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Zusammenfassung 
 
Das Epstein-Barr Virus (EBV) ist mit der Entstehung von zahlreichen 

Tumorerkrankungen und lymphoproliferativen Krankheiten assoziiert. Aufgrund 

der hohen Durchseuchungsrate des Viruses in allen menschlichen 

Bevölkerungsgruppen weltweit, der lebenslangen Latenzzeiten, sowie der 

rezidivierenden Symptomatik, wird intensiv geforscht, um den 

Pathomechanismus und die Folgen einer EBV-Infektion im Hinblick auf die 

Diagnostik und Behandlung von assoziierten Karzinomen zu etablieren. In der 

Zellkultur kann EBV B-Lymphozyten immortalisieren und deren unbegrenzte 

Proliferation ermöglichen. Das Epstein-Barr-Virus nukleäre Antigen 2 (EBNA2) 

ist ein virales Transaktivatorprotein. Es ist essentiell für die Immortalisierung von 

B-Zellen und hat bei der Regulation viraler und zellulärer Gene eine tragende 

Funktion. EBNA-2 initiiert den Eintritt in den Zellzyklus und die Aufrechterhaltung 

der Proliferation.  

PLK1 ist ein Enzym aus der Familie der Serin-Threonin Kinasen, das eine 

entscheidende Rolle in der Mitose spielt. Bekannt sind jedoch auch 

nichtmitotische Rollen von PLK1, einschließlich abnormer Schutz gegen 

Apoptose und Regulation von Krebszelleninvasivität.  Eine Überexpression von 

PLK1 wurde in einer Reihe solider Tumoren sowie bei akuter myeloischer 

Leukämie beobachtet und korreliert mit schlechter Prognose, fortgeschrittenem 

Krankheitsstadium, undifferenzierten histologischem Grad, hohem 

Metastasenpotenzial und niedrigen Überlebenschancen, deshalb sind PLK1-

Inhibitoren vielversprechende Kandidaten für neue therapeutische Ansätze in der 

Krebstherapie. 

Unsere Forschungsgruppe hat entdeckt, dass EBNA2 mit der Polo-like 

Kinase (PLK1) einen Protein Komplex ausbilden kann. Die nächste 

Herausforderung besteht darin, die strukturelle und funktionale Bedeutung dieser 

Interaktion zu erforschen, um die Biologie der EBV-Infektion besser zu verstehen. 

In diesem Dissertationsprojekt wird die Interaktion von PLK1 mit EBNA2 

biochemisch detailliert beschrieben und untersucht, ob der EBNA2/PLK1 Protein 

Komplex die Transformation von B-Lymphozyten unterstützt.  

Anhand der durchgeführten Experimente wurde bestätigt, dass EBNA2 

und PLK1 einen stabilen Proteinkomplex ausbilden. Der PLK1-ATP-kompetitive 

Kinaseinhibitor Volasertib verhindert die Bildung des EBNA2-PLK1-Komplexes 



 

 

- 3 - 

- 3 - 

nicht. Wir verglichen die Toxizität und Wirksamkeit der PLK1-Hemmung in 

EBNA2-positiven und negativen Zelllinien. Wir haben festgestellt, dass EBV-

infizierte B-Zellen empfindlich auf die Behandlung mit Volasertib reagieren und 

dass EBNA2 exprimierende EBV-negative B-Zelllinien für die Volasertib- 

Behandlung sensibilisiert sind. Um die Rolle von PLK1 und den Einfluss von 

EBNA2 auf seine Funktion in verschiedenen Zellzyklusphasen zu analysieren, 

wurden in einer Pilotstudie experimentelle Bedingungen für den G2 / M Arrest 

von DG75-Zellen als Voraussetzung für die biochemische Analyse in 

Kooperation mit anderen Forschungsgruppen festgelegt. Schließlich konnten wir 

zeigen, dass eine konservierte Region von EBNA2 (CR7) essenziell ist, jedoch 

nicht allein für die Bindung von EBNA2 an PLK1 zuständig ist. Im Gegenteil, 

scheint PLK1 auch mehr als eine Bindungsstelle für die Interaktion mit EBNA2 

zu haben. Möglicherweise können sowohl die Polo-Box-Domäne als auch die 

Kinase-Domäne effizient an EBNA2 binden. Die hier vorgestellte Studie ist ein 

Ausgangspunkt für weitere Arbeit.  

Die Identifizierung von PLK1 als Interaktionspartner von EBNA2 erfordert 

die Charakterisierung der regulatorischen Einzelvorgängen, um die genaue 

Bedeutung dieses Proteinkomplexes für die Kausalkette bei der Tumorgenese 

aufzulösen und dadurch bei der zukünftigen Entwicklung von onkologischen 

Behandlungen beizutragen.  
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Summary  

The Epstein-Barr virus (EBV) is associated with the development of numerous 

tumour and lymphoproliferative diseases. The virus has become ubiquitous in all 

human populations worldwide and has the ability to establish lifelong latency and 

reactivation syndromes after primary infection. Therefore, intensive research is 

being conducted to elucidate the pathomechanism and consequences of EBV 

infection in view of potential clinical applications in diagnosis and treatment of 

associated carcinomas. In cell culture, EBV can immortalise B-lymphocytes and 

allow their unlimited proliferation. Epstein-Barr virus nuclear antigen 2 (EBNA2) 

is a central viral transactivator protein. It is essential for the immortalisation of B-

cells through regulation of viral and cellular genes. EBNA2 initiates entry into the 

cell cycle and continuous maintenance of proliferation.  

 Polo-like kinase 1 (PLK1) is an enzyme in the serine-threonine kinase 

family that plays a crucial role in mitosis. However, non-mitotic roles of PLK1 are 

also reported, including enhanced protection against apoptosis and regulation of 

cancer cell invasiveness. PLK1 is known to be overexpressed in several solid 

tumours and in acute myeloid leukemia and is correlated with poor prognosis, 

advanced disease stage, low histological grading, high metastatic potential and 

limited chances of survival. Therefore, PLK1 inhibitors are promising candidates 

for novel oncologic therapies.  

 Our research group has discovered that EBNA2 can form a protein 

complex with the PLK1. Consequently, the next challenge is to exploit the 

structural and functional insights of this interaction in order to improve our 

comprehension of the development of EBV infection. In this dissertation project, 

the interaction of PLK1 with EBNA2 is confirmed. This interaction is thoroughly 

examined through the application of various biochemical and molecular 

approaches with a focus on the question of whether the EBNA2-PLK1 protein 

complex supports the transformation of B-lymphocytes.  

 In view of the conducted experiments, it was confirmed that EBNA2 and 

PLK1 form a stable protein complex. The PLK1 ATP-competitive kinase inhibitor 

Volasertib does not inhibit EBNA2/PLK1 complex formation. Both active and 

inactive PLK1 can bind to EBNA2. We also compared the toxicity and efficacy 

levels of PLK1 inhibition in EBNA2 positive and negative cell lines. EBV infected 

B-cells are sensitive to Volasertib treatment and more importantly, EBNA2 
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sensitises EBV-negative B-cell lines to Volasertib treatment. Furthermore, to 

analyse the role of PLK1 and the influence of EBNA2 on its function during 

different cell cycle phases, we established the experimental conditions in a pilot 

study for G2/M arrest of DG75 cells as a prerequisite for the biochemical analysis 

performed by our collaborators. Finally, we were able to demonstrate that the 

CR7 domain is essential, but not alone responsible for the binding of EBNA2 to 

PLK1. On the contrary, PLK1 appears to have more than one binding site for the 

interaction with EBNA2. Both, the polo-box domain and the kinase domain of 

PLK1 can bind efficiently to EBNA2. 

The study presented here is a foundation for further work. The 

identification of PLK1 as an EBNA2 interaction partner suggests the 

characterisation of regulatory correlated pathways to elucidate the exact 

importance of this protein complex for the pathological molecular mechanisms of 

tumourigenesis in an attempt to contribute to the future development of 

oncological treatments. 
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1 Introduction 
 
1.1 Epstein-Barr Virus  
 
1.1.1 Basics of EBV biology 

EBV is a common herpesvirus, the causative agent of infectious mononucleosis, 

and associated with multiple malignancies (Epstein et al., 1964). Also known as 

human herpesvirus 4 (HHV-4), EBV is the first human virus identified as having 

a proven association with the pathogenesis of cancer. From the whole 

herpesviridae family, which consists of more than 100 different viruses, only nine 

of them have pathogenic significance for humans: herpes simplex virus 1, herpes 

simplex virus 2, varicella-zoster virus, EBV, cytomegalovirus , human herpesvirus 

6, human herpesvirus 7 and Kaposi sarcoma–associated herpesvirus  (Whitley 

et al., 1996). 

EBV consists of an enveloped icosahedral capsid and a double-stranded 

DNA genome that encodes approximately 100 genes (Kempkes et al., 2015; 

Karrer et al., 2014). EBV-positive B-cells are better known as lymphoblastoid cell 

lines (LCLs), which can maintain the genome intact through generations, 

regardless of the viral genome persisting intracellularly (Thorley-Lawson et al., 

2004).  Each infected cell of the LCL carries multiple copies of the viral episome 

and expresses a limited set of six latent viral nuclear antigens (EBNAs 1, 2, 3A, 

3B, 3C and LP), as well as three latent membrane proteins (LMPs 1, 2A, 2B). 

Furthermore, small noncoding RNAs, EBERs 1 and 2 are constitutively 

expressed in all forms of latent EBV infection (Kieff and Rickinson, 2001). EBNA2 

is one of the first genes expressed in the beginning of the transformation of B-

cells to lymphoblastoid cell-lines, after EBV infection (Alfieri et al., 1991; Rooney 

et al., 1989). It plays a major role in the conversion from primary to latent infection 

by securing the survival of the immortalised lymphocytes. The expression of 

EBNA2, EBNA3C and LMP1 as key effectors of the immortalisation process 

induces LCL-like phenotypic changes such as upregulation of antigens and 

transactivation of the viral C-promoter (Hammerschmidt and Sudgen, 1989). 

These evasion mechanisms prevent the eradication of EBV transformed cells and 

benefit the viral oncogenesis (Cohen et al., 1989; Kempkes et al., 1996). 
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1.1.2 EBNA2 the protein 

EBNA-2 is an 86kDa and 487 amino acid protein that has several characteristic 

regions. Three of the EBNA2 regions have been studied intensely and functions 

could be assigned as described below. First, an acidic transactivation domain 

(TAD) near the carboxyl-terminus, secondly a region important for interaction with 

cellular DNA adapter proteins (adapters) such as CBF1 and finally a region (DIM1 

and DIM2) at the amino terminus, which enables the dimerisation of the protein 

(Friberg et al., 2015). 

Furthermore, besides a proline-rich region (polyP), an arginine- and 

glycine-rich region (polyRG), EBNA2 also has the so-called diversity region (DIV), 

poorly conserved between the two virus strains (EBV types A and B). Essential 

for the transcriptional regulation function of EBNA2 are three regions, the self-

association domain (aa 101-214), transactivation domain (TAD) (aa 424-468), 

and nuclear localisation signals (NLS) (aa 284-341 and aa 468-487) (Kempkes 

et al., 2010). 

Nine conserved regions (CR) have been defined within EBNA2 through 

comparison of the primary structure of human EBNA2 proteins with EBNA2 

related proteins of the lymphocryptoviruses of rhesus monkeys and baboons 

(Kieff and Rickinson, 2007; Friberg et al., 2015). 

 
Fig. 1 The structure of the EBNA2 protein 
Schematic illustration showing the primary structure of EBNA2.  
The EBNA2 protein consists of nine conserved regions (CR1-CR9), a proline 
repeat (polyP) (aa 59 to 95) and an arginine-glycine repeat (polyRG) (aa 282 to 
330). At the N-terminus two separate regions mediate homotypic associations 
are labelled DIM 1 and 2 as dimerisation motifs. EBNA2 has a diversity region 
(diversity). The conserved region CR6 mediates the interaction of EBNA2 with 
CBF1. The homotypic association is characteristic for the self-association domain 
(aa 101-214). At the C-terminus is localised a transactivation domain (TAD) (aa 
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424-468) and two nuclear localisation signals (NLS) (aa 284-341 and aa 468-
487) (Kempkes et al., 2010). 

1.1.3 EBV pathophysiology 

Infection with EBV, as with other herpes viruses, involves both a lytic and a latent 

phase. The establishment of latent infection requires the transformation of the B-

cells called immortalisation (Thorley-Lawson et al., 2004). The few infected B-

cells can initiate proliferation in immunocompromised hosts with a dysfunctional 

or limited number of T-cells creating lymphoblastoid cell lines (LCLs) (Rickinson 

et al., 1997).  Primary infection of B-cells results in a rapid expansion of infected 

lymphocytes congruent to the proliferation rate observed in EBV-immortalised 

LCLs (Zhao et al., 2011). Following a marked EBV-specific cytotoxic T-cell 

response by the host, the virus establishes a lifelong latent infection in the B-

cells, where it is present in 1 in 105–106 circulating cells (Zhou et al., 2015). The 

presence of virions in throat washings of healthy carriers suggests that these 

latently infected cells can under certain circumstances be urged into a lytic phase. 

Oropharyngeal epithelial cells were once thought to be the site of primary 

infection, but it is now believed that EBV initially targets B-cells located in 

pharyngeal tissues as tonsillar parenchyma (Laichalk et al., 2002) 

Various studies using EBNA2 expression in EBV-positive LCL cell lines 

(Spender et al., 2006; Zhao et al., 2006) or conditional EBNA2 expression in EBV-

negative BL cell lines (Maier et al., 2006) confirm numerous EBNA2 target genes, 

independent of the expression of other viral factors. In the EBV-positive cells, the 

protooncogene myc and phosphorylated subunits of different kinases were 

suggested to be direct targets of EBNA2, independent of de novo protein 

synthesis of the virus. The protooncogene c-myc (myc) can be activated by 

mitogenic signals and switched off or even induce apoptosis of cells in the 

absence of proliferation conditions. Its constitutive expression as a common 

feature of malignant transformation triggers uncontrolled cell cycle progression. 

Therefore, myc appears to have an important role as an EBNA2 target for the 

induction of B-cell proliferation (Kaiser et al., 1999). In the absence of EBNA2 

activity, the endogenous myc is not expressed in EBV infected B-cells (Kempkes 

et al., 1995). EBNA2 is known to indirectly access DNA and induce the 

expression of the LMPS. By binding to the cellular transcription factor, C-

promoter binding factor 1 (CBF1), the key downstream effector of Notch 
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signaling, EBNA2 recruits co-activators of transcription (Hsieh et al., 1995). 

Furthermore, EBNA2 is reported to control phosphorylation as a result of its 

interaction with the protein phosphatase 1 (PP1) (Fahraeus et al., 1994). The 

PP1 is a member of the family of protein serine-threonine phosphatases and is 

reported to be ubiquitous in all eukaryotic cells (Cohen P., 2002).  

The Epstein-Barr virus (EBV) also encodes a serine/threonine protein 

kinase (PK) that promotes the lytic DNA replication. PK interacts with EBNA2 and 

phosphorylates it at Ser-243, which results in suppressed transactivation activity 

for LMP1 (Yue et al., 2005). However, the interaction remains questionable as it 

was reported only once.  

1.1.4 EBV-associated non-malignant diseases  

EBV, an orally transmitted virus, infects the majority of the world´s population and 

can persist as a lifelong asymptomatic infection, which can be detected in 

oropharyngeal secretions from infectious mononucleosis patients, 

immunosuppressed patients and healthy EBV seropositive individuals (Gerber et 

al., 1972; Strauch et al., 1974; Yao et al., 1985). The primary infection occurs in 

developed populations mostly in adolescence or adulthood. It leads to the 

manifestation of infectious mononucleosis (IM, glandular fever) in some cases 

(Cohen JI, 2000). The illness first manifests itself in flu-like symptoms such as 

fever, headache and fatigue. Swelling of the lymph nodes due to the massive 

proliferation of B- and T-cells is also characteristic (Young et al., 2003). 

Infected B-cells as a primary target of the virus are characterised by limited 

expression of viral genes. In individuals with an intact immune defense, the 

infected, proliferating B-cells are largely eliminated by specific T-cells, so that 

recovery occurs after a few weeks. In rare cases, after infectious mononucleosis, 

symptoms may persist for months or years, a condition also known as chronic 

active infection. 

 A rare complication of primary EBV infection is referred to as X-linked 

lymphoproliferative syndromes XLP1 and XLP2, both defined as 

immunodeficiencies with overwhelming and potentially lethal inflammatory 

reaction to certain infections. XLP1 is caused by hereditary mutations in the gene 

encoding the signalling lymphocyte activation molecule (SLAM)-associated 

protein (SAP). It occurs only in males and is correlated with gene defects on the 

X-chromosome. Such gene aberrations usually do not cause any symptoms. 
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However, primary EBV-infection in the presence of nonfunctioning SAP protein 

can result in an excessive immune response (Morra et al., 2001). XLP2 evokes 

from mutation of the X-linked inhibitor of apoptosis (XIAP). XLP2 has been found 

to cause relapsing hemophagocytic lymphohistiocytosis with and without 

exposure to the EBV (Filipovich et al., 2010). 

1.1.5 EBV-associated tumours 

Due to the still lengthening list of human cancers resulting from EBV infection, 

EBV was classified by the World Health Organization (WHO) as a tumour virus 

in 1997. EBV is associated with Burkitt´s lymphoma, non-Hodgkin´s lymphoma, 

Hodgkin´s disease, nasopharyngeal carcinoma, lymphoepithelioma-lie 

carcinoma and gastric adenocarcinoma, and in leiomyosarcomas associated with 

immunosuppression (Young and Murray, 2003; Hsu et al., 2000). EBV-specific 

antibody titers are known to be elevated months to years prior to the diagnosis of 

Burkitt’s lymphoma, nasopharyngeal carcinoma, Hodgkin’s disease, gastric 

adenocarcinoma (de-Thé et al., 1978; Levine et al., 1995; Mueller et al., 1989). 

Clinical evidence confirms that primary EBV infection in iatrogenic 

immunosuppressed patients can lead to EBV-positive lymphomas (Rickinson and 

Kieff, 1996). The combination of incidence patterns and risk factors to EBV 

biology and virus-host interaction elucidates factors involved in EBV-related 

carcinogenesis. A characteristic feature of EBV is the expression of certain 

distinct viral latent transcription programs called latency I, II, and III (Kempkes, 

2010). In LCLs and EBV-positive malignancies the virus is typically latently 

present and transcriptionally active (Abbot et al., 1990). At this stage, the gene 

expression pattern is restricted within the pool of 12 gene products. Each latency 

motif I-III can be identified by the expressed antigens and is a typical feature for 

distinct tumours associated with EBV (Kempkes and Robertson, 2015; Saha et 

al., 2011), as shown in Table 1. Hence, the transition from one EBV latency 

pattern to another is also possible. 
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latency type expressed antigens associated malignancy 

I EBNA-1 Burkitt’s lymphoma 

 EBERs Gastric carcinoma 

   

II EBNA-1 Nasopharyngeal carcinoma 

 LMP-1, -2A, -2B Hodgkin’s disease 

 EBERs 
Nasal T/natural killer-cell 

lymphomas 

   

III EBNA-1, -2, -3A, -3B,-3C, -LP 
AIDS-associated non-
Hodgkin’s lymphoma 

 LMP-1, -2A, -2B Post-transplant lymphoma 

 EBERs  

   

other EBNA-1, -2 Leiomyosarcoma 

 EBERs  

Table 1 Patterns of latent gene expression in EBV-related malignancies 
The antigens expressed by EBV include six nuclear antigens (EBNA1, 2, 3A, 3B, 
3C, and LP), three latent membrane proteins (LMP1, 2A, and 2B), two small 
noncoding RNAs (EBER1 and 2). Depending on the expressed antigens, there 
are three possible latency types: type I in Burkitt ́s lymphoma: EBNA 1 and two 
small noncoding RNAs are expressed, latency type II: typical for nasopharyngeal 
carcinoma, Hodgkin- and T- cell lymphomas, which all express EBNA 1 (EBV 
nuclear antigen 1), LMP; type III: characterised by the expression of 11 viral 
genes in lymphoblastic B-cell lymphomas (Data from Saha et al., 2011). 
 
