaction in prototypes. The

toolkit is a trade-off between signal accuracy and accessibility for non-expert practitioners.

Consequently, we note some important limitations of EMBody.

First, EMBody is not an exact measurement device. Due to its open design, it is especially

vulnerable to artifacts, such as cable movements or electromagnetic noise. While the imple-

mented filtering steps mitigate these effects, proper setup routines are still vital. Similarly,

since EMBody does not provide adjustable gain settings, it represents a trade-off between

being able to recognize small, fine-grained motions and extensive movements. The size of

22 Please consult the manual for details at https://github.com/HCUM/embody/tree/master/manual.
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the electrodes particularly influences the resulting signal. Hence, users are encouraged to

choose electrodes according to the desired usage scenario.

Second, our toolkit works best for isometric muscle activation, i.e. continuous muscle ac-

tivity without visible movement [206]. Isotonic muscle contraction can be problematic, e.g.,

recognizing movements over a period of multiple seconds. Here, correlation based on pre-

viously calibrated templates might be more suitable (cf. Section 4.3). The modular structure

of the accompanying software allows for adapting it for that purpose.

Third, for more complex movements, one might require more channels than EMBody can

accommodate. Even using up to six channels requires extensive cable management. As

EMBody was designed to allow for using all muscles, we do not include cable arrangements

in the system. Custom cable solutions can help to alleviate this issue by combining multiple

leads or even go one step further, such as PhysioSkin [217] and PolySense [122].

Finally, despite being a mobile prototype, EMBody still requires an active Wi-Fi connection

for broadcasting. Subsequently, a mobile application on a smartphone providing an access

point and data processing capabilities is needed for true mobility.

6.2.6 Target Audience

EMBody is tailored for a wider audience, supporting interaction designers, researchers and

engineers. Consequently, EMBody offers different levels of depth and complexity in sig-

nal processing and classification. In the following, we outline two typical use case scenar-

ios to showcase the diverse needs of EMBody’s users. The first scenario describes how a

VR interaction designer uses EMBody to realize dynamic interaction in a sword-fighting

game. The latter scenario deals with a researcher collecting electromyograms throughout

an experiment for prosthesis control. We showcase how both scenarios can be integrated in

proficiency-aware systems.

Scenario 1: Using EMG Input in VR Prototypes

An interface designer wants to extend their VR application using the standard workflow (Fig-

ure 6.1). They want to sense how strongly the user is gripping the VR controller. The de-

signer decides to include two different grip modes, normal and hard, in their sword fighting

game. Thus, grip strength has a direct impact on the sword’s momentum, influencing the

player’s ability to attack and parry. This scenario is an example for EMBody’s potential user

group composed of interaction designers and application developers. Their requirements in-

clude easy access to interpreted EMG data, while allowing for fast iterations among possible

gestures. The underlying processing and interpretation of the EMG data is secondary and

not of interest to this user group.

The designer first needs to find a suitable electrode location. A pragmatic approach to this

question is to observe one’s own muscle movements and place a pair of electrodes on the

involved muscles. A tight grip mostly activates muscles in the forearm, hence the designer
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decides to place electrodes on the underside of the respective forearm (Figure 6.2). After-

wards, they complete the setup by connecting the electrodes to the prototype as depicted in

the manual23. The designer specifies the two recording channels (one for each forearm) and

checks the signal via the live view. They observe whether their movements trigger changes

in the displayed signal as illustrated in Figure 6.3.

In his application, the designer is only interested in detecting a tight grip with either hand.

Thus, they provide the labels: LEFT and RIGHT and create an empty calibration. EMBody

automatically adds a NULL_CLASS, which represents any other motion. The designer starts

the calibration process and provides a tight hand grip when prompted (Figure 6.4), making

sure to relax and perform other relevant sword swinging motions in between.

EMBody reports an average accuracy of 95.6%. If need be, EMBody provides them with the

means to reiterate the gesture calibration using a different electrode configuration or gesture

labeling. Here, the designer is satisfied with the result and starts the live classification.

EMBody now switches to the live view (Figure 6.5) and continuously processes the incoming

EMG data, predicting if the user tightens his grip for either hand. The designer incorporates

the live classification into their VR application by accessing the UDP network stream in

Unity. They affix the prototype on the belt of the user and put the powerbank in their trouser

pocket. As EMBody continues to relay live classifications of grip force, the designer can

focus on tweaking parameters relevant for the game, e.g., how much stronger a strike should

be when the sword is tightly gripped.

In a proficiency-aware scenario, the calibrated data could be used to detect a proper sword

strike. EMBody offer numerous opportunities to do so: (1) by intentionally calibrating for

good and bad strokes, allowing the toolkit to distinguish between them; (2) by using a clas-

sifier that outputs confidence in its prediction, only accepting high confidence strokes; (3)

by providing an appropriate gold standard (the perfect stroke) for a correlation-based ap-

proach (cf. Section 4.3). While (1) requires no modification, (2) includes minor changes

to trainClassifierModel and makePrediction. To realize (3), one must additionally

modify calibration (onRawCalibrationDataAvailable).

Scenario 2: Designing Experiments for EMG-based Input

A researcher familiar with Electromyography recording wants to use EMBody to find a

suitable set of classification features to recognize ten different hand movements when using

up to six channels connected to the forearm. Contrary to the designer scenario, this user

group includes signal processing experts and researchers as well as engineers and machine

learning developers. They require close control over the data processing pipeline allowing

them to customize vital steps if need be. Rapid prototyping of different designs is secondary.

This user group focuses on signal accuracy and body physiology, requiring detailed views of

the recorded data. This use case is strongly inspired by the conducted research in Chapter 4

and directly relates to EMG-based proficiency-aware systems.

23 Available at https://github.com/HCUM/embody/tree/master/manual.
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Since flexion and abduction of the wrist as well as controlling finger movements involved

various muscles in the forearm, the researcher decides to place the electrodes in two rings

around the forearm (one closer to the elbow, one near the wrist) to capture most of the

involved muscles. This also helps them to generalize their approach more easily, as exact

knowledge of the forearm anatomy is thus not required to place electrodes. Contrary to

Scenario 1, the researcher makes use of the unipolar measurement technique24 as shown in

Figure 6.9. They use a custom hardware device to collect the data and send a UDP stream,

adhering to EMBody’s protocol, to deliver the data.

