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Abstract 

 

 Ticks are obligate, blood feeding parasites of vertebrate animals and further act 

as vectors for many vector-borne pathogens including some causing human and animal 

disease. One such pathogen is Borrelia burgdorferi sensu lato (Bbsl), which describes 

a diverse species complex of spirochete bacteria that exist in an obligate transmission 

cycle between ixodid ticks and various vertebrate reservoir hosts. Some of these Bbsl 

genospecies are of epidemiological concern as they are the causative agents of human 

Lyme borreliosis (LB); the most common vector-borne disease in the Northern 

hemisphere. Due to their ecology, these genospecies undergo complex evolutionary 

and selective pressures driving adaptation to new host and vector species, but also 

maintain a high level of within-species diversity. These processes are thought to further 

drive speciation events and expansion of Bbsl genospecies into new geographic ranges. 

Evolutionary studies are currently impeded by a lack of isolates and associated 

genomic data including populations, such as those in Asia, having been neglected in 

the past. Combining ecological and genomic data, would open the way to studying the 

genetic underpinnings of both host and vector adaptation, variability in the severity of 

human LB, and how these bacteria may adapt to changing environments. The Eurasian 

Bbsl system offers a unique opportunity to utilize this evolutionary ecology approach 

to study Bbsl evolution. Currently three LB-causing Bbsl genospecies (Borrelia afzelii, 

Borrelia bavariensis, Borrelia garinii) share a Eurasian distribution and are 

transmitted by different generalist tick vectors: Ixodes ricinus (Europe) or Ixodes 

persulcatus (Asia). These genospecies further differ in their host associations and 

human LB manifestations, making them prime candidates for comparative genomics 

studies to understand the genetic underpinnings of these factors. The main aim of this 

dissertation was to study Bbsl from an evolutionary ecology approach and to produce 

isolates of pathogenic, Eurasian Bbsl genospecies with associated genomic data to fill 

current gaps in our knowledge of these genospecies. We utilized ecological (Papers 1-

3), genomic (Papers 4-5), and molecular based (Paper 6) studies to answer questions 

related to the evolution of these genospecies. 

 In Paper 1, we screened migratory birds transiting through the Italian island of 

Ponza for exotic tick species and tick-borne pathogens, including bacteria and viruses. 

Through this we were able to confirm the role of migratory birds in the movement of 

exotic ticks and associated pathogens into new geographic areas. We then collected 
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Ixodes ricinus ticks longitudinally over a 10-year period in Latvia (Paper 2) and in a 

single year (2019) in multiple plots in southern-Germany (Paper 3). These studies 

allowed us to hypothesize that both along spatial and temporal scales that Bbsl 

diversity and prevalence is influenced predominantly by host community structure, 

leading to both highly stable and dynamic Bbsl communities. Utilizing then existing 

genomic data and recently sequenced Russian isolates of B. bavariensis, we 

characterized the full genomes of 33 isolates in Paper 4. This allowed us to see that, 

even in the almost clonal European population, we observe a high level of within-

species diversity including novel findings such as higher plasmid copy number than 

expected from previous literature. From this we further characterized the evolutionary 

history of 142 isolates belonging to B. afzelii, B. bavariensis, and B. garinii based on 

assembled chromosomes corrected for recombining regions. Through this we were 

able to support that all three genospecies share an Asian origin (already shown for B. 

bavariensis in Paper 4 and previous work) and that colonization of Europe resulted 

through adaptation to a novel tick vector (I. ricinus). This also was paired with the fact 

that post-colonization gene flow for the different genospecies appeared to correlate 

with the mobility of proposed reservoir hosts. This allowed us to make testable 

hypotheses regarding the evolution and ecology of these three genospecies.  

Both Paper 4 and 5, characterized a high level of within-species diversity even 

in our samples which we hypothesize could influence Bbsl spirochete interactions with 

both host and vector species. Paper 6 characterizes one instance of within-species 

variation where two European B. bavariensis isolates (PBN and PNi) were found to 

naturally lack the entire PFam54 gene array. This gene array is known to encode 

protein products important for evading the host’s innate immune system, cell 

adhesion, and survival in the tick midgut. Their natural absence did increases 

susceptibility to human complement, an important pillar of innate immunity. Even so, 

these isolates remained infectious to mice post intradermal inoculation but did differ 

in how efficiently they can colonize certain mouse tissues. This highlighted that these 

genes are not required for mouse infectivity but potentially play a larger role in human 

pathogenicity. There is just one instance of within-species variability and is related to 

gene loss instead of sequence variation. Our results show that a high level of diversity 

does exist across the Eurasian range of these three genospecies which requires further 

research to understand how variability relates to the evolution of human pathogenicity, 

vector adaptation, and host adaptation.   
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Taken together, our results allowed us to better understand how these 

genospecies evolved across their geographic range. We were able to integrate ecological 

and genomics-based studies to show that geographic expansion appears to relate to 

vector adaptation while divergence, and potentially speciation, appears to be driven by 

host-adaptation. Utilizing an evolutionary ecology perspective, we were able to also 

identify unexpected results, such as the lack of geographic structure in the Asian B. 

bavariensis isolates, and through this create testable hypotheses regarding Bbsl 

ecology. Our analysis further was able to show that natural within-species variation can 

influence transmission cycles and produced an isolate library (especially for Asian 

populations of LB-causing genospecies) which can be utilized in future lab-based 

transmission studies to determine how further variability can lead to adaptation or 

human pathogenicity in these bacteria. 
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General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Ecological theory describes six major interspecific relationships which can exist 

in the natural world: competition, predation, symbiosis, mutualism, commensalism, 

and parasitism (1). Each relationship describes a potential mode of interaction between 

organisms where each party can be influenced positively, negatively, or neutrally (1). 

These relationships influence the fitness of organisms and can impose selective forces 

resulting in adaptation (1). Parasitism which describes a relationship where one 

organism (i.e. the parasite) benefits from another (i.e. the host) who is negatively 

affected by the relationship, is one such example (1). Many parasites currently are 

undergoing geographic range expansion in relation to changing environments leading 

to new opportunities for biological interactions and, through this, novel opportunities 

for adaptation (2–7). As many parasites further act as vectors for pathogenic organisms 

(2, 8), geographic expansion can not only lead to geographic spread of parasitic 

organisms but their corresponding pathogens potentially leading to emergent diseases. 

Many vector-borne diseases appear to have increased in prevalence and 

geographic range over the past few decades (2, 9, 10). This brings forward questions 

whether pathogens will successfully colonize new locations and how will they 

potentially adapt to these new environments? Adaptation and successful establishment 

would have wide reaching impacts to human and animal health as contact rates with 

pathogenic vector-borne pathogens could increase. Vector-borne pathogens face steep 

“It is interesting to contemplate an entangled bank, clothed with many plants of 

many kinds, with birds singing on the bushes, with various insects flitting about, and 

with worms crawling through the damp earth, and to reflect that these elaborately 

constructed forms, so different from each other, and dependent on each other in so 

complex a manner, have all been produced by laws acting around us. These laws, 

taken in the largest sense, being Growth with Reproduction; Inheritance which is 

almost implied by reproduction; Variability from the indirect and direct action of the 

external conditions of life, and from use and disuse; a Ratio of Increase so high as 

to lead to a Struggle for Life, and as a consequence to Natural Selection, entailing 

Divergence of Character and the Extinction of less-improved forms. Thus, from the 

war of nature, from famine and death, the most exalted object which we are 

capable of conceiving, namely, the production of the higher animals, directly follows. 

There is grandeur in this view of life, with its several powers, having been originally 

breathed into a few forms or into one; and that, whilst this planet has gone cycling 

on according to the fixed law of gravity, from so simple a beginning endless forms 

most beautiful and most wonderful have been, and are being, evolved.” 

Charles Darwin “On the Origin of Species”, 1st ed. 1859 
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selective barriers not only to infect their respective vectors but further to infect their 

host species and evade elaborate immune responses (11–15). These selective pressures 

have shaped the evolutionary history of these pathogens suggesting that studying them 

from an evolutionary genomics and ecological perspective could answer questions 

regarding past adaptative trajectories; providing valuable information in predicting 

future adaptation (11, 16, 17). This dissertation will focus on one vector system, namely 

ticks and tick-borne pathogens, as a model for understanding how these systems evolve 

to new environments and what evolutionary and ecological factors result in adaptation 

or even geographic expansion. 

 

Ticks and the pathogens they carry 

Ticks are parasitic arachnids (Family: Arachnida) which belong to the order Acari 

along with other species of mites and can be found on basically all continents besides 

Antarctica (18, 19). They are currently split into two major families: the Argasidae (i.e. 

soft ticks) and the Ixodidae (i.e. hard ticks) (8, 18, 19). The hard ticks comprise the 

most species diverse family with over 650 recognized species while the soft ticks 

comprise approximately 175 species (18). A third family does also exist, the 

Nuttalliellidae, which consists of only a single species Nuttalliella namaqua which is 

found in certain areas of Africa (18, 20). For the rest of this dissertation when ticks are 

discussed, this will refer predominantly to hard ticks (i.e. Ixodidae). 

Hard ticks contains six major genera of medical and veterinarian importance 

(Ixodes, Hyalomma, Dermacentor, Rhipicephalus, Haemaphysalis, and 

Amblyomma) as well as eight minor genera containing fewer species which are 

generally not of medical importance (18, 19, 21). All ticks are blood-sucking 

ectoparasites that feed on various vertebrate hosts (18, 19). Hard ticks have three 

distinct life-stages (larvae, nymph, and adult) between which they must consume a 

blood meal (18, 19). Hard ticks can be further sub-divided based on their host-seeking 

behavior (i.e. questing behavior). Many species are exophilic meaning they quest for 

hosts in the open environment either by waiting on vegetation to ambush passing hosts 

(Ixodes, Rhipicephalus, Haemaphysalis, Dermacentor) or by actively “hunting” hosts 

by running across the ground towards nearby hosts (Amblyomma, Hyalomma) (19). 

As these exophilic species spend much of their time in the open environment, their 

survival is not only influenced by the presence of suitable hosts but also by many 

environmental factors. Depending on tick species, factors such as vegetation, relative 
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humidity, precipitation, and temperature can all play a role in tick survival (18, 19, 22–

24). Due to this, habitat modification, such as urbanization, or climate change can 

further influence tick survival (25). 

Ticks are the most important vector of pathogens to domestic animals worldwide 

and rival mosquitos in their medical importance to humans (18). Even so, not all tick 

species can vector pathogens, with only a few hundred of the over 800 recognized 

species acting as competent vectors to pathogenic organisms (18). These pathogens 

include bacterial species from various genera (e.g., Borrelia, Anaplasma, Ehrlichia, 

Rickettsia), hemoparasites (e.g., Babesia, Theleria), and a diverse group of viruses 

representing multiple viral families (e.g., Flaviviridae, Bunyavirales, 

Orthomyxoviridae, Reoviridae) (8, 18, 26, 27).  Most of these pathogens are obligate 

parasites and do not have free-living life stages; only existing in transmission cycles 

between vertebrate reservoir hosts and their respective tick vectors (8, 18). Most tick-

borne pathogens are maintained by stable trans-stadial (i.e., between molts) 

transmission between tick life stages (8). However in rare cases, ticks can act both as 

vector and reservoir in the presence of stable trans-ovarial transmission (many viral 

infections), where adult females transmit pathogens to their eggs (8, 28).  Many tick-

borne pathogens are of epidemiological importance causing various diseases in both 

live-stock animals and humans (8, 18). These include widespread viral diseases such 

as tick-borne encephalitis (TBE) or Crimean-Congo hemorrhagic fever (CCHF) but 

also rarer viral diseases many of which are increasing in incidence across their 

geographic ranges (8, 27). Besides viral infections ticks transmit many bacterial caused 

diseases such as spotted fever rickettsioses (e.g., Rocky Mountain spotted fever, 

African tick bite fever), human anaplasmosis, human ehrlichiosis, tularemia, human 

relapsing fever borreliosis, and Lyme borreliosis (LB, also termed Lyme disease (LD) 

in North America) which is the most common vector-borne zoonosis in the northern 

hemisphere (8, 29, 30). Lyme borreliosis is caused by specific genospecies of spirochete 

bacteria belonging to the genus Borrelia (29, 30). 

 

Ecology of Borrelia burgdorferi sensu lato spirochetes 

Borrelia are spiral shaped bacteria (i.e. spirochetes), which belong to the family 

Spirochaetales, along with other medically relevant bacterial species such as 

Treponema pallidum; the causative agent of syphilis (31). Borrelia bacteria are 

currently separated into three clades described as the LB spirochetes (containing the 
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genospecies causing LB in humans), the relapsing-fever (RF) spirochetes (containing 

the causative agents of RF in humans), and reptile-associated Borrelia which also 

include monotreme associated genospecies (31, 32). In 2014, a split was proposed to 

create two genera, the historic Borrelia to contain the RF spirochetes and Borreliella 

gen. nov. to contain the LB spirochetes (33). This sparked a large debate regarding the 

taxonomy of Borrelia with currently no scientific consensus regarding the correct 

taxonomy (31, 32, 34–38). For the ease of comparison to previous work, this 

dissertation will utilize the nomenclature proposed by Margos et al., (2018), which 

does not split Borrelia into two genera and maintains the clade descriptions of RF 

clade, reptile-associated Borrelia, and the LB clade. The LB clade is normally referred 

to as the Borrelia burgdorferi sensu lato (hereafter Bbsl) species complex  

The Bbsl species complex currently contains 20 accepted and 3 proposed 

genospecies which differ in their geographic distribution, tick vector as well as 

reservoir host associations (39–42). Of these genospecies, only six are thought to cause 

LB in humans (Borrelia afzelii, Borrelia burgdorferi sensu stricto (s.s.), Borrelia 

bavariensis, Borrelia garinii, Borrelia mayonii, and Borrelia spielmanii) (29, 30, 43, 

44). As with many tick-borne pathogens, Bbsl spirochetes are obligate parasites with 

no free living life stage and exist in a transmission cycle between competent, hard tick 

vectors (Ixodes spp.) and various vertebrate hosts (39, 42, 43). Genospecies belonging 

to the Bbsl complex are found across the northern Hemisphere including marine-

based, avian transmission cycles (42, 43, 45). Across this large geographic range these 

spirochetes are predominately vectored by very few, competent tick species, namely: 

Ixodes ricinus (Europe), Ixodes persulcatus (Asia), Ixodes uriae (marine), Ixodes 

scapularis (eastern North America), Ixodes pacificus (western North America) (42, 43, 

46). Many Bbsl genospecies have highly specific host associations with most 

genospecies surviving only in a single host class (i.e., passerine birds, rodents, marine 

birds, etc.) (42, 47, 48). Even so, genospecies such as B. burgdorferi s.s. can act as host 

generalists, where spirochetes belonging to this genospecies are able to infect various 

vertebrate host classes (43, 46). Although, it does seem that specific genotypes of B. 

burgdorferi s.s. display variable fitness in the different host classes it can infect (11, 

49). Some vertebrate species such as deer or large vertebrates interestingly do not act 

as reservoirs for Bbsl, even though they play an integral role in maintaining tick 

populations (43, 46, 50, 51). These types of vertebrates are termed dead-end hosts as 

they do not play a role in further transmission of Bbsl (42). Some vertebrates can be 
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infected by certain Bbsl genospecies but do not transmit these spirochetes further, 

therefore halting the transmission cycle (43, 46). These hosts are termed incidental 

hosts and include humans (43, 46). For humans, infection with Bbsl spirochetes 

belonging to specific genospecies can manifest as human LB (29, 30). Early human LB 

generally manifests with a characteristic erythema migrans or “bulls-eye shaped” rash 

along with non-specific flu-like symptoms (29, 30). Left untreated Bbsl spirochetes can 

migrate to distant tissues such as the central nervous system and joints causing various 

symptoms such as neuroborreliosis or Lyme arthritis (29, 30). 

As the successful transmission of Bbsl spirochetes is dependent on the presence and 

viability of both a competent tick vector and reservoir host population, ecological 

factors which influence either of these will have a pronounced impact on Bbsl 

community structure. Indeed, factors such as humidity, temperature, and vegetation 

cover all can influence the prevalence of Bbsl in the environment (52–54) through the 

proposed effects these have on the tick vector (22, 51, 53). Reservoir host community 

structure will also influence if Bbsl spirochetes can survive in an environment and, if 

so, which genospecies are maintained (43, 55, 56). Even so, a high diversity of hosts 

can also have negative effects on Bbsl transmission in certain situations (57, 58). This 

phenomenon is known as the dilution effect, where vectors are spread across a high 

diversity of hosts, of which some may not be competent reservoirs for Bbsl spirochetes 

(57, 58). This reduces the probability of an infected tick to attach to a competent host 

resulting in an overall reduction in Bbsl prevalence (57, 58). Although, this effect has 

been shown to not hold true in every situation (59). Taken together, the successful 

transmission and therefore evolution of Bbsl spirochetes is intimately linked to the 

reservoir host and vector species to which these bacteria are adapted. 

 

Molecular mechanism of Borrelia burgdorferi sensu lato transmission 

The concept of ecological niche or all the factors required for an organism to 

successfully complete its life cycle (11, 60), can be a valuable tool in understanding the 

evolution of Bbsl genospecies. For these spirochetes, we can define the ecological niche 

as the reservoir host and competent vector species which are required for Bbsl 

spirochetes to complete their life cycle (13, 43, 46). On the side of the host, Bbsl 

spirochetes need to overcome the host’s innate and adaptive immune system to 

establish viable infections (12, 61–63). In terms of tick colonization, the spirochetes 

need to successfully migrate into a feeding tick, overcome tick immunity, survive in a 
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nutrient poor environment until the tick feeds again, and then again successfully infect 

a naïve host (13, 43, 46, 64).  

 

Figure 1. Overview of the three activation pathways of the human complement system: classical, 

lectin, and alternative pathways. All three pathways recognize foreign antigens in unique ways which 

all lead to the cleavage of complement component C3 into activated C3b and co-component C3a. This 

initiates a protein cascade beginning with the cleavage of C5 leading to the recruitment of late stage 

complement proteins (C6, C7, C8, C9) which ends in the formation of the membrane attack complex 

(MAC) and cell lysis. See (14, 15) for a complete overview of the complement system and the various 

proteins involved in all three pathways. Complement system figure adapted from the Master thesis of 

Janna Wülbern who has given permission for the inclusion of the figure in this dissertation. 
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To establish host infection, Bbsl spirochetes need to be able to evade the host’s 

immune system, which consists of the innate and adaptive immune systems (14, 15). 

Borrelia burgdorferi s.l. spirochetes have evolved various mechanisms to achieve this 

such as overcoming complement, an integral part of innate immunity, either indirectly 

through the acquisition of complement regulators or directly through interactions with 

complement proteins (61, 62, 65–67). The complement system consists of three 

distinct pathways (classical, lectin, and alternative) all leading to the cleavage of C3 to 

form activated C3b (14, 15) (Figure 1). This initiates the activation of other complement 

components ending in the recruitment of late stage complement proteins (C6, C7, C8, 

and C9) to form the membrane attack complex (MAC) which ultimately leads to 

bacterial cell lysis (14, 15) (Figure 1). Additionally, cleavage of C3 and C5 by the C3 and 

C5 convertases, respectively, leads to the release of anaphylatoxins C3a and C5a, which 

can recruit additional immune cells and, therefore, are integral in mounting further 

host immune responses to infection (14, 15) (Figure 1). Host cells regulate complement 

by utilizing membrane-bound regulators or by binding fluid-phase regulatory proteins, 

such as factor H (14). All complement regulators can terminate the complement 

cascade at specific activation levels to protect self-cells from complement-mediated 

damage (14). Borrelia burgdorferi s.l. spirochetes produce various proteins, known as 

CRASPs (complement regulator acquiring surface proteins), which can recruit factor 

H or factor H-like proteins and confer resistance to complement mediated killing (65, 

66). Further mechanisms have been described as well, where through direct 

interactions with specific complement proteins such as C1 (Figure 1) or late stage 

complement proteins C7-C9 (Figure 1) Bbsl spirochetes are also able to protect 

themselves from complement (68, 69). Most of this work though has been done 

utilizing human complement with less focus on how these interactions function in the 

natural reservoir hosts. It has been shown that susceptibility to complement active 

serum is host specific and appears to mirror proposed Bbsl host associations (42, 47, 

48, 70, 71). This, paired with recent work that showed that some Bbsl genospecies 

display host specific factor H binding (71, 72), suggests that complement evasion is 

most likely a major component of host adaptation, although more work is needed. 

Overcoming complement is just one mechanisms Bbsl spirochetes utilize to 

successfully infect their hosts. Other mechanisms include the ability to produce 

variable antigenic surface proteins through the vslE locus to protect spirochetes from 
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the host’s adaptive immune system (63) and producing proteins with cell adhesin 

properties to disseminate to specific tissues within a host (73–75). 

Although highly important, successful host infection and dissemination is just 

one half of the Bbsl lifecycle. These spirochetes additionally need to colonize the tick 

vector. The current transmission mechanism has only been thoroughly studied in the 

North American system focusing on the main LD-causing Bbsl genospecies, Borrelia 

burgdorferi s. s., and its vector Ixodes scapularis (13, 64). In this case, B. burgdorferi 

s. s. appears to first colonize the midgut of the tick where it attaches to the epithelial 

wall through binding of the borrelial outer surface protein A (OspA) and the tick 

receptor of outer surface protein A (TROSPA) (13, 64, 76). Here the bacteria enter a 

dormant state during the tick’s molt to the next life stage (13, 43, 64). Once the next 

bloodmeal commences, the spirochetes begin to replicate and undergo transcriptional 

modifications to produce outer surface proteins which are thought to protect from 

immune factors still present in the host blood meal (77). The spirochetes then migrate 

from the midgut, through the hemolymph, into the salivary glands through an 

interaction with the tick protein TRE31 and the borrelial protein BBE31 (13, 64, 78). 

The spirochetes then finally migrate out of the salivary glands partially due to 

interactions between an additional outer surface protein, OspC, which can bind and 

interact with the tick salivary component Salp15 (13, 64, 79, 80). The tick saliva itself 

contains many immunomodulatory factors which facilitates Bbsl spirochetes 

colonization at the tick feeding site (13, 64). Although this mechanism is thought to 

hold true for other Bbsl genospecies, recent work on Borrelia afzelii, one of the main 

causative agents of human LB in Eurasia, has shown that B. afzelii spirochetes do not 

appear to migrate through the salivary glands but instead migrate directly into the host 

from the tick midgut (81). This opens the viable possibility that different Bbsl 

genospecies may use different transmission mechanisms within the tick vector 

requiring further research. 

 

The evolution of the Borrelia burgdorferi sensu lato species complex 

Borrelia burgdorferi s.l. spirochetes have complex and fragmented genomes 

comprising a linear chromosome of approximately 900kb and up to or over 20 unique 

linear and circular plasmids (82–85). The chromosome mostly encodes for proteins 

related to metabolism and general housekeeping functions (32, 82, 83, 85) with many 

adaptation genes related to host and vector colonization being plasmid located (83, 
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85). In general, the chromosome has been found to be highly conserved among and 

within genospecies while plasmids are known to be diverse not only in their presence 

or absence in specific isolates but also gene content (84–87).  

Ecological interactions between Bbsl spirochetes and reservoir hosts will select 

for variation in genes and encoded products, such as CRASPs, which facilitate 

successful infection of the vertebrate host (11, 16, 71, 88). It can further be observed 

that the proposed strength of these selective forces should be proportional to the rate 

of interaction between a specific vertebrate host and the Bbsl spirochetes (11, 43). 

Namely, rarer vertebrate species which Bbsl spirochetes do not encounter that often 

will not exert selective forces that could drive host adaptation or association (11, 43). 

This can also mean that certain Bbsl genospecies can be excluded from an environment 

if a suitable vertebrate host is not present; modifying therefore the ecological 

distribution and prevalence of Bbsl genospecies (11, 55, 89). Host associations can then 

influence other factors such as gene flow (i.e. migration) of Bbsl spirochetes due to host 

mobility and further influencing population structure (11, 16, 56, 90, 91). This can 

affect passive divergence due to stochastic processes such as genetic drift, making less 

mobile populations more prone to divergence due to drift (11). Ticks also can display 

host preferences, suggesting that Bbsl vector association could also lead to geographic 

structuring (11, 16). Although, whether structuring is driven more by vector or host 

association is challenging to disentangle. Many have argued that these processes could 

drive speciation events (11, 42, 44, 92), such as in the case of  B. garinii and its sister 

species B. bavariensis (39, 93, 94). These two genospecies most likely diverged due to 

specializing on different vertebrate reservoir hosts: B. garinii to birds, and B. 

bavariensis to rodents (39, 93, 94). Examples such as these are prime opportunities to 

employee comparative genomics to study the influences of host adaptation to 

genospecies structure but also to research the genetic underpinnings of host switching 

in a vector-borne bacterium. 

In a similar way to the host, recurrent interactions with vectors will impose 

selective pressure on genes promoting successful vector colonization (11, 13, 43). 

Vector adaptation genes studied so far display low within-genospecies diversity while 

between-genospecies diversity is higher (11, 16). Lower diversity in vector-related 

genes is thought to arise from selection for specific mutations which maximize the 

colonization efficiency of a whole Bbsl genospecies to specific vectors (11, 16).  This 

would lead to higher variability between Bbsl genospecies which utilize different tick 
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vectors while leading to lower within-genospecies diversity due to potential purifying 

selection (11, 16). Interactions with novel vectors and consequent adaptation, can 

introduce Bbsl spirochetes to novel ecological conditions and further lead to 

geographic expansion (11, 16). This can be observed with the example of B. bavariensis 

which consists of two populations: a high diversity, ancestral Asian population and a 

low diversity, almost clonal European population (39, 93). It is hypothesized that this 

population split resulted through B. bavariensis being able to invade a novel vector, 

Ixodes ricinus (39, 93). This resulted in B. bavariensis expanding geographically but 

was accompanied by a population bottleneck which greatly reduced overall diversity in 

the European population (39, 93). Borrelia bavariensis could therefore provide an 

opportunity to utilize comparative genomics to study the genetic underpinnings of 

vector adaptation. Additional genospecies, such as B. garinii, B. afzelii, and B. turdi 

also are found in European and Asian transmission cycles but if they as well have 

undergone a selective vector shift is not well studied (39). 

 

Motivation and research objectives 

Since the description of B. burgdorferi s. s. in 1982 (95), many aspects of Bbsl 

transmission have been clarified. Even so, almost 40 years later many genes, and their 

encoded products, still do not have a known function or are still described as 

hypothetical (96). This leaves many open questions regarding infection mechanisms. 

This includes the role of within-species diversity as most functional studies to date have 

focused on very few type-strains (12, 13, 46, 66). Borrelia burgdorferi sensu lato 

spirochetes offer a unique opportunity to study both the genetic underpinnings of host 

and vector adaptation plus the evolutionary constraints experienced by vector-borne 

bacteria. As these spirochetes further differ in their capacity to cause human disease 

(29, 30), studies related to evolutionary ecology would be able to inform on future 

geographic range expansions and potential impacts to human disease risk (11). 

A major impediment to the study of many Bbsl genospecies from an eco-

evolutionary perspective, is a lack of viable isolates and samples from the field. This 

includes a bias in samples towards patient isolates and a focus on type strains which 

most likely do not capture the global diversity of the genospecies. Without these 

samples, it is not possible to study Bbsl spirochetes from an evolutionary ecology 

perspective (11, 16, 97). The Eurasian Bbsl system allows for a fascinating opportunity 

to study both host and vector adaptation. Three human pathogenic Bbsl genospecies 
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(Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) all share a Eurasian 

distribution and currently exist in separate transmission cycles vectored 

predominately by different generalist ticks in Asia (Ixodes persulcatus) and Europe 

(Ixodes ricinus) (43). This means that each genospecies has at least once in its 

evolutionary history successfully adapted to a novel tick vector. Previous work in B. 

bavariensis has supported an Asian origin suggesting that the adaptation was from I. 

persulcatus into I. ricinus (39, 93), but whether this is also true for the other 

genospecies is not known. This alone sets up this system to be an invaluable 

opportunity to study vector adaptation in three independent Bbsl genospecies, all of 

which can cause LB in humans. Additionally, though, these three genospecies differ in 

their host associations with both B. bavariensis and B. afzelii utilizing rodents as 

reservoir hosts while B. garinii is associated with birds (39, 43, 45, 98–100). Borrelia 

garinii and B. bavariensis are closely related sister taxa (39, 101), which suggests that 

at the split between these two genospecies there was also a switch in host association 

(39, 101). This means that this system can also be used to study the underlaying factors 

related to host adaptation in addition to vector adaptation. 

The overarching aim of this dissertation was to answer open questions regarding 

the evolution of Eurasian Bbsl genospecies in relation to host and vector adaptation 

through the collection and genomic characterization of novel tick isolates of LB causing 

genospecies from across their Eurasian range. Paper 1, 2, and 3 concern themselves 

with the ecological spread and prevalence of Bbsl (Papers 2 & 3) along with other tick-

borne pathogens (Paper 1). Utilizing then whole genome data from existing isolates 

and novel Bbsl isolates, we aimed to further understanding the basic evolutionary 

history and full genomes of B. bavariensis across Eurasia (Paper 4) before expanding 

to describe how all three Eurasian genospecies (B. afzelii, B. bavariensis, and B. 

garinii) have evolved across their geographic range (Paper 5). Paper 6 then 

characterizes the phenotypic effects related to the genomic variability observed in two 

B. bavariensis isolates described in Papers 4 & 5. 
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A R T I C L E  I N F O   
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A B S T R A C T   

Seasonal migration of birds between breeding and wintering areas can facilitate the spread of tick species and 
tick-borne diseases. In this study, 151 birds representing 10 different bird species were captured on Ponza Island, 
an important migratory stopover off the western coast of Italy and screened for tick infestation. Ticks were 
collected and identified morphologically. Morphological identification was supported through sequencing a 
fragment of the 16S mitochondrial gene. In total, 16 captured birds carried ticks from four tick species: Hya
lomma rufipes (n = 14), Amblyomma variegatum (n = 1), Amblyomma sp. (n = 1), and Ixodes ventalloi (n = 2). All 
specimens were either larvae (n = 2) or nymphs (n = 16). All ticks were investigated for tick-borne pathogens 
using published molecular methods. Rickettsia aeschlimannii was detected in six of the 14 collected H. rufipes 
ticks. Additionally, the singular A. variegatum nymph tested positive for R. africae. In all 14 H. rufipes specimens 
(2 larvae and 12 nymphs), Francisella-like endosymbionts were detected. Four H. rufipes ticks tested positive for 
Borrelia burgdorferi sensu lato in a screening PCR but did not produce sufficient amplicon amounts for species 
identification. All ticks tested negative for tick-borne encephalitis virus, Crimean-Congo hemorrhagic fever virus, 
Coxiella burnetii, Coxiella-like organisms, Babesia spp., and Theileria spp. This study confirms the role of migratory 
birds in the spread and establishment of both exotic tick species and tick-borne pathogens outside their endemic 
range.   

1. Introduction 

Seasonal migration of birds between breeding and overwintering 
areas can facilitate the spread of tick species and tick-borne diseases 
(Buczek et al., 2020; Comstedt et al., 2006), as birds easily cross 
geographical and ecological barriers. Migratory birds are of interest for 
tick-borne diseases as they carry immature ticks (Buczek et al., 2020) 
and can potentially spread pathogens far beyond their original home 
ranges. 

Migratory bird species can be classified into: 1) short-distance mi
grants tending to move between European breeding areas and the non- 
breeding, overwintering regions of Europe and Northern Africa and 2) 
long-distance or trans-Saharan migrants which spend the non-breeding 
period in sub-Saharan African countries. Both migratory types can 
play a role in the dispersal of exotic tick species and various tick-borne 
pathogens from their natural habitats (Georgopoulou and Tsiouris, 
2008; Hasle, 2013). 

In the present study, ticks were collected from birds (both long- and 
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short-distance migrants) captured in spring on the island of Ponza off the 
western coast of Italy. This island is recognized as an important stopover 
site for migratory birds returning from Africa in spring (Cecere et al., 
2010; Maggini et al., 2020). The study aims to investigate the role of 
migratory birds for introduction of exotic tick species and tick-borne 
pathogens into Europe. 

2. Materials and methods 

2.1. Tick collection and identification 

Ticks were collected from migratory birds trapped in mist nets on 
Ponza Island during spring migration from March until May 2019 (see 
Supplemental Methods for details). All ticks from each bird were stored 
in 80 % ethanol at room temperature until DNA/RNA extraction. Ticks 
were identified to the taxonomic level of species using published 
phenotypic keys (Apanaskevich and Horak, 2008; Pérez-Eid, 2007; 
Voltzit and Keirans, 2003). 

2.2. Nucleic acid extraction and PCR 

RNA and DNA were extracted from individual ticks using a the 
QIAamp mini Viral RNA extraction kit (Qiagen, Hilden, Germany) ac
cording to the manufacturer’s instructions and stored at − 80 ◦C until 
use (tests for viral RNA were performed prior to freezing the samples). 
For molecular identification of tick specimens, the 16S rRNA gene was 
amplified using the polymerase chain reaction protocol as described by 
Mangold et al. (1998) and analysed using a phylogenetic method (see 
Suppl. Meth. for details). 

Ticks were tested for tick-borne encephalitis virus (TBEV) RNA and 
for CCHF virus using previously described real time (RT) PCR methods 
(Atkinson et al., 2012; Schwaiger and Cassinotti, 2003). Detection of 
Rickettsia spp. was performed using a previously published RT-PCR assay 
targeting a conserved 70-bp part of the gltA gene (Wölfel et al., 2008). 
For species identification of Rickettsia, a PCR assay targeting the 23S-5S 
intergenic spacer region was utilized using primers described by Chiti
mia-Dobler et al. (2018) and the thermoprofile described by Jado et al. 
(2006). Rickettsia sequences were aligned and analysed together with 
GenBank references for R. aeschlimannii, R. africae, R. conorii and 
R. sibirica (see Suppl. Meth.). Pairwise distances were calculated using 
maximum composite likelihood (G = 4) in MEGA 10.1.7 (Kumar et al., 
2016). Furthermore, the ticks were tested for piroplasms using a con
ventional PCR amplifying part of the 18S rRNA gene (Casati et al., 
2006). This primer set amplifies Babesia spp. as well as Theileria spp. 
(Lempereur et al., 2017). Additionally, ticks were tested for Coxiella 
burnetii by real-time PCR targeting the IS1111 gene element (Frangou
lidis et al., 2012) and conventional 16S rRNA PCR to test for further 
endosymbionts as previously described (Al-Deeb et al., 2016). 16S 
amplicons were identified through an NCBI-Blastn analysis. To test for 
B. burgdorferi s.l. we used an RT-PCR targeting the 23S-5S intergenic 

spacer as previously described (Strube et al., 2010). To determine Bor
relia species of positive samples, we used a semi-nested PCR amplifying 
the housekeeping gene recG (Margos et al., 2008). 

All primers used are to be found in Supplementary Table 1. Appro
priate positive and negative controls were included in all PCR reactions 
and products were sequenced with the Sanger method. All RT-PCRs 
were run once per sample. 

3. Results 

Out of the 151 screened birds, 16 birds, belonging to 10 different 
species (Table 1), were carrying one or two ticks. Most infested birds 
(n = 14) belonged to long distance migratory species, the most common 
being Sylvia communis. Two short distance migratory species also carried 
ticks (Table 1). 

In total, 18 ticks belonging to three genera and four tick species, were 
identified: H. rufipes, A. variegatum, Amblyomma spp., and I. ventalloi 
(Table 2). 

All ticks tested negative for TBE virus, CCHF virus, as well as Babesia 
and Theileria species. Seven tick specimens were positive for Rickettsia 
spp., with R. aeschlimannii identified in six H. rufipes ticks and R. africae 
identified in one A. variegatum (Table 2). Using appropriate reference 
samples from GenBank (see Methods) average genetic pairwise distances 
within Rickettsia species ranged from 0.15− 0.5%, while distance be
tween species ranged from 1.72 to 5.59%. All Hyalomma ticks (n = 14) 
tested positive for Francisella-like endosymbionts but not for C. burnetti 
and Coxiella-like organisms (Table 2). Furthermore, four H. rufipes ticks 
tested positive for B. burgdorferi s.l. in a screening PCR but did not 
produce sufficient amplicon amounts for species identification (Table 2). 

4. Discussion 

Migratory birds can influence the spread of tick species and tick- 
borne diseases across geographic barriers even leading to introduction 
of exotic species to new environments (Hasle, 2013). This can also apply 
to tick endosymbionts (Bonnet et al., 2017), but to what extent is not 
fully understood. Ticks carry many endosymbiotic bacteria, which play 
varied roles in tick biology, most notably in diet supplementation 
(Bonnet et al., 2017). 

4.1. The role of migratory birds in tick dispersal 

In the present study, ticks belonging to three genera (i.e. Hyalomma, 
Amblyomma, and Ixodes) were collected from 10 migratory bird species, 
most of which were long distance migrants. 

Amblyomma ticks were only found on the tree pipit (Anthus trivialis), 
which is a long distance migrant. Only one of these Amblyomma ticks 
could be identified to species level (confirmed as A. variegatum). The 
Amblyomma genus contains 130 species, none of which is distributed in 
Europe (Guglielmone et al., 2014). There have been sporadic reports of 

Table 1 
Information regarding bird species carrying ticks during this study.  

Bird common name Bird scientific name Migration Distance Migration Classification Partial Resident Breeding Overwintering 

Common whitethroat Sylvia communis Long Full Migrant – Europe sub-Saharan 
Spotted flycatcher Muscicapa striata Long Full Migrant – Europe/Western Asia sub-Saharan 
European robin Erithacus rubecula Short Full Migrant Western Europe Europe/Western Asia North Africa/Mediterranean 
Tree pipit Anthus trivialis Long Full Migrant – Europe/Western Asia sub-Saharan/India 
Northern wheatear Oenanthe oenanthe Long Full Migrant – Europe/Asia sub-Saharan 
Eurasian golden oriole Oriolus oriolus Long Full Migrant Spain and Italy Europe/Western Asia sub-Saharan 
Common redstart Phoenicurus phoenicurus Long Full Migrant – Europe/Western Asia sub-Saharan 
Black redstart Phoenicurus ochruros Short Full Migrant – Europe/Central Asia North Africa/India 
Whinchat Saxicola rubetra Long Full Migrant – Europe/Western Asia sub-Saharan 
Collared flycatcher Ficedula albicollis Long Full Migrant – Europe/Western Asia sub-Saharan 

Note: All information on the migratory behaviour and residential status of bird species in this project was taken from the BirdLife International (http://www.birdlife. 
org/) database. 
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A. variegatum and other Amblyomma spp. nymphs on long-distance 
migratory birds captured in Italy and Greece (Albanese et al., 1971; 
Papadopoulos et al., 1996; Toma et al., 2014; Wallménius et al., 2014) 
and adult A. variegatum specimens were sampled from cattle on the is
land of Corsica, suggesting a possible risk for the establishment of 
Amblyomma populations in Europe (Cicculli et al., 2019). 

Hyalomma rufipes was the most common tick species found on the 
birds collected in this study (n = 14). All samples came from long- 
distance migrant species. Five individual S. communis carried H. rufipes 
suggesting that these birds play a substantial role as a host for H. rufipes 
and shuttle for its expansion. Sylvia communis birds captured at Ven
totene island, located 30 km south-east from Ponza Island, also yielded 
the highest number of H. rufipes ticks (Pascucci et al., 2019). Both 
H. rufipes immature stages have been frequently found on birds 
migrating from Africa (Hoffman et al., 2018; Jaenson et al., 1994; 
Jameson et al., 2012), including birds migrating through Italy (Pascucci 
et al., 2019). Hyalomma marginatum and H. rufipes have been observed in 
multiple European countries (Chitimia-Dobler et al., 2019; Duscher 
et al., 2018; Grandi et al., 2020; Hansford et al., 2019). 

Two I. ventalloi nymphs were found on the two short-distance 
migrant bird species (Table 2). This tick species can be found in multi
ple European countries and in northern Africa (Hillyard, 1996). Thus, 
there is a high probability that these ticks were locally acquired (Hill
yard, 1996). Studies to verify which local tick populations are present on 
Ponza, through flagging or drag sampling, would be needed to deter
mine if tick species are established. 

4.2. The role of migratory birds in the potential establishment of exotic 
tick-borne pathogens in Europe 

It has been suggested that migratory birds can play a role in the 
establishment of new tick-borne pathogens (Hasle, 2013). In our study, 
we identified several tick-borne pathogens that might be in the process 
of establishing populations in Europe. 

First, the singular A. variegatum nymph tested positive for R. africae, 
the causative agent of the African tick bite fever, the most widespread 
tick-borne rickettsiosis in sub-Saharan Africa (Pascucci et al., 2019). 
Rickettsia africae has previously been detected in A. variegatum ticks 
collected on Mediterranean islands (Cicculli et al., 2019; Pascucci et al., 
2019), a Hyalomma spp. and an I. ricinus feeding on migratory birds 
captured in Central Italy, including Ponza Island (Toma et al., 2014). 
This repeated detection of this pathogen along the same migratory route 
from sub-Saharan Africa to Europe emphasizes the potential risk of 
introduction of R. africae due to avian migratory behaviour. 

Additionally, R. aeschlimannii was detected in 6 of the 14 H. rufipes 
ticks collected in this study. Rickettsia aeschlimannii is a common Rick
ettsia in Hyalomma ticks, especially in H. rufipes and H. marginatum, 
originating from Africa and Europe (Chitimia-Dobler et al., 2019; 
Duscher et al., 2018). It has also been responsible for several cases of 
human spotted fever in the Mediterranean (Tosoni et al., 2016). The 
prevalence reported here for R. aeschlimannii (33.3 % of collected ticks) 
is comparable to results from previous studies on Mediterranean ticks 
(ranging from 20 to 48%) (Azagi et al., 2017; Toma et al., 2014; Wall
ménius et al., 2014). In our study, all ticks which tested positive for 
R. aeschlimannii were feeding on migratory birds overwintering in 

Table 2 
Information on the ticks collected from migratory birds and which pathogens they carried.  

Bird common 
name 

Tick species (ID) Tick 
stage 

Rickettsia spp. Francisella-like 
endosymbionts 

Borrelia 
spp. 

Babesia/ 
Theileria spp. 

TBE 
virus 

CCHF 
virus 

Coxiella spp./C.- 
like organisms 

Common 
whitethroat 

Hyalomma rufipes 
(G12) 

nymph – þ – – – – – 

Common 
whitethroat 

Hyalomma rufipes 
(H1) nymph R. aeschlimannii þ – – – – – 

Hyalomma rufipes 
(H2) 

nymph R. aeschlimannii þ – – – – – 

Common 
whitethroat 

Hyalomma rufipes 
(H3) 

nymph R. aeschlimannii þ – – – – – 

Common 
whitethroat 

Hyalomma rufipes 
(H4) 

nymph – þ þ – – – – 

Common 
whitethroat 

Hyalomma rufipes 
(H5) nymph – þ þ – – – – 

Spotted 
flycatcher 

Hyalomma rufipes 
(H6) 

larva – þ – – – – – 

European robin Ixodes ventalloi (H8) nymph – – – – – – – 

Tree pipit Amblyomma sp. 
(H9) 

nymph – – þ – – – – 

Tree pipit 

Hyalomma rufipes 
(H10) larva R. aeschlimannii þ – – – – – 

Amblyomma 
variegatum (H11) nymph R. africae – – – – – – 

Northern 
wheatear 

Hyalomma rufipes 
(H12) 

nymph R. aeschlimannii þ þ – – – – 

Eurasian golden 
oriole 

Hyalomma rufipes 
(A1) 

nymph – þ þ – – – – 

Common 
redstart 

Hyalomma rufipes 
(A2) nymph – þ – – – – – 

Black redstart Ixodes ventalloi (A3) nymph – – – – – – – 

Whinchat 
Hyalomma rufipes 
(A4) 

nymph R. aeschlimannii þ – – – – – 

Black redstart Hyalomma rufipes 
(A5) 

nymph – þ – – – – – 

Collared 
flycatcher 

Hyalomma rufipes 
(A6) nymph – þ – – – – – 

All tick morphological identification was confirmed molecularly by sequencing a segment of the 16S mitochondrial gene (Mangold et al., 1998). Tick samples were 
screened for pathogens and endosymbionts using standard methods: Rickettsia spp. (Chitimia-Dobler et al., 2018; Wölfel et al., 2008), Coxiella spp. and Coxiella-like 
organisms (Frangoulidis et al., 2014; Al-Deeb et al., 2016), Borrelia spp. (Margos et al., 2008; Strube et al., 2010), Babesia/Theileria spp. (Casati et al., 2006), TBE virus 
(Schwaiger and Cassinotti, 2003), and CCHF virus (Atkinson et al., 2012). 

R.E. Rollins et al.                                                                                                                                                                                                                               



Ticks and Tick-borne Diseases 12 (2021) 101590

4

sub-Saharan Africa (S. communis, A trivialis, Oenanthe oenanthe, and 
Saxicola rubetra). We can hypothesize here that long-distance migratory 
birds could contribute to the spreading of R. aeschlimannii-infected 
Hyalomma ticks, which have been reported as far north as Germany 
feeding on various mammals (Chitimia-Dobler et al., 2019). 

Another rare finding in the present study were the four H. rufipes 
ticks which tested positive for B. burgdorferi s.l.. Unfortunately, none of 
these samples produced a sufficient PCR product for species identifica
tion due, most likely, to low concentrations of Borrelia DNA in the tick 
sample. Various Borrelia species occurring in Europe are adapted to birds 
(Margos et al., 2011). Borrelia burgdorferi s.l. is usually vectored by 
species of the genus Ixodes (Gern, 2008) and studies reporting 
B. burgdorferi s.l. in Hyalomma species are rare and were always from 
Mediterranean countries (Güner et al., 2004; Orkun et al., 2014; Toma 
et al., 2014) and sub-Saharan Africa (Diarra et al., 2017; Ehounoud 
et al., 2016). The only other report of B. burgdorferi s.l. in H. rufipes was 
from migratory birds in Central Italy in several collection sites, including 
the island of Ponza (Toma et al., 2014). 

Two birds in our sample were found to carry two ticks each, both 
positive for Rickettsia which opens the way for further research on the 
influence of co-feeding transmission on the spread of these pathogens. 

