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Abstract

This thesis utilizes the rules of probability theory and Bayesian reasoning to perform in-
ference about astrophysical quantities from observational data, with a main focus on the
inference of dynamical systems extended in space and time. The necessary assumptions
to successfully solve such inference problems in practice are discussed and the resulting
methods are applied to real world data. These assumptions range from the simplifying
prior assumptions that enter the inference process up to the development of a novel ap-
proximation method for resulting posterior distributions.

The prior models developed in this work follow a maximum entropy principle by solely
constraining those physical properties of a system that appear most relevant to inference,
while remaining uninformative regarding all other properties. To this end, prior models
that only constrain the statistically homogeneous space-time correlation structure of a
physical observable are developed. The constraints placed on these correlations are based
on generic physical principles, which makes the resulting models quite flexible and allows
for a wide range of applications. This flexibility is verified and explored using multiple
numerical examples, as well as an application to data provided by the Event Horizon
Telescope about the center of the galaxy M87. Furthermore, as an advanced and extended
form of application, a variant of these priors is utilized within the context of simulating
partial differential equations. Here, the prior is used in order to quantify the physical
plausibility of an associated numerical solution, which in turn improves the accuracy of the
simulation. The applicability and implications of this probabilistic approach to simulation
are discussed and studied using numerical examples.

Finally, utilizing such prior models paired with the vast amount of observational data
provided by modern telescopes, results in Bayesian inference problems that are typically
too complex to be fully solvable analytically. Specifically, most resulting posterior proba-
bility distributions become too complex, and therefore require a numerical approximation
via a simplified distribution. To improve upon existing methods, this work proposes a
novel approximation method for posterior probability distributions: the geometric Varia-
tional Inference (geoVI) method. The approximation capacities of geoVI are theoretically
established and demonstrated using numerous numerical examples. These results suggest
a broad range of applicability as the method provides a decrease in approximation errors
compared to state of the art methods at a moderate level of computational costs.
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Zusammenfassung

Diese Dissertation verwendet die Regeln der Wahrscheinlichkeitstheorie und Bayes’scher
Logik, um astrophysikalische Größen aus Beobachtungsdaten zu rekonstruieren, mit einem
Schwerpunkt auf der Rekonstruktion von dynamischen Systemen, die in Raum und Zeit
definiert sind. Es werden die Annahmen, die notwendig sind um solche Inferenz-Probleme
in der Praxis erfolgreich zu lösen, diskutiert, und die resultierenden Methoden auf reale
Daten angewendet. Diese Annahmen reichen von vereinfachenden Prior-Annahmen, die in
den Inferenzprozess eingehen, bis hin zur Entwicklung eines neuartigen Approximationsver-
fahrens für resultierende Posterior-Verteilungen.

Die in dieser Arbeit entwickelten Prior-Modelle folgen einem Prinzip der maximalen
Entropie, indem sie nur die physikalischen Eigenschaften eines Systems einschränken, die
für die Inferenz am relevantesten erscheinen, während sie bezüglich aller anderen Eigen-
schaften agnostisch bleiben. Zu diesem Zweck werden Prior-Modelle entwickelt, die nur
die statistisch homogene Raum-Zeit-Korrelationsstruktur einer physikalischen Observablen
einschränken. Die gewählten Bedingungen an diese Korrelationen basieren auf generischen
physikalischen Prinzipien, was die resultierenden Modelle sehr flexibel macht und ein bre-
ites Anwendungsspektrum ermöglicht. Dies wird anhand mehrerer numerischer Beispiele
sowie einer Anwendung auf Daten des Event Horizon Telescope über das Zentrum der
Galaxie M87 verifiziert und erforscht. Darüber hinaus wird als erweiterte Anwendungs-
form eine Variante dieser Modelle zur Simulation partieller Differentialgleichungen ver-
wendet. Hier wird der Prior als Vorwissen benutzt, um die physikalische Plausibilität
einer zugehörigen numerischen Lösung zu quantifizieren, was wiederum die Genauigkeit
der Simulation verbessert. Die Anwendbarkeit und Implikationen dieses probabilistischen
Simulationsansatzes werden diskutiert und anhand von numerischen Beispielen untersucht.

Die Verwendung solcher Prior-Modelle, gepaart mit der riesigen Menge an Beobach-
tungsdaten moderner Teleskope, führt typischerweise zu Inferenzproblemen die zu komplex
sind um vollständig analytisch lösbar zu sein. Insbesondere ist für die meisten resultieren-
den Posterior-Wahrscheinlichkeitsverteilungen eine numerische Näherung durch eine vere-
infachte Verteilung notwendig. Um bestehende Methoden zu verbessern, schlägt diese Ar-
beit eine neuartige Näherungsmethode für Wahrscheinlichkeitsverteilungen vor: Geomet-
ric Variational Inference (geoVI). Die Approximationsfähigkeiten von geoVI werden theo-
retisch ermittelt und anhand numerischer Beispiele demonstriert. Diese Ergebnisse legen
einen breiten Anwendungsbereich nahe, da das Verfahren bei moderaten Rechenkosten eine
Verringerung des Näherungsfehlers im Vergleich zum Stand der Technik liefert.
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Chapter 1

Introduction

The advancements in modern observational technologies and experimental designs have
brought a sheer flood of high quality and extremely informative data to many areas of
astronomy, physics, and the natural sciences in general. In particular in astrophysical
imaging, modern telescopes provide an incredibly detailed view on many different aspects
of the sky, ranging from large and extensive surveys covering the entire sky such as the
Sloan Digital Sky survey [15] or the Gaia mission [24], over extremely narrow and high
resolution images via radio interferometers such as the Event Horizon Telescope (EHT) [36],
up to the novel detection mechanisms for gravitational waves provided by the LIGO [2] and
VIRGO [3] experiments. Recovering the physically relevant information contained in the
measurements conducted by these telescopes is a challenging task. Traditional approaches
often stem from the era of observational astronomy where the concept of a camera and an
associated image are taken literal, and a simple back-projection of the measured data onto
the sky provided a satisfactory result that could be used for comparisons against predictions
made by theoretical models. While modern telescopes such as the EHT still have the virtual
concept of a camera, it physically consists of a collection of radio telescopes that are located
all over the world and the “camera” only emerges once the data-sets of all telescopes get
shipped to a central location where they get combined in a computer. Furthermore, such
telescopes often also observe the sky at multiple frequencies simultaneously which virtually
results in a three-dimensional image, where the third axis represents the observed range
of frequencies. Finally, as the 2017 observations of the center of the neighboring galaxy
M87 carried out by EHT [39] have impressively validated, the extreme conditions around
the black hole located in the center of M87 result in a temporal variability on scales
below the time scales of the observational cycle. Therefore treating the entire cycle as
exposure time, i.E. by co-adding photon flux gathered throughout the cycle to increase
the quality of the image is not justified any more and the observations actually give rise
to a time variable video of the galactic center which constitutes an additional dimension
to the observed “image”, in addition to the one introduced by the extended frequency
range. These settings, commonly referred to as multi-frequency imaging and imaging of
time variable sources also appear in the context of other observational missions and in
combination with the increasingly complex measurement setup due to the combination
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of information gathered from multiple telescopes has lead to a demand for concepts and
ultimately computational algorithms that can solve imaging problems in such complex
scenarios. To properly extend and adapt the concept of a camera and an image to these
problems required a more formal approach towards astrophysical imaging, in particular it
requires the ability to perform inference in the context of astronomy in a formal way.

Inference, in particular the ability to reason about aspects of our World in light of novel
observations, has always been an integral part of science. It enters the scientific process of
making deductions about the World in a variety of ways, ranging from verifying/falsifying
models and hypotheses, over the process of constraining open aspects of a model given
observations, up to the advanced task of inventing/extending a model in light of novel,
unexplained observations. Despite its undeniable importance to science, or maybe even
because of that, there has been a recurring debate about how precisely inference should
best be carried out in practice. In particular in the regime of reasoning under uncertainty,
i.E. in cases where aspects of a hypothetical model (often loosely referred to as model
parameters) cannot be determined from the data to a degree of absolute certainty, it has
been debated how inference, or more traditionally phrased, parameter estimation, is to be
performed. One of the main reasons for this debate is the fact that the process of parameter
estimation is ultimately subjective, as it depends on various assumptions regarding the
underlying model, the data, and what is assumed to be known about the parameters
prior to conducting the measurement. This subjective nature has often led to a variety of
seemingly disagreeing recipes to estimate parameters given a data-set, which resulted in
debates about whether one recipe is superior to the other. Fortunately, the development of
modern probability theory, and in particular the works of Jeffreys [65] and Cox [26], opened
up a path towards a consistent and less ambiguous treatment of inference. The key idea is
to constrain the state of knowledge about the parameters using the more abstract concept
of information, rather then data alone, and to describe this state using probabilities. In
particular the inference process includes all background information I that summarizes all
assumptions that are made, in addition to the data d that has been observed. This inclusion
is done in a formal way, i.E. by defining a probability distribution over the parameters that
are considered to be plausible given the data as well as the background information. It
may seem like a purely academic distinction at first, whether this additional information
is included as background information in a probability or via specification of a different
recipe. In fact, in many practical cases, solely utilizing probability theory to obtain the
most probable parameter in light of d and I, often agrees with the output of a recipe that
has the associated background information implicitly built in. If however, the inclusion
of I into probability theory is done properly, it opens up the possibility to answer novel
questions that were previously inaccessible. For example it is possible to use the rules of
probability theory directly to compute how likely I (or a part of it) is given the data, and
thus instead of debating about the superiority of one recipe, it may simply be tested which
background assumptions are more likely compared to others, in light of the observations.1

1Note that in general, not all aspects of I may be tested for in this way as there exist assumptions for
which no experiment exists (yet) that may yield a data-set to provide a conclusive answer.
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In addition, I appears on the same level as d in the sense that both represent information
on which the parameters get constrained on and therefore formally, changing (parts of)
I to include novel/different ideas is done in the same way as exchanging the data once
a new data-set becomes available. More abstractly speaking, the initially subjective task
of determining the parameters of a model given d becomes objective, as using the rules of
probability theory given all information available (i.E. d and I) always leads to the same
result regarding the state of knowledge about the parameters, irrespective of how precisely
this information is encoded. This consistent treatment of information is so fundamental to
probability theory that it became one of the desiderata that were initially formulated by
Cox.

The formal inclusion of I into probabilities turned out to be a mathematically non-
trivial step because traditional probability theory as formulated via the Kolmogorov axioms
[74] is based on frequencies, i.E. a probability is interpreted as the frequency of a recurring
event. Typical background information, however, also includes general statements about
the system which cannot be described as a recurring event and therefore the rules of prob-
ability theory had to be extended. This extension ultimately leads to a re-interpretation
of probabilities as degrees of plausibility which describe how plausible a specific statement
appears to be, given the information at hand. It is noteworthy that the approach is really
an extension, not a modification, as the rules of probability theory and their consequences
remain the same, they simply become applicable to generic statements, rather then solely
recurring events. This is also reflected in later results [64] which showed that the probabil-
ity axioms of Kolmogorov can be derived from Cox axioms and therefore give rise to the
same logical system, when restricted to frequencies. Nevertheless, this fundamental philo-
sophical shift regarding the interpretation of probabilities has led to an extensive debate
on the validity of this novel approach. In particular its implications to inference, know
known as Bayesian inference, were heavily debated for a long time. Fortunately today,
the results of Cox and in particular Bayesian inference have become largely accepted by
most people in the scientific community, and debates have returned to the much more
constructive discussions regarding the validity of specific model assumptions.

1.1 Probability theory
The rules of probability theory can be regarded as a formal language to perform reasoning
under uncertainty. They are an extension to Boolean’s algebraic system used to describe
formal logic in which a statement A may either be true or false. Instead, probability theory
assigns a degree of plausibility to A, which represents the state of belief that A is a true.
These plausibilities incorporate three desiderata, initially formulated by Cox (sometimes
also referred to as Cox’ axioms):

(I) Degrees of plausibility are represented by real numbers;

(II) They are qualitatively correspondent with common sense;
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(III) Reasoning should always be consistent.
These desiderata require some further specifications to derive a mathematically consistent
theory of probabilities, and a detailed derivation is beyond the scope of this introduction.
The interested reader may refer to the work of Jaynes [64], where a detailed introduction of
the desiderata, some small extensions, and an extensive discussion of the resulting theory
of probability is given.

The nomenclature regarding probabilities adapted in this work is such that the proba-
bility of the statement A being true is denoted as P (A). It is defined such that certainty
about A being true is denoted as P (A) = 1, whereas certainty that A is false is given
via P (A) = 0. All intermediate states of belief about A are assigned a numerical value
between 0 and 1, where an increase in belief is associated with an increasing value. There
is no constraint on the exact numerical values of P (A) aside from normalization, that is

P (A) + P (Ā) != 1 , (1.1)

where Ā stands for not A being true (i.E. A is false).
If instead of a single Boolean statement, a categorical random variable x that takes N

distinct values (specifically x ∈ {xi}i∈{1,...,N}) is considered, it is possible to assign a truth
statement to every possible outcome

Ai ≡ “x = xi” ∀i ∈ {1, ..., N} . (1.2)

To keep notation short, however, the associated probabilities are typically abbreviated by
assigning a probability to each category, i.E.

P (xi) ≡ P (Ai) , (1.3)

which may be understood as the probability of a random variable taking the value xi. In
this case, normalization is required via a summation over all possible outcomes

N∑
i=1

P (xi) != 1 . (1.4)

Qualitatively, it seems straightforward to imagine how to extend this assignment to contin-
uous random variables such as scalars x ∈ R (or vectors in N dimensional spaces ~x ∈ RN).
By assigning a truth statement to every location in R, it is possible to set up an infinite
number of probabilities, one for every location in space. As it turns out, however, as soon as
an arbitrarily small (but nonzero) interval of R is plausible for x, all probabilities assigned
to individual locations become infinitely small due to the fact that there are infinitely
many plausible values within the interval and their probabilities have to add up to one. A
more meaningful description may thus be obtained via “dividing” the probabilities by the
associated volume element dx, and to consider this density instead. If done in a formal
way, this gives rise to what is called a probability density P(x), a function that assigns
positive real values to every x such that its integral is normalized∫ ∞

−∞
P(x) dx != 1 . (1.5)
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Probabilities can then be assigned in a meaningful way to x being within a certain interval,
e.g. A ≡ “x ∈ [a, b] ”, as

P (A) =
∫ b

a
P(x) dx =

∫ ∞
−∞

Θ(x− a)Θ(b− x) P(x) dx , (1.6)

where Θ denotes the step function with Θ(x) = 0 if x ≤ 0 and Θ(x) = 1 if x ≥ 0. Thus
a truth statement regarding a continuous variable is best represented by a density, and a
probability arises again when integrating this density over a volume.

The integral in equation (1.6) can be understood as a weighted average of the function
f(x) ≡ Θ(x − a)Θ(b − x) where the weighting is given by P . This average can not only
be performed for step functions, but also for arbitrary functions f̃(x). In some sense it
describes what value is to be expected for f̃ , as values of f̃(x) get multiplied by a higher
weight in case the density of x is larger. This weighted average is therefore known as an
expectation value and is denoted as〈

f̃(x)
〉
P
≡
∫ ∞
−∞

f̃(x) P(x) dx . (1.7)

In case of probabilities P there also exists a notion of expectation values which may be
stated in the generic form 〈

f̃(x)
〉
P
≡
∑
x∈Ω

f̃(x) P (x) , (1.8)

where Ω denotes the set of all possible values for x. It can be proven that the rules of
probability theory derived for probabilities P , equally apply to probability densities P and
therefore, in this work, the symbols P for probabilities and P for probability densities are
used interchangeably, where P (x) denotes a probability in case the domain on which x is
defined is discrete, and a probability density in case this domain is continuous.

To alter the state of knowledge described by a probability (density), the so-called con-
ditional probabilities are introduced as P (A|B), which describe the probability of A given
that the statement B is true. In addition, it is possible to assign a joint probability to two
(or multiple) statements A and B being true simultaneously given some background infor-
mation I, which is denoted as P (A,B|I). Finally, it is also possible to assign a probability
P (A + B|I) to the statement that A or B are true, given I. Here + denotes the logical
“or”. Joint probability distributions and conditional distributions can be related via the
product rule of probability, given as

P (A,B|I) = P (A|B, I) P (B|I) = P (B|A, I) P (A|I) . (1.9)

Furthermore P (A+B|I) can be decomposed using the sum rule

P (A+B|I) = P (A|I) + P (B|I)− P (A,B|I) . (1.10)

The sum and the product rule are one of the most basic, but also most important results
of probability theory as they, together with normalization, are sufficient to derive every
statement within probability theory.
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One fundamental derived rule is marginalization, given in formula via

P (B|I) =
∑
A∈Λ

P (A,B|I) , (1.11)

where Λ is a placeholder for the domain of A, e.g. Λ =
{
A, Ā

}
in case of a simple truth

statement, or Λ = R for a continuous random variable (in which case the sum is replaced
with an integral). Qualitatively it states that the probability of B can be obtained from
the joint distribution of A and B by adding up all possible outcomes for A. Furthermore,
the product rule opens up a formal way towards deductive reasoning, via what is known
as Bayes theorem, given as

P (A|B, I) = P (B|A, I) P (A|I)
P (B|I) = P (B|A, I) P (A|I)∑

A∈Λ P (B|A, I) P (A|I) . (1.12)

It allows to update the state of knowledge regarding A in light of B in a formal way
by solely using the probability of A without knowing B, and the influence of A on B as
encoded in P (B|A, I). While Bayes theorem is a simple and direct consequence of the
product rule, its implications regarding inference, in particular combined with the ability
to reason about arbitrary truth statements, are exceptional.

1.2 Bayesian inference for physical systems
In the context of inferring properties of physical systems, Bayes theorem becomes very
important as it enables reasoning in scenarios that are basically inaccessible without it.
To give an example, consider an experimental setup measuring data d that is assumed to
depend in a structured way on some physical parameters θ. This dependency describes
the essential aspects of the measurement device but also covers possible nuisance effects.
Therefore, in general, it is of probabilistic nature and may be denoted as the likelihood
P (d|θ, I) of a possible outcome d of the experiment, given a specific parameter configuration
θ. I stands for all the physical knowledge required to describes the measurement process
that leads from θ to d, and is referred to as background information. To reason about
θ, however, the quantity of interest is the probability P (θ|d, I), the so-called posterior.
While a descriptive physical model relating θ to d determines the functional form of the
likelihood, it is usually not possible to directly construct the posterior, as there typically
exists no physical model that directly describes θ as a function of d. Therefore, in general
only the combination of physics with probability theory, specifically by employing Bayes
theorem, enables the computation of the posterior

P (θ|d, I) = P (d|θ, I) P (θ|I)
P (d|I) . (1.13)

In this sense, despite being an immediate consequence of the product rule for probabilities,
the theorem has had a great impact on the natural sciences as it opens up the possibility to
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perform reasoning in the context of deducting parameters of physical models from obser-
vations. One interesting consequence of the theorem is that in addition to the likelihood, a
second probability P (θ|I) is required to fully specify the posterior. It states the plausibility
of θ disregarding the information gained via d and thus, in some sense, describes the state
of knowledge prior to the measurement.

1.2.1 Prior probability distribution
The so-called prior distribution P (θ|I) can be used to encode direct additional physical
knowledge about the properties of the system described by θ and as such constitutes addi-
tional background information to I. It is often described as “everything that is known to be
true about the system prior to the measurement”. While this may be a valid introduction
to give an idea about the role of a prior, it is a somewhat incomplete picture as there might
very well also be prior knowledge encoded in the likelihood, such as the physical relation
between θ and the observables and therefore whether or not “prior” information enters the
prior or the likelihood distribution remains ambiguous. In addition, it is also possible to
deliberately include assumptions that may or may not be true and use the inference results
to compute how likely these assumptions are compared to alternative hypotheses. Finally,
there usually exist many aspects of the system that are true but simply irrelevant for the
inference problem regarding θ and thus can be disregarded. Therefore, to keep a generic
notation, all knowledge regarding the system that enters the inference in addition to the
data d, is simply summarized as background information I and both, the prior as well as
the likelihood distribution are conditioned on (parts of) I.

While this general treatment of background information is the most flexible one, it
also remains the least specific one, leaving much open room for debates regarding differ-
ent model choices. To reduce the amount of subjective knowledge that has to enter the
inference process, multiple attempts have been made to remove (parts of) the prior choices
a hypothetical user has to make to arrive at a well defined inference problem. One ap-
proach is the idea to set up an “uninformative” prior distribution P (θ|I), a distribution
that avoids specifying any subjective preference for a set of parameter configurations prior
to the measurement. Achieving this desired goal of being uninformative, however, turns
out to be a nontrivial task. The most straightforward attempt is what is known as a flat
prior, a distribution that assigns equal probability to all possible values of θ. Specifically,

P (θ|I) ∝ cst. ∀θ ∈ Θ , (1.14)

where Θ denotes the space in which θ is defined. In many ways this flat prior can be
regarded as a maximally uninformative choice, in particular in case the values of θ have
a direct physical interpretation and describe distinct states of a system. In case θ merely
denotes a parametrization of some physical quantity, however, this prior choice is only
apparently uninformative due to the fact that while probability theory is invariant under
reparametrizations, a flat prior is not. To see this, consider a reparametrization θ = f(θ′)
with f : Θ′ → Θ being an invertible transformation. Reparametrization invariance, roughly
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speaking, requires that the integration measure associated with the probability density
remains invariant

P (θ|I) dθ != P (θ′|I) dθ′ . (1.15)

Therefore the initially flat distribution using the coordinates θ may become arbitrarily
structured in coordinates θ′ as

P (θ′|I) = P (θ|I)
∣∣∣∣∣
∣∣∣∣∣ dθdθ′

∣∣∣∣∣
∣∣∣∣∣ ∝

∣∣∣∣∣
∣∣∣∣∣ ∂f∂θ′

∣∣∣∣∣
∣∣∣∣∣ , (1.16)

where ||•|| denotes the absolute value of the determinant. Interestingly, the inverse state-
ment is also true: given some arbitrarily structured prior distribution, it is possible to
construct a coordinate system in which this prior becomes flat, a process known as inverse
transform sampling [27]. This implies that solely the choice of a coordinate system is prior
information, as it is sufficient to encode any desired prior knowledge into the inference
problem. Therefore, in case the coordinates θ are not special in a way that justifies an
equal treatment of all possible values of θ, different prior choices are more appropriate to
be uninformative.

In particular, attempts to construct prior distributions that are flat in coordinate sys-
tems that are in some sense “natural” candidates (in the absence of additional physical
prior knowledge) have been made in the past. One of the most prominent example is given
by Jeffreys’ prior, a distribution that is proportional to the square root of the Fisher in-
formation metric (FIM) [42]. The FIM plays a central role not only in prior construction,
but also in the field of information geometry and will be introduced in detail in chapter 5.
For the moment, it is sufficient to understand that the FIMM(θ) is a metric tensor that
introduces a distance measure between two infinitesimally close likelihood distributions
P (d|θ, I) and P (d|θ + dθ, I). Qualitatively this distance measure describes the difference
in information content between the two likelihood distributions parameterized by θ and
θ+ dθ. The FIM gives rise to what is known as a statistical manifold, a Riemannian man-
ifold where each point on the manifold can be associated with a probability distribution.
The functional form of the FIM is uniquely determined given a likelihood distribution and
Jeffreys’ prior may be written usingM as

P (θ|I) ∝
√
|M(θ)| . (1.17)

This prior assigns equal probability to each location on the manifold induced viaM, while
respecting the notion of distance as given by the metric. Therefore, it is a flat prior in
the coordinate system that appears natural from the perspective of the manifold, which
then gets transformed into the coordinates θ. Note, however, that this prior choice de-
pends on the likelihood, which entersM(θ). This implies that the form of Jeffreys’ prior is
not epistemologically precise, as how a quantity is measured enters its prior measurement
assumptions. Nevertheless, in absence of any physically motivated choice of an “equal
probability” coordinate system, the FIM and Jeffreys’ prior can provide a valuable alter-
native.
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While either encoding everything that is know about a system, by employing a full
physical theory, or nothing, via uninformative prior choices, into a prior probability dis-
tribution may both be justified and valuable in a given context, in practice a somewhat
intermediate route is often taken. In particular it might be useful to constrain some, but
not all, aspects of the system using physical knowledge, and remain fully agnostic with
regard to all other unconstrained aspects. A formal way to do so in practice has been
developed by what is known as the construction of maximum entropy distributions.

1.2.2 Maximum Entropy for prior construction
A convenient way to introduce such partial background information into a probability dis-
tribution is given by constraining an expectation value (or multiple values) of a distribution
to a specific numerical value. As an illustrative example, consider a probability distribution
P (x) with x ∈ X , and furthermore assume that the following statement is valid for the
system 〈

x2
〉
P (x)

!= σ2 , (1.18)

i.E. the second moment of P (x), the so-called variance, is known to take the value σ2. It
is clear that there are many possible distributions P (x) that satisfy equation (1.18) and
solely using this variance constraint does not yield a unique choice of P . To select a prior,
the additional requirement of being maximally uninformative comes into play again as the
least informative distribution that satisfies equation (1.18) appears to be an appropriate
prior candidate. This requirement can be formalized using the concept of entropy, which
for continuous probability distributions is defined as

S[P ] = −
∫
X
P (x) log

(
P (x)
Q(x)

)
dx , (1.19)

where Q is a so-called reference distribution. It represents a maximally uninformative dis-
tribution for x, which, for all practical considerations here, may simply be set to the flat
distribution. The entropy is a measure for the difference in information content between P
and Q, and maximizing the entropy is associated with a minimal difference of P compared
to the maximally uninformative reference measure Q. Given this formal definition of the
entropy and the constraint in equation (1.18), obtaining P is described via a constrained
optimization problem where in addition to (1.18) the function P also has to satisfy the
normalization constraint (1.5) to describe a probability density. It is a well defined op-
timization problem, and can be solved using e.g. Lagrange multipliers. In the particular
example chosen above and for x being a real valued random variable (i.E. X ≡ R) this
yields

P (x) = 1√
2πσ2

e−
1
2( xσ )2

∀x ∈ R . (1.20)

This distribution is what is called a maximum entropy distribution, and equals a specific
instance of the famous Gaussian (or normal) distribution which plays a huge role in almost
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all areas of statistics. Analogous to the discussion above, it can be shown that it is also the
maximum entropy distribution in case the first moment is known to take the value m (i.E.
〈x〉P = m) and σ2 measures the variance of x around m. This yields the usual definition
of the normal distribution N , given as

N (x;m,σ2) = 1√
2πσ2

e−
1
2(x−mσ )2

. (1.21)

It is an extremely powerful distribution to summarize the knowledge about a parameter x,
as it encodes an expected value m and a degree of (un-)certainty encoded via the variance
σ2. In addition, its maximum entropy nature ensures that no additional hidden information
enters the state of knowledge described by P , it remains maximally uninformative regarding
everything not determined via m and σ. A normal distribution can also be derived for a
multi-dimensional quantity such as an N-dimensional vector ~x ∈ RN . Given a set of
constraints for each entry xi of ~x of the form

mi = 〈xi〉P (~x) and Dij = 〈(x−m)i(x−m)j〉P (~x) , (1.22)

the maximum entropy distribution is the multivariate normal distribution which takes the
form

N (~x; ~m,D) = 1√
|2πD|

e−
1
2 (~x−~m)†D−1(~x−~m) , (1.23)

where D is a symmetric and positive definite matrix that has entries Dij, |•| denotes the
determinant of a matrix, and † denotes the adjoint of a vector (i.E. its transposed in case ~x
is real, or the transposed and conjugated values in case of complex variables). In analogy to
the scalar case x, this maximum entropy distribution also encodes an expected value as well
as a notion of uncertainty for ~x. In addition, however, the multivariate case also has a notion
of correlation between different entries xi and xj with i 6= j built in, via the corresponding
entry in the covariance Dij. This makes it an extremely powerful and popular distribution
for prior construction as it summarizes some fundamental aspects of any system described
by multiple continuous variables, while being maximally uninformative regarding all other
aspects.

While summarizing a state of knowledge in terms of expectation values is a very simple
and powerful method to approximate information, in some cases there exists a more direct
approach to summarize knowledge. In terms of probability theory, knowledge is always
represented in terms of a probability, and instead of summarizing this information in
terms of expectation values which are ultimately cast back again into a maximum entropy
distribution, it is possible to directly approximate one distribution in terms of another
one which summarizes the information contained in the former distribution as best as
possible. While closely related to entropy principles, this approximation problem poses an
information theoretical question in itself.
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1.3 Approximation of probabilities
From an information theoretical point of view, one immediate question that arises is why
such an approximation might even be desirable. In the context of maximum entropy, it is
clear that introducing some information into a distribution via constraints in order to de-
viate from a maximally uninformative state can be useful for prior construction, but doing
the opposite and removing information seems to be an undesirable goal. As an example,
assume that there exists an informative distribution P (x|d1, I) which was obtained by per-
forming inference given data d1 and furthermore assume that the background information
I is known to be valid. In case a new measurement d2 becomes available, it is clear that
the best prior to choose for the second inference problem is the posterior P (x|d1, I) of the
first one. Deviating from this prior choice by approximating P (x|d1, I) in terms of another
distribution seems like a bad idea, since using an approximation inevitably removes (pos-
sibly) valuable information. At best, the approximation is perfect where in this case the
inference results will simply be equally good compared to using P (x|d1, I) directly.

Even though there exists no direct theoretical reason to do approximation, it becomes
a highly relevant topic in most real world applications, in particular as soon as information
theory meets finite resources. Initially, the theory of approximation has been developed
around the idea of communicating knowledge through a channel with limited bandwidth.
This is certainly a very relevant issue, as any real world communication channel is neces-
sarily limited. In the context of inference, however, the necessity of approximation already
arises once inference problems have to be solved using limited computational resources.
In particular the computation of expectation values, one of the most fundamental ways
of extracting information from a probability distribution, requires integration over the
distribution which, for most practically relevant cases, cannot be computed analytically
but requires an approximation. A direct numerical approximation of such integrals can
be computationally very challenging, and therefore an approximation of P with another
distribution that can easily be integrated is desired. Therefore, accepting that approxima-
tions have to be made in practice, a desirable goal is to at least keep these approximations
as close as possible to the true distributions. In direct analogy to the entropy principles,
the difference in information between two distributions becomes the relevant quantity of
interest, and minimizing the loss of information when moving from the true distribution
to an approximation appears to be a desirable criterion. Indeed, this is also the formal
solution to the approximation problem, where the optimal approximation Q(x) is chosen
such that the loss of information w.r.t. the true distribution P (x) gets minimized. This
information loss is described by the Kullback-Leibler divergence (KL) [76]2, defined as

KL [P ;Q] ≡
∫
P (x) log

(
P (x)
Q(x)

)
dx . (1.24)

It is noteworthy that the formula for the KL only differs from the definition of the entropy
2The mathematical form of the KL was already introduced by Gibbs in 1902 [52], who therefore should

deserve credit for it. Interestingly, Kullback and Leibler actually did not propose the formula referred to
as KL today, but a symmetrized version of it, whereas Gibbs got it right in the first place.
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(1.19) by a minus sign, where for the entropy, however, Q stood for the uninformative
reference measure, while here it stands for the approximation Q of P . Without further
constraints, minimizing the KL w.r.t. Q simply yields Q = P as if possible, using the
true distribution as an approximation is clearly the optimal choice. Information loss only
emerges once additional constraints come into play. Typically the approximation is chosen
out of a parametric family of distribution Q = Qφ, where φ represents a set of parameters,
and this family ideally solely consists of distributions that can easily be integrated. Finding
the optimal approximationQ∗ = Qφ∗ translates into an optimal choice φ∗ of the parameters,
which is obtained by minimizing the KL

φ∗ = argmin
φ

(KL [P ;Qφ]) . (1.25)

Note that in case of the normal distribution discussed above, where φ = (m,σ), the optimal
approximation obtained from minimizing the KL coincides with the maximum entropy
result. In particular computing the first and second moments from P and then determining
the maximum entropy distribution given these moments agrees with the distribution Qφ∗ .
The applicability of the KL, however, extends to arbitrary parameter families including
those that cannot easily be related to moments.

While it appears that given these results the problem of approximating probabilities is
fully solved, it turns out that there remains a very practical challenge that unfortunately
renders this optimal form of approximation infeasible in many cases. As initially motivated,
one of the reasons for approximation is that computing integrals involving P may compu-
tationally be very challenging. To replace P by an optimal Q∗ in those integrals, however,
requires minimization of the KL which itself contains an integral involving P . Thus in case
it is computationally infeasible to compute those integrals, it also becomes infeasible to
do optimal approximation in practice. Therefore, and alternative approximation method
known as variational approximation is often used. This method also relies on minimizing
the KL, but the input arguments P and Q get swapped, i.E. the true distribution becomes
the second input and the approximation Q the first one:

KL [Q;P ] ≡
∫
Q(x) log

(
Q(x)
P (x)

)
dx . (1.26)

This swapped definition is often also referred to as variational KL, or reverse KL. While it
is clear that in general the results obtained using the variational approach differ from the
optimal approximation due to the fact that the KL is non-symmetric in its arguments, it at
least becomes a computationally less demanding quantity, as integrals involving Q should,
by choice of Q, be simpler to compute. Fortunately, in addition, in case Q is close to P
the results obtained by minimization become similar. In particular assuming Q = P + dP
yields

KL [P ;P + dP ] = KL [P + dP ;P ] +O
(
dP 3

)
. (1.27)

Therefore, in practice, given a parametric family Qφ that contains a distribution that is
close enough to P , it is possible to obtain a near optimal variational approximation Qφ̃
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which is close to the optimal choice Qφ∗ via minimization of the variational KL. Care must
be taken, however, once a close match of P cannot be found within Qφ. While optimal
approximation guarantees that the statistical properties that can be captured byQφ (may it
be some specific moments or other properties) are accurately approximated, i.E. precisely
match the respective properties given by P , a variational approximation does not give
those guarantees. In particular assuming again that φ represents the mean and variance of
a normal distribution and furthermore assume that P is not close to a normal distribution
in any way, the resulting variational approximation φ̃ is not guaranteed to represent the
mean and variance values of P any more, whereas an optimal approximation φ∗ guarantees
to be equal to those moments. Therefore, pairing variational approximation with a highly
expressive family Qφ to increase the chances that P can be well approximated in this family
has proven to be crucial to the success of the variational approach. In practice, it has been
demonstrated that this pairing can result in a very powerful approximation tool, even for
highly structured distributions P .

1.4 Imaging via the inference of fields
Having established some aspects of probability theory and Bayesian inference, a few recipes
for prior construction, and a way of approximating the information contained in probability
distributions, it is finally possible to return to the task of imaging and set it up in a
formal way. While the concepts introduced above are valid and used in a much more
generic context then imaging, in particular in astrophysical imaging problems they are
all relevant and constitute integral parts in order to solve those problems. First of all,
astrophysical observations are inherently subject to multiple nuisance effects that, unlike
in a laboratory setting, often cannot be removed as they are out of reach. These effects
partially obscure the information content of an observation or even make it inaccessible.
As an example, consider the task of imaging a distant galaxy, by measuring the light
arriving at a telescope on Earth coming from the galaxy. During its journey, this light is
subject to many distortions, may it be the effects of the atmosphere of the Earth, or e.g.
gas in our Galaxy that partially absorbs the light. While it is nowadays possible at great
expenses to remove atmospheric effects by placing telescopes on satellites that orbit the
Earth, for all what is known today, it remains impossible to place a telescope outside of
our Galaxy. Therefore, while some nuisance effects may be dealt with explicitly nowadays,
there always remain some effects which introduce uncertainty that cannot be removed
and therefore have to be dealt with in a probabilistic fashion. In addition, even though
modern telescopes are capable of obtaining an incredible sensitivity and resolution, when
facing such complex objects as e.g. a galaxy, it is obvious that the information about the
image gathered by the telescope inevitably has to be limited, and therefore additional prior
knowledge regarding the physical plausibility of a resulting image needs to be incorporated.
At the same time, however, directly employing physical theories regarding astrophysical
objects to construct a prior distribution of plausible images can become quite complex,
as our understanding of the Universe has become quite elaborate. Instead, extracting
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the prior information most relevant to the imaging task at hand from a physical theory
and summarizing it in a maximum entropy distribution has proven to be a much simpler
alternative which in many cases yields (almost) equally detailed posterior results. Finally,
while the information gathered by telescopes may be limited viewed from the perspective
of obtaining a complete picture of our Cosmos, it is in almost all cases at the very limit
of computational feasibility, and often those limits have to be pushed further to cope with
every new generation of telescopes. Therefore, approximations of the posterior information
are usually inevitable in order to access the information content in a way that can be used
to draw conclusions in practice, which makes a theory for approximation and in particular
variational approximation very valuable to astrophysical imaging.

