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Kurzfassung

Diese kumulative Dissertation befasst sich mit der statistischen Modellierung von räumlichen
Netzwerkdaten, sowie von Daten zur Pandemie des SARS-CoV-2-Virus. Statistische Model-
lierung kann im übertragenden Sinne als ein großer “Werkzeugkasten” verstanden werden, mit
dem man Phänomene der realen Welt durch eine geeignete mathematische Formalisierung ap-
proximiert. Die in dieser Arbeit verwendeten Modelle beruhen in erster Linie auf Regression,
wobei die Schwerpunkte auf der Glättung mit penalisierten Splines unter Einbeziehung von
zufälligen Effekten liegen. Im Allgemeinen bestehen die Vorteile von Regressions- und statis-
tischen Modellen darin, dass sie interpretierbare Modellergebnisse liefern und Vorhersagen über
unbeobachtete Zustände erlauben. Gleichzeitig ist eine Beurteilung der zugrunde liegenden Un-
sicherheit der Schätzungen möglich. Diese drei Schlüsselaspekte des statistischen Modellierens
spielen eine entscheidende Rolle in den fünf Beiträgen dieser kumulativen Dissertation.
Die ersten drei Artikel befassen sich mit statistischen Modellen und ihrer Anwendung auf

Daten, die auf Netzwerken beobachtet werden. Netzwerke sind Strukturen, die aus durch Kan-
ten verbundene Knoten bestehen. Während Netzwerke in natürlicher Weise abstrakte Beziehun-
gen wie soziale Netzwerke oder ein Netzwerk von Geschäftspartnern darstellen können, liegt der
Schwerpunkt in dieser Arbeit auf Netzwerken mit einer räumlichen Interpretation. Im ersten
Artikel wird ein neues Modell entwickelt, welches erlaubt, statistische Rückschlüsse auf un-
beobachtete Fahrten in Bike-Sharing-Netzwerken zu ziehen. Dabei stellen die Fahrradstationen
die Eckpunkte des Netzwerks dar, und die Wege zwischen den Fahrradstationen entsprechen
den Kanten. Der darauf folgende Artikel behandelt räumliche Netzwerke und die Schätzung
der Intensität von stochastischen Prozessen, deren Realisierungen in räumlichen Netzwerken
beobachtet werden. Die Methodik erlaubt auch die Einbeziehung von Kovariablen bei der
Schätzung der Intensität. Diese Art der Modellierung ist neu und mit den aktuellen, auf
Kerndichteschätzung basierenden Methoden, nicht möglich. Um die Methode frei zugänglich
zu machen, wurde ein R-Paket implementiert. Der letzte Beitrag im Bereich der Netzwerke
befasst sich mit der Vorhersage der Belegung von Parkplätzen, die entlang eines Straßennet-
zes verteilt sind. In diesem Zusammenhang wird die Netzwerkstruktur genutzt, um räumliche
Abhängigkeiten zu modellieren. Darüber hinaus basieren die Vorhersagen auf einem Semi-
Markov-Modell, um die nicht-exponentielle Dauer der einzelnen Zustände zu berücksichtigen.
Die Übergangsintensitäten werden mit Hilfe von Überlebenszeitmodellen geschätzt.
Der zweite Teil dieser Dissertation befasst sich mit der Pandemie des SARS-CoV-2-Virus,

das die Krankheit COVID-19 verursacht. Das deutsche Robert-Koch-Institut (RKI) stellt
täglich Daten zu COVID-19-Infektionen und Todesfällen im Zusammenhang mit COVID-19
zur Verfügung, mit zusätzlichen Angaben zu Region, Geschlecht und Alter der Infizierten. Aus
verschiedenen Gründen geben die Rohdaten keinen ausreichenden Aufschluss über den Schwere-
grad der Pandemie, weswegen statistische Modelle auf die Daten angewandt werden. Ein Beitrag
befasst sich mit der Vorhersage tödlicher Infektionen auf regionaler Ebene unter Berücksichti-
gung der lokalen Bevölkerungsstruktur. Damit ist das Modell in der Lage, auch eine region-
alspezifische Beurteilung der Schwere der Pandemie vorzunehmen. In einem zweiten Beitrag
werden die tödlich endenden Infektionen mit der Anzahl der registrierten Infektionen zueinan-
der in Beziehung gesetzt, um die Veränderung der Fallentdeckungsrate im Laufe der Zeit zu
quantifizieren. Darüber hinaus ermöglicht die Methode, den Verlauf der tatsächlichen Zahl
der Infektionen zu schätzen, während die gemeldeten Infektionszahlen durch verschiedene Test-
strategien beeinflusst sind.
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Summary

This cumulative dissertation is concerned with statistical modeling of data observed on geometric
networks and data related to the pandemic of the SARS-CoV-2 virus. Statistical modeling in its
broadest sense encompasses a large “toolbox” to approximate real-world phenomena in a math-
ematically formalized manner. Models used in this work are primarily regression-based, with an
emphasis on penalized spline smoothing and the inclusion of random effects to control for latent
heterogeneities. In general, the benefits of regression and statistical models include creating
interpretable model results and making predictions about unobserved states while adequately
communicating the underlying uncertainty. These three key aspects of statistical modeling play
a crucial role in the five contributions of this cumulative dissertation.
The first three articles cover statistical models and their application to data observed on

networks, i.e. structures consisting of vertices connected by a set of edges. While networks serve
as a natural device to represent abstract relationships such as social networks or a network of
commercial partners, the focus here is on spatial networks. The first article develops a new model
to draw statistical inference about unobserved trips in bike-sharing networks. Here, bike stations
represent the network’s vertices, and the paths between the bike stations correspond to the edges.
The consecutive article treats spatial networks, focusing on estimating stochastic processes’
intensity functions with realizations observed on spatial networks. The methodology also allows
fitting the intensity with covariates, which is novel and not feasible with the current state-of-the-
art methods based on kernel smoothing. To make the methodology freely available, anR package
has been implemented. The last contribution in the field of networks covers the prediction of
on-street parking occupancy, where parking lots are distributed along a street network. In this
context, the network structure is utilized to model spatial dependencies. Moreover, predictions
are based on a semi-Markov model to account for non-exponential duration times in each state
and the transition intensities are estimated employing time to event models.
The second part of this dissertation deals with the pandemic of the SARS-CoV-2 virus, which

causes the disease COVID-19. The German Robert Koch Institute (RKI) daily provides data
concerning COVID-19 infections and deaths related to COVID-19 with information on the in-
fected’s region, gender, and age. For several reasons, the raw data do not indicate the seriousness
of the pandemic sufficiently well, which is why statistical models are used to get a clearer picture
of the pandemic. One contribution is concerned with nowcasting fatal infections on a regional
level while accounting for the local population structure. Thus, the model is capable of evalu-
ating the region-specific seriousness of the pandemic. A second paper relates infections ending
fatally to registered infections aiming at quantifying the change of the case detection ratio over
time. Furthermore, the method allows assessing the relative course of the actual number of
infections while testing strategies influence the reported numbers.
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Chapter 1

Introduction

“Les questions les plus importantes de la vie ne sont en effet, pour
la plupart, que des problèmes de probabilité.”

—– Pierre-Simon Laplace (* 1749, † 1827),
French mathematician

1.1. Overview

Probability and random variables More than 200 years ago, Pierre-Simon Laplace stated in
a philosophical essay on probabilities that “the most important questions of life are indeed, for
the most part, only problems of probability” (Laplace, 1814). This statement has proven to
be correct. Even in the field of physics, which has for a long time been thought of as a purely
deterministic discipline, probability plays an important role as e.g. in quantum mechanics (Got-
tfried and Yan, 2013). There have been several approaches to formalize the term “probability”.
A mathematical definition was proposed by the Soviet mathematician Andrey Nikolaevich Kol-
mogorov who introduced an axiomatic system which is now widely known as the “Foundations of
the Theory of Probability” (Kolmogorov, 1950). In other writings, probability has been viewed
as a physical propensity (Popper, 1959) or has been grounded on a set of plausibility assump-
tions (Cox, 1946) where the latter serves as justification for the Bayesian view on probability.
The measure-theoretic perception of probability by Kolmogorov can be formalized in terms of
a probability space (Ω,F ,P) where Ω is a sample space, F is an event space (a σ-algebra) and
P : F → [0, 1] is a probability measure which assigns every event A ∈ F the probability P(A). A
random vector of dimension p on (Ω,F ,P) is a measurable function X : Ω → Rp and for ω ∈ Ω
the vector x = X(ω) is a realization of X. If p = 1, X is denoted as a real-valued random
variable and x = X(ω) is a realization of X. For a thorough introduction to measure theoretic
probability, see Pollard (2002). Since this dissertation focuses on applying probabilistic theory
to statistical models, technical details play a subordinate role. Hence, it is implicitly assumed
that probabilities and random variables are well-defined.

Statistical models Even though the general formulation of a statistical model is of minor
importance in applied statistics, for completeness, a concise definition shall be given here, see
also Cox and Hinkley (1979), Bernardo and Smith (2009) and McCullagh et al. (2002). In a
nutshell, a statistical model can be comprehended as a set of probability distributions P that
enables to draw inference about some characteristics of a population of interest. The inference
is based on the outcome of a statistical experiment or an observational study (the data) which
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itself consists of a set of statistical units U , a response scale Y and a covariate space X . In
this context, the set YU of mappings y : U → Y is the sample space with yi ∈ Y denoting the
observed response of unit i ∈ U . Likewise the set X U of mappings x : U → X is the design
space of the model with xi ∈ X being a point in the covariate space. The notation in a normal
font and a bold font, respectively, already suggests that usually yi is one-dimensional and xi is
multivariate. If P is characterized by a set of parameters Θ, one can write P = {Pθ | θ ∈ Θ} and
call it a parametric model with parameter space Θ. A parametric model is said to be identifiable
if Pθ1 = Pθ2 implies that θ1 = θ2 for θ1, θ2 ∈ Θ, i.e. if Pθ is injective. The identification of a
parametric model is usually required since most of the model parameters are associated with
the effect of covariates x on the response y. In general, the identifiability constraints need to be
chosen with care since they affect the quantification of uncertainty of the parameter estimates.
Konishi and Kitagawa (2008) identify three primary purposes of a statistical model. First, the

underlying stochastic structure of the data shall be explained, which involves, in practice, the
estimation of uncertainty and bias. Second, statistical models can be employed to predict future
or unobserved data based on observed data. Lastly, the interpretation of the modeling results
or the extraction of information is of importance. A comprehensive textbook for statistical
inference is Casella and Berger (2001).

Contributing articles Each of the Chapters 2 - 6 encompasses a contributing article which has
been either published in a statistics journal, has been accepted for publication or is currently
under review for being published. In the latter case, the latest version of the article, which
has been submitted to the respective journal, is included. Furthermore, the contributions of all
authors involved in creating each of the manuscripts are specified.

Outline of this chapter While the catalog of statistical models and their various applications
is rather extensive, this introductory chapter is devoted to those models which are vital for
Chapters 2 - 6.1 Section 1.2 introduces generalized additive mixed models, a rich and flexible
class of regression models where the response variable belongs to the exponential family of
distributions. In doing so, emphasis is placed on the flexible and smooth modeling of covariate
effects and the modeling with random effects. Statistical inference is discussed with a focus
on the duality of smoothness and random effects. Moreover, the extension of the model to a
broader class of distributions that do not necessarily belong to the exponential family is shortly
sketched. Section 1.3 deals with statistical models where the response variable is not observed
in a Euclidean space but on a spatial network. A simple idea allows using the theory introduced
in Section 1.2 to estimate the intensity of point processes whose realizations are observed on
a geometric network. Thus, covariate effects can be estimated as well, which is novel. Section
1.4 treats time-to-event models, which are closely related to generalized additive mixed models.
While the latter class of models aims to infer the mean value of some population characteristics,
when employing time-to-event models, the interest lies in modeling the distribution function
or survivor function, respectively, of a random duration time. Moreover, different censoring
mechanisms play an important role in this model class. Section 1.5 gives a brief introduction to
the theory of continuous-time stochastic processes with emphasis on (semi-)Markov processes,
which can be used for predicting future states of these processes. In Section 1.6, a short overview
of the software is presented, which was used to implement the statistical models proposed in
later chapters. Section 1.7 concludes the introduction with a short general discussion.

1At this point it should be noted that the notation in Chapters 2 - 6 does not necessarily coincide with the
notation in this chapter.
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1.2. Generalized additive mixed models

“Statisticians, like artists, have the bad habit of falling in love with
their models.”

—– George Edward Pelham Box (* 1919, † 2013),
British statistician

1.2.1. Model formulation

Exponential family To establish the comprehensive class of generalized additive mixed mod-
els let us start with the definition of the exponential family of probability distributions being
the basic building block of generalized linear models (GLMs, Nelder and Wedderburn, 1972,
McCullagh and Nelder, 1989). A random variable Y with mean E(Y ) = µ belongs to the ex-
ponential family if its density (with respect to the Lebesgue measure or the counting measure,
respectively) can be expressed as

fY (y; θ, ϕ) = β(y, ϕ) exp

(
yθ − b(θ)

ϕ

)
, (1.1)

where θ = θ(µ) denotes the natural parameter and ϕ > 0 is the dispersion parameter. Examples
comprise the binomial distribution, the negative binomial distribution and the Poisson distribu-
tion for a discrete response scale as well as the gamma distribution and the normal distribution
for a continuous response scale.

Generalized additive model Let us assume that the set of statistical units can be described as
the index set U = {1, . . . , n}. Further, let Yi belong to the exponential family with observations
yi ∈ Y for i ∈ U and xi = (xi1, . . . , xiK)⊤ ∈ X be a point in the K-dimensional covariate space.
Assuming that Yi | xi are independent for i = 1, . . . , n with mean µi = E(Yi | xi) and following
Wood (2017), a generalized additive model (GAM, Hastie and Tibshirani, 1990) has the general
structure

g(µi) = ηi = Aiβ +
∑

S1⊂{1,...,K}
fk(xik;γk) +

∑

S2⊂{1,...,K}2
fkl(xik, xil;γkl). (1.2)

The so-called link function g(·) is strictly monotonic and connects the linear predictor ηi with
the mean µi. If g(µi) = θ(µi), the link is said to be canonical. The matrix Ai is the i-th
row of the model matrix representing the parametric part of the model with corresponding
parameter vector β. The functions fk(·,γk) and fkl(·, ·;γkl) represent univariate or bivariate
smooth covariate effects which are shaped by parameters γk and γkl, respectively. However,
the linear predictor can contain smooth terms of order three or higher which is, for simplicity
of notation, not considered here. Furthermore, note that also the smooth covariate effects are
represented in a way such that they are linear in their parameters. Details are provided in
Section 1.2.2. The sets S1 and S2 are index sets and refer to the respective covariates modeled
smoothly. Finally, let θ = (β⊤,γ⊤)⊤ denote the vector of all GAM model parameters.
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From GAMs to GAMMs Suppose now that the set of statistical units U is additionally char-
acterized by an attribute t, i.e. U = {i, t | i = 1, . . . , n, t ∈ Ti} with Ti being a countable set
that might depend on subject index i. Examples are longitudinal studies where t is associated
with time and the pair {i, t} ⊂ U stands for the t-th observation of the i-th individual (e.g.
Datar and Sturm, 2004). For simplicity of notation, T is assumed to be identical for all subjects
i = 1, . . . , n, but results generalize easily to unbalanced designs. Moreover, in many studies U
has a nested, hierarchical structure, see e.g. Antweiler (2001) for an example from econometrics.
In most settings, Yit1 and Yit2 are not independent for t1, t2 ∈ T . In those cases, covariates

can mostly not completely account for subject specific heterogeneity. Therefore, random effects
u = (u⊤

1 , . . . ,u
⊤
n )

⊤ are added to the linear predictor as specified in (1.2) which leads to the fol-
lowing definition of a generalized additive mixed model (GAMM). It is assumed that Yit | xit,ui

are independently distributed according to an exponential family distribution with conditional
mean µit = E(Yit | xit,ui), where g(µit) = ηit +Zitu. As above, g is a monotonic link function,
ηit is the predictor for the t-th observation of the i-th unit and Zit is the respective row of the
random effects model matrix Z. The random effects are assumed to be independent following

a prior distribution which is usually Gaussian such that ui
indep.∼ N (0,Σϑ) or, equivalently,

u ∼ N (0, Σ̃ϑ), where Σ̃ϑ = In ⊗ Σϑ. The parameters ϑ shape the covariance matrix of the
random effects and ⊗ denotes the Kronecker product (Graham, 2018). A special case is the
random intercept model where u = (u1, . . . , un) ∼ N (0, Inσ

2) with ϑ = σ2 and Z has the form
of an ANOVA (Girden, 1992) model matrix. Note that E(u) = 0 ensures the identifiability of
random effects.

1.2.2. Penalized splines

Univariate B-splines In this dissertation, the smooth effect fk(·;γk) of the k-th covariate is
modeled utilizing a B-spline basis representation

fk(xik;γk) =

dk∑

j=1

γkjB
q
kj(xik) (1.3)

where Bq
kj(·) is a dk-dimensional B-spline basis of order q ∈ N0 and γk = (γk1, . . . , γkdk)

⊤

is the corresponding vector of basis coefficients (Ruppert et al., 2003, Fahrmeir et al., 2007).
Alternative basis representations are thin plate splines (“TP basis”, Wood, 2003). To generally
introduce B-splines, the covariate index k is dropped in the following.
Let [a, b] ⊂ R be the domain of a continuous covariate x and a = τ1 < . . . < τd−q+1 = b

a sequence of equally spaced interior knots. In order to construct B-splines of order q ∈ N0,
further 2q outer knots with τ1−q < . . . < τ0 < a and b < τd−q+2 < . . . < τd+q−1 with the same
distance between two adjacent knots are required. The resulting d B-splines of order q are for
j = 1, . . . , d recursively defined by

Bq
j (x) =

x− τj−q

τj − τj−q
Bq−1

j−1(x) +
τj+1 − x

τj+1 − τj+1−q
Bq−1

j (x), (1.4)

where a B-spline of order q = 0 is an indicator function B0
j (x) = 1[τj ,τj+1)(x) (De Boor, 1972).

As a result, each basis function Bj(·) is nonnegative, fulfills
∑d

j=1Bj(x) = 1 for x ∈ [a, b] and is
supported at most on an interval defined by q + 2 consecutive knots. Sometimes, it is required
that a function f(·) represented through a linear combination of B-splines fulfills f(a) = f(b),

4
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Figure 1.1.: Representation of an estimated smooth effect (black line) as the linear combination
of quadratic B-splines (colored lines). Within the domain of the outer knots (grey
background), the scaled B-splines are shown as dotted lines.

e.g. if circular effects such as the course of the year should be modeled. This only requires slight
modification of the B-spline basis (Eilers and Marx, 1996).
In a similar manner as in the introducing example of Eilers and Marx (2021), Figure 1.1

exemplifies the use of B-splines in order to estimate the smooth effect of x on a response Y . The
grey points represent covariate/response pairs (xi, yi) where yi are independent realizations of
a N (µi = f(xi), σ

2 = 0.052) random variable with f(x) = 0.2 sin(3x/π) + 0.005x2 + 0.6 and xi
being equally spaced in the interval [0, 10] = [τ1, τ6]. In this context, the goal is to estimate a
function f̂(·) which fits these n points in an optimal way but is likewise as smooth as possible.
Therefore, a GAM with normally distributed response y and an identity link is fitted to the
data. Here, the linear predictor has the form ηi = f(xi) = Xiγ with γ = (γ1, . . . , γd)

⊤ being
the parameters of the model. Furthermore, Xi = (B1(xi), . . . , Bd(xi)) is the i-th row of the
model matrix X ∈ Rn×d that is related to the smooth effect of x. Details with regard to the
estimation of the model parameters follow later. The sampled data points and the estimated
smooth effect of x are shown as grey points and a black line, respectively, in Figure 1.1. Here,
f̂(·) is represented through d = 7 quadratic B-splines, i.e. q = 2. Thus, f̂(x) =

∑7
j=1 γ̂jBj(x)

and γ̂j are the estimated B-spline coefficients. Moreover, Figure 1.1 also suggests how B-splines
are constructed by the use of the outer knots.

Dealing with the identification issue Smooth covariate effects suffer from identifiability prob-
lems, which is not the case when modeling random effects. To illustrate this, suppose that a
model without intercept has the form g(µi) = f(xi1;γ1) + f(xi2;γ2), i.e. the parameter vector
is given by θ = (γ⊤

1 ,γ
⊤
2 )

⊤. However, the model with parameter vector θ̃ = (γ̃⊤
1 , γ̃

⊤
2 )

⊤ which is
for c ̸= 0 defined by

g(µi) = [f(xi1;γ1) + c] + [f(xi2;γ2)− c] = f(xi1; γ̃1) + f(xi2; γ̃2)
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has a different parameterization, i.e. θ ̸= θ̃, but apparently Pθ = P
θ̃
. Thus, the statistical

model is not identifiable.
In order to ensure the identifiability of general smooth effects, Wood (2003) proposed to center

smooths around zero which leads to the constraint

n∑

i=1

f(xi) = 1⊤Xγ = 0, (1.5)

where X ∈ Rn×d is the design matrix for this smooth term and 1 ∈ {1}n is a vector of ones.
Since (1.5) must hold for any γ ∈ Rd, this is equivalent to 1⊤X = 0⊤ which means that the
column entries of X sum up to zero. This can be achieved by creating a column centered
matrix Xcent = X − 11⊤X/n. Since the dimension of the null space of Xcent is one, the
identification can be achieved by deleting an arbitrary column, say the first, leading to the
matrix X ident ∈ Rn×(d−1). This matrix satisfies constraint (1.5) and the parameter vector γ
now has dimension d − 1. Alternatively, constraint (1.5) can be achieved by making use of
householder transformations (Wood, 2017). Similarly, this method reduces the column rank
of X by one. In general, identifiability constraints should be chosen with care since different
constraints lead to different confidence intervals for the smooths (Wood et al., 2013).

Penalization It remains an open question on choosing the number of knots to properly model
the smooth effect of a covariate x on a response Y . While choosing only a few knots carries the
risk of underfitting the data, choosing too many knots results in overfitting the data. A simple
but elegant approach to handle this tradeoff between bias and variance was proposed by Eilers
and Marx (1996). They use a reasonably large number of equidistant knots and penalize the
squared difference of adjacent basis coefficients. To illustrate their idea, suppose the number of
knots is chosen to be too high, usually resulting in very wiggly effects f̂(x), i.e. the absolute
difference of neighboring coefficients is relatively large. If those differences were penalized, the
estimated effect of x would turn out to be smoother. Kauermann and Opsomer (2011) considered
the number of knots as an additional parameter of the model while simultaneously penalizing
the parameters related to smooth terms. However, if the number of knots is high enough and an
appropriate penalization is attributed to the model parameters, further increasing the dimension
of the B-spline basis is not beneficial. On the other side, if the dimension of the B-spline basis
is chosen too low, it is not possible to reduce the bias since the degrees of freedom of f̂(x) are
bounded from above (Ruppert, 2002).
When penalizing the squared r-th order differences of B-spline basis coefficients, a suitable

penalty according to the above considerations for a single smooth term is

P (ρ;γ) = ρ
d∑

j=r+1

(∆rγj)
2 = ρ(Drγ)

⊤(Drγ) = ργ⊤Kγ, (1.6)

where the r-th order differences of coefficients are recursively defined via ∆rγj = ∆r−1γj −
∆r−1γj−1 and ∆1γ = γj−γj−1 (Fahrmeir et al., 2007). The parameter ρ is called the smoothing
parameter and controls the amount of smoothing of a nonlinearly modeled effect. The optimal
selection of smoothing parameters can be integrated in the maximum likelihood estimation of
the model parameters as treated in Section 1.2.3. Usually, it is of advantage to express the
penalty (1.6) as a quadratic form P (ρ;γ) = ργ⊤Kγ where K = D⊤

r Dr ∈ Zd×d is a sparse
penalty matrix and Dr is called the difference matrix of order r. The penalty matrix Kr is
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rank deficient which gets more important later when a prior distribution is attributed to the
parameter vector γ in order to imbed penalized splines in random effects modeling.

Asymptotic behavior of penalized splines with a focus on bias and variance was examined by
Li and Ruppert (2008), who compared the results with other nonparametric regression methods
such as the Nadaraya-Watson kernel estimator (Bierens, 1987). They also show that penalizing
B-splines with an r-th order penalty is asymptotically equivalent to a derivative-based penalty
of order r, where the latter combination of B-splines and penalization is known as a smoothing
spline (Rice et al., 1983). Furthermore, Kauermann et al. (2009) asymptotically justify the
usage of a higher dimensional basis of splines if the sample size n increases. A comprehensive
monograph that treats both theory and various applications of penalized splines is Eilers and
Marx (2021) who coined the term “P-splines” for this type of smoother.

Penalized splines in two dimensions The idea of penalized splines based on B-splines can
easily be extended to two dimensions in order to model smooth interactions of covariates, e.g.
xk and xl by fkl(xk, xl;γkl) as in (1.2). B-splines in two dimensions can be constructed via
one-dimensional B-splines from above according to Bq

kl,jm(xik, xil) = Bq
kj(xik) · B

q
lm(xil) such

that a B-spline basis representation of the two-dimensional smoother fkl(·, ·;γkl) is given by

fkl(xik, xil;γkl) =

dk∑

j=1

dl∑

m=1

γkl,jmB
q
kl,jm(xik, xil), (1.7)

where γkl = (γkl,11, . . . , γkl,dk1, . . . , γkl,1dl , . . . , γkl,dkdl)
⊤ is the corresponding parameter vector

of dimension dk · dl. Figure 1.2 illustrates a B-spline basis in two dimensions where, however,
for reasons of presentation, not all basis functions are shown. The black crosses mark the fictive
knots in two dimensions. It can be seen that as in the one-dimensional setting, the basis functions
are identical except for their position. In general, modeling the smooth interactions of three or
more covariates is possible as well. An example is modeling the smooth interaction of space
(in two or three dimensions) and time. However, it can be deduced from (1.7) that already the
modeling of smooth 2-way interactions involves a high-dimensional B-spline basis which, due to
the curse of dimensionality, increases in three or four dimensions.

The construction of an appropriate penalty is accordingly more involved when compared to
the construction of the basis functions itself. Therefore, suppose that covariate xk shall be
penalized with a penalty of order rk and corresponding penalty matrices Kk ∈ Zdk×dk , same for
covariate xl. Following Currie et al. (2006), a penalty matrix for the two-dimensional B-splines
defined by (1.7) is given by

P (ρk, ρl;γkl) = γ
⊤
kl

(
ρk[Idl ⊗Kk] + ρl[K l ⊗ Idk ]

)
γkl. (1.8)

Thus, each dimension of a tensor-product spline is penalized by a separate tuning parameter.
However, requiring ρkl = ρk = ρl enables to represent the penalty in the same fashion as before
with P (ρkl;γkl) = ρklγ

⊤
klKklγkl and Kkl = [Idl ⊗Kk] + ρl[K l ⊗ Idk ].

Varying coefficient terms and functional random effects A special case of 2-way interactions
are smooth terms of the form fkl(xik, xil) = xilfk(xik), where fk(·) is a one-dimensional smoother
as in (1.3). Hastie and Tibshirani (1993) denote this kind of smoother as a varying coefficient
term since the coefficient for the l-th covariate varies smoothly with the observed value of the
k-th covariate. Finally, B-splines and random effects can be combined to functional random
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Figure 1.2.: A contour plot of quadratic B-splines in two dimensions. The color bar shows the
function values of the two-dimensional B-splines.

effects, i.e. instead of a linear random slope, a random function can be fitted for every subject
(Durban and Aguilera-Morillo, 2017). An instance of a model which has both extensions is
illustrated in Chapter 6.

1.2.3. Inference

The foundation of inference in GAMMs is maximum likelihood estimation (MLE) which is based
on the joint density fθ(y,u) of the observed data y = (y1, . . . , yn)

⊤ and the unobserved random
effects u. Various methods for finding maximum likelihood estimates are available, and some
of those shall be discussed here, focusing on the duality between smooths and random effects.
Therefore, MLE in GAMs and GLMMs is first treated separately, followed by MLE in GAMMs.

Maximum likelihood estimation in GAMs

Estimation for fixed smoothing parameters For the moment, suppose that the smoothing
parameters of the model, denoted as a vector ρ, are fixed. According to Wood (2017), the
model parameters θ = (β⊤,γ⊤)⊤ in a GAM can be estimated by maximizing the penalized
log-likelihood

ℓpen(θ | ρ) =
n∑

i=1

log fθ(yi)−
1

2

∑

s∈S
ρsθ

⊤Ksθ, (1.9)

where fθ(·) is the density of an exponential family distributed random variable parameterized by
θ. As before, S is an index set which refers to all nonlinearly modeled covariates (or interaction
thereof). The matrix Ks is the penalty matrix of the s-th smoother, which is constructed
as shown in Section 1.2.2, but here augmented with zeros such that it fits the dimension of
θ. Maximization of (1.9) with respect to θ conditional on ρ can be achieved via penalized
iteratively re-weighted least squares (PIRLS, Wood, 2017). If ϕ ̸= 1, the dispersion parameter
can consistently be estimated by employing a scaled Pearson statistic.
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Estimation of the smoothing parameters In contrast to optimizing the penalized log-likelihood
(1.9), estimation of the smoothing parameters is not straightforward. A possible approach is
a two-stage estimation procedure in which the smoothing parameters (outer iteration) and the
model (inner iteration) are alternately estimated. In the outer iteration, a model criterion needs
to be optimized for the smoothing parameters. One popular option is the minimization of the
generalized cross-validation (GCV) score (Craven and Wahba, 1978), which, however, suffers
from the curse of dimensionality if many smoothing parameters need to be estimated. This
issue is resolved by Wood (2004) who regards the GCV score as a twice-differentiable function
of the (log-)smoothing parameters and makes use of Newton’s method to minimize the criterion.
A similar idea was initially developed by Schall (1991). The embedding into the GAM con-

text was proposed by Wood and Fasiolo (2017) which is known as the generalized Fellner-Schall
method. This is a comparably simple but very efficient method to estimate smoothing pa-
rameters in generalized regression models which can also be applied beyond exponential family
models. The idea is to maximize the log-restricted marginal likelihood (Wood, 2011) of the
model with respect to the smoothing parameters for a given estimate θ̂ which is again accom-
plished by computing the respective derivatives with respect to the smoothing parameters. The
update proceeds as follows. If ρs, s ∈ S denote the current estimates of the smoothing parame-
ters and θ̂ρ is the argument which maximizes (1.9) for given ρ, then the single update proceeds
as follows

ρ(new)
s = ρs

tr(K−
ρKs)− tr(V̂ ρKs)

θ̂
⊤
ρKsθ̂ρ

. (1.10)

Here, tr(·) denotes the trace operator and K−
ρ is a generalized inverse of Kρ =

∑
s∈S ρsKs.

The matrix V̂ ρ = V (θ̂ρ) is the expected Hessian of the negative log-likelihood evaluated at

the maximum likelihood estimate θ̂ρ. In exponential family generalized additive models, the
expected Hessian is given by V (θ) = (X⊤W (θ)X+Kρ)

−1. Here, X denotes the design matrix
of the model andW (θ) is a diagonal weight matrix which appears in the PIRLS algorithm. For
example, in a log-linear Poisson model the diagonal elements are given byW (θ)ii = exp(ηi). In
a non-exponential family setting, the expected Hessian can be replaced by the observed Hessian.
However, this does not ensure the positivity of the smoothing parameter updates anymore which
requires the matrix V̂ ρ to be positive-definite.

Maximum likelihood estimation in GLMMs

Now, estimation of a generalized linear mixed model (GLMM) shall be discussed which is
a GAMM without smooth covariate effects. The marginal likelihood of the model results
from integrating out the random effects from the joint density of the data and random ef-
fects fθ,ϑ(y,u) = fθ(y | u)fϑ(u), where fϑ(·) is the assumed density of the random effects with
parameters ϑ (Fahrmeir and Tutz, 2013). In particular,

ℓmarg(θ,ϑ) =
n∑

i=1

log

∫ T∏

t=1

fθ(yit | ui)fϑ(ui) dui. (1.11)

However, the integrals that appear in (1.11) can seldom be solved analytically as in the case
of a linear mixed model with Gaussian random effects or for gamma shared frailty time-to-
event models (see Section 1.4.1). A standard tool to derive explicit formulas of the marginal
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likelihood is applying a Laplace approximation (Davison, 2003 and Shun and McCullagh, 1995
for asymptotic properties) to the integral in (1.11). Taking the logarithm of this approximation
and ignoring constant terms, an approximation of the marginal log-likelihood thus is

ℓmarg(θ,ϑ)
Laplace≈ log fθ(y | û)− 1

2
û⊤Σ̃

−1

ϑ û− 1

2
log |Σ̃ϑ| −

1

2
log

∣∣∣∣
1

ϕ
Z⊤WZ + Σ̃

−1

ϑ

∣∣∣∣ ,

where û is the maximizer of the joint likelihood for fixed θ and ϑ (Wood, 2017).
Alternative approaches to computing the marginal log-likelihood involve numerical techniques

such as adaptive Gauss–Hermite quadrature (Hartzel et al., 2001), Monte Carlo integration (Friel
and Pettitt, 2008) or the employment of an EM algorithm (Dempster et al., 1977). The former
method is only feasible if the dimension of the random effects is low, where the Monte Carlo
integration techniques can remedy this problem since the numerical effort rises linearly with the
dimension of the random effects rather than exponentially. The latter method views y and u as
observed and missing data, respectively, and iteratively maximizes the log-likelihood with the
current expected values of the missing data.
Having obtained estimates for θ and ϑ, it remains to estimate the random effects ui in order

to obtain fitted values of the conditional means E(Yit | xit,ui). An estimate ûi is the posterior
mean E(ui | yi; θ̂, ϑ̂). This involves again the computation of an intractable integral which can
be carried out by applying one of the methods discussed above.

Maximum likelihood estimation in GAMMs

Treating random effects as smooths If both, smooth components and random effects are
present in the model, the same estimation methods as above can be employed if the r random
effects per subject are considered to be independent. These assumptions lead to the following
decomposition of the joint density of the data and random effects

fθ(y,u) = fθ(y | u) · fϑ(u) =




n∏

i=1

T∏

t=1

fθ(yit | ui)


 ·




n∏

i=1

r∏

j=1

fϑ(uir)


 . (1.12)

Similar arguments as in Breslow and Clayton (1993) for penalized quasi-likelihood maximization
lead for Gaussian random effects to the penalized log-likelihood

ℓpen(θ,u | ρ,ϑ) =
n∑

i=1

T∑

t=1

log fθ(yit | ui)−
1

2

∑

s∈S
ρsθ

⊤Ksθ − 1

2

r∑

j=1

1

σ2j
u⊤
j uj , (1.13)

where uj = (u1j , . . . , unj)
⊤. Denoting ρj = 1

σ2
j
and setting Kj to the identity matrix, it can

be seen that the second penalty in (1.13) can be put into the same shape as the first penalty.
Therefore, treating independent random effects as smooths is equivalent to imposing a Ridge
penalty on each random effect.

Treating smooths as random effects An alternative to the approach discussed in the previous
paragraph is to treat smooth terms in a GAMM as random effects in the framework of GLMMs.
For reasons of simplicity, only one-dimensional smooths (or multi-dimensional smooths with
a single smoothing parameter) are discussed here. Writing tensor-product smooths with the
penalty having multiple smoothing parameters as in (1.8) in a mixed model representation is
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much more involved and not discussed here. For details, see Wood et al. (2013).
The basic idea is to specify a prior distribution on the model parameters γ of a smooth

term, i.e. the problem is seen from the Bayesian perspective. Due to the already established
connection to Gaussian random effects, the parameters γ of a smoother are equipped with an
exponential prior of the form

f(γ) ∝ exp(−ργ⊤Krγ).

This results in an improper Gaussian prior γ ∼ N (0,K−
r /ρ), since Kr is rank deficient with

rk(Kr) = d − r. After reparameterization as proposed by Wood et al. (2013), it follows that
f(xi) = X

⋆
iβ

⋆ +Z⋆
iu

⋆ with fixed effects β⋆ ∈ Rd and u⋆ ∼ Nd−r(0, I/ρ), i.e. f(·) has a mixed
model representation. Conducting this procedure for all smooths fs(·), s ∈ S in the model leads
to a large GLMM which can be estimated as shown above.

Approximate EM Algorithm As shown in the last two paragraphs, both directions of the
equivalence of smooths and random effects can be exploited, which standard software uses to fit
exponential family GAMMs. It is also possible to exploit this connection implicitly and employ
an EM-type algorithm that is easy to implement and works if the response Y does not belong to
the exponential family of distributions. Moreover, in contrast to 1.12, the random effects do not
need to be assumed to be independent. This approach is chosen for the generalized regression
model in Chapter 2 and will thus be sketched in the following.
First, assume that the smoothing parameters ρ and the covariance parameters ϑ are fixed. If

θ is not considered to be a fixed parameter vector any more but, however, now being equipped
with a flat prior density, it follows from Bayes’s theorem that fθ(y | u) · fϑ(u) from above
is proportional to the joint posterior density f(θ,u | y,ϑ). Thus, following Fahrmeir and
Tutz (2013) and assuming Gaussian random effects, maximization of the latter with respect
to ζ = (θ⊤,u⊤)⊤ is equivalent to maximizing the penalized log-likelihood (while also adding
penalties for smooth terms)

ℓpen(ζ) =
n∑

i=1

T∑

t=1

log fθ(yit | ui)−
1

2

∑

s∈S
ρjθ

⊤Ksθ − 1

2
u⊤
i Σ

−1
ϑ ui. (1.14)

Note that (1.14) now involves two penalties, one for the smooth terms and one for the ran-
dom effects. If the response does not fit in the exponential family framework, other numerical
optimization methods than PIRLS algorithm might be required for the maximization of (1.14).
Possible alternatives are quasi-Newton methods such as the BFGS algorithm, which does not
require the computation of second derivatives (Wright and Nocedal, 1999).
Now, let us assume that ζ̂ = argmaxζℓpen(ζ) has been obtained when having assumed fixed

values for ρ and ϑ. A simple update of the smoothing parameters can be performed via the
Fellner-Schall method (1.10). A method to derive estimates for the covariance parameters ϑ
was proposed by Laird and Ware (1982) for normally distributed responses and was extended
to the exponential family setting by Fahrmeir et al. (2007). The basic idea is to maximize
the marginal log-likelihood ℓmarg(ϑ) which is obtained by integrating the joint likelihood of the
data and the random effects with respect to the random effects ui, i = 1, . . . , n and θ. This, in
turn, is generally a sophisticated task. Hence, maximization is performed indirectly via an EM
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algorithm. The M-step consists of maximizing the conditional expectation (E-step)

M(ϑ | ϑ(k)) = E(log fϑ(ζ) | y;ϑ(k))

with respect to ϑ, where ϑ(k) denotes the estimate for ϑ from the previous cycle of the EM
algorithm. It can be shown that in case of Gaussian prior for the random effects, the resulting
update of the covariance matrix is given by

Σ(ϑ(k+1)) =
1

n

n∑

i=1

[
Cov

(
ui | yi;ϑ(k)

)
+ E

(
ui | yi;ϑ(k)

)
E
(
ui | yi;ϑ(k)

)⊤]
.

Maximization of (1.14) delivers posterior modes but not the posterior means E
(
ui | yi;Σ(ϑ(k))

)
.

In general, the posterior mode is different from the posterior mean since the posterior distribu-
tion of ui is not normal for non-gaussian responses. For the same reason, the posterior covariance
matrix is not exactly equal to V (ζ̂), the hessian of the negative log-likelihood evaluated at ζ̂.
However, these quantities still serve as an approximation which leads to the update

Σ(ϑ(k+1)) =
1

n

n∑

i=1

[
V (ζ̂)

(k)
ii + û

(k)
i (û

(k)
i )⊤

]
. (1.15)

Since (1.15) is not based on the posterior mean and the posterior covariances, but approximations
thereof, Fahrmeir and Tutz (2013) denote this modification of the EM-algorithm as “EM-type”
algorithm or “approximate EM algorithm”.

