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2. Introduction 

2.1 Tauopathies 

With aging populations in industrialized nations, neurodegenerative disorders are grad-

ually being paid more attention. This is a worrying problem since such diseases have 

both significant social and economic impact in terms of direct medical and accompanying 

social care costs. 

Neurodegenerative disorders are described as diseases with chronic and advancing loss 

of neuronal structure or function ranges from initial synaptic dysfunction to extensive 

neuron death in the central and peripheral nervous system [1]. These disorders can be 

broadly classified by their clinical symptoms, with movement disorders and impaired cog-

nitive function being the most common features [2-4]. However, most patients usually 

have mixed clinical features rather than a pure syndrome presentation [3]. On the other 

hand, neurodegenerative diseases can also be categorized and termed according to a 

variety of modified and deposited proteins which play a major role in disease neuropa-

thology [4], such as tauopathies, α-synucleinopathies,  amyloid-beta (Aβ) proteinopa-

thies, and transactivation response DNA binding protein-43 (TDP-43) proteinopathies, 

etc. [2, 3, 5]. Thus, currently there is a mixture between clinical and biomolecular defini-

tion of neurodegenerative disorders.  

Disorders associated with pathological tau protein accumulation in neurons and glia are 

termed tauopathies [6-11]. The pathological accumulation of misfolded hyperphosphor-

ylated tau is a hallmark of a various of neurodegenerative diseases, such as Alzheimer’s 

disease (AD), Pick’s disease (PiD), some of atypical parkinsonian syndromes, subtypes 

of frontotemporal dementia, etc. [12, 13].  

Although current treatments are still not able to cure or change the progressive course 

of tauopathies, but can only relieve the related symptoms [14], scientific research has 
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achieved huge progress not only in better understanding the disease mechanisms but 

also in diagnosing early stages of neurodegeneration diseases by biomarkers. 

2.1.1 Tau protein 

Tau is a microtubule-associated protein tau (MAPT) gene-encoded protein [15] which is 

primarily located in nerve cell axons in neurons [16] and contribute to the formation of 

the core of early assembling microtubules, as well as control microtubular stability and  

regulate its transport processes [6, 17-20]. 

Tau isoforms are expressed by alternate splicing of pre-mRNA. In the adult human brain, 

six tau isoforms with different length (from 352 to 441 amino acids) have been reported 

[6, 16, 21-26]. These isoforms differ in the inclusion of an exons 2 and 3 encoded amino 

acid sequence insert, as well as in the existence of an exon 10 encoded repeat segment 

which serves as a microtubule-binding domain [16, 22, 27-29]. Depending on the inclu-

sion or exclusion of the exon 10 encoded microtubule-binding domain repeat, tau protein 

is dived into four repeats (4R) or three repeats (3R) isoforms respectively [3, 11, 16, 21, 

25-27, 30]. In normal condition, 3R and 4R tau isoforms are equal in amount in the brain. 

The splicing of six different tau protein isoforms is illustrated in Figure 1. 

 

 

Figure 1. Six tau isoforms expressed in the adult human brain. Tau is encoded by 

the human MAPT gene on chromosome 17q21. N1 (green) and N2 (blue) are expressed 
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by the alternative splicing of exons 2 and 3 respectively, resulting different number of 

inserts (0/1/2N). Depending on the inclusion or exclusion of the R2 (red) insert, tau 

isoforms are thus divided into 3R- or 4R-tau, respectively. (From Park et al., BMB Rep 

2016 [31]) 

 

Tau is natively unfolded and normally phosphorylated [18, 32]. Under pathological con-

ditions, however, tau is abnormally hyperphosphorylated [33]. The specific mechanisms 

underlying pathologically tau aggregation are yet to be investigated, however, it is re-

ported that the hyperphosphorylation of tau debilitate its microtubules binding while raise 

tau protein level in cytosol [34], resulting in protein self-aggregation and neurofibrillary 

tangles (NFTs) formation [26], which are further classified as paired helical filaments 

(PHFs), twisted ribbons, and/or straight filaments [33, 35]. 

2.1.2 Classification of tauopathies 

Although all tauopathies share tau immunoreactivity in postmortem analysis, tauopathies 

are heterogeneous in both biochemistry and morphology. 

On one hand, tauopathies can be biochemically categorized according to the different 

tau isoform compositions of their filaments, thus being subdivided into 3R tauopathies 

predominantly composing of 3R tau, 4R tauopathies predominantly composing of 4R tau, 

and 3R/4R-tauopathies in which NFTs contain a mixture of 3R and 4R tau [11, 36, 37]. 