Figure 6.9: Unipolar measurement with six sensing electrodes (white, two on backside) and one

reference electrode (blue). Ground electrode (black) serves for noise reduction only.

The researcher connects their UDP stream to EMBody and selects all recording channels.

In the live view (Figure 6.3), they observe whether their movements trigger changes in the

displayed signal and initially assess the viability of the current electrode configuration by

comparing different channels and respective signals. The researcher notes possible improve-

ments regarding the configuration but decides to do an initial recording. They define the ten

gestures and start a complete calibration process. Using EMBody’s save functionality, the

researcher exports a dataset with annotated ground truth from the calibration. They repeat

the process with two different electrode configurations and fine tune their classification al-

gorithm and extracted features in their own work environment. Here, EMBody provides this

user group with easy access to annotated data streams for research purposes.

After establishing a sufficient model, the researcher incorporates their classification algo-

rithm into EMBody by extending its ClassificationManager. Henceforth, EMBody will use

the tailored algorithm to process incoming data, taking care of signal acquisition and routing.

For the actual experiment, the researcher attaches the electrodes in the optimal configura-

tion for every participant and executes the calibration procedure. The researcher connects to

EMBody live classification via UDP and relays the current prediction to the prosthesis. They

record accuracy metrics in a manual task and questionnaire responses for later analysis.

24 one GND/REF electrode each, several measurement electrodes.
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6.2.7 Formative Evaluation

Organizing two workshops which featured rapid prototyping of EMG interfaces was a key

element in designing and implementing EMBody. This way we assured that the final version

of our system reflected the needs of the HCI community. In this section, we illustrate how

we established requirements and challenges for EMBody during the workshops. We used

formative evaluation to understand the qualities necessary for EMBody to enable exploring

EMG-based systems.

Workshops: Initial Feedback and Refining Requirements

We organized two experimental workshops titled "Using Physiological Sensing for Em-

bodied Interaction" for university students in HCI. Thirty-one and 36 students, including

bachelor, master, and Ph.D. students participated in the workshops. Figure 6.10 shows one

workshop location during the hands-on sessions. Participants learned about physiological

sensing (mainly EMG) and created their own EMG-controlled devices in hands-on tutorials.

The workshops provided an opportunity to verify whether an initial version of the toolkit

offered easy entry for EMG-based interface design. It included a hardware prototype using

the Bluetooth protocol to transmit data and a set of processing script to receive the data. Af-

ter being presented with the system and its functionality, participants were instructed to first

define their own ideas (e.g., an EMG-controlled musical instrument) and formulate a con-

cept for their prototype. Over the course of the two-day workshops, participants successfully

developed fully functional prototypes, which they evaluated in small user studies. Finally,

each student team presented their work in front of the students and teachers.

The goal of the workshops was to evaluate the suitability of the toolkit for rapid prototyping

and identify possible design flaws. Every participant group was able to successfully create

a fully functional prototype system that employed EMG as an input modality. Examples25

included:

• SmartSpine: helping the user to correctly lift heavy loads by placing electrodes on the

legs and back.

• Flappy Bird: controlling the game Flappy Bird via flapping one’s arms (electrodes on

the arms).

• Muscle PIN: biometric authentication via muscle flex patterns (electrodes on the fore-

arm).

• Dance Avatar: a puppet mimicking the user’s every move; electrodes on arms and

legs.

• Lunar Lander: a collaborative game where players control a lunar lander probe. Two

players steer the probe via electrodes on the forearm.

25 Selected examples are shown in EMBody’s video at https://github.com/HCUM/embody.
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Figure 6.10: Hands-on session during one of the workshops.

• Canoeing: a four-player game where teams of two compete in a canoe competition.

Each team needs to maintain a consistent paddling motion (electrodes on the forearm.)

The breath of ideas generated in the workshops as well as the fact that students at varying

levels of HCI and technical competence were able to rapidly build functional systems show

that the initial toolkit effectively supported rapid prototyping. Most importantly, the work-

shops enabled us to verify if the toolkit fulfilled the requirements and what parts of EMBody

needed improvement. The prototypes were highly mobile—workshop participants built pro-

totypes using different muscles and in different location. Workshop attendees were also able

to effectively perform data acquisition as they all successfully connected muscle sensing

to application input. All the members of the diverse audience in the workshops were ac-

tively involved in building the prototype, thus showing that the toolkit offered an abstraction
level that was effectively used by the participants. Finally, participants with expert signal

processing knowledge were able to add advanced computation to their prototypes by taking

advantage of the toolkit’s modularity.

The workshops also enabled us to identify key areas for improvement for EMBody. First,

some participants experienced issues with Bluetooth connectivity. To alleviate that issue, we

redesigned the toolkit to rely solely on the WiFi connection. Second, we observed that the

workshop participants spent a significant part of their prototyping time designing algorithms

for recognizing movements. This was especially true for those who did not have exten-

sive signal processing experience. Consequently, we decided that EMBody should include

pre-defined gesture detection tools that could be customized by expert user. The updated
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software package includes a default classifier that can be used with no knowledge of EMG

gesture recognition as outlined in Section 6.2.4.

Sample Applications

The next step in our process was to develop systems that would enable experimental studies.

To demonstrate EMBody’s versatility and verify the correctness of the workflow, we built

several interactive systems which used EMG input for different purposes.

Choosing the Right Input Control for EMG

To better understand a user’s perception of their own muscle control, we endeavored to in-

vestigate how users perceive different input control mappings in a steering law experiment.

The goal was to keep a moving ball as close as possible to a predefined trajectory (Fig-

ure 6.11). Two EMG channels were used, each controlling one horizontal direction, while

the ball moved upwards on a screen. Electrodes were placed on the respective forearm. The

study apparatus is depicted in Figure 6.11.

Figure 6.11: Study stimulus (left) and electrode placement (right) for EMG input controls.

Here, EMBody allowed us to test a series of electrode locations and suitable muscle groups

as well as various input mapping functions in a rapid fashion for a final study. We conducted

a within-subject experiment using three different modalities to control the ball: a joystick

as baseline and two EMG-based controls (position and rate control). While position control

directly changed the ball’s position based on the recorded power of muscle activation (con-

trolling its velocity), rate control influenced the acceleration in either direction. Different

ball speeds were introduced as an additional independent variable.