Burkitt's lymphoma 

Burkitt's lymphoma is defined as a high-grade, low-differentiated, monoclonal 

non-Hodgkin's B-cell lymphoma, mostly localised in the abdominal, especially 

ileocecal area, and the jaw region in pediatric patients, but also affecting brain 

tissue and ovaries (Ferry at al., 2006; Mondal et al., 2014; Jiang et al., 2011). 

Burkitt's lymphomas are characterised by specific chromosomal translocations 

between chromosome 8 and chromosomes 14, 2, or 22, through which the c-myc 

gene is placed under the control of an immunoglobulin enhancer and, thus, 

constitutively active. The African endemic form of Burkitt's lymphoma is 100% 
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associated with EBV, while sporadic and AIDS-associated forms have a less 

regular association with EBV (Haddow et al., 1970; de-Thé et al., 1978). 

Prognosis for lymphomas with histologic characterstics of Burkitt-like lymphoma 

without myc translocation is reported to be better than for those with a myc 

translocation. In the last years, specific mutations, related to myc in BL patients 

have been identified as crucial for the further estimation of survival chances and 

planning of treatment strategies (Dunleavy et al., 2016).  

 

Hodgkin's disease 

Hodgkin's disease is a heterogeneous group of lymphoproliferative diseases. 

Depending on the subtype, in 10 to 95% of the tumours associated with the 

disease, EBV can be detected mainly in so-called Reed-Sternberg cells. EBV 

could either indirectly support the pathogenesis of Hodgkin's disease, possibly by 

triggering certain pathological mechanisms or indicate the depression of 

immunoregulation that leads both to a malignant transformation and the 

reactivation of EBV. Data shows that in the western world, Hodgkin's disease is 

the most common lymphoma in adolescents and young adults (Glaser et al., 

2003; Mueller et al., 1989). 

 

Nasopharyngeal carcinoma (NPC) 

In almost all cases of undifferentiated nasopharyngeal carcinoma, EBV can be 

detected in tumour cells. It has been shown that EBNA1, LMP1 and LMP2A are 

expressed within the tumour cells. Although the particular pathogenetic role of 

EBV in the carcinogenic process is not clearly defined, the establishment of a 

virus latency program in epithelial cells is a precursor of malignant transformation 

(Young et al., 2014). Furthermore, in nasopharyngeal carcinoma elevated EBV-

antibody titers are associated with total tumour burden and affect long-term 

survival rates (Henle et al., 1977). NPC has a distinguishing racial and 

geographical allocation with the highest prevalence among the male population 

of Southern China and the Arctic region, indicating that numerous factors 

contribute to the development of NPC (Levine et al., 1995; Herold, Inn. Medizin, 

1993). 
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Post-transplantation lymphoma 

In immunosuppressed persons, after solid organ or hematopoietic stem cell 

transplantation, the suppression of T-cells can cause serious complications by 

EBV, as well as by other herpesviruses. These are summarised under the term 

PTLD (post-transplantation lymphoproliferative disease), either as a 

consequence of reactivation of the virus post-transplantation or a result of a 

primary EBV infection due to iatrogenic immunosuppression. They are 

associated with massive proliferation of B-cells and high mortality (Hsieh et al., 

1995). The average probability of occurrence is about 2 to 10% for a solid organ 

transplant and higher for hematopoietic transplantations (Burney et al., 2006). 

The gold standard for diagnosing PTLD is tissue biopsy, but many authors have 

also investigated the role of EBV viral load. In B-cell NHLs rituximab has been 

established as an integral part of the PTLD treatment (Dierick et al., 2015). 

 

Coincidence of EBV-associated diseases and HIV infection 

HIV-related immunodeficiency benefits the incidence of EBV-associated 

diseases. These include Burkitt's and Hodgkin's lymphomas, diffuse large B-cell 

lymphomas with immunoblastic morphology, hairy cell leukoplakia and central 

lymphoma of the nervous system (McClain et al., 1995). The ability of this virus 

to infect oropharyngeal epithelial cells is demonstrated by EBV replication in 

AIDS-associated oral hairy leukoplakia (Zhao et al., 2011).  

In addition to the described tumours, which are proven to be associated 

with EBV, other tumours have been associated with EBV in recent years.	EBV 

genomes were identified within the gastric carcinoma and marginal dysplastic 

epithelial cells but not found in surrounding lymphocytes and healthy mucosa 

tissues. It has been reported that monoclonal EBV episomes can be found in 

EBV-associated gastric cancer cells, which suggests a contribution of the EBV 

infection to gastric carcinogenesis. While a causal involvement of EBV in gastric 

carcinomas (Levine et al., 1995) and leiomyosarcomas (McClain et al., 1995) can 

now be considered as certain, its association with carcinomas of the liver and 

breast cancer has been discussed controversially (Bonnet et al., 1999; Sugawara 

et al., 1999). It has been suggested that EBV-associated tumours might be 

prevented or even targeted by a prophylactic or therapeutic EBV vaccine (Cohen 

JI, 2015). 
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1.2 PLK1 
 
1.2.1 The PLK protein 
The polo-like kinase (PLK1) is a serine-threonine protein kinase. It consists of 

603 amino acids and has an apparent molecular weight of approximately 66kDa. 

PLK1 has multiple regulatory roles in many processes of the cell cycle, including 

centrosome maturation, Golgi fragmentation, spindle assembly, kinetochore 

function, centromere assembly and cytokinesis, DNA replication, mitotic entry, 

removal of chromatid cohesion and chromosome condensation (Sumara et al., 

2002; Lane et al., 1996; Spankuch-Schmitt et al., 2002; Neef et al., 2003) 

 
 
Fig. 2 PLK1’s role in the cell cycle 
Dashed lines show the sites of action. Yellow blue and violet lines show the 
progression of the cell cycle. Abbreviations: APC/C, anaphase-promoting 
complex/cyclosome; D, daughter cell (adapted from Hao and Kota, 2015). 
 

During proliferation, the cells undergo synthesis of DNA (S-phase) and cell 

division (M-phase) with intervening gap phases to allow cell growth. Important 
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cell cycle checkpoints are mediated by cyclin-dependent kinases (Hunt et al., 

2011). 

To fulfil all its functions, PLK1 promotes mitotic entry by interaction with 

kinases Cdc25C Cdk1/Cyclin B complex, Aurora A and B (Seki et al., 2008). 

Nevertheless, non-mitotic roles for PLK1 have also been confirmed, including 

protection against physiological apoptosis and regulation tumour invasiveness 

(Gjertsen and Schoffski, 2015). Therefore, PLK1 has been the focus of a number 

of research studies. The specificity of PLK1-dependent biochemical reactions is 

regulated by PBD-dependent substrate binding and KD-dependent substrate 

phosphorylation. The PLK1 activation requires phosphorylation of a residue on 

the T-loop (Thr210) (Elia et al., 2003; Garcia-Alvarez et al., 2007). 

PBD and KD are capable of mutual inhibition through intramolecular 

interaction with each other and allosteric regulation. PBD inhibits KD by 

restraining the flexibility of the hinge region between N-terminal and C-terminal 

lobes. KD stabilises a less active conformation of the PBD. The phosphorylation 

of the T-loop (T210 in PLK1 within the KD) increases the catalytic activity of KD. 

Phosphorylation of Ser137 or binding of PBD to a partner interrupts the 

intramolecular interaction between KD and PBD and releases the mutual 

inhibition. The flexibility of the hinge region and the interlobe cleft has been 

proposed as crucial for the catalysis of protein kinases, and the reduction of the 

interlobe flexibility of the KD by PBD binding might be one of the factors 

underlying the autoinhibition of PLK1 (Lee et al., 1998; Archambault et al., 2015). 

PBD binds phosphorylated serine or threonine residues. PBD recognises 

a consensus phospho-Ser (p-Ser)/phospho-Thr (p-Thr) motif containing 

[Pro/Phe]-[Φ/Pro]-[Φ]-[Thr/Gln/His/Met]-Ser-[pThr/pSer]-[Pro/X] (Φ represents 

hydrophobic residues and X stands for any amino acid). PBD binds to its targets, 

either non-phosphorylated peptides or phosphor-peptides that were 

phosphorylated by PLK1 itself in a phospho-specific manner (Elia et al., 2003). 

PBD also appears to improve the spatial association of KD to its substrates. 

Therefore, PBD binds to a phosphorylated residue on the substrate or its target 

protein. The PBD-conducted interaction with a phosphorylated protein occurs 

after the creation of a phosphorylated binding motif and later binding of PLK1 to 

the already created phospho-target. PLK1 is able to recognise the phospho-

epitope and bind to it in a concentration- and affinity-dependent manner (Barr et 

al., 2014). 
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Fig. 3 Illustration of PBD-assisted substrate recognition and PLK1 
activation 
The initial phosphorylation by another kinase on threonine 210 (T-loop activation) 
enhances the kinase activity of PLK1. Protein substrates are pre-phosphorylated 
by priming kinases and directed to PLK1 when the intramolecular inhibition 
between the kinase domain and PBD is terminated (adapted from Barr et al., 
2004). 
 
The fact that PLK1 substrates can be activated by other kinases is of great 

importance, but PLK1 can also prime its targets (Lee et al., 2014). The 

phosphorylated residue, essential for PBD binding, is generated by either PLK1 

itself (self-priming) or another upstream kinase (non-self-priming) as shown in 

Figures 4 A) and B) (Park et al., 2010; Lee et al., 2008). 

 
Fig. 4 Two pathways of PBD-dependent binding  
(A) PLK1 phosphorylates and generates the p-T78 residue on a kinetochore 
protein before binding to it, in this case as exemplary, to PBIP1. This mechanism 
is known as self-priming and binding. (B) another kinase, Cdk1 phosphorylates a 
centrosomal protein, Cenexin1, and generates the p-S796 motif required for 
PLK1 PBD binding. The second mechanism is called nonself-priming and binding 
(adapted from Lee at al., 2014). 
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Fig. 5 PLK1 expression in different phases of mitosis  
(adapted from Liu et al., 2016.) 
 

PLK1 expression increases during S-phase, reaches its maximum during 

G2–M transition, and drops abruptly at the end of mitosis (Golsteyn et al., 1994). 

Following the more common mechanism of activation, PLK1 can be 

phosphorylated in its T-loop by Aurora A with Bora as co-factor during the G2-

phase of the cell cycle. Temporally, at the G2-M transition, Bora facilitates the 

exposure of PLK1 activation loop for phosphorylation of the conserved threonine 

residue Thr210 in PLK1 by upstream kinases, and this prevents sequestration of 

the activation loop by the inter-domain linker and partially activates PLK1 

(Macurek et al., 2008; Fischer et al., 2015). 

In late mitosis, phosphorylation of the conserved serine motif at the end of 

the hinge region Ser137 in PLK1 by upstream kinases would partially activate 

PLK1 through disrupting the intramolecular interaction between the KD and PBD. 

Spatially, the binding of the PBD to the phosphorylated target at the proper 

subcellular location can disrupt the intramolecular interaction between the PBD 

and KD and relieve the inhibition of the PBD. These temporal and spatial controls 

can occur separately or additively, which allows multilevel regulation of PLK1 and 

satisfies its multiple functions in different stages of the cell cycle (Kang et al., 

2006; Arnaud et al., 1998). 

PLK1 associates dynamically to multiple subcellular structures throughout 

the interactions with various proteins. It localises at the centrosomes during 

interphase and prophase and can be traced to the kinetochores in pro-metaphase 

and metaphase. During anaphase it moves to spindles and shifts to the midbody 

during telophase. This temporal localisation of PLK1 corresponds with several 

particular tasks of PLK1 including its specific substrate recognition and kinase 

function throughout the mitotic cycle (Hanisch et al., 2006; Seong et al., 2002). 
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1.2.2 The PLK protein family 
PLK1 is only one member of a whole family of serine-threonine kinases. All 

members appear to play specific roles that have little functional overlap with one 

another. PLK2 and PLK3 contribute to the DNA damage response. PLK2, which 

is expressed primarily in early G1-phase, mediates cellular stress-induced 

checkpoint arrest for survival, while PLK3 regulates G1/S-phase transition and 

other pathways, including spindle disruption (Bahassi et al., 2002; Conn CW et 

al., 2000; Drew M. L. et al., 2005). In addition, PLK2, PLK3, and PLK5 are 

required for proper neuronal function and differentiation, while PLK4 plays a key 

role in centriole duplication (de Cárcer et al., 2011; Zitouni et al., 2014; Bruns et 

al., 2003; Helmke et al., 2015). PLK4 contains a conserved central domain, also 

known as the ‘cryptic polo box’ (CPB), that connects the kinase domain and the 

carboxyl-terminal PB. This region was first described as a centriole targeting 

element, which is able to bind the kinase domain in s-trans conformation (Leung 

et al., 2002). Regarding this specific feature, the region is called the ‘cryptic polo 

box’ despite the sequence disparity to standard PBs (Swallow et al., 2005). 

Although the primary sequence of PLK1 exhibits a high level of homology 

with closely related PLK2 and PLK3, the three PLKs have divergent substrate 

specificity and the PBDs of each PLK interact with specific phosphoepitopes on 

their binding targets.  

PLK1 is characterised by a carboxyl-terminal polo-box domain (PBD) 

phosphopeptide binding domain, composed of two polo boxes PB1 and PB2. 

PBD1 and PBD2 are separated by Loop 2 switch linker region. KD and PBD are 

separated by inter-domain linker, containing a destruction box essential for PLK1 

degradation and not conserved in PLK2, PLK3, PLK5 (Mundt et al., 1997; 

Archambault and Glover, 2009).  
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Fig. 6 PLK1 as a member of the family of serine-threonine kinases 
The approximate level of sequence similarity to PLK1 is given as a percentage 
for all the other PLK members. The kinase domain is capable of ATP binding. T-
loop activation of PLK1 occurs at Threonine 210 (T210) (Macurek et al., 2008; 
Seki et al., 2008). The destruction box (D-box) is a typical feature only of the 
PLK1. PB1 and PB2 are the polo-box domains with phopho-selectivity found in 
all the PLK-family members, apart from PLK4. PLK4 is the most divergent 
member of the PLK family and possesses a C-terminal PBD, called PB3 and a 
central domain known as the cryptic polo box (CPB) (Cizmecioglu et al., 2010). 

 
1.2.3 PLK1 overexpression and associated tumours 
PLK1 is expressed in all tissues (www.genecards.org) but overexpression of 

PLK1 has been observed in a variety of solid tumours, such as head and neck, 

esophageal, gastric, mamma, ovarian, endometrial, colorectal, pancreatic, 

papillary, thyroid, prostate carcinoma, melanomas, glioma, hepatoma, as well as 

in acute myeloid leukemia (AML). It has also been associated with advanced 

disease stage, low histologic grade, high metastatic potential and bad overall 

survival chances (Holtrich et al., 1994; Takai et al., 2005).  AML is characterised 

by a differentiation arrest and dysfunctional proliferation of progenitor cells, 

caused by genetical aberrations or signal transduction malfunctions. Proteins 

linked to PLK1, such as Aurora A and B, but also PLK1 itself are overexpressed 

The human PLK family 



 

 

- 20 - 

- 20 - 

in AML cell lines. Inhibition or knockdown of PLK1 preferentially disrupts further 

proliferation of leukemic rather than normal cells and sensitises AML cells to other 

chemotherapeutic agents (Renner et al., 2009).  

Acute myeloid leukemia with a complex karyotype (CK AML) have an 

adverse outcome even treated with intensive therapies. PLK inhibition resulting 

in cell proliferation defects and autophagy has been suggested as the most 

selective approach for the primary CK AML (Moison et al., 2019). 

Comparing the PLK1 expression in cancer and normal tissues shows 

significantly higher expression levels of PLK1 in malignant cells. Moreover, PLK1 

protein expression has been reported to be increased in various human cancers 

compared with healthy tissue and is correlated to bad survival rates. 

Overexpression of PLK1 correlates to considerably worse overall survival in 

comparison to lower expression levels of PLK1 in a variety of cancer types (Liu 

et al., 2017). These observations have encouraged further investigation of the 

potential therapeutic application of PLK1 inhibitors for the pharmaceutical 

treatment of cancer (Strebhardt and Ullrich, 2006; Gjertsen and Schoffski, 2015). 

Even though PLK1 overexpression and EBNA2 have never been linked to 

one another, their coincidental occurrence and association to certain tumours 

need to be narrowly inspected. Oro-/ nasopharyngeal carcinoma, gastric 

carcinoma, breast cancer and NHL are all potentially linked to PLK1 and EBNA2 

conjunction (Table 2). In DG75 Burkitt lymphoma cells, PLK1 is overexpressed, 

and approximately five times stronger than the household gene GAPDH (Xiao et 

al., 2016). PLK1 signalling is known to promote the protein stability of the 

protooncogene myc and vice versa, myc can induce PLK1 transcription, 

establishing a feed-forward myc-PLK1 circuit in lymphomas (Xiao et al., 2016). 
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tumour PLK1 
overex- 
pression 

prognostic 
value of 

PLK1 over- 
expression 

reference associa-
tion 
with 
EBV 

references 

oro/nasopha
ryngeal 
carcinoma 

+ + Knecht et 
al., 1999 + Henle et 

al.,1977;  

gastric 
carcinoma + Ø 

Tokumits
u et al., 
1999 

+ Levine et al., 
1995 

breast 
cancer + Ø 

Weichert 
et al., 
2005 

+ Richardson 
et al., 2005 

non-
Hodgkin‘s 
lymphoma 

+ + Mito et 
al., 2005 + Hummel, et 

al., 2006; 

+ positive correlation: confirmed PLK1 overexpression / validated prognostic 
value / confirmed EBV association; Ø no prognostic value. The proposed 
prognostic potential of PLK1 overexpression in cancer patients is based on 
available completed studies. (Adapted from Strebhardt and Ullrich, 2006.) 

Table 2 PLK1 and EBV coincidental overexpression in tumours 
 
1.2.4 PLK1 functional inhibition 

PLK1 inhibition can be achieved in a variety of ways. Historically the first down-

regulation of PLK1 function was performed in 1996 by Lane and Nigg. They have 

reported that the treatment of HeLa cells with anti-PLK1-antibodies causes 

inhibition of cellular proliferation. Cells arrested in mitosis and are incapable of 

forming a bipolar spindle (Lane et al., 1996). These findings were later confirmed 

by using dominant-negative forms of PLK1 and single-stranded DNA antisense 

oligonucleotides, which bind to complementary mRNA and prevent translation of 

PLK1. Cells transfected with these antisense oligonucleotides were blocked in 

mitosis 48h post-transfection (Spankuch-Schmitt et al., 2002). A third mechanism 

of suppressing PLK1 expression is the use of small interfering RNA (siRNA). Only 

recently the possible clinical use of the siRNA as a class of therapeutics, which 

can selectively silence disease-causing genes, has been investigated. Several in 

vitro studies have already shown that PLK1 inhibition using siRNA significantly 

reduces the proliferation of multiple cancer cells (Weiß et al., 2012). 

