
 
 

Aus der: Medizinische Klinik und Poliklinik IV 

Klinikum der Ludwig-Maximilians-Universität München 

 

Studies on the role of integrins in corticotroph tumorigenesis 

Dissertation 

zum Erwerb des Doktorgrades der Medizin 

an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität München 

 

vorgelegt von 

 ............ Xiao Chen............... 

aus 

 ...........China............ 

Jahr 

  ............2021.............. 

 



 
 

Mit Genehmigung der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität zu München 

  

  

  

  

  

Erster Gutachter: Prof. Dr. Marily Theodoropoulou 

Zweiter Gutachter: Prof. Dr. Günter Stalla  

Dritter Gutachter: PD. Dr. George Vlotides 

ggf. weitere Gutachter: ____________________________________ 

 ____________________________________ 

Mitbetreuung durch den 

promovierten Mitarbeiter: 

 

____________________________________ 

Dekan: Prof. Dr. med. Thomas Gudermann 

 

Tag der mündlichen Prüfung: 

 

 

_________03.11.2021__________________ 

 

 

 

 

 



 
 

Table of content 

Zusammenfassung (Deutsch) ...................................................................................... 1 

Abstract (English) ........................................................................................................ 3 

List of abbreviations .................................................................................................... 5 

1. Introduction .............................................................................................................. 7 

1.1. Pituitary ............................................................................................................... 7 

1.2. ACTH regulation ................................................................................................. 7 

1.2.1. The hypothalamic pituitary adrenal axis (HPA)............................................ 7 

1.2.2. POMC regulation .......................................................................................... 8 

1.3. Cushing’s disease ................................................................................................ 9 

1.3.1. Etiopathogenesis ......................................................................................... 10 

1.3.2. Therapy ....................................................................................................... 11 

1.4. Integrins ............................................................................................................. 18 

1.4.1. Integrins and cancer .................................................................................... 19 

1.4.2. Integrin in cancer progression and metastasis ............................................ 19 

1.4.3. Integrins as targets for cancer therapy ........................................................ 27 

1.4.4. Integrin as targets for imaging .................................................................... 30 

1.5. Integrins pituitary tumors .................................................................................. 31 

1.6. Aim of the study ................................................................................................ 33 

2. Materials and Methods .......................................................................................... 34 

2.1. Laboratory equipment ....................................................................................... 34 

2.2. Chemicals and reagents ..................................................................................... 35 

2.3. Oligonucleotides (primers) ................................................................................ 37 

2.4. Plasmid constructs ........................................................................................... 361 

2.5. siRNA for integrins. .......................................................................................... 37 

2.6. Human pituitary samples ................................................................................... 38 

2.7. Methodology ..................................................................................................... 41 

2.7.1. Cell culture .................................................................................................. 41 

2.7.2. Reverse-transcriptase polymerase chain reaction (RT-PCR) ..................... 41 

2.7.3. WST-1 cell viability assay .......................................................................... 43 

2.7.4. Human POMC promoter luciferase assay................................................... 44 

2.7.5. siRNA Transfection .................................................................................... 44 

2.7.6. Cy5.5-RGD conjugates synthesis ............................................................... 45 



 
 

2.7.7. Fluorescence microscopic studies ............................................................... 45 

2.7.8. Statistical analysis ....................................................................................... 45 

3. Results ..................................................................................................................... 46 

3.1. Expression of RGD-binding integrins in corticotroph tumors .......................... 46 

3.2. Expression of RGD-binding integrins in corticotroph tumors .......................... 47 

3.3. Effect of integrin knockdown on human POMC promoter activity .................. 50 

3.4. Effect of integrin knockdown on corticotroph tumor cell viability ................... 52 

3.5. RGD peptide conjugated with the fluorophore Cy5.5 targets AtT-20 cells ...... 52 

3.6. RGD effects on the cell viability ....................................................................... 53 

3.7. RGD effects on human POMC promoter activity ............................................. 54 

4. Discussion................................................................................................................ 55 

4.1. Differential expression and potential significance of integrins in corticotroph 

tumors ................................................................................................................ 55 

4.2. Integrins regulate POMC transcription in corticotroph tumor cells .................. 57 

4.3. The role of αvβ1 in cell proliferation and survival ............................................. 58 

4.4. Corticotroph tumor cell show uptake of fluorescent RGD peptides ................. 59 

4.5. Conclusion ......................................................................................................... 60 

References ................................................................................................................... 61 

Acknowledgements .................................................................................................... 81 

Affidavit ...................................................................................................................... 82 



1 
 

Zusammenfassung (Deutsch) 

Einleitung: Integrine sind heterodimere Transmembranproteine, bestehend aus Alpha- 

und Beta-Untereinheiten, die Zell-Zell- und Zell-Extrazellulärmatrix (ECM)-

Interaktionen vermitteln. Mehrere Integrine werden in menschlichen 

Krebserkrankungen überexprimiert und ihr ECM-Erkennungsmotiv, Arginin-Glycin-

Aspartat (RGD), wird für die Bildgebung und das Targeting von Tumoren genutzt.      

Ziel: Untersuchung der Expression und Funktion von RGD-bindenden Integrinen in 

kortikotrophen Tumoren.  

Methoden:Wir bestimmten die Expression von RGD-bindenden Integrinen mittels 

qPCR in 18 kortikotropen Tumoren und verglichen die Transkriptlevel mit 

gonadotropen Tumoren (n=16) und normalen Hypophysen (n=2). Um die Rolle der 

Integrine zu untersuchen, erstellten wir ihr Expressionsprofil in murinen kortikotropen 

Tumorzellen AtT-20 mittels RT-PCR und untersuchten den Effekt ihrer Hemmung mit 

RNA-Interferenz auf die Aktivität des humanen POMC-Promotors und die 

Zellviabilität (WST-1-Kolorimetrie-Assay). Wir verwendeten Fluoreszenzmikroskopie, 

um die Bindung von RGD-Peptiden in diesen Zellen zu beurteilen. 

Ergebnisse: Corticotrophe Tumoren exprimieren αv (ITGAV), β1 (ITGB1), β5 (ITGB5), 

β8 (ITGB8) und α8 (ITGA8). Die Integrine αv, β1, β5 sind in kortikotropen Tumoren 

überexprimiert im Vergleich zu gonadotropen Tumoren, wo die Expression fast nicht 

nachweisbar war (P<0.0001) und zur normalen menschlichen Hypophyse (P<0.001). 

Die Expression von β8 war nur in kortikotrophen im Vergleich zu gonadotrophen 

Tumoren höher (P=0.04), aber nicht zur normalen Hypophyse. Wir fanden, dass AtT-

20-Zellen alle diese vier Integrine exprimieren. Das Knocking down von jeweils αv, β1 

und β5 verringerte die Aktivität des humanen POMC Promotors im Vergleich zur 

Scramble-Kontrolle (prozentuale Suppression 63±22, 54±23, bzw 69±28; P<0.05), 

während β8 kaum einen Effekt hatte. Das Knocking down von αv und β1 hatte einen 

kleinen, aber signifikanten Effekt auf die Lebensfähigkeit von AtT-20-Zellen (% 

Suppression 15.92±1.6 bzw. 27.4±1.4; P<0.05). Mit Hilfe der Immunfluoreszenz 

beobachteten wir, dass ein RGD-Peptid, das mit dem Nahinfrarot-Fluorophor Cy5.5 



2 
 

konjugiert war, an AtT-20-Zellen binden und diese markieren konnte, ohne schädliche 

Auswirkungen auf die AtT-20-Zellviabilität (WST-1-Assay) und -funktion (bestimmt 

durch die POMC-Promotoraktivität). 

Schlussfolgerungen: Diese Studie zeigt, dass kortikotrophe Tumoren die Gene 

exprimieren, die für die Alpha- und Beta-Untereinheiten der RGD-bindenden Integrine 

αvβ1, αvβ5 und αvβ8 kodieren. Wir haben vorläufige Hinweise darauf, dass diese 

Integrine die Aktivität des POMC-Promotors regulieren können. RGD-Peptidkonjugate 

haben das Potenzial als bildgebende Mittel für kortikotrophe Tumore. 
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Abstract (English) 

Introduction:Integrins are heterodimeric transmembrane proteins composed of alpha 

and beta subunits that mediate cell-cell and cell-extracellular matrix (ECM) interactions. 

Several integrins are overexpressed in human cancers and their ECM recognition motif, 

arginine-glycine-aspartate (RGD), is being utilized for tumor imaging and targeting.      

Aim:To explore the expression and function of RGD-binding integrins in corticotroph 

tumors.  

Methods: We determined the expression of RGD-binding integrins by qPCR in 18    

corticotroph tumors and compared transcript levels with gonadotroph tumors (n=16) 

and normal pituitaries (n=2). To study the role of integrins, we established their 

expression profile in murine corticotroph tumor AtT-20 cells by RT-PCR and 

investigated the effect of their inhibition with RNA interference on human POMC 

promoter activity and cell viability (WST-1 colorimetric assay). We used fluorescence 

microscopy to assess RGD peptide binding in these cells. 

Results: Corticotroph tumours express αv (ITGAV), β1 (ITGB1), β5 (ITGB5), β8 

(ITGB8), and α8 (ITGA8). Integrins αv, β1, β5 are overexpressed in corticotroph 

compared to gonadotroph tumors, where expression was almost undetectable 

(P<0.0001) and human normal pituitary (P<0.001). The expression of β8 was higher in 

corticotroph only compared to gonadotroph tumors (P=0.04), but not to the normal 

pituitary. We found that AtT-20 cells express all these four integrins. Knocking down 

each αv, β1, and β5, decreased human POMC promoter activity compared to scramble 

control (% suppression 63±22, 54±23, and 69±28 respectively; P<0.05), while β8 had 

little effect. Knocking down αv and β1 had a small but significant effect on AtT-20 cell 

viability (% suppression 15.92±1.6 and 27.4±1.4 respectively; P<0.05). Using 

immunofluorescence, we observed that an RGD peptide conjugated with the near-

infrared fluorophore Cy5.5 could bind to and label AtT20 cells, with no deleterious 

effects on AtT-20 cell viability (WST-1 assay) and function (determined by POMC 

promoter activity). 

Conclusions: This study shows that corticotroph tumors express the genes encoding 
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the α and β subunits of the RGD-binding integrins αvβ1, αvβ5, and αvβ8. We have 

preliminary evidence that these integrins may regulate POMC promoter activity. RGD 

peptide conjugates potential as corticotroph tumor imaging agents. 
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1. Introduction 

1.1. Pituitary 

The pituitary gland, located in the pituitary fossa of the sphenoid bone, is the master 

gland of the endocrine system. It is divided into adenohypophysis (anterior and 

intermediate lobe) and neurohypophysis (posterior lobe). The adenohypophysis 

secretes adrenocorticotropic hormone (ACTH), thyrotropin stimulating hormone 

(TSH), luteinizing hormone (LH), follicle stimulating hormone (FSH), growth hormone 

(GH), melanocyte stimulating hormone (MSH) and prolactin (PRL)1. ACTH, TSH, LH, 

and FSH act through their respective target glands, thyroid, adrenal, and gonads 

respectively. GH, MSH, and PRL can directly regulate growth, mammary gland 

development and lactation, and melanocyte activity. The secretory function of the 

adenohypophysis is controlled by the central nervous system, and in particular the 

hypothalamus, as well as by the feedback of hormones secreted by the peripheral target 

glands. 

1.2. ACTH regulation 

1.2.1. The hypothalamic pituitary adrenal axis (HPA) 

A deeper understanding of the normal and pathological mechanisms of the HPA 

axis is essential for the pathologic, diagnostic, and treatment of Cushing’s disease2. The 

trophic regulator of ACTH is the corticotropin-releasing hormone (CRH), which is 

secreted from the paraventricular nucleus of the hypothalamus through the median 

bulge. CRH can enter the pituitary portal circulation and reaches the anterior portion of 

the pituitary to bind to CRH receptor 1 (CRH-R1) on pituitary corticotroph cells and 

stimulate ACTH synthesis. The secreted ACTH binds to melanocortin receptor 2 

(MC2R) in the adrenocortical cells of the zona fasciculata and zona reticularis of the 

adrenal cortex, thereby stimulating the generation and secretion of glucocorticoids 
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(cortisol)3. Under the physiological conditions, circulating cortisol enables to inhibit 

CRH and pituitary ACTH’s secretion through negative feedback loop on the 

hypothalamus and pituitary4 (Figure 1.1). 