We measured the average deviation from the given line as well as participants’ responses to

our questionnaire about ease of use, their perceived fatigue and their feeling of control26.

Figure 6.12 illustrates the questionnaire responses w.r.t. the modality. While the Joy-

stick clearly outperformed the EMG-based controls in terms of control and fatigue (lower

26 All on a visual-analog scale from 0 to 100.
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Figure 6.13: Average Deviation (L2 norm) in pixels given different speeds and modalities.

is better), EMG-based inputs were preferred in terms of ease of use. In a prelimi-

nary evaluation (one-way ANOVA and Tukey posthoc comparisons) of ten participants

(8m/2 f ), we found that the feeling of control via the joystick was significantly higher

(F(2,27) = 7.7, p < 0.01) than for both EMG-based controls. Additionally, rate control was

significantly (F(2,27) = 3.4, p < 0.05) more fatiguing than the joystick.

The superior control of the joystick baseline can be seen in Figure 6.13 (significantly differ-

ent to position and rate control). We observed a significant linear effect27 of ball speed for

all modalities. There was no interaction effect between speed and modality. Additionally,

position control did not significantly outperform rate control for EMG-based input.

While EMG-based input was lacking in control for steering tasks, there was a tendency for

improved ease of use. In line with this finding, we believe that EMG is better suited as a

27 Linear mixed model analysis. Fixed: modality, speed. Random: trialnumber, participant.
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secondary input modality, e.g. for hands-free interaction. Here, EMBody supports designers

in prototyping the right placement for electrodes while ensuring adequate control.

EMG as Secondary Modality for Manual Tasks

Similar to the previous work, we also investigated the suitability of EMG as a secondary

modality for manual tasks. In tasks where both hands are occupied, interrupting the task to

perform additional actions often induces a focus shift that potentially breaks the workflow.

Here, we evaluated if EMG-based gestures can provide a seamless way of triggering addi-

tional actions, similar to our work with EMPiano (cf. Section 5.3), but now with a low-cost

prototype. In a mimicked soldering task (see Figure 6.14), where users could additionally

control the third hand, we compared EMG with direct manual interaction and a pedal-based

system.

Figure 6.14: Task instructions as seen by participants. Final target position was given in rotation

angles (left) and visualized as a picture (right). The platform was actuated through a robot for

the EMG- and pedal-based condition.

We found that EMG allowed for a flexible way of defining gestures to move the third hand,

while the pedal-based systems induced mapping errors of rotation directions for some users.

In this work, EMBody allowed us to calibrate and classify the individual user gestures during

the experiment, streaming predictions directly to our robot platform that actuated the third

hand.

Taking a Look Inside

Besides explicit interaction, EMBody allows to explore EMG for implicit interaction. Here,

we evaluated to what degree insights into one’s own muscle activation can be beneficial in

learning motor tasks. The full project description and implications of FitBack are detailed in

Section 4.3 and Section 5.1, respectively. This section will focus on how EMBody aided in

the execution of the study.
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We used EMBody to quickly connect recognized muscle motions to alternative feedback

modalities via the UDP stream. This allowed us to focus on possible designs for the feed-

back. The detection of correct exercise form was detected using an adapted version of

EMBody’s machine learning algorithm. Here, EMBody allowed us to evaluate several feed-

back options for a specific task, while relying on the same mobile signal acquisition system.

Changing feedback was easily possible and only depended on how we wanted to present the

muscular activity.

6.2.8 Summative Evaluation

During the development process, we iteratively refined EMBody to address upcoming chal-

lenges. In line with Ledo et al. [179] who suggested multiple evaluation strategies and goals

for HCI toolkits, we first evaluated an instance of the usage of EMBody in workshops, as

described above. In order to establish the capabilities of the final version of the prototype,

we further evaluated the toolkit through a series of expert interviews.

Participants

We recruited five HCI experts who participated in at least one of our workshops. All par-

ticipants were male and aged x̄ = 27.6y (s = 3.6y). No remuneration was provided for the

interview. Table 6.1 details the profiles of the participants. We chose interviewees so that

they would be member of the primary target audience of the toolkit—HCI researchers with

varying level of technical knowledge and different research foci. The participants had vary-

ing levels of experience with prototyping. Apart from one, all interviewees were prototyping

at least once a month involving microcontrollers, AR/VR applications and small electronics

projects.

ID Age Gender Profession Areas of expertise Experience Frequency

P1 31 male PhD student UX design, SW dev. 7 Once a month

P2 29 male Postdoc HCI, sports 7 Twice a week

P3 30 male PhD student HCI, AR/VR 6 Once a month

P4 22 male Student HCI, participatory design 5 Once a week

P5 26 male PhD student Machine learning, NLP 3 Once a year

Table 6.1: Participant profiles in the interviews, including their areas of expertise as well as

prototyping experience (7-item Likert scale) and frequency.

Interview script

At the start of the interview, we asked the participants about their experience in the work-

shops, specifically what challenges they faces while realizing their project. Afterwards,
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participants watched a video of the final version of EMBody. We then inquired about the

participants’ initial perceptions of EMBody and its exploration-centered workflow. Next,

we asked about the challenges and opportunities they saw in using the toolkit. Finally, we

discussed possible applications of EMBody in the participants’ research work.

Analysis

All five interviews were recorded (total duration 1 : 42h) and transcribed verbatim. We

wanted to conduct a focused analysis of a moderate volume of qualitative data. Conse-

quently, we used the pragmatic approach to thematic analysis [24]. We established an initial

coding tree by open-coding a representative 20% of the material by two researchers and

aligning the codes. The rest of the interviews were then split between the coders and an-

alyzed by a single researcher. In a final session, we refined codes and identified recurring

themes in the data.

Results

The final discussion resulted in the following high-level themes: Gradual Levels of Fi-

delity, Target Audiences, Transparency and Challenges in Working with EMG. We fur-

ther detail the contents of each theme in the following.

Gradual Levels of Fidelity

EMBody aims to support a wide range of user groups, from novices to experts. In our

interviews, participants appreciated the simplicity of starting to work with EMG-based in-

teraction as the toolkit allowed them to focus on designing gesture and movements without

the need to bother with signal interpretation:

I could simply just start with coding my interaction [...] as a designer don’t have to
deal with the signal and all.(P2)

This new approach would also enable a bit more non-technical people who actually
don’t care about a signal, just about the application to get into EMGs sensing. For
example, people from non-computational fields that just want to try out something,
I think, for them it’s really more accessible then. (P5)

It also became evident that experts benefited from the modular data processing pipeline.