1.4.1 Images and field like objects

The traditional view of imaging in observational astronomy by taking the word image
literal, i.E. via mounting a camera at the end of a telescope, was historically the way to
gather information about the sky. Even in this historic setting, in principle, there already
exists a distinction between an image, the quantity of interest of the observation, and
the output of the camera, the data, which is the film that had to be developed in order
to retrieve an image. Nowadays, telescopes are of course much more complex, and while
some are still build around the concept of a telescope and a camera, some employ entirely
new observation techniques. Nevertheless, the idea of data remains, i.E. any measurement
device outputs data that contains information regarding some quantities of interest. As
discussed in the beginning of this introduction, however, these quantities often deviate
from a literal image and, in many cases, are better described as a physical observable
that is as closely related as possible to (or even equal to) the fundamental quantities that
describe the physical system that has been observed. As an example in [79] a tomographic
reconstruction of the three dimensional density of the galactic dust extinction has been
carried out using the data obtained from the Gaia satellite. This dust extinction can be
regarded as a three dimensional scalar field, i.E. a quantity that takes a value at every
location in space, and therefore has little to do with a literal image. In addition, even
though it is certainly closely related to the distribution of Galactic dust itself, from the
point of view of a physical theory it is a derived quantity, as the dust density has to be
accompanied with an absorption mechanism in order to give rise to the extinction density.
Nevertheless, in order to constrain open parameters or to test the validity of a model for
Galactic dust, the extinction density provides a much more direct and easily accessible
description of the information gathered by Gaia compared to the measurement data itself.
In this sense, what used to be an image has become a physical observable that ideally
carries all information contained in the measurements, while being easily accessible in
order to test theories about our Universe against it. This ability to test theories has, aside
from the obvious desire to display the Universe as detailed as possible, always been at the
very core of observational astronomy.
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1.4.2 Fields
What precisely defines an observable depends on the context of a given astrophysical
inference problem, but in many cases may be described as a field like quantity that is
extended in space, time, frequency, or a combination of thereof. Furthermore it is assumed
to be free from all contributions that obscure the observable, may it be the Galaxy acting as
a foreground for extra-galactic observations, the effects of the atmosphere, or contributions
directly attributed to the telescope such as effects due to the detector geometry, incomplete
coverage of the observed field of view, and the various nuisance effects that every detection
mechanism experiences. While the field may be free of those effects, they are present
in the observations, and therefore the goal of field inference is to recover all plausible
field configurations that may have led to the observed data. To do so, the concepts of
probability theory that have been established for scalar and vector valued parameters,
have to be extended to fields. Performing this extension is subject of Information Field
Theory (IFT) [34] which applies the rules of probability theory to the task of reasoning
about field like quantities.

Mathematically, a field is defined as a function s (~x) which maps a position ~x in an
N -dimensional space ~x ∈ X ⊂ RN onto a scalar value, a vector or a tensor. For the sake
of simplicity only scalar fields are considered here, specifically

s : X → R

~x→ s (~x) . (1.28)

Furthermore s is restricted to be an element of a space of functions, often it is the space
of square integrable functions s ∈ L2 (X ), which implies that

s†s ≡
∫
X
s∗ (~x) s (~x) dNx <∞ , (1.29)

where ∗ denotes complex conjugation in case the fields map onto complex values, and a†b
is a short notation for the integral and represents a scalar product on L2. Mathemati-
cally, assigning probabilities to fields in a formal way is a non-trivial task and therefore
this approach is solely motivated in this introduction. The interested reader may refer to
e.g. [32]. It can be shown that L2 fulfills all axioms of a vector space and therefore may
be regarded as an infinite dimensional space with a distance measure given via the scalar
product defined in equation (1.29). Therefore, setting aside the issue of infinite dimensions
for a moment, it may be argued that distributions such as the multivariate normal distri-
bution given in (1.23), which are valid for finite dimensional vector spaces, may also apply
to infinite dimensional ones. In fact, an instructive view on spaces such as L2 is given as
the limiting case of a finite dimensional space. In particular given a space X it is possible
to define a pixelization of this space, e.g. by dividing the space into a regularly pixelated
grid, where all edges of a pixel have length ∆x. A value si may be assigned to all pixels
that represents the average value of the field s in this pixel. Collecting all those values
results in a finite dimensional vector ~s for which a probability distribution P (~s) can be set
up. Assuming that s(~x) does not vary arbitrarily between neighbouring locations ~x there
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exists a pixelization scale which, if fine enough, results in a discrete representation ~s which
becomes basically indistinguishable of the field s. Therefore by taking what is known as
the continuum limit, i.E. increasing the number of pixels while simultaneously decreasing
the size of ∆x such that the area covered by the pixelization does not change, the vector
~s converges towards what is defined as the field s in case s does not vary too extremely.
As probabilities are designed to describe states of knowledge about an object, having an
object converging to another object in the limit, also implies that the probabilities have to
become equal, specifically P (~s) → P (s) in the limit. Care must be taken mathematically
to ensure that this limiting process converges which translates to some restrictions that s
must uphold, which are discussed in further detail in chapter 2.

Assuming for the moment that those requirements are met and that the limit is indeed
well defined, the exemplary case of a normal distribution can be extended to fields, where
its distribution takes the form

P (s) = N (s;m,D) ≡ 1√
|2πD|

e−
1
2 (s−m)†D−1(s−m) . (1.30)

While the symbols are deliberately chosen such that the distribution resembles the defini-
tion of the multivariate case (1.23) to emphasize its relation to it as a limiting case, their
precise meaning differs in the above formula. Note, however, that every mathematical
object as well as every operation involved in equation (1.30) has a corresponding discrete
counterpart which defines it via taking the continuum limit thereof. While the meaning
of m as being the expected field configuration m(~x) ∈ L2(X ) of s is somewhat intuitive,
the precise definition of the covariance D requires some more explanation. It arises as the
second moment of s and is defined as

〈s(~x)s(~y)〉P (s) ≡ D(~x, ~y) , (1.31)

and therefore is a function that maps two positions ~x, ~y ∈ X onto a real number,

D(~x, ~y) : X × X → R . (1.32)

It describes the correlation between the values of s at two locations ~x and ~y. At the same
time D can also be understood as a linear operator that acts on fields, i.E. D : L2(X ) →
L2(X ) with an action defined via

(Ds)(~x) ≡
∫
X
D(~x, ~y) s(~y) dNy . (1.33)

This may seem surprising at first, but may best be understood using its discrete coun-
terpart. Specifically a discrete covariance also describes the correlations between different
entries of their corresponding random vector via its entries, while simultaneously represents
a matrix, i.E. an operator that acts on elements of the associated discrete vector space and
also outputs a vector. In this sense, a covariance function D is no different, its actions are
merely carried out in the continuum.
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1.4.3 Inference
Having established a notion of probabilities in the context of fields, it is finally possible
to set up probabilistic inference models for fields. Returning to the problem of inferring
astrophysical objects from data obtained from a telescope, one integral part that remains
missing is how to properly set up the likelihood, i.E. the distribution that relates the
observable fields s that are of interest, to data d. As said initially, an observable is ideally
free from any obscuring contamination, to make the information as accessible as possible.
This contamination, however, is present in reality and also imprints onto the data, and
therefore if it is not captured by s, it has to be modeled by another quantity. This quantity
ultimately defines the relation to data and is known as an instrument response, a map that
takes a possible configuration of s as an input, and outputs the average response of the
instrument to this input. Specifically, keeping the simplifying assumption of scalar fields
s ∈ L2(X ), and furthermore assuming that the obtained data is given as anM dimensional
and real valued vector d ∈ RM , a response R may be defined via

R : L2(X )→ RM

s→ R [s] . (1.34)

In addition to R encoding the various distortions that the information contained in s
experiences on its way to (and in some sense also through) the telescope, it necessarily also
has to encode some sort of discretization operation. While the field s is defined to be an
infinite dimensional quantity, data hast to be finite dimensional as it is simply impossible
to collect an infinite amount of data. Such discretization operations are often determined
by the type of the detector, may it be a pixelated camera that measures the incoming
flux integrated over the pixels, or a device that probes the field of view at multiple sparse
locations. The output of the response, however, is usually not yet what is precieved and
stored as data, as there are typically also noise contributions, i.E. effects caused by other
processes independent of the process related to s, that imprint on the data. One simple
example may be additive noise n which allows to determine the relation between s and d
via

d = R [s] + n . (1.35)

A relation of this form is also referred to as data model since, together with a known
distribution P (n|I) of the noise, allows to set up a likelihood distribution P (d|s, I) via

P (d|s, I) =
∫
δ (d− (R [s] + n)) P (n|I) dn = P (n = d−R [s] |I) , (1.36)

where I denotes all background information regrading the form of P (n) and R that is
necessary to make this formula explicit.

While the procedure of translating a data model into a likelihood can identically also
be used in a discrete setting by simply changing the space on which R acts, having an
infinite dimensional quantity of interest has some special implications when using such a
likelihood for inference. In particular assuming a discrete example with K statistically
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independent entries in ~s and furthermore assuming that the measurement data probes
M < K of those without any measurement error, it is clear that after the measurement
only K − M entries remain that are not fully constrained by the data. In case of an
infinite dimensional s, however, obtaining M measurements of the field, e.g. by probing
it at M distinct locations, still leaves an infinite number of field configurations that fulfill
those M constraints. If in addition the prior for s is chosen uninformative, i.E. assigns
equal plausibility to every possible field configuration, it is evident that measuring those
M locations does not constrain the values at other locations in X at all. In fact, only
prior knowledge, e.g. regarding the correlations between field values at different locations,
enables a propagation of the information gathered by knowing the field values at those M
locations to other locations of the space. Therefore, while in a discrete case a prior may
also be chosen uninformative, to infer fields in a way that constraints the configuration
globally, an informative prior becomes a necessity.

1.4.4 Prior correlations
The construction of a prior for fields usually follows the same maximum entropy principles
as discussed in 1.2.2. Which information about the field s is best included a priori, however,
in general depends on the measurement setup as this setup determines which information
will be constrained by the data and which additional information may be necessary to
propagate it. In many cases, however, being able to constrain the covariance structure D a
priori is extremely valuable, as it gives a simple and direct notion of dependency between
different field values. The expectation value m may, of course, also provide valuable infor-
mation. In many cases, however, such an expected configuration is not readily available
a priori. Therefore, it has become a simple and powerful approach to imaging to use a
Normal distribution for s where the covariance D is set using physical knowledge regarding
s.

Fully determining D(~x, ~y) from theory, however, may be a challenging task as it requires
a detailed knowledge regarding the dependencies of s at all locations. Therefore sometimes
simpler, less restrictive constraints are used as a prior. One prominent example is to reduce
the constraints to the shifted average of s, given as

b(~x) = 1
V

∫
X
s(~x+ ~y) s(~y) dNy , (1.37)

where V denotes the volume of X . The maximum entropy constraint is then given by
setting the expected value of b as

B(~x) = 〈b(~x)〉P (s) . (1.38)

The resulting distribution for s remains a Normal distribution where D takes the form

D(~x, ~y) = B(~x− ~y) , (1.39)

i.E. the covariance solely depends on the vector distance between two locations rather
then both locations itself. Due to this fact, such a prior is also known as a statistically
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homogeneous prior distribution and B is often referred to as the kernel of P (s). From
the maximum entropy perspective, it is clear that this is a less restrictive distribution
compared to a generic normal distribution, as additional constraints not covered by B
have to be made in order to arrive at a general (in-homogeneous) covariance structure
D(~x, ~y). Unfortunately, whether or not a prior distribution is statistically homogeneous
is often falsely attributed as an assumption regarding the prior, which might suggest that
homogeneity is a restricting property that may not be true and should be tested for. From
the perspective of prior construction, however, it becomes clear that this is not the case.
Considering a system that is assumed to follow an arbitrary in-homogeneous, or even non-
normal distribution P̃ (s), it is clear that the kernel B, as defined via the expectation value
of b, can also be computed for P̃ (s). While in general this kernel is certainly no complete
description of the system defined via P̃ , it is nevertheless a quantity that also exists for it
and might carry partial information of it. Therefore, using a homogeneous normal prior
distribution P (s) that matches the kernel obtained from P̃ (s) in an inference problem,
simply implies that the least informative prior distribution that matches the kernel of the
system is used during inference. The resulting posterior distribution cannot be “false” in
the sense that it is inconsistent with the posterior distribution obtained using P̃ (s), the
only benefit from using P̃ instead of P can be an increase in the certainty regarding the
results, as P̃ has to be at least as informative as P by construction. The misconception of
properties such as homogeneity being assumptions stems from the perspective of a prior
being a model for the system. In case of a distribution being a model, as it is the case for
P̃ , statistical homogeneity is certainly an assumption regarding the system that may or
may not be true. In fact hypothesizing and testing for such assumptions is a fundamental
aspect of modeling nature with physical theories. A prior distribution, on the other hand,
does not necessarily have to be a complete description of the system, in fact, to be useful
in practice, it is often sufficient if it encodes some important, but partial information
regarding the system under consideration.

To conclude the discussion regarding priors of fields, a second, valuable reduction in
the number of constraints, namely statistical isotropy is considered. It often appears in
combination with homogeneity and, for the sake of simplicity, is solely considered in this
joint context here. Its constraints may be defined via the expectation value of the spherical
average of b. Specifically

C(r) = 1
(2π)N−1

〈∫
b(~x) dΩN−1

〉
P (s)

, (1.40)

where r ≡ |~x| denotes the length of ~x and Ω denotes a parametrization of the hypersphere
over which the integration is performed. Its maximum entropy distribution is a normal
distribution where the covariance takes the form

D(~x, ~y) = C (|~x− ~y|) , (1.41)

and therefore C is also often referred to as a spherical symmetric kernel. This prior can be
a simple and powerful distribution in case X represents a space where the dimensions share
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the same meaning, e.g. in case X is a subset of the three dimensional physical space, or is
the two-dimensional sphere on which the sky may be defined. In such cases, even solely
the specification of the spherically averaged correlations of a process can provide sufficient
additional prior information such that inference can be performed successfully.

1.5 Work presented in this thesis
To enable the usage of statistically homogeneous and/or isotropic prior distributions for the
inference of a physical observable requires to correctly determine the kernels from the un-
derlying physical system describing the observable. In many cases, however, aspects of the
theory may be the subject of active research, and no definite choice of a kernel can be pro-
vided by theory. To circumvent the need of directly specifying a prior kernel for inference,
the first part of this thesis focuses on the development and application of an alternative
approach. In particular, by constructing prior distributions for kernels themselves, a joint
inference problem is set up and solved for in order to determine the appropriate prior ker-
nel together with the original quantity of interest. Roughly speaking, the construction of
priors for kernels evolves around identifying shared properties of classes of physical systems
and their impact on prior kernels. This ultimately leads to prior distributions of physi-
cally plausible kernels which, while developed around the context of astrophysical imaging,
also remain valid and applicable in a broader context of inference of field like quantities.
Therefore, in addition to astrophysical imaging tasks, also non-astrophysical examples are
discussed, some of them even outside the scope of imaging.

Chapter 2 establishes a relation between statistically homogeneous correlation kernels
for fields defined in space and time and the dynamic response of the underlying system
to external influences. Utilizing fundamental properties valid for any physical response
function, such as e.g. the requirement of a causal propagation of the response in space-
time, allows to define a prior distribution of plausible kernels respecting those constraints.
Several realizations of this prior together with different measurement configurations are
set up to demonstrate and establish the range of applicability. The content of this chapter
contains work that has been peer-reviewed and published in Annalen der Physik [46].

In chapter 3, a model for physically plausible, statistically homogeneous and isotropic
correlation structures is discussed. In addition, a way of combining multiple of such ker-
nels is described which determines the prior correlations of fields defined over a space that
is given as the product of multiple sub-spaces. The results are used in order to obtain
the first space, time and frequency resolved reconstruction of the galactic center of the
galaxy Messier 87 using data obtained in the 2017 observational cycle of the Event Hori-
zon Telescope. The chapter contains parts of work that has been carried out in a joint
effort together with colleagues of mine and has been submitted for publication to Nature
Astronomy, where it is currently under review [8].

The homogeneous and isotropic model discussed in chapter 3 is based on an idea initially
formulated in [88] which has been further developed throughout the course of this work [9]
with its latest version being the one discussed in chapter 3. This latest incarnation of the
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model has proven to be successful for field inference in a variety of additional astrophysical
inference problems in the domains of radio astronomy [7], galactic all-sky imaging [62, 63],
three dimensional galactic tomography of dust [79, 78], and astroparticle physics [110], but
also non-astrophysical related problems [56, 95].

In addition, in chapter 4 an advanced application of a variant of this model is discussed
in the context of simulating partial differential equations (PDEs). First, the task of PDE
simulation is cast into an inference problem where the constraint of satisfying the PDE at
a location in space-time is regarded as an observation which, together with a prior model
for the solution of the PDE, is cast into a posterior distribution regarding plausible field
configurations that satisfy the PDE constraints. The content of this chapter contains work
that has been submitted for publication to Physical Review E [45].

The remaining part of this thesis, chapter 5, focuses on the numerical realization and
approximation of inference problems, where the main focus is on variational approxima-
tions of posterior distributions that are too complex and high dimensional to be handled
differently in a reasonable way. The issue of selecting a family of approximating distribu-
tions that are guaranteed to contain a close match for the true posterior in order to ensure
the validity of the entire variational approach is addressed. In particular a family of dis-
tributions is developed that matches the geometric properties of the posterior distribution
when interpreted as a function of the quantities of interest. This geometric match ensures
that by construction, the family contains a distribution that provides a close match for one
mode of the posterior and therefore guarantees the validity of a variational approximation
regarding this mode. One main result of this chapter is the development of an associated
algorithm called geometric Variational Inference (geoVI), which allows for an efficient so-
lution of the related inference problems. The content of this chapter contains work that
has been peer-reviewed and published in Entropy [47].

The implementations of the kernel models discussed in chapter 2 and 3, as well as an
implementation of geoVI have been deployed in version 7 of the software package Numerical
Information Field Theory (NIFTy). In this way, the kernel models provide integral parts
to the construction of inference models, while geoVI serves as a central inference engine to
approximately solve those inference problems.

Finally, chapter 6 concludes this thesis and reflects on some of the findings of this work
and their implications regarding astrophysical imaging, but also probabilistic inference in
general. Furthermore, an outlook on possible future research goals is given which may help
to improve and extend the existing described methods, or to remove some of its discussed
limitations.

1.6 Additional Work
During the PhD: Aside from the work presented in this thesis, I contributed to various
additional research projects throughout the course of my PhD. In [83], a decomposition of
the Galactic multi-frequency sky was performed using a Bayesian and extended variant of
a Variational Autoencoder, where I was involved in the development of the utilized method
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and contributed to the theoretical model. This work utilizes an improvement version of
Galactic all-sky maps provided by [84], where I was involved in the development of the
Gaussian Mixture Model variant used to perform the analysis. In addition, in [110] I
contributed a prototype of the inference method used to perform the reconstruction of
detectable radio pulses that arise from the particle showers of high energy cosmic rays.
A Bayesian unification of the imaging and calibration process in radio interferometry was
achieved in [9], where I contributed to a model for statistically homogeneous and isotropic
correlation structures, its implementation, and the associated text. This model can be seen
as a predecessor of the model discussed in chapter 3. In [111], the connections between the
inference of dynamical systems and a supersymmetric theory of stochastic dynamics are
established, where I helped to illustrate how the spontaneous breakdown of supersymmetry,
in which case a system evolves chaotic, affects the uncertainty of associated inference
problems. To enable the study about the causal correspondence between the age and the
SARS-CoV-2 viral load of a patient done in [56], I contributed to the development of a
non-parametric estimator for probability densities. Finally, all numerical implementations
discussed in this thesis, as well as most applications in these related works, utilize the
software package NIFTy, where I have been involved in the development of versions 3 - 7
[102, 6].

Before the PhD: In [48], I developed a predecessor to the method discussed in chapter
2, which features a simplified model for the correlation structure of a dynamical system.
In addition, I contributed to the development of a method to separate the diffuse emission
from point sources in astrophysical images [72, 73]. Finally, in [49] I developed a method
to study the relations between galaxy properties and the properties of their surrounding
cosmological large-scale-structure.



Chapter 2

Field dynamics inference for local
and causal interactions

The following chapter has first been published in Annalen der Physik with me as the first
author [46]. All authors read, commented, and approved the final manuscript.

Abstract
Inference of fields defined in space and time from observational data is a core discipline
in many scientific areas. This work approaches the problem in a Bayesian framework.
The proposed method is based on statistically homogeneous random fields defined
in space and time and demonstrates how to reconstruct the field together with its
prior correlation structure from data. The prior model of the correlation structure is
described in a non-parametric fashion and solely builds on fundamental physical as-
sumptions such as space-time homogeneity, locality, and causality. These assumptions
are sufficient to successfully infer the field and its prior correlation structure from noisy
and incomplete data of a single realization of the process as demonstrated via multiple
numerical examples.

2.1 Introduction
Modeling as well as inferring quantities defined in space and time on the basis of obser-
vational data thereof has always been at the very core of many scientific areas. In recent
years, astrophysical imaging began to become sensitive to the temporal dimension, in ad-
dition to the spatial ones. This is due to the fact that although large astrophysical objects
such as galaxies appear to be static on observational timescales, small objects such as stars
and binary black holes exhibit transient, periodic, and quasi-periodic modulations of the
emission on observable timescales.

In addition, the spatio-temporal correlation structure of non-astronomical systems plays
a central role in the calibration of modern telescopes. In particular the temporal variability
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of these systems is used in order to identify and distinguish them from the typically static
astronomical object of interest. As a prominent example, modern radio telescopes such as
LOFAR [109] or the upcoming SKA are limited in resolution by the deflection of incoming
radio signals due to the ionosphere. The strength of these distortions ultimately depends
on the electron density of the ionosphere. As this density is not known for all observed
locations x at time t, it has to be inferred along with the incoming flux. Typically, the
electron density is probed via observing a calibration target with known flux at location
x′ and time t′. Therefore, it is also necessary to make a statement about the correlation
structure of the electron density in order to extrapolate the information gained at (t′, x′)
to the space-time location (t, x) where the actual observation is made.

In order to tackle these as well as other inference problems of this kind in space and
time, we have to perform inference of continuous quantities, or fields, from a finite set of
measurement data. This problem is in general ill-posed, as we aim to constrain infinite
degrees of freedoms (dofs) on finite, usually also noisy, measurements. Consequently we
rely on Bayesian inference, more precisely on Information Field Theory (IFT) [32], and use
this language to encode prior knowledge about the system under consideration. Typically,
this prior knowledge is incomplete, and there exist a set of unknown hyper-parameters,
such as the spatio-temporal prior correlation structure, which have to be inferred along
with the field of interest. We outline in this paper how physically motivated concepts such
as spatio-temporal homogeneity, locality as well as causality can be encoded into the prior
correlation structure. Furthermore, we demonstrate that the resulting hierarchical prior
model is restrictive enough to perform inference on the basis of noisy and incomplete data
of a single realization of the process, while still being flexible enough to capture complicated
correlation structures.

Traditionally there exist two different pictures on random fields in space-time, one
results in space and time being treated separately [89, 55], while the other models the
field as defined over a single space, namely space-time [28, 97] (see e.g. [5] for an extensive
discussion). In this work we rely on the latter picture. Consequently the corresponding
inference problems can be regarded as the task of inferring a field defined on a single space,
given a finite amount of measurements in this space.

To this end, in section 2.2 we start with a brief introduction to IFT and the notation
used in this work. In section 2.3 we discuss how to encode our prior knowledge about
the field and its correlation structure into a joint prior distribution thereof. This prior
is then used in section 2.4 in order to solve the corresponding inference problem and
the performance of the resulting algorithm is demonstrated in section 2.5. Ultimately, in
section 2.6, we conclude the paper with a brief summary of the proposed concepts.

2.2 Information Field Theory and Gaussian processes
Information Field Theory is a statistical field theory that aims to describe Bayesian infer-
ence of fields defined over some continuous space, or space-time. For simplicity, we first
consider a one dimensional random process, and provide an extension to space-time at the
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end of this section. To this end, consider a zero mean square-integrable random process s
defined over a closed interval I = [0, B], i.E. sx ∈ L2(I) with probability P (s). We define
the covariance function S as

S(x, y) ≡ 〈sx (sy)∗〉P (s) , (2.1)

where ∗ denotes complex conjugation. If we associate with S a linear operator OS : L2(I)→
L2(I) and define its application via

(OSs)x ≡
∫
I
S(x, y)sy dy , (2.2)

we may define the eigenvalues λk and eigenfunctions ek of the linear operator OS via

(OS ek)x =
∫
I
S(x, y) eyk dy = λk e

x
k . (2.3)

Since the eigenfunctions of OS form an orthonormal basis and the random process s lies
within the span of ek, the Karhunen-Loève theorem [67, 80] states that smay be represented
in this basis as

sx =
∞∑

k=−∞
exk s̃

k , (2.4)

with the modes s̃k defined via

s̃k ≡
∫
I

(exk)
∗ sx dx with

〈
s̃k
〉

= 0 ,
〈
s̃k s̃q

〉
= δkq λk ∀k, q ∈ Z . (2.5)

Specifically all s̃k become zero mean and uncorrelated random variables with variance λk.
Consequently, an inference problem of sx can be reduced to an inference problem in s̃k

2.2.1 Statistically homogeneous Gaussian processes
Statistically homogeneous Gaussian processes are a special, but very useful, process for
prior modeling of physical processes as the statistical homogeneity implies that a priori no
specific location in I is singled out. We may again define a zero mean random process sx
with the additional requirement that the covariance takes the form

S(x, y) = S(x− y) ∀x, y ∈ I . (2.6)

If we additionally require the space to obey periodic boundary conditions such that

sx+B = sx and S(x+B, y) = S(x, y) , (2.7)

the Wiener-Khinchin theorem [112] implies that the eigenbasis of the linear operator as-
sociated with this covariance function is the Fourier basis and its spectrum is the Fourier
power spectrum. This allows for a representation of s as

sx =
∞∑

k=−∞
e

2π
B
ikx gkξk with

∣∣∣gk∣∣∣2 = λk , ξ
k ∼ G(ξk, 1) ∀k ∈ Z , (2.8)
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where i denotes the imaginary unit and ξk are independent and identically distributed
Gaussian random variables with mean zero and variance one. For a compact notation we
may define the Fourier transformation Fkx = e

2π
B
ikx and an infinite dimensional diagonal

matrix Ĝk
q = δkqg

k to write

sx = (FĜξ)x ≡
∞∑

k=−∞

∞∑
q=−∞

Fxk Ĝk
qξ
q . (2.9)

The application of its adjoint, abbreviated as F †, is defined as

s̃k =
(
F †s

)k
≡
∫

(Fxk )∗ sx dx . (2.10)

2.2.2 Linear Measurements and the Wiener Filter
In order to perform Bayesian inference of s given some observational data d, we require
a data generating model (or data-model) that describes how d is obtained from s and
possibly additional nuisance parameters n that describe the measurement noise. A simple
but very powerful idealized model is a linear measurement of s with additive Gaussian
distributed noise n, independent of s, defined as

di = (Rs)i + ni =
∫
I
Ri
xs
x dx ∀i ∈ {1, ...,M} with n ∼ G(n,N) , (2.11)

where R : L2(I) → RM is a linear operator that maps onto a discrete M -dimensional
space, called data space, and G(n,N) denotes a Gaussian distribution with zero mean and
covariance N . A linear measurement operator may represent common scenarios such as
measurements of values at single locations, integrated measurements over a specific area,
partially masked areas, convolution with a point spread function, and linear combinations
thereof.

We can represent the data-model (Eq. (2.11)) as a generating process in terms of ξ by
inserting the Fourier basis representation of s (Eq. (2.9)) to get

d = RFĜ ξ + n . (2.12)

The inference problem may thus be regarded as the task of constructing the posterior
distribution of ξ, given d and the background information i.E. the specific form of R and
the prior spectrum g which in turn defines Ĝ. This problem allows for a closed form
solution by means of quadratic completion (see e.g. [32]) and the posterior remains a
Gaussian distribution with mean mξ and covariance Dξ given as

Dξ =
(
Ĝ†F †R†N−1RFĜ+ 1

)−1
= 1− Ĝ†F †R†

(
RFĜĜ†F †R† +N

)−1
RFĜ

mξ = DξĜ
†F †R†N−1d = Ĝ†F †R†

(
RFĜĜ†F †R† +N

)−1
d

(2.13)

where the first part of the equations is the common representation of the Wiener Filter,
now for a infinite number random variables ξ which are the coefficients of the random
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process s in the eigenbasis of its prior. The right hand side can be obtained by straightfor-
ward manipulation of the expressions. It has the convenient property that the only matrix
inversion involved appears in the finite dimensional data-space and thus entirely avoids
inversion of infinite dimensional matrices.

The posterior of the coefficients ξ can be used to construct the posterior of s by insertion
of the modes into the expansion of s (Eq. (2.9)). Therefore the posterior mean m and the
covariance D of s are denoted as

m = FĜ mξ and D = FĜDξĜ
†F † . (2.14)

This concludes the description of the Wiener Filter theory applied to square integrable
random processes in terms of the eigenbasis of the linear operator associated with the
prior covariance. A mathematically more rigorous and coordinate free discussion of these
concepts is beyond the scope of this work, but is described in great detail by e.g. [105].

2.2.3 Consistent discretization
For many physically relevant choices of R and Ĝ the Fourier integrals involved in Eqs.
(2.13) and (2.14) may be difficult to solve or may not have a closed form representation
analytically. Therefore, for practical applications, the inference problem is often discretized
and the discrete problem is solved instead. However, as shown by e.g. [82], care must
be taken when defining a discretization in order to ensure that the finite dimensional
approximation is consistent with the infinite dimensional inference problem. In this work,
we achieve a discrete representation by truncating the Fourier series at a maximal / minimal
value ±K/2. Specifically

s̄x ≡
∑
k∈W

gkξk e
2π
B
ikx with W ≡ {−K/2, ...,K/2} . (2.15)

A measure for the discretization error may be defined by means of the expected squared
difference between s̄ and s as

(εx)2 ≡
〈
|sx − s̄x|2

〉
=

∑
k∈Z\W

〈∣∣∣gkξk e 2π
B
ikx
∣∣∣2〉 =

∑
k∈Z\W

∣∣∣gk∣∣∣2 ∀x ∈ I , (2.16)

which quantifies the difference between the infinite dimensional process and the finite
dimensional approximation of the quantity of interest s. In order to ensure that inference
is consistent, the discretization error εR of the observed quantity Rs has to be considered.
It is given as(

εjR
)2
≡
〈∣∣∣(Rs)j − (Rs̄)j

∣∣∣2〉 =
∑

k∈Z\W

∣∣∣gk∣∣∣2 ∣∣∣(Rek)i∣∣∣2 with exk = e
2π
B
ikx . (2.17)

A small εR is sufficient to ensure that the discrete approximation of the inference problem
is close to the continuous one as it ensures that the contribution of modes not in W to
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the observed quantity is small and therefore the information gained about these modes via
the observation is also small compared to the information gain about the modes in W .
For posterior analysis of s it is also relevant to have a good discrete approximation and
therefore in general also ε should be small.

A minimal requirement is that the Gaussian process is continuous, which implies that∣∣∣gk∣∣∣2 decays asymptotically at least with 1/|k|2+γ , γ ≥ 0. This ensures that the series
expansion of s converges and that there exists a K such that ε becomes small. Fortunately,
the assumption of continuity is met by most physically relevant processes.

In general, the magnitude of εR can only be specified for a given measurement scenario
as it depends on the specific form of the measurement operator R. However, as the prop-
erties of R can fully be defined via its action on the Fourier basis ek, we may qualitatively
discuss three distinct cases. First, consider the case where |Rek|2 ∼ O(1). Typical ex-
amples are the measurements of individual locations or sub intervals of I. In this case εR
is comparable to ε. The second case are measurements that suppress small scales, as for
example integration over an interval or convolution with a spatially extended kernel such
as a point spread function. In case of integration, we get that |Rek|2 ∝ 1/|k|2 and thus εR
becomes smaller then ε. In these two cases the discretization error of the observable is
comparable or smaller then ε and thus a small discretization error for the field is sufficient
for a consistent reconstruction. The third case are measurement operators which amplify
small scale structures. One important special example are measurement operations involv-
ing spatial derivatives. The action of the derivative on ek leads to a multiplicative factor
proportional to k and therefore |Rek|2 ∝ |k|2. Care must be taken in this case since εR
may become large or even infinite even though ε is small. This also shows that not all
combinations of g and R lead to an inference problem that allows for a consistent finite
dimensional representation.

Nevertheless, given a consistent combination of g and R, there always exists a cutoff
K, that can be chosen prior to the reconstruction, for which the error between the discrete
representation and the continuous inference problem becomes small.

Unknown prior spectrum

In this work, however, we aim to infer the prior correlation structure, specifically the form
of g, in addition to ξ, from the observed data. This poses a problem, since we cannot
deduce a sensible choice for K a priori. In some cases, the measurement setup allows to
provide an estimate for the small scale / asymptotic behaviour of the true spectrum from
the observed data, and therefore allows to set K accordingly. In many cases, however,
such an estimate is not feasible without performing the full reconstruction. One approach
to resolve this issue is that after a reconstruction with a chosen K, a new reconstruction
using a larger cutoff K ′ > K is performed, and both results are compared. If the two
results obtained this way are similar, specifically if the difference between the large and
small reconstruction for s as well as the observable Rs are small, we may conclude that the
chosen discretization sufficiently resolves the true underlying process. If this is not the case,
the reconstruction has to be re-run with an even larger cutoff and the procedure has to be
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repeated, until the deviations become small enough. This ensures that the reconstruction is
consistent with the infinite dimensional problem, assuming that the true observed process
has a further decaying spectrum for modes above the cutoff.

2.2.4 Higher dimensional representation in space-time
In order perform inference in a space-time setting we define a d + 1 dimensional space Ω,
where d is the number of spatial dimensions. Specifically we define

Ω ≡ [0, T ]⊗
(

d⊗
i=1

[0, Bi]
)
, (2.18)

and impose periodic boundary conditions along each axis of Ω. This allows for a multi-
dimensional Fourier series expansion of random processes s ∈ L2(Ω), that are statistically
homogeneous in space and time, in direct analogy to the one dimensional setting. Further-
more we may label coordinates on Ω via x = (t,x), and additionally k = (ω,k) labels the
associated Fourier modes.

The periodic boundary conditions introduce possibly unwanted correlations between the
boundaries, in particular along the time axis. To avoid this, we extend the time domain to
2T , to be twice the size of the observed domain, and ensure by construction of the prior of g
that the process becomes uncorrelated for moments in time with a distance greater than T .
Similar to the procedure of finding an appropriate discretization, we may ensure that the
posterior of g has sufficiently decreased within the interval [0, T ] after the reconstruction.
If this requirement is not met, the time domain has to be enlarged even further and the
reconstruction is performed again. For the sake of simplicity, in all examples of this work,
we keep the periodic boundaries in the spatial dimensions. However, these may be omitted
as well by an analogous extension of the space.