 

Figure 1.1: Physiological regulation of 

ACTH homeostasis: Neurons in the 

paraventricular nucleus of the hypothalamus 

secrete CRH to promote the release of ACTH, 

which in turn acts in the adrenal cortex to 

synthesize glucocorticoids. Glucocorticoids 

can feedback to the hypothalamus and 

pituitary gland (repress the synthesis and 

secretion of CRH and ACTH, respectively), 

forming a feedback regulation loop. Image 

adapted from Wikipedia. 

1.2.2. POMC regulation 

ACTH derives from the polypeptide precursor proopiomelanocortin (POMC). The 

originally translated and pre-modified form of POMC is called pre-POMC, which 

contains 285 amino acids. POMC is composed of 241 amino acids and obtained by 

removing the signal peptide from pre-POMC5,6. POMC is mainly expressed in the 

corticotroph cells in the anterior pituitary, melanotropes in the intermediate pituitary 

lobe that is rudimentary in humans, and the POMC hypothalamic neurons of the arcuate 

nucleus7.  

In corticotroph cells, POMC is enzymatically cleaved to produce ACTH, lipotropin, 

and a small amount of β-endorphin1 (Figure 1.2). CRH is the main stimulator of   

POMC transcription and ACTH secretion8,9. CRH-R1 is G protein coupled receptor, 

which upon CRH binding activates adenylate cyclase and induces cyclic adenosine 

monophosphate (cAMP) to activate protein kinase A (PKA)5,10. The complex signaling 

network of PKA activates transcription factors and transcriptional coregulators that 

stimulate POMC transcription. 

A second regulator of ACTH synthesis is arginine-vasopressin (AVP), which 

enhances the stimulatory action of CRH on ACTH secretion11,12. Similarly, in vitro and 
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in vivo findings confirmed that vasopressin has a certain inhibitory effect on the 

transcription level of POMC13,14. 

Glucocorticoids negatively regulate the HPA axis at hypothalamus and pituitary 

levels, by reducing CRH and vasopressin secretion. In addition glucocorticoids inhibit 

POMC transcription directly at corticotroph cell level by binding to nuclear 

glucocorticoid receptors15,16. 

 

 

Figure 1.2: Proopiomelanocortin cleavage: The precursor protein POMC, which is 

synthesized in the pituitary gland, is proteolytically cleaved into multiple polypeptide fragments. 

MSH, melanin-stimulating hormone; CLIP, corticotropin-like intermediate lobe peptide. Image 

obtained from Answers in Depth, Vol. 2(2007), pp. 98–100. 

1.3. Cushing’s disease 

Harvey Cushing first described the syndrome attributed to him in 1912 and 

proposed “adenomas of the pituitary body” as its cause in 193217. Cushing’s disease 

refers to the excessive secretion of ACTH by a corticotroph tumor, hypercortisolemia. 

Patients under chronic hypercortisolemia exhibit characteristic centripetal obesity, full 

moon face, buffalo back, striae, and may suffer from secondary hypertension, diabetes, 

fatigue, infertility and mood disorders18. Untreated patients often die from severe 

cardio-cerebrovascular diseases or severe infections19-21. Surgical resection of the 

pituitary tumors usually with transsphenoidal surgery is the main treatment19,22.  
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1.3.1. Etiopathogenesis 

Cushing's disease is due to corticotroph tumors, which in their majority are 

microadenomas (<10mm)19,23.  

1.3.1.1. Deregulated HPA axis  

CRH and AVP are the main trophic factors for corticotroph cells, but there is no 

evidence of hypothalamic deregulation as cause of corticotroph tumorigenesis24. The 

expression of the CRH receptor is increased in corticotroph tumors. In addition 

corticotroph tumors express the AVP receptors (V1 receptor, V2 receptor and V3 

receptor)25,26. No mutations in the coding regions of the genes encoding for CRH and 

AVP receptors were found25-27. 

The glucocorticoid negative feedback is a major restraining factor of ACTH 

synthesis and corticotroph cell growth28. However, corticotroph tumor cells acquire 

partial resistance to the inhibitory glucocorticoid feedback29. Glucocorticoids bind to 

nuclear receptors GRα (encoded by NR3C1) and GRβ. GRα expression is not altered in 

corticotroph tumors30. Mutations in the NR3C1 gene were described in two patients, 

but not in the majority of corticotroph tumors examined31-34. Glucocorticoid receptor 

(GR) inhibits transcription in a transcriptional project that involves brahma related-gene 

1 (Brg1)35. Brg1 expression is frequently lost in corticotroph tumors and this could 

explain the resistance to glucocorticoid feedback36. Another factor that contributes to 

glucocorticoid resistance is the overexpression of the GR chaperon heat shock protein 

90 (Hsp90)37.  

1.3.1.2. Genetics of Cushing’s disease 

Corticotroph tumors are monoclonal in origin, meaning that they are derived from 

a single cell transformed by a genetic event38-41. Until recently, the pathogenesis of 

corticotroph tumors was unclear42. Reincke et al.20 found a mutational hotspot in the 

ubiquitin-specific protease 8 (USP8) gene in 4 out of ten corticotroph tumors. This 

mutational hotspot resides within the 14-3-3 binding region, which allows for 14-3-3 

binding that protects the protein from proteolytic cleavage. 14-3-3 cannot bind to the 
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mutated USP8 protein, which is then cleaved to a smaller 40 kDa peptide with higher 

deubiquitinase activity. USP8 mutants retain epidermal growth factor receptor (EGFR) 

to the membrane, leading to the activation of downstream extracellular signal-regulated 

kinases 1/2(ERK1/2) and ultimately enhance EGFR to induce pituitary POMC 

transcription and ACTH secretion20. Somatic mutations in the USP8 gene have been 

reported in around 50% of corticotroph tumors20,42-50. USP8 mutations were also found 

in around 50% of progressive corticotroph tumor growth after bilateral 

adrenalectomy(BADX), known as Nelson syndrome51. USP8 mutant corticotroph 

tumors are mostly found in female patient with intermediate size tumors. It is 

hypothesized that corticotroph tumors with USP8 mutations exhibit a more “typical” 

corticotroph phenotype52. USP8 wild-type and mutant corticotroph tumors have distinct 

transcriptional and protein expression profiles39,50,53. 

1.3.2. Therapy 

The first-line treatment of Cushing's disease is pituitary surgery, followed by a 

second surgery, medication, radiation therapy, and/or BADX54,55 (Figure 1.3).   

 

 

Figure 1.3. Therapeutic management of Cushing's disease. The treatment of choice for 

patients with Cushing's disease is transsphenoidal surgery, which provides rapid and lasting 



12 
 

relief from hypercortisolism. Secondary transsphenoidal surgery is considered for patients with 

persistent and recurrent Cushing's disease. Patients who do not achieve remission or relapse 

after secondary transsphenoidal surgery may be considered for individualized treatment, 

including medication, radiotherapy, and BADX. Image obtained from Nature Reviews 

Endocrinology,7(2011), pp279–289.  

1.3.2.1. Surgical treatment 

Selective transsphenoidal pituitary adenoma resection is the first-line therapeutic 

method for Cushing's disease56. Transsphenoidal surgery can remove more than 90% 

of pituitary adenoma, resulting in a 60%-90% remission rate for microadenoma and a 

65% remission rate for macroadenoma22,57-59. The remission rates in different research 

reports vary greatly, which is mainly due to the size and location of adenoma, growth 

methods, and surgical techniques. The preoperative Magnetic resonance imaging (MRI) 

diagnosis of pituitary microadenoma has a remission rate of 72.3% to 100%, while the 

preoperative MRI negative or suspicious Cushing's disease remission rate is 64.7% to 

71.4%57. The remission rate of non-invasively growing microadenomas is 70% to 90%, 

while the remission rate of invasively growing large adenomas is only 25% to 50%60. 

Surgical resection depends on the following factors: tumor size, infiltration of the 

cavernous sinus, preoperative drug therapy (somatostatin and bromocriptine will 

change the consistency of the tumor), and the surgeon's experience58,61. 

1.3.2.2. Surgery failed or secondary surgery after recurrence 

Surgery failed:in several cases a second operation is recommended. Surgical 

methods include pituitary resection and total pituitary resection, where 38% to 67% of 

patients can get remission60. The advantage of reoperation early after surgery is that it 

can avoid the formation of scars and changes in anatomical structure in the pituitary 

body, and reduce the occurrence of complications such as cerebrospinal fluid leakage, 

diabetes insipidus, and hypopituitarism. The disadvantage is that some cases may cause 

delayed postoperative remission and contribute to unnecessary reoperation. Hameed et 

al. performed retranssphenoidal surgery within 10 weeks for 10 out of 16 patients who 

have no resuscitation after the first transsphenoidal surgery62. Among them, 7 patients 



13 
 

achieved remission and no complications; 6 patients who did not undergo reoperation 

were followed up for 1 year no delay remission was found62. 

Second transsphenoidal surgery: The 5-year recurrence rate of Cushing's disease 

patients who have been relieved after transsphenoidal surgery is 5% -10%, and the 10-

year recurrence rate is 10% -20%63. However, recent data suggest that the 5-year 

recurrence rate is high to 25%64. Compared with pituitary microadenoma, pituitary 

macroadenoma is highly possible to recur after surgery with shorter recurrence time. It 

is worth noting that the rate of recurrence after surgery is higher in children with 

Cushing's disease65. For patients with recurrent Cushing's disease, a second 

transsphenoidal surgery may be considered to achieve long-term remission with an 

average remission rate of 64%, but this surgery also may induce the risk of 

cerebrospinal fluid leakage and hypopituitarism60,66. For patients with recurrent 

Cushing's disease, more neurosurgeons choose to repeat the second procedure within 2 

months of surgery, when less scar tissue facilitates the surgeon to better understand the 

anatomical details of the patients67. 

1.3.2.3. Radiotherapy 

Radiation therapy is an alternative second-line treatment for Cushing's disease68. 

Prophylactic radiotherapy is not recommended for patients with complete remission 

after surgery, but postoperative radiotherapy is suggested for patients with 

postoperative pathological atypical pituitary adenoma to reduce the chance of 

recurrence. Radiotherapy indications: (1) Patients with no remission or relapse after 

remission;(2) Patients who are not suitable or not undergoing surgery; (3)Adjuvant 

treatment of recurrent invasive and pituitary cancer; (4) Nelson syndrome69. At present, 

there are a variety of radiotherapy techniques available, mainly including fractional 

external beam irradiation and stereotactic radiosurgery70. Both methods have similar 

therapy effects, but the precise positioning of the gamma knife in stereotactic 

radiosurgery can limit the radiation to the tumor body, avoid damage to important tissue 

structures such as the saddle and the side of the saddle, and the effect is obvious. A 
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study on 96 patients with Cushing's disease treated with gamma knife reported a 70% 

remission rate, with an average remission time of 16.6 months71. The shortcoming of 

radiotherapy is that the onset of action is slow, and remission can occur only 6 months 

to several years (average 3 years) after radiotherapy70. The main complication is 

hypofunction of the pituitary gland, the incidence of fractional external beam irradiation 

exceeds 50%, and stereotactic radiotherapy is as high as 66%72.  

1.3.2.4. Bilateral adrenalectomy 

BADX can rapidly regulate hypercortisolemia but contribute to permanent adrenal 

insufficiency, which requires lifelong steroid replacement therapy and risk the life-

threatening adrenal crisis. For this reason, BADX is often considered as last option for 

the treatment of Cushing's disease when other resorts fail. Therefore, BADX is used 

strictly for the following indications. (1) Cushing's disease patients who are ineffective 

with chemotherapy and have persistent hypercortisolemia; (2) Intolerance to 

chemotherapy; (3) Radiotherapy failure and no acceptance for chemotherapy; (4) 

Reservation young female patients with Cushing's disease who hope for fertility73,74. 

Adrenalectomy is usually performed laparoscopically, and more than 95% of patients 

with refractory Cushing's disease who undergo surgery experience relief of symptoms. 

The median recurrence rate within 30 days of BADX is statistically 18% and the median 

incidence of adrenal crisis is 28%. The procedure-related mortality rate was 9%, with 

stroke and myocardial infarction being the most common causes of death75,76. In 

addition, there is a risk of progressive corticotroph tumor growth, also known as, 

Nelson's syndrome77, which has been renamed with "Corticotroph Tumor Progression 

after bilateral adrenalectomy/Nelson syndrome" (CTP-BADX/NS, unclassified). The 

cumulative incidence of CTP-BADX/NS is approximately 40%, thus special attention 

should be paid close to these patients with (1) high plasma ACTH or elevated ACTH 

levels after BADX, (2) pre-operative adrenocorticotropic tumors visible before BADX 

and (3) under 35 years of age74. 
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1.3.2.5. Pharmacological therapy 

The medications for Cushing's disease treatment are divided into three categories: 

(1) corticotroph-directed agents, which inhibit ACTH synthesis; (2) steroidogenesis 

inhibitors that inhibit cortisol synthesis; (3) GR antagonists that block tissue response 

to glucocorticoids78 (Table1). The majority of approved drugs are steroidogenesis 

inhibitors that inhibit cortisol syntheses like ketoconazole, mitotane, and metyrapone 

or GR antagonists that block glucocorticoid action in peripheral target organs like 

mifepristone55,79.  

