Small RNAs and cysteine-rich proteins novel molecular weapons of oomycete plant pathogens

Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München

Florian Dunker (M. Sc.)

München, 2021

Diese Dissertation wurde angefertigt unter der Leitung von PD Dr. Arne Weiberg am Lehrstuhl für Genetik, Fakultät für Biologie der Ludwig-Maximilians-Universität München

Erstgutachter:	PD Dr. Arne Weiberg
Zweitgutachter:	Prof. Dr. Wolfgang Frank
Tag der Abgabe:	29.03.2021
Tag der mündlichen Prüfung:	08.10.2021

"An expert is a person, who has made all the mistakes, that can be made in a very narrow field."— Niels Bohr (1885-1962)

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir selbständig und ohne unerlaubte Hilfe angefertigt ist.

München, den 08.11.2021

Florian Dunker

(Unterschrift)

Erklärung

Hiermit erkläre ich, *

] dass die Dissertation nicht ganz oder in wesentlichen Teilen einer anderen Prüfungskommission vorgelegt worden ist.

dass ich mich anderweitig einer Doktorprüfung ohne Erfolg **nicht** unterzogen habe.

 dass ich mich mit Erfolg der Doktorprüfung im Hauptfach

 und in den Nebenfächern

bei der Fakultät für

(Hochschule/Universität)

unterzogen habe.

dass ich ohne Erfolg versucht habe, eine Dissertation einzureichen oder mich der Doktorprüfung zu unterziehen.

München, den 08.11.2021

Florian Dunker (Unterschrift)

^{*)} Nichtzutreffendes streichen

Table of Contents

EIDESSTATTLICHE ERKLÄRUNGIV
TABLE OF CONTENTSV
GENERAL ABBREVIATION INDEX VII
GENE NAME ABBREVIATION INDEXVIII
LIST OF PUBLICATIONSX
DECLARATION OF CONTRIBUTION AS CO-AUTHORXI
LICENSE AND PERMISSIONXIII
SUMMARY1
INTRODUCTION
Oomycetes: constant threats to global food resources
Hyaloperonospora arabidopsidis as an oomycete model plant pathogen
Oomycete effectors with focus on <i>H. arabidopsidis</i>
The plant immune response to <i>H. arabidopsidis</i>
RNA interference in plants and its role in plant immunity
RNA interference in oomycetes
Cross-kingdom RNA interference
Host-induced gene silencing (HIGS) as a genetic tool in basic and applied research
AIMS OF THE THESIS
RESULTS
I: Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence.
Supplementary data:
II: Plant ARGONAUTE protein immunopurification for pathogen cross kingdom small RNA analysis
III: An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection95
Supplementary data:
DISCUSSION
Hyaloperonospora arabidopsidis as a new cross-kingdom RNAi model118

B. cinerea and H. arabidopsidis: two complementary cross-kingdom RNAi model systems	S
	21
Cross-kingdom RNAi: childhood friend or recurrent affair of life?	22
Host-induced gene silencing as a tool for functional gene studies in <i>H. arabidopsidis</i> 12	24
Where do we go from here? Future directions of cross-kingdom RNAi research	25
Cysteine-rich proteins: the abandoned child of oomycete effector research	27
Who am I? And if so, how many? Comparison of protein and sRNA effectors12	29
REFERENCES	33
ACKNOWLEDGEMENT	53

General abbreviation index

CFP	Cyan fluorescent protein
CRN	Crinkler effector
DAMP	Damage associated molecular pattern
DNA	Deoxyribonucleic acid
dpi	days post inoculation
ETI	Effector-triggered immunity
ETS	Effector-triggered susceptibility
FITC	Fluorescein isothiocyanate
GFP	Green fluorescent protein
GUS	β-Glucuronidase
HIGS	Host-induced gene silencing
HR	Hypersensitive response
INA	2,6-Dichloroisonicotinic acid
MAMP	Microbe-associated molecular pattern
MAP kinase	Mitogen-activated protein kinase
miRNA	microRNA
milRNA	microRNA-like RNA
MVB	Multi vesicular body
NAD^+	Nicotinamide adenine dinucleotide
nat-siRNA	natural antisense RNA
NLP	Necrosis and ethylene-inducing peptide (NEP)-like protein
NLR	Nuclear oligomerization domain (NOD)-like receptor
nt	nucleotide
PAMP	Pathogen-associated molecular pattern
PCD	Programmed cell death
pha-siRNA	phased, small interfering RNA
PPR	Pentatricopeptide repeat
Pst	Pseudomonas syringae pv tomato
PTI	PAMP-triggered immunity
(qRT)-PCR	(quantitative reverse transcription)-Polymerase chain reaction
<i>R</i> gene	Resistance gene
RISC	RNA-induced silencing complex
RNA	Ribonucleic acid

RNAi	RNA interference
SA	Salicylic acid
SNP	Single nucleotide polymorphism
SP	Signal peptide
sRNA	small RNA
(s)RNA-seq	(small) RNA sequencing
WT	Wild type
YFP	Yellow fluorescent protein

Gene name abbreviation index

AtAED3	APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY 1-
	DEPENDENT 3 (AT1G09750)
AtAGO1	ARGONAUTE 1 (AT1G48410)
AtAGO2	ARGONAUTE 2 (AT1G31280)
AtAGO4	ARGONAUTE 4 (AT2G27040)
AtDCL1	DICER-LIKE 1 (AT1G01040)
AtDCL2	DICER-LIKE 2 (AT3G03300)
AtDCL3	DICER-LIKE 3 (AT3G43920)
AtDCL4	DICER-LIKE 4 (AT5G20320)
AtHEN1	HUA ENHANCER 1 (AT4G20910)
AtHYL1	HYPONASTIC LEAVES 1 (AT1G09700)
AtHST	HASTY (AT3G05040)
AtMED19a	MEDIATOR SUBUNIT 19a (AT5G12230)
AtMEMB12	MEMBRIN 12 (AT5G50440)
AtNPR	NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES (several
	paralogs)
AtPDF1.2	PLANT DEFENSIN 1.2 (AT5G44420)
AtPDLP	PLASMODESMATA-LOCATED PROTEIN 1 (AT5G43980)
AtPR1	PATHOGENESIS-RELATED GENE 1 (AT2G14610)
AtRCD1	RADICAL-INDUCED CELL DEATH 1 (AT1G32230)
AtRDR	RNA-DEPENDENT RNA POLYMERASE (several paralogs)
AtRPP1	RECOGNITION OF PERONOSPORA PARASITICA 1 (AT3G44480)
AtSE	SERRATE (AT2G27100)
AtTPL	TOPLESS (AT1G15750)

AtTPR1TOPLESS-RELATED 1 (AT1G80490)AtWNK2WITH NO LYSINE (K) KINASE (AT3G22420)

HaA1E	Aldose-1-epimerase (HpaG814621)
HaACT A	Actin A (HpaG807716)
HaDCL1	Dicer-like 1 (HpaG808216)
HaCR1	Cystein-rich protein 1 (HpaG806256)
HaNLP3	Necrosis and ethylene-inducing peptide-like protein 1 (HpaG809243)
HaRxL21	RxLR effector 21 (HpaG811507)
HaRxL44	RxLR effector 44 (HpaG808319)
HaRxL62	RxLR effector 62 (HpaG813486)
HaRxL96	RxLR effector 96 (HpaG802236)
HaRxL106	RxLR effector 106 (HpaG811507)
PSR1	Phytophthora Suppressor of RNA Silencing 1 (P. sojae)
PSR2	Phytophthora Suppressor of RNA Silencing 2 (P. sojae)
SID1	Systemic RNAi defective 1 (C. elegans)
SID2	Systemic RNAi defective 2 (C. elegans)

List of publications

I) **Dunker, F.**, Trutzenberg, A., Rothenpieler, J.S., Kuhn, S., Pröls, R., Schreiber, T., Tissier, A., Kemen, A., Kemen, E., Hückelhoven, R., Weiberg, A., 2020. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. *eLife* **9**, e56096.

II) **Dunker, F.**[#], Lederer, B.[#], and Weiberg, A., 2021. Plant ARGONAUTE protein immunopurification for pathogen cross kingdom small RNA analysis. *Bio-protocol* **11**, e3911 [#] These authors contributed equally to the work.

III) **Dunker, F.**[#], Oberkofler, L.[#], Lederer, B., Trutzenberg, A., Weiberg, A., 2021. An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection. *J. Exp. Bot.* **72**, 718–732.

[#] These authors contributed equally to the work.

Declaration of contribution as co-author

Publication I:

Dunker, F., Trutzenberg, A., Rothenpieler, J. S., Kuhn, S., Pröls, R., Schreiber, T., Tissier, A., Kemen, A., Kemen, E., Hückelhoven. R., Weiberg, A. 2020. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. *eLife* **9**, e56096

In this publication, I designed and performed all experiments and contributed all data, if they are not explicitly listed below.

The analysis of next generation sequencing data was jointly performed by Arne Weiberg and me. I provided the figure design and the original draft of the manuscript, that was then substantially revised and edited jointly by Arne Weiberg and me. Adriana Tutzenberg provided data for Figure 1- figure supplement 2 and Figure 4c, Jan S. Rothenpieler provided data for Figure 1- figure supplement 2 and Figure 2- figure supplement 4 b, and Sarah Kuhn provided data for Figure 1- figure supplement 3.

Reinhard Pröls and Ralph Hückelhoven provided data for Figure 2- figure supplement 6, Tom Schreiber and Alain Tisisier provided a plant codon- optimized Csy4 sequence, Ariane Kemen and Eric Kemen provided data for Figure 2- figure supplement 6.

Arne Weiberg conceived the overall aim of the study, contributed to the experimental design, acquired funding and supervised the project.

Publication II:

II) **Dunker, F.**[#], Lederer, B.[#], and Weiberg, A., 2021. Plant ARGONAUTE protein immunopurification for pathogen cross kingdom small RNA analysis. *Bio-protocol* **11**, e3911 [#] These authors contributed equally to the work.

In this publication, I developed the method and performed all experiments that are displayed. I wrote the initial draft of the paper, that was substantially revised and edited jointly by Arne Weiberg, Bernhard Lederer and me. Bernhard Lederer contributed the figures displaying the schematic overview and the bioinformatic work flow.

Publication III:

Dunker, F.[#], Oberkofler, L.[#], Lederer, B., Trutzenberg, A., Weiberg, A., 2021. An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection. *J. Exp. Bot.* **72**, 718–732.

[#] These authors contributed equally to the work.

In this publication, I designed and performed the experiments for Figure 1B-C (*HaCR1^{RNAi}* #2 line), Figure 1D, Figure 2B+E, Figure 4A+D, Supplemental Figure S1, Supplemental Figure S4, Supplemental Figure S5 (*HaCR1^{RNAi}* #2 line), Supplemental Figure S6, Supplemental Figure S7 (HaCR1^{RNAi} lines), Supplemental Figure S8B, Supplemental Figure S9, Supplemental Figure S10, and Supplemental Figure S12. I prepared all figures with suggestions from Lorenz Oberkofler and Arne Weiberg. I wrote the initial draft of the paper, that was substantially revised and edited by Arne Weiberg, Bernhard Lederer and me together.

Lorenz Oberkofler performed the experiments for Figure 1B (*HaCR1*^{*RNAi*} #1 line), Figure 2C-D, Figure 3A, Supplemental Figure S2, Supplemental Figure S3, Supplemental Figure S5 (all but *HaCR1*^{*RNAi*} #2 line), Supplemental Figure S7 (HaACT^{*RNAi*} line), and Supplemental Figure S8A.

Bernhard Lederer performed the experiments for Figure 3B+D, Figure 4B-C, Supplemental Figure S11, the cDNA for Supplemental Figure S12 and prepared the graphical model for Figure 3C.

Adriana Trutzenberg provided the hairpin construct plasmids and the T1 generation of $HaCR1^{RNAi}$ plant lines.

Arne Weiberg conceived the overall aim of the study, contributed to the experimental design, acquired funding and supervised the project.

(Dr. Arne Weiberg)

License and permission

Dunker, F., et al. 2020. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. *eLife* **9**, e56096.

Dunker, F.[#], Lederer, B.[#], et al. 2021. Plant ARGONAUTE protein immunopurification for pathogen cross kingdom small RNA analysis. *Bio-protocol* **11**, e3911 [#] These authors contributed equally to the work.

Dunker, F.[#], Oberkofler, L.[#], et al. 2021. An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection. *J. Exp. Bot.* **72**, 718–732. [#] These authors contributed equally to the work.

These articles were published and re-printed under the Creative Commons Attribution license (CC-BY 4.0). For details on the license please refer to https://creativecommons.org/licenses/

Summary

Oomycetes comprise infamous plant pathogens that jeopardize global food resources. Effector proteins promote infections of pathogens and are consequently also found in large numbers in the genome of oomycetes. More recently, it was discovered that in fungi also small RNAs (sRNAs) can act as effectors by silencing host immunity genes by cross-kingdom RNA interference (RNAi). The effector diversity results in a highly complex, multilayered host pathogen cross-talk, whereas oomycete effector research has been mainly focused on a single effector class: the RxLR effectors. Consequently, I wanted to investigate two understudied oomycete effector classes: sRNAs and small secreted non-RxLR cysteine-rich (CR) proteins. I adapted an immunopurification-based method for high-throughput sequencing of pathogen sRNAs that were associated with the host ARGONAUTE (AGO) protein forming the RNAinduced silencing complex (RISC). From our first insights into the putative sRNA effectors of H. arabidopsidis I selected candidates that revealed target transcript repression. I designed a novel in situ reporter that demonstrated both pathogen sRNA translocation into plants and efficient host target silencing. Thereby, I directly visualized the spatial dimension of crosskingdom RNAi in the host tissue. I validated the crucial contribution of sRNAs to virulence by scavenging three of them with a plant encoded sRNA target mimic array. Hereby, I introduced H. arabidopsidis as a complementary cross-kingdom RNAi model to B. cinerea. I suggest that pathogen sRNA effectors are not only a widespread virulence mechanism, but also that comparative research can enlighten the evolutionary forces that shape sRNA arsenals in pathogens with distinct lifestyles and host ranges.

As *H. arabidopsidis* remains inaccessible to classical reverse genetics, me and my colleagues established host-induced gene silencing (HIGS) in Arabidopsis as a tool to knock down and study non-RxLR *HaCR1* protein effector function. Isolated Arabidopsis *HaCR1*^{*RNAi*} lines displayed prominent host cell death upon *H. arabidopsidis* infection suggesting that *Ha*CR1 inhibits induced plant cell death to promote infection. *Ha*CR1 seemed to reside in the plant apoplast and its activity was strictly dependent on its signal peptide. We found that *Ha*CR1 inhibited plant extracellular protease activity, suggesting that *Ha*CR1 might interfere with plant defensive proteases and protease-dependent programmed cell death (PCD), providing for the first time, insights into the molecular function of a *H. arabidopsidis* apoplastic effector.

Taken together, I provide new insights into the role of sRNAs and cysteine-rich protein effectors for *H. arabidopsidis* host infection. Completing the picture of the pathogen virulence arsenal poses an important prerequisite towards more effective pathogen control.

Introduction

Oomycetes: constant threats to global food resources

Plants are permanently threatened by a plethora of herbivores and pathogens. It is estimated that around 20-40% of global production of major crops is lost due to pests and diseases, severely impacting food availability for the growing world population (Savary et al., 2019). Major agricultural pests comprise highly different organisms such as weeds, bacteria, fungi, nematodes, insects and oomycetes (Oerke, 2006). The latter are filamentous organisms that superficially resemble fungi, but are phylogenetically distinct from them, belonging together with diatoms and brown algae to the phylum straminipila also known as the stramenopiles (Thines, 2014). Oomycetes comprise free living saprophytic species, that fulfill important ecological functions degrading organic matter especially in freshwater ecosystems (Masigol et al., 2019). However, the majority of oomycete species has adapted to a parasitic lifestyle, giving rise to some of the most notorious plant pathogens (Thines and Kamoun, 2010). Outbreaks of oomycete pathogens like Phytophthora infestans, causing the potato late blight disease, can lead to devastating crop losses such as the one responsible for the Great Famine in Ireland in the 1840s, and more recently 2008 in South India. Further examples of oomycete pathogens with a high economic impact include the soybean root rot pathogen *Phytophthora sojae*, the oil palm pathogen Phytophthora palmivora and the grape downy mildew pathogen Plasmopara viticola (Derevnina et al., 2016; Kamoun et al., 2015).

Besides plant pathogens, some oomycetes have evolved into parasites in aquatic ecosystems like the infamous fish pathogen *Saprolegnia parasitica*. Especially after the ban of treatment with Malachite Green due to its high toxicity, it is estimated that around 10% of all cultured salmon worldwide succumb to saprolegniasis (Earle and Hintz, 2014). Finally, oomycetes are among the few pathogens that can also cause enormous damage in natural ecosystems. Examples include the large-scale abolition of oak trees by *Phytophthora ramorum* in California (Grünwald et al., 2008), the devastating dieback disease outbreaks caused by *Phytophthora cinnamomi* wiping out entire ecosystems in Australia (Cahill et al., 2008), and also the eradication of large parts of wild European crayfish populations by the crayfish plague pathogen *Aphanomyces astaci* (Svoboda et al., 2017).

Oomycete control in agriculture has been relying on the extensive application of chemical pesticides and the breeding of resistant crop cultivars. However, oomycetes have displayed a remarkable capability to quickly adapt to plant resistance and withstand pesticide treatments (Delmas et al., 2017; Fry, 2008). In addition, chemical pesticide application bears large

economic costs and can be highly detrimental for ecosystems, consumers, and farmers (Sang and Kim, 2020). A central limiting factor for more specific, durable, and sustainable oomycete pest control is the incomplete knowledge of their molecular weaponry. How oomycetes overcome host immunity and reprogram host physiology for their own benefit remain, despite extensive research efforts, incompletely answered questions.

Hyaloperonospora arabidopsidis as an oomycete model plant pathogen

One central model system to uncover the molecular basis for oomycete virulence as well as plant resistance is the Arabidopsis (*Arabidopsis thaliana*) downy mildew pathogen *Hyaloperonospora arabidopsidis* (Kamoun et al., 2015). *H. arabidopsidis* is one of the few pathogens frequently colonizing wild Arabidopsis plants, being its sole natural host (Agler et al., 2016; McDowell, 2014). It is an obligate biotrophic pathogen that fully relies on nutrients obtained from living host cells and can only complete its life cycle if the host tissue remains alive during the entire interaction (Glazebrook, 2005).

The infection cycle starts with a germinating conidiospore on the host leaf surface that penetrates through the cuticle and forms intercellular hyphae in the leaf (Slusarenko and Schlaich, 2003). The pathogen develops specialized invaginations breaching the host cell wall, called haustoria, which are believed to be the main hub for nutrient delivery as well as signal exchange. The haustoria are separated from the plant cytoplasm by a newly synthesized plant membrane called extrahaustorial membrane and the space between haustorium and plant cell is filled with an amorphous layer: the extrahaustorial matrix (Judelson and Ah-Fong, 2019). This intimate interaction requires extensive communication between the host and the pathogen. In the case of biotrophic pathogens like *H. arabidopsidis*, this communication is required not only to dampen the host immune response, but also to largely subvert host physiology to enable constant nutrient delivery and life cycle completion (Thordal-Christensen et al., 2018).

The asexual life cycle of *H. arabidopsidis* is completed by the formation of aerial, tree-like condiophores that breach out of the stomata and carry the conidiospores. These conidiospores can start a new infection cycle on other leaves or plants. In addition, *H. arabidopsidis* is a homothallic organism and can reproduce sexually by the differentiation of hyphae into oogonia and antheridia, usually followed by self-fertilization. However, crossing of distinct isolates is also possible (Bailey et al., 2011; Koch and Slusarenko, 1990). Fertilization leads to the development of oospores, which represent a permanent form, for example, to over-winter. Germinated oospores can infect the roots of Arabidopsis, followed by systemic growth and conidiospore production, re-starting the asexual reproduction cycle (Slusarenko and Schlaich, 2003).

Oomycete effectors with focus on H. arabidopsidis

To obtain nutrients from the host and complete their life cycle, oomycetes like *H. arabidopsidis* and other groups of pathogens and pests, rely on small, secreted peptides to manipulate their hosts: the so-called effectors (Hogenhout et al., 2009). The number of putative effectors in plant pathogenic oomycete genomes ranges from ~80 in the white rust pathogen *Albugo laibachii*, over ~130 in *H. arabidopsidis*, to ~700 in *Phytophthora infestans* (Baxter et al., 2010; Haas et al., 2009; Kemen et al., 2011). Effectors do not only interfere with host immunity but redirect the entire host physiology to provide nutrients. Thus, targets of effectors also include susceptibility genes like cell wall remodeling enzymes (van Schie and Takken, 2014).

The effectors of *H. arabidopsidis* can be classified by sequence features into RxLRs, CRINKLERs (CRNs) with a LFLAK motif, necrosis and ethylene-inducing peptide-like proteins (NLPs) and so called cysteine-rich (CR) proteins (Cabral et al., 2011). Importantly these classes do not represent conventional protein families and show, apart from short translocation motifs or overall amino acid frequencies, little to no sequence homology (Schornack et al., 2009; Win et al., 2007). Most effectors are refined to a single pathogen species or even isolate while conserved protein effectors are an exception. Out of over hundred effectors, only six effectors were shared between *H. arabidopsidis* and the sunflower downy mildew pathogen Plasmopara halstedii and only three syntenic effector families were conserved between *H. arabidopsidis* and *P. infestans* (Baxter et al., 2010; Sharma et al., 2015). However, around 30% of effectors share common structural elements in the WY-domain fold without sequence conservation, indicating potential functional conservation (Win et al., 2012). Much research effort has been directed towards effectors containing a RxLR amino acid motif, where x stands for any amino acid, frequently followed by a (d)EER motif (Govers and Bouwmeester, 2008; Rehmany et al., 2005). RxLR effectors were found to be translocated into the host cell during infection and comprise the vast majority of known avirulence genes (Rouxel and Balesdent, 2010; Whisson et al., 2007). Despite being essential for the translocation, the exact molecular role of the RxLR motif itself remains controversial (Ellis and Dodds, 2011; Wawra et al., 2012). RxLR effectors are common and crucial for the virulence of Phytophthora and downy mildew species like *H. arabidopsidis*, but do not seem to play a comparable role in other pathogenic oomycete genera like Albugo, Phytium or Saprolegnia (Anderson et al., 2015). The molecular function of an increasing number of RxLR effectors from plant pathogenic oomycetes has been elucidated and host target proteins have been identified (Kanja and Hammond-Kosack, 2020).

A large-scale experiment reported a bacterial growth promotion of 70% of the tested 64 RxLR effectors of *H. arabidopsidis* in at least one Arabidopsis accessions, when the effector was delivered by modified *Pseudomonas syringae* bacteria. Out of these effectors promoting bacterial growth, 77% could also reduce plant callose deposition, a hallmark of plant immunity. The expression of nine candidate effectors in Arabidopsis resulted, in seven cases, in higher *H. arabidopsidis* proliferation, but no further interactors or molecular functions were suggested (Fabro et al., 2011). In another study, overexpression of 13 RxLR effectors *in planta* led, in all but one case, to increased susceptibility towards *Pseudomonas syringae* infection, however it suppressed the growth of the oomycete *P. capsici*. The growth of *H. arabidopsidis* itself was not influenced, indicating sufficient endogenous effectors *Ha*RxL62 and *Ha*RxL96 reduced SA dependent defense marker gene induction and interfered with basal immune responses like callose deposition, however no molecular mechanism was suggested (Anderson et al., 2014).

Compared to *Phytophthora* species, the amount of *H. arabidopsidis* effectors with an elucidated molecular function remains low. The effector *Ha*RxL44 weakened the salicylic acid dependent immune response by destabilizing the Arabidopsis mediator complex component *MED19a* (Caillaud et al., 2013). Also the second characterized effector, *Ha*RxL106, targeted salicylic acid-dependent immune responses, directly binding RADICAL-INDUCED CELL DEATH 1 (RCD1) and perturbing its capacity to activate immune response factors (Wirthmueller et al., 2018). The effector *Ha*RxL21 recruits the Arabidopsis transcription repressors TOPLESS (TPL) and TOPLESS-RELATED (TPR) 1 to interfere with the defense gene induction and thereby promotes the infection with *H. arabidopsidis*, but also with the necrotrophic pathogen *B. cinerea* (Harvey et al., 2020).

Molecular effector functions have been predominantly investigated by heterologous effector expression *in planta* and *in vitro* assays, as the obligate biotrophic *H. arabidopsidis* can be neither cultured nor transformed (McDowell, 2014). A study investigating the function of the *H. arabidopsidis* NLPs came to the conclusion that, despite their homology, those effectors have lost the ability to trigger host cell death (Cabral et al., 2012). A structural analysis revealed that *Ha*NLP3 has lost the molecular flexibility to bind plant sphingolipid glycosylinositol phosphorylceramides and thereby promote phytotoxicity (Lenarčič et al., 2019). However, this special feature is in line with their occurrence in a biotrophic pathogen.

Functional data on other *H. arabidopsidis* effector classes are limited and do not expand further as their role of avirulence genes in race-specific resistance, like the only known non-RXLR

avirulence gene ATR5. ATR5 however does contain a conventional EER motif and the RXLR motif might be replaced by a functionally redundant GRVR motif (Bailey et al., 2011). Especially little is known about the class of cysteine-rich proteins, even if those contain the most highly expressed effectors of *H. arabidopsidis* (Asai et al., 2014). The most abundant effector transcript of *H. arabidopsidis* encodes *Cystein-rich protein (HaCR) 1*, also known as *Ppat14*, which function remains so far largely enigmatic (Bittner-Eddy et al., 2003; Cabral et al., 2011). Effectors frequently display a large number of cysteines, that are believed to aid protein stability by the formation of disulfide bridges. This is believed to be especially essential to withstand the harsh, protease-rich environment in the plant apoplast (Rocafort et al., 2020). In recent years, sRNAs triggering gene silencing by RNA interference (RNAi) have emerged as an entirely new class of fungal pathogen effectors besides the extensively studied proteinaceous effectors (Weiberg et al., 2014).

The plant immune response to *H. arabidopsidis*

To enable successful infection, plant pathogens like *H. arabidopsidis* have to overcome a multilayered and complex plant immune system. Unlike vertebrates, plants do not possess specialized mobile immune cells, but every cell provides a cell-autonomous immune response (Spoel and Dong, 2012). The concept of plant immunity/susceptibility is classically described by the zig-zag model introduced around 15 years ago and outlined in the following paragraph (Jones and Dangl, 2006).

Plants achieve basic immunity by membrane bound receptors that recognize conserved pathogen/microbe- or damage-associated molecular patterns (PAMPs/MAMPs/DAMPs) like bacterial flagellin, chitin or plant cell wall fragments. The perception of PAMPs triggers a signaling cascade, that ultimately provides immunity towards a wide variety of pathogens known as PAMP-triggered immunity (PTI). Classic oomycete PAMPs include β -glucans and eicosapolyenoic acids, although their detection mechanism remains to be determined (Robinson and Bostock, 2014). A well described PTI response that limits the spread of *H. arabidopsidis* is the induction of salicylic acid (SA) dependent defense genes *PATHOGENESIS-RELATED GENE 1 (AtPR1)*. *AtPR1* encodes for a secreted sterol binding protein, that efficiently limits the growth of sterol auxotrophic oomycetes like *H. arabidopsidis* (Alexander et al., 1993; Gamir et al., 2017). Another classic PTI response is the deposition of callose, that in the case of *H. arabidopsidis* first accumulates at the haustorial neck and later encases the entire haustorium. This process is regulated by the plasmodesmal protein PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1), which accordingly limits *H. arabidopsidis* proliferation (Caillaud et al., 2014).

However, adapted, virulent pathogens have evolved strategies to overcome PTI and enable successful infection. A striking similarity between highly diverse pathogens like bacteria, oomycetes, and fungi is the subversion of the plant PTI by effectors that were described in the previous chapter, resulting in effector-triggered susceptibility (ETS). In a next layer of immunity, specific effectors, in this context also named avirulence genes, can be recognized by host nucleotide-binding oligomerization domain-like receptors (NOD-like receptors, NLRs), leading to a strong immune response and plant resistance. Therefore, receptors mediating this effector-triggered immunity (ETI) are also called resistance genes (*R* genes). ETI is frequently marked by an programmed, localized host cell death, called the hypersensitive response (HR), that is especially efficient against biotrophic pathogens like *H. arabidopsidis*. *R* gene mediated resistance of Arabidopsis against H. arabidopsidis largely follows Henry Flor's gene-for-gene concept (Flor, 1971) also known as race specific resistance. So far 47 R genes, called RECOGNITION OF PERONOSPORA PARASITICA (RPP), providing resistance against at least one isolate of H. arabidopsidis were described, however are large number of them represents only different alleles and they are predominantly encoded by six genomic loci (Nemri et al., 2010). Extensive research efforts have led to the molecular identification of seven Arabidopsis RPP genes together with the three corresponding H. arabidopsidis avirulence genes (Woods-Tör et al., 2018). Recently, it was demonstrated that upon direct binding of the H. arabidopsidis effector ATR1, the resistance gene AtRPP1 becomes oligomerized and then catalyzes the hydrolysis of NAD⁺ (S. Ma et al., 2020), a known cell death trigger in animals and plants (Horsefield et al., 2019). However, some H. arabidopsidis effectors like HaRxL103 evade recognition by resistance genes through polymorphisms in expression and localization (Asai et al., 2018).

In addition to full resistance, there are various degrees of intermediate resistance phenotypes termed flecking necrosis, pitting necrosis and trailing necrosis. In addition, host resistance is developmental stage specific, with the cotyledons usually being more susceptible than true leaves (Coates and Beynon, 2010; Krasileva et al., 2011).

Plant hormones play paramount roles to integrate pathogen stimuli and mediate immune responses. The defense response against biotrophic pathogens like *H. arabidopsidis* is mainly mediated by SA (Glazebrook, 2005) and pre-treatment of plants with either SA or the synthetic analog 2,6-dichloroisonicotinic acid (INA) primes the plants for a strong immune response against *H. arabidopsidis* leading to trailing necrosis and enhanced resistance (Lawton et al., 1995). The paramount role of SA is also highlighted by the large number downy mildew

effectors interfering with hormone signaling (Asai et al., 2014; Caillaud et al., 2013; Wirthmueller et al., 2018).

Over the last decade it has become more apparent that the signaling pathways between PTI and ETI are highly interconnected, overlapping and potentially continuous, rather than distinct processes (Thomma et al., 2011). Importantly, major plant defense hormones like SA are crucial to achieve both PTI and ETI (Zhang and Li, 2019). Therefore, some researchers proposed a refined model for plant immunity/susceptibility focusing on immunity layers instead of the immunity trigger molecule (Wang et al., 2019). Hence, the plant immune response consists of three layers: the recognition layer (i.e., the receptors), the signal integration layer (e.g. kinase cascades and hormone production) and the defense-action layer (e.g. anti-microbial protein secretion or PCD and HR). This complex immune system has to be tightly regulated to ensure both prevention of auto-immunity and rapid activation upon pathogen infection (Spoel and Dong, 2012). In recent years, it was discovered that among the major regulators of plant immunity are plant sRNAs, which suppress complementary immunity genes or susceptibility genes after infection via RNAi.

RNA interference in plants and its role in plant immunity

In eukaryotes, sRNAs can trigger the repression of complementary transcripts, a phenomenon known as RNAi. RNAi has crucial functions such as transposon control, antiviral defense and endogenous gene regulation for development, physiology and stress response (Alberts, 2015). Small RNAs in plants are classified according to their biogenesis pathways into microRNAs (miRNAs), natural antisense small interfering RNAs (nat-siRNAs), phased secondary small interfering small RNAs (pha-siRNA) and other classes involved in RNA directed DNA methylation termed heterochromatic small interfering RNAs (hc-siRNAs). While miRNAs are derived from hairpin folding primary microRNAs (pri-miRNAs) transcribed by RNA-Polymerase II, siRNAs derive from perfectly complementary double stranded RNAs and typically depend on a RNA dependent RNA polymerase (RDR) (Bologna and Voinnet, 2014). These double stranded RNA precursors are processed by the Dicer complex (consisting of a Dicer-like endonuclease (DCL) and several co-factors) into short 21-24 nt long sRNAs (Khraiwesh et al., 2012). These sRNAs then bind to an Argonaute (AGO) protein to form the plant RNA-induced silencing complex (RISC) (Baumberger and Baulcombe, 2005). After the star strand is dismissed, the guide strand of the sRNA then binds complementary mRNAs and mediates to their cleavage via the Argonaute slicer function or translational repression (Fang and Qi, 2016). The genome of Arabidopsis encodes for ten Argonaute proteins, with AtAGO1 as the major Argonaute protein in post-transcriptional gene silencing (Vaucheret, 2008). The sorting of plant sRNAs into the diverse Argonaute proteins depends on the sRNA size and the 5' nucleotide. Immunopurification of Argonaute proteins, coupled to sequencing of the associated sRNAs, revealed that Arabidopsis AGO1 preferentially binds to 21 nt long sRNAs with 5' terminal uracil, two central features of plant miRNAs (Mi et al., 2008; Montgomery et al., 2008). Similar approaches were used to gain insights into changes of the sRNAs associated with the host AGO1 and AGO2 during bacterial infection (X. Zhang et al., 2011) and several method reports with protocol details on co-immunopurification of plant RISC with associated plant sRNAs are published (Carbonell, 2017; Zhao et al., 2012).

Besides its role in development and physiology, RNAi can regulate the plant immune system. Some sRNAs are positive regulators of immunity, they become induced upon infection and silence susceptibility genes. The Arabidopsis miR393 was the first discovered plant miRNA that confers immunity against bacterial infection. After bacterial infection, it is induced and represses auxin signaling, and thereby potentially shifts the growth-defense equilibrium (Navarro et al., 2006). Interestingly, the star strand of the same miRNA miR393* can bind to *At*AGO2 and silences the negative regulator of plant immunity *MEMBRIN* (*AtMEMB*) 12 to prevent secretion of *At*PR1 (X. Zhang et al., 2011).

In the absence of pathogens, the miR472/miR482 family suppresses *R* gene expression by posttranscriptional silencing. However, *NLR* transcripts are not only a direct target of this miRNA family, but also trigger the production of secondary siRNAs that enhance the silencing effect and can also silence *NLR* genes in *trans* that are not directly targeted by miR482 itself (Li et al., 2012; Shivaprasad et al., 2012). Thus, plants prevent auto-immunity risks, but still remain capable of retaining large NLR sets to confer a robust immune against most pathogens (Lai and Eulgem, 2018).

Besides post-transcriptional silencing, sRNAs do also mediate transcriptional gene silencing of immune genes by the RNA-directed DNA methylation (RdDM) pathway using AGO4 as the main hub (Bologna and Voinnet, 2014). Arabidopsis mutants impaired in RdDM revealed enhanced resistance against *H. arabidopsidis* infection, whereas hypermethylation mutants displayed increased susceptibility. This methylation status dependent resistance was associated with increased callose deposition and enhanced salicylic acid dependent defense gene expression (López Sánchez et al., 2016).

The crucial importance of sRNAs for defense against oomycetes is furthermore underscored by the evolution of oomycete effectors that suppress silencing. *Phytophthora sojae* encodes for two silencing suppressors, *Phytophthora Suppressor of RNA silencing (PSR) 1* that suppresses biosynthesis of diverse sRNAs like miRNAs and siRNAs, and *PSR2* that is specifically

repressing phased siRNAs (Hou et al., 2019; Qiao et al., 2013). While *PSR1* is restricted to *P. sojae*, *PSR2* is a conserved effector of various *Phytophthora* species and homolog of *PSR2* is also encoded in the *H. arabidopsidis* genome. However, unlike the *Phytophthora PSR2* effectors it is missing the RxLR translocation motif and only contains a dEER-like motif, so its activity remains unclear (Xiong et al., 2014). Intriguingly, the suppression of silencing by pathogen effectors automatically releases silencing of plant NLRs, providing a plant counter-defense, another advantage of *R* gene control via RNAi (Lai and Eulgem, 2018).

RNA interference in oomycetes

While extensive studies have elucidated the RNAi machinery and function in plants, relatively little is known about the role of RNAi in oomycetes. Small RNA-seq of *P. infestans* revealed two distinct classes of 21 nt and 25-26 nt which are mainly encoded by gene sparse, but transposon and effector-rich genomic regions, and are associated with oomycete Argonaute proteins (Åsman et al., 2016; Fahlgren et al., 2013; Vetukuri et al., 2012). Though it has been suggested that sRNAs mediate large-scale transposon control and co-repression of nearby effector genes (Vetukuri et al., 2013; Whisson et al., 2012), no direct experimental evidence for this hypothesis has been reported.

Recently, a combined sRNA-seq and mRNA-seq study on *P. parasitica* reported widespread efficient silencing of homologous genes by 25-26 nt sRNAs, while 21 nt sRNAs failed to repress gene expression (Jia et al., 2017). This report however investigated only silencing in *cis*, that means of the locus from which the sRNAs were produced. Conversely, any silencing in *trans* as well as the role of the single *bona fide Phytophthora* miRNA miR8788 remain largely unknown and controversial (Fahlgren et al., 2013). One demonstrated role of RNAi in *P. sojae* pathogenicity is trans-generational silencing of the avirulence gene *PsAVR3a* by cisregulatory sRNAs. Silencing of *AvR3a* might be an advantage for *P. sojae* to escape *RPS3a* gene mediated resistance (Qutob et al., 2013). Like *Phytophthora*, the genome of *H. arabidopsidis* encodes all canonical RNAi components: two DCL genes, one RDR gene and two AGO genes (Bollmann et al., 2018, 2016), suggesting production of small regulatory RNAs. However, any role of RNAi or small RNAs has not so far been investigated.

Cross-kingdom RNA interference

The role of pathogen sRNAs as direct regulators of host genes was firstly observed in the fungal plant pathogen *Botrytis cinerea*. Upon infection, sRNAs of this broad host, necrotrophic pathogen invaded the host RISC. This resulted in a repression of complementary immunity genes, such as mitogen-activated protein (MAP) kinases in both tomato (*Solanum*)

lycopersicum) and Arabidopsis (Weiberg et al., 2013). These secreted sRNAs were crucial for *Botrytis* virulence, and thus the term small RNA effector was coined in analogy to protein effectors (Wang et al., 2015). The direct communication between two phylogenetically distinct organisms via sRNAs was termed cross-kingdom RNA interference (Weiberg et al., 2015). *Botrytis* cross-kingdom sRNAs exhibited key characteristics of plant miRNAs enabling them to bind to the host AGO1 and direct silencing of complementary host mRNA sequences. Consequently, hypomorphic *atago1-27* mutants resisted infection by *Botrytis cinerea*, while *atdcl1-7* mutants revealed no such resistance, suggesting the mobile entity are ready processed sRNAs rather than longer precursors (Weiberg et al., 2013).

In the last couple of years several other fungal pathogens like *Sclerotinia sclerotium*, *Puccinia striiformis* f. sp. *tritici*, *Verticilium dahliae*, *Fusarium graminearum* and the insect pathogen *Beauveria bassiana* were demonstrated to use comparable virulence strategies (Cui et al., 2019; Derbyshire et al., 2019; Jian and Liang, 2019; B. Wang et al., 2017; Wang et al., 2016). Several additional studies suggested the possibility of cross-kingdom RNAi in fungal pathogens and mutualists based on sequence homology and in silico target predictions, however without experimental evidence (Kusch et al., 2018; Silvestri et al., 2020, 2019). The employment of sRNAs as a new class of effectors is not restricted to fungi, but was also discovered in parasitic plants of the genus *Cuscuta*, the mammalian gastrointestinal nematode *Heligmosomoides polygyrus* and the mutualistic root nodule bacterium *Bradyrhizobium japonicum* (Buck et al., 2014; Johnson et al., 2019; Ren et al., 2019; Shahid et al., 2018).

Interestingly, plants also use sRNAs to counteract pathogens, downregulating their virulence genes, making cross-kingdom RNAi a bidirectional phenomenon. A first incidence of this natural host-induced gene silencing was reported in cotton plants defending against the fungus *Verticlillium dahliae* (Zhang et al., 2016). Afterwards, defensive sRNAs were also discovered in Arabidopsis when under attack by the fungus *Botrytis cinerea*, making sRNA crosstalk truly bi-directional in this interaction (Cai et al., 2018b; Wang et al., 2016 and Figure 1).

Recent research has been focused on the means of transport of sRNAs between host and pathogen, with extracellular vesicles (EVs) garnering a lot of attention. These are small membrane-enclosed compartments produced by all domains of life with very diverse cargos such as DNA, proteins, toxins and RNAs of various lengths, including sRNAs (van Niel et al., 2018). Though their involvement in cross-kingdom sRNA transport has been suggested in Arabidopsis and nematodes (Cai et al., 2018b; Chow et al., 2019 and Figure 1), convincing direct *in vivo* evidence is missing and especially plant EV research remains in its absolute infancy (Rutter and Innes, 2020).

Figure 1: Schematic overview of *B. cinerea*-Arabidopsis bidirectional cross kingdom RNAi. Small RNAs of *B. cinerea* load into the host AGO1 protein to confer silencing of immunity genes in Arabidopsis and tomato. Equivalently, Arabidopsis uses sRNAs to silence fungal virulence genes, some of them involved in vesicle trafficking. The figure also displays the transport of sRNAs via extracellular vesicles (EVs), though *in vivo* a proof of their function in RNA delivery is still missing and thereby remains a tempting speculation.

A fascinating example illustrating the role of sRNAs and protein effectors in the plant-pathogen arms race was suggested for *Phytophthora*: Arabidopsis might use phased siRNA from pentatricopeptide-repeat (PPR) protein encoding loci to suppress *Phytophthora capsici* genes, limiting pathogen growth (Hou et al., 2019). To counteract this oomycete pathogens like *P. sojae* and *P. infestans* may employ the RxLR protein effector PSR2 that impairs phased siRNA biogenesis during infection of their respective hosts (Qiao et al., 2013; Xiong et al., 2014).

Host-induced gene silencing (HIGS) as a genetic tool in basic and applied research Transgenic expression of dsRNAs in a host plant can lead to the repression of complementary transcripts in pests and pathogens. This somewhat surprising observation was first discovered in insect larvae feeding on maize and cotton (Baum et al., 2007; Mao et al., 2007). This socalled host-induced gene silencing represented the first clear evidence for cross-kingdom RNA silencing and was later also observed in a plethora of fungal pathogens including *Blumeria* graminis f. sp. hordei, Fusarium graminearum, Magnaporthe oryzae and Botrytis cinerea (Guo et al., 2019; Koch et al., 2013; Nowara et al., 2010; Wang et al., 2016). Thanks to its broad applicability HIGS can have a major impact in future crop protection measures, as the targeting of genes required for pathogen survival or virulence can confer highly specific, durable resistance with minimized environmental effects (Koch and Kogel, 2014). The first HIGS based transgenic maize plant, called SmartStax PRO, was approved by the US Environmental Protection Agency in 2017. It expresses a dsRNA targeting *Snf7* of the western corn rootworm besides several insecticidal proteins of *Bacillus thuringiensis* and its commercial introduction by Monsanto (now part of Bayer) and DowAgroSciences is expected in the next years (Head et al., 2017). However, as with all pest control strategies, careful crop management is paramount, as by selection under laboratory conditions a western corn rootworm population could be obtained, which greatly resisted gene repression by HIGS (Khajuria et al., 2018).

Next to its use as an innovative tool in crop protection, HIGS has also become a powerful reverse genetics method to unravel gene functions in obligate biotrophic organisms such as nematodes, powdery mildews, arbuscular mycorrhizal fungi and rust fungi, that are inaccessible by classical genetical modification methods (Helber et al., 2011; Huang et al., 2006; Pliego et al., 2013; Qi et al., 2018). Compared to the high number of fungal examples, the sample size for successful HIGS application in oomycetes is rather limited. An initial trial in *Phytophthora parasitica* did not lead to silencing of the endogenous target gene, despite expression of the hairpin (M. Zhang et al., 2011). Since then, however, successful application of HIGS restricting pathogen growth was reported from the lettuce downy mildew pathogen *Bremia lactuae* and the potato late blight pathogen *P. infestans* (Govindarajulu et al., 2015; Jahan et al., 2015; Sanju et al., 2015). Another elegant validation of the efficacy of HIGS in oomycetes was the silencing of an avirulence gene, thereby enabling growth of *P. capsici* in an otherwise resistant *Nicotiana* species (Vega-Arreguín et al., 2014). These studies however evaluated HIGS rather as a tool for plant protection and did not target pathogen genes with unknown function, but well described housekeeping or effector genes.

As an alternative approach to HIGS, exogenous application of RNA can also lead to target gene repression: a phenomenon termed environmental RNAi or spray-induced gene silencing (SIGS) (Koch et al., 2016; Wang et al., 2016). SIGS bears the advantage of not requiring genetic modification, and thereby prevent associated extensive regulation and consumer reservation (Cai et al., 2018a). However, to this day, there has been no thorough investigation of the applicability of SIGS outside of controlled laboratory environments, and stability and storage

of RNA pesticides remain an issue to be solved prior to wide market introduction. Recently, a possible approach was proposed by the administration of dsRNAs in layered double hydroxide clay nanosheets to increase their stability. Under such conditions, the plant protective effect of RNAs against viral infection could be expanded to 20 days (Mitter et al., 2017).

Aims of the thesis

An incomplete understanding of the diverse effector arsenal and its molecular function is a central obstacle towards more specific and durable pathogen control management. The sRNAs of *B. cinerea* were reported to promote infection by binding to the host RISC complex in a process called cross-kingdom RNAi. However, it remained unclear if phylogenetically distinct plant pathogens like oomycetes employ sRNA effectors as well.

Therefore, in the first part of this study, I wanted to investigate the role of sRNAs in the virulence of the downy mildew pathogen *Hyaloperonospora arabidopsidis*. In order to gain insights into the *H. arabidopsidis* sRNA effector arsenal, my goal was to establish a protocol for the immunopurification of RISC-associated sRNAs, their high-throughput sequencing, and subsequent bioinformatic analysis.

I wanted to clarify if and how these sRNAs convey virulence and investigate the largely unknown spatial and temporal dimensions of cross-kingdom RNAi. Therefore, a central aim was to establish an *in situ* silencing reporter system that can indicate cross-kingdom RNAi in the native host-pathogen system. Another central aim was to evaluate the importance of sRNA effectors for the virulence, also in comparison to previously investigated protein effectors.

In case *H. arabidopsidis* performs cross-kingdom RNAi, I seek to analyze the target genes and compare them with known *B. cinerea* target genes. Are common pathways or even the same genes targeted by distinct plant pathogens? Can I identify novel host immunity factors by research on cross-kingdom RNAi targets?

The target of the second part of this work was to complement the functional insights on sRNA effectors with an investigation of the highest expressed, but molecularly completely uncharacterized, protein effector class: the cysteine-rich proteins. As *H. arabidopsidis* can neither be cultured nor transformed, my aim was to establish HIGS as a reverse genetics tool and elucidate the function of the cysteine-rich protein effector *Ha*CR1. I wanted to achieve a functional *HaCR1* knock-down to enable research on its role during the plant-pathogen interaction. By *in silico* analysis and *in planta* expression of the effector, I wanted to gather further insights into the localization and the molecular function of *Ha*CR1.

Taken together, I aimed to provide first evidence of the virulence function of two classes of non-RxLR effectors: sRNAs and cysteine-rich proteins. Thus, I sought to lay the foundation for future research on these highly relevant, though understudied effector classes.

Results

I: Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence.

CC

Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence

Florian Dunker¹, Adriana Trutzenberg¹, Jan S Rothenpieler¹, Sarah Kuhn¹, Reinhard Pröls², Tom Schreiber³, Alain Tissier³, Ariane Kemen⁴, Eric Kemen⁴, Ralph Hückelhoven², Arne Weiberg¹*

¹Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany; ²Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany; ³Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany; ⁴Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany

Abstract The exchange of small RNAs (sRNAs) between hosts and pathogens can lead to gene silencing in the recipient organism, a mechanism termed cross-kingdom RNAi (ck-RNAi). While fungal sRNAs promoting virulence are established, the significance of ck-RNAi in distinct plant pathogens is not clear. Here, we describe that sRNAs of the pathogen *Hyaloperonospora arabidopsidis*, which represents the kingdom of oomycetes and is phylogenetically distant from fungi, employ the host plant's Argonaute (AGO)/RNA-induced silencing complex for virulence. To demonstrate *H. arabidopsidis* sRNA (*Hpas*RNA) functionality in ck-RNAi, we designed a novel CRISPR endoribonuclease Csy4/GUS reporter that enabled in situ visualization of *Hpas*RNA-induced target suppression in Arabidopsis. The significant role of *Hpas*RNAs together with AtAGO1 in virulence was revealed in plant *atago1* mutants and by transgenic Arabidopsis expressing a short-tandem-target-mimic to block *Hpas*RNAs, that both exhibited enhanced resistance. *Hpas*RNA-targeted plant genes contributed to host immunity, as Arabidopsis gene knockout mutants displayed quantitatively enhanced susceptibility.

*For correspondence: a.weiberg@lmu.de

Competing interests: The authors declare that no competing interests exist.

Funding: See page 19

Received: 17 February 2020 Accepted: 21 May 2020 Published: 22 May 2020

Reviewing editor: Axel A Brakhage, Hans Knöll Institute, Germany

© Copyright Dunker et al. This article is distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use and redistribution provided that the original author and source are credited. Introduction

Plant small RNAs (sRNAs) regulate gene expression via the Argonaute (AGO)/RNA-induced silencing complex (RISC), which is crucial for tissue development, stress physiology and activating immunity (*Chen, 2009; Huang et al., 2016; Khraiwesh et al., 2012*). The fungal plant pathogen *Botrytis cinerea*, secretes sRNAs that hijack the plant AGO/RISC in Arabidopsis, and *B. cinerea* sRNAs induce host gene silencing to support virulence (*Weiberg et al., 2013*), a mechanism known as cross-kingdom RNA interference (ck-RNAi) (*Weiberg et al., 2015*). In fungal-plant interactions, ck-RNAi is bidirectional, as plant-originated sRNAs are secreted into fungal pathogens and trigger gene silencing of virulence genes (*Cai et al., 2018; Zhang et al., 2016*). It is currently not known, how important ck-RNAi is for pathogen virulence in general and whether other kingdoms of microbial pathogens, such as oomycetes, transfer sRNAs into hosts to support virulence.

Oomycetes comprise some of the most notorious plant pathogens and belong to the eukaryotic phylum stramenopiles, which diverged from animals, plants and fungi over 1.5 billion years ago (*Parfrey et al., 2011*). Here, we demonstrate that sRNAs of the downy mildew causing oomycete Hyaloperonospora arabidopsidis are associated with the host plant's Arabidopsis thaliana AGO1/

RISC and that these mobile oomycete sRNAs are crucial for virulence by silencing plant host defence genes.