2.3 Prior
In the introduction we proposed three different concepts we aim to encode into our prior
model, particularly into the prior of the correlation structure, defined via g. These are
• Statistical space-time homogeneity

• (Spatio-) temporal causality

• Locality.
The first concept is already satisfied by construction as we assume that the correlation
structure is diagonal in the Fourier representation and thus fully specified via the Fourier
spectrum g. We may associate a Linear operator G with g, by Fourier transforming the
diagonal Matrix Ĝ defined in Eq. (2.9) as

G(x, x′) = G(x− x′) ≡
(
FĜF †

)
(x, x′) =

∞∑
ω=−∞

∞∑
x=−∞

gωk e
2πi
(
ω t−t

′
2T +k·x−x′

B

)
, (2.19)
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where B = (B1, ..., Bd) denotes the length of the spatial domain along each axis and ·
denotes the scalar product. This is the representation of G in space-time coordinates.
Indeed we find that

sx =
(
FĜξ

)x
=
∫

Ω
G(x− x′) ξx′ dx′ with ξx

′ ≡ (Fξ)x
′
. (2.20)

This equivalence allows for a convenient physical interpretation of G and ξ. Assume that
s models the deviations of a physical system from its steady state, induced via an external
force, an excitation. Furthermore assume that the response of the system to such an exci-
tation is stationary in space and time, i.E. is the same irrespective of where the excitation
happened. This implies that ξ plays the role of the external excitation, while G models the
stationary response (also called Green’s function) of the system to ξ. This interpretation
is purely artificial at this point, however it motivates the prior concepts that we aim to
include into G as they are fundamental for the response of a physical system.

The second concept, causality, is introduced via an additional constraint on G. As
G should model the response of the system to the excitations ξ, it should not contain a
response at times before an excitation happens. This can be formulated mathematically
as

Gc(x− x′) = Θ(t− t′) G(x− x′) , (2.21)
where Θ denotes a step function in time. This trivially ensures that no response happens
before an excitation. Technically, as we imposed periodic boundary conditions in time, the
constraint has to be modified such that

Gc(x− x′) = Θ(t− t′) Θ(T − (t− t′)) G(x− x′) . (2.22)

The additional step function ensures that an excitation at t′ can only cause a response
within the interval [t′, T+t′] but leaves later times unaffected. Together with the expansion
of the space by a factor of 2 as discussed in section 2.2.4 it ensures that excitations at T
do not wrap around the space to cause a response at t = 0.

In space-time, the physical concept of causality also implies a maximal finite propaga-
tion speed of interactions. This leads to propagation within a light cone, as depicted in
figure 2.1. Therefore, given a maximal propagation speed c, we can restrict the reconstruc-
tion to Greens functions that are non-zero only within the light cone. We can implement
this constraint by extending eq. 2.21 as

Glc(x− x′) = Θ(l2) Gc(x− x′) , (2.23)

where
l2 = (t− t′)2 − (x− x′)†C−1(x− x′) . (2.24)

This ensures that the propagator is only non-zero within the light cone. In general we might
expect different maximal propagation speeds in different directions, and consequently C
becomes a symmetric tensor. In case propagation is isotropic in space with speed c we
have Cij = c2δij. Note that even in cases where we do not know C, for example if the
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Figure 2.1: Left: Causal response of a system defined as a combination of two damped
harmonic oscillators with different masses. Right: Anti-causal response of the system
where one of the oscillations travels backwards in time.
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medium in which the interaction is realized is unknown, such a constraint can also be
useful if we elevate C to be an additional unknown parameter that has to be inferred.
Since C is assumed to be the same for all scales, an inference algorithm can use large scale
information, where the signal to noise ration (SNR) is usually higher, to determine C,
which then effectively increases the SNR for smaller scales. A detailed description how C
enters the reconstruction can be found in appendix 2.A.

In order to encode the last concept, locality, we first have to revisit some properties
of Green’s functions. Consider a system, undisturbed by external excitation, that can be
described via

Ls = 0 , (2.25)
where L is a linear differential operator. The response G of such a system to an external
force has to fulfill

(LG) (x− x′) = δ(x− x′) . (2.26)
In order to give rise to a homogeneous G, L also has to be homogeneous and therefore is
diagonal in Fourier space

L(x− x′) =
(
F f̂F †

)
, (2.27)

where we also introduced the diagonal Fourier space representation of L denoted via the
complex Fourier coefficients fk. Consequently G takes the form

Gk
k′ = 1

fk
δkk′ , (2.28)

and therefore the eigen-spectrum of G reads

gk = 1
fk

. (2.29)

It turns out that locality can be encoded more intuitively in terms of a prior for f . As we
can see in Figure 2.2, the locality of a response is related to the order in the derivatives of the
differential operator L. Low order derivatives result in an almost instantaneous response of
the system while higher order derivatives lead to an apparent non-local response. Therefore
we seek to formulate a prior for f such that lower order derivatives are a priori favoured.
Nevertheless it should be possible that f can deviate from this assumption if there is
enough evidence in the data to support this. We impose a certain degree of smoothness
for f , i.E. we want that two modes fk, fk′ are correlated, where the correlation decays as
|k − k′| increases. To this end we define the complex modes f as

fk = fr(k) + ifi(k) with k ∈ Z , fr, fi ∈ L2(R) . (2.30)

In words, the real and imaginary part of the modes fk are defined via two square integrable
functions fr/i which get evaluated at the integer spaced Fourier locations k. We place a
Gaussian process prior on both functions fr and fi of the form

P (fr/i) = G(fr/i, T ) = 1
|2πT |

1
2
e
− 1

2f
†
r/i
T−1fr/i , (2.31)
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Figure 2.2: Excitation ξ and responses of various systems defined in terms of powers of
f , with ft = ∂t + γ and γ small. We see that higher order derivatives result in apparent
non-local responses. Since time derivatives are the generators of temporal translation, the
case where the response is the exponential of −∆t f leads to translations by ∆t.

where the exponential factor reads

−1
2f
†
r/iT

−1fr/i = − 1
2σ2

∫ ∣∣∣(γ −4k) fr/i(k)
∣∣∣2 dk γ, σ > 0 , (2.32)

where ∆k denotes the Laplace operator, σ is an overall scaling parameter that steers the
strength of this prior, and γ is a low frequency cutoff to ensure that the prior is proper.
For further details see [88, 48]. The covariance function associated with T takes the form

T (k, k′) = σ2

2

√
π

2γ3 (1 +√γ |k − k′|) e−
√
γ |k−k′| . (2.33)

Therefore the real and imaginary part of the Fourier modes fk, which are just the functions
fr/i evaluated at k ∈ Z, are defined to be two independent, infinite dimensional Gaussian
random vectors with zero mean and covariance

Tkk′ = T (k, k′) , k, k′ ∈ Z . (2.34)

All in all, we can combine the above concepts to end up with a generative description
of our prior which takes the form

s(a) = Glc ξ = F ĝlc F † ξ , (2.35)
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where ĝlc denotes a diagonal matrix in Fourier space with (glc)k on its diagonal and a =
(f, ξ,C) denote the quantities of interest in the generative process. Furthermore

glc = F † X̂ F 1
f

with Xx = Θ(T − t)Θ(t) Θ(l2) , (2.36)

with f being a priori distributed according to eq. (2.31).

2.3.1 Comparison to Matèrn type and other parametric kernels
There exists a vast literature about Gaussian process priors with a stationary covariance
[50, 94] which discuss a great variety of different forms of covariance functions. Two
important classes are squared exponential, and the Matèrn class of covariance Functions.
As a stationary covariance allows for a diagonal representation in Fourier space, it makes
sense to compare the spectra of the associated operators. Squared exponential kernels
imply that the spectrum takes the form

gk ∝ e−γ|k|
2

γ > 0 . (2.37)

While such kernels are very popular as they are particularly easy to implement and use in
practice, the quadratic-exponential suppression of small scale structures often appears to
be non-physical. A physically better motivated type of spectrum is provided by Matèrn
covariances which give rise to spectra of the form

gk ∝ α

(β + |k|2)γ α, β, γ > 0 . (2.38)

As many physical processes can be well approximated as a power-law, this parametrization
provides a more sensible statistical structure. In addition the large-scale cutoff ensures
that the process is well defined as the variance remains finite for all k. We notice that
the denominator of this spectrum is very well represented by the prior process we impose
on f and thus the Matèrn class of covariances is represented in our prior assumptions. In
contrast to a fixed Matèrn covariance function, however, the form of f remains unknown
prior to the reconstruction and thus is inferred to match the observed data. In addition,
a non-parametric process for f appears to be more flexible in modeling deviations from a
(possibly idealized) power-law shape of the spectrum.

2.3.2 Prior distributions for excitations
So far we restricted the discussion to independent Gaussian distributed excitations ξ which,
for a given fixed G, give rise to a Gaussian process for s.

From the physical perspective of s being the result of a dynamic response G to external
excitations ξ, it is not necessary that ξ is Gaussian distributed. In fact, in many applica-
tions it might be more realistic to define a different prior for the excitations. In order to
demonstrate the implications of a non-Gaussian prior on ξ, in section 2.5, we show results
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for the inference problem in cases where ξ is distributed according to an inverse-gamma
distribution at each location in space-time. This prior is typically used as a sparsity prior,
and in our case results in a system that is subject to sparse external excitations. Of course,
many other prior distributions are also reasonable and important, but for the sake of sim-
plicity we stick to ξ being either Gaussian or inverse-gamma distributed in the examples.
Note that even though physically motivated, exchanging the prior of ξ to be an inverse-
gamma distribution is non-trivial in the continuum limit. The goal of the examples is to
demonstrate the applicability of this method also for non-Gaussian excitations, and there-
fore a rigorous mathematical treatment is beyond the scope of this work. In the case of
inverse Gamma excitations, we therefore revert to the discrete representation of the process
and leave the continuous treatment to future research.

2.4 Inference
In section 2.2.2 we already discussed the inference problem in the case of a linear measure-
ment and a Gaussian prior with known covariance. Now, with the appropriate prior for
the covariance at hand, we can set up the task of inferring the covariance together with
the field, given observational data about the field. To this end, consider again a linear
measurement as defined in eq. (2.11) which in terms of a takes the form

d = R s(a) + n , (2.39)

where s(a) is given via Eq. (2.35). If we assume n being Gaussian distributed with zero
mean and covariance N we get that the joint distribution of (d, a) reads

P (d, a) = G(d−R s(a), N) G(f, T ) P (ξ) . (2.40)

The posterior P (a|d) is proportional to the joint distribution up to a factor that only
depends on d since

P (a, d) = P (a|d) P (d) ∝ P (a|d) . (2.41)
This posterior is intractable, due to the non-linear dependency of s on a. Consequently
the corresponding inference problem cannot be solved analytically and we have to rely on
a numerical approximation.

There exist a variety of different approximation techniques for Bayesian inverse prob-
lems ranging from point estimations such as the maximum a posterior (MAP) estimate,
over variational approximations, to posterior sampling techniques such as Markov-Chain
Monte Carlo (MCMC) [19, 25] and Hybrid Monte Carlo (HMC) [29]. As shown in [71],
MAP tend to perform poorly in the task of reconstructing the excitations together with
the prior correlation structure, as uncertainty information is vital to correctly estimate the
prior statistics, which are missing in point estimates. While MCMC and HMC algorithms
are very attractive due to their theoretical guarantees to converge to the true posterior
statistics, they tend to become expensive for many astrophysical field inference applica-
tions compared to simpler, less expressive approaches. Therefore, in this work, we use a
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variational approximation algorithm called Metric Gaussian Variational Inference (MGVI)
[71] where we approximate the true posterior with a Gaussian distribution in order to get
an estimate for the mean and the covariance of the posterior. As shown in [71], MGVI
provides an accurate estimate of the first moment (i.E. the posterior mean) as well as a
tight lower bound on the second moment (posterior covariance) when compared against
HMC techniques, while being substantially faster.

2.4.1 Variational Inference

In general, variational inference can be described as the task of approximating one prob-
ability distribution P (x) for some quantity x with another distribution Qσ(x) which, in
addition, is defined up to a set of parameters σ. Approximation is then achieved via mini-
mizing the Forward Kullbach-Leibler divergence (KL) with respect to σ. The KL is defined
as

KL(Qσ, P ) ≡
∫
Qσ(x) log

(
Qσ(x)
P (x)

)
dx

= 〈HP 〉Qσ − 〈HQσ〉Qσ , (2.42)

where we also introduced the so called Information Hamiltonian H defined as

HP = − log(P ) . (2.43)

In our case, the approximate distribution Q is chosen to be a Gaussian distribution
in a with mean m and covariance A. For many relevant inference problems, and also
for the one studied in this work, this approximation cannot be performed analytically
as typically 〈HP 〉Qσ cannot be calculated analytically. Therefore, as discussed in section
2.2.3, we choose an appropriate discretization for the space-time domain Ω, and perform a
variational approximation of the corresponding discrete problem. It turns out that in order
to achieve a reasonable resolution in space-time, the inference problems can become very
high dimensional. As an example, in section 2.5, we show an application for a discretized
1+1 dimensional space-time with a resolution of 256 × 200 pixels. This yields that the
number of dofs in a is ≈ 2 × 256 × 200 ∝ 105 and consequently the number of entries in
A are ∝ 1010 which renders an explicit representation of A on a computer to be inefficient
generally. Therefore, following [71], we avoid an explicit representation by setting it to
be equal to the inverse Fisher Metric M−1 [4] of the posterior, evaluated at m. For the
posterior distribution as defined in eqs. (2.40) and (2.41), together with a Gaussian prior
for ξ with zero mean and unit covariance, we get thatM takes the form

M =
(∂s

∂a

)†
R†N−1R

∂s

∂a
+
(
1 0
0 T−1

)
a=m

≡
(
R̃m

)†
N−1R̃m + S−1 . (2.44)
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Using the definition of s (eq. (2.35)) we get that

∂s

∂ξ
= F−1 ĝ F , (2.45)

∂s

∂f
= F−1F̂ξF X̂ F−1−̂1/f2 . (2.46)

Therefore, together with the definition of T (eq. (2.32)) we see that M has an implicit
representation, i.e. it can be applied solely using Fourier transformations and diagonal
operations, avoiding the explicit storage of this matrix at any point. Consequently the
application of A = M−1 is achieved via linear solvers such as the conjugate gradient
method. In addition, the structure ofM allows for an efficient sampling of the approximate
distribution Q. Specifically we may draw a random realization of Q as

a∗ = m+M−1
((
R̃m

)†
n∗ + b∗

)
, (2.47)

where n∗ and b∗ are independent samples drawn from the noise statistics and the joint
prior distribution with covariance S, respectively.

This is another important property since the KL involves expectation values w.r.t Q,
which can be approximated via samples from Q. Ultimately, the Fisher metric is also a
measure for the local curvature of the KL and therefore enables us to use second order
optimization schemes to solve the corresponding optimization problem in m.

As discussed in the previous section, in some cases space-time causality can only be
imposed if we also infer the propagation speed C. To do so, we notice that given a prior for
C, the above still applies with the extension that s is now also a function of C. Therefore
the Fisher metric gets an additional entry with the same structure as in eq. (2.44), for the
corresponding gradient ∂s/∂C (See appendix 2.A for further details).

All in all, the solution strategy as defined in MGVI, starting from a random initialized
m, can be summarized as:

• UsingM, evaluated at the current approximate mean m, draw a set of samples {a∗}
from the approximate distribution Q.

• With these samples, calculate an estimation for the current value of the KL and its
gradient.

• Together with the metricM perform a second order Newton minimization in order
to get a new estimate for m.

• Repeat this procedure by re-evaluating everything using the updated m, until con-
vergence.
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2.5 Application
To demonstrate the applicability of our method we apply it to several synthetic data exam-
ples. First, we demonstrate the performance of the algorithm in a one dimensional setting,
where we only aim to infer the Green’s function G of the system, given the excitations
and data. In the second example we perform a reconstruction of excitations that are dis-
tributed according to a unit Gaussian, as well as the Green’s function from data alone, in a
1+1 dimensional setting. In the last example we add another level of complexity via non-
Gaussian statistics in the excitations. Specifically we assume the excitations to follow an
inverse-gamma distribution at each location in discretized space-time. Hereby we perform
source detection, the task of inferring sparse excitations at various locations in space-time,
in a case where also the Green’s function is unknown. Throughout all examples, the prior
model for G follows the one described in section 2.3. Specifically, we describe G in terms
of f and the propagation speed C. We place a flat prior on the logarithm of C to ensure
positivity of the propagation speed.

2.5.1 Implementation details
All examples were implemented using the NIFTy software package in its version 5 [6]. We
included an implementation of the here introduced prior structure for the Green’s function
into this publicly available package.

Throughout all examples, to solve the optimization problem associated with the MGVI
algorithm, we realize the algorithm described in 2.4.1 with 30 total steps of the entire
loop, where we draw 10 samples from the approximation Q to estimate the KL during
optimization. For posterior analysis, we use 50 approximate posterior samples.

For the first, one dimensional example, the optimization can be performed within less
then a minute, while for the other two examples the total runtime is around 10 minutes
on a standard laptop. The runtime and scaling of MGVI with model complexity as well
as dimensionality is described in great detail in [71].

2.5.2 Temporal evolution
In our first application, shown in figure 2.3, we aim to demonstrate the inference of the
dynamics encoding field f alone in a one dimensional setting where there is only a temporal
evolution to be reconstructed. The excitation field ξ is known during inference. The hyper-
parameters of the prior for f (see Eq. (2.31)) are set to (σ, γ) = (2.9, 1.7). We generate
synthetic data according to eq. 2.39, with R being the identity. The excitations were drawn
from an inverse gamma distribution to model known, sparse excitations of the system (e.g.
in a laboratory setting where the unknown system is driven via sparse excitations). The
synthetic signal s as well as corresponding data d is shown in the top-left panel of figure
2.3. The dynamic operator used to generate signal and data is of the form:

L = (∂2
t +m2 + γ∂t)5 (∂2

t + m̃2 + γ̃∂t) , (2.48)
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Figure 2.3: Top: On the left we depict the signal (red line), the data (blue dots) as well as
50 over-plotted posterior samples (gray). The right panel shows the synthetic propagator
(Greens function) in the temporal domain (red) as well as corresponding posterior samples.
Bottom: Left: Excitation field used to generate the signal. Right: Natural logarithmic
spectrum of the synthetic propagator (red) and corresponding posterior samples.

with (m, γ, m̃, γ̃) = (0.6, 0.23, 0.2, 0.03). The results of the reconstruction are shown in
figure 2.3.

We see that the reconstruction of the Green’s function is in agreement with the ground
truth in the temporal domain, within uncertainties. Due to the fact that the reconstructed
dynamics is uncertain, the recovered signal also has uncertainty although the excitations
are known. The reconstructed Green’s function indicates that it is indeed possible to
reconstruct an apparent non-local response of the system (due to higher order derivatives
in this setup) since the true propagator as well as its reconstruction show oscillations that
grow in the beginning of the propagator before decaying exponentially. We also notice
that there is relatively high uncertainty in the first timesteps of the response Gt. This is
caused by the low initial response to excitations of the true propagator. The initial part
of the reconstructed propagator is purely dominated by noise and thus only constrained
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up to the noise level (the standard deviation of the noise σn is set to be σn = 15 and the
temporal domain is discretized via 512 equidistant pixels).

We also notice that the posterior solution for the spectrum levels out for high-frequency
modes (large ω) below the signal to noise ratio, while the true spectrum continues to decay
(ultimately also the true spectrum levels out in the numerical example due to the finite
size of the considered space). The uncertainty increases in this region, but not enough to
capture the true solution. Here we notice the limitations of the variational inference, which
provides a local approximation of the posterior with a Gaussian. Consequently the true
uncertainty might be underestimated, as in this case. However this deviation occurs orders
of magnitudes below the peak of the spectrum and therefore has only a barely visible effect
on the reconstruction of the signal. One way to allow for a better extrapolation to higher
frequencies would be to provide a more restrictive prior for the dynamics encoding field e.g.
by defining it on a polynomial basis which is a more suitable basis for this particular setup
as the true dynamics is also described in terms of a polynomial. However we aim to provide
a general and less restrictive approach here capable of also reconstructing non-polynomial
dynamics encoding functions and consequently being less able to extrapolate to regions
where we have no information provided by data.

In addition, in figure 2.4, we depict the reconstructed real and imaginary part of the
inverse of the propagator spectrum and compare it to the spectrum associated to the
differential operator L (Eq. (2.48)) used to generate the mock data. We see that the true
spectrum is in agreement with the reconstruction, within uncertainty. Furthermore we
notice that the posterior uncertainty is small close to the two resonant frequencies ωr (see
figure 2.4) corresponding to the two peaks in the propagator spectrum depicted in figure
2.3. This is due to the fact that at these frequencies both, the real and imaginary part of
the spectrum, are close to zero and thus the magnitude of its inverse is large. Therefore
small deviations around these values result in large changes in the corresponding realization
of the random process s and therefore the posterior uncertainty has to be small in order
to stay consistent with the data.

To further quantify the reconstruction error, we also investigate the residual as well
as the corresponding posterior uncertainty for the signal st and the time representation of
the Greens function Gt (see figure 2.5). The residual is defined as the difference between
the true solution and the posterior mean of the reconstruction. In addition to the case of
σn = 15, we also show the residuals and uncertainties for various other noise levels. For
a better comparison, no other changes where made during reconstruction. In particular
also the random number generator used to generate the synthetic data as well as the
approximate posterior samples during reconstruction was seeded with the same random
seed for all runs. We notice that the posterior uncertainty appears to be on a reasonable
scale as the residual is within the one or two sigma confidence interval for almost all
cases. In addition, we notice that the posterior uncertainty of the signal s is particularly
high in regions right after a strong excitation happened. This is due to the fact that the
reconstruction of the Green’s function G, which is the response to these excitations, is most
uncertain for the first timesteps. This uncertainty propagates into the uncertainty of s.
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Figure 2.4: Posterior mean (black line) and posterior samples (gray lines) of the real part
(left) and imaginary part (right) of the inverse of the propagator spectrum fω = 1/gω. The
red lines indicate the real and imaginary part of the differential operator L (Eq. (2.48))
used to generate the data of this example. The purple dashed lines indicate the values of
the two resonant frequencies ωr corresponding to L where the magnitude of f is smallest
and thus the contribution to the observed process s is largest.
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Figure 2.5: Left: Residuals between the true signal st and the posterior mean of the
reconstruction (blue line) as well as the one and two sigma confidence intervals of the
corresponding posterior uncertainty. We show those for various different noise standard
deviations σn starting with the highest noise level at the top to the lowest at the bottom.
Right: Corresponding residuals and confidence intervals for the temporal representation
of the dynamic Green’s function Gt again for various noise levels. In all inference runs, we
seeded the random number generator used for data generation and during reconstruction
with the same random seed such that the only difference in these reconstructions is a
different σn.
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2.5.3 Space-time evolution
In our second example, shown in figure 2.6, we aim to reconstruct the dynamics as well
as the excitations in a spatio-temporal (1+1 dimensional) setting from incomplete and
noisy observations. We aim to infer the dynamical field f , the propagation speed c, and
the excitations ξ from noisy and incomplete measurements d of the field s alone. The
hyper-parameters of the prior for f (see Eq. (2.31)) are set to (σ, γ) = (1.8, 0.5). The
dynamical system used for the generation of synthetic data is a product of a damped
harmonic oscillator and an advection-diffusion generating term. This reads

L = (∂2
t − c2∂2

x +m2 + α∂t − β∂x) (∂t + m̃2 − γ∂2
x + β̃∂x) . (2.49)

Furthermore, the excitations are Gaussian distributed with zero mean and unit covariance
from which a single realization was drawn and convolved with the synthetic Green’s func-
tion corresponding to L. The signal s, the data d and the reconstruction of s are shown
in figure 2.6 for a case with (c,m, α, β, m̃, γ, β̃) = (0.4, 0.16,−0.19,−0.05, 0.1, 0.5, 0.2). We
generate the data according to eq. 2.39 with a linear measurement response, which partially
(≈ 25%) masks the observed region, and Gaussian distributed noise with σn = 10. The
space-time is discretized via a regular grid with 256× 200 pixels, respectively.

The reconstruction algorithm is capable of reconstructing the signal in regions where
we have observations thereof, while being relatively blind in unobserved regions. Conse-
quently the posterior uncertainty is higher there. In addition, we notice that unlike the
posterior mean, posterior samples consistently fill unobserved regions. Although in these
regions the samples deviate strongly from the true signal, the information on the statistical
properties, inferred from the observed regions, propagates into the unobserved regions due
to the assumed statistical homogeneity. Therefore the posterior samples are statistically
consistent throughout the entire space-time interval, which is important for posterior anal-
ysis. Furthermore we notice that there also exists variance in the statistical properties of
the posterior, as can be seen for example in the difference between small scale structures
of the posterior mean and the sample displayed in figure 2.6. This is due to the fact that
also the reconstruction of the statistical properties (described via f) is imperfect due to
the noisy data and thus subject to uncertainty. This posterior uncertainty about the small
scale properties of f results in a variation between different posterior samples of f , which
ultimately propagates into the statistical properties of the corresponding sample of s.

In figures 2.7 and 2.8 we study the posterior properties of the Green’s function in
more detail. In particular we compare the reconstructed Green’s function as well as the
corresponding spectrum with the underlying ground truth. The spectrum is comparable
to the ground truth in regions with sufficient SNR while it levels out in regions where
we have no information given via data. In addition, the reconstructed propagator also
shows oscillations consistent with the true propagator. However we notice that modes that
propagate “downwards” are reconstructed well while the weaker “upwards” propagating
modes are not reconstructed due to the fact that they are below the noise level. In addition,
we see that deviations in posterior samples of the propagator only occur within a “cone”
and remain zero outside. This is due to the fact that we also reconstruct the maximal
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Figure 2.6: Top: The left panel shows the spatio-temporal masked and noisy data, drawn
from the synthetic signal (middle panel) and the corresponding signal reconstruction (right
panel). Bottom: Natural logarithmic one-sigma posterior uncertainty (left panel), natural
logarithmic residual between the true signal and the posterior mean (middle panel), as well
as an approximate posterior sample (right panel).

propagation speed of the process, which is reconstructed to be c ≈ 0.45 (±0.08) enclosing
the correct value of c = 0.4.

2.5.4 Source detection

In our last example we aim to perform source detection in the excitation field, in a case
where also the dynamic response is unknown. To demonstrate this scenario we again
generate a 1+1-dimensional synthetic example where in this case we assume that we are
only able to measure the temporal evolution of the system at several locations. In particular
we measure the temporal evolution at 50 randomly selected locations of the space under
consideration. This results in ≈ 80% of the discrete space-time being unobserved, as
the resolution is the same as in the previous example. As before, we assume that the
measurements are subject to additive Gaussian noise with σn = 0.3 and also assume the
system to be at rest at t = 0. The resulting data is shown in the top-left panel of figure
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Figure 2.7: Top: True Green’s function (left) and corresponding posterior mean (right).
Bottom: Residual of the true Green’s function and the reconstruction (left) and a posterior
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the synthetic signal (middle panel) and the corresponding reconstruction (right panel).
Bottom: Natural logarithmic one-sigma posterior uncertainty (left panel), natural loga-
rithmic residual of the true signal and the corresponding posterior mean (middle panel),
as well as an approximate posterior sample (right panel).

2.9. The unknown excitations are inverse gamma distributed to model strong but sparse
excitations. We infer those from measurements of the system at multiple locations together
with the dynamics encoding function f . The hyper-parameters of the prior for f (see Eq.
(2.31)) are set to (σ, γ) = (2.9, 1.7). The system used to generate the data exhibits damped
traveling waves described by

L = ∂2
t − c2∂2

x +m2 + α∂t − β∂x , (2.50)

with (c,m, α, β) = (1.2, 0.04,−0.013, 0.005). From an information theoretical point of
view this setup is very similar to the previous one since we only changed the measurement
response to describe measurements of the temporal evolution at several locations, as well
as the prior for excitations to be an inverse gamma prior. Consequently also the inference
can be performed in the same way as before.

The setup as well as the reconstruction of the field evolving in space-time are shown
in figure 2.9. We see that the reconstruction recovers many sources and the corresponding
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propagation. The algorithm uses information from the response of strong excitations to
reconstruct the Green’s function of the system. Due to the assumed homogeneity in space-
time, this information helps to improve the overall reconstruction in other regions. The
quality of the reconstruction of single excitations additionally depends on the surrounding
measurement scenario.

In figures 2.10 and 2.11 we depict the dynamic propagator as well as the spectrum
and reconstructions. We can validate that the Green’s function was indeed reconstructed
correctly, within uncertainties. We conclude that the task of source detection is possible
even in cases where the underlying dynamics is unknown, as long as the assumptions of
spatio-temporal homogeneity, causality, and locality hold.

2.6 Conclusion
In this work we considered the problem of reconstructing a random field s, defined in space
and time, together with its correlation structure S from noisy and incomplete data d about
s. We have shown that this Bayesian hierarchical inference problem can be reformulated
to a (theoretically) equivalent problem by means of a generative process, where we aim to
infer an excitation field ξ as well as the dynamic response G. Ultimately the eigen-spectrum
of G was encoded in the dynamics encoding field f and the propagation-speed encoding
parameter C. Together with the excitations ξ they denote the quantity of interest a of
the inference problem. We proposed a Gaussian process prior for f which gives rise to
a non-parametric description of the dynamic response G. This gives rise to a non-linear
generative process for s. As the proposed method is also applicable for non-Gaussian
prior distributions for ξ it can also model a variety of other, physically motivated, prior
distributions for s. This flexibility is discussed for the example of an inverse gamma
distribution for the excitations.

To demonstrate its applicability, the proposed method is applied to several synthetic
data examples. These include a one dimensional example where the excitations were known
and only G had to be inferred, a 1+1 dimensional example with unknown Gaussian dis-
tributed excitations as well as an example with inverse gamma distributed ξ and a mea-
surement response that is sparse in the spatial domain.

As we restricted the prior assumptions for G to the physically motivated concepts of
space-time homogeneity, locality, and causality, the method appears to be applicable in
a wide range of problems. One particular strength is the non-parametric formulation of
the Green’s function. This becomes important in scenarios where physical models can-
not provide a simple parametric description of evolution so far, to describe the Green’s
function. In addition, a probabilistic description of excitations is sufficient for inference.
Consequently the method is still applicable in cases where external influences cannot be
described completely.

All in all, we believe that the proposed method is capable of dealing with current as
well as upcoming inference problems involving fields defined over space and time, arising
from the context of astrophysical imaging.
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Figure 2.10: Top: True Green’s function of the process defined in eq. 2.50 (left) and
corresponding posterior mean (right). Bottom: Residual of the true Green’s function and
the reconstruction (left) and a posterior sample for the Green’s function (right).
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Appendix

2.A Light cone prior on a discretized space
As discussed in section 2.3 the concept of causality in space-time results in a restriction
of propagation within a light cone. In a continuous description, this restriction is realized
via a convolution with a step function of the form

Θ(l2) = Θ
(
t2 − x†C−1x

)
. (2.51)

Due to the fact that our calculations are ultimately performed on a finite grid, this definition
appears to be somewhat problematic, as it introduces boundary effects along the edges of
the step function, when realized on a discretized space. In addition, if we aim to elevate C to
be an unknown parameter of the problem that has to be inferred, gradient based methods
are no longer applicable due to the fact that the gradient is zero almost everywhere in
space-time (or not defined on the boundary). Therefore we seek to find a way to relax
the sharp boundary introduced via the cone, without loosing its useful properties. To
do so we borrow an idea from quantum field theory where it turns out that these sharp
boundaries are “smeared” out when considering them on a quantum scale. In our case
the “quantum” scale can be regarded as the resolution of the discrete representation of
space-time, although this analogy is purely artificial.

To achieve this relaxation, consider the following quantity

∆ =
√
−l2 =

√
− (t2 − x†C−1x) . (2.52)

It has two useful properties: For causal (including time-like as well as light-like) points
the real part of ∆, <(∆), is zero as the square root is taken from a negative number. For
non-causal (space-like) points the real part becomes positive. Furthermore, for fixed t,
<(∆) is asymptotically linear in x. Therefore, if we consider a Gaussian in <(∆),

θ(∆) ≡ exp
(
− 1

2σ2<(∆)2
)
, (2.53)

we notice that this quantity remains one within the light cone, while it asymptotically falls
off like a Gaussian in x, for fixed t. Here σ stands for an optional scaling parameter which
controls the width of the Gaussian. In all applications of this paper we replace the function
Θ (Eq. (2.51)) with θ and set σ to the size of a few pixels.
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Chapter 3

M87* in space, time, and frequency:
Interferometric imaging of variable
sources

The following chapter contains parts of a manuscript that has been submitted to Nature
Astronomy [8]. It is the result of a collaborative effort with equal contributions made by
Philipp Arras, Philipp Haim, Jakob Knollmüller, Reimar Leike, and me. All authors con-
tributed text to this publication. Philipp Arras, Philipp Haim, Jakob Knollmüller, Reimar
Leike, and I implemented and tested the instrument response, likelihood, and model. Jakob
Knollmüller developed the inference heuristic. Philipp Arras and Jakob Knollmüller per-
formed the hyperparameter study. Philipp Arras and I contributed the amplitude model
which features outer products of power spectra. Martin Reinecke provided implementations
and numerical optimisation for many of the employed algorithms. Torsten Enßlin coordi-
nated the team and contributed to discussions. The text has been written as a collaborative
effort by all of us unless otherwise specified below.

Abstract
Observing the dynamics of compact astrophysical objects provides insights into their
inner workings, thereby probing physics under extreme conditions. The immediate
vicinity of an active supermassive black hole with its event horizon, photon ring, ac-
cretion disk, and relativistic jets is a perfect place to study general relativity, magneto-
hydrodynamics, and high energy plasma physics. The recent observations of the black
hole shadow of M87* with Very Long Baseline Interferometry (VLBI) by the Event
Horizon Telescope (EHT, [36, 37, 38, 39, 40, 41]) open the possibility to investigate its
dynamical processes on time scales of days. In this regime, radio astronomical imag-
ing algorithms are brought to their limits. Compared to regular radio interferometers,
VLBI networks typically have fewer antennas and low signal to noise ratios (SNRs).
If the source is variable during the observational period, one cannot co-add data on
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the sky brightness distribution from different time frames to increase the SNR. Here,
we present an imaging algorithma that copes with the data scarcity and the source’s
temporal evolution, while simultaneously providing uncertainty quantification on all
results. Our algorithm views the imaging task as a Bayesian inference problem of a
time-varying brightness, exploits the correlation structure between time frames, and re-
constructs an entire, 2 + 1 + 1 dimensional time-variable and spectrally resolved image
at once. The degree of correlation in the spatial and the temporal domains is inferred
from the data and no form of correlation is excluded a priori. We apply this method to
the EHT observation of M87* [35] and validate our approach on synthetic data. The
time- and frequency-resolved reconstruction of M87* confirms variable structures on
the emission ring on a time scale of days. The reconstruction indicates extended and
time-variable emission structures outside the ring itself. However, the data does not
provide conclusive evidence for spectral index variations.

ahttps://gitlab.mpcdf.mpg.de/ift/vlbi_resolve

3.1 Main part
This section has partly been written by my coauthors. To address the imaging challenge
of time-resolved VLBI data, we employ Bayesian inference. In particular, we adopt the
formalism of information field theory (IFT) [32] for the inference of field-like quantities
such as the sky brightness. IFT combines the measurement data and any included prior
information into a consistent sky brightness reconstruction and propagates the remaining
uncertainties into all final science results. Assuming limited spatial, frequency, and tempo-
ral variations, we can work with sparsely sampled data, such as the 2017 EHT observation
of M87*.

A related method based on a Gaussian Markov model was proposed by [18] and an-
other approach based on constraining information distances between time frames was pro-
posed by [66]. These methods impose fixed correlations in space or time, whereas our
approach adapts flexibly to the demands of the data. We also enforce strict positivity of
the brightness and instead of maximizing the posterior probability, we perform a varia-
tional approximation, taking uncertainty correlations between all model parameters into
account.