Inhibition of PLK1 triggers an aberrant mitotic activity that ultimately 

triggers cell death that occurs either during or after defective mitosis or 
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irreversible cell cycle arrest. Targeting mitosis for the treatment of human cancer 

is a validated approach and agents affecting the mitotic spindle are used as 

components of various therapeutic regimens. The so-called polo-arrest, caused 

by PLK1 inhibition is a perturbation of the spindle assembly and cell-cycle arrest 

at the prometaphase. Mitotic cells accumulate with monopolar spindles that are 

inappropriately attached to the kinetochores (Galluzi et al., 2012). 

 

Volasertib 

PLK1 specific inhibition can be achieved by targeting either the kinase domain 

(KD), which conducts the enzymatic phosphorylation function of PLK1, or the C-

terminal polo-box domain (PBD), which implements the substrate recognition. 

One of the earliest PLK1 inhibitors, BI2536, was developed and described by 

scientists at the Boehringer Ingelheim Company. Although no longer used in 

monotherapy, due to suboptimal response rates (Mross et al., 2012), it has 

demonstrated efficacy when combined with other chemotherapeutic agents (Lian 

et al. 2018). 

Volasertib (BI 6727), the most advanced PLK inhibitor in clinical 

development, is a dihydro-pepteridinone that targets the PLK family in an ATP-

competitive manner and thereby induces mitotic arrest and apoptosis (Rudolph 

et al., 2009). Volasertib locates in the ATP binding pocket of PLK1 and causes 

competitive inhibition. Volasertib disrupts centrosome maturation and division 

and thus causes the composition of a monopolar spindle. Consequently, the cells 

are temporarily arrested in the prometaphase as they are unable to pass the 

spindle assembly checkpoint (Liu and Erikson, 2003; Sumara et al., 2004; Lenart 

et al., 2007; Steegmaier et al., 2007).  

In vitro Volasertib potently curbs PLK1 enzymatic activity at a half-maximal 

inhibitory concentration (IC50) of 0.87 nmol/L, but also two other members of the 

PLK family, the kinases, PLK2 (IC50, 5nmol/L) and PLK3 (IC50, 56nmol/L). 

However, the inhibitory activity against PLK4 (20mM) is comparatively low and 

Volasertib displays no inhibitory activity against many other unrelated kinases at 

concentrations up to 10mmol/L (Rudolph et al., 2009). 

The US Food and Drug Administration (FDA) provided a novel therapy 

implementation for Volasertib in September 2013. All AML patients at the age of 

65 or older who have not been treated previously were considered suitable for 

the purposes of this clinical study. Phase II clinical study on Volasertib showed 
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promising response to the drug and urged the start of the Phase III study, known 

as the POLO-AML-2 study. The Phase III study, POLO-AML-2, investigated 

Volasertib combined with low-dose cytarabine (LDAC chemotherapy), in patients 

aged 65 years and older who have not been treated for AML so far and were 

considered inadmissible for intensive remission induction therapy. The results 

presented at the 21st Annual Congress of the European Hematology Association 

(EHA) 2016 demonstrated that the percentage of patients with an objective 

response was higher with Volasertib plus LDAC, compared to placebo plus LDAC 

but the difference was statistically not significant. Further studies are required to 

identify a subset of AML patients with optimal response to Volasertib, and the 

molecules or pathways that associate with the response to Volasertib in AML 

cells. However, the study initiated a new trial program to explore the potential in 

the treatment of acute myeloid leukemia and myelodysplastic syndromes 

(Scharow et al., 2015). 

Table 3 shows a list of selected PLK1 inhibitors as their number has been 

rapidly expanding. A new generation of PLK1 inhibitors is currently under 

development. Even though completed studies could not validate a breakthrough 

for the PLK1 inhibitors targeting the ATP-domain, the results were evaluated as 

encouraging enough to initiate the development of compounds that target the 

PBD of PLK1. These compounds are now the focus of preclinical research. This 

domain is characteristic for the PLK family and separates structurally individual 

members of the PLK family. Therefore, drugs targeting the PBD of PLK1 will be 

highly specific. One of the new small molecule PBD inhibitors, Poloxin has shown 

apoptotic potential in several cancer cell lines (Yuan et al., 2011; Reindl et al., 

2008).  
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Inhibitor Clinical 
trials 

Status  Target Reference 

BI2536 Phase II  Completed 2008 ATP binding 
domain 

Frost et al., 
2012  

GSK461364 Phase I  Completed 2009 ATP binding 
domain 

Gilmartin et 
al., 2009 

Volasertib 
(BI6727) 

Phase III active, not 
recruiting;  
estimated 
completion date 
December 2019 

ATP binding 
domain 

Rudolph, 
Steegmaier 
et al., 2009; 

ON01910.N
A 
(rigosertib) 

Phase III Completed 2015 PLK1 non-
competitive and 
PI3K 

Gumireddy 
et al., 2005 

TAK960 
hydrochlorid
e 

Phase I Terminated 2013 ATP binding 
domain 

Beria et al., 
2010 

Poloxin None - Polo-box domain Reindl, 
Yuan, 2008 

Poloxin-2 None - Polo-box domain Scharow,  
Raab, 2015 

Table 3 List of PLK1 inhibitors  

It is still to be determined whether ATP-competitive and PBD-specific inhibitors 

of PLK1 differ in their potential to suppress tumour growth. Common 

chemotherapeutical agents such as the vinca-alkaloids and taxanes, which have 

a proven response in the clinical treatment of cancer, have also been known for 

their side effects, including neurotoxicity and myelosuppression. Therefore, 

targeting PLK1 with the potential new compounds holds great promise for the 

development of anticancer therapies. 
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1.3 Aims of the project  

In 2015, when this project was initiated, original findings in the laboratory of Prof. 

Dr. Kempkes led to the exciting discovery of a new protein complex between 

EBNA2 and PLK1. Epstein-Barr virus nuclear antigen 2 (EBNA2) is a well-known 

central viral transactivator protein. It is essential for the immortalisation of B-cells 

and has a supporting function in the regulation of viral and cellular genes. 

Unraveling EBNA2 interaction partners and intracellular signalling is crucial in 

order to understand the EBV-biology. PLK1, on the other hand, is an enzyme in 

the serine-threonine kinase family that plays a crucial role in mitosis. PLK1 

overexpression has been associated with the development of various tumours 

and is verified as responsible for the aggressive proliferation of tumour cells in 

countless studies. However, although a considerable amount of information was 

known about these two proteins separately, there was no previous data regarding 

the interaction of EBNA2 and PLK1. Therefore, the further confirmation and 

investigation of this profound discovery is necessary. The main objective of this 

project was to characterise and better understand the molecular mechanism 

behind this interaction, its consequences for the cell cycle progression and its 

influence on the malignant transformation of EBV- infected B-cells. 

Specifically, we asked ourselves if and how the protein complex EBNA2-

PLK1 might be involved in the transformation of B-lymphocytes. This question 

prompted us to test the interaction of those proteins in EBNA2 transfected EBV-

negative cells, as well as lymphoblastoid cell lines. As a relevant objective, co-

immunoprecipitation analysis was performed to provide evidence that EBNA2 

and PLK1 interact with each other. Furthermore, we aimed to investigate the 

molecular pathway of this interaction in the context of a dysregulation of the PLK1 

activity. What consequences the interaction has between PLK1 and EBNA2, what 

happens if we disrupt it and how could we prevent the interaction in the first place 

are all questions we aimed to answer in this project. In this regard, we analysed 

the structure and the exact interaction surface within the protein complex. 

Additionally, the binding regions on EBNA2 and PLK1, which are essential for the 

formation of the complex, were inspected using PLK1 mutants. We wanted to 

know if EBNA2 is a substrate of PLK1 as a kinase enzyme and to what extent the 

EBNA2 phosphorylation is critical for the interaction of interest and the 

transformation of the lymphocytes. Therefore, we had to optimise protocols for 
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cell-cycle arrest of LCL and EBNA2 expressing cells. After achieving a cell-cycle 

synchronisation with nocodazole, we handed over the cell samples to the 

laboratory of Prof. K. Strebhardt an M. Raab in order to analyse the biological 

enzymatic activity of the PLK1 in the presence and absence of EBNA2.  

Finally, to investigate whether the PLK1 activity can affect the interaction 

between the two proteins of interest, we sought to establish cell culture conditions 

and exact concentration levels for Volasertib treatment of LCLs and cells 

conditionally expressing EBNA2. By this means, we wanted to define the 

modulatory effects of PLK1 inhibition on EBNA2 positive and negative cells using 

MTT assay and evaluate the toxicity and efficacy levels of the PLK1 inhibitor 

treatment.  
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2. Materials 

2.1 Plasmids 
Table 4 Plasmids  
Name Description Origin 
pCKR74.2  Dox- (doxycycline) inducible HA- 

(haemagglutinin) tagged EBNA2 expression 
plasmid (pCKR74.2) based on pRTR. 

et al. Bornkamm 
2005 

pSG5(pSG5-
HA) 

Empty vector used as a negative control  Stratagene 

pAG155 
(pAG155- 
EBNA2wtHA) 

plasmid for expression of EBNA2 (B95.8) with 
C- terminal HA-Tag. Vector pSG5 

Gordadze AV 2004 

pEFC61 
(pAG155-
EBNA2- 
Δ377-387-HA) 

plasmid for expression of EBNA2-ΔCR7 with C-
terminal HA-Tag. Vector pSG5 

Kempkes 

Ga981-6 
(12xluc) 

contains the hexameric 50-bp EBNA-2 response 
element of the TP-1 promoter in front of the 
minimal β-globin promoter driving the luciferase 
gene 

Minoguchi, S., 
1997.  

P3695 (Renilla) pPGK:Renilla, Luciferaseplasmid Promega 
VA 32 (pSG5-
EBNA2) 

Full-length EBNA2 expression plasmid Cohen and Kieff, 
1991 

VA 40 (pSG5-
FLAG-EBNA2) 

EBNA2 expression plasmid with N-terminal 
FLAG-tag 

kind gift by Bill 
Schubach USA 

VA 45 (pSG5-
FLAG-EBNA2  
Δ455 AAA) 

EBNA2 expression plasmid with N-terminal 
FLAG-tag and conversion of three consecutive 
amino acids to Alanines 

kind gift by Bill 
Schubach USA 

VA 55 (pSG5-
EBNA2 S457L) 

EBNA2 expression plasmid with single-point 
mutant of pSG5 EBNA2. At position 457 serine 
is exchanged for leucine. 

kind gift by Bill 
Schubach USA 

VA 56  (pSG5-
EBNA2 W458T) 

EBNA2 expression plasmid with single-point 
mutant of pSG5 EBNA2. At position 458 
Tryptophan is exchanged for threonine. 

kind gift by Bill 
Schubach USA 

VA57 (pSG5-
EBNA2 S469L) 

EBNA2 expression plasmid with single-point 
mutant of pSG5 EBNA2. At position 469 serine 
is exchanged for leucine. 

kind gift by Bill 
Schubach USA 

CKR355 empty expression plasmid with 3x N-terminal 
FLAG-vector and backbone pCDNA3.1 Hygro;  

Strebhardt, Raab 

CKR356 PLK1 expression plasmid with N-terminal 
FLAG-tag and backbone pCDNA3.1 Hygro; 

Strebhardt, Raab 

CKR357 PLK1 expression plasmid with N-terminal GFP 
vector and backbone pEGFP-C2 

Strebhardt, Raab 

CKR358 PLK1 expression plasmid with N-terminal 
FLAG-tag and backbone pCDNA3.1 Hygro; 
consists of the first 416 bp of PLK1 

Strebhardt, Raab 

CKR359 PLK1 expression plasmid with N-terminal 
FLAG-tag and backbone pCDNA3.1 Hygro; 
consists of the first 305 bp of PLK1 

Strebhardt, Raab 

CKR360 PLK1 expression plasmid with N-terminal 
FLAG-tag and backbone pCDNA3.1 Hygro; 
consists of both Polo-box domains; bp 372 to 
603 from PLK1  

Strebhardt, Raab 
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2.2 Cell lines 
Table 5 Cell lines  
Name Description 

DG75 EBV-negative Burkitt’s lymphoma cell line (Ben-Bassat, Goldblum et al., 
1977) 

CKR 128-34 EBV-negative Burkitt’s lymphoma cell line (DG75) transfected plasmid 
CKR74.2 that is based on the vector pRTR. pRTR (Bornkamm, Berens et al. 
2005) is an expression vector for EBNA2 that carries a bidirectional 
doxycycline-inducible promoter that simultaneously drives the expression of 
a surrogate marker and a gene of interest.  

LG 395 3.1 human lymphoblastoid cell line immortalised with recombinant wt EBV 
(p2089BAC mid: derived fromB95.8 virus) (Generated by L.G., Kempkes lab) 
(Delecluse, Hilsendege et al., 1998) 

LG 396 3.1 human lymphoblastoid cell line immortalised with recombinant wt EBV 
(p2089BAC mid: derived fromB95.8 virus) (Generated by L.G., Kempkes lab) 
(Delecluse, Hilsendege et al., 1998) 

CKR 178-10 DG75 transfected with a bidirectional doxycycline-inducible plasmid 
CKR74.2 in pRTR (Bornkamm, Berens et al., 2005)  

P493.6 EREB cell line, a human B-lymphocytes cell line, coinfected with p3HR1 –
Epstein-Barr virus and a mini EBV plasmid 554-4, in which the endogenous 
EBNA2 is replaced with an estrogen-inducible EBNA2-estrogen receptor 
(ER) fusion protein. Tetracycline-regulated expression of myc gene and 
estrogen-regulated expression of EBNA2: myc can be repressed with 1ug/ml 
tetracycline and further cell growth is prohibited, EBNA2 can be induced 
using 1ug/ml estrogen (Kempkes B, et al., 1995) 

BL41.K3 EBV-negative Burkitt’s lymphoma cell line transfected with p554-4; growth 
under supplementation of G418 (800µg/ml); estrogen induction of EBNA2 
(1µM final concentration) leads to growth arrest and apoptosis 
 (Kempkes B, et al., 1995)  

BJAB. K3 EBV-negative lymphoblastoid cell line; P12978; transfected with ER/EBNA2; 
growth under supplementation of G418 (800µg/ml); estrogen induction of 
EBNA2 (1µM final concentration) leads to growth arrest and apoptosis (Klein 
et al., 1974, Kempkes et al., 1995)  

 
2.3 Cell culture material  
Table 6 Cell culture material 
Name used concentration supplier 

Ampicillin 100μg/ml  Sigma-Aldrich, USA 

Dimethylsulfoxide 
(DMSO) 

0,5 % Merck (Calbiochem), Germany 

Doxycyclin 1ug/ml Sigma-Aldrich, USA 

ß-estradiol (estrogen) 1ug/ml  Sigma-Aldrich, USA 

FCS (Fetal calf serum) 10 % GIBCO, UK 
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G418 (Geneticin) 800µg/ml GIBCO, UK 

L-Glutamine 2mM GIBCO, UK 

LB –Medium 1 % Bacto-Trypton; 
0,5 % Yeast Extract; 1 
% NaCl (pH 7,4)  

GIBCO, UK 

Opti-MEM Medium - GIBCO, UK 

Penicillin/Streptomycin 100 U/ml  GIBCO, UK 

Puromycin 1μg/ml  Merck, Germany 

RPMI 1640 medium - GIBCO, UK 

Volasertib (BI 6727) 1-100nM Selleckchem 
 
2.4 Antibodies 
Table 7 Antibodies 
Name Description Dilution Supplier 

Primary antibodies 

α-EBNA2 (R3) 
monoclonal 

Rat, IgG2a kappa WB 1:50, 
IP 1:3 

E. Kremmer, HMGU 

α-GAPDH (MAB374) Mouse IgG1 WB: 1:5000 Merck Millipore, 
MAB374 

α-GAPDH (5C4) Rat, IgG2a WB:1:2000 E. Kremmer, HMGU 

α-HA (R1 3F10) 
monoclonal 

Rat, IgG1 IP 1:3 E. Kremmer, HMGU 

α-PLK1[35-206] 
monoclonal 
(ab17056) 

Mouse, IgG2b WB 1:1000, 
IP 1:100 

abcam, UK 
Lot: GR137124--2 

Phospho-Histone 
H3Ser10 (D2C8) XP 
monoclonal 

Rabbit IgG   WB 1:2000 Cell signalling, Ref: 
3377 

α- PLK1 FLAG 6F7  Rat, IgG1 WB:1:20 HMGU 

α- FLAG M2 F3165 Mouse, IgG1 WB:10µg/ml Sigma-Aldrich, USA 

Secondary antibodies 

α-rabbit GtXrb HRP Goat anti-rabbit IgG 
Horseradish 
Peroxidase 

WB 1:5000 Chemicon Lot 
LV1467501 

α-rat-IgG-HRP 
(sc2006) 

Goat anti-rat IgG 
Horseradish 
Peroxidase 

WB 1:5000 Santa Cruz, USA 

α-mouse-IgG-HRP 
(sc2005) 

Goat anti-mouse IgG 
Horseradish 
Peroxidase 

WB 1:5000 Santa Cruz, USA 
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2.5 Chemicals and reagents 
Table 8 Chemicals and reagents 

Name Supplier 

Acrylamide 30% Carl Roth GmbH, Germany 

Agarose Byozym, Germany 

Amersham ECL Western blotting detection reagents GE Healthcare, UK 

APS MP Biomedicals, Germany 

BSA (Bovine serum albumin) Merck, Germany 

Bromophenol blue Merck, Germany 

Complete EDTA free, Protease Inhibitor cocktail Tablets Roche Diagnostics, Germany 

Calyculin A (serine/threonine Phosphatase Inhibitor) Cell Signaling Technology , 
USA 

CIP Calf Intestinal Phosphatase  Sigma-Aldrich, USA 

DNA Dye NonTox ApplyChem,  

Ethidium bromide Carl Roth GmbH, Germany 

Glycerin Carl Roth GmbH, Germany 

GeneRuler DNA 1 kb ladder MBI Fermentas, Germany 

IGEPAL  MP Biomedicals, Germany 

Isopropanol Serva, Germany 

β-Mercaptoethanol Sigma-Aldrich,USA 

Milk powder Carl Roth GmbH, Germany 

MTT Thiazolyl Blue Tetrazolium Bromide Sigma-Aldrich,USA 

Nocodazole Methyl-(5-[2-Thienylarbonyl] 
-1H-benzimidazole-2-yl)carbamate 

Sigma-Aldrich,USA 

Na3VO4 (Sodium orthovandate) Sigma S-6508 

Propidium iodide Sigma-Aldrich,USA 

PageRuler Plus Prestained Protein Ladder Thermo Scientific, USA 

PhosStop Roche Diagnostics, Germany 

PMSF  ApplyChem Darmstadt UN 
2923 

Protein G-Sepharose GE Healthcare, UK 

RNase A Invitrogen, Thermo Fisher 
Scientific, USA 



 