Moreover, they would appreciate an in-depth classification report already in EMBody’s base

version:

I think it’s important to be able to get the raw data, maybe someone wants to do some
work on machine-learning algorithm on it and do something else with this data. I
think it’s important to have most or all data and have this abstraction. Different
people can use it differently, depending on the flow. (P3)
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I want it to be as accurate as possible, so I would want to have access to everything
to be able to customize everything. (P4)

Target Audiences

Participants remarked on the suitability of EMBody for different audiences, such as people

with no experience in computer science. The exploration-centered workflow allowed them

to quickly grasp the idea of EMG-based interaction and supported an easy entry:

What would they have to do? Let’s say the box itself, the board itself would be nicely
presented in a nice cover. You just have to plug it in. Easy, that’s something you do
all the time. Connect it to wifi, so that probably you just immediately opens the wifi
and you can connect it from the computer. That’s something you always do, so that
should be possible I guess. Then afterwards, installing the application. That’s easy
to do with the installer. You don’t have to compile it. Then that would be obviously
very feasible as well (P1)

However, participants noted that the final version of EMBody focused more on curious audi-

ence and researchers who wanted to conduct EMG experiments. Here, participants discussed

the possibility of introducing different user modes within the application:

I think this is one of the disadvantages and one of the issues. It’s not optimized for
the public (P2)

What I can imagine is that you have these abstractions layers for expert users that
really want to see the signal. They’re really interested in how this classification
actually works, and you have something, let’s say, novice mode where you don’t see
that. (P2)

Transparency

Presenting users with the live signal and the respective gesture predictions allowed users to

"get a feel of what the signals looks like" (P4). This greatly increased the transparency of

the toolkit and its data processing pipeline:

When you’re doing live prediction, it’s nice to have the signal in front of you and the
prediction just next to it, so you know if you’ve done something wrong. (P4)

I think you get a lot of transparency towards the user, whoever that may be. Could
be a regular user, could be a researcher. You see how the signal’s actually working,
you see the signal, and so on (P2)

Furthermore, EMBody’s workflow was immediately recognized, closely following related

procedures for prototyping and experimenting with physiological signals:
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I think we used the very same procedure. We first set up the prototype, so we con-
nected electrodes, then we– well, first, the gesture we wanted to use were defined
beforehand but we still had to calibrate. After the calibration, we trained the model
and we started live classification to use a prototype. It’s the same workflow. (P4)

Interviewees appreciated that all of EMBody’s source code and documentation is open-

source, ensuring transparency of the workflow and algorithms:

Yes. I think that’s very convenient to have. Also, it’s open-source. They can want to
extend it I guess. (P1)

(Talking about Myo armband) It was not open source. This is maybe a key difference
between the commercial product and your project. They did several gestures, but
their accuracy was not very well. It was not really clear how they classified it and
so the product failed and the company is no more (P2)

Challenges in Working with EMG

Participants further commented on the challenges they experienced with EMG as a modality.

First, electrode location was critical in achieving consistent results and not always straight-

forward:

There it was like not really clear, "Where do I have to put these two electrodes and
where do I have to put the ground electrodes? What does this actually mean? Does
this has an influence where I put the ground electrode?" (P2)

Second, the lack of generalizability over multiple persons that is inherent in EMG was diffi-

cult to address when prototyping with multiple users:

Overall, what worked very well is that when you put it approximately at the same
place, it worked very well again, but only if you put it on the same person. (P2)

Having access to six channels also meant dealing with a lot of cables for the electrodes.

Interviewees remarked that this could place a heavy burden on users.

I don’t know if you used all of these six channels, but it could be quite heavy on the
participant. (P4)

6.2.9 Discussion

From an initial set of requirements, we further refined and addressed challenges for EMG-

based prototyping and experimentation resulting in the final version of EMBody, contribut-

ing to RQ4a. Through various stages of evaluations, we confirmed that EMBody meets

the requirements. However, our work also highlights ongoing challenging in EMG-based

interaction.
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Mobility and Data Acquisition

EMBody’s goal is to provide a mobile platform, allowing for easy data acquisition of muscle

activity via electromyograms. Throughout the workshops, we identified that the Bluetooth

protocol used in an early version was unreliable and intractable, especially when working

in groups and with multiple devices. Hence, the final version of EMBody relies on a WiFi

connection using the UDP protocol. This constitutes a compromise between reliability, the

necessary setup time and resources. While relying on WiFi for connectivity meant the neces-

sity of increased power (Section 6.2.3), we found this to be negligible and could keep a small

form factor. Our presented sample applications make use of this new prototype, showcasing

that mobile scenarios, such as fitness exercises, are possible without obstructing the user.

An added benefit of switching to WiFi was the fact that we could realize a simple setup

process via a captive portal, allowing users to easily configure the device during first use,

without the need to flash the firmware of the microcontroller. Additionally, it simplified

prototyping when working with multiple receiver applications. We confirmed the feasibility

of this data acquisition setup and connectivity via WiFi in the presented sample applications.

Switching to a more powerful microcontroller also meant that we could increase the channel

count to a maximum of six channels. We found that the original version using one EMG

shield28 per channel was very cumbersome to use when employing more than two channels.

The final version of EMBody natively supports up to six channels for data acquisition, thus

enabling simultaneous exploration of electrode configurations. The live view of EMBody’s

software application conveniently allows for visual debugging of these configurations as

confirmed by our sample applications and interviews.

Abstraction Layers through Modular Structure

One major objective during EMBody’s development process was to make it accessible to a

wide range of user groups, including novices as well as experts in physiological sensing, but

also tailoring to different professions, such as designers, developers and engineers. We real-

ized this objective using a modular structure encapsulating EMBody’s data-centric process-

ing pipeline (Section 6.2.4). The software grants experts a high degree of control over how

data is processed and interpreted. Likewise, novices are aided by the exploration-centered

workflow (Section 6.2.2), guiding them throughout the creation process, while hiding tech-

nical complexities in EMBody’s base version. Extensive documentation, including electrode

setup and best practices, is provided29. We first informally verified this procedure during the

workshops by guiding the students, confirming its viability. We later successfully instan-

tiated the workflow in our sample applications and confirmed in the interviews that it was

comprehensible and easy to follow. Moreover, the workflow closely draws from standard

workflows when working with physiological sensing. Hence, experts felt immediately at

home and quickly identified extensions points suitable for customization.