Interferometers sparsely probe the Fourier components of the source brightness distri-
bution. The measured Fourier modes, called visibilities, are determined by the orientation
and distance of antenna pairs, while the Earth’s rotation helps to partly fill in the gaps by
moving these projected baselines within the source plane. Since the source is time-variable
and we aim at a time-dependent reconstruction, the measurement data have to be subdi-
vided into multiple separate image frames along the temporal axis, leading to an extremely
sparse Fourier space coverage in every frame. In the case of the EHT observation of M87*,
data were taken during four 8-hour cycles spread throughout seven days. All missing image
information needs to be restored by the imaging algorithm, exploiting implicit and explicit
assumptions about the source structure.

https://gitlab.mpcdf.mpg.de/ift/vlbi_resolve
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Physical sources, including M87*, evolve continuously in time. Images of these sources
separated by time intervals that are short compared to the evolutionary time scale are thus
expected to be strongly correlated. Imposing these expected correlations during the image
reconstruction process can inform image degrees of freedom (DOFs) that are not directly
constrained by the data.

In radio interferometric imaging, spatial correlations can be enforced by convolving the
image with a kernel, either during imaging, as part of the regularisation, or as a post-
processing step. In our algorithm, we use a kernel as part of a forward model, where
an initially uncorrelated image is convolved with the kernel to generate a proposal for
the logarithmic sky brightness distribution, which is later adjusted to fit the data. The
specific structure of such a kernel can have substantial impact on the image reconstruction.
We infer this kernel in a non-parametric fashion simultaneously with the image. This
substantially reduces the risk of biasing the result by choosing an inappropriate kernel, at
the cost of introducing redundancies between DOFs of the convolution kernel and those of
the pre-convolution image.

Metric Gaussian Variational Inference (MGVI) is a Bayesian inference algorithm that
is capable of tracking uncertainty correlations between all involved DOFs, which is crucial
for models with redundancies, while having memory requirements that grow only linearly
with the number of DOFs [71]. It represents uncertainty correlation matrices implicitly
without the need for an explicit storage of their entries and provides uncertainty quantifi-
cation of the final reconstruction in terms of samples drawn from an approximate Bayesian
posterior distribution, with a moderate level of approximation. Compared to methods
that provide a best-fit reconstruction, our approach provides a probability distribution,
capturing uncertainty.

A limitation of the Gaussian approximation is its uni-modality, as the posterior dis-
tribution is multi-modal [106]. Representing multi-modal posteriors in high dimensions is
hard if not infeasible. Therefore, our results describe a typical mode of this distribution,
taking the probability mass into account.

MGVI is the central inference engine of the Python package Numerical Information
Field Theory (NIFTy [6])1, which we use to implement our imaging algorithm, as it permits
the flexible implementation of hierarchical Bayesian models. NIFTy turns a forward model
into the corresponding backward inference of the model parameters by means of automatic
differentiation and MGVI. For time-resolved VLBI imaging, we therefore need to define a
data model that encodes all relevant physical knowledge of the measurement process and
the brightness distribution of the sky.

This forward model describes in one part the sky brightness, and in another part the
measurement process. For the sky brightness, we require strictly positive structures with
characteristic correlations in space, time, and frequency. These brightness fluctuations can
vary exponentially over linear distances and time intervals, which is represented by a log-
normal prior with a Gaussian process kernel. The correlation structure of this process is
assumed to be statistically homogeneous and isotropic for space, time, and frequency indi-

1https://gitlab.mpcdf.mpg.de/ift/nifty

https://gitlab.mpcdf.mpg.de/ift/nifty
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vidually and decoupled for each sub-domain. Consequently the correlations are represented
by a direct outer product of rotationally symmetric convolution kernels, or equivalently by
a product of one-dimensional, isotropic power spectra in the Fourier domain. We assume
the power spectra to be close to power laws with deviations modelled as an integrated
Wiener processes on a double logarithmic scale [54]. The DOFs, which finally determine
the spatio-temporal correlation kernel, are inferred by MGVI alongside the sky brightness
distribution. While the adopted model can only describe homogeneous and isotropic cor-
relations, this symmetry is broken for the sky image itself by the data, which in general
enforce heterogeneous and anisotropic structures.

The EHT collaboration has published data averaged down to two frequency bands at
227 GHz and 229 GHz. Therefore, we employ a simplified model for the frequency axis:
We reconstruct two separate, but correlated images for these bands, with a priori assumed
log-normal deviation on the 1 % level, which amounts to spectral indices of ±1 within one
standard deviation. Our algorithm does not constrain the absolute flux of the two channels.
Thus, we can recover the relative spectral index changes throughout the source but not the
absolute ones. A detailed description of the sky model is outlined in the methods section.

We further require an accurate model of the instrument response. Just as the prior
model is informed by our physical knowledge of the source, the instrument model is in-
formed by our knowledge of the instrument. We consider two sources of measurement
noise that cause the observed visibilities to differ from the perfect sky visibilities: addi-
tive Gaussian thermal noise and multiplicative, systematic measurement errors. The latter
source can be conveniently eliminated by basing the model on derived quantities (closure
amplitudes and phases), which are not affected by it. The magnitude of the thermal noise
is provided by the EHT collaboration in the data set. Systematic measurement errors are
mainly caused by antenna-based effects, e.g. differences in the measurement equipment,
atmospheric phase shift, and absorption of the incoming electromagnetic waves. All those
effects can be summarized in one complex, possibly time-variable, number per telescope,
containing the antenna gain factors and antenna phases.

For VLBI on µas-scale, these effects can be prohibitively large. Fortunately, certain
combinations of visibilities are invariant under antenna-based systematic effects, so called
closure-phases and -amplitudes [98]. These quantities serve as the data for our reconstruc-
tion (for details refer to Methods section).

We apply this method to the EHT data of the super-massive black hole M87*. With
a shadow of the size of approximately four light days and reported superluminal proper
motions of 6c [13], its immediate vicinity is expected to be highly dynamic and subject to
change on a time scale of days. The exceptional angular resolution of the EHT allowed for
the first time to image the shadow of this super-massive black hole directly and to confirm
its variability on horizon scale.

In this letter, we present a time- and frequency-resolved reconstruction of the shadow
of M87* over the entire observational cycle of seven days, utilizing correlation in all four
dimensions (see figure 3.1). The closure quantities do not contain information on the total
flux and the absolute position of the source. Therefore, we normalize our results such
that the flux in the entire ring is constant in time and agrees with the results of the EHT
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collaboration for the first frame of our reconstruction. To achieve an alignment of the
source even in the absence of absolute position information we start the inference with the
data of only the first two observation days and continue with all data until convergence.

Figure 3.2 displays the frequency-averaged sample mean image for the first observing
day together with its pixel-wise uncertainty. In full agreement with the EHT result, our
image shows an emission ring that is brighter on its southern part, most likely due to rela-
tivistic beaming effects. Additionally, we obtain two faint extended structures, positioned
opposite to each other along the south-western and north-eastern direction. They do not
have the shape of typical VLBI-imaging artefacts, i.e. they are not faint copies of the source
itself, and similar structures do not appear in any of our validation examples. We conclude
that these structures are either of physical origin or due to unmodelled baseline-based cal-
ibration artefacts. The presence of additional significant source features, compared to the
results by the EHT collaboration, is enabled by the usage of the data of all four observation
days at once and thereby partially integrating the information.

Since our reconstruction is based on closure quantities that are not sensitive to absolute
flux, the absolute spectral dependency is not constrained. Still, the relative spectral index
variations w.r.t. an overall spectrum can be explored (see top row of figure 3.8). The map
exhibits a higher relative spectral index in the southern portion of the ring which coincides
with its brightest emission spot. However, the uncertainty map indicates that this feature
is not significant and similar features falsely appear in the validation (see bottom row of
figure 3.8). Therefore, we do not report any significant structures in the spectral behaviour
of M87* and continue our analysis with frequency-averaged time frames.

The sky brightness for each day of the observation together with the absolute and rela-
tive differences between adjacent days is displayed in figure 3.1. We report mild temporal
brightness changes of up to 6 % per day, in particular within the western and southern
parts of the ring, validating the observations made by [39]. Figure 3.3 shows the detailed
temporal evolution of a selected number of locations and areas. Our method consistently
interpolates in between observations. In several locations our reconstruction agrees with
the EHT’s imaging results, whereas others clearly deviate. Especially at location 7, which
corresponds to the extended structure in the south-western direction, the brightness de-
creases by about 5 % between adjacent days throughout the entire observation. This hints
at a real and non-trivial temporal evolution.

Following the analysis of [39], we compute empirical characteristics of the asymmetric
ring, i.e. diameter d, width w, orientation angle η, azimuthal brightness asymmetry A,
and floor-to-ring contrast ratio fC . All findings are summarized in table 3.1 and compared
to the results of the EHT collaboration [39]: We can confirm the stationary values for
diameter d, width w, azimuthal brightness asymmetry A, and floor-to-ring contrast ratio
fC during the seven days and a significant temporal evolution of the orientation angle η.
The latter might be caused by flickering of emission spots [85]. We report a slightly larger
diameter d = 45(3)µas, which does not significantly deviate from the result published by
the EHT Collaboration of d = 42(3)µas [36].

A collection of six validation examples has been assembled to assess accuracy and
robustness of our method (figures 3.4, 3.5). Figure 3.6 shows spatial correlation spectra for
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Figure 3.1: A visualisation of the approximate posterior mean. All figures are constrained
to half the reconstructed field of view. The first row shows time frames of the image cube,
one for each day. The second row visualises the brightness for day N+1 minus day N . Red
and blue visualises increasing and decreasing brightness over time, respectively. The third
row visualises the relative difference in brightness over time. The over-plotted contour lines
show brightness in multiplicative steps of 1/

√
2 and start at the maximum of the posterior

mean of our reconstruction. The solid lines correspond to factors of powers of two from
the maximum.

our scientific and validation images. Figure 3.9 displays the results of the imaging methods
used by the EHT Collaboration together with our posterior mean and two samples for all
observation periods.

In conclusion, we present and validate the first Bayesian imaging method that is capable
of simultaneously reconstructing emission over spatial, temporal and spectral dimensions
from closure quantities, utilizing correlation and quantifying uncertainties via posterior
samples. We provide the first independent confirmation of the overall morphology of the
emission ring around M87* and an apparent evolution of its orientation as published by
the EHT collaboration. The frequency resolution allows us to obtain a relative spectral
index map, together with an uncertainty estimation. For the data set at hand, significant
spectral features could not be found. In addition to the emission ring, we resolve significant
and potentially dynamic emission structures along the south-western and north-eastern
direction. With future observations, our method may help to explore the intricate structure
in the spatial, spectral, and temporal domain of M87* and other variable sources. To
achieve this, the model can be extended with inference of the prior spectral correlation
structure.
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Figure 3.2: The top row shows the reconstructed mean and relative error for the first
observing day. Note that the small-scale structure in regions with high uncertainty in
the error map is an artefact of the limited number of samples. The bottom left shows
a saturated plot of the approximate posterior mean, revealing the emission zones outside
the ring. The bottom right shows the result of the EHT-imaging pipeline in comparison,
saturated to the same scale and with overplotted contour lines. The over-plotted contour
lines show brightness in multiplicative steps of 1/

√
2 and start at the maximum of the

posterior mean of our reconstruction. The solid lines correspond to factors of powers of
two from the maximum.
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Figure 3.3: The time evolution of the brightness and flux for approximate posterior samples
and their ensemble mean at specific sky locations and areas as indicated in the central
panel. The peripheral panels show brightness and flux values of samples (thin lines) and
their mean (thick lines). Of those, the bottom right one displays the flux inside (red) and
outside the circle (green), as well as the sum of the two (blue). For comparability, only
brightness within the field of view of the EHT collaboration image, indicated by the black
box in the central plot, is integrated. The remaining panels give the local brightness for
the different locations labelled by numbers in the central panel. The single-day results
from EHT-imaging are indicated as points.
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d (µas) w (µas) η (◦) A fC

difmap
April 5 37.2± 2.4 28.2± 2.9 163.8± 6.5 0.21± 0.03 0.5
April 6 40.1± 7.4 28.6± 3.0 162.1± 9.7 0.24± 0.08 0.4
April 10 40.2± 1.7 27.5± 3.1 175.8± 9.8 0.20± 0.04 0.4
April 11 40.7± 2.6 29.0± 3.0 173.3± 4.8 0.23± 0.04 0.5
eht-imaging
April 5 39.3± 1.6 16.2± 2.0 148.3± 4.8 0.25± 0.02 0.08
April 6 39.6± 1.8 16.2± 1.7 151.1± 8.6 0.25± 0.02 0.06
April 10 40.7± 1.6 15.7± 2.0 171.2± 6.9 0.23± 0.03 0.04
April 11 41.0± 1.4 15.5± 1.8 168.0± 6.9 0.20± 0.02 0.04
smili
April 5 40.5± 1.9 16.1± 2.1 154.2± 7.1 0.27± 0.03 7× 10−5

April 6 40.9± 2.4 16.1± 2.1 151.7± 8.2 0.25± 0.02 2× 10−4

April 10 42.0± 1.8 15.7± 2.4 170.6± 5.5 0.21± 0.03 4× 10−6

April 11 42.3± 1.6 15.6± 2.2 167.6± 2.8 0.22± 0.03 6× 10−6

Our method (uncertainty as per [39, Table 7])
April 5 44.4± 3.4 23.2± 5.2 164.9± 9.5 0.26± 0.04 0.365
April 6 44.4± 2.9 23.3± 5.4 161.7± 5.6 0.24± 0.04 0.374
April 10 44.8± 2.8 23.0± 5.0 176.7± 9.8 0.22± 0.03 0.374
April 11 44.6± 2.8 22.8± 4.8 180.1± 10.4 0.22± 0.03 0.372
Our method (sample uncertainty)
April 5 44.1± 1.2 23.1± 2.4 163.9± 5.0 0.25± 0.03 0.377± 0.081
April 6 44.0± 1.2 22.9± 2.4 161.9± 6.0 0.24± 0.03 0.385± 0.085
April 10 44.6± 1.2 22.9± 2.5 176.2± 6.5 0.22± 0.03 0.383± 0.089
April 11 44.6± 1.2 23.0± 2.6 179.8± 6.2 0.22± 0.03 0.383± 0.090

Table 3.1: A comparison of diameter d, width w, orientation angle η, asymmetry A and
floor-to-ring contrast ratio fC as defined by [39, Table 7] and computed for images published
by the EHT collaboration (first three sections of table) as well as for our reconstruction
(last two sections). Section four provides the result of the estimators and their standard
deviations as defined by [39] applied to our posterior mean. Section five provides means
and standard deviations based on processing our posterior samples individually through
the estimators and by computing mean and standard deviations from these results.
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3.2 Methods
This section has partly been written by my coauthors. The reconstruction algorithm relies
on Bayesian statistics. Thus, it consists out of two essential components: the likelihood
and the prior.

The likelihood is a probabilistic description of the measurement process including details
on the measurement device. We choose to describe the measurement in terms of closure
quantities that are invariant under antenna-based calibration effects.

The prior model captures all assumptions on the sky brightness distribution. Here
we assume positivity at all times, correlation along the temporal, spatial, and spectral
direction, as well as the possibility of variations on exponential scale. This is implemented
with the help of a Gaussian process prior of the logarithmic brightness distribution with
unknown kernel. Below, a non-parametric kernel model is derived that assumes a stochastic
process along each dimension individually.

3.2.1 Likelihood
This section has partly been written by Philipp Arras and Reimar Leike. The likelihood of
the measured visibilities given the sky brightness distribution s is computed independently
for each time frame. The visibilities for all measured data points are assumed to follow the
measurement equation in the flat sky approximation:

R(s)AB :=
∫
e−2πi(uABx+vABy)s(x, y) dx dy (3.1)

=: eρABeiφAB . (3.2)

Here AB runs through all ordered pairs of antennas A and B for all non-flagged baselines,
uAB and vAB are the coordinates of the measured Fourier points, s(x, y) is the sky brightness
distribution as a function of sky angles x and y, and R is called measurement response.
The visibilities R(s)AB are complex numbers and we represent them in polar coordinates
as phases φAB(s) ∈ R and logarithmic amplitudes ρAB(s) ∈ R, i.e. R(s)AB = exp(ρAB(s) +
i φAB(s)). We assume the thermal noise of the phase and logarithmic amplitude to be
independently Gaussian distributed with covariance

N = diag
(
σ2

|d|2

)
, (3.3)

where d is the reported visibility data and σ is the reported thermal noise level. The
operation diag(x) denotes a diagonal matrix with x on its diagonal. This is approximately
valid for a signal-to-noise ratio larger than 5 [14], which is true for most of our data.

To avoid antenna based systematic effects, we compute closure quantities from these
visibilities [14]. Closure phases are obtained by combining a triplet of complex phases of
visibilities via:

(φcl)ABC := φAB + φBC + φCA. (3.4)
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Closure amplitudes are formed by combining the logarithmic absolute value of four visibil-
ities:

(ρcl)ABCD := ρAB − ρBC + ρCD − ρDA. (3.5)

These closure quantities are invariant under antenna based visibility transformations of
the form

R(s)AB → cAc
∗
BR(s)AB (3.6)

for all antennas and multiplicative calibration errors cA and cB, where ∗ denotes the com-
plex conjugate.

Note that forming the closure phases is a linear operation on the complex phase, while
forming the closure amplitudes is linear in the logarithmic absolute value. We can thus
represent these operations using matrices:

ρcl = Lρ, φcl = Mφ. (3.7)

The closure matrices L and M are sparse and contain in every row ±1 for visibilities
associated with the closure, and zero elsewhere.

The noise covariances Nρ and Nφ of the closure quantities are related to N via:

Nρ =
〈
Ln(Ln)†

〉
N (n|0,N)

= LNL† and Nφ = MNM †, (3.8)

where N (n|0, N) denotes a Gaussian distribution over n with mean 0 and covariance
N . The mixing introduced by applying L and M leads to non-diagonal noise covariance
matrices of the closure quantities.

For a given antenna setup (of five or more antennas), more closure quantities can be
constructed than visibilities are available, and therefore they provide a redundant descrip-
tion of the data. For the logarithmic amplitudes ρ, we first construct all possible closure
quantities and then map to a non-redundant set using the eigen-decomposition of Nρ.
Specifically, we construct a unitary transformation Uρ where each column of the matrix
is an eigenvector corresponding to a non-zero eigenvalue of Nρ. This transformation pro-
vides a map from the space of all possible closure amplitudes to the space of maximal
non-redundant sets, with the additional property that the transformed noise covariance
becomes diagonal. Specifically

UρNρU
†
ρ = Λρ , (3.9)

where Λρ denotes a diagonal matrix with the non-zero eigenvalues of Nρ on its diagonal.
We can combine L and Uρ to form an operation that maps from the logarithmic amplitudes
of visibilities ρ directly to the space of non-redundant closure amplitudes % via

% = Uρρcl = UρLρ , (3.10)

and use it to compute the observed, non-redundant closure amplitude %d from the published
visibility data d = exp(ρd + i φd).
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The resulting likelihood for closure amplitudes reads

P(%d|%, L,N) = N (%d|%,Λρ) . (3.11)

Closure phases are constructed differently to avoid problems induced by phase wraps.
Adding or subtracting 2π from a phase does not change the result, and we need to preserve
this symmetry in our algorithm. We thus can only add integer multiples of phases such
as (3.4) and this prohibits using a direct matrix decomposition to find a maximal non-
redundant closure set.

We build the closure sets to be used in the imaging with the help of a greedy algorithm
that processes closure phases in the order of decreasing signal-to-noise ratio, as defined
by the inverse of the diagonal of Nφ (3.8). The algorithm collects closure sets into M
until rank(M) = dim(φ) ensuring that φcl consists of a maximal non-redundant set. In
principle, all maximal non-redundant closure sets are equivalent as long as one takes the
non-diagonal noise covariance into account. The concrete choice might have a minor impact
for our approximation of the closure phase likelihood.

Within our closure set, we can decompose the noise covariance Nφ into a unitary matrix
Uφ and its eigenvalues Λφ. Instead of working with the phases φcl directly, we use their
positions on the complex unit circle eiφcl to define

ϕ = Uφ e
iφcl = Uφ e

iMφ . (3.12)

This mitigates the problem of phase wraps at the price of approximating the corresponding
covariance. This approximation yields errors below the 1 % level if the signal-to-noise ratio
is larger than 10. Most of the data points are above that threshold, and the error decreases
quadratically with increasing signal-to-noise ratio. Since data with the lowest standard
deviation are also the most informative, we believe the impact of the approximation on
the reconstruction to be negligible.

Given the closure phases on the unit circle ϕ, the corresponding phase likelihood can
be written as

P(ϕd|ϕ,L,N) = N (ϕd|ϕ,Λφ) , (3.13)
where ϕd = Uφ e

iMφd . Note that (3.13) is a Gaussian distribution on complex numbers
with the probability density function as

N (x|y,X) = |4πX|− 1
2 exp

(
−1

2(x− y)†X−1(x− y)
)
, (3.14)

and Hermitian covariance X. Complex and real Gaussian distributions only differ in their
normalization constant. We do not distinguish between them explicitly, as the normaliza-
tion is irrelevant for our variational approach.

3.2.2 Modelling the sky brightness
This section has partly been written by Philipp Arras. The sky brightness distribution sxtν
is defined within a fixed field of view Ωx ⊂ R2, a time interval Ωt = [0, t̄], and frequency
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range Ων ⊂ R, which renders it to be a field defined in space, time, and frequency. We
assume s to be a priori log-normal distributed:

sxtν := eτxtν with x ∈ Ωx, t ∈ Ωt, and ν ∈ Ων with P(τ |T ) := N (τ |0, T ). (3.15)

The a priori correlation structure of the logarithmic sky brightness τ is encoded within
the covariance T . Choosing a log-normal model allows the sky brightness to vary expo-
nentially on linear spatial, temporal, and frequency scales and ensures the positivity of the
reconstructed intensity, similarly to [22, 21].

We perform a basis transformation to a standardised Gaussian distribution P(ξs) =
N (ξs|0,1), which allows us to separate the correlation structure from its realization [70].
The new coordinates ξs have the same dimension as the original parameters, but are a
priori independent:

s = eAξs with AA† := T. (3.16)

This defines a generative model which turns standard normal distributed DOFs ξs into
random variables s that are distributed according to (3.15). Although the information
encoded in a distribution is invariant under coordinate transformations, MGVI depends on
the choice of coordinates. Therefore, reformulating the entire inference problem in terms
of standardised generative models is important to ensure that the prior information is fully
captured by an approximation via MGVI. We visualize our generative model in figure (3.7).

3.2.3 Correlations in space, time, and frequency
We do not know the correlation structure of the logarithmic sky brightness a priori, so
we include it as part of the model, which has to be inferred from the data. The different
dimensions of the sky brightness are governed by completely distinct physical phenomena,
which should be reflected in the model.

Setting up such correlations involves a number of intricate technicalities. The main
idea is to model the correlations in space, time, and frequency independently using the
same underlying model and combine them via outer products. Doing this naively results
in degenerate and highly un-intuitive model parameters. The model we introduce in the
following avoids these issues, but unfortunately requires a certain complexity.

For now we consider the correlation structure along the different sub-domains individu-
ally. A priori we do not want to single out any specific location or direction for the logarith-
mic sky brightness, which corresponds to statistical homogeneity and isotropy. According
to the Wiener-Khinchin theorem, such correlation structures T (i) with i ∈ {Ωx,Ωt,Ων}
are diagonal in the Fourier domain and can be expressed in terms of a power spectrum
pT (i)(|k|):

T
(i)
kk′ =

(
F (i)T (i)

(
F (i)

)†)
kk′

= (2π)D
(i)
δ (k − k′) pT (i)(|k|), (3.17)

where F (i) and k denote the Fourier transformation and Fourier coordinates associated
to the space i, D(i) is the dimension of i, δ denotes the Kronecker delta, and |k| is the
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Euclidean norm of the vector k. Here † denotes the adjoint of the operator. We choose our
Fourier convention such that no factors of 2π enter the transformation F (i), and thus its
inverse has a factor of 1/(2π)D(i) . As we build the model in terms of standardised coordinates
ξs, we work with the square root of the correlation matrix

A
(i)
kk′ = (2π)D

(i)
δ (k − k′)

√
pT (i)(|k|) =: (2π)D δ (k − k′) p(i)(|k|) (3.18)

that converts those into the logarithmic brightness τ = Aξs.
The amplitude spectrum p(i)(|k|) depends on the characteristic length scales of the

underlying physical processes, which we do not know precisely. Our next task is to develop
a flexible model for this spectrum that expresses our uncertainty and is compatible with a
wide range of possible systems. We model the amplitude spectrum in terms of its logarithm:

p(i)(|k|) ∝ eγ
(i)(|k|). (3.19)

We do not want to impose any functional basis for this logarithmic amplitude spectrum
γ(i)(|k|), so we describe it non-parametrically using an integrated Wiener process in loga-
rithmic l = log|k| coordinates. This corresponds to a smooth, i.e. differentiable, function,
with exponential scale dependence [33]. In the logarithmic coordinates l, the zero-mode
|k| = 0 is infinitely far away from all other modes. Later on we deal with it separately and
continue with all remaining modes for now.

The integrated Wiener process in logarithmic coordinates γi(l) reads:

γ(i)(l) = m(i)l + η(i)
∫ l

l0

∫ l′

l0
ξ

(i)
W (l′′) dl′ dl′′, (3.20)

where l0 is the logarithm of the first mode greater than zero. Without loss of generality,
we set the initial offset to zero. Later on we explicitly parameterise it in terms of a
more intuitive quantity. The parameter m(i) is the slope of the amplitude on double-
logarithmic scale. It is a highly influential quantity, as it controls the overall smoothness of
the logarithmic sky brightness distribution. Specifically, after exponentiation, the spectrum
is given as a power law with multiplicative deviations, and the exponent of this power
law is given by the slope. Therefore, a spectrum with slope zero indicates the absence
of any spatial correlation in the image, whereas a slope of −1 indicates continuous, and
−2 differentiable brightness distributions along the respective axis [87]. The parameter η(i)

describes how much the amplitude spectrum deviates from the power law. These deviations
follow the smooth integrated Wiener process and can capture characteristic length scales
of the logarithmic brightness distribution. Their precise shape is encoded in the realization
ξ

(i)
W ∼ N (ξ(i)

W |0,1), which are also parameters of our model and follow a priori the standard
Gaussian distribution. We do not want to fix the slope and deviations and therefore impose
Gaussian and log-normal priors for j ∈ {m, η} respectively, with preference for a certain
value µ(i)

j and expected deviations σ(i)
j thereof:

m(i) = µ(i)
m + σ(i)

m ξ
(i)
m , η(i) = eµ

(i)
η +σ(i)

η ξ
(i)
η with ξ

(i)
j ∼ N (ξ(i)

j |0,1). (3.21)
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The amplitude spectrum defines the expected variation Ũ (i) of the log-brightness around
its offset via

Ũ (i) :=
∫
k 6=0

pT (i)(|k|) dk =
∫
k 6=0

e2 γ(i)(|k|) dk. (3.22)

The relation between γ(i) and Ũ (i) is un-intuitive, but it is critical to constrain the expected
variation to reasonable values as it has a severe impact on a priori plausible brightness
distributions. Therefore we replace the variance amplitude (i.e. the square root of Ũ (i))
with a new parameter a(i):

p(i)(|k|) = a(i) e
γ(i)(|k|)√
Ũ (i)

, ∀k 6= 0. (3.23)

Note that this step implicitly determines the offset of the Wiener processes in terms of a(i).
We elevate a(i) to be a free model parameter and impose a log-normal model analogous to
η(i) with hyperparameters µ(i)

a and σ(i)
a .

Next, we combine correlation structures in independent sub-domains. For every one
of those, i.e. in our case space, time, and frequency, we use an instance of the model
described above. We have not yet specified how to deal with the amplitude of the zero-
modes p(i)(0), and their treatment emerges from the combination of the sub-domains. The
overall correlation structure including all sub-domains is given by the outer product of the
sub-spaces:

A =
⊗

i∈{x,t,ν}
A(i). (3.24)

This product introduces a degeneracy: α(A(i) ⊗A(j)) = (αA(i))⊗A(j) = A(i) ⊗ (αA(j)) for
all α ∈ R+. With every additional sub-domain we add one additional degenerate degree of
freedom. We can use this freedom to constrain the zero-mode of the amplitude spectrum,
and thus remove the degeneracy up to a global factor. For this we normalize the amplitudes
in real-space:

Ã(i) :=
( 1
V (i)

∫
Ω(i)

(
F (i)

)−1
p(i) dΩ(i)

)−1
A(i) = V (i)

p(i)(0)A
(i). (3.25)

The zero-mode of the normalised amplitude Ã(i) can be fixed to the total volume V (i) of
the space Ω(i). Consequently, the overall correlation structure is expressed as

A = α
⊗

i∈{x,t,ν}
Ã(i). (3.26)

The remaining multiplicative factor α globally sets the scale in all sub-domains and has to
be inferred from the data. Additionally, we put a log-normal prior with logarithmic mean
µα and standard deviation σα hyperparameters and a corresponding standard Gaussian
parameter ξα on this quantity.
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This was the last ingredient for the correlation structure along multiple independent
sub-domains and serves as a generative prior to infer the correlation structure in a space-
time-frequency imaging problem. For the specific application to the EHT observations,
however, only data averaged down to two narrow frequency channels is available. Therefore,
as we do not expect to be able to infer a sensible frequency correlation structure using only
two channels, we simplify (3.26) to explicitly parameterize the frequency correlations as

A =
(

1 ε
1 −ε

)α ⊗
i∈{x,t}

Ã(i)

 , (3.27)

where ε is a hyperparameter that steers the a priori correlation between the frequency
channels.

We briefly summarise all the required hyperparameters and how the generative model
for the correlation structure is built. We start with the correlations in the individual sub-
domains which we describe in terms of their amplitude spectra A(i)(ξ(i)). Four distinct
standardised model parameters are inferred from the data, ξ(i) := (ξ(i)

m , ξ
(i)
η , ξ

(i)
W , ξ

(i)
a ). The

first describes the slope of the linear contribution to the integrated Wiener process. The
second is related to the strength of the smooth deviations from this linear part. The third
parameter describes the actual form of these deviations. Finally, the last one describes the
real-space fluctuations of the associated field.

The hyperparameters are µij and σij for j ∈ {m, η, a} specifying the expected mean
and standard deviation of the slope m(i) and expected mean and standard deviation for
ln(η), ln(a), which are therefore enforced to be positive. In addition to these, we have
to determine the global scale parameter α(ξα), for which we also specify the logarithmic
mean µα and standard deviation σα. We determine the values for the hyperparameters
of the logarithmic quantities through an additional moment matching step by explicitly
specifying the mean and standard deviation of the log-normal distribution. The generative
model for the correlation structure is therefore:

A(ξA) =
(

1 ε
1 −ε

)α(ξα)
⊗

i∈{x,t}
Ã(i)(ξ(i))

 with ξA =
(
ξα, ξ

(x), ξ(t)
)
. (3.28)

Combining this with the generative model for the sky brightness itself we end up with the
full model:

s(ξ) = eF
−1(A(ξA) ξs) with F−1 =

⊗
i∈{x,t}

(
F (i)

)−1
. (3.29)

Our model is now standardized and all its parameters ξ = (ξA, ξs) follow a multivariate
standard Gaussian distribution. The Bayesian inference problem is fully characterised by
the negative logarithm (or information) of the joint probability distribution of data and
parameters. Combining the closure likelihoods with the described sky brightness model
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therefore yields:

− log
(
P(%d, ϕd, ξ)

)
=1

2

(
%d − %(s(ξ))

)†
Λ−1
ρ

(
%d − %(s(ξ))

)
+1

2

(
ϕd − ϕ(s(ξ))

)†
Λ−1
φ

(
ϕd − ϕ(s(ξ))

)
+1

2ξ
†ξ +H0, (3.30)

where H0 is a constant that is independent of the latent variables ξ.

Implementation Details This section has partly been written by my coauthors. We
implement the generative model in NIFTy [6], which also provides an implementation of
MGVI utilising auto-differentiation. We represent the spatial domain with 256×256 pixels,
each with a length of 1µas. In the time domain we choose a resolution of 6 hours for the
entire observation period of 7 days, thus obtaining 28 time frames. The implementation
of the generative model utilizes the Fast Fourier Transform and thus defines the resulting
signal on a periodic domain. To avoid artefacts in the time domain, we add another 28
frames to the end of the observed interval, resulting in a temporal domain twice that size.

For the frequency domain, only two channels are available, and we do not expect them
to differ much from each other. Instead of inferring the correlation along this direction, as
we do for the spatial and temporal axis, we assume a correlation between the two channels
on the 99 % level a priori, i.e. we set ε = 0.01.

This adds another factor of 2 of required pixels to the reconstruction. For future
reconstructions with deeper frequency sampling we can extend the model and treat this
domain equivalently to the space and time domains. Overall we have to constrain 256 ×
256× 56× 2 + power spectrum DOFs ≈ 7.4× 106 pixel values with the data.

The Gaussian approximation to the closure likelihoods is only valid in high signal-
to-noise regimes [14]. We increase the signal-to-noise ratio by means of an averaging
procedure, which subdivides each individual scan into equally sized bins with a length of
approximately 2 min. To validate that this averaging is justified we compare the empirical
standard deviation of averaged data values with the corresponding thermal noise standard
deviation and find their ratio to be 1.48 on average, consistent with the expected

√
2 for

complex valued data.
The intra-site baselines of ALMA–APEX and SMT–JCMT probe the sky at scales

larger than our field of view. To avoid contamination from external sources, we flag these
intra-site baselines and exclude closure quantities that involve the respective pair.
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Figure 3.4: Our validation for static sources, showing two scenarios from the EHT imaging
challenge and a uniform disk. The rows depict the ground truth, the smoothed ground
truth, the approximate posterior mean, and the relative standard deviation for our three
static validation examples. The plots in the first three rows are normalized to their respec-
tive maximum, are not clipped, and the minimum of the colour bar is zero. In the last row
the colour bar is clipped to the interval [0, 1].
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Figure 3.5: Our validation on synthetic observations of time-variable sources. In the figure,
time goes from left to right showing slices through the image cube for the first time bin
of each day. Different source models are shown from top to bottom: eht-crescent,
slim-crescent, and double-sources. For each source the ground truth, the approximate
posterior mean of the reconstruction, and the relative posterior standard deviation, clipped
to the interval [0, 1], are displayed (from top to bottom). The central three columns show
moments in time in which no data is available since data was taken only during the first
and last two days of the week-long observation period.
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Figure 3.6: The spatial correlation power spectra of our reconstruction for the EHT-
observation of M87* (top left panel) and five of our validation data sets. The red curves
show the power spectra of the reconstructed brightness. The blue curves show the power
spectra of the logarithmic brightness. For the three validation sets, the corresponding
power spectra of the ground truth are plotted as a dashed line.
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Ũ(i)

V (i) =
∫
Ω(i) dΩ

(i) Ã(i) =
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Figure 3.7: A visualization of the hierarchical model that was used as prior on the four-
dimensional (frequency, time and space) image s, as described in the methods section.
The round dashed nodes represent the inferred latent parameters, which are independent
normal distributed a priori. The solid rectangular nodes represent computation steps.
Arrows denote dependencies. All hyperparameters are marked in teal. The upper half
of the diagram describes our non-parametric model of the power spectra in temporal and
spatial domains. The lower half specifies how the four dimensional image is obtained from
additional latent parameters and the power spectra.
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Figure 3.8: The relative spectral index and the pixel-wise uncertainty, as calculated from
the 227 GHz and 229 GHz channels for M87* (top) and the eht-crescent example (bot-
tom).
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Figure 3.9: Comparison of our imaging result to that of the EHT-imaging pipeline. All
panels have the same colour bar. The columns label the four days for which observational
data exist. The first row shows snapshot images from the EHT-imaging pipeline for each
of the 4 days. The second row shows our mean reconstruction for the same time frame.
The third and fourth row each show one posterior sample from our imaging pipeline.



Chapter 4

Probabilistic simulation of partial
differential equations

The following chapter has been submitted to Physical Review E with me as the first author
and has been made publicly available on Arxiv [45]. All authors read, commented, and
approved the final manuscript.