 

- 31 - 

- 31 - 

TEMED ApplyChem, Germany 

Tris (hidroxymethyl) aminomethan  Merck, Germany 

Trypan blue Sigma-Aldrich,USA 

Tween-20 ApplyChem, Darmstadt 

Volasertib (BI 6727) Selleckchem 

Thymidine  Sigma-Aldrich,USA 

 
2.6 Enzymes  
Table 9 Enzymes 

Name supplier 

BamHI Fermentas (Thermo Fischer Scientific), USA 

Xba I Fermentas (Thermo Fischer Scientific), USA 

HindIII Fermentas (Thermo Fischer Scientific), USA 

XhoI Fermentas (Thermo Fischer Scientific), USA 

SfiI  BioLabs New England  

Eco47III Fermentas (Thermo Fischer Scientific), USA 

SphI BioLabs New England 

 
2.7 Kits 
Table 10 Kits 

Name supplier 

ECL GE Healthcare Amerscham, UK 

Dual Luciferase® reporter 
assay system 

Promega, USA Ref: E1960 

JETSTAR 2.0 Genomed, Germany 

NucleoSpin® Plasmid  Macherey-Nagel GmbH Ref: 740588.50 

Qubit® dsDNA BR Assay Kit Life Technologies Ref: Q32850 

 
2.8 Supplementary materials and devices 
Table 11 Supplementary 

Name supplier 

6K10 Centrifuge SIGMA Centrifuges GmbH, Germany 

BioPhotometer D30 Eppendorf, Germany 

Cell-Incubator Heraeus Instruments, Germany 

Centrifuge 5415 Eppendorf, Germany 

Centrifuge 5417 R Eppendorf, Germany 
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CP1000 Developing device AGFA, Cologne, Germany 

Electrophoresis chamber PeqLab, Germany 

Electroporation Gene Pulser II Biorad, Germany 

FACS Calibur BD Biosciences, USA 

Film cassette Amersham, Bioscience, Sweden 

Fluoresce microscope Axiovert 
200M 

Zeiss, Germany 

Fuji Medical X-Ray Film FUJIFILM Corporation, Japan 

Gene Pulser® cuvettes, 0,4cm 
electrode 

Bio-Rad Laboratories, USA 

GloMax Discovery System 
11853TA 

Promega, USA 

Immobilion PVDF transfer 
membrane 

Millipore, USA 

Nitrocellulose blotting 
membrane premium 0,2µm 

Amersham, GE Healthcare  

Orion Microplate Luminometer Berthold detection systems, USA 

Odyssey IR scanner Licor 

Plasticware GmbH, Eppendorf, Greiner GmbH 

RC5C centrifuge DuPont, USA 

Rotanta 460 R centrifuge Hettich, Germany 

Shaker incubator New Brunswick Scientific, USA 

Thermomixer compact Eppendorf, Germany 

UV-Transiluminator PeqLab, Germany 

Whatman 3MM chromatography 
papers 

GE Healthcare, UK 
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3. Methods 
3.1 Cell culture methods 
3.1.1 Cell counting 

Cell number was determined using a Neubauer chamber. To detect the viability 

of the cells, an aliquot of cells was diluted 1:2 with 0.4% trypan blue. Dead cells 

showing blue colour and colourless living cells were counted. 

The number of living cells was calculated with the following formula: 

 

3.1.2 Cell lines and cell culture conditions 

All cell lines were cultivated at 37°C and 5% CO2 in RPMI 1640 medium 

supplemented with 100U/ml Penicillin, 100μg/ml Streptomycin, 4mM L-

Glutamine, and 10–20% FCS respectively. Cell density was determined by using 

a Neubauer counting chamber.  

LG 395 3.1 and LG 396 3.1 are human lymphoblastoid cell lines 

immortalised with recombinant wt EBV (p2089BAC mid: derived fromB95.8 

virus). The cells were maintained as suspension cultures in RPMI 1640 standard 

medium (Gibco Life Technologies) supplemented with 10% FCS (fetal calf serum, 

Bio&Sell), 4 mM L-Glutamine and 1 x penicillin/streptomycin (Gibco Life 

Technologies). Cells were grown at 37°C in a humidified atmosphere at 5% CO2. 

The DG75doxHA-E2/CBF1 wt (CKR128-34) and the DG75doxHA-E2/CBF1 k.o. 

(CKR178-10) cell lines carry the doxycycline-inducible HA-EBNA2 expression 

plasmid (pCKR74.2). DG75doxHA-E2WW/CBF1 wt expresses a Dox inducible 

HA-EBNA2 WW325FF mutant. The cells were cultivated in standard 1μg/ml 

puromycin containing RPMI media at 37°C in a humidified atmosphere at 5% 

CO2. EBNA2 expression was induced by doxycycline treatment (1μg/ml). 

P493-6 cells were maintained in RPMI-1640 supplemented with 10% FCS (fetal 

calf serum, Bio&Sell) and 2 mM L-glutamine. Cells were grown at 37°C in a 

humidified atmosphere at 5% CO2. For repression of the conditional pmyc-tet 

construct in P493-6 cells, 0.1µg/ml tetracycline was added to the culture medium 

and cells were incubated for 48hr. For myc re-induction, cells were washed three 
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times with growth medium and grown in tetracycline-free culture conditions. 

EBNA2 was induced using 1ug/ml estrogen. 

BL41.K3 cells were cultivated in standard RPMI medium with 10% FCS 

(fetal calf serum, Bio&Sell) and 2 mM L-glutamine at 37°C in a humidified 

atmosphere at 5% CO2. G418 (800µg/ml) was supplemented to induce growth. 

Estrogen induction of EBNA2 (1µM final concentration) led to growth arrest and 

apoptosis. 

BJAB. K3 cells were cultivated in standard RPMI medium with 10% FCS 

(fetal calf serum, Bio&Sell) and 2 mM L-glutamine, at 37°C in a humidified 

atmosphere at 5% CO2. Growth was induced under supplementation of G418 

(800µg/ml). EBNA2 was induced using 1ug/ml estrogen. 

 

3.1.3 Long-term cell depot  

To preserve cells for a longer period of time, cells were frozen in liquid nitrogen. 

To this end, 107 cells were collected (suspension cells by centrifugation and 

adherent cells with preceding trypsin treatment), resuspended in 1.5 ml freezing 

medium and transferred to 1.8 ml Cryotubes (NUNC). Using a propanol freezing 

container cells were slowly cooled to -80°C and stored there for approximately 

one day. Finally, tubes were transferred to liquid nitrogen. To recultivate frozen 

cells, these were thawed in a 37°C water bath, washed with 30 ml medium to 

extract DMSO, and resuspended in fresh medium.  

! Freezing medium 40% culture medium, 50% FCS, 10% DMSO. 

 

3.1.4 Propidium iodide staining and FACS analysis 

107 cells were centrifuged at 300 rcf for 10min at 20°C and washed once with 
FACS buffer (2% FCS in PBS). The supernatant was discarded and the cells 
were resuspended in 0.5ml PBS. Then cells were mixed with 100% Ethanol, 

dropwise while vortexing and incubated 15min on ice, kept at 4°C. Next, cells 
were centrifuged at 500rcf for 5min at 20°C, washed in 5 ml PBS/1%FCS, again 

centrifugated. The pellets resuspended in 1ml PI/RNase A solution (15ml PBS; 

175µg/ml RNase A; 10µg/ml Propidium iodide in PBS) and incubated at 37°C for 

30min and finally analysed by flow cytometry using a FACS Calibur system 

(Becton Dickinson) and CellQuest Pro software (BD Biosciences). Data was 
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analysed using FlowJo 7.6 software and its cell cycle analysis function (Tree Star 

Inc., Ashland, USA). 

! PBS: 37M NaCl; 2.7M KCl; 7.3M Na2HPO4; 1.5M KH2PO4 pH 7.4. 

 

3.1.5 MTT assay  

Cells were cultivated at 37°C with 5% CO2 in RPMI1640 standard culture 

medium. MTT (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) 

5mg/ml solution (10 µl MTT per 100µl medium) was added to all wells of plates 

and plates were incubated at 37°C for 4h. The enzymatic reduction of yellow 

tetrazolium salt MTT to purple formazan crystals is a colourimetric reaction 

quantified by measuring absorbance at a certain wavelength with a multi-well 

spectrophotometer. After incubation, acid-isopropanol (100µl of 0.04 N HCI in 

isopropanol) was added to all wells and mixed thoroughly to dissolve the dark 

blue formazan crystals, and absorbance values were measured on a Sunrise 

microELISA plate reader, using a reference test wavelength of 550nm and a 

reference wavelength of 690 nm. The assays were performed in triplicate for each 

experimental condition. 

 
The inhibitory concentration or (IC50) (drug concentration that is required to 

reduce half of the cells from the total population) was ascertained using 

GraphPad Prism 7 software (San Diego, California). In order to analyse the data, 

the various concentrations of the inhibitor (Volasertib) were transformed into logs 

and plotted as X against the absorbance values as Y. Then, using the automatic 

analysis function of the program, nonlinear regression was calculated using the 

equation ‘Dose-response curves – Inhibition’ and applied the equation 

‘log(inhibitor) vs. response’. Finally, to determine whether there is a significant 

difference between the IC50 scores, we performed an unpaired t-test and 

compared the p-values for each dataset. 

 

3.1.6 Cell cycle arrest of cells at the onset of S-phase of the cell cycle by 
double thymidine block  

Cells were grown in culture in standard media to approximately 40% confluence. 

20ul of Thymidine solution for each 1ml of culture media was added to a final 

concentration of 2mM. Cells were incubated for 15h, then washed twice with 
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sterile PBS, transferred into new well plates, supplemented with 3ml fresh cell 

culture media per well and incubated for 9h. Again, 20mM of Thymidine blocking 

solution was added to the cells, followed by 15h incubation. Afterward, cells were 

washed twice with PBS, resuspended in fresh media and transferred into new 

plates. After the final addition of culture media, the cells were synchronised in G1 

and were ready to be released into cycle over the next 15–20 hours.  

 

3.1.7 Nocodazole arrest of cells in G2 M-phase of the cell cycle 

Cells were cultured in DMEM standard medium. For the experiment, cells were 

either induced with doxycycline 1µg/ml to activate EBNA2 expression or left 

untreated with doxycycline. The asynchronously growing cells were treated with 

100ng/ml nocodazole and incubated for 8/10/12/14/16h to induce G2-M-phase 

cell cycle arrest. The efficiency of synchronisation was tested by Propidium 

Iodide-based cell cycle analysis kit (Genscript) using flow cytometry. 

 

3.2 Methods of protein analysis  
 
3.2.1 Kinase assay 
Table 12 Lysis buffer  

final concentration stock for 10 ml 
buffer 

20mM Tris pH 8.2 1M  1:50 dilution 200µl 

150mM NaCl 5M  1:33 dilution 300µl 

1% Triton X 100 10%  1:10 dilution 1ml 

1mM PMSF  100mM 1:100 100µl 

0,5mM Na3VO4 (Sodium 
orthovandate) 

100mM 1:200 50µl 

Complete Protease Inhibitor 1 tbl/2ml H20 1:25 dilution 400µl 

PhosStop (Phosphatase Inhibitor) 1 tbl/1ml H20 1:10 dilution 1ml 

H20  6.95ml 
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3.2.2 Co-immunoprecipitation  

1x107 cells per sample were harvested and washed in 1ml PBS, then 

transferred into Eppendorf tubes and centrifugated with 500xg for 5min at 4°C, 

afterwards lysed with 500µl Lysis Buffer (NP-40)/IP and incubated for 30min 

rotating at 4°C on a falcon roller, then incubated on ice for another 30min. Next, 

cell debris were spun down at 16,000xg for 15min at 4°C and the supernatant 

transferred into new tubes. For the preparation of 50% slurry/equilibration 

beads (Protein G-Sepharose 4 Fast Flow); using 100µl 50% slurry per IP in total 

(50µl packed beads)) were centrifugated with 2000xg for 2min, washed 3x with 

500µl Lysis buffer/spun down with 2,000xg for 2min and resuspended in equal 

quantity Lysis buffer. For pre-clearing the lysate 30µl equilibrated 50% slurry 

was added to the supernatant samples and incubated for 1h at 4°C under 

rotation. 

Then, beads were spun down with 2,000xg for 2min to remove proteins 

binding unspecific to the beads. 100µl from the antibodies Anti-Ha R1 3F10 (Anti–

rat igG1) were added to the supernatant samples and incubated at 4°C under 

rotation overnight. For the pre-blocking of the beads 1ml 0.5% BSA in Lysis Buffer 

was added to 50% slurry and incubated at 4°C under rotation overnight in order 

to avoid unspecific binding of the beads. On the next day, the beads were washed 

3x with 500µl Lysis Buffer and spun down with 2,000xg for 2min. 50µl equilibrated 

50% slurry was mixed with the antibody and supernatant samples and incubated 

for 2h at 4°C under rotation, then the beads were spun down with 2,000xg for 

2min and the supernatant kept. Beads were washed 5x with 500µl Lysis Buffer 

and spun down with 2000xg for 2min, then resuspended in 60µl 2x Laemmli (IP-

sample) and boiled for 5min at 92°C under occasional agitation to separate the 

beads from the target proteins.  
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Fig. 7 Co-IP: Workflow for co-immunoprecipitation  
In IP, an antibody is added first to a mixture containing an antigen and 
incubated to allow antigen-antibody complexes to form. Subsequently, the 
antigen-antibody complexes are incubated with an immobilised antibody against 
the primary antibody (secondary antibody) on protein-coated beads to allow 
them to absorb the complexes. The beads are then thoroughly washed, and the 
antigen is eluted from the beads by sodium dodecyl sulfate (SDS). Western blot 
is then performed using a secondary antibody directed against the second 
protein of interest (Adapted from Lee et al., 2013). 
 
3.2.3 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis  

The glass plates are washed with 1% sodium dodecyl sulfate (SDS) and after 

that with 70% EtOH. The casting frames are set on stands and the gap between 

the glass plates filled with separating gel solution and isopropanol on top until 

overflow. After the gel has polymerised, the rest of the isopropanol is poured out, 

the free space filled up with the stacking gel and a comb placed to form wells. 

The samples are mixed with Laemmli buffer and heated at 92°C for 5min, 

then centrifuged for a couple of seconds and loaded into wells. The 

electrophoresis chamber runs at 25mA per gel; 100V in BioRad Mini-Protean 

Tetra Cell. 
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Table 13 Laemmli buffer 

 SDS Glycerol Tris/HCl pH 
6.8 

Mercaptoetha
nol 

Bromophenolblue H2O 

2x 4% 20% 120mM 5%    

 4ml from 
10% 

2ml 1.2ml from 1 
M 

500 ml Tip of a spatula 2.8ml 

5x 10% 50% 300mM 12.5%   

 1g 5ml 3ml from 1 M 1.25 ml  Tip of a spatula 0.75 
ml 

10xRunning Buffer (1l): 250mM Tris Base (30.4 g); 2M Glycine (150.2 g);  1% SDS 100 
ml of 10% stock 
 
Tris/Glycine SDS-polyacrylamide gel  
Table 14 Separating gel 8% 

8% 5 ml 10 ml 15 ml 20 ml 25 ml 30 ml 40 ml 50 ml 

H2O 2.3 4.6 7.0 9.3 11.6 13.9 18.6 23.2 

30% Acrylamide 1.3 2.7 4.0 5.3 6.7 8.0 10.7 13.4 

1.5 M Tris (pH 
8.8) 

1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 50 ml 100 
ml 

150 µl 200 
ml 

250 
ml 

300 
ml 

400 
ml 

500 
ml 

10% APS 50 ml 100 
ml 

150 
ml 

200 
ml 

250 
ml 

300 
ml 

400 
ml 

500 
ml 

TEMED 3 ml 6 ml 9 µl 12 ml 15 ml 18 ml 24 ml 30 ml 

 
Table 15 Separating gel 10% 

10% 5 ml 10 ml 15 ml 20 ml 25 ml 30 ml 40 ml 50 ml 

H2O 2.0 4.0 5.9 7.9 9.9 11.9 15.8 20 

30% Acrylamide 1.7 3.3 5.0 6.7 8.3 10.0 13.3 16.6 

1.5 M Tris (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 50 μl 100 μl 150 µl 200 μl 250 μl 300 μl 400 
μl 

500 
μl 

10% APS 50 μl 100 μl 150 μl 200 μl 250 μl 300 μl 400 
μl 

500 
μl 

TEMED 2 μl 4 μl 6 µl 8 μl 10 μl 12 μl 16 μl 20 μl 
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Table 16 Separating gel 12% 
12% 5 ml 10 ml 15 ml 20 ml 25 ml 30 ml 40 ml 50 ml 

H2O 1.7 3.3 5.0 6.6 8.3 9.9 13.2 16.4 

30% Acrylamide 2.0 4.0 6.0 8.0 10.0 12.0 16.0 20.0 

1.5 M Tris (pH 
8.8) 

1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 50 μl 100 μl 150 µl 200 μl 250 μl 300 μl 400 μl 500 μl 

10% APS 50 μl 100 μl 150 μl 200 μl 250 μl 300 μl 400 μl 500 μl 

TEMED 2 μl 4 μl 6 µl 8 μl 10 μl 12 μl 16 μl 20 μl 

 
Table 17 Stacking gel 

15% 1 ml 2 ml 3 ml 4 ml 5 ml 6 ml 8 ml 10 ml 

H2O 680 μl 1.4 2.1 2.7 3.4 4.1 5.5 6.8 

30% Acrylamide 170 μl 330 μl 500 μl 670 μl 830 μl 1.0 1.3 1.7 

1.5 M Tris (pH 
6.8) 

130 μl 250 μl 380 μl 500 μl 630 μl 750 μl 1.0 1.25 

10% SDS 10 μl 20 μl 30 µl 40 μl 50 μl 60 μl 80 μl 100 μl 

10% APS 10 μl 20 μl 30 µl 40 μl 50 μl 60 μl 80 μl 100 μl 

TEMED 1 μl 2 μl 3 µl 4 μl 5 μl 6 μl 8 μl  10 μl 

 
3.2.4 Generation of cell lysates  

For the generation of whole-cell lysates 107 cells were harvested by 

centrifugation, washed once with PBS, and resuspended and lysed in 100-200μl 

NP-40 Lysis Buffer. The reaction was incubated for 1h on ice and, subsequently, 

sonicated 3x for 10s. Cell debris was pelleted by centrifugation (20,000g, 15min, 

4°C), the supernatant was transferred to a new 1.5 ml reaction tube and stored 

at -80 °C.  

! NP-40 Lysis Buffer 50mM Tris-HCl, pH 7.5, 150mM NaCl, 1% NP-40, 1x 

Proteinase Inhibitor Cocktail (Roche).  
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3.2.5 Protein quantification via Bradford assay 

The protein content of lysates was quantified by Bradford method using a defined 

serial dilution (1-10μg) of BSA as reference. To this end, 5x Bradford Solution 

was diluted 1:5 with H2O just before usage and 1-2μl of the lysates were added 

and mixed by inversion of the cuvette. The absorbance of the mixtures was 

measured at 595nm (A595) using a spectral photometer. Finally, 2μl of the cell 

lysates were measured at the same absorbance and the concentration was 

determined using the calibration curve. 

