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Summary

In this thesis, we develop two computational methods to tackle two different RNA splicing chal-
lenges. In Chapter 2, we present McSplicer, a probabilistic model for estimating splice site usage
from RNA-seq data. The main contribution of McSplicer is to quantify alternative splicing using
a simplified probabilistic model of the underlying splicing process, instead of quantifying local
splicing events or full-length transcripts. McSplicer is based on the usage of individual splice
sites and can estimate arbitrarily complex types of alternative splicing patterns. In various experi-
ments, McSplicer demonstrates more accurate estimates compared to other competing methods in
literature.

In Chapter 3, we introduce RNA Ptr-Nets, a deep learning approach for predicting RNA splic-
ing branchpoints. Alternative branchpoint selection plays a role in alternative splicing and dis-
eases, nonetheless human branchpoint annotations are still incomplete and only a small fraction
of branchpoints is experimentally verified. RNA Ptr-Nets aims to predict all branchpoints within
an intronic region to overcome the limitation of existing machine learning and deep learning ap-
proaches which either require genome annotation and a great amount of feature engineering or
predict only a single brachpoint site associated with each acceptor site.
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CHAPTER 1

Introduction

During RNA splicing, precursor messenger RNA (pre-mRNA) transcript is transformed into a ma-
ture messenger RNA (mRNA). Introns (i.e., non-coding regions) are omitted while exons (i.e.,
coding regions) remain in the mRNA. Splicing is an essential process in eukaryotic cell develop-
ment and has been linked to various diseases. Here, we propose two computational methods to
tackle two different RNA splicing challenges.

First, we propose McSplicer, a probabilistic model for detecting alternative splicing. Alterna-
tive splicing removes intronic sequences from pre-mRNAs in alternative ways to produce different
forms (isoforms) of mature mRNA. The composition of expressed transcripts gives specific func-
tionalities to cells in a particular condition or developmental stage. In addition, a large fraction of
human disease mutations affect splicing and lead to aberrant mRNA and protein products. Cur-
rent methods that interrogate the transcriptome leverage RNA sequencing technology (RNA-seq).
RNA-seq produces short reads from which existing methods infer and quantify RNA splicing.
Existing alternative splicing quantification approaches either suffer from short-read length when
trying to infer full-length transcripts, or are restricted to predefined units of alternative splicing that
they quantify from local read evidence.

Instead of attempting to quantify individual outcomes of the splicing process such as local
splicing events or full-length transcripts, we propose to quantify alternative splicing using a sim-
plified probabilistic model of the underlying splicing process. Our model is based on the usage of
individual splice sites and can generate arbitrarily complex types of splicing patterns. In our im-
plementation, McSplicer, we estimate the parameters of our model using all read data at once and
we demonstrate in our experiments that this yields more accurate estimates compared to compet-
ing methods. Our model is able to describe multiple effects of splicing mutations using few, easy
to interpret parameters, as we illustrate in an experiment on RNA-seq data from autism spectrum
disorder patients.

Second, we propose RNA Ptr-Nets, a deep learning approach for predicting RNA splicing
branchpoints. RNA splicing requires three main signals i.e., the donor splice site (5’SS), the ac-
ceptor splice site (3’SS), and the branchpoint (BP) site. These three signals work together in a
two-step mechanism of RNA splicing. First, the pre-mRNA is cut at the donor site where the 5’
end of the intron is joined to the BP site and generates a lariat intermediate molecule. Then, the
last nucleotide of the intron at the 3’ end is cut, and the two exons are joined together while the
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intron lariat is degenerated quickly (see Fig. 1.1). BPs are mandatory signals in RNA splicing,
equally as important as acceptor and donor sites. Moreover, previous research shows that alterna-
tive BP selection plays a role in alternative splicing and diseases (Corvelo et al., 2010; Alsafadi
et al., 2016).

In theory, the position of BP can be determined using RNA-seq reads spanning the donor site
and BP junctions, however the intron lariat is degenerated quickly during RNA splicing which
makes such reads less frequent (Taggart et al., 2017). To date, human BP annotations are still
incomplete and only a small fraction of BPs is experimentally verified.

Over the past decade, many machine learning approaches have emerged to provide genome-
wide annotation of BPs in human gene introns using gene annotations and genomic sequence.
Those approaches either require genome annotation and a decent amount of feature engineering
prior to the training step or predict only a single BP site for each acceptor site (i.e., cannot annotate
all BPs within an intron).

Here, we introduce RNA Pointer Networks (RNA Ptr-Nets) based on the novel deep learning
architecture, Pointer Networks (Ptr-Nets) (Vinyals et al., 2015). RNA Ptr-Nets model aims to
predict all BPs associated with each acceptor site. Our model takes as input intronic sequences
and outputs pointers to BP positions with respect to the input sequence, further it does not require
genome annotation nor any feature engineering.

pre-mRNA
Exon 1

5' SS

Exon 2
AGGU AGA

AGAGA

G
U

AGAGA

G
U+spliced mRNA

(1)

(2)

3' SSBP

Figure 1.1: The two-step mechanism of RNA splicing. First, the pre-mRNA is cut at the 5’SS where the
5’ end of the intron is joined to the BP site and generates a lariat intermediate molecule. Then, the last
nucleotide of the intron at the 3’ end is cut, and the two exons are joined together while the intron lariat is
degenerated quickly.



CHAPTER 2

McSplicer: a probabilistic model for estimating splice site usage from RNA-seq
data

This chapter is adapted with minimal changes from the publication: Alqassem, Israa, Yash Son-
thalia, Erika Klitzke-Feser, Heejung Shim, and Stefan Canzar. “McSplicer: a probabilistic model
for estimating splice site usage from RNA-seq data.” Bioinformatics 37, no. 14 (2021): 2004-
2011.

Through alternative splicing (AS), a single gene can produce multiple mRNA transcripts, or
isoforms, that combine exons in alternative ways. Approximately 95% of human multi-exon
protein-coding genes undergo alternative splicing (Pan et al., 2008), creating a remarkably com-
plex set of transcripts that give specific functionalities to cells and tissues in a particular condition
or developmental stage.

RNA sequencing (RNA-seq) is routinely used in genome-wide transcript analysis. This tech-
nology produces short reads from which existing methods infer and quantify RNA splicing, broadly,
in one of two different ways. Methods either analyze full-length transcripts or focus on in-
dividual splicing events. Transcript assembly methods such as StringTie (Pertea et al., 2015),
CIDANE (Canzar et al., 2016), and CLASS (Song and Florea, 2013) aim to identify the set of
expressed full-length transcripts which in principle provides a complete picture of all splicing vari-
ations, see e.g. transcript t1-t5 in Fig. 2.1. The transcript assembly problem is, however, ill-posed
(Lacroix et al., 2008) and error-prone especially for complex genes expressing multiple transcript
isoforms (Hayer et al., 2015).

Event-based methods, therefore, focus on local splicing patterns such as the classical exon
skipping event denoted in Fig. 2.1, without a prior attempt to assemble or quantify full-length
transcripts. The relative abundance of different splicing outcomes that can potentially be shared
by multiple transcripts, can then be quantified using a simple metric such as percent spliced in
(PSI) (Venables et al., 2008). A notable exception is SUPPA (Alamancos et al., 2015) which
derives PSI values from quantified transcript abundances.

Event-based methods differ in the complexity of the units of AS they quantify. In the simplest
case, methods such as MISO (Katz et al., 2010), SUPPA, ASGAL (Denti et al., 2018), SpliceGra-
pher (Rogers et al., 2012), and SplAdder (Kahles et al., 2016) identify one of the canonical types of
AS, such as exon skipping, alternative 5’ and 3’ splice sites, intron retentions, and mutually exclu-
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t1
t2
t3

t5

t4

s1

classical exon skipping

s2

non-classical exon skipping

Figure 2.1: Complex alternative splicing involving 5 different transcripts. The two classical exon skipping
events between t1 and t5, and between t4 and t5 do not fully capture the overall complexity. The two exon
skippings marked in blue are not considered classical events and would not be reported by methods such as
SplAdder, since they also differ in the last exon. Methods such as MAJIQ generalize simple events to more
complex AS units that contain all introns sharing a common splice site. Two such AS units are required to
describe the simple exon skipping event marked in orange, one comprising three introns sharing donor s1
and one containing three different introns sharing acceptor s2.

sive exons (see Fig. 2.2). In Fig. 2.1, this definition would include the two simple exon skippings
between t1 and t5 and between t4 and t5, and mutually exclusive spliced exons in t1 and t4, clearly
underestimating the full AS complexity across t1-t5.

(a) Exon skipping

(c) Alternative donor

(b) Intron retention

(d) Alternative acceptor
 

Figure 2.2: Four types of simple alternative splicing events. Blue rectangles represent constitutive exon
or exonic segments. Orange rectangles represent alternatively spliced ones. (a) The usage of the marked
acceptor site defines the relative abundance of the inclusion of the skipped exon. (b) For intron retentions, the
usage of the marked splice site defines the relative abundance of the inclusion of the intron. For alternative
donors (c) and alternative acceptors (d), the usage of the marked donor and acceptor sites determine the
relative abundance of the two alternative events.

Compared to these simple types of splicing events, complex events involve multiple alternative
splice sites or exons and according to Vaquero-Garcia et al. (2016) constitute at least one-third of
AS events observed in human and mouse tissues. Methods such as JUM (Wang and Rio, 2018),
MAJIQ (Vaquero-Garcia et al., 2016) and the method proposed in Oesterreich et al. (2016), there-
fore consider AS units that generalize simple events to more complex patterns. They quantify the
relative usage of an arbitrary number of introns that share a common splice site. Since these AS
units capture only the common endpoints of alternative splicing patterns, such methods need to
quantify two AS units for a single exon skipping event (Fig. 2.1). LeafCutter (Li et al., 2018) and
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Whippet (Sterne-Weiler et al., 2017) add further introns to AS units. At the extreme end, Whippet
enumerates all possible transcript fragments that combine overlapping events and estimates their
relative abundance using an EM algorithm similar to full-length transcript quantification methods
such as kallisto (Bray et al., 2016).

PSGInfer (LeGault and Dewey, 2013) quantifies alternative splicing based on Probabilistic
Splice Graphs (PSGs). It assigns weights to the edges of a splicing graph (Heber et al., 2002)
using parameters that describe the splicing process, rather than focusing on individual outcomes
of the splicing processes such as local splicing events or full-length transcripts. The parameter
estimates can then be used to estimate transcript and processing event frequencies. Motivated
by the work by LeGault and Dewey (2013), we similarly aim to quantify alternative splicing by
building a probabilistic model as a simple approximation to the underlying splicing processes. In
constrast to PSG, however, our model employs the usages of annotated as well as novel splice sites
across all expressed transcripts to describe a simplified splicing process that has generated the set
of expressed transcripts. Traversing the linear ordering of all exons of a gene from 5’ to 3’, the
usage of each splice site specifies the probability with which the site is used as donor or acceptor
site. For example, the usage of acceptor s2 in Fig. 2.1 indicates the abundance of transcripts t1, t4,
and t5 that “use” the acceptor relative to the total output t1-t5 of the gene. Our model assumes that
splice site usages are independent of each other, which allows for a computationally more efficient
estimation of parameters compared to PSGInfer.

This model by definition can generate complex splicing patterns that do not rely on any prede-
fined simple or complex AS units as event-based methods like SplAdder, MAJIQ, or LeafCutter
do. At the same time, splice site usages that capture simultaneous changes in multiple isoforms
facilitate the interpretation of point mutations that disrupt splicing as is the case in many genetic
disorders (Anna and Monika, 2018). Instead of attempting to quantify each one of multiple possi-
ble effects on intron or even transcript level, a reduced splice site usage as computed by McSplicer
may directly reflect the weakening of a splice site by a point mutation in the consensus splice site
sequence that is responsible for these effects, as we illustrate in our experiments on RNA-seq data
from autism spectrum disorder patients (Section 2.3.4).

Furthermore, our method simultaneously estimates the model parameters, i.e. splice site us-
ages, using all reads mapped to a gene locus, often resulting in more accurate estimates compared
to event-based methods that use only reads directly supporting their parameters. We demonstrate
the improved accuracy of McSplicer compared to existing methods in our experiments.

2.1 Method overview

A typical RNA-seq analysis workflow that uses McSplicer to estimate the usage of splice sites
consists of the five steps illustrated in Fig. 2.3. After A) mapping reads in an RNA-seq sample to
a reference genome sequence using a read alignment tool such as STAR (Dobin et al., 2013) or
HISAT (Kim et al., 2015), we B) assemble reads to full-length transcripts using methods such as
StringTie (Pertea et al., 2015) or CLASS (Song and Florea, 2013) to identify annotated as well as
novel splice sites. Step B) can be omitted and instead a curated catalog of known transcripts may
be provided. In both cases, McSplicer does not rely on any transcript-level phasing of exons but
uses the extracted splice sites and transcription start (TSS) and end sites (TES) to C) partition a
gene into contiguous, non-overlapping segments. Segments are defined as minimal subsequences
of a gene’s exons and introns that are bounded by splice sites, TSS, or TES. The example shown
in Fig. 2.3 C contains 6 such segments. We count reads that overlap distinct combinations of
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Figure 2.3: McSplicer workflow summary. The main steps of the McSplicer analysis are: A) Map RNA-seq
reads to the reference genome sequence. B) Identify annotated as well as novel splice sites through the
reference-based assembly of transcripts using, e.g., StringTie (Pertea et al., 2015). C) Divide the gene into
non-overlapping segments bounded by splice sites, TSS and TES and count the number of reads mapping
to distinct combinations of segments. In this example, only the start of the first exon and the end of the last
exon are bounded by TSS and TES, respectively, the remaining exon start and end sites correspond to splice
sites. D) Estimate splice site usages using McSplicer. E) Leverage splice site usages in various kinds of
downstream analyses, such as the quantification of different types of alternative splicing events.

such segments. The precise sequence of segments a mapped read overlaps defines its mapping
signature (Canzar et al., 2016). Reads that map to the same signature are equivalent in terms of
the splicing pattern they represent. From signature counts, i.e. the number of reads mapping to the
same signature (see Fig. 2.4 for an illustration), McSplicer estimates splice site usages in step (D).
Splice site usages computed by McSplicer can be leveraged in E) different types of downstream
anlyses, including the quantification of various types of splicing events.

1 2 3 4

signature signature count
{1} 16
{1−2} 1
{1−3} 1
{1−4} 2
{1−2−4} 0
{1−3−4} 0
{2} 4
{2−4} 1
{3} 4
{3−4} 4
{4} 15

Figure 2.4: An illustrative example showing signatures with their corresponding read counts. McSplicer
estimates exon start and end site usages from these signagture counts rather than from individual read
alignments. In this example, three transcripts imply a partitioning into 6 segments, 4 of which are part of
exons and contain reads. Read colors indicate the originating transcript.

In the following sections, we introduce McSplicer’s model and algorithm for the estimation of
parameters in that model. A more detailed description of the model and algorithms is provided
in Section Method details 2.2. In the technical description of our model, we refer to the exon
boundaries at the 3′ (acceptor) splice site and at the TSS as exon start sites, and to the 5′ (donor)
splice sites and TES as exon end sites. The description of our model is based on single-end reads
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which we apply to paired-end reads in Section 2.3.3. In the next section, we recapitulate the
commonly assumed generative model of RNA-seq that also underlies the McSplicer model. For
the sake of simplicity, we introduce the model based on individual observed reads and explain how
parameters can be estimated from (much fewer) signature counts at the end of Section 2.1.3.

2.1.1 A generative model for RNA-seq reads

Consider the RNA-seq reads that mapped to a given gene. Reads are derived from one end of
each of N fragments and each read has length L. We assume that each fragment is independently
generated from one of the possible transcripts allowed by our model (see next Section). In this
section, we describe a generative model for the sequence of the n-th read Rn. The probability of Rn
can be written as

Pr(Rn) = ∑
t

Pr(Rn|Tn = t)Pr(Tn = t), (2.1)

where Tn represents the transcript from which Rn was generated. Following models in Li et al.
(2010) and LeGault and Dewey (2013), we assume that the probability of generating Rn from a
transcript t is proportional to the product of the (effective) length of the transcript, l(t), and the
relative abundance of the transcript, w(t):

Pr(Tn = t) =
l(t)w(t)

∑t ′ l(t ′)w(t ′)
. (2.2)

The effective length of a transcript denotes the number of possible start position of a sampled read
(Trapnell et al., 2010). We introduce Bn that denotes the start position of Rn in Tn, leading to

Pr(Rn|Tn = t) =
l(t)

∑
b=1

Pr(Rn|Bn = b,Tn = t)Pr(Bn = b|Tn = t). (2.3)

Making the simplifying assumption that Rn was generated uniformly across transcript t, we have

Pr(Bn = b|Tn = t) =
1

l(t)
. (2.4)

Pr(Rn|Bn = b,Tn = t) = 1 if Rn is identical to the sequence of length L starting at a position b in
transcript t, and this probability is 0 otherwise.