28https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/open-source-hardware

29 Available at https://github.com/HCUM/embody.
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Towards More Accessible EMG Input for HCI
Our toolkit effectively lowers entry barriers for researchers and designers to begin exploring

EMG-based input. Our evaluation of EMBody highlighted several challenges for future

EMG input systems to further support developing interactive systems.

EMG measurements require placing electrodes on muscles and connecting electrode mea-

surements to measurement units. We observed that researchers using EMBody were eager

to experiment with multiple muscles and, consequently, measurement channels. This offers

the opportunity of sensing complex movements, effectively increasing the fidelity of the mo-

tions that an EMG system can detect. However, a high number of channels results in a high

number of cables to be connected, which may be cumbersome. Thus, future EMG toolkits

should include advanced cable management. Despite cable-based solutions posing certain

problems, cables are still the technology of choice for HCI prototyping. While textile wear-

able electrodes are being researched, they are often muscle-specific and may not support

diverse users, e.g. [229]. Wireless electrodes would require individual power sources which

would increase their mass.

Another finding from the evaluation of our toolkit is the fact that EMG measurements are

highly person-dependent. As a consequence, EMG systems require individual calibration

and detection is based on values specific to the user. EMBody includes calibration routines,

but the need for explicit calibration does increase the complexity of interacting with proto-

types which use EMG input. We envision that future EMG tools for HCI researchers should

explore if implicit calibration methods can be used. This could be achieved by integrating

calibration in tasks. There is a need for developing methods similar to ad hoc calibration in

eye tracking, e.g. [158].

Finally, developing and evaluating EMBody enabled us to observe how designing EMG

input was part of an interaction design process. One of the overarching ideas behind our

toolkit was enabling designers to focus on the nature of the interaction technique they were

designing and emphasize the limitations of the sensing modality. While we did observe

that EMBody eliminated initial barriers to using EMG, EMG input still produces additional

constraints in the design process. Limiting input to the muscles monitored or the need to

place electrodes are likely to have a significant impact on how a design team develops an

interactive artefact which uses EMG. Future work should address this challenge and study

how designers can consider EMG as a input modality and be implicitly aware of the EMG

design space without investing time in extensive EMG prototyping.

6.2.10 Conclusion and Outlook

In this chapter, we introduced EMBody—a data-centric toolkit for rapid prototyping and

experimentation with EMG. We provided details of the design of the toolkit and information

on how to access the open-source resources needed to build it. We also illustrated the utility

of EMBody by reporting on workshops with students, presenting two systems that make use

of the toolkit and a final evaluation through expert interviews.
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Figure 6.15: A speculative future usage scenario for EMBody. A cyclist monitors their quadri-

ceps activity (using electrodes, marked in blue) during a bike ride on their smartphone (yellow).

We envision that EMBody will foster experimentation with EMG.

For the domain of proficiency-aware systems, it was important for us to lower entry barriers

for practitioners into EMG-based interactive systems. We believe this to be a vital step

towards the applicability of EMG for future proficiency-aware systems.

We concluded that the EMBody toolkit can help practitioners focus on designing the in-

terface and feedback, reducing the need to troubleshoot data acquisition and interpretation.

Additionally, experts appreciated its modular structure and data processing pipeline, con-

firming that EMBody successfully tailored to the needs of a wider audience. This provides

valuable insights with regard to its applicability in proficiency-aware systems

In contrast to off-the-shelf products, EMBody provides a full exploration-centered workflow

from data acquisition through calibration and model training for live predictions. We envi-

sion that further iterations of our toolkit can be driven by the community, enabling access

to electromyography for less technology-proficient practitioners, while allowing experts to

benefit from improved algorithms. This would enable end-users to experiment with EMG for

understanding their own bodies (see Figure 6.15 for an example scenario). In combination

with recent advances in sensing technologies [217, 122], we hope that our work can help

establish EMG as a key modality for future embodied interaction, including the domain of

proficiency-aware systems.

6.3 Chapter Summary

Investigating how to facilitate proficiency awareness in interactive systems has been a two-

stage process. While we have evaluated how to design for proficiency awareness in Chap-

ter 5 (RQ3), this chapter has introduced our toolkit approach to implementing proficiency-
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aware systems (RQ4). With EMBody, we highlighted how important ready access to physi-

ological data is for developing and advancing future EMG-based systems.

However, this observation is not limited to EMG as a modality. We believe that toolkits and

proper abstraction can have far-reaching implications for the acceptability of novel modali-

ties. Especially those that are largely unknown to potential users. During the course of this

thesis, we have realized that most participants did not know about EMG before. Yet, intro-

ducing them to the modality was straightforward and often led to a quick understanding of

its capabilities. This also shows that users are the experts when it comes to understanding

their own bodily signals.

We envision that further development on toolkits can help substantiate our concept of

proficiency-aware systems. We have already shown that this vision is not limited to physi-

ological measurements but is applicable for a variety of user data. For example, web-based

toolkits could easily allow developers to create engaging websites that allow users to further

their proficiency. In this regard, we feel that toolkits pave the way towards actual applications

for the end user.
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Chapter7
Conclusion and Future Work

In this thesis, we introduced the concept of proficiency-aware systems to promote a class

of systems that stimulate users and encourage personal growth. Proficiency-aware systems

can be a means to create engaging experiences [250], where users can fully reflect on their

proficiency and their use of the system, striving for excellence.

Proficiency-aware systems may specifically be designed and engineered towards supporting

the user in understanding their own proficiency. This work argues that while the rise of in-
telligence in interactive systems supports task efficiency, it is rarely employed for the user’s

personal growth. Instead, reasons for adaptation towards the user are mostly performance-

oriented, opening up the risk for de-skilling, where users increasingly rely on interactive sys-

tems and neglect their own proficiency progression. In this thesis, we highlighted that most

interactive systems have the inherent potential to draw on the idea of proficiency awareness

and encourage users in advancing their proficiency during the interaction with the system.