4.3. The distribution of Francisella-like tick endosymbionts 

All H. rufipes specimens collected in our study tested positive for 
Francisella-like endosymbionts (FLEs). FLEs were originally detected in 
ticks of the genus Dermacentor and are related to F. tularensis, the agent 
of tularemia in humans (Ahantarig et al., 2013). Their role as endo
symbionts is thought to be related to diet complementation (Gerhart 
et al., 2016). The presence of FLEs has already been described in Hya
lomma spp. from different locations including Sardinia island (Brink
mann et al., 2019; Chisu et al., 2019; Ivanov et al., 2011; Montagna 
et al., 2012; Szigeti et al., 2014; Wang et al., 2018) as well as in one 
H. rufipes collected in Ethiopia (Szigeti et al., 2014). The incidence 
observed in our study (100 %) is in accordance with Azagi et al. (2017) 
(Israel 90 %) but not Montagna et al. (2012) (Yemen 10 %) and suggests 
that FLE are obligate endosymbionts of H. rufipes. 

5. Conclusions 

In this study, we confirm the role of migratory bird in the spread of 
exotic tick species and tick-borne pathogens and find them along the 
same migratory route as in previous studies. The Mediterranean islands 
are confirmed as a major entry point of these pathogens into Europe. We 
suggest continuous monitoring of these regions will help evaluate 
whether this should raise public health concerns. 
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Supplemental Methods 

 

Tick collection and identification 

Ticks were collected from migratory birds trapped in mist nets on Ponza Island 

(40°55′ N, 12°58′ E) during spring migration from March until May 2019. Ponza is the 

largest island of the Italian Pontine Islands archipelago, located 33 km (21 nautical 

miles) south of Cape Circeo in the Tyrrhenian Sea. A ringing station 

(www.inanellamentoponza.it) operates here throughout the spring season (March-

May) since 2002 in connection with the Italian “Small Island Project” (102). Birds were 

captured with mist-nets spanning 340m that were checked every hour from sunrise to 

sunset each day. Nets were not checked on days with rain or strong winds. After being 

captured, birds were ringed and measured using standard procedures (103). If a tick 

was noticed at this stage it was collected immediately (n = 9). Additionally, 142 birds 

were systematically checked for ticks on their heads (104) and all ticks were collected 

from infested birds using fine tweezers (n = 7). 

 

Nucleic acid extraction and PCR 

Identification of tick species is difficult and is complicated by misidentified 

sequences on GenBank. To remedy this, a phylogenetic analysis of a species 

comprehensive dataset was done to ensure thorough comparison between species and 

confidence in identifications. Tick sequences were compiled into a dataset of 57 

sequences with GenBank references for H. dromedarii, H. somalicum, H. impeltatum, 

H. isaaci, H. rufipes, H. marginatum, H. anatolicum, H. truncatum, H. 
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albiparmatum, H. impressum, H. scupense, H. schulzei, R. appendiculatus, I. 

ventalloi, I. festai, A. hebraeum and A. variegatum and aligned in MAFFT (Q-INS-i, 

200PAM / k=2, Gap opening penalty: 1.53) (105). Alignments were analyzed under the 

maximum likelihood criterion in MEGA v7.0.14 (106) with 1000 bootstrap replicates, 

using an K3Pu+F+G4 nucleotide substitution model determined using W-IQ-TREE 

(107).  

Rickettsia sequences were compiled into a dataset of 24 sequences with GenBank 

references for R. aeschlimanni, R. africae, R. conorii and R. sibirica. These data were 

aligned and analyzed using the same procedure as above but using an HKY+F+G4 

nucleotide substitution model. Pairwise distances were calculated using maximum 

composite likelihood (G=4) in MEGA 10.1.7 (106). 
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Supplemental Table 1. Overview of screening methods used for all tick-borne 

pathogens in this study. 
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Summary

Members of the Borrelia burgdorferi sensu lato (s.l.)
species complex are known to cause human Lyme
borreliosis. Because of longevity of some reservoir
hosts and the Ixodes tick vectors’ life cycle, long-
term studies are required to better understand spe-
cies and population dynamics of these bacteria in
their natural habitats. Ticks were collected between
1999 and 2010 in three ecologically different habitats
in Latvia. We used multilocus sequence typing utiliz-
ing eight chromosomally located housekeeping
genes to obtain information about species and popu-
lation fluctuations and/or stability of B. burgdorferi
s.l. in these habitats. The average prevalence over all

years was 18.9%. From initial high-infection preva-
lences of 25.5%, 33.1% and 31.8%, from 2002
onwards the infection rates steadily decreased to
7.3%. Borrelia afzelii and Borrelia garinii were the
most commonly found genospecies but striking local
differences were obvious. In one habitat, a significant
shift from rodent-associated to bird-associated
Borrelia species was noted whilst in the other habi-
tats, Borrelia species composition was relatively sta-
ble over time. Sequence types (STs) showed a
random spatial and temporal distribution. These
results demonstrated that there are temporal regional
changes and extrapolations from one habitat to the
next are not possible.

Introduction

Lyme borreliosis (LB) is the most common tick-borne
disease in temperate regions of the northern hemi-
sphere (Lindgren and Jaenson, 2006). The disease is
endemic roughly between 40� and 60� latitude
(Steere, 2001; Hubalek, 2009) including some regions
in North America, for example, the Northeast, the Mid-
west, California and Canada (Lane and Lavoie, 1988;
Fritz and Kjemtrup, 2003; Bacon et al., 2008; Ogden
et al., 2008; Hoen et al., 2009a,b; Mechai et al., 2015;
Schwartz et al., 2017), in Europe (Lindgren and
Jaenson, 2006), Eastern Europe and Asia (Platonov
et al., 2011; Takano et al., 2011). According to the
World Health Organization, the highest incidence of LB
is reported in Central European countries such as
Czech Republic, Estonia, Lithuania, Slovenia, Austria,
Germany and some northern countries bordering the
Baltic Sea. The disease is caused by bacteria that
belong to the Borrelia burgdorferi sensu lato (s.l.) spe-
cies complex (Wang et al., 1999; Kurtenbach et al.,
2006; Stanek et al., 2011; Hanincova et al., 2013). In
Europe, known human pathogenic species of these
bacteria include Borrelia afzelii, Borrelia bavariensis,
B. burgdorferi sensu stricto (s.s.), Borrelia garinii and
Borrelia spielmanii; with B. afzelii and B. garinii being
the most common in questing ticks.
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The bacteria are maintained in natural transmission
cycles between reservoir hosts and ticks of the genus
Ixodes. The four main vectors of human pathogenic LB
genospecies are Ixodes ricinus in Europe, Ixodes
persulcatus in Eastern Europe and Asia and Ixodes
scapularis and Ixodes pacificus in North America
(Rauter and Hartung, 2005; Geller et al., 2013; Schillberg
et al., 2018; Gasmi et al., 2019). Over 100 vertebrate
species are speculated to be reservoir competent hosts to
Borrelia (Gern et al., 1998; Eisen and Lane, 2002;
Schrauber and Ostfeld, 2002; Brisson and Dykhuizen,
2006; Hanincova et al., 2006; Norte et al., 2013; Heylen
et al., 2017). In Europe, competent reservoir hosts include
several species of rats, mice, dormouse, voles, squirrels,
hedgehogs, shrews and birds including passerines and
seabirds (Matuschka et al., 1994; Gern et al., 1998;
Piesman and Gern, 2004; Pfaffle et al., 2011; Richter
et al., 2011; Norte et al., 2013; Heylen et al., 2017).
In the past decades much progress has been made in

understanding the diversity and geographic distribution of
Borrelia species (Kurtenbach et al., 2006). However,
many studies investigating the distribution of Borrelia
species and strains, accumulated data for short-time
periods (Etti et al., 2003; Ferquel et al., 2006; Rosef
et al., 2009; Halos et al., 2010; Geller et al., 2013). Due
to the complexity of the ecology of both, pathogen, reser-
voir host and vector, long-term studies are required to
understand changing epidemiological patterns relating to
the structure and dynamics of species and populations
(Killilea et al., 2008).
Multilocus sequence typing (MLST) and multilocus

sequence analysis (MLSA) (Postic et al., 2007; Margos
et al., 2011) have become valuable tools for bacterial epi-
demiological and taxonomic studies (Vitorino et al., 2008;
Ogden et al., 2011; Vollmer et al., 2013; Mechai
et al., 2015; Coipan et al., 2016). In this study, we used
MLST to determine the prevalence of B. burgdorferi
s.l. species in ticks from three different Latvian habitats
over a period of 11 years. The aim was to examine spa-
tial and temporal variation and population fluctuation in
different habitats.

Results

Infection prevalence of B. burgdorferi s.l. in questing
ticks from Latvia

All ticks (n = 3165) in this study were collected by drag
sampling in the three defined habitats in Latvia (Table 1,
Figs S1 and S2). The highest numbers of ticks were
acquired from Babite (n = 1695), followed by Kemeri
(n = 802) and finally Jaunciems (n = 668; Table 2). An
additional 1319 ticks collected in the years 2002, 2006

and 2007 in the same habitats and processed in a previ-
ous study (Vollmer et al., 2011; 2013) were included in
our analyses. There were no samples available for the
years 2004, 2005, 2008 and 2009.

Out of a total of 4484 screened ticks, 1931 were adults,
2516 were nymphs and 37 larvae (Table 2). In total,
848/4484 ticks (18.9%) were identified as Borrelia posi-
tive in the screening real-time polymerase chain reaction
(PCR) targeting the flagellin B (flaB) locus. Of the 1931
screened adults, 522 (27%) were positive and of 2516
nymphs, 326 (13.0%) were positive. Overall, adults were
more likely to be Borrelia positive when compared to
nymphs (life stage, Table 3). None of the 37 screened
larvae were positive (Table 2). Babite, Jaunciems and
Kemeri had mean prevalences for B. burgdorferi s.l. in
ticks of 19.5%, 16.7% and 19.8% respectively. Ticks
coming from the three sites were equally likely to be
Borrelia positive (Table 3). However, ticks coming from
different years did differ in how likely they were to be
Borrelia positive (Table 3). Remarkably, infection preva-
lences declined with time in all habitats (Fig. 1).

For MLST only samples with a cycle threshold
(Ct) value ≤ 35 were considered to contain sufficient
Borrelia DNA for conventional MLST PCR. This cut-off
was chosen because previous studies had shown that
samples with high Ct values (35–40) contained low
amounts of Borrelia DNA making amplification of the
MLST genes unfeasible (Okeyo et al., 2019). Following
this, 315 (Table S2) out of the 848 samples positive in
real-time PCR had at least two MLST genes sequenced
and could be used for Borrelia species determination and
to test for host adaptation types of genospecies per year,

Table 1. Number of tick DNA isolates processed at each step in the
current study.

Step
Number of tick
DNA isolates

Total number of ticks processed from 1999,
2000, 2001, 2003, 2010

3165

Screening PCR negative 2470
Screening PCR positive 698
Mixed infections in screening PCR 30
Samples with Ct value > 35 (not subjected to

MLST PCR)
304

Samples with Ct value ≤ 35 (subjected to
MLST PCR)

364

No PCR product in MLST PCR (untypeable) 82
At least one MLST gene amplified and

sequenced
282

Mixed infections after MLST PCR and
sequencing

55

<8 MLST genes amplified (spatio-temporal
analysis)

156

All 8 MLST genes amplified and sequenced
(goeBURST and spatio-temporal analysis)

71

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology
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as well as the potential carry over year effects on Borrelia
genospecies occurrence. For 71 samples, good
sequence data were obtained for all 8 MLST genes in
this study, and 88 samples with all MLST sequences
were obtained from a previously published study (Vollmer
et al., 2011)

Spatio-temporal distribution of B. burgdorferi s.l. in Latvia

To gain insights in the geographical distribution and fluctu-
ations of B. burgdorferi s.l. species in Latvia we examined
the spatio-temporal distribution of a total of 315 isolates. Of
these 175 were from Babite (Table S3-A), 57 from
Jaunciems (Table S3-B) and 83 from Kemeri (Table S3-C).
Due to insufficient data for comparison from some year-
habitat combinations (i.e. from Kemeri 2002 [single sample
available], Kemeri 2010 [no samples] and Jaunciems 2010
[no samples]), these were excluded from this comparison.
Overall, the presence of specific Borrelia genospecies var-
ied with site and year (Table 4). Spatial distribution analysis
showed that B. garinii was very abundant in Babite making
43% of the total species analysed. Borrelia afzelii followed
with 29%, Borrelia valaisiana with 17%, B. burgdorferi
s.s. with 9%, Borrelia lusitaniae and B. bavariensis at 2%
each (Fig. 2A). Borrelia afzelii accounted for more than
three quarters (82%) of the species in Jaunciems (Fig. 2B).
The remaining species were present at 7% for B. garinii,
9% B. valaisiana and B. lusitaniae at 2%. Even though
B. afzelii dominated also in Kemeri (40%), B. garinii,
B. valaisiana and B. burgdorferi s.s. were also well

Table 2. Total number of positive ticks per year and region.

Sampling years 1999 2000 2001 2002a 2003 2006a 2007a 2010 Total

Total number of collected ticks
Total per year 271 236 1133 368 883 492 459 642 4484
Total adults 271 200 678 nd 410 nd nd 372 1931
Total nymphs 36 418 368 473 492 459 270 2516
Total larvae 37 37
Total number of positives

per year (%)
69 (25.5) 78 (33.1) 360 (31.8) 53 (14.4) 141 (16.0) 48 (9.8) 52 (11.3) 47 (7.3) 848 (18.9)

Positive ticks per stage
Adult, number positive (% of

total adults)
69 (25.5) 60 (30.0) 280 (41.3) nd 77 (18.8) nd nd 36 (9.7) 522 (27)

Nymph, number positives
(% of total nymphs)

0 (0.0) 18 (50.0) 80 (19.1) 53 (14.4) 64 (13.5) 48 (9.8) 52 (11.3) 11 (4.1) 326 (13)

Positive ticks per region
Babite, number of positive

ticks (%)
46 (25.6) 19 (22.4) 169 (26.9) 31 (20.8) 83 (18.9) 35 (13.5) 36 (16.4) 32 (9.1) 453 (19.5)

Babite, number of positive
adult ticks (%)

46 (25.6) 18 (22.4) 127 (42.8) nd 35 (17.1) nd nd 23 (12.8) 250 (26.4)

Babite, number of positive
nymphs (%)

0 0 42 (13.7) 31 (20.8) 48 (20.6) 35 (13.5) 36 (16.4) 9 (5.2) 201 (15.0)

Jaunciems, number of
positive ticks (%)

7 (15.6) 23 (26.1) 73 (34.6) 16 (12.6) 30 (14.6) 7 (6.6) 4 (4.0) 7 (5.9) 167 (16.7)

Jaunciems, number of
positive adults (%)

7 (15.6) 23 (26.1) 62 (36.7) nd 15 (14.7) nd nd 6 (9.8) 113 (24.3)

Jaunciems, number of
positive nymphs (%)

0 0 11 (26.2) 16 (12.6) 15 (14.4) 7 (6.6) 4 (4.0) 1 (1.8) 54 (10.1)

Kemeri, number of positive
ticks (%)

16 (34.8) 36 (57.1) 118 (41.8) 6 (6.5) 28 (11.7) 6 (4.7) 12 (8.6) 8 (4.7) 230 (19.8)

Kemeri, number of positive
adults (%)

16 (34.8) 18 (66.7) 91 (42.9) nd 27 (26.2) nd nd 7 (5.3) 159 (30.6)

Kemeri, number of positive
nymphs (%)

0 18 (50.0) 27 (38.6) 6 (6.5) 1 (0.7) 6 (4.7) 12 (8.6) 1 (2.5) 71 (11.1)

nd = no data.
a Data from these years were analysed by Vollmer (2010) and Vollmer et al. (2011).

Table 3. Model outputs of Borrelia presence analysis. Borrelia pres-
ence models a binary factor of a tick being either infected (1) or non-
infected (0) with Borrelia.

Fixed effects β (95% Credible Interval [CI])

Intercept −1.17 (−1.59, −0.75)
Riga District Babitea 0.00 (−0.19, 0.18)
Riga Jaunciemsa −0.15 (−0.37, 0.08)
Life stageb −0.75 (−0.95, −0.54)

Random effects σ 2 (95% CI)

Year 0.34 (0.24, 0.46)
Residual 0.32π2 (0.32π2, 0.29π2)

a Reference category: Kemeri.
b Reference category: Adult.

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology
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represented at 32%, 16%, 11% respectively (Fig. 2C). The
bird-associated species B. garinii and B. valaisiana repre-
sented almost half of the total species. Borrelia lusitaniae
was identified in a single tick in this habitat. Overall, Babite
was the most species rich region with six species observed
(Fig. 2A–C). Kemeri and Jaunciems had five and four spe-
cies respectively.
Temporal distribution analyses showed that in Babite

(Fig. S3) B. afzelii dominated in the years 1999 (41%),
2000 (72%) and 2002 (72%). In 2006, 2007 and 2010, B.
garinii dominated with 61%, 48% and 57% respectively.
Borrelia valaisiana was also well represented in the years
2006 (35%) and 2007 (36%). Borrelia burgdorferi s.s. was
observed in the years 1999 (18%), 2000 (14%), 2001 (8%),
2003 (17%) and 2007 (12%). It appears that there was a
significant shift in the distribution of host-adaptation types in

Babite from rodent-adapted species to bird-adapted species
over the study period (Fisher’s exact test; p = 0.002).
Borrelia afzelii was the dominating species in Jaunciems
(Fig. S4). It was the only species identified in the years
2002, 2003, 2006 and 2007. Whilst in the years 1999, 2000
and 2001 it was dominating with 67%, 86% and 73%
respectively. Other species (B. lusitaniae, B. valaisiana
and B. garinii) were identified in small percentages (14%—

33%) during that time. Correspondingly, rodent-adapted
species significantly dominated this site throughout the
entire study (Fisher’’ exact test; p = 0.002). In Kemeri
(Fig. S5), although species fluctuations were observed over
years they did not differ significantly (Fisher’s exact test;
p = 0.83). Borrelia afzelii was well presented or dominated
(36%–67%) in the years 2000, 2001, 2006 and 2007 but
other species like B. valaisiana, B. garinii and
B. burgdorferi s.s. were also well represented.

Combined data over all years and all habitats showed
that the most prevalent species detected in Latvian ticks
was B. afzelii (42%), followed by B. garinii (34%),
B. valaisiana (15%), and B. burgdorferi s.s. (5%). Borrelia
bavariensis and B. lusitaniae had low prevalences of
about 1%. The three most common genospecies in
Europe: B. afzelii, B. garinii and B. valaisiana accounted
for 90% of the total genospecies identified over this time
period in Latvia. Analysis of species distributions over
years showed that prevalence of genospecies in the previ-
ous year positively correlated with the frequency of the
same genospecies in the subsequent year [prevalence in
previous sampling, mean: 1.75; 95% confidence interval
(CI): 1.16–2.33; Table 4]. Additionally, the frequency of a
genospecies was generally higher if it had been found in
the previous year when compared to if it had not been

Fig 1. Prevalence of infected ticks (total number) versus adults and nymphal ticks. Y-axis shows proportion of all ticks that were Borrelia posi-
tive and X-axis shows the years.
A. Panel A shows the general progression of both adults and nymphal ticks from 1999 to 2010. The highest infection rate was in the year 2000,
from then onwards the infection rate gradually decreased with slight increases in the years 2003 and 2007.
B. Panel B shows the infection rate of adults and nymphal ticks, the highest infection rates were in the years 2000 and 2001 for nymphs and
adults respectively. In addition, a constant decrease from the peak infection years to 2010 is noticeable.

Table 4. Results of GLMM exploring impacts to the absolute number
of ticks infected with specific Borrelia genospecies in a given year.

Fixed effects β (95% CI)

Intercept −0.64 (−1.44, 0.15)
Genospecies prevalence in previous

samplinga
1.75 (1.16, 2.33)

Genospecies found in previous samplingb 1.22 (0.80, 1.64)

Random effects σ 2 (95% CI)

Year 0.64 (0.47, 0.84)
Site 0.14 (0.07, 0.24)
Residual 2.63 (3.20, 2.20)

a Calculated per genospecies per year.
b Binary factor given per genospecies per year.
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found (found in previous sampling, mean: 1.22; 95% CI:
0.80–1.64; Table 4). Even so, genospecies frequencies
varied between sites and over years (Table 4).

Identification of clonal complexes and their spatio-
temporal distribution

In order to get a detailed view about the relationship of
isolates and to determine if temporal fluctuations or
changes within the populations occurred, that is, to see

whether different sequnce types (STs) dominate at differ-
ent times, a goeBURST analysis was conducted on
159 isolates (Table S1). The 159 samples were grouped
into 109 STs, which means that identical STs were identi-
fied. Several major clonal complexes (CCs) and minor
CCs (in which only two STs were connected) were formed
in the different species (Figs 3–6). There was no evidence
of specific STs dominating a habitat at specific times;
rather there was arbitrary distribution of STs regardless of
the sampling year for the four analysed species.

Fig 2. Pie chart showing the overall spatial distribution of Borrelia burgdorferi s.l. species in the three sampled habitats. The percentage of spe-
cies is given; number shown in parenthesis refers to the actual number. Colours were assigned to the species as follows:
Borrelia afzelii, Borrelia bavariensis, B. burgdorferi s.s., Borrelia garinii, Borrelia lusitaniae and Borrelia valaisiana

A. In Babite, six different species were identified with bird-associated species [B. garinii (43%) and B. valaisiana (17%)] dominating.
B. In Jaunciems, four different species were identified with B. afzelii clearly dominating this region.
C. In Kemeri, five species were identified with B. afzelii and B. garinii most commonly found.

Fig 3. Population structure of Borrelia afzelii and the spatio-temporal distribution of STs in Lativa. The diagram shows the relationship of
B. afzelii STs based on TLV.
A. Groupings per year. The distribution of STs from 1999 to 2007 in Latvia is indicated with different colours as follows:
1999, 2000, 2001, 2002, 2003, 2006 and 2007.

B. Groupings per collection region are displayed. For regions, the following colours were assigned: Babite, Jaunciems, and Kemeri.
One major CC was formed with founder ST170 (circled in red in A) and three sub-founders (circled blue in A). A second major CC was identified
but no founder ST was recognized. There were two minor CC and five singletons.
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Borrelia afzelii samples formed two major CCs, two
minor CCs and five singletons. The largest major CC
(CC170) had 38 contributing STs (Table 5, Fig. 3A–B)
indicating a close relatedness amongst B. afzelii STs.
The CC founder, ST170, was identified with 99% proba-
bility of being the founder of this complex. ST165, ST166
and ST215 were classified as sub-founders with probabil-
ities of 94%, 98% and 99% respectively. Another CC
consisted of three STs: ST571 (94% probability of being
the group founder), ST843 and ST847. The spatial distri-
bution of B. afzelii showed that identical ST were found
in Kemeri and Jaunciems (n = 3) whilst between Kemeri
and Babite and Jaunciems and Babite one ST was
shared (Fig. 3B), most of them occurred in different years
(Fig. 3A).
Borrelia garinii formed six major CCs, one minor CC

and seven singletons (Table 5, Fig. 4A–B). This may mir-
ror the diversity of this genospecies (Vollmer et al., 2011;
Jacquot et al., 2014). There were 47 sampled assigned
to 34 STs (Fig. 4). One founder ST (ST86) was identified
with 76% probability (Table 5). The spatial distribution of
B. garinii STs (Fig. 4B) revealed that identical STs were
found in Jaunciems and Babite (n = 1) and in Kemeri and
Babite (n = 2), mostly in different years (Fig. 4B).
Isolates of B. valaisiana and B. burgdorferi s.s. were well

connected (Table 5, Figs. 5 and 6). There were 17 STs of
32 B. valaisiana samples available which were resolved in
one major CC and one minor CC (Fig. 5). One founder
(probability 65%) was identified and two sub-founders
(Table 5). Five STs, ST96, ST97, ST100, ST199 and
ST201 were found in several years (Fig. 5A) and five in
the different habitats (Fig. 5B). ST199 was found in Babite
in 2002, in Kemeri in 2001 and 2007, and in Jaunciems
in 2007.
There were eight B. burgdorferi s.s. STs (Fig. 6). One

major CC, with unrecognized sub-founder, and one minor

CC were identified. The random distribution of
B. burgdorferi s.s. STs is comparable to other species
with the difference that here we had a much smaller sam-
ple size. ST1 was noticed in the years 1999 and 2000.
ST20 and ST21 were noted twice in the years 1999 and
2003 respectively. ST21 was also noted in the year 2000
but just once and ST161 was noted twice in the year
2007 (Fig. 6A). B. burgdorferi s.s. was found in Babite
and Kemeri but no identical ST was found in the two hab-
itats (Fig. 6B).

Discussion

Prevalence of I. ricinus ticks and Borrelia in Latvia

Ixodes ticks have a long-life cycle that – depending on
environmental conditions – may take up to 6 years to
complete (Gray et al., 2016). This means that pathogens
that are transmitted by ticks will remain in the environ-
ment for extended periods of time (or as long as the tick
stays alive). Ticks represent one important part in trans-
mission cycles of tick-borne pathogens (TBP). Thus, in
order to gain insights into changes in species distribution
and fluctuations of TBP, short-term studies are insuffi-
cient. They can produce a snapshot of the prevalence of
organisms or their population structure (Etti et al., 2003;
Ferquel et al., 2006; Rosef et al., 2009; Halos
et al., 2010; Geller et al., 2013) but do not describe the
stability of species/strains or their fluctuations over the
years. Therefore, the aim of this study was to investigate
the temporal and spatial distribution of Borrelia species
and populations, their fluctuations and/ or stability in
defined habitats in Latvia over several years. MLST was
used to characterize B. burgdorferi s.l. in questing
I. ricinus ticks. This is the first longitudinal study covering
a period of 11 years of tick collection in Latvia in defined

Fig 4. Shows spatio-temporal
distribution of Borrelia garinii.
There are six CC, one minor CC
and seven singletons.
ST86 (circled in red in A) was
identified as the founder ST to its
complex. The colour-coding as in
Fig. 3. The largest number of
B. garinii STs were found in the
years 2006 (teal) and 2007 (dark
grey) (A).
ST177 appeared in the years
1999, 2007 and 2010 whilst ST86,
ST163, ST180, ST184 and ST190
appeared in two different
years each.
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Fig 5. Shows spatio-temporal dis-
tribution of B. valaisiana.
One major CC with founder ST
(circled red in A) and two sub-
founders (blue circled in A) were
formed. There was one minor CC
and no singletons. The colour-
coding as in Fig. 3.

Fig 6. Shows temporal distribu-
tion of B. burgdorferi s.s.
One major CC with a sub-founder
(circled blue) and one minor CC
was identified. The colour-coding
as in Fig. 3.

Table 5. CC and their respective founder and sub-founder STs.

Species Major clonal complex Minor clonal complex Founder ST

Borrelia afzelii CC170 ST170
CC571 Not identified

CC220 Not identified
CC463 Not identified

Borrelia garinii CC86 ST86
CC180 Not identified
CC185 Not identified
CC187 Not identified
CC207 Not identified
CC193 Not identified

CC190 Not identified
Borrelia valaisiana CC97 ST97

CC203 Not identified
CC102 Not identified

Borrelia burgdorferi s.s. CC21 ST21 (sub-founder)
CC161 Not identified

Not identified = No founder ST was identified.
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habitats and using MLST/MLSA as instrument for strain
typing.
The overall average Borrelia infection prevalence of

18.9% determined in our study in adults and nymphs was
comparable to previously published tick prevalences
in Europe (Bormane et al., 2004; Rauter and
Hartung, 2005; Strnad et al., 2017). Remarkably, over the
years mean prevalences declined from > 30% in 2000
and 2001 to 7.3% in 2010. A prevalence of 28% for
B. burgdorferi s.l. in the years 1999 and 2000 in the
same habitats (Etti et al., 2003) is consistent with our
data. It may be worth mentioning that the decline in tick
infection prevalence with Borrelia was not due to the
decrease of infection in one particular habitat but was
registered in all three investigated habitats. Prevalence
fluctuations reported in previous studies usually covered
shorter periods of time (3–6 years) (Wielinga et al., 2006;
Hoen et al., 2009a,b; Herrmann et al., 2013). One longi-
tudinal study carried out in the Netherlands found that at
one particular collection site, where ticks were collected
between 2000 and 2009, the prevalence of
B. burgdorferi s.l. was relatively stable (prevalence of 7%
for B. burgdorferi s.l.). Except for the years 2004 and
2005, in which the highest nymphal tick densities and
peak prevalences of B. burgdorferi s.l. were observed
(20%–25%). The authors speculated that the variation in
tick density may have been due fluctuations in the avail-
ability of reservoir hosts, so-called mast years. Mast
years refer to when there is a high acorn production and
a subsequent increase in hosts (Ostfeld et al., 2006).
Although in these particular years, peak densities of ticks
coincided with high Borrelia prevalence, in general, that
is, when all collection sites (sampled from 2000 to 2006)
were included, the authors found a negative correlation
between tick densities and Borrelia infection prevalence
(Coipan et al., 2013). We do not know what the underly-
ing causes for the steady decline of Borrelia tick infec-
tions we observed during our study are. There are
suggestions that a decline of reservoir host populations
may lower the risk of tick infection (Paul et al., 2016).
This would be consistent with studies conducted by
Ostfeld et al. (2006). These authors found that high avail-
ability of hosts due to mast years may influence the risk
for acquiring LB in humans, where the abundance of suit-
able hosts (mice and chipmunks) in a particular year led
to increased risk for LB in the following year due to an
increase in numbers of infected nymphs (Ostfeld
et al., 2006). A steady decline of infection prevalences as
observed in our study was surprising in view of reports of
increasing tick infection rates due to climate and other
environmental changes (Rosa et al., 2018). We can only
speculate here that this may be due to changes in reser-
voir host populations as reservoir hosts may be a strong
factor impacting the presence and structure of Borrelia

populations (Etti et al., 2003; Kurtenbach et al., 2006;
Ostfeld et al., 2006; Randolph, 2008).

Generally, the infection rate in adult ticks was higher
than that in nymphs. This is consistent with previous
studies on the prevalence of Borrelia in ticks in Europe
(Rauter and Hartung, 2005; Strnad et al., 2017). This has
been ascribed to the fact that adult ticks had an opportu-
nity to feed on at least two hosts; assuming that both
hosts were infected and that the feeding was not inter-
rupted. In contrast, nymphs usually have only fed on one
host (Kurtenbach et al., 2010; Estrada-Pena et al., 2011;
Rizzoli et al., 2011; Strnad et al., 2017). Also, an efficient
trans-stadial transmission of the spirochete purportedly
contributes to this (Mejlon and Jaenson, 1993). In our
study for the year 2000 an opposite trend was observed
(Fig. 1B). Similar observations have been made in Italy,
France, Slovakia and Sweden where higher infection
rates in nymphs than in adults were described (Aureli
et al., 2015; Chvostáč et al., 2018; Ehrmann et al., 2018;
Akl et al., 2019). Since the interactions between tick, host
and pathogen are highly complex and many factors could
be involved (some of which may work in synergy) several
explanations are possible (Randolph, 2008; Randolph,
2009; van Duijvendijk et al., 2015). Amongst them the
number of incompetent hosts on which nymphs of the
previous year may have fed leading to an overall reduc-
tion in prevalence in the adult population in the subse-
quent year (dilution effect) (Jouda et al., 2004; Nahimana
et al., 2004; Kurtenbach et al., 2006), strong temporal
variation in tick population (Randolph, 2008) or unusual
high transovarial transmission of Borrelia (van Duijvendijk
et al., 2016). We also cannot discount the possibility that
the observed high infection rate in nymphs may have
been due to sampling bias as in the particular year the
number of collected nymphs was very low.

Borrelia species depend on vector and host for survival
(Kurtenbach et al., 2006; Margos et al., 2011; Radolf
et al., 2012). Accordingly, fluctuation/stability of Borrelia
species may depend on many factors although these
may not directly impact the bacteria themselves. It is well
described that numerous abiotic and biotic conditions
directly influence ticks and reservoir hosts in their
natural habitats and this will – indirectly – affect TBP and
contribute to fluctuation that can be observed
(Randolph, 2004; 2008; Kurtenbach et al., 2006; Pfaffle
et al., 2013; Paul et al., 2016). Due to the physiological
requirements of ticks, their abundance in any given habi-
tat may be very sensitive to climatic or microclimatic
changes (Kurtenbach et al., 2006; Randolph, 2008; 2009;
Margos et al., 2011) but host availability may have a
stronger impact on fluctuations of tick and TBP
populations than climatic changes (Ostfeld et al., 2006;
Randolph, 2008). Apart from the year 2001 where num-
bers of collected ticks were almost twice or three times
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that of other years, the observed decline in Borrelia
infection rates in our study was not accompanied by
dramatic shifts or decline in tick abundance over the
years which are known to show strong temporal variabil-
ity (Randolph, 2008). It can also be assumed that in a
given habitat the effect of climate or other environmental
changes on tick abundance similarly affect the tick popu-
lation as a whole (Randolph, 2008; 2009). Thus, we
propose that the pattern of presences of Borrelia species
in the three habitats investigated here and that we
observed in our study were mainly due to the impact of fluc-
tuations/stability of Borrelia reservoir hosts (Randolph, 2008).

In Europe, the pronounced host associations of Borrelia
species have been attributed to the ability of species to
resist host complement. Borrelia garinii and B. valaisiana
are adapted to birds as reservoir hosts whilst B. afzelii is
associated with rodent hosts (Hu et al., 1997; Kurtenbach
et al., 1998; Taragel’ova et al., 2008; Dubska et al., 2009;
Norte et al., 2013; Heylen et al., 2017). These are also
the most commonly identified species in Europe which
are geographically unequally distributed (Kurtenbach
et al., 2006; Strnad et al., 2017; Estrada-Pena et al.,
2018). Expectedly, these were also the most common
species identified in the studied habitats in Latvia.

Species distribution in habitats

The species composition differed markedly between the
investigated habitats. In Babite, the sylvatic habitat, six
species were detected: B. afzelii, B. bavariensis,
B. burgdorferi s.s., B. garinii, B. lusitaniae and
B. valaisiana. Interestingly, in this habitat, a significant
shift in Borrelia species was observed with time. The
rodent-adapted species B. afzelii was the most frequently
detected species in 1999, 2000 and 2002. Afterwards the
bird-adapted species B. garinii became the dominant
species. Particularly, in sampling years 2006 and 2007
the bird-adapted species B. garinii and B. valaisiana
dominated suggesting a shift in the reservoir host compo-
sition in this particular habitat from competent rodent res-
ervoir hosts of B. afzelii to bird populations that are
reservoir hosts for B. garinii and B. valaisiana. This strik-
ing and significant shift was contrasted by a more stable
Borrelia species composition in the other habitats. In
Kemeri four Borrelia species were found and – although
some variation occurred in species abundance from year
to year – there was no significant shift in Borrelia species
composition suggesting relative stability of bird and
rodent reservoir host populations. In addition, prevalence
and presence of genospecies in a previous year posi-
tively correlated to the matching genospecies frequency
in the following year, supporting that carry over of gen-
ospecies in general is plausible within a given site.

However, we do observe, over long time periods, that
species can go extinct or re-emerge locally, which would
explain the site and year fluctuations in genospecies fre-
quency. Stability was also observed in Jaunciems, where
B. afzelii was the dominant species throughout the study,
a result that was consistent with previous studies in this
habitat (Etti et al., 2003). Many rodent hosts including
Apodemus sp., Myodes sp. and squirrels can be reser-
voir for B. afzelii. An interesting aspect that we do cur-
rently not know would be to investigate which rodent
species occur in this habitat.

Population analysis

Using MLST as typing system, our data also provided a
temporal and spatial view on populations of individual
Borrelia species. Whilst host association of Borrelia is
governed by the innate immune system of the host
(Marcinkiewicz et al., 2017) and may result in shifts in
species composition/abundance in response to host
shifts in the habitat, the host adaptive immune response
impinges on populations of Borrelia species (Kurtenbach
et al., 2006). Previous work suggested that adaptive
immune responses directed towards outer surface pro-
teins, for example, outer surface protein C (OspC) of
Borrelia (Qiu et al., 2002; Brisson and Dykhuizen, 2004),
may lead to fluctuations of genotypes (Kurtenbach
et al., 2006). In these scenarios, abundant genotypes
would decrease due to frequency-dependent selection of
adaptive immune responses, whilst rare genotypes would
become more frequent. However, such fluctuations of
OspC genotypes were not noticed in a longitudinal study
conducted in Switzerland on B. afzelii and B. garinii
(Durand et al., 2017). Instead, dominance of a B. afzelii
OspC-type termed A10 was observed over the whole
time of the study (11 years). As the samples in our study
had been acquired in the different habitats over several
years, we expected to see some kind of pattern and clus-
tering of closely related STs according to the collection
time or region. However, no recognizable trend con-
cerning collection year or site was observed relating to
population structure of species. Generally, we did not
observe the dominance of specific STs in certain years
and their replacement with less frequent STs (Qiu
et al., 2002; Brisson and Dykhuizen, 2004). In none of
the Borrelia species, not in B. afzelii or in any of the other
species, did we find a dominant ST. In fact, there were
no STs that dominated any of the habitats at any time,
similar to studies conducted in the United States (Hoen
et al., 2009a,b). In all the species, a minority of STs were
found in several years, and if so, often not in the same
habitat. STs that were found in consecutive years were
closely related often belonging to the same CC, in
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particular in B. afzelii whose population consisted of two
major CCs and only few singletons. Therefore, our data
are not consistent with either of the scenarios described
above. A confounding factor may have been that many
STs were found only once and that for many samples all
eight MLST genes could not be sequenced and thus,
could not be identified to ST.
STs were mostly specific to a region whilst few were

shared between regions. Only few shared STs were
found in the regions, for instance out of a total of
109 STs, four shared STs were found between
Jaunciems and Kemeri, five shared STs between Babite
and Kemeri and five shared STs between Babite and
Jaunciems suggesting very little exchange of STs
between habitats, even for the bird-associated species.
As these habitats are approximately 40 km apart, one
might have expected that birds migrate back and forth
between these three regions. However, in such a
scenario it would be expected to find identical STs of
bird-associates species, B. garinii and B. valaisiana,
more frequently in all the three regions (Vollmer et al.,
2011; 2013) than B. afzelii which was not the case, nei-
ther in our study nor in a previous study conducted in the
same habitats (Etti et al., 2003).
Taken together, our data suggest that the population

dynamics of Borrelia species is far more complex than
previously suggested. A limitation of our study was that
we did not obtain the full array of MLST sequences for all
of the samples. Thus, improved methods for sequence
acquisition are required. It has been shown in the United
States that enrichment of bacterial DNA and whole
genome sequencing may give additional and better data
but that may be more complicated to accomplish in
Europe with a many more species to consider than just
B. burgdorferi s.s. in the United States (Carpi
et al., 2015; Walter et al., 2016).

Conclusions

In conclusion, Borrelia is a vector obligate bacterium, and
the vectors in turn are host-reliant, which makes the ecol-
ogy of these bacteria highly complex. Generally, host
abundance is a determining factor for vector survival
hence spirochete survival. The distribution of
B. burgdorferi s.l. species is dependent on the host distri-
bution and movement (Kurtenbach et al., 2002; Comstedt
et al., 2011; James et al., 2014) but species variation
may also be the result of strong bottlenecks within sites
(Bruyndonckx et al., 2009; Lemoine et al., 2018).
Our data reflect the complexity of Borrelia ecology.

Contrary to common opinion that climate change will
increase vector populations and the risk for acquiring
TBP for humans, we did neither observe an increase in
tick abundance nor an increase in Borrelia infection in

ticks. In fact, after 2001 tick infection rates with Borrelia
steadily declined in all three habitats. The three investi-
gated habitats, Babite, Kemeri and Jaunciems, differed
markedly in Borrelia species structure suggesting differ-
ences in reservoir host composition. Temporal changes
in species structure were observed in one habitat
(Babite) whilst the other two habitats (Kemeri and
Jaunciems) showed relative stability. Furthermore, our
results suggested carryover of genospecies from year to
year is possible. However, frequencies did vary between
sites and over years, not excluding the possibility of local
extinction or re-emergence over longer time periods.

Our long-term data show that the ecology of different
habitats may respond differently to ecological changes
over time and extrapolation of data relating to prevalence
of TBP, to fluctuations or stability of species or
populations is not possible. Certainly, further long-term
studies are needed, which focus on the same sites to
have a comparable data over years that include data on
reservoir hosts, prevalences and population structure.

Materials and methods

Tick sampling

Ticks were collected by drag sampling using a white cot-
ton cloth from Spring to Autumn in three different habitats
in Latvia between the years 1999 and 2010 (Rulison
et al., 2013). Sampling habitats were sylvatic (Babite),
peridomestic (Jaunciems), and peridomestic-sylvatic
(Kemeri). Collected ticks were morphologically identified
as I. ricinus (Sonenshine and Roe, 2014) and were
stored in 70% ethanol (EtOH) until further use. MLST
sequences from ticks sampled in habitats from the years
2002, 2006 and 2007 were already processed and publi-
shed in previous studies (Vollmer et al., 2011; 2013) and
were included in our study. See Table 1 for the summary
of processed ticks in the current study.

DNA extraction and PCR

Whole ticks were washed shortly using approximately
1 ml distilled water prior to DNA purification. DNA
extraction was done using two different methods:
(i) alkaline hydrolysis using 1.25% ammonium hydrox-
ide and (ii) a commercially available DNA extraction kit
as per manufactures’ instructions. The methods have
been extensively described elsewhere (Okeyo
et al., 2019).

A screening real-time PCR targeting the flaB gene
encoding the flagellin B protein (P41) was conducted
(Venczel et al., 2016). Briefly, QuantiTectMultilpex PCR
(NoROX Master Mix, Qiagen, Hilden, Germany) was
used with the following thermo-profile: Taq polymerase
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activation at 95�C for 10 min, followed by 45 cycles of
DNA annealing, extension and elongation at 95�C for
10 s, 56�C for 40 s and 72�C for 30 s respectively.
Because of differences in sensitivity between real-time
PCR and conventional PCR, only samples with Ct values
≤ 35 were used for further MLST analysis (Okeyo
et al., 2019).

A MLST scheme with eight housekeeping loci (Margos
et al., 2008; 2009) (clpA, clpX, nifS, pepX, pyrG, recG,
rplB, uvrA; see also http://pubmlst.org/borrelia) was
employed as described in detail by Wang and col-
leagues (2014). Briefly, a two-step (nested) PCR with a
touchdown profile in the first round was conducted for
seven genes, to minimize non-specific binding of the
primers. For recG a regular two-step PCR was used
(Margos et al., 2009; Vollmer et al., 2011; Jungnick
et al., 2015). The PCR products were purified using poly-
ethylenglycol (PEG) as described at https://openwetware.
org/wiki/PEG_purification_of_PCR_products. The PEG
solution was prepared by mixing 10.0 g PEG with 7.3 g
sodium chloride (NaCl) and the volume adjusted to 50 ml
with distilled water. The DNA was eluted with 30 μl nucle-
ase free water (Promega, Germany).

Sequencing, sequence analysis and species
assignment

Twenty samples from this study were sent to a commer-
cial sequencing company for sequencing (GATC,
Koblenz, Germany; www.gatc.de) and the remaining
samples were sequenced in-house with Illumina MiSeq
technique as described (Kingry et al., 2018).

Quality assessment of sequences obtained by Sanger
sequencing was done using the software provided by
Smartgene Inc., Lausanne, Switzerland (https://apps.
idns-smartgene.com/apps/IDNSPortal.po) or by using
the Seqman Pro software v.15 (DNAStar, Lasergene,
Madison, WI). Sequences that were generated by
MiSeq sequencing were mapped onto MLST reference
sequences for B31 extracted from MLST database using
the CLC genomic workbench 11 (Qiagen). A cut-off
value of 0.3 was used to determine mixed sequences
(Hepner et al., 2020). All sequences that were identified
as mixed infections were removed from further MLST
analyses. MEGA 6.0 was used to align and trim
sequences to the required size. Species assignment, as
well as designation of known allele numbers and
sequence type numbers was done through the pubmlst
Borrelia website (http://pubmlst.org/borrelia). Novel
alleles were submitted to the curator of the MLST
website and novel allele numbers were assigned. Allele
and sequence type numbers allowed determination of
Borrelia species.

eBURST and goeBURST analyses

goeBURST (Francisco et al., 2009; 2012) and eBUSRT
(Feil et al., 2004) were used to obtain a view on the relat-
edness of STs, to create a network of CC and to predict
the founder of each CC (Feil et al., 2004). The analysis is
based on allelic profiles determined for each ST (Feil
et al., 2004). CCs were defined for all samples that had a
full complement of MLST alleles using the triple-locus
variant parameter in eBURST (Feil et al., 2004) and
goeBURST (Francisco et al., 2009; 2012). STs that dif-
fered in no more than three alleles were connected to
form a CC. The formed CCs were designated according
to the ST number of the potential founder.

Statistical analysis

The probability of a tick to be Borrelia positive was mod-
elled using a binomial generalized linear mixed effect
model (GLMM). Site and life stage were fitted as fixed
effects and a random intercept for year was included.
This model utilized all positive tick specimens (Ct value
< 40) regardless of complete Borrelia species identifica-
tion. No larvae were positive for Borrelia and therefore
were excluded from this analysis. For all further statistical
analyses, only positive tick specimens with Borrelia spe-
cies identification were used.

Prevalence of host adaptation types per year were cal-
culated and tested using Fisher’s exact tests. For this all
Borrelia spp. found in a site in a given year were com-
bined into four categories: bird-adapted (B. valaisiana,
B. garinii), rodent-adapted (B. afzelii, B. bavariensis),
generalists (B. burgdorferi s.s.) or were identified as
mixed infections (i.e. potentially more than one Borrelia
species present).

To test potential carry over year effects on Borrelia
genospecies prevalence, we modelled the absolute num-
ber of ticks infected with a specific Borrelia genospecies
each year using a GLMM assuming a Poisson error dis-
tribution. For this, fixed effects were fitted for the preva-
lence of the given Borrelia genospecies in the previous
sampling event and a binary factor if the genospecies
was found (1) or not found (0) in the previous sampling
event. Random effects were also included for site
and year.

All analyses were done in R (version 3.6.1; R Core
Team, 2019). Fisher’s exact tests were performed using
the fisher.test command with a simulated p value, based
on 5000 simulations, from the base R package (R Core
Team, 2019). All GLMMs were run with the glmer func-
tion from the ‘lme4’ package (Bates et al., 2015). The
posterior distributions of the model parameters were sim-
ulated using the sim function from the ‘arm’ package
(Gelman and Su, 2016). Mean estimates and their 95%
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CIs, were extracted estimated based on 5000 simula-
tions. Residual errors were calculated according to
Nakagawa and Schielzeth (2010).