Results

Oomycete sRNAs associate with the plant AGO1

We used the oomycete Hyaloperonospora arabidopsidis isolate Noco2 as an inoculum that is virulent on the host plant A. thaliana ecotype Col-0 (Knoth et al., 2007). We presumed that H. arabidopsidis can produce sRNAs, as sRNA biogenesis genes like RNA-dependent RNA polymerases (RDRs) and Dicer-like (DCL) were discovered in the genome (Bollmann et al., 2016). In order to identify oomycete sRNAs that were expressed during infection and might be transferred into plant cells, we performed two types of sRNA-seq experiments. First, we sequenced sRNAs isolated from total RNA extracts at 4 and 7 days post inoculation (dpi) together with mock-treated plants. Second, we sequenced sRNAs isolated from AtAGO1 immunopurification (AtAGO1-IP) samples to seek for translocated oomycete sRNAs. We chose AtAGO1-IP for sequencing, because AtAGO1 is constitutively expressed and forms the major RISC in Arabidopsis (Vaucheret, 2008), and sRNAs of fungal pathogens were previously found to be associated with AtAGO1 during infection (Wang et al., 2016; Weiberg et al., 2013). An overview of A. thaliana and H. arabidopsidis sRNA (HpasRNA) read numbers identified in all sRNA-seq experiments is given in Supplementary file 1. Size profiles of HpasRNA reads in total sRNA samples depicted two major peaks of 21 nucleotides (nt) and 25 nt (Figure 1a), suggesting that at least two categories of sRNAs occurred in this oomycete species. Similar sRNA size profiles were previously reported for plant pathogenic Phytophthora species (Fahlgren et al., 2013; Jia et al., 2017). The identified HpasRNAs mapped in different amounts to distinct regions of a H. arabidopsidis reference genome including ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear/nucleolar RNA (snRNA/snoRNA), protein-coding messenger RNA (mRNA, cDNA) and non-annotated regions (Figure 1-figure supplement 1a). After filtering out rRNA, tRNA and snRNA/snoRNA reads, HpasRNAs mapping to protein-coding genes and non-annotated regions still displayed 21 nt as well as 25 nt size enrichment (Figure 1-figure supplement 1b) with 5' terminal uracil (U) enrichment (Figure 1b). We also identified HpasRNA reads in the AtAGO1-IP sRNA-seq data providing evidence that HpasRNAs associated with this host AGO-RISC. The AtAGO1-associated HpasRNAs revealed a strong enrichment for 21 nt reads with 5' terminal U preference (Figure 1c). AtAGO1 is known to bind preferentially endogenous 21 nt sRNAs with 5' terminal U (Mi et al., 2008), and we confirmed such AtAGO1-binding preference to endogenous Arabidopsis sRNAs in our dataset (Figure 1-figure supplement 1c). Therefore, we suspected that HpasRNAs bound to AtAGO1 during infection might have the potential to silence plant genes. To follow this line, we focussed on 133 unique HpasRNA reads that were present in the sRNA-seq data of total RNAs from infected samples with read counts > 5 reads per million and in at least one read in the AtAGO1-IP sRNA-seq dataset. Among those, 34 HpasRNAs were predicted to target as a minimum one A. thaliana mRNA with stringent cut-off criteria. Most of the AtAGO1-bound HpasR-NAs with predicted Arabidopsis target genes mapped to non-annotated, intergenic regions in the H. arabidopsidis genome (Supplementary file 2). These HpasRNAs were found to be enriched in AtAGO1-IP data compared to AtAGO2-IP in an additional comparative AGO-IP sRNA-seq experiment (Supplementary file 2).

Two predicted Arabidopsis mRNAs targets of *Hpa*sRNAs are down-regulated upon infection

In the following assays to investigate the function of HpasRNAs in ck-RNAi, we chose the AtAGO1enriched sRNA candidates HpasRNA2 and HpasRNA90. These two HpasRNAs were predicted to target the Arabidopsis WITH NO LYSINE (K) KINASE (AtWNK)2 and the extracellular protease APO-PLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT (AtAED)3, respectively (**Supplementary file 2**). We focussed on these two HpasRNAs and target genes, because AtWNK2 and AtAED3 mRNA levels were lower in leaves infected with a virulent H. arabidopsidis strain compared to an avirulent in a previous RNA-seq study (**Asai et al., 2014**), suggesting a negative impact of H. arabidopsidis proliferation on target transcript accumulation. Further on, members of the WNK protein family as well as AtAED3 have been previously linked to plant stress response and immunity,

eLife Research article

Figure 1. *Hpas*RNAs translocated into the plant *At*AGO1 and induced host target silencing in infected plant cells. (a) Size profile of *Hpas*RNAs revealed two size peaks at 21 nt and 25 nt at 4 and 7 dpi. (b) The frequency of the first nucleotide at 5' terminal positions of *Hpas*RNAs mapping to cDNAs or non-annotated regions revealed bias towards uracil. (c) Size distribution and first nucleotide analysis of *At*AGO1-associated *Hpas*RNAs showed size preference at 21 nt with 5' terminal uracil. (d) A novel Csy4/GUS reporter construct was assembled to detect *Hpas*RNA-directed gene silencing, reporting GUS activity if *Hpas*RNAs were functional to suppress Csy4 expression sequence-specificly. (e) GUS staining of infected leaves at two magnifications revealed sequence-specific reporter silencing at 4 dpi. Csy4 with *Hpas*RNA2 and *Hpas*RNA90 target sequences (ts) is depicted on the top and with random scrambled ts on the bottom. Red arrows indicate *H. arabidopsidis* hyphae in the higher magnification images. Scale bars indicate 50 µm. Numbers in the micrographs indicate number of leaves showing GUS activity per total leaves inspected. The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Insights into the small RNAome of *H. arabidopsidis* and Arabidopsis.

Figure supplement 2. Stem-loop RT-PCR revealed HpasRNA2, HpasRNA30 and HpasRNA90 expression at 4 and 7 dpi in three biological replicates. Figure 1 continued on next page

Figure 1 continued

Figure supplement 3. Relative expression of AtAED3 and AtWNK2 was measured in mock-treated or H. arabidopsidis inoculated plants.

Figure supplement 4. 5' RACE PCR did not provide evidence for pathogen sRNA mediated target cleavage.

Figure supplement 5. The reporter was neither activated by an endogenous miRNA target site nor by a distinct pathogen.

respectively (Balakireva and Zamyatnin, 2018; Cao-Pham et al., 2018). We confirmed expression of HpasRNA2 and HpasRNA90 in infected plants at 4 and 7 dpi by stem-loop reverse transcriptase (RT)-PCR (Figure 1-figure supplement 2). We then performed quantitative (q)RT-PCR to measure AtWNK2 and AtAED3 mRNAs expressed in whole seedling leaves of wild type (WT) plants upon H. arabidopsidis infection or mock treatment. We used the atago1-27 mutant as a control line, because we anticipated that target suppression should fail in this mutant. Indeed, AtAED3 was significantly down-regulated upon H. arabidopsidis inoculation at 7 dpi, and AtWNK2 expression indicated moderate suppression at 4 dpi in WT plants, when compared to mock-treated plants (Figure 1-figure supplement 3a). Because the down-regulation effects were rather moderate, we repeated this experiment with a second independent H. arabidopsidis inoculation that validated the gRT-PCR results (Figure 1-figure supplement 3b). In support of AtAGO1-mediated target silencing through HpasRNAs, WT-like suppression of AtWNK2 and AtAED3 was not observed in the atago1-27 background (Figure 1-figure supplement 3). However, AtAED3 expression data also indicated downregulation upon mock treatment during the course of the experiment that might have been caused by the almost 100% relative air humidity during the assay. Moreover, higher transcript levels were measured in atago1-27 before infection when compared to WT plants.

As Arabidopsis target transcripts displayed expressional down-regulation upon *H. arabidopsidis* infection in WT plants, we wanted to explore, if *Hpas*RNAs guided mRNA slicing of *AtWNK2* and *AtAED3* through the host *AtAGO1/RISC* during infection. *AtAGO1* possesses RNA cleavage activity on AtmiRNA-guided target mRNAs at the position 10/11 counted from the 5' end of the miRNA (*Mallory and Bouché, 2008*). We performed 5' rapid amplification of cDNA-ends (RACE)-PCR analysis to determine the 5' ends of target transcripts in RNAs isolated from infected plants pooled from 4 and 7 dpi. We isolated PCR products at the predicted cleavage sizes (*Figure 1—figure supplement 4a*) for next generation sequencing analysis. In total, we obtained 58,954 and 88,697 reads mapping to *AtWNK2* and *AtAED3*, respectively. However, only a small fraction of reads (639 for *AtWNK2* and 17 for *AtAED3*) mapped at the predicted target sites, while most reads aligned to further 3' downstream regions indicating rapid RNA degradation (*Figure 1—figure supplement 4b*). The 5' ends that matched to the predicted target sites did not display any predominant peak at the expected cleavage position 10/11, but were rather scattered over the entire target sites (*Figure 1—figure 14.5)*. The 5' ends that matched to the predicted target sites did not display any predominant peak at the expected cleavage position 10/11, but were rather scattered over the entire target sites (*Figure 1—figure 14.5*). Therefore, RACE-PCR did not support *Hpas*RNA-guided cleavage of the Arabidopsis target mRNAs.

*Hpa*sRNAs translocate into Arabidopsis and induce host gene silencing in infected plant cells

To further examine if translocation of *Hpas*RNAs into Arabidopsis was sufficient to induce plant gene silencing during infection, we designed a novel *in situ* silencing reporter. This reporter is based on the CRISPR endonuclease Csy4 that specifically binds to and cleaves a short RNA sequence motif (*Haurwitz et al., 2010*). We fused this cleavage motif to a β -glucuronidase (*GUS*) reporter gene to mark it for degradation by Csy4 (*Figure 1d*). Further on, we cloned the native AtWNK2 and AtAED3 target sequences of *Hpas*RNA2 and *Hpas*RNA90 as flanking tags to the Csy4 coding sequence that turned Csy4 into a target of these *Hpas*RNAs. If *Hpas*RNAs would be capable of silencing effectively the Csy4 transgene, we expected an activation of GUS. Moreover, we constructed control reporters with either a scrambled target sequence or with the binding sequence taken from the endogenous AtmiRNA164 target gene AtCUC2 (*Nikovics et al., 2006*) instead of the *Hpas*RNA2/*Hpas*RNA90 target sequences. With these control reporters, we intended to test if any *Hpas*RNA2/*Hpas*RNA90-independent suppression of Csy4 or any ck-RNAi-unrelated effect could result in GUS activation. Using the AtmiR164 target site, we anticipated to induce infection-independent local Csy4 silencing, because AtmiR164 expression in young, developing leaves was previously described to be locally restricted to defined regions at the leaf teeth and in the apical meristem (*Nikovics et al., 2006*). To

Microbiology and Infectious Disease | Plant Biology

simulate AtWNK2 target mRNA expression level of the Csy4 reporter transgene, we used a 2 kb-DNA fragment upstream of the AtWNK2 start codon as a promoter sequence for all reporter constructs.

We transformed the reporter variants into Arabidopsis to examine the silencing efficiency of HpasRNAs on predicted plant targets upon infection. In each experiment, we tested at least three individual T1 lines per construct, and all plants appeared to be fully compatible with H. arabidopsidis. Csy4 successfully blocked GUS activity in plant cells that were not close to H. arabidopsidis infection sites (Figure 1e), providing evidence for functional GUS repression by Csy4. Plants expressing Csy4 transcripts fused to HpasRNA2 and HpasRNA90 target sequences highlighted GUS activation along the H. arabidopsidis hyphal infection front (Figure 1e). This experiment provided visual insights into the effective plant gene silencing by pathogen sRNAs, and thus let us assume that efficient sRNA translocation from the pathogen into the host cell occurred. GUS activity emerged only around the pathogen hyphae indicating that ck-RNAi did not spread further into distal regions away from primary infection sites. In contrast, Csy4 linked to a randomly scrambled or AtmiRNA164 target sequence did not express GUS activation around the H. arabidopsidis hyphae (Figure 1e, Figure 1 figure supplement 5a). We concluded that GUS activity induced by H. arabidopsidis in plants expressing Csy4 fused to HpasRNA2/HpasRNA90 target sites was neither due to target sequenceunspecific regulation of Csy4 or GUS nor due to pathogen-triggered regulation of the AtWNK2 promoter. Moreover, reporter plants did also not display any local GUS activity at infection sites when inoculated with the unrelated oomycete pathogen Phytophthora capsici (Figure 1-figure supplement 5b). This result further supported that the GUS reporter was activated specifically by HpasR-NAs and not by infection stress.

Arabidopsis *atago1* exhibited enhanced disease resistance against downy mildew

Over one hundred HpasRNAs were detected to associate with the plant AGO1/RISC during infection, with 34 HpasRNAs being predicted to silence 49 plant targets including stress-related genes (Supplementary file 2). Such HpasRNAs can induce host target gene silencing at the infection site (Figure 1e). Based on these observations, we hypothesized that AtAGO1 was relevant for H. arabidopsidis to suppress plant defence genes for infection. To test this hypothesis, we compared the disease outcome of atago1-27 with WT plants. The atago1-27 line represents a hypomorphic mutant, and developmental alterations are relatively mild compared to other atago1 mutant alleles (Morel et al., 2002). Therefore, this atago1 mutant line was suitable to perform pathogen infection assays. We stained infected leaves with Trypan Blue that visualized H. arabidopsidis infection structures and indicated plant cell death using a bright-field light microscope. The atago1-27 plants exhibited a remarkable change of the disease phenotype by exhibiting dark Trypan Blue-stained host cells around hyphae instead of unstained plant cells colonized with H. arabidopsidis haustoria in WT plants (Figure 2a). We interpreted this disease phenotype in atago1-27 plants as trailing necrosis of plant cells, which has been described for sub-compatible A. thaliana/H. arabidopsidis interactions (Coates and Beynon, 2010). Indeed, the trailing necrosis co-occurred with enhanced disease resistance, because H. arabidopsidis DNA content was strongly reduced (Figure 2b) and the number of H. arabidopsidis conidiospores was significantly lower in atago1-27 (Figure 2c). Pathogen DNA content was also reduced in atago1-27 cotyledons (Figure 2-figure supplement 1a) without displaying the trailing necrosis (Figure 2-figure supplement 1b). This reduced disease phenotype was linked to atago1 mutations, as independent hypomorphic mutant alleles of atago1-45 and atago1-46 also displayed trailing necrosis after H. arabidopsidis inoculation, albeit to a smaller extent (Figure 2-figure supplement 1c). On the contrary, atago2-1 and atago4-2 did neither exhibit trailing necrosis nor reduced oomycete biomass (Figure 2-figure supplement 1d-e). We confirmed that HpasRNA2 and HpasRNA90 preferably bound to AtAGO1 compared to AtAGO2 by AtAGO-IP coupled to stem-loop RT-PCR (Figure 2-figure supplement 2). This result was consistent with the observed reduced disease level in the atago1 mutant lines in contrast to atago2-1.

Taken together, these data strongly suggested that translocated *Hpas*RNAs act mainly through AtAGO1 to suppress plant genes for infection. Nevertheless, increased disease resistance of *atago1* plants could have been caused by impaired function of plant endogenous sRNAs. For instance, *atago1* mutant plants as well as other miRNA pathway mutants, such as *atdcl1*, *athua enhancer(hen)* 1 *athasty(hst)* or *atserrate(se)* show pleiotropic developmental defects because of impaired plant

Figure 2. Arabidopsis atago1 exhibited enhanced disease resistance against *H. arabidopsidis*. (a) Trypan Blue-stained microscopy images showed trailing necrosis around hyphae in atago1-27, but no necrosis on WT seedling leaves at 7 dpi. Red arrow in WT marks *H. arabidopsidis* haustorium, red arrow in atago1-27 indicates trailing necrosis. (b) *H. arabidopsidis* genomic DNA was quantified in atago1-27 and WT plants by qPCR at 4 dpi relative to plant genomic DNA represented by $n \ge 1$ four biological replicates. (c) Numbers of conidiospores per gram leaf fresh weight (FW) in atago1-27 and Figure 2 continued on next page

Figure 2 continued

WT plants at 7 dpi are represented by four biological replicates. (d) Trypan Blue-stained microscopy images of *atdcl1-11* did not show any trailing necrosis at 7 dpi. (e) *H. arabidopsidis* genomic DNA in *atdcl1-11* and WT plants at 4 dpi were in tendency enhanced with $n \ge f$ our biological replicates. (f) Number of conidiospores per gram leaf fresh weight (FW) in *atdcl1-11* at 7 dpi was significantly elevated compared to WT plants. (g) Trypan Blue-stained microscopy images of *atdr6-15* and *atdcl2cl3dcl4* showed no plant cell necrosis after inoculation with *H. arabidopsidis* at 7 dpi. (h) *H. arabidopsidis* genomic DNA content in leaves was elevated in *atdr6-15* and *atdcl2dcl3dcl4* compared to WT at 4 dpi with $n \ge f$ our biological replicates. Asterisk indicates statistically significant difference by one tailed Student's t-test with $p \le 0.05$. Letters indicate groups of statistically significant difference by TukeyHSD with $p \le 0.05$. Scale bars in all microscopy images indicate 50 µm and numbers in the micrographs represent observed leaves with necrosis per total inspected leaves.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Enhanced resistance against infection was restricted to *atago1* mutants.

Figure supplement 2. Stem-loop RT-PCR of HpasRNAs from AtAGO1-IP or AtAGO2-IP of mock-treated or H. arabidopsidis infected leaf tissue.

Figure supplement 3. Trypan Blue-stained microscopy images presenting the AtmiRNA biogenesis mutants athst-6, athen1-5 and atse-2 did not show any trailing necrosis at 7 dpi.

Figure supplement 4. Common defence-related marker gene induction was not enhanced in atago1-27 mutants.

Figure supplement 5. Relative mRNA expression of AtRBOHD and AtRBOHF determined by gRT-PCR using AtActin as reference in WT and atago1-27

in H. arabidopsidis and mock treated plants.

Figure supplement 6. Susceptibility of *atago1* mutants to infection with the biotrophic fungus *E. cruciferarum* and the oomycete *A. laibachii* remained unaltered.

sRNA function (*Li and Zhang, 2016; Vaucheret, 2008*). To test whether other miRNA pathway mutants also revealed enhanced disease resistance similar to *atago1* plants, we inoculated the *atdcl1-11* mutant line with *H. arabidopsidis*. We did not detect any trailing necrosis or reduced pathogen biomass, but in contrast a significantly increased number of conidiospores (*Figure 2d–f*) indicating a positive role of *A. thaliana* miRNAs in immune response against *H. arabidopsidis*. These results provided evidence that necrotic trailing and reduced pathogen susceptibility found in *atago1* was not due to the loss of a functional plant miRNA pathway. In support, we did also not observe trailing necrosis upon infection in the *atse-2*, *athen1-5* and *athst-6* mutants (*Figure 2—figure supplement 3*).

Since atago1 exhibited trailing necrosis and reduced susceptibility to H. arabidopsidis, we wanted to examine if constant activation of defence-related marker genes corresponded with enhanced disease resistance. We profiled gene expression of the A. thaliana immunity marker gene AtPATHO-GENESIS-RELATED (PR)1. AtPR1 was neither faster nor stronger induced at 6, 12 or 18 h post inoculation in atago1-27 compared to WT (Figure 2-figure supplement 4a). AtPR1 and another immunity marker AtPLANT-DEFENSIN (PDF)1.2 were not higher expressed in atago1-27 at 1, 4 or 7 dpi compared to WT before or after infection (Figure 2-figure supplement 4b-c). To examine plant gene expression related to induced plant cell death, as observed in ago1 mutants, we measured transcript levels of the two NADPH oxidases At REACTIVE BURST OXIDASE HOMOLOG (AtR-BOH)D and AtRBOHF. Both genes are required for accumulation of reactive oxygen intermediates to suppress spread of cell death during plant defence (Torres et al., 2005). Moreover, the atrobohd and atroohf knockout mutant plants previously revealed increased plant cell death after H. arabidopsidis infection and were more resistant against this pathogen (Torres et al., 2002). In consistence, we found that AtRBOHD and AtRBOHF were induced in WT plants at 7 dpi and were significantly higher expressed than in atago1-27 (Figure 2-figure supplement 5). These results gave a first hint of a host defence pathway that might be affected due to AtAGO1-associated HpasRNAs.

Plant miRNAs can initiate the production of secondary phased siRNAs (phasiRNAs), which negatively control the expression of *NLR* (*NOD-like receptor*) class *Resistance* (*R*) genes (*Li et al., 2012*; *Shivaprasad et al., 2012*). Constitutive expression of *NLR* genes promotes immune responses such as spontaneous plant cell death resembling a hypersensitive response (*Lai and Eulgem, 2018*). Therefore, lack of phasiRNAs in *atago1* could cause enhanced expression of *NLR*s leading to resistance against *H. arabidopsidis*. To examine *R* gene-based enhanced resistance due to lack of phasiR-NAs, we inoculated the *atrdr6-15* and *atdcl2dcl3dcl4* mutants with *H. arabidopsidis* Noco2. The production of phasiRNAs depends on *AtRDR6* and *AtDCL2/AtDCL3/AtDCL4* (*Fei et al., 2013*). Both mutants did not exhibit trailing necrosis (*Figure 2g*), but in contrast highlighted increased pathogen biomass upon inoculation with *H. arabidopsidis* (*Figure 2h*). Higher susceptibility of *atrdr6-15* and
Microbiology and Infectious Disease | Plant Biology

atdcl2dcl3dcl4 to H. arabidopsidis was also in line with a previous report suggesting a role of Arabidopsis phasiRNAs in silencing of *Phytophothora* genes for host plant defence (*Hou et al., 2019*).

In order to further explore whether *atago1-27* was more resistant to other biotrophic fungi or oomycetes, we performed infection assays with the powdery mildew fungus *Erysiphe cruciferarum* and the white rust oomycete *Albugo laibachii*. We did not observe any plant cell necrosis in neither pathogen. Moreover, there was neither a reduction in the pustules for *A. laibachii* nor in pathogen biomass of *E. cruciferarum* (*Figure 2—figure supplement 6a–d*). Taken together, the observed disease resistance of *atago1* plants against *H. arabidopsidis* was probably neither based on increased basal plant immunity nor on *R* gene-mediated resistance.

HpasRNAs are crucial for virulence

As we realized that HpasRNAs were associated with the host AtAGO1-RISC, silenced plant target genes, and that Arabidopsis atago1 mutants displayed reduced susceptibility towards H. arabidopsiinfection, we wanted to understand how important *Hpas*RNAs were dis for H. arabidopsidis virulence. To shed light on the relevance of HpasRNAs for infection, we cloned and expressed a short-tandem-target-mimic (STTM) RNA in Arabidopsis to sequester HpasRNAs. The STTM strategy has been previously used to scavenge endogenous plant sRNAs and to prevent gene silencing of native target genes (Tang et al., 2012). We designed a triple STTM transgene to simultaneously bind the pathogen sRNAs HpasRNA2, HpasRNA30, and HpasRNA90 by RNA base-pairing. A non-complementary 3-base loop structure at the position 10/11 counted from the 5' end of the HpasRNAs was deliberately incorporated to block potential cleavage by plant AGO/RISCs, as previously described (Tang et al., 2012; Figure 3a). We included the AtAGO1-associated HpasRNA30 in the triple STTM, because it was predicted to silence AtWNK5 (Supplementary file 2), a homolog of AtWNK2, thus we presumed that HpasRNA30-induced AtWNK5 suppression might also be important for virulence. The HpasRNA30 sequence mapped only to the H. arabidopsidis, but not the Arabidopsis genome, and we detected this HpasRNA in infected plants at 4 and 7 dpi by sRNA-seq and stem-loop RT-PCR (Figure 1-figure supplement 2, Supplementary file 2). Remarkably, seven out of eleven individual STTM T1 transgenic lines resembled partially the trailing necrosis phenotype of atago1 (Figure 3b). We isolated two stable STTM T2 lines (#4, #5). The STTM #4 line showed target de-repression of AtAED3 at 7 dpi and of AtWNK2 at 4 dpi upon H. arabidopsidis inoculation when compared to plants expressing an empty vector control (Figure 3-figure supplement 1a). These time points corresponded to target gene suppression as found by qRT-PCR analysis before (Figure 1-figure supplement 3). Moreover, both STTM T2 lines exhibited reduced pathogen biomass (Figure 3-figure supplement 1b) and allowed significantly lower production of pathogen conidiospores (Figure 3c). We also cloned STTMs against an rRNA-derived HpasRNA as well as against a random scrambled sequence for expression in Arabidopsis. These two types of control STTMs did not exhibit trailing necrosis in at least five independent T1 transgenic lines upon H. arabidopsidis inoculation (Figure 3d). Furthermore, we also did not observe disease resistance in transgenic plants expressing the STTM against HpasRNA2/HpasRNA30/HpasRNA90 when inoculated with the unrelated bacterial pathogen Pseudomonas syringae DC3000 (Figure 3-figure supplement 1c). These experiments provided evidence that the expression of anti-HpasRNA STTMs in Arabidopsis blocked HpasRNAs activity that resulted in reduced virulence of H. arabidopsidis.

Arabidopsis target genes of HpasRNAs contribute to plant defence

Upon uncovering the importance of *Hpas*RNAs for virulence, we wanted to assess the contribution of Arabidopsis target genes to plant defence. We obtained three T-DNA insertion lines for the identified target genes AtWNK2 and AtAED3, namely atwnk2-2, atwnk2-3, and ataed3-1 (Figure 4—figure supplement 1a). While atwnk2-2 and ataed3-1 are two SALK/SAIL lines (Alonso et al., 2003; Sessions et al., 2002) that carry a T-DNA insertion in their coding sequence, respectively, we now re-located the T-DNA insertion of the atwnk2-3 plant line from the last exon into the 3' UTR, based on sequencing the T-DNA flanking sites (Figure 4—figure supplement 1a). To study infection phenotypes, we stained *H. arabidopsidis*-infected leaves with Trypan Blue, and all T-DNA insertion lines resembled pathogen infection structures like in WT plants. However, haustorial density, indicated by the number of haustoria formed per intercellular hyphal distance, was significantly increased in atwnk2-2 (Figure 4—figure supplement 1b). Intensified haustoria formation was previously

eLife Research article

Figure 3. Translocated *Hpas*RNAs were crucial for virulence. (a) A triple STTM construct was designed to target the three *Hpas*RNAs *Hpas*RNA2, *Hpas*RNA30 and *Hpas*RNA90 in Arabidopsis. (b) A. *thaliana* T1 plants expressing the triple STTM to scavenge *Hpas*RNA2, *Hpas*RNA30 and *Hpas*RNA90 exhibited trailing necrosis at 7 dpi. (c) Number of conidiospores per gram FW was significantly reduced in two independent STTM-expressing Arabidopsis T2 lines (#4, #5) compared to WT. (d) Transgenic Arabidopsis plants in T1 expressing a STTM complementary to a rRNA-derived *Hpas*RNA (STTM^{rRNA}) or to a random scrambled (STTM^{scrRNA}) sequence did not exhibit trailing necrosis at 7 dpi. The scale bars indicate 50 µm and numbers represent observed leaves with necrosis per total inspected leaves.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. STTM plants revealed higher expression of target genes and lower H. arabidopsidis abundance.

Microbiology and Infectious Disease | Plant Biology

interpreted as a sign of enhanced susceptibility in other plant/downy mildew pathogen interactions (*Hooftman et al., 2007*; *Unger et al., 2007*). Moreover, the pathogen DNA content was slightly but not significantly increased in *atwnk2-2* and *ataed3-1* compared to WT plants, but this was not the case for *atwnk2-3* (*Figure 4a*). Nevertheless, a significantly increased number of conidiospores (*Figure 4b*) and sporangiophores (*Figure 4c*) was observed in all the tested *atwnk2* and *ataed3* mutant lines upon *H. arabidopsidis* infection compared to WT plants.

We wanted to investigate in more detail the effect of target gene silencing by HpasRNAs on plant defence. For this, we cloned AtWNK2 and AtAED3 target genes either as native versions or artificially introduced synonymous point mutations in the target sites of HpasRNAs to generate the target gene-resistant versions AtAED3r and AtWNK2r (Figure 4-figure supplement 2). We transformed these gene versions into the respective mutant background ataed3-1 and atwnk2-2 expressing them under the control of their native promoters. Transgenic AtWNK2 and AtWNK2r expressing plants reverted from previously described early flowering of atwnk2-2 (Wang et al., 2008) into the WT phenotype validating successful complementation of atwnk2-2 (Figure 4-figure supplement 3). If AtWNK2 and AtAED3 silencing through HpasRNA2 or HpasRNA90 was relevant to plant defence, we would expect that AtWNK2r and AtAED3r expressing plants become more resistant against H. arabidopsidis. Both, the native gene versions and the target site resistant versions, exhibited reduced number of conidiospores compared to T-DNA mutant plants transformed with an empty expression vector, respectively (Figure 4d). To further explore the role of target genes in plant immunity, we attempted to generate overexpression lines of resistant target gene versions by using the strong Lotus japonicus Ubiquitin1 promoter (proLjUbi1) (Maekawa et al., 2008). We obtained an overexpressor line of the AtWNK2r version (AtWNK2r-OE) in the atwnk2-2 background. These AtWNK2r-OE plants showed ectopic cell death in distance from infection sites (Figure 4-figure supplement 4a), as previously described for overexpression lines of other immunity factors, such as AtBAK1 (Domínguez-Ferreras et al., 2015). Moreover, infection structures frequently displayed aberrant swelling-like structures and extensive branching of hyphae instead of the regular pyriform haustoria formed in atwnk-2-2 (Figure 4-figure supplement 4b), further indicating a role for AtWNK2 in immune reaction.

To gain more information on the conservation of the 34 identified AtAGO1-associated HpasRNAs (Supplementary file 2), we analysed RNA sequence diversity using the H. arabidopsidis sequenced genomes of the Noco2, Cala2 and Emoy2 isolates (NCBI BioProject IDs: PRJNA298674; PRJNA297499, PRJNA30969). In a complementary approach, we investigated the variation of the 49 predicted plant target sites among 1135 A. thaliana genome sequenced accessions published by the 1001 genome project (1001 Genomes Consortium, 2016). Interestingly, all HpasRNA were found by BLASTn search in the three H. arabidopsidis isolates with only three allelic variations identified in Emoy2 (Figure 4-figure supplement 5a). On the Arabidopsis target site, we found single nucleotide polymorphisms (SNPs) and indels in 70% of all target genes (Supplementary file 2), many of those might impair in the predicted HpasRNA-induced silencing (Figure 4-figure supplement 5b). Of note, the HpasRNA2 sequence was deeper conserved in other pathogenic oomycete species, compared to other HpasRNAs described in this study (Figure 4-figure supplement 6a). Moreover, the predicted target sites of the pathogen siR2 homologs lie within a conserved region of other plant WNK2 orthologs, with the lowest number of base pair mismatches occurring in the highlyadapted A. thaliana/H. arabidopsidis interaction (Figure 4—figure supplement 6b). Whether RNA sequence diversity in HpasRNAs and A. thaliana target mRNAs drives co-evolution in this coadapted plant-pathogen system, remains to be further investigated.

Discussion

In this study, we discovered that ck-RNAi happened during *H. arabidopsidis* host infection and contributed to the virulence of this pathogen. Sequencing sRNAs associated with Arabidopsis AGO1 revealed at least 34 *Hpas*RNAs that entered the host RNAi machinery and potentially targeted multiple plant genes for silencing. These deep sequencing data offered first insights into the *H. arabidopsidis* sRNA transcriptome during host infection. Total read numbers of AtAGO1-bound *Hpas*RNAs were in the ratio of around 1/1000 compared to AtAGO1-bound Arabidopsis sRNAs, raising the concern that concentration of pathogen sRNAs might not be sufficient to be functional. Nevertheless, our and other studies found genetic and phenotypic evidence for pathogen oomycete sRNA

Dunker et al. eLife 2020;9:e56096. DOI: https://doi.org/10.7554/eLife.56096

Figure 4. Arabidopsis target genes of HpasRNAs contributed to plant defence. (a) H. arabidopsidis genomic DNA content in leaves was slightly but not significantly enhanced in atwnk2-2 and ataed3-1 compared to WT, but not in atwnk2-3, at 4 dpi with $n \ge 10^{-1}$ four biological replicates. (b) T-DNA insertion lines of HpasRNA target genes ataed3-1, atwnk2-2, and atwnk2-3 showed significantly higher number of sporangiophores per cotyledon upon infection compared to WT at 5 dpi. (c) ataed3-1, atwnk2-2, and atwnk2-3 showed significantly higher numbers of conidiospores per gram leaf FW upon Figure 4 continued on next page

Dunker et al. eLife 2020;9:e56096. DOI: https://doi.org/10.7554/eLife.56096

Figure 4 continued

infection compared to WT at 5 dpi. (d) Number of conidiospores was significantly reduced in gene-complemented mutant lines using the corresponding native promoters *proAtEWNK2* or *proAtAED3* with native gene sequence, AtAED3 and AtWNK2, or with target site resistant versions, AtAED3r and AtWNK2r compared to the knockout mutant background expressing an empty vector (ev), respectively. Asterisks indicate significant difference by one tailed Student's t-test with $p \le 0.05$. Letters indicate significant difference by one-site ANOVA test. The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Further details on sRNA target gene mutants.

Figure supplement 2. Target sequence-resistant versions of AtAED3 (AtAED3r) and AtWNK2 (AtWNK2r) were created by introducing synonymous nucleotide substitutions indicated by red letters.

Figure supplement 3. Transgenic A. thaliana atwnk2-2 was complemented with proWNK2:WNK2 or proWNK2:WNK2 that resulted in a WT-like flowering time point, while empty vector (ev) exhibited early flowing phenotype, as reported for atwnk2-2 (Wang et al., 2008).

Figure supplement 4. A. thaliana plants overexpressing proLjUB11:AtWNK2r in the atwnk2-2 background revealed local necrosis without pathogen infection (a) and aberrant hyphae and haustoria swellings (b).

Figure supplement 5. Sequence diversity of HpasRNAs and their predicted Arabidopsis target mRNAs.

Figure supplement 6. The pathogen sRNA2 and its target are conserved across different plant pathogenic oomycetes and hosts.

function despite read numbers being in the range of ten per million or lower (Jahan et al., 2015; **Qutob et al., 2013**). By designing a novel Csy4/GUS repressor reporter system, we demonstrated that HpasRNAs have the capacity to translocate into plant cells and suppress host target genes. This new reporter system was capable of visualizing local gene silencing alongside the *H. arabidopsidis* hyphae. Therefore, the relatively small proportion of *Hpas*RNAs counted in AtAGO1 sRNA-seq experiment could be explained by strong dilution with AtAGO1 molecules purified from non-colonized tissue. For the same reason, we measured moderate AtWNK2 and AtAED3 target gene suppression due to dilution effects coming from non-infected leaf lamina.

We assumed that diverse HpasRNAs were translocated into Arabidopsis during infection and AtAGO1 was a major hub of HpasRNAs, as detected by AtAGO1 pull down and sRNA-seq analysis. By which pathways and mechanisms HpasRNAs move into plant cells remains an open question. Transport via the extrahaustorial matrix could be a realistic cross-point, as many other biomolecules are exchanged via this route from pathogen to plant cells and vice versa (Judelson and Ah-Fong, 2019). It is noteworthy that accumulation of vesicle-like structures was visualized by electron microscopy at the perihaustorial matrix (*Mims et al., 2004*). In this regard, transfer of plant sRNAs into pathogen cells via exosomal vesicles was reported to induce ck-RNAi (*Cai et al., 2018; Hou et al., 2019*), making extracellular vesicles a prime suspect for HpasRNA transport into plant cells.

Plant RISC-associated HpasRNAs were crucial for successful infection, because transgenic Arabidopsis generated to block the suppressive function of the three candidate HpasRNA2, HpasRNA30 and HpasRNA90 via STTM target mimics diminished H. arabidopsidis virulence. As we identified 34 AtAGO1-associated HpasRNAs with 49 predicted plant target genes, we suggest that many HpasRNAs collaboratively sabotage gene expression of the plant immune response. Such a collaborative function was also suggested for proteinaceous pathogen effectors (*Cunnac et al., 2011*).

Regarding the role of identified HpasRNA target genes in host defence, our data supported quantitative contributions of AtAED3 and AtWNK2 to plant immunity. AtAED3 encodes a putative apoplastic aspartyl protease and has been suggested to be involved in systemic immunity (**Breitenbach et al., 2014**). AtWNK2 contributes to flowering time regulation in A. thaliana, while other members of the plant WNK family have been linked to the abiotic stress response (**Cao-Pham et al., 2018**). What is the particular function of these target genes against *H. arabidopsidis* infection and whether these also play a role against other pathogens, still needs to be explored.

The fact that Arabidopsis siRNA biogenesis mutants like *atrdr6-15* and *atdcl2dcl3dcl4* displayed increased *H. arabidopsidis* growth is an indication for the important role of secondary phasiRNAs in plant immunity, that was already observed against fungal pathogens like *Verticillium dahliae* and *Magnaporthe oryzae* (*Ellendorff et al., 2009; Wagh et al., 2016*). This is likely due to the regulatory function of phasiRNAs on endogenous plant immunity genes including the *NLRs* (*Li et al., 2012; Shivaprasad et al., 2012*). Two recent studies suggested suppressive roles of secreted plant phasiR-NAs in ck-RNAi by silencing fungal *B. cinerea* and oomycete *P. capsici* virulence genes (*Cai et al., 2018; Hou et al., 2019*). Interestingly, exogenously applied sRNAs targeting the *Cellulose synthase 3A* gene of *H. arabidopsidis* can lead to pathogen developmental changes and spore germination

Microbiology and Infectious Disease | Plant Biology

inhibition, suggesting functional RNA uptake by this pathogen (*Bilir et al., 2019*). Together with our data, we think that ck-RNAi in *H. arabidopsidis*/Arabidopsis interaction is bidirectional, as already described in fungal-plant interactions (*Cai et al., 2018; Wang et al., 2016*).

This study provides evidence that ck-RNAi, originally discovered in the fungal plant pathogen *B. cinerea* (*Weiberg et al., 2013*), is part of virulence in the oomycete biotrophic pathogen *H. arabidopsidis*. The phenomenon of plant-pathogen ck-RNAi is further proposed in the cereal fungal pathogens *Puccinia striiformis* (*Wang et al., 2017*) and *Blumeria graminis* (*Kusch et al., 2018*). We did not notice any enhanced resistance in an Arabidopsis *atago1* mutant against the biotrophic fungus *E. cruciferarum* and the oomycete *A. laibachii*, making ck-RNAi via AtAGO1 unlikely. Further experiments are needed to rule out any importance of ck-RNAi for virulence of these two pathogens via alternative plant AGO-RISCs. The fungal wheat pathogen *Zymoseptoria tritici* was reported to not induce ck-RNAi (*Kettles et al., 2019; Ma et al., 2020*), while the corn smut pathogen *Ustilago maydis* has lost its canonical RNAi machinery (*Kämper et al., 2006; Laurie et al., 2008*). It will be interesting to elucidate why some pathogens have evolved ck-RNAi, while some others not.

Materials and methods

Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Gene (Arabidopsis thaliana)	AtWNK2	arabidopsis.org	AT3G22420	
Gene (Arabidopsis thaliana)	AtAED3	arabidopsis.org	AT1G09750	
Gene (Arabidopsis thaliana)	AtPR1	arabidopsis.org	AT2G14610	
Gene (Arabidopsis thaliana)	AtPDF1.2	arabidopsis.org	AT5G44420	
Gene (Arabidopsis thaliana)	AtAGO1	arabidopsis.org	AT1G48410	
Gene (Arabidopsis thaliana)	AtAGO2	arabidopsis.org	AT1G31280	
Strain, strain background (Hyaloperonospora arabidopsidis)	Noco2	isolated originally in Norwich, UK		
Strain, strain background (Albugo laibachii)	Nc14	Kemen et al., 2011 DOI: 10.1371/journal. pbio.1001094		
Strain, strain background (Pseudomonas syringae pv tomato)	DC3000	Whalen et al., 1991 DOI: 10.1105/tpc.3.1.49		
Strain, strain background (Phytophthora capsici)	LT263	Hurtado-Gonzales and Lamour, 2009 DOI: 10.1111/j.1365–3059.2009.02059.x		
Genetic reagent (Arabidopsis thaliana)	atago1-27	Morel et al., 2002 PMID:11910010		
Genetic reagent (Arabidopsis thaliana)	atago1-45	Nottingham Arabidopsis stock center (NASC)	N67861	
Genetic reagent (Arabidopsis thaliana)	atago1-46	(Nottingham Arabidopsis stock center (NASC)	N67862	
Genetic reagent (Arabidopsis thaliana)	atago2-1	Takeda et al., 2008 DOI: 10.1093/pcp/pcn043		
Genetic reagent (Arabidopsis thaliana)	atago4-2	Agorio and Vera, 2007 DOI: 10.1093/pcp/pcn043		
Continued on next pa	age			

Dunker et al. eLife 2020;9:e56096. DOI: https://doi.org/10.7554/eLife.56096

eLife Research article

Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Genetic reagent (Arabidopsis thaliana)	atdcl1-11	Zhang et al., 2008 DOI: 10.1111/j.1365–3040.2008.01786.x		
Genetic reagent (Arabidopsis thaliana)	atdcl2dcl3dcl4	Deleris et al., 2006 DOI: 10.1126/science.1128214		triple mutant
Genetic reagent (Arabidopsis thaliana)	athen1-5	Vazquez et al., 2004 DOI: 10.1016/j.cub.2004.01.035		
Genetic reagent (Arabidopsis thaliana)	athst-6	Bollman et al., 2003 PMID:12620976		
Genetic reagent (Arabidopsis thaliana)	atrdr6-15	Allen et al., 2004 DOI: 10.1038/ng1478		
Genetic reagent (Arabidopsis thaliana)	atse-2	Grigg et al., 2005 DOI: 10.1038/nature04052		
Genetic reagent (Arabidopsis thaliana)	proAGO2:HA-AGO2	Montgomery et al., 2008 DOI: 10.1016/j.cell.2008.02.033		
Genetic reagent (Arabidopsis thaliana)	atwnk2-2 (SALK_121042)	Nottingham Arabidopsis stock center (NASC)	N663846	
Genetic reagent (Arabidopsis thaliana)	atwnk2-3 (SALK_206118)	Nottingham Arabidopsis stock center (NASC)	N695550	
Genetic reagent (Arabidopsis thaliana)	ataed3-1 (SAIL_722_G02C1)	Nottingham Arabidopsis stock center (NASC)	N867202	
Genetic reagent (Arabidopsis thaliana)	proLjUBI:STTMHasR2: STTMHasR30:STTMHasR90	this study		stable triple STTM overexpressor line (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	proAtWNK2:HasRNA2/90ts: Csy4:HasRNA2/90ts; proEF1:Csy4ts:GUS	this study		stable silencing reporter line (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	proAtWNK2:AtmiR164ts: Csy4:AtmiR164ts; proEF1:Csy4ts:GUS	this study		stable silencing reporter line (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	proAtWNK2:scrambled: Csy4:scrambled; proEF1:Csy4ts:GUS	this study		stable silencing reporter line (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	atwnk2-2 (proAtWNK2:AtWNK2-GFP)	this study		stable WNK2 complementation line (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	atwnk2-2 (proAtWNK2:AtWNK2r-GFP)	this study		stable, sRNA resistant WNK2 complementation line (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	atwnk2-2 (proAtWNK2:GFP)	this study		stable plant line as empty vector control (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	ataed3-1 (proAtAED3:AtAED3-GFP)	this study		stable AED3 complementation line (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	ataed3-1 (proAtAED3:AtAED3r-GFP)	this study		stable, sRNA resistant AED3 complementation line (maintained in the Weiberg lab)
Genetic reagent (Arabidopsis thaliana)	ataed3-1 (proAtAED3: GFP)	this study		stable plant line as empty vector control (maintained in the Weiberg lab)

Continued on next page

Dunker et al. eLife 2020;9:e56096. DOI: https://doi.org/10.7554/eLife.56096

eLife Research article

Continued

D -	_	_	_		 	_	

(species) or resource	Designation	Source or reference	Identifiers	Additional information
Antibody	ibody anti-AtAGO1 Agrisera (rabbit polyclonal)		AS09 527; RRID:AB_2224930	IP(1 μg antibody/g tissue), WB (1:4000)
Antibody	anti-HA (3F10; rat monoclonal)	3F10; rat Roche Diagnostics Sigma-Aldrich nal) (11867423001); RRID:AB_2314622		IP(0.1 μg antibody/g tissue), WB (1:1000)
Antibody	anti-HA (12CA5; mouse monoclonal)	provided by Dr. Michael Boshart		IP(0.1 μg antibody/g tissue), WB (1:1000), available in the Boshart lab (LMU Munich)
Antibody	anti-mouse IRdye800 (goat polyclonal)	Li-Cor	926–32210; RRID:AB_2782998	secondary antibody WB (1:15000)
Antibody	anti-rat IRdye800 (goat polyclonal)	Li-Cor	926–32219; RRID:AB_1850025	secondary antibody WB (1:15000)
Antibody	anti-rabbit IRdye800 (goat polyclonal)	Li-Cor	926–32211; RRID:AB_621843	secondary antibody WB (1:3000)
Commercial assay or kit	NEBNext Multiplex Small RNA Library Prep Set for Illumina	New England Biolabs (NEB)	NEB: E7300	
Commercial assay or kit	5'/3' RACE Kit, 2nd Generation	Roche Diagnostics	Sigma-Aldrich: 0335362100	l
Commercial assay or kit	sparQ DNA Library Prep Kit	Quantabio	vwr.com (95191–024)	
Software, algorithm	Galaxy Server	Giardine et al., 2005		hosted by the Gene Center Munich

Plant material

Arabidopsis thaliana (L.) seedlings were grown on soil under long day conditions (16 hr light/8 hr dark, 22°C, 60% relative humidity). The atago1-27, atago1-45, atago1-46, atago2-1, atago4-2, athst-6, athen1-5, atse-2, atdcl1-11, atdcl2dcl3dcl4, atrdr6-15, and proAGO2:HA-AGO2 mutant lines (all in the Col-0 background) were described previously (Agorio and Vera, 2007; Allen et al., 2004; Bollman et al., 2003; Deleris et al., 2006; Grigg et al., 2005; Morel et al., 2002; Smith et al., 2009; Takeda et al., 2008; Vazquez et al., 2004; Zhang et al., 2008; Montgomery et al., 2008). The atwnk2-2 (SALK_121042, [Wang et al., 2008]), atwnk2-3 (SALK_206118) and ataed3-1 (SAIL_722_G02C1) lines were verified for the T-DNA insertion by PCR on genomic DNA.

Hyaloperonospora arabidopsidis inoculation

Hyaloperonospora arabidopsidis (Gäum.) isolate Noco2 was maintained on Col-0 plants. Plant inoculation was performed using 2–2.5 \times 10⁴ spores/ml and inoculated plants were incubated as described previously (*Ried et al., 2019*). For *atwnk2-2, atwnk2-3, and ataed3-1* pathogen assays inoculum strength was reduced to 1 \times 10⁴ spores/ml.

Albugo laibachii (THINES and Y.J. CHOI) inoculation

Plants were grown in short-day conditions (10 hr light, 22°C, 65% humidity/14 hr dark, 16°C, 60% humidity, photon flux density 40 μ mol m⁻² s⁻¹) and inoculated at the age of six weeks. *A. laibachii* (isolate Nc14; [*Kemen et al., 2011*]) zoospores obtained from propagation on Arabidopsis accession Ws-0 were suspended in water (10⁵ spores ml⁻¹) and incubated on ice for 30 min. The spore suspension was filtered through Miracloth (Calbiochem, San Diego, CA, USA) and sprayed onto the plants using a spray gun (~700 μ l/plant). Plants were incubated at 8°C in a cold room in the dark overnight. Inoculated plants were kept under 10 hr light/14 hr dark cycles with a 20 °C day and 16°C night temperature. Infection rates were determined at 21 dpi for 12 individuals per WT and mutants by visual infection intensity.

Powdery mildew inoculation

Erysiphe cruciferarum (OPIZ EX L. JUNELL) was maintained on highly susceptible Col-0 phytoalexin deficient (pad)4 mutants in a growth chamber at 22°C, a 10 hr photoperiod with 150 μ mol m⁻²s⁻¹, and 60% relative humidity. For pathogen assays 6 week-old Arabidopsis plants were inoculated with *E. cruciferarum* in a density of 3–5 spores mm⁻² and replaced under the same conditions.

Pseudomonas pathogen assay

Pseudomonas syringae pv. *tomato* DC3000 was streaked from a freezer stock onto LB agar plates with Rifampicin. A single colony was used for inoculation of an overnight culture in liquid LB with Rifampicin. *Pseudomonas* was resuspended in 10 mM MgCl₂ and bacteria concentration was adjusted to $OD_{600} = 0.0002$. 5–6 week-old Arabidopsis grown under short day conditions were leaf infiltrated using a needleless syringe, dried for 2 h and incubated under long day conditions. At 3 dpi, three leaf discs per plant (\emptyset =0.6 cm) were harvested and homogenized in 10 mM MgCl₂ for one biological replicate. Bacteria populations were counted as colony forming units using a serial dilution spotted on LB agar plates with Rifampicin.

Phytophthora capsici (LEONIAN) inoculation

Phytophthora capsici LT263 (**Hurtado-Gonzales and Lamour, 2009**) was maintained on rye agar plates (**Caten and Jinks, 1968**). Agar plugs from fresh mycelium (Ø=0.4 cm) were placed on leaves of 5–6 week-old Arabidopsis plants grown under short day conditions. After 24 hr, plugs were removed and leaves were taken for GUS staining at 48 and 72 hpi.

Trypan Blue staining

Infected leaves were stained with Trypan Blue as described previously (*Koch and Slusarenko, 1990*). Microscopic images were taken with a DFC450 CCD-Camera (Leica) on a CTR 6000 microscope (Leica Microsystems).

GUS staining

Infected leaves were vacuum-infiltrated with GUS staining solution (0.625 mg ml⁻¹ X-Gluc, 100 mM phosphate buffer pH 7.0, 5 mM EDTA pH 7.0, 0.5 mM K₃[Fe(CN)₆], 0.5 mM K₄[Fe(CN)₆], 0.1% Triton X-100) and incubated over night at 37°C. Leaves were de-stained with 70% ethanol overnight and microscopic images were taken with the same microscopy set up as Trypan Blue stained samples.

Pathogen quantification

H. arabidopsidis spores were harvested at 7 dpi into 2 ml of water. The spore concentration was determined using a haemocytometer (Neubauer improved, Marienfeld). The sporangiophore number was counted on detached cotyledons using a binocular. For biomass estimation, genomic DNA was isolated using the CTAB method followed by chloroform extraction and isopropanol precipitation (*Chen and Ronald, 1999*). Four leaves were pooled for one biological replicate and isolated DNA was diluted to a concentration of 5 ng μ l⁻¹. *H. arabidopsidis* and *A. thaliana* genomic DNA was quantified by qPCR on a qPCR cycler (CFX96, Bio-Rad) using SYBR Green (Invitrogen, Thermo Fischer Scientific) and GoTaq G2 Polymerase (Promega) using species-specific primers (*Supplementary file 3*). Relative DNA content was calculated using the 2^{- $\Delta\Delta$ Ct} method (*Livak and Schmittgen, 2001*).

A. thaliana gene expression analysis

Total RNA was isolated using a CTAB-based method (**Bemm et al., 2016**). Genomic DNA was removed using DNase I (Sigma-Aldrich) and cDNA synthesis was performed with 1 μ g total RNA using SuperScriptIII RT or Maxima H⁻ RT (Thermo Fisher Scientific). Gene expression was measured by qPCR using a qPCR cycler (Quantstudio5, Thermo Fisher Scientific) and Primaquant low ROX qPCR master mix (Steinbrenner Laborsysteme). Differential expression was calculated using the 2^{- $\Delta \Delta$} ^{Ct} method (*Livak and Schmittgen, 2001*).