Abstract
Computer simulations of differential equations require a time discretization, which in-
hibits to identify the exact solution with certainty. Probabilistic simulations take this
into account via uncertainty quantification. The construction of a probabilistic simu-
lation scheme can be regarded as Bayesian filtering by means of probabilistic numerics.
Gaussian prior based filters, specifically Gauss-Markov priors, have successfully been
applied to simulation of ordinary differential equations (ODEs) and give rise to filter-
ing problems that can be solved efficiently. This work extends this approach to partial
differential equations (PDEs) subject to periodic boundary conditions and utilizes con-
tinuous Gaussian processes in space and time to arrive at a Bayesian filtering problem
structurally similar to the ODE setting. The usage of a process that is Markov in time
and statistically homogeneous in space leads to a probabilistic spectral simulation
method that allows for an efficient realization. Furthermore, the Bayesian perspec-
tive allows the incorporation of methods developed within the context of information
field theory such as the estimation of the power spectrum associated with the prior
distribution, to be jointly estimated along with the solution of the PDE.

4.1 Introduction
Numerical simulation of partial differential equations (PDEs) has been studied extensively
for a long time as PDEs arise naturally in many scientific fields. Recently, fully proba-
bilistic approaches to simulation have been proposed [90, 92], many of them within the
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context of probabilistic numerics (PN) [23, 69]. Many probabilistic numerical methods
aim to disentangle traditional numerical algorithms into the prior assumptions as well as
the (artificial) observations that appear within the algorithm [100]. This provides an un-
certainty quantification within the context of Bayesian reasoning [58] and often has led to
new variants of the algorithms by replacing prior assumptions [68].

In this work we aim to discuss probabilistic numerical simulation within the context
of information field theory (IFT) [31], that is information theory for quantities that are
defined over continuous spaces (i.E. fields). Previous works towards an information field
theoretical consideration of PDE simulation has been established by means of information
field dynamics (IFD) [30, 77]. IFD aims to construct a simulation step that is optimal
in the information theoretical sense, that is minimal loss of information about the system
between subsequent simulation steps. In this work, however, we follow a line of argument
more closely related to PN rather then IFD. We discuss the relations to IFD in further
detail once we established the main properties of the probabilistic solver. Nevertheless,
the usage of IFT allows for an application of non-parametric estimation of power spectra
[33] to the task of PDE simulation. This enables us to construct more sophisticated filters
that adapt to the correlation structure of the simulated process.

We notice that our approach has considerable structural similarities to a recent refor-
mulation of probabilistic simulation of ordinary differential equations (ODEs) by means of
nonlinear Bayesian filtering [107], however here applied to PDEs.

4.1.1 Introduction to IFT and notation
In IFT we consider fields sx that are defined over some continuous domain Ω ⊂ Rd where d
denotes the dimensionality of the space and x may label a location in a coordinate system
on Ω. We aim to provide probabilistic reasoning for fields, and therefore we need to define
probability distributions for fields. To this end we equip the function space L2{Ω} with a
scalar product defined as

a†b ≡
∫

Ω
a∗x b

x dx , (4.1)

where ∗ denotes complex conjugation. Consequently, applications of linear operators O :
L2{Ω} → L2{Ω} are denoted as

bx = (Oa)x = Ox
x′ a

x′ =
∫

Ω
Ox

x′ a
x′ dx′ , (4.2)

where we also introduced the continuous version of the Einstein sum convention. This
allows us to define a Gaussian distribution with mean m and covariance D for a field s via

P (s) = G(s−m,D)

≡ 1
|2πD|

1
2
e−

1
2 (s−m)†D−1(s−m) , (4.3)

where | • | denotes the functional determinant. (For further details see e.g. [32]). In order
to perform inference we additionally need to define a mapping R : L2{Ω} → RN (often
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referred to as response, or design-matrix) that maps a field s to some discrete measurement
data d ∈ RN . Similar to Eq. (4.2) we write

di = (Rs)i = Ri
xs
x =

∫
Ω
Ri

x a
x dx . (4.4)

If we aim to apply the adjoint of R (denoted as R†), however, we get that

bx = (R†d)x = (R†)xidi ≡
N∑
i=1

Rx
i d

i , (4.5)

as we define the scalar product in discrete space as a sum.

4.2 Probabilistic Simulation within IFT
To summarize some key results of probabilistic simulation required for PDE simulation, we
start with a brief discussion of ODE simulation and show its relation to Bayesian filtering.
For an extensive overview of PN methods for ODE simulation please refer to [101, 107].

4.2.1 Probabilistic ODE simulation
Consider an ODE of the form

ṡt ≡ ∂st

∂t
= f

(
st
)

with initial condition st0 = s0 , (4.6)

where st ∈ RM denotes the state of the system at time t and f : RM → RM is a (non-linear)
map.

A Bayesian approach to simulation can the be formulated as: Given some prior knowl-
edge on the field s given as P (s|s0) we aim to constrain this prior via artificial observations
such that it solves Eq. (4.6). The resulting posterior distribution is thus informed via the
information in the observations, as well as the prior assumptions. To realize the ODE
constraints, we may define a continuous data-set dt as

dt = ṡt − f
(
st
)
, (4.7)

and require that dt = 0 ∀t. In general, however, this gives rise to an infinite set of
non-tractable constraints and given only finite computational resources, leads to non-
computable posterior distributions. Therefore, in the spirit of PN, we require this con-
straint to be satisfied only at a discrete set of moments in time T ≡ {ti}i∈{0,...,N−1} via

d = R (ṡ− f (s)) with Ri
t = δ (ti − t) , (4.8)

and then require di = 0 ∀i ∈ {0, ..., N − 1}. Note that the choice of R has an impact on
the resulting simulation scheme as it introduces a measure and consequently a PN method
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for simulation is only fully specified given a prior distribution of the continuous process,
as well as a measurement operation. The specific choice of R considered in this work has
the desirable property that

Rf (s) = f (Rs) . (4.9)

As it will turn put, this property allows us to set up a simulation scheme that only requires
to construct the distribution of Rs and Rṡ from the prior.

To do so, consider the special case of a Gaussian prior for s of the form of Eq. (4.3).
Furthermore let

x =
(
s̄
˙̄s

)
≡
(
Rs
Rṡ

)
=
(
Rs
R∂ts

)
, (4.10)

where ∂t denotes the derivative w.r.t. t. As Gaussian distributions are closed under affine
transformations, we get that x is also Gaussian distributed with mean

mx =
(
Rm
Rṁ

)
, (4.11)

and covariance X

X =
(
RDR† RD∂†tR

†

R∂tDR
† R∂tD∂

†
tR
†

)
, (4.12)

where ∂†t denotes taking the derivative to the left (i.E. the second index of D in this case).
We can use these results to construct the posterior distribution of s given d = 0. Let

¯
T ≡ [t0,∞) \ T and let

¯
s be all st with t ∈

¯
T , we get that

P
(
s|d = 0, s0

)
=
∫

d ˙̄s P
(
¯
s, s̄, ˙̄s|d = 0

)
(4.13)

∝
∫

d ˙̄s P
(
d = 0|

¯
s, s̄, ˙̄s

)
P
(
¯
s|s̄, ˙̄s

)
P
(
s̄, ˙̄s|s0

)
=
∫

d ˙̄s δ
(

˙̄s− f (s̄)
)
P
(
¯
s|s̄, ˙̄s

)
P
(
s̄, ˙̄s|s0

)
= P

(
¯
s

∣∣∣∣∣x =
(

s̄
˙̄s = f (s̄)

))
P

(
x =

(
s̄

˙̄s = f (s̄)

)∣∣∣∣∣ s0
)
. (4.14)

First, we notice that the posterior for all
¯
s remains a Gaussian distribution irrespective of

f and is equal to the conditional distribution of s given the values and the first derivatives
at all T . Furthermore we may write

P

(
x =

(
s̄

˙̄s = f (s̄)

)∣∣∣∣∣ s0
)

= P
(

˙̄s = f (s̄) |s̄, s0
)
P
(
s̄|s0

)
, (4.15)

which ultimately renders the task of simulation a non-linear Bayesian regression problem
in s̄ [107].
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Gauss-Markov processes

For general Gaussian priors, i.E. for general D (see Eq. (4.3)), this approach scales with
N2 (N3 in case of unknown hyper-parameters in D) as we need to compute conditional
distributions for all T . Therefore, as proposed by e.g. [101], one can achieve linear scaling
in N via usage of Gauss-Markov processes. In this work we restrict ourselves to the simple
case of an integrated Wiener process (IWP), however a generalization to higher order
Gauss-Markov process priors is possible as provided by [101]. The IWP may be defined as

s̈t = σξt with ξ ∼ G (ξ,1) , (4.16)

and yields the conditional distribution for st and ṡt given their values at a previous time
step:

P

((
sti

ṡti

)∣∣∣∣∣
(
sti−1

ṡti−1

))

= G
((

sti

ṡti

)
−
(

1 ∆i

0 1

)(
sti−1

ṡti−1

)
, σ2

(
∆3
i/3 ∆2

i/2
∆2
i/2 ∆i

))
, (4.17)

where ∆i = ti − ti−1.
Using the IWP prior, the posterior Eq. (4.15) reads

P
(
s̄|d, s0

)
∝

N−1∏
i=1

P

((
sti

f (sti)

)∣∣∣∣∣
(

sti−1

f (sti−1)

))

=
N−1∏
i=1

[
P
(
ṡti = f

(
sti
)
|sti , sti−1 , ṡti−1 = f

(
sti−1

))
P
(
sti |sti−1 , ṡti−1 = f

(
sti−1

))]
. (4.18)

In words, the observations constructed via R only affect the posterior locally and therefore
the Markov property of the prior remains present in the posterior. As a consequence the
Bayesian filtering problem defined in Eq. (4.15) decomposes into a set of N −1 subsequent
filtering problems, one for each sti .

4.2.2 PDEs with periodic boundary conditions
To construct a probabilistic method for PDEs consider a generic PDE in 1 + 1 dimensions
for a scalar field s of the form

ṡtx = f
(
stx,

(
s(1)

)tx
,
(
s(2)

)tx
, ...
)
, (4.19)

with f : R ⊗ R ⊗ ... → R, and s(c) denotes the cth spatial derivative of s. We restrict
the discussion to scalar fields in 1 + 1 dimensions but note that an extension to higher
dimensions and vector fields is possible. Furthermore we only consider PDEs that are
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compatible with periodic boundary conditions in the spatial domain1, and, without loss of
generality, require the size of the spatial domain to be equal to one.

For a probabilistic solver, we require a prior distribution for s. We remain in the setting
of a Gauss-Markov prior and additionally assume independence of space and time prior
correlations. I.e. we assume that〈

stxst
′x′
〉
P (s)

= Ctt′ Sxx
′ = Ctt′S (|x− x′|) , (4.20)

where we include the additional assumption that the spatial correlation structure is a
priori statistical homogeneous and isotropic. We set C such that s follows an IWP in time.
Furthermore, we define s in terms of its Fourier series

stx =
∞∑

k=−∞
s̃tke2πikx , (4.21)

and use the fact that the Fourier modes s̃ of a statistically homogeneous process become
statistically independent in Fourier space. The prior assumptions additionally imply that
the time evolution of each Fourier mode s̃k follows an IWP of the form

¨̃stk = σk ξtk with ξ ∼ G (ξ,1) , (4.22)

with σ such that |σ|2 equals the Fourier spectrum associated with the spatial covariance
S.

Discrete Measurements

In analogy to the ODE discussion we have to define a discrete set of measurements in order
to arrive at a computable posterior distribution. We may use a measurement operator of
the form

Rij
tx = M i

t B
j
x = δ(ti − t) δ(xj − x) , (4.23)

i.E. each measurement singles out a specific location in space-time. We notice that arbitrary
(e.g. random) space-time locations again renders the simulation to scale with N2 (N3). To
minimize this computational burden more sophisticated methods of choosing design points
in space-time have been proposed. E.g. [23] aims to choose design points such that the
posterior uncertainty is minimized, i.E. by minimizing the trace or the determinant of the
posterior covariance w.r.t. the locations of the design points. For many PDEs, however, it
is important to satisfy the equation at many points simultaneously in order to arrive at a
good numerical approximation. Therefore, in this work, we make use of the specific prior
structure to arrive at an almost linear scaling of the proposed method.

To this end we notice that due to the Markov property of the IWP, the distribution at
a later time, given all Fourier modes in the past, only depends on the latest Fourier modes.

1Other boundary conditions can be enforced by modification of the dynamical equations in the here
presented approach, and possibly by a zero padding area between those in the periodic domain. We leave
this to future research.
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In analogy to Eq. (4.17), for each Fourier mode k we get an independent Markov process
of the form

P

((
s̃ik

˙̃sik
)∣∣∣∣∣
(
s̃(i−1)k

˙̃s(i−1)k

))

= G
((

s̃ik

˙̃sik
)
−
(

1 ∆i

0 1

)(
s̃(i−1)k

˙̃s(i−1)k

)
,
∣∣∣σk∣∣∣2 (∆3

i/3 ∆2
i/2

∆2
i/2 ∆i

))
, (4.24)

with s̃ik = (Ms̃)ik.
However, the process only remains Markov if we keep all (infinitely many) modes in

memory. If we additionally require the spatial locations to be on the same regular grid
with K points, i.E. xj = j/K, we notice that we can construct a discrete Markov process
since

e2πi(k+nK)xj = e2πike2πinKj/K = e2πik (4.25)
∀j ∈ {0, 1, ..., K − 1} , n ∈ Z .

I.e. each Fourier mode k shifted by multiples of K coincides with the mode k for each
location on the grid. Consequently we can represent the field values on the grid using only
K modes as

(
s̄(c)

)tj
≡
(
Bs(c)

)tj
=

K/2∑
k=−K/2+1

(
˜̄s(c)

)tk
e2πikxj

≡ F jk
(
˜̄s(c)

)tk
, (4.26)

where we defined the discrete Fourier transformation F . The finite Fourier modes ˜̄s are
defined in terms of s̃ as

(
˜̄s(c)

)tk
=

∞∑
n=−∞

(2πi (k + nK))c s̃t(k+nK) . (4.27)

Each discrete Fourier mode can be expressed in terms of an infinite sum of Gaussian
random variables and thus itself is Gaussian. Note that for each spatial derivative c,
however, the terms within the sum are different and therefore the summation results in
a vector ˜̄s =

(
˜̄s(0), ˜̄s(1), ...

)
of correlated Gaussian random variables, one for each spatial

derivative involved in the PDE. The reason for this is that even though the field and its
derivatives can be represented on the same grid, taking the derivative does not commute
with the discretization operation B.

The infinite Fourier modes s̃k are solutions of the IWP process defined in Eq. (4.24),
and therefore we may use an analogous derivation for the discrete representation of the
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time derivatives ˙̄̃s =
( ˙̄̃s(0), ˙̄̃s(1), ...

)
to arrive at a discrete Markov prior of the form

P

((˜̄sik
˙̄̃sik

)∣∣∣∣∣
(˜̄s(i−1)k

˙̄̃s(i−1)k

))

= G
((˜̄sik

˙̄̃sik

)
−
(

1 ∆i

0 1

)(˜̄s(i−1)k

˙̄̃s(i−1)k

)
,

(
∆3
i/3 ∆2

i/2
∆2
i/2 ∆i

)
⊗Dk

)
∀k ∈ [−K/2 + 1,K/2] , (4.28)

where ˜̄sik = M i
t
˜̄stk and ⊗ denotes the tensor product. The discrete Fourier mode covariance

Dk takes the form (
Dk
)cd
≡
〈(

˜̄s(c)
)k (˜̄s(d)

)k〉
= (−1)d

∞∑
n=−∞

(2πi(k + nK))c+d
∣∣∣σk+nK

∣∣∣2 . (4.29)

The Markov property of the IWP remains in the discrete representation of the field since
we defined the space and time correlations to be independent a priori. See Appendix 4.A
for a derivation of Dk.

The discrete Fourier transformation defined in Eq. (4.26) is invertible, and therefore we
can construct the measurement equation associated with the PDE (Eq. (4.19)) in terms of
the Fourier modes as

dik = ˙̄̃sik −
(
F−1f

(
F ˜̄s(0),F ˜̄s(1), ...

))ik
≡
( ˙̄̃s− g

(
˜̄s
))ik

. (4.30)

Posterior distribution

In direct analogy to the ODE setting, we can combine the observational data d with the
prior to construct a posterior distribution. Let u =

(
˜̄s(0), ˜̄s(1), ...

)
be the discretized Fourier

space field values and their higher order spatial derivatives and v ≡
( ˙̄̃s(1), ...

)
be the time

derivative of the spatial derivatives in u, we get that

P
(
u,v|d = 0,u0,v0

)

∝
N−1∏
i=1

P


 ui

˙̄̃si = g (ui)
vi


∣∣∣∣∣∣∣
 ui−1

˙̄̃si−1 = g (ui−1)
vi−1




=
N−1∏
i=1

P
vi

∣∣∣∣∣∣∣
(

ui
˙̄̃si = g (ui)

)
,

 ui−1

˙̄̃si−1 = g (ui−1)
vi−1




P

( ui
˙̄̃si = g (ui)

) ∣∣∣∣∣∣∣
 ui−1

˙̄̃si−1 = g (ui−1)
vi−1



 . (4.31)
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Here, the involved conditional distributions can be directly constructed from Eq. (4.28).
We notice that the distribution of vi remains Gaussian and we can directly sample it once
we solved the simulation step for ui by constructing the conditional distribution of vi from
Eq. (4.28). The distribution of ui may again be rewritten in terms of a non-linear filter as

P

( ui
˙̄̃si = g (ui)

) ∣∣∣∣∣∣∣
 ui−1

˙̄̃si−1 = g (ui−1)
vi−1


 =

= P

 ˙̄̃si = g
(
ui
) ∣∣∣∣∣∣∣ui,

 ui−1

˙̄̃si−1 = g (ui−1)
vi−1


 ×

P

ui
∣∣∣∣∣∣∣
 ui−1

˙̄̃si−1 = g (ui−1)
vi−1


 (4.32)

Eq. (4.31) and (4.32) describe the central results of our work. Under the given prior
assumptions and measurement setting the posterior becomes a Markov process in time in
the finite state vector ui. Furthermore, each time step is presented as a non-linear Bayesian
filtering problem, where the second probability on the r.h.s. in Eq. (4.32) is a Gaussian
prior distribution in ui that acts as a predictive step to construct the next step from the
previous one. The first distribution may be regarded as a (in general non-linear) likelihood
which acts as a regularization by comparing the time derivative ˙̄̃si constructed via the PDE
from ui, to the conditional distribution of ˙̄̃si that arises from the previous step and the
prior process. See Algorithm 1 for a pseudo-code description of the resulting algorithm.

4.2.3 Posterior properties
It is noteworthy that, in contrast to the ODE setting, even though we use an IWP prior in
time, it is in general not sufficient to only store the field values on the grid. We also have
to keep the involved spatial derivatives u and, maybe even more surprising, the spatial
derivatives of the first time derivative v in memory, in order to be fully consistent with the
continuous prior process. In fact, as the spatial derivatives of the first time derivative do
not enter the PDE, we may analytically integrate over these quantities, but the resulting
process would loose the Markov property, which we believe is in general not desirable.
However, as we have seen, once we have solved the inference problem for u we can directly
sample v as the conditional distribution remains Gaussian.

On the other hand, given a fixed step size, the spatial resolution, and a spectrum |σ|2,
we may rewrite the posterior distribution in terms of the generative process associated
with the predictive prior of u. This reads

ui = ui−1 + ∆i

(
g (ui−1)

vi−1

)
+
√

∆3
i/3 UΛri , (4.33)
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with ri ∼ G(ri,1), and where UΛU† denotes the eigen-decomposition of the prior covari-
ance D with U being a unitary matrix and Λ a real diagonal matrix. Note that due to the
homogeneity of the prior this covariance takes a block diagonal form in k and therefore we
only need to decompose a set of K independent (o+1)-dimensional matrices where o is the
highest spatial derivative involved in the PDE. We notice that for fast decaying spectra
(resulting in a strong spatial smoothness) the eigenvalues Λ also decrease very fast. That
means that we can define a precision level prior to the simulation up to which we want to
keep track of discretization contributions, and set all eigenvalues below this threshold and
all associated components in ri to zero. This may reduce the burden of storing additional
quantities on the grid.

4.2.4 Power spectrum estimation
So far we only considered the case of a given prior power spectrum σ. In practical ap-
plications, however, it is often unclear prior to the simulation which spatial correlation
structure one should choose given the initial state and the PDE. A strongly decaying
spectrum enforcing too much smoothness might result in a poor performance of the sim-
ulation algorithm as small scale structures are missing while a very flat spectrum might
over-represent these scales and consequently leads to very high uncertainties.

Since we have formulated the simulation problem by means of Bayesian inference, it
is straightforward to elevate the power spectrum to an unknown quantity that has to be
inferred along with the solution. To this end we may write

P (u,v, σ|d,u0,v0) ∝ P (u,v|d,u0,v0, σ) P (σ) , (4.34)

where P (u,v|d,u0,v0, σ) is defined via Eq. (4.31).
A more difficult question is how to construct a useful prior distribution for σ as in order

to construct the distribution of u and v we have to compute the infinite sums associated
with D (see Eq. (4.29)). In this work we follow an approach originally developed for
power spectrum estimation within the context of Bayesian imaging [9]: First consider the
spectrum on a double logarithmic scale as

σ(|k|) = eτ(l) with l = log(|k|) . (4.35)

This provides a useful scale for power spectra as power laws appear as straight lines on this
scale. As power-law shaped spectra are reasonable for many physical processes, we aim to
construct a prior that, in absence of further information, follows a power law. Furthermore
we require that deviations from this power-law are smooth (i.E. differentiable) on log-log-
scale. To this end we assume that τ solves an IWP process in the log-coordinates l of the
form

∂2τ

∂l2
= στξ with ξ ∼ G(ξ,1) , (4.36)

where στ is a positive scaling factor. Finally, we realize this process on a regular grid in
l with L pixels, up to a maximal value lmax, and approximate all intermediate values of τ
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via bi-linear interpolation in l. This allows us to approximately compute the covariance D
by summing up all contributions to the sum up to nmax with lmax = log (nmaxK) where K
is the number of pixels of the spatial grid. The bi-linear interpolation additionally allows
to approximately compute the sum directly from the values of τ on the logarithmic grid
l without the need to realize a high resolved version of σ on linear scale. Furthermore,
as we define a regular grid on logarithmic scale in |k| we can easily extend the spectrum
to extremely large values of |k| (large nmax), far below the smallest resolved scales of the
simulation. For a detailed discussion of these prior properties see e.g. [9] and [8].

We notice that a time invariant spectrum constructed this way renders the full posterior
to be non-Markov since all steps depend on the same spectrum. We can restore the Markov
property by introducing a different spectrum for each time step τ i. Specifically, we assume
the spectrum to be piecewise constant for the length of the time step, but different for
each step. Furthermore, to increase stability, we may assume that the power spectra of
subsequent steps are correlated, which is a reasonable assumption since we do not expect
the statistical properties to vary arbitrarily strong between two subsequent time steps. A
simple way to introduce such correlations is by assuming that τ follows a discrete time
Wiener process, that is

τ i = τ i−1 + ∆iτ̃
i . (4.37)

Specifically the current log-spectrum τ i can be constructed from the previous one τ i−1 and
a random component τ̃ i. We let τ̃ i be distributed according to an IWP in the log-Fourier
coordinates l, as defined via Eq. (4.36). This renders the full time-Fourier process for τ to
be a discrete Wiener Process in time and an IWP in the log-Fourier coordinates l.

4.2.5 Composed algorithm
The full algorithm using power spectrum estimation may be denoted as:

Given the previous state X(i−1) =
(
u(i− 1),v(i− 1), τ (i−1)

)
, use the posterior distri-

bution constructed from Eq. (4.32) and Eq. (4.34) to compute an estimate (or sample) for
ui and τ i via e.g. a joint Maximum a Posteriori (MAP) estimate, a Variational approxima-
tion, or Monte Carlo based sampling. Use this estimate (sample) in the distribution of vi
(see Eq. (4.31)) to sample vi conditional to ui, τ i and the previous state X(i−1). Given the
new full state X i we may repeat the procedure to compose a new time-step. For a pseudo
code representation see Algorithm 2

Initial conditions

We notice that initial conditions s0, evaluated on the grid, do not fully determine the initial
state X0 that is needed to start the simulation as X0 also consists of the spatial derivatives
of the continous field, evaluated on the grid, and the initial power spectrum τ 0. However,
there are multiple ways to estimate an initial state X0 given s0. For example we may
estimate the large scale (scales that are resolved by the simulation grid) power spectrum
from the initial conditions directly and accompany this estimate with a consistent initial
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Algorithm 1: PDE simulation with fixed spectrum
Input: u0, v0, σ, PDE

1 for i = 1 to N do
2 Given (ui−1,vi−1) and σ, solve Bayesian filtering problem (Eq. (4.32)) to get an

estimate (sample) for ui
3 Given ui use Eq. (4.31) to sample vi
4 end
Output: {(ui,vi)}i∈{1,...,N}

Algorithm 2: PDE simulation with variable spectrum
Input: X0, PDE

1 for i = 1 to N do
2 Given Xi−1, solve the joint Bayesian filtering problem of Eqs. (4.32) and (4.34)

to get an estimate (sample) for ui and τ i
3 Given ui and τ i use Eq. (4.31) to sample vi
4 Xi ← (ui,vi, τ i)
5 end
Output: {Xi}i∈{1,...,N}

guess for the small scale spectrum. Given this spectrum, it is straightforward to estimate
the spatial derivatives needed for X0, given the spectrum and s0 via Gaussian regression.
We may even perform a probabilistic estimate and sample from the corresponding distri-
bution to construct X0 in order to propagate the uncertainty that arises from insufficient
knowledge of the initial state into the simulation.

In this work, however, we want to study the performance of the simulation algorithm
itself, and therefore assume that the initial state X0 is fully given, i.E. we start with an
initial condition that allows us to compute the spatial derivatives analytically.

4.3 Applications

In the following we present the application of the proposed methods to two systems, the
diffusion equation as well as the viscous Burgers equation. All applications are conducted
on the same regular grid in space, with 128 pixels and periodic boundary conditions. The
power spectra are realized on a logarithmic regular grid with 500 pixels and a maximal value
lmax corresponding to an effective Fourier space 100 times the resolution of the simulation
grid. This large effective Fourier space ensures that, at any point in the given examples,
the spectra are numerically zero outside this region.
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4.3.1 Diffusion equation
To emphasize the influence of the spectrum on the simulation we start with the simple
case of a diffusion equation, that is

ṡ = f(s) = ν s(2) , ν > 0 , (4.38)

and choose a Gaussian profile as the initial state. In Figure 4.1 we depict the MAP
estimate of the first step for a step size of ∆1 = 0.04, and for ν = 0.01. We show two
different modes of the simulation scheme: the case of a given generic power spectrum of
the form |σk|2 ∝ |k|−6 as well as the case where we optimize for the spectrum together with
the solution. As a comparison, we also compute the solution given by the trapezodial rule,
where in this case the spatial derivatives are computed via discrete Fourier derivatives,
i.E.

(
s(2)

)k
= (2πik)2

(
s(0)

)k
. This method may serve as a standard comparison as it

also requires the differential equation to be satisfied for the current as well as the future
state simultaneously and therefore is an implicit method of second order, such as the two
approaches proposed in this work are. We see in Figure 4.1 that compared to the standard
method, both approaches are closer to the ground truth, with the optimized spectrum
being slightly closer.

Furthermore, in Figure 4.2, we compare the ground truth to the posterior mean of the
simulation and also depict the posterior uncertainty of the problem. We approximate the
posterior distribution via the empirical Bayes approach, that is, we use the Maximum a
posterior (MAP) estimate of the logarithmic power spectrum τ ∗ and compute the con-
ditional posterior distribution of the solution s, given τ ∗. This conditional posterior is
analytically computable since the linear dynamics together with a Gaussian prior distri-
bution results in a Gaussian posterior for s, given τ ∗. We see that the posterior mean is
in agreement with the ground truth within posterior uncertainties. Furthermore, on the
right hand side of Figure 4.2, we depict the residual between the ground truth and the
reconstruction as a function of the step size for various locations. Again, the deviation
agrees with the uncertainties and furthermore we notice that due to the fact that the prior
is stationary, and the diffusion equation is linear and stationary, the posterior distribution
also remains a stationary process in space and therefore the posterior uncertainty is the
same for every location.

Finally, in Figure 4.3 we depict the time evolution of the simulation together with the
ground truth and the estimated power spectra for every time step. As a comparison, we
also depict the time evolution for a simulation setting where we used the power spectra
computed from subsequent steps of the ground truth, and solved the simulation problem
conditional to these spectra.

We see that as time progresses, the initially sharp spatial distribution tends to decay
and smooth out over the spatial domain. Consequently, the reconstructed power spectra
show less power on small scales as time progresses and only large scale power remains.
Furthermore, the overall magnitude of the power spectrum decreases, which indicates that
the uncertainty (and therefore the local error) of later time steps become smaller. This
adaptive control of the spectrum leads to a better quantification of the local error and
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Figure 4.1: Top: First time step of the simulation of the diffusion equation with an initial
Gaussian profile (blue). The green line corresponds to the ground truth, the black line
to the midpoint rule, the purple line to the posterior mean of the reconstruction using
a fixed power spectrum ∝ |k|−6, and the red line corresponds to the MAP estimate of
the simulation with an adaptive power spectrum. Bottom left: Detailed version of the
simulation step zoomed into the central region. Bottom right: Power spectra of the
simulation on a double-logarithmic scale. Purple: Spectrum of the simulation step with a
fixed spectrum. Red: MAP estimate of the optimized spectrum. Green: Ground truth of
the spectrum. Here ground truth refers to the spectrum that was reconstructed using the
true time evolution as a realization of the corresponding Gaussian prior distribution. The
black dashed line indicates the largest harmonic mode corresponding to the resolution of
the simulation.
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Figure 4.2: Left: Ground truth (green), posterior mean (red), posterior samples (light
blue), and posterior standard deviation (gray) of the first time step of the diffusion equa-
tion. The posterior samples as well as the standard deviation were conducted by means of
the empirical Bayes’ approach. Specifically, the posterior distribution conditional to the
MAP estimate of the optimized spectrum is used. Right: Colored lines: Residual differ-
ence between the ground truth and the posterior mean at multiple locations of the spatial
domain as a function of step size ∆t. The corresponding posterior standard deviation (valid
for any location) is given as the gray contour.

therefore also leads to a more sophisticated control of the global error of the system. We
notice, however, that the inferred power spectra of intermediate steps are substantially
different from the power spectra of the ground truth. First, on the largest scales the
reconstructed power spectra has more power compared to the ground truth. This is a
common issue that appears when jointly inferring a field with its power spectrum, as for
these modes inference is very degenerate and consequently mostly dominated by the prior
assumptions. A more suitable prior in terms of more restrictive hyper-parameters might
improve this behaveiour. The second difference becomes apparent for small scale modes
where there is too much power around |k| ∈ [20, 30]. We believe that this effect is rooted
in the large step size of the given simulation setting: The first steps of the ground truth
show a rapid decay of these modes which cannot fully be captured by the simulation step
and thus power remains on these scales that gets picked up by the power spectra estimate.
However, as time progresses, the power of these scales eventually decay due to the diffusive
dynamics of the process.

4.3.2 Burger’s equation

As a second example, we study the performance of the proposed approach in the context
of the (viscous) Burgers equation. Specifically

ṡ+ s s(1) = ν s(2) . (4.39)
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Figure 4.3: Color coded time evolution of the diffusion equation. Red indicates early times
and blue indicates the latest time-steps. Top to bottom: Ground truth, reconstruction
using a variable spectrum (i.E. joint optimization for solution and spectrum), residual norm
between ground truth and reconstruction, reconstruction using the fixed spectrum derived
from the ground truth, and corresponding residual norm. Bottom left: Reconstructed
power spectra for each time-step of the joint optimization case. Bottom Right: Power
spectra computed from the ground truth.
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We again start with a Gaussian profile as the initial state and set ∆i = 3 × 10−3 and
ν = 4× 10−3.

The Burger’s equation is known to develop strong shock waves for small viscosity ν,
which means that in contrast to the diffusion equation, small scale structures become
more relevant as time progresses. Indeed we find that if we compute the power spectra
of subsequent time steps from the ground truth (see bottom right of Figure 4.4) we see
how the spectrum gains power on small scales, while the large scale power remains almost
unchanged. In addition we also notice that after a few time steps there is non-negligible
power on scales that are smaller then the smallest resolved scales of the simulation grid.

It turns out that, when applying the adaptive simulation to this setup (see Figure 4.4),
it is only possible to consistently infer the power spectra along with the solution for scales
that are also resolved by the simulation grid. As we only require the differential equation
to be satisfied on the grid, there is no direct information about smaller scales that enter
the reconstruction and therefore the power spectrum estimation, and ultimately also the
simulation itself breaks down as the shock forms. This leads us to the conclusion that
using only the feedback of small scales to the large scales provides insufficient information
to properly infer the small scale statistics. Without further prior information, we believe
that the only way to properly access these scales is via resolving them on a grid with high
enough resolution.

However, we notice that it is possible to circumvent the need of realizing the process on
a high resolution grid, via the usage of appropriate prior information. To this end consider
the middle panels of Figure 4.4, where we used the power spectra estimated from the ground
truth to construct a simulation scheme with fixed spectrum on the same resolution as the
adaptive one (i.E. a spatial discretization of 128 pixels). It turns out that in contrast to the
adaptive scheme, the simulation remains stable and is in agreement with the ground truth
long after the adaptive scheme diverged. This result highlights the second key mechanism
of a probabilistic treatment of PDE simulation: even though the spatial resolution appears
to be insufficient to fully resolve the state, the consistent treatment of discretization via the
introduction of spatial derivatives as additional random variables allows for a simulation
that remains in agreement with the ground truth. As the correct power spectra are given
in this setup, they provide small scale structures consistent with the given PDE and in
turn allow for a correct feedback of the small (unresolved) scales to larger (resolved) scales.

4.4 Comparison to IFD
In this work, as well as in IFD there exists the concept of a measurement operator R
that specifies the evaluated values of the field. In IFD the resulting measurements are the
quantities that are ultimately stored on a computer for a given time-step, meaning that
if R singles out a finite set of spatial locations, as used in this work, the corresponding
field values are stored. In contrast, in this work not only the field values but also the
spatial derivatives involved in the PDE are stored. However, we note that one can alter
the measurement operator of IFD to measure not only the values but also the spatial
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Figure 4.4: Same composition as Figure 4.3, but for the time evolution of the Burgers
equation.
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derivatives, to result at the same set of quantities that have to be stored. The important
difference is that while in IFD this is a choice made by the user, in this work it is a result
of the method in order to arrive at a computable distribution that is consistent with the
continuous prior process.

Furthermore, in this work R also defines the set of space-time locations at which the
process has to fulfill the PDE. This is fundamentally different from IFD as IFD aims to fulfill
the PDE at every location. As a consequence there is no need for a prior time correlation
in IFD as, in case of a Gaussian prior, the only quantity necessary to translate between
the finite state and the distribution of the field is a prior spatial correlation structure.
However, we note that for most non-linear applications, the exact time evolution that
is required for IFD is not available and thus an approximation has to be made there,
which is not captured in a probabilistic fashion. Consequently uncertainties arising from
approximated time evolution are not captured within IFD, while the approach in this work
takes into account these uncertainties and aims to fill the time gap via the assumed prior
time correlation structure. However, requiring the PDE to be satisfied only at a discrete
set of locations is also problematic as we have seen, in particular when we aim to infer the
prior correlation structure (i.E. the power spectra) on scales that are not resolved by R.

4.5 Conclusion
In this work we derived a fully probabilistic framework for simulation of PDEs subject to
periodic boundary conditions. The proposed method makes use of continuous space-time
Markov process priors that are stationary in space, and incorporates artificial observational
constraints that require the PDE to be satisfied on a regular grid. The Markov property
allows for a formulation of the posterior such that the distribution of the current state is
only conditional on the state at the previous time-step. The state of the system, however,
not only consists of the field values realized on the grid, but also consists of the values of
all spatial derivatives involved in the PDE. Only if these random variables are kept track
of, the discrete Markov realization is consistent with the continuous process. Furthermore,
the usage of prior distributions that are stationary in space, together with sampling on a
regular and periodic grid with K pixels, allows for an efficient K log(K) scaling of a single
step of the algorithm via incorporation of Fast Fourier Transforms.