Acknowledgements

We are grateful to Cecilia Hizo-Teufel, Silvia Stockmeier and
Wiltrud Strehle in the NRZ Borrelia laboratory for their assis-
tance during the course of this research. This work was
supported by Robert Koch Institute through German National
Reference Center for Borrelia and by the Deutschen
Akademischen Austausch Dienst (DAAD).

References

Akl, T., Bourgoin, G., Souq, M.L., Appolinaire, J., Poirel, M.
T., Gibert, P., et al. (2019) Detection of tick-borne patho-
gens in questing Ixodes ricinus in the French Pyrenees
and first identification of Rickettsia monacensis in France.
Parasite 26: 20–20.

Aureli, S., Galuppi, R., Ostanello, F., Foley, J.E., Bonoli, C.,
Rejmanek, D., et al. (2015) Abundance of questing ticks
and molecular evidence for pathogens in ticks in three
parks of Emilia-Romagna region of northern Italy. Ann
Agric Environ Med 22: 459–466.

Bacon, R.M., Kugeler, K.J., and Mead, P.S. (2008) Surveil-
lance for Lyme disease United States, 1992–2006.
MMWR Surveill Summ 57: 1–9.

Bates, D., Mächler, M., Bolker, M.B., and Walker, S.C.
(2015) Fitting linear mixed-effects models using lme4.
J Stat Softw 67: 48.

Bormane, A., Lucenko, I., Duks, A., Mavtchoutko, V.,
Ranka, R., Salmina, K., and Baumanis, V. (2004) Vectors
of tick-borne diseases and epidemiological situation in Lat-
via in 1993–2002. Int J Med Microbiol 293: 36–47.

Brisson, D., and Dykhuizen, D.E. (2004) OspC diversity in
Borrelia burgdorferi: different hosts are different niches.
Genetics 168: 713–722.

Brisson, D., and Dykhuizen, D.E. (2006) A modest model
explains the distribution and abundance of Borrelia bur-
gdorferi strains. Am J Trop Med Hyg 74: 615–622.

Bruyndonckx, N., Henry, I., Christe, P., and Kerth, G. (2009)
Spatio-temporal population genetic structure of the para-
sitic mite Spinturnix bechsteini is shaped by its own
demography and the social system of its bat host. Mol
Ecol 18: 3581–3592.

Carpi, G., Walter, K.S., Bent, S.J., Hoen, A.G., Diuk-
Wasser, M., and Caccone, A. (2015) Whole genome cap-
ture of vector-borne pathogens from mixed DNA samples: a
case study of Borrelia burgdorferi. BMC Genomics 16: 434.
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Supplementary information, tables and figures 

Habitat description 

The three collection regions constitute different ecological habitats. Babite, (longitude, 23° 

48′; latitude, 56° 50′) is a sylvatic habitat (forested habitation). Jaunciems (longitude, 24° 09′; 

latitude, 57° 03′) is peridomestic (around human habitation) and close to the suburbs of Riga. 

Kemeri (longitude, 23° 29′; latitude, 56° 56′) represents a peridomestic habitat with mixed 

forest habitats along marshes (Etti et al., 2003).  

The tick collection site Babite is far from residential areas with a rural road sectioning it in two 

parts. The most common tree found in this region is Picea abies, also known as Alnus glutinosa. 

In both sections, there is heavy growth of Picea abies saplings. Other trees found in this site 

included: Populus tremula, Alnus sp., Frangula alnus, Padus avium, Betula sp., Salix sp., and 

Rubus idaeus. Oxalis acetosella mainly covers the ground, but there are also areas with dense 

growth of different common grass species.  

Jaunciems is near Riga, the capital city of Latvia. There are two heavily used main roads, 

private houses and a lake near the tick collection site. The most common tree found in this 

region was Pinus sylvestris. Other tree species found in this region included: Acer plantanoides, 

Sorbus aucuparia, Padus avium, Ameanchier spicata, Tilia cordata amongst others. In contrast 

to Babite, the underwood and ground are not densely covered. Low plants and grass are found 

in these regions.  

Kemeri is also far away from residential areas and has mixed vegetation. There is a small 

pedestrians’ road. Nearby is woodland and marshes, along which tick collection was 

conducted. Frequently found trees were Pinus sylvestris and Picea abies, whilst Alnus 

glutinosa was infrequent at this site. The ground was covered either with Oxalis acetosella or 



 

 

Vaccinium myrtillus or with moss. Different underwood tree species like Alnus sp. or Acer 

plantanoides are found. In Kemeri the ground is mostly densely covered. 

Fig. S1: Google map showing tick collection sites in Latvia 

 

Babite is a sylvatic habitat (forested habitation), Jaunciems is a peridomestic habitat close to 

the suburbs of Riga and Kemeri represents a peridomestic habitat with mixed habitats along 

marshes. Source https://www.google.de/maps. 
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Fig. S2: Total number of ticks analyzed in the whole study 

 

 

The highest number of ticks were acquired in the year 2001 in Babite  



  Table S1: Sam
ples used in this study w

ith at least one M
LST gene positive 

Strain 
Species 

Collection Site 
Year 

ClpA 
ClpX 

nifS 
pepX 

pyrG
 

recG
 

rplB 
uvrA 

1 
9-26-55 

B. burgdorferi s.s. 
Babite 

1999 
14 

1 
11 

1 
168 

1 
8 

10 
2 

9-26-08 
B. garinii 

Babite 
1999 

43 
28 

30 
90 

87 
42 

28 
229 

3 
9-22-37 

B. afzelii 
Kem

eri 
1999 

36 
212 

23 
30 

92 
27 

23 
29 

4 
9-22-36 

B. afzelii 
Kem

eri 
1999 

43 
28 

34 
90 

87 
36 

28 
34 

5 
9-22-27 

B. garinii 
Kem

eri 
1999 

40 
213 

26 
36 

28 
34 

28 
31 

6 
9-22-21 

B. afzelii 
Kem

eri 
1999 

183 
24 

23 
31 

27 
27 

23 
29 

7 
9-12-26 

B. afzelii 
Babite 

1999 
109 

24 
25 

31 
92 

52 
23 

28 
8 

9-12-11 
B. burgdorferi s.s. 

Babite 
1999 

15 
1 

1 
1 

168 
1 

1 
1 

9 
9-26-20 

B. garinii 
Babite 

1999 
42 

27 
29 

92 
29 

36 
27 

33 
10 

9-25-62 
B. burgdorferi s.s. 

Babite 
1999 

1 
1 

1 
1 

1 
1 

1 
1 

11 
9-22-34 

B. garinii 
Kem

eri 
1999 

42 
27 

29 
38 

29 
80 

27 
33 

12 
9-22-17 

B. burgdorferi s.s. 
Kem

eri 
1999 

14 
1 

11 
1 

1 
1 

1 
10 

13 
9-22-16 

B. valaisiana 
Kem

eri 
1999 

49 
36 

36 
45 

38 
44 

35 
40 

14 
9-22-09 

B. burgdorferi s.s. 
Kem

eri 
1999 

14 
1 

11 
1 

1 
1 

1 
10 

15 
9-22-04 

B. garinii 
Kem

eri 
1999 

43 
28 

30 
90 

87 
36 

28 
34 

16 
9-20-24 

B. bavariensis 
Jaunciem

s 
1999 

41 
26 

27 
37 

28 
35 

26 
32 

17 
0-14-06 

B. afzelii 
Babite 

2000 
39 

24 
23 

87 
92 

27 
23 

78 
18 

 0-14-10b 
B. garinii 

Babite 
2000 

42 
27 

29 
38 

29 
39 

80 
33 

19 
0-14-26 

B. afzelii 
Babite 

2000 
51 

24 
23 

86 
85 

92 
23 

29 
20 

0-14-36 
B. garinii 

Babite 
2000 

45 
33 

34 
36 

36 
38 

30 
38 

21 
0-14-37 

B. afzelii 
Babite 

2000 
35 

24 
24 

32 
21 

27 
208 

28 
22 

0-14-39 
B. afzelii 

Babite 
2000 

39 
24 

24 
31 

22 
92 

23 
28 

23 
0-8-03 

B. burgdorferi s.s. 
Kem

eri 
2000 

14 
1 

11 
1 

1 
10 

1 
10 

24 
0-4 

B. afzelii 
Jaunciem

s 
2000 

109 
24 

24 
85 

90 
91 

24 
29 

25 
0-13-41 

B. burgdorferi s.s. 
Babite 

2000 
1 

1 
1 

1 
1 

1 
1 

1 
26 

1-8-29 
B. garinii 

Kem
eri 

2001 
46 

214 
29 

43 
98 

40 
31 

37 
27 

1-8-50 
B. valaisiana 

Kem
eri 

2001 
50 

36 
37 

45 
234 

44 
36 

40 



  28 
 1-8-12b 

B. afzelii 
Kem

eri 
2001 

172 
24 

23 
85 

98 
27 

24 
28 

29 
1-8-28 

B. afzelii 
Kem

eri 
2001 

109 
24 

24 
31 

92 
246 

23 
28 

30 
1-29-12 

B. afzelii 
Jaunciem

s 
2001 

37 
215 

24 
31 

22 
91 

23 
29 

31 
1-29-17 

B. valaisiana 
Jaunciem

s 
2001 

257 
37 

37 
86 

39 
93 

36 
40 

32 
 1-29-35b 

B. afzelii 
Jaunciem

s 
2001 

109 
24 

24 
85 

90 
91 

209 
29 

33 
1-29-60 

B. afzelii 
Jaunciem

s 
2001 

36 
24 

23 
89 

95 
27 

23 
28 

34 
1-29-22 

B. afzelii 
Jaunciem

s 
2001 

36 
24 

23 
89 

118 
27 

23 
28 

35 
 1-29-30a  

B. afzelii 
Jaunciem

s 
2001 

38 
24 

25 
32 

90 
247 

24 
28 

36 
1-28 

B. afzelii 
Jaunciem

s 
2001 

36 
24 

24 
32 

21 
31 

23 
30 

37 
1-28-18 

B. afzelii 
Jaunciem

s 
2001 

37 
24 

24 
31 

235 
248 

23 
28 

38 
1-28-27 

B. afzelii 
Jaunciem

s 
2001 

37 
24 

25 
31 

236 
92 

23 
28 

39 
1-41-07 

B. afzelii 
Babite 

2001 
51 

24 
23 

86 
85 

27 
23 

230 
40 

1-41-18 
B. afzelii 

Babite 
2001 

36 
24 

23 
86 

237 
27 

23 
28 

41 
1-38-13 

B. afzelii 
Babite 

2001 
258 

24 
23 

203 
26 

96 
23 

156 
42 

1-37-13 
B. afzelii 

Babite 
2001 

37 
24 

24 
88 

22 
92 

23 
28 

43 
1-32-30 

B. burgdorferi s.s. 
Kem

eri 
2001 

14 
1 

11 
1 

168 
10 

1 
10 

44 
1-32-49 

B. afzelii 
Kem

eri 
2001 

109 
24 

24 
31 

22 
246 

24 
28 

45 
1-32-53 

B. garinii 
Kem

eri 
2001 

47 
73 

33 
90 

91 
76 

32 
33 

46 
1-31-43 

B. afzelii 
Kem

eri 
2001 

259 
24 

24 
31 

22 
92 

23 
28 

47 
 1-31LT 

B. garinii 
Kem

eri 
2001 

40 
216 

26 
36 

27 
250 

25 
31 

48 
1-5-26 

B. valaisiana 
Jaunciem

s 
2001 

50 
35 

37 
45 

38 
44 

35 
40 

49 
1-5-15 

B. valaisiana 
Jaunciem

s 
2001 

50 
37 

37 
45 

39 
93 

36 
40 

50 
1-5-29 

B. afzelii 
Jaunciem

s 
2001 

131 
82 

24 
88 

92 
27 

23 
28 

51 
1-29-03 

B. valaisiana 
Jaunciem

s 
2001 

49 
35 

35 
45 

38 
43 

35 
40 

52 
1-29-08 

B. garinii 
Jaunciem

s 
2001 

44 
29 

31 
40 

31 
37 

80 
35 

53 
1-29-29 

B. afzelii 
Jaunciem

s 
2001 

37 
24 

24 
31 

98 
92 

23 
28 

54 
 1-29-43a 

B. afzelii 
Jaunciem

s 
2001 

48 
34 

34 
44 

37 
42 

33 
39 

55 
1-4-09 

B. afzelii 
Jaunciem

s 
2001 

37 
24 

24 
31 

22 
92 

23 
28 

56 
1-14 

B. valaisiana 
Babite 

2001 
50 

38 
36 

45 
38 

44 
35 

40 



  57 
1-19-17 

B. afzelii 
Babite 

2001 
39 

24 
24 

31 
22 

92 
23 

28 
58 

1-38-03 
B. garinii 

Babite 
2001 

42 
27 

29 
38 

29 
39 

27 
33 

59 
1-37-19 

B. valaisiana 
Babite 

2001 
49 

37 
37 

45 
39 

45 
36 

40 
60 

1-31-25 
B. afzelii 

Kem
eri 

2001 
36 

24 
23 

31 
92 

27 
23 

29 
61 

1-31-42 
B. afzelii 

Kem
eri 

2001 
37 

24 
24 

31 
22 

92 
23 

28 
62 

2-47-03LT  
B. afzelii 

Jaunciem
s 

2002 
35 

24 
23 

86 
22 

27 
23 

28 
63 

2-02-11L  
B. afzelii 

Babite 
2002 

36 
24 

23 
87 

92 
27 

23 
78 

64 
2-16-21L  

B. afzelii 
Babite 

2002 
36 

24 
23 

87 
92 

27 
23 

78 
65 

2-08-09LT  
B. afzelii 

Babite 
2002 

36 
82 

24 
88 

92 
27 

23 
28 

66 
2-53LT  

B. afzelii 
Jaunciem

s 
2002 

37 
24 

23 
31 

22 
92 

23 
30 

67 
2-58-15L  

B. afzelii 
Jaunciem

s 
2002 

37 
24 

25 
31 

238 
92 

23 
30 

68 
2-54-15L  

B. afzelii 
Jaunciem

s 
2002 

38 
24 

25 
32 

90 
29 

24 
28 

69 
2-27LT  

B. garinii 
Babite 

2002 
44 

29 
76 

40 
31 

37 
80 

77 
70 

2-16-17L  
B. lusitaniae 

Kem
eri 

2002 
261 

22 
94 

123 
18 

118 
74 

102 
71 

2-45-9LT  
B. afzelii 

Babite 
2002 

36 
24 

24 
31 

22 
92 

23 
28 

72 
2-32-12L  

B. afzelii 
Babite 

2002 
109 

24 
23 

31 
23 

30 
23 

30 
73 

2-18-21L  
B. valaisiana 

Babite 
2002 

50 
35 

37 
45 

38 
44 

35 
40 

74 
3-5-17 

B. burgdorferi s.s. 
Kem

eri 
2003 

14 
1 

11 
1 

1 
10 

1 
10 

75 
3-8-06 

B. afzelii 
Kem

eri 
2003 

36 
24 

23 
37 

92 
27 

23 
231 

76 
3-8-07 

B. afzelii 
Kem

eri 
2003 

35 
24 

22 
32 

98 
27 

23 
28 

77 
3-17-10 

B. garinii 
Kem

eri 
2003 

48 
34 

90 
44 

37 
111 

33 
39 

78 
3-14-23 

B. afzelii 
Jaunciem

s 
2003 

131 
217 

24 
88 

92 
27 

23 
28 

79 
3-8-05 

B. burgdorferi s.s. 
Kem

eri 
2003 

14 
1 

11 
1 

1 
10 

1 
10 

80 
6-44-09L 

B. afzelii 
Babite 

2006 
36 

24 
23 

86 
22 

27 
23 

28 
81 

6-42-24L 
B. afzelii 

Jaunciem
s 

2006 
36 

24 
23 

86 
22 

27 
23 

28 
82 

6-12-18L 
B. afzelii 

Kem
eri 

2006 
36 

24 
23 

30 
92 

27 
23 

29 
83 

6-06-18L 
B. afzelii 

Kem
eri 

2006 
36 

24 
23 

30 
92 

27 
23 

29 
84 

6-07-24L 
B. afzelii 

Jaunciem
s 

2006 
36 

24 
23 

31 
92 

89 
23 

29 
85 

6-33-21L 
B. afzelii 

Jaunciem
s 

2006 
37 

24 
24 

31 
22 

92 
23 

28 



  86 
6-37-21L 

B. afzelii 
Jaunciem

s 
2006 

37 
24 

24 
31 

22 
92 

23 
28 

87 
6-35-21L 

B. afzelii 
Jaunciem

s 
2006 

51 
24 

23 
86 

85 
27 

23 
29 

88 
6-19-18L 

B. afzelii 
Kem

eri 
2006 

51 
24 

23 
86 

85 
27 

23 
29 

89 
6-22-18L 

B. afzelii 
Kem

eri 
2006 

51 
24 

23 
86 

85 
27 

23 
29 

90 
6-34-24L 

B. afzelii 
Jaunciem

s 
2006 

102 
24 

24 
31 

22 
92 

23 
28 

91 
6-10-06L 

B. garinii 
Babite 

2006 
42 

27 
29 

38 
29 

36 
27 

33 
92 

6-50-06L 
B. garinii 

Babite 
2006 

42 
27 

29 
38 

29 
36 

27 
33 

93 
6-14-06L 

B. garinii 
Babite 

2006 
31 

80 
78 

99 
81 

39 
79 

87 
94 

6-10-09L 
B. garinii 

Babite 
2006 

42 
27 

29 
92 

29 
36 

27 
33 

95 
6-23-06L 

B. garinii 
Babite 

2006 
43 

28 
30 

90 
87 

36 
28 

34 
96 

6-25-06L 
B. garinii 

Babite 
2006 

43 
28 

30 
90 

87 
36 

28 
34 

97 
6-21-18L 

B. garinii 
Kem

eri 
2006 

43 
28 

30 
90 

87 
36 

28 
34 

98 
6-38-09L 

B. garinii 
Babite 

2006 
44 

29 
31 

40 
31 

87 
80 

77 
99 

6-10-112L 
B. garinii 

Babite 
2006 

46 
76 

73 
43 

34 
40 

31 
37 

100 
6-23-03L 

B. garinii 
Babite 

2006 
47 

32 
33 

42 
91 

86 
32 

36 
101 

6-23-09L 
B. garinii 

Babite 
2006 

47 
32 

33 
42 

91 
86 

32 
36 

102 
6-12-09L 

B. garinii 
Babite 

2006 
47 

32 
33 

42 
35 

88 
32 

36 
103 

6-29-09L 
B. garinii 

Babite 
2006 

48 
34 

34 
44 

27 
42 

33 
39 

104 
6-92-12L 

B. garinii 
Babite 

2006 
48 

76 
29 

43 
34 

42 
31 

37 
105 

6-66-12L 
B. garinii 

Babite 
2006 

99 
77 

36 
91 

88 
84 

75 
33 

106 
6-13-06L 

B. valaisiana 
Babite 

2006 
49 

35 
35 

45 
38 

43 
35 

40 
107 

6-18-09L 
B. valaisiana 

Babite 
2006 

50 
36 

36 
45 

38 
44 

35 
40 

108 
6-35-03L 

B. valaisiana 
Babite 

2006 
50 

36 
36 

45 
38 

44 
35 

40 
109 

6-36-03L 
B. valaisiana 

Babite 
2006 

50 
39 

36 
45 

38 
44 

35 
40 

110 
6-21-03L 

B. valaisiana 
Babite 

2006 
50 

37 
37 

45 
39 

45 
36 

40 
111 

6-16-18L 
B. valaisiana 

Kem
eri 

2006 
50 

39 
74 

45 
38 

44 
35 

40 
112 

6-10-412L 
B. valaisiana 

Babite 
2006 

96 
75 

36 
98 

84 
44 

78 
86 

113 
6-39-09L 

B. valaisiana 
Babite 

2006 
96 

75 
36 

98 
84 

44 
78 

86 
114 

6-84-12L 
B. valaisiana 

Babite 
2006 

96 
75 

36 
98 

84 
44 

78 
86 



  115 
7-50-21L 

B. afzelii 
Jaunciem

s 
2007 

36 
24 

23 
86 

22 
27 

23 
28 

116 
7-14-24L 

B. afzelii 
Jaunciem

s 
2007 

36 
24 

23 
31 

92 
27 

23 
29 

117 
7-05-15L 

B. afzelii 
Kem

eri 
2007 

36 
24 

23 
31 

85 
27 

23 
29 

118 
7-59-18L 

B. afzelii 
Kem

eri 
2007 

37 
24 

24 
31 

22 
92 

23 
28 

119 
7-46-18L 

B. afzelii 
Kem

eri 
2007 

39 
24 

24 
31 

22 
92 

23 
28 

120 
7-16-18L 

B. afzelii 
Kem

eri 
2007 

109 
24 

23 
89 

22 
27 

23 
28 

121 
7-2-721L 

B. afzelii 
Jaunciem

s 
2007 

51 
24 

23 
28 

85 
27 

23 
29 

122 
7-29-15L 

B. afzelii 
Kem

eri 
2007 

51 
24 

23 
86 

85 
91 

23 
29 

123 
7-19-24L 

B. afzelii 
Jaunciem

s 
2007 

109 
24 

24 
85 

90 
91 

24 
29 

124 
7-15-09L 

B. burgdorferi s.s. 
Babite 

2007 
15 

9 
12 

8 
1 

17 
8 

16 
125 

7-43-06L 
B. burgdorferi s.s. 

Babite 
2007 

15 
9 

12 
8 

1 
17 

8 
16 

126 
7-25-06L 

B. burgdorferi s.s. 
Babite 

2007 
15 

9 
12 

8 
1 

83 
8 

16 
127 

7-09-03L 
B. garinii 

Babite 
2007 

42 
27 

29 
38 

29 
36 

27 
33 

128 
7-42-15L 

B. garinii 
Kem

eri 
2007 

42 
27 

29 
38 

29 
36 

27 
33 

129 
7-36-06L 

B. garinii 
Babite 

2007 
44 

29 
31 

40 
31 

37 
29 

35 
130 

7-53-09L 
B. garinii 

Babite 
2007 

44 
29 

31 
40 

31 
37 

29 
35 

131 
7-16-09L 

B. garinii 
Babite 

2007 
45 

30 
32 

41 
32 

38 
30 

36 
132 

7-08-09L 
B. garinii 

Babite 
2007 

31 
80 

78 
99 

81 
39 

79 
87 

133 
7-64-18L 

B. garinii 
Kem

eri 
2007 

42 
27 

29 
38 

81 
36 

27 
33 

134 
7-45-03L 

B. garinii 
Babite 

2007 
43 

28 
30 

39 
30 

78 
28 

34 
135 

7-41-09L 
B. garinii 

Babite 
2007 

43 
28 

30 
39 

88 
87 

28 
34 

136 
7-04-06L 

B. garinii 
Babite 

2007 
44 

29 
31 

40 
31 

37 
80 

35 
137 

7-39-12L 
B. garinii 

Babite 
2007 

47 
73 

33 
42 

91 
76 

32 
36 

138 
7-24-09L 

B. garinii 
Babite 

2007 
48 

34 
34 

44 
27 

42 
33 

39 
139 

7-44-15L 
B. garinii 

Kem
eri 

2007 
95 

74 
34 

96 
83 

78 
77 

85 
140 

7-58-03L 
B. garinii 

Babite 
2007 

95 
29 

34 
91 

89 
78 

77 
85 

141 
7-44-03L 

B. garinii 
Babite 

2007 
95 

74 
34 

96 
89 

78 
77 

85 
142 

7-14-12L 
B. lusitaniae 

Babite 
2007 

101 
21 

20 
27 

86 
85 

74 
81 

143 
7-20-09L 

B. valaisiana 
Babite 

2007 
49 

35 
35 

45 
38 

43 
35 

40 



  144 
7-30-09L 

B. valaisiana 
Babite 

2007 
50 

36 
36 

45 
38 

44 
35 

40 
145 

7-40-03L 
B. valaisiana 

Babite 
2007 

50 
36 

36 
45 

38 
44 

35 
40 

146 
7-25-09L 

B. valaisiana 
Babite 

2007 
49 

35 
72 

45 
38 

43 
35 

40 
147 

7-2-609L 
B. valaisiana 

Babite 
2007 

50 
35 

37 
45 

38 
44 

35 
40 

148 
7-38-15L 

B. valaisiana 
Kem

eri 
2007 

50 
35 

37 
45 

38 
44 

35 
40 

149 
7-39-15L 

B. valaisiana 
Kem

eri 
2007 

50 
35 

37 
45 

38 
44 

35 
40 

150 
7-15-12L 

B. valaisiana 
Babite 

2007 
50 

36 
37 

45 
38 

44 
35 

40 
151 

7-56-18L 
B. valaisiana 

Kem
eri 

2007 
50 

36 
37 

45 
38 

44 
35 

40 
152 

7-22-09L 
B. valaisiana 

Babite 
2007 

110 
39 

36 
45 

38 
81 

35 
40 

153 
7-24-03L 

B. valaisiana 
Babite 

2007 
96 

37 
37 

45 
39 

79 
36 

86 
154 

7-15-15L 
B. valaisiana 

Kem
eri 

2007 
96 

37 
37 

45 
39 

79 
36 

86 
155 

7-34-09L 
B. valaisiana 

Babite 
2007 

96 
75 

36 
98 

38 
82 

78 
86 

156 
10-26-29 

B. garinii 
Babite 

2010 
260 

218 
81 

91 
88 

249 
82 

33 
157 

10-22-22 
B. garinii 

Babite 
2010 

43 
28 

30 
39 

30 
36 

28 
34 

158 
10-22-04 

B. garinii 
Babite 

2010 
42 

27 
29 

92 
29 

36 
27 

33 
159 

10-24-07 
B. valaisiana 

Babite 
2010 

50 
38 

36 
45 

38 
44 

35 
40 

160 
 9-26-41 

B. garinii 
Babite 

1999 
24 

  
29 

91 
  

  
  

33 
161 

 9-26-37 
B. garinii 

Babite 
1999 

43 
28 

30 
90 

32 
  

  
  

162 
 9-26-29 

B. valaisiana 
Babite 

1999 
  

35 
  

  
38 

43 
  

40 
163 

 9-26-28 
B. afzelii 

Babite 
1999 

35 
135 

22 
32 

20 
23 

  
  

164 
 9-26-26 

B. afzelii 
Babite 

1999 
  

  
25 

  
90 

29 
24 

  
165 

 9-26-02 
B. afzelii 

Babite 
1999 

  
24 

  
  

26 
  

  
  

166 
 9-25-54 

B. garinii 
Babite 

1999 
99 

77 
29 

  
  

39 
  

33 
167 

 9-25-39 
B. garinii 

Babite 
1999 

47 
177 

  
  

  
  

  
  

168 
 9-25-36 

B. burgdorferi s.s. 
Babite 

1999 
  

1 
1 

1 
168 

  
1 

1 
169 

 9-25-33 
B. afzelii 

Babite 
1999 

36 
23 

24 
  

  
27 

23 
  

170 
 9-22-20 

B. garinii 
Kem

eri 
1999 

112 
80 

78 
31 

23 
  

  
87 

171 
 9-20-28 

B. afzelii 
Jaunciem

s 
1999 

37 
40 

24 
  

98 
  

  
131 



  172 
 9-20-22 

B. afzelii 
Jaunciem

s 
1999 

36 
24 

23 
  

98 
27 

23 
28 

173 
 9-12-33  

B. afzelii 
Babite 

1999 
  

  
  

  
163 

52 
  

28 
174 

 9-25-35 
B. afzelii 

Babite 
1999 

  
  

  
  

  
27 

  
  

175 
 9-12-22 

B. lusitaniae 
Babite 

1999 
  

  
  

  
  

22 
  

  
176 

9-25-20 
B. afzelii 

Babite 
1999 

  
  

24 
  

  
  

23 
  

177 
 0-4-12 

B. afzelii 
Jaunciem

s 
2000 

109 
  

24 
  

90 
  

24 
29 

178 
 0-4-18 

B. afzelii 
Jaunciem

s 
2000 

36 
  

  
88 

  
27 

  
28 

179 
 0-8-09 

B. afzelii 
Kem

eri 
2000 

109 
24 

24 
31 

97 
27 

  
30 

180 
 0-8-19 

B. valaisiana 
Kem

eri 
2000 

49 
  

  
46 

38 
43 

  
  

181 
 0-8-30 

B. afzelii 
Kem

eri 
2000 

36 
23 

22 
203 

26 
96 

23 
  

182 
 0-8-36 

B. garinii 
Kem

eri 
2000 

42 
  

29 
43 

29 
36 

77 
37 

183 
 0-14-03 

B. afzelii 
Babite 

2000 
  

24 
24 

  
22 

  
23 

28 
184 

 0-14-10 
B. garinii 

Babite 
2000 

  
33 

34 
36 

36 
38 

  
38 

185 
 0-14-11 

B. valaisiana 
Babite 

2000 
  

  
37 

45 
39 

79 
35 

86 
186 

 0-14-22 
B. garinii 

Babite 
2000 

43 
28 

  
  

87 
36 

  
34 

187 
 0-14-38 

B. afzelii 
Babite 

2000 
95 

  
  

96 
89 

78 
  

  
188 

 0-4-37 
B. valaisiana 

Jaunciem
s 

2000 
  

  
  

45 
38 

  
  

  
189 

 0-5-10 
B. afzelii 

Jaunciem
s 

2000 
  

  
24 

  
  

92 
  

  
190 

 0-5-19 
B. afzelii 

Jaunciem
s 

2000 
38 

  
  

  
  

  
  

  
191 

 0-5-23 
B. afzelii 

Jaunciem
s 

2000 
109 

  
  

  
23 

  
  

78 
192 

 0-7-02 
B. afzelii 

Kem
eri 

2000 
  

  
  

86 
  

27 
  

  
193 

 1-5-10 
B. afzelii 

Jaunciem
s 

2001 
109 

82 
  

88 
  

52 
  

28 
194 

 1-5-28 
B. afzelii 

Jaunciem
s 

2001 
37 

  
37 

31 
  

  
  

  
195 

 1-5-34 
B. afzelii 

Jaunciem
s 

2001 
109 

24 
24 

31 
92 

  
  

  
196 

 1-5-28 
B. afzelii 

Jaunciem
s 

2001 
37 

  
  

31 
  

  
  

  
197 

  1-5-32 
B. afzelii 

Jaunciem
s 

2001 
109 

  
  

88 
23 

30 
  

  
198 

 1-5-2 
B. afzelii 

Jaunciem
s 

2001 
131 

  
  

  
  

  
  

  
199 

 1-8-45 
B. garinii 

Kem
eri 

2001 
44 

156 
31 

  
38 

40 
  

35 
200 

 1-8-27 
B. afzelii 

Kem
eri 

2001 
36 

  
23 

  
38 

27 
24 

  



  201 
 1-8-39 

B. valaisiana 
Kem

eri 
2001 

50 
  

  
45 

  
44 

35 
  

202 
 1-8-47 

B. valaisiana 
Kem

eri 
2001 

  
  

37 
  

  
79 

35 
  

203 
 1-8-18 

B. garinii 
Kem

eri 
2001 

  
  

31 
  

34 
40 

  
  

204 
 1-8-28b 

B. afzelii 
Kem

eri 
2001 

37 
  

81 
31 

98 
91 

  
  

205 
 1-8-46 

B. garinii 
Kem

eri 
2001 

116 
  

  
39 

31 
36 

  
  

206 
 1-8-54 

B. afzelii 
Kem

eri 
2001 

109 
  

25 
  

  
  

  
  

207 
 1-8-39b 

B. burgdorferi s.s. 
Kem

eri 
2001 

15 
  

12 
8 

1 
17 

8 
16 

208 
 1-29-28 

B. garinii 
Jaunciem

s 
2001 

40 
25 

26 
36 

27 
34 

25 
31 

209 
 1-29-27 

B. afzelii 
Jaunciem

s 
2001 

36 
  

23 
  

95 
27 

23 
  

210 
 1-29-43b 

B. garinii 
Jaunciem

s 
2001 

47 
73 

33 
  

91 
76 

32 
  

211 
  1-29-17b 

B. valaisiana 
Jaunciem

s 
2001 

96 
37 

  
  

  
44 

  
  

212 
 1-29-30 

B. garinii 
Jaunciem

s 
2001 

112 
  

  
99 

  
39 

  
  

213 
 1-28-17 

B. afzelii 
Jaunciem

s 
2001 

51 
  

  
  

85 
27 

  
29 

214 
 1-28-25 

B. afzelii 
Jaunciem

s 
2001 

109 
24 

24 
  

  
91 

24 
29 

215 
 1-28-12b 

B. garinii 
Jaunciem

s 
2001 

47 
  

33 
  

91 
  

32 
  

216 
  1-28-05 

B. afzelii 
Jaunciem

s 
2001 

37 
24 

  
31 

96 
92 

  
  

217 
 1-4-07 

B. afzelii 
Jaunciem

s 
2001 

37 
  

24 
  

98 
27 

  
  

218 
 1-13-20 

B. burgdorferi s.s. 
Babite 

2001 
14 

  
  

  
  

  
  

10 
219 

 1-13 
B. afzelii 

Babite 
2001 

35 
  

  
  

  
  

  
221 

220 
 1-13-42 

B. garinii 
Babite 

2001 
42 

27 
  

  
  

39 
  

33 
221 

 1-13-16 
B. garinii 

Babite 
2001 

42 
  

  
  

  
  

  
  

222 
 1-14-44 

B. garinii 
Babite 

2001 
99 

  
  

  
108 

202 
  

33 
223 

 1-14-45 
B. garinii 

Babite 
2001 

95 
  

34 
  

89 
78 

  
154 

224 
 1-14-48 

B. afzelii 
Babite 

2001 
51 

  
  

86 
  

27 
  

29 
225 

 1-14-47 
B. afzelii 

Babite 
2001 

36 
  

  
  

  
27 

23 
28 

226 
 1-14-39 

B. burgdorferi s.s. 
Babite 

2001 
  

9 
12 

8 
  

  
  

  
227 

 1-14-42 
B. garinii 

Babite 
2001 

46 
  

29 
  

34 
39 

  
33 

228 
 1-14-37 

B. afzelii 
Babite 

2001 
  

  
36 

49 
  

91 
  

  
229 

 1-14-43 
B. garinii 

Babite 
2001 

  
  

  
90 

29 
39 

  
33 



  230 
 1-15-48 

B. garinii 
Babite 

2001 
43 

28 
  

90 
87 

  
  

34 
231 

 1-15-32 
B. valaisiana 

Babite 
2001 

96 
  

  
45 

  
  

  
  

232 
 1-19-11  

B. afzelii 
Babite 

2001 
  

82 
23 

31 
92 

27 
23 

28 
233 

 1-19-18 
B. garinii 

Babite 
2001 

42 
28 

  
39 

30 
36 

28 
34 

234 
 1-19-41 

B. burgdorferi s.s. 
Babite 

2001 
14 

1 
11 

1 
1 

1 
1 

  
235 

 1-19-34 
B. afzelii 

Babite 
2001 

39 
  

  
  

85 
92 

  
  

236 
 1-19-43 

B. afzelii 
Babite 

2001 
36 

24 
  

  
  

27 
  

  
237 

 1-18-20 
B. garinii 

Babite 
2001 

  
  

  
112 

108 
54 

  
33 

238 
 1-18-21 

B. garinii 
Babite 

2001 
116 

  
  

  
  

125 
  

33 
239 

 1-18-30 
B. valaisiana 

Babite 
2001 

  
  

  
45 

38 
  

  
40 

240 
 1-18-15 

B. garinii 
Babite 

2001 
42 

  
  

  
  

  
  

33 
241 

 1-18-16 
B. afzelii 

Babite 
2001 

  
24 

23 
31 

  
  

24 
  

242 
 1-18-39 

B. afzelii 
Babite 

2001 
36 

  
24 

88 
  

  
23 

  
243 

 1-41-09 
B. afzelii 

Babite 
2001 

131 
24 

23 
85 

22 
27 

  
28 

244 
  1-41-11 

B. garinii 
Babite 

2001 
  

24 
  

42 
  

  
  

136 
245 

 1-41-22 
B. valaisiana 

Babite 
2001 

  
39 

  
45 

  
44 

39 
86 

246 
 1-41-19 

B. valaisiana 
Babite 

2001 
  

75 
  

  
  

44 
  

86 
247 

 1-40-20 
B. afzelii 

Babite 
2001 

39 
24 

24 
  

22 
92 

23 
  

248 
 1-40-31 

B. afzelii 
Babite 

2001 
36 

  
23 

49 
26 

91 
23 

  
249 

 1-40-26 
B. garinii 

Babite 
2001 

112 
80 

  
  

  
38 

  
50 

250 
 1-40-18 

B. garinii 
Babite 

2001 
44 

  
  

  
  

  
  

  
251 

 1-42-05 
B. afzelii 

Babite 
2001 

109 
24 

  
85 

22 
91 

  
29 

252 
 1-42-14 

B. afzelii 
Babite 

2001 
  

82 
  

  
  

  
  

28 
253 

 1-42-07 
B. afzelii 

Babite 
2001 

  
24 

  
88 

  
  

  
  

254 
 1-39-03 

B. afzelii 
Babite 

2001 
131 

24 
23 

31 
22 

27 
  

  
255 

 1-39-12 
B. afzelii 

Babite 
2001 

36 
  

24 
86 

  
91 

  
  

256 
 1-38 

B. garinii 
Babite 

2001 
47 

  
  

38 
  

  
  

  
257 

 1-38-04 
B. garinii 

Babite 
2001 

42 
27 

  
  

  
39 

  
33 

258 
 1-38-19 

B. afzelii 
Babite 

2001 
36 

24 
  

31 
  

27 
  

  



  259 
  1-38-21 

B. garinii 
Babite 

2001 
99 

  
  

  
  

54 
  

  
260 

 1-38-28 
B. garinii 

Babite 
2001 

116 
34 

  
  

  
42 

  
  

261 
 1-37-11 

B. garinii 
Babite 

2001 
44 

156 
31 

  
31 

37 
35 

35 
262 

 1-37-10 
B. valaisiana 

Babite 
2001 

50 
36 

36 
  

38 
44 

  
40 

263 
 1-37-05 

B. garinii 
Babite 

2001 
99 

77 
81 

  
88 

84 
82 

33 
264 

 1-32-08 
B. burgdorferi s.s. 

Kem
eri 

2001 
14 

  
11 

8 
1 

1 
1 

10 
265 

 1-32-25 
B. afzelii 

Kem
eri 

2001 
51 

24 
23 

  
85 

27 
  

29 
266 

 1-32-31 
B. burgdorferi s.s. 

Kem
eri 

2001 
14 

1 
  

1 
168 

1 
1 

10 
267 

 1-32-19 
B. valaisiana 

Kem
eri 

2001 
  

35 
37 

45 
  

  
  

  
268 

 1-31-06 
B. garinii 

Kem
eri 

2001 
  

27 
29 

38 
29 

39 
27 

39 
269 

 1-31-59 
B. garinii 

Kem
eri 

2001 
43 

28 
30 

  
87 

38 
  

34 
270 

 1-31-49 
B. garinii 

Kem
eri 

2001 
44 

156 
31 

40 
22 

37 
  

  
271 

 1-31-46 
B. garinii 

Kem
eri 

2001 
44 

  
  

  
  

  
  

  
272 

 1-31-03 
B. valaisiana 

Kem
eri 

2001 
  

  
  

  
  

  
35 

  
273 

 1-31-07 
B. garinii 

Kem
eri 

2001 
  

29 
31 

  
208 

  
  

  
274 

 1-30-12 
B. afzelii 

Jaunciem
s 

2001 
37 

24 
  

31 
96 

92 
23 

30 
275 

 1-30-22 
B. garinii 

Jaunciem
s 

2001 
42 

  
29 
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Table S2: Total number of samples used for spatio-temporal distribution analysis

Species Babite Jaunciems Kemeri Total 

B. afzelii 51 47 33 131 

B. bavariensis 1 1 0 2 

B. garinii 76 4 27 107 

B. lusitaniae 2 0 1 3 

B. valaisiana 30 5 13 48 

B. burgdorferi s.s. 15 0 9 24 

Total 175 57 83 315 

 
Table S3-A: Samples used for spatio-temporal distribution analysis from Babite 

 

Table S3-B: Samples used for spatio-temporal distribution analysis from Jaunciems 

Jaunciems 1999 2000 2001 2002 2003 2006 2007 2010   
B. afzelii 2 6 21 4 4 6 4   47 
B. bavariensis 1               1 
B. garinii     4           4 
B. lusitaniae                 0 
B. valaisiana   1 4           5 
B. burgdorferi  s.s.                 0 
Total 3 7 29 4 4 6 4 0 57 

 

Table S3-C: Samples used for spatio-temporal distribution analysis from Kemeri 

Kemeri 1999 2000 2001 2002 2003 2006 2007 2010   
B. afzelii 3 3 13   5 4 5   33 
B. bavariensis                 0 
B. garinii 4 1 12   6 1 3   27 
B. lusitaniae       1         1 
B. valaisiana 1 1 5   1 1 4   13 
B. burgdorferi s.s. 2 1 4   2       9 
Total 10 6 34 1 14 6 12 0 83 

Babite 1999 2000 2001 2002 2003 2006 2007 2010 Total 
B. afzelii 9 6 26 5 2 1   2 51 
B. bavariensis         1       1 
B. garinii 7 3 33 1 2 14 12 4 76 
B. lusitaniae 1           1   2 
B. valaisiana 1   10 1   8 9 1 30 
B. burgdorferi  s.s. 4 1 6   1   3   15 
Total 22 10 75 7 6 23 25 7 175 



  Fig. S3: Tem
poral distribution of B. burgdorferi s.l. in Babite 
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Six different species were identified. The percentage of species is given; the number in 

parenthesis refers to the actual number. The colors were assigned to the respective species 

as follows:   B. afzelii,  B. bavariensis,  B. burgdorferi s.s.,  B. garinii, 

 B. lusitaniae and  B. valaisiana. In 1999, 2002 and 2002 B. afzelii dominated, 

in 2001, 2007 and 2010 B. garinii dominated. In 2006 and 2007 B.  valaisiana was also well 

represented (> 30 %). Borrelia burgdorferi s.s. was not found in the years 2002, 2006 and 2010 

whilst B. valaisiana.



  Fig. S4: Tem
poral distribution of B. burgdorferi s.l. in Jaunciem
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Fig. S5: Temporal distribution of B. burgdorferi s.l. in Kemeri 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temporal distribution of B. burgdorferi s.l. species in Kemeri. Five species were identified in 

this region. The percentage of species is given. The number in parenthesis refers to the actual 

number. The colors were assigned as in fig. S3. Borrelia afzelii was the most frequently 

observed species in 2000, 2001, 2006 and 2007 while B. garinii was more abundant than B. 

afzelii in 1999 and in 2003. Other species were also well represented in this region.  
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A B S T R A C T   

Lyme borreliosis (LB) is the most common arthropod-borne disease in Europe and North America and is caused 
by members of the Borrelia burgdorferi sensu lato (Bbsl) species complex. These bacteria are transmitted by ixodid 
tick vectors and therefore human LB risk is influenced by the prevalence and distribution of Bbsl genospecies 
within tick vectors throughout the wild. These distributions can easily change over spatiotemporal scales and, to 
understand LB risk fully, up to date information on prevalence and distribution of Bbsl is required. The last 
survey of Bbsl in southern Germany, including parts of the Munich metropolitan area, was completed in 2006 and 
new data is needed. Ixodid ticks were collected in seven plots located in and around Munich, Germany, from 
March to July 2019 and were screened for Bbsl. Borrelia burgdorferi s. l. positive ticks (52 adults, 158 nymphs) 
were found in all plots and adults (0–61.5 % Bbsl positive/plot) and nymphs (17.4–59.5 % Bbsl positive/plot) did 
not differ significantly in their overall Bbsl prevalence. The number of Bbsl positive nymphs did vary significantly 
between plots but the number of positive adults did not. In total, six Bbsl genospecies were located with B. afzelii 
and B. garinii dominating. Additionally, the relapsing-fever species B. miyamotoi was found in two sampling plots. 
Our results highlight the variability in Bbsl prevalence and genospecies distribution over short geographic dis
tances and aid in understanding LB risk in and around the Munich metropolitan area.   

1. Introduction 

Lyme borreliosis (LB) is the most common arthropod-borne human 
disease in the northern hemisphere (Stanek et al., 2011), caused by 
certain genospecies belonging to the Borrelia burgdorferi sensu lato 
(hereafter Bbsl) species complex (Stanek et al., 2011). Borrelia burgdor
feri s. l. bacteria are transmitted between vertebrate reservoir hosts via 
ixodid tick vectors (Gern, 2008; Kurtenbach et al., 2006). The proba
bility to contract LB is influenced, in part, by the prevalence and dis
tribution of different Bbsl species in tick vectors (Randolph, 2004; 
Takumi et al., 2019). Therefore, determining the prevalence and dis
tribution of Bbsl genospecies within a geographic area is a crucial first 
step to understand human LB risk. 

Borrelia burgdorferi s. l. prevalence can vary temporally and is 
thought to have increased over the past few decades (Rizzoli et al., 2011; 
Rosà et al., 2018; Sykes and Makiello, 2017). This increase is argued to 
result from changes in Bbsl prevalence due to geographic expansion of 

ixodid tick vectors (Lindgren et al., 2000; Rosà et al., 2018). Addition
ally, other studies have proposed that increases in temperature (Wallace 
et al., 2019) and climate change (Fernández-Ruiz and Estrada-Peña, 
2020; Rosà et al., 2018) could be responsible for increased Bbsl preva
lence Additionally, micro-habitat conditions, such as relative humidity, 
and other abiotic factors are also very important for tick survival and 
therefore could impact Bbsl prevalence over time in a given region 
(Randolph, 2008). 

In addition to temporal variation, substantial spatial variation in Bbsl 
has also been observed (Estrada-Peña et al., 2018; Strnad et al., 2017). 
This is influenced by various factors such as tick abundance, host 
availability (Oorebeek and Kleindorfer, 2008; Takumi et al., 2019), or 
habitat type and composition (Halos et al., 2010; Ruyts et al., 2016). 
Various vertebrate species can act as competent reservoir hosts for Bbsl 
genospecies including rodent and bird species (Gern et al., 1998; Kur
tenbach et al., 2006, 2002a; Norte et al., 2013). Most Bbsl genospecies 
are adapted to specific hosts (Kurtenbach et al., 2002b, 1998) resulting 
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in a heterogeneous distributions of genospecies in relation to availability 
of competent hosts and the ecological process that affect host abundance 
(Etti et al., 2003; Kurtenbach et al., 2006; Ostfeld et al., 2006). 