2.1.2 McSplicer: an inhomogeneous Markov chain to model the relative abundance of transcripts

We propose a new model for the relative abundance of transcripts expressed by a gene, denoted
by w(t) in the previous section. Suppose we have obtained in step (B) in the McSplicer workflow
(Fig. 2.3) exon start sites, s1, . . . ,sMs , and exon end sites, e1, . . . ,eMe , ordered by their occurrence in
forward direction of a given gene. Here, we do not include the start site of the first exon and the end
site of the last exon, since the former is treated differently in our model (see below) and the usage of
the latter is always equal to 1 in our model. All exon start and end sites partition the gene into non-
overlapping segments X1, . . . ,XM, where M = Ms+Me+1 and each segment is defined by a region
enclosed by splice sites or transcription start or end sites that occur consecutively along the genome
(see Fig. 2.3C and Fig. 2.5). We introduce a sequence of hidden variables, Z = (Z1, . . . ,ZM), where
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t3

t2

t1

s1 s2 s3 s4e1 e2 e3
X1 X3 X4 X5 X6 X7 X8X2

Figure 2.5: Example of hidden states representing 3 different transcripts. Five exon start sites and four
exon end sites divide the gene into eight segments. Note, however, that the TSS bounding X1 from
the left and the TES bounding X8 from the right are not labeled here since our model treats them dif-
ferently (see main text). Therefore, Ms = 4, Me = 3, and M = 8. The three sequences of states of Z,
(1,1,0,1,0,0,1,1),(0,1,0,0,0,1,1,1), and (1,1,0,0,0,0,1,0), represent the three transcripts t1, t2, and t3,
respectively.

Zi is a binary indicator for whether the i-th segment Xi is transcribed (Zi = 1). Then, a particular
transcript can be represented by a sequence of states for Z, as illustrated for transcripts t1, t2, t3 in
Fig. 2.5. Thus, we can model the relative abundance of transcripts by modelling the probability of
Z.

We use an inhomogeneous Markov chain to model the probability of the sequence of hidden
variables, Z = (Z1, . . . ,ZM). Specifically, the initial probability is given by

Pr(Z1 = 1) = π, (2.5)

where π represents the proportion of transcripts that contain the first segment. We model the
transition probability from Zi to Zi+1 for i = 1, . . . ,M−1 as follows. If two consecutive segments
Xi and Xi+1 are separated by an exon start site sm,

Pr(Zi+1 = 1|Zi = 0) = pm (2.6)
Pr(Zi+1 = 1|Zi = 1) = 1. (2.7)

If they are separated by an exon end site em,

Pr(Zi+1 = 0|Zi = 1) = qm (2.8)
Pr(Zi+1 = 0|Zi = 0) = 1. (2.9)

That is, if the current segment is transcribed (Zi = 1), the splicing process ignores an exon
start site (Equation 2.7), but it considers the potential usage of an exon end site em and decides to
use it, i.e. end the exon, with its usage probability qm (Equation 2.8). On the other hand, if the
current segment is not transcribed (Zi = 0), the splicing process ignores an exon end site (Equation
2.9), but it uses an exon start site sm with its usage probability pm (Equation 2.6). The parameters
p = (p1, . . . , pMs) and q = (q1, . . . ,qMe) represent probabilities of using the corresponding exon
start and end sites, respectively, given that each site is considered for potential usage. Throughout
the rest of this work, we refer to these usage probabilities simply as usages. Table 2.1 shows the
relative abundances defined by the proposed model for the three transcripts presented in Fig. 2.5.
A more detailed description is provided in Sections 2.2.1, 2.2.2 and 2.2.3.
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transcript t Z = (Z1, . . . ,Z8) w(t) = Pr(Z1, . . . ,Z8)

t1 z[1:8](1,1,0,1,0,0,1,1) π×1×q1× p2×q2× (1− p3)× p4× (1−q3)

t2 z[1:8](0,1,0,0,0,1,1,1) (1−π)× p1×q1× (1− p2)×1× p3×1× (1−q3)

t3 z[1:8](1,1,0,0,0,0,1,0) π×1×q1× (1− p2)×1× (1− p3)× p4×q3

Table 2.1: The relative abundances defined by the McSplicer model for the three transcripts presented in
Fig. 2.5.

2.1.3 Parameter estimation and uncertainty quantification

We use an EM algorithm to compute the maximum likelihood estimates for the model parameters
Θ = {π, p,q}, that is Θ̂ := argmaxΘ Pr(R1, . . . ,RN |Θ). The complete log likelihood in the EM
algorithm involves Pr(Rn,Bn = b,Tn = Z|Θ) for b ∈ {1, . . . , l(Z)} (Section 2.2.4). By combining
the generative model and the McSplicer model in the previous two sections, Pr(Rn,Bn = b,Tn =
Z|Θ) can be written as

Pr(Rn|Bn = b,Tn = Z)Pr(Bn = b|Tn = Z)Pr(Tn = Z|Θ)

=
1

l(Z)
l(Z)wΘ(Z)

∑Z′ l(Z′)wΘ(Z′)
=

wΘ(Z)
∑Z′ l(Z′)wΘ(Z′)

(2.10)

if Rn is identical to the sequence of length L starting at position b in transcript Z. Otherwise,
this probability is 0. The details of the application of the EM algorithm to the proposed model
are provided in Section 2.2.4. The EM algorithm uses several quantities that we compute using
dynamic programming, see Section 2.2.5. Also, all quantities required in our EM algorithm can be
computed using only signature counts (Section 2.2.4), so the input to McSplicer are the signature
counts rather than individual reads.

We quantify the uncertainty of our estimator Θ̂ using bootstrapping. Specifically, let c=(c j)
J
j=1

represent the signature counts over J signatures defined for a given gene, where the total signature
count equals the total read count in the gene, i.e., ∑J

j=1 c j = N. We draw B independent bootstrap
samples, c1, . . . ,cB, from a multinomial distribution:

cb ∼multinomial(
c1

N
, . . . ,

cJ

N
,N). (2.11)

Then, we compute B bootstrap estimators, Θ̂1, . . . ,Θ̂B, by applying our EM algorithm to each
bootstrap sample and use them to approximate the sampling distribution of our estimator Θ̂. In this
paper, we quantify the uncertainty of Θ̂ using a confidence interval computed from the approx-
imated sampling distribution. Other types of uncertainty quantification could easily be obtained
from the bootstrap estimators.

2.1.4 Simulated datasets and evaluation

We used Polyester (Frazee et al., 2015) to simulate reads from a human transcriptome with abun-
dances estimated from a real RNA-experiment (GEO accession GSM3094221) using RSEM (Li
and Dewey, 2011). Based on these ground truth expressions, we simulated data sets with varying
sequencing depth commonly observed in practice, including 20 million, 50 million, and 75 million
reads of 100bp length. Following the same strategy as Soneson et al. (2016), we randomly se-
lected a set of 1000 genes with at least two expressed transcripts and sufficiently high ground truth



10 2. McSplicer: a probabilistic model for estimating splice site usage from RNA-seq data

expression (gene-level read count per kilobase above 500). Among splice sites for which parame-
ters estimated by compared methods have the same meaning (comparable splice sites, introduced
in Section 2.3), we exclude from the analysis constitutive ones with true usage 1 and splice sites
that are not used by any of the expressed transcripts (usage 0). That is, only splice sites that are
alternatively used or not used by expressed transcripts are considered.

From the ground truth abundance of transcripts, we calculate the true usage of a splice site as
the relative contribution of transcripts using a given splice site to the total expression of a gene.
Specifically, let A(s) and B(s) denote subsets of transcripts in a gene G that either use or do not use
a particular splice site s, respectively. Then the true usage of splice site s is computed by

us =
∑t∈A(s)θt

∑t∈A(s)∪B(s)θt
=

∑t∈A(s)θt

∑t∈G θt
, (2.12)

where θt represents the true abundance of transcript t.
We quantify the accuracy of splice site usages inferred by each method by using the Kullback-

Leibler (KL) divergence. For a given splice site s, the two possible outcomes, whether or not a
transcript uses the splice site can be modelled by a Bernoulli distribution with the splice site usage
us, denoted by Bernoulli(us). Let ûs represent the estimated splice usage. Then, we measure the
accuracy of ûs using the KL divergence of Bernoulli(ûs) from Bernoulli(us):

DKL (Bernoulli(us)‖Bernoulli(ûs)) = us log
us

ûs
+(1−us) log

1−us

1− ûs
. (2.13)

All code and data necessary to reproduce the results of this simulation study are available at
https://github.com/canzarlab/McSplicer.

2.2 Method details

After introducing necessary notation in Section 2.2.1, we will introduce the inhomogeneous Markov
chain model of McSplicer in Section 2.2.2, present the likelihood of the model parameters in Sec-
tion 2.2.3, describe the EM algorithm for estimating the parameters in Section 2.2.4, and provide a
detailed description of algorithms to compute quantities used by the EM algorithm in Section 2.2.5.

2.2.1 Notations

In this section we introduce the notation used to describe our method McSplicer. As described
in the main part of this work, we assume that exon start and end sites for a gene are given. This
information can be obtained from known gene annotations or inferred from RNA-seq data using
methods such as StringTie. Suppose we have Ms exon start sites s1, . . . ,sMs , and Me exon end sites
e1, . . . ,eMe , excluding the start site of the first exon and the end site of the last exon. All exon
start and end sites partition the gene into M segments, X1, . . . ,XM, where M = Ms +Me + 1. We
introduce a sequence of hidden variables, Z = (Z1, . . . ,ZM), where Zi is an indicator for whether
segment Xi is part of a transcript 1 (Zi = 1) or not (Zi = 0).

We define a subpath s by a sequence of states for (Za, . . . ,Zb), 1 ≤ a ≤ b ≤ M. Specifically,
a subpath s = z[a:b](oa, . . . ,ob), where oi ∈ {0,1} for i = a, . . . ,b, is defined by Za = oa,Za+1 =

1We use terms transcript and isoform interchangeably to refer to a splice variant of a gene.
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Figure 2.6: Hidden variables for segments defined by 3 different transcripts. The three sequences
(1,1,0,1,0,0,1,1),(0,1,0,0,0,1,1,1), and (1,1,0,0,0,0,1,0) represent the three transcripts t1, t2, and t3,
respectively.

oa+1, . . . ,Zb = ob. In other words, a subpath s = z[a:b](oa, . . . ,ob) describes whether each of the
segments from Xa to Xb belongs to a transcript or not. Then, the probability of a subpath s is:

Pr(z[a:b](oa, . . . ,ob)) = Pr(Za = oa,Za+1 = oa+1, . . . ,Zb = ob), (2.14)

which is given by our inhomogeneous Markov chain model. A path t is a subpath with a = 1 and
b = M. A transcript can be represented by a path t, i.e., a sequence of states for Z = (Z1, . . . ,ZM).
Figure 2.6 shows an illustrative example of a gene with three transcripts which have four exon
start sites and three exon end sites. These exon start and end sites divide the gene into eight
segments (Ms = 4, Me = 3, and M = 8). For example, a path t = z[1:8](1,1,0,1,0,0,1,1) (i.e.,
Z = (1,1,0,1,0,0,1,1)) indicates transcript t1, and a subpath s = z[3:5](0,1,0) indicates a subpath
obtained from the same transcript t1.

We define the length of a subpath s = z[a:b](oa, . . . ,ob), denoted by l(s), by the number of bases
included as part of a transcript:

l(s) = l(z[a:b](oa, . . . ,ob)) = ∑
a≤i≤b:oi=1

l(Xi), (2.15)

where l(X j) is the number of bases in segment X j. In the example of Figure 2.6, let us consider a
subpath of the transcript t1, s = z[3:5](0,1,0). Then, l(s) = l(z[3:5](0,1,0)) = l(X4). Similarly, we
can define the length of a transcript (or a path), denoted by l(t), by the number of bases included
in the exonic regions of that transcript:

l(t) = l(z[1:M](o1, . . . ,oM)) = ∑
1≤i≤M:oi=1

l(Xi). (2.16)

In the example shown in Figure 2.6, transcript t1 has length l(t1) = l(z[1:8](1,1,0,1,0,0,1,1)) =
l(X1)+ l(X2)+ l(X4)+ l(X7)+ l(X8).

We use F(s) to denote the index of the first segment in a subpath s which is part of a transcript,
and use L(s) to denote the index of the last segment in a subpath s which is part of a transcript. In
the example shown in Figure 2.6, let us consider a subpath of t1, s = z[3:5](0,1,0). Then, F(s) = 4
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and L(s) = 4. For transcript t1 path t1 = z[1:8](1,1,0,1,0,0,1,1), F(t1) = 1 and L(t1) = 8. For
transcript t2, path t2 = z[1:8](0,1,0,0,0,1,1,1), F(t2) = 2 and L(t2) = 8. Similarly, for transcript t3
path t3 = z[1:8](1,1,0,0,0,0,1,0), F(t3) = 1 and L(t3) = 7.

2.2.2 An inhomogeneous Markov chain model

In this section, we describe an inhomogeneous Markov chain to model the relative abundance of
transcripts. We assume that Z = (Z1, . . . ,ZM) follows an inhomogeneous Markov chain. Specifi-
cally, for the first segment X1,

Pr(Z1 = 1) = π. (2.17)

For two consecutive segments Xi and Xi+1 for i = 1, . . . ,M−1 that are separated by exon start site
sm for m = 1, . . . ,Ms (i.e., i = I(sm), where I(sm) is the index of the segment which appears on the
left side of exon start site sm),

Pr(Zi+1 = 1|Zi = 0) = pm, (2.18)
Pr(Zi+1 = 1|Zi = 1) = 1. (2.19)

If they are separated by exon end site em for m = 1, . . . ,Me (i.e., i = I(em), where I(em) is the index
of the segment which appears on the left side of exon end site em),

Pr(Zi+1 = 0|Zi = 0) = 1, (2.20)
Pr(Zi+1 = 0|Zi = 1) = qm. (2.21)

With this transition probability, we do not allow transcripts where Zi = 1 and Zi+1 = 0 for i= I(sm),
or Zi = 0 and Zi+1 = 1 for i = I(em). The parameters p = (p1, . . . , pMs) and q = (q1, . . . ,qMe)
indicate probabilities of using exon start sites and exon end sites, respectively. Precisely, these are
conditional probabilities given that each site is considered for potential use. For example, with the
current segment being part of a transcript (i.e., Zi = 1), the splicing process ignores an exon start
site (i.e., Pr(Zi+1 = 1|Zi = 1) = 1 if i = I(sm)) while it considers an exon end site for potential use
(i.e., Pr(Zi+1 = 0|Zi = 1) = qm if i = I(em)). Table 2.1 lists probabilities for the three transcripts
(or paths) in Figure 2.6 under our Markov model. Furthermore, to handle different transcript start
and end sites within a gene, we introduce artificial starting and end points (i.e., reference points)
in the implementation of this model.

2.2.3 Likelihood of the parameters Θ = (π, p1, . . . , pMs ,q1, . . . ,qMe)

In this section we present the likelihood of the model parameters. Suppose we have RNA-seq reads
mapped to a particular gene. The reads are derived from one end of each of the N fragments and
each read has length L. We assume that each fragment is independently generated from one of
the possible transcripts allowed by our model. We denote the sequence of the n-th read as rn. Tn
represents the transcript from which rn was generated. Sn denotes the shortest subpath of Tn from
which rn is derived. Bn denotes the start position of rn in Tn. For example, Figure 2.7 shows that rn
was derived from the first transcript (i.e., Tn = t1), thus Tn = z[1:8](1,1,0,1,0,0,1,1). The shortest
subpath of Tn from which read n was derived is Sn = z[2:4](1,0,1).
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s1 s2 s3 s4e1 e2 e3
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exon end site
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exon start site

Figure 2.7: An example of a gene with three transcripts, the same as the one shown in Figure 2.6. Here,
read rn was derived from the first transcript (Tn = t1) and is compatible with our model. In contrast, rm is
not compatible with our model since the two segments X1 and X2 are separated by exon start site s1 and thus
our model does not allow Sm = z[1:4](1,0,0,1).

Assuming all rn are derived from transcripts that are allowed in our model (i.e., Pr(rn)> 0 for
all rn), we remove reads that are not compatible with our model (see Figure 2.7). The likelihood
of Θ can be written as:

Pr(r|Θ) =
N

∏
n=1

Pr(rn|Θ)

=
N

∏
n=1

[
∑
t

Pr(rn,Tn = t|Θ)
]

=
N

∏
n=1

[
∑
t

[
∑

(s,b):s⊂t
Pr(rn,Sn = s,Bn = b,Tn = t|Θ)

]]
where s⊂ t means s is a subpath of t,

=
N

∏
n=1

[
∑
t

[
∑

(s,b):s⊂t
Pr(rn|Sn = s,Bn = b)Pr(Sn = s,Bn = b|Tn = t)Pr(Tn = t|Θ)

]]
=

N

∏
n=1

[
∑
t

[
∑

(s,b):s⊂t,(s,b)→rn

1
1

l(t)
l(t)wΘ(t)

D(Θ)

]]
where (s,b)→ rn denotes that rn is the length L sequence starting at position b
in the concatenation of segments in s,

=
N

∏
n=1

[
∑
t

[
∑

(s,b):s⊂t,(s,b)→rn

wΘ(t)
D(Θ)

]]
,

(2.22)

where D(Θ) = ∑t l(t)wΘ(t). l(t) represents the (effective) length (Trapnell et al., 2010) of tran-
script t, and wΘ(t) represents the relative frequency (probability) of transcript t.