Bradford-reagent: 0.01% Coomassie Brilliant Blue G-250; 4.7% Ethanol; 8.5% 

phosphoric acid 

! 5x Bradford Solution 100mg Coomassie Brilliant Blue G-250, 47% Methanol, 

42.5% phosphoric acid.  

 

3.2.6 Western blot and immunodetection 

The proteins separated by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) were blotted to a PVDF (Immobilon-P pore size 

0.45µm, Millipore) membrane in a transfer unit. The membrane was initially 

incubated for 15s in 100% methanol for activation, washed for 2min in H2O and 

incubated for at least 5min in Transfer Buffer. The blotting stack was prepared as 

follows: one sponge, three pieces of 3MM Whatmann filter paper, the gel from 

SDS PAGE, activated PVDF membrane, three more pieces of 3MM filter paper 

and one sponge on top. 10μg of protein from cell lysate 10-20μg of purified 

protein from the immunoprecipitation was loaded. The transfer was carried out at 

400mA for 1h. 

Subsequently, the membranes were blocked with blocking buffer for 30min at 

room temperature, then incubated overnight at 4°C with the primary antibodies. 

Next, membranes were washed 3X for 10min with washing buffer and incubated 

with the corresponding HRP-conjugated secondary antibodies for 1h at room 

temperature and, afterwards, washed with PBST 4x for 15min. The signals were 

detected by Amersham™ ECL western blotting detection reagent following the 

manufacturer’s instruction and exposed to Fujifilm 100 NUF X/raz film.  

! Blocking buffer 50mM Tris-HCl, pH 7.5, 150mM NaCl, 5% non-fat milkpowder  

! PBS (1l):  NaCl – 8g; KCl0 – 2g; Na2HPO4 – 1.44g; KH2PO4 – 0.24g; pH 7.4 
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! Washing Buffer (PBS/Tween): PBS with 0.05% Tween 

! Transfer buffer 25mM Tris Base, 192mM Glycine, 0.1% SDS, 20% Methanol. 

 

3.3 Methods of DNA analysis 
3.3.1 Small-scale purification of plasmids  

For small-scale purification, 2ml of saturated bacteria culture were centrifuged at 
5000rcf for 5min at 4°C. Plasmid DNA was purified using the NucleoSpin® 

Plasmid kit (Macherey-Nagel). To test the plasmid DNA, 2μl of DNA was digested 

with restriction enzymes and separated in an electrophoresis gel. 

 

3.3.2 DNA isolation from agarose gels 

DNA fragments were isolated using NucleoSpin® Gel and PCR Clean-up kit 

(Macherey-Nagel) according to the manufacturer’s protocol. 

 

3.3.3 Cloning of recombinant plasmids 

Digestion using restriction enzymes  

For the digestion, 2μl of the corresponding restriction enzyme was mixed with 6μl 

of the corresponding buffer and 10μg of DNA and filled with autoclaved water to 

the volume of 60μl. The mixture was incubated for 2h at 37°C. 

 

3.3.4 Ligation of DNA fragments 

Vector fragment and insert fragment were mixed at 1:3 ratio. Ligase buffer was 

also added at 1:10 and the T4 DNA ligase at 1:20 dilution to the final volume of 

20μl. The mixture was incubated overnight at 16°C. The ligation reaction was 

used for bacterial transformation. 

 

3.3.5 Electrophoresis in agarose gel  

Agarose gel was prepared to dissolve 2g of agarose in 200ml of TAE solution 

(40mM Tris-Acetate; 1mM EDTA (pH 8.0)) and 10μl of ethidium bromide. The 

digested DNA samples were mixed 1:5 with the loading dye. The agarose gel 

was run at 100V and the DNA fragments were controlled using UV light at 254nm 

using a UV transilluminator. 
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3.3.6 Transformation or re-transformation: (incubation of bacteria with DNA 
on ice and heating shock) 

Approximately 150µl competent bacteria were thawed out slowly on ice (DH5 

bacteria). The plasmid DNA (approximately 50ng) were transferred in tubes. 

Then the plasmid was incubated with the bacteria for 30min on ice, followed by 

heat shock at 42 °C for exactly 2min and incubated on ice for at least 2min. The 

samples with bacteria and plasmids were added to 1ml LB-medium and 

incubated at 37 °C shacking for 1h. 200µl of the bacteria culture was spread on 

an agar plate with antibiotics and incubated at 37°C overnight.   

 

3.3.7 Transfection (electroporation)  

One day before the transfection, cells were split 1:2 and on the day of the 

transfection, the cells were counted in the Neubauer chamber and the amount of 

1x107 cells needed for the transfection were harvested in 10ml cell volume per 

sample. The falcons with cell volume were centrifuged at 300rcf, 10min, 20°C 

and the supernatant discarded. Then the pellet was washed with 20ml of Opti-

MEM and again centrifugated at 300rcf, 10min, 20°C, the supernatant was 

discarded and the pellet dissolved in 250µl of Opti-MEM per sample. Cells with 

Opti-MEM were transferred in tubes together with 5µg of DNA per sample.  

The cells with the DNA were transferred into 0.4cm electro ‘Gene pulser’ 

cuvettes (Biorad) and electroporated at 250V and 950µF. After the transfection, 

the cell suspensions were incubated with the DNA on a small flash with 10ml of 

20% FCS medium at 37°C for 24h. Each transfection sample was prepared in 

triplicates. 

 

3.3.8 Luciferase assay 

5x106 cells were used per sample. Cells were transfected with 5μg of promoter 

Ga981-6, 0.5μg of Renilla plasmid and 3μg of the plasmid of interest. Cells 

were harvested 24h after transfection by centrifugation at 300 rcf at 20°C for 

10min. The pellet was washed with PBS. Dual Luciferase assay was performed 

following the Promega kit E1960 protocol. Cells were lysed with 100μl of 

passive lysis buffer 1x, and incubated on ice for 15min before being frozen at -
80°C. Next day, the cell lysates were thawed and centrifuged at 15.300rpm for 

15min at 4°C. The supernatant was transferred into new tubes and stored at -
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20°C. To measure luciferase activity, 10μl of supernatant were transferred into 

a 96 well-plate. 

The measurement of the luciferase activity was carried out using the Orion 

Microplate Luminometer and the following stored program per well: addition of 

50μl 1x Luciferase assay reagent II (LARII), followed by the first measurement, 

then the addition of 50μl 1x Stop&Glo reagent and second measurement. 

(The results of the luciferase activity were given in relative light units RLU.) 
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4. RESULTS 
4.1 MTT assays of Volasertib- (BI 6727-) treated cells 
4.1.1 MTT assay with immortalised B-lymphocytes in the context of PLK1 
inhibition on a molecular level 
MTT assays have been proven suitable for the initial stage of in vitro drug 

screening as it measures proliferation rate or conversely the reduction in cell 

viability after drug exposure. In order to investigate the effect of the PLK1 inhibitor 

Volasertib on EBNA2 positive cells, two equivalent cell lines of immortalised B-

lymphocytes: LG395 and LG396 were treated with the inhibitor in serial dilutions 

ranging from 100nM to 0.09nM and compared to additional controls without 

Volasertib. To quantify the effect of the PLK1 inhibitor on the cell proliferation we 

calculated the concentration of the drug that resulted in the half-maximal 

response, value called IC50 score. IC50 scores (Fig. 7 A) were similar, however 

not identical for the two cell lines with IC50 of 38.65nM for LG395 and 24.96nM 

for LG396. The significant difference between the IC50 scores (as shown in Fig. 

7 B) is probably due to an overall higher proliferation state of the LG395 cell line 

and not necessarily a consequence of the Volasertib treatment. 

 As expected, we were able to show that EBV infected cells were 

sensitive to a PLK1 inhibition via Volasertib. The calculated IC50 scores were 

comparable to the established EC50 scores of other cell lines, derived from 

cancer tissues such as colon (HCT 116 cell line) and hematopoietic malignancies 

(Raji cell line) with IC50 scores within the range vales of 11 to 37nM (Rudolph et 

al., 2009). 

 

 

 

A) 
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Fig. 8  EBV infected B-cells are sensitive to Volasertib  
4x104 B-cells, infected with EBV (LG 395 and LG396) were seeded as 100µl 
cultures in 96 well plates and cultured in the presence of increasing amounts of 
Volasertib for 48h or were left untreated. The viability of treated and untreated 
cells was analysed by MTT assays. Results of three biological replicates 
performed in technical triplicates were combined and analysed by GraphPad 
Prism 7.  A) Combined dose-response curves; B) The mean IC50 scores were 
then analysed using unpaired t-test in the GraphPad Prism 7 and visualised as 
bars. Error bars represent the corresponding standard deviation.  p-value with 
α = 0.05 as significance level. (All assays were performed in triplicates and the 
results were obtained in three independent experiments.) 
 
4.1.2 MTT assay with EBNA2 transfected EBV-negative B-lymphocytes in 
the context of PLK1 inhibition  
When two equivalent EBV-negative cell lines BJAB.K3 (Figs. 9 A and B) and 

BL41.K3 (Figs. 9 C and D), both EBV-negative lymphoma cell lines, transfected 

with EBNA2 (as described in section 2.2. Cell lines) were treated with increasing 

concentrations of Volasertib for 48h, they displayed equal IC50 scores, without 

EBNA2 expression. The IC50 scores for the EBNA2 positive cells were lower in 

all experiments than those of the EBNA2 negative cells: 20.44nM compared to 

25.37nM for BL41.K3 (Fig. 9 A) and 15.65nM compared to 25.38nM for BJAB.K3 

(Fig. 9 C). However, the difference was not significant (p>0.05). Thus, we 

identified a clear trend of EBNA2 expressing cells being slightly more sensitive to 

the PLK1 inhibition.  
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Fig. 9 EBNA2-expressing B-cells are more sensitive to Volasertib 
Two EBV-negative cell lines: BL41.K3 and BJAB.K3, transfected with EBNA2, 
were cultivated 24h in medium with estrogen (0.1µg/ml) for the induction of 
EBNA2 (+EBNA2) or were left untreated (w.o. EBNA2). 4x104 cells were then 
seeded as 100µl cultures in 96 well plates and cultured in the presence of 
increasing amounts of Volasertib for 48h or were left untreated. The viability of 
treated and untreated cells was analysed by MTT assays. The results of three 
biological replicates performed in technical triplicates were combined and 
analysed by GraphPad Prism 7.  A) Combined dose-response curves.  B) The 
IC50 scores were calculated using unpaired t-test in the GraphPad Prism 7 and 
visualised as bars. Error bars represent the corresponding standard deviation. p-
value with α = 0.05 as significance level. (All assays were performed in triplicate 
and the results were obtained in three independent experiments.) 
 
4.1.3 MTT assay with EREB B-lymphocytes in the context of PLK1 inhibition  
To further investigate if EBNA2 is the one component that makes the cells more 

susceptible to the Volasertib treatment we used an EREB B-Lymphocytes cell 

line with conditional expression of the protooncogene myc and EBNA2 (see 

section 2.2 Cell lines). Figure 9 displays our findings that there is a significant 

difference between EBNA2 positive and negative cells only if the expression of 

our protein of interest is switched on three days before the start of the Volasertib 

incubation. Moreover, the simultaneous expression of EBNA2 and myc, but even 

more with EBNA2 alone, resonances in lower IC50 scores with 15.70nM and 

10.31nM accordingly. The lowest IC50 score of the cell subpopulation with 

suppressed myc gene (Fig. 10 C, w.o. myc) can be explained by the fact that 

further cell growth is prohibited by the switch-off of myc in the presence of 

D) 
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tetracycline and the cells arrest in the G0/G1-phase of the cell cycle (Kempkes et 

al., 1995). These findings suggest that EBNA2 positive cells respond stronger to 

PLK1 inhibition.  
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Fig. 10 EBNA2 expressing cells display different sensitivity to Volasertib 
only if EBNA2 is switched on three days prior to analysis 
The p493.6 cells, an EREB B-cell line with tetracycline-regulated myc plasmid, 
were left untreated (myc), treated with 0.1µg/ml estrogen for the induction of 
EBNA2 (myc + E2), treated with estrogen and tetracycline for induction of EBNA 
2 and repression of myc (EBNA2) or treated only with tetracycline for the 
repression of myc (w.o. myc). All cells were treated either simultaneously with 
Volasertib or tetracycline/ estrogen in panel A) or treated with 
tetracycline/estrogen. The Volasertib treatment was started after 72h in panel C). 
The cells were then seeded in 96-well plates with constant cell density at 4x105 
cells/ml and incubated with the inhibitor in serial dilutions ranging from 100nM to 
0nM Volasertib. Incubation times varied between 0 and 48h as described. The 
inhibition of cell growth was detected by MTT assay as described in Materials 
and Methods. Representative data sets from three independent experiments 
were then analysed using GraphPad Prism 7. Dose-response curves were 
plotted to determine the mean IC50 value for each condition of the cell line. B) and 
D). The IC50 scores were then calculated using unpaired t-test in the GraphPad 
Prism 7 and visualised as bars. Error bars represent the corresponding standard 
deviation. p-value with α = 0.05 as significance level. (All assays were performed 
in triplicate and the results were obtained in three independent experiments.) 
 

4.2 FACS analysis of the cell cycle distribution of Volasertib-treated 

cells 

 

4.2.1 FACS analysis of immortalised B-lymphocytes in the context of PLK1 
inhibition 
Next, we aimed to prove the efficacy of the PLK1 inhibition by Volasertib, 

expecting an increase in the G2/M population as well as an increase in apoptosis 

(Fig. 11 and 12). Cells were harvested 48h after the administration of Volasertib. 

The success of the PLK1 inhibition was determined using the DNA content 

D) 
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increase measured in FACS analysis as a typical phenomenon in the G2/M-

phase of the cell cycle. The respective fluorescence intensity provided 

information about the DNA content of a cell, as well as the percentage of 

apoptosis and cell cycle phases. Apoptotic cells were characterised by DNA 

fragmentation, indicated by a sub-G1 peak. For each phase of the cell cycle, we 

identified a standard DNA content. The respective fluorescence intensities of 

each cell population resulted in the histogram plots as shown below. 

Using different concentrations of the PLK1 inhibitor in the range of the 

calculated IC50 scores for the immortalised B-lymphocytes LG395 and LG396 

(Fig. 11 A), we expected modification of the normal cell cycle distribution. DNA 

content doubled from G0/G1 to G2/M. The first peak in the histogram at 0.2K 

fluorescence intensity was representative of G0/G1, whereas, the second peak 

at 0.4K is representative of G2/M. As predicted, the increase of the mitotic and 

apoptotic cells in the populations occurred after treatment with concentrations 

>25nM Volasertib and their number increased further at 50nM. We measured up 

to a twofold increase of the mitotic cells (Fig. 11 B) from 12% up to 18% G2 

increase for LG395 and from 85 up to 16% G2 increase for LG396). However, at 

the same time the sub-G1 population representing apoptotic cells expanded from 

6% up to 13% for LG395 and from 5% up to 18% for LG396 at the highest 

Volasertib levels (Fig. 11 B). 

We also observed a strong increase of the S-phase population for both 

cell lines. At this point of our studies we do not know whether these cells are still 

actively replicating DNA, or whether they have been arrested in the S-phase of 

the cell cycle. 
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Fig. 11 Volasertib treatment causes a reduction of the G1 population and 
increase of the G2 population of immortalised B-lymphocytes  
For cell cycle analysis from each cell line of immortalised B-lymphocytes: LG 
395.3.1 and LG396.3.1. cells were treated with different Volasertib 
concentrations ranging from 0 to 50nM, harvested after 48h, the nuclei were fixed 
by ethanol treatment, washed in PBS and processed for DNA staining and 
analysed by Propidium Iodide-based cell cycle analysis kit (Genscript) using flow 
cytometry. Flow cytometry data was then analysed by using FlowJo V10 software 
and the cell cycle analysis was performed after excluding doublets.  

A) 

   LG 395                          LG 396 
B) 
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A) Histograms showing the cell cycle distribution of cells treated with 
Volasertib. G1-phase cells are marked in purple, S-phase cells are marked in 
yellow and G2/M-phase cells are marked in green. B) Quantitative analysis of cell 
cycle phase distribution of the LG 395 and 396 cells treated with different 
Volasertib concentrations (as indicated). The total of G1-, S- and G2/M-phase 
cells was set to 100%. The colour bars represent the different subpopulations: 
dark blue for sub-G1-phase (apoptotic cells), red for G1-phase, green for S-
phase, yellow for G2/M-phase (mitotic cells) and light blue for >G2-phase 
(polyploid cells). 
 

4.2.2 FACS analysis of B-lymphocytes with conditional expression of 
EBNA2 in the context of PLK1 inhibition 

Of great interest was the toxicity effect of PLK1 inhibition on EBNA2 positive cells 

in contrast to EBNA2 negative cells. Therefore, we treated the p493.6 cell line 

with conditional EBNA2- and suppressible myc – expression with Volasertib 

concentrations also ranging between 0 and 50nM (Figs. 12 A and B). We 

observed an alternation of the normal distribution of the cell cycle stages even 

after treatment with 12.5nM Volasertib, which became more prominent 

proportionally to the Volasertib concentration. As the percentage of apoptotic 

cells (displayed as a white peak in the <0.2K fluorescence intensity in Fig. 11 A)) 

reached the highest rates at 50nM concentration, the automatic evaluation of the 

cell cycle analysis via FlowJo had to be manually modified in order to visualise 

the cell cycle distribution in histograms. The exact quantification in bars showed 

1.5x up to threefold increase of the G2/M cells in all populations. While Volasertib 

only led to mild apoptosis at the concentration of 12.5nM (~ 6 to 23% early 

apoptosis versus ~ 6% up to 11% in untreated control cells Fig. 12, the absence 

of myc seems to increase the proportion of apoptotic cells (~20 and ~30%, 

respectively), presumably contributing to the reversal of resistance. Of note, the 

response of the cells to Volasertib at high concentrations (25nM and 50nM), 

shows an appreciable difference in the presence of EBNA2. While the sub-G1 

population in myc depleted cells (- myc) and cells expressing only (+ myc) 

reached a maximum of 36% at the highest concentration of the drug treatment, 

cells expressing only EBNA2 displayed with 41%, the highest distribution of 

apoptotic cells.  

At this point, we also have to consider that the initial proliferation status of 

the EBNA2 expressing cells without Volasertib incubation have together with the 

cells expressing only myc the lowest rates of sub-G1 contribution, accordingly 
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8% for +E2 and 7% for +myc. All cells expressing EBNA2, either EBNA2 and myc 

or only EBNA2 exhibit the highest decrease of the G1-population if treated with 

25nM and 50nM Volasertib. All in all, we see a slight increase in the toxic effect 

of Volasertib on the cells as soon as EBNA2 expression is switched on for at least 

two days prior to Volasertib administration. 