Corticotroph targeted treatments include somatostatin analogs and dopamine 

agonists80,55,81,82. In corticotroph tumors, dopamine receptor 2 (DRD2) was found to be 

expressed by immunohistochemistry and RT-PCR in almost 80% of corticotroph 

tumors83,84. DRD2 and Somatostatin receptor 5 (SSTR5) also have a certain degree of 

co-expression in 60% of pituitary corticotroph tumors85. The DRD2 ligand cabergoline 

is not effective in normalizing urinary free cortisol (UFC) even when administered at 

high doses of 1-7mg/week55,84,86-88. The somatostatin analog was approved for the 

treatment of Cushing’s disease in pasireotide, a multiagent analog with a high affinity 

for SSTR589. SSTR5 is the main SSTR expressed in corticotroph tumors and pasireotide 

inhibits ACTH synthesis in vitro and in dogs with Cushing’s disease90-92. Pasireotide 

treatment in patients with Cushing’s disease normalized UFC (~25% of patients) caused 

tumor shrinkage and ameliorated symptoms of the disease93-97. Treatment with long-

acting release pasireotide resulted in UFC normalization in around 40% of patients98. 

However, pasireotide also causes hyperglycemia in around half of patients, a serious 

side effect that requires additional treatment for diabetes96-98. Patients with corticotroph 

tumors bearing USP8 mutations have significantly higher levels of SSTR5 expression 

than the wild type, suggesting that they may respond better to analogs targeting 

SSTR546,48,49.  

The periphery targeting drugs are effective in normalizing cortisol but they have no 

effect on tumor and ACTH hypersecretion and tumor-targeted treatments are not as 

effective99. Studies have revealed potential tumor-targeted treatments (reviewed in100). 
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Several potential tumor-targeting therapies are currently in clinical trials, including 

gefitinib, retinoic acid, roscovitine, levoketoconazole and osilodrostat (LCI699). 

Gefitinib (an orally administered EGFR tyrosine kinase inhibitor) can block EGFR 

activity, inhibit POMC expression, suppresses corticotrophic tumor cell proliferation 

and induce apoptosis101. A clinical trial of gefitinib in Cushing's disease patients with 

USP8 mutations (ClinicalTrials.gov number NCT02484755) is currently underway. 

Retinoic acid can suppress the transcriptional activity of activator protein 1 (AP-1) and 

orphan receptors in corticotroph tumor cells, resulting in anti-proliferative activity and 

ACTH inhibition in corticotroph tumors bearing mice102. In two prospective proof-of-

concept studies, it was shown that all-trans retinoic acid (tretinoin) treatment for 6-12 

months reduced UFC by at least > 50% in patients and even normalized UFC in some 

patients103,104. Roscovitine is a competitive inhibitor of oral cytokine-dependent kinases. 

Which can inhibit ACTH synthesis and antiproliferative effects due to the direct 

regulation of POMC expression by cyclin E105. Roscovitine is currently in clinical trial 

in patients with Cushing's disease (ClinicalTrials.govno.NCT02160730). 

Levoketoconazole (COR-003) has higher efficacy and fewer side effects at lower doses 

compared to ketoconazole106. 11β-hydroxylase inhibitor (LCI699; osilodrostat inhibitor) 

is an oral non-steroidal corticosteroid synthesis inhibitor107. Both are currently in 

clinical trials (ClinicalTrials.gov numbers NCT02468193, NCT02697734 and 

NCT03621280). 

Other potential tumor-targeting drugs currently under (pre-clinical) investigation 

include thiazolidinediones (TZDs) and silibinin. TZDs are ligands for peroxisome 

proliferator-activated receptor γ (PPARγ). Silibinin, a flavonolignan derived from 

Silybum marianum, can inhibit Hsp90, a chaperone protein that regulates GR108. Both 

drugs have been shown to the effective therapy effect on inhibiting ACTH synthesis 

and tumor growth in both in vivo and in vitro experiments37,109. 
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Table 1. Summary of chemodrugs for the treatment of Cushing’s disease. 
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1.4. Integrins 

Integrins are a class of heterodimeric transmembrane proteins composed of α and β 

subunits that mediate cell-cell and cell- extracellular matrix (ECM) adhesion126. 18 α-

subunits and 8 β-subunits combine to form at least 24 integrin subtypes127. Both α and 

β integrin subunits are type I transmembrane proteins, with 700-1100 amino acid 

extracellular and 30-50 amino acid intracellular domains respectively. Extracellular 

domains are regions of membrane proteins located outside the cell that regulate the 

activity of signaling pathways by defining, recognizing, specific ligands (e.g.hormones 

or neurotransmitters) during signal transduction. The extracellular segment of theα 

subunit recognizes the Arginine-glycine-aspartate (RGD) sequence of ECM, while the 

intracellular segment of the β subunit is connected to the cytoskeleton128. Integrin-

containing β1 subunit mainly mediates the adhesion between cells and ECM. Integrin-

containing β2 subunit is predominantly found on the surface of platelets, which 

mediates platelet aggregation and thrombosis. The β4 subunit interacts with muscle 

movement protein and related protein binding. In addition to being a bridge between 

ECM and the cytoskeleton, integrins can also regulate a variety of intracellular 

signaling pathways, including actin nucleation, polymerization activation, and mitogen 

signaling129. More importantly, these signals can promote tumor cell proliferation and 

survival, and thus drive cancer development and progression130. 

Cell surface integrins exist in three conformations: (I) resting-state which has low 

affinity to ECM ligands and is called low-affinity conformation, (II) stretched state 

which has low affinity for ligands, and (III) activated state which has a high affinity 

with ECM ligands. In the resting states, the α and β subunits of the integrin tail and the 

helix of the transmembrane domain in the cytoplasm, forming a salt bridge to stabilize 

it128. 

Integrin activation is regulated by two mechanisms: (I) signal from the integrin 

cytoplasmic region is transmitted through the tail to the domain that binds to the 

extracellular ligand, which will cause conformational changes in the integrin dimer to 
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promote ECM ligand interaction and (II) binding of ECM ligands trigger integrin 

aggregation and activation129,131. 

1.4.1. Integrins and cancer 

The expression of integrins varies greatly between normal and tumor tissues: αvβ3, 

α4β1, αvβ6, α6β4, and αvβ5 integrins are highly expressed in epithelial cells from a variety 

of solid tumors132-135. More importantly, αvβ3, αvβ6, and α5β1 are typically expressed at 

low levels in normal epithelial cells but have higher expressions in tumor cells136. These 

highly expressed integrins regulate the migration, proliferation, and survival of tumor 

cells. Studies have confirmed that the expression of integrin αvβ3, αvβ5, α6β4, and αvβ6 

in tumors correlates with tumor type and disease progression137. 

1.4.2. Integrin in cancer progression and metastasis 

Integrins are involved in tumor progression and metastasis, including cell adhesion, 

migration, invasion, proliferation, regulation of apoptosis, and induction of 

angiogenesis (Figure 1.4). The high tumor expressions of αvβ3, αvβ5, αvβ6, and αvβ8 are 

associated with metastasis and poor prognosis in most solid tumors132,138-143. Binding 

of αvβ3 to ECM ligands vitronectin and/or osteopontin favors tumor growth, invasion, 

and metastasis144,145. High expression of the α5 subunit correlated with increased risk of 

death in patients with hepatocellular carcinoma146. The expression level of αvβ6 also 

showed the correlation with metastasis and poor prognosis, indicating that αvβ6 can be 

used as a marker of tumor invasiveness in solid tumors such as breast, gastric, 

pancreatic, and ovarian cancers143,147-155. 
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Figure 1.4: Integrin functions in tumors. Integrins highly expressed in tumor cells promote 

tumor progression and metastasis by increasing tumor cell migration, proliferation, adhesion, 

inhibiting apoptosis, and inducing angiogenesis and cell invasion. Integrins mediate cell 

adhesion by binding ECM components that bear the RGD recognition motif and proliferation 

by binding inactive TGF-β latency-associated peptide (LAP) (integrins αvβ3, αvβ6, and αvβ8). 

Integrin expressing cells binding to ECM in the context of mesenchymal tissue prevents 

apoptosis of invasive cancer cells. Integrins interact with angiogenesis factors to induce 

vascular sprouting. Finally, changes in integrin subtype expression during epithelial-

mesenchymal transition epithelial transformation (EMT) enables tumor cells to invade. Image 

obtained from Cancers 9.9 (2017), pp. 116.  

1.4.2.1. Effect of integrins on cell proliferation 

Integrins maintain the integrity of normal tissues. In tumor cells, integrins not only 

mediate cell proliferation by binding to growth factors and their receptors, but also 

regulate cell proliferation by activating cytokines and oncogenes156,157.  

Integrin αvβ3 has been reported to promote the proliferation of cancerous cells158. 

αvβ3 can promote cell proliferation through integrin-linked kinase (ILK) signaling159, 
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where integrins interact with growth factors and their respective receptors to promote 

cell proliferation156. Meanwhile, αvβ3 also has been reported that it can interact with 

EGFR, Erb-B2, and activated platelet-derived growth factor to promote cell 

proliferation in breast, ovarian, and pancreatic cancers as well as glioblastoma160,161,162.  

High expression of αvβ6 promotes tumor cell proliferation by binding to latency 

activating peptide, which associates with transforming growth factor-β (TGF-β)157,163. 

Clinical studies have shown that the expression of proliferation markers, such as p53, 

Ki-67, are upregulated in cervical cancer patients with high expression of αvβ6
164. 

Interestingly, compared to the promoting effect of αvβ6 on pro/LAP-TGF-β, activation 

of TGF-β by αvβ8 inhibits the proliferation of airway epithelial cells in bronchial 

tissue165,166. 

1.4.2.2. Integrin mediate cell adhesion, migration, and invasion 

The progression and metastasis of tumors start from the proliferation of tumor cells, 

where the tumor cells detach from the primary site due to the adhesion ability. Tumor 

cells can form local spread through epithelial transformation (EMT) and invade blood 

vessels and lymphatic vessels. Integrin participates in every biological process during 

tumor invasion and metastasis167. The adhesion and dissociation between tumor cells, 

vascular endothelial cells, and ECM play a decisive role in the progression of tumor 

metastasis. This adhesion and dissociation are achieved through the mediation of 

cellular adhesion molecules (CAMs). Change in tumor cell adhesion is an early step of 

tumor metastasis168. Integrins in tumor metastasis decrease the adhesion between tumor 

cells and increase the adhesion between tumor cells and host cells, thus enhancing the 

invasion and metastasis of tumor cells169 170 171. 

ECM is the first barrier of tumor invasion and its dissolution promotes tumor 

invasion and metastasis. Tumor cells must break through the ECM to metastasize. 

Integrin binds to matrix metalloproteinase (MMP) and positively regulates its 

expression. The high expression of MMP directly destroys and degrades the ECM, thus 

promoting the metastasis of tumor cells172. In addition, studies have shown that 

endothelial cells αvβ3 integrin can target MMP-2 and then adhere to the newly 
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synthesized MMP-2. Studies have found that the inhibition of αvβ3 complex by 

antibodies and peptides can block the invasion and metastasis of lung cancer170. 

Cathepsin D is one of the proteases secreted by tumor cells and mesenchymal cells, 

which promotes tumor invasion and metastasis by degrading the basement membrane. 

Tumor cell cathepsin D is associated with the invasion and metastasis of ovarian cancer, 

melanoma, and breast cancer and is related to the growth of tumor cells in distant 

metastases173. 

1.4.2.3. Integrin regulation of cell survival and apoptosis  

Apoptosis is the process of active cell death, and the loss of the mechanism of 

apoptotic signal activation is the key to tumor formation. ECM removal forces the cells 

to enter apoptosis. As integrins specifically bind the cell surface to matrix proteins, thus 

they can protect from apoptosis. Monoclonal antibody against integrin β1 disrupted the 

interaction of mammary epithelial cells CID-9 with ECM, resulting in apoptosis174.  