On the other hand, tauopathies can be categorized depending on the primary driver. In 

primary tauopathies, tau is the principal pathogenic protein, whereas other etiologies 

contribute, even primarily, to secondary tauopathies. Primary tauopathies consist pure 

3R-tauopathies (e.g., Pick’s disease), pure 4R-tauopathies (e.g., progressive supranu-

clear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease 

(AGD) [3, 9]), or mixed 3R/4R-tauopathies (e.g., the NFT predominant senile dementia 

(NFT-dementia) [38]). In terms of secondary tauopathies, the best-known example is AD, 
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which is the most common fatal neurodegenerative disease, contributing to about 60-70% 

of dementia. One of the microscopical neuropathology of AD is the intracellular NFTs 

which are composed predominantly of tau protein [39-42]. However, AD is also charac-

terized by the extracellular deposition of amyloid plagues, and genetic studies showed 

AB to have initial or primary alterations in amyloid metabolism [43]. Biochemical evidence 

consistently points to Aβ as the primary driving force of the disease [44]. As a result, the 

deposition of Aβ has been regarded widely as the initial pathological event of neuro-

degenerative processing in AD, which leads to senile plaques (SPs) and NFT formation, 

neuronal dysfunction, and finally clinical syndromes like cognitive decline or movement 

disorders [26]. 

Besides, tauopathies can be categorized by other neuropathological phenotypes, such 

as the relative amounts of tau inclusions, the presence of varying cell types, and the 

involvement of distinct neuroanatomical areas [10, 11]. 

2.1.3 Neuropathology of AD, PSP, and CBD 

AD, as outlined above, accounts for the most prevalence of tauopathies. It is marked by 

predominantly PHF of tau, which contains all six isoforms and has an approximately 

equal 3R to 4R ratio in the microtubule-binding domain, mixed with straight filaments [8, 

45-47]. However, tau accumulation in AD differs in distinguishable spatial and temporal 

phases (Braak stages) [40, 48]. For instance, by performing immunohistochemistry with 

3R and 4R tau specific monoclonal antibodies, evidence showed that the extracellular 

tangles are disproportionally 3R tau immunoreactive in the medial temporal lobe [13].  

In contrast, PSP and CBD tau aggregation form straight filaments of tau, which are lo-

cated mainly in subcortical nuclei and primarily composed of the 4R tau isoform [8, 49-

53]. Although they share similar tauopathy, anatomically PSP demonstrates denser 

NFTs and neuropil threads mainly in the basal ganglia, cerebellum, and brainstem, with-

out much influence on the neocortex [54]. As for CBD, the pathology largely overlaps 

with PSP but tended to affect a higher proportion of the cortex and also the subcortical 
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white matter [7, 55]. Furthermore, CBD and PSP also vary in astroglial tau pathology: 

PSP is characterized by astrocytic tufts, while CBD comprises astrocytic plaques [11]. 

The clinical presentation of a corticobasal syndrome (CBS) can have different underlying 

neuropathological correlates. Here, the majority of Aβ-negative cases with a clinical phe-

notype of CBS (~50%) obtained the neuropathological diagnosis of a 4R-positive CBD 

in autopsy, but 25% are characterized by AD neuropathology and 25% are non-tauopa-

thies [56]. 

2.1.4 Positron Emission Tomography imaging for tauopathies 

Positron Emission Tomography (PET) technology demonstrates its increasing im-

portance in imaging patients with neurodegenerative disorders. 18F-fluorodeoxyglucose 

([18F]FDG), a glucose analog,  is uptake in the brain where it gets phosphorylated without 

the possibility of further metabolization. Thus the phosphorylated [18F]FDG is trapped in 

the cells and emits its radiation at the place of its uptake. Hence, PET imaging with 

[18F]FDG has been used extensively to visualize regional glucose metabolism alterations 

in neurodegenerative disorders. In tauopathies, [18F]FDG-PET imaging enables the eval-

uation of synaptic dysfunction and neuronal injury which is accompanied by hypometab-

olism. 