The Bayesian analysis of the problem allows for inference of hyper parameters, such
as the spatial correlation structure, i.E. the prior power spectrum, alongside with the
solution of the simulation. To this end we incorporate a non-parametric method of power
spectra estimation, originally developed for Bayesian imaging by means of information
field theory. The resulting joint estimation of spectrum and realization of the process leads
to a simulation scheme that is closer to the ground truth compared to a method with a
fixed, generic spectrum, and also allows for a more sophisticated error analysis in terms
of the posterior uncertainty. We notice, however, that without further prior information
about the small scale statistics, the inference of the power spectrum is only valid up to
scales that are resolved by the simulation grid. As we have seen in the application to the
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Burgers equation, once scales below the grid resolution become relevant for the solution,
the estimation of the spectrum becomes inaccurate, and as a consequence the simulation
starts to diverge from the true solution. If an accurate estimation of the small scale spectra
are available, however, we notice that it is possible to use these spectra for a low-resolution
simulation that remains consistent with the high-resolution setting.

Finally we may conclude that the approach for probabilistic PDE simulation provides
novel insights into the interplay between prior assumptions entering a simulation algo-
rithm and the involved PDE. However, additional work, in particular concerning small
(unresolved) scale statistics, has to be done in order to improve the performance and
stability of the proposed approach.

On the other hand, in addition to Bayesian uncertainty quantification, a fully proba-
bilistic approach to simulation enables several novel key properties compared to traditional
numerical simulation. For example, as the analysis gives rise to a posterior probability dis-
tribution that may be separated into a generative prior and a likelihood, it is straightfor-
ward to incorporate the simulation into a larger inference framework, in order to estimate
for example parameters of the PDE or initial conditions, from observational data.

In addition, modern day machine learning techniques can be used to speed up the sim-
ulation algorithm. In particular neural networks have already successfully been applied to
simulation using training data composed via traditional numerical simulation as an input
(see e.g. [103]). On the other hand, to circumvent the need of generating training data,
which might be very expensive, [91] has demonstrated that is possible to train a neural
network to approximate the solution directly by minimizing the squared norm of the devi-
ations of the PDE from zero at a discrete set of space-time locations using only the initial
state and the PDE as an input. However, in [91], it has also been demonstrated that train-
ing a network to reproduce the internal stages of a high-order Runge-Kutta scheme rather
than solely minimizing the squared norm associated with the PDE, appears to be more
efficient due to the additional prior assumptions incorporated in the Runge-Kutta scheme.
As Runge-Kutta type methods have a probabilistic interpretation in terms of a Gaussian
process prior [100], these results indicate that on one hand, neural networks are capable of
approximating simulation steps, and on the other hand that a probabilistic posterior dis-
tribution for simulation, as derived in this work, may provide a more sophisticated measure
for neural-network training. Specifically the posterior distribution is informed about both,
the differential equation being satisfied, and a notion of continuity (and differentiability)
in space and time in terms of the prior assumptions.

All in all, we believe that the probabilistic approach to simulation, in particular in terms
of probabilistic numerics, is capable to provide further insights into numerical simulation,
and to generalize existing algorithms. However, further work has to be done in order to
arrive at a class of simulation algorithms that are capable of tackling broader classes of
physically relevant PDEs.
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Appendix

4.A Discrete prior

Consider a Gaussian random field stx with x ∈ [0, 1] on a periodic domain and t ∈ [t0,∞).
Furthermore s has statistically homogeneous and isotropic statistics in space and follows
an IWP in time. Specifically:

stx =
∞∑

k=−∞
s̃tke2πikx (4.40)

¨̃stk = σk ξtk with ξ ∼ G(ξ,1) . (4.41)
(4.42)

If we define a discretization operation of the form

Rij
tx = M i

t B
j
x = δ(ti − t) δ(xj − x) , (4.43)

with xj = j/K for j ∈ {0, 1, ..., K − 1}, it follows from Eqs. (4.41) and (4.42) that all Fourier
modes are independent and follow IWP processes of the form:

P

((
s̃ik

˙̃sik
)∣∣∣∣∣
(
s̃(i−1)k

˙̃s(i−1)k

))

= G
((

s̃ik

˙̃sik
)
−
(

1 ∆i

0 1

)(
s̃(i−1)k

˙̃s(i−1)k

)
,
∣∣∣σk∣∣∣2 (∆3

i/3 ∆2
i/2

∆2
i/2 ∆i

))
, (4.44)

with ∆i = ti − ti−1 and s̃ik = (Ms̃)ik.
As xj is sampled on a regular grid, from Eq. (4.25) we get that

(
˜̄s(c)

)ik
=

∞∑
n=−∞

(2πi (k + nK))c s̃i(k+nK) , (4.45)

( ˙̄̃s(c)
)ik

=
∞∑

n=−∞
(2πi (k + nK))c ˙̃si(k+nK) , (4.46)

with k ∈ [−K/2 + 1,K/2].
Proposition: The random vectors ˜̄s =

(
˜̄s(0), ˜̄s(1), ...

)
and ˙̄̃s =

( ˙̄̃s(0), ˙̄̃s(1), ...
)
are Gaus-

sian distributed according to Eq. (4.28).
As the involved discretization operation is a linear operation, it is sufficient to show

that the mean and covariance take the proposed form, since s̃ and ˙̃s are itself Gaussian
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distributed. For the mean we get that〈(
˜̄s(c)

)ik〉
=

∞∑
n=−∞

(2πi (k + nK))c
〈
s̃i(k+nK)

〉
=

∞∑
n=−∞

(2πi (k + nK))c
(
s̃(i−1)(k+nK) + ∆i

˙̃s(i−1)(k+nK)
)

=
∞∑

n=∞
(2πi (k + nK))c s̃(i−1)(k+nK)

︸ ︷︷ ︸
=(˜̄s(c))(i−1)k

+ ∆i

∞∑
n=−∞

(2πi (k + nK))c ˙̃s(i−1)(k+nK)

︸ ︷︷ ︸
=( ˙̄̃s(c))(i−1)k

=
(
˜̄s(c)

)(i−1)k
+ ∆i

( ˙̄̃s(c)
)(i−1)k

, (4.47)

and similarly 〈( ˙̄̃s(c)
)ik〉

=
∞∑

n=−∞
(2πi (k + nK))c

〈
˙̃si(k+nK)

〉
=

∞∑
n=−∞

(2πi (k + nK))c ˙̃s(i−1)(k+nK)

=
( ˙̄̃s(c)

)(i−1)k
. (4.48)

For the equal time covariance we get〈(( ˙̄̃s(c)
)ik
−
〈( ˙̄̃s(c)

)ik〉)(( ˙̄̃s(d)
)iq
−
〈( ˙̄̃s(d)

)iq〉)∗〉
=

∞∑
n,m=−∞

(2πi (k + nK))c (−2πi (q +mK))d×
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〈
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〉) (
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〉)∗〉

︸ ︷︷ ︸
δnmδkq|σk+nK|2∆i

= δkq ∆i (−1)d
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n=−∞
(2πi (k + nK))c+d

∣∣∣σk+nK
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= δkq ∆i

(
Dk
)cd

, (4.49)

where we recover the definition of Dk (Eq. (4.29)). An analogous computation of the
covariance of ˜̄s(c) yields the same result with ∆i being replaced by ∆3

i/3. Similarly the cross
correlation between ˜̄s(c) and its time derivative also results in the same covariance with a
pre-factor of ∆2

i/2.
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Chapter 5

Geometric variational inference

The following chapter has first been published in Entropy with me as the first author [47].
All authors read, commented, and approved the final manuscript.

Abstract
Efficiently accessing the information contained in non-linear and high dimensional
probability distributions remains a core challenge in modern statistics. Tradition-
ally, estimators that go beyond point estimates are either categorized as Variational
Inference (VI) or Markov-Chain Monte-Carlo (MCMC) techniques. While MCMC
methods that utilize the geometric properties of continuous probability distributions
to increase their efficiency have been proposed, VI methods rarely use the geometry.
This work aims to fill this gap and proposes geometric Variational Inference (geoVI),
a method based on Riemannian geometry and the Fisher information metric. It is
used to construct a coordinate transformation that relates the Riemannian manifold
associated with the metric to Euclidean space. The distribution, expressed in the co-
ordinate system induced by the transformation, takes a particularly simple form that
allows for an accurate variational approximation by a normal distribution. Further-
more, the algorithmic structure allows for an efficient implementation of geoVI which
is demonstrated on multiple examples, ranging from low-dimensional illustrative ones
to non-linear, hierarchical Bayesian inverse problems in thousands of dimensions.

5.1 Introduction
In modern statistical inference and machine learning it is of utmost importance to access
the information contained in complex and high dimensional probability distributions. In
particular in Bayesian inference, it remains one of the key challenges to approximate sam-
ples from the posterior distribution, or the distribution itself, in a computationally fast and
accurate way. Traditionally, there have been two distinct approaches towards this problem:
the direct construction of posterior samples based on Markov Chain Monte-Carlo (MCMC)
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methods [51, 19, 81], and the attempt to approximate the probability distribution with a
different one, chosen from a family of simpler distributions, known as variational inference
(VI) [16, 60, 96, 75] or variational Bayes’ (VB) methods [70, 44, 104]. While MCMC meth-
ods are attractive due to their theoretical guarantees to reproduce the true distribution in
the limit, they tend to be more expensive compared to variational alternatives. On the
other hand, the family of distributions used in VI is typically chosen ad-hoc. While VI
aims to provide an appropriate approximation within the chosen family, the entire family
may be a poor approximation to the true distribution.

In recent years, MCMC methods have been improved by incorporating geometric in-
formation of the posterior, especially by means of Riemannian manifold Hamilton Monte-
Carlo (RMHMC) [53], a particular hybrid Monte-Carlo (HMC) [29, 12] technique that
constructs a Hamiltonian system on a Riemannian manifold with a metric tensor related
to the Fisher information metric of the likelihood distribution and the curvature of the
prior. For VI methods, however, the geometric structure of the true distribution has rarely
been utilized to motivate and enhance the family of distributions used during optimization.
One of the few examples being [99] where the Fisher metric has been used to reformulate
the task of VI by means of α-divergencies in the mean-field setting.

In addition, a powerful variational approximation technique for the family of normal
distributions utilizing infinitesimal geometric properties of the posterior is Metric Gaussian
Variational Inference (MGVI) [71]. In MGVI the family is parameterized in terms of the
mean m, and the covariance matrix is set to the inverse of the metric tensor evaluated
at m. This choice ensures that the true distribution and the approximation obtain the
same geometric properties infinitesimally, i.E. at the location of the mean m. In this
work we extend the geometric correspondence used by MGVI to be valid not only at
m, but also in a local neighborhood of m. We achieve this extension by means of an
invertible coordinate transformation from the coordinate system used within MGVI, in
which the curvature of the prior is the identity, to a new coordinate system in which
the metric of the posterior becomes (approximately) the Euclidean metric. We use a
normal distribution in these coordinates as the approximation to the true distribution and
thereby establish a non-Gaussian posterior in the MGVI coordinate system. The resulting
algorithm, called geometric Variational Inference (geoVI) can be computed efficiently and
is inherently similar to the implementation of MGVI. This is not by mere coincidence: To
linear order, geoVI reproduces MGVI. In this sense, the geoVI algorithm is a non-linear
generalization of MGVI that captures the geometric properties encoded in the posterior
metric not only infinitesimally, but also in a local neighborhood of this point. We include
an implementation of the proposed geoVI algorithm into the software package Numerical
Information Field Theory (NIFTy [6]), a versatile library for signal inference algorithms.

5.1.1 Mathematical setup
Throughout this work, we consider the joint distribution P (d, s) of observational data d ∈ Ω
and the unknown, to be inferred signal s. This distribution is factorized into the likelihood
of observing the data, given the signal P (d|s), and the prior distribution P (s). In general,
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only a subset of the signal, denoted as s′, may be directly constrained by the likelihood,
such that P (d|s) = P (d|s′), and therefore there may be additional hidden variables in s,
that are unobserved by the data, but part of the prior model. Thus the prior distribution
P (s) may posses a hierarchical structure that summarizes our knowledge about the system
prior to the measurement, and s represents everything in the system that is of interest to
us, but about which our knowledge is uncertain a priori. We do not put any constraints on
the functional form of P (s), and assume that the signal s solely consists of continuous real
valued variables, i.E. s ∈ X ⊂ RM . This enables us to regard s as coordinates of the space
on which P (s) is defined and to use geometric concepts such as coordinate transformations
to represent probability distributions in different coordinate systems. Probability densities
transform in a probability mass preserving fashion. Specifically let f : RM → X be an
invertible function, and let s = f(ξ). Then the distributions P (s) and P (ξ) relate via∫

P (s) ds =
∫
P (ξ) dξ . (5.1)

This allows us to express P (s) by means of the pushforward of P (ξ) by f . We denote the
pushforward as

P (s) = (f ? P (ξ)) (s) =
∫
δ(s− f(ξ)) P (ξ) dξ =

P (ξ)
∣∣∣∣∣
∣∣∣∣∣dfdξ

∣∣∣∣∣
∣∣∣∣∣
−1
∣∣∣∣∣∣

ξ=f−1(s)

. (5.2)

Under mild regularity conditions on the prior distribution, there always exists an f that
relates the complex hierarchical form of P (s) to a simple distribution P (ξ) [17]. We choose
f such that P (ξ) takes the form of a normal distribution with zero mean and unit covariance
and call such a distribution a standard distribution:

P (ξ) = N (ξ; 0,1) , (5.3)

where N (ξ;m,D) denotes a multivariate normal distribution in the random variables ξ
with mean m and covariance D.

We may express the likelihood in terms of ξ as

P (d|ξ) ≡ P (d|s′ = f ′(ξ)) , (5.4)

where f ′ is the part of f that maps onto the observed quantities s′. In general, f ′ is a non-
invertible function and is commonly referred to as generative model or generative process,
as it encodes all the information necessary to transform a standard distribution into the
observed quantities, subject to our prior beliefs. Using equation (5.4) we get by means of
Bayes’ theorem, that the posterior takes the form

P (ξ|d) = P (ξ, d)
P (d) = P (d|ξ) N (ξ; 0,1)

P (d) . (5.5)
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Using the push-forward of the posterior, we can recover the posterior statistics of s via

P (s|d) = (f ? P (ξ|d)) (s) , (5.6)
which means that we can fully recover the posterior properties of s, which typically has
a physical interpretation as opposed to ξ. In particular equation (5.6) implies that if we
are able to draw samples from P (ξ|d) we can simply generate posterior samples for s since
s = f(ξ).

5.2 Geometric properties of posterior distributions
In order to access the information contained in the posterior distribution P (ξ|d), in this
work, we wish to exploit the geometric properties of the posterior, in particular with
the help of Riemannian geometry. Specifically, we define a Riemannian manifold using
a metric tensor, related to the Fisher Information metric of the likelihood and a metric
for the prior, and establish a (local) isometry of this manifold to Euclidean space. The
associated coordinate transformation gives rise to a coordinate system in which, hopefully,
the posterior takes a simplified form despite the fact that probabilities do not transform
in the same way as metric spaces do. As we will see, in cases where the isometry is global,
and in addition the transformation is (almost) volume-preserving, the complexity of the
posterior distribution can be absorbed (almost) entirely into this transformation.

To begin our discussion, we need to define an appropriate metric for posterior distribu-
tions. To this end, consider the negative logarithm of the posterior, sometimes also referred
to as information Hamiltonian, which takes the form

H(ξ|d) ≡ − log (P (ξ|d)) = H(d|ξ) +H(ξ)−H(d) . (5.7)
A common choice to extract geometric information from this Hamiltonian is the Hessian
C of H. Specifically

C(ξ) ≡ ∂2H(ξ|d)
∂ξ∂ξ′

= ∂2H(d|ξ)
∂ξ∂ξ′

+ 1 ≡ Cd|ξ(ξ) + 1 , (5.8)

where the identity matrix arises from the curvature of the prior (information Hamiltonian).
While C provides information about the local geometry, it turns out to be unsuited for our
approach to construct a coordinate transformation, as it is not guaranteed to be positive
definite for all ξ. An alternative, positive definite, measure for the curvature can be ob-
tained by replacing the Hessian of the likelihood with its Fisher information metric [42],
defined as

Md|ξ(ξ) =
〈
∂H
∂ξ

∂H
∂ξ′

〉
P (d|ξ)

=
〈
∂2H(d|ξ)
∂ξ∂ξ′

〉
P (d|ξ)

=
〈
Cd|ξ(ξ)

〉
P (d|ξ)

. (5.9)

The Fisher information metric can be understood as a Riemannian metric defined over
the statistical manifold associated with the likelihood [93], and is a core element in the
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field of information geometry [4] as it provides a distance measure between probability
distributions [20]. Replacing Cd|ξ withMd|ξ in equation (5.8) we find

M(ξ) ≡Md|ξ(ξ) + 1 =
〈
Cd|ξ(ξ)

〉
P (d|ξ)

+ 1 = 〈C(ξ)〉P (d|ξ) , (5.10)

which, from now on, we refer to as the metricM. As the Fisher metric of the likelihood is
a symmetric, positive-semidefinite matrix, we get thatM is a symmetric, positive-definite
matrix for all ξ. It is noteworthy that upon insertion, we find that the metricM is defined
as the expectation value of the Hessian of the posterior Hamiltonian C w.r.t. the likelihood
P (d|ξ). Therefore, in some way, we may regard M as the measure for the curvature in
case the observed data d is unknown, and the only information given is the structure of
the model itself, as encoded in P (d|ξ). This connection is only of qualitative nature, but
it highlights a key limitation of M when used as the defining property of the posterior
geometry. From a Bayesian perspective, only the data d that is actually observed is of
relevance as the posterior is conditioned on d. Therefore a curvature measure that arises
from marginalization over the data must be sub-optimal compared to a measure conditional
to the data, as it ignores the local information that we gain from observing d. Nevertheless,
we find that in many practical applicationsM encodes enough relevant information about
the posterior geometry that it provides us with a valuable metric to construct a coordinate
transformation. It is noteworthy that attempts have been provided to resolve this issue
via a more direct approach to recover a positive definite matrix from the Hessian of the
posterior while retaining the local information of the data. E.g. in [11], the SoftAbs non-
linearity is applied to the Hessian and the resulting positive definite matrix is used as a
curvature measure. In our practical applications, however, we are particularly interested in
solving very high dimensional problems, and applying a matrix non-linearity is currently
too expensive to give rise to a scalable algorithm for our purposes. Therefore we rely on
the metricM as a measure for the curvature of the posterior, and leave possible extensions
to future research.

5.2.1 Coordinate transformation
Our goal is to construct a coordinate system y and an associated transformation g, that
maps from ξ to y, in which the posterior metricM takes the form of the identity matrix 1.
The motivation is that ifM captures the geometric properties of the posterior, a coordinate
system in which this metric becomes trivial should also be a coordinate system in which
the posterior distribution takes a particularly simple form. For an illustrative example see
figure 5.1. To do so, we require the Fisher metric of the likelihoodMd|ξ to be the pullback
of the Euclidean metric. Specifically we propose a function x(ξ) such that

Md|ξ
!=
(
∂x

∂ξ

)T
∂x

∂ξ
, (5.11)

where T denotes the adjoint of a matrix. As outlined in Appendix 5.A, for many practically
relevant likelihoods such a decomposition is possible by means of an inexpensive to evaluate
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Figure 5.1: Non-linear posterior distribution P (ξ|d) in the standard coordinate system of
the prior distribution ξ (left) and the transformed distribution P (y|d) (right) in the coor-
dinate system y where the posterior metric becomes (approximately) the identity matrix.
P (y|d) is obtained from P (ξ|d) via the push-forward through the transformation g which
relates the two coordinate systems. The functional form of g is derived in section 5.2.1 and
depends on an expansion point ξ̄ (orange dot in the left image), and g is set up such that
ξ̄ coincides with the origin in y. To visualize the transformation, the coordinate lines of y
(black mesh grid on the right) are transformed back into ξ-coordinates using the inverse
coordinate transformation g−1 and are displayed as a black mesh in the original space on
the left. In addition, note that while the transformed posterior P (y|d) arguably takes a
simpler form compared to P (ξ|d), it does not become trivial (e.g. identical to a standard
distribution) as there remain small asymmetries in the posterior density. There are multi-
ple reasons for these deviations which are discussed in more detail in section 5.2.2 once we
established how the transformation g is constructed.
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function x.1 Given x, we can rewrite the posterior metricM as

M =
(
∂x

∂ξ

)T
∂x

∂ξ
+ 1 . (5.12)

In order to relate this metric to Euclidean space, we aim to find the isometry g that relates
the Riemannian manifold associated with the metric M to Euclidean space. Specifically
we seek to find an invertible function g satisfying

M(ξ) =
(
∂x

∂ξ

)T
∂x

∂ξ
+ 1 !=

(
∂g

∂ξ

)T
∂g

∂ξ
. (5.13)

In general, i.E. for a general function x(ξ), however, this decomposition does not exist
globally. Nevertheless, there exists a transformation g(ξ; ξ̄) based on an approximative
Taylor series around an expansion point ξ̄, that results in a metric M̃(ξ) such that

M(ξ) ≈ M̃(ξ) ≡
(
∂g(ξ; ξ̄)
∂ξ

)T
∂g(ξ; ξ̄)
∂ξ

, (5.14)

in the vicinity of ξ̄. This transformation g can be obtained up to an integration constant
by Taylor expanding equation (5.14) around ξ̄ and solving for the Taylor coefficients of
g in increasing order. We express g in terms of its Taylor series using the Einstein sum
convention as

g(ξ; ξ̄)i = ḡi + ḡi,j
(
ξ − ξ̄

)j
+ ḡi,jk

(
ξ − ξ̄

)j (
ξ − ξ̄

)k
+ ... , (5.15)

where repeated indices get summed over, a,i denotes the partial derivative of a w.r.t. the
ith component of ξ, and s̄ denotes a (tensor) field s(ξ), evaluated at the expansion point
ξ̄. We begin to expand equation (5.14) around ξ̄ and obtain for the zeroth order

M̄ij ≡ x̄α,ix̄
α
,j + δij

!= ḡα,i ḡ
α
,j . (5.16)

Expanding equation (5.14) to first order yields

x̄α,ikx̄
α
,j + x̄α,ix̄

α
,jk

!= ḡα,ikḡ
α
,j + ḡα,iḡ

α
,jk , (5.17)

and therefore

ḡi,jk = M̄iγ ḡβ,γx̄
α
,βx̄

α
,jk , (5.18)

where M̄ij =
(
M̄−1

)
ij
denotes the components of the inverse of M̄.

1Here with “inexpensive” we mean that applying the function x(ξ) has a similar computational cost
compared to applying the likelihood function P (d|ξ) to a specific ξ.
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Thus, to first order in the metric (meaning to second order in the transformation) the
expansion remains solvable for a general x. Proceeding with the second order, however, we
get that

x̄α,iklx̄
α
,j + x̄α,ikx̄

α
,jl + x̄α,ilx̄

α
,jk + x̄α,ix̄

α
,jkl

!= ḡα,iklḡ
α
,j + ḡα,ikḡ

α
,jl + ḡα,ilḡ

α
,jk + ḡα,iḡ

α
,jkl , (5.19)

which does not exhibit a general solution for ḡi,jkl in higher dimensions due to the fact
that the third derivative has to be invariant under arbitrary permutation of the latter three
indices jkl. However, in analogy to equation (5.18), we may set

ḡi,jkl = M̄iγ ḡβ,γx̄
α
,βx̄

α
,jkl , (5.20)

which cancels the first and the last term of equation (5.19), and study the remaining error
which takes the form

εijkl = x̄α,ikx̄
α
,jl + x̄α,ilx̄

α
,jk − ḡα,ikḡα,jl − ḡα,ilḡα,jk

= x̄α,ikx̄
α
,jl + x̄α,ilx̄

α
,jk − x̄α,ikx̄γ,αM̄γδx̄δ,βx̄

β
,jl − x̄α,ilx̄γ,αM̄γδx̄δ,βx̄

β
,jk

= x̄α,ik
(
δαβ − x̄γ,αM̄γδx̄δ,β

)
x̄β,jl + x̄α,il

(
δαβ − x̄γ,αM̄γδx̄δ,β

)
x̄β,jk . (5.21)

Let X i
j ≡ x̄i ,j, the expression in the parentheses takes the form

1−XM̄−1XT = 1−X
(
1+XTX

)−1
XT =

(
1+XXT

)−1
≡M , (5.22)

and thus equation (5.21) reduces to

εijkl = x̄α,ikMαβx̄
β
,jl + x̄α,ilMαβx̄

β
,jk . (5.23)

The impact of this error contribution can be qualitatively studied using the spectrum
λ(M) of the matrixM . This spectrum may exhibit two extreme cases, a so-called likelihood
dominated regime, where the spectrum λ(XXT )� 1, and a prior dominated regime where
λ(XXT ) � 1. In the likelihood dominated regime, we get that λ(M) � 1 and thus the
contribution of the error is small, whereas in the prior dominated regime λ(M) ≈ 1 which
yields an O(1) error. However, in the prior dominated regime, the entire metricM is close
to the identity as we are in the standard coordinate system of the prior ξ and therefore
higher order derivatives of x are small. As a consequence, the error is of the order O(1)
only in regimes where the third (and higher) order of the expansion is negligible compared
to the first and second order. An exception occurs when the expansion point is close to a
saddle point of x, i.E. in cases where the first derivative of x becomes small (and therefore
the metric is close to the identity), but higher order derivatives of x may be large. For
the moment, we proceed under the assumption that the change of x, as a function of ξ,
is sufficiently monotonic throughout the expansion regime. We discuss the implications of
violating this assumption in section 5.5.3.
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If we proceed to higher order expansions of equation (5.14), we notice that a repetitive
picture emerges: The leading order derivative tensor ḡi,j... that appears in the expansion
may be set in direct analogy to equations (5.18) and (5.20) as

ḡi,j... = M̄iγ ḡβ,γx̄
α
,βx̄

α
,j... , (5.24)

where ... denotes the higher order derivatives. The remaining error contributions at each
order take a similar form as in equation (5.23), where the matrix M reappears in between
all possible combinations of the remaining derivatives of x that appear using the Leibniz
rule. Note that for increasing order, the number of terms that contribute to the error also
increases. Specifically for the nth order expansion of equation (5.14) we get m = ∑n−1

k=1

(
n
k

)
contributions to the error. Therefore, even if each individual contribution by means of M
is small, the expansion error eventually becomes large once high order expansions become
relevant. Therefore the proposed approximation only remains locally valid around ξ̄.

Nevertheless, we may proceed to combine the derivative tensors of g determined above
in order to get the Jacobian of the transformation g as

gi,j(ξ) ≡ ḡi,j + ḡi,jk
(
ξ − ξ̄

)k
+ 1

2 ḡ
i
,jkl

(
ξ − ξ̄

)k (
ξ − ξ̄

)l
+ ...

= ḡi,j + M̄iαḡβ,αx̄
γ
,β

(
x̄γ,jk(ξ − ξ̄)k + 1

2 x̄
γ
,jkl(ξ − ξ̄)k(ξ − ξ̄)l + ...

)
, (5.25)

or equivalently

ḡα,ig
α
,j(ξ) = δij + x̄α,i

(
x̄α,j + x̄α,jk(ξ − ξ̄)k + 1

2 x̄
α
,jkl(ξ − ξ̄)k(ξ − ξ̄)l + ...

)
. (5.26)

From the zeroth order, equation (5.16), we get that ḡi,j =
(√
M̄
)i
j
up to a unitary trans-

formation, and we can sum up the Taylor series in x of equation (5.26) to arrive at an
index free representation of the Jacobian as

∂g

∂ξ
=
√
M̄
−1
1+

 ∂x
∂ξ

∣∣∣∣∣
ξ̄

T ∂x
∂ξ

 . (5.27)

Upon integration, this yields a transformation

g(ξ)− g(ξ̄) =
√
M̄
−1
ξ − ξ̄ +

 ∂x
∂ξ

∣∣∣∣∣
ξ̄

T (x(ξ)− x(ξ̄)
) . (5.28)

The resulting transformation takes an intuitive form: The approximation to the dis-
tance between a point g(ξ) and the transformed expansion point g(ξ̄) consists of the
distance w.r.t. the prior measure

(
ξ − ξ̄

)
and the distance w.r.t. the likelihood measure
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(
x(ξ)− x(ξ̄)

)
, back-projected into the prior domain using the local transformation at ξ̄.

Finally, the metric at ξ̄ is used as a measure for the local curvature. Equation (5.28) is
only defined up to an integration constant, and therefore, without loss of generality, we
may set g(ξ̄) = 0 to obtain the final approximative coordinate transformation as

g(ξ; ξ̄) =
√
M̄
−1
ξ − ξ̄ +

 ∂x
∂ξ

∣∣∣∣∣
ξ̄

T (x(ξ)− x(ξ̄)
) ≡ √M̄−1

g̃(ξ; ξ̄) . (5.29)

5.2.2 Basic properties
In order to study a few basic properties of this transformation, for simplicity, we first
consider a posterior distribution with a metric that allows for an exact isometry giso to
Euclidean space. Specifically let giso be a coordinate transformation satisfying equation
(5.13). The posterior distribution in coordinates y = giso(ξ) is given via the push-forward
of P (ξ|d) through giso as

P (y|d) ∝ (giso ? P (ξ|d)) (y) =
P (ξ|d)

∣∣∣∣∣
∣∣∣∣∣∂giso

∂ξ

∣∣∣∣∣
∣∣∣∣∣
−1
∣∣∣∣∣∣

ξ=g−1
iso (y)

= P (ξ|d)√
|M(ξ)|

∣∣∣∣∣∣
ξ=g−1

iso (y)

, (5.30)

and the information Hamiltonian takes the form

H(y|d) =
(
H(ξ|d) + 1

2 log (|M(ξ)|)
)∣∣∣∣
ξ=g−1

iso(y)
+H0 ≡ H̃(ξ = g−1

iso(y)) +H0 , (5.31)

where H0 denotes y independent contributions. We may study the curvature of the poste-
rior in coordinates y given as:

C(y) = ∂ξ

∂y

(
∂2H̃(ξ)
∂ξ∂ξ′

)(
∂ξ′

∂y′

)T
+ ∂H̃(ξ)

∂ξ

∂2ξ

∂y∂y′
with (5.32)

ξ = g−1
iso (y) and ξ′ = g−1

iso (y′) ,

which we can use to construct a metricM(y) in analogy to equation (5.10) by taking the
expectation value of the curvature w.r.t. the likelihood. This yields

M(y) = ∂ξ

∂y
M(ξ)

(
∂ξ′

∂y′

)T
+ 1

2
∂ξ

∂y

(
∂2 log (|M(ξ)|)

∂ξ∂ξ′

)(
∂ξ′

∂y′

)T
+
〈
∂H̃(ξ)
∂ξ

〉
P (d|ξ)

∂2ξ

∂y∂y′

≡ ∂ξ

∂y
M(ξ)

(
∂ξ′

∂y′

)T
+R(y) = 1+R(y) . (5.33)
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The first terms yields the identity, as it is the defining property of giso. Furthermore, in
case we are able to say that R(y) is small compared to the identity, we notice that the
quantityM(ξ) (equation (5.10)), that we referred to as the posterior metric, approximately
transforms like a proper metric under giso. In this case we find that the isometry giso
between the Riemannian manifold associated withM(ξ) and the Euclidean space is also a
transformation that removes the complex geometry of the posterior. To further studyR(y),
we consider its two contributions separately, where for the first part, the log-determinant
(or logarithmic volume), we get that it becomes small compared to the identity if

M(ξ)
!
� 1

2

(
∂2 log (|M(ξ)|)

∂ξ∂ξ′

)
. (5.34)

Therefore, the curvature of the log-determinant of the metric has to be much smaller then
the metric itself. To study the second term of R(y), we may again split the discussion into
a prior and a likelihood dominated regime, depending on the ξ at which we evaluate the
expression. In a prior dominated regime we get that

∂2ξ

∂y∂y′
≈ 0 , (5.35)

as the metric is close to the identity in this regime (and therefore ξ ≈ y). In a likelihood
dominated regime we get that H̃ ≈ H(d|ξ) and therefore

〈
∂H̃(ξ)
∂ξ

〉
P (d|ξ)

≈
〈
∂H(d|ξ)
∂ξ

〉
P (d|ξ)

= −
〈

1
P (d|ξ)

∂P (d|ξ)
∂ξ

〉
P (d|ξ)

= 0 . (5.36)

So at least in a prior dominated regime, as well as a likelihood dominated regime, the poste-
rior Hamiltonian transforms in an analogous way as the manifold, under the transformation
giso, if equation (5.34) also holds true.

For a practical application, however, in all but the simplest cases the isometry giso is not
accessible, or might not even exist. Therefore, in general, we have to use the approximation
g(ξ; ξ̄), as defined in equation (5.29), instead. We may express the transformation of the
metric using g(ξ; ξ̄), and find that

M(y) =
√
M̄

1+
(
∂x

∂ξ

)T
∂x

∂ξ

∣∣∣∣∣
ξ̄

−11+
(
∂x

∂ξ

)T
∂x′

∂ξ′


1+

 ∂x
∂ξ

∣∣∣∣∣
ξ̄

T ∂x′
∂ξ′


−1√
M̄

+ R̃(y) , (5.37)

now with ξ = g−1
(
y; ξ̄

)
and analogous for ξ′. R̃ is defined by replacing giso with g for

the entire expression of R. We notice that this transformation does not yield the identity,
except when evaluated at the expansion point ξ = ξ̄. Therefore, in addition to the error
R̃ there is a deviation from the identity related to the expansion error as one moves away
from ξ̄.
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At this point we would like to emphasize that the posterior Hamiltonian H and the
Riemannian manifold constructed from M are only loosely connected due to the errors
described by R̃ and the additional expansion error. They are arguably small in many cases
and in the vicinity of ξ̄, but we do not want to claim that this correspondence is valid in
general (see section 5.5.3). Nevertheless, we find that in many cases this correspondence
works well in practice. Some illustrative examples are given in section 11.

5.3 Posterior approximation
Utilizing the derived coordinate transformation for posterior approximation is mainly based
on the idea that in the transformed coordinate system, the posterior takes a simpler form.
In particular we aim to remove parts (if not most) of the complex geometry of the posterior,
such that a simple probability distribution, e.g. a Gaussian distribution, yields a good
approximation.