 

 

 

 
 

A) 



 

 

- 55 - 

- 55 - 

Fig. 12 Volasertib treatment is more toxic for EBNA2-positive p493-6 cells  
For cell cycle analysis p493.6 cells were treated either with tetracycline 1µg/ml in 
order to suppress the expression of myc (- myc), with estrogen (1µg/ml), in order 
to induce EBNA2 expression (+myc +E2), with tetracycline and estrogen (+ E2), 
or left untreated in a condition, in which myc is primarily expressed (+myc) for 
three days prior to the start of the experiment. The cells were then treated with 
the inhibitor in serial dilutions ranging from 100nM to 0nM Volasertib for 48h, 
harvested, the nuclei were fixed by ethanol treatment, washed in PBS and 
processed for DNA staining and analysed by Propidium Iodide-based cell cycle 
analysis kit (Genscript) using flow cytometry. Flow cytometry data was then 
analysed by using FlowJo V10 software and the cell cycle analysis was 
performed after excluding doublets. 
A) Histograms showing cell cycle distribution of cells. G1-phase cells are marked 
in purple, S-phase cells are marked in yellow and G2/M-phase cells are marked 
in green.  
B) Quantitative analysis of cell cycle phase distribution of p493.6 cells treated 
with different Volasertib concentrations as indicated. The total of G1-, S- and 
G2/M-phase cells was set to 100%. The colour bars represent the different 
subpopulations: dark blue for sub-G1 phase (apoptotic cells), red for G1-phase, 
green for S-phase, yellow for G2/M-phase (mitotic cells) and light blue for >G2-
phase (polyploid cells). 
 
4.3 G2/M cell cycle arrest of DG75 B-lymphocytes 

 

4.3.1 Double thymidine block and nocodazole treatment vs. sole 

nocodazole treatment for G2/M arrest 
Cell synchronisation was used for the examination of cell cycle regulated events, 

including the progression of the cell cycle. When cells in G2-phase are exposed 

to DNA damage, several key mitotic regulators such as Cdk1/Cyclin B, Aurora A 

and PLK1 are down regulated in order to restrain mitotiv activity (Bahassi et al., 

2011). PLK1 is known to be most active during the G2/M-phase of the cell cycle. 

B)  
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Its activation starts in G2, about 5 to 6h before mitotic entry, when PLK1 is 

phosphorylated on T210 in its T-loop by Aurora A, resulting in activation of the 

kinase domain (Macurek et al., 2008). To test the role of EBNA2 in the regulation 

of PLK1-arrest, we first performed experiments to achieve G2/M cell cycle arrest 

in EBNA2 expressing DG75 cells (see Fig. 13).  

Thymidine is a DNA synthesis inhibitor that can arrest cells at G1/S 

boundary, prior to DNA replication, whereas treatment of nocodazole, which is 

an inhibitor of microtubule formation, can arrest cells at G2/M-phase (Ho et al., 

2001). We aimed to establish a cell cycle synchronisation and G1/S arrest and 

release and in a second step, a G2/M block. First, we treated the cells with 

thymidine for 15h. Then, cells were released from a thymidine block for 9h. 

Within these 9h, we expected most of the cells to exhibit an increase of the 

PLK1 activity, as T210 phosphorylation is reported to be first detected 

approximately at this point. A second application of thymidine for 15h with a 

consequent drop of PLK1 activity was followed by a release from G1/S arrest and 

treatment with nocodazole to enrich the cells for the G2/M-phase (see Fig. 13, 

upper panel). Strategy I shows high levels of apoptosis and insufficient 

enrichment of the G2/M-phase of the cell cycle. Next, we compared this method 

to a single nocodazole application in an attempt to simplify the cell cycle arrest 

(Fig. 13, bottom panel).  

A double thymidine block is reported to promote the synchronisation of the 

cells. However, our findings suggest that a double thymidine block prior to a 

nocodazole application does not improve the arrest of the cells in the G2/M-phase 

compared to nocodazole treatment only. On the contrary, the histograms from 

the cell cycle analysis show that cells treated with thymidine and nocodazole 

have a smaller population of mitotic cells than those treated only with nocodazole. 

(Fig. 14 A G2/M cells in green colour. For a precise quantification of the difference 

see Fig. 14 B). As indicated, strategy I led to as much as 36% (EBNA 2 negative) 

and 21% (EBNA 2 positive cells) G2/M population expansion and displayed a 

high percentage of G1 distribution. By contrast, sole nocodazole incubation for 

15h led to an increase of the G2/M population up to 42% (EBNA2 negative cells) 

and 40% (EBNA2 positive cells).  
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Strategy I: 

 .  

Strategy II:  

 
Fig. 13 Pilot study to establish assay conditions  
Comparative analysis of two strategies to achieve G2/M cell cycle arrest in DG75 
B cells (CKR128-34): CKR 128-34 cells have been generated from an EBV- 
negative Burkitt’s lymphoma cell line (DG75) by transfection of a bidirectional 
doxycycline-inducible plasmid CKR74.2. In response to doxycycline, EBNA2 and 
GFP are expressed. 
Strategy I) Double thymidine (thym) block followed by nocodazole (noc) treatment 
or II) nocodazole treatment only. For both strategies, CKR128-34 cells were 
either cultivated in medium containing doxycycline (1µg/ml) for 24h to express 
EBNA2 or left untreated. For strategy I asynchronously growing cells were treated 
with thymidine (2mM) for 15h, thymidine was removed by washing of the cells 
and the cells were cultivated for 9h in the absence of thymidine to release the 
block. Thymidine (2mM) was added again and cells were cultivated for an 
additional 15h to induce the second G1/S arrest. This second G1/S block was 
again released by washing of the cells. Nocodazole (100ng/ml) was added to 
induce a G2/M block. For strategy II asynchronously growing cells were treated 
with nocodazole (100ng/ml) for 14h. Arrows indicate the time points at which cells 
were harvested for cell cycle analysis. The success of the cell cycle arrest was 
assessed using PI-staining and FACS analysis.  
   
In order to confirm these results, we repeated the experiment using Strategy II in 

order to achieve the possibly most efficient G2/ M cell cycle arrest and further 

analyse the PLK1- activity under these circumstances in the presence and 

absence of EBNA2. 

As Figure 15 shows, single nocodazole application for 14h resulted in an 

almost threefold increase of the G2/M population from 25% to 75% for EBNA2 
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negative cells and from 22% to 74% for EBNA2 positive cells (green bars in Fig. 

14 D) and no significant apoptosis in the cell population, represented by sub-G1 

population, which is not visible in the histograms (Figs. 14 C and D). However, 

we observed a loss of cells also in the other cell populations, which were not 

treated with thymidine. One may claim that polyploid cells, typically occurring 

after the nocodazole treatment, might not have been sorted out as single cells 

and automatically left out by the automatic cell sorting, which excludes doublets.  

Overall, we could demonstrate that cell cycle synchronisation using a 

double thymidine block does not improve the success of nocodazole induced 

G2/M cell cycle arrest. To test the effect of the cell cycle block on the kinetics of 

PLK1 during G2 and the cell cycle checkpoint, we performed a nocodazole 

incubation for 15h. Afterward PLK1 and EBNA2 expression were analysed by 

western blotting (Fig. 15). 
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Fig. 14 Nocodazole treatment increases the population of cells in the G2/M-
phase of the cell cycle 
For cell cycle analysis CKR 128-34 cells were cultivated under specific 
conditions as explained in Fig. 12. 2x106 cells were harvested, the nuclei were 
fixed by ethanol treatment, washed in PBS and processed for DNA staining and 
analysed by flow cytometry.  A) and C): histograms showing cell cycle 
distribution of cells: A) presents strategy I and C) strategy II. G1-phase cells are 
marked in purple, S-phase cells are marked in yellow and G2/M-phase cells are 
marked in green. Cells with < 2n or > 4n DNA content were excluded from the 
analyses. B) and D): Quantitative analysis of cell cycle phase distribution. 
Figure B) represents the results from strategy I and D) from strategy II. 
Concentration as indicated dox 1 = doxycycline (1µg/ml) and noc 0,1 = 
nocodazole (0.1µg/ml) or Ø for none.   
 
As the western blot in Fig. 15 A) shows, EBNA2 expression is stable if cells are 
treated with doxycycline independently from the cell cycle stage and the 
nocodazole arrest via Strategy II. GAPDH as a housekeeping gene, expressed 
in a steady state was used as a marker for the normalisation of the target gene 
expression (Fig. 15 B)).  
Surprisingly, the PLK1 expression seemed to be also unaffected by the cell 
cycle progression (Fig. 15 C). However, in the following experiments performed 
by M. Raab and Prof. K. Strebhardt, with the same cell extracts, a clear 
difference between the PLK1-protein levels at different cell cycle stages can be 
observed.

D)  
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The phosphorylation of Histone 3 as a hallmark of mitosis, correlates with the 

successful G2/M arrest as its bands were detected only in the nocodazole-

treated cell populations (Fig. 15 D). Phosphorylation of Histone 3 occurs first 

in the late G2-phase and is completed at the prophase. At the end of mitosis 

Histone 3 is dephosphorylated (Hendzel et al., 1997), which also explains the 

absence of protein bands in the first and third lines in Fig. 15. D), where cells 

were not exposed to nocodazole treatment and, therefore, exhibit low rates of 

mitosis. 

 

  

 

Fig. 15 Nocodazole treatment enriches DG75 cells in the G2/M-phase of 
the cell cycle 
A) CKR128-34 cells were either induced with doxycycline 1µg/ml (+ dox) in order 
to activate EBNA2 expression or left untreated (- dox). The asynchronously 
growing cells were treated with 100ng/ml nocodazole (+/-noc) and incubated for 
14h to induce G2-M-phase cell cycle arrest. Total cell lysates were submitted to 
SDS-PAGE (10% for EBNA2 and 12% polyacrylamide for PLK1 detection) 20µg 
of protein from each sample was loaded per lane and transmitted to 
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immunoblotting. (A): anti-EBNA2(R3) antibody and HRP-anti-rat secondary 
antibody, (B) anti- GAPDH mab 374 and (C): anti-PLK1 (ab17056) antibody and 
HRP-anti-mouse secondary antibodies, (D) Phospho- H3Ser10 (D2C8) antibody 
and goat-anti-rabbit HRP secondary antibody, respectively. Signals were 
visualised using chemiluminescent detection reagents (Amersham ECL). 

4.3.2 PLK1 kinase assay 

The previous experiments were only done as preparation for the PLK1 kinase 

assays. We asked ourselves whether EBNA2 has an impact on the PLK1 activity 

as a kinase protein, mainly active during the mitosis. To investigate this, we used 

the cell extracts from the B-lymphocytes CKR 128-34 with conditional EBNA2 

expression, treated with nocodazole, following strategy II (Fig. 13, bottom panel) 

and because we did not have the capacity and technical equipment to perform a 

kinase assay in our laboratory, we used lysis buffer to prepare the cell extracts 

(as described in 3. Methods, section 3.2.1 Kinase assay) and sent these to M. 

Raab and K. Strebhardt, who kindly offered their cooperation. 

First, they performed a western blot with the cell extracts (Fig. 16 A)) and 

were able to confirm our previous findings that the cells were arrested at early M-

phase of the cell cycle. Hence, they used as proof the positive staining for histone 

H3phosphoserine10 and the increase of the signal from Cyclin B1 as a mitotic 

marker in the cell extracts treated with nocodazole (third and fourth row, Fig. 16 

A)). Additionally, active PLK1, phosphorylated at threonine 210 (T210) was 

identified also in the nocodazole treated cell extracts (see second lane, Fig. 16). 

PLK1 can be activated by a phosphorylation of the conserved threonine residue 

(T210), which is located at the T-loop of the kinase domain. Phosphorylation of 

this residue starts in G2-phase of the cell cycle and similarly to the kinase activity 

continuously raises reaching its peak in the beginning of the mitosis. These 

findings correspond also with the increased total protein levels during the G2/M-

phase of the cell cycle (as shown in the first row, Fig. 16). EBNA2 expression is 

dependent only on doxycycline induction and seems to be constant throughout 

the cell cycle arrest with nocodazole. 

Next, a co-IP confirmed our findings that EBNA2 is a binding partner of 

PLK1 and the higher the PLK1 levels, accordingly in the G2/M-phase, 

represented by the nocodazole-arrested cells in Fig. 16 B). The signal from 

EBNA2 is stronger, because a greater amount of the protein could be pulled down 

using the PLK1 primary antibody. The kinase assay (Fig. 16 C) showed equal 
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PLK1 activity for the nocodazole-treated cells in EBNA2 presence and absence. 

The signal from the cytoplasmic retention sequence (CRS) of Cyclin B serves as 

a substrate for the PLK1 enzyme activity. Phosphorylation of the GST-marked 

Cyclin B resulted in the incorporation of the radiolabelled phosphate from the 

gamma-32P-ATP. The quantification of radioactivity incorporated into the 

substrate as a function of time and enzyme concentration provides an evaluation 

of the enzyme activity. PLK1 is equally active in doxycycline-treated cells, which 

express EBNA2 and doxycycline-untreated cells. The difference from the signal 

strength for CRS resulted only from the nocodazole cell cycle arrest. The higher 

the percentage of mitotic cells, the higher the PLK1 activity, the more prominent 

the Cyclin B phosphorylation. Interestingly, other phosphorylating substrates of 

PLK1 with the molecular weight of approximately 80 to 100kDa became visible, 

especially in the doxycycline induced cell population. Phosphorylated EBNA2 

with a molecular weight in this exact range is one possible candidate that might 

be phosphorylated when PLK1 is most active, but this hypothesis needs further 

investigation.  

4.4 EBNA2 as a potential substrate of PLK1 

In the context of PLK1 functional significance as a kinase enzyme, we aimed to 

define possible phosphorylation sites for PLK1 within EBNA2. An in vitro kinase 

assay (Fig. 17 A) and B)) suggested that GST-EBNA2 mutants with a deletion of 

the amino-acid-sequence distal to residue 422 cannot be phosphorylated. 

Therefore, GST-marked EBNA2 was compared to GST-marked mutants 

containing either only 214 amino acids (aa 246-422) or the last 362 amino acids 

of the protein (aa 246-487). The first and second lane from the kinase assay in 

Fig. 17 A serve as controls, GST alone is the negative control, which shows no 

signal, and GST-CRS is a positive control as CRS is an acclaimed PLK1 

phosphorylation target. Interestingly, the EBNA2 protein with deletion of the last 

64 amino acids could not be phosphorylated by the kinase, whereas, the EBNA2 

mutant containing the last 65 amino acids (aa 246-487) in the last lane (Fig 17. 

A)) exhibits a stable signal for ATP incorporation. 

Since PLK1 phosphorylates serine and threonine residues as potential 

phosphorylation substrates (Elia et al., 2003), these are also found within EBNA2, 

precisely at residues 455-459 and 463-467 at the C-Terminus of the protein (Fig. 

17. B). The PBD of PLK1, however, could bind to residues 266-268 of EBNA2, 
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precisely serine threonine proline (STP) as shown in Fig. 17 B) (Elia et al., 2003). 

Taking these findings into consideration, it is possible that the interaction site for 

PLK1 within EBNA, containing both a phosphorylation domain and a binding 

sequence, is located within the 250 amino acids on the carboxyl-terminus of 

EBNA2 and correspondingly includes the conserved regions CR5 to CR9. 

We are grateful to M. Raab and Prof. K. Strebhardt for performing both 

kinase assays. 

  

                             

 

 
Fig. 16 PLK1 kinase assay in DG75 cells: no major impact of EBNA2 on 
PLK1 activity in G2/M arrested cells 
CKR128-34 cells were cultured in standard RPMI medium. For the purpose of 
the experiment, cells were either induced with doxycycline 1µg/ml (+ dox) in order 
to activate EBNA2 expression or left untreated (- dox). The asynchronously 
growing cells were treated with 100ng/ml nocodazole (+/-noc) and incubated for 
14h to induce G2-M-phase cell cycle arrest. pT210-PLK1 was used as marker for 
the PLK1 phosphorylation/activation. p-Histone3/ pH3Ser10 served as G2/M 
marker. Cyclin B also a G2/M marker was used as a control. A) western blot with 
total cell lysates from the nocodazole treated cells B) western blot with the 

Kinase assay 

A) 

B) 

C) 

90kDa 

CRS 
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samples from the co-immunoprecipitation using anti-PLK1 antibody C) PLK1 – 
IP- Kinase assay with γ-P32 ATP; Cytoplasmic retention sequence (CRS) is a 
region of Cyclin B1 and contains four conserved serine phosphorylation sites, 
glutathione S-transferase (GST)-marked Cyclin B is phosphorylated by PLK1. 
Phosphorylation is detected by gamma P32 ATP Adenosine triphosphate, well-
established substrate routinely used by M. Raab. Coomassie blue was used to 
stain proteins in polyacrylamide gel. It serves as a control of the amount of protein 
that was loaded on the gel.  

The experiments were performed by M. Raab and Prof. K. Strebhardt 
(University of Frankfurt Medical School). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 17 EBNA2 as a potential substrate of PLK1 
A) in vitro GST- kinase assay: DG75 cells transfected with HA-tag were incubated 
with purified GST (lane 1) or with the GST-EBNA fusion proteins: lane 2 GST-
CRS, lane 3 GST-EBNA2 amino acids (aa) 246-422 and lane 4 GST EBNA2 aa 
246–487. Bound protein was detected by immunoblotting using anti-HA-tag 
antibody. Coomassie blue was used to stain proteins in polyacrylamide gel. It 
serves as a control of the amount of protein that was loaded on gel.  B) schematic 
representation of EBNA2 containing conserved regions CR1-7 and the GST-
EBNA2 proteins, showing suggested phosphorylation sites within EBNA2: serine 
and threonine amino acids are localised in this region. The predicted 
phosphorylation sites (P-sites) within EBNA2 are serine (S) and threonine (T) 
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amino acids shown in red are localised at residues 455–459 and 463–467. The 
potential binding site for PLK1, which contains the typical consensus motif 
contains residues 266–268 of EBNA2, precisely serine threonine proline (STP) 
shown in green. The experiments were performed by M. Raab and Prof. K. 
Strebhardt (University of Frankfurt Medical School). 
 
 

4.5 Transactivation activity and expression stability of the EBNA2 

mutants  
 

These final findings prompted further investigation of the EBNA2 sequence and 

the significance of sequence alternations to the protein expression and 

transactivation activity. Figure 18 is a schematic representation of the EBNA2 

mutants used. These were not created specifically for the purposes of the 

experiment but rather coincidentally discovered in the laboratory stock (see 

section Materials 2.1 Plasmids). As the figure shows, the wild type EBNA2 full-

length protein was modified by point mutations: in EBNA2 S457L serine at the 

residue 457 is exchanged for leucine and for the establishment of EBNA2 S469L 

the serine at position 469 is exchanged for leucine. Both point mutations are close 

to the C-terminus of EBNA2 and the CR8 and CR9, which are associated with 

the functional activation domain of the protein. In order to test the transactivation 

activity of these proteins, we compared it in a luciferase assay, as shown in Fig. 

18 B). DG75 cells were co-transfected with the promoter Ga981-6 and reporter 

plasmid p3695-Renilla and EBNA2 expression plasmids (as described in 

Materials 3.3.8 Luciferase assay). 24h after transfection cells were harvested and 

luciferase activity was measured in RLU (relative light units), normalised to the 

Renilla activity and visualised as bars in Fig. 18 B), the comparison of the pSG5 

marked full-length EBNA2 (pSG5-E2) to the mutants S457L and S469L, the point 

mutants display an up to fourfold increase of the transactivation activity. 