Apart from [18F]FDG-PET, the continuous development of novel radiotracers facilitated 

the direct detection of aggregated proteins in various neurodegenerative disorders in 

recent years. For instance, by accurately identifying Aβ deposits, amyloid-PET facilitated 

the early diagnosis for AD. Tau-PET imaging allowed in vivo imaging of the presence 

and spatial extent of brain tau deposition in addition to clinical assessments, facilitating 

characterization and quantification of tau in the human brain. However, the detection of 

tau in the brain is more difficult when comparing to that of A, because of the generally 

lower amount of tau deposition when compared to A, while the existence of various tau 

isoforms makes the detection even complicated [57]. Tau-specific PET radiotracers for 

non-invasive detection of tau inclusions in the brain have been developed in recent years 
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[58, 59], which facilitates earlier diagnosis of tauopathies with higher accuracy, as well 

as in disease progression tracking and therapeutic efficacy assessment [25].  

Besides, some Aβ- and tau-tracers have also indicated their potential as surrogate mark-

ers of neuronal injury, which is included in the A/T/N classification scheme of AD diag-

nosis [60]. Preliminary data showed that the perfusion-phase images deriving from PET 

with these tracers are comparable to [18F]FDG imaging [61-68]. Such characteristic sug-

gests a potential to get two biomarkers with a one-stop-shop, allowing to reduce exami-

nation cost and radiation exposure, which holds great promise in its future application.  

2.2 The first-generation tau-PET radiotracers 

To date, the first-generation tau-PET radiotracers include benzothiazole derivates 

[11C]PBB3, THK compounds [18F]THK5105, [18F]THK5117, [18F]THK5317, and 

[18F]THK5351, and [18F]AV1451 ([18F]flortaucipir, T807). These first-generation tau-PET 

radiotracers have been widely tested for NFT deposition imaging in vitro and in vivo [25, 

69-72]. Autoradiography showed specific binding of the radiotracers mentioned above to 

both intracellular and extracellular neurofibrillary tangles [73-76]. Furthermore, these 

first-generation tau-radiotracers provided topographic distribution and quantitative esti-

mates of tau pathology closely matching the known patterns in autopsy, both in AD and 

non-AD tauopathies [73, 77-81]. 

2.2.1 Clinical application in Alzheimer's disease 

Non-invasive imaging of [18F]THK5105 PET demonstrated significantly higher retention 

in cortical areas which are known to have more PHF-tau in AD brains, with marked tracer 

retention in the inferior temporal cortex [82]. Besides, this study also observed a signifi-

cant correlation of [18F]THK5105 retention with clinical severity of dementia or neuronal 

loss. In a clinical PET study of [18F]THK5117, Harada et al. revealed a higher tracer 

binding in the temporal lobe in AD subjects when compared to healthy elderly subjects 

[74]. As shown in a longitudinal PET study, the changes of regional [18F]THK5117 binding 
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correlated well with cognitive decline in AD patients, suggesting an attribution of cogni-

tive decline to the progression of neurofibrillary pathology [83]. 

However, these THK compounds exhibited non-negligible retention in the subcortical 

white matter. To reduce nonspecific tracer retention in the white matter, Harada and col-

leagues at Tohuku University in Japan developed a novel tau-PET tracer, [18F]THK5351. 

The first human PET study exhibited more favorable pharmacokinetics with a faster 

clearance and a sequent lower retention in the subcortical white matter [73]. 

Of the first-generation tau radiotracers, [18F]AV1451 is the most widely studied one to 

date. Binding affinities of [18F]AV1451 to NFTs in AD have been investigated in vivo and 

in vitro since the first human brain imaging publication in 2013 [84].  

Evidence showed that [18F]AV1451 has a higher binding affinity to the 3R- and 4R-tau 

isoforms in PHF and a higher binding selectivity for tau than Aβ in AD brains [75, 84-86]. 

On a group level, tau-PET imaging with [18F]AV1451 demonstrated its clinical usefulness 

for discriminating AD from non-AD neurodegenerative diseases and cognitively normal 

individuals. Recent clinical PET studies have shown that comparing to cognitively normal 

individuals, patients with clinically diagnosed AD dementia and mild cognitive impairment 

(MCI) showed markedly higher levels of [18F]AV1451 retention in brain regions that are 

susceptible to contain an elevated burden of PHF-tau lesions, especially in the hippo-

campus, parietal lobe, as well as mesial and lateral temporal lobes [77, 78, 87-92]. Fur-

thermore, the off-target binding of [18F]AV1451 is lower than [18F]THK5351 when it 

comes to the thalamus, basal ganglia, and white matter [93]. 