5.3.1 Direct approximation
Assuming that all the errors discussed in the previous section are small enough, we may
attempt to directly approximate the posterior distribution via a unit Gaussian in the
coordinates y as in this case the transformed metric M(y) is close to the identity. As
the coordinate transformation g, defined via equation (5.29), is only known up to an
integration constant by construction, the posterior approximation is achieved by a shifted
unit Gaussian in y. This shift needs to be determined, which we can do by maximizing
the transformed posterior distribution

P (y|d) ∝
P (ξ, d)

∣∣∣∣∣
∣∣∣∣∣∂g∂ξ

∣∣∣∣∣
∣∣∣∣∣
−1
∣∣∣∣∣∣

ξ=g−1(y;ξ̄)

, (5.38)

w.r.t. y. Here g−1(y; ξ̄) denotes the inverse of g(ξ; ξ̄) w.r.t. its first argument. Equivalently
we can minimize the information Hamiltonian H(y|d), defined as

H(y|d) ≡ − log (P (y|d)) =
(
H(ξ, d) + 1

2 log
(∣∣∣M̃∣∣∣))∣∣∣∣

ξ=g−1(y;ξ̄)
≡ H̃(ξ = g−1(y; ξ̄)) . (5.39)

Minimizing H(y|d) yields the maximum a posterior solution y∗ which, in case the posterior
is close to a unit Gaussian in the coordinates y, can be identified with the shift in y. As g
is an invertible function, we may instead minimize H̃ w.r.t. ξ and apply g to the result in
order to obtain y∗. Specifically

y∗ ≡ argmin
y

(H(y|d)) = g

(
argmin

ξ

(
H̃(ξ)

))
. (5.40)
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Therefore we can circumvent the inversion of g at any point during optimization. Now
suppose that we use any gradient based optimization scheme to minimize for ξ, starting
from some initial position ξ0. If we set the expansion point ξ̄, used to construct g, to be
equal to ξ0, we notice that

M̃(ξ̄) =M(ξ̄) (5.41)
∂M̃
∂ξ

∣∣∣∣∣
ξ=ξ̄

= ∂M
∂ξ

∣∣∣∣∣
ξ=ξ̄

, (5.42)

as the expansion of the metric is valid to first order by construction. Therefore if we set
the expansion point ξ̄ to the current estimate of ξ after every step, we can replace the
approximated metric M̃ with the true metricM and arrive at an optimization objective
of the form

ξ̄ = argmin
ξ

(
H(ξ, d) + 1

2 log (|M(ξ)|)
)
. (5.43)

Note that g(ξ̄; ξ̄) = 0 by construction, and therefore y∗ = 0, as there is a degeneracy
between a shift in y and a change of the expansion point ξ̄. Once the optimal expansion
point ξ̄ is found, we directly retrieve a generative process to sample from our approximation
to the posterior distribution. Specifically

P (y|d) ≈ N (y; 0,1) (5.44)
ξ = g−1(y; ξ̄) , (5.45)

where g−1 is only implicitly defined using equation (5.29) and therefore its inverse appli-
cation has to be approximated numerically in general.

Numerical approximation to sampling

Recall that

y = g(ξ; ξ̄) =
√
M̄
−1
g̃(ξ; ξ̄) . (5.46)

To generate a posterior sample for ξ we have to draw a random realization for y from a
unit Gaussian, and then solve equation (5.46) for ξ. To avoid the matrix square root of
M̄, we may instead define

z ≡
√
M̄ y = g̃(ξ; ξ̄) with P (z) = N (z; 0,M̄) . (5.47)



114 5. Geometric variational inference

Sampling from P (z) is much more convenient then constructing the matrix square root,
since

M̄ = 1+
(∂x

∂ξ

)T
∂x

∂ξ

∣∣∣∣∣∣
ξ̄

, (5.48)

and therefore a random realization may be generated using

z = η1 +
 ∂x
∂ξ

∣∣∣∣∣
ξ̄

T η2 with ηi ∼ N (ηi; 0,1) , i ∈ {1, 2} . (5.49)

Finally, a posterior sample ξ is retrieved by inversion of equation (5.47). We numeri-
cally approximate the inversion by minimizing the squared difference between z and g̃(ξ).
Specifically,

ξ = argmin
ξ

(1
2 (z − g̃(ξ))T (z − g̃(ξ))

)
. (5.50)

Note that if g is invertible then also g̃ is invertible as M̄ is a symmetric positive definite
matrix. Therefore the quadratic form of equation (5.50) has a unique global optimum at
zero which corresponds to the inverse of equation (5.47).

In practice, this optimum is typically only reached approximately. For an efficient
numerical approximation, throughout this work, we employ a second order quasi-Newton
method, named NewtonCG [86], as implemented in the NIFTy framework. Within the
NewtonCG algorithm, we utilize the metric M̃(ξ) as a positive-definite approximation to
the curvature of the quadratic form in equation (5.50). Furthermore, its inverse application,
required for the second order optimization step of NewtonCG, is approximated with the
conjugate gradient (CG) [59] method, which requires the metric to be only implicitly
available via matrix-vector products. In addition, in practice we find that the initial
position ξ0 of the minimization procedure can be set to be equal to the prior realization
η1 used to construct z (equation (5.49)) in order to improve convergence as ξ = η1 is
the solution of equation (5.47) for all degrees of freedom unconstrained by the likelihood.
Alternatively, for weakly non-linear problems, initializing ξ0 as the solution of the linearized
problem

z = g̃(ξ; ξ̄)
∣∣∣
ξ=ξ̄

+ ∂g̃

∂ξ

∣∣∣∣∣
ξ=ξ̄

(
ξ − ξ̄

)
=
1+

(
∂x

∂ξ

)T
∂x

∂ξ

∣∣∣∣∣∣
ξ=ξ̄

(
ξ − ξ̄

)
, (5.51)

can significantly improve the convergence. The full realization of the sampling procedure
is summarized in algorithm 3.

Properties

We may qualitatively study some basic properties of the coordinate transformation and
the associated approximation using illustrative one and two dimensional examples. To
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Algorithm 3: Approximate posterior samples using inverse transformation
1 Function drawSample(Location ξ̄, Transformation x(ξ), Jacobian ∂x

∂ξ
):

2 A← ∂x
∂ξ

∣∣∣
ξ=ξ̄

3 η1 ∼ N (η1; 0,1)
4 η2 ∼ N (η2; 0,1)
5 z ← η1 + ATη2

6 ξ0 ← η1 or ξ0 ← Solve(z =
(
1+ ATA

) (
ξ0 − ξ̄

)
) for ξ0 (see Eq. (5.51))

7 Function Energy(ξ):
8 g̃ ← ξ − ξ̄ + AT

(
x(ξ)− x(ξ̄)

)
9 return 1

2 (z − g̃)T (z − g̃)
10 ξ∗ ← NewtonCG(Energy, ξ0)
11 return ξ∗

this end, consider a one dimensional log-normal prior model with zero mean and standard
deviation σp of the form

s(ξ) = eσpξ with P (ξ) = N (ξ; 0, 1) , (5.52)

from which we obtain a measurement d subject to independent, additive Gaussian noise
with standard deviation σn such that the likelihood takes the form

P (d|ξ) = N (d; s(ξ), σ2
n) . (5.53)

The posterior distribution is given as

P (ξ|d) ∝ P (d|ξ) P (ξ) = N (d; s(ξ), σ2
n) N (ξ; 0, 1) , (5.54)

and its metric takes the form

M(ξ) =
(

1
σn

∂s(ξ)
∂ξ

)2

+ 1 =
(
σp
σn

)2
e2σpξ + 1 . (5.55)

In this one dimensional example we can construct the exact transformation giso that
maps from ξ to the transformed coordinates y, by integrating the square root of equation
(5.55) over ξ. The resulting transformation can be seen in the central panel of figure 5.2, for
an example with σp = 3 and σn = 0.3 and measured data d = 0.5. In addition, we depict the
approximated transformation g(ξ; ξ̄) for multiple expansion points ξ̄ ∈ {−1,−0.6,−0.2}.
We see that the function approximation quality depends on the choice of the expansion
point ξ̄ as the approximation error is smallest in the vicinity of ξ̄. In order to transform
the posterior distribution P (Eq. (5.54)) into the new coordinated system, not all parts
of the transformation are equally relevant and therefore different expansion points result
in more/less complex transformed distributions (see top panel of figure 5.2). Finally, if
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Figure 5.2: Illustration of the coordinate transformation for the one-dimensional log-normal
model (equation (5.54)). The true posterior P (ξ|d), displayed as the black solid line
in the left panel, is transformed into the coordinate system y using the optimal trans-
formation giso (blue), as well as three approximations g thereof with expansion points
ξ̄ ∈ {−1,−0.6,−0.2} (orange, green, red). The resulting distributions P (y|d) are displayed
in the top panel of the figure as solid lines, color coded according the used transformation
g (or giso in case of blue). The black, dashed line in the top panel displays a standard
distribution in y. The location of the expansion point ξ̄, and its associated point in y,
is highlighted via the color coded, dotted lines. Finally, the direct approximations to the
posterior associated with the transformations, meaning the push-forwards of the standard
distribution in y using the inverse of the various transformations g−1, are displayed in the
left panel as dashed lines, color coded according to their used transformation. As a com-
parison, the “optimal linear approximation” (black dotted line in the central panel), which
corresponds to the optimal approximation of the posterior with a normal distribution in
ξ (black dotted line in left panel), is displayed as a comparison. To numerically quantify
the information distance between the true distribution P and its approximations Q•, the
Kullback-Leibler (KL) divergences between P and Q• are displayed in the top left of the
image. The numerical values of the KL are given in nats (meaning the KL is evaluated in
the basis of the natural logarithm).
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we use a standard distribution in the transformed coordinates y and transform it back
using the inverse transformations g−1(y; ξ̄), we find that the approximation quality of the
resulting distributions Qξ̄ depends on ξ̄. The distributions are illustrated in the left panel
of figure 5.2 together with the Kullback-Leibler divergence KL between the true posterior
distribution P and the approximations Qξ̄. We also illustrate the “geometrically optimal”
approximation using a standard distribution in y and the optimal transformation giso and
find that while the approximation error becomes minimal in this case, it remains non-
zero. Considering the discussion in section 5.2.2, this result is to be expected due to
the error contribution from the change in volume associated with the transformation g.
As a comparison we also depict the optimal linear approximation of P , that is a normal
distribution in the coordinates ξ with optimally chosen mean and standard deviation. We
see that even the worst expansion point ξ̄ = −0.2, that is far away from the optimum, still
yields a better approximation of the posterior.

As a second example we consider the task of inferring the mean m and variance v of
a single, real valued Gaussian random variable d. In terms of s = (m, v), the likelihood
takes the form

P (d|s) = N (d;m, v) . (5.56)

Furthermore we assume a prior model for s by means of a generative model of the form

m = ξ1 and v = exp [3(ξ2 + 2ξ1)] , (5.57)

where ξ1 and ξ2 follow standard distributions a priori. This artificial model results in a
linear prior correlation between the mean and the log-variance and thus introduces a non-
linear coupling between m and v. The resulting two dimensional posterior distribution
P (ξ1, ξ2) can be seen in the left panel of figure 5.3, together with the two marginals P (ξ1)
and P (ξ2) for a given measurement d = 0. We approximate this posterior distribution
following the direct approach described in section 5.3.1, where the expansion point ξ̄ is
obtained from minimizing the sum of the posterior Hamiltonian and the log-determinant
of the metric (see Eq. (5.43)). The resulting approximative distribution QD is shown in the
right panel of figure 5.3, where the location of ξ̄ is indicated as a blue cross. In comparison
to the true distribution, we see that both, the joint distribution as well as the marginals
are in a good agreement qualitatively, which is also supported quantitatively by a small
difference of the KL between P and QD (see figure 5.3). The difference between P and
QD appears to increase in regions further away from the expansion point, which is to be
expected due to the local nature of the approximation. However, non-linear features such
as the sharp peak at the “bottom” of P (figure 5.3), are also present in QD, although
slightly less prominent. This demonstrates that relevant non-linear structure can, to some
degree, be captured by the coordinate transformation g derived from the metricM of the
posterior.

Although these low-dimensional, illustrative examples appear promising, there remains
one central issue left to be addressed before the approach can be applied to high-dimensional
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Figure 5.3: Left: posterior distribution P in the standard coordinates ξ1/2 for the inference
of the mean and variance of a normal distribution (equations (5.56) and (5.57)). The
central panel shows the two dimensional density and the red dashed lines are logarithmically
spaced contours. The top and left sub-panels display the marginal posterior distributions
for ξ1 and ξ2, respectively. Right: Approximation QD to the posterior distribution using the
direct method (section 5.3.1). As a comparison, the contours (red dashed) and the marginal
distributions (red solid) of the true posterior distribution P are displayed in addition to the
approximation. The blue cross in the central panel denotes the location of the expansion
point used to construct QD. Above the panel we display the optimal (KL(P ;QD)) and
variational (KL(QD;P )) Kullback-Leibler divergences between P and QD.

problems. In particular, the direct approach possesses a substantial additional computa-
tional burden compared to e.g. a maximum a posteriori (MAP) estimate in ξ which is
obtained by minimizing the posterior Hamiltonian H. For the direct approach, the opti-
mization objective Eq. (5.43) consists not only of H, but also of the log-determinant of
the metric M. In all but the simplest examples this term cannot be computed directly
but has to be approximated numerically as in high dimensions an explicit representation
of the matrix becomes infeasible andM is only implicitly accessible through matrix vec-
tor products (MVPs). There are a variety of stochastic log-determinant (more specifically
trace-log) estimators based on combining Hutchinsons’ trace-estimation [61] with approx-
imations to the matrix logarithm using e.g. Chebychev polynomials [57], Krylov subspace
methods [108], or moment constrained estimation based on Maximum Entropy [43]. While
all these methods provide a significant improvement in performance compared to directly
computing the determinant, they nevertheless typically require many MVPs in order to
yield an accurate estimate. For large and complex problems, evaluating an MVP ofM is
dominated by applying the Jacobian of x, more precisely of the generative process s′(ξ),
and its adjoint to a vector. Similarly, evaluating the gradient of H is also dominated by
an MVP that invokes applying the adjoint Jacobian of s′(ξ). Therefore the computational
overhead compared to a MAP estimate in ξ is, roughly, multiplicative in the number of
MVPs. For large, non-linear problems, this quickly becomes infeasible as nonlinear opti-
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mization typically requires many steps to reach a sensible approximation to the optimum.
Nevertheless there remain some important exceptions, in which a fast and scalable

algorithm emerges. In particular recall that

log (|M|) = tr
log

1+
(
∂x

∂ξ

)T
∂x

∂ξ

 = tr
log

1+ ∂x

∂ξ

(
∂x

∂ξ

)T , (5.58)

where the last equality arises from applying the matrix determinant lemma. Therefore
in cases where the dimensionality of the so-called data-space (i.E. the target space of x)
is much smaller then the dimensionality of the signal space (the domain of ξ), the latter
representation of the metric is of much smaller dimension. Thus in cases where either
the signal- or the data-space is small, or in weakly non-linear cases (i.E. if M is close
to the identity), the log-determinant may be approximated efficiently enough to give rise
to a fast and scalable algorithm. For the (arguably most interesting) class of problems
where neither of these assumptions is valid, however, the direct approach to obtain the
optimal expansion point becomes too expensive for practical purposes as none of the log-
determinant estimators scale linearly with the size of the problem in general.

5.3.2 Geometric Variational inference (geoVI)
As we shall see, it is possible to circumvent the need to compute the log-determinant of
the metric at any point, if we employ a specific variant of a variational approximation to
obtain the optimal expansion point. To this end, we start with a variational approximation
to the posterior P , assuming that the approximative distribution Q̃ is given as the unit
Gaussian in y transformed via g. To this end let

Q̃(ξ|ξ̄) = N
(
g(ξ; ξ̄); 0,1

) ∣∣∣∣∣
∣∣∣∣∣∂g(ξ; ξ̄)

∂ξ

∣∣∣∣∣
∣∣∣∣∣ , (5.59)

denote the approximation to the posterior conditional to the expansion point ξ̄. The varia-
tionally optimal ξ̄ can be found by optimization of the forward Kullback-Leibler divergence
between Q̃ and P , as given via

KL
(
Q̃|P

)
≡
∫

log
(
Q̃(ξ|ξ̄)
P (ξ|d)

)
Q̃(ξ|ξ̄)dξ

= 〈H(ξ|d)〉Q̃(ξ|ξ̄) −
〈
HQ̃(ξ|ξ̄)

〉
Q̃(ξ|ξ̄)

= 〈H(ξ|d)〉Q̃(ξ|ξ̄) + 1
2
〈
log

(∣∣∣M̃(ξ)
∣∣∣)〉

Q̃(ξ|ξ̄)
+ KL0 , (5.60)

where KL0 denotes contributions independent of ξ̄, and H(ξ|d) and HQ̃ denote the Hamil-
tonians of the posterior and the approximation, respectively. We notice that in this form, a
minimization of the KL w.r.t. ξ̄ does not circumvent a computation of the log-determinant
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of the metric. Within the KL, this term arises from the entropy of the approximation
Q̃, and can be understood as a measure of the volume associated with the distribution.
In order to avoid this term, our idea is to propose an alternative family of distributions
Qm(ξ|ξ̄), defined as a shifted version of Q̃. Specifically we let ξ → m+ ξ− ξ̄ such that the
distribution may be written as

Qm(ξ|ξ̄) = Q̃(ξ|ξ̄)
∣∣∣
ξ=ξ+ξ̄−m

≡ Q(r|ξ̄)
∣∣∣
r=ξ−m

with r = ξ − ξ̄ , (5.61)

where we also introduced the residual r, which measures the deviations from ξ̄, and the
associated distribution Q(r|ξ̄). In words, Qm(ξ|ξ̄) is the distribution using the residual
statistics r, around an expansion point ξ̄, but shifted to m. One can easily verify that
the entropy related to Qm becomes independent of m, as shifts are volume-preserving
transformations. Therefore we may use some fixed expansion point ξ̄, and find the optimal
shift m using the KL which now may be written as

KL (Qm|P ) = 〈H(ξ = m+ r, d)〉Q(r|ξ̄) + 1
2

〈
log

(∣∣∣M̃(ξ)
∣∣∣)∣∣∣

ξ=ξ̄+r

〉
Q(r|ξ̄)

+ KL0

K̂L = 〈H(ξ = m+ r, d)〉Q(r|ξ̄) , (5.62)

where K̂L denotes the KL up to m independent contributions. After optimization for m,
we can update to a new expansion point, and use it to define a new family of distributions
Qm which are a more appropriate class of approximations. In general, the expectation
value in K̂L cannot be computed analytically, but it can be approximated using a set of
N samples {r∗i }i∈{1,...,N}, drawn from Q(r|ξ̄), which yields

K̂L (Qm|P ) ≈ 1
N

N∑
i=1
H(ξ = m+ r∗i , d) with r∗i ∼ Q(r|ξ̄) . (5.63)

Sampling from Q(r|ξ̄) is defined as in section 5.3.1, where the sampling procedure for
Q̃(ξ|ξ̄) is described, with the addition that a sample r∗ is is obtained from a sample for ξ∗
as r∗ = ξ∗ − ξ̄.

Optimizing K̂L w.r.t. m yields the variational optimum for the distribution Qm(ξ|ξ̄),
given a fixed, predetermined expansion point ξ̄. In order to move the expansion point ξ̄
towards the optimal point, its location is updated subsequently and the KL is re-estimated
using novel samples from Q(r|ξ̄) with an updated ξ̄. Specifically, we initialize the optimiza-
tion algorithm at some position m0, set ξ̄ = m0 to obtain a set of samples {r∗i }

(0)
i∈{1,...,N},

and use this set to approximate the KL. This approximation is then used to obtain an
optimal shift m1. Given this optimal shift, a new expansion point ξ̄ = m1 is defined and
used to obtain a novel set of samples {r∗i }

(1)
i∈{1,...,N} which defines a new estimate for the KL.

This estimate is furthermore used to obtain a novel optimal m, and so on. An illustrative
view of this procedure is given in figure 5.4. Finally, the entire procedure of optimizing
the KL for m and re-estimation of the KL via a novel expansion point is repeated until
the algorithm converges to an optimal point m∗ = ξ̄∗. To optimize K̂L for m, we again
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Figure 5.4: (1) − (4): Visualization of the geoVI steps. (1): A randomly initialized shift
m (green cross) is used to set the initial expansion point ξ̄ (orange dot) which in turn
defines the initial approximation Qm(ξ|ξ̄ (blue dashed contours) used to generate a set of
samples ξ∗ (red dots). (2): The KL (equation (5.63)), estimated from the samples, is used
to optimize for m, which results in a shift of Qm(ξ|ξ̄ away from the expansion point ξ̄. The
residual statistics r∗ derived from the geometry around ξ̄, however, remains unchanged
during this shift and therefore, at the new location m, becomes a bad representation of
the local geometry. Thus, in (3), the expansion point is set to the current estimate of m,
which yields an update to the approximation Qm(ξ|ξ̄. Finally, we generate samples from
this update and use them to optimize the re-estimated KL for m which again results in
a shift as seen in (4). Within the full geoVI algorithm this procedure is iterated until
convergence.
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employ the NewtonCG algorithm, and use the average of the metricM as a proxy for the
curvature of K̂L to perform the optimization step. Specifically we use

M̂(m) = 1
N

N∑
i=1
M(ξ = m+ r∗i ) , (5.64)

as the metric of K̂L. We call this algorithm the geometric Variational Inference (geoVI)
method. A pseudo-code summary of geoVI is given in algorithm 4.

Algorithm 4: Geometric Variational Inference (geoVI)
Input: Likelihood H(d|ξ), Transformation x(ξ), Jacobian ∂x

∂ξ

1 Function Energy(ξ):
2 return H(d|ξ) + 1

2ξ
T ξ

3 m ∼ N (m, 0,1)
4 while m not converged do
5 ξ̄ ← m
6 samples ← empty list
7 for i = 1 to N do
8 ξ∗ ← drawSample(ξ̄, x, ∂x

∂ξ
) (see Algorithm 3)

9 r∗ ← ξ∗ − ξ̄
10 Insert r∗ into samples
11 end
12 Function geoKL(ξ):
13 kl ← 0
14 for r∗ in samples do
15 kl ← kl + Energy(ξ + r∗)
16 end
17 return 1

N
kl

18 m∗ ← NewtonCG(geoKL, m)
19 m ← m∗
20 end
21 posteriorSamples ← empty list
22 for r∗ in samples do
23 ξ∗ ← m + r∗

24 Insert ξ∗ into posteriorSamples
25 end

Output: posteriorSamples

Numerical sampling within geoVI

It is noteworthy that, as described in section 5.3.1, an implementation of the proposed sam-
pling procedure for the residual r, and as a result also of the geoVI method itself, inevitably
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relies on numerical approximations to realize a sample for r. To better understand the im-
pact of such approximations, we have to consider its impact on the distribution Q(r|ξ̄).
To this end, we denote with f the function that, given the expansion point ξ̄, turns two
standard distributed random vectors η1 and η2 into a random realization of r. Specifically

r = f(η1, η2; ξ̄) with η1/2 ∼ N
(
η1/2; 0,1

)
, (5.65)

where the functional form of f is defined by combination of equation (5.49) and (5.50).
using f we may write the geoVI distribution Q as

Q(r|ξ̄) =
∫ ∫

δ
(
r − f(η1, η2; ξ̄)

)
N (η1; 0,1) N (η2; 0,1) dη1dη2 . (5.66)

Any numerical algorithm used to approximate the sampling, irrespective of its exact form,
may be described by replacing the function f , leading to exact sampling from Q, with
some approximation f̂ which leads to an approximation of the distribution for r, which we
denote as Q̂(r|ξ̄). Therefore, in a way, the geoVI result using a numerical approximation
for sampling can be understood as the variational optimum chosen from the family of
distributions Q̂, rather than Q. Therefore, even for a non-zero approximation error in f̂ ,
the result remains a valid optimum of a variational approximation, it is simply the family
of distributions used for approximation that has changed. This finding is of great relevance
in practice, as there is typically a trade off between numerical accuracy of the generated
samples and computational efforts. Thus we may achieve faster convergence at a cost
of accuracy in the approximation, but without completely detaching from the theoretical
optimum, so long as f̂ remains sufficiently close to f . Nevertheless, as motivated in the
introduction, it is important for the chosen family to contain distributions close to the true
posterior, and therefore it remains important that the family Q̂ remains close to the family
of Q as only for Q the geometric correspondence to the posterior has been established. A
detailed study to further quantify this result, is left to future work.

MGVI as a first order approximation

We can compare the geoVI algorithm to the aforementioned variational approximation
technique called Metric Gaussian variational inference (MGVI), and notice some key sim-
ilarities. In particular the optimization heuristics with repeated alternation between sam-
pling of r∗ and optimization for m is entirely equivalent. The difference occurs in the
distribution Q(r|ξ̄) used for approximation. In MGVI, Q is assumed to be a Gaussian
distribution in r, as opposed to the Gaussian distribution in the transformed space y used
in geoVI. Specifically

QMGVI(r|ξ̄) ≡ N (r; 0,M̄−1) , (5.67)

where the inverse of the posterior metric M, evaluated at the expansion point ξ̄, is used
as the covariance. As it turns out, the distribution QMGVI arises naturally as a first order
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approximation to the coordinate transformation used in the geoVI approach. Specifically
if we consider the geoVI distribution of r given in terms of a generative process

r = g−1(y; ξ̄)− ξ̄ with y ∼ N (y; 0,1) , (5.68)

and expand it around y = 0 to first order, we get that

r = g−1(0, ξ̄)−
 ∂g(ξ, ξ̄)

∂ξ

∣∣∣∣∣
ξ=ξ̄

−1

y +O
(
y2
)
− ξ̄

= ξ̄ − ξ̄ −
√
M̄

1+
(∂x

∂ξ

)T
∂x

∂ξ

∣∣∣∣∣∣
ξ=ξ̄


−1

y +O
(
y2
)

= −
(√
M̄
)−1

y +O
(
y2
)
. (5.69)

Therefore, to first order in y, we get that

Q(r|ξ̄) =
∫
δ

(
r +

(√
M̄
)−1

y

)
N (y; 0,1) dy = N (r; 0,M̄−1) = QMGVI(r|ξ̄) . (5.70)

This correspondence shows that geoVI is a generalization of MGVI in non-linear cases.
This is a welcome result, as numerous practical applications [62, 110, 7] have shown that
already MGVI provides a sensible approximation to the posterior distribution. On the
other hand, it provides further insight in which cases the MGVI approximation remains
valid, and when it reaches its limitations. In particular if

M(m+ r) ≈ M̄ , ∀r = g−1(y, ξ̄)− ξ̄ with y ∼ N (y; 0,1) , (5.71)

we get that the first order approximation of equation (5.69) yields a close approximation
of the inverse and geoVI reduces to the MGVI algorithm. In contrast, geoVI with its non-
linear inversion requires the log determinant of the metricM to be approximately constant
throughout the sampling regime. This is a much less restrictive requirement then equation
(5.71), as the variation of eigenvalues of M is considered on a logarithmic scale whereas
it is considered on linear scale in equation (5.71). Furthermore, the log-determinant is
invariant under unitary transformations which means that local rotations of the metric,
and therefore changes in orientation as we move along the manifold, can be captured by
the non-linear approach, whereas equation (5.71) does not hold any more if the orientation
varies as a function of r. Therefore we expect the proposed approach to be applicable in
a more general context, while still retaining the MGVI properties, as it reproduces MGVI
in the linear limit.
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Figure 5.5: The geoVI and MGVI approximations of the two-dimensional example de-
scribed in section 11. We display the same quantities as for the direct approximation
shown in figure 5.3.

5.3.3 Examples
We can visually compare the geoVI and the MGVI algorithm using the two-dimensional
example previously mentioned in section 11. In analogy to figure 5.3 we depict the ap-
proximation to the posterior density together with its two marginals in figure 5.5. We see
that geoVI yields a similar result compared to the direct approach here, while it provides
a significant improvement compared to the approximation capacity of MGVI.

To conclude the illustrative examples, we consider a single observation of the product of
a normal and a log-normal distributed quantity subject to independent, additive Gaussian
noise. The full model consists of a likelihood and a prior of the form

P (d|ξ1, ξ2) = N (d; ξ1e
ξ2 , σ2

n) with ξ1/2 ∼ N (ξ1/2; 0, 1) . (5.72)

This example should serve as an illustration of the challenges that arise when attempting
a separation of non-linearly coupled quantities from a single observation. Such separation
problems reappear in section 5.4 in much more intertwined and high dimensional examples,
but much of the structural challenges can already be seen in this simple two-dimensional
problem. Figure 5.6 displays the results of the direct approach as well as the geoVI and
MGVI methods for a measurement setting of d = −0.3 and σn = 0.1. As a comparison,
we also depict the results from performing a variational approximation using a normal
distribution with a diagonal covariance, also known as a mean-field approximation (MFVI),
as well as an approximation with a normal distribution using a full-rank matrix as its
covariance (FCVI). Both, the diagonal as well as the full-rank covariance are considered
parameters of the distribution, and have to be optimized for in addition to the mean of the
normal distribution. An efficient implementation thereof is described in [75]. We notice
that both, the direct and the geoVI approach manage to approximate the true posterior
distribution well, although the KL values indicate that the approximation by geoVI is
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Figure 5.6: Same setup as in figures 5.3 and 5.5 but for a Gaussian measurement of the
product of a normal distributed quantity ξ1 and a log-normal distributed one ξ2 as described
in the second example of section 5.3.3. From top to bottom and from left to right: ground
truth P , direct approximation QD, geoVI approximation QgeoVI, MGVI approximation
QMGVI, mean-field approximation QMFVI, and the normal approximation with a full-rank
covariance QFCVI.
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worse by ≈ 0.016 nats compared to the direct approach. Here the passive update of the
expansion point used in this approach reaches its limitations as in cases where the posterior
distribution becomes increasingly narrow towards the optimal expansion point, the static
sample statistics of r can get stuck during optimization and increasingly repeated re-
sampling becomes necessary as one moves closer to the optimum. Nevertheless, the geoVI
approximation remains a good approximation to the true distribution, especially when
compared to the approaches using a normal distribution such as MGVI, MFVI, and FCVI.

5.4 Applications
To investigate the performance of the geoVI algorithm in high dimensional imaging prob-
lems, we apply it to two mock data examples and compare it to the results using MGVI. In
the first example, which serves as an illustration, the geoVI results are additionally com-
pared to the results obtained from applying a Hamiltonian Monte-Carlo (HMC) sampler
[29] to the mock example (see section 5.5.2 for further information on HMC). The second
example is an illustration of a typical problem encountered in astrophysical imaging. Both
examples consist of hierarchical Bayesian models with multiple layers which are represented
as a generative process. One particularly important process for the class of problems at
hand are statistically homogeneous and isotropic Gaussian processes with unknown power
spectral density, for which a flexible generative model has been presented in [8]. This
process is at the core of a variety of astrophysical imaging applications [79, 8, 9, 63], and
therefore an accurate posterior approximation of problems involving this model is crucial.
To better understand the inference challenges that arise in problems using this particular
model, we briefly summarize some of its key properties.

5.4.1 Gaussian processes with unknown power spectra

Consider a zero mean, square integrable random process sx defined on a L-dimensional
space subject to periodic boundary conditions which, for simplicity, we assume to have size
one. Specifically let x ∈ Λ = [0, 1]L and thus s ∈ L2 (Λ). A Gaussian process

P (s) = N (s; 0, S) , (5.73)

with mean zero and covariance function Sxy is said to be statistically homogeneous and
isotropic, if S is a function of the Euclidean distance between two points i.E.

Sxy = S(|x− y|) . (5.74)

Furthermore, as implied by the Wiener Wiener-Khinchin theorem [112], the linear operator
associated with S becomes diagonal in the Fourier space associated with Λ, and therefore
s may be represented in terms of a Fourier series with coefficients s̃k, where k labels
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the Fourier coefficients. These coefficients are independent, zero mean Gaussian random
variables with variance 〈

|s̃k|2
〉
P (s)
≡ Ps(|k|) , (5.75)

which is also known as the power spectrum Ps of s. As Ps encodes the correlation struc-
ture of s, its functional form is crucial to determine the prior statistical properties of s. In
[8] a flexible, non-parametric prior process for the power spectrum has been proposed by
means of a Gauss-Markov process on log-log-scale. This process models the spectrum as
a straight line on log-log-scale (resulting in a power law in |k| on linear scale) with possi-
ble continuous deviations thereof. These deviations are itself defined as a Gauss-Markov
process (specifically an integrated Wiener process) and their respective variance is, among
others, an additional scalar parameter steering the properties of this prior process that are
also considered to be random variables that have to be inferred. These parameters are
summarized in Table 5.1. A more formal derivation of this model in terms of a generative
process relating standard distributed random variables ξp to a random realization Ps(ξp)
of this prior model, is given in appendix 5.B.

Name Description Prior distribution
offset std. Prior standard deviation of the overall

offset of s from zero
Log-normal

fluctuations Prior amplitude of the variation of s
around its offset

Log-normal

slope Exponent of the power law related to
Ps

Normal

flexibility Amplitude of deviations from the
power-law on log-log-scale

Log-normal

asperity Smoothness of the deviations as a func-
tion of log(|k|)

Log-normal

Table 5.1: Table of additional parameters

In order to use this prior within a larger inference model, the underlying space has to
be discretized such that the solution of the resulting discrete problem remains consistent
with the continuum. We achieve this discretization by means of a truncated Fourier series
for s such that s may be written as

s = F †
(√

Pk(ξp)ξ
)

with P (ξ) = N (ξ; 0,1) , (5.76)

where F denotes a discrete Fourier transformation (DFT) and F † its back-transformation.
If we additionally evaluate s on a regular grid on Λ, we can replace the DFT with a
fast Fourier transformation (FFT) which is numerically more efficient. For a detailed de-
scription on how the spatial discretization is constructed please refer to [82, 46]. In this



5.4 Applications 129

work, however, we are primarily interested in evaluating the approximation quality of the
proposed algorithm geoVI, and therefore, from now on, we regard all inference problems
involving this random process to be high, but finite, dimensional Bayesian inference prob-
lems and ignore the fact that it was constructed from a corresponding continuous, infinite
dimensional, inference problem.

5.4.2 Log-normal process with noise estimation
As a first example we consider a log-normal process es, defined over a one-dimensional
space, with s being a priori distributed according to the aforementioned Gaussian process
prior with unknown power spectrum. The observed data d (see top panel of figure 5.7)
consists of a partially masked realization of this process subject to additive Gaussian noise
with standard deviation σn. In addition to s and its power spectrum Ps, we also assume
σn to be unknown prior to the observation and place a log normal prior on it. Therefore
the corresponding likelihood takes the form

P (d|s, σn) = N (d;Res, σ2
n) . (5.77)

We apply the geoVI algorithm (figure 5.7),the MGVI algorithm (figure 5.8), and an HMC
sampler (figure 5.9) to this problem and construct a set of 3000 approximate posterior
samples for all methods. The HMC results serve as the true reference here, as the true
posterior distribution is too high dimensional to be accessible directly and HMC is known
to reproduce the true posterior in the limit of infinite samples. Considering solely the
reconstruction of es, we see that both methods, geoVI and MGVI, agree with the true
signal largely within their corresponding uncertainties. Overall we find that the geoVI
solution is slightly closer to the ground truth compared to MGVI and the posterior uncer-
tainty is smaller for geoVI in most regions, with the exception of the unobserved region,
where it is larger compared to MGVI (see residual plot of figures 5.7 and 5.8). In this
region MGVI appears to slightly underestimate the posterior uncertainty. In addition, in
the bottom panels of figures 5.7 and 5.8, we depict the posterior distribution of the noise
standard deviation σn as well as the posterior mean of the power spectrum Ps, together
with corresponding posterior samples. Here the difference between geoVI and MGVI be-
comes evident more visibly, which, to some degree, is to be expected due to the more
non-linear coupling of σn and Ps to the data compared to es. Indeed we find that the
posterior distribution of σn recovered using MGVI is overestimating the noise level of the
reconstruction. The geoVI algorithm is also slightly overestimating σn, however we find
that for geoVI the posterior yields σgeoVI

n = 0.220 ± 0.026 which places the true value of
σn = 0.2 approximately 0.8-sigma away from the posterior mean. In contrast, for MGVI,
we get that σMGVI

n = 0.233 ± 0.011 for with the ground truth is almost a 3-sigma event.
Considering the HMC results (bottom panel of figure 5.9), the geoVI results appear to be
closer to the HMC distribution compared to MGVI, although the HMC distribution for σn
is broader and even closer to the true value then geoVI. In addition we find that the over-
all reconstruction quality of the power spectrum Ps is significantly increased when moving
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Figure 5.7: Posterior approximation using the geoVI algorithm for the log-normal process
described in section 5.4.2. Top: The ground truth realization of the log-normal process es
(red line) and the corresponding data (brown dots) used for reconstruction. The blue line
is the posterior mean, and the gray lines are a subset of the posterior samples obtained
from the geoVI approximation. Below we depict the residual between the ground truth
and reconstruction, including the residuals for the posterior samples. The blue dashed line
corresponds to the one-sigma uncertainty of the reconstruction. Bottom left: Approxima-
tion to the marginal posterior distribution (blue) of the noise standard deviation σn. The
red vertical line indicates the true value of σn = 0.2 used to construct the data. Bottom
right: Power spectrum Ps of the logarithmic quantity s. Red displays the ground truth,
blue the posterior mean, and the gray lines are posterior samples of the power spectrum.
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Figure 5.8: Same setup as in figure 5.7, but for the approximation using the MGVI algo-
rithm.
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Figure 5.9: Same setup as in figure 5.7, but for the approximation using the HMC sampling.
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from MGVI to geoVI. While MGVI manages to recover the overall slope of the power-law,
it fails to reconstruct the devations from this power-law as well as the overall statistical
properties of Ps as encoded in the parameters of table 5.1. In contrast, the geoVI algorithm
is able to pick up some of these features and recovers posterior statistical properties of the
power spectrum similar to the ground truth. In addition the posterior uncertainty appears
to be on a reasonable scale, as opposed to the MGVI reconstruction which significantly
underestimates the posterior uncertainty. The structures on the smallest scales (largest
values for |k|), however, appear to be underestimated by the geoVI mean, although the
posterior uncertainty increases significantly in these regimes. In comparison to HMC we
find that the results are in agreement for the large scales, although the geoVI uncertain-
ties appear to be slightly larger. On small scales, the methods deviate stronger, and the
under-estimation of the spectrum seen by geoVI is absent in the HMC results.