Generation of transgene expression vectors

Plasmids for Arabidopsis transformation were constructed using the plant Golden Gate based toolkit (Binder et al., 2014). The coding sequences of AtWNK2 and AtAED3 were amplified by PCR from Arabidopsis cDNA, and silent mutations were introduced by PCR in the target sequence of HpasRNA2 and HpasRNA90, respectively. For overexpression, AtWNK2r was ligated into a binary expression vector with a C-terminal GFP tag under the control of the LjUBQ1 promoter. AtWNK2r and AtAED3r were also ligated into a binary expression vector with a C-terminal GFP tag under the control of their native promoters (~2 kb upstream of the translation start site). Promoter function was tested by fusion to 2xGFP-NLS and fluorescence microscopy of transiently transformed Nicotiana benthamiana leaves. STTM sequences were designed as described previously (Tang et al., 2012), and flanks with Bsal recognition sites were introduced. STTM sequences were synthesized as single stranded DNA oligonucleotides (Sigma Aldrich). The strands were end phosphorylated by T4 polynucleotide kinase (NEB), annealed, and cloned into an expression vector under the control of the pro355. The final vector with STTMs for HpasRNA2, HpasRNA30, and HpasRNA90 in a row after each other, a rRNA-derived HpasRNA, or a scrambled sequence was assembled, respectively. The coding sequence of Csy4 was synthesized (MWG Eurofins) with codon optimization for expression in plants. Cloned Csy4 was flanked with new overhangs for integration in the Golden Gate toolkit by PCR. A fusion of the target sequences of HpasRNA2 and HpasRNA90, the target sequence of AtmiRNA164a, a scrambled target site, and the target sequence of Csy4 were synthesized as single strands (Sigma Aldrich). The strands were end phosphorylated by T4 polynucleotide kinase (NEB) and annealed. Csy4 was flanked with the respective target sequences and ligated into a vector under the control of the AtWNK2 promoter by Bsal cut ligation. For the reporter, a Csy4 target sequence was inserted between the Kozak sequence and the start codon of the GUS gene and ligated into a vector under the control of the AtEF1 α promoter. The final binary expression vector was assembled by combination of the Csy4 and the GUS vectors by Bpil cut ligation. All cloning primers are listed in Supplementary file 3.

Generation of transgenic Arabidopsis plants

Arabidopsis plants of Col-0 (WT), *atwnk2-2*, and *ataed3-1* were transformed with the respective construct using the *Agrobacterium tumefaciens* strain AGL1 by the floral dip method (*Clough and Bent*, **1998**). Transformed plants were selected on $\frac{1}{2}$ MS + 1% sucrose agar plates containing 50 µg/ml kanamycin, and were subsequently transferred to soil. Experiments were carried out on T1 generation plants representing independent transformants, unless a transformation line number is indicated (e.g. STTM #4). These experiments were carried out using T2 plants.

AGO Western blot analysis and sRNA co-immunopurification

SRNAs bound to A. thaliana AGO1 or HA-tagged AtAGO2 were co-immunopurified (co-IPed) from native proteins without any cross-linking agent and isolated as described previously, with minor modifications (*Zhao et al., 2012*). In brief, 5 g infected leaf tissue were ground in liquid N_2 to fine powder and thawed in 20 ml IP extraction buffer (20 mM Tris-HCl, 300 mM NaCl, 5 mM MgCl₂, 0.5% (v/v) NP40, 5 mM, one tablet/50 ml protease inhibitor (Roche Diagnostics), 200 U RNAse inhibitor (RiboLock, Thermo Fisher Scientific)). The cellular debris was removed by centrifugation at 4000 g and 4°C and the supernatant was filtered with two layers or Miracloth (Merck Millipore). 1 μ g α -AGO1 antibody (Agrisera)/g leaf tissue or 0.1 μ g α -HA antibody (3F10, Roche or 12CA5)/g leaf tissue was incubated on a wheel at 4°C for 30 min. Protein pull down and washing was performed using 400 µl Protein A agarose beads (Roche) as described by Zhao et al., 2012. For Western blot analysis 30% of the co-IP fraction were used, and protein was detected using α -AGO1 antibody (Agrisera) in 1:4000 dilution or α-HA antibody (3F10, Roche or 12CA5) in 1:1000 dilution, respectively. This was followed by an incubation with adequate secondary antibody (α -rabbit IRdye800 (LI-COR, 1:3000 dilution), α-mouse IRdye800 (LI-COR, 1:15000 dilution), and α-rat IRdye800 (LI-COR, 1:15000 dilution)), and protein detection was performed with the Odyssey imaging system (LI-COR). Recovery of the co-IPed sRNAs was achieved as previously described (Carbonell et al., 2012), and was directly used for stem-loop RT-PCR analysis or sRNA library preparation.

Stem-loop RT PCR

SRNAs were detected by stem-loop RT-PCR from 1 µg of total RNA or 5% of the AtAGO co-IPed RNA, as described previously (*Varkonyi-Gasic et al., 2007*).

5' RACE-PCR

5' RACE-PCR was performed on 1 μ g of total RNA isolated from *Hyaloperonospora*-infected Arabidopsis leaves pooled from equal amounts isolated at 4 and 7 dpi, using the 5'/3' RACE Kit, 2nd Generation (Roche Diagnostics). After the first round of PCR, a gel fraction of the expected size was cut out and a nested PCR was carried out on the eluted DNA. Bands were cut out and DNA was eluted using GeneJet Gel Extraction Kit (Thermo Fisher Scientific). A library was constructed from the eluted PCR fragments using the sparQ DNA Library Prep Kit (Quantabio) and sequenced on an Illumina MiSeq platform.

sRNA cloning, sequencing and target gene prediction

SRNAs were isolated from total RNA for high throughput sequencing as previously described (Weiberg et al., 2013). SRNAs were cloned for Illumina sequencing using the Next Small RNA Prep kit (NEB) and sequenced on an Illumina HiSeq1500 platform. The Illumina sequencing data were analysed using the GALAXY Biostar server (Giardine et al., 2005). Raw data were de-multiplexed (Illumina Demultiplex, Galaxy Version 1.0.0) and adapter sequences were removed (Clip adaptor sequence, Galaxy Version 1.0.0). Sequence raw data are deposited at the NCBI SRA server (BioProject accession: PRJNA395139). Reads were then mapped to a master genome of Hyaloperonospora arabidopsidis comprising the isolates Emoy2 (BioProject PRJNA30969), Cala2 (BioProject PRJNA297499), Noks1 (BioProject PRJNA298674) using the BOWTIE algorithm (Galaxy Version 1.1.0) allowing zero mismatches (-v 0). Subsequently, reads were cleaned from Arabidopsis thaliana sequences (TAIR10 release) with maximal one mismatch. For normalization, ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNAs (snRNAs), and small nucleolar RNA (snoRNA) reads were filtered out using the SortMeRNA program (Galaxy Version 2.1b.1). The remaining reads were counted and normalized on total H. arabidopsidis reads per million (RPM). The HpasRNAs were clustered if their 5' end position or 3' end position were within the range of three nucleotides referring to the genomic loci (Weiberg et al., 2013). Target gene prediction of sRNAs was performed with the TAPIR program using a maximal score of 4.5 and a free energy ratio of 0.7 as thresholds (Bonnet et al., 2010). Allelic variation analysis of HpasRNA target sites in A. thaliana mRNAs was done at the 1001Polymorph browser (https://tools.1001genomes.org/polymorph/).

DNA alignment

Search for homologous sequences of *Hpas*RNA was performed by BLASTn search using the genomes of Noco2 (PRJNA298674), Cala2 (PRJNA297499) and Emoy2 (PRJNA30969), or the Ensembl Protists database (http://protists.ensembl.org). Homolog DNA sequences of 100 nucleotides up- and downstream of *SRNA2* homologs were aligned using the CLC Main Workbench package.

Statistical analysis

All statistical tests were carried out using R studio (version 1.0.136, rstudio.com). ANOVA tests were performed on log-transformed data. Letters indicate groups of statistically significant difference by ANOVA followed by TukeyHSD with $p \le 0.05$. The dashes on the letters imply an independent ANOVA with TukeyHSD per time point.

Acknowledgements

The authors thank Michaela Pagliara for excellent technical assistance, Alexandra Corduneanu for help with data collection of *P. capsici* inoculations, Dr. Martin Parniske for critical reading of the manuscript, inspiring scientific discussions, and support, as well as Christopher Alford for reviewing the manuscript as a native English speaker. We want to thank Dr. Aline Banhara and Fang-Yu Hwu for introducing us into the *H. arabidopsidis*/Arabidopsis pathosystem. We want to thank the Gene Center Munich for Illumina HiSeq sequencing, as well as Gisela Brinkmann and the Genomics Service

Microbiology and Infectious Disease | Plant Biology

Unit of the LMU for Illumina MiSeq service. Seeds used in this study were provided by the Nottingham Arabidopsis Stock Centre (NASC) unless otherwise specified. We thank Dr. Hervé Vaucheret, Dr. James Carrington, and Dr. Steven Jacobsen for kindly providing us seeds of the *atago1-27*, *atdcl2dcl3dcl4*, *atrdr6-15*, *atse-2*, and *proHA:HA-AGO2* mutants and Dr. Tino Köster for the *atdcl1-11* mutant. We thank Dr. Michael Boshart for providing us α HA (12CA5) antibody. We thank Dr. David Chiasson and Martin Bircheneder for providing Golden Gate entry plasmids and Dr. Dagmar Hann for providing the *Pst* DC3000 strain. This work was supported by the German Research Foundation (DFG; Grant-ID WE 5707/1–1). The funders had no role in study design, data collection and analysis, decision to publish or in preparation of the manuscript.

Additional information

Funding

Funder	Grant reference number	Author
Deutsche Forschungsge- meinschaft	WE 5707/1-1	Arne Weiberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

Florian Dunker, Conceptualization, Data curation, Formal analysis, Validation, Investigation, Methodology, Writing - original draft, Writing - review and editing; Adriana Trutzenberg, Jan S Rothenpieler, Sarah Kuhn, Formal analysis, Investigation; Reinhard Pröls, Methodology; Tom Schreiber, Alain Tissier, Eric Kemen, Ralph Hückelhoven, Resources; Ariane Kemen, Formal analysis, Methodology; Arne Weiberg, Conceptualization, Resources, Data curation, Supervision, Funding acquisition, Validation, Investigation, Methodology, Writing - original draft, Project administration, Writing - review and editing

Author ORCIDs

Florian Dunker (b) https://orcid.org/0000-0003-1586-412X Jan S Rothenpieler (b) http://orcid.org/0000-0001-8892-8230 Arne Weiberg (b) https://orcid.org/0000-0003-4300-4864

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.56096.sa1 Author response https://doi.org/10.7554/eLife.56096.sa2

Additional files

Supplementary files

- Supplementary file 1. sRNA read numbers.
- Supplementary file 2. Predicted A. thaliana target genes of HpasRNAs.
- Supplementary file 3. List of oligonucleotides used in this study.
- Transparent reporting form

Data availability

Sequencing data have been deposited in NCBI SRA (PRJNA395139).

The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier	
Weiberg A	2017	Arabidopsis thaliana Col-0 infected	https://www.ncbi.nlm.	NCBI Sequence Read	

Dunker et al. eLife 2020;9:e56096. DOI: https://doi.org/10.7554/eLife.56096

with Hyaloperonospora arabidopsidis Noco2 Raw sequence reads	nih.gov/sra/ PRJNA395139	Archive, PRJNA395139
sequence reads		

References

- 1001 Genomes Consortium. 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491. DOI: https://doi.org/10.1016/j.cell.2016.05.063, PMID: 27293186
- Agorio A, Vera P. 2007. ARGONAUTE4 is required for resistance to *Pseudomonas syringae* in Arabidopsis. *The Plant Cell* **19**:3778–3790. DOI: https://doi.org/10.1105/tpc.107.054494, PMID: 17993621
- Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC. 2004. Evolution of microRNA genes by inverted duplication of target gene sequences in *Arabidopsis thaliana*. *Nature Genetics* **36**:1282–1290. DOI: https://doi.org/10.1038/ng1478, PMID: 15565108
- Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, et al. 2003. Genome-wide insertional mutagenesis of *Arabidopsis thaliana*. *Science* **301**:653–657. DOI: https://doi.org/10.1126/science.1086391, PMID: 12893945
- Asai S, Rallapalli G, Piquerez SJ, Caillaud MC, Furzer OJ, Ishaque N, Wirthmueller L, Fabro G, Shirasu K, Jones JD. 2014. Expression profiling during Arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid. *PLOS Pathog* **10**:e1004443. DOI: https://doi.org/10.1371/journal.ppat.1004443, PMID: 25329884

Balakireva A, Zamyatnin A. 2018. Indispensable role of proteases in plant innate immunity. International Journal of Molecular Sciences **19**:629. DOI: https://doi.org/10.3390/ijms19020629

- Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer AL, Krol E, Al-Rasheid KA, Mithöfer A, Weber AP, Schultz J, Hedrich R. 2016. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. *Genome Research* 26:812–825. DOI: https://doi.org/10.1101/gr.202200.115, PMID: 27197216
- Bilir Ö, Telli O, Norman C, Budak H, Hong Y, Tör M. 2019. Small RNA inhibits infection by downy mildew pathogen Hyaloperonospora arabidopsidis. Molecular Plant Pathology **20**:1523–1534. DOI: https://doi.org/10. 1111/mpp.12863, PMID: 31557400
- Binder A, Lambert J, Morbitzer R, Popp C, Ott T, Lahaye T, Parniske M. 2014. A modular plasmid assembly kit for multigene expression, gene silencing and silencing rescue in plants. *PLOS ONE* **9**:e88218. DOI: https://doi.org/10.1371/journal.pone.0088218, PMID: 24551083
- Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS. 2003. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. *Development* 130:1493–1504. DOI: https://doi.org/10.1242/dev.00362, PMID: 12620976

Bollmann SR, Fang Y, Press CM, Tyler BM, Grünwald NJ. 2016. Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus *Phytophthora*. *Frontiers in Plant Science* **7**:284. DOI: https://doi.org/10.3389/fpls.2016.00284, PMID: 27014308

- Bonnet E, He Y, Billiau K, Van de Peer Y. 2010. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. *Bioinformatics* 26:1566–1568. DOI: https://doi.org/10.1093/bioinformatics/btq233, PMID: 20430753
- Breitenbach HH, Wenig M, Wittek F, Jordá L, Maldonado-Alconada AM, Sarioglu H, Colby T, Knappe C, Bichlmeier M, Pabst E, Mackey D, Parker JE, Vlot AC. 2014. Contrasting roles of the apoplastic aspartyl protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis systemic acquired resistance. *Plant Physiology* 165:791–809. DOI: https://doi.org/10. 1104/pp.114.239665, PMID: 24755512
- Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. *Science* 360:1126–1129. DOI: https://doi. org/10.1126/science.aar4142, PMID: 29773668
- Cao-Pham AH, Urano D, Ross-Elliott TJ, Jones AM. 2018. Nudge-nudge, WNK-WNK (kinases), say no more? New Phytologist 220:35–48. DOI: https://doi.org/10.1111/nph.15276, PMID: 29949669
- Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC. 2012. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. *The Plant Cell* **24**: 3613–3629. DOI: https://doi.org/10.1105/tpc.112.099945, PMID: 23023169
- Caten CE, Jinks JL. 1968. Spontaneous variability of single isolates of *Phytophthora infestans*. I. Cultural variation . *Canadian Journal of Botany* **46**:329–348. DOI: https://doi.org/10.1139/b68-055
- Chen X. 2009. Small RNAs and their roles in plant development. Annual Review of Cell and Developmental Biology 25:21–44. DOI: https://doi.org/10.1146/annurev.cellbio.042308.113417, PMID: 19575669
- Chen D-H, Ronald PC. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Molecular Biology Reporter **17**:53–57. DOI: https://doi.org/10.1023/A:1007585532036
- Clough SJ, Bent AF. 1998. Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. The Plant Journal **16**:735–743. DOI: https://doi.org/10.1046/j.1365-313x.1998.00343.x, PMID: 10069079
- Coates ME, Beynon JL. 2010. Hyaloperonospora arabidopsidis as a pathogen model. Annual Review of Phytopathology 48:329–345. DOI: https://doi.org/10.1146/annurev-phyto-080508-094422, PMID: 19400636

- Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A. 2011. Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in *Pseudomonas syringae*. PNAS **108**:2975–2980. DOI: https://doi.org/10.1073/pnas.1013031108
- Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O. 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. *Science* **313**:68–71. DOI: https://doi.org/10.1126/science.1128214, PMID: 16741077
- Domínguez-Ferreras A, Kiss-Papp M, Jehle AK, Felix G, Chinchilla D. 2015. An overdose of the Arabidopsis coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or its ectodomain causes autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent manner. *Plant Physiology* **168**:1106–1121. DOI: https://doi.org/10.1104/pp.15.00537, PMID: 25944825
- Ellendorff U, Fradin EF, de Jonge R, Thomma BP. 2009. RNA silencing is required for Arabidopsis defence against verticillium wilt disease. *Journal of Experimental Botany* **60**:591–602. DOI: https://doi.org/10.1093/jxb/ern306, PMID: 19098131
- Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, Sullivan CM, Chapman EJ, Hoyer JS, Gilbert KB, Grünwald NJ, Carrington JC. 2013. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLOS ONE 8:e77181. DOI: https://doi.org/10.1371/journal.pone.0077181, PMID: 24204767
- Fei Q, Xia R, Meyers BC. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. The Plant Cell 25:2400–2415. DOI: https://doi.org/10.1105/tpc.113.114652, PMID: 23881411
- Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A. 2005. Galaxy: a platform for interactive large-scale genome analysis. *Genome Research* **15**:1451–1455. DOI: https://doi.org/10.1101/gr.4086505, PMID: 16169926
- Grigg SP, Canales C, Hay A, Tsiantis M. 2005. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437:1022–1026. DOI: https://doi.org/10.1038/nature04052, PMID: 16222298
- Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. *Science* **329**:1355–1358. DOI: https://doi.org/10.1126/science.1192272, PMID: 20829488
- Hooftman DAP, Nieuwenhuis BPS, Posthuma KI, Oostermeijer JGB, den Nijs HCM. 2007. Introgression potential of downy mildew resistance from lettuce to *Lactuca serriola* and its relevance for plant fitness. *Basic and Applied Ecology* 8:135–146. DOI: https://doi.org/10.1016/j.baae.2006.03.008
- Hou Y, Zhai Y, Feng L, Karimi HZ, Rutter BD, Zeng L, Choi DS, Zhang B, Gu W, Chen X, Ye W, Innes RW, Zhai J, Ma W. 2019. A *Phytophthora* effector suppresses trans-kingdom RNAi to promote disease susceptibility. *Cell* Host & Microbe **25**:153–165. DOI: https://doi.org/10.1016/j.chom.2018.11.007, PMID: 30595554
- Huang J, Yang M, Zhang X. 2016. The function of small RNAs in plant biotic stress response. Journal of Integrative Plant Biology 58:312–327. DOI: https://doi.org/10.1111/jipb.12463, PMID: 26748943
- Hurtado-Gonzales OP, Lamour KH. 2009. Evidence for inbreeding and apomixis in close crosses of Phytophthora capsici . Plant Pathology 58:715–722. DOI: https://doi.org/10.1111/j.1365-3059.2009.02059.x
- Jahan SN, Åsman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C. 2015. Plant-mediated gene silencing restricts growth of the potato late blight pathogen *Phytophthora infestans*. Journal of Experimental Botany **66**: 2785–2794. DOI: https://doi.org/10.1093/jxb/erv094, PMID: 25788734
- Jia J, Lu W, Zhong C, Zhou R, Xu J, Liu W, Gou X, Wang Q, Yin J, Xu C, Shan W. 2017. The 25-26 nt small RNAs in *Phytophthora parasitica* are associated with efficient silencing of homologous endogenous genes. *Frontiers in Microbiology* **8**:773. DOI: https://doi.org/10.3389/fmicb.2017.00773, PMID: 28512457
- Judelson HS, Ah-Fong AMV. 2019. Exchanges at the plant-oomycete interface that influence disease. *Plant Physiology* **179**:1198–1211. DOI: https://doi.org/10.1104/pp.18.00979, PMID: 30538168
- Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse CW, et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101. DOI: https://doi.org/10.1038/nature05248, PMID: 17080091
- Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, Maclean D, Jones JD. 2011. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLOS Biology 9:e1001094. DOI: https://doi.org/10.1371/journal. pbio.1001094, PMID: 21750662
- Kettles GJ, Hofinger BJ, Hu P, Bayon C, Rudd JJ, Balmer D, Courbot M, Hammond-Kosack KE, Scalliet G, Kanyuka K. 2019. sRNA profiling combined with gene function analysis reveals a lack of evidence for cross-kingdom RNAi in the wheat *Zymoseptoria tritici* pathosystem. *Frontiers in Plant Science* **10**:892. DOI: https://doi.org/10.3389/fpls.2019.00892, PMID: 31333714
- Khraiwesh B, Zhu J-K, Zhu J. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:137–148. DOI: https://doi.org/10. 1016/j.bbagrm.2011.05.001
- Knoth C, Ringler J, Dangl JL, Eulgem T. 2007. Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions 20: 120–128. DOI: https://doi.org/10.1094/MPMI-20-2-0120, PMID: 17313163
- Koch E, Slusarenko A. 1990. Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell 2: 437–445. DOI: https://doi.org/10.1105/tpc.2.5.437, PMID: 2152169

Dunker et al. eLife 2020;9:e56096. DOI: https://doi.org/10.7554/eLife.56096

- Kusch S, Frantzeskakis L, Thieron H, Panstruga R. 2018. Small RNAs from cereal powdery mildew pathogens may target host plant genes. *Fungal Biology* **122**:1050–1063. DOI: https://doi.org/10.1016/j.funbio.2018.08.008, PMID: 30342621
- Lai Y, Eulgem T. 2018. Transcript-level expression control of plant NLR genes. *Molecular Plant Pathology* **19**: 1267–1281. DOI: https://doi.org/10.1111/mpp.12607, PMID: 28834153
- Laurie JD, Linning R, Bakkeren G. 2008. Hallmarks of RNA silencing are found in the smut fungus Ustilago hordei but not in its close relative Ustilago maydis. Current Genetics **53**:49–58. DOI: https://doi.org/10.1007/s00294-007-0165-7, PMID: 18060405
- Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B. 2012. MicroRNA regulation of plant innate immune receptors. *PNAS* **109**:1790–1795. DOI: https://doi.org/10.1073/pnas. 1118282109, PMID: 22307647
- Li C, Zhang B. 2016. MicroRNAs in control of plant development. *Journal of Cellular Physiology* 231:303–313. DOI: https://doi.org/10.1002/jcp.25125, PMID: 26248304
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2^{(c}_{Delta delta C(T)}) Method. *Methods* **25**:402–408. DOI: https://doi.org/10.1006/meth.2001.1262, PMID: 11 846609
- Ma X, Wiedmer J, Palma-Guerrero J. 2020. Small RNA bidirectional crosstalk during the interaction between wheat and Zymoseptoria tritici. Frontiers in Plant Science 10:1669. DOI: https://doi.org/10.3389/fpls.2019. 01669, PMID: 31969895
- Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M. 2008. Polyubiquitin promoterbased binary vectors for overexpression and gene silencing in *Lotus japonicus*. *Molecular Plant-Microbe Interactions* 21:375–382. DOI: https://doi.org/10.1094/MPMI-21-4-0375, PMID: 18321183
- Mallory AC, Bouché N. 2008. MicroRNA-directed regulation: to cleave or not to cleave. *Trends in Plant Science* **13**:359–367. DOI: https://doi.org/10.1016/j.tplants.2008.03.007, PMID: 18501664
- Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y. 2008. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. *Cell* 133:116– 127. DOI: https://doi.org/10.1016/j.cell.2008.02.034, PMID: 18342361
- Mims CW, Richardson EA, Holt III BF, Dangl JL. 2004. Ultrastructure of the host-pathogen interface in Arabidopsis thaliana leaves infected by the downy mildew Hyaloperonospora parasitica. Canadian Journal of Botany 82:1001-1008. DOI: https://doi.org/10.1139/b04-073
- Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC. 2008. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 transacting siRNA formation. *Cell* **133**:128–141. DOI: https://doi.org/10.1016/j.cell.2008.02.033, PMID: 18342362
- Morel JB, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H. 2002. Fertile hypomorphic ARGONAUTE (*ago1*) mutants impaired in post-transcriptional gene silencing and virus resistance. *The Plant Cell* **14**:629–639. DOI: https://doi.org/10.1105/tpc.010358, PMID: 11910010
- Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. 2006. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. *The Plant Cell* **18**:2929–2945. DOI: https://doi.org/10.1105/tpc.106.045617, PMID: 17098808
- Parfrey LW, Lahr DJ, Knoll AH, Katz LA. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. PNAS 108:13624–13629. DOI: https://doi.org/10.1073/pnas.1110633108, PMID: 21810989
- Qutob D, Chapman BP, Gijzen M. 2013. Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nature Communications 4:2354. DOI: https://doi.org/10.1038/ncomms2354, PMID: 23322037
- Ried MK, Banhara A, Hwu FY, Binder A, Gust AA, Höfle C, Hückelhoven R, Nürnberger T, Parniske M. 2019. A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen *Hyaloperonospora* arabidopsidis. PLOS Pathogens **15**:e1007747. DOI: https://doi.org/10.1371/journal.ppat.1007747, PMID: 312 99058
- Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, et al. 2002. A high-throughput Arabidopsis reverse genetics system. *The Plant Cell* 14:2985–2994. DOI: https://doi.org/10. 1105/tpc.004630, PMID: 12468722
- Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. 2012. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. *The Plant Cell* 24:859–874. DOI: https://doi.org/10.1105/tpc.111.095380, PMID: 22408077
- Smith MR, Willmann MR, Wu G, Berardini TZ, Möller B, Weijers D, Poethig RS. 2009. Cyclophilin 40 is required for microRNA activity in Arabidopsis. PNAS 106:5424–5429. DOI: https://doi.org/10.1073/pnas.0812729106, PMID: 19289849
- Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y. 2008. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. *Plant and Cell Physiology* **49**:493–500. DOI: https://doi.org/10.1093/pcp/pcn043, PMID: 18344228
- Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X. 2012. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. *Methods* **58**:118–125. DOI: https://doi.org/10.1016/j. ymeth.2012.10.006, PMID: 23098881
- Torres MA, Dangl JL, Jones JD. 2002. Arabidopsis gp91phox homologues *AtrbohD* and *AtrbohF* are required for accumulation of reactive oxygen intermediates in the plant defense response. *PNAS* **99**:517–522. DOI: https://doi.org/10.1073/pnas.012452499, PMID: 11756663

Dunker et al. eLife 2020;9:e56096. DOI: https://doi.org/10.7554/eLife.56096

- Torres MA, Jones JD, Dangl JL. 2005. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in *Arabidopsis thaliana*. *Nature Genetics* **37**:1130–1134. DOI: https://doi.org/10.1038/ng1639, PMID: 16170317
- **Unger S**, Büche C, Boso S, Kassemeyer HH. 2007. The course of colonization of two different *Vitis* genotypes by *Plasmopara viticola* indicates compatible and incompatible host-pathogen interactions. *Phytopathology* **97**: 780–786. DOI: https://doi.org/10.1094/PHYTO-97-7-0780, PMID: 18943926
- Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. 2007. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. *Plant Methods* 3:12. DOI: https://doi.org/10.1186/1746-4811-3-12, PMID: 17931426
- Vaucheret H. 2008. Plant ARGONAUTES. Trends in Plant Science 13:350–358. DOI: https://doi.org/10.1016/j. tplants.2008.04.007, PMID: 18508405
- Vazquez F, Gasciolli V, Crété P, Vaucheret H. 2004. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. *Current Biology* 14:346–351. DOI: https://doi.org/10.1016/j.cub.2004.01.035, PMID: 14972688
- Wagh SG, Alam MM, Kobayashi K, Yaeno T, Yamaoka N, Toriba T, Hirano H-Y, Nishiguchi M. 2016. Analysis of rice RNA-dependent RNA polymerase 6 (OsRDR6) gene in response to viral, bacterial and fungal pathogens. Journal of General Plant Pathology 82:12–17. DOI: https://doi.org/10.1007/s10327-015-0630-y
- Wang Y, Liu K, Liao H, Zhuang C, Ma H, Yan X. 2008. The plant WNK gene family and regulation of flowering time in Arabidopsis. *Plant Biology* **10**:548–562. DOI: https://doi.org/10.1111/j.1438-8677.2008.00072.x, PMID: 18761494
- Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. *Nature Plants* 2:16151. DOI: https://doi.org/10.1038/nplants. 2016.151, PMID: 27643635
- Wang B, Sun Y, Song N, Zhao M, Liu R, Feng H, Wang X, Kang Z. 2017. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of pst, impairs wheat resistance to pst by suppressing the wheat pathogenesis-related 2 gene. *The New Phytologist* **215**:338–350. DOI: https://doi.org/ 10.1111/nph.14577, PMID: 28464281
- Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. *Science* **342**:118–123. DOI: https://doi.org/10. 1126/science.1239705, PMID: 24092744
- Weiberg A, Bellinger M, Jin H. 2015. Conversations between kingdoms: small RNAs. Current Opinion in Biotechnology **32**:207–215. DOI: https://doi.org/10.1016/j.copbio.2014.12.025, PMID: 25622136
- Whalen MC, Innes RW, Bent AF, Staskawicz BJ. 1991. Identification of *Pseudomonas syringae* pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. *The Plant Cell* **3**:49–59. DOI: https://doi.org/10.1105/tpc.3.1.49, PMID: 1824334
- Zhang JF, Yuan LJ, Shao Y, Du W, Yan DW, Lu YT. 2008. The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis. *Plant, Cell & Environment* **31**:562–574. DOI: https://doi.org/10.1111/j.1365-3040.2008.01786.x, PMID: 18208512
- Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. *Nature Plants* **2**:16153. DOI: https://doi.org/10.1038/nplants.2016.153, PMID: 27668926
- Zhao H, Lii Y, Zhu P, Jin H. 2012. Isolation and profiling of protein-associated small RNAs. *Methods in Molecular Biology* 883:165–176. DOI: https://doi.org/10.1007/978-1-61779-839-9_13, PMID: 22589133

Supplementary data:

Insights into the small RNAome of *H. arabidopsidis* and Arabidopsis.

(a) *Hpa*sRNAs mapped to distinct coding and to non-coding genomic regions. (b) Relative read counts and size distribution of *Hpa*sRNAs mapped to different genomic regions at 4 and 7 dpi.
(c) Size distribution and first nucleotide analysis of *At*AGO1-associated sRNAs of *A. thaliana*.

Figure 1 – figure supplement 2

Stem-loop RT-PCR revealed *Hpa*sRNA2, *Hpa*sRNA30 and *Hpa*sRNA90 expression at 4 and 7 dpi in three biological replicates.

Total RNA served as loading control.

Relative expression of *AtAED3* and *AtWNK2* was measured in mock-treated or *H. arabidopsidis* inoculated plants.

H. arabidopsidis-infected WT and *atago1-27* seedlings before and at 4 and 7 dpi by qRT-PCR using *AtActin* as a reference in two independent infection experiments (**a**, **b**). The bars within the graphs represent the average of $n \ge three$ biological replicates, and letters indicate groups of statistically significant difference within one time point by ANOVA followed by TukeyHSD with p≤0.05. Numbers below the graphs give change-fold factors of *H. arabidopsidis*-infected versus mock-treated samples.

5' RACE PCR did not provide evidence for pathogen sRNA mediated target cleavage.

(a) Agarose gel images show RACE-PCR bands amplified at the predicted cleavage size of 440 bp for *AtAED3* and 530 bp for *AtWNK2*, marked with asterisks. (b) Mapping schemes of *AtWNK2* and *AtAED3* mRNA reads indicated the ends of RACE-PCR fragments corresponding to a as revealed by next generation sequencing. (c) Numbers of 5' end position of *AtWNK2* and *AtAED3* mRNAs at the predicted *Hpa*sRNA2 or *Hpa*sRNA90 target sites.

b

Figure 1 – figure supplement 5

The reporter was neither activated by an endogenous miRNA target site nor by a distinct pathogen.

(a) Csy4 repressor reporter with *Hpa*sRNA2 and *Hpa*sRNA90 target sequence (ts) is depicted on the top and with *At*miRNA164 ts of the *AtCUC2* target gene on the bottom. GUS staining of infected leaves at two magnifications revealed sequence-specific reporter silencing at 4 dpi in *Hpa*sRNA2/*Hpa*sRNA90 ts construct but not in *At*miRNA164 ts. (b) The Csy4 reporter was not activated by the oomycete pathogen *Phytophthora capsici*. At 2 dpi, *P. capsici* formed a dense hyphal network, but no pathogen-associated GUS activity was observed (upper panel). In two of the five inspected leaf discs GUS activity was detected in cell clusters, but these were independent of pathogen presence (lower panel). The numbers indicate leaves with GUS activity per total inspected leaves in this experiment. Red arrows indicate *H. arabidopsidis* or *P. capsici* hyphae. Scale bars indicate 50 µm.

Enhanced resistance against infection was restricted to *atago1* mutants.

(a) *H. arabidopsidis* genomic DNA content in cotyledons was lower in *atago1-27* compared to WT, as measured by qPCR relative to plant genomic DNA at 4 dpi with n ≥ three biological replicates. (b) Trypan Blue-stained microscopy images of *atago1-27* cotyledons did not show any necrosis at 7 dpi. (c) Trypan Blue-stained microscopy images of *atago1-45* and *atago1-46* revealed trailing necrosis at 7 dpi with *H. arabidopsidis*. (d) Trypan Blue-stained microscopy images presenting *H. arabidopsidis*-infected *atago2-1* and *atago4-2* seeding leaves at 7 dpi. (e) *H. arabidopsidis* genomic DNA was quantified in WT versus *atago2-1* and *atago4-2* by qPCR at 4 dpi relative to plant genomic DNA represented by n ≥ four biological replicates. Numbers in the micrographs represent observed leaves with necrosis per total inspected leaves. Asterisk indicates significant difference by one tailed Student's t-test with p≤0.05. Letters indicate groups of statistically significant difference by ANOVA followed by TukeyHSD with p≤0.05.

Figure 2 – figure supplement 2

Stem-loop RT-PCR of *Hpa*sRNAs from *At*AGO1-IP or *At*AGO2-IP of mock-treated or *H. arabidopsidis* infected leaf tissue.

*At*miRNA164 and *At*miRNA393* were used as positive *At*AGO-IP controls. Pull-down of *At*AGO1 was achieved with WT plants using an *At*AGO1 native antibody, and *At*AGO2 with HA-epitope tagged *At*AGO2-expressing *A. thaliana* Col-0 using anti-HA antibody with the lower panel showing Western blot analysis.

Trypan Blue-stained microscopy images presenting the *At*miRNA biogenesis mutants *athst-6, athen1-5* and *atse-2* did not show any trailing necrosis at 7 dpi.

Scale bars in microscopy images indicate 50 μ m and numbers in the micrographs represent observed leaves with necrosis per total inspected leaves.

Figure 2 – figure supplement 4

Common defence-related marker gene induction was not enhanced in *atago1-27* mutants.

(a) Expression analysis of *AtPR1* by RT-PCR in WT and *atago1-27* did not show obvious differences at 6 and 12 h post inoculation with *H. arabidopsidis. AtActin* was used as reference gene with four biological replicates. (**b and c**) Relative expression of *AtPR1* and *AtPDF1.2* determined by qRT-PCR using *AtActin* as reference. The bar represents the average of $n \ge three$ biological replicates, each comprising two technical replicates.

Figure 2 – figure supplement 5

Relative mRNA expression of *AtRBOHD* and *AtRBOHF* determined by qRT-PCR using *AtActin* as reference in WT and *atago1-27* in *H. arabidopsidis* and mock treated plants.

The bars represent the average of $n \ge$ three biological replicates, each comprising two technical replicates. Letters indicate groups of statistically significant difference within one time point by ANOVA followed by TukeyHSD with p≤0.05.

С

d

Figure 2 – figure supplement 6

Susceptibility of *atago1* mutants to infection with the biotrophic fungus *E. cruciferarum* and the oomycete *A. laibachii* remained unaltered.

(a) Trypan Blue-stained microscopy images of WT or *atago1-27* leaves infected with *Erysiphe cruciferarum* did not show necrosis at 8 dpi. Scale bars in microscopy images indicate 50 µm and numbers represent observed leaves with necrosis per total inspected leaves. (b) *E. cruciferarum* genomic DNA content in WT and *atago1-27* was not significantly different at 4 dpi relative to plant genomic DNA as measured by qPCR in n ≥ three biological replicates. (c) Macroscopic infection phenotype of the white rust *Albugo laibachii* remained unaltered in *atago1-27* and *atago1-46* mutants at 3 weeks post inoculation. (d) Trypan Blue-stained microscopy images of WT, *atago1-27* or *atago1-46* leaves infected with *A. laibachii* did not show necrosis at 7 dpi. Scale bars in microscopy images indicate 50 µm and numbers represent observed leaves with necrosis per total inspected leaves. Scale bars in the total leaf pictures indicate 50 mm. Significance was determined by one tailed Student's t-test with p≤0.05.

STTM plants revealed higher expression of target genes and lower *H. arabidopsidis* abundance.

(a) Relative expression of *AtAED3* at 7 dpi and *AtWNK2* at 4 dpi was determined for STTM or empty vector (ev) expressing plants upon *H. arabidopsidis* inoculation at 7 and 4 dpi, respectively, by qRT-PCR. One biological replicate represented three leaves, the bars represent the average of n ≥ three biological replicates. The differences of the average were not statistically significant as determined by Student's t-test. (b) *H. arabidopsidis* genomic DNA content in leaves was increased in STTM #4 and STTM #5 plants compared to empty vector (ev) expressing WT plants at 4 dpi with n ≥ three biological replicates. The differences were not statistically significant as determined by ANOVA followed by TukeyHSD. (c) STTMexpressing Arabidopsis plants did not exhibit increased resistance against bacterial infection. The bacterial growth was determined by counting colony-forming units (cfu) at 3 days post inoculation. One biological replicate represents bacteria from three leaf discs. Letters in c) indicate significant difference (p≤0.05) according to one site ANOVA followed by TukeyHSD including three biological replicates.

Further details on sRNA target gene mutants.

(a) Gene models of *AtWNK2* and *AtAED3*. The insertion site of the T-DNA is marked by the triangles and the genotyping primer binding sites are shown with arrows. T-DNA insertion of *Hpa*sRNA target gene mutant lines *atwnk2-2*, *atwnk2-3* and *ataed3-1* were verified by genomic DNA PCR. (b) Trypan Blue-stained microscopy images revealed a higher number of haustoria in the first 200 μ m of hyphae (indicated by white bar alongside the hyphae) from the spore germination site in *atwnk2-2* compared to WT with n ≥ eight leaves. Asterisk indicates significant difference by one tailed Student's t-test with p≤0.05. Similar results were obtained in two independent experiments.

AtAED3r	5 '	ACUGAUGUUUAUGGUACUCGA	3'
HpasRNA90	3'	CGAUCACAAGUACUAGUAUUU	5'
AtAED3	5'	GCUAAUGUUCAUGGUCCUAGA	3'
AtWNK2r	5'	GAAACCCUGAAGAGCUGGAAA	3'
HpasRNA2	3 '		5'
AtWNK2	5 '	GGAAUCCUGAGGAAUUAGAGA	3'

Figure 4 – figure supplement 2

Target sequence-resistant versions of *AtAED3* (*AtAED3*r) and *AtWNK2* (*AtWNK2*r) were created by introducing synonymous nucleotide substitutions indicated by red letters.

Transgenic *A. thaliana atwnk2-2* was complemented with *proWNK2:WNK2* or *proWNK2:WNK2r* that resulted in a WT-like flowering time point, while empty vector (ev) exhibited early flowing phenotype, as reported for *atwnk2-2* (Wang et al., 2008).

Figure 4 – figure supplement 4

A. thaliana plants overexpressing *proLjUBI1:AtWNK2*r in the *atwnk2-2* background revealed local necrosis without pathogen infection (a) and aberrant hyphae and haustoria swellings (b).

Scale bars in microscopy images indicate 50 μ m and the numbers represent observed leaves with necrosis or swellings respectively per total inspected leaves.

			Mutation I	ocation/ co	nsequence	Number of A thaliana	
<i>Hpa</i> sRNA	Target gene	Locus	Bulge	10/11	Seed region	accessions with mutation	
HpasRNA2	With no lysine (K) kinase 2	CDS		Synony.		1	
HpasRNA12	AAR2 protein family	3'UTR				3	
HpasRNA28	E3 ubiquitin ligase	5'UTR				4	
HpasRNA28	BTB/POZ domain-containing protein	CDS		Missense		1	
HpasRNA30	Polymerase gamma 2	CDS			Synony.	339	
HpasRNA39	Heat stress transcription factor A-1d	CDS			Missense	409	
HpasRNA47	Transcription factor ORG2	CDS			Synony.	122	
HpasRNA52	Stress response NST1-like protein	3'UTR				17	
HpasRNA53	Polyadenylate-binding protein	CDS		Missense		8	
HpasRNA53	Beta-1,6-N- acetylglucosaminyltransferase	3'UTR				2	
HpasRNA54	NIMA-related kinase 4	5'UTR				2	
HpasRNA57	Monocopper oxidase-like protein	CDS		Missense	Missense	1/1	
HpasRNA57	AtAPC7	5'UTR				2/2	
HpasRNA57	Disease resistance/LRR family protein	CDS	Frameshift		Missense	1/20	
HpasRNA69	Tonoplast dicarboxylate transporter	CDS			Synony.	6	
HpasRNA74	Transmembrane protein	CDS			Synony.	1	
HpasRNA82	ABI2	CDS		Missense	Synony.	12/1	
HpasRNA90	F-box protein	CDS	Frameshift			3	

Sequence diversity of *Hpa*sRNAs and their predicted Arabidopsis target mRNAs.

(a) *Hp*asRNAs were conserved among the three *H. arabidopsidis* isolates, Noco2, Cala2, Emoy2. (b) Sequence variations were found in the predicted Arabidopsis mRNAs analysing 1135 *A. thaliana* accessions. Three categories (colour coded) were considered to possibly prevent target silencing: indels causing bulges that block the *Hpa*sRNA/*At*mRNA base pairing (red), SNPs at the position 10/11 interfering with RISC-mediated cleavage (orange), and SNPs in the *Hpa*sRNA seed region (account to RNA nucleotide positions from 2 to 12) loosing *Hpa*sRNA/*At*mRNA base pairing (green).

а	b	
Pro_sINE_Jocus -	HpasRNA2 AtWNK2	5' UCUUUAAUUUCUCGGGACUCC 3' 0 0 0 3' AGAGAUUAAGGAGUCCUAAGG 5'
Pan, 1812, Jocus 1815, Gorgo 1916, 1917, 1	PcapsRNA2	5' UUUACAAUUUGUCGGGAUUCC 3'
Sequence 1990 1990 1990 1990 1990 1990 1990 199	AtWNK2	3' AGAGAUUAAGGAGUCCUAAGG 5'
	PsosRNA2	5' UCUUUAAUUUCUCGGGAUUCC 3'
- μηματικό λουσιά ματα τη ματική ματική Η πριστική ματική μα	GmWNK2	3' AGAGUUCUAGAAGUCCUAAGA 5'
	PinfsRNA2	5' UCUUUUAAUUUCUCGGGAUUCC 3'
Sequence logo seme UCUIT + AAIICCUUUATUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	StWNK2	3' AGAGU-UCUAGAAGUCCUGAAA 5'
Pas. Bitz. Jocus 6 11 and 11 and 11 and 12 a	PpasRNA2	5' UCUUUUAAUUUCUCGGGAUUCC 3'
Ppa, siR2, Jocus B - 8 07 00 09 04 14 14 14 14 14 14 14 14 14 14 14 14 14	NtWNK2	3' AGAGUUCUAGAAGUCCUGAAA 5
Conservation The Conservation C		

The pathogen sRNA2 and its target are conserved across different plant pathogenic oomycetes and hosts.

(a) Oomycete SRNA2 genomic loci are conserved among different plant pathogenic oomycete Hyaloperonospora, Phytophthora, species of the genera and Pythium (Hpa = Hyaloperonospora arabidopsidis, Pcap = Phytophthora capsici, Pso = Phytophthora sojae, Pan = Pythium aphanidermatum, Pinf = Phytophthora infestans, Ppa = Phytophthora parasitica). Blue box at the consensus sequence indicates the region of sRNA transcription as identified by sRNA-seq analysis and red box marks the consensus of the mature 21 nt HpasRNA2 region. (b) Target prediction alignment of sRNA2 homologs from different oomycete species with the target sequences of homolog WNK2s from respective host plant species (At = Arabidopsis thaliana, Gm = Glycine max, St = Solanum tuberosum Nt = *Nicotiana tabacum*).

Supplemental file 1 sRNA read numbers.

	reads total number	mapping to 100 % to <i>A. thaliana</i> (TAIR10)	mapping to 100% to <i>H. arabidopsidis</i> and <i>A. thaliana</i>	mapping to 100% only to <i>H. arabidopsidis</i> (master genome)	unmapped reads
4 dpi, mock	32666246 (100%)	24070919 (73.68%)	12164538 (37.24%)	173233 (0.53%)	8422094 (25.78%)
4 dpi, Hyaloperonospora -infected	51300261 (100%)	27277198 (53.17%)	14069872 (27.43%)	4475759 (8.72%)	19547304 (38.10%)
7 dpi, mock	65214950 (100%)	49384100 (75.72%)	26990855 (41.39%)	227576 (0.35%)	15603274 (23.92%)
7 dpi, Hyaloperonospora -infected	87671980 (100%)	36159870 (41.24%)	19845298 (22.64%)	18766796 (21.41%)	32745314 (37.35%)
	12008860				1081/811
AGO1-IP 3 dpi	1 (100%)	109247735 (84.63%)	2834932 (2.19%)	26145 (0.02%)	(15.35%)
AGO1-IP 4 dpi	47889809 (100%)	35297292 (73.71%)	878152 (1.83%)	333374 (0.69%)	12259143 (25.59%)
AGO2-IP 4 dpi	14720448 (100%)	11405460 (77.48%)	6645388 (45.14%)	127292 (0.86%)	3187696 (21.65%)

Supplemental file 2

Predicted A. thaliana target genes of HpasRNAs.

(Author note: Due to space limitations the original table was split in three separate tables.)