In Germany, 9.4 % of tested human adults showed seropositivity for 
Bbsl (Wilking et al., 2015), which shows that the German population is 
at risk for Bbsl exposure and, therefore, LB. The last major study looking 
at Bbsl prevalence including portions of the Munich metropolitan area 
was performed in 2006 (Fingerle et al., 2008) and new data is needed. 
To determine the variability of Bbsl around Munich and potential 
changes in comparison to 2006, ixodid ticks were collected near Munich, 
Germany, and were screened for Bbsl bacteria. This sampling scheme 
allowed us to determine spatial variation in Bbsl prevalence and species 
distribution over a fine scale geographic area in the aim to better un
derstand LB risk in the Munich metropolitan area. 

2. Methods 

2.1. Tick sample collection and DNA extraction 

Ticks were sampled by drag sampling in seven plots (see Supple
mental Table 1 for overview and explanation of plot abbreviations) from 
March-July 2019. Ticks were collected either in one (FOR, FOP, and 
GRA), two (NPL, ENG, OBE), or three (STA) sampling events. Both 
Grafrath (GRA) and Englischer Garten (ENG; MIR in Fingerle et al. 
(2008)) were also sampled from March to May 2006 by Fingerle et al. 
(2008). Prior to DNA extraction, ticks were morphologically identified 
to life-stage and genus. DNA from individual ticks was extracted through 
alkaline hydrolysis according to a previously published protocol (Okeyo 
et al., 2019). 

2.2. Molecular analysis for Bbsl and tick sample identification 

Extracted tick DNA was screened for Borrelia DNA using a qPCR 
targeting the 23S intergenic spacer following standard procedure 
(Strube et al., 2010). This method has been shown to cross-react with 
Borrelia spp. outside the Bbsl species complex, such as Borrelia turcica 
(Hepner et al., 2020) and B. miyamotoi (Springer et al., 2020). Borrelia 
negative samples were discarded. Ticks positive for Borrelia were sub
jected to a semi-nested PCR amplifying the housekeeping gene recG 
using a previously described protocol (Margos et al., 2008). To deter
mine which tick species are potentially infected with Borrelia, positive 
tick DNA samples (n = 210) were subjected to a PCR amplifying a 
fragment of the 16S mitochondrial gene using a previously published 
method (Noureddine et al., 2011). 

For all PCR analyses, multiple internal negative controls were 
included. Either B. kurtenbachii (25015) or B. mayonii (DSM 102811. 
MN14-1420) were used as positive controls for all Borrelia related ana
lyses. PCR products were sequenced using Sanger sequencing at the 
Sequencing Service of Ludwig-Maximilians University and were pre
pared according to the requirements of the sequencing center (http 
://www.gi.bio.lmu.de/sequencing/help/protocol). For sequence pro
cessing and molecular identification of tick 16S sequences see Supple
mental Methods and Supplemental Table 2 for GenBank reference 
sequences used. 

2.3. Statistical analysis 

All statistical analysis was done in R (Version 3.6.1) using the base R 
statistical package (R Core Team, 2019). For most tests, significance was 
tested with Pearson’s chi-square tests using Yates’ continuity correction 
(hereafter χ2) unless zero counts were present for which a two-sided 
Fisher’s exact test was used with a simulated p-value based on 5000 
simulations (hereafter Fisher test). Linear models were used to calcu
lated correlation coefficients (R2). 

3. Results 

All ticks belonged to the genus Ixodes. Of all collected tick samples, 
210 tested positive for Bbsl DNA of which 200 produced a 16S rRNA 
amplicon for tick species identification. After quality checks, usable 16S 
sequences were available for 185 tick samples all of which clustered 
with I. ricinus in the median joining network (MJN) analysis (Supple
mentary Fig. 1; for details Supplemental Methods). 

Borrelia burgdorferi s. l. positive nymphs were found in all plots with 
prevalence ranging from 17.4 to 59.5% whereas positive adults were 
found in only six plots with prevalence ranging from 0 to 61.5% (Fig. 1). 
It is important to mention that some prevalence values could be biased 
due to low sample sizes. Adults and nymphs did not differ significantly 
in Bbsl prevalence (χ2: p = 0.33). Borrelia burgdorferi s. l. prevalence in 
nymphs was significantly different between plots (χ2: p < 0.001) but 
prevalence in adults was not (Fisher test: p = 0.07). Borrelia burgdorferi s. 
l. prevalence was higher in fragmented plots (adults = 41.0 ± 10.3 %; 
nymphs = 32.7 ± 13.4 %) than in continuous forest plots (adults = 29.2 
± 11.1 %; nymphs = 27.3 ± 5.6 %) but these differences were not sig
nificant (χ2: adults, p = 0.54; nymphs, p = 0.51). Borrelia burgdorferi s. l. 
prevalence in nymphs and adults was associated with number of ticks 
collected (nymphs: R2 = 0.67, p = 0.015; adults: R2 = 0.65, p = 0.017). 
We observed a significant increase (χ2: p < 0.001) in Bbsl prevalence in 
nymphs collected during 2019 in GRA when compared to the 2006 
prevalence reported by Fingerle et al. (2008) (Supplementary Fig. 2) For 
absolute numbers regarding this comparison see Supplementary Table 3. 

In total, six Bbsl species were found: B. afzelii, B. bavariensis, 
B. burgdorferi s. s., B. garinii, B. spielmanii, B. lusitaniae and B. valaisiana 
(Fig. 2). Borrelia afzelii and B. garinii were the most common species 
described (Fig. 2). In addition to Bbsl genospecies, three B. miyamotoi- 
positive adult ticks were found in two plots (FOP & STA). Plots varied 
significantly in their species compositions (Fisher test: p < 0.001, Fig. 2). 
For an overview of Borrelia-positive ticks including absolute values see 
Supplementary Table 4. 

4. Discussion 

A crucial step in understanding human LB risk, is to know the 
prevalence and distribution of Bbsl genospecies. Borrelia burgdorferi s. l. 
is known to vary both spatially (Estrada-Peña et al., 2018; Strnad et al., 
2017) and temporally (Coipan et al., 2013; Okeyo et al., 2020; Rauter 
and Hartung, 2005) making general extrapolations challenging. The last 
major Bbsl prevalence research including parts of the Munich metro
politan area was published in 2008 (Fingerle et al., 2008). In this study, 
we aimed to update this research and provide a better understanding of 
human LB risk in the Munich area. 

Fig. 1. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus and Ixodes 
spp. ticks collected in 2019. The number above each bar reflects the total 
number of ticks screened (Borrelia positive and negative) per life stage per plot. 
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All successfully sequenced Bbsl positive tick samples clustered with 
I. ricinus in a 16S haplotype network (Supplementary Fig. 1) and where 
thus molecularly identified as belonging to I. ricinus. This is expected as 
I. ricinus is the most common vector of Bbsl in Europe (Kurtenbach et al., 
2006). As Bbsl-negative tick samples were not sequenced for species 
identification, it is possible that other Ixodes species may be present in 
the seven sampled plots (Estrada-Peña et al., 2018; Strnad et al., 2017). 

Borrelia burgdorferi s. l. prevalence in adults and nymphs did not 
differ significantly in our study. Adults usually tend to have significantly 
higher Bbsl prevalence in comparison to nymphs (Strnad et al., 2017), as 
adults have had one more blood meal, which increases the probability of 
Bbsl infection (Kurtenbach et al., 2006; Strnad et al., 2017). One argu
ment for higher Bbsl prevalence in nymphs, is that many nymphs one 
year prior to sampling feed on hosts that are non-reservoir hosts of Bbsl 
(Fernández-Ruiz and Estrada-Peña, 2020; Kurtenbach et al., 2006, 
2002a, 1998) resulting in fewer infected adults one year later (when 

ticks were collected). Further sampling years would be needed to 
determine if this is a general or unique occurrence. 

The seven plots in our study did differ significantly in Bbsl prevalence 
as expected from previous literature (Estrada-Peña et al., 2018; Fingerle 
et al., 2008; Strnad et al., 2017). Fragmented forest plots and continuous 
forests differed in Bbsl prevalence (higher in fragmented plots) and 
genospecies diversity (higher in continuous forest plots). Although not 
significant, the observed variation could be due to habitat modifications 
affecting host population composition and size (Ehrmann et al., 2018; 
Haddad et al., 2015; Halos et al., 2010). Fragmented plots tend to have 
increased edge habitats or “ecotones” which have been shown to 
correlate to increased Bbsl prevalence (Ehrmann et al., 2018) but habitat 
fragmentation is also linked to decreased vertebrate biodiversity (Had
dad et al., 2015) which has been argued to decrease Bbsl diversity (Ruyts 
et al., 2016). Together this could explain why fragmented habitats have 
higher Bbsl prevalence but overall lower genospecies diversity. Further 

Fig. 2. Distribution of B. burgdorferi sensu lato genospecies and B. miyamotoi in each study plot in 2019. The number reflects the total number of Borrelia positive 
ticks per plot. Unidentifiable refers to a sample that was positive in the screening PCR but did not amplify recG in the semi-nested PCR as described by Okeyo 
et al. (2019). 

R.E. Rollins et al.                                                                                                                                                                                                                               



Ticks and Tick-borne Diseases 12 (2021) 101589

4

data on host abundance and diversity would be needed to determine if 
these relationships explain the observed variation in Bbsl prevalence and 
species distributions. 

Fingerle et al. (2008) studied the prevalence of Bbsl in southern 
Germany in 2006, including two plots (ENG & GRA) resampled during 
this study. We did observe variation in Bbsl prevalence in both plots 
when compared to 2006, but only had a large enough sample size of 
nymphs coming from GRA to test this variation. It is important to 
mention however, that due to our low sample size, these results would 
need to be supported with long-term studies within more plots to truly 
determine the temporal trend in this area. The apparent increase of Bbsl 
in GRA nymphs could be due to use of different screening methods be
tween 2006 and 2019, as this study used a more sensitive screening PCR 
(Strnad et al., 2017) or the result of climate change as described in other 
studies (Fernández-Ruiz and Estrada-Peña, 2020; Lindgren et al., 2000; 
Rosà et al., 2018; Wallace et al., 2019). However, sporadic fluctuations 
in Bbsl are possible as shown by a long-term study in the Netherlands 
(Coipan et al., 2013). These fluctuations are thought to be linked to host 
population size including the availability and diversity of Bbsl reservoir 
hosts (Coipan et al., 2013; Kurtenbach et al., 2006; Ostfeld et al., 2006). 

At the genospecies level, seven Bbsl genospecies were described in 
2006: B. afzelii, B. garinii, B. bavariensis (described as B. garinii OspA type 
4 as B. bavariensis was raised to species level in 2009 (Margos et al., 
2009)), B. burgdorferi s. s., B. valaisiana, B. spielmanii, and B. lusitaniae 
(Fingerle et al., 2008). Five of these genospecies are known to cause LB 
in humans (Margos et al., 2011; Stanek et al., 2011). All seven geno
species observed in 2006 (Fingerle et al., 2008), were also found in this 
study. Borrelia garinii and B. afzelii were the most common species found 
in both years which is in accordance with published results in Germany 
(Fingerle et al., 2008; Rǎileanu et al., 2020; Zubriková et al., 2020) and 
Europe (Estrada-Peña et al., 2018; Strnad et al., 2017). 

In addition to Bbsl genospecies, B. miyamotoi (n = 3 adult ticks) was 
also found in two plots during this study (Fig. 2). Borrelia miyamotoi 
belongs to the relapsing-fever spirochetes, not the Bbsl species complex, 
and has been associated with febrile illness in humans (Platonov et al., 
2011). The prevalence reported here (1.9 % of all adult ticks) is in 
agreement with other research coming from Germany (Rǎileanu et al., 
2020). The occurrence of B. miyamotoi in two locations used for recre
ation by the local population is of potential importance to public health. 

5. Conclusions 

In conclusion, we found substantial geographic variation in Bbsl 
prevalence and species distribution in seven plots located in and around 
the Munich metropolitan area. Additionally, this work supported that 
there is a potential risk for LB in these areas as many of the species 
described are known to be human pathogenic (Platonov et al., 2011; 
Stanek et al., 2011). This work also displayed that species presence was, 
for the most part, stable with an apparent increase in Bbsl prevalence. A 
study over a longer time period is necessary to confirm if this trend 
continues or is potentially a single year event (Coipan et al., 2013; Rosà 
et al., 2018). 
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—Supplemental Methods— 

 

Sequence processing of PCR proudcts 

Chromatograms for both recG and 16S sequences were manually checked for 

quality using FinchTV Version 1.4.0 (Geospiza, Inc.; Seattle, WA, USA; 

http://www.geospiza.com) and recG sequences containing ambiguities were marked 

as mixed infections. Non-mixed sequences were then aligned to the recG reference 

from B. burdorferi sensu stricto (s.s.) strain B31 (GenBank: AE000783.1) and 

trimmed. Trimmed sequences were blasted to the PubMLST database for Borrelia 

(https://pubmlst.org/borrelia) for species determination.  

Tick 16S sequences were aligned and trimmed to the I. ricinus 16S rRNA GenBank 

reference (GenBank: L34292.1). The trimmed 16S sequences were then compiled into 

a dataset of 69 GenBank references (Supplemental Table 2) and analyzed using a 

median joining network (MJN) to determine tick species. The MJN was calculated in 

Network 5.0.1.1. (Fluxus Technology Ltd., Stanway, England) using haplotype RTF 

files generated by DnaSP v.6 which did not consider gaps or missing data and removed 

invariable sites (108). 
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Supplemental Table 1. Sampling plots for ixodid ticks in and around Munich 

during 2019.  

Site Abbr. Habitat Type 
Altitude 

(m) 
Area 

(m2) 
GPS Coordinates 

Sampling 

Events 
Exact Sampling 

Dates 

Forstenrieder 

Park 1 
FOR Continuous forest 575 24000 (48.08 N, 11.45 E) 1 29.03.19 

Forstenrieder 

Park 2 
FOP Continuous forest 576 51000 (48.07 N, 11.48 E) 1 03.06.19 

Grafrath GRA Continuous forest 583 20000 (48.14 N, 11.17 E) 1 18.04.19 

Neuperlach NPL 
Field/fragmented 

forest 
542 5000 (48.09 N, 11.66 E) 2 17.04.19; 26.05.19 

Englischer 

Garten 
ENG Fragmented forest 499 10500 (48.18 N, 11.62 E) 2 25.05.19; 13.06.19 

Oberschleissheim OBE Fragmented forest 492 11000 (48.25 N, 11.56 E) 2 26.05.19; 30.05.19 

Starnberg STA Continuous forest 685 34000 (48.02 N, 11.34 E) 3 
20.06.19; 24.06.19; 

03.07.19 

 

 

Supplemental Table 2. GenBank accession numbers of 16S references sequences 

used in the median-joining network analysis on Borrelia positive tick specimens 

collected during this study. 

 

 

 

Species Name n GenBank Accession Numbers 

Ixodes arboricola 5 KJ414453.1, KP713676.1, KP713675.1, JF791813.1, 

JF791812.1 

Ixodes acuminatus 2 MH708166.1, MH645515.1 

Ixodes frontalis 13 MH645516.1, KJ414455.1, KU170518.1, KP769863.1, 

MF370645.1, MF370644.1, KJ414454.1, MF688050.1, 

KP769861.1, KU170519.1, KP769862.1, MF370647.1, 

MF370646.1 

Ixodes hexagonus 22 EU443441.1, KY962076.1, KY962063.1, KY962057.1, 

LR596328.1, MK731999.1, MK731998.1, MK731997.1, 

MK731996.1, MK731995.1, KY319189.1, JF928502.1, 

JF928504.1, KY962058.1, KY962070.1, KY962077.1, 

JF928501.1, JF928503.1, JF928505.1, U14147.1, 

AF001400.1, AF001399.1 

Ixodes inopinatus 7 KY781393.1, KY781392.1, KY781391.1, KY781390.1, 

KY781389.1, KY781388.1, KY781387.1 

Ixodes ricinus 20 KM211786.1, KY569421.1, EU443401.1, EU443397.1, 

EU443403.1, EU443402.1, EU443436.1, EU443396.1, 

EU443400.1, EU443434.1, KY569419.1, KM211787.1, 

EU443438.1, KM211788.1, KY569420.1, KM211785.1, 

EU443399.1, EU443432.1, EU443398.1, L34292.1 
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Supplementary Figure 1. Median-joining haplotype network on the 16S rRNA 

mitochondrial gene amplified from Borrelia burgdorferi s. l. positive tick samples 

(shown in dark green, n=185). Multiple GenBank reference 16S sequences of various 

Ixodes tick species were included in the analysis: I. ricinus (n=20), I. frontalis 

(n=13), I. hexagonus (n=22), I. inopinatus (n=7), I. arboricola (n=5), and I. 

acuminatus (n=2). Accession numbers for reference sequences can be found in 

Supplemental Table 2. 
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Supplemental Figure 2. Comparison of 2019 to data from Fingerle et al., (2008). 

A) Borrelia burgdorferi s. l. prevalence in adult ticks collected in Englischer Garten 

(ENG), Grafrath (GRA); B) Borrelia burgdorferi s. l.  prevalence in nymphal ticks 

collected in Englischer Garten (ENG), Grafrath (GRA). No nymphs were reported 

from Englischer Garten in 2008. * denotes a significant difference in prevalence. It is 

important to mention that the plot referred to as ENG in our study was denoted as 

MIR (meadows of the Isar river) in Fingerle et. al., (2008). 
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Supplementary Table 3. Borrelia burgdorferi s. l. prevalence comparison 

between this study (2019) and Fingerle et. al., (2008) in the two resampled plots: 

Grafrath (GRA) and Englischer Garten (ENG). It is important to mention that the 

plot we name ENG is described as MIR (meadows of the Isar river) in Fingerle et. al., 

(2008). 

 

 

Supplementary Table 4. Ticks collected and prevalence of Borrelia burgdorferi s. 

l. (with genospecies identification) and B. miyamotoi in each of the seven collection 

plots in 2019 (see Table 1 in the main text for explanation of the abbreviations). 
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RESEARCH ARTICLE Open Access

High conservation combined with high
plasticity: genomics and evolution of
Borrelia bavariensis
Noémie S. Becker1* , Robert E. Rollins1, Kateryna Nosenko1, Alexander Paulus1, Samantha Martin1,2, Stefan Krebs3,
Ai Takano4, Kozue Sato5, Sergey Y. Kovalev6, Hiroki Kawabata5, Volker Fingerle7 and Gabriele Margos7

Abstract

Background: Borrelia bavariensis is one of the agents of Lyme Borreliosis (or Lyme disease) in Eurasia. The genome
of the Borrelia burgdorferi sensu lato species complex, that includes B. bavariensis, is known to be very complex and
fragmented making the assembly of whole genomes with next-generation sequencing data a challenge.

Results: We present a genome reconstruction for 33 B. bavariensis isolates from Eurasia based on long-read (Pacific
Bioscience, for three isolates) and short-read (Illumina) data. We show that the combination of both sequencing
techniques allows proper genome reconstruction of all plasmids in most cases but use of a very close reference is
necessary when only short-read sequencing data is available. B. bavariensis genomes combine a high degree of
genetic conservation with high plasticity: all isolates share the main chromosome and five plasmids, but the
repertoire of other plasmids is highly variable. In addition to plasmid losses and gains through horizontal transfer,
we also observe several fusions between plasmids. Although European isolates of B. bavariensis have little diversity
in genome content, there is some geographic structure to this variation. In contrast, each Asian isolate has a unique
plasmid repertoire and we observe no geographically based differences between Japanese and Russian isolates.
Comparing the genomes of Asian and European populations of B. bavariensis suggests that some genes which are
markedly different between the two populations may be good candidates for adaptation to the tick vector, (Ixodes
ricinus in Europe and I. persulcatus in Asia).

Conclusions: We present the characterization of genomes of a large sample of B. bavariensis isolates and show that
their plasmid content is highly variable. This study opens the way for genomic studies seeking to understand host
and vector adaptation as well as human pathogenicity in Eurasian Lyme Borreliosis agents.

Keywords: Borrelia bavariensis, Lyme Borreliosis, Genome assembly, Plasmids, Genetic plasticity

Background
The Borrelia burgdorferi sensu lato (s.l.) species complex
contains over 20 genospecies of spirochetal bacteria,
among them the agents of human Lyme Borreliosis (LB
or Lyme disease). These bacteria are obligate parasites

that are transmitted between hosts (mainly rodents and
birds) by ticks of the genus Ixodes [1–5].
Borrelia bavariensis was raised to species level in 2009

and was thereby separated from its sister species B. gari-
nii [6, 7]. Both species are present across Eurasia; their
main vectors are Ixodes persulcatus in Asia and I. ricinus
in Europe and both are pathogenic to humans. However,
the main hosts of the two species differ, with B. bavar-
iensis being found in rodents, while its sister species B.
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which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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garinii is found only in birds [7–9]. Originally, the two
species were differentiated genetically by their so-called
OspA type (i.e. allele at the gene sequence of the Outer
Surface Protein A) [10] but more recent studies have
confirmed their species status using multilocus sequence
analyses (MLSA) for species delineation and phylogenies
based on several genetic sequences [6, 11–13]. B. bavar-
iensis is of great interest as it has been isolated from
many LB patients in Europe but isolates from questing
ticks come almost exclusively from Asia ([6] and Mar-
gos, Fingerle, personal communication).
The members of B. burgdorferi s.l. are characterized by

a very complex and fragmented genome that contains a
main linear chromosome of approximately 900 kb and
up to 20 different linear or circular plasmids whose rep-
ertoire vary between and within species [14–17]. Plasmid
types are defined based on the plasmid partition genes
they contain, and in particular on the PFam32 gene se-
quence if present (described below). Each plasmid type
can in turn be subdivided into sub-types based on
organizational changes [14, 18]. Several plasmids form
families of related replicons (cp32 and lp28 families) that
share long stretches of their sequences. This makes the
reconstruction of B. burgdorferi s.l. genomes from Next-
Generation Sequencing (NGS) data a challenge [18] and
explains why, to date, only 34 fully assembled genomes
can be found in NCBI [19] among which more than half
(18) belong to the species B. burgdorferi sensu stricto
(s.s.) that is the main LB pathogen in North America. A
fully assembled genome is available for the species B.
bavariensis for reference strain PBi [20] (Accession
number: CP058872) and three strains that are still refer-
enced as B. garinii in GenBank (BgVir CP003151.1 [21],
SZ CP007564.1 [22] and NMJW1 CP003866.1 [23]), but
which are known to belong to the species B. bavariensis
[11]. However, for the latter, only the main chromosome
(strains SZ, NMJW1 and BgVir) and two plasmids
(strain BgVir only) are assembled.
The process of reconstruction of B. burgdorferi s.l. ge-

nomes can be facilitated by the identification of plasmid
partition genes on assembled contigs. Five such genes
have been described in B. burgdorferi s.s. and each repli-
con is believed to contain no more than one copy of
these genes unless it is a fusion of two plasmids [24]. In
particular, the sequences of the protein family PFam32
are used to name plasmids in the different species of the
complex based on the homology to the sequences in B.
burgdorferi s.s.. Not all plasmids possess a PFam32 [25,
26] but PFam50 and 57/62 appear also to be unique for
each plasmid type and allow for plasmid identification in
such cases [26].
Genes encoded on plasmids play an important role in

pathogenicity and infection of hosts and vectors [27–29].
Description of the whole plasmid repertoire of different

isolates from the same species is thus an important step
in searching for genetic factors involved in host and vec-
tor adaptation. The species B. bavariensis is character-
ized by differentiation into two populations, one in Asia
and one in Europe that utilize different vectors. Previous
work has shown that the European population showed
very little genetic variability on the main chromosome
and on two plasmids and seemed to follow a clonal
frame [11]. In contrast, the Asian isolates described so
far, showed higher genetic diversity (reviewed in [9]).
The origin of the species is still unknown, but this diver-
sity pattern could suggest an Asian origin. In the present
study, we combined long read (Pacific Bioscience, here-
after PacBio) and short read (Illumina) data to recon-
struct the whole genome sequence of 33 B. bavariensis
isolates from Europe and Asia (Table 1). We show that
the plasmid content varies even in the European popula-
tion, and that the genome of this species is for one part
highly conserved and for the other part highly variable.

Results
Borrelia bavariensis genome reconstruction from next-
generation sequencing data
The assembly of B. burgdorferi s.l. genomes is known to
be difficult due to the fragmentation of the genome and
to the presence of highly similar plasmids (like the cp32
plasmid family) [18]. We used a combination of long
read (PacBio) and short read (Illumina HiSeq and
MiSeq) to overcome this problem.
For three isolates (the B. bavariensis type strain PBi

from Germany, a second European isolate A104S from
the Netherlands and the Japanese isolate NT24:
highlighted in gray in Table 1), we used both sequencing
techniques. For each isolate an assembly was first recon-
structed using PacBio reads and then assembled contigs
of Illumina short reads were mapped to the PacBio as-
semblies (see Methods). For most of the three genomes,
the two methods gave very similar results with over
99.99% similarity between the Illumina contigs and the
PacBio assemblies. Most differences were point muta-
tions and 1 bp-long indels which are known to occur
due to the lower accuracy of the PacBio sequencing
method [30]. In such cases, the Illumina version of the
sequence was kept.
In one case, the Illumina data allowed us to correct a

PacBio assembly. The PacBio assembly for isolate NT24
showed two plasmids of respective sizes of 107,820 bp
and 49,218 bp that we originally named plasmids cp32–
12 + 5 + 6 and cp32–7 + 7 + 11 due to the presence of
the corresponding PFam32 sequences. These two plas-
mids seemed to be fusions of three cp32 plasmids each.
Mapping the Illumina raw reads on these sequences
(Suppl. Fig. 1) showed that several regions of those Pac-
Bio plasmids were not covered by Illumina reads which
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was not the case for other plasmids. The fusions were
thus not supported and were probably an artifact of the
PacBio assembly. We used contigs from other isolates as
a reference for reconstructing the probable plasmids of
the cp32 family in this isolate (see below).
In isolate PBi, unmapped Illumina reads contained se-

quences similar to lp28–8. This plasmid was not recon-
structed in the PacBio assembly. Mapping of PBi
Illumina contigs on A104S lp28–8 showed that five con-
tigs mapped to this plasmid with 92–99% similarity to
the A104S version. However, the original architecture of
the plasmid in PBi was probably different as the five
mapping contigs did not cover the full A104S sequence
and were themselves not mapped over their whole
length. Therefore, the final lp28–8 PBi plasmid sequence
could not be reconstructed and, additionally, no PFam32
plasmid partition protein could be found for this plas-
mid. However, another plasmid partition protein of the
family PFam50 for lp28–8 was identified in PBi showing
that this plasmid is probably present.
For the remaining 30 isolates which were sequenced

with Illumina only, we mapped contigs assembled with
SPAdes v. 3.10.1 [31] to the final genomes of the three
isolates sequenced with PacBio, as well as to plasmids
identified as one full contig in the isolates sequenced
with Illumina only, with NUCmer v. 3.1 from package
MUMmer [32] (see Methods). Plasmid sequences were
kept in the final reconstructed genomes only if they were

at least 5000 bp long and were named after the PFam32
protein types identified in their sequence using BLAST
v. 2.8.1 [33, 34] or after the reference they were mapped
to in case of the absence of a PFam32 sequence (see
Methods and Suppl. Table 1). To ensure that the assem-
bly method chosen was good (SPAdes v. 3.10.1 [31]), we
also assembled sequence data of 25 isolates with SOAP-
denovo v. 1.0 [35] and VelevetOptimizer v. 1.0 [36] (see
Methods) and used QUAST v. 4.6 [37] to compare the
quality of the three assemblies. As is shown in Supple-
mentary Figure 2, N50 values were significantly higher
in SPAdes assemblies compared to assemblies of the two
other assemblers (Wilcoxon Rank Sum Tests with each
other assembler: Bonferroni-Holm corrected P-Value <
0.01) and the number of contigs was significantly smaller
(Wilcoxon Rank Sum Tests with each other assembler:
Bonferroni-Holm corrected P-Value < 10− 4). In addition,
the total length of the final assembly was largest in
SPAdes in 24 out of 25 isolates tested. We conclude
that, of the three tested assemblers, SPAdes performed
the best.
We also remapped the raw Illumina reads on the final

reconstructed genomes to check the quality of our re-
construction (see Methods) and show the relative stand-
ard deviation (SD) of coverage as a measure of quality in
Supplementary Figure 3. A well assembled genome
should have a low coverage variance as reads would map
evenly to the contigs. The isolates from Asia showed a

Fig. 1 Asian isolates have more plasmids on average. Boxplots showing the number of plasmids and number of PFam32 proteins identified in
the genomes of B. bavariensis isolates from Asia (dark grey) and Europe (light grey). ***: Wilcoxon Rank Sum test, P-value < 0.001
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significantly higher variance in coverage (Wilcoxon Rank
Sum Test: P-Value < 10− 16) as compared to the Euro-
pean isolates. This could be due to variation in the qual-
ity of the original DNA samples, (DNA samples from
the Asian isolates were shipped to Germany), or to the
lack of good references for certain plasmids due to the
higher diversity observed in the Asian isolates. Indeed,
the relative SD was higher for plasmids compared to the
main chromosome in Asian isolates even if this differ-
ence was not significant (Suppl. Fig. 3b). The quality of
the assembly did not depend on the method used for
obtaining the final plasmid sequence (either as an own
entire contig or with contigs mapped to a reference)
(Suppl. Fig. 3a).

Genome composition of 33 B. bavariensis isolates
The genomes of the 33 isolates consisted of a main
chromosome and a variable number of plasmids
(Table 1). Chromosomes were about 900 kb in size
(size of reconstructed chromosome varied between
894,779 bp in isolate PBaeII and 906,948 bp in isolate
NT24) and made up on average 72.1% of the total as-
sembled genome. Eight to 18 individual plasmid se-
quences of at least 5000 bp could be assembled per
isolate. Additional plasmid sequences were identified
in 11 isolates due to the presence of partition genes
or as some contigs mapped to plasmids identified in
other isolates (Suppl. Table 1). However, these add-
itional plasmids could not be fully assembled or the
assembled sequence did not reach the 5000 bp criter-
ion. Several reconstructed plasmid sequences, particu-
larly of the lp28 and cp32 plasmid families, are very
short (below 10 kb). It is probable that the sequence

reconstructed here for these plasmids does not re-
cover the full plasmid length and that the missing se-
quences were probably erroneously assembled in
other contigs due to similarity. This confirms that
short read sequencing alone is not sufficient to recon-
struct plasmids from these families. Using long-read
sequencing was very helpful in the assembly of plas-
mids in isolates PBi and A104S. However, even the
PacBio assembly pipeline failed to reconstruct prop-
erly the cp32 content of isolate NT24. For this isolate
we used the same strategy as for the isolates with
only Illumina data (see Methods) and mapped Illu-
mina contigs to cp32 plasmids from other isolates.
This allowed us to reconstruct plasmids cp32–11 and
cp32–12. For plasmids cp32–5, − 6 and − 7 no map-
ping was possible; we could only use Illumina contigs
that were 7.3, 7.3 and 9.9 kb long, respectively, and
probably do not represent the full plasmid (Table 1).
The number of plasmids per isolate (Fig. 1) was signifi-

cantly higher in the Asian population (ranging from 10
to 18 reconstructed plasmids over 5 kb long) as com-
pared to the European population (8 to 13 plasmids). As
some plasmid fusions were observed and as some plas-
mids could not be reconstructed, we also tested for the
number of PFam32 gene sequences present in each iso-
late. This was found to be significantly higher in Asian
isolates compared to European isolates (Fig. 1), again
implying that fewer plasmids are present in European
isolates than in Asian isolates.
We also tested for a deviation in copy number be-

tween plasmids with respect to the main chromosome
by plotting the coverage of the raw read mapping to
each plasmid relative to the chromosome (Suppl. Fig. 4).

Fig. 2 Relative plasmid copy number based on qPCR results. Relative plasmid copy number was estimated based on qPCR results on the chromosome and
plasmids cp26, lp17 and lp36 on PBi isolates 2418 and 24510 ran with three biological and three technical replicates. Error bars represent the standard error of
the mean
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As the coverage of Asian B. bavariensis genomes was
more variable, we did this for European isolates only.
We found the coverage of plasmids lp17, lp28–7 and
lp36 to be significantly higher than for the main
chromosome for all European isolates. In particular,
based on this coverage measure, there were, on average,
about seven copies of lp17 per cell in European isolates.
As several plasmids seemed to have a higher copy

number compared to the main chromosome based on
the read coverage of the Illumina data, we used a qPCR
protocol to directly measure the number of DNA mole-
cules present in a strain relative to the main

chromosome. We chose to use plasmids cp26 (which we
hypothesized to be present in about the same number as
the main chromosome, based on read coverage) and
lp17 and lp36 (which seemed to have higher copy num-
bers). We designed a qPCR protocol following Millan
et al. [38] with one PCR per plasmid (see Methods for
details) on two low passage isolates of B. bavariensis iso-
late PBi. Each isolate was run using three biological and
two technical replicates. As can be seen in Fig. 2, the
copy number of plasmid cp26 was estimated to be
slightly below one copy per chromosome, that of lp36
was about one copy per chromosome and lp17 plasmid

Fig. 3 Gene content of the B. bavariensis replicons. Percentage of coding sequence (a) and average gene length (b) for the chromosome and
each plasmid over isolates are shown as boxplots
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was found to be at a higher relative copy number varying
between three and five copies per chromosome. This
value is lower than the copy number estimated based on
the coverage measure but is probably a more accurate
estimate.

Shared versus variable genome components
All B. bavariensis isolates sequenced in this study con-
tained, in addition to the main chromosome, plasmids
cp26, lp54, lp36, lp17 and lp28–4 (Table 1). In addition,
we found in each isolate between 4 and 9 types of cp32
sequences. These were either fused with other plasmids
or independent plasmids and their numbers were ob-
tained by counting cp32 PFam32 sequences (as cp32
family plasmids could not be properly assembled in sev-
eral isolates). Three cases of plasmid fusions were ob-
served in at least two isolates and were thus considered
to be true (other cases were not reported as they may
have been due to mis-assembly and, in such cases, the

plasmids were recorded without the possible fusion). In
all European isolates, we observed two cases of fusion of
a linear plasmid (lp28–4 or lp25) with a cp32 plasmid
(cp32–1 and cp32–3, respectively). These fusions were
found to be fixed in European B. bavariensis isolates but
were absent from Asian isolates. In addition, plasmid
lp17 and lp28–4 were found to be fused in four Asian
isolates, but not in any of the European isolates. Interest-
ingly, these isolates were found in independent clades in
the phylogeny of the species (see below).
Supplementary Figure 5 shows a schematic representa-

tion of the fusions involving plasmids lp28–4, lp17 and
cp32–1 with a precise description of the different plas-
mid types as well as plasmid lp28–7 as we found that
translocations occurred within the European population
between lp28–7 and lp17. To produce Supplementary
Figure 5, we first had to determine plasmid types for the
four plasmids under study. Following Casjens et al. [14]
we counted a new plasmid type each time a deletion or

Fig. 4 Phylogeny of B. bavariensis reconstructed based on the main chromosome. Phylogeny reconstructed with BEAST v1.8.0 [41] with the following
parameters: coalescent model with exponential growth based on doubling time, lognormal-relaxed clock [42], GTR substitution model [43]. A burn-in of
30% of the 100 Million steps chain was removed before selecting the best tree with TreeAnnotator v. 1.10.4 [41]. The scale is in substitutions per site.
Node posterior probabilities were above 0.99 for all nodes except in the European clade (very short branches and very low diversity). The gain (orange),
loss (gray) and fusion (cyan) events were positioned following maximum parsimony principle. There are indicated on a branch if they concern several
isolates and after the isolate name if they concern only one isolate. Isolate origin is indicated by a tick for isolation from a tick (I. persulcatus in Asia and
species unknown for European isolate 61VB2) and a human for isolation from a human patient. The accession numbers for the sequences coming from
public databases can be found in the Methods section. * This plasmid loss event concerns the branch leading to isolates Lubl25, PZwi, PTrob, PRab,
PNeb, PBae I, PWin, PBae II, PHer I and PBar
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insertion of at least 400 bp was observed and for each
translocation or inversion of at least 400 bp (see
Methods for more details). We were able to identify nine
lp28–7 types, 12 lp17 types including two fusions with
lp28–4, five other lp28–4 types, six cp32–1 types and six
versions of the fused plasmid lp28–4 + cp32–1. There
was no case of two Asian isolates sharing the same plas-
mid types for each one of these four plasmids (i.e. lp17;
lp28–4; lp28–7 and cp32.-1) and in the European popu-
lation we could identify only three groups of two isolates
and one group of three isolates that shared the same
plasmid types for lp28–7, lp17 and lp28–4 + cp32–1.
Even if many short indels were observed on plasmid
lp28–4, we could identify an almost 20 kb-long sequence
that is shared by all types with or without fusions. The
fusion of plasmids lp17 and lp28–4 in four Asian isolates
was found to have occurred without any other big rear-
rangements. However, we identified two different archi-
tectures for this fusion. In isolate J-14 (and in isolates
FujiP2 and Hiratsuka that were mapped to it) we ob-
served a fusion of the 5′ ends of plasmids lp17 and
lp28–4, thus lp17 appeared to be flipped. In isolate
Arh923, the two plasmids were fused by their 3′ ends.
Of course, this could have been due to mis-assembly.
The fusion of lp28–4 and cp32–1, that is fixed in the
European population, was shown to be an insertion of
cp32–1 into lp28–4. There were two very different types
of cp32–1 plasmids in the Asian population, with only
about 10 kb homology. The fused plasmid observed in
the European isolates seems to have occurred using the
cp32–1 type carried by Asian isolate Hiratsuka (or a re-
lated cp32–1 type), which does not have more than 2 kb
homology with the other Asian type of cp32–1. Apart
from these two fusions, we could also observe a re-
ciprocal translocation that occurred between plasmids
lp28–7 and lp17 in the European population. Five
European isolates including the reference strain PBi
carry at the end of plasmid lp17 a 2.5 kb-long se-
quence that is found at the beginning of plasmid
lp28–7 in all other isolates. And reciprocally, plasmid

lp28–7 of three of these five isolates (the other two
do not have a lp28–7) carry at their beginning a 5
kb-long sequence that is found at the end of lp17 in
all other isolates. Both regions contained genes en-
coding outer membrane proteins.
We used RAST [39, 40] to annotate the reconstructed

B. bavariensis genomes and, following the method by
Mongodin and colleagues [17], kept all detected genes of
at least 50 amino-acid length. The main chromosome
was found to contain on average 816.4 genes that met
this criterion (range 812–842) and on average 94% of
the chromosome sequences were coding with very low
variation among isolates (standard deviation 0.41 – see
Fig. 3a). This was significantly higher than in plasmids
(Welsh T test T = 32.0, df = 427, P-value < 0.001). Circu-
lar plasmids had a significantly higher percentage of cod-
ing sequence compared to linear plasmids (average
circular: 82.4%, average linear: 66.1%, Welsh T test, T =
14.6, df = 366, P-value < 0.001; fusions between circular
and linear plasmids were excluded). As shown in Fig. 3b,
annotated genes were also significantly longer on the
chromosome compared to the plasmids (mean 981 bp,
Welsh T test T = 65.0, df = 434, P-value < 0.001). Circu-
lar plasmids had significantly longer genes compared to
linear plasmids (average circular: 562 bp, average linear:
514 bp, Welsh T test, T = 3.4, df = 326, P-value < 0.001;
fusions between circular and linear plasmids were ex-
cluded). We used BLAST v. 2.8.1 [33, 34] at the amino-
acid level (algorithm BLASTp) to compare each of the
33 isolates with the 32 others for gene content. A hit be-
tween protein sequences in two different isolates was
kept if the hit had at least half the length of the original
gene and if the identity between the two sequences was
as least 90%. Using these criteria, we found that at least
93% of the genes located on each chromosome had a hit
on every other chromosome. This confirmed that the
chromosome was highly conserved within the species B.
bavariensis, even between Asian and European isolates.
Indeed the best hits between isolates for each chromo-
somal gene had on average 98.8% sequence identity

Table 2 Within and between population genetic diversity for the main chromosome and plasmid orthologous regions

Genomic region # Asia # Europe Length (bp) # SNP π Asia π Europe FST

chromosome 17 19 920,528 42,039 8.79*10− 3 1.72*10− 4 0.56

cp26 15 19 29,623 1979 1.54*10−2 1.99*10−4 0.50

lp17 14 19 13,732 1331 1.98*10−2 4.99*10−4 0.49

lp25 13 18 27,833 3232 2.97*10−2 7.03*10−4 0.36

lp28-3 11 19 11,152 1572 6.80*10−2 8.23*10−4 0.50

lp28-4 14 18 31,849 4144 2.05*10−2 2.62*10−3 0.52

lp36 14 19 9819 1081 2.34*10−2 3.66*10−4 0.69

lp54 15 19 67,261 8167 2.06*10−2 3.47*10−4 0.59

Genetic diversity (π [44]) within populations and genetic distance (FST [45]) between populations were estimated on orthologous sequences aligned with MAFFT v
7.407 [46, 47]. The number of single nucleotide polymorphisms (SNP) is indicated for both populations mixed and the length is the length of the alignment

Becker et al. BMC Genomics          (2020) 21:702 Page 9 of 21



when the compared genes were from isolates from
within the same continent and 97.5% when the com-
pared isolates were from different continents. Plasmid
cp26 was also found to be highly conserved with on
average 91.1% of its 26 to 28 genes being shared with
the cp26 plasmids of each other isolate and the identity
of the best hit in each isolate being on average 99.0% for
isolates from the same continent and 92.7% for isolates
from the other continent.
Out of the 24 different plasmids assembled from the

genomic data of the 33 B. bavariensis isolates (without
taking fusions into account), 19 were not found in all
isolates. This estimated variable portion represented on
average 19.2% of the total reconstructed genomic con-
tent of each isolate and 68.3% of the total assembled
plasmid content. These size estimates of the variable
genome represent only a lower bound because some
plasmids found in all isolates are nevertheless not similar
over their whole length and some plasmids were not
successfully assembled. The greatest degree of diversity

was observed on the two plasmid families lp28 and cp32
which were represented by seven and ten members, re-
spectively, over all isolates with only lp28–4 found to be
present in every isolate.

Evolution of the species
We used BEAST v1.8.0 [41] to reconstruct the phyl-
ogeny of the main chromosome (see Methods for more
details) for all of our 33 isolates as well as four add-
itional isolates for which chromosomal sequences have
been published in GenBank (under accession numbers
CP000013 for strain PBi from Germany, CP003151 for
strain BgVir from Russia and CP003866 and CP007564
for strains NMJW1 and SZ from China). We used B.
garinii strain 20047 as an outgroup to root the tree
(GenBank accession number CP028861). The resulting
phylogeny, presented in Fig. 4, shows that the two con-
tinental populations are clearly divergent with a deep
branching. The European population is characterized
by a very short-time divergence and an almost clonal

Fig. 5 Comparison of cp26 and ospC phylogenies. Sequences for the ospC gene and the cp26 plasmid without ospC (cutting out 200 bp upstream
and downstream the gene) were aligned with MAFFT v7.407 [46, 47] and BEAST v1.8.0 [41] was run for 100 Million states for cp26 and 20 Million states
for ospC each in triplicate. Best trees were reconstructed after removing a burnin-in of 10% of the chain and all three runs showed very similar results
for each tree. Both trees were plotted using FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) and manually rotated. Color code for isolates:
Light green: B. spielmanii, dark green: B. afzelii, cyan: B. garinii, purple: B. bavariensis Russia, red: B. bavariensis Japan, marine blue: B. bavariensis Europe.
Dots on the ospC phylogeny represent several isolates having exactly the same sequence. Scale bars are in substitutions per site. Values next to nodes
indicate node posterior probability (not shown within the European B. bavariensis clade for the sake of clarity)
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recent evolution as has already been noted [11]. The
Asian population, even if showing greater overall diver-
gence, does not show any geographical structure: iso-
lates from Japan, China and Russia are found in the
same terminal clades. Asian isolates also did not cluster
by origin of the isolate (questing tick or patient). In
Europe, only one isolate from a tick was available and
this had no special position in the phylogeny. Both
chromosome assemblies for the PBi type strain (ours
and that published as CP000013) were both located in
the same clade. We compared RAST [39, 40] annota-
tion results for both PBi chromosome sequences and
found that there was perfect synteny between the two
(Suppl. Fig. 6).
In this phylogeny, we also indicated gains, losses

and fusions of plasmids based on the reconstructed
genomes using maximum parsimony (Table 1 and
Suppl. Table 1). This showed that, in addition to five
plasmids present in all isolates, four other linear plas-
mids and five cp32 plasmids could have been present
at the root of the tree in the ancestral B. bavariensis.
These plasmids would then have been subsequently
lost in some derived isolates. Nine gain and ten loss
events could be placed on internal branches and thus
were shared by at least two isolates. In the European
clade, three plasmid loss events on internal branches
and ten plasmid loss event on terminal branches were
found, whereas only two gain events were identified
(plasmid lp28–9 shared by five isolates and plasmid
cp32–12 found only in isolate PBN). This shows that
the plasmid repertoire of the European population is
rather stable with only plasmid losses that could have
been due to isolate cultivation in the laboratory rather
than to real evolutionary change. In the Asian popula-
tion, according to our maximum parsimony recon-
struction, plasmid gains were as frequent as plasmid
losses on internal branches (eight gain events for
seven loss events) but there were twice as many
losses as gains on terminal branches (13 gains for 29
losses).
Genetic diversity within and between the Asian and

European populations was estimated by nucleotide di-
versity (π [44]) and genetic distance (FST [45]) for the
main chromosome and seven plasmids with orthologous
regions in at least five isolates in each population (see
Methods, Table 2). Diversity was found to be lower in
the European population compared to the Asian popula-
tion by one to two orders of magnitude depending on
the genomic segment and to be lower for the main
chromosome compared to plasmids. Genetic distance
between Asian and European populations was lowest for
lp25 (0.36) and highest on lp36 (0.69).
We also estimated genetic diversity along the main

chromosome and for plasmids cp26 and lp54, in which

alignments were possible over the whole length (Suppl.
Figs. 7, 8 and 9). For all three replicons, we identified
peaks of diversity either between populations from the
two continents (peak only when considering all isolates)
or in one or both regional populations. We found high
diversity in several chromosomal genes coding for pro-
teins located in the outer membrane of the bacteria
(OppA, ABC transporter, Lmp1, PTS system). This was
also true for lp54, particularly in the Asian population,
with diversity peaks located in the genes encoding OspA,
OspB, DbpA and in the PFam54 gene array. On cp26,
the ospC gene is well known for having high diversity in
several B. burgdorferi s.l. species including B. bavariensis
which is confirmed here for the Asian population [11,
17, 48, 49].
As ospC showed a high diversity, and as this locus is

known to be a hotspot of recombination in several B.
burgdorferi s.l. species [11, 48, 50], we reconstructed a
phylogeny of this gene and compared it to that of the
cp26 plasmid cutting out the ospC locus. Several publicly
available sequences for B. bavariensis (strain BgVir), B.
garinii (strains Far04 and PBr), B. afzelii (strains ACA-1,
K78 and PKo) and B. spielmanii (strain A14S) (see
Methods for details) were additionally included in this
analysis. As can be seen in Fig. 5, the cp26 phylogeny
followed the known species tree with B. bavariensis and
B. garinii being sister species as are B. afzelii and B.
spielmanii. The phylogeny of plasmid cp26 within B.
bavariensis was very similar to the phylogeny recon-
structed for the main chromosome (Fig. 4), except for
minor differences in clustering of Japanese isolates.
However, the phylogeny reconstructed for ospC was
quite different and showed two major clades. One clade
contained all European B. bavariensis and all B. afzelii as
well as some Asian B. bavariensis and one of the two B.
garinii strains. The second clade contained B. spielmanii,
the other B. garinii strain and the rest of the Asian B.
bavariensis haplotypes. Apart from the European B.
bavariensis clade (where we observed only two different
ospC haplotypes with only one non-synonymous differ-
ence between them) and the B. afzelii clade, all other
species or populations with several isolates were found
not to be monophyletic.