ECM not only regulates cell growth and differentiation but is also a survival factor 

for anchoring dependent cells175. When tumor cells leave the primary tumor and enter 

the blood lymphatic circulation, they must change from anchored to suspend. Anchored 

dependent mechanisms prevent tumor cells from entering the circulation, thereby 

inhibiting metastasis. Monoclonal antibodies against integrin α5β3 that block the contact 

between human melanoma cells and collagen I, can induce apoptosis in melanoma 

cells176. Chinese hamster ovary (CHO) cells expressing α5β1 can survive in the medium 

containing fibronectin without the addition of serum. αvβ1 is also a receptor for 

fibronectin and has the same ligand binding site as α5β1, but CHO cells expressing αvβ1 

undergo apoptosis under these conditions. Studies showed that cells adhere to 

fibronectin via α5β1 and that the intracellular domain of α5 triggers Bcl-2 and activates 

Bcl-2 channels, thereby inhibiting apoptosis177. In addition, aberrant binding of integrin 

to ligands can cause cell shedding and apoptosis by focal adhesion kinase (FAK), 

phosphatidylinositol 3-kinase/ Protein kinase B (PI3K/Akt), Mitogen-activated protein 

kinase (MAPK), stress-activated kinases / c-Jun N-terminal kinases (SAPK/JNK) 

signaling pathways. The destruction of the contact between tumor cells and stroma 
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could produce an activation signal. The generation of this activation signal can cause 

apoptosis, and the sensor of this activation signal is αvβ3
178. Depletion of integrin αv 

separates cells from ECM, thereby mediating apoptosis179. This integrin-regulated form 

of cell apoptosis is called "integrin-mediated death"180. Expression of integrin αvβ3 on 

cells grown on matrix lacking integrin ligands, such as collagen gelatin, induce caspase-

8 to reappear on the cell membrane, thereby activating caspase and causing cell death180. 

Studies have shown that the mechanism by which the tumor suppressor gene pl6 can 

induce apoptosis in tumor cells by down-regulating α5β1, inhibiting the activity of 

cyclin-dependent kinase complexes, and completing the phosphorylation of the matrix 

necessary for G phase181. 

1.4.2.4. The role of integrins on tumor angiogenesis 

Both primary tumors and secondary metastatic tumors rely on angiogenesis in the 

process of growth and spread182. Angiogenesis not only promotes the growth of primary 

tumors but also increases the chance of cancer cells entering the bloodstream and 

promotes tumor metastasis. Multiple cytokines mediate endothelial cell proliferation 

and migration via integrins such as α1β1, α2β1, αvβ3, αvβ5 to promote tumor 

angiogenesis183. Integrins have low expressions in resting endothelial cells but have 

higher expressions in physiological and pathological angiogenesis, including in 

ischemic tissues and tumor vascularization184. Therefore, integrins are potential targets 

for blocking tumor angiogenesis in cancer therapy. 

Integrins, expressed in the lumen and luminal surface of vascular endothelial cells, 

can mediate the migration of endothelial cells and the formation of capillary lumens185. 

Among them, αvβ3 and αvβ5 have the most important roles. Studies have shown that the 

αvβ3 expression is increased in the angiogenesis of rabbit cornea, granulation tissue at 

human wounds, and chicken chorioallantoic allantoic. Immunohistochemical analysis 

also found that αvβ3 increased the expression during angiogenesis in many cancers186. 

Developmental endothelial locus-1 (Del-1) is a newly discovered ECM, which is a 

ligand of αvβ3 and is associated with tumor metastasis. Del-1 promotes endothelial cell 

connection and migration, and this effect is blocked with anti-αvβ3 antibody187. Del-1 
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overexpressing tumor xenografts show a significantly higher blood vessel density and 

increased tumor growth rate compared to the control group188. It is suggested that tumor 

tissue may promote the formation of tumor blood vessels by secreting Del-1 and 

binding to αvβ3 receptor. If the binding of αvβ3 and ECM is blocked, vascular endothelial 

cells undergo apoptosis, angiogenesis decreases, and tumor metastasis decreases. 

Humanized monoclonal antibodies against αvβ3, such as etaracizumab (MEDI-522), 

significantly inhibit angiogenesis189.  

The α6 subunit is associated with angiogenesis, while monoclonal anti-α6 antibodies 

can eliminate angiogenesis190. In metastatic prostate cancer cells, although the adhesion 

between tumor cells is weakened, α5β1 integrin shows high expression and positively 

correlates with VEGF and VEGFR, suggesting that it may be closely related to 

angiogenesis and metastasis191. Indeed, α5β1 and its ligand fibronectin synergistically 

upregulate the growth of blood vessels, leading to tumor formation while α5β1 inhibitors 

block tumor angiogenesis, leading to apoptosis of human tumor cells in animal 

models192.  

1.4.2.5. Interaction of integrin with growth factors and cytokines 

Interactions between integrin and growth factor or cytokine receptors play a crucial 

part in the process of tumor progression. Their interactions not only regulate tumor cell 

adhesion, invasive metastasis, and apoptosis but also affect host cell responses to cancer 

cells during angiogenesis (Figure 1.5).  

Crosstalk may be mediated by integrin-growth factor receptor complex193-196, 

enhancing the activation of downstream kinases such as MAPK197 or Akt198, thereby 

enhancing cell migration and survival. These crosstalks mutually regulate each other’s 

expression199-208, or the release of their respective ligands where these interactions are 

important for both tumor metastasis and drug resistance209,210. However, not all 

crosstalks are pro-tumorigenic211. 
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Figure 1.5: The interaction of integrin–growth factor and integrin–cytokine receptor. 

Growth factors and cytokines are directly affected by integrin ligation leading to an increase in 

their secretion, with secreted factors further inducing signaling by binding to their receptors in 

an autocrine or paracrine manner. Image obtained from Nature Reviews Cancer, 10 (2010), pp 

9. 

 

EGF and receptors 

EGFR and ERBB2, members of the epidermal growth factor (EGF) receptor family, 

can promote tumorigenesis and metastasis in solid tumors such as breast and pancreatic 

cancers by cooperation with integrins. In breast cancer patients with high expression of 

ERBB2, α6β4 is essential for tumorigenesis, and ERBB2 synergizes with α6β4 to induce 

tumorigenesis and cell invasion. The mechanism of this action may be due to the 

formation of the α6β4-ERBB2 complex that enhances the activity of signal transducer 

and transcription activator 3 (STAT3), thus leading to loss of cell polarity and increased 

proliferation. Furthermore, β4 loss can enhance the efficacy of ERBB2-targeting 

therapies, antagonists of integrin and EGF receptor family members for combination 

therapy212. In pancreatic cancer, a highly aggressive disease, over-activated EGF leads 

to an increased ability of tumor cells to migrate and metastasize. EGF-αvβ5 stimulates 

migration and metastasis of pancreatic tumor cells via vitronectin213-215. The ability of 

αvβ5 to mediate cell migration requires EGF-dependent activation of steroid receptor 

coactivator (Src)215. EGF-integrin interaction happens in others cancers. For examples, 

EGF interacts with α3β1 and α6β4 to promote cell migration in colon cancer216; EGF 
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interacts with α1β1 and α2β1 to promote cell migration in hepatocellular carcinoma217. 

Thus, EGF signaling in tumor cells may enhance the ability of specific integrins to 

mediate cell migration and survival. 

Integrins themselves can also modulate EGF signaling, severely affecting the 

sensitivity of tumor cells to therapy. Integrin can directly induce the phosphorylation of 

EGFR, thereby activating MAPK via the Src-p130CAS pathway218 and promoting the 

proliferation and survival of tumor cells219. 

 

HGF and receptors 

Hepatocyte growth factor receptor (HGFR) plays a central role in angiogenesis, 

tumorigenesis, and tissue regeneration220. Interaction of β4 with HGFR enhances its 

oncogenic potential and promotes fibroblast transformation221. In breast cancer cells, 

HGF binding to HGFR leads to the recruitment of proteins and activation of Src and 

ERK by inducing phosphorylation of β4
222. HGFR- α6β4 complex potentiates HGF-

induced Ras and PI3K signaling196. Integrins of the αv family promote HGFR signaling 

by regulating the expression of genes required for HGF-induced cell migration223. The 

metastasis suppressor tetraspanin CD28/KAI1 suppresses tumor cell invasion by 

inhibiting integrin-HGFR crosstalk224. 

 

TGF-β1 and receptors 

TGF-β1 is highly expressed in breast cancer and other malignant cells225. TGF-β1 

is a key regulator during the EMT of cancer metastasis and fibrosis226. Integrins play a 

role in the activation of TGF-β signaling. TGF-β is deposited in the ECM in an inactive 

form and binds to LAP to form TGF-β-binding proteins (LTBP)227. When αvβ3, αvβ6, or 

αvβ8 binds to the RGD motif within LAP of pro-TGF-β1, a conformational change 

occurs in the LAP-TGF-β-LTBP1 complex that releases TGF-β1 enabling it to bind to 

its receptor228,229. TGF-β1 activates αvβ3, αvβ6, and ECM protein ligands, which in turn 

trigger PI3K, Akt, and nuclear factor-κB (NF-κB) pathways230-232. αvβ3 activates Src-

dependent phosphorylation of type 2 TGF-β receptor (TGFBR2) in concert with TGF-

β to induce the EMT process in breast epithelial cells233.  
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VEGF, FGF and their receptors  

FGFR synergizes with αvβ3 to inhibit apoptosis through PAK-induced Raf 

phosphorylation234,235,236. In addition, VEGFR2 synergizes with αvβs to inhibit 

apoptosis which induced by inflammatory mediators such as tumor necrosis factor 

(TNF) through Src-dependent Raf phosphorylation234,235. Thus, integrin activation of 

inactive Raf targeting to tumor vasculature effectively inhibits tumor angiogenesis in 

vivo 237. 

VEGF activates integrins like αvβ3
238. Activation of αvβ3 increases VEGF secretion 

from tumor cells, leading to tumor vascularization and growth210. Targeted loss of the 

signaling portion of the β4 cytoplasmic domain inhibits FGF-mediated angiogenesis 

and tumor growth239. These findings reveal that integrin-growth factor receptor-

mediated signaling is critical for tumor angiogenesis. 

1.4.3. Integrins as targets for cancer therapy 

Integrin can recognize a variety of ECM proteins and receptor proteins on the cell 

surface, and its ability to bind to a variety of growth factor receptors makes it a target 

for cancer treatment and diagnosis240. The high expression of αvβ3 and αvβ5 in tumor 

cells and angiogenic endothelial cells makes them therapeutic targets for the inhibition 

of angiogenesis and tumor growth241-244. Studies have shown that integrin antagonists 

can inhibit tumor growth by inhibiting the growth of tumor cells and tumor vascular 

endothelial cells.  

The earliest integrin antagonist developed was Avastin (LM609), a monoclonal 

antibody (mAb) against αvβ3 that blocks angiogenesis. Etaracizumab (MEDI-522) is a 

humanized mAb version that not only has anti-angiogenic effects but also inhibits 

tumor growth by acting directly on tumor cells245,246. The current clinical phase I and II 

trials of etaracizumab have shown anti-angiogenic activity, low toxicity, and stability 

in patients with solid tumors, such as renal cell carcinoma and metastatic melanoma247-

249. CNTO 95, an αv-integrin-specific monoclonal antibody, also has anti-tumor and 

anti-angiogenic effects250,251. CNTO 95 was shown to have non-toxic and anti-tumor 
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activity in phase I clinical trials252. Antibodies against integrin β1 inhibit the growth of 

breast cancer cells in vitro and in vivo253. Volociximab, a function-blocking monoclonal 

antibody against α5β1
254,255, can inhibit angiogenesis and suppress tumor growth in 

phase I-II trials in patients with solid tumors256,257. The monoclonal antibody 6.3G9 

against integrin αvβ6 blocks the growth of human pharyngeal cancer cells both in vitro 

and in vivo by a TGF-β regulated mechanism258. 

RGD is a cell adhesion motif expressed on many ECM and plasma proteins259. 

Among the known human integrin subtypes, only eight integrins recognize the RGD 

base sequence of ECM proteins, i.e., αvβ1, αvβ3,αvβ5, αvβ6, αvβ8, α5β1, α8β1, and αIIbβ3
260. 

Many glycoproteins such as vitronectin, laminin, osteopontin and fibrinogen belong to 

RGD adhesion proteins which are found in the ECM261. RGD is a cellular recognition 

and attachment site for many ECM proteins as well as blood and cell surface proteins262. 

As integrins are involved in cell adhesion, cellular differentiation, migration, RGD 

peptides are widely used for targeted therapy of tumors. These include RGD peptides 

and RGD-modified targeting therapies. The inhibitory effect of cyclic RGD peptides on 

αv-integrins (αvβ3, αvβ5) leads to a decrease in functional tumor vascular density, thereby 

inhibiting tumor growth and metastasis. RGD peptides can completely inhibit the pro-

angiogenic effect of early VEGF, even at low doses263. Phase II/III trials showed 

prolonged survival with minimal side effects in patients with advanced glioblastoma 

treated with the RGD containing pentapeptide cilengitide that targets αvβ3 and αvβ5
264. 