However, teaching users is challenging and no commonly understood and validated pro-

cess explains how humans acquire new skills [277, 171], that could readily be applied to

interactive systems. Often, learning is highly task-specific and governed by the individual

strategies of the user. Especially in the early stages of a learning process, users tend to be

overconfident in their proficiency [258], creating an illusion of knowledge. Consequently, it

can be challenging to find the right balance between encouraging proficiency improvements

or supporting the user through performance-oriented adaptation.

The findings of this thesis include, most importantly, the fact that when users are informed

about their proficiency, they can reflect on their performance. Such a user-driven interpre-

tation is a key element of proficiency-aware systems as users make necessary connections

between their task approach and communicated data by themselves (cf. Chapter 2). Thus,

we can potentially create systems that actively engage users in furthering their proficiency

and scale well with a variety of tasks, as illustrated in this thesis. Often a basic representa-

tion is sufficient for users to connect this information to their task approach and reflect on it

(cf. writing task in Section 5.2). Despite the challenging premise — creating systems that

teach users — it is rather simple to design interactive systems with proficiency awareness in
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mind. Providing the users with the means to reflect on their data is often already sufficient

(cf. FitBack in Section 5.1).

In this regard, this thesis first investigated engineering challenges of proficiency-aware sys-

tems in Part I in five task domains (RQ1, RQ2). To do so, we employed two sensing

modalities, gaze and electromyography (EMG), to recognize users’ cognitive and physi-

cal abilities. This information was ultimately used as an estimation of their proficiency. In

combination with our toolkit EMBody (RQ4), we contribute a set of engineering guide-
lines for proficiency-aware systems (Section 7.2) to aid further development. In Part II, we

researched how this estimation of proficiency can be used to facilitate proficiency awareness

in interactive systems (RQ3, RQ4). We used EMG again as a modality to provide users

with insights into their bodily signals, but also showed design qualities of simple metrics for

proficiency awareness in everyday computer work. We summarized these findings in a set

of design guidelines for future proficiency-aware systems.

7.1 Designing Proficiency-Aware Systems

We first summarize our findings on designing proficiency awareness, which directly address

RQ3. While most of these originate from Chapter 5, contributions in other chapters informed

and refined this final set.

RQ3

What are design criteria for proficiency awareness in interactive systems?

Proficiency Feedback Makes Performances Tangible For The User

Providing proficiency feedback allows the users to reflect on their performance. It supports

them in becoming aware of their own proficiency and connecting it to their current perfor-

mance. Here, proficiency is potentially something the user can identify with, as it can be

broken down into simpler concepts than actual task performance. Recall the editor example

from Chapter 2. A possible task performance metric could be the number of copies sold. Yet,

many factors influence this metric, such as the popularity of the magazine, current relevance

of the topic, or even vacation cycles of potential buyers, apart from the actual quality of the

article, which might be of interest to the editor. While it is hard to provide this particular

metric, there are almost always good proxies for proficiency (cf. Section 5.2) that can sup-

port users in making their performance tangible. Thus, finding suitable proficiency proxies
is a key design task for proficiency-aware systems.

At the same time, users need to spend resources on improving their proficiency. While

intrusive feedback can be beneficial for task performance, it often inhibits proficiency im-

provement, as necessary resources are not available. Choosing the right feedback type and
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granularity is a trade-off between primary task performance and potential proficiency bene-

fits for the user. Thus, designing proficiency awareness includes considering how to increase

productivity through proficiency feedback, and contributing ways to do so in a user-friendly

and effective manner for the user to reflect on their proficiency. As outlined above, these

proficiency metrics do not necessarily have to be performance-oriented, as long as the user

knows how to connect them to the task. In other words, instead of developing highly
customized systems with delicate algorithms, the user is included in the process and
provides the final interpretation of available data.

Consequently, if any proxy for a user’s proficiency can be acquired with ease, it should

always be available as feedback. Users are unlikely to object to this (cf. Sections 4.2 and 5.2)

and are most often able to make the connection to the current task, even if the signal is

complex (cf. EMG). In this thesis, we have provided guidelines for several tasks on how,

when, and how often to add feedback. We envision that systems can guide users to preferable

task completion strategies optimized for their proficiency level.

It remains essential to deliver feedback related to the task domain, which can be exploited

by the user. Carefully selecting the right proficiency feedback allows the user to concentrate

on other aspects of the task and allows developers to easily integrate proficiency aspects,

potentially generalizing them for multiple systems.

Consider Ethical Implications For The Individual

Our work also showed that even subtle differences in how computer-based assessments of

proficiency scores are presented could significantly affect the user. The score might not al-

ways be used to enhance performance but could also judge particular individuals’ abilities.

Regardless of how it was derived, the proficiency score stays a form of computer judgment

to be endured by the individual, especially since computer-based assessments historically

have had negative connotations [72]. While this thesis highlights the benefits of proficiency

awareness to render tasks easier to perform whilst improving user experience, we must em-

phasize that this can be abused to limit the user’s autonomy. When machines are telling

us what to do, designers must carefully outweigh potential adverse effects on the personal

autonomy [32] of users. An aggressive system might intimidate users, compelling them

to certain actions. A loss of autonomy can potentially lead to "ubiquitous human comput-

ing" [342], what Zittrain [342] dubbed "harvesters of human mindpower". Consequently,

users must always be given the opportunity to opt out of proficiency assessment, allow-
ing them to make their own judgments about the morality of their work [342]. Ethical

pitfalls can be avoided if ethics-oriented design methods are used early in the design process,

e.g., adversary design fictions [17], exposing the system’s potential for malicious intent.

Offer Multiple Feedback Options

It is a good idea to offer a selection of feedback options, varying in type and granularity. If

possible, task-specific feedback, such as relating to muscle power in fitness tasks, is to be

favored over showing the raw EMG signal. For fully observable task domains, i.e., where
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the difficulty of the task can be governed by the system (cf. EMGuitar in Section 4.2), the

system should offer a choice of basic, more abstract feedback and detailed feedback to
allow for a wider user audience. Similarly, designers of tutoring systems can separate their

feedback visualizations from the estimated proficiency as provided by the system.

Depending on who governs the proficiency-aware system, the frequency of feedback needs

to be adjusted accordingly. Here, gamification elements have proven beneficial to remedy

annoying feedback if the frequency cannot be chosen freely. However, elements should be

aligned with the task at hand. Playful feedback for a serious task is likely to alienate users.