Discussion
Strategies for genome reconstruction of B. burgdorferi
sensu lato
In this article, we present genome reconstructions for 33
B. bavariensis isolates from Eurasia. Following other
studies (see for example [18]), we used a combination of
long-read (Pacific Bioscience) and short-read (Illumina)
sequencing. We show that the PacBio long-read assem-
bly allowed the reconstruction of most plasmids even
from the cp32 and lp28 families. It had been reported
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before that PacBio assemblies contain inaccuracies [51]
and in one out of the three isolates, the PacBio assembly
created two, probably spurious, fusions of plasmids be-
longing to the cp32 family. This occurred in one Japa-
nese isolate that possessed nine cp32 plasmids, the
maximum of cp32s observed in our sample set. It shows
that proper assembly of sequences carrying so many
cp32 plasmids remains challenging even when using
long-read data. However, fusions of cp32 plasmids have
been observed in other species of the B. burgdorferi s.l.
complex [52, 53] and it remains an unresolved question
whether these were real in isolate NT24. In isolate PBi,
Illumina reads were identified that mapped to plasmid
lp28–8 and carried the lp28–8 PFam32 sequence but no
contigs for this plasmid were found in the PacBio assem-
bly. The Illumina data for this plasmid was too fragmen-
ted to reconstruct the plasmid sequence via mapping.
Thus, it is possible that this plasmid was not present in
each cell of the isolate or was in the process of decaying
or being lost while cultivating the isolate for DNA ex-
traction as has been described in many Borrelia burgdor-
feri s.l. isolates [54–56]. Although circular consensus
sequencing (CCS) improved the accuracy of PacBio data,
it has been established that long-read data is more prone
to sequencing errors [30]. It is therefore advisable to
complement and correct them using more accurate
short-read data. Reassuringly, for each replicon, the
similarity between PacBio and Illumina reads was
above 99.98%.
For the 30 isolates for which no long-read sequencing

data was available, our strategy was to perform de novo
assembly of the Illumina reads and then use the three
long-read isolates as a reference for mapping if required.
For some replicons, the mapping step was not necessary
as single contigs were available that covered whole plas-
mids. This was the case for five out of 30 chromosomes
and for numerous plasmids (as an example, all but five
cp26 plasmids were each covered by a single contig). It
made no noticeable difference for assembly accuracy
(Suppl. Fig. 3), whether the data was mapped or assem-
bled directly as one contig. Such contigs that assembled
as full plasmids were successfully used as references for
other isolates. Despite all this, for 11 isolates, a total of
27 plasmids were missing from, or incomplete in, the
final assembly. These replicons were known to be
present as plasmid partition gene sequences for them
were identified or as contigs mapped to them, but we
could not reconstruct a full plasmid. Perhaps not sur-
prising, this happened more frequently in the Asian iso-
lates (in nine isolates a total of 23 plasmids were
missing) than in the European isolates (two isolates and
four plasmids). Whether this was due to a lower data
quality in the Asian isolates and/or challenges to find an
appropriate reference (due to the higher diversity in

plasmid content observed in this population) is currently
unclear. In addition, several reconstructed plasmids were
very short and it is probable that part of their sequence
was not assembled.
The use of only short-read sequencing thus resulted in

a good global description of the plasmid content, but
proper full genome reconstruction was only possible in
those isolates for which a close reference was available,
as was the case for the European isolates. This was also
the case in previous studies using Illumina short-read se-
quencing in B. burgdorferi s.s. (see for example [57]).

The B. bavariensis genome shows a high degree of
conservation
The core genome of the species complex B. burgdorferi
s.l. is considered to be composed of the main chromo-
some and plasmids cp26 and lp54 [17]. In addition, all
the B. bavariensis isolates sequenced here share se-
quence stretches of three other plasmids: lp17, lp28–4
and lp36. Interestingly, 14 strains of B. burgdorferi s.s.
have also been shown to share these same five plasmids
(cp26, lp17, lp28–4, lp36 and lp54) [14]. For plasmids
lp17 and lp28–4, the shared sequence stretches made up
about 12 kb and 18 kb, respectively, and for plasmid lp36
a fragment of about 13 kb was found to be shared
among all isolates. These sequences can thus be consid-
ered as belonging to the core genome of B. bavariensis
which thus adds up to 1027 kb; being made up of 900 kb
of chromosomal sequence plus 127 kb of plasmid con-
tent (with 27 kb on cp26 and 57 kb on lp54). The
chromosome and cp26 sequences are, in particular,
highly conserved as seen when comparing gene content
between isolates and as already described [14, 17]. A
very high proportion of the genes on these two replicons
(93% for the main chromosome and 91.1% for cp26) are
found in all isolates.
The main chromosome sequences also allowed us

to reconstruct a phylogeny for the species (Fig. 4).
We had already published a similar phylogeny using a
subset of these isolates [11]. However, the Russian
isolates are new to the present paper and allow us to
see that the Asian clade shows no detectable geo-
graphic clustering. Asian B. bavariensis are vectored
by I. persulcatus, whereas the European vector is I.
ricinus (see [9] for a review). As these two tick spe-
cies co-occur and can even hybridize in their overlap-
ping zone in Estonia, Latvia and Western Russia [58],
we expected that Russian B. bavariensis samples,
might be genetically closer to the European isolates
than the Japanese isolates, perhaps even showing that
the European population might have diverged from a
Russian lineage, but this was not the case. The lack
of spatial structure in the Asian B. bavariensis ge-
nomes over such a large geographical scale can be
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explained either (i) by the co-occurrence over a long
evolutionary period of many strains in the same pop-
ulations due to specialization to some specific niches
(like reservoir hosts) or (ii) by recurrent migration of
strains, for example carried by ticks attached to birds.
However, this last hypothesis seems less likely as B.
bavariensis is rodent-adapted and does not survive in
bird complement active immune serum [7, 59].
Another conserved pattern was the elevated coverage

of the sequence data observed on certain plasmids and
particularly on plasmid lp17 with respect to the main
chromosome. The coverage of lp17 was higher than that
of the chromosome in all isolates (European isolates are
shown in Suppl. Fig. 4). This suggests that B. bavariensis
normally carries a higher copy number of plasmid lp17
than is the case for other plasmids or the main chromo-
some. In another study, the coverage of a plasmid, lp28–
6, in one B. burgdorferi s.s. strain was also found to be
about ten times higher than then rest of the genome
[25] but, to our knowledge, no study reported such a
pattern for a plasmid in many isolates of the same spe-
cies. We experimentally confirmed that the copy number
of plasmid lp17 was three to five fold that of the main
chromosome for isolate PBi grown under lab conditions
(Fig. 2). This finding contradicts the current view of
plasmid partitioning in B. burgdorferi s.l. according to
which each plasmid is expected to contain at maximum
one or two copies of each plasmid per cell [25, 60]. The
only other study we could find that experimentally
tested for copy-number of plasmids in B. burgdorferi s.l.
was performed on three plasmids of the B. burgdorferi
s.s. reference strain B31 via relative hybridizations of
replicon-specific DNA probes [61]. These three plasmids
were found to be present at about one copy per chromo-
some and this was shown to be stable when the strain
was kept in culture. Outer membrane vesicles (OMVs)
produced by B. burgdorferi s.l. bacteria could provide an
explanation for DNA extracted from cultures possessing
more copies of certain plasmids than the chromosome.
OMVs are membrane-enclosed spheres that many bac-
teria, including B. burgdorferi s.l., fill with different mole-
cules and release into their surroundings [62], often as a
response to stress [63] that can be induced by cultivation
conditions [64]. OMVs produced by B. burgdorferi s.s.
have been found to contain both circular and linear
DNA [65]. More recently, B. burgdorferi s.s. OMVs were
also found to contain RNA preferentially transcribed
from plasmid sequences but not specifically from lp17
[66]. It is known from other bacterial species that such
vesicles can be involved in toxin delivery, cell-cell signal
trafficking, protein transfer, and horizontal gene transfer
[67]. Plasmids can be transferred via vesicles, and plas-
mid identity has been shown to strongly influence the
efficiency of their loading into vesicles in E. coli [68].

Taking all of this into account, together with the fact
that lp17 has been shown to be involved in host tissue
colonization and evasion of host immunity in B. burg-
dorferi s.s [69, 70]., it is possible that B. bavariensis pref-
erentially packages lp17 plasmids into OMVs and that
these extra plasmid copies are the reason for the ob-
served increased plasmid to chromosome coverage ratio
in B. bavariensis isolates that were cultivated to high
density, and thus under stressful conditions. This hy-
pothesis, however, remains to be tested.
A further level of genetic conservation can be seen

within populations and particularly in the European iso-
lates. The genetic diversity on the chromosome and on
plasmids is very low within the European population
(Table 2) and even the ospC locus, which is known to be
one of the loci with the highest within-population diver-
sity on the B. burgdorferi sensu lato genomes [48, 49, 57,
71], shows very little variation in this population (Fig. 5).
All the sequenced European isolates also share the pres-
ence of three plasmids (lp28–3, cp32–3 + lp25 and
cp32–5) in addition to the 5 plasmids present in all B.
bavariensis isolates. Two plasmid fusions are also shared
by all European isolates. However, the European popula-
tion is not as clonal as previously thought [6, 11, 72] and
several plasmids have evidently been lost or gained dur-
ing its evolution (Table 1 and Fig. 4). In contrast to the
Asian population, the European population shows some
degree of geographic structure, with the first node separ-
ating the two Dutch isolates (A104S and A91S), that are
the most western isolates in our sample, from the rest of
the population and with the two Slovenian isolates
(Lubl25 and PTrob) also being in the same clade to-
gether with a German isolate (PZwi).
The Asian population showed more variability, both at

the sequence level and in the plasmid repertoire (we could
find no pair of Asian isolates having exactly the same plas-
mid content based on the distribution of the PFam32 se-
quences). All the Asian isolates are characterized by a
higher number of plasmids compared to European isolates
and in particular by a higher number of cp32 plasmids
(7.3 on average against 4.6 for the European isolates). This
large cp32 repertoire might be associated with the ability
to infect a wider range of vertebrate hosts; in B. burgdor-
feri s.s. cp32 plasmids carry several genes essential for host
infectivity among which are the loci coding for Erp pro-
teins that have been shown to bind complement proteins
in humans (see [73] for a review).

The B. bavariensis genome also displays a high degree of
plasticity
While part of the B. bavariensis genome was found to
be highly conserved, we also observed a high diversity, in
particular in plasmid content. About two thirds of the
plasmid content of each isolate was not shared by the
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whole species. This has been observed in B. burgdorferi
s.s. as well [18, 25]. We placed gains and losses of plas-
mids on our B. bavariensis phylogeny based on the main
chromosome using maximum parsimony (Fig. 4). Ac-
cording to this reconstruction, 14 out of 24 plasmids
would have been present in the common ancestor of the
species. It is important here to remind the reader that
plasmid loss can occur while B. burgdorferi s.l. bacteria
are grown in culture, and that this could be the reason
for the absence of some plasmids from certain isolates
[54–56]. Thus, some of the apparent plasmid losses dur-
ing B. bavariensis phylogeny may not be real. Neverthe-
less, it is very unlikely that all the apparent losses of
plasmids are artifactual, and gains of plasmids cannot be
explained in this way. The complexity of the evolution
of plasmid content in B. bavariensis, as depicted in Fig.
4, is striking and shows that the plasmid fraction of the
genome is very plastic as has also been shown for B.
burgdorferi s.s. [14]. The ability to exchange plasmids, ei-
ther via OMVs as described above or using other mech-
anisms, seems to be very pronounced in B. bavariensis
and in particular in the Asian population.
The genome plasticity of B. bavariensis is further dem-

onstrated by the occurrence of three plasmid fusions
shared by at least two isolates. Two of these fusions are
fixed in the European population and concern the fusion
of a member of the cp32 family with a linear plasmid.
Such a fusion between a linear plasmid and a cp32 plas-
mid has been previously observed in plasmid lp56 of B.
burgdorferi s.s. type strain B31 [74]. We identified one
lp56 plasmid in the Japanese isolate Hiratsuka based on
the PFam32 protein (86.56% identity to B31 PFam32 se-
quence for lp56). However, this probably incomplete plas-
mid was made only of one 23 kb-long contig and showed
only very little sequence similarity with its counterpart in
strain B31. The third fusion (lp17 + lp28–4) occurred in
several Asian isolates and is not monophyletic in the phyl-
ogeny depicted in Fig. 4. It was thus probably inherited
horizontally and, as it is present in two out of the three
Asian isolates coming from patients, one may speculate
that it is linked to specific virulence factors. The presence
of two different versions of this fused plasmid that differ
in the point of fusion (Suppl. Fig. 5) implies that plasmids
lp17 and lp28–4 were involved in at least two different fu-
sion or recombination events. Similar fusion or relocation
events have been previously observed in other genospe-
cies. Plasmid lp17, for example, has also been suggested to
have been involved in multiple relocations and fusions in
B. burgdorferi s.s. [14].

Candidate genes for host and vector adaptation in B.
bavariensis
Whereas the plasmid content in the European population
was rather well conserved, plasmid lp28–9 was found only

in a single European clade made up of five isolates (includ-
ing the type strain PBi) and was absent from all other
European B. bavariensis isolates. Plasmid lp28–9 was
however present in five Asian isolates (two of which were
isolated from patients) and in the two published strains
from the sister species B. garinii. Annotation of this plas-
mid in the European isolates allowed us to identify only
one gene with a predicted putative function: it is an ortho-
log of a lp28–2-located gene, BBG11, from B. burgdorferi
s.s. strain 297 that has been shown to be upregulated in
rodent hosts by the RpoS transcription factor [75] and to
have higher expression levels in B. burgdorferi s.s. infecting
steroid-treated non-human primates compared to
immuno-competent animals [76]. This gene was found to
be present only on the lp28–9 from European isolates and
on some, but not all, of the lp28–7 and lp28–6 plasmids
of some Asian isolates. Further research is necessary to
find the function of this gene and whether it plays a role
in pathogenicity in humans.
Other interesting genes highlighted by our study are

those located on genetic diversity peaks (Suppl. Figs. 7, 8
and 9) within or between the two B. bavariensis popula-
tions. Because all Asian B. bavariensis isolates are vec-
tored by I. persulcatus, whereas European isolates are
found only in I. ricinus, it has been hypothesized that it
is the adaptation to a new vector species that caused the
strong bottleneck observed in the European population
(see [9] for a review). Genes that show a high differenti-
ation between the two populations are particularly inter-
esting candidates for playing a role in the adaptation to
specific tick vector species. Good examples of such genes
are those encoding OspA, OspB and OspC located on
lp54 (OspA, OspB) and cp26 (OspC) that showed a high
diversity in the Asian population but were not variable
at the amino-acid level in the European population.
These proteins are known to be involved in the inter-
action between B. burgdorferi s.l. bacteria and their vec-
tors and hosts (see [77] for a review). Topological
differences that are observed in phylogenies of ospC and
the rest of cp26 (Fig. 5) implies that differential evolu-
tion processes acted on the ospC gene and on plasmid
cp26 during B. bavariensis evolution. A similar discrep-
ancy has also been shown at the level of the B. burgdor-
feri s.l. species complex [78].
OspA and OspB could possibly be associated with eva-

sion of the tick immune system as both genes are known
to be expressed during infection of the tick [79]. Genetic
variation at the ospA locus has already been observed in B.
garinii [80]. This diversity, however, does not coincide
with different vector use. Other species such as B. afzelii
and B. burgdorferi s.s., which can also use different vec-
tors, have a rather conserved ospA [80]. It may be that
OspA fulfills different functions within the tick apart from
its role as receptor binding molecule to TROSPA [81].
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Another peak of genetic diversity was observed be-
tween 52 and 60 kb of the aligned plasmid lp54. RAST
annotation [39, 40] did not show genes with known
function in this region but the end of lp54 is known to
be the region encoding the PFam54 protein family [74].
Indeed we were able to identify the genes encoding for
CspA-related PFam54 proteins BGA66 and BGA71 on
the region showing high diversity in both B. bavariensis
populations (Suppl. Fig. 9). The CspA protein was first
identified in B. burgdorferi s.s. and is known to be in-
volved in the evasion of the innate immune response in
the human host by binding regulators of the comple-
ment system [82, 83]. CspA was later shown to belong
to a large protein family (PFam54) that is known to be
under fast adaptive evolution [84]. Our results are in ac-
cordance with this finding. In particular, the evolution of
the B. bavariensis PFam54 members BGA66 and BGA71
is of high interest as these proteins have been found to
be involved in complement inactivation in B. bavariensis
reference strain PBi but with a different mechanism as
compared to the B. burgdorferi s. s. CspA protein [85].

Conclusions
Reconstruction of almost complete genomes of 33 B.
bavariensis isolates from Eurasia showed that this spe-
cies is characterized by a high degree of genetic conser-
vation combined with plasticity. Asian isolates were
found to have a high diversity in plasmid content and
showed no geographic structuring. The European popu-
lation was less diverse, appearing to have undergone a
genetic bottleneck, but still showed some heterogeneous
plasmid content. Two plasmid fusions were fixed in the
latter population with respect to the Asian population.
Horizontal transfer of genes or whole plasmids and gain
and loss of plasmids likely influenced the evolution of
this species. This study opens the way to functional gen-
omic research on genes that have specific evolution pat-
tern in this species and are thus good candidates for
vector and host adaptation and for human pathogenicity.

Methods
Isolates used and sequencing
Information on origin of the isolates used for this study
can be found in Table 1. All the European isolates from
the strain bank of the German National Reference Cen-
ter for Borrelia at the Bavarian Health and Food Safety
Authority (Bayerisches Landesamt für Gesundheit und
Lebensmittelsicherheit). Seventeen isolates were isolated
from patients and one isolate was from a questing tick.
The Asian isolates were isolated from questing ticks or
patients in Russia and Japan.
Borrelia bavariensis were cultured in inhouse-made

MKP (European samples) or inhouse-made BSK (Rus-
sian and Japanese samples) medium using standard

procedures [86] to density of at least 108 cells per mL in
order to obtain enough DNA. DNA was extracted using
a Maxwell® 16 LED DNA kit (Promega, Germany) and
Japanese isolates were purified using Wizard genomic
DNA purification kit (Promega). DNA concentrations
and quality (260/280) were determined by using a Qubit®
fluorometer 3.0 and (Thermo Fisher Scientific, USA)
and NanoDrop® 1000 photometer (Thermo Fisher Scien-
tific, USA).
For all 33 isolates, libraries were prepared according to

the Nextera DNA sample preparation guide (Illumina,
San Diego CA, USA). The samples were diluted to a
DNA concentration of 0.2 ng/μl and “tagmented” by
simultaneously fragmenting DNA using transposomes as
provided by the manufacturer and adding adapters. After
tagmentation, samples having adapters on both ends
underwent five PCR cycles to amplify the product and to
add index primers. The resulting libraries were then vali-
dated using an Agilent 2100 Bioanalyzer (Agilent,
Germany). We then sequenced using an Illumina MiSeq
platform (Illumina, San Diego CA, USA) that produced
paired-end reads of 250 bp. Some low quality samples
(A104S, DK6, PBae I, PBae II, PBar, PBN, PLad, PWin
and PZwi) were repeated on an Illumina HiSeq platform
producing 100 bp long paired-end reads.
For isolates PBi, A104S and NT24, Pacific Bioscience

SMRT sequencing (hereafter PacBio) was performed
using 10 μg of DNA. A library was prepared using Pa-
cific Biosciences 20 kb library preparation protocol. Size
selection of the final library was performed using Blue-
Pippin with a 10 kb cut-off. The library was sequenced
on a Pacific Biosciences RS II instrument using P6-C4
chemistry with 360 min movie time.

Genome assembly and mapping
PacBio reads were assembled using HGAP v3 (Pacific Bio-
sciences, SMRT Analysis Software v2.3.0). Chromosomes
and linear plasmids 3′ and 5′ ends were trimmed for re-
moving the pseudo-telomere regions that are known to be
present in B. burgdorferi s.l. linear replicons [87]. Illumina
contigs (see below) for the same isolates were then
mapped to the PacBio assembly with NUCmer v. 3.1 from
package MUMmer [32]. As PacBio sequencing technology
is prone to sequencing errors like point mutations and
short indels [30], we combined the data from PacBio and
Illumina using the following rules: for each indel of length
5 bp or less keep the Illumina version, for longer indels
keep the PacBio version. For point mutations, keep the
Illumina version if all contigs mapping on this position
agree, else keep PacBio version.
Illumina reads were assembled using SPAdes v. 3.10.1

[31]. As a comparison, we also assembled 25 isolates
with SOAPdenovo v. 1.0 [35] and VelevetOptimizer v.
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1.0 [36] and used QUAST v. 4.6 [37] to compare the
quality of the three assemblies.
Mapping of SPAdes contigs was performed with NUC-

mer v. 3.1 from package MUMmer [32] on each one of
the three isolates sequenced with PacBio that were used
as reference. Contigs that were identified as being a
whole chromosome (five cases) or a whole plasmid were
used as is. For sequences that needed mapping of several
contigs, the closest reference was used (highest identity
and longest sequence reconstructed). This reference
could be from one of the three PacBio isolates but also a
contig identified as a whole plasmid in another Illumina
isolate (61VB2 lp17, lp28–8 and cp32–5, A91S lp36,
Arh923 lp28–7, FujiP2 lp28–6, Hiratsuka cp32–9 and
cp32–11, J-14 lp17, lp28–4, lp28–6, cp32–7, cp32–10,
cp32–11 and cp32–12, J-20 T lp25 and cp32–4, Lubl25
lp28–7, PBae II lp28–8, PBar lp54 and lp28–4 + cp32–1,
PBN lp28–3, PHer I lp36, PLad lp28–8, PNeb lp36, lp17,
lp28–7 and lp28–8, Prm7019 lp28–8 andPrm7569
cp32–1 were used as reference for other isolates). Each
mapping file was then curated to suppress contigs over-
lapping other ones with higher identity (often these were
very short contigs that mapped with low identity to a re-
gion already covered by a longer contig). We also cor-
rected cases where one contig was supposed to map to
several plasmids (often from the lp28 or cp32 families)
or contigs which did not map over their whole length. In
such cases, we kept the contig only the plasmid with the
highest identity to the reference and longest mapping. In
some rare cases, we used the same contig twice in the
same plasmid as the PacBio reference showed that a se-
quence was repeated on the plasmid and thus it was not
surprising that the Illumina reads from the two repeated
regions would be assembled to the same contig; or we
used the same contig in two different plasmids if the
contig mapped with the same identity in both plasmids,
again because the two plasmids had very similar se-
quences. Final chromosome and plasmid files were cre-
ated based on the SNPs and indels identified with the
program show-snps from package MUMmer [32] using
following rules: for SNPs keep the Illumina allele if all
contigs mapping at this position agree, else keep the ref-
erence allele if at least one contig also has it, else replace
the base by “N”; keep insertions and deletions if and only
if all contigs mapping at this position agree, else keep
the reference version.
Final files, either made of an unmapped contig or

of several contigs mapped to a reference were kept
only if the final sequence length was at least 5000 bp
and if unambiguous identification of the plasmid was
possible thanks to mapping or the presence of a plas-
mid partition gene (see below). Shorter sequences
were not considered as a plasmid and discarded from
the final genomes.

The quality of the final reconstructed genomes was
further studied by re-mapping the raw Illumina reads to
the final genomes. This was done using BWA-MEM al-
gorithm v. 0.7.17-r1188 [88] and read duplicates that
can arise during library preparation by PCR were re-
moved using Picard v. 2.21.6 (http://broadinstitute.
github.io/picard). Read manipulation and extraction of
coverage data was done with SAMtools v.1.9 [89]. For
isolate NT24, the same procedure was repeated using
PacBio plasmids to test for the coverage of the fused
plasmids cp32–7 + 7 + 11 and cp32–12 + 5 + 6 (Suppl.
Fig. 1). The quality of the assembled genomes was tested
by comparing the relative standard deviation of the
coverage of the raw reads between chromosomes and
plasmids, between populations and between types of
procedure to obtain the final sequence (full contig, or
several contigs mapped to a reference) using Wilcoxon
Rank Sum tests (Suppl. Fig. 3). The relative coverage of
plasmids were also compared to the main chromosome
over all European samples with Wilcoxon Rank Sum
tests with P-values corrected for multiple testing with
Bonferroni-Holm correction. The coverage of each plas-
mid relative to the chromosome for all European isolates
was represented in Supplementary Figure 4.

Plasmid identification and plasmid partition genes
Final genome elements were named after the PFam32
protein family sequences that they contained. We used
BLAST v. 2.8.1 [33, 34] (algorithm blastn) to identify the
presence of plasmid partition genes of the PFam32, 49,
50 and 57–62 families. In a first BLAST round we used
as queries the PFam32 genes sequences of B. burgdorferi
s.s. strains B31, BOL26, JD1 and 118a and B. afzelii
strain PKo to cover the whole plasmid diversity and the
PFam49, 50 and 57–62 of B. burgdorferi s.s. strain MM1.
We performed the search both on the final assembled
genome and on the SPAdes Illumina contigs of each iso-
late as some plasmids could not be assembled. We then
reiterated the BLAST search using as queries all the hits
found in the first search. We then removed from the
final hit lists presented in Supplementary Table 1 all hits
that were shorter than half the length of the references
(reference lengths were around 750 bp for PFam32, 550
bp for PFam49 and PFam50 and 900 to 1100 bp for
PFam57–62) and that had no open reading frame over
at least half of the length of the reference.

Quantitative PCR for plasmid copy number estimation
We used a qPCR protocol to estimate the copy number
of plasmids cp26, lp17 and lp36 relative to the main
chromosome following Millan et al. [38]. This was per-
formed on two isolates of strain PBi (named 2418 and
24510) each grown as three biological replicates in MKP
medium with standard conditions [86]. DNA was
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extracted using a Maxwell automatic purification instru-
ment once cell density reached approximately 107 cells/
mL. Digestion with the PstI enzyme (NEB R0140S) was
done to ensure equal accessibility of linear and circular
plasmids during the PCR reaction. Five hundred nano-
grams of DNA from each extraction were digested for
1 h and 10 min at 37 °C with 0.5 μL of PstI in a final re-
action volume of 25 μL, after which the enzyme was
inactivated for 20 min at 80 °C. Quantitative PCR
primers were designed to be as similar as possible in
their specifications in order for them to be used in a sin-
gle qPCR run. Primer-BLAST [90] was used to produce
primer candidates that did not bind multiple times
within the B. bavariensis PBi genome (Suppl. Table 2).
PCR samples were prepared using 1 μM primer concen-
trations and 10 ng of DNA using the S7 Fusion Polymer-
ase system according to standard protocol for a final
reaction volume of 20 μL (IsoGene Scientific). A two-
step PCR program was chosen due to the small sizes of
the amplified fragments with a thermocycle of 30 s
initialization at 98 °C, followed by 30 cycles of 98 °C de-
naturation for 5 s and 63 °C annealing for 20 s finishing
with an elongation step at 72 °C for 7 min. PCR products
were visualized using a 1% agarose gel. All PCR pro-
duced the expected product size.
All qPCR runs were run using the SsoAdvanced™ Uni-

versal SYBR® Green Supermix (Bio Rad) according to
standard protocol on a Bio Rad C1000 Touch™ Thermo-
cycler with the same thermoprofile as the two step PCR
described above. For each run, two technical replicates
from each biological replicate (n = 3) were used for a
total of 6 qPCR replicates per isolate. A standard curve
was calculated per run for both the plasmid and
chromosome primers using standards of known DNA
concentration (20, 3.3, 2.5, 2.0, 0.3, and 0.04 ng/μL)
made from a DNA pool of all samples. Each standard
was run in triplicate for each primer set. A negative con-
trol was included for each technical replicate of either
unknowns or standards (n = 10 per plate). Each run in-
cluded unknowns and standards for one plasmid (cp26,
lp36, lp17) and the main chromosome. Cycle threshold
(CT) values were recorded for all samples. Primer effi-
ciencies were then calculated according to standard
protocol (Bio Rad) from these standard curves. Plasmid
copy numbers were calculated for each technical repli-
cate according to the equation described in [91].

Plasmid fusions
We studied the architecture of plasmids lp17, lp28–4,
lp28–7 and cp32–1 in detail as different fusions and
translocation involving these plasmids were observed.
Following Casjens et al. [14] we defined as a new plas-
mid subtype, a plasmid sequence that had with respect
to the other plasmid subtypes either presence of 400 bp

or longer indels or obvious evidence of past interplasmid
DNA exchanges (translocations). Casjens et al.’s criteria
also involved synteny, but our current annotation
contains mostly hypothetical proteins and did not allow
us to test for synteny. We used BLAST v. 2.8.1 [33, 34]
(algorithm blastn) between each of these four plasmids
to identify plasmid types.

Genome annotation
Genome annotation was performed with RAST Annota-
tion Server v. 2.0 [39, 40] with default parameters. As an
annotation is available online for the main chromosome
of reference strain PBi (GenBank accession number
CP000013), we compared this annotation with the one
obtained for our genome reconstruction of strain PBi
based on combining PacBio and Illumina data with The
SEED Viewer v. 2.0 [40] and produced a Blast Dot Plot
shown in Supplementary Figure 6.
For each one of the 33 isolates, we compared one by one

all genes for which the product is at least 50 amino-acids
long, with all genes of the 32 others using blastp algorithm
from BLAST v. 2.8.1 [33, 34]. We kept all hits that were at
least half as long as the query and shared at least 90% se-
quence identity with the query and recorded on which gen-
omic segment they were located for each isolate.

Phylogeny reconstruction
Phylogeny reconstruction was performed on the main
chromosome as it is known to be very stable in the B.
burgdorferi s.l. species complex [17]. In addition to the
33 isolates published in this study we also used four B.
bavariensis strains published in GenBank (under acces-
sion numbers CP000013 for strain PBi from Germany,
CP003151 for strain BgVir from Russia and CP003866
and CP007564 for strains NMJW1 and SZ from China)
and the B. garinii strain 20047 as an outgroup to root
the tree (GenBank accession number CP028861). Align-
ment was performed with MAFFT v7.407 [46, 47] and
phylogeny reconstruction was performed with BEAST
v1.8.0 [41] with the following parameters: coalescent
model with exponential growth based on doubling time,
lognormal-relaxed clock [42], GTR substitution model
[43]. The chain was run for 100 Million steps in three
independent runs and convergence was checked with
Tracer v. 1.4 [92]. One of the runs did not converge and
for the other two runs a burn-in of 30 and 40% respect-
ively was found appropriate. We then used TreeAnnota-
tor v. 1.10.4 [41] to identify the best tree after burn-in.
The phylogeny presented in Fig. 4 was plotted with Fig-
Tree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).
On the phylogeny we added for each branch the gain or
loss of plasmids based on the genome reconstructions
presented in Table 1 and Supplementary Table 1 (we
considered a plasmid as present when either its sequence
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or one of its specific plasmid partition gene was present)
and using maximum parsimony principle. When two so-
lutions leaded to the same minimum number of events,
we chose the solution with the lowest number of gains.
Phylogenies were also reconstructed on plasmid cp26

cutting out the ospC locus (200 bp upstream and down-
stream the gene) and on gene ospC with BEAST v. 1.8.0
[41] using the same priors and the same procedures as
above except that the coalescent model did not include
exponential growth. We included GenBank strains BgVir
(B. bavariensis CP003201.1), Far04 and PBr (B. garinii
CP001319.1 and CP001305.1), PKo, K78 and ACA-1 (B.
afzelii CP002934.1, CP009060.1, CP001250.1) and A14S
(B. spielmanii CP001467.1). The sequences were aligned
with MAFFT v7.407 [46, 47] and the chains were run for
500 million states for cp26 and 20 million states for ospC
each in triplicate. Best trees were reconstructed after re-
moving a burn-in of 10% of the chain and all three runs
showed very similar results for each tree. Both trees were
plotted using FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/
software/figtree/) and manually rotated to produce Fig. 5
comparing ospC and plasmid cp26.

Statistical analyses and genetic diversity
All statistical analyses were performed with R v. 3.5.2
[93] and genetic distance and genetic diversity were esti-
mated using packages pegas v. 0.12 [94] and hierfstat v.
0.04–22 [95] on orthologous plasmid sequences aligned
with MAFFT v7.407 [46, 47] and along the alignments
of the main chromosome as well as plasmids cp26 and
lp54 (only segments that could be aligned over their
whole length) using windows of 1000 bp sliding every
100 bp.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-07054-3.

Additional file 1: Supplementary Figure 1. Coverage of raw reads
mapping on PacBio fused plasmids cp32–7 + 7 + 11 (a) and cp32–12 +
5 + 6 (b) of isolate NT24. Illumina raw reads were mapped with BWA-
MEM algorithm v. 0.7.17-r1188 [88] on PacBio fused plasmids cp32–7 +
7 + 11 (a) and cp32–12 + 5 + 6 (b) of isolate NT24. Regions of low to null
coverage (marked in red) show that the fusion is not supported by the
short-read data.

Additional file 2: Supplementary Figure 2. Comparison of three
assemblers for Illumina assembly of 25 B. bavariensis isolates. These violin
plots compare N50 (a) and total length of contigs (b) obtained with
QUAST v. 4.6 [37] on assemblies performed with SPAdes v. 3.10.1 [31],
SOAPdenovo v. 1.0 [35] and VelvetOptimizer v. 1.0 [36].

Additional file 3: Supplementary Figure 3. Replicon assembly quality
as a function of population, mapping method (a) and type of replicon
(b). Illumina raw reads were mapped with BWA-MEM algorithm v. 0.7.17-
r1188 [88] to the final reconstructed genomes and the relative standard
deviation of the coverage of the raw reads was used as a measure of as-
sembly quality. We compare here replicons from European (left bars) and
Asian (right bars) genomes depending on (a) whether the replicon was
made as one contig (pink) or as several contigs mapped to a reference

(purple) and on (b) whether it was a chromosome (orange) or a plasmid
(blue). Error bars show standard error of the mean. ***: Wilcoxon Rank
Sum Test for Europe against Asia, P-value < 0.001. Other tests comparing
mapping methods (a) and type of replicons (b) were not significant.

Additional file 4: Supplementary Figure 4. Coverage ratio of
European replicons as a proxy for copy number. Illumina raw reads were
mapped with BWA-MEM algorithm v. 0.7.17-r1188 [88] to the final recon-
structed genomes and the ratio of the coverage of each replicon with re-
spect to the chromosome was computed in each European isolate. Error
bars show standard error of the mean. Dark blue numbers indicate the
number of plasmids of this type in the European sample. Wilcoxon Rank
Sum Tests comparing coverage of each plasmid with that of the chromo-
somes: P-Value after Bonferroni-Holm correction *: < 0.05, ***: < 0.001,
else: not significant.

Additional file 5: Supplementary Figure 5. Schematic representation
of plasmid subtypes and fusion/relocation events on lp17, lp28–4, lp28–7
and cp32–1. The different plasmid subtypes (numbered arbitrarily) are
represented as black bars. We defined as a new plasmid subtype, a
plasmid sequence that had, with respect to the other plasmid subtypes,
either presence of 400 bp or longer indels or obvious evidence of past
interplasmid DNA exchanges (translocations). We used BLAST v. 2.8.1 [33,
34] to identify plasmid types and colour-shaded areas represent BLAST
hits on the same strand (blue) and inversions (pink). Different shades of
color are just used for clarity and have no meaning. Dashed lines repre-
sent plasmid fusions. Scale bars above the plots are plasmid lengths in
kb. *: specific cases: Arh913 cp32–1 could no be assembled. Konnai17
had two lp28–7 plasmids, the second one has the same subtype as plas-
mid lp28–7 in FujiP2.

Additional file 6: Supplementary Figure 6. Dotplot comparing
annotation of strain PBi between our isolate and a previously published
one. Comparison of gene content realized in RAST Annotation Server v.
2.0 [39, 40] on the main chromosome. PBi accession number in RAST:
290434.1.

Additional file 7: Supplementary Figure 7. Genetic diversity along
the main chromosome of B. bavariensis. Genetic diversity was estimated
using R package pegas v. 0.12 [94] on orthologous sequences aligned
with MAFFT v7.407 [46, 47] on 1000 bp windows sliding every 100 bp in
Asian isolates only (a), European isolates only (b) and all isolates (c).
Genes located on diversity peaks (d) come from RAST Annotation Server
v. 2.0 [39, 40].

Additional file 8: Supplementary Figure 8. Genetic diversity along
plasmid cp26 of B. bavariensis. Genetic diversity was estimated using R
package pegas v. 0.12 [94] on orthologous sequences aligned with MAFF
T v7.407 [46, 47] on 1000 bp windows sliding every 100 bp in Asian
isolates only (a), European isolates only (b) and all isolates (c). Genes
located on diversity peaks (d) come from RAST Annotation Server v. 2.0
[39, 40].

Additional file 9: Supplementary Figure 9. Genetic diversity along
plasmid lp54 of B. bavariensis. Genetic diversity was estimated using R
package pegas v. 0.12 [94] on orthologous sequences aligned with MAFF
T v7.407 [46, 47] on 1000 bp windows sliding every 100 bp in Asian
isolates only (a), European isolates only (b) and all isolates (c). Genes
located on diversity peaks (d) come from RAST Annotation Server v. 2.0
[39, 40].

Additional file 10: Supplementary Table 1. Plasmid partition genes
identified in 33 B. bavariensis strains. Supplementary Table 2. Primers
used for qPCR.
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Supplementary Figure 1. Coverage of raw reads mapping on PacBio fused 

plasmids cp32–7 + 7 + 11 (a) and cp32–12 + 5 + 6 (b) of isolate NT24. Illumina raw 

reads were mapped with BWA-MEM algorithm v. 0.7.17-r1188 (109) on PacBio fused 

plasmids cp32–7 + 7 + 11 (a) and cp32–12 + 5 + 6 (b) of isolate NT24. Regions of low 

to null coverage (marked in red) show that the fusion is not supported by the short-

read data. 
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Supplementary Figure 2. Comparison of three assemblers for Illumina assembly 

of 25 B. bavariensis isolates. These violin plots compare N50 (a) and total length of 

contigs (b) obtained with QUAST v. 4.6 (110) on assemblies performed with SPAdes 

v. 3.10.1 (111), SOAPdenovo v. 1.0 (112) and VelvetOptimizer v. 1.0 ⁠(113). 
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Supplementary Figure 3. Replicon assembly quality as a function of population, 

mapping method (a) and type of replicon (b). Illumina raw reads were mapped with 

BWA-MEM algorithm v. 0.7.17-r1188 (109)⁠ to the final reconstructed genomes and 

the relative standard deviation of the coverage of the raw reads was used as a 

measure of assembly quality. We compare here replicons from European (left bars) 

and Asian (right bars) genomes depending on (a) whether the replicon was made as 

one contig (pink) or as several contigs mapped to a reference (purple) and on (b) 

whether it was a chromosome (orange) or a plasmid (blue). Error bars show standard 

error of the mean. ***: Wilcoxon Rank Sum Test for Europe against Asia, P-

value < 0.001. Other tests comparing mapping methods (a) and type of replicons (b) 

were not significant. 
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Supplementary Figure 4. Coverage ratio of European replicons as a proxy for 

copy number. Illumina raw reads were mapped with BWA-MEM algorithm v. 0.7.17-

r1188 (109) to the final reconstructed genomes and the ratio of the coverage of each 

replicon with respect to the chromosome was computed in each European isolate. 

Error bars show standard error of the mean. Dark blue numbers indicate the number 

of plasmids of this type in the European sample. Wilcoxon Rank Sum Tests 

comparing coverage of each plasmid with that of the chromosomes: P-Value after 

Bonferroni-Holm correction *: < 0.05, ***: < 0.001, else: not significant. 
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Supplementary Figure 5. Schematic representation of plasmid subtypes and 

fusion/relocation events on lp17, lp28–4, lp28–7 and cp32–1. The different plasmid 

subtypes (numbered arbitrarily) are represented as black bars. We defined as a new 

plasmid subtype, a plasmid sequence that had, with respect to the other plasmid 

subtypes, either presence of 400 bp or longer indels or obvious evidence of past 

interplasmid DNA exchanges (translocations). We used BLAST v. 2.8.1 (114, 115)to 

identify plasmid types and colour-shaded areas represent BLAST hits on the same 

strand (blue) and inversions (pink). Different shades of color are just used for clarity 

and have no meaning. Dashed lines represent plasmid fusions. Scale bars above the 

plots are plasmid lengths in kb. *: specific cases: Arh913 cp32–1 could not be 

assembled. Konnai17 had two lp28–7 plasmids, the second one has the same subtype 

as plasmid lp28–7 in FujiP2. 
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Supplementary Figure 6. Dotplot comparing annotation of strain PBi between 

our isolate and a previously published one. Comparison of gene content realized in 

RAST Annotation Server v. 2.0 (116, 117) a on the main chromosome. PBi accession 

number in RAST: 290434.1. 
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Supplementary Figure 7. Genetic diversity along the main chromosome of B. 

bavariensis. Genetic diversity was estimated using R package pegas v. 0.12 (118) on 

orthologous sequences aligned with MAFFT v7.407 (105, 119)⁠ on 1000 bp windows 

sliding every 100 bp in Asian isolates only (a), European isolates only (b) and all 

isolates (c). Genes located on diversity peaks (d) come from RAST Annotation Server 

v. 2.0 (116, 117). 
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Supplementary Figure 8. Genetic diversity along plasmid cp26 of B. bavariensis. 

Genetic diversity was estimated using R package pegas v. 0.12 (118) ⁠ on orthologous 

sequences aligned with MAFFT v7.407 (105, 119)⁠ on 1000 bp windows sliding every 

100 bp in Asian isolates only (a), European isolates only (b) and all isolates (c). Genes 

located on diversity peaks (d) come from RAST Annotation Server v. 2.0 (116, 117). 
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Supplementary Figure 9. Genetic diversity along plasmid lp54 of B. bavariensis. 

Genetic diversity was estimated using R package pegas v. 0.12 (118) on orthologous 

sequences aligned with MAFFT v7.407 (105, 119)⁠ on 1000 bp windows sliding every 

100 bp in Asian isolates only (a), European isolates only (b) and all isolates (c). Genes 

located on diversity peaks (d) come from RAST Annotation Server v. 2.0 (116, 117). 
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Abstract 

Vector-borne pathogens exist in obligate transmission cycles between vector and 

reservoir host species. Host shifts can lead to geographic expansion and the emergence 

of new diseases. Three etiological agents of human Lyme borreliosis (Borrelia afzelii, 

Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick 

species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus) but how 

and in which order they colonized each continent remains unknown. Here, by 

reconstructing the evolutionary history of 142 Eurasian isolates, we show that all three 

Borrelia genospecies evolved from an Asian origin, suggesting that successful 

expansion into Europe resulted through invading a novel vector. The pattern of gene 

flow between continents is different between genospecies and most likely conditioned 

by reservoir host association and their dispersal. Our results highlight that Eurasian 

Lyme borreliosis agents are all capable of geographic expansion through vector shifts, 

but potentially differ in their capacity as emergent pathogens. 

 

Introduction 

Lyme borreliosis (LB), also termed Lyme disease, is the most common vector-

borne disease in the Northern hemisphere (30, 120), caused by certain genospecies of 

Borrelia bacteria (30, 39, 43). These spirochete bacteria are maintained naturally in  

obligatory transmission cycles between tick vectors and specific vertebrate reservoir 

hosts (43). In North America human LB is predominantly caused by Borrelia 

burgdorferi sensu stricto (Bbss) while three additional genospecies act as causative 

agents across Eurasia (Borrelia afzelii, Borrelia bavariensis, Borrelia garinii) (30, 39, 

43). Genomic analyses have already shown a complex ancestral spread of Bbss across 

North America (121) which is also observed in specific Eurasian genospecies (84, 91). 

The Eurasian genospecies offer a unique opportunity to understand the geographic 

expansion of Borrelia spirochetes using comparative genomics. However, no study has 
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integrated genomic data from the different genospecies. In particular, no study at the 

population-level of Asian B. afzelii has been published to date. 