The non-RGD peptide ATN-161 can inhibit integrin α5β1, which block the growth and 

metastasis of breast cancer in vivo265. Besides, the combination of ATN-161 and 

fluorouracil significantly inhibited the tumor progression and liver metastasis266,267. 

Since the discovery of RGD motifs as potent ligands for cell surface integrins, 

RGD-mediated chemotherapeutic drugs, lysing viruses and RGD-containing 

therapeutic peptides and proteins have been modified for tumor cell targeting and 

control of drug biodistribution in vivo268 (Table 2). RGD peptides are covalently 

conjugated with non-viral gene vectors (Polymer, Lipid, Liposomes, Peptides) in 

various combinations to prepare DNA complexes, and then these compounds can be 

used for plasmid DNA and other short interfering RNAs (siRNAs). Integrin αvβ3 
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nanoparticles were successfully used for the targeted delivery to tumor blood vessels of 

a mutant RAF1 gene that hampers growth factor signaling, resulting in apoptosis of 

tumor cells and vascular endothelial cells237. In addition, viruses act as effective vectors 

for redirecting interfering genes into tumor cells or tumor neovascularization by 

introducing additional RGD-peptides into the adenovirus. Similarly, targeted 

nanoparticles containing adriamycin effectively inhibited tumor growth and metastasis 

when acting on αvβ3-positive tumors. Importantly, compared to systemic administration, 

this targeted delivery method not only significantly reduced the toxic side effects of the 

drug but also increased the efficiency of the drug up to 15-fold269. More importantly, 

these novel RGD-mediated drugs enhance tumor targeting by binding to integral protein 

receptors and controlled release the free drugs in weakly acidic lysosomes270. Therefore, 

RGD conjugated nanodrugs can be used as effective drugs or gene-delivered 

nanoparticles to achieve the therapeutic treatment of cancers. 
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Table 2.RGD-Modified Gene Carriers and Drugs for Target Therapy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.4. Integrin as targets for imaging  

Integrins can be specifically targeted to tumor cells when combined with diagnostic 

agents. Integrin antagonists in combination with paramagnetic contrast agent290 or 

radionuclides291 are effective in detecting tumors and their vascularization in tumor 

models292. It has been shown that detection of xenograft tumors such as breast cancer, 
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brain tumors, and lung cancer can likewise be targeted to tumor cells using RGD 

peptides labeled with 64Cu, 18F, and ultra-small superparamagnetic iron oxide 

particles293-295. Recently, some integrin-targeted peptide contrast agents have been 

evaluated in cancer patients. Among them, scintigraphy using radiolabeled αvβ3-

targeted peptide (99mTc-NC100692) in breast cancer patients detected a high percentage 

of malignant tumors296,297. In addition, αvβ3 expression in human tumors could be 

quantitatively assessed non-invasive positron emission tomography (PET) using 18F-

galacto-RGD298. In summary, labeled integrin antagonists can be used as an important 

tool for tumor diagnosis and can enable early diagnosis of tumors.  

1.5. Integrins pituitary tumors 

Integrins trigger different cellular responses by participating in the ECM signaling 

process299. During ECM signaling, integrins activate multiple downstream effectors in 

parallel through a complex signaling integration system300. Integrin signaling involves 

changes in the GTPase and kinase pathways301. For example, fibronectin regulate Rac 

small GTPases and determine fibroblast morphology through an integrin-mediated 

signaling system. The expression and distribution of laminin isoforms and fibronectin 

isoforms differ from normal pituitary and pituitary adenomas. In pituitary adenomas, 

fibronectin is involved in adenoma angiogenesis and is specifically associated with 

endothelial cells and vascular smooth muscle cells302. Laminin is involved in the early 

stages of pituitary development and is expressed in both the basement membrane and 

follicular stellate cells303,304. Besides, laminin regulates the release of prolactin and 

gonadotropins in the normal pituitary gland305. During the development of early 

prolactinomas, Laminin inhibits prolactin secretion and cell proliferation306. Collagen 

IV has a high expression in the pituitary gland but the expression value is reduced by 

MMP-9 specifically, allowing the migration and invasion of pituitary tumor cells. 

Therefore, collagen IV is considered as an important factor in the progression and 

invasion of pituitary adenomas307. Collagen IV has also been shown to regulate the 

release of prolactin308. High expression of MMPs have been found in human pituitary 
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adenomas309. MMPs are associated with tumor invasion and metastasis310. The active 

form of MMP-2 is found only in some pituitary tumors, whereas it is expressed as the 

inactive form of the enzyme (pro-MMPs) in the normal pituitary gland311. MMPs 

activity in pituitary cells anchors factors on the extracellular matrix, which 

subsequently controls pituitary cells. The high expression of MMPs in pituitary 

adenomas in relation to cell proliferation and hormone secretion, makes them as 

pharmacological inhibitors312. 

In pituitary tumors, αv and β3 subunits are expressed in tumor cells, but also highly 

stained in tumor cell-matrix, while α1, α5, and β1 were found in tumor endothelial 

cells313. During pituitary adenoma development, the transformation of pituitary 

adenoma cells is associated with altered β1-integrin expression313. Except for α3 co-

expression with β1, α-integrins do not appear to be involved in pituitary tumorigenesis 

and therefore may deliver the signals by β1-activation313.  

Laminin, collagen I, and collagen IV inhibit ACTH biosynthesis at the level of 

POMC gene transcription in the corticotroph tumor cells line AtT-20, but in dispersed 

rat anterior pituitary cells314. This difference in the regulation of ACTH secretion may 

be related to the different integrin expression in normal and pituitary adenoma cells. 

Interestingly, the anti-β1 integrin activating antibody also stimulated AtT-20 cell 

proliferation, which is consistent with the stimulation produced by fibronectin314. 

Overexpression of the integrin αvβ5 ligand thrombospondin-1 (TSP-1) inhibits POMC 

transcription and ACTH secretion in AtT20 corticotroph tumor cells. Overexpression 

of TSP-1 in pituitary tumor cells inhibits cell proliferation, migration, and invasion315.  

Laminin and collagen I inhibit, fibronectin and collagen IV stimulat lactotroph cell 

proliferation306. Because fibronectin already produces maximal stimulation via the β1-

integrin-activated Rho pathway, cell proliferation cannot be further stimulated in the 

presence of fibronectin. In follicle-like cell proliferation in the anterior pituitary, 

laminin is involved in the Caveolin 3-activated integrin β1 signaling pathway and 

subsequently the MAPK pathway316. Again, this confirms that β1-integrins play a role 

in pituitary adenomas in regulating cell proliferation. Furthermore, the paracrine and 

autocrine factor TGF-β1 of the pituitary gland can regulate the expression of individual 
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integrin subunits in other cell types317 and may be involved in pituitary tumorigenesis318, 

which may be related to changes in integrin expression and its regulation of 

proliferation in pituitary adenomas. Finally, an RGD with high affinity and specificity 

for αvβ3 conjugated with the pro-apoptotic Fas ligand to induce apoptosis in pituitary 

tumor cells, highlighting the therapeutic potential of integrins also for pituitary 

neoplasms319.  

1.6. Aim of the study  

There is an evidence for the role of ECM in the pathophysiology of corticotroph 

tumors. Metalloproteinase inhibitors suppressed ACTH secretion and cell proliferation, 

indicating a regulatory role of factors anchored to ECM on corticotroph function309.  

ECM components bind to integrins, but there is little information on the expression 

of integrins in corticotroph tumors. The present study aims to explore the expression 

and function of RGD-bound integrins in human corticotroph tumors compared to 

hormone inactive pituitary tumors, and also to test the efficacy of RGD peptides in an 

in vitro corticotroph tumor cell model.  
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2. Materials and Methods 

2.1. Laboratory equipment  

Item Model Manufacturer 

Automated Cell Counter TC20 Bio-Rad 

Autoclave VX-75 Systec 

Benchtop centrifuge 5424R Eppendorf 

Benchtop centrifuge 5804 Eppendorf 

Biological safety cabinet Safe 2020 Class II Thermo 

CO2 incubator BBD 6220 Thermo 

Centrifuge/Vortex FVL-2400 PeqLab 

Electrophoresis chamber Mini-Sub Cell GT Cell  Bio-Rad 

Electrophoresis Apparatus 200/2.0 power supply Bio-Rad 

Fluorescence microscopy DM 2500 Leica 

Ice machine QM20AC  Manitowoc 

MiniPlateSpinner Centrifuge  230EU Axygen 

Multimode Plate Reader VICTOR X4 PerkinElmer 

Microplate Reader iMark Bio-Rad 

Microscope TMS Nikon 

Microwaves iQ100 Siemens 

Precision balance  440-45 KERN 

Pipettes Research® plus Eppendorf 

Rocker-Shaker MR-12 Biosan 

Real-time PCR System  Mx3000P  StrataGene  

Spectrophotometer NanoDrop ND-1000 PeqLab 

Thermal cycler T100 Bio-Rad 

Thermomixer F1.5 Eppendorf 

UV-transilluminator GEL iX20 INTAS 

Vortex mixer Vortex-Genie 2 Scientific Industries 

Water bath TSGP20 Thermo 
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2.2. Chemicals and reagents 

Chemicals and Reagents Manufacturer 

Beetle-Juice Luciferase Assay Firefly P.J.K. GmbH 

Chloroform Merck KGaA 

Cell Proliferation Reagent WST-1 (Roche) Sigma 

C(RGDyK)(RK-5) GL Biochem Ltd 

Cyanin 5.5 NHS Ester, 5mg Lumiprobe GmbH 

Dulbecco’s modified Eagle medium Invitrogen,Gibco™ 

EDTA Sigma 

Ethanol 100% Sigma 

Ethanol 75% Sigma 

FBS Invitrogen 

GoTaq G2 MasterMix Polymerase HotStart Promega 

GelRed Nucleic Acid Stalt Biotium 

Isopropanol Sigma-Aldrich 

ONPG Sigma 

Opti-MEM, 500ml Invitrogen 

O’GeneRuler Express DNA ladder Thermo  

Passive Lysis 5X Buffer Promega 

PeqGOLD Universal Agarose 500g PeqLab 

Paraformaldehyde 4% (PFA) Microcos GmbH 

QuantiTect RT, 200x Qiagen 

QuantiTect Reverse Transcription Kit Qiagen 

Sso Fast Eva Green, 500 x 20µl Bio-Rad 

SuperFect Transf. 4x1,2ml Qiagen 

Trizol Reagent 100ml 2x Thermofisher 

Trypsin-EDTA, 0,05% MWG 

Tris-Borate-EDTA buffer(10X) Sigma 

Trypan Blue, 0,4%, 1ml Invitrogen 
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2.3. Oligonucleotides (primers) 

 

 

 

 

 

Primers for Real-Time PCR (mouse integrin targets) 

Target Sequence (5’-3’) Product size (bp) 

Itgav (αv) F:CCGTGGACTTCTTCGAGCC 

R:CTGTTGAATCAAACTCAATGGGC 

162 

Itga5(α5) F:CTTCTCCGTGGAGTTTTACCG 

R:GCTGTCAAATTGAATGGTGGTG 

163 

Itga8(α8) F:CGAAGCCGAACTCTTTGTTATCA 

R:GGCCTCAGTCCCTTGTTGT 

78 

ItgaIIb 

(αIIb) 

F:TTCTTGGGTCCTAGTGCTGTT 

R:CGCTTCCATGTTTGTCCTTATGA 

133 

Itgβ1(β1) F:ATGCCAAATCTTGCGGAGAAT 

R:TTTGCTGCGATTGGTGACATT 

209 

Itgβ3(β3) F:CCACACGAGGCGTGAACTC 

R:CTTCAGGTTACATCGGGGTGA 

107 

Itgβ5(β5) F:GAAGTGCCACCTCGTGTGAA 

R:GGACCGTGGATTGCCAAAGT 

86 

Itgβ6(β6) F:CAACTATCGGCCAACTCATTGA 

R:GCAGTTCTTCATAAGCGGAGAT 

186 

Itgβ8(β8) F:AGTGAACACAATAGATGTGGCTC 

R:TTCCTGATCCACCTGAAACAAAA 

115 

Gapdh F:AGGTCGGTGTGAACGGATTTG 

R:TGTAGACCATGTAGTTGAGGTCA 

123 
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2.4. Plasmid constructs 

Expression Vectors and Reporter Constructs 

Vector Source 

Human POMC promoter luciferase reporter vector  

(humam POMC-luc) 

Panomics 

pSV-β-Galactosidase Control Vector Promega 

Primers for Real-Time PCR (human integrin targets) 

Target Sequence (5’-3’) Product size (bp)  

ITGAV (αv) F:GCTGTCGGAGATTTCAATGGT 

R:TCTGCTCGCCAGTAAAATTGT 

136 

ITGA5(α5) F:GGCTTCAACTTAGACGCGGAG 

R:TGGCTGGTATTAGCCTTGGGT 

140 

ITGA8(α8) F:GCAGATACCGTTTGACACCAC 

R:GGAGAGAACTCGGCATAGGC 

237 

ITGAIIB 

(αIIb) 

F:ACAAGCGTTACTGTGAAGCG 

R:GGGCCAGGAGACCTAAGAAATAA 

102 

ITGB1(β1) F:CAAGAGAGCTGAAGACTATCCCA 

R:TGAAGTCCGAAGTAATCCTCCT 

137 

ITGB3 (β3) F:AGTAACCTGCGGATTGGCTTC 

R:GTCACCTGGTCAGTTAGCGT 

164 

ITGB5 (β5) F:GGAAGTTCGGAAACAGAGGGT 

R:CTTTCGCCAGCCAATCTTCTC 

106 

ITGB6 (β6) F:CTCAACACAATAAAGGAGCTGGG 

R:AAAGGGGATACAGGTTTTTCCAC 

110 

ITGB8 (β8) F:ACCAGGAGAAGTGTCTATCCAG 

R:CCAAGACGAAAGTCACGGGA 

204 

GAPDH F:GGAGCGAGATCCCTCCAAAAT 

R:GGCTGTTGTCATACTTCTCATGG 

197 
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2.5. siRNA for integrins. 