Interestingly, the mutations do not disturb the expression of the protein, on the 

contrary, the EBNA2 expression is analogically stable for both mutants as the 

western blot in Fig. 18 C) shows.  
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Fig. 18 EBNA2 protein fragments with inactivated potential phosphorylation 
sites, show an increase of transactivation activity and stable EBNA2 
expression in the immunoblotting  
(The data shown above are representative of four independent experiments and 
four western blots) 
A) schematic representation of the EBNA2 mutants 

• pSG5-EBNA2 wt is a full-length EBNA2 expression plasmid;  
• pSG5-EBNA2 S457L is an EBNA2 expression plasmid with a point 

mutation at position 457, serine is exchanged for leucine; 
• pSG5-EBNA2 S469L is an EBNA2 expression plasmid with a point 

mutation at position 469, serine is exchanged for leucine. 
B) Increase of the transactivation activity of the EBNA2 mutants in the luciferase 
assay: DG75 cells were co-transfected with 5μg of promoter Ga981-6 and 
reporter plasmid p3695-Renilla and EBNA2 expression plasmids, pSG5 as an 
empty vector or EBNA2 mutants: pSG5-E2, pSG5-E2 S457L or pSG5-E2 S469L. 
Renilla luciferase reporter vector (p3695-Renilla) was used as an internal control 
for transfection efficiency. 24h after transfection cells were harvested and 
luciferase activity was measured using the dual luciferase assay system 
(Promega) and Orion Microplate Luminometer. The activity of the Ga981-6 
promoter as luciferase activity was normalised to Renilla activity in relative light 
units (RLU). The error bars are graphical representations of the standard 
deviation calculated from the mean values of the four experiments. 
C) western blot with the DG 75 cells transfected with EBNA mutants 24h after 
transfection cells were harvested and visualised in western blot using a primary 
ab: anti-EBNA2-rat and anti-rat HRP as the secondary antibody. The EBNA2 
protein expression was normalised to GAPDH expression. GAPDH was detected 
using GAPDH MAB 374 as primary and anti-mouse HRP IgG as secondary 
antibody. Protein complexes coupled to agarose beads were washed and 
subjected to immunoblotting. Finally, signals were developed with a 
chemiluminescent film reagent after 20s exposure. 
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4.6 EBNA2 phosphorylation  

As discussed, EBNA2 needs to be phosphorylated as any other protein in order 

to interact with PLK1. The question this statement raises is whether PLK1 itself 

phosphorylates EBNA2 or other kinases are needed for the phosphorylation prior 

to the protein interaction. Considering this, we aimed to perform an analysis of 

the EBNA2 phosphorylation and dephosphorylation, while PLK1 activity was 

normal or artificially increased by nocodazole treatment. Thus, we used DG75 

cells with conditional expression of EBNA2 and treated them with nocodazole to 

achieve a G2/M arrest. Before western blot analysis, we additionally incubated 

the cells with Calyculin A prior to lysis in order to suppress the intrinsic 

phosphatases activity and enable a better examination of the phosphorylation 

state of all proteins. As Fig. 19 shows, we detected EBNA2 only after doxycycline 

induction of its expression and the signal from lanes 5-8 was comparably strong. 

If cells were treated with nocodazole and enriched for the G2/M-phase of the cell 

cycle when PLK1 was most active, EBNA2 in lanes 7 and 8 displayed a weak 

second band with a slightly higher molecular weight than the normal EBNA2, 

known to be 86kDa. This finding suggests that EBNA2 is phosphorylated and the 

peak of PLK1 kinase activity might be related in time of occurrence. By adding 

Calyculin A, we were able to show that EBNA2 is phosphorylated in lanes 6 and 

8 and even though a quantification of the phosphorylation is not possible in the 

western blot analysis, it seems that the PLK1 activity does not necessarily affect 

the EBNA2 phosphorylation status, suggesting that kinases other than PLK1 also 

play a role in the EBNA2 phosphorylation. The PLK1 expression is once again 

stable and seems to be only insignificantly affected by the nocodazole treatment, 

which, as already discussed in section 4.3.1, is probably due to a sensitivity 

problem of the antibodies we used for the pull down. The PLK1 signal should 

rather be stronger in mitotic cells as the expression of the protein increases. 

GAPDH constant expression is the positive proof for normalisation of the results.  
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Fig. 19 Calyculin treatment of the PLK1 and EBNA2  

Cell cycle arrest with nocodazole 100ng/ml 14h incubation and 45min incubation 
with Calyculin A 100nM were performed immediately before the cells were 
harvested. CKR128-34 cells were either induced with doxycycline 1µg/ml (+ dox) 
in order to activate EBNA2 expression or left untreated (-dox). The 
asynchronously growing cells were treated with 100ng/ml nocodazole (+/-noc) 
and incubated for 14h to induce G2-M-phase cell cycle arrest. Cells were treated 
with 100nM Calyculin A for 30min prior to lysis in order to suppress intrinsic 
phosphatases. Total cell lysates were submitted to SDS-PAGE (10% for EBNA2 
and 12% polyacrylamide gel for PLK1) and transmitted to immunoblotting. (A): 
anti-EBNA2 (R3) antibody, (B): anti-PLK1 (ab17056) antibody and C): anti-
GAPDH mAb 374. Finally, signals were developed with a chemiluminescent film 
reagent after (A) 20, (B) 15 and (C) 10s exposure accordingly. 

 

4.7 Interactions sites for PLK1 within EBNA2 

Next, we sought to define the PLK1-EBNA2 interaction interface. As a transient 

interaction, the proteins form a dynamic association in order to mediate biological 

functions, which are yet to be explored. To understand how PLK1-EBNA2 

complex functions, we needed to examine how mutations can affect the strength 

of the interactions that result in protein binding. In this experiment, we sought to 

map more precisely the binding interface between PLK1 and EBNA2 by 

modifying key residues that might impact on the binding. The conserved region 

CR7 in EBNA2 close to the activation domain of EBNA2 and the binding site of 

EBNA2 to CBF1 were analysed as possible sites of binding for PLK1.  

A) 

B) 

C) 
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We transfected DG75 cells with four EBNA2 plasmids: pSG5 as an empty vector 

used as a negative control, pAG155, a full-length EBNA2 labelled with HA-Tag, 

pEFC61, a transformation of the pAG155 with deletion of the amino acids 377 to 

387 forming the CR7 domain and finally pGFP only for an examination of the 

transfection rate success. 24h after transfection we performed an 

immunoprecipitation targeting the HA-Tag of EBNA2 and detected the proteins 

of interest by immunoblotting using anti-EBNA2 and anti-PLK1 antibodies. As Fig. 

20 B) shows, we were able to pull down PLK1 only in the immunoprecipitation 

samples from the cells transfected with pAG155, the full-length EBNA2. The 

missing signal from PLK1 in lane 6 suggested that the EBNA2 construct with 

deletion of CR7 (pEFC61) was impaired to form a stable complex with PLK1. 

Isolated deletion of the CR7 prohibited the interaction of PLK1 and EBNA2.  

In view of the PLK1 function as a kinase and its substrate recognition of 

phosphorylated partners, we repeated the experiment under other conditions. 

Additionally, we investigated the influence of a targeted dephosphorylation of the 

cell lysates. Therefore, we incubated the samples with phosphatase enzyme CIP 

after cell lysis and immediately before immunoblotting and compared the 

phosphorylation state of PLK1 and EBNA2. Fig. 20 D) displays the results. We 

were able to confirm again that the constructs of EBNA2 with deleted CR7 cannot 

efficiently bind to PLK1 as lanes 7 and 8 detected no signal for PLK1. Interestingly 

PLK1 and EBNA2 both displayed higher molecular weight if the samples were 

not treated with the phosphatase, than those incubated with the CIP (signal from 

the EBNA2 in lanes 5 and 8 compared to lanes 4 and 7 accordingly, and signal 

from PLK1 in lane 5 compared to lane 4).  

 

 
 
 
 
 
 
 
 
 
 

DG75 cells 10x objective; GFP filter A) DG75 cells 10x objective 
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Fig. 20 The CR7 domain of EBNA2 is essential for the EBNA2-PLK1 
interaction 
DG75 cells were transfected with three different plasmids: pSG5, pAG155 and 
pEFC61. 
A) Immunofluorescence of DG75 cells transfected with the pGFP plasmid. pGFP 
expression was monitored by fluorescence microscopy 24h after transfection. 
Using equivalent conditions for all the plasmids, pGFP as control allows 
approximate evaluation of the transfection rate for the other EBNA2 constructs. 
B) Schematic representation of the EBNA2 and the EBNA2 constructs used for 
the transfection of DG75 cells: 

• pSG5 as an empty vector used as a negative control 
• pAG155 is an EBNA2-HA expression plasmid  
• pEFC61 is a transformation of the pAG155, where the EBNA2 gene has a 

deletion from amino acid 377 to 387 and lacks the CR7 domain 
• pGFP was used only for examining the transfection rate success and was 

not submitted to co-immunoprecipitation.  
C) western blot with the IP samples and total cell lysates  
24h after transfection the total cell lysates were co-immunoprecipitated (co-IP) 
with HA-Tag antibody, the resulting protein complexes were submitted to SDS-
PAGE, loaded on 10% gel and detected by immunoblotting using (A): anti-
EBNA2(R3) antibody and HRP-anti-rat secondary antibody and (B): anti-PLK1 
(ab17056) antibody and HRP-anti-mouse secondary antibody. Total cell lysates 
(L) and immunoprecipitation samples (IP) were detected by immunoblotting. 
Finally, the signal was developed with a chemiluminescent detection reagent 
after 15s exposure. 
D) western blot with the IP samples and total cell lysates after CIP incubation 
24h after transfection the total cell lysates were immunoprecipitated (IP) with HA-
Tag antibody, the resulting protein complexes submitted to SDS-PAGE, loaded 
on 10% gel and detected by immunoblotting using anti-EBNA2(R3) antibody and 
HRP-anti-rat secondary antibody and anti-PLK1 (ab17056) antibody and HRP-

D) 
 



 

 

- 74 - 

- 74 - 

anti-mouse secondary antibody. Total cell lysates (L) and immunoprecipitation 
samples (IP) were detected by immunoblotting. Certain IP samples were treated 
with phosphatase enzyme CIP (P) before immunoblotting. Finally, the signal was 
developed with a chemiluminescent detection reagent after 30s exposure. 
 

4.8 The influence of PLK1 inhibition on the interaction between PLK1 

and EBNA2 

All previous experiments suggested that the EBNA2-PLK1 complex can be 

detected in unsynchronised cell populations. To further analyse this hypothesis, 

we used the clinically approved PLK1 inhibitor Volasertib and applied it in 

concentrations ranging from 1nM to 20nM prior to performing a co-

immunoprecipiation via HA-Tag for the EBNA2-PLK1 complex. Once again, 

EBNA2 was labelled with an HA-Tag and only conditionally expressed in the 

doxycycline-treated cells. Additional CIP incubation after lysis aimed to target the 

phosphorylation of the two proteins of interest. Fig. 21 shows the results from the 

immunoblotting using EBNA2 and PLK1 antibodies. 
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Fig. 21 Volasertib does not affect the interaction between EBNA2 and PLK1  
107 DG75 cells with characterised by a doxycycline-inducible EBNA2-HA 
expression plasmid were treated with doxycycline and with different 
concentrations of Volasertib (BI6727 PLK1-Inhibitor: 1nM, 5nM, 10nM and 20nM) 
for 24h or left untreated. The cell lysates were submitted to co-
immunoprecipitation using an HA-Tag specific antibody. Protein complexes 
coupled to agarose beads were washed and subjected to SDS-PAGE (10% 
polyacrylamide). Total cell lysates (L) and immunoprecipitation samples (IP) were 
detected by immunoblotting.      
A and C: anti-EBNA2(R3) antibody and HRP-anti-rat secondary antibody and 
B and D: anti-PLK1 (ab17056) antibody and HRP-anti-mouse secondary 
antibodies. Some of the samples were treated with phosphatase enzyme CIP 
(calf intestinal alkaline phosphatase) before immunoblotting in order to analyse 
the phosphorylation status of the proteins of interest. Finally, signals were 
developed with a chemiluminescent detection reagent after 20s exposure. 

EBNA2 was detected in the doxycycline induced samples only. PLK1 was 

successfully co-immunoprecipitated in all samples with positive EBNA2 

expression. The incubation with 1nM, 5nM, 10nM and 20nM Volasertib was 

compared to the results from cells without Volasertib treatment as a reference. 

All in all, we obtained strong signals from all immunoprecipitation samples (lanes 

4–9 in Fig. 21 A, B, C and D) for EBNA2 and PLK1, independently on the PLK1 

inhibition. Additionally, CIP incubation causes a minimal shift of the molecular 

weight of PLK1 and EBNA2 as both proteins were dephosphorylated by the 

enzyme in a manner unaffected by the PLK1 inhibition. PLK1 inhibition does not 

prevent the phosphorylation of EBNA2 and has no significant impact on the 

interaction between EBNA2 and PLK1. In conclusion, the phosphorylation status 

of both proteins does not exclusively depend on PLK1. Native and inactive PLK1 

can bind to EBNA2. 

D 
 

C 
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4.9 Interaction sites for EBNA2 within PLK1 

Modulating the binding affinity of transient protein–protein complexes offers new 

opportunities to control their interaction. Beyond this, structural modifications on 

the protein surface of PLK1 can reveal crucial sites for the interaction with 

EBNA2. Here, we attempted to map the precise interaction sites for EBNA2 within 

the amino-acid-sequence of PLK1 using PLK1 mutants. Therefore, we tested 

whether the selective deletion of functional units of PLK1 can influence the 

interaction with EBNA2. For the purposes of the experiments, we used three 

PLK1 fragments and compared them to the full-length PLK1. All constructs were 

labelled with a FLAG-tag and a triple FLAG-tag was used as negative control. Fig 

22 A) is a schematic representation of the wild type PLK1 and the constructs we 

used in the experiment. The mutant KD416, composed of the first 416aa from the 

amino terminus of the protein, contains the entire kinase domain of PLK1, 

including the ATP binding site and the destruction box as a specific feature of 

PLK1. KD 305 consists of the first 305aa of PLK1, accordingly only the kinase 

domain. The PBD construct contains the last 231aa on the C-terminus of PLK1, 

forming the polo-box domain. The immunoprecipitation was performed with a 

FLAG-tag antibody and the immunoblotting using anti-FLAG-tag and anti-EBNA2 

secondary antibodies. Figs. 22 B) and C) display the visualisation of the 

immunoblotting. The PLK1 constructs were distinguished by the molecular 

weight: FLAG-PLK1 wt with approximately 66kDa, KD 416 with 50kDa, KD305 

with 35kDa and PBD with 30kDa. The signal from full-length PLK1 wild type (wt) 

and EBNA2 in lane 5 clearly implies that wild type PLK1 can efficiently interact 

with EBNA2. The equivalent staining from the IP samples in lanes 10, 14 and 18, 

which represent the three PLK1 mutants, show a considerably weaker signal. 

However, EBNA2 was pulled down using all three PLK1 mutants, suggesting that 

the interaction of the two proteins of interest is possible despite the targeted 

deletion of KD or PBD. The weakest signal for EBNA2 was detected in the IP with 

KD416. This could indicate that the deletion of PBD disturbs the PLK1-EBNA2 

interaction, however, the mutant KD305, only a shorter sequence of KD, which 

also lacks the PBD, displays comparatively stronger signal for EBNA2 and 

therefore suggests stronger protein interaction. The only difference between the 

mutants KD305 and KD416 being approximately 100 amino acids of the PLK1 

sequence contains the D-box. We can speculate that KD416 might not be able 
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to fold properly. KD305 and PBD show similar affinity for EBNA2. Hence, we 

observed positive staining for EBNA2 in all cases.  

 

 

  

Fig. 22 Interaction of PLK1 fragments with EBNA2 
A) Schematic representation of the polo-like kinase (PLK1) in human cells 
The amino-acid (aa) sequence lengths are displayed for every protein. The 
kinase domains (green) and polo-boxes 1 and 2 (blue) are depicted. The PLK1 
sequences responsible for its nuclear localisation (NLS, which is indicated in light 
green) and its destruction at the end of mitosis (D-box, which is indicated in red) 
are also displayed. Specific residues that secure phosphorylation and enzymatic 

B)  

A) 
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activation (T-loop) of the kinase domain and enable the phospho-selectivity of the 
polo-boxes are indicated. 
The PLK1-constructs are composed as follows: 

• 3x FLAG-tag vector with pCDNA + Hygromycine as a backbone 
• PLK1 wt: molecular weight 66kDa 
• KD 416: 416 residues without PBD, molecular weight 50kDa 
• KD 305:  305 residues, molecular weight 35kDa 
• PBD: residue 372 to 603, molecular weight 30kDa 

B) PBD- and KD- PLK1 mutants can all interact to a certain extent with EBNA2 
DG75 FLAG-PLK1-cells were transfected with four different PLK1 mutants and 
24h later subjected to co-immunoprecipitation using FLAG-tag beads. 
Immunoblotting was conducted using FLAG-tag and EBNA2 antibodies 
accordingly. Finally, signals were developed with a chemiluminescent detection 
reagent after 20s exposure. Total cell lysates (L) were loaded on the gel and the 
corresponding immunoprecipitation samples (IP). The experiment was performed 
in doublets using identical conditions for all the samples transfected with EBNA2 
wt (EBNA2+) or with pSG5 as an empty vector (EBNA2-).  
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5. Discussion 

 

The exact mechanism of how viruses interact with their host cell on a molecular 

level is of great interest for the elucidation of the functional response that triggers 

lifetime changes in a single cell and an organism as a victim of subsequent 

pathological transformations. 

The discovery of the Epstein-Barr virus as the first identified human tumour 

virus (Epstein et al., 1964) triggered extensive research that has gone on for 

decades on the pathological mechanisms employed by EBV. Despite a frequency 

of up to 95% of the worldwide population, there are no EBV-specific drugs to treat 

the primary infection. The standard therapy is largely supportive and mostly 

harmless for healthy individuals. Today it is known that Epstein-Barr virus is 

etiologically associated with a number of malignancies, including Burkitt's 

lymphoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, certain T-cell 

lymphomas, and immunoblastic lymphoma (Rickinson and Kieff, 1996). The 

immortalisation of primary human B-lymphocytes serves as a model in vitro for 

the investigation of EBV-associated tumourigenesis. The understanding of the 

molecular mechanisms involved in the immortalisation of B-lymphocytes by EBV 

is of great importance with regard to oncological diseases. In addition to the EBV-

encoded proteins, which play a crucial role in the uncontrolled growth of B-

lymphocytes and EBV-associated tumourigenesis (Kempkes et al., 1995; Elgui 

de Oliveira et al., 2016), a number of genes are regulated by EBV in their 

expression. The detection of interaction partners for the viral antigens assembled 

after EBV infection has still not been completed. To date no antiviral drug has 

been approved for treatment of primary EBV infection, although the therapy of 

EBV-related malignancies of lymphoid and epithelial cell origin undoubtedly 

represents a major unmet medical need. 

This project aims to give an insight into the newly found interaction 

between EBNA2 and PLK1, the networking of cellular processes in human B-

lymphocytes after EBV infection and characterises the significance of the 

interaction between the viral antigen EBNA2 and the ubiquitously expressed 

protein PLK1, essential for the cell cycle progression. PLK1 is a major kinase 

during mitosis and cytokinesis (Liu et al., 2017). The depletion of PLK1 protein in 

cancer cells dramatically inhibits cell proliferation and induces apoptosis. Hence, 
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PLK1 inhibitors have already found implementation in clinical studies for tumour 

treatment.  