2.2.4 Parameter estimation using the EM algorithm

We use an EM algorithm to compute the maximum likelihood estimate for the model parame-
ters Θ = {π, p,q}, that is, Θ̂ := argmaxΘ Pr(r|Θ). In this section we describe the EM-steps to
obtain the MLE for our model parameters. Let Zn = (Zn

1 , . . . ,Z
n
M) represent the isoform Tn, that
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is, the path from which read n was derived. Then, the complete data likelihood, Pr(r,Z|Θ) =
∏N

n=1 Pr(rn,Zn|Θ), can be written as

N

∏
n=1

[
∑

(s,b):s⊂Zn

Pr(rn,sn = s,bn = b,Zn|Θ)
]

where s⊂ Zn means s is a subpath of the path Zn,

=
N

∏
n=1

[
∑

(s,b):s⊂Zn

Pr(rn|sn = s,bn = b)Pr(sn = s,bn = b|Zn)Pr(Zn|Θ)
]

=
N

∏
n=1

[
∑

(s,b):s⊂Zn,(s,b)→rn

1
1

l(Zn)

l(Zn)wΘ(Zn)

D(Θ)

]
=

N

∏
n=1

[
∑

(s,b):s⊂Zn,(s,b)→rn

wΘ(Zn)

D(Θ)

]
=

N

∏
n=1

[C(rn,Zn)wΘ(Zn)

D(Θ)

]

(2.23)

where C(rn,Zn) indicates the number of (s,b) in the isoform Tn (defined by Zn) which are matched
to rn. Then, we can rewrite it as

1
D(Θ)N

N

∏
n=1

[
C(rn,Zn)

[
π

Zn
1 (1−π)1−Zn

1
]

×
[ Ms

∏
m=1

p
(1−Zn

I(sm)
)(Zn

I(sm)+1)
m (1− pm)

(1−Zn
I(sm))(1−Zn

I(sm)+1)
]

×
[ Me

∏
m=1

q
(Zn

I(em)
)(1−Zn

I(em)+1)
m (1−qm)

(Zn
I(em))(Z

n
I(em)+1)

]]
.

(2.24)

And we can write a log likelihood logPr(r,Z|Θ) as

−N logD(Θ)+
N

∑
n=1

logC(rn,Zn)+
N

∑
n=1

Zn
1 logπ +

N

∑
n=1

(1−Zn
1) log(1−π)

+
N

∑
n=1

Ms

∑
m=1

[
(1−Zn

I(sm)
)(Zn

I(sm)+1) log pm

]
+

N

∑
n=1

Ms

∑
m=1

[
(1−Zn

I(sm)
)(1−Zn

I(sm)+1) log(1− pm)
]

+
N

∑
n=1

Me

∑
m=1

[
(Zn

I(em)
)(1−Zn

I(em)+1) logqm

]
+

N

∑
n=1

Me

∑
m=1

[
(Zn

I(em)
)(Zn

I(em)+1) log(1−qm)
]
.

(2.25)

Note that the transition probabilities in our model do not allow isoforms where ZI(sm) = 1 and
ZI(sm)+1 = 0 at any exon start site and ZI(em) = 0 and ZI(em)+1 = 1 at any exon end site, and C(rn,Zn)
does not depend on Θ.
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M-step

Let Θl = (π l, pl
1, . . . , pl

Ms
,ql

1, . . . ,q
l
Me
) represent the model parameter values at the l-th iteration of

the EM algorithm. Then, new parameter estimates at the (l + 1)-th iteration are the values of Θ
which maximize Q(Θ|Θl) :=EZ|r,Θl [logPr(r,Z|Θ)]. Let Θl+1 =(π l+1, pl+1

1 , . . . , pl+1
Ms

,ql+1
1 , . . . ,ql+1

Me
)

denote the parameter estimates at the (l +1)-th iteration, then

Θl+1 = argmaxΘQ(Θ|Θl),

= argmaxΘEZ|r,Θl [logPr(r,Z|Θ)].
(2.26)

We will describe how to compute Θl+1 in Section 2.2.4 (for pl+1
1 , . . . , pl+1

Ms
), Section 2.2.4 (for

ql+1
1 , . . . ,ql+1

Me
), and Section 2.2.4 (for π l+1).

pl+1
m for m = 1, . . . ,Ms

Let p′m = 1− pm for m = 1, . . . ,Ms, q′m = 1− qm for m = 1, . . . ,Me, and π ′ = 1− π . Then, the
Lagrangian function for maximizing Q(Θ|Θl) is proportional to

Λ =−N logD(Θ)+
N

∑
n=1

Pr(Zn
1 = 1|rn,Θl) logπ +

N

∑
n=1

Pr(Zn
1 = 0|rn,Θl) logπ

′

+
N

∑
n=1

Ms

∑
m=1

[
Pr((1−Zn

I(sm)
)(Zn

I(sm)+1) = 1|rn,Θl) log pm

]
+ sumN

n=1

Ms

∑
m=1

[
Pr((1−Zn

I(sm)
)(1−Zn

I(sm)+1) = 1|rn,Θl) log p′m
]

+
N

∑
n=1

Me

∑
m=1

[
Pr((Zn

I(em)
)(1−Zn

I(em)+1) = 1|rn,Θl) logqm

]
+

N

∑
n=1

Me

∑
m=1

[
Pr((Zn

I(em)
)(Zn

I(em)+1) = 1|rn,Θl) logq′m
]

−λ
π(π +π

′−1)−
Ms

∑
m=1

λ
s
m(pm + p′m−1)−

Me

∑
m=1

λ
e
m(qm +q′m−1).

(2.27)

We take derivatives with respect to pm and p′m for m = 1, . . . ,Ms and set them to zero, leading to

∂

∂ pm
Λ =−N

1
D(Θ)

∂D(Θ)

∂ pm
+

1
pm

N

∑
n=1

Pr((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|rn,Θl)−λ

s
m = 0,

∂

∂ p′m
Λ =−N

1
D(Θ)

∂D(Θ)

∂ p′m
+

1
p′m

N

∑
n=1

Pr((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1|rn,Θl)−λ

s
m = 0.

(2.28)

As D(Θ)=∑t l(t)wΘ(t)=E(l(T ))=E(l(Z)) depends on Θ, it is difficult to find solutions for these
equations. Borrowing an idea from LeGault and Dewey (2013), we use the fixed point iteration to
solve for Θ. Thus, λ s

m = 0 for m = 1, . . . ,Ms and the fixed point iteration uses the equation

pl+1
m = pm =

Am

Am +Bm
, (2.29)



16 2. McSplicer: a probabilistic model for estimating splice site usage from RNA-seq data

where

Am =
∑N

n=1 Pr((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|rn,Θl)

E(l(Z[1:I(sm)])|ZI(sm) = 0)+E(l(Z[I(sm)+1:M])|ZI(sm)+1 = 1)
,

Bm =
∑N

n=1 Pr((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1|rn,Θl)

E(l(Z[1:I(sm)])|ZI(sm) = 0)+E(l(Z[I(sm)+1:M])|ZI(sm)+1 = 0)
,

(2.30)

and Z[i: j] for i≤ j denote a subpath (Zi, . . . ,Z j).

Remark 1: pl+1
m can be computed using only signature counts instead of individual reads. Let

c = (c j)
J
j=1 represent the signature counts over J signatures. Reads mapping to the same signature

have the same subpath for Sn (i.e., the shortest subpath of Tn from which read n is derived). Suppose
rn and rn′ are reads mapping to the same j-th signature and s j represents a subpath corresponding
to the j-th signature. Then,

Pr((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|rn,Θl) = Pr((1−Zn

I(sm)
)(Zn

I(sm)+1) = 1|Sn = s j,Θl)

= Pr((1−Zn′
I(sm)

)(Zn′
I(sm)+1) = 1|Sn′ = s j,Θl)

= Pr((1−Zn′
I(sm)

)(Zn′
I(sm)+1) = 1|rn′,Θl).

(2.31)

Instead of computing Pr((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|rn,Θl) for all reads rn, we can compute them

using s j for j = 1, . . . ,J. Therefore, Am (and analogously Bm) can be computed using only signature
counts.

Remark 2: In the E-step (Section 2.2.4) we compute Pr((1− Zn
I(sm)

)(Zn
I(sm)+1) = 1|Sn = s j,Θl)

and Pr((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1|Sn = s j,Θl) for j = 1, . . . ,J.

Remark 3: Sections 2.2.5 and 2.2.5 provide more detailed explanations of quantities E(l(Z[1:I(sm)])|ZI(sm)=
0), E(l(Z[I(sm)+1:M])|ZI(sm)+1 = 1), E(l(Z[1:I(sm)])|ZI(sm) = 0), and E(l(Z[I(sm)+1:M])|ZI(sm)+1 = 0),
and describe how to compute them using dynamic programming.

ql+1
m for m = 1, . . . ,Me

Using a derivation similar to one for pl+1
m above, we can obtain the following result. Let

Cm =
∑N

n=1 Pr((Zn
I(em)

)(1−Zn
I(em)+1) = 1|rn,Θl)

E(l(Z[1:I(em)])|ZI(em) = 1)+E(l(Z[I(em)+1:M])|ZI(em)+1 = 0)
, (2.32)

Dm =
∑N

n=1 Pr((Zn
I(em)

)(Zn
I(em)+1) = 1|rn,Θl)

E(l(Z[1:I(em)])|ZI(em) = 1)+E(l(Z[I(em)+1:M])|ZI(em)+1 = 1)
. (2.33)

Then

ql+1
m =

Cm

Cm +Dm
. (2.34)
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Remark 1: Using a derivation similar to the one for pl+1
m above, we can show that ql+1

m can be
computed using only signature counts.

Remark 2: In the E-step (Section 2.2.4) we compute Pr((Zn
I(em)

)(1− Zn
I(em)+1) = 1|Sn = s j,Θl)

and Pr((Zn
I(em)

)(Zn
I(em)+1) = 1|Sn = s j,Θl).

Remark 3: Sections 2.2.5 and 2.2.5 provide more detailed explanations of quantities E(l(Z[1:I(em)])|ZI(em)=
1), E(l(Z[I(em)+1:M])|ZI(em)+1 = 0), E(l(Z[1:I(em)])|ZI(em) = 1), and E(l(Z[I(em)+1:M])|ZI(em)+1 = 1),
and describe how to compute them using dynamic programming.

π l+1

Using a derivation similar to one for pl+1
m above, we can obtain the following result. Let

E =
∑N

n=1 Pr(Zn
1 = 1|rn,Θl)

E(l(Z[1:M])|Z1 = 1)
, (2.35)

F =
∑N

n=1 Pr(Zn
1 = 0|rn,Θl)

E(l(Z[1:M])|Z1 = 0)
. (2.36)

Then

π
l+1 =

E
E +F

. (2.37)

Remark 1: Using a derivation similar to the one for pl+1
m above, we can show that π l+1 can be

computed using only signature counts.

Remark 2: In the E-step (Section 2.2.4) we compute Pr(Zn
1 = 1|Sn = s j,Θl) and Pr(Zn

1 = 0|Sn =

s j,Θl).

Remark 3: Section 2.2.5 provides more detailed explanations of quantities E(l(Z[1:M])|Z1 = 1)
and E(l(Z[1:M])|Z1 = 0), and describes how to compute them using dynamic programming.

E-step

Let c = (c j)
J
j=1 represent the signature counts over J signatures and s j represents a subpath corre-

sponding to the j-th signature.

Pr((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1|Sn = s j,Θl) =

Pr((1−Zn
I(sm)

)(Zn
I(sm)+1) = 1,Sn = s j|Θl)

Pr(Sn = s j|Θl)
,

=
Pr(Zn

I(sm)
= 0,Zn

I(sm)+1 = 1,Sn = s j|Θl)

Pr(Sn = s j|Θl)
,

(2.38)
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Pr((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1|Sn = s j,Θl) =

Pr((1−Zn
I(sm)

)(1−Zn
I(sm)+1) = 1,Sn = s j|Θl)

Pr(Sn = s j|Θl)
,

=
Pr(Zn

I(sm)
= 0,Zn

I(sm)+1 = 0,Sn = s j|Θl)

Pr(Sn = s j|Θl)
,

(2.39)

Pr((Zn
I(em)

)(Zn
I(em)+1) = 1|Sn = s j,Θl) =

Pr((Zn
I(em)

)(Zn
I(em)+1) = 1,Sn = s j|Θl)

Pr(Sn = s j|Θl)
,

=
Pr(Zn

I(em)
= 1,Zn

I(em)+1 = 1,Sn = s j|Θl)

Pr(Sn = s j|Θl)
,

(2.40)

Pr((Zn
I(em)

)(1−Zn
I(em)+1) = 1|Sn = s j,Θl) =

Pr((Zn
I(em)

)(1−Zn
I(em)+1) = 1,Sn = s j|Θl)

Pr(Sn = s j|Θl)
,

=
Pr(Zn

I(em)
= 1,Zn

I(em)+1 = 0,Sn = s j|Θl)

Pr(Sn = s j|Θl)
,

(2.41)

Pr(Zn
1 = 1|Sn = s j,Θl) =

Pr(Zn
1 = 1,Sn = s j|Θl)

Pr(Sn = s j|Θl)
, (2.42)

Pr(Zn
1 = 0|Sn = s j,Θl) =

Pr(Zn
1 = 0,Sn = s j|Θl)

Pr(Sn = s j|Θl)
, (2.43)

where

Pr(Sn = s j|Θl) = Pr(Zn
1 = 0,Sn = s j|Θl)+Pr(Zn

1 = 1,Sn = s j|Θl)

= Pr(Zn
1 = 0)Pr(Zn

F(s j)
= 1|Zn

1 = 0)Pr(Sn = s j|Zn
F(s j)

= 1)

+Pr(Zn
1 = 1)Pr(Zn

F(s j)
= 1|Zn

1 = 1)Pr(Sn = s j|Zn
F(s j)

= 1)

= (1−π)Pr(Zn
F(s j)

= 1|Zn
1 = 0)Pr(Sn = s j|Zn

F(s j)
= 1)+π Pr(Zn

F(s j)
= 1|Zn

1 = 1)Pr(Sn = s j|Zn
F(s j)

= 1).
(2.44)

Remark 1: We describe how to compute Pr(Sn = s j|Zn
F(s j)

= 1) in Section 2.2.5, Pr(Zn
I(sm)

=

0,Zn
I(sm)+1 = 1,Sn = s j|Θl) in Section 2.2.5, Pr(Zn

I(sm)
= 0,Zn

I(sm)+1 = 0,Sn = s j|Θl) in Section 2.2.5,

Pr(Zn
I(em)

= 1,Zn
I(em)+1 = 1,Sn = s j|Θl) in Section 2.2.5, Pr(Zn

I(em)
= 1,Zn

I(em)+1 = 0,Sn = s j|Θl) in

Section 2.2.5, and Pr(Zn
1 = 1,Sn = s j|Θl) and Pr(Zn

1 = 0,Sn = s j|Θl) in Section 2.2.5.

Remark 2: In Section 2.2.5 we describe the dynamic programming algorithm to compute Pr(Zn
F(s j)

=

1|Zn
1 = 0) and Pr(Zn

F(s j)
= 1|Zn

1 = 1).

Remark 3: Pr(Zn
1 = 0|Sn = s j,Θl) can also be computed as 1−Pr(Zn

1 = 1|Sn = s j,Θl).



2.2 Method details 19

2.2.5 Computation of quantities used by the EM algorithm

In this section we provide a detailed description of algorithms to compute quantities used by the
EM algorithm introduced in Section 2.2.4. Some quantities can be computed efficiently using
dynamic programming (DP).

Expected prefix lengths: lp(i, in) := E(l(Z[1:i])|Zi = 1) and lp(i,out) := E(l(Z[1:i])|Zi = 0) for the i-th
segment

The expected prefix lengths have been used in the M-step of the EM algorithm (see Section 2.2.4).
In this section we formally define them and describe how to compute them using dynamic pro-
gramming.

Definition

We define two types of the expected prefix length for the i-th segment, lp(i, in) and lp(i,out), as
follows. Let Z[1:i] denote a subpath which describes a sequence of states for (Z1, . . . ,Zi). Then, the
length of the subpath Z[1:i] is given by

l(Z[1:i]) = ∑
1≤ j≤i:Z j=1

l(X j), (2.45)

where l(X j) indicates the number of exonic bases in the segment X j. lp(i, in) is defined by the
expected length of the subpath Z[1:i] given that Xi is a part of a transcript (i.e., Zi = 1) and lp(i,out)
is defined by the expected length of the subpath Z[1:i] given that Xi is not a part of a transcript (i.e.,
Zi = 0). Specifically,

lp(i, in) = E(l(Z[1:i])|Zi = 1) (2.46)

lp(i,out) = E(l(Z[1:i])|Zi = 0). (2.47)

Computing expected prefix lengths by dynamic programming

We can compute the expected prefix lengths using dynamic programming as follows.

For i = 1,

lp(1, in) = l(X1) (2.48)
lp(1,out) = 0. (2.49)
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For i = 2, . . . ,M,

lp(i, in) = E(l(Z[1:i])|Zi = 1)

= l(Xi)+E(l(Z[1:(i−1)]),Zi−1 = 1|Zi = 1)+E(l(Z[1:(i−1)]),Zi−1 = 0|Zi = 1)

= l(Xi)+E(l(Z[1:(i−1)])|Zi−1 = 1,Zi = 1)Pr(Zi−1 = 1|Zi = 1)

+E(l(Z[1:(i−1)])|Zi−1 = 0,Zi = 1)Pr(Zi−1 = 0|Zi = 1)

because Z[1:(i−1)] and Zi are independent conditional on Zi−1

= l(Xi)+E(l(Z[1:(i−1)])|Zi−1 = 1)Pr(Zi−1 = 1|Zi = 1)

+E(l(Z[1:(i−1)])|Zi−1 = 0)Pr(Zi−1 = 0|Zi = 1)

= l(Xi)+ lp(i−1, in)
Pr(Zi−1 = 1)Pr(Zi = 1|Zi−1 = 1)

Pr(Zi = 1)

+ lp(i−1,out)
Pr(Zi−1 = 0)Pr(Zi = 1|Zi−1 = 0)

Pr(Zi = 1)
.