Uncertainty

One of the main goals of statistical modeling, which was phrased in Section 1.1 was to capture
the stochastic structure of the model. Usually, two types of uncertainties are distinguished,
aleatoric and epistemic uncertainty (Der Kiureghian and Ditlevsen, 2009). The former source of
uncertainty mirrors the intrinsic randomness of the data. Thus, this type of uncertainty can not
be avoided but appropriately handled by assuming a probability distribution of the response.
Epistemic uncertainty is introduced by the lack of knowledge, which can either be caused by the
lack of data or an inappropriate model formulation (“all models are wrong, but some models
are useful”, Box, 1979).
In particular, it is desirable to quantify the uncertainty of the maximum likelihood estimates θ̂

which allows to deduce the uncertainty of the estimated means µ̂it which are random variables.
Asymptotic properties of the MLE in GLMs have been derived by Fahrmeir and Kaufmann
(1985). The results can be generalized to the GAM case such that θ̂ | ρ ∼ N (θ,V ) holds
asymptotically, where V is the inverse of the Hessian of the negative log-likelihood evaluated at
θ. Viewing the estimation problem from a Bayesian perspective, the large sample approximation
yields θ | y,ρ ∼ N (θ̂, V̂ ) (Wood, 2006). Therefore, Bayesian confidence intervals for nonlinear
functions of the parameters, e.g. for smooth covariate effects, can be obtained via simulation
from the posterior distribution of θ. However, note that this quantification of the uncertainty
neglects additional variability that is introduced by the estimation of the smoothing parameters.
This additional uncertainty is discussed by Marra and Wood (2012) and Wood et al. (2016).
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1.2.4. Extension to non-exponential families

So far, it has been assumed that the response variable Y belongs to a univariate exponential
family with a density that can be factorized according to (1.1), which is advantageous as the
whole GAMM theory can be put in one unified framework. However, either the exponential
family of distributions might be too restrictive for a specific application, or it is desired to not
only model the mean of the response with covariates. Therefore, two extensions of generalized
additive mixed models shall be presented here.

GAMM for non-exponential families In Chapter 2, a regression model is constructed where
the response variable is assumed to follow a Skellam distribution. This specific distribution arises
from the difference of two independent Poisson distributed random variables (Skellam, 1946).
In particular, D = X − Y ∼ Skellam(µ1, µ2) if X ∼ Poi(µ1) and Y ∼ Poi(µ2) are independent.
The density of D with respect to the counting measure is given by

f(k;µ1, µ2) = e−(µ1+µ2)

(
µ1
µ2

)k

Ik(2
√
µ1µ2)

for k ∈ Z where Ik(·) are Bessel functions of the first kind (Abramowitz and Stegun, 1964).
From the construction of D, it immediately follows that E(D) = µ1 − µ2. As one can see, the
density of D is already parameterized in terms of its expected value, now with two parameters to
be modeled. A model formulation without random effects is Di ∼ Skellam(µi1, µi2) independent
given covariates xi and g(µij) = ηij for j = 1, 2. Such a model can be used to identify the means
µi1 and µi2 related to the observed differences Di.

GAMLSS The Skellam modeling approach formulated above allows modeling both parameters
of the response D with covariates. Regression models which generally allow modeling the whole
distribution of a univariate response Y are generalized additive models for location, scale and
shape (GAMLSS, Rigby and Stasinopoulos, 2005). As the name of the model class suggests, the
density of the response Y is usually parameterized in terms of a location parameter (often the
mean), a scale parameter (related to the variance) and shape parameters (related to skewness
and kurtosis). All the flavors of statistical modeling formulated until now can also be used in
the context of a GAMLSS. A software implementation that allows fitting dozens of different
distributions is proposed by Stasinopoulos et al. (2007). GAMLSS are not part of Chapters
2 - 6. However, they should be presented at the end of this section as an alternative if the
statistical modeling approach when employing GAMMs showed some issues. For example, the
overdispersion parameter ϕ is assumed to be constant in the negative binomial GAMM frame-
work. When employing a GAMLSS, this parameter that affects the response’s variance could
also be parameterized by covariates.
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1.3. Geometric networks

“A knowledge of statistics is like a knowledge of foreign languages
or of algebra; it may prove of use at any time under any circum-
stances.”

—– Sir Arthur Lyon Bowley (* 1869, † 1957),
British statistician and economist

One explanation for the term “network” is “a chain or system of interconnected immaterial
things”.2 Kolaczyk (2009) reformulates this as a network being “simply [...] a collection of
elements and their inter-relations”. This collection can be formalized in terms of a (network)
graph G = (V,E), a mathematical structure known from graph theory where V = {v1, . . . , vW }
is a set of of W vertices (“elements“) and E = {e1, . . . , eM} ⊂ V × V a set of M edges (“inter-
relations”). The statistical modeling of network-related data is a wide field, and a typical
example is outlined by Hoff et al. (2002) where the aim is to draw inference about an unobserved
social space. This view on networks is from a rather abstract point of view. On the other
hand, the Oxford English Dictionary defines “networks” as “any netlike or complex system
or collection of interrelated things, as topographical features, lines of transportation...”. This
definition assigns more spatial properties to a network. Three of the contributing articles in this
dissertation revolve around such networks. Therefore, they will be introduced formally in the
following.

1.3.1. Definition

A geometric (or spatial) network G embedded in a Euclidean space of dimension q ∈ N with
q ≥ 2 is defined as

G =
M⋃

m=1

em ⊂ Rq,

where E = {e1, . . . eM} is a set of network segments. Each em can be understood as the image
set of a parametric curve νm : [am, bm] → Rq, i.e. em = νm([am, bm]). The length dm = |em| of
the m-th network segment is defined to be the integral along the curve νm. In practice, em can
be approximated by an alignment of straight line segments such that

dm = lim
N→∞

N∑

i=1

||νm(ti)− νm(ti−1)||q,

with a = t0 < t1 < . . . < tN = b and with || · ||q denoting the Euclidean distance. These lengths
imply the shortest path distance measure dG : G×G → [0,∞) on G. Note that dG is seldom
a metric since the symmetry is usually not fulfilled if the curves are additionally equipped with
a direction. Moreover, V = {v1, . . . ,vW } is a set of vertices (or nodes) which are defined as
the unique set of endpoints of segments E , i.e. V = {νm(am), νm(bm) | m = 1 . . . ,M}. A more
detailed introduction into the notion of geometric networks is given in Chapter 3. Figure 1.3
shows a network of highways in the southern part of Montgomery County, Maryland. Here,

2https://www.oed.com/
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Figure 1.3.: A network of highways in Montgomery County, Maryland. The red dots represent
the vertices of the network.

the vertices are visualized through red dots, and each of them corresponds to an intersection of
three or more roads or the terminus of a street, respectively.

1.3.2. Estimation of latent network flows

A frequent problem in the analysis of networks is the estimation of latent network flows. An
example is the estimation of unobserved traffic in infrastructure networks such as public trans-
portation networks. Usually, the problem’s formulation is that one observes an m-dimensional
process y which is used to estimate an n-dimensional process of interest z withm≪ n, where the
latter process corresponds to the network flows of interest (Airoldi and Blocker, 2013). Hansen
(1998) generally qualifies these kinds of problems as ill-posed problems since the solution is
usually not unique. They are also classified as inverse problems since one needs to determine
the input from the output of a system. When tackling inverse problems, often regularization
methods are used (Zhang et al., 2003).
Chapter 2 is concerned with an inverse and ill-posed latent network flow estimation problem.

Here, an m-dimensional process y = (yt)t=1,...,T is observed which is used to estimate the
n = m2-dimensional network flows z = (zt)t=1,...,T . Thus, the process y is defined on the nodes
of the network and z is a dyadic process. In the specific application of Chapter 2, ct ∈ Nm

0 are
the station feeds in a bike-sharing system at time point t = 0, . . . , T which imply the differences
of station feeds yt = ct − ct−1 ∈ Zn for t = 1, . . . , T . This observed process is used to estimate
the latent network flows zt ∈ Nn

0 , which are defined as the number of bikes leaving station
i ∈ {1, . . . ,m} in the interval [t − 1, t) and arriving, possibly after time point t, at station
j ∈ {1, . . . ,m}. Note that n = m2 implies that trips back and forth from the same station,
so-called loops, are allowed as well. The path between bike stations is implied by a geometric
network G which in this application is a street network. The distance between bike stations i
and j is the shortest path distance dG(si, sj) between their respective locations si and sj which
is one of the covariates in the model.
Figure 1.4 shows the station feeds ct−1 (left panel) and ct (right panel) in a simplified bike-

sharing network with five bike stations at two consecutive time points. When assuming the
incoming and the outgoing flows to/from station i being independently distributed Poisson
random variables, their differences yi,t−1 = ci,t−1 − ci,t follow a Skellam distribution. However,
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Figure 1.4.: Illustration of the ill-posed bike-sharing problem. The left panel shows stations
feeds of the bike sharing network at time point t− 1, the right panel at time point
t. The observed 5-dimensional vectors yt = ct − ct−1 are used to estimate the 25-
dimensional vectors zt. The arrows represent one-way routes, i.e. the network is
directed.

this result only holds approximately since the bike station’s capacities are finite in reality. To
respect this, a truncated Skellam distribution can be used as motivated by Ntzoufras et al.
(2019). In Figure 1.4, the observed differences are yt = (0,−1, 4, 2,−3)⊤. When observing these
differences over a longer period together with covariates x = (xt)t=1,...,T , a Skellam regression
model (see Section 1.2.4) can be employed in order to estimate the expected flows E(zt) in the
bike-sharing network. Such a model is elaborated in detail in Chapter 2 and is essentially a
GAMM where the response variable does not belong to the exponential family of distributions.

1.3.3. Intensity estimation of point processes

For general spaces S ⊂ Rq, a spatial point process X is a random countable subset of S (Moller
and Waagepetersen, 2003). In Chapter 3, the special case S = G is considered, i.e. point
processes on a geometric network as defined above. A realization x = X (ω) ∈ G of the point
process X is denoted as a point pattern. Spatial point processes can be characterized in terms
of a nonnegative intensity function φX : G→ [0,∞) with φX (u) denoting the expected number
of points per unit length of the network, in the vicinity of a point u ∈ G (Baddeley et al., 2015).
Therefore, the expected number of points which fall in a subset B ⊂ G is given by

EX (B) =

∫

B
φX (u) du =

M∑

m=1

∫

em∩B
φX (u) du

Chapter 3 is devoted to the estimation of the intensity function φX (·) of a point process X on
a geometric network G where in Chapter 3 the focus is on the deployment of the methodology
and the appendix of Chapter 3 treats the implementation of the model in R.

Intensity estimation with kernel based methods Within the R package spatstat (Baddeley
et al., 2015) various kernel smoothing approaches are implemented that estimate the intensity of
a point process on a linear network, i.e. a geometric network where the connections between two
vertices are straight lines. In a seminal paper, Okabe et al. (2009) introduced the “equal-split
continuous” kernel based method. In general, they define a kernel estimator (Silverman, 1986)
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of the density f(u) ∝ λ(u) at a point u ∈ G by

f̂(u) =
1

n

n∑

i=1

cG(u,xi)kh(dG(u, xi)),

where kh(·) is a continuous, nonnegative and unimodal kernel function with modal point xi

and kernel bandwidth h. An example is the Epanechinikov kernel (Epanechnikov, 1969). The
factor cG(u,xi) is a correction factor to account for the geometry of the network which results
in unbiased estimates if the true intensity is uniform. Without going into the technical details,
the idea behind this correction factor is to split the kernel mass at vertices equally across the
line segments. For more details see also Okabe and Sugihara (2012).

Based on the considerations for correcting edge effects and fastening the convergence of kernel
based estimators in one dimension (Botev et al., 2010), kernel based estimation of the intensity
on linear networks was further developed by McSwiggan et al. (2017). They replaced the kernel
function multiplied by the correction factor from above through a heat kernel with bandwidth
h = σ2 (Kostrykin et al., 2007) that has the form

kσ2(u,xi) =
∑

π∈Π
a(π)φσ2(ℓ(π)). (1.16)

Here, π is a path from xi to u on G, ℓ(π) is the length of this path, φσ2 is the density of
a N (0, σ2) random variable and a(π) is product involving all vertices that the path π passes.
Note that the set of paths Π is infinite since there is no restriction on the complexity of a path.
For example, π might pass a point u ∈ G several times. Nonetheless, the sum (1.16) converges
and more generally, the equal-split continuous estimator is asymptotically equivalent to the heat
kernel estimator.

Penalized splines on a geometric network Kernel-based methods for the intensity estimation
of a point process on a network geometry adopt the drawbacks from kernel smoothing in Eu-
clidean spaces, such as the non-consistency of the estimators near the boundaries of the support
(Karunamuni and Alberts, 2005). Beyond this, it is not straightforward to estimate the inten-
sity when covariates are available. A method that can do so and makes use of GAM theory is
presented in Chapter 3. The cornerstone of this new method is to define penalized splines on a
geometric network which is briefly motivated in the following.
On every curve em with endpoints, say vi and vj , an equidistant sequence of Im knots

vi = τm,1, . . . , τm,Im = vj is defined with δm denoting the knot distance on em. This is ex-
emplified for a small network in the left panel of Figure 1.5. The knots can be used to construct
linear B-splines on the geometric network which is described in the following. A mathematical
definition of those B-splines can be found in Chapter 3.
In the Euclidean case, linear B-splines are supported between three adjacent knots. In the

same manner, Jm = Im − 2 linear B-splines Bm,k(·) are defined on the m-th curve which satisfy
Bm,k(τm,k) = 0, Bm,k(τm,k+1) = 1 and Bm,k(τm,k+2) = 0 for k = 1, . . . , Jm, i.e. the mode of
the B-spline Bm,k equals τm,k+1. To supplement these B-splines to a basis on G, another W
linear B-splines B(i) are constructed around each vertex. Therefore, B(i)(vi) = 1, i.e. the mode
of B(i) equals vi, and linear decrease towards the adjacent knots. In the setting of Figure 1.5,
B(4)(v4) = 1 and B(4)(τ 24) = B(4)(τ 33) = B(4)(τ 42) = B(4)(τ 62) = 0. The right panel of Figure
1.5 shows the location of the B-splines which are defined by the knots in the left panel, where
the vertex specific B-splines are marked as blue squares.
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Figure 1.5.: Left panel: Allocation of knots on a small geometric network. Right panel: Position
of the modes of the linear B-splines defined by the knots.

As in the Euclidean setting, every B-spline has a basis coefficient while, however, the number in
the geometric network setting is much higher, which becomes evident when considering the small
network in Figure 1.5. Therefore, penalization becomes even more relevant. The construction
of the penalty is similar as proposed by Eilers and Marx (1996) for the real numbers, where
neighboring B-spline coefficients are penalized. A penalty of order one is straightforward, i.e.
all pairs of neighbored coefficients are penalized. Switching notation and indexing B-splines and
their coefficients with j = 1, . . . , J , a penalty of order two has the form

P (ρ;γ) = ρ
∑

D2

(γi − 2γk + γj)
2 = ρ(D2γ)

⊤(D2γ) = ργ⊤K2γ,

where D2 is the set of all triples of indices that are neighbors of order two. Thus, a penalty
can also be represented as a quadratic form such as in the Euclidean case. As an example, the
coefficients of the triple (B3,2, B(4), B6,1) ∈ D2.

Intensity estimation with penalized splines The above defined penalized B-splines can now
be used to estimate the intensity of a point process on a geometric network. The observed point
pattern x is binned on G which is visualized in Figure 1.6. Let ym,k ∈ N0 be the observed
count of points in the k-th bin of the m-th curve which es represented by the mid point zm,k

and let hm denote the curve-specific bin width. The general assumption of the model is that

Ym,k | zm,k
indep.∼ Poi(λm,k), where λm,k is approximated through the log-linear model

λm,k = exp(νX (zm,k) + ηm,k + log hm) (1.17)

Here, hm serves as offset to ensure the appropriate scaling and νX (zm,k) =
∑J

j=1 γjBj(zm,k) is
a B-spline basis representation of the log-baseline intensity. The linear predictor ηm,k has the
same structure as in (1.2) and allows to estimate effects of covariates on the intensity.
It can be seen that model 1.17 is, in fact, a generalized additive (Poisson) model. Therefore,

inference can be drawn by making use of the concepts which were already outlined in Section
1.2. In particular, the log-likelihood is of the form (1.9), smoothing parameter estimation can be
carried out by employing the Fellner-Schall update (1.10), and the uncertainty of the estimates
can be quantified via the Bayesian large sample approximation as in the GAM setting.
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Figure 1.6.: Left panel: Point pattern on a small geometric network. Right panel: Binning of
the point pattern.

1.3.4. On-street parking

Sections 1.3.2 and 1.3.3 have already highlighted two scopes of application for geometric net-
works, latent network flow estimation and intensity estimation of point processes. Chapter 4
covers the third application of this dissertation and is devoted to the prediction of on-street park-
ing availability. Here, parking lots are located on a geometric network of streets and can either
be in state 0 (clear) or 1 (occupied). The network approach allows to capture the correlation of
nearby parking lots by introducing the following spatial covariate

nearby
(i)
j,t =

∑

k ̸=i

1{X(k)
t = j, dG(si, sk) ≤ h}/

∑

k ̸=i

1{dG(si, sk) ≤ h}, (1.18)

where X
(k)
t = j ∈ {0, 1} is the state of the k-th parking lot at time point t and si ∈ G is

the location of the i-th parking lot. Therefore, nearby
(i)
j,t quantifies the fraction of parking lots

located within a (shortest-path) distance of less than h around parking lot i, that are in state j
at time point t. A covariate as defined in (1.18) is employed in a time-to-event model, a class of
models akin to GAMMs.

1.4. Time-to-event models

“While nothing is more uncertain than a single life, nothing is more
certain than the average duration of a thousand lives.”

—– Elizur Wright (* 1804, † 1885),
American mathematician and abolitionist

When modeling time-to-event data, the response variable of interest usually is a nonnegative
number, the time of an event. What makes time-to-event models different from regression
models, which were covered in Section 1.2, are possible censoring and truncation mechanisms
affecting the response. The scope of application for time-to-event models is diverse, but the
models are mainly employed in the life sciences such as medicine or biology. For the former
example, the response variable often is the time from the beginning of a study until cure or
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death and observations are right-censored if an individual withdraws before the outcome has
been observed (Kardaun, 1983). For this reason, the term “survival analysis” is often used as
a synonym for time-to-event models. In engineering, the field is called “reliability analysis” or
“failure time analysis”. Here, the failure rate of machinery, e.g. of a wind turbine, is of interest
(Tavner et al., 2007). Thus, time-to-event models can also be employed to model transition
rates (or intensities) from one state (e.g. alive, operational) to another state (e.g. dead, non-
operational) of a stochastic process with countably many states, which is pursued in Chapter
4.

1.4.1. Model for continuous data

Let D be a nonnegative and continuous random variable with cumulative distribution function
FD(d) = P(D ≤ d). Thus, the function SD(d) = 1−FD(d) is decreasing for d > 0 and is denoted
as the “survival function” or the “reliability function”, depending on the context. The hazard
rate or intensity function of D is defined by

λ(d) = lim
∆d→0

P(d ≤ D < d+∆d | D ≥ d)

∆d
(1.19)

which quantifies the conditional failure rate (Klein and Moeschberger, 2006). The intensity λ(·)
is related to the distribution of D via

FD(d) = 1− exp

(
−
∫ d

0
λ(x) dx

)
= 1− exp

(
−Λ(d)

)
, (1.20)

where the integral Λ(d) in (1.20) denotes the cumulative hazard or cumulative intensity. There-
fore, to draw inference about FD(·) or SD(·), respectively, a model for λ(·) is required which
characterizes D uniquely.

Statistical model for intensities Let us assume that the same setting as in a GLMM in Section
1.2.1. However, now the response is a tuple (dit, δit) with dit denoting the observed duration of
the t-th observation of the i-th unit and δit is a censoring indicator where δit = 1 means that the
corresponding observation is right-censored after duration dit. In general, the censoring times
are allowed to be statistically dependent on the actual duration times, known as informative
censoring. For simplicity, only noninformative right censoring is considered in the following.
A simple model for the hazard rate is

λit(d) = λ0(d) exp(ηit + ui) = λ0(d)vi exp(ηit), (1.21)

where λ0(·) is a common baseline intensity for all subjects, ηit is a linear predictor as in (1.2)
and ui is a random effect of the i-th subject. In the context of time-to-event analysis, one rather
specifies the subject specific randomness in terms of the so called frailties vi = log ui which act
multiplicatively on the baseline intensity. The density of the frailties is denoted with f(·;ψ)
where ψ are the parameters shaping the distribution of the frailties. Note that the exponent
in (1.21) is assumed to be independent of d which is why a model of the form (1.21) is called
a proportional hazards model (Vaida and Xu, 2000). Structural assumptions for the baseline
intensity can be parametric in which case the baseline intensity λ0(·;α) is shaped by parameters
α. A commonly used model is a Weibull time-to-event model in which λ0(·;α) = αtα−1 with
parameter α > 0. Alternatively, λ0(·) can be modeled non-parametrically as in the Cox model
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(Therneau and Grambsch, 2000). Model parameters in the Cox model can be estimated by
employing a partial likelihood approach (Cox, 1975). Moreover, by partitioning the data into a
fixed number of intervals and assuming the hazard to be constant in those intervals, a time-to-
event model can be represented as a Poisson generalized linear model. Such a model is known as
piece-wise exponential model (PEM, Friedman, 1982) and was extended by Bender et al. (2018)
to a piece-wise exponential additive mixed model (PAMM), which allows for flexible modeling
of the baseline intensity. Moreover, this model facilitates an extension of (1.21) towards the
inclusion of (duration) time varying covariate effects. A third representation of time-to-event
models builds on counting process theory which is outlined by Kalbfleisch and Prentice (2011).

Estimation According to Klein and Moeschberger (2006), the conditional likelihood of the data
restricted to the i-th individual is given by

Li(α,θ | ui) =
ni∏

k=1

[λ(dik)]
δik exp[−Λ(dik)],

where ni is the number of observations for subject i. Similar as in a GLMM, the maximum like-

lihood estimate ζ̂ = (α̂⊤, θ̂
⊤
, ψ̂

⊤
)⊤ can be obtained by maximizing the marginal log-likelihood

ℓmarg(ζ) =
n∑

i=1

log

∫
Li(α,θ | vi)f(vi;ψ) dvi. (1.22)

In most situations, the integral in (1.22) is not analytically tractable, and therefore, methods
that were discussed above in the context of GLMMs, such as a Laplace approximation, need
to be employed. In special cases, analytic expressions are available. An example is the gamma
shared frailty model, where vi = log ui ∼ Gamma(1/ψ, 1/ψ) (Duchateau and Janssen, 2007).
This model is applied in Chapter 4 to predict the duration times of parking lots being clear or
occupied.

1.4.2. Model for discrete data

Let us now assume that the duration time D is a discrete random variable with support
{1, . . . , dmax}. In Chapter 5, D is the time in days from the registration as infected with the
SARS-CoV-2 virus which causes the disease COVID-19 (Velavan and Meyer, 2020) until the
fatal outcome of the disease. Therefore, D can also be considered as an ordered categorical
random variable. Such data can be modeled by making use of a sequential multinomial model,
which, in its simplest form, is according to Albert and Chib (2001) given by

π(d;γ,β) = P(D = d | D ≥ d;γ,β) = F (γd − x⊤β) (1.23)

for d = 1, . . . , dmax − 1. Moreover, F (·) is a fixed distribution function, e.g. the logistic distri-
bution function. The regression coefficients γ = (γ1, . . . , γdmax−1)

⊤ define the transition from
category d to category d+1 and β is a vector of linear covariate effects. However, the structure
of the data, that is modeled in Chapter 5 and sketched in the following, does not allow to directly
use the above formulation of the sequential model (1.23).

Structure of the data Let t = 0, . . . , T − 1 be a sequence of registration dates, e.g. for being
infected with the SARS-CoV-2 virus, and let t = T be the current date. The random variable
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Figure 1.7.: Illustration of the data modeled in Chapter 5.

Nt,d denotes the number of deaths with registration date t and duration d with fixed maximum
duration dmax, i.e. at the latest dmax days after the registration date every infected person is
considered to be either cured or dead. However, the terminal number of deaths for registration
date t becomes only available at time point t+dmax which is why Nt,d is unknown for t+d > T .

Further, Ct,d =
∑d

l=1Nt,l is the partial cumulated sum of reported deaths, i.e. at time t = T one
observes CT−d,d. This scheme is illustrated in Figure 1.7. Note that such a data structure is also
employed in actuarial loss reserving for claims which have incurred but not yet been reported
(Mack, 1993).

Statistical model based on a sequential model Apparently, the data structure does not allow
a modeling approach of the form (1.23) but instead, one could consider the related model

π(d; t,θ) = P(D = d | D ≤ d;θ) = F (s(d;γ) + ηt,d) (1.24)

for d = 2, . . . , dmax, where the reference category has changed from dmax to 1. Furthermore,
the sequence of binary transitions is now modeled trough a smooth function s(·;γ) which can
be represented through a B-spline basis representation as proposed in Section 1.2.2. Therefore,
the linear predictor in (1.24) is of the general form (1.2). Due to the above considerations and
(1.24) the number of newly reported deaths can be modeled according to

Nt,d
indep.∼ Bin(Ct,d, π(d; t,θ)). (1.25)

In Chapter 5, a quasi-Binomial model instead of a binomial model is used in order to account
for possible overdispersion, which is a phenomenon arising if the variances in the data are larger
than implied by the binomial model (Collett, 2002).
Model (1.25) can be used to predict the probabilities (1.24), that, in turn, can be employed

to estimate the distribution function Ft(·) of the duration Dt from registration to death for
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registration date t since

Ft(d) = P(Dt ≤ d) = P(Dt ≤ d | Dt ≤ d+ 1) · P(Dt ≤ d+ 1)

= P(Dt ≤ d | Dt ≤ d+ 1) · . . . · P(Dt ≤ dmax − 1 | Dt ≤ dmax) · P(Dt ≤ dmax)︸ ︷︷ ︸
=1

=

dmax∏

k=d+1

[1− P(Dt ≥ k | Dt ≤ k)] =

dmax∏

k=d+1

[1− P(Dt = k | Dt ≤ k)] =

dmax∏

k=d+1

[1− π(k; t,θ)].

1.5. Stochastic processes

“Prediction is very difficult, especially of the future.”

—– Niels Henrik David Bohr (* 1885, † 1962),
Danish physicist

Consider again the case where data yit ∈ Y and xit ∈ X for subjects i = 1, . . . , n and
observation times t ∈ T are observed. However, the index set T is now supposed to be a
connected subset of R and thus, switching notation slightly, Yi = (Yit)t∈T can be considered as
a stochastic process in continuous time with associated covariate process xi = (xit)t∈T . Each
realization yi = Yi(ω) is a sample path on the set T such that Yi could also be considered as
a random function with domain T . An example of a stochastic process for continuous Y is a
Brownian motion where Yit is normally distributed (Mörters and Peres, 2010). To name one of
many scopes of application, Brownian motions play a crucial role in the construction of the heat
kernel (1.16), for more details see McSwiggan et al. (2017). Nonetheless, the focus should be
here on stochastic processes where Yit does have countable support, more precisely, on processes
of the Markov type which are the basis of the prediction model that is framed in Chapter 4.
The task is to predict Yit at time t > t0 when having observed Yi until t0. Therefore, instead
of postulating a conditional independence assumption as in the GAMM setting, a reference is
drawn between time-to-event models from Section 1.4.1 and the theoretical properties of the
stochastic processes. Vice versa, continuous time-to-event models can also be formulated in
terms of stochastic processes as outlined in Kalbfleisch and Prentice (2011). In the following, a
brief introduction into the theory of (semi-)Markov processes is given with a focus on deriving
interval transition probabilities. These are used in Chapter 4 to predict the future states of a
two-state stochastic process. For a general overview of stochastic processes in general, see Ross
et al. (1996).

1.5.1. Markov processes

Definition Let T = [0,∞) and, for simplicity of notation, subject index i being disregarded.
A stochastic process Y = (Yt)t≥0 with countable state space (or support) S is said to be a
continuous time Markov process if

P(Yt+s = j | Ys = i, {Yu, 0 ≤ u < s}) = P(Yt+s = j | Ys = i) (1.26)

for s, t ≥ 0 and i, j ∈ S. In other words, given the state of Y at time s, the state of Y at
time t+ s is independent of the history {Yu, 0 ≤ u < s} of the process. Moreover, denote with
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Di the random duration that Y stays in state i. It then follows from the Markov property
(1.26) that P(Di > s + t | Di > s) = P(Di > t), i.e. the distribution of Di is memorylessness.
Since the exponential distribution is the only continuous distribution which has this property,
it follows that Di ∼ Exp(λi). Thus, a Markov process can be characterized in terms of rates λi
for i ∈ S and a transition probability matrix P = [pij , i, j ∈ S], i.e. each row sums up to one.
Equivalently, a Markov process can be defined via the transition rate matrix Q = [qij , i, j ∈ S]
with qij = λipij for i ̸= j. Usually, it is assumed that λi > 0 and that Y is regular, i.e. there are
no absorbing states and the probability of infinitely many transitions in an infinitesimal small
interval is zero.

Interval transition probabilities The probabilities Pij(s, s + t) = P(Ys+t = j | Ys = i) are for
s, t ≥ 0 denoted as the interval transition probabilities from state i to state j in an interval
of length t. The stationarity of Y implies that Pij(s, s + t) = Pij(0, t) and therefore, setting
Pij(t) = Pij(0, t), these probabilities can be obtained as the solution of one of the following two
differential equations

∂

∂t
Pij(t) =

∑

k ̸=i

qikPkj(t)− λiPij(t),
∂

∂t
Pij(t) =

∑

k ̸=j

qkjPik(t)− λjPij(t), (1.27)

which are known as the Kolmogorov backward/forward equations. In the simplest case where
S = {0, 1} with transition intensities defined as λ0 = q01 and λ1 = q10, the solution of either
one of the Kolmogorov equations (1.27) is given by

P (t) =

(
P00(t) P01(t)
P10(t) P11(t)

)
=

1

λ0 + λ1



λ1 + λ0e

−t(λ0+λ1) λ0

[
1− e−t(λ0+λ1)

]

λ1

[
1− e−t(λ0+λ1)

]
λ0 + λ1e

−t(λ0+λ1)


 .

Such a model can predict the outcome of a binary random variable associated with a stochastic
process, e.g. the short-time occupation of a parking lot. The parameters of the model are λ0
and λ1, which can be estimated with a parametric time-to-event model, restricting the baseline
intensity to be constant.

1.5.2. Semi-Markov processes

Definition If the transition intensities λij(d) from a state i ∈ S into another state j ∈ S of
a stochastic process Y = (Yt)t≥0 are a function of the duration time d, the resulting random
duration times Di in state i are not exponentially distributed anymore. It follows that the
memorylessness property now only holds at the instance of the transition to another state which
is evident if the distribution of the duration times Di is of the form (1.20). Therefore, such
a process is denoted as a semi-Markov process which can be characterized by the means of a
renewal kernel Q(d) = [Qij(d), i, j ∈ S] with

Qij(d) = P(Yt(n+1)
= j,D(n) ≤ d | Yt(n)

= i, {D(k), Yt(k) , k = 0, . . . , n− 1}) (1.28)

= P(Yt(n+1)
= j,D(n) ≤ d | Yt(n)

= i), (1.29)

where 0 = t(0) < t(1) < . . . are the time points of state changes and D(n) is the duration in
state Xt(n)

(Grabski, 2014). Thus, by the law of total probability the cumulative conditional
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distribution function of the duration Di in state i can be computed by

Fi(d) = P(D(n) ≤ d | Yt(n)
= i) =

∑

k∈S
P(D(n) ≤ d | Yt(n)

= i, Yt(n+1)
= j)P(Yt(n+1)

= j)

=
∑

k∈S
P(Yt(n+1)

= j,D(n) ≤ d | Yt(n)
= i) =

∑

k∈S
Qij(d).

Defining with pij = limd→∞Qij(d) a stochastic matrix P = [pij , i, j ∈ S], equivalently to (1.29),
a semi-Markov process can be defined via conditional distribution functions F (d) = [Fi(d), i ∈ S]
and the transition probability matrix P . This shows that a semi-Markov process actually
generalizes Markov processes allowing for arbitrarily distributed duration times. Asanjarani
et al. (2021) define semi-Markov processes equivalently via transition intensities, emphasizing
the close connection between discrete state space stochastic processes and time-to-event models.

Interval transition probabilities There are several ways how interval transition probabilities
Pij(t) = P(Yt = j | Y0 = i) for a semi-Markov process can be determined. One option is to
repeatedly simulate from the distribution of the duration times Di and to use P to generate
sample paths of Y . However, transition probabilities can also be derived as the solutions of the
following integral equations

Pij(t) = (1− Fi(t))δij +
∑

k∈S

∫ t

0
Pkj(t− x)qim(x) dx (1.30)

with initial condition Pij(0) = δij (Grabski, 2014). Here, δij = 1{i = j} denotes the Kronecker
delta and qij(·) is the derivative of Qij(·). In order to solve (1.30) for Pij(t), Laplace transforms
can be employed (Widder, 2015). For a real valued function f : [0,∞) → R the Laplace
transform L{f} : C → C is given by

L{f}(u) =
∫ ∞

0
f(t)e−ut dt,

where C = {u ∈ C | Re(u) > γ} is the region of convergence and γ is called the abscissa
of convergence (Hall et al., 1992). Applying the Laplace transform to (1.30) leads to a linear
equation system for the Laplace transformed transition probabilities L{Pij}(u) which can easily
be solved, details are given in Chapter 4. The transition probabilities in the real domain can
finally be obtained by applying the inverse Laplace transform L−1 to L{Pij}(u). Therefore,
Pij(t) is given by the following Bromwich integral (Weideman and Trefethen, 2007)

Pij(t) = L−1{L{Pij}(u)}(t) =
1

2πi
lim
T→∞

∫ γ0+iT

γ0−iT
eutL{Pij}(u) du, (1.31)

where γ0 > γ, i.e. (1.31) is a line integral through the region of convergence of L{Pij}. In most
cases, numerical techniques need to be employed to compute an inverse Laplace transform. The
approach proposed by Valsa and Brančik (1998) builds on an approximation of the complex
exponential in (1.31) and is summarized in the appendix of Chapter 4. An alternative has been
proposed by De Hoog et al. (1982), who use the convergence of Fourier series and approximate
the integral (1.31) by making use of the trapezoidal rule. The review article Kuhlman (2013)
compares various inversion methods in terms of numerical efficiency.
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1.6. Software and computational aspects

“In some ways, programming is like painting. You start with a blank
canvas and certain basic raw materials. You use a combination of
science, art, and craft to determine what to do with them.”

—– Andy Hunt (* 1964),
American author of books on software development

Undoubtedly, the most sophisticated statistical model is worth nothing if it can not be applied
to an actual data set, demanding a robust numerical implementation with statistical software.
Every contributed manuscript in this dissertation also deals with the implementation of the
respective model in R, an open source software for statistical computing and graphics (R Core
Team, 2021). The functionality of R is organized within a few core packages, which are already
included when installing R, informally known as “BaseR”. However, the power of this statistical
language could only arise through thousands of additional packages available through different
repositories. Packages which have undergone a standardized quality check are available from
the comprehensive R archive network (CRAN).3 In the following, essential packages which have
been used for this dissertation are briefly summarized. Afterward, the own software contribution,
which partially builds on already existing software, is outlined.

Existing software The first collection of R packages which needs to be mentioned here, is the
tidyverse (Wickham et al., 2019). These packages share the same grammar and provide functions
for importing data from different sources (packages readr and readxl) as well as functionalities
for data wrangling and storing data in a tidy form (packages tidyr and tibble). Moreover,
data transformation plays a fundamental role where the package dplyr provides, among others,
tools for mutating, rearranging or joining data. Packages for the manipulation of specific types
of data such as strings (stringr), factors (forcats) or dates (lubridate) are also heavily
used. Once the data are in a neat format, first exploratory analyses can be visualized using
the package ggplot2 (Wickham, 2010) which is also part of the tidyverse and creates powerful
graphics based on Wilkinson (2012). This package builds on the “layered grimmer of graphics”
and, as the name suggests, a ggplot2 graphics is organized via different layers.
For the statistical modeling with generalized additive mixed models, the comprehensive pack-

age mgcv is used (Wood, 2017). The routine gam exploits the equivalence of smooths and random
effects as outlined in Section 1.2.3 and treats simple random effects as smooths. Kernel based
intensity estimation of point processes on linear networks can be handled with the functionality
of the family of spatstat packages (Baddeley et al., 2015). For survival data the survival pack-
age is used (Therneau, 2021). Finally, for computing inverse Laplace transforms the algorithm
which is already implemented within the package pracma (Borchers, 2021) is used.

New software The Skellam regression model in Chapter 2 can not be fitted with routines of
available GAMM software such as the mgcv package since it can neither handle the Skellam
distribution nor the form of the linear predictor. Therefore, maximum likelihood estimation for
this model is performed via a quasi-Newton algorithm which is implemented in the routine optim
of the stats package. Here, the design matrix must be stored in a sparse format using the Matrix

3https://cran.r-project.org/
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package, which tremendously reduces computation time. Nonetheless, numerical problems in
this modeling approach arise especially in conjunction with underflow when computing modified
Bessel functions.
Second, the statistical model developed in Chapter 3 in order to estimate the intensity of point

processes on geometric networks needs its own implementation since network-based B-splines and
penalties can not be handled by routines such as gam. The implementation is bundled into the R
package geonet which is presented in the Appendix of Chapter 3. Thereby, special attention is
given to the compatibility with the spatstat package, i.e. networks in linear representation can
be represented as geometric networks and vice versa. The package is available from CRAN, i.e.
it can easily be downloaded with the command install.packages("geonet"). A development
version which is updated more often can be downloaded from a GitHub repository by using the
command devtools::install github("MarcSchneble/geonet").

1.7. Discussion

“Far better an approximate answer to the right question, which is
often vague, than an exact answer to the wrong question, which can
always be made precise.”

—– John Wilder Tukey (* 1915, † 2000),
American mathematician and statistician

This dissertation addresses various statistical modeling approaches across different areas of
application. The first part is devoted to modeling data regarding spatial networks, while the
second part covers applications in infectious disease modeling focusing on deadly outcomes.
Each of the contributed manuscripts has a different focus. Chapter 2 deals with explaining the
unobserved bike trips in a bike-sharing network from the observed station feeds only. The model
could, in principle, also be used for forecasting the bike trip pattern, which is, however, not the
primary goal here. The results show that using the proposed semi-Markov model distinctly
outperforms existing Markov models in prediction accuracy. The model presented in Chapter 3
aims at providing an alternative to an already existing model. Here, the first contribution focuses
on the methodology and the justification for the need of the model, and the second contribution
deals with the implementation in R. The principal aim of the contribution in Chapter 4 is
the prediction of parking availability, and even though the results of the time-to-event model
allow various interpretations, this is not of primary interest here. The goals of Chapter 5 are
twofold. First, the spatio-temporal patterns of COVID-19 mortality in Germany are explained
and interpreted. Second, a nowcasting model predicts the future number of COVID-19 deaths
which have already been infected. This fits into the nowcasting terminology by Bańbura et al.
(2010), who define nowcasting to be “the prediction of the present, the very near future and the
very recent past”. Lastly, the aim of the contribution in Chapter 6 is to provide a comparatively
simple model, which on the other hand, allows interpreting the course COVID-19 infections and
its case detection ratio in the first year of the pandemic in Germany.
Most of the models which are employed in Chapters 2 - 6 can be put in the context of

regression, and this dissertation shows that the class of generalized additive mixed models can
be seen as one of the major workhorses in statistical modeling. An overview of the regression-
based models which are used in the contributed manuscripts of this dissertation is shown in
Table 1.1. The third column emphasizes the importance of the smoothing techniques which
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Chapter Model Structure Implementation

2 Skellam GAMM (Cyclic) P-splines and bivari-
ate random effects

own

3 Poisson GAM P-splines (on a geometric net-
work)

own

4 Weibull time-to-event
model

B-splines and random effects survival package

5 Binomial GAM and nega-
tive binomial GAMM

Bivariate random effects and
bivariate P-splines

mgcv package

6 Negative binomial GAMM Varying coefficients, func-
tional random effects

mgcv package

Table 1.1.: Overview of the regression models used throughout this dissertation.

were introduced in Section 1.2, and it should be emphasized again that random effects can be
interpreted as smoothers as well. The last column of Table 1.1 states how the respective model
has been implemented. Whenever possible, standard software has been used in order to fit the
models.