Approaching EBV from a new perspective, we investigated the interaction 

of EBNA2 with PLK1 under various conditions on a cellular and subcellular level 

and sought to examine details of the protein-protein interactions, to analyse the 

complicated biological processes in which they participate. 

The interaction of PLK1 and EBNA2 was already identified in LCLs by the 

Kempkes group and confirmed in this project. Thus, we validated the protein-

protein interaction in different cell cultures in view of protein sequence 

alternations by using EBNA2 mutants and PLK1 fragments. Our aim was to 

provide information about the specific protein and amino-acid residues 

participation in the given protein-protein interaction in order to analyse the exact 

molecular mechanism of how the two proteins interact and facilitate the 

understanding of biological and clinical observation, which is potentially relevant 

in anticancer treatment. For the exact definition of the protein-protein interaction 

interfaces of PLK1 and EBNA2 we tested the impact of mutations on the protein 

binding affinity. Furthermore, we studied the expression and phosphorylation of 

EBNA2 with respect to the cell cycle stage and PLK1 activity, as well as the 

influence of PLK1 inhibition on the proliferation of EBNA2-positive and -negative 

cells.  

We succeeded in verifying a robust interaction of PLK1 and EBNA2 under 

various conditions, different cell cycle stages and despite phosphorylation 

alternations. However, we could not establish a clear correlation between the 

kinase activity of PLK1 and the proliferation of immortalised B-lymphocytes or 

EBNA2-transfected cells. Thus, we claim that EBNA2 and PLK1 have more than 

one exact interaction site as targeted mutations of both proteins did not fully 

impair the proteins in binding to one another. The questions remaining are 

whether and how the PLK1-EBNA2 association contributes to immortalisation of 

B-cells by EBV. 

5.1 Inhibition of the proliferation of immortalised and EBNA2 

transfected B-lymphocytes by targeting PLK1 

Drugs targeting PLK1 have been the focus of extensive clinical studies but have 

never been analysed in the context of EBV infection or tested the effect on 
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EBNA2 expression. In this work, using proliferation assays, we were able to show 

that EBV- infected cells are sensitive to PLK1 inhibition. The IC50 scores shown 

in Fig. 8, section 4.1 reveal that immortalised B-lymphocytes have IC50 scores in 

the same range as other cell lines derived from cancer tissues (Rudolph et al., 

2009). Volasertib disrupts centrosome maturation and division and thus causes 

the composition of a monopolar spindle, which terminates cell cycle progression 

temporarily at the spindle assembly checkpoint during prometaphase. The longer 

the cells are arrested, the more become apoptotic (Lenart et al., 2007; 

Steegmaier et al., 2007). In vitro experiments suggest that Volasertib could be 

employed in the adverse cytogenic AML treatment, which appears to be more 

sensitive to PLK1 inhibition than normal karyotype AML specimens and normal 

hematopoietic cells (Moison et al., 2019). A phase II clinical trial with Volasertib 

was conducted in patients over 65 years with previously untreated acute myeloid 

leukemia, who were ineligible for intensive remission induction therapy, to 

evaluate their response to subcutaneous low-dose cytarabine with or without 

Volasertib (Mertens et al., 2012). The phase III trial did not meet the initial 

expectations and failed to verify the encouraging conclusions from the phase II 

study. However, competing risk modeling of survival rates confirmed the 

antileukemic effect of Volasertib in combination with low-dose cytarabine and 

supports an investigation of modified Volasertib doses as well as further 

examination of the possibilities for an increase of the treatment tolerance (Döhner 

et al., 2016). 

Volasertib has proven drug potency in various solid tumour xenograft 

models of human cancer at acceptable doses (Rudolph et al., 2009), and a 

desirable effect has been reported in early clinical trials in patients with solid 

tumours (Janning and Fiedler, 2014). The FACS analysis we performed (Fig. 11, 

section 4.1) confirmed that Volasertib treatment causes a reduction of the G1 

population and an increase of the G2 population of immortalised B-lymphocytes. 

Of note is the fact that we also saw a clear expansion of the S-phase in the cell 

populations treated with the highest amount of Volasertib. However, questions 

remain as to whether we can differentiate clearly cells in the S-Phase and G2-

blocked cells. 

The assessment of the experiments was problematic since the increasing 

levels of apoptosis shown in Fig. 11 could also be associated with the p53 status 

of the lymphocytes. It has been reported, that p53 gene expression is induced in 
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LCL to the level of mitotic cells and, therefore, immortalised B-cells are more 

sensitive to the p53 mediated effect by various drugs (Allday et al., 1995). The 

immortalised B-cells could, in our case, be targeted with a PLK1 inhibitor 

successfully, but whether the presence of the virus in cells could actually alter the 

reaction to the drug inhibition remains unclear.  

For this reason, we sought to differentiate the influence of the virus and 

EBNA2 expression on the drug efficacy and toxicity. Thus, we used EBV-negative 

lymphoma cell lines, transfected with EBNA2 and were able to prove that the IC50 

scores for the EBNA2 positive cells were slightly lower. Although, per definition, 

we saw an insignificant difference between EBNA2 expressing and EBNA2 

negative cells, we can speculate that within the repetition of the experiment we 

witnessed an obvious reproducible tendency that the EBNA2 positive cells were 

more prone to the Volasertib suppression of PLK1. Next, we tested the influence 

of the PLK1 inhibition via Volasertib in EREB B-lymphocytes with conditional 

expression of myc and EBNA2 and found that the response of cells to the drug 

treatment was stronger the longer EBNA2 was switched on (Fig.12, section 4.2). 

For the assessment of this experiment with FACS we had to manually define the 

cell cycle stages for the cells treated with the highest concentration of Volasertib 

according to the DNA content because the cells showed distribution, which was 

not automatically perceptible for the FlowJo Software.  

Overall, we can confirm that myc correlates with increased proliferation 

activity as already reported (Kempkes et al., 1995). Therefore, proliferation rates 

of the myc expressing cells were also the highest. The corresponding FACS 

analysis of the cells we tested using proliferation assays suggests that Volasertib 

treatment is more toxic for EBNA2-positive p493-6 cells. At a drug concentration 

as high as 50nM the cells were not able to proliferate (Fig. 12, section 4.1). In the 

quantification histograms of Fig. 12 A) we see a clear expansion of the apoptotic 

population, especially at the highest drug levels and a decrease of the G1 

contribution. However, as previously discussed, the significant difference 

appears only if the expression of EBNA2 is switched on for three days prior to the 

drug application. Whether the presence of EBNA2 can intensify the efficacy of 

drugs targeting PLK1 and if these findings have a clinical value for anticancer 

therapies in vivo should be an object of future research. 

Although PLK1 functional suppression with Volasertib, a small molecule, 

adenosine triphosphate-competitive kinase inhibitor, did not show a major 
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difference in the proliferation rates between EBNA2 positive and negative cells, 

the impact of the Volasertib treatment might be alternated by the interference with 

other intrinsic kinases. Volasertib is a selective inhibitor for the PLK family but it 

also inhibits PLK1 and PLK2 with IC50 values of 0.87 and 5nM, respectively, and 

shows somewhat lower potency on PLK3 (56nM) (Rudolph et al., 2009). The PBD 

differs more between the PLKs than the KD does, and PBD binding motifs differ 

between PLKs (Lee et al., 2012). Future experiments with specific drugs targeting 

the PBD of PLK1, such as Poloxin, might give a new perspective on the specific 

PLK1 inhibition in view of the PLK1-EBNA2 interaction. The most recent 

development of Poloxin 2 is reported to have significantly improved potency and 

selectivity for PBD of PLK1 (Scharow et al., 2015). 

 

5.2 EBNA2 as a substrate of PLK1    

PLK1 is required for entry into mitosis during normal cell cycles and its functional 

activation reaches the highest level at the late G2 stage and decreases again 

after the transition to mitosis (Sumara et al., 2014). To determine how PLK1 

maximum activity as a kinase can influence EBNA2 on a molecular level, we 

established a cell cycle arrest at the G2/M-phase of the cell cycle using 

nocodazole treatment. B-lymphocytes with conditional expression of EBNA2 

were successfully trapped into mitosis. Fig. 16 confirms that PLK1 and EBNA2 

can interact in all stages of the cell cycle and even if the cells were not enriched 

for the G2/M population, PLK1 binds efficiently to EBNA2. At this point, we 

considered the interaction of PLK1 and EBNA2 to be independent of the kinase 

activity of PLK1. However, the phospho-dependent ligand recognition by PBD is 

crucial for the association of PLK1 to a specific substrate, also known as 

processive phosphorylation. It has been appreciated that the release from the 

intramolecular inhibitory state between the two functional domains of PLK1 

emerges from conformational alternation induced in PBD when phosphopeptide 

binding leads to the affiliation of KD to the specific substrate (Park et al., 2010; 

Jang et al., 2002; Seki et al., 2008). All previous studies taken together suggest 

a sequence D/E-X-S/T-Φ-X-D/E (X, any amino acid; Φ, a hydrophobic amino 

acid) as an optimal phosphorylation sequence by PLK1 (Nakajima et al., 2003). 

The KD of PLK1 recognises serine and threonine residues as potential 

phosphorylation substrates (Elia et al., 2003). These are also found within 
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EBNA2, precisely at residues 455–459 and 463–467 at the C-terminus of the 

protein (Fig. 17. B, section 4.4).  

In latently infected cells, EBNA2 is hyperphosphorylated by cyclin-

dependent-kinase 1 also known as CDK1 or cell division cycle protein 2, the key 

regulator of mitosis (Yue et al., 2005). Of great interest in the context of the kinase 

function of PLK1 is a possible regulation of EBNA2 function through 

phosphorylation during the EBV lytic cycle. In this study, we examined whether 

PLK1 is able to phosphorylate EBNA2 and how this phosphorylation affects 

EBNA2 function. Interestingly, the kinase assay, as shown in Fig.16, revealed 

that an increase of the PLK1 enzymatic activity results in phosphorylation of a 

protein with a molecular weight of approximately 90kDa, which could be the 

hyperphosphorylated EBNA2. The results from the kinase assay performed by 

M. Raab and Prof. Strebhardt as collaborative work on our project (Fig. 16, 

section 4.4) demonstrated that EBNA2 might be a substrate of PLK1 in the G2/M-

phase. There is still a question as to which protein with an approximate molecular 

weight of 90kDa was identified as the kinase substrate of PLK1. One possible 

explanation is that this is phosphorylated or even hyperphosphorylated EBNA2, 

but more evidence is needed to support this suggestion. 

Determination of crystal structure of KD bound to PBD in future studies 

could help to narrow the range of possible phosphor-priming dependent and 

independent interactions of PLK1. 

EBNA2 is a phosphoprotein, but whether constitutive phosphorylation of 

EBNA2 influences its transactivation function is unknown. It has been shown that 

phosphorylation of EBNA2 in latent infection is regulated during the cell cycle and 

that the protein is hyperphosphorylated and, thus, inhibited during mitosis (Yue 

et al., 2005). Precisely, the transcriptional activity of the hyperphosphorylated 

protein is suppressed. As already discussed in section 4.4, the predicted 

phosphorylation sites (P-sites) within EBNA2 are serine (S) and threonine (T), 

localised at residues 455–459 and 463–467 (PhosphoSitePlus®). Interpretation 

of Fig. 18 allows the argument that inactivation of these phosphorylation sites 

causes an increase of the transactivation activity. Hence, our results confirm the 

hypothesis that a hyperphosphorylation decreases the transactivation activity, 

because mutants with impaired phospho-sites could not be restricted in their 

functional activity. Moreover, the expression of these EBNA2 mutants is stable 

on the protein level. At this point, the next step would be to compare the affinity 
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of PLK1 mutants containing only KD or only isolated PBD to these EBNA2 

mutants with impaired phosphorylation sites.  

The inhibition of the function of PLK1 as mitotic kinase on a molecular level 

did not significantly affect the protein-protein interaction. Fig. 19 (section 4.6) 

shows that the cells arrest in the G2/M-phase of the cell cycle after nocodazole 

treatment, when PLK1 reaches the peak of its kinase activity (Petronczki et al., 

2008), and EBNA2 phosphorylation is enhanced. However, other kinases are 

also increasingly active during the G2/M transition and do not allow a final 

conclusion to be drawn as to whether PLK1 itself is responsible for the EBNA2 

phosphorylation.   

Next, the probable phosphorylation of EBNA2 in the course of interaction 

with PLK1 led us to the question of whether we can better examine the 

phosphorylation state of our binding partners. Therefore, in Section 4.7 we used 

a phosphatase after performing a co-immunoprecipitation. As Fig. 20 implies, 

dephosphorylation with an extrinsic phosphatase showed a clear change of the 

phosphorylation state of the two proteins of interest. After treatment with the 

phosphatase, both proteins displayed slightly lower molecular weight when 

depleted from the phosphoryl groups. Of question is whether we were able to 

efficiently target the phosphorylation sites of EBNA2 with the phosphatase 

enzyme of choice. Another critical point we acknowledge is that it is not clear 

whether once the protein complex is formed the phosphorylation sites remain 

available for the CIP reaction. CIP might not be able to approach the target 

residues if they are out of its reach in the protein complex.  

 

5.3 Functional inhibition of the kinase activity of PLK1 

PLK1 expression and activity increase at the G2/M transition and peak during 

mitosis (Petronczki et al., 2008). Phosphorylation of Thr210, located in the T-loop 

inside the KD is characteristic for mitosis and appreciated as the most important 

post-translational modification on PLK1 during mitotic division. Phosphorylation 

of Thr210 by upstream kinases is considered the first step in triggering PLK1 

activation during mitosis (Macurek et al., 2008). Not only does the PBD of PLK1 

require phosphorylation for substrate recognition (Elia et al., 2003), but the kinase 

function of the KD of PLK1 itself is dependent on ATP incorporation for its 

activation (Sumara et al. 2014).  
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Taking the results from Fig. 21 into consideration, we argue that functional 

inhibition of PLK1 with Volasertib does not affect the association of the PLK1-

EBNA2 protein complex. We claim, that the kinase enzymatic activity of PLK1 is 

not essential for the interaction with EBNA2 as both active and inactive PLK1 can 

bind to EBNA2. 

 The priming phosphorylation of EBNA2 needed for the substrate 

recognition by PLK1 is conducted by other kinases and seems to be independent 

of the main function of PLK1. This initial phosphorylation of EBNA2 by other 

kinases allows the PLK1 recruitment in a process called non-self-priming (Lee et 

al., 2014). Although we cannot exclude the possibility that PLK1 can also create 

its own docking site on EBNA2 under certain circumstances, our experiments do 

not rule out the so-called non-self-priming mechanism of PLK1 being an 

alternative preliminary condition for the EBNA2 recognition as suitable substrate.  

 

5.4 Mapping of the interaction sites within PLK1 and EBNA2 

PLK1 mutants lacking PBD or KD were not impaired in their protein-protein 

interaction with EBNA2 (Fig. 22, section 4.8). PBD alone, as well as isolated KD 

of PLK1, could both be used for a pull down of EBNA2. Considering that PBD 

plays an essential role in targeting PLK1 to various subcellular elements and, 

thus, determines the mitotic allocation of PLK1 (Lee et al., 2008), we expected a 

clear loss of affinity for EBNA2 as interaction partner, if PBD was deleted. 

However, our results did not confirm these assumptions. One of the PLK1 

mutants with deletion of the entire PBD showed a similar affinity to EBNA2 as the 

isolated PBD itself. These findings were rather unexpected as we thought that 

KD alone would not be able to bind to EBNA2. 

We can speculate that the KD fragments show different affinity to EBNA2 

due to the presence or absence of the destruction box in the protein sequence. 

Interestingly, the inter-domain linker region of PLK1 between KD and PBD 

contains the canonical destruction box motif RKPLTVLNK (aa 337 to 345). These 

residues are essential for the recognition by APC/C, which is reported to be one 

of the main regulators of the transition from metaphase to anaphase and mitotic 

exit in human cells. Targeted mutation of residues forming the destruction box 

renders PLK1 non-degradable and leads to a delay in mitotic exit (Schmucker 

and Sumara, 2014). Whether the destruction box as a functional unit of PLK1 
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actually modifies the stability of the protein itself or modulates the structure of the 

protein in a way that prohibits efficient interaction with EBNA2, still remains to be 

elucidated. Another probable explanation for the impaired interaction of the 

KD416 protein with EBNA2 (Fig. 22, section 4.8) is the protein folding problem, 

which disturbs the tertiary structure of the protein.  

Of notice is also the fact that between the PBD and the kinase domain in 

full-length PLK1 mutual inhibitory interaction occurs (Jang et al., 2002). Isolated 

PBD is reported to bind strongly and specifically to pSer/pThr-containing peptides 

(Elia et al., 2003). However, in our experiment visualised in Fig. 22, we also do 

not see an increase of the PLK1 affinity for EBNA2, when PBD is isolated. Even 

though the deletion of PBD prevents possible inhibition by the kinase domain 

near the N-terminus, the isolated PBD and isolated KD showed a comparable 

affinity for EBNA2. In this case, we consider at least two binding sites for EBNA2 

within PLK1, one of them located approximately within the first 300–400aa and 

another one within the last 400–603aa. Certainly, further analysis of these binding 

sites needs to be performed. 

Vice versa, modification of the EBNA2 structure brought more insight to 

the exact interaction sites within the EBNA2 protein. CR7 deletion mutants (aa 

376 to 425 deleted) of EBNA2 were impaired for efficient interaction with PLK1 

(Fig. 20). Next, plasmids from truncated CR7, composed only of the residues aa 

376–425, could be transfected in B-lymphocytes in order to investigate whether 

CR7 alone is sufficient for the interaction with PLK1. However, even if CR7 of 

EBNA2 is one of the key residues for the PLK1 interaction, we still cannot exclude 

the existence of a second and third interaction site within EBNA2. As shown in 

Fig.17 (section 4.4) another potential binding site for PLK1, suggested by 

sequence alignment, is located at the residues 266–268 of EBNA2 and contains 

the typical consensus motif of serine-threonine proline (STP). In order to verify 

this hypothesis, further experiments with deletion mutants for these residues, 

assayed for interaction with PLK1, should be performed. 

 

5.5 Outlook  

EBNA2 is an EBV multifunctional viral oncoprotein, crucial for the immortalisation 

of B-lymphocytes. The interaction with PLK1 might involve a key mechanism in 
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the malignant transformation of cells caused by the virus. Our data imply that 

EBNA2 can bind to PLK1 in a reversible but stable manner. Whether this 

particular interaction triggers a pathway that can influence the viral ability to 

establish and maintain immortalised B-cells and, thus, benefit tumourigenesis, is 

still unclear. Investigation of the PLK1-EBNA2 interaction and downstream 

signalling pathways emerging from this interaction could help to improve our 

knowledge concerning EBV-associated malignancies. So far, we were able to 

show that EBNA2 can, to a certain extent, sensitise cells for PLK1-targeted 

inhibitory treatment. However, the clinical relevance of this discovery remains 

questionable. Implementation of selective PLK1 inhibitors on EBV-infected or 

EBNA2 transfected B-lymphocytes might bring valuable insights into the 

consequences of this interaction and enable identification of direct drug targets 

in cancer treatment. The exact principles that guide the proliferation activity of 

EBV-immortalised cells and their potential in immunotherapeutic application 

remain to be fully explored in the future.  
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