(2.50)

Similarly,

lp(i,out) = E(l(Z[1:i])|Zi = 0)

= E(l(Z[1:(i−1)]),Zi−1 = 1|Zi = 0)+E(l(Z[1:(i−1)]),Zi−1 = 0|Zi = 0)

= lp(i−1, in)
Pr(Zi−1 = 1)Pr(Zi = 0|Zi−1 = 1)

Pr(Zi = 0)

+ lp(i−1,out)
Pr(Zi−1 = 0)Pr(Zi = 0|Zi−1 = 0)

Pr(Zi = 0)
.

(2.51)

Remark 1: If segments Xi−1 and Xi are separated by exon start site sm (i.e., i−1 = I(sm)),

Pr(Zi = 1|Zi−1 = 0) = pm (2.52)
Pr(Zi = 1|Zi−1 = 1) = 1, (2.53)
Pr(Zi = 0|Zi−1 = 0) = 1− pm (2.54)
Pr(Zi = 0|Zi−1 = 1) = 0, (2.55)

and if segments Xi−1 and Xi are separated by exon end site em (i.e., i−1 = I(em)),

Pr(Zi = 1|Zi−1 = 0) = 0 (2.56)
Pr(Zi = 1|Zi−1 = 1) = 1−qm, (2.57)
Pr(Zi = 0|Zi−1 = 0) = 1 (2.58)
Pr(Zi = 0|Zi−1 = 1) = qm. (2.59)

Remark 2: Section 2.2.5 describes the dynamic programming algorithm to compute Pr(Zi = 0)
and Pr(Zi = 1) for i = 1, . . . ,M.
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Expected suffix lengths: ls(i, in) := E(l(Z[i:M])|Zi = 1) and ls(i,out) := E(l(Z[i:M])|Zi = 0) for the i− th
segment

The expected suffix lengths have been used in the M-step of the EM algorithm (see Section 2.2.4).
In this section we formally define them and describe how to compute them using dynamic pro-
gramming.

Definition

We define two types of expected suffix length for the i− th segment, ls(i, in) and ls(i,out), as
follows. Let Z[i:M] denote a subpath which describes a sequence of states for (Zi, . . . ,ZM). ls(i, in)
is defined by the expected length of the subpath Z[i:M] given that Xi is a part of an isoform (i.e.,
Zi = 1) and ls(i,out) is defined by the expected length of the subpath Z[i:M] given that Xi is not a
part of an isoform (i.e., Zi = 0). Specifically,

ls(i, in) = E(l(Z[i:M])|Zi = 1) (2.60)

ls(i,out) = E(l(Z[i:M])|Zi = 0). (2.61)

Computing expected suffix lengths by dynamic programming

We can compute the expected suffix lengths using dynamic programming as follows.

For i = 1, . . . ,M−1,

ls(i, in) = E(l(Z[i:M])|Zi = 1)

= l(Xi)+E(l(Z[(i+1):M]),Zi+1 = 1|Zi = 1)+E(l(Z[(i+1):M]),Zi+1 = 0|Zi = 1)

= l(Xi)+E(l(Z[(i+1):M])|Zi+1 = 1,Zi = 1)Pr(Zi+1 = 1|Zi = 1)

+E(l(Z[(i+1):M])|Zi+1 = 0,Zi = 1)Pr(Zi+1 = 0|Zi = 1)

because Z[(i+1):M] and Zi are independent conditional on Zi+1

= l(Xi)+E(l(Z[(i+1):M])|Zi+1 = 1)Pr(Zi+1 = 1|Zi = 1)

+E(l(Z[(i+1):M])|Zi+1 = 0)Pr(Zi+1 = 0|Zi = 1)

= l(Xi)+ ls(i+1, in)Pr(Zi+1 = 1|Zi = 1)
+ ls(i+1,out)Pr(Zi+1 = 0|Zi = 1).

(2.62)

Similarly

ls(i,out) = E(l(Z[i:M])|Zi = 0)

= E(l(Z[(i+1):M]),Zi+1 = 1|Zi = 0)+E(l(Z[(i+1):M]),Zi+1 = 0|Zi = 0)

= E(l(Z[(i+1):M])|Zi+1 = 1,Zi = 0)Pr(Zi+1 = 1|Zi = 0)

+E(l(Z[(i+1):M])|Zi+1 = 0,Zi = 0)Pr(Zi+1 = 0|Zi = 0)

= ls(i+1, in)Pr(Zi+1 = 1|Zi = 0)
+ ls(i+1,out)Pr(Zi+1 = 0|Zi = 0).

(2.63)

And for i = M,

ls(M, in) = l(XM) (2.64)
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ls(M,out) = 0. (2.65)

Remark 1: For the computation of Pr(Zi = 1|Zi−1 = 0), Pr(Zi = 1|Zi−1 = 1), Pr(Zi = 0|Zi−1 = 0),
and Pr(Zi = 0|Zi−1 = 1), see Remark 1 in Section 2.2.5.

Computing Pr(Zi = 1) and Pr(Zi = 0) using dynamic programming

The probability that segment Xi is part of a transcript, Pr(Zi = 1), and the probability that segment
Xi is not part of a transcript, Pr(Zi = 0), have been used in the dynamic program to compute the
expected prefix lengths in Section 2.2.5. We can compute Pr(Zi = 1) and Pr(Zi = 0) using dynamic
programming as follows.

For i = 1,

Pr(Z1 = 0) = 1−π, (2.66)
Pr(Z1 = 1) = π. (2.67)

For i = 2, . . . ,M,

Pr(Zi = 1) = Pr(Zi−1 = 1)Pr(Zi = 1|Zi−1 = 1)+Pr(Zi−1 = 0)Pr(Zi = 1|Zi−1 = 0), (2.68)

Pr(Zi = 0) = 1−Pr(Zi = 1), or equivalently
= Pr(Zi−1 = 1)Pr(Zi = 0|Zi−1 = 1)+Pr(Zi−1 = 0)Pr(Zi = 0|Zi−1 = 0),

(2.69)

Remark 1: For the computation of Pr(Zi = 1|Zi−1 = 0), Pr(Zi = 1|Zi−1 = 1), Pr(Zi = 0|Zi−1 = 0),
and Pr(Zi = 0|Zi−1 = 1), see Remark 1 in Section 2.2.5.

Computing Pr(Z j = 1|Zi = 1), Pr(Z j = 0|Zi = 1), Pr(Z j = 1|Zi = 0), and Pr(Z j = 0|Zi = 0) for 1≤ i≤ j≤M
using dynamic programming

The E-step in Section 2.2.4 used Pr(Zn
j = 1|Zn

1 = 0) and Pr(Zn
j = 1|Zn

1 = 0) for j = 1, . . . ,M to
compute Pr(Sn = s j|Θl). We also use Pr(Zn

j = 1|Zn
i = 1), Pr(Zn

j = 0|Zn
i = 1), Pr(Zn

j = 1|Zn
i = 0),

and Pr(Zn
j = 0|Zn

i = 0) for 1≤ i≤ j ≤M in Sections 2.2.5, 2.2.5, 2.2.5, 2.2.5, and 2.2.5. Here,
we describe their computation using dynamic programming (DP). As these quantities are identical
for all reads rn, we drop superscript n in this section for simplicity.

First, let us denote the probability of Z j conditional on Zi as follows. For 1≤ i≤ j ≤M,

f11(i, j) := Pr(Z j = 1|Zi = 1) (2.70)
f10(i, j) := Pr(Z j = 0|Zi = 1) (2.71)
f01(i, j) := Pr(Z j = 1|Zi = 0) (2.72)
f00(i, j) := Pr(Z j = 0|Zi = 0). (2.73)

We can compute these quantities using DP as follows.
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When i = j

f11(i, j) := Pr(Z j = 1|Zi = 1) = 1 (2.74)
f10(i, j) := Pr(Z j = 0|Zi = 1) = 0 (2.75)
f01(i, j) := Pr(Z j = 1|Zi = 0) = 0 (2.76)
f00(i, j) := Pr(Z j = 0|Zi = 0) = 1. (2.77)

When i < j

If two segments X j−1 and X j are separated by an exon start site sm (i.e., j−1 = I(sm)):

f11(i, j) := Pr(Z j = 1|Zi = 1) =

{
1 if i = j−1
f11(i, j−1)+ f10(i, j−1)pm if i < j−1,

(2.78)

because

Pr(Z j = 1|Zi = 1)
= Pr(Z j = 1,Z j−1 = 1|Zi = 1)+Pr(Z j = 1,Z j−1 = 0|Zi = 1)
= Pr(Z j = 1|Z j−1 = 1,Zi = 1)Pr(Z j−1 = 1|Zi = 1)+Pr(Z j = 1|Z j−1 = 0,Zi = 1)Pr(Z j−1 = 0|Zi = 1)
= Pr(Z j = 1|Z j−1 = 1)Pr(Z j−1 = 1|Zi = 1)+Pr(Z j = 1|Z j−1 = 0)Pr(Z j−1 = 0|Zi = 1)
= f11(i, j−1)+ pm f10(i, j−1).

(2.79)

Similarly,

f10(i, j) := Pr(Z j = 0|Zi = 1) =

{
0 if i = j−1
f10(i, j−1)(1− pm) if i < j−1.

(2.80)

f01(i, j) := Pr(Z j = 1|Zi = 0) =

{
pm if i = j−1
f01(i, j−1)+ f00(i, j−1)pm if i < j−1.

(2.81)

f00(i, j) := Pr(Z j = 0|Zi = 0) =

{
1− pm if i = j−1
f00(i, j−1)(1− pm) if i < j−1.

(2.82)

If two segments X j−1 and X j are separated by an exon end site em (i.e., j−1 = I(em)):

f11(i, j) := Pr(Z j = 1|Zi = 1) =

{
1−qm if i = j−1
f11(i, j−1)(1−qm) if i < j−1.

(2.83)

f10(i, j) := Pr(Z j = 0|Zi = 1) =

{
qm if i = j−1
f10(i, j−1)+ f11(i, j−1)qm if i < j−1.

(2.84)

f01(i, j) := Pr(Z j = 1|Zi = 0) =

{
0 if i = j−1
f01(i, j−1)(1−qm) if i < j−1.

(2.85)

f00(i, j) := Pr(Z j = 0|Zi = 0) =

{
1 if i = j−1
f00(i, j−1)+ f01(i, j−1)qm if i < j−1.

(2.86)
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X1 X3 X4 X5 X6 X7
s1 s3e1 e2 e3

X2

rn

s2
p1 p3q1 q2 q3p2

Figure 2.8: In this example, s = z[2:5](1,1,0,1) and w(s) = Pr(Z3 = 1,Z4 = 0,Z5 = 1|Z2 = 1) = 1 ·q1 · p3

Computation of w(s) = Pr(S = s|ZF(s) = 1)

The E-step in Section 2.2.4 used Pr(Sn = s|Zn
F(s)= 1) to compute Pr(Sn = s|Θl). These probabilities

are also used in Sections 2.2.5, 2.2.5, 2.2.5, 2.2.5, and 2.2.5. Here we describe in detail how to
compute them. As these quantities are identical for all reads rn, we drop index n in this section for
simplicity.

We use w(s) to denote the probability of S = s conditional on XF(s) is a part of an isoform. Let
a subpath s = z[a:b](oa, . . . ,ob). Due to the definition of S, that is the shortest subpath of T from
which a read is derived, oa = 1,ob = 1,F(s) = a and L(s) = b.

w(s) = Pr(S = s|ZF(s) = 1)

=
Pr(S = s)

Pr(ZF(s) = 1)

=
Pr(Za = oa,Za+1 = oa+1, . . . ,Zb = ob)

Pr(Za = 1)
= Pr(Za+1 = oa+1, . . . ,Zb = ob|Za = 1).

(2.87)

Moreover,

w(s) = Pr(Za+1 = oa+1, . . . ,Zb = ob|Za = 1)

=
b−1

∏
i=a

Pr(Zi+1 = oi+1|Zi = oi)

= ∏
sm:a≤I(sm)<b

p
(1−oI(sm))(o[I(sm)+1])
m (1− pm)

(1−oI(sm))(1−o[I(sm)+1])

× ∏
em:a≤I(em)<b

q
(oI(em))(1−o[I(em)+1])
m (1−qm)

(oI(em))(o[I(em)+1]).

(2.88)

In the example of Figure 2.8, s = z[2:5](1,1,0,1). So a = 2,b = 5,oa = 1,ob = 1,F(s) = 2 and
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L(s) = 5. Thus,

w(s) = Pr(Z3 = 1,Z4 = 0,Z5 = 1|Z2 = 1)
= Pr(Z3 = 1|Z2 = 1)Pr(Z4 = 0|Z3 = 1)Pr(Z5 = 1|Z4 = 0)
= 1 ·q1 · p3

or,

= ∏
sm:2≤I(sm)<5

p
(1−oI(sm))(o[I(sm)+1])
m (1− pm)

(1−oI(sm))(1−o[I(sm)+1])

× ∏
em:2≤I(em)<5

q
(oI(em))(1−o[I(em)+1])
m (1−qm)

(oI(em))(o[I(em)+1])

= ∏
sm:s2,s3

p
(1−oI(sm))(o[I(sm)+1])
m (1− pm)

(1−oI(sm))(1−o[I(sm)+1])

× ∏
em:e1

q
(oI(em))(1−o[I(em)+1])
m (1−qm)

(oI(em))(o[I(em)+1])

= p(1−1)(1)
2 (1− p2)

(1−1)(1−1)p(1−0)(1)
3 (1− p3)

(1−0)(1−1)

×q(1)(1−0)
1 (1−q1)

(1)(0)

= 1 · p3×q1.

(2.89)

Computation of Pr(Zn
I(sm)

= 0,Zn
I(sm)+1 = 1,Sn = s)

The E-step in Section 2.2.4 used Pr(Zn
I(sm)

= 0,Zn
I(sm)+1 = 1,Sn = s). Here, we describe how to

compute these probabilities for the different cases when an exon start site sm appears to the left, to
the right, or within a subpath s. Figure 2.9 illustrates the different cases. As these quantities are
identical for all reads rn, we drop index n in this section for simplicity.

case 1: I(sm)< F(s)

As shown in Figure 2.9, an exon start site sm appears left side of a subpath s = z[a:b](oa, . . . ,ob).

Pr(ZI(sm) = 0,ZI(sm)+1 = 1,S = s)

= Pr(Z1 = 0,ZI(sm) = 0,ZI(sm)+1 = 1,S = s)+Pr(Z1 = 1,ZI(sm) = 0,ZI(sm)+1 = 1,S = s)

= Pr(Z1 = 0)Pr(ZI(sm) = 0|Z1 = 0)Pr(ZI(sm)+1 = 1|ZI(sm) = 0)Pr(ZF(s) = 1|ZI(sm)+1 = 1)Pr(S = s|ZF(s) = 1)

+Pr(Z1 = 1)Pr(ZI(sm) = 0|Z1 = 1)Pr(ZI(sm)+1 = 1|ZI(sm) = 0)Pr(ZF(s) = 1|ZI(sm)+1 = 1)Pr(S = s|ZF(s) = 1)

= (1−π) f00(1, I(sm))pm f11(I(sm)+1,F(s))w(s)+π f10(1, I(sm))pm f11(I(sm)+1,F(s))w(s)

=
[
(1−π) f00(1, I(sm))+π f10(1, I(sm))

]
× pm f11(I(sm)+1,F(s))w(s),

(2.90)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.
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Sm

Case 1: I(sm) < F(s)

ZI(sm) = 0, ZI(sm)+1 = 1   

ZI(sm) = 0, ZI(sm)+1 = 0   

Case 1: I(sm) < F(s) -1

Case 2: L(s) < I(sm)

Sm

Case 3 or 4: F(s) ≤ I(sm) < L(s)

rn

Case 4 Case 4

Case 3

Case 5: L(s) = I(sm)

... ...

Case 2: L(s) < I(sm)

Case 3 or 4: F(s) ≤ I(sm) < L(s)

a = F(s) b = L(s)

Case 4
Case 3

Case 4
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Figure 2.9: Visualization of the different cases considered for computing Pr(Zn
I(sm)

= 0,Zn
I(sm)+1 = 1,Sn = s)

in the upper part, and Pr(Zn
I(sm)

= 0,Zn
I(sm)+1 = 0,Sn = s) in the lower part. Arrows from each case point to

an exon start site or a set of exon start sites. a and b represent the indices of the first and last segments of
the subpath Sn = s from which read rn is derived. In the upper part for Pr(Zn

I(sm)
= 0,Zn

I(sm)+1 = 1,Sn = s),
an exon start site sm appears to the left of subpath s (case 1), to the right of s (cases 2 and 5), or within s
(cases 3 and 4). We do not allow for cases 4 and 5 where Zn

I(sm)
= 0 and Zn

I(sm)+1 = 1 are not compatible with
subpath s. In the lower part for Pr(Zn

I(sm)
= 0,Zn

I(sm)+1 = 0,Sn = s), sm appears to the left of s (cases 1 and
5), to the right of s (cases 2 and 5), or within s (cases 3 and 4). We do not allow for cases 4 and 5 where
Zn

I(sm)
= 0 and Zn

I(sm)+1 = 0 are not compatible with subpath s.
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case 2: L(s)< I(sm)

As shown in Figure 2.9, sm appears right side of the subpath s = z[a:b](oa, . . . ,ob).