	<i>Hpa</i> sRNA	genomic origin	total sRNAs total s 4 dpi 7 d		total sRNAs 7 dpi		RNAs total sRNAs total sRNAs		AtAGO1 3 dpi		<i>At</i> AGC	AtAGO1 4 dpi		02 4 dpi
			RAW	RPM	RAW	RPM	RAW	RPM	RAW	RPM	RAW	RPM		
1	<i>Hpa</i> sRNA4	non-annotated region	19	4	396	34	1	38	26	82	5	68		
2	HpasRNA12	non-annotated region	23	5	234	20	1	38	3	9	0	0		
3	<i>Hpa</i> sRNA14	non-annotated region	22	5	226	19	0	0	29	91	3	41		
4	HpasRNA20	non-annotated region	31	7	182	15	1	38	10	31	2	27		
5	<i>Hpa</i> sRNA75	non-annotated region	10	2	236	20	0	0	1	3	0	0		
6	<i>Hpa</i> sRNA39	non-annotated region	38	8	127	12	0	0	19	60	1	14		
7	<i>Hpa</i> sRNA38	non-annotated region	24	5	128	12	0	0	3	9	0	0		
8	HpasRNA2	non-annotated region	24	5	138	12	2	76	24	76	1	14		
9	<i>Hpa</i> sRNA36	non-annotated region	22	5	132	11	1	38	7	22	0	0		
10	HpasRNA28	non-annotated region	14	3	149	12	0	0	10	31	0	0		
11	<i>Hpa</i> sRNA51	non-annotated region	26	6	111	9	0	0	7	22	1	14		
12	<i>Hpa</i> sRNA52	non-annotated region	25	6	109	9	0	0	1	3	0	0		
13	<i>Hpa</i> sRNA44	non-annotated region	13	3	121	11	0	0	4	13	0	0		
14	<i>Hpa</i> sRNA47	non-annotated region	18	4	115	10	0	0	3	9	0	0		
15	<i>Hpa</i> sRNA43	non-annotated region	11	2	122	11	1	38	5	16	0	0		
16	<i>Hpa</i> sRNA76	non-annotated region	28	6	77	6	1	38	0	0	2	27		
17	<i>Hpa</i> sRNA30	non-annotated region	3	1	140	12	0	0	11	35	0	0		
18	<i>Hpa</i> sRNA54	non-annotated region	13	3	105	9	1	38	8	25	0	0		
19	HpasRNA53	non-annotated region	12	3	107	9	0	0	9	28	0	0		
20	HpasRNA61	non-annotated region	15	3	93	8	3	115	1	3	1	14		
21	HpasRNA55	non-annotated region	11	2	102	9	0	0	4	13	0	0		

22	HpasRNA83	non-annotated region	21	5	71	6	1	38	1	3	1	14
23	HpasRNA69	IA69 non-annotated region		2	85	7	0	0	60	189	2	27
24	HpasRNA85	RNA85 non-annotated region		3	69	6	0	0	4	13	3	41
25	HpasRNA74	basRNA74 non-annotated region		2	79	7	2	76	11	35	0	0
26	HpasRNA87	HpasRNA87 non-annotated region		3	67	6	0	0	3	9	0	0
27	HpasRNA57 non-annotated region		1	0	96	8	0	0	73	230	4	55
28	HpasRNA77 non-annotated region		5	1	77	6	1	38	25	79	3	41
29	HpasRNA90 non-annotated region		8	2	67	6	0	0	1	3	1	14
30	HpasRNA96 non-annotated region		9	2	62	5	0	0	1	3	1	14
31	HpasRNA99	non-annotated region	9	2	62	5	3	115	9	28	0	0
32	HpasRNA78	non-annotated region	0	0	77	6	1	38	0	0	0	0
33	HpasRNA82	non-annotated region	2	0	71	6	2	76	2	6	0	0
34	HpasRNA92	annotated protein-coding gene	3	1	65	5	2	76	0	0	0	0

<i>Hpa</i> sRNA		ΤΑΡΙ	R target prediction			
	score		alignment	ATG code	putative function	target site location
<i>Hpa</i> sRNA4	2,5	miRNA_3'	GGTAACGAGTTATGACAATGT			
		aln	0 0 0			
		target_5'	TCATTGCTCGATGCTGTTACA	At1g16840	putative transcription factor	5UTR
HpasRNA12	4	miRNA_3'	TCTGAGCGCTCGTGTAGGAAC			
		aln	0 0 0			
		target_5'	AGACTTGTGAGCAGATTCTTG	AT1G66510	AAR2 protein family	3UTR
HpasRNA14	4	miRNA_3'	TCTGCTGAGTTCTAGATGCGT			
		aln	0 0 0			
		target_5'	GGCCGATGCAAGATCTGCGCA	AT4G26940	Hexosyltransferase	Exon
HpasRNA20	4	miRNA_3'	TTGGTAAATCTAGGAGTCAGA			
		aln				

		target_5'	AACCATTTTGATCTTCAATCT	AT3G47990	E3 ubiquitin-protein ligase SIS3	5UTR
HpasRNA75	1	miRNA_3'	ATTGGTCTGCTGATTCGGTTA			
		aln				
		target_5'	TAACCATACGACTAAGCCAAT	AT1G73810	Core-2/I-branching beta-1,6-N- acetylglucosaminyltransferase-like protein	3UTR
	4	miRNA_3'	ATTGGTCTGCTGATTCGGTTA			
		aln	0 0 0			
		target_5'	CGATCCGACGACTGAGCCAAT	AT1G03780	Protein TPX2	exon
HpasRNA39	4	miRNA_3'	GTGCAAAGTCGTCGTAGGCTT			
		aln	0 0			
		target_5'	AATGTTTCGGCAGCATCAGAA	AT1G32330	Heat stress transcription factor A-1d	exon
HpasRNA38	3	miRNA_3'	TAAGGGGAAGTGTGCAGCTTC			
		aln	0 0 00			
		target_5'	GTTTCCCTTTGCACGTCGAAG	AT3G05380	DIRP ;Myb-like DNA-binding domain	exon
HpasRNA2	3,5	miRNA_3'	CCTCAGGGCTCTTTAATTTCT			
		aln	0 0 0			
		target_5'	GGAATCCTGAGGAATTAGAGA	AT3G22420	With no lysine (K) kinase 2	exon
<i>Hpa</i> sRNA36	4	miRNA_3'	GTTCGAGAGGAGCTACAGGTT			
		aln	000 0 0			
		target_5'	TGGGCTCATCTTGATGTCCAA	AT1G55320	AAE18	exon
HpasRNA28	3	miRNA_3'	TAAGGCAGAAGGCGGCGGTAC			
		aln	00 0			
		target_5'	ATTTTCTCTTTCGCCGCCATG	AT5g19430	C3HC4-type RING finger E3 ubiquitin ligase	5UTR
	3	miRNA_3'	TAAGGCAGAAGGCGGCGGTAC			
		aln	0 0			
		target_5'	GTTTCCTCTTCCGCCGCCATC	AT5G66560	BTB/POZ domain-containing protein	exon

	3,5	miRNA_3'	TAAGGCAGAAGGCGGCGGTAC			
		aln	0			
		target_5'	CTTCCGGTTTCCGCCGCCGTG	AT1G15390	Peptide deformylase	exon
HpasRNA51	3,5	miRNA_3'	GTTAGTCATTACAGTTTCAGC			
		aln				
		target_5'	CAATCAGTGATGTCAATGTCT	AT4G27220	NB-ARC domain-containing disease resistance protein	exon
	4	miRNA_3'	GTTAGTCATTACAGTTTCAGC			
		aln				
		target_5'	CTATCAGTAGTGTCAAATTCG	At3g15900	homoserine O-acetyltransferase	exon
HpasRNA52	4	miRNA_3'	TGTGCAGAAGACTTAGGGGAA			
		aln	0 0 0 0			
		target_5'	AGATGTTTTCTGAATTCTCTT	AT4G25690	stress response NST1-like protein	3UTR
HpasRNA44	4	miRNA_3'	GGCAGTGAACCAGAAGCTTAC			
		aln	0 0 0			
		target_5'	TGGTTACTCGGTTTTCGAATG	AT3G19830	Calcium-dependent lipid-binding (CaLB domain) family protein	exon
HpasRNA47	3	miRNA_3'	GTTCAGATTGGCAGGTTCTAC			
		aln				
		target_5'	CAAGTCTCATCGTCCAAGATT	AT3G56970	Transcription factor ORG2	exon
	4	miRNA_3'	GTTCAGATTGGCAGGTTCTAC			
		aln	0			
		target_5'	CAAATCTCATCGTCCAAGATT	AT3G56980	Transcription factor ORG3	exon
HpasRNA43	3,5	miRNA_3'	TTGTCATTTAAAGTCAGCAGT			
		aln	0 0			

		target_5'	AATAGTAAATCTCAGTTGTCA	AT3G47910	Ubiquitin carboxyl-terminal hydrolase- related protein	exon
<i>Hpa</i> sRNA76	3	miRNA_3'	CGGTCTGACGAGGTAGGGCGC			
		aln				
		target_5'	GCAAAACTGCTCCATCCTGCG	AT2G26440	Probable pectinesterase/pectinesterase inhibitor 12	exon
<i>Hpa</i> sRNA30	2,5	miRNA_3'	GTCTCAAATCCTTACCTTTAA			
		aln	0 0			
		target_5'	CAGGTTTTAGGAATGGAAGTT	AT3G51630	Probable serine/threonine-protein kinase WNK5	exon
	3,5	miRNA_3'	GTCTCAAATCCTTACCTTTAA			
		aln	00 . 0 0			
		target_5'	TGGATTTTGGGAATGGAGATT	AT4G34410	Ethylene-responsive transcription factor ERF109	exon
	3,5	miRNA_3'	GTCTCAAATCCTTACCTTTAA			
		aln	0			
		target_5'	CAGATTTTGGGAATGGAAAAT	AT1G50840	polymerase gamma 2	exon
	4	miRNA_3'	GTCTCAAATCCTTACCTTTAA			
		aln	0 0 0			
		target_5'	TAGAGTTAGGGGATGGAAATG	AT2G19430	THO complex subunit 6	exon
<i>Hpa</i> sRNA54	3,5	miRNA_3'	GTGAGGTGGTGTCACGGCCAT			
		aln	0 0 0			
		target_5'	CTCTTCACCACGGTGTCGGTA	AT3G63280	NIMA-related kinase 4	5UTR
<i>Hpa</i> sRNA53	4	miRNA_3'	GATTGGTCTGCTGATTCGGTT			
		aln	0 0			
		target_5'	TTAACGGGACGACTATGCCAA	AT1G47490	Polyadenylate-binding protein RBP47C	exon

	2	miRNA_3'	GATTGGTCTGCTGATTCGGTT			
		aln				
		target_5'	АТААССАТАСGАСТААGCCAA	AT1G73810	Core-2/I-branching beta-1,6-N- acetylglucosaminyltransferase family protein	3UTR
<i>Hpa</i> sRNA61	2	miRNA_3'	CAGGTAGTCTAGACCACTCTT			
		aln	00			
		target_5'	TTCCATTGGATCTGGTGAGAA	AT3G55640	Ca-dependent solute carrier-like protein	exon
<i>Hpa</i> sRNA55	4	miRNA_3'	TTGTATCTCTTTCTGCGGCAT			
		aln	0 0 0			
		target_5'	AAGATGCAGAAAGATGCCGTG	AT3G24460	Serinc-domain containing serine and sphingolipid biosynthesis protein	exon
HpasRNA83	3,5	miRNA_3'	CTTGTTTAAGTACTGTCTAGT			
		aln	0 0 0			
		target_5'	GAACAAGGTTATGATAGATCA	AT5G09450	Pentatricopeptide repeat-containing protein	exon
<i>Hpa</i> sRNA69	4	miRNA_3'	TACGTCATCACAAGCTGCCAT			
		aln	0			
		target_5'	ATGTTGTAGTGTTCGACGGCG	AT5G47560	Tonoplast dicarboxylate transporter	exon
<i>Hpa</i> sRNA85	3,5	miRNA_3'	CTTCTGCAAGTCGTCGTGGCA			
		aln	0			
		target_5'	GGAGACGATCATCAGCACCGT	At2g39950	flocculation protein	exon
<i>Hpa</i> sRNA74	4	miRNA_3'	GGTTTGCAGTGTCTGGCGCAA			
		aln				
		target_5'	ACAAACGTCACTGACTGCGTT	AT5G07730	transmembrane protein	exon
HpasRNA87	3,5	miRNA_3'	ACTCGTCAGACAGGTCTAGTA			
		aln	0 0 0			
		target_5'	TGAGCAGCTTGTCCGGATTAT	AT3G60830	Actin-related protein 7	exon
<i>Hpa</i> sRNA57	4	miRNA_3'	TAGGAAAGGAAGTAGTGACGA			
-------------------	-----	-----------	-----------------------	-----------	---	------
		aln				
		target_5'	ACCCTCTCCTACATCACTGCT	AT5G51480	Monocopper oxidase-like protein SKS2	exon
	2,5	miRNA_3'	TAGGAAAGGAAGTAGTGACGA			
		aln	0 0			
		target_5'	ATCTTTTACTTCATCGCTGCT	AT2G39090	AtAPC7	5UTR
	3,5	miRNA_3'	TAGGAAAGGAAGTAGTGACGA			
		aln	0 0 0			
		target_5'	ACCTTTTCCTTTATCATTGCT	AT3G23010	Disease resistance family protein/LRR family protein	exon
HpasRNA77	3	miRNA_3'	AACGAGTTATGACAATGTCAA			
		aln				
		target_5'	TTGCTCTATACTATTACAGTT	AT5G49030	Isoleucyl-tRNA synthetase	3UTR
	4	miRNA_3'	AACGAGTTATGACAATGTCAA			
		aln				
		target_5'	TTGCCTGAAGCTGTTACAGTT	AT5G50170	C2 and GRAM domain-containing protein	exon
	3,5	miRNA_3'	AACGAGTTATGACAATGTCAA			
		aln				
		target_5'	TTGCTCGATGCTGTTACAGGT	At1g16840	unknown protein	3UTR
HpasRNA90	3,5	miRNA_3'	CGATCACAAGTACTAGTATTT			
		aln	0 0			
		target_5'	TCTGGTGATCGTGATCATAAA	AT2G23160	F-box protein	exon
	4	miRNA_3'	CGATCACAAGTACTAGTATTT			

		aln				
		target_5'	GCTAATGTTCATGGTCGTAGA	AT1G09750	Aspartyl protease AED3	exon
<i>Hpa</i> sRNA96	4	miRNA_3'	CGTTTGAAGTCGTTAGAGCCT			
		aln	0 0			
		target_5'	GCTGCCTGCAGCAATCTCGGG	AT2G42005	Amino acid transporter ANTL1	exon
<i>Hpa</i> sRNA99	4	miRNA_3'	GCGTGAGTCTACTGCTGCTTT			
		aln	0 0 0			
		target_5'	AGGATTCAGATGACGATGAAG	AT2G34170	unknown protein	exon
<i>Hpa</i> sRNA78	4	miRNA_3'	AGAAGGTGCATCGAACGGATC			
		aln	0 0			
		target_5'	TTTTCCTTGAAGCTTGCCTAG	AT2G38820	Protein of unknown function	5UTR
	3	miRNA_3'	AGAAGGTGCATCGAACGGATC			
		aln				
		target_5'	TCTTCAACTTAGCTTGTCTAG	AT3G21250	Multidrug resistance-associated protein 6	Exon
<i>Hpa</i> sRNA82	3	miRNA_3'	TCCAAGACGGTCAAGCAACGA			
		aln	0			
		target_5'	AGTTTCTTCTAGTTCGTTGCT	AT5G57050	AtABI2	Exon
HpasRNA92	4	miRNA_3'	TAAGGAGTCCAGAGTATTAGA			
		aln	0 0 0			
		target_5'	GTTCTTCACGTTTCATGATCT	AT1G49210	E3 ubiquitin-protein ligase ATL76	Exon

<i>Hpa</i> sRNA		level of target site conservation
	ATG code	types and numbers (in brackets) of target site polymorphisms found in 1135 A. thaliana genomes
HpasRNA4	AT1G16840	SNPs (2), deletions (0), insertions (0)
HpasRNA12	AT1G66510	SNPs (4), deletions (2), insertions (0)
HpasRNA14	AT4G26940	SNPs (0), deletions (0), insertions (0)
HpasRNA20	AT3G47990	SNPs (3), deletions (0), insertions (0)

HpasRNA75	AT1G73810	SNPs (1), deletions (0), insertions (0)
	AT1G03780	SNPs (2), deletions (0), insertions (0)
HpasRNA39	AT1G32330	SNPs (5), deletions (0), insertions (0)
HpasRNA38	AT3G05380	SNPs (1), deletions (0), insertions (0)
HpasRNA2	AT3G22420	SNPs (1), deletions (0), insertions (0)
HpasRNA36	AT1G55320	SNPs (2), deletions (0), insertions (0)
HpasRNA28	AT5g19430	SNPs (3), deletions (0), insertions (0)
	AT5G66560	SNPs (1), deletions (0), insertions (0)
	AT1G15390	SNPs (2), deletions (0), insertions (0)
HpasRNA51	AT4G27220	SNPs (2), deletions (0), insertions (0)
	At3g15900	SNPs (0), deletions (0), insertions (0)
HpasRNA52	AT4G25690	SNPs (2), deletions (0), insertions (0)
HpasRNA44	AT3G19830	SNPs (2), deletions (0), insertions (0)
HpasRNA47	AT3G56970	SNPs (3), deletions (0), insertions (0)
	AT3G56980	SNPs (0), deletions (0), insertions (0)
HpasRNA43	AT3G47910	SNPs (0), deletions (0), insertions (0)
HpasRNA76	AT2G26440	SNPs (0), deletions (0), insertions (0)
HpasRNA30	AT3G51630	SNPs (0), deletions (0), insertions (0)
	AT4G34410	SNPs (1), deletions (0), insertions (0)
	AT1G50840	SNPs (2), deletions (0), insertions (0)
	AT2G19430	SNPs (1), deletions (0), insertions (0)
HpasRNA54	AT3G63280	SNPs (3), deletions (0), insertions (0)
HpasRNA53	AT1G47490	SNPs (4), deletions (0), insertions (0)
	AT1G73810	SNPs (2), deletions (0), insertions (0)
HpasRNA61	AT3G55640	SNPs (0), deletions (0), insertions (0)
HpasRNA55	AT3G24460	SNPs (0), deletions (0), insertions (0)
HpasRNA83	AT5G09450	SNPs (0), deletions (0), insertions (0)
HpasRNA69	AT5G47560	SNPs (1), deletions (0), insertions (0)

HpasRNA85	At2g39950	SNPs (0), deletions (0), insertions (0)
HpasRNA74	AT5G07730	SNPs (1), deletions (0), insertions (0)
HpasRNA87	AT3G60830	SNPs (0), deletions (0), insertions (0)
HpasRNA57	AT5G51480	SNPs (3), deletions (0), insertions (0)
	AT2G39090	SNPs (2), deletions (0), insertions (1)
	AT3G23010	SNPs (2), deletions (0), insertions (1)
HpasRNA77	AT5G49030	SNPs (2), deletions (0), insertions (0)
	AT5G50170	SNPs (0), deletions (0), insertions (0)
	AT1G16840	SNPs (2), deletions (0), insertions (0)
HpasRNA90	AT2G23160	SNPs (1), deletions (1), insertions (0)
	AT1G09750	SNPs (0), deletions (0), insertions (0)
HpasRNA96	AT2G42005	SNPs (3), deletions (0), insertions (0)
HpasRNA99	AT2G34170	SNPs (0), deletions (0), insertions (0)
HpasRNA78	AT2G38820	SNPs (1), deletions (0), insertions (0)
	AT3G21250	SNPs (0), deletions (0), insertions (0)
HpasRNA82	AT5G57050	SNPs (4), deletions (0), insertions (0)
HpasRNA92	AT1G49210	SNPs (2), deletions (0), insertions (0)

Supplemental file 3 List of oligonucleotides used in this study.

Primer name	Sequence	Purpose
Hpa_siR2_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGAGTC	Stemloop RT
Hpa_siR2_fwd	GCGGCGGTTCTTTAATTTCTCG	PCR
Hpa_siR30_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGAGT	Stemloop RT
Hpa_siR30_fwd	GCGGCGAATTTCCATTCCTA	PCR
Hpa_siR90_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGAGCTAGT	Stemloop RT

Hpa_siR90_fwd	GCGGCGGCGGGATGGAGCA	PCR
At_miR164_SL	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCACG	Stemloop RT
At_miR164_fwd	GCGGCGTGGAGAAGCAGGGC	PCR
At_miR393*_SL	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAATCCA	Stemloop RT
At_miR393*_fwd	CTCGCTATCATGCGATCTCT	PCR
univ_stemloop_PCR_r	GTATCCAGTGCAGGGTCCGAGGT	PCR
ev		
Hpa_ACT_fwd	GTGTCGCACACTGTACCCATTTAT	PCR for pathogen
		biomass
Hpa_ACT_rev	ATCTTCATCATGTAGTCGGTCAAGT	PCR for pathogen
		biomass
Ath_iASK_fwd	CTTATCGGATTTCTCTATGTTTGGC	PCR for pathogen
		biomass (from
		Gachon &
		Saindrenan 2004)
Ah_iASK_rev	GAGCTCCTGTTTATTTAACTTGTACATACC	PCR for pathogen
		biomass (from
		Gachon &
		Saindrenan 2004)
Ec_TUB_fwd	TGACAGCCCGGAATGAGT	PCR for pathogen
		biomass
		(Engelsdorf et al.,
		2015)

	TTGTCTTCCTTTCCCAGGTC	DCP for pathagan
EC_TOB_Tev	TIGICITEGITIECEAGGIE	PCR for pathogen
		biomass
		(Engelsdorf et al.,
		2015)
At_PR1_fwd	CTCGGAGCTACGCAGAACAA	qRT-PCR
At_PR1_rev	GCCTTCTCGCTAACCCACAT	qRT-PCR
At_PDF1.2_fwd	CTTGTTCTCTTTGCTGCTTTCGAC	qRT-PCR
At_PDF1.2_rev	TAGTTGCATGATCCATGTTTG	qRT-PCR
At_RPP4_fwd	GAAGGCACTCAAGGCCTCATT	qRT-PCR
At_RPP4_rev	GACAATAATCCCACCATAGCCTTT	qRT-PCR
At_SNC1_fwd	GCCGGATATGATCTTCGGAA	qRT-PCR
At_SNC1_rev	CGGCAAGCTCTTCAATCATG	qRT-PCR
At_WNK2_fwd	CTTGGACTCGCTGCGATTC	qRT-PCR
At_WNK2_rev	GATTTGTGCCGGGTGAGTACAT	qRT-PCR
At_AED3_fwd	AGAGACGAGTTTAGGAAGCA	qRT-PCR
At_AED3_rev	AAAAAGAGAGAGAGAGAGAGA	qRT-PCR
At_RBOHD_fwd	CGAATGGCATCCTTTCTCAATC	qRT-PCR (from
		Morales et al. 2016)
At_RBOHD_rev	GTCACCGAGAGTGCGGATATG	qRT-PCR (from
		Morales et al. 2016)
At_RBOHF_fwd	CTTGGCATTGGTGCAACTCC	qRT-PCR (from
		Morales et al. 2016)

TCTTTCGTCTTGGCGTGTCA	qRT-PCR (from
	Morales et al. 2016)
CAGTGGTCGTACAACCGGTATT	qRT-PCR
GTCTCTTACAATTTCCCGCTCT	qRT-PCR
ATTTTGCCGATTTCGGAAC	Genotyping PCR
TAGCATCTGAATTTCATAACCAATCTCGATACAC	Genotyping PCR
CTCGTCTCATCTCATTCTCCG	Genotyping PCR
TTGCGTTGGTACTTCAAAACC	Genotyping PCR
TCGATCTTTTCGCTAACGATG	Genotyping PCR
TTCCCCACTATTTGTGTGCTC	Genotyping PCR
CCTCATCCACTTACTCAACCG	Genotyping PCR
CGCTGAAGCAAGAGATGAAAC	Genotyping PCR
AGGTCTCTCACCGGAGTCCCGAGctaAAATTAAAGAgttgttgttgttgttgttatggtctaatttaaatatg	Full length STTM
gtctaaagaagaagaatGGAGTCCCGAGctaAAATTAAAGAAAGGTGAGACCA	
AGGTCTCTCACCCAGAGTTTAGGctaAATGGAAATTgttgttgttgttgttatggtctaatttaaatatg	Full length STTM
gtctaaagaagaagaatCAGAGTTTAGGctaAATGGAAATTAAGGTGAGACCA	
	TCTTTCGTCTTGGCGTGTCA CAGTGGTCGTACAACCGGTATT GTCTCTTACAATTTCCGGAAC ATTTTGCCGATTTCGGAAC TAGCATCTGAATTTCATAACCAATCTCGATACAC CTCGTCTCATCTCATTCTCATCCG TTGCGTTGGTACTTCAAAACC TCGATCTTTTCGCTAACGATG TTCCCCACTATTTGTGTGCTC CCTCATCCACTTACTCAACCG CCTCATCCACTTACTCAACCG CGCTGAAGCAAGAGAGAGAGAAC AGGTCTCTCACCGGAGTCCCGAGctaAAATTAAAGAgttgttgttgttatggtctaatttaaatatg gtctaaagaagaagaatGGAGTCCCGAGctaAAATTAAAGAAAGGTGAGACCA AGGTCTCTCACCCAGAGTTTAGGctaAATGGAAATTGGAAATTGAGGTGAGACCA

STTM siR90	AGGTCTCTCACCGCTAGTGTTCActaTGATCATAAAgttgttgttgttgttgttgttgttatggtctaatttaaatatg	Full length STTM
	gtctaaagaagaagaatGCTAGTGTTCActaTGATCATAAAAAGGTGAGACCA	
STTM rRNA	AGGTCTCTCACCAGTCAGACGAActaCGATTTGCAgttgttgttgttgttgttatggtctaatttaaatatg	Full length STTM
	gtctaaagaagaagaatAGTCAGACGAActaCGATTTGCAAAGGTGAGACCA	
STTM scrambledRNA	AGGTCTCTCACCTCTCAATTCCctaTCAGGATTCCgttgttgttgttgttgttgttatggtctaatttaaatatg	Full length STTM
	gtctaaagaagaagaatTCTAGGACCATctaGAACATTAGCAAGGTGAGACCA	
Outer_WNK2_fwd	ATGAAGACATTACGGGTCTCACACCATGAATGGTGAAGAAAGCTT	WNK2r cloning
Outer_WNK2_rev	ATGAAGACATCAGAGGTCTCACCTTCATATCCACGGCATCCACAG	WNK2r cloning
Bsal_WNK2_fwd	ATGAAGACATGAGGCCTATTGATTACTACAAT	WNK2r cloning
Bsal_WNK2_rev	ATGAAGACATCCTCATAACAAATCCATCCA	WNK2r cloning
Bpil_WNK2_fwd	ATGAAGACATAGGACAAGAGCTGTTCTTC	WNK2r cloning
Bpil_WNK2_rev	ATGAAGACATTCCTCAGAACTATCGAACTCAT	WNK2r cloning
target_site_mut_fwd	ATGAAGACATAAACCCTGAAGAGCTGGAAAAGTTTTTCAGAGAGTTC	WNK2r cloning
target_site_mut_rev	ATGAAGACATTTCCAGCTCTTCAGGGTTTCTTGTGAAATTTCGAAGC	WNK2r cloning
Outer_AED3_fwd	ATGAAGACATTACGGGTCTCACACCATGGCCTCCTCAAGTCTCCATT	AED3r cloning
Outer_AED3_rev	ATGAAGACATCAGAGGTCTCACCTTGTTGCAGGGCTCAGGAGCAATTC	AED3r cloning
Bsal(1)_AED3_fwd	ATGAAGACATATCTCAAACTACGTCGCTTTAC	AED3r cloning
Bsal(1)_AED3_rev	ATGAAGACATAGATACCAATGACATAGGCCC	AED3r cloning
Bsal(2)_AED3_fwd	ATGAAGACATATTGGGTCAACCCAAATCCATC	AED3r cloning
Bsal(2)_AED3_rev	ATGAAGACATCAATAGACCCAGTTTCAACGAC	AED3r cloning
target_site_mut_fwd	ATGAAGACATACTGATGTTTATGGTACTCGACACAAGTAACGACGCCGTTTG	AED3r cloning
target_site_mut_rev	ATGAAGACATCAGTTGTGGAGGAGTGCCGAGTTTG	AED3r cloning

Outer_proWNK2_fwd	ATGAAGACATTACGGGTCTCAGCGGCATTCTTATAATTTCTTATGG	WNK2 promoter
		cloning
Outer_proWNK2_rev	ATGAAGACATCAGAGGTCTCACAGAGCGTCGGTTTACTAAACCGG	WNK2 promoter
		cloning
Outer_proAED3_fwd	ATGAAGACATTACGGGTCTCAGCGGATCTCTGCTCAACCACCAAG	AED3 promoter
		cloning
Outer_proAED3_rev	ATGAAGACATCAGAGGTCTCACAGAGGTTTTGGCTAATGTGATTG	AED3 promoter
		cloning
Bsal(1)_proAED3_fwd	ATGAAGACATCGCGTGAACGAACAATGAGAG	AED3 promoter
		cloning
Bsal(1)_proAED3_rev	ATGAAGACATCGCGACCTCTGAAATACTTAC	AED3 promoter
		cloning
GUS_fwd	CGGGTCTCACACCATGTTACGTCC	Silencing reporter
		cloning
GUS_rev	AGAGGTCTCTCCTTTTGTTTGCC	Silencing reporter
		cloning
Csy4 binding site full	ATGGTCTCATCTGAACAATGGTTCACTGCCGTATAGGCAGCTAAGAAAGGCACCAGAGACC	Silencing reporter
length	AT	cloning
siR2/siR90 target site	ATGGTCTCATCTGAACAATGGGAATCCTGAGGAATTAGAGAGCTAATGTTCATGGTCCTAGA	Silencing reporter
upstream	GGCACCAGAGACCAT	cloning
siR2/siR90 target site	ATGGTCTCAAAGGCAGGAATCCTGAGGAATTAGAGAGCTAATGTTCATGGTCCTAGATGGAA	Silencing reporter
downstream	TCAGAGACCAT	cloning

miR164a target site	ATGGTCTCATCTGAACAATGAGCACGTGTCCTGTTTCTCCAGGCACCAGAGACCAT	Silencing reporter
upstream		cloning
miR164a target site	ATGGTCTCAAAGGCAAGCACGTGTCCTGTTTCTCCATGGAATCAGAGACCAT	Silencing reporter
downstream		cloning
scrambled target site	ATGGTCTCATCTGAACAATGATGCTGCATTTGCACTCTCCGGCACCAGAGACCAT	Silencing reporter
upstream		cloning
scrambled target site	ATGGTCTCAAAGGCAATCATCATCATCATCATCATCTGGAATCAGAGACCAT	Silencing reporter
downstream		cloning
AED3_RT	CACATTCACCTGCTTCCTAAAC	5' RACE
AED3_PCR_primer	ATAGTAAAGTGATGGACGGCG	5' RACE
AED3_nested_PCR_p	AAGCTAGGGAGGCAGTATGAG	5' RACE
rimer		
WNK2_RT	CATCATCACCGTTTCTCTCCC	5' RACE
WNK2_PCR_primer	TCTCAACAAACTCACGAACCTC	5' RACE
WNK2_nested_PCR_	GTAACCATCTCCAACACAC	5' RACE
primer		

II: Plant ARGONAUTE protein immunopurification for pathogen cross kingdom small RNA analysis.

Plant ARGONAUTE Protein Immunopurification for Pathogen Cross Kingdom Small RNA Analysis Florian Dunker[#], Bernhard Lederer[#] and Arne Weiberg^{*}

Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany

*For correspondence: <u>a.weiberg@lmu.de</u>

[#]Contributed equally to this work

[Abstract] Over the last decade, it has been noticed that microbial pathogens and pests deliver small RNA (sRNA) effectors into their host plants to manipulate plant physiology and immunity for infection, known as cross kingdom RNA interference. In this process, fungal and oomycete parasite sRNAs hijack the plant ARGONAUTE (AGO)/RNA-induced silencing complex to post-transcriptionally silence host target genes. We hereby describe the methodological details of how we recovered cross kingdom sRNA effectors of the oomycete pathogen *Hyaloperonospora arabidopsidis* during infection of its host plant *Arabidopsis thaliana*. This Bio-protocol contains two parts: first, a detailed description on the procedure of plant AGO/sRNA co-immunopurification and sRNA recovery for Illumina high throughput sequencing analysis. Second, we explain how to perform bioinformatics analysis of sRNA sequence reads using a Galaxy server. In principle, this protocol is suitable to investigate AGO-bound sRNAs from diverse host plants and plant-interacting (micro)organisms.

Keywords: Cross kingdom RNA interference, ARGONAUTE co-immunopurification, Small RNA, Plantmicrobe interactions, *Arabidopsis thaliana*, *Hyaloperonospora arabidopsidis*, Downy mildew disease

[Background] Small RNAs (sRNAs) can serve as pathogen effectors that hijack the plant ARGONAUTE (AGO)/RNA-induced silencing complex (RISC) and silence host mRNAs for infection, a virulence mechanism termed cross kingdom RNA interference (Weiberg *et al.*, 2015; Zeng *et al.*, 2019). Profiling the repertoire of sRNAs bound to the plant AGO during infection is the method of choice, to gain a global overview on plant-invasive pathogen sRNAs that might function through the host AGO/RISC. Antibody-based, co-immunopurification (co-IP) of plant AGO/sRNAs, the functional components of a RISC, coupled to sRNA high throughput sequencing is the gold standard to quantify silencing sRNAs in plants (Mi *et al.*, 2008; Montgomery *et al.*, 2008; Carbonell *et al.*, 2012). Such approaches have led to the discovery of specifications for the binding of sRNAs to distinct members of the plant AGO protein family (Mi *et al.*, 2008; Montgomery *et al.*, 2008) and revealed characteristic changes of AGO-bound sRNA profiles according to plant environmental and stress responses (Zhang *et al.*, 2011). In this context, protocols have been published describing how to co-immunopurify plant AGO/sRNAs in order to study AGO-bound, endogenous plant sRNAs under various conditions (Qi and Mi, 2009; Zhao *et al.*, 2012; Carbonell, 2017).

1

www.bio-protocol.org/e3911

2

In this bio-protocol, we provide a detailed description of *A. thaliana* AGO1/sRNAs co-IP isolated from *H. arabidopsidis*-infected seedlings and the recovery of both plant and pathogen AGO1-bound sRNAs for high throughput sequencing analysis. By this method, we discovered several novel pathogen sRNA effectors as well as plant silencing sRNAs that were responsive to *H. arabidopsidis* infection (Dunker *et al.*, 2020). Applying this protocol allowed us to investigate sRNAs bound to other members of the plant AGO family, as well. For instance, we successfully co-immunopurified *A. thaliana* AGO2/sRNAs using a *proAGO2:HA-AGO2* transgenic *A. thaliana* line (Montgomery *et al.*, 2008) in combination with commercial anti-Human influenza hemagglutinin (HA) antibody, and could identify several AGO2-bound *H. arabidopsidis* sRNAs (Dunker *et al.*, 2020). Although experimentally validated in the *A. thaliana* system, we propose this protocol being suitable for AGO/sRNAs co-IP and analysis of silencing sRNAs in various plant species and plant-interacting (micro)organisms, given a suitable antibody for AGO co-IP is available and host and microbe genome sequences are known.

Materials and Reagents

Materials

- 1. Blotting paper (Ahlstrom Munksjö, catalog number: BF4)
- 2. DNA LoBind[®] 1.5 ml reaction tubes (Eppendorf, catalog number: 0030108051)
- 3. Falcon tubes 50 ml and 15 ml (Greiner Bio-One, catalog numbers: 227261 and 188271)
- 4. Glass pipettes (10 ml)
- 5. Miracloth (Merck Millipore, catalog number: 475855)
- 6. Propagation soil substrate (Stender, catalog number: A210)
- 7. Reaction tubes 1.5 and 2 ml (Sarstedt, catalog numbers: 72.690 and 72.691)
- 8. 14-day-old Arabidopsis thaliana seedlings (ecotype Col-0)
- 9. *Hyaloperonospora arabidopsidis* spores (strain Noco2)

Reagents

Note: If this protocol refers to water, it always implies de-ionized, ultrapure water.

- 1. Liquid nitrogen
- 2. Acrylamide/bis-acrylamide solution (Rotiphorese Gel A, Carl Roth, catalog number: 3037)
- 3. Anti-AGO1 polyclonal antibody (Agrisera, catalog number: AS09 527)
- 4. Ammonium persulfate (APS) p.a. (Carl Roth, catalog number: 9592)
- 5. Bromophenol blue Dye (Carl Roth, catalog number: A512)
- 6. cOmplete[®] protease inhibitor cocktail (Roche, ordered via Sigma-Aldrich, catalog number: 04693116001)
- 7. Diethyl pyrocarbonate (DEPC, Carl Roth, catalog number: K028)
- 8. 1,4-Dithiothreitol p.a. (DTT, Carl Roth, catalog number: 6908)
- Desoxyribonucleotide mix (dNTP, 10 mM each nucleotide type) for molecular biology (New England Biolabs, catalog number: N0447)

Copyright Dunker et al.

This article is distributed under the terms of the Creative Commons Attribution License (CC BY4.0).

www.bio-protocol.org/e3911

3

- 10. 96% Ethanol Ph. Eur. (VWR chemicals, catalog number: 20905.296)
- 11. Ethylenediamine tetraacetic acid (EDTA) disodium salt dehydrate (Gerbu Biotechnik Gmbh, catalog number: 1034)
- 12. Glacial acetic acid (Carl Roth, catalog number: 3738)
- 13. Glycerol Ph. Eur. (Carl Roth, catalog number: 6967)
- 14. Glycine p.a. (PanReac/AppliChem, catalog number: 131340)
- 15. Glycogen RNA grade (Thermo Fisher Scientific, catalog number: R0551)
- 16. GoTaq[®] G2 DNA Polymerase (Promega, catalog number: M7841)
- 17. IRDye® 800CW Goat anti-Rabbit IgG Secondary Antibody (LI-COR, catalog number: 926-32211)
- Magnesium chloride (25 mM; for molecular biology) (New England Biolabs, catalog number: B9021)
- 19. NEBNext[®] Multiplex Small RNA Library Prep Set for Illumina (New England Biolabs, catalog number: E7300)
- 20. Nonidet P-40 (NP-40, no longer available, the replacement product is IGEPAL CA-630 Sigma-Aldrich, catalog number: I8896)
- 21. 10 bp O'RangeRuler DNA ladder (Thermo Fisher Scientific, catalog number: SM1313)
- 22. Potassium chloride (KCI) molecular biology grade (Merck Millipore, catalog number: 529552)
- 23. Potassium dihydrogen phosphate (KH₂PO₄) p.a. (Carl Roth, catalog number 3904)
- 24. Protein A agarose (Roche, ordered via Sigma-Aldrich, catalog number: PROTAA-RO)
- 25. Proteinase K (Thermo Fisher Scientific, catalog number: EO0491)
- 26. RiboLock® RNase inhibitor (Thermo Fisher Scientific, catalog number: EO0381)
- 27. ROTI C/I (Chlorofom/Isoamyl alcohol mixture, Carl Roth, catalog number: X984)
- 28. ROTI-Phenol (Carl Roth, catalog number: 0038)
- 29. ROTI-Phenol/Chloroform/Isoamyl alcohol (Carl Roth, catalog number: A156)
- 30. Sodium chloride (NaCl) p.a. (Carl Roth, catalog number: 3957)
- 31. Sodium dodecyl sulfate (SDS) ultrapure (Carl Roth, catalog number: 2326)
- 32. SuperScript[®] III (Thermo Fisher Scientific, catalog number: 18080093)
- 33. Disodium hydrogen phosphate (Na₂HPO₄) p.a. (Carl Roth, T876)
- 34. Tetramethylethylenediamine (TEMED) for electrophoresis (Carl Roth, catalog number: 2367)
- 35. 1 M Tris-HCl pH 6.8 stock solution (made from Tris ultrapure, PanReac/AppliChem, catalog number: A1086, pH adjusted with HCl, Carl Roth, catalog number: X896)
- 36. 1 M Tris-HCl pH 7.5 stock solution (made from Tris ultrapure, PanReac/AppliChem, catalog number: A1086, pH adjusted with HCl, Carl Roth, catalog number: X896)
- 37. 1 M Tris-HCl pH 8.0 stock solution (made from Tris ultrapure, PanReac/AppliChem, catalog number: A1086, pH adjusted with HCl, Carl Roth, catalog number: X896)
- 1.5 M Tris-HCl pH 8.8 stock solution (made from Tris ultrapure, PanReac/AppliChem, catalog number: A1086, pH adjusted with HCl, Carl Roth, catalog number: X896)
- 39. Tris ultrapure (PanReac/AppliChem, catalog number: A1086)
- 40. Triton X-100 (Carl Roth, catalog number: 6683)

Copyright Dunker et al.

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

www.bio-protocol.org/e3911

4

- 41. Tween 20 (Sigma-Aldrich, catalog number: P9416)
- 42. 5× Protein SDS loading buffer (see Recipes)
- 43. 10× Protein SDS running buffer (see Recipes)
- 44. 10× Protein transfer buffer (see Recipes)
- 45. 10× PBS pH 7.4 (see Recipes)
- 46. 50× TAE buffer (see Recipes)
- 47. DEPC-treated water (see Recipes)
- 48. IP extraction buffer (see Recipes)
- 49. IP washing buffer (see Recipes)
- 50. RNA release buffer (see Recipes)
- 51. 6% 0.5× TAE gel (see Recipes)
- 52. 10% 0.5× TAE gel (see Recipes)
- 53. 8% SDS resolution gel (see Recipes)
- 54. SDS stacking gel (see Recipes)

Equipment

- 1. Falcon cooling centrifuge with 15 ml and 50 ml adapters (Eppendorf, model: 5810R, catalog number: 5811000325)
- 2. Funnel (e.g., Plastic funnel, Carl Roth, catalog number: 2041)
- 3. Growth chamber
- 4. Hemocytometer (Neubauer counting chamber, Carl Roth, catalog number: PC73.1)
- 5. Mortar and pestle
- 6. PAGE electrophoresis system (Mighty small II system, Hoefer Inc., catalog number: SE250)
- 7. PCR cycler (FlexCycler, Analytik Jena, succession product is Biometra TOne, Analytik Jena)
- 8. Standard pipettes of 100-1000 μl, 20-200 μl, 2-20 μl and 1-10 μl (Gilson, catalog numbers: F123602, F123601, F123600, F144802)
- 9. Pipette controller (Integra Biosciences, ordered via VWR, catalog number: 612-0927)
- 10. Rolling shaker (TRM 50, IDL GmbH, catalog number: 5200330100)
- 11. Rotator (AG, FINEPCR, no order number found)
- 12. Small scissors
- 13. Spatula
- 14. Spray unit (Carl Roth, catalog number: YC44.1)
- 15. Tabletop centrifuge for micro tubes (Eppendorf, model: 5424R, catalog number: 5404000410)
- 16. Table top mixer (Scientific Industries, model: Vortex Genie 2, catalog number: SI-0236)
- 17. Thermo shaker with 1.5 ml reaction tube adapter (Eppendorf, model: Thermomixer C, catalog number: 5382000015, can be also used as heat block)
- 18. Wet blot tank system (Mighty small transfer tank, Hoefer Inc., catalog number: TE22)

Copyright Dunker et al.

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

www.bio-protocol.org/e3911

Software

Software, bioinformatics tools, and databases:

- 1. Galaxy server (release 19.01)
- Illumina Demultiplex (Galaxy Version 1.0.0) (alternative tool for demultiplexing: bcl2fastqc <u>https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html</u>)
- Clip adaptor sequence (Galaxy Version 1.0.0) (alternative tool for adapter trimming: Trimmomatic [Bolger et al., 2014])
- 4. Filter FASTQ reads by quality score and length (Galaxy Version 1.0.0)
- 5. FastQC Read Quality reports (Galaxy Version 0.72)
- 6. Map with Bowtie for Illumina (Galaxy Version 1.1.0)
- 7. SAM to FASTQ creates a FASTQ file (Galaxy Version 1.56.1)
- 8. Filter with SortMeRNA of ribosomal RNAs in metatranscriptomic data (Galaxy Version 2.1b.6)
- 9. Collapse FASTA sequences (Galaxy Version 1.0.0)
- 10. TAPIR: target prediction for plant microRNAs (Bonnet et al., 2010)
- 11. A. thaliana TAIR10.0 genome sequence, cDNA sequences
- H. arabidopsidis Noks1 (PRJNA298674), Noks1 is a single spore isolate from a Noco2 sample (Bailey et al., 2011)

Procedure

Note: Figure 1 provides an overview scheme of the protocol wet-lab part for your consideration. Plant AGO/sRNA co-immunopurification does not require in vivo cross-linking. Before starting, we suggest carefully read the entire protocol. During the procedure, work as quickly as possible, on ice and in a 4 °C cold room, when possible, in order to prevent RNA or protein degradation.

Figure 1. Schematic workflow of plant AGO co-IP for sRNA analysis. *A. thaliana* seedling leaves infected with *H. arabidopsidis* were ground under liquid nitrogen with pestle and mortar. After adding the IP extraction buffer to the ground leaf material, *A. thaliana* AGO1 proteins were immunopurified (IP) using an AGO1-specific antibody and Protein A agarose beads. After washing the beads, IP samples were used for Western blot analysis and small RNA extraction in a sample volume ratio of 30%/70%, respectively. As a quality control for successful IP, AGO1 was tested in the crude extract (CE), in the supernatant (SN), and in the IP fractions by the Western blot analysis, using total protein reference stained by Coomassie Brilliant Blue (CBB) as a loading control (I.), refer to Figure 2 for a Western blot example. As a quality control for successful co-IP and sRNA extraction, an aliquot (12.5%) of the extracted RNA was used for stem-loop RT PCR amplifying the *A. thaliana* miR398 (AtmiR398) known to bind AGO1 (II.), refer to Figure 3 for a stem-loop RT PCR example. Upon positive results of protein and RNA quality control experiments, the sRNA library was prepared for Illumina-based sequencing (III.).

A. A. thaliana seedling inoculation with H. arabidopsidis

Note: We normally perform dual co-IP experiment of a mock-treated and a pathogen-inoculated sample. However, if more samples are to be prepared, we suggest to process them sequentially in

www.bio-protocol.org/e3911

order to prevent protein or RNA degradation. The following inoculation procedure was adapted from Asai et al. (2015).

- Use 14-day-old *A. thaliana* Col-0 seedlings grown under long-day condition (16 h light/8 h dark) at 22 °C and 60% relative humidity in propagation soil substrate. Prepare 10 squared pots (7 × 8 cm) of seedlings per AGO co-IP experiment to obtain enough leaf material.
- Collect conidiospores of *H. arabidopsidis* strain Noco2 from *A. thaliana* Col-0 infected seedlings at 7 days post inoculation using small scissors. Pool collected leaves in a 50 ml Falcon tube avoiding any soil particles.
- 3. Harvested approximately 2 g of infected fresh leaf material and add 10 ml water to wash off the conidiospores from infected leaves by vigorously shaking the Falcon tube. Filter the conidiospore suspension through a Miracloth and estimate conidiospore concentration by counting conidiospores with a hemocytometer using a light microscope. Adjust the conidiospore suspension to a concentration of 2.5 × 10⁴ spores/ml.
- 4. Evenly spray 10 ml of 2.5×10^4 spores/ml suspension (or water as mock treatment) on top of *A*. *thaliana* seedlings using a spray unit.
- 5. Cover the inoculated or mock-treated seedlings with a transparent lid and seal it, for instance with adhesive tape, to keep high humidity for infection. Incubate the seedlings under long-day conditions (16 h light/8 h dark) at 18 °C for 4-7 days.
- B. Plant AGO/sRNA co-immunopurification
 - Harvest 5 grams of fresh leaf material at a given time point (in this protocol, we refer to 4 and 7 days post inoculation) with a small pair of scissors and directly transfer leaf material into a precooled mortar containing liquid nitrogen. Grind the leaves into a fine powder with a pre-cooled pestle. Avoid carrying over any soil particles.
 - 2. Once the entire leaf material is powdered, pre-cool a 50 ml Falcon tube and a spatula tip using liquid nitrogen. Transfer the powdered leaf material from the mortar into the Falcon tube using the pre-cooled spatula. Optionally, use a pre-cooled funnel for the transfer. Double-check that all liquid nitrogen has been evaporated before closing the Falcon tube with the plastic lid to avoid explosion of the tube. Place the closed Falcon tube back into liquid nitrogen.
 - 3. Place the Falcon tube from the liquid nitrogen into an ice box and add immediately 20 ml of immunopurification (IP) extraction buffer per 5 grams leaf fresh weight. Due to low temperature of the sample, the IP extraction buffer might freeze at this step. Close the Falcon tube again and thoroughly mix the leaf material in the buffer by placing it on a rolling shaker in a 4 °C cold room to let it thaw. Thawing might take up to 50 min.
 - 4. Double-check that thawing is complete, before proceeding.
 - 5. From this step onwards, always keep the sample placed on ice. Spin-down the leaf debris at $3,200 \times g$ for 15 min using a pre-cooled (4 °C) centrifuge.
 - 6. In a 4 °C cold room, filter the supernatant through a two-layered Miracloth into a new Falcon tube with the help of a glass pipette to remove the cell debris. At this point, split a sample into

Copyright Dunker et al.

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

www.bio-protocol.org/e3911

two aliquots of 10 ml each. Set aside a 200 μ l aliquot from this filtered crude extract (CE = input sample) for Western blot analysis. Mix the Western blot sample with 50 μ l 5× protein SDS loading buffer and boil it for 5 min at 95 °C in a thermo shaker. Store the Western blot sample at -20 °C until further use.

7. To continue with AGO co-immunopurification, add 5 µg anti-AGO1 antibody per 5 g original leaf tissue weight as well as 200 µl of protein A agarose beads to the crude extract. Incubate the sample on a rotation wheel for 2 h in a 4 °C cold room.

Note: The Protein A agarose beads in the Materials list are provided being pre-equilibrated and ready to use by the manufacturers. Read carefully the manufacturers' manual on how to use this product.

- 8. Spin-down the sample in a pre-cooled centrifuge at 200 × g and 4 °C for 30 s. Take a 200 μl aliquot from the supernatant (SN = unbound fraction) for Western blot analysis. Mix the Western blot sample with 50 μl 5× protein SDS loading buffer and boil it for 5 min at 95 °C. Store the Western blot sample at -20 °C until further use.
- 9. To continue with AGO co-IP, discard the rest of the supernatant. Add 1 ml of ice-cold IP wash buffer to the pelleted beads of the sample, carefully resuspend the beads by pipetting up and down and unify the two sample aliquots into a single 2 ml micro tube.
- 10. Spin down the sample in a pre-cooled centrifuge at 200 \times g and 4 °C for 30 s. Remove the supernatant and wash the pelleted beads with 1 ml freshly prepared, ice-cold IP wash buffer by pipetting up and down.
- 11. Repeat the washing step of the pelleted beads 3 more times.
- 12. Resuspend the pelleted beads in 1 ml wash buffer and transfer 300 μl (30% of the sample volume) into a new micro tube for Western blot analysis (IP = immunopurified fraction), keeping the remaining 700 μl (70% of the sample volume) for RNA extraction. Spin-down both sample aliquots and discard the supernatant.
- 13. Add 50 µl of 1× protein SDS loading buffer (prepared from 5× protein SDS loading buffer by diluting with IP wash buffer) to the pelleted beads of the Western blot sample. Boil the beads with the loading buffer for 5 min at 95 °C. Store the Western blot sample at -20 °C until further use.
- C. sRNA recovery from co-immunopurified AGO1 bound to Protein-A agarose beads Note: Adequate personal protection is mandatory during this part of the protocol since toxic chemicals such as Proteinase K, SDS, phenol, and chloroform are used. Dispose all toxic chemicals according to local legislation.
 - Add 300 µl of IP wash buffer and resuspend the pelleted beads by pipetting up and down. Add 150 µl of RNA release buffer. Incubate the sample in a thermo shaker at 300 rpm and 65 °C for 15 min.
 - 2. Add 450 µl water-saturated phenol and mix the samples using a vortexer for 2 min.

www.bio-protocol.org/e3911

- 3. Separate the phenol-water phases by centrifugation at $10,000 \times g$ at room temperature for 8 min, and transfer the upper aqueous phase including the RNA into a new micro tube.
- 4. Add 450 μl of Phenol/Chloroform/Isoamylalcohol (PCI) mixture (25:24:1) to the RNA sample, invert the sample 10 times and separate the PCI-water phases by centrifugation at 10,000 × g and room temperature for 8 min, and transfer the upper aqueous phase containing the RNA into a new micro tube.
- 5. Repeat the Step C4 two additional times, using Chloroform/Isoamylalcohol mixture (24:1) instead of the PCI. Take great care to avoid carry-over of any traces of the organic phase before starting RNA precipitation. Optionally from this step on, DNA/RNA LoBind[®] plastic ware can be used to reduce RNA loss.
- Precipitate the RNA of the sample by adding in the given order 0.1× volume 3 M sodium acetate,
 2.5× volume 96% ethanol, and 20 µg Glycogen (RNA grade). Upon mixing, place the sample at
 -20 °C for a minimum of 1 h for RNA precipitation.

Note: This is a safe stopping point. RNA samples can be stored in 80% ethanol at -20 °C.

- 7. Pellet the RNA by centrifugation at 20,000 × g and 4 °C for 30 min, and wash the RNA pellet with 500 µl 80% ethanol diluted in DEPC-treated water.
- Pellet the RNA by centrifugation at 20,000 × g and 4 °C for 20 min, remove all liquids and airdry the RNA pellet until ethanol is completely evaporated. Note: Optionally, the RNA pellet can be dried faster in an open-cap micro tube at 37 °C. However, avoid "over-drying" the RNA pellet.
- Resuspend the RNA pellet in 8 µl DEPC-treated water. Completely resolve the RNA pellet by incubating the sample for 5 min at 65 °C.
- 10. Store the remaining RNA for the library preparation at -80 °C for up to 3 months. Note: Optionally, we recommend to perform stem-loop reverse transcription PCR to detect A. thaliana microRNA(s) of choice in the AGO co-IP sample as a quality control on the successful recovery of sRNAs before starting the sRNA library cloning (see Figure 3).
- D. Western blot analysis for AGO1 co-immunopurification quality control

Note: The following steps guide through standard Western blot to analyze the three sample types collected throughout the AGO co-immunopurification procedure (crude extract, supernatant, immunopurification). This analysis is essential to confirm efficient AGO purification. In this protocol, Western blots results were visualized on an LI-COR Odyssey detection system. However, any standard protocol for protein identification by Western blot can be used as well.

 Assemble a protein gel electrophoresis chamber and fill it with protein running buffer. Load 20 µl per sample of the crude extract from Step B6 (CE), the supernatant (SN) after agarose bead collection from Step B8, and of the AGO co-IP (IP) from Step B13 on an 8% polyacrylamide gel. Load 3 µl of a pre-stained protein size marker on the same gel.

Copyright Dunker et al. This article is distributed under the terms of the <u>Creative Commons Attribution License</u> (CC BY4.0).

www.bio-protocol.org/e3911

Note: For standard protein SDS polyacrylamide gel electrophoresis (PAGE), we used a Rotiphorese acrylamide/bis-acrylamide solution, APS, and TEMED to prepare a discontinuous gel consisting of a 2 ml collection gel at pH 6.8 and a 7 ml separation gel at pH 8.8.

- Initiate the SDS-PAGE run for 30 min at ~10 V/cm, then increase the voltage to ~17.5 V/cm and let the PAGE run until the 50 kilo-Dalton (kDa) band of the protein size marker reaches the edge of the gel (electrophoresis run takes approximately 90 min).
- 3. Disassemble the PAGE gel from the electrophoresis chamber and measure the gel size dimensions. Prepare two blotting papers and a PVDF blotting membrane of the measured gel size. Equilibrate the blotting papers and two sponges in the protein transfer buffer for 5 min. Activate the blotting membrane by submerging in 96% ethanol for 1 min and quickly wash-off the ethanol with water. Equilibrate the blotting membrane in the protein transfer buffer until use. Note: Use a PVDF membrane that is compatible with the Odyssey detection method.
- 4. Assemble the blotting sandwich in the following order: i) cathode, ii) sponge, iii) blotting paper, iv) polyacrylamide gel, v) PVDF membrane, vi) blotting paper, vii) sponge, viii) anode. Fill the complete blotting tank with protein transfer buffer. Set the amperage to 1 mA cm⁻² of blotting membrane surface and perform blotting of the proteins overnight in a 4 °C cold room.
- 5. On the following day, increase the amperage to 2 mA cm⁻² for 30 min. This step might increase the focus of protein bands.
- 6. Disassemble the blotting sandwich and roll the membrane with the blotted site to the inside to fit in a 50 ml Falcon tube. Add 10 ml of 5% (v/v) skim fat milk in 1× PBS. Block the membrane for 1 h in a 4 °C cold room on a rolling shaker.
- 7. Discard the blocking solution and quickly wash the blotting membrane with 1× PBS. Add 4 ml of primary antibody solution (anti AtAGO1 1 µg/µl diluted 1:4,000 in 1% milk in a 0.1% PBST buffer) and incubate on a rolling shaker overnight in a 4 °C cold room.
- Wash the blotting membrane 4 times each for 5 min on a rolling shaker in a 4 °C cold room with 10 ml of 0.2% PBST buffer.
- Remove the PBST washing buffer and add 5 ml of secondary antibody solution (anti-rabbit IRdye800 (1 μg/μl) diluted 1:3,000 in 1% milk in a 0.1% PBST with 0.02% SDS). Incubate on a rolling shaker for 1-2 h at room temperature.
- 10. Wash the blot 4 times each for 10 min on a rolling shaker in a 4 °C cold room with 10 ml of 0.2% PBST.
- Take the membrane out of the Falcon tube and rinse the blotting membrane for 1 min with water and let it dry between two blotting papers. Scan the membrane using an LI-COR Odyssey Scanning device. The band of AGO1 appears at ~130 kDa.