Name Type Product Number Company 

Integrin αv siRNA sc-35694 Santa Cruz Biotech 

Integrin β1 siRNA sc-35675 Santa Cruz Biotech 

Integrin β5 siRNA sc-35681 Santa Cruz Biotech 

Integrin β8 siRNA sc-43138 Santa Cruz Biotech 

2.6. Human pituitary samples 

This part of the study was approved by the ethics committee of the LMU Klinikum 

(no. 152-10).  

The expression of genes encoding for RGD-binding integrin subunits was 

investigated in 18 corticotrophs (Cushing’s disease) and 16 gonadotrophs (hormone 

inactive) tumors. Diagnosis for Cushing’s disease was done according to the current 

guidelines320. In brief, diagnosis includes lack of response to the 0.75-1.5mg overnight 

dexamethasone suppression test, elevated 24 hours UFC, midnight salivary cortisol, 

baseline ACTH >20 pg/mL. In addition, final diagnosis was based on characteristic 

responses to 2 days high-dose (2mg/6 hours, 8times) overnight dexamethasone 

suppression testing and CRH stimulation test (1µg/kg or 100µg h-/o- i.v.) or inferior 

petrosal sinus sampling. The presence of corticotroph tumor was confirmed by 

neuropathology. 

The patients’ surgical approach were transsphenoidal microsurgy. Clinical 

manifestations, imaging, endocrinology, surgical and biochemical findings were used 

to make a comprehensive diagnosis of the tumor. The most commonly used is the Knosp 

five-level classification of pituitary adenomas: three lines（medial tangent，intercarotid 

line，lateral tangent）are drawn between supraclinoid internal carotid artery（ICA）

and intracavernous ICA on MRI in the coronal position of the cavernous sinus to 

determine the relationship of the pituitary adenoma to the cavernous sinus. According 

to Knosp classification, pituitary tumors are divided in 4 grades: grade 0（Normal）= 

tumor within the medial tangent; grade 1 = tumor extends beyond the medial tangent 
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but not beyond the intercarotid line; grade 2 = tumor extends beyond intercarotid 

line,but not beyond the lateral tangent; grade 3 = tumor extends beyond the lateral 

tangent(3A: over ICA,3B:under ICA); grade 4 = total encasement of theintracavernous 

ICA321. After surgical resection tumors were put in DMEM supplemented with 

10%FBS, 500 μg/L partricin and 105 U/L penicillin/streptomycin and were thus 

transported to the laboratory for processing. After washing with HDB+ buffer, fibers 

and debris were removed and the tumor was snap-frozen with dry ice and stored in -

80°C for RNA extraction. Two normal human pituitary glands were obtained at autopsy 

after sudden death from subjects with no evidence of endocrine diseases, no more than 

12h after demise.  
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Table 3. Clinical information of tumor specimens 

Case 

Nr. 
Clinical diagnosis Age Gender 

Tumor grade 

(Knosp) 
Invasive 

001 Cushing’s disease 76 F 4 no 

005 Cushing’s disease 61 F 4 yes 

013 Cushing’s disease 55 M 0 yes 

040 Cushing’s disease 31 F  0 no 

042 Cushing’s disease 80 M 4 yes 

043 Cushing’s disease 49 F 3 no 

046 Cushing’s disease 29 F  0  no 

047 Hormone inactive 70 F  0 yes  

054 Cushing’s disease 55 F 1  no 

055 Cushing’s disease 43 M 0  no 

060 Hormone inactive 70 F 3 yes  

067 Hormone inactive 46 M  2 no  

077 Cushing’s disease  29 M   1  no 

078 Cushing’s disease 22 F 0  no  

085 Cushing’s disease 56 F 1 no  

089 Cushing’s disease 28 F 0 no  

091 Cushing’s disease 40 F  0  no 

093 Hormone inactive 74 M 2  no 

110 Hormone inactive 58 F 2 no  

117 Cushing’s disease 53 F 1  no 

118 Cushing’s disease  65  F  1  no 

119 Hormone inactive 60 F 3 yes  

122 Hormone inactive 76 M 2 no  

130 Hormone inactive 73 M 3 yes  

135 Hormone inactive 69 F 2 no  

138 Hormone inactive 51 M  0  no 

140 Hormone inactive 69 M 1  no 

147 Hormone inactive 44 M 3 yes  

156 Hormone inactive 83 M 2 yes  

160 Hormone inactive 72 F 1  yes 

163 Hormone inactive 44 F  0  yes 

174 Cushing’s disease 56 M  3B  yes 

181 Hormone inactive 35 M  0 yes  

191 Cushing’s disease 21 F 0   no 
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2.7. Methodology 

2.7.1. Cell culture  

Murine pituitary corticotroph tumor AtT-20 cell line (American Type Culture 

Collection (ATCC®) CRL-1795™) were cultured in Dulbecco’s modified Eagle 

medium (DMEM) supplemented with 10% fetal bovine serum(FBS) and 1% 

penicillin/streptomycin. Cell culture conditions were 95% air, 5% CO2, Temperature: 

37°C, incubator humidity of 70%-80%; Cell transfer: cell density of 70%-80%. 

2.7.2. Reverse-transcriptase polymerase chain reaction (RT-PCR)  

RNA extraction 

RNA was extracted using Trizol®, which contains others guanidine isothiocyanate 

and phenol that rapidly break down cells while blocking the release of nucleases. For 

RNA extraction from pituitary tissues, 1ml of Trizol was added per 50-100mg of tissue 

and the tissue was homogenized using Ultra Turrax. For RNA extraction from cells, the 

cell medium was discarded and 1ml Trizol was added (per 3x105-107 cells).  

After adding Trizol, the samples were kept at room temperature for 5 minutes. Then 

the samples were collected into RNase-free tubes and 0.2 ml of chloroform was added 

for every 1 ml of Trizol used. Samples were vortexed for 15 seconds and left at room 

temperature for 3 minutes before being centrifuged at 4 °C at 12,000 rpm for 15 minutes. 

After centrifugation, each sample is divided into three layers: the red organic phase 

(contains proteins), middle zone (contains DNA), and upper layer of the colorless 

aqueous phase, which contains the RNA and is carefully pipetted out and transferred to 

the new Eppendorf tube. This process was repeated once. After adding 500µl 

isopropanol, the sample was mixed upside down and incubated at room temperature for 

10min, before being centrifuged at 12,000 rpm at 4 °C for 10 minutes. The supernatant 

was discarded and the RNA precipitate was washed with 1 ml 75% ethanol, was shaked 

for 15 seconds on a vortex shaker and centrifuged at 7500 rpm at 4 °C for 5 minutes. 

The supernatant was carefully discarded with a pipette taking care not to aspirate the 

precipitate. This step was repeated once. Samples were left to air dry for 10 minutes at 
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room temperature, taking care to not over dry, as the RNA is difficult to dissolve after 

it is completely dry. RNA pellets were dissolved in 20-50μl of RNase-free water. The 

purity and concentration of RNA were determined with the NanoDrop 

spectrophotometer. 

Reverse-transcription DNA (cDNA) 

Extracted mRNA was reverse transcribed using the Qiagen QuantiTect Reverse 

Transcriptase Kit: add the following reactants together to a sterilized RNase-free 0.2ml 

tube, (1) template RNA: total RNA 0.5-1μg; (2) gDNA wipeout: 2μl; (3) RNase-free 

ddH2O: fix to 14μl. Samples were gently mixed and centrifuged for 30 seconds before 

being incubated in a thermal cycler at 42° for 2 minutes. A mastermix containing 4µl 

of reverse transcriptase buffer, 1µl of primer mixture, and 1µl of reverse transcriptase 

was then added to each sample. Samples were mixed in a reaction volume of 20µl and 

centrifuged for 30 seconds before being incubated in a thermal cycler at 42° for 15 

minutes and at 95° for 3 minutes. The reverse-transcribed cDNA samples were stored 

at -20°C. 

Polymerase chain reaction (PCR)   

PCR was operated with 1µl cDNA sample (diluted 1:10) and a mix of 10µl GoTaq 

G2 Master Mix, 1µl forward primer (10pmol/µl),1µl reverse primer (10 pmol/µl) and 

7µl RNase-free water. PCR was carried out using a thermal cycler. In standard reactions, 

the three-temperature point method is used, with the PCR reaction system: double-

stranded DNA is denatured at 95°C for 2 minutes, annealed at 95°C for 15 seconds, 

rapidly cooled to 60°C for 15 seconds, and then extended at 72°C for 3 minutes. The 

entire reaction system has 34 cycles. 

PCR products are then analyzed by agarose gel electrophoresis. Prepare 1% agarose 

gels for electrophoresis according to the molecular weight of the nucleic acid. Prepare 

100 ml of TBE buffer (1X) electrophoresis buffer in a triangular flask, weigh out a 

certain amount of agarose powder and melt it in the post-microwave oven. When cooled 

to 60°C, add GelRed (GelRed is a new type of fluorescent nucleic acid gel staining 

reagent that can replace Ethylene Bromide (EB), with high sensitivity, low toxicity, 

high thermal stability, and green fluorescence under UV light transmission), pour into 



43 
 

the electrophoresis bath and allow to solidify. Pour TBE buffer (1X) into the 

electrophoresis bath in an amount that is no more than 2 mm above the gel surface and 

remove the comb carefully making sure there are no bubbles. Add the PCR product and 

a marker to the sample wells. Usually, 30 minutes of electrophoresis are enough to run 

200-400 bp of PCR product at 100V. Bands were visualized after GelRed staining with 

UV light. 

Quantitative real-time PCR (qPCR) 

For quantitative real-time PCR, 2µl of cDNA was mixed with the Sso Fast Eva 

Green master mix that contained 6µl of Eva Green Buffer, 3µl of ddH2O, and 1µl of 

amplification primer-F and 1µl of amplification primer-R. Real-time PCR reactions 

were carried out in Mxpro-Mx3000P Quantitative PCR instrument. Reaction system: 

95°C activations for 3 minutes, 95°C denaturations for 10 seconds, and combined 

annealing/extension at 60°C for 10 seconds, for a total of 40 cycles. After the cycles 

are completed, the baseline and threshold values were set manually. 

Data analysis: The data are represented by the following conversion expression=105 

× [(1+E1)^Ct1(target gene)/(1+E2)^Ct2(GAPDH)]. Among them, E1: target gene 

primer amplification efficiency; E2: housekeeping gene primer amplification efficiency; 

Ct1: target gene Ct average value of the experimental group; Ct2: housekeeping gene 

GAPDH Ct average value.  

2.7.3. WST-1 cell viability assay 

The WST-1 assay was used to determine cell viability following the manufacturer's 

protocol. AtT-20 cells were seeded in a 96-well plate (2×104 cells/well) and kept 

culturing overnight before being treated. After adding 10µl of WST-1 reagent in each 

well the plate was incubated in the cell culture incubator in the dark for 0.5-1 hour 37°C. 

WST-1 is reduced to orange formazan by a number of dehydrogenases in the 

mitochondria in the presence of electronically coupled reagents. The more and faster 

the cells proliferate, the more formazan is reduced and the darker the color. The 

formation of formazan dye was quantified using a scanning multi-well 

spectrophotometer. The absorbance was measured at 450 nm and a dual-wavelength 
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measurement was carried out using 655 nm as the reference wavelength. 