Pr(S = s,ZI(sm) = 0,ZI(sm)+1 = 1)

= Pr(Z1 = 0,S = s,ZI(sm) = 0,ZI(sm)+1 = 1)+Pr(Z1 = 1,S = s,ZI(sm) = 0,ZI(sm)+1 = 1)

= Pr(Z1 = 0)Pr(ZF(s) = 1|Z1 = 0)Pr(S = s|ZF(s) = 1)Pr(ZI(sm) = 0|ZL(s) = 1)Pr(ZI(sm)+1 = 1|ZI(sm) = 0)

+Pr(Z1 = 1)Pr(ZF(s) = 1|Z1 = 1)Pr(S = s|ZF(s) = 1)Pr(ZI(sm) = 0|ZL(s) = 1)Pr(ZI(sm)+1 = 1|ZI(sm) = 0)

= (1−π) f01(1,F(s))w(s) f10(L(s), I(sm))pm +π f11(1,F(s))w(s) f10(L(s), I(sm))pm

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s) f10(L(s), I(sm))pm,

(2.91)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 3: F(s)≤ I(sm)< L(s) and (ZI(sm) = 0,ZI(sm)+1 = 1) is a subset of s

A subpath s = z[a:b](oa, . . . ,ob) can be represented by (Za = oa,Za+1 = oa+1, . . . ,Zb = ob). If
the subpath s contains (ZI(sm) = 0,ZI(sm)+1 = 1), then (ZI(sm) = 0,ZI(sm)+1 = 1) is a subset of s
(i.e., (ZI(sm) = 0,ZI(sm)+1 = 1) ⊂ s). As shown in Figure 2.9, sm appears inside of the subpath
s = z[a:b](oa, . . . ,ob).

Pr(S = s,ZI(sm) = 0,ZI(sm)+1 = 1)

= Pr(S = s)
= Pr(Z1 = 0,S = s)+Pr(Z1 = 1,S = s)
= Pr(Z1 = 0)Pr(ZF(s) = 1|Z1 = 0)Pr(S = s|ZF(s) = 1)+Pr(Z1 = 1)Pr(ZF(s) = 1|Z1 = 1)Pr(S = s|ZF(s) = 1)

= (1−π) f01(1,F(s))w(s)+π f11(1,F(s))w(s)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s),

(2.92)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 4: F(s)≤ I(sm)< L(s) and (ZI(sm) = 0,ZI(sm)+1 = 1) is not a subset of s

In this case, ZI(sm) = 0 and ZI(sm)+1 = 1 are not compatible with subpath s.

Pr(S = s,ZI(sm) = 0,ZI(sm)+1 = 1) = 0 (2.93)

case 5: I(sm) = L(s)

In this case, ZI(sm) = 0 and ZI(sm)+1 = 1 are not compatible with subpath s.

Pr(S = s,ZI(sm) = 0,ZI(sm)+1 = 1) = 0 (2.94)

Computation of Pr(Zn
I(sm)

= 0,Zn
I(sm)+1 = 0,Sn = s)

The E-step in Section 2.2.4 used Pr(Zn
I(sm)

= 0,Zn
I(sm)+1 = 0,Sn = s). Here, we describe how to

compute these probabilities for the different cases when an exon start site sm appears to the left, to
the right, or within a subpath s. Figure 2.9 illustrates the different cases. As these quantities are
identical for all reads rn, we drop index n in this section for simplicity.
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case 1: I(sm)< F(s)−1

As shown in Figure 2.9, an exon start site sm appears left side of a subpath s = z[a:b](oa, . . . ,ob).

Pr(ZI(sm) = 0,ZI(sm)+1 = 0,S = s)

= Pr(Z1 = 0,ZI(sm) = 0,ZI(sm)+1 = 0,S = s)+Pr(Z1 = 1,ZI(sm) = 0,ZI(sm)+1 = 0,S = s)

= Pr(Z1 = 0)Pr(ZI(sm) = 0|Z1 = 0)Pr(ZI(sm)+1 = 0|ZI(sm) = 0)Pr(ZF(s) = 1|ZI(sm)+1 = 0)Pr(S = s|ZF(s) = 1)

+Pr(Z1 = 1)Pr(ZI(sm) = 0|Z1 = 1)Pr(ZI(sm)+1 = 0|ZI(sm) = 0)Pr(ZF(s) = 1|ZI(sm)+1 = 0)Pr(S = s|ZF(s) = 1)

= (1−π) f00(1, I(sm))(1− pm) f01(I(sm)+1,F(s))w(s)+π f10(1, I(sm))(1− pm) f01(I(sm)+1,F(s))w(s)

=
[
(1−π) f00(1, I(sm))+π f10(1, I(sm))

]
× (1− pm) f01(I(sm)+1,F(s))w(s),

(2.95)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 2: L(s)< I(sm)

As shown in Figure 2.9, sm appears right side of a subpath s = z[a:b](oa, . . . ,ob).

Pr(S = s,ZI(sm) = 0,ZI(sm)+1 = 0)

= Pr(Z1 = 0,S = s,ZI(sm) = 0,ZI(sm)+1 = 0)+Pr(Z1 = 1,S = s,ZI(sm) = 0,ZI(sm)+1 = 0)

= Pr(Z1 = 0)Pr(ZF(s) = 1|Z1 = 0)Pr(S = s|ZF(s) = 1)Pr(ZI(sm) = 0|ZL(s) = 1)Pr(ZI(sm)+1 = 0|ZI(sm) = 0)

+Pr(Z1 = 1)Pr(ZF(s) = 1|Z1 = 1)Pr(S = s|ZF(s) = 1)Pr(ZI(sm) = 0|ZL(s) = 1)Pr(ZI(sm)+1 = 0|ZI(sm) = 0)

= (1−π) f01(1,F(s))w(s) f10(L(s), I(sm))(1− pm)+π f11(1,F(s))w(s) f10(L(s), I(sm))(1− pm)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s) f10(L(s), I(sm))(1− pm),

(2.96)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 3: F(s)≤ I(sm)< L(s) and (ZI(sm) = 0,ZI(sm)+1 = 0) is a subset of s

As shown in Figure 2.9, sm appears inside of a subpath s = z[a:b](oa, . . . ,ob).

Pr(S = s,ZI(sm) = 0,ZI(sm)+0 = 1)

= Pr(S = s)
= Pr(Z1 = 0,S = s)+Pr(Z1 = 1,S = s)
= Pr(Z1 = 0)Pr(ZF(s) = 1|Z1 = 0)Pr(S = s|ZF(s) = 1)+Pr(Z1 = 1)Pr(ZF(s) = 1|Z1 = 1)Pr(S = s|ZF(s) = 1)

= (1−π) f01(1,F(s))w(s)+π f11(1,F(s))w(s)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s),

(2.97)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 4: F(s)≤ I(sm)< L(s) and (ZI(sm) = 0,ZI(sm)+1 = 0) is not a subset of s

In this case, ZI(sm) = 0 and ZI(sm)+1 = 0 are not compatible with subpath s.

Pr(s,ZI(sm) = 0,ZI(sm)+1 = 0) = 0 (2.98)
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case 5: I(sm) = F(s)−1 or I(sm) = L(s)

In this case, ZI(sm) = 0 and ZI(sm)+1 = 0 are not compatible with subpath s.

Pr(s,ZI(sm) = 0,ZI(sm)+1 = 0) = 0 (2.99)

Computation of Pr(Zn
I(em)

= 1,Zn
I(em)+1 = 1,Sn = s)

The E-step in Section 2.2.4 used Pr(Zn
I(em)

= 1,Zn
I(em)+1 = 1,Sn = s). Here, we describe how to

compute these probabilities for the different cases when an exon end site em appears to the left, to
the right, or within a subpath s. Figure 2.10 illustrates the different cases. As these quantities are
identical for all reads rn, we drop index n in this section for simplicity.

case 1: I(em)< F(s)

As shown in Figure 2.10, an exon end site em appears left side of a subpath s = z[a:b](oa, . . . ,ob).

Pr(ZI(em) = 1,ZI(em)+1 = 1,S = s)

= Pr(Z1 = 0,ZI(em) = 1,ZI(em)+1 = 1,S = s)+Pr(Z1 = 1,ZI(em) = 1,ZI(em)+1 = 1,S = s)

= (1−π) f01(1, I(em))(1−qm) f11(I(em)+1,F(s))w(s)+π f11(1, I(em))(1−qm) f11(I(em)+1,F(s))w(s)

=
[
(1−π) f01(1, I(em))+π f11(1, I(em))

]
× (1−qm) f11(I(em)+1,F(s))w(s),

(2.100)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 2: L(s)≤ I(sm)

As shown in Figure 2.10, em appears right side of a subpath s = z[a:b](oa, . . . ,ob).

Pr(S = s,ZI(em) = 1,ZI(em)+1 = 1)

= Pr(Z1 = 0,S = s,ZI(em) = 1,ZI(em)+1 = 1)+Pr(Z1 = 1,S = s,ZI(em) = 1,ZI(em)+1 = 1)

= (1−π) f01(1,F(s))w(s) f11(L(s), I(em))(1−qm)+π f11(1,F(s))w(s) f11(L(s), I(em))(1−qm)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s) f11(L(s), I(em))(1−qm),

(2.101)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 3: F(s)≤ I(em)< L(s) and (ZI(em) = 1,ZI(em)+1 = 1) is a subset of s

As shown in Figure 2.10, em appears inside of a subpath s = z[a:b](oa, . . . ,ob).

Pr(S = s,ZI(em) = 1,ZI(em)+1 = 1)

= Pr(S = s)
= Pr(Z1 = 0,S = s)+Pr(Z1 = 1,S = s)
= (1−π) f01(1,F(s))w(s)+π f11(1,F(s))w(s)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s),

(2.102)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.



30 2. McSplicer: a probabilistic model for estimating splice site usage from RNA-seq data

em

Case 1: I(em) < F(s) 

ZI(em) = 1, ZI(em)+1 = 1   

ZI(em) = 1, ZI(em)+1 = 0   

Case 1: I(em) < F(s) -1

Case 2: L(s) ≤ I(em)
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Case 3 or 4: F(s) ≤ I(em) < L(s)
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Figure 2.10: Visualization of the different cases considered for computing Pr(Zn
I(em)

= 1,Zn
I(em)+1 = 1,Sn = s)

in the upper part, and Pr(Zn
I(em)

= 1,Zn
I(em)+1 = 0,Sn = s) in the lower part. Arrows from each case point to

an exon end site or a set of exon end sites. a and b represent the indices of the first and last segments of
the subpath Sn = s from which read rn is derived. In the upper part for Pr(Zn

I(em)
= 1,Zn

I(em)+1 = 1,Sn = s),
an exon end site em appears to the left of subpath s (case 1), to the right of s (case 2), or within s (case 4).
We do not allow for case 4 where Zn

I(em)
= 1, Zn

I(em)+1 = 1 are not compatible with subpath s. In the lower
part for Pr(Zn

I(sm)
= 1,Zn

I(sm)+1 = 0,Sn = s), sm appears to the left of s (cases 1 and 5), to the right of s (case
2), or within s (cases 3 and 4). We do not allow for cases 4 and 5 where Zn

I(sm)
= 1 and Zn

I(sm)+1 = 0 are not
compatible with subpath s.
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case 4: F(s)≤ I(em)< L(s) and (ZI(em) = 1,ZI(em)+1 = 1) is not a subset of s

In this case, ZI(em) = 1 and ZI(em)+1 = 1 are not compatible with subpath s.

Pr(S = s,ZI(em) = 1,ZI(sm)+1 = 1) = 0 (2.103)

Computation of Pr(Zn
I(em)

= 1,Zn
I(em)+1 = 0,Sn = s)

The E-step in Section 2.2.4 used Pr(Zn
I(em)

= 1,Zn
I(em)+1 = 0,Sn = s). Here, we describe how to

compute these probabilities for the different cases when an exon end site em appears to the left, to
the right, or within a subpath s. Figure 2.10 illustrates the different cases. As these quantities are
identical for all reads rn, we drop index n in this section for simplicity.

case 1: I(em)< F(s)−1

As shown in Figure 2.10, an exon end site em appears left side of a subpath s = z[a:b](oa, . . . ,ob).

Pr(ZI(em) = 1,ZI(em)+1 = 0,S = s)

= Pr(Z1 = 0,ZI(em) = 1,ZI(em)+1 = 0,S = s)+Pr(Z1 = 1,ZI(em) = 1,ZI(em)+1 = 0,S = s)

= (1−π) f01(1, I(em))qm f01(I(sm)+1,F(s))w(s)+π f11(1, I(sm))qm f01(I(sm)+1,F(s))w(s)

=
[
(1−π) f01(1, I(em))+π f11(1, I(sm))

]
×qm f01(I(sm)+1,F(s))w(s),

(2.104)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 2: L(s)≤ I(em)

As shown in Figure 2.10, em appears right side of a subpath s = z[a:b](oa, . . . ,ob).

Pr(S = s,ZI(em) = 1,ZI(em)+1 = 0)

= Pr(Z1 = 0,S = s,ZI(em) = 1,ZI(em)+1 = 0)+Pr(Z1 = 1,S = s,ZI(em) = 1,ZI(em)+1 = 0)

= (1−π) f01(1,F(s))w(s) f11(L(s), I(sm))qm +π f11(1,F(s))w(s) f11(L(s), I(sm))qm

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s) f11(L(s), I(sm))qm,

(2.105)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

case 3: F(s)≤ I(em)< L(s) and (ZI(em) = 1,ZI(em)+1 = 0) is a subset of s

As shown in Figure 2.10, em appears inside of a subpath s = z[a:b](oa, . . . ,ob).

Pr(S = s,ZI(em) = 1,ZI(em)+0 = 1)

= Pr(S = s)
= (1−π) f01(1,F(s))w(s)+π f11(1,F(s))w(s)

=
[
(1−π) f01(1,F(s))+π f11(1,F(s))

]
×w(s),

(2.106)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.
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case 4: F(s)≤ I(em)< L(s) and (ZI(em) = 1,ZI(em)+1 = 0) is not a subset of s

In this case, ZI(em) = 1 and ZI(em)+1 = 0 are not compatible with subpath s.

Pr(ZI(em) = 1,ZI(em)+1 = 0,S = s) = 0 (2.107)

case 5: I(em) = F(s)−1

In this case, ZI(em) = 1 and ZI(em)+1 = 0 are not compatible with subpath s.

Pr(ZI(em) = 1,ZI(em)+1 = 0,S = s) = 0. (2.108)

Computation of Pr(Zn
1 = 1,Sn = s) and Pr(Zn

1 = 0,Sn = s)

The E-step in Section 2.2.4 used Pr(Zn
1 = 1,Sn = s) and Pr(Zn

1 = 0,Sn = s). Here, we describe how
to compute these probabilities. As these quantities are identical for all reads rn, we drop index n in
this section for simplicity.

Pr(Z1 = 1,S = s) = Pr(Z1 = 1)Pr(ZF(s) = 1|Z1 = 1)Pr(S = s|ZF(s) = 1)

= π f11(1,F(s))w(s),
(2.109)

and

Pr(Z1 = 0,S = s) = Pr(Z1 = 0)Pr(ZF(s) = 1|Z1 = 0)Pr(S = s|ZF(s) = 1)

= (1−π) f01(1,F(s))w(s),
(2.110)

where f..(i, j) and w(s) can be computed as described in Sections 2.2.5 and 2.2.5.

2.3 Results

We assess the performance of McSplicer in comparison to existing state-of-the-art methods on
both simulated and real RNA-seq data sets. Simulated data allow to compare estimates to a known
ground truth of expressed transcripts and thus known quantities of alternative splicing events. On
the other hand, simulated data cannot fully capture the complexity of data sets generated in real
RNA-seq experiments. Note that exon start and end sites whose usage McSplicer estimates can
correspond to splice sites but also to transcription start and end sites (see Section 2.1.2). In the
following, however, we restrict the evaluation to the usage of splice sites since transcription start
and end sites cannot be reliably estimated from short-read RNA-seq data alone.

We compare the performance of McSplicer to PSGInfer, SplAdder, MAJIQ, and StringTie. In
Supplementary Section A.1 we provide details on software versions and command line arguments
used. PSGInfer quantifies alternative splicing using a generative probabilistic model, an idea that
also motivated the approach taken in McSplicer. SplAdder was used in a large-scale study (Kahles
et al., 2018) to detect and quantify alternative splicing events in nearly 9,000 tumor RNA-seq sam-
ples. In a comparative benchmark analysis performed in Kahles et al. (2016) it showed a better
performance than competing methods JuncBase (Brooks et al., 2011), rMATS (Shen et al., 2014),
and SpliceGrapher (Rogers et al., 2012), from which, of course, general superiority cannot be con-
cluded (Denti et al., 2018). Compared to SplAdder, which is limited to the detection of simple
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types of splicing events, MAJIQ introduced a novel approach that additionally captures more com-
plex transcript variations. MAJIQ was shown in a recent benchmark (Mehmood et al., 2019) to
compare favorably to existing state-of-the-art methods and the authors demonstrated in Vaquero-
Garcia et al. (2018) that MAJIQ also outperforms LeafCutter and rMATS.

StringTie, on the other hand, assembles and quantifies full-length transcripts from RNA-seq but
was not specifically designed for the quantification of splice site usage. Nevertheless, splice site
usage can be inferred from the abundance of the assembled transcripts and we include this approach
as a baseline in our benchmark: In all experiments, McSplicer uses StringTie to construct the exon-
intron structure in steps (B) and (C) of the workflow (Fig. 2.3), which potentially contains novel
splice sites. In contrast to the inference of splice site usage from expressed full-length transcripts,
however, McSplicer estimates the usage of the same set of splice sites using the EM algorithm
described in the previous section.