Note: A representative example of a Western blot analysis is displayed in Figure 2. Samples with low AGO signal intensity might still be valid for sRNA library cloning and high throughput sequencing.

www.bio-protocol.org/e3911

Bio-protocol 11(03): e3911. DOI:10.21769/BioProtoc.3911

11

Figure 2. Quality control of AGO1 immunopurification by Western blotting. Three sample fractions of the AGO1 co-IP experiment were analyzed: crude extract (CE), supernatant (SN), and the IP fraction. These three fractions were analyzed in an *A. thaliana* mock-treated and in an *H. arabidopsidis*-infected (Hpa) sample. The top figure shows the detection of *A. thaliana* AGO1 using an AGO1-specific antibody at the expected size of ~130 kDa. Note that AGO1 signals were stronger in IP factions than in SN. The bottom figure displays the ribulose-1,5-bisphosphate carboxylase/-oxygenase (RuBisCO) signal from a Coomassie Brilliant Blue total protein staining of the Western blot membrane. Note that RuBisCO signals disappeared in the IP fraction. The broad range pre-stained protein marker was used as a protein size marker (M).

E. A. thaliana miRNA stem-loop reverse transcription (RT) PCR for AGO/sRNA co-immunopurification quality control

Note: Before proceeding with library preparation, it is recommended to validate successful RNA coimmunopurification by stem-loop RT PCR. We use the Arabidopsis miR398 known to bind AGO1. The protocol directly follows the stem-loop RT PCR protocol as previously described (Varkonyi-Gasic et al., 2007).

- 1. Use 1 μl of your eluted RNA (12.5% sample volume) for this quality control assay and pipet it into a PCR micro tube. Add the following components to your RNA sample:
 - 1 μl of AtmiR398-specific stem-loop RT primer (1 μM), for the sequence design of stem-loop RT primers, refer to Varkonyi-Gasic *et al.* (2007)
 - 0.5 µl of dNTP mix (10 mM each)
 - 8 µl DEPC-treated water

Heat the sample to 65 °C for 5 min in a PCR cycler. Cool it down on ice for 1 min.

Copyright Dunker et al.

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

12

Add the following components per sample:

- 4 µl 5× first strand SuperScript III reaction buffer
- 2 µl DTT (0.1M)
- 4 µl MgCl₂ (25 mM)
- 0.25 µl SuperScript III® reverse transcriptase
- 0.25 µl RiboLock
- 2. Run the following thermo cycler protocol:
 - step 1 16 °C 30 min
 - step 2 30 °C 30 s
 - step 3 42 °C 20 s
 - step 4 50 °C 1 s; back to step 2 (60x)
 - step 5 85 °C 10 min
 - step 6 End

Note: The final end-point PCR can be performed with any standard Taq-Polymerase. Below, a protocol using the GoTaq[®] Polymerase is described.

- 3. Amplify the reverse transcribed miRNA by end-point PCR. Dilute your stem-loop RT product 1:10 with water as a PCR template.
- 4. Pipet the following components into a PCR micro tube:

3 µl 5× Green GoTaq® reaction buffer

0.3 µl dNTP mix (10 mM each)

0.5 μ l miR398 forward primer (10 μ M), for the sequence design of sRNA forward primer, see Varkonyi-Gasic *et al.* (2007).

 $0.5 \,\mu$ l universal stem-loop reverse primer (10 μ M), primer sequence according to Varkonyi-Gasic *et al.* (2007).

9.5 µl water

0.2 µl GoTaq[®] G2 Polymerase

1 µl stem-loop RT product (1:10 diluted in water)

- 5. Perform the following thermo cycler protocol:
 - step 1 94 °C 2 min
 - step 2 94 °C 30 s
 - step 3 60 °C 30 s
 - step 4 72 °C 20 s; back to step 2 (36×)
 - step 5 72 °C 2 min

step 6 End

- Prepare a 10% 0.5× TAE polyacrylamide gel. Assemble a gel electrophoresis running system.
 Fill it with 0.5× TAE running buffer.
- 7. Load 7 μl of each sample in a pocket of the polyacrylamide gel. Pipet 2 μl of 10 bp O'RangeRuler as size marker one the same gel.
- 8. Run the gel at ~18 V/cm for 90 min to separate PCR products.

Copyright Dunker et al.

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

www.bio-protocol.org/e3911

9. Dissemble the running chamber and stain the gel with ethidium bromide or any other substitutive DNA dye (*e.g.*, SYBR Gold) for 3 min. If the AGO/sRNA co-immunopurification was successful, you should obtain a PCR band at the size of 69 bp. As an example, a stem-loop RT PCR result of AtmiR398 from an AGO1 co-IP sample is shown in Figure 3.

Figure 3. Quality control of sRNAs extracted from AGO1 co-IP samples. For both mocktreated and *H. arabidopsidis*-infected (Hpa) AGO1-co-IP RNA samples, stem-loop RT PCR was performed to detect the AGO1-bound *A. thaliana* AtmiR398. A PCR band of the expected size of 69 base pairs (bp) was visible for both samples. A 10 bp O'RangeRuler DNA ruler was used as a size marker. Depicted samples represent *A. thaliana* leaf materials harvested at 4 days post treatment.

F. sRNA library cloning for Illumina next generation sequencing

Note: We used the NEBNext[®] Multiplex Small RNA Library Prep Set for Illumina to perform library preparation that is suitable for non-modified as well as modified sRNAs, such as 3' terminal 2'-O-methylation. The protocol is a reprint of the original manufacturer's protocol with slight modifications we applied for AGO co-IP sRNA library cloning. In case library kit protocols are updated by the manufacturer, we recommend to consider the updated instructions.

- Dilute the required amount of 3' SR adaptor (supplied by NEB kit) 1:2 in nuclease-free water. Mix the following per sample in a 1.5 ml LoBind[®] reaction tube:
 6 µl RNA from the AGO co-IP (75% of the eluted RNA sample volume)
 1 µl diluted 3' SR adaptor
- 2. Incubate the tube for 2 min at 70 °C in a thermo block.
- 3. Add the following:
 10 µl 3' Ligation reaction buffer (2×) (supplied by NEB kit)
 3 µl 3' Ligation enzyme mix (supplied by NEB kit)
- Incubate the sample reaction for 18 h at 16 °C.
 Note: This prolonged reaction time is recommended to increase the ligation efficiency of methylated sRNAs.

Copyright Dunker et al. This article is distributed under the terms of the <u>Creative Commons Attribution License</u> (CC BY 4.0).

www.bio-protocol.org/e3911

14

- 5. Dilute the SR RT primer (supplied by NEB kit) 1:2 in nuclease-free water.
- 6. Add the following components to the 3'-adaptor/RNA ligation mix (Step F4):
 4.5 μl nuclease-free water
 1 μl diluted SR RT primer
- Incubate the mixture for 5 min at 75 °C. Transfer the tube to 37 °C for 15 min, then to 25 °C for 15 min.
- In the meantime, resuspend the lyophilized 5' SR adaptor (supplied by NEB kit) in 120 μl of nuclease-free water. Store 20 μl aliquots of the adaptor solution at -80 °C.
- 9. Mix the required amount of 5' SR adaptor (supplied by NEB kit) in a 1:1:1 ratio with nucleasefree water and 10 mM ATP in a 200 µl PCR tube. Store remaining adaptor solution at -80 °C.
- Incubate the 5' SR adaptor mix (Step F9) in a thermo cycler for 2 min at 70 °C, and place the mix on ice immediately. Use the denatured adaptor mix for the following ligation reaction within 30 min.
- 11. Add the following components to the reaction tube from Step F7:
 - 1 µl 5' SR adaptor mix (Step F10)
 - 1 µl 10× 5' ligation reaction buffer (supplied by NEB kit)
 - 2.5 µl 5' ligation enzyme mix (supplied by NEB kit)
- 12. Incubate reaction mix for 1 h at 25 °C in a heat block.
- 13. After this incubation step, add the following components to the reaction and mix well:
 - 8 µl first strand synthesis reaction buffer (supplied by NEB kit)
 - 1 µl murine RNase inhibitor (supplied by NEB kit)
 - 1 µl ProtoScript II reverse transcriptase (supplied by NEB kit)
- 14. Incubate for 60 min at 50 °C. Stop RT reaction at 70 °C for 15 min.
- 15. Add the following components to the cDNA and mix well:
 - 50 µl LongAmp Taq 2× master mix
 - 2.5 µl SR primer for Illumina
 - 2.5 µl Index primer (use a distinct Index primer for each treatment)
 - Note: As PCR performs better in small reaction volumes, we run 20 μ l reaction volumes. After the PCR run was completed, samples were pooled before further procedure.
- 16. Amplify the library using the following PCR protocol:

step 1 94 °C 30 s step 2 94 °C 15 s step 3 62 °C 30 s step 4 70 °C 15 s; back to step 2 (18-22×) step 5 70 °C 5 min step 6 End *Note: The expected size of a PCR product representing cloned 21 nucleotides sRNAs is ~140*

base pairs. Nevertheless, the PCR product sometimes appears smeary at this point.

Copyright Dunker et al.

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

www.bio-protocol.org/e3911

- G. Purification of the sRNA library for Illumina sequencing
 - Add 0.1× volume 3 M sodium acetate in DEPC-treated water to the PCR reaction in a 1.5 ml LoBind[®] reaction tube followed by 2.5× volume of ethanol (96%) and 20 µg glycogen. After mixing the solution, incubate the sample for a minimum of 1 hour at -20 °C.
 - 2. Prepare a 6% 0.5× TAE polyacrylamide gel.
 - 3. Pellet the sRNA library DNA by centrifugation at 20,000 × g and 4 °C for 30 min. Remove the supernatant and add 500 µl of 80% ethanol diluted in DEPC-treated water.
 - 4. Repeat pelleting the sRNA library DNA by centrifugation at 20,000 × g and 4 °C for 20 min, remove all liquid from the sample and air-dry the pellet until the ethanol completely evaporated. Note: Optionally, the DNA pellet can be dried faster in an open-cap micro tube at 37 °C, however, avoid "over-drying" the DNA pellet.
 - Resuspend the DNA pellet in 25 µl DEPC-treated water. Incubate the sample for 5 min at 65 °C, if you encounter problems with bringing DNA pellet in solution.
 - Mix the eluted library DNA sample with 5 μl of 6× gel loading dye (supplied by NEB kit). Mix the 6× gel loading dye well prior usage.
 - 7. Assemble a gel electrophoresis running system. Fill the electrophoresis tank with 0.5× TAE running buffer.
 - Load 5 µl of the Quick-load pBR322 DNA-Mspl digest size marker (supplied by NEB kit) on the same polyacrylamide gel.
 - 9. Use two gel slots per sample by loading 15 µl per well to avoid overloading of the gel lane.
 - 10. Perform gel electrophoresis run with 15 ~V/cm for 60 min; after this running time, the bromophenol blue dye of the loading buffer typically reaches the bottom edge of the gel.
 - 11. Dissemble the gel cast and stain the polyacrylamide gel with ethidium bromide or any other substitutive DNA dye (*e.g.*, SYBR Gold) for 3 min. Under a UV documentation station, cut out the DNA band of the gel at the size of 140-150 base pairs. Avoid any DNA band at ~120 base pairs, as this size usually represents adaptor dimers.
 - Place the gel piece into a new 1.5 ml DNA LoBind[®] reaction tube. Use a blue pipette tip to crush the gel piece. Add 250 μl of 1× gel elution buffer (supplied by NEB kit).
 - 13. Elute the sRNA library DNA from the crushed gel pieces by rotating the sample for 2 h at room temperature or overnight in a 4 °C cold room.
 - 14. Spin the sample at 10,000 × g and room temperature for 10 min, and transfer the supernatant into a new 1.5 ml DNA LoBind[®] reaction tube. Try to collect all liquids from the reaction tube.
 - 15. Repeat spinning the sample at 10,000 × g at room temperature for 10 min, and transfer the supernatant into a new 1.5 ml DNA LoBind[®] reaction tube. At this step, avoid transferring any remaining gel pieces.
 - Add 0.1× volume 3 M sodium acetate in DEPC-treated water, 2.5× volume of 96% ethanol, and 20 μg of glycogen. For DNA precipitation, mix the solution and incubate the sample for a minimum of 30 min at -80 °C.
 - 17. Prepare a 6% 0.5× TAE polyacrylamide gel.

Copyright Dunker et al.

15

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

www.bio-protocol.org/e3911

- 18. Pellet library DNA by centrifugation at 20,000 × g and 4 °C for 30 min. Discard the supernatant and add 500 µl of 80% ethanol diluted in DEPC-treated water.
- 19. Pellet the DNA by centrifugation at 20,000 × g and 4 °C for 20 min, remove all liquids and airdry the DNA pellet until ethanol is completely evaporated. Note: Optionally, the DNA pellet can be dried faster in an open-cap micro tube at 37 °C, however, avoid "over-drying" the DNA pellet.
- 20. Resuspend the DNA pellet in 25 μl DEPC-treated water. Incubate the DNA pellet for 5 min at 65 °C, if encounter problems with bringing the pellet in solution.
- 21. Repeat the gel clean-up of library DNA, following the Steps G6-G18.
- 22. Store purified library DNA in 80% ethanol at -20 °C, until sequencing. Note: Storage of library DNA is valid for up to 12 months.
- 23. To proceed with sequencing, precipitate the library DNA by centrifugation at 20,000 × g and 4 °C for 20 min, remove all liquids and air-dry the pellet until ethanol is completely evaporated. Note: In this last step, do not use DEPC-treated water for DNA pellet resuspension as it can interfere with Illumina sequencing; instead use nuclease free water (supplied by the NEB kit).
- 24. Resuspend the sample in nuclease free water for Illumina HiSeq run. Note: For sRNA library sequencing, we used an Illumina HiSeq1500 platform in single-end mode with 50 base read length. To obtain sufficient read numbers of pathogen sRNAs collected from infected plant tissue, we recommend to sequence minimum at a depth of 50 million reads per library.
- H. sRNA Illumina sequencing analysis

Note: An overview workflow of the bioinformatics part of this Bio-protocol is shown in Figure 4. sRNA sequencing data were analyzed using a Galaxy Server (Giardine et al., 2005). All tools of the analysis pipeline are also freely available as stand-alone versions, except the Illumina demultiplexing package and the Clip adapter script. As an adequate substitution of these steps, the Illumina bcl2fastqc tool and Trimmomatic can be used, respectively. In the following, a step-by-step description of the bioinformatics pipeline is given for the recovery and identification of H. arabidopsidis sRNA sequences bound to A. thaliana AGO1 during infection, including a target prediction of A. thaliana mRNAs using identified H. arabidopsidis AGO1-bound sRNA sequences. As indicated in Figure 4, a similar analysis can be run to predict plant mRNA targets of endogenous A. thaliana small RNAs.

www.bio-protocol.org/e3911

Figure 4. Bioinformatics workflow to analyze AGO1 co-IP sRNA NGS data. After standard processing of sRNA raw reads, sequences can be grouped into pathogen-derived sRNAs (*H. arabidopsidis*) and host plant-derived (*A. thaliana*) sRNAs for further analysis.

- 1. If applicable; demultiplex sRNA libraries using the Illumina Demultiplex or the bcl2fastqc tool by giving the library sequence indices.
- 2. Remove 3'-end adapter sequences from sRNA reads using Clip adapter or the ILLUMINACLIP function of Trimmomatic (Bolger *et al.*, 2014).
- Remove low quality reads by setting a minimum Phred quality score of 30.0 and a size range from 19-30 nucleotides using the FASTQ Filter tool (Blankenberg *et al.*, 2010). The FASTQ_filter command is also available as part of the USEARCH package

© Copyright Dunker et al. This article is distributed under the terms of the <u>Creative Commons Attribution License</u> (CC BY 4.0).

www.bio-protocol.org/e3911

(https://drive5.com/usearch/features.html).

Note: Optionally, useful information on sRNA sequencing quality can be found by consulting the FastQC reporter tool at any step of the bioinformatics analysis.

- 4. To remove A. thaliana sRNA reads from the dataset, align the raw reads to the A. thaliana reference genome (e.g., TAIR10 for ecotype Col-0) using the Bowtie aligner (Langmead et al., 2009). We recommend allowing one mismatch (-v 1) to map reads to the A. thaliana reference genome. By this step, a mapping quality score (MQ) is attributed to individual reads with a score of 255 (aligned) or 0 (unaligned) given in a SAM format output file.
- Collect reads with MQ = 0, as these reads do not align to the *A. thaliana* reference genome using the Filter_tool (Galaxy Version 1.1.0).
- Convert the SAM file (unaligned to *A. thaliana*) into a FASTQ file format using the SAM_to_FASTQ tool with SAMtools (Li *et al.*, 2009).
- 7. Use the Bowtie aligner to align reads from Step H6 to an *H. arabidopsidis* Noks1 reference genome (PRJNA298674), allowing zero mismatch (-v 0).
- Collect reads with MQ = 255, as these read aligned to the *H. arabidopsidis* reference genome, using the Filter_tool (Galaxy Version 1.1.0).

Note: We do not recommend to use the Bowtie2 short-read aligner, as this version does not allow binary mapping scores (aligned or unaligned), rather attributes low MQ values to reads with multiple alignment events. Many pathogen sRNAs that we found being loaded into plant AGOs are derived from repetitive DNA, thus such sequences could be easily lost through Bowtie2 quality aware mapping.

9. As a quality control for the successful *A. thaliana* AGO1-co-IP sRNA sequencing, display read counts aligning to the *A. thaliana* reference genome (go back to Step H5 and collect reads with MQ = 255), by read length and 5'-prime nucleotide distribution. *A. thaliana* AGO1 preferentially binds 21 nt sRNAs with 5' prime uracil. This analysis can be run by the FastQC tool, as shown in Figure 5.

Optionally, remove reads from your dataset (Step H8) that align to ribosomal RNA (rRNA), transfer RNA (tRNA), or small nuclear/nucleolar RNA (snRNA, snoRNA) sequences using the SortMeRNA tool (Kopylova et al., 2012). In particular, rRNA-derived sRNA reads often occur in high abundance in sRNA library sequencing data, if no riboRNA-depletion was performed prior to RNA cloning.

www.bio-protocol.org/e3911

Figure 5. FastQC report of AGO1 co-IP sRNA NGS data. As plant AGOs are typically associated to distinct sRNA classes, AGO1 co-IP sRNA NGS data reflect some unique features that can be used as a quality control in such experiments. High quality (> 30 Phred score) sRNA reads of the size range of 19-30 bases were collected (A). AGO1-associated sRNAs showed preference to 5' prime Uracil U – in sRNA sequencing data Thymine T (B), and to a size of 21 nucleotides (C). Graphs shown here represent an AGO1 co-IP sample collected from *H. arabidopsidis*-infected *A. thaliana* at 4 days post inoculation. The total read number of this sRNA library was 51,089,216.

Count and unify sRNA reads to unique sequence tags using a collapse tool, *e.g.*, the FASTX-toolkit (<u>http://hannonlab.cshl.edu/fastx_toolkit/index.html</u>).

Copyright Dunker et al. This article is distributed under the terms of the <u>Creative Commons Attribution License</u> (CC BY4.0).

www.bio-protocol.org/e3911

- 11. Transform read numbers of unique sRNA sequences into reads per million (rpm) by normalizing to the total library read numbers (referring to the organism of interest, here *H. arabidopsidis*). *Note: Before starting mRNA target prediction, it can be useful to apply an abundancy filter of small RNA reads.*
- 12. For predicting mRNA targets of candidate sRNAs, several target prediction tools were implemented. We have used the TAPIR tool (Bonnet *et al.*, 2010) to predict *A. thaliana* mRNA targets of *H. arabidopsidis* sRNA candidates using an *A. thaliana* cDNA dataset. For target prediction, a maximal score of 4.5 penalizing mismatches in the mRNA/sRNA base pairing, and a maximal free energy ratio of 0.7 were set as thresholds.

<u>Recipes</u>

A. Buffers

- 5× Protein SDS loading buffer
 225 mM Tris-HCl (pH 6.8)
 5% (w/v) SDS
 50% (v/v) glycerol
 0.05% (w/v) bromophenol blue dye
 455 mM DTT (added directly before use)
- 2. 10× Protein SDS running buffer
 30 g Tris ultrapure
 144 g glycine
 10 g SDS
 Fill up to 1 L with ultrapure water and stir until salts are dissolved
 The pH does not need to be adjusted
- 3. 10× Protein transfer buffer
 - 30 g Tris ultrapure

144 g glycine

Fill up to 900 ml with ultrapure water and stir until salts are dissolved

Adjust the pH to 8.3 with HCI

Fill up to 1 L with ultrapure water

- 4. 10× PBS pH 7.4
 - 80 g NaCl

2 g KCl

14.4 g Na₂HPO₄

2.4 g KH₂PO₄

Fill up to 900 ml with ultrapure water

Adjust the pH to 7.4 with HCI

Fill up to 1 I with ultrapure water

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Copyright Dunker et al.

www.bio-protocol.org/e3911

For PBST 0.1% and 0.2% add the respective amount of Tween 20

5. 50× TAE buffer

242 g Tris ultrapure

18.6 g EDTA

- a. Dissolve in 950 ml of water
- b. Adjust the pH to 8.0 with glacial acetic acid
- c. Fill up to 1 L with water
- DEPC-treated water
 Add 1 ml DEPC to 1 L of ultrapure water
 Let it stir overnight

Autoclave for 20 min at 121 °C

7. IP extraction buffer

20 mM Tris-HCI (pH 7.5)

300 mM NaCl

5 mM MgCl₂

0.5% (v/v) NP-40

5 mM DTT (add directly before use)

1 tablet protease inhibitor/50 ml sample volume (add directly before use)

5 µl RNase inhibitor (40 U)/50 ml sample volume (add directly before use)

Make up to 50 ml with DEPC-treated water

8. IP washing buffer

20 mM Tris-HCI (pH 7.5) 300 mM NaCl 5 mM MgCl₂ 0.5% (v/v) Triton X-100 5 mM DTT (add directly before use) 1 tablet protease inhibitor/50 ml sample volume (add directly before use), Fill up to 50 ml with DEPC-treated water

9. RNA release buffer

100 mM Tris-HCl (prepare from 1 M Tris-HCl pH 7.5) 10 mM EDTA (prepare from 0.5 M EDTA pH 8.0) 300 mM NaCl 2% SDS 1 µg/µl Proteinase K (add directly before use).

B. Polyacrylamide gel recipes (for 10 ml gel volume)

Nucleic acid polyacrylamide gel recipes:

1. 6% 0.5× TAE gel

Copyright Dunker et al. This article is distributed under the terms of the <u>Creative Commons Attribution License</u> (CC BY4.0).

7.8 ml H₂O

2.0 ml 30% acrylamide/bis-acrylamide solution

0.1 ml 50× TAE buffer

0.1 ml 10% APS

0.008 ml TEMED

2. 10% 0.5× TAE gel

6.5 ml H₂O

3.3 ml 30% acrylamide/bis-acrylamide solution

0.1 ml 10% APS

0.1 ml 50× TAE buffer

0.004 ml TEMED

SDS-protein PAGE gel recipes:

 8% SDS resolution gel 4.6 ml H₂O
 7 ml 30% acrylamide/bis-acrylamide solution
 5 ml 1.5 M Tris-HCI (pH 8.8)
 1 ml 10% SDS
 1 ml 10% APS
 0.006 ml TEMED
 SDS stacking gel
 1 ml H₂O
 0.5 ml 30% acrylamide/bis-acrylamide solution

0.38 ml 1.0 M Tris-HCI (pH 6.8)

0.03 ml 10% SDS

0.03 ml 10% APS

0.003 ml TEMED

Acknowledgments

This protocol has been developed to identify *H. arabidopsidis* small RNAs that bind to the *A. thaliana* AGO/RISC during plant infection (Dunker *et al.*, 2020). The authors wish to thank New England Biolabs[®] for their permission to include the library preparation kit protocol within this protocol. This work was supported by a grant from the Deutsche Forschungsgemeinschaft DFG (WE 5707/1-1) to AW. The funders had no role in the study design, data collection, interpretation, or the decision to publish.

Competing interests

The authors declare no competing interests.

References

- 1. Asai, S., Shirasu, K. and Jones, J. D. (2015). *Hyaloperonospora arabidopsidis* (Downy Mildew) infection assay in *Arabidopsis*. *Bio-protocol* 5(20): e1627.
- Bailey, K., Cevik, V., Holton, N., Byrne-Richardson, J., Sohn, K. H., Coates, M., Woods-Tor, A., Aksoy, H. M., Hughes, L., Baxter, L., Jones, J. D., Beynon, J., Holub, E. B. and Tor, M. (2011). Molecular cloning of ATR5^{Emoy2} from *Hyaloperonospora arabidopsidis*, an avirulence determinant that triggers RPP5-mediated defense in *Arabidopsis*. *Mol Plant Microbe Interact* 24(7): 827-838.
- Blankenberg, D., Gordon, A., Von Kuster, G., Coraor, N., Taylor, J., Nekrutenko, A. and Galaxy, T. (2010). <u>Manipulation of FASTQ data with Galaxy</u>. *Bioinformatics* 26(14): 1783-1785.
- 4. Bolger, A. M., Lohse, M. and Usadel, B. (2014). <u>Trimmomatic: a flexible trimmer for Illumina</u> sequence data. *Bioinformatics* 30(15): 2114-2120.
- 5. Bonnet, E., He, Y., Billiau, K. and Van de Peer, Y. (2010). <u>TAPIR</u>, a web server for the prediction of plant microRNA targets, including target mimics. *Bioinformatics* 26(12): 1566-1568.
- Carbonell, A. (2017). <u>Immunoprecipitation and high-throughput sequencing of ARGONAUTE-bound target RNAs from plants</u>. *Methods Mol Biol* 1640: 93-112.
- Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., Cuperus, J. T. and Carrington, J. C. (2012). <u>Functional analysis of three Arabidopsis</u> <u>ARGONAUTES using slicer-defective mutants.</u> *Plant Cell* 24(9): 3613-3629.
- Dunker, F., Trutzenberg, A., Rothenpieler, J. S., Kuhn, S., Pröls, R., Schreiber, T., Tissier, A., Kemen, A., Kemen, E., Huckelhoven, R. and Weiberg, A. (2020). <u>Oomycete small RNAs bind</u> to the plant RNA-induced silencing complex for virulence. *Elife* 9: e56096.
- Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W. J. and Nekrutenko, A. (2005). <u>Galaxy:</u> <u>a platform for interactive large-scale genome analysis.</u> *Genome Res* 15(10): 1451-1455.
- Kopylova, E., Noé, L. and Touzet, H. (2012). <u>SortMeRNA: fast and accurate filtering of ribosomal</u> <u>RNAs in metatranscriptomic data</u>. *Bioinformatics* 28(24): 3211-3217.
- Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009). <u>Ultrafast and memory-efficient</u> alignment of short DNA sequences to the human genome. *Genome Biology* 10(3): R25.
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and Genome Project Data Processing, S. (2009). <u>The Sequence Alignment/Map</u> <u>format and SAMtools</u>. *Bioinformatics* 25(16): 2078-2079.
- Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J. and Qi, Y. (2008). <u>Sorting of small RNAs into *Arabidopsis* argonaute complexes</u>

Copyright Dunker et al.

This article is distributed under the terms of the Creative Commons Attribution License (CC BY4.0).

www.bio-protocol.org/e3911

is directed by the 5' terminal nucleotide. Cell 133(1): 116-127.

- Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., Chapman, E. J., Fahlgren, N., Allen, E. and Carrington, J. C. (2008). <u>Specificity of</u> <u>ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation.</u> *Cell* 133(1): 128-141.
- 15. Qi, Y. and Mi, S. (2010). <u>Purification of *Arabidopsis* argonaute complexes and associated small</u> <u>RNAs.</u> *Methods Mol Biol* 592: 243-254.
- Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F. and Hellens, R. P. (2007). <u>Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs</u>. *Plant Methods* 3: 12.
- 17. Weiberg, A., Bellinger, M. and Jin, H. (2015). <u>Conversations between kingdoms: small RNAs.</u> *Curr Opin Biotechnol* 32: 207-215.
- Zeng, J., Gupta, V. K., Jiang, Y., Yang, B., Gong, L. and Zhu, H. (2019). <u>Cross-kingdom small</u> <u>RNAs among animals, plants and microbes.</u> *Cells* 8(4): 371.
- Zhang, X., Zhao, H., Gao, S., Wang, W. C., Katiyar-Agarwal, S., Huang, H. D., Raikhel, N. and Jin, H. (2011). <u>Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated</u> <u>silencing of a Golgi-localized SNARE gene, MEMB12.</u> Mol Cell 42(3): 356-366.
- Zhao, H., Lii, Y., Zhu, P. and Jin, H. (2012). <u>Isolation and profiling of protein-associated small</u> <u>RNAs.</u> *Methods Mol Biol* 883: 165-176.

III: An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection.
RESEARCH PAPER

tournal or Aug

An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection

Florian Dunker*, Lorenz Oberkofler*, Bernhard Lederer, Adriana Trutzenberg and Arne Weiberg^{†, ID}

Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany

* These authors contributed equally to this work.

[†] Correspondence: a.weiberg@lmu.de

Received 6 July 2020; Editorial decision 5 October 2020; Accepted 13 October 2020

Editor: Peter Bozhkov, Swedish University of Agricultural Sciences, Sweden

Abstract

Our understanding of obligate biotrophic pathogens is limited by lack of knowledge concerning the molecular function of virulence factors. We established Arabidopsis host-induced gene silencing (HIGS) to explore gene functions of *Hyaloperonospora arabidopsidis*, including *CYSTEINE-RICH PROTEIN* (*HaCR*)1, a potential secreted effector gene of this obligate biotrophic pathogen. *Ha*CR1 HIGS resulted in *H. arabidopsidis*-induced local plant cell death and reduced pathogen reproduction. We functionally characterized *Ha*CR1 by ectopic expression in *Nicotiana benthamiana*. *Ha*CR1 was capable of inhibiting effector-triggered plant cell death. Consistent with this, *Ha*CR1 expression in *N. benthamiana* led to stronger disease symptoms caused by the hemibiotrophic oomycete pathogen *Phytophthora capsici*, but reduced disease symptoms caused by the necrotrophic fungal pathogen *Botrytis cinerea*. Expressing *Ha*CR1 in transgenic Arabidopsis confirmed higher susceptibility to *H. arabidopsidis* and to the bacterial hemibiotrophic pathogen *Pseudomonas syringae*. Increased *H. arabidopsidis* infection was in accordance with reduced *PATHOGENESIS RELATED* (*PR*)1 induction. Expression of full-length *Ha*CR1 was required for its function, which was lost if the signal peptide was deleted, suggesting its site of action in the plant apoplast. This study provides phytopathological and molecular evidence for the importance of this widespread, but largely unexplored class of non-RxLR effectors in biotrophic oomycetes.

Keywords: Arabidopsis thaliana, downy mildew, host-induced gene silencing (HIGS), Hyaloperonospora arabidopsidis, non-RxLR cysteine-rich protein effectors (CRs), obligate biotrophic plant parasite.

Introduction

Oomycetes include some notorious plant pathogens that severely reduce global crop yield and cause enormous economic loss every year. To date, oomycete pest management relies on inbreeding of *RESISTANCE* (R) genes and chemical plant protection. In this context, the occurrence of new virulent pathogen genotypes that overcome R gene-mediated resistance or chemical crop protection jeopardizes food security (Fry, 2008; Cohen *et al.*, 2015; Delmas *et al.*, 2017). Thus, there is an urgent need for developing innovative, sustainable strategies to control oomycete pests. However, a lack of understanding of pathogen virulence at the molecular level restricts this goal.

In oomycetes, classical forward or reverse genetics approaches remain challenging due to di- or polyploidy, and due to the fact that many oomycetes are obligate biotrophs, like the downy mildew pathogen *Hyaloperonospora*

Abbreviations: CFP, cyan fluorescent protein; CR, cysteine-rich; dpi, days post-inoculation; FITC, fluorescein isothiocyanate; GFP, green fluorescent protein; HIGS, host-induced gene silencing; NLR, nucleotide-binding oligomerization domain-like receptor; *R* gene, resistance gene; RNAi, RNA interference; qRT-PCR, quantitative reverse transcription–polymerase chain reaction; Pst, *Pseudomonas syringae* pv *tomato*; SA, salicylic acid; SP, signal peptide; WT, wild type; YFP, yellow fluorescent protein.

[©] The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

arabidopsidis infecting the model plant Arabidopsis (Coates and Beynon, 2010). Obligate biotrophs are impossible to grow in axenic culture despite numerous attempts (McDowell, 2014), and thus genetic transformation of these organisms is not achievable. Alternative approaches to investigating the function of pathogen effectors and other types of virulence genes in obligate biotrophs, which do not rely on pathogen transformation, are therefore highly appreciated. Hyaloperonospora arabidopsidis is one of the most used model pathogens to investigate Arabidopsis innate immune response to obligate biotrophs and was ranked the second most important oomycete pathogen by researchers in terms of scientific and economic relevance (Kamoun et al., 2015). It is highly adapted and specialized to its sole natural host plant, Arabidopsis, and infection frequently occurs in wild Arabidopsis plants (McDowell, 2014; Agler et al., 2016).

Genome sequencing of H. arabidopsidis uncovered a large repertoire of over 100 putative effector genes suggesting an extensive resource to suppress plant immunity (Baxter et al., 2010) and to enable host cell reprogramming for pathogen accommodation and propagation (Thordal-Christensen et al., 2018). Oomycete effectors are typically classified by sequence features into RxLRs, Crinklers, necrosis-inducing like proteins, elicitins, and if no further sequence homology is apparent, cysteine-rich (CR) proteins (Cabral et al., 2011). Current research in oomycete effectors focuses on RxLRs that are typically translocated into host cells and are relatively easy to predict in silico (Anderson et al., 2015). Hyaloperonospora arabidopsidis probably employs RxLRs to modulate plant immunity, too (Fabro et al., 2011; Pel et al., 2014). Nevertheless, a defined molecular function of only just a few oomycete effectors has been reported, mainly through ectopic expression in planta (Caillaud et al., 2013; Wirthmueller et al., 2018). In addition, non-RxLR effectors presumably contribute to virulence, as well. Nevertheless, H. arabidopsidis non-RxLR CR protein effectors remain functionally uncharacterized, despite the fact that they comprise some of the most highly expressed H. arabidopsidis genes during infection (Cabral et al., 2011; Asai et al., 2014).

Artificial expression of double-stranded RNA (dsRNA) in host plants can lead to silencing of complementary genes in their pathogens and pests, a strategy known as host-induced gene silencing (HIGS) (Baum et al., 2007; Mao et al., 2007; Koch and Kogel, 2014). Indeed, HIGS is a powerful method of choice for reverse genetics in plant-associated organisms with no transformation protocols available, such as root knot nematodes, mycorrhizal fungi and biotrophic pathogens, like powdery mildew and rust fungi (Nowara et al., 2010; Helber et al., 2011; Pliego et al., 2013; Dinh et al., 2014; Yin and Hulbert, 2018). Regarding oomycetes, an initial HIGS approach in Arabidopsis failed to knockdown gene expression of Phytophthora parasitica although HIGS small interfering RNA accumulated in the plant (Zhang et al., 2011). Nevertheless, HIGS was successfully introduced in Solanum tuberosum (potato) against the hemibiotrophic pathogen Phytophthora infestans and in lettuce against the downy mildew pathogen Bremia lactucae, conferring plant disease resistance (Govindarajulu et al., 2015; Jahan et al., 2015). Conversely, silencing of the RxLR-type avirulence

gene Avr3a1 by HIGS allowed infection of resistant tobacco by *Phytophthora capsici* (Vega-Arreguín *et al.*, 2014), highlighting the power of HIGS to enable functional gene studies in plant–oomycete interactions. Recently, HIGS was suggested to induce gene suppression of infecting fungal and oomycete pathogens by plant endogenous small RNAs in Arabidopsis and in cotton, proposing a novel RNA-based plant defence mechanism (Zhang *et al.*, 2016; Cai *et al.*, 2018; Hou *et al.*, 2019; Hou and Ma, 2020). In this report, we used Arabidopsis HIGS for targeted gene knockdown of the *H. arabidopsidis CYSTEINE-RICH (HaCR)* 1 and ectopic plant expression of *Ha*CR1 to explore the function of this non-RxLR CR effector protein in plant–pathogen interactions.

Material and methods

Plant materials and cultivation

Arabidopsis wild type (WT) Col-0, HIGS construct transformants and *Hyaloperonospora arabidopsidis Ha*CR1 overexpression lines were cultivated under long day conditions in a growth chamber (16 h light: 8 h dark, 22 °C and 150 μ mol m⁻² s⁻¹ photon flux density). Fourteen-day-old seedlings were used for *H. arabidopsidis* inoculation.

Arabidopsis effector overexpression lines were cultivated under short day conditions in a walk-in growth chamber (8 h light: 16 h dark, 22 °C and 150 μ mol m⁻² s⁻¹ photon flux density). Five- to six-week-old plants were used for bacterial inoculation.

Wild tobacco (*Nicotiana benthamiana* Domin) plants were grown in a walk-in growth chamber under long day conditions (16 h light: 8 h dark, 22 °C and 275 μ mol m⁻² s⁻¹ photon flux density) for 4 weeks prior to *Agrobacterium tumefaciens*-mediated transformation.

Microorganism cultivation

Hyaloperonospora arabidopsidis Gäum. strain Noco2 was maintained on Arabidopsis Col-0 seedlings and used for plant inoculation at a concentration of $2-2.5 \times 10^4$ spores ml⁻¹, as described previously (Ried *et al.*, 2019). *Phytophthora capsici* Leonian strain LT263 (Hurtado-Gonzales and Lamour, 2009) was cultured on rye agar plates (Caten and Jinks, 1968) for 3 d at room temperature before plant inoculation. *Botrytis cineea* Pers. strain B05.10 was cultured on HA agar plates for 2 d prior to plant inoculation. *Pseudomonas syringae* pv. *tomato* Van Hall (*Pst*) DC3000 and *Pst* DC3000 *hrcC*⁻ mutant were cultured on LB agar plates with rifampicin.

Plasmid construction

For HIGS constructs targeting *HaCR1*, *HaACTA*, *HaA1E*, or *HaDCL1*, target gene fragments of 334, 311, 267, and 256 bp length, respectively, were amplified from cDNA using home-made Phusion DNA polymerase. The DNA stretches were tested for off-targets in Arabidopsis and *H. arabidopsidis* cDNAs using the Si-Fi2.1 tool (http://labtools.ipk-gatersleben.de/index.html) and have a maximum of two off-target small RNAs, as opposed to hundreds of effective on-target small RNAs.

RNA hairpins were cloned under the control of the strong *proLjUBI* promoter using the previously described and validated Golden Gate based RNAi plasmid assembly kit, containing the Arabidopsis *AtWRKY33* intron 1 and the 35S terminator (Binder *et al.*, 2014). Yellow fluorescent protein (YFP; mCherry for green fluorescent protein (GFP)-RNAi hairpin) was used in the final expression vector as an *in planta* transformation marker, and *Agrobacterium tumefaciens* AGL1 was transformed with completed vector constructs via electroporation.

Plasmid constructs for *in planta* expression were also made using the plant Golden Gate plasmid assembly kit (Binder *et al.*, 2014). The coding sequence of *HaCR1* was obtained by PCR amplification of *H. arabidopsidis* cDNA with Physion High-Fidelity Polymerase (New

A downy mildew non-RxLR effector suppresses plant cell death | Page 3 of 14

England Biolabs, Frankfurt, Germany). The *HaCR1* coding sequence lacking the signal peptide was amplified with home-made Taq DNA polymerase, as Phusion polymerase did not result in any amplification. Taq amplicons were blunted using Phusion DNA polymerase. All PCR products were validated by Sanger sequencing (LMU Genomics service unit, Planegg, Germany) before expression vector assembly.

The binary expression vector was assembled by ligation of the C-terminal *GFP*-tagged full-length or signal peptide-deleted *HaCR1* sequences under the control of the *proLjUBI* promoter. As a control, a vector expressing only *GFP* was constructed. A list of primers used for the construction of plasmids is provided in Supplementary Table S1 at *JXB* online.

Arabidopsis transformation

Arabidopsis Col-0 plants were transformed by the floral dip method with *A. tumefaciens* strain AGL1, as described previously (Clough and Bent, 1998). Transformants from effector overexpression experiments were selected by kanamycin resistance on ½ MS agar plates with 1% sucrose and 50 mg l^{-1} kanamycin, as described previously (Harrison *et al.*, 2006). Transformants expressing HIGS constructs were selected at the seedling stage by YFP fluorescence using a fluorescence stereo microscope. All experiments were performed on transgenic Arabidopsis plants in the T_2 generation.

Trypan Blue staining

Infected leaves were stained to visualize oomycete infection structures with Trypan Blue (Sigma-Aldrich, Steinheim, Germany), as previously described (Koch and Slusarenko, 1990). Leaves were de-stained with saturated chloralhydrate (Sigma-Aldrich) and imaged on a CTR 6000 microscope (Leica Microsystems, Wetzlar, Germany) with a DFC450 CCD-Camera (Leica).

RNA isolation, cDNA synthesis, and quantitative PCR

For DNA or RNA analysis, five Arabidopsis leaves from infected plants were pooled into one biological replicate, frozen in liquid nitrogen, and ground to powder using steel beads and a bead mill (MM400, Retsch, Haan, Germany). RNA was isolated using a modified cetyltrimethylammonium bromide-based protocol (Bemm et al., 2016). DNA digestion was performed on 1 µg total RNA using RNAse-free DNAse I (Thermo Fisher Scientific, Vilnius, Lithuania) after the manufacturer's instructions. For cDNA synthesis, SuperScript III (Thermo Fisher Scientific) and oligo-dT primers (50 $\mu\text{M})$ were used, following the manufacturer's instructions. Gene expression was determined by quantitative PCR (qPCR) using the EvaGreen master mix (Metabion, Planegg, Germany) or primaQUANT SYBRGreen Mastermix (Steinbrenner Laborsysteme, Wiesenbach, Germany) and a qPCR cycler (QuantStudio5, Thermo Fisher Scientific). For normalization of quantification values, H. arabidopsidis ELONGATION FACTOR 1α (HaEF1 α) was validated as a reference gene using 40S ribosomal protein S3A (HaWS021) and β -TUBULIN (HaTUB) genes (Yan and Liou, 2006) (see Supplementary Fig. S1). For expression analysis of Arabidopsis genes, AtACTIN2 (AtACT2) was used as reference gene (An et al., 1996). Stable expression of AtACT2 was validated by correlating with the expression of AtTUBULIN (AtTUB). AtTUB was used in combination with AtUBQ10 as reference genes when was AtACT2 subjected for gene expression analysis itself. Differential expression was calculated using the $2^{-\Delta \Delta Ct}$ method (Livak and Schmittgen, 2001) and the reference gene(s) used for normalization are detailed in the figure legends. All primers with annealing temperature are listed in Supplementary Table S1.

Phylogenetic analysis

Conserved protein domains and motifs were analysed with InterPro (https://www.ebi.ac.uk/interpro/). Sequences of group I and II CR proteins from *H. arabidopsidis* were obtained from the NCBI GenBank (accession numbers JF800102-JF800110). The draft genome sequence of the Noco2 single spore isolate Noks1 was obtained from NCBI GenBank (accession number PRJNA298674). A phylogenetic tree and sequence alignment were constructed with CLC Main Workbench 7.6.4 (https://digitalinsights.qiagen.com/), with default settings for the alignment, and the tree was constructed using neighbour joining and Jukes–Cantor distance measurement. A cysteine-rich protein from *Phytophthora parasitica* (PpCR; F443_03861) was used to root the tree.

Transient Nicotiana benthamiana transformation

Agrobacterium tumefaciens strain AGL1 was grown for 2 d at 28 °C in LB medium with appropriate antibiotics. Bacteria were harvested by centrifugation at 4000 g and incubated in induction buffer (10 mM MES–KOH pH 5.6, 10 mM MgCl₂, 150 μ M acetosyringone) for 1–2 h. The OD₆₀₀ was adjusted to 0.5 for each construct to perform pathogen assays and 0.25 for protein localization experiments. Leaves were infiltrated using needleless syringes and plants were replaced in the growth chamber under the same conditions.

Phytophthora/Botrytis pathogen assay

Two days after *A. tumefaciens* infiltration, *N. benthamiana* plants were inoculated with the respective pathogen by adding two Ø 0.5 cm agar plugs with mycelium per leaf. Images were taken with a camera and lesion sizes were measured with Fiji/ImageJ software (https://imagej.net/Fiji).

Cell death suppression assay

HaCR1-GFP, *ΔSP-HaCR1-GFP*, or *GFP* plasmids were co-transformed with the effector *AvrE1* cloned from *Pseudomonas syringae* pv. *tomato* that elicits cell death in *N. benthamiana* (Badel *et al.*, 2006). *Agrobacterium tumefaciens* cell concentration of all constructs was equally adjusted to a final OD₆₀₀ of 1.0. Infiltration was performed on 4-week-old *N. benthamiana* plants. Each individual construct was injected into the same leaf at separate areas (1.5 cm²). Pictures of the leaves were taken 5 d post-infiltration and analysed by mean grey value counts using the Fiji/ ImageJ software (https://imagej.net/Fiji).

Epifluorescence and confocal microscopy

Overview pictures of *N. benthamiana* leaves were taken using a M165 FC epifluorescence stereomicroscope (Leica microsystems) with a GFP/ DsRED filter. Confocal laser-scanning microscopy of *N. benthamiana* leaves was performed with an upright SP5 confocal laser scanning microscope (Leica Microsystems) and imaged using an HCX IRAPO L256/0.95W objective (Leica Microsystems). For image acquisition, the resolution was set to 1024×1024 pixels and the frame average to 4. Fluorescent tags were excited using an argon laser at 20% power. GFP was excited with a 488 nm laser line and detected at 500–530 nm, cyan fluorescent protein (CFP) was excited with a 458 nm laser line and detected at 465–505 nm.

Collection of apoplastic wash fluid and apoplastic protein isolation

Six-week-old *N. benthamiana* plants were transformed with *A. tumefaciens*, as described above. To isolate apoplastic wash fluids we adapted and modified a published protocol for the isolation of apoplastic fluids and vesicles from Arabidopsis (Rutter *et al.*, 2017), describing here the modifications. Two days after infiltration, the leaves were detached and the leaf surface was gently washed with ultrapure water. The leaflet was cut along the midrib and damaged areas were excised. The leaf stripes were washed in ultrapure water for 5 min to remove cytoplasm contamination from the cut surface. The leaf pieces were vacuum infiltrated with apoplastic wash buffer (20 mM MES, 2 mM CaCl₂, 0.1 M NaCl, pH 6.0 with NaOH) for 4 min with a desiccator and the vacuum slowly removed within 4 min. The apoplastic fluid was then collected via centrifugation for 15 min at 250 g and 4°C. The isolated apoplastic wash fluid was split and one

Page 4 of 14 | Dunker et al.

part directly used for apoplastic protease activity measurement. The other part was used for total apoplastic protein extraction. Therefore, proteins were collected by trichloroacetic acid and acetone precipitation and dissolved in 5× protein loading dye (225 mM Tris–HCl pH 6.8, 450 mM dithiothreitol (DTT), 5% SDS, 50% glycerol, 0.05% Bromphenol Blue).

Total protein extraction and western blot analysis

Proteins were extracted from *N. benthamiana* leaf discs, as described previously (Cerri *et al.*, 2017). Protein extracts were supplemented with 5× loading dye (225 mM Tris–HCl pH 6.8, 450 mM DTT, 5% SDS, 50% glycerol, 0.05% Bromphenol Blue), boiled for 5 min at 95 °C, and separated via SDS-PAGE. Transgene constructs were detected via western blot using α -GFP antibody (Clones 7.1 and 13.1; Roche Diagnostics, Mannheim, Germany) and by secondary antibody α -mouse IRDye800 (Li-Cor, Bad Homburg, Germany). The membrane was scanned with the Odyssey imaging system (Li-Cor). To visualize total protein content, either the polyacrylamide gel was stained using silver nitrate (Roti-Black P, Carl Roth, Karlsruhe, Germany) or the membrane after blotting was stained with staining solution (0.1% Coomassie Brilliant Blue G250 (Serva, Heidelberg, Germany), 10% acetic acid, 40% ethanol in water) and de-stained with a solution of 10% acetic acid–30% ethanol.

Plant protease activity assay

Plant protease activity of isolated apoplastic wash fluid was determined using the Pierce fluorescent protease assay kit (Thermo Fisher Scientific) following the manufacturer's instructions for samples with low pH. Fluorescence was determined using a microplate reader (Tecan, Männedorf, Switzerland) with excitation and emission wavelengths of 485 nm and 538 nm, respectively. Protease activity was normalized on total protein content determined by Coomassie Brilliant Blue staining and quantified using Fiji/ImageJ (https://imagej.net/Fiji) as previously described (Miller, 2010).

Pseudomonas syringae pathogen assay

Liquid LB medium with rifampicin was inoculated with a single colony of *Pst* DC3000 and *Pst* DC3000 *hrc*C⁻ and incubated overnight at 28°C. The bacteria were collected by centrifugation and diluted with 10 mM MgCl₂ to a final OD₆₀₀ of 0.0006. Leaves of 5- to 6-week-old Arabidopsis plants grown under short day conditions were infiltrated with the bacterial suspension, covered with a transparent lid and incubated under long day conditions. Two to three days after inoculation, leaf chlorosis of infiltrated leaves became visible and three leaf discs per biological replicate were harvested with a cork borer (\emptyset 0.6 cm). Leaf discs were homogenized in 10 mM MgCl₂ using a bead mill (MM400, Retsch) and two steel beads. A dilution series was plated on LB plates with rifampicin, and colony forming units were counted using a stereomicroscope.