Borrelia genospecies cannot transmit successfully through all tick species (39, 

122) and can only infect specific vertebrate classes (i.e. rodents, passerines, sea-birds, 

etc.) while being easily cleared by the immune systems of others (39, 43, 48). Eurasian 

Borrelia genospecies currently exist in separate transmission cycles vectored 

predominately by two generalist tick species in Asia (Ixodes persulcatus) and Europe 

(Ixodes ricinus) (43) (Figure 2). This suggests that each genospecies successfully 

invaded a novel tick vector resulting in the expansion into a new continental 

transmission cycle. However, how and in which order this expansion occurred is still 

unknown (Figure 2). For B. bavariensis, an Asian origin was already hypothesized as 

the Asian population displays a higher genetic diversity compared to  the almost clonal 

European population (39, 84, 93). European B. bavariensis is thought to have 

undergone a selective bottleneck while colonizing the European tick vector, I. ricinus, 

resulting in the observed clonal structure (39, 84, 93). Whether or not the other 

genospecies also underwent this bottleneck has never been studied so far. Both B. 

afzelii and B. bavariensis utilize rodents as reservoir hosts (43, 45, 94) (Figure 2). In 

comparison, B. garinii is adapted to avian host species (45, 98), which includes 

interconnected terrestrial and marine transmission cycles (Figure 2). This association 

in B. garinii is thought to allow for migration between the European and Asian 

populations which is not accessible to rodent adapted genospecies. (Figure 2).  

Each of these genospecies has successfully established into multiple 

transmission cycles and offers an opportunity to study how Borrelia expanded across 

Eurasia through comparative genomics. Although, no study to date has integrated 

genomic data from all three Eurasian-distributed genospecies. Here we report the 

reconstructed evolutionary history of 142 B. afzelii, B. garinii, and B. bavariensis 

Eurasian isolates based on full genome sequences including the first Japanese B. afzelii 

genomes sequenced. Our results highlight that these genospecies share an Asian origin 

with support for migration from an ancestral Asian population vectored by I. 

persulcatus into a novel European vector, I. ricinus. Post-colonization gene flow 

appears to be associated with the dispersal range of the respective reservoir host 

species. Our results provide new information on the ability of three Borrelia 

genospecies to colonize new environments and how this could relate to the further 

expansion of human LB. 
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Figure 2. Schematic overview of the transmission cycles of B. afzelii, B. bavariensis, and B. garinii 
across Eurasia. These three Borrelia genospecies are maintained predominately by the tick vector I. 
ricinus in Europe and I. persulcatus in Asia in a transmission cycle utilizing either rodents (B. afzelii 
and B. bavariensis) or birds (B. garinii) as reservoir hosts (39, 43, 123). Borrelia garinii specifically 
utilizes interconnected terrestrial and marine based transmission cycles (45, 98, 124). In marine 
systems, this species is maintained by seabird reservoir host species and the vector I. uriae (45). In 
both Europe and Asia, all three genospecies can be transmitted to humans through I. ricinus or I. 
persulcatus and can manifest as Lyme disease (30, 43). 

 

Materials & Methods 

 

Isolates used and sequencing 

For all information on isolates, including origin and source material refer to 

Table S1. This study utilized DNA of 136 Borrelia isolates coming from three human 

pathogenic species: B. afzelii (n=33), B. garinii (n=57), and B. bavariensis (n =46). Of 

these, 52 are novel Borrelia isolated from ticks collected either in Japan (n=43) or 

Germany (n=9) (see Text S1). Additionally, 55 European isolates (B. afzelii, n=11; B. 

garinii, n=25; and B. bavariensis, n=19) were provided by the German National 

Reference Center for Borrelia at the Bavarian Food and Health Safety Authority. All 

isolates, expect one tick isolate, were isolated from humans. DNA for additional 

Japanese human and tick isolates (n = 12) was provided by the National Institute of 

Infectious Disease in Tokyo, Japan. Finally, previously sequenced Russian B. 

bavariensis (n=7) (84) and DNA from 12 additional Russian B. garinii tick isolates 

were included in the study (see Text S1).  
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Borrelia isolates were cultured either in inhouse-made MKP (125) (all European 

isolates) or inhouse-made BSK-H (126) (all Russian and Japanese isolates) medium 

according to standard procedures (125, 126) until the cultures reached a density of at 

least 108 cells per mL at which point whole genomic DNA was extracted. Genomic DNA 

from all European isolates was extracted using a Maxwell® 16 LED DNA kit (Promega, 

Germany) and from all Japanese and Russian isolates using the Wizard® Genomic 

DNA Purification Kit (Promega, Germany). DNA quality (260/280) and concentration 

were measured using a NanoDrop® 1000 photometer (Thermo Fisher Scientfic, USA) 

and a Qubit® 3.0 fluorometer (Thermo Fisher Scientific, USA), respectively. 

For all samples, libraries were produced according to the Nextera XT sample 

preparation guide (Illumina, San Diego, CA, USA). Library quality was checked using 

an Agilent TapeStation 2200 (Agilent, Germany) before being sequenced using an 

Ilumina MiSeq platform according to standard protocol (Illumina, San Diego, CA, 

USA) that produced paired end reads of 250bp. 

 

Chromosome assembly and phylogeny reconstruction 

Illumina reads were first trimmed for Illumina MiSeq adapter sequences using 

Trimmomatic v. 0.38 (127) before being assembled using SPAdes v. 3.13.0 (111), which 

has been shown to be the best option for de novo assemblies of Borrelia genomes (84). 

Pacific Bioscience sequences were obtained for three B. bavariensis isolates (PBi, 

A104S, and NT24) (84) and three B. garinii isolates (PHeI, PBr, and NT31; see Suppl. 

Met.). Additionally, three B. afzelii chromosomes were downloaded from GenBank for 

use as references and inclusion in all analyses: PKo (CP009058.1), K78 (CP002933.1), 

and ACA-1 (NZ_ABCU00000000.2). SPAdes contigs were then mapped to reference 

chromosomes using NUCmer v. 3.23 from the package MUMmer (128, 129). Final 

chromosomes were produced according to the mapping protocol outlined in Becker et 

al. (2020) (see Suppl. Met.). Three additional B. bavariensis chromosomes were 

downloaded from GenBank and used in further analyses: SZ (CP007564.1), BgVir 

(CP003151.1), and NWJW1 (CP003866.1). 

Final assembled chromosomes were aligned using MAFFT v. 7.407 (105, 119). 

Recombination is known to be low on the Borrelia chromosome (93) but as 

recombinant regions could bias the phylogenetic signal, we searched for areas of the 

chromosome violating the four-gamete condition (130) (as described in Gatzmann et 

al. (2015); see Suppl. Met.). Regions with strong violation of the four-gamete condition 
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were assumed to be recombinant and were removed from the final alignments. 

Phylogeny reconstruction was done in MrBayes v. 3.2.6 (131, 132) with ploidy set to 

haploid and a GTR (133) substitution model with gamma distributed rate variation. 

Three independent runs were launched and ran for 5 million generations  at which 

point convergence of parameters was checked with Tracer v. 1.7.1 (134). Consensus 

trees were built using the sumt command from MrBayes using a respective burn-in of 

25%. Convergence to a single topology in all three independent runs was checked 

manually in FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) which was 

also used to plot the tree shown in Figure 3. Trees were midpoint rooted on the longest 

branch, which corresponded to the well-established delineation between B. afzelii and 

the monophyletic group containing B. bavariensis and B. garinii (101, 123). 

 

Identification of plasmid content through plasmid partitioning genes 

Plasmid content was approximated by the number of plasmid partitioning genes 

present in each assembly, which have been shown to be unique to specific plasmid 

types and exist as single copies in Borrelia (82, 85, 135).  Identification of plasmid 

partitioning genes was performed as outlined in Becker et al. (2020) (see Suppl. Met.). 

Briefly, we used BLAST v.2.8.1 (114, 115) (algorithm: blastn) to search for the presence 

of plasmid partitioning genes of the PFam32, 49, 50, and 57.62 families in the 

assembled SPAdes contigs. Hits were removed if they did not cover more than half the 

length of the references and had lower than 80% percent identity. After curation, we 

defined a plasmid being present if at least one of the partitioning genes was present in 

the assembled contigs. 

 

Statistical and population genetic analyses 

All statistical analysis was performed in R v. 3.6.1 (136). Genetic diversity (π) 

(137) and Tajima’s D test statistic (138) were estimated in the package pegas (118). 

Analysis of molecular variance (AMOVA) (139) was performed using the package 

poppr (140) whereas FST (137) and DXY (141) were estimated with the package 

PopGenome (142).  

Standard two-side, unpaired t-tests were run on plasmid number between 

genospecies comparing the two geographic populations using the function t.test from 

the base R package (136). Classical multidimensional scaling (MDS) was run using the 

cmdscale function using the base R package on a distance matrix calculated from the 
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binary presence/absence plasmid data per isolate. Further effects on plasmid content 

were tested using a generalized linear mixed effects model assuming a Poisson error 

distribution using the glmer function from the package lme4 (143). Fixed effects were 

included for sample origin (Asia vs. Europe) and source (human vs. tick isolate) and 

genospecies was fitted as a random effect. Mean estimates and their 95% credible 

intervals were estimated based on 5000 simulations using the sim function from the 

package arm (144). Residual error was calculated according to Nakagawa & Schielzeth 

(2010). 

 

Results 

For phylogenetic and population genetics analyses, we focused on the linear 

chromosome as it is a core genomic compartment present in all Borrelia and is 

generally used to reconstruct the evolutionary history between genospecies (84, 85, 

87).  Borrelia genomes are highly fragmented and can contain over 20 unique linear 

and circular plasmids (82, 85) which can be highly plastic even within a single 

genospecies (84, 86, 87). Borrelia plasmids contain genes related to host and vector 

adaptation and absence of certain plasmid types have been linked to reduced infectivity 

(66, 86, 146–150). Therefore, their presence could influence the evolution of these 

bacteria and should be considered. As each plasmid carries specific, partitioning genes 

(categorized to PFam32, 49, 50, 57/62) and generally exists in single copies per cell 

(82, 85, 135), we were able to approximate plasmid content in each isolate by searching 

for these partitioning genes using BLAST v.2.8.1 (114, 115) (algorithm: blastn) 

In total 142 full chromosome sequences were used for further population 

genetics analysis, of which 136 were assembled de novo from Illumina MiSeq data. 

Plasmid content could only be estimated for the 136 samples for which raw MiSeq data 

was available. For full isolate information see Table S1.  

 

All genospecies display a probable Asian origin 

For both B. afzelii and B. garinii the oldest node separates a clade containing 

only Asian isolates from a clade containing isolates from both continents (Figure 3A,C) 

suggesting that the Asian population is ancestral for both genospecies. Borrelia 

bavariensis displays a deep branching between the two continents, and European 

isolates are characterized by a low divergence and almost clonal expansion as 

previously described (84, 93) (Figure 3B). Our original analysis did not include Russian 
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B. afzelii isolates. A single Russian B. afzelii isolate exists with a full chromosome in 

GenBank, Tom3107 (Accession Number: NZ_CP009212.1). We re-ran the phylogeny 

utilizing all B. afzelii chromosome sequences including Tom3107 and PBi as an 

outgroup to root the tree (see Suppl. Met.). Tom3107 was basal to the monophyletic 

European B. afzelii clade (Figure S1) suggesting a stepwise colonization from far-east 

Asia through Russia into Europe, which was not observed in the other two genospecies. 

 

 
Figure 3. Phylogeny of B. afzelii, B. bavariensis, and B. garinii based on the main chromosome 
corrected for recombining regions (see Suppl. Met.).  The phylogeny was reconstructed with MrBayes v. 
3.2.6 (131, 132) with ploidy set to haploid and a GTR (133) substitution model with gamma distributed 
rate variation. Three independent runs were launched and ran for 5 million generations each at which 
point convergence of parameters was checked with Tracer v. 1.7.1 (134). Consensus trees were built using 
the sumt command from MrBayes using a respective burn-in of 25%. The collapsed tree displays the full 
phylogeny (where monophyletic groups are collapsed if all isolates come from the same geographic 
origin) and then the expanded tree is shown independently for B. afzelii (A), B. bavariensis (B), and B. 
garinii (C). Colors correspond to geographic origin of the isolates: Europe (blue), Japan (red), purple 
(Russia), orange (China). For Japanese tick isolates, the island of origin is shown either as a diamond 
(Hokkaido) or star (Honshu) when known. The scale bar is in substitutions per site.  

 

Higher genetic diversity (π (137)) was found in Asian B. bavariensis and B. 

garinii in comparison to their European counterparts (Table 1). Genetic diversity was 

similar between Asian and European B. afzelii isolates (Table 1). In all cases, the 

Borrelia populations showed negative Tajima`s D (138) values (Table 1) as expected 
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for bacteria due to the influence of population expansion (93, 138). The European 

samples always showed more negative values (Table 2), suggesting a more recent 

expansion into Europe. Borrelia bavariensis displayed the largest difference in 

Tajima’s D and also had the largest absolute divergence value (Dxy (141)) in comparison 

to the other two genospecies hinting that B. bavariensis branching is potentially the 

oldest and that B. afzelii is the youngest with the lowest absolute divergence and 

difference in Tajima’s D (Table 1). 

 

Table 1. Population genetics statistics for full population samples of B. afzelii, B. bavariensis, and B. 
garinii. The Asian populations for B. garinii and B. bavariensis contain all Russian samples. These 
calculations include non-randomly sampled isolates (both tick and human), but values calculated for 
randomly sampled isolates showed similar statistics (see Text S2 & Table S2) 
 

 

Our dataset, as with many others, includes non-randomly sampled isolates 

which could lead to biased estimates of population level statistics (137). As our data set 

includes randomly sampled isolates as well (see Text S1) we were able to test for 

potential sampling biases. Interestingly, we did not observe strong bias in any of these 

statistics (π, FST, DXY, Tajima’s D) when calculated on datasets containing random and 

non-random samples (Text S2). 

 

Each genospecies display unique structuring 

Borrelia bavariensis displayed the strongest geographic structuring between 

the European and Asian samples (FST (137) = 0.744; AMOVAcontinent (139) = 69.7% of 

molecular variance (σ)) followed by B. afzelii (FST = 0.570; AMOVAcontinent = 40.2% of 

σ) (Table 1 & 2). Regions (defined as country or sampling locality if known) within 

continents further explained variation in B. afzelii samples (AMOVARegion = 23.6% of 

σ; Table 2) and structuring was observed between randomly sampled B. afzelii isolates 

Genospecies Population n π Tajima's D FST DXY 

Borrelia afzelii 

  

Asian 20 0.00193 -3.932 

0.570 0.00379 
European 16 0.00217 -4.193 

Borrelia bavariensis  

  

Asian 30 0.00784 -2.616 

0.744 0.0141 
European 19 0.000170 -4.138 

Borrelia garinii 

 

Asian 25 0.00900 -2.302 
0.130 0.00694 

European 32 0.00619 -3.353 
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from the islands of Hokkaido (ASA) and Honshu (NAG) (FST = 0.379; Table S2). 

Honshu and Hokkaido B. afzelii isolates do form two reciprocally monophyletic clades, 

with the notable exception of one Hokkaido isolate belonging to the Honshu clade 

(Figure 3A) suggesting some level of migration. Of interest however, this trend was not 

observed for B. bavariensis (AMOVARegion = 0.99% of σ; Table 2) and, indeed, 

randomly sampled B. bavariensis isolates from the islands of Hokkaido and Honshu 

did not show geographic structuring (FST = 0.057; Table S2) even though both B. 

bavariensis and B. afzelii are rodent adapted (39, 43, 123). Furthermore, Asian B. 

bavariensis displayed a low divergence clade containing samples from Japan 

(including isolates from distinct islands), China, and Russia (Figure 3B) suggestive of 

relatively high migration between Asian regions. Less geographic structuring by 

continent was observed in B. garinii (FST = 0.13; AMOVAContinent = 8.7% of σ; Table 1 & 

2) as expected as B. garinii displayed little geographic structuring throughout the 

phylogeny with mixing of samples from different geographic origins (Figure 3C). 

 

Table 2. Hierarchical AMOVA(139) of B. afzelii, B. bavariensis, and B. afzelii populations coming from 
Europe and Asia describing the percentage of genetic variation (σ) attributed to each hierarchical level. 
Regions within continent (Europe, Asia) are defined as country or sampling locality if known. The Asian 
populations for B. garinii and B. bavariensis contain all Russian samples. 

 

Genospecies Level σ (%) 

Borrelia afzelii Between continents 40.223 

Regions within continent 23.612 

Within samples 36.165 

Borrelia bavariensis Between continents 69.654 

Regions within continent 0.988 

Within samples 29.358 

Borrelia garinii Between continents 8.749 

Regions within continent 9.272 

Within samples 81.979 

 

Plasmid content is generally homogenous between genospecies 

Borrelia afzelii and B. bavariensis both differed significantly in plasmid 

numbers between Europe and Asia, with European B. afzelii (two-sided unpaired t-

test, p = 0.03) and Asian B. bavariensis (p < 0.001) having significantly more plasmids 

in comparison to the other geographic population (Figure 4A). Borrelia garinii isolates 
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did not differ in overall plasmid number between Asia and Europe (p = 0.08) but had 

significantly fewer plasmids in comparison to both B. afzelii populations (Asian, p = 

0.003; European, p < 0.001) and to Asian B. bavariensis (p < 0.001) (Figure 4A). 

When we look at the absolute plasmid number for a population, defined as the number 

of unique plasmid types present in at least one isolate from the population, only 

European B. bavariensis showed a lower absolute plasmid number (black circle; 

Figure 4A) in comparison to the other species such as B. garinii. Borrelia garinii also 

had on average lower plasmid numbers per isolate (comparable to European B. 

bavariensis), but the absolute number of plasmid types present in the population (i.e. 

diversity of plasmid types) is comparable to B. afzelii and Asian B. bavariensis (Figure 

4A). 

Based on the plasmid presence/absence matrix for all samples (n = 136), we 

further ran a multi-dimensional scaling (MDS) analysis to test if plasmid content 

corresponds to factors such as continent (i.e. vector) or genospecies. Plasmid content 

appears more homogenous between Asian isolates (Figure 4B) versus European 

isolates, which display clusters based on genospecies (Figure 4B). This could result 

from European isolates representing a subset of available plasmid combinations which 

are all present in the Asian populations. Even so, no plasmid types were more 

frequently associated with factors such as genospecies or geography (Figure S2). It is 

important however to note, as Borrelia can lose plasmids due to long-term culturing 

(83). Many human isolates (Table S1) have been potentially kept in culture longer 

suggesting that the current plasmid results could be biased even though sequencing 

focused on low passage isolates (<10 passages). Tick isolates did indeed have on 

average higher plasmid content (Table S3; mean: 1.19; 95% CI: 0.16, 2.22) suggesting 

that this bias may be present for our human isolates. 
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Figure 4. Analysis of plasmid content for sequenced strains estimated by the unique number of plasmid 
partitioning genes (PFam32, 49, 50, and 57.62) present in the assembled contigs. A plasmid was 
considered present if at least one of the partitioning genes was present. A) Boxplot of all plasmids 
present in isolates from Asia or Europe. The black circles represent the absolute number of unique 
plasmid types found in the geographic population defined as the plasmid type being observed in at least 
one isolate. P-values refer to an unpaired, two-sided t-test run on plasmid number between the 
European and Asian populations of each species individually. B) MDS analysis on plasmid 
presence/absence matrix for all samples. This figure shows the same MDS twice with emphasis on Asia 
(left) and Europe (right) by outlining isolates from Asia or Europe in a dark grey. Shapes correspond to 
genospecies: B. afzelii (square), B. bavariensis (circle), B. garinii (triangle). 

 

Discussion 

The expansion of vector-borne pathogens is inherently linked to their ability to 

infect and transmit through reservoir host and vector populations. This fact can be 

observed as the current major etiological agents of human Lyme borreliosis (LB) in 

Eurasia (B. afzelii, B. bavariensis, and B. garinii) are vectored mainly by two different 

tick species: I. persulcatus in Asia, and I. ricinus in Europe. This means that each of 

these genospecies has, at least once during its evolution, successfully invaded a novel 
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tick species and consequently a local population of vertebrate hosts. Yet how this 

invasion occurred and in which order is currently not known due to a lack of data. Here 

we report a reconstructed phylogeny of 142 Eurasian isolates belonging to the 

genospecies B. afzelii, B. bavariensis, and B. garinii. All three genospecies appear to 

share an Asian origin, suggesting a repeated expansion into Europe in relation to 

successfully invading a novel tick vector, I. ricinus. However, all three genospecies 

display unique sub-structuring which could be linked to ecological variability in their 

specific reservoir hosts. The results further show that the observed bottleneck in 

European B. bavariensis isolates argued to be in connection to invading I. ricinus (39, 

84, 93), is not shared by the other two genospecies. This all suggests that Eurasian 

Lyme borreliosis agents were all capable of geographic expansion through vector shifts 

but differ in their capacity as emergent pathogens in relation to potential, future 

expansions into novel transmission cycles. 

Borrelia bavariensis was already argued to have an Asian origin due to the deep 

branching observed between European and Asian isolates and that the majority of 

diversity exists in the Asian population (39, 84, 93). This finding is supported by the 

expanded analysis reported here. One point that warrants consideration is that all 

European B. bavariensis isolates come from humans and that the observed pattern in 

diversity could potentially be an artifact of sampling only a low diversity sub-set of 

European B. bavariensis better adapted to human infection. As our study includes 

European human isolates for two additional genospecies, we were able to disprove that 

this pattern is due to sampling bias through showing that human B. garinii or B. afzelii 

isolates do not display a similar reduction in genetic diversity (Text S2). In addition to 

this, a search of the Borrelia MLST (multiple locus sequencing typing) database (151) 

shows eight B. bavariensis samples coming from I. ricinus DNA which do not differ 

from patient isolates on the eight MLST loci, which can roughly proxy the full 

chromosome diversity (Figure S3). These data support that the observed pattern in B. 

bavariensis is genuine. Compared to B. bavariensis, no research has focused on the 

geographic origin of B. afzelii or B. garinii. Previous work raised the hypothesis of an 

Asian origin for B. afzelii but based on very few samples (152), whereas for B. garinii 

only partial structuring between continents was previously reported (91). Here though, 

we show that both B. afzelii and B. garinii are characterized by a basal node which 

splits a fully Asian clade from a clade of mixed geographic origin, suggesting for the 

first time that all three of these pathogenic genospecies originate in Asia and that 
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through successful colonization of I. ricinus were able to expand into Europe. MDS 

clustering based on plasmid profiles further supported this by suggesting that the 

plasmid profiles present in Europe are a subset of available profiles present in Asia 

(Figure 4B). This could further show that the European population stems from the 

Asian population. Borrelia afzelii was the only genospecies which showed a step-wise 

colonization pattern from far-east Asia through Russia and into Europe (Figure S1) 

which has been observed in other tick-borne pathogens (153) suggesting differences in 

migratory patterns between species. We further hypothesized about which genospecies 

colonized Europe first through calculating absolute divergence (DXY) and Tajima’s D 

(138). Borrelia bavariensis shows the highest DXY suggesting that this colonization is 

the oldest of the three with B. afzelii then the youngest with the lowest value of DXY. 

Additionally, as expected from bacterial populations (93, 138), Tajima’s D values are 

consistent with population expansion (negative Tajima’s D) but the European 

expansion for each species is younger (more negative values). The magnitude of 

difference in Tajima’s D mirrors that of DXY with B. bavariensis showing the lowest 

difference in Tajima’s D (less recent) and B. afzelii showing the highest difference 

(most recent). 

It is apparent from our analysis that, after the colonization of Europe, each 

genospecies experienced variable levels of gene flow which we argue can be related 

back to their host associations. The fact that B. garinii showed little to no geographic 

structuring is in accordance with previous results (45, 91, 98). Borrelia garinii utilizes 

birds as reservoir hosts and exists in overlapping terrestrial and marine transmission 

cycles, where it is vectored by different tick species (terrestrial: I. ricinus and I. 

persulcatus; marine: I. uriae) (45, 99, 154, 155) (Figure 2). The lack of geographic 

structure observed in B. garinii is thought to be a result of this, as birds could aid in 

the migration of this genospecies (45, 91, 98). This would explain why we cannot 

differentiate between distinct geographic locations. This pattern for B. garinii was 

already observed on a European level (91), but we are now able to show that it occurs 

over the whole distribution range of the genospecies. Borrelia afzelii and B. 

bavariensis displayed structured populations in our analysis. Within-continent 

structuring for European B. afzelii was previously attributed to utilizing rodents as 

reservoir hosts (90, 156), which we now propose to also occur in Asian B. afzelii 

populations. Even though our analysis does show some level of migration is possible 

along the geographic scale of this project as one Hokkaido isolate does cluster within 
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the Honshu clade (Figure 3A). As B. bavariensis also associates with rodents (94, 157), 

we would expect to also observe geographic structuring. As previously reported, there 

does not appear to be gene flow between the European and Asian populations 

suggesting genetic isolation (high FST and DXY; Table 1), but within Asia B. bavariensis 

is not structured as expected for a rodent adapted genospecies (94, 157). Our analysis 

builds upon previous work which observed migration between Asian regions (i.e. 

Japan, China, Russia) (84), but by further adding randomly sampled isolates from 

distinct Japanese islands: Honshu and Hokkaido. Unlike B. afzelii, where we observe 

lower migration between the islands (FST=0.379; Table S2), B. bavariensis isolates do 

not seem to have the same barrier to migration (FST=0.057; Table S2). This brings 

forward the question, what mechanism(s) could result in this unexpected migration of 

Asian B. bavariensis isolates? One suggestion could be that Asian B. bavariensis utilize 

secondary hosts besides rodents which increase effective dispersal rate. Recently, B. 

bavariensis DNA was found far afield of its Eurasian range in seabird associated ticks 

(I. uriae) in Canada (158). As there are similarities in the structuring of Asian B. 

bavariensis to B. garinii from our results (low FST, high π, AMOVA with low σ due to 

geography; Table 1 & 2), it could be that in rare cases B. bavariensis may successfully 

transmit through avian hosts although rodent adapted. This fact had been previously 

observed where rodent-associated genospecies (i.e. B. afzelii) appeared to transmit 

through avian hosts in Europe (159). Although the extent of transmission appears to 

be different between B. bavariensis and B. afzelii based on our analyses. Until 2009 

(94), B. bavariensis was considered a sub-type of B. garinii which utilized rodents as 

reservoir hosts (152, 160). This association with rodents was experimentally shown for 

two isolates (PBi, European; NT29, Asian) where they were exposed to rodent or avian 

immune sera and were susceptible to avian sera only (47, 48). In this case, as in many 

studies, immune serum resistance is taken as a proxy of reservoir host associations (47, 

48).  This result was used to support that B. bavariensis is not able to transmit through 

avian hosts. As the Asian population is quite diverse (84, 93) it is possible that a single 

isolate will not be representative for the entire population. Previous work did indeed 

suggest that similar genotypes of B. bavariensis (described as rodent adapted B. 

garinii) whichwere isolated from infected mice in Japan shared unique sequence 

components to a bird isolated strain from the Korean Peninsula, suggesting that B. 

bavariensis could spread from mainland Asia to Japan through migratory birds (161), 

as we are proposing. Additionally, a study based on  restriction fragment length 
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polymorphism (RFLP) analysis described a novel RFLP type (type IVa) (162) which is 

now known to belong to B. bavariensis (Dr. Minoru Nakao & Dr. Hiroki Kawabata, 

personal communication). The isolates belonging to this RFLP type were isolated from 

rodents, humans,  but also birds (162). Whole genome sequencing of these isolates 

would allow us to confirm if these bird isolates truly belong to B. bavariensis. 

The results presented here suggest some answers to how LB spirochetes (B. 

afzelii, B. bavariensis, and B. garinii) expanded across Eurasia, through showing that 

all currently known pathogenic Eurasian Borrelia genospecies expanded into Europe 

from an ancestral Asian population through successful colonizing a novel tick vector 

(I. ricinus). Recently, B. garinii was found in I. uriae ticks in seabird colonies along 

the Atlantic coast of North America (45, 98, 163). As B. garinii was shown to be rarely 

transmitted through the North American tick vector (I. scapularis) in lab based studies 

(122) and here we show that B. garinii expanded into Europe through colonization of 

I. ricinus, potentially another expansion into the North American transmission cycle is 

possible if other requirements, such as reservoir host availability, are met. Outside of 

this, we further observed that post-colonization gene flow appears to relate to host 

association and were able to make further testable hypotheses regarding the ecology of 

the populations. Our analysis provides novel information to the spread of LB-causing 

spirochetes across Eurasia with applications to how adaptation to novel vector species 

can facilitate geographic expansion and thus potentially aid in the spread of emergent 

human pathogens. 
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Out of Asia? Vector switches leading to the expansion of Eurasian Lyme 

disease bacteria 

 

Robert E. Rollins, Kozue Sato, Minoru Nakao, Mohammed T. Tawfeeq, Fernanda 

Herrera-Mesías, Ricardo J. Pereira, Sergey Kovalev, Gabriele Margos, Volker 

Fingerle, Hiroki Kawabata, and Noémie S. Becker 

 

— Supplementary Methods — 

 

Generating high quality Borrelia garinii reference genomes 

 As previously described for B. bavariensis (PBi, A104S, and NT24)(32, 84), 

Pacific Bioscience SMRT sequencing (hereafter PacBio) was performed using 10 µg of 

DNA from the B. garinii isolates PHei, PBr, and NT31. DNA was extracted using a 

Maxwell® 16 LED DNA kit (Promega, Germany). Libraries were prepared using Pacific 

Biosciences 20 kb library preparation protocol. Size selection of the final library was 

performed using Blue-Pippin with a 10 kb cut-off. The library was sequenced on a 

Pacific Biosciences RS II instrument using P6-C4 chemistry with 360 min movie time. 

Additionally, these samples were sequenced with Illumina MiSeq short-read 

sequencing as described by Methods in the main text. 

 PacBio reads were assembled using HGAP v3 (Pacific Biosciences, SMRT 

Analysis Software v2.3.0). Chromosome ends were trimmed to remove the pseudo-

telomere regions present in B. burgdorferi s. l. linear replicons(164). Assembled 

Illumina contigs (see Methods) for the same isolates were then mapped to the PacBio 

contigs NUCmer v 3.23 from the package MUMmer(128, 129). As PacBio sequencing 

technology is prone to sequencing errors like point mutations and short indels(83, 

165), we combined the data from PacBio and Illumina using the following rules: for 

each indel of length 5 bp or less keep the Illumina version, for longer indels keep the 

PacBio version. For point mutations, keep the Illumina version if all contigs mapping 

on this position agree, else keep PacBio version. This dual approach (long and short-

read sequencing) has been shown to be the most effective to produce high quality 

reference genomes for B. burgdorferi s. l. samples(83). The final chromosome 

sequences were then utilized along with the B. bavariensis PacBio(32, 84) and B. 

afzelii chromosomes from GenBank (PKo, K78 and ACA-1) as references in the 
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mapping and assembly of final chromosomes for isolates with only Illumina MiSeq 

data. 

 

Mapping analysis to produce final chromosome sequences 

 Assembled SPAdes contigs were mapped using NUCmer v 3.23 from the 

package MUMmer(128, 129) to each reference chromosome and the closest reference 

(highest percent ID with the full chromosome mapped) was chosen. Each mapping file 

was then curated to remove contigs overlapping contigs with higher identity. Single 

nucleotide polymorphisms (SNPs) and indels for the curated mapping files were called 

using the program show-snps from the package MUMmer(128, 129). Final 

chromosome files were then created according to the following rules outlined in Becker 

et al. (2020): for SNPs keep the Illumina allele if all contigs mapping at this position 

agree, else keep the reference allele if at least one contig also has it, else replace the 

base by “N”; keep insertions and deletions if and only if all contigs mapping at this 

position agree, else keep the reference version. These final files were then used in all 

further analysis. 

 

Correcting chromosome alignments for recombining regions 

 The four-gamete condition introduced by Hudson (1985) detects recombining 

sites under an infinite-sites model, under the assumption when considering two 

polymorphic sites in a population that mutation alone can only produce three allele 

combinations. If the fourth combination is observed, the four-gamete condition is 

violated and either recombination or back mutation must have occurred. As our data 

does not fit an infinite sites model, these signals can be ambiguous and should only be 

considered as signals of recombination if they cannot be explained through a few back 

mutations or double hits.  

We applied the four-gamete condition to our full chromosome alignment as 

described in Gatzmann et al. (2015). The ordered list of chromosome segregating sites 

was divided into blocks containing the same number of sites (n = 12). Each pair of SNPs 

in each block was then assessed if the four-gamete condition was violated or not and 

given a score of 1 (violated) or 0 (not violated). The within block average and standard 

deviation was then calculated and averaged across all blocks and used as a measure of 

background violation due to double hits or back mutations. To single out SNP blocks 

which were most likely under recombination, we then calculated all pairwise 
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comparisons between blocks and recorded the violation score. This score was then 

averaged over all comparisons for a specific block. Blocks were considered 

recombinant if: 

𝑥𝑖 ≥ µ𝑤𝑖𝑡ℎ𝑖𝑛 + 2𝑠𝑑𝑤𝑖𝑡ℎ𝑖𝑛 

And non-recombinant if: 

𝑥𝑖 < µ𝑤𝑖𝑡ℎ𝑖𝑛 + 2𝑠𝑑𝑤𝑖𝑡ℎ𝑖𝑛 

Where 𝑥𝑖 is the average violation of block i over all comparisons, µ𝑤𝑖𝑡ℎ𝑖𝑛 is the average 

within-block violation score, and  𝑠𝑑𝑤𝑖𝑡ℎ𝑖𝑛 is the standard deviation of within-block 

violation score. Recombinant blocks were removed from the final alignments prior to 

phylogenetic reconstruction. 

 

Phylogeny of Borrelia afzelii including Russian isolate Tom3107 

 Our original data set did not include any Borrelia afzelii isolates coming from 

Russia. As this could influence our conclusions regarding the evolution of the 

genospecies, we re-ran the B. afzelii phylogeny including all B. afzelii chromosome 

sequences and adding a publicly available Russian B. afzelii chromosome sequence 

from GenBank (Tom3107; Accession number: NZ_CP009212.1). The chromosome 

sequence from B. bavariensis (isolate: PBi) was also included as an outgroup to root 

the tree. All chromosomes were aligned using MAFFT v. 7.407(105, 119). Recombinant 

regions were identified through searching for areas which violated the four-gamete 

condition(130) (as described in Gatzmann et al. (2015); see Suppl. Met.) and were 

removed from the final alignment. Phylogeny reconstruction was done in MrBayes v. 

3.2.6(131, 132) with ploidy set to haploid and a GTR(133) substitution model with 

gamma distributed rate variation. Three independent runs were launched and ran for 

10 million generations at which point convergence of parameters was checked with 

Tracer v. 1.7.1(134). Consensus trees were built using the sumt command from 

MrBayes using a respective burn-in of 25%. Convergence to a single topology in all 

three independent runs was checked manually in FigTree v. 1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/) which was also used to plot the tree shown 

in Figure S3. 

 

Identification of plasmid partitioning genes for proxy of plasmid content 

We used BLAST v. 2.8.1 (algorithm blastn) (114, 115) to identify the presence of 

plasmid partitioning genes of the PFam32, 49, 50 and 57/62 families. In a first BLAST 
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round we used as queries the PFam32 genes sequences of B. burgdorferi s. s. strains 

B31, BOL26, JD1 and 118a and B. afzelii strain PKo to cover the whole plasmid diversity 

and the PFam49, 50 and 57/62 of B. burgdorferi s. s. strain MM1. We performed the 

search on the assembled SPAdes Illumina contigs of each isolate. We then reiterated 

the BLAST search using as queries all the hits found in the first search. We then 

removed all hits with percent identity lower than 80% and that were shorter than half 

the length of the references (reference lengths were around 750 bp for PFam32, 550 bp 

for PFam49 and PFam50 and 900 to 1100 bp for PFam57–62) and that had no open 

reading frame over at least half of the length of the reference. Plasmids were considered 

present if at least one of the partitioning genes was present. In this we did not account 

for potential plasmid fusions(83, 84), so each plasmid was individually counted as 

present or absent, so the actual number could be lower as seen in other work(84). 

 

— Supplementary Texts — 

 

Text S1: Isolation of novel Borrelia tick isolates and choice for inclusion in 

genomic study 

 With the advent of sequencing technologies (both long and short read) and the 

prices of obtaining whole genomes decreasing(166, 167), there has been a surge of 

genomic studies looking into bacteria, including Borrelia burgdorferi sensu lato 

(Bbsl)(83–85, 87, 168).  

 With these new genomes, researchers have been able to apply population 

genetics methods to better understand the overall evolution of Bbsl(168), but many 

studies include non-randomly sampled isolates which can violate basic assumptions of 

many population genetic statistics and lead to inherent biases(137). Therefore, a goal 

of this study was to produce randomly sampled Bbsl isolates coming from three 

genospecies: B. garinii, B. bavariensis, and B. afzelii. For this, isolates were gathered 

from the same geographic location and if possible isolated from the same pool of 

collected ticks to reduce biasing factors. 

 

Tick sampling and novel Borrelia isolation 

 Ticks were collected by flagging, where a 1×1 m flag was dragged along the 

understory foliage for 10m before being turned over and assessed for attached ticks. In 

Germany, all adults and nymphs were collected whereas in Japan only adult ticks were 
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collected. All collected ticks were stored in vials containing grass to maintain humidity. 

Japanese ticks were collected from two sampling sites, one on the northern Japanese 

island of Hokkaido (near the city of Asahikawa) and the other on the southern Japanese 

island of Honshu (near the city Matsumoto). In both cases, all ticks later used were 

collected in a single sampling event during May 2019 and represent a random sampling 

of distinct Japanese tick populations. German ticks were collected in seven plots 

(described in  Rollins et al. 2021) during the Spring and Summer of 2018-2019. For all 

information on sampling sites, see Supplemental Table 4. Prior to processing, ticks 

were morphologically identified to species level using published taxonomic keys(18, 

170). Only Ixodes ricinus (Europe) or Ixodes persulcatus (Japan) ticks were used in 

further analyses. 

 Japanese tick samples were washed in batches of 5-10 ticks in H2O2 (4%), 80% 

ethanol, and distilled water for 5 minutes each. After washing, legs and mouth parts 

were removed with a sterile scalpel. Using a fresh, sterile scalpel, ticks were bifurcated 

along the longitudinal axis. One half was placed in BSK-H media(126) containing 

antibiotics (rifampicin, 32 µg/mL; phosphomycin, 12.8 µg/mL; amphotericin B, 10 

µg/mL) the other half was used for direct DNA extraction using the DNeasy Blood & 

Tissue kit (Qiagen, Germany) according to standard procedure for a separate project. 

German tick samples were processed similarly to the Japanese samples but instead 

were washed in distilled water, absolute ethanol, and sterile 1×PBS. The whole tick was 

homogenized after removal of mouth parts and legs in 50µL of PBS which was then 

transferred to fresh MKP media(125) containing antibiotics (phosphomycin 28.6 

µg/mL; sulfamethoxazole 14.3 µg/mL; amikacin 4.3 µg/mL). All cultures were 

incubated at 37°C with 5% CO2. 

  All cultures were checked for Borrelia bacteria using dark field microscopy and 

Borrelia positive samples were cultured according to standard procedure (125, 126) 

until the cultures reached a density of at least 108 cells per mL at which point whole 

genomic DNA was extracted. Genomic DNA from all European isolates was extracted 

using a Maxwell® 16 LED DNA kit (Promega, Germany) and DNA from all Japanese 

isolates was extracted using the Wizard® Genomic DNA Purification Kit (Promega, 

Germany).  

 Aliquots of all Japanese and Germany isolates were stored at -80°C at either the 

National Institute for Infectious Diseases in Tokyo (all Japanese isolates) or the 
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German National Reference Center for Borrelia at the Bavarian Health and Food 

Safety Authority (all German isolates). 

 

Genospecies determination of novel isolates 

To determine which Borrelia genospecies had been isolated, genomic DNA was 

subjected to a semi-nested PCR amplifying the housekeeping gene recG using a 

previously described protocol (151). Either B. kurtenbachii (25015) or B. mayonii 

(DSM 102811.MN14-1420) was used as a positive control.  PCR products were 

sequenced using Sanger sequencing at the Sequencing Service of Ludwig-Maximilians 

University and were prepared according to the requirements of the sequencing center 

(http://www.gi.bio.lmu.de/sequencing/help/protocol). Chromatograms for recG 

sequences were manually checked for quality using FinchTV v. 1.4.0 (Geospiza, Inc.; 

Seattle, WA, USA; http://www.geospiza.com) and recG sequences containing 

ambiguities were marked as mixed infections. Non-mixed sequences were then aligned 

to the recG reference from B. burdorferi sensu stricto (s.s.) strain B31 (GenBank: 

AE000783.1) and trimmed. Trimmed sequences were blasted to the PubMLST 

database for Borrelia (https://pubmlst.org/borrelia) for genospecies determination.  

 

Additional Russian isolates 

Additional ticks were collected in Russia by flagging in the regions of Tomsk 

(2013) and Yekaterinburg (2011 & 2019). Ticks were identified to species level 

according to published taxonomic keys(18, 170) and washed for 5 min H2O2 (4%), 5 

min 80% ethanol, and 5 min distilled water. After washing, the tick was homogenized 

and placed in BSK-H media(126). Cultures were checked for Borrelia using dark field 

microscopy. 

In total 11 B. garinii isolates were successfully isolated from Tomsk in 2013 

(n=6) and Yekaterinburg in 2011 (n=4) and 2019 (n=1). Genomic DNA was extracted 

using the Wizard® Genomic DNA Purification Kit (Promega, Germany). All samples 

were then included in sequencing for the project.   

 

Isolation success in Japan and Germany 

 In total, 393 Japanese I. persulcatus (all adults) and 1252 I. ricinus (280 adults, 

972 nymphs) ticks were collected and processed during this study. The sampling sites 

in Japan had the highest positive rates with 38.33% (ASA) and 50.92% (NAG) of all 

http://www.gi.bio.lmu.de/sequencing/help/protocol
http://www.geospiza.com/
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processed ticks (Supplemental Table 5). In Germany, positive rates were normally 

much lower ranging from 0-10.71% positive (Supplemental Table 5). In fact, isolates 

were only obtained from three of the seven sampled plots: OBE, STA, and HER (for 

location definition see Supplemental Table 4).  

Not all positive samples produced isolates however as some were lost due to 

contamination or the culture crashing. In the end, 95 B. afzelii, 49 B. bavariensis, 11 

B. garinii, and four mixed tick isolates were obtained from the two locations in Japan 

(Supplemental Table 6). In Germany, 7 B. burgdorferi sensu stricto, 9 B. garinii, 2 B. 

afzelii, and one mixed tick isolate were obtained.  

 

Criteria for inclusion in genomic study 

 Our study aimed to study the evolution of Eurasian distributed Borrelia species, 

so we limited our sequencing to the species B. afzelii, B. bavariensis, and B. garinii. 

The major criteria for inclusion in the genomic study were DNA concentration over 

0.2ng/µL (minimum amount needed for producing MiSeq library with a Nextera XT 

preparation kit), a high purity (260/280 > 1.80), and the recG sequencing did not 

display any ambiguous base pairs (signs of mixed isolate). After filtering for these 

criteria, 20 isolates were chosen from the available B. afzelii and B. bavariensis isolates 

for sequencing. For B. afzelii this corresponded to the four available Hokkaido (ASA) 

samples and 16 randomly chosen from the available Honshu (NAG) samples. For B. 

bavariensis, 10 isolates each were randomly chosen from ASA and NAG. Only 11 B. 

garinii isolates were available (all from Hokkaido) and all were included in sequencing. 

 As for German samples, all available B. garinii (n=7) and B. afzelii (n=2) were 

included in the study. Seven of these samples arise from the same geographic plot 

(STA) isolated in the years 2018 and 2019. As the current isolate collection of B. 

bavariensis (n=19) are all isolated  from humans and this could potentially bias the 

results of our analyses, tick collection in 2018-2019 focused on plots where ticks 

positive for B. bavariensis DNA were previously reported(169, 171). Even so, we were 

not successful in isolating B. bavariensis from tick samples and further work is needed 

to determine what method should be used to isolate this species in Europe.  

 

Filtering low quality assemblies and mixed strains 

 All German samples sequenced produced usable assemblies and were therefore 

included in all further analyses. In the end, 20/20 Japanese B. afzelii, 10/11 Japanese 
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B. garinii, and 13/20 Japanese B. bavariensis isolates produced usable assemblies. 

These 52 assemblies were then used for the main study. All additional Russia B. garinii 

isolates produced usable assemblies. 

The single B. garinii had low DNA concentration and purity, so it is not 

unexpected that it did not produce usable sequence data. The seven B. bavariensis 

samples that did not produce usable assemblies are a bit more complex. Three samples 

produced low quality assemblies, resulting in an inability to reconstruct the full 

chromosome. The other four samples produced high quality assemblies but appeared 

to be a mixture of two Borrelia species (in all cases a mix of B. bavariensis and B. 

afzelii). As both of these species utilize rodents as reservoir hosts (39, 43, 101), it is not 

surprising to find them together in a mixed infection. All four of these samples, 

however, did not show signs of mixed infection on the recG sequences. As Borrelia 

genomes pose challenges to assembly when the DNA samples are pure (83, 84) let 

alone when they are mixed with a highly similar species, these four samples were 

removed from the analysis to avoid any potential biases due to mis-assembly. 

 

Text S2: Potential biases to population genetics statistics due to non-

random sampling 

 Non-random sampling in population genetic studies can lead to biased 

estimates of population level statistics(137). Random sampling design has been 

considered in some studies on Borrelia genomics(168), with also many studies biased 

towards human isolates instead of tick isolates. Theoretically in the case of human 

isolates, there could be a selective bottleneck of which isolates can infect humans 

biasing the samples obtained although some results suggest this bias does not 

occur(172). 

The design of our study allows us to test for such biases as we report both 

random and non-random samples. For B. garinii, this extends to being able to compare 

a random German (European) and Japanese (Asian) sample. Here we see that 

nucleotide diversity (π)(137) does not differ between randomly (πEurope = 0.006333; 

πAsia = 0.009499; Supplementary Table 2) and non-randomly (πEurope = 0.006185; πAsia 

= 0.009003; Table 2) sampled B. garinii isolates. A similar trend for FST(137) of B. 

garinii populations was observed for random (FST = 0.1003; Supplemental Table 2) 

and non-random (FST = 0.1318; Table 1) samples. Borrelia afzelii and B. bavariensis 

samples however show us that there can be local level variation in population level 
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statistics (Supplemental Table 2) highlighting the importance of samples coming from 

known regions to understand micro-scale evolutionary forces acting on these bacteria. 