Each method, however, uses a different set of parameters to quantify alternative splicing events.
PSGInfer infers the weights of its constructed splice graph edges. SplAdder quantifies four canon-
ical types of splicing events using the widely used percent spliced in (PSI) metric. PSI denotes the
ratio between the number of reads supporting one outcome of the event (e.g the inclusion of an
exon) over the number of reads directly supporting either of the two alternative outcomes. Simi-
larly, MAJIQ computes the percent selected index (Ψ) for each splice junction involved in a local
splicing variation (LSV), which denotes its fractional usage. To ensure a meaningful comparison
of splice site usages in McSplicer to edge weights from PSGInfer, PSI from SplAdder and Ψ from
MAJIQ, we only consider splice sites for which the meaning of these four quantities, if defined,
coincide. These comparable splice sites are obtained from alternative splicing events between two
expressed transcripts such that all remaining transcripts expressed by a gene consistently support
one of the two possible outcomes of the event. Note that comparable splice sites are defined based
on transcripts expressed in a given sample.

Comparable splice sites

Let s1,s2, . . . ,sMG denote the splice sites and transcription start and end sites of a gene G, ordered
by their genomic coordinates. Consistent with Foissac and Sammeth (2007), we define alternative
splicing events for pairs of expressed transcripts t1, t2 as maximal sequences si, . . . ,s j of alternative
splice sites, i.e. splice sites that are used by t1 or by t2, but not by both. To distinguish the outcome
of alternative splicing from the outcome of alternative transcription initiation or termination, we
additionally require that si−1 and s j+1 denote common donor and acceptor sites, respectively. If
every transcript expressed by G is consistent with t1 or t2 in its use of si−1,si, . . . ,s j+1, we call the
alternative splice sites si, . . . ,s j comparable. Note that the definition of comparable splice sites is
invariant with respect to the choice of t1 and t2 among expressed transcripts of G.

For comparable splice sites of simple events, the four different parameters, i.e. splice site usage,
edge weights, PSI and Ψ, equally reflect the relative abundance of transcripts expressed by a given
gene that use the splice site, or equivalently contain the corresponding exon. Analogously, Ψ, edge
weight, and splice site usage are equivalent for comparable splice sites of complex events. We
will therefore consistently refer to these different parameters in the following as splice site usage.
From StringTie assemblies of full-length transcripts, estimates of splice site usage can directly be
obtained from the relative abundance of transcripts using a given splice site. For an illustrative
example of comparable and non-comparable splice sites see Fig. 2.11.
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Figure 2.11: (a) An example of an exon skipping event involving comparable splice sites. The splice sites
s4 and s5 are used exclusively by t1, but splice sites s3 and s6 are common donor and acceptor sites to all
three transcripts t1, t2, and t3. (b) An example of an exon skipping event with non-comparable splice sites.
The splice sites s4 and s5 are used exclusively by t1. The splice sites s3 and s6 denote the common donor and
acceptor sites of t1 and t2, Transcript t3, however, is inconsistent with both t1 and t2 in its use of splice sites
s3 . . .s6.

2.3.1 McSplicer more accurately infers splice site usage than competing methods

In this section, we assess the performance of McSplicer on RNA-seq data sets simulated as de-
scribed in Section 2.1.4. All methods but PSGInfer were provided the same set of reads aligned
using STAR (allowing mismatches and indels). PSGInfer only accepted unaligned reads which
were internally mapped using Bowtie (Langmead et al., 2009). We distinguish splice sites by the
type of event they are part of, including exon skipping, intron retention, alternative 3′ and 5′ splice
sites, and complex events that cannot be assigned to one of the canonical types. The events are
labeled by Astalavista (Foissac and Sammeth, 2007) through a pairwise structural comparison of
all transcript species expressed in our ground truth transcriptome (see Fig. 2.2 and Fig. 2.12).

(a)

(c)

(b)

(d)

Figure 2.12: Examples of complex patterns of alternative splicing Foissac and Sammeth (2007). Green and
grey arrows highlight the corresponding varying donor and acceptor splice sites, respectively. These are
illustrative examples of the varying non-redundant splice sites which we consider in our benchmark.

The number of variable splice sites (i.e. 0 < usage < 1) in our simulated data set, and the
number of comparable splice sites among them (∼ 36%), with corresponding event types defined
by Astalavista are listed in Table 2.2. It also lists the total number of (comparable) splice sites
per type reported by all four methods. While McSplicer will quantify the usage of all splice sites
except those missed by StringTie in step (B) in Fig. 2.3, competing methods report only events
that satisfy an adjustable confidence threshold (SplAdder) or are considered reliable according to
internal filters (MAJIQ). As a result, both MAJIQ’s and SplAdder’s accuracy is evaluated on a
smaller, presumably more confidently estimated set of events (Table 2.2) and are otherwise not
penalized for missing events. MAJIQ estimates two parameters that correspond to the relative
usage of a skipped exon, one based on the intron connecting it to the upstream exon, and one based
on the downstream exon (Fig. 2.13). Here, we compare the performance to the latter one, which
we observed to be slightly more accurate. The former is reported in Fig. 2.14.
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Exon skipping Alt. acceptor Alt. donor Intron retention Complex Tota
AStalavista (all) 1740 544 295 318 1206 4103

AStalavista (comparable) 475 229 129 134 508 1475
MAJIQ (comparable) 371 106 81 89 429 1076

SplAdder (comparable) 366 150 87 25 - 628
PSGInfer (comparable) 330 127 56 128 88 729
StringTie (comparable) 455 209 120 127 487 1398
McSplicer (comparable) 455 209 120 127 487 1398
McSplicer (non-comp.) 1070 292 153 180 502 2197

Table 2.2: The first row shows the total number of variable splice sites (i.e., comparable and non-
comparable), while the second row provides the number of comparable splice sites among them. The values
in the first two rows are obtained from ground truth transcript expressions and classified by type as labeled
by AStalavista. Each simple event contains by definition one variable splice site whose usage uniquely
quantifies the event (see Figure 2.2), while for complex events we consider one or two variable splice sites
that are comparable (see Figure 2.12). The following rows show the number of variable splice sites clas-
sified by event type as quantified by each of the five methods in the simulated RNA-seq data set with 50
million reads. For McSplicer we additionally provide the number of non-comparable sites quantified. Note
that McSplicer estimates the usage of all splice sites reported by StringTie. StringTie correctly identifies
approximately 96% of all splice sites in our benchmark (computed from the values above) and reports few
false splice sites (precision ≈ 96%).

sLSV tLSV
e1

e2

e3

Figure 2.13: MAJIQ computes the percent selected index (ψ) for each junction involved in a local splicing
variation (LSV) which denotes its fractional usage. An exon skipping event can be inferred either from the
estimated ψ value of edge e1 connecting source LSV (sLSV) to the cassette exon, or edge e3 connecting the
cassette exon to the target LSV (tLSV). We notice that the estimated usage E[PSI(e3)] tends to be slightly
more accurate than E[PSI(e1)].
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Figure 2.14: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice sites
from 50 million simulated RNA-seq reads. For MAJIQ, here we consider the estimated ψ value of the edge
incident to the source LSV. See Fig. 2.13 for an illustration.

Fig. 2.15 compares the accuracy of splice site usages inferred by McSplicer and competing
methods from 50 million reads on four canonical types of events as well as on complex events.
For each method, only events reported and quantified by that method are considered. Fig. 2.16
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Figure 2.15: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice
sites from 50 million simulated RNA-seq reads. For each method, only splice sites in events that the method
reports and quantifies are considered. SplAdder is limited to the quantification of simple AS events.
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Figure 2.16: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice sites
from 50 million simulated RNA-seq reads. Events that McSplicer and competing methods have pairwise in
common are considered. SplAdder is limited to the quantification of simple AS events.

shows consistent results when considering events that McSplicer and competing methods have
pairwise in common. Across all types of events, McSplicer infers splice site usages more accu-
rately than competing methods. The accuracy of splice site usage inferred by McSplicer is not
affected by the complexity of the event, whereas MAJIQ’s estimates are substantially less accurate
for complex events. SplAdder is restricted to the quantification of simple events. As originally
reported by the authors in Kahles et al. (2016), SplAdder quantifies intron retentions less accu-
rately than other simple types of events. Other methods, including McSplicer, perform well on
this type of event, which plays an important role for cell development in mammals (Braunschweig
et al., 2014) and is a source of neoepitopes in cancer (Smart et al., 2018). We note that different
read alignments used in PSGInfer cannot be excluded as a potential contributor to its overall low
accuracy. Compared to baseline splice site usage extracted from StringTie transcript assemblies,
McSplicer utilizes StringTie’s transcript models to substantially refine the quantification of local
splicing variation. We would like to point out, however, that StringTie was designed to assemble
full-length transcripts. The comparison to StringTie merely highlights the necessity of additional
computations to obtain more accurate estimates of splice site usage. Similar results were obtained
on data sets comprising 20 million and 75 million reads (see Figs. 2.18 and 2.19). Furthermore, we
demonstrate in Fig. 2.17 that McSplicer also achieves accurate estimates on the more challenging
set of non-comparable splice sites. While KL divergences are slightly higher than on comparable
splice sites, its estimates remain more accurate compared to competing methods that are evaluated
only on a subset of comparable splice sites.

Fig. 2.20 shows running times of all methods on the three simulated data sets. The splicing
model underlying McSplicer allows a much faster estimation of parameters than PSGInfer (∼1 h
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Figure 2.17: Accuracy of McSplicer and competing methods in quantifying the usage of comparable vs.
non-comparable splice sites from 50 million simulated RNA-seq reads. For each method we report KL
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Figure 2.18: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice
sites from 20 million simulated RNA-seq reads. For each method, only splice sites in events that the method
reports and quantifies are considered. SplAdder is limited to the quantification of simple events.
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Figure 2.19: Accuracy of McSplicer and competing methods in quantifying the usage of variable splice
sites from 75 million simulated RNA-seq reads. For each method, only splice sites in events that the method
reports and quantifies are considered. SplAdder is limited to the quantification of simple events.
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vs. 7 h for 50 million reads), the only other method that is based on a probabilistic model of the
splicing process. MAJIQ similarly required around 1 h. As expected, the computation of read
count ratios makes SplAdder the fastest method among direct competitors (< 14 min). StringTie
is by far the fastest method (< 3 min), albeit solving a different task. Peak memory usage was
below 3 GB for all methods except PSGInfer, which however included as the only method the read
mapping step (Fig. 2.21).

20M 50M 75M
0

150

300

450

600

750

R
un

ni
ng

tim
e

(m
in

ut
e)

PSGInfer
McSplicer
MAJIQ

SplAdder
StringTie

20M 50M 75M
PSGInfer 147.37 423.17 639.72
McSplicer 51.47 62.11 66.63

MAJIQ 55.62 58.02 60.87
SplAdder 10.77 13.50 20.14
StringTie 1.93 2.77 4.06

Figure 2.20: Running times in minutes of PSGInfer, McSplicer, MAJIQ, SplAdder and StringTie on the 20,
50, and 75 million simulated RNA-seq reads data sets. The running time reported for McSplicer includes
the time needed to partition genes into non-overlapping segments and to count reads that map to the same
sequence of segments (signature counts, see Methods) The running times were measured on an Intel Xeon
CPU @2.30GHz with 320 GB memory. McSplicer, MAJIQ, and SplAdder were run in single-thread mode,
while PSGInfer was run with 72 threads to speed up computation.
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Figure 2.21: Peak memory usage measured for all methods on the largest simulated RNA-seq data set with
75 million reads. Peak memory usages were 34.69 GB for PSGInfer, 2.90 GB for McSplicer, 2.43 GB for
SplAdder, 1.14 GB for MAJIQ, and 0.33 GB for StringTie. Note that memory usage of PSGInfer includes
the read mapping step using Bowtie (Langmead et al., 2009) which could not be separated from PSGInfer’s
inference algorithm called by a single command psg infer frequencies. All other methods exclude read
mapping.
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2.3.2 McSplicer leverages all reads mapped to a gene

McSplicer makes use of all reads mapped to a given gene to simultaneously infer parameters in
the McSplicer model, while other methods except PSGInfer typically use only reads that directly
support their parameters. To quantify the contribution of the simultaneous inference in McSplicer
to improve the accuracy of estimators, we estimate one splice site usage parameter at a time using
only reads directly supporting the parameter. Similar to the calculation of the traditional PSI met-
ric, we remove for each event with comparable splice sites all reads that do not overlap any of the
event’s exons, and run and evaluate McSplicer on the resulting restricted instance as described in
the previous section. Fig. 2.22 confirms that McSplicer profits enormously from transcriptional ev-
idence that lies outside of the local splicing event. Across all types of events, McSplicer estimates
splice site usage less accurately when reads that do not overlap an event are removed.

2.3.3 McSplicer estimates agree with Spike-In RNA Variants

To evaluate the performance of McSplicer under the added complexity imposed by data derived
from a real RNA-seq experiment, we used spike-in controls that were previously added to hu-
man monocyte-derived macrophages from five different donors (Hoss et al., 2019). The Spike-In
RNA Variants (SIRV) (Paul et al., 2016) comprise 69 synthetic RNA molecules that were added in
known relative concentrations before library preparation. Mimicking the complexity of 7 human
model genes, between 6 and 18 artificial transcripts per gene vary in different types of alternative
splicing, transcription start- and end-sites, or are transcribed from overlapping genes, or the anti-
sense strand. The concentration ratios between different SIRV isoforms span a range of more than
two orders of magnitude. For each donor sample, including artificial SIRV isoforms, Hoss et al.
(2019) sequenced 200 million paired-end reads of 2× 125bp length. McSplicer considers both
mates independently as input reads Rn (see Section 2.1.3).

Leveraging the artificial reference genome (SIRVome) and the known relative mixing ratios of
SIRV isoforms, we derive ground truth splice site usages (see Equation 2.12). Again, we obtain
event labels from Astalavista, which comprise 26 variable splice sites in simple events and 12
in complex events. In this experiment, we do not restrict the evaluation to comparable splice
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Figure 2.22: McSplicer leverages all RNA-seq reads mapped to a gene to improve the accuracy of splice site
usage estimates. On the data set with 50 million simulated reads, McSplicer achieves lower KL divergence
from true splice site usages when considering all reads mapped to a gene locus at once (blue) compared to
using only reads that overlap any of the event’s exons (pink). ES denotes exon skipping, A3SS alternative
3’ splice site, A5SS alternative 5’ splice site, IR intron retention, and CMPLX complex events.
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sites but include all variable sites since competing methods report too few events to be compared
quantitatively (see below). Fig. 2.23 compares splice site usages as estimated by McSplicer to
the true usages in one of the five samples (donor 5). A Spearman’s rank correlation coefficient
of ρ = 0.798 indicates a good agreement between estimated and true usages. We obtain similar
results on the remaining four samples (Fig. 2.24).
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Figure 2.23: McSplicer results on spike-in RNA variants (SIRV), donor sample 5. Ground truth splice
site usages computed from known mixing ratios of SIRV isoforms are compared to usages estimated by
McSplicer. Out of 38 variable splice sites, 26 belong to simple events and 12 belong to complex events. ES
denotes exon skipping, A3SS alternative 3’ splice site, A5SS alternative 5’ splice site, IR intron retention,
and CMPLX complex events.

SplAdder and MAJIQ only report between 6 and 12 among all 38 true events, too few to allow
for a meaningful quantification of agreement between estimated and true PSI and ψ values. Figs.
2.25 and 2.26 show the corresponding scatter plots for PSI and ψ values estimated by SplAdder
and MAJIQ, respectively. PSGInfer failed to run on all five donor samples for unknown reasons.

2.3.4 Quantifying the effect of cryptic splice site mutations in patients with autism spectrum disorder

In this section, we illustrate the utility of splice site usages computed by McSplicer in interpreting
the potentially complex effect of genetic variants on RNA splicing. In Jaganathan et al. (2019),
the authors use a deep neural network to identify non-coding genetic variants that disrupt mRNA
splicing. They identified a set of high-confidence de novo mutations predicted to disrupt splicing in
individuals with intellectual disability and individuals with autism spectrum disorders (ASD). To
validate them, the study included RNA-seq experiments (270-388 million 150bp reads per sample)
of peripheral blood-derived lymphoblastoid cell lines from 36 individuals with ASD. Based on
the presence of reads spanning the corresponding splice junction, the authors validate 21 aberrant
splicing events associated with the predicted de novo mutations. Each of the splicing events was
uniquely observed in one individual.

In Jaganathan et al. (2019), the authors point out that computing the effects size of splicing mu-
tations based on a pre-selected set of incident splice junctions likely underestimates the true effect
size since, among other shortcomings, not all isoform changes are taken into account. In contrast,
McSplicer’s model of splice site usage does not depend on an ad hoc selection of specific junc-
tions or AS units but naturally captures simultaneous changes in expression of multiple isoforms
expressed by a gene. We therefore utilized McSplicer to quantify the effect size of the validated
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de novo mutations on splice sites in ASD patients. We excluded 11 aberrant splicing events where
only 1 or 2 spliced reads supported the novel splice site or junction. For each de novo mutation
and the corresponding aberrant splicing event, we used McSplicer to estimate splice site usage
and to compute 95% bootstrapping confidence intervals for the individual harboring the variant
and a control individual with similar sequencing depth. For all 10 aberrant splicing events, we
observe significantly different splice site usages (i.e., the two confidence intervals do not overlap)
between mutated and control ASD individuals (Table 2.3). Fig. 2.27 provides three illustrative ex-
amples. For gene ENOPH1, McSplicer estimates a decrease in usage of the acceptor site directly
affected by the variant, consistent with the increased skipping of the corresponding exon that can
be observed in the Sashimi plot. In gene CORO1B, a novel donor site is used exclusively in the
individual with the variant, identified and quantified with non-zero usage by McSplicer. For gene
PCSK7, McSplicer estimates a decrease in usage of the affected donor sites, consistent with the
retention of the downstream intron.