Additionally, autoradiographic binding patterns of [18F]AV1451 were found to be con-

sistent with the predicted topographic Braak staging of NFTs in postmortem AD brains 

[94]. Furthermore, evidence from in vivo studies demonstrated a significant correlation 

between [18F]AV1451 retention and AD disease severity, supported by increasing neo-

cortical tracer binding from A+ cognitively normal aged cases to MCI, and more ad-

vanced AD dementia [91].  
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Also, the association of the tau-PET signal to cognitive performance was investigated. 

Unlike the A-PET tracer signal which is over the whole cortex, [18F]AV1451 uptake is 

limited to brain regions being associated with corresponding clinical symptoms and ar-

eas with hypometabolism [95, 96]. This is consistent with some neuropathological stud-

ies of [18F]AV1451 reporting the correlation between location and quantification of tracer 

binding and clinical symptoms and the degree of cognitive impairment [97-102], whereas 

the association between A-PET and cognition is generally weaker and less region-spe-

cific [96, 103]. The body of evidence for excellent performance of [18F]AV1451 in imaging 

of AD led to its FDA approval in 2020. 

 

2.2.2 Clinical application in non-AD tauopathies 

So far, most studies about tau-PET focused on AD patients, with the primary emphasis 

on detecting of PHFs in the AD brain. Meanwhile, radiotracers have been shown to bind 

to 4R tau in relatively rare neurodegenerative disorders including PSP and CBS. 

For example, in clinically diagnosed PSP patients, significantly higher [18F]THK5351 re-

tention was observed in the midbrain and the globus pallidus [80, 104, 105]. Quantitative 

analysis indicated strong discriminations of clinically diagnosed PSP patients from 

healthy controls (HCs) and Parkinson’s disease (PD) patients based on bilateral elevated 

[18F]AV1451 retention in the globus pallidus, the subthalamic nucleus, the putamen, the 

midbrain, and the dentate nucleus [106-109]. These clinical findings suggest a binding 

affinity of [18F]THK5351 and [18F]AV1451 to the 4R tau aggregation in PSP. Furthermore, 

some of the abovementioned studies also observed a correlation of regional tracer up-

take with the PSP rating scale (PSPRS) indicated disease severity [80, 108]. 

In patients with CBS, asymmetric and significantly higher accumulation of [18F]THK5351 

was seen in the frontal, parietal, and globus pallidus than in normal controls and AD 

patients [110]. Similarly, compared to controls, tau-PET with [18F]AV1451 in CBS patients 
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also exhibited increased binding in the motor-related subcortex or cortex, the corticospi-

nal tract, and the symptom-contralateral thalamus [111, 112]. Besides, previous longitu-

dinal tau imaging observations demonstrated that the tracer binding increases during 

disease advancement in CBS patients [113, 114]. Furthermore, in an autopsy-diagnosed 

CBD patient, the regional [18F]AV1451 tau-PET uptake correlated with 4R-tau burden 

assessed by histopathological assay, indicating a high affinity of [18F]AV1451 to 4R-tau 

deposits in CBD [115]. Some other postmortem studies for [18F]THK5351 and 

[18F]AV1451 also confirmed the in vivo binding in CBD patients [110, 111, 114, 116]. 

 

2.2.3 Limitations and challenges 

Although many breakthroughs have been achieved in the diagnosis of tauopathies using 

the first-generation tau-PET radiotracers, a certain amount of the signal from the first-

generation tau-PET tracers was proven to be off-target binding. For instance, beside 

binding to tau, both [18F]THK5351 and [18F]AV1451 were reported to show affinity to the 

monoamine oxidases (MAO) A or B -- [18F]AV1451 was found to bind to MAO-A with a 

similar affinity when compared to its affinity to tau fibrils [117, 118] while the high binding 

affinity of  [18F]THK5351, especially in the thalamus, was attributed to MAO-B [119-121]. 

Furthermore, several studies found a decreased in vivo uptake of [18F]THK5351 upon 

MAO-B inhibitor treatment [121, 122].  

Besides, [11C]PBB3 and [18F]AV1451 were reported to bind to vascular structures (cho-

roid plexus for both, and dural venous sinuses for [11C]PBB3) [123, 124]. These findings 

weaken the clinical validity of the above tau tracers, especially in detecting tau aggrega-

tions in deeper brain regions or the limbic cortex. Furthermore, off-target binding to neu-

romelanin has been described for all mentioned tau tracers, especially for [18F]AV1451 

[75, 94, 124]. This can affect image assessment and quantification especially in the mid-

brain (substantia nigra) with a physiologically high concentration of neuromelanin [125]. 