To further study the posterior distribution of the various scalar parameters that enter
the power spectrum model (see Table 5.1), as well as the noise standard deviation σn,
we depict the reconstructed marginal posterior distributions for all pairs of inferred scalar
parameters. Figures 5.10, 5.11, and 5.12 show the posterior distributions recovered using
geoVI, MGVI, and HMC, respectively. All parameters are displayed in their corresponding
standard coordinate system, i.E. they all follow a zero-mean unit variance normal distribu-
tion prior to the measurement. From an inference perspective, some of these parameters
are very challenging to reconstruct, as their coupling to the observed data is highly non-
linear and influenced by many other parameters of the model. In turn, their values are
highly influential to the statistical properties of more interpretable variables such as the
observed signal es and its spectrum Ps. We see that despite these challenges the geoVI
posterior appears to give reasonable results, that are largely in agreement with the ground
truth, within uncertainties. Thus the algorithm appears to be able to pick up parts of
the non-linear structure of the posterior, which is validated when compared to the MGVI
algorithm, as for these parameters the MGVI reconstruction (figure 5.11) does not yield re-
liable results any more. This is to be expected in case of significant non-linearity as MGVI
is the first order approximation of geoVI. In comparison to HMC (figure 5.12), however,
we find that there remain some differences in the recovered posterior distributions. The
HMC results regarding the “fluctuations” and “noise std.” parameters are more centered
on the ground truth and in particular the posterior distribution of the “slope” parame-
ter is significantly different and more constrained, compared to the geoVI results. These
differences indicate that there remain some limitations to the recovered geoVI results in
the regime of highly non-linear parameters of the model which we may associate to the
theoretical limitations discussed in section 5.2.2.

5.4.3 Separation of diffuse emission from point sources
In a second inference problem we consider the imaging task of separating diffuse, spatially
extended and correlated emission es from, bright, but uncorrelated point sources p in an
image. This problem is often encountered within certain astrophysical imaging problems
[10] where the goal is to recover the emission of spatially extended structures such as gas
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Figure 5.10: Posterior distributions of the scalar parameters that enter the forward model
of the power spectrum (Table 5.1), and the noise standard deviation. All parameters,
including the noise parameter, are given in their corresponding prior standard coordinate
system, i.E. have a normal distribution with zero mean and variance one as a prior dis-
tribution. Each square panel corresponds to the joint posterior of the parameter in the
respective row and column. In addition, for each row and each column the one-dimensional
marginal posteriors of the corresponding parameter are displayed as blue lines. The red
lines in the 1-D, and the red dots in the 2-D plots denote the values of the ground truth
used to realize the ground truth values of the spectrum Ps, the signal es, and finally the
observed data d.
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Figure 5.11: Same setup as in figure 5.10, but for the approximation using the MGVI
algorithm.
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Figure 5.12: Same setup as in figure 5.10, but for the approximation using HMC sampling.
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or galactic dust. This emission usually gets superimposed by the bright emission of stars
(point sources) in the image plane, and only their joint emission can be observed. In this
example we assume that the emission is observed through a detection device that convolves
the incoming emission with a spherical symmetric point spread function R and ultimately
measures photon counts on a pixelated grid. Specifically we may define a Poisson process
with count rate

λ = R(p+ es) with P (d|λ) =
∏
i

(λi)di e−λi
(ki)!

, (5.78)

where i labels the pixels of the detector. We assume the diffuse emission to follow a
statistically homogeneous and isotropic log-normal distribution with unknown prior power
spectrum. Thus s is again distributed according to the prior process previously given in
section 5.4.1. The point sources follow an inverse-gamma distribution at every point (x, y)
of the image plane, given as

P (pxy) = qα

Γ(α) (pxy)−α−1 exp
(
− q

pxy

)
, (5.79)

where in the particular example we used (α, q) = (2, 3). A visualization of the problem
setup with the various stages of the observation process is given in figure 5.13.

We employ the geoVI and MGVI algorithms to infer all, a priori standard distributed,
degrees of freedom of the model and recover the power spectrum Ps for the diffuse emission
together with its hyper parameters, the realized emission es and the point sources p, from
the Poisson count data d. The reconstructed two dimensional images of p and es are
displayed in figure 5.14 together with the recovered count rate λ, and compared to their
respective ground truth. We find that in this example there is barely a visible difference
between the reconstructed diffuse emission of MGVI and geoVI. Both reconstructions are
in good agreement with the ground truth. For the point sources, we find that the brightest
sources are well recovered by both algorithms, while geoVI manages to infer a few more of
the fainter sources as opposed to MGVI. Nevertheless, for both algorithms, the posterior
mean does not recover very faint sources present in the true source distribution. This can
also be seen in figure 5.15, where we depict the per-pixel flux values for all locations in
the image against their reconstructed values, for both, the diffuse emission and the point
sources. We find that the MGVI and the geoVI are, on average, in very good agreement.
It is noteworthy that the deviations between the true and the reconstructed flux values
increases towards smaller values, which is to be expected due to the larger impact of the
Poisson noise. For the spatially independent point sources, there appears to be a transition
regime around a flux of ≈ 50, below which point sources become barely detectable. All
in all, for the diffuse emission as well as the point sources, both reconstruction methods
apparently yield similar results, consistent with the ground truth. In addition, in figure
5.16, we depict the inferred power spectra. We find that the overall shape is reconstructed
well by both algorithms, but smaller, more detailed features can only be recovered using
geoVI. In addition we find that the statistical properties of the spectrum, as indicated
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Figure 5.13: Graphical setup of the separation problem discussed in section 5.4.3. Random
realization of the power spectrum Ps (left) which is used to generate the log-signal s, which,
after exponentiation, models the diffuse emission on the sky es. The point sources p (top
panel in the middle), which are a realization of the position-independent inverse-gamma
process, get combined with the diffuse emission and the result is convolved with a spherical
symmetric point spread function R to yield the per-pixel count rate λ which is ultimately
used as the rate in a Poisson distribution used to realize the count data d.
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Figure 5.15: Comparison of the per-pixel flux between the ground truth (y-axis) and the
reconstruction (x-axis) for the diffuse emission es (top row), and the point sources p (bottom
row). The left column shows the geoVI result where the density of pixels is color-coded
ranging from blue, where the density is highest, to green towards lower densities. The red
lines indicate contours of equal density. The right column displays the same for the MGVI
reconstruction, with the corresponding density contours now displayed in light blue. The
red dashed contours are the density contours of the geoVI case, shown for comparison.
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Figure 5.16: Power spectrum Ps of the logarithm of the diffuse emission s. The red line is
the ground truth, the blue line the posterior mean, and the gray lines a subset of posterior
samples for the geoVI (left) and MGVI (right) approximations.

by e.g. the roughness of the spectrum as a function of the Fourier modes |k|, are well
reconstructed by geoVI and in agreement with the true spectrum, whereas the MGVI
reconstruction, including the posterior samples, appear to be systematically too smooth
compared to the ground truth. As discussed in the previous example in more detail,
the parameters that enter the model to determine these properties of the spectrum are
highly non-linearly coupled and influenced by the observed data and therefore the linear
approximation as used in MGVI becomes, at some point, invalid.

5.5 Further properties and challenges
Aside from the apparent capacity to approximate non-linear and high-dimensional posterior
distributions, there are some further properties that can be derived from geoVI and the
associated coordinate transformation. In the following, we show how to obtain a lower
bound to the evidence using the geoVI results. Furthermore, we outline a way to utilize
the coordinate transformation in the context of Hamilton Monte-Carlo (HMC) sampling.
Finally, some limitations remain to the approximation capacity of geoVI in its current
form, which are discussed in section 5.5.3

5.5.1 Evidence lower bound (ELBO)
With the results of the variational approximation at hand, we can provide an Evidence
lower bound (ELBO). To this end consider the Hamiltonian H(ξ|d) of the posterior which
takes the form

H(ξ|d) = H(ξ, d)−H(d) = H(d|ξ) + 1
2ξ

T ξ + 1
2 log (|2π1|)−H(d) , (5.80)
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and the Hamiltonian of the approximation HQ as a function of r, given as

HQ(r|ξ̄) = 1
2g(ξ̄ + r; ξ̄)Tg(ξ̄ + r; ξ̄) + 1

2 log (|2π1|)− 1
2 log

(∣∣∣M̃(ξ̄ + r)
∣∣∣) . (5.81)

Using these Hamiltonians, we may write the variational approximation as

KL(Q;P ) =
〈
H(ξ = ξ̄ + r|d)

〉
Q(r|ξ̄)

−
〈
HQ(r|ξ̄)

〉
Q(r|ξ̄)

=
〈
H(ξ = ξ̄ + r, d)

〉
Q(r|ξ̄)

−H(d)−
〈
HQ(r|ξ̄)

〉
Q(r|ξ̄)

. (5.82)

As H(d) = − log(P (d)), we can derive a lower bound for the logarithmic evidence P (d)
using the KL as

log(P (d)) ≥ log(P (d))−KL(Q;P ) , (5.83)
where the lower bound becomes maximal if the KL becomes minimal. Thus we may use our
final expansion point ξ̄ obtained from minimizing the KL together with the Hamiltonians
(equations (5.80) and (5.81)) to arrive at

log(P (d))−KL(Q;P ) =

= 1
2tr(1)−

〈
H(d|ξ = ξ̄ + r) + 1

2
(
ξ̄ + r

)T (
ξ̄ + r

)
+ 1

2 log
(∣∣∣M̃(ξ̄ + r)

∣∣∣)〉
Q(r|ξ̄)

≈ 1
2tr(1)− 1

N

N∑
i=1

(
H(d|ξ = ξ̄ + r∗i ) + 1

2
(
ξ̄ + r∗i

)T (
ξ̄ + r∗i

)
+ 1

2 log
(∣∣∣M̃(ξ̄ + r∗i )

∣∣∣)) ,

(5.84)

where {r∗i }i∈{1,...,N} are a set of samples drawn from the approximation Q(r|ξ̄). Under
the assumption that the log determinant of M̃ is approximately constant throughout the
typical set reached by Q, we may replace its sample average with the value obtained at ξ̄
to arrive at

log(P (d))−KL(Q;P ) ≈ 1
2tr(1)− 1

2 log
(∣∣∣M̄∣∣∣)

− 1
N

N∑
i=1

(
H(d|ξ = ξ̄ + r∗i ) + 1

2
(
ξ̄ + r∗i

)T (
ξ̄ + r∗i

))
, (5.85)

where we also replaced the metric of the expansion M̃ with the metric of the posteriorM
as they are identical when evaluated at the expansion point ξ̄ (see equation (5.41)). The
assumption that the log determinant does not vary significantly within the typical set is
also a requirement for the approximation Q to be a close match for the posterior P and in
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turn it is a necessary condition for the ELBO to be a tight lower bound to the evidence
as only in this case the KL may become small. Therefore equation (5.85) is a justified
simplification in case the entire variational approximation itself is justified. Nevertheless
it may be useful to compute the log determinant also for the posterior samples if feasible,
as it provides a valuable consistency check for the method itself.

5.5.2 RMHMC with metric approximation
As initially discussed in the introduction, aside from Variational inference methods there
exist Markov chain Monte-Carlo (MCMC) methods that utilize the geometry of posterior
to increase sampling efficiency. A recently introduced Hybrid Monte-Carlo (HMC) method
called Riemannian manifold HMC (or RMHMC) utilizes the same posterior metric as dis-
cussed in this work in order to define a Riemannian manifold on which the HMC integration
is performed. As one of the key results presented here yields an approximate isometry for
this manifold, we like to study the impact of the proposed coordinate transformation on
RMHMC. To do so, recall that in HMC the random variable ξ ∈ RM , which is distributed
according to a posterior distribution P (ξ), is accompanied by another random variable
p ∈ RM , called momentum, and their joint distribution P (ξ, p) is factorized by means of
the posterior P (ξ), and the conditional distribution P (p|ξ). The main idea of HMC is to
regard the joint Hamiltonian H(ξ, p) = − log(P (ξ, p)) as an artificial Hamiltonian system
that can be used to construct a new posterior sample from a previous one by following
trajectories of the Hamiltonian dynamics. In particular suppose that we are given some
random realization ξ0 of P (ξ), we may use the conditional distribution P (p|ξ0) to generate
a random realization p0. Given a pair (ξ0, p0), HMC solves the dynamical system associated
with the Hamiltonian H(ξ, p) for some integration time t∗, to obtain a new pair (ξ∗, p∗).
As Hamiltonian dynamics is both energy and volume preserving by construction, one can
show that if (ξ0, p0) is a random realization of P (ξ, p), then also (ξ∗, p∗) is. This procedure
may be repeated until a desired number of posterior samples is collected. In practice, the
performance of an HMC implementation for a specific distribution P (ξ) strongly depends
on the choice of conditional distribution P (p|ξ). To simplify the Hamiltonian trajectories
and enable a fast traversion of the posterior, RMHMC has been proposed which utilizes a
position dependent metric for the conditional distribution of the momentum which takes
the form

P (p|ξ) = N (p; 0,M(ξ)) , (5.86)
whereM(ξ) denotes the metric associated with the posterior P (ξ) as introduced in section
5.2 in equation (5.10). The associated Hamiltonian takes the form

H(p, ξ) = 1
2p

TM(ξ)−1p+ 1
2 log (|M(ξ)|) +H(ξ) . (5.87)

In direct analogy of the discussion in section 5.2, the motivation of utilizing the metric is
that the resulting Hamiltonian system can be understood as being defined on the Rieman-
nian manifold associated with M. Therefore the geometric complexity is absorbed into
the shape of the manifold, and the trajectories become particularly simple. In practice,
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however, numerical integration of the system related to equation (5.87) is challenging, as
in general H(p, ξ) is non-separable. Here, our coordinate transformation may come in
handy, as a Hamiltonian using the approximated metric M̃ (equation (5.14)) instead of
M becomes separable. Specifically replacingM in equation (5.87) yields

H(p, ξ) = 1
2p

TM̃(ξ; ξ̄)−1p+ 1
2 log

(∣∣∣M̃(ξ; ξ̄)
∣∣∣)+H(ξ)

= 1
2p

T

(∂g(ξ; ξ̄)
∂ξ

)T
∂g(ξ; ξ̄)
∂ξ

−1

p+ H̃(ξ; ξ̄) . (5.88)

This modified system allows for a canonical transformation of the form
(
y
v

)
←

 g(ξ; ξ̄)(
∂g(ξ;ξ̄)
∂ξ

)T
p

 , (5.89)

in which the Hamiltonian (equation 5.88) takes the form

H(v, y) = 1
2v

Tv + H̃(ξ; ξ̄)
∣∣∣
ξ=g−1(y;ξ̄)

≡ T (v) + V (y) , (5.90)

and therefore H is separable in the momenta v and the position y. This separability is
an interesting property as it has the potential to simplify the integration step used within
RMHMC. However, in its current form, we find that there are multiple issues with this
approach that prevent an efficient implementation in practice. For one, the transformation
g depends on an expansion point ξ̄, which becomes a hyper-parameter of the method that
has to be determined (possibly in the warm-up phase). In addition, unlike the direct
approach discussed in section 5.3.1, we cannot circumvent the inversion of g, which is
only implicitly available in general, as it has to be computed for every integration step
related to H(v, y) (equation (5.90)). Therefore, numerical integration of the system may
be simpler, but evaluation of H(v, y) becomes more expensive. Finally, the approximation
of the metric may become invalid as we move far away from the expansion point ξ̄, and
therefore the applicability compared to an RMHMC implementation using the full metric
M is limited. Nevertheless we find the existence of a separable approximation to the
Hamiltonian system very interesting, and think that the (or a similar) transformation g
and its associated coordinate system (y, v) might be of relevance in the future development
of RMHMC algorithms.

5.5.3 Pathological cases
As discussed in section 5.2.1, one property that can violate our assumptions are non-
monotonic changes in the metric. To this end, consider a sigmoid-normal distributed
random variable, and a measurement subject to additive, independent noise of the form

P (d|ξ) = N (d;σ (σpξ) , σ2
n) with P (ξ) = N (ξ; 0, 1) , (5.91)
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where σ(•) denotes the sigmoid function. The resulting posterior, its associated coordinate
transformation, as well as its geoVI approximation, is displayed in figure 5.17 for a case
with (σp, σn, d) = (3, 0.2, 0.2). We find that similar to the one-dimensional log-normal
example of section 11, the approximation quality depends on the chosen expansion point.
However, the changes in approximation quality are much more drastic as in the log-normal
example. In particular, due to the sigmoid non-linearity, there exists a turning point in
the coordinate transformation g, and if we choose an expansion point close to this point,
we see that the approximation to the transformation strongly deviates from the optimal
transformation as we move away from this point. As a result, in this case the approximation
to the posterior (left panel of figure 5.17) obtains a heavy tail that is neither present in
the true posterior nor the approximation using the optimal transformation. Nevertheless
there may very well also exist a case where such a heavy tail is present in the optimal
approximation to the transformation. Even in the depicted case, where the tail is only
present for sub-optimal choices of the expansion point, an optimization algorithm might
have to traverse this sub-optimal region to reach the optimum. Thus the heavy tail can
lead to extreme samples for some intermediate approximation, and therefore the geoVI
algorithm could become unstable.

In a second example we consider a bi-modal posterior distribution, generated from a
Gaussian measurement of a polynomial. Specifically we consider a likelihood of the form

P (d|ξ) = N
(
d; ξ4 + ξ, 1

)
, (5.92)

with ξ being a priori standard distributed. As can be seen in figure 5.18, this scenario
leads to a bi-modal posterior distribution with two well separated, asymmetric modes. We
find that the geometrically optimal transformation giso also leads to a bi-modal distribu-
tion in the transformed coordinates, however the local asymmetry and curvature of each
mode has approximately been removed. Thus while an approximation of the posterior by
means of a single unit Gaussian distribution is apparently not possible, each mode may
be approximated individually, at least in case the modes are well separated. If we con-
sider the approximation of the coordinate transformation used within geoVI, and choose
as an expansion point the optimal point associated with one of the two modes, we get that
for the chosen mode the approximation remains valid and the transformation is close to
the optimal transformation. However, if we move away from the mode towards the other
mode, the approximation quickly deviates from giso and eventually becomes non-invertible.
Therefore only the approximation of one of the modes is possible. Here, care must be
taken, as in practical applications the inversion of g is performed numerically and one has
to ensure that the inversion does not end up on the second branch of the transformation.

This summarizes the two main issues that may render a geoVI approximation of a pos-
terior distribution invalid. The challenges and issues related to multi modality appear to
be quite fundamental, as in its current form, the geoVI method falls into the category of
methods that utilize local information of the posterior which all suffer from the inability
to deal with more than a single mode. The problems related to turning points are more
specific for geoVI, and its implications need to be further studied in order to generalize
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Figure 5.17: Same setup as in figure 5.2, but for the sigmoid-normal distributed case. In
addition to the exact isometry giso, the approximation using the optimal expansion point
ξ̄ = −0.68 and a pathological heavy-tail example using ξ̄ = −0.1 is displayed.
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Figure 5.18: Second pathological example, given as a bi-modal posterior distribution. The
setup is similar to figures 5.2 and 5.17, where in this example only the (locally) optimal
expansion point ξ̄ = 1.08 is used.

its range of applicability in the future. One promising finding is that this issue appears to
be solely related to the local approximation of the transformation with a “bad” expansion
point, as the geometrically optimal transformation giso apparently does not show such be-
havior. Therefore an extension of the current approximation technique using e.g. multiple
expansion points, or identifying and excluding these “bad” expansion points during opti-
mization, may provide a solution to this problem. At the current stage of the development,
however, it is unclear how to incorporate such ideas into the algorithm without loss of the
functional form of g that allows for the numerically efficient implementation at hand.

5.6 Summary and Outlook
In this work we introduced a coordinate transformation for posterior distributions that
yields a coordinate system in which the distributions take a geometrically simple form. In
particular we construct a metric as the sum of the Fisher metric of the likelihood and the
identity matrix for a standard prior distribution, and construct the transformation that
relates this metric to the Euclidean metric. Using this transformed coordinate system,
we introduce geometric Variational Inference (geoVI), where we perform a variational ap-
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proximation of the transformed posterior distribution with a normal distribution with unit
covariance. As the coordinate transformation is only approximately available and utilizes
an expansion point around which it is most accurate, the VI task reduces to finding the
optimal expansion point such that the variational KL between the true posterior and the
approximation becomes minimal. There exists a numerically efficient realization that en-
ables high-dimensional applications of geoVI because even though the transformation is
non-volume preserving, geoVI avoids a computation of the related log-determinant of the
Jacobian of the transformation at any point. The expansion point used to generate inter-
mediate samples is only passively updated. Furthermore, the application of the constructed
coordinate transformation is similar to the cost of computing the gradient of the posterior
Hamiltonian. In addition, to generate random realizations, computing the appearing ma-
trix square root of the metric can be entirely avoided, and the inverse transformation is
achieved implicitly by second order numerical inversion.

Despite being an approximation method, we find that geoVI is successfully applicable
in non-linear, but uni-modal settings, which we demonstrated with multiple examples. We
see that non-linear features of the posterior distribution can accurately be captured by the
coordinate transformation in low-dimensional examples. This property may translate into
high dimensions, as it increases the overall reconstruction quality there when compared
to its linearized version MGVI. Nevertheless we also find remaining pathological cases in
which further development is necessary to achieve a good approximation quality.

In addition to posterior approximation, geoVI results can be used in order to provide
an evidence lower bound (ELBO) which is used for model comparison. Finally we demon-
strate the overlap to another posterior sampling technique based on Hamilton Monte-Carlo
(HMC), that utilizes the same metric used in geoVI, called Riemannian manifold HMC.

All in all, the geoVI algorithm, and more generally the constructed approximative
coordinate transformation, are a fast and accurate way to approximate non-linear and
high-dimensional posterior distributions.

Appendix

5.A Likelihood transformations

In order to construct the coordinate transformation x(ξ) introduced in section 5.2.1, we
require that the Fisher metric of the likelihoodMd|ξ may be written as the pullback of the
Euclidean metric. Recall that the likelihood expressed in coordinates ξ is obtained from
the likelihood P (d|s′) with s′ = f ′(ξ) (see equation (5.4)). Therefore we may expressMd|ξ
as

Md|ξ(ξ) =
(
∂s′

∂ξ

)T
Md|s′

∂s′

∂ξ
. (5.93)
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Thus the task reduces to construct a transformation x(s′) that recovers Md|s′ from the
Euclidean metric if we set the full transformation to be x(ξ) ≡ x(s′ = f ′(ξ)). Specifically
we require for x(s′)

Md|s′
!=
(
∂x

∂s′

)T
∂x

∂s′
. (5.94)

Below, in table 5.2, we give a summary of multiple commonly used likelihoods, their
respective Fisher metric, and the associated transformation x(s′).

Name H(d|s′) MetricM Trafo. x(s′)
Normal 1

2(d− s′)TN−1(d− s′) + cst. N−1
√
N−1s′

Poisson 1T s′ − dT log(s′) + cst. 1/s′ 1
2

√
s′

Inv. Gamma (α + 1)T log(s′) + βT
(

1
s′

)
+ cst. α+1

s′2

√
α + 1 log (s′)

Student-T θ+1
2 log

(
1 + s′2

θ

)
+ cst. θ+1

θ+3

√
θ+1
θ+3s

′

Bernoulli −dT log(s′)− (1− d)T log(1− s′) + cst. 1
s′(1−s′) −2 tan−1

(√
s′
)

Table 5.2: List of common likelihood distributions with their respective Hamiltonian
H(d|s′), their Fisher Metric M(d|s′), and the associated coordinate transformation x(s′)
satisfying equation (5.94).

For some likelihoods, however, such a decomposition is not accessible in a simple form.
One example that is being used in this work is a normal distribution with unknown mean
m and variance v. The Hamiltonian of a one dimensional example takes the form

H(d|m, v) = 1
2

(d−m)2

v
+ 1

2 log(v) + cst. , (5.95)

and the corresponding fisher metric for s′ = (m, v) is

Md|s′ =
(

1
v

0
0 1

2v2

)
. (5.96)

While there is no simple decomposition by means of the Jacobian of some function x, there
is an approximation available for which x takes the form

x(s′) =
(

d−m√
v

1
2 log(v)

)
with ∂x

∂s′
=
(
− 1√

v
− d−m

2v3/2

0 1
2v

)
. (5.97)

We can compute the approximation to the metric and find

(
∂x

∂s′

)T
∂x

∂s′
=
( 1

v
d−m
2v2

d−m
2v2

1
4v2 + (d−m)2

4v2

)
. (5.98)
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Note that as opposed to the Fisher metric, this approximation depends on the observed
data d. In fact we can recover the Fisher metric from this approximation by taking the
expectation value w.r.t. the likelihood. Specifically〈(

∂x

∂s′

)T
∂x

∂s′

〉
N (d;m,v)

=
(

1
v

0
0 1

2v2

)
=Md|s′ , (5.99)

and therefore it may be regarded as a local approximation using the observed data. All
examples of this work that use a normal distribution where in addition to the mean also
the variance is inferred, use this approximation.

5.A.1 Multiple likelihoods
In general, we may encounter measurement situations where multiple likelihoods are in-
volved, e.g. if we aim to constrain s′ with multiple data-sets simultaneously. Specifically
consider a set of D data-sets {di}i∈{1,...,D}, and an associated mutually independent set of
likelihoods, such that the joint likelihood takes the form

P (d1, ..., dD|s′) =
D∏
i=1

P (di|s′) , (5.100)

we get that the corresponding Fisher metric takes the form

Md1,...,dD|s′(s′) =
D∑
i=1
Mdi|s′ . (5.101)

If we assume that we have, for every individual metricMdi|s′ , an associated transformation
xi(s′) available that satisfies equation (5.94), we see that we can stack them together to
form a combined transformation

x(s′) ≡ (x1(s′), ..., xD(s′))T , (5.102)

that automatically satisfies (5.94) for the joint metricMd1,...,dD|s′ .

5.B Correlated Field model
Here, we give a brief description of the generative model for power spectra and resulting
Gaussian processes used in section 5.4. For a detailed and extended derivation please refer
to [8].

A random realization s ∈ L(Λ) of a statistically homogeneous and isotropic Gaus-
sian process P (s), defined over an L dimensional domain Λ = [0, 1]L, subject to periodic
boundary conditions along each dimension, may be represented as a Fourier series via

sx =
(
F †Aξ

)
x
≡
∑
k

e−2πikxA(|k|) ξk with ξk ∼ N (ξ; 0, 1) ∀k , (5.103)
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where k = (k1, ..., kL) ∈ ZL is a multi-index labeling the individual Fourier components,
and |k| denotes its Euclidean norm. In order to discretize s on a computer, we may
truncate this Fourier series, i.E. by replacing the infinite index k with a finite index that
truncates at some maximal kmax. The operator F denotes the Fourier transformation and
F † its corresponding back-transformation (or their discrete versions in case of truncation).
The so-called amplitude spectrum A may be identified with the square root of the power-
spectrum Ps of the process (specifically Ps being the eigen-spectrum of the linear operator
associated with the covariance of the prior probability P (s)). Therefore we proceed to
construct a model for A rather then Ps as it is more convenient for a generative model.
The non-parametric prior model for A is largely built on the assumption that power spectra
(and therefore also amplitude spectra) do not vary arbitrarily for similar |k|, which in turn
allows us to assume that the values of A are, to some degree, correlated. A prominent
example of a physically plausible spectrum is a power-law Ps = |k|α and therefore it turns
out to be more convenient to represent A on a log-log-scale, specifically

τl ≡ log (A(|k|))||k|=el , (5.104)
since power-laws become straight lines on these scales. As k is a regularly spaced index, the
new index l = log(|k|) is an irregularly spaced index starting from the smallest non-zero
mode labeled as l0 (the origin with |k| = 0 is treated separately). To exploit correlations
in the prior of τl, we define a random process τ̃(l) over a continuous domain O = [l0,∞)
(O = [l0, lmax = log(|kmax|)] in the truncated case), and evaluate this process on the
irregularly spaced locations on which τl is defined. The prior process used for τ̃ is a Gauss-
Markov process given in terms of a linear stochastic differential equation of the form

∂

∂l

(
τ̃(l)
y(l)

)
+
(

0 −1
0 0

)(
τ̃(l)
y(l)

)
= σ

(
ε ηl
ξl

)
, with ηl/ξl ∼ N (ηl/ξl; 0, 1) ∀l ∈ O . (5.105)

A Markov process can easily be realized on an irregular grid utilizing its transition proba-
bility which in this case takes the form

P

((
τl
yl

)∣∣∣∣∣
(
τl0
yl0

))
= N

((
τl
yl

)
;
(

1 ∆l

0 1

)(
τl0
yl0

)
, σ2

(
∆3
l/3 + ε2∆l

∆2
l/2

∆2
l/2 ∆l

))
(5.106)

with ∆l = l − l0. We notice that in absence of stochastic deviations (e.g. if σ = 0), the
solution is a straight line with slope yl0 that determines the exponent of the power-law,
and therefore becomes a variable of the model on which we place a Gaussian prior with
a negative prior mean (to a priori favor falling power laws). The offset τl0 becomes, after
exponentiation, an overall scaling factor that sets the variance of the stochastic process
s. Thus τl0 (specifically its exponential) is also a variable of the model which we refer to
as “fluctuations” in Table 5.1. Similarly, the zero-mode (i.E. A(|k| = 0)), which is not
included in τ , is set to be a log-normal distributed random variable which we refer to as
“offset std.”. Finally σ (named flexibility) and ε (named asperity) become both log-normal
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distributed variables (again see table 5.1) that determine the variance and shape of the
deviations of τ from a straight line (i.E. the deviations of A from a power-law).
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Chapter 6

Conclusion

This thesis studies two of the biggest hurdles faced when attempting to apply Bayesian
inference in practice: the construction of an appropriate prior model and the approximation
of the resulting posterior distribution. When applied to the inference of physical quantities,
the associated physical theories provide a valuable source for prior information. Partially
utilizing this physical knowledge to constrain the most relevant aspects of a system, while
remaining agnostic regarding all other aspects has been an overarching goal of the methods
developed in this thesis. This ensures that the developed models remain uninformative
and broad enough to avoid a false bias, i.E. to ensure that the true configuration of a
system is well within the set of a priori plausible realizations, while simultaneously being
specific enough such that their information together with the observational data allows for
a successful reconstruction.

To this end, in chapter 2, a model for the statistically homogeneous correlations of a
system defined in space and time is developed. These correlations can be directly related
to the average response of the system to random, external excitations which in turn allows
to encode the constraint of a causal propagation of this response into a prior model for
the correlation structure. Pairing this constraint with the prior assumption of locality,
specifically by favoring the most local response consistent with the data over apparent
non-local responses, results in a model for the prior correlation structure that appears
restrictive enough to enable successful inference in practice. Specifically, an incomplete
and noisy observation of a single realization of the system apparently provides sufficient
additional information to infer both, the prior correlation structure as well as the specific
realization of the system itself, as is demonstrated by multiple numerical examples. In
the next chapter an even simpler, less informative prior model is constructed where the
prior correlation structure is solely constraint using the statistically homogeneous and
also isotropic correlation information of a single (sub-)space. To construct the correlation
structure in e.g. space and time, two instances of this model, one for each sub-space, are
combined via an outer product. The applicability of this model is demonstrated via a
reconstruction of the galactic center of M87 using data provided by the Event Horizon
Telescope. Aside from being a valuable scientific result in itself, it provides an impressive
validation of the applicability of this prior model as well as the concepts developed in this
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work. In addition, since the introduction of those prior models into the software package
NIFTy, they have been utilized in numerous applications where they often appear within
the context of much more complex models involving e.g. non-linear transformations or a
combination of multiple instances of those priors. Their results have not only demonstrated
the applicability of these prior models, but also provide evidence for the validity of the
underlying idea that, at some level, a statistical description solely based on the correlation
structure of a system, paired with a physically motivated prior model for those correlations,
appears to be sufficient to allow a successful reconstruction in practice.

Next, in chapter 4, the applicability of the proposed prior models to the task of sim-
ulating partial differential equations is discussed. It is demonstrated how a variant of
the statistically homogeneous and isotropic prior for correlation structures of the previous
chapter can be utilized to refine and improve the spatial discretzation operations involved
in numerical PDE simulation. In particular, it is shown that the specific form of these
discretization rules is determined by the specification of a prior model for plausible PDE
solutions, which in addition also provides an associated uncertainty measure. Furthermore,
combining this prior for spatial correlations with a Gauss Markov process in time results
in a probabilistic simulation method that retains a similar computational complexity com-
pared to the implicit Euler method, while providing an improvement to its numerical
accuracy, as demonstrated using two examples. Furthermore, the probabilistic nature of
the proposed method equips it with a natural uncertainty measure to determine its own
simulation error, which appears to be accurate so long as the prior correlation structure is
appropriately set. Further work needs to be done, however, in order to cast the proposed
simulation method into an algorithm that is efficiently applicable to large-scale simulation
problems.

The last chapter of this thesis, chapter 5, focuses on the task of approximating pos-
terior probability distributions. In particular, the development and implementation of a
variant of approximate inference is discussed, the geoVI algorithm. Its main contribution
to variational inference is the construction of a family of approximate distributions that
are, by construction, geometrically close to the true distribution. The geometric descrip-
tion of a distribution is given by a manifold with an associated metric tensor that, in some
sense, assigns small distances to parameter pairs which are considered to be similar by the
distribution and large distances to pairs that are not. While the exact form of this metric
tensor remains subject to active research, the empirical evidence provided by the numerical
examples suggest that geoVI appears useful to perform accurate approximations of proba-
bility distributions in practice. Furthermore, as proven in chapter 5, geoVI reduces to the
MGVI algorithm in case all non-linear aspects of the manifold are ignored while providing
an improved approximation in case those aspects become significant. Therefore, the nu-
merous successful applications of MGVI1 provide additional confidence in the applicability
of geoVI as the reconstructions are only expected to improve via this extension. In fact, at
the time of writing, several ongoing inference projects that utilize NIFTy have switched

1Even the results given in chapters 2 - 4 use MGVI simply because geoVI has not been developed at
the time the research was carried out.
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to the latest version of the package in which geoVI is introduced and have validated the
increase in approximation quality also in practice. It will be exciting to see what novel
research this increase in accuracy may enable.

To conclude this thesis, it may be reemphasized that, from a purely information theo-
retical point of view and ignoring all computational constraints, disregarding any form of
information is never a desired goal. It does not matter whether this is done by only par-
tially encoding prior knowledge or by approximating the resulting posterior distribution.
Both cases are ideally reduced to a bare minimum in practice as they, if done consistently,
result in an increase of uncertainty regarding the results and, if done inconsistently, may
even result in wrong results. In real astrophysical inference tasks, however, the current
state of model complexity and the computational resources available render this hypothet-
ically optimal scenario impossible in almost all cases. Even in the foreseeable future, given
the scale of planned future telescopes and the expected development of available compu-
tational resources, having a way to successfully perform approximate inference remains
highly relevant.
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