Both own implementations partially make use of already existing software, which illustrates
that, also from a practical point of view, statistical modeling can be seen as a large toolbox.
When implementing new models in a formal language such as R, some of the already existing
components can be used which also holds for the theoretical development of the models. Figu-
ratively speaking, model components such as smoothers of any kind are some of the basements
of statistical modeling, and this dissertation demonstrates their universal scopes of application.
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Valsa, J. and L. Brančik (1998). Approximate formulae for numerical inversion of Laplace
transforms. International Journal of Numerical Modelling: Electronic Networks, Devices and
Fields 11 (3), 153–166.

Velavan, T. P. and C. G. Meyer (2020). The COVID-19 epidemic. Tropical Medicine & Inter-
national Health 25 (3), 278.

Weideman, J. and L. Trefethen (2007). Parabolic and hyperbolic contours for computing the
Bromwich integral. Mathematics of Computation 76 (259), 1341–1356.

Wickham, H. (2010). A layered grammar of graphics. Journal of Computational and Graphical
Statistics 19 (1), 3–28.

Wickham, H., M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund,
A. Hayes, L. Henry, J. Hester, et al. (2019). Welcome to the tidyverse. Journal of Open Source
Software 4 (43), 1686.

Widder, D. V. (2015). Laplace transform (PMS-6). Princeton University Press.

Wilkinson, L. (2012). The grammar of graphics. In Handbook of Computational Statistics, pp.
375–414. Springer.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 65 (1), 95–114.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized
additive models. Journal of the American Statistical Association 99 (467), 673–686.

Wood, S. N. (2006). On confidence intervals for generalized additive models based on penalized
regression splines. Australian & New Zealand Journal of Statistics 48 (4), 445–464.

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood esti-
mation of semiparametric generalized linear models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73 (1), 3–36.

Wood, S. N. (2017). Generalized additive models: An introduction with R. CRC press.

Wood, S. N. and M. Fasiolo (2017). A generalized Fellner-Schall method for smoothing parameter
optimization with application to tweedie location, scale and shape models. Biometrics 73 (4),
1071–1081.

Wood, S. N., N. Pya, and B. Säfken (2016). Smoothing parameter and model selection for general
smooth models. Journal of the American Statistical Association 111 (516), 1548–1563.

Wood, S. N., F. Scheipl, and J. J. Faraway (2013). Straightforward intermediate rank tensor
product smoothing in mixed models. Statistics and Computing 23 (3), 341–360.

Wright, S. and J. Nocedal (1999). Numerical optimization. Springer Science 35 (67-68), 7.

Zhang, Y., M. Roughan, C. Lund, and D. Donoho (2003). An information-theoretic approach to
traffic matrix estimation. In Proceedings of the 2003 conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pp. 301–312.

34



Part I.

Statistical modeling of spatial network
data

35





Chapter 2

Estimation of latent network flows in
bike-sharing systems

Contributing Article Schneble, M., Kauermann, G. (2020). Estimation of latent network flows
in bike-sharing systems. Statistical Modelling. https://doi.org/10.1177/1471082X20971911

Code and data http://www.statmod.org/smij/archive.html

Copyright Statistical Modelling Society, SAGE Publications Ltd, 2020.

Further versions Schneble, M., Kauermann, G. (July 2019). Estimation of latent network
flows in bike-sharing systems. Proceedings of the 34th International Workshop on Statistical
Modelling, 1:141-146.

Author Contributions The general idea of modeling latent trips in a bike-sharing network
when only the station feeds are known stems from Göran Kauermann. He also had the idea
to employ the Skellam distribution therefore and developed the basic statistical model. The
contribution of Marc Schneble is given by the extension of the primary considerations by the
station-based model, the truncated Skellam model and the treatment of (un)known provider
interventions. Moreover, he designed the simulation study in the main part of the paper and
was responsible for the covariate design of the model when applied to the Vienna bike-sharing
network data. Furthermore, Marc Schneble implemented the model in the R language, including
data preparation and visualization. The manuscript was mainly written by Marc Schneble. Both
authors were involved in extensive proofreading.
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Chapter 3

Intensity estimation on geometric
networks

3.1. Intensity estimation on geometric networks with penalized
splines

Contributing Article Schneble, M., Kauermann, G. (2021). Intensity estimation on geometric
networks with penalized splines. The Annals of Applied Statistics (to appear).
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In the past decades, the growing amount of network data lead to many
novel statistical models. In this paper, we consider so-called geometric net-
works. Typical examples are road networks or other infrastructure networks.
Nevertheless, the neurons or the blood vessels in a human body can also be
interpreted as a geometric network embedded in a three-dimensional space. A
network-specific metric rather than the Euclidean metric is usually used in all
these applications, making the analyses of network data challenging. We con-
sider network-based point processes, and our task is to estimate the intensity
(or density) of the process, which allows us to detect high- and low-intensity
regions of the underlying stochastic processes. Available routines that tackle
this problem are commonly based on kernel smoothing methods. This paper
uses penalized spline smoothing and extends this towards smooth intensity
estimation on geometric networks. Furthermore, our approach easily allows
incorporating covariates, enabling us to respect the network geometry in a
regression model framework. Several data examples and a simulation study
show that penalized spline-based intensity estimation on geometric networks
is a numerically stable and efficient tool. Furthermore, it also allows esti-
mating linear and smooth covariate effects, distinguishing our approach from
already existing methodologies.

1. Introduction. In statistical network analysis, a (static) network is usually considered
as a graph that is characterized by a set of vertices which are connected by a set of, possibly
weighted, edges (Kolaczyk and Csárdi, 2014). In this matter, the interest usually lies in the
mutual relationship and the dependencies of the vertices, sometimes called “actors” (Snijders,
1996), that are induced by the edges. For a general overview of this research area, see e.g.
Goldenberg et al. (2010). In the context of this paper, a network is rather considered as a
geometric object embedded in a Euclidean space. We use the term “geometric network” and
a typical example is a network of streets. The setting is that we observe a spatial point process
on the network edges and focus is on estimating the intensity (or density) of this process.

Regarding the data structure, the question arises why one should analyze data points on a
geometric network and not in the Euclidean space itself. To illustrate this, consider a point
pattern that seems to be clustered in the plane. However, the points might be uniformly dis-
tributed on a network where many network segments are clustered within a small area. A
typical example is the distribution of traffic accidents in an urban area (McSwiggan, Bad-
deley and Nair, 2017). Theoretically, such events can only occur on a network of streets
which is often considered being embedded in the plane. Therefore, the statistical analyses of
point patterns distributed across a Euclidean space and point patterns distributed only on a
geometric network are tremendously different.

*We would like to thank the elite graduate program Data Science at LMU Munich and the Munich Center for
Machine Learning (MCML) for funding.

Keywords and phrases: Intensity estimation of stochastic point processes, generalized additive models, geo-
metric networks, penalized splines, poisson regression with offset, spatstat package
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Due to the increasing availability of network-based data, the last 25 years have seen a
broad range of literature concerned with network-based point processes. Amongst the first
statistical analyses of spatial point patterns on a network were proposed by Okabe, Yomono
and Kitamura (1995), Okabe and Yamada (2001) and Spooner et al. (2004). They all noted
that in the context of geometric network data, the Euclidean distance needs to be replaced
by the shortest path distance to respect the network geometry. This resulted e.g. in the geo-
metrically corrected network K-function (Ang, Baddeley and Nair, 2012), a modified version
of Ripley’s K-function in two dimensions. The network K-function can be used to analyze
the correlation structure of point patterns on a network. Baddeley, Rubak and Turner (2015)
discuss the topic in general and especially from an application point of view. Among other
contributions, a huge library of functions is provided to create, manipulate and analyze both
a point pattern on a linear network, embedded in the plane, and the network itself. Further-
more, Baddeley, Rubak and Turner (2015) also treat marked point processes, intensities of
point processes depending on covariates and point processes on trees which are networks
without loops. Marked point processes on directed linear networks are further discussed by
Rasmussen and Christensen (2020) for various kinds of stochastic point processes. Finally,
we would like to highlight Baddeley et al. (2020) who provide a broad overview on how to
analyze point patterns on linear networks.

The focus of this paper is on intensity estimation in geometric networks. Borruso (2008)
and Xie and Yan (2008) developed kernel density estimation on a network geometry which
is performed by respecting the shortest path distance. However, both articles did not con-
sider that around vertices with more than two adjoining segments, there is more network
mass within a certain shortest path distance. Hence, this approach leads to biased estimates,
especially if the point pattern is distributed according to a uniform distribution on the net-
work. Okabe, Satoh and Sugihara (2009) solved this problem by introducing equal-split (dis-
)continuous kernel density estimation. The idea is to split the mass of the kernel functions
equally across all other segments that depart from a vertex when approaching this vertex
from one side. The approach was refined in McSwiggan, Baddeley and Nair (2017). Instead
of a finite sum of paths over the network, they consider an infinite sum leading to a diffu-
sion estimate that can be computed via a heat equation on the network. Furthermore, Moradi,
Rodríguez-Cortés and Mateu (2018) showed in their application that an extension of Diggle’s
(Diggle, 1985) non-parametric edge-corrected kernel-based intensity estimator is superior to
the equal-split discontinuous estimator that was proposed by Okabe, Satoh and Sugihara
(2009). Most recently, Rakshit et al. (2019) proposed to perform kernel smoothing on net-
works making use of a two-dimensional kernel that is still robust against errors in network
geometry. This approach is especially well suited in scenarios of vast networks.

All the models discussed so far are kernel-based and produce continuous intensity esti-
mates. However, there are various non kernel-based approaches where the fitted intensity is
not continuous. To begin with the special case of a river network, which results as a directed
and acyclic geometric network, O’Donnell et al. (2014) used penalized piecewise constant
functions for estimating the river flow, which can be interpreted as penalized splines (P-
splines, Eilers and Marx, 1996) of order 0. The paper was reviewed by Rushworth et al.
(2015) who implemented the theory in the R package smnet. Fused density estimation was
proposed by Bassett and Sharpnack (2019) to estimate the density on a geometric network.
This estimator is the solution to a total variation regularized maximum-likelihood problem.
Another very recent method that does also not result in continuous estimates is the smoothed
Voronoi estimate (Moradi et al., 2019). Therefore, the Voronoi estimate (Barr and Schoen-
berg, 2010) is computed several times while only retaining a fraction f of the data points in
each iteration. The smoothed Voronoi estimate is then equal to the average over the re-scaled
intensities.
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When referring again to kernel-based methods, Eilers and Marx (1996) argued that kernel
density estimators of points on the real line suffer from boundary effects, e.g. if the domain
of the data is not specified correctly. Instead, the authors proposed to estimate the density by
making use of penalized splines in order to smooth the histogram that is created by binning
the data with small bin widths. With time, this concept has been extended, among others, to
allow for density estimation of multiple dimensional data (Currie, Durban and Eilers, 2006)
or to represent the density as a mixture of weighted penalized spline densities (Schellhase and
Kauermann, 2012). A comprehensive survey of penalized spline theory and its application is
given in Eilers, Marx and Durbán (2015). Generally, penalized spline estimation has become
a major workhorse in statistical modeling as demonstrated in Ruppert, Wand and Carroll
(2003, 2009).

In this paper, we extend the penalized spline-based intensity estimation approach of Eil-
ers and Marx (1996) to work on geometric networks. The focus is to estimate the intensity
(or density) of a point process on the network, given realizations of this process as data.
In contrast to the intensity estimation methods summarized above, our approach allows us to
estimate the smooth baseline intensity and the effects of network internal and external covari-
ates. The embedding in the context of generalized additive models further enables us to assess
the uncertainty of both the network intensity and covariate effects. Besides this manuscript
our major contribution is the implementation1 of our methodology in R (R Core Team, 2013,
version 4.1.0) for linear networks, where a lot of the functionality is based on the family of
spatstat packages (Baddeley, Rubak and Turner, 2015, version 2.2-0).

The remainder of this paper is structured as follows. Section 2 introduces some basic
notation related to network graphs, geometric networks and stochastic point processes on
networks. Section 3 treats our new methodology to estimate the intensity of a point process
on a geometric network with penalized splines. This is followed by Section 4, the presentation
of the networks and the data which we employ in this paper. Sections 5 - 7 cover applications
to real data while Section 8 explores the performance of our model when fitted to simulated
data. Section 9 concludes the paper and discusses possible supplements of our model.

2. Notation and Problem. Consider a set V = {v1, . . . , vW } of W ∈N elements which
we call vertices, where N = {1,2,3, . . .} denotes the set of positive integers. Further, let
E = {e1, . . . , eM} ⊂ V × V be a set of M ∈ N pairs em = (vi, vj) which we call edges.
Putting these together leads to the network graph L= (V,E) and we denote L as the graph
representation of the network defined by a set of vertices V and a set of edges E. In this
paper, we only consider undirected networks, i.e. there is an edge from vi to vj if and only
if there is an edge from vj to vi. An edge e is called incident to a vertex v if there is another
vertex vi ∈ V (vi 6= v) such that e= (v, vi) ∈E . The degree of a vertex v, denoted by deg(v)
is defined as the count of edges which are incident to v and for our purpose we always remove
a vertex v from V if deg(v) = 0.

A geometric network also typically exhibits a geometric representation as a subset of a
Euclidean space Rq for q ≥ 2. In this case, the set of vertices V in the network graph repre-
sentation can be viewed as a set V = {v1, . . . ,vW } of vectors with vi ∈Rq for i= 1, . . . ,W .
Consequently, the edges can be viewed as a setE = {e, . . . ,eM} of network segments with
each em ⊂Rq being the connection between two vertices vi and vj . More generally, such an
edge can be described by the image set em = νm([am, bm]) of a parametric curve (Heuser,
2006) νm : [am, bm]→ Rq with am < bm, νm(am) = vi and νm(bm) = vj , where the length

1The R code that can be used to reproduce the results in this paper can be downloaded from https://
github.com/MarcSchneble/NetworkSplines.
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FIG 1. Two different representations of a network: Left panel: Network graph representation L. Right Panel:
Geometric network representation L.

of the curve segment em is given by

(1) dm = |em|= lim
N→∞

N∑

i=1

||νm(ti)− νm(ti−1)||q,

with ti = am + i(bm − am)/N for i= 1, . . . ,N and || · ||q denotes the Euclidean distance in
Rq . Thus, (1) already suggest to approximate a parametric curve by a number of N straight
line segments with endpoints νm(t0), . . . , νm(tN ). This representation is used in the R pack-
age spatstat (Baddeley, Rubak and Turner, 2015), which allows to analyze linear net-
works in the plane.

We can now define the geometric representation of a network graph L as L=
⋃M
m=1 em ⊂

Rq . Hence, there is a one-to-one correspondence between L and L which we exploit consis-
tently in this paper. According to the network graph representation, we also define a vertex de-
gree for the geometric network representation, meaning that deg(v) denotes the count of seg-
ments which have an endpoint equal to v. Furthermore, the lengths dm of the curves em from
(1) imply a metric dL :L×L→ [0,∞) onL. More precisely, dL(z1,z2) denotes the shortest
path distance between two points z1,z2 on L and with [z1;z2]⊂L or with [z1;z2)⊂L we
denote the corresponding path, where a round bracket indicates that an endpoint is not con-
tained in the set. The total length of the geometric network is |L|=∑M

m=1 dm. If the network
is not connected, i.e. the corresponding network graph L consists of more than one connected
component, we can use the extended metric (Beer, 2013) dL :L×L→ [0,∞) ∪∞. In this
case, the same methodology can be applied unmodified.

Also note that the geometric representation L is not necessarily unique which can be seen
from the following consideration: Let v be a vertex (in network graph representation) with
exactly two incident edges em = (vi, v) and en = (v, vj), i.e. deg(v) = 2 and (vi, vj) /∈ E.
If we remove v from V as well as em, en from E but add the edge e = (vi, vj) to E, the
network graph representation of L = (V,E) has changed. In the geometric representation,
we can remove v from V as well as em,en from E and add the segment e = em ∪ en to
E which does not change L. To exemplify the notation introduced in this section, Figure 1
shows a small network as a network graph (left panel) and as a geometric network embedded
in the plane (right panel). The figure also visualizes that the role of a vertex v in the geometric
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INTENSITY ESTIMATION ON GEOMETRIC NETWORKS 5

network representation is merely being the endpoint of deg(v) curves. Hence, in this network
the vertex v2 could be removed from L without changing its geometric representation.

We now consider the following setting, see also McSwiggan, Baddeley and Nair (2017).
Let X be a stochastic point process on the geometric network L with continuous intensity
ϕX :L→ [0,∞). The expected number of points in a set K ⊂L is then defined through

∫

K
ϕX (z)dz =

M∑

m=1

∫

K∩em
ϕX (z)d|m z,

where d|m z denotes integration with respect to the curve em. Our aim is to estimate the
intensity of the point process X on L given that we observe realizations x1,x2, . . . ,xn of
this process. The point process X can equivalently be defined through a density function
fX :L→ [0,∞). The probability that a random point Xi ∼ fX falls into a subset K ⊂L is
then given by P(Xi ∈K) =

∫
K fX (z)dz.

3. Methodology.

3.1. B-Splines on a Network. First, we briefly review B-splines (compare Ruppert, Wand
and Carroll, 2003 or Fahrmeir et al., 2013). To start, assume a simple point process X with in-
tensity ϕX (z), where z is univariate and takes values in the bounded interval [a, b]. The goal is
to estimate ϕX (z) in a smooth and flexible way. To do so, we approximate the logarithmized
intensity νX = logϕX through a B-spline basis representation νX (z) =

∑J
j=1 γjB

l
j(z),

where Bl
j(·) are B-splines of order l ∈ N0 and γ = (γ1, . . . , γJ)

> is a vector of regression
coefficients that needs to be estimated from the data. For the construction of B-splines, we
use I interior knots a = τ1 < · · · < τI = b. The J = I + l − 1 basis functions Bl

j(·) are
each locally supported on l+ 2 adjacent knots and can be calculated recursively from lower
order basis functions (De Boor, 1972). An important property of a B-spline basis is that∑J

j=1B
l
j(z) = 1 holds for z ∈ [a, b] and any order of B-splines l. This property also needs to

be respected in the geometric network case.
Subsequently, we restrict ourselves to linear B-spline bases for simplicity of presen-

tation. For simplicity of notation we drop the superscript l in the B-spline notation, i.e.
we construct B-splines of order l = 1 on a geometric network L. Such a basis can be
constructed straightforwardly using the one-dimensional definitions from above. On every
curve em, which has endpoints vi and vj , we specify an equidistant sequence of Im knots
vi = τm,1, . . . ,τm,Im = vj with τm,k ∈ em for k = 1, . . . , Im, where dL(τm,k,τm,k−1) = δm.
Note that a knot which is equal to a vertex v is contained in the knot sequence of deg(v) seg-
ments but it still represents the same knot. Other than in the one-dimensional setup, it is in
general not possible to choose the set of knots to be equidistant on the entire geometric net-
work L with respect to all curve lengths dm. However, we may choose a global knot distance
δ such that it is close to an equidistant allocation of knots on the entire geometric network.
Let therefore d·e denote the upwards rounded integer and b·c the corresponding downwards
rounded integer. We then define

(2) δm =

{
dm/bdmδ c, dm

δ − bdmδ c< 0.5

dm/ddmδ e, dm
δ − bdmδ c ≥ 0.5

,

which leads to curve-specific knot distances δm which are as similar as possible for a given
overall knot distance δ. Generally, we will choose δ rather small such that the differences
between the δm are small and can be considered as negligible. This will become more clear
later, when we also introduce a penalization component in the estimation.
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FIG 2. Schematic representation of a linear B-spline basis around v6 of Figure 1. Here, v6 = τ7,1 = τ8,1 = τ9,1
with adjacent segments e7,e8,e9. The red dotted lines show the linear B-splines which are contained in Bv . The
peaks of all B-splines are equal to 1 as in the Euclidean setting.

Having the set of knots defined as above, we can construct a linear B-spline basis B on
the geometric network L. First, we use for every segment em with endpoints vi and vj
the equidistant sequence of knots vi = τm,1, . . . ,τm,Im = vj from above to construct Jm =
Im − 2 linear B-splines Bm,1, . . . ,Bm,Jm

. These B-splines are defined accordingly to the
univariate case by

(3) Bm,k(z) =
dL(z,τm,k)

δm
1[τm,k,τm,k+1)(z) +

dL(τm,k+2,z)

δm
1[τm,k+1,τm,k+2)(z)

for z ∈ L,m = 1, . . . ,M and k = 1, . . . , Jm. Therefore, the B-splines Bm,k are only sup-
ported on em and we denote with Be = {Bm,1, . . . ,Bm,Jm

|m = 1, . . . ,M} the set of all
these B-splines. We further require that Jm ≥ 1 for all m = 1, . . . ,M which is fulfilled if
δm ≤ dm

2 for all m. If δm from (2) does not fulfill this constraint, we set δm = dm
2 .

In addition to the B-splines defined by (3) we construct a single B-spline around each
vertex vi ∈ V . Therefore, we consider the deg(vi) segments which have an endpoint equal
to vi and we numerate them (without loss of generality) with e1, . . . ,edeg(vi). Again, without
loss of generality, let vi = τ1,1 . . . ,τdeg(vi),1, i.e. we order the knots such that the first knot
of every segment starting in vi equals vi itself, see Figure 2 as example. Then, we define the
vertex specific B-spline B(i) for vertex vi by

(4) B(i)(z) = 1{vi}(z) +
deg(vi)∑

k=1

[
1− dL(vi,z)

δk

]
1(vi;τk,2)(z).

for z ∈L and i= 1, . . . ,W . These B-splines have support supp(B(i)) =
⋃deg(vi)
k=1 [vi;τk,2)⊂

L, i.e. they are supported on deg(vi) segments. Note that all summands in (4) are nonnegative
and at most one of the summands is positive. This set of B-splines is denoted with Bv =
{B(1), . . . ,B(W )}. Altogether, we specify the linear B-spline basis on L by B = Be ∪ Bv
with dimension J = |B| =∑M

m=1 Jm +W . For simplicity of presentation, we index from
now on the B-spline Basis by 1, . . . , J and by construction, it holds that

∑J
j=1Bj(z) = 1 for

z ∈ L. In Figure 2, we depict linear B-splines around the vertex v6 with deg(v6) = 3 of the
network that is shown Figure 1.
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INTENSITY ESTIMATION ON GEOMETRIC NETWORKS 7

3.2. Intensity Estimation on a Network. We can now easily adopt the density estimation
approach proposed by Eilers and Marx (1996) for univariate data. On our geometric network
L, we specify a bin width hm on every segment em and then divide em into Nm = dm

hm
bins

of the same length such thatL is partitioned intoN =
∑M

m=1
dm
hm

bins in total. As for the knot
distances δm it is clear, that hm can not be the same for all curve segments ofL. However, also
the bin widths are chosen very small when performing intensity estimation with penalized
splines. We therefore specify a small global bin width h and define accordingly to (2)

hm =

{
dm/bdmh c, dm

h − bdmh c< 0.5

dm/ddmh e, dm
h − bdmh c ≥ 0.5

.

If the left endpoint of em is v, the bins are given by the Nm subsets [bm,k−1;bm,k) ⊂ em
for k = 1, . . . ,Nm, where bm,k ∈ em satisfies dL(v,bm,k) = khm and bm,0 = v. Each bin is
characterized by its midpoint zm,k which satisfies dL(bm,k−1,zm,k) = dL(zm,k,bm,k).

Assume now that data on n independently observed points xi of the point process X on
the geometric network have been observed, with i= 1, . . . , n. We assume that the observed
points are not equal to the network’s vertices for identifiability reasons, i.e. each point lies on
a single edge. We define with ym,k ∈N∪{0} the number of observations which are contained
in the k-th bin of the m-th segment, i.e.

ym,k =#{xi ∈L | xi ∈ [bm,k−1;bm,k), i= 1, . . . , n}
for m= 1, . . . ,M and k = 1, . . . ,Nm. Based on our considerations for the point process X
we assume a Poisson distribution for the counts ym,k such that we have

(5) ym,k | zm,k
indep.∼ Poi(λm,k),

where λm,k is approximated through

(6) λm,k = ϕX (zm,k) · hm = exp
(
νX (zm,k) + loghm

)
.

We can consider loghm as offset and aim to estimate νX (z) as continuous log-intensity for
z ∈ L treating the pairs (ym,k,zm,k) as independent observations from (5). Therefore, we
replace νX (z) through the B-spline basis representation

(7) νX (z) =
J∑

j=1

Bj(z)γj =B(z)γ,

where B(z) = (B1(z), . . . ,BJ(z)) is a row vector consisting of the B-spline basis from
above evaluated at z ∈ L and γ = (γ1, . . . , γJ)

> is the vector of B-spline coefficients that
needs to be estimated from the data x1, . . . ,xn. Imposing a penalty on the resulting Poisson
likelihood leads to the penalized log-likelihood (constant terms are ignored)

`P(γ;ρ) =
M∑

m=1

Nm∑

k=1

[
ym,k logλm,k − λm,k

]
− ρPr(γ),(8)

where Pr(γ) is a penalty which is defined in the next section and ρ is the smoothing param-
eter. The estimation of the smoothing parameter is treated later in this section.

If we replace γ in (7) with the maximum-likelihood estimate γ̂ = argmaxγ`P(γ;ρ), then
ν̂X (z) = B(z)γ̂ is an estimate of the log-intensity and thus ϕ̂X (z) = exp

(
ν̂X (z)

)
is an

estimate of the intensity of the point process X for z ∈ L. Also note that for a given n an
estimate of the density of X is given by f̂X (z) = ϕ̂X (z)/n.
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3.3. Penalties on a Network. In order to control the smoothness of the intensity esti-
mate and to overcome singularity issues, the penalty Pr(γ) multiplied with the smoothing
parameter ρ is subtracted from the maximum likelihood criterion, which leads to the penal-
ized log-likelihood (8). In the one-dimensional setting Eilers and Marx (1996) proposed to
impose a penalty on the vector of coefficients γ that is proportional to the r-th order differ-
ences of adjacent spline coefficients. The penalty is given by

∑J
j=r+1(∆

rγj)
2 and for r = 1

we have ∆1γj = γj − γj−1. Higher order penalty terms can be calculated recursively using
∆r(γj) =∆1∆r−1γj starting with the first order differences ∆1γj . It is straightforward to
extend this idea to penalties on a network. Let i, j = 1, . . . , J where J is the dimension of
the B-spline basis on the geometric network. According to the one-dimensional case, we are
interested in the set of pairwise adjacent B-splines or their coefficients, respectively. Hence,
we can view the B-splines on the geometric network L itself as a network graph LB which
is defined through a J × J adjacency matrix A. From the definition of the linear B-splines,
it follows that A(i, j) = 1, if supp(B(i)) ∩ supp(B(j)) 6= ∅ and else A(i, j) = 0. In order
to define penalties of arbitrary order, we need the J × J shortest path matrix SA where
SA(i, j) = s, if the B-Splines B(i) and B(j) have minimum distance s in LB . This all-pairs
shortest path problem can be solved with complexity O(J |A|) where |A| is the number of
non-zero entries in A (Chan, 2012). For illustration, consider again Figure 2. Here, B7,1 is
adjacent to B7,2 as well as B(6) and the shortest path from B7,2 to B8,1 via B7,1 and B(6) has
length 3 in LB .

Now, letD1 = {(i, j) | SA(i, j) = 1,1≤ i < j ≤ J}. According to Eilers and Marx (1996)
we penalize neighboring coefficients. A first order penalty is then defined by

(9) P1(γ) =
∑

D1

(γi − γj)2 = (D1γ)
>(D1γ) = γ

>K1γ,

whereD1 ∈ Z|D1|×J andK1 =D
>
1 D1 ∈ ZJ×J define the difference matrix and the resulting

quadratic form according to the pairwise differences in (9). Further, let

D2 = {(i, k, j) | SA(i, j) = 2,SA(i, k) = SA(k, j) = 1,1≤ i < j ≤ J}.
Therewith, a second order penalty can be defined by

(10) P2(γ) =
∑
D2

((γi − γk)− (γk − γj))2 =
∑
D2

(γi − 2γk + γj)
2 = (D2γ)

>(D2γ) = γ
>K2γ,

where D2 ∈ Z|D2|×J and again, K2 =D
>
2 D2 ∈ ZJ×J results as matrix version from the

sum in (10). For illustration, we revisit the B-splines which we depicted in Figure 2, but,
restricted to the B-splinesB1 =B7,2,B2 =B7,1,B3 =B(6),B4 =B8,1 andB5 =B9,1. Thus,
for γ = (γ1, . . . , γ5) the first- and second order penalties P1(γ) and P2(γ) are defined by the
difference matrices

D1 =




1−1 0 0 0
0 1−1 0 0
0 0 1−1 0
0 0 1 0−1


 and D2 =




1−2 1 0 0
0 1−2 1 0
0 1−2 0 1
0 0−2 1 1


 ,

respectively. By taking advantage of the shortest path matrix SA we can define penalties of
any order r, but usually first and second order differences are used when applying penalized
splines.

3.4. Estimation of the Smoothing Parameter. For the estimation of the smoothing pa-
rameter ρ, we apply the generalized Fellner-Schall method (Wood and Fasiolo, 2017) which
is an iterative procedure to estimate the smoothing parameter in generalized additive models
(Wood, 2017). The idea behind the Fellner-Schall method is to apply a mixed model approach
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and to optimize the log Laplace approximate marginal likelihood of the model with respect
to the smoothing parameter. In each iteration step the estimated model parameters γ̂ρ are
obtained by maximizing the penalized log-likelihood (8) while treating ρ from the previous
cycle as fixed. Then, the update ρnew is calculated through

(11) ρnew = ρ
tr((ρKr)

−Kr)− tr((B>W (γ̂ρ)B + ρKr)
−1Kr)

γ̂>ρ Krγ̂ρ

where tr(·) denotes the trace operator and (ρKr)
− denotes a generalized inverse of ρKr .

The calculation of K−r is numerical demanding if the dimension of the parameter vector γ
is large. However, using standard linear algebra tools we can show that tr((ρKr)

−Kr) =
rk(Kr)/ρ, where rk(·) denotes the rank operator. Thus, the calculation of K−r is not neces-
sary. The design matrix B ∈RN×J of the Poisson model is build by storing the row vectors
B(zm,k), which are defined accordingly to (7) form= 1, . . . ,M and k = 1, . . . ,Nm, as a ma-
trix. Furthermore, W (γ̂ρ) = diag(λ̂1,1, . . . , λ̂1,N1

, . . . , λ̂M,1, . . . , λ̂M,NM
) is a weight matrix,

where λ̂m,k = exp
(
γ̂X (zm,k) + loghm

)
is defined through (6). The matrix B>W (γ̂ρ)B +

ρKr is the Fisher information of our model and is therefore positive definite, which guaran-
tees that ρnew > 0 (Wood and Fasiolo, 2017). The iterative procedure stops, if ρnew in (11)
differs only slightly from the previous ρ.

3.5. Quantification of Uncertainty. Since (6) directly relates to the setting of a general-
ized additive model we can use already existing GAM theory in order to assess the uncer-
tainty of our predictions. Therefore, we follow the functionality of the mgcv package (Wood,
2017, Version 1.8-33) in R which produces standard errors based on the Bayesian posterior
covariance matrix V = V (γ̂) of the model parameters. Treating the smoothing parameter ρ
as fixed this covariance matrix is given as the inverse of the Fisher information from above,
i.e.

V = (B>W (γ̂ρ)B + ρKr)
−1.

3.6. Intensity Depending on Covariates. The methodology from above can easily be ex-
tended to allow the intensity to depend on one or several covariates, distinguishing between
two kinds of covariates. Firstly, we denote purely network-related covariates as internal co-
variates. Examples are longitude/latitude, distance to the nearest vertex or the location on the
network segment. In applications with road networks, an internal covariate could also be the
direction or the kind of a road. Technically, internal covariates can always be associated with
a network segment index m and a respective bin index k. Secondly, we denote covariates that
are not directly related to the network geometry as external covariates. Examples are time,
weather conditions, but also the kind of a crime when the point pattern represents the spatial
distribution of crimes along a network of streets.

Let x1, . . . , xC be the set of C ∈ N covariates to be considered in the model which are
already suitably transformed, if required. According to the above considerations the index
set {1, . . . ,C} disjointly splits into sets I and E referring to internal/external covariates, i.e.
I ·∪ E = {1, . . . ,C}. Further, if E 6= ∅ let U be the number of unique combinations of the
outcomes of the external covariates, otherwise we set U = 1. By introducing an additional
index u= 1, . . . ,U we change (6) to

(12) λm,k,u = exp


νX (zm,k) +

C∑

c=1

sc(xcm,k,u
) + loghm


 ,

where sc(·) is the influence function of the covariate xc which is defined below and the
function νX now serves as smooth baseline log-intensity. In (12), xcm,k,u

is the value of
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FIG 3. Left panel: The Chicago crimes network. Right panel: Major roads in the CBD of Melbourne, Australia,
allocated to a street network. The circles show the location of parking bays with installed in-ground sensors.

the covariate xc measured at location zm,k on the network if the value of xc in this bin
corresponds to the u-th unique combination of all external covariates. This notation sug-
gests that an external covariate can also be network related, and indeed, we can e.g. model
varying weather conditions over time at different locations of the network. The function
sc(·) determines whether the c-th covariate is modeled (log-)linearly or as a smooth term.
In the former case sc(xcm,k,u

) = βcxcm,k,u
, where βc is the corresponding parameter that

needs to be estimated. In the latter case the covariate xc has a B-spline basis representation
sc(xcm,k,u

) =
∑Jc

j=1 γ
(c)
j Bl

j(xcm,k,u
), where the objective is to estimate the parameter vec-

tor γc = (γ
(c)
1 , . . . , γ

(c)
Jc

), see Section 3.1 for details. Moreover, the spline functions sc are
centered around zero for ensuring identifiability of smooths effects. Altogether, the former
parameter vector γ from Section 3.2 now extends to a parameter vector θ which further
includes the parameters βc and B-spline coefficients γc.

Suppose now that indices S ⊂ {1, . . . ,C} represent covariates, internal or external, which
are modeled smoothly. Therefore, we need further |S| penalties P(s)

rs and smoothing parame-
ters ρs associated with each of these smooth terms (Section 3.3), where ρ denotes the vector
containing these smoothing parameters. Therefore, the log-likelihood that we now need to
maximize is given by

`P(θ;ρ,ρ) =
M∑

m=1

Nm∑

k=1

U∑

u=1

[
ym,k,u log(λm,k,u)− λm,k,u

]
− ρPr(γ)−

∑

s∈S
ρsP(s)

rs (γs),

where ym,k,c denotes the count of observations in the k-th bin of them-th curve segment with
covariate combination u and ρPr(γ) is the same penalty as in (8). The smoothing parameters
ρs associated with the smooth functions can also be updated using the Fellner-Schall method
from Section 3.4. In particular, we can update many smoothing parameters at practically no
additional costs. Moreover, quantification of uncertainty of linear and smooth covariate ef-
fects easily extends by taking the resulting inverse penalized Fisher information, as discussed
in the previous subsection.

4. Networks and Data. In this section, we introduce three geometric networks that we
use throughout the rest of this paper. We further visualize point processes living on these
networks and describe properties of the networks, such as the count of edges. In our R imple-
mentation all networks are represented as an instance of the class linnet in the R package
spatstat (Baddeley, Rubak and Turner, 2015), i.e. all these networks have a representation
as a linear network.
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Network Hyde Park, Chicago CBD, Melbourne South Montgomery County

Unit feet meters kilometers
Resolution all streets only major streets only highways

Source spatstat package own representation own representation
|V | 338 96 339
|E| 503 158 369
|L| 31,150.21 25,473.90 175.42

TABLE 1
Summary of the geometric networks covered in this paper.

First, we consider the Chicago crimes network, which has already been treated in many
papers before, see e.g. Rakshit et al. (2019). This network is available as an object named
chicago in the R package spatstat and shown in the left panel of Figure 3. Various sym-
bols visualize 116 crimes recorded over two weeks in the year 2002 in Hyde Park, Chicago,
subdivided into seven kinds of crimes. Therefore, these data represent a marked point pro-
cess on this geometric network. Most of the crimes seem to occur in the northeastern and
northwestern parts of the map extract. A summary of the geometric network itself is given in
Table 1.

Secondly, we employ data from the City of Melbourne, Australia. Between August 2011
and May 2012, the city installed in-ground sensors underneath around 4,600 out of more
than 20,000 on-street parking lots in the city center of Melbourne. These sensors are capable
of recording the arrival time and the departing time of a car to the second.2 We take data
from the period June-August 2019 and consider a subset of 1,618 on-street parking lots with
installed in-ground sensors, which are all located in the Central Business District (CBD) of
Melbourne and which are released at least once a day on average. Altogether the database
compresses 1,907,941 events where one event is defined as the release of a parking lot. Our
goal is to detect regions in this area where the occupancy of parking lots fluctuates most, also
concerning the time of the day. Therefore, we first need to specify a geometric network where
the point process is living on. This network is constructed by only including major streets in
this area as well as side streets in which on-street parking lots with sensors are located. In
Figure 3 we show the location of the considered on-street parking lots on the corresponding
geometric network. A summary of the network is given in Table 1.

The third and endmost data example are road accidents recorded on a network of highways
(state highways, interstate highways and US highways) in the southern part of Montgomery
County, Maryland, which borders on the District of Columbia in the north. We take data3

related to 14,571 traffic collisions from the years 2015-2019, which occurred between 6 am
and 10 pm. The locations of these incidents on the underlying road network of highways
are shown in Figure 4. Here, we already see that the network of highways is denser in the
southern part of the map extract with many south-north routes originating from Washington,
D.C. Note that we excluded Maryland Route 200 from the network since traffic collisions
occurring on this highway are not included in the database. Besides the location of each
collision, the dataset includes covariates such as the type of the highway (internal) or the date
and time (external) of the incident. Moreover, we added the direction of a street section as a
further internal covariate. Again, a summary of the network itself is provided in Table 1.

2The massive amounts of data that these sensors produce and many more data related to parking in the City
Melbourne are available for gratuitous download at https://data.melbourne.vic.gov.au/.

3Data on car crashes can be downloaded from https://data.montgomerycountymd.gov/
Public-Safety/Crash-Reporting-Incidents-Data/bhju-22kf.
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FIG 4. Network of highways in the southern part of Montgomery County, Maryland. Data points represent acci-
dents occurring between the years 2015 and 2019 from 6 am in the morning until 10 pm in the evening.

5. The Chicago Crimes Network. To begin with the analysis of the Chicago crimes
data, we neglect the kind of crime. When estimating the intensity of crimes with our ap-
proach, we set δ = 10, h = 2 feet and make use of a second-order penalty. We compare the
intensity fit with two baseline methods which are both kernel-based and implemented as
function density.lpp in the spatstat package. Firstly, we fit a kernel-based model
according to McSwiggan, Baddeley and Nair (2017) which computes the estimates by solv-
ing a heat equation on the network. We refer to this as method 1. This method exclusively
relies on the shortest path distance as the metric. The bandwidth σ of the kernel smoother is
selected via likelihood cross-validation using the function bw.lppl while setting the argu-
ment distance = "path", yielding an optimal bandwidth of σ = 158.49 feet. Secondly,
we fit another kernel-based model, now using an adaptive two-dimensional smoothing kernel
as proposed by (Rakshit et al., 2019). Here, Scott’s rule of thumb (Scott, 2015), which is for
linear networks implemented within the function bw.scott.iso, yields an optimal band-
width of σ = 119.55 feet. We refer to this as method 2. Note that the ratio of the two optimal
bandwidths which we obtained for methods 1 and 2, respectively, are in line with the general
arguments of Rakshit et al. (2019), equation 18.