Results

HIGS is a powerful tool for functional gene studies in H. arabidopsidis

We used Arabidopsis HIGS in order to investigate the functional roles of genes in the obligate biotrophic plant pathogen *H. arabidopsidis*. As proof of concept, we chose four *H. arabidopsidis* candidate genes as HIGS targets, for which we presumed that gene knockdown would affect pathogen infection, namely the housekeeping gene *ACTIN A* (*HaACT*^{*RNAi*}), the *CYSTEINE-RICH1* protein gene (*HaCR1*^{*RNAi*}), an *ALDOSE-1-EPIMERASE* (*HaA1E*^{*RNAi*}) gene, and the type-III RNA endonuclease gene *DICER*-*LIKE1* (*HaDCL1*^{*RNAi*}). *HaACT A* (*HpaG807716*) is

constitutively expressed in H. arabidopsidis and other oomycetes, and is a crucial component of the cytoskeleton (Ketelaar et al., 2012). HaCR1 (HpaG806256) and HaA1E (HpaG814621) are putative pathogenicity factors that are highly expressed in H. arabidopsidis during Arabidopsis infection (Asai et al., 2014). HaDCL1 (HpaG808216) is likely involved in biogenesis of *H. arabidopsidis* small RNAs, which we recently found to play an important role in suppressing plant genes for host infection (Dunker et al., 2020). The fungal plant pathogen Botrytis cinerea uses small RNAs for Arabidopsis plant infection, too (Weiberg et al., 2013), and HIGS against Botrytis DCLs indeed conferred disease resistance (Wang et al., 2016). To clone HIGS RNA hairpin transgenes (Fig. 1A), we chose target gene fragments that we predicted to not induce any off-target silencing either in H. arabidopsidis or in Arabidopsis using the Si-Fi2.1 tool (Lück et al., 2019). We confirmed the overall efficiency of our generated hairpin constructs by transient expression of a GFP RNA hairpin in leaves of the N. benthamiana line 16c stably expressing GFP (Ruiz et al., 1998) by A. tumefaciens infiltration. Transgenic GFP expression was clearly suppressed at local A. tumefaciens infiltration zones, as previously described (Kościańska et al., 2005), and release of repression by infiltration of a construct to co-express the viral RNAi suppressor protein p19 (Silhavy et al., 2002) verified GFP silencing via RNAi (see Supplementary Fig. S2). Therefore, we concluded that our constructs would effectively confer RNA silencing. Hence, we generated stable transgenic Arabidopsis lines expressing HIGS RNA hairpins in the ecotype Col-0. T₂ plants were selected and inoculated with the H. arabidopsidis isolate Noco2, which is virulent on Arabidopsis Col-0. We inspected infection phenotypes of WT and HIGS plants at 4 and 7 d post-inoculation (dpi) by light microscopy using the Trypan Blue staining method. Pathogen hyphae and haustoria were visible in all plant lines at 4 dpi, confirming successful infection (Supplementary Fig. S3). At 7 dpi, local plant cell death was visible around the infecting hyphae in plants of a HaACT^{RNAi} and two independent HaCR1^{RNAi} lines (Fig. 1B). Such H. arabidopsidis-induced local plant cell death, known as trailing necrosis, is associated with enhanced disease resistance against H. arabidopsidis infection (Uknes et al., 1992). Trailing necrosis also occurred, albeit to a lesser extent, in HaA1E^{RNAi} plants (Supplementary Fig. S4A), but not in WT (Fig. 1C) or in HaDCL1^{RNAi} plants (Supplementary Fig. S4B). In HaACT^{RNAi} and HaCR1^{RNAi} plants, trailing necrosis was accompanied by a reduction of H. arabidopsidis oospore production (Fig. 1C; Supplementary Fig. S5). To examine the effect of HIGS on target gene expression, we determined transcript levels of HaACTA and HaCR1 in WT and HaACT^{RNAi} or HaCR1^{RNAi} plants, respectively. We did not detect any target gene amplification by RT-PCR in non-inoculated HIGS plants, ensuring that the target gene-specific primers did not produce any signal derived from the HIGS hairpin construct (Supplementary Fig. S6). Stable expression of the reference gene ELONGATION FACTOR 1 α (HaEF1 α , HpaG809424) was validated by quantitative reverse transcription (qRT)-PCR correlating their C_t values with two other reference genes, 40S ribosomal

Fig. 1. Targeted gene knockdown of HaCR1 and HaACTA via HIGS in Arabidopsis. (A) Representative scheme of HIGS constructs. (B) Trypan Blue staining of *H. arabidopsidis*-infected $HaACT^{RNAi}$ and $HaCR1^{RNAi}$ plants at 7 dpi revealed induced trailing necrosis around the pathogen hyphae. At minimum, seven leaves were inspected per genotype, from which a representative image is shown. Numbers in micrographs represent observed leaves with trailing necrosis per total inspected leaves. Scale bars represent 50 µm. (C) $HaACT^{RNAi}$ and $HaCR1^{RNAi}$ plants allowed lower numbers of *H. arabidopsidis* oospore production compared with WT plants at 7 dpi. Oospore density (in categories) was counted with *n* representing the number of inspected leaves. **P*≤0.05, #*P*≤0.1, significant difference by χ^2 test. (D) *HaCR1* gene knockdown in *H. arabidopsidis* was quantified by qRT-PCR in two independent *HaCR1^{RNAi}* lines upon infection at 4 dpi, with WT as control plants and *HaEF1* α and *HaWS021* as reference genes. The bars indicate the average of at least three biological replicates each comprising six to eight plant leaves. **P*≤0.05, significant difference by Student's *t*-test.

Page 6 of 14 | Dunker et al.

protein S3A (HaWS021, HpaG810967) and HaTUB (a β -tubulin, HpaG814031), and of AtACt2 (At3G18780) by plotting the C_t values against AtTUB (At5G62690) (Supplementary Fig. S1A-D) according to the MIQE guidelines (Bustin et al., 2009). Gene silencing of HaACT A and HaCR1 was evident at 4 dpi in a $HaACT^{RNAi}$ line (Supplementary Fig. S7A) and in two independent HIGS lines of $HaCR1^{RNAi}$ (Fig. 1D). Neither target gene was suppressed at 7 dpi. (Supplementary Fig. S7B). The HaACT^{RNAi} plants appeared smaller than WT plants (Supplementary Fig. S8A), and thus we assumed an off-target effect on Arabidopsis ACTIN by the $HaACT^{RNAi}$ transgene. We determined the expression of the two Arabidopsis ACTIN genes, AtACT2 (At3G18780) and AtACT11 (At3G12110), showing the highest sequence similarity to HaACT A. The qRT-PCR analysis did not indicate any significant down-regulation of AtACT2 or AtACT11 upon H. arabidopsidis infection at 4 dpi (Supplementary Fig. S8B), rendering the connection between the HIGS construct and the plant growth phenotype unclear. We considered the possibility that such a growth phenotype in HaACT^{RNAi} plants could have influenced the infection outcome with H. arabidopsidis. The transgenic Arabidopsis $HaCR1^{RNAi}$ plants did not display any obvious pleiotropic effects, and we concluded that pathogen-induced plant cell death and enhanced disease resistance were due to HaCR1 silencing. With these data, we considered that HaCR1 was an important virulence factor of H. arabidopsidis to infect Arabidopsis.

HaCR1 is a member of the H. arabidopsidis CR effector protein family

To seek the potential function of HaCR1, we performed in silico protein sequence analysis. The HaCR1 172-amino-acid sequence has a predicted 19-amino-acid secretion signal peptide, but no further predicted functional domains or motifs. Sixteen family members of the HaCR proteins were previously classified into group I and group II by their cysteine pattern, with HaCR1 belonging to group I (Cabral et al., 2011). We accomplished phylogenetic analysis on the group I and II HaCR proteins using a Phytophthora capsici CR protein to root the phylogenetic tree. Phylogeny analysis suggested separate clades of HaCRs, with HaCR1 forming one branch with its close homologues HaCR3 (HpaG813024) and HaCR4 (HpaG806254), and the second clade consisting in HaCR5 (HpaG814422), HaCR6 (Cabral et al., 2011), and HaCR7 (HpaG814216). Further HaCR clades were not explicitly reliable due to overall low sequence conservation (see Supplementary Fig. S9A). We did not detect HaCR2, a HaCR1 homologue that was previously reported in the H. arabidopsidis strain Waco9 (Cabral et al., 2011), in the genome sequence of Noks1, a single-spore isolate of Noco2 (Bailey et al., 2011). Waco9 HaCR2 and Noks1 HaCR1 share a 96.9% amino acid sequence identity and 98.4% sequence similarity, but HaCR2 comprises an additional 89-aminoacid insertion in the middle part of the protein (Cabral et al., 2011). Consistent with the absence of HaCR2 for the Noks1 genome sequence, we could not amplify a HaCR2

orthologue by RT-PCR. We therefore concluded that there is no HaCR2 orthologue existing in the strain Noco2. HaCR1 and its closest homologue HaCR3 (BLASTp E-value 9×10^{-30}) share 53.4% sequence identity and 61.1% sequence similarity (Supplementary Fig. S9B) on the amino acid level. HaCR1 is unique to the species of H. arabidopsidis, because we did not find any HaCR1 homologue in another oomvcete species by BLASTp search against the NCBI database (E-value cut-off ≤1). As HaCR3 shared also 68.2% of transcript sequence identity to HaCR1 (Supplementary Fig. S10A), we sought to examine co-suppression of HaCR3 in $HaCR1^{RNAi}$ plants upon H. arabidopsidis infection. We performed qRT-PCR for gene expression analysis and observed comparable HaCR3 transcript accumulation in WT and HaCR1^{RNAi} plants at 4 dpi (Supplementary Fig. S10B), suggesting that $HaCR1^{RNAi}$ was specific to knockdown HaCR1, but not HaCR3.

HaCR1 inhibits induced plant cell death and promotes infection by (hemi)biotrophs

In order to shed light on HaCR1 function during plant infection, we performed transient expression assays using N. benthamiana leaves. We cloned a full-length HaCR1 version and fused it with a C-terminal GFP tag (HaCR1-GFP), a C-terminal GFP-tagged HaCR1 version without its predicted signal peptide (ΔSP -HaCR1-GFP), and GFP without any HaCR1 sequence as a negative control (GFP) for expression in N. benthamiana leaves (Fig. 2A, B). Because HaCR1 knockdown by HIGS resulted in plant trailing necrosis, we hypothesized that HaCR1 might promote infection through supressing plant cell death. To test this hypothesis, we co-expressed the HaCR1-GFP or the Δ SP-HaCR1-GFP construct together with the *P. syringae* effector *AvrE*, a known trigger of plant cell death in N. benthamiana (Badel et al., 2006). Only HaCR1-GFP was able to dampen AvrE1-induced plant cell death in contrast to both ΔSP -HaCR1-GFP and GFP (Fig. 2C). To further substantiate the role of HaCR1 as a plant cell death inhibitor for plant infection, we inoculated HaCR1-GFP-infiltrated N. benthamiana leaves with the hemibiotrophic oomycete pathogen P. capsici or with the necrotrophic fungal pathogen B. cinerea. These two pathogens lack any homologous protein with sequence similarity to HaCR1 (no BLASTp hit with E-value ≤5). *Phytophthora capsici* generated significantly larger lesions in HaCR1-GFP expressing leaves, compared with ΔSP -HaCR1-GFP or GFP expressing leaves (Fig. 2D). In contrast, B. cinerea, the infection of which is supported by induced plant cell death (Govrin and Levine, 2000), produced significantly smaller lesions in HaCR1-GFP expressing leaves than in $\triangle SP$ -HaCR1-GFP or in GFP expressing leaves (Fig. 2E). Since HaCR1 does not contain any RxLR plant cell translocation motif, we postulated that it could be active in the plant apoplast. To inspect HaCR1 intercellular localization in plants, we co-expressed a CFP-fused protein of the known plant plasma membrane marker Lti6B (Kurup et al., 2005) with HaCR1-GFP, Δ SP-HaCR1-GFP, or GFP in N. benthamiana leaves. Confocal microscopy studies revealed overlapping GFP and CFP signals for HaCR1-GFP indicating co-localization with Lti6B and the presence of HaCR1 in both the plant

Downloaded from https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/eraa472/5925036 by guest on 30 November 2020

Fig. 2. Expression of full-length *Ha*CR1 in *N. benthamiana* suppresses effector-triggered plant cell death and promoted disease of *P. capsici* but reduced disease of *B. cinerea*. (A) Schematic overview of *Ha*CR1 expression cassettes: C-terminal *GFP* fused to full-length *Ha*CR1, C-terminal *GFP* fused to a *Ha*CR1 version without signal peptide ($_{\Delta}SP$), and *GFP* without *Ha*CR1. *ProLjUBI* is a *Lotus Ubiquitin* promoter, *SP* represents signal peptide, *term35S* is a S35 viral terminator, *NPT* is a *Neomycin-phosphotransferase* resistance gene (only included when transforming Arabidopsis). (B) Western blot analysis confirmed expression of *Ha*CR1–GFP, $_{\Delta}SP$ –*Ha*CR1–GFP fusion proteins or GFP in *A. tumefaciens*-infiltrated tobacco leaves. The expected size of *Ha*CR1–GFP was 40.6 kDa, of $_{\Delta}SP$ –*Ha*CR1–GFP was 38.7 kDa, and of free GFP was 26.9 kDa. Asterisk indicates a non-specific band. RuBisCO stained with Coomassie G250 was used as a loading control. (C) A representative picture of a tobacco leaf t 5 d after *A. tumefaciens*-infiltrated reaver included three times with comparable results. Each experiment included three infiltrated leaves. Quantification of chlorosis symptoms was performed by measuring the mean grey value of the infiltrated area, with *n*–3. (D) *Agrobacterium tumefaciens*-infiltrated *N. berthamiana* leaves of *Ha*CR1-GFP, *aSP-Ha*CR1-GFP, *app://aSP-Ha*CR1-GFP, or *GFP* were inoculated with *P. capsici*, and pictures were taken at 2 dpi. Lesion size quantification on *N. benthamiana* leaves induced by *P. capsici* at 2 dpi, as determined by ImageJ with *n*=20 lesions of *n*=10 leaves. (E) *Agrobacterium tumefaciens*-infiltrated *N. benthamiana* leaves of

Page 8 of 14 | Dunker et al.

apoplast and the symplast, while Δ SP–*Ha*CR1–GFP or GFP indicated signals separate from Lti6B and seemingly located only in the plant symplast (Fig. 3A). These results demonstrated that *Ha*CR1 was functional in suppressing induced plant cell death, and its signal peptide was crucial for this function.

HaCR1 might act as an apoplastic protease inhibitor to support infection

A previously described role of fungal CR proteins is the inhibition of apoplastic plant protease (Rooney et al., 2005). Therefore, we hypothesized that HaCR1 might function as a decoy to inhibit plant apoplastic proteases, too. To challenge this hypothesis, we measured the capacity of HaCR1 to interfere with the apoplastic plant protease activity in vitro. We collected apoplastic wash fluids from N. benthamiana leaves expressing either HaCR1-GFP or Δ SP-HaCR1-GFP. Comparative analysis of the total leaf versus the apoplastic proteins by SDS-PAGE and silver staining displayed a reduction of the intracellular protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in the apoplast fraction indicating successful enrichment of apoplastic proteins, even though we could not entirely prevent cytoplasmic protein contamination, as RuBisCO and ΔSP -HaCR1-GFP were still detectable in apoplast samples (Fig. 3B). Indeed, the apoplastic wash collected from N. benthamiana leaves expressing HaCR1-GFP exhibited a significant reduction of plant protease activity determined by fluorescein isothiocyanate (FITC)-casein compared with ΔSP -HaCR1-GFP (Fig. 3C, D). This result further supported a function of HaCR1 in the plant apoplast.

To investigate the suppressive effect of HaCR1 on plant immunity in the native host Arabidopsis during H. arabidopsidis infection, we generated transgenic Arabidopsis plants expressing HaCR1-GFP or ΔSP -HaCR1-GFP under the strong constitutive Lotus Ubiquitin promoter (Maekawa et al., 2008). We recovered three independent Arabidopsis T₂ lines for HaCR1-GFP and two independent lines for ΔSP -HaCR1-GFP and verified ectopic expression of fusion proteins in seedlings by fluorescence microscopy and western blot analysis (see Supplementary Fig. S11A, B). None of the transgenic lines exhibited any obvious growth or morphological change (Fig. 4A). We pooled and germinated seeds of the corresponding transgenic lines and challenged seedlings with the virulent H. arabidopsidis Noco2. Disease progression was estimated by H. arabidopsidis housekeeping gene expression of HaACT A relative to plant AtACT 2 at 4 and 7 dpi. Moderate but significantly increased pathogen quantity was evident in HaCR1-GFP expressing seedlings, compared with ΔSP -HaCR1-GFP (Fig. 4B). Moreover, expression of the Arabidopsis salicylic acid (SA)-dependent immunity marker gene AtPR1 was significantly less induced in seedlings expressing HaCR1-GFP compared with ΔSP -HaCR1-GFP upon H. arabidopsidis infection (Fig. 4C). This finding supported a role of the full-length HaCR1 in plant immune suppression. The jasmonic

acid-dependent immunity marker gene AtPDF1.2 did not exhibit any difference between HaCR1-GFP and ΔSP -HaCR1-GFP upon H. arabidopsidis infection (Supplementary Fig. S12). To further explore if the HaCR1-suppressive effect on SA-dependent immunity played a role during infection, we inoculated transgenic Arabidopsis lines either with the virulent bacterial hemibiotrophic pathogen Pseudomonas syringae pv. tomato (Pst) strain DC3000 or the avirulent mutant Pst DC3000 *hrcC*⁻ lacking a functional type-III secretion system (Roine et al., 1997). Bacterial growth of DC3000 was significantly enhanced in HaCR1-GFP expressing Arabidopsis, compared with ΔSP -HaCR1-GFP. In contrast, bacterial population of hrcC⁻ remained unaltered between the two different transgenic plant lines (Fig. 4D). These results further supported that HaCR1 is an apoplastic effector that impairs plant immunity against diverse biotrophic and hemibiotrophic plant pathogens.

Discussion

In this study, we used Arabidopsis HIGS for functional gene studies in the obligate biotrophic pathogen H. arabidopsidis. The short lifecycle, available cloning tools, and easy transformation of the host plant Arabidopsis enables the conducting of HIGS experiments in a relatively short time period. We applied HIGS to knockdown HaACTA, HaDCL1, HaCR1, and HaA1E in order to survey functional roles of these pathogen genes during host plant colonization. The HaCR1^{RNAi}, HaACT^{RNAi} plants, and to a lesser extent HaA1E^{RNAi}, exhibited trailing necrosis at H. arabidopsidis infection sites. In addition, HaCR1^{RNAi} and HaACT^{RNAi} plants allowed reduced proliferation of oospores (Fig. 1A-C; Supplementary Fig. S4A), the sexual reproductive structure of oomycetes (Slusarenko and Schlaich, 2003). Both infection phenotypes are related to reduced disease, as comparable trailing necrosis symptoms had been observed when Arabidopsis was primed for immunity, or connected to Arabidopsis ecotypes infected with sub-compatible H. arabidopsidis strains (Uknes et al., 1992; Krasileva et al., 2011). The resistance response in HaACT^{RNAi} plants also suggested that down-regulation of HaACTA was not compensated through functional redundancy by the paralogue HaACT B (HpaG809873), despite considerable sequence homology with the HaACT^{RNAi} HIGS construct (see Supplementary Fig. S13A). The attenuated disease development in $HaACT^{RNAi}$, $HaCR1^{RNAi}$, and $HaA1E^{RNAi}$ plants was not due to plant transformation or due to expression of non-self dsRNA in Arabidopsis, because HaDCL1^{RNAi} did not reveal any higher plant resistance or suppressed pathogen virulence (Supplementary Fig. S4B). Why HaDCL1^{RNAi} plants did not reveal higher resistance despite the important role of pathogen small RNAs during infection (Dunker et al., 2020) remains to be investigated. One possible explanation might be functional redundancy of the two HaDCLs identified in the genome of H. arabidopsidis (Bollmann et al., 2016). Similarly,

HaCR1-GFP, Δ SP-HaCR1-GFP, or GFP were inoculated with *B. cinerea*, and pictures were taken at 3 dpi. Lesion size quantification on *N. benthamiana* leaves induced by *B. cinerea* at 3 dpi, as determined by ImageJ with $n \ge 20$ lesions of $n \ge 10$ leaves. Letters in (C–E) indicate groups of statistically significant difference by ANOVA followed by Tukey's HSD test with $P \le 0.05$.

Fig. 3. *Ha*CR1 localizes to the plant apoplast and is capable of inhibiting apoplastic plant protease activity. (A) Confocal laser scanning microscopy was used to inspect intercellular localization of *Ha*CR1–GFP, Δ SP–*Ha*CR1–GFP, or GFP alone. The plasma membrane (PM) was visualized by the PM marker LTi6B fused with CFP. Six independent events of co-localization were evaluated per construct. Scale bars represent 100 µm. The upper panel displays overlaid LTi6B–CFP and *Ha*CR1–GFP, Δ SP–*Ha*CR1-GFP, or GFP fluorescence signal intensities alongside the bar, as indicated in the fluorescence microscopy images (lower panel). (B) Total leaf protein and apoplastic wash fluid fraction visualized via a silver-stained SDS-PAGE indicated depletion of cytoplasmic proteins, such as RuBisCO, from the apoplastic wash fluid. Western blot shows detection of *Ha*CR1 and free GFP in total leaf and apoplastic wash fluid from the same experiment. (C) Schematic overview of the apoplastic protease activity assay. *Nicotiana benthamiana* leaves were transformed by *A. tumefaciens* infiltration, apoplastic wash fluid was collected by centrifugation, and endogenous protease activity was determined by addition of FITC-casein. Upon protease activity, casein is hydrolysed and quenching of FITC fluorescence is released. (D) Protease activity in the apoplastic wash fluid was measured and compared with apoplastic proteins collected from *N. benthamiana* leaves expressing *Ha*CR1–GFP or Δ SP–*Ha*CR1–GFP. Protease activity was normalized to total protein quantities of apoplastic fluid samples. Each data point represents an independent experiment using eight leaves. **P*<0.05, significant difference by Student's *t*-test.

Downloaded from https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/eraa472/5925036 by guest on 30 November 2020

Fig. 4. Ectopic expression of *Ha*CR1 in Arabidopsis enhances susceptibility to *H. arabidopsidis* and bacterial infection and compromises plant immunity. (A) Growth of Arabidopsis plants overexpressing either ΔSP -HaCR1-GFP or HaCR1-GFP. The scale bar represents 2 cm. (B) *H. arabidopsidis* biomass was determined by *HaACT* expression relative to plant *AtACT* in *HaCR1-GFP* expressing Arabidopsis, compared with ΔSP -HaCR1-GFP at 4 and 7 dpi. *HaACT* expression was not detected (n.d.) before infection. (C) *AtPR1* was quantified by qRT-PCR using *AtACT2* and *AtTUB* as reference genes, and relative transcript levels were compared between Arabidopsis expressing *HaCR1-GFP* or ΔSP -HaCR1-GFP at 4 and 7 dpi with *H. arabidopsidis*. (D) Arabidopsis susceptibility to the virulent *Pst* DC3000 or the avirulent *Pst* DC3000 *hrcC⁻* was evaluated by counting colony forming units (cfu) at 3 dpi. Each data point represents cfu derived from three infected leaf discs. For (B, C), each experiment was performed at least with three biological replicates, and each biological replicate represented two technical repeats. For (B–D) **P*≤0.05, significant difference by one-tailed Student's *t*-test.

the mild phenotype expressed in the Arabidopsis $HaA1E^{RNAi}$ line might be explained by the presence of two paralogous and potentially functionally redundant genes: HaA1E-LIKE (HaA1EL, HpaG807738) and HaA1E-LIKE2 (HaA1EL2, HpaG807727). HaA1EL shares 66.3% amino acid identity and 79.6% amino acid similarity, while HaA1EL2 shares 86.6% amino acid identity and 90.3% amino acid similarity with HaA1E. HaA1EL and HaA1EL2 showed also 79.4% and 89.9% coding sequence identity, respectively. In addition, they revealed a considerable DNA sequence homology with our $HaA1E^{RNAi}$ HIGS construct (Supplementary Fig. S13B). However, HaA1EL2 lacks an annotated open reading frame with a signal peptide and displayed very weak expression during infection. In contrast HaA1E and HaA1EL both comprise a predicted signal peptide and were previously found to be strongly expressed in *H. arabidopsidis* infecting Arabidopsis (Asai *et al.*, 2014).

At the molecular level, target gene suppression of HaACT and HaCR1 by HIGS was evident at 4 dpi, but not at 7 dpi (Fig. 1D; Supplementary Fig. S7). At this later time point, H. arabidopsidis had induced trailing necrosis of plant cells at the infection sites of HIGS plants. We suggest that plant cell death would lead to a collapsed haustoria-plant cell interface, which likely stopped the transport of RNAs from plants into the pathogen (Hudzik et al., 2020). Transgenic HaACT^{RNAi} expressing Arabidopsis displayed pleiotropic effects, for instance slower plant growth, although we did not predict any Arabidopsis ACTIN as off-target of the HaACT^{RNAi} construct in silico, and the two closest orthologues of HpaACT A, AtACT2 and AtACT11, were not suppressed in the Arabidopsis HIGS line (Supplementary Fig. S8). Tracing back off-target effects would require plant RNA degradome analysis (Casacuberta et al., 2015), and was not further investigated as it would go beyond the scope of our study. With this experience, we propose to omit pathogen house-keeping genes as targets in HIGS studies although successful silencing would likely promote plant disease resistance. Since pathogen effector genes are unique and homologues do not exist in the host plant, HIGS against HaCR1 did not encounter any off-target problem. An interesting alternative to HIGS for targeted gene knock-down in H. arabidopsidis that is based on exogenous application of 5' capped small interfering RNAs has been recently reported (Bilir et al., 2019). Applying Cellulose synthase A3 antisense RNAs to H. arabidopsidis conidia suspension inhibited spore germination on the leaf surface. Both, transgenic HIGS and external RNA treatment are innovative strategies to further explore gene functions of this pathogen.

To further investigate the role of HaCR1 during plant infection, we expressed HaCR1 in N. benthamiana and Arabidopsis. One obvious disease symptom in transgenic HaCR1^{RNAi} plants was the induction of local plant cell death suggesting that HaCR1 might be involved in cell death suppression. Such a function of HaCR1 was supported by the inhibitory activity on bacterial effector AvrE-induced plant cell death in N. benthamiana leaves (Fig. 2C). Of note, full-length HaCR1, but not a signal peptide-deleted version, was capable of suppressing plant cell death in this assay. AvrE expressed in N. benthamiana leaves was previously described to be localized at the cell plasma membrane (Xin et al., 2015), a possible contact compartment of in planta-expressed full length HaCR1 with AvrE. However, the molecular mechanism of AvrE-induced cell death repression by HaCR1 is not clear, and needs to be further explored by identifying the molecular interactors of HaCR1. On the one hand, HaCR1 promoted disease caused by the oomycete hemibiotrophic pathogen P. capsici (Fig. 2D). We suggest that P. capsici profits from HaCR1-repressed plant cell death during the early biotrophic phase. This is in line with Avr1b from Phytophthora sojae that impaired plant cell death and promoted lesion formation of this hemibiotrophic pathogen (Dou et al., 2008). On the other

hand, HaCR1 expression limited disease symptoms caused by the necrotrophic fungal pathogen B. cinerea (Fig. 2E), because this pathogen exploits and promotes plant apoptosis for infection (Veloso and van Kan, 2018). In this context, reduced Botrytis virulence was reported in plants expressing animal cell death suppressors (Dickman et al., 2001). Consistent with plant cell death suppressive activity, HaCR1 also promoted disease progression caused by other (hemi)biotrophic pathogens, P. syringae DC3000 and H. arabidopsidis itself (Fig. 4B, E). HaCR1 overexpression in Arabidopsis moderately promoted H. arabidopsidis disease, which might be explained by the high expression of endogenous HaCR1 in H. arabidopsidis during infection. Similarly, a previous study on HaRxLR effectors could detect only small positive effects on H. arabidopsidis infection suggesting a combined action of effectors to effectively suppress plant immunity (Pel et al., 2014).

To better understand the molecular function of HaCR1, we explored its peptide composition. HaCR1 contains a predicted secretion signal peptide but no further plant cell translocation domain indicating its function in the plant apoplast. In accordance, only full-length HaCR1 expression in plants suppressed induced plant cell death and promoted infection of (hemi)biotrophs, while a secretion signal peptide-truncated HaCR1 version expressed in plants lost these activities. This is in agreement with other apoplastic effectors found in fungal pathogens, such as Zymoseptoria tritici and Magnaporthe oryzae (Kim et al., 2013; Kettles et al., 2017). A conserved class of apoplastic effectors in fungi are the LysMs. These effectors act as decoys that prevent microbe-associated molecular pattern (MAMP)-triggered plant immunity, for instance by binding chitin oligomers and thereby hampering chitin recognition by plant pattern receptors (Kombrink and Thomma, 2013; Zeng et al., 2020). However, HaCR1, like all other members of the HaCR family, does not contain any predicted protein domain or motif, making a specific ligand binding rather unlikely. Instead, we found evidence that plant-expressed HaCR1 can interfere with apoplastic plant protease activity in vitro (Fig. 3D), similar to fungal CR proteins exhibiting protease inhibition activity (Rooney et al., 2005). The strict dependency of HaCR1 function on the presence of a signal peptide, and thereby its apoplastic localization, suggests a link between the cell death inhibition function and plant protease inhibition. In this context, several apoplastic plant proteases are crucial regulatory components of plant programmed cell death, and protease inhibitory effectors of fungi and oomycetes have been associated with inhibition of plant programmed cell death (Dickman and Fluhr, 2013; Salguero-Linares and Coll, 2019).

In general, small, apoplastic CR peptides containing no further sequence-conserved domains have been described in high numbers for oomycete and fungal pathogens suggesting a functional conservation in a wide range of pathogens (Sperschneider *et al.*, 2018). Pathogen-secreted protease inhibitors or decoys prevent degradation of pathogen effectors or the release of MAMPs produced by plant proteases (Jiang and Tyler, 2012). Such a function of *Ha*CR1 is supported by our results, because Arabidopsis overexpressing *Ha*CR1 exhibited reduced *AtPR1* induction upon *H. arabidopsidis* infection

2020

(Fig. 4C), and *Ha*CR1 expression in plants promoted infection of (hemi)biotrophic pathogens *H. arabidopsidis*, *P. capsici*, and *P. syringae*.

Our data revealed an important role of a CR effector protein in host infection by the obligate biotrophic pathogen H. *arabidopsidis*. A next crucial step to understand the molecular mechanism of how HaCR1 suppresses pathogen-induced plant cell death will be to uncover its molecular interactors, which are likely to include plant apoplastic proteases or receptor-like proteins. This knowledge would be crucial to completely elucidate whether the dual function of HaCR1 in plant protease inhibition and cell death inhibition is directly or indirectly linked, or is independent.

Supplementary data

Supplementary data are available at JXB online.

Fig. S1. Expression correlation analysis of *H. arabidopsidis* and Arabidopsis reference genes by qRT-PCR.

Fig. S2. Expression of GFP^{RNAi} by *A. tumefaciens* infiltration led to *GFP* silencing in the *N. benthamiana* line 16c stably expressing *GFP*.

Fig. S3. Arabidopsis *HaACT*^{RNAi} and *HaCR1*^{RNAi} plants displayed no obviously altered infection phenotype at 4 dpi.

Fig. S4. Infection phenotype of the Arabidopsis $HaA1E^{RNAi}$ and the $HaDCL1^{RNAi}$ lines.

Fig. S5. Representative leaves used for *H. arabidopsidis* oo-spore quantification.

Fig.S6.Validation of RT-PCR primers to assess *H. arabidopsidis* target gene expression in Arabidopsis HIGS plants.

Fig. S7. *H. arabidopsidis* target gene expression when infecting Arabidopsis HIGS plants.

Fig. S8. Growth phenotype of 14-day-old Arabidopsis WT, $HaCR1^{RNAi}$ or $HaACT^{RNAi}$ seedlings.

Fig. S9.The *Ha*CR family in the *H. arabidopsidis* strain Noco2. Fig. S10. *HaCR3* expression was not suppressed during infection of $HaCR1^{RNAi}$ plants.

Fig. S11. Arabidopsis seedlings of individual transformation lines expressing HaCR1-GFP or ΔSP -HaCR1-GFP.

Fig. S12. Expression of AtPDF1.2 was not different when comparing ΔSP -HaCR1-GFP or HaCR1-GFP expressing Arabidopsis seedlings upon H. arabidopsidis infection.

Fig. S13. Sequence alignment of RNAi constructs with the target gene and the closest homologues.

Table S1. Primers used in this study.

Acknowledgements

The authors thank Adriana Hörmann for her help with *H. arabidopsidis* and plant cultivation. We thank Dr Dagmar Hann for providing *A. tumefaciens* GV3101 carrying pGWB314 to express AvrE, and *Pst* DC3000 as well as Dr David Chiasson for sharing a Golden Gate plasmid to express LTI6b-CFP in *N. benthamiana*. We further thank Dr Silke Robatzek and Dr Martin Janda for providing the *Pst* DC3000 *hrcC*⁻ mutant. The *P. capsici* strain LT263 was kindly provided by Dr Francine Govers. We want to thank Chloé Cathebras for help with confocal microscopy. We would like to thank Duncan Crosbie for proofreading as a native English speaker. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) to Dr Arne Weiberg (Grant-ID WE 5707/1-1). The authors declare no conflict of interest.

Author contributions

FD: conceptualization, formal analysis, investigation, methodology, validation, visualization, writing—original draft preparation, writing—review and editing; LO: formal analysis, investigation, methodology, validation, visualization; BL: investigation, methodology, validation, writing—review and editing; AT: resources; AW: conceptualization, funding acquisition, supervision, writing—original draft preparation, writing—review and editing.

Data availability

All data supporting the findings of this study are available within the paper and within its Supplementary data published online. All plasmids and transgenic plant lines created during this study are available from the corresponding author (AW) upon reasonable request.

References

Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology **14**, e1002352.

An Y-Q, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB. 1996. Strong, constitutive expression of the *Arabidopsis* ACT2/ACT8 actin subclass in vegetative tissues. The Plant Journal **10**, 107–121.

Anderson RG, Deb D, Fedkenheuer K, McDowell JM. 2015. Recent progress in RXLR effector research. Molecular Plant-Microbe Interactions 28, 1063–1072.

Asai S, Rallapalli G, Piquerez SJ, Caillaud MC, Furzer OJ, Ishaque N, Wirthmueller L, Fabro G, Shirasu K, Jones JD. 2014. Expression profiling during Arabidopsis/downy mildew interaction reveals a highlyexpressed effector that attenuates responses to salicylic acid. PLoS Pathogens **10**, e1004443.

Badel JL, Shimizu R, Oh HS, Collmer A. 2006. A *Pseudomonas syringae* pv. *tomato avrE1/hopM1* mutant is severely reduced in growth and lesion formation in tomato. Molecular Plant-Microbe Interactions **19**, 99–111.

Bailey K, Çevik V, Holton N, et al. 2011. Molecular cloning of ATR5Emoy2 from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis. Molecular Plant-Microbe Interactions 24, 827–838.

Baum JA, Bogaert T, Clinton W, et al. 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology 25, 1322–1326.

Baxter L, Tripathy S, Ishaque N, et al. 2010. Signatures of adaptation to obligate biotrophy in the *Hyaloperonospora arabidopsidis* genome. Science **330**, 1549–1551.

Bernm F, Becker D, Larisch C, et al. 2016. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Research 26, 812-825.

Bilir Ö, Telli O, Norman C, Budak H, Hong Y, Tör M. 2019. Small RNA inhibits infection by downy mildew pathogen *Hyaloperonospora arabidopsidis*. Molecular Plant Pathology **20**, 1523–1534.

Binder A, Lambert J, Morbitzer R, Popp C, Ott T, Lahaye T, Parniske M. 2014. A modular plasmid assembly kit for multigene expression, gene silencing and silencing rescue in plants. PLoS One 9, e88218.

Bollmann SR, Fang Y, Press CM, Tyler BM, Grünwald NJ. 2016. Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus *Phytophthora*. Frontiers in Plant Science **7**, 284.

Bustin SA, Benes V, Garson JA, et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55, 611–622. Cabral A, Stassen JH, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G. 2011. Identification of *Hyaloperonospora arabidopsidis* transcript sequences expressed during infection reveals isolate-specific effectors. PLoS One 6, e19328.

Cai Q, Qiao L, Wang M, He B, Lin F-M, Palmquist J, Huang S-D, Jin H. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science **360**, 1126–1129.

Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JD. 2013. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biology 11, e1001732.

Casacuberta JM, Devos Y, du Jardin P, Ramon M, Vaucheret H, Nogué F. 2015. Biotechnological uses of RNAi in plants: risk assessment considerations. Trends in Biotechnology **33**, 145–147.

Caten CE, Jinks JL. 1968. Spontaneous variability of single isolates of *Phytophthora infestans*. I. Cultural variation. Canadian Journal of Botany **46**, 329–348.

Cerri MR, Wang Q, Stolz P, et al. 2017. The ERN1 transcription factor gene is a target of the CCaMK/CYCLOPS complex and controls rhizobial infection in *Lotus japonicus*. New Phytologist **215**, 323–337.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. The Plant Journal **16**, 735–743.

Coates ME, Beynon JL. 2010. *Hyaloperonospora arabidopsidis* as a pathogen model. Annual Review of Phytopathology **48**, 329–345.

Cohen Y, Van den Langenberg KM, Wehner TC, Ojiambo PS, Hausbeck M, Quesada-Ocampo LM, Lebeda A, Sierotzki H, Gisi U. 2015. Resurgence of *Pseudoperonospora cubensis*: the causal agent of cucurbit downy mildew. Phytopathology **105**, 998–1012.

Delmas CE, Dussert Y, Delière L, Couture C, Mazet ID, Richart Cervera S, Delmotte F. 2017. Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew. Molecular Ecology **26**, 1936–1951.

Dickman MB, Fluhr R. 2013. Centrality of host cell death in plant-microbe interactions. Annual Review of Phytopathology **51**, 543–570.

Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R. 2001. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proceedings of the National Academy of Sciences, USA 98, 6957–6962.

Dinh PT, Brown CR, Elling AA. 2014. RNA interference of effector gene *Mc16D10L* confers resistance against *Meloidogyne chitwoodi* in Arabidopsis and potato. Phytopathology **104**, 1098–1106.

Dou D, Kale SD, Wang X, et al. 2008. Conserved C-terminal motifs required for avirulence and suppression of cell death by *Phytophthora sojae effector* Avr1b. The Plant Cell **20**, 1118–1133.

Dunker F, Trutzenberg A, Rothenpieler JS, *et al.* 2020. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. eLife **9**, e56096.

Fabro G, Steinbrenner J, Coates M, et al. 2011. Multiple candidate effectors from the oomycete pathogen *Hyaloperonospora arabidopsidis* suppress host plant immunity. PLoS Pathogens **7**, e1002348.

Fry W. 2008. *Phytophthora infestans*: the plant (and R gene) destroyer. Molecular Plant Pathology 9, 385–402.

Govindarajulu M, Epstein L, Wroblewski T, Michelmore RW. 2015. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnology Journal **13**, 875–883.

Govrin EM, Levine A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen *Botrytis cinerea*. Current Biology **10**, 751–757.

Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A. 2006. A rapid and robust method of identifying transformed *Arabidopsis thaliana* seedlings following floral dip transformation. Plant Methods 2, 19.

Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus *Glomus* sp is crucial for the symbiotic relationship with plants. The Plant Cell **23**, 3812–3823.

Hou Y, Ma W. 2020. Natural host-induced gene silencing offers new opportunities to engineer disease resistance. Trends in Microbiology **28**, 109–117. Hou Y, Zhai Y, Feng L, et al. 2019. A *Phytophthora* effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host & Microbe **25**, 153–165.e5.

Hudzik C, Hou Y, Ma W, Axtell MJ. 2020. Exchange of small regulatory RNAs between plants and their pests. Plant Physiology **182**, 51–62.

Hurtado-Gonzales OP, Lamour KH. 2009. Evidence for inbreeding and apomixis in close crosses of *Phytophthora capsici*. Plant Pathology **58**, 715–722.

Jahan SN, Åsman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C. 2015. Plant-mediated gene silencing restricts growth of the potato late blight pathogen *Phytophthora infestans*. Journal of Experimental Botany **66**, 2785–2794.

Jiang RH, Tyler BM. 2012. Mechanisms and evolution of virulence in oomycetes. Annual Review of Phytopathology **50**, 295–318.

Kamoun S, Furzer O, Jones JD, et al. 2015. The Top 10 comycete pathogens in molecular plant pathology. Molecular plant pathology 16, 413–434.

Ketelaar T, Meijer HJ, Spiekerman M, Weide R, Govers F. 2012. Effects of latrunculin B on the actin cytoskeleton and hyphal growth in *Phytophthora infestans*. Fungal Genetics and Biology **49**, 1014–1022.

Kettles GJ, Bayon C, Canning G, Rudd JJ, Kanyuka K. 2017. Apoplastic recognition of multiple candidate effectors from the wheat pathogen *Zymoseptoria tritici* in the nonhost plant *Nicotiana benthamiana*. New Phytologist **213**, 338–350.

Kim SG, Wang Y, Lee KH, et al. 2013. In-depth insight into in vivo apoplastic secretome of rice-*Magnaporthe oryzae* interaction. Journal of Proteomics **78**, 58–71.

Koch A, Kogel KH. 2014. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnology Journal **12**, 821–831.

Koch E, Slusarenko A. 1990. *Arabidopsis* is susceptible to infection by a downy mildew fungus. The Plant Cell **2**, 437–445.

Kombrink A, Thomma BP. 2013. LysM effectors: secreted proteins supporting fungal life. PLoS Pathogens 9, e1003769.

Kościańska E, Kalantidis K, Wypijewski K, Sadowski J, Tabler M. 2005. Analysis of RNA silencing in agroinfiltrated leaves of *Nicotiana benthamiana* and *Nicotiana tabacum*. Plant Molecular Biology **59**, 647–661.

Krasileva KV, Zheng C, Leonelli L, Goritschnig S, Dahlbeck D, Staskawicz BJ. 2011. Global analysis of Arabidopsis/downy mildew interactions reveals prevalence of incomplete resistance and rapid evolution of pathogen recognition. PLoS One 6, e28765.

Kurup S, Runions J, Köhler U, Laplaze L, Hodge S, Haseloff J. 2005. Marking cell lineages in living tissues. The Plant Journal **42**, 444–453.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta}C^{(1)}$ method. Methods **25**, 402–408.

Lück S, Kreszies T, Strickert M, Schweizer P, Kuhlmann M, Douchkov D. 2019. siRNA-finder (si-Fi) software for RNAi-target design and off-target prediction. Frontiers in Plant Science **10**, 1023.

Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M. 2008. Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in *Lotus japonicus*. Molecular Plant-Microbe Interactions **21**, 375–382.

Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology **25**, 1307–1313.

McDowell JM. 2014. *Hyaloperonospora arabidopsidis*: a model pathogen of *Arabidopsis*. In: Dean RA, Lichens-Park A, Kole C, eds. Genomics of plant-associated fungi and oomycetes: Dicot pathogens. Berlin, Heidelberg: Springer, 209–234.

Miller L. 2010. Analyzing gels and western blots with ImageJ. lukemiller. org.

Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. 2010. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen *Blumeria graminis*. The Plant Cell **22**, 3130–3141.

Page 14 of 14 | Dunker et al.

Pel MJ, Wintermans PC, Cabral A, Robroek BJ, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G, Pieterse CM. 2014. Functional analysis of *Hyaloperonospora arabidopsidis* RXLR effectors. PLoS One **9**, e110624.

Pliego C, Nowara D, Bonciani G, *et al.* 2013. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Molecular Plant-Microbe Interactions **26**, 633–642.

Ried MK, Banhara A, Hwu FY, Binder A, Gust AA, Höfle C, Hückelhoven R, Nürnberger T, Parniske M. 2019. A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen *Hyaloperonospora arabidopsidis*. PLoS Pathogens **15**, e1007747.

Roine E, Wei W, Yuan J, Nurmiaho-Lassila E-L, Kalkkinen N, Romantschuk M, He SY. 1997. Hrp pilus: An *hrp*-dependent bacterial surface appendage produced by *Pseudomonas syringae* pv. *tomato* DC3000. Proceedings of the National Academy of Sciences, USA **94**, 3459–3464.

Rooney HCE, Van't Klooster JW, van der Hoorn RAL, Joosten MHAJ, Jones JDG, de Wit PJGM. 2005. *Cladosporium* Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science **308**, 1783–1786.

Ruiz MT, Voinnet O, Baulcombe DC. 1998. Initiation and maintenance of virus-induced gene silencing. The Plant Cell **10**, 937–946.

Rutter B, Rutter K, Innes R. 2017. Isolation and quantification of plant extracellular vesicles. Bio-Protocol 7, doi: 10.21769/BioProtoc.2533.

Salguero-Linares J, Coll NS. 2019. Plant proteases in the control of the hypersensitive response. Journal of Experimental Botany **70**, 2087–2095.

Silhavy D, Molnár A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyán J. 2002. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. The EMBO Journal **21**, 3070–3080.

Slusarenko AJ, Schlaich NL. 2003. Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Molecular Plant Pathology 4, 159–170.

Sperschneider J, Dodds PN, Singh KB, Taylor JM. 2018. ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning. New Phytologist **217**, 1764–1778.

Thordal-Christensen H, Birch PRJ, Spanu PD, Panstruga R. 2018. Why did filamentous plant pathogens evolve the potential to secrete hundreds of effectors to enable disease? Molecular Plant Pathology **19**, 781–785.

Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J. 1992. Acquired resistance in *Arabidopsis*. The Plant Cell **4**, 645–656.

Vega-Arreguín JC, Jalloh A, Bos JI, Moffett P. 2014. Recognition of an Avr3a homologue plays a major role in mediating nonhost resistance to *Phytophthora capsici* in *Nicotiana* species. Molecular Plant-Microbe Interactions **27**, 770–780.

Veloso J, van Kan JAL. 2018. Many shades of grey in *Botrytis*-host plant interactions. Trends in Plant Science **23**, 613–622.

Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants **2**, 16151.

Weiberg A, Wang M, Lin F-M, Zhao H, Zhang Z, Kaloshian I, Huang H-D, Jin H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science **342**, 118–123.

Wirthmueller L, Asai S, Rallapalli G, et al. 2018. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. New Phytologist **220**, 232–248.

Xin X-F, Nomura K, Ding X, et al. 2015. Pseudomonas syringae effector avirulence protein E localizes to the host plasma membrane and down-regulates the expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 gene required for antibacterial immunity in Arabidopsis. Plant Physiology **169**, 793–802.

Yan HZ, Liou RF. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen *Phytophthora parasitica*. Fungal Genetics and Biology **43**, 430–438.

Yin C, Hulbert SH. 2018. Host-induced gene silencing (HIGS) for elucidating *Puccinia* gene function in wheat. Methods in Molecular Biology **1848**, 139–150.

Zeng T, Rodriguez-Moreno L, Mansurkhodzaev A, et al. 2020. A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytologist **225**, 448–460.

Zhang M, Wang Q, Xu K, Meng Y, Quan J, Shan W. 2011. Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen *Phytophthora parasitica*. PLoS One **6**, e28114.

Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants 2, 16153.

Supplementary data:

Figure S1: Expression correlation analysis of H. arabidopsidis and A. thaliana reference genes by qRT-PCR. Raw C, values of three H. arabidopsidis reference genes and two A. thaliana reference genes were recorded in infected A. thaliana plants. A) Correlation plot of Ct values between A) HaEF1a and HaWS021, B) HaEF1a and HaTUB and C) HaEF1 α and HaWS021 are displayed. C_t values in A) and B) were measured at 4 dpi and in C) at 7 dpi. Despite considerable variation in the Ct values between samples reflecting the variation of the H. arabidopsidis infection strength, expression of the three genes was highly correlated, validating their stable expression. D) Ct values of the two A. thaliana reference genes AtACT2 and AtTUB displayed correlated expression. Data were recorded from expression resembling pooled samples at 4 and 7 dpi. The boxes in A) - D) display the Pearson's correlation coefficient r and p-value of correlation for each correlation analysis.

Figure S2: Expression of *GFP*^{RNAi} by *A. tumefaciens* infiltration led to *GFP* silencing in the *N. benthamiana* line 16c stably expressing *GFP*. Epifluorescence pictures were taken 2 days post infiltration, mCherry was used as a transformation marker. The arrow displays the endogenous GFP fluorescence of line 16c in the untransformed region. Co-expression of the viral RNAi suppressor p19 was used to validate RNAi-dependent gene silencing. The scale bars indicates 1 mm.

Figure S3: A. thaliana HaACT^{RNAi} and HaCR1^{RNAi} plants displayed no obviously altered infection phenotype

at 4 dpi. A minimum of five leaves was inspected per genotype. Scale bars represent 50 $\mu m.$

Figure S5: Representative leaves used for H. arabidopsidis oospore quantification. A. thaliana HaACTRNAi and both HaCR1RNAi lines

allowed reduced oospore production. The white arrow indicates an oospore. Leaves were inspected at 7 dpi. Scale bars indicate 2 mm.

Figure S4: Infection phenotype of the *A. thaliana HaA1E^{RNAi}* and the *HaDCL1^{RNAi}* lines. A) The *A1E^{RNAi}* line exhibited moderate resistance against *H. arabidopsidis*. At 7 dpi, trailing necrosis was detected in three out of eleven infected seedling leaves, while eight out of eleven leaves displayed no trailing necrosis. B) *HaDCL1^{RNAi}* plants did not display trailing necrosis upon infection with *H. arabidopsidis*. Scale bars represent 50 μm.

Figure S6: Validation of RT-PCR primers to assess *H.* arabidopsidis target gene expression in *A. thaliana* HIGS plants. RT-PCR of *H. arabidopsidis* HaACT A and HaCR1 in mock-treated and *H. arabidopsidis*-infected A. thaliana WT and HIGS plants at 4 dpi. The HIGS construct did not generate any detectable PCR products with the *H. arabidopsidis*-specific target gene primers for HaACT A and HaCR1 in non-infected plant samples. YFP expression was used as control for transgene expression in HIGS plants. AtACT was used to validate cDNA synthesis.

Figure S7: *H. arabidopsidis* target gene expression when infecting *A. thaliana* HIGS plants. A) Quantitative RT-PCR of *HaACT A* in *H. arabidopsidis*-infected *A. thaliana* WT and *HaACT*^{RNAI} plants at 4 dpi using *HaEF1* α as a reference genes. B) Quantitative RT-PCR of *HaACT A* in *H. arabidopsidis*-infected WT and corresponding HIGS plants at 7 dpi using *HaEF1* α as a reference gene. C) Quantitative RT-PCR of *HaCR1* in *H. arabidopsidis*-infected WT and two independent HIGS lines (#1, #2) at 7 dpi using *HaEF1* α and *HaWS021* as reference genes. The bars indicate the average of three biological replicates each comprising six to eight leaves. Asterisks indicate significant difference by student's t-test with p ≤ 0.05.

CR.

Har

Figure S8: Growth phenotype of 14-days old *A. thaliana* **WT**, *HaCR1*^{RNAi} **or** *HaACT*^{RNAi} **seedlings.** A) Non-transgenic plants were removed beforehand taking pictures from the *HaCR1*^{RNAi} or *HaACT*^{RNAi} pots by selecting plants expressing a YFP transformation reporter with a fluorescence stereomicroscope. Scale bars represents 1 cm. B) The expression of the two closest *A. thaliana* paralogs of *HaACT A*, *AtACT2* and *AtACT11*, was determined by qRT-PCR using *AtTUB* and *AtUBQ10* as reference genes. The *HaACT*^{RNAi} construct did not alter the expression of *AtACT2* and *AtACT11* at 4 dpi.

Figure S9: The HaCR family in the H. arabidopsidis strain Noco2. A) Phylogenetic tree of HaCRs based on the amino acid sequence. PpCR from P. parasitica (gene ID: F443_03861) was used as an outgroup to root the tree. The numbers show bootstrap values of 100 bootstraps. B) Protein sequence alignment between HaCR1 and its closest homolog HaCR3. The signal peptide of HaCR1 is highlighted within the purple box, the cysteine residues with grey boxes. Sequence conservation is displayed in red in the panel below the alignment.

Figure S10: HaCR3 expression was not suppressed during infection of HaCR1^{RNAJ} plants. A) DNA Sequence alignment of the coding sequences of HaCR1 and HaCR3 with the sequence of the HaCR1^{RNAJ} construct. B) Quantitative RT-PCR of HaCR3 in A. thaliana WT and HaCR1^{RNAJ} plants at 4 dpi using \geq three biological replicates. HaEF1a and HaWS021 were used as reference genes.

Figure S11: *A. thaliana* seedlings of individual transformation lines expressing *Ha*CR1-GFP or ΔSP-*Ha*CR1-GFP. A) GFP expression (teal arrow) was detected mainly in young leaves, but not in cotyledons of individual transformation lines (#) using a fluorescence stereomicroscope. The scale bars present 2 mm. B) Western blot was performed using an anti-GFP antibody to confirm *Ha*CR1-GFP (40.6 kDa) or ΔSP-*Ha*CR1-GFP (38.7 kDa) fusion proteins, with Coomassie staining of RuBisCO served as a loading control.

Figure S12: Expression of AtPDF1.2 was not different when comparing Δ SP-HaCR1-GFP or HaCR1-GFP expressing A. thaliana seedlings upon H. arabidopsidis infection. AtPDF1.2 expression was determined by qRT-PCR using AtACT2 and AtTUB as reference genes.