Design With Social Context In Mind

Social interactions dictate how we approach tasks and interactions with systems. On the

one side, proficiency-aware systems can exploit these social interactions to create incentives

for users to become better. On the other side, proficiency-aware systems might only unfold

their full potential in the right social context. Especially when systems substitute coaches, a

tandem approach combines the strengths of both coach and system. During the course of this

work, we have presented various systems that benefit from such a social relationship, such

as our musical tutoring systems EMGuitar and EMPiano, but also FitBack has shown strong

potential, not only complementing training but increasing its effectiveness. Consequently,

it can be beneficial to consider the social context of a proficiency-aware system and its
potential users.

While social interactions can be constructive for the effectiveness of proficiency-aware sys-

tems, they also imply the necessity to design for multiple stakeholders of the system. Con-

trolling the system’s agency (i.e., the one who is in control of the adaptation) is straightfor-

ward if only one user is involved (cf. EMGuitar in Section 4.2), as the user chooses whether

or not to give up control and trust in the system’s adaptation. However, if multiple stake-

holders are present, interests might not necessarily align.

In a coaching scenario (cf. FitBack in Section 5.1), the coach gains a tangible tool to high-

light wrong exercise form while the student gains objective truth, increasing their trust in

the coach’s advice. Here, interests align, and a symbiotic relationship can be achieved. In

our text production use case (cf. Section 5.2), this might not be the case. The chief editor

and newspaper owner are potentially interested in the proficiency of their editors as well.

Even the developer could make use of the information to improve the system. This creates

an ethical dilemma in who should be given access to the user’s proficiency. As the principal

nature of a proficiency-aware system aims to improve the user’s proficiency, this should take

priority. To rule out malicious intents, design methods as outlined previously can be applied.

7.2 Engineering Proficiency-Aware Systems

To complement our guidelines on how to design proficiency awareness, we present a set of

engineering guidelines as well. These guidelines directly address RQ1, RQ2, and RQ4. In
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this thesis, we advanced the understanding of how to create interactive systems that make

use of proficiency to adapt the interaction to and with the user (RQ1, RQ2). Our toolkit

approach to implementing proficiency-aware systems highlights how complex modalities

for proficiency estimation can be made available to a wider audience (RQ4).

RQ1, RQ2, RQ4

What are suitable metrics inferred from a user’s gaze for proficiency estimation?

How accurately can we estimate proficiency from a user’s muscle activity?

How can we support a wide audience in realizing proficiency-aware systems?

Gaze As Ubiquitous Predictor

During the research conducted in this thesis, we found that gaze can be a powerful modality
to estimate proficiency for proficiency-aware systems but is subject to task constraints,

such as the required granularity of proficiency levels and the complexity of the visual stim-

ulus.

If complexity and demands for granularity are low, gaze can provide robust proficiency esti-

mation across users, even for a short interaction duration. While these premises might seem

impractical at first, there exists a variety of tasks that only require binary proficiency esti-

mation often correlated with ad hoc interaction, such as reading a bus schedule in a foreign

language or buying a public transport ticket in an unknown city. Most often, these are the

scenarios where a proficiency-aware system can rarely provide extensive proficiency feed-

back but might highlight useful shortcuts to separating relevant from irrelevant information

for the user.

If fine-grained detection is needed in a complex task, gaze metrics that generalize across

users are usually not sufficient. Complex visual stimuli justify person-dependent algorithms

to ensure accurate proficiency estimation. Added motoric aspects further impede accurate

classification, often calling for prolonged gaze recordings. Auxiliary sources of context

can support estimation in this scenario, such as combining achieved learning progress in a

language tutoring system with the current gaze data to identify difficult words for the user.

Gaze can be ambiguous; a property that should always be respected when realizing gaze-

based proficiency-aware systems. Personal strategies that are not necessarily related to pro-

ficiency can govern the user’s viewing patterns. Nevertheless, domain experts could exploit

recognized task-solving strategies to identify teaching methods.

Electromyography for Fine Motor Tasks

In contrast to gaze, electromyography has high distinctiveness, i.e., the recorded muscle

activity correlates well with the executed movement. Yet, it suffers from poor general-
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ization across users. Often EMG-based systems require prior calibration before usage and

have extensive setup procedures.

Nevertheless, detecting fine-grained motor tasks is easily possible with high-grade hardware.

Here, EMG offers high accuracy when it comes to estimating correct posture and movement

forms. In this thesis, we have confirmed technical requirements, such as electrode count

and placement, derived from related work for posture-based (cf. EMGuitar), as well as for

motion-based (cf. FitBack, EMPiano) task recognition.

While low-cost devices for EMG are available, their signal quality only allows recognizing

coarse motor tasks. However, the setup is simplified, and with EMBody we provide a toolkit

that enables users to prototype and experiment with EMG. This is especially important to

make EMG a viable candidate for proficiency estimation as the need for calibration prevents

most ad hoc systems. Generating awareness through easy access for a wide audience is vital

for future EMG research and possibly adopting implicit calibration mechanisms from other

domains.

Start With Simple Metrics

In one particular use case (cf. Section 5.2), we have highlighted that it is not necessary to

employ complex sensing modalities to communicate proficiency to the user. Proficiency-
aware systems are not limited to physiological computing. Like context-aware systems,

they are just as effective where computing systems assist us in performing everyday tasks.

Especially when there is no agreed-on concept for proficiency for the given task domain,

simple metrics that contribute to a user’s proficiency are effective and support users in un-

derstanding their proficiency. Often, systems already collect user data for adaptation. It is

worthwhile to consider how this data can be used to communicate proficiency to the user,

allowing an existing system to become proficiency-aware without the need for extensive

modification.

In general, this approach holds true for sensing-based systems as well. Readily deployable

modalities can already provide sufficient information for the system about the user’s profi-

ciency, such as a gaze-based system for reading proficiency instead of measuring the user’s

brain activity to estimate their understanding of a text. Similarly, a user’s typing proficiency

should preferably be analyzed first via linguistics and keystrokes before applying other mea-

sures. The same principle applies to calculating metrics for a given modality. This thesis

has shown that there is no need for complex algorithms that provide elaborate visual-
izations of collected sensing data. Users are good at recognizing and interpreting their

own data. Consequently, we suggest starting simple before introducing the limitations of

complex metrics.