A further finding is the low diversity of European B. bavariensis samples, of 

which all are human isolates. Therefore, it could be the case that low diversity is a 

hallmark of European human samples, potentially suggesting a selective bottleneck to 

infect humans. As this study additionally includes European human isolates of B. 

garinii (n = 21) and B. afzelii (n = 11), this allowed us to see if this reduced diversity is 

unique to B. bavariensis. Both B. garinii (πHuman = 0.005956) and B. afzelii (πHuman = 

0.002107) human isolates showed slightly lower nucleotide diversity in comparison to 

all isolates (Table 1), but they did not differ by an order of magnitude as observed with 

B. bavariensis (Supplemental Table 2; Table 1). Furthermore, in the Borrelia 

MLST(151) database (https://pubmlst.org/borrelia/) there are eight samples 

identified in ticks (I. ricinus) that have the same MLST sequence type as human 

isolates. From our analysis we can show that MLST sequences capture the nucleotide 

diversity calculated from the full chromosome sequence (Figure S2). These results 

support that the reduced diversity of European B. bavariensis indeed is a unique 

phenomenon and not a result of human samples biasing the result.  

Taken altogether, the results here show that there could be slight biases to basic 

population genetic statistics but nothing drastic that could modify conclusions. Even 

so, we highlight the fact that within-region, random sampling allows for researchers to 

potentially understand local level evolution of Borrelia bacteria and showing that there 

are small scale influences dependent on geographic origin. 
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— Supplementary Tables and Figures — 

 

Table S1.  Meta-data for all isolates sequenced and utilized in the study. Samples marked with GB were 

downloaded from GenBank and included in the analysis, under the accession numbers: CP007564.1 

(SZ), CP003866.1 (NMJW1), CP003151.1 (BgVir), CP002933.1 (K78), CP009058.1 (PKo), 

NZ_ABCU00000000.2 (ACA-1). 

 

Isolate Species Year Continent Region Source Information 

FujiP2 B. bavariensis - Asia Japan (Shizuoka) Tick I. persulcatus 

Hiratsuka B. bavariensis 2008 Asia Japan (Tick bite in Niigata) Human erythrema migrans 

J14 B. bavariensis 1995 Asia Japan (Hokkaido) Human erythrema migrans 

J15 B. bavariensis 1995 Asia Japan (Hokkaido) Human erythrema migrans 

J20T B. bavariensis 1996 Asia Japan (Hokkaido) Human erythrema migrans 

Konnai17 B. bavariensis 2011 Asia Japan (Hokkaido) Tick I. persulcatus 

N346 B. bavariensis - Asia Japan (Hokkaido) Tick I. persulcatus 

NT24 B. bavariensis - Asia Japan (Nagano) Tick I. persulcatus 

JAASAAF1014 B. bavariensis 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAF1016 B. bavariensis 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAF1029 B. bavariensis 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1091 B. bavariensis 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1101 B. bavariensis 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1114 B. bavariensis 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JANAGAM1271 B. bavariensis 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1274 B. bavariensis 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1305 B. bavariensis 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1327 B. bavariensis 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1352 B. bavariensis 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1353 B. bavariensis 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1369 B. bavariensis 2019 Asia Japan (Nagano) Tick I. persulcatus 

SZ (GB) B. bavariensis - Asia China Tick Dermacentor spp. 

NMJW1 (GB) B. bavariensis - Asia China Tick I. persulcatus 

BgVir (GB) B. bavariensis - Asia Russia Tick I. persulcatus 

Arh913 B. bavariensis 2012 Asia Russia (Kotlas) Tick I. persulcatus 

Arh923 B. bavariensis 2012 Asia Russia (Kotlas) Tick I. persulcatus 

Prm7019 B. bavariensis 2012 Asia Russia (Kungur) Tick I. persulcatus 

Prm7564 B. bavariensis 2011 Asia Russia (Cherdyn) Tick I. persulcatus 

Prm7569 B. bavariensis 2011 Asia Russia (Cherdyn) Tick I. persulcatus 

Prm965 B. bavariensis 2013 Asia Russia (Kudymkar) Tick I. persulcatus 

A104S B. bavariensis 1996 Europe Netherlands Human - 

A91S B. bavariensis 1996 Europe Netherlands Human - 

DK6 B. bavariensis 1990 Europe Denmark Human - 

Lubl25 B. bavariensis 1995 Europe Slovenia Human - 
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61VB2 B. bavariensis - Europe Germany Human Skin condition 

PBaeI B. bavariensis 1990 Europe Germany Human skin condition 

PBaeII B. bavariensis 1990 Europe Germany Human neuroborreliosis 

PBar B. bavariensis 1988 Europe Germany Human skin condition 

PBi B. bavariensis <1993 Europe Germany Human neuroborreliosis 

PBN B. bavariensis 1999 Europe Germany Human neuroborreliosis 

PHerl B. bavariensis 1989 Europe Germany Human skin condition 

PLad B. bavariensis 2000 Europe Germany Human skin condition 

PNeb B. bavariensis 1988 Europe Germany Human skin condition 

PNi B. bavariensis 2000 Europe Germany Human lymphoma 

PRab B. bavariensis 1994 Europe Austria Human Lyme arthritis 

PRof B. bavariensis 1989 Europe Germany Human skin condition 

PTrob B. bavariensis 1988 Europe Slovenia Human skin condition 

PWin B. bavariensis 1987 Europe Germany Human skin condition 

PZwi B. bavariensis 1994 Europe Germany Human skin condition 

JAASAAF1012 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAF1040 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAF1041 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1058 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1060 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1063 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1086 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1087 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1097 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1103 B. garinii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

HT59 B. garinii - Asia Japan (Hokkaido) Tick I. persulcatus 

J21 B. garinii 1996 Asia Japan (Hokkaido) Human erthyma migrans 

NT31 B. garinii - Asia Japan (Nagano) Tick I. persulcatus 

Konnai20 B. garinii - Asia Japan (Hokkaido) Tick I. persulcatus 

E-Burg-606 B. garinii 2019 Asia Russia (Yekaterinburg) Tick I. persulcatus 

Ekb701-11 B. garinii 2011 Asia Russia (Yekaterinburg) Tick I. persulcatus 

Ekb704-11 B. garinii 2011 Asia Russia (Yekaterinburg) Tick I. persulcatus 

Ekb706-11 B. garinii 2011 Asia Russia (Yekaterinburg) Tick I. persulcatus 

Ekb712-11 B. garinii 2011 Asia Russia (Yekaterinburg) Tick I. persulcatus 

Tms1187-13 B. garinii 2013 Asia Russia (Tomsk) Tick I. pavlovskyi 

Tms1188-13 B. garinii 2013 Asia Russia (Tomsk) Tick I. pavlovskyi 

Tms1189-13 B. garinii 2013 Asia Russia (Tomsk) Tick I. pavlovskyi 

Tms1190-13 B. garinii 2013 Asia Russia (Tomsk) Tick I. pavlovskyi 

Tms1192-13 B. garinii 2013 Asia Russia (Tomsk) Tick I. persulcatus 

Tms1218-13 B. garinii 2013 Asia Russia (Tomsk) Tick I. pavlovskyi 

PNov B. garinii 1990 Europe Yugoslavia Human skin condition 

PMa B. garinii 1989 Europe Yugoslavia Human skin condition 

Malouvrh B. garinii - Europe Slovenia Human skin condition 
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20047 B. garinii - Europe France Tick I. ricinus 

GEOBEN020 B. garinii 2018 Europe Germany (Oberschleißheim) Tick I. ricinus 

GEHERN151 B. garinii 2018 Europe Germany (Herrsching) Tick I. ricinus 

GESTAN298 B. garinii 2018 Europe Germany (Starnberg) Tick I. ricinus 

GESTAN302 B. garinii 2018 Europe Germany (Starnberg) Tick I. ricinus 

GESTAAF1947 B. garinii 2019 Europe Germany (Starnberg) Tick I. ricinus 

GESTAAF2296 B. garinii 2019 Europe Germany (Starnberg) Tick I. ricinus 

GEHERAF2403 B. garinii 2019 Europe Germany (Herrsching) Tick I. ricinus 

PBr B. garinii 1985 Europe Germany Human neuroborreliosis 

PHeI B. garinii 1987 Europe Germany Human neuroborreliosis 

Mek B. garinii 1992 Europe Germany Human neuroborreliosis 

PBes B. garinii 1989 Europe Germany Human neuroborreliosis 

PFr B. garinii 1995 Europe Germany Human neuroborreliosis 

PHc B. garinii 1996 Europe Germany Human neuroborreliosis 

PHez B. garinii 1994 Europe Germany Human neuroborreliosis 

PKi B. garinii 1992 Europe Germany Human neuroborreliosis 

PLa B. garinii 1988 Europe Germany Human neuroborreliosis 

PLi B. garinii 1988 Europe Germany Human neuroborreliosis 

PMe B. garinii 1988 Europe Germany Human skin condition 

PMek B. garinii 1992 Europe Germany Human neuroborreliosis 

PMit B. garinii 1997 Europe Germany Human neuroborreliosis 

POhm B. garinii 1991 Europe Germany Human neuroborreliosis 

PSoR B. garinii 1989 Europe Germany Human neuroborreliosis 

PStg B. garinii 1996 Europe Germany Human Lyme arthritis 

PUI B. garinii 1999 Europe Germany Human neuroborreliosis 

U02 B. garinii - - - - - 

U03 B. garinii - - - - - 

U04 B. garinii - - - - - 

PKie B. garinii 1993 Europe Germany Human neuroborreliosis 

JAASAAF1010 B. afzelii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAF1039 B. afzelii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1092 B. afzelii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JAASAAM1104 B. afzelii 2019 Asia Japan (Hokkaido) Tick I. persulcatus 

JANAGAF1137 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1156 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1163 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1173 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1182 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1229 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1248 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1250 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1261 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1316 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 
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JANAGAM1325 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1334 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1340 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAM1370 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1390 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

JANAGAF1392 B. afzelii 2019 Asia Japan (Nagano) Tick I. persulcatus 

GESTAN171 B. afzelii 2018 Europe Germany (Starnberg) Tick I. ricinus 

GESTAF1951 B. afzelii 2019 Europe Germany (Starnberg) Tick I. ricinus 

PWat B. afzelii 1994 Europe Germany Human neuroborreliosis 

PMeI B. afzelii 1990 Europe Germany Human neuroborreliosis 

PBabu B. afzelii 2001 Europe Germany Human osteomyelitis 

PHam B. afzelii 1987 Europe Germany Human skin condition 

PJe B. afzelii 1992 Europe Germany Human neuroborreliosis 

PBec B. afzelii 1988 Europe Germany Human skin condition 

PSto B. afzelii 1986 Europe Germany Human skin condition 

PFes B. afzelii 1988 Europe Germany Human skin condition 

PKL B. afzelii 1993 Europe Germany Human neuroborreliosis 

PKr B. afzelii 1992 Europe Germany Human neuroborreliosis 

PObf B. afzelii 1998 Europe Germany Human skin condition 

K78 (GB) B. afzelii - Europe Austria Human erthyma migrans 

PKo (GB) B. afzelii 1984 Europe Germany Human skin condition 

ACA-1 (GB) B. afzelii - Europe Sweden Human skin condition 

Tom3107 (GB) B. afzelii - Europe Sweden Human skin condition 

 

 

Table S2. Population genetics statistics calculated on randomly sampled Borrelia populations in both 

Japan and Germany. 

 

Genospecies Population n π Tajima's D FST DXY 

Borrelia afzelii 

  

Hokkaido (JA) 4 0.003084 -9.708 
0.379 0.00303 

Nagano (JA) 16 0.001117 -3.959 

Borrelia bavariensis  Hokkaido (JA) 6 0.008685 0.060 
0.057 0.00680 

Nagano (JA) 7 0.004679 -4.302 

Borrelia garinii 

 

Hokkaido (JA) 10 0.009499 -1.580 
0.188 0.00904 

Munich (GE) 7 0.006333 -4.089 
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Table S3.  Effect size estimates (β) and 95% credible intervals (CIs) for plasmid content of all isolates 

de novo assembled for this study (n=136). 

 

 PFam Number 

Fixed Effects β (95% CI) 

Intercept 14.88 (13.10, 16.68) 

Sample Origina -0.08 (-1.10, 0.92) 

Sourceb 1.19 (0.16, 2.22) 

Random Effects σ2 (95% CI) 

Genospecies 1.62 (0.80, 2.76) 

Residual 1.86 (1.86, 1.86) 

aDifferences in origin of samples 

(Reference = Asia) 

bDifferences in sample source 

(Reference = Human) 

 

 

Table S4. Sampling locations for novel Borrelia isolates. 

 

Country Location Abbr. Year (s) GPS 

Japan Nagano NAG 2019 36.2094 N, 138.1131 E 

Hokkaido ASA 2019 43.7550 N, 142.3930 E 

Germany Oberschleißheim OBE 2018-2019 48.2424 N, 11.5824 E 

Herrsching HER 2018-2019 47.9802 N, 11.1589 E 

Starnberg STA 2018-2019 48.0195 N, 11.3391 E 

Grafrath GRA 2019 48.1350 N, 11.1653 E 

Perchting PER 2019 47.9933 N, 11.2797 E 

Forstenrieder Park FOR 2019 48.0828 N, 48.0744 E 

Englischer Garten ENG 2019 48.1758 N, 11.6244 E 
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Table S5. Total number of ticks collected from each sampling plot and the number positive for Borrelia 

under dark field microscopy (DFM) in Japan and Germany. 

 

Country Region Ticks Collected* 

Borrelia 

positive (DFM) 

% Borrelia 

positive (DFM) 

Japan ASA 120 46 38.33 

NAG 273 139 50.92 

Germany OBE 56 6 10.71 

HER 192 10 5.21 

STA 134 8 5.97 

GRA 275 0 0.00 

PER 114 0 0.00 

FOR 273 0 0.00 

ENG 63 0 0.00 

*Refers to both adult (♂,♀) and nymphal ticks 

 

Table S6. Total number of isolated Borrelia per genospecies from each sampling site in Germany and 

Japan. 

 

Country Region Genospecies 

Final 

Isolates 

Japan 

NAG 

Borrelia afzelii 87 

Borrelia bavariensis 36 

Mixed infections 2 

ASA 

Borrelia afzelii 8 

Borrelia bavariensis 13 

Borrelia garinii 12 

Mixed infections 2 

Germany 
OBE 

Borrelia burgdorferi sensu stricto 3 

Borrelia garinii 2 

HER 

Borrelia burgdorferi sensu stricto 4 

Borrelia garinii 2 

Mixed infections 1 

STA 
Borrelia afzelii 2 

Borrelia garinii 5 
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Figure S1. Phylogeny of Borrelia afzelii based on the main chromosome corrected for recombining 

regions (see Suppl. Met.) a Russian isolate (Tom3107) downloaded from GenBank (Accession Number: 

NZ_CP009212.1).  The phylogeny was reconstructed with MrBayes v. 3.2.6(131, 132) with ploidy set to 

haploid and a GTR(133) substitution model with gamma distributed rate variation. Three independent 

runs were launched and ran for 10 million generations each at which point convergence of parameters 

was checked with Tracer v. 1.7.1(134). Consensus trees were built using the sumt command from 

MrBayes using a respective burn-in of 25%. Colors correspond to geographic origin of the isolates: 

Europe (blue), Japan (red), or purple (Russia). For Japanese tick isolates, the island of origin is shown 

either as a diamond (Hokkaido) or star (Honshu) when known. The scale bar is in substitutions per site.  
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Figure S2. Heat map of plasmid frequency based on partitioning genes (PFam32, 49, 50, 57/62) per 

tick vector species (I. persulcatus and I. ricinus) and Borrelia genospecies split between Asian and 

European isolates. Frequency is calculated as the total number of isolates per group which contain the 

plasmid divided by all isolates in the group.  

 

 

 

 

Figure S3. Boxplots shown for nucleotide diversity (π, (137)) calculated per MLST gene alignment 

described by Margos et al. (2008) for each geographic population of the three Borrelia genospecies 

researched here (B. afzelii, B. bavariensis, B. garinii). Black triangles show the nucleotide diversity (π, 

(137)) calculated for full chromosomes alignments for each geographic population of the three Borrelia 

genospecies researched here (B. afzelii, B. bavariensis, B. garinii). 
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Disentangling the role of Borrelia bavariensis PFam54 complement-

interacting proteins in vitro and in vivo using two strains naturally lacking 

the PFam54 gene array 

Robert E. Rollins, Janna Wülbern, Florian Röttgerding, Tristan Nowak, Sabrina 

Hepner, Volker Fingerle, Gabriele Margos, Yi-Pin Lin, Peter Kraiczy, Noémie S. Becker 

 

Abstract 

Lyme borreliosis is the most common vector-borne disease in the Northern 

hemisphere, caused by spirochetes belonging to the Borrelia burgdorferi sensu lato 

(Bbsl) species complex which are transmitted by ixodid ticks. Bbsl species produce a 

family of proteins on the linear plasmid 54 (PFam54), some of which confer the 

functions of cell adhesion and inactivation of complement, the first line of host defense. 

However, the impact of PFam54 in promoting Bbsl pathogenesis remains unclear 

because of the hurdles to simultaneously knock out all PFam54 proteins in a 

spirochete. Here, we found two Borrelia bavariensis (Bbav) strains isolated from 

patients, PBN and PNi, naturally lacking PFam54 but maintaining the rest of the 

genome with greater than 95% identity to the type-strain PBi. We found that PBN and 

PNi less efficiently survive in human serum than PBi. Such defects were restored by 

pre-incubating serum with two Bbav PFam54 recombinant proteins, BGA66 and 

BGA71, confirming the role of these proteins in providing complement evasion of Bbav. 

Further, we found that all three isolates remain detectable in heart tissue 21 days post 

subcutaneous mouse infection, supporting the non-essential role of Bbav PFam54 in 

promoting spirochete persistence in hosts. However, we found differences in tissue 

tropism between the three strains. This study identified and utilized isolates deficient 

in PFam54 to associate the defects with the absence of these proteins, building the 

foundation to further study the role of each PFam54 protein in contributing to Bbsl 

pathogenesis.  

 

Importance 

To establish infections, Lyme borreliae utilize various means to overcome the host’s 

immune system. Proteins encoded by the PFam54 gene array play a role for spirochete 

survival in vitro and in vivo. Moreover, this gene array has been described in all 

currently available Lyme borreliae genomes. By investigating the first two Borrelia 

bavariensis isolates naturally lacking the entire PFam54 gene array, we showed that 
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both patient isolates display an increased susceptibility to human serum, which can be 

rescued in the presence of two PFam54 recombinant proteins. However, both isolates 

remain infectious in mice after intradermal inoculation, suggesting a non-essential role 

of PFam54 during long-term infection, but do show a decreased colonization of joint 

tissue. Furthermore, these isolates display high genomic similarity to type-strain PBi 

(>95%) and thus could be used in future studies investigating the role of each PFam54 

protein in Lyme borreliosis pathogenesis. 

 

Introduction 

 Lyme borreliosis (LB, also termed Lyme disease in North America) is the most 

common vector-borne disease in the northern hemisphere (29, 30) with estimated 

annual cases between 65,000 and 200,000 in Europe (173, 174) and between 30,000 

and 476,000 estimated cases in the USA (175–177). This disease is caused by 

spirochetes belonging to the Borrelia burgdorferi sensu lato (Bbsl) species complex 

(30, 43, 46, 178) and are maintained in an enzootic transmission cycle between ixodid 

ticks, normally of the genus Ixodes, and various vertebrate reservoir host species (13, 

43, 46, 179, 180). Most LB cases in North America are caused by the genospecies B. 

burgdorferi sensu stricto (s.s.) while additional genospecies, such as B. afzelii, B. 

garinii, and B. bavariensis are causative agents of LB across Eurasia (29, 30, 43, 46). 

Borrelia bavariensis is of particular interest in Europe as it has a high propensity to 

infect humans and is associated with severe LB manifestations (i.e. neuroborreliosis) 

(30, 181), while additionally being rarely recovered from Ixodes ticks collected in the 

field (52, 169, 171). Borrelia bavariensis was proposed as a genospecies in 2009 and 

validated in 2013 (94, 157), prior to which, it was considered to be a subtype (OspA 

serotype 4 or NT29-like) of its sister species B. garinii (157). Borrelia bavariensis 

appears to primarily be a rodent-adapted genospecies (39, 47, 94, 100), which is 

distributed across Eurasia (157) where it utilizes either the tick species I. ricinus 

(Europe) or I. persulcatus (Asia) as a vector (39). This genospecies exists in two distinct 

populations with a high diversity, ancestral population in Asia (39, 84, 93, 101) and a 

genetically homogenous, almost clonal population in Europe (39, 84, 93, 101). 

To establish an infection, Bbsl must evade complement, an important pillar of 

innate immunity, either indirectly through the acquisition of complement regulators 

or directly through interactions with complement proteins (61, 62, 65–67). The 

complement system consists of three distinct pathways (classical, lectin, and 
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alternative) all leading to the cleavage of C3 to form activated C3b (14). This initiates 

the activation of other complement components ending in the assembly of the 

membrane attack complex (MAC) through recruitment of late stage complement 

proteins (C6, C7, C8, and C9); ultimately leading to bacterial cell lysis (14). 

Additionally, cleavage of C3 and C5 by the C3 and C5 convertases, respectively, leads 

to the release of anaphylatoxins C3a and C5a, which can recruit additional immune 

cells and, therefore, are integral in mounting further host immune responses to 

infection (14). Host cells control complement damage by utilizing membrane-bound or 

fluid-phase regulatory proteins (14). All complement regulators can terminate the 

complement cascade at specific activation levels to protect self-cells from complement-

mediated damage (14).  

Lyme borreliae produce diverse outer surface proteins that bind distinct host 

complement components resulting in complement inactivation (12, 61, 62, 68, 182, 

183). In fact, several Borrelia proteins named CRASPs (complement regulator 

acquiring surface proteins) are capable of binding complement regulators belonging 

to the factor H protein family and thereby allow spirochetes to overcome the host’s 

innate immune system (12, 61, 184). One well studied factor-H binding protein, CspA, 

belongs to the large paralogous protein family, PFam54, with members capable of 

binding complement regulatory proteins or even of direct interactions with 

complement components (65, 69, 71, 185, 186). Members of the PFam54 are encoded 

by genes predominantly arranged in a multi-gene array located at the terminal end of 

the linear plasmid (lp) 54 in all Bbsl genomes studied so far (85, 96, 187). The PFam54 

gene array can be separated into five major lineages where lineages I, II, III, and V 

share one to one orthology among genospecies (187). Lineage IV, however, contains a 

variable number of paralogs and many genospecies displaying unique PFam54 

paralogs not found in other genospecies (187). The B. bavariensis type strain PBi 

contains PFam54 paralogs belonging to all of these lineages, although most do not have 

a described function (187). Seven of these PBi PFam54 paralogs belong to lineage IV 

including bga66 and bga71 (187). These genes encode the proteins that bind to late 

stage complement proteins, C7, C8, and C9, and thereby inhibiting the assembly of a 

functional MAC, which confers resistance to human complement (69). In other 

genospecies, paralogs belonging to lineage IV have also been found to facilitate human 

and non-human factor H binding (12, 71, 72, 188). Specific non-lineage IV paralogs 

have been studied in B. burgdorferi s.s. where some even have proposed functions. For 
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example, both bba64 (PBi paralog, bga63) and bba66 (PBi paralog, bga65) are 

required for tick-to-host transmission (189, 190). Even so, there are still many open 

questions regarding what role the proteins encoded by the PFam54 gene array play 

during the enzootic cycle of Bbsl spirochetes, especially in genospecies besides B. 

burgorferi s.s.. 

We recently characterized the genomes of 33 Eurasian B. bavariensis isolates of 

which two European isolates, PBN and PNi, were found to contain a shorter lp54 in 

comparison to the type strain PBi (84). In this study, we show that both PBN and PNi 

are naturally lacking the entire PFam54 gene array. Such findings raise the possibility 

of using these strains to study the roles of these genes. In this study, we compared the 

complement evasion activity and infectivity conferred by a B. bavariensis isolate that 

has intact PFam54 genes (PBi) and the strains deficient of those genes (PBN, PNi). We 

provide new insights into the potential contribution of PFam54 proteins to facilitate 

spirochete survival in vitro and in vivo.   

 

Table 3.  Characteristics of B. bavariensis isolates utilized in this study.  

Isolate Genospecies 
Year of 

culturing 
Country 

Biological 
origin  

Disease 
Manifestation 

lp54 
length 

(kb) 

PBi 
Borrelia 

bavariensis 
<1993 Germany Human neuroborreliosis 60.4 

PBN 
Borrelia 

bavariensis 
1999 Germany Human neuroborreliosis 46.6 

PNi 
Borrelia 

bavariensis 
2000 Germany Human lymphoma 46.6 

 

Methods 

Ethics statement 

Collection of blood samples and consent documents were approved by the ethics 

committee at the University Hospital of Frankfurt (control number 160/10 and 

222/14), Goethe University of Frankfurt am Main. All healthy blood donors provided 

written informed consent in accordance with the Declaration of Helsinki. The mouse 

experiments were performed in strict accordance with all provisions of the Animal 

Welfare Act, the Guide for the Care and Use of Laboratory Animals, and the PHS Policy 

on Humane Care and Use of Laboratory Animals. The mouse infection protocol was 

approved by the Institutional Animal Care and Use Committee (IACUC) of the 
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Wadsworth Center, New York State Department of Health (Protocol docket number 

19-451). All efforts were made to minimize animal suffering. 

 

Bacteria cultivation and DNA extraction 

Borrelia bavariensis isolates PBN, PNi, and PBi were provided by the German 

National Reference Centre for Borrelia from the Bavarian Food and Health Safety 

Authority.  Bacterial isolates were maintained according to standard procedures (125, 

126) either in inhouse-made MKP (125), in inhouse-made BSK-H medium (126) or a 

commercially available BSK-H medium (Bio&Sell, Germany) supplemented with 6% 

rabbit serum (Sigma-Aldrich, Germany). Once cultures reached a density of 1 × 108 

cells per mL, whole genomic DNA was extracted using a Maxwell® 16 LED DNA kit 

(Promega, Germany). DNA quality (260/280) and concentration were measured using 

a NanoDrop® 1000 photometer (Thermo Fisher Scientific, USA) and a Qubit® 3.0 

fluorometer (Thermo Fisher Scientific, USA), respectively. 

 

Next generation sequencing and genome assembly 

All isolates were sequenced using both long- and short-read sequencing 

methods. Short read libraries were produced using the Nextera XT DNA Library 

Preparation Kit or the Illumina DNA Prep Kit (Illumina, San Diego, CA, USA) 

according to the manufacturer protocol. Library quality was evaluated using a 

Fragment Analyzer (Agilent, Germany) or an Agilent TapeStation 2200 (Agilent, 

Germany). Sequencing was performed using a MiSeq Reagent V2 kit on an Illumina 

MiSeq platform according to standard protocol (Illumina, San Diego, CA, USA) that 

produced paired end reads of 250bp. Illumina reads were first trimmed for Illumina 

MiSeq adapter sequences using Trimmomatic v. 0.38 (127) before being assembled 

using SPAdes v. 3.13.0 (111), which has been shown to be the best option for de novo 

assemblies of Borrelia genomes (83, 84). SPAdes contigs were then mapped to 

references using NUCmer v.3.23 from the package MUMmer (128, 129) as described 

in Becker et al. (2020).  

Long read sequence data of PBN and PNi were generated using Pacific 

Biosciences single-molecule, real-time (SMRT) technology by the Norwegian 

Sequencing Center (www.sequencing.uio.no). Libraries were prepared from genomic 

DNA sheared to 12kb using Pacific Biosciences’ protocol for SMRTbell™ Libraries and 

PacBio® Barcoded Adapters for Multiplex SMRT® Sequencing. Libraries were size 

http://www.sequencing/
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selected using 0.45 Amoure PB beads. The library was sequenced on a Pacific 

Biosciences Sequel instrument using Sequel Polymerase v3.0, SMRT cells v3 LR, and 

sequencing chemistry v3.0 (movie time: 15h). Reads were demultiplexed using the 

Demultiplex Barcodes pipeline on SMRT Link v8.0.0.80529 (SMRT Tools 

v8.0.0.80502). A minimum barcode score of 40 was used. Reads were assembled using 

the Microbial Assembly application on SMRT Link (v8.0.0.80529, SMRT Link 

Analysis Services and GUI v 8.0.0.80501). Long read sequence data of PBi is available 

at NCBI (Accession Number: CP028873.1) (32). In short, the library was generated 

using Pacific Biosciences 20 kb library preparation protocol. Size selection of the final 

library was performed using Blue-Pippin with a 10 kb cut-off. The library was 

sequenced on a Pacific Biosciences RS II instrument using P6-C4 chemistry with 360 

min movie time. PacBio reads were assembled using HGAP v3 (Pacific Biosciences, 

SMRT Analysis Software v2.3.0). Overlapping contig regions due to the circularization 

during the PacBio Library preparation were removed. To polish indels and sequencing 

errors that may be present in the PacBio contigs, the Illumina short reads were mapped 

to the PacBio contigs and a consensus sequence was extracted using the CLC Genomic 

Workbench 11.  

  

Characterizing PFam54 gene array in PBN, PNi, and PBi 

 Sequences for all PFam54 paralogs described for PBi in Wywial etal (2009) 

(bga63-bga73) were downloaded from GenBank (Accession Numbers: PBi, 

CP000015.1) and used as queries. We used BLAST v.2.8.1 (114, 115) (algorithm: blastn) 

to search for the PFam54 paralogs described above in all assembled contigs. Blast hits 

shorter than 500bp and with a percentage identity lower than 80% compared to PBi 

were not considered paralogous to their reference. Further BLAST hits were removed 

if they were overlapping with regions previously assigned to a result of higher quality. 

Presence or absence of PFam54 orthologs were further checked through paralog 

specific PCRs with primers designed for the paralogs present in PBi. All PCR products 

were cleaned using a Zymo DNA Clean and Concentrator-5 kit (Zymo Research, USA) 

and sequenced at the Sequencing Service of Ludwig-Maximilians University according 

to standard protocol for Sanger sequencing 

(http://www.gi.bio.lmu.de/sequencing/help/protocol). For further detail on PCR 

analyses see Supplementary Materials and Table S7. Gene orthology was confirmed 

through phylogenetic reconstruction performed in MrBayes (131, 132) based on all 

http://www.gi.bio.lmu.de/sequencing/help/protocol
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GenBank references and extracted PFam54 paralog sequences from PBi, PBN, and PNi 

(see Supplementary Materials).  

 

Human serum, proteins, and antibodies 

Non-immune human serum (NHS) obtained from healthy volunteers was 

initially tested for anti-Borrelia IgM and IgG antibodies as previously described (191) 

and for complement activity employing the Wieslab® functional complement assays 

(SVAR, Malmö, Sweden). Only serum samples considered to be negative for anti-

Borrelia antibodies and displaying complement activity were used to form the serum 

pool. Polyclonal anti-C3 antisera were obtained from Merck Biosciences (Bad Soden, 

Germany) and the neoepitope-specific monoclonal anti-C5b-9 antibody was purchased 

from Quidel (San Diego, CA, USA). Generation and purification of His-tagged BGA66 

und BGA71 have been previously described (191). Alexa Fluor 488-conjugated anti-

goat IgG and Alexa Fluor 488-conjugated anti-mouse IgG were purchased from 

ThermoFisher (Langenselbold, Germany). 

 

Serum susceptibility assays 

To test serum susceptibility of PBN and PNi to NHS, 1 × 107 highly viable 

Borrelia cells suspended in 50 µl BSK-H medium (Bio&Sell, Germany) were incubated 

with 50 µl NHS at 33 °C as described previously (192). Borrelia bavariensis type strain 

PBi was included as a serum-resistant control and B. garinii strain G1 as a serum-

sensitive control. The number of motile cells were counted at different time points (0, 

1, 2, 4, 6 h) using dark-field microscopy. Nine microscopy fields were counted for each 

time point per strain. Each assay was conducted at least three times. 

BGA66 or BGA71 are known to facilitate serum resistance of B. bavariensis PBi 

(69), and to further explore if they could rescue serum sensitive Borrelia isolates from 

complement-mediated killing, a modified serum bactericidal assay was conducted. For 

this, 50 µl NHS was pre-incubated with either 10 µM purified BGA66, 10 µM purified 

BGA71, 10 µM bovine serum albumin (BSA), or a combination of BGA66 and BGA71 (5 

µM each) for 15 minutes at 37 °C. Thereafter, 1 × 107 Borrelia cells suspended in 50 µl 

BSK-H medium were added to 50 µl of pre-incubated NHS and further incubated at 

33°C. The number of motile cells were counted at different time points (0, 1, 2, 4, 6 h) 

using dark field microscopy. As further controls, reaction mixtures containing heat-
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inactivated NHS (hiNHS), NHS alone, and wash buffer (50 mM Tris/HCl, pH 8.0) were 

also included. Each assay was conducted in triplicate.  

 

Genetic characterization of serum survivors 

To further characterize PBN and PNi cells which survived treatment with 50% 

NHS, spirochetes (labeled as PBN-ST or PNi-ST for post-serum treatment) were re-

cultured in BSK-H medium (Bio&Sell, Germany) until they reached a density of 1  108 

cells per mL (125, 126) at which point whole genomic DNA was extracted using a 

Maxwell® 16 LED DNA kit (Promega, Germany). Borrelia DNA was then sequenced on 

a MiSeq platform using the protocol described above for short-read library preparation 

and assembly. We used BLAST v.2.8.1 (114, 115) (algorithm: blastn) to again search for 

the PFam54 paralogs described above and paralog specific PCRs to support the 

presence or absence of PFam54 paralogs in PBN-ST and PNi-ST (see Supplementary 

Materials). All assembled contigs of PBN-ST or PNi-ST were then mapped back to the 

original PBN or PNi assembly (84) using NUCmer v. 3.23 from the package MUMmer 

(128, 129). Single nucleotide polymorphisms (SNPs) and indels between the two 

assemblies were then called using the program show-snps from the package MUMmer 

(128, 129). The location of SNPs were compared to a previously published annotation 

for PBN and PNi (84) to determine if they were located in proposed open reading 

frames. Gene annotations without proposed function (i.e. hypothetical proteins) were 

subjected to a protein structure similarity search using the online-based HHpred 

server (193, 194).  

 

Immunofluorescence microscopy 

To determine deposition of activated complement components on the Borrelia 

surface, an immunofluorescence assay was conducted as previously described (195, 

196). For this, 6 × 106 cells were suspended in 150 µl GVB++ and either 50 µl NHS or 

50 µl hiNHS was added. Following incubation for 1 h at 37 °C, 10 µl of the suspension 

was transferred to a glass slide, air-dried overnight, and then fixed by using a glyoxal 

solution (Merck, Germany). Slides were then incubated for 1 h at 37 °C with either an 

anti-C3 (1:1000) or a neoepitope-specific anti-C5b-9 antibody (1:70) to detect C3 and 

the assembled MAC, respectively. After washing with PBS, Alexa Fluor 488 conjugated 

antibodies (1:1000) were applied and the slides were incubated for 1 h at 37 °C in the 

dark. After washing, the slides were overlayed with a DAPI solution (1:500) and 
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incubated for 10 min at 4 °C. Finally, the glass slides were enclosed with a coverslip 

using fluorescence mounting medium (Agilent Technologies Denmark ApS, Glostrup, 

Denmark). The evaluation was carried out with an Axio Imager M2 fluorescence 

microscope (Zeiss, Germany) equipped with a Spot RT3 camera (Visitron Systems, 

Germany). 

Figure 5. A) Schematic overview of the aligned lp54 sequences for the B. bavariensis isolates PBi, PBN, 
PNi, and B. burgdorferi s.s. strain B31. Both, PBi and B31, have longer lp54 sequences and contain the 
PFam54 gene array at the 3’ end while PBN and PNi have a shorter lp54 and lack ~14kb from the 3’ end 
of the aligned sequences, where the PFam54 gene array is located. Individual genes are shown as arrows 
and colors denote orthologous genes between isolates. Arrow direction denotes on which DNA strand 
the gene is found. B) Synteny map of the PFam54 gene array. Genes are colored according to orthology 
and broken down into the five clades originally described by (187). These colors correspond to panel A. 
PBN and PNi are missing all orthologs belonging to all five clades (shown as dashed outlines in reference 
to the PBi paralogs). C) Phylogeny to check orthology of PBi and B31 PFam54 paralogs run in MrBayes 
(see Supplementary Material for further details). References for PBi and B31 were downloaded from 
GenBank for all PFam54 paralogs present in Wywial et al., (2009) (B31, Accession Number: 
AE000790.2; PBi, Accession Number: CP000015.1). PBi clades include the orthologs found in the 
PacBio assembly from Margos et al., (2018). All PBi sequences were the same and are displayed as a 
single node.  

 

Intradermal infection of Mus musculus mice and the quantification of bacterial 

burdens in tissues 

Four-week-old female BALB/c mice were intradermally inoculated with 1×105 

of B. bavariensis strains PBi, PBN, or PNi as described previously (71). Control mice 

were inoculated in parallel with BSK-H medium unmodified with serum. As a plasmid 

profiling procedure for these isolates is not currently available, the isolates were 

cultured at less than ten passages to avoid decreased infectivity due to potential 

plasmid loss events during in vitro cultivation. At 21 days post-infection, mice were 

sacrificed and harvested for organs and tissues including the inoculation site of the 

skin, the ankle joints, and heart. These were collected and processed for quantitatively 
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assessment of bacterial burdens during infection. DNA was extracted from tissues 

using the EZ-10 Genomic DNA kit (Biobasic, Canada), and the quantity and quality of 

DNA was assessed using a Nanodrop 1000 UV/Vis spectrophotometer (ThermoFisher 

Scientific, USA). The 280:260 ratio of these samples was between 1.75 and 1.85, 

indicating no contamination of RNA or proteins in those DNA samples. Quantitative 

PCR was performed as described previously (71). In brief, spirochete genomic 

equivalents were calculated using an ABI 7500 Real-Time PCR System (ThermoFisher 

Scientific, USA) in conjunction with PowerUp SYBR Green Master Mix (ThermoFisher 

Scientific, USA), based on amplification of the Lyme borreliae 16S rRNA gene using 

primers 16SrRNAfp and 16SrRNArp (Table S7) as described previously (74, 197). 

Cycling parameters for SYBR green-based reactions were 50°C for 2min, 95°C for 

10min, and 45 cycles of 95°C for 15s, 52°C for 30s, and 60°C for 1min. The number of 

16S rRNA copies was calculated by establishing a threshold cycle (Cq) standard curve 

of a known number of 16S rRNA gene extracted from each B. bavariensis strain PBi, 

PBN, or PNi, then comparing the Cq values of the experimental samples for each 

respective strain. 

 

Statistical analysis.  

Differences in serum sensitivity including trials utilizing pre-incubated NHS 

were tested using pairwise t-tests with a Bonferroni multiple testing correction in  R v. 

3.6.1 (136), while for the mouse experiments, differences were tested using the the 

Kruskal-Wallis test with the two-stage step-up method of Benjamini, Krieger, and 

Yekutieli. For all tests, a P-value < 0.05 (*) was considered significant.  

 

Results 

PBN and PNi naturally lack the entire PFam54 gene array 

In both long (PacBio) and short-read (MiSeq) assemblies PBN and PNi had a 

shorter lp54 of approximately 46.6 kbp in comparison to type strain PBi with a lp54 of 

approximately 60.4 kbp (Table 3). Blast searches conducted for PBN and PNi returned 

no hits for the PBi PFam54 paralogs either on the reconstructed lp54 or when blasted 

to all assembled contigs, whereas all paralogs (n=11) were found in our PBi assembly 

(Figure 5). These findings were further confirmed by using a paralog-specific PCR 

approach which showed no amplicon for all PFam54 paralogs in PBN and PNi except 

for the primer pair targeting bga68 (Figure S4). When using genomic DNA of PBN and 
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PNi as a template and primers specific to amplification of bga68, we observed an 

unexpected PCR product of approximately 1800bp (much larger than the expected 

product of 1369bp). Following sequencing of these amplicons, sequences corresponded 

to a region on the B. bavariensis chromosome but not to any of the PFam54 paralogs. 

When DNA from PBi was used as a positive control, bands of expected size were 

observed for all PFam54 paralogs (Figure S4) and were confirmed through Sanger 

sequencing. All primer pairs were designed for PBi as the PFam54 paralogs are present 

in this isolate. As European B. bavariensis are characterized by a low-diversity and are 

almost clonal  (39, 84, 93), primers designed for PBi should amplify the genes if present 

in PBN and PNi. Therefore, the lack of observed products is not a result of potential 

sequence polymorphisms in primer binding sites. 

 

Figure 6. Serum susceptibility of B. 
bavariensis strains PBN and PNi 
lacking the PFam54 gene array after 6 
h incubation at 33°C. Borrelia 
bavariensis strain PBi and B. garinii 
strain G1 were included as serum-
resistant and susceptible controls, 
respectively. A) Percentage of motile 
PBN, PNi, PBi and G1 after 6 hours of 
incubation in 50% NHS. B) Percentage 
of motile PBN cells after 6 hours 
incubation with NHS which was pre-
incubated with 10µM purified BGA66, 
BGA71 or a combination of BGA66 and 
BGA71. C) Percentage of motile PNi 
cells after 6 hours incubation with NHS 
which was pre-incubated with 10µM 
purified BGA66, BGA71 or a 
combination of BGA66 and BGA71. For 
both cases PBN (B) and PNi (C) 
controls were included where cells were 
incubated with NHS, heat-inactivated 
NHS (hiNHS), wash buffer (WB), or 
bovine serum albumin (BSA). All tests 
were done in triplicate. Significance 
was tested using pair-wise t-tests with 
a Bonferonni multiple testing 
correction and significant differences 
are marked with red *. For all time 
points (0, 1, 2, 4, 6 hours) see Figure S5. 
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PBN and PNi display an increased serum susceptibility to human serum 

 Having demonstrated the absence of the entire PFam54 gene array in PBN and 

PNi, including bga66 and bga71, serum bactericidal assays were conducted in vitro to 

explore the strains capability to overcome complement-mediated killing. PBi and B. 

garinii strain G1 were included either as a serum resistant or serum sensitive control, 

respectively. Both PBN and PNi had a significantly higher susceptibility to NHS in 

comparison to PBi, with approximately 20% of PBN or PNi cells surviving after 6 h as 

compared to around 60% of PBi cells surviving (Figure 6A). Additionally, PBN and PNi 

did not significantly differ from G1, where under the same conditions around 90% of 

cells were killed after 6 hours (Figure 6A). When NHS was pre-incubated with purified 

recombinant proteins of PBi PFam54 paralogs BGA66 and BGA71 (69), both PBN 

(Figure 6B) and PNi (Figure 6C) were rescued to serum resistance levels comparable 

to PBi after 6 hours of incubation (Figure 6B-C). Only in the case of PNi incubated with 

BGA71-treated NHS were there significantly fewer motile cells in comparison to PBi 

(Figure 6C). Moreover, each recombinant protein was able to confer serum resistance 

while a combination of both did not increase the resistance level compared to the 

individual molecule (Figure 6B-C). Refer to Figure S5 for all serum assay time points. 

To further support PBN and PNi’s increased susceptibility to complement, deposition  

of activated complement components of C3 (i.e. C3b) and the MAC was investigated by 

employing immunofluorescence microscopy. These complement activation assays 

revealed that, in contrast to the serum-resistant PBi, the majority of PBN and PNi cells 

showed deposition of C3 including activated C3b on the spirochetal surface (Figure 7A 

to C). Moreover, the staining pattern for PBN and PNi was similar to serum-sensitive 

B. garinii G1 (Figure 7D). The same staining pattern could be observed in relation to 

the pore-forming MAC, when cells were stained for late stage complement proteins 

(C5b to C9) (Figure S6). # 

Both PBN and PNi were isolated from patients and are hypothesized to be clonal 

populations representing a single isolate. To determine though if the serum 

susceptibility pattern of PBN and PNi could result from these isolates representing 

mixed cultures of two unique isolates (one serum-sensitive and one serum-resistant), 

the remaining spirochetes which survived NHS treatment after 6 h were transferred to 

fresh BSK-H medium and grown until they reached the exponential phase. After DNA 

isolation, PBN-ST and PNi-ST were sequenced using the Illumina MiSeq platform (see 

Methods). The genomes of PBN-ST and PNi-ST were identical to the original PBN and 
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PNi genomes, including all plasmids and the shortened lp54 (84). Only very few 

variants were observed in repeat regions or regions which are known to be challenging 

to assemble using Illumina data (83, 84). The only notable exception was a single non-

synonymous mutation in a hypothetical protein found on lp28-9 of PBN-ST only. A 

HHPred structure based search (193, 194) suggested similarities with Dynamin-like 

proteins from Bacillus species. No BLAST hits for PFam54 paralogs were found in 

PBN-ST and PNi-ST and they did not produce amplicons the PFam54 paralog specific 

PCRs (Figure 5; Figure S5).  

 

 

Figure 7. Deposition of complement component C3 after challenging viable spirochetes from PBN (A), 
PNi (B), PBi (C), and B. garinii G1 (D) with NHS (top row) and heat-inactivated NHS (hiNHS, bottom 
row). After fixation, deposition of C3 (green) were visualized with a polyclonal anti-C3 antibody (1:1000) 
and spirochetal DNA (blue) was stained by using DAPI.  Shown are representative data from two 
independent experiments. All scale bars are equal to 15µm. The spirochetes were observed at a 
magnification of 1,000x. The data were recorded with an Axio Imager M2 fluorescence microscope 
(Zeiss) equipped with a Spot RT3 camera (Visitron Systems). 

 

PBN and PNi remain infectious to Balb/c mice, but show a trend for less efficient joint 

colonization after intradermal inoculation   

We further determined the infectivity of PBi, PBN, and PNi in vivo by 

intradermally inoculating each of these isolates into Balb/c mice, and a mock infected 

group with culture medium as a control. At 21 days post inoculation, we found that the 
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spirochete burdens at the inoculation site of skin from the mice infected with PBi, PBN, 

or PNi were indistinguishable from those in the mock-infected group (Figure 8A). 

Conversely, the spirochete burdens in heart tissue derived from each of these three 

isolates did not statistically differ from each other but was significantly higher than 

those from mock-infected mice (Figure 8B). Further, the spirochete burdens at joints 

from PBi-infected mice but not PBN- or PNi-infected mice were significantly greater 

than those burdens from mock-infected mice, although the three isolates did not 

significantly differ among each other (Figure 8C). These results demonstrate the ability 

of PBi, PBN, and PNi to yield productive infections in mice, suggesting that PFam54 is 

not essential for spirochete persistence in mice after intradermal infection. However, 

the differences in the spirochete burdens at joints from PBi-, PBN-, and PNi-infected 

mice in comparison to those in mock-infected mice implies a strain-specific joint 

colonization at late stages of infection. 