Furthermore, age-related increases of [18F]AV1451 binding have been found in the basal 
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ganglia of aged patients independent with clinical diagnosis. This finding was associated 

with the accumulation of iron in these areas [85, 87, 126-128].  

As a lot of regions of interest (ROIs) in both PSP and CBS overlap with the off-target 

binding areas, it suggests off-target binding possibly be responsible at least partially for 

the in vivo retention. Off-target binding of tau-PET tracers obscures visual interpretation 

of tau-PET images and complicates the diagnoses and differentiation from other dis-

eases, and is therefore one of the major challenges and limitations in the development 

of novel tau radiotracers. 

On the other hand, these first-generation tracers bind mostly to AD-typical 3/4R tau 

isoforms of PHFs compared to other isoforms and filaments. Binding to different tau 

isoforms and folds would allow tau-PET tracers to detect various tauopathies [129]. Thus, 

the development of new radiotracers with more sensitivity and, more importantly, speci-

ficity for other tau isoforms would contribute to a better diagnosis and understanding of 

tauopathies. For example, Rosler et al. suggested to develop novel tau tracers more 

specific for 4R-tau, which would allow the discrimination of 4R-tauopathies from HCs and 

non-tauopathies, as well as offer early inter-tauopathies discrimination at a single-patient 

level [11].  

2.3 [18F]PI-2620, a second-generation tau-PET radiotracer 

These abovementioned factors made the clinical application of first-generation tau-PET 

tracers challenging, which accelerated the continuous development of second-genera-

tion tau-PET tracers. The primary aims in the development of second-generation tau-

PET tracers were to minimize off-target binding and therefore improve the binding spec-

ificity. Based on the efforts of several academic and commercial groups, several second-

generation tau-PET tracers, such as [18F]RO6958948 (RO-948), [18F]MK-6240, 

[18F]GTP-1, and  [18F]PI-2620 emerged. Chemical structures of the several widely-inves-

tigated tracers for tau-PET are shown in Figure 2. The in vitro autoradiography and first-
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in-human studies of most of the abovementioned second-generation tracers demon-

strated a high binding affinity to NFTs in AD, with absent and significantly lower off-target 

binding to A and MAO-A/B [130-133]. Among the second-generation tracers, [18F]PI-

2620, showed especially promising results in preclinical experiments and first-in-human 

studies in tauopathies. 

 

 

Figure 2. Chemical structures of several widely-investigated tracers for tau-PET 

(From Beyer and Brendel, Semin Nucl Med 2020 [134]).  

 

2.3.1 Preclinical study of [18F]PI-2620 

A series of compounds were tested in a preclinical study to select a leading candidate 

for clinical validation [130]. Taken all the in vitro and in vivo results together, [18F]PI-2620 

(compound 7), which is structurally similar to FTP, was finally chosen for further clinical 

evaluations with superior properties. 

To evaluate the binding properties of [18F]PI-2620 to pathological tau aggregates, self-

competition experiments using isolated PHFs, K18 fibrils (depicting 4R pathology), and 

brain homogenates of AD, PSP, and PiD subjects were performed. The result displayed 

superior binding properties to not only both 3R and 4R tau, but also to various tau ag-

gregate folds in both AD and non-AD tauopathies. Besides the above mentioned binding 
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assays, selective binding of [18F]PI-2620 to pathological tau was confirmed on AD and 

PSP brain sections. Furthermore, observations of the very low background binding on 

the non-demented control (NDC) brain section without pathological tau verified its high 

binding specificity. Overall, [18F]PI-2620 displayed a high selectivity for tau without rele-

vant off-target binding to Aβ or MAO-A and -B . 

2.3.2 Clinical application of [18F]PI-2620 

To confirm the suitability of [18F]PI-2620 for detecting pathological tau aggregates, sev-

eral clinical studies of [18F]PI-2620 are currently ongoing worldwide. 

The first-in-human [18F]PI-2620 PET studies in AD subjects showed significantly higher 

tracer uptake in temporal and parietal lobes, precuneus, and posterior cingulate cortex, 

and fast washout from non-target regions when compared to NDC [135-138]. Besides, 

Mueller et al. also observed a strong correlation of [18F]PI-2620 uptake in neocortical 

regions with the severity of cognitive disablement [135]. Another human study of [18F]PI-

2620 PET indicated fast tracer kinetics with a tolerable effective dose and low test-retest 

variability [139]. 