2.7.4. Human POMC promoter luciferase assay 

AtT-20 cells were transfected with the human POMC reporter vector that has the 

proximal human POMC promoter upstream to the luciferase gene using the SuperFect 

reagent according to the manufacturer’s instructions. In brief, cells were seeded in a 48-

well plate (5×104 cells/well) and left overnight to attach. After incubating the cells for 

3 hours in the transfection complex, the cell culture medium was changed to low serum 

(2%FBS) DMEM and the cells were allowed to recover overnight before being treated 

for 6 hours. For knockdown experiments, cells were cotransfected with human POMC 

reporter vector and the indicated siRNA and were left for 48 hours in low serum 

(2%FBS) DMEM.  

For lysis, cells were washed with pre-cooled PBS and lysed with cell lysis buffer 

(Promega)(75µl/well) and stored at -80°C for up to 7 days. Cells were scraped and were 

collected in Eppendorf tubes that were centrifuged at 15000 rpm for 10 minutes at 4°C. 

After centrifugation, the supernatant was collected. 

For the luciferase assay, 20µl of sample was added to the luminometer plate and 

assayed using the Victor x4 multilabel plate reader in the presence of 100µl luciferin.β-

Galactosidase (β-gal) was used to measure the efficiency of cell transfection. For the β-

Galactosidase assay, 20µl of lysate was transferred to a transparent 96-well plate and 

incubated with 30µl of ddH2O + 50µl of ONPG in a cell culture incubator for 30-90 

minutes in dark. Galactosidase activity was measured at 450 nm and 655 nm in an 

ELISA plate reader. Data were expressed as the ratio of luciferase to β-galactosidase 

activity.  

2.7.5. siRNA Transfection 

Cell transfection methods for the purposes of RNA-interference, Knockdown 

integrin gene (e.g. αv, β1, β5, β8). Cells were attached overnight in a 48-well plate 

(5×104 cells/well) and 6-well plate (3.5×105 cells/well). The next day, cells are 

transiently transfected with siRNA (10µM) using SuperFect transfection reagents 
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(Follow manufacturer's protocol). After incubating the cells for 3 hours in the 

transfection complexes, change cell culture medium (2%FBS+1%P/S) to recover 

overnight. Cells were harvested for analysis 48 hours post-transfection. 

2.7.6. Cy5.5-RGD conjugates synthesis 

RGD peptide (1µmol) was dissolved in 1ml of PBS buffer (pH = 8.3) and then 

mixed with Cy5.5 (1.2µmol) in H2O (1ml). The reaction mixture was vibrated overnight 

and then purified by a reversed-phase HPLC. Cy5.5-RGD conjugates were later 

lyophilized, and kept in the dark at -20 °C. 

2.7.7. Fluorescence microscopic studies 

AtT-20 cells were seeded in 8-well slides (3×103 cells/well) overnight. Then the 

cells were incubated with the Cy5.5-RGD conjugate (10nM) for 30 minutes. After the 

incubation, the cells were washed with ice cold PBS, gently removing unbound 

conjugates. Add DAPI to incubates 1 minutes at room temperature. Cells were fixed 

with 4% paraformaldehyde (pH=7.4) at room temperature for 10 minutes. Cy5.5-RGD 

uptake was monitored with fluorescence microscopy. 

2.7.8. Statistical analysis 

SPSS 20.0 software (IBM) was used to analyze the data in this paper, and the 

measures are expressed as mean ± standard deviation (SD) when they are normal 

distribution. One-way ANOVA was used for comparisons between groups, and the 

Mann-Whitney U test was used when the data did not conform to a normal distribution. 

All experiments were repeated three times independently, with P<0.05 being 

statistically significant. 
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3. Results 

3.1. Expression of RGD-binding integrins in corticotroph tumors  

RT-PCR analysis on 18 cases of corticotroph tumors showed expression of 5 out of 

9 RGD-binding integrin subunits: αv, α8, β1, β5, and β8 (Figure 3.1A). No expression for 

α5, αIIb, β3, and β6 was detected. 

The immortalized murine corticotroph tumor AtT-20 cells expressed αv, αIIb, β1, β5, 

and β8, but not α5, α8, β3, and β6 subunits (Figure 3.1 B). 

 

 

Figure 3.1: RT-PCR for integrin subunits in corticotroph tumor and AtT-20 cell. (A) 

Expression profiles of integrin amplification products in a corticotroph tumor (representative 

of 18 cases). (B) Expression profile of integrin amplification products in AtT-20 cells. 

Molecular markers are used to determine the size of the PCR product. The blue arrows show 

unexpressed integrin subunits. 

 

All PCR products were of the predicted size. To exclude possible false negative 

results, primers for human α5, β3, and β6 and mouse α5, α8, β3, and β6 were validated by 

RT-PCR on human and mouse kidney samples and primers for human αIIb integrin 

subunit in human blood samples (Figure 3.2). Our primers for all the integrin subunits 

were designed to detect the presence of these targets at the mRNA level. 
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Figure 3.2: Validation RT-PCR.RNA from human and mouse kidney and human blood was 

reversed transcribed. Primers for human α5 (ITGA5), β3 (ITGB3), and β6 (ITGB6) were validated 

on human kidney and for human αIIb (IGAIIB) on human blood. Primers for mouse α5 (Itga5), 

α8 (Itga8), β3 (Itgb3), and β6 (Itgb6) were tested on mouse kidney. Molecular markers are used 

to determine the size of the PCR product.  

3.2. Expression of RGD-binding integrins in corticotroph tumors  

The expression of αv (ITGAV), α8 (ITGA8), β1 (ITGB1), β5 (ITGB5), and β8 (ITGB8) 

in corticotroph tumors from patients with Cushing's disease (n=18), gonadotroph 

tumors (n=16), and normal human pituitary (n=2) was analyzed by quantitative qPCR. 

The heatmap in Figure 3.3 shows the variability in expression of these genes among the 

different samples (red: high expression, blue low expression). Corticotroph tumors 

express in their majority genes encoding for integrin subunits αv (ITGAV; 18/18,100%), 

β1 (ITGB1; 18/18,100%), β5 (ITGB5; 13/18,72%), β8 (ITGB5; 15/18, 83%), and α8 

(ITGA8; 11/18, 61%). In contrast, gonadotroph tumors, except for α8 that was expressed 

in 12/16 of cases (75%), show very low expression of genes for αv, β1, β5, and β8 

subunits.  

Cluster analysis showed clustered relationships between the expression levels of 

multiple samples or multiple genes. Figure 3.3 shows that the two clinical pituitary 

tumor types, Cushing’s disease and hormone inactive, cluster according to the 

expression patterns of TGAV, ITGB1, ITGB5, and ITGB8.  
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Figure 3.3: Heatmap showing RGD-binding integrin expression in corticotroph versus 

gonadotroph tumors. Clustering the expression of 5 genes (rows for genes, right-hand 

character for gene name) and 34 samples from human corticotroph (CD;n=18) and gonadotroph 

(HI; n=16) tumors. The sample ID is denoted according to clinical diagnosis (CD: Cushing’s 

disease, HI: hormone inactive). Cluster analysis (K-Means Cluster, tree structure above and to 

the left of the graph boundary).  

 

Human corticotroph tumors have significantly higher expression of genes encoding 

for αv, β1, β5, and β8 than gonadotroph (hormone inactive) tumors (P<0.05; Figure 3.4). 

The gene encoding for α8 is highly expressed in some corticotrophs but also in 

gonadotroph tumors and the results showed no significant difference between these two 

(P=0.0583).  
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Figure 3.4: Expression of integrin in corticotroph tumors and gonadotroph tumors. CD, 

Cushing’s disease (corticotroph tumors), HI, hormone inactive (gonadotroph) tumors. Mann-

Whitney U-Test. *P < 0.05, ***P < 0.001.  

 

The genes encoding for αv, β1, and β5 are also highly expressed in corticotroph 

tumors compared with the human normal anterior pituitary (P<0.05; Figure 3.5). 

Although α8 and β8 are also highly expressed in some corticotroph tumors, the results 

showed no significant difference (P=0.0583 and P=0.5167 respectively), possibly due 

to the small number of human normal pituitary glands (n=2). 
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Figure 3.5: Expression of GRD-binding integrins in corticotroph tumors and human 

normal anterior pituitary. NP, human normal pituitary. The Mann-Whitney U-Test was used.  

*P < 0.05; n.s: no significant. 

3.3. Effect of integrin knockdown on human POMC promoter activity 

Corticotroph tumors showed high expression of genes encoding for the integrin 

subunits αv, β1, β5, and β8 compared to another pituitary tumor type (gonadotroph). The 

next step was to explore their role in corticotroph tumor function. To this end, siRNA 

was used to knockdown each integrin subunit in the murine corticotroph tumor cell line 

AtT-20 and human POMC promoter activity was assessed as surrogate marker of 

corticotroph function. 

Figure 3.6 shows the effective silencing of the genes expressing for the integrin 

subunits αv, β1, β5, and β8 (56%, 63%, 66%, and 65.5% to scrambled RNA control 

respectively).  
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Figure 3.6: Gene silencing efficiency of siRNA targeting integrin mRNA. Each gene was 

normalized with the Gapdh housekeeping gene. Control: scrambled siRNA-transfected. Data 

are fold change of scrambled control, presented as mean ± SD calculated from three 

independent experiments. *P < 0.05, **P < 0.01. 

 

Knocking down each gene encoding for αv, β1, and β5 significantly decreased the 

activity of human POMC promoter compared to scramble control (% suppression 

63±22, 54±23, and 69±28 respectively; P<0.05), while knocking down β8 had no effect 

(Figure 3.7).  

 

 
Figure 3.7: Effect of integrin knockdown on human POMC promoter activity. A pool of 

commercially available siRNAs was used to knockdown the gene encoding for αv, β1, β5, or β8 

in AtT-20 cells. Control: scrambled siRNA-transfected. Luciferase was determined 48 hours 
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after transfection. Data are luciferase/β-galactosidase presented as percentage of scrambled 

control. Mean±SD of three independent experiments. *P<0.05; NS, not significant. RLU, 

relative luciferase activity. 

3.4. Effect of integrin knockdown on corticotroph tumor cell viability 

Knocking down the genes encoding for integrins αv and β1 had a small but 

significant effect on AtT-20 cell viability (% suppression 15.92±1.6 and 27.4±1.4 

respectively; P<0.05). Knocking down the genes encoding for integrins β5 and β8 did 

not affect cell viability (Figure 3.8).  

 

 

Figure 3.8: Effect of knockdown of integrins on cell viability. A pool of siRNAs was used 

to knockdown the gene encoding for αv, β1, β5, or β8 in AtT-20 cells. Control: scrambled siRNA-

transfected. Cell viability was assessed with the WST-1 colorimetric assay. Data are mean of 

three independent experiments presented as percentage of scrambled control. *P < 0.05; NS, 

not significant. 

3.5. RGD peptide conjugated with the fluorophore Cy5.5 targets AtT-

20 cells    

The experimental results presented above show that human and murine (AtT-20) 

corticotroph tumors highly express the genes encoding for αv, β1, β5, and β8 genes are 

highly expressed in. These four integrin subunits form 3 integrins (αvβ1, αvβ5, and αvβ8) 

that could bind RGD peptides. Indeed, AtT-20 cells showed active uptake of RGD-
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conjugated Cy5.5 (Cy5.5-RGD) as observed by fluorescence microscopy (Figure 3.9). 

 

 

Figure 3.9: RGD peptide conjugated Cy5.5 can accurately target AtT-20 cells. Bar: 20μm 

3.6. RGD effects on the cell viability  

The above results show fluorophore RGD conjugate uptake by AtT-20 cells, 

suggesting its potential for tumor-targeted diagnostics. The next step was to determine 

any deleterious effects on cell viability. To this end, AtT-20 cells were treated with 

different RGD concentrations (0.05, 0.1, 0.5, 1, 10, 100 μM) for 24 hours. The results 

showed that it does not affect the viability of AtT-20 cells, even at the high µM doses 

of 100μM (Figure 3.10). 

 

 
Figure 3.10: Effects of RGD on the cell viability. AtT-20 cells were treated for increasing 

concentrations of RGD peptide in 10%FBS DMEM for 24 hours. Cell viability was determined 

with the WST-1 colorimetric assay. Data are presented as percentages of untreated cells. 
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3.7. RGD effects on human POMC promoter activity 

The effect of RGD conjugate on corticotroph cell function was assessed by 

determining human POMC promoter activity. Treatment with different peptide 

concentrations (0.05, 0.1, 0.5, 1, 10, 100 μM) did not affect human POMC promoter 

activity (Figure 3.11). 