Toolkits For Ubiquitous Technologies Are Enablers

Being able to estimate a user’s proficiency is the backbone of every proficiency-aware sys-

tem. Yet, toolkits that support researchers in prototyping novel systems are only sparsely
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available. Especially for complex modalities, we advocate the necessity of readily available

toolkits that lower the entry barrier for less technically-versed practitioners. We need to
give researchers and designers the opportunity to experiment with novel and meaning-
ful sensing modalities to advance future proficiency-aware systems.

We believe that this holds true even for metrics derived from everyday computer work, such

as linguistics or keystrokes. Having ready access to those metrics — ethical implications

kept in mind — can provide users with insights unbeknownst to them. In other words, know-

ing that one’s average typing speed when writing research papers is higher in the evening

hours can guide users in changing their work schedule accordingly. To create an interest for

such insights among users and developers, we also need toolkits for software applications

that draw attention to the potential of proficiency awareness in everyday computer work.

7.3 Limitations

The aforementioned guidelines for proficiency-aware systems and the majority of the work

conducted throughout this thesis are based on empirical studies conducted in a constrained

lab environment. Most notably, this allowed us to sustain a high internal validity of the

conducted studies. This was essential to draw implications with high confidence for the

individual use cases. Nevertheless, for a concept like proficiency, where external influences

can have a high impact on the system’s perceived proficiency of the user, it remains to be

investigated how these factors affect the user experience for proficiency-aware systems. An

in-the-wild investigation could provide additional guidelines for production environments.

Especially mid-term factors might pose a challenge for proficiency-aware systems that rely

on the user’s prolonged interaction. Subtle changes in measurements, e.g., due to fatigue

(slower eye movements, muscle exhaustion), can throw off classification algorithms. If these

factors are likely to occur during the interaction, developers should consider modelling them

separately to allow robust proficiency estimation. Long-term proficiency changes are gen-

erally less of a problem for the system but more an issue of proper calibration towards the

user.

Apart from external factors that dynamically influence a user’s proficiency, internal aspects

such as user interest or cognitive load may hinder proper adaptation. This is most often the

case for ambiguous modalities, as these are not only a proxy for proficiency but might indi-

cate other cognitive processes as well. In particular, gaze-based systems are affected through

the interference of user interest [147] or increased cognitive load [289]. Yet, cognitive load

can be an excellent proxy for proficiency (cf. Section 3.2), as in, users that are less proficient

need to spend more cognitive resources. Consequently, when relying on possibly ambiguous

modalities, it is worthwhile to consider what is being measured.

Proficiency-aware systems share a close connection to intelligent tutoring systems, albeit on

a theoretical level. While the latter actively employ learning strategies, proficiency-aware
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systems simply provide the means for a user to advance their skills. This user-driven inter-

pretation allows users to employ their own strategies and prevents the system from pursuing

a potentially detrimental strategy. However, future systems might want to actively engage

learning strategies if the task domains allow for it. Thus, it remains an open challenge to

design proficiency-aware systems that actively teach users.

7.4 Future Work

In this thesis, we have presented design and engineering guidelines to create proficiency-

aware systems, allowing the detection of proficiency as well as facilitating proficiency aware-

ness for interactive systems. While the previous section has already teased open challenges

and opportunities for future work, we highlight specific starting points and time frames in

this section.

The recent rise of artificial intelligence through neural networks and deep learning [235] ap-

proaches has broad implications for the estimation of concepts such as proficiency from user

collected data. Throughout this thesis, we have relied on robust and established machine

learning algorithms to classify data. Here, deep learning approaches can boost detection,

especially for proficiency-aware systems that are based on user-bound and prolonged inter-

action. Potential projects based on this work include detection of office workplace activities

via EMG, e.g., through wearables or integrated into office appliances or gaze-contingent

piano tutoring systems that automatically focus on difficult segments of a piece.

Proficiency awareness is not only limited to single computing systems. Especially with the

proliferation of IoT devices and infrastructure, estimating proficiency can be decentralized

and propagated to registered receivers. The idea of proficiency-aware environments sees the

user in the focus, and their proficiency is published for other trusted devices that know how

to make sense of it. Here, this thesis provides the starting point to identify technical and

design challenges that need to be investigated and addressed in a larger research framework.

While the two previously introduced projects address mostly single-user scenarios of

proficiency-aware systems, this next project addresses the research of proficiency-aware

computing systems. As outlined previously, the ethical implications of such systems need to

be carefully considered and evaluated, both for involved users and third parties. Moreover,

a realization for everyday computing systems requires extensive research of suitable feed-

back visualizations and modalities, applied algorithms, and user interaction. A final outcome

shows how to create proficiency-aware systems for everyday computer work that encourage

users to advance their own proficiency. This research’s main challenge lies in the fact that

the system should be seamlessly integrated into already existing workflows. Consequently,

this project is best suited as work in an interdisciplinary research cluster as it requires exper-

tise in numerous domains, including psychology, human-computer interaction, visualization,

software development, algorithms and possibly sociology.
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7.5 Final Remarks

At the onset of this thesis, we argued that de-skilling might become a severe problem for

interactive systems. Consequently, we presented the concept of proficiency-aware systems:

systems that (1) support the user in accomplishing their task and (2) facilitate an under-

standing of their proficiency. The research in this thesis aims to prevent de-skilling from

happening by providing users with engaging experiences that foster personal growth.

But can de-skilling also be a positive outcome for the user and, in particular, for associated

systems? The assistance provided by interactive systems allows us to take a holistic approach

to solve a given task. The availability of freed-up resources is a necessity to acquire novel

skills that surpass what a proficiency-aware system might measure. Recalling the example

from the introduction in this thesis: is it really so bad that the younger generation struggles

in reading maps? Do we not gain more from technology that allows us to navigate without

having to concentrate on paper maps? While it is a nice skill to have, interest will always

drive people to acquire old skills.

The potential to acquire novel skills should never be inhibited by technology but rather

encouraged and promoted. While it may seem that the concept of proficiency-aware systems

contradicts this idea at first glance, skill discovery and acquisition of novel skills happen

most often at expert levels. Features of tools might only become available once mastery

is reached, such as exploiting a blade’s profile for cutting; an implicit form of proficiency

awareness. From this perspective, proficiency-aware systems are essential in supporting

users to become experts, but also letting them get there themselves rather than helping them

stay along a beaten track.
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