These studies confirmed that [18F]PI-2620 is a promising noninvasive tool to image tau 

deposition in AD. However, previous studies applied various acquisition protocol in clin-

ical practice of [18F]PI-2620 PET. In both Muller et al. ‘s and Bullich et al.’s studies [135, 

139], time-standardized-uptake-value-ratio (time-SUVR) curves reached a plateau at 

around 40 min post-injection (p.i.) for most subjects whereas SUVR continued to in-

crease during the whole scan in some AD subjects, and static PET scans between 45 

and 75 min robustly discriminated AD subjects from HCs. Other studies of [18F]PI-2620 

PET proposed equilibrium time at 60 to 90 min p.i. [140] and 80 to 90 min p.i. [138]. 

To study the potential of [18F]PI-2620 as a biomarker in clinically diagnosed PSP patients, 

our group performed the first large-scale multicenter observational study [141]. Postmor-
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tem autoradiography assay demonstrated the [18F]-PI-2620 binding in the unblocked ba-

sal ganglia and the frontal cortex of PSP Richardson syndrome (PSP-RS, classic sub-

type of PSP) patients to colocalized with AT8 positive tau aggregation. As for in vivo 

binding, significant difference was observed between the PSP group and the control 

groups in PSP target regions, especially in the basal ganglia. Semiquantitative analyses 

and visual read yielded high sensitivity (85% and 80%) and specificity (77% and 83%) 

for detection of PSP-RS individuals, which further demonstrated the potential of [18F]-PI-

2620 for a more reliable diagnosis of PSP at the single-patient level.  

Exemplary cases of [18F]PI-2620 PET images in AD and non-AD tauopathies are illus-

trated in Figure 3. 
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Figure 3. Exemplary axial [18F]PI-2620 PET images of patients with AD and non-AD 

tauopathies (PSP and CBS). AD, Alzheimer’s disease; PSP, progressive supranuclear 

palsy; CBS, corticobasal syndrome; HC, healthy control; DVR, distribution volume ratio.  
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3. Summary (English) 

The aim of this doctoral thesis was to study the application of the novel tau radiotracer 

[18F]PI-2620 in clinically diagnosed neurodegenerative diseases. During the research 

period, we investigated whether the detailed binding characteristics of [18F]PI-2620 by 

PET are able to distinguish the clinically predicted tau isoform in different tauopathies. 

Furthermore, we assessed the potential of early-phase of [18F]PI-2620 tau-PET imaging 

for neuronal injury diagnosis. 

To address if [18F]PI-2620 binding characteristics are able to distinguish different tau 

isoforms in a variety of tauopathies, kinetic modeling parameters and binding magnitude 

of 3/4R tauopathy (AD) and 4R tauopathy (PSP, CBS) were calculated and compared. 

We found that cortical [18F]PI-2620-positive regions of 4R-tau cases showed higher de-

livery, higher efflux, and lower retention when compared to the 3/4R-tau group. Further-

more, we established a model using different kinetic and binding characteristics to dis-

criminate 3/4R tauopathies from 4R tauopathies, which shows a stronger prediction of a 

3/4R tauopathy when compared to the pure binding magnitude. 

Besides, to study the early-phase of [18F]PI-2620 tau-PET imaging for neuronal injury 

diagnosis, dynamic [18F]PI-2620 tau-PET (0–60 min p.i.) and static [18F]FDG PET (30–

50 min p.i.) were performed in 26 subjects with neurodegenerative disorders. Semiquan-

titative and visual analyses of [18F]PI-2620 PET were correlated with that of [18F]FDG 

PET using two normalization approaches (scaling by the global mean and cerebellar 

normalization). By VOI-based comparison, we found 0.5-2.5 min p.i. to be an optimal 

time window for [18F]PI-2620 PET early-phase imaging. Furthermore, early-phase 

[18F]PI-2620 PET approaches were observed to strongly correlate with [18F]FDG PET in 

all cortical target regions, especially when it came to global mean normalization. Further-

more, the visual assessment revealed that the regional pattern of hypoperfusion of early-

phase [18F]PI-2620 PET to be consistent with the hypometabolism pattern of [18F]FDG 