 

 

Figure 3.11: Effect of RGD conjugate on human POMC promoter activity. AtT-20 cells 

were transfected with the human POMC promoter luciferase reporter plasmid and were left to 

recover overnight before being treated with the indicated doses of RGD peptide for 6 hours. 

Data are luciferase/β-galactosidase expressed as fold change to untreated control and presented 

as mean±SD. RLA, relative luciferase activity. 
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4. Discussion 

Cushing's disease is a serious condition of cortisol overload caused by the secretion 

of ACTH by corticotroph tumors. The mechanisms supporting corticotroph tumor and 

ACTH hypersecretion remain obscure. ECM components, such as fibronectin, laminin 

and collagen I, were shown to affect POMC gene transcription and ACTH secretion 

therefore playing a role in corticotroph pathophysiology314. Individual ECM 

components bind to different integrins322. Among the known human integrin subtypes, 

eight integrins recognize the RGD motif in ECM proteins. The fact that integrins 

recognize ECM proteins through the RGD motif is the most important reason why 

RGD-binding integrins have the potential as diagnostic and therapeutic targets for 

cancer. Integrin targeting RGD peptides can deliver theranostics agents to tumor cells 

and the tumor vascular system323. The present study investigated the expression and 

potential role of RGD binding integrins in corticotroph tumors.   

4.1. Differential expression and potential significance of integrins in 

corticotroph tumors 

My data show significantly high expression of the RGD binding integrins αv, β1, β5, 

and β8 in corticotroph tumors compared to the normal pituitary gland and other pituitary 

tumor types (hormone inactive tumors). This is similar to the situation in other human 

tumors, where the expression of integrins is highly variable between normal and tumor 

tissues, with integrins being highly expressed in tumor epithelial cells such as gastric 

cancer, glioblastoma, small cell lung cancer, breast cancer, rectal cancer, and ovarian 

cancer240.  

Integrin signaling is involved in the regulation of cytoskeletal, GTPase, and MAPK 

kinase pathways324. In addition to serving as a bridge connecting the ECM to the 

cytoskeleton, integrins can also regulate multiple intracellular signaling pathways 

involved in tumor progression and metastasis, including cell adhesion, migration, 

invasion and proliferation, regulation of apoptosis, and induction of angiogenesis. 

Members of the αv sub-family of integrins, including αvβ1, αvβ3, αvβ5, αvβ6, and αvβ8, 
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can specifically bind to RGD peptides, which are expressed in most of ECM proteins, 

including vitronectin, fibronectin, osteopontin, and collagen IV as well as potentially 

TGF-β1 and potentially TGF-β3325, 326.  

The integrin subunit-β1 is essential for cellular interactions with the extracellular 

mesenchyme and can interact with many α-subunits. β1 plays an important role in the 

binding and assembly of exogenous fibronectin, possibly by participating in the 

organization of the assembly site, regeneration, or cycling, rather than by interacting 

with fibronectin. α5β1 and α2β1 effectively convert mechanical stimuli into intracellular 

signals. α4β1 interacts with vascular cell adhesion molecule 1 (VCAM-1), a member of 

the immunoglobulin superfamily, and fibronectin327. β1-fibronectin receptor is the 

major integrin responsible for proliferation response in endothelial cells328. β1 controls 

the expression of GFR and EGFR protein levels, resulting in the decrease of 

suspension-cultured human epithelial cells329. Although β1 can promote proliferation, 

it also can inhibit it. For example, α1β1 inhibits EGFR signaling in kidney cells by 

activating T-Cell Protein Tyrosine Phosphatase (TCPTP), whereas α2β1 activates PP2A, 

which leads to Akt dephosphorylation. TCPTP phosphorylates integrin and scaffolding 

protein for GFR (Caveolin-1), leading to reduced EGFR activation330,331. Emilin-1 

binds to α4β1 and α9β1. It antagonizes the proliferation of skin and epidermal cells to 

maintain a steady state in the skin, and emilin-1 deficiency leads to excessive 

proliferation and accelerates wound closure. Emilin-1 inhibition may occur through 

α9β1-mediated PTEN activation, which blocks Akt signaling332. 

The integrin αvβ5 promotes tumor angiogenesis and mediates EGF’s effect on tumor 

cell proliferation and metastasis. Increased expression of αvβ5 in vitro and in vivo bind 

to ECM proteins generated by endothelial cells and deposited in the tumor 

microenvironment to mediate endothelial cell proliferation and migration to promote 

tumor angiogenesis183. These integrins can directly modulate EGF signaling and affect 

tumor cell proliferation and metastasis. EGF-αvβ5 stimulates pancreatic tumor cell 

migration and metastasis in vivo via vitronectin. αvβ5 can induce EGFR phosphorylation, 

thereby activating MAPK and subsequent tumor cell proliferation and survival218,219. 

The subunit β8 binds only to αv subunit. αvβ8 is a receptor for a potential TGF-β 
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protein in the ECM-bound form and activates the TGF-β signaling pathway. αvβ8 can 

regulate the neovascularization in the developing retina and astrocytes333 as well as 

promote the migration of astrocytes to vitronectin334. αvβ8-TGF signaling in astrocytes 

could act as a central regulator of cerebrovascular homeostasis335. Interestingly, TGF-

β activation is a pathway used by tumor cells to suppress the immune system and evade 

immune checkpoints336. Thus, the effects of immune checkpoint inhibitors is enhanced 

by αvβ8 blocking TGF-β signaling or potentially TGF-β activation. αvβ8 and TGF-β 

proteins have recently been shown to be effective in suppressing T cells in a variety of 

tumor types337,338.  

4.2. Integrins regulate POMC transcription in corticotroph tumor 

cells 

The high levels of integrin αv, β1, β5, and β8 in corticotroph tumors compared to the 

hormone inactive tumor suggest that they may play a role in corticotroph function. 

Integrins recognize a variety of extracellular matrix proteins as well as receptor proteins 

expressed on the cell surface339,340. Previous studies have reported that transcription of 

the proto-oncogene c-fos in pituitary adenomas is dependent on the integrity of the 

ECM341. Besides, MMP can regulate the proliferation and hormone secretion of 

pituitary tumor cells309. 

The small size of human corticotroph tumors and the low transfection efficacy of 

primary cell cultures did not allow for detailed in vitro experiments, therefore I studied 

the effect of integrins on corticotroph function in the immortalized mouse corticotroph 

AtT-20 tumor cells using the human POMC promoter reporter vector as readout. 

Human and mouse corticotroph tumors cells showed similar RGD-binding integrin 

expression profiles with genes encoding for integrin subunits αv, β1, β5, and β8 being 

highly expressed in both. The similar profile indicates that in vitro data obtained from 

the murine immortalized corticotroph tumor cells could extrapolate on human 

Cushing’s disease tumors. 

My data show that knocking down the overexpressed in corticotroph tumors 
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integrin subunits αv, β1, β5, and β8 significantly decreases human POMC promoter 

activity in the AtT20 cell line, indicating that they may modulate human POMC 

promoter activity and thus affect ACTH synthesis. Integrins employ multiple 

downstream signaling pathways, including FAK, PI3K, and ERK/ MAPK, coordinate 

through receptor tyrosine kinase signaling342,343. FAK is a key tyrosine kinase in the 

integrin signaling pathway. Integrins, FAK, and cytoskeletal proteins copolymerize on 

focal adhesions, allowing the FAK post-activation. Activated FAK binds to Src family 

kinases and the resulting FAK/Src complexes phosphorylate Paxillin and Cas and 

activate MAPK, downstream to Ras, Crk and Grb2344. Previous studies demonstrated 

that EGFR-mediated pathways regulate POMC and ACTH synthesis via a MAPK 

dependent pathway101. USP8, which is mutated in ~50% of corticotroph tumors, 

triggers POMC transcription in part by rescuing EGFR and enabling its downstream 

MAPK signaling pathway, which in turn affects ACTH synthesis in corticotroph tumor 

cells20. 

4.3. The role of αvβ1 in cell proliferation and survival 

My data revealed that knocking down integrins αv and β1 (but not β5 or β8) reduce 

cell viability in AtT-20 corticotroph tumor cells. Integrin subunit β1 plays a central role 

in the regulation of cell proliferation and survival345,346. In fibroblasts, β1-collagen-

conducting signals inactivate the transcription factor FoxO3a to promote cell 

proliferation via the Akt pathway347. In osteoblasts, the kindlin-2 signals through β1 to 

Rac1, which initiates AP-1-dependent transcription for proliferation via Akt 

signaling348. Integrin β1 has a unique role in driving cell proliferation, since in 

mammary epithelial cells in the absence of β1 unable to drive proliferation349. Loss of 

β1 in the developing pancreas in vivo results in dramatic reduction in β-cells350. 

The interaction between β1 and the collagen matrix regulates cell proliferation and 

survival by binding to the FAK and initiating ERK signaling351. Any disruption of the 

linking integrins to the actin cytoskeleton and signaling molecules has deleterious 

effects because loss of adhesion to the matrix leads to apoptosis352. FAK activates the 
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downstream MAPK pathway in anchorage-dependent cells by directly binding to the 

cytoplasmic domain of β1 at the site of adhesion353-355. Activation of MAPK by β1-FAK 

signaling enhanced proliferation and survival of adult rat matrix-cultured β-cells356. 

Collagen I interacts with α2β1 to inhibit cell death induced by T-cell activation via the 

MAPK pathway357,358. Finally, β1 induces DNA synthesis in a laminin-dependent 

manner and nerve growth factor promotes proliferation upon binding to α9β1
359.  

4.4. Corticotroph tumor cell show uptake of fluorescent RGD 

peptides 

I showed that RGD conjugated with the fluorescent dye Cy5.5 could be targeted to 

AtT-20 cells. Integrins that can bind specifically to RGD are among the most targeted 

molecules for studying the precise cancer theranostics. Several studies have shown that 

RGDs linked to fluorescent imaging agents or radionuclides have tumor-targeted 

imaging capabilities. Among them, 18F-galacto-RGD has been studied in clinical trials 

in patients with melanoma, sarcoma, and breast cancer360,361. CR780RGD-NPs can 

effectively cross the blood-brain barrier and target brain tumors in mouse xenografts 

for diagnosis and image-guided resection of brain tumors362. Notably, Near-infrared 

fluorescence imaging is a non-invasive and highly sensitive imaging modality using 

fluorescent probes that do not require the use of ionizing radiation or radioactive 

materials363. c(RGDyK) combined with the near-infrared fluorescent dye Cy5.5 

specifically targets integrin receptors in both U87MG glioblastoma cell culture and 

subcutaneous xenograft models364,365. In the human Kaposi's sarcoma (KS1767) mouse 

model for dynamic fluorescence imaging, the intravenous Cy5.5-c(RGDfK) conjugate 

had specific uptake in tumor tissue366. 

MRI imaging can detect 50-80% of corticotroph tumors. MRI-invisible corticotroph 

tumors are in the range of 17-63%367. The new imaging modality needed to improve 

the diagnostic rate of tumors as well as to identify tumor margins intraoperatively 

improves endocrine recovery rates and reduces postoperative complications. In actual 

surgery, pituitary adenomas may be very close to or even invade critical vascular, 
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skeletal, and endocrine structures, resulting in a postoperative pituitary hypoplasia 

incidence of between 5-25%368. Importantly, it is difficult to distinguish tumor tissue 

from surrounding normal tissue by palpation and visual inspection by the surgeon. 

Currently, the residual tumor rate during microadenectomy exceeds 30%369, and most 

patients require additional intervention370. Although techniques such as intraoperative 

MRI have been used to improve the overall total resection rate of other tumor types, it 

has a high incidence of false positives in patients with pituitary adenomas371. 

Intraoperative fluorescence imaging has several advantages over conventional imaging 

techniques, such as high contrast, high sensitivity, low cost, and tissue visualization372. 

Fluorescence-guided surgery can improve the overall resection rate of transsphenoidal 

sinus surgery for Cushing's disease by visualizing the tumor tissue and margins373. The 

conjugate itself had no deleterious effect on cell viability or human POMC promoter 

activity. Thus, integrins could serve as new agents for the imaging of corticotroph 

tumors.  

4.5. Conclusion 

The present study demonstrates that integrin subunits αv, β1, and β5 were more 

highly expressed in corticotroph tumors compared to hormone inactive tumors and 

human normal pituitary. Silencing αv and β1 had a significant inhibitory effect on the 

corticotroph tumor cell viability, whereas silencing αv, β1, and β5 suppressed human 

POMC promoter activity. Corticotroph tumor cells showed fluorescent RGD peptide 

uptake with no detrimental effects on cell viability and function. Integrins and their 

downstream signaling pathways offer potential targets for the diagnosis and treatment 

of corticotroph tumors.  
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