The top plot of Figure 5 shows the intensity estimate when employing the penalized spline-
based approach. The lower plots show the fitted intensity when method 1 (bottom left) or
method 2 (bottom right), respectively, is used. We find that the high-intensity regions on
the network are similarly located for all three methods. However, we see the following two
major deviations. First, the penalized spline-based method yields higher intensity estimates
for the region on top in the middle of the plot. Otherwise, the estimate is akin to the estimate,
resulting when fitting method 1 to the data. Second, we consider the fitted intensity with
method 2 in the area, marked by the rectangle in the top right corner of the map. It can be
seen that in this area the kernel smoother, which is based on the Euclidean distance, estimates
a distinctly higher estimate when compared to the other two methods based on the shortest
path distance. This might be caused by the data located in the top right corner of the map.
These data are close to the rectangle with respect to the Euclidean distance, but the shortest-
path distance is larger by a factor of around three.
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FIG 5. Top plot: Penalized spline based intensity estimate. Bottom left panel: Kernel intensity estimate based
on the shortest path distance (method 1). Bottom right panel: Kernel intensity estimate based on the Euclidean
distance (method 2). On top of each estimate the original data are plotted.

We repeat the penalized spline intensity estimation from above but now include the kind
of crime as a covariate in our model. For comparison, we also fit a Poisson process on the
network with the kind of crime as a single covariate and taking the estimate resulting from
method 1 from above as offset, for details see McSwiggan (2019). Therefore, we employ
the function lppm from the spatstat package. The resulting parameter estimates on the
log-scale of both models, including 95% confidence intervals, are shown in Figure 6. We see
that the effects and their respective standard errors are very similar in both models. However,
our model has the advantage that the nonparametric baseline intensity and covariate effects
can be estimated within one model. This can be extended to work with multiple covariates
if available. When the baseline intensity shall be estimated with a kernel smoother, covari-
ate effects can generally be estimated employing an alternating two-step approach, see e.g.
Kauermann (2002) for asymptotic results on the real line. We stress that this is not provided
within any of the functions in the spatstat package.

6. On-Street Parking in Melbourne, Australia. Our goal in this example is to detect
locations in the street network of the CBD of Melbourne where the occupation of on-street
parking lots fluctuates most. Therefore, we define an event to be the clearing of an on-street
parking lot, and the point process that we observe now has a spatial as well as a temporal
structure. However, in areas with more allocated parking lots, there is per se a higher chance
of finding a cleared lot. Therefore, we first need to estimate the intensity ϕZ of parking lots
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FIG 6. Parameter estimates of linear effects and 95% confidence intervals for the kind of crime in the Chicago
crimes network, when fitting a penalized spline model with covariates or a Poisson process with constant baseline
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FIG 7. (Baseline) intensity of on-street parking lots (in parking lots per meter) in the CBD of Melbourne. Left
panel: Intensity fitted without covariates. Right panel: Baseline intensity of a fit including a covariate which
considers closeness to a vertex. Both plots only show (baseline) intensities ≥ 0.1 on a logarithmic color-scale
with the underlying network being visualized in grey.

on the network of streets, where Z is the point process already visualized in the right panel
of Figure 3.

The fitted intensity ϕ̂Z of allocated parking lots using the penalized spline-based approach
is depicted in the left panel of Figure 7. Here, the intensity is visualized on a logarithmic scale,
and for reasons of presentation we only show areas on the network where the intensity of on-
street parking lots is expected to be at least 0.1 parking lots per meter. However, we also find
that the intensity around street crossings is throughout lower than 0.1, which is reasonable
when considering the allocation of parking lots shown in Figure 3. Therefore, we fit the model
again with a dichotomous network internal covariate, which has a value of 1 if a location on
the network is closer than 20 meters to a vertex and 0 else. The resulting baseline intensity
is shown in the right panel of Figure 7, again only showing baseline intensities being 0.1 or
higher on a logarithmic color scale. We now find that around many intersections, the baseline
intensity exceeds the value 0.1. The estimated effect of the internal covariate is −1.87 on the
log-scale with a standard error of 0.12. Consequently, we must multiply the baseline intensity
by a factor exp(−2.35)≈ 0.15 in order to get the intensity estimates at areas closer than 20
meters to a vertex. Note that the overall intensity is not continuous by including this covariate
anymore even though the baseline intensity is still continuous.
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FIG 9. Intensity estimate of traffic collisions. Left panel: Fit without covariates. The intensity is expressed in terms
of collisions per kilometer and year. Right panel: Estimate of the baseline intensity when fitting with covariates.

We now look at cleared parking lots, see Section 4 for details. The data are considered as
results of the clearing point process Y , whose log-baseline intensity ϕY is again estimated
using penalized spline smoothing. We further include a smooth effect s(t) for the time of
the day, where the estimate on the log-scale is shown in the left panel of Figure 8. The
effect yields an increasing intensity towards the evening, followed by a rapid decrease of
the intensity after 6 pm. To quantify, the intensity of the clearing process Y drops by factor
exp(−0.4−0.2)≈ 0.55, i.e. by more than a half, within two hours. Note that due to the large
amounts of data, the confidence bands of the smooth effect s(t) are very narrow.

Overall we want to determine the ratio ϕX = ϕY/ϕZ , which expresses the expected fluc-
tuation rate of parking lots along the network. However, we are only interested in the fluc-
tuation rate where we expect a reasonable number of parking lots, here the locations where
ϕ̂Z(z)≥ 0.1, see Figure 7. Here, we make use of ϕ̂Z which results from the fit when account-
ing for the distance to the nearest vertex. The baseline intensities ϕ̂X (z) are normalized such
that they can be interpreted as the expected hourly fluctuation rate of a parking lot, which is
located at z ∈L. In order to get the expected fluctuation rate at a specific time of the day t,
ϕ̂X (z) needs to be multiplied by factor exp(s(t)). The estimates of the fluctuation process
X are shown in right panel of Figure 8, where spots with ϕX (z) ≥ 5 are surrounded by a
black circle. We find that high fluctuation rates occur, especially in the southwestern part of
the CBD.

7. Car Crashes in Montgomery County, Maryland. As a start, we determine the pe-
nalized spline-based intensity fit of traffic collisions on the network of highways shown in
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Effect Estimate (s.e.) Relative risk 95% CI of relative risk

Interstate highway -1.560 (0.196) 0.21 [0.14, 0.31]
US highway 0.597 (0.222) 1.82 [1.18, 2.81]

East-west -0.085 (0.110) 0.92 [0.74, 1.14]
Southeast-northwest 0.059 (0.112) 1.06 [0.85, 1.32]
Southwest-northeast -0.435 (0.158) 0.65 [0.47, 0.88]

Distance to intersection in km -1.970 (0.466) 0.14 [0.06, 0.35]
TABLE 2

Summary of estimated fixed effects on the log-scale including standard errors, relative risk = exp(estimate) and
the 95% confidence interval (CI) of the relative risk.
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FIG 10. Smooth effect of the time of the day on the exp-scale.

Figure 4, where we do not include covariates in the model. In the left panel of Figure 9 we
illustrate the fitted intensity, where the unit of the intensity estimate is traffic collisions per
kilometer and year. We see that some routes exhibit throughout very high intensities, most
of them originating from Washington, D.C. To name a few of them, these are US highway
29 or Maryland state highways 97 and 355. On the two interstate highways in this area with
numbers 270 and 495, there seems to be a relatively low risk of traffic collisions, i.e. there
are only a few crashes per kilometer of highway.

As a next step, we include covariates in the model as proposed in Section 3.6. Firstly,
these are two categorical covariates, namely the type of highway (categories: state, interstate,
or US highway) as well as the direction of the highway (categories: south-north, east-west,
southeast-northwest, southwest-northeast), with the first category always representing the re-
spective reference category. Secondly, we include a linear effect for the distance in kilometers
to the nearest intersection with another highway. Finally, we include a smooth effect s(t) for
the time of the day t as we already did in Section 6.

The fitted baseline intensity, when including covariates, is shown in the right panel of
Figure 9. We do not have such a clear picture as before when fitting the intensity without
covariates, suggesting that covariate effects now explain a large part of the variance. The
resulting estimates of the fixed linear effects are listed in Table 2. Indeed, the relative risk
of a traffic incident is five times lower on an interstate highway and nearly twice as large
on a US highway when compared to Maryland state highways. Both effects are significant
on the 95% confidence level. The effect of interstate highways might be associated with the
type of construction as these have several lanes with different driving directions being struc-
turally separated. Moreover, interstate highways are usually connected with other highways
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through several ramps to avoid contact with oncoming traffic. Concerning the direction of the
highways, there seems to be a significant difference of routes proceeding from southwest to
northeast when controlling for the other effects included in the model. To quantify the effect,
the relative risk of observing a traffic collision is 35% lower when compared to south-north
highways. Lastly, we can infer that high-risk areas in the fit without covariates are mainly
located close to intersections since the relative risk decreases by 86% (≈ exp(−1.97)) per
kilometer distance to the nearest intersection. Finally, we depict in Figure 10 the estimated
smooth effect of the time of the day. Here, we see that the significant risk of observing a traf-
fic accident varies enormously with the hour of the day, where we see a peak in the morning
between 8 am and 10 am as well as in the afternoon between 2 pm and 6 pm. In the latter
period, the relative risk of observing a road accident is more than twice as large as at noon.

8. Simulation Study.

8.1. Integrated Squared Error. We start by employing data simulated on the Chicago
crimes network in order to explore the performance of penalized spline based intensity esti-
mation on geometric networks, also with respect to two methods which we briefly discussed
in Section 5 above. Therefore, we specify intensity functions ϕXn

on the Chicago network
which satisfy

∫
LϕXn

(z)dz = n and for each of the sample sizes n= 100,200,500,1000 we
simulate R = 100 point processes Xn = {x1, . . . ,xn}. We quantify the prediction error of
the r-th simulation with sample size n through

ISE(ϕ̂Xn
; r) =

1

n2

∫

L

(
ϕ̂Xn

(z; r)−ϕXn
(z)
)2

dz

where ϕ̂Xn
(·; r) denotes the estimate of ϕXn

based on the r-th sample. That is, we quan-
tify the prediction error through the integrated squared error (ISE) between the the esti-
mated density f̂X (z) = ϕ̂Xn

(z)/n and the true density fX (z) = ϕXn
(z)/n, which enables

us to compare the ISE for different sample sizes. Denoting with E[·] the sample mean in
the following, the mean integrated squared error (MISE) estimated from a sample of size n
is given by MISE(ϕ̂Xn

) = E[ISE(ϕ̂Xn
; r)] = 1

R

∑R
r=1 ISE(ϕ̂Xn

; r). Moreover, denoting with
E[ϕ̂Xn

(z; r)] = 1
R

∑R
r=1 ϕ̂Xn

(z; r) the point-wise sample mean of the intensity estimate, we
can express the MISE as the sum of the integrated variance (IVar) and the integrated squared
bias (ISBias), i.e.

MISE(ϕ̂Xn
) = IVar(ϕ̂Xn

) + ISBias(ϕ̂Xn
)

=
1

n2

∫

L
E
[(
ϕ̂Xn

(z; r)−E[ϕ̂Xn
(z; r)]

)2]
dz

+
1

n2

∫

L

(
E[ϕ̂Xn

(z; r)]−ϕXn
(z)
)2

dz.

(13)

We now carry out the process described above for two intensity functions. First, the inten-
sity is chosen to be proportional to the intensity estimate fitted with the kernel method based
on the shortest path distance from below, compare the bottom left panel of Figure 5. Second,
we simulate point processes X according to

ϕX (z)∝
{
1, z ∈ em and m≡ 0 (mod 10)

0, else
,(14)

which means that we simulate data according to a uniform distribution on line segments
whose edge index is completely divisible by 10 and on all other edges the probability of
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FIG 11. Integrated squared error (scaled by factor 10,000) of the intensity estimate depending on model choice
and sample size. Left panel: True density is proportional to the intensity as shown in the bottom left panel of
Figure 5. Right panel: True density is defined according to (14).

observing a datum is zero. Therefore, (14) specifies an intensity function where the data are
clustered on some edges of the network and the intensity is not smooth but discontinuous.
When fitting the simulated data with one of the three models, we use the same hyperparame-
ters or strategies to determine the hyperparameters as described in Section 5 when fitting the
original data.

In Figure, 11 we show a boxplot of the resulting ISEs4 when fitting the intensity of sim-
ulated point patterns with different sample sizes making use of the three models discussed
above. The left panel of Figure 11 illustrates that the distribution of the ISEs is very similar
for a given sample size if the data are simulated according to the smooth intensity function
shown in the bottom left panel of 5, and there is an apparent reduction of the ISE if the
sample size increases. When simulating from the discontinuous intensity function (14), the
ISE is generally more than ten times larger when compared to the first example, see the right
panel of Figure 11. In this situation, penalized spline-based estimation is favored against the
two kernel-based methods in terms of ISE. Moreover, the two kernel-based methods perform
similarly for small sample sizes, but the estimate based on the Euclidean distance shows only
a slight reduction of the ISE if the sample size increases. Therefore, we can conclude that if
the actual intensity is sufficiently smooth, all the three considered methods exhibit similar es-
timation errors. However, the penalized spline-based method shows more robustness towards
misspecified smoothness when compared to the two considered kernel-based methods.

Figure 12 shows the same simulation results as in Figure 11, but now in terms of the
MISE as the decomposition of IVar and ISBias. We see that in both settings, i.e. with data
simulated from a smooth intensity function and a discontinuous intensity function, respec-
tively, our method seems to solve the bias-variance trade-off reasonably well. Note that this
is, as already known from penalized spline smoothing on the real line (Fahrmeir et al., 2013),
achieved by the optimal choice of the smoothing parameter. In this matter, overestimation or
underestimation of the smoothing parameter leads to higher bias and less variability or less

4It is essential to note that for computing the ISEs, we have used the development version 2.2-1.003 of the
spatstat.linnet package.
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are scaled by factor 10,000. Left panel: True density is proportional to the intensity as shown in the bottom left
panel of Figure 5. Right panel: True intensity is defined according to (14).

bias and more variability, respectively. In some settings of our simulation study, it can be
seen that the two kernel-based methods do not solve the bias-variance trade-off well. When
considering estimates of the method based on the shortest path distance in the first setting,
most of the portion of the MISE can be attributed to the IVar if the sample size is large. On
the other hand, in the second setting the major portion of the MISE can be attributed to the
ISBias, where the same holds for the kernel methods based on the Euclidean distance.

Finally, we also explore the effect of the bin width h and the dimension J of the B-spline
basis, which is determined by the knot distance δ. We vary δ with 5,10 and 20 feet, the global
bin width h is chosen to be the half, a fifth or a tenth of δ, respectively. Here, the analysis is
restricted on the sample size n = 200 and ϕX according to the bottom left panel of Figure
5. The results in Figure 13 show the ISEs with R = 100 simulations for each configuration.
We find that the ISE hardly varies with different choices of δ and h. Thus, as long as δ and h
are small enough, we can not considerably increase the prediction performance by reducing
these two hyperparameters. This result is in line with the motivating arguments in Eilers and
Marx (1996) and corresponds to the general results for penalized spline smoothing as derived
in Kauermann and Opsomer (2011).

In order to find a proper value for δ in general, it is often helpful to start with δ ≈
1
2 minm dm which is for the Chicago network given by 4.7 feet. This ensures that there is at
least one segment-specific B-spline on each em and that the segment-specific knot distances
δm are of similar size, see Section 3.1. In the above simulation study on the Chicago network,
δ can be increased by at least factor four without loss of prediction performance which is the
merit of the penalization. Moreover, since we are operating with linear B-splines, there is
no benefit by setting the global bandwidth h to an unnecessarily small value, which is also
supported by the simulation results shown in Figure 13.

8.2. Estimation of Covariate Effects. We now want to study the performance of the
model extension which we have elaborated in Section 3.6. Therefore, we first define an inten-
sity function ϕX of a point process X on the Chicago street network from above according
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(4,1,1)>.

to

(15) ϕX (z)∝ exp (2 · tp+ x) ,

where tp ∈ [0,1] measures the relative location of the point z on its line segment, with
tp= 0 or tp= 1 meaning that z is located on one of its endpoints. Furthermore, x is the x-
coordinate (in 1000 feet) of z in the plane. Note that this intensity function is not continuous
and data simulated according to (15) are clustered towards the right end of each line segment.
We simulate R = 100 point patterns of sample sizes n = 100,200,500,1000 according to
(15) and estimate the intensity including tp and x as linear covariates. These covariates are
both internal covariates with effect sizes βtp = 2 and βx = 1 on the log-scale. The resulting
parameter estimates are shown as boxplots in Figure 14. We see that the estimates of both
effects are slightly biased towards zero, while the bias is generally larger for the effect of
tp and decreases when the sample size increases. Likewise, for both effects the variances
decrease with increasing sample size.

Finally, we simulate again according to the intensity function ϕX which yields from
the shortest path dependent kernel based intensity estimate of the Chicago crimes data.
However, the data shall now also dependent on two external covariates. Therefore, we
first draw a sample of size 10 from a time dependent covariate xt ∼ N (0,1). Secondly,
we also consider a dichotomous covariate xd with values “A” and “B”. Thus, there are
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U = 20 unique combinations of these two covariates. We further introduce a parameter
vector β = (β0, β1, β2)

> of effects on the log-scale, where β0 scales the baseline inten-
sity, β1 is the linear effect of xt and β2 is the effect of xd = B with respect to xd = A.
Then, for each covariate combination u= 1, . . . ,U we draw the sample size nu from a Pois-
son distribution with parameter µu = exp(β0 + β1 · xt,u + β2 · 1{xd,u = B}). In the end,
we have simulated n =

∑U
u=1 nu data points on the network. The right panel of Figure

14 shows boxplots of the parameter estimates when conducting this simulation study with
β(1) = (2,1,1)>,β(2) = (1,−1,1)>,β(3) = (1,0,−1)> and β(4) = (4,1,1)>, respectively.
We find that these estimates are generally unbiased. Note that the baseline intensity is chosen
to be the highest in scenario 4, which results in the lowest variances of the estimates when
compared to scenarios with lower baseline intensity.

9. Discussion and further Work. In this article, we developed a new method for esti-
mating the intensity (or density) of a stochastic process living on a geometric network. We
exploited and extended penalized spline estimation to work on a subset of connected curves,
denoted as geometric networks. A benefit of this model is its inherent simplicity and the
relatedness to well-elaborated statistical concepts such as penalized spline smoothing and
generalized additive models. Note that by our definition, an interval [a, b] is a special case of
a geometric network L with |E|= 1 and |V |= 2.

This paper shows that our methodology works for point processes on two-dimensional
linear networks embedded in the plane, a particular case of a geometric network. In the
future, we plan to implement intensity estimation on geometric networks in general, which is
straightforward when considering our general derivations. More precisely, we want to enable
to represent geometric networks as the union of parametric curves (see Section 2), also in
higher dimensional spaces, and provide visualizations of fitted intensities in two and three
dimensions.

As seen in the simulation study and the application examples, the penalization also com-
pensates for non-equidistant knots and bin widths on different segments ofL. However, these
differences can be made as small as desired by reducing δ and h. In the end, this leads to a
trade-off between accuracy and computational effort. In a Euclidean space, the penalties used
for estimation with B-splines are often based on derivatives of the smoother. However, in a
geometric network the question arises how one could define differentiability of a function f
at vertices v with deg(v)> 2. Adapting the penalization technique of Eilers and Marx (1996)
circumvents this question and proves to be the right choice for our setting.

We envisage many more generalizations and extensions of our method. First, the linear
penalized spline approach could be extended to work with higher-order penalized splines,
particularly with quadratic or cubic penalized splines. Therewith, the estimated intensities
could become even smoother along the network. However, B-splines of order two or higher
in Euclidean spaces are differentiable. Therefore, as stated above, it would be much more
complicated to construct network-based B-splines of order two or higher around vertices v
with deg(v)> 2.

Furthermore, if we drop the assumption that the network graph L should not be directed,
we need the geometric representation L to be possibly directed as well. This means that a
curve em additionally is equipped with a direction if em = (vi, vj) is a directed edge from
vi to vj but there is no edge from vj to vi. In this case, the distance measure dL from above
does not define a metric any more since then, dL(z,z2) = dL(z,z1) for z,z ∈ L does
not hold in general. This extension of the model could especially be applied to the Maryland
road accident data to investigate whether the intensity varies with the direction of the lane.
However, we consider this to be beyond the scope of this paper and aim to tackle this in the
future.
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Appendix

3.A. Intensity estimation on geometric networks with the R
package geonet

Manuscript in preparation Schneble, M., Kauermann, G. (2021). Intensity estimation on
geometric networks with the R package geonet.

Code and data The package can be downloaded from the comprehensive R archive network
(https://cran.r-project.org/web/packages/geonet/index.html). A development version
is available at GitHub (https://github.com/MarcSchneble/geonet).

Author Contributions The R package geonet was designed and written by Marc Schneble,
who also is the maintainer of the package. Marc Schneble has written the major part of the
manuscript with advice from Göran Kauermann. Both authors were involved in extensive proof-
reading of the manuscript.
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Intensity Estimation on Geometric Networks with
the R Package geonet
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Abstract

This article presents and discusses the R package geonet which is designed for inten-
sity estimation of point processes on a geometric network. The underlying methodology
is based on penalized spline smoothing and generalized additive models. The intensity
itself is approximated through a linear B-spline basis where the related regression coeffi-
cients are appropriately penalized. The package allows incorporating internal and external
covariates when estimating the intensity, which is novel and not possible with the cur-
rent state-of-the-art kernel smoothing techniques implemented in the R package spatstat.
Moreover, the package geonet inherits new classes for an advanced representation as a
geometric network. Great care has been taken to provide full compatibility between the
classes from our new package geonet and the classes from the already established package
spatstat. The model’s possible applications are manifold and we illustrate the usage of
the package based on the Chicago crimes network and the Montgomery highway network.
The first is a widely employed example and the latter is novel and encompasses a network
of highways in Montgomery County, Maryland, where the point process relates to traffic
accidents on the network of highways.

Keywords: B-splines, generalized additive models, geometric networks, intensity estimation,
R package geonet.
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2 The R package geonet

1. Introduction
The statistical analysis of spatial data is an active research area which has generated many
associated software contributions in R (R Core Team 2021). Some of the best-known R
packages for handling spatial data are sp (Bivand, Pebesma, and Gomez-Rubio 2013), sf
(Pebesma 2018), stplanr (Lovelace and Ellison 2018), SSN (Ver Hoef, Peterson, Clifford, and
Shah 2014) and spatstat (Baddeley, Rubak, and Turner 2015). The first two packages provide
mostly methods and classes for spatial data in Euclidean spaces. The packages stplanr and
SSN cover spatial data on networks while the former focuses on spatial transport data and
the latter is designed for modeling and predicting data on stream networks. The package
spatstat is the currently most comprehensive package and is actually a bundle of packages
which allows to model and visualize both, data in Euclidean spaces (package spatstat.geom)
and network spaces (package spatstat.linnet).
Data that are observed on a spatial network arise in many applications. Examples are crimes
or traffic accidents that occur on a network of streets. The problem formulation often involves
finding the network locations where most of the events are expected to occur and quantifying
the intensity of expected events per unit length of the network. One of the main functionality
of the spatstat.linnet package is kernel-based estimation of the intensity of a point process on a
linear network from an observed point pattern. Since the distance of two points on a network
is usually measured through the shortest path distance, estimation techniques do need to
account for the geometry of the network and thus, the methods are much more elaborated
compared to analyses in Euclidean spaces.
In this paper, we present the R package geonet (version 0.6.0) which provides an alterna-
tive to the package spatstat (version 2.2.0) by making use of penalized spline smoothing and
generalized additive models as proposed by the mgcv package (Wood 2017) and extended by
Schneble and Kauermann (2020) towards network data. Moreover, the package introduces
new classes for representing networks and point patterns on geometric networks. Thereby,
methods for these classes also focus on the compatibility with the respective classes of the
package spatstat. That is, our implementation allows us to convert objects which are repre-
sented through a class of the package spatstat to the respective class of the geonet package
and vice versa. Standard methods for generic functions such as print, plot and summary are
also included in the new package. The package geonet can be downloaded from the compre-
hensive R archive network (CRAN1). A more frequently updated development version of the
package is available via GitHub2.
The rest of the paper is structured as follows. Section 2 provides an introduction to geometric
networks with focus on their representation used in the package geonet. Section 3 introduces
point processes and the related intensity function on a network. Section 4 treats the new
methodology for intensity estimation on geometric networks as proposed by Schneble and
Kauermann (2020) and its implementation within the package geonet. We further briefly
review the current state-of-the-art kernel smoothing techniques as implemented in the package
spatstat. In the subsequent Section 5, we illustrate the functionality of the new package based
on two observed point patterns. The relation of the package geonet to the package spatstat is
shown in Section 6. Section 7 provides formulae and algorithms to simulate from an intensity
that has the proposed B-spline basis representation and in Section 8 we treat some of the

1https://cran.r-project.org/
2https://github.com/MarcSchneble/geonet
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computational aspects of the penalized spline-based intensity estimation method in more
detail. Finally, Section 9 summarizes the paper and gives an outlook on possible extensions
of the package.

2. Geometric networks

2.1. Definition and properties
In this section, we introduce networks in the sense of spatial objects embedded in a Euclidean
space. Note that the term network often refers to abstract network graphs, see e.g. Kolaczyk
and Csárdi (2014). Nonetheless, both types of networks have in common that they are
constructed by vertices and their pairwise connections. Let V = {v1, . . . ,vW } be a set of
vertices (or nodes) with vi ∈ Rq for i = 1, . . . ,W and q ∈ N. Further, let A ∈ {0, 1}W×W
be an adjacency matrix with Aij = 1, if vertices indexed by i and j are connected and
Aij = 0 otherwise. The network is assumed to be undirected and free of self-loops, i.e.
A is symmetric with its diagonal elements being equal to zero. Moreover, we denote with
deg(vi) = ∑n

j=1Aij the degree of the i-th vertex. If Aij = 1 we define eij ⊂ Rq to be the
connection between vertices vi and vj . We index these connections with m = 1, . . . ,M and
say that E = {e1, . . . , eM} represents the set of edges of the network. This leads to the
definition of a geometric (or spatial) network G as being the union of curves (or network
segments) G = ⋃M

m=1 em.
A spatial network is typically non-linear, e.g. streets from one place to another do not
necessarily follow a straight line. We can, of course, approximate curves through line segments
which is pursued in the package geonet. A curved edge em between two nodes vi and vj is
then approximated through the alignment of Lm linear segments resulting in many additional
(artificial) vertices of degree two. More formally, we describe each path as a parametric
curve, see details in Schneble and Kauermann (2020). That is, em = {ν(t), t ∈ [0, 1] |
ν(0) = vi, ν(1) = vj} ⊂ Rq where ν : [0, 1] → Rq defines a continuous, but in general non-
differentiable, parametric curve. If the curve is discontinuous at am,1, . . . ,am,Lm−1 ∈ Rq we
denote these points as the artificial vertices of the network which are introduced to represent
em as a polygonal chain. Defining with am,0 = vi and am,Lm = vj the endpoints of the m-th
edge, such an edge is the union of straight line segments

em =
Lm⋃

k=1
{am,k−1 + t(am,k − am,k−1) | t ∈ [0, 1]}.

Thus, the length dm = |em| of the m-th curve thus results to

dm =
Lm∑

k=1
||am,k − am,k−1||q,

where || · ||q denotes the Euclidean distance in q dimensions.
The artificial vertices do not have an actual function concerning the geometry of the network.
We illustrate this in Figure 1 where we plot a network of streets in Chicago, Illinois. This
network is available as the object chicago from the package spatstat.data. Here, a non-
straight street is approximated through linear segments and additional (artificial) vertices.

67



4 The R package geonet

250

500

750

1000

1250

0 300 600 900 1200
x (in feet)

y 
(in

 fe
et

)

Figure 1: A network of streets around Hyde Park in Chicago, Illinois. The red dots represent
the actual vertices of the network. The blue crosses show the artifical vertices of degree two.

The red dots show the network’s actual vertices, which have a degree of one or a degree of
more than two, i.e. they represent the terminus of a street or the intersection of more than
two streets, respectively. The blue crosses show vertices that have exactly degree two. These
(artificial) vertices are located on the approximated path between two adjacent vertices vi
and vj . In case that the artificial vertices are treated as actual vertices, a spatial network is
uniquely determined by the set of vertices V and the adjacency matrix A. Since all the edges
of such a network are straight line segments, these kinds of spatial networks are denoted as
linear networks (Baddeley et al. 2015).

2.2. The class gn
A geometric network in the geonet package is represented as an object of class gn and the
generic function as_gn transmutes an existing object, e.g. a linear network of class linnet
from the package spatstat.linnet, into a geometric network of class gn. The printed summary
of a geometric network shows basic information with regards to the number of vertices and
network segments, the length of the network and the distribution of the vertex degrees. Below,
we show the summary of the Chicago network and we see that this geometric network does
not have vertices of degree two.

R> library(spatstat)
R> library(geonet)
R> L <- as.linnet(chicago)
R> G <- as_gn(L)
R> summary(G)

Geometric network in 2 dimensions with 287 vertices
and 452 curve segments.
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The linear representation of the network has 338 vertices
and 503 straigt line segments.
Total length of the network: 31150.21 feet
Minimum segment length: 10.789 feet
Maximum segment length: 373.871 feet
Distribution of vertex degrees:

1 3 4 5
44 114 127 2

Plots in the package geonet are created by making use of the package ggplot2 (Wickham
2016), which builds on the grammar of graphics and each ggplot object consists of different
layers. The plot method for an object of class gn silently returns an object of class ggplot
and prints it to the console. Therefore, the plots can be customized afterward, but the plot
methods also provide an interface to the most common arguments of the ggplot layers such
as title. The network plot can be framed by setting frame = TRUE and in this case, a
coordinate system will be added to the plot as well.
Using the example of the Chicago network, we illustrate an object of class gn which consists
of nine attributes. The attribute $vertices is a tibble with four columns and each row
represents an artificial vertex or an actual vertex, respectively. Tibbles are an advanced
representation of data.frame objects in R and the corresponding tibble functions are re-
exported by the package dplyr (Wickham, François, Henry, and Müller 2021) which we use
for data manipulation. The first column, named a, represents a common identifier for both
the artificial vertices and the actual vertices, The indices of the latter kind of vertices are
shown in the second column, named v, and otherwise filled with NA for the artificial vertices
of degree two. The Chicago network has 51 of those vertices. Moreover, the columns named
x and y refer to the x- and y-coordinates of a vertice, respectively. The following tibble shows
the $vertices of the Chicago network restricted to those vertices which are located within
the rectangle shown in Figure 1. The vertices with identifiers 119-121 correspond to the blue
squares in this rectangle.

R> length(which(is.na(G$vertices$v)))

[1] 51

R> library(dplyr)
R> G$vertices %>% filter(a %in% c(96, 97, 115, 119:123, 125, 134))

# A tibble: 10 x 4
a v x y

<int> <int> <dbl> <dbl>
1 96 83 106. 984.
2 97 84 83.7 984.
3 115 102 106. 916.
4 119 NA 59.2 923.
5 120 NA 50.4 816.
6 121 NA 76.6 735.
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7 122 106 65.4 665.
8 123 107 103. 833.
9 125 109 101. 750.

10 134 116 103. 668.

The attribute $lins is a tibble that represents the single straight line segments of the network,
i.e. the number of rows of this tibble is equal to∑M

m=1 Lm. The columns l and e represent the
identifier of a straight line segment and the index of the associated curve segment, respectively.
The columns a1 and a2 are the identifiers of the endpoints of the straight lines and the
subsequent four columns match their coordinates. The length of each line segment is saved in
the column length. The column frac1 is the cumulative length of a curve excluding this line
segment and frac2 is the fraction which a line segment has with respect to the whole length
of the curve segment. Possibly more columns are associated with internal network covariates.
The following tibble shows those four line segments which build the curve with index m = 11
that is located within the rectangle shown in Figure 1. Note that the line segments are always
ordered, such that adjoining segments are listed sequentially. We can also deduce that the
length of the m-th curve is equal to 66.1 + 107.0 + 84.6 + 71.7 = 329.4 feet.

R> all.equal(nrow(G$lins), L$lines$n)

[1] TRUE

R> G$lins %>% filter(l %in% 167:170)

# A tibble: 4 x 11
l e a1 a2 a1_x a1_y a2_x a2_y length frac1 frac2

<int> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 167 11 97 119 83.7 984. 59.2 923. 66.1 0 0.200
2 168 11 119 120 59.2 923. 50.4 816. 107. 0.200 0.325
3 169 11 120 121 50.4 816. 76.6 735. 84.6 0.526 0.257
4 170 11 121 122 76.6 735. 65.4 665. 71.7 0.783 0.217

The attributes $adjacency and $incidence represent the adjacency matrix of dimension
W × W and the incidence matrix of dimension W × M , respectively. The attribute $d
is a vector of length M containing the path length of all curve segments and with $unit
one obtains the unit in which lengths in the network are measured. The attributes $q, $W
and $M are self-explanatory. Currently, only q = 2 is supported by the package geonet, i.e.
geometric networks which are embedded in the plane. However, the methodology to estimate
the intensity on geometric networks presented later in this paper is general and simply allows
for application to networks embedded in q > 2 dimensions.

3. Point processes on a geometric network

3.1. Intensity function
A point process X on a geometric network G is a random countable subset and a realization
x = X (ω) ⊂ G is called a point pattern. The function ϕX : G→ [0,∞) denotes the intensity
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function of X , where ϕX (u) can be interpreted as the expected number of points per unit
length of the network in the vicinity of a point u ∈ G. More generally, it holds that the
expected number of points falling in a set B ⊂ G is given by

EX (B) =
∫

B
ϕX (u) du.

Sometimes, one may rather characterize a point process X on a network through a density
function fX (·) where

PX (u ∈ B) =
∫

B
fX (u) du

is the probability that a point u which is generated by X will fall in the subset B. Note that
the density is the normalized intensity. In particular, if

∫
G ϕX (u) du = n, then fX (·) = 1

nϕX (·)
and thus, P(u ∈ B) = 1

nEX (B).

3.2. The class gnpp
A point pattern on a geometric network in the package geonet is an object of class gnpp
(geometric network point pattern) which has two attributes, the underlying geometric network
($network) and a tibble which describes the observed point pattern ($data). The generic
function as_gnpp transmutes an existing object into an object of class gnpp. Methods exist
for example for point patterns on a linear networks, i.e. objects of class lpp from the package
spatstat.linnet. The attribute $data of a gnpp object is a tibble that has one row for every
observation and at least the following six columns. The columns l and e refer to the line
segment identifier and the curve segment index, respectively, where tp_l and tp_e specify
the relative location on the respective segment as a number in the unit interval. Columns
x and y refer to the coordinates of each point. Possibly more columns are associated with
external covariates.
Again, we illustrate an object of class gnpp through the Chicago network. The original object
chicago is a point pattern of size n = 116 on the network already shown above. The points
represent crimes committed between April 25 and May 8, 2020, and among others, the dataset
was already analyzed by Ang, Baddeley, and Nair (2012) and Baddeley et al. (2015). In the
case of the Chicago crimes data, the seventh row is a categorical covariate which is the type
of crime committed at the respective location. The first six rows of the data are shown in the
following.

R> X <- as_gnpp(chicago)
R> head(X$data)

# A tibble: 6 x 7
l tp_l e tp_e x y marks

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 42 0.242 3 0.120 715. 1191. cartheft
2 42 0.698 3 0.347 730. 1170. damage
3 104 0.145 9 0.652 869. 1003. damage
4 292 0.949 19 0.691 743. 683. theft
5 5 0.926 44 0.926 282. 1251. damage
6 5 0.515 44 0.515 245. 1251. robbery
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Figure 2: The Chicago crimes data.

The printed summary of a gnpp object first shows information similar to that of a geometric
network. Besides, it also provides information about the size of the point pattern and the
average intensity. Furthermore, a summary of all internal and external covariates is shown.
Below, we show the summary of the chicao point pattern when represented as an object of
class gnpp.

R> summary(X)

Point pattern on a geometric network in 2 dimensions with 287 vertices
and 452 curve segments.
The linear representation of the network has 338 vertices
and 503 straigt line segments.
Total length of the network: 31150.21 feet
Network has no internal covariates
Number of points: 116
Average intensity: 0.00372 points per foot
Number of external covariates: 1
1) factor variable "marks":
assault burglary cartheft damage robbery theft trespass

21 5 7 35 4 38 6

A plot of the point pattern is shown in Figure 2 which is the output of the following command.

R> plot(X, frame = TRUE, covariate = "marks")

In general, the plot method for an object of class gnpp silently returns an object of class
ggplot and prints the result to the console. The argument covariate allows stratifying the
plotted point pattern according to a categorical covariate which is, in the case of the Chicago
crimes data, the covariate “marks” representing the kind of a crime.
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4. Intensity estimation of point processes on spatial networks

4.1. Intensity estimation based on penalized spline smoothing

Methodology
In the package geonet, intensity estimation on a geometric network is based on penalized
spline smoothing (Eilers and Marx 1996) and generalized additive models (GAMs, Hastie
and Tibshirani 1986). Therefore, network internal and external covariates can be considered
when estimating the intensity with this method. The methodology of the penalized spline
smoothing technique for point patterns on geometric networks has been developed by Schneble
and Kauermann (2020).
The cornerstone of the method is to represent the log-baseline intensity νX (·) = logϕX (·) of
a point process X through a linear combination of B-splines (Ruppert, Wand, and Carroll
2003 and Fahrmeir, Kneib, Lang, and Marx 2007), where each single B-spline is only locally
supported on the geometric network. Therefore, we define with [u1,u2) ⊂ G the shortest
path with length dG(u1,u2) between two points u1 and u2 on the network G, where a
square bracket indicates that an endpoint is included and otherwise it is not. Moreover, we
construct on each curve em with endpoints, say vi and vj , an equidistant sequence of Im knots
vi = τm,1, . . . , τm,Im = vj . Thereby, the curve-specific knot distances δm = dG(τm,k, τm,k+1)
shall be chosen to be as similar as possible for a given global knot distance δ, for details see
Schneble and Kauermann (2020).
We now define Jm = Im − 2 B-splines on the m-th curve according to

Bm,k(u) = dG(u, τm,k)
δm

1[τm,k,τm,k+1)(u) + dG(τm,k+2,u)
δm

1[τm,k+1,τm,k+2)(u) (1)

for u ∈ G and k = 1, . . . , Im − 2. In fact, (1) defines linear B-splines based on a recursive
formula which is used when constructing B-splines on the real line, see De Boor (1978). Thus,
each of the B-splines Bm,k(·) is supported between three adjacent knots on the m-th segment
and the mode of Bm,k(·) is equal to τm,k+1. In order to supplement the B-splines defined by
(1) to a basis on G we need further W B-splines which are supported around the vertices of
the geometric network. Therefore, let with a simplified notation and without loss of generality
e1, . . . , edeg(vi) be the adjacent curves of the i-th vertex and vi = τ 1,1, . . . , τ deg(vi),1. Then,
we define a B-spline B(i) around the i-th vertex according to

B(i)(u) = 1vi(u) +
deg(vi)∑

k=1

(
1− dG(vi,u)

δk

)
1(vi,τk,2)(u) (2)

for u ∈ G and i = 1, . . . ,W . Altogether, the B-spline basis defined by (1) and (2) has
dimension J = ∑M

m=1 Jm + W and for simplicity of notation, we index these B-splines with
j = 1, . . . , J . Thus, a B-spline basis representation of the log-baseline intensity at a point
u ∈ G is given by

νX (u) =
J∑

j=1
γ0,jBj(u), (3)
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Figure 3: Approximating the log-intensity of a point process on a network through linear
B-splines. Left panel: B-splines Bm,k(·) and B(i) weighted by their respective coefficients.
Right panel: Resulting intensity on the network.

where γ0 = (γ0,1, . . . , γ0,J)> is a vector of B-spline coefficients that needs to be estimated from
the data. We exemplify in Figure 3 the above considerations on a small artificial network
which consists of three lines joining at one vertice. The left panel sketches the single linear B-
splines weighted by their coefficients as in (3) and the right panel shows the resulting intensity
ϕX (·) = exp νX (·) on the network. Note that at the mode of the B-spline Bj , the intensity
equals exp(γj).
As a next step, we include (3) in a regression model. Therefore, we bin the observed point
pattern x appropriately on the network. We choose a bin width hm for the m-th curve such
that em is subdivided into Nm = dm

hm
∈ N bins and ym,k denotes the number of points which

fall into the k-th bin of the m-th curve. Moreover, we assume to have p covariates which we
collect in a vector zm,k = (z(1)

m,k, . . . , z
(p)
m,k)> where p = 0 is suitable as well and zm,k = ∅ in this

case. Covariates can also be time-dependent which we, however, neglect in our notation for
simplicity of presentation. We assume a Poisson distribution for ym,k and set up the model

ym,k | zm,k indep.∼ Poi(λm,k), (4)

where λm,k is modeled in a log-linear fashion according to

λm,k = exp


νX (um,k) +

p∑

l=1
fl(z(l)

m,k) + log hm


 . (5)

Here, um,k is the mid-point of the k-th bin of the m-th edge and we replace νX (um,k) with
the B-spline basis representation (3). Moreover, log hm serves as an offset which ensures
appropriate scaling of the baseline intensity. The function fl(·) denotes the effect of the l-
th covariate on the intensity at um,k. In particular, if covariate effects are assumed to be
linear, then fl(z(l)

m,k) = βlz
(l)
m,k with parameter βl to be estimated. Alternatively, fl(·) can

also be approximated through a B-spline basis representation with parameter vector γl to be
estimated and we denote with S the index set that refers to all covariates which are modeled
as a smooth function. Finally, we collect all model parameters in the parameter vector θ.
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The parameters of the model defined by (4) and (5) can be estimated by maximizing the
likelihood of the model. Following Wood (2017) the maximum likelihood estimate θ̂ is the
argument which maximizes the penalized log-likelihood

`penal(θ) =
M∑

m=1

Nm∑

k=1

[
ym,k log λm,k − λm,k

]
−

∑

l∈{0}∪S
ρlPr(γl). (6)

Here, Pr are penalties of order r which penalize the squared r-th order differences of neigh-
boring B-spline coefficients. This approach has been proposed by Eilers and Marx (1996) to
penalize equidistant B-spline coefficients in the Euclidean setting. Moreover, ρl are smooth-
ing parameters which control the amount of smoothing of the log-baseline intensity and the
smooth covariate effects, respectively. In order to penalize the coefficients γ0, we construct a
distance matrix Dγ of the B-spline coefficients. For example, a second order penalty is based
on the set of triples

D2 = {(i, k, j) |Dγ(i, j) = 2,Dγ(i, k) = Dγ(k, j) = 1, 1 ≤ i < j ≤ J}.