A	720	740	760	780	800
HaACT_A GGGGGGGGGGGG HaACT_RNAIGGG HaACT_R GGGTGGGG	GTCGGCACTC GAGAAGAG GTCGGCACTC GAGAAGAG GTCGCGCACTC GAGAAGAG	T ACCANTICE GGATGCAA	GIGATIGICA TIGGCAATG	ACCITICOT ACCCCCANG IGETGI	
Conservation		A BROBORINE ROBIOORS			
Sequence logo	C GTCzGeACTC GAeAaezee	T ACCARTICC ECATOCCAA	I GTGATEGTEA TEGGCARTG	A xCG+TTCCGT ACeCCGGAAG TGCT&T	A33
HAACT_A GCCGTCGCT HAACT_RNAI GCCGTCGCT HAACT_B CCCGTCCAT	ATTGCCAAAG AAGCTGCCC Attgccaaag Aagctgccc Attgcccaag Actgctccc	G TATTCACCAC TGCACGTTC G TATTCACCAC TGCACGTTC G CGTCCATGAC TGCCCTTC	AGACCATCAT GAAGTGTGA Agaccatcat gaagtgtga Agacaatcat gaagtgga	CICCATATEC GCAAGCATIT GTACTG CICCATATEC GCAACCATIT GTACTG CITCACATEC GCCACCATIT GTACTG	AAC
Conservation					
	e ATTGCXXAG AxeeteCC	G FRTFCAEGAC TGERCGTTC	C AGACeATCAT GAAGTG+GA	C GT&GAFATCC GG&&GGAFTT GTA&AD	1,000
HaACT_A ATTGTGCTC HaACT_RNAI ATTGTGCTC HaACT_B GTGGTGTTG	T CGCCCGGAAC CACCATGT T CGCCCGGAAC CACCATGT T CGCCCGGATC AACGATGT	C CCGCCATTC CCGAACCCA C CCGCCATTC CCGAACCCA C CCGCCATTC CTGATCCCA	GACCAAGGAA CTCACGCT Gaccaaggaa Ctcacgct Gaccaaggaa Atggetceg	T TCCCCCCCCC CACCATCAAC ATTAAC T TCCCCCCCCC CACCATCAAC ATTAAC T TCCCCCCCCC CCCCATCAAC ATTAAC	TEG
Conservation					
Sequence logo	T CGGGCGGAXC eACeATGT2	C CCGGGeATTG GEGAECGCA	I GAEEAAGGAA eTGECeff	F TEGCCCEFC GRCEATGAAE RTFAAG	TCe
B 340					
	100	380	400	420 1	440
HAA1E CTECAACAEC HAA1E_L2 CTECCATAEC HAA1E_L CTECAATAEC HAA1E_L CTECAATAEC HAA1E_RNAI	TCCACCTCAC CAATCACAAAAA TCCACCTCAC CAATCACAAAAA TCCACCTCAC CAATCATCAA TCCACCTCCC CAATCATCAA TCCACCTCCC	ACTEGTACA CTTCTCCCAT CTTC CTCCTACA CTTCTCTCTCCCAT CTTC CTTCCTACA CTTCTCCCAT CTTC CTTCCTACA CTTCTCCCAT CTTC	CACTTE CATTECACTE ATCACA Cette Cattecacte Atcaca Cette Cattecacte Atcaca Catte Cattecacte Atcaca Catte Cattecacte Atcaca	420 CCCT CCACATCICG CCTITITAAAT TCACGC CCCT TCACATC CCCA TCACATCGC CCTITITAAAT TCACGC CCCT CCACATCGC CCTITITAAAT TCACGC	
HAAIE CTECRAGACAC HAAIEL2 CTECCATAC HAAIEL CTECCATAC HAAIEL CTECATATC HAAIE,RNA Conservation	TGGACCIGAC GAATGACAAA A TGGACCIGAC GAATGACAAA A TGAAGEIGGE GAATGATGAA	ACTECTACA GTTETCECAT GTTE ATTECTACA GTTETCECAT GTTE ATTECTACA GTTETCEGTT GTTE ATTECTACA GTTETCEGTT GTTE	CACTTC CATTCCACTC ATCACA CCETTC CATTCCACTC ATCACA CCETTC CATTCCACTC ATCACA CCETTC CATTCCACTC ATCACA CACTTC CATTCCACTC ATCACA	CONT DEACATOR CONTINUANT TEACC	
HAALE LE CLAAGAEC HAALEL2 ELECATAEC HAALEL2 ELECATAEC HAALEL2 ELECATAEC HAALEL2 ELECATAEC Sequence logo Sequence logo Sequence logo	TECARCTECAC CAXTOACAAA A	ACTCETACA CTTCTCC.AT GTC	470 COLTEC CALLOR TO ALCON COLTEC CALLOR TO ALCON CALLOR TO ALCON 500 CALLOR TO ALCON 500 CALLOR 500 CALLOR TO ALCON 500 CALLOR TO ALCON 500		
HAALE UTECAACHEC HAALEL 2 TECAATHEC HAALEL 2 TECAATHEC HAALEN Conservation Sequence boo to the Conservation HAALE 1 TECACHEC HAALE 2 TEACGOOR HAALEL 2 TEACGOOR HAALEL 2 TEACGOOR HAALEL 2 TEACGOOR			CACHIG GATE CALL ATCACE		
HAALE ETECGARAGE HAALEL CECGARAGE HAALEL CECGARAGE HAALENN Conservation Janu Sequence boss CICUAAACU HAALE TIREGOCOC HAALEL CARAGEGE HAALEL CARAGEGEE HAALEL CARAGEGEE HAALEL CARAGEGEE HAALEN TIREGOCOC			CALL CALL CALL CALL CALL CALL CALL CALL		440 TGTT TGTT TGTT TGTT TGTT TGTT GTC GTCC GTCC GTCC
HAATE BTEGRAFIEG HAATE, DAN Concerning of the second of the same of the second of the HAATE, DAN Secures (Second of the HAATE, DAN HAATE, DAN H	TECHECTORE CHATTAGE	ARTERIAL CITERCER CONTRACTOR CONT	CALLO CLARGE CALLER		
HAALE ETERGATERS			CALTIC CATTERNATION AT CALMA CALTIC CATTERNATION CALTIC CATTERNATION CALTIC CATTERNATION CALTIC CATTERNATION CALTIC CATTERNATION CALTIC CATTERNATION CALTIC CATTERNATION CALTIC CATTERNATION CALTIC CALCACACUT ATCHEN CALTIC CATTERNATION CALTIC CALCACACUT ATCHEN CALTIC CALCACACUT ATCHEN CALTIC CALCACACUT ATCHEN		

Figure S13: DNA sequence alignment of the target gene and closest paralogs at the HIGS target site. A) Sequence alignment of *HaACT A* with *HaACT B*. B) Sequence alignment of *HaA1E* with the two paralogs *HaA1EL* and *HaA1EL2*. The numbers above the alignments in A) and B) are showing the position in the target transcript.

Table S: 1: List of primers used in this study			
Name	Sequence	Annealing	Purpose
		Temperature	
HaCR1_RNAi_fwd	ggtctcacaccCCGGTTCTGCCACCGAATAT		RNAi construct cloning
HaCR1_RNAi_rev	ggtctcaccttCTCGCGAATGCAGCAGTCTC		RNAi construct cloning
HaACT_RNAi_fwd	ggtctcacaccGAGTCGTCGGGACTCGAGAA		RNAi construct cloning
HaACT_RNAi_rev	ggtctcaccttCTTAATCTTCATGGTCGAGG		RNAi construct cloning
HaDCL1_RNAi_fwd	ggtctcacaccTACCCGCGGCTCTTTGCCAC		RNAi construct cloning
HaDCL1_RNAi_rev	ggtctcaccttTTACTATTTGCGCCAAGCAG		RNAi construct cloning
HaA1E_RNAi_fwd	ggtctcacaccTGACAAAAACTCGTACAGTT		RNAi construct cloning
HaA1E_RNAi_rev	ggtctcaccttCTCGACGCCCTGAAGGCCCG		RNAi construct cloning
GFP_RNAi_fwd	ggtctcacaccAGTGGAGAGGGTGAAGGTGA		RNAi construct cloning
GFP_RNAi_rev	ggtctcaccttAAAGGGCAGATTGTGTGGAC		RNAi construct cloning
HaCR1_fwd	TAGGTCTCACACCATGCACGTCCCCTCCTCCTG		HaCR1 for in planta
			expression
HaCR1_rev	TAGGTCTCACCTTGTGCTGATCTTGGCGCCGGCAC		HaCR1 for <i>in planta</i>
			expression
HaCR1_noSP_fwd	ATGGTCTCACACCATGACCGAATATGCCGGCGGTGTG		HaCR1 for <i>in planta</i>
			expression
HaCR1_RT_fwd	CTCCCTGGTCCTCTTCAT	52 °C	qPCR
HaCR1_RT_rev	CCTCAACTGAAAAGCTCA	52 °C	qPCR
HaAct_RT_fwd	CGTGCGCGACATTAAAGAGA	52 °C	qPCR
HaAct_RT_rev	GAGCCACCAATCCACACCGA	52 °C	qPCR
HaEF1 α _RT_fwd	TTGGTGGTTGCTTCGGGTGT	52 °C	qPCR
HaEF1a_RT_rev	TTGGGCGGGTTCAGGTTGT	52 °C	qPCR

HaTUB_fwd	TTGGTGTGTGCTGCTATGTCT	52 °C	qPCR
HaTUB_rev	CTCATCCACCTCCTTCGTACT	52 °C	qPCR
HaWS021_fwd	CACAAAGAAGCGTCCAAACCA	52 °C	qPCR
HaWS021_rev	CCGGGACGAACTTCAAAAACA	52 °C	qPCR
HaCR3_fwd	GTCCTCCTCTTGGCTACCGTC	52 °C	qPCR
HaCR3_rev	GTGCTGCCATTGGCTCTGGCA	52 °C	qPCR
AtACT2_RT_fwd	CAGTGGTCGTACAACCGGTATT	52-60 °C	qPCR
AtACT2_RT_rev	GTCTCTTACAATTTCCCGCTCT	52-60 °C	qPCR
AtACT11_fwd	AACTTTCAACACTCCTGCCATG	56 °C	qPCR
AtACT11_rev	CTGCAAGGTCCAAACGCAGA	56 °C	qPCR
AtPR1_RT_fwd	CTCGGAGCTACGCAGAACAA	60 °C	qPCR
AtPR1_RT_rev	GCCTTCTCGCTAACCCACAT	60 °C	qPCR
AtPDF1.2_RT_fwd	CTTGTTCTCTTTGCTGCTTTCGAC	60 °C	qPCR
AtPDF1.2_RT_rev	TAGTTGCATGATCCATGTTTG	60 °C	qPCR
AtTUB_fwd	TGTTCAGGCGAGTGAGTGAG	56 °C	qPCR
AtTUB_rev	ATGTTGCTCTCCGCTTCTGT	56 °C	qPCR
AtUBQ10_rev	GGTTTGTGTTTTGGGGCCTTG	56 °C	qPCR
AtUBQ10_fwd	CGAAGCGATGATAAAGAAGAAGTTCG	56 °C	qPCR

Discussion

Hyaloperonospora arabidopsidis as a new cross-kingdom RNAi model

At the outset of this thesis there was only one reported, unambiguous event of natural crosskingdom RNAi: sRNAs of the necrotrophic fungus *Botrytis cinerea* silencing targets in its hosts Arabidopsis and tomato (*Solanum lycopersicum*) (Weiberg et al., 2013). Thus, it was unclear how widespread cross-kingdom RNAi is and whether it extends to distinct plant pathogens (Chaloner et al., 2016). Thus, the first aim of this project was to clarify if the oomycete pathogen *H. arabidopsidis* uses sRNAs to promote virulence. In the first part of this thesis, I provide conclusive evidence that *H. arabidopsidis* uses sRNA effectors to achieve plant colonization and virulence. I applied co-immunopurification coupled to next generation sRNA sequencing and identified 133 *H. arabidopsidis* sRNAs associated with the host *At*AGO1 RISC which were predicted to target 49 Arabidopsis genes. *At*AGO1 associated sRNAs mimicked in size, and 5' nucleotide plant miRNAs and were distinct from *At*AGO2 immunopurified sRNA profiles, which clearly suggests a specific loading *in vivo*. In contrast, one wouldn't expect unspecific binding of sRNAs to the PAZ domain (named after the three proteins P-element induced wimpy testis (PIWI), ARGONAUTE, and ZWILLE (Vaucheret, 2008)) of AGO proteins during sample preparation to reveal specific sRNA characteristics and RISC preference.

I also provided a detailed protocol of our analysis of *At*AGO-associated *H. arabidopsidis* sRNAs to foster the application of this method in cross-kingdom RNAi research. This protocol describes not only the experimental part, but also the bioinformatic analysis pipeline of the sequencing results, especially how to discriminate invasive pathogen sRNAs from endogenous plant sRNAs *in silico*.

I expected the *At*AGO-bound *H. arabidopsidis* sRNAs to silence predicted plant target genes. Accordingly, I measured a moderate, but consistent repression of the sRNA target genes in infected plants. I however suspected that target gene silencing only occurred in host cells in direct contact with *H. arabidopsidis*, and was therefore partially masked by a strong dilution effect of uninfected leaf cells with unaltered expression.

In line with this, induction of the plant defense gene *AtPR1* was efficiently inhibited by *H. arabidopsidis* effectors in haustoria-containing host cells with direct pathogen contact. This inhibition was only visible through an *in situ proPR1:GUS* reporter and not by transcriptional analysis via qRT-PCR as high induction of *AtPR1* in uninfected cells masked the local repression by *H. arabidopsidis* (Caillaud et al., 2013).

Using a novel *in situ* silencing reporter designed by me together with Dr. Arne Weiberg, I observed highly localized, but very efficient silencing of plant target transcripts. This effect was independent of pathogenesis and sequence specific, as a scrambled, random target sequence, did not result in reporter activation. I observed reporter activation only adjacent to the pathogen hyphae within a maximum range of two cell layers. Notably, this is overall spatially congruent with prevention of *At*PR1 transcription (Caillaud et al., 2013). As I used the native target gene promoter and the native transcript fragment as target sequence, I provide, in my opinion, the most direct and strongest evidence of efficient target gene silencing under natural conditions so far.

My reporter bears significant advantages over previous reporter systems that are based on direct silencing of a target sequence tagged reporter transcript, leading to repression of a fluorescent protein or GUS (B. Wang et al., 2017; Weiberg et al., 2013). I employed the sequence specific RNA endonuclease Csy4 (Haurwitz et al., 2010) in a plant codon optimized version designed by Dr. Tom Schreiber to completely repress reporter gene expression in absence of silencing sRNAs. As I turned Csy4, instead of the reporter gene, into a sRNA target by adding the native *Has*RNA target sequence, I designed a reporter that becomes activated upon silencing. Therefore, the readout is displayed as a highly localized, qualitative signal appearance instead of a potentially rather small signal reduction that is frequently difficult to quantify in a reproducible manner.

In spite of the clear silencing effect of *Hpas*RNAs and slicer activity of AtAGO1, 5' RACE-PCR analysis did not support mRNA cleavage of target mRNAs. I did not detect any enrichment of transcripts ends at the position opposite of the 10/11th nucleotide of the pathogen sRNA, as expected after AGO1 slicing activity (Mallory and Bouché, 2008). Even when thousands of cDNA fragments were sequenced by next generation sequencing, I could not directly verify the action of *H. arabidopsidis* sRNA effectors. I however detected a massive number of shorter transcripts, indicating rapid mRNA degradation. Therefore, repeating the experiment with an *atxrn4* exoribonuclease mutant, impaired in sRNA guided cleavage remnant decay, will potentially help to detect the direct slicing product (Schon et al., 2018; Souret et al., 2004). Alternatively, a holistic view of sRNA induced mRNA cleavage in both Arabidopsis and *H. arabidopsidis* can be obtained by degradome-seq as performed for the *Cuscuta*-Arabidopsis interaction (Johnson et al., 2019).

After I validated functional silencing of Arabidopsis genes by *H. arabidopsidis* sRNAs, I wondered about the importance of this process for overall pathogen virulence. A key role of sRNAs effectors is implicated by the markedly increased resistance and the occurrence of

trailing necrosis, when plants with impaired RISC activity like *atago1-27*, *atago1-45* and *atago1-46* were inoculated with *H. arabidopsidis*. Still, these results have to be taken with caution, as the loss of endogenous gene regulation in *atago1-27* and other *atago1* mutants leads to highly pleiotropic effects in development and physiology (Morel et al., 2002).

Nonetheless, I suggest that large parts of the *atago1-27* infection resistance are linked to the activity of *H. arabidopsidis* sRNAs, as the miRNA biogenesis mutant *atdcl1-11*, the siRNA pathway mutants *atdcl2dcl3dcl4* and *atrdr6-15*, and further miRNA pathway mutants all did not display markedly increased disease resistance. This provides evidence that endogenous host RNAi perturbations are rather unlikely the cause for the observed resistance. As cross-kingdom sRNAs mimicked plant miRNAs by their molecular features, only *atago1* mutants but not *atago2* or *atago4* mutants displayed increased resistance.

Furthermore, increased plant disease resistance was observed when pathogen sRNA effectors were scavenged with a short tandem target mimic (STTM) (Yan et al., 2012), providing an independent line of evidence for the crucial role of *H. arabidopsidis* sRNA effectors. This is remarkable, because preventing the action of only three *Hpa*sRNA effectors was sufficient to observe markedly decreased pathogen virulence and released target gene repression, despite dozens of translocated sRNAs. Potentially, not all translocated sRNAs are functional alone but they act synergistically to interfere with entire plant pathways. Thereby, loss of single sRNAs might be sufficient to allow the plant at least partial re-activation of entire immune pathways giving rise to the strong resistance phenotype.

As STTM stacking, i.e., the combination of multiple STTMs in one crop plant, potentially results in broad band resistance against various pathogens performing cross-kingdom RNAi, STTMs are also a focal point of interest for future applied, agricultural research. As pest resistance against this control strategy will most likely involve single nucleotide polymorphisms (SNPs) in the target site, it could be relatively easily countered with complementary mutations of the STTM. However, more thorough research is obligatory to enable translation of this technology into crops and agricultural ecosystems.

I anticipated that host genes targeted by *H. arabidopsidis* sRNAs contribute to host immunity against this pathogen. The two verified cross-kingdom RNAi target genes *AtAED3* and *AtWNK2* however have not been previously attributed to plant immunity (Breitenbach et al., 2014; Wang et al., 2008). Nevertheless, infection assays using Arabidopsis knock-out mutants demonstrated quantitative contribution to defense against *H. arabidopsidis* and *AtWNK2* overexpression lines revealed clear signs of auto-immunity like spontaneous cell death (Chakraborty et al., 2018). I thereby suggest that analysis of cross-kingdom RNAi targets can

lead to the identification of unknown immunity factors that were overlooked in forward genetics screens (M. Wang et al., 2017b).

Taken these results together, I provide compelling evidence that *H. arabidopsidis* induces cross-kingdom RNAi via the host AGO1/RISC demonstrating for the first time sRNA effectors in an oomycete plant pathogen. Moreover, cross-kingdom RNAi in an oomycete plant pathogen interaction is suggested in *Phytophthora infestans* during potato infection in a preprint report. The authors propose a dual function of the *P. infestans* miR8788 to regulate both endogenous targets as well as the potato *LIPASE-LIKE* (*StLL*) 1 gene required for anti-oomycete defense (Hu et al., 2020).

B. cinerea and *H. arabidopsidis*: two complementary cross-kingdom RNAi model systems

H. arabidopsidis is in most aspects highly divergent from the first established model system *B. cinerea*. While *B. cinerea* displays a very wide host range of over 1000 plant species (Veloso and van Kan, 2018), the host range of the downy mildew pathogen *H. arabidopsidis* is restricted to a single species, the model plant Arabidopsis (McDowell, 2014). *B. cinerea* has a necrotrophic life style, killing plant tissue and obtaining nutrients from the debris (van Kan, 2006). In contrast, *H. arabidopsidis*, an obligate biotroph, entirely depends on nutrient acquisition from living host cells via haustoria (Coates and Beynon, 2010). On the phylogenetic level oomycetes are highly distinct from *Botrytis cinerea*, a true fungus from the phylum of ascomycetes. These two major eukaryotic lineages diverged around 1.7 billion years ago, meaning this separation occurred 500 million years earlier than between animals and fungi (Parfrey et al., 2011).

Despite all these differences, I discovered striking similarities in the employment of sRNA effectors to silence host immunity genes. SRNA effectors resembled plant miRNAs in important sequence features like length and 5' U preference, enabling the misuse of the host RNAi machinery. The strong dependency of sRNA effectors on the host AGO1 protein is displayed by the increased infection resistance by *atago1-27* mutants towards both pathogens. This is particularly noteworthy, as many other Arabidopsis immunity factor mutants display increased susceptibility towards necrotrophs like *B. cinerea*, but reduced susceptibility to biotrophs like *H. arabidopsidis*, or *vice versa* (Mosher et al., 2013; Murmu et al., 2014; Spoel and Dong, 2008; von Saint Paul et al., 2011). Our results, together with other recently discovered cross-kingdom RNAi events in fungi, plants and even bacteria, imply that sRNA exchange between organisms is a general virulence/defense strategy in organismal interactions (Maizel et al., 2020; Zeng et al., 2019).

Having established cross-kingdom RNAi in the *H. arabidopsidis*/Arabidopsis pathosystem, researchers have now a new model system at hand that bears several advantages to complement the relatively well-established model *B. cinerea*:

H. arabidopsidis has a very long interaction phase of up to one week without host cell death. This enables the clear separation of host gene repression by silencing or host cell death, but also application of activatable silencing reporters. The reporter is provided sufficient time to get switched on, without the risk of artifacts due to cell death. This is especially relevant as high autofluorescence is a known artifact of dying or dead cells, and GUS staining may be ectopically activated by high peroxidase activity as found in cells undergoing PCD (Dixit et al., 2006; Guivarc'h et al., 1996; Van Baarlen et al., 2007).

An additional advantage of *H. arabidopsidis* is the highly quantitative disease resistance phenotype, which can be determined in relatively high throughput by microscopic analysis after trypan blue staining, sporangiophore or condiospore counting and quantitative PCR of genomic DNA (Anderson and McDowell, 2015; Furci et al., 2019).

On the other hand, *H. arabidopsidis* also displays some disadvantages: above all, it can't be transformed and genetically modified (McDowell, 2014). Also, the very narrow host range can be detrimental rendering, for example, infection assays on transiently transformed *N. benthamiana* impossible. These shortcomings can be compensated by the use of *Botrytis*, that can be transformed relatively easy and has a wide host range of virtually all dicot plants (Veloso and van Kan, 2018). Therefore, *H. arabidopsidis* and *B. cinerea* represent truly complementary cross-kingdom RNAi model systems.

Cross-kingdom RNAi: childhood friend or recurrent affair of life?

With an ever-increasing number of model systems for cross-kingdom RNAi it becomes evident that functional sRNA exchange is a common, widespread feature of plant microbe interactions (Maizel et al., 2020; Zeng et al., 2019). Thus, it can be concluded that sRNA-based communication either arose early during eukaryote evolution or multiple times independently. An argument for an ancient origin of cross-kingdom RNAi are some shared features: both *H. arabidopsidis* and *B. cinerea* seem to rely mainly on the host AGO1 protein as a hub for the sRNA arsenal (Dunker et al., 2020; Weiberg et al., 2013). This suggests that their sRNA effectors are not transported to the host together with a corresponding pathogen Argonaute as "ready to use" RISC complexes.

In contrast, nematode sRNAs were found in vesicles together with one specific AGO protein. Nematodes are known to encode for dozens of Argonaute proteins, including a large number of so called worm-specific AGOs (WAGOs). Thereby, a specialization of one of them for selection, transport of sRNAs or catalyzing RNAi in the host cell appears more likely (Chow et al., 2019). However, in comparison the *H. arabidopsidis* genome encodes for only two AGO proteins and the *B. cinerea* genome for four (Bollmann et al., 2018; Breitinger, 2016).

Notably, three of the best described cross-kingdom RNAi models *B. cinerea*, *H. arabidopsidis* and *C. campestris* were all found to target different host kinases (Dunker et al., 2020; Shahid et al., 2018; M. Wang et al., 2017b; Weiberg et al., 2013), suggesting a potential, common weak point of plant defense exploited by sRNA effectors. This is even more striking as otherwise the three pathogens have very little in common, and encounter substantially different host immune responses (Glazebrook, 2005). However, as kinases are frequently regulators, their action can be largely defined by their phosphorylation targets and the three pathogens do not target a particular common protease family, but mitogen-activated protein kinases, with no lysine kinases and a receptor-like kinase, respectively.

Besides these shared features there are also some remarkable differences among described sRNA effectors. First and foremost, the sRNA effectors of distinct plant pathogens such as *B. cinerea*, *H. arabidopsidis* and *Cuscuta* target vastly different transcript sets (Dunker et al., 2020; Johnson et al., 2019; Weiberg et al., 2013). Out of in total 258 predicted target genes only a single target gene was shared by *B. cinerea* and *Cuscuta* and not a single target of *H. arabidopsidis* was shared. The sole common target (AT4G28300) encodes for a proline-rich, cell wall localized, but otherwise undescribed protein. This finding might highlight the distinct evolution of sRNA effectors and their targets as it is in contrast to protein effectors which converged on common hubs (Mukhtar et al., 2011; Weßling et al., 2014).

The vast majority of *B. cinerea* sRNA effectors derive from LTR-retrotransposon sequences (Weiberg et al., 2013), while most *H. arabidopsidis* sRNA effectors were encoded by non-annotated, non-transposon regions. Even if the genome annotation of retrotransposons in *H. arabidopsidis* is probably incomplete, it still remains highly unlikely that transposons play a comparably dominant role for cross-kingdom sRNA production. In this line, cross-kingdom sRNAs in the parasitic plant genus *Cuscuta* were derived from miRNAs, the cereal fungal pathogen *P. striiformis* f. sp. *tritici* uses a miRNA-like RNA (milRNA) and plant defensive sRNAs comprised miRNAs as well as phased siRNAs (Cai et al., 2018b; Hou et al., 2019; Shahid et al., 2018; B. Wang et al., 2017; Zhang et al., 2016). These distinct loci encoding for cross-kingdom sRNAs imply convergent evolution of sRNA recruitment in attack or defense, rather than common evolution.

An intriguing speculation is the acquisition of core components of the sRNA exchange machinery via horizontal gene transfer from fungi to plant pathogenic oomycetes. Along this

line, *H. arabidopsidis* has potentially acquired 3.16% of its entire secreted proteome, including a plethora of its effectors, from fungi. This highlights the crucial role of massive horizontal gene transfer for plant pathogenic oomycete evolution (Richards et al., 2011; Savory et al., 2015). To shed light on the evolutionary origin of cross-kingdom RNAi remains one of the greatest challenges for future research.

Host-induced gene silencing as a tool for functional gene studies in *H. arabidopsidis* The earliest studies on functional sRNA transport between organisms were reporting hostinduced gene silencing by ectopic dsRNA expression. Besides the potential of HIGS to revolutionize crop protection as detailed in the introduction, it also provides a tool to study gene function in organisms without established transformation methods. Accordingly, HIGS has been successfully applied in a wide range of obligate biotrophic organisms like powdery mildews, rust fungi, root-knot nematodes and arbuscular mycorrhiza fungi (Helber et al., 2011; Huang et al., 2006; Nowara et al., 2010; Qi et al., 2018). While HIGS was already reported for crop protection against the lettuce downy mildew *Bremia lactuae* (Govindarajulu et al., 2015), it was not yet established for the important model pathogen *H. arabidopsidis*. Despite its negligible economic impact, it was elected as the second most important plant pathogenic oomycete because of its ability to efficiently infect the model plant (Kamoun et al., 2015).

During this study, me and my colleagues achieved HIGS of *H. arabidopsidis* genes and employed it for functional gene studies. We however also encountered a prevalent problem of HIGS as our transgenic plants targeting the *HaACT A* displayed increased resistance, but also obvious off-target effects in the plant itself (Auer and Frederick, 2009). These off-target effects weren't induced by silencing of one of the two most similar Arabidopsis Actin transcripts, highlighting the difficulty to pin-point the cause of off-target effects. It should be noted that the off-target prediction software Si-Fi (Lück et al., 2019) did not report a high probability off-target in Arabidopsis, illustrating the challenges to avoid off-target with *in silico* prediction software. The best possibility to trace down off-targets comprehensively is degradome-seq of HIGS lines compared with WT or empty vector control plants (Casacuberta et al., 2015), which is however laborious and costly.

To minimize the risk of off-targets I recommend to focus on effectors as targets rather than highly conserved housekeeping genes. Effector genes normally have very low conservation, are absent from the host genome, and despite their collaborative function a single effector gene knockdown can result in impaired virulence (Thordal-Christensen et al., 2018). Thus, I observed both reduced pathogen virulence and an unaltered plant growth phenotype in our $HaCR1^{RNAi}$ lines.

Despite the relatively large number of successful HIGS applications, the insights into the molecular mechanisms governing HIGS remain limited. While for insect herbivores it is generally accepted that only long (>60 nt) dsRNAs lead to efficient silencing (Bolognesi et al., 2012; Zhang et al., 2015), the fundamental question whether long dsRNAs or the processed sRNAs are the active agents of HIGS has not been clarified in plant/fungal and plant/oomycete interactions. First insights from *Botrytis cinerea* point to ready, sRNAs as the mobile RNA providing efficient silencing. This conclusion was based on the observation that sRNAs accumulated in the pathogen cells upon infection of a HIGS plant, even when the pathogen *DCL* genes were knocked out (Wang et al., 2016). Similarly, according to a preprint study, efficient host-induced gene silencing of *Pseudomonas syringae* genes was only mediated by "ready", sRNAs. There, in a cross between the HIGS line and an *atdcl2dcl3dcl4* triple mutant target transcript repression was completely abolished (Singla-Rastogi et al., 2019). This highlighted obligatory plant dicing of the long dsRNA precursor, however as bacteria miss Dicer homologs (Shabalina and Koonin, 2008), it is difficult to transfer this knowledge directly to eukaryotic organisms.

Where do we go from here? Future directions of cross-kingdom RNAi research

Several pathosystems, like the Arabidopsis/*Botrytis* and the Arabidopsis/*Verticilium* interaction have been suggested to reveal bidirectional sRNA exchange (Cai et al., 2019). This thesis provides evidence for a bidirectional cross-kingdom RNA cross-talk in the Arabidopsis/*H. arabidopsidis* model system. Although I did not investigate natural host-induced gene silencing, the integration of a hairpin cassette targeting *HaCR1* resulted in silencing of the target gene and increased plant resistance. These findings together with the inhibition of spore germination by exogenous application by sRNAs targeting *Cellulose synthase 3A* (Bilir et al., 2019), clearly suggest a functional RNA uptake machinery in *H. arabidopsidis*. While it seems likely that introduction of dsRNAs in the HIGS lines exploits an already existing plant sRNA defense machinery, more direct evidence is necessary to validate bidirectional exchange of sRNAs under natural conditions in this particular plant microbe interaction.

With an increasing number of model systems of cross-kingdom RNAi, the elucidation of the evolutionary processes shaping cross-kingdom sRNA arsenals becomes feasible. In general, two main hypotheses for this process exist that may vary from species to species:

On the one hand, sRNAs and their targets are shaped by an evolutionary arms race between host and pathogen, comparable to protein effectors and R genes. This would result in an additional, extremely fast layer of evolution and it would be expected that both sRNAs and their

target sites are under strong positive selection. This hypothesis would imply that co-evolution of sRNAs and targets leads to higher complementarity and silencing potential in host than in non-host species. Specific evolution is most likely occurring in strongly adapted pathogens with narrow host ranges, as downy mildews, as loss of silencing capacity by host mutations could deprive the pathogen of its sole nutrient source leading to extinction.

The complementary sequence changes observed in several *Cuscuta* species can be regarded as a strong indication for rapid evolution of cross-kingdom sRNA encoding loci and their host targets. As sRNA target sites in the host are encoding highly conserved amino acid stretches, target sequence polymorphisms between hosts are largely restricted to the wobble position of the codons. These SNPs are however counter-acted by complementary changes in the miRNA effector superfamilies of *Cuscuta*. Thereby, *Cuscuta* species achieve durable targeting and additionally infection of a wider host range (Johnson et al., 2019).

On the other hand, the frequently so-called "shot gun strategy" is a completely different evolutionary approach to enable silencing of a wide range of diverse target sequences, like for example defending against a wide range of pathogens. This describes that a large number of random sRNAs are secreted and some of them will, by chance, lead to a detrimental pathogen gene mis-regulation. However, it is also likely that broad host pathogens like *Botrytis* employ a similar strategy, as a specific evolution of adapted sRNAs for hundreds of hosts seems unfeasible (Veloso and van Kan, 2018). In this scenario, there wouldn't be any specific selection pressure on the cross-kingdom sRNAs. A potential example are the PRR derived phasiRNAs by Arabidopsis, used to defend against *P. capsici*, a pathogen that was never observed infecting Brassicaceae under natural conditions (Hausbeck and Lamour, 2004; Hou et al., 2019). Therefore, it is suggested that PPR-derived siRNAs represent a diverse, neutrally evolving sequence resource, that by chance will target attacking pathogen transcripts (Hudzik et al., 2020).

Another major open question remains the translocation of the sRNAs, as they have to cross various cellular boundaries. As the plant cell wall, as a major barrier, is removed at the site of haustoria (Bozkurt and Kamoun, 2020), they are prime suspects to provide the hub for delivery of sRNA effectors, as reported for protein effectors (S. Wang et al., 2017). Ultrastructure analysis by electron microscopy revealed a large number of membrane enclosed particles in the extrahaustorial matrix between the oomycete haustorium and the plant cell (Mims et al., 2004). These extracellular vesicles (EVs) have recently drawn a lot of attention and many researchers implicated them in cargo transfer between host and pathogen (Cai et al., 2019; Huang et al., 2019; Kwon et al., 2020). The direct evidence for sRNA transfer is, in comparison, surprisingly

limited and future research on transfer has to keep an open mind for alternative hypotheses (Rutter and Innes, 2020). Interestingly, both fungi like *Botrytis* and oomycetes like *H. arabidopsidis* have the capacity to take up naked sRNAs (Bilir et al., 2019; Wang et al., 2016), but the uptake mechanism and its relevance in natural systems remains nebulous. To date, the only well understood RNA uptake mechanism remains the Systemic RNAi defective (SID) 1/2 system of the nematode *C. elegans* (McEwan et al., 2012), but no SID sequence homologues have been detected in plants, fungi or oomycetes (M. Wang et al., 2017a).

As for natural sRNA exchange, the transport mechanisms for HIGS sRNAs are largely unknown. In a pre-print report EVs were also suggested to confer transport of such transgene derived sRNAs, as the authors detected HIGS hairpin derived sRNAs in EVs enriched by ultracentrifugation, and mutants of the plant ESCRT II complex were hampered in efficient HIGS (Koch et al., 2020). Another preprint study suggested silencing activity of EVs containing anti-bacterial sRNAs, determined by inhibition of coronatin-dependent stomata re-opening (Singla-Rastogi et al., 2019). More thorough purification and analysis of EV content and functional data providing direct evidence for translocation and uptake of functional RNAs are however needed to validate EV mediated transport of HIGS sRNAs.

Cysteine-rich proteins: the abandoned child of oomycete effector research

Defensive sRNAs and sRNA effectors represent a relatively new field in molecular plant pathology and were found to complement the arms race of plant disease resistance genes and pathogen protein effectors. The effector research in oomycetes is largely dominated by RxLR effectors as they comprise the vast majority of known avirulence genes and are translocated into the host cell. It is generally accepted that RxLRs play crucial virulence roles in the genus *Phytophthora* and downy mildew pathogens like *Hyaloperonospora arabidopsidis* (Anderson et al., 2015). However, the first contact between pathogen and host is principally made in the apoplast, which consequently represents the first and often already decisive battleground (Rocafort et al., 2020).

In this thesis, we provide first insights into the function of an apoplastic effector of *H. arabidopsidis* that belongs to the class of cysteine-rich proteins, the most prevalent effector class during infection (Asai et al., 2014; Cabral et al., 2011). Several lines of evidence suggest that this effector is involved in PCD inhibition. Gene knockdown by HIGS resulted in trailing necrosis of host cells around the hyphae, the expression of *Ha*CR1 in *N. benthamiana* could suppress AvrE effector-induced cell death and repressed growth of the fungal necrotroph *B. cinerea*. Accordingly, it was shown before that expression of animal anti apoptotic proteins can repress *B. cinerea* lesion formation as well (Dickman et al., 2001). In contrast, the enhanced

lesion formation of *P. capsici* seems at first contradictory to a role in host cell death inhibition. However, as *P. capsici* has a biotrophic phase, impairment of cell death during this phase putatively increases the ability for lesion formation after the switch to necrotrophy. Likewise, the RxLR effector Avr1b from *P. sojae* prevented induced cell death and still induced longer root lesions in soy bean (Dou et al., 2008). Upon expression in transgenic Arabidopsis, the effector weakened the induction of the salicylic acid responsive marker gene *AtPR1*. This gene encodes for a secreted sterol binding protein that has been shown to be especially effective against sterol auxotrophs from the genera *Phytopthora* and *Peronospora* (Alexander et al., 1993; Gamir et al., 2017).

The effector function was clearly dependent on the presence of the signal peptide and, together with my colleagues, I validated that the effector localized at least partially to the apoplast determined by confocal microscopy and western blot on isolated apoplastic wash fluid. As *Ha*CR1 is lacking any annotated domains or motifs, a specific binding of MAMPs to prevent immunity, like for LysM effectors, seems unlikely (Kombrink and Thomma, 2013). Instead, we collected evidence that *Ha*CR1 could inhibit host extracellular proteases, a common trait for apoplastic effectors of filamentous plant pathogens (Jashni et al., 2015). For example, the cysteine rich effector Avr2 of the fungal pathogen *Cladosporium fulvum* exhibits multiple disulfide bridges that ensure effector function in host protease inhibition. The last 6 amino acids display a cysteine-cysteine-3 other amino acids-cysteine pattern, which forms one disulfide bridge and were found to be crucial to inhibit target protease function (Van't Klooster et al., 2011). Interestingly, this pattern is observed in the cysteine arrays of *H. arabidopsidis* cysteine-rich proteins including *Ha*CR1 (Cabral et al., 2011), however the exact formation of disulfide bridges remains to be determined experimentally.

It becomes increasingly evident that various families of secreted host proteases are essential regulators of the plant immunity response and in particular PCD (Balakireva and Zamyatnin, 2018; Misas-Villamil et al., 2016; Salguero-Linares and Coll, 2019). This aspect is strikingly similar to animals, where the regulation of apoptosis and cell autonomous immunity is performed by a family of cysteine proteases, so called caspases (Man and Kanneganti, 2016). The control of PCD by extracellular proteases also provides a link between the two observed functions of *Ha*CR1, even though a final confirmation of this hypothesis is lacking and requires identification of the plant interactors.

Despite their prevalence, to the author's knowledge, only two previous reports investigated the role of any oomycete cysteine-rich protein during infection. The small cysteine-rich effector SCR96 from *Phytophthora cactorum* was induced during infection and triggered cell death

upon transient expression in *Nicotinana benthamiana*. Moreover, transgenic *SCR96*^{*RNAi*} oomycete lines with reduced expression of *SCR96* failed to resist oxidative stress, however if these two functions are linked or independent remains to be determined (Chen et al., 2016). Even less is known about the small cysteine-rich peptide SCR82 from *P. capsici*, that did neither induce cell death in Arabidopsis nor in *N. benthamiana*, but could trigger defense gene induction (Zhang et al., 2019).

One of the greatest challenges in effector research is the extremely high diversity and fast evolution of effector repertoires. Most of the effectors can be only found in a single pathogen species, some even only in one isolate. Thus, if the role of an effector is elucidated in a pathogen model species like *H. arabidopsidis*, it is frequently difficult to transfer this knowledge to closely related, economically relevant crop pathogens like for example the sunflower downy mildew *Plasmopara halstedii*. In a comparison of the effector repertoires, only six sequence homologs out of over one hundred effectors were detected (Sharma et al., 2015) and none of the CR proteins had a high-confidence homolog in other oomycetes (Cabral et al., 2011). However, as the general function of the plant immunity and physiology is highly conserved, there is potentially high functional conservation, despite lack of sequence identity. Accordingly, it was shown that highly diverse protein effector repertoires from bacteria, fungi and oomycetes converge on relatively few common host targets (Mukhtar et al., 2011; Weßling et al., 2014). Therefore, breeding efforts on effector targets is suggested as a complementary approach to inbreeding of *R* genes to obtain more durable broad range resistance (Gawehns et al., 2013).

Who am I? And if so, how many? Comparison of protein and sRNA effectors

The coevolution of plants and pathogens is driven by constant pressure to counteract each other only to maintain a stable interaction level, also described as "red queen hypothesis" (Clay and Kover, 1996). This leads to permanent evolution of novel virulence strategies by pathogens followed by novel defense strategies by host plants, as described by the zig-zag-model (Hein et al., 2009; Jones and Dangl, 2006). Therefore, both effectors and *R* genes are rapidly evolving proteins displaying extremely high degrees of sequence variation and abundancy among individual populations. To increase the plasticity and mutation speed, pathogen effector loci are frequently organized in repeat arrays and linked to transposon regions (Dong et al., 2015).

In this line, sRNA effectors would provide an even faster level of evolution as every sequence variation in a given sRNA immediately impacts the complementarity, and thereby potentially the silencing capacity and interaction outcome. Most sRNA effectors from *H. arabidopsidis* and *B. cinerea* arise from non-coding, repetitive regions and are thought to be virtually free

from purifying selection. This, in theory, will result in high amounts of polymorphisms, high mutation rates, and low sequence conservation.

In contrast, mutations in the protein coding host target genes can lead to detrimental amino acid changes and are therefore counter selected. This puts evolutionary pressure on the host to accumulate synonymous mutations impairing silencing without changing the amino acid sequence. However, and intriguingly, such synonymous mutations of the wobble position were found to be compensated by corresponding polymorphisms in the miRNA families of various *Cuscuta* species, providing fascinating insights into plant/parasite coevolution (Johnson et al., 2019). Interestingly, we also found several sequence polymorphisms in the sRNA target sites in the sequenced accessions from the 1001 genome project (1001 Genomes Consortium, 2016). It however remains to be clarified if these are enriched compared to non-targeted parts of the transcriptome.

Surprisingly, I did not detect high variability in the sRNA encoding loci in the three sequenced H. arabidopsidis strains, which is in contrast to the higher sequence variation of H. arabidopsidis protein effectors. Among cysteine-rich protein effectors, 62.5% displayed sequence polymorphisms and two were even isolate specific (Cabral et al., 2011). However, a direct comparison is difficult, as protein effector sequences with several hundred nucleotides are much longer than sRNAs of 21 nucleotides, making SNPs more likely. Still, current data do not indicate any presence of larger sRNA families with complementary sequence variations in *H. arabidopsidis* as identified in the parasitic plant genus *Cuscuta* (Johnson et al., 2019). The high conservation of sRNA effectors might be a result from the very narrow host range of H. arabidopsidis, while the protein effectors must retain higher plasticity to avoid recognition by host R genes. At the moment, there is no indication that sRNAs can be used by the host to induce immunity, therefore sRNAs can be at worst neutral, but not highly detrimental for the pathogen (Niehl et al., 2016). This might lead to a reduced selection pressure compared to protein effectors. Finally, it should be noted that commonly used, genome sequenced, H. arabidopsidis strains like Noco2, Emoy2, and Cala2 were all collected in a relatively small region in England, compared to more than thousand sequenced Arabidopsis accessions from all over the Northern hemisphere (1001 Genomes Consortium, 2016). Therefore, H. arabidopsidis total sRNA and protein effector variance might still be underestimated.

Interestingly, both *Ha*CR1 and *Ha*sRNA90 target extracellular proteases, however on different regulation levels. While *Ha*sRNA90 repressed the expression of the apoplastic aspartyl protease *At*AED3, *Ha*CR1 repressed the activity of extracellular protease proteins. As detailed above, proteases are crucial components of the immune response and in particular PCD signaling. It

will be intriguing to explore the detailed role of *AtAED3* in anti-oomycete immunity and whether *Ha*CR1 can even directly interact with this particular protease. Such a direct connection between cross-kingdom sRNAs and effector function is illustrated by the oomycete effector PSR2 that represses the formation of PPR derived siRNAs in Arabidopsis, which were suggested to repress *P. capsici* genes (Hou et al., 2019). Therefore, together sRNAs and proteinaceous effectors provide a more robust way to reprogram host physiology and prevent immunity (Figure 2). As the host has to counteract an attack on completely distinct levels to gain full resistance, this might provide selection pressure for the parallel usage of sRNA and protein effectors in *H. arabidopsidis*.

Figure 2: H. arabidopsidis uses both protein and sRNA effectors to achieve host infection.

H. arabidopsidis sRNAs hijack the Arabidopsis AGO1 protein to silence immunity factors suppressing host immunity. Together with host translocated RxLR effectors, apoplastic effectors like *Ha*CR1 prevent the induction of programmed cell death (PCD). I suggest that the main role of *Ha*CR1 is the inhibition of extracellular proteases in the extrahaustorial matrix (EHM), which are well-described promoters of PCD. An intriguing speculation is that one inhibited protease is *At*AED3, which would thereby be targeted by *H. arabidopsidis* on two independent levels: post-transcriptionally and protein activity. The model also illustrates the suppression of *HaCR1* in transgenic *HaCR1*^{RNAi} lines by host sRNAs, that probably exploit a natural defense mechanism. Potentially, the *H. arabidopsidis* homolog of PSR2 can interfere with host sRNA production and host-induced gene silencing, however its function hasn't yet been elucidated. This model implies the haustorium as the central hub for signal exchange as reported for RxLR effectors.
While an increasing number of pathosystems provides evidence for cross-kingdom RNAi, no such evidence has been found in the fungal pathogen *Zymospetoria tritici* (Kettles et al., 2019; X. Ma et al., 2020). Furthermore, other fungal pathogens, like *Ustilago maydis*, have even lost the entire canonical RNAi machinery (Laurie et al., 2008). Conversely, protein effectors *sensu stricto*, interacting with defined host proteins impairing plant immunity and retooling host physiology functions are largely absent from the necrotrophic *Botrytis cinerea*. Besides hydrolytic enzymes and PCD elicitors, sometimes also referred to as effectors, early interaction with the host immune system might be largely governed by sRNAs (Veloso and van Kan, 2018). It will be an enticing task of future research to unravel which evolutionary forces work in favor and against cross-kingdom RNAi.

On a holistic level, the relative contribution of protein and sRNA effectors to pathogen virulence remains one of the most exciting open questions. One of the greatest challenges elucidating this is the collaborative nature of effectors, where the effect of each individual effector is usually relatively minor (Cunnac et al., 2011). As components in effector delivery, like the type III secretion system of bacteria, are still unknown in eukaryotes, it is difficult to estimate the combined effect of all effectors by mutation of single or a few genes like in the *hrcC* mutant of *Pseudomonas* (Collmer et al., 2000; Petre and Kamoun, 2014). On the other hand, it is likely that certain transport mechanisms, like extracellular vesicles, are used by both effector proteins and sRNAs (Boevink, 2017; Boevink et al., 2020). In some aspect, the collaborative effect of the sRNAs can be assessed by the analysis of plant *ago* mutants. In the case of *H. arabidopsidis*, a fully compatible interaction of strain Noco2 with Arabidopsis ecotype Col-0 was rendered partially incompatible, displaying trailing necrosis and strongly reduced pathogen biomass and sporulation. This suggests, that the collaborative impact of sRNA effectors might be as crucial as the joint impact of protein effectors.

In this work, I provided initial insights into two poorly characterized classes of oomycete molecular weapons: sRNAs and cysteine-rich proteins. This thesis implies crucial roles for both of them and highlights the necessity for holistic research on oomycete virulence factors, not only focusing on RxLR effectors. With the introduction of *H. arabidopsidis* as a model system to study both sRNAs and cysteine-rich proteins, I am convinced that, based on this, future research can continue to unravel their modes of action and the evolutionary forces shaping them. This will potentially clear the central hurdle to start durable disarming of notorious oomycete crop pathogens challenging food supply for the world.

References

- 1001 Genomes Consortium, 2016. 1,135 genomes reveal the global pattern of polymorphism in *Arabidopsis thaliana*. *Cell* **166**, 481–491.
- Agler, M.T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D., Kemen, E.M., 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. *PLoS Biol.* 14, e1002352.
- Alberts, B., 2015. Molecular biology of the cell, Sixth edition. ed. *Garland Science, Taylor and Francis Group*, New York, NY, USA.
- Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E., 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. *Proc. Natl. Acad. Sci.* **90**, 7327–7331.
- Anderson, R.G., Casady, M.S., Fee, R.A., Vaughan, M.M., Deb, D., Fedkenheuer, K., Huffaker, A., Schmelz, E.A., Tyler, B.M., McDowell, J.M., 2012. Homologous RXLR effectors from *Hyaloperonospora arabidopsidis* and *Phytophthora sojae* suppress immunity in distantly related plants. *Plant J.* 72, 882–893.
- Anderson, R.G., Deb, D., Fedkenheuer, K., McDowell, J.M., 2015. Recent progress in RXLR effector research. *Mol. Plant. Microbe Interact.* **28**, 1063–1072.
- Anderson, R.G., McDowell, J.M., 2015. A PCR assay for the quantification of growth of the oomycete pathogen *Hyaloperonospora arabidopsidis* in *Arabidopsis thaliana*. Mol. *Plant Pathol.* 16, 893–898.
- Asai, S., Furzer, O.J., Cevik, V., Kim, D.S., Ishaque, N., Goritschnig, S., Staskawicz, B.J., Shirasu, K., Jones, J.D.G., 2018. A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. *Nat. Commun.* 9, 5192.
- Asai, S., Rallapalli, G., Piquerez, S.J.M., Caillaud, M.-C., Furzer, O.J., Ishaque, N., Wirthmueller, L., Fabro, G., Shirasu, K., Jones, J.D.G., 2014. Expression profiling during Arabidopsis/ downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid. *PLoS Pathog.* **10**, e1004443.
- Åsman, A.K.M., Fogelqvist, J., Vetukuri, R.R., Dixelius, C., 2016. *Phytophthora infestans* Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements. *New Phytol.* **211**, 993–1007.
- Auer, C., Frederick, R., 2009. Crop improvement using small RNAs: applications and predictive ecological risk assessments. *Trends Biotechnol.* **27**, 644–651.