Gene name chr Splice Site Mutated Control Effect size Event type
BCL7B 7 72966572 0.786 (0.784,0.792) 0.956 (0.953,0.960) -1.06 ES

ENOPH1 4 83378068 0.624 (0.622, 0.628) 0.991 (0.991,0.993) -0.20 ES
YME1L1 10 27431414 0.353 (0.349,0.356) 0.81 (0.810,0.813) -0.36 ES
PPP4R2 3 73112824 0.463 (0.459,0.466) 0.951 (0.950,0.955) -0.32 ES

TMBIM6 12 50153004 0.887 (0.887,0.889) 0.945 (0.948,0.949) -0.05 ES
IDUA 4 997837 0.209 (0.208,0.211) 0.0 ∞ Novel A5SS

CORO1B 11 67208804 0.054 (0.051,0.055) 0.0 ∞ Novel A5SS
SHPRH 6 146266702 0.546 (0.529,0.582) 0.0 ∞ Novel IR
PCSK7 11 117098932 0.67 (0.631,0.776) 0.969 (0.967,0.971) -0.16 Novel IR

ELOVL1 1 43829994 0.200 (0.200,0.215) 0.0 ∞ Novel IR

Table 2.3: McSplicer splice site usage estimates on mutated and control Autism samples with 95% boot-
strapping confidence intervals shown in parentheses. We compute the effect size using the difference in the
estimated splice site usages between mutated and control samples in log scale. There is no RNA-seq read
evidence supporting the novel splice sites for the control samples in genes IDUA, CORO1B, SHPRH, and
ELOVL1, hence we report the usage estimate as 0 and the effect size for these genes as ∞.

2.4 Conclusion

We have introduced McSplicer, a novel method that estimates the usage of exon start and end sites,
and in particular the usage of splice sites across expressed transcripts. Rather than attempting to
reconstruct expressed transcripts, McSplicer is based on a simplified probabilistic splicing model
that has generated the set of expressed transcripts. It is not restricted to a pre-defined class of al-
ternative splicing events or units but our probabilistic model is able to describe arbitrarily complex
types of splicing patterns based on few, easy to interpret, parameters. We estimate these parame-
ters, i.e. splice site usages, using all read data at once and demonstrate in simulation experiments
that this yields more accurate estimates compared to other methods that use only reads directly
supporting their parameters. Through its integration with transcript assembly methods such as
StringTie, McSplicer quantifies the usage of annotated as well as novel splice sites.

Our model for relative transcript abundance assumes the Markovian property across indica-
tors (Zi) for whether a segment is transcribed. This assumption allows for an efficient algorithm
to estimate parameters of the model, but it potentially limits the ability of our method to model
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longer range dependencies such as between the recognition of 5’ and 3’ splice sites or between the
removal of introns within transcripts. If true dependencies are longer than our model can describe,
the individual estimators for splice site usages may still be accurate, but we expect transcript fre-
quencies implied by our model to be less accurate (LeGault and Dewey, 2013). One way to model
longer range dependencies is to use higher order Markov chains as long as the data provide suffi-
cient information to estimate these dependencies.

The splice site usages computed by McSplicer can be leveraged in various types of downstream
analyses, such as the statistical comparison of splice site usage between different conditions (Li
et al., 2018), the quantification of various types of splicing events, the identification of subgroups
of samples that show similar splicing patterns (i.e., unsupervised clustering (Ntranos et al., 2016)),
or the discrimination between alternatively spliced and constitutive exons (Patrick et al., 2013).

We have used McSplicer to quantify the effect size of splicing mutations in ASD patients.
In this context, splice site usage as computed by McSplicer can be considered analogous to the
“strength” of a splice site predicted by methods such as SplicePort (Dogan et al., 2007) from
sequence-based features. Point mutations in the consensus splice site sequence can affect the
strength of a splice site and result in the skipping of the exon or the activation of cryptic splice
sites. In fact, a single nucleotide substitution might produce multiple (erroneous) splicing isoforms
at the same time, as has been observed, for example, for specific mutations in patients with cystic
fibrosis (3 isoforms) (Ramalho et al., 2003) and X-linked spondyloepiphyseal dysplasia tarda (7
isoforms) (Xiong et al., 2009). McSplicer does not attempt to reconstruct every single aberrant
isoform, but similar to a weakening (strengthening) of a splice site as predicted from sequence
alterations by, e.g., the Shapiro splice site probability score (Shapiro and Senapathy, 1987), the
effect of a mutation will be reflected in a reduced or increased usage of the corresponding splice
site estimated from RNA-seq reads.

The procedure we applied to compute the effect size of splicing mutations in our analysis
of ASD patients data does not use the full data from multiple individuals and fails to consider
variability among individuals, possibly leading to an increased number of false positives. Methods
that model differences in splice site usages between individuals from multiple groups and exploit
the variability among them should perform better in estimating effect size and quantifying their
uncertainty.
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(a) Donor 1. Spearman’s ρ = 0.774.
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(b) Donor 2. Spearman’s ρ = 0.769.
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(c) Donor 3. Spearman’s ρ = 0.774.
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(d) Donor 4. Spearman’s ρ = 0.782.
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(e) Donor 5. Spearman’s ρ = 0.798.

Figure 2.24: McSplicer results on spike-in RNA variants (SIRV) on 5 different SIRV samples. Ground truth
splice site usages computed from known mixing ratios of SIRV isoforms are compared to usages estimated
by McSplicer. Out of 38 variable splice sites, 26 belong to simple events and 12 belong to complex events.
All these variable splice sites were correctly identified by StringTie and hence their usage estimated by
McSplicer. Across the five samples, StringTie reported between 1 and 6 false splice sites within SIRV genes,
which corresponds to a precision in splice site detection of approximately 99%. ES: exon skipping; A5SS:
alternative 5’ splice site; A3SS: alternative 3’ splice site; CMPLX: complex event; IR: intron retention.
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Figure 2.25: SplAdder results on spike-in RNA variants (SIRV) on 5 different SIRV samples. Ground truth
splice site usages computed from known mixing ratios of SIRV isoforms are compared to usages estimated
by SplAdder. Out of 38 variable splice sites, 26 belong to simple events and 12 belong to complex events.
ES: exon skipping; A5SS: alternative 5’ splice site; A3SS: alternative 3’ splice site; CMPLX: complex
event; IR: intron retention.
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Figure 2.26: MAJIQ results on spike-in RNA variants (SIRV) on 5 different SIRV samples. Ground truth
splice site usages computed from known mixing ratios of SIRV isoforms are compared to usages estimated
by MAJIQ. Out of 38 variable splice sites, 26 belong to simple events and 12 belong to complex events. ES:
exon skipping; A5SS: alternative 5’ splice site; A3SS: alternative 3’ splice site; CMPLX: complex event;
IR: intron retention.
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Figure 2.27: McSplicer splice site usage estimates and 95% bootstrapping confidence intervals for three
disrupted splicing events reported in ASD patients versus control individuals. Variant locations are indicated
by black vertical lines. Each plot illustrates the gene structure around the event with the precise genomic
window specified on top, the read coverage and the junction read count. The Sashimi plots shown here are
created using the ggsashimi tool (Garrido-Martı́n et al., 2018).



CHAPTER 3

RNA Ptr-Nets: Deep learning approach for predicting RNA splicing branchpoints

In the previous chapter we proposed a probabilistic model for estimating splice site usages. In this
chapter we propose a deep learning approach for predicting RNA splicing branchpoints.

RNA splicing requires three main signals i.e., the donor splice site (i.e., 5’SS), the acceptor
splice site (i.e., 3’SS), and the branchpoint (BP) site. These three signals work together in a two-
step mechanism of RNA splicing. First, the pre-mRNA is cut at the donor site where the 5’ end
of the intron is joined to the BP site and generates a lariat intermediate molecule. Then, the last
nucleotide of the intron at the 3’ end is cut, and the two exons are joined together while the intron
lariat is degenerated quickly, see Fig. 3.1A.

pre-mRNA
Exon 1

5' SS

Exon 2
AGGU AGA

AGAGA

G
U

AGAGA

G
U+spliced mRNA

(1)

(2)

3' SSBPA

B

Figure 3.1: (A) The two-step mechanism of RNA splicing. Splicing begins with the dinucleotide sequence
GU at the 5’SS and ends with the dinucleotide sequence AG at 3’SS. Branchpoints most frequently are
adenosine. (B) RNA-seq reads spanning the 5’SS and BP junction can help determine the position of BPs.
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Noticeably, BPs are mandatory signals in RNA splicing, equally important to 3’SSs and 5’SSs.
Moreover, previous research shows that alternative BP selection plays a role in alternative splicing
and diseases (Corvelo et al., 2010; Alsafadi et al., 2016). Splice donor and acceptor sites are well-
studied in literature (Burset et al., 2001; Castelo and Guigó, 2004) and there exist several reliable
tools for splice site prediction, e.g., Splicing Prediction in Consensus Elements (SPiCE) (Leman
et al., 2018) which achieves 99.5 and 95.2% in sensitivity and specificity, respectively. However,
the study of BP position has lagged behind due to two main challenges:

1. Experimental-wise: identifying BP positions is difficult in wet-lab experiments, because lar-
iats exist for a short period of time as low-abundance RNAs.

2. Computational-wise: predicting BP positions is difficult and we lack an agreed upon genome-
wide BP annotation due to two reasons:

• Nucleotide motifs vary in the BP area (Pineda and Bradley, 2018).

• Multiple BPs exist within the same intron. Previous research reported 95% of introns
have multiple BPs with an estimate of 5 to 6 BPs per intron (Pineda and Bradley, 2018).

In theory, the position of BP can be determined using RNA-seq reads spanning the 5’SS and
BP junctions, see Fig. 3.1B. However, the intron lariat is degenerated quickly during RNA splicing
which makes such reads less frequent (Taggart et al., 2017). To date, human BP annotations are
still incomplete.

Given the nature of the problem definition where only a small fraction of BPs is experimen-
tally verified, different machine learning predictive models are trained using existing catalogues
of human BPs, then they are used to predict the position of missing BPs. For example, SVM-BP
employs Support Vector Machine algorithm (Corvelo et al., 2010), Branch Point Predictor (BPP)
adapts a mixture model and expectation maximization algorithm (Zhang et al., 2017), and Branch-
Pointer (Signal et al., 2018) is based on Gradient Boosting Machine (GBM) models. However, all
these approaches require genome annotation and a decent amount of feature engineering prior to
the training step.

Recently, with the emergence of deep learning methods, LaBranchoR (Long short-term mem-
ory network Branchpoint Retriever) was introduced as the state-of-the-art method for predicting a
single BP for each 3’SS (Paggi and Bejerano, 2018). LaBranchoR uses two layers of bidirectional
long short-term memory network (LSTM). LSTM shows superior performance when modeling se-
quential data such as RNA sequences (Lipton et al., 2015; Aggarwal et al., 2018). In their compar-
ative benchmark analysis (Paggi and Bejerano, 2018), LaBranchoR showed superior performance
compared to previous traditional machine learning methods. Moreover, LaBranchoR was applied
in a recent study to examine cancer-related mutations of the splicing factor SF3B1 (Gupta et al.,
2019).

Here, we introduce RNA Pointer Networks (RNA Ptr-Nets) model which is based on the novel
deep learning architecture, Pointer Networks (Ptr-Nets) (Vinyals et al., 2015). The novelty of Ptr-
Nets architecture is that it can handle output dictionaries whose size depends on the input sequence,
such novelty allows Ptr-Nets model to be applied to the class of problems where outputs are discrete
and correspond to positions in the input, e.g., sorting variable sized lists, and some combinatorial
optimization problems such as convex hull, delaunay triangulation, travelling salesman problem
(Vinyals et al., 2015). RNA Ptr-Nets model extends LaBranchoR to predict all the BPs associated
with each 3’SS. Previous research showed that alternative BP selection plays a role in alternative
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splicing and diseases, e.g., (Alsafadi et al., 2016) examined how alternative BPs affected splicing
dysregulation in cancer. RNA Ptr-Nets model outputs pointers to BP positions with respect to each
input sequence. The model does not require genome annotation or any feature engineering.

3.1 Materials and methods

3.1.1 Method

Given a training pair, (P,CP), where P = {P1, ...,Pn} is a sequence of n vectors. P represents in
our model a sequence of n nucleotides upstream of 3’SS. Each nucleotide is encoded by “one-hot
encoding” scheme, where the nucleotide A is represented by the vector (1,0,0,0), C is represented
by the vector (0,1,0,0), G is represented by the vector (0,0,1,0), and T is represented by the vector
(0,0,0,1). The class labels, i.e., BP positions are indicated by CP = {C1, ..,Cm(P)}, a sequence of
m(P) indices, i.e, positions of BPs with respect to the input sequence P, each index label is an
integer number between 1 and n. Ptr-Nets model implements p(Ci|C1, ...,Ci−1,P) as follows:

ui
j = vT tanh(W1e j +W2di) j ∈ (1, ..,n), i ∈ (1, ..,m(P)) (3.1)

p(Ci|C1, ...,Ci−1,P) = so f tmax(ui) (3.2)

Where (e1, ...,en) and (d1, ...,dm(P)) are the encoder and decoder hidden states, respectively.
v, W1, and W2 are the model’s learnable parameters. And ui is the attention mask over the input,
the softmax function normalizes the attention vector ui (of length n) to be an output probability
distribution over the input indices. Then, we get the BP positions (i.e., output labels) form softmax
output in equation 3.2, i.e., the index with the maximum probability represents a BP position
(Vinyals et al., 2015).

RNA Ptr-Nets model adapts bidirectional LSTM networks for its encoder instead of the uni-
directional LSTM proposed in the original model, Ptr-Nets. Bidirectional LSTM represents two
LSTMs, i.e., forward and backward. The forward LSTM is fed the input sequence and the back-
ward LSTM is fed the reverse of the input sequence. Forward state outputs are not connected to
backward state inputs and vice versa, i.e., the input sequence and its reverse are processed inde-
pendently. Then, the output of these two LSTMs are merged together, e.g., through concatenation,
summation, averaging or multiplication (Schuster and Paliwal, 1997). In our model, RNA Ptr-Nets,
we added forward and backward hidden states using learnable weights, then we applied element-
wise hyperbolic tangent function tanh(.). The output of tanh(.) takes the place of the encoder
hidden states (e1, ...,en) which we referred to in equation 3.1.

Furthermore, RNA Ptr-Nets model can be considered as an improvement over LabranchoR
model. RNA Ptr-Nets model is based on an encoder-decoder architecture, where the encoder
implements bidirectional LSTM and decoder implements unidirectional LSTM. On the other hand,
LaBranchoR model uses two layers of bidirectional LSTM stacked on top of each other.

3.1.2 BP data sets

There are three publicly available BP data sets where large amount of RNA-seq data is leveraged
to map splicing BPs in the human genome (Mercer et al., 2015), (Taggart et al., 2017), and (Pineda
and Bradley, 2018), see Table 3.1. BPs are typically positioned between 18-45 nt upstream of the
3’SS, and this is consistent between different data sets as Fig.3.2(a) depicts.
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Dataset RNA-seq reads BPs Intron percentage
Mercer et al. 2015 ∼ 3×109 59,359 17.4%
Taggart et al. 2017 ∼ 11.3×109 36,078 16.8%
Pineda et al. 2018 ∼ 1.31×1012 130,294 37%

Table 3.1: Existing human BP annotations. For each data set, we show the approximate number of RNA-seq
reads used to provide the corresponding annotation, the total number BPs from high-confidence RNA-seq
reads spanning the 5’SS-BP junction, and the percentage of introns with at least a single experimentally
identified BP.
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Figure 3.2: BP data sets characteristics.

Similar to the methodology followed by (Paggi and Bejerano, 2018), we extracted introns from
the Gencode v19 annotations for all protein-coding genes. Then, we used Bedtools (Quinlan and
Hall, 2010) to assign BPs to 3 ’SSs, i.e., if a BP is located between 5-60 nucleotides (nt) upstream
of a 3’SS, we assign the BP to that 3’SS. We extracted 70nt-long RNA sequences upstream of each
3’SS and we used them as the only input to RNA Ptr-Nets.

We leveraged Pineda et al. 2018 for training while reserving Mercer et al. 2015 and Taggart et
al. 2017 for testing. Pineda et al. 2018 offers the most recent human BP catalogue with the largest
number of high confidence BPs. However, during the initial experiments, we noticed that our
model learned to predict almost always a single BP per sequence since the data set is unbalanced,
i.e., more than 65% of RNA sequences are associated with a single BP. To address this issue, we
generated Pineda balanced data set from the Pineda high confidence BPs set. In the balanced set,
we included all sequences with multiple BPs and randomly selected 50% of sequences with a single
BP. That way we guarantee that the model would observe almost equal number of RNA sequences
with multiple BPs, see Fig. 3.2(b). We produced a training and validation split on Pineda balanced
data set. The training-validation split was done by random and we followed 80/20 rule, where
80% of the data was preserved for training and 20% of the data was preserved for validation. We
tested the model on unseen RNA sequences from Mercer et al. 2015 and Taggart et al. 2017, see
Fig. 3.3.