When considering the toy-example in Figure 3 and following the initial notation, e.g. the
triple (γ1,1, γ(2), γ3,1) ∈ D2. In general, a second order penalty for the coefficients γ0 is given
by

P2(γ0) =
∑

D2

((γ0,i − γ0,k)− (γ0,k − γ0,j)2) = γ>0 K2γ0

with quadratic and positive semi-definite penalty matrix K2 ∈ ZJ×J . The construction of
the penalty matrices for smooth covariate effects occurs in the same fashion, for details see
e.g. Fahrmeir et al. (2007).
The smoothing parameters need to be estimated from the data as well. In practice, we
alternate between estimation of the smoothing parameters and the optimization of the log-
likelihood (6) while assuming the current estimates of the smoothing parameters to be fixed.
In the package geonet, estimation of the smoothing parameters is based on the generalized
Fellner-Schall method which yields a simple update formula of the smoothing parameters in
generalized additive models (Wood and Fasiolo 2017). Since the above model formulation
is in fact a GAM, we can simply adapt this formula to our approach. If θ̂ρ is the current
estimate of the model parameters which have been obtained with smoothing parameters ρ,
an update of the smoothing parameter ρl is

ρnew
l = ρ

tr(K−ρK l)− tr((Z>W (θ̂ρ)Z +Kρ)−1K l)

θ̂
>
ρK lθ̂ρ

. (7)

Here, tr(·) denotes the trace operator and superscript − denotes the generalized inverse of
a matrix. The matrix K l is the penalty matrix for index l filled with zeros such that it fits
the dimensions of θ, and Kρ = ∑

l∈{0}∪S ρlK l. Moreover, Z is the design matrix of the
model and W (θ̂ρ) is a diagonal matrix with entries λm,k and estimated model parameters
θ̂ρ. It is important to note that all these matrices are sparse, i.e. most of the entries are
equal to zero. This gets more important later when we discuss the implementation of the
algorithm. A quantity that is often of interest are the effective degrees of freedom (edf) of a
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model parameter. According to Wood (2017), an estimate of the effective degrees of freedom
of the i-th coefficient θi is the i-th diagonal element of the matrix

F (θ̂) = (Z>W (θ)Z +Kρ)−1Z>W (θ)Z.

Thus, if the first J entries of θ correspond to the vector of coeffiecients γ0, the effective
degrees of freedom of the estimated baseline intensity are edf0 = ∑J

j=1 F ii(θ̂). Note that the
edf of each unpenalized coefficient is equal to one.
Finally, we can estimate the uncertainty of the model parameters, yielding confidence intervals
for covariate effects and the baseline intensity. This is based on the asymptotic posterior
distribution θ̂ a∼ N (θ,V (θ)) of the model parameters, where

V (θ) = (Z>W (θ)Z +Kρ)−1. (8)

is the inverse of the penalized Fisher information. In practice, we make use of the Bayesian
large sample approximation which yields confidence intervals for the parameter estimates θ̂
in terms of the Fisher information V (θ̂) evaluated at the maximum likelihood estimate θ̂.

Implementation
The function intensity_pspline allows estimating the intensity of a point process on a
linear network based on the methodology which we have presented above. The function can
be used by calling

intensity_pspline(
X,
...,
formula = ~1,
delta = "0",
h = "0.5",
r = 2,
scale = NULL,
density = FALSE,
verbose = FALSE,
control = list()

)

Since intensity_pspline is the main routine of the package geonet, we explain it in detail
here. The only argument which the user is required to supply is the point pattern on a
geometric network X, an object of class gnpp. By default, the function fits the intensity
without covariates. A model with covariates can be specified through the formula argument,
in the same manner as in the function gam from the package mgcv (Wood 2017). However, the
only smoothers which the package geonet supports are penalized splines, i.e. the s function
uses by default the argument bs = "ps". The left-hand side of the formula can be left
blank. Otherwise, it is ignored. With the arguments delta and h we can specify the global
knot distance δ and the global bin width h which are used to compute the curve specific
knot distances δm and bin widths hm, respectively, see Schneble and Kauermann (2020). In
general, the knot distance can be supplied as a numeric value or as a quantile of the half of
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all curve lengths. In the latter case, the quantile needs to be specified as a character. For
example, delta = "0.05" sets δ to the 0.05 quantile of the set {dm/2,m = 1, . . . ,M}. By
default, δ = 1

2 min{dm}. The global bin width h can be supplied as a numerical value or
a fraction of δ. In the latter case, the argument needs to be set in quotes. For example,
the default h = "0.5" sets h to h = 0.5δ. The argument r determines the order of the
penalty, which is used for penalizing the coefficients γ0. By default, a second-order penalty is
employed. It is also possible to penalize the first-order differences of the coefficients by setting
r = 1. The scale argument allows scaling internal covariates, details are discussed later in
Section 5. Finally, by setting density = TRUE, the fitted intensity function is scaled such
that it integrates to one, i.e. it can be interpreted as a density function of the point process.
Setting verbose=TRUE prints information with regards to the progress of the intensity fit to
the console, such as the expected remaining computation time. This might be helpful if data
on vast networks are fitted.
A fitted intensity on a geometric network is an object of class gnppfit which has, among
others, the following attributes. The attributes $coefficients and $V are the maximum
likelihood estimates θ̂ and the covariance matrix V (θ̂) of the parameter estimates. Further-
more, the fitting routine intensity_spline returns the specification of the knots ($knots)
and the bins ($bins). There also is a summary method for an object of class gnpp which is
illustrated in the Section 5.
For a first illustration, we fit the Chicago data with the function intensity_pspline when
using its default arguments. Assuming that this point pattern of size n = 116 is the realization
of a point process X , we want to estimate its intensity function ϕX . The resulting intensity
estimate and the data on top are shown in the left panel of Figure 4, which is produced by the
plot.gnppfit method for a fitted point process on a geometric network. Setting the trans
argument of the plot method to "sqrt" shows the intensities on a square root scale.

R> X <- as_gnpp(chicago)
R> fit <- intensity_pspline(X)
R> g <- plot(fit, frame = TRUE, data = TRUE, trans = "sqrt")

4.2. Intensity estimation based on kernel smoothing

Methodology
The current state-of-the-art tools for intensity estimation of a point process, defined on a
linear network, are primarily based on kernel smoothing techniques. However, if the network
geometry is not considered appropriately, intensity estimates which result from kernel smooth-
ing are biased if the actual intensity is uniform. This result was shown by Okabe, Satoh, and
Sugihara (2009) who have proposed two methods that do not suffer from this drawback, see
also Okabe and Sugihara (2012) for more details. Consequently, kernel smoothing on net-
works differs from kernel smoothing in Euclidean spaces. The general idea is to equally split
the kernel mass appropriately when approaching a vertex with a degree of three or more from
one side, which leads to discontinuities of the intensity estimate at the network’s vertices.
Therefore, this method is known as “equal-split discontinuous” method. In a similar manner,
the “equal-split continuous” method adapts the kernels around the vertices such that they
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Figure 4: Penalized spline-based intensity estimate of the Chicago crimes data. Left panel:
Fit without covariates. Right panel: Fit with covariates.

are continuous but still do produce unbiased estimates. One drawback of the “equal-split”
methods is the slow computation time if the bandwidth of the kernel increases, especially
when using a Gaussian kernel. McSwiggan, Baddeley, and Nair (2017) developed a method
that solves a heat equation on the network and which is asymptotically equivalent to the
“equal-split continuous” estimator as proposed by Okabe et al. (2009). In order to find the
optimal bandwidth of the kernel, likelihood cross-validation can be employed, see McSwiggan,
Baddeley, and Nair (2020). An efficient method for intensity estimation on large-scale linear
networks was proposed by Rakshit, Davies, Moradi, McSwiggan, Nair, Mateu, and Baddeley
(2019). The approach builds on two-dimensional kernels and the fast Fourier transform and
the optimal bandwidth is chosen according to Scott’s rule of thumb (Scott 2015).

Implementation
Kernel smoothing methods on linear networks are implemented within the spatstat.linnet
package. The method density.lpp for the generic function density allows the user to
choose between various kernel smoothing algorithms discussed above. The function can be
called via

density.lpp(x, sigma=NULL, ...,
weights=NULL,
distance=c("path", "euclidean"),
continuous=TRUE,
kernel="gaussian").

Here, x is a point pattern on a linear network to be smoothed (an object of class lpp) and
sigma is the standard deviation (bandwidth) of the kernel, which needs to be estimated
from the data. Likelihood cross-validation to find the optimal bandwidth of the kernel is
implemented within the function bw.lppl for methods based on the shortest path distance.
The function bw.scott.iso returns an optimal bandwidth according to Scott’s rule of thumb
for the method based on the Euclidean distance. Similar to kernel smoothing in one dimension,
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different kernel functions such as a Gaussian kernel (default) or an Epanechnikov kernel
(kernel = "epanechnikov") can be used. By default, the heat kernel method developed by
McSwiggan et al. (2017) is used. The two-dimensional kernel method is employed when setting
distance = "euclidean". A comparison of those two kernel smoothing implementations
with an implementation of the penalized spline-based estimator on a linear network has been
evaluated by Schneble and Kauermann (2020) for two simulation scenarios. The results
suggest that if the true intensity is not smooth but has many discontinuities, the penalized
spline-based estimator is superior in terms of the integrated squared error with respect to
the true intensity. Furthermore, we note that intensity estimation with covariates is not
supported by the method density.lpp for point patterns on linear networks.

5. Illustration

5.1. Crimes in a district of Chicago
As a first example, we consider the Chicago crimes network, which we have repeatedly treated
above. In Figure 4 we have shown an intensity fit without covariates where we have used the
default arguments of the fitting routine intensity_pspline. We further illustrate a model
fit with covariates. The package geonet can fit the following internal covariates for every geo-
metric network: "x" (x-coordinate), "y" (y-coordinate) and "dist2V" (distance to the closest
vertex). We fit the intensity of the Chicago crimes data with the covariates mentioned above,
i.e. we set the formula argument to formula = marks + x + y + dist2V. To avoid very
small covariate effects, we further set scale = list(x = 1/1000, y = 1/1000, dist2v =
1/1000) which expresses the linear additive effects of these internal covariates in terms of
per-1000-feet.
A summary of the model fit is shown below. The general form of the summary method for an
object of class gnpp is similar to the summary of a fitted gam object from the mgcv package.
In particular, a table is printed which shows the effects of the parametric coefficients, their
standard errors and p-values. We can see that there is no effect of the x-coordinate, but there
might be an effect of the y-coordinate, i.e. more crimes occur in the northern part of the
network. The right panel of Figure 4 shows the baseline intensity fit. The effective degrees of
freedom of the baseline intensity are equal to 35.5, while the edf of the intensity fitted without
covariates amount to 38.8. Therefore, some of the variability of the true intensity ϕX (·) can
be explained by the covariates included in the above model.

R> X <- as_gnpp(chicago)
R> formula <- ~ marks + x + y + dist2V
R> scale <- list(x = 1/1000, y = 1/1000, dist2V = 1/1000)
R> model_covariates <- intensity_pspline(X, formula = formula, scale = scale)
R> summary(fit)

Intensity estimation on a geometric network in 2 dimensions
with 287 vertices and 452 curve segments.
Log-linear Poisson model fitted with maximum likelihood.
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Global knot distance: 5.394
Global bin width: 2.697

Formula: ~marks + x + y + dist2V

Pparametric coefficients:
Estimate Std. Error z value Pr(>|z|)

marksburglary -1.38629 0.50000 -2.7726 0.005561 **
markscartheft -1.04982 0.43915 -2.3906 0.016823 *
marksdamage 0.55962 0.28030 1.9965 0.045884 *
marksrobbery -1.60944 0.54772 -2.9384 0.003299 **
markstheft 0.64185 0.27625 2.3234 0.020156 *
markstrespass -1.20397 0.46547 -2.5866 0.009694 **
x 0.15837 1.04944 0.1509 0.880047
y 1.70743 1.10215 1.5492 0.121337
dist2V -9.08850 6.79145 -1.3382 0.180822
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effective degrees of freedom of the baseline intensity: 35.515

Number of Fellner-Schall-iterations: 16

In a second step, we increase the global knots distance from the default δ = 1
2 min dm = 5.39

feet to δ = 20 feet. The resulting summary is printed below. We see that the effects of
the type of a crime are the same as before and also, the effective degrees of freedom of
the baseline intensity are almost the same. It appears that especially the effect of the x-
coordinate is significantly different when increasing δ. However, the difference only amounts
to |0.158 − (−0.004)|/1.049 = 0.15 standard deviations since the effect of x is highly non-
significant. For the effects of y and the distance to the nearest vertex, these differences
are only 0.032 and 0.018 standard deviations, respectively. Therefore, the differences are
only minor but the second model needs fewer than 90% computation time due to the lower
number of parameters contained in the model. We treat this trade-off between accuracy and
computation time later in more detail in a simulation study.

R> fit <- intensity_pspline(X, formula = formula, scale = scale, delta = 20)
R> summary(fit)

Intensity estimation on a geometric network in 2 dimensions
with 287 vertices and 452 curve segments.
Log-linear Poisson model fitted with maximum likelihood.

Global knot distance: 20
Global bin width: 10

Formula: ~marks + x + y + dist2V
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Pparametric coefficients:
Estimate Std. Error z value Pr(>|z|)

marksburglary -1.3862944 0.4999972 -2.7726 0.005561 **
markscartheft -1.0498221 0.4391525 -2.3906 0.016823 *
marksdamage 0.5596158 0.2803044 1.9965 0.045884 *
marksrobbery -1.6094379 0.5477195 -2.9384 0.003299 **
markstheft 0.6418539 0.2762516 2.3234 0.020156 *
markstrespass -1.2039728 0.4654720 -2.5866 0.009694 **
x -0.0038448 1.0853283 -0.0035 0.997174
y 1.7427380 1.0971509 1.5884 0.112191
dist2V -8.9663884 6.8073547 -1.3172 0.187784
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effective degrees of freedom of the baseline intensity: 35.485

Number of Fellner-Schall-iterations: 9

5.2. Car crashes in Montgomery County, Maryland
The amount of publicly available datasets which governments provide has tremendously in-
creased during the past years. An example is Montgomery County, located north of Wash-
ington, D.C. in the US-state Maryland (M.D.). The county runs the open data platform
“dataMontgomery” which supplies data related to different areas such as business, educa-
tion, transportation and public safety.3 The latter category comprises a dataset that contains
information about traffic accidents on major streets in Montgomery County since January
2015. As in Schneble and Kauermann (2020) we restrict the data to accidents that have
occurred on a highway (state highway, interstate highway or U.S. highway). The resulting
network of highways builds the geometric network, which we consider in this illustration.
The point pattern which we observe on this network represents traffic collisions. This point
pattern on a geometric network is available as the object montgomery of class gnpp in the
package geonet. The summary output of the montgomery object shows that the underlying
network has a length of 175.419 kilometers and consists of M = 103 curve segments, which
are built through 369 straight line segments in total. Two internal covariates represent the
“type” of the highway (state highway, interstate highway or U.S.-highway) and the “direction”
(south/north, east/west, southeast/northwest, southwest/northeast) of the street. The point
pattern has a size of 14,571 and there is one external covariate that marks the “hour” of the
day of each car crash.

R> summary(montgomery)

Point pattern on a geometric network in 2 dimensions with 73 vertices
and 103 curve segments.
The linear representation of the network has 339 vertices
and 369 straigt line segments.

3https://data.montgomerycountymd.gov/
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Figure 5: Car crashes on the Montgomery highways network.

Total length of the network: 175.419 kilometers
Number of network internal covariates: 2
1) factor variable "type":

state interstate US
304 51 14

2) factor variable "direction":
SN EW SENW SWNE

100 114 106 49
Number of points: 14571
Average intensity: 83.06418 points per kilometer
Number of external covariates: 1
3) numeric variable "hour":

Min. 1st Qu. Median Mean 3rd Qu. Max.
6.00 10.00 14.75 14.08 17.75 21.75

Figure 5 shows the results of the plot method for the object montgomery. The network is
denser in the south at the border to Washington, D.C., i.e. there is more network length
per square kilometer than in the northern part of the network. Therefore, an analysis in the
Euclidean space would not respect that there is more network mass and with the network
approach, we can estimate the intensity in terms of “car crashes per kilometer street”. In
contrast to the Chicago crimes data, the high-intensity regions are not apparent from the
plot of the point pattern since there are just too many traffic accidents plotted in Figure 5.
Therefore, we fit the intensity to the data, at first without covariates.

R> X <- montgomery
R> model <- intensity_pspline(X, delta = 0.05, r = 2)
R> plot(model, frame = TRUE, trans = "log")
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Figure 6: Intensity fit of the Montgomery traffic accidents data when fitted without covariates.

The resulting estimate of the intensity is shown in Figure 6 on a log-scale. We see that
the high-intensity regions are mainly located on highways that run away from Washington,
D.C. Moreover, the fitted intensity is much less smooth than the intensity fit of the Chicago
crimes data. The smoothness can be quantified via the effective degrees of freedom of the
penalized spline smoother, amounting to 1311. Note that the B-spline basis representation
of the network involves 3,477 parameters which would be the degrees of freedom without
penalization.

R> summary(model)

Intensity estimation on a geometric network in 2 dimensions
with 73 vertices and 103 curve segments.
Log-linear Poisson model fitted with maximum likelihood.

Global knot distance: 0.05
Global bin width: 0.025

Formula: ~1

Model has no parametric coefficients.

Effective degrees of freedom of the baseline intensity: 1311.009

Number of Fellner-Schall-iterations: 18

We fit a model with the covariates supplied along with the montgomery object as a next
step. These are the internal factor variables type and direction as well as the external,
numeric variable hour. The latter is included as a smooth effect using mgcv’s s function.
The following summary output of the model fit shows the estimates of the linear effects.
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R> formula <- ~ s(hour) + type + direction
R> model_covariates <- intensity_pspline(X, formula = formula,
+ delta = 0.05, r = 2)
R> summary(model_covariates)

Intensity estimation on a geometric network in 2 dimensions
with 73 vertices and 103 curve segments.
Log-linear Poisson model fitted with maximum likelihood.

Global knot distance: 0.05
Global bin width: 0.025

Formula: ~s(hour) + type + direction

Pparametric coefficients:
Estimate Std. Error z value Pr(>|z|)

typeinterstate -1.671148 0.197286 -8.4707 < 2e-16 ***
typeUS 0.251985 0.226239 1.1138 0.26537
directionEW -0.137999 0.112644 -1.2251 0.22054
directionSENW -0.078722 0.120030 -0.6559 0.51192
directionSWNE -0.329414 0.168017 -1.9606 0.04993 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effective degrees of freedom of the baseline intensity: 1270.611

Number of Fellner-Schall-iterations: 25

It can be seen that the risk of a car crash is significantly lower on an interstate highway when
compared to a state highway. To quantify, the relative risk of a car accident decreases by
factor exp(−1.671) = 0.188. This finding can be explained by the fact that most interstate
highways have separate lanes for each driving direction and the intersections with other streets
are organized such that no cars are running into each other. The risk of an accident seems to
be slightly higher on a U.S. highway, but the effect is not significant. Highways that run from
southwest to northeast seem to exhibit the lowest risk of accidents. Those streets mainly run
far away from Washington, D.C., so that we can expect much less traffic there. The baseline
intensity is shown in Figure 7 on a log-scale. Finally, Figure 8 shows the smooth effect of
the hour of the day. It can be seen that the risk of an accident rises from 6 am until 9 am
by factor exp(0.25 − (−0.6)) = 2.34, drops for the time around noon, and rises again to the
highest level at 4 pm.

6. Relation to the package spatstat
In the previous sections, we have shown that some objects that belong to a spatstat specific
class can be transmuted to the respective objects of the geonet classes. In particular, those
are linear networks (objects of class linnet) and point pattern on linear networks (objects
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Figure 7: Baseline intensity fit of the Montgomery traffic accidents data when fitted with
covariates.
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of class lpp). We now conduct a more detailed comparison of the two packages, which
also involves the difference between representing a spatial network as a linear network or a
geometric network. First, we note that also the package spatstat is currently restricted to
q = 2, referring e.g. to street networks with vi representing location coordinates.
The package geonet contains the method as.linnet.gn for transmuting objects of class gn
to an object of class linnet. However, we see that if we transmute an object of class linnet
to an object of class gn and back to a linear network, the linear network representation has
changed in 18 components.

R> L <- as.linnet(chicago)
R> L2 <- as.linnet(as_gn(chicago))
R> length(all.equal(L, L2))

[1] 18

This finding is usually caused by the renumbering of the line segment identifiers when trans-
muting from one class representation to another. In order to make the transformation one-to-
one, the method as_gn.linnet has an additional argument spatstat. Setting this argument
to TRUE will make the transformation one-to-one.

R> L3 <- as.linnet(as_gn(L, spatstat = TRUE))
R> all.equal(L, L3)

[1] TRUE

Moreover, the plot method for an object of class linnet makes use of base R’s plotting
principles. In comparison to graphics created with the package ggplot as in the package
geonet, this only allows for a limited scope of operation when plotting point patterns and
intensity estimates on networks.
The package geonet further contains the wrapper function intensity_kernel(X, kernel =
"heat") which allows to apply the kernel smoothing algorithms discussed above to a point
pattern on a geometric network X. By default, the kernel smoothing technique developed
by McSwiggan et al. (2017) which is based on the heat kernel (kernel = "heat") is em-
ployed. Alternatively, by specifying the argument kernel = "Euclidean" the adaptive two-
dimensional kernel smoother as proposed by Rakshit et al. (2019) is used. In both cases,
estimation of the optimal bandwidth is carried out automatically with the respective opti-
mization routines.
The package spatstat.linnet allows generating random point patterns x according to an in-
tensity which is either specified as a function on a linear network or which results from an
intensity fit using the method density.lpp. The functions runiflpp and rlpp return a point
pattern of a specified sample size n, where the former generates random points according to
a uniform distribution on a linear network and the latter generates random points according
to a specified probability density which is normalized if an intensity is supplied. Moreover,
the function rpoislpp generates a realization of a Poisson process from a specified intensity
function. The package geonet has similar functions which allow the user to simulate from an
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Figure 9: Representation of the intensity fitted on the m-th network segment with length
dm = 10 on the real numbers.

intensity estimate, where the logarithm of the intensity has a B-spline basis representation.
Details are supplied in the following section.

7. Simulation of point processes on a geometric network
First, the function runifgn(n, G) returns a point pattern of size n which is drawn from a
uniform distribution on the geometric network G. Note that for a uniform intensity it holds
that γj ≡ γ for j = 1, . . . , J . Second, we exploit the representation of the log-baseline intensity
as a linear combination of linear B-splines (3) in order to simulate a point pattern from a
fitted intensity. Therefore, we define for m = 1, . . . ,M a function ϕm on the real numbers
which has the same image set as the function ϕX restricted to the curve em. That is, we define
the function ϕm : [0, dm]→ [0,∞) on the real numbers which satisfies ϕX (em) = ϕm([0, dm]).
Furthermore, we denote with τm,k the respective projection of τm,k to the interval [0, dm]. In
particular, it holds that dG(τm,k, τm,k+1) = τm,k+1 − τm,k, i.e. the shortest path distance on
the network segment matches the Euclidean distance in the one dimensional space.
Figure 9 exemplifies the situation on the m-th segment. The intensity on em which has
endpoints vi and vj is shaped by the parameters γm,0, γm,1, . . . , γm,Jm , γm,Jm+1, where we
define with γm,0 = γ(i) and γm,Jm+1 = γ(j) the coefficients of the B-splines B(i) and B(j). At
the location of the k-th knot τm,k, the intensity has value ϕX(τm,k) = exp(γm,k−1). Moreover,
the density between two adjacent knots τm,k and τm,k+1 is the intensity normalized by the
integral

cm,k =
∫

[τm,k,τm,k+1]
ϕX (u) du =

∫ τm,k+1

τm,k

ϕm(u) du

We now define with Zm a random variable which is supported on [0, dm] and has a density
which is proportional to ϕm(·). Putting the above arguments together, the conditional density
of Zm | Zm ∈ [τm,k, τm,k+1] is given by
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Algorithm 1: Simulating n points from a specified density.
Data: The sample size n and an intensity function ϕX , where νX = logϕX has a

B-spline basis representation.
Result: Point pattern of size n on a geometric network.
begin

Compute the integrals cm,k for m = 1, . . . ,M and k = 1, . . . , Im − 1;
Sample n points from a discrete distribution with probabilities proportional to cm,k;
for m ∈ 1, . . . ,M do

for k ∈ 1, . . . , Im−1 do
If nm,k ∈ N0 points are sampled on the interval [τm,k, τm,k+1], simulate vector
of nm,k independent U(0, 1) random variables um,k;
xm,k = F−1

m,k(um,k);
Project xm,k back to the geometric network;

end
end

end

fm,k(z) = f(z | Zm ∈ [τm,k, τm,k+1]) = 1
cm,k

exp
[
γm,k−1 +

(
γm,k − γm,k−1

δm

)
(z − (k − 1)δm)

]

= 1
cm,k

exp
[
kγm,k−1 + γm,k(1− k) +

(
γm,k − γm,k−1

δm

)
z

]

for z ∈ [τm,k, τm,k+1]. Thus, the conditional distribution function of Zm results to

Fm,k(z) =
∫ z

τm,k

fm,k(y | Zm ∈ [τm,k, τm,k+1]) dy

= δm exp(kγm,k−1 + γm,k(1− k))
cm,k(γm,k − γm,k−1) ·

[
exp

(
γm,k − γm,k−1

δm
z

)
− exp

(
γm,k − γm,k−1

δm
τm,k

)]

for z ∈ [τm,k, τm,k+1]. Finally, the inverse of the conditional distribution function, i.e. the
conditional quantile function, is for u ∈ [0, 1] given by

F−1
m,k(u) = log

[
ucm,k(γm,k − γm,k)

δm exp(kγm,k−1 + γm,k(1− k)) + exp
(
γm,k − γm,k−1

δm
τm,k

)]
· δm
γm,k − γm,k−1

.

The function rgnpp(n, fit) returns a point pattern of size n that is simulated from the
fitted intensity fit, which needs to be supplied as an object of class gnppfit. The routine
is based on the inversion method (Devroye 1986) and follows pseudo algorithm 1. Moreover,
the function rpoisgnpp(fit) returns a realization of a Poisson process which is generated
according to the object fit. The routine follows algorithm 2.
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Algorithm 2: Simulating a Poisson process from an intensity fit.
Data: An intensity function ϕX , where νX = logϕX has a B-spline basis representation.
Result: A realization of a Poisson process on a geometric network.
begin

Compute the integrals cm,k for m = 1, . . . ,M and k = 1, . . . , Im − 1;
for m ∈ 1, . . . ,M do

for k ∈ 1, . . . , Im−1 do
Sample nm,k ∈ N0 points from a Poisson distribution with parameter λ = cm,k;
Simulate vector of nm,k independent U(0, 1) random variables um,k;
xm,k = F−1

m,k(um,k);
Project xm,k back to the geometric network;

end
end

end

8. Computational aspects
In this section, we highlight some computational aspects of our implementation. Therefore,
we first vary the arguments delta and h when fitting the model to simulated data on the
Chicago network. The model specifications and the respective results are summarized in
Table 1. The first two columns define the varying arguments delta and h. The following four
columns show the resulting global knot distance δ and the global bin width h along with the
number of parameters J and the total number of bins N . The next two rows indicate the
memory (in megabyte) which is used to store the design matrix Z and the penalty matrix
K if a non-sparse (memNS) or a sparse (memS) matrix representation is used, respectively.
Note that both matrices do not depend on the data if a model without external covariates is
fitted. We see that the sparse matrix representation that is employed by the geonet package
reduces the memory that is needed to store the huge matrices Z and K by more than 99%
when compared to storing them as an object of class matrix, which lessens the computation
time and allows to fit point processes on much larger networks.
Moreover, we generate point patterns of size n = 200 using the function rgnpp, where the true
intensity ϕX is assumed to be proportional to the fitted intensity shown in the left panel of
Figure 4. For each setting, we repeat the data generating process and the intensity fit to the
simulated data using the function intensity_pspline R = 100 times. We compare in the last
two columns of Table 1 the settings in terms of the mean computation time in seconds (MCT)
and the mean integrated squared error (MISE). As in Schneble and Kauermann (2020), we
define the integrated squared error (ISE) of an estimate ϕ̂X (·) for the true intensity ϕX (·) as

ISE(ϕ̂X ) = 1
n2

∫

G
(ϕX (u)− ϕ̂X (u))2 du. (9)

The constant n−2 works as a normalization constant such that (9) results as the ISE in
terms of the density fX (·) = ϕX (·)/n, thus generally allowing to compare the intensity fit for
different sample sizes. The MISE is defined to be the mean of the ISE over R replications.
We see that the computation time increases with decreasing δ, which is apparent since this
choice determines the number of parameters. However, there is no appreciable effect on the
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delta h δ h J N memNS memS MCT MISE·106

"0.2" "0.5" 20.77 10.38 1396 3018 47.0 0.18 6.6 5.25
"0.2" "0.1" 20.77 2.08 1396 14997 174.6 0.46 5.5 5.41
"0.1" "0.5" 14.72 7.36 1985 4230 94.1 0.25 13.5 5.16
"0.1" "0.1" 14.72 1.47 1698 21133 350.1 0.64 14.4 5.37
"0.05" "0.5" 12.04 6.02 2442 5161 141.7 0.30 17.1 5.47
"0.05" "0.1" 12.04 1.20 2442 25867 527.4 0.78 18.4 5.60
"0.025" "0.5" 8.21 4.11 3643 7589 312.2 0.44 45.6 5.14
"0.025" "0.1" 6.69 0.67 3643 37920 1155.2 1.13 47.9 5.45

"0" "0.5" 5.39 2.69 5582 11532 728.8 0.65 119.8 5.16
"0" "0.1" 5.39 0.54 5582 57755 2697.4 1.71 119.4 5.52

Table 1: Memory required (in megabyte) to store matrices Z andK when using a non-sparse
(memNS) or a sparse (memS) matrix representation, mean computation time in seconds
(MCT) and mean integrated squared difference (MISE, multiplied by factor 106) for different
arguments of delta and h of the intensity fitting routine averaged over R = 100 simulations.
The second last row corresponds to the default arguments.

MISE that can be attributed to the specification of delta and h. This result suggests that
the computation time can be reduced without losing the accuracy of the estimates.
We finally discuss some details concerning the implementation of intensity_pspline in R.
The sequence of knots on each curve of the geometric network and the bins are constructed
as described above in order to create the design matrix Z. The first J columns of this
matrix refer to the linear B-splines defined on the network. If there appear linear covariates
specified in the formula, the respective columns of the design matrix are computed using
the model.matrix function from the package stats and the design matrix for the smooth
components are computed using the function smooth.construct.ps.smooth.spec from the
package mgcv. To ensure the identifiability of smooth covariate effects, the respective columns
of the design matrix are centered around zero. The columns of the design matrix that refer to
the linear B-spline representation of the log-baseline intensity are not centered, thus including
the intercept. If there are external covariates, the design matrix will be repeated for every
unique combination of external covariates with the respective values of the external covariates.
The construction of the penalty matrix K follows the methodology developed above. Both
matrices, Z andK, are stored as sparse matrices since most of their entries are equal to zero.
When all matrices have been stored in the memory, the model parameters θ are estimated
with a nested iterative algorithm. In the outer loop, the smoothing parameters are updated
as in (7). Since the dimension of the parameter vector θ can easily be in the range of several
thousands, the update formula requires to compute the generalized inverse of a large matrix
which is very expensive in terms of computation time. However, since we merely need the
trace of the matrix (Kρ)−K, we can use the fact that

tr((Kρ)−K l) = 1
ρl
rk(K l). (10)

Therefore, we only need to compute the rank ofK l which needs computation time in the order
of O(J2) instead of O(J3) for the generalized inverse if γ0 ∈ RJ (Trefethen and Bau III 1997).
By exploiting the relation (10), updating the smoothing parameters does not significantly
contribute to the overall computation time of the algorithm.
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Algorithm 3: Fisher-scoring algorithm.
Data: Design Matrix Z, penalty matrix K, smoothing parameters ρ, offsets hm for

m = 1, . . . ,M and threshold εθ.
Result: Maximum likelihood estimate for a given vector of smoothing parameters.
begin

θ̂
(0) = 0;

∆θ =∞;
k = 0;
while ∆θ > εθ do

θ̂
(k+1) = θ̂

(k) + V (θ̂(k)) · s(θ̂(k));
∆θ = ||θ̂(k+1) − θ̂(k)||/||θ̂(k)||;
k = k + 1;

end
end

In the inner loop, the penalized log-likelihood (6) for given smoothing parameters is maximized
by employing a penalized version of the Fisher-scoring algorithm. This is equivalent to the
penalized iterative weighted least squares (PIRLS) algorithm which the gam routine of the
package mgcv makes use of (Wood 2017). The Fisher-scoring algorithm proceeds as shown
in Algorithm 3 and makes use of the (penalized) score function s(·) which is defined by
s(θ) = ∂

∂θ `penal(θ).
Algorithm 3 repeatedly requires the computation of matrix products and inverse matrices.
The dimension of these matrices is usually enormous. Therefore, we store all matrices in a
sparse format making use of the Matrix package. As shown above, this reduces the memory
needed but also lessens the computation time of basic matrix operations significantly since
most of the entries of the matrices Z,W andK are equal to zero. For the design matrix, this
holds since most of the columns refer to the linear B-spline representation of the log-baseline
intensity. For this reason, we do not center the respective columns of Z and instead include
the intercept in the log-baseline intensity.

9. Discussion
The R package geonet is designed for intensity estimation of point processes on geomet-
ric networks, which we understand as an advanced representation of linear networks. The
methodology uses penalized spline smoothing employed in connection with the comprehensive
class of generalized additive models. Our package is, for the most part, compatible with the
current state-of-the-art software spatstat, which builds on kernel smoothing to estimate the
intensity of point processes on linear networks.
Our methodology easily allows to include covariates while estimating the baseline intensity of a
point process. We see this as the biggest advantage over the comparable method density.lpp
from the package spatstat. Nonetheless, Poisson processes with covariates can be fitted with
spatstat, but the baseline intensity needs to be supplied as an offset, i.e. simultaneous esti-
mation is not possible. Moreover, the methodology, which is the basis of our software contri-
bution, builds on a well-developed field in statistics. Another benefit of the package geonet
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is its integration into the tidyverse, a bundle of R packages that share a common design and
grammar. In particular, the package dplyr enables convenient data handling and our plot
methods make use of the package ggplot2, which allows to create advanced plots compared to
base R plots. However, there are also drawbacks that our method and its implementation in
R inherit. Modeling the baseline intensity of a large network through B-splines requires many
parameters in the model. In connection with the binning of the data, model matrices are huge
and even though we choose a sparse matrix representation, this will need more resources in
terms of computation time and required memory when compared to a kernel-based approach.
We pursue the following extensions of our package. First, the methodology which we treated
in Section 4.1 easily allows fitting the intensity of a point process on a network embedded
in higher dimensional spaces. In contrast to smoothing with penalized splines in higher-
dimensional Euclidean spaces, this does not generally increase the number of parameters and,
therefore, the complexity of the model. Networks that are embedded in three-dimensional
spaces can be plotted with the plotly package. However, networks in more than two dimen-
sions are rarely available and also, the spatstat package is only capable of representing linear
networks in the plane. Second, instead of representing a curve segment as the alignment of
many straight line segments as in the current version of the geonet package, one could repre-
sent such a connection between two vertices as a parametric differentiable curve as generally
proposed by Schneble and Kauermann (2020). Note that the current implementation allows
an arbitrary approximation of such a curve, requiring much more memory with increasing
precision. Third, we have considered networks so far as being undirected in general. In real-
ity, most of the networks do have a direction. For example, car crashes can occur in either
driving direction or a one-way street. In addition to these proposed extensions, which require
significant changes within the package’s functionality and are sent to CRAN, we release minor
changes to the package via GitHub.

References

Ang QW, Baddeley A, Nair G (2012). “Geometrically corrected second order analysis of
events on a linear network, with applications to ecology and criminology.” Scandinavian
Journal of Statistics, 39(4), 591–617.

Baddeley A, Rubak E, Turner R (2015). Spatial point patterns: Methodology and applications
with R. CRC press.

Bivand RS, Pebesma E, Gomez-Rubio V (2013). Applied spatial data analysis with R, Second
edition. Springer, NY. URL https://asdar-book.org/.

De Boor C (1978). A practical guide to splines, volume 27. Springer, New York, NY.

Devroye L (1986). Non-Uniform Random Variate Generation, volume 1. Springer, New York,
NY.

Eilers PH, Marx BD (1996). “Flexible smoothing with B-splines and penalties.” Statistical
science, 11(2), 89–121.

Fahrmeir L, Kneib T, Lang S, Marx B (2007). Regression. Springer.

92



Marc Schneble, Göran Kauermann 29

Hastie T, Tibshirani R (1986). “Generalized Additive Models.” Statistical Science, 1(3), 297
– 310.

Kolaczyk ED, Csárdi G (2014). Statistical analysis of network data with R, volume 65.
Springer.

Lovelace R, Ellison R (2018). “stplanr: A Package for Transport Planning.” The R Journal,
10(2). URL https://doi.org/10.32614/RJ-2018-053.

McSwiggan G, Baddeley A, Nair G (2017). “Kernel density estimation on a linear network.”
Scandinavian Journal of Statistics, 44(2), 324–345.

McSwiggan G, Baddeley A, Nair G (2020). “Estimation of relative risk for events on a linear
network.” Statistics and Computing, 30(2), 469–484.