Figure 8. Bacterial burden of mice at the inoculation site (A), heart (B), and tibiotarsal joint (C) 21 days 
past needle inoculation with 1×105 of PBN, PNi, PBi or BSK-II medium not supplemented with serum 
as a negative control. After 21 days, mice were sacrificed, and bacterial burden was determined using a 
qPCR targeting the 16S rRNA gene of Borrelia which was normalized to the total amount of DNA. 
Differences between bacterial burdens were tested for significance using the Kruskal-Wallis test with 
the two-stage step-up method of Benjamini, Krieger, and Yekutieli. Significant differences are marked 
with red *. 

 

Discussion 

 Lyme borreliae utilize a number of sophisticated strategies to successfully infect 

and colonize a host, including evading diverse host immune responses to survive in the 

hosts bloodstream, tissues, and organs (12, 61, 62, 184). Proteins encoded by the 

PFam54 gene array play an important role in some of these processes (12, 71, 185, 186, 

198, 199), and these genes have been found in all sequenced B. burgdorferi s. l. 
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genomes to date (85, 86, 96). Only a few of these proteins have been functionally 

characterized and despite their high sequence similarity they were found to have 

different functions (69, 199, 200). Simultaneously knocking out PFam54 proteins from 

a spirochete to study the functions additional PFam54 proteins is not feasible because 

each spirochete carries more than five Pfam54 proteins in any given Lyme borreliae 

species or strain (187). In a recent study using Illumina MiSeq assemblies of B. 

bavariensis genomes (84), we found that isolates PBN and PNi contain a shorter lp54 

plasmid of 46.6 kb compared to lp54 of type strain PBi (60.4 kb) (32, 84). For 

confirmatory purposes, long-read sequencing (PacBio) was conducted as a 

combination of long and short sequencing technologies enables proper plasmid 

reconstruction (83). Comparative analyses of those genomes clearly indicated that the 

entire PFam54 gene array was missing in PBN and PNi. Such a novel identification of 

two isolates deficient in the entire PFam54 provides a tool to study the functions of 

PFam54 in vitro and in vivo by comparing the phenotypes of these strains with the 

strains that carry the entire PFam54 (eg. PBi).  

We hypothesized that the absence of these genes in PBN and PNi could lead to 

an increased susceptibility to human complement, which was supported by our 

analyses. Compared to PBi, we found that PBN and PNi displayed decreased 

survivability in human serum and increased deposition of the major complement 

component, C3. This result is consistent with the fact that PFam54 from PBi encodes 

BGA66 and BGA71, two proteins that bind to C7, C8, and C9 to inactivate terminal 

complement pathway in promoting the serum survivability in a gain-of-function 

spirochete background in B. garinii (69). In fact, we found that the presence of BGA66 

and BGA71 rescued the serum sensitivity and complement deposition of PBN and PNi 

to levels indistinguishable from those from PBi. These results strongly support the role 

of PFam54 in promoting complement evasion (12, 69, 71, 199, 201).  

Both PBN and PNi, were isolated from patients with confirmed LB (Table 3) 

indicating that both isolates were able to establish human infection. Unfortunately, the 

time point at which PBN and PNi lost this region of the lp54 could not be determined. 

The loss could have occurred before or during the infection process or during in vitro 

cultivation as described previously for other plasmids (83, 202, 203). Interestingly, 

spirochetes that survived serum treatment after 6 h of incubation (PBN-ST and PNi-

ST) did not differ along their entire genome, including the shortened lp54, indicating 

that spirochetes who are killed and those who survived have the same genetic makeup. 
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Serum survival of a subpopulation, as also observed in the serum sensitive control 

isolate B. garinii G1, could be a result of a stochastic process involving transcriptional 

changes due to external signals which equip spirochetes with complement-interfering 

factors. Borrelia transcriptomes, including members of the PFam54 family, do change 

in response to stressors stemming from both reservoir hosts (temperature, pH) and 

tick vectors (low nutrients, oxidative stress) (46, 77, 204). Utilizing a transcriptional 

approach could therefore highlight which genes are transcribed by these two isolates 

while under serum stress to understand which mechanisms PBN and PNi, or even a 

subpopulation thereof, utilize to overcome complement-mediated killing. Bbsl 

genomes are quite redundant, containing a number of genes with similar functions (82, 

85, 205). Therefore, the presence and potential variation in other known anti-

complement lipoproteins may contribute to such a strain-to-strain variation in 

complement evasion (12, 68, 71, 182). Additionally, considering the majority of Bbsl 

plasmid encoded proteins are either hypothetical or uncharacterized (96), it is likely 

that there are further gene products which confer serum resistance through yet 

uncharacterized immune evasion mechanisms (12, 61, 62, 66) and are contributing to 

the observed phenotype of PBN and PNi.  

 Though PBN and PNi are more susceptible to human complement-mediated 

killing in vitro than PBi, when we compared the late stages colonization (21 days post 

intradermal infection in mice) of these strains with that of PBi, we did not notice 

differences among the isolates in heart and the initial infection site of the skin. Our 

results still suggest that Pfam54 is not essential for persistent survival of spirochetes, 

and that the persistence of PBi, PBN, and PNi is independent on the ability of these 

isolates to evade complement. In fact, such a complement-independent persistence is 

consistent with several documented studies showing that the role of complement in 

discriminating strain-to-strain differences of infectivity is more apparent at early 

infection onsets than at the later stages of infection (206, 207). Hart et al., (2018) 

reported that CspA and its orthologous proteins from several isolates of B. burgdorferi 

s.s. or B. afzelii confer spirochete survival in fed ticks, and thus promote tick-to-host 

transmission (71). Other B. burgdorferi s.s. PFam54 paralogs (i.e., bba64, bba73) are 

additionally upregulated during tick feeding suggesting that PFam54 genes, and 

encoded products, may be important to tick-to-host transmission (77). As PBi contains 

paralogs of these upregulated genes which PBN and PNi are lacking, this could hint at 

an additional possibility that PBN and PNi may differ in their transmissibility during 
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tick infection or ability to successfully colonize the tick vector, requiring additional 

investigation. 

We found that PBN, PNi, and PBi colonized heart at indistinguishable levels, 

with burdens greater than the burdens in mock-infected mice, but the spirochete 

burdens of all three tested isolates at the initial infection site in the skin did not differ 

from those derived from that tissue of mock-infected mice. Such a heart-specific 

colonization by B. bavariensis is consistent with previous findings for PBi (208). This 

also suggests complete clearance of these B. bavariensis isolates at the initial infection 

site, unlike isolates from other Lyme borreliae genospecies (B. burgdorferi s.s., B. 

afzelii, and B. garinii) (74, 208–210). We did find, however, that spirochete burdens 

of PBi but neither PBN nor PNi in the tibiotarsal joints were significantly higher 

compared to control mice. Such a strain-to-strain difference in tissue tropism is similar 

to findings obtained with strains of other Lyme borreliae genospecies (49, 211–213). A 

possible contributing factor for such a strain-specific tissue tropism could be the 

presence or absence of spirochete adhesins or the polymorphisms in said adhesins. For 

example, some PFam54 proteins, including bga71 from B. bavariensis, were shown to 

confer spirochete attachment to mammalian cells (185, 186, 200). Additionally, some 

spirochete polymorphic adhesins, e.g. outer surface protein C (OspC) and decorin 

binding protein A (DbpA), promote differential levels of tissue colonization among 

Borrelia isolates and genospecies (74, 75, 184). Although PBN, PNi, and PBi do share 

the same ospC (84) and dbpA sequences (unpublished data) suggesting these are most 

likely not causing the observed phenotype. Taken together, our results suggest that the 

PFam54 proteins have other functions in addition to complement resistance and could 

be adhesins that contribute to specific tissue tropism.   

The PFam54 gene array is found across the Bbsl species complex and therefore 

has been maintained throughout the evolutionary history of these spirochetes (88, 

187). The genospecies besides B. burgdorferi s.s., including B. bavariensis, have been 

challenging to be genetically modified (214). Thus, isolates PBN and PNi, with almost 

identical genetic make-ups to type strain PBi (>95% identity over all genomic 

compartments) (84) and naturally lacking the PFam54 array, offer a unique 

opportunity to study the role of these proteins in infection and tick-to-host 

transmission in humans and reservoir hosts. Taken together, the natural loss of the 

PFam54 gene array in B. bavariensis is associated with an increase of serum 

susceptibility and complement deposition and tissue-dependent variable persistence 
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after intradermal inoculation in mice. Such findings pave the road to further study the 

function of each PFam54 protein in B. bavariensis and other spirochete species and 

their contribution to the Lyme borreliae infectivity.  
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— Supplementary Methods — 

 

Primer design and PCR analysis to confirm absence of PFam54 paralogs in PBN and 

PNi 

Primers for PBi PFam54 paralogs were either taken from (69) including genes 

bga66, bga68, bga71, bga72, and bga73 or designed in this study (bga63, bga64, 

bga65, bga67). For primer design, GenBank PBi PFam54 genes (Accession Number: 

CP000015.1) were used as references and primers were designed in Primer3 (215–217) 

with default setting and maximum oligonucleotide length set to 35bp. For each gene, a 

maximum of five primer pairs were kept and blasted using BLAST v.2.8.1 (114, 115) 

(algorithm: blastn, task: short-blast) back to the full assembled MiSeq contigs of either 

PBN, PNi, or PBi. The plasmid pair with the highest specificity was ordered. PBi was 

chosen as a reference for the PFam54 genes as they are all present in this isolate (187).  

As European B. bavariensis is characterized by a low-diversity, almost clonal 

distribution (39, 84, 93), primers designed for PBi should amplify the gene if present 

in PBN and PNi.  

For all genes, PCR samples were prepared using 1 μM primer concentrations 

and 10 ng of DNA using the S7 Fusion Polymerase system according to standard 

protocol for a final reaction volume of 20 μL (IsoGene Scientific, Netherlands). Each 

test included DNA from PBN, PNi, PBN-ST, PNi-ST (where ST stands for post-serum 

treatment). PBi DNA was included as a positive control and for each gene a non-

template (water) negative control was included. For all genes besides bga68 and 

bga73, PCR conditions were initialization at 95°C for 2 minutes, followed by 40 cycles 

of each 95°C for 15 sec, 60°C for 45 sec, and 72°C for 60 sec, followed by an elongation 
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step at 72°C for 10 minutes. For bga68 and bga73, PCR conditions were initialization 

at 95°C for 2 minutes, followed by 40 cycles of each 95°C for 15 sec, 63°C for 45 sec, 

and 72°C for 60 sec, followed by an elongation step at 72°C for 10 minutes. 

Additionally, a PCR for the housekeeping gene for recG was included as a positive 

control for all DNA samples using the primers and protocol described in (151).  

All PCR products were visualized on a 1% agaraose gel in 1×TAE buffer. Products 

for primers designed in this project (bga63, bga64, bga65, bga67) were cleaned using 

the Zymo DNA Clean & Concentrator™-5 kit (Zymo Research, USA) according to 

standard protocol for PCR amplicons. Cleaned PCR products were sequenced using 

Sanger sequencing at the Sequencing Service of Ludwig-Maximilians University and 

prepared in accordance with their requirements 

(http://www.gi.bio.lmu.de/sequencing/help/protocol). PCR products were sequenced 

with both forward and reverse primers. Consensus sequences were then assembled in 

UGENE (218) using CAP3 (219). Sequences were then aligned back to their respective 

genes to determine adherence to the expected sequence. 

 

Phylogenetic analysis of located PFam54 paralogs 

 Sequences for our PBi assembly were complied with references for PFam54 

paralogs as described in (187) from B. bavariensis (PBi) and B. burgdorferi s.s. from 

GenBank and were aligned as translated amino acids using Muscle v. 3.8.425 (220, 

221) in AliView v. 1.26 (222). Phylogeny reconstruction was done in MrBayes v. 3.2.6 

(131, 132) with ploidy set to haploid and a GTR (133) substitution model with inverse 

gamma distributed rate variation. Three independent runs were launched and ran for 

10 million generations  at which point convergence of parameters was checked with 

Tracer v. 1.7.1 (134). Consensus trees were built using the sumt command from 

MrBayes using a respective burn-in of 25%. Convergence to a single topology in all 

three independent runs was checked manually in FigTree v. 1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/) which was also used to plot the tree shown 

in Figure 5. 

 

 

 

 

 

http://www.gi.bio.lmu.de/sequencing/help/protocol
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— Supplementary Table & Figure Legends — 

 

Table S6. Overview of all primers used in this study. 
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Figure S4. Agarose gel of PCR products supporting the presence or absence of genes in PBN, PNi, and 

PBi. In all panels, numbers correspond to PBN (1), PBN-ST (2), PNi (3), PNi-ST (4), PBi as positive 

control (5), no template negative control (6). For all gels, a 1-kb Plus DNA ladder (ThermoFisher, USA) 

was used and band sizes are shown at the left in (A). Absence of PFam54 genes were tested for bga63 

(B), bga64 (C), bga65 (D), bga66 (E), bga67 (F), bga68 (G), bga71 (H), bga72 (I), and bga73 (J). The 

MLST housekeeping gene, recG (J), was further included as a positive control. 
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Figure S5. Serum susceptibility assays of PBN and PNi lacking the PFam54 gene array. A) Survival of 

B. bavariensis PBN, PNi, and PBi as well as B. garinii G1 in 50% NHS was monitored by dark field 

microscopy. The number of motile cells after incubation of Borrelia cells were determined at 0, 1, 2, 4, 

and 6 h. At least three independent experiments were conducted, each with similar result. Data from all 

experiments are shown. B-C) BGA66 and BGA71 rescue PBN and PNi from complement-mediated 

killing. NHS was pre-incubated with 10µM purified BGA66, BGA71, or a combination of BGA66 and 

BGA71. PBN and PNi were then incubated in 50% pre-incubated NHS and the number of motile PBN 

(B) and PNi (C) were recorded. Cells incubated with NHS, heat-inactivated NHS (hiNHS), wash buffer 

(WP), and bovine serum albumin (BSA) were included as controls. All tests were done in triplicate and 

error bars reflect standard deviation. 
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Figure S6. Immunofluorescence images of cells of B. garinii G1 (A), PBN (B), PNi (C), and PBi (D) 

incubated with normal human serum (NHS, top row) and heat-inactivated normal human serum 

(hiNHS, bottom row). The photos for each isolate (from left to right) are as follows: staining for the 

complement protein C5b-C9 (green), DAPI staining for nucleic acids (blue), and a merge of the C3 and 

DAPI images. All scale bars are equal to 15µm. 
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General Discussion 

 

 Obligate vector-borne pathogens, such as spirochetes belonging to the Borrelia 

burgdorferi sensu lato (Bbsl) species complex, can establish into novel transmission 

cycles through adaptation to novel hosts and/or vector species. Through comparative 

genomics it is possible to estimate the evolutionary forces leading to this adaptation 

and how known ecological interactions influence these processes. The Eurasian Bbsl 

system allows for a fascinating opportunity to study both host and vector adaptation. 

Three human-pathogenic Bbsl genospecies (Borrelia afzelii, Borrelia bavariensis, and 

Borrelia garinii) all share a Eurasian distribution and currently exist in separate 

transmission cycles vectored predominately by two generalist tick species in Asia 

(Ixodes persulcatus) and Europe (Ixodes ricinus) (43), creating a natural system in 

which to study vector adaptation in three independent Bbsl genospecies. Additionally, 

these three genospecies differ in their host associations with both B. bavariensis and 

B. afzelii utilizing rodents as reservoir hosts while B. garinii is associated with birds 

(39, 43, 45, 98–100). Borrelia garinii and B. bavariensis are closely related sister taxa 

(39, 101), which suggests that at the split between these two genospecies there was also 

a switch in host association (39, 101).  

A current impediment to these studies though is a lack of biological samples and 

genomic data for specific populations of spirochetes (i.e. Asian) including also a bias in 

current samples towards human isolates from LB patients, which may not represent 

the full diversity of Bbsl genospecies. Most of what is currently known regarding the 

molecular mechanisms of Bbsl transmission, is based on studies including very few 

type strains of various genospecies (11, 13, 44, 92). This does not take natural variation 

into account, which has been shown in a few recent studies to play an important role 

in transmission efficiency (71, 75). Through taking these factors into account and 

producing novel isolates, we can then study both host and vector adaptation from an 

evolutionary ecology perspective (11, 16). 

 

Proposed host associations appear to drive spatial and temporal variation 

in Borrelia burgdorferi sensu lato community structure  

To complete their life-cycle, Bbsl spirochetes are dependent on the presence and 

interaction of both a competent vector and reservoir host (43, 46). Furthermore, each 
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Bbsl genospecies has a limited number of vectors and hosts which the spirochetes can 

successfully infect (42, 43). Therefore, ecological factors which influence both host and 

vector species will have indirect effects on Bbsl spirochetes by modifying prevalence 

and genospecies distribution (43, 46, 223). In Papers 2 and 3, we do observe a high 

level of spatial variability in Bbsl presence and species diversity  with differences in 

which Bbsl genospecies are present suggesting something is modifying Bbsl 

community structure (52, 169). Spatial structure within genospecies is known to exist 

(55, 89) and is generally associated with microspatial variation in host-community 

structure (56, 90, 91). Community structure generally refers to the assemblage of 

species in an ecological community (1). This includes then characteristics of species 

richness, composition, and abundance (1). In our studies we can discuss host 

community structure referring to the assemblage and relative abundances of hosts 

which can serve as tick and/or Bbsl hosts in our study area. Additionally, we can 

discuss Bbsl community structure which refers to genospecies diversity and relative 

abundance of those genospecies in the vectors and hosts. It is important to note though 

that in Papers 2 and 3 we only quantified the Bbsl community structure in questing 

ticks and not in hosts. Genospecies appeared to remain stable over years, with presence 

and frequency of a genospecies in year t being positively correlated to these factors in 

the year t-1 (52). Even so, Paper 2 showed that Bbsl community structure can both 

change or remain stable over the time frame of our study (52). This variability in Bbsl 

communities arises most likely due to direct ecological impacts to host populations (44, 

50, 224). Factors such as habitat fragmentation can influence host community 

structure and behavior resulting in modifications to tick-host-Bbsl interaction rates 

(225–228). It has been observed in malaria systems, another vector-borne pathogen, 

that measures to reduce human-mosquito contact have resulted in a change in 

mosquito feeding habits towards non-human animals (229). This shift resulted in 

major modifications to malaria transmission cycles as these non-human animals were 

not amplifying hosts for Plasmodium parasites (229). Human disturbance without 

habitat modification can also modify host habitat use resulting in differing 

susceptibility to tick, and consequently, pathogen infection (230). Ecological changes 

to climate or vegetation could also negatively influence tick survival, potentially 

excluding Bbsl spirochetes from an environment (23, 25, 231–233). We were able to 

show in Paper 2 that changes in Bbsl community structure was not due to a decrease 

in tick population size (52). This again suggests that spatial and temporal variability in 



 

- 182 - 
 

Bbsl is a result of host community structure. Even so, our studies did not include 

quantifications of host communities, so we are not able to confirm if the interactions 

described above are occurring in our study plots. Future studies would need to include 

information on host diversity and relative abundance to definitively say if host 

community structure is driving the observed variability in Bbsl. 

We observed that host community structure appears to drive variability in Bbsl 

prevalence and genospecies distributions. This is hypothesized to also relate to 

migration of spirochetes (56, 90, 91). Some Bbsl genospecies are bird adapted and 

show little to no geographic structure, suggesting they migrate easily between different 

geographic locations (56, 90, 91). We were able to confirm this fact as in Paper 5  

population structure between continents was reduced in bird-associated genospecies 

and Paper 1 confirmed that birds contribute to the movement of tick-borne pathogens 

(234). Of interest however, bird-associated Bbsl sequence types were not shared as 

commonly between distinct locations in Paper 2 suggesting very little migration 

between our study plots (52). The fact that we do not observe a higher proportion of 

shared sequence types for bird-associated Bbsl genospecies between study plots in 

Paper 2, could support that micro-scale variation in Bbsl migration is possible. 

Focusing on the bird-associated Bbsl genospecies found in Paper 2, these can utilize 

various passerine birds as reservoir hosts in their terrestrial based cycles (99, 159). 

Passerine bird species are known to differ in their site fidelity, or how likely they are to 

stay and/or to defend a given territory (235, 236). Depending on which bird species are 

therefore present in the environment and acting as local reservoirs of these Bbsl 

genospecies, there could be variability in bird movement between sites based on bird 

behavior. We were also able to see further in Paper 5, that sequenced isolates of B. 

garinii, a bird adapted genospecies, gathered from plots on a much smaller scale than 

in Paper 2, do not form monophyletic clades based on plot suggesting that in this area 

movement over short distances is possilbe. For this reason, as stated previously, future 

work will need to take host ecology and behavior into account to address these open 

questions.   

Recently, it has been discussed that Bbsl prevalence, and through this LB incidence, 

could be increasing due to climate change and the associated influences on tick vector 

geographic expansion (2, 3, 7, 237) although this effect is still debated (17, 52, 54). In 

our studies, Paper 3 supported a potential increase in overall Bbsl prevalence in 

comparison to previous research in the same geographic area (169, 171), but the 
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opposite (decrease in Bbsl prevalence) was observed longitudinally in Paper 2 (52). The 

results in Paper 2 are in agreement with other longitudinal studies which also displayed 

a decrease in Bbsl prevalence over their 15 year study (22, 54). The trend observed in 

Paper 3 could easily be a single year event caused by effects of host population 

fluctuations, as a response to event such as mast years (238, 239). Masting in Europe, 

normally refers to when beech (Fagus sylvatica) trees produce a high number of seeds 

in a given year which can influence vertebrate populations (238) and through this both 

tick and Bbsl populations as well (22, 54). Considering that 2017 was a masting year 

(240), and that effects of masting to Bbsl only appear two years after masting (54), 

increased prevalence would be expected in 2019 when all ticks in Paper 3 were collected 

(169). This shows that longitudinal studies, such as Paper 2, are required to make 

conclusions regarding temporal change to pathogen communities as major 

fluctuations in prevalence are possible in individual years based on extraneous 

ecological factors. 

So far, we have seen that host community and various other ecological factors lead 

to both stability and variability in Bbsl community structure. In theory, this could also 

maintain diversity within Bbsl genospecies although what drives diversity in Bbsl 

communities is still a major unanswered question. Two major hypotheses exist with 

varying support to describe how Bbsl diversity is maintained in nature: 1) negative 

frequency dependent selection, or 2) multiple niche polymorphism (11, 44, 92). 

Selective forces imposed by host immunity could lead to negative frequency-dependent 

selection, where common genotypes are selected against resulting in fluctuations of 

genotypes over time (241). This would then result in a high diversity of genotypes being 

maintained with hypothesized fluctuations in dominating genotypes (11, 241, 242). As 

our results do clearly show an influence of host community on Bbsl prevalence and 

genospecies assemblage, this hypothesis could hold true for our environments. 

Although, based on the MLST data collected in Paper 2, we did not find support for 

yearly fluctuations in sequence types which would suggest that common genotypes are 

not selected against in favor of rarer genotypes (52). This would argue against negative 

frequency-dependent selection in our system and for other mechanisms which 

maintain overall diversity, such as multiple niche polymorphism (44, 92, 241). In the 

case of multiple niche polymorphism, diversity is maintained through a heterogenous 

host and vector environment imposing a form of balancing selection where multiple 

genotypes are maintained as no single genotype has the highest overall fitness (11, 92). 
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Work done on B. burgdorferi s. s. in North America used whole genome data and 

simulation-based modeling to determine which evolutionary process maintained 

spirochete diversity in the wild (242). A similar approach could be taken utilizing the 

full B. bavariensis genomes introduced in Paper 4 (84) or for all three LB genospecies 

in Paper 5 once their full genomes are assembled. This would allow us to test if there is 

support for negative frequency-dependent selection or multiple niche polymorphism 

maintaining Bbsl diversity in Eurasia. Taken together though, it appears that in our 

study system Bbsl prevalence and diversity is predominantly a product of host 

community structure even if the exact selective mechanism behind this diversity 

requires further work before it can be fully understood. 

 

Geographic expansion is facilitated through vector shifts 

 As stated previously, Bbsl spirochetes and vector-borne pathogens are 

dependent on the presence of both a competent vector and reservoir host to complete 

their life cycle (43, 46). Vector populations are  able to expand into new geographic 

ranges due to changes in vector host preference but also modifications to 

environmental factors, such as temperature, argued to be a result of climate change (2, 

9, 243–245). This can also influence the geographic expansion of vector-borne 

pathogens (2, 9, 243–245). Vector-borne pathogens, like Bbsl spirochetes, could also 

adapt to new vectors potentially creating an opportunity to establish into new vector 

transmission cycles. Indeed,  the Bbsl phylogeny shows multiple instances of vector 

shifts (101), but how these vector shifts relate to Bbsl geographic expansion has not 

been thoroughly studied (9). Paper 4 re-asserted that B. bavariensis consists of two 

distinct populations in Asia and Europe (39, 84, 93).  By including Russian isolates we 

were able to show that the Asian population showed little to no geographic structuring 

(extended further in Paper 5 to include randomly sampled Japanese isolates) (39, 84, 

93). The European population has undergone a selective bottleneck which is attributed 

to the colonization of the novel vector (I. ricinus)  from an ancestral Asian population 

most likely vectored by I. persulcatus (39, 84, 93). In Paper 5, we were able to extend 

this Asian origin to two additional Bbsl genospecies: B. afzelii and B. garinii. Together, 

this showed that colonization of Europe by these three genospecies occurred through 

adaptation to a novel tick vector. Geographic expansion in relation to the colonization 

of a novel vector has been observed in other vector-borne pathogens such as West Nile 
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virus where expansion across North America resulted from novel adaptation to new 

mosquito vectors (9, 243).  

A major difference between the genospecies which we studied is that both B. afzelii 

and B. garinii did not show reductions in diversity in relation to colonization of the 

European tick vector. This means that, although these three pathogenic species all 

share a Eurasian distribution, they each have experienced different evolutionary 

pressures. Pathogens can face various barriers to transmission including biological 

(e.g., inability to colonize host/vector) or geographic barriers (e.g. spatial separation of 

host/vector and pathogens) (246). In the case of a geographic barrier, it is hypothesized 

that transmission could happen if the pathogen and the host co-occurred in a 

geographic region but due to spatial separation, they are not able to (246). This can be 

observed through the establishment of exotic diseases into a new environment after, 

for example, introduction by humans (9, 246). This occurs through a process known as 

ecological fitting via resource tracking (247). In other words, the pathogen is able to 

establish in the new host population due to similarities to previous hosts so that 

adaptation to the ancestral host facilitates colonization (247). For both B. afzelii and 

B. garinii, our data seems to support that previous barriers to vector shifts where 

geographic as we do not observe a drastic change in overall diversity (11, 13, 16). This 

would need to be tested further though, especially including more genomic 

compartments besides just the chromosome. Even so, the results for B. afzelii and B. 

garinii are a stark contrast in comparison to B. bavariensis where it is apparent that 

the barrier to colonization of I. ricinus was most likely a biological one (39, 93). With 

our current data we can only hypothesize what could have happened to facilitate the 

colonization of I. ricinus by B. bavariensis. Two hypotheses that exist currently could 

be 1) B. bavariensis colonization of I. ricinus was facilitated by another Bbsl 

genospecies (39), or 2) rapid mutation or horizontal gene transfer affecting genes 

related to vector colonization (i.e. OspA) occurred in the ancestor to the European B. 

bavariensis clade. Co-infections between Bbsl genospecies are common (seen in Paper 

2, 3, and 5) and there is a chance that few B. bavariensis spirochetes were able to 

colonize  I. ricinus due to beneficial molecules secreted or produced by an I. ricinus 

adapted genospecies (39, 52, 169). In the case of other vector-borne diseases, namely 

West Nile virus, it has also been shown that very few mutations along genes related to 

vector colonization can lead to vector shifts and, consequently, geographic expansion 

(9, 243). This could also be the case for B. bavariensis, although we see a high level of 
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diversity between the Asian and European populations suggesting stronger divergence 

than just a few mutations (84). Recombination events between Bbsl spirochetes are 

possible although they appear to strongly influence specific loci while recombination 

on the whole genome remains low (84, 205, 242, 248, 249). Even so, some work has 

shown that intra-specific recombination may occur 50 times more frequently than 

inter-specific recombination (168). The “ecotype model” of bacterial evolution states 

that in the case of low recombination within bacterial populations, recombination at a 

selectively advantageous loci could lead to a genome wide selective sweep (250–252). 

This would occur through the bacteria with the recombinant allele or locus quickly 

dominating in an environment due to higher fitness prior to other individuals gaining 

the allele or locus through recombination or mutation (250–252). A by-product of this 

clonal expansion would be the purging of genetic diversity within that population 

(250–252). If the ancestor to the European B. bavariensis population had experienced 

a recombination event at a vector-related loci (e.g., OspA, BBE31, OspC) it could have 

led to a genome wide selective sweep resulting in the low diversity, almost clonal 

population we observed in our studies. Future work would need to extract known 

vector-related loci but also identify novel loci which may have undergone selection or 

recombination events to determine if this could be the explanation of what occurred 

during B. bavariensis evolution. 

 Borrelia afzelii, B. bavariensis, and B. garinii are all genospecies of interest due 

to their ability to cause LB in humans (29, 30), although a discussion of the Eurasian 

system, especially in relation to evolution, would not be complete without discussing 

the additional Bbsl genospecies found across this geographic range. One additional 

genospecies, Borrelia turdi, has been found both in Europe and Asia while all other 

species are isolated to single continents (39, 41, 253–255). In total three additional 

Bbsl genospecies have been found in Europe (B. spielmanii, B. valaisiana, B. 

lusitaniae) and four only distributed in Asia (B. japonica, B. yangtzensis, B. sinica, 

and B. tanuki) (39, 41, 253–255). In the same way that a vector switch could lead to 

geographic expansion, vector specialization could make it so that genospecies are 

isolated to a certain region. All Asian genospecies are vectored by Ixodes species which 

are found only in Asia (42, 160), although information on the distribution of these 

species is sparse. Previous theoretical work and also within fungal pathogens showed 

that host (or in the case of vector-borne pathogens, vector shifts) can be predicted by 

phylogenetic distance between host species, with the probability of a shift decreasing 
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when hosts are distantly related (244, 256). This could easily be related to vector shifts 

if these Asian tick species are distantly related to European tick species reducing the 

probability of a vector shift. Unfortunately, in recent phylogenetic reconstruction work, 

Asian species besides I. persulcatus were not included so it is not possible to 

definitively say if this relationship is true (257). Along this line though, I. ricinus and 

I. persulcatus were found to be closely related suggesting a vector shift, as those 

observed in Paper 4 & 5, would potentially be possible due to low phylogenetic distance 

(244, 256, 257). For the three Bbsl genospecies only found across Europe, all are 

vectored by I. ricinus, which, according to the argument above, could mean that a 

vector shift into Asia would be possible. For these genospecies, there is most likely a 

barrier to transmission which could be related to tick-host interactions. As an example, 

B. lusitaniae is associated with lizards and is distributed along the Mediterranean 

basin (258, 259) but has also been found in parts of central Europe (169, 171). This 

genospecies most likely evolved in Europe, even though its closet relative is B. japonica 

which is only found in Asia (39, 101). One argument for B. lusitaniae distribution could 

be that association with lizards reduces its effective migration rate therefore isolating 

this genospecies to its current range, even though this genospecies is vectored by a 

generalist tick. Indeed, this genospecies appears to show structuring based on tick 

populations suggesting very little to no gene flow even on a European scale (259). As 

for B. spielmanii and B. valaisiana, these genospecies also most likely evolved in 

Europe after an ancestral Bbsl spirochete colonized the continent. These are rodent-

adapted (B. spielmanii) or bird-adapted genospecies (B. valaisiana) (39, 99, 123). We 

can only hypothesis if these genospecies are isolated to Europe based on potential tick-

host interactions as in the case of B. lusitaniae (42). This poses an interesting concept 

if these genospecies could eventually migrate back into the Asian transmission cycle 

through adaption to I. persulcatus or if that would not be possible. Future work could 

test if these two genospecies are able to be transmitted by I. persulcatus under lab 

conditions and monitor various geographic locations across Europe, Russia, and Asia 

to see if these genospecies maintain a stable or expanding range. Taken together, our 

results show that geographic expansion, at least on a large spatial scale, is determined 

by vector adaptation with vector associations further playing an integral role in 

determining where genospecies are found. Host association or tick-host specialization 

also are important factors but seem to relate to micro-scale variation in Bbsl 

community structure as discussed in the following section. 
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Host associations explain population structure and potentially influence 

speciation events 

 Even though it does appear that vector associations and adaptation to novel 

vector species governs larger scale (i.e. continent-level) Bbsl distributions, we were 

able to use our results to argue that gene-flow between geographic locations (Paper 5) 

and Bbsl community structure (Papers 2-3) are most likely a product of host-

associations (52, 84, 169, 234). The concept of host community structure influencing 

pathogen communities is not new as obligate pathogens (i.e., those without a free-

living stage) cannot survive in an environment without their host (43, 46, 50).  This is 

also true for Bbsl spirochetes as discussed in the section “Proposed host associations 

appear to drive spatial and temporal variation in Borrelia burgdorferi sensu lato 

community structure.” In Papers 4 & 5, we extend the ecological factors to include 

genomic information which allows us to study Bbsl evolution from an evolutionary 

ecology approach (11, 16). Focusing for now on the information gained from just the 

chromosome, we were able to compare the effects of proposed host association to gene 

flow and geographic structuring. In our study we utilized two rodent-associated 

genospecies (B. bavariensis and B. afzelii) and one bird-associated genospecies (B. 

garinii) (39, 43, 100, 123). Two interesting trends arose from this analysis 1) B. afzelii 

and B. garinii follow our expectations based on their accepted host-associations but B. 

bavariensis does not, 2) chromosomal diversity seems to correlate with host-

adaptation types.  

In Paper 4, we noticed that Asian B. bavariensis samples including Japanese 

and Russian isolates did not display the characteristic geographic structuring 

associated with rodent-adapted Bbsl genospecies (56, 84, 90, 91). Paper 5 extended 

this to include randomly sampled isolates of B. bavariensis and B. afzelii coming from 

the same tick populations either on the island of Hokkaido or Honshu (Japan). 

Utilizing this information, we were able to directly compare two proposed rodent-

associated genospecies and observe that they do indeed structure differently. The type-

strain of B. bavariensis, PBi, has been shown to transmit successfully through rodents 

(100) and further was shown along with Asian NT29-like B. bavariensis to be 

susceptible to bird immune serum, which is used as a proxy to determine host 

associations (47, 48, 70). Although, to the best of our knowledge, no transmission 

experiments with B. bavariensis and bird hosts have been performed to date. Borrelia 
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afzelii has been shown to be rodent-associated and additionally to not survive in bird 

hosts (47, 48, 70), although transmission of B. afzelii between ticks can occur on birds 

when many ticks feed on the same blood pool (so called co-feeding transmission) (159). 

To explain this difference between the two genospecies, we argue that Asian B. 

bavariensis may rarely utilize birds as secondary hosts. In Paper 5, we noticed that 

there were notable similarities between B. garinii, a bird-associated genospecies, and 

the Asian B. bavariensis population. Borrelia bavariensis DNA was also found 

recently in sea-bird ticks (I. uriae) along the Atlantic coast of North America suggesting 

migration out of Eurasia potentially by utilizing sea-birds (158). Even though an Asian 

B. bavariensis isolate was shown to be susceptible to avian immune serum (47), we 

argue that the high diversity observed in Asian B. bavariensis cannot be described by 

a single isolate and that this diversity could include novel host infection mechanisms 

allowing B. bavariensis to transmit through birds. This hypothesis will need to be 

tested further both in lab-based transmission experiments and in field-based studies 

to see if Asian bird species are found to be infected with B. bavariensis or not. This fact 

alone displays the value of studying these bacteria from an evolutionary ecology 

perspective (11), as through comparison of ecological and genomic data we were able 

to make testable ecological hypotheses regarding Bbsl spirochete transmission. In 

future sampling and sequencing of less studied Bbsl spirochetes comparative genomics 

could allow for clarification regarding ecology based on population structure, filling 

gaps in our existing knowledge on Bbsl transmission cycles in non-human pathogenic 

genospecies.  

If we accept the above argument that Asian B. bavariensis may utilize birds as 

secondary hosts in addition to rodents, we can observe a general trend that 

chromosome diversity, and potentially plasmid diversity, relates to host-association 

types. Borrelia garinii and Asian B. bavariensis display the highest genetic diversity 

while B. afzelii displays lower diversity as does European B. bavariensis. This could 

mean that bird-association is related to higher diversity while rodent-association is 

associated with low diversity. Host-association does influence gene flow between 

populations and therefore can modify how susceptible populations are to stochastic 

divergence processes, such as genetic drift (11, 16, 56, 90, 91). Genetic drift leads to a 

reduction in standing variation in the absence of gene flow which could result in lower 

overall diversity due to local geographic structure from host-associations (11, 241, 260, 

261). Rodent-association or association with small vertebrates (e.g., lizards, 
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hedgehogs, etc.) is found quite commonly across Bbsl genospecies while bird-

association is found in fewer genospecies (42, 101). As we suggest that rodent-

association leads to higher susceptibility to drift, this association could promote 

speciation events through passive divergence due to isolation and consequent 

stochastic divergence (11, 241, 260, 261). Host-association is already thought to 

influence Bbsl speciation (39, 42, 44, 92, 101), as in the case of sister taxa B. garinii 

and B. bavariensis, which appear to have diverged due to a host shift between birds 

and rodents (although the direction is still not fully known) (39, 93, 94). It is apparent 

from previous phylogenetic reconstruction that included 15 Bbsl genospecies that host 

switches are quite common in the evolutionary history of Bbsl genospecies and the B. 

bavariensis/B. garnii split is not an isolated event. We would need to test some of this 

further, including determining in other Bbsl genospecies if the trend between host-

association and diversity is universal or not. This would require sampling of 

genospecies, many of which are currently monotypic or described by very few isolates. 

Regardless though, our results appear to show that vector-association is the main 

driver of geographic expansion (argued for in the section “Geographic expansion is 

facilitated through vector shifts”) while host-association is potentially a main driver of 

speciation through influences on Bbsl community structure and consequent to the 

process of genetic divergence.  

 

Unstudied diversity in Eurasian Lyme borreliosis genospecies does 

influence host-pathogen interactions 

 Our studies showed again the considerable within-species diversity known to 

exist in Bbsl genospecies (83–86, 101, 168). Even though this within-species diversity 

exists, most functional studies to date related to Bbsl transmission dynamics rely on 

type-strains, with little focus on the impact of within-species diversity to transmission 

dynamics. The few functional studies to include within-strain variation, have  been 

limited to B. burgdorferi s.s., the main LD causative agent in North America, and even 

there have focused on only a few loci (e.g., OspC, dbpA) (74, 75, 262, 263). Functional 

validation of transmission dynamics can be time-consuming and expensive which 

explains the focus on type-strains to make general conclusions regarding Bbsl 

transmission phenotypes (11, 42). Comparative genomics can offer a solution to this 

issue by providing guidance to functional studies in determining sample subsets which 
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capture global diversity (11, 16, 92). This is what we have started to do with our data 

set described in Papers 4 and 5. 

Just based on the chromosome data presented in Paper 5, we can see that B. afzelii, 

B. bavariensis, and B. garinii all show within-species diversity. This extends even to 

the European population of B. bavariensis which showed variation in plasmid content 

(Paper 4) (84) even though this population was thought to be clonal (93, 157). 

Currently, we only have the full genomes of the 33 B. bavariensis isolates analyzed in 

Paper 4. Utilizing this information, we were able to start analyzing the impacts of 

natural variation to Bbsl transmission phenotypes, presented in Paper 6. Paper 4 

highlighted a few hotspots of nucleotide diversity in the B. bavariensis genomes, 

including the region located between 52 and 60kb on the aligned lp54 plasmids (84). 

This section is proposed to carry the PFam54 gene array, which contains genes related 

to host adaptation (i.e., CRASPs, complement evasion, host cell adhesion etc.) (69, 71, 

88, 187, 199). In Paper 4, we described that two European B. bavariensis isolates (PBN 

and PNi) were found to contain shorter lp54 sequences in comparison to type strain 

PBi (84). In Paper 6, we went on to show that the shorter lp54 sequences corresponded 

to these isolates naturally lacking the entire PFam54 gene array. This gene-array can 

be separated into five major lineages (I-V) (187). Lineage IV contains a variable 

number of paralogs and many genospecies displaying unique paralogs belonging to this 

lineage not found in other genospecies (187). The B. bavariensis type strain PBi 

contains PFam54 paralogs belonging to all of these lineages, although most do not have 

a described function (187). Seven of these PBi PFam54 paralogs belong to lineage IV 

including bga66 and bga71 (187), which produce proteins which bind late stage 

complement proteins (C7, C8, C9) and thereby inhibit the assembly of a functional 

membrane attack complex (MAC) (Figure 1); conferring resistance to human 

complement (69). The protein encoded by bga71 has also been implicated in binding 

human brain microvascular endothelial cells and therefore has been implicated in host 

tissue tropism (186).  We hypothesized that the loss of these genes in PBN and PNi 

would affect their sensitivity to immune serum and potentially mouse (i.e., host) 

infection. We were able to show an increased susceptibility to human complement but 

that PBN and PNi could establish viable infections after intradermal needle inoculation 

in lab mice. However, we did observe tissue specific colonization with lower efficiency 

in joint tissue, which we argued in Paper 6 to be due to PFam54 gene products 

potentially acting as adhesins.  
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Paper 6 proves the fact that within-species diversity is important to understand the 

full breadth of Bbsl transmission dynamics and that variation even within an almost 

clonal population of Bbsl spirochetes can modify infectivity and resistance phenotypes 

(84). This brings forward the point that type-strains, even in highly similar 

populations, cannot universally represent all isolates. Even so, our results highlight the 

fact that comparative genomic studies, especially those with full genome assemblies, 

can guide functional studies in isolate choice. Our future work will need to involve 

utilizing the full B. bavariensis genomes presented in Paper 4 and the genomes, once 

completed, for the additional genospecies presented in Paper 5 to search for novel 

candidates of adaptation. This includes genes of interest for vector-adaptation (B. 

bavariensis, B. afzelii) and host-adaptation (B. bavariensis vs. B. garinii). One 

example of future studies could be further analyzing the PFam54 gene family, but in 

isolates that contain the genes. It has already been shown that isolates of the same 

genospecies can differ not only allelically but also in presence/absence of specific 

PFam54 paralogs (187). Allelic variation between genospecies also has been shown to 

have major impacts to host immune evasion (71), and comparative analyses of our 

isolates could highlight mutations which are of interest for both host and vector 

adaptation or human LB manifestation. We showed in Paper 5 that additional LB-

causing genospecies share a high level of diversity along the chromosome and do also 

differ in their plasmid content. Although, plasmid presence or absence was not 

associated with factors such as continent (i.e., vector) or genospecies (i.e., host 

association). This suggests that functionally relevant variation occurs at the gene level 

either in the form of the presence/absence of genes (as shown for PBN and PNi in Paper 

6) or allelic variation among isolates. Through characterizing the full genome 

assemblies of the isolates presented in Paper 5, we will be able to better understand 

what genes relate to host adaptation, including variability in candidate genes (e.g., 

PFam54 gene array, OspA, etc.) as described previously (12, 13, 66, 74, 187). What is 

potentially of greater interest is how comparative genomics could identify novel genes, 

such as bbg11 in Paper 4 (84), which may influence the Bbsl life-cycle in yet 

uncharacterized ways (84). Paper 4 also opened opportunities to study additional 

factors, such as plasmid copy number which could influence gene-product dosages and 

potentially modify host-spirochete or vector-spirochete interactions. Plasmid copy 

number over one copy per cell has not been observed before (85, 135), suggesting this 

could be a fully novel aspect of how Bbsl spirochetes adapt to their environment. All of 
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this can be studied further utilizing the data collected and presented within this 

dissertation and will help guide functional studies in choosing representative isolates 

to better describe the full range of Bbsl transmission phenotypes. 

 

Final remarks and outlook 

 This dissertation aimed to study the evolution of Eurasian Bbsl spirochetes 

focusing on three human-pathogenic genospecies utilizing an evolutionary ecology 

approach. We were able to support many current hypotheses regarding the influences 

of ecological factors such as host community structure on the prevalence and 

distribution of Bbsl genospecies in a geographic area (Papers 1-3). We then integrated 

genomic and molecular based methodologies to study the drivers of Bbsl evolution 

(Papers 4-6). This has allowed us to show that adaptation to tick vectors governs the 

geographic distribution of Bbsl genospecies (Paper 4-5), although this will need to be 

tested in well sampled population level datasets for additional Bbsl genospecies, 

especially those currently described based on monotypic isolates (32, 101, 264). We 

utilize our results then to argue that, after expansion into a novel transmission cycle, 

host communities and selective pressures associated with successful colonization of 

these hosts, govern the local Bbsl community structure and genetic diversity (Paper 2-

3). Host adaptation further influences the level of gene flow between geographic 

locations based most likely on host mobility (Paper 1, 4-5). This could modify the 

susceptibility of a population to genetic drift (241, 260, 261), potentially affecting 

divergence and speciation. Finally, we could start the process of showing that type-

strains cannot always be taken to represent a full population (Paper 6) and that 

comparative genomic studies can guide which isolates are chosen for functional studies 

to best represent global variation. All of this advances our knowledge of how Bbsl 

genospecies have evolved across Eurasia and fills gaps regarding unstudied or 

neglected Bbsl populations (e.g., Asian B. afzelii isolates). 

 Future work which will focus on completing the plasmid assemblies for the 

isolates introduced in Paper 5 and studying the existing variation in the complete B. 

bavariensis genomes (Paper 4). This will bring many new insights into how natural 

variation can drive differences in host or vector associations. The results presented in 

this dissertation show that these factors can influence the process of geographic 

expansion or even speciation. This knowledge and future studies will lead to a better 

understanding of how Bbsl spirochetes may adapt to changing environments, allowing 
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for better predictions of pathogen emergence and better tracking human LB risk. The 

Bbsl system presents an amazing opportunity to study the evolutionary constraints on 

a vector-borne pathogen with a highly complex ecological life cycle. This will lead to 

better overall understanding of the evolutionary and ecological processes that maintain 

diversity, lead to diversification, and underlie speciation within vector-borne 

pathogens.  
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