We measure the performance of our model using precision and recall metrics (equations 3.3
and 3.4).
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Figure 3.3: The total number of 70nt-long RNA sequences associated with all BPs reported in each data
set. We evaluated RNA Ptr-Nets on mutually exclusive RNA sequences from Mercer et al. 2015 (8105
sequences) and Taggart et al. 2017 (2838 sequences).

Precision =
T P

T P+FP
(3.3)

Recall =
T P

T P+FN
(3.4)

Where T P refer to true positives , i.e., when the predicted BP positions match the experimental
BPs. FP refers to false positives, i.e., when non-experimentally verified BP nucleotides are labeled
as BPs by the model. FN refers to false negatives, the set of experimental BPs missed by the model.

3.2 Results

In this section, we present the results of RNA-Ptr Nets and LaBranchoR. Both methods are trained,
validated and tested using the same data. LaBranchoR focuses on predicting the most likely BP
associated with each 3’SS, while RNA Ptr-Nets model aims to predict all BPs associated with each
3’SS. Our task is more challenging, therefore, this comparative benchmark analysis aims solely to
set a baseline and show how our model compares to the state-of-the-art method of LaBranchoR.

Figures 3.4(a) and (c) show the precision and recall of RNA Ptr-Nets on the test sets of Mercer
et al. 2015 and Taggart et al. 2017. The performance of our model fluctuates and there is a
noticeable trade-off between precision and recall, e.g., on Mercer et al. 2015 test set, earlier at
epoch 27, the precision and recall values are 63.1%,53.2%, respectively. Later, at epoch 100,
the precision and recall values are 55.6%,58.2%, respectively. The model in later epochs learns
to predict multiple BPs per sequence at the cost of producing more false positives. On the other
hand, LaBranchoR’s performance is steady and increases slowly over time, see Fig. 3.4(b) and (d).
LaBranchoR takes 45 epochs to converge during the training phase (i.e., on Pineda balanced set)
and we notice beyond 45 epochs the performance on the validation set does not improve anymore
while the performance on training set keeps improving. Using the model from epoch 45, the
precision and recall are 65.8%, 54.0%, respectively on Mercer et al. 2015 test set. We notice that
the predicted BPs often disagree with the experimental ones by small shifts, hence we additionally
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Figure 3.4: Performance of RNA Ptr-Nets and LaBranchoR on the test sets of Mercer et al. 2015 and Taggart
et al. 2017. In the ‘precision≤±2nt’ and ‘recall≤±2nt’ values, we consider a predicted BP as overlapping
with an experimental BP if the predicted BP is within 2nt upstream or downstream of the experimental BPs.

report approximate values named ‘precision ≤ ±2nt’ and ‘recall ≤ ±2nt’, where we consider a
predicted BP as overlapping with an experimental BP if the predicted BP lies within 2nt upstream
or downstream of the experimental BPs. Table 3.2 summarizes the maximum precision and recall
values achieved by each model and at which epochs.

RNA Ptr-Nets LaBranchoR
Mercer et al. 2015

Precision 0.631 (epoch 27) 0.663 (epoch 36)
Precision ≤±2nt 0.747 (epoch 27) 0.730 (epoch 36)

Recall 0.582 (epoch 100) 0.544 (epoch 36)
Recall ≤±2nt 0.628 (epoch 100) 0.568 (epoch 36)

Taggart et al. 2017
Precision 0.255 (epoch 12) 0.276 (epoch 40)

Precision ≤±2nt 0.614 (epoch 12) 0.575 (epoch 21)
Recall 0.264 (epoch 100) 0.266 (epoch 40)

Recall ≤±2nt 0.475 (epoch 100) 0.431 (epoch 40)

Table 3.2: Maximum precision and recall achieved by RNA Ptr-Nets and LaBranchoR together with epoch
numbers on the test sets of Mercer et al. 2015 and Taggart et al. 2017. In ‘precision ≤ ±2nt’ and ‘recall
≤±2nt’ values, we consider a predicted BP as overlapping with an experimental BP if the predicted BP lies
within 2nt upstream or downstream of the experimental BPs.
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The Taggart BP sites generally disagreed with the predictions which resulted in lowering the
performance of both models compared to Mercer BP sites, possibly due to overcompensation for
nucleotide skipping in the denoising protocol adapted by (Taggart et al., 2017). Similar behavior
is reported in (Paggi and Bejerano, 2018).

When considering only sequences with a single BP from Mercer et al. 2015 test set and using
the final trained models of LaBranchoR and RNA Ptr-Nets, LaBranchor achieves 63.2% for both
precision and recall, while RNA Ptr-Nets model achieves 52.7% and 66.2% for precision and
recall, respectively. And when considering only sequences with a single BP from Taggart et al.
2017 test set, LaBranchor achieves 27.3% for both precision and recall while RNA Ptr-Nets model
achieves 22.6% and 28.5% for precision and recall, respectively. We did additional experiments
by adjusting the decoder of RNA Ptr-Nets to predict a single BP label instead of multiple labels.
Similarly, we trained the model for 100 epochs. Using the final trained model we evaluated the
performance on sequences with a single BP from Mercer et al. 2015 and Taggart et al. 2017 test
sets. RNA Ptr-Nets model (with adjusted decoder) achieves 63.7% and 52.3% for precision and
recall, respectively on Mercer et al. 2015 test sets. And it achieves 28.0% and 24.3% for precision
and recall, respectively on Taggart et al. 2017 test sets.

3.2.1 RNA Ptr-Nets performance on sequences with multiple BPs

To further assess our model performance for predicting multiple BPs, we examine how often RNA
Ptr-Nets model predicts multiple BP labels when indeed the ground truth data has multiple an-
notated BPs versus how often it predicts multiple BPs when there is only a single BP label. We
anticipate that our model predicts more BPs than experimentally verified ones due to missing BP
labels from exiting annotation, e.g., in Mercer data set only 17.4% of introns have one or more
experimentally verified BP. Our model generates many false positives and we expect that a subset
of these false positives to be missing labels from the experimentally verified BP data sets (see Fig.
3.5)
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Figure 3.5: RNA Ptr-Nets model suffers from many false positives and negatives when dealing with se-
quences with multiple annotated BPs. Green line shows how often RNA Ptr-Nets model predicts multiple
BPs when there are truly multiple annotated BPs, i.e., matching multiple BPs. Red line shows how often
RNA Ptr-Nets model predicts multiple BPs when there is only a single annotated BP, i.e., mismatching mul-
tiple BPs. Blue line shows the ground truth, i.e., the total number of sequences with multiple BPs.
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3.2.2 Further technical details and training time

RNA Ptr-Nets model was trained using the Adam optimizer, with a learning rate of 10−3, using
higher learning rate resulted in an unstable performance while lowering its value resulted in the
model not being able to learn how to predict BP positions. We set the weight decay λ = 0.5,
decreasing this value did not affect the performance of the model. We set the number of hidden
nodes for both decoder and encoder to 256. We fixed the batch size to 256. The training is
performed for 100 epochs. RNA Ptr-Nets model is implemented using PyTorch library (Paszke
et al., 2019). LaBranchoR is implemented in Keras (Chollet, 2017) and its current implementation
does not support batch processing, thus RNA Ptr-Nets model is much faster even when trained for
more than twice the number of epochs. Using the same GPU machine, i.e., GeForce RTX 2080
with CUDA version 10.2 , LaBranchoR takes 6 days for training 45 epochs while RNA Ptr-Nets
model takes ∼ 5 hours for training 100 epochs on the same training set.

3.3 Discussion and conclusion

RNA Ptr-Nets implemented Ptr-Nets model which can handle output dictionaries whose size de-
pends on the input sequence, the outputs of Ptr-Nets model can vary in length and they indicate
pointers to the input indices. In this work, we aimed to develop a model for multiple BPs predic-
tion. We generated a balanced training data set from Pineda high confidence BP set. The balanced
training set helped the model observe almost equal number of RNA sequences with multiple as
well as single BP labels.

RNA Ptr-Nets applies a softmax function to output probability distributions over input indices.
LaBranchoR applies a sigmoid function to output a single prediction between zero and one for each
nucleotide in the input sequence. RNA Ptr-Nets performance fluctuates and there is a noticeable
trade-off between precision and recall. When compared to LaBranchoR, RNA Ptr-Nets often pro-
vided slightly higher recall at the cost of losing precision (i.e., it produced many false positives).
Accurately predicting multiple BPs per 3’SS is more challenging than predicting a single BP site.
RNA Ptr-Nets results showed that our model predicted more multiple BPs per sequence compared
to the experimentally verified ones perhaps due to missing BP labels from exiting annotation, e.g.,
in Mercer data set only 17.4% of introns have one or more experimentally verified BP. Thus, we
expect that a subset of these false positives to be missing labels from the original data sets.



CHAPTER 4

Conclusion and outlook

4.1 Conclusion

In Chapter 2, we introduced McSplicer, a novel probabilistic splicing model that estimates the
usage of splice sites across expressed transcripts. McSplicer is not restricted to a set of predefined
alternative splicing events. Our model is able to describe arbitrarily complex types of splicing
patterns based on few, easy to interpret, parameters. We estimate these parameters, i.e. splice
site usages, using all read data at once and demonstrate in simulation experiments that this yields
more accurate estimates compared to other methods that use only reads directly supporting their
parameters.

McSplicer model assumes the Markovian property across indicators (Zi) for whether a segment
is transcribed. This assumption allows for an efficient algorithm to estimate parameters of the
model, but it potentially limits the ability of our method to model longer range dependencies such
as between the recognition of 5’ and 3’ splice sites or between the removal of introns within tran-
scripts. If true dependencies are longer than our model can describe, the individual estimators for
splice site usages may still be accurate, but we expect transcript frequencies implied by our model
to be less accurate (LeGault and Dewey, 2013). One way to model longer range dependencies is to
use higher order Markov chains as long as the data provide sufficient information to estimate these
dependencies.

The splice site usages computed by our method can be leveraged in various types of down-
stream analyses, e.g., we used McSplicer to quantify the effect size of splicing mutations in ASD
patients where splice site usage as computed by McSplicer can be considered analogous to the
“strength” of a splice site predicted by methods such as SplicePort (Dogan et al., 2007) from
sequence-based features. Point mutations in the consensus splice site sequence can affect the
strength of a splice site and result in the skipping of the exon or the activation of cryptic splice
sites.

In Chapter 3, we introduced RNA Ptr-Nets, a deep learning method based on the novel neural
network architecture, Pointer Networks (Ptr-Nets) (Vinyals et al., 2015). RNA Ptr-Nets extended
LaBranchoR (Paggi and Bejerano, 2018) to predict all the BPs associated with each 3’SS. RNA
Ptr-Nets took as input intronic sequences and outputed varied-length labels, i.e., pointers to BP
positions with respect to each input sequence, further it did not require genome annotation or any
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feature engineering. We extended BP prediction analysis to cover the most recent and largest
dataset (Pineda and Bradley, 2018) which was not covered before. RNA Ptr-Nets performance
fluctuated and there was a noticeable trade-off between precision and recall. When compared to
LaBranchoR, RNA Ptr-Nets often provided slightly higher recall at the cost of losing precision
(i.e., it produced many false positives). Accurately predicting multiple BPs per 3’SS is more
challenging than predicting a single BP site.

RNA Ptr-Nets implemented Ptr-Nets model which can handle output dictionaries whose size
depends on the input sequence, the outputs of Ptr-Nets model can vary in length and they indicate
pointers to the input indices. In this work, we aimed to develop a model for multiple BPs predic-
tion. We generated a balanced training data set from Pineda high confidence BP set. The balanced
training set helped the model observe almost equal number of RNA sequences with multiple as
well as single BP labels. RNA Ptr-Nets results showed that our model predicted multiple BPs
per sequence compared to the experimentally verified ones perhaps due to missing BP labels from
exiting annotation, e.g., in Mercer data set only 17.4% of introns have one or more experimen-
tally verified BP. Thus, we expect that a subset of the false positives generated by our model to be
missing labels from the original data sets

4.2 Outlooks

Outlook for McSplicer

We intend to extend McSplicer to include higher order Markov chains, then we can give McSplicer
users the option to model longer range of dependencies between transcript segments, i.e., exons.
This might also help in better estimating the probabilities of novel full-length transcripts. We also
aim to leverage McSplicer in large-scale analysis on real-data from drosophila melanogaster at
different time points. The goal is to examine muscle development phenotypes based on changes to
alternative splicing especially intron retention defects.

On a separate note, we will extend McSplicer software to support multi-threaded programming,
this way we provide more efficient and faster implementation to facilitate large-scale studies of
alternative splicing.

Improving RNA Ptr-Nets

First, RNA Ptr-Nets model did not converge (i.e., the performance on the training as well as the
validation data sets was fluctuating for 100 epochs). Therefore, further parameter tuning is re-
quired, e.g., using learning rate scheduler, where the value of learning rate decreases with time. If
the model proves to be valid using existing annotation, we need to verify the validity of our model
on existing diseased genes affected by competing BPs. Second, one way to improve the model’s
performance is to borrow ideas from existing language models such as the recent BERT model
(Devlin et al., 2018) and to train such models to predict multiple BPs. Finally, we aim to apply our
modified version of Ptr-Nets to other bioinformatics problems where the input sequences vary in
length and outputs are pointers to input indices.
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A.1 Benchmarks

Tools and parameters

Polyester simulator

We used simulated data to evaluate McSplicer accuracy. As mentioned in the main text, we used
Polyester simulator (version 1.16.0) to simulate RNA-seq reads from human transcripts (Ensembl
release 91). For the three different sequencing depths, we used the software with its default param-
eters, and we ran it under the following environment:

R v e r s i o n 3 . 5 . 2 (2018 −12 −20)
P l a t f o r m : x86 64 − r e d h a t − l i n u x −gnu (64 − b i t )
Running under : S c i e n t i f i c Linux 7 . 5 ( N i t r o g e n )

As previously mentioned, we provided Polyester with ground truth abundances computed by
running RSEM quantification tool Li and Dewey (2011) on RNA-seq data from SRA data set
SRR6987574 1. Then, we randomly selected a set of 1000 genes which have at least two expressed
transcripts and have sufficiently high expression, i.e., gene-level read count per kilobase > 500.

STAR aligner

The simulated reads were mapped to the human reference genome (GRCh38.91) by running STAR
(version 2.5.4b) Dobin et al. (2013) with the following parameters:

−−runMode a l i g n R e a d s
−−outSAMtype BAM S o r t e d B y C o o r d i n a t e
−− s j d b G T F f i l e Homo sapiens . GRCh38 . 9 1 . g t f
−−runThreadN 16
−− r e a d F i l e s I n { p l o y e s t e r o u t p u t . f a s t a }
−− o u t F i l e N a m e P r e f i x { o u t p u t p r e f i x }
−−genomeDir { g e n o m e d i r e c t o r y }
−− ou tS AMst r an dF ie ld i n t r o n M o t i f
−− s j d b G T F f i l e

The remaining set of parameters were left to the default values.
For indexing the resulting BAM files we used Samtools (version 0.1.8) Li et al. (2009).

StringTie

We ran StringTie Pertea et al. (2015) (version 1.3.4d) with genome-guided mode enabled (-G
option) and provided Ensembl annotation release 91. The remaining parameters of StringTie were
left to the default values.

SplAdder

We ran SplAdder (version 1.2.0) with the following set of parameters for benchmarking on simu-
lated data:

1http://www.ncbi.nlm.nih.gov/sra
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−−bams { b a m f i l e s }
−− a n n o t a t i o n { a n n o t a t i o n g t f }
−− m e r g e s t r a t m e r g e g r a p h s
−− e v e n t t y p e s e x o n s k i p , i n t r o n r e t e n t i o n , a l t 3 p r i m e ,
a l t 5 p r i m e , m u l t e x o n s k i p
−− c o n f i d e n c e 2
−− pyproc n
−− c o m p r e s s t e x t n
−− i g n o r e m i s m a t c h e s y
−− o u t d i r { o u t p u t d i r e c t o r y }

We set the confidence parameter to 1 when running SplAdder on the SIRV dataset in order to
detect novel events.

MAJIQ

We ran MAJIQ (version 2.0) with default parameters but with de novo option disabled, i.e.,
disable− denovo for all benchmarks on simulated data. We noticed many false positive events
when running MAJIQ without the disable−denovo argument (i.e., enabling de novo mode). We
enable de novo mode again when evaluating MAJIQ on SIRV data sets to detect as many novel
events as possible.

PSGInfer

To compute edge weight estimates using PSGInfer, we followed two steps. First, we executed
the command psg prepare reference to generate a reference splice graph from annotated tran-
scripts (Ensembl annotation release 91), and we configured it to generate a line graph since it is
computationally more efficient than other types of graphs yet provides accurate estimates of edge
weights LeGault and Dewey (2013). Second, we ran psg infer frequencies to map RNA-seq
reads to the splice graphs generated in the first step and to estimate the weights of graph edges.
PSGInfer uses Bowtie Langmead et al. (2009) internally for RNA-seq read mapping. We ran the
latest version of PSGInfer 1.2.1 and a compatible version of Bowtie 1.3.0.

−− a n n o t a t i o n s { a n n o t a t i o n g t f }
−−genome − d i r { ch romosome FASTA f i l e s d i r }
− l 100 {m a x r e a d l e n g t h }
−k 0 { o r d e r o f P S G }
−−num− t h r e a d s 72
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