- Bailey, K., Çevik, V., Holton, N., Byrne-Richardson, J., Sohn, K.H., Coates, M., Woods-Tör, A., Aksoy, H.M., Hughes, L., Baxter, L., Jones, J.D.G., Beynon, J., Holub, E.B., Tör, M., 2011. Molecular cloning of ATR5^{Emoy2} from *Hyaloperonospora arabidopsidis*, an avirulence determinant that triggers RPP5-mediated defense in *Arabidopsis. Mol. Plant. Microbe Interact.* 24, 827–838.
- Balakireva, A., Zamyatnin, A., 2018. Indispensable role of proteases in plant innate immunity. *Int. J. Mol. Sci.* **19**, 629.
- Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. *Nat. Biotechnol.* 25, 1322–1326.
- Baumberger, N., Baulcombe, D.C., 2005. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. *Proc. Natl. Acad. Sci.* 102, 11928–11933.
- Baxter, L., Tripathy, S., Ishaque, N., Boot, N., Cabral, A., Kemen, E., Thines, M., Ah-Fong, A., Anderson, R., Badejoko, W., Bittner-Eddy, P., Boore, J.L., Chibucos, M.C., Coates, M., Dehal, P., Delehaunty, K., Dong, S., Downton, P., Dumas, B., Fabro, G., Fronick, C., Fuerstenberg, S.I., Fulton, L., Gaulin, E., Govers, F., Hughes, L., Humphray, S., Jiang, R.H.Y., Judelson, H., Kamoun, S., Kyung, K., Meijer, H., Minx, P., Morris, P., Nelson, J., Phuntumart, V., Qutob, D., Rehmany, A., Rougon-Cardoso, A., Ryden, P., Torto-Alalibo, T., Studholme, D., Wang, Y., Win, J., Wood, J., Clifton, S.W., Rogers, J., Van den Ackerveken, G., Jones, J.D.G., McDowell, J.M., Beynon, J., Tyler, B.M., 2010. Signatures of adaptation to obligate biotrophy in the *Hyaloperonospora arabidopsidis* genome. *Science* 330, 1549–1551.
- Bilir, Ö., Telli, O., Norman, C., Budak, H., Hong, Y., Tör, M., 2019. Small RNA inhibits infection by downy mildew pathogen *Hyaloperonospora arabidopsidis*. *Mol. Plant Pathol.* 20, 1523–1534.
- Bittner-Eddy, P.D., Allen, R.L., Rehmany, A.P., Birch, P., Beynon, J.L., 2003. Use of suppression subtractive hybridization to identify downy mildew genes expressed during infection of *Arabidopsis thaliana*. *Mol. Plant Pathol.* **4**, 501–507.
- Boevink, P.C., 2017. Exchanging missives and missiles: the roles of extracellular vesicles in plant-pathogen interactions. *J. Exp. Bot.* **68**, 5411–5414.
- Boevink, P.C., Birch, P.R.J., Turnbull, D., Whisson, S.C., 2020. Devastating intimacy: the cell biology of plant– *Phytophthora* interactions. *New Phytol.* **228**, 445–458.

- Bollmann, S.R., Fang, Y., Press, C.M., Tyler, B.M., Grünwald, N.J., 2016. Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus *Phytophthora. Front. Plant Sci.* **7**, 284.
- Bollmann, S.R., Press, C.M., Tyler, B.M., Grünwald, N.J., 2018. Expansion and divergence of Argonaute genes in the oomycete genus *Phytophthora*. *Front. Microbiol.* **9**, 2841.
- Bologna, N.G., Voinnet, O., 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. *Annu. Rev. Plant Biol.* **65**, 473–503.
- Bolognesi, R., Ramaseshadri, P., Anderson, J., Bachman, P., Clinton, W., Flannagan, R., Ilagan, O., Lawrence, C., Levine, S., Moar, W., Mueller, G., Tan, J., Uffman, J., Wiggins, E., Heck, G., Segers, G., 2012. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (*Diabrotica virgifera virgifera* LeConte). *PLoS ONE* 7, e47534.
- Bozkurt, T.O., Kamoun, S., 2020. The plant-pathogen haustorial interface at a glance. *J. Cell Sci.* **133**.
- Breitenbach, H.H., Wenig, M., Wittek, F., Jordá, L., Maldonado-Alconada, A.M., Sarioglu, H., Colby, T., Knappe, C., Bichlmeier, M., Pabst, E., Mackey, D., Parker, J.E., Vlot, A.C., 2014. Contrasting roles of the apoplastic aspartyl protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis systemic acquired resistance. *Plant Physiol.* 165, 791–809.
- Breitinger, T., 2016. RNAi in *Botrytis cinerea* Characterization of AGO2 and small RNAs (Master thesis). Ludwig-Maximilians-Universität, München.
- Buck, A.H., Coakley, G., Simbari, F., McSorley, H.J., Quintana, J.F., Le Bihan, T., Kumar, S.,
 Abreu-Goodger, C., Lear, M., Harcus, Y., Ceroni, A., Babayan, S.A., Blaxter, M., Ivens,
 A., Maizels, R.M., 2014. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. *Nat. Commun.* 5, 5488.
- Cabral, A., Oome, S., Sander, N., Küfner, I., Nürnberger, T., Van den Ackerveken, G., 2012.
 Nontoxic Nep1-like proteins of the downy mildew pathogen *Hyaloperonospora* arabidopsidis: Repression of necrosis-inducing activity by a surface-exposed region. *Mol. Plant. Microbe Interact.* 25, 697–708.
- Cabral, A., Stassen, J.H.M., Seidl, M.F., Bautor, J., Parker, J.E., Van den Ackerveken, G., 2011. Identification of *Hyaloperonospora arabidopsidis* transcript sequences expressed during infection reveals isolate-specific effectors. *PLoS ONE* 6, e19328.

- Cahill, D.M., Rookes, J.E., Wilson, B.A., Gibson, L., McDougall, K.L., 2008. *Phytophthora cinnamomi* and Australia's biodiversity: impacts, predictions and progress towards control. *Aust. J. Bot.* 56, 279.
- Cai, Q., He, B., Kogel, K.-H., Jin, H., 2018a. Cross-kingdom RNA trafficking and environmental RNAi — nature's blueprint for modern crop protection strategies. *Curr. Opin. Microbiol.* 46, 58–64.
- Cai, Q., He, B., Weiberg, A., Buck, A.H., Jin, H., 2019. Small RNAs and extracellular vesicles: New mechanisms of cross-species communication and innovative tools for disease control. *PLoS Pathog.* 15, e1008090.
- Cai, Q., Qiao, L., Wang, M., He, B., Lin, F.-M., Palmquist, J., Huang, S.-D., Jin, H., 2018b. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. *Science* **360**, 1126–1129.
- Caillaud, M.-C., Asai, S., Rallapalli, G., Piquerez, S., Fabro, G., Jones, J.D.G., 2013. A downy mildew effector attenuates salicylic acid–triggered immunity in Arabidopsis by interacting with the host mediator complex. *PLoS Biol.* **11**, e1001732.
- Caillaud, M.-C., Wirthmueller, L., Sklenar, J., Findlay, K., Piquerez, S.J.M., Jones, A.M.E., Robatzek, S., Jones, J.D.G., Faulkner, C., 2014. The plasmodesmal protein PDLP1 localises to haustoria-associated membranes during downy mildew infection and regulates callose deposition. *PLoS Pathog.* **10**, e1004496.
- Carbonell, A., 2017. Immunoprecipitation and high-throughput sequencing of ARGONAUTEbound target RNAs from plants. *Methods Mol. Biol.* **1640**, 93–112.
- Casacuberta, J.M., Devos, Y., du Jardin, P., Ramon, M., Vaucheret, H., Nogué, F., 2015. Biotechnological uses of RNAi in plants: risk assessment considerations. *Trends Biotechnol.* 33, 145–147.
- Chakraborty, J., Ghosh, P., Das, S., 2018. Autoimmunity in plants. Planta 248, 751-767.
- Chaloner, T., van Kan, J.A.L., Grant-Downton, R.T., 2016. RNA 'information warfare' in pathogenic and mutualistic interactions. *Trends Plant Sci.* **21**, 738–748.
- Chen, X.-R., Li, Y.-P., Li, Q.-Y., Xing, Y.-P., Liu, B.-B., Tong, Y.-H., Xu, J.-Y., 2016. SCR96, a small cysteine-rich secretory protein of *Phytophthora cactorum*, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance. *Mol. Plant Pathol.* 17, 577–587.
- Chow, F.W.-N., Koutsovoulos, G., Ovando-Vázquez, C., Neophytou, K., Bermúdez-Barrientos, J.R., Laetsch, D.R., Robertson, E., Kumar, S., Claycomb, J.M., Blaxter, M.,

Abreu-Goodger, C., Buck, A.H., 2019. Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. *Nucleic Acids Res.* **47**, 3594–3606.

- Clay, K., Kover, P.X., 1996. The Red Queen hypothesis and plant/pathogen interactions. *Annu. Rev. Phytopathol.* **34**, 29–50.
- Coates, M.E., Beynon, J.L., 2010. *Hyaloperonospora arabidopsidis* as a pathogen model. *Annu. Rev. Phytopathol.* **48**, 329–345.
- Collmer, A., Badel, J.L., Charkowski, A.O., Deng, W.L., Fouts, D.E., Ramos, A.R., Rehm, A.H., Anderson, D.M., Schneewind, O., van Dijk, K., Alfano, J.R., 2000. *Pseudomonas syringae* Hrp type III secretion system and effector proteins. *Proc. Natl. Acad. Sci.* 97, 8770–8777.
- Cui, C., Wang, Y., Liu, J., Zhao, J., Sun, P., Wang, S., 2019. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. *Nat. Commun.* 10, 4298.
- Cunnac, S., Chakravarthy, S., Kvitko, B.H., Russell, A.B., Martin, G.B., Collmer, A., 2011. Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in *Pseudomonas syringae*. *Proc. Natl. Acad. Sci.* 108, 2975–2980.
- Delmas, C.E.L., Dussert, Y., Delière, L., Couture, C., Mazet, I.D., Richart Cervera, S., Delmotte, F., 2017. Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew. *Mol. Ecol.* 26, 1936–1951.
- Derbyshire, M., Mbengue, M., Barascud, M., Navaud, O., Raffaele, S., 2019. Small RNAs from the plant pathogenic fungus *Sclerotinia sclerotiorum* highlight host candidate genes associated with quantitative disease resistance. *Mol. Plant Pathol.* **20**, 1279–1297.
- Derevnina, L., Petre, B., Kellner, R., Dagdas, Y.F., Sarowar, M.N., Giannakopoulou, A., De la Concepcion, J.C., Chaparro-Garcia, A., Pennington, H.G., van West, P., Kamoun, S., 2016. Emerging oomycete threats to plants and animals. *Philos. Trans. R. Soc. B Biol. Sci.* 371, 20150459.
- Dickman, M.B., Park, Y.K., Oltersdorf, T., Li, W., Clemente, T., French, R., 2001. Abrogation of disease development in plants expressing animal antiapoptotic genes. *Proc. Natl. Acad. Sci.* 98, 6957–6962.
- Dixit, R., Cyr, R., Gilroy, S., 2006. Using intrinsically fluorescent proteins for plant cell imaging. *Plant J.* **45**, 599–615.
- Dong, S., Raffaele, S., Kamoun, S., 2015. The two-speed genomes of filamentous pathogens: waltz with plants. *Curr. Opin. Genet. Dev.* **35**, 57–65.

- Dou, D., Kale, S.D., Wang, Xinle, Chen, Y., Wang, Q., Wang, Xia, Jiang, R.H.Y., Arredondo,
 F.D., Anderson, R.G., Thakur, P.B., McDowell, J.M., Wang, Y., Tyler, B.M., 2008.
 Conserved C-terminal motifs required for avirulence and suppression of cell death by *Phytophthora sojae* effector Avr1b. *Plant Cell* 20, 1118–1133.
- Dunker, F., Trutzenberg, A., Rothenpieler, J.S., Kuhn, S., Pröls, R., Schreiber, T., Tissier, A., Kemen, A., Kemen, E., Hückelhoven, R., Weiberg, A., 2020. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. *eLife* 9, e56096.
- Earle, G., Hintz, W., 2014. New approaches for controlling *Saprolegnia parasitica*, the causal agent of a devastating fish disease. *Trop. Life Sci. Res.* **25**, 101–109.
- Ellis, J.G., Dodds, P.N., 2011. Showdown at the RXLR motif: Serious differences of opinion in how effector proteins from filamentous eukaryotic pathogens enter plant cells. *Proc. Natl. Acad. Sci.* **108**, 14381–14382.
- Fabro, G., Steinbrenner, J., Coates, M., Ishaque, N., Baxter, L., Studholme, D.J., Körner, E., Allen, R.L., Piquerez, S.J.M., Rougon-Cardoso, A., Greenshields, D., Lei, R., Badel, J.L., Caillaud, M.-C., Sohn, K.-H., Van den Ackerveken, G., Parker, J.E., Beynon, J., Jones, J.D.G., 2011. Multiple candidate effectors from the oomycete pathogen *Hyaloperonospora arabidopsidis* suppress host plant immunity. *PLoS Pathog.* 7, e1002348.
- Fahlgren, N., Bollmann, S.R., Kasschau, K.D., Cuperus, J.T., Press, C.M., Sullivan, C.M., Chapman, E.J., Hoyer, J.S., Gilbert, K.B., Grünwald, N.J., Carrington, J.C., 2013. *Phytophthora* have distinct endogenous small RNA populations that include short interfering and microRNAs. *PLoS ONE* 8, e77181.
- Fang, X., Qi, Y., 2016. RNAi in plants: An Argonaute-centered view. Plant Cell 28, 272–285.
- Flor, H.H., 1971. Current status of the gene-for-gene concept. *Annu. Rev. Phytopathol.* **9**, 275–296.
- Fry, W., 2008. *Phytophthora infestans*: the plant (and R gene) destroyer. *Mol. Plant Pathol.* **9**, 385–402.
- Furci, L., Jain, R., Stassen, J., Berkowitz, O., Whelan, J., Roquis, D., Baillet, V., Colot, V., Johannes, F., Ton, J., 2019. Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in *Arabidopsis. eLife* 8, e40655.
- Gamir, J., Darwiche, R., van't Hof, P., Choudhary, V., Stumpe, M., Schneiter, R., Mauch, F., 2017. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. *Plant J.* **89**, 502–509.

- Gawehns, F., Cornelissen, B.J.C., Takken, F.L.W., 2013. The potential of effector-target genes in breeding for plant innate immunity. *Microb. Biotechnol.* **6**, 223–229.
- Glazebrook, J., 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. *Annu. Rev. Phytopathol.* **43**, 205–227.
- Govers, F., Bouwmeester, K., 2008. Effector trafficking: RXLR-dEER as extra gear for delivery into plant cells. *Plant Cell* **20**, 1728–1730.
- Govindarajulu, M., Epstein, L., Wroblewski, T., Michelmore, R.W., 2015. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. *Plant Biotechnol. J.* 13, 875–883.
- Grünwald, N.J., Goss, E.M., Press, C.M., 2008. *Phytophthora ramorum*: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. *Mol. Plant Pathol.* 9, 729–740.
- Guivarc'h, A., Caissard, J.C., Azmi, A., Elmayan, T., Chriqui, D., Tepfer, M., 1996. In situ detection of expression of the gus reporter gene in transgenic plants: ten years of blue genes. Transgenic Res. 5, 281–288.
- Guo, X.-Y., Li, Y., Fan, J., Xiong, H., Xu, F.-X., Shi, J., Shi, Y., Zhao, J.-Q., Wang, Y.-F., Cao, X.-L., Wang, W.-M., 2019. Host-induced gene silencing of *MoAP1* confers broadspectrum resistance to *Magnaporthe oryzae*. *Front. Plant Sci.* 10, 433.
- Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T.O., Ah-Fong, A.M.V., Alvarado, L., Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grünwald, N.J., Horn, K., Horner, N.R., Hu, C.-H., Huitema, E., Jeong, D.-H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L., MacLean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'Neill, K., Ospina-Giraldo, M., Pinzón, A., Pritchard, L., Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson,

S.C., Judelson, H.S., Nusbaum, C., 2009. Genome sequence and analysis of the Irish potato famine pathogen *Phytophthora infestans*. *Nature* **461**, 393–398.

- Harvey, S., Kumari, P., Lapin, D., Griebel, T., Hickman, R., Guo, W., Zhang, R., Parker, J.E., Beynon, J., Denby, K., Steinbrenner, J., 2020. Downy mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility. *PLoS Pathog.* 16, e1008835.
- Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K., Doudna, J.A., 2010. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. *Science* **329**, 1355–1358.
- Hausbeck, M.K., Lamour, K.H., 2004. *Phytophthora capsici* on vegetable crops: Research progress and management challenges. *Plant Dis.* **88**, 1292–1303.
- Head, G.P., Carroll, M.W., Evans, S.P., Rule, D.M., Willse, A.R., Clark, T.L., Storer, N.P., Flannagan, R.D., Samuel, L.W., Meinke, L.J., 2017. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. *Pest Manag. Sci.* 73, 1883–1899.
- Hein, I., Gilroy, E.M., Armstrong, M.R., Birch, P.R.J., 2009. The zig-zag-zig in oomycete-plant interactions. *Mol. Plant Pathol.* **10**, 547–562.
- Helber, N., Wippel, K., Sauer, N., Schaarschmidt, S., Hause, B., Requena, N., 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus *Glomus sp.* is crucial for the symbiotic relationship with plants. *Plant Cell* 23, 3812–3823.
- Hogenhout, S.A., Van der Hoorn, R.A.L., Terauchi, R., Kamoun, S., 2009. Emerging concepts in effector biology of plant-associated organisms. *Mol. Plant. Microbe Interact.* **22**, 115–122.
- Horsefield, S., Burdett, H., Zhang, X., Manik, M.K., Shi, Y., Chen, J., Qi, T., Gilley, J., Lai, J.-S., Rank, M.X., Casey, L.W., Gu, W., Ericsson, D.J., Foley, G., Hughes, R.O., Bosanac, T., von Itzstein, M., Rathjen, J.P., Nanson, J.D., Boden, M., Dry, I.B., Williams, S.J., Staskawicz, B.J., Coleman, M.P., Ve, T., Dodds, P.N., Kobe, B., 2019. NAD⁺ cleavage activity by animal and plant TIR domains in cell death pathways. *Science* 365, 793–799.
- Hou, Y., Zhai, Y., Feng, L., Karimi, H.Z., Rutter, B.D., Zeng, L., Choi, D.S., Zhang, B., Gu, W., Chen, X., Ye, W., Innes, R.W., Zhai, J., Ma, W., 2019. A *Phytophthora* effector suppresses trans-kingdom RNAi to promote disease susceptibility. *Cell Host Microbe* 25, 153–165.

- Hu, X., Persson Hodén, K., Liao, Z., Dölfors, F., Åsman, A., Dixelius, C., 2020. *Phytophthora infestans* Ago1-bound miRNA promotes potato late blight disease. *bioRxiv*.
- Huang, C.-Y., Wang, H., Hu, P., Hamby, R., Jin, H., 2019. Small RNAs Big Players in Plant-Microbe Interactions. *Cell Host Microbe* 26, 173–182.
- Huang, G., Allen, R., Davis, E.L., Baum, T.J., Hussey, R.S., 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. *Proc. Natl. Acad. Sci.* 103, 14302–14306.
- Hudzik, C., Hou, Y., Ma, W., Axtell, M.J., 2020. Exchange of small regulatory RNAs between plants and their pests. *Plant Physiol.* **182**, 51–62.
- Jahan, S.N., Åsman, A.K.M., Corcoran, P., Fogelqvist, J., Vetukuri, R.R., Dixelius, C., 2015. Plant-mediated gene silencing restricts growth of the potato late blight pathogen *Phytophthora infestans. J. Exp. Bot.* 66, 2785–2794.
- Jashni, M.K., Mehrabi, R., Collemare, J., Mesarich, C.H., de Wit, P.J.G.M., 2015. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. *Front. Plant Sci.* **6**, 584.
- Jia, J., Lu, W., Zhong, C., Zhou, R., Xu, J., Liu, W., Gou, X., Wang, Q., Yin, J., Xu, C., Shan, W., 2017. The 25-26 nt small RNAs in *Phytophthora parasitica* are associated with efficient silencing of homologous endogenous genes. *Front. Microbiol.* 8, 773.
- Jian, J., Liang, X., 2019. One small RNA of *Fusarium graminearum* targets and silences *CEBiP* gene in common wheat. *Microorganisms* **7**, 425.
- Johnson, N.R., dePamphilis, C.W., Axtell, M.J., 2019. Compensatory sequence variation between trans-species small RNAs and their target sites. *eLife* **8**, e49750.
- Jones, J.D.G., Dangl, J.L., 2006. The plant immune system. Nature 444, 323–329.
- Judelson, H.S., Ah-Fong, A.M.V., 2019. Exchanges at the plant-oomycete interface that influence disease. *Plant Physiol.* **179**, 1198–1211.
- Kamoun, S., Furzer, O., Jones, J.D.G., Judelson, H.S., Ali, G.S., Dalio, R.J.D., Roy, S.G., Schena, L., Zambounis, A., Panabières, F., Cahill, D., Ruocco, M., Figueiredo, A., Chen, X.-R., Hulvey, J., Stam, R., Lamour, K., Gijzen, M., Tyler, B.M., Grünwald, N.J., Mukhtar, M.S., Tomé, D.F.A., Tör, M., Van Den Ackerveken, G., McDowell, J., Daayf, F., Fry, W.E., Lindqvist-Kreuze, H., Meijer, H.J.G., Petre, B., Ristaino, J., Yoshida, K., Birch, P.R.J., Govers, F., 2015. The top 10 oomycete pathogens in molecular plant pathology. *Mol. Plant Pathol.* 16, 413–434.
- Kanja, C., Hammond-Kosack, K.E., 2020. Proteinaceous effector discovery and characterization in filamentous plant pathogens. *Mol. Plant Pathol.* **21**, 1353-1376

- Kemen, E., Gardiner, A., Schultz-Larsen, T., Kemen, A.C., Balmuth, A.L., Robert-Seilaniantz, A., Bailey, K., Holub, E., Studholme, D.J., MacLean, D., Jones, J.D.G., 2011. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of *Arabidopsis thaliana*. *PLoS Biol.* 9, e1001094.
- Kettles, G.J., Hofinger, B.J., Hu, P., Bayon, C., Rudd, J.J., Balmer, D., Courbot, M., Hammond-Kosack, K.E., Scalliet, G., Kanyuka, K., 2019. sRNA profiling combined with gene function analysis reveals a lack of evidence for cross-kingdom RNAi in the wheat – *Zymoseptoria tritici* pathosystem. *Front. Plant Sci.* 10, 892.
- Khajuria, C., Ivashuta, S., Wiggins, E., Flagel, L., Moar, W., Pleau, M., Miller, K., Zhang, Y., Ramaseshadri, P., Jiang, C., Hodge, T., Jensen, P., Chen, M., Gowda, A., McNulty, B., Vazquez, C., Bolognesi, R., Haas, J., Head, G., Clark, T., 2018. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, *Diabrotica virgifera virgifera* LeConte. *PLoS ONE* 13, e0197059.
- Khraiwesh, B., Zhu, J.-K., Zhu, J., 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. *Biochim. Biophys. Acta BBA - Gene Regul. Mech.* 1819, 137– 148.
- Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., Linicus, L., Johannsmeier, J., Jelonek, L., Goesmann, A., Cardoza, V., McMillan, J., Mentzel, T., Kogel, K.-H., 2016. An RNAi-based control of *Fusarium graminearum* infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. *PLoS Pathog.* 12, e1005901.
- Koch, A., Kogel, K.-H., 2014. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. *Plant Biotechnol. J.* **12**, 821–831.
- Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., Kogel, K.-H., 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14 -demethylase-encoding genes confers strong resistance to *Fusarium* species. *Proc. Natl. Acad. Sci.* **110**, 19324–19329.
- Koch, A., Schlemmer, T., Höfle, L., Werner, B., Preußer, C., Hardt, M., Möbus, A., Biedenkopf, D., Claar, M., Perlet, C., Jelonek, L., Goesmann, A., Garikapati, V., Spengler, B., Busche, T., Kalinowski, J., Kogel, K., 2020. Host-induced gene silencing involves transfer of dsRNA-derived siRNA via extracellular vesicles. *bioRxiv*.
- Koch, E., Slusarenko, A., 1990. Arabidopsis is susceptible to infection by a downy mildew fungus. *Plant Cell* **2**, 437–445.
- Kombrink, A., Thomma, B.P.H.J., 2013. LysM effectors: Secreted proteins supporting fungal life. *PLoS Pathog.* 9, e1003769.

- Krasileva, K.V., Zheng, C., Leonelli, L., Goritschnig, S., Dahlbeck, D., Staskawicz, B.J., 2011.
 Global analysis of Arabidopsis/ downy mildew interactions reveals prevalence of incomplete resistance and rapid evolution of pathogen recognition. *PLoS ONE* 6, e28765.
- Kusch, S., Frantzeskakis, L., Thieron, H., Panstruga, R., 2018. Small RNAs from cereal powdery mildew pathogens may target host plant genes. *Fungal Biol.* **122**, 1050–1063.
- Kwon, S., Tisserant, C., Tulinski, M., Weiberg, A., Feldbrügge, M., 2020. Inside-out: from endosomes to extracellular vesicles in fungal RNA transport. *Fungal Biol. Rev.* 34, 89–99.
- Lai, Y., Eulgem, T., 2018. Transcript-level expression control of plant NLR genes. *Mol. Plant Pathol.* **19**, 1267–1281.
- Laurie, J.D., Linning, R., Bakkeren, G., 2008. Hallmarks of RNA silencing are found in the smut fungus *Ustilago hordei* but not in its close relative *Ustilago maydis*. *Curr. Genet.* 53, 49–58.
- Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., Ryals, J., 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. *Mol. Plant-Microbe Interact.* 8, 863–870.
- Lenarčič, T., Pirc, K., Hodnik, V., Albert, I., Borišek, J., Magistrato, A., Nürnberger, T., Podobnik, M., Anderluh, G., 2019. Molecular basis for functional diversity among microbial Nep1-like proteins. *PLoS Pathog.* 15, e1007951.
- Li, F., Pignatta, D., Bendix, C., Brunkard, J.O., Cohn, M.M., Tung, J., Sun, H., Kumar, P., Baker, B., 2012. MicroRNA regulation of plant innate immune receptors. *Proc. Natl. Acad. Sci.* **109**, 1790–1795.
- López Sánchez, A., Stassen, J.H.M., Furci, L., Smith, L.M., Ton, J., 2016. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. *Plant J.* **88**, 361–374.
- Lück, S., Kreszies, T., Strickert, M., Schweizer, P., Kuhlmann, M., Douchkov, D., 2019. siRNA-Finder (si-Fi) software for RNAi-target design and off-target prediction. *Front. Plant Sci.* **10**, 1023.
- Ma, S., Lapin, D., Liu, L., Sun, Y., Song, W., Zhang, X., Logemann, E., Yu, D., Wang, J., Jirschitzka, J., Han, Z., Schulze-Lefert, P., Parker, J.E., Chai, J., 2020. Direct pathogeninduced assembly of an NLR immune receptor complex to form a holoenzyme. *Science* 370, eabe3069.
- Ma, X., Wiedmer, J., Palma-Guerrero, J., 2020. Small RNA bidirectional crosstalk during the interaction between wheat and *Zymoseptoria tritici*. *Front. Plant Sci.* **10**, 1669.

- Maizel, A., Markmann, K., Timmermans, M., Wachter, A., 2020. To move or not to move: roles and specificity of plant RNA mobility. *Curr. Opin. Plant Biol.* **57**, 52–60.
- Mallory, A.C., Bouché, N., 2008. MicroRNA-directed regulation: to cleave or not to cleave. *Trends Plant Sci.* **13**, 359–367.
- Man, S.M., Kanneganti, T.-D., 2016. Converging roles of caspases in inflammasome activation, cell death and innate immunity. *Nat. Rev. Immunol.* **16**, 7–21.
- Mao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X.-Y., Wang, L.-J., Huang, Y.-P., Chen,
 X.-Y., 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated
 RNAi impairs larval tolerance of gossypol. *Nat. Biotechnol.* 25, 1307–1313.
- Masigol, H., Khodaparast, S.A., Woodhouse, J.N., Rojas-Jimenez, K., Fonvielle, J., Rezakhani,
 F., Mostowfizadeh-Ghalamfarsa, R., Neubauer, D., Goldhammer, T., Grossart, H.,
 2019. The contrasting roles of aquatic fungi and oomycetes in the degradation and transformation of polymeric organic matter. *Limnol. Oceanogr.* 64, 2662–2678.
- McDowell, J.M., 2014. Hyaloperonospora arabidopsidis: A model pathogen of Arabidopsis.
 In: Dean, R.A., Lichens-Park, A., Kole, C. (Eds.), Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens. Springer, Berlin, Heidelberg, pp. 209–234.
- McEwan, D.L., Weisman, A.S., Hunter, C.P., 2012. Uptake of extracellular double-stranded RNA by SID-2. *Mol. Cell* **47**, 746–754.
- Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G.J., Qi, Y., 2008. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5' terminal nucleotide. *Cell* 133, 116–127.
- Mims, C.W., Richardson, E.A., Holt III, B.F., Dangl, J.L., 2004. Ultrastructure of the hostpathogen interface in *Arabidopsis thaliana* leaves infected by the downy mildew *Hyaloperonospora parasitica. Can. J. Bot.* **82**, 1001–1008.
- Misas-Villamil, J.C., van der Hoorn, R.A.L., Doehlemann, G., 2016. Papain-like cysteine proteases as hubs in plant immunity. *New Phytol.* **212**, 902–907.
- Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., Fletcher, S.J., Carroll,
 B.J., Lu, G.Q., Xu, Z.P., 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. *Nat. Plants* 3, 16207.
- Montgomery, T.A., Howell, M.D., Cuperus, J.T., Li, D., Hansen, J.E., Alexander, A.L., Chapman, E.J., Fahlgren, N., Allen, E., Carrington, J.C., 2008. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 *trans*-acting siRNA formation. *Cell* 133, 128–141.

- Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., Proux, F., Vaucheret, H., 2002. Fertile hypomorphic ARGONAUTE (*ago1*) mutants impaired in post-transcriptional gene silencing and virus resistance. *Plant Cell* 14, 629–639.
- Mosher, S., Seybold, H., Rodriguez, P., Stahl, M., Davies, K.A., Dayaratne, S., Morillo, S.A., Wierzba, M., Favery, B., Keller, H., Tax, F.E., Kemmerling, B., 2013. The tyrosinesulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. *Plant J.* **73**, 469–482.
- Mukhtar, M.S., Carvunis, A.-R., Dreze, M., Epple, P., Steinbrenner, J., Moore, J., Tasan, M., Galli, M., Hao, T., Nishimura, M.T., Pevzner, S.J., Donovan, S.E., Ghamsari, L., Santhanam, B., Romero, V., Poulin, M.M., Gebreab, F., Gutierrez, B.J., Tam, S., Monachello, D., Boxem, M., Harbort, C.J., McDonald, N., Gai, L., Chen, H., He, Y., European Union Effectoromics Consortium, Vandenhaute, J., Roth, F.P., Hill, D.E., Ecker, J.R., Vidal, M., Beynon, J., Braun, P., Dangl, J.L., 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. *Science* 333, 596–601.
- Murmu, J., Wilton, M., Allard, G., Pandeya, R., Desveaux, D., Singh, J., Subramaniam, R., 2014. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen *Hyaloperonospora arabidopsidis*, as well as JA-independent plant immunity against the necrotrophic pathogen *Botrytis cinerea*. *Mol. Plant Pathol.* 15, 174–184.
- Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D.G., 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. *Science* **312**, 436–439.
- Nemri, A., Atwell, S., Tarone, A.M., Huang, Y.S., Zhao, K., Studholme, D.J., Nordborg, M., Jones, J.D.G., 2010. Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping. *Proc. Natl. Acad. Sci.* 107, 10302–10307.
- Niehl, A., Wyrsch, I., Boller, T., Heinlein, M., 2016. Double-stranded RNAs induce a patterntriggered immune signaling pathway in plants. *New Phytol.* **211**, 1008–1019.
- Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., Hensel, G., Kumlehn, J., Schweizer, P., 2010. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen *Blumeria graminis*. *Plant Cell* 22, 3130–3141.
- Oerke, E.-C., 2006. Crop losses to pests. J. Agric. Sci. 144, 31-43.

- Parfrey, L.W., Lahr, D.J.G., Knoll, A.H., Katz, L.A., 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. *Proc. Natl. Acad. Sci.* 108, 13624–13629.
- Pel, M.J.C., Wintermans, P.C.A., Cabral, A., Robroek, B.J.M., Seidl, M.F., Bautor, J., Parker, J.E., Van den Ackerveken, G., Pieterse, C.M.J., 2014. Functional analysis of *Hyaloperonospora arabidopsidis* RXLR effectors. *PLoS ONE* 9, e110624.
- Petre, B., Kamoun, S., 2014. How do filamentous pathogens deliver effector proteins into plant cells? *PLoS Biol.* **12**, e1001801.
- Pliego, C., Nowara, D., Bonciani, G., Gheorghe, D.M., Xu, R., Surana, P., Whigham, E., Nettleton, D., Bogdanove, A.J., Wise, R.P., Schweizer, P., Bindschedler, L.V., Spanu, P.D., 2013. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. *Mol. Plant. Microbe Interact.* 26, 633–642.
- Qi, T., Zhu, X., Tan, C., Liu, P., Guo, Jia, Kang, Z., Guo, Jun, 2018. Host-induced gene silencing of an important pathogenicity factor *PsCPK1* in *Puccinia striiformis* f. sp. *tritici* enhances resistance of wheat to stripe rust. *Plant Biotechnol. J.* 16, 797–807.
- Qiao, Y., Liu, L., Xiong, Q., Flores, C., Wong, J., Shi, J., Wang, X., Liu, X., Xiang, Q., Jiang, S., Zhang, F., Wang, Y., Judelson, H.S., Chen, X., Ma, W., 2013. Oomycete pathogens encode RNA silencing suppressors. *Nat. Genet.* 45, 330–333.
- Qutob, D., Patrick Chapman, B., Gijzen, M., 2013. Transgenerational gene silencing causes gain of virulence in a plant pathogen. *Nat. Commun.* **4**, 1349.
- Rehmany, A.P., Gordon, A., Rose, L.E., Allen, R.L., Armstrong, M.R., Whisson, S.C., Kamoun, S., Tyler, B.M., Birch, P.R.J., Beynon, J.L., 2005. Differential recognition of highly divergent downy mildew avirulence gene alleles by *RPP1* resistance genes from two Arabidopsis lines. *Plant Cell* 17, 1839–1850.
- Ren, B., Wang, X., Duan, J., Ma, J., 2019. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. *Science* 365, 919–922.
- Richards, T.A., Soanes, D.M., Jones, M.D.M., Vasieva, O., Leonard, G., Paszkiewicz, K., Foster, P.G., Hall, N., Talbot, N.J., 2011. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. *Proc. Natl. Acad. Sci.* 108, 15258–15263.
- Robinson, S.M., Bostock, R.M., 2014. β-glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present. *Front. Plant Sci.* **5**, 797.
- Rocafort, M., Fudal, I., Mesarich, C.H., 2020. Apoplastic effector proteins of plant-associated fungi and oomycetes. *Curr. Opin. Plant Biol.* **56**, 9–19.

- Rouxel, T., Balesdent, M.-H., 2010. Avirulence Genes. In: *Encyclopedia of Life Sciences*. John Wiley & Sons, Ltd, Chichester, UK.
- Rutter, B.D., Innes, R.W., 2020. Growing pains: addressing the pitfalls of plant extracellular vesicle research. *New Phytol.* **228**, 1505-1510.
- Salguero-Linares, J., Coll, N.S., 2019. Plant proteases in the control of the hypersensitive response. *J. Exp. Bot.* **70**, 2087–2095.
- Sang, H., Kim, J.-I., 2020. Advanced strategies to control plant pathogenic fungi by hostinduced gene silencing (HIGS) and spray-induced gene silencing (SIGS). *Plant Biotechnol. Rep.* 14, 1–8.
- Sanju, S., Siddappa, S., Thakur, A., Shukla, P.K., Srivastava, N., Pattanayak, D., Sharma, S., Singh, B.P., 2015. Host-mediated gene silencing of a single effector gene from the potato pathogen *Phytophthora* infestans imparts partial resistance to late blight disease. *Funct. Integr. Genomics* 15, 697–706.
- Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., 2019. The global burden of pathogens and pests on major food crops. *Nat. Ecol. Evol.* **3**, 430–439.
- Savory, F., Leonard, G., Richards, T.A., 2015. The role of horizontal gene transfer in the evolution of the oomycetes. *PLoS Pathog.* **11**, e1004805.
- Schon, M.A., Kellner, M.J., Plotnikova, A., Hofmann, F., Nodine, M.D., 2018. NanoPARE: parallel analysis of RNA 5' ends from low-input RNA. *Genome Res.* **28**, 1931–1942.
- Schornack, S., Huitema, E., Cano, L.M., Bozkurt, T.O., Oliva, R., Van Damme, M., Schwizer,
 S., Raffaele, S., Chaparro-Garcia, A., Farrer, R., Segretin, M.E., Bos, J., Haas, B.J.,
 Zody, M.C., Nusbaum, C., Win, J., Thines, M., Kamoun, S., 2009. Ten things to know
 about oomycete effectors. *Mol. Plant Pathol.* 10, 795–803.
- Shabalina, S.A., Koonin, E.V., 2008. Origins and evolution of eukaryotic RNA interference. *Trends Ecol. Evol.* 23, 578–587.
- Shahid, S., Kim, G., Johnson, N.R., Wafula, E., Wang, F., Coruh, C., Bernal-Galeano, V., Phifer, T., dePamphilis, C.W., Westwood, J.H., Axtell, M.J., 2018. MicroRNAs from the parasitic plant *Cuscuta campestris* target host messenger RNAs. *Nature* 553, 82–85.
- Sharma, R., Xia, X., Cano, L.M., Evangelisti, E., Kemen, E., Judelson, H., Oome, S., Sambles, C., van den Hoogen, D.J., Kitner, M., Klein, J., Meijer, H.J.G., Spring, O., Win, J., Zipper, R., Bode, H.B., Govers, F., Kamoun, S., Schornack, S., Studholme, D.J., Van den Ackerveken, G., Thines, M., 2015. Genome analyses of the sunflower pathogen *Plasmopara halstedii* provide insights into effector evolution in downy mildews and *Phytophthora*. *BMC Genomics* 16, 741.

- Shivaprasad, P.V., Chen, H.-M., Patel, K., Bond, D.M., Santos, B.A.C.M., Baulcombe, D.C., 2012. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. *Plant Cell* 24, 859–874.
- Silvestri, A., Fiorilli, V., Miozzi, L., Accotto, G.P., Turina, M., Lanfranco, L., 2019. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. *BMC Genomics* 20, 169.
- Silvestri, A., Turina, M., Fiorilli, V., Miozzi, L., Venice, F., Bonfante, P., Lanfranco, L., 2020. Different genetic sources contribute to the small RNA population in the arbuscular mycorrhizal fungus *Gigaspora margarita*. *Front. Microbiol.* **11**, 395.
- Singla-Rastogi, M., Charvin, M., Thiébeauld, O., Perez-Quintero, A.L., Ravet, A., Emidio-Fortunato, A., Mendu, V., Navarro, L., 2019. Plant small RNA species direct gene silencing in pathogenic bacteria as well as disease protection. *bioRxiv*.
- Slusarenko, A.J., Schlaich, N.L., 2003. Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol. Plant Pathol. 4, 159–170.
- Souret, F.F., Kastenmayer, J.P., Green, P.J., 2004. AtXRN4 degrades mRNA in *Arabidopsis* and its substrates include selected miRNA targets. *Mol. Cell* **15**, 173–183.
- Spoel, S.H., Dong, X., 2008. Making sense of hormone crosstalk during plant immune responses. *Cell Host Microbe* **3**, 348–351.
- Spoel, S.H., Dong, X., 2012. How do plants achieve immunity? Defence without specialized immune cells. *Nat. Rev. Immunol.* **12**, 89–100.
- Svoboda, J., Mrugała, A., Kozubíková-Balcarová, E., Petrusek, A., 2017. Hosts and transmission of the crayfish plague pathogen *Aphanomyces astaci*: a review. *J. Fish Dis.* 40, 127–140.
- Thines, M., 2014. Phylogeny and evolution of plant pathogenic oomycetes—a global overview. *Eur. J. Plant Pathol.* **138**, 431–447.
- Thines, M., Kamoun, S., 2010. Oomycete–plant coevolution: recent advances and future prospects. *Curr. Opin. Plant Biol.* **13**, 427–433.
- Thomma, B.P.H.J., Nürnberger, T., Joosten, M.H.A.J., 2011. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. *Plant Cell* **23**, 4–15.
- Thordal-Christensen, H., Birch, P.R.J., Spanu, P.D., Panstruga, R., 2018. Why did filamentous plant pathogens evolve the potential to secrete hundreds of effectors to enable disease? *Mol. Plant Pathol.* 19, 781–785.

- van Baarlen, P., Woltering, E.J., Staats, M., Van Kan, J.A.L., 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three *Botrytis* species: an important role for cell death control. *Mol. Plant Pathol.* **8**, 41–54.
- van Kan, J.A.L., 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. *Trends Plant Sci.* **11**, 247–253.
- van Niel, G., D'Angelo, G., Raposo, G., 2018. Shedding light on the cell biology of extracellular vesicles. *Nat. Rev. Mol. Cell Biol.* **19**, 213–228.
- van Schie, C.C.N., Takken, F.L.W., 2014. Susceptibility genes 101: How to be a good host. *Annu. Rev. Phytopathol.* **52**, 551–581.
- Van't Klooster, J.W., Van der Kamp, M.W., Vervoort, J., Beekwilder, J., Boeren, S., Joosten, M.H.A.J., Thomma, B.P.H.J., De Wit, P.J.G.M., 2011. Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2-triggered Cf-2-mediated hypersensitive response. *Mol. Plant Pathol.* 12, 21–30.
- Vaucheret, H., 2008. Plant ARGONAUTES. Trends Plant Sci. 13, 350-358.
- Vega-Arreguín, J.C., Jalloh, A., Bos, J.I., Moffett, P., 2014. Recognition of an Avr3a homologue plays a major role in mediating nonhost resistance to *Phytophthora capsici* in *Nicotiana* species. *Mol. Plant. Microbe Interact.* 27, 770–780.
- Veloso, J., van Kan, J.A.L., 2018. Many shades of grey in *Botrytis*-host plant interactions. *Trends Plant Sci.* 23, 613–622.
- Vetukuri, R.R., Asman, A.K., Jahan, S.N., Avrova, A.O., Whisson, S.C., Dixelius, C., 2013. Phenotypic diversification by gene silencing in *Phytophthora* plant pathogens. *Commun. Integr. Biol.* 6, e25890.
- Vetukuri, R.R., Åsman, A.K.M., Tellgren-Roth, C., Jahan, S.N., Reimegård, J., Fogelqvist, J., Savenkov, E., Söderbom, F., Avrova, A.O., Whisson, S.C., Dixelius, C., 2012. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete *Phytophthora infestans*. *PLoS ONE* 7, e51399.
- von Saint Paul, V., Zhang, W., Kanawati, B., Geist, B., Faus-Kessler, T., Schmitt-Kopplin, P., Schäffner, A.R., 2011. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. *Plant Cell* **23**, 4124–4145.
- Wang, B., Sun, Y., Song, N., Zhao, M., Liu, R., Feng, H., Wang, X., Kang, Z., 2017. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytol. 215, 338–350.

- Wang, M., Thomas, N., Jin, H., 2017a. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. *Curr. Opin. Plant Biol.* 38, 133–141.
- Wang, M., Weiberg, A., Dellota, E., Yamane, D., Jin, H., 2017b. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. *RNA Biol.* **14**, 421–428.
- Wang, M., Weiberg, A., Jin, H., 2015. Pathogen small RNAs: a new class of effectors for pathogen attacks. Mol. Plant Pathol. 16, 219–223.
- Wang, M., Weiberg, A., Lin, F.-M., Thomma, B.P.H.J., Huang, H.-D., Jin, H., 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. *Nat. Plants* 2, 16151.
- Wang, S., Boevink, P.C., Welsh, L., Zhang, R., Whisson, S.C., Birch, P.R.J., 2017. Delivery of cytoplasmic and apoplastic effectors from *Phytophthora infestans* haustoria by distinct secretion pathways. *New Phytol.* 216, 205–215.
- Wang, Y., Liu, K., Liao, H., Zhuang, C., Ma, H., Yan, X., 2008. The plant WNK gene family and regulation of flowering time in Arabidopsis. *Plant Biol.* **10**, 548–562.
- Wang, Y., Tyler, B.M., Wang, Y., 2019. Defense and counterdefense during plant-pathogenic oomycete infection. *Annu. Rev. Microbiol.* 73, 667–696.
- Wawra, S., Belmonte, R., Löbach, L., Saraiva, M., Willems, A., van West, P., 2012. Secretion, delivery and function of oomycete effector proteins. *Curr. Opin. Microbiol.* 15, 685– 691.
- Weiberg, A., Bellinger, M., Jin, H., 2015. Conversations between kingdoms: small RNAs. *Curr. Opin. Biotechnol.* **32**, 207–215.
- Weiberg, A., Wang, M., Bellinger, M., Jin, H., 2014. Small RNAs: A new paradigm in plantmicrobe interactions. Annu. Rev. Phytopathol. 52, 495–516.
- Weiberg, A., Wang, M., Lin, F.-M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H.-D., Jin, H., 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. *Science* 342, 118–123.
- Weßling, R., Epple, P., Altmann, S., He, Y., Yang, L., Henz, S.R., McDonald, N., Wiley, K., Bader, K.C., Gläßer, C., Mukhtar, M.S., Haigis, S., Ghamsari, L., Stephens, A.E., Ecker, J.R., Vidal, M., Jones, J.D.G., Mayer, K.F.X., Ver Loren van Themaat, E., Weigel, D., Schulze-Lefert, P., Dangl, J.L., Panstruga, R., Braun, P., 2014. Convergent Targeting of a Common Host protein-network by pathogen effectors from three kingdoms of life. *Cell Host Microbe* 16, 364–375.

- Whisson, S., Vetukuri, R., Avrova, A., Dixelius, C., 2012. Can silencing of transposons contribute to variation in effector gene expression in Phytophthora infestans? *Mob. Genet. Elem.* 2, 110–114.
- Whisson, S.C., Boevink, P.C., Moleleki, L., Avrova, A.O., Morales, J.G., Gilroy, E.M., Armstrong, M.R., Grouffaud, S., van West, P., Chapman, S., Hein, I., Toth, I.K., Pritchard, L., Birch, P.R.J., 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. *Nature* **450**, 115–118.
- Win, J., Krasileva, K.V., Kamoun, S., Shirasu, K., Staskawicz, B.J., Banfield, M.J., 2012. Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. *PLoS Pathog.* 8, e1002400.
- Win, J., Morgan, W., Bos, J., Krasileva, K.V., Cano, L.M., Chaparro-Garcia, A., Ammar, R., Staskawicz, B.J., Kamoun, S., 2007. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. *Plant Cell* **19**, 2349– 2369.
- Wirthmueller, L., Asai, S., Rallapalli, G., Sklenar, J., Fabro, G., Kim, D.S., Lintermann, R., Jaspers, P., Wrzaczek, M., Kangasjärvi, J., MacLean, D., Menke, F.L.H., Banfield, M.J., Jones, J.D.G., 2018. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. *New Phytol.* 220, 232–248.
- Woods-Tör, A., Studholme, D.J., Cevik, V., Telli, O., Holub, E.B., Tör, M., 2018. A suppressor/avirulence gene combination in *Hyaloperonospora arabidopsidis* determines race specificity in *Arabidopsis thaliana*. *Front. Plant Sci.* 9, 265.
- Xiong, Q., Ye, W., Choi, D., Wong, J., Qiao, Y., Tao, K., Wang, Y., Ma, W., 2014. *Phytophthora* Suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and *Arabidopsis thaliana*. *Mol. Plant. Microbe Interact.* 27, 1379–1389.
- Yan, J., Gu, Y., Jia, X., Kang, W., Pan, S., Tang, X., Chen, X., Tang, G., 2012. Effective Small RNA destruction by the expression of a short tandem target mimic in *Arabidopsis*. *Plant Cell* 24, 415–427.
- Zeng, J., Gupta, V.K., Jiang, Y., Yang, B., Gong, L., Zhu, H., 2019. Cross-Kingdom small RNAs among animals, plants and microbes. *Cells* **8**, 371.
- Zhang, J., Khan, S.A., Hasse, C., Ruf, S., Heckel, D.G., Bock, R., 2015. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. *Science* 347, 991–994.

- Zhang, M., Wang, Q., Xu, K., Meng, Y., Quan, J., Shan, W., 2011. Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen *Phytophthora parasitica*. *PLoS ONE* 6, e28114.
- Zhang, T., Zhao, Y.-L., Zhao, J.-H., Wang, S., Jin, Y., Chen, Z.-Q., Fang, Y.-Y., Hua, C.-L., Ding, S.-W., Guo, H.-S., 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. *Nat. Plants* 2, 16153.
- Zhang, X., Zhao, H., Gao, S., Wang, W.-C., Katiyar-Agarwal, S., Huang, H.-D., Raikhel, N., Jin, H., 2011. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42, 356– 366.
- Zhang, Y., Li, X., 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. *Curr. Opin. Plant Biol.* **50**, 29–36.
- Zhang, Z., Huang, S., Tao, H., Zhang, Y., Zhao, Y., Ji, Z., Chen, X., 2019. Gene transcriptional pattern, prokaryotic expression and functional analysis of an apoplastic, hydrophobic and small effector SCR82 from *Phytophthora capsici*. Acta Micobiologica Sin. 59, 1586–1599.
- Zhao, H., Lii, Y., Zhu, P., Jin, H., 2012. Isolation and profiling of protein-associated small RNAs. *Methods Mol. Biol.* **883**, 165–176.

Acknowledgement

Firstly, I want to thank my supervisor Dr. Arne Weiberg for giving me the opportunity to perform this study, his mental support and his dedication to science. It was a pleasure to work with you and I will always appreciate the freedom to pursue own ideas during my doctoral studies and shape the project together with you. You have been a great mentor and I have learned a lot during the five years in Munich that will be useful for my future career and beyond. I want to thank Prof. Dr. Martin Parniske for providing us with a fantastic lab environment and supporting us as a new, young group. I also want to thank him for the contributions to my project as one of my TAC members and being part of the evaluation committee.

I want to thank Prof. Dr. Kai Papenfort to complete my TAC and bring valuable suggestions at all phases of the project.

I am very thankful to Prof. Dr. Wolfgang Frank for his contribution of the second evaluation of my thesis and to Prof. Dr. Christof Osman to be part of the evaluation committee and the disputation. Finally, I want to thank Prof. Dr. Heinrich Jung and Prof. Dr. Silke Werth for their willingness to complete my evaluation committee.

I want to thank my fantastic students Jan, Adriana, Sarah, Lorenz, Alexandra and Berni. There was no part I loved as much about my job than discussing science and performing the projects together with you, and I hope I have been a good mentor to you. My publications would not have been possible without you, but even more important, I have met people in you that made my time in the lab and Munich so enjoyable.

A big thank goes to my lab mates Stanzi, Antoine, Berni, Lihong and An-Po from the AG Weiberg. After spending the first part of my project only with Arne, I was blessed to get such great colleagues as you have been. I would never want to miss your contributions to my project, the daily lab routine, and you have also become close friends of me. I still dream about our great hang-arounds on Antoine's roof terrace or Stanzi's garden, or our trips together with Arne and Amaryllis to Christmas markets around Munich.

I want to thank all other doctoral students and Post-Docs I have met during these 5 years in the Genetics. It would take pages to only describe a small part of the great impact you all had on my work, but also my life. You all make the Genetics a special place and I could not have been happier than to spend my time together with you. Juan, Yen-Yu, Chloé, Janet, Fang-Yu, Michi, Salar, Rafa, Anne, José, Kasia, Mattes, Martin B, David, Kathy, Max, Priya, Benjamin, Aline, and Samy: you're the best and I'll miss you, and I hope we'll see each other again!

I want to thank the LSM for all the support I received during my doctoral studies and the possibilities to educate myself. I want to thank especially Nadine and Francisca for their patience, so I could complete the curriculum in 5 years.

I want to thank our collaborators Reinhard Pröls and Ralph Hückelhoven (TU Munich), Ariane and Eric Kemen (University Tübingen) and Tom Schreiber (IPB) Halle for their contributions to my project.

I want to acknowledge the financial support I have received from the DFG, the SFB924 and LMU house positions kindly provided by Prof. Dr. Parniske and the travel grants from the DAAD enabling trips to conferences in Vienna and Glasgow.

I want to thank my family and my friends for providing me with the work/life balance necessary for such a project and the constant support. Special thanks for your patience during long explanations about the details of my project...

Finally, I want to thank you, Isabel. There is nothing in these five years, that comes close to the luck that I have met you. I love you ♥.