Okabe A, Satoh T, Sugihara K (2009). “A kernel density estimation method for networks,
its computational method and a GIS-based tool.” International Journal of Geographical
Information Science, 23(1), 7–32.

Okabe A, Sugihara K (2012). Spatial analysis along networks: Statistical and computational
methods. John Wiley & Sons.

Pebesma E (2018). “Simple Features for R: Standardized Support for Spatial Vector Data.”
The R Journal, 10(1), 439–446. doi:10.32614/RJ-2018-009. URL https://doi.org/
10.32614/RJ-2018-009.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rakshit S, Davies T, Moradi MM, McSwiggan G, Nair G, Mateu J, Baddeley A (2019).
“Fast Kernel Smoothing of Point Patterns on a Large Network using Two-dimensional
Convolution.” International Statistical Review, 87(3), 531–556.

Ruppert D, Wand MP, Carroll RJ (2003). Semiparametric regression. 12. Cambridge Uni-
versity Press.

Schneble M, Kauermann G (2020). “Intensity Estimation on Geometric Networks with Pe-
nalized Splines.” arXiv preprint arXiv:2002.10270.

Scott DW (2015). Multivariate density estimation: theory, practice, and visualization. John
Wiley & Sons.

Trefethen LN, Bau III D (1997). Numerical linear algebra, volume 50. Siam.

Ver Hoef J, Peterson E, Clifford D, Shah R (2014). “SSN: An R package for spatial statistical
modeling on stream networks.” Journal of Statistical Software, 56(3), 1–45.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org.

Wickham H, François R, Henry L, Müller K (2021). dplyr: A Grammar of Data Manipulation.
R package version 1.0.6, URL https://CRAN.R-project.org/package=dplyr.

93



30 The R package geonet

Wood SN (2017). Generalized additive models: An introduction with R. CRC press.

Wood SN, Fasiolo M (2017). “A generalized Fellner-Schall method for smoothing parameter
optimization with application to Tweedie location, scale and shape models.” Biometrics,
73(4), 1071–1081.

94



Chapter 4

Statistical modeling of on-street
parking lot occupancy in smart cities

Contributing Article Schneble, M., Kauermann, G. (2021). Statistical modeling of on-street
parking lot occupancy in smart cities. arXiv preprint arXiv:2106.06197

Code and data https://github.com/MarcSchneble/OnStreetParking

Author Contributions The idea of modeling the occupancy of on-street parking lots with semi-
Markov processes stems fromMarc Schneble. He also proposed to compute the interval transition
probabilities by employing the (inverse) Laplace transform. Moreover, Marc Schneble formulated
the time to event model to estimate the transition intensities of the semi-Markov model. Göran
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Abstract

Many studies suggest that searching for parking is associated with signif-
icant direct and indirect costs. Therefore, it is appealing to reduce the time
which car drivers spend on finding an available parking lot, especially in urban
areas where the space for all road users is limited. The prediction of on-street
parking lot occupancy can provide drivers a guidance where clear parking lots
are likely to be found. This field of research has gained more and more atten-
tion in the last decade through the increasing availability of real-time parking
lot occupancy data. In this paper, we pursue a statistical approach for the
prediction of parking lot occupancy, where we make use of time to event mod-
els and semi-Markov process theory. The latter involves the employment of
Laplace transformations as well as their inversion which is an ambitious nu-
merical task. We apply our methodology to data from the City of Melbourne
in Australia. Our main result is that the semi-Markov model outperforms a
Markov model in terms of both true negative rate and true positive rate while
this is essentially achieved by respecting the current duration which a parking
lot already sojourns in its initial state.

Keywords: (Inverse) Laplace transform; predicting parking lot occupancy; semi-
Markov process; time to event analysis
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1 Introduction

Finding a clear parking lot in the center of a metropolitan region is usually very
time-consuming and hence an expensive affair. A recent study that estimates the
“economic and non-economic impact of parking pain” is Cookson and Pishue (2017).
The study is mainly concerned with 10 major cities in each, the United States,
the United Kingdom and Germany, respectively, and states that the average annual
search time for parking ranges from 35 to 107 hours. This induces direct and indirect
costs of up to 2,243 US-Dollars per year on the individual basis. The economic costs
comprise the costs for fuel and opportunity costs of wasted time whereupon the non-
economic costs are, among other things, related to higher stress levels. Other studies
measured the share of traffic cruising for parking and quantified the average duration
until a parking lot is found (e.g. Shoup, 2017 or Cao et al., 2017). In Hampshire
and Shoup (2018), the authors compare the results of 22 of these studies. The
share of traffic which cruises in order to find parking ranges from 8% to 74%, where
the percentages depend heavily on the location and the time of the day. However,
most of the studies suffer from a selection bias as they are oftentimes focused on
regions where the demand for parking is generally very high. In any case, the search
for parking enhances traffic congestion which itself causes an increasing number of
accidents, air pollution, noise, etc. (Goodwin, 2004).

Car drivers could reduce all the costs and harms mentioned above if they would
know ahead of time where the chance of finding a free parking lot is greatest. By
the use of wireless sensor technologies (e.g. Lee et al., 2008), so called “smart cities”
(Lin et al., 2017) are able to collect information regarding parking lot occupancy in
real time. This information can be supplied to the public via smartphone apps or
a direct gateway to the car. In general, one can either measure the number of free
parking lots currently available in a predefined area, e.g. in the parking garage of a
mall, or one can measure the occupancy of each single parking lot, e.g. for on-street
parking. In this paper, we focus on the latter. A non-exclusive list of cities which
already have implemented public accessible on-street parking sensors comprises San
Francisco, California (Saharan et al., 2020), Santander, Spain (Cheng et al., 2015)
and Melbourne, Australia (City of Melbourne, 2021). A summary of smart parking
city projects around the world is provided by Lin et al. (2017).

For both off-street and on-street parking, various methodologies have been devel-
oped which aim at the prediction of parking lot occupancy by leveraging the data
collected by smart cities. Real time parking data from San Francisco are employed
by Rajabioun and Ioannou (2015) in order to predict the spatio-temporal pattern
of parking availability via a multivariate autoregressive model. Neural networks for

2
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parking availability prediction are used by Zheng et al. (2015) and Vlahogianni et al.
(2016). The former paper defines a set of previous observations, the calendar time
and the day of the week as input variables. Regression trees and support vector
regression are used as comparative methods. The latter paper makes use of a simple
neural network model for time series prediction with a specified number of lagged
parking occupancy rates and with application to data from the city of Santander. An
extension of a parking prediction model to an online parking guidance system was
designed by Liu et al. (2018). Their model can also handle multiple users looking
simultaneously for a free parking lot. The availability of parking is modeled via an
autoregressive model and the recommended parking lot is a linear function of both
driving cost and walking cost. Deep learning with recurrent neural networks are
utilized by Camero et al. (2018) to predict occupancy rates of car parks in Birm-
ingham. They compare their results in terms of mean absolute error with already
existing prediction techniques on the same data set. Among others, a time series
approach lead to higher prediction accuracy.

A more statistical approach to predict off-street parking occupancy was outlined
first in Caliskan et al. (2007) and revisited by Klappenecker et al. (2014). Both
papers model each car park as a queue which is described by a continuous time
Markov process, i.e. the duration times in each state are assumed to be exponentially
distributed. In particular, the transition matrix is dependent on two parameters,
the arrival rate and the parking rate which are both assumed to be constant over
time. Moreover, in both papers the model is evaluated only with simulated data
which does not answer the question of whether the model is actually able to reliably
predict parking lot availability. In a similar manner, Monteiro and Ioannou (2018)
propose to model the arrival and the departure rate at on-street parking lots via
non-homogeneous Poisson processes.

In this paper, we follow up the idea of modeling parking lot occupancy as a
stochastic process. Since we concern ourselves with on-street parking only, we model
each parking lot as a two-state stochastic process. As it turns out, semi-Markov
processes (Pyke, 1961), which allow non-exponentially distributed duration times, are
an appropriate class of stochastic processes for our study. These kinds of processes
have wide-ranging applications, e.g. in production systems and maintenance systems
where the time spend in an operational state is of interest (Limnios and Oprisan,
2012). In order to estimate the transition intensities of the semi-Markov process
we employ time to event models which are essentially used in the epidemiological
field (see e.g. Klein and Moeschberger, 2006 and Kalbfleisch and Prentice, 2011).
We thereby respect the spatial dependence of nearby parking lots as well as further
unobserved parking lot specific heterogeneity by including random effects in the
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Figure 1: Location of on-street parking lots with and without in-ground sensors in
the city center of Melbourne, Australia.

model.
The remainder of this paper is organized as follows. In Section 2 we visualize

the data from the City of Melbourne which we use for our analyses and already
provide some descriptive statistics. In Section 3 we introduce some notation and
state the problem that we tackle in this paper. Sections 4 and 5 are concerned with
the methodology involving semi-Markov processes and time to event analysis. The
results when applying our methodology to the Melbourne parking data are presented
in Section 6. Section 7 concludes the paper while also giving an outlook on potential
extensions of our work.

2 Data

We apply the model which we develop in this paper to on-street parking lot data from
the City of Melbourne, Australia. The data originate from the year 2019 and are
provided through the open data platform City of Melbourne (2021). This database is
filled by in-ground sensors which are installed underneath around 5,000 out of more
than 20,000 on-street parking lots in the city center of Melbourne. Figure 1 shows
the location of these parking lots and we see that most of the sensors are located
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Start End Duration (minutes) State Marker Side of street

2019-04-30 08:24:11 2019-04-30 08:29:31 5.33 1 1155W west
2019-04-30 08:29:31 2019-04-30 08:34:54 5.38 0 1155W west
2019-04-30 08:34:54 2019-04-30 08:37:22 2.47 1 1155W west

...
...

...
...

...
...

2019-06-07 08:53:44 2019-06-07 08:54:27 0.72 0 C1170 central
2019-06-07 08:54:27 2019-06-07 08:55:21 0.90 1 C1170 central
2019-06-07 09:15:11 2019-06-07 09:20:40 5.48 1 C1170 central
2019-06-07 09:20:40 2019-06-07 09:55:30 34.83 0 C1170 central

Table 1: Structure of the preprocessed on-street parking lot data.

in the central business district (CBD) of Melbourne.1 The basic structure of the
already preprocessed data is exemplified in Table 1, where every row matches to a
duration in either state 0 (clear) or 1 (occupied) that is specified to the second. The
first three rows of Table 1 correspond to consecutive events on the same parking lot,
which can be identified through a unique marker. However, the last four rows show
that the data is not complete, i.e. there are time intervals in which the sensor was
either disabled or it just malfunctioned. Therefore, we advocate that these data are
missing completely at random (Heitjan and Basu, 1996), i.e. not including them in
the analyses does not lead to biased estimates. In other words, the available data
can be considered as a random sample of the complete data. Altogether, the dataset
for the year 2019 consists of more than 30 million observations in both states 0 and
1.

Figure 2 shows parking lots in the CBD along with their average time being clear
(state 0, left panel) or occupied (state 1, right panel), where we only considered
parking events which started after 8 am and terminated before 8 pm on each day of
the week. We see that parking lots around shopping malls in the center of the map
tend to be unoccupied only for several minutes, whereas parking lots in the north-
western part of the map extract are usually available for more than 30 minutes before
they get occupied again. Here, the parking duration is usually more than one hour
compared with usually less than 30 minutes in the center of the map extract. Note
that the duration of parking is also affected by several parking restrictions which
might differ even along the same street section.

Looking very precisely at the plots in Figure 2 it is already evident that the
duration in both states 0 and 1 depends on the relative location of the parking lot
on the street. In order to quantify this we show in Figure 3 Kaplan-Meier estimators

1All maps in this paper are created using the R package Kahle and Wickham (2013).
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Figure 2: Average duration of parking events in the CBD of Melbourne.

(Klein and Moeschberger, 2006) of the duration in both states 0 and 1, restricted to
one specific street segment which is highlighted as thicker lines in Figure 2 (Lonsdale
Street between Russel Street and Exhibition Street). We find that parking lots which
are located in the center of this street segment, i.e. in between the two lanes, exhibit
the longest median time being occupied. Furthermore, especially the Kaplan-Meier
plot for state 1 suggests the duration times being not exponentially distributed. This
already hints at the necessity of employing a model which is capable of capturing
also non-exponential duration times.

3 Problem and notation

We consider a set of on-street parking lots, indexed by i = 1, . . . , N , which are
distributed along a network of streets, typically in the center of an urban area. A
parking lot can be either clear or occupied which is why we model each parking lot
as a continuous time two-state stochastic process X(i) with state space S = {0, 1}.
In particular, X

(i)
t = 0 if parking lot i is unoccupied at time point t and X

(i)
t = 1

otherwise. We assume knowledge of the process X(i) from a time point tp < 0 in the
past until the present moment t = 0, where we additionally observe K covariates
z

(i)
t ∈ RK with t ∈ [tp, 0] and i = 1, . . . , N . Parking lots are located on a street

network G which is why we consider a distance measure taking the geometry of this
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Figure 3: Kaplan Meier estimators for durations in Lonsdale Street between Russel
Street and Exhibition Street.

network into account (Baddeley et al., 2015). Defining with si ∈ G the location of
the i-th parking lot we obtain with dG(si1 , si2) the (street-)network-based distance
between the two parking lots indexed by i1 and i2, that is the driving distance
between si1 and si2 with respect to G. For simplicity we assume symmetry, i.e.
one-way streets are ignored for now.

All available information from tp up to the present moment t = 0 is formally

contained in F = σ(X
(i)
t , z

(i)
t ; t ∈ [tp, 0], i = 1, . . . , N), where F denotes the observed

history of the processes related to parking lot occupancy and covariate information
including the present moment. Our goal is to predict the probability that a parking
lot is unoccupied at a future time point tf > 0. Since X

(i)
0 is included in the history

F , this probability is given by

P(X
(i)
tf

= 0 | F) = P
(i)
00 (tf ) · 1{0}(X(i)

0 ) + P
(i)
10 (tf ) · 1{1}(X(i)

0 ),

where

P
(i)
jk (tf ) = P(X

(i)
tf

= k | F , X(i)
0 = j), j, k = 0, 1, (1)

are transition probabilites to be determined. In order to predict (1), we first need to
charaterize the stochastic processes X(i) in more depth. Therefore, we denote with
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D
(i)
j,t the random duration time that parking lot i remains in state j ∈ S with index

t indicating some time point. Furthermore, we define with

λ
(i)
j,t(d | z(i)

t ) = lim
∆d↓0

P(d ≤ D
(i)
j,t < d+ ∆d | D(i)

j,t ≥ d, z
(i)
t )

∆d
(2)

the transition intensity from state j to state 1−j depending on the current duration d
in state j and for time point t. Note that in the context of time to event analysis, (2)
is usually denoted as the hazard rate and can thus be interpreted as the instantaneous
rate at which a parking lot is changing its state. For fixed t we obtain the relation
between the hazard function and the distribution function of the duration D

(i)
j,t (see

e.g. Kalbfleisch and Prentice, 2011)

P(D
(i)
j,t ≤ d) = 1− exp

(
−
∫ d

0

λ
(i)
j,t(x | z(i)

t ) dx

)
, (3)

where the integral in (3) represents the cumulative hazard for duration d. It follows
immediately that constant transition intensities imply exponentially distributed du-
ration times D, i.e. the memorylessness property P(D > d+ s | D > d) = P(D > s)
holds for s, d > 0. Allowing the transition intensities λ(·) to also depend on the
duration time d in the current state leads to non-exponentially distributed duration
times in general. We derive in the next section the transition probabilities (1) for
the above defined process.

4 Prediction of transition probabilities

4.1 Transition probabilities in semi-Markov processes

Though our process has just two states, we provide a general description with mul-
tiple states here. We will see that this is advantageous as it will allow us to in-
corporate information about the duration from the most previous change of state
before t = 0. More details are given in the next subsection. We define with
0 = t(0) < t(1) < t(2) < . . . the time points of status changes of the stochastic
process X = (Xt)t≥0 whose finite state space is denoted as S. Bear in mind that
we consider the current time point as t = 0. Further, we denote with Xt(n) ∈ S
the state of the process at the time of the n-th transition in which X stays for the
duration D(n). In other words, D(n) is the random length of the interval [t(n), t(n+1)).
We assume that X is a semi-Markov process which is fully characterized by an ini-
tial distribution p = [pj(0) | j ∈ S] with

∑
j∈S pj(0) = 1 and the renewal kernel

8
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Q(d) = [Qjk(d) | j, k ∈ S], where

Qjk(d) = P(Xt(n+1)
= k,D(n) ≤ d | Xt(n) = j,D(n−1), Xt(n−1)

, . . . )

= P(Xt(n+1)
= k,D(n) ≤ d | Xt(n) = j)

(4)

for d ≥ 0. Note that X has right-continuous sample paths and by definition we have
Qjj(·) ≡ 0 for j ∈ S. The cumulative conditional distribution function of D(n) is
given by Fj(d) = P(D(n) ≤ d | Xt(n) = j) =

∑
k∈S Qjk(d) for j ∈ S and n ∈ N0.

From (3) it follows that in case of non-constant transition intensities, D(n) satisfies
the memorylessness property only in the instant t(n) of the transition into state Xt(n) .
Under consideration of this property it can be shown that for t ≥ 0 the interval
transition probabilities Pjk(t) = P(Xt = k | X0 = j) are the solutions of the following
integral equations

Pjk(t) = (1− Fj(t))δjk +
∑

m∈S

∫ t

0

Pmk(t− x)qjm(x) dx (5)

with initial condition Pjk(0) = δjk (Kronecker delta) and qjk(·) denotes the derivative
of Qjk(·) with respect to the duration time. Note that if the subsequent state of each
state j ∈ S is deterministic, say k ∈ S, then Qjk(·) is a probability distribution func-
tion and with fj(·) = qjk(·) we denote the corresponding density. This will simplify
matters later when we are specifically concerned with the parking lot problem.

Following Grabski (2014), the systems of integral equations (5) can be solved via

Laplace transforms (Widder, 2015). The Laplace transform f̃ := L{f} : C ⊃ C → C
of a real valued function f : [0,∞)→ R is given by

f̃(u) := L{f}(u) =

∫ ∞

0

f(t)e−utdt, (6)

where the integral in (6) converges for u ∈ C. The set C is called the region of
convergence and consists of all u ∈ C which satisfy Re(u) > γ, the so-called abscissa
of convergence (Hall et al., 1992), and Re(u) denotes the real part of u. In particular,
it holds that L{1}(u) = 1

u
and the Laplace transform of

∫ t
0
Pmk(t − x)qjm(x) dx is

given by P̃mk(u)q̃jm(u), i.e. convolution in the real time domain corresponds to
multiplication in the complex frequency domain. Consequently, the linearity of the
Laplace transform easily allows to represent the system of integral equations (5) as
the following system of linear equations in the frequency domain

P̃jk(u) =

(
1

u
− F̃j(u)

)
δjk +

∑

m∈S
q̃jm(u)P̃mk(u). (7)
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Figure 4: Visualization of the procedure of obtaining the interval transition proba-
bilities Pjk(t) in a semi-Markov process from the system of integral equations (5).

Defining with q̃(u) = [q̃jk(u) | j, k ∈ S] and F̃ (u) = [δjkF̃j(u) | j, k ∈ S] matrices of
the same dimension as Q(u), we obtain the solution of (7) as

P̃ (u) =
(
I − q̃(u)

)−1
(

1

u
I − F̃ (u)

)
, (8)

where I denotes the identity matrix and P̃ (u) = [P̃jk(u) | j, k ∈ S]. The interval
transition probabilities Pjk(t) in the real time domain can then be calculated by
applying the inverse Laplace transform element-wise to the solution (8) in the com-
plex frequency domain. The inverse Laplace transform L−1 of a Laplace-transformed
function L{f} : C→ C is generally defined through the following Bromwich integral
(Weideman and Trefethen, 2007)

f(t) = L−1{L{f}(u)}(t) =
1

2πi
lim
T→∞

∫ γ0+iT

γ0−iT
eutL{f}(u) du,

where γ0 > γ from above, i.e. γ0 must be in the region of convergence C of L{f}.
The whole procedure for determining the interval transition probabilities (1) which
we formally described above is summarized in Figure 4.

4.2 Solving the parking lot problem

Suppose that we find ourselves at the current time point t = 0 and for simplicity of
notation, we drop superscript (i) related to the parking lot index in this section. In
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order to predict the transition probabilities (1) in the time span ranging from t = 0
until a future time point tf > 0 we need λj,t(d) for t > 0. Certainly, the future
evolution of time dependent covariates is unknown at t = 0, i.e. λj,t(d) might not be
available for t > 0. However, since in our specific application to parking lot data the
forecast horizon is usually in the range of several minutes up to an hour, we assume
that λj,t(d) = λj,t=0(d) which we denote in short with λj(d) = λj,t=0(d) for j = 0, 1.
Estimation of λj(·) is covered in the following Section 5.

We can now adopt the theoretical concepts outlined in Section 4.1 to our problem.
First, the history F contains the state of each parking lot at the present moment
t = 0, i.e. the initial distribution p is deterministic. However, formula (5) derived
above is based on the assumption that the process X jumps in t = 0 into its initial
state, i.e. t(0) = 0. In other words, the duration in the initial state at t = 0 is zero.
This is certainly not the case with regards to our parking lot problem since at t = 0
a parking lot has already been in state X0 = j for a known duration, say d0. This is
shown in Figure 5 where, in view of the present moment t = 0, the parking lot has
lastly changed its state at time point t(0) < 0. Therefore, for the random duration
time D?

(0) = t(1) from being in state j at t = 0 until the first transition to state 1− j
it holds that

P(D?
(0) > d | X0 = j) = P(D(0) > d+ d0 | D(0) > d0, X0 = j) = exp

(
−
∫ d0+d

d0
λj(x) dx

)
. (9)

Consequently, if t(0) < 0 the distribution of the duration D?
(0) in the initial state

differs from the distribution of the duration D(0) = t(1) − t(0). This is illustrated

in Figure 5 where it holds for the duration times in the occupied state that D?
(0)

d

6=
D(k) = t(k+1) − t(k) for k = 2, 4, 6, . . . . In order to respect this finding in our model
we add two initial states 0? and 1? to the updated state space S? = {0?, 1?, 0, 1},
where j? is the state of X at t = 0.

Further, it holds that Fj?(·) = Qj?,1−j(·) and Fj(·) = Qj,1−j(·) for j = 0, 1 with

Fj?(d) = 1− exp

(
−
∫ d0+d

d0

λj(x) dx

)
and Fj(d) = 1− exp

(
−
∫ d

0

λj(x) dx

)
.

With fj?(·) = qj?,1−j(·) and fj(·) = qj,1−j(·) we denote the densities corresponding to
the distribution functions Fj? and Fj, respectively. We can now employ the general
solution (8) in the setting with state space S? = {0?, 1?, 0, 1} which yields a matrix

P̃ (u) = [P̃jk | j, k ∈ S?] ∈ C4×4 of interval transition probabilities represented in the
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j = 1
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Latest history of X Sample path of X = (Xt)t∈[0,tf]

D(0)

D(0)
*

d0 D(1) D(2) D(3)

Figure 5: Visualization of the process X = (Xt)t∈[0,tf ] in view of the current time
point t = 0.

complex frequency domain. The matrix I − q̃(u) in (8) and its inverse are given by

I − q̃(u) =




1 0 0 −f̃0?(u)

0 1 −f̃1?(u) 0

0 0 1 −f̃0(u)

0 0 −f̃1(u) 1


 , (I − q̃(u))−1 =




1 0 f̃0? (u)f̃1(u)

1−f̃0(u)f̃1(u)

f̃0? (u)

1−f̃0(u)f̃1(u)

0 1 f̃1? (u)

1−f̃0(u)f̃1(u)

f̃1? (u)f̃0(u)

1−f̃0(u)f̃1(u)

0 0 1 f̃0(u)

1−f̃0(u)f̃1(u)

0 0 f̃1(u)

1−f̃0(u)f̃1(u)
1




respectively. Now, using formula (8) and denoting f̃(u) = (1− f̃0(u)f̃1(u))−1 finally
yields the solution of (7) as

P̃ (u) =

0? 1? 0 1





0? 1
u
− F̃0?(u) 0 f̃(u)f̃0?(u)f̃1(u)

(
1
u
− F̃0(u)

)
f̃(u)f̃0?(u)

(
1
u
− F̃1(u)

)

1? 0 1
u
− F̃1?(u) f̃(u)f̃1?(u)

(
1
u
− F̃0(u)

)
f̃(u)f̃1?(u)f̃0(u)

(
1
u
− F̃1(u)

)

0 0 0 f̃(u)
(

1
u
− F̃0(u)

)
f̃(u)f̃0(u)

(
1
u
− F̃1(u)

)

1 0 0 f̃(u)f̃1(u)
(

1
u
− F̃0(u)

)
f̃(u)

(
1
u
− F̃1(u)

)
. (10)

The interval transition probabilities Pjk(t) can be obtained by applying the inverse

Laplace transform to the entries of P̃ (u), i.e. Pjk(t) = L−1{P̃jk(u)}(t) for j, k ∈ S?
and t ≥ 0. Since L−1{1/u}(t) = 1[0,∞)(t), it particularly holds that P0?0?(t) =
1 − F0?(t) and P1?1?(t) = 1 − F1?(t) for t ≥ 0. This is an expected result since
Pj?j?(t) is the probability that a parking lot’s state will remain unchanged from time
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point t = 0 until time t > 0 and 1 − Fj?(t) = P(D?
(0) > t | X0 = j) represents

the probability that the duration in the initial state j will exceed time point t. For
the remaining entries of the transition probability matrix P (t) we have to build on
numerical inversion techniques here, where we make use of the approach proposed
by Valsa and Brančik (1998). Details about the algorithm can be found in Appendix
B. In the end, the probability that a parking lot is clear at a prospective time
point tf > 0, conditional on the history F of parking lot occupation and covariate
information, is given by

P(Xtf = 0 | F) =

{
1− F0?(t) + L−1{P̃0?0(u)}(tf ), X0 = 0

L−1{P̃1?0(u)}(tf ), X0 = 1
. (11)

4.3 Exponentially distributed duration times

Using the techniques from above, explicit formulae can be derived for the transition
probabilities (1) if the durations D(n) are exponentially distributed, i.e. if X =
(Xt)t∈[0,tf ] is in fact a Markov process. With the transition intensities λj being
constant, it holds that Fj?(d) = Fj(d) = 1 − e−λjd and fj(d) = λje

−λjd. Therefore,
we can omit the states 0? and 1? and for the interval transition probabilities it follows
that

P (t) =
1

λ0 + λ1



λ1 + λ0e

−t(λ0+λ1) λ0

[
1− e−t(λ0+λ1)

]

λ1

[
1− e−t(λ0+λ1)

]
λ0 + λ1e

−t(λ0+λ1)


 . (12)

Usually, the result (12) is derived by solving the Kolomogorov forward differential
equations as e.g. in Ross et al. (1996), Example 5.4(A).

5 Estimation of transition intensities

5.1 Modeling transition intensities

We now discuss the estimation of transition intensities λ
(i)
j,t(d | z(i)

t ) as defined in (2)
which can be interpreted as hazard rates in a time to event model. We consider
covariates z

(i)
t = (z

(i)
1,t, . . . , z

(i)
K,t)

> through a model of the form

λ
(i)
j,t(d | z(i)

t ) = λj,0(d) exp


β0,j +

K∑

k=1

gj,k(z
(i)
k,t) + u

(i)
j


 . (13)
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Here, λj,0(·) is the common baseline intensity for the transition from state j to state

1 − j. Furthermore, η
(i)
j,t = β0,j +

∑K
k=1 gj,k(z

(i)
k,t) is the linear predictor of the model

(including the intercept β0,j) which will be treated in more depth later. Coefficients

u
(i)
j are random effects, which account for unobserved parking lot specific heterogene-

ity. Hereby, we assume that v
(i)
j = log u

(i)
j follow indenpendently a Gamma( 1

γj
, 1
γj

)

prior distribution with E(v
(i)
j ) = 1 and Var(v

(i)
j ) = γj. In the context of time to

event analysis, these kinds of models are known as (gamma) shared frailty models

(Therneau et al., 2003), since a common multiplicative frailty v
(i)
j on the baseline

hazard is shared among observations for parking lot i in state j.

5.2 Choosing an appropriate baseline intensity

Under consideration of (3) and (13), the distribution function F
(i)
j (·) of the random

duration D
(i)
j that parking lot i stays in state j is given by

F
(i)
j (d) = P(D

(i)
j ≤ d) = 1− exp

(
− exp(η

(i)
j,t=0 + u

(i)
j )

∫ d

0

λj,0(x) dx

)
(14)

for j = 0, 1. For j = 0?, 1? the integral boundaries in (14) need to be shifted by the
current duration d0 as motivated above. Employing the numerical algorithm pro-
posed by Valsa and Brančik (1998) in order to compute the inverse Laplace trans-

formation of (10) involves repeatedly evaluation of both F
(i)
j (·) and its derivative

f
(i)
j (·). Considering (14), it is evident that the form of the baseline intensity λj,0(·)

determines the numerical effort therefore, which is why an easy-to-integrate λj,0(·)
is preferred. Often, the baseline intensity is not explicitely modeled as in the Cox-
Model. Here, the (cumulative) baseline intensity can be obtained via the Breslow
estimator (Lin, 2007). Alternatively, the baseline can be modeled semiparamet-
rically, e.g. with piece-wise exponential additive mixed models (PAMMs, Bender
et al., 2018). However, with both approaches the cumulative hazard can only be
evaluated numerically which has the consequence that the inversion of the Laplace
transform suffers from numerical instability. The employment of a fully-parametric
model for λj,0(·) allows to circumvent numerical integration if the integral of λj,0(·)
has an explicit representation. This is pursued in the following.

A frequently used parametric time to event model is the Weibull model, in which
case (13) for t = 0 has the form λ

(i)
j (d) = b

(i)
j αjd

αj−1, where αjd
αj−1 = λj,0(d;αj) is

the common baseline intensity and b
(i)
j = exp(η

(i)
j,t=0 + u

(i)
j ). This allows to express
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both the distribution function F
(i)
j (d) = 1 − exp

(
−b(i)

j d
αj

)
and density f

(i)
j (d) =

b
(i)
j αjd

αj−1 exp
(
−b(i)

j d
αj

)
for d ≥ 0 explicitly. Finally, note that the baseline inten-

sity λj,0(·) is shaped by a single parameter αj, with αj < 1 (αj > 1) resulting in
strictly decreasing (increasing) transition intensities.

5.3 The linear predictor

The linear predictor η
(i)
j,t = β0,j +

∑K
k=1 gk,j(z

(i)
k,t) is independent of the duration

time d and multiplicatively takes the covariate effects in the time to event model
(13) into account. We either include the k-th covariate linearly in the model,

i.e. gk,j(z
(i)
k,t) = βk,jz

(i)
k,t or through nonlinear modeling achieved by applying B-

splines. In the latter case, the k-th covariate has a B-Spline basis representation
gk,j(z

(i)
k,t) =

∑Mk

m=1 βk,j,mB
l
k,j,m(z

(i)
k,t) of order l ∈ N with parameter vector βk,j =

(βk,j,1, . . . , βk,j,Mk
)> (see Ruppert et al., 2003 or Fahrmeir et al., 2007). For reasons

of identifiability of smooth effects, these functions are centered around zero as pro-
posed in Wood (2017). We collect all regression parameters for state j in a single
vector which we denote with θj. Estimation of the model parameters is shown in
Appendix A.

6 Results

6.1 Fitting intensities

We first show an exemplary fit of the time to event model from Section 5 to the
Melbourne parking data which we introduced in Section 2. The linear predictor for
state j = 0, 1 is specified as

η
(i)
j,t = β0,j + β1,j · weekdayt + β2,j · sideofstreet(i) + β3,j · nearby(i)

1−j,t + g4,j(hourt),

(15)

where time point t corresponds to the start time of each observed, possibly censored,
duration. Temporarily, we here restrict the data to all days of June 2019 between
8 am in the morning and 8 pm in the evening while on the spatial scale we only
include parking lots which are located in the eastern section of Lonsdale Street,
which is shown as a thicker network segment in Figure 2. The covariate nearby

(i)
j,t is

defined as

nearby
(i)
j,t =

∑

k 6=i
1{X(i)

t = j, dG(si, sk) ≤ h}/
∑

k 6=i
1{dG(si, sk) ≤ h}
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Model state 0 Model state 1

Effect (s.e.) Relative risk Effect (s.e.) Relative Risk

Intercept −2.721 (0.177) 0.066 −1.751 (0.146) 0.174

Tuesday 0.050 (0.012) 1.052 0.037 (0.012) 1.037
Wednesday 0.091 (0.012) 1.095 0.025 (0.012) 1.025
Thursday 0.124 (0.012) 1.132 0.005 (0.012) 1.005
Friday 0.098 (0.012) 1.103 0.024 (0.012) 1.024
Saturday −0.139 (0.013) 0.870 −0.032 (0.013) 0.968
Sunday 0.126 (0.014) 1.134 −0.371 (0.016) 0.690

central 0.159 (0.199) 1.172 −0.764 (0.164) 0.466
south 0.129 (0.265) 1.138 0.218 (0.218) 1.244

nearby1−j 1.451 (0.022) 4.266 1.078 (0.023) 2.940

Table 2: Estimates β̂k,j of fixed linear covariate effects in the time to event model
with linear predictor as specified in (15), standard errors in brackets. The relative

risk is given as exp(β̂k,j).

which is the fraction of all parking lots in state j with driving distance less than h
from parking lot i at time point t. For all our analyses we set h = 50 meters. The
smooth functions g4,j(hourt) which model the effect of the time of the day are build
with quadratic B-splines with 10 degrees of freedom.

We fit the time to event model which we specified above employing the survival

package for the statistical software R (R Core Team, 2013). For the estimated shape
parameter αj of the Weibull baseline intensity it holds that α̂1 = 0.55 < α̂0 = 0.65�
1 which mimics strictly decreasing transition intensities. This suits the Kaplan-Meier
estimators shown in Figure 3 and legitimates the use of a Weibull baseline hazard
instead of an exponential baseline hazard. Estimates of linear covariate effects and
their standard errors are shown in Table 2. The proportional hazards assumption
allows to quantify the relative risk of covariate effects. The effect of the weekly
variation is fairly weak except for Sunday, where we see a significant negative effect
in the model for the transition from state 1 to state 0. Therefore, the average
duration of parking on Sundays is longer which might be caused by more relaxed
parking restrictions on Sundays. The effect of the relative location of a parking lot
mirrors the conclusion which we drew from Figure 3, i.e. there is no significant effect
in the model for state 0 and the parking duration in between two lanes is expected
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Figure 6: Smooth effect of the time of the day in state 0 (left panel) and state 1
(right panel), 95% confidence bands are shown in grey.

to be significantly higher than at the curbside. The significant positive effect of the
covariate nearby1 (nearby0) in the model for state 0 (1) means that the duration a
parking lot is clear (occupied) decreases with increasing occupancy (availability) of
nearby parking lots. Finally, we show in Figure 6 the smooth effect of daytime. We
see that if a parking lot is cleared in the afternoon the expected duration in state 0
is least. Overall, the effect of the time of the day for state 0 is much weaker when
compared to state 1 where the parking duration tendentiously rises during the course
of the day, i.e. short-term parking occurs mainly in the morning.

6.2 Predicting parking lot occupancy

As we can see, the results of the time to event model are valuable in their own
right. However, the main purpose of those was to use them as plug-in estimates
for a model in order to predict P(X

(i)
tf

= 0 | F). Therefore, we next assess the
performance of the following three prediction models which were generally treated in
Section 4. For the first two models we fit a time to event model with Weibull baseline
hazard and linear predictor as specified in (15). The fitted intensities are used in
order to estimate the distribution function as derived in (14) and the probabilities

of interest P(X
(i)
tf

= 0 | F) are computed according to (11) where, however, in the
first case d0 corresponds to the actually observed value and in the second case d0

will be generally set to zero. Thus, the first model is a semi-Markov model with
state space S? of cardinality four while the second model essentially reduces to a
semi-Markov model with two states, i.e. state space S. For the third model, we fit
the time to event model with auxiliary condition αj = 1 which leads to exponentially
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distributed duration times. Consequently, the predictions can be made according to
the closed-form solution (12). We refer to this model as the two-state Markov model.

In order to evaluate the performance of the different models under a preferably
realistic scenario we consider the following setting. We randomly choose a time
point t = 0 as well as a location s on the street network G (see Figure 2) where
we put a higher sampling weight on areas with more parking lots, see Schneble and
Kauermann (2020). Now, we predict the availability of parking lots being clear for
all parking lots i which satisfy dG(s, si) ≤ 250 meters. The time point t = 0 is
chosen to be either between 10 am and 12 pm or between 4 pm and 6 pm of each day
in June 2019. The prediction horizon shall be tf = 10 minutes or tf = 30 minutes,
respectively. In each case, the transition intensities are determined by making use of
data restricted to 30 days in the past from the perspective of t = 0.

We repeat each scenario described above R = 100 times and measure the predic-
tion performance by making use of receiver operating characteristic (ROC) curves
(Robin et al., 2011). Thereby, we first specify a set {cp} of P + 2 thresholds with
−∞ = c0 < 0 < c1 < · · · < cP < 1 <∞ = cP+1. Then, we determine for each cp the
binary estimate

X̂
(i)
t (cp) =

{
0, P(X

(i)
tf

= 0 | F) ≥ cp

1, P(X
(i)
tf

= 0 | F) < cp
.

Next, we compute the specificity TNR(cp) (true negative rate) and the sensitivity
TPR(cp) (true positive rate) in dependence of the threshold cp as

TNR(cp) =
#{X(i)

tf
= 1 and X̂

(i)
tf

(cp) = 1}
#{X(i)

tf
= 1}

, TPR(cp) =
#{X(i)

tf
= 0 and X̂

(i)
tf

(cp) = 0}
#{X(i)

tf
= 0}

.

Note that in contrast to the habitual convention, “0” refers to the positive class and
“1” refers to the negative class. Finally, a ROC curve is a function of the sensitivity
in dependence of 1 − specificity. An index which measures the overall prediction
performance of a binary predictor is the area under the (ROC) curve (AUC), which
is the integral of the ROC curve. An AUC equal to one corresponds to a perfect
predictor where the random predictors AUC, highlighted through a diagonal line in
Figure 7, is always equal to 0.5.

In Figure 7 we show ROC curves of the predictions related to each of the four
possible scenarios described above, i.e. with prediction horizon equal to tf = 10
minutes (upper panels) or tf = 30 minutes (lower panels) and setting the present
moment to t = 0 in the morning (left panels) or in the late afternoon (right panels).
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Figure 7: ROC curves showing the performance of three predictors when daily pre-
dicting free parking lots in June 2019. In the left (right) panels, t = 0 ranges between
10 am and 12 pm (4 pm and 6 pm). In the top (bottom) panels, time point tf is 10
minutes (30 minutes) after t = 0.
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Figure 8: AUC of three binary predictors depending on the prediction horizon.

We can generally observe that for a fixed specificity, the semi-Markov predictor
with state space S? outperforms the (semi-)Markov predictor with state space S
in terms of sensitivity, where the same holds vice versa. Accordingly, the AUC
of the semi-Markov predictor is larger when compared to the AUC of the Markov
predictor. This difference is minor if the prediction horizon is very short-term (10
minutes). If the prediction horizon amounts to 30 minutes, the performance of both
models worsens distinctly. However, on a relative scale the prediction accuracy of
the (semi-)Markov model with two states diminishes stronger when compared to the
semi-Markov model with four states. Summarizing, we conclude that the benefit of
our methodology mainly comes from the adding of the additional states 0? and 1? to
the state space S. However, when opposing the two predictors which make use of a
two-state stochastic process, it is not apparent that one outperforms the other.

Finally, we show the AUC for the same predictors as considered in Figure 7 when
the prediction horizon ranges between five minutes and one hour. Since a large effect
of the time of the day on the prediction accuracy can not be observed we draw
t = 0 from the interval between 4 pm and 6 pm. Figure 7 confirms what we have
seen before, the semi-Markov predictor with the extended state space S? performs
superior in terms of AUC when compared to the (semi-)Markov predictor with two
states, i.e. when the current duration d0 is not respected in the model. This is
most apparent when the prediction horizon is between 20 and 40 minutes. When
opposing the semi-Markov predictor with two states to the Markov predictor, we
observe only few discrepancy between the two predictors for predictors horizons 20
minutes and less. If the prediction horizon is longer the semi-Markov model can
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be favored as the AUC is marginally larger. Summing up, the semi-Markov model
distinctly outperforms the Markov model in terms of AUC. Again, this is largely due
to the involvement of the two additional states.