PET, indicating moderate to high regional agreements between them.  
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In conclusion, the research work of this doctoral thesis revealed that [18F]PI-2620 PET is 

able to distinguish the clinically predicted 3/4R- from 4R-tauopathies. Furthermore, the 

established early-phase perfusion imaging can serve as a surrogate biomarker of neu-

ronal injury. These findings demonstrate a promising perspective of [18F]PI-2620 as a 

novel second-generation tau-PET tracer, likely facilitating to contribute to a better under-

standing of tauopathies. 
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4. Zusammenfassung (Deutsch) 

Ziel dieser Promotionsarbeit war die Anwendung des neuen Positronen Emissions 

Tomographie (PET) Tau-Radiotracers [18F]PI-2620 bei klinisch diagnostizierten 

neurodegenerativen Erkrankungen zu untersuchen. Es wurde untersucht, ob sich die 

Bindungseigenschaften von [18F]PI-2620 für klinisch vorhergesagte Tau-Isoformen bei 

verschiedenen Tauopathien unterscheiden. Zudem wurde das Potenzial der Frühphase 

der [18F]PI-2620 Tau-PET Bildgebung für die Erfassung des neuronalen Schaden 

evaluiert. 

Um festzustellen, ob [18F]PI-2620 in der Lage ist, verschiedene Tau-Isoformen in einer 

Vielzahl von Tauopathien zu unterscheiden, wurden kinetische Modellierungsparameter 

und die Bindungsgröße von 3/4R-Tauopathien (AD) und 4R-Tauopathien (CBS, PSP) 

berechnet und verglichen. Wir fanden heraus, dass kortikale [18F]PI-2620-positive 

Regionen von 4R-Tau-Fällen im Vergleich zur 3/4R-Tau-Gruppe durch eine höhere 

Ablösung des Tracers von der Zielstruktur gekennzeichnet waren. Weiterhin zeigte sich 

für die 4R-Tau-Gruppe eine höhere Anflutung und eine geringere Retention. Darüber 

wurde ein Modell erstellt, welches die unterschiedlichen Bindungseigenschaften 

verwendete, um 3/4R-Tauopathie von 4R-Tauopathie zu unterscheiden. Hier zeigte sich 

eine stärkere Vorhersage einer 3/4R-Tauopathie für die Gesamtheit der Parameter im 

Vergleich zur alleinigen Betrachtung der Bindungsgröße. 

Um die Frühphase der [18F]PI-2620 Tau-PET Bildgebung für die Erfassung des 

neuronalen Schadens zu untersuchen, wurden dynamische [18F]PI-2620 Tau-PET (0–

60 min p.i.) und statische [18F]FDG-PET (30–50 min p.i.) Messungen jeweils bei 26 

Patienten mit neurodegenerativer Erkrankung durchgeführt. Semiquantitative und 

visuelle Analysen der [18F]PI-2620 Tau-PET wurden mit denen von [18F]FDG-PET unter 

Verwendung von zwei Normalisierungsansätzen (globaler Mittelwert und 

Kleinhirnnormalisierung) korreliert. Durch einen regionen-basierten Vergleich fanden wir 

heraus, dass 0,5-2,5 min p.i. ein optimales Zeitfenster für die [18F]PI-2620-PET 
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Frühphasenbildgebung zu sein scheint. Darüber hinaus wurde festgestellt, dass die 

Quantifizierung der [18F]PI-2620-PET Frühphase in allen kortikalen Zielregionen stark 

mit der Quantifizierung der [18F]FDG-PET korrelierte, insbesondere bei Normalisierung 

mittels dem globalen Mittelwerts geht. Die visuelle Bewertung ergab, dass das regionale 

Bild der Hypoperfusion in der [18F]PI-2620-PET Frühphase dem Hypometabolismus 

Muster in der [18F]FDG-PET ähnelte. Hier zeigte sich eine moderate bis hohe regionale 

Korrelation zwischen den beiden Modalitäten. 

Zusammenfassend kann die [18F]PI-2620-PET die klinisch vorhergesagten 3/4R- und 

4R-Tauopathien unterscheiden und die Anwendung der Frühphasenbildgebung kann als 

Ersatzbiomarker für die Detektion des neuronalen Schadens verwendet werden. Diese 

Ergebnisse zeigten eine vielversprechende Perspektive von [18F]PI-2620, einem neuen 

Tau-PET-Tracer der zweiten Generation, um zu einem besseren Verständnis von 

Tauopathien beizutragen. 
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