7 Discussion

In this paper we have presented a general framework which can be used to predict
the individual short-term probability of on-street parking lots being unoccupied. A
time to event model is employed in order to estimate the transition intensities and
consequently the distribution of the duration in each state. Besides the usage as
plug-in estimates for the (semi-)Markov prediction model, the results of the time to
event model already provide valuable insight into the patterns of on-street parking
dynamics in the City of Melbourne. On the other hand, the semi-Markov model is
solely designed as a prediction model and we have seen that the prediction accuracy,
measured in terms of AUC of a ROC curve, is distinctly larger when compared to
a model which is restricting duration times to be exponentially distributed. If the
response in a binary prediction model is greatly unbalanced, i.e. most of the data
belong either to the positive or negative class, Saito and Rehmsmeier (2015) propose
to employ precision-recall curves in order to evaluating a binary predictor. However,
we do not see such a strong imbalance in our data such that we consider these results
reliable.

The performance of the prediction model is highly dependent on the quality of the
data. Usually, not all sensors in a chosen area are active at the same time and not all
parking lots are equipped with a sensor. If a sensor does not send the current state of
the related parking lot, it is much harder to predict its short-term availability since
the initial distribution is not known and particularly not deterministic. Consequently,
the initial distribution p of the parking lot occupancy would have to be estimated
as well and then P (tf )p yields a vector of transition probabilities from time t = 0 to
time t = tf , where P (tf ) can be obtained by applying the inverse Laplace transform
to (10).

The time to event model which we employ to estimate the distribution functions
of the semi-Markov model is rather unsophisticated. However, this has the advantage
that standard software can be used to fit the model. The performance of the predic-
tion model could certainly be further improved by incorporating covariates into the
time to event model in a (duration) time varying manner. Moreover, the usage of
further external covariates such as weather conditions might increase the prediction
performance as well. However, our main intention with this paper was to show that
a semi-Markov model clearly outperforms a Markov model in terms of prediction
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accuracy. Since we use the same estimates for both kinds of prediction models, this
finding should be rather independent from the goodness of the chosen time to event
model.

A natural extension of our model is its integration into an individual parking
guidance system. Here, a car driver might choose a destination s in the center of an
urban area and a navigation system computes the estimated time of arrival tf until
reaching the target s. Our model is able to yield predictions of on-street parking
availability at time point tf in the surrounding area of s and could guide the driver
into a street section in which the likelihood of finding a clear parking lot is greatest.
We consider this computational considerable optimization problem to be beyond the
scope of this paper where we focused on the statistical point of view of our modeling
approach.
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Lin, T., H. Rivano, and F. Le Mouël (2017). A survey of smart parking solutions.
IEEE Transactions on Intelligent Transportation Systems 18 (12), 3229–3253.

Liu, K. S., J. Gao, X. Wu, and S. Lin (2018). On-street parking guidance with real-
time sensing data for smart cities. In 2018 15th Annual IEEE International Con-
ference on Sensing, Communication, and Networking (SECON), pp. 1–9. IEEE.

Monteiro, F. V. and P. Ioannou (2018). On-street parking prediction using real-time
data. In 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), pp. 2478–2483. IEEE.

Nielsen, G. G., R. D. Gill, P. K. Andersen, and T. I. Sørensen (1992). A counting pro-
cess approach to maximum likelihood estimation in frailty models. Scandinavian
journal of Statistics , 25–43.

Pyke, R. (1961). Markov renewal processes: Definitions and preliminary properties.
The Annals of Mathematical Statistics , 1231–1242.

R Core Team (2013). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Rajabioun, T. and P. A. Ioannou (2015). On-street and off-street parking availabil-
ity prediction using multivariate spatiotemporal models. IEEE Transactions on
Intelligent Transportation Systems 16 (5), 2913–2924.

Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller
(2011). proc: an open-source package for R and S+ to analyze and compare ROC
curves. BMC bioinformatics 12 (1), 1–8.

Ross, S. M., J. J. Kelly, R. J. Sullivan, W. J. Perry, D. Mercer, R. M. Davis, T. D.
Washburn, E. V. Sager, J. B. Boyce, and V. L. Bristow (1996). Stochastic processes,
Volume 2. Wiley New York.

Ruppert, D., M. P. Wand, and R. J. Carroll (2003). Semiparametric regression.
Number 12. Cambridge University Press.

24

120



Saharan, S., N. Kumar, and S. Bawa (2020). An efficient smart parking pricing
system for smart city environment: A machine-learning based approach. Future
Generation Computer Systems 106, 622–640.

Saito, T. and M. Rehmsmeier (2015). The precision-recall plot is more informative
than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS
one 10 (3), e0118432.

Schneble, M. and G. Kauermann (2020). Intensity estimation on geometric networks
with penalized splines. arXiv preprint arXiv:2002.10270 .

Shoup, D. (2017). The high cost of free parking: Updated edition. Routledge.

Therneau, T. M., P. M. Grambsch, and V. S. Pankratz (2003). Penalized survival
models and frailty. Journal of Computational and Graphical Statistics 12 (1), 156–
175.
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A Parameter estimation in the time to event model

When estimating the parameters of the time to event model (13), we assume the
duration times in states 0 and 1 to be independent, which allows for independent
estimation of the model parameters ζj = (αj,θ

>
j , γj)

> for j = 0, 1. Recall that γj is

the parameter which determines the variance of the frailties v
(i)
j . This seems plausible

as the duration of a parking lot being clear should not be related to the duration a
parking lot being occupied. This allows for a break of notation in this appendix. We
drop state index j, parking lot index i is now a subscript instead of a superscript
and time index t is understood to be explicitly contained in the linear predictor.

Many procedures for estimating the parameters in a shared frailty model have
been discussed. An EM-Algorithm was proposed by Klein (1992) where the model
parameters ζ and the frailty terms vi are iteratively estimated. A penalized and like-
wise iterative estimation algorithm is suggested by Therneau et al. (2003). However,
estimates of ζ can also be obtained directly by maximizing the marginal log-likelihood
of the model. Following the arguments in Kalbfleisch and Prentice (2011), for the
conditional likelihood related to the i-th parking lot it holds that

Li(α,θ | vi) =

ni∏

k=1

[
αdαikvi exp (ηik)

]δik exp
(
− exp (ηik) vi (dik)

α) . (16)

Here, index k refers to the k-th observed duration time of a parking lot and ni is
the number of duration times observed for parking lot i. Moreover, δik = 1 if the
corresponding event is observed and δik = 0 if the duration time dik is right censored.
Note that we censor all duration times which are longer than 60 minutes which has
the desired consequence that dik and δik are independent. The marginal likelihood
of the model can be obtained by integrating the frailty terms out of (16) for every i

Lmarg(ζ) =
N∏

i=1

∫ ∞

0

Li(α,θ | vi)h(v
(i)
j ; γ) dvi (17)

with

h(v; γ) =
v

1
γ
−1

γ
1
γ Γ( 1

γ
)

exp

(
−v
γ

)
1(0,∞)(v)

denoting the density of the Gamma( 1
v
, 1
v
) distribution. In this special case the integral

in (17) is analytically tractable and the marginal log-likelihood of the model results
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to

`marg(ζ) =
N∑

i=1


∆i log γ + log

Γ
(

1
γ

+ ∆i

)

Γ
(

1
γ

) −
(

1

γ
+ ∆i

)
log


1 + γ

ni∑

k=1

(dik)
α




+

ni∑

k=1

δik
(
ηik + logα + (α− 1) log dik

)

 ,

where ∆i =
∑ni

k=1 δik and the maximum likelihood estimate of the fixed parameters

is given by ζ̂ = argmax `marg(ζ) (Duchateau and Janssen, 2007). Finally, we need
predicted values for the random effects ui which are based on the posterior mean
of the frailties vi = log ui given the observations di = (di1, . . . , dini)

>. Using Bayes’

theorem, it can be shown that the posterior density h(v | di; ζ̂) of vi is equal to
the density of a gamma distribution with shape parameter ai = 1

γ̂
+ ∆i and scale

parameter bi = 1
γ̂

+
∑ni

k=1 α̂ (dik)
α̂−1 exp (η̂ik) and therefore, v̂i = E(vi | di; ζ̂) = ai

bi

(Nielsen et al., 1992).

B Numerical inversion of the Laplace transform

We here provide details about the algorithm which we employ to numerically compute
the inverse Laplace transform of a Laplace transformed function f̃ = L{f} : C → C,
where C ∈ C is the region of convergence. The complete derivation of the underlying
theoretical results can be found in Valsa and Brančik (1998). Recall that the inverse
Laplace transform is defined as the following Bromwich integral

f(t) = L−1{f̃(u)}(t) =
1

2πi

∫ γ+i∞

γ−i∞
f̃(u)eut du, (18)

where u = x + iy and γ > min{Re(u) | u ∈ C}. The basic idea of the algorithm is
to approximate the complex exponential in (18) as

eut ≈ ea

2 sinh(a− ut) =
eut

1− e−2(a−ut)
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such that

f(t) ≈ f(t; a) = f(t) +
∞∑

n=1

e−2naf((2n+ 1)t)

=
ea

t

∞∑

n=0

(−1)n2−[1{0}(n)]Re

[
f̃

(
a+ inπ

t

)]
(19)

where a > 0 is a tuning parameter. It is recommended to choose a = 6 (Valsa and
Brančik, 1998). Naturally, the sum in (19) needs to be truncated at some positive
integer nt. In order to increase the speed of convergence, Valsa and Brančik (1998)
propose to keep nt rather low, but adding an Euler approximation of the subsequent
ne summands. Consequently, a finite numerical approximation for (18) is

f(t) ≈ f(t; a) ≈ ea

t

nt∑

n=0

(−1)n2−[1{0}(n)]Re

[
f̃

(
a+ inπ

t

)]

+
ea2−ne

t

nt+ne∑

n=nt+1

(−1)n




ne∑

k=n−nt

(
ne
k

)
Re

[
f̃

(
a+ inπ

t

)]
.
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Part II.

Statistical modeling of COVID-19 data
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Abstract
We analyse the temporal and regional structure in mortality rates related to
COVID-19 infections, making use of the openly available data on registered cases
in Germany published by the Robert Koch Institute on a daily basis. Estimates
for the number of present-day infections that will, at a later date, prove to be
fatal are derived through a nowcasting model, which relates the day of death
of each deceased patient to the corresponding day of registration of the infec-
tion. Our district-level modelling approach for fatal infections disentangles spa-
tial variation into a global pattern for Germany, district-specific long-term effects
and short-term dynamics, while also taking the age and gender structure of the
regional population into account. This enables to highlight areas with unexpect-
edly high disease activity. The analysis of death counts contributes to a better
understanding of the spread of the disease while being, to some extent, less
dependent on testing strategy and capacity in comparison to infection counts.
The proposed approach and the presented results thus provide reliable insight
into the state and the dynamics of the pandemic during the early phases of the
infection wave in spring 2020 in Germany, when little was known about the dis-
ease and limited data were available.

KEYWORDS
COVID-19, disease mapping, generalized regression model, nowcasting

1 INTRODUCTION

In March 2020, COVID-19 became a global pandemic. From Wuhan, China, the virus spread across the whole world,
and with its diffusion more and more data became available to scientists for analytical purposes. In daily reports, the
WHO provides the number of registered infections as well as the daily death toll globally (https://www.who.int/). It is
inevitable for the number of registered infections to depend on the testing strategy in each country (see, e.g., Cohen &
Kupferschmidt, 2020). This has a direct influence on the number of undetected infections (see, e.g., Li et al., 2020), and
first empirical analyses aim to quantify how detected and undetected infections are related (see, e.g., Niehus, De Salazar,
Taylor, & Lipsitch, 2020). Though similar issues with respect to data quality hold for the reported number of fatalities
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(see, e.g., Baud et al., 2020), the number of deaths can overall be considered a more reliable source of information than
the number of registered infections. The results of the ‘Heinsberg study’ in Germany point in the same direction (Streeck
et al., 2020). A thorough analysis of death counts can in turn generate insights on changes in infections as proposed in
Flaxman et al. (2020) (see also Ferguson et al., 2020). In this paper, we pursue the idea of directly modelling registered
death counts related toCOVID-19 instead of registered infections. In otherwords,we restrict our analysis to fatal COVID-19
cases only, omitting recovered or symptom-free infections. We analyse data from Germany and break down the analyses
to a regional level. Such regional view is apparently immensely important, considering the local nature of some of the
outbreaks, for example in Italy (see, e.g. Grasselli, Pesenti, & Cecconi, 2020; Grasselli, Zangrillo, & Zanella, 2020), France
(see, e.g., Massonnaud, Roux, & Crépey, 2020) or Spain and can assist local health authorities in monitoring the disease
and planning infection control measures.
The analysis of fatalities has, however, an inevitable time delay and requires to take the course of the disease of COVID-

19 patients into account. In particular, in this paper we consider the timespan between the registration of the infection
through local health authorities and the report of its deadly outcome by the Robert Koch Institute (RKI). A first approach
onmodelling and analysing the time from illness and onset of symptoms to reporting and further to death is given in Jung
et al. (2020) (see also Linton et al., 2020). Understanding the delay between onset and registration of an infection and, for
severe cases, the time between registered infection and death, can be of vital importance. Knowledge on those timespans
allows us to obtain estimates for the number of infections that are expected to be fatal based on the number of infections
registered on the present day. The statistical technique to obtain such estimates is called nowcasting (see, e.g., Höhle &
an der Heiden, 2014) and traces back to Zeger, See, and Diggle (1989) or Lawless (1994). Nowcasting in COVID-19 data
analyses is not novel and is, for instance, used in Günther, Bender, Küchenhoff, Katz, and Höhle (2020) for nowcasting
daily infection counts in Germany, that is to adjust daily reported new infections to include infections which occurred
the same day but were not yet reported. Altmeijd, Rocklöv, and Wallin (2020) apply nowcasting techniques to Swedish
data and Bird and Nielsen (2020) provide nowcasting fatalities in English hospitals. We extend this approach to model the
duration between the registration date of an infection and its fatal outcome, accounting for additional covariates. To do
so, we combine a nowcasting model with a spatio-temporal regression model.
We analyse the number of fatal cases of COVID-19 infections in Germany using district-level data. The data are provided

by the RKI (www.rki.de), the German federal government agency and scientific institute responsible for health reporting,
disease control and prevention in humans. They report the cumulative number of deaths in different gender and age
groups for each of the 412 administrative districts in Germany, together with the date of registration of the infection. The
data are available in dynamic form through daily downloads of the updated cumulated numbers of deaths. Comparing two
consecutive daily downloads allows to construct a new dataset which contains both the date at which a COVID-19 disease
is registered and the date at which a fatality is reported to the RKI, with the latter usually being reported at a later time
point.We employ flexible statistical models with smooth components (see, e.g.,Wood, 2017), assuming the district-specific
number of fatalities to be negatively binomial distributed, which permits to also account for possible overdispersion in
the data. The spatial structure in the death rate is incorporated in two ways: First, we assume a spatial correlation of
the number of deaths by including a long-range smooth spatial death intensity. This allows to map a general pattern of
the spread of the disease over Germany, which shows that regions of Germany are affected to different extents. On top
of this long-range effect, we include two types of unstructured region-specific effects. An overall region-specific effect
reflects the situation of a district as a whole, while a short-term effect mirrors region-specific variations of fatalities over
time and captures local outbreaks as happened in, for example Heinsberg (North-Rhine-Westphalia) or Tirschenreuth
(Bavaria). This effect can be seen as an unstructured time-space interaction. In addition to the spatial components, we
include an overall temporal effect to capture dynamic changes in the number of fatal infections for Germany. The latter
effect mirrors the overall flattening of the infectious situation in the considered time period, that is spring 2020. Besides
the spatio-temporal character, our modelling approach further adjusts for the district-specific age and gender structure.
Modelling infectious diseases is a well-developed field in statistics, and we refer to Held, Meyer, and Bracher (2017) for a

general overview of the different models. We also refer to the powerful R package surveillance (Meyer, Held, & Höhle,
2017). Since our focus is on analysing district-specific dynamics, both structured and unstructured, as well as dynamic
behaviour of fatal infections, we prefer to make use of generalized additive regressions implemented in the mgcv package
in R, which also allows to decompose the spatial component in more depth.
The paper is organized as follows. In Section 2 we describe the data. Section 3 introduces our model, while Section 4

discusses the necessity of incorporating a nowcasting model. Section 5 shows the results of our analysis which are then
refined to subgroups of the data in Section 6. Section 7 concludes the paper by also discussing the limitations of our
modelling exercise.
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TABLE 1 Illustration of the data structure, showing downloads of the data from April 25 and April 26, 2020 as an example. To facilitate
reproducibility, the original column names used in the RKI datasets are given in brackets below our English notation

2 DATA

We make use of the COVID-19 dataset (Esri Deutschland GmbH, 2020) provided by the RKI on a daily basis for the 412
districts in Germany (which also include the 12 districts of Berlin separately). The data are collected by the RKI, but
originate from the district-based health authorities (Gesundheitsämter). Due to different population sizes in the districts,
and certainly also because of different local situations, some health authorities transmit the daily numbers to the RKI
with a delay. This happens in particular over the weekend, a fact that we need to take into account in our model. We have
daily downloads of the data sinceMarch 27, 2020.We here choose to focus on a phase of the COVID-19 pandemic in which
the death toll in Germany was high. The subsequent analysis was thus conducted with data up to May 14, 2020, and was
performed considering only deadly infections with registration dates from March 26, 2020 until May 13, 2020 (the day
before that of the analysis).
Table 1 illustrates an exemplary extract of the data that are available. For each of the 412 districts, the data contain

the cumulated number of laboratory-confirmed COVID-19 infections as well as the cumulated number of deaths related
to COVID-19 for each district of Germany, stratified by age group (15–34, 35–59, 60–79 or 80+), gender, and the date of
registration of the infection by the local public health authorities. The time stamp for a fatal outcome always refers to
the registration date of the infection and not to the individual’s date of death. Therefore, the numbers in the column
‘Fatal infections’ cannot exceed the numbers shown in the column ‘Infections’. Even though the time point of infection
obviously precedes that of death, registration of an infection can also occur after death, for example when a post-mortem
test is conducted, or when test results arrive after the patient has passed away. In the former case, the registration date
are set to the day of death by the local health authority. Also note that it is not indicated in the dataset whether a fatal
infection resulted from a post-mortem test, and that no information on whether the patient has died with or because of a
COVID-19 infection is included.
The cumulative numbers are reported on a daily basis by the RKI, which is mirrored in the column ‘Reporting date’ in

Table 1. The reporting date always corresponds to the query date and the download date of the data. In Table 1, we see that
the number of reported infections with registration date April 22, 2020, which relate to females in the age group 60–79
living in the city of Munich, increases by three from April 25, 2020 to the following day. In the same period, the number of
fatal infections increased by one. Thus, we can deduce that three registered infections in this sub-populationwere reported
with a delay of 4 days. The single newly reported fatal infection belongs to an individual of this sub-population for which
the time between registration by the local health authorities and reported death amounts to 4 days. In this paper, we are
especially interested in the latter quantity, which we model as a duration time. It is of importance to note that we can
derive such information only due to daily downloads of the dataset, which are not being provided retrospectively.
We refrain from providing general descriptive statistics on the spatio-temporal distribution of confirmed COVID-19

infections here, since these numbers are already visualized on the RKI dashboard (Robert Koch-Institut, 2020; see also
StaBLab, LMUMunich, 2020).However, the number of fatal infections is less often taken into account. Thus, in Figure 1we
show the empirical duration between the day of registration as COVID-19 infected by the local health authorities and the
day on which the death has been reported by the RKI (based on the data until May 14, 2020). Due to the aforementioned
reporting delay, the minimum duration is 1 day. Note that these plots show stapled bar charts, highlighting the counts
by gender. We see that considerably more fatal infections originate from the age group 80+. Regarding the age group
80− (aggregated age groups 15–39, 40–59 and 60–79), we see that males are much more affected than females, whereas
in the age group 80+ the counts are more balanced. Finally, in both age groups there are a small number of deaths,
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F IGURE 1 Stapled bar chart of the counts of fatal infections depending on days between registered infection and reported death. Only
data reported until May 14, 2020 is considered here (left panel: age group 80− (less than 80 years), right panel: age group 80+ (80 years or older)
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F IGURE 2 Kaplan–Meier estimators of the data shown in Figure 1 with 95% confidence intervals

which were reported 40 or more days after the registration of the COVID-19 infection. Kaplan–Meier estimators of the
duration between registered infection and reported death are shown in Figure 2 for age groups 80− and 80+ by gender.
Here we especially see that the median duration time of elderly patients is slightly shorter when compared to the younger
age groups.

3 MORTALITYMODEL

Let 𝑌𝑡,𝑟,𝑐 denote the number of deaths due to COVID-19 with time point of registration 𝑡 = 0, … , 𝑇 in district/region 𝑟 and
cohort 𝑐, where the cohort 𝑐 is characterized by age group and gender of the deceased. Time index 𝑡 = 𝑇 corresponds to the
day of analysis, which is May 14, 2020, and 𝑡 = 0 corresponds to March 26, 2020. Not all fatalities with registered infection
at time point 𝑡 have been observed at time 𝑇, as some deaths will occur later. We therefore need a model for nowcasting,
which is discussed in the next section.
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For now,we assume all𝑌𝑡,𝑟,𝑐 to be known.A family of discrete distributionswhich is supported on the set of nonnegative
integers and also allows to account for possible overdispersion in the data is the negative binomial distribution. Therefore,
we model those numbers as according to

𝑌𝑡,𝑟,𝑐 ∼ NB(𝜆𝑡,𝑟,𝑐, 𝜙), (1)

where 𝔼(𝑌𝑡,𝑟,𝑐) = 𝜆𝑡,𝑟,𝑐 and the constant dispersion parameter 𝜙 relates to the variance by Var(𝑌𝑡,𝑟,𝑐) = 𝜆𝑡,𝑟,𝑐 + 𝜙𝜆2𝑡,𝑟,𝑐. We
model the mean 𝜆𝑡,𝑟,𝑐 of the response 𝑌𝑡,𝑟,𝑐 through a regression model and specify

𝜆𝑡,𝑟,𝑐 = exp{𝛽0 + age𝑐𝛽age + gender𝑐𝛽gender

+ age𝑐gender𝑐𝛽age, gender +weekday𝑡𝛽weekday

+ 𝑚1(𝑡) + 𝑚2(𝑠𝑟) + 𝑢𝑟0 + 𝟙{𝑡≥𝑇−14}𝑢𝑟1 + log(pop𝑟,𝑐)}, (2)

where the linear predictor is composed as follows:

∙ 𝛽0 is the intercept.
∙ 𝛽age and 𝛽gender are the age- and gender-related regression coefficients, and 𝛽age, gender is the coefficient that models the
interaction between age and gender.

∙ 𝛽weekday are regression coefficients, which relate to the weekday of the registration date as COVID-19 infected.
∙ 𝑚1(𝑡) is an overall smooth time trend, with no prior structure imposed on it.
∙ 𝑚2(𝑠𝑟) is a smooth spatial effect, where 𝑠𝑟 is the geographical centroid of district/region 𝑟.
∙ 𝑢𝑟0 and 𝑢𝑟1 are district-/region-specific random effects, which are independently and identically distributed (i.i.d.) and
follow a normal prior probability model. While 𝑢𝑟0 specifies an overall level of the death rate for district 𝑟 over the entire
observation time, 𝑢𝑟1 is a spatio-temporal effect that reveals region-specific dynamics by allowing the regional effects
to differ for the last 14 days.

∙ pop𝑟,𝑐 is the gender and age group-specific population size in district/region 𝑟 and serves as an offset in our model.

We here emphasize thatwe fit spatial effects of different types:Wemodel a smooth spatial effect, that is𝑚2(𝑠𝑟), which takes
the correlation between the fatal infections of neighbouring districts/regions into account and gives a global overview of
the spatial distribution of fatal infections. In addition to that we also have unstructured district-/region-specific effects
𝒖𝑟 = (𝑢𝑟0, 𝑢𝑟1)

⊤, which capture local behaviour related to single districts only. While 𝑢𝑟0 captures the corresponding long-
term effect, 𝑢𝑟1 captures the short-term effect of the last 14 days; see (2). This means that we alsomodel a dichotomous and
unstructured interaction of spacewith time. The district-specific effects𝒖𝑟 are considered as random,with prior structure

𝒖𝑟 ∼  (𝟎, 𝚺𝑢) i.i.d (3)

for 𝑟 = 1,… , 412. The prior variancematrix 𝚺𝑢 is estimated from the data. The predicted values �̂�𝑟 (i.e. the posteriormode)
exhibit districts that show unexpectedly high or low death tolls when adjusted for the global spatial structure and for age-
and gender-specific population sizes.
While model (2) is complex and highly structured, note that no autoregressive components are included in the lin-

ear predictor in (2). We will demonstrate in Section 6.4 below that auto-correlation is of negligible size, and that time
dependence is fully captured by𝑚1(𝑡) as well as the unstructured effects 𝑢𝑟1.
The mortality model defined through (1) and (2) belongs to the model class of generalized additive mixed model (see,

e.g., Wood, 2017). The smooth functions are estimated by penalized splines without restrictions on the number of degrees
of freedom, with a quadratic penalty that can be comprehended as a normal prior (see, e.g., Wand, 2003). The same type
of prior structure holds for the region-specific random effects 𝒖𝑟. In other words, smooth estimation and random effect
estimation can be accommodated in one fitting routine, which is implemented in the R package mgcv. This package has
been used to fit the model, so that no extra software implementation was necessary. This demonstrates the practicability
of the proposed method. Our analysis is completely reproducible, with code and data openly available and downloadable
from our GitHub repository.1

1 https://github.com/MarcSchneble/Nowcasting-Fatal-COVID-19-Infections
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4 NOWCASTINGMODEL

4.1 Model description

The above model cannot be fitted directly to the available data, since we need to take the course of the disease on the
individual level into account. This means that the final number of fatal outcomes for infections registered on date 𝑡 < 𝑇

is not known at the time point of analysis 𝑡 = 𝑇, since not all patients with a fatal outcome of the disease have died yet.
This requires the implementation of nowcasting. Due to the sparsity of the data, we perform the nowcast on a national
level, that is we cumulate the numbers over district/region 𝑟. For reasons of notation, we temporarily drop the gender and
age-related subscript 𝑔, and we simply notate the cumulated number of deaths with registered infections at day 𝑡 with 𝑌𝑡.
Let 𝑁𝑡,𝑑 denote the number of deaths reported on day 𝑡 + 𝑑 for infections registered on day 𝑡. Assuming that the true

date of death is at 𝑡 + 𝑑, or at least close to it, we ignore any time delays between time of death and its notification to the
health authorities. We call 𝑑 the duration in days between the registration date as a COVID-19 patient and the reported
day of death, where 𝑑 = 1,… , 𝑑max . Here, 𝑑max is a fixed reasonable maximum duration, which we set to 40 days (see, e.g.,
Wilson, Kvalsvig, Barnard, & Baker, 2020). This is also motivated by the means of Figure 1. The minimum duration is one
day, since the RKI daily reports the new numbers, which they have received from the public health departments the day
before. In nowcasting, we are interested in the cumulated number of deaths for infections registered on day 𝑡, which we
define as

𝑌𝑡 =

𝑑max∑
𝑑=1

𝑁𝑡,𝑑.

Therefore, the total number of deaths with a registered infection at 𝑡 becomes available only after 𝑑max days. In other
words, only after 𝑑max days we know exactly how many deaths occurred due to an infection which was registered on day
𝑡. We define the partial cumulated sum of deaths as

𝐶𝑡,𝑑 =

𝑑∑
𝑙=1

𝑁𝑡,𝑙

so that by definition 𝐶𝑡,𝑑max
= 𝑌𝑡.

On day 𝑡 = 𝑇, when the nowcasting is performed, we are faced with the following data constellation, where NA stands
for not (yet) available:

d
t 1 2 ⋯ 𝒅𝐦𝐚𝐱 Reported deaths
0 𝑁0,1 𝑁0,2 ⋯ 𝑁0,𝑑max

𝑌0

1 𝑁1,1 𝑁1,2 ⋯ 𝑁1,𝑑max
𝑌1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑇 − 𝑑max 𝑁𝑇−𝑑max ,1
𝑁𝑇−𝑑max ,2

⋯ 𝑁𝑇−𝑑max ,𝑑max
𝑌𝑇−𝑑max

𝑇 − 𝑑max + 1 𝑁𝑇−𝑑max+1,1
𝑁𝑇−𝑑max+1,2

⋯ NA 𝐶𝑇−𝑑max−1,𝑑max−1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑇 − 2 𝑁𝑇−2,1 𝑁𝑇−2,2 NA NA 𝐶𝑇−2,2

𝑇 − 1 𝑁𝑇−1,1 NA NA NA 𝐶𝑇−1,1

We may consider the timespan between registered infection and (reported) death as a discrete duration time taking
values 𝑑 = 1,… , 𝑑max . Let 𝐷 be the random duration time, which by construction is a multinomial random variable. In
principle, for each death we can consider the pairs (𝐷𝑖, 𝑡𝑖) as i.i.d. and we aim to find a suitable regression model for 𝐷𝑖

given 𝑡𝑖 , including potential additional covariates 𝑥𝑡,𝑑. We make use of the sequential multinomial model (see Agresti,
2010) and define

𝜋(𝑑; 𝑡, 𝑥𝑡,𝑑) = 𝑃(𝐷 = 𝑑|𝐷 ≤ 𝑑; 𝑡, 𝑥𝑡,𝑑).
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Let 𝐹𝑡(𝑑) denote the corresponding cumulated distribution function of 𝐷 which relates to probabilities 𝜋() through

𝐹𝑡(𝑑) = P𝑡(𝐷 ≤ 𝑑) = P(𝐷 ≤ 𝑑|𝐷 ≤ 𝑑 + 1) ⋅ 𝑃(𝐷 ≤ 𝑑 + 1)

= (1 − 𝜋(𝑑 + 1; ⋅)) ⋅ (1 − 𝜋(𝑑 + 2; ⋅)) ⋅ … ⋅ (1 − 𝜋(𝑑max; ⋅))

=

𝑑max∏
𝑘=𝑑+1

(1 − 𝜋(𝑘; ⋅))

(4)

for 𝑑 = 1,… , 𝑑max − 1 and 𝐹𝑡(𝑑max) = 1.
We generalize notation again by including the subscript 𝑔, which in the nowcasting model only distinguishes between

the two age groups 80− and 80+. The available data on cumulated death counts now allow us to estimate the condi-
tional probabilities 𝜋(𝑑; ) for 𝑑 = 2,… , 𝑑max . In fact, the sequential multinomial model allows to look at binary data such
that

𝑁𝑡,𝑑,𝑐 ∼ (quasi-)Binomial
(
𝐶𝑡,𝑑,𝑐, 𝜋(𝑑; 𝑡, 𝑐, 𝑥𝑡,𝑑)

)
(5)

with

logit(𝜋(𝑑; 𝑡, 𝑐, 𝑥𝑡,𝑑)) = 𝑠1(𝑡) + 𝑠2(𝑑) + 𝑠3(𝑑) ⋅ 𝟙age{80+} + 𝑥𝑡,𝑑𝛾, (6)

where

∙ 𝑠1(𝑡) is an overall smooth time trend over calendar days.
∙ 𝑠2(𝑑) is a smooth duration effect, capturing the course of the disease.
∙ 𝑠3(𝑑) is a varying smooth duration effect, capturing interaction between the dynamics of the disease and age, particularly
for the age group 80+. Note that with effect 𝑠3(𝑑) we take into account that for infections with a fatal outcome, the
individual course of the disease for elderly patients might differ compared to younger patients.

∙ 𝑥𝑡,𝑑 are covariates which may be time and duration specific.

By utilizing a quasi-likelihood model (Fahrmeir, Kneib, Lang, & Marx, 2007) as in (5), we account for possible overdis-
persion in the data, which results in adjusted standard errors of the parameter estimates, while, however, the estimates
themselves are the same when compared to the fit of a binomial model.
Assuming that𝐷, the duration between a registered fatal infection and its reported death, is independent of the number

of fatal COVID-19 infections, we obtain the relationship

𝔼(𝐶𝑡,𝑑,𝑐) = 𝐹𝑡,𝑐(𝑑) ⋅ 𝔼(𝑌𝑡,𝑐). (7)

Note further that if we model 𝑌𝑡,𝑐 with a negative binomial model as presented in the previous section, we have no final
observation𝑌𝑡,𝑐 for time points 𝑡 > 𝑇 − 𝑑max . Instead, we have observed𝐶𝑡,𝑇−𝑡,𝑐, which relates to themean of𝑌𝑡,𝑐 through
(7) by 𝐶𝑡,𝑇−𝑡,𝑐 = 𝐹𝑡,𝑐(𝑇 − 𝑡) ⋅ 𝔼(𝑌𝑡,𝑐). Including therefore log 𝐹𝑡,𝑐(𝑇 − 𝑡) as additional offset in model (2) allows to fit the
model as before, but with the nowcasted number of fatal infections included. That means, instead of 𝜆𝑡,𝑟,𝑐 as in (2), the
expected number of fatal infections are now parameterized by 𝜆⋆𝑡,𝑟,𝑐 = 𝜆𝑡,𝑟,𝑐 exp(log 𝐹𝑡,𝑐(𝑇 − 𝑡)), where the latter multi-
plicative term is included as additional offset in the model.

4.2 Results for nowcasting

We fit the nowcasting model (5) with parameterization (6). We include a weekday effect for the registration date of the
infectionwith reference category ‘Monday’. The estimates of the fixed linear effects are shown in Table 2. The fitted smooth
effects are shown in Figure 3. The top panel shows the effect over calendar time, which is very weak and confirms that
the individual course of the disease hardly varies over time. This is supported by the fact that the German healthcare
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TABLE 2 Estimated fixed linear effects (standard errors in brackets) in the nowcasting model (6). Parameters and their standard errors
are given on the log scale. The relative risk is given together with 95% confidence intervals. The reference for the weekdays is Monday

exp(Effect) 95% Confidence interval
Effect (SE) Relative risk of relative risk

Intercept −3.12 (0.045) 0.04 [0.04, 0.05]
Tuesday 0.06 (0.060) 1.06 [0.94, 1.19]
Wednesday 0.11 (0.059) 1.12 [0.99, 1.25]
Thursday 0.20 (0.058) 1.23 [1.09, 1.38]
Friday 0.26 (0.059) 1.30 [1.16, 1.45]
Saturday 0.27 (0.063) 1.31 [1.16, 1.48]
Sunday 0.20 (0.068) 1.22 [1.07, 1.40]

system remained stable over the considered period, and hence survival did not depend on the date on which the infection
was notified.
The bottom panel of Figure 3 shows the course of the disease as a smooth effect over the time between registration of

the infection and death. We see that the probabilities 𝜋(𝑑; ⋅) decrease in 𝑑, where this effect is the strongest in the first
days after registration. Thus, most of the COVID-19 patients with fatal infections are expected to die not long after their
registration date. We also see no overall significant difference in the duration effect between the age groups 80− and 80+,
since the fitted curves 𝑠2(𝑑) and 𝑠2(𝑑) + 𝑠3(𝑑) hardly differ. To some extent, this was already visible from Figure 1. This
shows that, given that a registered case endswith a fatal outcome, the individual’s course of the disease does not depend on
the age group. The effect of 𝑑 becomes easier to interpret by visualizing the resulting distribution function 𝐹𝑡,𝑐(𝑑), where
here 𝑔 refers to the age group 80+. This is shown in Figure 4 for two different values of 𝑡, that is April 13 and May 13. The
plot also shows how the course of the disease hardly varies over calendar time: In fact, the small differences between the
two distribution functions is dominated by the weekday effect, since the red curve is related to a Monday while the blue
one is from a Wednesday.

4.3 Nowcasted number of fatal infections

On the day of analysis, we do not observe the total counts of deaths for recently registered infections. This means that
there are an unknown number of currently infected people which will die at a future point in time. We therefore nowcast
those numbers, that is we predict the prospective deaths which can be attributed to all registration dates up to today. This
is done on a national level, and the resulting nowcast of fatal infections for Germany is shown in Figure 5. For example, on
May 14, 2020 there are 25 deaths reported where the infection was registered on May 5 (red bullets on May 5). We expect
this number to increase to about 50 when all deaths due to COVID-19 for this registration date will have been reported
(green triangles on May 5). Naturally, the closer a date is to the present, the larger the uncertainty in the nowcast will be.
This is shown by the shaded bands. Details on how the statistical uncertainty has been quantified are provided below. In
Section 5, we incorporate the nowcasting results into the mortality model as discussed before, but the nowcast results are
interesting in their own right. The curve confirms that the number of fatal infections is decreasing since the beginning of
April. Note that the curve also mirrors the ‘weekend effect’ in registration, as less infections are reported on Sundays.
Since we are now more than 𝑑max = 40 days after the day of analysis (May 14, 2020), we can assess the predictive

accuracy of our nowcast. Therefore, we also show in Figure 5 the counts of fatal infections, which we observe 40 days
after the respective registration date. We see that our nowcast performs in general very well. However, there are a handful
of registration dates for which the nowcasted values were clearly outside of the prediction intervals. Most remarkably,
the cumulative number of fatal infections for registered infections on April 8, 2020 has dropped after May 14, 2020. This
happens in the rare case in which the database has been modified retrospectively by the local health authorities.

4.4 Uncertainty quantification in nowcasting

In Figure 5, we have shown the nowcasting results alongwith uncertainty intervals shaded in grey. Thesewere constructed
using a bootstrap approach as follows. Given the fitted model, we simulate 𝑛 = 10, 000 times from the asymptotic joint
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F IGURE 3 Estimates of smooth effects in the nowcasting model

normal distribution of the estimated model parameters which results through (4). This leads to a set of bootstrapped
distribution functions  = {𝐹

(𝑖)
𝑡 (𝑇 − 𝑡), 𝑖 = 1, … , 𝑛; 𝑡 = 𝑇 − 𝑑max + 1,… , 𝑇 − 1}. This set is used to compute the simulated

nowcasts𝑌(𝑖)
𝑡 = 𝐶𝑡,𝑇−𝑡∕𝐹

(𝑖)
𝑡 (𝑇 − 𝑡) applying (7), where𝐶𝑡,𝑇−𝑡 is the observed partial cumulated sum of deaths at time point

𝑇 − 𝑡 with registration date 𝑡. The point-wise lower and upper bounds of the 95% prediction intervals for the nowcast for
𝑌𝑡 are then given by the 2.5 and the 97.5 quantiles of the set {𝑌

(𝑖)
𝑡 , 𝑖 = 1, … , 𝑛}, respectively.
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5 RESULTS OF THEMORTALITYMODEL

We first discuss the estimates of the fixed linear effects included in model (2), which are shown in Table 3. We see that
both age and gender play a major role when estimating the numbers of fatal infections. Elderly people exhibit a much
higher death rate from COVID-19, which is, for males (females) in the age group 80+, around 80 times (148 ≈ exp(4.39 +

0.61) times) higher than in the reference age group 35–59. This already hints at a remarkable difference between genders,
where the expected death rate for females in the reference age group is around 60% (≈ 1 − exp(−0.94)) lower than the
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TABLE 3 Estimated fixed linear effects (standard errors in brackets) in the mortality model (2). Parameters and their standard errors are
given on the log scale. The relative risk is given together with 95% confidence intervals. The reference category for age is the age group 35–59.
The reference for the weekdays is Monday

exp(Effect)
Relative risk

95% Confidence interval
of  relative riskEffect (S.E.)

corresponding death rate for males. When considering the total gender-related numbers of fatal infections in the age
group 80+ (see Figure 1), the difference between the genders is seemingly very small. However, by respecting the district-
, gender- and age-specific population sizes in our model we see that the death rate of females in the age group 80+ is
still around 28% (≈ 1 − exp(−0.94 + 0.61)) lower when compared to the male population in this age group. Furthermore,
we see that significantly less deaths are attributed to infections registered on Sundays compared to weekdays, due to the
existing reporting delay during weekends.
Ourmodel includes a global smooth time trend representing changes in the death rate sinceMarch 26. This is visualized

in Figure 6. The plotted death rate is scaled to give the expected number of deaths per 100,000 people in an average district
for the reference group, that is males in the age group 35–59. Overall, we see a peak in the death rate on April 3 and a
downwards slope until the end of April. However, our nowcast reveals that the rate remains constant since beginning of
May. Note that such developments cannot be seen by simply displaying the raw death counts of these days. The nowcasting
step inevitably carries statistical uncertainty, which is taken into account in Figure 6 by including best and worst case
scenarios. The latter are based on bootstrapped confidence intervals, where details are provided in Section 6.3 later in
the paper.
Our aim is to investigate spatial variation and regional dynamics. To do so, we combine a global geographic trend for

Germany with unstructured region-specific effects, where the latter uncovers local behaviour. In Figure 7, we combine
these different components and map the fitted nowcasted death counts related to COVID-19 for the different districts
of Germany, cumulated over the last 14 days before the day of analysis, that is May 14, 2020. While in most districts of
Germany, the death rate is relatively low, some hotspots can be identified. Among those, Traunstein and Rosenheim (in
the south-east part of Bavaria) are the most evident, but Greiz and Sonneberg (east and south part of Thuringia) stand
out as well, to mention a few. A deeper investigation of the spatial structure is provided in Section 6, where we show the
global geographic trend and provide maps that allow to detect new hotspot areas, after correcting for the overall spatial
distribution of the infection.

6 MORE RESULTS ANDMODEL EVALUATION

6.1 Spatial effects

It is of general interest to disentangle the two spatial components that we introduced in Section 3. We visualize the fitted
global geographic trend 𝑚2(⋅) for Germany in Figure 8. The plot confirms that, up to mid May 2020, the northern parts
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F IGURE 6 Fitted smoothed expected fatal COVID-19 infections per 100,000 inhabitants in the reference group (males aged between 35
and 59 in an average district) by registration date including 95% confidence bands as shaded area. Uncertainty resulting from the nowcastmodel
is shown as dashed coloured lines

of the country are less affected by the disease in comparison to the southern states. The two plots in Figure 9 map the
region-specific effects, that is the predicted long-term level of a district 𝑢𝑟0 (left-hand side) and the predicted short-term
dynamics 𝑢𝑟1 (right-hand side). Both plots uncover quite some region-specific variability. In particular, the short-term
dynamics 𝑢𝑟1 (right plot) pinpoint districts with unexpectedly high nowcasted death rates in the last two weeks, after
correcting for the global geographic trend and the long-term effect of the district. Some of the noticeable districts have
already been highlighted in Section 3 above, but we can here detect further districts which are less evident in Figure 6: For
instance, Steinfurt (in the north-west of North Rhine-Westphalia), Olpe (southern North Rhine-Westphalia) and Gotha
(center of Thuringia) all show a relatively high rate of fatal infections.

6.2 Age group-specific analyses

A large portion of the registered fatal infections related to COVID-19 stems from people in the age group 80+. Locally, high
numbers are often caused by an outbreak in a retirement home. Such outbreaks apparently have a different effect on the
spread of the disease, and the risk of an epidemic infection caused by outbreaks in this age group is limited. Thus, the death
rate among elderly people could vary differently across districts when compared to regional peaks in the death rate of the
rest of the population. In order to respect this, we decompose the district-specific effects𝒖𝑟 in (2) into𝒖80−𝑟 = (𝑢80−𝑟0 , 𝑢80−𝑟1 )⊤

for the age group 80− and 𝒖80+𝑟 = (𝑢80+𝑟0 , 𝑢80+𝑟1 )⊤ for the age group 80+, where the age group 80− consists of the aggregated
age groups 15–34, 35–59 and 60–79. We put the same prior assumption on the random effects as we did in (3), but now the
variance matrix that needs to be estimated from the data has dimension 4 × 4.
The fitted age group-specific random effects are shown in Figure 10, where the 𝒖80−𝑟 are shown in the top panel and

the 𝒖80+𝑟 in the bottom panel. Most evidently, the variation of the random effects is much higher in the age group 80+
when compared to the younger age groups, as more districts occur which are coloured dark blue or dark red, respectively.
When comparing the district-specific short-term dynamics of the last 14 days (𝑢𝑟1) in Figure 10 to those in Figure 9, we
recognize that in most of the districts which recently experienced very high death intensities (with respect to the whole
period of analysis), these stem from the age group 80+. As mentioned before, this can often be explained by outbreaks in
retirement homes.
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F IGURE 7 Nowcasted fatal COVID-19
infections per 100,000 inhabitants in each
district in the timespan from Thursday, April
30 until Wednesday, May 13, 2020

6.3 Additional uncertainty in the mortality through the nowcast

When fitting the mortality model (1), we included the fitted nowcast model as offset parameter. This apparently neglects
the estimation variability in the nowcasting model, which we explored via bootstrap as explained in Section 4.4 and visu-
alized in Figure 5. In order to also incorporate this uncertainty in the fit of the mortality model, we refitted the model
using (a) the upper end and (b) the lower end of the prediction intervals shown in Figure 5. It appears that there is little
(and hardly any visible) effect on the spatial components, which is therefore not shown here. But the time trend shown
in Figure 6 does change, which is visualized by including the two fitted functions corresponding to the 2.5% and 97.5%
quantile of the offset function. We can see that the estimated uncertainty of the nowcast model mostly affects the last 10
days, with a strong potential increase in the death rate mirroring a possible worst case scenario.

6.4 Auto-correlation of residuals in the mortality model

In the mortality model (2), we did not include an epidemic component accounting for possible temporal auto-correlation,
as it is often done in endemic-epidemicmodels (see, e.g., Meyer et al., 2017). To check for possibly omitted auto-correlation
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F IGURE 8 Smooth spatial effect of the
death rate in Germany

in ourmodel, we explore the temporal correlation of the Pearson residuals in themortalitymodel (2). To do so, we compute
the auto-correlation function (ACF) for all lags 𝑘 = 0,… , 𝑇 − 1. The corresponding ACF plot is shown in Figure 11. Appar-
ently, the results do not show any pattern of auto-correlation and support the suitability of our model. We emphasize,
however, that infection dynamics are included in the model through the time trend 𝑚1(𝑡). Moreover, even if we ignore
possibly existing auto-correlation, this time trend𝑚1(𝑡) is still estimated unbiasedwith penalized spline smoothing, which
is robust against misspecification of the auto-correlation structure (Krivobokova & Kauermann, 2007).
We also think that the epidemic component is generally less impactful when modelling fatal infections in comparison

to modelling the number of registered infections. The time between person-to-person transmission of the virus and a fatal
outcome of a COVID-19 infection is much larger than the time until the registration of the infection, as shown in Figure 1,
and hence any auto-correlation is rather indistinct for fatal cases.

7 DISCUSSION

The paper presents a general approach for monitoring the dynamic behaviour of COVID-19 infections on a small-area
level purely based on the analysis of the number of observed death counts. This in turn means that the results are less
dependent on testing strategies, which may vary by region and over time.
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F IGURE 9 Region-specific long-term level (left-hand side) and short-term dynamics of the 14 days prior to May 14, 2020 (right-hand side)
of fatal COVID-19 infections

In addition, patients with fatal infections typically require intensive medical care and are therefore relevant in the
planning of clinical capacities of the local health system.An analysis of fatal infections is especially interesting in situations
in which reliable information on hospitalization is not available, as in the considered timespan of the COVID-19 pandemic
in Germany.
The described nowcasting approach enables us to estimate the number of deaths following a registered infection even

if the fatal outcome has not occurred yet, providing an up-to-date picture of the situation. The results of the nowcasting
model confirm that the individual course of the disease for fatal infections did not change over calendar time nor did it
differ by gender. More in particular, it uncovers that in Germany, during the considered timespan, elderly patients had, in
the case of fatal infections, about the same course of the disease as younger patients.
Our analysis of the nowcasted number of fatal infections on a regional level allows to draw conclusions on the current

dynamics of the disease on the spatial dimension. By separately estimating, for each district, a long-range effect whichmir-
rors the overall situation as well as a short-term dynamic effect, we can timely identify districts with unexpectedly high
nowcasted death rates. An additional interaction for elderly people allows us to distinguish between outbreaks which
might be attributed to activity in retirement homes and those due to unexpected activities in the general population.
Mapping the general pattern of the spread of the disease in Germany confirms that different regions are affected to differ-
ent extents, with southern and western regions being generally more affected than northern states. In addition, a global
smooth time trend captures the changes in death rate, showing the peak at the beginning of April and a constant decrease
since then. Thanks to the implemented nowcasting, the time trend can be estimated up to the date of analysis. This spa-
tially differentiated picture would not be achievable through a simple monitoring of district-specific observed deaths.
Anatural next stepwould nowbe to consider the nowcasted fatal infections in relation to the number of newly registered

infections, which is, in contrast, highly dependent on both testing strategy and capacity.We consider this as possible future
research, but the proposedmodel allows to explore data in this direction. Thismight ultimately help us in shedding light on
the relationship between registered and undetected infections as well as on the effectiveness of different testing strategies.
There are several limitations to this study, whichwewant to address as well. First and utmost, even though death counts

are, with respect to cases counts, less dependent on testing strategies, they are not completely independent from them. This
applies in particular to the handling of post-mortem tests. We therefore do not claim that our analysis of death counts is
completely unaffected by testing strategies. Second, a fundamental assumption in themodel is the independence between
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F IGURE 10 Region-specific long-term level (left-hand column) and short-term dynamics of the 14 days prior to May 14, 2020 (right-hand
column) of fatal COVID-19 infections for the age groups under 80 (80−, upper row) and above 80 (80+, bottom row)

the course of the disease (on the population level) and the number of infections. Overall, if the local health systems have
sufficient capacity and triage can be avoided, this assumption seems plausible, but it is difficult or even impossible to
prove the assumption formally. However, the results of the nowcasting model empirically show a rather stable course
of the disease, supporting our assumption. Furthermore, the registration of a COVID-19 case is related to the district of
residence, while the infection does not necessarily occur in the district where the infected person resides. However, due
to a lack of data we cannot explore this point further. Also, in the considered timespan, the mobility in the population has
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been rather low due to governmental restrictions. Even though the model focuses on regional aspects of the pandemic,
the nowcasting itself is carried out on a national level, due to sparse data. Given that our results show that the course of
the disease from registration to death in Germany did not notably depend on age or gender, we do not expect it to depend
on place of residence either.
A general limitation results through the availability of information. Our analyses are based on available data of all

registered COVID-19 infections in Germany together with the information on fatalities, which is published daily by the
RKI. While these data allow for an analysis of the occurrence of the disease in Germany, it lacks further detailed patient-
specific information, for example on clinical aspects or on the differentiation between death with or because of COVID-19.
This issue is shared with many other public disease registers. Note also that the methods we are proposing in this paper
are not necessarily restricted to the use case of German COVID-19 data. For the purpose of applying our methodology to
other countries, the data need to be in the same format as illustrated in Table 1, that is death counts need to be available
in an aggregated form stratified by age (group), gender and district. For an appropriate interpretation of the results, it is
critical that the reference date of every infection with a fatal outcome (here: registration date) corresponds to a time point
at the early stages of the course of the disease. This could also be the date of infection with COVID-19, if known. The
second date, which is needed for our nowcasting approach, is the reporting day of each fatal infection. While in Germany,
this information can be deduced by considering the COVID-19 database daily over a longer period, the health authorities
in other countries might supply historical reporting dates in a consecutively updated database.
Finally, the proposed approach demonstrates that valuable insight into the state and the dynamic of the disease can

be obtained by disentangling spatial variation into a global pattern, district-specific long-term effects and current short-
term dynamics in a spatio-temporal model. A particular virtue of the presented modelling approach over other proposals
is that it also adjusts for the age and gender structure of the local population. This can provide relevant support for the
monitoring of this new disease and can assist local health authorities in the planning of infection control measures as well
as healthcare system capacities, in a further step towards the understanding and control of the COVID-19 pandemic.
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Abstract
The case detection ratio of coronavirus disease 2019 (COVID-19) infections varies
over time due to changing testing capacities, different testing strategies, and
the evolving underlying number of infections itself. This note shows a way of
quantifying these dynamics by jointly modeling the reported number of detected
COVID-19 infections with nonfatal and fatal outcomes. The proposed method-
ology also allows to explore the temporal development of the actual number of
infections, both detected and undetected, thereby shedding light on the infec-
tion dynamics.We exemplify our approach by analyzingGerman data from 2020,
making only use of data available since the beginning of the pandemic. Ourmod-
eling approach can be used to quantify the effect of different testing strategies,
visualize the dynamics in the case detection ratio over time, and obtain infor-
mation about the underlying true infection numbers, thus enabling us to get a
clearer picture of the course of the COVID-19 pandemic in 2020.

KEYWORDS
case detection ratio, COVID-19, dark figure of infections, generalized additive models, penal-
ized splines

1 INTRODUCTION

Originating fromWuhan, China, coronavirus disease 2019 (COVID-19) developed to become aworldwide pandemic in the
spring of 2020 (Velavan & Meyer, 2020). Starting from the very beginning of this unprecedented health crisis, the issue of
case detection, while always being at the center of scientific and public discourse, has been all but transparent. Knowing
how many infections are really present in the population would be of paramount importance, and researchers have tried
to tackle the problem in several different ways. Early in the epidemic wave, the ratio of undetected COVID-19 cases was
likely to be high, that is, 5–20 times higher than the number of confirmed cases (e.g., Li et al., 2020 or Wu et al., 2020).
The problem of discovering the case detection ratio (CDR) is tightly intertwined with the issue of uncovering the true
fatality ratio of the disease, as knowledge on one of those two unknown quantities would provide information about the
other. A natural experiment that allowed to obtain initial estimates of both the fatality ratio and the CDR occurred with
the outbreak on the cruise ship “Diamond Princess” (Mizumoto et al., 2020). During the early stages of the pandemic, the
actual percentage of the population infected for 11 European countries was deduced from early estimates of the mortality
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rates (Flaxman et al., 2020). Moreover, Aspelund et al. (2020) used Bayes arguments applied to testing data from Ireland
to estimate the CDR in the order of 7–11% at the beginning of the pandemic, and in the order of 10–20% after that. The
argument is based on relating the number of tests and the share of positive tests. A similar approach has been pursued
making use of Canadian data (Benatia et al., 2020). The problem of estimating the true numbers of COVID-19 infections
has also been discussed from a purely statistical point of view, where the CDR was related to the fatality ratio (Manski &
Molinari, 2020). A capture–recapture approach to estimate the total number of COVID-19 cases was proposed by Böhning
et al. (2020) and Rocchetti et al. (2020), where the latter derive an upper bound for the cumulative number in mid-April
for 10 European countries. The ratio of the upper bound and the observed number of cases ranges from around 4 (Greece)
to around 8 (France). The capture–recapture method makes only use of publicly available data on COVID-19 cases and
deaths, which also holds for the method that we present in this note. Here, we assume that the number of infected can be
split into detected and undetected infections. In SIDARTHEmodels (Giordano et al., 2020), there is additional distinction
into either asymptomatic or symptomatic cases, which we ignore here since the database that we use does not reliably
contain these numbers. However, it should be noted that pre- and asymptomatic individuals have a significant impact
on the spread of a pandemic disease, especially in the younger population (Stella et al., 2020). Thereby, presymptomatic
individuals play a more significant role than asymptomatic ones (Buitrago-Garcia et al., 2020). Nonetheless, the number
of asymptomatic cases can reduce the reproduction value of a disease because a background immunity is established, as
shown for influenza transmission (Mathews et al., 2007).
Overall, underreporting appears to be an overarching problem, which plays a central role when estimating the CDR

for COVID-19 (Russell et al., 2020). The importance of assessing the detection ratio and its effect on predictions of future
infections has been demonstrated in mathematical simulation studies (Fuhrmann & Barbarossa, 2020). In this context,
different national underreporting ratios have been compared (e.g., Rahmandad et al., 2020 or Jagodnik et al., 2020) and a
general discussion and survey on assessing the infection fatality ratio (IFR) was conducted (Levin et al., 2020). In general,
it is clear that the CDR changes greatly over time depending on testing strategy and capacities, which vary over time
and across different regions. In Germany, the number of tests has increased considerably since the pandemic outbreak in
March 2020. The testing strategy has also been adjusted several times: In the beginning,mainly individuals with symptoms
were being been tested, whereas in later phases, a very high number of tests have been performed on travelers returning
from foreign countries and contact persons of COVID-19-positive individuals.
In this note, we explore the dynamics in the CDR using publicly available registry data on COVID-19 infections in

Germany from March to December 2020 provided by the Robert-Koch-Institute (RKI). It is important to mention that
in Germany’s first months of the pandemic, no mass or systematic testing of the population had taken place. Our model
therefore only makes use of a limited amount of information. We propose to jointly model fatal and nonfatal infections
using a dynamic generalized linear mixed model with smooth random effects (see, e.g., Durbán et al., 2005; Durban &
Aguilera-Morillo, 2017; Wood, 2017). The major advantage of our approach is that it only relies on the assumption that
age-specific COVID-19 fatality ratios, while unknown, have not substantially changed over time.Whether this assumption
is valid is currently discussed (Harris, 2020; Kip et al., 2020) and the possibility of differing fatality ratios in the second
wave has been considered as well (Aspelund et al., 2020; Kenyon, 2020). To assess the impact of this assumption on our
results, we provide sensitivity analyses and a simulation study in the Supporting Information, which demonstrate that
our approach is sufficiently robust if there is no abrupt change in the infection fatality ratio.
Overall, our approach allows investigating the following. First, we explore how the case detection rate has changed over

time, how it varies among different age groups, and if and how it changes in different regions of Germany, depending on
infection dynamics and different testing strategies. Second, the model also provides an estimate of the dynamics in the
true number of infections, regardless of whether they have been detected or not. All in all, this provides insight into the
course of the COVID-19 pandemic, built exclusively on registry data.
The remainder of the paper is structured as follows. We describe the data constellation in depth in Section 2, and we

propose our model in Section 3. In Section 4, we show the results of our analyses and provide extensive interpretations,
whereas Section 5 concludes the paper with some implications and limitations of our study.

2 DATA

Wemakeuse of COVID-19 data openly provided by theRKI, theGerman federal government agency and scientific institute
responsible for health reporting, disease control, and prevention in humans (Esri Deutschland GmbH, 2020). The data,
exemplified in Table 1, contain cumulated counts of newly registered, laboratory-confirmed COVID-19 cases in Germany
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TABLE 1 Illustration of the data structure. To facilitate reproducibility, the original column names used in the RKI dataset are given in
brackets below our English notation

District Age group Gender Cases Deaths Registration date
(Landkreis) (Altersgruppe) (Geschlecht) (Anzahl Fall) (Anzahl Todesfall) (Meldedatum)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Munich City 60–79 F 26 0 September 8, 2020
Munich City 60–79 M 21 1 September 8, 2020
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

for each calendar day stratified by age group (0–4, 5–14, 15–34, 35–59, 60–79, or 80+ years), gender (male/female), and
district (412 in total). Furthermore, for all registration dates and strata, the number of deaths associated with COVID-19
transmitted to the RKI by the local health authorities of the respective district is recorded. Note that the date of death is
not provided, but for each death, we have the date when the infection was detected and confirmed by a (PCR) test. The
database of the RKI is updated every morning with the new numbers transmitted to it from the local health authorities.
In this study, we only consider data entries with registration dates ranging from calendar week (CW) 10 (mid-March)

to CW 53 (end of December) of the year 2020. For earlier weeks, the number of tests being positive was not large enough
to draw conclusive results. On the other hand, the German vaccination campaign started at the very end of 2020. As this
increasingly reduces the IFR, we only include infections that were registered in 2020. Consequently, the final outcome
of almost all of these infections is known today. Moreover, although the data are given on a daily resolution, we here
aggregate it into weekly data, which renders reporting delays occurring over the weekends and weekly reporting cycles
irrelevant to our analysis, leading to more stable results. Since for children aged 14 years and younger, barely, any fatalities
have been recorded, we excluded these age groups from our analysis.
To give a first insight into the data at hand, we plot in Figure 1 the raw numbers of cases reported by the official health

authorities over time together with the raw number of fatalities stratified by age group. This is shown in the top four plots
on a log-scale. Both the number of registered cases and that of fatal cases (indexed by registration date of the infection,
and not by day of death) peak in CW 13 for the two younger age groups and in CW 14 for the two oldest age groups,
respectively. Over the following weeks, these numbers decrease. The small peak in CW 25 was caused by an outbreak in
the district of Gütersloh, which is explored in more depth later on in the paper. From CW 28 onward, we resume seeing
an exponential increase of registered cases, whereas the numbers of registered fatal cases only start to rise 7 weeks later,
also exponentially. By the end of the year 2020, we see a slight decrease in registered infections.
The raw case fatality ratio, calculated as the ratio of fatal cases over total registered cases, stratified by age group, is

shown at the bottom of Figure 1. The raw case fatality ratio for the age group 80+ generally dropped from CW 10 onward
and fluctuated mostly between 10% and 15% from week 25 onward. However, since CW 40 the case fatality ratio in this
age group steadily climbed up to more than 20%. For the age group 60–79, the case fatality ratio has peaked in CW 16
and gradually decreased to 2.5%. Here, we also observe a steady increase toward the end of 2020, which results in more
than a doubling of the case fatality ratio within 10 weeks. All other age groups exhibit relatively low raw case fatality
ratios throughout.
Note that the raw data do not contain undetected cases, and therefore cannot provide a complete picture of the actual

infection numbers, nor do these plots provide any information about the CDR. In the following, we develop a statistical
model that enables us to estimate the relative changes in the CDR and the true infection numbers over time.

3 METHODS

When describing the dynamics of the COVID-19 pandemic, the number of interest is the true count of newly infected
persons in a cohort, which shall be denoted by 𝐼𝑡 for week 𝑡 = 1, … , 𝑇. Note that 𝐼𝑡 remains unobservable. However, the
number can be decomposed into the number of detected and reported cases𝐷𝑡 and the unknownnumber of newly infected
persons, who have not been tested and remain undetected, which we can call the “dark number,” 𝑈𝑡. Hence, we have
𝐼𝑡 = 𝐷𝑡 + 𝑈𝑡, and 𝐷𝑡∕𝐼𝑡 defines the CDR, which, however, remains unknown due to 𝑈𝑡 being unknown.
Note that the index 𝑡 indicates the time point onwhich the infection took place,which is usually unknown. The infection

is eventually detected through a positive test at a later time point 𝑡 = 𝑡 + 𝑑. As 𝑑 is often unknown, in particular, if the
spread of the disease is diffuse, we will conceptually omit 𝑑 in the following, which means that we set 𝑡 equal to the
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F IGURE 1 Raw data: registered cases of COVID-19 infections and registered fatal cases on a weekly basis for Germany. Top figure:
Absolute numbers on a log-scale stratified by age group. Bottom figure: Case fatality ratios (= fatal cases / registered cases) stratified by age
group

registration date when an infection is confirmed through a test. This time point is the registration date described in the
previous section. Generally, this approach is justifiable for COVID-19 infections because the range of delay 𝑑 is small
compared to the time range 𝑇 of our data analysis (Mallett et al., 2020).
From today’s perspective, we have uncensored knowledge on the outcomes of all reported cases 𝐷𝑡. That is, we know if

they ended fatally or if they recovered. Consequently, the reported cases are composed of recovered (nonfatal) outcomes𝑅𝑡
and fatal outcomes 𝐹𝑡, that is, 𝐷𝑡 = 𝑅𝑡 + 𝐹𝑡. Given this, the total number of infected persons splits into 𝐼𝑡 = 𝑅𝑡 + 𝐹𝑡 + 𝑈𝑡.
The expected number of reported fatal cases 𝐹𝑡 as well as the expected number of recovered cases 𝑅𝑡 are fractions of the

total number of infections 𝐼𝑡. This leads to

𝔼(𝐹𝑡 ∣ 𝐼𝑡) = 𝐼𝑡𝑎 and 𝔼(𝑅𝑡 ∣ 𝐼𝑡) = 𝐼𝑡𝑐𝑡, (1)
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where 0 < (𝑎 + 𝑐𝑡) < 1. Here, quantity 𝑎 defines the infection fatality ratio (IFR), whereas 𝑐𝑡 is the CDR of nonfatal (recov-
ered) infections. Note that these nonfatal infections also include mild and symptom-free cases. Thus, if testing capacities
are increased or the testing strategy is changed, 𝑐𝑡 will change as well, which is incorporated in the notation by time index
𝑡. In contrast, the IFR 𝑎 will be assumed to remain constant over time. This can be justified by the fact that fatal cases,
due to their severeness, are likely to be detected independently of any testing policy. This also includes, to some extent,
postmortem tests.
With this notation, we obtain the time-dependent case detection ratio CDR𝑡 = 𝑎 + 𝑐𝑡. Note that for the dark number,

that is, the latent number of undetected infections 𝑈𝑡, it holds that 𝔼(𝑈𝑡 ∣ 𝐼𝑡) = (1 − CDR𝑡)𝐼𝑡. It would, of course, be
favorable to estimate the number of undetected infections𝑈𝑡 via estimation of 𝑎 and 𝑐𝑡. However, when only the reported
fatal and nonfatal cases 𝐹𝑡 and 𝑅𝑡 are known, these two ratios cannot be estimated due to nonidentifiability issues, which
we will demonstrate below. Nonetheless, with the data at hand, we are able to estimate the ratio 𝑐𝑡∕𝑎. To see this, we
rewrite the above model in an equivalent form by defining a binary covariate 𝑥 ∈ {0, 1} and by specifying the response
variable 𝑌𝑡 through

𝑌𝑡 ∣ 𝑥 =

{
𝐹𝑡 for 𝑥 = 0
𝑅𝑡 for 𝑥 = 1.

This notational trick allows us to rewrite the above relations (1) as a regression model

𝔼(𝑌𝑡 ∣ 𝐼𝑡, 𝑥 = 0) = 𝔼(𝐹𝑡 ∣ 𝐼𝑡) = exp{log(𝐼𝑡𝑎)} = exp{𝑉𝑡 + 𝛼}, (2)

𝔼(𝑌𝑡 ∣ 𝐼𝑡, 𝑥 = 1) = 𝔼(𝑅𝑡 ∣ 𝐼𝑡) = exp{𝑉𝑡 + 𝛾𝑡}, (3)

where𝑉𝑡 = log(𝐼𝑡), 𝛼 = log(𝑎), and 𝛾𝑡 = log(𝑐𝑡). Equations (2) and (3) can, in turn, be summarized into a single regression
model formula

𝔼(𝑌𝑡 ∣ 𝑉𝑡, 𝑥) = exp{𝑉𝑡 + 𝛼 + 𝑥(𝛾𝑡 − 𝛼)}. (4)

Note that 𝐼𝑡 and hence𝑉𝑡 = log(𝐼𝑡) remain unobserved. We employ a Bayesian view andmodel𝑉𝑡 as normally distributed
randomeffects𝑉𝑡 ∼ 𝑁(𝜇𝑡, 𝜎2). Still, the parameters inmodel (4) are not identifiable, because any shift in𝜇𝑡 and amatching
negative shift in 𝛼 and 𝛾𝑡, respectively, results in the same model. This demonstrates the identifiability problem, which
we have mentioned above. Hence, we are neither able to estimate the fatality ratio 𝑎 = exp(𝛼) nor the time-dependent
ratio 𝑐𝑡 = exp(𝛾𝑡)with the data at hand. However, we can shift 𝜇𝑡 such that the integral of 𝜇𝑡 = 𝜇𝑡 − 𝑘 is equal to zero and
define the global intercept 𝛽0 = 𝛼 + 𝑘, which allows to rewrite (4) in an identifiable form (see Wood, 2017) to obtain the
final regression model

𝔼(𝑌𝑡 ∣ 𝑉𝑡, 𝑥) = exp(𝑉𝑡 + 𝛽0 + 𝑥𝛽𝑡) and 𝑉𝑡 ∼ 𝑁(𝜇𝑡, 𝜎2) for 𝑡 = 1, … , 𝑇, (5)

where 𝛽𝑡 = 𝛾𝑡 − 𝛼 and exp(𝛽𝑡) = 𝑐𝑡∕𝑎. With this model, we can now explore the dynamics in the CDR. For two different
time points 𝑡1 and 𝑡2, we have using the small 𝑜() notation

CDR𝑡2
CDR𝑡1

=
𝑐𝑡2 + 𝑎

𝑐𝑡1 + 𝑎
=
𝑐𝑡2
𝑐𝑡1
{1 + 𝑜(𝑎)} =

exp(𝛽𝑡2)

exp(𝛽𝑡1)
{1 + 𝑜(𝑎)} ≈

exp(𝛽𝑡2)

exp(𝛽𝑡1)
. (6)

The latter approximation in (6) holds as long as the fatality rate 𝑎 is small, which holds for COVID-19. Consequently,
𝛽𝑡2 − 𝛽𝑡1 can serve as a proxy for log(CDR𝑡2 ) − log(CDR𝑡1 ), and exp(𝛽𝑡2 − 𝛽𝑡1) is a proxy for the relative change in the case
detection ratio CDR𝑡2∕CDR𝑡1 .
Based on these considerations, we see that it is necessary to model the dynamics in time 𝑡more appropriately to derive

stable estimates for the CDR. It is natural to assume that changes in the CDR over time do not occur suddenly but grad-
ually. For instance, test capacities are slowly increased and test strategies are gradually changed. To accommodate this in
our model (5), we fit 𝛽𝑡 by a smooth function in time leading to a time-varying coefficient model (Hastie & Tibshirani,
1993). We also induce smooth dynamics on the random component, leading to a time-varying random effect (Durban &
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F IGURE 2 Dynamics of the true infection numbers on the log-scale for different age groups: The smooth random effects 𝑉𝑡 . The shaded
areas represent 95% confidence bands

Aguilera-Morillo, 2017). These modifications lead to an identifiable and dynamic mixed regression model, for which we
use a negative-binomial distribution for 𝑌𝑡 with a constant dispersion factor. The entire model can be fitted with standard
software: All of our analyses were performed in R (R Core Team, 2013) and the dynamic mixed regression model is fitted
using the R-packagemgcv (Wood, 2017).
We apply this modeling approach using the reported data from CW 10 (beginning of March) up to CW 53 (final week

of 2020), stratified by different age groups, to visualize the dynamics in the real infection numbers and the CDR from the
beginning of the pandemic up to the beginning of the second wave. To assess the robustness of the approach concerning
the assumption of time-constant and age-specific fatality ratios, we also refit the model when subdividing the data into
different time frames. The results of this analysis are shown in the Supporting Information.

4 RESULTS

4.1 Model estimates

As the IFR 𝑎 depends on age, we fit separate models for each of the relevant age groups defined by the RKI, that is, 15–34,
35–59, 60–79, and 80+ years. The dynamics in the true infection numbers on the log-scale, represented by the fitted smooth
dynamic random effects 𝑉𝑡, are displayed in Figure 2. These curves mirror the relative change in the actual number of
infected (detected and undetected) over time. Note that the absolute numbers cannot be interpreted on their own due
to the mentioned identifiability issues. We therefore shift the curves such that 𝑉CW10 = 0. We can see that the relative
course of the pandemic was very similar across all age groups, where a peak is reached around CW 14. However, the peak
for the younger age groups is estimated to be around 1 week earlier than for the older age groups, that is, in CW 13. An
explanation for this finding is that the younger age groups have been more affected by the lockdown, which started in
Germany in CW 12. Looking at the difference between themaximummax𝑡 𝑉𝑡 and theminimum of𝑉𝑡 during the summer
months, that is,min20≤𝑡≤40 𝑉𝑡, we see that this difference increases with age, that is, the relative decline in true infections
numbers after the first wave and the relative increase toward the second wave, respectively, was less pronounced in the
younger age groups. Also eye-catching is the increase in infections around CW 25 for people below 60 years of age. This is
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F IGURE 3 Dynamics in the case-detection ratio for different age groups: The normalized time-varying coefficients 𝛽𝑡 . The function
values on the exp-scale (right y-axes) are the relative change in the case-detection ratio (CDR) with respect to calendar week 10

the aforementioned outbreak in the district of Gütersloh, which occurred in an industrial slaughterhouse and has mainly
affected people of the working age. From CW 35 (end of August), all curves start rising steadily, where the steepest rise is
seen for the oldest age group, whereas the rise is flatter for the younger age group. This shows that the second wave of the
pandemic had already begun around CW 35. Moreover, Figure 2 shows that in all age groups but the youngest one, the
peak of the second wave has surpassed the peak of the first wave.
Next, we look at the dynamics in the CDR. Figure 3 shows the fitted time-varying coefficients 𝛽𝑡 together with corre-

sponding 95% confidence bands. Again, the absolute level is not identifiable, so these curves are normalized such that
𝛽CW10 = 0. Hence, the function values on the exp-scale (right y-axes) give the relative change in the CDR with respect to
CW 10. The CDR in the age group 80+ has risen monotonically since the beginning of the pandemic up to CW 33, where
our model estimates the CDR to be more than four times higher as in mid-March. Note that in later weeks, the CDR
among the elderly decreased again to the level of April/May. In contrast, for people aged 60–79, the CDR first dropped by
about 70%, reaching its bottom as the pandemic passed its peak in Germany in CW 16. We subsequently see a monotonic
increase, with the CDR becoming 1.5 times higher compared to the beginning of the pandemic. However, in this age group,
the CDR has been more than halved from CW 40 up to the end of 2020 again. The dynamics in the CDR in the population
aged 35–59 years are similar to those of the 60–79 years old: After a drop during March and April (CW 10–CW 16), the
CDR increases, in mid-September, to nearly three times what it was in CW 10. For the youngest age group (aged 15–34),
we also see a rise in the CDR over time, which seems substantial. However, the confidence bands in this age group are
relatively wide because this age group is not as prone to fatal outcomes as older age groups.

4.2 Interpretations

For the population aged 80 years and older, the CDR had increased until late summer, when it started to stagnate before
slightly decreasing again. As the CDR can be at most 100%, and given that the relative change in this age group was about
as high as a factor of 4 in CW 33 compared to March, we can conclude that at the beginning of the pandemic, the CDR
among the population of 80 years and older could not have beenmore than 25%.Moreover, considering the relative change
in the CDR, we can adjust the numbers from the peak in the first wave to be comparable, for example, to the numbers in
week 40. To exemplify this, note that in week 40, the CDR for the age group 80+ was 2.3 times higher as in CW 15, at the
peak of the first wave. This ratio results from the plot in Figure 3 (bottom right) by taking 𝛽CW15 = 0.4 and 𝛽CW40 = 1.25
and calculating the ratio exp(1.25 − 0.4) = 2.3. In week 40, we had about 11 new infections per week per 100,000 reported
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in this age group. In CW 15, this number had become 80. However, in week 15, the CDRwas much lower as in CW 40, and
thus, we would have seen 2.3 ⋅ 80 = 184 cases per 100,000 in this age group 80+ if we had the same CDR in CW 15 as in
CW 40.
For the population aged 60–79 years, the CDR between the minimum in CW 16 and its maximum in calendar week 34

changed by a factor of around 5. From this, we can deduce that around the peak of the first wave in Germany, at most
20% of the infections were detected, whereas at least 80% remained unseen. To be able to compare numbers from the first
wave to those in autumn, we apply a similar calculation as above. This results in an estimated number of at least 5 ⋅ 17 =
85 cases per 100,000, where only 16 cases per 100,00 have been observed in CW 16.
In the age group 35–59, the relative change of CDR during the minimum in CW 16 and the maximum in CW 36 was

as high as a factor of 5 as well. Again, the same calculation shows that the 22 detected infections per 100,000 in week 16
would increase to 5 ⋅ 22 = 110 cases per 100,000 if we would have had the CDR in week 16 as it was in week 36.
A general question in the pandemic is whether extensive testing leads to a high CDR. Applying our model to regional

data allows us to investigate this question. The Supporting Information compares separate model fits for the two most
populous German states, North-Rhine-Westphalia and Bavaria. The two states implemented different testing strategies
over the summer months. Although in Bavaria, public test stations were opened in summer, particularly at the borders
on the motorways, such fine screening of holiday returnees was not pursued in North-Rhine-Westfalia. Our model allows
assessing and, in particular, quantifying how such different testing strategies lead to different CDRs in these two regions.
The results quantify by how much the dark figure was reduced in relationship with the Bavarian testing strategy.

5 DISCUSSION

Raw reported case numbers andmeasures derived from them, such as the case fatality ratio, are prone to changes in testing
strategies and test capacities, which also influence the CDR. Comparisons between raw case numbers over time therefore
need to be interpreted with care. The case-fatality ratio, calculated from the raw number of reported deaths related to
COVID-19 divided by reported cases, is also impaired because deaths occur with a time delay after registration, meaning
that deaths registered today correspond to infections that have been reported up to several weeks ago. Our method allows
us to uncover relative changes in the CDR over different pandemic phases. Moreover, by shedding light on the number
of undetected cases, we can describe the dynamics in the true number of COVID-19 infections for Germany from March
2020 until December 2020. The approach is based on publicly available data on registered cases and does not rely on
simulations or additional survey data. We make use of the fact that, for each fatal outcome, the registration date of the
infection is included in the data. This allows us to jointly model the number of registered nonfatal cases and that of fatal
infections in a dynamic mixed model, leading to an assessment of the dynamics taking place in real infection numbers.
Based on the available information on the relative change in the CDR over time, we are able to compare numbers from
the first wave of the pandemic in spring with numbers from the second wave in autumn, adjusting for the difference in
the proportion of undetected cases.
A general limitation of our approach is that it suffers from an identifiability issue and hence does not derive absolute

values of the CDR. One may, however, combine our results with findings from seroepidemiological studies, which aim
to assess the prevalence of COVID-19 in the general population by screening a representative sample. A list of current
seroepidemiological studies in Germany is provided by the RKI (Robert-Koch-Institute, 2020). Although these studies
provide crucial information on the current situation of the spread of the disease, they can only give a snapshot of the
instantaneous situation when the study was conducted. With the knowledge of the dynamics in new infections given by
our approach, the findings of such studies can be used to estimate the situation at other time points. For example, we look
at the Prospective Covid-19 Cohort Study Munich (KoCo19, Radon et al., 2020). They report a CDR of about 25%, where
the survey was run between May and June 2020 in the city of Munich. We can deduce that the CDR for October to be
about three times higher for the 35–59 age group. More precise calculations would require age-specific numbers in the
study as well as a regional refit of our model. A nationwide seroprevalence study was conducted between the beginning
of July and mid-August of 2020, which yielded a CDR of around 55% in the adult population (ifo Institut & forsa, 2020).
Nonetheless, the authors admit that the fading of COVID-19 antibodies could influence their findings sometime after the
infection. A seroprevalence study, which is also nationwide but on a larger scale, is currently being carried out, but the
results are not yet available.1 In principle, however, this demonstrates that the combination of seroepidemiological studies
and our approach allows obtaining estimates for absolute numbers of the CDR instead of relative comparisons only.

1 https://www.rki.de/DE/Content/Gesundheitsmonitoring/Studien/lid/lid_node.html;jsessionid=02C6FAB6F407B92315BDA5C1650F4D3A.
internet072158
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A critical assumption of our model is that we assume the IFR 𝑎 to be constant over time for a given age group and
negligibly small compared to the detection ratio of nonfatal cases. The latter is certainly valid for the numbers we looked
at. Staerk et al. (2021) show that most of the dynamics in the effective IFR of the German population can be explained by
the varying age distribution of COVID-19 cases. As the age distribution within the RKI age categories varies as well, the
IFR 𝑎 within each age group might slightly change over time that, however, occurs not abruptly bot smoothly over time.
The sensitivity analysis, which can be found in the Supporting Infprmation, provides evidence that our assumption of 𝑎
being constant is, for the most part, fulfilled. With increasing vaccination levels in the population starting from January
2021, the assumption of a constant case fatality ratio becomes invalid. This eventually prevents the application of our
model to later stages of the pandemic.
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